United States Environmental Protection Agency Office of Water Regulations and Standards (WH-552) Industrial Technology Division Washington, DC 20460 EPA 440/1-89-019.7 May 1989

Office of Water

FINAL

Development Document for Effluent Limitations Guidelines and Standards for the Nonferrous Metals Manufacturing Point Source Category

Volume VII Primary Beryllium Primary Nickel and Cobalt Secondary Nickel Secondary Tin

Printed on Recycled Paper

ORGANIZATION OF THIS DOCUMENT

This development document for the nonferrous metals manufacturing category consists of a general development document which considers the general and overall aspects of the regulation and 31 subcategory specific supplements. These parts are organized into 10 volumes as listed below.

The information in the general document and in the supplements is organized by sections with the same type of information reported in the same section of each part. Hence to find information on any specific aspect of the category one would need only look in the same section of the general document and the specific supplements of interest.

The ten volumes contain contain the following subjects:

- Volume I General Development Document
- Volume II Bauxite Refining Primary Aluminum Smelting Secondary Aluminum Smelting
- Volume III Primary Copper Smelting Primary Electrolytic Copper Refining Secondary Copper Refining Metallurgical Acid Plants
- Volume IV Primary Zinc Primary Lead Secondary Lead Primary Antimony
- Volume V Primary Precious Metals and Mercury Secondary Precious Metals Secondary Silver Secondary Mercury
- Volume VI Primary Tungsten Secondary Tungsten and Cobalt Primary Molybdenum and Rhenium Secondary Molybdenum and Vanadium
- Volume VII Primary Beryllium Primary Nickel and Cobalt Secondary Nickel Secondary Tin
- Volume VIII Primary Columbium and Tantalum Secondary Tantalum Secondary Uranium
- Volume IX Primary and Secondary Titanium Primary Zirconium and Hafnium
- Volume X Primary and Secondary Germanium and Gallium Primary Rare Earth Metals Secondary Indium

DEVELOPMENT DOCUMENT

for

EFFLUENT LIMITATIONS GUIDELINES AND STANDARDS

for the

NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY

VOLUME VII

Primary Beryllium Primary Nickel and Cobalt Secondary Nickel Secondary Tin

> William K. Reilly Administrator

Rebecca Hanmer, Acting Assistant Administrator for Water

Martha Prothro, Director Office of Water Regulations and Standards

Thomas P. O'Farrell, Director Industrial Technology Division

Ernst P. Hall, P.E., Chief Metals Industry Branch and Technical Project Officer

May 1989

U.S. Environmental Protection Agency Office of Water Office of Water Regulations and Standards Industrial Technology Division Washington, D. C. 20460

ii

TABLE OF CONTENTS

Supplement	Page
Primary Beryllium	3605
Primary Nickel and Cobalt	3819
Secondary Nickel	3933
Secondary Tin	4019

For detailed contents see detailed contents list in individual supplement.

,

-

iv

.

NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY

DEVELOPMENT DOCUMENT SUPPLEMENT

for the

Primary Beryllium Subcategory

William K. Reilly Administrator

Rebecca Hanmer Acting Assistant Administrator for Water

Martha Prothro, Director Office of Water Regulations and Standards

Thomas P. O'Farrell, Director Industrial Technology Division

Ernst P. Hall, P.E., Chief Metals Industry Branch and Technical Project Officer

May 1989

U.S. Environmental Protection Agency Office of Water Office of Water Regulations and Standards Industrial Technology Division Washington, D. C. 20460

3605

TABLE OF CONTENTS

Section		Page
I	SUMMARY	3615
II	CONCLUSIONS	3617
III	SUBCATEGORY PROFILE	3641
	Description of Primary Beryllium Production Raw Materials Production of Beryllium Hydroxide Beryllium Oxide Production Beryllium Metal Production Process Wastewater Sources Other Wastewater Sources Age, Production, and Process Profile	3641 3642 3643 3643 3644 3645 3645
IV	SUBCATEGORIZATION	3651
	Factors Considered in Subdividing the Primary	3651
	Beryllium Subcategory Other Factors Production Normalizing Parameters	3652 3652
v	WATER USE AND WASTEWATER CHARACTERISTICS	3655
	Wastewater Flow Rates Wastewater Characteristics Data Data Collection Portfolios Field Sampling Data Wastewater Characteristics and Flows by Subdivision	3656 3656 3657 3657 3658
	Solvent Extraction Raffinate from Bertrandite Solvent Extraction Raffinate from Beryl Ore Beryllium Carbonate Filtrate Beryllium Hydroxide Filtrate Beryllium Oxide Calcining Furnace Wet Air Pollution Control	Ore3658 3659 3659 3659 3660
	Beryllium Hydroxide Supernatant Process Water Fluoride Furnace Scrubber Chip Treatment Wastewater Beryllium Pebble Plant Area Vent Wet Air	3660 3660 3661 3661 3662
	Pollution Control Additional Building Blocks	3662

TABLE OF CONTENTS (Continued)

Section		Page
VI	SELECTION OF POLLUTANT PARAMETERS	3729
	Conventional and Nonconventional Pollutant Parameters	3729
	Conventional Pollutant Parameters Selected Toxic Priority Pollutants Toxic Pollutants Never Detected Toxic Pollutants Never Found Above Their Analytical Quantification Concentration	3729 3730 3731 3731
	Toxic Pollutants Present Below Concentrations Achievable by Treatment	3731
	Toxic Pollutants Detected in a Small Number of Sources	3731
	Toxic Pollutants Selected for Further Consideration in Limitations and Standards	3737
VII	CONTROL AND TREATMENT TECHNOLOGIES	3745
	Current Control and Treatment Practices Beryllium Hydroxide Production Beryllium Oxide and Beryllium Metal Production from Beryllium Hydroxide Control and Treatment Options Option A	3745 3745 3746 3746 3746
	Option C	3746
VIII	COSTS, ENERGY, AND NONWATER QUALITY ASPECTS	3749
	Treatment Options for Existing Sources Option A Option C Cost Methodology Nonwater Quality Aspects Energy Requirements Solid Waste Air Pollution	3749 3749 3749 3749 3749 3750 3750 3750 3651

TABLE OF CONTENTS (Continued)

Section		Page
IX	BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE	3753
	Technical Approach to BPT Industry Cost and Pollutant Removal Estimates BPT Option Selection Proposal BPT Option Selection Promulgation Wastewater Discharge Rates Solvent Extraction Raffinate from Bertrandite Solvent Extraction Raffinate from Beryl Ore Beryllium Carbonate Filtrate Beryllium Hydroxide Filtrate Beryllium Oxide Calcining Furnace Wet Air Pollution Control Beryllium Hydroxide Supernatant Process Water Fluoride Furnace Scrubber Chip Treatment Wastewater Beryllium Pebble Plant Area Vent Wet Air Pollution Control Additional Building Blocks Regulated Pollutant Parameters	3755 3756 3757
x	Effluent Limitations BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE	3762 3775
	Technical Approach to BAT Option A Option C Industry Cost and Pollutant Removal Estimates Pollutant Removal Estimates Compliance Costs BAT Option Selection - Proposal BAT Option Selection - Promulgation Final Amendments to the Regulation Wastewater Discharge Rates Regulated Pollutant Parameters Effluent Limitations	3775 3776 3776 3776 3777 3778 3778 3778 3778
XI	NEW SOURCE PERFORMANCE STANDARDS	3793
	Technical Approach to NSPS NSPS Option Selection - Proposal NSPS Option Selection - Promulgation Regulated Pollutant Parameters New Source Performance Standards	3793 3793 3794 3794 3794 3794

TABLE OF CONTENTS (Continued)

Section Page XII PRETREATMENT STANDARDS 3805 Technical Approach to Pretreatment 3805 Pretreatment Standards for New Sources 3805 PSNS Option Selection - Proposal PSNS Option Selection - Promulgation 3806 3806 Regulated Pollutant Parameters 3806 Pretreatment Standards for New Sources 3807 BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY XIII 3817

LIST OF TABLES

Table	Title	Page
V-1	Water Use and Discharge Rates for Solvent Extraction Raffinate from Bertrandite Ore	3663
V-2	Water Use and Discharge Rates for Solvent Extraction Raffinate from Beryl Ore	3663
V-3	Water Use and Discharge Rates for Beryllium Carbonate Filtrate	3663
V-4	Water Use and Discharge Rates for Beryllium Hydroxide Filtrate	3664
V-5	Water Use and Discharge Rates for Beryllium Oxide Calcining Furnace Wet Air Pollution Control	3664 1
V-6	Water Use and Discharge Rates for Beryllium Hydroxide Supernatant	3664
V-7	Water Use and Discharge Rates for Process Water	3665
V-8	Water Use and Discharge Rates for Fluoride Furnace Scrubber	3665
V-9	Water Use and Discharge Rates for Chip Treatment Wastewater	3665
V-10	Water Use and Discharge Rates for Beryllium Pebble Plant Area Vent Wet Air Pollution Control	3666
V-11	Primary Beryllium Sampling Data Beryllium Oxide Calcining Furnace Wet Air Pollution Control Raw Wastewater	3667
V-12	Primary Beryllium Sampling Data Beryllium Hydroxide Supernatant Raw Wastewater	3672
V-13	Primary Beryllium Sampling Data Process Water Raw Wastewater	3676
V-14	Primary Beryllium Sampling Data Pebble Plant Area Vent Scrubber Raw Wastewater	3691

LIST OF TABLES (Continued)

Table	Title	Page
V-15	Primary Beryllium Sampling Data Chip Treatment Raw Wastewater	3696
V-16	Primary Beryllium Sampling Data Triangular Lagoon Effluent	3700
V-17	Primary Beryllium Sampling Data Number 6 Lagoon Effluent	3705
V-18	Primary Beryllium Sampling Data Lime Tank Effluent	3715
V-19	Primary Beryllium Sampling Data Stripper Effluent	3719
V-20	Primary Beryllium Sampling Data Number 5 Lagoon	3723
VI-1	Frequency of Occurrence of Priority Pollutants Primary Beryllium Subcategory Raw Wastewater	3739
VI-2	Toxic Pollutants Never Protected	3742
VI-3	Toxic Pollutants Never Found Above Their Analytical Quantification Concentration	3744
VIII-1	Cost of Compliance for the Primary Beryllium Subcategory Direct Dischargers	3752
IX-1	BPT Wastewater Discharge Rates for the Primary Beryllium Subcategory	3763
IX-2	BPT Mass Limitations for the Primary Beryllium Subcategory	3765
X-1	Pollutant Removal Estimates Primary Beryllium Subcategory	3781
X-2	Cost of Compliance for the Primary Beryllium Subcategory Direct Dischargers	3782
X-3	BAT Wastewater Discharge Rates for the Primary Beryllium Subcategory	3782
X-4	BAT Mass Limitations for the Primary Beryllium Subcategory	3785

LIST OF TABLES (Continued)

Table	Title	Page
XI-1	NSPS Wastewater Discharge Rates for the Primary Beryllium Subcategory	3796
XI-2	NSPS for the Primary Beryllium Subcategory	3798
XII-1	PSNS Wastewater Discharge Rates for the Primary Beryllium Subcategory	3808
XII-2	PSNS for the Primary Beryllium Subcategory	3810

-

LIST OF FIGURES

Figure	No. <u>Title</u>	Page
III-l	Beryllium Hydroxide Production Process	3646
III-2	Beryllium Oxide Production Process	3647
III-3	Beryllium Metal Production Process	3648
III-4	Geographic Locations of the Primary Beryllium Subcategory Plants	3649
V-l	Sampling Locations at Beryllium Plant A - Beryllium Oxide Production Area	3727
V-2	Sampling Locations at Beryllium Plant A - Beryllium Metal Production Area	3728
IX-1	Treatment Scheme	3773
x-1	BAT Treatment Scheme for Option A	3791
X-2	BAT Treatment Scheme for Option C	3792

SECTION I

SUMMARY

This document provides the technical basis for promulgating effluent limitations based on best practicable technology (BPT) and best available technology economically achievable (BAT) for existing direct dischargers, pretreatment standards for new indirect dischargers (PSNS), and standards of performance for new source direct dischargers (NSPS).

The primary beryllium subcategory consists of three plants. One discharges directly to a river or stream, and two achieve zero discharge of process wastewater.

EPA first studied the primary beryllium subcategory to determine whether differences in raw materials, final products, manufacturing processes, equipment, age and size of plants, and water usage required the development of separate effluent limitations and standards for different segments of the subcategory. This involved a detailed analysis of wastewater discharge and treated effluent characteristics, including the sources and volumes of water used, the processes used, the sources of pollutants and wastewaters in the plant, and the constituents of wastewaters including priority pollutants. As a result, 16 subdivisions or building blocks have been identified for this subcategory that warrant separate effluent limitations. These include:

- a Solvent extraction raffinate from bertrandite ore,
- b Solvent extraction raffinate from beryl ore,
- c Beryllium carbonate filtrate,
- d Beryllium hydroxide filtrate,
- f Beryllium oxide calcining furnace wet air pollution control,
- g Beryllium hydroxide supernatant,
- h Process water,
- i Fluoride furnace scrubber,
- j Chip treatment wastewater,
- k Beryllium pebble plant area vent wet air pollution control,
- 1 Beryl ore gangue dewatering,
- m Bertrandite ore gangue dewatering,
- n Beryl ore processing,
- o AIS area wastewater,
- p Bertrandite ore leaching scrubber, and
- g Bertrandite ore counter current decantation scrubber.

EPA also identified several distinct control and treatment technologies (both in-plant and end-of-pipe) applicable to the primary beryllium subcategory. The Agency analyzed both historical and newly generated data on the performance of these technologies, including their nonwater quality environmental impacts and air quality, solid waste generation, and energy requirements. EPA also studied various flow reduction techniques reported in the data collection portfolios (dcp) and plant visits.

Engineering costs were prepared for each plant for each of the control and treatment options considered for the subcategory. These costs were then used by the Agency to estimate the impact of implementing the various options in the subcategory. For each control and treatment option that the Agency found to be most effective and technically feasible in controlling the discharge of pollutants, the number of potential closures, number of employees affected, and impact on price were estimated. These results are reported in a separate document entitled "Economic Impact Analysis of Effluent Limitations and Standards for the Nonferrous Metals Manufacturing Industry."

After examining treatment technology being operated in the subcategory, the Agency has identified promulgated BPT as pollutant removal based on chemical precipitation and sedimentation technology, and ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams. To meet the BPT effluent limitations based on this technology, the primary beryllium subcategory is estimated to incur a capital cost of \$226,500 and an annual cost of \$251,200.

For BAT, the Agency has built upon the BPT technology basis by adding filtration as an effluent polishing step to the end-ofpipe treatment scheme. To meet the BAT effluent limitations based on this technology, the primary beryllium subcategory is estimated to incur a capital cost of \$256,200 and an annual cost of \$265,600.

NSPS and PSNS are equivalent to BAT. In selecting NSPS and PSNS, EPA recognizes that new plants have the opportunity to implement the best and most efficient manufacturing processes and treatment technology. However, no such processes or treatment technology were considered to meet the NSPS or PSNS criteria. Therefore, the technology basis of BAT has been determined as the best demonstrated technology.

The best conventional technology (BCT) replaces BAT for the control of conventional pollutants. BCT is not being promulgated because the methodology for BCT has not yet been finalized.

The mass limitations and standards for BPT, BAT, NSPS, and PSNS are presented in Section II.

SECTION II

CONCLUSIONS

EPA has divided the primary beryllium subcategory into 16 subdivisions for the purpose of effluent limitations and standards. These subdivisions are:

- (a) Solvent extraction raffinate from bertrandite ore,
- (b) Solvent extraction raffinate from beryl ore,
- (c) Beryllium carbonate filtrate,
- (d) Beryllium hydroxide filtrate,
- (e) Beryllium oxide calcining furnace wet air pollution control,
- (f) Beryllium hydroxide supernatant,
- (g) Process water,
- (h) Fluoride furnace scrubber,
- (i) Chip treatment wastewater,
- (j) Beryllium pebble plant area vent wet air pollution control.
- (k) Beryl ore gangue dewatering,
- (1) Bertrandite ore gangue dewatering,
- (m) Beryl ore processing,
- (n) AIS area wastewater,
- (0) Bertrandite ore leaching scrubber, and
- (p) Bertrandite ore counter current decantation scrubber.

BPT is promulgated based on the performance achievable by the application of ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation and sedimentation (lime and settle) technology. The following BPT effluent limitations are promulgated:

(a) Solvent Extraction Raffinate from Bertrandite Ore

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average

Beryllium Chromium (Tota Copper Cyanide (Total	4,267.000	1,235.000 404.300 2,246.000 269.500
Ammonia (as N) Fluoride TSS pH	299,400.000 78,610.000 92,090.000	131,600.000 44,700.000 43,800.000 7.5 to 10.0 at all times

(b)	Solvent	Extraction	Raffinate	from	<u>Beryl</u>	<u>Ore</u>
-----	---------	------------	-----------	------	--------------	------------

Pollutant or	Maximum for	Maximum for	
Pollutant Property			
mg/kg (lb/million	lbs) of bery	llium carbonate produced	Ē
fro	m beryl ore as	s beryllium	
		101 000	
Beryllium	270.600	121.000	
Chromium (Total)	96.800 418.000		
Copper Cyanide (Total)	63.800		
Ammonia (as N)	29,330.000		
Fluoride		4,378.000	
TSS		4,290.000	
		7.5 to 10.0 at all time	es
-			
(c) <u>Beryllium</u> <u>Carbona</u>	te Filtrate		
Pollutant or	Maximum for	Maximum for	
Pollutant Property			
forfacance fropercy	any one bay	Montenity invertage	
mg/kg (lb/million	lbs) of bery	llium carbonate produced	Ē
57 - 5 × 7	as beryll.		
	-		
Beryllium	263.800	118.000	
Chromium (Total)	94.380		
Copper	407.600		
Cyanide (Total)	62.210		
Ammonia (as N) Fluoride	28,590.000 7,508.000	4,269.000	
TSS		4,183.000	
		7.5 to 10.0 at all time	es
E	• <u>-</u> <u>-</u>		
· · · · · · · · · · · · · · · · · · ·			
(d) <u>Beryllium</u> Hydroxi	de <u>Filtrate</u> I	ЗРТ	
Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
Fornation Floperty	Kily Ole Day	Monthly Average	
mg/kg (lb/million	lbs) of bery	llium hydroxide produced	Ē
	ás beryll:		
Beryllium	167.280	74.800	
Chromium (Total)	59.840	24.480	
Copper	258.400	136.000	
Cyanide (Total)	39.440	16.320	
Ammonia (as N) Fluoride	18,128.800 4,760.000	7,969.600 2,652.000	
TSS		2,652.000	
		7.5 to 10.0 at all time	ag
E HIGHIN	the tange of	, to do not ut util time	
(e) Beryllium Oxide Ca	lcining Furnad	ce Wet Air Pollution	
Control BPT			

PRIMARY BERYLLIUM SUBCATEGORY SECT - II

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/milli	on lbs) of ber	yllium oxide produced
Beryllium	324.400	145.000
Chromium (Total)	116.000	47.470
Copper	501.000	263.700
Cyanide (Total)	76.470	31.640
Ammonia (as N)	35,150.000	15,450.000
Fluoride	9,230.000	5,248.000
TSS	10,810.000	5,142.000
pH Withir	h the range of	7.5 to 10.0 at all times
(f) <u>Beryllium</u> <u>Hydroxi</u>		-
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
		lium hydroxide produced s as beryllium
Beryllium	282.900	126.500
Chromium (Total)	101.200	41.400
Copper	437.000	230.000
Cyanide (Total)	66.700	27.600
Ammonia (as N)	30,660.000	
Fluoride	160,300.000	
TSS	9,430.000	
pH Within	-	7.5 to 10.0 at all times
	-	•

(g) Process Water

Pollutant	or	Maximum fo	or Maximum	for
Pollutant	Property	Any One Da	ay Monthly Av	verage

mg/kg (lb/million lbs) of beryllium pebbles produced

Demol 1 term		215 000	06 140
Beryllium		215.000	96.140
Chromium (Total)	76.91Q	31.460
Copper		332,100	174.800
Cyanide (Total)		50.690	20.980
Ammonia (as N)		23,300.000	10,240.000
Fluoride		6,118.000	3,479.000
TSS		7,167.000	3,409.000
рН	Within	the range of	7.5 to 10.0 at all times

(h) <u>Fluoride</u> Furnace	Scrubber BPT	
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/kg (lb/millio	n lbs) of beryl	lium pebbles produced
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride TSS pH Within	0.000 0.000 0.000 0.000 0.000 0.000 the range of 7	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(i) Chip Treatment Wa	stewater BPT	
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/kg (lb/million	lbs) of beryll	ium scrap chips treated
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride TSS pH Within	9.533 3.410 14.730 2.248 1,033.000 271.300 317.800 the range of 7	4.263 1.395 7.750 0.930 454.200 154.200 151.100 .5 to 10.0 at all times
(j) <u>Beryllium Pebble</u> <u>Control</u> BPT	Plant Area Vent	Wet Air Pollution
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/kg (lb/million	n lbs) of beryl	lium pebbles produced
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride TSS pH Within	0.000 0.000 0.000 0.000 0.000 0.000 the range of 7	0.000 0.000 0.000 0.000 0.000 0.000 0.000 .5 to 10.0 at all times

PRIMARY BERYLLIUM SUBCATEGORY SECT - II

		T
(k) <u>Beryl</u> <u>Ore</u> <u>Gangue</u>	Dewatering BP	T ,
Pollutant or	Maximum for	Maximum for
Pollutant Property		
	1	1
mg/kg (pounds per	million pounds) of beryl ore processe
Beryllium	1.283	0.574
Chromium (Total)	0.459	0.188
Copper	1.982	1.043
Cyanide (Total)	0.302	0.125
Ammonia (as N)	139.032	61.120
Fluoride	36.505	20.756
TSS	42.763	20.339
pH Within	the range of	7.5 to 10.0 at all time
-	•	
(1) Bortrandito Ore G	angue Dewateri	ng BPT
(1) <u>Bertrandite</u> <u>Ore</u> <u>G</u>	ungue Dewalelli	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (pounds per m	illion pounds)	of bertrandite process
Denvilling	2 270	1 466
Beryllium	3.279	1.466
Chromium (Total)	1.173	0.480
Copper	5.064	2.665
Cyanide (Total)	0.773	0.320
	355.245	156.169
Fluoride	93.275	53.034
TSS	109.265	51.968
pH Within	the range of .	7.5 to 10.0 at all time
(m) <u>Beryl Ore</u> <u>Process</u>	ing BPT	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
L - 4		
mg/kg (pounds per	million pounds) of beryl ore processe
Beryllium	8.983	4.017
Chromium (Total)	3.213	1.315
Copper	13.876	7.303
Cyanide (Total)	2.118	0.876
Ammonia (as N)	973.490	427.956
Fluoride	255.605	145.330
TSS	299.423	142.409
		7.5 to 10.0 at all time
g		
······································	· · · · · · · · · · · · · · · · · · ·	

(n) Aluminum Iron Sludge (AIS) Area Wastewater BPT

(n) <u>Aluminum Iron S</u>	<u>ludge (AIS) Area</u>	Wastewater BPT	
Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (pounds	per million poun	ds) of total berylli	um
	bonate produced		
Beryllium	575.640	247.400	
Chromium (Total)	205.920	84.240	
Copper	889.200	468.000	
Cyanide (Total)	135.720	56.160	
Ammonia (as N)	62,384.400	27,424.800	
Fluoride	16,380.000		
TSS	19,188.000		:
pH With	in the range or	7.5 to 10.0 at all t	ımes
(o) <u>Bertrandite</u> Ore	Leaching Scrubb	er BPT	
Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
	ng/kg of bertran	dite ore	<i>"</i>
Beryllium	1.859	0.831	
Chromium (Total)	0.665	0.272	
Copper	2.871	1.511	
Cyanide (Total)	0.438	0.181	
Ammonia (as N)	201.416	88.545	
Fluoride	52.885	30.069	
TSS	61.951	29.465	_
pH With:	in the range of	7.5 to 10.0 at all t	imes
(p) Bertrandite Ore	Countercurrent	and Decantation	
(CCD) Scrubber	BPT		
Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg	of bertrandite	ore processed	
Beryllium	0.124	0.056	
Chromium (Total)	0.044	0.018	
Copper	0.192	0.101	
Cyanide (Total)	0.029	0.012	
Ammonia (as N)	13.463	5.919	
Fluoride	3.535	2.010	
	4.141	1.970 7 5 50 10 0 55 511 5	:
pH With:	in the range of	7.5 to 10.0 at all t	Twee

PRIMARY BERYLLIUM SUBCATEGORY SECT - II

BAT is promulgated based on the performance achievable by the application of ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation, sedimentation, and multimedia filtration (lime, settle, and filter) technology. The following BAT effluent limitations are promulgated:

(a) Solvent Extraction Raffinate from Bertrandite Ore BAT

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
		ium carbonate produced
from	bertrandite ore	as beryllium
Beryllium	1,842.000	831.000
Chromium (Total)	831.000	336.900
Copper	2,875.000	1,370.000
Cyanide (Total)	449.200	179.700
Ammonia (as N)	299,400.000	131,600.000
Fluoride	78,610.000	44,700.000
(b) Solvent Extract:	ion Raffinate fro	m Beryl Ore BAT
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
	on lbs) of beryll rom beryl ore as	ium carbonate produced beryllium
f		
fi Beryllium	rom beryl ore as	beryllium
f: Beryllium Chromium (Total)	rom beryl ore as 180.400	beryllium 81.400
f	rom beryl ore as 180.400 81.400	beryllium 81.400 33.000
f Beryllium Chromium (Total) Copper	rom beryl ore as 180.400 81.400 281.600	81.400 33.000 134.200

(c) Beryllium Carbonate Filtrate BAT

Pollutant or Pollutant Property	Maximum Any One		Maximum for Monthly Average
mg/kg (lb/million		berylliu ryllium	m carbonate produced
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride	79 274		79.370 32.180 130.800 17.160 12,570.000 4.269.000

	AT	<u>ate</u> BA'	xide <u>Filtr</u>	Beryllium Hydro:	(a) <u>Ber</u>
	Maximum for		Maximum	utant or	
	Monthly Average	Day	Any One	lutant Property	Pollutan
e	beryllium hydroxide			mg/kg (lb/m	
	ryllium	as bery	produced		
	50.320		111.		Berylliu
	20.400		50.	omium (Total)	
	82.960		174.		Copper
	10.880 7,969.600		27. 18,128.	nide (Total) onia (as N)	
	2,706.400		4,760.		Fluoride
			· · · · · · · · · · · · · · · · · · ·		
on	ce Wet Air Pollutic	Furnace	Calcining		
				<u>Control</u> BAT	
	Maximum for	for	Maximum	utant or	Pollutan
	Monthly Average	Day	Any One	utant Property	Pollutan
ced	yllium oxide produc	of bery]	lion lbs) (mg/kg (lb/mil)	m
	97.570	6 200	21	,]] ;	Berylliu
	39.560	7.570		omium (Total)	
	160.900	7.500			Copper
	21.100	2.740		ide (Total)	Cyanide
	15,450.000	0.000		onia (as N)	
	5,248.000	0.000	9,23	ride	Fluoride
	BAT	natant	xide Supern	Beryllium Hydro;	(f) Ber
	Maximum for	for	Maximum	utant or	Pollutan
	Monthly Average		Any One	utant Property	-
3	· · · · · · · · · · · · · · · · · · ·		-		
aucea	lium hydroxide prod s as beryllium				mg/
	-		-		
	71,200.000		160,300		
	85.100 34.500 140.300 18.400 13,480.000 71,200.000		89 29 46 30,660	mium (Total) er ide (Total) nia (as N)	Copper Cyanide

(d) Beryllium Hydroxide Filtrate BAT

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/milli	on lbs) of beryl	lium pebbles produced
Beryllium	143.300	64.680
Chromium (Total)	64.680	26.220
Copper	223.700	106.600
Cyanide (Total)	34.960	13.980
Ammonia (as N)	23,300.000	10,240.000
Fluoride	6,118.000	3,479.000
(h) Fluoride Furnace	Scrubber BAT	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/milli	on lbs) of beryl	lium pebbles produced
Beryllium	0.000	0.000
Chromium (Total)	0.000	0.000
Copper	0.000	0.000
Cyanide (Total)	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000
(i) Chip Treatment W	astewater BAT	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/millio	n lbs) of beryll	ium scrap chips treated
Beryllium	6.355	2.868
Chromium (Total)	2.868	1.163
Copper	9.920	4.728
Cyanide (Total)	1.550	0.620
Ammonia (ag NI)	1,033.000	454.200
Ammonia (as N) Fluoride	271.300	154.200

(g) <u>Process</u> <u>Water</u>

Pollutant for Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/kg (lb/milli	on lbs) of beryl	lium pebbles produced
Beryllium	0.000	0.000
Chromium (Total)	0.000	0.000
Copper	0.000	0.000
Cyanide (Total)	0.000	0.000
Ammonia (as N)	0.000	0.000
Fluoride	0.000	0.000

(j) <u>Beryllium Pebble Plant Area Vent Wet Air Pollution</u> Control BAT

(k) Beryl Ore Gangue Dewatering BAT

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (pounds per	million pounds)	of beryl ore processed
Beryllium	0.855	0.386
Chromium (Total)	0.386	0.156
Copper	1.335	0.636
Cyanide (Total)	0.209	0.083
Ammonia (as N)	139.032	61.120
Fluoride	36.505	20.756

(1) Bertrandite Ore Gangue Dewatering BAT

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
	·	
mg/kg (pounds per	million pounds) of	f bertrandite ore processed
Beryllium	2.185	0.986
Chromium (Total)	0.986	0.400
Copper	3.411	1.626
Cyanide (Total)	0.533	0.213
Ammonia (as N)	355.245	156.169
Fluoride	93.275	53.034

(m) <u>Beryl</u> Ore Proce	ssing BAT	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
ma /han / naveda na	- million nounday	of how long proposed
mg/kg (pounds pe	r million pounds)	of beryl ore processed
Beryllium	5.988	2.702
Chromium (Total)	2.702	1.095
Copper	9.348	4.455
Cyanide (Total)	1.461	0.584
Ammonia (as N)	973.490	427.956
Fluoride	255.605	145.330
(n) <u>Aluminum Iron S</u> Pollutant or Pollutant Property	<u>ludge (AIS) Area</u> Maximum for Any One Day	Mastewater BAT Maximum for Monthly Average
mg/kg (pounds per m	illion pounds) of produced as ber	total beryllium carbonate yllium
Beryllium	383.760	173.160
Chromium (Total)	173.160	70.200
Copper	599.040	285.480
Cyanide (Total)	93.600	37.440
Ammonia (as N)	62,384.400	27,424.800
Fluoride	16,380.000	9,313.200
(o) <u>Bertrandite</u> Ore	Leaching Scrubbe	r BAT
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average

Pollutant Property	Any One Day	Monthly Average	
mg/kç	g of bertrandite or	re processed	<u> </u>
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N)	1.239 0.559 1.934 0.302 201.416	0.559 0.227 0.922 0.121 88.545	
Fluoride	52.885	30.069	

(p) <u>Bertrandite Ore</u> (CCD) <u>Scrubber</u>	Countercurrent a BAT	and Decantation
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
	_	
mg/kg	of bertrandite of	ore processed
Beryllium	0.083	0.037
Chromium (Total)	0.037	0.015
Copper	0.129	0.062
Cyanide (Total)	0.020	0.008
Ammonia (as N)	13.463	5.919
Fluoride	3.535	2.010

NSPS is promulgated based on the performance achievable by the application of ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation, sedimentation, and multimedia filtration (lime, settle, and filter) technology. The following effluent standards are promulgated for new sources:

.

(a) <u>Solvenc</u> Exc	claction Rallinate in	<u>Sm Bertrandite Ore</u> NSPS
Pollutant or	Maximum for	Maximum for
Pollutant Proper	rty Any One Day	Monthly Average
mg/kg (lb/r	million lbs) of beryll from bertrandite ore	lium carbonate produced as beryllium
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride TSS pH	2,875.000 449.200 299,400.000 78,610.000 33,690.000	131,600.000 44,700.000

.

(a) Solvent Extraction Raffinate from Bertrandite Ore NSPS

(b) Solvent Extraction Raffinate from Beryl Ore NSPS			
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average	
	n lbs) of beryll om beryl ore as	ium carbonate produ beryllium	uced
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N)	180.400 81.400 281.600 44.000 29,330.000	81.400 33.000 134.200 17.600 12,890.000	
Fluoride TSS pH Withi	7,700.000 3,300.000 n the range of 7	4,378.000 2,640.000 7.5 to 10.0 at all f	times
(c) Beryllium Carbon	ate Filtrate NS	SPS	
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average	
mg/kg (lb/millio	n lbs) of beryll as berylliu	ium carbonate produ m	uced
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride TSS pH Withi	7,508.000 3,218.000		times
(d) <u>Beryllium</u> Hydrox	ide Filtrate NS	PS	
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average	
mg/kg (lb/million lbs) of beryllium h	ydroxide produced a	as beryllium
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride TSS pH Withi	111.520 50.320 174.080 27.200 18,128.800 4,760.000 2,040.000 n the range of 7	50.320 20.400 82.960 10.880 7,969.600 2,706.400 1,632.000 .5 to 10.0 at all t	imes

PRIMARY BERYLLIUM SUBCATEGORY SECT - II

Control NS	SPS					
Pollutant or	Mā	ximum fo	. M	laximum f	or	t
Pollutant Proper	rty Ar	y One Day	y Mon	thly Ave	erage	
mg/kg (1)	o/million	lbs) of 1	peryllium	n oxide p	oroduc	ced
Beryllium		216.20	00	97	.570	
Chromium (Total)		97.5	0	39	.560	
Copper		337.50	0	160	.900	
Cyanide (Total)		52.74	10	21	.100	
Ammonia (as N)		35,150.00	0	15,450	.000	
Fluoride		9,230.00		5,248		
TSS		3,956.00		3,164		
рH	Within th	•		•		times

(e) <u>Beryllium Oxide</u> <u>Calcining Furnace</u> <u>Wet Air</u> <u>Pollution</u> <u>Control</u> NSPS

(f) Beryllium Hydroxide Supernatant NSPS

Pollutant		Maximum for	Maximum for
Pollutant	Property	Any One Day	Monthly Average

Beryllium	188.600	85.100
Chromium (Total) 85.10Q	34.500
Copper	294.400	140.300
Cyanide (Total)	46.000	18.400
Ammonia (as N)	30,660.000	13,480.000
Fluoride	160,300.000	71,200.000
TSS	3,450.000	2,760.000
рН	Within the range of 7.	5 to 10.0 at all times

(g) Process Water NSPS

Pollutant or Pollutant Prope	rty	Maximum for Any One Day	Maximum for Monthly Average	
mg/kg (lb,	/millior	n lbs) of ber	yllium pebbles produce	d
Beryllium Chromium (Total Copper Cyanide (Total) Ammonia (as N) Fluoride TSS pH		143.300 64.68Q 223.700 34.960 23,300.000 6,118.000 2,622.000 the range of	26.220 106.600 13.980 10,240.000 3,479.000	mes

(h) Fluoride Furnace Scrubber NSPS

Pollutant or	Maximum for	Maximum for	
Pollutant Property			
Pollutant Property	Any One Day	Monthry Average	
mg/kg (lb/milli	on lbs) of bery	llium pebbles produ	ced
Beryllium	0.000	0.000	
Chromium (Total)	0.000	0.000	
Copper	0.000	0.000	
Cyanide (Total)	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Fluoride	0.000	0.000	
TSS	0.000	0.000	
		7.5 to 10.0 at all	times
(i) hip Treatment Wa	stewater NSPS		
Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (lb/millio	n lbs) of beryl	lium scrap chips tr	eated
Beryllium	6.355	2.868	
Chromium (Total)	2.868	1.163	
Copper	9.920	4.728	
Cyanide (Total)	1.550	0.620	
Ammonia (as N)	1,033.000		
Fluoride	271.300	154.200	
TSS	116.300	93.000	
		7.5 to 10.0 at all	times
(j) <u>Beryllium Pebble</u> <u>Control</u> NSPS	<u> Plant Area Ven</u>	t Wet Air Pollution	-
Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (lb/milli	on lbs) of bery	llium pebbles produ	ced
Beryllium	0.000	0.000	
Chromium (Total)	0.000	0.000	
Copper	0.000	0.000	
Cyanide (Total)	0.000	0.000	
Ammonia (as N)	0.000	0.000	
Fluoride	0.000	0.000	
TSS	0.000	0.000	
		7.5 to 10.0 at all	times
(k) Beryl Ore Gangue	Dewatering NS	PS	
Pollutant or	Maximum for	Maximum for	
			~~
Pollutant Property	Any One Day	Monthly Avera	ge

PRIMARY BERYLLIUM SUBCATEGORY SECT - II

mg/kg (poun	ds per	million pounds)) of beryl ore processed
Beryllium		0.855	0.386
Chromium (Total		0.386	0.156
Copper		1.335	0.636
Cyanide (Total)		0.209	0.083
Ammonia (as N)		139.032	61.120
Fluoride		36.505	20.756
TSS		15.645	12.516
pH		the range of 7	7.5 to 10.0 at all times

(1) Bertrandite Ore Gangue Dewatering NSPS

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (pounds per mil	lion pounds) of be	ertrandite ore processed
Beryllium	2.185	0.986
Chromium (Total)	0.986	0.400
Copper	3.411	1.626
Cyanide (Total)	0.533	0.213
Ammonia (as N)	355.245	156.169
Fluoride	93.275	53.034
TSS	39.975	31.980
pH Within	the range of 7.5	to 10.0 at all times

(m) <u>Beryl Ore Processing</u> NSPS

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (pounds pe	r million pounds)	of beryl ore processed
Beryllium	5.988	2.702
Chromium (Total)	2.702	1.095
Copper	9.348	4.455
Cyanide (Total)	1.461	0.584
Ammonia (as N)	973.490	427.956
Fluoride	255.605	145.330
TSS	109.545	87.636
pH With	in the range of 7	.5 to 10.0 at all times

(n) <u>Aluminum Iron</u> <u>Slu</u>	dge (AIS) Area Wa	stewater NSPS		
Pollutant or	Maximum for	Maximum for		
Pollutant Property				
101100000 110000101				
ma/ka (pounds per mil	lion pounds) of t	otal beryllium carbonate		
	produced as beryl			
	produced as bery			
Beryllium	383,760	173.160		
Chromium (Total)		70.200		
Copper	599.040	285.480		
Cyanide (Total)	93.600	37.440		
	62384.400	27424.800		
Fluoride	16380.000	9313.200		
TSS	7020.000			
pH Within	the range of 7.5	to 10.0 at all times		
(o) <u>Bertrandite</u> Ore L		NSPS		
Pollutant or	Maximum for	Maximum for		
Pollutant Property	Any One Day	Monthly Average		
mg/kg of bertrandite ore processed				
Beryllium	1.239	0.559		
Chromium (Total)	0.559	0.227		
Copper	1.934	0.922		
Cyanide (Total)	0.302	0.121		
Ammonia (as N)	201.416	88.545		
Fluoride	52.885	30.069		
TSS	22.665	18.132		
		to 10.0 at all times		
pH Within				
(p) <u>Bertrandite Ore Countercurrent and Decantation</u> (CCD) <u>Scrubber</u> NSPS				
Pollutant or	Maximum for	Maximum for		
Pollutant Property	Any One Day	Monthly Average		
mg/kg of bertrandite ore processed				
Beryllium	0.083	0.037		
Chromium (Total)	0.037	0.015		
Copper	0.129	0.062		
Cyanide (Total)	0.020	0.008		
Ammonia (as N)	13.463	5.919		
Fluoride	3.535	2.010		
TSS	1.515	1.212		
		to 10.0 at all times		
Pro Michini	· · · · · · · · · · · · · · · · · · ·	, co to to ac att ctmes		

EPA is not promulgating pretreatment standards for existing sources (PSES) for the primary beryllium subcategory.

PSNS are promulgated based on the performance achievable by the application of ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation, sedimentation, and multimedia filtration (lime, settle, and filter) technology. The following pretreatment standards are promulgated for new sources:

(a) Solvent Extraction Raffinate from Bertrandite Ore PSNS

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
	lbs) of berylli ertrandite ore a	um carbonate produced s beryllium
Beryllium	1,842.000	831.000
Chromium (Total)	831.0Q0	336.900
Copper	2,875.000	1,370.000
Cyanide (Total)	449.200	179.700
Ammonia (as N)	299,400.000	131,600.000
Fluoride	78,610.000	44,700.000
(b) <u>Solvent</u> Extractio	n Raffinate from	Beryl Ore PSNS
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average

mg/kg (lb/million lbs) of beryllium carbonate produced from beryl ore as beryllium			
Beryllium	180.000	81.000	
Chromium (Total)	81.400	33.000	
Copper	281.600	134.200	
Cyanide (Total)	44.000	17.600	
Ammonia (as N)	29,330.000	12,890.000	
Fluoride	7,700.000	4,378.000	

(C) Beryrrum Carbon	late riltiate PS.	NS
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
forfacant froperty	Any one bay	Monthly Average
mg/kg (lb/millic		ium carbonate produced
	as berylliu	m
Beryllium	175.900	79.370
Chromium (Total)	79.370	32.180
Copper	274.600	130.800
Cyanide (Total) Ammonia (as N)	42.900 28,590.000	17.160 12,570.000
Fluoride	7,508.000	4,269.000
	.,	-,
(d) Beryllium Hydrox	de Filtrate PS	NS
Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
Follacane Property	Any One Day	Monthly Average
mg/kg (lb/millic	on lbs) of beryll as berylliu	ium hydroxide produced m
Beryllium	111.520	50.320
Chromium (Total)	50.320	20.400
Copper	174.080	82.960
Cyanide (Total)	27.200	10.880
Ammonia (as N)	18,128.800	7,969.600
Fluoride	4,760.000	2,706.400
(e) <u>Beryllium Oxide</u> <u>Control</u> PSNS	Calcining Furnace	e Wet Air Pollution
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/mill	ion lbs) of bery.	llium oxide produced
Beryllium	216.200	97.570
Chromium (Total)	97.570	39.560
Copper	337.500	160.900
Cupride (motel)	52 740	21 100

(c) Beryllium Carbonate Filtrate PSNS

52.740

35,150.000

9,230.000

Cyanide (Total) Ammonia (as N)

Fluoride

15,450.000

5,248.000

21.100

(I) Beryllium Hydroxic		PSNS
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
		ium hydroxide produced
from scra	ap and residues	as beryllium
Beryllium	188.600	85.100
Chromium (Total)	85.100	34.500
Copper	294.400	140.300
Cyanide (Total)	46.000	18.400
Ammonia (as N) Fluoride	30,660.000	13,480.000
Fluoride	160,300.000	71,200.000
(g) <u>Process</u> <u>Water</u> PSN	NS	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/millior	h lbs) of beryl	lium pebbles produced
Beryllium	143.300	64.680
Chromium (Total)	64.680	26.220
Copper	223.700	106.600
Cyanide (Total)	34.960	13.980
Ammonia (as N)	23,300.000	10,240.000
Fluoride	6,118.000	3,479.000
(h) <u>Fluoride</u> <u>Furnace</u> S	Scrubber PSNS	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	h lbs) of beryl.	lium pebbles produced
Beryllium	0.000	0.000
Chromium (Total)	0.000	0.000
Copper	0.000	0.000
Cyanide (Total)	0.000	0.000
Ammonia (as N)	0.000	0.000

(f) Beryllium Hydroxide Supernatant PSNS

(i) <u>Chip</u> <u>Treatment</u> Wa	astewater PSNS			
Pollutant or	Maximum for	Maximum for		
Pollutant Property	Any One Day	Monthly Average		
forfulance property	Any one bay	Monthly Average		
mg/kg (lb/million	n lbs) of beryll	ium scrap chips treated		
Beryllium	6.355	2.868		
Chromium (Total)	2.868	1.163		
Copper	9.920	4.728		
Cyanide (Total)	1.550	0.620		
Ammonia (as N)	1,033.000	454.200		
Fluoride	271.300	154.200		
FIGUIDE	2/1.300	154.200		
(J)Beryllium PebblePlant AreaVent Wet Air PollutionControlPSNSPollutant orMaximum forMaximum forPollutant PropertyAny One DayMonthly Average				
Pollutant Property	Any One Day			
Pollutant Property mg/kg (lb/millio	Any One Day on lbs) of beryl	Monthly Average lium pebbles produced		
Pollutant Property mg/kg (lb/millio Beryllium	Any One Day on lbs) of beryl 0.000	Monthly Average lium pebbles produced 0.000		
Pollutant Property mg/kg (lb/millio Beryllium Chromium (Total)	Any One Day on lbs) of beryl 0.000 0.000	Monthly Average lium pebbles produced 0.000 0.000		
Pollutant Property mg/kg (lb/millio Beryllium Chromium (Total) Copper	Any One Day on lbs) of beryl 0.000 0.000 0.000	Monthly Average lium pebbles produced 0.000 0.000 0.000		
Pollutant Property mg/kg (lb/millio Beryllium Chromium (Total) Copper Cyanide (Total)	Any One Day on 1bs) of bery1 0.000 0.000 0.000 0.000	Monthly Average lium pebbles produced 0.000 0.000 0.000 0.000		
Pollutant Property mg/kg (lb/millio Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N)	Any One Day on 1bs) of bery1 0.000 0.000 0.000 0.000 0.000	Monthly Average lium pebbles produced 0.000 0.000 0.000 0.000 0.000 0.000		
Pollutant Property mg/kg (lb/millio Beryllium Chromium (Total) Copper Cyanide (Total)	Any One Day on 1bs) of bery1 0.000 0.000 0.000 0.000	Monthly Average lium pebbles produced 0.000 0.000 0.000 0.000		
Pollutant Property mg/kg (lb/millio Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N)	Any One Day on 1bs) of beryl 0.000 0.000 0.000 0.000 0.000 0.000	Monthly Average lium pebbles produced 0.000 0.000 0.000 0.000 0.000 0.000		
Pollutant Property mg/kg (lb/millio Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride	Any One Day on 1bs) of beryl 0.000 0.000 0.000 0.000 0.000 0.000	Monthly Average lium pebbles produced 0.000 0.000 0.000 0.000 0.000 0.000		

Pollutant Property	Any One Day	Monthly Average
mg/kg (pounds per	million pounds)	of beryl ore processed
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride	0.855 0.386 1.335 0.209 139.032 36.505	0.386 0.156 0.636 0.083 61.120 20.756

(1) <u>Bertrandite</u> <u>Ore</u>	Gangue Dewatering	<u>y</u> P5N5
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (pounds per m	illion pounds) of	bertrandite ore processe
Beryllium	2.185	0.986
Chromium (Total)	0.986	0.400
Copper	3.411	1.626
Cyanide (Total)	0.533	0.213
Ammonia (as N)	355.245	156.169
Fluoride	93.275	53.034
(m) <u>Beryl</u> Ore Proces	ssing PSNS	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any 1 Day	Monthly Average
mg/kg (pounds per	r million pounds)	of beryl ore processed
Beryllium	5,988	2.702
Chromium (Total)	2.702	1.095
Copper	9.348	4.455
Cyanide (Total)	1.461	0.584
Ammonia (as N)	973.490	427.956
Fluoride	255.605	145.330
(n) <u>Aluminum Iron S</u>	ludge (AIS) Area V	Nastewater PSNS
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any 1 Day	Monthly Average
		s) of total beryllium
carl	oonate produced as	s beryllium
Beryllium	383.760	173.160
Chromium (Total)	173.160	70.200
Copper	599.040	285.480
Cuppide (Motol)	93.600	37.440
Cyanide (Total)		
Ammonia (as N) Fluoride	62384.400	27424.800

(1) Bertrandite Ore Gangue Dewatering PSNS

.

.

(0) <u>berttrandite</u> <u>bre</u>	Deaching Berubber	ESND
Pollutant or	Maximum for	Maximum for
Pollutant Property		Monthly Average
mg/kg of bertrandite	ore processed	
Beryllium	1.239	0.559
Chromium (Total)	0.559	0.227
Copper	1.934	0.922
Cyanide (Total)	0.302	0.121
Ammonia (as N)	201.416	88.545
Fluoride	52.885	30.069
ridoride	52.005	30.003
(p) <u>Bertrandite</u> <u>Ore</u> (CCD) <u>Scrubber</u>	Countercurrent and PSNS	Decantation
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg of bertrandite	ore processed	
Beryllium	0.083	0.037
Chromium (Total)	0.037	0.015
Copper	0.129	0.062
Cyanide (Total)	0.020	0.008
Ammonia (as N)	13.463	5.919
Fluoride	3.535	2.010
-	-	

(o) Bertrandite Ore Leaching Scrubber PSNS

EPA is not promulgating best conventional pollutant control technology (BCT) limitations for the primary beryllium subcategory at this time.

.

SECTION III

SUBCATEGORY PROFILE

This section of the primary beryllium supplement describes the raw materials and processes used in producing primary beryllium and presents a profile of the primary beryllium plants identified in this study.

Beryllium, the seventh lightest known metal, is manufactured and used in three principal product forms: beryllium copper alloy, beryllium oxide and beryllium metal. It is estimated that about 80 percent of beryllium consumption is in the form of beryllium copper or other master alloy, and the remaining 20 percent represents approximately equal quantities of beryllium as the oxide and as the pure metal. Beryllium copper alloy, containing 0.5 to 2.75 percent beryllium is used in various electrical and mechanical applications including current carrying springs, welding components, tooling dies, safety tools, bearing sleeves, and overseas cable housings. Beryllium oxide, in pure or ceramic form, is used in a number of electronic applications as a heat in resistor cores, integrated circuit chip carriers, sink traveling wave tubes, and laser tubes. Pure beryllium metal is used primarily in aerospace applications including missile aircraft brakes, nozzles, optics, and nuclear components, components.

DESCRIPTION OF PRIMARY BERYLLIUM PRODUCTION

The production of beryllium products can be divided into three distinct operations - production of beryllium hydroxide from beryllium ores, production of beryllium oxide from beryllium hydroxide, and production of beryllium metal from beryllium hydroxide. The primary beryllium production processes are shown schematically in Figures III-1 through III-3 (pages 3646-3649) and described below. Beryllium-copper master alloy is produced from beryllium hydroxide in a two-step process: calcination of beryllium hydroxide to beryllium oxide, and production of beryllium-copper master alloy using a carbon reduction process. No process wastewater is generated by beryllium-copper master alloy production.

RAW MATERIALS

Most domestic beryllium is extracted from bertrandite ore (4BeO₂SiO₂H₂O). Imported and domestically produced beryl ore (3BeOAl₂O₃6SiO₂) is another raw material for the primary beryllium industry. The only company processing ore maintains the capability for processing beryl ore, and, in 1985, processed approximately 2,200 tons of beryl ore, compared with the 95,000 tons of bertrandite ore processed that year.

PRODUCTION OF BERYLLIUM HYDROXIDE

The production of beryllium hydroxide from beryl and bertrandite ores is presented schematically in Figure III-1 (page 3646). Bertrandite ore is first wet ground and screened to form a slurry which is leached with a 10 percent sulfuric acid solution. The is washed and tailings removed in mixture countercurrent thickeners. The sludge from the thickeners is pumped to the tailings pond as a slurry. The thickener supernatant, containing 0.5 to 0.6 grams per liter of beryllium, next enters a solvent extraction process where beryllium is extracted from solution with di-2-ethylhexyl phosphoric acid in kerosene. The barren raffinate solution is discarded as a wastewater stream.

Wastewater streams are generated from both the bertrandite ore gangue and beryl ore gangue dewatering processes. Further, wastewater streams are generated in the bertrandite ore leaching scrubber and bertrandite counter current decantation scrubber processes.

The beryllium is stripped from the organic phase into an aqueous solution containing 4 to 5 grams per liter of beryllium. Aluminum and iron are precipitated from solution and the aluminum iron sludge is discarded. Beryllium is then precipitated from solution as beryllium carbonate which is separated from the liquid phase by filtration. The barren filtrate is discarded as a wastewater stream or further processed for uranium recovery by solvent extraction prior to discharge. The beryllium carbonate may be sold as a product or further processed to beryllium hydroxide.

The beryllium carbonate filter cake is reslurried in deionized water and hydrolyzed in an autoclave to convert the suspended solids to beryllium hydroxide. Beryllium hydroxide is then separated from the liquid phase by filtration and the filtrate discarded as a waste stream. Beryllium hydroxide may be further processed to make beryllium copper alloy, beryllium oxide, or pure beryllium metal.

When beryl ore is processed, the ore is crushed and melted at about 1625°C. The molten material is guenched with cold The frit is water to produce a glassy material called frit. dried, ground and leached with strong sulfuric acid, forming a mixture of beryllium sulfate, aluminum sulfate, and silica. Water is added to the mixture and the silica is separated in a series of countercurrent decantation steps. The resultant silica is discarded. The beryllium solution, sludge containing approximately 10 to 11 grams per liter of beryllium is further processed by solvent extraction, purification and precipitation in an identical manner as beryllium solution from bertrandite ore. Beryl ore processing generates wastewater streams from the quench pit, scrubber and washdown operations.

BERYLLIUM OXIDE PRODUCTION

Pure beryllium oxide is produced for use in ceramics production sold directly to customers. The process is or shown schematically in Figure III-2 (page 3647). The oxide is produced by dissolving beryllium hydroxide in water and sulfuric acid. The resulting beryllium sulfate solution is then filtered to remove impurities. The solution flows to an evaporator followed by two crystallizers in parallel where beryllium sulfate crystals are formed. The crystals are separated from the mother liquor in a centrifuge and the mother liquor is recycled to the beryllium hydroxide dissolver. The beryllium sulfate is calcined in gasfired furnaces at about 1100°C to beryllium oxide.

Sulfur dioxide in the exhaust gases from the calcining furnaces is removed in caustic scrubbers which discharge scrubber water to treatment.

BERYLLIUM METAL PRODUCTION

The beryllium manufacturing process is shown schematically in Figure III-3 (page 3649). Beryllium hydroxide, Be(OH), is added to a batch makeup tank along with an ammonium bifluoride solution, calcium carbonate, and recycled beryllium fluoride The resultant ammonium beryllium fluoride solution is (BeF₂). filtered to remove insoluble impurities. The filter cake is filtered a second time and rinsed with ammonium bifluoride solution to recover any beryllium present in the filter cake. The rinse water is sent to an evaporator where it is concentrated prior to being recycled to the batch makeup tank. The washed filter cake is a fluoride sludge which is sent to treatment. The condensate from the evaporator flows to the process water pit for reuse.

The filtered ammonium beryllium fluoride solution is treated with ammonium sulfide to precipitate dissolved impurities, particularly iron. The precipitated solids are removed in a filter and the resultant sulfide sludge is sent to treatment.

The ammonium beryllium fluoride solution flows to a crystallizer where ammonium beryllium fluoride crystals are formed. Solids are separated from the liquid phase in a centrifuge, the supernatant from the centrifuge is recycled back to the crystallizer and the solids are sent to a drier. The condensate from the crystallizer is sent to the process water pit for reuse.

The dried ammonium beryllium fluoride, $(NH_4)_2BeF_4$, is heated in a graphite induction furnace to drive off ammonium fluoride (NH_4F) and produce beryllium fluoride (BeF_2) . The off-gases from the fluoride furnace pass through a recirculating wet scrubber where ammonium fluoride is absorbed from the gas into an aqueous solution. The resultant ammonium fluoride solution generated in the scrubber is used, along with hydrofluoric acid, to make ammonium bifluoride solution. This solution is used in various steps in the beryllium metal production process, particularly in

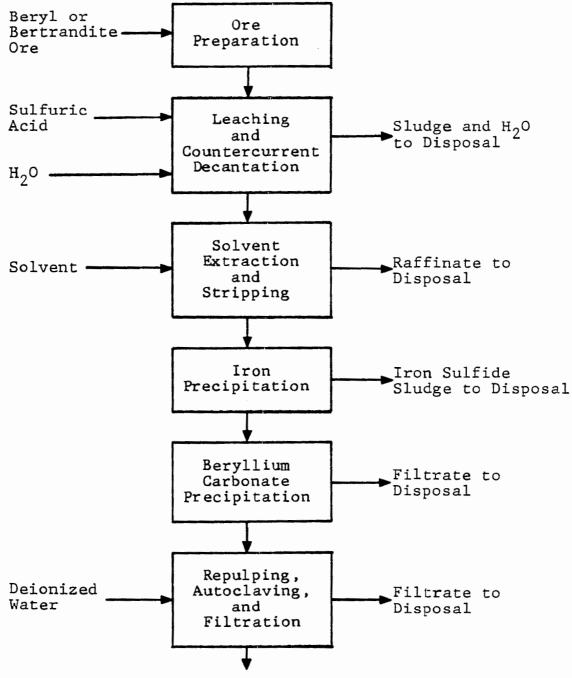
the dissolution of beryllium hydroxide to produce ammonium beryllium fluoride solution.

Beryllium fluoride is reduced to beryllium metal in a furnace. Magnesium is added to the furnace and the resulting product is a matrix of beryllium metal and magnesium fluoride (MgF2). This matrix is crushed in a hammer mill and ball mill. The beryllium, referred to as beryllium pebbles, is separated from magnesium fluoride by washing our during milling. Gravity separation in a bath of bromochloromethane is used to separate heavy metals from beryllium pebbles after milling. The magnesium fluoride residue is washed with ammonium bifluoride solution to recover any beryllium which may be present as beryllium fluoride. The beryllium fluoride solution is recycled to the batch makeup tank where beryllium hydroxide is dissolved to produce ammonium beryllium fluoride solution. The magnesium fluoride residue is then slurried to a disposal pond.

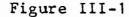
Two other additional beryllium recovery operations are present in primary beryllium subcategory. These are recovery the of beryllium as a hydroxide from low-grade sources and treatment of high-grade beryllium chips. The hydroxide operation recovers beryllium from various internal and external sources, although the amount of total plant beryllium production resulting from material (i.e.. beryllium scrap recycled is very small. Beryllium is recovere secondary from customers) recovered by precipitating it as Be(OH)₂ with sodium hydroxide, separating the precipitate in a clarifier, and dewatering the hydroxide in a centrifuge. The overflow (or supernatant) from the clarifier is discarded.

PROCESS WASTEWATER SOURCES

Although a variety of processes are involved in primary beryllium production, the process wastewater sources can be subdivided into the 18 building blocks listed below.

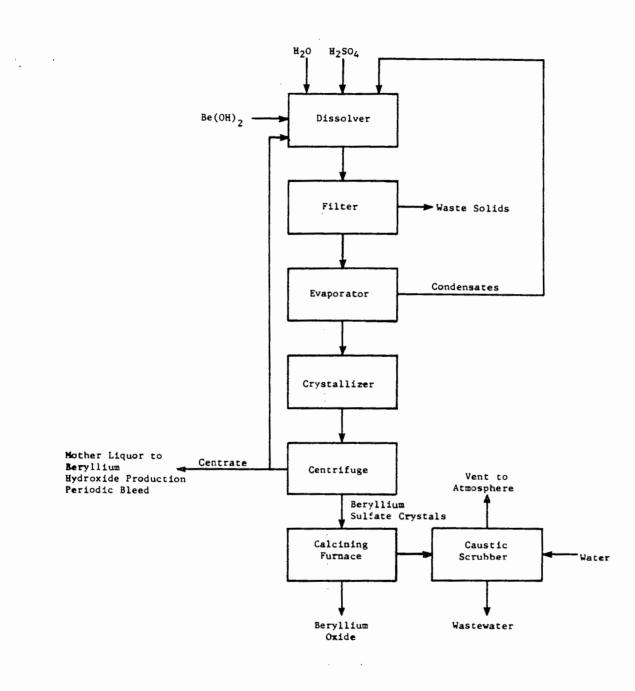

- (a) Solvent extraction raffinate from bertrandite ore,
- (b) Solvent extraction raffinate from beryl ore,
- (c) Beryllium carbonate filtrate,
- (d) Beryllium hydroxide filtrate,
- (e) Beryllium oxide calcining furnace wet air pollution control,
- (f) Beryllium hydroxide supernatant,
- (g) Process water,
- (h) Fluoride furnace scrubber
- (i) Chip leaching wastewater,
- (j) Beryllium pebble plant area vent wet air pollution control,
- (k) Beryl ore gangue dewatering,
- (1) Bertrandite ore gangue dewatering,
- (m) Beryl ore processing,
- (n) AIS area wastewater,
- (0) Bertrandite ore leaching scrubber, and
- (p) Bertrandite ore counter current decantation scrubber.

OTHER WASTEWATER SOURCES


There may be other wastewater streams associated with the primary beryllium subcategory. These streams include stormwater runoff, and maintenance and cleanup water. These waste streams are not considered as a part of this rulemaking. EPA believes that the flows and pollutant loadings associated with these waste streams are insignificant relative to the waste streams selected and are best handled by the appropriate permit authority on a case-bycase basis under authority of Section 403 of the Clean Water Act.

AGE, PRODUCTION, AND PROCESS PROFILE

Figure Ill-4 (page 3649) shows the location of the three primary beryllium plants operating in the United States. The facility which produces beryllium hydroxide from ore is a zero discharge facility and is located in a net evaporation area. The facility which produces beryllium oxide, beryllium-copper master alloy, and beryllium metal from beryllium hydroxide is a direct discharger. The other facility which produces beryllium-copper master alloy has a dry process. The plant which produces beryllium hydroxide from ores began producing hydroxide in 1969. The facility which produces beryllium metal has been operating since 1957.


Beryllium Hydroxide

BERYLLIUM HYDROXIDE PRODUCTION PROCESS

.

.

Figure III-2

BERYLLIUM OXIDE PRODUCTION PROCESS

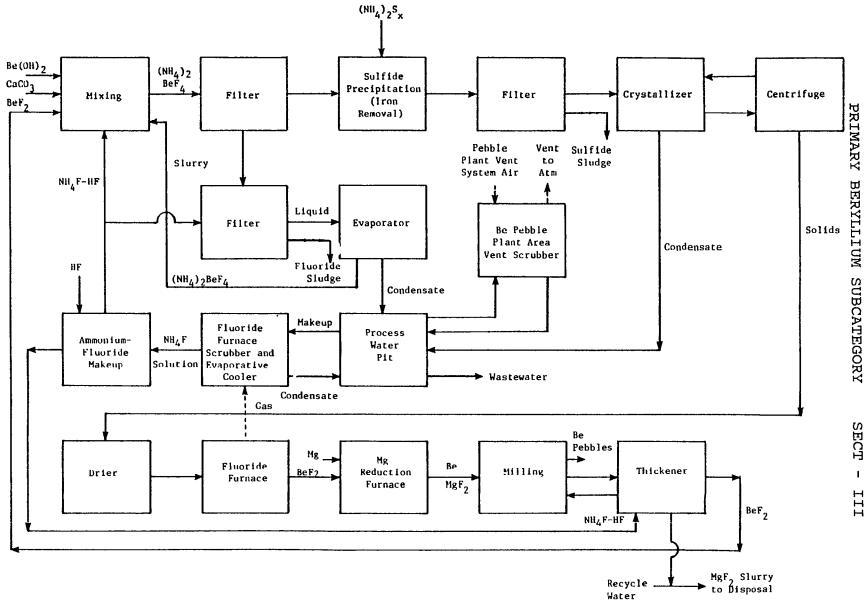


Figure III-3

BERYLLIUM METAL PRODUCTION PROCESS

3648

SECT I

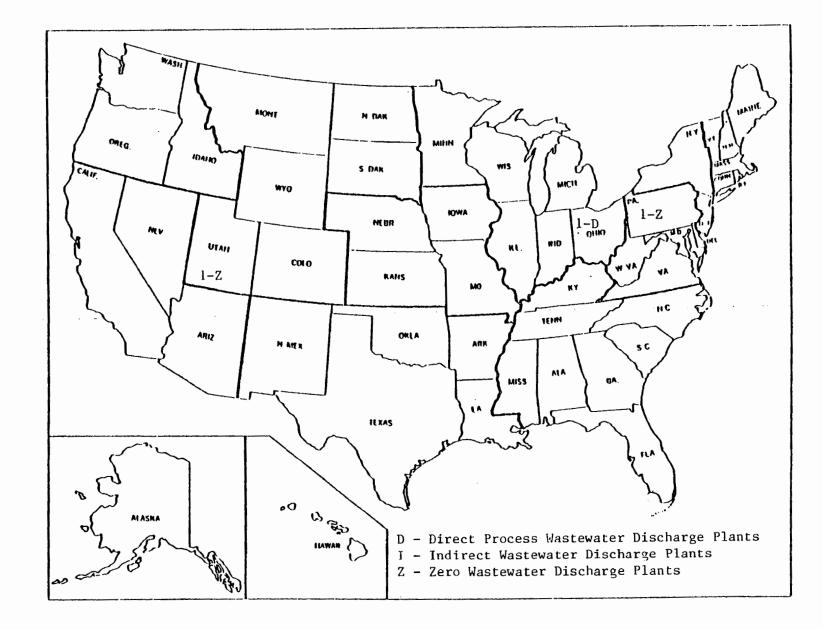


Figure III-4 GEOGRAPHIC LOCATIONS OF THE PRIMARY BERYLLIUM SUBCATEGORY PLANTS

THIS PAGE INTENTIONALLY LEFT BLANK

:

SECTION IV

SUBCATEGORIZATION

This section summarizes the factors considered during the designation of the primary beryllium subcategory and its related subdivisions. Production normalizing parameters for each subdivision will also be discussed.

FACTORS CONSIDERED IN SUBDIVIDING THE PRIMARY BERYLLIUM SUBCATEGORY

The factors listed previously were each evaluated when considering subdivision of the primary beryllium subcategory. In the discussion that follows, the factors will be described as they pertain to this particular subcategory.

The rationale for considering further subdivision of the primary beryllium subcategory is based primarily on differences in the production processes and raw materials used. Within this subcategory. a number of different operations are performed, which may or may not have a water use or discharge and which may require the establishment of separate effluent limitations. While primary beryllium is still considered a single subcategory, an examination of the production processes has illustrated the need for limitations and standards based on a specific set of wastewater streams. Limitations will be based on specific flow allowances for the following subdivisions:

- (a) Solvent extraction raffinate from bertrandite ore,
- (b) Solvent extraction raffinate from beryl ore,
- (c) Beryllium carbonate filtrate,
- (d) Beryllium hydroxide filtrate,
- (e) Beryllium oxide calcining furnace wet air pollution control,
- (f) Beryllium hydroxide supernatant,
- (g) Process water,
- (h) Fluoride furnace scrubber,
- (i) Chip treatment wastewater,
- (j) Beryllium pebble plant area vent wet air pollution control,
- (k) Beryl ore gangue dewatering,
- (1) Bertrandite ore gangue dewatering,
- (m) Beryl ore processing,
- (n) AIS area wastewater,
- (0) Bertrandite ore leaching scrubber, and
- (p) Bertrandite ore counter current decantation scrubber.

These building blocks follow directly from differences within the three distinct beryllium production operations: beryllium hydroxide production from ore, beryllium oxide production from beryllium hydroxide, and beryllium metal production from beryllium hydroxide.

The production of beryllium hydroxide from ore gives rise to the

subdivisions (a) through (d) and (k) through (p). Solvent extraction raffinates are a major source of wastewater directly attributable to leaching bertrandite or beryl ore with sulfuric acid and extracting beryllium from the leach solution. Precipitation of beryllium carbonate and beryllium hydroxide each result in filtrate wastewater streams.

Wastewater is generated from the dewatering of beryl ore and bertrandite ore gangue. Beryl ore processing generates wastewater from quenching, scrubber operation and washdown. Aluminum-iron sludge removal generates wastewater. Wastewater is also generated by scrubbing operations associated with bertrandite ore leaching and bertrandite ore counter current decantation operations.

Wastewater from scrubbers which control emissions from calcining furnaces are a major source of wastewater associated with the production of beryllium oxide from beryllium hydroxide.

The operations associated with the production of beryllium metal from beryllium hydroxide give rise to subdivisions (x) through (y). In one by-product recovery operation, beryllium is recovered from internally generated scrap and residues and small amounts of recycled material from customers, by leaching in sulfuric acid and precipitating beryllium hydroxide. A supernatant wastewater results. Process condensates result from ammonium stream beryllium fluoride crystallization and evaporation of ammonium bifluoride filtrate. Wet scrubbers are used to control emissions from fluoride furnaces which convert ammonium beryllium fluoride to beryllium fluoride, and to recover ammonium fluoride for control In addition, wet scrubbers are used to reuse. particulate levels in the air vented from the beryllium pebble plant. Pure beryllium metal scrap is treated with nitric and hydrofluoric acid prior to being vacuum cast along with beryllium pebbles prior to billet manufacturing. The spent acid is discharged as a wastewater stream.

OTHER FACTORS

The other factors considered in this evaluation were shown to be inappropriate bases for subdivision. Air pollution control methods, treatment costs, and total energy requirements are functions of the selected subcategorization factors -- metal product, raw materials, and production processes. Therefore, they are not independent factors and do not affect the subcategorization which has been applied. Certain other factors, such as plant age, plant size, and the number of employees, were also evaluated and determined to be inappropriate for use as bases for further subdivision of the primary beryllium subcategory.

PRODUCTION NORMALIZING PARAMETERS

As discussed previously, the effluent limitations and standards developed in this document establish mass limitations on the

discharge of specific pollutant parameters. To allow these regulations to be applied to plants with various production capacities, the mass of pollutant discharged must be related to a This factor is known as the production unit of production. normalizing parameter (PNP).

In general, for each production process which has a wastewater associated with it, the actual mass of beryllium product or intermediate produced will be used as the PNP. Thus, the PNPs for the 16 subdivisions or building blocks are listed below.

Building Block

PNP

- kkg of beryllium carbonate 1. Solvent extraction raffinate from bertrandite ore ore as beryllium
- 2. Solvent extraction raffinate from beryl ore
- 3. Beryllium carbonate filtrate
- 4. Beryllium hydroxide filtrate
- 5. Beryllium oxide calcining furnace wet air pollution control
- 6. Beryllium hydroxide supernatant
- 7. Process water
- 8. Fluoride furnace scrubber
- 9. Chip treatment wastewater
- 10. Beryllium pebble plant area vent wet air pollution control
- 11. Beryl ore gangue dewatering
- 12. Bertrandite ore gangue dewatering
- 13. Beryl ore processing

produced from bertrandite

kkg of beryllium carbonate produced from beryl ore as beryllium

kkg of beryllium carbonate produced as beryllium

kkg of beryllium hydroxide produced as beryllium

kkg of beryllium oxide produced

kkg of beryllium hydroxide produced from scrap and residues as beryllium

kkg of beryllium pebbles produced

kkg of beryllium pebbles produced

kkg of beryllium scrap chips treated

kkg of beryllium pebbles produced

kkg of beryl ore processed

kkg of bertrandite ore processed

kkg of beryl ore processed

Building Block

PNP

- 14. AIS area wastewater carbonate produced as beryllium
- 15. Bertrandite ore leaching kkg of bertrandite ore processed
- 16. Bertrandite ore counter current decantation scrubber
 kkg of bertrandite ore processed

Other PNPs were considered. The use of production capacity instead of actual production was eliminated from consideration because the mass of the pollutant produced is more a function of true production than of installed capacity.

SECTION V

WATER USE AND WASTEWATER CHARACTERISTICS

This section describes the characteristics of the wastewaters associated with the primary beryllium subcategory. Water use and discharge rates are explained and then summarized in tables at the end of this section. Data used to characterize the wastewaters are presented. Finally, the specific source, water use and discharge flows, and wastewater characteristics for each separate wastewater source are discussed.

Two principal data sources were used in the development of effluent limitations and standards for this subcategory; data collection portfolios (dcp) and field sampling results. Data collection portfolios contain information regarding wastewater flows and production levels.

In order to quantify the pollutant discharge from primary beryllium plants, a field sampling program was conducted. Samples were analyzed for 124 of the 126 priority pollutants and other pollutants deemed appropriate. (Because the analytical standard for TCDD was judged to be too hazardous to be made generally available, samples were never analyzed for this pollutant. Samples were also never analyzed for asbestos. There is no reason to expect that TCDD or asbestos would be present in nonferrous metals manufacturing.) One plant was selected for sampling in the primary beryllium subcategory. In general, the samples were analyzed for three classes of pollutants: priority organic pollutants, priority metal pollutants, and criteria pollutants (which includes both conventional and nonconventional pollutants).

As described in Section IV of this supplement, the primary beryllium subcategory has been divided into 16 subdivisions or wastewater sources, so that the promulgated regulation contains mass discharge limitations and standards for 16 building blocks which may discharge process wastewater. Differences in the wastewater characteristics associated with these subdivisions are expected. For this reason, wastewater to be streams corresponding to each subdivision are addressed separately in the discussions that follow. These wastewater sources are:

- (a) Solvent extraction raffinate from bertrandite ore,
- (b) Solvent extraction raffinate from beryl ore,
- (c) Beryllium carbonate filtrate,
- (d) Beryllium hydroxide filtrate,
- (e) Beryllium oxide calcining furnace wet air pollution control,
- (f) Beryllium hydroxide supernatant,
- (g) Process water,
- (h) Fluoride furnace scrubber,
- (i) Chip treatment wastewater,
- (j) Beryllium pebble plant area vent wet air pollution control,
- (k) Beryl ore gangue dewatering,

- (1) Bertrandite ore gangue dewatering,
- (m) Beryl ore processing,
- (n) AIS area wastewater,
- (o) Bertrandite ore leaching scrubber, and
- (p) Bertrandite ore counter current decantation scrubber.

WASTEWATER FLOW RATES

Data supplied by dcp responses were evaluated, and two flow-toproduction ratios, water use and wastewater discharge flow, were calculated for each stream. The two ratios are differentiated by the flow value used in calculation. Water use is defined as the volume of water or other fluid required for a given process per mass of beryllium product and is therefore based on the sum of recycle and makeup flows to a given process. Wastewater flow discharged after pretreatment or recycle (if these are present) used in calculating the production normalized flow -- the is volume of wastewater discharged from a given process to further treatment, disposal, or discharge per mass of beryllium produced. Differences between the water use and wastewater flows associated with a given stream result from recycle, evaporation, and carryover on the product. The production values used in calculation correspond to the production normalizing parameter, PNP, assigned to each stream, as outlined in Section IV. As an example, beryllium oxide calcining furnace wet air pollution control water flow is related to the production of the beryllium oxide. As such, the discharge rate is expressed in liters of scrubber water per metric ton of beryllium oxide produced (gallons of scrubber water per ton of beryllium oxide as produced).

The production normalized discharge flows were compiled and statistically analyzed by stream type. These production normalized water use and discharge flows are presented by subdivision in Tables V-1 through V-10 (pages 3663 - 36666) Where appropriate, an attempt was made to identify factors that could account for variations in water use and discharge rates. These variations are discussed later in this section by subdivision. A similar analysis of factors affecting the wastewater flows is presented in Sections IX, X, XI, and XII where representative BPT, BAT, NSPS, and pretreatment flows are selected for use in calculating the effluent limitations.

The water use and discharge rates shown do not include nonprocess wastewater, such as rainfall runoff and noncontact cooling water.

WASTEWATER CHARACTERIZATION DATA

Data used to characterize the various wastewaters associated with primary beryllium production come from two sources--data collection portfolios and analytical data from field sampling trips.

DATA COLLECTION PORTFOLIOS

In the data collection portfolios, the beryllium plants that discharge wastewater were asked to specify the presence or absence of toxic pollutants in their wastewater. In all cases, the plants indicated that the priority organic pollutants were believed to be absent. The responses for the priority metals and cyanide are summarized below:

Pollutant	Known Present	Believed Present
Antimony	0	0
Arsenic	0	0
Beryllium	1	1
Cadmium	0	0
Chromium	0	0
Copper	1	1
Cyanide	1	0
Lead	1	1
Mercury	0	0
Nickel	1	0
Selenium	0	0
Silver	Ο.	0
Thallium	0	0
Zinc	0	0

FIELD SAMPLING DATA

In order to quantify the concentrations of pollutants present in wastewater from primary beryllium plants. wastewater samples were collected at one of the two primary beryllium plants in the United States. A diagram indicating the sampling sites and contributing production processes is shown in Figures V-1 and V-2 (page 3727 - 3728).

Raw wastewater data are summarized in Tables V-11 through V-15 (pages 3667 - 3696) Analytical results at various points in the treatment scheme of plant A are summarized in Tables V-16 through V-20 (pages 3700 - 3723). Note that the stream numbers listed in the tables correspond to those given in individual plant sampling site diagrams, Figures V-1 and V-2. Where no data are listed for a specific day of sampling, the wastewater samples for the stream were not collected.

The data tables include some samples measured at concentrations considered not quantifiable. The base-neutral extractable, acid extractable, and volatile organics generally are considered not quantifiable at concentrations equal to or less than 0.010 mg/l. Below this concentration organic analytical results are not quantitatively accurate; however, the analyses are useful to indicate the presence of a particular pollutant. The pesticide fraction is considered not quantifiable at concentrations equal to or less than 0.005 mg/l. The detection limits shown on the data tables for priority metals and conventional and nonconventional pollutants are not the same in all cases as the published detection limits for these pollutants by the same analytical methods. The detection limits used were reported with the analytical data and hence are the appropriate limits to apply to the data. Detection limit variation can occur as a result of a number of laboratoryspecific equipment-specific and daily operator-specific factors. These factors can include day-to-day differences in machine calibration, variation in stock solutions, and variation in operators.

The statistical analysis of data includes some samples measured at concentrations considered not quantifiable. For data considered as detected but below quantifiable concentrations. a value of zero is used for averaging. Priority organic nonconventional, and conventional pollutant data reported with a "less than" sign are considered as detected, but not further quantifiable. A value of zero is also used for averaging. If a pollutant is reported as not detected, it is assigned a value of zero in calculating the average. Finally, priority metal values reported as less than a certain value were considered as not quantifiable, and consequently were assigned a value of zero in the calculation of the average.

Finally, appropriate source water concentrations are presented with the summaries of the sampling data. The method by which each sample was collected is indicated by number, as follows:

- 1. one-time grab
- 2. manual composite during intermittent process operation
- 3. 8-hour manual composite
- 4. 8-hour automatic composite
- 5. 24-hour manual composite
- 6. 24+hour automatic composite

WASTEWATER CHARACTERISTICS AND FLOWS BY SUBDIVISION

Since primary beryllium production involves 16 principal sources of wastewater and each has potentially different characteristics and flows, the wastewater characteristics and discharge rates corresponding to each subdivision will be described separately A brief description of why the associated production processes generate a wastewater and explanations for variations of water use within each subdivision will also be discussed.

SOLVENT EXTRACTION RAFFINATE FROM BERTRANDITE ORE

Beryllium is extracted from bertrandite ore by leaching with sulfuric acid and extracting beryllium from the acid solution with an organic solvent, di-2-ethylhexyl phosphoric acid in kerosene. The barren acid solution, or raffinate stream, is discarded as a waste stream. Water use and discharge rates for this stream are presented in Table V-1 (page 3663) in liters per metric ton of beryllium carbonate produced (as beryllium). These flows were calculated based on process information from the one facility currently processing bertrandite ore.

Although no sampling data are available for this waste stream, it is expected to have an acidic pH, treatable concentrations of beryllium and other toxic metals which may be leached from the ore along with beryllium, and treatable concentrations of suspended solids. It is also possible that low levels of priority organic pollutants are present in this stream as residuals from the solvent extraction process.

SOLVENT EXTRACTION RAFFINATE FROM BERYL ORE

Beryllium is extracted from beryl ore in a manner similar to that used with bertrandite ore. After preliminary processing steps, the ore is leached with sulfuric acid and beryllium is extracted from the acid solution with an organic solvent. The barren raffinate is discharged. Water use and discharge rates for this wastewater stream are presented in Table V-2 (page 3663) in liters per metric ton of beryllium carbonate produced (as beryllium).

No sampling data are available for this waste stream; however, it is expected to have an acidic pH and treatable concentrations of beryllium and other priority metals which may be present in the beryl ore raw material. Treatable concentrations of suspended solids are also expected to be present. It is also possible that toxic organic pollutants may be present in this wastewater stream if they are present in the organic solvent as impurities.

BERYLLIUM CARBONATE FILTRATE

Beryllium is stripped from the organic phase into an aqueous solution. Beryllium carbonate is precipitated and separated from the liquid phase by filtration. The filtrate stream is then discharged. Water use and discharge rates for this waste stream are presented in Table V-3 (page 3663) in liters per metric ton of beryllium carbonate produced (as beryllium).

Although there are no sampling data available for this waste stream it is expected to have an alkaline pH and treatable concentrations of beryllium and possibly other toxic metals. Since the separation of BeCO₄ from the organic phase is virtually complete, no priority organic pollutants are expected to be present in this stream.

BERYLLIUM HYDROXIDE FILTRATE

Beryllium carbonate is reslurried in deionized water, and hydrolyzed in an autoclave to convert the suspended solids to beryllium hydroxide. The beryllium hydroxide is separated from the liquid phase by filtration. The filtrate stream is then discharged. Water use and discharge rates are shown in Table V-4 (page 3664) in liters per metric ton of beryllium hydroxide produced (as beryllium).

The flow rate shown in Table V-4 was revised based on new information supplied to Agency after the completion of the original rulemaking.

No sampling data are available for this wastewater stream; however, it is expected to have an alkaline pH and may contain treatable concentrations of beryllium.

BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL

When beryllium oxide is produced from beryllium hydroxide, the hydroxide is converted to beryllium sulfate and the sulfate is calcined in a furnace to produce beryllium oxide. Sulfur oxide emissions from the furnaces are controlled with caustic scrubbers. The scrubber liquor is discharged as a wastewater stream. The production normalized water use and discharge rates for beryllium oxide calcining furnace wet air pollution control shown in Table V-5 (page 3664) in liters per metric ton of are beryllium oxide produced and the water use data includes extensive recycle (i.e., greater than 90 percent recycle).

Table V-11 (page 3667) summarizes the field sampling data for beryllium oxide calcining wet air pollution control. This waste stream has a neutral pH and very high concentrations of dissolved solids (primarily sodium sulfate). Treatable concentrations of beryllium, fluoride, and suspended solids are present.

BERYLLIUM HYDROXIDE SUPERNATANT

When beryllium is recovered from recycled customer material, internally generated residues, scrap, and recycled mother liquor from the beryllium oxide crystallization operations, the raw material is dissolved in sulfuric acid and beryllium is then precipitated with caustic as beryllium hydroxide After gravity separation, the supernatant is discharged as a wastewater stream. Production normalized water use and discharge data for beryllium hydroxide supernatant are shown in Table V-6 (page 3664) in liters per metric ton of beryllium hydroxide produced (as beryllium).

Table V-12 (page 3672) summarizes the field sampling data for beryllium hydroxide supernatant. It can be seen that this waste stream has an alkaline pH and treatable concentrations of beryllium, copper, fluoride, and suspended solids.

PROCESS WATER

Process condensates are generated from the ammonium beryllium fluoride crystallizer and the ammonium fluoride sludge filtrate evaporator. The condensed water is used as makeup for the fluoride furnace scrubbing system, for the beryllium pebble plant

PRIMARY BERYLLIUM SUBCATEGORY SECT - V

scrubbing system, for sludge washing, and general plant water usage such as floor washings. Periodic discharge from the process water pit is necessary to prevent dissolved solids build-up. Production normalized water use and discharge rates for process water are presented in Table V-7 in liters per metric ton of beryllium metal produced.

Field sampling data for process water are summarized in Table V-13 (page 3676). These data are from samples collected from the process water pit. The data show that process water is characterized by a neutral pH, and treatable concentrations of beryllium and fluoride. Ammonia and cyanide are also reported as present above treatable concentrations.

FLUORIDE FURNACE SCRUBBER

Beryllium fluoride (BeF₂) intermediate is produced by heating ammonium beryllium fluoride in a graphite induction furnace and driving off ammonium fluoride (NH₄F). Ammonium fluoride is recovered in a wet scrubbing system. Although the scrubber liquor is recycled extensively (>99.9 percent), a blowdown stream is periodically recycled to the ammonium bifluoride makeup tank to be used in beryllium fluoride intermediate production Production normalized water use and discharge rates for fluoride furnace scrubbing liquor are presented in Table V-8 (page 3665) in liters per metric ton of beryllium pebbles produced.

Although at proposal this stream was believed to have been sampled, comments from the plant indicated that the scrubber sampled was the area vent scrubber in the beryllium pebble plant. Fluoride furnace scrubber wastewater is expected to be contaminated with ammonia and fluoride based on the process occurring in the furnace.

CHIP TREATMENT WASTEWATER

Pure beryllium metal scrap in the form of chips is treated with nitric acid and rinsed prior to being vacuum cast along with beryllium pebbles into a beryllium metal billet. The spent acid and rinse water are discharged. This operation combines refining beryllium from secondary as well as primary sources. The quantity of beryllium scrap treated and subsequently cast with the beryllium pebbles, however, is small enough to have negligible impact on the production normalized water use and discharge rates for this operation. Water use and discharge rates are presented in Table V-9 (page 3665) in liters per metric ton of beryllium scrap chips treated.

Table V-15 (page 3696) summarizes the field sampling data for chip treatment wastewater. This wastewater is characterized by an acid pH and very high concentrations of beryllium. Other priority metals are present at treatable concentrations including chromium and zinc. Treatable concentrations of fluoride and suspended solids are also present.

BERYLLIUM PEBBLE PLANT AREA VENT WET AIR POLLUTION CONTROL

The beryllium pebble plant contains a ventilation system for air circulation A wet scrubber is employed to clean the used air prior to venting to the atmosphere. Although the scrubber liquor is recycled extensively, a blowdown stream is periodically discharged to the process water pit. Makeup water for the scrubber is obtained from the process water pit.

Field sampling data for beryllium pebble plant area vent scrubber are summarized in Table V-14 (page 3691). The data show that this stream is characterized by a slightly acidic pH, and treatable concentrations of beryllium and fluoride.

ADDITIONAL BUILDING BLOCKS

In the settlement agreement of April 1987, EPA agreed to propose to add new building blocks for the following six processes in the primary beryllium subcategory: beryl ore gangue dewatering, bertrandite ore gangue dewatering, beryl ore processing (comprises quench pit, scrubber and washdown), AIS area wastewater, bertrandite ore leaching scrubber, and bertrandite (comprises quench pit, ore counter current decantation scrubber. These building blocks were not included in the promulgated rule because the Agency lacked adequate information about these processes to promulgate effluent limits at that time. The Agency anticipated that effluent limits for these wastestreams would be established on a best professional judgment ("BPJ") basis by the permit writers during the permit issuance process. The petitioner has requested that EPA establish national regulations for these processes and during the settlement negotiations, the Agency obtained the necessary additional information about these processes to do so.

The wastewater discharge rates for these six processes are given below: beryl ore gangue dewatering 1,043 l/kkg of beryl ore processed, bertrandite ore gangue dewatering 2,665 l/kkg of bertrandite ore processed, beryl ore processing 7,303 l/kkg of beryl ore processed, aluminum iron sludge (AIS) area wastewater 468,000 l/kkg of total beryllium carbonate produced as beryllium, bertrandite ore leaching scrubber 1,511 l/kkg of bertrandite ore processed, bertrandite ore countercurrent decantation (CCD) scrubber 101 l/kkg of bertrandite ore processed.

PRIMARY BERYLLIUM SUBCATEGORY SECT - V

TABLE V-1

WATER USE AND DISCHARGE RATES FOR SOLVENT EXTRACTION RAFFINATE FROM BERTRANDITE ORE

(10³ 1/kkg of beryllium carbonate produced from bertrandite ore as beryllium)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1177	0	2246	2246

TABLE V-2

WATER USE AND DISCHARGE RATES FOR SOLVENT EXTRACTION RAFFINATE FROM BERYL ORE

(10³ l/kkg of beryllium carbonate produced from beryl ore as beryllium)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1177	0	220	220

TABLE V-3

WATER USE AND DISCHARGE RATES FOR BERYLLIUM CARBONATE FILTRATE

(10³ l/kkg of beryllium carbonate produced as beryllium)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1177	0	214.5	214.5

TABLE V-4

WATER USE AND DISCHARGE RATES FOR BERYLLIUM HYDROXIDE FILTRATE

(10³ 1/kkg of beryllium carbonate produced as beryllium)

Plant Code	Percent Recycle	Production Normalized Water <u>Use</u>	Production Normalized Discharge Rate
1177	0	136.0	136.0

TABLE V-5

WATER USE AND DISCHARGE RATES FOR BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL

(10³ 1/kkg of beryllium oxide produced)

Plant Code	Percent Recycle	Production Normalized Water <u>Use</u>	Production Normalized <u>Discharge</u> <u>Rate</u>
1111	>90	NR	263.7

TABLE V-6

WATER USE AND DISCHARGE RATES FOR BERYLLIUM HYDROXIDE SUPERNATANT

(10³ 1/kkg of beryllium hydroxide produced from scrap and residues as beryllium)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1111	0	230.0	230.0

TABLE V-7

WATER USE AND DISCHARGE RATES FOR PROCESS WATER

(10³ l/kkg of beryllium pebbles produced)

.

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1111	NR	NR	174.8

TABLE V-8

WATER USE AND DISCHARGE RATES FOR SOLVENT EXTRACTION RAFFINATE FROM BERTRANDITE ORE

(10³ 1/kkg of beryllium carbonate produced from bertrandite ore as beryllium)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1111	100	NR	0

TABLE V-9

۰.

WATER USE AND DISCHARGE RATES FOR CHIP TREATMENT WASTEWATER

(10³ l/kkg of beryllium scrap chips treated)

Plant Code	Percent Recycle	Production Normalized Water <u>Use</u>	Production Normalized Discharge Rate
1111	0	7.75	7.75

TABLE V-10

WATER USE AND DISCHARGE RATES FOR BERYLLIUM PEBBLE PLANT AREA VENT WET AIR POLLUTION CONTROL

(10³ 1/kkg of beryllium pebbles produced)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1111	NR	NR	0

Table V-11

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL RAW WASTEWATER

	Stream	Sample	Conc	entration			PRIMARY
Pollutant	Code	<u>Typet</u>	Source	Day 1	Day 2	Day 3	MAF
Toxic Pollutants							
114. antimony	481 484	6 6	<0.003	<0.003 0.015	<0.003 0.013	<0.003 <0.003	BERYLLIUM
115. arsenic	481 484	6 6	<0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	
117. beryllium	481 484	6 6	<0.001	0.49 2.0	0.89 1.20	0.88 0.98	SUBCATEGORY
118. cadmium	481 484	6 6	<0.004	0.005 <0.004	<0.004 0.012	<0.004 0.015	GORY
119. chromium (total)	481 484	6 6	0.017	0.055 0.050	0.042 0.086	0.042 0.13	SE
120. copper	481 484	6 6	0.47	0.13	0.17 0.38	0.12 0.16	SECT -
122. lead	481 484	6 6	<0.16	<0.168 <0.168	<0.168 <0.168	<0.168 <0.16	V
123. mercury	481 484	6 6	<0.0002	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	

Table V-11 (Continued)

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL RAW WASTEWATER

Pollutant	Stream Code	Sample Type†	Conce Source	Day 1	ns (mg/1) Day 2	Day 3	RIMARY
Toxic Pollutants (Continued)							
124. nickel	481 484	6 6	<0.006	0.043 0.022	0.019 0.036	0.022 0.036	BERYLLIUM
125. selenium	481 484	6 6	<0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	
126. silver	481 484	6 6	<0.0005	0.10 0.066	0.024 0.070	0.033 0.10	SUBCATEGORY
127. thallium	481 484	6 6	<0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	GORY
128. zinc	481 484	6 6	0.018	0.052 0.054	0.039 0.051	0.087 0.049	SECT
Nonconventional Pollutants							СН Н
acidity	481 484	6 6	<1	<1 <1	<1 <1	<1 <1	4
alkalinity	481 484	6 6		350 240	710 280	750 126	
aluminum	481 484	6 6	<0.100	0.49 0.51	0.47 0.47	0.59 1.0	

PRIMARY BERYLLIUM SUBCATEGORY

Table V-11 (Continued)

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Con Source	centratio Day 1	ns (mg/1) Day 2	Day 3	PRIMARY
Nonconventional Pollutants (Continued))						
ammonia nitrogen	481 484	6 6	6.6	<0.02 35	<0.02 50	120 77	BERYLLIUM
barium	481 484	6 6	0.20	0.027- 0.15	0.23 0.076	0.19	
boron	481 484	6 6	<0.018	0.50 0.89	0.92 0.57	0.39 0.79	SUBCATEGORY
calcium	481 484	6 6	57	4.9 10	9.3 11	11 13	GORY
chemical oxygen demand (COD)	481 484	6 6	<1	230 39	<1 490	130 31	SECT
chloride	481 484	6 6	95	330 260	120 340	125 190	CT - V
cobalt	481 484	6 6	<0.012	0.30 0.023	<0.012 0.033	<0.012 0.037	1
fluoride	481 484	6 6	0.81		,250 ,900	13 35	
iron	481 484	6 6	1.4	0.55 0.62	0.32 1.4	0.67 0.95	

Table V-11 (Continued)

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Concentrations (mg/l) Source Day 1 Day 2 Day 3	PRIMARY
Nonconventional Pollutants (Continued))			
magnesium	481 484	6 6	36 15 21 15 19 15 18	BERYLLIUM
manganese	481 484	6 6		
molybdenum	481 484	6 6	0.005 0.046 0.059 0.030 0.043 0.052 0.063	SUBCATEGORY
phosphate	481 484	6 6	<0.732 1.1 8.0 1.6 <0.732 2.9 1.0	EGORY
sodium	481 484	6 6	17 8,800 1,800 3,300 4,200 9,800 6,000	S
sulfate	481 484	6 6	1,400 39,000 6,500 7,300 24,000 29,000 18,000	SECT -
tin	481 484	6 6	<0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12 <0.12	4
titanium	481 484	6 6	0.73 0.035 <0.010 <0.010 <0.010 0.40 0.16	
total dissolved solids (TDS)	481 484	6 6	550 39,000 8,200 33,000 22,000 42,000 23,000	

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL RAW WASTEWATER

Pollutant	Stream Code	Sample Type†	Con Source	centration Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued))					
total organic carbon (TOC)	481 484	6 6	<1	10 8	11 8	11 2 000
total solids (TS)	481 484	6 6				000
vanadium	481 484	6 6	<0.006	0.032 0.019	<0.006 0.058	<0.006 0.10 <0.001 <0.001
yttrium	481 484	6 6	<0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001
Conventional Pollutants						
oil and grease	481 484	1 1	<1	<1 <1	26 <1	<1 <1
total suspended solids (TSS)	481 484	6 6	4	100 45	33 60	55
pH (standard units)	481 484	6 6	6.84	8.10 7.58	8.24 6.86	7.52 6.90

Table V-12

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM HYDROXIDE SUPERNATANT RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants					
114. antimony	491	1	<0.003	<0.003	
115. arsenic	491	1	<0.003	<0.003	
117. beryllium	491	1	<0.001	12	
118. cadmium	491	1	<0.004	<0.004	
119. chromium (total)	491	1	0.017	0.11	
120. copper	491	1	0.47	1.4	
122. lead	491	1	<0.16	<0.168	
123. mercury	491	1	<0.0002	<0.0002	
124. nickel	491	1	<0.006	0.12	
125. selenium	491	1	<0.003	<0.003	
126. silver	491	1	<0.0005	0.32	
127. thallium	491	1	<0.002	<0.002	
128. zinc	491	1	0.018	0.19	

PRIMARY BERYLLIUM SUBCATEGORY SECT - V

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM HYDROXIDE SUPERNATANT RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants			
acidity	491	1	<1 <1 RYI
alkalinity	491	1	<1 <1 BERYLLIUM 311 2,450
aluminum	491	1	/0 100 13
ammonia nitrogen	491	1	6.6 13.4 SUBCATEGORY 0.20 0.57 GORY <0.018
barium	491	1	0.20 0.57 Eg
boron	491	1	<0.018 <0.018 祝
calcium	491	1	57 3.5
chemical oxygen demand (COD)	491	1	<1 300 EC
chloride	491	1	95 520 I
cobalt	491	1	<0.012 0.019
fluoride	491	1	0.81 1,600
iron	491	1	1.4 3.2
magnesium	491	1	36 2.7

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM HYDROXIDE SUPERNATAN'T RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	
Nonconventional Pollutants (Continued))		
manganese	491	1	0.013 0.092
molybdenum	491	1	0.005 0.41
phosphate	491	1	<0.732 19
sodium	491	1	17 23,000
sulfate	491	1	1,400 130,000
tin	491	1	<0.12 <0.12
titanium	491	1	0.73 1.3
total dissolved solids (TDS)	491	1	550 99,000
total organic carbon (TOC)	491	1	<1 <1
total solids (TS)	491	1	550 100,000
vanadium	491	1	<0.006 0.10
yttrium	491	1	<0.001 <0.001

PRIMARY BERYLLIUM SUBCATEGORY

SECT

י ל

PRIMARY BERYLLIUM SAMPLING DATA BERYLLIUM HYDROXIDE SUPERNATANT RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2			Day 3
Conventional Pollutants				<u></u>		
oil and grease	491	1	<1	<1		
total suspended solids (TSS)	491	1	4	100		
pH (standard units)	491	1	6.84	11.5		

tSample Type Code: 1 - One-time grab

Table V-13

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants						
1. acenaphthene	426	1	ND	*	* *	
2. acrolein	426	1	ND	ND	ND ND	
3. acrylonitrile	426	1	*	1.682	4.593 4.559	
4. benzene	426	1	*	0.188	0.207 0.617	
5. benzidine	426	1	ND	ND	ND ND	
6. carbon tetrachloride	426	1	*	0.069	0.161 0.162	
7. chlorobenzene	426	1	*	*	*	
8. 1,2,4-trichlorobenzene	426	1	ND	ND	ND ND	
9. hexachlorobenzene	426	1	ND	ND	ND ND	

PRIMARY BERYLLIUM SUBCATEGORY SECT - V

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						i t
10.	1,2-dichloroethane	426	- 1	*	*	0.211 0.142	
	1,1,1-trichloroethane	426	· 1 ·	*	- * "	* *	
12.	hexachloroethane	426	1	ND	ND	*	
13.	1,1-dichloroethane	426	1	*	0.019	0.043 0.043	
14.	1,1,2-trichloroethane	426	1	*	*	*	
15.	1,1,2,2-tetrachloroethane	426	1	*	*	0.078 *	
16.	chloroethane	426	1	ND	*	N D N D	
17.	bis(chloromethyl)ether	426	1	ND	ND	N D N D	
18.	bis(2-chloroethyl)ether	426	1	ND	ND	ND ND	

PRIMARY BERYLLIUM SUBCATEGORY SECT -

<

3677

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/l) Day 2	Day 3	PRIMARY
Toxic	Pollutants (Continued)							
19.	2-chloroethyl vinyl ether	426	1	*	0.101	0.015 0.030		BERYLLIUM
20.	2-chloronaphthalene	426	1	ND	ND	ND ND		
21.	2,4,6-trichlorophenol	426	1	ND	ND	N D N D		SUBCATEGORY
22.	p-chloro-m-cresol	426	1	ND	*	ND 0.072		EGORY
23.	chloroform	426	1	*	0.044	0.106 0.109		S
24.	2-chlorophenol	426	1	ND	ND	ND ND		SECT -
25.	1,2-dichlorobenzene	426	1	ND	ND	ND ND		V
26.	1,3-dichlorobenzene	426	1	ND	ND	ND ND		
27.	1,4-dichlorobenzene	426	1	ND	ND	ND ND		

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	RIMARY
Toxic	Pollutants (Continued)							
28.	3,3'-dichlorobenzidine	426	1	ND	ND	N D N D		BERYLLIUM
29.	1,1-dichloroethylene	426	1	*	0.047	0.111 0.115	. –	
30.	1,2- <u>trans</u> -dichloroethylene	426	1	*	0.053	0.134 0.133		SUBCATEGORY
31.	2,4-dichlorophenol	426	1	ND	ND	N D N D		GORY
32.	1,2-dichloropropane	426	1	*	0.043	0.113 0.104		SECT
33.	1,3-dichloropropene	426	1	*	*	0.036 0.023		ı
34.	2,4-dimethylphenol	426	1	ND	ND	ND ND		V
35.	2,4-dinitrotoluene	426	1	ND	ND	ND *		
36.	2,6-dinitrotoluene	426	1	*	*	* *		

3679

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/l) Day 2	Day 3	PRIMARY
Toxic	Pollutants (Continued)							
37.	1,2-diphenylhydrazine	426	1	*	*	* *		BERYLLIUM
38.	ethylbenzene	426	1	*	*	* *		
39.	fluoranthene	426	1	*	ND	ND *		SUBCATEGORY
40.	4-chlorophenyl phenyl ether	426	1	ND	ND	ND ND		GORY
41.	4-bromophenyl phenyl ether	426	1	ND	ND	ND ND		SECT
42.	bis(2-chloroisopropyl)ether	426	1	ND	ND	N D N D		I
43.	bis(2-chloroethoxy)methane	426	1	*	ND	ND *		<
44.	methylene chloride	426	1	*	0.114	0.211 0.208		
45.	methyl chloride (chloromethane)	426	1	*	*	* *		

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conce Source	Day 1	s (mg/l) Day 2	Day 3	KLINAK.
Toxic	Pollutants (Continued)							b
46.	methyl bromide (bromomethane)	426	1	ND	*	*		521111
47.	bromoform (tribromomethane)	426	· 1 · · ·	*	*	0.130 0.077		
48.	dichlorobromomethane	426	1	*	0.021	0.051 0.051		じくつい
49.	trichlorofluoromethane	426	1	ND	ND	ND ND		001/1
50.	dichlorodifluoromethane	426	1	ND	ND	ND ND		Č
51.	chlorodibromomethane	426	1	*	0.080	0.288 0.139		ŀ
52.	hexachlorobutadiene	426	1	ND	NÐ	N D N D		
53.	hexachlorocyclopentadiene	426	1	ND	ND	N D N D		
54.	isophorone	426	1	ND	ND	N D N D		

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Type†	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
55.	naphthalene	426	1	*	*	* *	
56.	nitrobenzene	426	1	ND	ND	ND *	
57.	2-nitrophenol	426	1	ND	ND	ND ND	
58.	4-nitrophenol	426	1	ND	ND	ND ND	
59.	2,4-dinitrophenol	426	1	ND	ND	ND ND	
60.	4,6-dinitro-o-cresol	426	1	ND	ND	ND ND	
61.	N-nitrosodimethylamine	426	1	ND	ND	ND *	
62.	N-nitrosodiphenylamine	426	1	ND	*	ND *	
63.	N-nitrosodi-n-propylamine	426	1	ND	ND	ND ND	

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	MAKI
Toxic	Pollutants (Continued)							BER
64.	pentachlorophenol	426	1	ND	ND	ND ND		יחדדה
65.	phenol	426	1	ND	ND	ND ND		
66.	bis(2-ethylhexyl) phthalate	426	1	0.024	*	* *		UN LINU
67.	butyl benzyl phthalate	426	1	*	*	* *		
68.	di-n-butyl phthalate	426	1 .	0.157	0.034	0.134 ND		
69.	di-n-octyl phthalate	426	1	*	ND	N D N D		
70.	diethyl phthalate	426	1	0.076	*	0.270 *		
71.	dimethyl phthalate	426	1 .	ND	*	ND *		
72.	benzo(a)anthracene	426	1	*	ND	ND ND		

PRIMARY BERYLLIUM SUBCATEGORY SECT - V

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

		Stream	Sample		entrations	s (mg/l)	
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
73.	benzo(a)pyrene	426	1	*	ND	ND ND	
74.	benzo(b)fluoranthene	426	1	0.016	ND	ND *	
75.	benzo(k)fluoranthane	426	1	0.011	ND	ND *	
76.	chrysene	426	1	0.017	ND	ND ND	
77.	acenaphthylene	426	1	ND	ND	*	
78.	anthracene (a)	426	1	ND	*	*	
79.	benzo(ghi)perylene	426	1	ND	ND	ND *	
80.	fluorene	426	1	ND	*	* *	
81.	phenanthrene (a)	426	1	ND	*	*	

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/l) Day 2	Day 3	PRIMARY
Toxic	Pollutants (Continued)							
82.	dibenzo(a,h)anthracene	426	1	ND	ND	ND ND		BERYLLIUM
83.	indeno (1,2,3-c,d)pyrene	426	- 1	ND	ND	ND ND		
84.	pyrene	426	1	*	ND	ND *		SUBCATEGORY
85.	tetrachloroethylene	426	1	*	0.184	0.474 0.481		JORY
86.	toluene	426	1	0.085	0.029	0.085 0.065		SECT
87.	trichloroethylene	426	1	*	0.017	0.015 0.086		- V
88.	vinyl chloride (chloroethylene)	426	1	ND	*	* *		
114.	antimony	426	1 QC	<0.003		<0.003 <0.003	<0.003	
115.	arsenic	426	1 QC	<0.003		<0.003 <0.003	0.12	

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conc Source	Day 1	ns (mg/1) Day 2	Day 3	PRIMARY
Toxic	Pollutants (Continued)							BEI
117.	beryllium	426	1 QC	<0.001	230	86 84	36	BERYLLIUM
118.	cadmium	426	1 QC	<0.004	0.047	0.007 0.005	0.023	
119.	chromium (total)	426	1 QC	0.017	0.11	0.058 0.059	0.090	SUBCATEGORY
120.	copper	426	1 QC	0.47	1.6	1.2 1.1	1.5	30RY
121.	cyanide (total)	426	1			32.6**		S
122.	lead	426	1 QC	<0.16	<0.16	<0.168 <0.168	<0.16	SECT -
123.	mercury	426	1 QC	<0.0002	0.0006	0.0009 0.0008	0.0006	V
124.	nickel	426	1 QC	<0.006	0.067	0.027 0.019	0.032	
125.	selenium	426	1 QC	<0.003	<0.003	<0.003 <0.003	<0.003	

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

Pollutant	Stream Code	Sample Type†	Conc Source	entrati Day 1	ons (mg/ Day	
Toxic Pollutants (Continued)						F
126. silver	426	1 QC	<0.0005	<0.000	5 0.00 0.00	
127. thallium	426	1 QC	<0.002	<0.002	<0.00 <0.00	
128. zinc	426	1 QC	0.018	0.10	0.04 0.04	
Nonconventional Pollutants						
acidity	426	1 QC	<1	<1	<1 <1	۲ ۲
alkalinity	426	1 QC	311 1,	300	1,400 1,270	1,560
aluminum	426	1 QC	<0.100	26	18 19	16
ammonia nitrogen	426	1			4,300**	
barium	426	1 QC	0.20	3.3	2.0 3.6	2.3
boron	426	1 QC	<0.018	53	44 39	37

3687

PRIMARY BERYLLIUM SUBCATEGORY SECT I <

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3	PRIMARY
Nonconventional Pollutants (Continued))						BE
calcium	426	1 QC	57	<0.090	0.44 0.97	4.0	BERYLLIUM
chemical oxygen demand (COD)	426	1 QC	<1		600 1 600	,990	
chloride	426	1 QC	95	66	<1 <1	<1	SUBCATEGORY
cobalt	426	1 QC	<0.012	0.062	0.013 0.014	0.044	GORY
fluoride	426	1 QC	0.81 5,	,600	43 3 47	,500	SE
iron	426	1 QC	1.4	3.6	4.2 3.6	3.9	SECT -
magnesium	426	1 QC	36	1.1	0.19 0.29	2.5	V
manganese	426	1 QC	0.013	0.065	0.036 0.030	0.083	
molybdenum	426	1 QC	0.005	0.092	0.013 0.024	0.068	

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Co Source		ions (mg/l) Day 2	Day 3	PRIMARY
Nonconventional Pollutants (Continued)							
phosphate	426	1 QC	<0.732	. 17	6.6 6.0	9.2	BERYLLIUM
sodium	426	- 1 QC	- 17	56	- 41 40	39	
sulfate	426	1 QC	1,400	130	100 100	83	UBCAI
tin	426	1 QC	<0.12	<0.12	<0.12 <0.12	<0.12	SUBCATEGORY
titanium	426	1 QC	0.73	1.9	1.4 1.4	1.7	·
total dissolved solids (TDS)	426	1 QC	550	3,800	98 100	530	SECT -
total organic carbon (TOC)	426	1 QC	<1	510	1,350 980	440	V
total solids (TS)	426	1 QC	550	4,200	98 129	570	
vanadium	426	1 QC	<0.006	0.22	<0.006 <0.006	0.10	

PRIMARY BERYLLIUM SAMPLING DATA PROCESS WATER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Cond Source	Day 1	ns (mg/1) Day 2	Day 3	PRIMA
Nonconventional Pollutants (Continued)	,						RY
yttrium	426	1 QC	<0.001	<0.001	<0.001 <0.001	<0.001	BERYLI
Conventional Pollutants							MDT
oil and grease	426	1 QC	.<1.	<1	5.2 7.9	15	I SUBCA
total suspended solids (TSS)	426	1 QC	4	34	<1 <1	4	ATEGORY
pH (standard units)	426	1 QC	6.84	7.94	8.09 7.99	7.83	RY

tSample Type Code: 1 - One-time grab

*Less than or equal to 0.010 mg/l.

**Data from split samples analyzed by the plant and used because EPA analyses were inconclusive. PRIMARY BERYLLIUM SUBCATEGORY SECT - V

Table V-14

PRIMARY BERYLLIUM SAMPLING DATA PEBBLE PLANT AREA VENT SCRUBBER RAW WASTEWATER

		Pollutant	Stream Code	Sample Typet	Conce Source	ntrations (mg/l) Day 1 Day 2	Day 3
	Toxic	Pollutants					
	114.	antimony	473	1 QC	<0.003	<0.003 <0.003	
ω	115.	arsenic	473	1 QC	<0.003	0.042	
691	117.	beryllium	473	1 QC	<0.001	210 210	
	118.	cadmium	473	1 QC	<0.004	0.033 0.034	
	119.	chromium (total)	473	1 QC	0.017	0.14 0.093	
	120.	copper	473	1 QC	0.47	0.58 0.50	
	122.	lead	473	1 QC	<0.16	<0.168 <0.168	
	123.	mercury	473	1 QC	<0.0002	0.0004 0.0003	

PRIMARY BERYLLIUM SAMPLING DATA PEBBLE PLANT AREA VENT SCRUBBER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conce Source	entrations (mg/l) Day 1 Day 2	Day 3	PRIMARY
Toxic Pollutants (Continued)						
124. nickel	473	1 QC	<0.006	0.064 0.064		BERYLLIUM
125. selenium	473	1 QC	<0.003	<0.003 <0.003	. .	
126. silver	473	1 QC	<0.0005	0.008 <0.0005		SUBCATEGORY
127. thallium	473	1 QC	<0.002	<0.002 <0.002		EGORY
128. zinc	473	1 QC	0.018	0.096 0.13		
Nonconventional Pollutants						SECT
acidity	473	1 QC	<1	<1 <1		י ע
alkalinity	473	1 QC	311	630 640		
aluminum	473	1 QC	<0.100	46 41		

PRIMARY BERYLLIUM SAMPLING DATA PEBBLE PLANT AREA VENT SCRUBBER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conce Source	Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)				
ammonia nitrogen	473	1 QC	6.6	<0.02 <0.02
barium	473	1 QC	0.20	21 24
boron	473	1 QC	<0.018	57 62
calcium	473	1 QC	57	4.5 4.9
chemical oxygen demand (COD)	473	1 QC	<1	1,930 1,900
chloride	473	1 QC	95	61 36
cobalt	473	1 QC	<0.012	0.074 0.035
fluoride	473	1 QC	0.81	6,650 6,350

PRIMARY BERYLLIUM SAMPLING DATA PEBBLE PLANT AREA VENT SCRUBBER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conce	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)		<u></u>	<u></u>		
iron	473	1 QC	1.4	3.7 4.6	
magnesium	473	1 QC	36	1.6 0.72	L C M U
manganese	473	1 QC	0.013	0.041 0.066	
molybdenum	473	1 QC	0.005	0.083 0.082	EGONT
phosphate	473	1 QC	<0.732	2.9 4.0	ŭ
sodium	473	1 QC	17	74 76	
sulfate	473	1 QC	1,400	1 40 1 50	~
tin	473	1 QC	<0.12	<0.12 <0.12	
titanium	473	1 QC	0.73	1.6 1.4	

PRIMARY BERYLLIUM SUBCATEGORY SECT - V

PRIMARY BERYLLIUM SAMPLING DATA PEBBLE PLANT AREA VENT SCRUBBER RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Con Source	centrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)					
total dissolved solids (TDS)	473	1 QC	550	3,910 3,500	
total organic carbon (TOC)	473	-1 QC	< <u></u> <1	470 440	
total solids (TS)	473	1 QC	550	3,900 3,700	
vanadium	473	1 QC	<0.006	0.12 0.011	
yttrium	473	1 QC	<0.001	<0.001 <0.001	ğ
Conventional Pollutants					
oil and grease	473	1 QC	<1	<1 8	<
total suspended solids (TSS)	473	1 QC	4	5 23	
pH (standard units)	473	1 QC	6.84	5.41 5.43	

tSample Type Code: 1 - One-time grab

3695

Table V-15

PRIMARY BERYLLIUM SAMPLING DATA CHIP TREATMENT RAW WASTEWATER

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	PRIMARY
Toxic	Pollutants							
114.	antimony	495	1	<0.003			<0.003	BERY
115.	arsenic	495	1	<0.003			<0.003	BERYLLIUM
117.	beryllium	495	· 1 · · ·	<0.001	·	3,	300	
118.	cadmium	495	1	<0.004			0.063	UBC
119.	chromium (total)	495	1	0.017			7.4	ATE
120.	copper	495	1	0.47			1.4	SUBCATEGORY
122.	lead	495	1	<0.16			0.20	
123.	mercury	495	1	<0.0002			<0.0002	SEC
124.	nickel	495	1	<0.006			0.78	Н I
125.	selenium	495	1	<0.003			<0.003	4
126.	silver	495	1	<0.0005			0.040	
127.	thallium	495	1	<0.002			<0.002	
128.	zinc	495	1	0.018			7.2	

PRIMARY BERYLLIUM SAMPLING DATA CHIP TREATMENT RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	6 (mg/l) Day 2 Day 3	PRIMARY
Nonconventional Pollutants						
acidity	495	1	<1		6,300	BERYLLIUM
alkalinity	495	. 1	31.1		<1	LLI
aluminum	495	1	<0.100		110	
ammonia nitrogen	495	1	6.6		<0.02	SUBCATEGORY
barium	495	1	0.20		0.068	ATEG
boron	495	1	<0.18		2.3	ORY
calcium	495	1	57		8.8	
chemical oxygen demand (COD)	495	1	<1		300	SECT
chloride	495	1	95		170	н I
cobalt	495	1	<0.012		0.10	4
fluoride	495	1	0.81		2,500	
iron	495	1	1.4		87	
magnesium	495	1	36		37	

ы

PRIMARY BERYLLIUM SAMPLING DATA CHIP TREATMENT RAW WASTEWATER

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3	PRIMARY
Nonconventional Pollutants (Continued))						
manganese	495	1	0.013			9.9	IRYL
molybdenum		1	0.005			0.44	BERYLLIUM
phosphate	495	1	<0.732			18	
sodium	495	1	17			51	SUBCATEGORY
sulfate	495	1	1,400			73	rego
tin	495	1	<0.12			<0.12	RY
titanium	495	1	0.73			3.9	70
total dissolved solids (TDS)	495	1	550		34,	000	SECT
total organic carbon (TOC)	495	1	<1			170	ו ע
total solids (TS)	495	1	550		35,	000	1
vanadium	495	1	<0.006			0.35	
yttrium	495	1	<0.001			<0.001	

PRIMARY BERYLLIUM SAMPLING DATA CHIP TREATMENT RAW WASTEWATER

	Stream	Sample	Conc	entrations	(mg/1)	
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3
Conventional Pollutants						
oil and grease	495	1	<1			35
total suspended solids (TSS)	495	1	4		-	370
pH (standard units)	495	1	6.84			0.97

tSample Type Code: 1 - One-time grab

Table V-16

PRIMARY BERYLLIUM SAMPLING DATA TRIANGULAR LAGOON EFFLUENT

		Stream						
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3	PRIMARY
Toxic I	Pollutants							
114 . á	antimony	477	2 QC	<0.003	<0.003	<0.003 <0.003	<0.003	BERYLLIUM
115 . a	arsenic	477	2 QC	<0.003	<0.003	<0.003 <0.003	<0.003	
117. t	beryllium	477	2 QC	<0.001	1.3	0.46 0.46	1.4	SUBCATEGORY
118. 0	cadmium	477	2 QC	<0.004	0.027	<0.004 <0.004	0.009	EGORY
119. 0	chromium (total)	477	2 QC	0.017	0.084	0.043 0.039	0.11	ى م
120. 0	copper	477	2 QC	0.47	39	2.1 2.7	60	SECT -
121. 0	cyanide (total)	477	1 QC	0.12		0.09 0.10		4
122.	lead	477	2 QC	<0.16	<0.16	<0.168 <0.168	<0.168	
123. r	mercury	477	2 QC	<0.0002	<0.0002	<0.0002 <0.0002	<0.0002	

PRIMARY BERYLLIUM SAMPLING DATA TRIANGULAR LAGOON EFFLUENT

Pollutant	Stream Code	Sample Typet	Con Source	centration Day 1	ns (mg/1) Day 2	Day 3	PRIMARY
Toxic Pollutants (Continued)							IARY
124. nickel	477	2 QC	<0.006	0.26	0.015 0.020	0.65	BERYLLIUM
125. selenium	477	2 QC	<0.003	<0.003	<0.003 <0.003	<0.003	LIUM
126. silver	477	2 QC	<0.0005	0.042	0.010 0.013	0.016	SUBCATEGORY
127. thallium	477	2 QC	<0.002	<0.002	<0.002 <0.002	<0.002	FEGOR
128. zinc	477	2 QC	0.018	0.42	0.11 0.052	0.51	•
Nonconventional Pollutants							SECT
acidity	477	2 QC	<1	<1	<1 <1	<1	- V
alkalinity	477	2 QC	311	263	600 600	240	
aluminum	477	2 QC	<0.100	5.0	0.44 0.71	4.1	

3701

PRIMARY BERYLLIUM SAMPLING DATA TRIANGULAR LAGOON EFFLUENT

Pollutant	Stream Code	Sample Typet	Con Source	centratio Day 1	ons (mg/l) Day 2	Day 3	PRI
Nonconventional Pollutants (Continued)							PRIMARY
ammonia nitrogen	477	2 QC	6.6	13.4	6.9 9.1	<0.02	BERY
barium	477	2 QC	0.20	0.28	0.21 0.25	0.33	BERYLLIUM
boron	477	2 QC	<0.018	1.5	0.99 1.2	0.90	
calcium	477	2 QC	57	40	22 22	66	SUBCATEGORY
chemical oxygen demand (COD)	477	2 QC	<1	39	34 33	79	RY
chloride	477	2 QC	95	100	180 270	230	SECT
cobalt	477	2 QC	<0.012	0.077	0.014 0.022	0.10	י ע
fluoride	477	2 QC	0.81	20	26 4 28	,500	

PRIMARY BERYLLIUM SAMPLING DATA TRIANGULAR LAGOON EFFLUENT

Pollutant	Stream Code	Sample Typet	Conc Source	entratio Day 1	ns (mg/1) Day 2		PRIMARY
Nonconventional Pollutants (Continued))						RY
iron	477	2 QC	1.4	1.7	0.83 0.87	2.5	BERYLLIUM
magnesium	477	2 QC	36	32	4.0 5.2	38	LIUM
manganese	477	2 QC	0.013	0.094	0.045 0.035	0.11	SUBCA
molybdenum	477	2 QC	0.005	0.095	0.024 0.029	0.031	SUBCATEGORY
phosphate	477	2 QC	<0.732	480	3.8 4.4	170	·
sodium	477	2 QC	172,		,100 ,000	2,300	SECT -
sulfate	477	2 QC	1,400 7,6		,900 ,900	4,300	- V
tin	477	2 QC	<0.12	<0.12	<0.12 <0.12	<0.12	
titanium	477	2 QC	0.73	0.85	<0.010 <0.010	1.0	

PRIMARY BERYLLIUM SAMPLING DATA TRIANGULAR LAGOON EFFLUENT

Pollutant	Stream Code	Sample Type†	Con Source	centratio Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continu	ued)					
total dissolved solids (TDS)	477	2 QC	550 12		,000 14 ,000	, 000
total organic carbon (TOC)	477	2 QC	<1	45	19 19	19
total solids (TS)	477	2 QC	550 12		,000 15 ,000 -	5,000
vanadium	477	2 QC	<0.006	0.15	<0.006 <0.006	<0.006
yttrium	477	2 QC	<0.001	<0.006	<0.001 <0.001	<0.001
Conventional Pollutants						
oil and grease	477	1 QC	<1	<1	<1 6	
total suspended solids (TSS)	477	2 QC	4	170	24 21	260
pH (standard units)	477	2 QC	6.84	7.61	11.20 11.30	6.8
<pre>tSample Type Code: 1 - One-time gr 2 - Manual composition</pre>		·				

2 - Manual composite during intermittent process operation

PRIMARY BERYLLIUM SUBCATEGORY SECT ı

<

Table V-17

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

	Pollutant	Stream _Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	PRIMARY
Toxic	Pollutants							
1.	acenaphthene	427	6	ND	ND	ND	ND	BERYLLIUM
2.	acrolein	427	1	ND	ND	ND	ND	7LLI
3.	acrylonitrile	427	1	. *	*	*	- * -	
4.	benzene	427	1	*	*	0.011	0.014	SUBCATEGORY
5.	benzidine	427	6	ND	ND	ND	ND	ATE
6.	carbon tetrachloride	427	1	*	*	*	*	GOR
7.	chlorobenzene	427	1	*	*	*	*	К
8.	1,2,4-trichlorobenzene	427	6	ND	ND	ND	ND	SECT
9.	hexachlorobenzene	427	6	ND	ND	ND	ND	
10.	1,2-dichloroethane	427	1	*	*	*	*	- V
11.	1,1,1-trichloroethane	427	1	*	*	*	*	
12.	hexachloroethane	427	6	ND	ND	*	*	
13.	1,1-dichloroethane	427	1	*	*	*	*	
14.	1,1,2-trichloroethane	427	1	*	*	*	*	

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	PRIMARY
Toxic	Pollutants (Continued)							RY
15.	1,1,2,2-tetrachloroethane	427	1	*	*	*	*	BER
16.	chloroethane	427	1	ND	ND	ND	ND	BERYLLIUM
17.	bis(chloromethyl)ether	427	1	ND	ND	ND	ND	
18.	bis(2-chloroethyl)ether	427	6	ND	ND	ND	ND	SUBCATEGORY
19.	2-chloroethyl vinyl ether	427	1	*	*	*	*	CATE
20.	2-chloronaphthalene	427	6	ND	ND	ND	ND	GOR
21.	2,4,6-trichlorophenol	427	6	ND	ND	ND	ND	қ
22.	p-chloro-m-cresol	427	6	ND	*	ND	ND	SECT
23.	chloroform	427	1	*	*	*	*	G -
24.	2-chlorophenol	427	6	ND	ND	ND	ND	- V
25.	1,2-dichlorobenzene	427	6	ND	ND	ND	ND	
26.	1,3-dichlorobenzene	427	6	ND	ND	ND	ND	
27.	1,4-dichlorobenzene	427	6	ND	ND	ND	ND	
28.	3,3'-dichlorobenzidine	427	6	ND	ND	ND	ND	

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

Pollutant	Stream Code	Sample Typet	Conc Source	entrati Day 1	ons (mg/l Day 2) Day	PRIMARY
Toxic Pollutants (Continued)							IARY
29. 1,1-dichloroethylene	427	1	*	*	*	*	BEF
30. 1,2- <u>trans</u> -dichloroethylene	427	1	*	*	*	*	BERYLLIUM
31. 2,4-dichlorophenol	427		•••• •• N D	ND	ND	ND	IUM
32. 1,2-dichloropropane	427	1	*	*	*	*	SUE
33. 1,3-dichloropropene	427	1	*	*	¥	*	3CAT
34. 2,4-dimethylphenol	427	6	ND	ND	ND	ND	SUBCATEGORY
35. 2,4-dinitrotoluene	427	6	ND	ND	ND	ND	RY
36. 2,6-dinitrotoluene	427	6	*	*	*	*	ß
37. 1,2-diphenylhydrazine	427	6	*	ND	*	ND	SECT
38. ethylbenzene	427	1	*	*	*	*	י ע
39. fluoranthene	427	6	*	ND	ND	ND	
40. 4-chlorophenyl phenyl ether	427	6	ND	ND	ND	ND	
41. 4-bromophenyl phenyl ether	427	6	ND	ND	ND	ND	
42. bis(2-chloroisopropyl)ether	427	6	ND	ND	*	N D	

....

3707

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

	Pollutant	Stream Code	Sample Type†	Con Source	centratio Day 1	ns (mg/l) 2	Day 3	יאדאק
Toxic	Pollutants (Continued)							AKI
43.	bis(2-chloroethoxy)methane	427	6	*	*	*	*	BEK
44.	methylene chloride	427	1	*	*	*	*	דידי
45.	methyl chloride (chloromethane)	427	1	*	*	*	*	
46.	methyl bromide (bromomethane)	427	·· 1 ··	ND ·	ND	ND	ND.	ana ana
47.	bromoform (tribromomethane)	427	1	*	*	*	*	CATE
48.	dichlorobromomethane	427	1	*	*	*	*	OBCATEGORY
49.	trichlorofluoromethane	427	1	ND	ND	ND	ND	ĸ
50.	dichlorodifluoromethane	427	1	ND	ND	ND	ND	U.
51.	chlorodibromomethane	427	1	*	ND	ND	*	SECT
52.	hexachlorobutadiene	427	6	ND	ND	ND	ND	<
53.	hexachlorocyclopentadiene	427	6	ND	ND	ND	ND	
54.	isophorone	427	6	ND	ND	ND	ND	
55.	naphthalene	427	6	*	ND	*	*	
56.	nitrobenzene	427	6	ND	ND	*	*	

PRIMARY BERYLLIUM SUBCATEGORY SECT

י ע

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

	Pollutant	Stream Code	Sample Type†	Conc. Source	entrations Day 1	s (mg/l) Day 2	Day 3	PRIMARY
<u>Toxic</u>	Pollutants (Continued)							
57.	2-nitrophenol	427	6	ND	*	ND	*	BER
58.	4-nitrophenol	427	6	ND	ND	ND	ND	BERYLLIUM
59.	2,4-dinitrophenol	427	6	ND	ND -	ND	ND	
60.	4,6-dinitro-o-cresol	427	6	ND	0.012	ND	ND	SUBO
61.	N-nitrosodimethylamine	427	6	ND	ND	*	*	CATE
62.	N-nitrosodiphenylamine	427	6	ND	ND	ND	ND	SUBCATEGORY
63.	N-nitrosodi-n-propylamine	427	6	ND	ND	ND	N D	қ
64.	pentachlorophenol	427	6	ND	ND	ND	ND	SECT
65.	phenol	427	6	ND	ND	ND	0.066	CI -
66.	bis(2-ethylhexyl) phthalate	427	6	0.024	0.012	0.014	*	<
67.	butyl benzyl phthalate	427	6	*	*	*	*	
68.	di-n-butyl phthalate	427	6	0.157	0.087	0.049	0.026	
69.	di-n-octyl phthalate	427	6	*	ND	*	*	
70.	diethyl phthalate	427	6	0.076	0.071	0.018	0.018	

3709

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	<u>mg/1)</u> Day 2	Day 3
Toxic	Pollutants (Continued)						
71.	dimethyl phthalate	427	6	ND	ND	ND	N D
72.	benzo(a)anthracene	427	6	*	ND	ND	N D
73.	benzo(a)pyrene	427	6	*	ND	ŊD	ND
74.	benzo(b)fluoranthene	427	6	0.016	ND	ND	*
75.	benzo(k)fluoranthane	427	6	0.011	ND	ND	*
76.	chrysene	427	6	0.017	ND	ND	N D
77.	acenaphthylene	427	6	ND	ND	ND	N D
78.	anthracene (a)	427	6	ND	ND	*	*
79.	benzo(ghi)perylene	427	6	ND	ND	ND	ND
30.	fluorene	427	6	ND	ND	ND	ND
81.	phenanthrene (a)	427	6	ND	ND	*	*
82.	dibenzo(a,h)anthracene	427	6	ND	ND	ND	ND
83.	indeno (1,2,3-c,d)pyrene	427	6	ND	ND	ND	ND
84.	pyrene	427	6	*	ND	ND	ND

PRIMARY BERYLLIUM SUBCATEGORY SECT - V

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

		Stream	Sample		entration	ns (mg/l)		PRJ
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3	PRIMARY
Toxic	Pollutants (Continued)							
85.	tetrachloroethylene	427	1	*	*	*	*	BERYLLIUM
86.	toluene	427	1	0.085	*	*	*	LLI
87.	trichloroethylene	427	1	*	*	* -	*	
88.	vinyl chloride (chloroethylene)	427	1	ND	ND	ND	*	SUBCATEGORY
114.	antimony	427	6	<0.003	<0.003	<0.003	<0.003	ATE
115.	arsenic	427	6	<0.003	<0.003	<0.003	<0.003	GORY
117.	beryllium	427	6	<0.001	0.029	0.27	0.024	
118.	cadmium	427	6	<0.004	0.005	<0.004	<0.004	SECT
119.	chromium (total)	427	6	0.017	0.013	0.047	0.034	년 -
120.	copper	427	6	0.47	0.75	0.59	0.38	۷
121.	cyanide (total)	427	1	0.12	0.08	0.06	<0.02	
122.	lead	427	6	<0.16	<0.168	<0.168	<0.168	
123.	mercury	427	6	<0.0002	0.0011	0.0008	0.0007	
124.	nickel	427	6	<0.006	0.055	0.029	0.023	

3711

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

Pollutant	Stream Code	Sample Type†	Con Source	centratic Day 1	ons (mg/1) Day 2	Day 3	PRI
Toxic Pollutants (Continued)							PRIMARY
125. selenium	427	6	<0.003	<0.003	<0.003	<0.003	BEI
126. silver	427	6	<0.0005	0.017	0.011	0.019	RYLI
127. thallium	427	6	<0.002	<0.002	<0.002	<0.002	BERYLLIUM
128. zinc	427	6	0.018	0.006	0.048	.0.019	
Nonconventional Pollutants							всал
acidity	427	6	<1	<1	<1	<1	SUBCATEGORY
alkalinity	427	6	311	92	80	82	RY
aluminum	427	6	<0.100	0.28	<0.100	<0.100	ຎ
ammonia nitrogen	427	6	6.6	8.9	<0.02	210	SECT
barium	427	6	0.20	0.15	0.27	0.23	י ע
boron	427	6	<0.018	1.2	1.7	1.7	7
calcium	427	6	57	140	97	120	
chemical oxygen demand (COD)	427	6	<1	31	47	25	
chloride	427	6	95	510	830	810	

S

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

Pollutant	Stream Code	Sample Typet	Conc Source	entratio Day 1	ons (mg/l Day 2) 	PRIMARY
Nonconventional Pollutants (Continued)						ARY
cobalt	427	6	<0.012	<0.012	<0.012	<0.012	BEH
fluoride	427	6	0.81	26	16.5	17	BERYLLIUM
iron	427	6	··· 1.4 -	1.4	1.8	0.95	IUM
magnesium	427	6	36	15	11	12	SUE
manganese	427	6	0.013	0.010	0.045	0.005	3CAT
molybdenum	427	6 [.]	0.005	0.022	0.028	0.032	SUBCATEGORY
phosphate	427	6	<0.732	2.8	1.7	2.6	ЯХ
sodium	427	6	172,	400	1,700	1,900	S
sulfate	427	6	1,400 3,	600	3,700	3,800	SECT
tin	427	6	<0.12	<0.12	<0.12	<0.12	ו ע
titanium	427	6	0.73	0.78	0.70	<0.010	
total dissolved solids (TDS)	427	6	550 10,	000	9,300	310	
total organic carbon (TOC)	427	6	<1	12	18	13	
total solids (TS)	427	6	550 11,	000	9,800	300	

3713

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 6 LAGOON EFFLUENT

Pollutant	Stream Code	Sample Type†	Cone Source	Centration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
vanadium	427	6	<0.006	<0.006	<0.006	<0.006
yttrium .	427	6	<0.001	<0.001	<0.001	<0.001
Conventional Pollutants		-				
oil and grease	427	1	<1	<1	<1	5
total suspended solids (TSS)	427	6	4	23	22	34
pH (standard units)	427	6	6.84	8.63	8.25	8.29

*Less than or equal to 0.010 mg/l.

PRIMARY BERYLLIUM SUBCATEGORY SECT -

<

Table V-18

PRIMARY BERYLLIUM SAMPLING DATA LIME TANK EFFLUENT

	Pollutant	Stream Code	Sample Type†	Cond Source	centration Day 1	ns (mg/l) Day 2	Day 3	PRIMARY
Torio	Pollutants		19901	bource	Duy	<u>Day 2</u>	<u></u>	IARY
TUXIC	Torracants							
114.	antimony	487	1	<0.003	<0.003	<0.003	<0.003	ERY
115.	arsenic	487	1	<0.003	0.47	0.33	<0.003	BERYLLIUM
117.	beryllium	487	• 1 • • • •	<0.001	240	1.00	550	
118.	cadmium	487	1	<0.004	0.13	0.032	0.23	SUBC
119.	chromium (total)	487	1	0.017	8.4	2.0	13	ATE
120.	copper	487	. 1	0.47	2.5	13	7.7	SUBCATEGORY
121.	cyanide (total)	487	1	0.12	11	21	<0.02	
122.	lead	487	1	<0.16	1.1	0.54	2.3	SECT
123.	mercury	487	1	<0.0002	<0.0002	<0.0002	<0.0002	, Н
124.	nickel	487	1	<0.006	<0.300	0.50	3.9	4
125.	selenium	487	1	<0.003	<0.003	<0.003	<0.003	
126.	silver	487	1	<0.0005	0.089	0.098	0.27	
127.	thallium	487	1	<0.002	<0.002	<0.002	<0.002	
128.	zinc	487	1	0.018	2.6	0.93	4.1	

ATEGORY SE

PRIMARY BERYLLIUM SAMPLING DATA LIME TANK EFFLUENT

Pollutant	Stream Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants			
acidity	487	1	<1 <1 <1 <1
alkalinity	487	1	311 29,000 20,000 2,800
aluminum	487	1	<0.100 <0.100 69 <0.100
ammonia nitrogen	487	1	6.6 <0.02 <0.02 <0.02
barium	487	1	0.20 2.9 3.3 2.9
boron	487	1	<0.018 9.1 29 12
calcium	487	1	57 11,000 12,000 18,000
chemical oxygen demand (COD)	487	1	<1 1,500 <1 1,630
chloride	487	1	95 1,300 <1 <1
cobalt	487	1	<0.012 0.16 0.076 0.23
fluoride	487	1	0.81 34,000 55,000 14
iron	487	1	1.4 310 110 630
magnesium	487	1	36 1,300 370 490

PRIMARY BERYLLIUM SUBCATEGORY SECT -

<

PRIMARY BERYLLIUM SAMPLING DATA LIME TANK EFFLUENT

	Stream	Sample	Concentrations (mg/l)
Pollutant	Code	Typet	Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued))		
manganese	487	1	0.013 5.0 1.6 8.1
molybdenum	487	1	0.005 0.26 0.11 0.53
phosphate	487	1	<0.732 56 13 20
sodium	487	1	17 810 420 270
sulfate	487	1	1,400 21,000 1,500 320
tin	487	1	<0.12 <0.12 <0.12 <0.12
titanium	487	1	0.73 9.1 4.2 13
total dissolved solids (TDS)	487	1	550 4,900 20,000 16,000
total organic carbon (TOC)	487	1	<1 19 300 550
total solids (TS)	487	1	550 150,000 20,000 17,000
vanadium	487	1	<0.006 1.1 0.39 1.8
yttrium	487	1	<0.001 <0.001 <0.001 <0.001

PRIMARY BERYLLIUM SUBCATEGORY SECT t <

PRIMARY BERYLLIUM SAMPLING DATA LIME TANK EFFLUENT

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3
Conventional Pollutants						
oil and grease	487	1	<1	18	<1	6
total suspended solids (TSS)	487	1	4 130	,000	420	29
pH (standard units)	487	1	6.84	10.40	11.20	9.28

tSample Type Code: 1 - One-time grab

<

Table V-19

PRIMARY BERYLLIUM SAMPLING DATA STRIPPER EFFLUENT

		Stream	Sample	Concentrations (mg/l)					
_	Pollutant	Code	Typet	Source	<u>Day 1</u>	Day 2	Day 3	PRIMARY	
Tox	ic Pollutants								
114	, antimony	488	1	<0.003	<0.003	<0.003	<0.003	BERYLLIUM	
115	arsenic	488	1	<0.003	0.53	<0.003	0.15	LLI	
117	beryllium	488	. 1.	<0.001	340	39	480		
118	cadmium	488	1	<0.004	0.18	0.014	0.019	UBC	
119	. chromium (total)	488	1	0.017	11	0.91	0.33	ATEO	
120	copper	488	1	0.47	3.2	5.7	4.5	SUBCATEGORY	
121	. cyanide (total)	488	1	0.12	4.2	2.4	<0.02	•	
122	. lead	488	1	<0.16	1.8	0.19	0.20	SECT	
123	mercury	488	1	<0.0002	<0.0002	<0.0002	<0.0002	н Г	
124	nickel	488	1	<0.006	<0.006	0.34	0.15	4	
125	. selenium	488	1	<0.003	<0.003	<0.003	<0.003		
126	. silver	488	1	<0.0005	0.15	0.025	0.013		
127	. thallium	488	1	<0.002	<0.002	<0.002	<0.002		
128	zinc	488	1	0.018	4.0	0.63	0.41		

. 3719

Ĺ

IGORY SECT

PRIMARY BERYLLIUM SAMPLING DATA STRIPPER EFFLUENT

Pollutant	Stream Code	Sample Type†	Conc Source	centrat: Day			PRIMARY
Nonconventional Pollutants							'RY
acidity	488	1	<1	<1	<1	<1	BER
alkalinity	488	1	311 9,	900	6,000	25	BERYLLIUM
aluminum	488	- • • 1• -	<0.100	<0.100	0 . 32	43	UM
ammonia nitrogen	488	1	6.6	<0.02	<0.02	<0.02	SUB
barium	488	1	0.20	3.9	1.7	1.6	CATE
boron	488	1	<0.018	18	17	8.4	SUBCATEGORY
calcium	488	1	57 16,	,000	7,300	7,500	ĸ
chemical oxygen demand (COD)	488	1	<1	<1	1,300	1,320	SE
chloride	488	1	95	130	<1	1,700	SECT
cobalt	488	1	<0.012	0.21	0.06	0.051	، ح
fluoride	488	1	0.81 40,	,000	9,700	23	
iron	488	1	1.4	550	50	26	
magnesium	488	1	36 2,	,600	290	160	

PRIMARY BERYLLIUM SAMPLING DATA STRIPPER EFFLUENT

Pollutant	Stream Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2 Day 3	111117
Nonconventional Pollutants (Continued))		1 AY	
manganese	488	1 .	0.013 8.1 1.2 0.62	
molybdenum	488	1	0.013 8.1 1.2 0.62	1 -
phosphate	488	1		
sodium	488	1	17 700 220 510 th	יווחי
sulfate	488	. 1	17 700 220 510 510 1,400 15,000 1,000 420 420 <0.12	
tin	488	1	<0.12 <0.12 <0.12 <0.12 §	
titanium	488	1	0.73 12 2.5 3.2	4
total dissolved solids (TDS)	488	1	550 13,000 16,000 6,200	2
total organic carbon (TOC)	488	1	<1 920 190 490	È
total solids (TS)	488	1	550 160,000 25,000 6,300 <	1
vanadium	488	1	<0.006 1.5 0.23 0.21	
yttrium	488	1	<0.001 <0.001 <0.001 <0.001	

PRIMARY BERYLLIUM SAMPLING DATA STRIPPER EFFLUENT

<u>Pollutant</u> Conventional Pollutants	Stream Code	Sample Typet	Conc Source	Day 1	ns (mg/1) Day 2	Day 3	PRIMARY
oil and grease	488	1	<1	11	<1	18	ERY
total suspended solids (TSS)	488	1	4 150,	,000 12	,000	68	BERYLLIUM
pH (standard units)	488	1	6.84	8.61	7.85	9.09	
							SUBCATEGORY
							TEO
							ORY

tSample Type Code: 1 - One-time grab

RY SECT - V

Table V-20

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 5 LAGOON

•

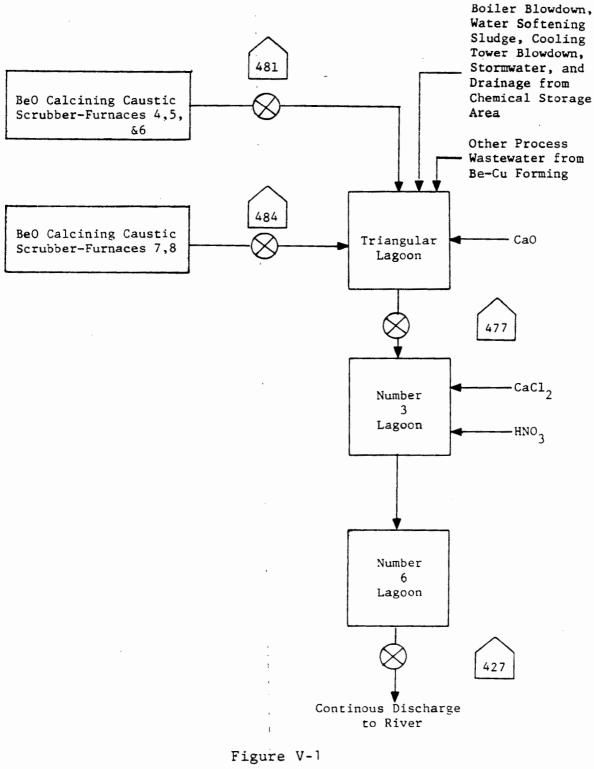
								L.
	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	<u>B (mg/1)</u> Day 2	Day 3	PRIMARY
Toxic	Pollutants							
114.	antimony	480	1	<0.003	<0.003			BERYLLIUM
115.	arsenic	480	1	<0.003	<0.003			LLI
117.	_beryllium	480	· · 1 · · · ·	<0.001	0.74			
118.	cadmium	480	1	<0.004	<0.004			SUBCATEGORY
119.	chromium (total)	480	1	0.017	0.043			ATEO
120.	copper	480	1	0.47	0.17			;ORY
121.	cyanide (total)	480	1	0.12				
122.	lead	480	1	<0.16	<0.168			SECT
123.	mercury	480	• 1	<0.0002	<0.0002			H
124.	nickel	480	1	<0.006	0.11			4
125.	selenium	480	1	<0.003	<0.003			
126.	silver	480	1	<0.0005	0.093			
127.	thallium	480	1	<0.002	<0.003			
128.	zinc	480	1	0.018	0.034			

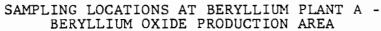
PRIMARY BERYLLIUM SAMPLING DATA NUMBER 5 LAGOON

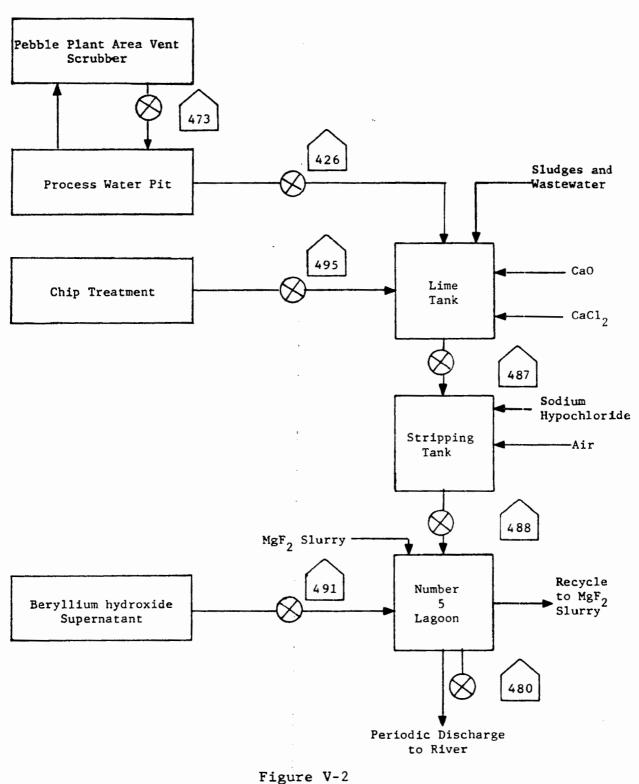
Pollutant	Stream Code	Sample Typet	Con Source	centrations Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants						
acidity	480	1	<1	<1		
alkalinity	480	1	311	180		
aluminum	- 480 -	1	<0.100	0.19	· · · · ·	
ammonia nitrogen	480	1	6.6	53		
barium	480	1	0.20	0.22		
boron	480	1	<0.018	1.5		
calcium	480	1	57	100		
chemical oxygen demand (COD)	480	1	<1	31		
chloride	480	1	95	570		1
cobalt	480	1	<0.012	0.024		
fluoride	480	1	0.81	43		
iron	480	1	1.4	0.41		
magnesium	480	1	36	57		

PRIMARY BERYLLIUM SUBCATEGORY

SECT


י ל


PRIMARY BERYLLIUM SAMPLING DATA NUMBER 5 LAGOON


	Stream	Sample		entrations			PR:
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3	PRIMARY
Nonconventional Pollutants (Continued))						RY
manganese	480	1	0.013	0.059			BER!
molybdenum	480	1	0.005	0.21			BERYLLIUM
phosphate	- 480	•••• 1 •••••	<0.732	2.8	• _ •		
sodium	480	1	17 4,4	400			SUBCATEGORY
sulfate	480	1 1	,400 16,	000			CATE
tin	480	1	<0.12	<0.12			GOR
titanium	480	. 1	0.73	<0.010			ĸ
total dissolved solids (TDS)	480	1	550 19,	000			SECT
total organic carbon (TOC)	480	1	<1	7.0			CI I
total solids (TS)	480	1	550 20,	000			4
vanadium	480	1	<0.006	0.017			
yttrium	480	1	<0.001	<0.001			

PRIMARY BERYLLIUM SAMPLING DATA NUMBER 5 LAGOON

	Stream	Sample	Con	centration	s (mg/l)	
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3
Conventional Pollutants						i
oil and grease	480	1	<1	<1		
total suspended solids (TSS)	480	1	4	54	•	
pH (standard units)	480	1	6.84	8.89		:

SAMPLING LOCATIONS AT BERYLLIUM PLANT A -BERYLLIUM METAL PRODUCTION AREA

SECTION VI

SELECTION OF POLLUTANT PARAMETERS

Section V of this supplement presented data from primary beryllium plant sampling visits and subsequent chemical analyses. This section examines that data and discusses the selection or exclusion of pollutants for potential limitation.

Each pollutant selected for potential limitation is discussed in Section VI of Vol. I. That discussion provides information concerning the nature of the pollutant (i.e., whether it is a naturally occurring substance, processed metal, or a manufactured compound); general physical properties and the form of the pollutant; toxic effects of the pollutant in humans and other animals; and behavior of the pollutant in POTW at the concentrations expected in industrial discharges.

The discussion that follows presents and briefly discusses the selection of conventional and nonconventional pollutants for effluent limitations. Also described is the analysis that was performed to select or exclude toxic priority pollutants for further consideration for limitations and standards. Pollutants will be considered for limitation if they are present in concentrations treatable by the technologies considered in this analysis. The treatable concentrations used for the priority metals were the long-term performance values achievable by chemical precipitation. Sedimentation, and filtration. The treatable concentrations used for the priority organics were the long-term performance values achievable by chemical performance values achievable by carbon adsorption.

CONVENTIONAL AND NONCONVENTIONAL POLLUTANT PARAMETERS

This study examined samples from the primary beryllium subcategory for three conventional pollutant parameters (oil and grease, total suspended solids, and pH) and two nonconventional pollutant parameters (ammonia and fluoride).

Other nonconventional pollutants were analyzed for, including aluminum, barium, boron, cobalt, iron, magnesium, manganese, molybdenum, tin, titanium, and vanadium. These nonconventional pollutants were not selected for limitations in this subcategory because they were generally not found in treatable concentrations in raw wastewater samples, and there is no reason to believe these pollutants should be present based on an examination of the raw materials and production processes involved. In addition, the Agency believes these nonconventional pollutants will be effectively controlled by the limitations established for the selected priority metal pollutants.

CONVENTIONAL AND NONCONVENTIONAL POLLUTANT PARAMETERS SELECTED

The conventional and nonconventional pollutants or pollutant parameters selected for limitation in this subcategory are:

ammonia fluoride total suspended solids (TSS) pH

Although ammonia was not proposed for limitations, the Agency stated that it was considering limiting ammonia in the Notice of Data Availability, based on data received in a comment. Ammonia is selected for regulation in this subcategory. In samples split and analyzed by the primary beryllium plant sampled, up to 4,300 mg/l of NH₃ were found in samples of process water. Ammonia compounds are used throughout the beryllium production process and are expected to be present in wastewaters generated by the process. Therefore, the Agency is selecting this pollutant for regulation.

Fluoride was detected in all 14 raw wastewater samples analyzed. Eleven of the observed concentrations were above the treatable concentration of 14.5 mg/l. The treatable concentrations observed ranged from 35 to 6,650 mg/l. For this reason, fluoride is selected for limitation in this subcategory.

TSS concentrations ranging from less than 1 to 370 mg/l were observed in the 13 raw waste samples analyzed for this study. Ten the concentrations are above the 2.6 mg/l treatable of concentration. Most of the specific methods used to remove toxic metals do so by converting these metals to precipitates, and toxic-metal-containing precipitates should not these be discharged. Meeting a limitation on total suspended solids helps ensure that removal of these precipitated toxic metals has been For these reasons, total suspended solids effective. are selected for limitation in this subcategory.

The 14 pH values observed during this study ranged from 0.97 to 11.5. Effective removal of toxic metals by precipitation requires careful control of pH. Since pH control within the desirable limits is readily attainable by available treatment, pH is selected for limitation in this subcategory.

TOXIC PRIORITY POLLUTANTS

The frequency of occurrence of the priority metal pollutants and cyanide in the raw wastewater samples taken is presented in Table VI-1 (page 3739). Table VI-1 is based on the raw wastewater data from streams 481. 484. 491, 426. 473, and 495 (see Section V). These data provide the basis for the categorization of specific pollutants, as discussed below. Treatment plant samples were not considered in the frequency count.

Some samples were analyzed for toxic organic pollutants, and although these analytical data were not available in sufficient time prior to the regulatory proposal to allow for thorough analysis. these data are presented in Section V and have been used in the selection of pollutant parameters for limitation for the promulgated regulation.

TOXIC POLLUTANTS NEVER DETECTED

The toxic pollutants listed in Table VI-2 (page 3742) were not detected in any raw wastewater samples from this subcategory; therefore, they are not selected for consideration in establishing limitations.

TOXIC POLLUTANTS NEVER FOUND ABOVE THEIR ANALYTICAL QUANTIFICATION CONCENTRATION

The toxic pollutants listed in Table VI-3 (page 3744) were never found above their analytical quantification concentration in any raw wastewater samples from this subcategory; therefore, they are not selected for consideration in establishing limitations.

TOXIC POLLUTANTS PRESENT BELOW CONCENTRATIONS ACHIEVABLE BY TREATMENT

The pollutants listed below are not selected for consideration in establishing limitations because they were not found in any raw wastewater samples from this subcategory above concentrations considered achievable by existing or available treatment technologies. These pollutants are discussed individually following the list.

114. arsenic
123. mercury

Arsenic was detected above its quantifiable concentration of 0.01 mg/l in four out of 14 raw wastewater samples analyzed. The quantifiable concentrations observed ranged from 0.042 to 0.19 mg/l, all of which are below the concentration considered achievable by available treatment technology (0.34 mg/l).

Arsenic is therefore not selected for further consideration for regulation.

Mercury was detected above the analytical quantification concentration in six out of 14 raw wastewater samples analyzed. The largest concentration observed is 0.0009 mg/l, which is well below the treatable concentration of 0.036 mg/l. Mercury is therefore not selected for further consideration for regulation.

TOXIC POLLUTANTS DETECTED IN A SMALL NUMBER OF SOURCES

The toxic pollutants listed below were not selected for limitation because they were detectable in the effluent from only a small number of sources within the subcategory and are uniquely related to only those sources.

- 3. acrylonitrile
- 4. benzene
- 6. carbon tetrachloride

.

10. 1,2-dichloroethane

- 13. 1,1-dichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 19. 2-chloroethyl vinyl ether
- 22. p-chloro-m-cresol
- 23. chloroform
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 32. 1,2-propropane
- 33. 1,3-dichloropropene
- 44. methylene chloride
- 47. bromoform
- 48. dichlorobromomethane
- 51. chlorodibromomethane
- 68. di-n-butyl phthalate
- 70. diethyl phthalate
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 118. cadmium
- 122. lead
- 124. nickel
- 126. silver
- 128. zinc

Acrylonitrile was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 1.68. 4.59 and 4.56 mg/l. The Agency has no reason to believe that treatable concentrations of acrylonitrile should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Acrylonitrile is therefore not selected for further consideration for limitation.

Benzene was detected above the level considered achievable by identified treatment technology in three out of three raw wastewater samples. The treatable concentrations observed are 0.188, 0.207, and 0.617 mg/l. The Agency has no reason to believe that treatable concentrations of benzene should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Benzene is therefore not selected for further consideration for limitation.

Carbon tetrachloride was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.069, 0.161 and 0.164 mg/l. The Agency has no reason to believe that treatable concentrations of carbon tetrachloride should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Carbon tetrachloride is therefore not selected for further consideration for limitation. 1,2-Dichloroethane was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in two out of three raw wastewater samples. The treatable concentrations observed are 0.211 and 0.142 mg/l. The Agency has no reason to believe that treatable concentrations of 1 2dichloroethane should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. 1,2-Dichloroethane is therefore not selected for further consideration for limitation.

1,1-Dichloroethane was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.019, 0.043, and 0.043 mg/l. The Agency has no reason to believe that treatable concentrations of 1,1-dichloroethane should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. 1,1-Dichloroethane is therefore not selected for further consideration for limitation.

1,1,2,2-Tetrachloroethane was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in one out of three raw wastewater samples. The treatable concentration observed is 0.078 mg/l. The Agency has no reason to believe that treatable concentrations of 1,1,2,2-tetrachloroethane should be present in primary beryllium wastewaters. The Agency believes that the observed value is not representative and may be due to analytical error or site specific factors. 1,1,2,2-Tetrachloroethane is therefore not selected for further consideration for limitation.

2-Chloroethyl vinyl ether was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.101, 0.014, and 0.030 mg/l. The Agency has no reason to believe that treatable concentrations of 2-chloroethyl vinyl ether should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. 2-Chloroethyl vinyl ether is therefore not selected for further consideration for limitation.

Parachlorometacresol was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in one out of three raw wastewater samples. The treatable concentration observed is 0.072 mg/l. The Agency has no reason to believe that treatable concentrations of parachlorometacresol should be present in primary beryllium wastewaters. The Agency believes that the observed value is not representative and may be due to analytical error or site specific factors. Parachlorometacresol is therefore not selected for further consideration for limitation. Chloroform was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.044, 0.106, and 0.109 mg/l. The Agency has no reason to believe that treatable concentrations of chloroform should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Chloroform is therefore not selected for further consideration for limitation.

1,1-Dichloroethylene was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.047, 0.111, and 0.115 mg/l. The Agency has no reason to believe that treatable concentrations of 1,1-dichloroethylene should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. 1,1-Dichloroethylene is therefore not selected for further consideration for limitation.

1,2-<u>Trans</u>-dichloroethylene was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.053, 0.134, and 0.133 mg/l. The Agency has no reason to Believe that treatable concentrations of 1,2-<u>trans</u>-dichloroethylene should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. 1,2-<u>Trans</u>dichloroethylene is therefore not selected for further consideration for limitation.

1,2-Dichloropropane was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.043, 0.113, and 0.104 mg/l. The Agency has no reason to believe that treatable concentrations of 1,2-dichloropropane should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or sire specific factors. 1,2-Dichloropropane is therefore not selected for further consideration for limitation.

1,3-Dichloropropene was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in two out of three raw wastewater samples. The treatable concentrations observed are 0.036 and 0.023 mg/l. The Agency has no reason to believe that treatable concentrations of 1,3dichloropropene should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. 1,3-Dichloropropene is therefore not selected for further consideration for limitation.

Methylene chloride was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three out of three raw wastewater samples. The treatable concentrations observed are 0.114, 0.211, and 0.208 mg/l. The Agency has no reason to believe that treatable concentrations of methylene chloride should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Methylene chloride is therefore not selected for further consideration for limitation.

Bromoform was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in two out of three raw wastewater samples. The treatable concentrations observed are 0.130 and 0.077 mg/l. The Agency has no reason to believe that treatable concentrations of bromoform should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Bromoform is therefore not selected for further consideration for limitation.

Dichlorobromomethane was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three of three raw wastewater samples. The treatable concentrations observed are 0.021, 0.041. and 0.041 mg/l. The Agency has no reason to believe that treatable concentrations of dichlorobromomethane should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Dichlorobromomethane is therefore not selected for further consideration for limitation.

Chlorodibromomethane was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three of three raw wastewater samples. The treatable concentrations observed are 0.080, 0.288, and 0.139 mg/l. The Agency has no reason to believe that treatable concentrations of chlorodibromomethane should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Chlorodibromomethane is therefore not selected for further consideration for limitation.

Di-n-butyl phthalate was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in two out of three raw wastewater samples. The treatable concentrations observed are 0.034 and 0.134 mg/l. The Agency has no reason to believe that treatable concentrations of di-n-butyl phthalate should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Di-n-butyl phthalate is therefore not selected for further consideration for limitation. Diethyl phthalate was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in one out of three raw wastewater samples. The treatable concentration observed is 0.270 mg/l. The Agency has no reason to believe that treatable concentrations of diethyl phthalate should be present in primary beryllium wastewaters. The Agency believes that the observed value is not representative and may be due to analytical error or site specific factors. Diethyl phthalate is therefore not selected for further consideration for limitation.

Tetrachloroethylene was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three of three raw wastewater samples. The treatable concentrations observed are 0.184, 0.474, and 0.481 mg/l. The Agency has no reason to believe that treatable concentrations of tetrachloroethylene should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Tetrachloroethylene is therefore not selected for further consideration for limitation.

Toluene was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three of three raw wastewater samples. The treatable concentrations observed are 0.029, 0.084, and 0.064 mg/l. The Agency has no reason to believe that treatable concentrations of toluene should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Toluene is therefore not selected for further consideration for limitation.

Trichloroethylene was detected above the level considered achievable by identified treatment technology (0.010 mg/l) in three of three raw wastewater samples. The treatable concentrations observed are 0.017, 0.014, and 0.086 mg/l. The Agency has no reason to believe that treatable concentrations of trichloroethylene should be present in primary beryllium wastewaters. The Agency believes that these observed values are not representative and may be due to analytical error or site specific factors. Trichloroethylene is therefore not selected for further consideration for limitation.

Although these pollutants were not selected for limitation in establishing nationwide regulations, it may be appropriate, on a case-by-case basis, for the local permit issuing authority to specify effluent limitations.

Cadmium detected above the concentration considered achievable by identified treatment technology (0.049 mg/l) in one out of 14 raw wastewater samples. The treatable concentration observed is 0.063 mg/l. The Agency has no reason to believe that treatable cadmium concentrations should be present in primary beryllium wastewaters and believes that this one value is not representative of the subcategory. Cadmium is therefore not selected for further consideration for limitation.

Lead was detected above the concentration considered achievable by identified treatment technology (0.08 mg/l) in one out of 14 raw wastewater samples. The treatable concentration observed is 0.20 mg/l. The Agency has no reason to believe that treatable lead concentrations should be present in primary beryllium wastewaters and believes that this one value is not representative of the subcategory. Lead is therefore not selected for limitation.

Nickel was detected above the concentration considered achievable by identified treatment technology (0.204 mg/l) in one out of 14 raw wastewater samples. The treatable concentration observed is 0.78 mg/l. The Agency has no reason to believe that treatable nickel concentrations should be present in primary beryllium wastewaters, and does not believe that this one value is representative of the subcategory. Nickel is therefore not selected for further consideration for limitation.

Silver was detected above the concentration considered achievable by identified treatment technology (0.07 mg/l) in three out of 14 raw wastewater samples The treatable concentrations observed range from 0.10 mg/l to 0.32 mg/l. The Agency has no reason to believe that treatable silver concentrations should be present in primary beryllium wastewaters. Silver is therefore not selected for further consideration for limitation.

Zinc was detected above the concentration considered achievable by identified treatment technology (0.23 mg/l) in one out of 14 raw wastewater samples. The treatable concentration observed is 7.2 mg/l. The Agency has no reason to believe that treatable zinc concentrations should be present in primary beryllium wastewaters, and does not believe that this one value is representative. Zinc is therefore not selected for further consideration for limitation.

TOXIC POLLUTANTS SELECTED FOR FURTHER CONSIDERATION IN ESTABLISHING LIMITATIONS AND STANDARDS

The priority pollutants listed below are selected for further consideration in establishing limitations and standards for this subcategory. The toxic pollutants selected for further consideration for limitation are each discussed following the list.

- 117. beryllium
- 119. chromium
- 120. copper
- 121. cyanide

Beryllium was detected above the concentration considered achievable by identified treatment technology (0.20 mg/l) in all 14 raw wastewater samples. The treatable concentrations observed range from 0.49 mg/l to 3,300 mg/l. Beryllium is therefore selected for further consideration for limitation.

Chromium was detected above the concentration considered achievable by identified treatment technology (0.07 mg/l) in eight out of 14 raw wastewater samples. The treatable concentrations observed range from 0.086 mg/l to 7.5 mg/l. Chromium is therefore selected for further consideration for limitation.

Copper was detected above the concentration considered achievable by identified treatment technology (0.39 mg/l) in nine out of 14 raw wastewater samples. The treatable concentrations observed range from 0.50 mg/l to 1.6 mg/l. Copper is therefore selected for further consideration for limitation.

Although cyanide was not proposed for limitations, the Agency stated that it was considering limiting cyanide in the Notice of Data Availability, based on data received in a comment. Cyanide was detected above the concentration considered achievable by identified treatment technology (0.047 mg/l) in the only sample for which the Agency has reliable cyanide data. This sample was a split sample from the Agency's sampling visit which was analyzed by the facility. The observed concentration of 32.6 mg/l was verified by the plant as being a representative value for process water. Cyanide is formed in the carbon lined induction furnaces which are used to produce BeF4 from $(NH_4)2BeF_4$. The cyanide is picked up in the fluorine furnace scrubber which discharges an ammonium fluoride solution to various plant processes.

Table VI-1

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS PRIMARY BERYLLIUM SUBCATEGORY RAW WASTEWATER

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/l)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration
1.	acenaphthene	0.010	0.010	1	3		3		
2.	acrolein	0.010	0.010	1	3	3			
3.	acrylonitrile	0.010	0.010	1	3				3
4.	benzene	0.010	0.010	1	3				3
5.	benzidine	0.010	0.010	1	3	3			
6.	carbon tetrachloride	0.010	0.010	1	3				3
7.	chlorobenzene	0.010	0.010	. <u> </u>	. 3		3		
8.	1,2,4-trichlorobenzene	0.010	0.010	1	3	3			
9.	hexachlorobenzene	0.010	0.010	1	3	3			
10.	1,2~dichlorobenzene	0.010	0.010	1	3		1		2
11.	1,1,1-trichlorobenzene	0.010	0.010	1	3		3		
12.	hexachloroethane	0.010	0.010	1	3	1	2		
13.	1,1-dichloroethane	0.010	0.010	1	3				3
14.	1,1,2-trichloroethane	0.010	0.010	1	3		3		
15.	1,1,2,2-tetrachloroethane	04010	0.010	1	3		2		1
16.	chloroethane	0.010	0.010	1	3	2	1		
17.	bis(chloromethyl)ether	0.010	0.010	1	3	3			
18.	bis(2-chloroethyl)ether	0.010	0.010	1	3	3			
19.	2-chloroethyl vinyl ether	0.010	0.010	1	3				3
20.	2-chloronaphthalene	0.010	0.010	1	3	3			
21.	2,4,6-trichlorophenol	0.010	0.010	1	3	3			
22.	parachlorometa cresol	0.010	0.010	1	3	1	1		1
23.	chloroform	0.010	0.010	1	3				3
24.	2-chlorophenol	0.010	0.010	1	3	3			
25.	1,2-dichlorobenzene	0.010	0.010	1	3	3			
26.	1,3-dichlorobenzene	0.010	0.010	1	3	3			
27.	1,4-dichlorobenzene	0.010	0.010	1	3	3			
28.	3,3'-dichlorobenzidine	0.010	0.010	1	3	3			
29.	1,1-dichloroethylene	0.010	0.010	1	3				3
30.	1,2-trans-dichloroethylene	0.010	0.010	1	3				3
31.	2,4-dichlorophenol	0.010	0.010	1	3	3			
32.	1,2-dichloropropane	0.010	0.010	1	3				3
33.	1,3-dichloropropylene	0.010	0.010	1	3	3	1		2
34.	2,4-dimethylphenol	0.010	0.010	1	3	3			
35.	2,4-dintrotoluene	0.010	0.010	1	3	3			
36.	2,6-dintrotoluene	0.010	0.010	1	3		3		
37.	1,2-diphenylhydrazine	0.010	0.010	1	3		3		
38.	ethylbenzene	0.010	0.010	1	3		3		
39.	fluoranthene	0.010	0.010	1	3	2	1		

PRIMARY BERYLLIUM SUBCATEGORY SECT ł ٦V

۱

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS PRIMARY BERYLLIUM SUBCATEGORY RAW WASTEWATER

	<u>Pollutant</u>	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/l)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration	PRIMARY
40.	4-chlorophenyl phenyl ether	0.010	0.010	1	3	3				AR
41.	4-bromophenyl phenyl ether	0.010	0.010	1	3	3				Ř
42.	bis(2-chloroisopropyl)ether	0.010	0.010	1	3	3				H
43.	bis(2-chloroethoxy)methane	0.010	0.010	1	3	2	1			H
44.	methylene chloride	0.010	0.010	1	3				3	BERYLLIUM
45.	methyl chloride	0.010	0.010	1	3		3			Ц
46.	methyl bromide	0.010	0.010	1	3		3			F
47.	bromoform	0.010	0.010	1	3		1		2	ĥ
48.	dichlorobromomethane	0.010	0,010	1	3				3	G
49.	trichlorofluoromethane	0.010	0.010	1	3	3				R
50.	dichlorodifluoromethane	0.010	0.010	1	3	3				03
51.	chlorodibromomethane	0.010	0.010	1	3				3	ä
52.	hexachlorobutadiene	0.010	0.010	1	3 .,	3				μ
53.	hexachlorocyclopentadiene	0.010	0.010	1	3	3				្ណ
54.	isophorone	0.010	0.010	1	3	3				Ľ.
55.	naphthalene	0.010	0.010	1	3		3			SUBCATEGORY
56.	nitrobenzene	0.010	0.010	1	3	2	1			ଜୁ
57.	2-nitrophenol	0.010	0.010	1	3	3				о С С
58.	4-nitrophenol	0.010	0.010	1	3	3				Ř
59.	2,4-dinitrophenol	0.010	0.010	1	3	3				
60.	4,6-dinitro-o-cresol	0.010	0.010	1	3	3				
61.	n-nitrosodimethylamine	0.010	0.010	1	3	2	1			
62.	n-nitrosodiphenylamine	0.010	0.010	1	3	1	2			S
63.	n-nitroso-n-propylamine	0.010	0.010	1	3	3				SECT
64.	pentachlorophenol	0.010	0.010	1	3	3				3
65.	phenol	0.010	0.010	1	3	3				Ц
66.	bis(2-ethylhexyl)phthalate	0.010	0.010	1	3		3			1
67.	bútyl benzyl phthalate	0.010	0.010	1	3		3			
68.	di-n-butyl phthalate	0.010	0.010	1	3	1			2	ΔI
69.	di-n-octyl phthalate	0.010	0.010	1	3	3				
70.	diethyl phthalate	0.010	0.010	1	3		2		1	
71.	dimethyl phthalate	0.010	0.010	1	3	1	2			
72.	benzo(a)anthracene	0.010	0.010	1	3	3				
73.	benzo(a)pyrene	0.010	0.010	1	3	3				
74.	3,4-benzofluoranthene	0.010	0.010	1	3	2	1			
75.	benzo(k)fluoranthene	0.010	0.010	1	3	2	1			
76.	chrysene	0.010	0.010	1	3	3				
77.	acenaphthylene	0.010	0.010	1	3	1	2			
78.	anthracene	0.010	0.010	1	3		3			
79.	benzo(g,h,i)perylene	0.010	0.010	1	3	2	1			

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS PRIMARY BERYLLIUM SUBCATEGORY RAW WASTEWATER

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/l)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration	PRIMARY
80.	fluorene	0.010	0.010	1	3		3			ĸ
81.	phenanthrene	0.010	0.010	1	3		3			μ
82.	dibenzo(a,h)anthracene	0.010	0.010	1	3	3				E
83.	indeno(1,2,3-cd)pyrene	0.010	0.010	1	3	3				2
84.	pyrene	0.010	0.010	1	3	2	1			Ĥ
85.	tetrachloroethylene	0.010	0.010	1	3				3	Ē
86.	toluene	0.010	0.010	1	3				3	H
87.	trichloroethylene	0.010	0.010	1	3				3	- H
88.	vinyl chloride	0.010	0.010	1	3		3			-
114.	antimony	0.100	0.47	6	14		14			S
115.	arsenic	0.010	0.34	6	14		10	4		g
117.	beryllium	0.010	0.20	6	14				14	BC
118.	cadmium	0.002	0.049	6	14		4	9	1	Þ
119.	chromium	0.005	0.07	6	14			6	8	H
120.	copper	0.009	0.39	6	14			5	9	E
121.	cyanide (c)	0.02	0.047	1	1				1	GORY
122.	lead	0.020	0.08	6	14		13		1	ਲੋ
123.	mercury	0.0001	0.036	6	14		8	6		R
124.	nickel	0.005	0.22	6	14			.13	1	
125.	selenium	0.01	0.20	6	14		14			
126.	silver	0.02	0.07	6	14		6	5	3	
127.	thallium	0.100	0.34	6	14		14			S
128.	zinc	0.050	0.23	6	14		4	9	1	ECT

(a) Analytical quantification concentration was reported with the data (see Section V).

(b) Treatable concentrations are based on performance of lime precipitation, sedimentation, and filtration.

(c) Analytical quantification concentration for EPA Method 335.2, Total Cyanide Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, March 1979.

PRIMARY BERYLLIUM SUBCATEGORY SECT L 2

TABLE VI-2

TOXIC POLLUTANTS NEVER DETECTED

- 2. acrolein
- 5. benzidine
- 8. 1.2,4-trichlorobenzene
- 9. hexachlorobenzene
- 17. bis (chloromerhyl) ether (deleted)
- 18. bis (2-chloroethyl) ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. 2-chlorophenol
- 23. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 31. 2,4-dichlorophenol
- 33. 1,2-dichloropropylene (1,3-dichloropropene)
- 34. 2,4-dimethylphenol
- 35. 2.4-dinitrotoluene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 49. drichlorofluoromethane (deleted)
- 50. dichlorodifluoromethane (delered)
- 60. 4.6-dinicro-o-cresol
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 69. di-n-octyl phthalate
- 72. benzo (a)anthracene (1,2-benzanthracene)
- 73. benzo (a)pyrene (3,4-benzopyrene)
- 76. chrysene
- 82. dibenzo (a,h)anthracene (1.2.5.6-dibenzanthracene)
- 83. indeno (1.2.3-cd)pyrene (w,e,-o-phenylenepyrene)
- 89. aldrin*
- 90. dieldrin*
- 91. chlordane (technical mixture and metabolites)*
- 92. 4,4'-DDT*
- 93. 4,4'-DDE(p,p'DDX)*
- 94. 4, 4' DDD(p, p'TDE) *
- 95. Alpha-endosulfan*
- 96. Beta-endosulfan*
- 97. endosulfan sulfate*
- 98. endrin*
- 99. endrin aldehyde*
- 100. heptachlor*

TOXIC POLLUTANTS NEVER DETECTED

<pre>101. heptachlor epoxide* 102. Alpha-BHC* 103. Beta-BHC* 104. Gamma-BHC (lindane)* 105. Delta-BHC* 106. PCB-1244 (Arochlor 1242)*</pre>	
107. PCB-1254 (Arochlor 1244)*	
108. PCB-1221 (Arochlor 1221)*	
109. PCB-1232 (Arochlor 1232)*	
110. PCB-1248 (Arochlor 1248)*	
111. PCB.1260 (Arochlor 1260)*	
112. PCB-1016 (Arochlor 1016)*	
113. toxaphene*	
116. asbestos (fibrous)	
129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (T	CDD)

*The Agency did not analyze for these pollutants in samples of raw wastewater from this subcategory. These pollutants are not believed to be present based on the Agency's best engineering judgment of the manufacturing process operations.

,

TABLE VI-3

PRIORITY POLLUTANTS NEVER FOUND ABOVE THEIR ANALYTICAL QUANTIFICATION CONCENTRATION

- 1. acenaphthene
- 7. chlorobenzene
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 14. 1,1,2-trichloroethane
- 16. chloroethane
- 2,6-dinitrotoluene 36.
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 43. bis(2-chloroethoxy)methane
- 44. methyl chloride
- 46. methyl bromide
- 55. naphthalene
- 56. nitrobenzene
- 61. N-nitrosodidimethylamine
- 62. N-nirrosodiphenylamine
- 66. bis(2-ethylhexyl)phthalate67. butyl benzyl phthalare
- 71. dimethyl phthalate
- 72. 3,4-benzofluoranthene
- 73. benzo(k)fluoranthene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(g,h,i)perylene
- 80. fluorene
- 81. phenanthrene
- 84. pyrene
- 88. vinyl chloride
- 114. antimony
- 125. selenium
- 127. thallium

SECTION VII

CONTROL AND TREATMENT TECHNOLOGIES

The preceding sections of this supplement discussed the sources, flows, and characteristics of the wastewaters from primary beryllium plants. This section summarizes the description of these wastewaters and indicates the treatment technologies which are currently practiced in the primary beryllium subcategory for each waste stream. Secondly, this section presents the control and treatment technology options which were examined by the Agency for possible application to the primary beryllium subcategory.

CURRENT CONTROL AND TREATMENT PRACTICES

This section presents a summary of the control and treatment technologies that are currently being applied to each of the sources generating wastewater in this subcategory. As discussed in Section V, wastewater associated with the primary beryllium subcategory is characterized by the presence of the toxic metal pollutants and suspended solids. This analysis is supported by the raw (untreated) wastewater data presented for specific sources as well as combined waste streams in Section v. Generally, these pollutants are present in each of the waste streams at concentrations above treatability, and these wastewater streams are commonly combined for treatment. Construction of one wastewater treatment system for combined treatment allows plants to take advantage of economies of scale and in some instances to combine streams of different alkalinity to reduce treatment chemical requirements. One plant in this subcategory currently has a combined wastewater treatment system consisting of chemical precipitation and sedimentation. None have chemical precipitation, sedimentation and filtration. As such, three options have been selected for consideration for BPT, BAT, NSPS, and pretreatment based on combined treatment of these compatible waste streams.

BERYLLIUM HYDROXIDE PRODUCTION

e .

There is currently only one facility in the United Stated which produces beryllium hydroxide from bertrandite or beryl ore. This facility is in a net evaporation area and achieves zero discharge, through the use of evaporation ponds, of all wastewater streams associated with beryllium hydroxide production from ore. These ten wastewater streams are listed below:

- (a) Solvent extraction raffinate from bertrandite ore,
- (b) Solvent extraction raffinate from beryl ore,
- (c) Beryllium carbonate filtrate,
- (d) Beryllium hydroxide filtrate,
- (k) Beryl ore gangue dewatering,
- (1) Bertrandite ore gangue dewatering,

- (m) Beryl ore processing,
- (n) AIS area wastewater,
- (o) Bertrandite ore leaching scrubber, and

(p) Bertrandite ore counter current decantation scrubber.

BERYLLIUM OXIDE AND BERYLLIUM METAL PRODUCTION FROM BERYLLIUM HYDROXIDE

There is currently only one facility in the United States which produces beryllium oxide and beryllium metal from beryllium hydroxide. This plant is a direct discharger and treats all of the wastewater streams associated with beryllium oxide and beryllium metal production with chemical precipitation and sedimentation technology. These six wastewater streams are listed below:

- (e) Beryllium oxide calcining furnace wet air pollution control,
- (f) Beryllium hydroxide supernatant,
- (g) Process water,
- (h) Fluoride furnace scrubber,
- (i) Chip treatment wastewater, and
- (j) Beryllium pebble plant area vent wet air pollution control.

The process water stream is used in the beryllium pebble plant scrubbing system prior to treatment and discharge. Two plants produce beryllium copper master alloy from beryllium hydroxide using a dry process.

CONTROL AND TREATMENT OPTIONS

The Agency examined two control and treatment technology options that are applicable to the primary beryllium subcategory. The options selected for evaluation represent a combination of pretreatment and end-of-pipe treatment technologies.

OPTION A

Option A for the primary beryllium subcategory requires control and treatment technologies to reduce the discharge of wastewater pollutant mass.

The Option A treatment scheme consists of recycle of scrubber liquors, ammonia steam stripping, and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation and sedimentation technology. Specifically, lime or some other alkaline compound is used to precipitate metal ions as metal hydroxides. The metal hydroxides and suspended solids settle out and the sludge is collected. Vacuum filtration is used to dewater sludge.

OPTION C

Option C for the primary beryllium subcategory consists of all

PRIMARY BERYLLIUM SUBCATEGORY SECT - VII

control and treatment requirements of Option A (recycle of scrubber liquors, ammonia steam stripping, and cyanide precipitation pretreatment steps, chemical precipitation and sedimentation) plus multimedia filtration technology added at the end of the Option A treatment scheme. Multimedia filtration is used to remove suspended solids, including precipitates of metals, beyond the concentration attainable by gravity sedimentation. The filter suggested is of the gravity, mixedmedia type, although other forms of filters, such as rapid sand filters or pressure filters would perform satisfactorily. The addition of filters also provides consistent removal during periods of time in which there are rapid increases in flows or loadings of pollutants to the treatment system.

;

THIS PAGE INTENTIONALLY LEFT BLANK

i

SECTION VIII

COSTS, ENERGY, AND NONWATER QUALITY ASPECTS

This section presents a summary of compliance costs for the primary beryllium subcategory and a description of the treatment options and subcategory-specific assumptions used to develop these estimates. Together with the estimated pollutant reduction performance presented in Sections IX, X, XI, and XII of this supplement, these cost estimates provide a basis for evaluating each regulatory option. These cost estimates are also used in determining the probable economic impact of regulation on the subcategory at different pollutant discharge levels. In addition, this section addresses nonwater quality environmental impacts of wastewater treatment and control alternatives, including air pollution. solid wastes, and energy requirements, which are specific to the primary beryllium subcategory.

TREATMENT OPTIONS FOR EXISTING SOURCES

As discussed in Section VII, two treatment options have been developed for existing primary beryllium sources. The treatment schemes for each option are summarized below and schematically presented in Figures X-1 and X-2 (pages 3791 and 3792).

OPTION A

Option A consists of recycle of scrubber liquors, ammonia steam stripping, and cyanide precipitation pretreatment followed by chemical precipitation and sedimentation end-of-pipe technology.

OPTION C

Option C requires recycle of scrubber liquors, ammonia steam stripping, and cyanide precipitation pretreatment, followed by end-of-pipe treatment technology consisting of chemical precipitation, sedimentation, and multimedia filtration.

COST METHODOLOGY

A detailed discussion of the methodology used to develop the compliance costs is presented in Section VIII of Vol. I. These compliance costs calculate incremental costs, above treatment already in place, necessary to comply with the promulgated effluent limitations and standards. The costs developed for the final regulation are presented in Table VIII-1 (page 3752). No subcategory-specific assumptions were used in developing compliance costs for the primary beryllium subcategory.

NONWATER QUALITY ASPECTS

Nonwater quality impacts specific to the primary beryllium subcategory, including energy requirements, solid waste and air pollution, are discussed below.

ENERGY REQUIREMENTS

Energy requirements for Option A are estimated at 1,136,000 kwh/yr. Option C, which includes filtration, is estimated to increase energy consumption over Option A by approximately one percent. Further, the total energy requirement for Option C is approximately two percent of the estimated total plant energy usage. It is therefore concluded that the energy requirements of the treatment options considered will have no significant impact on total plant energy consumption.

SOLID WASTE

Sludge generated in the primary beryllium subcategory is due to the precipitation of metal hydroxides and carbonates using lime. Sludges associated with the primary beryllium subcategory will necessarily contain quantities of toxic metal pollutants. Except for sludges produced by cyanide precipitation, these sludges are subject to regulation as hazardous wastes since wastes not generated by primary smelters and refiners are currently exempt from regulation by Act of Congress (Resource Conservation and Recovery Act (RCRA), Section 3001(b)), as interpreted by EPA. If small excess (5-10 %) of lime is added during treatment, the а Agency does not believe these sludges would be identified as hazardous under RCRA in any case. (Compliance costs include this amount of lime.) This judgment is based on the results of Extraction Procedure (EP) toxicity tests performed on similar sludges (toxic metal-bearing sludges) generated by other industries such as the iron and steel industry. A small amount of excess lime was added during treatment, and the sludges subsequently generated passed the toxicity test. See CFR CFR Thus, the Agency believes that the wastewater 8261.24. sludges will similarly not be EP toxic if the recommended technology is applied.

Throughout this study, sludges generated as a result of cyanide precipitation have been considered as hazardous, and appropriate costs for disposal have been included in the compliance cost estimates.

Although it is the Agency's view that solid wastes generated as a result of these guidelines are not expected to be hazardous, generators of these wastes must test the waste to determine if the wastes meet any of the characteristics of hazardous waste (see 40 CFR 262.11).

If these wastes should be identified or are listed as hazardous, they will come within the scope of RCRA's "cradle to grave" hazardous waste management program, requiring regulation, from the point of generation to point of final disposition. EPA s generator standards would require generators of hazardous nonferrous metals manufacturing wastes to meet containerization, labeling, recordkeeping, and reporting requirements; if plants dispose of hazardous wastes off-site, they would have to prepare

PRIMARY BERYLLIUM SUBCATEGORY SECT - VIII

a manifest which would track the movement of the wastes from the generator's premises to a permitted off-site treatment, storage, or disposal facility. See 40 CFR 262.20, 45 FR 33142 (May 19, 1980), as amended at 45 FR 86973 (December 31, 1980). The transporter regulations require transporters of hazardous wastes to comply with the manifest system to assure that the wastes are delivered to a permitted facility. See 40 CFR 263.20, 45 FR 33151 (May 19, 1980), as amended at 45 FR 86973 (December 31, 1980). Finally, RCRA regulations establish standards for hazardous waste treatment, storage, and disposal facilities allowed to receive such wastes. See 40 CFR Part 464, 46 FR 2802 (January 12, 1981), and 47 FR 32274 (July 26, 1982).

Even if these wastes are not identified as hazardous, they still must be disposed of in compliance with the Subtitle D open dumping standards, implementing Section 4004 of RCRA. See 44 FR 53438 (September 13, 1979). The Agency has calculated as part of the costs for wastewater treatment the cost of hauling and disposing of these wastes.

It is estimated that 696 metric tons per year of sludge will be generated as a result of these promulgated regulations for the primary beryllium subcategory. Sixty-five metric tons of this sludge is considered to be hazardous.

AIR POLLUTION

There is no reason to believe that any substantial air pollution problems will result from implementation of chemical precipitation, sedimentation, and multimedia filtration. These technologies transfer pollutants to solid waste and are not likely to transfer pollutants to air.

TABLE VIII-1

COST OF COMPLIANCE FOR THE PRIMARY BERYLLIUM SUBCATEGORY DIRECT DISCHARGERS

(March 1982 Dollars)

:

.

Option	Capital Cost	Annual Cost
A	226500	251200
в	256200	265600

SECTION IX

BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

This section defines the effluent characteristics attainable through the application of best practicable control technology currently available (BPT). BPT reflects the existing performance by plants of various sizes, ages, and manufacturing processes within the primary beryllium subcategory, as well as the established performance of the recommended BPT systems. Particular consideration is given to the treatment already in place at plants within the data base.

The factors considered in identifying BPT include the total cost of applying the technology in relation to the effluent reduction benefits from such application, the age of equipment and facilities involved, the manufacturing processes used, nonwater quality environmental impacts (including energy requirements), and other factors the Administrator considers appropriate. In general, the BPT level represents the average of the existing performances of plants of various ages, sizes. processes, or other common characteristics. Where existing performance is uniformly inadequate, BPT may be transferred from a different subcategory or category. Limitations based on transfer of technology are supported by a rationale concluding that the technology is indeed transferable, and a reasonable prediction that it will be, capable of achieving the prescribed effluent limits. BPT focuses on end-of-pipe treatment rather than process changes or internal controls except where such practices are common industry practice.

TECHNICAL APPROACH TO BPT

The Agency studied the nonferrous metals category to identify the processes used, the wastewaters generated and the treatment processes installed. Information was collected from the category using data collection portfolios, and specific plants were sampled and the wastewaters analyzed. In making technical assessments of data, reviewing manufacturing processes, and assessing wastewater treatment technology options, both indirect and direct dischargers have been considered as a single group. An examination of plants and processes did not indicate any process differences based on the type of discharge, whether it be direct or indirect.

As explained in Section IV, the primary beryllium subcategory has been subdivided into 16 potential wastewater sources. Since the water use, discharge rates, and pollutant characteristics of each of these wastewaters is potentially unique, effluent limitations will be developed for each of the 16 subdivisions.

For each of the subdivisions, a specific approach was followed

PRIMARY BERYLLIUM SUBCATEGORY SECT - IX

the development of BPT mass limitations The first for requirement to calculate these limitations is to account for production and flow variability from plant to plant. Therefore, a unit of production or production normalizing parameter (PNP) was determined for each waste stream which could then be related to the flow from the process to determine a production normalized flow. Selection of the PNP for each process element is discussed in Section IV. Each plant within the Subcategory was then analyzed to determine (1) which subdivisions were present, (2) the specific flow rates generated for each subdivision, and (3) the specific production normalized flows for each subdivision. This analysis is discussed in detail in Section V. Nonprocess wastewaters such as rainfall runoff and noncontact cooling water are not considered in the analysis.

Production normalized flows for each subdivision were then analyzed to determine the flow to be used as part of the basis for BPT mass limitations. The selected flow (sometimes referred to as a BPT regulatory flow or BPT discharge rate) reflects the water use controls which are common practices within the category. The BPT regulatory flow is based on the average of all applicable data. Plants with normalized flows above the average may have to implement some method of flow reduction to achieve the BPT limitations.

The second requirements to calculate mass limitations is the set of concentrations that are achievable by application of the BPT level of treatment technology. Section VII discusses the various control and treatment technologies which are currently in place for each wastewater source. In most cases, the current control and treatment technologies consist of chemical precipitation and sedimentation (lime and settle technology) and a combination of reuse and recycle to reduce flow.

Using these regulatory flows and the achievable concentrations, the next step is to calculate mass loadings for each wastewater source or subdivision. This calculation was made on a stream stream-by-stream basis, primarily because plants in this subcategory may perform one or more of the operations in various The mass loadings (milligrams of pollutant per combinations. kilogram of production unit - mg/kg) are based on multiplying the BPT regulatory flow (1/kkg) by the concentration achievable by the BPT level of treatment technology (mg/l) for each pollutant parameter to be limited under BPT. These mass loadings are published in the Federal Register and in 40 CFR Part 421 as the effluent limitations guidelines.

The mass loadings which are allowed under BPT for each plant will be the sum of the individual mass loadings for the various wastewater sources which are found at particular plants. Accordingly, all the wastewater generated within a plant may be combined for treatment in a single or common treatment system, but the effluent limitations for these combined wastewaters are based on the various wastewater sources which actually contribute to the combined flow. This method accounts for the variety of combinations of wastewater sources and production processes which may be found at primary beryllium plants.

The Agency usually establishes wastewater limitations in terms of mass rather than concentration. This approach prevents the use of dilution as a treatment method (except for controlling pH). The production normalized wastewater flow (1/kkg) is a link between the production operations and the effluent limitations. The pollutant discharge attributable to each operation can be calculated from the normalized flow and effluent concentration achievable by the treatment technology and summed to derive an appropriate limitation for each plant.

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

In balancing costs in relation to pollutant removal estimates, EPA considers the volume and nature of existing discharges, the volume and nature of discharges expected after application of BPT, the general environmental effects of the pollutants, and the cost and economic impacts of the required pollution control level. The Act does not require or permit consideration of water quality problems attributable to particular point sources or industries, or water quality improvements in particular water quality bodies. Accordingly, water quality considerations were not the basis for selecting the proposed or promulgated BPT.

The methodology for calculating pollutant removal estimates and plant compliance costs is discussed in Section X. Pollutant removal estimates have been revised since proposal to correspond to the new costs generated for promulgation. Table X-1 (page 3781) shows the estimated pollutant removal estimates for each treatment option for direct dischargers. Compliance costs for each option are presented in Table X-2 (page 3782).

BPT OPTION SELECTION - PROPOSAL

The technology basis for the proposed BPT limitations was Option A, chemical precipitation and sedimentation technology to remove metals and solids from combined wastewaters and to control pH and fluoride. This technology is already in-place at the one discharger in the subcategory. The pollutants specifically proposed for regulation at BPT were beryllium, chromium, copper, fluoride, TSS, and pH. The Agency was also considering ammonia limitations based on ammonia steam stripping and cyanide limitations based on cyanide precipitation.

Because the one discharging facility in the primary beryllium subcategory already has the BPT technology in-place, and our data indicated that the technology is achieving the proposed BPT limitations, no pollutant removal above the current discharge level and no incremental capital or annual costs were expected at proposal.

BPT OPTION SELECTION - PROMULGATION

The technology basis for the promulgated BPT limitations is Option A, recycle of scrubber liquors, ammonia steam stripping, and cyanide precipitation pretreatment for selected waste streams, and chemical precipitation and sedimentation technology to remove metals and solids from combined wastewaters and to control pH and fluoride. The Agency decided to promulgate ammonia and cyanide limitations based on ammonia steam stripping and cyanide precipitation because data submitted in comments confirmed the presence of ammonia and cyanide in process waters generated in the beryllium industry. The remaining pollutants specifically promulgated for regulation at BPT are beryllium, chromium, copper, fluoride, TSS, and pH.

Ammonia steam stripping is demonstrated at six facilities in the nonferrous metals manufacturing category. These facilities are treating ammonia bearing wastewaters associated with the production of primary tungsten, primary columbium and tantalum, primary molybdenum, secondary tungsten and cobalt, and primary zirconium and hafnium. EPA believes that performance data from the iron and steel manufacturing category provide a valid measure of this technology's performance on nonferrous metals manufacturing category wastewater because raw wastewater concentrations of ammonia are of the same order of magnitude in the respective raw wastewater matrices.

Chemical analysis data were collected of raw waste (treatment influent) and treated waste (treatment effluent) from one coke plant of the iron and steel manufacturing category. A contractor for EPA, using EPA sampling and chemical analysis protocols, collected six paired samples in a two-month period. These data are the data base for determining the effectiveness of ammonia steam stripping technology and are contained within the public record supporting this document. Ammonia treatment at this coke plant consisted of two steam stripping columns in series with steam injected countercurrently to the flow of the wastewater. A lime reactor for pH adjustment separated the two stripping columns.

The Agency has verified the promulgated steam stripping performance values using steam stripping data collected at a zirconium-hafnium plant, which has raw ammonia levels as high as any in the nonferrous metals manufacturing category. Data collected by the plant represent almost two years of daily operations, and support the long-term mean used to establish treatment effectiveness.

In addition, data submitted by a primary columbium-tantalum plant, which also has significant raw ammonia levels, verifies the promulgated steam stripping performance values.

Cyanide precipitation technology is required for the primary beryllium subcategory because existing treatment within the subcategory does not effectively remove cyanide. Cyanide

PRIMARY BERYLLIUM SUBCATEGORY SECT - IX

precipitation is directed at control of free and complexed cyanides. This subcategory collectively discharges approximately 536 kg/yr of cyanide. The achievable performance is transferred from three well-operated coil coating plants in the coil coating category, and are contained within the public record supporting this document. The Agency believes this technology, and the achievable concentration limits, are transferable to the primary subcategory because raw wastewater cvanide beryllium concentrations (prior to dilution with waste streams without cyanide) are of the same order of magnitude in both categories. Further, no pollutants were identified in primary beryllium wastewater that would interfere with the operation or performance of this technology.

Implementation of the promulgated BPT limitations is estimated to remove 2,698 kilograms of priority pollutants, 70,000 kilograms of ammonia and 313 kilograms of TSS from raw wastewater annually. The estimated capital cost for achieving promulgated BPT is \$226,500 and the annual cost is estimated at \$251,200 (1982 dollars). A schematic representation of the selected BPT treatment option is presented in Figure IX-1 (page 3763).

Revisions to the promulgated BPT limitations are identical to the revisions to the promulgated BAT limitations which are discussed in Section X.

WASTEWATER DISCHARGE RATES

A BPT discharge rate is calculated for each subdivision based on the average of the flows of all representative existing plants, as determined from analysis of dcp. The discharge rate is used with the achievable treatment concentrations to determine BPT effluent limitations. Since the discharge rate may be different for each wastewater source, separate production normalized discharge rates for each of the 16 wastewater sources are discussed below and summarized in Table IX-1. The discharge rates are normalized on a production basis by relating the amount of wastewater generated to the mass of the product which is produced by the process associated with the waste stream in question. These production normalizing parameters, or PNPs, are also listed in Table IX-1.

Section V of this document further describes the discharge flow rates and presents the water use and discharge flow rates for each plant by subdivision in Tables V-1 through V-10 (pages 3663 - 3666).

As discussed in Section V of this document, six new building blocks have been added to this subcategory, and the production normalized flow for one additional building block, beryllium hydroxide filtrate, was revised based on more detailed data acquired since promulgation of the original rulemaking.

SOLVENT EXTRACTION RAFFINATE FROM BERTRANDITE ORE

The proposed and promulgated BPT wastewater discharge rate for solvent extraction raffinate from bertrandite ore is 2,246,000 l/kkg (538,200 gal/ton) of beryllium carbonate precipitated (as beryllium). This rate is allocated only for those plants which extract beryllium from an acid solution generated by leaching bertrandite ore. There is currently only one plant which practices this operation.

Water use and discharge rates are presented in Table V-1 (page 3663). The BPT wastewater discharge rate for solvent extraction raffinate from bertrandite ore is based on the value reported by the one facility which currently generates this waste stream.

SOLVENT EXTRACTION RAFFINATE FROM BERYL ORE

The BPT wastewater discharge rate proposed for solvent extraction raffinate from beryl ore was 200,000 l/kkg (47,900 gal/ton) of beryllium carbonate precipitated (as beryllium). This rate was allocated only for those plants which extract beryllium from an acid solution generated by leaching beryl ore. After proposal, EPA received comments from the industry requesting an increase in the discharge allowance for this waste stream. The Agency evaluated the new flow and production data submitted and based on that it is promulgating a new discharge rate.

The BPT wastewater discharge rate promulgated for solvent extraction raffinate from beryl ore is 220,000 l/kkg (52,720 gal/ton) of beryllium carbonate precipitated (as beryllium). This rate is allocated only for those plants which extract beryllium from an acid solution generated by leaching beryl ore.

Water use and discharge rates are presented in Table V-2 (page 3663). The BPT wastewater discharge rate for solvent extraction raffinate from beryl ore processing is based on the value reported by the one facility reporting this waste stream.

BERYLLIUM CARBONATE FILTRATE

The proposed and promulgated BPT wastewater discharge rate for beryllium carbonate filtrate is 214,500 l/kkg (51,400 gal/ton) of beryllium carbonate precipitated (as beryllium). This rate is allocated only for those plants which precipitate beryllium from solution as beryllium carbonate. There is currently only one plant which practices this operation.

Water use and discharge rates are presented in Table V-3 (page 3663). The BPT wastewater discharge rate for beryllium carbonate filtrate is based on the value reported by the one facility which currently generates this waste stream.

BERYLLIUM HYDROXIDE FILTRATE

The proposed and promulgated BPT wastewater discharge rate for

PRIMARY BERYLLIUM SUBCATEGORY SECT - IX

beryllium hydroxide filtrate was 52,660 l/kkg (12,620 gal/ton) of beryllium hydroxide produced (as beryllium). However, based on more detailed information not available at the time of the original rulemaking, EPA has revised the BPT wastewater discharge rate to be 136,000 l/kkg (32,600 gal/ton) of beryllium hydroxide produced (as beryllium). This rate is allocated only for those plants which produce beryllium hydroxide from bertrandite or beryl ore. Water use and discharge rates are presented in Table V-4 (page 3664).

BERYLLIUM OXIDE CALCINING FURNACE WET AIR POLLUTION CONTROL

The proposed and promulgated BPT wastewater discharge rate for beryllium oxide calcining furnace wet air pollution control is 263,700 l/kkg (63,190 gal/ton) of beryllium oxide produced. Since proposal, industry comments to EPA have indicated that recycle is presently practiced for this waste stream at a rate of greater than 90 percent. This rate is allocated only for those plants which use wet air pollution control devices to control emissions from beryllium oxide calcining furnaces. Water use and discharge rates are presented in Table V-5 (page 3664).

BERYLLIUM HYDROXIDE SUPERNATANT

The BPT wastewater discharge rate proposed for beryllium hydroxide supernatant was 104,324 l/kkg (25,000 gal/ton) of beryllium hydroxide produced from scrap and residues (as beryllium). This rate was allocated only for those plants which recover beryllium from residues and scrap by dissolution in sulfuric acid and precipitation of beryllium as bervllium After proposal, EPA received comments from the hydroxide. industry requesting an increase in the discharge allowance for this waste stream. The Agency evaluated the new flow and production data submitted and based on that it is promulgating a new discharge rate. The BPT wastewater discharge rate promulgated for beryllium hydroxide supernatant is 430,000 1/kkg (54,120 gal/ton) of beryl-lium hydroxide produced from scrap and residues (as beryllium). This rate is allocated only for those plants which recover beryl-lium from residues and scrap by dissolution in sulfuric acid and precipitation of beryllium as beryllium hydroxide.

This discharge allowance includes all water generated from the beryllium hydroxide recovery operation. Because this operation includes scrap recycled from external sources, it is technically a secondary as well as primary beryllium operation. The Agency is, however, considering this as a primary beryllium operation for the purposes of this regulation. In establishing the BPT flow rate, it has given full consideration to the amount of wastewater generated due to the secondary nature of this operation. Water use and discharge rates are presented in Table V-6 (page 3664).

PROCESS WATER

At proposal, this waste stream was called process condensates. At

proposal no BPT wastewater discharge allowance for process condensates was provided. Based on the available data, EPA believed that this facility reuses all of this water in scrubbing systems and other plant uses.

Industry comments after proposal clarified the process condensates collection and reuse system, and indicated that periodic discharges have to be made from the process water pit to prevent dissolved solids build-up. Information was supplied to the Agency so that a discharge rate for process water could be calculated.

The BPT wastewater discharge rate promulgated for process water is 174,800 l/kkg (41,890 gal/ton) of beryllium pebbles produced. This rate is allocated only for those plants which collect process condensates generated from the manufacture of beryllium metal and discharge this process water after extensive recycle in various plant applications. Water use and discharge rates are presented in Table V-7 (page 3668).

FLUORIDE FURNACE SCRUBBER

The BPT wastewater discharge rate proposed for fluoride furnace scrubber water was 2,205 l/kkg (530 gal/ton) of beryllium metal pebbles produced. This rate was allocated only for those plants which produce beryllium fluoride (BeF₂) intermediate by heating ammonium beryllium fluoride in a furnace.

Industry comments submitted to the EPA after proposal regarding the fluoride furnace scrubber indicated that this scrubber does not generate a discharge. Scrubber liquor is extensively recycled, makeup water is taken from the process water pit, and a bleed stream is reused in ammonium bifluoride preparation. For this reason, EPA is not providing a discharge allowance for the fluoride furnace scrubber water.

The BPT wastewater discharge rate promulgated for fluoride furnace scrubber water is zero. The Agency believes that, based on demonstrated practice, any facility which operates a fluoride furnace scrubber can achieve zero discharge through recycle and reuse.

CHIP TREATMENT WASTEWATER

At proposal, this waste stream was called chip leaching. The BPT wastewater discharge rate for proposed chip leaching wastewater was 4,742 l/kkg (l,l38 gal/ton) of beryllium scrap chips treated. This rate was allocated only for those plants which treat beryllium scrap chips with nitric acid prior to vacuum casting. After proposal, EPA received comments from the industry requesting an increase in the discharge allowance for this waste stream. The Agency evaluated the new flow and production data submitted and based on those, it is promulgating a new discharge rate.

The BPT wastewater discharge rate promulgated for chip treatment wastewater is 7.750 l/kkg (l,860 gal/ton) of beryllium scrap chips treated. This rate is allocated only for those plants which treat beryllium scrap chips with nitric acid prior to vacuum casting. Water use and discharge rates are presented in Table V-9 (page 3665).

BERYLLIUM PEBBLE PLANT AREA VENT WET AIR POLLUTION CONTROL

A BPT pollutant discharge allowance for beryllium pebble plant area vent scrubber wastewater was not proposed because of incomplete information about the scrubbers that use water from or recirculate into the process water pit. Industry comments have clarified the recycle, reuse, and discharge practices of these scrubbers. After evaluating the new information, EPA has added a tenth subdivision.

The BPT wastewater discharge rate used at promulgation for beryllium pebble plant area vent scrubber wastewater is zero. Presently, one plant operates a pebble plant scrubber which obtains makeup water from the process water pit, and discharges a scrubber liquor bleed stream back to the process water pit. Because a separate discharge allowance is being promulgated for process water discharge, the Agency did not believe it necessary to give an additional discharge allowance for the beryllium pebble plant scrubber wastewater.

ADDITIONAL BUILDING BLOCKS

The BPT discharge rates for the six new building blocks are identical to the production normalized wastewater flows presented for these streams in Section V. These BPT flows would be applicable to plants processing bertrandite ore and beryl ore into beryllium hydroxide or beryllium carbonate products.

REGULATED POLLUTANT PARAMETERS

The raw wastewater concentrations from individual operations and the subcategory as a whole were examined to select certain pollutant parameters for limitation. This examination and evaluation was presented in Section VI. A total of eight pollutants or pollutant parameters are selected for limitation under BPT and are listed below:

117.	beryllium
119.	chromium
120.	copper
121.	cyanide
	ammonia
	fluoride
	TSS
	pH

EFFLUENT LIMITATIONS

The treatable concentrations achievable by application of the promulgated BPT are discussed in Section VII of Vol. I and summarized there in Table VII-21 (page 248), with one exception. The one exception is the fluoride treatment effectiveness for the beryllium hydroxide supernatant concentration subdivision, which has been revised from 14.6 mg/l to 170 mg/l, based on the unusually high concentration of total dissolved (TDS) in that wastewater stream. These treatable solids concentrations (both one day maximum and monthly average values) are multiplied by the BPT normalized discharge flows summarized in Table IX-1 (page 3781) to calculate the mass of pollutants allowed to be discharged per mass of product. The results of these calculations in milligrams of pollutant per kilogram of product represent the BPT effluent limitations and are presented in Table IX-2 (page 3782) for each individual waste stream.

TABLE IX-1

BPT WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

BPT Normalized Discharge Rate Productin			
Wastewater Stream	103 1/kkg	103 gal/ton	Normalized Parameter
Solvent extraction raffinate from bertrandite ore	2,246	538.2	Beryllium carbonate pro- duced from bertrandite ore as beryllium
Solvent extraction raffinate from beryl ore	220.0	52.72	Beryllium carbonate pro- duced from beryl ore as beryllium
Beryllium carbonate filtrate	214.5	51.40	Beryllium carbonate pro- duced as beryllium
Beryllium hydroxide filtrate	136.0	32.6	Beryllium hydroxide pro- duced as beryllium
Beryllium oxide calcining furnace wet air pollution control	e 263.7	63.19	Beryllium oxide produced
Beryllium hydroxide supernatant	230.0	55.12	Beryllium hydroxide pro- duced from scrap and residues as beryllium
Process water	174.8	41.89	Beryllium pebbles produced
Fluoride furnace scrubber	0	0	Beryllium pebbles produced
Chip treatment wastewater	7.75	1.86	Beryllium scrap chips treated
Beryllium pebble plant area vent wet air pollution control	0	0	Beryllium pebbles produced

BPT WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

Wastewater Stream		ormalized <u>ge Rate</u> <u>103 gal/ton</u>	Productin Normalized Parameter
Beryllium ore gangue dewatering	1.043	0.25	Beryllium ore processed
Bertrandite ore gangue dewatering	2.665	0.639	Bertrandite ore processed
Beryllium ore processing	7.303	1.75	Beryllium ore processed
AIS area wastewater	468.0	112.1	Total beryllium carbonate produced as beryllium
Bertrandite ore leaching scrubber	1.511	0.362	Bertrandite ore processed
Bertrandite ore counter current decantation scrubber	0.101	0.024	Bertrandite ore processed

TABLE IX-2

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(a) Solvent Extraction Raffinate from Bertrandite Ore BPT

Pollutant pollutant	Maximum for any one day	Maximum for monthly average	
	llion lbs) of be from bertrandi	eryllium carbonate te ore (as Be)	
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	2,763.000 988.200 4,267.000 651.300 299,400.000 78,610.000 92,090.000 the range of 7.	1,235.000 404.300 2,246.000 269.500 131,600.000 44,700.000 43,800.000 5 to 10.0 at all tip	mes

(b) Solvent Extraction Raffinate from Beryl Ore BPT

÷

Pollutant pollutant		Maximum for any one day	Maximum for monthly average	-
<u></u>		llion lbs) of be ced from beryl o	ryllium carbonate re (as Be)	-
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	Within	270.600 96.800 418.000 63.800 29,330.000 7,700.000 9,020.000 the range of 7.1	121.000 39.600 220.000 26.400 12,890.000 4,378.000 4,290.000 5 to 10.0 at all times	5

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(c) Beryllium Carbonate Filtrate BPT

Pollutant or pollutant property	Maximum for any one day	Maximum for monthly average	
mg/kg (lb/million lk	os) of beryllium	carbonate produced	(as Be)
Beryllium	.800	118.000	
Chromium	94.380	38.610	
Copper	407.600	214.500	
Cyanide	62.210	25.740	
Ammonia	28,590.000	12,570.000	
Fluoride	7,508.000	4,269.000	
TSS	8,795.000	4,183.000	
pH With	nin the range of	7.5 to 10.0 at all	times

(d) Beryllium Hydroxide Filtrate BPT

Pollutant pollutant		Maximum for any one day	Maximum for monthly average	·
••••	mg/kg (lb/mi	llion lbs) of be produced (as B	ryllium hydroxide e)	
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	~.	258.400 258.400 39.440 18,130.000 4,760.000 5,576.000	74.800 24.480 136.000 16.320 7,970.000 2,706.000 2,652.000 5 to 10.0 at all t	imes

i

ł

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(e) Beryllium Oxide Calcining Furnace Wet APC BPT

Pollutant c pollutant p		Maximum for any one day	Maximum for monthly average	-
mg/k	g (lb/millio	on lbs) of bery	llium oxide produced	-
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	Within	324.400 116.000 501.000 76.470 35,150.000 9,230.000 10,810.000 the range of 7.	145.000 47.470 263.700 31.640 15,450.000 5,248.000 5,142.000 5 to 10.0 at all times	5

(f) Beryllium Hydroxide Supernatant BPT

Pollutant pollutant		Maximum for any one day	Maximum for monthly average	
<u> </u>			beryllium hydroxide residues (as Be)	
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	Within	282.900 101.200 437.000 66.700 30,660.000 160,300.000 9,430.000 the range of	126.500 41.400 230.000 27.600 13,480.000 71,200.000 4,485.000 7.5 to 10.0 at all tim	nes

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(g) Process Water BPT

Pollutant or pollutant proper		Maximum for monthly average
mg/kg (lb/	million lbs) of beryllid	um pebbles produced
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH V	215.000 76.910 332.100 50.690 23,300.000 6,118.000 7,167.000 Within the range of 7.5 t	96.140 31.460 174.800 20.980 10,240.000 3,479.000 3,409.000 to 10.0 at all times

(h) Fluoride Furnace Scrubber BPT

Pollutant or pollutant pr		Maximum for any one day		
mg/kg	(lb/million	n lbs) of be	eryllium pebbles produced	
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	Within	0.000 0.000 0.000 0.000 0.000 0.000 the range c	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	es

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(i) Chip Treatment Wastewater BAT

Pollutant or	Maximum for	Maximum	
pollutant property	any one day	monthly	
mg/kg (lb/million	lbs) of berylli	um scrap	chips treated
Beryllium	9.533	5 to 10.(4.263
Chromium	3.410		1.395
Copper	14.730		7.750
Cyanide	2.248		.930
Ammonia	1,033.000		454.200
Fluoride	271.300		154.200
TSS	317.800		151.100
pH Within	the range of 7.		at all times

(j) Beryllium Pebble Plant Area Vent Wet APC BPT

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (lb/mil	lion lbs) of beryl	llium pebbles produced
Chromium	0.000	0.000
Copper	0.000	0.000
Cyanide	0.000	0.000
Ammonia	0.000	0.000
Fluoride	0.000	0.000
TSS	0.000	0.000
pH Wit	hin the range of 7	7.5 to 10.0 at all times

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(k) Beryl Ore Gangue Dewatering BPT

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
	million pounds)	of beryl ore processed
Beryllium	1.283	0.574
Chromium (Total) Copper	0.459 1.982	0.188 1.043
Cyanide (Total) Ammonia (as N)	0.302 139.032	0.125 61.120
Fluoride Total Suspended Solids		20.756 20.339
pH Within t	the range of 7.5	to 10.0 at all times.

(1) Bertrandite Ore Gangue Dewatering BPT

	aximum for ny One Day	Maximum for Monthly Average
mg/kg (pounds per millio	on pounds) of	bertrandite ore processed
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride Total Suspended Solids pH Within the	3.279 1.173 5.064 0.773 355.245 93.275 109.265 e range of 7.5	1.466 0.480 2.665 0.320 156.169 53.034 51.968 5 to 10.0 at all times.

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(m) Beryl Ore Processing BPT

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/kg (pounds per	million pounds)	of beryl ore processed
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride Total Suspended Solids pH Within		4.017 1.315 7.303 0.876 427.956 145.330 142.409 5 to 10.0 at all times.

BPT

(n) Aluminum Iron Sludge (AIS) Area Wastewater BPT

- .

Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
		s) of total beryllium
C	arbonate produced	(as Be)
Beryllium	575.640	257.400
Chromium (Total)	205.920	84.240
Copper	889.200	468.000
Cyanide (Total)	135.720	56.160
Ammonia (as N)	62384.400	27424.800
Fluoride	16380.000	9313.200
Total Suspended Soli	ds 19188.000	9126.000
pH Withi	n the range of 7.5	5 to 10.0 at all times.

*Regulated Pollutant

BPT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(o) Bertrandite Ore Leaching Scrubber BPT

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average
mg/kg o	of bertrandite or	e processed
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride Total Suspended Solids pH Within		0.831 0.272 1.511 0.181 88.545 30.069 29.465 5 to 10.0 at all times.

(p) $\frac{\text{Bertrandite Ore}}{(\text{CCD})} \frac{\text{Countercurrent and Decantation}}{\text{BPT}}$

Pollutant or Pollutant Proper	Maximum for ty Any One Day	Maximum for Monthly Average
m	g/kg of bertrandite ore	e processed
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride Total Suspended pH W	0.192 0.029 13.463 3.535	0.056 0.018 0.101 0.012 5.919 2.010 1.970 to 10.0 at all times.

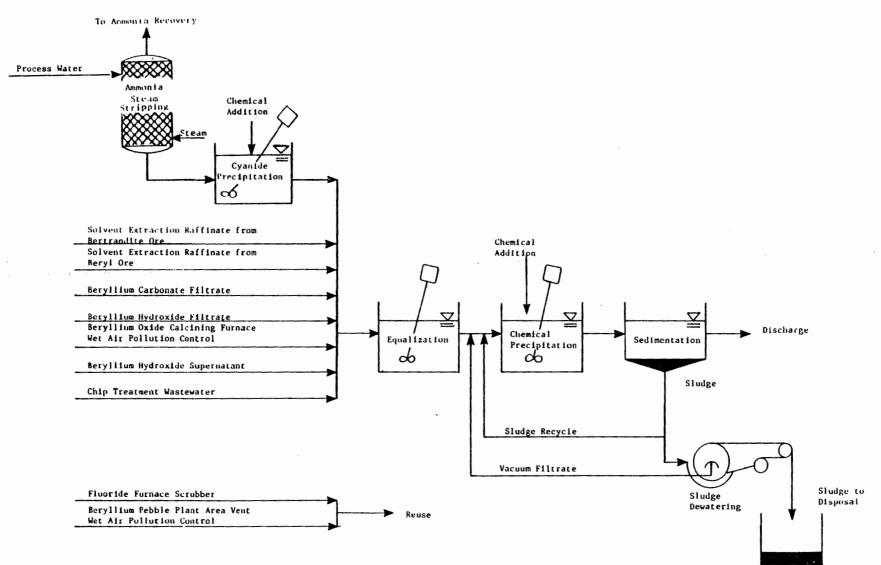
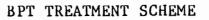



Figure IX-1

PRIMARY BERYLLIUM SUBCATEGORY SECT 1 XI

PRIMARY BERYLLIUM SUBCATEGORY SECT - IX

1

.

.

;

THIS PAGE INTENTIONALLY LEFT BLANK

.

i

SECTION X

BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

These effluent limitations are based on the best control and treatment technology used by a specific point source within the industrial category or subcategory, or by another industry where it is readily transferable. Emphasis is placed on additional treatment techniques applied at the end of the treatment systems currently used, as well as reduction of the amount of water used and discharged, process control, and treatment technology optimization.

The factors considered in assessing best available technology economically achievable (BAT) include the age of equipment and facilities involved, the process used, process changes, nonwater quality environmental impacts (including energy requirements), and the costs of application of such technology. BAT represents the best available technology economically achievable at plants of various ages, sizes, processes, or other characteristics. BAT may be transferred from a different subcategory or category and may include feasible process changes or internal controls, even when not in common industry practice.

The required assessment of BAT considers costs, but does not require a balancing of costs against pollutant removals. However, in assessing BAT, the Agency has given substantial weight to the economic achievability of the technology.

TECHNICAL APPROACH TO BAT

The Agency reviewed a wide range of technology options and evaluated the available possibilities to ensure that the most effective and beneficial technologies were used as the basis of BAT. To accomplish this, the Agency elected to examine two technology options which could be applied to the primary beryllium subcategory as alternatives for the basis of BAT effluent limitations.

For the development of BAT effluent limitations, mass loadings were calculated for each wastewater source or subdivision in the subcategory using the same technical approach as described in Section IX for BPT limitations development. The differences in the mass loadings for BPT and BAT are due to increased treatment effectiveness achievable with the more sophisticated BAT treatment technology and reductions in the effluent flows allocated to various waste streams.

The treatment technologies considered for BAT are summarized below:

Option A (Figure X-1, page 3791) is based on:

o Recycle of scrubber liquors

- Ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams
- o Chemical precipitation and sedimentation

Option C (Figure X-2, page 3792) is based on:

- o Recycle of scrubber liquors
- Ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams
- o Chemical precipitation and sedimentation
- o Multimedia filtration

The two options examined for BAT are discussed in greater detail on the following pages. The first option considered (Option A) is the same as the BPT treatment and control technology which was presented in the previous section. The section option represents substantial progress toward the reduction of pollutant discharges above and beyond the progress achievable by BPT.

OPTION A

Option A for the primary beryllium subcategory is equivalent to the control and treatment technologies which were analyzed for BPT in Section IX (see Figure X-1). The BPT end-of-pipe treatment scheme includes recycle of scrubber liquors, ammonia steam stripping, and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation and sedimentation. The discharge rates for Option A are Equal to the discharge rates allocated to each stream as a BPT discharge flow.

OPTION C

Option C for the primary beryllium subcategory consists of all control and treatment requirements of Option A (recycle of liquors, ammonia steam stripping, scrubber and cyanide precipitation pretreatment, followed by chemical precipitation and sedimentation) plus multimedia filtration technology added at the end of the Option A treatment scheme (see Figure X-2). Multimedia filtration is used to remove suspended solids, including precipitates of toxic metals, beyond the concentrations attainable by gravity sedimentation. The filter suggested is of the gravity, mixed media type, although other forms of filters, such as rapid sand filters or pressure filters, would perform satisfactorily.

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

As one means of evaluating each technology option, EPA developed estimates of the pollutant removals and the compliance costs associated with each option. The methodologies are described below.

POLLUTANT REMOVAL ESTIMATES

A complete description of the methodology used to calculate the

estimated pollutant removal achieved by the application of the various treatment options is presented in Section X of Vol. I. The pollutant removal estimates have been revised from proposal because of new production normalized flows for several subdivisions. The methodology for calculating pollutant removals has not changed, and the data used to estimate removals are the same as those used to revise compliance costs.

Sampling data collected during the field sampling program were used to characterize the major waste streams considered for regulation. At each sampled facility, the sampling data was production normalized for each unit operation (i.e., mass of pollutant generated per mass of product manufactured). This value, referred to as the raw waste, was used to estimate the mass of toxic pollutants generated within the primary beryllium subcategory. The pollutant removal estimates were calculated for each plant by first estimating the total mass of each pollutant in the untreated wastewater. This was calculated by first multiplying the raw waste values by the corresponding production value for that stream and then summing these values for each pollutant for every stream generated by the plant.

Next, the volume of wastewater discharged after the application of each treatment option was estimated for each operation at each plant by comparing the actual discharge to the regulatory flow. The smaller of the two values was selected and summed with the other plant flows. The mass of pollutant discharged was then estimated by multiplying the achievable concentration values attainable with the option (mg/l) by the estimated volume of process wastewater discharged by the subcategory. The mass of pollutant removed is the difference between the estimated mass of pollutant generated by each plant in the subcategory and the mass of pollutant discharged after application of the treatment option. The pollutant removal estimates for direct dischargers in the primary beryllium subcategory are presented in Table X-1 (page 3981).

COMPLIANCE COSTS

In estimating subcategory-wide compliance costs, the first step was to develop a cost estimation model, relating the total costs associated with installation and operation of wastewater treatment technologies to plant process wastewater discharge. EPA applied the model to each plant. The plant's investment and operating costs are determined by what treatment it has in place and by its individual process wastewater discharge flow. As discussed above, this flow is either the actual or the BAT regulatory flow, whichever is lesser. The final step was to annualize the capital costs, and to sum the annualized capital costs, and the operating and maintenance costs for each plant, yielding the cost of compliance for the subcategory. A comparison of the costs developed for proposal and the revised costs for promulgation are presented in Table X-2 (page 3782) for direct dischargers in the primary beryllium subcategory. These costs were used in assessing economic achievability.

BAT OPTION SELECTION - PROPOSAL

Our proposed BAT limitations for this subcategory were based on chemical precipitation and sedimentation (BPT technology), with the addition of in-process wastewater reduction, and filtration. Flow reduction was based on 90 percent recycle of beryllium oxide calcining furnace wet air pollution control. The pollutants specifically limited under BAT were beryllium, chromium, copper, and fluoride.

Implementation of the proposed BAT limitations would remove annually an estimated 257 kg of priority pollutants, which is 8 kg of priority metals over the estimated BPT discharge.

BAT OPTION SELECTION - PROMULGATION

EPA promulgated BAT limitations for the primary beryllium subcategory based on recycle of scrubber liquors, ammonia steam stripping, and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation, sedimentation, and multimedia filtration technology. Flow reduction beyond what is currently practiced was not promulgated because industry comments to the Agency indicated that this scrubber is presently operated with recycle. The Agency decided that further recycle for this scrubber is not feasible.

The pollutants specifically limited under promulgated BAT are beryllium, chromium, copper, cyanide, ammonia, and fluoride. The Agency decided to promulgate ammonia and cyanide limitations based on ammonia steam stripping and cyanide precipitation because data submitted in comments confirmed the presence of ammonia and cyanide in process waters generated in the beryllium industry.

Implementation of the promulgated BAT limitations would remove annually an estimated 2,705 kilograms of priority pollutants and 524 kilograms of TSS, which is 7 kilograms of priority metals and 211 kilograms of TSS over the estimated BPT removals. The estimated capital cost of promulgated BAT is \$256,200 and the estimated annual cost is \$265,600 (1982 dollars). The end-ofpipe treatment configuration for Option C is presented in Figure X-2.

FINAL AMENDMENTS TO THE REGULATION

For the Primary Beryllium Subcategory, EPA prepared a settlement agreement in April 1987 which would amend the regulation promulgated on September 20, 1985, (50 FR 38276), concerning four topics, which are briefly described here.

EPA agreed to revise the treatment effectiveness concentration for fluoride in the beryllium hydroxide supernatant subdivision, based on the unusually high concentration of total dissolved solids in this waste stream. EPA agreed to revise the regulatory flow for the beryllium hydroxide filtrate building block based upon more detailed information not available to EPA at the time of the original rulemaking.

EPA agreed to add new building blocks for the following six processes in this subcategory: beryl ore gangue dewatering, bertrandite ore gangue dewatering, beryl ore processing (comprises quench pit, scrubber and washdown), AIS area wastewater, bertrandite ore leaching scrubber, and bertrandite ore countercurrent decantation scrubber.

EPA agreed to allow modification of the monitoring requirements for cyanide at any beryllium manufacturing facility which certifies that it does not use or generate cyanide at the facility. This modification would allow yearly cyanide monitoring.

WASTEWATER DISCHARGE RATES

A BAT discharge rate was calculated for each subdivision based upon the flows of the existing plants, as determined from analysis of the data collection portfolios. The discharge rate is used with the achievable treatment concentrations to determine BAT effluent limitations. Since the discharge rate may be different for each wastewater source, separate production normalized discharge rates for each of the 10 wastewater sources were determined and are summarized in Table 10-3. The discharge rates are normalized on a production basis by relating the amount of wastewater generated to the mass of the intermediate product which is produced by the process associated with the waste stream in question. These production normalizing parameters, or PNPs, are also listed in Table X-4 (page 3785).

At proposal, the BAT discharge rates reflected the flow reduction requirements of the selected BAT option. For this reason, the one scrubber water which was targeted for flow reduction through recycle for BAT had a lower flow rate than the corresponding BPT flow. Since several plants in other subcategories have demonstrated sufficient ability to achieve substantial recycle of similar wastewaters, lower flow allowances for this steam were believed to represent the best available technology economically achievable.

The proposed BAT discharge rate for beryllium oxide calcining furnace wet air pollution control water was based on 90 percent recycle of the scrubber effluent (refer to Section VII of the General Development Document). Consequently, the proposed BAT production normalized discharge flow for beryllium oxide calcining furnace wet air pollution control was 26,373 l/kkg (6,320 gal/ton) of beryllium oxide produced.

Since proposal, industry comments to EPA have indicated that recycle is presently practiced for the beryllium oxide calcining

furnace scrubber, and to require additional recycle at BAT would be unachievable. Upon evaluation of the data, the Agency decided not to require any recycle beyond what is presently practiced. Thus, the promulgated BAT discharge allowance for beryllium oxide calcining furnace wet air pollution control is 263,700 l/kkg (63,190 gal/ton) of beryllium oxide produced. This discharge rate is equivalent to that promulgated at BPT.

REGULATED POLLUTANT PARAMETERS

The Agency placed particular emphasis on the toxic pollutants. The raw wastewater concentrations from individual operations and the subcategory as a whole were examined to select certain pollutants and pollutant parameters for limitation. This examination and evaluation was presented in Section VI. The pollutants selected for specific limitation are listed below:

117. beryllium
119. chromium
120. copper
121. cyanide
ammonia
fluoride

EFFLUENT LIMITATIONS

The concentrations achievable by application of BAT are discussed in Section VII. The treatable concentrations both one day maximum and monthly average values are multiplied by the BAT normalized discharge flows summarized in Table X-3 (page 3783) to calculate the mass of pollutants allowed to be discharged per mass of product. The results of these calculations in milligrams of pollutant per kilogram of product represent the BAT effluent limitations and are presented in Table X-4 (page 3785) for each waste stream.

Table X-1

POLLUTANT REMOVAL ESTIMATES PRIMARY BERYLLIUM SUBCATEGORY

Pollutant	Raw	Option A	Option A	Option C	Option C
	Waste	Discharge	Removed	Discharge	Removed
	(kg/yr)	(kg/yr)	(kg/yr)	(kg/yr)	(kg/yr)
Antimony	0.0225	0.0225	0.0000	0.0225	0.0000
Arsenic	1.7080	1.7080	0.0000	1.7080	0.0000
Beryllium	2,157.5560	6.7420	2,150.8140	4.4947	2,153.0613
Cadmium	0.4495	0.4495	0.0000	0.4495	0.0000
Chromium (Total)	2.2698	1.8878	0.3820	1.5731	0.6967
Copper	26.0466	13.0346	13.0121	8.7646	17.2820
Cyanide (Total)	535.7427	1.5731	534.1696	1.0562	534.6864
Lead	0.0225	0.0225	0.0000	0.0225	0.0000
Mercury	0.0225	0.0225	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	0.0225	0.0000
Nickel	0.9439	0.9439		0.9439	0.0000
Selenium	0.0000	0.0000		0.0000	0.0000
Silver	0.4944	0.4944		0.4944	0.0000
Thallium	0.0000	0.0000		0.0000	0.0000
Zinc	2.1574	2.1574		2.1574	0.0000
TOTAL PRIORITY POLLUTANTS	2,727.4358	29.0581	2,698.3777	21.7093	2,705.7265
Ammonia	70,666.2800	723.6426	69,942.6374	723.6426	69,942.6374
Fluoride	58,657.8587	325.8639	58,331.9949	325.8639	58,331.9949
TOTAL NONCONVENTIONALS	129,324.1387	1,049.5064	128,274.6323	1,049.5064	128,274.6323
TSS	582.2401	269.6805	312.5596	58.4308	523.8093
Oil and Grease	179.6746	179.6746	0.0000	179.6746	0.0000
TOTAL CONVENTIONALS	761.9147	449.3551	312.5596	238.1054	523.8093
TOTAL POLLUTANTS	132,813.4892	1,527.9196	131,285.5696	1,309.3211	131,504.1681

PRIMARY BERYLLIUM SUBCATEGORY SECT

T

×

PRIMARY BERYLLIUM SUBCATEGORY SECT - X

TABLE X-2

COST OF COMPLIANCE FOR THE PRIMARY BERYLLIUM SUBCATEGORY DIRECT DISCHARGERS

(March 1982 Dollars)

!

L

1

Option	Capital Cost	Annual Cost
A	226500	251200
в	256200	265600

Table X-3

BAT WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

BAT Normalized Discharge Rate Productin						
Wastewater Stream	103 1/kkg	103 gal/ton	Normalized Parameter			
Solvent extraction raffinate from bertrandite ore	2,246	538.2	Beryllium carbonate pro- duced from bertrandite ore as beryllium			
Solvent extraction raffinate from beryl ore	220.0	52.72	Beryllium carbonate pro- duced from beryl ore as beryllium			
Beryllium carbonate filtrate	214.5	51.40	Beryllium carbonate pro- duced as beryllium			
Beryllium hydroxide filtrate	136.0	32.6	Beryllium hydroxide pro- duced as beryllium			
Beryllium oxide calcining furnace wet air pollution control	e 263.7	63.19	Beryllium oxide produced			
Beryllium hydroxide supernatant	230.0	55.12	Beryllium hydroxide pro- duced from scrap and residues as beryllium			
Process water	174.8	41.89	Beryllium pebbles produced			
Fluoride furnace scrubber	0	0	Beryllium pebbles produced			
Chip treatment wastewater	7.75	1.86	Beryllium scrap chips treated			
Beryllium pebble plant area vent wet air pollution control	0	0	Beryllium pebbles produced			

PRIMARY BERYLLIUM SUBCATEGORY SECT ı ×

Table X-3 (Continued)

BAT WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

BAT Normalized						
Wastewater Stream	<u>103</u> <u>1/kkg</u>	<u>rge Rate</u> 103 gal/ton	Productin Normalized Parameter			
Beryllium ore gangue dewatering	1.043	0.25	Beryllium ore processed			
Bertrandite ore gangue dewatering	2.665	0.639	Bertrandite ore processed			
Beryllium ore processing	7.303	1.75	Beryllium ore processed			
AIS area wastewater	468.0	112.1	Total beryllium carbonate produced as beryllium			
Bertrandite ore leaching scrubber	1.511	0.362	Bertrandite ore processed			
Bertrandite ore counter current decantation scrubber	0.101	0.024	Bertrandite ore processed			

PRIMARY BERYLLIUM SUBCATEGORY SECT - X

TABLE X-4

BAT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(a) Solvent Extraction Raffinate from Bertrandite Ore BAT

			
Pollutant		Maximum for	Maximum for
pollutant	property	any one day	monthly average
<u></u>	ma/ka (lb/mil	lion lbs) of be	ryllium carbonate
		from bertrandite	
Beryllium		1,842.000	831.000
Chromium		831.000	336.900
Copper		2,875.000	1,370.000
Cyanide		449.200	179.700
Ammonia	•	299,400.000	131,600.000
Fluoride		78,610.000	44,700.000
	······································		
(h) (h-1-)	ant Theta attact	Deffinels from	
(b) <u>Solv</u>	ent Extraction	Raffinate from	Beryl Ore BAT
Pollutant	or	Maximum for	Maximum for
pollutant		any one day	
pollucane	propercy	ung one dug	menening average
<u>.</u>	mg/kg (lb/mil)	lion lbs) of ber	ryllium carbonate
	produce	ed from beryl o	re (as Be)
	-	-	
Beryllium		180.400	81.400
Chromium		81.400	33.000
Copper		281.600	134.200
Cyanide		44.000	17.600
Ammonia		29,330.000	12,890.000
Fluoride		7,700.000	4,378.000
· .			
(C) Beryl	lium Carbonate	<u>Filtrate</u> BAT	
Pollutant	or	Maximum for	Maximum for
pollutant		any one day	
E	FF7	11	
mg/kg (ll	o/million lbs)	of beryllium ca	arbonate produced (as Be
Dowellium		175 000	79.370
Beryllium		175.900	
Chromium		79.370	32.180
Copper		274.600	130.800
Cyanide		42.900	17.160
Ammonia		28,590.000	12,570.000
Fluoride		7,508.000	4,269.000

.

.

•

BAT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(d) Beryllium Hydroxide Filtrate BAT

Pollutant or pollutant property	Maximum for any one day	Maximum for monthly average
mg/kg (lb/million	lbs) of beryllium hydr	oxide produced (as Be)
Beryllium Chromium Copper Cyanide Ammonia Fluoride	111.520 50.320 174.080 27.200 18,128.800 4,760.000	50.320 20.400 82.960 10.880 7,969.600 2,706.400

(e) Beryllium Oxide Calcining Furnace Wet APC BAT

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (lb/milli	on lbs) of beryllium	n oxide produced
Beryllium	216.200	97.570
Chromium	97.570	39.560
Copper	337.500	160.900
Cyanide	52.740	21.100
Ammonia	35,150.000	15,450.000
Fluoride	9,230.000	5,248.000

(f) Beryllium Hydroxide Supernatant BAT

Pollutant pollutant		Maximum any one		Maximum monthly	
Beryllium Chromium Copper Cyanide Ammonia	mg/kg (lb/milli produced,from	on lbs) of	berylliu residues	n hydrox:	_ ide)))
Fluoride		,300.000		1,200.000	

BAT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(g) Process Water BAT

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

mg/kg	(lb/million lbs) of beryllium	n pebbles produced
Beryllium	143.300	64.680
Chromium	64.680	26.220
Copper	223.700	106.600
Cyanide	34.960	13.980
Ammonia	23,300.000	10,240.000
Fluoride	6,118.000	3,479.000

(h) Fluoride Furnace Scrubber BAT

Pollutant or pollutant property			aximum for ny one day	Maximum monthly	for average
mg/kg	(lb/million	lbs)	of beryllium	pebbles pro	oduced
Beryllium Chromium Copper Cyanide Ammonia Fluoride		:	0.000 0.000 0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.00) 0) 0) 0) 0

(i) Chip Treatment Wastewater BAT

Pollutant or pollutant property	Maximum for any one day	Maximum for monthly average
mg/kg (lb/million	lbs) of beryllium	scrap chips treated
Beryllium Chromium Copper Cyanide Ammonia Fluoride	6.355 2.868 9.920 1.550 1,033.000 271.300	2.868 1.163 4.728 .620 454.200 154.200

BAT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(j) Beryllium Pebble Plant Area Vent Wet APC BAT

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

mg/kg (lb/million lbs) of beryllium pebbles produced

Beryllium	0.000	0.000
Chromium	0.000	0.000
Copper	0.000	0.000
Cyanide	0.000	0.000
Ammonia	0.000	0.000
Fluoride	0.000	0.000

(k) Beryl Ore Gangue Dewatering BAT

Pollutant or	Maximum for	Maximum for		
pollutant property	any one day	monthly average		
mg/kg (pounds per	million pounds) of	beryl ore processed		
Beryllium	0.855	0.386		
Chromium (Total)	0.386	0.156		
Copper	1.335	0.636		
Cyanide (Total)	0.209	0.083		
Ammonia (as N)	139.032	61.120		
Fluoride	36.505	20.756		

(1) Bertrandite Ore Gangue Dewatering BAT

Pollutant or pollutant property	Maximum any one		Maximum monthly	
mg/kg (pounds per mi	llion pounds)	of bertra	ndite ore	processed
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N)	2.185 0.986 3.411 0.533 355.245		0.986 0.400 1.626 0.213 56.169	
Fluoride	93.275		53.034	

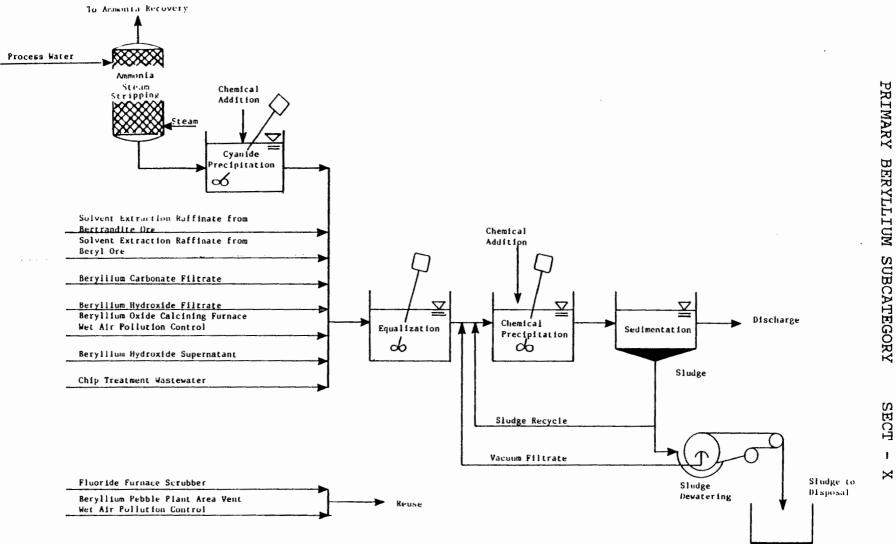
BAT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

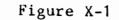
(m) Beryl Ore Processing BAT

Pollutant or	Maximum for	Maximum for	
pollutant property	any one day	monthly average	
mg/kg (pounds per	million pounds) of	beryl ore processed	
Beryllium	5.988	2.702	
Chromium (Total)	2.702	1.095	
Copper	9.348	4.455	
Cyanide (Total)	1.461	0.584	
Ammonia (as N)	973.490	427.956	
Fluoride	255.605	145.330	

(n) Aluminum Iron Sludge (AIS) Area Wastewater BAT

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (pounds per m	illion pounds) of tota produced (as Be)	al beryllium carbonate
Beryllium	383.760	173.160
Chromium (Total)	173.160	70.200
Copper	599.040	285.480
Cyanide (Total)	93.600	37.440
Ammonia (as N)	62,384.400	27,424.800
Fluoride	16,380.000	9,313.200

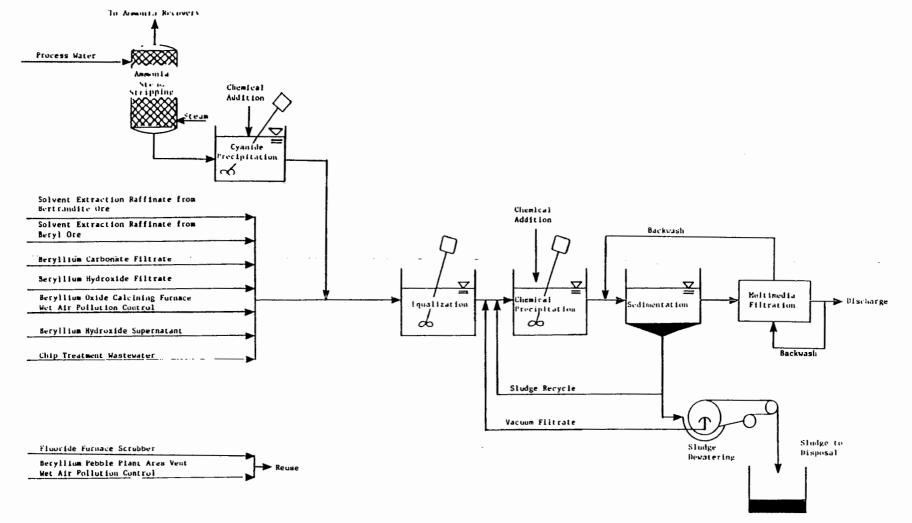

(0) Bertrandite Ore Leaching Scrubber BAT


Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg of	bertrandite ore	processed
Beryllium	1.239	0.559
Chromium (Total)	0.559	0.227
Copper	1.934	0.922
Cyanide (Total)	0.302	0.121
Ammonia (as N)	201.416	88.545
Fluoride	52.885	30.069

BAT MASS LIMITATIONS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(p) <u>Bertrandite Ore</u> <u>Countercurrent</u> and <u>Decantation</u> (CCD) <u>Scrubber</u> BAT

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg of	bertrandite ore	processed
Beryllium	0.083	0.037
Chromium (Total)	0.037	0.015
Copper	0.129	0.062
Cyanide (Total)	0.020	0.008
Ammonia (as N)	13.463	5.919
Fluoride	3.535	2.010



BAT TREATMENT SCHEME FOR OPTION A

3791

SECT Ł ×

PRIMARY BERYLLIUM SUBCATEGORY SECT - X

SECTION XI

NEW SOURCE PERFORMANCE STANDARDS

This section describes the technologies for treatment of wastewater from new sources and presents mass discharge standards for regulated pollutants for NSPS in the primary beryllium subcategory, based on the selected treatment technology. New plants have the opportunity to design the best and most efficient production processes and wastewater treatment technologies without facing the added costs and restrictions encountered in retrofitting an existing plant. Therefore, the best demonstrated process changes, in-plant controls, and end-of-pipe treatment technologies which reduce pollution to the maximum extent feasible are considered as a basis for BDT.

TECHNICAL APPROACH TO NSPS

New source performance standards are equivalent to the best available technology (BAT) selected for currently existing primary beryllium plants. This result is a consequence of careful review by the Agency of a wide range of technical options for new source treatment systems which is discussed in Section XI of Vol. I. Additionally, there was nothing found to indicate that the wastewater flows and characteristics of new plants would not be similar to those from existing plants, since the processes used by new sources are not expected to differ from those used at existing sources. Consequently, BAT production normalized discharge rates, which are based on the best existing practices of the subcategory, can also be applied to new sources. These rates are presented in Table XI-1 (page 3796).

Treatment technologies considered for the NSPS options are identical to the treatment technologies considered for the BAT options. These options are:

OPTION A

- o Recycle of scrubber liquors
- Ammonia steam stripping and cyanide precipitation for selected waste streams
- o Chemical precipitation and sedimentation

OPTION C

- o Recycle of scrubber liquors
- Ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams
- o Chemical precipitation and sedimentation
- o Multimedia filtration

NSPS OPTION SELECTION - PROPOSAL

EPA proposed that the best available demonstrated technology for

the primary beryllium subcategory be equivalent to Option C. At proposal, Option C included in-process flow reduction, chemical precipitation, sedimentation, and multimedia filtration technology. The Agency was also considering regulation of ammonia based on ammonia steam stripping technology, and regulation of cyanide based on cyanide precipitation.

The wastewater flow rates for NSPS were the same as the proposed BAT flow rates. Flow reduction measures beyond those proposed at BAT were not considered feasible because no new demonstrated technologies existed within the subcategory that improved on discharge practices. The pollutants proposed for regulation at NSPS were the same as those proposed for regulation at BAT, with the addition of TSS and pH.

NSPS OPTION SELECTION - PROMULGATION

EPA is promulgating best available demonstrated technology for the primary beryllium subcategory equivalent to Option C. In contrast to Option C at proposal, Option C at promulgation includes ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams, followed by chemical precipitation, sedimentation, and multimedia filtration.

Our review of the subcategory indicates that no new demonstrated technologies that improve on BAT technology exist. We do not believe that new plants could achieve any further flow reduction beyond that already promulgated for BAT. Because NSPS is equal to BAT we believe that the promulgated NSPS will not have a detrimental impact on the entry of new plants into this subcategory.

REGULATED POLLUTANT PARAMETERS

The Agency has no reason to believe that the pollutants that will be found in treatable concentrations in processes within new sources will be any different than with existing sources. Accordingly, pollutants and pollutant parameters selected for limitation under promulgated NSPS, in accordance with the rationale of Sections VI and X, are identical to those selected for promulgated BAT. The conventional pollutant parameters TSS and pH are also selected for limitation.

NEW SOURCE PERFORMANCE STANDARDS

The NSPS discharge flows for each wastewater source are the same as the discharge rates for BAT and are shown in Table XI-1 (page 3786). The mass of pollutant allowed to be discharged per mass of product (mg/kg) is based on the product of the appropriate treatable concentration (mg/l) and the production normalized wastewater discharge flows (1/kkg). The treatment effectiveness concentrations are listed in Table VII-21 (page 248) of Vol. I with the exception of fluoride for beryllium hydroxide supernatant, as discussed in Section IX. The results of these calculations are the production based new source performance standards. These standards are presented in Table XI-2.

.

TABLE XI-1

NSPS WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

NSPS Normalized Discharge Rate Productin					
Wastewater Stream	$\frac{103}{1/kkg}$	103 gal/ton	Normalized Parameter		
Solvent extraction raffinate from bertrandite ore	2,246	538.2	Beryllium carbonate pro- duced from bertrandite ore as beryllium		
Solvent extraction raffinate from beryl ore	220.0	52.72	Beryllium carbonate pro- duced from beryl ore as beryllium		
Beryllium carbonate filtrate	214.5	51.40	Beryllium carbonate pro- duced as beryllium		
Beryllium hydroxide filtrate	136.0	32.6	Beryllium hydroxide pro- duced as beryllium		
Beryllium oxide calcining furnace wet air pollution control	e 263.7	63.19	Beryllium oxide produced		
Beryllium hydroxide supernatant	230.0	55.12	Beryllium hydroxide pro- duced from scrap and residues as beryllium		
Process water	174.8	41.89	Beryllium pebbles produced		
Fluoride furnace scrubber	0	0	Beryllium pebbles produced		
Chip treatment wastewater	7.75	1.86	Beryllium scrap chips treated		
Beryllium pebble plant area vent wet air pollution control	0	0	Beryllium pebbles produced		

NSPS WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

Wastewater Stream		Normalized age <u>Rate</u> 103 gal/ton	Productin Normalized Parameter
Beryllium ore gangue dewatering	1.043	0.25	Beryllium ore processed
Bertrandite ore gangue dewatering	2.665	0.639	Bertrandite ore processed
Beryllium ore processing	7.303	1.75	Beryllium ore processed
AIS area wastewater	468.0	112.1	Total beryllium carbonate produced as beryllium
Bertrandite ore leaching scrubber	1.511	0.362	Bertrandite ore processed
Bertrandite ore counter current decantation scrubber	0.101	0.024	Bertrandite ore processed

TABLE XI-2

NSPS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(a) Solvent Extraction Raffinate from Bertrandite Ore NSPS

Pollutant pollutant		Maximum for any one day			
<u></u>			of beryllium o andite ore (as		
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH		1,842.000 831.000 2,875.000 449.200 299,400.000 78,610.000 33,690.000 the range c	1, 131,6 44,7	331.000 336.900 370.000 79.700 500.000 700.000 950.000 0 at all tim	mes
(b) <u>Solver</u>	nt Extraction	Raffinate f	rom Beryl Ore	NSPS	
Pollutant pollutant	or property	Maximum for any one day			
			of beryllium (yl ore (as Be		
*Berylliur *Chromium *Copper *Cyanide *Ammonia *Fluoride *TSS *pH		180.400 81.400 281.600 44.000 29,330.000 7,700.000 3,300.000 the range of	12,	81.400 33.000 134.200 17.600 890.000 378.000 640.000 at all tim	nes
(c) Beryll	lium Carbonato	e Filtrate	NSPS		
Pollutant pollutant	property	Maximum for any one day	monthly	average	、
mg/kg (in Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	D/million lbs Within	175.900 79.370 274.600 42.900 28,590.000 7,508.000 3,218.000	12,	79.370 32.180 130.800 17.160 570.000 269.000 574.000	

.

TABLE XI-2 (Continued)

NSPS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(d) Beryllium Hydroxide Filtrate NSPS

Pollutant	or	Maximum for	Maximum	for	
pollutant	property	any one day		average	
mg/kg (l	b/million lbs) of berylli	um hydroxide	produced	(as E
Beryllium		111.520		50.320	
Chromium		50.320		20.400	
Copper		174.080		82.960	
Cyanide		27.200		10.880	
Ammonia		18,128.800	7.0	969.600	
Fluoride		4,760.000		706.400	
TSS		2,040.000		632.000	
pH	Within	-	f 7.5 to 10.		times
(e) <u>Beryl</u>	lium Oxide Ca	lcining Furn	ace Wet APC	NSPS	
Pollutant	or	Maximum for	Maximum	for	
	property	any one day		average	
porrutant	propercy	any one day	monthry	average	
mg,	/kg (lb/millio	on lbs) of b	eryllium oxid	le produc	ed
Beryllium		216.200		97.570	
Chromium		97.570		39.560	
Copper		337.500		160.900	
Cyanide		52.740		21.100	
Ammonia		35,150.000		,450.000	
Fluoride		9,230.000		,248.000	
TSS	57 1 4 1 4 1	3,956.000		,164.000	
рН	Within	the range o	f 7.5 to 10.0) at all	times
(f) <u>Beryl</u>	lium Hydroxide	e Supernatan	t NSPS	······································	
Pollutant	or	Maximum for	Maximum	for	
pollutant	property	any one day	monthly	average	
			f beryllium h d residues (a		
Beryllium		188.600		85.100	
Chromium		85.100		34.500	
Copper		294.400]	40.300	
Cyanide		46.000		18.400	
Ammonia		30,660.000	13.4	80.000	
Fluoride	J	160,300.000		200.000	
TSS	_	3,450.000		60.000	
n ^µ	Within	•			+ i mor

Within the range of 7.5 to 10.0 at all times

pН

NSPS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(g) Process Water NSPS

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

mg/kg	(lb/million lb	os) of ber	yllium pebble:	s produced
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS	23, 6, 2,	143.300 64.680 223.700 34.960 300.000 118.000 622.000	6 22 10 1 1 10,24 3,47 2,09	4.680 5.220 5.600 3.980 0.000 9.000 3.000
pH	Within the	e range of	7.5 to 10.0 a	at all times

(h) Fluoride Furnace Scrubber NSPS

Pollutant or pollutant prope		-	Maximum f monthly a		
mg/kg (lt	p/million lbs)	of berylli	um pebble	es produ	iced
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH	Within the ra	0.000 0.000 0.000 0.000 0.000 0.000 0.000 ange of 7.5	to 10.0	0.000 0.000 0.000 0.000 0.000 0.000 at all	times

(i) Chip Treatment Wastewater NSPS

Pollutant or pollutant property	Maximum any one		Maximum monthly		
mg/kg (lb/million	lbs) of	berylli	um scrap	chips t	reated
Beryllium Chromium Copper Cyanide Ammonia Fluoride TSS pH Within	2 9 1 1,033 271	.300 .300	5 to 10.0	2.868 1.163 4.728 .620 454.200 154.200 93.000 at all	times

NSPS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(j) Beryllium Pebble Plant Area Vent Wet APC NSPS

Pollutant or	Maximum for	Maximum for	
pollutant property	any one day	monthly average	
mg/kg (lb/mill	ion lbs) of beryl	llium pebbles produc	ed
Beryllium	0.000	0.000	
Chromium	0.000	0.000	
Copper	0.000	0.000	
Cyanide	0.000	0.000	
Ammonia	0.000	0.000	
Fluoride	0.000	0.000	
TSS	0.000	0.000	
	in the range of 7	7.5 to 10.0 at all t	imes
-	2		
		_	
(k) <u>Beryl</u> Ore <u>Gangue</u>	Dewatering NSPS	5	
Pollutant or	Maximum for	Maximum for	
pollutant property		monthly average	
poindeane property	ung one dag	monenty average	
ma/ka (pounds pe	r million pounds)	of beryl ore proce	ssed
Beryllium	0.855	0.386	
Chromium (Total)	0.386	0.156	
Copper	1.335	0.636	
Cyanide (Total)	0.209	0.083	
Ammonia (as N)	139.032	61.120	
Fluoride	36.505	20.756	
Total Suspended Soli		12.516	
		5 to 10.0 at all ti	mes
E			
			·
(1) <u>Bertrandite</u> Ore	Gangue Dewatering	I NSPS	
Pollutant or	Maximum for	Maximum for	
pollutant property	any one day	monthly average	
mg/kg (pounds per m	illion pounds) of	bertrandite ore pr	ocess
		-	
Beryllium	2.185	0 . 9 8 6	

Beryllium	2.185					(J.91	86		
Chromium (Total)		0.986			(0.4	00		
Copper			3.411			-	1.62	26		
Cyanide (Total)			0.533			() .2 :	13		
Ammonia (as N)			355.245			156	5.10	69		
Fluoride			93.275			53	3.03	34		
Total Suspended	Solids		39.975			31	L.98	80		
рН	Within	the	range of	7.5	to	10.0	at	all	times	

NSPS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(m) Beryl Ore Processing NSPS

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (pounds per	million pounds) of beryl ore processed
Beryllium	5.988	2.702
Chromium (Total)	2.702	1.095
Copper	9.348	4.455
Cyanide (Total)	1.461	0.584
Ammonia (as N)	1.461 973.490 255.605	427.956
Fluoride	233.003	145.330
Total Suspended Solids	109.545	87.636
pH Within	the range of	7.5 to 10.0 at all times
(n) <u>Aluminum Iron Slud</u>	ge <u>(AIS) Area</u>	Wastewater NSPS
Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (pounds per mil	lion pounds) c produced (as	of total beryllium carbona Be)
Beryllium	383.760	173.160
Chromium (Total)	173.160	70.200
Copper	599.040	285.480
Cyanide (Total)	93.600	37.440
Ammonia (as N)	62,384.400	27,424.800
Fluoride	16,380.000	
Total Suspended Solids pH Within		7.5 to 10.0 at all times
(o) <u>Bertrandite</u> <u>Ore</u> <u>Le</u>	aching Scrubbe	r NSPS
Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg o	f bertrandite	ore processed
Beryllium	1.239	0.559
Chromium (Total)	0.559	0.227
Copper	1.934	0.922
Cyanide (Total)	0.302	0.121
Ammonia (as N)	201.416	88.545
Fluoride	52.885	30.069
Total Suspended Solids	22.665	18.132

NSPS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(p) <u>Bertrandite Ore</u> <u>Countercurrent</u> and <u>Decantation</u> (CCD) <u>Scrubber</u> NSPS

Pollutant or pollutant proper	Maximum for rty any one day	Maximum for monthly average	
n	ng/kg of bertrandite	ore processed	
Beryllium Chromium (Total) Copper Cyanide (Total) Ammonia (as N) Fluoride Total Suspended pH	0.129 0.020 13.463 3.535	0.037 0.015 0.062 0.008 5.919 2.010 1.212 7.5 to 10.0 at all	times

PRIMARY BERYLLIUM SUBCATEGORY SECT - XI

THIS PAGE INTENTIONALLY LEFT BLANK

.

PRIMARY BERYLLIUM SUBCATEGORY SECT - XII

SECTION XII

PRETREATMENT STANDARDS

This section describes the control and treatment technologies for pretreatment of process wastewaters from new sources in the primary beryllium subcategory. Pretreatment standards for regulated pollutants are presented based on the selected control and treatment technology. Pretreatment standards are to be technology based, analogous to the best available technology for removal of toxic pollutants.

EPA is not promulgating pretreatment standards for existing sources at this time because there are currently no indirect discharging facilities in this subcategory.

TECHNICAL APPROACH TO PRETREATMENT

Before proposing and promulgating pretreatment standards, the Agency examines whether the pollutants discharged by the industry pass through the POTW or interfere with the POTW operation or its chosen sludge disposal practices. In determining whether pollutants pass through a well-operated POTW achieving secondary treatment, the Agency compares the percentage of a pollutant removed by POTW with the percentage removed by direct dischargers applying the best available technology economically achievable. A pollutant is deemed to pass through the POTW when the average percentage removed nationwide by well-operated POTW meeting secondary treatment requirements, is less than the percentage removed by direct dischargers complying with BAT effluent limitations guidelines for that pollutant.

This definition of pass-through satisfies two competing objectives set by Congress: (1) that standards for indirect dischargers be equivalent to standards for direct dischargers while at the same time, (2) that the treatment capability and performance of the POTW be recognized and taken into account in regulating the discharge of pollutants from indirect dischargers.

The Agency compares percentage removal rather than the mass or concentration of pollutants discharged because the latter would not take into account the mass of pollutants discharged to the POTW from non-industrial sources or the dilution of the pollutants in the POTW effluent to lower concentrations due to the addition of large amounts of non-industrial wastewater.

PRETREATMENT STANDARDS FOR NEW SOURCES

Options for pretreatment of wastewaters from new sources are based on increasing the effectiveness of end-of-pipe treatment technologies. All in-plant changes and applicable end-of-pipe treatment processes have been discussed previously in Sections X and XI. The options for PSNS, therefore, are the same as the BAT options discussed in Section X.

Treatment technologies considered for the PSNS options are:

OPTION A

- o Recycle of scrubber liquors
- Ammonia steam stripping and cyanide precipitation for selected waste streams
- o Chemical precipitation and sedimentation

OPTION C

- o Recycle of scrubber liquors
- Ammonia steam stripping and cyanide precipitation pretreatment for selected waste streams
- o Chemical precipitation and sedimentation

PSNS OPTION SELECTION - PROPOSAL

EPA proposed that the pretreatment standards technology base for the primary beryllium subcategory be equivalent to Option C, inprocess flow reduction, chemical precipitation, sedimentation, and multimedia filtration. EPA was considering addition of ammonia steam stripping and cyanide precipitation for control of ammonia and cyanide.

The wastewater discharge rates proposed for PSNS were equivalent to the proposed BAT discharged races. No flow reduction was considered feasible beyond the recycle proposed for BAT. The pollutants proposed for regulation at PSNS were the same as those proposed for regulation at BAT.

PSNS OPTION SELECTION - PROMULGATION

The technology basis for promulgated PSNS is identical to NSPS It includes ammonia steam stripping and cyanide and BAT. precipitation pretreatment for selected waste streams, followed precipitation, sedimentation, and multimedia bv chemical filtration technology. It is necessary to promulgate PSNS to prevent passthrough of beryllium, chromium, copper, cyanide, ammonia, and fluoride. We know of no economically feasible, demonstrated technology that is better than BAT technology. No additional flow reduction for new sources is feasible. Because PSNS does not include any additional costs compared to NSPS and BAT, we do not believe it will prevent entry of new plants. The PSNS discharge rates are shown in Table XII-1 (page 3808).

REGULATED POLLUTANT PARAMETERS

Pollutants selected for limitation, in accordance with the rationale of Sections VI and X, are identical to those selected for limitation for BAT.

PRETREATMENT STANDARDS FOR NEW SOURCES

Pretreatment standards for new sources are based on the treatable concentrations from the selected treatment technology, (Option C), and the discharge rates determined in Section X for BAT. A mass of pollutant per mass of product (mg/kg) allocation is given for each subdivision within the subcategory. This pollutant allocation is based on the product of the treatment effectiveness concentration from the model treatment (mg/l) and the production normalized wastewater discharge rate (l/kkg). The achievable treatment effectiveness concentrations for BAT are identical to those for PSNS. PSNS are presented in Table XII-2.

TABLE XII-1

PSNS WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

		Normalized rge Rate	Productin
Wastewater Stream	103 1/kkg	103 gal/ton	Normalized Parameter
Solvent extraction raffinate from bertrandite ore	2,246	538.2	Beryllium carbonate pro- duced from bertrandite ore as beryllium
Solvent extraction raffinate from beryl ore	220.0	52.72	Beryllium carbonate pro- duced from beryl ore as beryllium
Beryllium carbonate filtrate	214.5	51.40	Beryllium carbonate pro- duced as beryllium
Beryllium hydroxide filtrate	136.0	32.6	Beryllium hydroxide pro- duced as beryllium
Beryllium oxide calcining furnactive wet air pollution control	e 263.7	63.19	Beryllium oxide produced
Beryllium hydroxide supernatant	230.0	55.12	Beryllium hydroxide pro- duced from scrap and residues as beryllium
Process water	174.8	41.89	Beryllium pebbles produced
Fluoride furnace scrubber	0	0	Beryllium pebbles produced
Chip treatment wastewater	7.75	1.86	Beryllium scrap chips treated
Beryllium pebble plant area vent wet air pollution control	0	0	Beryllium pebbles produced

PRIMARY BERYLLIUM SUBCATEGORY

SECT

- XII

PSNS WASTEWATER DISCHARGE RATES FOR THE PRIMARY BERYLLIUM SUBCATEGORY

Wastewater Stream		Normalized <u>rge Rate</u> 103 gal/ton	Productin Normalized Parameter
Beryllium ore gangue dewatering	1.043	0.25	Beryllium ore processed
Bertrandite ore gangue dewatering	2.665	0.639	Bertrandite ore processed
Beryllium ore processing	7.303	1.75	Beryllium ore processed
AIS area wastewater	468.0	112.1	Total beryllium carbonate produced as beryllium
Bertrandite ore leaching scrubber	1.511	0.362	Bertrandite ore processed
Bertrandite ore counter current decantation scrubber	0.101	0.024	Bertrandite ore processed

TABLE XII-2

PSNS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(a) Solvent Extraction Raffinate from Bertrandite Ore PSES

Pollutant	or	Maximum for	Maximum for	
	property			
	mg/kg (lb/m	illion lbs) of h	peryllium carbonate	
		d from bertrand		
Beryllium		1,842.000	831.000	
Chromium		831.000	336.900	
Copper		2,875.000	1,370.000	
Cyanide		449.200	179.700	
Ammonia		299,400.000	131,600.000	
Fluoride		78,610.000	44,700.000	
(b) <u>Solver</u>	nt Extraction	n Raffinate from	<u>Beryl Ore</u> PSES	
Pollutant	or	Maximum for	Maximum for	
pollutant	property	any one day	monthly average	
		illion lbs) of h uced from beryl	ore (as Be)	
Beryllium		180.400	81.400	
Chromium		81.400	33.000	
Copper		281.600	134.200	
Cyanide		44.000	17.600	
Ammonia		29,330.000	12,890.000	
Fluoride		7,700.000	4,378.000	
(c) <u>Beryll</u>	ium Carbona	te Filtrate PSI	S	
Pollutant	or	Maximum for	Maximum for	
pollutant	property	any one day	monthly average	
mg/kg (lt	/million lb	s) of beryllium	carbonate produced (as Be
Beryllium		175.900	79.370	
		79.370	32,180	
Chromium				

Chromium	79.370	32.180	
Copper	274.600	130.800	
Cyanide	42.900	17.160	
Ammonia	28,590.000	12,570.000	
Fluoride	7,508.000	4,269.000	

3810

PSNS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(d) Beryllium Hydroxide Filtrate PSES

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (lb/million	lbs) of beryllium	hydroxide produced (as Be)
Beryllium	111.520	50.320
Chromium	50.320	20.400
Copper	174.080	82.960
Cyanide	27.200	10.880
Ammonia	18,128.800	7,969.600
Fluoride	4,760.000	2,706.400

(e) Beryllium Oxide Calcining Furnace Wet APC PSES

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (lb/milli	on lbs) of beryl	lium oxide produced
Beryllium	216.200	97.570
Chromium	97.570	39.560
Copper	337.500	160.900
Cyanide	52.740	21.100
Ammonia	35,150.000	15,450.000
Fluoride	9,230.000	5,248.000

(f) Beryllium Hydroxide Supernatant PSES

Pollutant pollutant	Maximum for any one day	Maximum for monthly average	
		beryllium hydroxide residues (as Be)	
Beryllium Chromium Copper Cyanide Ammonia Fluoride	188.600 85.100 294.400 46.000 30,660.000 160,300.000	85.100 34.500 140.300 18.400 13,480.000 71,200.000	

PSNS FOR THE PRIMARY BERYLLIUM SUBCATEGORY (g) Process Water PSES

Pollutant or	Maximum for	Maximum for				
pollutant property	any one day	monthly average				
Ferrere Freberel						
mg/kg (lb/millio	on lbs) of beryl	lium pebbles produced				
Beryllium	143.300	64.680				
Chromium	64.680	26.220				
Copper	223.700	106.600				
Cyanide	34.960	13.980				
Ammonia	23,300.000	10,240.000				
Fluoride	6,118.000	3,479.000				
	-					
(h) <u>Fluoride</u> <u>Furnace</u> <u>Scrubber</u> PSES						
Pollutant or	Maximum for	Maximum for				
pollutant property	any one day	monthly average				
mg/kg (lb/millio	on lbs) of beryl	lium pebbles produced				
Beryllium	0.000	0.000				
Chromium	0.000	0.000				
Copper	0.000	0.000				
Cyanide	0.000	0.000				
Ammonia	0.000	0.000				
Fluoride	0.000	0.000				
(i) <u>Treatment Wastewater</u> PSES						
Pollutant or	Maximum for	Maximum for				
pollutant property	any one day	monthly average				
mg/kg (lb/million lbs) of beryllium scrap chips treated						
Beryllium	6.355	2.868				
Chromium	2.868	1.163				
Copper	9.920	4.728				
Cyanide	1.550	.620				
Ammonia	1,033.000	454.200				
Fluoride	271.300	154.200				

PSNS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(j) Beryllium Pebble Plant Area Vent Wet APC PSES

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

Beryllium 0.000 0.000 Chromium 0.000 0.000 Corport 0.000 0.000	mg/kg	(lb/million lbs)	of beryllium	pebbles produced
Copper 0.000 0.000 Cyanide 0.000 0.000 Ammonia 0.000 0.000 Fluoride 0.000 0.000	Chromium Copper Cyanide Ammonia	· .	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000

(k) Ore Gangue Dewatering PSES

Pollutant or	Maximum for	Maximum	for
pollutant property	any one day	monthly	average
mg/kg (pounds per	million pounds)	of beryl	ore processed
Beryllium	0.855		0.386
Chromium (Total)	0.386		0.156
Copper	1.335		0.636
Cyanide (Total)	0.209		0.083
Ammonia (as N)	139.032	6	51.120
Fluoride	36.505		20.756

(1) Bertrandite Ore Gangue Dewatering PSES

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

mg/kg (pounds per million pounds)
of bertrandite ore processed

Beryllium	2.185	0.986	
Chromium (Total)	0.986	0.400	
Copper	3.411	1.626	
Cyanide (Total)	0.533	0.213	
Ammonia (as N)	355.245	156.169	
Fluoride	93.275	5 3. 034	

PSNS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(m) Beryl Ore Processing PSES

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

mg/kg (pounds per	million pounds)	of beryl ore processed
Beryllium	5.988	2.702
Chromium (Total)	2.702	1.095
Copper	9.348	4.455
Cyanide (Total)	1.461	0.584
Ammonia (as N)	973.490	427.956
Fluoride	255.605	145.330

(n) Aluminum Iron Sludge (AIS) Area Wastewater PSES

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (pounds per m	illion pounds) of produced (as	total beryllium carbonate Be)
Beryllium	383.760	173.160
Chromium (Total)	173.160	70.200
Copper	599.040	285.480
Cyanide (Total)	93.600	37.440
Ammonia (as N)	62,384.400	27,424.800
Fluoride	16,380.000	9,313.200

(o) Bertrandite Ore Leaching Scrubber PSES

Pollutant or pollutant property	Maximum for any one day	Maximum for monthly average
mg/kg	of bertrandite of	ore processed
Beryllium	1.239	0.559
Chromium (Total)	0.559	0.227
Copper	1.934	0.922
Cyanide (Total)	0.302	0.121
Ammonia (as N)	201.416	88.545
Fluoride	52.885	30.069

TABLE XII-2 (Continued)

PSNS FOR THE PRIMARY BERYLLIUM SUBCATEGORY

(p) <u>Bertrandite Ore</u> <u>Countercurrent</u> and <u>Decantation</u> (CCD) <u>Scrubber</u> PSES

Pollutant or pollutant property	Maximum for any one day	Maximum for monthly average
mg/kg	of bertrandite o	ore processed
Beryllium	0.083	0.037
Chromium (Total)	0.037	0.015
Copper	0.129	0.062
Cyanide (Total)	0.020	0.008
Ammonia (as N)	13.463	5.919
Fluoride	3.535	2.010

.

.

THIS PAGE INTENTIONALLY LEFT BLANK

.

1

SECTION XIII

BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY

EPA is not promulgating best conventional pollutant control technology (BCT) limitations for the primary beryllium subcategory at this time.

PRIMARY BERYLLIUM SUBCATEGORY SECT - XIII

THIS PAGE INTENTIONALLY LEFT BLANK

NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY

DEVELOPMENT DOCUMENT SUPPLEMENT

for the

Primary Nickel and Cobalt Subcategory

William K. Reilly Administrator

Rebecca Hanmer Acting Assistant Administrator for Water

Martha Prothro, Director Office of Water Regulations and Standards

Thomas P. O'Farrell, Director Industrial Technology Division

Ernst P. Hall, P.E., Chief Metals Industry Branch and Technical Project Officer

May 1989

U.S. Environmental Protection Agency Office of Water Office of Water Regulations and Standards Industrial Technology Division Washington, D. C. 20460

3819

3820

•

:

ì

.

TABLE OF CONTENTS

Section		Page
I	SUMMARY	3829
II	CONCLUSIONS	3831
III	SUBCATEGORY PROFILE	3837
	Description of Primary Nickel and Cobalt Production	3837
	Raw Materials Leaching Cobalt Precipitation and Reduction Nickel Reduction Process Wastewater Sources Other Wastewater Sources Age, Production, and Process Profile	3837 3837 3838 3838 3838 3838 3838 3839
IV	SUBCATEGORIZATION	3841
	Factors Considered in Subdividing the Primary Nickel and Cobalt Subcategory Other Factors Production Normalizing Parameters	3841 3842 3842
v	WATER USE AND WASTEWATER CHARACTERISTICS	3843
	Wastewater Flow Rates Wastewater Characteristics Data Data Collection Portfolios Field Sampling Data Wastewater Characteristics and Flows by Subdivision	3844 3844 3844 3845 3845
	Raw Material Dust Control Cobalt Reduction Decant Nickel Reduction Decant Nickel Wash Water	3846 3846 3847 3847

.

TABLE OF CONTENTS (Continued)

Section		Page
VI	SELECTION OF POLLUTANTS	3873
	Conventional and Nonconventional Pollutant Parameters Selected	3873
	Toxic Priority Pollutants	3874
	Toxic Pollutants Never Detected	3874
	Toxic Pollutants Never Found Above Their Analytical Quantification Concentration	3874
	Toxic Pollutants Present Below Concentrations Achievable by Treatment	3875
	Priority Pollutants Selected for Further Consideration in Establishing Limitations and Standards	3875
VII	CONTROL AND TREATMENT TECHNOLOGIES	3885
	Current Control and Treatment Practices Raw Material Dust Control	3885 3885
	Cobalt Reduction Decant	3885
	Nickel Reduction Decant	3886
	Nickel Wash Water	3886
	Control and Treatment Options	3886
	Option A	3886
	Option C	3886
VIII	COSTS, ENERGY, AND NONWATER QUALITY ASPECTS	3889
	Treatment Options for Existing Sources	3889
	Option A	3889
	Option C	3889
	Cost Methodology	3889
	Nonwater Quality Aspects	3890
	Energy Requirements	3891
	Solid Waste	3891
	Air Pollution	3892

d = = + + = =

TABLE OF CONTENTS (Continued)

Section		Page
IX	BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE	3895
	Technical Approach to BPT Industry Cost and Pollutant Removal Estimates BPT Option Selection Wastewater Discharge Rates Raw Material Dust Control Cobalt Reduction Decant Nickel Reduction Decant Nickel Wash Water Regulated Pollutant Parameters Effluent Limitations	3895 3897 3898 3899 3899 3899 3899 3899 3899
х	BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE	3905
	Technical Approach to BAT Option A Option C Industry Cost and Pollutant Removal Estimates Pollutant Removal Estimates Compliance Costs BAT Option Selection - Proposal BAT Option Selection - Promulgation Wastewater Discharge Rates Regulated Pollutant Parameters Effluent Limitations	3905 3906 3906 3906 3907 3907 3907 3908 3908 3908 3909
XI	NEW SOURCE PERFORMANCE STANDARDS	3919
	Technical Approach to NSPS NSPS Option Selection - Proposal NSPS Option Selection - Promulgation Regulated Pollutant Parameters New Source Performance Standards	3919 3920 3920 3920 3920 3920

TABLE OF CONTENTS (Continued)

Section		Page
XII	PRETREATMENT STANDARDS	3925
	Technical Approach to Pretreatment Pretreatment Standards for New Sources PSNS Option Selection - Proposal PSNS Option Selection - Promulgation Regulated Pollutant Parameters Pretreatment Standards for New Sources	3925 3926 3926 3926 3927 3927
XIII	BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY	3931

.

LIST OF TABLES

Table	Title	Page
V-1	Water Use and Discharge Rates for Raw Material Dust Control	384 8
V-2	Water Use and Discharge Rates for Cobalt Reduction Decant	3849
V-3	Water Use and Discharge Rates for Nickel Reduction Decant	3850
V-4	Water Use and Discharge Rates for Nickel Wash Water	3851
V-5	Primary Nickel and Cobalt Subcategory Combined Wastewater - Influent to Treatment Raw Wastewater Sampling Data	3852 r
V-6	Primary Nickel and Cobalt Subcategory Treated Plant Effluent	3862
VI-1	Frequency of Occurrence of Priority Pollutants Primary Nickel and Cobalt Subcategory Raw Wastewater	3877
VI-2	Toxic Pollutants Never Detected	3881
VIII-1	Cost of Compliance for the Primary Nickel and Cobalt Subcategory Direct Dischargers	3893
IX-1	BPT Wastewater Discharge Rates for the Primary Nickel and Cobalt Subcategory	3901
IX-2	BPT Mass Limitations for the Primary Nickel and Cobalt Subcategory	3902
X-1	Pollutant Removal Estimates for Direct Dischargers Primary Nickel and Cobalt Subcategory	3911 7
X-2	Cost of Compliance for the Primary Nickel and Cobalt Subcategory Direct Dischargers	3912
X-3	BAT Wastewater Discharge Rates for the Primary Nickel and Cobalt Subcategory	391 3
X-4	BAT Mass Limitations for the Primary Nickel and Cobalt Subcategory	3914

.

LIST OF TABLES

Table	Title	Page
XI-1	NSPS Wastewater Discharge Rates for the Primary Nickel and Cobalt Subcategory	3921
XI-2	NSPS for the Primary Nickel and Cobalt Subcategory	3922
XII-1	PSNS Wastewater Discharge Rates for the Primary Nickel and Cobalt Subcategory	3928
XII-2	PSNS for the Primary Nickel and Cobalt Subcategory	3929

.

3826

LIST OF FIGURES

Figure	Title	Page
III-1	Primary Nickel and Cobalt Manufacturing Process	3840
V-1	Sampling Sites at Primary Nickel and Cobalt Plant A	3872
IX-1	BPT Treatment Scheme for the Primary Nickel and Cobalt Subcategory	3904
X-1	BAT Treatment Scheme for Option A	3916
X-2	BAT Treatment Scheme for Option C	3917

THIS PAGE INTENTIONALLY LEFT BLANK

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - I

SECTION I

SUMMARY AND CONCLUSIONS

This document provides the technical basis for promulgating effluent limitations based on best practicable technology (BPT) and best available technology (BAT) for existing direct dischargers, pretreatment standards for new indirect dischargers (PSNS), and standards of performance for new source direct dischargers (NSPS) for plants in the primary nickel and cobalt subcategory.

The primary nickel and cobalt subcategory consists of one plant which discharges directly to a surface water. There are no indirect dischargers presently operating.

EPA first studied the primary nickel and cobalt subcategory to determine whether differences in raw materials, final products, manufacturing processes, equipment, age and size of plants, or water usage required the development of separate effluent limitations and standards for different segments of the subcategory. This involved a detailed analysis of wastewater discharge and treated effluent characteristics including the sources and volume of water used, the processes used, the sources of pollutants and wastewaters in the plant, and the constituents of wastewaters, including toxic pollutants. As a result, four subdivisions have been identified for this subcategory that warrant separate effluent limitations. These include:

- o Raw material dust control,
- o Cobalt reduction decant,
- o Nickel reduction decant, and
- o Nickel wash water.

Several distinct control and treatment technologies (both inplant and end-of-pipe) applicable to the primary nickel and cobalt subcategory were identified. The Agency analyzed both historical and newly generated data on the performance of these technologies, including their nonwater quality environmental impacts and air quality, solid waste generation, and energy requirements. EPA also studied various flow reduction techniques reported in the data collection portfolios (dcp) and plant visits.

Engineering costs were prepared for each of the control and treatment options considered for the subcategory. These costs were then used by the Agency to estimate the impact of implementing the various options on the subcategory. For each control and treatment option that the Agency found to be most effective and technically feasible in controlling the discharge of pollutants, the number of potential closures, number of employees affected, and impact on price were estimated. These PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - I

results are reported in a separate document entitled <u>The Economic</u> <u>Impact Analysis of Effluent Limitations and Standards</u> for the <u>Nonferrous Metals Manufacturing Industry</u>.

After examining the various treatment technologies, the Agency has identified BPT to represent the average of the best existing technology. Metals removal based on chemical precipitation and sedimentation technology is the basis for the BPT limitations. Steam stripping was selected as the technology basis for ammonia limitations. To meet the BPT effluent limitations based on this technology, the primary nickel and cobalt subcategory is expected to incur a capital cost of \$71,362 and an annual cost of \$27,184.

For BAT, the Agency has built upon the BPT technology basis by adding filtration as an effluent polishing step to the end-ofpipe treatment scheme. To meet the BAT effluent limitations based on this technology, the primary nickel and cobalt subcategory is estimated to incur a capital cost of \$86,500 and an annual cost of \$31,800.

NSPS is equivalent to BAT. In selecting NSPS, EPA recognizes that new plants have the opportunity to implement the best and most efficient manufacturing processes and treatment technology. As such, the technology basis of BAT has been determined as the best demonstrated technology.

The Agency is not promulgating PSES for this subcategory because there are no indirect dischargers. For PSNS, the Agency selected end-of-pipe treatment and in-process flow reduction control techniques equivalent to NSPS.

The best conventional technology (BCT) replaces BAT for the control of conventional pollutants. BCT is not being promulgated because the methodology for BCT has not yet been finalized.

The mass limitations and standards for BPT, BAT, NSPS, and PSNS are presented in Section II.

SECTION II

CONCLUSIONS

EPA has divided the primary nickel and cobalt subcategory into four subdivisions or building blocks for the purpose of effluent limitations and standards. These subdivisions are:

- (a) Raw material dust control,
- (b) Cobalt reduction decant,
- (c) Nickel reduction decant, and
- (d) Nickel wash water.

BPT is promulgated based on the performance achievable by the application of chemical precipitation and sedimentation (lime and settle) technology, along with preliminary treatment consisting of ammonia steam stripping for selected waste streams. The following BPT effluent limitations are promulgated:

(a) Raw Material Dust Control BPT

Pollutant or	Maximum for	Maximum for
Pollutant property	Any One Day	Monthly Average

mg/kg (lb/million lbs) of copper, nickel, and cobalt in the crushed raw material

Copper		0.146 0.077	
Nickel		0.148 0.098	
Ammonia	(as N)	10.260 4.512	
Cobalt	•	0.016 0.007	
TSS		3.157 1.502	
рH	Within	the range of 7.5 to 10.0 at all tim	nes

(b) Cobalt Reduction Decant BPT

Pollutan		Maximum for	Maximum for
Pollutant p		Any One Day	Monthly Average
<u> </u>	mg/kg	(lb/million lbs) of	cobalt produced
Copper	,	40.660	21.400
Nickel		41.080	27.180
Ammonia (as		2,852.000	1,254.000
Cobalt		4.494	1.926
TSS		877.300	417.300
pH		the range of 7.5 to	0 10.0 at all times

(c) · <u>Nickel</u>	Reduction	Decant BPT	
Pollutan	t or	Maximum for	Maximum for
		Any One Day	Monthly Average
	mg/kg (lb/n	million lbs) of	nickel produced
Copper		24.120	12.700
Nickel		24.370	16.120
Ammonia (as	N)	1,692.000	743.900
Cobalt	•	2.666	1.143
TSS		520.500	247.600
pH	Within the	range of 7.5 to	0 10.0 at all times
(d) <u>Nickel</u> Pollutant Pollutant p	t or	BPT Maximum for Any One Day	Maximum for Monthly Average
			Monthly Average
mg,			ckel powder washed
mg, Copper Nickel		lion lbs) of nic	ckel powder washed
Copper	/kg (lb/mil:	lion lbs) of nic	ckel powder washed 0.034
Copper Nickel	/kg (lb/mil:	lion lbs) of nic 0.064 0.065	ckel powder washed 0.034 0.043
Copper Nickel Ammonia (as	/kg (lb/mil:	lion lbs) of nic 0.064 0.065 4.515	ckel powder washed 0.034 0.043 1.985
Copper Nickel Ammonia (as Cobalt	/kg (lb/mil: N)	lion lbs) of nic 0.064 0.065 4.515 0.007 1.389	ckel powder washed 0.034 0.043 1.985 0.003

BAT is promulgated based on the performance achievable by the application of chemical precipitation, sedimentation, and multimedia filtration (lime, settle, and filter) technology, along with preliminary treatment consisting of ammonia steam stripping for selected waste streams. The following BAT effluent limitations are promulgated:

(a) Raw Material Dust Control BAT

Pollutant or	Maximum for	Maximum for
Pollutant property	Any One Day	Monthly Average
	lbs) of copper, e crushed raw ma	nickel, and cobalt in terial
Copper	0.099	0.047
Nickel	0.042	0.028
Ammonia (as N)	10.260	4.512
Cobalt	0.011	0.005

(b) <u>Cobalt</u>	Reduction	Decant	BAT		
Pollutan	t or	Maximur	n for	N	Maximum for
Pollutant p		Any One			thly Average
	mg/kg (lb,	/million	lbs)	of coba	alt produced
Copper			.390		13.050
Nickel			.770		7.917
Ammonia (as	N)	2,852			1,254.000
Cobalt		2.	.996		1.498
(c) <u>Nickel</u>	Reduction	Decant	BAT		
Pollutan	t or	Maximun	n for	Ň	laximum for
Pollutant p	roperty	Any One	e Day	Mor	thly Average
	mg/kg (lb,	/million	lbs)	of nick	el produced
Copper		16.	.250		7.744
Nickel			982		4.697
Ammonia (as	N)	1,692.			743.900
Cobalt		1. '	.777		0.889
(d) <u>Nickel</u>	Wash Water	BAT			
Pollutant	or	Maximun	n for	Ň	laximum for
Pollutant pr		Any One			thly Average
ma	/kg (lb/mi]	llion lbs	s) of	nickel	powder washe
			~ ~		0.021
-		0.	043		0.021
Copper Nickel			043		0.013
Copper	N)	0. 4.			

(b) Cobalt Reduction Decant **D A** (**D**

NSPS are promulgated based on the performance achievable by the application of chemical precipitation, sedimentation, and multimedia filtration (lime, settle, and filter) technology, along with preliminary treatment consisting of ammonia steam stripping for selected waste streams. The following NSPS are promulgated for new sources:

(a) <u>Raw</u> Ma	terial Dust	Control	NSPS			
Pollutan Pollutant p	t or property	Maximum Any One		Maximu Monthly		
mg/kg		lbs) of e crushed			and cobalt	in
Copper Nickel Ammonia (as Cobalt TSS pH	N) Within the	0.0 0.0 10.2 0.0 1.1 range of)42 260)11 155	(4 ((0.047 0.028 4.512 0.005 0.924 all times	
(b) <u>Cobalt</u>	Reduction	Decant N	ISPS			
Pollutan Pollutant p	t or property	Maximum Any One		Maximu Monthly		
	mg/kg (lb/	million 1	bs) of	cobalt pr	oduced	
Copper Nickel Ammonia (as Cobalt TSS pH	N) Within the	2.9 321.0	70 000 996 000	7 1,254 1 256	.498 5.800	
(c) <u>Nickel</u>	Reduction	Decant N	ISPS	. <u></u>		
Pollutan Pollutant p	t or property	Maximum Any One		Maximu Monthly		
	mg/kg (lb/	million 1	.bs) of	nickel pr	coduced	
Copper Nickel Ammonia (as Cobalt TSS	-	16.2 6.9 1,692.0 1.7 190.4	982 000 777 100	4 743 0 152	7.744 4.697 3.900 0.889 2.300	
рН 	Within the	raiige or	7.5 10	10.0 dl 2	arr crutes	

(d) Nickel Wash Water NSPS

Polluta		Maximum for	Maximum for
Pollutant		Any One Day	Monthly Average
· m	g/kg (lb/mil	lion lbs) of	nickel powder washed
Copper		0.043	0.021
Nickel		0.019	0.013
Ammonia (a:		4.515	1.985
Cobalt		0.005	0.002
TSS		0.508	0.406
pH		range of 7.5	5 to 10.0 at all times

PSES are not promulgated for this subcategory since there are no indirect dischargers.

PSNS are promulgated based on the performance achievable by the application of chemical precipitation, sedimentation, and multimedia filtration (lime, settle, and filter) technology, along with preliminary treatment consisting of ammonia steam stripping for selected waste streams. The following PSNS are promulgated for new sources:

(a) Raw Material Dust Control PSNS

Pollutant or	Maximum for	Maximum for
Pollutant property	Any One Day	Monthly Average

mg/kg (lb/million lbs) of copper, nickel, and cobalt in the crushed raw material

Copper	0.099	0.047
Nickel	0.042	0.028
Ammonia (as N)	10.260	4.512
Cobalt	0.011	0.005

(b) Cobalt Reduction Decant PSNS

Pollutar Pollutant p		Maximum for Any One Day	Maximum for Monthly Average	•
	mg/kg (lb,	/million lbs) o	f cobalt produced	•
Copper Nickel Ammonia (as Cobalt	5 N)	27.390 11.770 2,852.000 2.996	13.050 7.917 1,254.000 1.498	

Pollutan		Maximum for	Maximum for
Pollutant p		Any One Day	Monthly Average
	mg/kg	(lb/million lbs) of	nickel produced
Copper	N)	16.250	7.744
Nickel		6.982	4.697
Ammonia (as		1,692.000	743.900
Cobalt		1.777	0.889

(c) Nickel Reduction Decant PSNS

(d) Nickel Wash Water PSNS

Pollu Pollutar	itant or it prope		imum f One D		Maximum fo hthly Aven	
	mg/kg	(lb/million	lbs)	of nickel	powder wa	ashed
Copper Nickel Ammonia Cobalt	(as N)		0.04 0.01 4.51 0.00	9 5	0.02 0.01 1.98 0.00	3

EPA is not promulgating BCT for this subcategory at this time.

SECTION III

INDUSTRY PROFILE

This section of the primary nickel and cobalt supplement describes the raw materials and processes used in smelting and refining primary nickel and cobalt and presents a profile of the primary nickel and cobalt plants identified in this study.

Both nickel and cobalt can be produced from primary and secondary materials. Production of these metals is regulated under three distinct subcategories: production of nickel from secondary materials, production of cobalt from secondary materials, and production of nickel and cobalt from primary materials. This subcategory consists of one plant which manufactures primary nickel and cobalt. Secondary nickel is regulated as a separate subcategory, as is secondary cobalt (secondary cobalt is regulated with secondary tungsten).

The principle use for nickel is as an alloying agent, particularly in the iron and steel products. Nickel imparts strength and corrosion resistance over a wide range of temperatures. Cobalt's value is also as an alloying element, and is used for cutting tools, jet engine parts, electrical devices, permanent magnets, catalysts, and pigments and dyes. Cobalt imparts qualities such as heat resistance, high strength, wear resistance, and magnetic properties.

DESCRIPTION OF PRIMARY NICKEL AND COBALT PRODUCTION

The production of primary nickel and cobalt can be divided into three principal processing steps: leaching, cobalt precipitation and reduction, and nickel reduction. The primary nickel and cobalt production process is presented schematically in Figure III-1 (page 3840), and described below.

RAW MATERIALS

Domestic primary nickel and cobalt production begins with an imported copper-nickel-cobalt ore concentrate or matte.

LEACHING

The raw material, called matte, is crushed and then ground in a wet ball mill, prior to being fed to a sulfuric acid leaching system. Dust and particulate matter from the crushing and grinding area are controlled by a baghouse. The dust and fines are slurried with water to facilitate transporting them from the baghouse. Slurrying results in a process wastewater stream.

In the leaching process, the ground matte is reacted with a copper sulfate - sulfuric acid solution, in order to separate the copper as a solid from the nickel and cobalt, which remain in

solution. The solids, containing most of the copper, iron, and some nickel and cobalt, are sent to the copper recovery circuit. From this circuit, a recycle stream containing nickel and cobalt is returned to the acid leaching process. The liquids produced in the acid leaching process are sent to the nickel and cobalt recovery system.

COBALT PRECIPITATION AND REDUCTION

Separation of nickel from cobalt is accomplished by precipitating the cobalt and most impurities from solution with ammonium persulfate. The nickel-containing solution is routed to nickel reduction.

The solids from the cobalt precipitation step are routed to a cobalt purification system. Among other impurities, the solids contain a large nickel concentration. The solids are dissolved and then treated by the "pentammine process" in which ammonia is added to the solution to form cobalt pentammine and nickel diammine. After oxidizing the cobalt with air, acid is added to the solution which causes the nickel and un-oxidized cobalt to crystallize. These crystals are removed, and the cobaltic pentammine solution is passed through an ion-exchange column to remove any remaining traces of nickel. The nickel is recycled to the nickel reduction process. The nickel-free cobalt solution is converted to cobalt powder by reduction in a hydrogen autoclave furnace. The liquid effluent from the cobalt reduction furnace is routed to the ammonium sulfate by-product recovery system.

NICKEL REDUCTION

The nickel solution contains few impurities at this stage. Reduction of nickel in solution to nickel powder is effected in an autoclave. The liquid effluent from the autoclave contains a large concentration of ammonium sulfate and is sent to an ammonium sulfate by-product recovery process. The nickel powder produced in the reduction furnace is washed with water which is discharged to wastewater treatment.

PROCESS WASTEWATER SOURCES

Although a variety of processes are involved in primary nickel and cobalt production, the significant wastewater sources that are associated with the primary nickel and cobalt subcategory can be subdivided as follows:

- 1. Raw material dust control,
- 2. Cobalt reduction decant,
- 3. Nickel reduction decant, and
- 4. Nickel wash water.

OTHER WASTEWATER SOURCES

There may be other wastewater streams associated with the primary nickel and cobalt subcategory. These streams may include

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - III

stormwater runoff, maintenance and cleanup water, and noncontact cooling and heating water (such as steam condensates from heat exchangers). These wastewaters are not considered as part of this rulemak-ing. EPA believes that the flows and pollutant loadings associ-ated with these wastewater streams are insignificant relative to the waste streams selected and are best handled by the appropriate permit authority on a case-by-case basis under authority of Section 402 of the Clean Water Act.

AGE, PRODUCTION, AND PROCESS PROFILE

The one primary nickel and cobalt plant in the United States is located in Southern Louisiana in order to take advantage of shipping lanes. This plant began operations in 1959, and came under its present ownership in 1973. Nickel production is between 40,000 and 50,000 tons/year; and cobalt production is less than 1,000 tons/year.

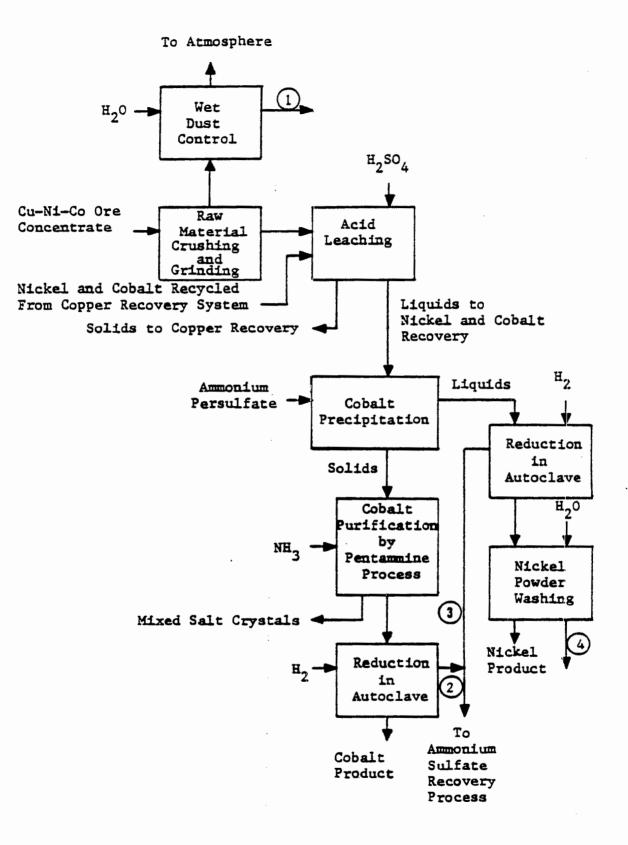


Figure III-1

PRIMARY NICKEL AND COBALT MANUFACTURING PROCESS

SECTION IV

SUBCATEGORIZATION

This section summarizes the factors considered during the designation of the related subdivisions of the primary nickel and cobalt subcategory. Production normalizing parameters for each subdivision will also be discussed.

FACTORS CONSIDERED IN SUBDIVIDING THE PRIMARY NICKEL AND COBALT SUBCATEGORY

The factors listed in Vol. I for general subcategorization were each evaluated when considering subdivision of the primary nickel and cobalt subcategory. In the discussion that follows, the factors will be described as they pertain to this particular subcategory.

The rationale for considering segmentation of the primary nickel and cobalt subcategory is based primarily on differences in the production processes and raw materials used. Within this subcategory, a number of different operations are performed, which may or may not have a water use or discharge, and which may require the establishment of separate effluent limitations. While primary nickel and cobalt is considered a single subcategory, a thorough examination of the production processes has illustrated the need for limitations and standards based on a specific set of waste streams. Limitations will be based on specific flow allowances for the following subdivisions:

- 1. Raw material dust control,
- 2. Cobalt reduction decant,
- 3. Nickel reduction decant, and
- 4. Nickel wash water.

These subdivisions follow directly from differences between the processing steps of primary nickel and cobalt production. Leaching, cobalt precipitation and reduction, and nickel reduction each have various steps which may generate wastewaters.

Raw material crushing and grinding creates a need for the first subdivision - raw material dust control. Although a dry baghouse is used to control dust and particulate matter generated by the mills that crush and grind the raw material, water is used to slurry the solids collected by the baghouse to the treatment plant.

Washing the nickel powder produced in the hydrogen reduction furnace creates a need for the fourth subdivision - nickel wash water. This water is used to remove traces of acid and impurities from the nickel product. Excess solution containing significant concentrations of ammonium sulfate decanted from the nickel reduction autoclave creates a need for the third subdivision - nickel reduction decant. Excess solution from the cobalt reduction autoclave creates a need for the second subdivision -cobalt reduction decant.

OTHER FACTORS

The other factors considered in this evaluation were shown to be inappropriate bases for further segmentation. Air pollution control methods, treatment costs, and total energy requirements are functions of the selected subcategorization factors--metal product, raw materials, and production processes. Certain other factors, such as plant age, plant size, and the number of employees, were also evaluated and determined to be inappropriate for use as bases for subdivision of the nonferrous metals category.

PRODUCTION NORMALIZING PARAMETERS

As discussed previously, the effluent limitations and standards developed in this document establish mass limitations on the discharge of specific pollutant parameters. To allow these regulations to be applied to plants with various production capacities, the mass of pollutant discharged must be related to a unit of production. This factor is known as the production normalizing parameter (PNP). The PNPs for the four subdivisions are as follows:

Subdivision

PNP

1.	Raw material dust control	copper, nickel, and cobalt in the crushed raw material
2.	Cobalt reduction decant	cobalt produced
3.	Nickel reduction decant	nickel produced
4.	Nickel wash water	nickel powder washed

Other PNPs were considered. The use of production capacity instead of actual production was eliminated from consideration because the mass of pollutant generated is more a function of true production than of installed capacity.

The PNP selected for raw material dust control is metric tons of copper, nickel, and cobalt in the crushed raw material. This PNP was selected because the amount of water generated by this process is most directly related to the amount of raw material crushed, and the composition of the crushed raw material. Because this plant recovers copper as well as nickel and cobalt from the crushed raw material, the appropriate PNP to select is metric tons of copper, nickel, and cobalt in the crushed raw material.

SECTION V

WATER USE AND WASTEWATER CHARACTERISTICS

This section describes the characteristics of the wastewaters associated with the primary nickel and cobalt subcategory. Water use and discharge rates are explained and then summarized in tables at the end of this section. Data used to characterize the wastewaters are presented. Finally, the specific source, water use and discharge flows, and wastewater characteristics for each separate wastewater source are discussed.

The two principal data sources used in the development of effluent limitations and standards for this subcategory are data collection portfolios (dcp) and field sampling results. Data collection portfolios contain information regarding wastewater flows and production levels.

In order to quantify the pollutant discharge from primary nickel and cobalt plants, a field sampling program was conducted. Α complete list of the pollutants considered and a summary of the techniques used in sampling and laboratory analyses are included in Section V of Vol. I. Samples were analyzed for 124 of the 126 priority pollutants and other pollutants deemed appropriate. Because the analytical standard for TCDD was judged to be too hazardous to be made generally available, samples were never analyzed for this pollutant. Samples were also never analyzed for asbestos. There is no reason to expect that TCDD or asbestos would be present in nonferrous metals manufacturing wastewater. In general, the samples were analyzed for three classes of pollutants: organic toxic pollutants, metal toxic pollutants, and criteria pollutants (which includes both conventional and nonconventional pollutants).

No additional sampling data for this subcategory were obtained from EPA sampling efforts or industry comments between proposal and promulgation. Characterization of primary nickel and cobalt subcategory wastewaters (Section V), and selection of pollutant parameters for limitation (Section VI) is based upon the same data used at proposal.

As described in Section IV of this supplement, the primary nickel and cobalt subcategory has been divided into four subdivisions or wastewater sources, so that the promulgated regulation contains mass discharge limitations and standards for four unit processes discharging process wastewater. Differences in the wastewater characteristics associated with these subdivisions are to be expected. For this reason, wastewater streams corresponding to each subdivision are addressed separately in the discussions that follow. These wastewater sources are:

- 1. Raw material dust control,
- 2. Cobalt reduction decant.

- 3. Nickel reduction decant, and
- 4. Nickel wash water.

WASTEWATER FLOW RATES

Data supplied by dcp responses were evaluated, and two flow-toproduction ratios were calculated for each stream. The two ratios, water use and wastewater discharge flow, are differentiated by the flow value used in calculation. Water use is defined as the volume of water required for a given process per mass of nickel and cobalt product and is therefore based on the sum of recycle and make-up flows to a given process. Wastewater flow discharged after pretreatment or recycle (if these are present) is used in calculating the production normalized flow--the volume of wastewater discharged from a given process to further treatment, disposal, or discharge per mass of nickel and cobalt produced. Differences between the water use and wastewater flows associated with a given stream result from recycle, evaporation, and carry-over on the product. The production values used in calculation correspond to the production normalizing parameter, PNP, assigned to each stream, as outlined in Section IV. As an example, nickel powder wash water wastewater flow is related to nickel powder production. As such, the discharge rate is expressed in liters of nickel wash water discharged per metric ton of nickel powder washed.

The production normalized flows were compiled and statistically analyzed by stream type. These production normalized water use and discharge flows are presented by subdivision in Tables V-1 through V-4 (pages 3848 - 3851) at the end of this section. Where appropriate, an attempt was made to identify factors that could account for variations in water use. This information is summarized in this section. A similar analysis of factors affecting the wastewater flows is presented in Sections IX X, XI, and XII where representative BPT, BAT, NSPS, and pretreatment discharge flows are selected for use in calculating the effluent limitations and standards.

WASTEWATER CHARACTERISTICS DATA

Data used to characterize the various wastewaters associated with primary nickel and cobalt production come from two sources--data collection portfolios and analytical data from field sampling trips.

DATA COLLECTION PORTFOLIOS

In the data collection portfolio, the primary nickel and cobalt plant was asked to specify the presence or absence of toxic pollutants in its wastewater. The plant indicated that toxic organic pollutants were believed to be absent from the effluent. The plant stated that some of the priority metals were known to be present in their effluent. This plant listed chromium, copper, nickel, and zinc as known to be present in the effluent.

FIELD SAMPLING DATA

In order to quantify the concentrations of pollutants present in wastewater from primary nickel and cobalt plants, wastewater samples were collected at the one plant. A diagram indicating the sampling sites and contributing production processes is shown in Figure V-1 (page 3872).

The sampling data for the primary nickel and cobalt subcategory are presented in Tables V-5 and V-6 (pages 3852 and 3862). The stream codes displayed in Tables V-5 and V-6 may be used to identify the location of each of the samples on the process flow diagram in Figure V-1. Where no data are listed for a specific day of sampling, the wastewater samples for the stream were not collected.

Several points regarding these tables should be noted. First, the data tables include some samples measured at concentrations considered not quantifiable. The base-neutral extractable, acid extractable, and volatile organics generally are considered not quantifiable at concentrations equal to or less than 0.010 mg/l. Below this concentration, organic analytical results are not quantitatively accurate; however, the analyses are useful to indicate the presence of a particular pollutant. The pesticide fraction is considered not quantifiable at concentrations equal to or less than 0.005 mg/l. Nonquantifiable results are designated in the tables with an asterisk (double asterisk for pesticides).

Second, the detection limits shown on the data tables for metals and conventional and nonconventional pollutants are not the same in all cases as the published detection limits for these pollutants by the same analytical methods. The detection limits used were reported with the analytical data and hence are the appropriate limits to apply to the data. Detection limit variation can occur as a result of a number of laboratoryspecific, equipment-specific, and daily operator-specific factors. These factors can include day-to-day differences in machine calibration, variation in stock solutions, and variation in operators.

Third, the statistical analysis of data includes some samples measured at concentrations considered not quantifiable. For data considered as detected but below quantifiable concentrations, a value of zero is used for averaging. Priority organic, nonconventional, and conventional pollutant data reported with a "less than" sign are considered as detected, but not further quantifiable. A value of zero is also used for averaging. If a pollutant is reported as not detected, it is assigned a value of zero in calculating the average. Finally, priority metal values reported as less than a certain value were considered as not quantifiable, and consequently were assigned a value of zero in the calculation of the average.

Finally, appropriate source water concentrations are presented

with the summaries of the sampling data. The method by which each sample was collected is indicated by number, as follows:

- 1 one-time grab
- 2 manual composite during intermittent process operation
- 3 8-hour manual composite
- 4 8-hour automatic composite
- 5 24-hour manual composite
- 6 24-hour automatic composite

WASTEWATER CHARACTERISTICS AND FLOWS BY SUBDIVISION

Since primary nickel and cobalt production involves four principal sources of wastewater and each has potentially different characteristics and flows, the wastewater characteristics and discharge rates corresponding to each subdivision will be described separately. A brief description of why the associated production processes generate a wastewater and explanations for variations of water use within each subdivision will also be discussed.

RAW MATERIAL DUST CONTROL

Primary nickel and cobalt raw material, called matte, is crushed and ground prior to undergoing copper separation via a leaching process. Dust and particulates generated by the crushing and grinding operations may be controlled by a baghouse. Water is used to slurry the collected material in the baghouse and transport it to treatment. One plant reported generating this waste stream, as shown in Table V-1 (page 3848). This table shows water use and discharge rates for this waste stream.

Sampling data were collected on a combined process waste stream which included raw material dust control water. The sampling data are presented in Table V-5 (page 3852). The data presented show copper, nickel, and ammonia above treatable concentrations.

COBALT REDUCTION DECANT

When cobalt is reduced in a hydrogen autoclave from a cobalt-rich solution, excess solution, containing significant quantities of ammonium sulfate, is decanted. Although the one plant currently generating this waste stream does not discharge it by means of a by-product recovery operation, it may be discharged at some time in the future. The need to discharge this waste stream may result from poor marketability of the by-product or excessive cost of operating the recovery plant. Water use and discharge rates for cobalt reduction decant are shown in Table V-2 (page 3849).

No samples were taken of this waste stream; however, it is expected to have high concentrations of ammonia (as NH_4^+) and sulfate (as SO_4^-), along with treatable concentrations of priority metals, cobalt, and suspended solids.

NICKEL REDUCTION DECANT

When nickel is reduced in a hydrogen autoclave from a nickel-rich solution, the excess solution, containing significant quantities of ammonium sulfate, is decanted. Although the one plant currently generating this waste stream does not discharge it by means of a by-product recovery operation, it may be discharged at some time in the future. The need to discharge this waste stream may result from poor marketability of the by-product or excessive cost of operating the recovery plant. Water use and discharge rates for this waste stream are shown in Table V-3 (page 3850).

No samples were taken of this waste stream; however, it is expected to have high concentrations of ammonia (as NH_4^+) and sulfate (as SO_4^-), along with treatable concentrations of priority metals (principally nickel) and suspended solids.

NICKEL WASH WATER

After reducing primary nickel raw material to a powder in a hydrogen autoclave, the nickel may be washed with water. This produces a waste stream. One plant reported this waste stream, and Table V-4 (page 3851) presents its water use and discharge rates.

Sampling data were collected on a combined process waste stream which included nickel wash water. The sampling data are presented in Table V-5 (page 3852). The data show copper, nickel, and ammonia above treatable concentrations; several priority organics were detected.

TABLE V-1

WATER USE AND DISCHAGRE RATES FOR

RAW MATERIAL DUST CONTROL

Plant	Percent Recycle	Production Normalized	Production Normalized
Code	or reuse	Water Use Flow	Discharge Flow
1062	0	77	77

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - V

TABLE V-2

WATER USE AND DISCHAGRE RATES FOR

COBALT REDUCTION DECANT

(1/kkg of cobalt produced)

Plant <u>Code</u>	Percent Recycle or reuse	•	Production Normalized Water Use Flow	Production Normalized Discharge Flow
1062	100		21398	0

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - V

TABLE V-3

WATER USE AND DISCHAGRE RATES FOR

NICKEL REDUCTION DECANT

(1/kkg of nickel produced)

Plant <u>Code</u>	Percent Recycle or reuse	Production Normalized Water Use Flow	Production Normalized Discharge Flow
1062	100	12695	. 0

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - V

TABLE V-4

WATER USE AND DISCHAGRE RATES FOR

NICKEL WASH WATER

•

(l/kkg of nickel powder washed)

Plant Code	Percent Recycle or reuse	Production Normalized Water Use Flow	Production Normalized Discharge Flow
1062	0	33.87	33.87

Table V-5

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

		RAW WASTEWATER	SAMPLING I	DATA			ų
	Pollutant	Stream _Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	PRIMARY Day 3
Toxic	Pollutants						NICKEL
1.	acenaphthene	367	6		ND		KEL
2.	acrolein	367	1		ND		AND
3.	acrylonitrile	367	1	· .	ND	, . .	- CO
4.	benzene	367	1		*		COBALT
5.	benzidine	367	6		ND		SUE
6.	carbon tetrachloride	367	1		ND		SUBCATEGORY
7.	chlorobenzene	367	1		ND		EGOI
8.	1,2,4-trichlorobenzene	367	6		ND		ХХ
9.	hexachlorobenzene	367	6		ND		S
10.	1,2-dichloroethane	367	1		ND		SECT
11.	1,1,1-trichloroethane	367	1		ND		י ל
12.	hexachloroethane	367	Ó		ND		
13.	1,1-dichloroethane	367	1		ND		

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

KAW WADIEWAIEK SAMPLING DAIA							
		Stream	Sample	Concentration		Day 3	
	Pollutant	Code	Typet	Source Day 1	Day 2	Day 3 R	
Toxic	Pollutants (Continued)					NICKEL	
14.	1,1,2-trichloroethane	367	1	ND		KEL	
15.	1,1,2,2-tetrachloroethane	367	1	ND		AND	
16.	chloroethane	367	1	ND			
17.	bis(chloromethyl)ether	367	1	ND		COBALT	
18.	bis(2-chloroethyl)ether	367	1	ND			
19.	2-chloroethyl vinyl ether	367	1	ND		ВСАЈ	
20.	2-chloronaphthalene	367	6	ND		SUBCATEGORY	
21.	2,4,6-trichlorophenol	367	6	ND		RY	
22.	p-chloro-m-cresol	367	б	ND		Ø	
23.	chloroform	367	1	ND		SECT	
24.	2-chlorophenol	367	6	ND		י ג	
25.	1,2-dichlorobenzene	367	6	ND			
26.	1,3-dichlorobenzene	367	6	ND			
27.	1,4-dichlorobenzene	367	6	ND			

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

							PRI	
	Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	
Toxic	Pollutants (Continued)						NIC	
28.	3,3'-dichlorobenzidine	367	6		ND		NICKEL	
29.	1,1-dichloroethylene	367	1		ND		AND	
30.	1,2- <u>trans</u> -dichloroethylene	367	1	· · · · ·	ND			
31.	2,4-dichlorophenol	367	6		ND		COBALT	
32.	1,2-dichloropropane	367	1		ND			
33.	1,3-dichloropropene	367	1		ND		JBCA	
34.	2,4-dimethylphenol	367	6		ND		SUBCATEGORY	
35.	2,4-dinitrotoluene	367	6		ND		ORY	
36.	2,6-dinitrotoluene	36.7	6		ND			
37.	1,2-diphenylhydrazine	367	6		ND		SECT	
38.	ethylbenzene	367	1		ND		I	
39.	fluoranthene	367	6		ND		۷	
40.	4-chlorophenyl phenyl ether	367	6		ND			

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrations (mg/l)			
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
41.	4-bromophenyl phenyl ether	367	6		ND		
42.	bis(2-chloroisopropyl)ether	367	6		ND		
43.	bis(2-choroethoxy)methane	367	6		ND		
44.	methylene chloride	367	1		ND		
45.	methyl chloride (chloromethane)	367	1		ND		
46.	methyl bromide (bromomethane)	367	1		ND		
47.	bromoform (tribromomethane)	367	1		ND		
48.	dichlorobromomethane	367	1		ND		
49.	trichlorofluoromethane	367	1		ND		
50.	dichlorodifluoromethane	367	1		ND		
51.	chlorodibromomethane	367	1		ND		
52.	hexachlorobutadiene	367	6		ND		
53.	hexachlorocyclopentadiene	367	6		ND		
54.	isophorone	367	6		ND		

3855

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT

ן. ו ע

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Toxic Pollutants (Continued)			
55. naphthalene	367	6	ND
56. nitrobenzene	367	6	ND
57. 2-nitrophenol	367	6	ND
58. 4-nitrophenol	367	6	ND
59. 2,4-dinitrophenol	367	6	ND
60. 4,6-dinitro-o-cresol	367	6	ND
61. N-nitrosodimethylamine	367	6	ND
62. N-nitrosodiphenylamine	367	6	ND
63. N-nitrosodi-n-propylamine	367	6	ND
64. pentachlorophenol	367	6	ND
65. phenol	367	6	ND
66. bis(2-ethylhexyl) phthalate	367	6	.010
67. butyl benzyl phthalate	367	6	ND
68. di-n-butyl phthalate	367	6	ND

3856

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT 1

<

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

Ы

		Stream	Sample	Conc	entration	s (mg/l)	Day 3 RIMARY
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3 R
Toxic	Pollutants (Continued)						
69.	di-n-octyl phthalate	367	6		ND		NICKEL
70.	diethyl phthalate	367	6		ND		L AND
71.	dimethyl phthalate	367	6		ND		
72.	benzo(a)anthracene	367	6		ND		COBALT
73.	benzo(a)pyrene	367	6		ND		
74.	benzo(b)fluoranthene	367	6		ND		UBC
75.	benzo(k)fluoranthane	367	6		ND		SUBCATEGORY
76.	chrysene	367	6		ND		JORY
77.	acenaphthylene	367	6		ND		
78.	anthracene	367	6		ND		SECT
79.	benzo(ghi)perylene	367	6		ND		н I
80.	fluorene	367	6		ND		<
81.	phenanthrene	367	6		ND		
82.	dibenzo(a,h)anthracene	367	6		ND		

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

Ы

	Stream	Sample	Conc	entrations	s (mg/1)	RIM
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3RY
Pollutants (Continued)						
indeno (1,2,3-c,d)pyrene	367	6		ND		NICKEL
pyrene	367	6		ND		AND
tetrachloroethylene	367	1		ND		
toluene	367	1		*		COBALT
trichloroethylene	367	1		ND		
vinyl chloride (chloroethylene)	367	1		ND		UBCł
aldrin	367	6		ND		SUBCATEGORY
dieldrin	367	6		ND		ORY
chlordane	367	6		ND		
4,4'-DDT	367	6		ND		SECT
4,4'-DDE	367	6		ND		i
4,4'-DDD	367	6		ND		<
alpha-endosulfan	367	6		ND		
beta-endosulfan	367	6		ND		
	Pollutants (Continued) indeno (1,2,3-c,d)pyrene pyrene tetrachloroethylene toluene trichloroethylene vinyl chloride (chloroethylene) aldrin dieldrin chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD alpha-endosulfan	PollutantCodePollutants (Continued)367indeno (1,2,3-c,d)pyrene367pyrene367tetrachloroethylene367toluene367trichloroethylene367vinyl chloride (chloroethylene)367aldrin367dieldrin3674,4'-DDT3674,4'-DDD3674,4'-DDD367alpha-endosulfan367	Pollutant Code Typet Pollutants (Continued)	PollutantCodeTypetSourcePollutants (Continued)indeno (1,2,3-c,d)pyrene3676pyrene3676tetrachloroethylene3671toluene3671trichloroethylene3671vinyl chloride (chloroethylene)3671aldrin3676dieldrin36764,4'-DDT36764,4'-DDD36764,4'-DDD3676alpha-endosulfan3676	PollutantCodeTypetSourceDay 1Pollutants (Continued)indeno (1,2,3-c,d)pyrene3676NDpyrene3676NDtetrachloroethylene3671NDtoluene3671*trichloroethylene3671NDvinyl chloride (chloroethylene)3671NDaldrin3676NDdieldrin3676ND4,4'-DDT3676ND4,4'-DDE3676NDalpha-endosulfan3676ND	PollutantCodeTypetSourceDay 1Day 2Pollutants (Continued)indeno (1,2,3-c,d)pyrene3676NDpyrene3676NDtetrachloroethylene3671NDtoluene3671NDtrichloroethylene3671NDvinyl chloride (chloroethylene)3671NDaldrin3676NDdieldrin3676ND4,4'-DDT3676ND4,4'-DDD3676NDalpha-endosulfan3676ND

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

ы

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
97.	endosulfan sulfate	367	6		ND		NICKEL
98.	endrin	367	6		ND		
99.	endrin aldehyde	367	6		ND		AND
100.	heptachlor	367	6		ND		COBALT
101.	heptachlor epoxide	367	6		ND		
102.	alpha-BHC	367	6		ND		SUBC
103.	beta-BHC	367	6		ND		ATE
104.	gamma-BHC	367	6		ND		SUBCATEGORY
105.	delta-BHC	367	6		ND		·
106.	PCB-1242 (b)	. 367	6		ND		SECT
107.	PCB-1254 (b)	367	6		ND		УТ +
108.	PCB-1221 (b)	367	6		ND		4
109.	PCB-1232 (c)	367	6		ND		

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Concentrations (mg/l) Source Day 1 Day 2	Day 3
Toxic Pollutants (Continued)				
110. PCB-1248 (c)	367	6	ND	NICKEL
111. PCB-1260 (c)	367	6	ND	
112. PCB-1016 (c)	367	6	ND	AND C
113. toxaphene	367	6	ND	COBALT
114. antimony	367	6	0.019	
115. arsenic	367	6	<0.10	SUBC
117. beryllium	367	6	0.001	SUBCATEGORY
118. cadmium	367	6	0.007	JORY
119. chromium (total)	367	6	<0.05	
120. copper	367	6	1.43	SECT
122. lead	367	6	<0.005	н I
123. mercury	367	6	0.0002	4
124. nickel	367	6	40.0	
125. selenium	367	6	0.18	

3860

PRIMARY NICKEL AND COBALT SUBCATEGORY COMBINED WASTEWATER - INFLUENT TO TREATMENT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type†	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						NIU
126. silver	367	6		<0,001		NICKEL
127. thallium	367	6		<0.05	. •	AND
128. zinc	367	6		0.377		
Nonconventional Pollutants						COBALT
Ammonia Nitrogen	367	6		440		
Chemical Oxygen Demand	367	6		69.0		BCA
Cobalt	367	6		4.6		SUBCATEGORY
Phosphorus	367	6		<0.2		DRY
Conventional Pollutants						
pH (standard units)	367	6		7.6		SECT

tSample Type Code: 1 - One-time grab 6 - 24-hour automatic composite

(a), (b), (c) Reported together

*Less than 0.01 mg/l.

1

<

PR

Table V-6

	Pollutant	Stream _Code	Sample Typet	Concentrations (mg/l) Source Day 1 Day 2	Day 3
Toxic	Pollutants				ARY
1.	acenaphthene	364	6	N D	NIC
2.	acrolein	364	1	N D	NICKEL
3.	acrylonitrile	364	1	ND	AND
4.	benzene	364	1.	ND	_
5.	benzidine	364	6	ND	COBALT
6.	carbon tetrachloride	364	1	ND	_
7.	chlorobenzene	364	1	N D	BCA
8.	1,2,4-trichlorobenzene	364	6	N D	SUBCATEGORY
9.	hexachlorobenzene	364	6	N D	RY
10.	1,2-dichloroethane	364	1	ND	10
11.	1,1,1-trichloroethane	364	1	ND	SECT
12.	hexachloroethane	364	6	N D	י ל
13.	1,1-dichloroethane	364	i	N D	7
14.	1,1,2-trichloroethane	364	1	ND	

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/l) Day 2	Day 3
Toxic	Pollutants (Continued)						ARY
19.	2-chloroethyl vinyl ether	364	1		ND		NICKEL
20.	2-chloronaphthalene	364	6		ND		KEL
21.	2,4,6-trichlorophenol	364	6		ND		AND
22.	p-chloro-m-cresol	364	6		ND		
23.	chloroform	364	1		*		COBALT
24.	2-chlorophenol	364	6		N D		
25.	1,2-dichlorobenzene	364	6		ND		SUBCATEGORY
26.	1,3-dichlorobenzene	364	6		N D		EGOI
27.	1,4-dichlorobenzene	364	6		N D		ЯX
28.	3,3'-dichlorobenzidine	364	6		N D		ß
29.	1,1-dichloroethylene	364	1		*		SECT
30.	1,2- <u>trans</u> -dichloroethylene	364	1		N D		r V
31.	2,4-dichlorophenol	364	6		N D		
32.	1,2-dichloropropane	364	1		ND		

		Stream	Sample		entration		Day 3
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3 A
Toxic	Pollutants (Continued)						
33.	1,3-dichloropropene	364	1		ND		NICKEL
34.	2,4-dimethylphenol	364	6		ND		
35.	2,4-dinitrotoluene	364	6		ND		AND C
36.	2,6-dinitrotoluene	364	6		ND		COBALT
37.	1,2-diphenylhydrazine	364	6		ND		
38.	ethylbenzene	364	1		ND		SUBC
39.	fluoranthene	364	6		ND		ATE
40.	4-chlorophenyl phenyl ether	364	6		ND		SUBCATEGORY
41.	4-bromophenyl phenyl ether	364	6		N D		
42.	bis(2-chloroisopropyl)ether	364	6		ND		SECT
43.	bis(2-choroethoxy)methane	364	6		N D		i i
44.	methylene chloride	364	1		*		<
45.	methyl chloride (chloromethane)	364	1		ND		
46.	methyl bromide (bromomethane)	364	1		ND		

	Dellaster t	Stream	Sample	the second s	entrations		Day 3
	Pollutant	Code	Typet	Source	<u>Day 1</u>	<u>Day 2</u>	Day 3 MAR
Toxic	Pollutants (Continued)						
47.	bromoform (tribromomethane)	364	1		ND		NICKEL
48.	dichlorobromomethane	364	1		ND		
49.	trichlorofluoromethane	364	1.		ND		AND (
50.	dichlorodifluoromethane	364	1		ND		COBALT
51.	chlorodibromomethane	364	1		N D		LT
52.	hexachlorobutadiene	364	6		N D		SUBCATEGORY
53.	hexachlorocyclopentadiene	364	6		N D		(ATE)
54.	isophorone	364	6		N D		GORY
55.	naphthalene	364	6		N D		
56.	nitrobenzene	364	6		0.025		SECT
57.	2-nitrophenol	364	6		ND		H I
58.	4-nitrophenol	364	6		ND		4
59.	2,4-dinitrophenol	364	6		ND		
60.	4,6-dinitro-o-cresol	364	6		ND		

	<u>Pollutant</u>	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/l) Day 2	Day 3	PRIMARY
<u>Toxic</u>	Pollutants (Continued)							IARY
61.	N-nitrosodimethylamine	364	6		ND			NIC
62.	N-nitrosodiphenylamine	364	6		ND			NICKEL
63.	N-nitrosodi-n-propylamine	364	6		N D			AND
64.	pentachlorophenol	364	6	· ·	ŊD		. .	
65.	phenol	364	6		ND			COBALT
66.	bis(2-ethylhexyl) phthalate	364	6		ND			
67.	butyl benzyl phthalate	364	6		*			BCAI
68.	di-n-butyl phthalate	364	6		N D			SUBCATEGORY
69.	di-n-octyl phthalate	364	6		ND			RY
70.	diethyl phthalate	364	6		ND			ß
71.	dimethyl phthalate	364	6		N D			SECT
72.	benzo(a)anthracene	364	6		ND			ו <
73.	benzo(a)pyrene	364	6		ND			•
74.	benzo(b)fluoranthene	364	6		ND			

PRIMARY NICKEL AND COBALT SUBCATEGORY TREATED PLANT EFFLUENT

Ы

		Stream	Sample		entrations		Day 3
	Pollutant	Code	<u>Typet</u>	Source	Day 1	<u>Day 2</u>	Day 3 P
Toxic	Pollutants (Continued)						
75.	benzo(k)fluoranthane	364	6		N D		NI CKEL
76.	chrysene	364	6		ND		
77.	acenaphthylene	364	6		ND		AND
78.	anthracene	364	6		ND		COBALT
79.	benzo(ghi)perylene	364	6		N D		
80.	fluorene	364	6		ND		SUBC
81.	phenanthrene	364	6		ND		SUBCATEGORY
82.	dibenzo(a,h)anthracene	364	6		ND		BORY
83.	indeno (1,2,3-c,d)pyrene	364	6		ND		·
84.	pyrene	364	6		ND		SECT
85.	tetrachloroethylene	364	1		ND		н I
86.	toluene	364	1		*		۷
87.	trichloroethylene	364	1		N D		
88.	vinyl chloride (chloroethylene)	364	1		ND		

PRIMARY NICKEL AND COBALT SUBCATEGORY TREATED PLANT EFFLUENT

ы

		Stream	Sample	Concentrations (mg/l)				
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3	
Toxic	Pollutants (Continued)							
89.	aldrin	364	6		**		NI CKEL	
90.	dieldrin	364	6		**			
91.	chlordane	364	6		* *		AND (
92.	4,4'-DDT	364	6		* *		COBALT	
93.	4,4'-DDE	364	6		**			
94.	4,4'-DDD	364	6		**		SUBCATEGORY	
95.	alpha-endosulfan	364	6		**		ATE	
96.	beta-endosulfan	364	6		**		JORY	
97.	endosulfan sulfate	364	6		**		·	
98.	endrin	364	6		**		SECT	
99.	endrin aldehyde	364	6		**		μ ι	
100.	heptachlor	364	6		**		<	
101.	heptachlor epoxide	364	б		**			
102.	alpha-BHC	364	6		**			

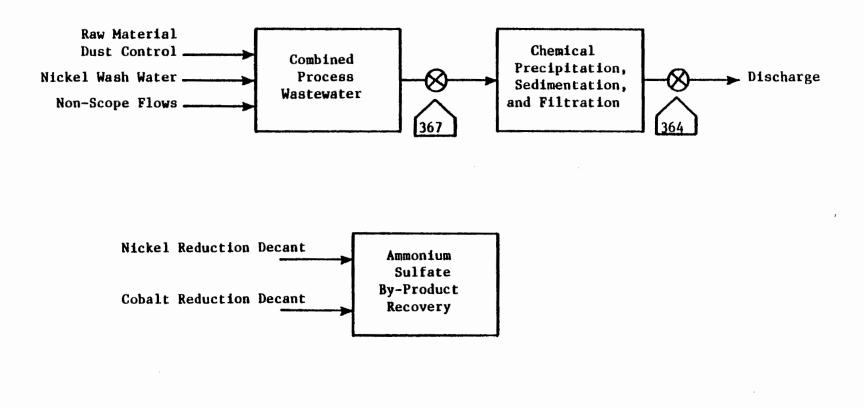
Pollutant	Stream Code	Sample Typet	Concentrations (mg/l) Source Day 1 Day 2	Day 3
Toxic Pollutants (Continued)				
103. beta-BHC	364	6	**	NICKEL
104. gamma-BHC	364	6	* *	
105. delta-BHC	364	6	* *	AND
106. PCB-1242 (b)	364	6	**	COBALT
107. PCB-1254 (b)	364	б	* *	ALT
108. PCB-1221 (b)	364	6	**	SUB
109. PCB-1232 (c)	364	6	* *	SUBCATEGORY
110. PCB-1248 (c)	364	6	**	GOR
111. PCB-1260 (c)	364	6	**	к
112. PCB-1016 (c)	364	6	**	SE
113. toxaphene	364	6	**	SECT
114. antimony	364	6	<0.1	- 4
115. arsenic	364	6	<0.1	
117. beryllium	364	6	0.0018	

Pollutant	Stream Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2	Day 3
Toxic Pollutants (Continued)			initia	
118. cadmium	364	6	<0.001	NICKEL
119. chromium (total)	364	6	<0.056	
120. copper	364	б	0.225	AND C
122. lead	364	6	<0.005	COBALT
123. mercury	364	6	0.0033	
124. nickel	364	6	5.60	SUBCATEGORY
125. selenium	364	6	0.15	ATEG
126. silver	364	6	<0.001	ORY
127. thallium	364	6	<0.05	
128. zinc	364	6	0.067	SECT
Nonconventional Pollutants				1
Ammonia Nitrogen	364	б	500	<
Chemical Oxygen Demand	364	6	56.0	

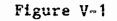
PRIMARY NICKEL AND COBALT SUBCATEGORY TREATED PLANT EFFLUENT

Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	B (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued))					IN A
Cobalt	364	6		0.46		CKEL
Phosphorus	364	6		<0.2		L AND
Conventional Pollutants						_
pH (standard units)	364	6		12.7		COBALT

(a),(b),(c) Reported together


*Less than 0.01 mg/l.

**Less than 0.005 mg/l.


SECT - V

SUBCATEGORY

Ы

3872

SAMPLING SITES AT PRIMARY NICKEL AND COBALT PLANT A

SECTION VI

SELECTION OF POLLUTANTS

This section examines chemical analysis data presented in Section V and discusses the selection or exclusion of priority pollutants for potential limitation. Also, conventional and nonconventional pollutants are selected or excluded for limitation in this The basis for the regulation of toxic and other section. pollutants, along with a discussion of each pollutant selected potential limitation, is discussed in Section VI of Vol. I. for That discussion provides information about the nature of the pollutant (i.e., whether it is a naturally occurring substance, processed metal, or a manufactured compound); general physical properties and the form of the pollutant; toxic effects of the pollutant in humans and other animals; and behavior of the pollutant in POTW at the concentrations expected in industrial discharges.

The discussion that follows describes the analysis that was performed to select or exclude priority pollutants for further consideration for limitations and standards. The data from wastewater samples are considered in this analysis. A combined wastewater sample was taken of the influent to treatment, which includes the two currently discharged process wastewater streams, and other non-scope streams. Priority pollutants will be selected for further consideration if they are present in concentrations treatable by the technologies considered in this analysis. In Sections IX through XII, a final selection of the pollutants to be limited will be made, based on relative factors.

CONVENTIONAL AND NONCONVENTIONAL POLLUTANT PARAMETERS SELECTED

This study examined samples one primary nickel and cobalt plant for two conventional pollutant parameters (TSS and pH) and two nonconventional pollutant parameters (ammonia and cobalt).

The conventional and nonconventional pollutants or pollutant parameters selected for limitation in this subcategory are:

ammonia cobalt total suspended solids (TSS) pH

Ammonia is used extensively throughout the primary nickel and cobalt manufacturing process. Two of the wastewater streams, nickel and cobalt reduction decants, contain very high concentrations of ammonia. Ammonia is selected for limitation in this subcategory because of its presence in high concentrations in the nickel and cobalt reduction decant streams.

Cobalt was observed in the one raw wastewater sample in this

subcategory at a concentration of 4.6 mg/l. This concentration is above the concentration considered achievable by treatment technology (0.034 mg/l), and cobalt is expected to be present in the raw wastewater as a result of raw materials used. For these reasons, cobalt is selected for regulation.

Although total suspended solids (TSS) was not analyzed for in this subcategory, it is selected for regulation. This is because TSS is expected to be present in the raw wastewater samples above treatable concentration (2.6 mg/l), and most of the specific methods used to remove toxic metals do so by converting these metals to precipitates, and these toxic-metal-containing precipitates should not be discharged. Meeting a limitation on total suspended solids helps ensure that removal of these precipitated toxic metals has been effective.

The pH value observed was 7.6. Although this pH value is within the 7.5 to 10.0 range considered desirable, effective removal of toxic metals by precipitation requires careful control of pH. Also, the combined waste stream may not accurately reflect the pH values of the raw waste streams which may be outside the desirable range. For these reasons, pH is selected for limitation in this subcategory.

TOXIC PRIORITY POLLUTANTS

The frequency of occurrence of the priority pollutants in the wastewater samples considered in this analysis is presented in Table VI-1 (page 3877). These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-1 is based on the raw wastewater sampling data from stream 367. Stream 364 was sampled after treatment and was not used in the frequency count.

TOXIC POLLUTANTS NEVER DETECTED

The priority pollutants listed in Table VI-2 (page 3881) were not detected in any wastewater samples from this subcategory. Therefore, they are not selected for consideration in establishing effluent limitations and standards.

TOXIC POLLUTANTS NEVER FOUND ABOVE THEIR ANALYTICAL QUANTIFICATION CONCENTRATION

The priority pollutants listed below were never found above their analytical quantification concentration in any wastewater samples from this subcategory; therefore, they are not selected for consideration in establishing effluent limitations and standards.

benzene
 toluene
 antimony
 arsenic
 beryllium
 chromium

122. lead
126. silver
127. thallium

TOXIC POLLUTANTS PRESENT BELOW CONCENTRATIONS ACHIEVABLE BY TREATMENT

The pollutants listed below are not selected for consideration in establishing limitations and standards because they were not found in any wastewater samples from this subcategory above concentrations considered achievable by existing or available treatment technologies. These pollutants are discussed individually following the list.

- 66. bis (2-ethylhexyl) phthalate
- 118. cadmium
- 123. mercury
- 125. selenium

Bis (2-ethylhexyl) phthalate was detected at its analytical quantification limit in the one sample analyzed. The observed concentration was 0.01 mg/l, and this is equal to the concentration achievable by treatment. Also, this compound is a plasticizer commonly used in laboratory and field sampling equipment, and is not used or formed as a by-product in this subcategory. For these reasons, bis (2-ethylhexyl) phthalate was not selected for limitation.

Cadmium was detected above its analytical quantification limit in the one sample analyzed. The observed concentration was 0.007 mg/l. This value is below the concentration achievable by treatment (0.049 mg/l). Therefore, cadmium is not selected for limitation.

Mercury was detected above its analytical quantification limit in the one sample analyzed. The observed concentration was 0.0002 mg/l. This value is below the concentration achievable by treatment (0.036 mg/l). Therefore, mercury is not selected for limitation.

Selenium was detected above its analytical quantification limit in the one sample analyzed. The observed concentration was 0.18 mg/l. This value is less than the treatable concentration (0.20 mg/l). Therefore, selenium is not selected for limitation.

TOXIC POLLUTANTS SELECTED FOR FURTHER CONSIDERATION IN ESTABLISHING LIMITATIONS AND STANDARDS

The priority pollutants listed below are selected for further consideration in establishing limitations and standards for this subcategory. The priority pollutants selected are each discussed following the list.

120. copper 124. nickel

122. zinc

Copper was detected above its treatable concentration (0.39 mg/l) in the one sample analyzed. The observed concentration was 1.43 mg/l. Since copper was present in a concentration exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Nickel was detected above its treatable concentration (0.22 mg/l) in the one sample analyzed. The observed concentration was 40.0 mg/l. Since nickel was present in a concentration exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Zinc was detected above its treatable concentration (0.23 mg/l) in the one sample analyzed. The observed concentration was 0.377 mg/l. Since zinc was present in a concentration exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Table VI-1

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS PRIMARY NICKEL AND COBALT SUBCATEGORY RAW WASTEWATER

Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/1)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration
1. acenaphthene	0.010	0.01	1	1	1			
2. acrolein	0.010	0.01	1	Í	1			
3. acrylonitrile	0.010	0.01	1	1	Í			
4. benzene	0.010	0.01	1	1		1		
5. benzidine	0.010	0.01	1	1	1			
6. carbon tetrachloride	0.010	0.01	1	Í	1			
7. chlorobenzene	0.010	0.01	1	1	1			
8. 1,2,4-trichlorobenzene	0.010	0.01	1	1	1			
9. hexachlorobenzene	0.010	0.01	1	ĺ.	1			
10. 1,2-dichloroethane	0.010	0.01	1	1	1			
11. 1,1,1-trichloroethane	0.010	0.01	1	1	1			
12. hexachloroethane	0.010	0.01	1	1	1			
13. 1,1-dichloroethane	0.010	0.01	1	1	1			
14. 1,1,2-trichloroethane	0.010	0.01	1	1	1			
15. 1,1,2,2-tetrachloroethane	0.010	0.01	1	1	1			
16. chloroethane	0.010	0.01	1	1	1			
17. bis(chloromethyl) ether	0.010	0.01	1	1	1			
18. bis(2-chloroethyl) ether	0.010	0.01	1	1	1			
19. 2-chloroethyl vinyl ether	0.010	0.01	1	1	1			
20. 2-chloronaphthalene	0.010	0.01	1	1	1			
21. 2,4,6-trichlorophenol	0.010	0.01	1	1	1			
22. parachlorometa cresol	0.010	0.01	1	1	1			
23. chloroform	0.010	0.01	1	1	1			
24. 2-chlorophenol	0.010	0.01	1	1	1			
25. 1,2-dichlorobenzene	0.010	0.01	1	1	1			
26. 1,3-dichlorobenzene	0.010	0.01	1	1	1			
27. 1,4-dichlorobenzene	0.010	0.01	1	1	1			
28. 3,3'-dichlorobenzidine	0.010	0.01	1	1	1			
29. 1,1-dichloroethylene	0.010	0.01	1	1	1			
30. 1,2-trans-dichloroethylene	0.010	0.01	1	1	1			
31. 2,4-dichlorophenol	0.010	0.01	1	1	1			
32. 1,2-dichloropropane	0.010	0.01	1	1	1			
33. 1,3-dichloropropylene	0.010	0.01	1	1	1			
34. 2,4-dimethylphenol	0.010	0.01	1	1	1			

3877

ΔI

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS PRIMARY NICKEL AND COBALT SUBCATEGORY RAW WASTEWATER

Pollutant	Analytical Quantification Concentration (ag/l)(a)	Treatable Concentra- tion (mg/1)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration
35. 2,4-dinitrotoluene	0.010	0.01	1	1	1			
36. 2.6-dinitrotoluene	0.010	0.01	1	1	1			
37. 1,2-diphenylhydrazine	0.010	0.01	1	1	1			
38. ethylbenzene	0.010	0.01	1	1	1			
39. Eluoranthene	0.010	0.01	1	1	1			,
40. 4-chlorophenyl phenyl ether	0.010	0.01	1	1	1			
41. 4-bromophenyl phenyl ether	0.010	0.01	1	1	1			
42. bis(2-chloroisopropyl) ether	0.010	0.01	1	1	1			
43. bis(2-chloroethoxy) methane	0.010	0.01	1	1	1			
44. methylene chloride	0.010	0.01	1	1	1			
45. methyl chloride	0.010	0.01	1	1	1			
46. methyl bromide	0.010	0.01	1	1	1			
47. bromoform	0.010	0.01	1	1	1			
48. dichlorobromomethane	0.010	0.01	1	1	1			
49. trichlorofluoromethane	0.010	0.01	1	1	1			
50. dichlorodifluoromethane	0.010	0.01	1	1	1			
51. chlorodibromomethane	0.010	0.01	1	1	1			
52. hexachlorobutadiene	0.010	0.01	1	1	1			
53. hexachlorocyclopentadiene	0.010	0.01	1	1	1			
54. isophorone	0.010	0.01]	1	1			
55. naphthalene	0.010	0.01	1	1				
56. nitrobenzene	0.010	0.01	1	1	1			
57. 2-nitrophenol	0.010	0.01	1	1	!			
58. 4-nitrophenol	0.010	0.01	1	1	. !			
59. 2,4-dinitrophenol	0.010	0.01	1		. !			
60. 4,6-dinitro-o-cresol	0.010	0.01	1	1				
61. N-nitrosodimethylamine	0.010	0.01		!	!			
62. N-nitrosodiphenylamine	0.010	0.01	!	!	. !			
63. N-nitrosodi-n-propylamine	0.010	0.01						
64. pentachlorophenol	0.010	0.01						
65. phenol	0.010	0.01						
66. bis(2-ethylhexyi) phthalate	0.010	0.01						
67. butyl benzyl phthalate	0.010	0.01						
68. di-n-butyl phthalate	0.010	0.01	1	1				

3878

Ч

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS PRIMARY NICKEL AND COBALT SUBCATEGORY RAW WASTEWATER

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/l)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	able Grande	PRIMARY NICKEL
	di-n-octyl phthalate	0.010	0.01	1	1	1				XH
70.	dlethyl phthalate	0.010	0.01	!	1	1				Ê.
1.	dimethyl phthalate	0.010	0.01		1	1				
	benzo(a)anthracene	0.010	0.01	1	1	1				AND
	benzo(a)pyrene	0.010	0.01	!	!	1			ť	8
74.		0.010	0.01	!	!					
	benzo(k)fluoranthene	0.010	0.01	ļ					9	2
	chrysene	0.010 0.010	0.01 0.01		-					ы
77. 78.		0.010	0.01			-				COBALT
78.		0.010	0.01							5
	benzo(ghl)perylene fluorene	0.010	0.01	1					·	
81.		0.010	0.01		i				(S
	dlbenzo(a,h)anthracene	0.010	0.01		ł				(SUBCATEGORY
	Indeno(1, 2, 3-cd)pyrene	0.010	0.01	i	i	i				õ
	pyrene	0.010	0.01	i	i	i				Þ
	tetrachloroethylene	0.010	0.01	i	i	i			ł	
	toluene	0.010	0.01	i	i	•			l	0 0
	trichloroethylene	0.010	0.01	i	i	1			Č	Õ
	vinyi chloride	0.010	0.01	i	i	i				R
89.	aldrin	0.005	0.01	1	1	1			r	~
90.	dieldrin	0.005	0.01	1	1	1				
- 91.	chlordane	0.005	0.01	1	1	1				
	4, 4'-DUC	0.005	0.01	1	1	1			1	n
93.	4,4'-DUE	0.005	0.01	1	1	1			i	SECT
	4,4'-DDD	0.005	0.01	1	1	1			(ß
95.	alpha-endosulfan	0.005	0.01	1	1	1			•	
96.		0.005	0.01	1	1	1				1
	endosulfan sulfate	0.005	0.01	1	1	1				4
	endrin	0.005	0.01	1	1	1				4 H
	endrin aldehyde	0.005	0.01		1					
	heptachlor	0.005	0.01	!	!	!				
	heptachlor epoxide	0.005	0.01		!					
	alpha-BHC	0.005	0.01	!	-					
103.	beta-BilC	0.005	0.01	1	1	I				

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS PRIMARY NICKEL AND COBALT SUBCATEGORY RAW WASTEWATER

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/l)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration	ULL IND
104.	gamma-BHC	0.005	0.01	1	1	1				2
	delta-BHC	0.005	0.01	1	1	1				1
106.	PCB-1242 (d)	0.005	0.01	1	1	1				-
	PCB-1254 (d)	0.005	0.01	1	1	1				2
	PCB-1221 (d)	0.005	0.01	1	1	1				12
	PCB-1232 (e)	0.005	0.01	1	1	1				Ľ
	PCB-1248 (e)	0.005	0.01	1	1	1				C
111.		0.005	0.01	1	1	1				Ć
	PCB-1260 (e) PCB-1016 (e)	0.005	0.01	1	. 1	. 1				Ď
	toxaphene	0.005	0.01	1	1	1				ŕ
	antimony	0.100	0.47	1	1		1			Ē
	arsenic	0.010	0.34	1	1		1			
116.	asbestos	10 MFL	10 MFL	0						0
117.	beryllium	0.010	0.20	1	1		1			Ē
	cadmium	0.002	0.049	1	1			1		č
119.	chronium	0.005	0.07	1	1		1			2
120.	copper	0.009	0.39	1	1				1	1
	cyanide	0.02	0.047	0						Č
122.	lead	0.020	0.08	1	1		1			ģ
123.	mercury	0.0001	0.036	1	1			1		2
124.	nickel	0.005	0.22	1	1				1	-
125.	selenium	0.01	0.20	1	1			1		
126.	silver	0.02	0.07	1	1		1			
127.	thallium	0.100	0.34	1	1		1			r
	zinc	0.050	0.23	1	1				1	Ē
129.	2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)			0						Ć F

(a) Analytical quantification concentration was reported with the data (see Section V).

(b) Treatable concentrations for metals are based on performance of lime precipitation, sedimentation, and filtration; for organics, treatable concentrations are based on performance of activated carbon.

(c), (d), (e) Reported together.

۱ ۲۷

TABLE VI-2

TOXIC POLLUTANTS NEVER DETECTED

1.	acenaphthene
2.	acrolein
3.	acrylonitrile
5.	benzidine
6.	carbon tetrachloride (tetrachloromethane)
	chlorobenzene
8.	1,2,4-trichlorobenzene
9.	hexachlorobenzene
10.	1,2-dichloroethane
11.	1,1,1-trichloroethane
12.	hexachloroethane
13.	1,1-dichloroethane
	•
14.	1,1,2-trichloroethane
15.	1.1,2,2-tetrachloroethane
16.	chloroethane
17.	bis (chloromethyl) ether (deleted)
18.	bis (2-chloroethyl) ether
19.	2-chloroethyl vinyl ether (mixed)
20.	2-chloronaphthalene
21.	4,6-trichlorophenol
22.	parachlorometa cresol
	chloroform (trichloromethane)
	2-chlorophenol
25.	1,2-dichlorobenzene
26.	
	1,4-dichlorobenzene
28.	
29.	l,l-dichloroethylene
30.	1,2-trans-dichloroethylene
31.	2,4-dichlorophenol
32.	1.2-dichloropropane
33.	1,2-dichloropropylene (1,3-dichloropropene)
34.	2,4-dimethylphenol
35.	2,4-dinitrotoluene
	2,4-dinitrotoluono
30.	
37.	
38.	-
39.	fluoranthene
40.	4-chlorophenyl phenyl ether
41.	4-bromophenyl phenyl ether
42.	bis(2-chloroisopropyl) ether
43.	bis(2-choroethoxy) methane
44.	methylene chloride (dichloromethane)
45.	methyl chloride (chloromethane)
46.	methyl bromide (bromomethane)
47.	bromoform (tribromomethane)
48.	dichlorobromomethane
49.	trichlorofluoromethane (deleted)

TABLE VI-2 (Continued)

TOXIC POLLUTANTS NEVER DETECTED

- 50. dichlorodifluoromethane (deleted)
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,6-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N.nitrosodi-n-propylamine
- 63. N.HICIOSOUI-H-PLOPYIAMII
- 64. pentachlorophenol
- 65. phenol
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate
- 72. benzo (a)anthracene (1,2-benzanthracene)
- 73. benzo (a)pyrene (3,4-benzopyrene)
- 74. 3,4-benzofluoranthene
- 75. benzo(k)fluoranthane (11,12-benzofluoranthene)
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene (1,11-benzoperylene)
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo (a,h)anthracene (1,2,5,6-dibenzanthracene)
- 83. indeno (1,2,3-cd)pyrene (w,e,-o-phenylenepyrene)
- 84. pyrene
- 85. tetrachloroethylene
- 87. trichloroethylene
- 88. vinyl chloride (chloroethylene)
- 89. aldrin
- 90. dieldrin
- 91. chlordane (technical mixture and metabolites)
- 92. 4,4'-DDT
- 93. 4,4 -DDE(p,p'DDX)
- 94. 4,4'-DDD(p.p'TDE)
- 95. Alpha-endosulfan
- 96. Beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde

TABLE VI-2 (Continued)

TOXIC POLLUTANTS NEVER DETECTED

100.	heptachlor
101.	heptachlor epoxide
102.	Alpha-BHC
103.	Beta-BHC
104.	Gamma-BHC (lindane)
105.	Delta-BHC
106.	PCB-1242 (Arochlor 1242)
107.	PCB-1254 (Arochlor 1254)
108.	PCB-1221 (Arochlor 1221)
109.	PCB-1232 (Arochlor 1232)
110.	PCB-1248 (Arochlor 1248)
111.	PCB-1260 (Arochlor 1260)
112.	PCB-1016 (Arochlor 1016)
113.	toxaphene
116.	asbestos (Fibrous)
121.	cyanide*
129.	2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

*We did not analyze for this pollutant in samples of raw wastewater from this subcategory. This pollutant is not believed to be present based on the Agency's best engineering judgment which includes consideration of raw materials and process operations. THIS PAGE INTENTIONALLY LEFT BLANK

SECTION VII

CONTROL AND TREATMENT TECHNOLOGIES

The preceding sections of this supplement discussed the sources, flows, and characteristics of the wastewaters from primary nickel and cobalt plants. This section summarizes the description of these wastewaters and indicates the treatment technologies which are currently practiced in the primary nickel and cobalt subcategory for each wastewater stream. Secondly, this section presents the control and treatment technology options which were examined by the Agency for possible application to the primary nickel and cobalt subcategory.

CURRENT CONTROL AND TREATMENT PRACTICES

This section presents a summary of the control and treatment technologies that are currently applied to each of the sources generating wastewater in this subcategory. As discussed in Section V, wastewater associated with the primary nickel and cobalt subcategory is characterized by the presence of the toxic pollutants and suspended solids. This analysis metal is supported by raw (untreated) wastewater data presented for a combined waste stream in Section V. Generally, these pollutants present in each of the waste streams are at treatable concentrations, and these waste streams are commonly combined for treatment. Construction of one wastewater treatment system for combined treatment allows plants to take advantage of economies of scale and, in some instances, to combine streams of differing alkalinity to reduce treatment chemical requirements. The one plant in this subcategory currently has a combined wastewater consisting of chemical system, treatment precipitation, sedimentation, and filtration. Two options have been selected for consideration for BPT, BAT, NSPS, and pretreatment in this subcategory, based on combined treatment of these compatible waste streams.

RAW MATERIAL DUST CONTROL

Copper matte is crushed and ground as a preliminary step in the processing of primary nickel and cobalt. Dust and particulates generated by the crushing and grinding operations are controlled with a dry baghouse, and then slurried with water for transportation to treatment. One plant treats this waste stream as a combined wastewater with chemical precipitation, sedimentation, and filtration prior to direct discharge.

COBALT REDUCTION DECANT

The excess solution from the cobalt reduction autoclave furnace is discharged, along with the nickel reduction decant, to a byproduct recovery system. In by-product recovery, the ammonium sulfate values are recovered in a fertilizer product. There is no wastewater treatment for this stream.

NICKEL REDUCTION DECANT

The excess solution from the nickel reduction autoclave furnace is discharged to a by-product recovery system. In by-product recovery, the ammonium sulfate values are recovered in a fertilizer product. There is no wastewater treatment for this stream.

NICKEL WASH WATER

After reducing nickel to powder in a hydrogen furnace, the powder is washed with water. The wastewater produced here is combined with other wastes and treated using lime, settle, and filter technology described for the previous waste stream. Nickel wash water is discharged directly after treatment.

CONTROL AND TREATMENT OPTIONS

The Agency examined two control and treatment technology options that are applicable to the primary nickel and cobalt subcategory. The options selected for evaluation represent a combination of preliminary treatment technologies applicable to individual waste screams and end-of-pipe treatment technologies. The effectiveness of these technologies is presented in Section VII of the General Development Document.

OPTION A

Option A for the primary nickel and cobalt subcategory requires control and treatment technologies to reduce the discharge of wastewater pollutant mass.

The Option A treatment scheme consists of ammonia steam stripping preliminary treatment to reduce the concentration of ammonia in selected streams, and chemical precipitation and sedimentation technology. Specifically, lime or some other alkaline compound is used to precipitate metal ions as metal hydroxides. The metal hydroxides and suspended solids settle out and the sludge is collected. Vacuum filtration is used to dewater sludge.

OPTION C

Option C for the primary nickel and cobalt subcategory consists of all control and treatment requirements of Option A (ammonia steam stripping, chemical precipitation, and sedimentation) plus multimedia filtration technology added at the end of the Option A treatment scheme. Multimedia filtration is used to remove suspended solids, including precipitates of metals, beyond the concentration attainable by gravity sedimentation. The filter suggested is of the gravity, mixed-media type, although other forms of filters, such as rapid sand filters or pressure filters would perform satisfactorily. The addition of filters also .

.

.

provides consistent removal during periods of time in which there are rapid increases in flows or loadings of pollutants to the treatment system.

THIS PAGE INTENTIONALLY BLANK

SECTION VIII

COSTS, ENERGY AND NONWATER QUALITY ASPECTS

This section presents a summary of compliance costs for the primary nickel and cobalt subcategory and a description of the treatment options and subcategory-specific assumptions used to develop these estimates. Together with the estimated pollutant reduction performance presented in Sections IX, X, XI, and XII of this supplement, these cost estimates provide a basis for evaluating each regulatory option. These cost estimates are also used in determining the probable economic impact of regulation on the subcategory at different pollutant discharge levels. In addition, this section addresses nonwater quality environmental impacts of wastewater treatment and control alternatives, including air pollution, solid wastes, and energy requirements, which are specific to the primary nickel and cobalt subcategory.

TREATMENT OPTIONS FOR EXISTING SOURCES

As discussed in Section VII, two treatment options have been developed for existing primary nickel and cobalt sources. The treatment schemes for each option are summarized below and schematically presented in Figures X-1 and X-2 (pages 3916 and 3917).

OPTION A

Option A consists of ammonia steam stripping preliminary treatment, where required and chemical precipitation and sedimentation end-of-pipe technology.

OPTION C

Option C consists of all control and treatment technology for Option A (ammonia steam stripping preliminary treatment, chemical precipitation and sedimentation) plus multimedia filtration technology added at the end of the Option A treatment scheme.

COST METHODOLOGY

A detailed discussion of the methodology used to develop the compliance costs is presented in Section VIII of the General Development Document. Plant-by-plant compliance costs for the nonferrous metals manufacturing category have been revised as necessary following proposal. These revisions calculate incremental costs, above treatment already in place, necessary to comply with the promulgated effluent limitations and standards and are presented in the administrative record supporting this regulation. A comparison of the costs developed for proposal and the revised costs for the final regulation are presented in Table VIII-1 (page 3893) for the direct discharger.

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - VIII

Each of the general assumptions used to develop compliance costs is presented in Section VIII of the General Development Document. Each subcategory contains a unique set of waste streams requiring certain subcategory-specific assumptions to develop compliance costs. The major assumptions relevant to cost estimates for the primary nickel and cobalt subcategory are discussed briefly below.

- (1) Caustic is used instead of lime in chemical precipitation for this plant, because the one direct discharger in the subcategory currently uses caustic.
- (2) Raw material dust control wastewater is assumed to have a pH = 5 because of sulfides present, and a concentration of TSS = 12 mg/l. Nickel wash water is also assumed to have pH = 5 and a concentration of TSS = 12 mg/l.
- (3) Sampling data indicate that the raw material dust control and nickel wash waste streams contain treatable concentrations of ammonia. However, examination of the processes involved and correspondence with plant personnel indicate that the reported ammonia level is not due to the presence of ammonia in the process streams. Rather, ammonia enters the treatment system influent (sample number 367) through spills in the process areas. Consequently, these two process streams do not require ammonia steam stripping.

Revised direct discharge compliance cost estimates for this subcategory reflect a correction in the treatment-in-place credit assumptions made at proposal. Plant 1062 presently operates chemical precipitation, sedimentation, and filtration, and treats combined wastewater consisting of nonferrous metals а manufacturing wastewater and plant stormwater. Because stormwater is the major component of the wastewater, and because it is not in the scope of this regulation, compliance costing at proposal estimated the cost to segregate process wastewater and treat it in a separate treatment system. However, treatmentinplace credit for lime and settle was incorrectly attributed to the plant; therefore, proposal costs did not accurately reflect the cost to the direct discharger for compliance with the proposed and promulgated rulemaking. EPA believes that the existing filter can continue to be used if a holding tank is installed after lime and settle treatment of raw material dust slurry water and nickel wash water. The costs for this holding tank are included in EPA's compliance cost estimate. The revised compliance cost estimates prepared for promulgation are presented in Table VIII-1.

NONWATER QUALITY ASPECTS

Nonwater quality impacts specific to the primary nickel and cobalt subcategory, including energy requirements, solid waste and air pollution, are discussed below.

ENERGY REQUIREMENTS

The methodology used for determining the energy requirements for the various options is discussed in Section VIII of the General Development Document. Energy requirements for the two options considered are estimated at 20,600 kwh/yr and 28,570 kwh/yr for Options A and C, respectively. Option C, which includes filtration, increases energy consumption over Option A by approximately 39 percent. Option C represents less than 1 percent of a typical plant's electrical energy usage. It is therefore concluded that the energy requirements of the treatment options considered will have no significant impact on total plant energy consumption.

SOLID WASTE

Sludge generated in the primary nickel and cobalt subcategory is due to the precipitation of metal hydroxides and carbonates using lime or various other chemicals. Sludges associated with the primary nickel and cobalt subcategory will necessarily contain quantities of toxic metal pollutants. These sludges are not subject to regulation as hazardous wastes since wastes generated by primary smelters and refiners are currently exempt from regulation by Act of Congress (Resource Conservation and Recovery Act (RCRA), Section 3001(b)), as interpreted by EPA. If a small excess of lime is added during treatment, the Agency does not believe these sludges would be identified as hazardous under RCRA in any case. (Compliance costs include this amount of lime.) This judgment is based on the results of Extraction Procedure (EP) toxicity tests performed on similar sludges (toxic metalbearing sludges) generated by other categories such as the iron and steel industry. A small amount of excess lime was added during treatment, and the sludges subsequently generated passed the toxicity test. See CFR 8261.24. Thus, the Agency believes that the wastewater sludges will similarly not be EP toxic if the recommended technology is applied.

Although it is the Agency's view that solid wastes generated as a result of these guidelines are not expected to be hazardous, generators of these wastes must test the waste to determine if the wastes meet any of the characteristics of hazardous waste.

If these wastes should be identified or are listed as hazardous, they will come within the scope of RCRA's "cradle to grave" hazardous waste management program, requiring regulation, from the point of generation to point of final disposition. EPA's gener-ator standards would require generators of hazardous nonferrous metals manufacturing wastes to meet containerization, labeling, recordkeeping, and reporting requirements; if plants dispose of hazardous wastes off-site, they would have to prepare a manifest which would track the movement of the wastes from the generator's premises to a permitted off-site treatment, storage, or disposal facility. See 40 CFR 262.20, 45 FR 33142 (May 19, 1980), as amended at 45 FR 86973 (December 31, 1980). The

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - VIII

transporter regulations require transporters of hazardous wastes to comply with the manifest system to assure that the wastes are delivered to a permitted facility. See 40 CFR 263.20, 45 FR 33151 (May 19, 1980), as amended at 45 FR 86973 (December 31, 1980). Finally, RCRA regulations establish standards for hazardous waste treat-ment, storage, and disposal facilities allowed to receive such wastes. See 40 CFR Part 464, 46 FR 2802 (January 12, 1981), and 47 FR 32274 (July 26, 1982).

Even if these wastes are not identified as hazardous, they still must be disposed of in compliance with the Subtitle D open dumping standards, implementing 4004 of RCRA. See 44 FR 53438 (September 13, 1979). The Agency has calculated as part of the costs for wastewater treatment the cost of hauling and disposing of these wastes.

Sludge generation for the primary nickel and cobalt subcategory is estimated at 10.41 metric tons per year when implementing the promulgated BPT technology. Sludge generation for promulgated BAT is not expected to be significantly different.

AIR POLLUTION

There is no reason to believe that any substantial air pollution problems will result from implementation of ammonia steam stripping, chemical precipitation, sedimentation, and multimedia filtration. Ammonia steam stripping yields an aqueous ammonia stream. The other technologies transfer pollutants to solid waste and are not likely to transfer pollutants to air.

Table VIII-1

COST OF COMPLIANCE FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY DIRECT DISCHARGERS

(March, 1982 Dollars)

	Proposal	Proposal Costs		on Costs
Option	Capital Cost	Annual Cost	Capital Cost	Annual Cost
A	31,075	20,053	71,400	27,200
С	31,075	27,844	86,500	31,800

• .

THIS PAGE INTENTIONALLY LEFT BLANK

.

.

SECTION IX

BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

This section defines the effluent characteristics attainable through the application of best practicable control technology currently available (BPT). BPT reflects the existing performance by plants of various sizes, ages, and manufacturing processes within the primary nickel and cobalt subcategory, as well as the established performance of the recommended BPT systems. Particular consideration is given to the treatment already in place at plants within the data base.

The factors considered in identifying BPT include the total cost of applying the technology in relation to the effluent reduction benefits from such application, the age of equipment and facilities involved, the manufacturing processes used, nonwater quality environmental impacts (including energy requirements), and other factors the Administrator considers appropriate. In general, the BPT level represents the average of the existing performances of plants of various ages, sizes, processes, or other common characteristics. Where existing performance is uniformly inadequate, BPT may be transferred from a different subcategory or category. Limitations based on transfer of technology are supported by a rationale concluding that the technology is, indeed, transferable, and a reasonable prediction that it will be capable of achieving the prescribed effluent limits BPT focuses on end-of-pipe treatment rather than process changes or internal controls, except where such practices are common industry practice.

TECHNICAL APPROACH TO BPT

The Agency studied the nonferrous metals category to identify the processes used, the wastewaters generated, and the treatment processes installed. Information was collected from the category using data collection portfolios, and specific plants were sampled and the wastewaters analyzed. In making technical assessments of data, reviewing manufacturing processes, and assessing wastewater treatment technology options, both indirect and direct dischargers have been considered as a single group. An examination of plants and processes did not indicate any process differences based on the type of discharge, whether it be direct or indirect. As explained in Section IV, the primary nickel and cobalt subcategory has been subdivided into four potential wastewater sources. Since the water use, discharge and pollutant characteristics of each of these rates, wastewaters is potentially unique, effluent limitations will be developed for each of the four subdivisions.

For each of the subdivisions, a specific approach was followed for the development of BPT mass limitations. The first requirement to calculate these limitations is to account for production and flow variability from plant to plant. Therefore, a unit of production or production normalizing parameter (PNP) was determined for each waste stream which could then be related to the flow from the process to determine a production normalized flow. Selection of the PNP for each process element is discussed in Section IV. Each process within the subcategory was then analyzed to determine which subdivisions were present, the specific flow rates generated for each subdivision, and the specific production normalized flows for each subdivision. This analysis is discussed in detail in Section V. Nonprocess wastewaters such as rainfall runoff and noncontact cooling water are not considered in the analysis.

Production normalized flows for each subdivision were then analyzed to determine the flow to be used as part of the basis for BPT mass limitations. The selected flow (sometimes referred to as a BPT regulatory flow or BPT discharge flow) reflects the water use controls which are common practices within the category. The BPT regulatory flow is based on the average of all applicable data. Plants with normalized flows above the average may have to implement some method of flow reduction to achieve the BPT limitations.

The second requirement to calculate mass limitations is the set of concentrations that are achievable by application of the BPT level of treatment technology. Section VII discusses the various control and treatment technologies which are currently in place for each wastewater source. In most cases, the current control and treatment technologies consist of chemical precipitation and sedimentation (lime and settle technology) and a combination of reuse and recycle to reduce flow. Ammonia steam stripping is applied to streams with treatable concentrations of ammonia.

Using these regulatory flows and the achievable concentrations, the next step is to calculate mass loadings for each wastewater source or subdivision. This calculation was made on a stream-by stream basis, primarily because plants in this subcategory may perform one or more of the operations in various combinations. The mass loadings (milligrams of pollutant per kilogram of production - mg/kg) are based on multiplying the BPT regulatory flow (l/kkg) by the concentration achievable by the BPT level of treatment technology (mg/l) for each pollutant parameter to be limited under BPT. These mass loadings are published in the Federal Register and in CFR Part 421 as the effluent limitations.

The mass loadings which are allowed under BPT for each plant will be the sum of the individual mass loadings for the various wastewater sources which are found at particular plants. Accordingly. all the wastewater generated within a plant may be combined for treatment in a single or common treatment system, but the effluent limitations for these combined wastewaters are based on the various wastewater sources which actually contribute to the combined flow. This method accounts for the variety of combinations of wastewater sources and production processes which may be found at primary nickel and cobalt plants. The Agency usually establishes wastewater limitations in terms of mass rather than concentration. This approach prevents the use of dilution as a treatment method (except for controlling pH). The production normalized wastewater flow (l/kkg) is a link between the production operations and the effluent limitations. The pollutant discharge attributable to each operation can be calculated from the normalized flow and effluent concentration achievable by the treatment technology and summed to derive an appropriate limitation for each plant.

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

In balancing costs in relation to pollutant removal estimates. EPA considers the volume and nature of existing discharges, the volume and nature of discharges expected after application of BPT, the general environmental effects of the pollutants, and the cost and economic impacts of the required pollution control level. The Act does not require or permit consideration of water quality problems attributable to particular point sources or industries, or water quality improvements in particular water quality bodies. Accordingly, water quality considerations were not the basis for selecting the proposed or promulgated BPT.

The methodology for calculating pollutant removal estimates and plant compliance costs is discussed in Section X. Table X-1 (page 3911) shows the pollutant removal estimates for each treatment option. Compliance costs are presented in Table X-2 (page 3912).

BPT OPTION SELECTION

The technology basis for the proposed and promulgated BPT limitations is Option A, chemical precipitation and sedimentation technology to remove metals and solids from combined wastewaters and to control pH, and ammonia steam stripping to remove ammonia.

Chemical precipitation and sedimentation technology is already in-place in the subcategory. The pollutants specifically promulgated for regulation at BPT are copper, nickel, cobalt, ammonia, TSS, and pH.

Ammonia steam stripping is demonstrated at six facilities in the nonferrous metals manufacturing category. These facilities are treating ammonia-bearing wastewaters associated with the production of primary tungsten, primary columbium and tantalum, primary molybdenum, secondary tungsten and cobalt, and primary zirconium and hafnium. EPA believes that performance data from the iron and steel manufacturing category provide a valid measure of this technology's performance on nonferrous metals manufacturing category wastewater because raw wastewater concentrations of ammonia are of the same order of magnitude in the respective raw wastewater matrices.

Chemical analysis data were collected of raw waste (treatment

influent) and treated waste (treatment effluent) from one coke plant of the iron and steel manufacturing category. A contractor for EPA, using EPA sampling and chemical analysis protocols, collected six paired samples in a two-month period. These data are the data base for determining the effectiveness of ammonia steam stripping technology and are contained with the public record supporting this document. Ammonia treatment at this coke plant consisted of two steam stripping columns in series with steam injected countercurrently to the flow of the wastewater. A lime reactor for pH adjustment separated the two stripping columns.

The raw untreated wastewater samples from the coke facility contained ammonia concentrations of 599, 226, 819, 502, 984, and 797 mg/l. Raw untreated wastewater samples from the primary nickel and cobalt subcategory should have ammonia concentrations on a similar order of magnitude.

The Agency has verified the promulgated steam stripping performance values using steam stripping data collected at a primary zirconium and hafnium plant which has raw ammonia levels as high as any in the nonferrous metals manufacturing category. Data collected by the plant represent almost two years of daily operations, and support the long-term mean used to establish treatment effectiveness.

In addition, data submitted by a primary columbium-tantalum plant, which also has significant raw ammonia levels, verifies the promulgated steam stripping performance values.

Implementation of the promulgated BPT limitations will remove annually an estimated 241 kg of toxic metals. The Agency projects capital and annual costs of \$71,400 and \$27,200 (1982 dollars), respectively for the discharging facility to achieve the promulgated BPT regulations. The BPT treatment configuration is presented in Figure IX-1 (page 3904).

More stringent technology options were not selected for BPT since they require in-process changes or end-of-pipe technologies less widely practiced in the subcategory, and, therefore, are more appropriately considered under BAT.

WASTEWATER DISCHARGE RATES

A BPT discharge rate is calculated for each subdivision based on the average of the flows of the existing plants, as determined from analysis of dcp. The discharge rate is used with the achievable treatment concentrations to determine BPT effluent limitations. Since the discharge rate may be different for each wastewater source, separate production normalized discharge rates for each of the four wastewater sources are discussed below and summarized in Table IX-1 (page 3901). The discharge rates are normalized on a production basis by relating the amount of wastewater generated to the mass of the intermediate product which is produced by the process associated with the waste stream in question. These production normalizing parameters, or PNPs, are also listed in Table IX-1.

Section V of this document further describes the discharge flow rates and presents the water use and discharge flow rates for each subdivision by plant in Tables V-1 through V-4.

RAW MATERIAL DUST CONTROL

The BPT wastewater discharge rate used at proposal and promulgation for raw material dust control is 77 liters/kkg (18.5 gal/ton) of copper, nickel, and cobalt in the crushed raw material. This rate is allocated only for those plants which produce nickel and cobalt from an ore concentrate raw material and transport dust from the baghouse over the crushing and grinding operations with a water slurry system. Water use and wastewater discharge rates are presented in Table V-1 (page 3848). The BPT flow is based on the reported rate of 77 liters/kkg).

COBALT REDUCTION DECANT

The BPT wastewater discharge rate used at proposal and promulgation for cobalt reduction decant is 21,398 liters/kkg (5.128 gal/ton) of cobalt produced. The BPT flow is based on the water use rate reported, as shown in Table V-2 (page 3849). This rate is allocated only for those plants which reduce cobalt from solution in a hydrogen autoclave, and decant excess solution.

NICKEL REDUCTION DECANT

The proposed and promulgated BPT wastewater discharge rate for nickel reduction decant is 12,695 liters/kkg (3,042 gal/ton) of nickel produced. The BPT flow is based on the water use rate reported by the only plant with this process waste stream, as shown in Table V-3 (page 3850). This rate is allocated only for those plants which reduce nickel from solution in a hydrogen autoclave, and decant excess solution.

NICKEL WASH WATER

The proposed and promulgated BPT wastewater discharge rate for nickel wash water is 33.87 liters/kkg (8.12 gal/ton) of nickel powder washed. This rate is allocated only for those plants which produce nickel from primary sources via a hydrogen reduction autoclave, and then wash the product with water. Water use and wastewater discharge rates are presented in Table V-4 (page 3851). The BPT flow is based on the reported rate of 33.87 liters/kkg.

REGULATED POLLUTANT PARAMETERS

The raw wastewater concentrations from individual operations and the subcategory as a whole were examined to select certain pollutant parameters for limitation. This examination and evaluation was presented in Section VI. A total of six pollutants or pollutant parameters were selected for limitation under the promulgated BPT and are listed below:

120. copper
124. nickel
ammonia (as N)
cobalt
total suspended solids (TSS)
pH

EFFLUENT LIMITATIONS

The pollutant concentrations achievable by application of the BPT technology are discussed in Section VII of this supplement. These achievable concentrations (both one day maximum and monthly average values) are multiplied by the BPT normalized discharge flows summarized in Table IX-1 to calculate the mass of pollutants allowed to be discharged per mass of product. The results of these calculations in milligrams of pollutant per kilogram of product represent the BPT effluent limitations and are presented in Table IX-2 (page 3902) for each individual waste stream.

.

Table IX-1

BPT WASTEWATER DISCHARGE RATES FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

Wastewater Stream		BPT Norm Discharg 1/kkg		Production Normalizing Parameter		
1.	Raw Material Dust Control	77	18.5	Copper, nickel, and cobalt in the crushed raw material		
2.	Cobalt Reduction Decant	21,398	5,128	Cobalt produced		
3.	Nickel Reduction Decant	12,695	3.042	Nickel produced		
4.	Nickel Wash Water	33.87	8.12	Nickel powder washed		

TABLE IX-2

BPT MASS LIMITATIONS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(a) Raw Material Dust Control BPT

Pollutant	or	Maximum for	Maximum for
pollutant	property	any one day	monthly average

mg/kg (lb/million lbs) of copper, nickel, and cobalt in the crushed raw material

*Copper	0.146	0.077			
*Nickel	0.148	0.098			
Zinc	0.112	0.047			
*Ammonia	10.260 4.512				
*Cobalt	0.016	0.007			
*TSS	3.157	1.502			
*pH	Within the range of 7.5 to 10.0 at	all times			

(b) Cobalt Reduction Decant BPT

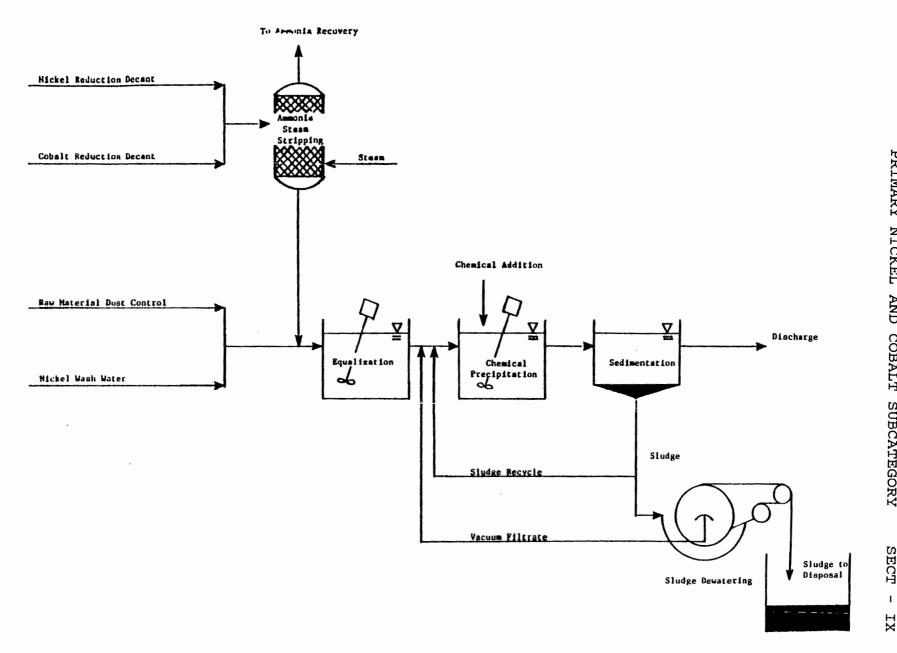
Pollutant		Maximum for	Maximum for
pollutant		any one day	monthly average
	mg/kg (lb	/million lbs) of	cobalt produced
*Copper	Within	40.660	21.400
*Nickel		41.080	27.180
Zinc		31.240	13.050
*Ammonia		2,852.000	1,254.000
*Cobalt		4.494	1.926
*TSS		877.300	417.300
*pH		the range of 7.5	5 to 10.0 at all times

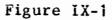
*Regulated Pollutant

TABLE IX-2 (Continued)

BPT MASS LIMITATIONS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(c) Nickel Reduction Decant BPT


Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average


mg/kg (lb/million lbs) of nickel produced

(d) Nickel Wash Water BPT

Pollutan pollutan		erty		imum f one d			imum f thly a		2
	mg/kg	(lb/mil	lion	lbs)	of nic	kel	powder	washe	ed
*Copper				0.	064			0.03	34
*Nickel				0.	065			0.04	13
Zinc				0.	050			0.02	21
*Ammonia				4.	515			1.98	35
*Cobalt				0.	007			0.00)3
*TSS				1.	389			0.66	50
*pH		Within	the	range	of 7.5	to	10.0 a	t all	times

*Regulated Pollutant

BPT TREATMENT SCHEME FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

3904

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT L

SECTION X

BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

These effluent limitations are based on the best control and treatment technology used by a specific point source within the industrial category or subcategory, or by another industry from which it is transferable. Emphasis is placed on additional treatment techniques applied at the end of the treatment systems currently used, as well as reduction of the amount of water used and discharged, process control, and treatment technology optimization.

The factors considered in assessing best available technology economically achievable (BAT) include the age of equipment and facilities involved, the process used process changes, nonwater quality environmental impacts (including energy requirements). and the costs of application of such technology. BAT represents the best available technology economically achievable at plants of various ages, sizes, processes, or other characteristics. Where the Agency has found the existing performance to be uniformly inadequate, BAT may be transferred from a different subcategory or category. BAT may include feasible process changes or internal controls, even when not in common industry practice.

The required assessment of BAT considers costs, but does not require a balancing of costs against pollutant removals However, in assessing the proposed and promulgated BAT the Agency has given substantial weight to the economic achievability of the technology.

TECHNICAL APPROACH TO BAT

The Agency reviewed a wide range of technology options and evaluated the available possibilities to ensure that the most effective and beneficial technologies were used as the basis of BAT. To accomplish this, the Agency elected to examine two technology options which could be applied to the primary nickel and cobalt subcategory as alternatives for the basis of BAT effluent limitations.

For the development of BAT effluent limitations, mass loadings were calculated for each wastewater source or subdivision in the subcategory using the same technical approach as described in Section IX for BPT limitations development. The differences in the mass loadings for BPT and BAT are due to increased treatment effectiveness achievable with the more sophisticated BAT treatment technology.

The treatment technologies considered for BAT are summarized below:

Option A (Figure X-1, page 3916) is based on:

- Ammonia steam stripping preliminary treatment (where required)
- o Chemical precipitation and sedimentation

Option C (Figure X-2, page 3917) is based on:

- Ammonia steam stripping preliminary treatment (where required)
- o Chemical precipitation and sedimentation
- o Multimedia filtration

The first option considered (Option A) is the same as the BPT treatment and control technology which was presented in the previous section. The second option represents substantial progress toward the reduction of pollutant discharges above and beyond the progress achievable by BPT.

OPTION A

Option A for the primary nickel and cobalt subcategory is equivalent to the control and treatment technologies which were analyzed for BPT in Section IX (see Figures IX-1 or X-1). The BPT end-of-pipe treatment scheme includes ammonia steam stripping pretreatment, chemical precipitation, and sedimentation. The discharge rates for Option A are equal to the discharge rates allocated to each stream as a BPT discharge flow.

OPTION C

Option C for the primary nickel and cobalt subcategory consists of all control and treatment requirements of Option A (ammonia steam stripping, chemical precipitation, and sedimentation) plus multimedia filtration technology added at the end of the Option A treatment scheme (see Figure X-2). Multimedia filtration is used to remove suspended solids, including precipitates of toxic metals, beyond the concentrations attainable by gravity sedimentation. The filter suggested is of the gravity, mixed media type, although other forms of filters, such as rapid sand filters or pressure filters, would perform satisfactorily.

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

As one means of evaluating each technology option, EPA developed estimates of the pollutant removals and compliance costs associated with each option. The methodologies are described below.

POLLUTANT REMOVAL ESTIMATES

A complete description of the methodology used to calculate the

estimated pollutant removal, or benefit, achieved by the application of the various treatment options is presented in Section X of Vol. I. In short, sampling data collected during field sampling program were used to characterize the major the waste streams considered for regulation. At each sampled facility the sampling data were production normalized for each unit operation (i.e. mass of pollutant generated per mass of product manufactured). This value, referred to as the raw waste, to estimate the mass of toxic pollutants generated was used within the primary nickel and cobalt subcategory. The pollutant removal estimates were calculated for each plant by first estimating the total mass of each pollutant in the untreated This was calculated by first multiplying the raw wastewater. waste values by the corresponding production value for that stream and then summing these values for each pollutant for every stream generated by the plant.

The volume of wastewater discharged after the application of each treatment option was estimated for each operation at each plant by comparing the actual discharge to the regulatory flow. The smaller of the two values was selected and summed with the other plant flows. The mass of pollutant discharged was then estimated by multiplying the achievable concentration values attainable with the option (mq/1) by the estimated volume of process wastewater discharged by the subcategory. The mass of pollutant removed is the difference between the estimated mass of pollutant generated within the subcategory and the mass of pollutant discharged after application of the treatment option. The pollutant removal estimates for direct dischargers in the primary nickel and cobalt subcategory are presented in Table X-1 (page These pollutant removal estimates are equivalent to those 3911). presented at proposal.

COMPLIANCE COSTS

In estimating subcategory-wide compliance costs, the first step was to develop a cost estimation model, relating the total costs associated with installation and operation of wastewater treatment technologies to plant process wastewater discharge. EPA applied the model to each plant. The plant's investment and operating costs are determined by what treatment it has in place and by its individual process wastewater discharge flow. As discussed above, this flow is either the actual or the BAT regulatory flow, whichever is lesser. The final step was to annualize the capital costs, and to sum the annualized capital costs, and the operating and maintenance costs for each plant, yielding the cost of compliance for the subcategory (see Table X-2, page 3912). These costs were used in assessing economic achievability.

BAT OPTION SELECTION - PROPOSAL

EPA proposed BAT limitations for the primary nickel and cobalt subcategory based on Option C, preliminary treatment consisting of ammonia steam stripping followed by end-of-pipe treatment consisting of chemical precipitation, sedimentation, and filtration. The pollutants specifically proposed for regulation under BAT were copper, nickel, ammonia, and cobalt.

Implementation of the proposed BAT limitations was estimated to remove 246 kilograms of priority metals annually. The projected capital and annual costs for the proposed BAT technology were estimated to be \$31,075 and \$27,844 (1982 dollars), respectively.

BAT OPTION SELECTION - PROMULGATION

Our promulgated BAT limitations for this Subcategory are based on Option C, preliminary treatment of ammonia steam stripping followed by end-of-pipe treatment consisting of chemical precipitation and sedimentation (BPT technology), and filtration. Filters are presently utilized by the one plant in this subcategory.

We are promulgating filtration as part of the BAT technology because this technology is demonstrated in the primary nickel and cobalt subcategory (the one discharger in this subcategory presently has a filter, and a total of 25 facilities in eight nonferrous metals manufacturing subcategories currently have filters), and results in additional removals of toxic metals. In addition, filtration adds reliability to the treatment system by making it less susceptible to operator error and to sudden changes in raw wastewater flows and concentrations.

The pollutants specifically limited under BAT are cobalt, copper, nickel, and ammonia. The toxic pollutant zinc was also considered for regulation because it was found at treatable concentrations in the raw wastewaters from this subcategory. This pollutant was not selected for specific regulation because it will be effectively controlled when the regulated toxic metals are treated to the concentrations achievable by the model BAT technology.

Implementation of the promulgated BAT limitations would remove annually an estimated 246 kg of priority metals, which is 5 kg of toxic metals greater than the estimated BPT removal. The Agency projects capital and annual costs of \$86,500 and \$31,800 (1982 dollars), respectively for technology required to achieve the promulgated BAT regulations. The BAT treatment scheme is presented in Figure X-2.

WASTEWATER DISCHARGE RATES

A BAT discharge rate was calculated for each subdivision based upon the flows of the existing plants, as determined from analysis of the data collection portfolios. The discharge rate is used with the achievable treatment concentrations to determine BAT effluent limitations. Since the discharge rate may be different for each wastewater source, separate production normalized discharge rates for each of the four wastewater sources were determined and are summarized in Table X-3 (page 3913). The discharge rates are normalized on a production basis by relating the amount of wastewater generated to the mass of the intermediate product which is produced by the process associated with the waste stream in question. These production normalizing parameters, or PNPs, are also listed in Table X-3.

The BAT discharge rates reflect the flow reduction requirements of the selected BAT option. Since no flow reduction beyond the flow reduction practices of BPT is required for this subcategory, BAT discharge rates are identical to BPT discharge rates.

REGULATED POLLUTANT PARAMETERS

The raw wastewater concentrations from individual operations and the subcategory as a whole were examined to select certain pollutants and pollutant parameters for limitation. This examination and evaluation was presented in Section VI. The Agency, however, has chosen not to regulate all three toxic pollutants selected in this analysis.

The high cost associated with analysis for toxic metal pollutants has prompted EPA to develop an alternative method for regulating and monitoring toxic pollutant discharges from the nonferrous metals manufacturing category. Rather than developing specific effluent mass limitations and standards for each of the toxic metals found in treatable concentrations in the raw wastewater from a given subcategory, the Agency is promulgating effluent mass limitations only for those pollutants generated in the greatest quantities as shown by the pollutant removal estimates. The pollutants selected for specific limitation are listed below:

120.	copper
124.	nickel
	cobalt

By establishing limitations and standards for certain priority metal pollutants, discharges will attain the same degree of control over priority metal pollutants as they would have been required to achieve had all the priority metal pollutants been directly limited.

This approach is technically justified since the treatable concentrations used for chemical precipitation and sedimentation technology are based on optimized treatment for concomitant multiple metals removal. Thus, even though metals have somewhat different theoretical solubilities, they will be removed at very nearly the same rate in a chemical precipitation and sedimentation treatment system operated for multiple metals removal. Filtration as part of the technology basis is likewise justified because this technology removes metals nonpreferentially.

The toxic metal pollutants selected for specific limitation in the primary nickel and cobalt subcategory to control the discharges of toxic metal pollutants are copper and nickel. The following toxic metal pollutant is excluded from limitation on the basis that it is effectively controlled by the limitations developed for copper and nickel:

128. zinc

The nonconventional pollutants ammonia and cobalt will be limited in the primary nickel and cobalt subcategory along with the priority pollutants nickel and copper. It is necessary to limit ammonia because the treatment technology used to control copper and nickel (chemical precipitation and sedimentation) does not remove ammonia. The priority metal pollutants copper and nickel, as well as the nonconventional metal pollutant cobalt, are specifically limited to ensure the control of the excluded priority metal pollutant. These pollutants are indicators of the performance of the treatment technology.

EFFLUENT LIMITATIONS

The concentrations achievable by application of BAT are discussed in Section VII of this supplement. The treatable concentrations both one day maximum and monthly average values are multiplied by the BAT normalized discharge flows summarized in Table X-3 to calculate the mass of pollutants allowed to be discharged per mass of product. The results of these calculations in milligrams of pollutant per kilogram of product represent the BAT effluent limitations and are presented in Table X-4 (page 3914) for each waste stream.

Table X-1

<u>Pollutant</u>	Raw Waste (kg/yr)	Option A Discharge (kg/yr)	Option A Removed (kg/yr)	Option C D is charge (kg/yr)	Option C Removed <u>(kg/yr)</u>
Antimony	0.11	0.11	0	0.11	0
Arsenic	0	0	0	0	0
Cadmium	0.04	0.04	0	0.04	0
Chromium (Total)	0	0	0	0	0
Copper	8.58	3.47	5.11	2.34	6.24
Cyanide (Total)	0	0	· 0	0	0
Lead	0	0	0	0	0
Mercury	0	0	0	0	0
Nickel	239.96	4,43	235.53	1.32	238.64
Selenium	1.08	1.08	0	1.08	0
Silver	0	0	0	0	0
Thallium	0	0	0	0	0
Zinc	2.26	1.98	0.29	1.38	0.88
TOTAL PRIORITY POLLUTANTS	252.04	11.12	240.92	6.27	245.77
Ammonia	2,639.55	2,635.23	4.32	2,635.23	4.32
Cobalt	27.60	0.30	27.30	0.20	27.39
TOTAL NONCONVENTIONALS	2,667.15	2,635.53	31.62	2,635.43	31.71
TSS	71.98	71.87	0.11	15.57	56.41
TOTAL CONVENTIONALS	71.98	71.87	0.11	15.57	56.41
TOTAL POLLUTANTS	2,991.16	2,718.51	272.65	2,657.27	333.89

POLLUTANT REMOVAL ESTIMATES FOR DIRECT DISCHARGERS PRIMARY NICKEL AND COBALT SUBCATEGORY

Option A - Ammonia steam stripping, chemical precipitation, and sedimentation Option C - Ammonia steam stripping, chemical precipitation, sedimentation, and filtration י א

Table X-2

COST OF COMPLIANCE FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY DIRECT DISCHARGERS

(March, 1982 Dollars)

	Proposal	Costs	Promulgation Costs		
Option	Capital Cost	Annual Cost	Capital Cost	Annual Cost	
A	31,075	20,053	71,400	27,200	
C	31,075	27,844	86,500	31,800	

×

Table X-3

BAT WASTEWATER DISCHARGE RATES FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

W	astewater Stream	BAT Norm Discharg 1/kkg		Production Normalizing Parameter
1.	Raw Material Dust Control	77	18.5	Copper, nickel, and cobalt in the crushed raw material
2.	Cobalt Reduction Decant	21,398	5,128	Cobalt produced
3.	Nickel Reduction Decant	12,695	3,042	Nickel produced
4.	Nickel Wash Water	33.87	8.12	Nickel powder washed

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - X

TABLE X-4

BAT MASS LIMITATIONS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(a) Raw Material Dust Control BAT

Pollutant o	or	Maximum	for	Maximum	for
pollutant p	property	any one	day	monthly	average

mg/kg (lb/million lbs) of copper, nickel, and cobalt in the crushed raw material

*Copper	0.099	0.047
*Nickel	0.042	0.029
Zinc	0.079	0.032
*Ammonia	10.260	4.512
*Ammonia	10.260	4.512
*Cobalt	0.011	0.005

(b) Cobalt Reduction Decant BAT

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

mg/kg (lb/million lbs) of cobalt produced

*Copper	27.390	13.050
*Nickel	11.770	7.917
Zinc	21.830	8.987
*Ammonia	2,852.000	1,254.000
*Cobalt	2.996	1.498

*Regulated Pollutant

.

•

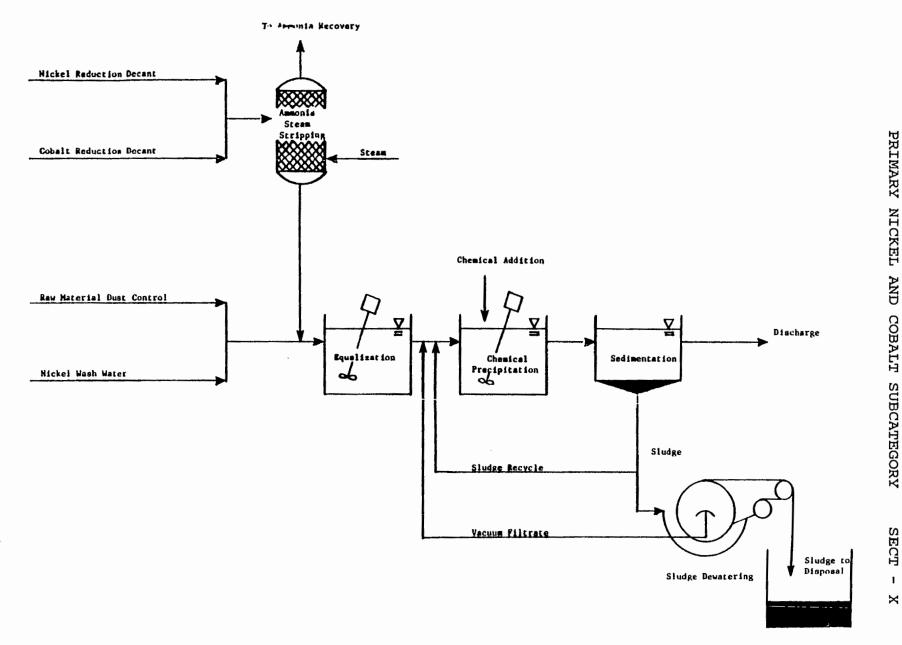
TABLE X-4 (Continued)

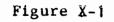
BAT MASS LIMITATIONS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(c) Nickel Reduction Decant BAT

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

	mg/kg (lb/million lbs) of	nickel produced
*Copper	16.250	7.744
*Nickel	6.982	4.697
Zinc	12.950	5.332
*Ammonia	1,692.000	743.900
*Cobalt	1.777	0.889

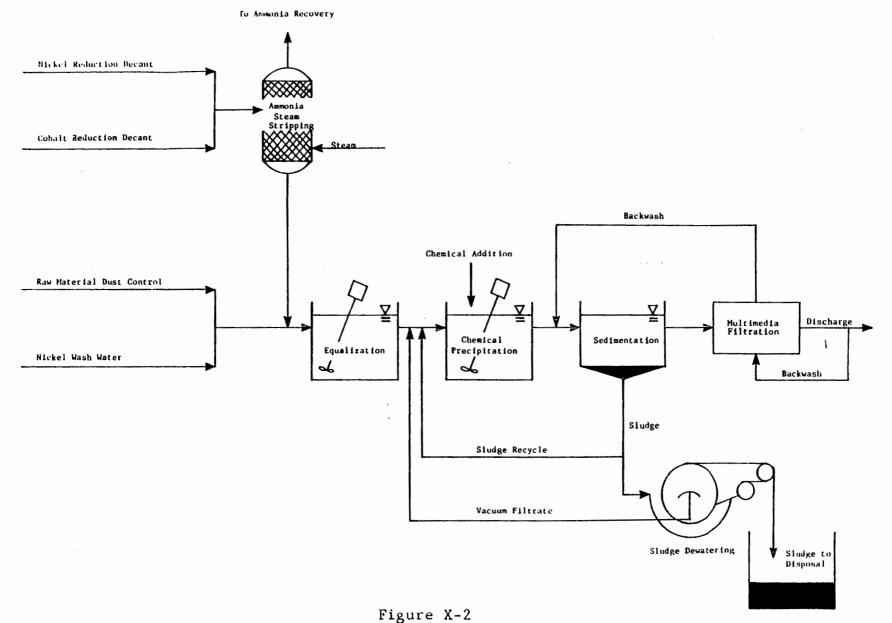

(d) Nickel Wash Water BAT


Pollutant pollutant	Maximum any one	_	Maximum monthly	

	mg/kg	(lb/million	lbs)	of	nickel	powder	washed	
*Copper *Nickel Zinc *Ammonia *Cobalt	L .		0 0 4	.04 .019 .03 .519 .009	5		0.021 0.013 0.014 1.985 0.002	

*Regulated Pollutant

:



3916

SECT I. ×

BAT TREATMENT SCHEME FOR OPTION C

PRIMARY NICKEL AND COBALT SUBCATEGORY

SECT

I

×

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION XI

NEW SOURCE PERFORMANCE STANDARDS

The basis for new source performance standards (NSPS) is the best available demonstrated technology (BDT). New plants have the opportunity to design the best and most efficient production processes and wastewater treatment technologies without facing the added costs and restrictions encountered in retrofitting an existing plant. Therefore, EPA has considered the best demonstrated process changes, in-plant controls, and end-of-pipe treatment technologies which reduce pollution to the maximum extent feasible.

This section describes the technologies for treatment of wastewater from new sources and presents mass discharge standards for regulated pollutants for NSPS in the primary nickel and cobalt subcategory, based on the selected treatment technology.

TECHNICAL APPROACH TO NSPS

New source performance standards are equivalent to the best available technology (BAT) selected for currently existing primary nickel and cobalt plants. This result is a consequence of careful review by the Agency of a wide range of technical options for new source treatment systems. There was nothing found to indicate that the wastewater flows and characteristics of new plants would not be similar to those from existing plants, since the processes used by new sources are not expected to differ from those used at existing sources. Consequently, BAT production normalized discharge rates, which are based on the best existing practices of the subcategory, can also be applied to new sources. These rates are presented in Table XI-1 (page 3921).

Treatment technologies considered for the NSPS options are identical to the treatment technologies considered for the BAT options. These options are:

OPTION A

- Preliminary treatment with ammonia steam stripping (where required)
- o Chemical precipitation and sedimentation

OPTION C

- Preliminary treatment with ammonia steam stripping (where required)
- o Chemical precipitation and sedimentation
- o Multimedia filtration

NSPS OPTION SELECTION - PROPOSAL

EPA proposed that the technology basis for NSPS be equal to that for BAT (preliminary treatment consisting of ammonia steam stripping, chemical precipitation, sedimentation, and filtration). The same pollutants were proposed for regulation at NSPS as at BAT, and the proposed wastewater discharge rates for NSPS were equivalent to those proposed for BAT.

NSPS OPTION SELECTION - PROMULGATION

We are promulgating NSPS equal to BAT. We believe that new plants could not achieve any flow reduction beyond the allowances promulgated for BAT. Because NSPS is equal to BAT we believe that the promulgated NSPS will not pose a barrier to the entry of new plants into this subcategory.

REGULATED POLLUTANT PARAMETERS

The Agency has no reason to believe that the pollutants that will be found in treatable concentrations in processes within new sources will be any different than with existing sources. Accordingly, pollutants and pollutant parameters selected for limitation under NSPS, in accordance with the rationale of Sections VI and X, are identical to those selected for BAT. The conventional pollutant parameters TSS and pH are also selected for limitation.

NEW SOURCE PERFORMANCE STANDARDS

The NSPS discharge flows for each wastewater source are the same as the discharge rates for BAT and are shown in Table XI-1. The mass of pollutant allowed to be discharged per mass of product is based on the product of the appropriate treatable concentration (mg/l) and the production normalized wastewater discharge flows (l/kkg). The results of these calculations are the productionbased new source performance standards. These standards are presented in Table XI-2 (page 3922).

Table XI-1

NSPS WASTEWATER DISCHARGE RATES FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

		NSPS Norm Discharg	e Rate	Production
W	lastewater Stream	1/kkg	gal/ton	Normalizing Parameter
1.	Raw Material Dust Control	77	18.5	Copper, nickel, and cobalt in the crushed raw material
2.	Cobalt Reduction Decant	21,398	5,128	Cobalt produced
3.	Nickel Reduction Decant	12,695	3.042	Nickel produced
4.	Nickel Wash Water	33.87	8.12	Nickel powder washed

PRIMARY NICKEL AND COBALT SUBCATEGORY SECT - XI

Table XI-2

.

NSPS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(a) Raw Material Dust Control NSPS

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

*Copper	0.099	0.047
*Nickel	0.042	0.029
Zinc	0.079	0.032
*Ammonia	10.260	4.512
*Cobalt	0.011	0.005
*TSS	1.155	0.924
*pH	Within the range of 7.5 to 10.0 at	all times

(b) Cobalt Reduction Decant NSPS

Pollutant		Maximum for	Maximum for
pollutant		any one day	monthly average
	mg/kg (lb/	million lbs) of	cobalt produced
*Copper	Within	27.390	13.050
*Nickel		11.770	7.917
Zinc		21.830	8.987
*Ammonia		2,852.000	1,254.000
*Cobalt		2.996	1.498
*TSS		321.000	256.800
*pH		the range of 7.5	5 to 10.0 at all times

*Regulated Pollutant

TABLE XI-2 (Continued)

NSPS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(c) Nickel Reduction Decant NSPS

Pollutant		Maximum for	Maximum for
pollutant		any one day	monthly average
	mg/kg (lb,	/million lbs) of	nickel produced
*Copper	Within	16.250	7.744
*Nickel		6.982	4.697
Zinc		12.950	5.332
*Ammonia		1,692.000	743.900
*Cobalt		1.777	0.889
*TSS		190.400	152.300
*PH		the range of 7.9	5 to 10.0 at all times

(d) Nickel Wash Water NSPS

Pollutant or pollutant property			imum fo one da	Maximum for monthly average				
	mg/kg	(lb/mi]	lior	n lbs) d	of nic	kel pow	der	washed
*Copper *Nickel Zinc *Ammonia *Cobalt *TSS *pH		Within	the	0.0 0.0 4.5 0.0 range o)19)35 ;15)05 ;08	to 10.	0 a	0.021 0.013 0.014 1.985 0.002 0.406 t all times

*Regulated Pollutant

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION XII

PRETREATMENT STANDARDS

PSES are designed to prevent the discharge of pollutants which pass through, interfere with, or are otherwise incompatible with the operation of publicly owned treatment works (POTW). The Clean Water Act requires pretreatment for pollutants, such as toxic metals, that limit POTW sludge management alternatives. New indirect discharge facilities, like new direct discharge have the opportunity to incorporate the facilities, best available demonstrated technologies including process changes in-plant controls, and end-of-pipe treatment technologies, and to use plant site selection co ensure adequate treatment system installation. Pretreatment standards are to be technology based, analogous to the best available technology for removal of toxic pollutants.

EPA is not promulgating pretreatment standards for existing sources in this subcategory because no indirect dischargers exist. However, EPA is promulgating pretreatment standards for new sources because plants may be constructed in the future which may discharge to a POTW.

This section describes the control and treatment technologies for pretreatment of process wastewaters from new sources in the primary nickel and cobalt subcategory. Pretreatment standards for regulated pollutants are presented based on the selected control and treatment technology.

TECHNICAL APPROACH TO PRETREATMENT

Before proposing and promulgating pretreatment standards, the Agency examines whether the pollutants discharged by the industry pass through the POTW or interfere with the POTW operation or its chosen sludge disposal practices. In determining whether pollutants pass through a well-operated POTW achieving secondary treatment, the Agency compares the percentage of a pollutant removed by POTW with the percentage removed by direct dischargers applying the best available technology economically achievable. A pollutant is deemed to pass through the POTW when the average percentage removed nationwide by well-operated POTW meeting secondary treatment requirements, is less than the percentage removed by direct dischargers complying with BAT effluent limitations guidelines for that pollutant.

This definition of pass through satisfies the two competing objectives set by Congress that standards for indirect dischargers be equivalent to standards for direct dischargers while at the same time, the treatment capability and performance of the POTW be recognized and taken into account in regulating the discharge of pollutants from indirect dischargers.

The Agency compares percentage removal rather than the mass or

concentration of pollutants discharged because the latter would not take into account the mass of pollutants discharged to the POTW from non-industrial sources or the dilution of the pollutants in the POTW effluent to lower concentrations due to the addition of large amounts of non-industrial wastewater.

PRETREATMENT STANDARDS FOR NEW SOURCES

Options for pretreatment of wastewaters from new sources are based on increasing the effectiveness of end-of-pipe treatment technologies. All in-plant changes and applicable end-of-pipe treatment processes have been discussed previously in Sections X and XI. The options for PSNS are the same as the BAT and NSPS options discussed in Sections X and XI, respectively.

A description of each option is presented in Section X, while a more detailed discussion, including pollutants controlled by each treatment process is presented in Section VII of the General Development Document.

Treatment technologies considered for the PSNS options are:

OPTION A

- Preliminary treatment with ammonia steam stripping (where required)
- o Chemical precipitation and sedimentation

OPTION C

- Preliminary treatment with ammonia steam stripping (where required)
- o Chemical precipitation and sedimentation
- o Multimedia filtration

PSNS OPTION SELECTION - PROPOSAL

EPA proposed the technology basis for PSNS equal to BAT (preliminary treatment consisting of ammonia steam stripping, chemical precipitation, sedimentation, and filtration). The same pollutants were proposed for regulation at PSNS as at BAT, and the proposed wastewater discharge rates for PSNS were equivalent to those proposed for BAT.

PSNS OPTION SELECTION - PROMULGATION

We are promulgating PSNS equal to BAT and NSPS for this subcategory. It is necessary to promulgate PSNS to prevent passthrough of copper, nickel, cobalt, and ammonia. These toxic pollutants are removed by a well-operated POTW at an average of 26 percent, while BAT technology removes approximately 58 percent. The technology basis for PSNS thus is chemical precipitation and sedimentation, ammonia steam stripping, and filtration. The achievable concentration for ammonia steam stripping is based on iron and steel manufacturing category data, as explained in the discussion of BPT for this subcategory.

We believe that the proposed PSNS are achievable, and that they are not a barrier to entry of new plants into this subcategory.

The PSNS discharge rates are shown in Table XII-1 (page 3928).

REGULATED POLLUTANT PARAMETERS

Pollutants selected for limitation, in accordance with the rationale of Sections VI and X, are identical to those selected for limitation for BAT. It is necessary to promulgate PSNS to prevent the pass-through of copper, nickel, ammonia, and cobalt.

PRETREATMENT STANDARDS FOR NEW SOURCES

Pretreatment standards for new sources are based on the treatable concentrations from the selected treatment technology, (Option C), and the discharge rates determined in Sections X and XI for and NSPS, respectively. A mass of pollutant per mass of BAT product (mg/kg) allocation is given for each subdivision within the subcategory. This pollutant allocation is based on the product of the treatable concentration from the promulgated (mg/l) and the production normalized wastewater treatment discharge rate (1/kkg). The achievable treatment concentrations for PSNS are identical to those for BAT. PSNS are presented in Table XII-2 (page 3929).

Table XII-1

PSNS WASTEWATER DISCHARGE RATES FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

			PSNS Norm Discharg		Production
Wastewater Stream		astewater Stream	1/kkg	gal/ton	Normalizing Parameter
1	۱.	Raw Material Dust Control	77	18.5	Copper, nickel, and cobalt in the crushed raw material
	2.	Cobalt Reduction Decant	21,398	5,128	Cobalt produced
	3.	Nickel Reduction Decant	12,695	3,042	Nickel produced
l	4.	Nickel Wash Water	33,87	8.12	Nickel powder washed

TABLE XII-2

PSNS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(a) Raw Material Dust Control PSNS

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average

mg/kg (lb/million lbs) of copper, nickel, and cobalt in the crushed raw material

*Copper	0.099	0.047
*Nickel	0.042	0.029
Zinc	0.079	0.032
*Ammonia	10.260	4.512
*Cobalt	0.011	0.005

(b) Cobalt Reduction Decant PSNS

Pollutant		Maximum for	Maximum for
pollutant		any one day	monthly average
	mg/kg (lb	/million lbs)	of cobalt produced
*Copper		27.390	13.050
*Nickel		11.770	7.917
Zinc		21.830	8.987
*Ammonia		2,852.000	1,254.000
*Cobalt		2.996	1.498

*Regulated Pollutant

TABLE XII-2 (Continued)

PSNS FOR THE PRIMARY NICKEL AND COBALT SUBCATEGORY

(c) Nickel Reduction Decant PSNS

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average

mg/kg (lb/million lbs) of nickel produced

*Copper	16.250	7.744
*Nickel	6.982	4.697
Zinc	12.950	5.332
*Ammonia	1,692.000	743.900
*Cobalt	1.777	0.889

(d) Nickel Wash Water PSNS

Pollutant or pollutant property						aximum for onthly average		
	mg/kg	(lb/mil	lion	lbs) of	nickel	powder	washed
*Copper *Nickel Zinc *Ammonia *Cobalt).04).01).03 1.51).00	5 5 5		0.021 0.013 0.014 1.985 0.002

*Regulated Pollutant

SECTION XIII

BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY

EPA is not promulgating best conventional pollutant control technology (BCT) for the primary nickel and cobalt subcategory at this time.

.

.

THIS PAGE INTENTIONALLY LEFT BLANK

NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY

DEVELOPMENT DOCUMENT SUPPLEMENT

for the

Secondary Nickel Subcategory

William K. Reilly Administrator

Rebecca Hanmer Acting Assistant Administrator for Water

Martha Prothro, Director Office of Water Regulations and Standards

Thomas P. O'Farrell, Director Industrial Technology Division

Ernst P. Hall, P.E., Chief Metals Industry Branch and Technical Project Officer

May 1989

U.S. Environmental Protection Agency Office of Water Office of Water Regulations and Standards Industrial Technology Division Washington, D. C. 20460

3933

TABLE OF CONTENTS

Section		Page
I	SUMMARY	3941
II	CONCLUSIONS	3943
III	SUBCATEGORY PROFILE	3947
	Description of Secondary Nickel Production Raw Materials Slag Reclamation Acid Reclamation Scrap Reclamation Process Wastewater Sources Other Wastewater Sources Age, Production, and Process Profile	3947 3947 3947 3948 3948 3948 3948 3948 3948
IV	SUBCATEGORIZATION	3955
	Factors Considered in Subdividing the Secondary	3955
	Nickel Subcategory Other Factors Production Normalizing Parameters	3956 3956
v	WATER USE AND WASTEWATER CHARACTERISTICS	3959
	Wastewater Flow Rates Wastewater Characteristics Data Data Collection Portfolios Field Sampling Data Wastewater Characteristics and Flow by Subdivision	3958 3958 3958 3959 3960
	Slag Reclaim Tailings Acid Reclaim Leaching Filtrate	3960 3960
	Acid Reclaim Leaching Belt Filter Backwash	3960
Δī	SELECTION OF POLLUTANTS	3975
	Conventional and Nonconventional Pollutant Parameters Selected	3975
	Toxic Priority Pollutants	3976
	Toxic Pollutants Never Detected	3976
	Toxic Pollutants Never Found Above Their Analytical Quantification Concentration	3976
	Toxic Pollutants Selected for for Further Consideration in Establishing Limitations and Standards	3976

.

TABLE OF CONTENTS (Continued)

Section		Page
VII	CONTROL AND TREATMENT TECHNOLOGIES	3983
	Current Control and Treatment Practices Slag Reclaim Tailings Acid Reclaim Leaching Filtrate Acid Reclaim Leaching Belt Filter Backwash Control and Treatment Options Option A Option C	3983 3983 3983 3984 3984 3984 3984
VIII	COSTS, ENERGY, AND NONWATER QUALITY ASPECTS	3985
	Treatment Options for Existing Sources Option A Option C Cost Methodology Nonwater Quality Aspects Energy Requirements Solid Waste Air Pollution	3985 3985 3985 3985 3986 3986 3986 3988
IX	BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE	3991
х	BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE	3991
XI	NEW SOURCE PERFORMANCE STANDARDS	3993
	Technical Approach to NSPS Pollutant Removal Estimates Compliance Costs NSPS Option Selection - Proposal NSPS Option Selection - Promulgation Wastewater Discharge Rates Slag Reclaim Tailings Acid Reclaim Leaching Filtrate Acid Reclaim Leaching Belt Filter Backwash Regulated Pollutant Parameters New Source Performance Standards	3993 3995 3996 3996 3997 3997 3997 3997 3997 3997

TABLE OF CONTENTS (Continued)

Section		Page
XII	PRETREATMENT STANDARDS	4003
	Technical Approach to Pretreatment Industry Cost and Pollutant Removal Estimates Pretreatment Standards for Existing and New Sources PSES Option Selection - Proposal PSES Option Selection - Promulgation PSNS Option Selection - Proposal PSNS Option Selection - Proposal PSNS Option Selection - Promulgation Pretreatment Standards	4003 4004 4004 4005 4005 4005 4005
XIII	BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY	4013

LIST OF TABLES

Table	Title	Page
III-1	Initial Operating Year Summary of Plants in the Secondary Nickel Subcategory by Discharge Type	3950
III-2	Production Ranges for the Secondary Nickel Subcategory	3951
IİI-3	Summary of Secondary Nickel Subcategory Processes and Associated Waste Streams	3952
V- 1	Water Use and Discharge Rates for Slag Reclaim Tailings	3962
V-2	Water Use and Discharge Rates for Acid Reclaim Leaching Filtrate	3963
V-3	Water Use and Discharge Rates for Acid Reclaim Leaching Belt filter Removal	3964
V-4	Secondary Nickel Sampling Data Slag Reclaim Tailings Pond Influent Raw Wastewater Sampling Data	3965
V −5	Secondary Nickel Sampling Data Slag Reclaim Tailings Pond Effluent Raw Wastewater Sampling Data	3965
V-6	Secondary Nickel Sampling Data Acid Reclaim Leaching Filtrate Raw Wastewater Sampling Data	3970
₽-7	Secondary Nickel Sampling Data Acid Reclaim Leaching Belt Filter Backwash Raw Wastewater Sampling Data	3972
VI-1	Frequency of Occurrence of Priority Pollutants Secondary Nickel Subcategory Raw Wastewater	3978
VI-2	Toxic Pollutants Never Detected	3979
VIII-1	Cost of Compliance for the Secondary Nickel Subcategory Indirect Dischargers	39 89
XI-1	NSPS Wastewater Discharge Rates for the Secondary Nickel Subcategory	4000

LIST OF TABLES (Continued)

Table	Title	Page
XI-2	NSPS for the Secondary Nickel Subcategory	4001
XII-1	Pollutant Removal Estimates for Indirect Dischargers in the Secondary Nickel Subcategory	4009
XII-2	Cost of Compliance for the Secondary Nickel Subcategory Indirect Dischargers	4010
XII-3	PSES and PSNS Wastewater Discharge Rates for the Secondary Nickel Subcategory	e 4011
XII-4	PSES for the Secondary Nickel Subcategory	4012
XII-5	PSNS for the Secondary Nickel Subcategory	4013

÷

,

.

LIST OF FIGURES

Figure	Title	Page
III-1	Secondary Nickel Manufacturing Processes	3953
III-2	Geographic Locations of Secondary Nickel Subcategory Plants	3954
V-1	Sampling Sites at Secondary Nickel Plant A	3974
XI-1	NSPS Treatment Scheme for Option A	4002
XI-2	NSPS Treatment Scheme for Option C	4003
XI-3	NSPS Treatment Scheme for Option C Without Filtration for Slag Reclaim Tailings	4004

•

SECTION I

SUMMARY

This document provides the technical basis for promulgating pretreatment standards for existing indirect dischargers (PSES), pretreatment standards for new indirect dischargers (PSNS), and standards of performance for new source direct dischargers (NSPS) for plants in the secondary nickel subcategory.

The secondary nickel subcategory consists of two plants. One of the two plants discharges to a publicly-owned treatment works, and one achieves zero discharge of process wastewater. There are no plants discharging directly to rivers, streams, or lakes.

EPA first studied the secondary nickel subcategory to determine whether differences in raw materials, final products, manufacturing processes, equipment, age and size of plants, or water usage, required the development of separate effluent limitations and standards for different segments of the subcategory. This involved a detailed analysis of wastewater discharge and treated effluent characteristics, including the sources and volume of water used, the processes used, the sources of pollutants and wastewaters in the plant, and the constituents of wastewaters, including toxic pollutants. As a result, three subdivisions have been identified for this subcategory that warrant separate effluent limitations. These include:

- o Slag reclaim tailings,
- o Acid reclaim leaching filtrate, and
- o Acid reclaim leaching belt filter backwash.

Several distinct control and treatment technologies (both in plant and end-of-pipe) applicable to the secondary nickel subcategory were identified. The Agency analyzed both historical and newly generated data on the performance of these technologies, including their nonwater quality environmental impacts and air quality, solid waste generation, and energy requirements. EPA also studied various flow reduction techniques reported in the data collection portfolios (dcp) and plant visits.

Engineering costs were prepared for each of the control and treatment options considered for the subcategory. These costs were than used by the Agency to estimate the impact of implementing the various options on the subcategory. For each control and treatment option that the Agency found to be most effective and technically feasible in controlling the discharge of pollutants, the number of potential closures, number of employees affected, and impact on price were estimated. These results are reported in a separate document entitled "The Economic Impact Analysis of Effluent Limitations and Standards for the Nonferrous Metals Manufacturing Industry."

Because there are no direct dischargers in the secondary nickel subcategory, EPA is not promulgating BPT, BAT or BCT.

After examining the various treatment technologies, the Agency selected PSES to consist of metals removal based on chemical sedimentation technology. precipitation and Chemical precipitation and sedimentation technology represents the best existing technology in this subcategory. TOmeet the pretreatment standards for existing sources, the secondary nickel subcategory is estimated to incur a capital cost of \$320,100 and an annual cost of \$161,200.

NSPS is equivalent to PSES technology. In selecting NSPS, EPA recognizes that new plants have the opportunity to implement the best and most efficient manufacturing processes and treatment technology. As such, the technology basis of PSES has been determined as the best demonstrated technology.

For PSNS, the Agency selected end-of-pipe treatment equivalent to NSPS.

The best conventional technology (BCT) replaces BAT for the control of conventional pollutants. Although the methodology for BCT has not yet been finalized, BCT is not promulgated for this subcategory because there are no direct discharges.

The mass limitations and standards for NSPS, PSES, and PSNS are presented in Section II.

SECTION II

CONCLUSIONS

EPA has divided the secondary nickel subcategory into three subdivisions or building blocks for the purpose of effluent limitations and standards. These subdivisions are:

- (a) Slag reclaim tailings,
- (b) Acid reclaim leaching filtrate, and
- (c) Acid reclaim leaching belt filter backwash.

BPT is not promulgated for this subcategory because there are no direct dischargers.

BAT is not promulgated because there are no direct dischargers.

NSPS are promulgated based on the performance achievable by the application of chemical precipitation and sedimentation technology (lime and settle). The following new source performance standards are promulgated:

(a) Slag Reclaim Tailings NSPS

Pollutant	Maximum For	Maximum For	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (lb/million	lbs) of slag :	input to reclaim proces	SS
Chromium (total)	5.653	2.313	
Copper	24.410	12.850	
Nickel	24.670	16.320	
TSS	526.800	250.500	
pH Within the ra	ange of 7.5 to	10.0 at all times	

(b) Acid Reclaim Leaching Filtrate NSPS

Pollutant	Maximum For	Maximum For
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	lbs) of acid	reclaim nickel produced
Chromium (total)	2.198	0.089
Copper	9.491	4.995
Nickel	9.590	6.344
TSS	214.800	87.400
pH Within the r	ange of 7.5 to	10.0 at all times

(C) Acid Reclaim Leaching Belt Filter Backwash NSPS

Pollutant	Maximum For	Maximum For
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	lbs) of acid	reclaim nickel produced
Chromium (total)	0.528	0.216
Copper	2.278	1.199
Nickel	2.302	1.523
TSS	49.160	23.380
pH Within the p	range of 7.5	to 10.0 at all times

PSES are promulgated based on the performance achievable by the application of chemical precipitation and sedimentation technology (lime and settle). The following pretreatment standards for existing sources are promulgated:

(a) Slag Reclaim Tailings PSES

Pollutant Pollutant Property	Maximum For Any One Day	Maximum For Monthly Average
mg/kg (lb/million	lbs) of slag	input to reclaim process
Chromium (total) Copper Nickel	5.653 24.410 24.670	2.313 12.850 16.320
(b) Acid Reclaim Lead	· · · · · · · · · · · · · · · · · · ·	
Pollutant	Maximum For	Maximum For

Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	lbs) of acid	reclaim nickel produced
Chromium (total) Copper Nickel	2.198 9.491 9.590	0.899 4.995 6.344

.

SECONDARY NICKEL SUBCATEGORY SECT - II

Pollutant	Maximum For	Maximum For
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	lbs) of acid	reclaim nickel produced
Chromium (total)	0.528	0.216
Copper	2.278	1.199
Nickel	2.302	1.523

(c) Acid Reclaim Leaching Belt Filter Backwash PSES

PSNS are promulgated based on the performance achievable by application of chemical precipitation and sedimentation (lime and settle). The following pretreatment standards for new sources are promulgated:

(a) Slag Reclaim Tailings PSNS

Pollutant	Maximum For	Maximum For
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	lbs) of slag	input to reclaim process
Chromium (total)	5.653	2.313
Copper	24.410	12.850
Nickel	24.670	16.320

(b) Acid Reclaim Leaching Filtrate PSNS

Pollutant Pollutant Property	Maximum Any One			kimum Fo nly Aver	
mg/kg (lb/million	lbs) of	acid	reclaim	nickel	produced
Chromium (total) Copper Nickel	2.19 9.49 9.59	91		0.899 4.995 6.344	

(c) Acid Reclaim Leaching Belt Filter Backwash PSNS

Pollutant	Maximum For	Maximum For
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million lbs)	of acid reclaim	nickel produced
Chromium (total)	0.528	0.216
Copper	2.278	1.199
Nickel	2.302	1.523

BCT is not promulgated for this subcategory at this time.

SECONDARY NICKEL SUBCATEGORY SECT - II

.

.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION III

SUBCATEGORY PROFILE

This section of the secondary nickel supplement describes the raw materials and processes used in smelting and refining secondary nickel and presents a profile of the secondary nickel plants identified in this study.

DESCRIPTION OF SECONDARY NICKEL PRODUCTION

Secondary nickel production can be divided into three distinct operations -- slag reclamation. acid reclamation. and scrap reclamation. Slag reclamation is a wet mechanical granulation operation. Acid reclamation and scrap reclamation are hydrometallurgical refining processes. One plant in the U.S. reclaims nickel from slag and pickling acids, and a second plant reclaims nickel from scrap. Secondary nickel production processes are presented schematically in Figure III-1 (Page 3953) and described below.

RAW MATERIALS

Secondary nickel is reclaimed from three raw materials; nickel melt furnace slag. nickel carbonate produced from waste pickling acids and wastewater treatment sludges from nickel forming operations, and solid nickel scrap from other manufacturing operations. Nickel alloy scrap generated at steel mills may also be recycled within the mills however, no refining of the nickel scrap takes place prior to recycle and therefore, direct recycle of nickel scrap is not considered within this subcategory.

SLAG RECLAMATION

The objective of slag reclamation is to recover the nickel values from the dross or slag produced in nickel melt furnaces. When the nickel ingots are smelted in the presence of fluxing agents, the oxidized metals and impurities rise to the surface of the liquid metal and are removed from the furnace. This slag contains approximately 10 percent metallics.

The dross or slag is first air cooled and solidified, and then mechanically granulated with a jaw crusher and a wet rod mill. It is then fed onto a wet mineral jig, which uses specific gravity differences to recover a nickel concentrate product. The mineral jig is a shaking table. Large volumes of water wash over the crushed slag on the table carrying away the lighter (less dense) non-metallics. The denser, nickel-containing solids are the product. A large volume of tailings wastewater is produced. The nickel product is returned to the melt furnace and the wastewater is discharged.

ACID RECLAMATION

In the acid reclamation process, spent pickling acids and wastewater treatment sludges from nickel forming operations are introduced into a vessel with soda ash (Na_2CO_3) which precipitates the nickel as nickel carbonate. The impure nickel carbonate, which is separated from the liquid phase by filtration, is the raw material for the acid reclaim process.

Impure nickel carbonate is slurried with water to produce a homogeneous solution, and then roasted in an open hearth furnace to produce nickel oxide. The nickel oxide produced by roasting is then leached with water to remove impurities, and filtered. The leaching filtrate may be discharged as a waste stream. After filtering, the filter is backwashed and the backwash water may also be discharged as a waste stream. The nickel oxide product is approximately 35 percent nickel, and is returned to the nickel melting furnaces.

SCRAP RECLAMATION

Scrap resulting from the manufacture of nickel products may be recycled to recover the nickel values. The scrap is fed into a digestion unit with nitric acid and water. The acid removes silver and other impurities, and a 95 percent nickel product is either sold or returned to the manufacturing facility. The resultant solution, which contains significant silver values, is routed to a silver recovery process. The silver recovery process and resultant wastewater are covered by the regulations for secondary silver refining which is part of the nonferrous metals manufacturing category. There are no wastewater streams associated with nickel scrap reclamation which are within the scope of the secondary nickel subcategory.

PROCESS WASTEWATER SOURCES

Although a variety of processes are involved in secondary nickel production, the significant wastewater sources that are associated with the secondary nickel subcategory can be subdivided into the following building blocks:

- 1. Slag reclaim tailings,
- 2. Acid reclaim leaching filtrate, and
- 3. Acid reclaim leaching belt filter backwash.

OTHER WASTEWATER SOURCES

There may be other wastewater streams associated with the secondary nickel subcategory. These streams include but are not limited to stormwater runoff, maintenance and cleanup water, and noncontact cooling water. These wastewater streams are not considered as a part of this rulemaking. EPA believes that the flows and pollutant loadings associated with these wastewaters are insignificant relative to waste streams selected and are best handled by the appropriate permit authority on a case-by-case basis under authority of Section 403 of the Clean Water Act.

AGE, PRODUCTION, AND PROCESS PROFILE

Figure III-2 (Page 3954) shows the locations of the two secondary nickel plants operating in the United States. Both are located east of the Mississippi River, near the industrial centers of western Pennsylvania.

Table III-1 (Page 3950) illustrates the relative age and discharge status of the secondary nickel plants in the United States. One plant was built in 1923, and the other was built in 1976.

From Table III-2 (Page 3951) it can be seen that of the two facilities which reclaim nickel, one plant reclaims between 500 and 1,000 tons per year, and the other less than 50 tons per year.

Table III-3 (Page 3952) provides a summary of the number of plants generating wastewater for the waste streams associated with the various processes and the number of plants with the process.

TABLE III-1

INITIAL OPERATING YEAR SUMMARY OF PLANTS IN THE SECONDARY NICKEL SUBCATEGORY BY DISCHARGE TYPE

Initial Operating Year (Plant Age in Years)

Type of <u>Plant</u>	1982- 1966 <u>(0-15)</u>	1965- 1946 <u>(15-35)</u>	1945- 1926 <u>(35-55)</u>	1925- 1906 (55-75)	Total
Direct	0	0	0	0	0
Indirect	0	0	0	1	l
Zero	l	0	0	0	l
Total	l	0	0	l	2

:

:

SECONDARY NICKEL SUBCATEGORY SECT - III

TABLE III-2

PRODUCTION RANGES FOR THE SECONDARY NICKEL SUBCATEGORY

Production Ranges for 1982 (Tons/Year)a	Number of Plants
0 - 50	1
50 - 100	0
500 - 1,000	1
Total	2

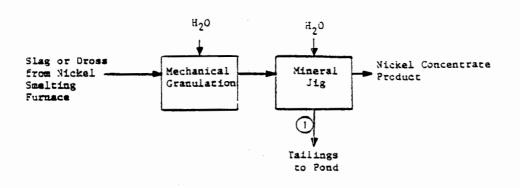
(a) Based on production of reclaimed nickel

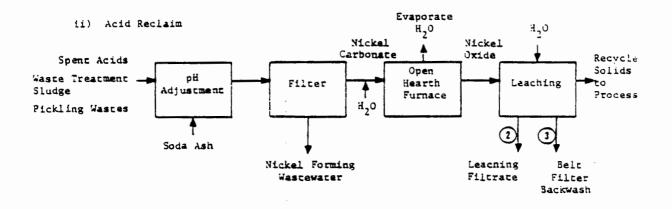
Table 111-3

SUMMARY OF SECONDARY NICKEL SUBCATEGORY PROCESSES AND ASSOCIATED WASTE STREAMS

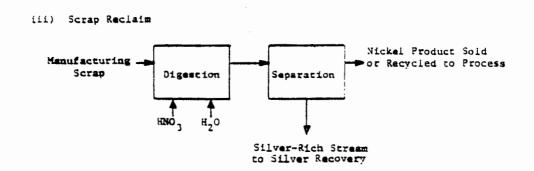
Process	Number of Plants With the Process	Number of Plants Reporting Generation of Wastewater*
Slag Reclaim	1	
Slag Reclaim Tailings	1	1
Acid Reclaim	1	
Acid Reclaim Leaching Filtrate	••••••• • •••• 1	··· · · · · · · · · · · · · · · · · ·
Acid Reclaim Belt Filter Backwash	1	1
Scrap Reclaim	1	

SECONDARY NICKEL SUBCATEGORY

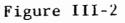

SECT


ı

III


*Through reuse or evaporation practices, a plant may "generate" a wastewater from a particular process but not discharge it.

i) Slag Reclaim


.

SECONDARY NICKEL MANUFACTURING PROCESSES

GEOGRAPHIC LOCATIONS OF SECONDARY NICKEL SUBCATEGORY PLANTS

SECTION IV

SUBCATEGORIZATION

This section summarizes the factors considered during the designation of the subdivision of the secondary nickel subcategory. Production normalizing parameters for each subdivision are also discussed.

FACTORS CONSIDERED IN SUBDIVIDING THE SECONDARY NICKEL SUBCATEGORY

The factors listed for general subcategorization were each evaluated when considering subdivision of the secondary nickel subcategory. In the discussion that follows, the factors will be described as they pertain to this particular subcategory.

The rationale for considering segmentation of the secondary nickel subcategory is based primarily on differences in the production processes and raw materials used. Within this subcategory, a number of different operations are performed, which may or may not have a water use or discharge, and which may require the establishment of separate effluent limitations. While secondary nickel is considered a single subcategory, a more thorough examination of the production processes has illustrated the need for limitations and standards based on a specific set of waste streams. Limitations will be based on specific flow allowances for the following subdivisions:

- 1. Slag reclaim tailings,
- 2. Acid reclaim leaching filtrate, and
- 3. Acid reclaim leaching belt filter backwash.

These subdivisions follow directly from differences between the processing steps of secondary nickel production. Slag reclaim and acid reclaim both have various steps which generate wastewater.

Slag reclamation establishes the need for the first subdivision slag reclaim tailings. After crushing and milling the nickel rich slag, a nickel concentrate is separated from impurities with a wet mineral jig. This produces a tailings waste stream which is discharged.

Acid reclamation establishes the need for the second and third subdivisions -- acid reclaim leaching filtrate, and acid reclaim leaching belt filter backwash. Spent pickling acids and wastewater treatment sludges are added to a tank containing soda ash in order to precipitate nickel as nickel carbonate. After filtration, the precipitate is slurried with water and roasted in an open hearth furnace in order to oxidize the nickel. The nickel oxide is leached with water to remove impurities and then filtered on a belt filter. The acid reclaim leaching filtrate is discharged as a waste stream. The belt filter is backwashed with water, and the backwash water is also discharged as a waste stream.

OTHER FACTORS

The other factors considered in this evaluation were shown to be inappropriate bases for further segmentation. Air pollution control methods, treatment costs, and total energy requirements are functions of the selected subcategorization factors -- metal product, raw materials, and production processes. Certain other factors, such as plant age, plant size, and the number of employees, were also evaluated and determined to be inappropriate for use as the basis for subdivision of the nonferrous metals subcategory.

PRODUCTION NORMALIZING PARAMETERS

As discussed previously, the effluent limitations and standards developed in this document establish mass limitations on the discharge of specific pollutant parameters. To allow these regulations to be applied to plants with various production capacities, the mass of pollutant discharged must be related to a unit of production. This factor is known as the production normalizing parameter (PNP). The PNPs for the three subdivisions are as follows:

Subdivision

1. Slag reclaim tailings

<u>PNP</u> slag input to reclaim process

2. Acid reclaim leaching filtrate

acid reclaim nickel produced

3. Acid reclaim leaching belt filter acid reclaim nickel produced

At proposal the production normalizing parameter for slag reclaim tailings was the mass of slag reclaim nickel produced. Industry comments on the choice of PNP prompted EPA to consider other parameters. The industry comments included flow and production information which allowed EPA to recalculate the production normalized flow. Based on the new information, EPA concluded that the generation of slag reclaim tailings wastewater is more closely related to raw material input to the reclaim process. Therefore, for promulgation, the PNP for slag reclaim tailings has been changed to the quantity of slag input to the reclaim process.

SECTION V

WATER USE AND WASTEWATER CHARACTERISTICS

This section describes the characteristics of the wastewaters associated with the secondary nickel subcategory. Water use and discharge rates are explained and then summarized in tables at the end of this section. Data used to characterize the wastewaters are presented. Finally, the specific source, water use and discharge flows, and wastewater characteristics for each separate wastewater source are discussed.

The two principal data sources used in the development of effluent limitations and standards for this subcategory are data collection portfolios and field sampling results. Data collection portfolios contain information regarding wastewater flows and production levels.

In order to quantify the pollutant discharge from secondary nickel plants, a field sampling program was conducted. A complete list of the pollutants considered and a summary of the techniques used in the sampling and laboratory analyses are included in Section V of Vol. I. Samples were analyzed for 124 of 126 priority pollutants and other pollutants the deemed appropriate. Because the analytical standard for TCDD was judged to be too hazardous to be made generally available, samples were never analyzed for this pollutant. samples were also not analyzed for asbestos. There is no reason to expect that TCDD or asbestos would be present in nonferrous metals manufacturing wastewater. One plant was selected for sampling in the secondary nickel subcategory. In general, the samples were analyzed for three classes of pollutants: toxic organic pollutants, toxic metal pollutants. and criteria pollutants (which includes both conventional and nonconventional pollutants).

No additional sampling data for this subcategory were obtained from EPA sampling efforts or industry comments between proposal and promulgation. Characterization of secondary nickel subcategory wastewaters (Section V), and selection of pollutant parameters for limitation (Section VI) has been based on the same data used at proposal.

As described in Section IV of this supplement, the secondary nickel subcategory has been divided into three subdivisions, so that the promulgated regulation contains mass discharge limitations and standards for three unit processes discharging process wastewater. Differences in the wastewater characteristics associated with these subdivisions are to be expected. For this reason, wastewater streams corresponding to each subdivision are addressed separately in the discussions that follow. These wastewater sources are:

- 1. Slag reclaim tailings,
- 2. Acid reclaim leaching filtrate, and
- 3. Acid reclaim leaching belt filter backwash.

WASTEWATER FLOW RATES

Data supplied by dcp responses were evaluated, and two flow-toproduction ratios were calculated for each stream. The two flow, water and wastewater discharge ratios, use are differentiated by the flow value used in calculation. Water use is defined as the volume of water required for a given process per mass of nickel product and is therefore based on the sum of recycle and make-up flows to a given process. Wastewater flow discharged after pretreatment or recycle (if these are present) is used in calculating the production normalized flow -- the volume of wastewater discharged from a given process to further treatment, disposal, or discharge per mass of nickel produced. Differences between the water use and wastewater flows associated with a given stream result from recycle, evaporation, and The production values used in carry-over on the product. calculation correspond to the production normalizing parameter, PNP, assigned to each stream, as outlined in Section IV. As an example, acid reclaim leaching filtrate wastewater flow is related to acid reclaim nickel production. As such, the discharge rate is expressed in liters of leaching filtrate wastewater discharged per metric ton of acid reclaim nickel production.

The production normalized flows were compiled and statistically analyzed by stream type. These production normalized water use and discharge flows are presented by subdivision in Tables V-1 through V-3 (pages 3962 -3964). Where appropriate, an attempt was made to identify factors that could account for variations in water use. This information is summarized in this section. A similar analysis of factors affecting the wastewater values is presented in Sections XI and XII where representative NSPS and pretreatment discharge flows are selected for use in calculating the effluent limitations and standards.

WASTEWATER CHARACTERISTICS DATA

Data used to characterize the various wastewaters associated with secondary nickel production come from two sources -- data collection portfolios and analytical data from field sampling trips.

DATA COLLECTION PORTFOLIOS

In the data collection portfolios, plants were asked to indicate whether or not any of the priority pollutants were present in their effluent. The one discharging plant indicated that most toxic organic pollutants were believed to be absent from their effluent. The plant indicated that a few of the priority organic pollutants are believed to be present in its effluent. The plant stated that some of the priority metals were known to be present in their effluent. The response summarized below.

The responses for the toxic metals are

Pollutant		Known Present	Believed Present
			_
Antimony		0	0
Arsenic		. 0	0
Beryllium		0	0
Cadmium		0	0
Chromium		1	1
Copper		1	1
Lead		0	0
Mercury		0	0
Nickel	t	1	1
Selenium		0	0
Silver		0	0
Thallium		0	0
Zinc		1	1

FIELD SAMPLING DATA

In order to quantify the concentrations of pollutants present in wastewater from secondary nickel plants, wastewater samples were collected at one plant. A diagram indicating the sampling sites and contributing production processes is shown in Figure V-1 (Page 3974).

The sampling data for the secondary nickel subcategory are presented in Tables V-4 through V-7 (pages 3965 - 3972). The stream codes displayed in Tables V.4 through V-7 may be used to identify the location of each of the samples on process flow diagrams in Figure V.1. Where no data are listed for a specific day of sampling, the wastewater samples for the stream were not collected.

The detection limits shown on the data tables are not the same in all cases as the published detection limits for these pollutants by the same analytical methods. The detection limits used were reported with the analytical data and hence are the appropriate limits to apply to the data. Detection limit variation can occur as a result of a number of laboratory-specific, equipmentspecific, and daily operator-specific factors. These factors can include day-to-day differences in machine calibration, variation in stock solutions, and variation in operators.

The statistical analysis of data includes some samples measured at concentrations considered not quantifiable. Priority metal and conventional and nonconventional pollutant values reported as less than a certain value were considered as not quantifiable and a value of zero is used in the calculation of the average.

Appropriate source water concentrations are presented with the summaries of the sampling data. The method by which each sample was collected is indicated by number, as follows:

- 1 One-time grab
- 2 Manual composite during intermittent process operation
- 3 8-hour manual composite
- 4 8-hour automatic composite
- 5 24-hour manual composite
- 6 24 hour automatic composite

WASTEWATER CHARACTERISTICS AND FLOWS BY SUBDIVISION

Since secondary nickel production involves three principal sources of wastewater and each has potentially different characteristics and flows, the wastewater characteristics and discharge rates corresponding to each subdivision will be described separately. A brief description of why the associated production processes generate a wastewater and explanations for variations of water use within each subdivision will also be discussed.

SLAG RECLAIM TAILINGS

Nickel is recovered from dross or slag generated in nickel smelting furnaces by a wet granulation operation After recovering the nickel values from the granulated slag, the wet residue is discharged to a railings pond and the overflow from the tailings pond is discharged as a waste stream. One plant reported generating this waste stream, and its water use and discharge rates are presented in Table V-1 (Page 3962).

Sampling data for slag reclaim tailings is presented in Table V-4 (page 3965). This waste stream is characterized by the presence of treatable concentrations of arsenic, chromium, copper, nickel, suspended solids, and pH. Sampling data for tailings pond effluent is presented in Table V-5 (page 3967).

ACID RECLAIM LEACHING FILTRATE

After nickel is precipitated from waste pickling acids with sodium carbonate and roasted to produce nickel oxide, the nickel oxide is leached with water to remove impurities. The wet nickel oxide is dewatered on a belt filter and the filtrate is discarded. One plant reported generating this waste stream, and its water use and discharge rates are presented in Table V-2 (page 3963).

Sampling data for acid reclaim leaching belt filtrate is presented in Table V-6 (page 3970). This waste stream is characterized by the presence of treatable concentrations of chromium, copper, nickel, and suspended solids.

ACID RECLAIM LEACHING BELT FILTER BACKWASH

In the acid reclaim process, after the dewatered nickel oxide is scraped from the belt filter, the filter is backwashed with water and the backwash water may be discharged. One plant reported generating this waste stream, and its water use and discharge rates are presented in Table V-3 (page 3964).

Sampling data for acid reclaim leaching belt filter backwash is presented in Table V-7 (page 3972). This waste stream is characterized by the presence of treatable concentrations of chromium, copper, nickel, and suspended solids.

TABLE V-1

WATER USE AND DISCHARGE RATES FOR SLAG RECLAIM TAILINGS

(1/kkg of slag input to reclaim process)

Plant Code	Percent Recycle or Reuse	Production Normalized <u>Water</u> <u>Use</u> Flow	Production Normalized Discharge Flow
1169	0	12,848	12,848

ł

.

,

TABLE V-2

WATER USE AND DISCHARGE RATES FOR ACID RECLAIM LEACHING FILTRATE

(1/kkg of acid reclaim nickel produced)

Plant <u>Code</u>	Percent Recycle or Reuse	Production Normalized <u>Water Use Flow</u>	Production Normalized Discharge Flow
1169	0	4,995	4,995

÷

.

÷

TABLE V-3

WATER USE AND DISCHARGE RATES FOR ACID RECLAIM LEACHING BELT FILTER BACKWASH

(1/kkg of acid reclaim nickel produced)

Plant Code	Percent Recycle or Reuse	Production Normalized Water Use Flow	Production Normalized Discharge Flow
1 169	0	1,199	1,199

:

Table V-4

SECONDARY NICKEL SAMPLING DATA SLAG RECLAIM TAILINGS POND INFLUENT RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	<u>Conc</u> Source	entrations Day 1	(mg/l) Day 2	Day Day
Toxic	Pollutants						
114.	antimony	986	1	<0.002	<0.002		ICK
115.	arsenic	986	1	<0.005	0.93		EL
117.	beryllium	986	1	<0.01	<0.02		NICKEL SUBCATEGORY
118.	cadmium	986	1	<0.05	<0.027		ATE
119.	chromium (total)	986	1	<0.10	5.35		BORY
120.	copper	986	1	0.170	0.59		
121.	cyanide (total)	986	1	<0.02	<0.02		SECT
122.	lead	986	1	<0.10	<0.2		t
123.	mercury	986	1	<0.002	<0.002		4
124.	nickel	986	1	0.20	7.5		
125.	selenium	986	1	<0.01	<0.01		
126.	silver	986	1	<0.002	<0.002		
127.	thallium	986	1	<0.005	<0.002		
128.	zinc	986	1	<0.05	0.15		

Table V-4 (Continued)

SECONDARY NICKEL SAMPLING DATA SLAG RECLAIM TAILINGS POND INFLUENT RAW WASTEWATER SAMPLING DATA

Ŋ

<u>Pollutant</u>	Stream Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants			ARY
acidity	986	1	<1 <1 H
alkalinity	986	1	<1 <1 NI CKEL 61 9,000 EL
chloride	986	1	12 550 g
fluoride	986	1	12 550 SUBCATEGORY 0.43 22 130 42
sulfate	986	1	130 42
total solids (TS)	986	1	330 16,000
Conventional Pollutants			S
oil and grease	986	1	<1 10 SECT
total suspended solids (TSS)	986	1	22 16,000 d
pH (standard units)	986	1	6.64 11.38

tSample Type Code: 1 - One-time grab

Table V-5

SECONDARY NICKEL SAMPLING DATA SLAG RECLAIM TAILINGS POND EFFLUENT RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u> <u>Toxic Pollutants</u>	Stream Code	Sample Typet	<u>Conc</u> Source	entrations Day 1	(mg/l) Day 2	Day Day
114. antimony	987	1	<0.002	<0.002		NICKEL
115. arsenic	987		<0.005	.0.290		KEL
117. beryllium	987	1	<0.01	<0.02		SUB
118. cadmium	987	1	<0.05	<0.02		SUBCATEGORY
119. chromium (total)	987	1	<0.10	0.170		GOR
120. copper	987	1	0.170	27.0		, Y
121. cyanide (total)	987	1	<0.02	<0.02		SECT
122. lead	987	1	<0.10	<0.20		CT -
123. mercury	987	1	<0.002	<0.002		<
124. nickel	987	1	0.20	0.10		
125. selenium	987	1	<0.01	<0.01		
126. silver	987	1	<0.002	<0.002		
127. thallium	987	1	<0.005	<0.002		
128. zinc	987	1	<0.05	<0.02		

3967

.

Table V-5 (Continued)

SECONDARY NICKEL SAMPLING DATA SLAG RECLAIM TAILINGS POND EFFLUENT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2 Day 3	
Nonconventional Pollutants			Source Day 1 Day 2 Day 3	j
acidity	987	1	<1 <1 Z	
alkalinity	987	1	<1	
chloride	987	1		
fluoride	987	1	12 25 0.43 0.41 130 18) > -
sulfate	987	1	130 18	
total solids (TS)	987	1	330 1,8 00	1
Conventional Pollutants			Ŭ	2 2
oil and grease	987	1	<1 12	E E
total suspended solids (TSS)	987	1	22 670	
pH (standard units)	987	1	6.64 11.01	

tSample Type Code: 1 - One-time grab

Table V-6

i

SECONDARY NICKEL SAMPLING DATA ACID RECLAIM LEACHING FILTRATE RAW WASTEWATER SAMPLING DATA

			Comple	Con	centrations	(ma / 1)	SEC
	Pollutant	Stream Code	Sample Typet	Source	Day 1	(mg/l) Day 2	Day 3
Toxic	Pollutants						
114.	antimony	004	1	<0.002	<0.002		NICKEL
115.	arsenic	004	1	<0.005	0.029	- .	
117.	beryllium	004	1	<0.01	<0.020		SUBCATEGORY
118.	cadmium	004	1	<0.05	<0.02		CATE
119.	chromium (total)	004	1	<0.10	3.40		GORY
120.	copper	004	1	0.170	38.0		~
121.	cyanide (total)	004	1	<0,02	<0.02		SECT
122.	lead	004	1	<0.10	<0.2		日
123.	mercury	004	1	<0.002	<0.002		4
124.	nickel	004	1	0.20	49.0		
125.	selenium	004	1	<0.01	<0.01		
126.	silver	004	1	<0.002	0.008		
127.	thallium	004	1	<0.005	<0.002		
128.	zinc	004	1	<0.05	0.26		

Table V-6 (Continued)

SECONDARY NICKEL SAMPLING DATA ACID RECLAIM LEACHING FILTRATE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Concentrations (mg/l)MagSourceDay 1Day 2Day 3
Nonconventional Pollutants			Source Day 1 Day 2 Day 3 0
acidity	004	1	
alkalinity	004	1	<1 <1 NI CR 61 52 E
chloride	004	1	12 68 ⁰
fluoride	004	1	0.43 1.7 ^{CAT}
sulfate	004	1	12 68 SUBCATEGORY 0.43 1.7 130 1,000
total solids (TS)	004	1	330 2,800 R
Conventional Pollutants			ß
oil and grease	004	1	く1 10 SECC ビロ CC 日
total suspended solids (TSS)	004	1	22 350 <
pH (standard units)	004	1	6.64 7.39

tSample Type Code: 1 - One-time grab

Table V-7

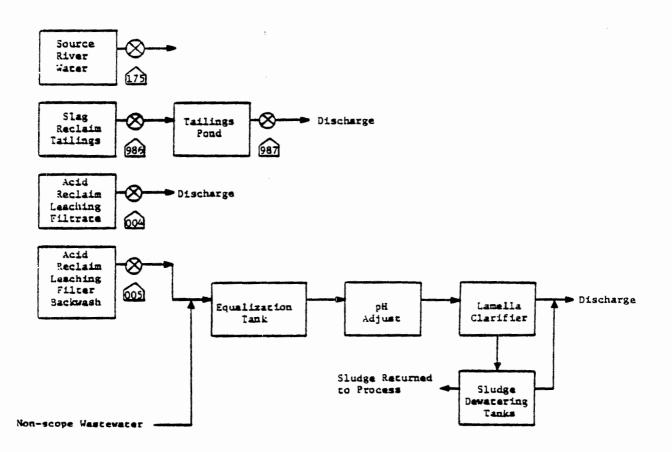
SECONDARY NICKEL SAMPLING DATA ACID RECLAIM LEACHING BELT FILTER BACKWASH RAW WASTEWATER SAMPLING DATA

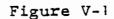
		Stream	Sample	Con	centration		Day 3
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3 NDA
Toxic	Pollutants						RY
114.	antimony	005	1	<0.002	0.004		NI CKEL
115.	arsenic	005	1	<0.005	0.013		E
117.	beryllium	005	1	<0.01	<0.02		SUBC
118.	cadmium	005	1	<0.05	<0.02		CATE
119.	chromium (total)	005	1	<0.10	0.88		SUBCATEGORY
120.	copper	005	1	0.170	60.0		
121.	cyanide (total)	005	. 1	<0.02	<0.02		SECT
122.	lead	005	1	<0.10	<0.2		년
123.	mercury	005	1	<0.002	<0.002		<
124.	nickel	005	1	0.20	96.0		
125.	selenium	005	1	<0.01	<0.01		
126.	silver	005	1	<0.002	0.008		
127.	thallium	005	1	<0.005	<0.002		
128.	zinc	005	1	<0.05	0.12		

3971

S

Table V-7 (Continued)


SECONDARY NICKEL SAMPLING DATA ACID RECLAIM LEACHING BELT FILTER BACKWASH RAW WASTEWATER SAMPLING DATA


Pollutant	Stream Code	Sample Typet	Concentrations (mg/l) Source Day 1 Day 2 Day 3	SECONDARY
Nonconventional Pollutants				DARY
acidity	005	I		
alkalinity	005	1	61 51	NICKEL
chloride	005	1		
fluoride	005	1	0.43 1.7	SUBCATEGORY
sulfate	005	1	130 98	EGO
total solids (TS)	005	1	330 3, 760	RY
Conventional Pollutants				Ŋ
oil and grease	005	1	<1 9	SECT
total suspended solids (TSS)	005	1	22 2, 900	י ל
pH (standard units)	005	1	6.64 6.61	

tSample Type Code: 1 - One-time grab

3972

....

SAMPLING SITES AT SECONDARY NICKEL PLANT A

THIS PAGE INTENTIONALLY LEFT BLANK

L

SECTION VI

SELECTION OF POLLUTANTS

This section examines chemical analysis presented in Section V and discusses the selection or exclusion of priority pollutants for potential limitation. Conventional and nonconventional pollutants are selected or excluded for regulation in this section. The basis for the selection of toxic and other pollutants, along with a discussion of each pollutant selected for potential limitation, is discussed in Section VI of Vol. I. That discussion provides information about the nature of the pollutant (i.e., whether it is a naturally occurring substance, processed metal, or a manufactured compound), general physical properties and the form of the pollutant, toxic effects of the pollutants in humans and other animals, and behavior of the pollutant in POTW at the concentrations expected in industrial discharges.

The discussion that follows describes the analysis that was performed to select or exclude priority pollutants for further consideration for limitations and standards. The data from three wastewater samples collected at one nickel plant were considered in this analysis. All samples are raw wastewater samples collected on one day at one of the plants. Pollutants will be selected for further consideration if they are present in concentrations treatable by the technologies considered in this analysis. In Sections IX through XII, a final selection of the pollutants to be limited will be made, based on relative factors.

CONVENTIONAL AND NONCONVENTIONAL POLLUTANT PARAMETERS SELECTED

This study examined samples from secondary nickel plants for conventional pollutant parameters (oil and grease, total suspended solids, and pH). The conventional and nonconventional pollutants or pollutant parameters selected for limitation in this subcategory are:

total suspended solids (TSS) pH

Total suspended solids (TSS) concentrations in the three samples ranged from 350 mg/l to 16,000 mg/l. All of the observed concentrations are above the 2.6 mg/l concentration considered achievable by identified treatment technology. Furthermore, most of the technologies used to remove toxic metals do so by converting these metals to precipitates. A limitation on total that sedimentation to suspended solids ensures remove precipitated toxic metals is effectively operating. For these reasons, total suspended solids is a pollutant parameter selected for limitation in this subcategory.

The pH values observed ranged from 6.6 to 11.4. Effective

removal of toxic metals by precipitation requires careful control of pH. Therefore pH is selected for limitation in this subcategory

TOXIC PRIORITY POLLUTANTS

The frequency of occurrence of the toxic pollutants in the wastewater samples considered in this analysis is presented in Table VI-1 (Page 3978). These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-1 is based on the raw wastewater sampling data from streams 986. 004. and 005. Stream 987 was sampled after settling and was not used in the frequency count.

TOXIC POLLUTANTS NEVER DETECTED

The toxic pollutants listed in table VI-2 (page 3979) were not detected in any raw wastewater samples from this subcategory; therefore, they are not selected for consideration in establishing limitations:

TOXIC POLLUTANTS NEVER FOUND ABOVE THEIR ANALYTICAL QUANTIFICATION CONCENTRATION

The priority pollutants listed below were never found above their analytical quantification concentration in any wastewater samples from this subcategory; therefore, they are not selected for consideration in establishing effluent limitations and standards.

114.	antimony
117.	beryllium
118.	cadmium
121.	cyanide
122.	lead
123.	mercury
125.	selenium
126.	silver
127.	thallium

TOXIC POLLUTANTS SELECTED FOR FURTHER CONSIDERATION IN ESTABLISHING LIMITATIONS AND STANDARDS

The toxic pollutants selected for further consideration in establishing limitations and standards for this subcategory are listed below:

115. arsenic
119. chromium
120. copper
124. nickel
128. zinc

Arsenic was detected above its treatable concentration (0.34 mg/l) in one of three samples. The quantifiable concentrations

ranged from 0.013 mg/l to 0.93 mg/l. Since arsenic was present in concentrations exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Chromium was detected above its treatable concentration (0.07 mg/l) in three of three samples. The quantifiable concentrations ranged from 0.88 mg/l to 5.35 mg/l. Since chromium was present in concentrations exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Copper was detected above its treatable concentration (0.39 mg/l) in three of three samples. The quantifiable concentrations ranged from 0.59 mg/l to 60 mg/l. Since copper was present in concentrations exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Nickel was detected above its treatable concentration (0.22 mg/l) in three of three samples The quantifiable concentrations ranged from 7.5 mg/l to 96 mg/l. Since nickel was present in concentrations exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Zinc was detected above its treatable concentration (0.23 mg/l) in one of three samples. The quantifiable concentrations ranged from 0.12 mg/l to 0.26 mg/l. Since zinc was present in concentrations exceeding the concentration achievable by identified treatment technology, it is selected for consideration for limitation.

Table VI-1

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS SECONDARY NICKEL SUBCATEGORY RAW WASTEWATER

Pollu	itant	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentration (mg/l)(b)	Number of Streams Analyzed	Number of Samples Analyzed	Not Detected	Detected Below Quantification Concentration	letected Beiow Treatabie Concentration	Letected Above Treatable Concentration H
114.	antimony	0,100	0.47	3	3		3	Û	0 0
115.	arsentc	0.010	0.34	3	3		0	2	1 2
117.	beryllium	0,010		.3	3		3	Û	0 CKEL
118.	cadmium	0.002	0.049	3	3		3	. 0	U L
119.	chromium	0.005	0.07	3	3		Û	Û	3 0
120.	copper	0.009	0.39	3	3		0	0	3 🖁
121.	cyanide (c)	0.02	0.047	3	3		3	Ű	ñ O
122.	lead	0.020	0.08	3	3		3	0	U P
123.	isercury	0.0001	0.036	3	3		3	0	SUBCATEGORY
124.	nickel	0.005	0.22	3	3		0	0	3 6
125.	selenium	0. Oi	0, 20	3	3		3	U	U Ö
126.	silver	0. 0 2	0,07	3	3		3	0	0 23
127.	thallium	0.100	0.34	3	3		3	0	0 ~
128.	zinc	0.050	0.23	3	3		0	2	1
	oil and grease	5.0	10.0	3	3		Û	3	0
	total suspended solids (TSS)	1.0	2.6	3	3		Û	0	3 E

(a) Analytical quantification concentration was reported with the data (see Section V).

(b) Treatable concentrations are based on performance of chemical precipitation, sedimentation, and filtration.

(c) Analytical quantification concentration for EPA Method 335.2, Total Cyanide Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Murch 1979.

SECT - VI

TABLE VI-2

TOXIC POLLUTANTS NEVER DETECTED

1. acenaphthene* 2. acrolein* 3. acrvlonitrile* 4. benzene* 5. benzedine* 6. carbon tetrachloride (tetrachloromethane)* 7. chlorobenzene* 8. 1,2,4-thrichlorobenzene* 9. hexachlorobenzene* 10. 1,2,-dichloroethane* 11. 1,1,1,-thrichloroethane* 12. hexachloroethane* 13. 1,1-dichloroethane* 14. 1,1,2-thrichloroethane* 15. 1,1,2-tetrachloroethane* 16. chloroethane* 17. bis (chloromethyl) ether (deleted)* 18. bis (2-chloroethyl) ether* 19. 2-chloroethyl vinyl ether (mixed)* 20. 2-chloronaphthalene* 21. 2,4,6-trichlorophenol* 22. para-chloro meta-cresol* 23. chloroform (trichloromethane)* 24. 2-chlorophenol* 25. 1,2-dichlorobenzene* 26. 1,3-dichlorobenzene* 1,4-dichlorobenzene* 27. 28. 3,3-dichlorobenzidine* 29. 1,1-dichloroethylene* 30. 1,2-trans-dichloroethylene* 31. 2,4-dichlorophenol* 32. 1,2-dichloropropane* 33. 1,3-dichloropropylene (1,3-dichloropropene)* 34. 2,4-dimerhylphenol* 35. 2,4-dinitrotoluene* 36. 2,6-dinitrotoluene* 37. 1,2-diphenylhydrazine* 38. ethylbenzene* 39. fluoranrhene* 40. 4-chlorophenyl phenyl ether* 41. 4-bromophenyl phenyl ether* 42. bis (2-chloroisopropyl) ether* 43. bis (2-chloroethoxy) methane* 44 methylene chloride (dichloromethane)* methyl chloride (chloromethane)* 45. 46. methyl bromide (bromomethane)* 47. bromoform (tribromomethane)* 48. dichlorobromomethane* 49. trichlorofluoromethane (deleted)*

```
TABLE VI-2 (Continued)
```

TOXIC POLLUTANTS NEVER DETECTED

```
50.
     dichlorodifluoromethane (deleted)*
51.
     chlorodibromomerhane*
52.
     hexachlorobutadiene*
53. hexachlorocyclopenradiene*
54.
     isophorone*
55.
    naphthalene*
56.
    nitrobenzene*
57.
     2-nitrophenol*
58.
     4-nitrophenol*
59.
     2,4-dinitrophenol*
60.
     4,5-dinirro-o-cresol*
61.
     N-nitrosodimethylamine*
62.
    N-nitrosodiphenylamine*
63.
    N-nitrosodi-n-propylamine*
64.
    pentachlorophenol*
    phenol*
65.
66.
    bis (2-ethylhexyl) phthalate*
67.
     buryl benzyl phthalate*
68.
     di-n-butyl phthalate*
69.
     di-n-octyl phthalate*
70.
     diethyl phthalate*
71.
    dimethyl phthalare*
72.
    benzo (a) anthracene (1,2-benzanthracene)*
73.
   benzo (a) pyrene (3,4-benzopyrene)*
74.
     3,4-benzofluoranthene*
75.
     benzo (k) fluoranthene*
76.
     chrysene*
77.
   acenaphthylene*
78.
    anthracene*
    benzo (ghi) perylene (1,12-benzoperylene)*
79.
80.
   fluorene*
81.
    phenanthrene*
     dibenzo (a,h) anthracene (1,2 5,o-dibenzanthracene)*
82.
83.
     ideno (1,2,3-cd) pyrene (2,3,-o-phenylenepyrene)*
84.
    pyrene*
85.
     tetrachloroethylene*
86.
    roluene.
87.
     trichloroethylene*
88.
     vinyl chloride (chloroethylene)*
     aldrin*
89.
90.
     dieldrin*
91.
     chlordan'e (technical mixture and metabclites)*
92.
     4,4'-DDT*
     4,4'-DDE (p,p'DDX)*
93.
94.
     4,4'-DDD (p,p'TDE)*
95.
    Alpha-endosulfan*
96. Beta-endosulfan*
97.
    endosulfan sulfate*
98. endrin*
99.
     endrin aldehyde*
```

TABLE VI-2 (Continued)

TOXIC POLLUTANTS NEVER DETECTED

100. heptachlor* 101. heptachlor epoxide* 102. Alpha-8HC* 103. Beta-BHC* 104. Gamma-BHC (lindane)* 105. Delta-BHC* 106. PCB-1242 (Arochlor 1242)* 107. FCB-1254 (Arochlor 1254)* 108. PCB.1221 (Arochlor 1221)* 109. PCB-1232 (Arochlor 1232)* 110. PCB-1248 (Arochlor 1248)*
111. PCB-1260 (Arochlor 1260)* 112. PCB-1016 (Arochlor 1016)* 113. toxaphene* 116. asbestos 129. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

*The Agency did not analyze for these pollutants in samples of raw wastewater from this subcategory. These pollutants are not believed to be present based on the Agency's best engineering judgment which includes consideration of raw materials and process operations.

THIS PAGE INTENTIONALLY LEFT BLANK

•

ļ

ï

-

• SECTION VII

CONTROL AND TREATMENT TECHNOLOGIES

The preceding sections of this supplement discussed the sources, flows, and characteristics of the wastewaters from secondary nickel plants. This section summarizes the description of these wastewaters and indicates the treatment technologies which are currently practiced in the secondary nickel subcategory for each waste stream. Secondly, this section presents the control and treatment technology options which were examined by the Agency for possible application to the secondary nickel subcategory.

CURRENT CONTROL AND TREATMENT PRACTICES

This section presents a summary of the control and treatment technologies that are currently being applied to each of the sources generating wastewater in this subcategory. As discussed in Section V, wastewater associated with the secondary nickel subcategory is characterized by the presence of the toxic metal pollutants and suspended solids. This analysis is supported by the raw (untreated) wastewater data presented for specific sources as well as combined waste streams in Section v. Generally, these pollutants are present in each of the waste streams at concentrations above treatability, and these waste streams are commonly combined for treatment. Construction of one wastewater treatment system for combined treatment allows plants to take advantage of economic scale and in some instances to of different alkalinity to reduce treatment combine streams The one discharging plant in chemical requirements. this subcategory currently has a combined wastewater treatment system treating nickel forming and acid reclaim wastewater, consisting lime precipitation and sedimentation. Two options have been of selected for consideration for NSPS and pretreatment based on combined treatment of these compatible waste streams.

SLAG RECLAIM TAILINGS

Slag or dross from a nickel smelting furnace may be reclaimed for its nickel values with a wet granulation operation. The tailings generated by this operation are discharged to a railings pond where solids are settled. The tailings pond overflows and discharges to a POTW. The tailings pond acts as a primary settling unit, and no additional treatment is performed on this wastewater. One plant has this waste stream and treatment. The raw waste is characterized by toxic metals and suspended solids.

ACID RECLAIM LEACHING FILTRATE

After nickel is precipitated from spent pickling acids with sodium carbonate and roasted to produce nickel oxide, the nickel oxide is leached with water to remove impurities and then dewatered on a belt filter. One plant discharges the resultant leaching filtrate without treatment to a POTW.

ACID RECLAIM LEACHING BELT FILTER BACKWASH

In the acid reclaim process, after the dewatered nickel oxide is scraped from the belt filter, the filter is backwashed with water. The resultant backwash water is treated as a combined waste stream along with nickel forming wastewaters in a lime precipitation and sedimentation system prior to discharge.

Recycle is not practiced on these three wastewater streams and all are indirectly discharged. All have toxic metals and suspended solids above treatable concentrations.

CONTROL AND TREATMENT OPTIONS

The Agency examined two control and treatment technology options that are applicable to the secondary nickel subcategory. The options selected for evaluation represent a combination of preliminary treatment technologies applicable to individual waste streams and end-of-pipe treatment technologies. The effectiveness of these technologies is presented in Section VII of the General Development Document.

OPTION A

Option A for the secondary nickel subcategory requires control and treatment technologies to reduce the discharge of wastewater pollutant mass.

The Option A treatment scheme consists of chemical precipitation and sedimentation technology. Specifically, lime or some other chemical is used to precipitate metal ions as metal hydroxides. The metal hydroxides and suspended solids settle out and the sludge is collected. Vacuum filtration is used to dewater sludge.

Slag reclaim and acid reclaim wastewaters are treated separately because of economic considerations.

OPTION C

Option C for the secondary nickel subcategory consists of all control and treatment requirements of Option A (chemical precipitation and sedimentation, separate treatment of slag and acid reclaim wastewater) plus multimedia filtration technology added at the end of the Option A treatment scheme. Multimedia filtration is used to remove suspended solids including precipitates of metals, beyond the concentration attainable by gravity sedimentation. The filter suggested is of the gravity, mixed-media type, although other forms of filters, such as rapid sand filters or pressure filters would perform satisfactorily. The addition of filters also provides consistent removal during periods of time in which there are rapid increases in flows or loadings of pollutants to the treatment system.

SECTION VIII

COSTS, ENERGY, AND NONWATER QUALITY ASPECTS

This section presents a summary of compliance costs for the secondary nickel subcategory and a description of the treatment options and subcategory-specific assumptions used to develop these estimates. Together with the estimated pollutant reduction performance presented in Sections XI and XII of this supplement, these cost estimates provide a basis for evaluating each These cost estimates are also used in regulatory option. determining the probable economic impact of regulation on the subcategory at different pollutant discharge levels. In addition, this section addresses nonwater quality environmental impacts of wastewater treatment and control alternatives, including air pollution, solid wastes, and energy requirements, which are specific to the secondary nickel subcategory.

TREATMENT OPTIONS FOR EXISTING SOURCES

As discussed in Section VII, two treatment options have been developed for existing secondary nickel sources. The treatment schemes for each option are summarized below and schematically presented in Figures XI-1 and XI-2 (pages 4002 - 4003).

OPTION A

Option A consists of chemical precipitation and sedimentation end-of-pipe technology. Slag reclaim tailings is treated separately from acid reclaim wastewater.

OPTION C

Option C consists of Option A (chemical precipitation and sedimentation, and separate treatment of slag and acid reclaim wastewater) with the addition of multimedia filtration to the end of the Option A treatment scheme.

COST METHODOLOGY

Plant-by-plant compliance costs for the nonferrous metals manufacturing category have been revised following proposal because of new flow and production data for slag reclaim wastewater received through industry comments. These revisions calculate incremental costs, above treatment already in place, necessary to comply with the promulgated effluent limitations and standards and are presented in the administrative record supporting this regulation. A comparison of the costs developed for proposal and the revised costs for the final regulation are presented in Table VIII-1 (Page 3989) for the one indirect discharger in the secondary nickel subcategory. Each subcategory contains a unique set of waste streams requiring certain subcategory-specific assumptions to develop compliance costs. The major assumptions relevant to cost estimates for the secondary nickel subcategory are discussed briefly below.

(1) Compliance costs are based on integrated treatment of the two acid reclaim waste streams (with forming streams) and separate treatment of the slag reclaim tailings stream. Costs attributable to treating the streams associated with acid reclaim operations at this plant are based on flow weighting the integrated treatment costs.

(2) The slag reclaim tailings stream is not recycled at BAT since recycling is not demonstrated on this waste stream. Plant operation shows that numerous attempts have been made to recycle this stream without success.

(3) Costs of treating the slag reclaim railings stream are based on primary settling and removal of the majority of settleable solids in the existing lagoon prior to entering chemical precipitation. Chemical precipitation is accomplished using sulfuric acid as the precipitant rather than lime due to the high pH of the influent (pH 11).

NONWATER QUALITY ASPECTS

A general discussion of the nonwater quality aspects of the control and treatment options considered for the nonferrous metals category is contained in Section VIII of the General Development Document. Nonwater quality impacts specific to the secondary nickel subcategory, including energy requirements, solid waste and air pollution are discussed below.

ENERGY REQUIREMENTS

The methodology used for determining the energy requirements for the various options is discussed in Section VIII of the General Development Document. Energy requirements for the two options considered are estimated at 89,000 kwh/yr and 112,000 kwh/yr for Options A and C, respectively. Option C represents less than one percent of a typical plant's electrical energy usage. It is therefore concluded that the energy requirements of the treatment options considered will not have a significant impact on total plant energy consumption.

SOLID WASTE

Sludge generated in the secondary nickel subcategory is due to the precipitation of metal hydroxides and carbonates using lime or sulfuric acid. Sludges associated with the secondary nickel subcategory will necessarily contain quantities of toxic metal pollutants. Wastes generated by secondary metal industries can be regulated as hazardous. However, the Agency examined the solid wastes that would be generated at secondary nonferrous metals manufacturing plants by the suggested treatment technologies, and believes they are not hazardous wastes under the Agency's regulations implementing Section 3001 of the

Resource Conservation and Recovery Act. The one exception to is solid wastes generated by cyanide precipitation. this These sludges are expected to be hazardous and this judgment was included in this study. None of the non-cyanide wastes are listed specifically as hazardous. Nor are they likely to exhibit a characteristic of hazardous waste. This judgment is made based the recommended technology of lime precipitation on and By the addition of a small excess of lime during filtration. treatment, similar sludges, specifically toxic metal bearing sludges, generated by other industries such as the iron and steel industry passed the Extraction Procedure (EP) toxicity test. See 40 CFR \$261.24. Thus, the Agency believes that the wastewater will similarly not be EP toxic if the recommended sludaes technology is applied.

Although it is the Agency's view that solid wastes generated as a result of these guidelines are not expected to be hazardous, generators of these wastes must test the waste to determine if the wastes meet any of the characteristics of hazardous waste (see 40 CFR \$262.11).

If these wastes identified should be or are listed as hazardous, they will come within the scope of RCRA's "cradle to grave" hazardous waste management program, requiring regulation from the point of generation to point of final disposition. EPA's generator standards would require generators of hazardous nonferrous metals manufacturing wastes to meet containerization, labeling, recordkeeping, and reporting requirements; if plants dispose of hazardous wastes off-site, they would have to prepare a manifest which would track the movement of the wastes from the generator's premises to a permitted off-site treatment, storage, or disposal facility. See 40 CFR \$262.20 [45 FR 33142 (May 19, 1980), as amended at 45 FR 86973 (December 31, 1980)]. The transporter regulations require transporters of hazardous waste to comply with the manifest system to assure that the wastes are delivered to a permitted facility. See 40 CFR \$263.20 [45 FR 33151 (May 19, 1980), as amended at 45 FR 86973 (December 31, Finally, RCRA regulations establish standards 1980)]. for hazardous waste treatment, storage, and disposal facilities allowed to receive such wastes. See 40 CFR Part 464 [46 FR 2802 (January 12, 1981), 47 FR 32274 (July 26, 1982)].

Even if these wastes are not identified as hazardous, they still must be disposed of in compliance with the Subtitle D open dumping standards, implementing S4004 of RCRA. See 44 FR 53438 (September 13, 1979). The Agency has calculated as part of the costs for wastewater treatment the cost of hauling and disposing of these wastes.

The Agency estimates that the promulgated PSES regulation for secondary nickel manufacturing facilities will generate 423 metric tons of solid wastes (wet basis) in 1982 as a result of wastewater treatment.

AIR POLLUTION

There is no reason to believe that any substantial air pollution problems will result from implementation of chemical precipitation, sedimentation, and multimedia filtration. These technologies transfer pollutants to solid waste and are not likely to transfer pollutants to air.

Table VIII-1

COST OF COMPLIANCE FOR THE SECONDARY NICKEL SUBCATEGORY INDIRECT DISCHARGERS

(March, 1982 Dollars)

	Proposa		Promulgation Costs		
Option	Capital Cost	Annual Cost	Capital Cost	Annual Cost	
Α	286,137	119,339	320,100	161,200	
С	341,274	147,750	387,300	196,200	
	(286,549)*	(119,616)*	(320,500)*	(161,500)*	

*These costs represent Option C without filtration for slag reclaim tailings.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION IX

BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

The plants within the secondary nickel subcategory were studied as to their wastewater disposal practices and it was determined that BPT and BAT are not applicable to this subcategory. This is because there are no direct dischargers of process wastewater. The secondary nickel subcategory is regulated under New Source Performance Standards in Section XI and Pretreatment Standards in Section XII.

SECONDARY NICKEL SUBCATEGORY SECT - X

SECTION X

BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

As described in Section IX, BAT is not applicable to the secondary nickel subcategory because none of the plants in the subcategory directly discharge any wastewater to surface waters. Regulation of the secondary nickel subcategory is covered in Section XI under New Source Performance Standards and Section XII under Pretreatment Standards.

.

Т

:

. . . .

ı.

L

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION XI

NEW SOURCE PERFORMANCE STANDARDS

This section describes the technologies for treatment of wastewater from new sources and presents mass discharge standards for regulated pollutants for NSPS in the secondary nickel subcategory, based on the selected treatment technology. The basis for new source performance standards (NSPS) is the best available demonstrated technology (BDT). New plants have the opportunity to design the best and most efficient production processes and wastewater treatment technologies without facing the added costs and restrictions encountered in retrofitting an plant. Therefore, EPA has considered the best existing demonstrated process changes, in-plant controls, and end-of-pipe treatment technologies which reduce pollution to the maximum extent feasible.

TECHNICAL APPROACH TO NSPS

New source performance standards are based on the most effective and beneficial technologies currently available. The Agency reviewed and evaluated a wide range of technology options for new sources. The Agency elected to examine two technology options. applied to combined wastewater streams, which could be applied to the secondary nickel subcategory as alternatives for the basis of NSPS.

Treatment technologies considered for the NSPS options are summarized below:

OPTION A (Figure XI-1, page 4000) is based on:

Chemical precipitation and sedimentation Separate treatment of slag reclaim tailings wastewater

OPTION C (Figure XI-2, page 4001) is based on:

Chemical precipitation and sedimentation Multimedia filtration Separate treatment of slag reclaim tailings wastewater

As explained in Section IV, the secondary nickel subcategory has been subdivided into three potential wastewater sources or building blocks. Since the water use. discharge rates, and pollutant characteristics of each of these wastewaters is potentially unique, effluent limitations will be developed for each of the three subdivisions.

For each of the building blocks a specific approach was followed for the development of NSPS. The first requirement to calculate these limitations is to account for production and flow

variability from plant to plant. Therefore, a unit of production or production normalizing parameter (PNP) was determined for each waste stream which could then be related to the flow from the process to determine a production normalized flow. Selection of the PNP for each process element is discussed in Section IV. Each plant within the subcategory was then analyzed to determine which subdivisions were present, specific flow rates generated for each subdivision, and the specific production normalized flows for each subdivision. This analysis is discussed in detail in Section V. Nonprocess wastewater such as rainfall runoff and noncontact cooling water is not considered in the analysis.

Production normalized flows for each subdivision were analyzed to determine which flow was to be used as part of the basis for NSPS. The selected flow (sometimes referred to as a NSPS regulatory flow or NSPS discharge flow) reflected the water use controls which are common practice within the industry, The NSPS normalized flow is based on the average of all applicable data. Nothing was found to indicate that the wastewater flows and characteristics of new plants would not be similar to those from existing plants, since the processes used by new sources are not expected to differ from those used at existing sources.

The second requirement to calculate new source performance standards is the set of concentrations that are achievable by application of NSPS level treatment technology. Section VII discusses the various control and treatment technologies which are currently in place for each wastewater source. In most cases, the current control and treatment technologies consist of chemical precipitation and sedimentation (lime and settle) technology.

Using theses regulatory flows and the achievable concentrations, the next step is to calculate mass loadings for each wastewater source by subdivision or building block. This calculation was made on a stream by stream basis primarily because plants in this subcategory may perform one or more of the operations in various combinations. The mass loadings (milligrams of pollutant per metric ton -- mg/kkg) were calculated by multiplying the NSPS regulatory flow (l/kkg) by the concentration achievable by the NSPS level of treatment technology (mg/l) for each pollutant parameter limited under NSPS. These mass loadings are published in the <u>Federal Register</u> and in 40 CFR part 421 as the effluent limitations.

The mass loadings which are allowed under NSPS for each plant will be the sum of the individual mass loadings for the various wastewater sources which are found at particular plants. Accordingly, all the wastewater generated within a plant may be combined for treatment in a single or common treatment system, but the effluent limitations for these combined wastewaters are based on the various wastewater sources which actually contribute to the combined flow. This method accounts for the variety of combinations of wastewater sources and production processes which may be found at secondary nickel plants.

SECONDARY NICKEL SUBCATEGORY SECT - XI

The Agency usually establishes wastewater limitations in terms of mass rather than concentration. This approach prevents the use of dilution as a treatment method (except for controlling pH). The production normalized wastewater flow (l/kkg) is a link between the production operations and the effluent limitations. The pollutant discharge attributable to each operation can be calculated from the normalized flow and effluent concentration achievable by the treatment technology and summed to derive an appropriate limitation for each subcategory.

POLLUTANT REMOVAL ESTIMATES

As one means of evaluating each technology option, EPA developed estimates of the pollutant removal and the compliance costs associated with each option. Since there are no existing direct dischargers in the secondary nickel subcategory, the estimated pollutant removal analysis was only carried out for indirect dischargers.

A complete description of the methodology used to calculate the estimated pollutant removal, or benefit, achieved by the application of the various treatment options is presented in Section X of Vol. I. Sampling data collected during the field sampling program were used to characterize the major waste streams considered for regulation. At each sampled facility, the sampling data was production normalized for each unit operation (i.e., mass of pollutant generated per mass of product manufactured). This value, referred to as the raw waste, was manufactured). used to estimate the mass of toxic pollutants generated within secondary nickel subcategory. The pollutant the removal estimates were calculated for each plant by first estimating the total mass of each pollutant in the untreated wastewater. This was calculated by first multiplying the raw waste values by the corresponding production value for that stream and then summing these values for each pollutant for every stream generated by the plant.

The volume of wastewater discharged after the application of each treatment option was estimated for each operation at each plant by comparing the actual discharge to the regulatory flow. The smaller of the two values was selected and summed with the other plant flows. The mass of pollutant discharged was then estimated by multiplying the achievable concentration values attainable with the option (mg/l) by the estimated volume of process wastewater discharged by the subcategory. The mass of pollutant removed is the difference between the estimated mass of pollutant generated within the subcategory and the mass of pollutant discharged after application of the treatment option. The pollutant removal estimates for indirect dischargers in the secondary nickel subcategory have been revised since proposal based on new flow and production data and are presented in Table XII-1 (Page 4009).

COMPLIANCE COSTS

In estimating subcategory-wide compliance costs, the first step was to develop a cost estimation model, relating the total costs associated with installation and operation of wastewater treatment technologies to plant process wastewater, discharge. EPA applied the model to each plant. The plant's investment and operating costs are determined by what treatment it has in place and by its individual process wastewater discharge flow. AS discussed above, this flow is either the actual or the NSPS regulatory flow, whichever is lesser. The final step was to annualize the capital costs, and to sum the annualized capital and the operating and maintenance costs for each plant, costs yielding the cost of compliance for the subcategory. Α comparison of the costs developed for proposal and the revised costs for promulgation is presented in Table XII-2 (Page 4010). These costs were used in assessing economic achievability.

NSPS OPTION SELECTION - PROPOSAL

EPA proposed that NSPS for the secondary nickel subcategory be based on Option C, chemical precipitation, sedimentation, and multimedia filtration. Filtration was proposed for acid reclaim leaching filtrate and acid reclaim leaching belt filter backwash, but not for slag reclaim tailings. Filtration was not proposed for slag reclaim tailings wastewater because it was not found to be cost effective.

The wastewater flow rates for NSPS were equivalent to the proposed PSES flow rates. Flow reduction measures were not considered feasible for the waste streams generated in this subcategory.

NSPS OPTION SELECTION - PROMULGATION

We are promulgating NSPS for the secondary nickel subcategory based on Option A, chemical precipitation and sedimentation. The end-of-pipe treatment configuration for the NSPS option selected is presented in Figure XI-3 (Page 4011). It was determined that filtration for slag reclaim tailings and acid reclaim wastewater would not remove much additional pollutants beyond lime and settle treatment, and therefore, is not justified.

The pollutants and pollutant parameters specifically limited under NSPS are chromium, copper, nickel, total suspended solids and pH. The toxic pollutants arsenic and zinc were also considered for regulation because they are present at treatable concentrations in the raw wastewaters from this subcategory. These pollutants were not selected for-specific regulation because they will be effectively controlled when the regulated toxic metals are treated to the levels achievable by the model technology.

Promulgated NSPS technology and discharge rates are equivalent to promulgated PSES technology and discharge rates. Because NSPS is

equal to PSES, we believe that the promulgated NSPS will not have a detrimental impact on the entry of new plants into this subcategory.

WASTEWATER DISCHARGE RATES

A NSPS discharge rate is calculated for each subdivision based on the average of the flows of the existing plants, as determined from analysis of dcp. The discharge rate is used with the achievable treatment concentrations to determine NSPS effluent limitations. Since the discharge rate may be different for each wastewater source, separate production normalized discharge rates for each of the three wastewater sources are discussed below and summarized in Table XI - 1 (Page 4002). The discharge rates are normalized on a production basis by relating the amount of wastewater generated to the mass of the product which is produced by the process associated with the wastewater stream in question. These production normalizing parameters, or PNPs, are also listed in Table XI - 1.

Section V of this document further describes the discharge flow rates and presents water use and discharge flow rates for each plant by subdivision in Tables V - 1 through V - 3 (Pages 3962 - 3964).

SLAG RECLAIM TAILINGS

NSPS wastewater discharge allowance at proposal for slag reclaim tailings was 85,600 l/kkg (20,513 gal/ton) of slag reclaim nickel The NSPS allowances were based on the discharge produced. rate at the only plant reporting this stream. Since proposal, industry comments which included flow and production information enabled EPA to recalculate the production normalized flow. In addition, industry comments prompted EPA to reconsider the production normalizing parameter for this stream. Based on the new information submitted, EPA concluded that the generation of slag reclaim tailings wastewater is related more closely to raw material input to the reclaim process than to the quantity of nickel produced from the process.

The NSPS wastewater discharge allowance used at promulgation for slag reclaim tailings is 12,848 l/kkg (3,079 gal/ton) of slag input to the reclaim process. This rate is allocated only for those plants that reclaim nickel from slag generated in melt furnaces with a wet granulation process. The water use and wastewater discharge rates are presented in Table V - 1 (Page 3962).

ACID RECLAIM LEACHING FILTRATE

The NSPS wastewater discharge allowance used for both proposal and promulgation for acid reclaim leaching filtrate is 4,995 l/kkg (1,197 gal/ton) of acid reclaim nickel produced. This rate is allocated only for those plants that reclaim nickel from spent acids, pickling wastes, and wastewater treatment sludges by precipitation or nickel carbonate, followed by roasting to produce nickel oxide and leaching with water. The water use and wastewater discharge rates are presented in Table V - 2 (Page 3963).

ACID RECLAIM LEACHING BELT FILTER BACKWASH

The NSPS wastewater discharge allowance used at both proposal and promulgation for acid reclaim leaching belt filter backwash is 1,199 l/kkg (287 gal/ton) of acid reclaim nickel produced. This rate is allocated only for those plants that reclaim nickel from spent acids, pickling wastes, and wastewater treatment sludges as explained above, and clean the belt filter with water. The water use and wastewater discharge rates are presented in Table V - 3 (Page 3964).

REGULATED POLLUTANT PARAMETERS

The raw wastewater concentrations form individual operations and the subcategory as a whole were examined to select certain pollutant parameters for limitation. This examination and evaluation was presented in Section VI. A total of five pollutants or pollutant parameters are selected for limitation under NSPS and are listed below:

119. chromium
120. copper
124. nickel
TSS
pH

The Agency has chosen not to regulate all five priority pollutants selected in Section VI for further consideration.

The high cost associated with analysis for priority metal pollutants has prompted EPA to develop an alternative method for regulating and monitoring priority pollutant discharges from the nonferrous metals manufacturing category. Rather than developing specific effluent mass limitations and standards for each of the priority metals found above treatable concentrations in the raw wastewater from a given subcategory, the Agency is promulgating effluent mass limitations only for those pollutants generated in the greatest quantities as shown by the pollutant removal analysis.

By establishing limitations and standards for certain priority metal pollutants, dischargers will attain the same degree of control over priority metal pollutants as they would have been required to achieve had all the toxic metal pollutants been directly limited.

This approach is technically justified since the treatable concentrations used for chemical precipitation and sedimentation technology are based on optimized treatment for concomitant multiple metals removal. Thus, even though metals have somewhat different theoretical solubilities, they will be removed at very nearly the same rate in a chemical precipitation and sedimentation treatment system operated for multiple metals removal.

NEW SOURCE PERFORMANCE STANDARDS

The pollutant concentrations achievable by application of the NSPS technology are discussed in Section VII of this supplement. These achievable concentrations (both one day maximum and monthly average values) are multiplied by the NSPS normalized discharge flows summarized in Table XI-1 (Page 4000) to calculate the mass of pollutants allowed to be discharged per mass of product. The results of these calculations in milligrams of pollutant per kilogram of product represent the new source performance standards and are presented in Table XI-2 (Page 4001) for each individual building block.

TABLE XI-1

NSPS WASTEWATER DISCHARGE RATES FOR THE SECONDARY NICKEL SUBCATEGORY

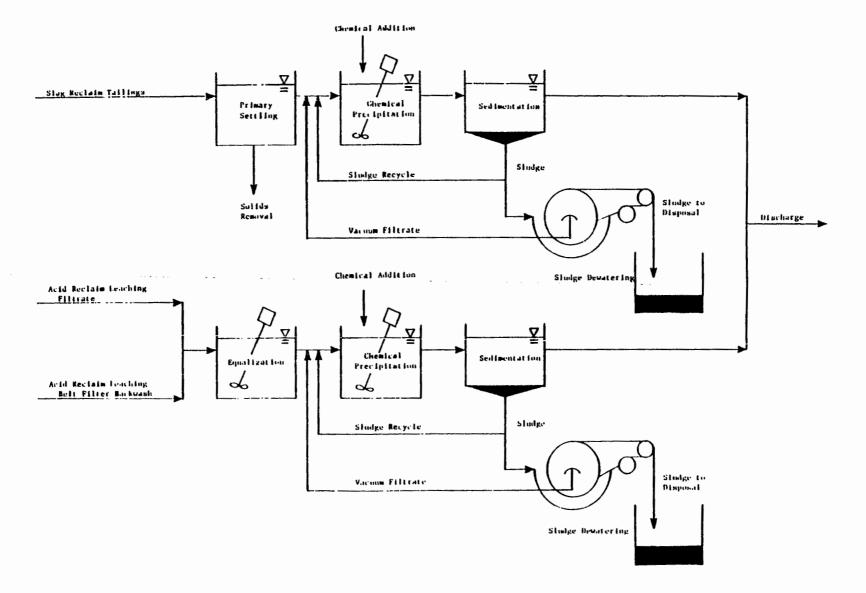
	NSPS No Discha	Production Normalizing	
Building Block	<u>(1/kkg)</u>	(gal/ton)	Parameter
Slag Reclaim Tailings	12,848	3,079	slag input to reclaim process
Acid reclaim Leaching Filtrate	4,995	1,197	acid reclaim nickel produced
Acid Reclaim Leaching Belt Filter Backwash	1,199	287	acid reclaim nickel produced

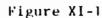
TABLE XI-2

NSPS FOR THE SECONDARY NICKEL SUBCATEGORY

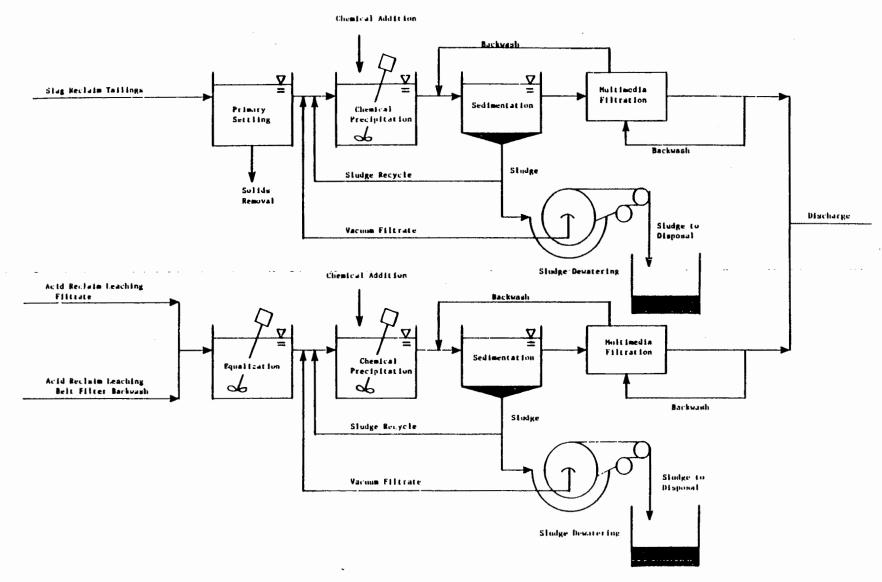
.

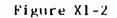
(a) Slag Reclaim Tailings NSPS

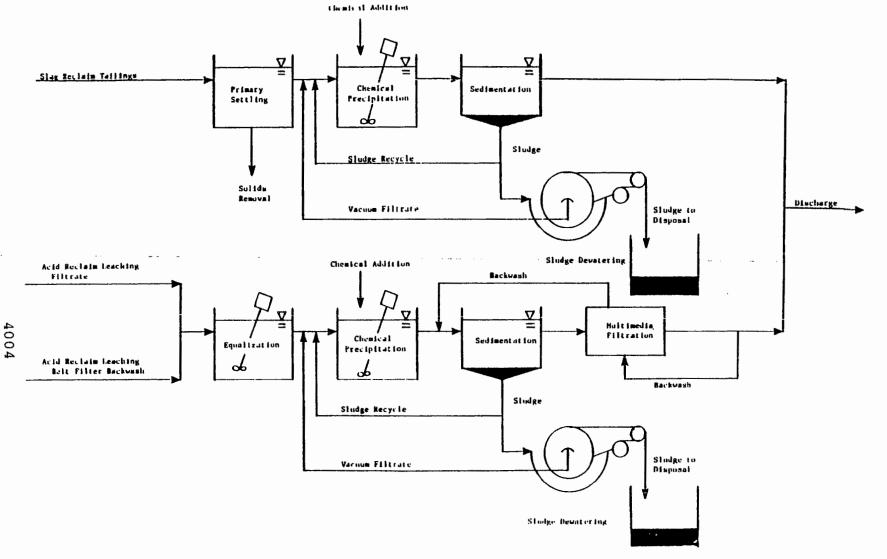

Pollutant or pollutant property		kimum for hthly average
mg/kg (lb/million	lbs) of slag input	to reclaim process
Arsenic *Chromium *Copper *Nickel Zinc *TSS *pH Within the	26.850 5.653 24.410 24.670 18.760 526.800 range of 7.5 to 10.0	11.950 2.313 12.850 16.320 7.837 250.500 D at all times

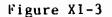

(b) Acid Reclaim Leaching Filtrate NSPS

Pollutant (or	Maximum for	Maximum for
pollutant	property	any one day	monthly average
mg/kg	(1b/millio	n lbs) of acid	reclaim nickel produced
Arsenic		10.440	4.645
*Chromium		2.198	0.899
*Copper		9.491	4.995
*Nickel		9.590	6.344
Zinc		7.293	3.047
*TSS		204.800	97.400
*pH	Within the	range of 7.5 t	to 10.0 at all times
(c) <u>Acid</u> R	eclaim Leac	hing Belt Filte	er Backwash NSPS
Pollutant	or	Maximum for	Maximum for


pollutant	property	any	one day	month	ly average	
mg/kg	(1b/million	lbs)	of acid	reclaim	nickel prod	uced
Arsenic *Chromium *Copper *Nickel Zinc *TSS *pH	Within the p	range	2.506 0.528 2.278 2.302 1.751 49.160 of 7.5 t	co 10.0 a	1.115 0.216 1.199 1.523 0.731 23.380 at all times	


*Regulated Pollutant


NSPS TREATMENT SCHEME FOR OPTION A



XI

NSPS TREATMENT SCHEME FOR OPTION C WITHOUT FILTRATION FOR SLAG RECLAIM TAILINGS

SECONDARY NICKEL SUBCATEGORY SECT - XII

SECTION XII

PRETREATMENT STANDARDS

This section describes the control and treatment technologies for pretreatment of process wastewaters from existing sources and new sources in the secondary nickel subcategory. PSES are designed to prevent the discharge of pollutants which pass through, interfere with, or are otherwise incompatible with the operation publicly owned treatment works (POTW). The Clean Water Act of requires pretreatment for pollutants, such as toxic metals, that limit POTW sludge management alternatives. New indirect discharge facilities, like new direct discharge facilities, have the opportunity to incorporate the best available demonstrated technologies, including process changes, in-plant controls, and end-of-pipe treatment technologies, and to use plant site selection to ensure adequate treatment system installation. Pretreatment standards are to be technology based, analogous to the best available or best demonstrated technology for removal of toxic pollutants.

Pretreatment standards for regulated pollutants are presented based on the selected control and treatment technology.

TECHNICAL APPROACH TO PRETREATMENT

Before proposing or promulgating pretreatment standards, the Agency examines whether the pollutants discharged by the industry pass through the POTW or interfere with the POTW operation or its sludge disposal practices. In determining whether chosen pollutants pass through a well-operated POTW achieving secondary treatment, the Agency compares the percentage of a pollutant removed by POTW with the percentage removed by direct dischargers applying the best available technology economically achievable. A pollutant is deemed to pass through the POTW when the average percentage removed nationwide by well-operated POTW meeting secondary treatment requirements, is less than the percentage removed by direct dischargers complying with BAT effluent limitations guidelines for that pollutant.

This definition of pass through satisfies two competing objectives set by Congress that standards for indirect dischargers be equivalent to standards for direct dischargers, while at the same time, the treatment capability and performance of the POTW be recognized and taken into account in regulating the discharge of pollutants from indirect dischargers.

The Agency compares percentage removal rather than the mass or concentration of pollutants discharged because the latter would not take into account the mass of pollutants discharged to the POTW from non-industrial sources or the dilution of the pollutants in the POTW effluent to lower concentrations due to the addition of large amounts of non-industrial wastewater.

SECONDARY NICKEL SUBCATEGORY SECT - XII

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

The industry cost and pollutant removal estimates of each treatment option were used to determine the most cost-effective option. The methodology applied in calculating pollutant removal estimates and plant compliance costs is discussed in Section XI. The compliance costs and pollutant removal estimates have been recalculated since proposal based on new flow and production data for the slag reclaim tailings stream obtained through industry comments. Table XII-1 (Page 4009) shows the revised pollutant removal estimates for indirect dischargers. A comparison of proposal and promulgation compliance costs for indirect dischargers is presented in Table XII-2 (Page 4010).

PRETREATMENT STANDARDS FOR EXISTING AND NEW SOURCES

Options for pretreatment of wastewaters from both existing and new sources are based on increasing the effectiveness of end-ofpipe treatment technologies. All in-plant changes and applicable end-of-pipe treatment processes have been discussed previously in Section XI. The options for PSNS and PSES, therefore, are the same as the NSPS options discussed in Section XI. A description of each option is presented in Section XI.

Treatment technologies considered for the PSES and PSNS options are:

OPTION A

- o Chemical precipitation and sedimentation
- o Separate treatment of slag reclaim tailings wastewater

OPTION C

- o Chemical precipitation and sedimentation
- o Multimedia filtration
- o Separate treatment of slag reclaim tailings wastewater

PSES OPTION SELECTION PROPOSAL

EPA proposed PSES for the secondary nickel subcategory based on Option C (chemical precipitation, sedimentation, and multimedia filtration). Filtration was proposed for acid reclaim leaching filtrate and acid reclaim leaching filter backwash wastewaters, but not for slag reclaim tailings wastewater. Filtration for slag reclaim tailings wastewater was not found to be cost effective.

Implementation of the proposed PSES limitations was estimated to remove 1,113 kilograms of toxic metal pollutants annually. Capital and annual costs of \$286,549 and \$119,616 (1982 dollars), respectively, were estimated in order to achieve the proposed PSES.

PSES OPTION SELECTION - PROMULGATION

EPA is promulgating PSES for this subcategory based on Option A, precipitation and sedimentation. Filtration was not chemical found to be cost effective for any subdivisions in this subcategory because it would not remove much additional pollutant beyond that removed with lime and settle treatment. The pollutants specifically regulated under PSES are chromium, copper, and nickel. The toxic pollutants arsenic and zinc were also considered for regulation because they are present at this treatable concentrations in the raw wastewaters from subcategory. These pollutants were not selected for specific regulation because they will be effectively controlled when the regulated toxic metals are treated to the levels achievable by the model technology. We are promulgating PSES to prevent passof chromium, copper, and nickel. priority through These pollutants are removed by a well-operated POTW at an average of 32 percent while PSES technology removes approximately 84 percent.

Implementation of the promulgated PSES limitations will remove annually an estimated 1,625 kg of priority metals. We estimate a capital cost of \$320,100 and an annualized cost of \$161,200 (1982 dollars) to achieve the promulgated PSES. The promulgated PSES will not result in adverse economic impacts.

PSNS OPTION SELECTION - PROPOSAL

EPA proposed PSNS for the secondary nickel subcategory based on Option C (chemical precipitation, sedimentation, and multimedia filtration). Filtration was not proposed for slag reclaim tailings wastewater, however, because it was not shown to be cost effective for this waste stream.

Wastewater discharge rates for PSNS were proposed equivalent to the PSES discharge rates.

PSNS OPTION SELECTION - PROMULGATION

EPA is promulgating PSNS equivalent to promulgated NSPS and PSES. The same pollutants pass through at PSNS as at PSES, for the same reasons.

The PSES flow allowances are based on minimization of process wastewater wherever possible.

The Agency believes that the promulgated PSNS are achievable, and that they are not a barrier to entry of new plants into this subcategory.

The wastewater discharge rates for PSNS are identical to the NSPS discharge rates for each waste stream. The PSNS discharge rates are shown in Table XII-3 (Table 4012).

PRETREATMENT STANDARDS

Pretreatment standards are based on the achievable concentrations from the selected treatment technology and the discharge rates determined in Section XI for NSPS and shown in Table XII-3. A mass of pollutant per mass of product (mg/kg) allocation is given for each subdivision within the subcategory. This pollutant allocation is based on the product of the concentration achievable from the model treatment (mg/l) and the production normalized wastewater discharge rate (l/kkg). The achievable treatment concentrations for NSPS are identical to those for PSES and PSNS. PSES and PSNS are presented in Table XII-4 and XII-5, respectively (pages 4012 - 4013).

Table XII-1

ı.

POLLUTANT REMOVAL ESTIMATES FOR INDIRECT DISCHARGERS IN THE SECONDARY NICKEL SUBCATEGORY

Poilutant	Toral Raw Discharge (kg/yr)	Option A Discharge _(kg/yr)	Option A Removed (kg/yr)	Option C Discharge (kg/yr)	Option C Removed (kg/yr)	Selected Option Discharge (kg/yr)	Selected Option Removed _(kg/yr)
Antimony	U	Û	U	Ű	Û	U	Ü
Argenic	16.90	16.90	U	16.90	Û	16.90	U
Cadmium	0	Û	0	0	U	0	U
Chromium (total)	12.20	4.95	7.25	4.13	8.07	4.94	7.26
Copper	1,606.38	34.18	1,572.20	22.98	1,583.40	34.03	1,572.35
Cyanide (total)	0	0	0	0	Ŭ	Û	U
Lead	0	0	Û	O		0	U - 1
Mercury	. 0	0	0	0	0	Û	U
Nickel	51.68	6.41	45.27	6.00	45.68	6.00	45.68
Selenium	`0	Û	0	0	0	0	U
Silver	0	U	Û	0	0	Û	U
Thallium	0	0	0	Û	Û	Û	Û
2 Inc	0.19	0.19	0	0.17	0.02	0.17	0.02
TOTAL PRIORITY POLLUTAN	TS 1,687.35	62.63	1,624.72	50.18	1,637.17	62.04	1,625.31
Ammon i a	U Q	U	U	U Q	0	0	Û
Cobalt	-	0	U 0	•	0 0	•	0
Fluoride	23.89	23.89	U	23.89	0	23.89	U
TOTAL NONCONVENTIONALS	23.89	23.89	U	23.89	Û	23.89	υ
TSS Oil & Grease	932,833.74 699.12	707.09 581.35	932,126.65 117.77	153.20 581.35	932,680.54 117.77	699.68 581.35	932,134.06 117.77
TOTAL CONVENTIONALS	933,532.86	1,288.44	932,244.42	734.55	932,798.31	1,281.03	932,251.83
TOTAL POLLUTANTS	935,244.10	1,374.96	933,869.14	808.62	934,435.48	1,366.96	933,877.14

Option A = Chemical precipitation and sedimentation

Option C = Chemical precipitation, sedimentation, and filtration

Table XII-2

COST OF COMPLIANCE FOR THE SECONDARY NICKEL SUBCATEGORY INDIRECT DISCHARGERS

(March, 1982 Dollars)

	Proposal		Promulgation Costs		
Option	Capital Cost	Annual Cost	Capital Cost	Annual Cost	
A	286,137	119,339	320,100	161,200	
С	341,274	147,750	387,300	196,200	
 · ·	(286,549)*	(119,616)*	(320,500)*	(161,500)*	

^{*}These costs represent Option C without filtration for slag reclaim tailings.

TABLE XII-3

PSES AND PSNS WASTEWATER DISCHARGE RATES FOR THE SECONDARY NICKEL SUBCATEGORY

	PSES a Norm Discha	Production Normalizing	
Wastewater Stream	<u>(l/kkg)</u>	(gal/ton)	Parameter
Slag Reclaim Tailings	12,848	3.079	slag input to reclaim process
Acid reclaim Leaching Filtrate	4,995	1,197	acid reclaim nickel produced
Acid Reclaim Leaching Belt Filter Backwash	1,199	287	acid reclaim nickel produced

TABLE XII-4

PSES FOR THE SECONDARY NICKEL SUBCATEGORY

(a) Slag Reclaim Tailings PSES

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (lb/million	lbs) of slag	input to reclaim process
Arsenic	26.850	11.950
*Chromium	5.653	2.313
*Copper	24.410	12.850
*Nickel	24.670	16.320
Zinc	18.760	7.837

(b) Acid Reclaim Leaching Filtrate PSES

Pollutant or pollutant pro		Maximum any one		Maximum for monthly ave	
mg/kg (1	lb/million	lbs) of	acid	reclaim nickel	produced
Arsenic *Chromium *Copper *Nickel Zinc).440 2.198 9.491 9.590 7.293		4.645 0.899 4.995 6.344 3.047

(c) Acid Reclaim Leaching Belt Filter Backwash PSES

Pollutant or pollutant property	Maximum for any one day	Maximum for monthly average
mg/kg (lb/mil	lion lbs) of acid	reclaim nickel produced
Arsenic *Chromium *Copper *Nickel Zinc	2.506 0.528 2.278 2.302 1.751	1.115 0.216 1.199 1.523 0.731

*Regulated Pollutant

SECONDARY NICKEL SUBCATEGORY SECT - XII

TABLE XII-5

PSNS FOR THE SECONDARY NICKEL SUBCATEGORY

(a) <u>Slag Reclaim Tailings</u> PSNS

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (lb/millior	lbs) of slag	input to reclaim process
Arsenic	26.850	11.950
*Chromium	5.653	2.313
*Copper	24.410	12.850
*Nickel	24.670	16.320
Zinc	18.760	7.837

(b) Acid Reclaim Leaching Filtrate PSNS

Pollutant c pollutant p		Maximum f any one d		num for ly average
mg/kg	(lb/million	lbs) of a	cid reclaim	nickel produced
Arsenic *Chromium *Copper *Nickel Zinc		2. 9. 9.	440 198 491 590 293	4.645 0.899 4.995 6.344 3.047

(c) Acid Reclaim Leaching Belt Filter Backwash PSNS

.

Pollutant or	Maximum for	Maximum for
pollutant property	any one day	monthly average
mg/kg (lb/mill	ion lbs) of acid	reclaim nickel produced
Arsenic	2.506	1.115
*Chromium	0.528	0.216
*Copper	2.278	1.199
*Nickel	2.302	1.523
Zinc	1.751	0.731

*Regulated Pollutant

SECONDARY NICKEL SUBCATEGORY SECT - XII

THIS PAGE INTENTIONALLY LEFT BLANK

÷

.

I.

.

SECONDARY NICKEL SUBCATEGORY SECT - XIII

SECTION XIII

BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY

EPA is not promulgating best conventional pollutant control for the secondary nickel subcategory at this time.

.

.

SECONDARY NICKEL SUBCATEGORY SECT - XIII

THIS PAGE INTENTIONALLY LEFT BLANK

:

,

.

Pages 4017 and 4018 are omitted.

NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY

DEVELOPMENT DOCUMENT SUPPLEMENT

for the

Secondary Tin Subcategory

William K. Reilly Administrator

Rebecca Hanmer Acting Assistant Administrator for Water

Martha Prothro, Director Office of Water Regulations and Standards

Thomas P. O'Farrell, Director Industrial Technology Division

Ernst P. Hall, P.E., Chief Metals Industry Branch and Technical Project Officer

May 1989

U.S. Environmental Protection Agency Office of Water Office of Water Regulations and Standards Industrial Technology Division Washington, D. C. 20460

4019

ł

.

Ì

÷

.

:

TABLE OF CONTENTS

.

Section		Page
I	SUMMARY	4029
II	CONCLUSIONS	4031
III	SUBCATEGORY PROFILE	4045
	Description of Secondary Tin Production Raw Materials Tin Smelting Alkaline Detinning Electrowinning Precipitation of Tin Hydroxide Reduction to Tin Metal Process Wastewater Sources Other Wastewater Sources Age, Production, and Process Profile	4045 4046 4046 4047 4047 4047 4047 4948 4048 4048
IV	SUBCATEGORIZATION	4055
	Factors Considered in Subdividing the Secondary Tin Subcategory Other Factors Production Normalizing Parameters	4055 4057 4057
v	WATER AND WASTEWATER CHARACTERISTICS	4059
	Wastewater Flow Rates Wastewater Characteristics Data Data Collection Portfolios Field Sampling Data Wastewater Characteristics and Flows by Subdivision	4060 4061 4061 4062 4063
	Tin Smelter SO ₂ Scrubber Dealuminizing Rinse Tin Mud Acid Neutralization Filtrate Tin Hydroxide Wash Spent Electrowinning Solution From New Scrap Spent Electrowinning Solution From Municipal Solid Waste Tin Hydroxide Supernatant From Scrap Tin Hydroxide Supernatant From Plating Solutions and Sludges Tin Hydroxide Filtrate	4063 4064 4064 4064 4065 4065 4065 4065

TABLE OF CONTENTS (Continued)

Section		Page
VI	SELECTION OF POLLUTANT PARAMETERS	4215
	Conventional and Nonconventional Pollutant Parameters Selected	4215
	Toxic Priority Pollutants	4217
	Toxic Pollutants Never Detected	4217
	Toxic Pollutants Never Found Above Their Analytical Quantification Concentration	4217
	Toxic Pollutants Present Below Concentrations Achievable by Treatment	4218
	Toxic Pollutants Detected in a Small Number of Sources	4218
	Toxic Pollutants Selected for Further	4220
	Consideration in Establishing Limitations and Standards	
VII	CONTROL AND TREATMENT TECHNOLOGIES	4229
	Current Control and Treatment Practices	4229
	Tin Smelter SO ₂ Scrubber	4229
	Dealuminizing Rinse Tin Mud Acid Neutralization Filtrate	4229 4230
	Tin Hydroxide Wash	4230
	Spent Electrowinning Solution From New Scrap	4230
	Spent Electrowinning Solution From Municipal Solid Waste	4230
	Tin Hydroxide Supernatant From Scrap	4231
	Tin Hydroxide Supernatant From Plating Solutions and Sludges	4231
	Tin Hydroxide Filtrate	4231
	Control and Treatment Options	4231
	Option A	4231
	Option C	4232
VIII	COST OF WASTEWATER TREATMENT AND CONTROL	4233
	Treatment Options for Existing Sources	4233
	Option A	4233
	Option C	4233
	Cost Methodology	4234
	Nonwater Quality Aspects	4234
	Energy Requirements Solid Waste	4235
	Air Pollution	4235 4236
		-200

;

n - - + : -

TABLE OF CONTENTS (Continued)

Section		Page
IX	BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE	4239
	Technical Approach to BPT	4239
	Industry Cost and Pollutant Removal Estimates	4241
	BPT Option Selection	4241
	Wastewater Discharge Rates Tin Smelter SO ₂ Scrubber 4242	4242
	Dealuminizing Rinse	4243
·	Tin Mud Acid Neutralization Filtrate	4243
	Tin Hydroxide Wash	4243
	Spent Electrowinning Solution From New Scrap	4243
	Spent Electrowinning Solution From Municipal Solid Waste	2444
	Tin Hydroxide Supernatant From Scrap	4244
	Tin Hydroxide Supernatant From Plating Solutions and Sludges	4244
	Tin Hydroxide Filtrate	4245
	Regulated Pollutant Parameters	4245
	Effluent Limitations	4245
х	BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE	4259
	Technical Approach to BAT	4259
	Option A	4260
	Option C	4260
	Industry Cost and Pollutant Removal Estimates	4260
	Pollutant Removal Estimates	4260
	Compliance Costs	4261
	BAT Option Selection - Proposal	4261 4262
		4262
	Regulated Pollutant Parameters	4263
	Effluent Limitations	4264
XI	NEW SOURCE PERFORMANCE STANDARDS	4281
	Technical Approach to NSPS	4281
	NSPS Option Selection - Proposal	4282
	NSPS Option Selection - Promulgation	4282
	Regulated Pollutant Parameters	4282
	New Source Performance Standards	4282

.

TABLE OF CONTENTS (Continued)

Section		Page
XII	PRETREATMENT STANDARDS	4293
	Technical Approach to Pretreatment Industry Cost and Pollutant Removal Estimates Pretreatment Standards for Existing and New Sources	4293 4293 4294 4294
	PSES and PSNS Option Selection Regulated Pollutant Parameters Pretreatment Standards	4294 4295 4295
XIII	BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY	4317

٠.

ī.

.

:

.

:

.

i

LIST OF TABLES

Table	Title	Page
III-l	Initial Operating Year (Range) Summary of Plants in the Secondary Tin Subcategory By Discharge Type	4049
III-2	Production Ranges for Secondary Tin Plants for 1982	4050
III-3	Summary of Secondary Tin Subcategory Processes and Associated Waste Streams	4051
V-1	Water Use and Discharge Rates Tin Smelter SO ₂ Scrubber	4068
V-2	Water Use and Discharge Rates Dealuminizing Rinse	4068
V-3	Water Use and Discharge Rates Tin Mud Acid Neutralization Filtrate	4068
V-4	Use and Discharge Rates Tin Hydroxide Wash	4069
V-5	Water Use and Discharge Rates Spent Electrowinning Solution From New Scrap	4069
V-6	Water Use and Discharge Rates Spent Electrowinning Solution From Municipal Solid Waste	4069
V-7	Water Use and Discharge Rates Tin Hydroxide Supernatant From Scrap	4070
V-8	Water Use and Discharge Rates Tin Hydroxide Supernatant From Plating Solutions and Sludges	4070
V-9	Water Use and Discharge Rates Tin Hydroxide Filtrate	4071
V-10	Scrubber Blowdown Raw Wastewater Sampling Data	4071
V-11	Spent Electrowinning Solution Raw Wastewater Sampling Data	4082
V-12	Tin Hydroxide Precipitation Supernatant (From Scrap) Raw Wastewater Sampling Data	4102

LIST OF TABLES (Continued)

Table	Title	Page
V-13	Tin Hydroxide Precipitation Supernatant (From Spent Plating Solution and Sludges) Raw Wastewater Sampling Data	4113
V-14	Tin Hydroxide Filtrate Raw Wastewater Sampling Data	4129
V-15	Mud Pond Supernatant Raw Wastewater Sampling Data	4140
V-16	Electrowinning Solution After Chlorination - Plant C Treated Wastewater Sampling Data	4151
V-17	Electrowinning Solution After Chlorination and Neutralization - Plant C Treated Wastewater Sampling Data	4161
V-18	Electrowinning Solution After Chlorination, Neutralization, and Sedimentation - Plant C Treated Wastewater Sampling Data	4181
V-19	Final Effluent - Plant C Treated Wastewater Sampling Data	4181
V-20	Electrowinning Solution After Carbonation - Plant D Treated Wastewater Sampling Data	4191
V-2 1	Influent to Treatment - Plant E Raw Wastewater Sampling Data	4201
V-22	Treated Effluent - Plant E Treated Wastewater Sampling Data	4205
V-23	Secondary Tin Sampling Data, Raw Wastewater from Self Sampling Data	4209
VI-1	Frequency of Occurrence of Priority Pollutants Secondary Tin Subcategory Raw Wastewater	4223
VI-2	Toxic Pollutants Never Detected	4227
VIII-1	Cost of Compliance for the Secondary Tin Subcategory Direct Dischargers	4237
VIII-2	Cost of Compliance for the Secondary Tin Subcategory Indirect Dischargers	4237

LIST OF TABLES (Continued)

Table	Title	Page
IX-1	BPT Wastewater Discharge Rates for the Secondary Tin Subcategory	4247
IX-2	BPT Mass Limitations for the Secondary Tin Subcategory	4248
X-1	Secondary Tin Subcategory Pollutant Removal Estimates Direct Dischargers	4266
X-2	Cost of Compliance for the Secondary Tin Subcategory Direct Dischargers	4268
X-3	BAT Wastewater Discharge Rates for the Secondary Tin Subcategory	4269
X-4	BAT Mass Limitations for the Secondary Tin Subcategory	4270
XI-1	NSPS Wastewater Discharge Rates for the Secondary Tin Subcategory	4283
XI-2	NSPS for the Secondary Tin Subcategory	4284
XII-1	Secondary Tin Subcategory Pollutant Removal Estimates Indirect Dischargers	4296
XII-2	Cost of Compliance for the Secondary Tin Subcategory Indirect Dischargers	4297
XII-3	PSES and PSNS Wastewater Discharge Rates for the Secondary Tin Subcategory	4298
XII-4	PSES for the Secondary Tin Subcategory	4299
XII-5	PSNS for the Secondary Tin Subcategory	4308

LIST OF FIGURES

Figure	Title	Page
III-l	Tin Smelting Production Process	4052
III-2	Other Tin Production Processes	4053
III-3	Geographic Locations of the Secondary Tin Subcategory Plants	4054
V-1	Sampling Sites at Secondary Tin Plant A	4210
V-2	Sampling Sites at Secondary Tin Plant B	4211
V-3	Sampling Sites at Secondary Tin Plant C	4212
V-4	Sampling Sites at Secondary Tin Plant D	4213
V-5	Sampling Sites at Secondary Tin Plant E	4214
XI-1	BPT Treatment Scheme for Option A	4257
X-1	BAT Treatment Scheme for Option A	4279
X-2 ·	BAT Treatment Scheme for Option C	4280

.

SECTION I

SUMMARY

This document provides the technical basis for promulgating effluent limitations based on best practicable technology (BPT) and best available technology (BAT) for existing direct dischargers, pretreatment standards for existing indirect dischargers (PSES), pretreatment standards for new indirect dischargers (PSNS), and standards of performance for new source direct dischargers (NSPS).

The secondary tin subcategory consists of twelve plants. Of the twelve plants, three discharge directly to rivers, lakes, or streams; one discharges to a publicly owned treatment works (POTW); and eight achieve zero discharge of process wastewater.

first studied the secondary tin subcategory to determine EPA differences in raw materials, whether final products, manufacturing processes, equipment, age and size of plants, or water usage, required the development of separate effluent standards for different segments of the limitations and subcategory. This involved a detailed analysis of wastewater discharge and treated effluent characteristics, including the sources and volume of water used, the processes used, the sources of pollutants and wastewaters in the plant, and the constituents including toxic of wastewaters, priority nine subdivisions or building blocks pollutants. As a result, been identified for this subcategory that warrant have separate effluent limitations. These include:

- (a) Tin smelter SO₂ scrubber,
- (b) Dealuminizing rinse,
- (c) Tin mud acid neutralization filtrate,
- (d) Tin hydroxide wash,
- (e) Spent electrowinning solution from new scrap,
- (f) Spent electrowinning solution from municipal solid waste,
- (g) 'Tin hydroxide supernatant from scrap,
- (h) Tin hydroxide supernatant from plating solutions and sludges, and
- (i) Tin hydroxide filtrate.

EPA also identified several distinct control and treatment technologies (both in-plant and end-of-pipe) applicable to the secondary tin subcategory. The Agency analyzed both historical and newly generated data on the performance of these technologies, including their nonwater quality environmental impacts and air quality, solid waste generation, and energy requirements. EPA also studied various flow reduction techniques reported in the data collection portfolios (dcp) and plant visits.

SECONDARY TIN SUBCATEGORY SECT - I

Engineering costs were prepared for each of the control and treatment options considered for the subcategory. These costs were then used by the Agency to estimate the impact of implementing the various options on the subcategory. For each control and treatment option that the Agency found to be most effective and technically feasible in controlling the discharge of pollutants, we estimated the number of potential closures, number of employees affected, and impact on price. These results are reported in a separate document entitled "The Economic Impact Analysis of Effluent Limitations and Standards for the Nonferrous Metals Manufacturing Industry."

After examining the various treatment technologies, the Agency has identified BPT to represent the average of the best existing technology. Metals removal based on chemical precipitation and sedimentation technology is the basis for the BPT limitations. Cyanide precipitation was selected as the basis for cyanide limitations. To meet the BPT effluent limitations based on this technology, the secondary tin subcategory is expected to incur capital and annual costs. However, these costs are not presented here because they are based on information claimed to be confidential.

For BAT, the Agency has built upon the BPT technology basis by adding filtration as an effluent polishing step to the end-of-pipe treatment scheme. To meet the BAT effluent limitations based on this technology, the secondary tin subcategory is estimated to incur capital and annual costs. However, these costs are not presented here because the data on which they are based has been claimed to be confidential.

NSPS, which are based on best demonstrated technology, are equivalent to BAT. In selecting NSPS, EPA recognizes that new plants have the opportunity to implement the best and most efficient manufacturing processes and treatment technology. However, the technology basis of BAT has been determined as the best demonstrated technology for this subcategory.

The technology basis for PSES is equivalent to BAT. To meet the pretreatment standards for existing sources, the secondary tin subcategory is estimated to incur a capital cost of \$160,187 and an annual cost of \$50,044. For PSNS, the Agency selected end-of-pipe treatment and in-process flow reduction control techniques equivalent to NSPS.

The mass limitations and standards for BPT, BAT, NSPS, PSES and PSNS are presented in Section II.

SECONDARY TIN SUBCATEGORY SECT - II

SECTION II

CONCLUSIONS

EPA has divided the secondary tin subcategory into nine subdivisions for the purpose of effluent limitations and standards. These subdivisions are:

(a) Tin smelter SO₂ scrubber,

- (b) Dealuminizing rinse,
- (c) Tin mud acid neutralization filtrate,
- (d) Tin hydroxide wash,
- (e) Spent electrowinning solution from new scrap,
- (f) Spent electrowinning solution from municipal solid waste,
- (g) Tin hydroxide supernatant from scrap,
- (h) Tin hydroxide supernatant from plating solutions and sludges, and
- (i) Tin hydroxide filtrate.

BPT is promulgated based on the performance achievable by the application of chemical precipitation and sedimentation (lime and settle) technology, along with preliminary treatment consisting of cyanide precipitation for selected waste streams. The following BPT limitations are promulgated:

(a) Tin Smelter SO₂ Scrubber BPT

Pollutant or Pollutant Pro	Maximum fo operty Any One Da	
mg/kg	(lb/million lbs) of	f crude tapped tin produced
Arsenic Lead Iron Tin TSS pH	19.220 3.863 11.040 3.495 377.100 Within the range	8.554 1.840 5.611 2.024 179.400 of 7.5 to 10.0 at all times

(b) Dealuminizing Rinse BPT

Pollutant or	Maximum for	Maximum for	<u> </u>
Pollutant Property			
mg/kg (lb/mill	ion lbs) of dea	aluminized scrap produce	ed
Lead	0.015	0.007	
Cyanide (total)	0.010	0.004	
Fluoride	1.225	0.700	
Tin	0.013	0.008	
TSS	1.435	0.683	
pH Within	n the range of	7.5 to 10.0 at all time	es
(c) Tin Mud Acid New	itralization F	ltrate BPT	
(c) <u>IIII Mud Acid Nei</u>		<u>liciate</u> Bri	
Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (ID/million ID	s) of neutraliz	ed dewatered tin mud p	coduce
Lead	2.120	1.009	
Cyanide (total)	1.464	0.606	
Fluoride	176.600	100.400	
Tin	1,918	1.110	
TSS	206.900		
pH Within	the range of 7	7.5 to 10.0 at all times	5
(d) Tin Hydroxide Wa	ash BPT	·	
Dollar back			
Pollutant or		Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (1b/m	illion lbs) of	tin hydroxide washed	
Lead	5.020	2.391	
Cyanide (total)	3.466	1.434	
Fluoride	418.400	237.900	
Tin	4.542	2.630	
TSS	490.100	233.100	
		'.5 to 10.0 at all times	2
P Within	the runge of /		•

•

SECONDARY TIN SUBCATEGORY SECT - II

(e) <u>Spent</u> <u>Electrowin</u>	ning Solution	from <u>New</u> Scrap BPT
Pollutant or	Maximum for	Maximum for
Pollutant Property		
rorradane rropercy	ing one sug	nonenzy mezuge
mg/kg (lb/mi	llion lbs) of	cathode tin produced
Lead	7.056	3.360
Cyanide (total)	4.872	2.016
Fluoride	588.000	334.300
Tin	6.384	3.696
	688.800	327.600
TSS		
pH Within	the range of 7	'.5 to 10.0 at all times
(f) <u>Spent</u> <u>Electrowin</u> <u>Waste</u> BPT	ning Solution	from Municipal Solid
Pollutant or	Maximum for	Maximum for
Pollutant Property		
rozzacane rropercy		nonenty nvezuge
mg/kg (lb/million	lbs) of MSW s	crap used as raw material
Lead	0.050	0.024
Cyanide (total)	0.035	0.014
Fluoride	4.165	2.368
Tin	0.045	0.026
TSS	4.879	2.321
pH Within	the range of	7.5 to 10.0 at all times
(g) <u>Tin</u> Hydroxide Su		
Pollutant or	Maximum for	
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	lbs) of tin m	etal recovered from scrap
Lead	23.370	11.130
Cyanide (total)	16.140	6.677
Fluoride	1,947.000	1,107.000
Tin	21.140	12.240
TSS	2,281.000	1,085.000
pH Within	the range of	7.5 to 10.0 at all times
	-	

4033

i

(h) <u>Tin Hydroxide</u> Solutions and S		<u>Plating</u>
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/mil pl	lion lbs) of ti ating solutions	n metal recovered from and sludges
Lead	48.300	23.000
Cyanide (total)	33.350	13.800
Fluoride	4,025.000	2,289.000
Tin	43.700	25.300
TSS	4,715.000	2,243.000
pH Within	the range of 7	.5 to 10.0 at all times

(i) <u>Tin Hydroxide</u> Filtrate BPT

Pollutant or Pollutant Pro		Maximum for Any One Day	Maximum for Monthly Average	
mg/	kg (lb/mi	llion lbs) of	tin metal produced	<u> </u>
Lead Cyanide (tota Fluoride Tin TSS pH	·	10.520 7.263 876.500 9.517 1,027.000 he range of 7	5.009 3.005 498.400 5.510 488.400 7.5 to 10.0 at all ta	imes

BAT is promulgated based on the performance achievable by the application of chemical precipitation, sedimentation, and multimedia filtration (lime, settle, and filter) technology along with preliminary treatment consisting cyanide precipitation for selected waste streams. The following BAT effluent limitations are promulgated:

(a) Tin Smelter SO₂ Scrubber BAT

Pollutant or Pollutant Pro	Maximum operty Any One		Maximum for hthly Average)
mg/kg	(lb/million lbs)	of crude	tapped tin p	oroduced
Arsenic Lead Iron Tin	12.79 2.57 11.04 3.49	5 0	5.703 1.196 5.611 2.024	

.

(b) Dealuminizing Rinse BAT

Dollar han	New East	Man Image Face
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/mill	ion lbs) of dea	aluminized scrap produced
Lead	0.010	0.005
Cyanide (total)	0.007	0.0028
Fluoride	· 1.225	0.697
Tin	0.013	0.008
(c) Tin Mud Acid Ne	utralization F	iltrate BAT
	Maximum for	Maximum for
Pollutant or		
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/mil	lion lbs) of no mud produ	eutralized dewatered tin uced
Lead	1.413	0.656
Cyanide (total)	1.009	0.404
Fluoride	176.600	100.400
Tin	1.918	1.110
		1.110
(d) <u>Tin</u> <u>Hydroxide</u> <u>W</u>	ash BAT	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/m	illion lbs) of	tin hydroxide washed
Lead	3.347	1.554
Cyanide (total)	2.391	0.956
Fluoride	418.400	237.900
Tin	4.542	2.630
(e) <u>Spent</u> <u>Electrowi</u>	nning Solution	from New Scrap BAT
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/m	illion lbs) of	cathode tin produced
Lead	4.704	2.184
Cyanide (total)	3.360	1.344
Fluoride	588.000	334.300
Tin	6.384	3 .696

1

SECONDARY TIN SUBCATEGORY SECT - II

.

(f) <u>Spent</u> <u>Electrowin</u> <u>Waste</u> BAT	ning Solution	from Municipal Solid
Pollutant or	Maximum for	Maximum for
Pollutant Property		
mg/kg (lb/million	lbs) of MSW s	scrap used as raw material
Lead	0.033	0.015
Cyanide (total)	0.024	• 0.010
Fluoride	4.165	2.368
Tin	0.045	0.026
(g) <u>Tin</u> <u>Hydroxide</u> <u>Su</u>		
Pollutant or	Maximum for	
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/million	lbs) of tin n	netal recovered from scrap
Lead	15.580	7.233
Cyanide (total)	11.130	4.451
Fluoride	1,947.000	1,107.000
Tin	21.140	12.240
(h) <u>Tin Hydroxide Su</u> Solutions and Sl	pernatant from udges BAT	n <u>Plating</u>
Solutions and Sl Pollutant or	udges BAT Maximum for	Maximum for
Solutions and Sl	udges BAT Maximum for	Maximum for
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill	udges BAT Maximum for Any One Day	Maximum for Monthly Average In metal recovered from
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead	udges BAT Maximum for Any One Day ion lbs) of ti ting solutions 32.200	Maximum for Monthly Average in metal recovered from s and sludges 14.950
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total)	udges BAT Maximum for Any One Day ion lbs) of ti ting solutions 32.200 23.000	Maximum for Monthly Average in metal recovered from s and sludges 14.950 9.200
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride	udges BAT Maximum for Any One Day ion lbs) of ti ting solutions 32.200 23.000 4,025.000	Maximum for Monthly Average In metal recovered from and sludges 14.950 9.200 2,289.000
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total)	udges BAT Maximum for Any One Day ion lbs) of ti ting solutions 32.200 23.000	Maximum for Monthly Average in metal recovered from s and sludges 14.950 9.200
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride	udges BAT Maximum for Any One Day ion 1bs) of ti ting solutions 32.200 23.000 4,025.000 43.700	Maximum for Monthly Average In metal recovered from and sludges 14.950 9.200 2,289.000
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride Tin	udges BAT Maximum for Any One Day ion 1bs) of ti ting solutions 32.200 23.000 4,025.000 43.700	Maximum for Monthly Average In metal recovered from and sludges 14.950 9.200 2,289.000
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride Tin (i) <u>Tin Hydroxide Fi</u>	udges BAT Maximum for Any One Day ion lbs) of ti ting solutions 32.200 23.000 4,025.000 43.700 Ltrate BAT	Maximum for Monthly Average In metal recovered from and sludges 14.950 9.200 2,289.000 25.300
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride Tin (i) <u>Tin Hydroxide Fi</u> Pollutant or Pollutant Property	udges BAT Maximum for Any One Day ion 1bs) of ti ting solutions 32.200 23.000 4,025.000 43.700 Itrate BAT Maximum for Any One Day	Maximum for Monthly Average In metal recovered from and sludges 14.950 9.200 2,289.000 25.300 Maximum for
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride Tin (i) <u>Tin Hydroxide Fi</u> Pollutant or Pollutant Property	udges BAT Maximum for Any One Day ion 1bs) of ti ting solutions 32.200 23.000 4,025.000 43.700 Itrate BAT Maximum for Any One Day	Maximum for Monthly Average in metal recovered from and sludges 14.950 9.200 2,289.000 25.300 Maximum for Monthly Average
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride Tin (i) <u>Tin Hydroxide Fi</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total)	udges BAT Maximum for Any One Day ion lbs) of titing solutions 32.200 23.000 4,025.000 43.700 <u>ltrate</u> BAT Maximum for Any One Day illion lbs) of 7.012 5.009	Maximum for Monthly Average In metal recovered from and sludges 14.950 9.200 2,289.000 25.300 Maximum for Monthly Average tin metal produced 3.256 2.004
Solutions and Sl Pollutant or Pollutant Property mg/kg (lb/mill pla Lead Cyanide (total) Fluoride Tin (i) <u>Tin Hydroxide Fi</u> Pollutant or Pollutant Property mg/kg (lb/m Lead	udges BAT Maximum for Any One Day ion lbs) of titing solutions 32.200 23.000 4,025.000 43.700 Itrate BAT Maximum for Any One Day illion lbs) of 7.012	Maximum for Monthly Average In metal recovered from and sludges 14.950 9.200 2,289.000 25.300 Maximum for Monthly Average tin metal produced 3.256

NSPS are based on the performance achievable by the application of chemical precipitation, sedimentation, and multimedia filtration (lime, settle and filter) technology, along with preliminary treatment consisting of cyanide precipitation for selected waste streams. The following effluent standards are promulgated for new sources:

(a) Tin Smelter SO₂ Scrubber NSPS

Pollutant or Pollutant Pro	perty	Maximum Any One		Maximum Monthly Av	
mg/kg	(lb/milli	on lbs)	of cru	ude tapped	tin produced
Arsenic Lead Iron Tin TSS pH	Within t	12.79 2.57 11.04 3.49 138.00	75 40 95 00	1 5 2 110	.703 .196 .611 .024 .400 at all times

(b) Dealuminizing Rinse NSPS

Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (lb/mill	ion lbs) of dea	aluminized scrap produced	đ
Lead	0.010	0.005	s
Cyanide (total)	0.007	0.003	
Fluoride	1.225	0.697	
Tin	0.013	0.008	
TSS	0.525	0.420	
pH Withi	n the range of	7.5 to 10.0 at all times	

(c) Tin Mud Acid Neutralization Filtrate NSPS

Pollutant or Pollutant Property	Maximum for Any One Day	Maximum for Monthly Average	
mg/kg (lb/mi	llion lbs) of ne mud produ	utralized dewatered t ced	in
Lead Cyanide (total) Fluoride Tin TSS pH Withi	1.413 1.009 176.600 1.918 75.710 n the range of 7	$\begin{array}{c} 0.656 \\ 0.404 \\ 100.400 \\ 1.110 \\ 60.560 \\ .5 \text{ to } 10.0 \text{ at all time} \end{array}$	les

(d) Tin Hydroxide Wash NSPS Pollutant or Maximum for Maximum for Pollutant Property Any One Day Monthly Average mg/kg (lb/million lbs) of tin hydroxide washed Lead 3.347 1.554 Cyanide (total) 0.956 2.391 Fluoride 418.400 237.900 Tin 4.542 2.630 179.300 TSS 143.400 рH Within the range of 7.5 to 10.0 at all times Spent Electrowinning Solution from New Scrap NSPS (e) Pollutant or Maximum for Maximum for Pollutant Property Any One Day Monthly Average mg/kg (lb/million lbs) of cathode tin produced 4.704 2.184 Lead Cyanide (total) 3.360 1.344 Fluoride 588.000 334.300 Tin 6.384 3.696 TSS 252.000 201.600 pH Within the range of 7.5 to 10.0 at all times Spent Electrowinning Solution from Municipal Solid (f) Waste NSPS Pollutant or Maximum for Maximum for Pollutant Property Any One Day Monthly Average mg/kg (lb/million lbs) of MSW scrap used as raw material Lead 0.033 0.015 0.024 Cyanide (total) 0.001 Fluoride 4.165 2.368 Tin 0.045 0.026 TSS 1.785 1.428 Within the range of 7.5 to 10.0 at all times рĦ

4038

SECONDARY TIN SUBCATEGORY SECT - II

(g) <u>Tin</u> Hydroxide	Supernatant fro	om <u>Scrap</u> NSPS
Pollutant or	Maximum for	Maximum for
Pollutant Property		Monthly Average
rorracane rroperey	ing one bag	nonenity invertage
mg/kg (lb/mill	ion lbs) of tin	metal recovered from scr
Lead	15.580	7.233
Cyanide (total)	11.130	4.451
Fluoride	1,947.000	1,107.000
Tin	21.140	12.240
TSS	834.600	667.700
pH With	in the range of	7.5 to 10.0 at all times
• ••••••••••••••••••••••••••••••••••••		<u></u>
	Supernatant fro Sludges NSPS	om <u>Plating</u>
Pollutant or	Maximum for	Maximum for
Pollutant Property		
	illion lbs) of t plating solutior	in metal recovered from as and sludges
Lead	32.200	14.950
Cyanide (total)	23.000	9.200
Fluoride	4,025.000	2,289.000
Tin	43.700	25.300
TSS	1,725.000	1,380.000
pH With	in the range of	7.5 to 10.0 at all times
(i) <u>Tin</u> <u>Hydroxide</u>	Filtrate NSPS	
Pollutant or	Maximum for	
Pollutant Property	Any One Day	Monthly Average
mg/kg (l	b/million lbs) c	of tin metal produced
Lead	7.012	3.256
Cyanide (total)	5.009	2.004
Fluoride	876.500	498.400
Tin	9.517	5.510
TSS	375.700	300.500
		7.5 to 10.0 at all time
P MIC	and the range of	, to it at all time
<u> </u>		

PSES are promulgated based on the performance achievable by the application of chemical precipitation, sedimentation, and multimedia filtration (lime, settle and filter) technology, along with preliminary treatment consisting of cyanide precipitation for selected waste streams. The following pretreatment standards are promulgated for existing sources:

(a) Tin Smelter SO₂ Scrubber PSES Pollutant or Maximum for Maximum for Pollutant Property Any One Day Monthly Average mg/kg (lb/million lbs) of crude tapped tin produced 12.790 Arsenic 5.703 1.196 Lead 2.575 Iron 11.040 5.611 Tin 2.024 3.495 Dealuminizing Rinse PSES (b) Pollutant or Maximum for Maximum for Pollutant Property Any One Day Monthly Average mg/kg (lb/million lbs) of dealuminized scrap produced Lead 0.010 0.005 Cyanide (total) 0.007 0.003 Fluoride 1.225 0.697 Tin 0.008 0.013 (c) Tin Mud Acid Neutralization Filtrate PSES Pollutant or Maximum for Maximum for Pollutant Property Any One Day Monthly Average mg/kg (lb/million lbs) of neutralized dewatered tin mud produced Lead 1.413 0.656 Cyanide (total) 1.009 0.404 Fluoride 100.400 176.600 Tin 1.918 1.110 Tin Hydroxide Wash PSES (d) Maximum for Pollutant or Maximum for Pollutant Property Any One Day Monthly Average mg/kg (lb/million lbs) of tin hydroxide washed 3.347 1.554 Lead Cyanide (total) 2.391 0.956 Fluoride 418.400 237.900

2.630

4.542

Tin

SECONDARY TIN SUBCATEGORY SECT - II

Pollutant or Maximum for Maximum Pollutant Property Any One Day Monthly Av	
	for
Foliutant Floperty Any one bay Monthly AV	reraye
mg/kg (lb/million lbs) of cathode tir	produced
Lead 4.704 2.	184
	344
Fluoride 588.000 334.	
	696
(f) <u>Spent Electrowinning Solution from Munici</u> <u>Waste</u> PSES	pal Solid
Pollutant or Maximum for Maximum	for
Pollutant Property Any One Day Monthly Av	
	j -
mg/kg (lb/million lbs) of MSW scrap used a	is raw material
Lead 0.033 0.	015
Cyanide (total) 0.024 0.	010
	368
Tin 0.045 0.	026
(g) <u>Tin Hydroxide</u> <u>Supernatant</u> from <u>Scrap</u> PSE	:S
Pollutant or Maximum for Maximum	for
Pollutant Property Any One Day Monthly Av	verage
mg/kg (lb/million lbs) of tin metal recove	ered from scrap
Lead 15.580 7.	233
Cyanide (total) 11.130 4.	451
Fluoride 1,947.000 1,107.	000
Tin 21.140 12.	240
(h) <u>Tin Hydroxide Supernatant from Plating</u> Solutions and Sludges PSES	
Pollutant or Maximum for Maximum	for
Pollutant Property Any One Day Monthly Av	'erag e
mg/kg (lb/million lbs) of tin metal rec plating solutions and sludge	
Lead 32.200 14.	950
	200
Cyanide (total)23.0009.Fluoride4,025.0002,289.	
	300
23.	

SECONDARY TIN SUBCATEGORY SECT - II

(i) <u>Tin Hydroxide</u> Filtrate PSES

Pollutant or	Maximum for	Maximum for	
Pollutant Property	Any One Day	Monthly Average	
mg/kg (lb/million lbs) of tin metal	produced	
Lead	7.012	3.256	
Cyanide (total)	5.009	2.004	
Fluoride	876.500	498.400	
Tin	9.517	5.510	

PSNS are promulgated based on the performance achievable by the application of chemical precipitation, sedimentation, and multimedia filtration (lime, settle and filter) technology, along with preliminary treatment consisting of cyanide precipitation for selected waste streams. The following pretreatment standards are promulgated for new sources.

(a) Tin Smelter SO₂ Scrubber PSNS

Pollutant or Pollutant Pro	Maximum fo operty Any One Da	_
mg/kg	(lb/million lbs) of	E crude tapped tin produced
Arsenic Lead Iron Tin	12.790 2.575 11.040 3.495	5.703 1.196 5.611 2.024

(b) Dealuminizing Rinse PSNS

Pollutant or	Maximum	for	Maximum for
Pollutant Property	Y Any One	Day	Monthly Average

mg/kg (lb/million lbs) of dealuminized scrap produced

Lead	0.010	0.005	
Cyanide (total)	0.007	0.003	
Fluoride	1.225	0.697	
Tin	0.013	0.008	

1

ł

(c) <u>Tin Mud Acid</u> Ne	utralization F	iltrate PSNS
Pollutant or	Maximum for	Maximum for
Pollutant Property		
rorradume rropercy	my one bay	Monthily Myeluge
ma/ka (lb/mil	lion lbs) of n	eutralized dewatered tir
	mud prod	
		uceu
Lead	1.413	0.656
Cyanide (total)	1.009	0.404
Fluoride	176.600	100.400
Tin	1.918	1.110
d) <u>Tin Hydroxide</u> Wa	ish PSNS	
Pollutant or	Maximum for	Maximum for
Pollutant Property		
	ing one bay	menty metage
mg/kg (lb/m	illion lbs) of	tin hydroxide washed
Lead	3.347	1.554
	2.391	0.956
Cvanide (total)		
	418,400	237,900
Fluoride Tin	418.400 4.542	237.900 2.630
Cyanide (total) Fluoride Tin e) <u>Spent</u> <u>Electrowin</u>	4.542 ning Solution	2.630 from <u>New Scrap</u> PSNS
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or	4.542 ning Solution Maximum for	2.630 <u>from New Scrap</u> PSNS Maximum for
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or	4.542 ning Solution Maximum for	2.630 <u>from New Scrap</u> PSNS Maximum for
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or Pollutant Property	4.542 ning Solution Maximum for Any One Day	2.630 <u>from New Scrap</u> PSNS Maximum for
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m	4.542 ning Solution Maximum for Any One Day Hillion 1bs) of	2.630 <u>from New Scrap</u> PSNS <u>Maximum for</u> Monthly Average cathode tin produced
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead	4.542 <u>ning Solution</u> <u>Maximum for</u> Any One Day <u>hillion lbs</u>) of 4.704	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184
Fluoride Tin e) <u>Spent Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total)	4.542 <u>ming Solution</u> <u>Maximum for</u> Any One Day <u>Maximum for</u> Any One Day <u>Any One Day</u> <u>Any One Day</u> <u>Any One Day</u> <u>Any One Jay</u> <u>Any One Jay</u> <u>Any One Jay</u> <u>Any One Jay</u> <u>Any One Jay</u> <u>Any One Jay</u> <u>Any One Jay</u>	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344
Fluoride Fin Pollutant or Pollutant Property mg/kg (lb/m Cead Cyanide (total) Fluoride	4.542 <u>ning Solution</u> <u>Maximum for</u> Any One Day <u>hillion lbs</u>) of 4.704	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184
Fluoride Tin Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin	4.542 ming Solution Maximum for Any One Day million lbs) of 4.704 3.360 588.000 6.384	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344 334.300
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin <u>Fluoride</u> Fluoride Fluoride Fluoride Fluoride Fluoride Fluoride Fluoride Fluoride Fluoride Fluoride	4.542 <u>ming Solution</u> <u>Maximum for</u> Any One Day <u>Maximum for</u> Any One Day <u>Maximum for</u> <u>Any One Day</u> <u>Any One Day</u> <u></u>	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u>
Fluoride Tin e) <u>Spent Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin f) <u>Spent Electrowin</u> <u>Waste</u> PSNS Pollutant or	4.542 <u>ming Solution</u> <u>Maximum for</u> Any One Day <u>Maximum for</u> <u>A.704</u> <u>3.360</u> <u>588.000</u> <u>6.384</u> <u>Maximum for</u>	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u> Maximum for
Fluoride Tin e) <u>Spent Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin f) <u>Spent Electrowin</u> <u>Waste</u> PSNS Pollutant or	4.542 <u>ming Solution</u> <u>Maximum for</u> Any One Day <u>Maximum for</u> Any One Day <u>Maximum for</u> <u>Any One Day</u> <u>Any One Day</u> <u></u>	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u> Maximum for
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin f) <u>Spent</u> <u>Electrowin</u> <u>Waste</u> <u>PSNS</u> Pollutant or Pollutant Property	4.542 <u>Maximum for</u> Any One Day Maximum for Any One Day Maximum for A.704 3.360 588.000 6.384 <u>Maximum for</u> Any One Day	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u> Maximum for Monthly Average of MSW scrap used as
Fluoride Tin e) <u>Spent</u> <u>Electrowin</u> Pollutant or Pollutant Property <u>mg/kg (lb/m</u> Lead Cyanide (total) Fluoride Tin f) <u>Spent</u> <u>Electrowin</u> <u>Waste</u> <u>PSNS</u> Pollutant or Pollutant property <u>mg/kg (lb</u>	4.542 ming Solution Maximum for Any One Day Maximum for 4.704 3.360 588.000 6.384 ming Solution for Any One Day /million lbs) of raw mater	2.630 <u>from New Scrap</u> PSNS <u>Maximum for</u> Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u> <u>Maximum for</u> Monthly Average of MSW scrap used as rial
Fluoride Tin e) <u>Spent Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin f) <u>Spent Electrowin</u> Waste PSNS Pollutant or Pollutant or Pollutant Property mg/kg (lb	4.542 ming Solution Maximum for Any One Day Maximum for 4.704 3.360 588.000 6.384 ming Solution for Any One Day /million lbs) of raw mater 0.033	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u> Maximum for Monthly Average of MSW scrap used as rial 0.015
Fluoride Tin e) <u>Spent Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin f) <u>Spent Electrowin</u> <u>Waste</u> PSNS Pollutant or Pollutant property mg/kg (lb Lead Cyanide (total)	4.542 ming Solution Maximum for Any One Day Maximum for 4.704 3.360 588.000 6.384 ming Solution for Any One Day /million lbs) of raw mater 0.033 0.024	2.630 <u>from New Scrap</u> PSNS <u>Maximum for</u> Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u> <u>Maximum for</u> Monthly Average of MSW scrap used as rial 0.015 0.010
Fluoride Tin e) <u>Spent Electrowin</u> Pollutant or Pollutant Property mg/kg (lb/m Lead Cyanide (total) Fluoride Tin f) <u>Spent Electrowin</u> <u>Waste</u> PSNS Pollutant or Pollutant Property	4.542 ming Solution Maximum for Any One Day Maximum for 4.704 3.360 588.000 6.384 ming Solution for Any One Day /million lbs) of raw mater 0.033	2.630 <u>from New Scrap</u> PSNS Maximum for Monthly Average cathode tin produced 2.184 1.344 334.300 3.696 <u>from Municipal Solid</u> Maximum for Monthly Average of MSW scrap used as rial 0.015

(g) <u>Tin Hydroxide</u> Su	pernatant fro	m Scrap PSNS
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
	. . .	1 5
mg/kg (lb/million	lbs) of tin	metal recovered from scrap
Lead	15.580	7.233
Cyanide (total)	11.130	4.451
Fluoride	1,947.000	1,107.000
Tin	21.140	12.240
* 111	21.110	12.240
(h) <u>Tin Hydroxide</u> Sup Solutions and Slu	udges PSNS	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
		in metal recovered from s and sludges
Lead	32.200	14.950
Cyanide (total)	23.000	9.200
Fluoride	4,025.000	2,289.000
Tin	43.700	25.300
T T 11	40.700	25.500
(i) <u>Tin Hydroxide</u> Fi	ltrate PSNS	
Pollutant or	Maximum for	Maximum for
Pollutant Property	Any One Day	Monthly Average
mg/kg (lb/m:	illion lbs) o	f tin metal produced

Lead	7.012	3.256	
Cyanide (total)	5.009	2.004	
Fluoride	876.500	498.400	
Tin	9.517	5.510	
	1		
•		······································	

EPA is not promulgating BCT for the secondary tin subcategory at this time.

.

SECONDARY TIN SUBCATEGORY SECT - III

SECTION III

SUBCATEGORY PROFILE

This section of the secondary tin supplement describes the raw materials and processes used in the production of secondary tin and presents a profile of the secondary tin plants identified in this study.

The largest total use of tin is in solders which are manufactured from both primary tin and secondary tin. The low melting point of tin $(232^{\circ}C)$ makes it ideal for this application. Tin plated steel products represent the second largest use of tin. Only primary tin is used for this application.

Tin is also used in a number of alloys such as brass, bronze, and white metal alloys including babbitt. White metal alloys are low melting point alloys consisting primarily of tin or lead. These alloys may also contain lesser amounts of copper, zinc and antimony and are used primarily in bearings.

DESCRIPTION OF SECONDARY TIN PRODUCTION

Tin is produced by smelting tin concentrates with limestone and coke. The crude tin is then electrolytically refined and cast. The process is presented schematically in Figure III-1 (page 4052).

Tin may also be produced by smelting tin residues, particularly detinners mud from secondary tin recovery operations. Most secondary tin, however, is produced by dissolving tin from tin plated steel scrap, and recovering the tin by electrowinning. Tin may also be recovered from solution by precipitation of tin as tin hydroxide, Sn(OH)4. A smaller amount of secondary tin is recovered from tin plating sludges which are generated by tin steel production operations. These plated secondary tin production operations can be divided into four major operations: alkaline detinning, electrowinning, tin hydroxide precipitation, and reduction to tin metal. These operations are shown schematically in Figure III-2 (page 4053).

RAW MATERIALS

Tin concentrates used in tin production are imported from South America and Malaysia. EPA considers these tin concentrates to be secondary raw materials for the purpose of establishing effluent limitations. There are no tin producing facilities in the United States that manufacture tin from concentrates alone.

The other principal raw material for the secondary tin industry is tin plated steel scrap. Virtually all of this scrap comes from fabrication plants which produce cans and a variety of other tin plated steel products. Such scrap may include punched sheets, rolls and bundles. One producer also reported tin recovery from tin plated steel separated from municipal solid waste. Two producers reported that they recovered tin from spent tin electroplating solutions and plating sludges.

TIN SMELTING

There is currently one tin smelter in the United States. Tin residues (and sometimes concentrates) are smelted in a kaldo furnace with limestone, magnesium oxide, and coke at 2,000 to 2,400°F. When the tin content of the residual slag reaches 5 to 7 percent, pyrite is added to liberate additional tin as volatile tin sulfide. The tin sulfide is contacted with atmospheric oxygen which results in the generation of sulfur dioxide and tin which are captured in a baghouse and later oxide particles recycled to the furnace. Sulfur dioxide emissions from the smelting furnace are controlled with a scrubber employing a slurry of finely ground aragonite and water as the scrubbing solution. Crude molten tin is periodically tapped from the furnace, fire refined and cast into anodes. The anodes are consumed in an electrolytic refining process and the purified tin is cast into ingots.

ALKALINE DETINNING

The first step in recovering tin from tin plated scrap is hot alkaline detinning. Tin plated scrap is loaded into perforated steel detinning baskets and placed in a detinning tank which contains a solution of sodium hydroxide and sodium nitrate. The solution is heated to near the boiling point and the tin dissolves into solution as sodium stannate, Na₂SnO₃. The chemical reaction is as follows:

 $9Sn + 6NaNO_3 + 12NaOH + 9H_2O ---->$

 $9Na_2SnO_3 \cdot H_2O + 2NH_3 + 2N_2 + 3H_2O$

The detinning cycle is complete after 4 to 12 hours. Scrap containing aluminum is pretreated in a solution of sodium hydroxide, in which the aluminum dissolves. After rinsing, the dealuminized scrap is sent to the detinning tanks.

There are two variations of the alkaline detinning process: the saturated process and the unsaturated process. In the saturated process, the sodium stannate solution is allowed to become supersaturated and sodium stannate crystals precipitate from solution. The sodium stannate is recovered from the solution in a filter press and the solution is returned to the detinning tanks. The sodium stannate filter cake may then be sold as a product or redissolved in water for further processing or electrowinning.

In the unsaturated process, the sodium stannate concentration in the solution is kept below the saturation point and the solution

SECONDARY TIN SUBCATEGORY SECT - III

is pumped directly to further processing or electrowinning. In both the saturated and the unsaturated process, the sodium stannate solution is purified by adding sodium sulfide, Na_2S or sodium hydrosulfide, NaHS, to precipitate lead and other metal impurities as insoluble metal sulfides. The precipitated residue is called tin mud or detinners mud and is sold to tin smelters.

Detinners mud may also include residues removed from the bottoms of detinning tanks. This mud contains 3 to 5 percent tin and is sold as a by-product to tin smelters. The tin mud is usually rinsed to recover any soluble tin which may be present. The rinse water is recycled to the detinning tanks. One producer reported an acid neutralization step in which sulfuric acid is added to the mud. The neutralized mud is then dewatered in a filter press and sold as a by-product containing approximately 10 percent tin.

When the detinning cycle is complete, the detinned steel is removed from the detinning tanks. The steel is then rinsed to recover any tin solution which may be adhering to it, pressed or baled, and sold as a product. The rinse water is recycled to the detinning tanks to recover tin.

ELECTROWINNING

The purified sodium stannate solution is sent to electrolytic cells where pure tin metal is deposited onto cathodes. The tin is then removed from the cathodes, melted and cast. The electrowinning solution is then recycled to the detinning tanks. A blowdown stream must periodically be discharged from the electrowinning circuit in order to control the concentration of aluminum, carbonates, and other impurities in the solution.

One producer reported the use of tin hydroxide, Sn(OH)4, as a raw material. The tin hydroxide is first washed with water and then dissolved in a solution of sodium hydroxide. The resultant sodium stannate solution is then purified and added to the sodium stannate solution from alkaline detinning and the combined solution enters the electrowinning tanks.

PRECIPITATION OF TIN HYDROXIDE

As an alternative to electrowinning, tin can be recovered from solution as tin hydroxide, Sn(OH)4. Sulfuric acid is added to lower the pH to 7 and sodium carbonate is then added to raise the pH to 7.8. At this point tin hydroxide will precipitate from the solution. The one plant which uses this process precipitates tin from a solution which is a mixture of alkaline detinning solution, spent plating solution, and a solution generated by dissolving tin electroplating sludge in water.

REDUCTION TO TIN METAL

The tin hydroxide is dried and calcined in a furnace to produce

tin dioxide, SnO_2 . The tin dioxide is then charged to a reduction furnace with carbon where it is reduced to tin metal.

PROCESS WASTEWATER SOURCES

Although a variety of processes are involved in secondary tin production, the process wastewater sources can be subdivided as follows:

- (a) Tin smelter SO_2 scrubber,
- (b) Dealuminizing rinse,
- (c) Tin mud acid neutralization filtrate,
- (d) Tin hydroxide wash,
- (e) Spent electrowinning solution from new scrap,
- (f) Spent electrowinning solution from municipal solid waste,
- (g) Tin hydroxide supernatant from scrap,
- (h) Tin hydroxide supernatant from plating solutions and sludges, and
- (i) Tin hydroxide filtrate.

OTHER WASTEWATER SOURCES

There may be other waste streams associated with the secondary tin subcategory. These streams may include noncontact cooling water, stormwater runoff, and maintenance and cleanup water. These wastewater streams are not considered as а of this rulemaking. EPA believes that the flows and part loadings associated with these pollutant streams are insignificant relative to the wastewater streams selected and are best handled by the appropriate permit authority on case-by-case basis under authority of Section 403 of the а Clean Water Act.

AGE, PRODUCTION, AND PROCESS PROFILE

Table III-1 (page 4049) shows the relative age and discharge status of the secondary tin plants. The average plant age is between 16 and 25 years. All of the plants have been built since 1940. Table III-2 (page 4050) shows the 1982 production for secondary tin. Eleven of the 12 secondary tin plants have production levels less than 1,000 kkg/yr. One tin producer has a production level between 1,000 and 5,000 kkg/yr.

Table III-3 (page 4051) provides a summary of the number of plants with the various production processes and the number of plants which generate wastewater from each process. Alkaline detinning is practiced by 10 of the 12 secondary tin plants. Of these 10 plants, eight also practice electrowinning. Figure III-3 (page 4054) shows the geographic locations of the secondary tin facilities in the United States by discharge status.

Table III-1

INITIAL OPERATING YEAR (RANGE) SUMMARY OF PLANTS IN THE SECONDARY TIN SUBCATEGORY BY DISCHARGE TYPE

			(ear (Range)			
Discharge Type	1982- 1973 (0-10)	1972- 1968 (11-15)	1967- 1958 (16-25)	1957- 1948 (26-35)	1947- 1938 (36-45)	Total
Direct	0	0	1	1	1	3
Indirect	0	0	1	0	0	1
Zero	. 2	. 1	. 3	- 1	· 1	8
TOTAL	2	1	5	2	2	12

4049

SECONDARY TIN SUBCATEGORY SECT - III

TABLE III-2

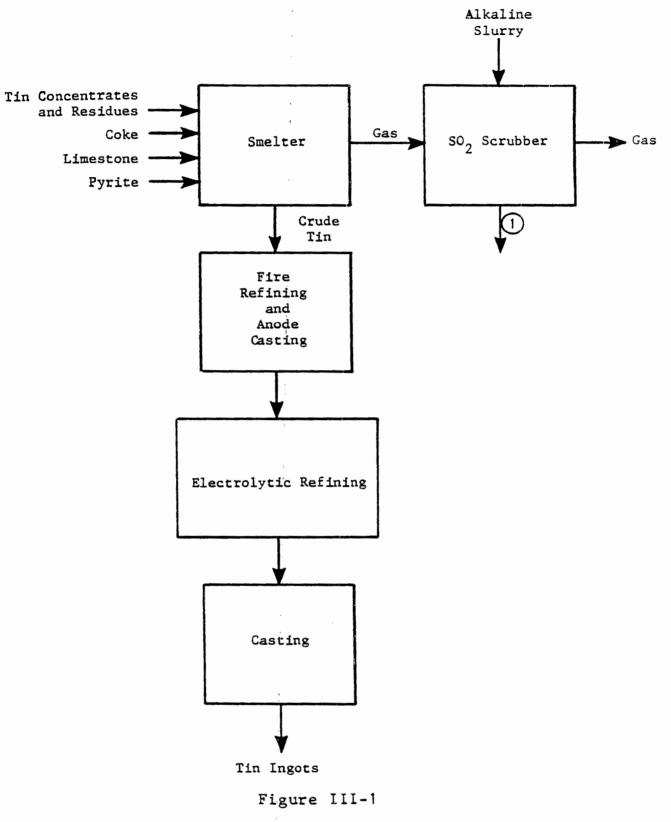
PRODUCTION RANGES FOR SECONDARY TIN PLANTS FOR 1982

Discharge Type	Produc <u>0-100</u>	tion Range 100-1000	kkg/yr 1000-5000	Total
Direct	*	: *	*	3
Indirect	l	0	0	l
Zero	<u>4</u>	<u>4</u>	<u>0</u>	<u>8</u>
Total	*	*	*	12
		:		

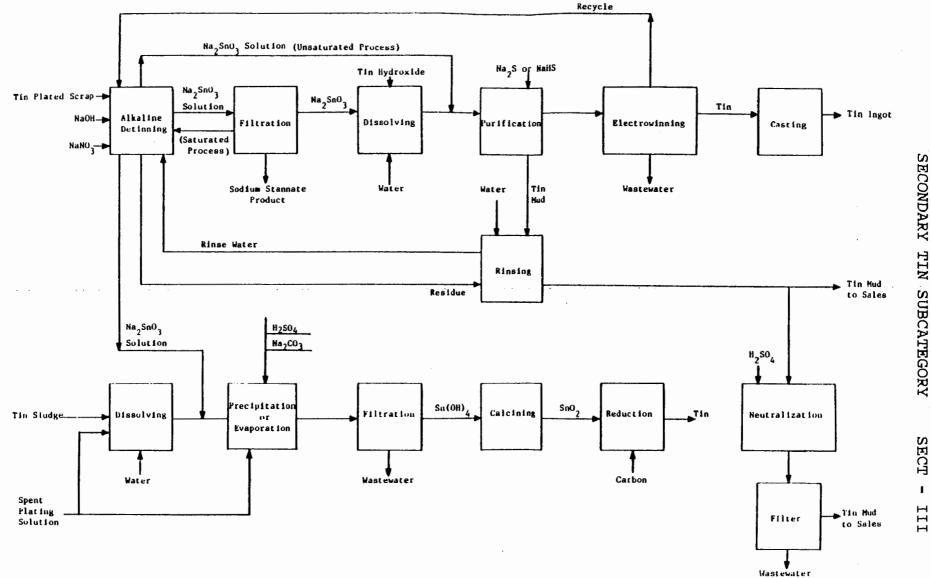
.

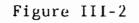
:

* Direct discharge production data have been withheld because the information on which they are based has been claimed to be confidential.

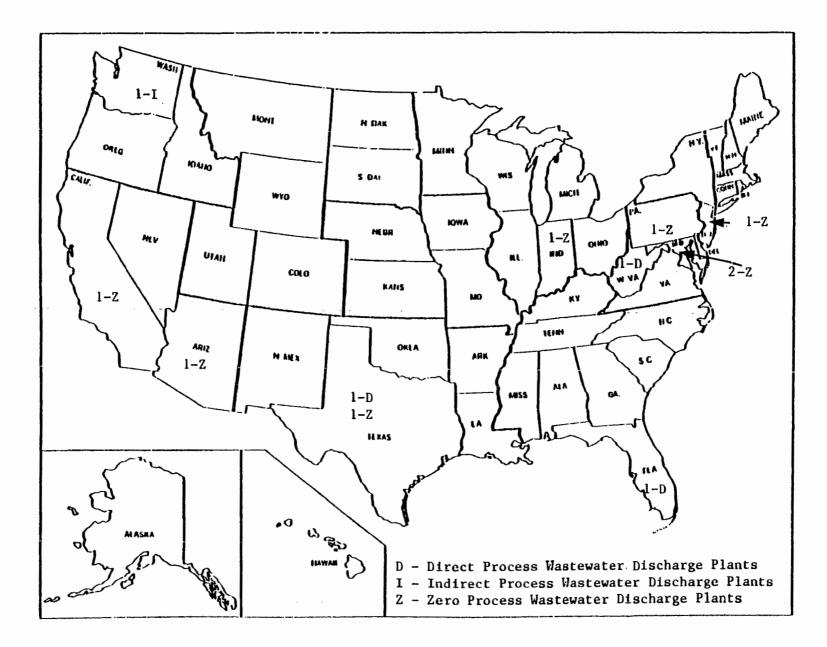

Table III-3

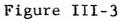
SUMMARY OF SECONDARY TIN SUBCATEGORY PROCESSES AND ASSOCIATED WASTE STREAMS


Process and Waste Streams	Number of Plants With Process or Waste Stream	Number of Plants Reporting Generation of Wastewater*
Tin Smelting	1 .	
- Smelter SO ₂ scrubber	1	1
Alkaline Detinning	10	
 Dealuminizing rinse Tin mud acid neutralization filtrate 	1 1	
Electrowinning	8	Ĩ
 Tin hydroxide wash Spent electrowinning solution from new scrap Spent electrowinning solution from municipal solid waste 	1 8 1	1 7 년 1 년
Tin Hydroxide Precipitation	2	4 4
- Supernatant from scrap - Supernatant from plating solutions and sludges - Tin hydroxide filtrate	1 2 1	1 1 1
Reduction to Tin Metal	1	


^{*}Through reuse or evaporation practices, a plant may "generate" wastewater from a particular process but not discharge it.

SECONDARY TIN SUBCATEGORY SECT - III




TIN SMELTING PRODUCTION PROCESS

4053

GEOGRAPHIC LOCATIONS OF THE PRIMARY AND SECONDARY TIN SUBCATEGORY PLANTS

SECTION IV

SUBCATEGORIZATION

This section summarizes the factors considered during the designation of the related subdivisions or building blocks of the secondary tin subcategory. Following proposal, the Agency decided to revise the name of this subcategory to Secondary Tin, instead of Primary and Secondary Tin, to more accurately reflect the nature of the raw materials used in this subcategory. The same plants and operations that were included for this Subcategory at proposal are included in promulgation.

FACTORS CONSIDERED IN SUBDIVIDING THE SECONDARY TIN SUBCATEGORY

The factors listed for general subcategorization were each evaluated when considering subdivision of the secondary tin subcategory. In the discussion that follows, the factors will be described as they pertain to this particular subcategory.

considering The rationale for segmentation of the secondary tin subcategory is based primarily on differences in the production processes and raw materials used. Within this subcategory, a number of different operations are performed, which may or may not have a water use or discharge, and which may require the establishment of separate effluent limitations. tin is still considered single While secondary а subcategory, a more thorough examination of the production processes has illustrated the need for limitations and standards based on a specific set of waste streams. Limitations will be based on specific flow allowances for the following subdivisions:

- (a) Tin smelter SO₂ scrubber,
- (b) Dealuminizing rinse,
- (c) Tin mud acid neutralization filtrate,
- (d) Tin hydroxide wash,
- (e) Spent electrowinning solution from new scrap,
- (f) Spent electrowinning solution from municipal solid waste,
- (g) Tin hydroxide supernatant from scrap
- (h) Tin hydroxide supernatant from plating solutions and sludges, and
- (i) Tin hydroxide filtrate.

These subdivisions follow directly from differences within the five production processes which may be used in the production of secondary tin: tin smelting, alkaline detinning, electrowinning, precipitation and reduction.

The smelting of tin gives rise to the first subdivision. The control of sulfur dioxide emissions from smelter flue gases is accomplished through the use of a wet alkaline scrubbing system. Blowdown of scrubbing solution comprises the wastewater stream

associated with this subdivision.

Although alkaline detinning is a net consumer of water because of evaporation losses, a number of wastewater streams may be generated. When tin scrap containing aluminum is used, the scrap is leached with a sodium hydroxide solution prior to entering the detinning tanks. The aluminum dissolves in the caustic solution and the scrap is then rinsed with water. The spent caustic leaching solution and rinse water are discharged as a waste stream.

Another wastewater stream associated with alkaline detinning is tin mud acid neutralization filtrate. Tin mud may consist of residues from the detinning tanks, precipitates formed when sodium sulfide or sodium hydrosulfide is added to the sodium stannate solution to precipitate base metal impurities, or a combination of the two. This "detinners mud" typically contains from 3 to 5 percent tin by weight. The mud is rinsed with fresh water to recover soluble tin compounds which are returned to the detinning tanks. The rinsed mud is filtered and eventually sold to smelters. One producer neutralizes this mud with sulfuric acid prior to dewatering in a pressure filter. The filtrate cannot be returned to the detinning tanks and is therefore discharged as a waste stream. The mud has been upgraded to a product that is approximately 10 percent tin.

Electrowinning is the principal means of recovering tin from the sodium stannate solution which is generated in alkaline detinning operations. One producer reported the use of tin hydroxide as an additional raw material to the electrowinning solution. Prior to being dissolved in the sodium stannate solution the tin hydroxide is washed with water to remove impurities. The wash water is then discharged as a wastewater stream. The most significant stream associated with electrowinning is spent wastewater electrowinning solution. The partially depleted sodium stannate solution is recycled to the detinning tanks where additional tin is taken into solution. A bleed stream is required, however, in order to control the buildup of impurities, particularly aluminum and carbonates, in the solution. This bleed stream comprises a wastewater stream associated with the electrowinning operation.

When municipal solid waste is used as a raw material to alkaline detinning operations, a much larger discharge of spent electrowinning solution results. This larger blowdown stream is necessitated by impurities which are introduced into the sodium stannate solution by the raw material. Consequently, spent electrowinning solution from municipal solid waste processing is identified as a separate subdivision.

As an alternative to electrowinning, tin may be precipitated from solution as tin hydroxide. The tin hydroxide sludge is dewatered in a filter press, dried and sold or calcined to tin oxide in a furnace, and reduced with carbon in a reduction furnace to produce tin metal. The supernatant and filtrate streams associated with tin hydroxide precipitation comprise wastewater streams associated with this operation.

The flow rates and characteristics of the tin hydroxide supernatant stream vary significantly depending on the raw materials used. Because of this, separate subdivisions have been identified for tin hydroxide supernatant from each of two types of raw materials: tin plated steel scrap, and plating solutions and sludges. Tin hydroxide filtrate from dewatering the precipitated tin hydroxide is also designated as a separate subdivision.

Following proposal, the Agency decided to combine tin hydroxide supernatant from spent plating solutions and tin plating sludge solids into one subdivision because there is only one plant discharging these streams, as discussed in Section V.

OTHER FACTORS

The other factors considered in this evaluation were shown be inappropriate bases for subdivision. Air pollution to methods, treatment costs, and total control energy requirements are functions of the selected subcategorization factors--metal product, raw materials, and production processes. Therefore, they are not independent factors and do not affect the subcategorization which has been developed. As discussed in Section IV of the General Development Document, certain other factors, such as plant age, plant size, and the number of employees, were also evaluated and determined to be inappropriate for use as bases for subdivision of nonferrous metals plants.

PRODUCTION NORMALIZING PARAMETERS

As discussed previously, the effluent limitations and standards developed in this document establish mass limitations on the discharge of specific pollutant parameters. To allow these regulations to be applied to plants with various production capacities, the mass of pollutant discharged must be related to a unit of production. This factor is known as the production normalizing parameter (PNP).

In general, for each production process which has a wastewater associated with it, the actual mass of tin product, intermediate or raw material processed will be used as the PNP. Thus, the PNPs for the nine subdivisions are as follows:

Building Block

PNP

- 1. Tin smelter SO₂ scrubber kkg of crude tapped tin produced
- 2. Dealuminizing rinse produced

kkg of dealuminized scrap

- 3. Tin mud acid neutralization kkg of neutralized, dewatered filtrate tin mud produced
- 4. Tin hydroxide wash
- 5. Spent electrowinning solution from new scrap
- 6. Spent electrowinning solution from municipal solid waste
- 7. Tin hydroxide supernatant from scrap
- 8. Tin hydroxide supernatant from plating solutions and sludges

- kkg of tin hydroxide washed
- kkg of cathode tin produced
- kkg of MSW scrap used as raw material
- kkg of tin metal recovered
- kkg of tin metal recovered from plating solutions and sludges

9. Tin hydroxide filtrate

kkg of tin metal produced

The PNP for subdivision 1, tin smelter SO₂ scrubber, has been changed following proposal to kkg of crude tapped tin produced. This change was made based on information obtained during a visit to a facility generating this wastewater stream.

Subdivision 8, tin hydroxide supernatant from plating solutions and sludges, is a new subdivision for promulgation, consisting of the proposed subdivisions 8 and 9. As such, the PNP for subdivision 8 is a combination of the proposed PNPs for subdivisions 8 and 9; that is, kkg of tin metal recovered from plating solutions and sludges.

SECONDARY TIN SUBCATEGORY SECT - V

SECTION V

WATER USE AND WASTEWATER CHARACTERISTICS

This section describes the characteristics of the wastewaters associated with the secondary tin subcategory. Water use and discharge rates are explained and then summarized in tables at the end of this section. Data used to characterize the wastewaters are presented. Finally, the specific source, water use and discharge flows, and wastewater characteristics for each separate wastewater source are discussed. Data collection portfolios (dcp) and field sampling results were used in the development of effluent limitations and standards for this subcategory. Data collection portfolios contain information regarding wastewater flows and production levels.

In order to quantify the pollutant discharge from secondary tin plants, a field sampling program was conducted. A complete list of the pollutants considered and a summary of the techniques used in sampling and laboratory analyses are included in Section V of the General Development Document. Samples were analyzed for 124 of the 126 priority pollutants and other pollutants deemed appropriate. Because the analytical standard for TCDD was judged to be too hazardous to be made generally available, samples were never analyzed for this pollutant. Samples were also not analyzed for asbestos. There no reason to expect that TCDD or asbestos would be is present in wastewater in the secondary tin subcategory. In general, the samples were analyzed for cyanide and three classes of pollutants: priority organic priority pollutants, priority metal pollutants, and criteria pollutants (which includes both conventional and nonconventional pollutants).

Following proposal, additional data were gathered concerning flow, production, and wastewater characteristics at one of the tin plants identified in this study. These data were obtained during a field sampling episode, and are contained in the administrative record supporting this rulemaking.

In addition, EPA collected more economic information on plants in secondary tin subcategory, which is contained in the the administrative record supporting this rulemaking. Revisions to the economics analysis are discussed in a separate document. Through the economic data gathering, EPA learned that one secondary tin plant had changed discharge status following Using an evaporation system, plant 1014 changed from proposal. being an indirect discharger to a zero discharge facility. Due to this process change, EPA decided to revise the subdivision scheme for this subcategory, by combining 2 subdivisions into 1 subdivision, namely, combining tin hydroxide supernatant from spent plating solutions and tin hydroxide supernatant from sludge solids into tin hydroxide supernatant from plating solutions and

sludges. As discussed in Section IV, the PNP for this new subdivision has also been appropriately revised. This revision is being made for regulatory simplification reasons, and will not affect the mass limitations with which any plant in this subcategory must comply. This change is discussed in more detail later in this section and also in section IX.

After proposal, EPA gathered additional wastewater sampling data for two of the subdivisions in this subcategory, tin mud acid neutralization filtrate and dealuminizing rinse. These data were acquired through a self sampling program conducted at the specific request of EPA. The data include analysis for the priority metals antimony, arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver, thallium and zinc. The data also include analyses for cyanide and the nonconventional pollutant tin. The data support the assumptions which EPA had made at proposal concerning the presence and concentrations of pollutants in these subdivisions where we did not have analytical data for specific pollutants. For this reason, the selection of pollutant parameters for limitation in this subcategory (Section VI) has not been revised based on this new data.

As described in Section IV of this supplement, the secondary subcategory has been divided into 9 subdivisions tin or wastewater sources, so that the promulgated regulation contains mass discharge limitations and standards for 9 unit processes discharging process wastewater. Differences in the wastewater characteristics associated with these subdivisions are to be expected. For this reason, wastewater streams corresponding to each subdivision are addressed separately in the discussions that follow. These wastewater sources are:

- (a) Tin smelter SO₂ scrubber,
- (b) Dealuminizing rinse,
- (C) Tin mud acid neutralization filtrate,
- (d) Tin hydroxide wash,
- (e) Spent electrowinning solution from new scrap,
- (f) Spent electrowinning solution from municipal solid waste,
- (g) Tin hydroxide supernatant from scrap,
- (h) Tin hydroxide supernatant from plating solutions and sludges, and
- (i) Tin hydroxide filtrate.

WASTEWATER FLOW RATES

Data supplied by dcp responses were evaluated, and two flow-to-production ratios, water use and wastewater discharge, were calculated for each stream. The two ratios are differentiated by the flow value used in the calculation. Water use is defined as the volume of water or other fluid required for a given process per mass of tin product and is therefore based on the sum of recycle and make-up flows to a given process to further treatment, disposal, or discharge per mass of tin

SECONDARY TIN SUBCATEGORY SECT - V

produced. Differences between the water use and wastewater flows associated with a given stream result from recycle, evaporation, carry-over on the product. The production values used and calculation correspond to the production in normalizing parameter, PNP, assigned to each stream, as outlined in Section IV. As an example, tin smelter SO_2 scrubber water flow is related to the production of crude tapped tin. As su As such, the discharge rate is expressed in liters of scrubber water per (gallons ton of crude tapped tin metric of scrubber water per ton of crude tapped tin).

The production normalized discharge flows were compiled and statistically analyzed by stream type. These production normalized water use and discharge flows are presented by subdivision in Tables V-1 through V-9 (pages 4068 - 4070). Where appropriate, an attempt was made to identify factors that could account for variations in water use and discharge rates. These variations are discussed later in this section by subdivision. A similar analysis of factors affecting the wastewater flows is presented in Sections X, XI, and XII where representative BAT, NSPS, and pretreatment flows are selected for use in calculating the effluent limitations.

The water use and discharge rates shown do not include nonprocess wastewater, such as rainfall runoff and noncontact cooling water.

WASTEWATER CHARACTERISTICS DATA

Data used to characterize the various wastewaters associated with secondary tin production come from two sources -- data collection portfolios and analytical data from field sampling trips.

DATA COLLECTION PORTFOLIOS

In the data collection portfolios, the tin plants that discharge wastewater were asked to specify the presence or absence of priority pollutants in their wastewater. Three of the five discharging plants responded. The responses are summarized below:

Pollutant	Known Present	Believed Present
antimony	1	2
arsenic	1	. 0
cadmium	1	0
chromium	1	0
copper	1	1
c ya nid e	1 .	0
lead	1 .	_ 1
mercury	0	1
nickel	2	0
selenium	0	1
silver	1	0
zinc	1 .	1

FIELD SAMPLING DATA

In order to quantify the concentrations of pollutants present in wastewater from secondary tin plants, wastewater samples were collected at five plants, which represent more than one-third of the secondary tin plants in the United States. Diagrams indicating the sampling sites and contributing production processes are shown in Figures V-1 through V-5 (pages 4210 -4214).

Raw wastewater data are summarized in Tables V-10 through V-15 (pages 4071 - 4140). Data from samples of treated and partially treated wastewater streams are presented in Tables V-16 through V-22 (pages 4151 - 4205). The stream numbers listed in the tables correspond to those given in the individual plant sampling site diagrams, Figures V-1 through V-5. Where no data are listed for a specific day of sampling, the wastewater samples for the stream were not collected.

Several points regarding these tables should be noted. The data tables include some samples measured at concentrations considered not quantifiable. The base-neutral extractable, acid extractable, and volatile organics generally are considered not quantifiable at concentrations equal to or less than 0.010 mg/l. Below this concentration, organic analytical results are not quantitatively accurate; however, the analyses are useful to indicate the presence of a particular pollutant. The pesticide fraction is considered not quantifiable at concentrations equal to or less than 0.005 mg/l.

The detection limits shown on the data tables for priority metals and conventional and nonconventional pollutants are not the same in all cases as the published detection limits for these pollutants by the same analytical methods. The detection limits used were reported with the analytical data and hence are the appropriate limits to apply to the data. Detection limit variation can occur as a result of a number of laboratoryspecific, equipment-specific, and daily operator-specific factors. These factors can include day-to-day differences in machine calibration, variation in stock solutions, and variation in operators.

The statistical analysis of data includes some samples measured at concentrations considered not quantifiable. For data considered as detected but below quantifiable concentrations, а of used value zero is for averaging. Prioritv nonconventional, and conventional pollutant with a "less than" sign are considered organic, data reported as detected, but not further quantifiable. A value of zero is also used for averaging. If one of these pollutants is reported as not detected, it is assigned a value of zero in calculating the average. Finally, priority metal values reported as less than a certain value were considered as below quantification, and consequently were assigned a value of zero in the calculation of the average.

Finally, appropriate source water concentrations are presented with the summaries of the sampling data. The method by which each sample was collected is indicated by number, as follows:

- 1 one-time grab
- 2 manual composite during intermittent process operation
- 3 8-hour manual composite
- 4 8-hour automatic composite
- 5 24-hour manual composite
- 6 24-hour automatic composite

WASTEWATER CHARACTERISTICS AND FLOWS BY SUBDIVISION

Since secondary tin production involves 9 principal sources of wastewater and each has potentially different characteristics and flows, the wastewater characteristics and discharge rates corresponding to each subdivision will be described separately. A brief description of why the associated production processes generate a wastewater and explanations for variations of water use within each subdivision will also be discussed.

TIN SMELTER SO₂ SCRUBBER

There is one facility which produces tin metal through the facility smelting of tin concentrates and residues. This reported the use of a wet scrubbing to system control 50₂₅ in the smelter flue gas. emissions The scrubber recirculating alkaline solution. A portion of the must be discharged in order to maintain effective val. The water use and wastewater discharge rates for uses а solution rates for SO2 removal. are shown in liters per metric ton of this stream crude tapped tin in Table V-1 (page 4049).

Following proposal, the one facility reporting this waste stream was visited and the scrubber blowdown was sampled. It was determined that this scrubber currently operates at greater than percent recycle. The blowdown is directly 90 discharged following equalization, chemical precipitation and sedimentation. Analytical data for this stream are presented in Table V-10 (page 4071). These data show treatable concentrations of cadmium, chromium, copper, arsenic, lead, selenium, zinc, and suspended solids. tin.

DEALUMINIZING RINSE

Aluminum present in tin plated steel scrap may be removed by leaching in a sodium hydroxide solution prior to alkaline detinning. The aluminum dissolves in the caustic solution and the scrap is then rinsed and charged to the alkaline detinning tanks. One plant reported this practice. A portion of their raw material is tin plated steel scrap separated from municipal solid waste. The spent caustic leaching solution and rinse water are discharged as a waste stream. The one facility reporting this waste stream is a direct discharger. The dealuminizing waste stream is treated with sodium sulfide to precipitate metals, chlorinated to destroy cyanide, and neutralized with sulfuric acid. Solids are removed from the neutralized stream in a sedimentation pond prior to discharge. The water use and discharge rates are presented in Table V-2 (page 4068) in liters per metric ton of dealuminized scrap produced.

There was no analytical data for this stream available before proposal and it was expected to be similar to the spent electrowinning solution with a very alkaline pH and treatable levels of cyanide and certain toxic metals including arsenic, lead, nickel and selenium. Data supplied to the Agency after proposal corroborates the assumption that a treatable level of cyanide is present.

TIN MUD ACID NEUTRALIZATION FILTRATE

One facility reported neutralization of tin mud with sulfuric acid prior to dewatering in a filter press. The neutralized, dewatered mud is sold as a by-product. The filtrate from the dewatering step is discharged as a wastewater stream. Water use and discharge rates are presented in Table V-3 (page 4068) in liters per metric ton of neutralized, dewatered tin mud produced.

Analytical data for this wastewater stream were collected after proposal through a self sampling program at the specific request of EPA. These data are presented in Table V-23 (page 4209) and show that this stream contains treatable concentrations of cyanide and zinc.

TIN HYDROXIDE WASH

One facility reported the use of tin hydroxide, $Sn(OH)_4$, as a raw material in their electrolytic tin production process. The hydroxide is washed with water to remove tin impurities, dissolved in a sodium hydroxide solution and mixed with the tin solution from the alkaline detinning operation prior to entering the electrowinning cell. The hydroxide wash water is discharged as a waste stream. tin The one facility reporting this stream achieves zero discharge through the use of an evaporation pond. The water use and discharge rates are shown in liters per metric ton of tin hydroxide washed in Table V-4 (page 4069).

There are no analytical data available for this stream. It is expected to have an alkaline pH and a treatable level of total suspended solids. Also, some priority metals may be present if they are present in the tin hydroxide.

SPENT ELECTROWINNING SOLUTION FROM NEW SCRAP

Electrowinning is the principal method for recovering tin from

SECONDARY TIN SUBCATEGORY SECT - V

the alkaline detinning solution. After the tin has been plated onto the cathode and the solution has been depleted, the solution is either recycled to the detinning tank or discarded depending on the amount and type of impurities present. Of the 10 plants which practice alkaline detinning, eight recover tin from solution via electrowinning. Of these eight facilities, six achieve zero discharge through various combinations of recycle, evaporation, contractor disposal and sales. Of the two remaining plants one is a direct discharger; and the other is an indirect discharger. Water use and discharge rates are presented in Table V-5 (page 4069) in liters per metric ton of cathode tin produced.

Table V-11 (page 4082) summarizes the raw wastewater sampling data for the priority and selected conventional and nonconventional pollutants. It can be seen that there are treatable concentrations of several priority metals present including antimony, arsenic, lead, nickel, selenium, thallium and zinc. Also, treatable concentrations of cyanide are present. This wastewater stream has a very alkaline pH (approximately 12) and high concentrations of total suspended solids.

SPENT ELECTROWINNING SOLUTION FROM MUNICIPAL SOLID WASTE

When tin plated steel scrap which was recovered from municipal solid waste (MSW) is used as a raw material for alkaline detinning and electrowinning, a significantly larger discharge of spent electrowinning solution is necessary because of additional impurities introduced into the solution. There is currently one facility using MSW as a source of raw material. The water use and discharge rates for this stream are shown in Table V-6 (page 4069) in liters per metric ton of MSW scrap used as raw material. This flow rate is estimated using a procedure described in Section IX of this document.

The facility reporting this extra discharge of spent electrowinning solution is a direct discharger after treatment consisting of chlorination, acid neutralization and sedimentation. The characteristics of this wastewater are assumed to be similar to the characteristics of spent electrowinning solution as discussed previously.

TIN HYDROXIDE SUPERNATANT FROM SCRAP

Tin may be recovered from solution by precipitation as tin hydroxide, $Sn(OH)_4$. Tin is present in solution as sodium stannate, Na_2SnO_3 . Tin hydroxide will precipitate when the pH is lowered to 7.0 with sulfuric acid and sodium carbonate is added to pH 7.8. The characteristics and production normalized flow rates of the resultant supernatant stream are dependent upon the raw material used. The three possible raw materials are tin plated steel scrap, spent plating solutions, and plating sludge solids.

The water use and wastewater discharge rates for tin hydroxide supernatant from scrap are shown in Table V-7 (page 4070) in

liters per metric ton of tin metal recovered from scrap. The one facility reporting this stream is a direct discharger after treatment by sedimentation. Table V-12 (page 4102) summarizes the raw wastewater sampling data for the priority and selected conventional and nonconventional pollutants. It can be seen that treatable levels of priority metals are present, particularly antimony at 4.4 mg/l. This waste stream has a pH of 8.3 and treatable levels of oil and grease and total suspended solids (TSS).

TIN HYDROXIDE SUPERNATANT FROM PLATING SOLUTIONS AND SLUDGES

Two plants reported the use of spent tin plating solutions as raw One facility recovers tin as tin hydroxide from both material. spent plating solutions and plating sludge solids. This facility dissolves tin from the sludge solids into the plating solution by adding additional water, while heating and lancing with air. Tin hydroxide is then precipitated from the resultant solution. The second facility uses only spent plating solutions. Following proposal, the Agency learned that the second facility revised their process for recovering tin from solution. Instead of precipitating tin hydroxide using ammonia, and discharging the liquids, the solution is completely evaporated in an oven to produce a tin hydrate product. No process water is discharged from this operation.

The Agency revised this subdivision for promulgation by combining tin hydroxide supernatant from spent plating solutions with tin hydroxide supernatant from tin plating sludge solids to form a new subdivision, namely tin hydroxide supernatant from plating solutions and sludges. The water use and discharge rates for this subdivision are presented in Table V-8 (page 4070). This revision was made to simplify the regulation, and will not change the mass limitations with which any plant must comply.

Sampling data for tin hydroxide supernatant from tin plating solutions and sludges is presented in Table V-13 (page 4113). The samples were collected at the facility which uses both plating solutions and tin sludge solids as raw materials spent to tin hydroxide precipitation operations. It can be seen priority treatable concentrations of metals are that particularly antimony which was detected present, at а maximum concentration of 3.1 mg/1. Cyanide is also maximum observed concentration of 16 present with a mg/l. Very high concentrations of fluoride are present in this with concentrations from 12,000 to 15,000 wastewater mq/l. This fluoride originates from tin fluoroborate and fluoroboric acid which are used in the tin plating baths. This wastewater has nearly-neutral pH and treatable a of suspended solids. concentrations

TIN HYDROXIDE FILTRATE

When tin hydroxide slurry is separated from the supernatant stream, it may be further dewatered in a filter press prior to

drying. The resultant filtrate is discharged as a wastewater stream. Water use and discharge rates are presented in Table V-10 (page 4071) in liters per metric ton of tin metal produced.

The one facility reporting this stream is a direct discharger after treatment by sedimentation. Table V-14 (page 4129) summarizes the sampling data for this waste stream. Treatable concentrations of cyanide and priority metals are present including antimony at 2.4 mg/l. Treatable concentrations of fluoride and TSS are also present.

;

TABLE V-1

WATER USE AND DISCHARGE RATES TIN SMELTER SO₂ SCRUBBER

(1/kkg of crude tapped tin produced)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1118	>90	NR	9198

TABLE V-2

WATER USE AND DISCHARGE RATES DEALUMINIZING RINSE

(1/kkg of dealuminized scrap produced)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1046	0	35	35

TABLE V-3

WATER USE AND DISCHARGE RATES TIN MUD ACID NEUTRALIZATION FILTRATE

(1/kkg of neutralized, dewatered tin mud produced)

<u>Plant</u> Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1046	0	5047	5047

SECONDARY TIN SUBCATEGORY SECT - V

TABLE V-4

WATER USE AND DISCHARGE RATES TIN HYDROXIDE WASH

(1/kkg of tin hydroxide washed)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1049	0	11953	11953

TABLE V-5

WATER USE AND DISCHARGE RATES SPENT ELECTROWINNING SOLUTION FROM NEW SCRAP

(1/kkg of cathode tin produced)

<u>Plant</u> Code	Percent Recycle	Production Normalized <u>Water</u> <u>Use</u>	Production Normalized Discharge Rate
1047	0	NR	NR
1049	Ŏ	24069	24069
1048	NR	NR	21982
1054	0	16609	16609
1046	0	15145	15145
1056	0	12489	12489
1057	0	10498	10498
1144	NR	NR	NR

TABLE V-6

WATER USE AND DISCHARGE RATES SPENT ELECTROWINNING SOLUTION FROM MUNICIPAL SOLID WASTE

(1/kkg of MSW scrap used as a raw material)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1047	0	119	119

SECONDARY TIN SUBCATEGORY SECT - V

TABLE V-7

WATER USE AND DISCHARGE RATES TIN HYDROXIDE SUPERNATANT FROM SCRAP

(l/kkg of tin metal recovered from scrap)

<u>Plant</u> Code	Percent Recycle	Production Normalized Water <u>Use</u>	Production Normalized Discharge Rate
1036	0	55640	55640

TABLE V-8

WATER USE AND DISCHARGE RATES TIN HYDROXIDE SUPERNATANT FROM PLATING SOLUTIONS AND SLUDGES

(1/kkg of tin metal recovered from plating solutions and sludges)

<u>Plant</u> Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1036	0	115000	115000

TABLE V-9

WATER USE AND DISCHARGE RATES TIN HYDROXIDE FILTRATE

(1/kkg of tin metal produced)

Plant Code	Percent Recycle	Production Normalized Water Use	Production Normalized Discharge Rate
1118	>90	NR	9198

Table V-10

	Pollutant	Stream Code	Sample Type†	Conc Source	Day 1 Day 2	Day 3 m
Toxic	Pollutants					CONI
1.	acenaphthene	895	6	ND	ND ND	Day 3 ECONDARY 1
5.	benzidine	895	6	N D	ND ND	TIN SU
8.	1,2,4-trichlorobenzene	895	6	ND	ND ND	SUBCATEGORY
9.	hexachlorobenzene	895	6	ND	ND ND	GORY
12.	hexachloroethane	895	6	ND	ND ND	N H
18.	bis(2-chloroethyl)ether	895	6	ND	ND ND	SECT -
20.	2-chloronaphthalene	895	6	ND	ND ND	۲
21.	2,4,6-trichlorophenol	895	6	ND	ND ND	
22.	p-chloro-m-cresol	895	6	ND	ND ND	
24.	2-chlorophenol	895	6	ND	ND ND	

SCRUBBER BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Con Source	centrations (m Day 1 Da		Day 3	SEC
Toxic Pollutants (Continued)							SECONDARY
25. 1,2-dichlorobenzene	895	6	ND	ND ND			ARY TIN
26. 1,3-dichlorobenzene	895	6	ND	ND ND	·		
27. 1,4-dichlorobenzene	895	6	ND	N D N D			SUBCATEGORY
28. 3,3'-dichlorobenzidine	895	6	ND	ND ND			ORY
31. 2,4-dichlorophenol	895	6	ND	N D N D			SECT
34. 2,4-dimethylphenol	895	6	ND	ND ND			T - V
35. 2,4-dinitrotoluene	895	6	ND	ND			
36. 2,6-dinitrotoluene	895	6	ND	ND			
37. 1,2-diphenylhydrazine	895	6	ND	ND ND			
39. fluoranthene	895	6	ND	ND ND			

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDA
40.	4-chlorophenyl phenyl ether	895	6	ND	N D N D			RY TIN
41.	4-bromophenyl phenyl ether	895	6	ND	ND -NĐ ····			
42.	bis(2-chloroisopropyl)ether	895	6	ND	N D N D			SUBCATEGORY
43.	bis(2-chloroethoxy)methane	895	6	ND	ND ND			DRY
52.	hexachlorobutadiene	895	6	ND	ND ND			SECT
53.	hexachlorocyclopentadiene	895	6	ND	ND ND			ן ק
54.	isophorone	895	6	ND	ND ND			
55.	naphthalene	895	6	ND	ND ND			
56.	nitrobenzene	895	6	ND	ND ND			

Pollutant	Stream Code	Sample Typet	Con Source	centrations Day 1	(mg/1) Day 2	Day 3 CONDARY
Toxic Pollutants (Continued)						ONDĮ
57. 2-nitrophenol	895	6	ND	ND ND		ARY TIN
58. 4-nitrophenol	895	6	ND	ND ND		
59. 2,4-dinitrophenol	895	6	ND	ND ND		SUBCATEGORY
60. 4,6-dinitro-o-cresol	895	6	ND	ND ND		ORY
61. N-nitrosodimethylamine	895	6	ND	ND ND		SECT
62. N-nitrosodiphenylamine	895	6	ND	ND ND		r - v
63. N-nitrosodi-n-propylamine	895	6	ND	ND ND		
64. pentachlorophenol	895	6	ND	ND ND		
65. phenol	895	6	ND	ND ND		

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDA
66.	bis(2-ethylhexyl) phthalate	895	6	ND	ND ND			RY TIN
67.	butyl benzyl phthalate	895	6	ND	ND ND			
68.	di-n-butyl phthalate	895	6	ND	N D N D			SUBCATEGORY
69.	di-n-octyl phthalate	895	6	ND	ND ND			ORY
70.	diethyl phthalate	895	6	ND	ND ND			SECT
71.	dimethyl phthalate	895	6	ND	ND ND			r . V
72.	benzo(a)anthracene	895	6	ND	ND ND			
73.	benzo(a)pyrene	895	6	ND	ND ND			
74.	benzo(b)fluoranthene	895	6	ND	N D N D			

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDA
75.	benzo(k)fluoranthane	895	6	ND	ND ND			RY TIN
76.	chrysene	895	6	ND	ND ND			
77.	acenaphthylene	895	6	ND	N D N D			SUBCATEGORY
78.	anthracene (a)	895	6	ND	ND ND			IRY
79.	benzo(ghi)perylene	895	6	ND	ND ND			SECT
80.	fluorene	895	6	ND	N D N D			- V
81.	phenanthrene (a)	895	6	ND	N D N D			
82.	dibenzo(a,h)anthracene	895	6	ND	ND ND			
83.	indeno (1,2,3-c,d)pyrene	895	6	ND	ND ND			

SCRUBBER BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type†	Con Source	centratio Day 1	ns (mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAI
84.	pyrene	895	6	ND	ND ND			RY TIN
114.	antimony	895	6	0.0013	0.047	0.078	0.048	
- 115.	arsenic	895	6	0.007	3.20 4.50	4.50	2.10	SUBCATEGORY
117.	beryllium	895	6	<0.010	<0.010 <0.010	<0.010	<0.010	GORY
118.	cadmium	895	6	<0.030	0.30 0.30	0.30	0.30	SE
119.	chromium	895	6	<0.030	0.10 0.084	0.12	0.99	SECT -
120.	copper	895	6	<0.030	0.35 0.37	0.28	0.60	V
121.	cyanide (total)	895	1	<0.01	<0.01 <0.01	<0.01	<0.01	
122.	lead	895	6	0.054	3.00 3.70	3.70	2.80	
123.	mercury	895	6	0.0149	0.0129 0.005	0.013	0.0094	

4077

Pollutant	Stream Code	Sample Typet	Cor Source	centratio Day 1	ns (mg/1) Day 2	Day	SEC
Toxic Pollutants (Continued)							ECONDARY
124. nickel	895	6	0.052	<0.25 0.15	0.18	0.16	RY TIN
125. selenium	895	6	<0.001	0.33 0.44	0.55	0.40	
126. silver	895	6	0.0014	0.0045 0.0133	0.0042	0.005	SUBCATEGORY
127. thallium	895	6	<0.001	0.0026 0.0037	0.0031	0.003	0 0
128. zinc	895	6	0.030	0.14 2.30	2.20	2.10	SECT
Nonconventional Pollutants					I		I
Acidity	895	6	10	60 180	50	61	4
Alkalinity	895	6	160	<1 65	99	80	
Aluminum	895	6	2.80	5.50 6.00	7.80	7.50	

SCRUBBER BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet		ncentrati Day 1			SEC
Nonconventional Pollutants (Continued))						ECONDARY
Ammonia Nitrogen	895	6	0.04	2.2 2.4	1.9	1.8	NY TIN
Barium	895	6	0.12	0.18 0.43	0.21	0.27	
Boron	895	6	0.17	26.00 40.00	36.00	5.90	SUBCATEGORY
Calcium	895	6	0.067 2	3.40 ,700	4.20	3.00	ORY
Chloride	895	6		,000 ,000	780	380	SECT
Cobalt	895	6	<0.030	0.081 0.11	0.13	0.60	Î I V
Fluoride	895	6	0.40	9.3 7.5	7.4	7.0	
Iron	895	6	2.80	140 190	250	250	
Magnesium	895	6	0.018	0.069 58	0.078	0.070	
Manganese	895	6	0.11	0.45 0.25	0.47	0.49	

i.

Pollutant	Stream Code	Sample Type†	Sourd	Concentrat ce Day		1) 2 Day	3 EC
Nonconventional Pollutants (Continued)							SECONDARY
Molybdenum	895	6	<0.030	<0.030 <0.030		0.40	RY TIN
Germanium	- 895	6	<0.50	<0.50 <0.50	<0.50	<0.50	
Indium	895	6	<0.50	<0.50 <0.50	<0.50	<0.50	SUBCATEGORY
Sodium	895	6	0.12	0.19 80	0.20	0.19	ORY
Sulfate	895	6	46	1,200 1,100	1,100	1,100	SECT
Tin	895	6	<0.25	3.30 1.10	0.89	0.92	r - v
Titanium	895	6	<0.25	<0.25 <0.25	<0.25	0.36	
Total Dissolved Solids (TDS)	895	6	510	4,000 3,900	4,600	4,200	
Total Organic Carbon (TOC)	895	6	13	16 13	22	45	

SCRUBBER BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type†		
Total Solids (TS)	895	6	650	6,400 35,000 1,800 ONDARY 9,300 P
Vanadium	895	6	<0.030	•
Yttrium	. 895	6	<0.25	<0.25 <0.25 <0.25 <0.25 SUBCATEGORY
Conventional Pollutants				ΛTEG
Oil and Grease	895	1	<1	<1 1 4 RY <1 4
Total Suspended Solids (TSS)	895	6	5	5,400 26,000 10,000 g 9,900 G
pH (standard units)	895		7.20	6.25 6.20 6.60 1 6.25 <

Table V-11

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants						
1.	acenaphthene	455 843 856	1 1 1	ND ND ND	ND ND ND		
2.	acrolein	455 843 856	1 1 1	ND ND ND	ND ND ND		
3.	acrylonitrile	455 843 856	1 1 1	ND ND ND	ND ND ND		
4.	benzene	455 843 856	1 1	0.013 ND ND	0.051 0.047 0.003		
5.	benzidine	455 843	1 1	ND ND ND	ND ND ND		
6.	carbon tetrachloride	856 455 843	1	ND ND ND	ND ND ND		
7.	chlorobenzene	856 455 843 856	1 1 1 1	ND ND ND	ND ND ND		

SECONDARY TIN SUBCATEGORY SECT -

<

Pollutant	Stream Code	Sample Typet	Conc. Source	entrations Day 1	s (mg/1) Day 2	Day 3 Day 3
Toxic Pollutants (Continued)						NDAR
8. 1,2,4-trichlorobenzene	455 843 856	1 1 1	ND ND ND	ND ND ND		Y TIN
9. acenaphthene	455 843 856	1 1 1	ND ND ND	ND ND ND		SUBCATEGORY
10. acrolein	455 843 856	1 1	ND ND ND	ND ND ND		EGORY
11. acrylonitrile	455 843	1	ND ND	0.066 ND		SECT
12. benzene	856 455 843	1 1 1	ND ND ND	ND ND ND		י ע
13. 1,1-dichloroethane	856 455 843	1 1 · 1	ND ND ND	ND ND ND		
14. 1,1,2-trichloroethane	856	1	ND	ND ND		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	843 856	1	ND ND	ND ND		

	Pollutant	Stream Code	Sample Type†	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							VDAR
15.	1,1,2,2-tetrachloroethane	455 843 856	1 1 1	ND ND ND	ND ND ND			TIN
16.	chloroethane	455 843 856	1 1 1	ND ND ND	ND ND ND			SUBCATEGORY
17.	bis(chloromethyl)ether	455 843 856	1 1 1	ND ND ND	N D ND ND			GORY
18.	bis(2-chloroethyl)ether	455 843 856	1 1 1	ND ND ND	N D ND ND			SECT -
19.	2-chloroethyl vinyl ether	455 843 856	1 1 1	ND ND ND	N D ND ND			<
20.	2-chloronaphthalene	455 843 856	1 1 1	ND ND ND	N D ND ND			
21.	2,4,6-trichlorophenol	455 843 856	1 1 1	ND ND ND	ND ND ND			

Pollutant	Stream Code	Sample Typet	Conc Source	centration Day 1	s (mg/l) Day 2	Day 3 SECONDARY
Toxic Pollutants (Continued)						NDA
22. p-chloro-m-cresol	455 843 856	1 1 1	ND ND ND	N D ND ND		RY TIN
23. chloroform	455 843 856	1 . 1 1	0.038 ND 0.037	ND ND		SUBCATEGORY
24. 2-chlorophenol	455 843 856	1 1 1	ND ND ND	N D ND ND		EGORY
25. 1,2-dichlorobenzene	455 843 856	1 1 1	ND ND ND	ND- ND ND		SECT
26. 1,3-dichlorobenzene	455 843 856	1 1 1	ND ND ND	ND ND ND		- -
27. 1,4-dichlorobenzene	455 843 856	- 1 . 1 1	ND ND ND	ND ND ND		
28. 3,3'-dichlorobenzidine	455 843 856	1 1 1	ND ND ND	N D ND N D		

,

<u>Pollutant</u>	Stream _Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							NDA
29. 1,1-dichloroethylene	455 843 856	1 1 1	ND ND ND	ND ND ND			RY TIN
30. 1,2- <u>trans</u> -dichloroethylene	455 843 856	1 1 1	ND ND ND	N D ND ND			SUBCATEGORY
31. 2,4-dichlorophenol	455 843 856	1 1 1	ND ND ND	ND ND ND			GORY
32. 1,2-dichloropropane	455 843 856	1 1 1	ND ND ND	ND ND ND			SECT
33. 1,3-dichloropropene	455 843 856	1 1 1	ND ND ND	N D ND ND			-
34. 2,4-dimethylphenol	455 843 856	1 1 1	ND ND ND	0.009 ND ND			·
35. 2,4-dinitrotoluene	455 843 856	1 1 1	ND ND ND	ND ND ND			

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	s (mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants							VDAR
36.	2,6-dinitrotoluene	455 843 856	1 1 1	ND ND ND	ND ND ND			TIN
37.	1,2-diphenylhydrazine	455 843 856	- 1 - 1 - 1	ND ND ND	N D ND ND	. •		SUBCATEGORY
38.	ethylbenzene	455 843 856	1 1 1	ND ND ND	ND ND ND			GORY
39.	fluoranthene	455 843 856	1 1 1	N D N D N D	ND 0.004 ND			SECT -
40.	4-chlorophenyl phenyl ether	455 843 856	1 1 1	ND ND ND	N D ND ND			V
41.	4-bromophenyl phenyl ether	455 843 856	1 1 1	ND ND ND	N D ND N D			
42.	bis(2-chloroisopropyl)ether	455 843 856	1 1 1	ND ND ND	N D ND N D			

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day_1	(mg/1) Day 2	Day 3 CONDARY
Toxic Pollutants (Continued)						IDAR
43. bis(2-chloroethoxy)methane	455 843 856	1 1 1	ND ND ND	ND ND ND		TIN
44. methylene chloride	455 843 856	1 1 1	0.019 ND 0.021	0.031 ND 0.025		SUBCATEGORY
45. methyl chloride (chloromethane)	455 843 856	1 1 1	ND ND ND	N D ND ND		JORY
46. methyl bromide (bromomethane)	455 843 856	1 1 1	ND ND ND	N D ND ND		SECT -
47. bromoform (tribromomethane)	455 843 856	1 1 1	ND ND ND	N D ND ND		4
48. dichlorobromomethane	455 843 856	1 1 1	ND ND ND	ND ND ND		
49. trichlorofluoromethane	455 843 856	1 1 1	ND ND ND	N D ND ND		

4088

	Pollutant	Stream Code	Sample Typet	Conce Source	ntration Day 1	ns (mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAF
50.	dichlorodifluoromethane	455 843 856	1 1 1	ND ND ND	N D ND N D			TIN
51.	chlorodibromomethane	455 843 856	1 1 1	0.002 ND ND	N D N D N D			SUBCATEGORY
52.	hexachlorobutadiene	455 843 856	1 1 1	ND ND ND	NÐ ND ND			GORY
53.	hexachlorocyclopentadiene	455 843 856	1 1 1	ND ND ND	N D ND ND			SECT -
54.	isophorone	455 843 856	1 1 1	ND ND ND	N D ND ND			- V
55.	naphthalene	455 843 856	1 1 1	ND ND ND	ND ND ND			
56.	nitrobenzene	455 843 856	1 1 1	ND ND ND	N D ND ND			

	Pollutant	Stream Code	Sample Typet	Conc. Source	entrations Day 1	(mg/l) Day 2	Day 3	SECC
<u>Toxic</u>	Pollutants (Continued)	·						SECONDARY
57.	2-nitrophenol	455 843	1 1	ND ND	ND 0.060			LA LIN
5.0		856	1	ND	ND			
58.	4-nitrophenol	455 843	1	ND ND	ND ND			JBCA
59.	2,4-dinitrophenol	856 455	1	ND ND	ND ND			SUBCATEGORY
	2, · JINICIOPHONOL	843 856	1	ND ND	ND ND			RY
60.	4,6-dinitro-o-cresol	455	1	ND	ND			SH
		843 856	1 1	ND ND	ND ND			SECT .
61.	N-nitrosodimethylamine	455 843	1	ND ND	N D N D			י ל
		856	i	ND	ND			
62.	N-nitrosodiphenylamine	455 843	1	ND ND	N D N D			
		856	1	ND	ND		-	
63.	N-nitrosodi-n-propylamine	455 843 856	1 . 1	ND ND ND	N D ND ND			
		0.50						

	Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAR
64.	pentachlorophenol	455 843 856	1 1 1	ND ND ND	ND ND			Y TIN
65.	phenol	455 843 856	1 1 1	ND ND ND	0.017 0.130 0.020		. ·	SUBCATEGORY
66.	bis(2-ethylhexyl) phthalate	455 843 856	1 1 1	0.006 0.054 0.004	N D ND N D			EGORY
67.	butyl benzyl phthalate	455 843 856	1 1 1	ND ND ND	ND ND ND			SECT
68.	di-n-butyl phthalate	455 843 856	1 1	ND ND ND	ND ND ND			- V
69.	di-n-octyl phthalate	455 843 856	1	ND ND ND	ND ND ND			
70.	diethyl phthalate	455 843 856	' 1 1	ND ND ND ND	ND ND ND			

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type†	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDA
71.	dimethyl phthalate	455 843 856	1 1 1	ND ND ND	ND ND ND			RY TIN
72.	benzo(a)anthracene	455 843 856	1 1 1	ND ND ND	N D ND N D			SUBCATEGORY
73.	benzo(a)pyrene	455 843 856	1 1 1	ND ND ND	ND ND ND			EGORY
74.	benzo(b)fluoranthene	455 843 856	1 1 1	ND ND ND	ND ND ND			SECT
75.	benzo(k)fluoranthene	455 843 856	1 1 1	ND ND ND	ND ND ND			- V
76.	chrysene	455 843 856	1 1 1	ND ND ND	ND ND ND			
77.	acenaphthylene	455 843 856	1 · · 1 1	ND ND ND	N D N D N D			

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
78. anthracene (a)	455	1	NÐ	ND		
	843	1	ND	ND		
	856	1	ND	ND		
79. benzo(ghi)perylene	455	· - 1· · ··	ND	ND	- ·····	
	843	1	NÐ	ND		
	856	1	ND	ND		
80. fluorene	455	1	ND	ND		
	843	1	ND	ND		
	856	1	ND	ND		
81. phenanthrene (a)	455	1	NÐ	ND		
	843	1	NĎ	ND		
	856	1	ND	ND		
82. dibenzo(a,h)anthracene	455	1	ND	ND		
	843	1	ND	ND		
	856	1	ND	ND		•
83. indeno (1,2,3-c,d)pyrene	455	1	ND	ND	. •	
	843	1	ND	ND		
	856	1	ND	ND		
84. pyrene	455	1	ND	NÐ		
	843	1	NĐ	0.003		
	856	1	ND	0.063		

4093

SECONDARY TIN SUBCATEGORY

	Pollutant	Stream Code	Sample Typet	<u>Conc</u> Source	entration: Day 1	s (mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAJ
85.	tetrachloroethylene	455 843 856	1 1 1	ND ND ND	ND ND 0.399			RY TIN
86.	toluene	455 843 856	1 1 1	0.001 0.093 0.005	0.018 0.017 0.005			SUBCATEGORY
87.	trichloroethylene	455 843 856	1 1 1	ND ND 0.007	ND ND 0.009			GORY
88.	vinyl chloride (chloroethylene)	455 843 856	1 1 1	ND ND ND	N D N D N D			SECT
89.	aldrin	455 843 856	1 1 1	ND ND ND	ND ND ND			- V
90.	dieldrin	455 843 856	1 1 1	ND ND ND	ND ND ND			
91.	chlordane	455 843 856	1 1 1	ND ND ND	ND ND ND			

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Concer Source	ntrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAF
92.	4,4'-DDT	455 843 856	1 1 1	ND ND ND	ND ND ND			YY TIN
93.	4,4'-DDE	455 843 856	1 1 1	ND ND ND	N D ND ND			SUBCATEGORY
94.	4,4'-DDD	455 843 856	1 1 1	ND ND ND	ND ND ND			GORY
95.	alpha-endosulfan	455 843 856	1 - 1 1	ND ND ND	N D ND N D			SECT
96.	beta-endosulfan	455 843 856	1 1 1	ND ND ND	N D N D N D			- V
97.	endosulfan sulfate	455 843 856	1 1 1	ND ND ND	N D ND ND	•		
98.	endrin	455 843 856	1 1 1	ND ND ND	N D ND N D			

.

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic Poll	utants (Continued)							NDA
99. endr	in aldehyde	455 843 856	1 1 1	ND ND ND	ND ND ND			RY TIN
100. hept	achlor	455 843 856	1 · 1 1	ND ND ND	ND ND ND			SUBCATEGORY
101. hept	achlor epoxide	455 843 856	1 1 1	ND ND ND	ND ND ND			GORY
102. alph	а-ВНС	455 843 856	1 1 1	ND ND ND	ND ND ND			SECT
103. beta	a-BHC	455 843 856	1 1 1	ND ND ND	ND ND ND			י ל
104. gamm	na-BHC	455 843 856	1 1 1	ND ND ND	ND ND ND			
105. delt	a-BHC	455 843 856	1 1 1	ND ND ND	ND ND ND			

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							NDAR
106. PCB-1242 (b)	455 843 856	1 1 1	ND ND ND	N D N D N D			Y TIN
107. PCB-1254 (b)	455 843 856	. 1 1 1	ND ND ND	N D ND ND			SUBCATEGORY
108. PCB-1221 (b)	455 843 856	1 1 1	ND ND ND	N D NĐ N D			GORY
109. PCB-1232 (c)	455 843 856	1 1 1	ND ND ND	ND ND ND			SECT
110. PCB-1248 (c)	455 843 856	1 1 1	ND ND ND	ND ND ND			- <
111. PCB-1260 (c)	455 843 856	1 1 1	ND ND ND	ND ND ND			
112. PCB-1016 (c)	455 843 856	1 1 1	ND ND	ND ND N:D			

4097

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream _Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							IDAF
113.	toxaphene	455 843 856	1 1 1	ND ND ND	ND ND ND			TIN
114.	antimony	455 843 856	1 1 1	0.001 <0.001 <0.001	5.0 0.9 0.41	•		SUBCATEGORY
115.	arsenic	455 843 856	1 1 1	0.002 0.008 0.007	2.0 1.9 6.6			GORY
117.	beryllium	455 843 856	1 1 1	<0.001 <0.001 <0.001	0.08 0.005 0.20			SECT -
118.	cadmium	455 843 856	1 1 1	0.020 <0.001 0.001	0.42 0.34 0.29			- V
119.	chromium (total)	455 843 856	1 1 1	0.003 0.003 0.004	0.94 0.30 0.56			
120.	copper	455 843 856	1 1 1	0.008 0.14 0.016	0.50 0.30 0.41			

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3 Day 3
Toxic Pollutants (Continued)						NDAI
121. cyanide (total)	455 843 856	1 1 1	0.002 ND 0.004	3.6 ND 24		TIN
122. lead	455 843 856	,1 1 1	0.019 0.001 0.011	2.6 1.0 9.0		SUBCATEGORY
123. mercury	455 843 856	1 1 1	<0.002 <0.002 0.007	<0.002 <0.002 0.026		GORY
124. nickel	455 843 856	1 1 1	<0.001 0.001 0.003	2.5 4.1 3.7		SECT
125. selenium	455 843 856	1 1 1	0.033 3.1 <0.005	0.040 32 <0.005	. :	- V
126. silver	455 843 856	1 1 1	<0.001 0.02 <0.001	0.40 0.35 0.30		
127. thallium	455 843 856	1 1 1	0.14 <0.001 0.005	3.1 2.0 2.0		

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type†	Cor Source	<u>Day 1</u>	(mg/l) Day 2	Day 3	SECC
Toxic Pollutants (Continued)							ONDARY
128. zinc	455 843 856	1 1 1	0.08 0.06 0.24	29 1.1 0.24			RY TIN
Nonconventional Pollutants							SUB
alkalinity	455	1	60	220,000			SUBCATEGORY
aluminum	455	1	1.90	13,000			GOR
ammonia nitrogen	843 856	1 1	1.5 0.3	20 92			Ä
calcium	455	1	11	<0.1			SECT
chemical oxygen demand (COD)	455	1	4.0	3,600			н I
fluoride	455	1	1.2	0.5			4
magnesium	455	1	5.5	0.04			
phenolics	455 843 856	1 1 1	0.011 0.002 0.001	1.4 0.00 0.11	6		

SECONDARY TIN SUBCATEGORY SECT - V

SPENT ELECTROWINNING SOLUTION RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrations (mg/1)				Ŋ
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3	ECC
	Nonconventional Pollutants (Continued))						SECONDARY
	tin	455	1	1.6	760			•
		843	1	0.28	2,600			TIN
		856	. 1	1.7	8,800			Z
	Conventional Pollutants			- 			.	SUBCATEGORY
	total suspended solids (TSS)	455	1	1	23,000			A
		843	1	19	50,000			IE(
		856	1	9	5,100			G
				C D	10.0			RY
	pH (standard units)	455	1	6.2	13.3			
	i i	843	1	6.5	12.5			
		856		/				S

tSample Type Code: 1 - One-time grab

(a), (b), (c) Reported together.

•

4101

SECONDARY TIN SUBCATEGORY SECT - V

Table V-12

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants							NDAR
1.	acenaphthene	395	1	ND	ND			
2.	acrolein	395	1	ND	ND			TIN S
3.	acrylonitrile	395	1	ND	ND			SUBC
4.	benzene	395	1	ND	ND			SUBCATEGORY
5.	benzidine	395	1	ND	ND			GORY
6.	carbon tetrachloride	395	1	ND	ND			
7.	chlorobenzene	395	1	ND	ND			SECT
8.	1,2,4-trichlorobenzene	395	1	ND	ND) 日 日
9.	hexachlorobenzene	395	1	ND	ND			4
10.	1,2-dichloroethane	395	1	ND	ND			
11.	1,1,1-trichloroethane	395	1	ND	ND			
12.	hexachloroethane	395	1	ND	ND			
13.	1,1-dichloroethane	395	-1	ND	ND			
14.	1,1,2-trichloroethane	395	1	ND	ND			

•

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	SEC
Toxic Poll	Lutants (Continued)							SECONDARY
15. 1,1,	,2,2-tetrachloroethane	395	1	ND	ND			
16. chlo	proethane	395	1	ND	ND			TIN
17. bis((chloromethyl)ether	395	. 1 .	ND	ND			SUE
18. bis((2-chloroethyl)ether	395	1	ND	ND			SUBCATEGORY
19. 2-ch	nloroethyl vinyl ether	395	1	ND	N D			EGOI
20. 2-ch	loronaphthalene	395	1	ND	ND			RΥ
21. 2,4,	,6-trichlorophenol	395	1	ND	ND			ß
22. p-ch	nloro-m-cresol	395	1	ND	ND			SECT
23. chlo	oroform	395	1	ND	ND			ו ל
24. 2-ch	lorophenol	395	1	ND	ND			
25. 1,2-	dichlorobenzene	395	1	ND	ND			
26. 1,3-	dichlorobenzene	395	1	ND	ND			
27. 1,4-	dichlorobenzene	395	1	ND	ND			
28. 3,3'	-dichlorobenzidine	395	1	ND	ND			

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Con Source	centration Day 1	s (mg/1) Day 2	Day 3 Day
Toxic Pollutants (Continued)						NDA
29. 1,1-dichloroethylene	395	1	<0.01	<0.01		
30. 1,2- <u>trans</u> -dichloroethylene	395	1	ND	ND		TIN
31. 2,4-dichlorophenol	395	1	ND	ND		SUB
32. 1,2-dichloropropane	395	1	ND	ND		CATH
33. 1,3-dichloropropene	395	1	ND	ND		SUBCATEGORY
34. 2,4-dimethylphenol	395	1	ND	ND		R
35. 2,4-dinitrotoluene	395	1	ND	ND		С Н
36. 2,6-dinitrotoluene	395	1	ND	ND		SECT
37. 1,2-diphenylhydrazine	395	1	ND	<0.01		- <
38. ethylbenzene	395	1	ND	0.011		
39. fluoranthene	395	1	ND	ND		
40. 4-chlorophenyl phenyl ether	395	1	ND	ND		
41. 4-bromophenyl phenyl ether	395	1	ND	ND		
42. bis(2-chloroisopropyl)ether	395	1	ND	ND		

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	SECONDARY
						NDAF
395	1	ND	ND			
395	1	<0.01	<0.01			TIN
395	1	ND	ND	· -	.	SUBCATEGORY
395	1	ND	ND			JATE
395	1	ND	ND			GOR
395	1	ND	ND			ĸ
395	1	ND	ND			SECT
395	1	ND	ND			CI LI
395	1	ND	ND			<
395	1	ND	ND			
395	1	ND	ND			
395	1	ND	N D			
395	1	ND	ND			
395	1	ND	N D			
	Code395395395395395395395395395395395395395395395395395395395	CodeTypet3951	Code Typet Source 395 1 ND 395 1 <0.01	Code Typet Source Day 1 395 1 ND ND 395 1 <0.01	Code Typet Source Day 1 Day 2 395 1 ND ND 395 1 <0.01	Code Typet Source Day 1 Day 2 Day 3 395 1 ND ND 395 1 <0.01

4105

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
<u>Toxic</u>	Pollutants (Continued)							NDA
57.	2-nitrophenol	395	1	ND	0.031			
58.	4-nitrophenol	395	1	<0.01	0.026			TIN
59.	2,4-dinitrophenol	395	1	ND	0.086			SUB
60.	4,6-dinitro-o-cresol	395	1	ND	ND			SUBCATEGORY
61.	N-nitrosodimethylamine	395	1	ND	ND			EGOR
62.	N-nitrosodiphenylamine	395	1	ND	N D			ĸ
63.	N-nitrosodi-n-propylamine	395	1	ND	ND			SE
64.	pentachlorophenol	395	1	ND	<0.01			SECT
65.	phenol	395	1	ND	ND			۲ ۲
66.	bis(2-ethylhexyl) phthalate	395	1	<0.01	<0.01			
67.	butyl benzyl phthalate	395	1	ND	N D			
68.	di-n-butyl phthalate	395	1	ND	N D			
69.	di-n-octyl phthalate	395	1	ND	N D			
70.	diethyl phthalate	395	1	ND	ND			

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

	Pollutant	Str _Co	eam Samp de Type		Concentratic ce Day 1	ons (mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							DAR
71.	dimethyl phthalate	39	5 1	ND	ND			Y TIN
72.	benzo(a)anthracene	39	5 1	· ND	ND			
73.	benzo(a)pyrene	39	5 1	ND	ND		••••	UBC
74.	benzo(b)fluoranthene	39	5 1	ND	ND			ATE
75.	benzo(k)fluoranthane	39	5 1	ND	ND			SUBCATEGORY
76.	chrysene	39	5 1	ND	N D			·
77.	acenaphthylene	39	5 1	ND	N D			SECT
78.	anthracene (a)	39	5 1	ND	ND			Н I
79.	benzo(ghi)perylene	39	5 1	ND	ND			۷
80.	fluorene	. 39	5 1	ND	ND			
81.	phenanthrene (a)	39	5 1	ND	ND			· .
82.	dibenzo(a,h)anthracene	39	5 1	ND	ND			
83.	indeno (1,2,3-c,d)pyrene	39	5 1	ND	ND			
84.	pyrene	39	5 1	ND	ND			

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
<u>Toxic</u> E	Collutants (Continued)							NDAE
85. t	tetrachloroethylene	395	1	ND	ND			
86. t	toluene	395	1	ND	ND			TIN S
87. t	trichloroethylene	395	1	ND	<0.01			SUBC
88. \	vinyl chloride (chloroethylene)	395	1	ND	0.036			SUBCATEGORY
89. a	aldrin	395	1	ND	ND			GORY
90 . c	dieldrin	395	1	ND	ND			
91 . c	chlordane	395	1	ND	NĎ			SECT
92. 4	4,4'-DDT	395	1	ND	ND			占 」
93. 4	4,4'-DDE	395	1	ND	ND			4
94. 4	4,4'-DDD	395	1	ND	ND			
95. a	alpha-endosulfan	395	1	ND	N D			
96. b	peta-endosulfan	395	1	ND	ND			
97. e	endosulfan sulfate	395	1	ND	ND			
98. h	neptachlor	395	1	ND	ND			

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type†	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							NDAI
99. endrin aldehyde	395	1	ND	ND			
100. heptachlor	395	1	ND	ND			TIN
101. heptachlor epoxide	395	··· 1	ND	NÐ			SUBC
102. alpha-BHC	395	1	ND	ND			ATE
103. beta-BHC	395	1	ND	ND			SUBCATEGORY
104. gamma-BHC	395	· 1	ND	ND			Ę
105. delta-BHC	395	1	ND	ND			SECT
106. PCB-1242 (b)	395	1	ND	ND			CI -
107. PCB-1254 (b)	395	1	ND	ND			4
108. PCB-1221 (b)	395	1	ND	ND			
109. PCB-1232 (c)	395	1	ND	ND			
110. PCB-1248 (c)	395	1	NÐ	ND			
111. РСВ-1260 (с)	395	1	ND	ND			
112. PCB-1016 (c)	395	1	ND	ND			

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/l) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							NDAE
113. toxaphene	395	1	ND	ND			
114. antimony	395	1	0.006	4.4			TIN
115. arsenic	395	1	<0.001	0.135			SUBC
117. beryllium	395	1	<0.0005	0.001		·	ATE
118. cadmium	395	1	<0.001	0.140			SUBCATEGORY
119. chromium (total)	395	1	0.032	0.068			r,
120. copper	395	1	0.031	0.11			SECT
121. cyanide (total)	395	1	0.040	0.48			
122. lead	395	1	0.12	0.30			<
123. mercury	395	1	<0.0002	<0.0002			
124. nickel	395	1	<0.025	0.540			
125. selenium	395	1	<0.008	<0.008			
126. silver	395	1	0.001	0.065			
127. thallium	395	1	<0.001	0.590			

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3 SECONDARY
Toxic Pollutants (Continued)					NDAI
128. zinc	395	1	0.05	0.210	
Nonconventional Pollutants					TIN
alkalinity		а 1 е	77-	-2,200	SUBCATEGORY
ammonia nitrogen	395	1	2	1.1	CATE
calcium	395	1	17	0.16	GOR
chemical oxygen demand (COD)	395	1	<1	170	ĸ
fluoride	395	1	0.94	320	SECT
magnesium	395	1	7.2	0.80	CI
phenolics	395	1	0.026	0.002	- <
sulfate	395	1	29	2,000	
tin	395	1	<0.025	5.8	
total dissolved solids (TDS)	395	1	160	13,000	
Conventional Pollutants					
oil and grease	395	1	<1	87.	

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SCRAP) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3 C
<u>Conventional Pollutants</u> (Continued)						NDARY
total suspended solids (TSS)	395	1	9	25		
pH (standard units)	395	1	7.3	8.3		TIN

tSample Type Code: 1 - One-time grab

⁽a), (b), (c) Reported together.

Table V-13

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Conc	entration	s (mg/l)	N E
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3
Toxic	Pollutants						Day 3 CONDARY
1.	acenaphthene	396 399	1 1	ND ND	ND ND	N D ND	Ύ ΤΙΝ
2.	acrolein	396 399	1	ND ND	ND ND	ND ND	
3.	acrylonitrile	396 399	1 1	ND ND	ND ND	N D ND	SUBCATEGORY
4.	benzene .	396 399	1 1	ND ND	ND ND	ND ND	DRY
5.	benzidine	396 399	1 1	ND ND	ND ND	N D ND	SECT
6.	carbon tetrachloride	396 399	1 1	ND ND	ND ND	ND ND	- V
7.	chlorobenzene	396 399	1 1	ND ND	ND ND	N D ND	
8.	1,2,4-trichlorobenzene	396 399	1 1	ND ND	ND ND	ND ND	
9.	hexachlorobenzene	396 399	1 1	ND ND	ND ND	N D ND	

SECONDARY TIN SUBCATEGORY SECT -

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
10.	1,2-dichloroethane	396 399	1 1	ND ND	ND ND	N D ND	
11.	1,1,1-trichloroethane	396 399	1 . 1	ND ND	ND ND	ND ND	
12.	hexachloroethane	396 399	<u>1</u> 1	ND ND	ND ND	N D ND	
13.	1,1-dichloroethane	396 399	1 1	ND ND	ND ND	ND ND	
14.	1,1,2-trichloroethane	396 399	1 1	ND ND	ND ND	N D ND	
15.	1,1,2,2-tetrachloroethane	396 399	1 1	ND ND	ND ND	ND ND	
16.	chloroethane	396 399	1 1	ND ND	ND ND	N D ND	
17.	bis(chloromethyl)ether	396 399	1 1	ND ND	ND ND	ND ND	
18.	bis(2-chloroethyl)ether	396 399	1 1	ND ND	ND ND	N D ND	

SECONDARY TIN SUBCATEGORY SECT - V

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day_1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							DAR
19.	2-chloroethyl vinyl ether	396 399	1 1	ND ND	ND ND	N D N D		Y TIN
20.	2-chloronaphthalene	396 399	1	ND ND	ND ND	ND ND		SUBC
21.	2,4,6-trichlorophenol	396 399	1 1	. ND ND	ND ND	N D ND		SUBCATEGORY
22.	p-chloro-m-cresol	396 399	1 1	ND ND	ND ND	ND ND		ХХ
23.	chloroform	396 399	1 1	ND ND	ND ND	N D N D		SECT
24.	2-chlorophenol	396 399	, <u>1</u> 1	ND ND	ND ND	ND ND		י ל
25.	1,2-dichlorobenzene	396 399	1 1	ND ND	ND ND	N D N D		
26.	1,3-dichlorobenzene	396 399	1 1	ND ND	ND ND	ND ND		
27.	1,4-dichlorobenzene	396 399	1	ND ND	ND ND	N D ND		

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conce Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
28. 3,3'-dichlorobenzidine	396 399	1 1	ND ND	ND ND	N D ND	
29. 1,1-dichloroethylene	396 399	1 1	<0.01 <0.01	ND ND	ND ND	
30. 1,2- <u>trans</u> -dichloroethylene	396 399	1 1	ND ND	ND ND	N D ND	
31. 2,4-dichlorophenol	396 399	. 1	ND ND	ND ND	ND ND	
32. 1,2-dichloropropane	396 399	1 1	ND ND	ND ND	N D ND	
33. 1,3-dichloropropene	396 399	1 1	ND ND	ND ND	ND ND	
34. 2,4-dimethylphenol	396 399	1 1	ND ND	ND ND	N D ND	
35. 2,4-dinitrotoluene	396 399	1 . 1	ND ND	ND ND	ND ND	
36. 2,6-dinitrotoluene	396 399	1 1	N D N D	ND ND	N D ND	

SECONDARY TIN SUBCATEGORY SECT - V

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Cond Source	<u>Day 1</u>	s (mg/1) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							NDA.
37. 1,2-diphenylhydrazine	396 399	1 1	ND ND	ND <0.01	N D N D		RY TIN
38. ethylbenzene	396 399	1 - 1	ND ND	ND ND	ND ND		
39. fluoranthene	396 309	1 1	ND ND	ND ND	N D ND		SUBCATEGORY
40. 4-chlorophenyl phenyl ether	396 399	1 1	ND ND	ND ND	ND ND		ORY
41. 4-bromophenyl phenyl ether	396 399	1 1	NÐ ND	ND ND	N D ND		SECT
42. bis(2-chloroisopropyl)ether	396 399	1 1	ND ND	ND ND	ND ND		ı V
43. bis(2-choroethoxy)methane	396 399	1 1	ND ND	ND ND	N D ND		
44. methylene chloride	396 399	1 1	<0.01 <0.01	1.724 <0.01	ND ND		
45. methyl chloride (chloromethane)	396 399	1 1	ND ND	ND ND	N D ND		
46. methyl bromide (bromomethane)	396 399	1 1	ND ND	ND ND	ND ND		

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Cond Source	<u>Day 1</u>	ns (mg/l) Day 2	Day 3 SECONDARY
<u>Toxic Pollutants</u> (Continued)						IDAR
47. bromoform (tribromomethane)	396 399	1 1	ND ND	ND ND [.]	N D N D	YTIN
48. dichlorobromomethane	396 399	1 1	ND ND	ND ND	ND ND	
49. trichlorofluoromethane	396 399	1 1	ND ND	ND ND	N D N D	SUBCATEGORY
50. dichlorodifluoromethane	396 399	1 1	ND ND	ND ND	ND ND	DRY
51. chlorodibromomethane	396 399	1 1	ND ND	ND ND	N D N D	SECT
52. hexachlorobutadiene	396 399	1 1	ND ND	ND ND	ND ND	- V
53. hexachlorocyclopentadiene	396 399	1 1	ND ND	ND ND	N D N D	
54. isophorone	396 399	1 1	ND ND	ND ND	ND ND	
55. naphthalene	396 399	1 1	ND ND	<0.01 <0.01	<0.01 <0.01	

. .

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Con Source	centratio Day 1	ns (mg/l) Day 2	Day 3 Day 3
Toxic	Pollutants (Continued)						NDAI
56.	nitrobenzene	396 399	1 1	ND ND	ND ND	N D N D	RY TIN
57.	2-nitrophenol	396 399	1 1 ·	ND ND	<0.01 ND	ND ND	
58.	4-nitrophenol	396 399	1 1	<0.01 <0.01	<0.01 ND	N D ND	SUBCATEGORY
59.	2,4-dinitrophenol	396 399	1 1	ND ND	ND ND	ND ND	ORY
60.	4,6-dinitro-o-cresol	396 399	1 1	ND ND	ND ND	N D N D	SECT
61.	N-nitrosodimethylamine	396 399	1 1	ND ND	ND ND	ND ND	T - V
62.	N-nitrosodiphenylamine	396 399	1 1	N D N D	<0.01 <0.01	<0.01 <0.01	
63.	N-nitrosodi-n-propylamine	396 399	1 1	N D N D	ND ND	ND ND	
64.	pentachlorophenol	396 399	1 1	N D N D	ND ND	N D N D	

;

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	centration Day 1	ns (mg/l) Day 2	Day 3
Toxic	Pollutants (Continued)						
65.	phenol	396 399	1 1	ND ND	<0.01 <0.01	N D N D	
66.	bis(2-ethylhexyl) phthalate	396 399	1 1	<0.01 <0.01	0.268 <0.01	<0.01 <0.01	
67.	butyl benzyl phthalate	396 399	1 1	ND ND	0.025 0.012	0.011 <0.01	
68.	di-n-butyl phthalate	396 399	1 1	ND ND	<0.01 <0.01	<0.01 <0.01	
69.	di-n-octyl phthalate	396 399	1 1	ND ND	ND ND	N D N D	
70.	diethyl phthalate	396 399	1 1	ND ND	·ND ND	ND ND	
71.	dimethyl phthalate	396 399	1 1	ND ND	ND ND	N D N D	
72.	benzo(a)anthracene	396 399	1 1	ND ND	ND ND	ND ND	
73.	benzo(a)pyrene	396 399	1 1	ND ND	ND ND	N D ND	

SECONDARY TIN SUBCATEGORY SECT - V

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

	Pollutant		Stream _Code	Sample Type†	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continu	ed)							VDAR
74.	benzo(b)fluoranthen	. е	396 399	1 1	ND ND	ND ND	N D N D		Y TIN
75.	benzo(k)fluoranthan	e	396 399	1 1 .	ND ND	ND ND	ND ND		
76.	chrysene		396 399	1 1	ND ND	ND ND	N D N D		SUBCATEGORY
.77.	acenaphthylene		396 399	1 1	ND ND	ND ND	ND ND		ORY
78.	anthracene	(a)	396 399	1 1	ND ND	ND <0.01	N D ND		SECT
79.	benzo(ghi)perylene		396 399	1 1	ND ND	ND ND	ND ND		- V
80.	fluorene		396 399	1 1	ND ND	ND ND	N D ND		
81.	phenanthrene	(a)	396 399	1 1	ND ND	ND <0.01	ND ND		
82.	dibenzo(a,h)anthrac	ene	396 399	1 1	ND ND	ND ND	N D ND		

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc. Source	entrations Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
83.	indeno (1,2,3-c,d)pyrene	396 399	1 1	ND ND	ND ND	N D ND	
84.	pyrene	396 399	1 1	ND ND	ND ND	ND ND	
85.	tetrachloroethylene	396 399	1 1	ND ND	ND ND	N D ND	
86.	toluene	396 399	1 1	ND ND	ND ND	ND ND	
87.	trichloroethylene	396 399	1 1	ND ND	ND ND	N D ND	
88.	vinyl chloride (chloroethylene)	396 399	1 1	ND ND	ND ND	ND ND	
89.	aldrin	396 399	1 1	ND ND	ND ND	N D ND	
90.	dieldrin	396 399	1 1	ND ND	ND ND	ND ND	
91.	chlordane	396 399	1 1	ND ND	ND ND	N D N D	

SECONDARY TIN SUBCATEGORY SECT - V

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration: Day 1	s (mg/l) Day 2	Day 3 Day 3
Toxic Pollutants (Continued)						NDA
92. 4,4'-DDT	396 399	1 1	ND ND	ND ND	N D ND	RY TIN
93. 4,4'-DDE	396 399	1 1	ND ND	ND ND	ND ND	
94. 4,4'-DDD	396 399	1 1	N D N D	ND ND	N D ND	SUBCATEGORY
95. alpha-endosulfan	396 399	1 1	ND ND	ND ND	ND ND	ORY
96. beta-endosulfan	396 399	1 . 1	ND ND	ND ND	N D N D	SECT
97. endosulfan sulfate	396 399	1 1	ND ND	ND ND	ND ND	ר ו ע
98. endrin	396 399	1 1	ND ND	ND ND	N D N D	
99. endrin aldehyde	396 399	1 1	ND ND	ND ND	ND ND	
100. heptachlor	396 399	1	ND ND	ND ND	N D N D	

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	<u>Conc</u> Source	entration Day 1	s (mg/l) Day 2	Day 3 C
Toxic Pollutants (Continued)						Day 3 CONDARY
101. heptachlor epoxide	396 399	1 1	ND ND	ND ND	ND ND	Y TIN
102. alpha-BHC	396 399	1 1	ND ND	ND ND	ND ND	
103. beta-BHC	396 3 99	1 1	ND ND	ND ND	N D ND	SUBCATEGORY
104. gamma-BHC	396 399	1	ND ND	ND ND	ND ND	ORY
105. delta-BHC	396 399	1	ND ND	ND ND	N D ND	SECT
106. PCB-1242 (b)	396 399	1	ND ND	ND ND	ND ND	Ч - - V
107. PCB-1254 (b)	396	1	ND ND	ND ND	N D N D	1
108. PCB-1221 (b)	399 396	1	ND	ND	ND	
109. PCB-1232 (c)	399 396	1 1 1	ND ND ND	ND ND ND	N D N D N D	
	399	I	ND	ИЛ	ND	

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Conc	entration	s (mg/l)		SE
Polluta	ant	Code	Typet	Source	Day 1	Day 2	Day 3	8
Toxic Pollutants	(Continued)							SECONDARY
110. PCB-1248	(c)	396 399	1 1	ND ND	ND ND	N D N D		Y TIN
111. PCB-1260	(c)	396 399	1 . 1	ND ND	ND ND	ND ND		
112. PCB-1016	(c)	396 399	1 1	ND ND	ND ND	N D N D		SUBCATEGORY
113. toxaphene		396 399	1 1	ND ND	ND ND	ND ND		RY
114. antimony		396 399	1	0.006 0.006	0.40 0.75	3.1 2.2		SECT
115. arsenic		396 399	1 1	<0.001 <0.001	0.12	0.34 0.30		- V
117. beryllium		396 399	1 1	<0.0005 <0.0005	<0.0005 0.02	0.001 <0.0005		
118. cadmium		396 399	1 1	<0.001 <0.001	0.03 0.10	0.08 0.08		
119. chromium (te	otal)	396 399	1 1	0.032 0.032	0.020 0.031	0.032 0.028		

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	<u>Conc</u> Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic Pollutants (Continued)						
120. copper	396 399	1 1	0.031 0.031	0.05 0.13	0.12 0.16	
121. cyanide (total)	396 399	1 1	0.040 0.040	2.2	0.49 16.0	
122. lead	396 399	1 1	0.12	0.075 0.03	0.075 0.13	
123. mercury	396 399	1 1	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	
124. nickel	396 399	1 1	<0.025 <0.025	0.16 0.41	0.35 0.45	
125. selenium	396 399	1 1	<0.008 <0.008	0.05 0.03	<0.008 0.62	
126. silver	396 399	1 1	0.001 0.001	<0.0005 <0.0005	0.001 0.001	
127. thallium	396 399	1 1	<0.001 <0.001	<0.001 0.33	<0.001 0.28	
128. zinc	396 399	1 1	0.05 0.05	0.06 0.16	0.14 0.59	

4126

SECONDARY TIN SUBCATEGORY SECT -

י ע

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Strean. Code	Sample Typet	Concentrations (mg/1) Source Day 1 Day 2 Day 3 CONDARY
Nonconventional Pollutants			NDAJ
alkalinity	396 399	1 1	77 38,200 30,000 R 77 39,000 31,000 H
ammonia nitrogen	396 399	1 1	
calcium	396 399	1 1	2 0.8 (0.01 SUBCATE 2 1.1 (0.01 UBCATE 17 0.27 0.59 H 17 0.57 0.64 EGORY
chemical oxygen demand (COD)	396 399	1 1	<1 34 110 塔 <1 39 120
fluoride	396 399	1 1	0.94 15,000 12,000 留 0.94 15,000 12,000 召
magnesium	396 399	1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
phenolics	396 399	1 1	0.026 0.018 0.026 0.022 0.006
sulfate	396 399	1 1	291,7001,500291,2001,700
tin	396 399	1 1	<0.025 60 18 <0.025 13 28

TIN HYDROXIDE PRECIPITATION SUPERNATANT (FROM SPENT PLATING SOLUTION AND SLUDGES) RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Typet	Conc Source	Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))					L AAA
total dissolved solids (TDS)	396 399	1 1	160 160	26,000 46,000	37,000 38,000	+ + + 1 1 1
Conventional Pollutants						
oil and grease	396 399	1	<1 <1	2.9 1.3	51 17	SUBCAIEGORI
total suspended solids (TSS)	396 399	1 1	9 9	26 61	50 35	Ŭ K K
pH (standard units)	396 399	1 1	7.3 7.3	7.6 7.8	7.8 8.2	

tSample Type Code: 1 - One-time grab

⁽a), (b), (c) Reported together.

Table V-14

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Concer Source	ntrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants							DAR
1.	acenaphthene	398	1	ND	ND			Y TIN
2.	acrolein	398	1	ND	ND			
3.	acrylonitrile	398	1.	ND	ND			UBC
4.	benzene	398	1	ND	ND			ATEC
5.	benzidine	398	1	ND	ND			SUBCATEGORY
6.	carbon tetrachloride	398	1	ND	ND			•
7.	chlorobenzene	398	1	ND	ND			SECT
8.	1,2,4-trichlorobenzene	398	1	ND	ND			Η̈́ Ι
9.	hexachlorobenzene	398	1	ND	ND			4
10.	1,2-dichloroethane	398	1	ND	ND			
11.	1,1,1-trichloroethane	398	1	0.003	N D			
12.	hexachloroethane	398	1	ND	ND			
13.	1,1-dichloroethane	398	1	ND	ND			
14.	1,1,2-trichloroethane	398	1	ND	ND			

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAE
15.	1,1,2,2-tetrachloroethane	398	1	ND	ND			
16.	chloroethane	398	1	ND	ND			TIN
17.	bis(chloromethyl)ether	<u>398</u>	. 1	ND	ND			SUBC
18.	bis(2-chloroethyl)ether	398	1	ND	ND			SUBCATEGORY
19.	2-chloroethyl vinyl ether	398	1	ND	ND			GORY
20.	2-chloronaphthalene	398	1	ND	ND			R,
21.	2,4,6-trichlorophenol	398	1	ND	ND			SECT
22.	p-chloro-m-cresol	398	1	ND	ND			
23.	chloroform	398	1	ND	ND			<
24.	2-chlorophenol	398	1	ND	ND			
25.	1,2-dichlorobenzene	398	1	ND	ND			
26.	1,3-dichlorobenzene	398	1	ND	ND			
27.	1,4-dichlorobenzene	398	1	ND	ND			
28.	3,3'-dichlorobenzidine	398	1	ND	ND			

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/l) <u>Day 2</u>	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAR
29.	1,1-dichloroethylene	398	1	<0.01	ND			
30.	1,2- <u>trans</u> -dichloroethylene	398	1	ND	ND			TIN S
31.	2,4-dichlorophenol	398	. 1	ND .	ND			SUBCATEGORY
32.	1,2-dichloropropane	398	1	ND	ND			ATE
33.	1,3-dichloropropene	398	1	ND	ND			GORY
34.	2,4-dimethylphenol	398	1	ND	ND			~
35.	2,4-dinitrotoluene	398	1	ND	ND			SECT
36.	2,6-dinitrotoluene	398	1	ND	ND			H H
37.	1,2-diphenylhydrazine	398	1	ND	ND			4
38.	ethylbenzene	398	1	ND	ND			
39.	fluoranthene	398	1	ND	ND			
40.	4-chlorophenyl phenyl ether	398	1	ND	ND			
41.	4-bromophenyl phenyl ether	398	1	ND	ND			
42.	bis(2-chloroisopropyl)ether	398	1	ND	ND			

;

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	<u>Conc</u> Source	entration: Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						DAR
43.	bis(2-choroethoxy)methane	398	1	ND	ND		Y TIN
44.	methylene chloride	398	1	ND	ND.		
45.	methyl chloride (chloromethane)	398	. 1	ND	ND		SUBCATEGORY
46.	methyl bromide (bromomethane)	398	1	ND	ND		ATEG
47.	bromoform (tribromomethane)	398	1	ND	ND		ORY
48.	dichlorobromomethane	398	1	ND	N D		
49.	trichlorofluoromethane	398	1	ND	ND		SECT
50.	dichlorodifluoromethane	398	1	ND	ND		H I
51.	chlorodibromomethane	398	1	ND	ND		4
52.	hexachlorobutadiene	398	1	ND	ND		
53.	hexachlorocyclopentadiene	398	1	ND	ND		
54.	isophorone	398	1	ND	ND		
55.	naphthalene	398	1	ND	ND		
56.	nitrobenzene	398	1	ND	ND		

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	Day 1	s (mg/l) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							VDAR
57. 2-nitrophenol	398	1	ND	0.010			
58. 4-nitrophenol	398	1	<0.01	0.025			TIN S
59. 2,4-dinitrophenol	398	. 1	ND	0.033			SUBC
60. 4,6-dinitro-o-cresol	398	1	ND	ND			SUBCATEGORY
61. N-nitrosodimethylamine	398	1	ND	ND			JORY
62. N-nitrosodiphenylamine	398	1	ND	<0.010			
63. N-nitrosodi-n-propylamine	398	1	ND	ND			SECT
64. pentachlorophenol	398	1	ND	ND			н н
65. phenol	398	1	ND	ND			4
66. bis(2-ethylhexyl) phthalate	398	1	<0.01	<0.010			
67. butyl benzyl phthalate	398	1	ND	<0.010			
68. di-n-butyl phthalate	398	1	ND	<0.010			
69. di-n-octyl phthalate	398	1	ND	ND			
70. diethyl phthalate	398	1	ND	ND			

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Pollutant		Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/l) Day 2	Day 3	SECONDARY
<u>Toxic</u>	Pollutants (Continue	d)							NDAF
71.	dimethyl phthalate		398	1	ND	ND			
72.	benzo(a)anthracene		398	1	ND	ND			TIN
73.	benzo(a)pyrene		398	1	ND	ND			SUBCATEGORY
74.	benzo(b)fluoranthene		398	1	ND	ND	•		ATE
75.	benzo(k)fluoranthane		398	1	ND	ND			GORY
76.	chrysene		398	1	ND	ND			
77.	acenaphthylene		398	1	ND	ND			SECT
78.	anthracene 🔩	(a)	398	1	ND	ND			Ц Г
79.	benzo(ghi)perylene		398	1	ND	ND			4
80.	fluorene		398	1	ND	ND			
81.	phenanthrene	(a)	398	1	ND	ND			
82.	dibenzo(a,h)anthrace	ne	398	1	ND	ND			
83.	indeno (1,2,3-c,d)py	rene	398	1	ND	ND			
84.	pyrene		398	1	ND	ND			

.

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entration Day 1	s (mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							IDAR
85.	tetrachloroethylene	398	1	ND	ND			
86.	toluene	398	1	ND	ND			TIN S
87.	trichloroethylene	398	1.	ND	ND			UBC
88.	vinyl chloride (chloroethylene)	398	1	ND	ND			SUBCATEGORY
89.	aldrin	398	1	ND	ND			JORY
90.	dieldrin	398	1	ND	N D			
91.	chlordane	398	1	ND	ND			SECT
92.	4,4'-DDT	398	1	ND	ND			Н I
93.	4,4'-DDE	398	1	ND	ND			<
94.	4,4'-DDD	398	1	ND	N D			
95.	alpha-endosulfan	398	1 ·	ND	ND			
96.	beta-endosulfan	398	1	ND	N D			
97.	endosulfan sulfate	398	1	ND	N D			
98.	heptachlor	398	1	ND	ND			

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3 Day 3
Toxic Pollutants (Continued)						DARS
99. endrin aldehyde	398	1	ND	ND		7 TIN
100. heptachlor	398	1	ND	N D		
101. heptachlor epoxide	398	1	ND	ND		UBC/
102. alpha-BHC	398	1	ND	N D		SUBCATEGORY
103. beta-BHC	398	1	ND	N D		ORY
104. gamma-BHC	398	1	ND	N D		
105. delta-BHC	398	1	ND	ND		SECT
106. PCB-1242 (b)	398	1	ND	ND		н I
107. PCB-1254 (b)	398	1	ND	ND		<
108. PCB-1221 (b)	398	1	ND	ND		
109. PCB-1232 (c)	398	1	ND	ND		
110. PCB-1248 (c)	398	1	ND	N D		
111. PCB-1260 (c)	398	1	ND	ND		
112. PCB-1016 (c)	398	1	ND	ND		

.

.

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	s (mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDA
113.	toxaphene	398	1	ND	ND			
114.	antimony	398	1	0.006	2.4			TIN
115.	arsenic	398	1	<0.001	0.024			SUB
117.	beryllium	398	1	<0.0005	0.002			SUBCATEGORY
118.	cadmium	398	1	<0.001	0.002			GOR
119.	chromium (total)	398	1	0.032	0.04			R
120.	copper	398	1	0.031	0.280			SE
121.	cyanide (total)	398	1	0.040	10.0			SECT
122.	lead	398	1	0.12	0.037			- V
123.	mercury	398	1	<0.0002	<0.0002			
124.	nickel	398	1	<0.025	0.380			
125.	selenium	398	1	<0.008	0.430			
126.	silver	398	1	0.001	0.012			
127.	thallium	398	1	<0.001	0.320			

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Con Source	<u>Day 1</u> Day 2	Day 3	SEC
Toxic Pollutants (Continued)						SECONDARY
128. zinc	398	1	0.05	0.220		
Nonconventional Pollutants						TIN
alkalinity	398	1	77	34,000		SUE
ammonia nitrogen	398	1	2	<0.01		SUBCATEGORY
calcium	398	1	17	0.46		EGOI
chemical oxygen demand (COD)	398	1	<1	180		RY
fluoride	398	1	0.94	17,000		Ŋ
magnesium	398	1	7.2	0.49		SECT
phenolics	398	1	0.26	0.32		- V
sulfate	398	1	29	2,000		
tin	398	1	<0.025	7.8		
total dissolved solids (TDS)	398	1	160	50,000		
Conventional Pollutants						
oil and grease	398	1	<1	56		

TIN HYDROXIDE FILTRATE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			۵۵ ۱
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3 E
<u>Conventional Pollutants</u> (Continued)						ONDARY
total suspended solids (TSS)	398	1	9	32		RY
pH (standard units)	398	1	7.3	8.1		TIN

tSample Type Code: 1 - One-time grab

(a), (b), (c) Reported together.

SECT - V

SUBCATEGORY

Table V-15

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations (mg/1) Day 1 Day 2	Day 3
Toxic	Pollutants					
1.	acenaphthene	456	1	ND	ND	í +
2.	acrolein	456	1	ND	ND	
3.	acrylonitrile	456	1	ND	ND	
4.	benzene	456	1	0.013	0.008	
5.	benzidine	456	1	ND	ND	
6.	carbon tetrachloride	456	1	ND	ND	
7.	chlorobenzene	456	1	ND	ND	U D
8.	1,2,4-trichlorobenzene	456	1	ND	N D	C F
9.	hexachlorobenzene	456	1	0.015	0.004	<
10.	1,2-dichloroethane	456	1	ND	N D	
11.	1,1,1-trichloroethane	456	1	ND	0.003	
12.	hexachloroethane	456	1	ND	N D	
13.	1,1-dichloroethane	456	1	ND	ND	
14.	1,1,2-trichloroethane	456	1	ND	ND	

SECONDARY TIN SUBCATEGORY SECT - V

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	ß
Toxic Pollutants (Continued)							ECO
15. 1,1,2,2-tetrachloroethane	456	1	ND	ND			SECONDARY
16. chloroethane	456	1	ND	ND			
17. bis(chloromethyl)ether	456	1	ND	ND			TIN S
18. bis(2-chloroethyl)ether	456	1	ND	ND			UBC
19. 2-chloroethyl vinyl ether	456	1	ND	ND			ATE
20. 2-chloronaphthalene	456	1	ND	ND			SUBCATEGORY
21. 2,4,6-trichlorophenol	456	1	ND	ND			.,
22. p-chloro-m-cresol	456	1	NÐ	ND			SECT
23. chloroform	456	1	0.038	0.005			Ц Г
24. 2-chlorophenol	456	1	ND	ND			۷
25. 1,2-dichlorobenzene	456	1	ND	ND			
26. 1,3-dichlorobenzene	456	1	ND	ND			
27. 1,4-dichlorobenzene	456	1	ND	ND			
28. 3,3'-dichlorobenzidine	456	1	ND	ND			

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	s (mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDA
29.	1,1-dichloroethylene	456	1	ND	ND			-
30.	1,2- <u>trans</u> -dichloroethylene	456	1	ND	ND			TIN
31.	2,4-dichlorophenol	456	1	ND	ND			SUB
32.	1,2-dichloropropane	456	1	ND	ND			SUBCATEGORY
33.	1,3-dichloropropene	456	1	ND	ND			IGOR
34.	2,4-dimethylphenol	456	1	ND	0.004		·	R
35.	2,4-dinitrotoluene	456	1	ND	ND			SE
36.	2,6-dinitrotoluene	456	1	ND	ND			SECT
37.	1,2-diphenylhydrazine	456	1	ND	ND			- <
38.	ethylbenzene	456	1	ND	ND			
39.	fluoranthene	456	1	ND	ND			
40.	4-chlorophenyl phenyl ether	456	1	ND	ND			
41.	4-bromophenyl phenyl ether	456	1	ND	ND			
42.	bis(2-chloroisopropyl)ether	456	1	ND	ND			

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
<u>Toxic</u>	Pollutants (Continued)							NDAF
43.	bis(2-choroethoxy)methane	456	1	ND	N D			
44.	methylene chloride	456	1	0.190	0.005			TIN 2
45.	methyl chloride (chloromethane)	456	.1	ND ·	ΝΟ·		-	SÚBC
46.	methyl bromide (bromomethane)	456	1	ND	ND			SUBCATEGORY
47.	bromoform (tribromomethane)	456	1	ND	ND			GORY
48.	dichlorobromomethane	456	1	ND	ND			
49.	trichlorofluoromethane	456	1	ND	ND			SECT
50.	dichlorodifluoromethane	456	1	ND	ND			
51.	chlorodibromomethane	456	1	0.002	ND			۲
52.	hexachlorobutadiene	456	1	ND	ND			
53.	hexachlorocyclopentadiene	456	1	ND	N D			
54.	isophorone	456	1	ND	ND			
55.	naphthalene	456	1	ND	N D			
56.	nitrobenzene	456	1	ND	ND			

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	s (mg/l) Day 2	Day 3
Toxic	Pollutants (Continued)						
57.	2-nitrophenol	45 6	1	ND	0.020		
58.	4-nitrophenol	456	1	ND	ND		
59.	2,4-dinitrophenol	456	1	ND	N D		
60.	4,6-dinitro-o-cresol	45 6	1	ND	ND		
61.	N-nitrosodimethylamine	456	1	ND	ND		
62.	N-nitrosodiphenylamine	456	. 1	ND	ND		
63.	N-nitrosodi-n-propylamine	456	1	ND	ND		
64.	pentachlorophenol	456	1	ND	ND		
65.	phenol	456	1	ND	0.003		
66.	bis(2-ethylhexyl) phthalate	456	1	0.006	0.002		
67.	butyl benzyl phthalate	456	1	ND	ND		
68.	di-n-butyl phthalate	456	1	ND	ND		
69.	di-n-octyl phthalate	456	1	ND	ND		
70.	diethyl phthalate	456	1	ND	ND		

⊳ ∙

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type†	Conc Source	entrations Day 1	s (mg/l) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							NDAF
71. dimethyl phthalate	456	1	ND	N D			
72. benzo(a)anthracene	456	1	ND	N D			TIN
73. benzo(a)pyrene	456 .	1	ND.	ND.			SUBCATEGORY
74. benzo(b)fluoranthene	456	1	ND	ND			ATE
75. benzo(k)fluoranthane	456	1	ND	ND			GOR
76. chrysene	456	1	ND	ND			K;
77. acenaphthylene	456	1	ND	ND			SECT
78. anthracene (a)	456	1	ND	ND			CH H
79. benzo(ghi)perylene	456	1	ND	ND			<
80. fluorene	456	1	ND	N D			
81. phenanthrene (a)	456	1	ND	ND			
82. dibenzo(a,h)anthracene	456	1	ND	ND			
83. indeno (1,2,3-c,d)pyrene	456	1	ND	ND			
84. pyrene	456	1	ND	ND			

٠

Y SECT - V

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	s (mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDAI
85.	tetrachloroethylene	456	1	ND	N D			
86.	toluene	456	1	0.001	0.004			TIN 2
87.	trichloroethylene	456	1	ND	ND			SUBCATEGORY
88.	vinyl chloride (chloroethylene)	456	1	ND	ND			ATE
89.	aldrin	456	1	ND	N D			GORY
90.	dieldrin	456	1	ND	ND			~
91.	chlordane	456	1	ND	N D			SECT
92.	4,4'-DDT	456	1	ND	ND			С Н I
93.	4,4'-DDE	456	1	ND	ND			<
94.	4,4'-DDD	456	1	ND	ND			
95.	alpha-endosulfan	456	1	ND	ND			
96.	beta-endosulfan	456	1	ND	ND			
97.	endosulfan sulfate	456	1	ND	ND			
98.	heptachlor	456	1	ND	ND			

.

٠

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

	Polluta	nt	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							IDAR
99.	endrin aldeh	yde	456	1	ND	ND			
100.	heptachlor		456	1	ND	ND			TIN
101.	heptachlor e	poxide	456	. 1	. ND	ND			SUBC
102.	alpha-BHC		456	1	ND	ND			ATE
103.	beta-BHC		456	1	ND	ND			SUBCATEGORY
104.	gamma-BHC		456	1	ND .	ND			.,
105.	delta-BHC		456	1	ND	ND			SECT
106.	PCB-1242	(b)	456	1	ND	ND			님 I
107.	PCB-1254	(b)	456	1	ND	ND			<
108.	PCB-1221	(b)	456	1	ND	ND			
109.	PCB-1232	(c)	456	1	ND	ND			
110.	PCB-1248	(c)	456	1	ND	ND			
111.	PCB-1260	(c)	456	1	ND	ND			
112.	PCB-1016	(c)	456	1	ND	ND			

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entrations (mg/ Day 1 Day	
Toxic Pollutants (Continued)					
113. toxaphene	456	1	ND	ND	
114. antimony	456	1	0.001	12	
115. arsenic	456	1	0.002	3.4	
117. beryllium	456	1	<0.001	0.064	
118. cadmium	456	1	0.02	0.40	
119. chromium (total)	456	1	0.003	0.004	
120. copper	456	1	0.008	0.52	
121. cyanide (total)	456	1	0.0022	1.900	ł
122. lead	456	1	0.019	11	
123. mercury	456	1	<0.0002	0.0004	
124. nickel	456	1	<0.001	2.1	
125. selenium	456	1	0.033	0.050	
126. silver	456	1	<0.001	0.40	
127. thallium	456	1	0.14	2.5	

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type†	Conc Source	entrations (m Day 1 Da	ng/l) ny 2 Day	SECONDARY
Toxic Pollutants (Continued)						NDAR
128. zinc	456	1	0.08	190		Y TIN
Nonconventional Pollutants						
alkalinity	456	1 .	60	90,000		UBC
aluminum	456	1	1.90	30,000		SUBCATEGORY
ammonia nitrogen	456	1	0.18			30RY
calcium	456	1	11	<0.1		
chemical oxygen demand (COD)	456	1	4.0	5,700		SECT
fluoride	456	1	1.2	0.4		н I
magnesium	456	1	5.5	0.12		۷
phenolics	456	1	0.011	0.011		
tin	456	1	1.6	240		
Conventional Pollutants						
oil and grease	456	1	<1			

MUD POND SUPERNATANT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	s (mg/1) Day 2	Day 3 C
Conventional Pollutants (Continued)				K		Day 3 Day 3
total suspended solids (TSS)	456	1	1	400		•
pH (standard units)	456	1	6.2	13.4		TIN SI
						SUBCATEGORY
						TEG
						ORY

tSample Type Code: 1 - One-time grab

(a), (b), (c) Reported together.

BORY SECT - V

Table V-16

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	Day 1	s (mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants				•			UDAK
1.	acenaphthene	849	1	ND	0.001			
2.	acrolein	849	1	ND	ND			TIN S
3.	acrylonitrile	849	1	ND	ND			SUBCATEGORY
4.	benzene	849	1	ND	ND			ATEG
5.	benzidine	849	1	ND	ND			ORY
6.	carbon tetrachloride	849	1	ND	ND			
7.	chlorobenzene	849	1	ND	ND			SECT
8.	1,2,4-trichlorobenzene	849	1	ND	ND			Ĥ
9.	hexachlorobenzene	849	1	ND	ND			<
10.	1,2-dichloroethane	849	1	ND	ND			
11.	1,1,1-trichloroethane	849	1	ND	ND			
12.	hexachloroethane	849	1	ND	ND			
13.	1,1-dichloroethane	849	1	ND	ND			
14.	1,1,2-trichloroethane	849	1	ND	ND			

.

ATEGORY SECT -

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type†	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							DARY
15.	1,1,2,2-tetrachloroethane	849	1	ND	ND			TIN
16.	chloroethane	849	1	ND	ND			
17.	bis(chloromethyl)ether	849	1	ND	ND			JBCA
18.	bis(2-chloroethyl)ether	849	1	ND	ND			SUBCATEGORY
19.	2-chloroethyl vinyl ether	849	1	ND	ND			ORY
20.	2-chloronaphthalene	849	1	ND	ND			
21.	2,4,6-trichlorophenol	849	1	ND	ND			SECT
22.	p-chloro-m-cresol	849	1	ND	ND			н I
23.	chloroform	849	1	ND	ND			4
24.	2-chlorophenol	849	1	ND	ND			
25.	1,2-dichlorobenzene	849	1	ND	ND			
26.	1,3-dichlorobenzene	849	1	ND	ND			
27.	1,4-dichlorobenzene	849	1	ND	ND			
28.	3,3'-dichlorobenzidine	849	1	ND	ND			

1

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							IDAR
29.	1,1-dichloroethylene	849	1	ND	ND			
30.	1,2- <u>trans</u> -dichloroethylene	849	1	ND	ND			TIN S
31.	2,4-dichlorophenol	849	1	ND	ND			SUBC
32.	1,2-dichloropropane	849	1	ND	ND			ATE
33.	1,3-dichloropropene	849	1	ND	ND			SUBCATEGORY
34.	2,4-dimethylphenol	849	1	ND	ND			7
35.	2,4-dinitrotoluene	849	1	ND	N D			SECT
36.	2,6-dinitrotoluene	849	1	ND	ND			
37.	1,2-diphenylhydrazine	849	1	ND	ND			ح
38.	ethylbenzene	849	1	ND	ND			
39.	fluoranthene	849	1	ND	0.003			
40.	4-chlorophenyl phenyl ether	849	1	ND	ND			
41.	4-bromophenyl phenyl ether	849	1	ND	ND			
42.	bis(2-chloroisopropyl)ether	849	1	ND	ND			

,

4153

:

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	s (mg/l) Day 2	Day 3	SECONDARY
<u>Toxic</u>	Pollutants (Continued)							DAR
43.	bis(2-choroethoxy)methane	849	1	ND	ND			Y TIN
44.	methylene chloride	849	1	ND	0.015			
45.	methyl chloride (chloromethane)	849	. 1	ND	ND			UBC
46.	methyl bromide (bromomethane)	849	1	ND	N D			ATEO
47.	bromoform (tribromomethane)	849	1	ND	ND			SUBCATEGORY
48.	dichlorobromomethane	849	1	ND	ND			
49.	trichlorofluoromethane	849	1	ND	N D			SECT
50.	dichlorodifluoromethane	849	1	ND	ND			Н I
51.	chlorodibromomethane	849	1	ND	ND			<
52.	hexachlorobutadiene	849	1	ND	ND			
53.	hexachlorocyclopentadiene	849	1	ND	ND			
54.	isophorone	849	1	ND	ND			
55.	naphthalene	849	1	ND	0.002			
56.	nitrobenzene	849	1	ND	ND			

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type†	Conc Source	entrations Day 1	(mg/l) Day 2	Day 3
Toxic Pollutants (Continued)						
57. 2-nitrophenol	849	1	ND	0.020		
58. 4-nitrophenol	849	1	ND	ND		
59. 2,4-dinitrophenol	849	1	ND	ND	_	- · ·
60. 4,6-dinitro-o-cresol	849	1	ND	ND		
61. N-nitrosodimethylamine	849	1	ND	ND		
62. N-nitrosodiphenylamine	849	1	ND	ND		
63. N-nitrosodi-n-propylamine	849	1	ND	ND		
64. pentachlorophenol	849	1	ND	ND		,
65. phenol	849	1	ND	0.08		
66. bis(2-ethylhexyl) phthalate	849	1	0.054	N D		
67. butyl benzyl phthalate	849	1	ND	ND		
68. di-n-butyl phthalate	849	1	ND	ND		
69. di-n-octyl phthalate	849	1	ND	ND		
70. diethyl phthalate	849	1	ND	ND		

SECONDARY TIN SUBCATEGORY SECT - V

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

•

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations (mg/) Day 1 Day 2	
Toxic	Pollutants (Continued)					
71.	dimethyl phthalate	849	1	ND	N D	í
72.	benzo(a)anthracene	849	1	ŇD	N D	
73.	benzo(a)pyrene	849		ND	ND	
74.	benzo(b)fluoranthene	849	1	ND	N D	
75.	benzo(k)fluoranthane	849	1	ND	ND	
76.	chrysene	849	1	ND	N D	r
77.	acenaphthylene	849	1	ND	N D	C L
78.	anthracene (a)	849	1	ND	N D	(+
79.	benzo(ghi)perylene	849	1	ND	N D	<
80.	fluorene	849	1	ND	N D	
81.	phenanthrene (a)	849	1	ND	ND	
82.	dibenzo(a,h)anthracene	849	1	ND	ND	
83.	indeno (1,2,3-c,d)pyrene	849	1	ND	ND	
84.	pyrene	849	1	ND	0.003	

4156

SECONDARY TIN SUBCATEGORY SECT - V

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample	<u>Conce</u>			Day 3	SECONDARY
	ronucanc	Code	<u>Typet</u>	Source	<u>Day 1</u>	Day 2	Day J	INO
Toxic	Pollutants (Continued)							DAR
85.	tetrachloroethylene	849	1	ND	ND			Y TIN
86.	toluene	849	1	0.093	0.001			
87.	trichloroethylene	849 -	1	ND	0.016			UBC
88.	vinyl chloride (chloroethylene)	849	1	ND	ND			SUBCATEGORY
89.	aldrin	849	1	ND	ND			JORY
90.	dieldrin	849	1	ND	ND			
91.	chlordane	849	1	ND	ND			SECT
92.	4,4'-DDT	849	1	ND	ND			Ц Г
93.	4,4'-DDE	849	1	ND	ND			4
94.	4,4'-DDD	849	1	ND	ND			
95.	alpha-endosulfan	849	1	ND	ND			
96.	beta-endosulfan	849	1	ND	ND			
97.	endosulfan sulfate	849	1	ND	ND			
98.	heptachlor	849	· 1 .	ND	ND			

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	SECONDARY
						NDA
849	1	ND	ND			
849	1	ND	ND			TIN
849	1	ND	ND			SUB
849	1	ND	ND			SUBCATEGORY
849	1	ND	ND			GOR
849	1	ND	ND			К
849	1	ND	ND			ы Б
849	1	ND	ND			SECT .
849	1	ND	ND			י ל
849	1	ND	ND			
849	1	ND	ND			
849	1	N D	ND			
849	1	ND	ND			
849	1	ND	ND			
	<u>Code</u> 849 849 849 849 849 849 849 849 849 849	CodeTypet8491	Code Typet Source 849 1 ND 849 1 ND 849 1 ND	Code Typet Source Day 1 849 1 ND ND 849 1	Code Typet Source Day 1 Day 2 849 1 ND ND 849	Code Typet Source Day 1 Day 2 Day 3 849 1 ND ND 849 1 ND ND <t< td=""></t<>

SECONDARY TIN SUBCATEGORY SECT -

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Cond Source		(mg/l) Day 2	Day 3	SECONDARY
Toxic Pollutants (Continued)							DARY
113. toxaphene	849	1	ND	ND			TIN
114. antimony	849	1	<0.001	<0.001			
115. arsenic	849	· 1 · · ·	0.008	1.8		-	UBCI
117. beryllium	849	1	<0.001	0.012			SUBCATEGORY
118. cadmium	849	1	<0.001	0.32			ORY
119. chromium (total)	849	1	0.003	0.31			
120. copper	849	1	0.14	0.26			SECT
121. cyanide (total)	849	1	0.005	4.6			н э 1
122. lead	849	1	0.001	0.98			4
123. mercury	849	1	<0.002	<0.002			
124. nickel	849	1	0.001	4.3			
125. selenium	849	1	3.1	39			
126. silver	849	1	0.02	0.30			
127. thallium	849	1	<0.001	1.9			

ELECTROWINNING SOLUTION AFTER CHLORINATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	Day 1 Day 2	
Toxic Pollutants (Continued)					NDA
128. zinc	849	1	0.06	1.1	
Nonconventional Pollutants					TIN
ammonia nitrogen	849	1	1.5	20	SUB
phenolics	849	1	0.002	0.003	CATE
tin	849	1	0.28	2,300	SUBCATEGORY
Conventional Pollutants					~
oil and grease	849	1	5.6	ND	SECT
total suspended solids (TSS)	849	1	19	25,000	C H
pH (standard units)	849	1	6.5	13	۲ ۲

tSample Type Code: 1 - One-time grab

(a), (b), (c) Reported together.

DARY TIN SUBCATEGORY SECT - V

Table V-17

	:	Stream	Sample	Conc	entrations	s (mg/1)		ß
	Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3	ECOI
Toxic	Pollutants							SECONDARY
1.	acenaphthene	850	1	ND	ND			
2.	acrolein	850	1	ND	ND			TIN S
3.	acrylonitrile	850	1	ND	ND			SUBCATEGORY
4.	benzene	850	1	ND	0.001			ATE
5.	benzidine	850	1	ND	ND			30RY
6.	carbon tetrachloride	850	1	ND	ND			
7.	chlorobenzene	850	1	ND	ND			SECT
8.	1,2,4-trichlorobenzene	850	1	ND	ND			Ц I
9.	hexachlorobenzene	850	1	ND	ND			<
10.	1,2-dichloroethane	850	1	ND	ND			
11.	1,1,1-trichloroethane	850	1	ND	ND			
12.	hexachloroethane	850	1	ND	ND			
13.	1,1-dichloroethane	850	1	ND	ND			
14.	1,1,2-trichloroethane	850	1	ND	ND			

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							NDA
15.	1,1,2,2-tetrachloroethane	. 850	1	ND	ND			
16.	chloroethane	850	1	ND	ND			TIN
17.	bis(chloromethyl)ether	850	1	ND	ND			SUBCATEGORY
18.	bis(2-chloroethyl)ether	850	1	ND	ND			CATE
19.	2-chloroethyl vinyl ether	850	1	ND	ND			GOR
.20.	2-chloronaphthalene	850	1	ND	ND			к
21.	2,4,6-trichlorophenol	850	1	ND	ND		·	SE
22.	p-chloro-m-cresol	850	1	ND	ND			SECT -
23.	chloroform	850	1	ND	ND			۲ ۲
24.	2-chlorophenol	850	1	ND	ND			
25.	1,2-dichlorobenzene	850	1	ND	ND			
26.	1,3-dichlorobenzene	850	1	ND	ND			
27.	1,4-dichlorobenzene	850	1 .	ND	ND			
28.	3,3'-dichlorobenzidine	850	1	ND	ND			

•

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRAL1ZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/l) Day 2	Day 3	SECONDARY
Toxic	Pollutants (Continued)							DAR
29.	1,1-dichloroethylene	850	1	ND	ND			
30.	1,2- <u>trans</u> -dichloroethylene	850	1	ND	ND			TIN S
31.	2,4-dichlorophenol	850	1	ND	ND	-		UBC
32.	1,2-dichloropropane	850	1	ND	ND			SUBCATEGORY
33.	1,3-dichloropropene	850	1	ND	ND			JORY
34.	2,4-dimethylphenol	850	1	ND	ND			
35.	2,4-dinitrotoluene	850	1	ND	ND			SECT
36.	2,6-dinitrotoluene	850	1	ND	ND			Ц Ч
37.	1,2-diphenylhydrazine	850	1	ND	ND			4
38.	ethylbenzene	850	1	ND	ND			
39.	fluoranthene	850	1	ND	ND			
40.	4-chlorophenyl phenyl ether	850	1	ND	ND			
41.	4-bromophenyl phenyl ether	850	. 1	ND	N D			
42.	bis(2-chloroisopropyl)ether	850	1	ND	ND			

1

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
43.	bis(2-choroethoxy)methane	850	1	ND	ND		
44.	methylene chloride	850	1	ND	0.045		
45.	methyl chloride (chloromethane)	850	1	ND	ND		
46.	methyl bromide (bromomethane)	850	1	ND	ND		
47.	bromoform (tribromomethane)	850	1	ND	ND		
48.	dichlorobromomethane	850	1	ND	ND		
49.	trichlorofluoromethane	850	1	ND	ND		٢
50.	dichlorodifluoromethane	850	1	ND	ND		C t
51.	chlorodibromomethane	850	1	ND	ND		(F
52.	hexachlorobutadiene	850	1	ND	ND		<
53.	hexachlorocyclopentadiene	850	1	ND	ND		
54.	isophorone	850	1	ND	ND		
55.	naphthalene	850	1	ND	N D		
56.	nitrobenzene	850	1	ND	N D		

SECONDARY TIN SUBCATEGORY SECT - V

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
57.	2-nitrophenol	850	1	ND	ND		
58.	4-nitrophenol	850	1	ND	ND		
59.	2,4-dinitrophenol	850	1	ND	ND	.	
60.	4,6-dinitro-o-cresol	850	1	ND	ND		
61.	N-nitrosodimethylamine	850	1	ND	ND	!	
62.	N-nitrosodiphenylamine	850	1	ND	ND		
63.	N-nitrosodi-n-propylamine	850	1	ND	ND .		
64.	pentachlorophenol	850	1	ND	ND		t
65.	phenol	850	1	ND	0.035		÷
66.	bis(2-ethylhexyl) phthalate	850	1	0.054	0.007		-
67.	butyl benzyl phthalate	850	1	ND	ND		
68.	di-n-butyl phthalate	850	1	ND	ND		
69.	di-n-octyl phthalate	850	1	ND	ND		
70.	diethyl phthalate	850	1	ND	ND		

SECONDARY TIN SUBCATEGORY

SECT

-V

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc. Source		(mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
71.	dimethyl phthalate	850	1	ND	ND		
72.	benzo(a)anthracene	850	1	ND	ND		
73.	benzo(a)pyrene	850	1	ND	ND		
74.	benzo(b)fluoranthene	850	1	ND	ND		
75.	benzo(k)fluoranthane	850	1	N D	ND		
76.	chrysene	850	1	ND	ND		
77.	acenaphthylene	850	1	ND	ND		
78.	anthracene (a)	850	1	ND	ND		
79.	benzo(ghi)perylene	850	1	ND	ND		
80.	fluorene	850	1	ND	ND		
81.	phenanthrene (a)	850	1	ND	ND		
82.	dibenzo(a,h)anthracene	850	1	ND	ND		
83.	indeno (1,2,3-c,d)pyrene	850	1	ND	ND		
. 84.	pyrene	850	1	ND	ND		

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type†	Conc Source	entrations Day 1	s (mg/l) Day 2	Day 3	SECONDARY
<u>Toxic</u>	Pollutants (Continued)							NDAI
85.	tetrachloroethylene	850	1	ND	NĎ			
86.	toluene	850	1	0.093	0.01			TIN
87.	trichloroethylene	850	. 1.	ND	0.021			SUBCATEGORY
88.	vinyl chloride (chloroethylene)	850	1	ND	ND			CATE
89.	aldrin	850	1	NÐ	N D			GOR
90.	dieldrin	850	1	ND	ND			к
91.	chlordane	850	1	ND	N D			SE
92.	4,4'-DDT	850	1	ND	N D			SECT
93.	4,4'-DDE	850	1	ND	N D			י ל
94.	4,4'-DDD	850	1	ND	ND			
95.	alpha-endosulfan	850	1	ND	ND			
96.	beta-endosulfan	850	1	ND	ND			
97.	endosulfan sulfate	850	1	ND	ND			
98.	heptachlor	850	1	ND	ND			

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration: Day 1	s (mg/l) Day 2	Day 3	ß
Toxic Pollutants (Continued)							ECO
99. endrin aldehyde	850	1	ND	ND			SECONDARY
100. heptachlor	850	1	ND	ND			
101. heptachlor epoxide	850	1	ND	ND			TIN 2
102. alpha-BHC	850	1	ND	ND			SUBC
103. beta-BHC	850	1	ND	ND			ATE
104. gamma-BHC	850	1	ND	ND			SUBCATEGORY
105. delta-BHC	850	1	ND	ND			~
106. PCB-1242 (b)	850	1	ND	ND			SECT
107. PCB-1254 (b)	850	1	ND	ND			CT I
108. PCB-1221 (b)	850	1	ND	ND			<
109. PCB-1232 (c)	850	1	ND	ND			
110. PCB-1248 (c)	850	1	ND	ND			
111. PCB-1260 (c)	850	1	ND	ND			
112. PCB-1016 (c)	850	1	ND	ND			

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	ß
Toxic Pollutants (Continued)							ECON
113. toxaphene	850	1	ND	ND			SECONDARY
114. antimony	850	1	<0.001	0.77			
115. arsenic	850	1	0.008	4.8			TIN S
117. beryllium	850	1	<0.001	0.007			SUBCATEGORY
118. cadmium	850	1	<0.001	0.13			ATE
119. chromium (total)	850	1	0.003	0.002			30RY
120. copper	850	1	0.14	0.10			
121. cyanide (total)	850	1	0.005	4.70			SECT
122. lead	850	1	0.001	0.51			Ц Г
123. mercury	850	1	<0.002	<0.002			<
124. nickel	850	1	0.001	· 2.0			
125. selenium	850	1	3.1	30			
126. silver	850	1	0.02	0.08			
127. thallium	850	1 .	<0.001	0.78			

ELECTROWINNING SOLUTION AFTER CHLORINATION AND NEUTRALIZATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Con Source	centrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					
128. zinc	850	1	0.06	0.12	
Nonconventional Pollutants					
ammonia nitrogen	850	1	1.5	23	
phenolics	850	1	0.002	0.5	
tin	850	1	0.28	15	
Conventional Pollutants					
oil and grease	850	1	5.6	ND	
total suspended solids (TSS)	850	1	19	140,000	

tSample Type Code: 1 - One-time grab

(a), (b), (c) Reported together.

Table V-18

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	10
Toxic	Pollutants		·					ECO
1.	acenaphthene	845	1	ND	ND	ND	ND	SECONDARY
2.	acrolein	845	1	ND	ND	ND	ND	
3.	acrylonitrile	845	. 1.	ND.	ND .	ND	ND	TIN
4.	benzene	845	1	ND	ND	ND	ND	SUBCATEGORY
5.	benzidine	845	1	ND	ND	ND	ND	ATE
6.	carbon tetrachloride	845	1	ND	ND	ND	ND	GOR
7.	chlorobenzene	845	1	ND	ND	ND	ND	ĸ
8.	1,2,4-trichlorobenzene	845	1	ND	ND	ND	ND	SECT
9.	hexachlorobenzene	845	1	ND	ND	ND	ND	CT -
10.	1,2-dichloroethane	845	1	ND	ND	ND	ND	- <
11.	1,1,1-trichloroethane	845	1 ·	ND	0.210	ND	ND	
12.	hexachloroethane	845	1	ND	ND	ND	ND	
13.	1,1-dichloroethane	845	1	ND	ND .	ND	ND	
14.	1,1,2-trichloroethane	845	1	ND	ND N	ND	N D	

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day_1	s (mg/1) 2	Day 3
Toxic	Pollutants (Continued)						
15.	1,1,2,2-tetrachloroethane	845	- 1	ND	ND	ND	ND
16.	chloroethane	845	1	ND	ND	ND	ND
17.	bis(chloromethyl)ether	845	1	ND	ND	ND	N D
18.	bis(2-chloroethyl)ether	845	1	ND	ND	ND	ND
19.	2-chloroethyl vinyl ether	845	1	ND	ND	ND	ND
20.	2-chloronaphthalene	845	1	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	845	1	ND	0.004	ND	ND
22.	p-chloro-m-cresol	845	1	ND	ND	ND	ND
23.	chloroform	845	1	ND	ND	ND	ND
24.	2-chlorophenol	845	1	ND	ND	ND	ND
25.	1,2-dichlorobenzene	845	1	ND	ND	ND	ND
26.	1,3-dichlorobenzene	845	1	ND	ND	ND	ND
27.	1,4-dichlorobenzene	845	1	ND	ND	ND	ND
28.	3,3 -dichlorobenzidine	845	1	ND	ND	ND	N D

SECONDARY TIN SUBCATEGORY

SECT

י ל

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conco Source	entration: Day 1	s (mg/1) Day 2	Day 3	ß
Toxic	Pollutants (Continued)							ECO
29.	1,1-dichloroethylene	845	1	ND	ND	ND	ND	SECONDARY
30.	1,2- <u>trans</u> -dichloroethylene	845	1	ND	ND	ND	ND	
31.	2,4-dichlorophenol	845	1	ND	ND ·	ND	ND	TIN S
32.	1,2-dichloropropane	845	1	ND	ND	ND	ND	SUBC
33.	1,3-dichloropropene	845	1	ND	ND	ND	ND	ATE
34.	2,4-dimethylphenol	845	1	ND	ND	ND	ND	SUBCATEGORY
35.	2,4-dinitrotoluene	845	1	ND	ND	ND	ND	1
36.	2,6-dinitrotoluene	845	1	ND	ND	ND	ND	SECT
37.	1,2-diphenylhydrazine	845	1	ND	ND	ND	ND	
38.	ethylbenzene	845	1	ND	ND	ND	ND	4
39.	fluoranthene	845	1	ND	0.006	0.005	0.004	
40.	4-chlorophenyl phenyl ether	845	1	ND	ND	ND	ND	
41.	4-bromophenyl phenyl ether	845	. 1	ND	ND	ND	ND	
42.	bis(2-chloroisopropyl)ether	845	1	ND	ND	ND	ND	

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entration Day 1	<u>s (mg/l)</u> Day 2	Day 3
Toxic	Pollutants (Continued)						
43.	bis(2-choroethoxy)methane	845	1	ND	ND	ND	N D
44.	methylene chloride	845	1	ND	0.038	0.024	0.041
45.	methyl chloride (chloromethane)	845	1	ND	ND	ND	N D
46.	methyl bromide (bromomethane)	845	1	ND	ND	ND	ND
47.	bromoform (tribromomethane)	845	1	ND	ND	ND	ND
48.	dichlorobromomethane	845	1	ND	ND	ND	N D
49.	trichlorofluoromethane	845	1	ND	ND	ND	ND
50.	dichlorodifluoromethane	845	1	ND	ND	ND	ND
51.	chlorodibromomethane	845	1	ND	ND	ND	ND
52.	hexachlorobutadiene	845	1	ND	ND	ND	N D ·
53.	hexachlorocyclopentadiene	845	1	ND	ND	ND	ND
54.	isophorone	845	1	ND	ND	ND	ND
55.	naphthalene	845	1	ND	ND	ND	N D
56.	nitrobenzene	845	1	ND	ND	ND	N D

SECONDARY TIN SUBCATEGORY

SECT

ו ל

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample <u>Typet</u>	<u>Conc</u> Source	entration Day 1	<u>us (mg/l)</u> Day 2	Day 3	
<u>Toxi</u>	c Pollutants (Continued)					<u>Duy 2</u>	Day J	SEC
57.	2-nitrophenol	845	1	ND	ND	ND	ND	SECONDARY
58.	4-nitrophenol	845	1	ND	ND	ND	ND	
59.	2,4-dinitrophenol	845	1	ND	ND	ND .	ND	TIN
60.	4,6-dinitro-o-cresol	845	1	ND	ND	ND	ND	SUB
61.	N-nitrosodimethylamine	845	1	ND	ND	ND	ND	SUBCATEGORY
62.	N-nitrosodiphenylamine	845	1	ND	ND	ND	ND	EGOR
63.	N-nitrosodi-n-propylamine	845	1	ND	ND	ND	ND	ΥΥ Υ
64.	pentachlorophenol	845	1	ND	ND	ND	ND	SI
65.	phenol	845	1	ND	ND	ND	0.007	SECT
66.	bis(2-ethylhexyl) phthalate	845	1	0.054	ND	ND	1.300	ı ۲
67.	butyl benzyl phthalate	845	1	ND	ND	ND	0.710	
68.	di-n-butyl phthalate	845	1	ND	ND	ND	ND	
69.	di-n-octyl phthalate	845	1		ND A	ND	0.710	
70.	diethyl phthalate	845	1	ND	ND	ND	ND	

SECONDARY TIN SUBCATEGORY SECT

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	entration Day 1	<u>bay 2</u>	Day 3	Ŋ
<u>Toxic</u>	Pollutants (Continued)							SECONDARY
71.	dimethyl phthalate	845	1	ND	ND	ND	ND	VDAR
72.	benzo(a)anthracene	845	1	ND	ND	ND	0.013	
73.	benzo(a)pyrene	845	1	ND	ND	ND	ND	TIN S
74.	benzo(b)fluoranthene	845	1	ND	ND	ND	ND	UBC
75.	benzo(k)fluoranthane	845	1	ND	ND	ND	ND	ATEC
76.	chrysene	845	1	ND	ND	ND	0.013	SUBCATEGORY
77.	acenaphthylene	845	1	ND	ND	ND	ND	
78.	anthracene (a)	845	1	ND	ND	ND	ND	SECT
79.	benzo(ghi)perylene	845	1	ND	ND	ND	ND	Ц Ц
80.	fluorene	845	1	ND	ND	ND	ND	<
81.	phenanthrene (a)	845	1	ND	ND	ND	ND	
82.	dibenzo(a,h)anthracene	845	1	ND	ND	ND	ND	
83.	indeno (1,2,3-c,d)pyrene	845	· 1	ND	ND	ND	ND	
84.	pyrene	845	1	ND	0.009	0.004	ND	

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	ß
<u>Toxic</u>	Pollutants (Continued)							SECONDARY
85.	tetrachloroethylene	845	1	ND	ND	ND	ND	VDAR
86.	toluene	845	1	0.093	0.009	0.001	0.014	
87.	trichloroethylene	845	, 1	ND	0.015	ND	0.025	TIN S
88.	vinyl chloride (chloroethylene)	845	1	ND	ND	ND	ND	SUBCATEGORY
89.	aldrin	845	1	ND	ND	ND	ND	ATE
90.	dieldrin	845	1	ND	ND	ND	ND	JORY
91.	chlordane	845	1	ND	ND	ND	ND	
92.	4,4'-DDT	845	1	ND	ND	ND	ND	SECT
93.	4,4'-DDE	845	1	ND	ND	ND	ND	Ц I
94.	4,4'-DDD	845	1	ND	ND	ND	ND	4
95.	alpha-endosulfan	845	1 ·	ND	ND	ND	ND	
96.	beta-endosulfan	845	1	ND	ND	ND	N D	
97.	endosulfan sulfate	845	1	ND	ND	ND	ND	
98.	heptachlor	845	1	ND	ND	ND	ND	

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						SECONDARY ND
99. endrin aldehyde	845	1	ND	ND	ND	ND ND
100. heptachlor	845	1	ND	ND	ND	MIN
101. heptachlor epoxide	845	1	ND	ND	ND	ND TIN S
102. alpha-BHC	845	1	ND	ND	ND	SUBCATEGORY
103. beta-BHC	845	1	ND	ND	ND	ND ND
104. gamma-BHC	845	1	ND	ND	ND	ND ND
105. delta-BHC	845	1	ND	ND	ND	ND
106. PCB-1242 (b)	845	1	ND	ND	ND	
107. PCB-1254 (b)	845	1	ND	ND	ND	ND H
108. PCB-1221 (b)	845	1	ND	ND	ND	ND <
109. PCB-1232 (c)	845	1	ND	ND	ND	ND
110. PCB-1248 (c)	845	1	ND	ND	ND	ND
111. PCB-1260 (c)	845	1	ND	ND	ND	ND
112. PCB-1016 (c)	845	1	ND	ND	ND	ND

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	<u>Conc</u> Source	entration Day 1	<u>s (mg/l)</u> Day 2	Day 3 in
<u>Toxic Pollutants</u> (Continued)						SECONDARY
113. toxaphene	845	1	ND	ND		IDAR
114. antimony	845	1	<0.001	<0.001	0.51	0.28 TIN
115. arsenic	845	1	0.008	3.3	.4.4	0.0
117. beryllium	845	1	<0.001	0.014	0.001	0.004 SUBCATEGORY
118. cadmium	845	1	<0.001	0.28	0.23	0.17 H
119. chromium (total)	845	1	0.003	0.004	0.003	0.014 Ö
120. copper	845	1	0.14	0.26	0.25	0.16
121. cyanide (total)	845	1	0.005	1.6	0.81	0.85 E
122. lead	845	1	0.001	0.93	0.91	日 0.70
123. mercury	845	1	<0.0002	<0.0002	<0.0002	<0.0002 <
124. nickel	845	· 1	0.001	5.6	6.0	5.2
125. selenium	845	1	3.1	39	30	30
126. silver	845	1	0.02	0.22	0.20	0.10
127. thallium	845	1	<0.001	2.2	1.4	0.96

ELECTROWINNING SOLUTION AFTER CHLORINATION, NEUTRALIZATION, AND SEDIMENTATION - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Con Source	centrations Day 1	<u>mg/1)</u> Day 2	Day 3
Toxic Pollutants (Continued)						HCOL
128. zinc	845	1	0.06	0.56	1.0	0.8 ADAK
Nonconventional Pollutants						H. H
ammonia nitrogen	845	1	1.5	3	1.6	1.3
phenolics	845	1	0.002	0.20	0.23	0.20 80
tin	845	1	0.28	19	22	
Conventional Pollutants						GORY
oil and grease	845	1	5.6	29	21	20
total suspended solids (TSS)	845	1	19	1,600	530	1,300 SECT
pH (standard units)	845	1	6.5	8.9	8.9	н н

tSample Type Code: 1 - One-time grab

(a), (b), (c) Reported together.

SECONDARY TIN SUBCATEGORY SECT - V

Table V-19

FINAL EFFLUENT - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	ns (mg/l) Day 2	Day 3	SE
Toxic	Pollutants							SECONDARY
1.	acenaphthene	844	1	ND	ND	ND	ND	DAR:
2.	acrolein	844	1	ND	ND	ND	ND	Y TIN
3.	acrylonitrile	844	1	ND	ND	ND	ND	
4.	benzene	844	. 1	ND	ND	0.002	0.002	SUBCATEGORY
5.	benzidine	844	1	ND	ND	ND	ND	ATEC
6.	carbon tetrachloride	844	1	ND	ND	ND	ND	ORY
7.	chlorobenzene	844	1	ND	ND	ND	ND	
8.	1,2,4-trichlorobenzene	844	1	ND	ND	ND	ND	SECT
9.	hexachlorobenzene	844	1	ND	ND	ND	ND	Η I
10.	1,2-dichloroethane	844	1	ND	ND	ND	ND	4
11.	1,1,1-trichloroethane	844	1	ND	ND	ND	ND	
12.	hexachloroethane	844	1	ND	ND	ND	N D	
13.	1,1-dichloroethane	844	1	ND	ND	ND	ND	
14.	1,1,2-trichloroethane	844	1	ND	ND	ND	ND	

.

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	SI
Toxic Pollutants (Continued)							SECONDARY
15. 1,1,2,2-tetrachloroethane	844	1	ND	ND	ND	ND	DAR
16. chloroethane	844	1	ND	ND	ND	ND	Y TIN
17. bis(chloromethyl)ether	844	1	ND	ND	ND	ND	
18. bis(2-chloroethyl)ether	844	1	ND	ND	ND	ND	UBCł
19. 2-chloroethyl vinyl ether	844	1	ND	ND	ND	ND	SUBCATEGORY
20. 2-chloronaphthalene	844	1	ND	ND	ND	ND	ORY
21. 2,4,6-trichlorophenol	844	1	ND	ND	ND	ND	
22. p-chloro-m-cresol	844	1	ND	ND	ND	ND	SECT
23. chloroform	844	1	ND	ND	ND	ND	H I
24. 2-chlorophenol	844	1	ND	ND	ND	ND	4
25. 1,2-dichlorobenzene	844	1	ND	ND	ND	ND	
26. 1,3-dichlorobenzene	844	1	ND	ND	ND	ND	
27. 1,4-dichlorobenzene	844	1	ND	ND	ND	ND	
28. 3,3 -dichlorobenzidine	844	1	ND	ND	ND	ND	

FINAL EFFLUENT - PLANT C TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entration: Day 1	s (mg/l) Day 2	Day 3	SE
Toxic	Pollutants (Continued)							SECONDARY
29.	1,1-dichloroethylene	844	1	ND	ND	ND	ND	DARY
30.	1,2- <u>trans</u> -dichloroethylene	844	1	ND	ND	ND	ND	TIN
31.	2,4-dichlorophenol	844	· . 1 .	ND	ND	ND	ND	
32.	1,2-dichloropropane	844	1	ND	ND	ND	ND	SUBCATEGORY
33.	1,3-dichloropropene	844	1	ND	ND	ND	ND	TEG
34.	2,4-dimethylphenol	844	1	ND	ND	ND	ND	ORY
35.	2,4-dinitrotoluene	844	1	ND	ND	ND	ND	
36.	2,6-dinitrotoluene	844	1	ND	ND	ND	ND	SECT
37.	1,2-diphenylhydrazine	844	1	ND	ND	ND	ND	, I.
38.	ethylbenzene	844	1	ND	ND	ND	ND	4
39.	fluoranthene	844	1	ND	ND	ND	ND	
40.	4-chlorophenyl phenyl ether	844	1	ND	ND	ND	ND	
41.	4-bromophenyl phenyl ether	844	1	ND	ND	ND	ND	
42.	bis(2-chloroisopropyl)ether	844	1	ND	ND	ND	ND	

4183

Pollutant	Stream Code	Sample Type†	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3	70
Toxic Pollutants (Continued)							SECONDARY
43. bis(2-choroethoxy)methane	844	1	ND	ND	ND	ND	NDAI
44. methylene chloride	844	1	ND	ND	ND	ND	
45. methyl chloride (chloromethane)	844	1	ND	ND	ND	ND	TIN
46. methyl bromide (bromomethane)	844	1	ND	ND	ND	N D	SUBC
47. bromoform (tribromomethane)	844	1	ND	ND	ND	ND	ATE
48. dichlorobromomethane	844	1	ND	ND	ND	ND	SUBCATEGORY
49. trichlorofluoromethane	844	1	ND	ND	ND	ND	K,
50. dichlorodifluoromethane	844	1	ND	ND	ND	ND	SECT
51. chlorodibromomethane	844	1	ND	ND	ND	ND	CI ·
52. hexachlorobutadiene	844	1	ND	ND	ND	ND	- ۲
53. hexachlorocyclopentadiene	844	1	ND	ND	ND	ND	
54. isophorone	844	1	ND	ND	ND	ND	
55. naphthalene	844	1	ND	ND	ND	k9	
56. nitrobenzene	844	1	ND	ND	ND	ND	

Pollutant	Stream Code	Sample Type†	Conc Source	entration Day 1	<u>s (mg/1)</u> Day 2	Day 3	SE
Toxic Pollutants (Continued)							SECONDARY
57. 2-nitrophenol	844	1	ND	ND	ND	N D	DARS
58. 4-nitrophenol	844	1	ND	0.004	ND	N D	7 TIN
59. 2,4-dinitrophenol	844	1	ND	0.001	ND	N D	
60. 4,6-dinitro-o-cresol	844	1	ND	ND	ND	N D	UBC
61. N-nitrosodimethylamine	844	1	ND	ND	ND	ND	SUBCATEGORY
62. N-nitrosodiphenylamine	844	1	ND	ND	ND	ND	ORY
63. N-nitrosodi-n-propylamine	844	1	ND	ND	ND	ND	
64. pentachlorophenol	844	1	ND	ND	ND	ND	SECT
65. phenol	844	1	ND	ND	ND	N D	H I
66. bis(2-ethylhexyl) phthalate	844	1	0.054	0.003	0.084	0.045	<
67. butyl benzyl phthalate	844	1	ND	ND	ND	ND	
68. di-n-butyl phthalate	844	1	ND	0.002	ND	ND	
69. di-n-octyl phthalate	844	1	ND	ND	ND	ND	
70. diethyl phthalate	844	1	ND	0.007	ND	ND	

Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	R
Toxic Pollutants (Continued)							SECONDARY
71. dimethyl phthalate	844	1	ND	ND	ND	ND	DAR
72. benzo(a)anthracene	844	1	ND	ND	ND	ND	Y TIN
73. benzo(a)pyrene	844	1	ND	ND	ND	ND	
74. benzo(b)fluoranthene	844	1	ND	ND	ND	ND	SUBCATEGORY
75. benzo(k)fluoranthane	844	1	ND	ND	ND	ND	ATEC
76. chrysene	844	1	ND	ND	ND	ND	ORY
77. acenaphthylene	844	1	ND	ND	ND	ND	
78. anthracene (a)	844	1	ND	ND	ND	ND	SECT
79. benzo(ghi)perylene	844	1	ND	ND	ND	ND	н I
80. fluorene	844	1	ND	ND	ND	ND	4
81. phenanthrene (a)	844	1	ND	ND	ND	ND	
82. dibenzo(a,h)anthracene	844	1	ND	ND	ND	ND	
83. indeno (1,2,3-c,d)pyrene	844	1	ND	ND	ND	ND	
84. pyrene	844	1	ND	ND	ND	N D	

	Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	SH
Toxic	Pollutants (Continued)							CON
85.	tetrachloroethylene	845	1	ND	ND	ND	ND	SECONDARY
86.	toluene	845	1	0.093	ND	ND	0.008	Y TIN
87.	trichloroethylene	845	.1.	ND	ND	ND	ND	
88.	vinyl chloride (chloroethylene)	845	1	ND	ND	ND	ND	UBCI
89.	aldrin	845	1	ND	ND	ND	ND	SUBCATEGORY
90.	dieldrin	845	1	ND	ND	ND	ND	ORY
91.	chlordane	845	1	ND	ND	ND	ND	
92.	4,4'-DDT	845	1	ND	ND	ND	ND	SECT
93.	4,4'-DDE	845	1	ND	ND	ND	ND	H I
94.	4,4"-DDD	845	1	ND	ND	ND	ND	4
95.	alpha-endosulfan	845	1	ND	ND	ND	ND	
96.	be ta-endosulfan	845	1	ND	ND	ND	ND	
97.	endosulfan sulfate	845	1	ND	ND	ND	ND	
98.	heptachlor	845	1	ND	ND	ND	ND	

FINAL EFFLUENT - PLANT C TREATED WASTEWATER SAMPLING DATA

<u>Poll</u>	utant	Stream Code	Sample Typet	Conce Source	entration Day 1	s (mg/l) Day_2	Day 3	ß
Toxic Pollutant	s (Continued)							ECO
99. endrin al	dehyde	844	1	ND	ND	ND	ИИ	SECONDARY
100. heptachlo	or	844	1	ND	ND	ND	ND	
101. heptachlo	or epoxide	844	1	ND	ND	ND	ND	TIN 2
102. alpha-BHC	:	844	1	ND	ND	ND	NÐ	SUBC
103. beta-BHC		844	1	ND	ND	ND	ND	ATE
104. gamma-BHC	:	844	1	ND	ND	ND	ND	SUBCATEGORY
105. delta-BHC	;	844	1	ND	ND	ND	ND	~
106. PCB-1242	(b)	844	1	ND	ND	ND	ND	SECT
107. PCB-1254	(b)	844	1	ND	ND	ND	ŅD	C II
108. PCB-1221	(b)	844	1	ND	ND	ND	ND	<
109. PCB-1232	(c)	844	1	ND	ND	ND	ND	
110. PCB-1248	(c)	844	1	ND	ND	ND	ND	
111. PCB-1260	(c)	844	1	ND	ND	ND	ND	
112. PCB-1016	(c)	844	1	ND	ND	ND	ND	

	Pollutant	Stream Code	Sample Typet	Conc Source	centration Day 1	ns (mg/l) Day 2	Day 3	ទ
Toxic	Pollutants (Continued)							SECONDARY
113.	toxaphene	844	1	ND	N D			IDAR
114.	antimony	844	1	<0.001	0.004	<0.001	<0.001	
115.	arsenic	844	1	0.008	0.068	0.021	0.061	TINS
117.	beryllium	844	1	<0.001	<0.001	<0.001	<0.001	UBC
118.	cadmium	844	1	<0.001	<0.001	<0.001	0.02	ATE
119.	chromium (total)	844	1	0.003	0.002	0.002	0.003	SUBCATEGORY
120.	copper	844	1	0.14	0.20	0.14	0.20	•
121.	cyanide (total)	844	1	0.005	0.015	0.031	0.021	SECT
122.	lead	844	1	0.001	0.015	0.010	0.015	년 -
123.	mercury	844	1	<0.002	<0.002	<0.002	<0.002	4
124.	nickel	844	1	0.001	0.10	0.04	0.023	
125.	selenium	844	1	3.1	1.8	2.7	3.0	
126.	silver	844	1	0.02	<0.001	<0.001	0.03	
127.	thallium	844	1.	<0.001	0.008	<0.001	<0.001	

FINAL EFFLUENT - PLANT C TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type†	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3	Ŋ
Toxic Pollutants (Continued)							ECOL
128. zinc	844	1	0.06	0.05	0.04	<0.02	SECONDARY
Nonconventional Pollutants							•
ammonia nitrogen	844	1	1.5	0.5	0.6	0.0	TIN S
phenolics	844	1	0.002	0.003	0.003	0.002	SUBC
tin	844	1	0.28	0.95	0.85	1.4	SUBCATEGORY
Conventional Pollutants							GORY
oil and grease	844	1	5.6	14	12	7.6	
total suspended solids (TSS)	844	1	19	31	32	29	SECT
pH (standard units)	844	1	6.5	6.9	7.1		H I

tSample Type Code: 1 - One-time grab

(a), (b), (c) Reported together.

Table V-20

	Pollutant	Stream Code	Sample Typet	Conce Source	entrations Day 1	(mg/1) Day 2	Day 3	SI
Toxic	Pollutants							SECONDARY
1.	acenaphthene	858	1	ND	ND			DAR
2.	acrolein	858	1	ND	ND			Y TIN
3.	acrylonitrile	858	1	ND	ND			
4.	benzene	858	1	ND	ND			UBC
5.	benzidine	858	1	ND	ND			SUBCATEGORY
6.	carbon tetrachloride	858	1	ND	ND			ORY
7.	chlorobenzene	858	1	ND	ND			
8.	1,2,4-trichlorobenzene	858	1	ND	ND			SECT
9.	hexachlorobenzene	858	1	ND	ND			H) I
10.	1,2-dichloroethane	858	1	ND	ND			4
11.	1,1,1-trichloroethane	858	1	ND	ND			
12.	hexachloroethane	858	1	ND	ND			
13.	1,1-dichloroethane	858	1	ND	ND			
14.	1,1,2-trichloroethane	858	1	ND	ND			

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	ទ
Toxic	Pollutants (Continued)							ECON
15.	1,1,2,2-tetrachloroethane	858	1	ND	ND			SECONDARY
16.	chloroethane	858	1	ND	ND			
17.	bis(chloromethyl)ether	858	1	ND	ND			TIN S
18.	bis(2-chloroethyl)ether	858	1	ND	ND			UBC
19.	2-chloroethyl vinyl ether	858	1	ND	ND			SUBCATEGORY
20.	2-chloronaphthalene	858	1	ND	ND			JORY
21.	2,4,6-trichlorophenol	858	1	ND	ND			
22.	p-chloro-m-cresol	858	1	ND	ND			SECT
23.	chloroform	858	1	0.037	ND			Ц Г
24.	2-chlorophenol	858	1	ND	ND			4
25.	1,2-dichlorobenzene	858	1	ND	ND			
26.	1,3-dichlorobenzene	858	1	ND	ND			
27.	1,4-dichlorobenzene	858	· 1	ND	ND			
28.	3,3'-dichlorobenzidine	858	1	ND	ND			

	Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	s (mg/1) Day 2	Day 3	٥٥
Toxic	Pollutants (Continued)							ECO
29.	1,1-dichloroethylene	858	1	ND	ND			SECONDARY
30.	1,2- <u>trans</u> -dichloroethylene	858	1	ND	ND			
31.	2,4-dichlorophenol	858	1	ND	ND			TIN
32.	1,2-dichloropropane	858	1	ND	ND		1	SUBC
33.	1,3-dichloropropene	858	1	ND	ND			ATE
34.	2,4-dimethylphenol	858	1	ND	ND			SUBCATEGORY
35.	2,4-dinitrotoluene	858	1	ND	ND			ĸ
36.	2,6-dinitrotoluene	858	1	ND	ND			SECT
37.	1,2-diphenylhydrazine	858	1	ND	ND			CT -
38.	ethylbenzene	858	1	ND	ND			- <
39.	fluoranthene	858	1	ND	N D			
40.	4-chlorophenyl phenyl ether	858	1	ND	ND			
41.	4-bromophenyl phenyl ether	858	1	ND	ND			
42.	bis(2-chloroisopropyl)ether	858	1	ND	ND			

ELECTROWINNING SOLUTION AFTER CARBONATION - PLANT D TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conce Source	Day 1	(mg/l) Day 2	Day 3
Toxic	Pollutants (Continued)						
43.	bis(2-choroethoxy)methane	858	1	ND	ND		
44.	methylene chloride	858	1	0.021	0.045		
45.	methyl chloride (chloromethane)	858	1	ND	N D		
46.	methyl bromide (bromomethane)	858	1	ND	ND		
47.	bromoform (tribromomethane)	858	1	ND	ND		
48.	dichlorobromomethane	858	1	ND	ND		
49.	trichlorofluoromethane	858	1	ND	ND		
50.	dichlorodifluoromethane	858	1	ND	ND		
51.	chlorodibromomethane	858	1	ND	ND		
52.	hexachlorobutadiene	858	1	ND	ND		
53.	hexachlorocyclopentadiene	858	1	ND	N D		
54.	isophorone	858	1	ND	ND		
55.	naphthalene	858	1	ND	N D		
56.	nitrobenzene	858	1	ND	N D		

SECONDARY TIN SUBCATEGORY

SECT

י ל

Pollutant	Stream Code	Sample Typet	Conc Source	entrations Day 1	s (mg/1) Day 2	Day 3	Ś
Toxic Pollutants (Continued)							ECO
57. 2-nitrophenol	858	1	ND	ND			SECONDARY
58. 4-nitrophenol	858	1	ND	ND			
59. 2,4-dinitrophenol	858	1	ND	ND			TIN S
60. 4,6-dinitro-o-cresol	858	1	ND	ND			UBC
61. N-nitrosodimethylamine	858	1	ND	ND			ATE
62. N-nitrosodiphenylamine	858	1	ND	ND			SUBCATEGORY
63. N-nitrosodi-n-propylamine	858	1	ND	ND			
64. pentachlorophenol	858	1	ND	ND			SECT
65. phenol	858	1	ND	0.028			년 -
66. bis(2-ethylhexyl) phthalate	858	1	0.004	ND			<
67. butyl benzyl phthalate	858	1	ND	ND			
68. di-n-butyl phthalate	858	1	ND	ND			
69. di-n-octyl phthalate	858	1	ND	ND			
70. diethyl phthalate	858	1	ND	ND			

	Pollutant	Stream Code	Sample Typet	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3	Ŋ
Toxic	Pollutants (Continued)							SECONDARY
71.	dimethyl phthalate	858	1	ND	ND			NDAR
72.	benzo(a)anthracene	858	1	ND	ND			
73.	benzo(a)pyrene	858	1	ND	ND			TIN S
74.	benzo(b)fluoranthene	858	1	ND	ND			UBC
75.	benzo(k)fluoranthane	858	1	ND	ND			SUBCATEGORY
76.	chrysene	858	1	ND	N D			30RY
77.	acenaphthylene	858	1	ND	ND			
78.	anthracene (a)	858	1	ND	ND			SECT
79.	benzo(ghi)perylene	858	1	ND	ND			і I
80.	fluorene	858	1	ND	ND			<
81.	phenanthrene (a)	858	1	ND	ND			
82.	dibenzo(a,h)anthracene	858	1	ND	ND			
83.	indeno (1,2,3-c,d)pyrene	858	1	ND	ND			
84.	pyrene	858	1	ND	ND			

ELECTROWINNING SOLUTION AFTER CARBONATION - PLANT D TREATED WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3	,
<u>Toxic</u>	Pollutants (Continued)							
85.	tetrachloroethylene	858	1	ND	ND			
86.	toluene	858	1	0.005	0.001			i F
87.	trichloroethylene	858	1	0.007	0.027			NTT TTT
88.	vinyl chloride (chloroethylene)	858	1	ND	N D			SUBCALEGUKI
89.	aldrin	858	1	ND	ND			UT D
90.	dieldrin	858	1	ND	ND			2 NOE
91.	chlordane	858	1	ND	ND			
92.	4,4'-DDT	858	1	ND	ND			LOHC
93.	4,4'-DDE	858	1	ND	N D			i I
94.	4,4'-DDD	858	1	ND	ND			<
95.	alpha-endosulfan	858	1	ND	ND			
96.	beta-endosulfan	858	1	ND	ND			
97.	endosulfan sulfate	858	1	ND	ND			
98.	heptachlor	858	1	ND	ND			

SECONDARY TIN SUBCATEGORY SECT - V

ELECTROWINNING SOLUTION AFTER CARBONATION - PLANT D TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					
99. endrin aldehyde	858	1	ND	ND	
100. heptachlor	858	1	ND	ND	
101. heptachlor epoxide	858	1	ND	ND	
102. alpha-BHC	858	1	ND	ND	
103. beta-BHC	858	1	ND	ND	
104. gamma-BHC	858	1	ND	ND	
105. delta-BHC	858	1	ND	ND	
106. PCB-1242 (b)	858	1	ND	ND	
107. РСВ-1254 (b)	858	1	ND	ND	ł
108. PCB-1221 (b)	858	1	ND	ND	
109. PCB-1232 (c)	858	1	ND	ND	
110. PCB-1248 (c)	858	1	ND	ND	
111. PCB-1260 (c)	858	1	ND	ND	
112. PCB-1016 (c)	858	1	ND	ND	

SECONDARY TIN SUBCATEGORY

SECT

י ע

ELECTROWINNING SOLUTION AFTER CARBONATION - PLANT D TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conce Source	ntrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					ECO
113. toxaphene	858	1	ND	ND	SECONDARY
114. antimony	858	1	<0.001	0.300	
115. arsenic	858	.1	0.007	2.6	TIN
117. beryllium	858	1	<0.001	0.003	SUBC
118. cadmium	858	1	0.001	0.20	ATE
119. chromium (total)	858	1	0.004	0.37	SUBCATEGORY
120. copper	858	1	0.016	0.15	~
121. cyanide (total)	858	1	0.004 3	1,000	SECT
122. lead	858	1	0.011	0.50	
123. mercury	858	1	0.0007	<0.0002	<
124. nickel	858	1	0.003	2.4	
125. selenium	858	1	<0.005	<0.005	
126. silver	858	1	<0.001	0.14	
127. thallium	858	1	0.005	0.88	

4199

t.

ELECTROWINNING SOLUTION AFTER CARBONATION - PLANT D TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Conc Source	Day 1 Day 2 Da	y 3
Toxic Pollutants (Continued)					
128. zinc	858	1	0.24	0.14	
Nonconventional Pollutants					
ammonia nitrogen	858	1	0.3	0.6	
phenolics	858	1	0.001	0.0003	
tin	858	1	1.7	26	
Conventional Pollutants					
total suspended solids (TSS)	858	1	9	25,000	

tSample Type Code: 1 - One-time grab

⁽a), (b), (c) Reported together.

Table V-21

•

INFLUENT TO TREATMENT - PLANT E RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Typet	Con Source	centratio Day 1	ns (mg/l) Day 2	Day 3
Toxic	Pollutants						Day 3 SECONDARY
114.	antimony	896	6	0.0013	0.0008	0.0016	0.0047 DAR
115.	arsenic	896	6	0.007	1.60	0.069	0.11 HIN <0.010
117.	beryllium	896	6.	<0.010	<0.010	<0.010	
118.	cadmium	896	6	<0.030	0.061	0.50	0.30 SUBCATEGORY 7.50 RY
119.	chromium	896	6	<0.030	<0.030	0.035	0.035 E
120.	copper	896	6	<0.030	0.13	1.50	7.50 RY
121.	cyanide (total)	896	1	<0.01	<0.01	<0.01	<0.01
122.	lead	896	6	0.054	0.11	0.18	
123.	mercury	896	6	0.0149	0.0073	0.0031	<0.0025 <mark> </mark>
124.	nickel	896	6	0.052	0.16	1.40	6.40 <
125.	selenium	896	6	<0.001	0.046	0.0042	0.0011
126.	silver	896	6	0.0014	0.0010	0.0015	0.0118
127.	thallium	896	6	<0.001	0.0011	0.0035	0.0020
128.	zinc	896	6	<0.030	0.36	1.10	3.40

· •

INFLUENT TO TREATMENT - PLANT E RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet		oncentrati e Day 1			<u>س [</u>
Nonconventional Pollutants							ECON
Acidity	896	6	10	30	61	270	DAR
Alkalinity	896	6	160	200	110	<1	Y TIN
Aluminum	896	6	2.80	1.20	1.80	7.60	
Ammonia Nitrogen	896	6	0.04	0.50	3.2	1.2	SUBCATEGORY
Barium	896	6	0.12	0.13	0.75	0.040	ATEG
Boron	896	6	0.17	4.30	6.40	5.40	ORY
Calcium	896	6	0.067	0.26	0.37	0.51	
Chloride	896	6	155	250	770	930	SECT
Cobalt	896	6	<0.030	<0.030	0.45	1.00	1 1
Fluoride	896	6	0.40	4.7	6.4	8.8	4
Iron	896	6	2.80	23.00	8.80	86.00	
Magnesium	896	6	0.018	0.022	0.030	0.040	
Manganese	896	6	0.11	0.28	0.91	1.20	
Molybdenum	896	6	<0.030	0.70	1.70	0.64	

INFLUENT TO TREATMENT - PLANT E RAW WASTEWATER SAMPLING DATA

Pollutant	Stream _Code	Sample Type†	Sour	Concentra			<u>}</u> ro
Nonconventional Pollutants (Continued)				~ <u>~</u>		SECC
Germanium	896	6	<0.50	0.50	<0.50	<0.50	SECONDARY
Indium	896	6	<0.50	<0.50	<0.50		
Sodium	896	6	0.12	0.18	0.18		TIN
Sulfate	896	6	46	190	320	310	SUBCATEGORY
Tin	896	6	<0.25	<0.25	<0.25	<0.25	CATE
Titanium	896	6	<0.25	<0.25	<0.25	<0.25	GOR
Total Dissolved Solids (TDS)	896	6	510	1,300	1,900	2,600	Ŕ
Total Organic Carbon (TOC)	896	6	13	8	<20	97	S
.Total Solids (TS)	896	6	640	1,300	2,100	3,100	SECT .
Vanadium	896	6	<0.030	<0.030	<0.030		· <
Yttrium	896	6	<0.25	<0.25	<0.25	<0.25	
Conventional Pollutants							
Oil and Grease	896	1	<1	<1	<1	18	

INFLUENT TO TREATMENT - PLANT E RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)				
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3	
Conventional Pollutants (Continued)							
Total Suspended Solids (TSS)	896	6	5	19	43	91	
pH (standard units)	896		7.20	7.30	5.70	3.90	

Table V-22

TREATED EFFLUENT - PLANT E TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Con Source	centratio		Day 3	
	code	Typet	bource	Day 1	Day 2	Day J	SEC
Toxic Pollutants							Ň
114. antimony	899	6	0.0013	0.0050	0.0020	0.0013	SECONDARY
115. arsenic	899	6	0.007	0.14	0.052	0.082	Y TIN
117. beryllium	899	6	<0.010	<0.010	<0.010	<0.010	
118. cadmium	899	6	<0.030	0.12	0.12	0.11	UBC.
119. chromium	899	6	<0.030	<0.030	0.032	0.030	ATEO
120. copper	899	6	<0.030	0.28	0.12	0.10	SUBCATEGORY
121. cyanide (total)	899	1	<0.01	<0.01	<0.01	<0.01	
122. lead	899	6	0.054	0.12	0.12	0.099	SECT
123. mercury	899	6	0.0149	<0.0025	<0.0025	0.0030	i i
124. nickel	899	6	0.052	0.99	0.93	0.87	4
125. selenium	899	6	<0.001	0.0421	0.032	0.025	
126. silver	899	6	0.0014	0.0010	0.0013	0.0039	
127. thallium	899	6	<0.001	0.0036	0.0050	0.0029	
128. zinc	899	6	<0.030	0.17	0.17	0.16	

TREATED EFFLUENT - PLANT E TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Source	oncentrati e Day 1	ons (mg/1 Day 2		- S
Nonconventional Pollutants							SECONDARY
Acidity	899	6	10	4,800	20	10	DARY
Alkalinity	899	6	160	56	62	68	TIN
Aluminum	899	6	2.80	0.50	0.80	0.60	
Ammonia Nitrogen	899	6	0.04	3.1	2.9	2.5	JBCA
Barium	899	6	0.12	0.080	0.040	0.040	SUBCATEGORY
Boron	899	6	0.17	3.80	3.70	3.50	ORY
Calcium	899	6	0.067	0.60	0.63	0.60	
Chloride	899	6	155	48	950	880	SECT
Cobalt	899	6	<0.030	0.099	0.094	0.083	гэ I
Fluoride	899	6	0.40	13	61	7.8	\
Iron	899	6	2.80	0.47	0.81	0.32	
Magnesium	899	6	0.018	0.036	0.036	0.035	
Manganese	899	6	0.11	5.10	1.10	1.00	
Molybdenum	899	6	<0.030	1.30	0.47	<0.030	

٠

TREATED EFFLUENT - PLANT E TREATED WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Typet	Sour	Concentra ce Day			<u>3</u> v
Nonconventional Pollutants (Continued))						ECO
Germanium	899	6	<0.50	<0.50	<0.50	<0.50	SECONDARY
Indium	899	6	<0.50	<0.50	<0.50	<0.50	
Sodium	899	6	0.12	0.34	0.34	0.32	TIN S
Sulfate	899	6	46	630	600	480	SUBCATEGORY
Tin	899	6	<0.25	<0.25	<0.25	<0.25	ATE
Titanium	899	6	<0.25	<0.25	<0.25	<0.25	30 RY
Total Dissolved Solids (TDS)	899	6	510	3,800	3,400	3,100	
Total Organic Carbon (TOC)	899	6	13	11	35	190	SECT
Total Solids (TS)	899	6	640	3,600	3,500	3,300	H I
Vanadium	899	6	<0.030	<0.030	0 <0.030	0 1.30	, A
Yttrium	899	6	<0.25	2.10	<0.25	<0.25	
Conventional Pollutants							
Oil and Grease	899	1	<1	78	11	3	

TREATED EFFLUENT - PLANT E TREATED WASTEWATER SAMPLING DATA

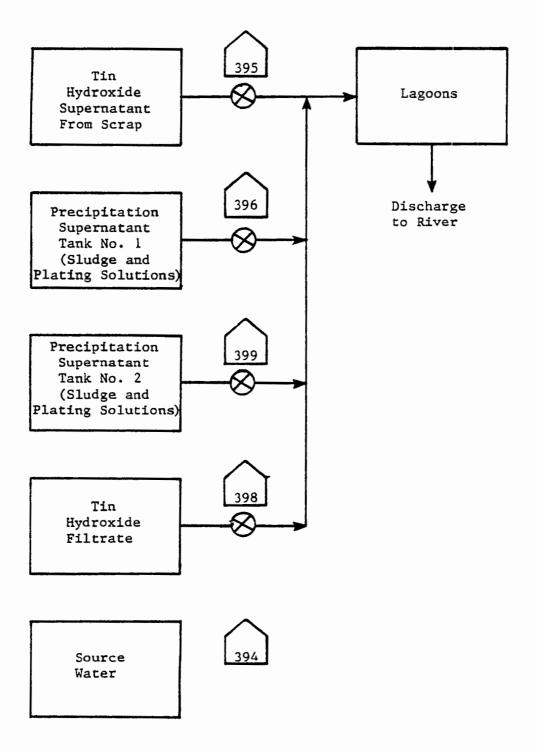
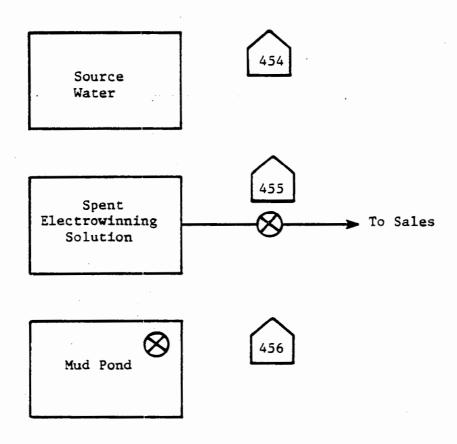
	Stream	Sample	Con			
Pollutant	Code	Typet	Source	Day 1	Day 2	Day 3
Conventional Pollutants (Continued)						
Total Suspended Solids (TSS)	899	6	5	<1	4	4
pH (standard units)	899		7.20	6.30	6.30	6.0

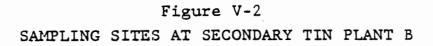
TABLE V-23

SECONDARY TIN SAMPLING DATA RAW WASTEWATER FROM SELF SAMPLING DATA

Pollutant	Concentration	<u>(mg/l)</u>
Sample Number	88176	88147
Toxic Pollutants		
ll7. beryllium	<0.050	
118. cadmium	0.050	
119. chromium	<0.500	
120. copper	<0.500	
121. cyanide	2.000	75.000
122. lead	<0.200	
124. nickel	0.500	
128. zinc	0.480	
Nonconventional Pollutants		
aluminum	12.000	
cobalt	<0.500	
iron	1.500	
	<0.050	
manganese molybdenum	0.520	
tin	<5.000	
C1		
titanium	<2.000	
vanadium	<1.000	

Note: 88176 = Tin Mud Acid Neutralization Filtrate 88147 = De-Aluminizing Rinse


Figure V-1 SAMPLING SITES AT SECONDARY TIN PLANT A

SECONDARY TIN SUBCATEGORY SECT - V

.

•;

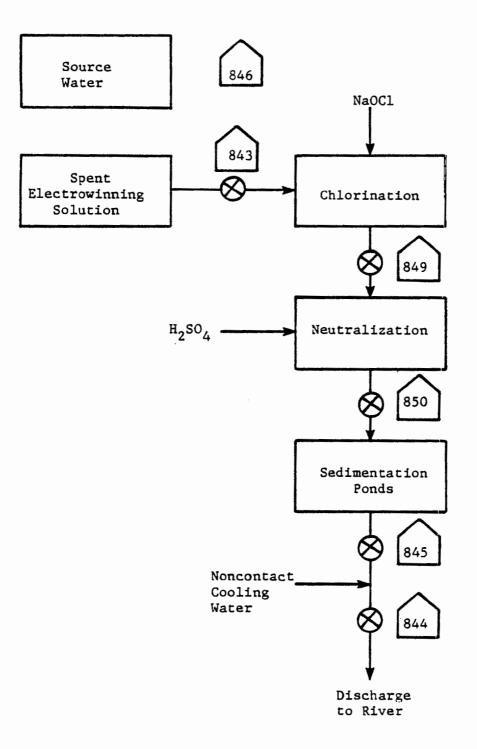
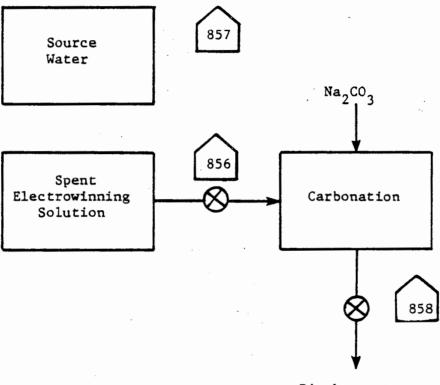
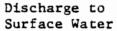
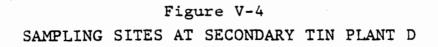
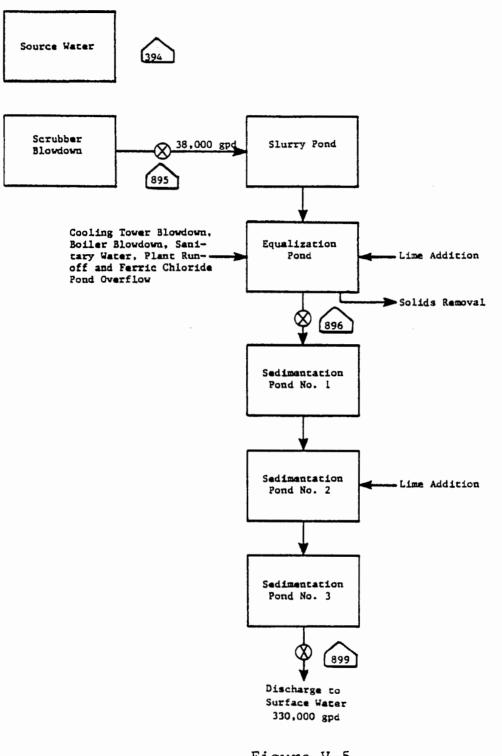






Figure V-3 SAMPLING SITES AT SECONDARY TIN PLANT C

Figure V-5

SAMPLING SITES AT SECONDARY TIN PLANT E

SECONDARY TIN SUBCATEGORY SECT - VI

SECTION VI

SELECTION OF POLLUTANT PARAMETERS

section examines the chemical analysis data presented in This Section V and discusses the selection or exclusion of pollutants for potential limitation. The basis for the regulation of toxic and other pollutants, along with a discussion of each pollutant selected for potential limitation is presented in Section VI of Vol. I. That discussion provides information concerning the nature of the pollutant (i.e., whether it is a naturally occurring substance, processed metal, or a manufactured compound); general physical properties and the form of the pollutant; priority effects of the pollutant in humans and other animals; and behavior of the pollutant in POTW at the concentrations expected in industrial discharges.

The discussion that follows describes the analysis that was performed to select or exclude priority pollutants for further consideration for limitations and standards. Pollutants pollutants will be considered for limitation if they are present in concentrations treatable by the technologies considered in this analysis. The treatable concentrations used for the priority metals were the long-term performance values achievable by precipitation, sedimentation, and filtration. lime The treatable concentrations used for the priority organics are the long-term performance values achievable by carbon adsorption. Also, **c**onventional and nonconventional pollutants and pollutant parameters are selected or excluded from limitation.

Following proposal, additional data was collected concerning raw characteristics from tin smelter scrubbing wastewater This data is presented in section V of this operations. document. Based on comments, the Agency has decided to promulgate different limitations for tin smelter scrubbing operations than for other secondary tin operations. Although secondary tin is still considered a single subcategory, the pollutants selected for tin smelter SO₂ scrubber operations are different than for other secondary tin operations. This is discussed further in Section X.

CONVENTIONAL AND NONCONVENTIONAL POLLUTANT PARAMETERS SELECTED

As part of this study, the Agency examined samples for two conventional pollutant parameters (total suspended solids and pH) and the nonconventional pollutant parameters aluminum, barium, boron, fluoride, iron, manganese and tin. On March 18, 1985 the Agency published a notice of data availability which stated that for the tin smelter SO_2 scrubber building block, the Agency was considering regulating the nonconventional pollutants aluminum, barium, boron, iron, manganese and tin. For promulgation, the Agency has decided not to regulate aluminum, barium, boron, or manganese for the tin smelter SO_2 scrubber building block because these pollutants will be effectively controlled by the limitations developed for the regulated priority metal pollutants and the nonconventional pollutants iron and tin.

The conventional and nonconventional pollutants or pollutant parameters selected for limitation for the secondary tin subcategory are:

- o fluoride
- o iron
- o tin
- o total suspended solids (TSS)
- Hq O

Plants which only smelt tin concentrates and control the SO₂ off-gases with a wet scrubber will not be regulated for fluoride. All other tin facilities will be regulated for fluoride, but will not be regulated for iron.

Fluoride was detected in all 12 raw wastewater samples analyzed for this study. Five of the 12 values are equal to or greater than 12,000 mg/l. These high concentrations of fluoride are found in wastewaters associated with secondary tin production from tin plating solutions and sludges. The fluoride originates as tin fluoroborate or fluoroboric acid which are constituents of tin plating baths. For these reasons, fluoride is selected for limitation in this subcategory.

Iron was analyzed for in four raw wastewater samples. The observed concentrations were 140 mg/l, 190 mg/l, 250 mg/l, and 250 mg/l. All 4 concentrations are greater than the concentration considered achievable with lime, settle and filter treatment (0.28 mg/l). In addition, an iron compound is used as a raw material in the tin smelting operation. For these reasons, iron is selected for limitation in this subcategory.

Tin was analyzed for in all 14 raw waste samples, and was found in concentrations ranging from 0.89 mg/l to 8800 mg/l. All 14 values are greater than the 0.14 mg/l concentration considered achievable by lime, settle and filter technology. Also, tin is expected to be present in the wastewaters from this subcategory because of its prevalence in the process and its solubility. For these reasons, tin is selected for limitation in this subcategory.

TSS concentrations ranging from 25 to 50,000 mg/l were observed in the 14 raw waste samples analyzed for this study. All 14 concentrations are well above the 2.6 mg/l treatable concentration. Furthermore, most of the specific methods used to remove priority metals do so by converting these metals to precipitates, and these priority-metal-containing precipitates should not be discharged. Meeting a limitation on total suspended solids helps ensure that removal of these precipitated priority metals has been effective. For these reasons, total suspended solids is selected for limitation in this subcategory.

The 12 pH values observed during this study ranged from 6.2 to 13.3. Six of the 12 values were outside the 7.5 to 10.0 range considered desirable for discharge to receiving waters. Many deleterious effects are caused by extreme pH values or rapid changes in pH. Also, effective removal of priority metals by precipitation requires careful control of pH. Since pH control within the desirable limits is readily attainable by available treatment, pH is selected for limitation in this subcategory.

TOXIC PRIORITY POLLUTANTS - SECONDARY TIN SUBCATEGORY

The frequency of occurrence of the priority pollutants in the raw wastewater samples is presented in Table VI-1 (page 4233). Table VI-1 is based on the raw wastewater data streams 895, 455, 456, 395, 396, 398, 399, 843, and from 856 Section V). These data provide the basis for (see the categorization of specific pollutants, as discussed Treatment plant samples were not considered in the below. frequency count.

TOXIC POLLUTANTS NEVER DETECTED

toxic pollutants listed in Table VI-2 (page 4223) were The not detected in this any raw wastewater samples in subcategory; therefore, they are not selected for consideration in establishing limitations.

TOXIC POLLUTANTS NEVER FOUND ABOVE THEIR ANALYTICAL QUANTIFICATION CONCENTRATION

The toxic pollutants listed below were never found above their analytical quantification concentration in any raw wastewater samples in this subcategory; therefore, they are not selected for consideration in establishing limitations.

- 9. hexachlorobenzene
- 11. 1,1,1-trichloroethane
- 23. chloroform
- 29. l,l-dichloroethylene
- 34. 2,4-dimethylphenol
- 37. 1,2-diphenylhydrazine
- 39. fluoranthene
- 55. naphthalene
- 62. n-nitrosodimethylamine
- 68. di-n-butyl phthalate
- 78. anthracene
- 80. fluorene
- 81. phenanthrene
- 87. trichloroethylene

TOXIC POLLUTANTS PRESENT BELOW CONCENTRATIONS ACHIEVABLE BY TREATMENT

The pollutants listed below are not selected for consideration in establishing limitations because they were not found in any raw wastewater samples operations in this subcategory above concentrations considered achievable by existing or available treatment technologies. These pollutants are discussed individually following the list.

117. beryllium
123. mercury

Beryllium was detected above its analytical quantification level (0.1 mg/l) in four out of 14 raw wastewater samples. The observed concentrations ranged from 0.02 mg/l to 0.20 mg/l. Three of these values are below the treatable concentration for beryllium (0.20 mg/l). One is right at the treatability concentration and would therefore not be reduced by available treatment technology. Beryllium is therefore not selected for limitation.

Mercury was detected in six out of 14 raw wastewater samples. The six observed concentrations range from 0.0004 mg/l to 0.026 mg/l, all below the concentration considered achievable by identified treatment technology (.036 mg/l). Mercury is therefore not selected for limitation.

TOXIC POLLUTANTS DETECTED IN A SMALL NUMBER OF SOURCES

The following pollutants were not selected for limitation on the basis that they are detectable in the effluent from only a small number of sources within the subcategory and they are uniquely related to only those sources.

4. benzene
38. ethylbenzene
44. methylene chloride
57. 2-nitrophenol
58. 4-nitrophenol
59. 2,4-dinitrophenol
65. phenol
66. bis(2-ethylhexyl) phthalate
67. butyl benzyl phthalate
84. pyrene
86. toluene
88. vinyl chloride

Although these pollutants were not selected for limitation in establishing nationwide regulations, it may be appropriate, on a case-by-case basis, for the local permit issuing authority to specify effluent limitations for one or more of these pollutants. Benzene was detected above its treatable level of 0.01 mg/l in two out of 10 raw wastewater samples. The observed treatable concentrations are .051 and .047 mg/l, just slightly higher than the treatability concentration. Because these values are only slightly higher than could be achieved by treatment and only two in 10 samples showed benzene at a treatable concentration, benzene is not selected for further consideration for limitation.

Ethylbenzene was detected above its treatable concentration of 0.01 mg/l in only one out of ten raw wastewater samples. The observed treatable concentration is 0.011 mg/l. Because it was found at a treatable concentration in only one out of ten samples and because the observed value is only slightly above the treatable concentration, ethylbenzene is not selected for further consideration for limitation.

Methylene chloride was found above its treatable concentration of 0.01 mg/l in three out of 10 raw wastewater samples. Methylene chloride is a common laboratory reagent often detected in blank and raw water samples. The treatable concentrations observed (0.031, 0.025 and 1.724 mg/l) are probably due to laboratory contamination. Methylene chloride is therefore not selected for further consideration for limitation.

2-Nitrophenol was detected above the concentration considered achievable by identified treatment technology (.01 mg/l) in three out of 12 raw wastewater samples. The treatable concentrations observed were .031 mg/l, .06 mg/l and .02 mg/l. The Agency has no reason to believe that treatable concentrations of 2-nitrophenol should be present in secondary tin wastewaters. For this reason, and because it was detected in such a small number of samples, 2-nitrophenol is not selected for further consideration for limitation.

4-Nitrophenol was detected above its treatable concentration of 0.01 mg/l in two out of 12 raw wastewater samples. The observed treatable concentrations are 0.026 and 0.025 mg/l. Because it was found at a treatable concentration in only two out of 12 samples and because the Agency has no reason to believe that treatable concentrations of 4-nitrophenol should be present in secondary tin wastewaters, 4-nitrophenol is not selected for further consideration for regulation.

2,4-Dinitrophenol was detected above its treatable concentration of 0.01 mg/l in two out of 12 raw wastewater samples. The treatable concentrations observed are .033 mg/l and .086 mg/l. Because very little removal could be expected with treatment and because it was detected at treatable concentrations in only two out of 12 samples, 2,4-dinitrophenol is not selected for further consideration for limitation.

Phenol was detected above the concentration considered achievable by available treatment technology (.01 mg/l) in three out of 12 raw wastewater samples. The observed treatable concentrations are 0.017, 0.02 and 0.13 mg/l. Because it was detected in only three of 12 samples, and because the Agency has no reason to believe that treatable concentrations of phenol should be present in secondary tin wastewaters, phenol is not selected for further consideration for limitation.

Bis(2-ethylhexyl) phthalate was detected above its treatability concentration of .01 mg/l in only one out of 12 raw wastewater samples. The observed treatable concentration is 0.268 mg/l. This compound is a plasticizer commonly used in laboratory and field sampling equipment, and is not used or formed as a by-product in this subcategory. For this reason and because it was detected at a treatable concentration in only one out of 12 raw wastewater samples, bis(2-ethylhexyl) phthalate is not selected for further consideration for limitation.

Butyl benzyl phthalate was detected above the concentration considered achievable by available treatment technology (.01 mg/l) in three out of 12 raw wastewater samples. The observed concentrations are .011 mg/l, .012 mg/l, and .025 mg/l. This compound is a plasticizer commonly used in laboratory and field equipment, and is not used or formed as a by-product in this subcategory. For this reason, and because it was detected in only three out of 12 samples, butyl benzyl phthalate is not selected for further consideration for limitation.

Pyrene was detected above its treatability concentration of .01 mg/l in only one out of 12 raw wastewater samples. The observed treatable concentration is .063 mg/l. The Agency has no reason to believe that treatable concentration of pyrene should be present in secondary tin wastewaters. For this reason, and because it was detected at a treatable concentration in only one out of 12 samples, pyrene is not selected for further consideration for limitation.

Toluene was detected above its treatable concentration of 0.01 mg/l in two out of ten raw wastewater samples. The observed treatable concentrations are 0.018 and 0.017 mg/l. Because toluene was detected in only two out of ten raw wastewater samples at concentrations only slightly above treatabilty and because it was detected in the source water sample at 0.093 mg/l, toluene is not selected for further consideration for regulation.

Vinyl chloride was detected above the concentration considered achievable by identified treatment technology (.01 mg/l) in only one out of 10 raw wastewater samples. The treatable concentration observed is .036 mg/l. Because it was detected in only one out of 10 samples, vinyl chloride is not selected for further consideration for limitation. PRIORITY POLLUTANTS SELECTED FOR FURTHER CONSIDERATION IN ESTABLISHING LIMITATIONS AND STANDARDS

The toxic pollutants listed below are selected for further consideration in establishing limitations and standards in this subcategory. The priority pollutants selected for further consideration for limitation are each discussed following the list.

114. antimony
115. arsenic
118. cadmium
119. chromium
120. copper
121. cyanide
122. lead
124. nickel
125. selenium
126. silver
127. thallium
128. zinc

Antimony was detected above the concentration considered achievable by identified treatment technology (0.47 mg/l) in eight out of 13 raw wastewater samples. The treatable concentrations observed range from 0.9 mg/l to 12.0 mg/l. Antimony is therefore selected for further consideration for limitation.

Arsenic was detected above the concentration considered achievable by identified treatment technology (0.34 mg/l) in eight out of 14 raw wastewater samples. The treatable concentrations observed range from 1.9 mg/l to 6.6 mg/l. Arsenic is therefore selected for further consideration for limitation.

Cadmium was detected above the concentration considered achievable by identified treatment technology (0.049 mg/l) in 13 out of 14 raw wastewater samples. The treatable concentrations observed range from 0.08 mg/l to 0.42 mg/l. Cadmium is therefore selected for further consideration for limitation.

Chromium was detected above the concentration considered achievable by identified treatment technology (0.07 mg/l) in seven out of 14 raw wastewater samples. The treatable concentrations observed range from 0.084 mg/l to 0.99 mg/l. Chromium is therefore selected for further consideration for limitation.

Copper was detected above the concentration considered achievable by identified treatment technology (0.39 mg/l) in four out of 14 raw wastewater samples. The treatable concentrations observed range from 0.41 mg/l to 0.60 mg/l. Copper is therefore selected for further consideration for limitation. Cyanide was detected above the concentration considered achievable by identified treatment technology (0.047 mg/l) in nine out of 13 raw wastewater samples analyzed for this study. The treatable concentrations observed range from 0.22 mg/l to 24 mg/l. Cyanide is therefore selected for further consideration for limitation.

Lead was detected above the concentration considered achievable by identified treatment technology (0.08 mg/l) in ten out of 14 raw wastewater samples. The treatable concentrations observed range from 1.0 mg/l to 11 mg/l. Lead is therefore selected for further consideration for limitation.

Nickel was detected above the concentration considered achievable by identified treatment technology (0.22 mg/l) in nine out of 14 raw wastewater samples. The treatable concentrations observed range from 0.35 mg/l to 4.1 mg/l. Nickel is therefore selected for further consideration for limitation.

Selenium was detected above the concentration considered achievable by identified treatment technology (0.07 mg/l) in seven out of 14 raw wastewater samples. The treatable concentrations observed range from 0.33 mg/l to 32 mg/l. Selenium is therefore selected for further consideration for limitation. Selenium was detected at 3.1 mg/l in the source water sample associated with the wastewater sample in which selenium was observed at 32 mg/l.

Silver was detected above the concentration considered achievable by identified treatment technology (0.07 mg/l) in four out of 14 raw wastewater samples. The treatable concentrations observed range from 0.30 mg/l to 0.40 mg/l. Silver is therefore selected for further consideration for limitation.

Thallium was detected above the concentration considered achievable by identified treatment technology (0.34 mg/l) in five out of 14 raw wastewater samples. The treatable concentrations observed range from 0.59 mg/l to 3.1 mg/l. Thallium is therefore selected for further consideration for limitation.

Zinc was detected above the concentration considered achievable by identified treatment technology (0.23 mg/l) in eight out of 14 raw wastewater samples. The treatable concentrations observed range from 0.24 mg/l to 190 mg/l. Zinc is therefore selected for further consideration for limitation.

Table VI-1

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS SECONDARY TIN SUBCATEGORY RAW WASTEWATER

	Pollutant	Analytical Quantification Concentration (mg/1)(a)	Treatable Concentra- tion (mg/1)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration	DECONE
1.	acenaphthene	0.010	0.01	9	12	12				Ì
2.	acrolein	0.010	0.01	8	10	10				ĥ
3.	acrylonitrile	0.010	0.01	8	10	10				
4.	benzene	0.010	0.01	8	10	6	2		2	+
5.	benzidine	0.010	0.01	9	12	12				Ę
6.	carbon tetrachloride	0.010	0.01	8	10	10				-
7.	chlorobenzene	0.010	0.01	8	10	10				Č
8.	1,2,4-trichlorobenzene	0.010	0.01	9	12	12				2
9.	hexach1orobenzene	0.010	0.01	9	12	10	2			2
10.	1,2-dichloroethane	0.010	0.01	8	10	10				ò
11.	1,1,1-trichloroethane	0.010	0.01	8	10	8	2			-
12.	hexachloroethane	0.010	0.01	9	12	12				- P
13.	1,1-dichloroethane	0.010	0.01	8	10	10				9
14.	1,1,2-trichloroethane	0.010	0.01	8	10	10				6
15.	1,1,2,2-tetrachloroethane	0.010	0.01	8	10	10				- i-
16.	chloroethane	0.010	0.01	8	10	10				
17.	bis(chloromethyl) ether	0.010	0.01	8	10	10				
18.	bis(2-chloroethyl) ether	0.010	0.01	9	12	12				
19.	2-chloroethyl vinyl ether	0.010	0.01	8	10	10				C
20.	2-chloronaphthalene	0.010	0.01	9	12	12				Ę
21.	2,4,6-trichlorophenol	0.010	0.01	9	12	12				2
22.	parachlorometa cresol	0.010	0.01	9	12	12				
23.	chloroform	0.010	0.01	-8	10	8	2	· •		1
24.	2-chlorophenol	0.010	0.01	9	12	12				
25.	1,2-dichlorobenzene	0.010	0.01	9	12	12				1
26.	1,3-dlchlorobenzene	0.010	0.01	9	12	12				
27.	1,4-dichlorobenzene	0.010	0.01	9	12	12				
28.	3,3'-dichlorobenzidine	0.010	0.01	9	12	12				
29.	1,1-dichloroethylene	0.010	0.01	8	10	9	1			
30.	1,2-trans-dichloroethylene	0.010	0.01	8	10	10				
31.	2,4-dichlorophenol	0.010	0.01	9	12	12				
32.	1,2-dichloropropane	0.010	0.01	8	10	10				
33.	1,3-dichloropropylene	0.010	0.01	· 8	10	10				
34.	2,4-dimethylphenol	0.010	0.01	9	12	10	2			

ł

SECONDARY TIN SUBCATEGORY

SECT - VI

Table VI-1 (Continued)

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS SECONDARY TIN SUBCATEGORY RAW WASTEWATER

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/1)(b)	Number of Streams Analyzed	Number of Samples Analyzed	<u>ND</u>	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration	SECONDARY
35.	2.4-dinitrotoluene	0.010	0.01	9	11	11				DA
36.	2,6-dinitrotoluene	0.010	0.01	9	11	11				5
37.	1,2-diphenylhydrazine	0.010	0.01	9	12	10	2			R
38.	ethylbenzene	0.010	0.01	8	10	9			1	L 3
39.	fluoranthene	0.010	0.01	9	12	11	1			TIN
40.	4-chlorophenyl phenyl ether	0.010	0.01	9	12	12				z
41.	4-bromophenyl phenyl ether	0.010	0.01	9	12	12				
42.	bls(2-chloroisopropyl) ether	0.010	0.01	9	12	12				JS
43.	bis(2-chloroethoxy) methane	0.010	0.01	9	12	12				ΒĽ
44.	methylene chloride	0.010	0.01	8	10	4	3		3	ñ
45.	methyl chloride	0.010	0.01	8	10	10				A
46.	methyl bramide	0.010	0.01	8	10	10				Π
47.	bromoform	0.010	0.01	8	10	10				ដី
48.	dichlorobromomethane	0.010	0.01	8	10	10				Õ
49.	trichlorofluoromethane	0.010	0.01	8	10	10				SUBCATEGORY
50.	dichlorodifluoromethane	0.010	0.01	8	10	10				R
51.	chlorodibromomethane	0.010	0.01	8	10	10				
52.	hexachlorobutadiene	0.010	0.01	9	12	12				
53.	hexachlorocyclopentadiene	0.010	0.01	9	12	12				70
54.	isophorone	0.010	0.01	9	12	12				SECT
55.	naphthalene	0.010	0.01	9	12	8	4			ñ
56.	nitrobenzene	0.010	0.01	9	12	12				Ы
57.	2-nitrophenol	0.010	0.01	9	12	7	1	1	3	,
58.	4-nitrophenol	0.010	0.01	9	12	9	1		2	•
59.	2,4-dinitrophenol	0.010	0.01	9	12	10			2	ΥI
60.	4.6-dinitro-o-cresol	0.010	0.01	9	. 12	12				н
61.	N-nitrosodimethylamine	0.010	0.01	9	12	12				
62.	N-nitrosodiphenylanine	0.010	0.01	9	12	9	3			
63.	N-nitrosodi-n-propylamine	0.010	0.01	9	12	12				
64.	pentachlorophenol	0.010	0.01	9	12	12				
65.	phenol	0.010	0.01	9	12	6	3		3	
66.	bis(2-ethylhexyl) phthalate	0.010	0.01	9	12	5	6		1	
67.	bucyl benzyl phthalate	0.010	0.01	9	12	7	2		3	
68.	di-n-buryl phthalate	0.010	0.01	9	12	7	5			

Table VI-1 (Continued)

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS SECONDARY TIN SUBCATEGORY RAW WASTEWATER

	<u>Pol lutant</u>	Analytical Quantification Concentration (mg/l)(a)	Treatable Concentra- tion (mg/1)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration	SECONDARY
69.	di-n-octyl phthalate	0.010	0.01	9	12	12				R
70.	diethyl phthalate	0.010	0.01	9	12	12				
71.	dimethyl phthalate	0.010	0.01	9	12	12				Ή
72.	benzo(a)anthracene	0.010	0.01	9	12	12				TIN
73.	benzo(a)pyrene	0.010	0.01	9	12	12				z
74.	3,4-benzofluoranthene	0.010	0.01	9	12	12				0
75.	benzo(k)fluoranthene	0.010	0.01	9	12	12				ä
76.	chrysene	0.010	0.01	9	12	12				SUBCATEGORY
11.	acenaphthylene	0.010	0.01	9	12	12				2
78.	anthracene (c)	0.010	0.01	9	12	11	1			ЦЧ
79.	benzo(ghi)perylene	0.010	0.01	9	12	12				Ē
80.	fluorene	0.010	0.01	9	12	11	1			Q
81.	phenanthrene (c)	0.010	0.01	9	12	11	1			g
82.	dibenzo(a,h)anthracene	0.010	0.01	9	12	12				Ř
83.	indeno(1,2,3-c,d)pyrene	0.010	0.01	9	12	12				
84.	pyrene	0.010	0.01	9	12	10	1		1	
85.	tetrachloroethylene	0.010	0.01	8	10	10				
86.	toluene	0.010	0.01	8	10	6	2		2	S
87.	trichloroethylene	0.010	0.01	8	10	8	2			SECT
88.	vinyl chloride	0.010	0.01	8	10	9			1	ß
89.	aldrin	0.005	0.01	8	10	10				Н
90.	dieldrin	0.005	0.01	8	10	10				1
91.	chlordane	0.005	0.01	8	10	10				
92.	4,4'-DDI	0.005	0.01	8	10	10				٧I
93.	4,4'-DDE	0.005	0.01	8	10	10				ы
94.	4,4'-DDD	0.005	0.01	8	10	10				
95.	alpha-endosul fan	0.005	0.01	8	10	10				
96.	beta-endosul fan	0.005	0.01	8	10	10				
97.	endosul fan sul fate	0.005	0.01	8	10	10				
98.	endrin	0.005	0.01	8	10	10				
99.	endrin aldehyde	0.005	0.01	8	10	10				
100.	heptachlor	0.005	0.01	8	10	10				
101.	heptachlor epoxide	0.005	0.01	8	10	10				
102.	alpha-BBC	0.005	0.01	8	10	10				
103.	beta-BHC	0.005	0.01	8	10	10				

Table VI-1 (Continued)

FREQUENCY OF OCCURRENCE OF PRIORITY POLLUTANTS SECONDARY TIN SUBCATEGORY RAW WASTEWATER

	Polluta	int	Analytical Quantification Concentration (mg/1)(a)	Treatable Concentra- tion (mg/1)(b)	Number of Streams Analyzed	Number of Samples Analyzed	ND	Detected Below Quantification Concentration	Detected Below Treat- able Concen- tration	Detected Above Treat- able Concen- tration	SECON
104.	gamma-BHC		0.005	0.01	8	10	10				DAU
105.	delta-BHC		0.005	0.01	8	10	10				- 5
106.	PCB-1242	(d)	0.005	0.01	8	10	10				
107.	PCB-1254	(d)	0.005	0.01	8	10	10				÷
108.	PCB-1221	(d)	0.005	0.01	8	10	10				
109.	PCB-1232	(e)	0.005	0.01	8	10	10				2
110.	PCB-1248	(e)	0.005	0.01	8	10	10				v
111.	PCB-1260	(e)	0.005	0.01	8	10	10				č
112.	PCB-1016	(e)	0.005	0.01	8	10	10				μ
113.	toxaphene		0.005	0.01	8	10	10				- Ç
114.	antimony		0.100	0.47	9	13		5		8	Ě
115.	arsenic		0.010	0.34	9	14		6		8	ج
116.	asbestos		10 MFL	10 MFL							ୁ
117.	beryllium		0.010	0.20	9	14		10	4		C C
118.	cadmium		0.002	0.049	9	14		1		13	A K
119.	chromium		0.005	0.07	9	14		1	6	7	
120.	copper		0.009	0.39	9	14			10	4	
121.		(f)	0.02	0.047	9	13		4		9	
122.	lead		0.020	0.08	9	14			4	10	U
123.	mercury		0.0001	0.036	9	14		8	6		Ť
124.	nickel		0.005	0.22	9	14		1	4	9	C
125.	selenium		0.01	0.20	9	14		3	4	7	Ŀ,
126.	silver		0.02	0.07	9	14		9	1	4	1
127.	thallium		0.100	0.34	9	14		6	3	5	
128.	zine		0.050	0.23	9	14		1	5	8	
129.	2,3,7,8-tetra p-dioxin (1	achlorodibenzo- ICDD)				0					F

(a) Analytical quantification concentration was reported with the data (see Section V).

(b) Treatable concentrations are based on performance of lime precipitation, sedimentation, and filtration.

(c), (d), (e) Reported together.

(f) Analytical quantification concentration for EPA Method 335.2, Total Cyanide Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, March 1979.

TABLE VI-2

TOXIC POLLUTANTS NEVER DETECTED

1. acenaphthene 2. acrolein acrvlonitrile 5. benzidene 6. carbon tetrachloride (tetrachloromethane) 7. chlorobenzene 8. 1,2,4-trichlorobenzene 10. 1,2-dichloroethane 12. hexachloroethane 13. 1,1-dichloroethane 14. 1,1,2-trichloroethane 15. 1,1,2,2-tetrachloroethane 16. chloroethane 17. bis (chloromethyl) ether (deleted) 18. bis (2-chloroethyl) ether 19. 2-chloroethyl vinyl ether 20. 2-chloronaphthalene 21. 2,4,6-trichlorophenol 22. parachlorometa cresol 24. 2-chlorophenol 25. 1,2-cichlorobenzene 26. 1,3-dichlorobenzene 27. 1,4-dichlorobenzene 28. 3,3'-dichlorobenzidine 30. 1,2-trans-dichloroethylene 31. 2,4-dichlorophenol 32. 1,2-dichloropropane 33. 1,2-dichloropropylene (1,3-dichloropropene) 35. 2,4-dinitrotoluene 36. 2,6-dinitrotoluene 40. 4-chlorophenyl phenyl ether 41. 4-bromophenyl phenyl ether 42. bis(2-chloroisopropyl) ether 43. bis(2-chloroethoxy) methane 45. methyl chloride (chloromethane) 46. methyl bromide (bromomethane) 47. bromoform (tribromomethane) 48. dichlorobromomethane 49. trichlorofluoromethane (deleted) 50. dichlorodifluoromethane (deleted) 51. chlorodibromomethane 52. hexachlorobutadiene 53. hexachlorocyclopentadiene 54. isophorone 56. nitrobenzene

TABLE VI-2 (Continued)

TOXIC POLLUTANTS NEVER DETECTED

```
60. 4,6-dinitro-o-cresol
 61. N-nitrosodimethylamine
 63. N-nitrosodi-n-propylamine
 64. pentachlorophenol
 69. di-n-octyl phthalate
 70. diethyl phthalate
 71. dimethyl phthalate
 72. benzo(a)anthracene (1,2-benzanthracene)
 73. benzo(a)pyrene (3,4-benzopyrene)
 74. 3,4-benzofluoranthene
 75. benzo(k)fluoranthene (ll,l2-benzofluoranthene)
 76. chrysene
 77. acenaphthylene
 79. benzo(qhi)perylene (1,11-benzoperylene)
 82. dibenzo(a,h)anthracene (1,2,5,6-dibenzanthracene)
 83. indeno(1,2,3-cd)pyrene (w,e,-o-phenylenepyrene)
 85. tetrachloroethylene
 89. aldrin
 90. dieldrin
 91. chlordane (technical mixture and metabolites)
 92. 4,4'-DDT
 93. 4, 4' - DDE(p, p'DDX)
 94. 4,4'-DDD(p,p'TDE)
 95. a-endosulfan-Alpha
 96. b-endosulfan-Beta
 97. endosulfan sulfate
 98. endrin
 99. endrin aldehyde
100. heptachlor
101. heptachlor epoxide
102. Alpha - BHC
103. Beta - BHC
104. Gamma - BHC (lindane)
105. Delta - BHC
106. PCB-1242 (Arochlor 1242)
107. PCB-1254 (Arochlor 1254)
108. PCB-1221 (Arochlor 1221)
109. PCB-1232 (Arochlor 1232)
110. PCB-1248 (Arochlor 1248)
111. PCB-1260 (Arochlor 1260)
112. PCB-1016 (Arochlor 1016)
113. toxaphene
116. asbestos
129. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
```

SECTION VII

CONTROL AND TREATMENT TECHNOLOGIES

The preceding sections of this supplement discussed the sources, flows, and characteristics of the wastewaters generated in the secondary tin subcategory. This section summarizes the description of these wastewaters and indicates the level of treatment which is currently practiced for each waste stream. This section also presents the control and treatment technology options which were examined by the Agency for possible application to the secondary tin subcategory.

CURRENT CONTROL AND TREATMENT PRACTICES

This section presents a summary of the control and treatment technologies that are currently applied to each of the sources generating wastewater in this subcategory. As discussed in with the secondary tin Section V, wastewater associated subcategory is characterized by the presence of the priority metal pollutants, cyanide, iron, fluoride, tin and suspended solids. This analysis is supported by the raw (untreated) wastewater data presented for specific sources as well as combined waste streams in Section V. Generally, these pollutants are present in each of the waste streams at concentrations above treatability, and these waste streams are commonly combined for treatment. Construction of one wastewater treatment system for combined treatment allows plants to take advantage of economies of scale, and, in some instances, to combine streams of differing alkalinity to reduce treatment chemical requirements. Three plants in this subcategory currently have combined wastewater treatment systems. One has cyanide oxidation with chlorine, followed by acid neutralization and sedimentation. One has lime precipitation and sedimentation and one has sedimentation lagoons only. Two options have been selected for consideration for BPT, BAT, NSPS, and pretreatment in this subcategory, based on combined treatment of these compatible waste streams.

TIN SMELTER SO₂ SCRUBBER

The one plant which practices tin smelting from concentrates and residues uses an alkaline scrubber to control SO₂ emissions from the smelting operations. The facility practices greater than 90 percent recycle of the scrubber liquor. The scrubber liquor contains treatable concentrations of priority metals and suspended solids. This stream is directly discharged after treatment consisting of lime addition and sedimentation.

DEALUMINIZING RINSE

The facility which reported the use of municipal solid waste as a

SECONDARY TIN SUBCATEGORY SECT - VII

raw material uses an alkaline leaching and rinsing process to remove aluminum from the scrap prior to detinning operations. The spent leachate and rinse water have a very alkaline pH and contain treatable concentrations of cyanide and priority metals. The one facility reporting this stream discharges it directly after treatment consisting of sulfide addition to precipitate aluminum, cyanide oxidation with sodium hypochlorite, acid neutralization, vacuum filtration and sedimentation.

TIN MUD ACID NEUTRALIZATION FILTRATE

Tin mud may be neutralized with sulfuric acid and dewatered in a filter press prior to sales to a tin smelter. The filtrate contains treatable concentrations of priority metals and cyanide. The one facility reporting this waste stream is an indirect discharger with no treatment in place.

TIN HYDROXIDE WASH

The one facility which reported the use of tin hydroxide, Sn(OH)4, as a raw material, washes the tin hydroxide with water prior to dissolving it in a caustic solution. This solution is then mixed with the sodium stannate solution from alkaline detinning and tin is recovered from the combined stream by electrowinning. The spent wash water contains treatable concentrations of priority metals and suspended solids. The one facility reporting this waste stream achieves zero discharge through the use of evaporation ponds.

SPENT ELECTROWINNING SOLUTION FROM NEW SCRAP

New tin plated steel scrap is used as a raw material at 10 out of 12 secondary tin plants. After alkaline detinning, the tin is recovered by electrowinning and either all or a portion of the spent solution is discharged as a waste stream. The spent solution has a very alkaline pH and contains treatable concentrations of cyanide, priority metals, and suspended solids. Of the eight plants which practice electrowinning, six achieve zero discharge by contractor disposal, sales or evaporation ponds. Of the two plants which discharge this stream, one is an indirect discharger with no treatment in place and the other is a direct discharger with treatment consisting of cyanide oxidation with chlorine, acid addition, vacuum filtration and sedimentation.

SPENT ELECTROWINNING SOLUTION FROM MUNICIPAL SOLID WASTE

The one facility which reported the use of municipal solid waste as a raw material to alkaline detinning and electrowinning discharges a spent electrowinning solution waste stream. This stream has a very alkaline pH and contains treatable concentrations of cyanide, priority metals, and suspended solids. This stream is discharged directly after treatment consisting of cyanide oxidation with chlorine, acid addition, vacuum filtration and sedimentation.

TIN HYDROXIDE SUPERNATANT FROM SCRAP

Tin hydroxide may be precipitated from alkaline detinning solution as an alternative to electrowinning for tin recovery. Sulfuric acid and sodium carbonate are added to the sodium stannate solution and the tin hydroxide forms an insoluble precipitate which is separated from the liquid phase by sedimentation. The supernatant waste stream contains treatable concentrations of cyanide and priority metals. The reporting is a this waste stream direct one plant discharger after treatment in sedimentation lagoons.

TIN HYDROXIDE SUPERNATANT FROM PLATING SOLUTIONS AND SLUDGES

Tin hydroxide may be precipitated from spent plating solutions and sludges generated from tin plated steel manufacturing operations. Sulfuric acid and sodium carbonate are added to the solution and an insoluble precipitate of tin hydroxide is formed. phase The precipitate is separated from the liquid by supernatant stream contains treatable sedimentation. The concentrations of cyanide and priority metals as well as high concentrations of fluoride. The one plant reporting this stream is a direct discharger after treatment in waste sedimentation lagoons.

TIN HYDROXIDE FILTRATE

Tin hydroxide slurry which has been separated from the supernatant stream may be further dewatered in a filter press prior to drying. The resultant filtrate waste stream contains treatable concentrations of antimony, cyanide, fluoride, and suspended solids. The one facility reporting this waste stream is a direct discharger after treatment in sedimentation lagoons.

CONTROL AND TREATMENT OPTIONS

The Agency examined two control and treatment technology alternatives that are applicable to the secondary tin subcategory. The options selected for evaluation represent a combination of flow reduction, pretreatment technology applicable to individual waste streams, and end-of-pipe treatment technologies.

OPTION A

Option A for the secondary tin subcategory requires treatment technologies to reduce pollutant mass. The Option A treatment scheme consists of cyanide precipitation preliminary treatment applied to the combined stream of dealuminizing rinse, spent electrowinning solution from new scrap and municipal solid waste, tin hydroxide supernatant from scrap, tin hydroxide supernatant from plating solutions and sludges, tin hydroxide filtrate, and tin mud acid neutralization filtrate. Preliminary treatment is followed by chemical precipitation and sedimentation applied to the combined stream of cyanide precipitation effluent, tin smelter SO₂ scrubber and tin hydroxide wash. Chemical precipitation is used to remove metals and fluoride by the addition of lime or sulfuric acid followed by gravity sedimentation. Suspended solids are also removed by the process. It is necessary to use lime as the precipitation chemical in order to achieve effective tin removal.

OPTION C

Option C for the secondary tin subcategory consists of all control and treatment requirements of Option A (cyanide precipitation, chemical precipitation, and sedimentation) plus multimedia filtration technology added at the end of the Option A treatment scheme. Multimedia filtration is used to remove suspended solids, including precipitates of metals and fluoride, beyond the concentration attainable by gravity sedimentation. The filter suggested is of the gravity, mixed media type, although other forms of filters such as rapid sand filters or pressure filters would perform as well. The addition of filters also provides consistent removal during periods in which there are rapid increases in flows or loadings of pollutants to the treatment system.

SECTION VIII

COST OF WASTEWATER TREATMENT AND CONTROL

This section presents a summary of compliance costs for the secondary tin subcategory and a description of the treatment options and subcategory-specific assumptions used to develop these estimates. Together with the estimated pollutant removals presented in Sections IX, X, XI, and XII of this supplement, these cost estimates provide a basis for evaluating each regulatory option. These cost estimates are also used in determining the probable economic impact of regulation on the subcategory at different pollutant discharge levels. In addition, this section addresses nonwater quality environmental impacts of wastewater treatment and control alternatives, including air pollution, solid wastes, and energy requirements, which are specific to the secondary tin subcategory.

TREATMENT OPTIONS FOR EXISTING SOURCES

As discussed in Section VII, two treatment options have been developed for existing secondary tin sources. The treatment schemes for each option are summarized below and schematically presented in Figures X-1 and X-2 (pages 4279 - 4280).

OPTION A

Option A consists of preliminary treatment consisting of cyanide precipitation where required and chemical precipitation and sedimentation end-of-pipe technology.

OPTION C

Option C consists of Option A preliminary treatment consisting of cyanide precipitation where required and chemical precipitation and sedimentation with the addition of multimedia filtration.

COST METHODOLOGY

A detailed discussion of the methodology used to develop the compliance costs is presented in Section VIII of Vol. Ι. Plant-by-plant compliance costs for the nonferrous metals revised manufacturing category have been as necessarv proposal. These revisions calculate incremental following costs, above treatment already in place, necessary to comply with the promulgated effluent limitations and standards and are presented in the administrative record supporting this regulation. A comparison of the costs developed for proposal and the revised costs for the final rulemaking for the secondary subcategory are presented in Tables VIII-1 and VIII-2 tin (page 4237).

Each of the general assumptions used to develop compliance costs is presented in Section VIII of Vol. I. Each subcategory also contains a unique set of waste streams requiring certain subcategory-specific assumptions to develop compliance costs. The four major assumptions specific to the secondary tin subcategory are discussed briefly below.

of calcium fluoride (1)The generation (CaF₂) during cases chemical precipitation was considered in where significant amounts of fluoride were present. If the sludge resulting from chemical precipitation was mostly composed of (> 50 percent), it was assumed to be suitable CaF₂ for resale for use as a fluxing agent. Thus, annual costs for contract hauling of these sludges were not included in these instances.

(2) All sludges produced from wastewater treatment are considered to be nonhazardous except for those resulting from cyanide precipitation, which contain cyanide. Such cyanide bearing sludges were costed as being disposed separately based on hazardous waste contract hauling costs.

(3) The sampling values for TSS and aluminum concentration in spent electrowinning solutions were revised. It was assumed that the values reported were in error by a factor of 1000 based on conversations with personnel at one of the two sampled plants and evaluation of the reported data. The concentrations were revised as follows:

	Old	New
TSS	36,500 mg/l	36.5 mg/l
Al.	28,700 mg/l	28.7 mg/l

(4) Cost estimates for cyanide precipitation for plants 1046 and 1047 do not include costs for a reaction tank and agitator. This was done because in each case the low total flow rates into the treatment system resulted in retention (or holdup) times in the chemical precipitation tank large enough to allow both cyanide precipitation and chemical precipitation to occur without significantly increasing the tank size. For example, the retention time in the chemical precipitation tank for Plant 1047 was four days or 96 hours. Since the required batch duration for cyanide precipitation was 8.5 hr. and 16 hr. for chemical precipitation, both processes could be accomplished within the time available. The above procedure resulted in a significant

NONWATER QUALITY ASPECTS

Nonwater quality impacts specific to the secondary tin subcategory, including energy requirements, solid waste and

air pollution are discussed below.

ENERGY REQUIREMENTS

Energy requirements for Option A are estimated at 576,000 kwh/yr. Option C, which includes filtration, is estimated to increase energy consumption over Option A by approximately one percent. Further, the total energy requirement Option C is approximately one percent of the estimated for total plant energy usage. It is therefore concluded that the energy requirements of the treatment options considered will significant impact on total plant energy have no consumption.

SOLID WASTE

Sludge generated in the secondary tin subcategory is due to the precipitation of metals as hydroxides and carbonates using Sludges associated with the secondary tin subcategory lime. will necessary contain quantities of priority metal pollutants. Sludges from primary operations are not subject to regulation as hazardous wastes since wastes generated by primary smelters and refiners are currently exempt from regulation by Act of Congress (Resource Conservation and Recovery Act (RCRA), Section 3001(b)), as interpreted by EPA. Wastes from secondary metal operations can be regulated as hazardous. However, the Agency examined the solid wastes that would be generated at secondary nonferrous metals manufacturing plants by the suggested treatment technologies and believes they are not hazardous wastes under the Agency's regulations implementing Section 3001 of RCRA, with one exception. This judgment is based on the results of Extraction Procedure (EP) toxicity tests performed on similar sludges (i.e. toxic-metal-bearing lime sludges) generated by other industries such as the iron and steel industry. A small amount (5-10%) excess lime was added during treatment, and the sludges subsequently generated passed the toxicity test. See CFR 8261.24. Thus, the Agency believes that the wastewater sludges from both secondary operations will not be EP toxic if the recommended technology is applied. The one exception is that sludges produced as a result of cyanide precipitation are expected to exhibit hazardous characteristics, and have been treated as such in our analysis.

Although it is the Agency's view that most of the solid wastes generated as a result of these guidelines are not expected to be hazardous, generators of these wastes must test the waste to determine if the wastes meet any of the characteristics of hazardous waste (see 40 CFR 262.11).

If these wastes should be identified or are listed as hazardous, they will come within the scope of RCRA's "cradle to grave" hazardous waste management program, requiring regulation from the point of generation to point of final disposition. EPA's generator standards would require generators of hazardous nonferrous metals manufacturing wastes to meet containerization,

SECONDARY TIN SUBCATEGORY SECT - VIII

labeling, recordkeeping, and reporting requirements; if plants dispose of hazardous wastes off-site, they would have to prepare a manifest which would track the movement of the wastes from the generator's premises to a permitted off60site treatment, storage, or disposal facility. See 40 CFR 262.20, 45 FR 33142 (May 19, as amended at 45 FR 86973 (December 31, 1980). 1980), The transporter regulations require transporters of hazardous wastes to comply with the manifest system to assure that the wastes are delivered to a permitted facility. See 40 CFR 263.20, 45 FR 33151 (May 19, 1980), as amended at 45 FR 86973 (December 31, 1980). Finally, RCRA regulations establish standards for 1980). hazardous waste treatment, storage, and disposal facilities allowed to receive such wastes. See 40 CFR Part 464, 46 FR 2802 (January 12, 1981), and 47 FR 32274 (July 26, 1982).

Even if these wastes are not identified as hazardous, they still must be disposed of in compliance with the Subtitle D open dumping standards, implementing Section 4004 of RCRA. See 44 FR 53438 (September 13, 1979). The Agency has calculated as part of the costs for wastewater treatment the cost of hauling and disposing of these wastes.

It is estimated that 2,781 metric tons per year of sludge will be generated as a result of these proposed BAT and PSES regulations for the secondary tin subcategory.

AIR POLLUTION

There is no reason to believe that any substantial air pollution problems will result from implementation of cyanide precipitation, chemical precipitation, sedimentation, and multimedia filtration. These technologies transfer pollutants to solid waste and are not likely to transfer pollutants to air.

TABLE VIII-1

COST OF COMPLIANCE FOR THE SECONDARY TIN SUBCATEGORY DIRECT DISCHARGERS

Compliance costs for direct dischargers in this subcategory are not presented here because the data on which they are based has been claimed to be confidential.

TABLE VIII-2

COST OF COMPLIANCE FOR THE SECONDARY TIN SUBCATEGORY INDIRECT DISCHARGERS

Option	Proposal <u>Capital Cost</u>		Promulgati <u>Capital Cost</u>	
A	333400	112200	156612	46676
в	341700	119900	160187	50044

SECONDARY TIN SUBCATEGORY SECT - VIII

THIS PAGE INTENTIONALLY LEFT BLANK

.

.

SECTION IX

BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

This section defines the effluent characteristics attainable through the application of best practicable control technology currently available (BPT). BPT reflects the existing performance by plants of various sizes, ages, and manufacturing processes within the secondary tin subcategory, as well as the established performance of the recommended BPT systems. Particular consideration is given to the treatment already in place at the plants within the data base.

The factors considered in identifying BPT include the total cost applying the technology in relation to the effluent reduction of benefits from such application, the age of equipment and facilities involved, the manufacturing processes used, nonwater quality environmental impacts (including energy requirements), and other factors the Administrator considers appropriate. In general, the BPT level represents the average of the existing performances of plants of various ages, sizes, processes, or other common characteristics. Where existing performance is uniformly inadequate, BPT may be transferred from a different subcategory or category. Limitations based on transfer of technology are supported by a rationale concluding that the technology is, indeed, transferable, and a reasonable prediction that it will be capable of achieving the prescribed effluent limits (see Tanner's Council of America v. Train, 540 F.2d 1188 (4th Cir. 1976). BPT focuses on end-of-pipe treatment rather than process changes or internal controls, except where such practices are common industry practice.

TECHNICAL APPROACH TO BPT

The Agency studied the nonferrous metals category to identify the processes used, the wastewaters generated, and the treatment processes installed. Information was collected from the category using data collection portfolios, and specific plants were sampled and the wastewaters analyzed. In making technical assessments of data, reviewing manufacturing processes, and assessing wastewater treatment technology options, both indirect and direct dischargers have been considered as a single group. An examination of plants and processes did not indicate any process differences based on the type of discharge, whether it be direct or indirect.

As explained in Section IV, the secondary tin subcategory has been subdivided into nine potential wastewater sources. Since the water use, discharge rates, and pollutant characteristics of each of these wastewaters is potentially unique, effluent limitations will be developed for each of the nine subdivisions. For each of the subdivisions, a specific approach was followed for the development of BPT mass limitations. The first requirement to calculate these limitations is to account for production and flow variability from plant to plant. Therefore, a unit of production or production normalizing parameter (PNP) was determined for each waste stream which could then be related to the flow from the process to determine a production normalized flow. Selection of the PNP for each process element is discussed in Section IV. Nonprocess wastewaters such as rainfall runoff and noncontact cooling water are not considered in the analysis.

Production normalized flows for each subdivision were then analyzed to determine the flow to be used as part of the basis for BPT mass limitations. The selected flow (sometimes referred to as the BPT regulatory flow or BPT discharge rate) reflects the water use controls which are common practices within the category. The BPT regulatory flow is based on the average of all applicable data. Plants with normalized flows above the average may have to implement some method of flow reduction to achieve the BPT limitations.

The second requirement to calculate mass limitations is the set of concentrations that are achievable by application of the BPT level of treatment technology. Section VII discusses the various control and treatment technologies which are currently in place for each wastewater source. In most cases, the current control and treatment technologies consist of chemical precipitation and sedimentation (lime and settle technology). Cyanide precipitation is applied to streams with treatable concentrations of cyanide.

Using these regulatory flows and the achievable concentrations, the next step is to calculate mass loadings for each wastewater source or subdivision. This calculation was made of stream-by-stream basis, primarily because plants in on a this subcategory may perform one or more of the operations in various combinations. The mass loadings (milligrams of pollutant per metric ton of production mg/kkg) were calculated bv multiplying the BPT regulatory flow (1/kkg) by the concentration achievable by the BPT level of treatment technology (mg/l) for each pollutant parameter to be limited under BPT. These mass loadings are published in the Federal Register and in CFR Part 421 as the effluent limitations and standards for the subcategory.

The mass loadings which are allowed under BPT for each plant will be the sum of the individual mass loadings for the various building blocks which are found at particular plants. Accordingly, all the wastewater generated within a plant may be combined for treatment in a single or common treatment system, but the effluent limitations for these combined wastewaters are based on the various wastewater sources which actually contribute to the combined flow. This method accounts for the variety of combinations of wastewater sources and production processes which may be found at secondary tin plants.

The Agency usually establishes wastewater limitations in terms of mass rather than concentration. This approach prevents the use of dilution as a treatment method (except for controlling pH). The production normalized wastewater flow (l/kkg) is a link between the production operations and the effluent limitations. The pollutant discharge attributable to each operation can be calculated from the normalized flow and effluent concentration achievable by the treatment technology and summed to derive an appropriate limitation for each plant.

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

In balancing costs in relation to effluent reduction benefits, EPA considers the volume and nature of existing discharges, the volume and nature of discharges expected after application of BPT, the general environmental effects of the pollutants, and the cost and economic impacts of the required pollution control level. The Act does not require or permit consideration of water quality problems attributable to particular point sources or industries, or water quality improvements in particular water quality bodies. Accordingly, water quality considerations were not the basis for selecting the proposed or promulgated BPT. See Weyerhaeuser Company v. Costle, 590 F.2d 1011 (D.C. Cir. 1978).

The methodology for calculating pollutant removals and compliance costs is discussed in Section X. The pollutant removal estimates have been revised since proposal based on comments and on new data. Table X-1 (page 4266) shows the pollutant removal estimates for each treatment option for direct dischargers. Compliance costs for direct dischargers are presented in Table X-2 (page 4268).

BPT OPTION SELECTION

The technology basis for the promulgated BPT limitations is Option A, chemical precipitation and sedimentation technology to remove metals, fluoride, and solids from combined wastewaters and to control pH, with preliminary treatment consisting of The promulgated technology is equivalent cyanide precipitation. to technology. Chemical precipitation and the proposed sedimentation technology is already in-place at two of the three direct dischargers in the subcategory. The pollutants specifically selected for regulation at BPT arsenic, cyanide, lead, iron, tin, fluoride, TSS, and pH. are As discussed in Section X, plants which only smelt tin concentrates and SO₂ off-gases with a wet scrubber will control not be regulated for cyanide or fluoride. All other secondary tin plants will be regulated for cyanide and fluoride, but will not regulated for arsenic and iron. The BPT treatment scheme is be presented schematically in Figure IX-1 (page 4257).

Implementation of the promulgated BPT limitations will remove annually an estimated 544 kg of priority metals, 144 kg of

÷

cyanide, 237,220 kg of fluoride, and 506,900 kg of TSS. Capital and annual costs for achieving BPT are not presented here because the data on which they are based has been claimed to be confidential.

More stringent technology options were not selected for BPT since they require in-process changes or end-of-pipe technologies not demonstrated in the subcategory, and, therefore, are more appropriately considered under BAT.

We are transferring cyanide precipitation technology and performance to the secondary tin subcategory from coil coating plants. We believe the technology is transferable to these subcategories because the raw wastewater concentrations are of the same order of magnitude as those observed in coil coating wastewater. In that cyanide precipitation converts all cyanide species to complex cyanides and that precipitation of the complexed cyanides is solubility related, we believe that the technology will achieve identical effluent concentrations in both categories.

WASTEWATER DISCHARGE RATES

A BPT discharge rate is calculated for each building block based on the average of the flows of the existing plants, as determined from analysis of dcp. The discharge rate is used the achievable treatment concentrations to determine with BPT effluent limitations. Since the discharge rate may be different for each wastewater source, separate production normalized discharge rates for each of the 9 wastewater sources are discussed below and summarized in Table IX-1 (page The discharge rates are normalized on a production basis 4247). by relating the amount of wastewater generated to the mass of the intermediate or product which is produced by the process associated with the waste stream in question. These production normalizing parameters, or PNPs, are also listed in Table IX-1 (page 4247).

Section V of this document further describes the discharge flow rates and presents the water use and discharge flow rates for each plant by subdivision in Tables V-1 through V-9 (pages 4068 - 4070)

TIN SMELTER SO2 SCRUBBER

BPT wastewater discharge promulgated for tin smelter The SO₂ scrubber water is 9,198 l/kkg (2,204 gal/ton) of crude tapped tin, based on greater than 90 percent recycle. This rate is allocated only to those plants which use wet air control to control SO₂ emissions from tin pollution smelting operations. Only one facility reported tin smelting operations and the use of wet scrubbing. Water use and discharge presented in Table V-1 (page 4068). are rates This a recycle rate of greater than 90 percent. facility has The BPT flow was revised following proposal based on data

obtained during a field sampling episode.

DEALUMINIZING RINSE

The BPT flow allowance proposed and promulgated for dealuminizing rinse wastewater is 35 l/kkg (9 gal/ton) of dealuminized scrap produced. This rate is allocated only to those plants which practice dealuminizing of tin bearing steel scrap prior to alkaline detinning. Only one facility reported this practice, which is apparently only necessary when municipal solid waste is used as a raw material. The water use and discharge rates reported by this facility are presented in Table V-2 (page 4068). The BPT flow rate is based on the wastewater discharge rate reported by this facility.

TIN MUD ACID NEUTRALIZATION FILTRATE

The BPT wastewater discharge rate proposed and promulgated for tin mud acid neutralization filtrate is 5,047 l/kkg (1,210 gal/ton) of neutralized, dewatered tin mud produced. This rate is allocated only to those facilities which neutralize tin mud with sulfuric acid and dewater the neutralized mud. One facility reported this practice. Water use and discharge rates are presented in Table V-3 (page 4068). The BPT flow rate is based on the production normalized flow reported by this facility.

TIN HYDROXIDE WASH

The BPT wastewater discharge rate proposed and promulgated for tin hydroxide wash water is 11,953 1/kkg (2,869 gal/ton) of tin hydroxide washed. This rate is only allocated to those facilities which use tin hydroxide as a raw material in tin electrowinning operations and wash the tin hydroxide prior to dissolution in a caustic solution. One plant reported this practice. The water use and wastewater discharge rates reported by this facility are presented in Table V-4 (page 4069). The BPT flow rate is based on the wastewater discharge rate reported by this facility.

SPENT ELECTROWINNING SOLUTION FROM NEW SCRAP

The BPT wastewater discharge rate proposed and promulgated for spent electrowinning solution from new scrap is 16,800 1/kkg (4,029 gal/ton) of cathode tin produced. This rate is allocated only to those plants which produce tin metal by electrowinning. There are eight facilities which produce tin by electrowinning. Six of these eight plants reported sufficient information to calculate a discharge rate from this process. The BPT flow allowance is based on the average of the production normalized flows reported by these six facilities (see Table V-5, page 4069). These production normalized flows ranged from 10,498 1/kkg to 24,069 1/kkg.

SPENT ELECTROWINNING SOLUTION FROM MUNICIPAL SOLID WASTE

The BPT flow rate proposed and promulgated for spent electrowinning solution from municipal solid waste is 119 l/kkg (29 gal/ton) of MSW scrap used as a raw material in alkaline detinning operations. This rate is allocated only to those plants which recover secondary tin from municipal solid waste by alkaline detinning and electrowinning. One facility reported the use of municipal solid waste as a raw material in addition to new This facility discharges four to five times as much spent scrap. electrowinning solution per mass of electrolytic tin produced than the average of the other six plants which reported flows for this waste stream. The large flow is a direct result of impurities which are introduced into the electrowinning solution from the municipal solid waste.

This wastewater flow allowance for sites which process municipal solid waste was calculated by subtracting the facility's BPT flow allowance for spent electrowinning solution from new scrap from the total spent electrowinning solution flow rate reported by the facility. The difference represents the flow due to municipal solid waste processing. This flow was divided by the amount of municipal solid waste scrap which the facility uses as a raw material to alkaline detinning operations. The resultant production normalized flow rate is 119 l/kkg of municipal solid waste scrap used as a raw material, as shown in Table V-6 (page 4069).

TIN HYDROXIDE SUPERNATANT FROM SCRAP

The BPT wastewater discharge rate proposed and promulgated for tin hydroxide supernatant from scrap is 55,640 l/kkg (13,354 gal/ton) of tin metal recovered from scrap. This rate is allocated only to those facilities which precipitate tin hydroxide from tin solutions generated from alkaline detinning of tin plated steel scrap. One facility reported this practice. Water use and discharge rates are presented in Table V-7 (page 4070). The BPT flow rate is based on the production normalized flow rate at the one facility currently generating this waste stream.

TIN HYDROXIDE SUPERNATANT FROM PLATING SOLUTIONS AND SLUDGES

The promulgated BPT wastewater discharge rate for tin hydroxide supernatant from plating solutions and sludges is 115,000 l/kkg (17,600 gal/ton) of tin metal recovered from plating solutions and sludges. This rate is allocated only to those facilities which recover tin from plating solutions and sludges by precipitation of tin hydroxide.

One facility reports this practice. Water use and wastewater discharge rates are presented in Table V-8 (page 4070). The Agency decided to combine two proposed subdivisions into one subdivision for promulgation. Tin hydroxide supernatant from spent plating solutions has been combined with tin hydroxide

SECONDARY TIN SUBCATEGORY SECT - IX

supernatant from sludge solids to form this subdivision. change will simplify the regulation, but will not cause This the limitations with which any plant must comply to change. At proposal, a plant generating both wastewater from plating from sludges would have calculated solutions and separate for each operation and summed them mg/kg limits for а plant limitation. For plant 1036, the only facility discharging both streams, the promulgated mg/kg limitations for these operations will be identical to the proposed limitations.

TIN HYDROXIDE FILTRATE

The BPT wastewater discharge rate proposed and promulgated for tin hydroxide filtrate is 25,044 l/kkg (6,011 gal/ton) of tin metal produced. This rate is allocated only for those plants which dewater tin hydroxide slurries from tin hydroxide precipitation operations in a filter press. There is currently only one plant which reported this practice. Water use and discharge rates are presented in Table V-9 (page 4070). The BPT wastewater discharge rate for tin hydroxide filtrate is based on the value reported by the one facility which currently generates this waste stream.

REGULATED POLLUTANT PARAMETERS

The raw wastewater concentrations from individual operations and the subcategory as a whole were examined to select certain pollutant parameters for limitation. This examination is presented in Sections VI and X.

A total of eight pollutants or pollutant parameters are selected for limitation under BPT and are listed below:

115. arsenic
121. cyanide
122. lead
iron
tin
fluoride
TSS
pH

Because of the nature of the wastewaters in this subcategory, secondary tin plants which only smelt concentrates will not be regulated for cyanide or fluoride. Other secondary tin plants, those which do not smelt concentrates, will not be regulated for iron or arsenic.

EFFLUENT LIMITATIONS

The treatable concentrations achievable by application of the promulgated BPT are discussed in Section VII of Vol. I and summarized there in Table VII-21 (page 248). These treatable concentrations (both one day maximum and monthly average values) are multiplied by the BPT normalized discharge flows

summarized in Table IX-1 (page 4247) to calculate the mass of pollutants allowed to be discharged per mass of product. The results of these calculations in milligrams of pollutant per kilogram of product represent the BPT effluent limitations and are presented in Table IX-2 (page 4248) for each individual waste stream.

Table IX-1

BPT WASTEWATER DISCHARGE RATES FOR THE SECONDARY TIN SUBCATEGORY

Wastewater Stream	BPT Norm Discharg 1/kkg		Production Normalizing Parameter
Tin smelter SO ₂ scrubber	9,198	2,204	Crude tapped tin produced
Dealuminizing rinse	35	9	Dealuminized scrap produced
Tin mud acid neutralization filtrate	5,047	1,210	Neutralized, dewatered tin mud produced
Tin hydroxide wash	11,953	2,869	Tin hydroxide washed
Spent electrowinning solution from new scrap	16,800	4,029	Cathode tin produced
Spent electrowinning solution from municipal solid waste	119	29	MSW scrap used as a raw material
Tin hydroxide supernatant from scrap	55,640	13,354	Tin metal recovered from scrap
Tin hydroxide supernatant from plating solutions and sludges	115,000	27,600	Tin metal recovered from plat- ing solutions and sludges
Tin hydroxide filtrate	25,044	6,011	Tin metal produced

TABLE IX-2

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(a) Tin Smelter SO₂ Scrubber BPT

Pollutant o		Maximum for	Maximum for
pollutant p	property	any one day	monthly average
mg/l	kg (lb/milli	on lbs) of crude	tapped tin produced
Antimony		26.400	11.770
*Arsenic		19.220	8.554
Cadmium		3.127	1.380
Chromium		4.047	1.656
Copper		17.480	9.198
*Lead		3.863	1.840
Nickel		17.660	11.680
Selenium		11.310	5.059
Silver		3.771	1.564
Thallium		18.860	8.370
Zinc		13.430	5.611
Aluminum		59.140	29.430
Barium		51.050	23.360
Boron		16.920	7.726
*Iron		11.040	5.611
Manganese		6.255	2.667
*Tin		3.495	2.024
*TSS		377.100	179.400
*pH	Within +		to 10.0 at all times
E.r.	na cirair C		

*Regulated Pollutant

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(b) Dealuminizing Rinse BPT

Pollutant	or	Maximum f	for Ma	aximum for	
pollutant	property	any one d	day mo	onthly aver	age
mg/k	kg (lb/millio	n lbs) of	dealumini	ized scrap	produced
B		0		0	0.4.5
Antimony			100		045
Arsenic			073		033
Cadmium			012		005
Chromium		,	015		006
Copper		0.0	067	0.	035
*Cyanide		0.0	010	0.	004
*Lead		0.0	015	0.	007
Nickel		0.0	067	0.	045
Selenium		0.0	043	0.	019
Silver			014		006
Thallium			072		032
Zinc			051		021
Aluminum			225		112
Barium			194		089
			064		029
Boron					
*Fluoride			225		697
Iron			042		021
Manganese	9		024		010
*Tin			013		008
*TSS			435		683
*pH	Within t	he range o	of 7.5 to	10.0 at al	l times

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(c) Tin Mud Acid Neutralization Filtrate BPT

Pollutant			imum for		imum f		
pollutant	property	any	one day	mon	thly a	verage	9
	mg/kg	(lb/mil				ed,	
		dewater	ed tin m	ud produ	iced		
Antimony			14.480			6.460	-
Arsenic			10.550			4.694	1
Cadmium			1.716			.753	7
Chromium			2.221			.908	3 .
Copper			9.589			5.047	7
*Cyanide			1.464			.606	5
*Lead			2.120			1.009	•
Nickel			9.690			6.410	
Selenium			6.208			2.776	5
Silver			2.069			.858	3
Thallium			10.350			4.593	3
Zinc			7.369			3.079	•
Aluminum			32.450			16.150)
Barium			28.010			12.820)
Boron			9.286			4.239	•
*Fluoride			176.600		l	00.400)
Iron			6.056			3.079	•
Manganese	è		3.432			1.464	1
*Tin	-		1.918			1.110	
*TSS			206.900		1	98.420	
*pH	With	nin the		7.5 to			
•			5				

*Regulated Pollutant

1

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(d) <u>Tin Hydroxide Wash</u> BPT

Pollutant	or	Maximum for	Maximum for
pollutant	property	any one day	monthly average
I	mg/kg (lb/mi	llion lbs) of	tin hydroxide washed
Antimony		34.310	15.300
Arsenic		24.980	
Cadmium		4.064	
Chromium		5.259	
Copper		22.710	
*Cyanide		3.466	
*Lead		5.020	
Nickel		22.950	
Selenium		14.700	
Silver		4.901	
Thallium		24.500	
Zinc		17.450	
Aluminum		76.860	
Barium		66.340	
Boron		21.990	
*Fluoride		418.400	
Iron		14.340	
Manganese	2	8.128	
*Tin	-	4.542	
*TSS		490.100	
*pH	Within		7.5 to 10.0 at all times
-		5	

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(e) Spent Electrowinning Solution from New Scrap BPT

D				6
Pollutant		Maximum for	Maximum	
pollutant	property	any one day	monthly	average
I	ng/kg (lb/mil	lion lbs) of	cathode tin	produced
Antimony		48.220		21.500
Arsenic		35.110		15.620
Cadmium		5.712		2.520
Chromium		7.392		3.024
Copper		31.920		16.800
*Cyanide		4.872		2.016
*Lead		7.056		3.360
Nickel		32.260		21.340
Selenium		20.660		9.240
Silver		6.888		2.856
Thallium		34.440		15.290
		24.530		
				10.250
Aluminum		108.000		53.760
Barium		93.240		42.670
Boron		30.910		14.110
*Fluoride		588.000		334.300
Iron		20.160		10.250
Manganese	e	11.420		4.872
*Tin		6.384		3.696
*TSS		688.800		327.600
*pH	Within	the range of	7.5 to 10.0	at all times
-		2		

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(f) <u>Spent ELectrowinning Solutions from</u> <u>Municipal Solid Waste BPT</u>

Pollutant		Maximum		Maximum	
pollutant	property	any one	day	monthly	average
<u>·</u>	mg/kg	(lb/millio			crap
	• •	used as a	raw mate	erial	
Antimony		0.	342		0.152
Arsenic		Ο.	249		0.111
Cadmium		Ο.	041		0.018
Chromium		0.	052		0.021
Copper		0.	226		0.119
*Cyanide		0.	035	-	0.014
*Lead		0.	050		0.024
Nickel		0.	228		0.151
Selenium		0.	146		0.066
Silver		0.	049		0.020
Thallium		Ο.	244		0.108
Zinc		Ο.	174		0.073
Aluminum		0.	765		0.381
Barium		0.	660		0.302
Boron		0.	219		0.100
*Fluoride		4.	165		2.368
Iron		0.	143		0.073
Manganese	<u>è</u>	0.	081		0.035
*Tin		0.	045		0.026
*TSS		4.	879		2.321
*pH	Withir	n the range	of 7.5	to 10.0	at all times

BPT MASS LIMITATIONS FOR THE SECONDARY TIN !SUBCATEGORY

(g) <u>Tin Hydroxide</u> <u>Supernatant</u> from <u>Scrap</u> BPT

Pollutant		Maximum for any one day	
pollutant	propercy	any one day	average
<u> </u>	mg/kg	(lb/million]	lbs) of tin metal
	2. 2	recovered fr	
Antimonu		159.700	71.220
Antimony Arsenic		116.300	
Cadmium		18.920	
Chromium		24.480	
Copper		105.700	
*Cyanide		16.140	
*Lead		23.370	
Nickel		106.800	
Selenium		68.440	
Silver		22.810	
Thallium		114.100	50.630
Zinc		81.230) 33.940
Aluminum		357.800	178.000
Barium	•	308.800	141.300
Boron		102.400	46.740
*Fluoride		1,947.000	1,107.000
Iron		66.770	
Manganese	2	37.840	
*Tin	-	21.140	
*TSS		2,281.000	
*pH	Withir		7.5 to 10.0 at all times

*Regulated Pollutant

.

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(h) <u>Tin Hydroxide Supernatant from</u> <u>Plating Solutions and Sludges</u> BPT

Pollutant	or	Maximum	for	Maximum	for	
pollutant	property	any one		monthly	average	9
	······································					
		(lb/millic				
	recovered i	rom platin	ig solut:	ions and	sludges	5
Antimony		330.	100		147.200)
Arsenic		240.	400		107.000)
Cadmium		39.	100		17.250)
Chromium		50.	600		20.700)
Copper		218.	500		115.000)
*Cyanide		33.	350		13.800)
*Lead		48.	300		23.000)
Nickel		220.	800		146.100)
Selenium		141.	500		63.250)
Silver		47.	150		19.550)
Thallium		235.	800		104.700)
Zinc		167.	900		70.150	
Aluminum		739.			368.000	
Barium		638.	300		292.100	
Boron		211.			96.600	
*Fluoride		4,025.		2,	,289.000	
Iron		138.			70.150	
Manganese	3		200		33.350	
*Tin			700		25.300	
*TSS		4,715.			,243.000	
*pH	Withir	h the range	of 7.5	to 10.0	at all	times

BPT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(i) <u>Tin Hydroxide</u> <u>Filtrate</u> BPT

Pollutant	or	Maximum for	Maximum for	
pollutant		any one day	monthly average	
porrucane	propercy	any one day	monenty average	
	mg/kg (lb/mi	llion lbs) of	tin metal produced	
Antimony		71.880	32.060	
Arsenic		52.340	23.290	
Cadmium		8.515	3.757	
Chromium		11.020	4.508	
Copper		47.580	25.040	
*Cyanide		7.263	3.005	
*Lead		10.520	5.009	
Nickel		48.080	31.810	
Selenium		30.800	13.770	
Silver		10.270	4.257	
Thallium		51.340	22.790	
Zinc		36.560	15.280	
Aluminum		161.000	80.140	
Barium		139.000	63,610	
Boron		46.080	21.040	
*Fluoride		876.500	498.400	
Iron		30.050	15,280	
Manganese	2	17.030	7.263	
*Tin	-	9.517	5.510	
*TSS		1,027.000	488.400	
*pH	Within		7.5 to 10.0 at all time	s
P	WI CHIIN	the runge or		-

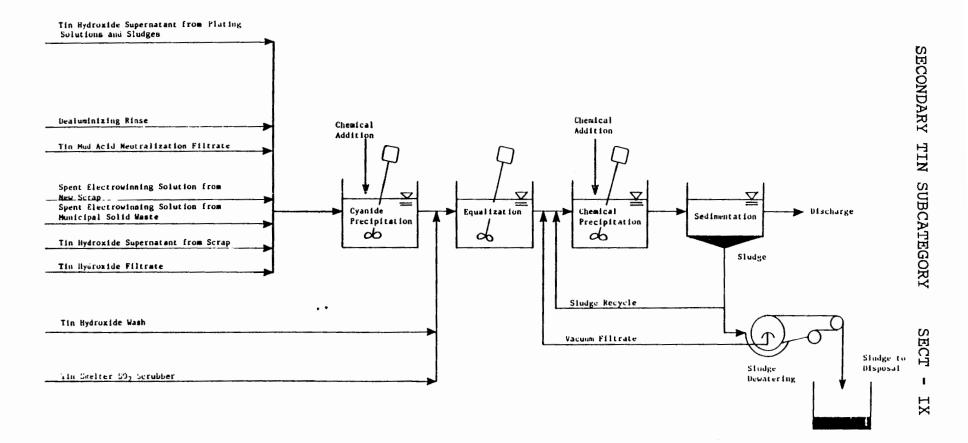


Figure IX-1

BPT TREATMENT SCHEME FOR OPTION A

4257

THIS PAGE INTENTIONALLY LEFT BLANK

•

.

SECTION X

BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

These effluent limitations are based on the best control and treatment technology used by a specific point source within industrial category or subcategory, or the by another industry where it is readily transferable. Emphasis is additional treatment techniques applied at the placed on end of the treatment systems currently used, as well as reduction the amount of water used and discharged, of process control, and treatment technology optimization.

The factors considered in assessing best available technology economically achievable (BAT) include the age of equipment and facilities involved, the process used, process changes, nonwater quality environmental impacts (including energy requirements), and the costs of application of such technology At a minimum BAT technology represents the best available technology at plants of various ages, sizes, processes, or other characteristics. BAT may be transferred from a different subcategory or category and may include feasible process changes or internal controls, even when not in common industry practice.

The statutory assessment of BAT considers costs, but does not require a balancing of costs against effluent reduction benefits However, in assessing the proposed and promulgated BAT, the Agency has given substantial weight to the economic achievability of the selected technology.

TECHNICAL APPROACH TO BAT

The Agency reviewed a wide range of technology options and evaluated the available possibilities to ensure that the most effective and beneficial technologies were used as the basis of BAT. To accomplish this, the Agency elected to examine two technology options which could be applied to the secondary tin subcategory as treatment options for the basis of BAT effluent limitations.

For the development of BAT effluent limitations, mass loadings were calculated for each wastewater source or subdivision in the subcategory using the same technical approach as described in Section IX for BPT limitations development. The differences in the mass loadings for BPT and BAT are due to increased treatment effectiveness achievable with the more sophisticated BAT treatment technology.

In summary the treatment technologies considered for BAT are presented below:

Option A (Figure X-1, page 4279) is based on

o Preliminary treatment with cyanide precipitation o Chemical precipitation and sedimentation

Option C (Figure X-2, page 4280) is based on

```
o Preliminary treatment with cyanide precipitation
o Chemical precipitation and sedimentation
o Multimedia filtration
```

The two options examined for BAT are discussed in greater detail below. The first option considered is the same as the BPT treatment which was presented in the previous section. The latter option represents substantial progress toward the prevention of polluting the environment above and beyond the progress achievable by BPT.

OPTION A

Option A for the secondary tin subcategory is equivalent to the control and treatment technologies which were analyzed for BPT in Section IX. The BPT end-of-pipe treatment scheme includes chemical precipitation and sedimentation, with cyanide precipitation preliminary treatment (see Figure X-1). The discharge rates for Option A are equal to the discharge rates allocated to each stream as a BPT discharge flow.

OPTION C

Option C for the secondary tin subcategory consists of all control and treatment requirements of Option A (cyanide precipitation, chemical precipitation and sedimentation) plus multimedia filtration technology added at the end of the Option A treatment scheme (see Figure X-2). Multimedia filtration is used to remove suspended solids, including precipitates of priority metals, beyond the concentrations attainable by gravity sedimentation. The filter suggested is of the gravity, mixed media type, although other filters, such as rapid sand filters or pressure filters, would perform as well.

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

As one means of evaluating each technology option, EPA developed estimates of the pollutant reduction benefits and the compliance costs associated with each option. The methodologies are described below.

POLLUTANT REMOVAL ESTIMATES

The pollutant removal estimates have been revised from proposal based on comments and new data; however, the methodology for calculating pollutant removals was not changed. The data used for estimating removals are the same as those used to revise the compliance costs. Sampling data collected during the

SECONDARY TIN SUBCATEGORY SECT - X

field sampling program were used to characterize the major waste streams considered for regulation. At each sampled sampling data was production normalized for facility, the each unit operation (i.e., mass of pollutant generated per mass of product manufactured). This value, referred to as the raw waste, was used to estimate the mass of priority generated within the secondarv pollutants tin subcategory. The pollutant removal estimates were calculated for each plant by first estimating the total mass of each pollutant in the untreated wastewater. This was calculated by first multiplying the raw waste values by the corresponding production value for that stream and then summing these values for each pollutant for every stream generated by the plant.

Next, the volume of wastewater discharged after the application of each treatment option was estimated for each operation at each plant by first comparing the actual discharge to the regulatory flow. The smaller of the two values was selected and summed with the other plant flows. The mass of pollutant discharged was then estimated by multiplying the achievable concentration values attainable with the option (mg/l) by the estimated volume of process wastewater discharged by the subcategory. Finally, the mass of pollutant removed is the difference between the estimated mass of pollutant generated by each plant in the subcategory and the mass of pollutant discharged after application of the treatment option.

The pollutant removal estimates for the secondary tin subcategory are presented in Table X-1, for direct dischargers.

COMPLIANCE COSTS

In estimating subcategory-wide compliance costs, the first step was to develop a cost model, relating the total costs associated with installation and operation of wastewater treatment technologies to plant process wastewater discharge. EPA applied the model on a per plant basis. A plant's costs - both capital, operating and maintenance were determined by what ment it has in place and by its individual process and treatment wastewater discharge (from dcp). The final step was to annualize the capital costs, and to sum the annualized capital costs, and the operating and maintenance costs, yielding the cost of compliance for the subcategory (see Table X-2). These costs were used in assessing economic achievability.

BAT OPTION SELECTION - PROPOSAL

BAT was proposed for the secondary tin subcategory based on Option C, consisting of ammonia steam stripping and cyanide precipitation pretreatment, chemical precipitation, sedimentation and filtration.

Implementation of the proposed BAT was estimated to remove 1,260 kg of priority metals annually. The proposed BAT was estimated to incur capital and annual costs, but those costs were

not presented because they were based on confidential information.

BAT OPTION SELECTION - PROMULGATION

After proposal, EPA collected information concerning raw materials, and additional flow, production, and wastewater data for the tin smelter SO₂ scrubber characteristics subdivision. This information lead EPA to revise the name of the subcategory following proposal from primary and secondary tin to secondary tin. The same plants and operations are included in this subcategory for promulgation as at proposal. These additional data were used to recalculate a production normalized flow rate and to revise pollutant removal and compliance cost estimates. In addition, EPA learned that one plant included as process indirect discharger at proposal revised their an and no longer discharges process wastewater. This enabled EPA to revise the subdivision scheme for this subcategory by combining two subdivisions into one subdivision, and also to revise the pollutant removal estimates and compliance costs.

BAT is promulgated for the secondary tin subcategory based on Option C, consisting of cyanide precipitation preliminary treatment, chemical precipitation, sedimentation and filtration. The promulgated treatment technology is identical to the proposed treatment technology with the exception of ammonia steam stripping, which is no longer required. The one facility which generated ammonia bearing wastewater has changed its process since proposal and is now a dry facility. Except for tin, the treatment performance concentrations, upon which the mass limitations are based, are equal to values used to calculate the proposed mass limitations.

EPA is promulgating multimedia filtration as part of the BAT technology because this technology results in additional removal of priority metals. Filtration is also presently demonstrated at 25 plants throughout the nonferrous metals manufacturing category. Filtration adds reliability to the treatment system by making it less susceptible to operator error and to sudden changes in raw wastewater flow and concentrations.

Implementation of the promulgated BAT limitations would remove annually an estimated 570 kg of priority metals, which is 26 kg of priority metals more than the estimated BPT discharge. Capital and annual costs for this subcategory are not presented here because the data on which they are based has been claimed to be confidential.

WASTEWATER DISCHARGE RATES

A BAT discharge rate was calculated for each subdivision based upon the flows of the existing plants, as determined from analysis of dcp. The discharge rate is used with the achievable treatment concentrations to determine BAT effluent limitations. Since the discharge rate may be different for each wastewater source, separate production normalized discharge rates for each of the wastewater sources were determined and are summarized in Table X-3 (page 4269). The discharge rates are normalized on a production basis by relating the amount of wastewater generated to the mass of the intermediate or product which is produced by the process associated with the waste stream in question. These production normalizing parameters (PNP) are also listed in Table X-4 (page 4270).

The BAT wastewater discharge rate used at promulgation is equal to the promulgated BPT wastewater discharge rate for all of the subdivisions of the secondary tin subcategory. Based on the available data, the Agency did not find that further flow reduction would be feasible for any of these wastewater sources. The rationale for determining these regulatory flows is presented in Section IX.

REGULATED POLLUTANT PARAMETERS

The raw wastewater concentrations from individual operations and the subcategory as a whole were examined to select certain pollutants and pollutant parameters for limitation. This examination and evaluation was presented in Section VI. As discussed at proposal, the Agency has chosen not to regulate, specifically, all of the toxic pollutants selected in this analysis.

The high cost associated with analysis for priority metal pollutants has prompted EPA to develop an alternative method for regulating and monitoring priority pollutant discharges from the nonferrous metals manufacturing category. Rather than developing specific effluent mass limitations and standards for each of the priority metals found in treatable concentrations in the raw wastewater from a given subcategory, the Agency is promulgating effluent mass limitations only for those pollutants generated in the greatest quantities as shown by the pollutant removal estimate analysis.

The pollutants selected for specific limitation in this subcategory are listed below:

115. arsenic
121. cyanide
122. lead
 iron
 fluoride
 tin

Because of the nature of the wastewaters in this subcategory, secondary tin plants which only smelt concentrates will not be regulated for cyanide or fluoride. Other secondary tin plants, those which do not smelt concentrates, will not be regulated for iron or arsenic.

By establishing limitations and standards for certain priority metal pollutants, dischargers will attain the same degree of control over priority metal pollutants as they would have been required to achieve, had all the priority metal pollutants been directly limited.

This approach is technically justified since the treatable concentrations used for lime precipitation and sedimentation technology are based on optimized treatment for concomitant multiple metals removal. Thus, even though metals have somewhat different theoretical solubilities, they will be removed at very nearly the same rate in a chemical precipitation and sedimentation treatment system operated for multiple metals removal. Filtration as part of the technology basis is likewise technology justified this because removes metals non-preferentially.

The priority metal pollutants selected for specific limitation in this subcategory are arsenic and lead. Tin is selected for limitation because it is useful as an indicator pollutant to insure proper performance in a chemical precipitation and sedimentation treatment system. The following toxic pollutants are excluded from limitation on the basis that they are effectively controlled by the limitations developed for arsenic, and lead:

114. antimony 118. cadmium 119. chromium 120. copper 124. nickel 125. selenium 126. silver 127. thallium 128. zinc

Cyanide is selected for limitation because the methods used to control arsenic and lead are not effective in the control of cyanide.

EFFLUENT LIMITATIONS

The concentrations achievable by application of BAT are discussed in Section VII of Vol. I and summarized there in Table VII-21 (page 248). The treatment effectiveness concentrations (both one day maximum and monthly average values) are multiplied by the BAT normalized discharge flows summarized in Table X-3 (page 4269) to calculate the mass of pollutants allowed to be discharged per mass of product. The results of these calculations in milligrams of pollutant per kilogram of product represent the promulgated BAT effluent limitations and are presented in Table X-4 (page 4270) for each wastewater stream.

.

.

Table X-1

Pollutant	Raw Discharge (kg/yr)	Option A Discharge (kg/yr)	Option A Removed (kg/yr)	Option C Discharge (kg/yr)	Option C Removed (kg/yr)
Antimony	50.79	20.54	30.25	14.06	36.73
Arsenic	152.62	21.51	131.11	15.22	137.40
Cadmium	13.24	4.50	8.74	2.96	10.28
Chromium (Total)	2.98	0.60	2.37	0.56	2.41
Copper	18.75	17.20	1.54	16.13	2.61
Cyanide (Total)	144.87	1.03	143.83	0.98	143.88
Lead	123.01	5.64	117.37	4.14	118.87
Mercury	0.34	0.34	0.00	0.34	0.00
Nickel	24.45	6.22	18.22	5.23	19.22
Selenium	129.01	13.73	115.27	9.99	119.01
Silver	2.14	0.50	1.64	0.45	1.69
Thallium	15.63	4.08	11.55	3.72	11.91
Zinc	120.83	15.15	105.67	11.40	109.42
TOTAL PRIORITY POLLUTANIS	798.66	111.04	687.56	85.18	713.43
Aluminum	36,396.37	81.57	36,314.79	54.26	36,342.10
Ammonia	215.02	177.48	37.53	177.28	37.73
Barium	9.12	9.1 2	0.00	7.69	1.42
Boron	869.57	9.40	860.17	6.30	863.27
Cobalt	6.96	1.74	5.22	1.18	5.78
Fluoride	237,848.06	626.23	237,221.82	498 .1 2	237,349.93
Iron	7,731.14	14.27	7,716.86	9.75	7,721.39
Magnesium	338.84	3.48	335.36	2.33	336.51
Manganese	15.32	5.57	9.75	4.87	10.44
Tin	10,431.98	41.13	10,390.84	27.81	10,404.17
TOTAL NONCONVENTIONALS	293,862.38	969.99	292,892.34	789.59	293,072.74

SECONDARY TIN SUBCATEGORY POLLUTANT REMOVAL ESTIMATES DIRECT DISCHARGERS

Table X-1 (Continued)

SECONDARY TIN SUBCATEGORY POLLUTANT REMOVAL ESTIMATES DIRECT DISCHARGERS

Pollutant	Raw	Option A	Option A	Option C	Option C
	Discharge	Discharge	Removed	Discharge	Removed
	(kg/yr)	(kg/yr)	(kg/yr)	(kg/yr)	(kg/yr)
TSS	507,638.47	735.39	506,903.08	157.18	507,481.29
Oil and Grease	678.27	193.89	484.38	189.36	488.90
TOTAL CONVENTIONALS	508,316.74	929.28	507,387.46	346.54	507,970.19
TOTAL POLLUTANTS	802,977.78	2,010.31	800,967.36	1,221.31	801,756.36

Table X-2

COST OF COMPLIANCE FOR THE SECONDARY TIN SUBCATEGORY DIRECT DISCHARGERS

Compliance costs for direct dischargers in this subcategory are not presented here because the data on which they are based have been claimed to be confidential.

.

Table X-3

BAT WASTEWATER DISCHARGE RATES FOR THE SECONDARY TIN SUBCATEGORY

Wastewater Stream	BAT Norr Discharg 1/kkg		Production Normalizing Parameter
Tin smelter SO ₂ scrubber	9,198	2,204	Crude tapped tin produced
Dealuminizing rinse	35	9	Dealuminized scrap produced
Tin mud acid neutralization filtrate	5,047	1,210	Neutralized, dewatered tin mud produced
Tin hydroxide wash	11,953	2,869	Tin hydroxide washed
Spent electrowinning solution from new scrap	16,800	4,029	Cathode tin produced
Spent electrowinning solution from municipal solid waste	119	29	MSW scrap used as a raw material
Tin hydroxide supernatant from scrap	55,640	13,354	Tin metal recovered from scrap
Tin hydroxide supernatant from plating solutions and sludges	115,000	27,600	Tin metal recovered from plat- ing solutions and sludges
Tin hydroxide filtrate	25,044	6,011	Tin metal produced

SECONDARY TIN SUBCATEGORY SECT - X

TABLE X-4

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

•.

(a) <u>Tin Smelter</u> <u>SO2</u> Scrubber <u>BAT</u>

.

• •

Pollutant or pollutant prop	Maximum for perty any one day	Maximum for monthly average
mg/kg ((lb/million lbs) of crude	e tapped tin produced
Antimony	17.750	7.910
*Arsenic	12.790	5.703
Cadmium	1.840	0.736
Chromium	3.403	1.380
Copper	11.770	5.611
*Lead	2.575	1.196
Nickel	5.059	3.403
Selenium	7.542	3.403
Silver	2.667	1.104
Thallium	12.880	5.611
Zinc	9.382	3.863
Aluminum	56.200	24.930
Barium	10.580	4.691
Boron	16.920	7.726
*Iron	11.040	5.611
Manganese	2.759	2.116
*Tin	3.495	2.024

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(b) Dealuminizing Rinse BAT

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average
					· · · · · · · · · · · · · · · · · · ·
mg/l	kg (lb/millio	n 1bs) of	E dealum	inized sc	rap produced
Antimony		0.	.068		0.030
Arsenic			.049		0.022
Cadmium			.007		0.003
Chromium			.013		0.005
Copper		0	.045		0.021
*Cyanide		0	.007		0.003
*Lead		0	.010		0.005
Nickel		0	.019		0.013
Selenium		0.	.029		0.013
Silver		0.	.010		0.004
Thallium		0.	.049		0.021
Zinc		0.	.036		0.015
Aluminum		0.	.214		0.095
Barium			.040		0.018
Boron			.064		0.029
*Fluoride			.225		0.697
Iron			.042		0.021
Manganese	9.		.011		0.008
*Tin		0.	.013		0.008

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(c) Tin Mud Acid Neutralization Filtrate BAT

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one			average
	11		11		
	mg/kg	(lb/million			ized,
		dewatered ti	in mua p	roaucea	
Antimony		9.	741		4.340
Arsenic		7.	.015		3.129
Cadmium		1.	.009		0.404
Chromium		1.	.867		0.757
Copper		6.	.460		3.079
*Cyanide			.009		0.404
*Lead			.413		0.656
Nickel		2.	.776		1.867
Selenium			.139		1.867
Silver		1.	.464		0.606
Thallium		7.	.066		3.079
Zinc		5.	148		2.120
Aluminum		30.	.840		13.680
Barium		5.	804		2.574
Boron		9.	.286		4.239
*Fluoride		176.	600		100.400
Iron		6.	.056		3.079
Manganese	5	1.	514		1.161
*Tin		1.	918		1.110

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(d) <u>Tin Hydroxide Wash</u> BAT

.

.

Pollutant pollutant		Maximum for any one day	Maximum for monthly average
porrucane	propercy	any one day	monthly average
r	ng/kg (lb/mi	illion lbs) of t	tin hydroxide washed
Antimony		23.070	10.280
Arsenic		16.610	7.411
Cadmium		2.391	0.956
Chromium		4.423	1.793
Copper		15.300	7.291
*Cyanide		2.391	0.956
*Lead		3.347	1.554
Nickel		6.574	4.423
Selenium		9 .8 01	4.423
Silver		3.466	1.434
Thallium		16.730	7.291
Zinc		12.190	5.020
Aluminum		73.030	32.390
Barium	•	13.750	6.096
Boron		21.990	10.040
*Fluoride		418.400	237.900
Iron		14.340	7.291
Manganese	Э.,	3.586	2.749
*Tin		4.542	2.630

*Regulated Pollutant

.

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(e) Spent Electrowinning Solution from New Scrap BAT

Pollutant pollutant			imum one			.mum hly	for average	
ſ	ng/kg	(lb/million	lbs)	of	cathode	tin	produced	
Antimony			32.	420			14.450	
Arsenic			23.	350			10.420	
Cadmium			3.	360			1.344	
Chromium			6.	216			2.520	
Copper			21.	500			10.250	
*Cyanide			3.	360			1.344	
*Lead			4.	704			2.184	
Nickel			9.	240			6.216	
Selenium			13.	780			6.216	
Silver			4.3	872			2.016	
Thallium			23.	520			10.250	
Zinc			17.	140			7.056	
Aluminum			102.	600			45.530	
Barium			19.3	320			8.568	
Boron			30.9	910			14.110	
*Fluoride			588.	000			334.300	
Iron			20.	160			10.250	
Manganese	3		5.0	040			3.864	
*Tin			6.	384			3.696	

*Regulated Pollutant

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

.

-

(f) <u>Spent Electrowinning Solution</u> from <u>Municipal Solid Waste</u> BAT

Pollutant pollutant		Maximum for any one day	Maximum for monthly average
	mg/kg	(lb/million lbs)	of MSW scrap
	2 . 2	used as a raw mat	
Antimony		0.230	0.102
Arsenic		0.165	0.074
Cadmium		0.024	0.010
Chromium		0.044	0.018
Copper		0.152	0.073
*Cyanide		0.024	0.010
*Lead		0.033	0.016
Nickel		0.066	0.044
Selenium		0.098	0.044
Silver		0.035	0.014
Thallium		0.167	0.073
Zinc		0.121	0.050
Aluminum		0.727	0.322
Barium		0.137	0.061
Boron		0.219	0.100
*Fluoride		4.165	2.368
Iron		0.143	0.073
Manganese	2	0.036	0.027
*Tin		0.045	0.026

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(g) <u>Tin Hydroxide Supernatant from Scrap</u> BAT

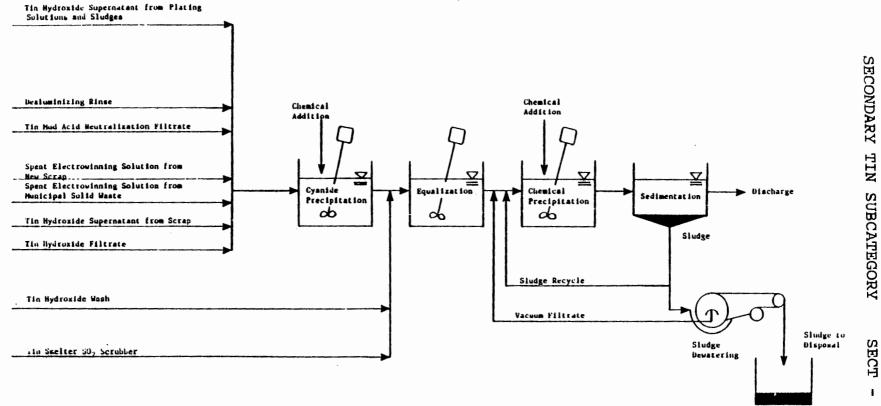
Pollutant pollutant		Maximum any one		Maximum nonthly	for average	
	mg/kg	(lb/millio	on lbs) of	tin me	etal	
		recovered	from scr	ap		
Antimony		107	400		47.850	
Arsenic		77.	.340		34.500	
Cadmium		11.	.130		4.451	
Chromium		20.	.590		8.346	
Copper		71.	. 220		33.940	
*Cyanide		11.	.130		4.451	
*Lead		15.	580		7.233	
Nickel		30.	.600		20.590	
Selenium		45.	.620		20.590	
Silver		16.	.140		6.677	
Thallium		77.	.900		33.940	
Zinc		56.	750		23.370	
Aluminum		340.	.000		150.800	
Barium		63.	.990		28.380	
Boron		102.	.400		46.740	
*Fluoride		1,947.	.000	1,	107.000	
Iron		66.	.770		33.940	
Manganese	9	16.	.690		12.800	
*Tin			.140		12.240	

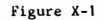
*Regulated Pollutant

*

BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

(h) <u>Tin Hydroxide Supernatant from</u> <u>Plating Solutions and Sludges</u> BAT


Pollutant	or	Maximum	for	Maximum	for	
pollutant		any one		monthly		
porrucane	propercy	ung one	aay .	momenty	average	
	ma/ka	(lb/millio	on lbs)	of tin me	etal	
		from platin				
		P	-9			
Antimony		222	.000		98.900	
Arsenic		159	900		71.300	
Cadmium		23.	.000		9.200	
Chromium		42.	.550		17.250	
Copper		147.	200		70.150	
*Cyanide		23.	.000		9.200	
*Lead		32.	200		14.950	
Nickel		63.	250		42.550	
Selenium		94.	.300		42.550	
Silver		33.	.350		13.800	
Thallium		161.	.000		70.150	•
Zinc	•	117.	.300		48.300	
Aluminum		702.	.700		311.700	
Barium		132.	.300		5 8.6 50	
Boron		211.	.600		96.600	
*Fluoride		4,025.	.000	2,	289.000	
Iron		138.	000		70.150	
Manganese	9	34.	.500		26.450	
*Tin		43.	.700		25.300	


BAT MASS LIMITATIONS FOR THE SECONDARY TIN SUBCATEGORY

.

(i) <u>Tin Hydroxide Filtrate</u> BAT

Pollutant		Maximum for	Maximum for
pollutant		any one day	monthly average
	mg/kg (lb/m	illion lbs) of	tin metal produced
Antimony		48.330	21.540
Arsenic		34.810	15.530
Cadmium		5.009	2.004
Chromium		9.266	3.757
Copper		32.060	15.280
*Cyanide		5.009	2.004
*Lead		7.012	3.256
Nickel		13.770	9.266
Selenium		20.540	9.266
Silver		7.263	3.005
Thallium	2	35.060	15.280
Zinc		25.540	10.520
Aluminum		153.000	67.870
Barium		28.800	12.770
Boron		46.080	21.040
*Fluoride		876.500	498.400
Iron		30.050	15.280
Manganese		7.513	5.760
*Tin		9.517	5.510

BAT TREATMENT SCHEME FOR OPTION A

SECT ł ×

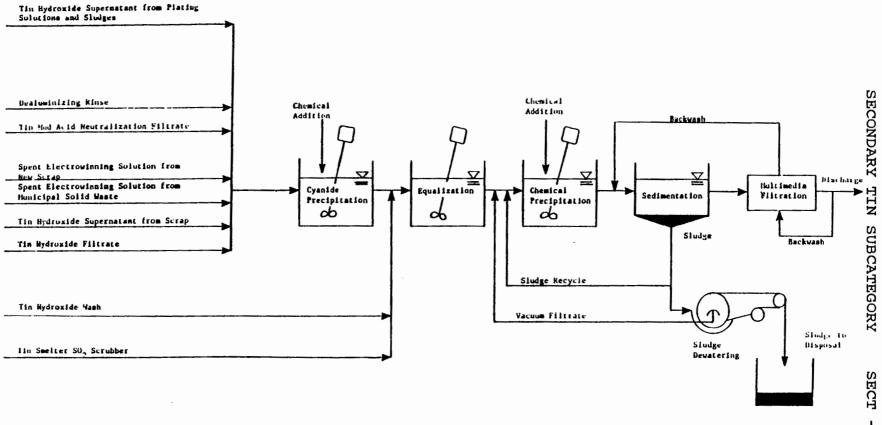


Figure X-2

BAT TREATMENT SCHEME FOR OPTION C

SECTION XI

NEW SOURCE PERFORMANCE STANDARDS

This section describes the technologies for treatment of wastewater from new sources and presents mass discharge standards for regulatory pollutants for NSPS in the secondary tin subcategory, based on the selected treatment technology. New plants have the opportunity to design the best and most efficient production processes and wastewater treatment technologies without facing the added costs and restrictions encountered in retrofitting an existing plant. Therefore, EPA has considered the best demonstrated process changes, in-plant controls, and end-of-pipe treatment technologies which reduce pollution to the maximum extent feasible.

TECHNICAL APPROACH TO NSPS

New source performance standards are equivalent to the best available technology (BAT) selected for currently existing secondary tin plants. This result is a consequence of careful review by the Agency of a wide range of technology options for new source treatment systems. This review of the secondary tin subcategory found no new, economically feasible, demonstrated technologies which could be considered an improvement over those chosen for consideration for BAT. Additionally, there was nothing found to indicate that the wastewater flows and characteristics of new plants would not be similar to those from existing plants, since the processes used by new sources are not expected to differ from those used at existing sources. Consequently, BAT production normalized discharge rates, which are based on the best existing practices of the subcategory, can also be applied to new sources. These rates are presented in Table XI-1 (page 4283).

Treatment technologies considered for the NSPS options are identical to the treatment technologies considered for the BAT options. These options are:

OPTION A

- Preliminary treatment consisting of cyanide precipitation (where required)
- o Chemical precipitation and sedimentation

OPTION C

- Preliminary treatment consisting of cyanide precipitation (where required)
- o Chemical precipitation and sedimentation
- o Multimedia filtration

NSPS OPTION SELECTION - PROPOSAL

EPA proposed that the best available demonstrated technology for the primary and secondary tin subcategory be equivalent to Option C (ammonia steam stripping, cyanide precipitation, chemical precipitation, sedimentation, and filtration).

The wastewater flow rates for NSPS were the same as the proposed BAT flow rates. Flow reduction measures for NSPS and BAT were not considered feasible because no new demonstrated technologies existed within the subcategory that improved on present water use practices in the subcategory. Therefore, EPA concluded that flow reduction beyond the allowances proposed for BPT or BAT was unachievable, and NSPS flow rates should be equal to those for BPT and BAT.

NSPS OPTION SELECTION - PROMULGATION

EPA is promulgating best available technology for the secondary tin subcategory equivalent to Option C (cyanide precipitation, chemical precipitation, sedimentation, and filtration).

The wastewater flow rates promulgated for NSPS are the same as the promulgated BAT flow rates. The NSPS flow rates are presented in Table XI-1 (page 4283). Additional flow reduction and more stringent treatment technologies are not demonstrated or readily transferable to the secondary tin subcategory.

REGULATED POLLUTANT PARAMETERS

The Agency has no reason to believe that the pollutants that will be found in treatable concentrations in processes within new sources will be any different than with existing sources. Accordingly, pollutants and pollutant parameters selected for limitation under NSPS in accordance with the rationale of Sections VI and X, are identical to those selected for BAT. The conventional pollutant parameters TSS and pH are also selected for limitation.

NEW SOURCE PERFORMANCE STANDARDS

The NSPS discharge flows for each wastewater source are the same as the discharge rates for BAT and are shown in Table XI-1 (page 4283). The mass of pollutant allowed to be discharged per mass of product is based upon the product of the appropriate treatment effectiveness concentration (mg/l) and the production normalized wastewater discharge flows. The results of these calculations are the production-based new source performance standards. These standards are presented in Table XI-2 (page 4284)

Table XI-1

NSPS WASTEWATER DISCHARGE RATES FOR THE SECONDARY TIN SUBCATEGORY

Wastewater Stream	NSPS Norm Discharge 1/kkg		Production Normalizing Parameter
		841,001	
Tin smelter SO ₂ scrubber	9,198	2,204	Crude tapped tin produced
Dealuminizing rinse	35	9	Dealuminized scrap produced
Tin mud acid neutralization filtrate	5,047	1,210	Neutralized, dewatered tin mud produced
Tin hydroxide wash	11,953	2,869	Tin hydroxide washed
Spent electrowinning solution from new scrap	16,800	4,029	Cathode tin produced
Spent electrowinning solution from municipal solid waste	119	29	MSW scrap used as a raw material
Tin hydroxide supernatant from scrap	55,640	13,354	Tin metal recovered from scrap
Tin hydroxide supernatant from plating solutions and sludges	115,000	27,600	Tin metal recovered from plat- ing solutions and sludges
Tin hydroxide filtrate	25,044	6,011	Tin metal produced

TABLE XI-2

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(a) <u>Tin Smelter</u> <u>SO2</u> <u>Scrubber</u> <u>NSPS</u>

D _11		Maulaura for	Mausimum for
Pollutant		Maximum for	Maximum for
pollutant	property	any one day	monthly average
mg/	kg (lb/millic	on 1bs) of crude	tapped tin produced
		10 050	R 010
Antimony		17.750	7.910
*Arsenic		12.790	5.703
Cadmium		1.840	.736
Chromium		3.403	1.380
Copper		11.770	5.611
*Lead		2.575	1.196
Nickel		5.059	3.403
Selenium		7.542	3.403
Silver		2.667	1.104
Thallium		12.880	5.611
Zinc		9.382	3.863
			24.930
Aluminum		56.200	
Barium		10.580	4.691
Boron		16.920	7.726
*Iron		11.040	5.611
Manganese		2.759	2.116
*Tin		3.495	2.024
*TSS		138.000	110.400
*pH	Within t		to 10.0 at all times
-		2	

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(b) Dealuminizing Rinse NSPS

Pollutant	or	Maximum for	Maximum for	
pollutant	property	any one day	monthly average	
mg/k	g (lb/millio	n lbs) of dea	luminized scrap produ	iced
Datimour		0.069	0.020	
Antimony		0.068	0.030	
Arsenic		0.049	0.022	
Cadmium		0.007	0.003	
Chromium		0.013	0.005	
Copper		0.045	0.021	
*Cyanide		0.007	0.003	
*Lead		0.010	0.005	
Nickel		0.019	0.013	
Selenium		0.029	0.013	
Silver		0.010	0.004	
Thallium		0.049	0.021	
Zinc		0.036	0.015	
Aluminum		0.214	0.095	
Barium		0.040	0.018	
Boron		0.064	0.029	
*Fluoride				
		1.225	0.697	
Iron		0.042	0.021	
Manganese		0.011	0.008	
*Tin		0.013	0.008	
*TSS		0.525	0.420	
*pH	Within t	the range of '	7.5 to 10.0 at all ti	mes

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(c) <u>Tin Mud Acid Neutralization Filtrate</u> NSPS

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average
	mg/kg	(lb/million			zed,
		dewatered t	in mud pi	roduced	
Antimony		9	.741		4.340
Arsenic		7	.015		3.129
Cadmium		1.	.009		0.404
Chromium		1.	.867		0.757
Copper		6	.460		3.079
*Cyanide		1.	.009		0.404
*Lead		1.	.413		0.656
Nickel		2	.776		1.867
Selenium		4	.139		1.867
Silver		1.	.464		0.606
Thallium		7.	.066		3.079
Zinc		5	.148		2.120
Aluminum		30	840		13.680
Barium		5	.804		2.574
Boron		9.	.286		4.239
*Fluoride		176.	600		100.400
Iron		6	.056		3.079
Manganese	9	1.	514		1.161
*Tin		1.	918		1.110
*TSS		75.	710		60.560
*pH	With	in the range	e of 7.5	to 10.0	at all times
		-			

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(d) Tin Hydroxide Wash NSPS

pollutant property any one day monthly average mg/kg (lb/million lbs) of tin hydroxide washed Antimony 23.070 10.280 Arsenic 16.610 7.411 Cadmium 2.391 0.956 Chromium 4.423 1.793 Copper 15.300 7.291 *Cyanide 2.391 0.956 *Lead 3.347 1.554 Nickel 6.574 4.423 Selenium 9.801 4.423 Silver 3.466 1.434 Thallium 16.730 7.291 Zinc 12.190 5.020 Aluminum 73.030 32.390 Barium 13.750 6.096 Boron 21.990 10.040 *Fluoride 418.400 237.900 Iron 14.340 7.291 Manganese 3.586 2.749 *Tin 4.542 2.630 *TSS 179.300 143.400 *pH	Pollutant	or	Maximum for	Maximum for
Antimony 23.070 10.280 Arsenic 16.610 7.411 Cadmium 2.391 0.956 Chromium 4.423 1.793 Copper 15.300 7.291 *Cyanide 2.391 0.956 *Lead 3.347 1.554 Nickel 6.574 4.423 Selenium 9.801 4.423 Silver 3.466 1.434 Thallium 16.730 7.291 Zinc 12.190 5.020 Aluminum 73.030 32.390 Barium 13.750 6.096 Boron 21.990 10.040 *Fluoride 418.400 237.900 Iron 14.340 7.291 Manganese 3.586 2.749 *Tin 4.542 2.630	pollutant	property	any one day	monthly average
Arsenic16.6107.411Cadmium2.3910.956Chromium4.4231.793Copper15.3007.291*Cyanide2.3910.956*Lead3.3471.554Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400		mg/kg (lb/mi	llion lbs) of ti	in hydroxide washed
Arsenic16.6107.411Cadmium2.3910.956Chromium4.4231.793Copper15.3007.291*Cyanide2.3910.956*Lead3.3471.554Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400	Antimony		23.070	10.280
Chromium4.4231.793Copper15.3007.291*Cyanide2.3910.956*Lead3.3471.554Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400			16.610	7.411
Chromium4.4231.793Copper15.3007.291*Cyanide2.3910.956*Lead3.3471.554Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400	Cadmium		2.391	0.956
Copper15.3007.291*Cyanide2.3910.956*Lead3.3471.554Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400			4.423	1.793
*Cyanide2.3910.956*Lead3.3471.554Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400			15.300	7.291
*Lead3.3471.554Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400			2.391	0.956
Nickel6.5744.423Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400	-		3.347	1.554
Selenium9.8014.423Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400				4.423
Silver3.4661.434Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400				4.423
Thallium16.7307.291Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400			3.466	1.434
Zinc12.1905.020Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400			16.730	7.291
Aluminum73.03032.390Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400				5.020
Barium13.7506.096Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400	Aluminum			32.390
Boron21.99010.040*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400				6.096
*Fluoride418.400237.900Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400				10.040
Iron14.3407.291Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400	*Fluoride			237.900
Manganese3.5862.749*Tin4.5422.630*TSS179.300143.400			14.340	7.291
*Tin 4.542 2.630 *TSS 179.300 143.400	Manganes	e		
*TSS 179.300 143.400				
		Within		

*Regulated Pollutant

-

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(e) Spent Electrowinning Solution from New Scrap NSPS

Pollutant	or		Max	imum	for		Max	imum	for	
pollutant	prope	erty	any	one	day		mon	thly	average	9
		/1h/m:1	1:00	160		a a t b	- do	+ 1 2	produce	<u></u>
п	ig/kg	(10/11)	LIION	IDS) 01	Cati	ioae	CIN	produce	ea
Antimony				32	.420				14.45	0
Arsenic				23	.350				10.42	0
Cadmium				3	.360				1.34	4
Chromium				6	.216				2.52	0
Copper				21	.500				10.25	
*Cyanide				3	.360				1.34	
*Lead					.704				2.18	
Nickel				9	.240				6.21	
Selenium					.780				6.21	
Silver					.872				2.01	
Thallium					.520				10.25	
Zinc					.140				7.05	
Aluminum					.600				45.53	
Barium					.320				8.56	
Boron				30	.910				14.11	
*Fluoride					.000				334.30	
Iron					.160				10.25	
Manganese	3				.040				3.86	
*Tin					.384				3.69	
*TSS					.000				201.60	
*pH		Within	the	range	e of	7.5	to	10.0	at all	times

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(f) <u>Spent Electrowinning Solution from</u> <u>Municipal Solid Waste</u> NSPS

Pollutant		Maximum f		ximum for nthly averag	
pollutant	propercy	any one d	ay no	nenty averag	e
<u> </u>	mg/kg	(lb/million	lbs) of 1	MSW scrap	· · · · · · · · · · · · · · · · · · ·
		used as a r	aw materi	al	
Antimony		0.2	230	0.10	2
Arsenic		0.1	.65	0.07	4
Cadmium		0.0	24	0.01	.0
Chromium		0.0	44	0.01	.8
Copper		0.1	.52	0.07	3
*Cyanide		0.0	24	0.01	.0
*Lead		0.0	33	0.01	.6
Nickel		0.0	66	0.04	4
Selenium		0.0	98	0.04	4
Silver		0.0	35	0.01	.4
Thallium		0.1	.67	0.07	3
Zinc		0.1	.21	0.05	0
Aluminum		0.7	27	0.32	2
Barium		0.1	.37	0.06	1
Boron		0.2	19	0.10	0
*Fluoride		4.1	.65	2.36	8
Iron		0.1	.43	0.07	3
Manganese	9	0.0	36	0.02	7
*Tin		0.0	45	0.02	6
*TSS		1.7	85	1.42	8
*pH	Withir	h the range	of 7.5 to	10.0 at all	times

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(g) Tin Hydroxide Supernatant from Scrap NSPS

Pollutant	or	Maximum for	Maximum for
pollutant	property	any one day	monthly average
	mg/kg	(lb/million 1	bs) of tin metal
	5, 5	recovered fr	
Antimony		107.400	47.850
Arsenic		77.340	
Cadmium		11.130	
Chromium		20.590	
Copper		71.220	33.940
*Cyanide		11.130	4.451
*Lead		15.580	
Nickel		30.600	20.590
Selenium		45.620	20.590
Silver		16.140	6.677
Thallium		77.900	33.940
Zinc		56.750	23.370
Aluminum		340.000	150.800
Barium		63.990	28.380
Boron		102.400	46.740
*Fluoride		1,947.000	1,107.000
Iron		66.770	33.940
Manganese	9	16.690	12.800
*Tin		21.140	12.240
*TSS		834.600	667.700
*pH	Withir	h the range of	7.5 to 10.0 at all times

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(h) <u>Tin Hydroxide</u> <u>Supernatant from Plating</u> <u>Solutions and</u> <u>Sludges</u> NSPS

Pollutant	or	Maximum	for	Maximum	for	
pollutant	property	any one	day	monthly	average	9
· · · · · · · · · · · · · · · · · · ·					<u></u>	
		(lb/millio				
	recovered f	rom_platin	g solut:	ions and	sludges	5
Antimony		222.	000		98.900)
Arsenic		159.			71.300	
Cadmium		23.			9.200	
Chromium		42.			17.250	
Copper		147.			70.150	
*Cyanide		23.			9.200	
*Lead		32.			14.950	
Nickel		63.			42.550	
Selenium		94.			42.550	
Silver		33.			13.800	
Thallium		161.			70.150	
Zinc		117.			48.300	
Aluminum		702.			311.700	
Barium		132.			58.650	
Boron		211.			96.600	
*Fluoride		4,025.		2,	,289.000	
Iron		138.			70.150	
Manganese	9	34.			26.450	
*Tin		43.	700		25.300	
*TSS		1,725.	000	1,	,380.000)
*pH	Within	the range				
-		5				

NSPS FOR THE SECONDARY TIN SUBCATEGORY

(i) Tin Hydroxide Filtrate NSPS

Pollutant	or	Maximum for	Maximum for
pollutant	property	any one day	monthly average
	mg/kg (1b/mi	llion lbs) of	tin metal produced
Antimony		48.330	21.540
Arsenic		34.810	15.530
Cadmium		5.009	2.004
Chromium		9.266	3.757
Copper		32.060	15.280
*Cyanide		5.009	2.004
*Lead		7.012	3.256
Nickel		13.770	9.266
Selenium		20.540	9.266
Silver		7.263	3.005
Thallium		35.060	15.280
Zinc		25.540	10.520
Aluminum		153.000	67.870
Barium		28.800	12.770
Boron		46.080	21.040
*Fluoride		876.500	498.400
Iron		30.050	15.280
Manganese	9	7.513	5.760
*Tin		9.517	5.510
*TSS		375.700	300.500
*pH	Within	the range of 7	7.5 to 10.0 at all times

SECTION XII

PRETREATMENT STANDARDS

This section describes the control and treatment technologies for pretreatment of process wastewaters from existing sources and new sources in the secondary tin subcategory. Pretreatment standards for regulated pollutants are presented based on the selected control and treatment technology.

TECHNICAL APPROACH TO PRETREATMENT

Before proposing and promulgating pretreatment standards, the Agency examines whether the pollutants discharged by the industry pass through the POTW or interfere with the POTW operation or its disposal practices. In determining whether chosen sludge pollutants pass through a well-operated POTW, achieving secondary treatment, the Agency compares the percentage of a pollutant removed by POTW with the percentage removed by direct dischargers applying the best available technology economically achievable. A pollutant is deemed to pass through the POTW when the average percentage removed nationwide by well-operated POTW meeting secondary treatment requirements, is less than the percentage by direct dischargers complying with BAT effluent removed limitations guidelines for that pollutant. (See generally, 46 FR at 9415-16 (January 28, 1981).

This definition of pass through satisfies two competing objectives set by Congress that standards for indirect dischargers be equivalent to standards for direct dischargers while at the same time the treatment capability and performance of the POTW be recognized and taken into account in regulating the discharge of pollutants from indirect dischargers.

The Agency compares percentage removal rather than the mass or concentration of pollutants discharged because the latter would not take into account the mass of pollutants discharged to the POTW from non-industrial sources or the dilution of the pollutants in the POTW effluent to lower concentrations due to the addition of large amounts of non-industrial wastewater.

INDUSTRY COST AND POLLUTANT REMOVAL ESTIMATES

The industry cost and pollutant removal estimates of each treatment option were used to determine the most cost-effective option. The methodology applied in calculating pollutant removal estimates and plant compliance costs is discussed in Section X. Table XII-1 (page 4296) shows the estimated pollutant removals for indirect dischargers. Compliance costs for indirect dischargers are presented in Table XII-2 (page 4297).

. 1

PRETREATMENT STANDARDS FOR EXISTING AND NEW SOURCES

Options for pretreatment of wastewaters from both existing and new sources are based on increasing the effectiveness of end-ofpipe treatment technologies. All in-plant changes and applicable end-of-pipe treatment processes have been discussed previously in Sections X and XI. The options for PSNS and PSES, therefore, are the same as the BAT options discussed in Section X.

A description of each option is presented in Section X, while a more detailed discussion, including pollutants controlled by each treatment process is presented in Section VII.

Treatment technologies considered for the PSNS and PSES options are:

OPTION A

- Preliminary treatment consisting of cyanide precipitation (where required)
- o Chemical precipitation and sedimentation

OPTION C

- o Preliminary treatment consisting of cyanide precipitation
 (where required)
- o Chemical precipitation and sedimentation
- o Multimedia filtration

PSES AND PSNS OPTION SELECTION

Option C (cyanide precipitation, chemical precipitation, sedimentation and filtration) has been selected as the treatment technology basis for pretreatment standards for existing and new sources (PSES and PSNS). Option C prevents pass-through and is equivalent to BAT treatment for direct dischargers. In addition, Option C achieves effective removal of priority pollutants by incorporating filtration, which is demonstrated by 25 plants throughout the nonferrous metals manufacturing category.

The wastewater discharge rates for the promulgated PSES and PSNS are identical to the promulgated BAT discharge rates for each waste stream. The PSES and PSNS discharge rates are shown in Table XII-3 (page 4298). No additional flow reduction measures for PSES or PSNS are feasible; EPA does not believe that new plants could achieve flow reduction beyond the allowance promulgated for BAT.

Implementation of the promulgated PSES limitations would remove annually an estimated 167 kg of priority pollutants and 6,230 kg of tin. Capital cost for achieving promulgated PSES is \$160,187, and annual cost is \$50,044 (1982 dollars). The promulgated PSES will not result in adverse economic impacts. We believe that the promulgated PSNS are achievable, and that they are not a barrier to entry of new plants into this subcategory.

REGULATED POLLUTANT PARAMETERS

Pollutants selected for limitation, in accordance with the rationale of Sections VI and X, are identical to those selected for limitation for BAT. It is necessary to promulgate PSES and PSNS to prevent pass-through of arsenic, lead, fluoride, iron, and tin, which are the limited pollutants. Because of the nature of the wastewaters in this subcategory, secondary tin plants which only smelt concentrates will not be regulated for cyanide or fluoride. Other secondary tin plants, those which do not smelt concentrates, will not be regulated for iron or arsenic.

PRETREATMENT STANDARDS

Pretreatment standards are based on the treatable concentrations from the selected treatment technology, (Option C), and the discharge rates determined in Section X for BAT. A mass of pollutant per mass of product (mg/kg) allocation is given for each subdivision within the subcategory. This pollutant allocation is based on the product of the treatable concentration from the promulgated treatment (mg/l) and the production concentrations for BAT are identical to those for PSES and PSNS. PSES are presented in Table XII-4 (page 4299) and NSPS are presented in Table XII-5 (page 4308).

Table XII-1

SECONDARY TIN SUBCATEGORY POLLUTANT REMOVAL ESTIMATES INDIRECT DISCHARGERS

Pollutant	Raw Discharge (kg/yr)	Option A Discharge (kg/yr)	Option A Removed (kg/yr)	Option C Discharge (kg/yr)	Option C Removed (kg/yr)	SEO
Antimony	6.35	0.77	5.57	0.51	5.83	SECONDARY TIN SUBCATEGORY
Arsenic	7.25	0.56	6.68	0.37	6.87	
Cadmium	1.16	0.08	1.07	0.05	1.10	
Chromium (total)	1.46	0.09	1.36	0.07	1.38	
Copper	1.15	0.64	0.50	0.43	0.71	
Cyanide (total)	19.79	0.07	19.71	0.05	19.73	
Lead	4.67	0.13	4.53	0.08	4.58	
Mercury	0	0	0	0	0	
Nickel	12.72	0.81	11.90	0.24	12.47	
Selenium	78.98	0.33	78.64	0.22	78.75	
Silver	1.15	0.11	1.03	0.07	1.07	
Thallium	7.45	0.55	6.89	0.37	7.07	
Zinc	27.78	0.36	27.41	0.25	27.52	
TOTAL PRIORITY POLLUTANTS	169.91	4.50	165.29	2.71	167.08	
Aluminum	22.60	2.47	20.12	1.64	20.95	SECT -
Fluoride	0.87	0.87	0	0.87	0	
Tin	6,227.62	0.23	6,227.38	0.15	6,227.46	
TOTAL NONCONVENTIONALS	6,251.09	3.57	6,247.50	2.66	6,248.41	XII
TSS	490.43	13.25	477.17	2.87	487.55	
Oil and Grease	7.42	7.42	0	7.42	0	
TOTAL CONVENTIONALS	497.85	20.67	477.17	10.29	487.55	
TOTAL POLLUTANTS	6,918.85	28.74	6,889.96	15.66	6,903.04	

SECONDARY TIN SUBCATEGORY SECT

- XII

SECONDARY TIN SUBCATEGORY SECT - XII

TABLE XII-2

COST OF COMPLIANCE FOR THE SECONDARY TIN SUBCATEGORY INDIRECT DISCHARGERS

Option	Proposal Capital Cost		Promulgat Capital Cost	
A	333400	112200	156612	46676
в	341700	119900	160187	50044

Table XII-3

PSES AND PSNS WASTEWATER DISCHARGE RATES FOR THE SECONDARY TIN SUBCATEGORY

	PSES an Normal		
Wastewater Stream	Discharg <u>1/kkg</u>	ge Rate gal/ton	Production Normalizing Parameter
Tin smelter SO ₂ scrubber	9,198	2,204	Crude tapped tin produced
Dealuminizing rinse	35	9	Dealuminized scrap produced
Tin mud acid neutralization filtrate	5,047	1,210	Neutralized, dewatered tin mud produced
Tin hydroxide wash	11,953	2,869	Tin hydroxide washed
Spent electrowinning solution from new scrap	16,800	4,029	Cathode tin produced
Spent electrowinning solution from municipal solid waste	119	29	MSW scrap used as a raw material
Tin hydroxide supernatant from scrap	55,640	13,354	Tin metal recovered from scrap
Tin hydroxide supernatant from plating solutions and sludges	115,000	27,600	Tin metal recovered from plat- ing solutions and sludges
Tin hydroxide filtrate	25,044	6,011	Tin metal produced

TABLE XII-4

PSES FOR THE SECONDARY TIN SUBCATEGORY

(a) <u>Tin Smelter</u> <u>SO2</u> Scrubber PSES

Pollutant or	Maximum for	Maximum for
pollutant prop	perty any one day	monthly average
mg/kg	(lb/million lbs) of crude	e tapped tin produced
• • • • •		7 010
Antimony	17.750	7.910
*Arsenic	12.790	5.703
Cadmium	1.840	0.736
Chromium	3.403	1.380
Copper	11.770	5.611
*Lead	2.575	1.196
Nickel	5.059	3.403
Selenium	7.542	3.403
Silver	2.667	1.104
Thallium	12.880	5.611
Zinc	9.382	3.863
Aluminum	56.200	24.930
Barium	10.580	4.691
Boron	16.920	7.726
*Iron	11.040	5.611
Manganese	2.759	2.116
*Tin	3.495	2.024

TABLE XII-4

PSES FOR THE SECONDARY TIN SUBCATEGORY

(b) Dealuminizing Rinse PSES

٠

Pollutant pollutant		Maximum any one		Maximum monthly	for average
mg/ł	cg (lb/million	n lbs) o	f dealum	inized so	crap produced
Antimony Arsenic Cadmium Chromium Copper *Cyanide *Lead Nickel Selenium Silver Thallium Zinc Aluminum Barium		0 0 0 0 0 0 0 0 0 0 0 0 0 0	.068 .049 .007 .013 .045 .007 .010 .019 .029 .010 .049 .036 .214 .040		0.030 0.022 0.003 0.005 0.021 0.003 0.005 0.013 0.013 0.013 0.013 0.004 0.021 0.015 0.095 0.018
Boron *Fluoride Iron Manganese *Tin	2	0 1 0 0	.064 .225 .042 .011 .013		0.029 0.697 0.021 0.008 0.008

PSES FOR THE SECONDARY TIN SUBCATEGORY

(c) <u>Tin Mud Acid Neutralization Filtrate</u> PSES

Pollutant	or	Maximum	for	Maximum	for	
pollutant	property	any one	day	monthly	average	
	ma/ka	(lb/million	lbs) of	neutral	zed.	
		dewatered t			,	
			-			
Antimony		. 9	.741		4.340	
Arsenic		7	.015		3.129	
Cadmium		1.	.009		0.404	
Chromium		1.	.867		0.757	
Copper		6	.460		3.079	
*Cyanide		1.	.009		0.404	
*Lead		1.	.413		0.656	
Nickel		. 2	.776		1.867	
Selenium		4	.139		1.867	
Silver			.464		0.606	
Thallium		7	.066		3.079	
Zinc		5	.148		2.120	
Aluminum		30	.840		13.680	
Barium		5	.804		2.574	
Boron		9	.286		4.239	
*Fluoride		176.	.600		100.400	
Iron		6	.056		3.079	
Manganese	9	1.	.514		1.161	
*Tin		1.	918		1.110	

PSES FOR THE SECONDARY TIN SUBCATEGORY

(d) <u>Tin Hydroxide Wash</u> PSES

Pollutant				mum			Maximum		
pollutant	prope	erty	any	one	day		monthly	average	
I	ng/kg	(lb/mil	lion	lbs)	of	tin	hydroxic	le washed	
Antimony				23.	070			10.280	
Arsenic		•		16.	610			7.411	
Cadmium				2.	391			.956	
Chromium				4.	423			1.793	
Copper				15.	300			7.291	
*Cyanide				2.	391			.956	
*Lead					347			1.554	
Nickel					574			4.423	
Selenium				9.	801			4.423	
Silver				3.	466			1.434	
Thallium				16.	730			7.291	
Zinc				12.	190			5.020	
Aluminum				73.	030			32.390	
Barium				13.	750			6.096	
Boron				21.	990			10.040	
*Fluoride				418.	400			237.900	
Iron				14.	340			7.291	
Manganese	9			3.	5 8 6			2.749	
*Tin				4.	542			2.630	

PSES FOR THE SECONDARY TIN SUBCATEGORY

(e) Spent Electrowinning Solution from New Scrap PSES

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average
r	ng/kg (lb/mil	lion lbs) of	cathode tin	produced
- · ·					
Antimony			.420		14.450
Arsenic			.350		10.420
Cadmium		3	.360		1.344
Chromium		6	.216		2.520
Copper		21	.500		10.250
*Cyanide		3	.360		1.344
*Lead		4	.704		2.184
Nickel			.240		6.216
Selenium		13	.780		6.216
Silver		4	.872		2.016
Thallium		23	.520		10.250
Zinc		17	.140		7.056
Aluminum		102	.600		45.530
Barium		19	.320		8.568
Boron		30	.910		14.110
*Fluoride		588	.000		334.300
Iron			.160		10.250
Manganese	3		.040		3.864
*Tin	-		.384		3.696

PSES FOR THE SECONDARY TIN SUBCATEGORY

(f) <u>Spent</u> <u>ELectrowinning</u> <u>Solution</u> <u>from</u> <u>Municipal</u> <u>Solid</u> <u>Waste</u> PSES

Dellutert	~~	Nouimum For	Nouimum For	
Pollutant		Maximum for	Maximum for	
pollutant	property	any one day	monthly average	
	mg /lig	(1h/million lha	A ACH COMON	
	mg/kg	(lb/million lbs		
		used as a raw m	ateriar	
Antimony		.230	.102	
Arsenic		.165	.074	
Cadmium		.024	.010	
Chromium		.044	.018	
Copper		.152	.073	
*Cyanide		.024	.010	
*Lead		.033	.016	
Nickel		.066	.044	
Selenium		.098	.044	
Silver		.035	.014	
Thallium		.167	.073	
Zinc		.121	.050	
Aluminum		.727	.322	
Barium		.137	.061	
Boron		.219	.100	
*Fluoride		4.165	2.368	
Iron		.143	.073	
Manganese	9	.036	.027	
*Tin		.045	.026	

PSES FOR THE SECONDARY TIN SUBCATEGORY

(g) Tin Hydroxide Supernatant from Scrap PSES

Pollutant	or	Maximum	for	Maximum	for
pollutant		any one		monthly	
Ferrara	Freberel	ung 0	1	mononly	uveruge
	mg/kg	(lb/millio	on lbs)	of tin me	etal
	<i></i>	recovered			
				-	
Antimony		107	.400		47.850
Arsenic		77.	.340		34.500
Cadmium		11.	.130		4.451
Chromium		20	.590		8.346
Copper		71.	. 220		33.940
*Cyanide		11.	.130		4.451
*Lead		15.	.580		7.233
Nickel		30.	.600		20.590
Selenium		45	.620		20.590
Silver		16.	.140		6.677
Thallium		77.	.900		33.940
Zinc		56	.750		23.370
Aluminum		340.	.000		150.800
Barium		63.	.990		28.380
Boron		102.	.400		46.740
*Fluoride		1,947.	.000	1,	,107.000
Iron		66.	.770		33.940
Manganese	5	16.	.690		12.800
*Tin		21.	.140		12.240

PSES FOR THE SECONDARY TIN SUBCATEGORY

(h) <u>Tin Hydroxide Supernatant from</u> <u>Plating Solutions and Sludges</u> PSES

			-		6	
Pollutant		Maximum		Maximum		
pollutant	property	any one	day	monthly	average	
) of tin me		
	recovered	from platin	ng sol	utions and	sludges	
					~~ ~~~	
Antimony			.000		98.900	
Arsenic			.900		71.300	
Cadmium			.000		9.200	
Chromium		42	.550		17.250	
Copper		147	.200		70.150	
*Cyanide		23	.000		9.200	
*Lead		32	.200		14.950	
Nickel		63	.250		42.550	
Selenium		94	.300		42.550	
Silver			.350		13.800	
Thallium			.000		70.150	
Zinc			.300		48.300	
Aluminum			.700		311.700	
Barium			.300		58.650	
Boron			.600		96.600	
*Fluoride		4,025		2	,289.000	
Iron			.000		70.150	
			.500		26.450	
Manganese *Tin	-					
*TTU		43	.700		25.300	

*Regulated Pollutant

.

PSES FOR THE SECONDARY TIN SUBCATEGORY

(i) <u>Tin Hydroxide</u> Filtrate PSES

Pollutant	or	Maximum for	Maximum for
pollutant	property	any one day	monthly average
	mg/kg (lb/mi	llion lbs) of	tin metal produced
Antimony		48.330	21.540
Arsenic		34.810	15.530
Cadmium		5.009	2.004
Chromium		9.266	3.757
Copper		32.060	15.280
*Cyanide		5.009	2.004
*Lead		7.012	3.256
Nickel		13.770	9.266
Selenium		20.540	9.266
Silver			
		7.263	3.005
Thallium		35.060	15.280
Zinc		25.540	10.520
Aluminum		153.000	67.870
Barium		28.800	12.770
Boron		46.080	21.040
*Fluoride		876.500	498.400
Iron		30.050	15.280
Manganese	9	7.513	5.760
*Tin		9.517	5.510

*Regulated Pollutant

•

TABLE XII-5

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(a) <u>Tin Smelter</u> <u>SO2</u> Scrubber PSNS

Pollutant		Maximum for	Maximum for
pollutant		any one day	monthly average
mg	/kg (lb/millio	on lbs) of crude	tapped tin produced
Antimony		17.750	7.910
*Arsenic		12.790	5.703
Cadmium		1.840	0.736
Chromium		3.403	1.380
Copper		11.770	5.611
*Lead		2.575	1.196
Nickel		5.059	3.403
Selenium		7.542	3.403
Silver		2.667	1.104
Thallium		12.880	5.611
Zinc		9.382	3.863
Aluminum		56.200	24.930
Barium		10.580	4.691
Boron		16.920	7.726
*Iron		11.040	5.611
Manganese		2.759	2.116
*Tin		3.495	2.024

*Regulated Pollutant

4308

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(b) Dealuminizing Rinse PSNS

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average
		_	_	_	-
mg/l	<pre> (lb/millio</pre>	n lbs) o	f dealum	inized so	crap produced
Antimony		0	.068		0.030
Arsenic			.049		0.022
Cadmium			.007		0.003
Chromium			.013		0.005
Copper		0	.045		0.021
*Cyanide		0	.007		0.003
*Lead		0	.010		0.005
Nickel		0	.019		0.013
Selenium		0	.029		0.013
Silver		0	.010		0.004
Thallium		0	.049		0.021
Zinc		0	.036		0.015
Aluminum		0	.214		0.095
Barium		0	.040		0.018
Boron		0	.064		0.029
*Fluoride		1	.225		0.697
Iron			.042		0.021
Manganese	2		.011		0.008
*Tin		0	.013		0.008

*Regulated Pollutant

•

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(c) Tin Mud Acid Neutralization Filtrate PSNS

Pollutant pollutant		Maximum any one		Maximum monthly	for average
	mg/kg	(lb/million dewatered t			ized,
Antimony Arsenic Cadmium Chromium Copper *Cyanide *Lead Nickel Selenium Silver Thallium Zinc Aluminum Barium Boron *Fluoride Iron Manganeso	e	7 1 6 1 1 2 4 1 7 5 30 5 9 176 6 1	.741 .015 .009 .867 .460 .009 .413 .776 .139 .464 .066 .148 .840 .804 .286 .600 .056 .514 .918		4.340 3.129 0.404 0.757 3.079 0.404 0.656 1.867 1.867 0.606 3.079 2.120 13.680 2.574 4.239 100.400 3.079 1.161 1.110

*Regulated Pollutant

.

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(d) <u>Tin</u> <u>Hydroxide</u> <u>Wash</u> PSNS

Pollutant	or	Maxi	imum	for		Maximum	for
pollutant	proper	ty any	one	day		monthly	average
		•		_		_	
I	ng/kg (lb/million	lbs)	of	tin	hydroxic	le washed
Antimony			22	070			10.280
Arsenic							
				610			7.411
Cadmium				391			0.956
Chromium				423			1.793
Copper			15.	300			7.291
*Cyanide			2.	391			0.956
*Lead			3.	347			1.554
Nickel				574			4.423
Selenium				801			4.423
Silver				466			1.434
Thallium				730			7.291
Zinc				190			5.020
Aluminum				030			32.390
Barium			13.	750			6.096
Boron			21.	990			10.040
*Fluoride			418.	400			237.900
Iron				340			7.291
Manganese	2			586			2.749
*Tin	_			542			2.630
			7.	372			2.030

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(e) Spent Electrowinning Solution from New Scrap PSNS

Pollutant pollutant			imum one			lmum hly	for average	
I	ng/kg	(lb/million	lbs) of	cathode	tin	produced	
Antimony Arsenic Cadmium			23	420 350 360			14.450 10.420 1.344	
Chromium Copper *Cyanide			6 21	216 500 360			2.520 10.250 1.344	
*Lead Nickel Selenium			4 9	704 240 780			2.184 6.216 6.216	
Silver Thallium Zinc			4 23	.872 .520 .140			2.016 10.250 7.056	
Aluminum Barium Boron			102 19	.600 .320 .910			45.530 8.568 14.110	
*Fluoride Iron Manganese	9		588 20	.000 .160 .040			334.300 10.250 3.864	
*Tin	5			.384			3.696	

*Regulated Pollutant

,

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(f) <u>Spent ELectrowinning Solutions from</u> <u>Municipal Solid Waste</u> PSNS

Pollutant	or	Maximum	for	Maximum	for
pollutant		any one	day	monthly	average
	mg/kg	(lb/millio			erap
		used as a	raw mat	cerial	
Antimony		0	.230		0.102
Arsenic		0	.165		0.074
Cadmium		0	.024		0.010
Chromium		0	.044		0.018
Copper		0	.152		0.073
*Cyanide		0	.024		0.010
*Lead		0	.033		0.016
Nickel		0	.066		0.044
Selenium		0	.098		0.044
Silver		0.	.035		0.014
Thallium		0	.167		0.073
Zinc		0	.121		0.050
Aluminum		0	.727		0.322
Barium		0	.137		0.061
Boron			.219		0.100
*Fluoride		4.	.165		2.368
Iron		0	.143		0.073
Manganes	e	4	.036		0.027
*Tin		0	.045		0.026

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(g) Tin Hydroxide Supernatant from Scrap PSNS

Pollutant	or	Maximum	for	Maximum	for
pollutant	property	any one	day	monthly	average
		_			
-	mg/kg	(lb/millio			etal
		recovered	i from so	rap	
n t t		107	100		47 950
Antimony			.400		47.850
Arsenic			.340		34.500
Cadmium			.130		4.451
Chromium		20.	. 590		8.346
Copper		71.	.220		33.940
*Cyanide		11.	.130		4.451
*Lead		15	.5 80		7.233
Nickel		30.	.600		20.590
Selenium		45	620		20.590
Silver		16.	.140		6.677
Thallium		77.	.900		33.940
Zinc		56	.750		23.370
Aluminum		340			150.800
Barium			.990		28.380
Boron			.400		46.740
*Fluoride		1,947		1.	107.000
Iron		•	.770	-,	33.940
Manganese	.		.690		12.800
*Tin			.140		12.240
~ T 11		210			12.24

Table XII-5 (Continued)

PSNS FOR THE SECONDARY TIN SUBCATEGORY

PSNS Secondary Tin (h) <u>Tin Hydroxide</u> <u>Supernatant from Plating</u> <u>Solutions and</u> <u>Sludges</u> PSNS

Pollutant	or	Maximum	for	Maximum	for	
pollutant	property	any one	day	monthly	average	
	••					
		(lb/millio				
	recovered f	rom platir	ng soluti	ions and	sludges	
Antimony		222.	.000		98.900	
Arsenic		159.	.900		71.300	
Cadmium		23.	.000		9.200	
Chromium		42.	550		17.250	
Copper		147.	.200		70.150	
*Cyanide		23.	.000		9.200	
*Lead		32.	. 200		14.950	
Nickel		63.	250		42.550	
Selenium		94.	.300		42.550	
Silver		33.	350		13.800	
Thallium		161.			70.150	
Zinc		117.			48.300	
Aluminum		702			311,700	
Barium			300		58.650	
Boron			600		96.600	
*Fluoride		4,025		2	289.000	
Iron			000	_	70.150	
Manganese	_		500		26.450	
*Tin	-		700		25.300	
T T 11		40	,,,,,		201000	

PSNS FOR THE SECONDARY TIN SUBCATEGORY

(i) Tin Hydroxide Filtrate PSNS

Pollutant	or	Maximum for	Maximum for	
pollutant	property	any one day	monthly average	
-				
	mg/kg (lb/mi	llion lbs) of	tin metal produced	
Antimony		48.330	21.540	
Arsenic		34.810	15.530	
Cadmium		5.009	2.004	
Chromium		9.266	3.757	
Copper		32.060	15.280	
*Cyanide		5.009	2.004	
*Lead		7.012	3.256	
Nickel		13.770	9.266	
Selenium		20.540	9.266	
Silver		7.263	3.005	
Thallium		35.060	15.280	
Zinc		25.540	10.520	
Aluminum		153.000	67.870	
Barium		28.800	12.770	
Boron		46.080	21.040	
*Fluoride		876.500	498.400	
Iron		30.050	15.280	
Manganese	5	7.513	5.760	
*Tin		9.517	5.510	

SECTION XIII

BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY

EPA is not promulgating best conventional pollutant control technology (BCT) limitations for the secondary tin subcategory at this time.

. .

.

.

.