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ABSTRACT

The Final Acute Value (FAV) for a material, which is an integral part of
the procedure for deriving water quality criteria for aquatic organisms, is
an estimate'of the fifth percentile of a statistical population represented
by the set of Mean Acute Values (MAV) available for the material, a MAV being
the concentration of the material that causes a specified level of acute
c0xicity to aquatic organisms in some taxonomic group. A new procedure for
calculating FAVs has been developed under the assumption that sets of MAVs
are random samples of such populations. Based on examination of available
sets of MAVs, it was inferred that FAV estimation would be best served by
assuming that the populations have a log triangular distribution. Also,
because this or any other assumption will likely not completely hold over the
entire range of data in all sets, it was judged that FAV estimation should be
based on a subset of the data near the fifth percentile. Based on
simulations, it was determined that a FAV for a set of MAVs would be best
calculated by (a) assigning each MAV a cumulative probability Pg=R/(N+l)
(R=rank, N=number of MAVs in the set), (b) fitting a line to Ln(MAV) versus
JFE using the four points with Pp nearest 0.05 and using the geometric
mean functional relationship to estimate slope, and (c¢) calculating the FAV
as the concentration corresponding to Pp=0.05 on this line. Major
modifications of this new procedure were found to result either in only minor
changes in FAVs or in FAVs at variance with the data. The old procedure for
calculation of FAVs was judged to have some theoretical and practical
shortcomings that make it less desirable than the new procedure, but FAVs by
the two procedures were generally similar. A procedure based on extreme
deviation from random sampling generally did not produce greatly different

FAVs.
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INTRODUCTION

On November 28, 1980, the U.S. Envirommental Protection Agency published
"Guidelines for Deriving Water Quality Criteria for the Protection of Aquatic
Life and Its Uses'" as Appendix B of an announcement of the availability of water
quality criteria documents (1). Calculation of the Final Acute Value (FAV) is
an important part of the process described in these Guidelines. A FAV is a
concentration of a material derived from an appropriate set of Mean Acute Values
(MAVs), a MAV being the concentration of the material that causes a specified
level of acute toxicity té an aquatic taxon in laboratory tests. The FAV is
defined to be lower than all except a small fraction of the MAVs that are
available for the material. The fraction was set at 0.05 (i.e., the FAV lies at
the fifth percentile of the MAVs) because other fractions resulted in FAVs that
were deemed too high or too low in comparison with the sets of MAVs from which
they were obtained, However, if the set contains a MAV for an important species
that is lower than the calculated FAV, che FAV is set equal to that MAV.

In order to be useful, the procedure for obtaining a FAV from a set of MAVs
must be objective so that different parties will obtain the same FAV from a set
of MAVs, The development of a reasonable mathematical framework for FAV
calculation was therefore necessary. In addition, it 1s desirable that the
rationale for the calculation procedure be relatively easy to understand and
that the computations be as simple as possible. Section IV.I-0 of the
Guidelines described a procedure for calculating a FAV from a suitable set of
Species Mean Acute Values (SMAVs). Because of criticism of this procedure, this
project was initiated to define the general problem of calculating a FAV, to

avaluate alternative procedures, and to recommend the most appropriate



procedure. This project was not intended to evaluate the definition of the Fav

or the procedures for obtaining MAVs,

Devélopnent of an appropriate procedure for calculating FAVs requires the
availabilicy of typical sets of SMAVs., Some of the water quality criceria
documents (1) contain such sets in Table 3 of the section on Aquatic Life
Toxicology. Twenty data sets for freshwater species and seventeen for saltwater
species were considered to be acceptable for the purposes of this project
because they contained SMAVs from at least eight families in a variety of
taxonomic and functional groups. These data sets (Table 1) contain from 8 to 45
SMAVs for a variety of organic and inorganic materials. Because all accepcable
sats of SMAVs (that were available at the completicn of this project in May,
1982) were used and because they include a diversity of species and materials,
this group of 37 daca sets should be reprnsonc;cive of the data sets from which
FAVs will be calculated.

There is some concern that FAVs would be more appropriately based on a
taxonomic level higher than species (e.g., family). Scatiscical analysis of
data gets similar to those in Table | has shown that differences between
families are usually greater, often by an order of magnitude or more, than
average differences within families (2). Therefore, if a set of SMAVs has a
disproportionate number of species from a sensitive or inseansitive family, the
FAV might be undesirably affected. For example, of the 29 SMAVs for zinc in
fresh water, six are from Salmonidae and are all among the twelve lowest SMAVs.
Resolution of which taxonomic level is most appropriate is not of concern here,
but because the definition of the FAV might be so modified, Family Mean Acuce
Values (FMAVs), the geometric mean of all che SMAVs available for a family, were

computed for all data sets in Table 1 and are reported in Table 2. Subsaquent
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analysis will consider how the use of these two different taxonomic levels might
affect recommendations about the procedure for calculating a FAV. This does
aot, however, constitute an endorsement of either species or family as the most
appropriate taxonomic level.

This report will first define the problem of FAV calculation and then
discuss the general methods available for estimating percentiles. Next, the
example data gets in Tables | and 2 will be examined to determine an appropriate
statistical distribution to use in the FAV calculation procedure. Simulated
samples from the selected statistical distribution will then be used to
determine the procedure most appropriate for calculation of the FAV, Finally,
the procedure selected will be applied to the example data sets and the
significance of deviations from various assumptions of the procedure will be

evaluated.



TABLE 1. EXAMPLE SETS OF SPECIES MEAN ACUTE YALUES.®

COPPER » 00T CADM! UM CADMIUM TOXAPHENE
(FRESHWATER) (FRESHWATER) (SALTWATER) (FRESHWATER) (FRESHWATER)
Rank SMAY Rank SMAY Rank SMAY Rank SMAY R ank SMAY
45 260. 42 1230. 3 50600. 29 138. 29 180.
44 150. 41 362 . 30 50000. 28 135, 28 28,
43 148. 40 192. 29 21200. 27 134, 27 26.
42 145. 39 175, 28 21000. 26 133, 26 24,
41 117. 38 68. 27 19200. 25 125, 25 20.
40 91.8 37 67. 26 12200. 24 91.4 24 15,
39 47.9 36 S54. 25 10100. 23 86.7 23 14,
38 46.5 35 43, 24 6600. 22 80.7 22 14,
37 35.2 34 48. : 23 5290. 2 55.9 21 14,
36 23.1 33 40, . 22 4100. 20 54.7 20 13,
35 22.9 32 33. 21 3940, 19 47.0 19 13.
34 21.8 3 25. 20 3800. 18 38.2 18 12,
33 0.1 30 18. 19 3500. 17 3%.9 17 11.
32 18.9 29 17. 18 3440. 16 30.3 16 10.
3 14.4 28 14, 17 2930, 15 28.0 15 5.8
30 1041 27 12. 16 2590. 14 22.3 14 9.2
29 8.4} 26 10. 15 2410, 13 19.7 13 8.7
28 5.81 2% 9.3 14 1800. 12 12.2 12 6.3
27 5.37 24 3.5 13 1710. 1 7.01 R 6.
26 5.00 23 8.0 12 1670, 10 3.57 10 4.2
25 4,99 22 7.8 " 1480. 9 2.87 S 4.1
24 3.97 21 7.8 10 1220. 8 1.67 8 4.
23 3.29 20 7.3 9 1080, 7 1.19 7 3.
22 2.80 19 5.0 8 760, 6 0.87 6 3.
21 2.28 18 4.9 7 649, 5 0.29 5 3.
20 2.20 17 4.3 6 320. 4 0.09 4 2.5
19 2.20 16 4.0 9 169. 3 0.04 3 2.3
18 2.13 15 3.9 4 144, 2 0.03 2 2.
17 2.13 id 3¢5 3 135, 1 0.02 1 1.3
16 2.12 13 3.2 2 78.

15 1.99 12 3.0 | 41.3
14 1.83 R ] 3.0
13 1.68 10 2.8
12 1.42 9 2.4
R 1.34 8 1.9
10 1.23 7 1.9
9 1.07 6 1.7
8 1.02 5 1.7
7 0.91 4 1.6
6 0.9 3 1.4
5 0.76 2 11
4 0.55% ) 0.36
3 0.43

2 0.28

! 0.23



‘BLE 1. Continyed
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2ING ENDRIN MERCURY ZINC L INDANE

(FRESHWATER) (FRESHWATER) (SALTWATER) (SALTWATER) (FRE SHWATER)
Rank SMAY Rank SMAY Rank SMAY Rank SMAY Rank SMAY
29 2260. 28 352, 26 1680, 24 70600. 22 576,
28 1019. 27 64, 25 1260, 23 50000, 21 485,
27 732. 26 60. 24 400. 22 39000. 20 460.
26 716, 2% 34, 23 3195, 21 24600, 19 207.
25 708. 24 32. 22 230, 20 9460. 18 141.1
24 699. 23 5.9 21 223, 19 8100. 17 138.
23 531. 22 4.7 20 158, 18 6330, 16 0.
22 524. 2 3.1 19 116, 17 4090. 15 83.
21 413. 20 2.1 18 98. 16 3640. 14 68,
20 367, 19 1.8 17 98, 15 3380. 13 67.1
19 315. 18 1.5 16 89, 14 2440. 12 64.
18 293. 17 1.3 15 84, 13 2160. 11 55.6
17 2895. 16 1.2 14 79. 12 1780, 10 48,
16 2%5. 15 1.1 13 70, 1" 1450, 9 45,
15 172, 14 1.0 12 60, 10 1270. 8 44,
14 169. 13 0.85% " 50, 9 1000. 7 44,
13 92.8 12 0.78 10 17. 8 950. 6 40,
12 82.6 18| 0.76 9 14, 7 591. 5 32,
11 81.4 10 0.7% 8 14, 6 498, 4 32.
10 64.9 9 0.69 7 14, 5 400. 3 10.5

9 57.9 8 0.54 6 10. 4 321. 2 10.

8 57.6 7 0.47 5 7.6 3 310, 1 2.

7 49.3 6 0.46 4 6.6 2 290,

6 42.0 ] 0.44 3 5.6 1 166,

5 26.2 4 0.41 2 4,8

4 23.1 3 0.33 1 3.5

3 21.2 2 0.32

2 9.09 ) 0.15

1 3.89



TABLE 1. Continued
COPPER NICKEL DIELDRIN ALORIN ENDRI N
{SALTWATER) (FRESHWATER) (SALTWATER) (FRESHWATER) (SALTWATER)
Rank SMAY Rank SMAY Rank SMAY Rank SMAY Rank SMAY
22 600. 22 2230. 21 50.0 21 19000. 21 14.2
21 560. 21 2030. 20 34,0 20 4900. 20 12,
20 526, 20 1540, 19 31.2 19 180. 19 3.1
19 487. 19 1080. 18 23.0 18 143, 13 1.8
18 412, 13 1010. 17 18.7 17 50. 17 1.7
17 364. 17 730. 16 18.0 16 4% .9 16 1.2
16 330. 16 720. 1% 14.2 15 42. 15 141
15 181. 15 665. 14 10.8 14 34. 14 0.95
14 141. 14 659. 13 10.0 13 32. 13 0.65
13 138. 13 627. 12 8.9 12 28, 12 0.63
12 136. 12 509. 1R 8.6 B 27. 1 0.6
1 129. 1 507, 10 7.0 10 27. 10 0.36
10 128. 10 457. 9 6.0 9 21, 9 0.3t
9 124, 9 440. 8 5.0 8 164 8 0.3
8 120, 8 440. 7 5.0 7 10, 7 0.3
7 86. 7 401. 6 4.5 6 9. 6 0.28
6 69. 6 388. 5 3.5 5 8. 5 0.1
5 %52, 5 302. 4 2.3 4 7.4 4 0.094
4 50. 4 234. 3 1.9 3 6.4 3 0.0%
3 39. 3 208. 2 0.9 2 4.5 2 0.048
2 31. 2 78.5 1 0.7 1 4, 1 0.037
1 28. 1 54,0
HEPTACHLOR DIELDRIN L INDANE CHROMI UMY 1) CHROMIUM(i 1 1)
(SALTWATER) (FRESHWATER) (SALTWATER) (SALTWATER) (FRESHWATER)
Rank  SMAY Rank SMAY Rank  SMAY Rank  SMAY Rank  SMAY
19 194. 19 740, 19 3680. 19 105000. 18 1075.
18 188. 18 620. 18 450. 18 93000. 17 728,
17 112, 17 567, 17 103.9 17 91000. 16 633.
i6 55 16 230, 16 66.0 16 57000. 15 233,
15 50. 15 213. 15 60.0 15 32000. 14 224.
14 32. 14 130, 14 56.0 14 30%00. 13 224,
13 14.5 13 41, 13 47. 13 22000. 12 224,
12 10. 12 . 12 35.0 12 17200. 11 191.
1 8. 1 24, . " 30.6 11 15000. 10 191,
10 6.22 10 22+ 10 28.0 10 10000, 9 199.
9 3,77 9 20. 9 14.0 9 7500, 3 161,
8 3.4 8 15. 8 10.0 8 6600, 7 138.
7 3. 7 10.8 7 9.0 7 6300. 5 136,
6 3 6 8.1 6 7.3 6 4400, 5 132,
5 1.5 5 8. 5 6.28 5 4300. 4 123,
4 1.06 4 6.1 4 5.0 4 3650, 3 119.
3 0.86 3 5.0 3 5.0 3 3100. 2 47,
2 0.8 2 4.5 2 4.44 2 2000. 1 33.4
{ 0.0%57 1 2.5 1 0.i7 1 2000.
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HEPTACHLOR NICKEL oor ALORIN CYANIOE
{ FRESHWATER) (SALTWATER) (SALTWATER) (SALTWATER) (ERESHWATER)
Rank SMAY Rank SMAY Rank SMAY Rank SMAY Rank SMAY
18 320. 17 350000 . 17 89. 16 100.0 15 2325,
17 148. 16 320000, 16 7.9 15 3.0 14 2240.
16 101. 15 150000. 15 7.0 14 33.0 13 639.
1% 81.9 14 49000, 14 6.0 13 33.0 12 431,
14 78. 13 47000, 13 4.0 12 25.0 1" 318.
13 61.3 12 25000. 12 3.9 1" 17.0 10 167,
12 47.3 1" 17000, " 2.0 10 13.0 9 147,
" 42. 10 9670, 10 1.8 9 12,0 8 137,
10 29. 9 7960, 9 1.6 8 9.0 7 125,
9 26. 8 6360. 8 1.1 7 8.0 6 125.
8 24. 7 2080. 7 1.0 6 7.2 5 103.
7 23.6 6 1180, 6 0.68 5 6.0 4 102,
6 1341 s 634, 5 0.6 4 5.6 3 102,
5 7.8 4 600, 4 0.53 3 5.0 2 83,
4 2.8 3 508. 3 0.4 2 40 1 57.
3 1.8 2 310, 2 0.38 1 1.5
2 1.1 1 152, 1 0.14
1 0.9
TOXAPHENE CHROMIUM(Y ) CHLORDANE SELENIUM SELENIUM
(SALTWATER) (FRESHWATER) (FRESHWATER) (FRESHWATER) {SALTWATER)
Rank SMAY Rank SMAY Rank SMAY Rank ~ SMAY Rank SMAY
14 1120, 14 195000, 14 190, 13 42400, 13 17348,
13 g24. 13 134000, 13 82. 12 28500. 12 14651 ,
12 43.8 12 120000. 12 59, 1" 26100. 1 9725.
1" 21, R 69000. 1" 58, 10 24100. 10 7400.
10 16, 10 59900, 10 57, 9 13600. 9 4600,
9 8.2 9 59000, 9 56, 8 12600. 3 4400.
8 4.5 8 43100. 8 45, 7 10200, 7 3497,
7 4.4 ? 30400, 7 40. 6 9000. 6 1740.
6 4.4 6 30000, 6 37, 5 6500. 5 1200.
5 1.4 5 25000. s 26. 4 3870. 4 1040,
4 1.1 4 6800, 4 25, 3 1460. 3 300.
3 1.1 3 6400, 3 15, 2 79. 2 600.
2 0.5 2 3100, 2 5.3 1 340, 1 599,
1 0.11 1 67, 1 3.



TABLE 1. Continuved
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ENDOSULFAN ARSENIC MERCLRYD SILVER SILVER
(SALTWATER) (FRESHWATER) (FRESHWATER) (FRESHWATER) (SALTWATER)
Rank SMAY Rank SMAY Rank SMAY Rank SMAY Rank MAY
12 730« 12 41760, 1 2000, 10 5.77 10 1400.
1 157 11 29130. 10 2000. 9 5.52 9 55Q.
10 7.6 10 26042. 9 2000. 8 4.1 8 500.
9 1.31 9 22040. 8 1000. 7 0.112 7 250,
8 0.83 8 18096 . 7 784, 6 0.0230 6 210,
7 0.76 7 15660, 6 249. b 0.015% 5 36.
6 0.38 6 14964. 5 240. 4 0.014 4 33,
b 0.30 b 13340. 4 50 3 0.0123 3 2.
4 Q.14 4 5278. 3 20. 2 0.0121 2 20.
3 0.10 3 1348. 2 10. 1 0.00192 1 4,7
2 0.09 2 879. 1 b
! 0.04 1 812,
ENDOSULFAN CHLORDANE
(FRESHWATER) (SALTWATER)
Rank SMAY Rank  SMAY
10 261, 8 120.
9 88. 7 17.5%
8 6.0 6 16.9
7 5.8 5 11.8
6 3.8 4 6.4
5 3.7 3 6.2
4 3.2 2 4.8
3 2.3 1 0.4
2 0.83
1 0.34

8 Tsven from Tabla 3 In the "Aquatic L!fe Toxlcology™ sections of fhe water quality criteria documents (1).
For the purposes of this project, the Species Mean Acutse Intercepts for several of the metais in iresh watsr
were considered to be Species Mesan Acute Yslues. All SMAYs are In pg/L.

b the acute value for Faxonells clypeata shouid have been published originally as 20 ug/L, not 0.02 Jg/L (3).




TABLE 2. EXAMPLE SETS OF FAMILY MEAN ACUTE VALUES.?

CADM| UM COPPER MERCURY por ZING
(SALTWATER) (FRESHWATER) (SALTWATER) (FRESHWATER) (SALTWATER)
Rank FMAY Rank  FMAY Rank FMAY Rank FMAY Rank  FMAY
2% 37600. 23 260. 23 1680, 20 1230, 20 70600.
24 21200. 22 150, 22 1260. 19 92. 19 50000.
23 19200. 21 145. 21 400. 18 67. 18 39000.
22 11100. 20 117. 20 315. 17 54, 17 3460,
21 6600. 19 46.5 19 230. 16 36. 16 6330,
20 5290. 18 45.8 18 223. 15 33. 15 6330.
19 3940. 17 38.7 17 158, 14 32. 14 4090,
18 3800, 16 35,2 16 116. 13 25. 13 3640.
17 3500. 15 22.9 15 98. 12 19, 12 3380.
16 3440, 14 14.4 14 89. " 17.5 11 2440.
15 3260. 13 10.0 . 13 84, 10 10. 10 2160.
14 2930. 12 3.86 12 as. 9 7.0 9 1780,
13 2410, 1" 3.8 1 79. 8 4.4 8 1450,
12 1800. 10 3.56 10 60. 7 4.0 7 1000,
1 1710. 9 2.28 9 50. 6 3.2 6 543,
10 1670. 8 2.13 8 17, 9 2.4 5 525,
9 1480, 7 2.12 7 14. 4 2.3 4 400.
8 1220. 6 1.73 6 14, 3 1.7 3 321,
7 1080. 5 1.42 5 12. 2 1.6 2 310.
6 760 . 4 1.34 4 6.6 1 1.3 1 166,
5 645. 3 0.99 3 6.5
4 320. 2 0.76 2 4.8
3 156, 1 0.30 1 3.5
2 78.
1 7%.
CADM| UM ENDRIN COPPER CHROMIUM(Y 1) DIELDRIN
(FRESHWATER) (FRESHWATER) (SALTWATER) (SALTWATER) (SALTWATER)
Rank FMAY Rank FMAY Rank FMAY Rank FMAY . Rank FMAY
18 138, 17 109, 17 600. 17 105000. 16 34,0
17 133. 16 64. 16 526. 16 93000. 15 31.2
16 86.7 15 60, 15 487, 15 31000. 14 23.0
15 85.9 14 32, 14 412, 14 57000, 13 19,7
14 55.9 13 4.7 13 330. 13 32000. 12 18.0
13 54.8 12 4.3 12 268. 12 30500. 11 16.7
12 30.3 1" 1..80 " 212, " 22000, 10 14,2
11 28.5 10 1.50 10 160, 10 17200. 9 1.6
10 28.0 9 1.30 9 138, 9 15000. 8 7.0
9 19.7 8 1.0 8 136. 8 10000. 7 6.0
8 12.2 7 0.95 7 129. 7 7500, & 5.0
7 8.86 6 0.85 6 120. 6 6600. 5 4.5
6 7.01 5 0.66 5 69. 5 6300. 4 2.8
5 2.87 4 0.65 4 66. 4 4300, 3 1.5
4 1.58 3 0.49 3 40. 3 3650, 2 0.9
3 1.15 2 0.48 2 39. 2 2970, 1 0.7
2 0.50 1 0.44 1 28. 1 2490.
! 0.048



TABLE 2. Continued
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ENDRIN HEPTACHLOR L INDANE NICKEL ZING
(SALTWATER) (SALTWATER) (SALTWATER) (FRESHWATER) (FRESHWATER)
Rank FMAY Rank FMAY Rank FMAY Rank FMAY Rank FMAY
16 14.2 16 194, 16 3680. 16 2230. 15 2260.
15 12, 15 188. 15 450. 15 2030. 14 1019,
14 3.1 14 112, 14 66.0 14 1540. 13 716.
13 1.7 13 59, 13 56.0 13 1080. 12 708.
12 1.1 12 21.5 12 55.9 12 730, 1 S31.
B 1.1 11 10. 11 47, " 720. 10 463,
10 0.63 10 8. 10 35.0 10 665, 9 315,
9 0.6 9 3492 9 30.6 9 627, 251 .
8 0.47 8 3.77 8 14.0 8 609. 7 213,
7 0.3 7 3.4 7 9.0 7 457. 6 161,
6 0.29 6 3. 6 7.3 6 446. 5 136.
5 0.1 5 3. 5 6.66 b1 440. 4 92.8
4 0.0954 4 1.9 4 6.28 4 401. 3 48.8
3 0.0% 3 0.86 3 5.0 3 345. 2 42.0
2 0.048 2 0.8 2 5.0 2 234. 1 13.7
1 0.037 1 0.057 ! Q.17 ! 653.1
ALDRIN oor NICKEL CHROMIUMC 11 1) ALDRIN
(FRESHWATER) (SALTWATER) (SALTWATER) (FRESHWATER) (SALTWATER)
Rank FMAY Rank FMAY Rank FMAY Rank FMAY Rank FMAV
14 9650. 14 89. 14 350000. 13 88%. 13 100.0
13 180. 13 7.9 13 320000. 12 633. 12 36.0
12 143, 12 7.0 12 150000 . R] 224, 1 33.0
11 50. " 6.0 1 47000. 10 224, 10 33.0
10 27.% 10 4.0 10 3%000. 9 211, 9 25.0
9 27. 9 2.0 9 17000, 8 207. 8 13.0
8 21. 8 1.6 8 9670, 7 193, 7 12.0
7 20. 7 1.4 7 7960. 6 138, 6 9.8
6 16 6 0.87 6 6360. S 136 5 8.0
5 i6. 5 0.58 s 2080. 4 132. 4 7.2
4 1. 4 0.6 4 1180. 3 123. 3 5.0
3 9. 3 0.53 3 600. 2 47. 2 5.0
2 8. 2 0.4 2 366. 1 33.4 ! 3,7
1 7.4 1 i 310.

0.14

10



‘ABLE 2. Contlnued

TOXAPHMENE DIELDRIN TOXAPHENE SELEN|UM SNDOSULFAN
(SALTWATER) {FRESKWATER) (FRE SHWATER) (SALTWATER) (5ALTWATER)
Rank FMAY Rank FMAY Rank FMAY Rank FMAY Rank FMAY
13 1120. 12 740. 12 180. 12 17348, 1" 730.
12 824. 1 593. 1 8. 11 14651, 10 157.
1 43.8 10 191, 10 21, 10 9725, 9 316
10 16. 9 39, 9 20, 9 7400, ] 0.83
9 9.6 8 30. ) 13. 8 4600, 7 0.76
8 3.2 7 24. 7 12.0 7 4400, 6 0.38
7 4.5 6 20. 6 8.0 6 3497, 5 0.30
6 4.4 5 . 5 5.8 5 1200. 4 0.14
5 1.4 4 8, 4 4.7 4 1180, 3 0.10
4 1.1 3 5.5 3 3.5 3 1040. 2 0.09
3 1.1 2 5.0 2 2.6 2 600. 1 0.04
2 0.5 1 4.5 1 1.3 1 599,
1 0.11
HEPTACHLOR CHROMIUM(Y 1) SELENIUM L !NOANE CYAN! DE
( FRESHWATER) (FRESHWATER) (FRESHWATER) (FRESHWATER) (FRESHWATER)
Rank FMAY Rank FMAY Rank FMAY Rank FMAY Rank FMAY
10 180. 10 162000. 10 42400. 10 532. 10 2326,
9 148, 9 71900, 9 28%00. 9 207. 9 2240,
8 58.6 8 63800. 8 24100. 8 138, 8 431,
7 37.0 7 59900, 7 13600, 7 94.8 7 306,
6 29.5 6 30400. 6 12600, 6 68. 6 199,
5 24.8 b 30000, 5 9580, 5 53.1 5 167,
4 7.8 4 25000, 4 6500. 4 52.9 4 125,
3 2.8 3 6400. 3 6170. 3 22.4 3 118.
2 1.8 2 4600, 2 1660. 2 22, 2 83,
1 1.0 1 67, 1 340. 1 10. 1 17.
SILYER SILVER MERCURY ENDOSULF AN ARSENIC
{SALTWATER} {FRESHWATER) {FRESHWATER) (FRESHWATER) (FRESHWATER)
Rank FMAY Rank FMAY Rank FMAY Rank FMAY Rank FMAY
10 1400, 9 5.77 9 2000. 9 261. 8 41760
9 5%0, 8 5.32 8 2000. 8 88. 7 29130.
8 500. 7 4.1 7 2000. 7 5.9 6 22040.
7 250, 6 0.112 6 1000. 6 3.8 5 20190.
6 210, 5 0.0230 5 784, 5 3.7 4 18095.
5 36, 4 0.01% 4 244, 4 3.2 3 14130,
4 33, 3 0.013 3 32, 3 2.3 2 1794,
3 21, 2 0.0123 2 10. 2 0.83 1 379.
2 20. 1 0.00192 1 5, 1 0.34
1 4.7
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TABLE 2. Continued

- -

CHLOROANE CHLORDANE
(FRESHWATER) (SALTWATER)
Rank  FMAV  Rank  FMAY

8 190. 8 120,

7 59. 7 17.5
6 58. 6 16.9
9 44. 5 1.8
4 32. 4 6.4
3 214 3 6.2
2 15. 2 4.8
1 6.3 1 0.4

8 calcylated from the Specles Mesan Acute Values {n Table 1. All FMAVs are In ug/L.
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CONCLUS IONS
Calculation of a FAV from a typically small set of MAVs requires that the
get be considered a sample from a statistical population and that the FaV
be considered an estimate of the fifth percentcile of that population.
The set of MAVs must be assumed to have been obtained from the statistical
population by a specific sampling procedure; of reasonably simple sampling
procedures, an assumption of random sampling appears most consistent with
actual data selection,
Available sets of MAVs suggest that the statistical populations are highly
positively skewed and that estimation would be benefitted by logarithmic
transformation of MAVs.
Available sets of Ln(MAV)s suggest that the statistical populations are
significantly and variably skewed and that FAV calculation should be based
on a subset of 1n(MAV)s nearest the fifth percentile.
Available sets of Ln(MAV)s suggest that FAV estimation is better served by
the assumption of a triangular distribution of the populations of Ln(MAV)s
tha; by the assumption of a normal, rectangular, or biexponential
distribution.
Simulations using a triangular distribution indicate that 'parametric’
methods for percentile estimation and 'graphical' methods in which ranked
data are assigned:cumulative probabilities Pg®P(E(Xg)) produce
undegired biases in the true cumulative probabilities corresponding to
fifeh percentile estimates.
Simulations also indicate that a graphical method with (a) ranked data,
Xg=1n(MAV), assigned cumulative probabilities Pg=R/(N+1), (b) Pg

transformed to its corresponding standard variate, Zp=/Py, and

13



10.

11.

12.

(c) a line fitted to Zg versus Xg by the geometric mean functional
relationship produces the least bias among alternatives examined.

These simulations also suggest that it 1s appropriate to restrict the
calculation procedure to the four Xgs with Pgs nearest 0.05, because

(a) in the absence of skewness the precision of fifth percentile estimates
is litcle worsened by this and (b) in the presence of skewness this avoids
the introduction of substantial bias,

The old procedure used in the 11/28/80 Guidelines has some aspects which
are contraindicated either theoretically or empirically and the new
procedure described here should replace it; however, FAVs calculated from
example data sets by the two procedures usually do not differ by more than
a factor of 2.

Modifications of the recommended new procedure with respect to assumed
distribution, general percentile estimation method, and subset size (up to
half the set size) rarely cause FAVs calculated from example data sets to
vary by more than a factor of 2, Therefore, even if it is debatable
whether opﬁimal decisions were made in developing the recommended new
procedure, it is unlikely that any alternative procedure, within reason,
would produce substantially different results,

Modification of the recommended new procedure to use the entire data set
often produced suSsCancially different FAVs from example data sets, but
many of these FAVs were sufficiently at variance with the lowest MAVs in
the data sets to reject this modificacion.

Modification of the recommended new procedure to reflect an extreme
deviation from random sampling consistently produced higher FAVs from

example data sets, but the average increase was only about fifty percent;
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therefore, questions about the propriety of applying methods bagsed on
random sampling to a system in which sampling is not strictly random

are probably not of great importance.

Recommendations about FAV calculation are the same whether MAVs are for

species or families.
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STATEMENT OF PROBLEM

A FAV is defined ag an estimate of the concentration corresponding to the
fi fth percentile of a guitable set of MAVs for a material; l1.e., the FAV exceeds
five percent of the MAVs and is exceeded by ninety-five percent. Because the
number of species tested with any particular material is usually rather small,
most sets of MAVs will not have a datum which can reasonably be designated as
the fifth percentile; rather, the set of MAVs must be assumed to be a sample of
a population (in the statistical sense) that is large enough that a fifth
percentile is defined. For example, 1f resources permitted, the MAVs of a
material for many hundreds of aquatic taxa could be determined. Such a set of
MAVs could reasonably be considered to have a fifth percentile that could be
obtained by inspection and is the type of statistical population of which the
available sets of MAVs are assumed to be samples. Of course, the population of
MAVs would need to be determined using a mix of taxa that is acceptable to
toxicologists for calculating a FAV. The above assumption is inhereat to the
definition of the FAV and any objection to it, or modification of 1it, was not a
subject of this project,

An additional assumption is necessary because any estimation method using a
sample from a population requires that the manner in which the sample was
obtained be adequately specified., The toxicity of a material is measured by
many independent inveacigators, who select test species based on a poorly
defined combination of tradition, convenience, happenstance, and iatent to
diversify the mix of species., All available data meeting certain quality
standards (1) are incorporated into the sets of MAVs. This incorporation step
does not affect the nature of the sampling process, except that a FAV will not

be calculated unless the set of MAVs is of a minimum size (eight) and coatains
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representatives of certain categories of species (l). It is not possible to

represent this process in a form suitable for applying appropriate exact

estimation methods. The issue then becomes what feasible description of
sampling (e.g., random, systematic) most closely approximates this process.

Random sampling was selected for the following reasons:

(1) Although they meet certain minimal diversity standards, the available sets
of MAVs vary markedly, and apparently haphazardly, in the species and
higher taxonomic levels they contain. Such variation is not compatible
with entirely systematié sampling schemes and suggests that an appropriate
sampling assumption should contain a strong random element.

(2) Even where some elements of systematic sampling are evident in the
available sets of MAVs, a high correlation of toxicity with these elements
is usually not apparent. Without such a correlation, an assumption of
systematic sampling is not particularly needed because for practical pur-
poses it can be approximated by an assumption of random sampling.

In addition to being as much, or more, in accord with actual sampling
procedures than other tractable sampling assumptions, the assumption of randonm
sampling may be justified, in part, by noting that, in general, deviations from
this assumption may occur without seriously compromising results. Methods based
on random sampling do not lose all their utility if it is not possible to
rigorously define a p0puincion and co formally conduct random sampling from it.
The population may even be somewhat hypothetical, being defined, in part by the
data selection process. Sampling may be nonrandom, but as long as the sampling
process has a low enough correlation with response, results under an assumption

of random sampling will not deviace by more than a certain amount from results
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und er more appropriate assumptions. Consideration will be given below to what
arrors would be introduced if random sampling were assumed for percentile
estimation when sampling is actually nonrandom.

Finally, if a procedure adopted for calculating FAVs results in criteria
that are somehow independently validated, the procedure can be considered to be
entirely empirical and the assumptions become part of the definition of the FAV
needed to produce the desired criteria. This, however, is speculative and the
question remains as to whether the procedure developed here employs the most

appropriate assumptions and, if not, whether this has any substantial impact on

FAVs.
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DESCRIPTION OF PERCENTILE ESTIMATION METHODS

Methods for estimating, from random samples, a specified percentile of a
population can generally be placed into one of two categories. These categories
are presented here primarily to facilitate discussion and are not meant to imply
that methods in different categories do not have some important common features
or are not sometimes nearly equivalent. One notable feature of any method for
estimating percentiles is the need to make at least some distributional
assumptions about the population from which the sample was drawn.

For methods in the first category, the parameters in the general
mathematical equation for the assumed distribution are estimated from the sample
by mathematical procedures formulated to- produce estimates with desired
properties, such as being unbiased, having minimum variance, or having maximum
likelihood. The common formulas for estimation of mean and variance from a
sample from a normal population is an example of such a method. Once the
parameters are estimated, it is a simple matter té substitute them into the
general equation for the distribution and to estimate a desired percentile.

This category will be referred to as 'parametric methods'.

The second category of methods involves ranking the data in a sample and
then plotting the ranked data (Xg) versus a cumulative probability (Pg)
assigned to each rank (R). For calculation simplicity, plotting is usually on a
coordinate system for which the cumulative form of the assumed distribution is a
straight line. A line is fitted to the plotted data by eye or by some
appropriate mathematical curve-fitting technique and the estimate of the desired
percentile is read off the plotted line or computed from the equation for the
line. This category will be referred to as 'graphical methods', although

explicit graphing is never strictly necessary. In most cases, graphical methods

19



are not mathematically rigorous and do not produce the unbiased, maximum
likelihood, or minimum variance estimates that parametric methods are designed
to produce. This does not mean, however, that graphical methods will not

per form adequately in practice; in fact, in some cases their performance is very
similar to that of parametric methods. Furthermore, for some cases sultable
parametric methods do not exist or are unreasonably cumbersome; graphical
methods thus might be a very useful alternative.

For both parametric and graphical methods, discussion here will be
restricted to a class of diécributions which have only two parameters, these
being a location parameter and a scale parameter. By this it is meant that, for
each distrcibution type, there exists a standard distribution with standard
variate denoted 'z', such that for any distribution of this type with variate
denoted 'x' there exists a location parameter 'L' and a scale parameter 'S' such
that x=L+S°z., For example, for the normal distribution, the mean and standard
deviation are usually used as the location and scale parameters, respectively,
and the standard normal variate (also called the 'standard normal deviate' (4))

is then as usually tabulated.

The only parametric method considered here will be a general one, termed
'best linear unbiased estimation’ (5,6), which can be applied to any discribu-~
tion characterized by lécation and scale parameters. This method is 'unbiased'
in that the parameter estimates will, on the average, equal the true population
parameter values. It is 'linear' in that the parameter estimates are linear
functioas of the data. It is 'best' in that the parameter estimates have the
lowest variances of all linear unbiased techniques. There may be nonlinear or

biased methods that have smaller variances, but, in general, the performance,
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with respect to bias and variance, of this technique cannot be much improved.

. A A , _
Par ameter estimates (L, S) are obtained by minimizing the value of the matrix

expression:

A

A
S°2)

A
(}-- i -/S\'ﬁ)T.Y.-I.(_’.(.- L -

1s the sample size;

is a (Nxl) matrix consisting of the ranked sample;

is a (Nxl) matrix of the expected values of ranked standard variates
of random samples of size N from the assumed distribution;

is the (NxN) variance/covariance matrix for ranked standard variates
of random samples of size N from the assumed distribution; aad

denotes matrix transposition.

where:

fN = =

| <

3

This method has the additional advantage that Qp;€+§'zp is also the best

linear unbiased.estimate for Xp s the pth percentile of the population.

This can be demonstrated in a variety of-ways, but is most obvious when it 1is
realized that any particular percentile could, quite legitimately, be designated
the location parameter.

This method also has the advantage that it can be applied to an arbitrary
subsample of the data and still produce the best linear unbiased estimate that
can be obtained from that subsample. Applying the merhod to a subsample simply
requires eliminating, from matrices x, z, and !fl, the elements referring to
daﬁa act in the desired subasample. (Note: The calculation and iaversion of V 1s
not affected by these deletions; rather, deletions are made after inversion.) A
notable property of such 'censoring' of data is that, if the remaining data are
those nearest the percéntile of interest, the variance of the percentile
estimate is.little worsened as the number of data used is reduced. This
suggests that using all the data, other than to determine ranks and define V,
has relatively little utility ia this kind of estimation.

The ability of this method to use only a subsample of the data has

particular significance when the distribution of the population from which the
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data are drawn is not perfectly characterized. For example, when concerned with
the fifth percentile, deviations from the assumed distribution that are
restricted to the upper part of the distribution will impact the calculations
titele if only the lowest few data in the sample are used. Even if the
distributional assumption is violated near the fifth percentile, the 1mpact of
this violation will be reduced as the number of data formally used in the above
equations is reduced, as long as the data used are those nearest the percentile
of interest. Of course, the method still makes distributional assumptions about
both the data used and choSe not used and errors will arise if these assumptioas
are incorrect, but as long as the distributional assumptions are not grossly
violated in the range of the selected subsample, these errors will generally be
minimal. The question then arises as to the optimal subsample size (n), a small
size having the advantage of reducing the effects of deviation from the assumed
distribution and a large size having the advantage of reducing the variance of
estimates when the distributional assumptions are correct. The answer to this
question is specific to the problem of concern and will be considered below.

One troublihg aspect of this methodology is, ironically, its lack of bias,
Thie ig g problem because the lack of bias is in the variate rather than in the
cumulative probability; i.e., in repeated sampling,'Qp will average Xp) but
the true cumulative probability (P(Qp)) correspond ing co‘;c\p will not average
p, unless cumulative prébabilicy is linearly related to variate, which is only
true for rectangular distributions (simulated sampling from a variety of popula-
tions is presented below to demonstrate this point). Because the definition of
the FAV is based on protecting a certain percentagé of a specified taxon, this

method is inappropriate; rather, a method that is unbiased with respect to the
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desired cumulative probability is desired. We are aware of no published mechods

of this sore. It is for this reason that graphical methods are now considered.

Graphical Methods

Graphical methods for examining cumulative distributions inherently have four

issues that must be resolved:

(1) Cumulative Probabilities Assigned to Ranked Data

Formul as reported (4,7,8) for calculating the cumulative probability Pg to
assign to a datum Xg with rank R in & sample of size N include R/N,
(R-0.5)/N, R/(N+l), and P(E(Xg)). Other reported formulas (8) generally are
approximations of P(Z(Xg)).

(a) Pg=R/N is not applicable hece and is sometimes misapplied in the

(b)

(e)

licerature. This formula does not sctually describe the cumulative
probability to assigzn to a datum Xg with rank R, but rather is the
cumulative probability to assign to the range Xg to Xg,}; thus,

any specific rank is as much assigned the proportion %R-l)/ﬂ as it 1is
R/N. Cumulative probability graphs by this method are properly a series
of horizontal segments connecting cthe points [Xg,R/N] and

[XRe1sR/N] (R®0 co W; Xg*== ,Xy.1***), usually with vertical segments
connecting the points [Xg,(R~1)/N] and [Xg,R/N] (Rel to N),

forming a 'staircase' qraph. A smooth line depicting the cumulative
discribution would generally bisect the segmencs and pass below
(Xg,R/N]. The error of using R/N as a point estimate for the
cumulative probability assigned to a rank can also be seen by noting
that it is ssymmetric shout the median and that, when R™N, it is

indeterminate for 4istributions, such as the normal, whose upper limit is
+.l

Pp=(R~0.5)/N is apparently an attempt to select a compromise between
(R=1)/¥ and R/N¥ to allow a point plot of Py versus Xp to be made.

This compromise has no rigorous basis and the attempt is much betrer
served by the two remaining formulas. Therefore, it will not be further
considered hers.

Assigning Pp=R/(N+l) is based on this formula being che expected value of
the true cumulative probability corresponding to a rank (E(P(Xg))=R/(N+l)),
for any continuous discribution. It is of particular significance here
because it is directed to the expected valus of the cumulative probabilicy
and thus should help reduce the bias problem discussed earlier. It has
additional merit in being distributiomindependent. Its use will be further
explored in the simulacions presented below.
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(d) ?R'P(E(XR)) has, by definition, obvious theoretical foundations because
it denotes the cumulative probability corresponding to the expected value
of Xg. (E(Xg) is also called 'rankit' (4)). This formula. is a
counterpart to Pp=R/(N+l), differing by being bssed on the expectad value
of ranked data racher than the true cumulacive probabilicies corrasponding
co ranked data. Unlike Pg=R/{(N+l), its values are distribution-dependent.
Its use will also be further explored below, but because it 1s based oa the
expected value of che variate, it is anticipeted that it will show the same
problam of bias as che parametric method above.

(2) Transformation of Axes

(3)

(4)

This is dictated by the assumed distribution and by the restriction adopted
here that che assumed distribucion should produce & linear plot on the
selected axes. In general, it is the axis agsinsc vhich cumulative
probsbilicies ave plocted that is transformed and the transformation is based
oa the standard distridbution of the assumed distridbution; in fact, this can be
treated as a transform of Py Co & corresponding scandard variate Zg. In

such a case, the plot becowes one of a Iy assigned to each rank versus the
observed datum Xg. The slope dX/dZ is the scale parsmeter and the intercept
on the X axis is the location paramecter.

Subsample Size

This 1ssue s identical to that discussed for the parametric method. A

later section will consider hov the subsample size (n) can best de determined,
based on simulations under various assumpzions.

Fitcin;ja Line to Plotted Data

Because the restriction of & linear plot has already been made, this issue
reduces to how to compute the slope of che line most appropriate to the daca.
Becsuse, for any N, cthe Zp Or Pg assigned to & ranked datum is fixed, and
thus may be an analogy to an independent variable, and because the line to be
fitted can be expressed as Xg®"L+$°'Zq, it may be thought that the standard
lesst-squares regression formula with Xg 2s the dependent variable and Zg
as che independent variabie wouid b& tha preferred choice. As will be seen
%}lov, this curns Quet to be the case whan Pp*P(E(Xg)) is used and when

p» rather ghan P(Yp), is desired to be unbissed. As before, achieving an
unbiased P(Yp) is not amenable to exact techniques and an empirical approach
must be used. To this end, three different, but simple, slope formulas were
considered (again, this approach is strictly empirical, employing these
formulas as represenciang & range within which a reasonabdle slope might lie;
nothing is implied here about & theoretical justification for one or che other
formula and it is not implied that this spplication meets cthe assumptions on
which any of the formulas are based):

(a) LS-X - standard bivariate least~squares with Xg as che dependent variable
(residuals minimized in X-direction):
n

g . %% (52) (SX,) /n

n 2 0 2
22:-(32)°/n
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(b) LS-Z - standard bivariate leasc-squareas with Zg as the dependent variah|,
(residuals minimized in Z-direction):

A S$xi- (S%)¥/n
$2.%.- (S2,) (£X,) /n

(c) GMFR - geometric mean functional relationship (residuals are minimized in
the direction of the arictmetic reciprocal of the slope; this mechod
produces the geometric mesn of the slopes by the two previous methods and

has seen some application in regression where both variables are 1n error
(9,10)):

- SXE- (SX,)/n
S2i- (32 %/n

Whatever slope formula is used, the line always passes through the
mean Xg aad the mean Zg. The location parameter estimate L, which is the
intercept on the X axis, is therefore

L = (8.52,-5%) /n.
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SELECTION OF DISTRIBUTION

All methods for estimating the fifth percentile of a population from a
sample require at least some assumptions about the distributional
characteristics of the population. Few data sets from which an FAV will be
calculated will be large enough that such characteristics can be inferred from
the iadividual data set. However, the large number of sets available (Tables !
and 2) provides an opportunity for evaluating these characteristics and for
determining which characteristics can be reasonably applied to all data sets and
which parameters must be esfimaced individually from each set.

It is desirable to keep the number of unknown distributional parameters as
low as possible, not only because analysis becomes markedly more complicated as
the number of parameters increases, but also because data sets of the minimum
size (N=8) may be overly fitted if the number of parameters is not small. The
example data sets (Tables 1 and 2) vary widely in their means and coefficients
of variation. Therefore, at least two parameters, a location parameter (e.g.,
mean) and a scale parameter (e.g., standard deviation), are required.

Because these two parameters relate to the first and second moments of the
samples, an obvious third parameter to consider is skewness, which is related cto
the third moment of the samples. Skewness is also strongly indicated by
inspection of the example data sets. A skewness measure (4), the normalized
third central moment, w&s estimated for each example data set. All sets showed
positive skgwness. The skewness was substantial enough to reject, at the 0.10
level of significance, the hypothesis that the set was a random sample from a
normally distributed population for 35 of 37 SMAV sets and for 34 of 37 FMAV
sets; at the 0.0l level of significance, this hypothesis was rejected for 30

SMAV sets and 25 FMAV sats.
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Because of this strong positive skewness, a logarithmic (base e)
transformation was applied to each MAV, so that discussion will now relate to
the distribution of 1n(MAV). The skewness measure for each data set was
recomputed and the average skewness decreased from 2.39 for SMAVs and 2.08 for
FMAVs to 0.06 for SMAVs and 0.07 for FMAVs.

The small average skewness does not, however, mean that individual sets can
be considered to be saﬁples from nonskewed populations. When the skewness
measures of individual data sets were tested under the same null hypothesis as
above, the hypothesis was rejected at the 0.10 significance level for 8 SMAV
sets and 7 FMAV sets and at the 0.0l signficance level for 3 of the SMAV sets
and 2 of the FMAV sets. Although this is substantially fewer than before
logarithmic transformation, it still indicates that skewness in some sets might
be too large to ignore. Furthermore, among the sets with significant skewness,
the skewness was sometimes positive and sometimes negative, indicating that the
populations these sets represent vary substantially in skewness,

Therefore, despite logarithmic transformation, skewness in the data must
still be dealt with by the methodology adopted for the estimation of the fifth
percentile. Two general approaches were considered for this. Firsc,
distributions with a third parameter that affects skewness and which can be
estimated from a sample could be used. This approach greatly increases the
difficulty of paramecer ;stimacion and it is questionable whether the smaller
data sets rgliably have enough information to make this effort appropriate or
worthwhile, The second approach is to limit the estimation method to a subset
of the data near the percentile of interest. By doing this, the effects of
having non-zero skewness are markedly reduced and the location and scale

parameter estimates apply only locally, incorporating the effects of skewness at
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that locality. This approach allows the use of relatively simple estimation
methods and, as will be further discussed below, has very little impact on the
precision of fifth percentile estimates even if a population is not skewed. The
second approach will therefore be employed here.

Higher moments of the data sets were not directly examined because (a) the
decision to limit analysis to a subset of the data makes such an examination
complicated and (b) the effects of higher moments should be adequately accouated
for either by this limitation or by the examination of specific distributions
that follows.

Inference of distributional characteristics from the example data sets was
therefore limited to symmetric distributions with just location and scale
parameters to be estimated; furthermore, the most relevant information in the
data sets is that nearest the fifth percentile, The approach followed here was
to examine the fit of specific distributions to the example data sets. Four
distributions were considered:

(1) Rectangular Distribution

This was included as an extreme case because it assumes chat the
relative frequency of 1n(MAV)s remains constant between some lower and upper
limits, whereas theoretical considerations and inspection of the data sets
suggest that the frequency deciines as the lower and upper limite are
approached (i.e., very sensitive and very resistant taxa are rarer than
those with moderate sensitivity). The standard probability density function
for this distribution is:

£(z2) = INTZ ;3 /3 <z<JF
£(z) = 0 iz < -J?: z >3

(2) Triangular Distribution

This was included because it is the simplest distribution that incor-
porates two basic properties that the frequency of 1n(MAV)s should have: (a)
sensitivity should have lower and upper limits (no species succumbs to
infinitesimal concentrations of a material and no species tolerates ianfinite
concentrations) and (b) the frequency of 1ln(MAV)s should decline to zero as
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(3)

(4)

the limits are approached (fewer species are near the limits than are near
the midrange). The standard probability density function for this discribu-
cion is:

f(z) = (1-]z|)//6 ; -/6 <z < /6

f(z) = 0 s z<-/6,z>7/6

Normal Distribution

This was included due to its broad applicability and to provide a
curved alternative to the linear frequency trend of the triangular
distribution; this curvature causes relatively rare sensitive or resistant
taxa to have somewhat more extreme ln(MAV)s (relative to the range of the
majority of the taxa with moderate sensitivity) than does the triangular
distribution. No lower or upper limits exist, but the frequency becomes so
small at reasonably moderata deviations from the mean that this deficiency
is probably of limited consequence. The standard probability densicy
function for this distribution is:

E(z) = —= e-zz/2 i =@ <z < 4@
o

Biexponential Discribuction

This was included as an extreme case in which the most sensitcive and
resistant taxa have greatly different Ln(MAV)s than the majority of the taxa
with moderate sensitivity. The standard probability density function for
this discribution is:

f(z) - _1_ e_/ilzl

43

-® < 2 < 4@

Shapes of these discributions when they have mean = 0 and standard deviation = |

are

displayed on Figure 1.

The best linear unbiased estimation method! discussed earlier was used to

estimate location and scale parameters from each example data sec for each

combination of the four distributions above and four subset sizes (n=4, N/&,

N/2, and N, where N=data set size; n also was required to be at least 4, which

l The macrix V for this method was calculated by exact integrals for all

distributions except normal, for which approximata formulas were used (ll),
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Figure 1.

Standard probability density plots for rectangular (

triangular (-=--- ), normal (===-), and blexponential (-------

distributions.
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was considered & minimum number to use to test distribution fits). From each
such estimation, the expected value (E(Xg)) of each ranked datum was escinaced
a,'€+€'!(ZR), where'? is che location parameter escimacc.’? is the scale

parmmaeter estimata, and E(Zg) is the expected value of the datum of rank R 1in

samples of size N from the 2ssuned scandard distribution. The ratio:

S (X-E (X)) ?
S (Xg=%y) 2

(i.e., the fraction of the vafiancc of the subset not explained by fitring the
data to the distribution) was adopted as a measure of goodness-of-fit of che data
to the assumed distribution over the size (n) of the subset used. Average
goodness-of=-fits for all SMAV secs are reportad in Table ] and for PMAV secs ia
Table 4.

The triangular distridbution was selected for use in further development of
the PAV calculation procedure based on its superior average goodness-of~fit to
the data, aspecially for the subsets restricted to be anear the fifth percencile.
This distribution has the additional advantage of most simply embodying the two
distributional characteristics that are theoretically and empirically most
sensible (i.e., the existeace of finite limicts and a probability densicy funccion
that declines to those limits), and thus coanstituces a2 reasonable null hypochesis
that should be used unlese clearly rejected. Also, it constitutes a compromise
distribution with a shape that is intermediate in the r;ng. exhihited by cthe
exgmple data sets, chus limiting potential errors. The triangular distribucion
has the further advancage of having simple machematical formulations for the

percentile eetimation methods discussed above.
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TABLE 3. AVERAGE GOODNESS-OF-FITS2 FOR la(SMAV) DATA SETS.

SUBSET SIZE (n)

ASSUMED DISTRIABUT ION N N/2 N/4°© 4

RECT ANGULAR 0.169 0,150 0.146 9,135
TRIANGULAR 3.082 0,099 0.ll4 0.118
NORMAL 0,081 0.104 0.1l34 0,137
BIEXPONENT IAL 0.106 0.230 0.235 0.206

4 "Goodness—of~-fit” is the fraction of variance of 'n’' data points

not explained by fitting data to assumed distribution; lower values
indicate better fits; values should be compared only within columns.

b n =4 whea N < 16,

TABLE 4. AVERAGE GOODNESS-OF-FITS2 FOR ln(FMAV) DATA SETS.

SUBSET SIZE (n)

ASSUMED DISTRIBUTION N N/2 N/4b 4 -

RECT ANGULAR 0.145 0.127 0.121 0.125
TRIANGULAR 0.095 0.103 0.108 0.116
NORMAL ; 0.087 0,120 0.129 0.143

BIEXPONENT IAL 0.109 0.277 0.218 0.238

q "Goodness-of-fit” is the fractlon of varlance of 'n' data polnts

not explained by ficting data to assumed distribution; lower values
indicate better fits; values should be compared only within columns,

Y h = 4 when N < 16.
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SELECTION OF PERCENTILE ESTIMATION METHOD AND SUBSET SI{zE
Ten thousand computer—generated random samples from a standard triangular
distribution (loéation parameter = mean * 0; scale parameter = standard devia-
tion = 1) were used to estimate the fifth percentile of the distribution for
each combination of the following methods, sample sizes, and subsample sizes.

(1) Percentile Estimation Methods

Seven methods were examined. These included one parametric method (best
linear unbiased estimation) and six graphical methods (all possible
combinations of the two formulas for assigning cumulative probabilities
(P(E(Xg)), E(P(Xg)) and the three formulas for computing slope (LS-X,
LS-Z, (MFR)).

(2) Sample Sizes

Sample sizes (N) of 8, 15, and 30 were selected as being representative of
the minimum size, a moderate size, and a large size that are found in the
available sets of SMAVs and FMAVs,

(3) Subsample Sizes

Subsample sizes (n) of the 4, N/4, N/2, and N points closest to the fifth

percentile were considered; for N/4, an additional restriction of nZﬁ was

imposed; n®=4 was considered to be the minimum reasonable size, a lesser

number making analysis too sensitive to a spurious datum.
From location and scale parameter estimates, the estimate of the fifth

. AL A . . .

percentile was calculated as 'X5*L-1.675°S, -1.675 being the fifth percentile
for the standard triangular distribution. The average QB over the 10,000
simulations was designated as x5 and should equal -1.675 for methods unbiased
with respect to the va;téte. Because the parameters of the population from
which the samples were drawn are known, the true cumulative probability P(Qg)
corresponding to each'?s was calculated. The average P(QB) over the 10,000

simulations was designated 33 and should equal 0.050 for methods unbiased with

respect to cumulative probability. x5 is tabulated in Table 5 and ?} Ls
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tabulated in Table 6. Table 5 also includes the standard deviations for'&% 1n
order to indicate the relative precision of the various methods.

As expected, the best linear unbiased estimation method did produce an
essentially unbiased x5, as did the graphical method using P(E(XR)) to
assign cumulative probability and LS~-X to calculate slope (Table 5), However,
it is bias in ?3 that is of paramount concern here. The best linear unbiased
estimation method and all graphical methods using P(E(Xg)) were substantially
more biased than the graphical methods using E(P(XR)) (Table 6) and were
therefore dropped from consideration. In addition, the standard deviations of
‘QS by the best linear unbiased method were usually no better than 10X less
than those of the graphical methods using E(P(Xg)) (Table 5), indicating that
the better precision of the best linear unbiased method is of little
consequence.

Although they did have lower biases than the other methods, none of the
graphical methods using E(P(Xg)) to assign cumulative probability had an
unbiased 53 and the bias varied with n and N (Table 6). Furthermore, none of
the formulas for calculating slope had the lowest bias for all combinations of n
and N. The geometric mean functional relationship was selected as having the
lowest average bias over all combinations.

Selection of the most appropriate subsample size required consideration of
the precision of’Qg (Table 5) for the selected percentile estimation method
(graphical method using E(P(Xg)) to assign cumulative probability and GMFR to
calculate slope), For N=8, the standard deviation of'QB (Table 5) for n=4
(=/4, =N/2) was only 12% greater than that for n=N, For N=15, the standard
deviation of'?s for n=4 (=N/4) was only 1% greater than that for n=N/2 and

only 6% greater than that for n=N, For N=30, the standard deviation of QB was
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TABLE 5. MEANS AND STANDARD DEVIATIONS® OF ESTIMATES OF FIFTH PERCENTILE (25>
BY VARIOUS METHODS, FOR 10,000 SAMPLES FROM A& STANDARD TRIANGULAR
DISTRIBUTION.

N n METHOD

PARAMETRIC ——~=———======—m—mmmeemem GRAPHICAL~—===== = e
“““““ PR=P ( E<XR ) )-"""—""' ‘—“““-_PR=E (P (XR) )“"“""’"

LS-X LS-Z GMFR LS-X LS-2Z GHYFR

8 4 -1.68 -1.68 -1.79 -1.73 -1.83 -1.95 -1.89
(0.57) (0.57) (0.61) (0.59) (0.62) (0.67) (0.64)

8 -1.68 -1.68 -1.81 -1.74 -1.83 -1.98 -1.90
(0.52) (0.53)  (0.55)  (0.54) (0.56) (0.58)  (0.57)

15 4 -1.67 -1.67 -1.73 -1.70 -1.77 -1.84 -1.80
(0.39) (0.39)  (0.40)  (0.39) (0.41)  (0.44)  (0.42)

8 -1.67 -1.67 -1.75 -1.71 ~1.77 -1.85 -1.81
(0.38) (0.39) (0.40) (0.39) (0.41) (0.43) (0.42)

LS -1.67 -1.67 -1.76 -1.71 -1.77 -1.86 -1.81
(0.36) (0.38) (0.39) (0.38) (0.39) (0.40) (0.39)

30 4 -1.67 -1.67 -1.69 -1.68 -1.73 -1.75 -1.74
(0.25) (0.25) (0.25) (0.25) (0.26) - (0.26) (0.26)

8 -1.67 -1.67 -1.71 -1.69 -1.73 -1.77 -1.75
(0.25) (0.26) (0.26) (0.26) (0.26) (0.27) (0.27)

15 -1.67 -1.67 -1.72 70 -1.73 -1.77 -1.75
(0.25) (0.26) {G.26) {G.26) {6.27) {8.275 (0.27)

30 -1.67 -1.67 -1.72 -1.70 -1.73 -1.77 -1.75

(0.24) (0.26) (0.26) (0.26) (0.27) (0.27) (0.27)

8 standard deviations of estimates in parentheses.
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MEAN TRUE CUMULATIVE PROBABILITIES (P

TABLE 6. 5) OF ESTIMATES OF FIFTH
PERCENTILE (P(ks5)) BY VARIOUS METHODS; FOR 10,000 SAMPLES
FROM A STANDARD TRIANGULAR DISTRIBUTILON.
N n METHOD
PARAMETRIC ~======—=m—memmmmeme e GRAPHICAL === = m e e e
“““““ P R’P ( E (XR ) )""“""‘" ——————--PR=E (P (XR ) )"‘""‘""
LS-X LS-2 GMFR LS-X Ls-2 GMFR
8 4 0.076 0.076 0.066 0.071 0.063 0.054 0.0%8
8 0.072 0.073 0.058 0.065 0.057 0.044 0.050
L5 4 0.063 0.063 0.057 0.060 30.053 0.047 0.0350
3 0.062 0.063 0.054 . 0.058 0.053 0.044 0.049
15 0.061 0.062 0.0s2 0.057 0.052 0.042 0.048
30 4 0.055 0.056 0.054 0.055 0.048 0.046 0.047
8 0.055 0.056 0.051 0.053 0.049 0.044 0.047
15 0.055 0.056 0.051 0.053 0.050 0.044 0.047
30 0.055 0.056 0.051 0.053 0.050 0.044 0.047
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lowest at n=4 and did not vary among the a by more than 3%Z. There is thus no
substantial advantage, with respect to precision, to using >4,

aAnother factor in the selection of the subsample size is the possibility of
skewness., Therefore, simulations were also conducted using a skewed triangular
distribution for which the mode was 20%, rather than 50%, of the distance from
the lower to the upper limit. For all sample sizes, using n=N resulted in
?5<0.02 and, for N=15 and N=30, using n=N/2 resulted in 35 being about 0.03.
Using o=4, however, resulted in 35 being between 0.04 and 0.05 for all N.

Using n=4 also resulted in substantially lower standard deviations for'Qg than
using n=N/2 and n=N.

Because for a nonskewed population the smallest subsample size considered
performed little, if anv, worse than larger subgsamples, and because the
possibility and consequences of skewness give good reason to restrict the
subsample size, a subsample size n=4 is recommended. Limited consideration was
given to a smaller subsample (n=2), but for N=8 this resulted in substantial
bias in'33 (;5=7.OZ) and in a 202 increase in the standard deviation of
43; also, the use of so few data markedly increases the sensitivity of results
to an occasional unusually low datum.

Consideration was also given to the possible effects of nonrandom sampling
by determining the bias introduced into ;3 1f the method recommended above is
used when samples are nét obtained randomly. Two nonrandom sampling schemes
ware investigated. First, samples were taken in an entirely systematic fashion
highly correlated with variate, data being uniformly distributed over percen-
tiles with the ith datum (X;) being set equal to Xp, where p;=(i-0.5)/N.

. A
With such a scheme, P(xs) equals 0,015, 0.024, and 0.034 for N equal to 8, 15,
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and 30, respectively. Although P(Qg) is therefore substantially biased, this

is an extremely unrealistic depiction of the sampling and the biases are extreme
upper limits. Sampling schemes with a more realistic systematic component would
result in much lower biases.

The second nonrandom sampling scheme used was stratified sampling in which
each member of the sample was assumed to be randomly sampled from a restricted
percentile range. The range for the ith datum of a sample was [(100%)(i-0.5)/N)
+ 25% i.e., a fifty percentile range centered on the value used for the ith
datumn of the systematic saﬁple discussed above. For low and high i, the range
was compressed so that percentiles were maintained between 0 and 100 and so
that, over the entire sample, each member of the population had an equal chance
of being drawn. Specifically, for low i, if a percentile was computed by the
above formula to be <0, its absolute value was used. This results in the ranges
for low i being narrower than the nominal 50% (as small as 27X for i=l and N=30)
and sampling within the ranges being somewhat skewed to low percentiles;
analogous compression and skewing occurred for high i. Because the recommended
procedure would heavily employ data with low i, the systematic component of chis

rocedure is therefore even greater than implied by the restriction of sampling
to fifty percentile ranges. Using this sampling scheme, ten~thousand samples of
size 8, 15, and 30 from a standard triangular distribution were computer
generated and FAVs were:caiculaced from each sample by the procedure recommended
above based on random sampling. ?B was 0,040, 0.042, and 0.044 for N equal to
8, 15, and 30, respectively. This small bias suggests that, even with a strong
systematic element in the actual sampling, an assumption of random sampling
performs well as long as there is also a substantial random element in the

sampling, or at least an element that is not correlated with variace,
38



APPLICATION OP RECOMMENDED PROCEDURE AND ALTERNATIVES TO DATA SETS

In the previous secrions all issues necessary for the recommendation of a

procedure for FAV calculation have been considered. The recommended new

procedure assumes the set of ln(MAV)s is a random sample from a triangular

distribution with unknown location and scale parameters. The mechanics of the

procedure can be sumnarized as follows:

The 1n(MAV)s are ranked and each assigned a cumulative probability
Pp*R/(N+l), where R is th rank,and N the number of data in the sat. A
line of the form 1a(MAV)=S"/Pp+L is fit to the four points wich Pg

nearest 0.05. (The square root of Pp constitutes transformation to the
variate of a standard triangular distribution somewhat differenc chan, buc
equally valid to, that usgd ove; it is used here because it is simpler to

calculate when Pg<0.5). S, L, and FAV are calculaced as follows:

i (1LnMAV) *- ('SjlnMAV) /4

3 - 3 q
\ 2P~ (2 [Fp) /4

A 4 4
£ = (S1nMav-8.3 [F7) /4

1nFAV = $.40°05 + &

Exsmple calculations are provided in Appendix 1.

This procedure was applied to the exsmple data seats in Tables | and 2. The FAVs

thus calculated for each data set are included in Tables 7 and 8, along with the

lowest MAV as a reference.

Also included in Tables 7 and 8 are FAVs calculated for each data set using

the old procedure presented in the November 28, 1980 version of the Guidelines

(L.

This procedure can be described as follows:

The ln(MAV)s are ranked and assigned to fixed inctervals with widch = 0,25
and with the first incterval stcarting at the lowest ln(MAV). Each interval
is assigned a cumulative proportion P=R . /N, where N is che number of
1a(MAV)s and Ry,, is the rank of the largest Lln(MAV) in che incerval.

Each interval is assigned a variate V=gverage ln(MAV) within the interval.
The nonempty interval with cthe highestc P less than or equal to 0.05 (or cthe
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TABLE 7. FAVs CALCULATED FROM SMAV DATA SETS BY OLD PROCEDURE, RECOMMENDED NEW PROCEDURE, AND VARIOUS MODIF ICAT{ONS
OF RECOMMENDED NEW PROCEDURE .
MATER I AL WATER N LOWEST oLD NEW ~ ===mmm=—mmeee -MODIF {CATIONS OF RECOMMENDED NEW PROCEDURE--=-=~=--—=— -
SMAV  PROCEDURE PROCEDURE n=N/2 n=N UNIFORM  NORMAL SLOPE PARAM.  NONRANDOM
DIST. DISTY. CHANGE METHOD  SAMPL ING
COPPER FRESH 45 0.23 0.29 0.34 0.39 0.22**  0.33 0.35 0.35 0.33 0.39
00T FRESH 42 0.36 1.12 0.87 0.85 0.49 0.81 0.91 0.87 0.79 1.28
CADM I UM SALT 3 41 59 62 60 87 59 63 62 66 80
CADM | UM FRESH 29 0.020 0.024 0.024 0.017 0.065 0.023 0.025 0.025 0.031 0.030
TOXAPHENE FRESH 29 1.30 1.58 1.59 1.47 1.37 1.57 1.61 1.61 1.63 1.97
ZINC FRESH 29 8.9 7.0 9.7 10.1 11.4 9.4 9.9 10.0 11.7 9.1
ENDRIN FRESH 28 0.15 0.18 0.20 0.22 0.07**  0.20 0.21 0.21 0.21 0.30
MERCURY SALT 26 3.5 3.7 3.9 2.6 2.6* 3.9 4.0 4.0 4.1 4.6
ZINC SALT 24 166 173 195 166 108* 195 195 201 200 252
L I NDANE FRESH 22 2.0 2.2 2.6 4.3 5.8 2.7 2.6 2.8 3.3 5.8
COPPER SALT 22 28 23 27 25 25 28 27 28 30 30
NICKEL FRESH 22 54 56 55 13 99 56 55 57 69 69
DIELORIN SALT 21 0.70 o.M 0.67 0.72 0.92 0.68 0.66 0.67 0.80 0.82
ALDRIN FRESH 21 4.0 3.0 3.9 3.2 0.8%* 3.9 3.9 3.9 4.3 4.3
ENDR [N SALT 21 0.037 0.037 0.034 0.030 0.027%  0.035 0.034 0.036 0.040 0.043
HEPTACHLOR SALT 19 0.057 0.053 0.080 0.133 0.155 0.090 0.077 0.100 0.097 0.223
DIELDRIN FRESH 19 2.5 2.5 2.7 2.5 1.3 2.8 2.6 2.7 2.8 3.4
L INDANE SALT 19 0.17 0.16 0.26 0.51 0.54 0.30 0.24 0.36 0.33 0.92
CHROMIUM(VI) SALT 19 2000 1260 1770 1750 1200* 1820 1750 1830 2060 20190
CHROMIUM( 1 11) FRESH 18 33 32 29 38 4 31 28 30 37 39
HEPTACHLOR FRESH 18 0.90 0.52 0.77 0.52 0.96 0.81 0.75 0.79 0.93 0.99
NiCKEL SALT 17 152 137 149 106 78% 161 144 151 170 204
poT SALT 17 0.140 0.121 0.147 0.167 0.108 0.158 0.142 0.155 0.161 0.212
ALDR (N SALT 16 1.50 1.34 1.53 1.91 1.76 1.68 1.47 1.63 1.70 2.16
CYANIDE FRESH 15 57 52 56 60 27%+ 58 54 57 59 64
TOXAPHENE SALT 14 0.110 0.070 0.094 0.107 0.058 0.117 0.084 0.102 0.120 0-161
CHROMIUM{V1) FRESH 14 67 21 56 115 493 88 46 79 89 175
CHLORDANE FRESH 14 3.0 2.4 2.1 2.8 4.7 2.6 1.9 2.1 2.8 3.6
SELENIUM FRESH 13 340 263 200 201 441 254 178 205 275 391
SELENI UM SALT 13 600 410 480 430 310* 510 470 500 550 600
ENDOSULF AN SALT 12 0.040 0.034 0.034 0.029 0.004%* 0.039 0.032 0.035 0.038 0.044
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Table 7. Contlnued

MATER IAL WATER N LOWEST oD NEW ~ ~-——wemee —=~MOD IF ICATIONS OF RECOMMENDED NEW PROCEDURE=========v -——

SMAV FROCEDURE PROCEDURE n=N/2 =N UN |FORM NORMAL SLOPE PARAM.  NONRANDOM
DIST. DiST. CHANGE  METHOD  SAMPLING

ARSEN{C(111) FRESH 12 810 440 340 260 620 430 310 430 560 80

MERCURY FRESH 11 5.0 3.7 2.6 1.6 2.9 3.5 2.3 2.7 3.6 5.2

SILVER FRESH 10 0.0019 0.0014 0.0014 0.0017 0.0003* 0.0019 0.0012 0.0018 0.0018 0.0019

SILVER SALT 10 4.7 3.3 5.3 3.9 2.8 4.4 3.0 3.7 4.0 4.7

ENDOSULF AN FRESH 10 0.340 0.218 0.183 0.214 0.125% 0.258 0.158 0.186 0.251 0.340

CHLORDANE SALT 8 0.400 0.090 0.200 0.200 0.378 0.352 0.162 0.278 0.313 0.280

GEOMETRIC MEAN OF RATIOS OF FAY 8Y

MODIF IED PROCEDURE TO THAT BY

RECOMMENDED PROCEDURE : 0.89 1.00 1.04 0.93 1.11 0.96 1.07 1.19 1.48

NUMBER OF DATA SETS FOR WHICH FAY

BY MOOIF IED PROCEDURE DiFFERS FROM

THAT BY RECOMMENDED PROCEDURE BY

MORE THAN A FACTOR OF 1.4: 5 - 8 26 2 0 0 3 13

NUMBER OF DATA SETS FOR WHICH FAV

BY MOOIF IED PROCEDURE DIFFERS FROM

THAT 8Y RECOMMENDED PROCEDURE BY

MORE THAN A FACTOR OF 2.0: 2 - 1 12 0 0 0 0 6
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Tabie B.

Of RECOMMENDED NEW PROCEDURE.

FAVS CALCULATED FROM FMAV DATA SETS BY OLD PROCEDURE, RECOMMENDED NEW PROCEDURE, AND VARIOUS MOOIF ICATIONS

MATER 1AL WATER N LOWEST oD NEW — —m—emeeomea- ~MOO {F ICATIONS OF RECOMMENDED NEW PROCEDURE==-=—=—w—==m —

FMAV  PROCEDURE PROCEOURE n=N/2 n=N UNIFORM NORMAL SLOPE PARAM.  NONRANDOM

DIST. DIST. CHANGE  METHOD SAMPL ING
CADM| UM SALT 25 75 45 70 79 119 69 70 73 97 77
COPPER FRESH 23 0.30 0.34 0.38 0.45 0.26 0.39 0.38 0.39 0.42 0.58
MERCURY SALT 23 3.5 3.7 3.8 2.5 2.1 3.8 3.8 3.8 4.0 4.4
00T FRESH 20 1.30 1.22 1.28 0.98 0.55%* 1.30 1.27 1.29 1.37 1.46
ZINC SALT 20 166 166 182 146 109* 187 180 187 192 236
CADMI1 UM FRESH 18 0.048 0.038 0.058 0.086 0.234 0.069 0.054 0.063 0.075 0.143
ENDRIN FRESH 17, 0.44 0.33 0.40 0.38 0.09%# 0.41 0.40 0.42 0.44 0.46
COPPER SALT 17 28 27 25 23 26 27 25 26 28 32
CHROMIUM{V{) SALT 17 2490 1540 2370 2130 1550* 2440 2340 2370 2540 2680
DIELDRIN SALT 16 0.70 0.67 0.53 0.55 0.76 0.58 0.51 0.55 0.68 0.77
ENDRIN SALT 16 0.037 0.036 0.031 0.021 0.017* 0.032 0.030 0.032 0.036 0.041
HEP TACHLOR SALT 16 0.057 0.044 0.061 0.106 0.117 0.076 0.055 0.073 0.077 0.148
L INDANE SALT 16 0.170 0.121 0.192 0.398 0.395 0.248 0.170 0.272 0.263 0.578
NICKEL FRESH 16 65 50 66 93 122 15 62 0 76 103
ZINC FRESH 15 13.7 10.4 12.3 13.7 19.1 14.1 11.5 12.7 14.2 19.3
ALDRIN FRESH 14 7.4 4.0 6.7 5.8 1.1e® 6.9 6.6 6.8 7.2 7.5
0Dt SALT 14 0.140 0.102 0.130 0.149 0.092 0.149 0.122 0.138 0.148 0.182
NICKEL SALT 14 310 160 210 130 110* 240 200 220 270 320
CHROMIUM( 1) FRESH 13 33 30 23 28 33 27 24 24 31 36
ALDRIN SALT 13 3.7 3.5 3.3 3.2 2,3 3.5 3.2 3.4 3.5 3.9
TOXAPHENE SALT 13 0.110 0.065 0.087 0.094 0.047 0.112 0.077 0.095 0.113 0.147
DIELDRIN FRESH 12 4.5 1.6 3.7 2.7 1.0%* 3.9 3.6 3.8 4.1 4.6
TOXAPHENE FRESH 12 1.30 0.99 1.07 1.2 0.87 1.24 1.00 1.08 1.20 1.42
SELEN|UM SALT 12 600 440 440 330 320* 490 420 470 540 600
ENDOSULF AN SALT 1 0.040 0.033 0.033 0.028 0.003**  0.039 0.031 0.034 0.036 0.042
HEPTACHLOR FRESH 10 1.00 0.75 0.50 0.34 0.52 0.68 0.44 0.53 0.67 1.00
CHROMIUM(VI) FRESH 10 67 8 23 38 243 56 16 31 39 67
SELENIUM FRESH 10 340 154 167 209 513 267 136 181 256 340
L INDANE FRESH 10 10.0 8.2 6.4 7.0 7.0 8.1 5.8 6.9 1.6 10.0
CYANIUE FRESH 10 n 58 63 60 25 68 61 64 n 77
SILVER SALT 10 4.7 3.3 3.3 3.9 2.8 4.4 3.0 3.7 4.0 4.7
SILVER FRESH 9 0.0019 0.0011 0.0013 0.0013 0.0003* 0.0018 0.0011  0.0016  0.0017 0.0017
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Table 8. Contlnued

MATER IAL WATER N LOWEST oLD NEW  ——=emmmeeeee ~MOD | F ICATIONS TO RECOMMENDED NEW PROCEDURE === mmmmmm—— —

FMAV  PROCEDURE PROCEDURE  n=N/2 n=N  UNIFORM  NORMAL  SLOPE PARAM.  NOMRANDOM
DIST. DIST.  CHANGE  METHOD  SAMPLING

MERCURY FRESH 9 5.00 3.42 0.94 0.94 2.32 1.79 0.73 1.12 1.89 4.76

ENDOSULFAN  FRESH 9 0.340 0.208 0.169 0.169 0.094* 0.248 0.144 0.172 0.234 0.319

ARSENIC(II1) FRESH 8 880 570 220 220 730 410 170 250 450 790

CHLORDANE FRESH 8 6.3 3.7 4.0 4.0 4.6 5.3 3.6 4.0 4.6 5.6

CHLORDANE SALT 8 0.400 0.090 0.200 0.200 0.3718  0.352 0.162 0.278 0.313 0.280

GEOMETRIC MEAN OF RATIOS OF FAV BY

MODIF 1ED PROCEDURE TO THAT BY

RECOMMENDED PROCEDURE : 0.91 1.00 1.01 0.89 1.23 0.92 1.08 1.25 1.58

NUMBER OF DATA SETS FOR WHICH FAV

BY MODIF IED PROCEDURE DIFFERS FROM

THAT BY RECOMMENDED PROCEDURE BY

MORE THAN A FACTOR OF 1.4: 9 - 8 29 7 i 1 5 17

NUMBER OF DATA SETS FOR WHICH FAV

BY MODIF 1ED PROCEDURE DIFFERS FROM

THAT BY RECOMMENDED PROCEDURE BY

MORE THAN A FACTOR OF 2.0: 5 - 1 i3 1 0 0 2 7




interval with the lowest P if no interval has a P less than 0.05) {5 desig-
nated Interval A, The next highest nonempty interval is designated I[ntarval
B. The FAV is then computed as ln(FAV)=VA+(VB-VA)/(PB‘PA)'(O.OS-PA)_

Criticisms of this procedure include:

(1)

(2)

(3)

(4)

(5)

(6)

The formula P=R/N is positively biased as discussed earlier and cthus
results in negative bias in the FAV,

The positive bias in the cumulative proportions is increased by using the
maximum rank in an interval rather than the average rank, when there is more
than one 1n(MAV) in the interval.

Often only one ln(MAV) is in Interval A or Interval B or both, making the
method quite sensitive to dara variation.

A linear relationship of P versus V is assumed, which is equivaleat to
assuming a rectangular distribution; as discussed earlier this is
contraindicated by the available data sets.

The use of intervals is meant to cause pooling of 1n(MAV)s which are
indistinguishable; the interval width of 0,25 was selected because it is a
typical value for the standard deviation of replicate acute toxicity tests;
this value may not be appropriate for all species and materials and 1is
strictly appropriate only when 1n(MAV)s are based on only one toxicity test.
More importantly, this pooling method works effectively only for Interval A,
because the starting point for Interval B is fixed by that for Interval A
and therefore does not necessarily properly pool data in the vicinity of
Interval B, In any event, this pooling serves no useful purpose except to
prevent the slope for interpolations and extrapolations from being
inappropriately calculaced based on two 1dentical, or nearly identical,
1n{MAV)s, a purpose which can be better served by routinely using more
points to assess data trends.

The use of intervals containing variable aumbers of Ln(MAV)s makes the
method sensitive £o minor changes in the data set which may move [n(MAV)s
into or out of intervals; this sensitivity can be quite marked and can even
be anomalous. For example, in the SMAV data set for heptachlor in fresh
water {(Table 1), Interval A would contain the lowest two SMAVs and Interval
B would consist of the third lowest SMAV. However, if the lowest SMAV was
just 6% lower (for example, because a new toxicity test for that species
lowered the mean slightly), the two lowest SMAVs would be sufficiently
separated to be in separate intervals, which would become the new, and
markedly different, Intervals A and B. The calculated FAV would change from
0.52 to 0.83, a change that not only is much larger than the change in the
SMAV that caused it (60% versus 6%), but also is in the opposite direction

to the change in the SMAV,
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These criticisms are sufficient to warrant the replacement of this old procedure
with the new procedure recommended above. However, the two procedures generally
do not produce markedly different results (Tables 7 and 8). On the average,
FAVs calculated using the old procedure are only 112 lower than those calculated
using the new procedure for the SMAV data sets and 9% lower for the FMAV data
sets. Individual FAVs were within a factor of 1.4 for over 75% of the FMAV data
sets and over 85% of the SMAV data sets and within a factor of 2.0 for over 85%
of the FMAV sets and 94% of SMAV data sets. Where differences are greater than
two fold, comparison of the ?AVs with the data sets does not clearly indicate
that one or the other of these procedures results in more questionable FAVs.

The consequences of modifying the major features of the recommended new
procedure were also explored to determine how sensitive FAVs are to such
changes. If the sensitivity is low, any objection to compromises or approxima-
tions used in arriving at the recommended new procedure are largely irrelevant,
because more exact analysis or different compromises (within reason) would have
little effect in practice., If sensitivity is high, the basis for the recommended
new procedure becﬁmes more critical and further examination 1s warranted.

Three features of the recommended new procedure were modified to span the
range over which they could reasonably be varied. The assumed distribution was
changed to rectangular and to normal. The subset size (n) was changed to N/2
and N. The percentile eétimation method was changed to the graphical method
with slope formula LS-X, but still with PR=E(P(XR)), and to the parametric
method (best linear unbiased estimate). The FAVs for these modifications are
included in Tables 7 and 8., Also included in these tables are (a) the geometric
mean of the ratios of the FAV by each modified procedure to that by the

recommended procedure, (b) the number of data sets for which the FAV by each
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modified procedure differs by more than a factor of 1.4 from that by the
recommended procedure, and (c) the aumber of data sets for which the FAV by each
modified procedure differs by more than a factor of 2.0 from that by che

rec ommended procedure.

Changes in the assumed distribution, in the percentile estimation mechod,
and in the subset size to N/2 had only minor effects on results. The geometric
means of the ratios of the FAVs by these modifications to that by the
recommended procedure were close to 1.0 (0.92-1.25), For individual data sets,
FAVs by these modifications differed by more than a factor of 1.4 from che FAVs
by the recommended new procedure for no more than 20X of the data sets and by
more than a factor of 2.0 for no more th#n 6% of the data sets.

Modification of subset size to n=N, however, caused major changes. The
geometric means of the ratios of the FAV by this medification to that by the
recommended procedure were close to 1.0 (0.93 for SMAVs, 0.89 for FMAVs), but
individual FAVs changed by more than a factor of 1.4 for over 70X of the SMAV
data sets and for nearly 80% of the FMAV data sets and by more than a factor of
2.0 for about one-third of both the SMAV and FMAV data sets. Such differences
do not demonstf’te,.per se, that this modified procedura 1s less appropriate
than the recommended new procedure, but it does raise such a suspicion. In
particular, when n=N, an unusually large number of sets have a FAV that is well
below both the lowest HAV and the FAV calculated by the recommended new
procedure. Using the location and scale parameter estimates from the modified
procedure with n=N, the fiducial probability that the lowest MAV could be so
high was evaluated for each data set; where this probability is <0.20 a single
asterisk is placed next to the FAV for n=N and where the probability 1is <0.10 a

double asterisk is used. The frequency of these marked entries suggests that
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using n=N is in fact inappropriate. This is directly related to cthe existence
of statistically significant skewness in the data sets, positive skewness
resulting in inappropriately low FAVs when n=N and negative skewness resulting
in high FAVs,

A related observation that also contraindicates the use of n=N is that,
when compared to the recommended new procedure and the diverse modifications
already mentioned, the modification with n=N both frequently produces the lowest
FAV (for 20 SMAV data sets and 19 FMAV daca sets) and frequently produces the
highest FAV (for 14 SMAV data sets and 12 FMAV data sets). Such frequent
occupation of both extremes is again due to the variable skewness of che sets
and is indicative of the error of assuming all data are equally useful in
estimating low percentiles when distributional assumptions are not completely
met. Furthermore, these problems with using n=N are not restricted to the
modification with n=N already discussed. Graphical mechods with cthe other slope
formulas and other distributional assumptions (e.g., normal) were tested using
n=N with similar results. Likewise, the best linear unbiased method using n=N
and assuming a normal distribution showed similar problems. (This latter mechod
1s equivalent to the simple approach of calculating a sample mean and unbiased
standard deviation (12) and estimating the fifth percentile as lying 1.645
standard deviations below the mean, -1.645 being the fifth percentile of a
standard normal distribution.)

Another advantage of not using n=N is that certain semiquantitative data
can be used. Acute tests on some materials with some species produce 'greater
than' values because concentrations high enough to cause effects were not, or
could not be used (because of solubility or time constraints). Regardless of

the reason, because such data are usually for resistant species, they can
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usually be used if n=4, but, 1f n=N, either they must be excluded, thereby
biasing the data set, or additional acute tests must be conducted, thereby
increasing costs. Finally, it should be noted that the use of n=4 does not
coastitute 'not using all the data', hecause all data are used in setcing ranks
and cumulative probabilities and thus in selecting which four data will be used
explicitly in final calculations; rather, the use of n=4 is more properly
interpreted as a simple scheme of giving greater weight to those MAVs which
provide the most information about the fifth percentile.

The consequences of nonrandom sampling can also be partly addressed here.
Assuming that the available data sets somehow resulted from the strictly
systematic sampling scheme discussed earlier, FAVs were calculated by assigning
cunulative probabilities PR=(R-0.5)/N to the ranked ln(MAV)s and interpolating
between the two data with PR nearest 0.05 (or extrapolating using the lowest
two points iLf N<10), the interpolation being based on the assumption of a
triangular distribution. The results of this exercise are included in the last
columns of Tables 7 and 8 and indicate that higher FAVs are produced than by the
recommended new procedure, but the differences average only about a factor of

1 TWMAY

1.5 tor SMAV sets and 1.6 for FMAY sets and are less than a factor of 1.4 for

(7]

65% of the SMAV sets and 55% of the FMAV sets. Considering that this altecna-
tive sampling scheme is 80 extreme, and that therefore a scheme with a more
realistic systematic component would produce results much nearer those obtained
by the recommended new procedure, this further suggests that che issue of che

sampling assumption is not of great Lmportance.
A final point that should be emphasized is that, whether SMAVs or FMAVs are

used, the same conclusions are reached regarding the appropriace attributes of
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the procedure for estimating fifth percentiles. Also, although it does not bear
on the recommendations made here, it is iateresting to note that FAVs calculated
from SMAVs are similar to those calculated from FMAVs. The geometric mean of
the ratios of the FAV computed from FMAVs to that computed from SMAVs, by the
recommended procedure, was 1.04., The two FAVs differ by a factor of 1.4 for

only 12 sets, by a factor of 2.0 for only 6 sets, and by more than a factor of

2.8 for no sets.

49



DISCUSSION

The recommended new procedure uses linear extrapolation or interpolation to
estimate the fifth percentile of a statistical population of mean acute values
(MAVs) from which the available MAVs are assumed to have been randomly obtalined.
The available MAVs are ranked from low to high and the cumulative probability
for each is calculated as Pg=R/(N+l), where R = rank and N = number of MAVs in
the set. Extrapolation or interpolation is based on an assumed linear
rel ationship between\ffg and ln(MAV), and uses only the four points with Pg
closest to 0.05 because chi§ subset provides the most useful information
concerning the fifth percentile.

The bases for the new procedure are'moscly mathematical, with some 1input
from toxicological and practical considerations. The FAV, however, is basically
a toxicological value, and the acceptability of any c:lculation procedure to
toxicologists will be based on the acceptability of the resulting FAVs., Most
aquatic toxicologists will judge the acceptabtility of an FAV by comparing 1t
with the lowest MAVs in the data set, and thus it is quite appropriate that the
four MAVs with estimated cumulative probabtilities closest to 0,05 be given the
most weight in calculating the FAV; 1in fact, the recommended procedure 1is
largely a formalization of the way one would obtain a FAV by 'eyeballing' the
data.

An important property of the new procedure is that the resulting FAV is not
very sensitive to modifications in the procedure or slight changes in the data
set. A variety of calculation procedures all produced FAVs that were qulte
similar for most data sets. In addition, the recommended new procedure rarely
produced either the highest or lowest of the FAVs obtained with the procedures

examined. Another important property of a procedure is its performance with
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data sets which contain apparent discontinuities in the lower tail, For
heptachlor, lindane, and chlordane in salt water and chromium(VI) in fresh
water, the lowest SMAV is at least a factor of 10 lower than the second lowest
SMAV (Table 1). 1In addition, for these four and cadmium in fresh water, the
lowest FMAV is at least a factor of 10 lower than the second lowest FMAV (Table
2). Of these, only chromium(VI) in fresh water has a very large range of FAVs
in Tables 7 and 8. Even though the two lowest MAVs are far apart, most of cthese
data sets seem to provide adequate information about the FAV because similar
FAVs were obtained using aAvariety of procedures. These examples support the
idea that the best approach to take toward calculating the FAV is to select a
procedure that is best on the average and then use it with all data sets, except
possibly in extraordinary cases.

An unfortunate aspect of the methodology for calculating the FAV is the
necegsity of extrapolating to estimate the 0,05 cumulative probability for small
data sets; if extrapolations become too great, the FAVs will be suspect. For
only 5 of the 74 data sets 1s the FAV more than a factor of 2 lower than the
lowest MAV, Thus, for the available data sets this procedure rarely
extrapolates much below the lowest value in the data set.

Overall, the recommended new procedure is the best of the procedures
examined, regardless of whether the FAV is calculated from SMAVs or FMAVs., It
is a straightforward précedure for interpolation or extrapolation based on
fitting a line to the most useful points. It produces results similar to and
usually intermediate to those obtained by other reasonable procedures. In
addition, the calculations are relatively easy to §etform with the aid of a hand

calculator, as described in Appendix 1. The major weakness of this procedure 1is
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that it assumes the same degree of tailing for all data sets. Fortunately, for
most data sets the FAV is not very dependent on the assumed degree of tailing

and deviation from the assumed intermediate degree of tailing is not too

critical. Other procedures would suffer as much or more from the same or other

weaknesses.
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APPENDIX 1

A. General Instructions for Recommended New Procedure for FAV Calculation.

1. Based on data set size (N), determine four ranks (R) with cumulative
probabilities (Pp=R/(N+l)) closest to 0.05; for N<&Q, this «ill be
R=l through 4; for 60<N<80, R=2 through 5; for 80<KN<10Q0, R=3 through

6, ete.

2. From the data set select the four MAVs with the desired ranks and

calcul at

J. Pit a li
slope

e Pp for each of these MAVs.

ne to la(MAV) vs %PR using the following equations for
and calculate the FAV:

) and intercept

4 4
§ - g |S(LOMAV) Y- (5 1nMAV) P/ 4
. 4 4
SR - (ZJP) /4

4 4
£ = (Sinmav-3.3 ;) /4

A = LnFAV = 3.4070% + £

A
FAV = o

B. Example Calculation for Chlordane in Salt Water (N=8),

Rank MAV LnMAV (LoMAV)2 PR=R/(N+1) NiZS
4 6.4 1.8563 3.4458 0. 4bbsb 0.66667
3 6.2 1.8245 3.3290 0.3333) 0.57735
2 4,8 1.5686 2.4606 0.22222 0.47140
1 0.4 -0.9163 0.8396 0.11111 0.33333

Sum: 4.3331 10.0750 1.11110 2.04875

o~  /T00750 - (6. 3330)7/5, .
S 2/LTIII0 - (2.06875)275 ~ 9-3346

T = [4.3331 - (9.3346)(2.064875))/6 = -3.6978

A = (9,3346) (JU.05) - 3.6978 = -1,6105

FAV = ¢ 1.6105 « 0,998
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Example Computer Program in BASIC Language for Calculating che FAV

10 REM THIS PROGRAM CALCULATES THE FAV WHEN THERE ARE LESS THAN
20 REM 59 MAVS IN THE DATA SET.

30 X=0

40 X2=0

50 Y=0

60 Y2=0

70 PRINT '"HOW MANY MAVS ARE IN THE DATA SET?"
80 INPUT N

90 PRINT "WHAT ARE THE FOUR LOWEST MAVS?"
100 FOR R=]1 TO 4

110 INPUT V

120 X=X+LOG(V)

130 X2=X2+(LOG(V))*(LAG(V))

140 P=R/(N+1)

150 Y2=Y2+P

160 Y=Y+SQR(P)

170 NEXT R

180 S=SQR((X2-X*X/4)/(Y2~Y*Y/4))

190 L=(X~S*Y) /4

200 A=S*SQR(N.05)+L

210 F=EXP(A)

220 PRINT "FAV = "F

230 END

Example Printout from Program

HOW MANY MAVS ARE IN THE DATA SET?
? 8
WHAT ARE THE FOUR LOWEST MAVS?

D e ) e
Fo e N
e . e
@ N &

? .4
FAV = 0.1998
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