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ABSTRACT 

The Final Acute Value (FAV) for a material, which i.s an integral part af 

the procedure for deriving water quality criteria for aquatic organisms, i.s 

an estimate of the fifth percentile of a statistical population represented 

by the set of ~an Acute Values (MAV) available for the material, a MAV bein~ 

the concentration of the material that causes a specified level of acute 

toxicity to aquatic or~anisms in some taxonomic group. A new procedure for 

calculating FAVs has been developed under the assumption that sets of MAVs 

are random samples of such populations. Based on exami.nation of available 

sets of MAVs, it was inferred that FAV estimation 'l«>uld be best served by 

assuming that the populations have a log triangular distribution. Also, 

because this or any other assumption will ·likely not completely hold over the 

entire range of data in all sets, it was jud~ed that FAV estimation should be 

based on a subset of the data near the fifth percentile. Based on 

simulations, it was determined that a FAV for a set of MA.Vs would be best 

calculated by (a) assignin~ each MAV a cumulative probability pRaR/(N+l) 

(Rarank, Nanlmlber of MAVs in the set), (b) fitting a line to ln(MAV) versus 

~ using the four points with PR nearest 0.05 and using the geometric 

mean functional relationship to estimate slope, and (c) calculating the FAV 

as the concentration corresponding to pRaQ,05 on this line. Major 

modifications of this new procedure were found to result either in only mi.nor 

changes in FAVs or in FAVs at variance with the data. The old procedure for 

calculation of FAVs was judged to have some theoret1cal and practical 

shortcomings that make it less desirable than the new procedure, but FAVs by 

the two procedures were generally similar. A procedure based on extreme 

deviation from random sampling generally did not produce greatly di.fferent 

FAVs. 
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INTRODUCTION 

On November 28, 1980, the U.S. Environmental Protection Agency publ1shed 

"Guidelines for Derivin~ Water Quality Criteria for the Protection of Aquati.c 

Life and Its Uses" as Appendix B of an announcement of the availability L'f water 

quality criteria documents (1). Calculation of the Final Acute Value (FAV) ls 

an important part of the process described in these Guidelines. A FAV is a 

concentration of a material derived from an appropriate set of Mean Acute Values 

(MAVs), a MAV being the concentration of the material that causes a specified 

level of acute toxicity to an aquatic taxon in laboratory tests. The FAV is 

defined to be lower than all except a small fraction of the MAVs that are 

available for the material. The fraction was set at 0.05 (i.e., the FAV lies at 

the fifth percentile of the MAVs) because other fractions resulted in FAVa that 

were deemed too hi~h or too low in comparison with the sets of MAVs from which 

they were obtained. However, if the set contains a MAV for an important species 

that is lower than the calculated FAV, the FAV is set equal to that MAV. 

In order to be useful, the procedure for obtaining a FAV from a set of MAVs 

must be objective so that different parties will obtain the same FAV from a set 

of MAVs. The development of a reasonable mathematical framework for FAV 

calculation was therefore necessary. In addition, it is desirable that the 

rationale for the calculation procedure be relatively easy to understand and 

that the computations· be as simple as possible. Section IV.I-0 of the 

Guidelines described a procedure for calculating a FAV from a suitable set of 

Species :-fean Acute Values (SMAVs). Because of criticism of this procedure, this 

project was initiated to define the general problem of calculating a FAV, to 

evaluate alternative procedures, and to recommend the most appropriate 
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procedure. This project was not intended to evaluate the definition of the FAV 

or the procedures for obtaining MAVs. 

'Development of an appropriate procedure for calculating FAVs requtres the 

availability of typical sets of SMAVs. Some of the water quality critena 

documents (1) contain such sets in Table 3 of the section on Aquatic Life 

Toxicology. Twenty data sets for freshwater species and seventeen for saltwater 

species were considered to be acceptable for the purposes of this project 

because they contained SMAVs from at least eight families in a variety of 

taxonO!llic and functional groupe. TheH data set1 (Table 1) contain fr01D 8 to 45 

SMAVs for a variety of or~anic and inorganic materials, 'BecauH all a.ccepc: ab le 

sets of ~AVs (that ..,.re available at the completicn of this project in May, 

1982) were used and because they include a diversity of species and mat~riats, 

this group of 37 data sets should be representative of the data sets fr~ which 

FAVs will be calculated. 

There is some concern that FAVs would be more appropriately based on a 

taxonomic level higher than spec iu (e.g., f aily). Stat is tic al analysis of 

data sets similar to those in Table l has shown that differences between 

families are usually greater, often by an order of magnitude or more, than 

average differences within families (2). Therefore, i.f a set of SiAVs has a 

disproportionate ntmber of species from a sensitive or insensitive family, the 

FAV might be undesira~ty affected. For example, of the 29 SMAVs for zinc in 

fresh water, six are from Salmonidae and are all among the twelve lowest SMAVs. 

Resolution of which taxonomic level is most appropriate is not of concern here, 

but because the definition of the FAV might be so modified, Family Mean Acute 

Values (FMAVs), the geometric mean of all the SMAVs available for a family, were 

computed for all data sets in Table 1 and are reported in Table Z. Subsequent 
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analysis will consider how the use of these two different taxonomic levels m1~ht 

affect recoumendations about the procedure for calculating a FAV. This does 

not, however, constitute an endorsement of either species or family as the most 

appropriate taxonomic level. 

This report will first define the problem of FAV calculation and then 

discuss the general methods available for estimating percentiles. Next, the 

example data sets in Tables 1 and 2 will be examined to determine an appropriate 

statistical distribution to use in the FAV calculation procedure. Simulated 

samples from the selected statistical distribution will then be used to 

determine the procedure most appropriate for calculation of the FAV. Finally, 

the procedure selected will be applied fo the example data sets and the 

significance of deviations from various assumptions of the procedure will be 

evaluated. 
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TABLE 1. EX.A.fooPLE SETS Cf' SPECIES ~AN ACUTE VALUES.a 

COPPER 

(FRESHWATER> 

Rank SMAV 

DDT 
(FRESHWATER> 

Rank SMAV 

CA01'41 UM 

(SAL TWATERl 

Rank Sl'>.V 

CADMIUM 

(FRESHWATER> 

Rank SMAV 

TOXAP>iENE 

(FRESHWATER> 

Rank SMAV 

---------------------------------------------------------------------------------------------------------------
45 
44 
4.3 
42 
41 

40 

.39 

.38 

.37 
36 
3'5 
.34 
.3.3 
.32 
.31 

30 

29 
28 
27 

26 
25 
24 
23 
22 
21 
20 
19 

18 

17 

16 

1'5 

14 
13 

12 

11 

10 
9 

8 

7 
6 

'5 

4 
3 

260. 
1 '50. 
148. 

14'5. 

117. 
91.8 
47.9 
46.'5 
.3'5 .2 
23 .1 
22.9 

21 .8 
20 .1 
18 .9 
1 4 ,4 

10 .1 

8 .41 
'.01 
5,37 
5.oo 
4 ,95 
3,97 
:5 .29 

2.ao 
2.28 
2.20 
2.20 
2.13 
2.13 
2.12 
1 .99 

1 • 8.3 
1 .66 
1.42 

1.34 
1.23 
1 .01 
1 .02 

0.91 

0.91 
o. 76 
o.'5'5 
o.43 

2 0.20 

o.23 

42 
41 
40 
.39 

.38 

37 
.36 
35 

.34 
J3 

.32 

31 
30 
29 
28 
27 
26 

2'3 
24 
23 
22 
21 
20 
19 

18 
17 

16 

15 
i4 

13 
12 
11 
10 

9 

8 
7 
6 
5 

4 

3 

2 

1230. 
362. 

192. 

17'5. 
68. 
67. 
'54. 
48. 

48. 
40. 
33. 
25. 
1 8. 
17. 
14. 
12. 

1 o. 
9,3 
8.5 
8.o 
7.8 
7.8 
7.3 
5.0 
4,9 
4.3 
4 .o 
.3.9 .... 
..JoJ 

3.2 
3.0 
3.0 
2.6 
2.4 
1.9 
1 .9 
1. 7 

1. 7 

1.6 
1.4 

1.1 

0 . .36 

.31 

.30 

29 
28 
27 
26 
25 
24 
23 
22 
21 

20 
19 
18 

17 

16 

15 
14 
13 

12 

11 

10 
9 

8 
7 
6 

5 
4 

:5 
2 

1 

50600. 
50000. 
21200. 
21000. 
19200. 
12200. 
10100. 

4 

6600. 
5290 • 
4100. 
3940. 
3800. 
.3'500 • 
.3440. 
2930. 
2590. 
241 o. 
1800. 
1710. 
1670. 
1480. 
1220. 
1080. 
760. 
645. 
320. 

169. 
144. 
1:3'5, 

78. 
41 .3 

29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 

16 

15 
14 
13 

12 
11 
10 
9 

8 

7 
6 
5 

4 

.3 
2 

138. 
1.3'5. 

1J4. 

i:n. 
125. 

91 .4 
86.7 
~.7 

'5'5.9 
54,7 
47.0 
38.2 
35,9 

30,3 
28.0 

22.3 
19.7 

12.2 

1.01 
3,57 
2.87 

1.67 

1 .15 
0.87 
0.29 
0.09 
0.04 

0.03 
0.02 

29 
28 
27 
26 
25 
24 
23 
22 

21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 

8 

7 

6 
5 
4 

.3 

2 

180. 
28. 
26. 
24. 
20. 
15. 
14. 
14 • 

14. 

1.3. 

1.3. 

12. 

11. 

10. 
9.8 
9.2 
8.7 
6..3 
6. 
4.2 
4.1 

4. 
.3. 

3. 

3. 



'.BLE 1 • Continued 

-------------------------------------------------------------------------------------------------------------
ZI~ ENORIN MERCURY ZINC l_I NDAi'E 

(FRESHWATER) (FRESHWATER> C SAL TWATERl <SALTWATER> (FRESHWATC::Rl 
Rank SMAY Rank SMAY Renk SMAY Rank SMAY RanK sw..v 

---------------------------------------------------------------------------------------------------------------
29 2260. 28 352. 26 1680. 24 70600. 22 676. 
28 1019. 27 64. 25 1260. 23 50000. 21 485. 
27 732. 26 60. 24 400. 22 39000. 20 460. 
26 716. 25 34. 23 315. 21 24600. 19 207. 
25 708. 24 32. 22 230. 20 94150. 18 141.1 
24 1599, 23 5,9 21 223. 19 81 oo. 17 138. 

23 531. 22 4.7 20 158. 18 63:30. 16 90. 

22 524. 21 3.1 19 116. 17 4090. 15 83. 
21 413. 20 2 .1 18 98. 16 3640. 14 68. 
20 "567. 19 1.8 17 98. 15 3380. 13 67 .1 

19 315. 18 1 .5 16 89. 14 2440. 12 64. 
18 293. 17 1 .3 15 84. 13 2160. 11 55.6 
17 285. 16 1 .2 14 79. 12 1780. 10 48. 
16 255. 15 1.1 13 70. 11 1450. 9 45. 

15 172. 14 1 .o 12 60. 10 1270. 8 44. 
14 169. 13 o.85 11 50. 9 1000. 7 44. 

13 92.8 12 o. 78 10 17, 8 950. 6 40. 
12 82 .6 11 o.76 9 14. 7 591. 5 32. 
11 81.4 10 0. 75 8 1 4. 6 498. 4 32. 
10 64.9 9 0.69 7 14. 5 400. 3 10.5 
9 57.9 8 o.54 6 1 o. 4 321. 2 1 o. 
8 57.6 7 0.47 5 7.6 3 310. 2. 
7 49,3 6 0.46 4 6.6 2 290. 
6 42.0 5 0.44 3 5.6 166. 
5 26.2 4 0.41 2 4.8 
4 23.1 3 o.33 1 3,5 
3 21.2 2 0.32 
2 9,09 0.15 

9.89 

5 



TABLE 1. Continued 

----------------------------------------------------------------------------------------------------------------
COPPER 

(SALTWATER) 
~ank SAAV 

NICKEL 
CFRESHWATERl 
Rank SMAV 

OIELDRJN 
CSALTWATERl 
Rank SMAV 

ALOR IN 
(FRESHWATER> 
Rank SMAV 

END~I N 
( SALT',.ATERl 
Rank SMAY 

----------------------------------------------------------------------------------------------------------------
22 
21 

20 
19 

18 
17 

16 
15 
14 

13 
12 

11 

10 
9 

8 
7 

6 

5 

4 
3 

2 

600. 
560. 
526. 
487. 

412. 
364. 
330. 
181. 
141. 

138. 

136. 
129. 

128. 

124. 

120. 
86. 
69. 
52. 
50. 
39. 
31. 
28. 

22 
21 

20 
19 

19 

17 

16 
15 
14 
13 

12 
11 

10 
9 

8 

7 

6 

5 

4 

3 

2 

2230. 
2030. 
1540. 
1080. 
1010. 
730. 
720. 
665. 
659. 
627. 
509. 
507. 
457. 
440. 
440. 
401. 

388. 
302. 
234. 
208. 

78.5 
54.0 

21 
20 
19 

18 
17 

16 
15 
14 

13 
12 
11 

10 
9 

8 
7 
6 

5 

4 

3 

2 

50.0 
34.0 
31.2 
23.0 
19. 7 
18.0 
14.2 
10.8 
1 o.o 
8.9 
8.6 
7.0 
6.0 
5.0 

5.0 
4.5 
3.5 
2.3 
1 .5 

0.9 
0.7 

21 
20 
19 

18 
1 7 
16 
15 
14 
13 
12 
11 
10 
9 

8 
7 

6 

5 

4 

3 
2 

19000. 
4900. 
180. 
143. 
50. 
45.9 
42. 
34. 
32, 

28. 
27. 
27. 
21 • 
16. 
1 o. 
9, 
8. 
7.4 
6.1 
4.5 
4. 

21 
20 
19 

18 
17 

16 
15 
14 

13 
12 

11 

10 
9 

8 

7 

6 

5 

4 

3 
2 

14.2 
12. 

3. 1 
1.a 
1. 7 

1. 2 

1.1 

0.95 
0.65 
0.63 
0.6 
0.36 
0.31 
0.3 
0.3 
o.2s 
0.1 
0.09-4 

0.05 
0.048 
0.037 

----------------------------------------------------------------------------------------------------------------
1-EPTACHLOR 
<SALTWATER> 

Rank SMAV 

19 

18 
1 7 
i6 

15 
14 

13 
12 
11 
10 
9 

8 

7 
6 

5 
4 

3 

2 

194. 
198. 
112. 

50. 
32. 
14.5 

10. 
8. 
6.22 
3. 77 
3.4 
3. 
3. 
1.5 
1.06 
0.86 
o.8 
0.0':57 

OIELDRIN 
CFRESHWATERl 
Rank 

19 

18 
1 7 

16 

15 
14 

13 
12 
11 
10 
9 
8 
7 
6 

5 
4 

3 

2 

SMAV 

740. 
620. 
567. 

213. 
130. 

41. 

39, 
24 •. 

22~ 

20. 

"· 10.8 
8.1 

8. 
6.1 
5.0 

4.5 
2.5 

LINDANE 
CSALTWATERl 
Rank SMAV 

19 

18 
17 
115 

15 
14 

13 
12 

11 

10 

9 

8 

7 
6 

5 
4 

3 

2 

3680. 
450. 
103.9 
66.0 

60.0 

56.0 
47, 

35.0 

30.6 
28.0 
14.0 
10.0 

6 

9.0 

7,3 
6.28 
5.0 
5.0 

4,44 
0.17 

CHROMI UM<V I l 

<SALTWATER> 
Rank SMAV 

19 

18 
17 
16 
15 
14 
13 

12 
11 

10 

9 

8 
7 
6 

5 

4 

3 

2 

105000. 
93000. 
91000. 
57000. 
32000. 
30500. 
22000. 
17200. 
1 5000. 
10000. 
7500. 
6600. 

6300. 
4400. 

4300. 
3650. 
3100. 
2000. 
2000. 

CHR0'-11UM(11 I l 

C FRESHWATER l 
Rank SMAV 

18 
17 

16 
15 

14 

13 
12 

11 

10 
9 

9 

7 

5 

5 

4 

3 

2 

1075. 

128. 

633. 
233. 

224. 
224. 
224. 
191. 
191. 

189. 
161. 

1.38. 

136. 
132. 
123. 

1 \9. 

47. 

33,4 



31...E 1, Continued 

-----------------------~--------------------------------------------------------------------------------------
HEPTACHL~ 

(FRESHWATER> 
Rank. s~v 

NI Cl<EL 
CSALTWATERl 
Renk SMAV 

DOT 
CSALTWATERJ 
Rank. SMAV 

ALDRIN 
(SAL TWAfERJ 
Renk. SMAV 

SYA'llDE 

(!'""<ESHWArERl 

Rank SMAV 

----------------------------------------------------------------------------------------------------------------
18 

17 
16 

1 5 
14 
13 
12 
11 

10 
9 
8 
7 
6 

'5 

4 

3 
2 

320. 
148. 
101. 
8t.9 
78. 
61 .3 
47 • .5 
42. 
29. 
26. 
24. 
23,5 
13.1 

7.8 
2.8 
t.8 
1.1 
0.9 

17 
16 

15 
14 
13 
12 
11 
10 
9 

8 

7 

6 
5 
4 

3 
2 

350000. 
320000. 
150000. 

49000. 
47000. 
25000. 
17000. 
9670. 
7960. 
6360. 
2080. 
1180. 
6.54. 
600. 
508. 
310. 
152. 

17 
16 

15 

14 
13 
12 
11 
10 
9 

8 

7 
6 
5 

4 

.5 
2 

1 

89. 
7.9 
7.0 

6.0 
4.0 
3.9 
2.0 
1.8 
1 .6 
1.1 

1 .o 
o.68 
0.6 
o.5.5 
0.4 

o.38 
0.14 

16 
15 
14 
13 

12 
11 

10 
9 

8 
7 

6 

5 

4 
3 

2 

100.0 
36.0 
33.0 
33.0 
25.0 
17 .o 
13.0 

12.0 
9.0 
s.o 
1.2 
6.0 
5.6 
5.0 
4.1 
1.5 

15 

14 
1 3 

1 2 

11 

10 
9 
8 

7 

6 

5 
4 

3 

2 

2325. 
2240. 
639. 
431 • 

318. 

167. 

14 7. 

137. 

125. 

125. 
103. 
102. 

102. 

83. 
57. 

----------------------------------------------------------------------------------------------------------------
TOXAPHENE 

(SALTWATER> 
Rank 

14 
13 

12 
11 
10 
9 
8 .. 
I 

6 
'5 

4 

3 
2 

s~v 

1120. 
824. 
43.8 
21. 
16. 
8.2 
4,5 
A A ..... 
4.4 
1.4 

1 .1 

1 • 1 
0.'5 
0.11 

CHROMIUM< VI l 
CFRESHWATERl 
Rank 

14 

13 
12 
11 

10 
9 

8 
7 

6 

5 

4 
3 

2 

SMAV 

195000. 
134000. 

120000. 
69000. 
59900. 
'59000. 

4.5100. 

30000. 
25000. 
6800. 
6400. 
3100. 

'67. 

CHL~DANE 

CFRESH\llATER> 
Renk 

14 
13 

12 
11 

10 
9 
8 
7 

6 
'5 

4 

3 
2 

7 

SMAY 

190. 
82. 
59. 
58. 
57. 
56. 
45, 
40. 

37. 
26. 
25. 

15. 

5.3 
3, 

SELENIUM 
CFRESHWATERl 
Rank 

1.5 
12 

11 
10 
9 
8 
7 

6 
5 

4 

3 
2 

SMAV 

42400. 
28500. 
26100. 
24100. 
13600. 
12600. 
10200. 
9000. 

6500. 
3870. 
1460. 

71 o. 
340. 

SELENIUM 
(SAl.TWATERJ 
Rank. 

1.5 
12 
11 

10 
9 
9 

7 

6 

5 
4 

3 

2 

1 

SMAV 

17348. 
146'51. 
9725. 
7400. 

4600. 
4400. 
3497. 

1 740. 

1200. 
1040. 
900. 
600. 

599. 



TABLE 1. Continued 

----------------------------------------------------------------------------------------------------------------
ENOOSULFAN ARSENIC lof:RCURYb SILVER SILVER 
(SAL T'WATER l <FRESHWATER> (FRESHWATER) (FRESHWATER> (SAL T'llATER) 

Rank 911....V Rank ~AV Rank 911AV Rank 911AV Rank 911AV 

----------------------------------------------------------------------------------------------------------------
12 730. 12 41760. 11 2000. 10 5. 77 10 1400. 

11 157. 11 29130. 10 2000. 9 5,52 9 550. 

10 7.6 10 26042. 9 2000. 8 4 .11 8 500. 

9 1 • .31 9 220-40. 8 1000. 7 0.112 7 250. 

8 o. 83 8 18096. 7 784. 6 0.0230 6 210. 

7 o. 76 7 15660. 6 249. 5 0.015 5 36. 

6 o.38 6 1496-4. 5 240. 4 0.014 4 33. 

5 o.30 5 13~0. 4 50. 3 0.0123 3 21. 

4 0.14 4 5278. 3 20. 2 0.0121 2 20. 

3 0 .10 3 1348. 2 1 o. 0.00192 4.7 

2 o.09 2 879. 5, 

0 .04 812. 

-----------------------------------------------------------------------------------------------------------------
ENOOSULFAN 

CFRESHWATERl 
Rank SMAV 

CHLORDANE 

<SALTWATER> 
Rank SMAV 

----------------------------------------------------------------------------------------------------------------
10 261. 8 120. 

9 88. 7 17. '5 

8 6 .o 6 16.9 

7 5.8 5 11.a 

6 3.0 4 6.4 

5 3. 7 3 6.2 

4 3,2 2 4.8 

3 2.3 0.4 

2 o.63 
0.34 

a T~ken frry!! T"l)I& 3 In tt'!e "Aquatic Life Toxicology" sections of the water quality criteria Oo<:uments (\), 

For the purposes of this project, the Species ~an Acute Intercepts for several ot tne metais in frosh ~ator 

were considered to be Species Mun Acute Values. Al I SMAVs ere In µglL. 

b The ~ute value tor Faxonella clye-ata should have been pub I I shed orlglnal ly as 20 µg/L, not 0.02 ;Jg.IL (3). 
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TABLE 2. EXAfof>LE SETS CF F~ILY ~AN ACUTE VALUES.a 

CA[l-11 UM 
(SALTWATER> 

Rank FMAV 

COPPER 
CFRESHWATERl 
Rank FMAV 

MERCURY 
(SALTWATER l 
Rank FMAV 

DDT 
CFRESHWATERl 
Rank FMAV 

l 11-C 
(SALTWATER) 
Rank FMA'/ ____________________ .;... ________________________________________________________________________________________ _ 

25 
24 

23 
22 
21 
20 
19 
1 B 
1 7 
16 
15 
14 

13 
12 
11 

10 
9 

B 
7 
6 
5 

4 

3 

37600. 
21 200. 
19200. 
11100. 
6600. 
5290. 
3940. 
3800. 
3500. 
3440. 
3260. 
2930. 
2410. 
1800. 
1 710. 

1670. 
1480. 
1220. 
1060. 

760. 

645. 
320. 

156. 
2 78. 

75. 

CA[l.11UM 
C FRESHWATER l 

Rank 

18 

17 
16 
15 

14 

13 
12 
11 
10 
9 

8 

7 

6 

5 
4 

3 

2 

FMAV 

138. 

133. 
86.7 
85 .9 

55.9 

54.8 
30.3 
28.5 

28.0 
19. 7 

12.2 
8.86 
1.01 
2.87 
I .58 

I .15 

o.5o 
0.048 

23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 

8 

7 

6 

5 
4 

3 

2 

260. 
150. 

145. 
117. 

46.5 
45.8 
38.7 
35 .2 
22.9 
14.4 
10.0 

3.86 
3.58 
3.56 
2.20 
2.13 
2 .12 
I. 73 
1.42 

1.34 

0.99 
0.76 
0 .30 

ENDRIN 
(FRESHWATER> 

Rank 

17 
16 
15 
14 

13 
12 
11 

10 

9 

8 
7 

6 

5 

4 

3 

2 

FMAV 

109. 
64. 
60. 
32. 
4,7 

4.~ 

1..80 
1 .50 

1 .30 

1.0 

0.95 
0.85 
0.66 
0.65 

0.49 
0.48 
0.44 

23 
22 
21 
20 
19 
18 
17 
16 
15 

14 

13 

12 
11 
10 
9 

8 

7 
6 

5 

4 

3 

2 

1680. 
1260. 

400. 
315. 

230. 
223. 
158. 
116. 
98. 
89. 
84. 

83. 

79. 
60. 
50. 

1 7. 
14. 
14. 

1 2. 
6.6 
6.5 

4.8 
3,5 

COPPER 

CS,l.LT'WATERl 
Rank 

17 
16 
15 
14 
13 

12 
11 
10 

9 
8 
7 

6 

5 

4 

3 

2 

9 

FMAV 

600. 

'526. 
487. 
41 2. 

330. 

268. 

212. 
160. 

138. 

136. 
129. 
120. 

69. 

66. 
40. 

39. 
28. 

20 
19 
18 
17 
16 

15 

14 
13 
12 
11 

10 
9 

8 
7 
6 
5 

4 

3 

2 

1230. 
92. 

67. 
54. 
36. 
33. 
32. 
25. 
19. 
17.5 
1 o. 

7.0 
4.1 
4.0 

3.2 
2.4 

2.3 
1. 7 

1.6 
1.3 

CHR<li!I UM( VI l 

CS ,l.L T'WATER > 
Rank 

17 
16 
15 

14 
13 

12 
11 
10 

9 

8 

7 

6 

'5 
4 

3 

2 

FMAV 

105000. 
93000. 
91000. 
57000. 
32000. 
30500. 
22000. 
17200. 
15000. 
10000. 

7500. 
6600. 
6300. 
4300. 
3650. 

2970. 
2490. 

20 
19 

18 
17 

16 
15 

14 
13 

12 
11 
10 

9 

8 
7 

6 

'5 
4 

3 
2 

70600. 
50000. 

39000. 

9460. 
6330. 
6330. 

4090. 
3640. 

3380. 
2440. 

2160. 
1 780. 

1450. 

1000. 
543. 

525. 
400. 
321. 

310. 
166. 

OIELDRIN 
CS,i.LTWATERl 
Rank 

16 
15 
14 

13 
12 

11 
10 

9 

8 
7 

6 

5 

4 

3 

2 

FMAV 

34.0 

31.2 

23.0 
19. 7 

1 a.a 
16.7 
1 4.2 

7.6 
7.0 
6.0 
5.0 
4.5 
2.9 
1. 5 

0.9 
0.7 



TABLE 2. Continued 

---------------------------------------------------------------------------------------------------------------
ENDR IN 

<SALTWATER> 
Rank FAAV 

HE?HCHL~ 

<SALTWATER> 
Rank FMAV 

LI NDANE 
C SALTWATER l 

Rank FMAV 

~ICKEL 

CFRESHWATERl 
Rank FMAV 

Z 1 NC 

<FRESHWATER> 
Rank FW..V 

---------------------------------------------------------------------------------------------------------------
16 
15 

14 

1 3 
12 
11 
10 
9 

8 

7 
6 
5 
4 

3 

2 

14.2 
12. 
3.1 
1. 7 

1.1 
1 • 1 

o.63 
o.6 
Q.47 

o.3 
Q.29 
0.1 

o.094 
o.o5 
o.048 

0.0::57 

16 
15 

14 

13 
12 
11 
10 

9 

8 
7 

6 
'5 
4 

3 

2 

194. 

188. 

112. 
5'5. 

21 .'5 
10. 
8. 
3.92 
3. 77 

3.4 
3, 
3, 
1.5 
o.86 
0.0 
0.0'57 

16 
15 

14 

13 

12 
11 
10 

9 

8 

7 
6 
'5 

4 

3 

2 

3680. 
4'50. 

66.0 

56.0 

'5'5 .9 
47. 

3'5 .o 
30.6 

14.0 

9.0 
7.3 
6.66 

6.28 
'5.0 

5.0 

0.17 

16 

1'5 

14 

13 
12 
11 
10 

9 

8 

7 
6 
'5 

4 

3 

2 

2230. 
2030. 

1540. 

1080. 

no. 
120. 
66'5. 
627. 
609. 
4'57. 

446. 
440. 
401. 

34'5. 

234. 

6'5.1 

15 

14 
1 3 
1 2 

11 
10 
9 

8 
7 

6 

5 
4 

3 

2 

2260. 
1019. 

716. 
708. 
531. 
463. 

.315. 
251 • 
213. 
161. 

136. 
92 .8 

48.8 
42.0 
13. 7 

---------------------------------------------------------------------------------------------------------------
ALDRIN 

CFRESHWATERJ 
Rank FMAV 

DDT 
<SALTWATER> 

Rank FMAV 

NICKEL 
<SALTWATER> 

Rank FMAV 

a-IROMI UM< I 11 > 

(FRESHWATER> 
Rank OOV 

.'LOR IN 
C SALTWATER) 

Rank FMAV 

---------------------------------------------------------------------------------------------------------------
14 

13 
12 

11 
10 

9 

8 

7 

6 

' 
4 

3 

2 

96'50. 

180. 
143. 

50. 
27.5 

27. 

21. 
20. 
16. 
i 6. 
11. 

9. 
8. 
7.4 

14 
13 
12 
11 
10 
9 

8 

7 
6 

4 

3 

2 

89. 

7.9 
1.0 
6.0 
4.0 
2.0 

1.6 

1 .4 

0.87 
I'\ .0::0 
Vol.IU 

0.6 

0.53 
0.4 

0.14 

14 

13 

12 

11 
10 

9 

8 
7 
6 

4 

3 
2 

10 

3'50000. 

320000. 
1 '50000. 

47000. 
3'5000. 

17000. 
9670. 
7960. 

6360. 
2080. 
1180. 

600. 
366. 
310. 

13 

12 
11 

10 
9 

8 

7 

6 

'5 

4 

3 

2 

88'5. 

633. 
224. 
224. 
211. 

207. 

l '53. 

138. 
1 .36. 

132. 
123. 
47. 

33.4 

13 

12 
11 

10 

9 

8 
7 

6 
'5 

4 

3 

2 

100.0 
36.0 
33.0 
33.0 
2'5.0 

13.0 

12.0 

9.8 
8.0 

7.2 
5.Q 

5.0 
.3. 7 



'ABLE 2. C.Ontlnued 

----------------------------------------------------------------------------------------------------------------
TOXAPHENE 

C SALTWATER l 

Rank FMAV 

DIELDRIN 

(FRESHWATER> 

Rank FMAV 

TOXAPHENE 

(FRESHWATER> 

Rank FMAV 

SELE~IUM 

(S,lJ.. TWATERl 

Rank FMAV 

SNDOSULFAN 

CS .4L TWATSRl 

Rani<. F~V 

----------------------------------------------------------------------------------------------------------------
1J 

12 
11 
10 
9 

8 

7 

6 
'5 
4 

3 

2 

1120. 
824. 

43.8 
16. 
9.6 
8.2 
4,5 
4.4 
1.4 
1.1 
1.1 

o.5 
0.11 

12 
11 
10 

9 
8 

7 

6 

'5 

4 

3 

2 

740. 
593. 
191. 

39. 
30. 
24. 
20. 
11 • 

8. 
'5.'5 
5.0 
4.5 

12 
11 
10 

9 
9 

7 

6 

5 

4 

3 
2 

180. 
28. 

21. 
20. 
13. 
12.0 

8.0 
'5.8 
4.7 
3,5 
2.6 
1.3 

12 
11 
10 

9 

8 
7 

6 
5 

4 

3 
2 

17348. 
14651. 
972'5. 
7400. 
4600. 
4400. 
3497. 
1200. 
1180, 
1040. 
600. 
'599. 

11 

10 
9 

9 

7 

6 

5 
4 

3 

2 

730. 

15 7. 

3 .16 
0.93 
o. 76 
0.38 
0.30 
0.14 

0.10 

0.09 
0.04 

----------------------------------------------------------------------------------------------------------------
HEPT.A.CHL~ 

C FRESHWATER l 

Rank FMAV 

CHROMI UM(V I) 

(FRESHWATER> 

Rank FMAV 

SELENIUM 

(FRESHWATER> 

Rank FMAV 

LINDANE 
(FRESHWATER> 

Rank FMAV 

CYAN!~ 

<FRESHWATER> 

Rank FMAV 

----------------------------------------------------------------------------------------------------------------
10 

9 

8 
7 

6 
5 

4 

3 

2 

1 BO. 
148. 
58.6 
37.0 
29.5 
24.8 

SILVER 

7.8 
2.0 
1.8 
1.0 

I t!'AI ~J&~~\ 
\.Jni..1,.n1~n1 

Rank FMAV 

10 
9 

8 
7 
6 

5 

4 

3 

2 

1400. 
550. 

500. 

250. 
210. 

36. 
33. 
21. 
20. 
4.7 

10 

9 

8 
1 
6 

5 

4 

3 

2 

162000. 
71900. 
63800. 
59900. 
30400. 
30000. 
25000. 
6400. 
4600. 

67. 

SI LVC:R 
,,.,..,,..,..,.t...J.~,..,'\ 

'r r'\C:.~n"r. 1C.1'1 

Rank FMAV 

9 

8 
1 

6 

5 
4 
3 
2 

5, 77 

5.52 
4.11 

0.1f2 
0.0230 
0.015 
0.013 
0.0123 
0.00192 

10 
9 

B 

1 

6 
5 

4 

3 

2 

42400. 
28500. 
24100. 
13600. 
12600. 

9580. 

6500. 
6170. 
1660. 

340. 

t-£RCURY 

\ FRESHWA iER i 
Rank FMAV 

9 
8 
1 

6 

'5 
4 

3 

2 

2000. 
2000. 
2000. 
1000. 

784. 
244. 

32. 
1 o. 
5. 

11 

10 
9 

B 
1 

6 

'5 

4 
3 

2 

532. 
207. 
138. 

94 .0 
68. 

53.1 
52.9 
22.4 
22. 
10. 

ENDOSULF N'4 

(FRESHwATERi 
Rank FMAV 

9 

8 

7 

6 

5 

4 

3 

2 

261 • 

88. 

5.9 
3.B 
3,7 
3.2 
2.3 
0.83 
0.34 

10 
9 

8 
7 

6 

5 

4 

3 

2 

2326. 
2240. 
431 • 
306. 
199. 

16 7. 
125. 

11 B. 

83. 
71, 

ARSENI(: 

( FRESHW~ TER) 

Rank FMAV 

8 
7 

6 

5 

4 

3 

2 

41760 
29130. 
22040. 
20190. 
19096. 
14130. 

1794. 
379. 



rABLE 2. Continued 

----------------------------------------------------------------------------------------------------------------
CHL<FOANE 

(FRESHWATER> 
Renk FMA'I 

CHL~OANE 

(SALTWATER) 

Rank F,..,.,V 

----------------------------------------------------------------------------------------------------------------
B 190. 8 120. 

7 59. 7 17.5 

6 58. 6 16.9 

5 44. 5 11.8 

4 :sz. 4 6.4 

:5 21. :5 6.2 

2 1 5. 2 4.8 
6.:5 0.4 

e Cal cu I eted from the Species Meen Acute v.al ues In Tab le 1. Al I F,..,.,Vs are In µg/L. 
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CONCLUSIONS 

1. Calculation of a FAV from a typically small set of KA.Vs requires that the 

set be considered a sample from a stati.stical population and that the FAV 

be considered an estimate of the fifth percentile of that population. 

2. The set of MAVs must be assumed to have been obtained from the statistical 

population by a specific sampling procedure; of reasonably simple sampling 

procedures, an assumption of random sampling appears most consistent with 

actual data selection, 

3. Available sets of MAVs su~gest that the statistical populations are highly 

positively skewed and that estimation 'WOuld be benefitted by logarithmic 

transformation of MAVs. 

4. Available sets of ln(MAV)s suggest that the statistical populations are 

significantly and variably skewed and that FAV calculation should be based 

on a subset of ln(MAV)s nearest the fifth percentile. 

5. Available sets of ln(MAV)s suggest that FAV estimation is better served by 

the assumption of a triangular distribution of the populations of ln(MAV)s 

than by the assumption of a normal, rectangular, or bi.exponential 

distribution. 

6. Simulations using a triangular distribution indicate that 'parametric' 

methods for percentile estimation and 'graphical' methods in which ranked 

data are assigned cumulative probabilities pRaP(E(XR)) produce 

undesired biases in the true cumulative probabilities corresponding to 

fifth percentile estimates. 

7. Simulations also indicate that a graphical method with (a) ranked data, 

XR 3 ln(MAV) 1 assigned cumulative probabilities PR 2 R/(N+l), (b) PR 

trans formed to its corresponding st and ard variate, zRaJPi, and 
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(c) a line fitted to ZR versus XR by the geometric mean functional 

relationship produces the least bias among alternatives.examined. 

8. 'nlese simulations also suggest that it is appropriate to restrict the 

calculation procedure to the four XRs with PRs nearest 0.05, because 

(a) in the absence of skewness the precision of fifth percentile estimates 

is little ...ursened by this and (b) in the presence of skewness this avoids 

the introduction of substantial bias. 

9. The old procedure used in the 11/28/80 Guidelines has some aspects which 

are contraindicated either theoretically or empirically and the new 

procedure described here should replace it; however, FAVs calculated from 

example data sets by the two procedures usually do not differ by more than 

a factor of 2. 

10. Modifications of the recommended new procedure with respect to assumed 

distribution, general percentile estimation method, and subset size (up to 

half the set size) rarely cause FAVs calculated from example data sets to 

vary by more than a factor of 2. Tilerefore, even if it is debatable 

whether optimal decisions were made in developing the recommended :new 

procedure: it is unlikely that any alternative procedure, within reason, 

would produce substantially different results. 

11. Modification of the recot11Dended new procedure to use the entire data set 

often produced substantially different FAVs from example data sets, but 

many of these FAVs were sufficiently at variance with the lowest MAVs in 

the data sets to reject this modification. 

12. Modification of the reco!llt\ended new procedure to reflect an extreme 

deviation from random sa~pling consistently produced higher FAVs from 

example data sets, but the average increase was only about fifty percenc:; 

14 



therefore, questions about the propriety of applying methods based on 

random sampling to a system in which sampling is not strictly random 

are probably not of great importance. 

13. Recommendations about FAV calculation are the same whether KAVs are for 

species or families. 
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STATEMENT OF PROBLEM 

A FAV is defined as an estimate of the concentration corresponding to the 

fifth percentile of a sui.tabl.e set of MAVs for a material; i.e., the FAV exceeds 

five percent of the MAVs and is exceeded by ninety-five percent. Because the 

number of species tested with any particular material is usually rather small, 

most sets of M.AVs will not have a datum which can reasonably be designated as 

the fifth percentile; rather, the set of MAVs must be assumed to be a sample of 

a population (in the statistical sense) that is large enough that a fifth 

percentile is defined. For example, if resources permitted, the MAVs of a 

material for many hundreds of aquatic tax a could be determined. Such a set of 

MAVs could reasonably be considered to h-ave a fifth pe-rcenti.le that could be 

obtained by inspection and is the type of statistical population of .tlich the 

available sets of MAVs are assumed to be samples. Of course, the population of 

MAVs would need to be determined using a mix of taxa that is acceptable to 

toxicologists for calculating a FAV. The above assumption is inherent to the 

definition of the FAV and any objection to it, or modification of it, was not a 

subject of this project. 

A_I"! ~dditional assumption i.s necessary because any estimation method using a 

sample from a population requires that the manner in which the sample was 

obtained be adequately specified. The toxicity of a material is measured by 

many independent investigators, who select test species based on a poorly 

defined cOlllbination of tradition, convenience, happenstance, and intent to 

diversify the mix of species. All available data meeting certain quality 

standards (1) are incorporated into the sets of MAVs. This incorporation step 

does not affect the nature of the sampling process, except that a FAV will not 

be calculated unless the set of MAVs is of a minimum size (eight) and contains 
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representatives of certain categories of species (1). It is not posstble to 

represent this process in a form suitable for applyin~ appropriate exa~t 

estimation methods. Tile issue then becomes what feasible description of 

samplin~ (e.g., random, systematic) most closely approximates this process. 

Random sampling was selected for the following reasons: 

(1) Although they meet certain minimal diversity standards, the available sets 

of MA.Vs vary markedly, and apparently haphazardly, in the species and 

higher taxonomic levels they contain. Such variation is not COT11patible 

with entirely systematic sampling schemes and suggest• that an appropr1ate 

sampling assumption should contain a strong random element. 

(2) Even where some elements of systematic sampling are evident in the 

available sets of MAVs, a high correlation of toxicity with these elements 

is usually not apparent. Without such a correlation, an assumption of 

systematic sampling is not particularly needed because for practical pur­

poses it can be approximated by an assumption of random sampling. 

In addition to being as much, or more, in accord with actual sampling 

procedures than other tractable sampling assumptions, the assumption of random 

samplins may be ju1tifi9d, in pal'1:, by notina that, in general, deviations from 

this a11umption may occur without s•riou1ly cO!'lpr0111ising results. Methods based 

on random 1amplin1 do not 101• all their utility if it is not possible to 

rigorou1ly defin• a population and to formally conduct random sampling from it. 

The population may even be somewhat hypothetical, being defined, in part by the 

data •election proce1s. Sampling may be nonrand0!9, but a1 long a1 the sampling 

process ha• a low enough correlation with re1pon1•, results under an assumption 

of random s•mpling ~11 not deviate by more than a certain amount from results 
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under more appropriate assumptions. Consideration will be given below to what 

errors would be introduced if random sampling were assumed for percentile 

estimation when sampling is actually nonrandom. 

Finally, if a procedure adopted for calculating FAVs results i.n criteria 

that are somehow independently val id aced, the procedure can be considered to be 

entirely empirical and the assumptions become part of the definition of the FAV 

needed to produce the desired criteria. This, however, is speculative and the 

quest ion remains as to wtlether the procedure developed here employs the most 

appropriate assumptions and, if not, whether this has any substantial impact on 

FAVs. 
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DESCRIPTION OF PERCENTILE ESTIMATION METHODS 

Methods for estimating, from random samples, a specified percentile of a 

population can generally be placed into one of two categories. These categories 

are presented here primarily to facilitate discussion and are not rneanc to imply 

that methods in different categories do not have some important cot!l!lon features 

or are not sometimes nearly equivalent. One notable feature of any method for 

estimating percentiles is the need to make at least some distributional 

assumptions about the population fr01D which the sample was drawn. 

For methods in the first category, the parameters in the general 

mathematical equation for the assumed distribution are estimated from the sample 

by mathematical procedures formulated to· produce estimates with desired 

properties, such as being unbiased, having minimum variance, or having maximum 

likelihood. The conmon formulas for estimation of mean and variance from a 

sample from a normal population is an example of such a method. Once the 

parameters are estimated, it is a simple matter to substitute them into the 

general equation for the distribution and to estimate a desired percentile. 

This category will be referred to as 'parametric methods'. 

The second cate~ory of methods involves ranking the data in a sample and 

then plotting the ranked data (XR) versus a cumulative probability (PR) 

assigned to each rank (R). For calculation simplicity, plotting is usually on a 

coordinate system for .Which the cumulative form of the assumed distribution is a 

straight line. A line is fitted to the plotted data by eye or by some 

appropriate mathematical curve-fitting technique and the estimate of the desired 

percentile is read off the plotted line or c0t11puted from the equation for the 

line. This category will be referred to as 'graphical methods', although 

explicit graphing is never strictly necessary. In most cases, graphical methods 
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are not mathematically ri~orous and do not produce the unbiased, maximum 

likelihood, or minimum variance estimates that parDetric methods are designed 

to produce. This does not mean, however, that ~raphical methods will not 

perform adequately in practice; in fact, in some cases their performance i.s very 

similar to that of parametric methods. Furthermore, for some cases suitable 

parametric methods do not exist or are unreasonably cumbersome; graphical 

methods thus might be a very useful alternative. 

For both parametric and graphical methods, discussion here will be 

restricted to a class of distributions which have only two parameters, these 

being a location parameter and a scale parameter. By this it is meant that, for 

each distribution type, there exists a standard distribution with standard 

variate denoted 'z' , such that for any distribution of this type with variate 

denoted 'x' there exists a location parameter 'L' and a scale parameter 'S' such 

that x-L+S·z. ~or example, for the normal distribution, the mean and standard 

deviation are usually used as the location and scale parameters, respectively, 

and the standard normal variate (also called the 'standard nomal deviate' (4)) 

is then as usually tabulated. 

Parametric Methods 

Tite only parametric method considered here will be a general one, termed 

'best linear unbiased estimation' (S,6), which can be applied to any distribu­

tion characterized by location and scale parameters. This method is 'unbiased' 

in that the parameter estimates will, on the avera~e, equal the true population 

parameter values. It is 'linear' in that the parameter estimates are linear 

functions of the data. It is 'best' in that the parameter estimates have the 

lowest variances of all linear unbiased techniques. There may be nonlinear or 

biased methods that have smaller variances, but, in general, the performance, 
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with respect to bias and variance, of this technique cannot be much improved. 

Parameter estimates C'L, '$') are obtained by minimizing the value of the matrix 

expression: 

where: N ts the sample size; 
x is a (Nxl) matrix consisting of the ranked sample; 
z is a (Nxl) matrix of the expected values of ranked standard variates 

of random samples of size N from the assumed distribution; 
V is the (NxN) variance/covariance matrix for ranked standard variates 

of random samples of size N from the assumed distribution; and 
T denotes matrix transposition. 

/\ A I\ 
This method has the additional advantage that xp•L+S · zp is al so the best 

linear unbiased estimate for xp, the pth percentile of the population. 

This can be demonstrated in a variety of ways, but is mo&t obvious when it is 

realized that any particular percentile could, quite legitimately, be designated 

the location paraneter. 

This method also has the advantage that it can be applied to an arbitrary 

subsample of the data and still produce the best linear unbiased estimate that 

can be obtained from that subsmple. Applying the method to a subsample simply 

requires eliminating, from matrices.!.•.!• and !-1, the elements referring to 

data not ln the desired subs<roiph, (Note: The calculation and inversion of V ts 

not affected by these deletions; rather, deletions are made after inversion.) I\ 

notable property of sue~ 'censoring' of data is that, if the remain1ng data are 

those nearest the perc.ent ile of interest, the variance of the percentile 

estimate is. little worsened as the number of data used ts reduced. This 

suggests that us i.ng all the data, other than to determine ranks and define '!_, 

has relatively little utility in this kind of estimation. 

'The ability of this method to use only a subsample of the data has 

particular significance when the distribution of the population from which the 
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data are drawn ia not perfectly characterized. For example, when concerned wtth 

the fifth percentile, deviations from the assumed distribution that are 

restricted to the upper part of the distribution will impact the calculations 

t it:tle if only the lowest few data in the sample are used. ~ven if the 

distributional assumption is violated near the fifth percentile, the 1mpact of 

this violation will be reduced as the number of data formally used in the above 

equations is reduced, aa lon~ as the data used are those nearest the percentile 

of interest. Of course, the method still makes distributional assumptions about 

both the data used and those not used and errors will arise if these assumptions 

are incorrect, but as long as the distributional assumptions are not ~rossly 

violated in the range of the selected subsample, these errors will generally be 

minimal. 'The question then arises as to the optimal subsample size (n), a small 

size having the advantage of reducing the effects of deviation from the assumed 

distribution and a large size having the advanta~e of reducing the variance of 

estimates when the distributional assumptions are correct. Tile answer to this 

question is specific to the problem of concern and will be considered below. 

One troubling aspect of this methodology is, ironically, its lack of bias. 

This is a problem bec~u~e the lack of bias is in the variate rather than in the 

cL1Dulative probability; i.e., in repeated sampling, ~p will average xp, but 

the true cumulative probability (P(~p)) corresponding to 1p will not average 

p, unless CU11ulative probability is Linearly related to variate, which i.s only 

true for rectangular distributions (simulated sampling from a variety of popul a-

tions is presented below to demonstrate this point). Because the definLtlon of 

the FAV is based on protecting a certain percentage of a specified taxon, this 

method is inappropriate; rather, a method that is unbiased with respect to the 
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desired cumulative probability is desired. We are aware of no published 1let:hods 

of this sort. It is for this reuon that graphical methoch ue now conSldered. 

Graphical Methods 

Graphical methods for exanining cumulative distributions inherently have four 

i11ue1 that mu1t be re1olved: 

(1) Cumulative Probabilitie1 A11i5ned co Ranked Data 

Formula• reported (4, 7,8) for calculating the cumulative probability Pa to 
a11i~n to a datum XR with rank R in a sample of size M include RI~. 
(R-0. 5)/M, R/(M+l), and P(!(XR)). Other reported for11ulu (8) generally are 
approximation• of P(!(XR)). 

(a) ?R-R/M i1 not applicable here and is sometimes misapplied 1n the 
literature. This foniula does not actually describe the cumulative 
probability to assi~n to a datum Xit with rank R, but rather ii the 
ct.1Bulative probability to aasiJn co the ran11e :let to lg+1• thus, 
any specific: rank is as much assigned the proportion (l•l)/M as it is 
R/1'. Cumulativ. probability graphs by this method are properly a seriu 
of horizuntal segments connectin1 the points (X:R,1/M) and 
[XR+l•R/K) (~-0 to M; XQ•-• ,XN+l•..,.), u1ually with vertical segments 
connecting the points [XR,(~-1)/N) and [lCR,R/N] (R•l to M), 
forming a 'stairc:au' ~raph. A smooth line dep ic tins the c umul at ive 
distribution wnuld ~enerally bisect the seg111encs and pa11 below 
[;(1,R/~). The error of u1in11 ll/?f u a point estimate for the 
cumulative probability uaicned to a rank cm al.10 be seen by notin~ 
that it is uymmetric lbout che median and that, "lhen R-M, i.c i.~ 

indeterminate for ~i1tribucion1, such aa the nonnal, who1e upper limit is 
+-. 

(b) PR•(~·0.5)/M ia apparently an attempt 
(R-1)/N and R/:f to allow a point plot 
Thia cataproaiise ha1 no ri1orou1 ba1i1 
served by th• ttiO resainin~ fol:'lulaa. 
con1idered here. 

co select a compromise between 
of PR ver1u1 ~R co be made. 
and th• attempt is ~uch better 
Therefore, ic: wi. l l no c be fur ch er 

( c} A11i~nin1 P1-R/(lf+l) i1 baaed on chi• fomula beinc the expecced value of 
the tr\J9 c1.mul1cive probability corre1pondin1 to a rank (!(P(XR))•R/(N+l)), 
for an·y continuous di1tribucion. It ia of particular ngni.ficance here 
becauu it i.1 directed to the ex-pected valu. of the cumulative probability 
and thu1 1hC1uld help reduce the biaa probl• di1cu11ed earlier. It has 
additional :Hric in be in~ distribution-independent. It 1 uae wi tl be further 
explored in the simulations prls•ntld below. 
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(d) ?R•P(E{X1>> has, by definition, ~b~ious theoret:i~al founrlac:ions because 
ic: denotll the CIJl!lutac:ive probabl.li.ty correspondi.n~ to c:he expected value 
of XR' (!(XR) is also called 'rankit' (4)). This fot"!!lula. i.s a 
counc:et:part r:o PR-R/(!f+l) 1 differing by bein~ based on t:.he expected value 
of ranked data rac:her t:.han the true cumutac:ive probabili.tiu corresponding 
to ranked data. Unlike PR•R/(N+l), i.t1 values are distribution-dependent:.. 
lt1 use W\ll al10 be further explored below, but becau1e it 1.1 based on t:.he 
expected value of ch• variate, ic i1 antici.peted chat it will show the same 
probl• of biu u c:he par•etric 1nethod above. 

(2) Tran•foriaation of Ax•• 
Thu is dictated by c:he usined distribution and by the rutriction adopted 
here that che u1lllled di1cribution 1hould produce a linear plot on the 
selected a:H, In general, it ii the ail qainat "lt\ich cumulative 
probabilitiH are plotted that i• tl'ansfotiSed and the transformation is based 
on the standard distributioa of the aaaumed di1tribution; in fact, thi1 can be 
treated 11 a tranaforni of Pa to a conHpondin1 standard variate ZR. In 
1uch • caH 1 c:he plot becomes one etf a Ztt aui"ned to each rank vereua the 
ob1erved datum XR' The slope dX/dZ ia the ecale par•et•r &ad the intercept 
on the X axia i1 the location parm1eter. 

(3) Sub•1:111pl• Size 
nti• i11ue is identical c:o chat di1cu1sed for the par .. •tric method. A 
latft' 1ection will consider hov the aubsmple tiH (n) cm beac be determined, 
baaed on simulacion1 under various aa1U1Dptions. 

(4) Fittin5 a Lin• co Plotted Data 

Because che restriction of a linear plot haa already been ~ad•, chis i.11u• 
reduces to hov co compute the elope of the line moat appropriate to che data. 
Because, for any N, the Z1 or P1 aui1ned co a ranked datum i1 fixed, and 
tl'\ua ~•Y be an an&loSY to an indep•ndent variable, and because the tine to be 
fitted can be expreued u Xtt"L•S ·ZR• i.t t11&y l>e thought that the standard 
te~~t-squarea regreuion formula vitn XR as the dependent variable and Za 
as the independent variable would b• ch: prefe!'!'.-i choice. Al vill be seen 
2el<'V, this c:urns ;iut to be the caae lli\en P~•P(!(XR)} is used and ...nan 
''?p, rather !han P('Yp), i1 deaired to be unbiued. Al before, achi.evin~ an 
unbiued P('Yp) ia not •enable co aact cechniques and an empirical approach 
must be uaed. To this end, three difftrtnt, buc si~pla, slope for"lftulaa were 
considered (a~ain, chis·ap~roach i1 strictly .. pirical, employin1 these 
formulaa •• npreHnt in~ a range withia which a reuonable 1 lope might l u; 
nothin~ ia implied here about a th•oretical justification for one or the other 
fol"11lula and it i1 not implied that thi1 application meets c:he 1s11.111pcion1 on 
which any of th• for11ul u are baHd): 

(a) LS-X - standard bivariate leHt-aqu&rH Iii.th Xa aa c:he dependent variable 
(residual• minimized in X-direc:tion): 

g -
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(b) LS-Z • standard bivariate leut-squuu with ZR as che dependent: variable 
(residuals Minimized in Z-direction): 

g -

( c) Gr.{FR - geometric mean funccional relationshi.p ( r.eaiduals ue mini.nn:r:ed i.n 
the direction of che arichraetic reciprocal of the elope; thi.1 iuecho<i 
produce• the ~e0ntetric mean of the slope• by the tvo previoua iuethods and 
haa seen some application in re1ression where both variable• are in error 
(9,10)): 

g -

Whatever slope formula is uaed, the line alvaya paasea thr2win the 
mean XR and the mean ZR. '!be location parameter eatimace ~' which is the 
intercept on the X IXis, ia therefore 
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SELECTION OF DISTRIBlITION 

All methods for estimating the fifth percentile of a population from a 

sample require at least some assumptions about the distributional 

characteristics of the population. Few data sets from which an FAV •11ill be 

calculated will be large enough that such characteristics can be inferred from 

the individual data set. However, the large number of sets available (Tables l 

and 2) provides an opportunity for evaluating these characteristics and for 

determining \oihich characteristics can be reasonably applied to all data sets and 

which parameters must be estimated individually from each set. 

It is desirable to keep the number of unknown distributional parameters as 

low as possible, not only because analysis becomes markedly more complicated as 

the number of parameters increases, but also because data sets of the minimum 

size (N-8) may be overly fitted if the number of parameters is not small. Tile 

example data sets (Tables 1 and 2) vary widely in their means and coefficients 

of variation. Tilerefore, at least two parameters, a location parineter (e.g., 

mean) and a scale parameter (e.~., standard deviation), are required. 

Because these two parameters relate to the first and second moments of the 

samples, an obvious third parameter to consider is skewness, which is related co 

the third moment of the samples. Skewness is also strongly indicated by 

inspection of the example data sets. ~skewness measure (4), the normalized 

third central moment, was esti~ated for each example data set. All sets showed 

positive skewness. nie skewness was substantial enough to reject, at the 0. 10 

level of significance, the hypothesis that the set was a random sample from a 

noJ:T11ally distributed population for 35 of 37 SMAV sets and for 34 of 37 FMAV 

sets; at the 0.01 level of significance, this hypothesis was rejected for 30 

SMAV sets and 25 F~V sets. 
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Because of this strong positive skewness, a logarithmic (base e) 

transformation was applied to each MAV, so that discussion '#ill now relate to 

the distribution of ln(MAV). The skewness measure for each data set was 

recomputed and the average skewness decreased from 2. 39 for SMAVs and 2. 08 for 

FM.AVs to 0.06 for SMAVs and 0.07 for FMAVs. 

The small average skewness does not, however, mean that individual sets can 

be considered to be samples from nonskewed populations. When the skewness 

measures of individual data sets were tested under the same null hypothesis as 

above, the hypothesis was rejected at the 0.10 significance level for 8 SMAV 

sets and 7 FMAV sets and at the 0.01 signficance level for 3 of the SMAV sets 

and 2 of the FMAV sets. Although this is substantially fewer than before 

logarithmic transfot'Ttlation, it still indicates that skewness in some sets might 

be too large to ignore. Furthermore, among the sets with significant skewness, 

the skewness was sometimes positive and sometimes negative, indicating that the 

populations these sets represent vary substantially in skewness. 

Therefore, despite logarithmic transformation, skewness in the data must 

still be dealt with by the methodology adopted for the estimation of the fifth 

percentile. Two general approaches were considered for this. Fir~C; 

distributions with a third parameter that affects skewness and which can be 

estimated from a sample could be used. This approach greatly increases the 

difficulty of parameter estimation and it is questionable whether the smaller 

data sets reliably have enough information to make this effort appropriate or 

worthwhile. The second approach is to limit the estimation method to a subset 

of the data near the percentile of interest. By doing this, the effects of 

having non-zero skewness are markedly reduced and the location and scale 

parameter estimates apply only locally, incorporating the effects of skewness at 
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that locality. This approach allows t~e use of relatively simple estimat1on 

~ethods and, as will be further discussed below, has very little impact on the 

precision of fifth percentile estimates even if a population is not skewed. The 

second approach wi 11 therefore be employed here. 

Higher moments of the data sets were not directly examined because (a) the 

decision to limit analysis to a subset of the data makes such an examinati.on 

complicated and (b) the effects of higher moments should be adequately accounted 

for either by this limitation or by the examination of specific distributions 

that follows. 

Inference of distributional characteristics from the example data sets was 

therefore limited to synmetric distributi:ons with just location and scale 

parameters to be estimated; furthermore, the most relevant information in the 

data sets is that nearest the fifth percentile. The approach followed here was 

to examine the fit of specific distributions to the example data sets. Four 

distributions were considered: 

(1) Rectangular Distribution 

This was included as an extreme case because it assumes that the 
relative frequency of ln(MAV)s remains constant between some lower and upper 
l iinits, whereas theoretical considerations and inspection l'f the data sets 
suggest that the frequency declines ai the lo•er and upper Limits are 
approached (i.e., very sensitive and very resistant taxa are rarer than 
those with moderate sensitivity). The standard probability density function 
for this distribution is: 

f ( z) "" l//IT 
f( z) "' 0 

(2) Trian3ular Distribution 

-ff< z < J3 
z < -./3, z > J3 

1"nis was included because it is the simplest distribution that incor­
porates two basic properties that the frequency of ln(MAV)s should have: (a) 
sensitivity should have lower and upper limits (no species succumbs to 
infinitesimal concentrations of a material and no species tolerates infinite 
concentrations) and (b) the frequency of ln(MAV)s should decline to zero as 
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the limit• are approached (fewer species are near the limits than are near 
the 111idranaeL The standard probability density function for c:hi.s disc:ri.bu­
c:ion is: 

f(z) • (l-JzJ)//6 
f(z) • 0 

(3) Normal Distribution 

-16 < z < 16 
z < -16 z > 16 

This was included due to its broad applicability and to provide a 
curved alternative to the linear frequency trend of the triangular 
distribution; chis curvature causes relatively rare sensitive or resistant 
taxa to have somewhat more extreme ln(MAV)1 (relative to the range of the 
majority of the caxa with moderate sensitivity) than doe1 the triangular 
distribution. No lower or upper limits exist, but the frequency becomes so 
small at reasonably mode~ate deviations frOlll the mean chat this deficiency 
is probably of 1 imited consequence. The standard probability densi.ty 
function for this distribution is: 

f( ) 
l -z 2 /2 

z • -- e -"" < z < +-
l2iT 

(4) !iexponential Distribution 

This was included as an extreme cue in which the moat senuci.ve and 
resistant taxa have greatly different ln(MAV)s c:han the :uajority of the tax a 
with moderate sensitivity. The standard probability density function for 
this distribution is: 

f ( z) • 
1 

12 
e -121 zl 

-"" < z < +-

Shapes of these distributions liilen they have mean • 0 and standard deviation • l 

are 1isplayed on Figure 1. 

The beat linear unbiased esti.~ation methodl discussed earlier was used to 

estimate location aad scale parneters from each example data set for each 

combination of the four' distributions above and four subset sizes (n•4, N/4, 

N/2, and N, where N-data set size; n also was required to be at least 4, which 

l The matrix V for this method was calculated by exact integrals for all 

distributions except norinal, for which approximate formulas were used (11), 
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.., .. coniidered a minim\11 n1Dber to use to test distribution fits). Frooi each 

such estimation, the !'XJ)ecced vaLue (~(;(R)) of each ranked datum was esc L:naced 

/\A () ..... /\., · . /'l.S. h as L+S'! Zq_, wnere L 1.1 the locatton parameter esc:tmate, 1.S c e scale 

paraeter esti'llate, and !(ZR) i.s the expecc:ed value of che datum of ran\< R tn 

sMple• of size M fr"'9 the u11Ded se.andard di.1c:ribution. The ratio: 

n 
~OCR-!:(~) ) 2 

t (~-~) z 

(i.e., the fraction of Che variance of the sublet not explaiaed by fic:tin~ che 

data to the d istribuc:ion) wu adopted u a meuure of goodneu-of• fit of th• data 

to the a11umell diatribut ion ewer the 1i11 ( n) of the tub Ht uaad, Avera1e 

1oodae11-of-fit1 fol" all SMA.V Hta are nponed in Table 3 aaii fol" ntAV uca ia 

Table 4. 

The trian~ular distribution was selected for use in further deYelof111enc of 

the PAV calculation Drocedure baaed on it1 1uperior avua1• 1oodae11•of-fit co 

the data, 1111pecially for the sub11t1 rHtrictad to be near the fifth percentile. 

'n\is diatributi~n ha1 t~e additional advantage of moat simply embodying the c"'o 

distributional ch1ract1ri1tics that are c:heotetically and empirically most 

sensible (i.e., i::.he exiateac:e of finite limic:s and a probabiti.ty densic:y funccton 

i::.hat decline• to tho1• liait1), and thu1 constitute• a reasonable null hypothesis 

chat 1hould b• u1ed unlu• clearly rejecced. Also, it constitucea a compromise 

distribution with a 1hape chat is int1rmediac1 in the ran1e e:xhi~iced by the 

ex1111pla data 1et1, chua li~icing poc:1nci1l errors. nie triangular distribution 

hu the further mvancagt of liavinc simple ruth .. atical foraaulations for cha 

percentile eetimation methods di1c:u11ed abOYe. 
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TABLE 3. AVERAGE GOODNESS-OF-FrTSa FOR ln(SMAV) DATA SETS. 

SUBSET SIZE ( n) 
.\SS!JXED DIST RBITT ION N N/2 N/4 b ~ 

RECTANGULAR 0. 169 0. 150 0 .144 'J.lJS 

TRIANGULAR 1) .082 0.099 0 .114 0. ll8 

NORMAL 0 .o 81 0 .104 0 .134 0. 13 7 

B IEXPONENT IAL 0 .106 0. 230 0.235 0 .206 

a "Goodness-of-fit" is the fraction of variance of 'n' data points 
~explained by fitting data to assumed distribution; lower values 
indicate better fits; values should be compared only within columns. 

b n "' 4 when N < 16. 

TABLE 4. AVERAGE GOODNESS-OF-FITsa FOR ln(FMAV) DATA SETS. 

SUBSET SIZE ( n) 
ASSUMED DISTRIBUTION N N/2 N/4 b 4-

RECTANGULAR 0 .145 0. 12 7 0. 121 0. i 25 

TRIANGULAR 0.095 0 .103 0 .108 0 .116 

NORMAL 0 .087 IJ.120 0. 129 0. 14 3 

BlEXPONENrI.AL 0 .109 0 .277 0.218 0.238 

a "Goodness-of-fit" is the fraction of variance of 'n' data points 
~ explained by fitting data to assumed distribution; lower values 
indicate better fits; values should be coaipared only within columns. 

b n .. 4 when N < 16. 
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SELECTION OF PERCENTILE ESTIMATION METHOD AND SUBSET SIZE 

Ten thousand computer-generated random samples from a standard trian~ular 

distribution (location parameter=- mean x O; scale parameter 2 standard devia-

tion =- 1) were used to estimate the fifth percentile of the distribution for 

each combination of the fol lowing methods, sample sizes, and subsample sizes. 

(l) Percentile Estimation Methods 

Seven methods were examined. These included one parametric method (best 
linear unbiased estimation) and six graphical methods (all possible 
combinations of the tw formulas for assigning cumulative probabilities 
(P(E(XR)), E(P(XR)) and the three formulas for computing slope (LS-X, 
LS-Z, ~FR)). 

( 2 ) S amp 1 e S i z es 

Sample sizes (N) of 8, 15, and 30 were selected as being representacive of 
the mini~t.nn size, a moderate size, and a large size that are found in the 
available sets of SMAVs and FMAVs. 

(3) Subsample Sizes 

Subsample sizes (n) of the 4, N/4, N/2, and N points closest to the fifth 
percentile were considered; for ~/4, an additional restriction of n>4 was 
imposed; n•4 was considered to be the minimum reasonable size, a lesser 
number making analys1s too sensitive to a spurious datwn. 

From location and scale parameter estimates, the estimate of the fifth 

percentile was calculated as "is~-1.675·~, -1.675 being the fifth percentile 

for the standard triangular distribution. 
A 

The average x5 over the 10,000 

simulations was designated as x5 and should equal -1.675 for methods unbiased 

with respect to the var.iate. Because the parameters of the population from 

which the samples -were drawn are knnwn, the true cumulative probability P(~5) 

corresponding to each 15 was calculated. The average p(-Q-5) lJ\ler the 10, 000 

simulations was desi~nated P5 and should equal 0.050 for methods unbiased with 

-respect to cumulative probability. x5 is tabulated in Table 5 and P5 is 
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tabulated in Table 6. Table 5 also includes the standard deviations for 1'5 in 

order to indicate the relative precision of the various methods. 

As expected, the best linear unbiased estimation method did produce an 

essentially unbiased x5, as did the graphical method using P(E(XR)) to 

assign cumulative probability and LS-X to calculate slope (Table 5). However, 

it is bias in P5 that is of paramount concern here. Tile best linear unbiased 

estimation method and all graphical methods using P(E(XR)) were substantially 

more biased than the ~raphical methods using E(P(XR)) (Table 6) and were 

therefore dropped from consideration. In addition, the standard deviations of 

~5 by the best linear unbiased method were usually no better than 10% less 

than those ~f the graphical methods using E(P(XR)) (Table 5), indicating that 

the better precision of the best linear unbiased method is of little 

consequence. 

Althou~h they did have lower biases than the other methods, none of the 

graphical methods using E(P(XR)) to assi~n cumulative probability had an 

unbiased P5 and the bias varied with n and N (Table 6). Furthermore, none of 

the formulas for calculating slope had the lowest bias for all combinations of n 

~nd N. 'The ~eometric mean functional relationship was selected as having the 

lowest average bias over all combinations. 

Selection of the most appropriate subsample size required consideration of 

the precision of 1'5 (Table 5) for the selected percentile estimation method 

(graphical method using E(P(XR)) to assign cumulative probability and GMFR to 

calculate slope). For N:a8, the standard deviation of ~5 (Table 5) for n:s4 

(""N/4, ""N/2) was only 12% greater than that for n'"'N. For N•lS, the standard 

deviation of 'is for n•4 (:•N/4) was only 1% greater than that for n:sN/2 and 

only 6% greater than that for n2 N. For N•30, the standard deviation of 15 was 
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TABLE 5, MEANS AND STANDARD DEVIATIONSa OF ESTIMATES OF FIFTH PERCENTILE (~s) 
BY VARIOUS METHODS, FOR 10,000 SAMPLES FROM A STANDARD TRIANGL'LAR 
DISTRIBUTION. 

N n ~ETHOD 

PARAMETRIC -----------------------GRAPHICAL------------------------
--------pR~P ( E ( XR) )-------- --------PR=E(P(XR))--------

LS-X LS-Z GMFR LS-X LS-Z G:1FR 

8 4 -1. 68 -1. 68 -l. 79 -l. 73 -1.83 -l. 95 - l.39 
( 0. 57) ( 0. 57) (0.61) (0. 59) (0.62) (0.67) (0. 64) 

8 -1. 68 -1. 68 -l.81 -l. 74 -1.83 -1. 98 -l .90 
(0. 52) ( 0. SJ) (0. SS) (0. 54) ( 0. 56) (0. 58) (0.57) 

15 4 -l.67 -l. 67 -l. 73 -l. 70 -1. 77 -1.84 -l.80 
(0.39) (0.39) (0.40) (0.39) (0.41) (0. 44) (0.42) 

8 -1.67 -l.67 -l. 75 -1. 71 -1. 77 -1.85 -l.81 
(0.38) (0.39) (0.40) (0.39) (0.41) ( 0. 43) (0.42) 

15 -l.67 -l.67 -l. 76 -l. 71 -1. 77 -1.86 -l.81 
(0.36) (0.38) (0.39) (0.38) (0.39) (0.40) (0.39) 

30 4 -l.67 -l.67 -1.69 -1.68 -1. 73 -l. 75 -l. 74 
(0.25) (0.25) (0.25) (0.25) (0.26) (0.26) (0.26) 

8 -l.67 -1.67 -l. 71 -1.69 -l. 73 -l. 77 -l. 7 5 
(0.25) (0.26) (0.26) (0.26) (0.26) (0.27) (0.27) 

15 -l.67 -l.67 -1. 72 -1. 70 -l. 73 -1. 77 - l. 7 5 
(0.25) (0.26) (0.26) .I,..,, .., r ' /("\ ....,~' / (', "); \ / (', '}; \ 

~ U, <:.O) ~ u ... , ) \ V •"°I J \ v. ""I I 

30 -l.67 -1.67 -1. 72 -1. 70 -l. 73 -1. 77 - l. 7 5 
(0.24) (0.26) (0.26) (0.26) (0.27) (0.27) (0.27) 

a Standard deviations of estimates in parentheses. 
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TABLE 6. MEAN TRUE CUMULATIVE PROBABILITIES (P
5

) OF ESTIMATES OF FIFTH 
PERCENTILE (P(~s)) BY VARIOUS METHODS, FOR 10,000 SAMPLES 
FROM A STANDARD TRIANGULAR DISTRIBUTION. 

N n METHOD 
PARA..\fETRIC -----------------~----GRAPHICAL------------------------

--------pR aP ( E (XR) )-------- --------PR=E(P(XR))--------
LS-X LS-Z GMFR LS-X LS-Z GXFR 

8 4 0.076 0.076 0.066 0.071 0.063 0.054 0.058 

8 0.072 0.073 0.058 0.065 0.057 0.044 o. 050 

15 4 0.063 0 .063 0 .057 0.060 0.053 0.047 0.050 

8 0.062 0.063 0.054 0.058 0.053 0.044 0.049 

15 0.061 0.062 0.052 0.057 0.052 0.042 0.048 

30 4 0.055 0.056 0.054 0.055 0.048 0.046 0.047 

8 0.055 0.056 o.o 51 0.053 0.049 0.044 0.047 

15 0.055 0.056 0.051 0.053 0.050 0.044 0.047 

30 0.055 0.056 o.o 51 o.o 53 o.oso 0.044 0.047 
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lowest at n•4 and did not vary amon~ the n by more than 3%. There 1s thus no 

substantial advantage, with respect to precision, to using n>4. 

Another factor in the selection of the subsample size 1s the possi~1lity of 

skewness. Therefore, simulations were also conducted using a skewed triang1Jlar 

distribution for i..ttich the mode was 20'Z, rather than 50%, of the distance from 

the lower to the upper limit. For all sample sizes, using n•N resulted in 

P5<0.02 and, for N•lS and N•30, using n-N/2 resulted in P5 being about 0.03. 

!Jsing n•4, however, resulted in P5 being between 0.04 and 0.05 for all N. 

Usinsi; n•4 also resulted in substantially lower standard deviations for ~5 than 

using n:mN/2 and n=-N. 

Because for a nonskewed population the smallest subsample size considered 

performed little, if any, worse than larger subsamples, and because the 

possibility and consequences of skewness give good reason to restrict the 

subsample size, a subsample size n•4 is reco11111enderl. Limited consideration was 

given to a smaller subsample (n•2), but for N•8 this resulted in substantial 

bias in P5 (P5~7.0%) and in a 20% increase in the standard deviation of 

/\ 
x5; also, the use of so few data ~arkedly increases the sensitivity of results 

to an occasional unusually low datum. 

Consideration was also ~iven to the possible effects of nonrand0Tt1 sampling 

by determining the bias introduced into P5 if the method recommended above is 

used when samples are not obtained randomly. Two nonrandom sampling schemes 

were invest_igated. First, samples were taken in an entirely systematic fashion 

highly correlated with variate, data being uniformly distributed over percen-

tiles with the ith datum (Xi) being set equal to xPi' ~ere Pi~(i-0.5)/N. 

With such a scheme, P(~5) equals 0.015, 0.024, and 0,034 for N equal to 8, 15, 
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and 30, respectively. 
/\ 

Although P(x5) ts therefore substantially biased, this 

is an extremely unrealistic depiction of the sampling and the. biases are extreme 

upper limits. Sampling schemes with a more realistic systematic component 1oK>uld 

result in much lower biases. 

The second nonrandom sampling scheme used was stratified sampl i.ng in ....tl i.ch 

each member of the sample was assumed to be rand0tnly sampled frooi a restricted 

percentile range. The range for the ith datum of a sample was [(100%)(i-O. 5)/N] 

..:. 25%; i.e., a fifty percentile range centered on the value used for the i.th 

datum of the systematic sample discussed above. For low and high i, the range 

1o1as compressed so that percentiles were maintained between 0 and 100 and so 

that, over the entire sample, each member of the population had an equal chance 

of being drawn. Specifically, for low i, if a percentile was computed by the 

above formula to be <O, its absolute value was used. This results in the ranges 

for low i being narrower than the nominal 50% (as small as 27% for i•l and N•30) 

and sampling within the ranges being somewhat skewed to low percentiles; 

analogous compression and skewing occurred for high l. Because the recommended 

procedure would heavily employ data with low i, the systematic component of this 

procedure is the~@fore even greater than implied by the restriction of sampling 

to fifty percentile ranges. Using this sampling scheme, ten-thousand samples of 

size 8, 15, and 30 from a standard triangular distribution ..iere computer 

generated and FAVs were calculated from each sample by the procedure recocrmended 

above based on random samplin~. P5 was 0.040, 0.042, and 0.044 for N equal to 

8, 15, and 30, respectively. This small bias suggests that, even with a strong 

systematic element in the actual sampling, an assumption of random sampling 

performs well as long as there is also a substantial random element tn the 

sampling, or at least an element that is not correlated with variate. 
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APPLICATION OF REC~END!D PROCEDURE AND ALTERNATIVES TO DATA SETS 

In the previous sections all issues necessary for the recoll'ITlendat1on of a 

procedure for FAV calculation have been considered. The recommended new 

procedure assumes the set of ln(MAV)s is a randona sample fr!JUI a trian~ular 

distt'ibution with unknown location and scale parmietera. The mechanics of the 

procedure can be summarized u follows: 

'!he ln(MAV)s are ran\ced and each assigned a cumulative probability 
PR•R/(N+l), where R i1 thf ran\c~and N the number of data in the sec. A 
1 ine of the fom ln(MAV)•rS'•/Pi+L is fit to the four point a with PR 
nearest 0.05. (The square root of PR con1titutea transformation to the 
variate of a standard triangular distribution sonievhat different than, but 
equally valid to, that u1,t.,d fbove; it is uHd here becau1e it is simpler to 
calculate llA'\en PR<0.5). S, "I:, and FAV an calculated u fotlow1: 

1 1 
L (ln.MAV) 2

- <:2:ln.MAV) 214 
1 1 

LPR- (L.JI";) 
2
14 

I\ 1 ~ 1 
L - ( LlnMAV-.S· L .JIS;> I 4 

ln!'AV - ~.~o.os + £ 

Example calculation• are provided in Appendix l. 

This procedure wu applied to the exnple data secs in Tables 1 and 2. '!he FAVs 

thus calculated for each data set are included in Tables 7 and 8, along with the 

lowest r-<AV as a reference. 

Also included in Tab 111 7 and 8 are FAVs calcul aced for each data set using 

the old procedure preHl'lted in the Movmaber 28, 1980 version of the Guidelines 

(1). 1'hi1 procedure can be described as follows: 

The ln(MAV)1 are ranked and ani~ned to fixed intervals with Width• O. 25 
and with the first interval starting at the lowsc ln(MAV). Each interval 
is a1si~ned a cumulative proportion P-ttinax/N, where N is the ni.nber of 
ln(MAV)s and Ratax is the rank of the largut ln(MAV) in the interval. 
Each interval is assigned a variate V•.verage ln(MAV) within the interval. 
The non.npty interval with the highest Pleas than or equal to 0.05 (or the 
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TABLE 7. FA.Vs CALCULATED FROM 9'4AV DATA SETS BY O...D PROCEDURE, RECC»41-ENOED t£W PROCEDURE, mo VARIOUS l(){)IFICATIONS 
CF RECOl+ENDED NEW PROCEDURE .. 

MATERIAL 

C~R 

DDT 
CA()4 I l.J4 

CADMll.J4 

TOXAPHENE 

ZINC 

ENDRIN 

MERCURY 

ZINC 

LINDANE 

C~R 

NICKEL 

DIEL<lRIN 

ALDRIN 

EtmlN 

1£P T ACHL<lR 

DIELllR IN 

WATER 

FRESH 

FRESH 

SALT 

FRESH 

FRESH 

FRESH 

FRESH 

N 

45 

42 

31 

29 

29 

29 

2B 

SALT 26 

SALT 24 

FRESH 22 

SALT 22 

FRESH 22 

SALT 21 

FRESH 21 

SALT 21 

SALT 19 

FRESH 19 

LI NOA NE SALT 19 

19 

lB 

IB 

17 

17 

16 

15 

14 

14 

14 

13 

13 

12 

Cl-ROMIUM(VI) SALT 

CH{OMIUM<lll) FRESH 

HEPTACHL<lR FRESH 

NICKEL SALT 

DDT SALT 

ALDRIN SALT 

CYANIDE 

TOXAPHENE 

Ct-ROM I 1.14( VI l 

CHL<lRDAt£ 

SELE NI UM 

SELEN 11.1'1 

ENDOSULFAN 

FRESH 

SALT 

FRESH 

FRESH 

FRESH 

SAU 

SALT 

LOWEST OLD NEW -------------MODIFICATIONS Cl'" REC0""4ENDEO NEW PROCEDURE------------~ 
SHAV PHOCEDURE PROCEDURE ll"'N/2 n-N ~IFCRM NffiMAL SUPE PARAM. NO!flANOOH 

0.23 

0.36 

41 

0.020 

1.30 

8.9 

0.15 

3.5 

166 

2.0 

28 

54 

0.70 

4.0 

0.037 

0.057 

2.5 

0 .17 

2000 

33 

0.90 

152 

0.140 

1.50 

57 

0.110 

67 

3.0 

340 

600 

0.040 

0.29 

1.12 

59 

0.024 

1.56 

1.0 

O. J B 

3.7 

173 

2.2 

23 

56 

o. 71 

3.0 

0.037 

0.053 

2.5 

0.16 

1260 

32 

0.52 

IH 

0.121 

1.34 

52 

0.070 

21 

2.4 

263 

410 

0.034 

0.34 

O.B7 

62 

0.024 

1.59 

9.7 

0.20 

3.9 

195 

2.6 

27 

55 

0.67 

3.9 

0.034 

0.000 

2.1 

0.26 

1770 

29 

o. 77 

149 

0.147 

1.53 

56 

0.094 

56 

2.) 

200 

480 

0.034 

0.39 

0.05 

60 

0.011 

1.4 7 

10.1 

0.22 

2.6 

166 

4.3 

25 

n 
o. 72 

3.2 

0.030 

o.1:n 

2.5 

0.51 

1750 

38 

0.52 

106 

0.167 

1 .91 

60 

0.101 

115 

2.0 

201 

430 

0.029 

DIST. DI ST. CHANGE loETHOD SN'f'L ING 

0.22•• 

0.49 

87 

0.065 

1.37 

11.4 

0.07** 

0.33 

0.81 

59 

0.023 

1.57 

9.4 

0.20 

2.6• 3.9 

100• 195 

5.8 2.7 

25 28 

99 56 

0.92 0.68 

o.8.. 3.9 

0.021• 0.035 

0.155 0.090 

1.3• 2.8 

0.54 0.30 

1200• 1820 

41 31 

0.96 0.81 

78* 161 

0.108 0.158 

1.76 1.68 

21•• 

0.058 

493 

4.7 

441 

310• 

0.004•• 

58 

0.111 

88 

2.6 

254 

510 

0.039 

0.35 

0.91 

63 

0.025 

1 .61 

9.9 

0.21 

4.0 

195 

2.6 

27 

55 

0.66 

3.9 

O.OH 

0.011 

2.6 

0.24 

1750 

28 

0.75 

144 

0.142 

1.47 

54 

o.oa4 

46 

1.9 

178 

470 

0.032 

0.35 

0.87 

62 

0.025 

I .61 

10.0 

0.21 

4.0 

201 

2.6 

26 

57 

o.67 

3.9 

0.036 

0.100 

2.7 

0.36 

1830 

30 

o. 79 

151 

0.155 

I .63 

57 

0.102 

79 

2.1 

205 

500 

0.055 

0.33 

0.79 

66 

0.031 

1.63 

11. 7 

0.21 

4 .1 

200 

3.3 

30 

69 

o.ao 
4.3 

0.040 

0.097 

2.0 

o.n 
2060 

37 

0.93 

170 

0.161 

I. 70 

59 

0.120 

89 

2.d 

275 

550 

0.058 

0.39 

1.20 

00 

O.OJO 

1.97 

9.1 

O.JO 

4.6 

252 

5.8 

JO 

69 

0.82 

4.3 

0.043 

0.223 

3.4 

o.92 

2010 

39 

0.99 

204 

0.212 

2 .16 

64 

0.161 

1 7':) 

3.6 

591 

600 

0.044 



Tobie 7. Cont lnued 

MATERIAL WATER N LOWEST OLD NEW --~-----~~IFICATIONS Cf" RECCl+tENOE.O NEW PROCEOlRE------------~ 
SHAY F'ROCEDLRE ffiOCEDLRE n=N/2 rFN ~IFOOM NrnMAL SUY'E PARAH. NQt.R AN IX»4 

DIST. DIST. CHANGE t-ETHOO SN4PLING 

ARSENIC! 111 > FRESH 12 810 440 340 260 620 430 310 430 560 820 

MERCLRY FRESH 11 5.0 3.7 2.6 I .6 2.9 3.5 2.3 2.1 3.6 5.2 

SILVER FRESH 10 0.0019 0.0014 0.0014 0.0017 0.0003* 0.0019 0.0012 0.0018 0.0018 0.0019 

Sil.VER SALT 10 4.7 3.3 3.3 3.9 2.8 4.4 3.0 3.7 4.0 4.7 

ENOOSULFAN FRESH 10 0.340 0.218 0.183 0.214 O. I 25* 0.256 0.158 0.186 0.251 0.340 

CHLOODANE SALT 8 0.400 0.090 0.200 0.200 0.378 0.352 0.162 0.278 0.313 0.280 

GECH:TRIC t-EAN CF RATIOS CF FAY BY 
MJD IF I ED PROCEDURE TO TH.A. T BY 
RECOl+END£D PROCEDURE: 0.89 1.00 1.04 0.93 1 • 11 0.96 1.01 1.19 1.46 

NUMBER CF DATA SETS FOO WHICH FAY 
BY MODIFIED PROCEDURE DIFFERS FROM 
THAT BY RECOMMENDED PROCEDLRE BY 
MrnE THAN A FACTOO CF 1.4: 5 - B 26 2 0 0 3 13 

+-- NLJ.4BER CF DATA SETS FOO WHICH FAY .-
BY MODIFIED PROCEDURE DIFFERS FROM 
TH.A. T BY RECOf+Er«lED PROCEDURE BY 
MOOE THAN A FACTOO CF 2 .O: 2 - I 12 0 0 0 0 6 
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Table B. FAVs CALCULATED FROM FMAV DAT.J, SETS BY CX...D PROCEDl.RE, RECOMIENOCD NEW PROCEDl.RE, N-ID VARIOUS 1-00IFICATIONS 
a: RECOMENDED NEW PROCEDURE. 

MATERIAL 

CADMI lJ4 

COPPER 

MERCURY 
DOT 

ZINC 

CADMIUM 

El'UIN 

COPPER 

Ct-ROM I l.14( VI > 

DIELDRIN 

ENOOIN 

fEPTACHLOO 

LINDANE 
NICKEL 
ZINC 

ALDRIN 
DDT 

WATER 

SALT 

FRESH 
SALT 
FRESH 

SALT 
FRESH 

FRESH 

SALT 

SALT 
SALT 
SALT 
SALT 

SALT 
FRESH 
FRESH 

FRESH 

SALT 

NICKEL SALT 
Ct-ROMllJ.4(111> FRESH 

ALDRIN 

TOXAPHEN£ 

DIELDRIN 

TOXAPHENE 

SELENIUM 

EtlX>SULFAN 
fEPTACHLOO 
Ct-ROMI l..M( VI) 

SELENIUM 
LINDANE 

CYANIOE 

SILVER 
SIL VER 

SALT 

SALT 

FRESH 
FR£SH 

SALT 

SALT 
FRESH 
FRESH 

FRESH 
FRESH 

FRESH 
SALT 
FRESll 

N 

25 

2} 

2} 

20 

20 

18 

17 

17 

17 

16 

16 

16 

16 

16 

15 

14 

14 

14 

1} 

13 

13 

12 

12 

12 

11 

10 

10 

10 

10 

10 

JO 

9 

LOWEST CX...D NEW -------------t«XllFICATIONS a: RECC»fENDED NEW PROC£D~E----~------~ 
FMAV PAOCEDl.RE PROCEDl.RE 1FN/2 naN llHFCRH tf:RH& !i..~E PAAN-1. ~I-RANDOM 

75 

0.30 

}.5 

1. }() 

166 

0.048 

0.44 

28 

2490 

0.10 

0.0}7 

0.057 

0.110 

65 

13. 7 

7.4 

0.140 

}10 

:n 
3.7 

0.110 

4.5 

1.30 

600 

0.040 

1.00 

67 

340 

10.0 

77 

4.7 

0.0019 

45 

0.}4 

3.1 

1 .22 

166 

0.0}8 

0.}3 

27 

1940 

0.67 

0.036 

0.044 

0.121 

50 

10.4 

4.0 

0.102 

160 

}() 

3.5 

0.065 

1.6 

0.99 

440 

0.033 

o. 75 

8 

154 

8.2 

58 

3.3 

0.0011 

70 

0.38 

3.8 

1.28 

182 

0.058 

0.40 

25 

2370 

0.53 

0.0}1 

0.061 

0.192 

66 

12.3 

6.7 

o. 1 }() 

210 

n 
}.3 

0.087 

3.1 

1.07 

440 

0.03} 

0.50 

23 

167 

6.4 

6} 

3.3 

o.oon 

79 

0.45 

2.5 

0.98 

146 

0.086 

o.38 

2} 

2130 

Q.55 

0.021 

0.106 

0.398 

9} 

n.1 
5.8 

0.149 

130 

28 

3.2 

0.094 

2.1 

1 • I 2 

}}() 

0.028 

0.34 
}8 

209 

7.0 

60 

3.9 
0.001} 

DIST. DIST. C~GE IETHOO SNo4PLING 

119 

0.26 

2.1• 

0.55** 

109* 

0.234 

0.09** 

26 

1550* 

0.16 

0.011• 

0.111 

0.395 

122 

19.1 

I .1 •• 

0.092 

110• 

}3 

69 

0.}9 

3.8 

I.}() 

187 

0.069 

0.41 

27 

2440 

0.58 

0.0}2 

0.076 

o.248 

75 

14.1 

6.9 

0.149 

240 

27 

2.3* 3.5 

0.047 0.112 

1.0.. }.9 

0.87 1.24 

320* 490 

0.003.. 0.039 

0.52 0.68 

243 56 

513 267 

1.0 8.1 

25.. 68 

2.8 4.4 
o.OOO}* 0.0010 

70 

0.38 

3.8 

1 .27 

180 

0.054 

0.40 

25 

2340 

0.51 

0.030 

0.055 

0.170 

62 

11 .5 

6.6 

0.122 

200 

21 

3.2 

0.077 

}.6 

1.00 

420 

0.031 

0.44 

16 

136 

5.8 

61 

3.0 
0.0011 

73 

0.39 

3.8 

1.29 

187 

0.063 

0.42 

26 

2370 

0.55 

0.032 

0.073 

0.212 

70 

12.7 

6.8 

0.138 

220 

24 

3.4 

o.095 
3.8 

1.08 

470 

0.034 

o.53 

31 

181 

6.9 

64 

3.7 
0.0016 

97 

0.42 

4.0 

1 .37 

192 

0.075 

0.44 

28 

2540 

0.68 

0.036 

0.011 

0.263 

76 

14.2 

7.2 

0.148 

270 

31 

3.5 

0.113 

4.1 

1.20 

540 

0.036 

0.67 

39 

2,6 

7.6 

71 

4.0 
0.0017 

77 

0.58 

4.4 

1 .46 

236 

0.143 

0.46 

32 

2660 

0.11 

0.041 

0.149 

0.578 

103 

19.3 

7.5 

0.182 

320 

36 

3.9 

0.147 

4.6 

1 .42 

600 

0.042 

1.00 

67 

340 

10.0 

77 

4.7 
0.0017 



Table 8. Continued 

M/\TERIAL WATER N Lrni!EST OLD NEW -------------f«lOIFICATIONS TO RECOf+IENDEO NEW PROCEDURE-~--~-----~ 
FMAV PROCEDURE PROCEDURE n=N/2 naN ~IFffiM NOOMAL SUPE P~RAM. NOtRAHlo.t 

DIST. DIST. CHhNCX: to£THOO SNof'LING 

MERCURY FRESH 9 5.00 3.42 0.94 0.94 2.32 1. 79 o.n 1.12 1.89 4.76 

ENOOSULFAN FRESH 9 0.340 0.208 0.169 0.169 0.094• 0.248 0.144 0.112 0.234 0.319 

ARSENIC( I I I> FRESH 8 800 570 220 220 730 410 170 250 450 7~ 

CHLORDANE FRESH 8 6.3 3.1 4.0 4.0 4.6 5 .3 3.6 4.0 4.6 5.6 

C.._ORDANE SALT 8 0.400 0.090 0.200 0.200 0.378 0.352 0.162 0.278 0.313 0.280 

GEOl-ETRIC t-EAN Cf" RATIOS Cf" FAY BY 
MOOIF IED PROC£DUR£ TO THAT BY 
REC<M-EtflED PROCEDURE: 0.91 1.00 1.01 0.89 1.23 0.92 1.08 1.25 1.58 

NLMBER Cf" DATA SETS FOR WHICH FAV 
BY MOO IF I ED PROCEDURE DIFFERS FRCl4 
THAT BY RECiMEtflED PROCEDOOE BY 
M<RE THAN A f N::Tffi Cf" 1 • 4: 9 - 8 29 7 1 I 5 17 

NLMBE:R Cf" DATA SETS FOR WHICH FAY 

-I" BY MOOIF IED PROCEDURE DIFFERS FROM 
VJ THAT BY RECOtM:tflED PROCEDOOE BY 

M<RE THAN A FN::Tffi Cf" 2.0: 5 - I u I 0 0 2 7 



interval with the lowest P if no interval has a P les& than 0.05) is desig­
nated Interval A. The next highest nonempty interval is designated Interval 
B. The FAV is then computed as ln(FAV):1VA+(V13-VA)/(PB-PA)·(0.05-PA)· 

Criticisms of this procedure include: 

(1) The formula P"'R/N is posi.ti.vely biased as discusser! earlier and thus 
results in negative bias in the FAV. 

(2) The positive bias in the cumulative proportions is lncreased by ustng the 
maximum rank in an interval rather than the average rank, when there is more 
than one ln(1'1AV) in the interval. 

(3) Often only one ln(MAV) is in Interval A or Interval B or both, making the 
method quite sensitive to data variation. 

(4) A linear relationship of P versus Vis assumed, which is equivalent to 
assuming a rectangular riistribution; as discussed earlier this is 
contraindicated by the available data sets. 

(5) The use of intervals is meant to cause pooling of ln(MAV)s which are 
indistin~uishable; the interval width of 0.25 was selected because it is a 
typical value for the standard deviation of replicate acute toxicity tests; 
this value may not be appropriate for all species and materials and is 
strictly appropriate only when ln(MAV)s are based on only one toxicity test. 
More importantly, this poolin~ method ~rks effectively only for Interval A, 
because the starting point for Interval B is fixed by that for Interval A 
and therefore does not necessarily ~roperly oool data in the vicinity of 
Interval 8. In any event, t~is pooling serves no use fut purpose except to 
prevent the slope for interpolations and extrapolati.ons from being 
inappropriately calculated based on cw identical, or nearly identical, 
ln(MAV)s, a purpose which can be better served by routinely using more 
points to assess data trends. 

(6) The use of intervals containin~ variable numbers of ln(MAV)s makes the 
m~thod sensitive to minor ch~og~s in the data set which may move ln(MAV)s 
into or out of intervals; this sensitivity can be quite marked and can even 
be anomalous. For example, in the SMAV data set for heptachlor in fresh 
water (Table 1), Interval A would contain the lowest two SMAVs and Interval 
B would consist of the third lowest SMAV. However, if the lowest SMAV was 
just 6% lower (for example, because a new toxicity test for that species 
lowered the mean siightly), the two lowest SMAVs would be sufficiently 
separated to be in separate intervals, W'hich would become the new, and 
markedly different, Intervals A and B. The calculated FAV would change fn,m 
0.52 to 0.83, a change that not only is much larger than the change in the 
SMAV that caused it (60% versus 6:r.), but also is in the opposlte direction 
to the change in the s-iAV. 
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These criticisms are sufficient: t:o warrant the replacement of thi.s old procedure 

with the new procedure recoII1T1ended above. However, the two procedures generally 

do not produce markedly different results (Tables 7 and 8). On the average, 

FAVs calculated using the old procedure are only 11% lower than those calculated 

using the new procedure for the SMAV data sets and 9% lower for the FMAV data 

sets. Individual FAVs were within a factor of l.4 for over 75% of the FMAV data 

sets and over 85% of the SMAV data sets and within a factor of 2.0 for over 854 

of the FMAV sets and 94% of SMAV data sets. Where differences are greater than 

twofold, comparison of the FAVs with the data sets does not clearly indicate 

that one or the other of these procedures results in more questionable FAVs. 

The consequences of modifying the ma]or features of the recommended new 

procedure were also explored to determine how sensitive FAVs are to such 

changes. If the sensitivity is low, any objection to compromises or approxima­

tions used in arriving at the recoT!ltlended new procedure are largely irrelevant:, 

because more exact analysis or different compromises (within reason) would have 

little effect in practice. If sensitivity is high, the basis for the recorimended 

new procedure becomes more critical and further examination is warranted·. 

range over which they could reasonably be varied. The assumed distribution was 

changed to rectangular and to normal. The subset size (n) was changed to N/2 

and N. The percentile ~stimation method was changed to the graphical method 

with slope formula LS-X, but still with PR 2 E(P(XR)), and t:o the parametric 

method (best linear unbiased estimate). The FAVs for these modifications are 

included in Tables 7 and 8. Also included in these tables are (a) the geometric 

mean of the ratios of the FAV by each modified procedure to that by the 

recommended procedure, (b) the number of data sets for which the FAV by each 
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modified procedure differs by more than a factor of l. 4 from that by the 

recommended procedure, and (c) the number of data sets for ~i.ch the FAV by each 

modified procedure differs by more than a factor of 2.0 from that by the 

recommended procedure. 

Chan~es in the assumed distribution, in the percentile estimation method, 

and in the subset size to N/2 had only minor effects on results. The geometr1c 

means of the ratios of the FAVs by these modif1cations to that by the 

recommended procedure were close to 1.0 (0.92-1.25). For individual data sets, 

FAVs by these modifications differed by more than a factor of 1.4 from the FAVs 

by the recommended new procedure for no more than 20% of the data sets and by 

more than a factor of 2.0 for no more than 6% of the data sets. 

Modification of subset size to n•N, however, caused major changes. The 

~eometric means of the ratios of the FAV by this modification to that by the 

recommended procedure were close to 1.0 (0.93 for SMAVs, 0.89 for FMAVs), but 

individual FAVs changed by more than a factor of 1.4 for over 70% of the SMAV 

data sets and for nearly 80% of the FMAV data sets and by more than a factor of 

2.0 for about one-third of both the SMAV and FMAV data sets. Such differences 

do not demonstrate, per se, that this modified procedure is less appropr1ate 

than the rec01I1I11ended new procedure, but it does ra1se such a suspic10n. In 

particular, when n•N, an unusually lan~e number of sets have a FAV that is well 

below both the lowest MAV and the FAV calculated by the recommended new 

procedure. Using the location and scale parameter est1mates from the modi.fled 

procedure with n~N, the fiducial pr0bability that the lowest MAV could be so 

high was evaluated for each data set; where this probability is <0.20 a single 

asterisk is placed next to the FAV for n•N and ~ere the probability is <O. 10 a 

double asterisk is used. The frequency of these marked entries suggests that 
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using n•N is in fact inappropriate. Tilis is directly related to the existence 

of statistically significant skewness in the data sets, positive skewness 

resulting in inappropriately low FAVs when n•N and negative skewness resulting 

in high FAVs. 

A related observation that also contraindicates the use of n•N i.s that, 

when compared to the recon:mended new procedure and the diverse modi.ficat1ons 

already mentioned, the modification with n•N both frequently produces the lowest 

FAV (for 20 SMAV data sets and 19 FMAV data sets) and frequently produces the 

highest FAV (for 14 SM.AV data seta and 12 FMAV data sets). Such frequent 

occupation of both extremes is again due to the variable skewness of the sets 

and is indicative of the error of assuming all data are equally useful in 

estimating low percentiles when distributional assumptions are not completely 

met. Furthermore, these problems with usin~ n•N are not restricted to the 

modification with n•N already discussed. Graphical methods with the other slope 

formulas and other distributional assumptions (e.g., normal) were tested using 

n•N with similar results. Likewise, the best linear unbiased method using n•N 

and ass\.mling a normal distribution showed similar problems. (This latter mechod 

is equivalent to the simple approach of calculating a sample mean and unbiased 

standard deviation (12) and estimating the fifth percentile as lying 1.645 

standard deviations below the mean, -1.645 being the fifth percentile of a 

standard nomal distrib.ut ion.) 

Another advantage of not using n•N is that certain semiquantitative data 

can be used. Acute tests on some materials with some species produce 'greater 

than' values because concentrations hi~h enough to cause effects were not, or 

could not be used (because of solubility or time constraints). Regardless of 

the reason, because such data are usually for resistant species, they can 
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usually be used if n•4, but, if n•N, either they must be excluded, thereby 

biasin~ the data set, or additional acute tests must be conduc·ted, thereby 

increasing costs. Finally, it should be noted that the use of n=4 does not 

constitute 'not usin~ all the data', because all data are used in sett1n~ ranks 

and cumulative probabilities and thus in selecting which four data w11l be used 

explicitly in final calculations; rather, the use of n•4 is more properly 

interpreted as a simple scheme of ~iving greater weight to those MAVs which 

provide the most information about the fifth percentile. 

The consequences of nonrandom sampling can also be partly addressed here. 

Assuming that the available data sets somehow resulted from the stnctly 

systematic sampling scheme discussed earlier, FAVs were calculated by assigning 

cLmulative probabilities PR~(R-0.5)/N to the ranked ln(MAV)s and interpolating 

between the two data with PR nearest 0.05 (or extrapolating using the lowest 

two points if N<lO), the interpolation being based on the assumption of a 

trian~ular distribution. The results of this exercise are included in the last 

columns of Tables 7 and 8 and indicate that higher FAVs are produced than by the 

recommended new procedure, but the differences average only about a factor of 

1. ) for SMAV secs and 1.6 for fl.Ii.AV le~s th~n a factor of 1.4 for 

65% of the SMAV sets and 55% of the FMAV sets. Considering that this alterna-

tive sampling scheme is so extreme, and that therefore a scheme with a more 

realistic systematic component would produce results much nearer those obtained 

by the recommended new procedure, this further suggests that the t5sue of the 

samplin~ assU'llption is n~t of ~reat importance. 

A final point that should be emphasized is that, whether SMAVs or FMAVs are 

used, the same conclusions are reached regardin~ the appropriate attributes of 
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the procedure for estimating fifth pet:'centiles. Also, although it does not beat:' 

on the t:'ecoll'll!endations made here, it is intet:'esting to note that FAVs calculated 

from SMAVs are similar to those calculated from FMAVs. The geometric mean of 

the ratios of the FAV computed from FMAVs to that computed from SMAVs, by the 

recommended procedure, was 1. 04. The twu FAVs differ by a factor of 1.4 for 

only 12 sets, by a factor of 2.0 for only 6 sets, and by more than a factor of 

2 • 8 for no sets . 
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DI SC USS ION 

The recommended new procedure uses linear extrapolation or interpolation to 

estimate the fifth percentile of a statistical population of mean acute values 

(MAVs) from which the available MAVs are assUtned to have been randomly obtained. 

The available MAVs are ranked from low to hi~h and the cumulative probability 

for each is calculated as PR•R/(N+l), "'1here R"" rank and N •number of ~Vs in 

the set, Extrapolation or interpolation is based on an assumed linear 

relationship between ./PR. and ln(MAV), and uses only the four points with PR 

closest to 0.05 because this subset provides the most useful information 

concernin~ the fifth percentile. 

The bases for the new procedure are mostly mathematical, with some input 

from toxicological and practical considerations. The FAV, however, is basically 

a to~icological value, and the acceptability of any c1lculation procedure to 

toxicologists will be based on the acceptability of the resulting FAVs. Most 

aquatic toxicologists will judge the acceptability of an FAV by comparing it 

with the lowest MAVs in the data set, and thus it is quite appropriate that the 

four MAVs with estimated cumulative probabilities closest to 0.05 be given the 

most weight in calculating the FAV; in fact, the L"eCOirnHHlded procedur~ is 

largely a formalization of the way one would obtain a FAV by 'eyeballin~' the 

data. 

An important property of the new procedure is that the resulting FAV is not 

very sensitive to modifications in the procedure or slight changes in the data 

set. A variety of calculation procedures al 1 produced FAVs that were quite 

similar for most data sets. In addition, the recomnended new procedure rarely 

produced either the highest or lowest of the FAVs obtained with the procedures 

examined. Another important property of a procedure is its performance with 
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data sets which contain apparent discontinuities ln the lower tail. For 

heptachlor, lindane, and chlordane rn salt water and chromium(VI) in fresh 

water, the lowest SMAV is at least a factor of 10 Lower than the second Lowest 

SMAV (Tab le 1). In add it ion, for these four and cadmium in fresh water, the 

lowest FMAV ls at least a factor of 10 lower than the second lowest FMAV (Table 

2). Of these, only chromium(VI) in fresh water has a very large range of FAVs 

in Tables 7 and 8. Even though the two lowest MAVs are far apart, most of these 

data sets seem to provide adequate information about the FAV because similar 

FAVs were obtained using a variety of procedures. Tilese examples support the 

idea that the best approach to take toward calculating the FAV is to select a 

procedure that is best on the average and then use it with all data sets, except 

possibly in extraordinary cases. 

An unfortunate aspect of the methodology for calculating the FAV is the 

necessity of extrapolating to estimate the 0.05 cumulative probability for small 

data sets; if extrapolations become too great, the FAVs will be suspect. For 

only 5 of the 74 data sets is the FAV more than a factor of 2 lower than the 

lowest MAV. Thus, for the available data sets this procedure rarely 

extrapolates much below the lowest value in the data set. 

Overall, the recommended new procedure is the best of the procedures 

examined, regardless of whether the FAV is calculated from SMAVs or FMAVs. It 

is a straightforward procedure for interpolation or extrapolation based on 

fitting a line to the most useful points. It produces results similar to and 

usually intermediate to those obtained by other reasonable procedures. In 

addition, the calculations are relatively easy to perform with the aid of a hand 

calculator, as described in Appendix 1. Tile major weakness of this procedure ls 
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that it assumes the same degree of tailing for all data sets. Fortunately, for 

most data sets the FAV is not very dependent on the assumed degree of tail1ng 

and deviation from the assumed intermediate degree of tailing ts not too 

critical. Other procedures would suffer as much or more from the same or other 

weaknesses. 
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APPENDIX l 

A. General !n1truction1 for Recot1111ended New Procedure for FAV Calculatton. 

a. 

Rank 

4 

3 

Sum: 

1. 

2. 

3. 

a.ud on data set size (N), detet"'tline four ranks (R) 1i1ith cu:nulative 
probabilities (pR•R/(N+l)) closest to 0.05; for N<60, this Wl.ll be 
R•l through 4; for 60<N<SO, R•2 through 5; for SO<N<lOO, R•3 through 
6; etc. 

From the data set select the four MAVs vi.th the desired ranks and 
calculate PR for each of these MAVs. 

'Fit a line to ln(MAV) vs JP;,, using the following equations for 
slope (i') and intercept ro "and calculate the FA.V: 

1 1 
~ (lnMAV) 2- (~lnMAV) 2/ 4 

1 1 

~PR- (~.jp;) 2/4 

~ 1 1 
L - ( ~lnMAV-~· ~ .jp;) I 4 

A • ln.FAV • g. ~ + £ 
A 

'!'AV• e 

!xaapte C&lculation for Otlordane in Salt Water (N•8). 

MAV 

6.4 

6.2 

4.8 

0.4 

lnMA.V (LnHAV)2 Pa•!./(N+l) 

1. 8563 3.4458 0.44444 

1. 8245 3. 3290 0.33333 

l.5686 2.4606 0.22222 

-o. 9163 0.8396 0.11111 

4.J.331 10.0750 1.11110 

1 .0750 - 4. 33 l.!!. 
1. 11110 - (2.04875)2/4. 9• 3346 

~. [4.3331 - (9.3346)(2.04875)]/4. -3.6978 

A• (9.3346) (~) - 3.6978 • -l.6105 

FAV • .-1.6105 • 0.1998 

54 

J1R 

0.66667 

0.57735 

o. 4 7140 

0.33333 

2. 04875 



c. Example Computer Program in BASIC Lan~ua~e for Cal culatin~ the FAV 

10 REM TRIS PROGRAM CALCULATES THE FAV W'.IEN THERE ARE LESS THAN 
20 REM 59 MAVS IN THE DATA SET. 
30 X•O 
40 X2•0 
50 Y•O 
60 Y2•0 
70 PRINT "HOW MANY MA.VS ARE IN THE DATA SET?" 
80 INPUT N 
90 PRINT "WHAT ARE THE FOUR LOWEST MAVS?" 
100 FOR R•l TO 4 
110 INPUT V 
120 X•X+LOG (V) 
130 X2•X2+(LOG(V))*(LOG(V)) 
140 P•R/(N+l) 
1 SO Y2•Y2+P 
160 "f:aY+SQR(P) 
l 70 NEXT R 
180 S:aSQR( (X2-X*X/4) /(Y2-Y*Y /4)) 
190 L• (X-S*Y) /4 
200 A:aS*SQR(O.OS)+L 
210 F•EXP(A) 
220 PRINT "FAV • "F 
230 END 

D. 'e:xample Printout from Program 

HCM MANY MAVS ARE IN THE DATA SET? 
? 8 
WHAT ARE THE FOUR LOWEST MAVS? 
? 6.4 
? 6.2 
? 4.8 
? .4 
FAV :a 0.1998 
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