Vehicle Mass Reduction and Cost Analysis - Heavy Duty Pickup Truck and Light Commercial Vans

Draft



# Vehicle Mass Reduction and Cost Analysis - Heavy Duty Pickup Truck and Light Commercial Vans

## Draft

Assessment and Standards Division Office of Transportation and Air Quality U.S. Environmental Protection Agency

Prepared for EPA by FEV North America, Inc. EPA Contract No. EP-C-12-014 WA3-03

NOTICE

This technical report does not necessarily represent final EPA decisions or positions. It is intended to present technical analysis of issues using data that are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments.



EPA-420-D-16-003 April 2016

### List of Contents

| EXEC            | CUTIVE SUMMARY                                           | 17               |
|-----------------|----------------------------------------------------------|------------------|
| 1. IN1          | <b>FRODUCTION AND PROGRAM OBJECTIVES</b>                 | 25               |
| 1.1             | OBJECTIVE                                                | 25               |
| 1.2             | BACKGROUND                                               | 25               |
| 1 3             |                                                          | 25               |
| 1.5             |                                                          | 25               |
| 1.4             | SELECT VEHICLES                                          | 27               |
|                 | 1.4.1 2013 Chevrolet Silverado 2500 4WD LT Extended CAB  |                  |
|                 | 1.4.3 2010 Renault Master 2.3 DCi 125 L3H2               |                  |
| - N.            |                                                          | 20               |
| Z. IVI <i>F</i> | ASS-REDUCTION AND COST ANALYSIS RESULTS, VEHICLE LEVEL   | 30               |
| 2.1             | MASS REDUCTION TABLE AND COST CURVE OVERVIEW             | 30               |
| 2.2             | SILVERADO 2500                                           | 32               |
| 2.3             | MERCEDES SPRINTER                                        | 34               |
| 24              |                                                          | 36               |
| 2.4             | RENAULT MASTER                                           |                  |
| 3. MA           | ASS-REDUCTION AND COST ANALYSIS, SYSTEM LEVEL            | 38               |
| 3.1             | ENGINE SYSTEM                                            |                  |
| ••••            | 3.1.1 Silverado 1500                                     |                  |
|                 | 3.1.1.1 Baseline Technology, Silverado 1500              | 38               |
|                 | 3.1.1.2 Mass-Reduction and Cost Impact, Silverado 1500   | 38               |
|                 | 3.1.1.3 Lightweighting Technology, Silverado 1500        | 39               |
|                 | 3.1.2 Silverado 2500                                     |                  |
|                 | 3.1.2.1 Baseline Technology, Silverado 2500              |                  |
|                 | 3.1.2.2 Mass Savings and Cost Impact, Silverado 2500     | 43<br>11         |
|                 | 3.1.2.5 System Scaling Analysis, Silverado 2500          |                  |
|                 | 3.1.3 Mercedes Sprinter                                  |                  |
|                 | 3.1.3.1 Baseline Technology. Mercedes Sprinter           |                  |
|                 | 3.1.3.2 Mass Savings and Costa Impact, Mercedes Sprinter | 53               |
|                 | 3.1.3.3 System Scaling Analysis, Mercedes Sprinter       | 54               |
|                 | 3.1.4 Renault Master                                     | 56               |
|                 | 3.1.4.1 Baseline Technology, Renault Master              | 56               |
|                 | 3.1.4.2 Mass Savings and Cost Impact, Renault Master     |                  |
|                 | 5.1.4.3 System Scaling Analysis, Renault Master          |                  |
| 3.2             | TRANSMISSION SYSTEM                                      | 61               |
|                 | 3.2.1 Silverado 1500 Summary                             | 61               |
|                 | 3.2.1.1 Silverado 2500 Analysis                          | 64               |
|                 | 3.2.1.2 Silverado 2500 System Scaling Summary            | 64               |
|                 | 3.2.1.3 System Scaling Analysis                          |                  |
|                 | 3.2.1.4 System Comparison, Suverado 2500                 | 70<br><b>71</b>  |
|                 | 3.2.2 Weredes Sprinter Striebringer                      | <b>/  </b><br>72 |
|                 | 3.2.3 Renault Master 2.3 DCi                             |                  |
|                 | 3.2.3.1 System Scaling Analysis                          |                  |
| 2 2             | BODY GROUP . A. SYSTEM                                   | 70               |
| 5.5             | 331 Silverado 1500 Summarv                               | <i>1</i> 9<br>70 |
|                 |                                                          |                  |

|                   | 3.3.1.1 Silverado 2500 Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 3.3.1.2 2500 System Scaling Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |
|                   | 3.3.1.3 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
|                   | 3.3.1.4 System Comparison, Silverado 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94                                                                                                                                                                                                                                                |
|                   | 3.3.2 Mercedes Sprinter 311 CDi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                |
|                   | 3.3.2.1 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                |
|                   | 3.3.3 Renault Master 2.3 DCi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                               |
|                   | 3.3.3.1 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 34                | BODY GROUP -B- SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105                                                                                                                                                                                                                                               |
| 0.4               | 3 4 1 Silverado 1500 Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105                                                                                                                                                                                                                                               |
|                   | 3.4.2 Silverado 2500 Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103<br>107                                                                                                                                                                                                                                        |
|                   | 3 4 2 1 2500 System Scaling Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108                                                                                                                                                                                                                                               |
|                   | 3.4.2.2 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109                                                                                                                                                                                                                                               |
|                   | 3.4.2.3 System Comparison, Silverado 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                   | 3.4.3 Mercedes Sprinter 311 CDi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
|                   | 3.4.3.1 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
|                   | 3.4.4 Renault Master 2.3 DCi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |
|                   | 3.4.4.1 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 2 E               | BODY CROUD C SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 434                                                                                                                                                                                                                                               |
| 3.3               | 251 City and 4500 Commons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |
|                   | 3.5.1 Silverado 1500 Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |
|                   | 3.5.1.2 2500 System Scaling Summan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |
|                   | 3.5.1.2 2500 System Scaling Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134<br>125                                                                                                                                                                                                                                        |
|                   | 3.5.1.4 System Comparison Silverado 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |
|                   | 3.5.2 Mercedes Sprinter 311 CDi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140<br>1 <b>4</b> 1                                                                                                                                                                                                                               |
|                   | 3.5.2 Meroceces oprinter of robring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141                                                                                                                                                                                                                                               |
|                   | 3.5.3 Renault Master 2.3 DCi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146                                                                                                                                                                                                                                               |
|                   | 3.5.3.1 System Scaling Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                   |
| 20                | DODY CROUP D SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 450                                                                                                                                                                                                                                               |
| 3.6               | BODY GROUP -D- SYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   |
| 3.6               | BODY GROUP -D- SYSTEM<br>3.6.1 Silverado 1500 Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                   |
| 3.6               | <b>BODY GROUP -D- SYSTEM</b><br><b>3.6.1</b> Silverado 1500 Summary<br>3.6.1.1 Silverado 2500 Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                   |
| 3.6               | <b>BODY GROUP -D- SYSTEM</b><br><b>3.6.1 Silverado 1500 Summary</b><br>3.6.1.1 Silverado 2500 Analysis<br>3.6.1.2 2500 System Scaling Summary<br>3.6.1.3 System Scaling Analysis<br>3.6.1.4 System Comparison Silverado 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b></b>                                                                                                                                                                                                                                           |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Marcadas Sprinter 311 CDi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>                                                                                                                                                                                                                                           |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.1 System Scaling Analysis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b></b>                                                                                                                                                                                                                                           |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.2.1 System Scaling Analysis</li> <li>3.6.3 Renault Master 2.3 DCi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159                                                                                                                                                                                       |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.2.1 System Scaling Analysis</li> <li>3.6.3 Renault Master 2.3 DCi</li> <li>3.6.3.1 System Scaling Analysis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150<br>150<br>152<br>152<br>153<br>153<br>155<br>156<br>157<br>159<br>160                                                                                                                                                                         |
| 3.6               | <b>BODY GROUP -D- SYSTEM 3.6.1</b> Silverado 1500 Summary         3.6.1.1 Silverado 2500 Analysis         3.6.1.2 2500 System Scaling Summary         3.6.1.3 System Scaling Analysis         3.6.1.4 System Comparison, Silverado 2500 <b>3.6.2</b> Mercedes Sprinter 311 CDi         3.6.2.1 System Scaling Analysis         3.6.3 Renault Master 2.3 DCi         3.6.3.1 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150<br>150<br>152<br>152<br>153<br>153<br>155<br>156<br>157<br>159<br>160                                                                                                                                                                         |
| 3.6<br>3.7        | <b>BODY GROUP -D- SYSTEM 3.6.1</b> Silverado 1500 Summary         3.6.1.1 Silverado 2500 Analysis         3.6.1.2 2500 System Scaling Summary         3.6.1.3 System Scaling Analysis         3.6.1.4 System Comparison, Silverado 2500 <b>3.6.2</b> Mercedes Sprinter 311 CDi         3.6.2.1 System Scaling Analysis         3.6.3 Renault Master 2.3 DCi         3.6.3.1 System Scaling Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162                                                                                                                                                                         |
| 3.6<br>3.7        | <b>BODY GROUP -D- SYSTEM 3.6.1</b> Silverado 1500 Summary         3.6.1.1 Silverado 2500 Analysis         3.6.1.2 2500 System Scaling Summary         3.6.1.3 System Scaling Analysis         3.6.1.4 System Comparison, Silverado 2500 <b>3.6.2</b> Mercedes Sprinter 311 CDi         3.6.2.1 System Scaling Analysis         3.6.3.1 System Scaling Analysis <b>3.6.3 Renault Master 2.3 DCi</b> 3.6.3.1 System Scaling Analysis <b>SUSPENSION SYSTEM 3.7.1 Silverado 1500 Summary</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>156<br>157<br>159<br>160<br>162<br>162                                                                                                                                                           |
| 3.6<br>3.7        | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.2.1 System Scaling Analysis</li> <li>3.6.3 Renault Master 2.3 DCi</li> <li>3.6.3.1 System Scaling Analysis</li> <li>SUSPENSION SYSTEM</li> <li>3.7.1 Silverado 1500 Summary</li> <li>3.7.1.1 Silverado 2500 Analysis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162                                                                                                                                                                  |
| 3.6<br>3.7        | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.2.1 System Scaling Analysis</li> <li>3.6.3 Renault Master 2.3 DCi</li> <li>3.6.3.1 System Scaling Analysis</li> <li>SUSPENSION SYSTEM</li> <li>3.7.1 Silverado 1500 Summary</li> <li>3.7.1.1 Silverado 2500 Analysis</li> <li>3.7.1.2 2500 System Scaling Summary</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150<br>150<br>152<br>152<br>153<br>153<br>155<br>156<br>157<br>159<br>160<br>160<br>162<br>164                                                                                                                                                    |
| 3.6<br>3.7        | <b>BODY GROUP -D- SYSTEM3.6.1</b> Silverado 1500 Summary3.6.1.1 Silverado 2500 Analysis3.6.1.2 2500 System Scaling Summary3.6.1.3 System Scaling Analysis.3.6.1.4 System Comparison, Silverado 2500 <b>3.6.2 Mercedes Sprinter 311 CDi</b> 3.6.2.1 System Scaling Analysis. <b>3.6.3 Renault Master 2.3 DCi</b> 3.6.3.1 System Scaling Analysis. <b>3.6.3 Renault Master 2.3 DCi</b> 3.6.3.1 System Scaling Analysis. <b>3.7.1 Silverado 1500 Summary</b> 3.7.1.2 Silverado 2500 Analysis3.7.1.3 System Scaling Summary3.7.1.4 System Scaling Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>165<br>165                                                                                                                                             |
| 3.6<br>3.7        | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis.</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.2.1 System Scaling Analysis.</li> <li>3.6.3 Renault Master 2.3 DCi</li> <li>3.6.3.1 System Scaling Analysis.</li> <li>SUSPENSION SYSTEM</li> <li>3.7.1 Silverado 1500 Summary</li> <li>3.7.1.1 Silverado 2500 Analysis</li> <li>3.7.1.2 2500 System Scaling Summary</li> <li>3.7.1.3 System Scaling Analysis.</li> <li>3.7.1.4 System Scaling Analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>164<br>164<br>165<br>166<br>173                                                                                                                                      |
| 3.6<br>3.7        | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.3 Renault Master 2.3 DCi</li> <li>3.6.3 Renault Master 2.3 DCi</li> <li>3.6.3.1 System Scaling Analysis</li> <li>3.6.3.1 System Scaling Analysis</li> <li>3.7.1 Silverado 1500 Summary</li> <li>3.7.1.1 Silverado 2500 Analysis</li> <li>3.7.1.2 2500 System Scaling Summary</li> <li>3.7.1.3 System Scaling Summary</li> <li>3.7.1.4 System Comparison, Silverado 2500</li> <li>3.7.2 Mercedes Sprinter 311 CDi Analysis</li> <li>3.7.2 Mercedes Sprinter 311 CDi Analysis</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>164<br>164<br>165<br>166<br>173<br>173                                                                                                                               |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>164<br>165<br>166<br>173<br>173<br>175                                                                                                                 |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>164<br>164<br>165<br>166<br>173<br>173<br>175<br>176<br>189<br>180<br>180<br>181<br>182<br>183<br>183<br>183<br>185<br>185<br>185<br>185<br>185<br>185<br>185<br>185 |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>165<br>166<br>173<br>173<br>175<br>176<br>182<br>182                                                                                                   |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>164<br>165<br>166<br>173<br>173<br>175<br>176<br>182<br>182<br>182<br>183                                                                              |
| 3.6               | <ul> <li>BODY GROUP -D- SYSTEM</li> <li>3.6.1 Silverado 1500 Summary</li> <li>3.6.1.1 Silverado 2500 Analysis</li> <li>3.6.1.2 2500 System Scaling Summary</li> <li>3.6.1.3 System Scaling Analysis</li> <li>3.6.1.4 System Comparison, Silverado 2500</li> <li>3.6.2 Mercedes Sprinter 311 CDi</li> <li>3.6.3.1 System Scaling Analysis</li> <li>3.6.3.1 System Scaling Analysis</li> <li>3.6.3.1 System Scaling Analysis</li> <li>3.7.1 Silverado 1500 Summary</li> <li>3.7.1.2 2500 System Scaling Summary</li> <li>3.7.1.3 System Scaling Summary</li> <li>3.7.1.4 System Comparison, Silverado 2500</li> <li>3.7.1.4 System Scaling Analysis</li> <li>3.7.1.5 Silverado 1500 Summary</li> <li>3.7.1.4 System Scaling Summary</li> <li>3.7.1.4 System Scaling Summary</li> <li>3.7.1.4 System Comparison, Silverado 2500</li> <li>3.7.14 System Comparison, Silverado 2500</li> <li>3.7.14 System Comparison, Silverado 2500</li> <li>3.7.2 Mercedes Sprinter 311 CDi Analysis</li> <li>3.7.2.1 Mercedes Sprinter 311 CDi Analysis</li> <li>3.7.2.2 System Scaling Analysis, Mercedes Sprinter</li> <li>3.7.3 Renault Master 2.3 DCi Analysis</li> <li>3.7.3.1 Renault Master System Scaling Summary</li> <li>3.7.3.2 System Scaling Analysis, Mercedes Sprinter</li> </ul>                                         | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>164<br>164<br>165<br>166<br>173<br>173<br>175<br>176<br>182<br>182<br>183                                                                                            |
| 3.6<br>3.7<br>3.8 | <b>BODY GROUP -D- SYSTEM 3.6.1</b> Silverado 1500 Summary         3.6.1.1 Silverado 2500 Analysis         3.6.1.2 2500 System Scaling Summary         3.6.1.3 System Scaling Analysis.         3.6.1.4 System Comparison, Silverado 2500 <b>3.6.2</b> Mercedes Sprinter 311 CDi         3.6.2.1 System Scaling Analysis. <b>3.6.2</b> Mercedes Sprinter 311 CDi         3.6.3.1 System Scaling Analysis. <b>3.6.3</b> Renault Master 2.3 DCi         3.6.3.1 System Scaling Analysis. <b>3.6.3</b> System Scaling Analysis. <b>3.6.3</b> System Scaling Analysis. <b>3.6.3</b> Renault Master 2.3 DCi <b>3.6.3.1</b> System Scaling Analysis. <b>3.7.1</b> Silverado 1500 Summary <b>3.7.1</b> Silverado 2500 Analysis. <b>3.7.1.2</b> 2500 System Scaling Summary. <b>3.7.1.3</b> System Scaling Analysis. <b>3.7.1.4</b> System Comparison, Silverado 2500. <b>3.7.2</b> Mercedes Sprinter 311 CDi Analysis. <b>3.7.2.1</b> Mercedes Sprinter System Scaling Summary. <b>3.7.2.2</b> System Scaling Analysis, Mercedes Sprinter <b>3.7.3</b> Renault Master 2.3 DCi Analysis. <b>3.7.3.1</b> Renault Master System Scaling Summary. <b>3.7.3.2</b> System Scaling Analysis, Renault Master <b>3.7.3.2</b> System Scaling Analysis, Renault Master <b>3.7.3.2</b> Sys                                                  | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>164<br>165<br>166<br>173<br>173<br>175<br>176<br>182<br>182<br>184                                                                                     |
| 3.6<br>3.7<br>3.8 | <b>BODY GROUP -D- SYSTEM 3.6.1</b> Silverado 1500 Summary         3.6.1.1 Silverado 2500 Analysis         3.6.1.2 2500 System Scaling Summary         3.6.1.3 System Scaling Analysis         3.6.1.4 System Comparison, Silverado 2500 <b>3.6.2 Mercedes Sprinter 311 CDi</b> 3.6.3 Renault Master 2.3 DCi         3.6.3 Renault Master 2.3 DCi         3.6.3 System Scaling Analysis         3.6.3 Renault Master 2.3 DCi         3.6.3.1 System Scaling Analysis         3.6.3 Renault Master 2.3 DCi         3.6.3.1 System Scaling Analysis         3.6.3.1 System Scaling Analysis         3.7.1 Silverado 1500 Summary         3.7.1.2 2500 System Scaling Summary         3.7.1.3 System Scaling Summary         3.7.1.4 System Comparison, Silverado 2500         3.7.2 Mercedes Sprinter 311 CDi Analysis         3.7.2.1 Mercedes Sprinter 311 CDi Analysis         3.7.2.2 System Scaling Analysis, Mercedes Sprinter         3.7.2.1 Mercedes Sprinter System Scaling Summary         3.7.2.2 System Scaling Analysis, Mercedes Sprinter         3.7.3 Renault Master 2.3 DCi Analysis         3.7.3.1 Renault Master System Scaling Summary         3.7.3.2 System Scaling Analysis, Renault Master         3.7.3.1 Renault Master System Scaling Summary         3.7.3.2 System Scaling Analysis, Renaul | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>164<br>165<br>166<br>173<br>173<br>175<br>176<br>175<br>176<br>182<br>182<br>184<br>184                                                                |
| 3.6<br>3.7<br>3.8 | <b>BODY GROUP -D- SYSTEM 3.6.1</b> Silverado 1500 Summary         3.6.1.1 Silverado 2500 Analysis         3.6.1.2 2500 System Scaling Summary         3.6.1.3 System Scaling Analysis         3.6.1.4 System Comparison, Silverado 2500 <b>3.6.2 Mercedes Sprinter 311 CDi</b> 3.6.3 Renault Master 2.3 DCi         3.6.3.1 System Scaling Analysis <b>3.6.3 Renault Master 2.3 DCi</b> 3.6.3.1 System Scaling Analysis <b>3.6.3 Renault Master 2.3 DCi</b> 3.6.3.1 System Scaling Analysis <b>3.6.3</b> System Scaling Analysis <b>3.7.1</b> Silverado 1500 Summary <b>3.7.1.1</b> Silverado 2500 Analysis <b>3.7.1.2</b> 2500 System Scaling Summary <b>3.7.1.4</b> System Comparison, Silverado 2500 <b>3.7.2</b> Mercedes Sprinter 311 CDi Analysis <b>3.7.2.1</b> Mercedes Sprinter System Scaling Summary <b>3.7.2.2</b> System Scaling Analysis, Mercedes Sprinter <b>3.7.3 Renault Master 2.3 DCi Analysis 3.7.3.1</b> Renault Master System Scaling Summary <b>3.7.3.2</b> System Scaling Analysis, Renault Master <b>3.7.3.1</b> Renault Master System Scaling Summary                                                                                    | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>165<br>166<br>173<br>173<br>175<br>176<br>182<br>182<br>184<br>184<br>184<br>184                                                                       |
| 3.6<br>3.7<br>3.8 | <b>BODY GROUP -D- SYSTEM</b> 3.6.1       Silverado 1500 Summary         3.6.1.1       Silverado 2500 Analysis         3.6.1.2       2500 System Scaling Summary         3.6.1.3       System Scaling Analysis         3.6.1.4       System Comparison, Silverado 2500         3.6.2       Mercedes Sprinter 311 CDi         3.6.3       Renault Master 2.3 DCi         3.6.3.1       System Scaling Analysis         3.6.3       Renault Master 2.3 DCi         3.6.3.1       System Scaling Analysis         3.6.3.1       System Scaling Analysis         3.6.3.1       System Scaling Analysis         3.6.3       Renault Master 2.3 DCi         3.6.3.1       System Scaling Analysis         3.6.3.1       System Scaling Analysis         3.6.3.1       System Scaling Analysis         3.7.1       Silverado 1500 Summary         3.7.1.1       Silverado 2500 Analysis         3.7.1.2       2500 System Scaling Summary         3.7.1.3       System Comparison, Silverado 2500         3.7.1.4       System Comparison, Silverado 2500         3.7.2.1       Mercedes Sprinter System Scaling Summary         3.7.2.2       System Scaling Analysis, Mercedes Sprinter         3.7.3.1       Renault Mast                                                                                                    | 150<br>150<br>152<br>152<br>153<br>155<br>156<br>157<br>159<br>160<br>162<br>162<br>164<br>165<br>166<br>173<br>173<br>173<br>175<br>176<br>182<br>182<br>184<br>184<br>184<br>185<br>187                                                         |

| 3.8.1.4              | System Comparison, Silverado 2500                                               |                   |
|----------------------|---------------------------------------------------------------------------------|-------------------|
| 3.8.2 N              | Iercedes Sprinter 311 CDi Analysis                                              |                   |
| 3.8.2.1              | System Scaling Analysis                                                         |                   |
| 3.8.3 R              | enault Master 2.3 DCi                                                           |                   |
| 3.8.3.1              | System Scaling Analysis                                                         |                   |
|                      | CVCTEM                                                                          | 205               |
| 3.9 BRAKE            | 5151EM                                                                          | 205               |
| 3.9.1 S              | Silverado 1500 Summary                                                          |                   |
| 3.9.2 S              | ilverado 2500 Analysis                                                          |                   |
| 3.9.2.1              | System Architecture                                                             |                   |
| 3.9.3 S              | system Scaling Summary                                                          |                   |
| 3.9.3.1              | System Scaling Analysis                                                         |                   |
| 3.9.4 B              | Brake System Comparison, Silverado 2500                                         |                   |
| 3.9.5 N              | lercedes Sprinter 311 CDi Analysis                                              |                   |
| 3.9.5.1              | System Architecture - Sprinter                                                  |                   |
| 3.9.5.2              | System Scaling Summary                                                          |                   |
| 3.9.5.3              | System Scaling Analysis                                                         |                   |
| 3.9.6 R              | enault Master Analysis                                                          |                   |
| 3.9.6.1              | System Architecture – Renault Master 2.3 CDi                                    |                   |
| 3.9.6.2              | System Scaling Summary                                                          |                   |
| 3.9.6.3              | System Scaling Analysis – Renault Master                                        |                   |
| 3 10 FR AME          | AND MOUNTING SYSTEM                                                             | 228               |
| 3 10 1 CAME          | Silverade 1500 Summary                                                          | 220               |
| 3.10.1               | 1 Silvarado 2500 Analysis                                                       |                   |
| 3.10.1               | <ol> <li>Suverado 2500 Analysis</li> <li>2500 System Scaling Summary</li> </ol> |                   |
| 3 10 1               | 2 2500 System Scaling Summary                                                   |                   |
| 3.10.1.              | J System Comparison Silvarado 2500                                              |                   |
| 3.10.1.4<br>2.10.2 M | 4 System Comparison, Suverado 2500                                              | 232<br>ספס        |
| 3.10.2 W             | 1 System Scaling Analysis                                                       | <b>232</b><br>233 |
| 3 10 3 D             | Popult Master 2 3 DCi                                                           |                   |
| 3.10.3 K             | 1 System Sealing Analysis Pengult Master 2.3 DCi                                | <b>233</b><br>233 |
| 5.10.5.              | 1 System Scaling Analysis – Renauli Master 2.5 DCi                              |                   |
| 3.11 EXHAUS          | ST SYSTEM                                                                       | 234               |
| 3.11.1 S             | ilverado 1500 Summary                                                           | 234               |
| 3.11.1.              | 1 Silverado 2500 Analysis                                                       |                   |
| 3.11.1.              | 2 2500 System Scaling Summary                                                   |                   |
| 3.11.1               | 3 System Scaling Analysis – Silverado 2500                                      |                   |
| 3.11.1.4             | 4 System Comparison – Silverado 2500                                            |                   |
| 3.11.2 N             | Iercedes Sprinter 311 CDi                                                       | 244               |
| 3.11.2.              | 1 System Scaling Analysis – Mercedes Sprinter 311 CDi                           |                   |
| 3.11.3 R             | enault Master 2.3 DCi                                                           | 249               |
| 3.11.3.              | 1 System Scaling Analysis – Renault Master 2.3 DCi                              |                   |
|                      | VETEM                                                                           | 050               |
| 3.12 FUEL 5          | i J I E IVI                                                                     |                   |
| 3.12.1 5             | 1 C:1 1 2500 A 1 :                                                              |                   |
| 3.12.1.              | 1 Silverado 2500 Anaiysis                                                       |                   |
| 3.12.1.              | 2 Silverado 2500 System Scaling Summary                                         |                   |
| 3.12.1.              | 5 System Scaling Analysis – Silverado 2500                                      |                   |
| 3.12.1.4             | 4 System Comparison – Silverado 2500                                            |                   |
| 5.12.2 N             | Increases Sprinter 311 CDI                                                      |                   |
| 3.12.2.<br>2.10.2 P  | 1 System Scaling Analysis                                                       |                   |
| 3.12.3 R             | Lenaul Waster 2.5 DCI                                                           |                   |
| 3.12.3.              | 1 System Scaling Analysis                                                       |                   |
| 3.13 STEERII         | NG SYSTEM                                                                       |                   |
| 3.13.1 S             | ilverado 1500 Summary                                                           |                   |
| 3.13.1               | 1 Silverado 2500 Analysis                                                       | 269               |
| 3.13.1               | 2 2500 System Scaling Summary                                                   |                   |
| 3.13.1               | 3 System Scaling Analysis                                                       |                   |
|                      |                                                                                 |                   |

| 3.13.1.4 System Comparison, Silverado 2500                  |     |
|-------------------------------------------------------------|-----|
| 3.13.2 Mercedes Sprinter 311 CDi                            | 274 |
| 3.13.2.1 System Scaling Analysis                            | 275 |
| 3.13.3 Renault Master 2.3 DCi                               | 279 |
| 3.13.3.1 System Scaling Analysis                            | 279 |
| 3.14 CLIMATE CONTROL SYSTEM                                 |     |
| 3.14.1 Silverado 1500 Summary                               |     |
| 3.14.1.1 Silverado 2500 Analysis                            |     |
| 3.14.1.2 2500 System Scaling Summary                        |     |
| 3.14.1.3 System Scaling Analysis                            |     |
| 3.14.1.4 System Comparison, Silverado 2500                  |     |
| 3.14.2 Mercedes Sprinter 311 CDi                            |     |
| 3.14.2.1 System Scaling Analysis                            |     |
| 3.14.3 Renault Master 2.3 DCi                               |     |
| 3.14.3.1 System Scaling Analysis                            | 292 |
| 3.15 INFORMATION. GAGE AND WARNING DEVICE SYSTEM            | 294 |
| 3.15.1 Silverado 1500 Summary                               |     |
| 3.15.1.1 Silverado 2500 Analysis                            |     |
| 3.15.1.2 2500 System Scaling Summary                        |     |
| 3.15.1.3 System Scaling Analysis                            |     |
| 3.15.1.4 System Comparison. Silverado 2500                  |     |
| 3.15.2 Mercedes Sprinter 311 CDi                            |     |
| 3.15.2.1 System Scaling Analysis                            |     |
| 3.15.3 Renault Master 2.3 DCi                               |     |
| 3.15.3.1 System Scaling Analysis                            |     |
| 3 16 ELECTRICAL DOWER SLIPPLY                               | 300 |
| 3.16.1 Silvorado 1500 Summary                               | 300 |
| 3 16 1 1 Silverado 2500 Analysis                            | 311 |
| 3 16 1.2 2500 System Scaling Summary                        |     |
| 3 16 1 3 System Scaling Analysis                            | 312 |
| 3.16.1.4 System Comparison Silverado 2500                   | 314 |
| 3 16 2. Mercedes Sprinter 311 CDi                           | 314 |
| 3 16 2 1 System Scaling Analysis                            | 315 |
| 3 16 3 Renault Master 2 3 DCi                               | 316 |
| 3.16.3.1 System Scaling Analysis                            |     |
| 3 17 LIGHTING                                               | 310 |
| 3 17 1 Silverado 1500 Summary                               | 310 |
| 3.17.1 Silverado 2500 Analysis                              |     |
| 3 17 1.2 2500 System Scaling Summary                        |     |
| 3 17 1 3 System Scaling Analysis                            | 321 |
| 3 17 1 A System Comparison Silvarado 2500                   | 323 |
| 3 17 2 Mercedes Sprinter 311 CDi                            | 323 |
| 3 17 2 1 System Scaling Analysis                            | 324 |
| 3.17.3 Renault Master 2.3 DCi                               |     |
| 3.17.3.1 System Scaling Analysis                            |     |
| 3.18 ELECTRICAL DISTRIBUTION AND ELECTRICAL CONTROLS SYSTEM |     |
| 3.18.1 Silverado 1500 Summary                               |     |
| 3.18.1.1 Silverado 2500 Analysis                            |     |
| 3.18.1.2 2500 System Scaling Summary                        |     |
| 3.18.1.3 System Scaling Analysis                            |     |
| 3.18.1.4 System Comparison, Silverado 2500                  | 344 |
| 3.18.2 Mercedes Sprinter 311 CDi                            | 346 |
| 3.18.2.1 System Scaling Analysis                            | 346 |
| 3.18.3 Renault Master 2.3 DCi                               | 350 |
| 3.18.3.1 System Scaling Analysis                            | 352 |

| 4. CONCLUSION |  |
|---------------|--|
|---------------|--|

## List of Images

| Image 1.4–1: 2013 Chevrolet Silverado 2500 4WD LT Extended Cab                                            | 27    |
|-----------------------------------------------------------------------------------------------------------|-------|
| Image 1.4–2: 2007 Mercedes Sprinter 311 CDi                                                               | 28    |
| Image 1.4–3: 2010 Renault Master 2.3 DCi L3H2                                                             | 29    |
| Image 3.1–1: Silverado 1500 base engine (5.3 liter LC9)                                                   | 38    |
| Image 3.1–2: Silverado 2500 base engine (6.0 liter LC8)                                                   | 42    |
| Image 3.1–3: Connecting rod for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right)                            | 45    |
| Image 3.1–4: Connecting rod for 5.3 liter LC9 (Left) and C-70 rod (Right)                                 | 45    |
| Image 3.1–5: Exhaust manifold for 5.3 liter LC9 (Left), 6.0 liter LC8 (Right)                             | 46    |
| Image 3.1–6: Fabricated V8 Exhaust Manifold (LS7 Corvette)                                                | 46    |
| Image 3.1-7: Fabricated Exhaust Manifold                                                                  | 47    |
| Image 3.1–8: Crankshaft for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right)                                | 47    |
| Image 3.1–9: Cored crankshaft for BMW 4.4L V8                                                             | 47    |
| Image 3.1–10: Oil pan for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right)                                  | 48    |
| Image 3.1–11: Oil pan (magnesium) for Nissan GTR                                                          | 48    |
| Image 3.1–12: Water pump for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right)                               | 49    |
| Image 3.1–13: Water pump assembly components, electric water pump (Left) and thermostat (Right)           | 50    |
| Image 3.1–14: Accessory bracket for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right)                        | 50    |
| Image 3.1–15: Mercedes sprinter base engine (2.1 CDI)                                                     | 52    |
| Image 3.1–16: Exhaust manifold for Silverado 1500 5.3L LC9 (Left) and Sprinter 2.1 CDI (Right)            | 55    |
| Image 3.1–17: Aluminum oil pan for Silverado 1500 5.3L LC9 (Left) and Sprinter 2.1 CDI (Right)            | 55    |
| Image 3.1–18: Water pump for 5.3 liter Silverado 1500 5.3L LC9                                            | 56    |
| Image 3.1–19: Water pump assembly components for Sprinter 2.1 CDI                                         | 56    |
| Image 3.1–20: Renault Master base engine (2.3 dCi)                                                        | 57    |
| Image 3.2–1: Chevrolet Silverado transmission and transfer case                                           | 64    |
| Image 3.2–2: Transmission for the Silverado 1500 (Left) and Silverado 2500 (Right)                        | 67    |
| Image 3.2–3: Planet gears for the Silverado 1500 (Left) and Silverado 2500 (Right)                        | 68    |
| Image 3.2–4: Hubs for the Silverado 1500 (Left) and Silverado 2500 (Right)                                | 68    |
| Image 3.2–5: Steel torque converter for the Silverado 1500 (Left) and Silverado 2500 (Right)              | 69    |
| Image 3.2–6: Example of a cast aluminum converter                                                         | 69    |
| Image 3.2–7: Valve body for Silverado 1500 (Left) and Silverado 2500 (Right)                              | 70    |
| Image 3.2–8: Mercedes Sprinter 311 CDi transmission                                                       | 73    |
| Image 3.2–9: Transmission for the Silverado 1500 (Left) and Sprinter 311 CDi (Right)                      | 73    |
| Image 3.2–10: Planet gears for the Silverado 1500 (Left) and drive gears for the Sprinter 311 (Right)     | 74    |
| Image 3.2–11: Renault Master 2.3 DCi transmission                                                         | 77    |
| Image 3.2–12: Transmission for the Silverado 1500 (Left) and Renault Master 2.3 (Right)                   | 78    |
| Image 3.2–13: Planet Gears for the Silverado 1500 (Left) and Drive Gears Master 2.3 (Right)               | 78    |
| Image 3.3–1: Chevrolet Silverado 2500 Body Group -A- System                                               | 81    |
| Image 3.3–2: Cabin for the Silverado 1500 (Left) and Silverado 2500 (Right)                               | 84    |
| Image 3.3–3: Radiator structure for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                  | 84    |
| Image 3.3–4: Extra cabin – radiator support Silverado 2500 (Silverado 1500 similar)                       | 85    |
| Image 3.3–5: RH/LH front wheelhouse arch for the Silverado 1500 (Left) and Silverado 2500 (Right)         | 85    |
| Image 3.3–6: Front splash shield for the Silverado 1500 (Left) and Silverado 2500 (Right)                 | 86    |
| Image 3.3–7: Engine cover for Silverado 1500 (Left) and Silverado 2500 (Right)                            | 86    |
| Image 3.3–8: Radiator covers for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                     | 87    |
| Image 3.3–9: Front fenders (RH/LH) Silverado 1500 (Left) and Silverado 2500 (Right)                       | 88    |
| Image 3.3–10: Hood assembly without hinges, Silverado 1500 (Left) and Silverado 2500 (Right)              | 88    |
| Image 3.3–11: Front door assemblies for the Silverado 1500 (Left) and Silverado 2500 (Right)              | 89    |
| Image 3.3–12: Rear door assemblies for the Silverado 1500 (Left) and Silverado 2500 (Right)               | 90    |
| Image 3.3–13: Front bumper for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                       | 90    |
| Image 3.3–14: Rear bumper for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                        | 91    |
| Image 3.3–15: Pickup box assembly for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                | 92    |
| Image 3.3–16: Pickup box gate for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                    | 93    |
| Image 3.3–17: Front Wheelhouse Arch for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)   | 96    |
| Image 3.3–18: CDi Engine Cover for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)        | 97    |
| Image 3.3–19: RH/LH front fenders for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)     | 97    |
| Image 3.3–20: Hood assembly without hinges for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (R | ight) |
|                                                                                                           | 98    |

| Image 3.3-22: Front bimmer for the Silverado 1500 (Cpt) and Mercedes Sprinter 311 CDi (Rottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image 3.3–21: Front door assemblies for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi            | 98      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|
| <ul> <li>Image 3.3-23: Front wheelhouse arch for the Silverado IS00 (1-qf) and the Renault Master 2.3 DCI (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image 3.3–22: Front bumper for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)             | 99      |
| <ul> <li>Image 3: 24: Front splash shield for the Silverado 1500 (Left) and the Renault Master 2.3 DCi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.3–23: Front wheelhouse arch for the Silverado 1500 (Left) and the Renault Master 2.3 DCi (Right).  | 101     |
| <ul> <li>Image 3.3–25: Engine covers for the Silverado 1500 (Left) and Renault Master 2.3 DCI (Right).</li> <li>Image 3.3–27: Hood assembly without hinges for the Silverado 1500 (Left) and Renault Master 2.3 DCI (Right).</li> <li>Image 3.3–28: RH from taken the silverado 1500 (Top) and Renault Master 2.3 DCI (Right).</li> <li>Image 3.3–29: From binapper for the Silverado 1500 (Top) and Renault Master 2.3 DCI (Bottom).</li> <li>Image 3.3–30: Rear Binnper for the Silverado 1500 (Top) and Renault Master 2.3 DCI (Bottom).</li> <li>Image 3.4–2: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right).</li> <li>Image 3.4–3: Sealing Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right).</li> <li>Image 3.4–4: Sealing Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right).</li> <li>Image 3.4–5: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Silverado 2500 (Right).</li> <li>Image 3.4–6: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and the Mercedes Sprinter 311 CDI (Right).</li> <li>Image 3.4–6: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and the Mercedes Sprinter 311 CDI (Right).</li> <li>Image 3.4–10: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDI (Right).</li> <li>Image 3.4–10: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDI (Right).</li> <li>Image 3.4–10: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDI (Right).</li> <li>Image 3.4–10: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDI (Right).</li> <li>Image 3.4–11: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDI (Right).</li> <li>Image 3.4–12: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left</li></ul>                                                                                                                                                                                          | Image 3.3–24: Front splash shield for the Silverado 1500 (Left) and the Renault Master 2.3 DCi (Right)     | 102     |
| <ul> <li>Image 3.3–26: RHI/H front fenders for the Silverado 1500 (Left) and Remath Master 2.3 DCI (Right)</li> <li>Image 3.3 28: RH front door assemblies for the Silverado 1500 (Left) and Remath Master 2.3 DCI (Right)</li> <li>Image 3.3-30: Rear Bumper for the Silverado 1500 (Top) and Remath Master 2.3 DCI (Right)</li> <li>Image 3.3-30: Rear Bumper for the Silverado 1500 (Top) and Remath Master 2.3 DCI (Right)</li> <li>Image 3.4-30: Rear Bumper for the Silverado 1500 (Left) and Remath Master 2.3 DCI (Right)</li> <li>Image 3.4-4: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>III</li> <li>Image 3.4-4: Seating Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right)</li> <li>III</li> <li>Image 3.4-5: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Silverado 2500 (Bottom)</li> <li>Image 3.4-6: Occupant Restraining Device Subsystem for the Silverado 1500 (Ceft) and Micreado 2500 (Right)</li> <li>III</li> <li>Image 3.4-7: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Ceft) and Micreado 2500 (Right)</li> <li>Image 3.4-9: Seating Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4-9: Seating Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4-10: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4-11: Instrument Real and Console Subsystem for the Silverado 1500 (Ceft) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4-12: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4-13: Seating Subsystem for the Silverado 1500 (Left) and Remault Master 2.3 DCI (Right)</li> <li>Image 3.4-14: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Top) and Remault Master 2.3 DCI (Ri</li></ul>                                                                                                                                                                                                      | Image 3.3–25: Engine covers for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)               | 102     |
| Image 3.3-27: Hood assembly without hinges for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       104         Image 3.3-28: RH front door assemblies for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Rottom)       104         Image 3.3-29: Front bumper for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Rottom)       104         Image 3.4: Chevrolet Silverado 2500       107         Image 5.4-2: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)       112         Image 5.4-3: Sealing Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right)       113         Image 5.4-4: Sealing Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)       113         Image 5.4-5: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and the Meccedes Sprinter 311       114         Image 3.4-6: Occupant Restraining Device Subsystem for the Silverado 1500 (Left) and Meccedes Sprinter 311       110         Image 3.4-7: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Meccedes Sprinter 311       111         Image 3.4-8: Sealing Subsystem for the Silverado 1500 (Left) and Meccedes Sprinter 311       112         Image 3.4-10: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Meccedes Sprinter 311       112         Image 3.4-11: Occupant Restraining Device Subsystem for the Silverado 1500 (Top) and Meccedes Sprinter 311       111         Image 3.4-12: Interior Trim and Ornamentation Subsystem for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.3–26: RH/LH front fenders for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)         | 103     |
| <ul> <li>Image 3.3. 28: RH from door assemblies for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Image 3.3–27: Hood assembly without hinges for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Rig   | ht)103  |
| <ul> <li>Image 3.392: Front humper for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)</li> <li>Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.4-1: Chevrolet Silverado 2500</li> <li>Image 3.4-3: Sealing Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right)</li> <li>Image 3.4-4: Sealing Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.4-5: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.4-5: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.4-5: Sealing Subsystem for the Silverado 1500 (Left) and Silverado 2500.</li> <li>If Image 3.4-7: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and the Mercedes Sprinter 311 CDi (Right)</li> <li>CDi (Right)</li> <li>CD</li></ul>                                                                                                                                                                                                                                                                                                                                            | Image 3.3–28: RH front door assemblies for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)    |         |
| Image 3.3-90: Rear Bumper for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)         107           Image 3.4-2: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)         112           Image 3.4-3: Sealing Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)         113           Image 3.4-4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)         113           Image 3.4-4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)         114           Image 3.4-7: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (and Silverado 2500)         114           Image 3.4-7: Seating Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311         CDi (Right)         120           Image 3.4-9: Seating Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         120           Image 3.4-9: Seating Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311         CDi (Bottom)         122           Image 3.4-11: Cocupant Restraining Device Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311         CDi (Right)         123           Image 3.4-12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311         CDi (Right)         123           Image 3.4-13: Seating Subsystem for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)         123           Image 3.4-14: Seating Subsystem for Silverado 1500 (Left) and Renault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image 3.3–29: Front bumper for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                | 104     |
| <ul> <li>Image 3.4-1: Chevrolet Silverado 2500</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.3–30: Rear Bumper for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                 | 105     |
| <ul> <li>Image 3.4–2: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.4–3: Sealing Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.4–4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.4–5: Instrument Panel and Console Subsystem for the Silverado 1500 (and Silverado 2500 (Sight)</li> <li>Image 3.4–6: Occupant Restraining Device Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4–6: Seating Subsystem for the Silverado 1500 (Left) and the Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4–7: Seating Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4–8: Seating Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)</li> <li>CDi (Rotom)</li> <li>CDi (Rotom)</li> <li>CDi (Right)</li> <li>CDi (Ri</li></ul>                                                                                                                                                                                                                                                                                                                          | Image 3.4–1: Chevrolet Silverado 2500                                                                      | 107     |
| 112         Image 3.4–3: Sealing Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)       112         Image 3.4–4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)       113         Image 3.4–5: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and Silverado 2500.       114         Image 3.4–5: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311       114         Image 3.4–5: Seating Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right).       120         Image 3.4–8: Seating Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right).       121         Image 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311       121         CDi (Bottom)       122         Image 3.4–12: Interior Tim and Ornamentation Subsystems for the Silverado 1500 (Left) and Reneault Master 2.3       128         Image 3.4–13: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3       121         Image 3.4–14: Seating Subsystem for Silverado 1500 (Left) and Renault Master 2.3       122         Image 3.4–15: Instrument Panel and Console Subsystem for Silverado 1500 (Left) and Renault Master 2.3       121         Image 3.4–16: Cocupant Restraining Device Subsystem for the Silverado 1500 (Left) and Renault Master 2.3       122         Image 3.4–16: Stating Cornal Corit Silverado 1500 (Left) and Silverado 2500 (Right) <td< td=""><td>Image 3.4–2: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500</td><td>(Right)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image 3.4–2: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500    | (Right) |
| <ul> <li>Image 3.4-3: Sealing Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | 112     |
| <ul> <li>Image 3.4–4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Image 3.4–3: Sealing Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right)                | 112     |
| <ul> <li>Image 3.4–5: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Silverado 2500 (Bottom)</li> <li>II4</li> <li>Image 3.4–6: Occupant Restraining Device Subsystem for the Silverado 1500 (Left) and the Mercedes Sprinter 311 CDi (Right)</li> <li>II20 Image 3.4–9: Sealing Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>II20 Image 3.4–9: Sealing Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>II21 Image 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)</li> <li>II21 Image 3.4–11: Occupant Restraining Device Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)</li> <li>II22 Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Reneault Master 2.3 DCi (Right)</li> <li>II23 Image 3.4–13: Sealing Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>II28 Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>II28 Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>II29 Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Icft) and Renault Master 2.3 DCi (Right)</li> <li>II30 Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>II30 Image 3.5–1: Chevroler Silverado 1500 Grop -C- System</li> <li>II30 Image 3.5–3: Radiator Grill for the Silverado 1500 (Icft) and Silverado 2500 (Right)</li> <li>II37 Image 3.5–4: Sudiator Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>II38 Image 3.5–3: Radiator Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>II38 Image 3.5–4: Exterior Mirror (Driver and Pasenger Side) for the Silverado 2500 (Right)</li> <li>II38 Image 3.5–4: Exterior Mirror (Driver and Pasenger Side) for the Silverado 2500 (Right)</li> <li< td=""><td>Image 3.4–4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)</td><td>113</td></li<></ul> | Image 3.4–4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right)                    | 113     |
| 114         Image 3.4-6: Occupant Restraining Device Subsystem for the Silverado 1500 (Left) and the Mercedes Sprinter 311         CDi (Right)       20         Image 3.4-8: Sealing Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       20         Image 3.4-9: Sealing Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       21         Image 3.4-9: Sealing Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       21         Image 3.4-10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311       CDi (Bottom)       22         Image 3.4-11: Occupant Restraining Device Subsystems for the Silverado 1500 (Left) and Renault Master 2.3       DCi (Right)       22         Image 3.4-12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3       DCi (Right)       28         Image 3.4-13: Sealing Subsystem for Silverado 1500 (Left) and Renault Master 2.3       DCi (Right)       29         Image 3.4-14: Seating Subsystem for Silverado 1500 (Left) and Renault Master 2.3       DCi (Right)       23         Image 3.4-15: Instrument Panel and Console Subsystem for Silverado 1500 (Left) and Renault Master 2.3       DCi (Right)       23         Image 3.5-1: Restraining Device Subsystem for Silverado 1500 (Left) and Silverado 2500 (Rottom)       36         Image 3.5-2: Rediator Grill for the Silverado 1500 (Left) and Silverado 2500 (Rottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image 3.4–5: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Silverado 2500 (Bo    | ottom)  |
| <ul> <li>Image 3.4–6: Occupant Restraining Device Subsystem for the Silverado 1500 (Left) and the Mercedes Sprinter 311<br/>CDi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                            | 114     |
| <ul> <li>Image 3.4–7: Interior Trim and Ornamentation Subsystem for Silverado 1500 (Left) and the Mercedes Sprinter 311 CDi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image 3.4–6: Occupant Restraining Device Subsystem for the Silverado 1500 and Silverado 2500               | 114     |
| CDi (Right)       120         Image 3.4 - 8: Sealing Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       121         Image 3.4 - 9: Sealing Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       121         Image 3.4 - 10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311       120         CDi (Bottom)       123         Image 3.4 - 11: Occupant Restraining Device Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311       123         DDi (Right)       123         Image 3.4 - 13: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       128         Image 3.4 - 13: Sealing Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       128         Image 3.4 - 15: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Right)       130         Image 3.4 - 15: Netrunent Panel and Console Subsystem for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       130         Image 3.5 - 1: Chevrolet Silverado 1500 (Top) and Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       130         Image 3.5 - 2: Radiator Grill for the Silverado 1500 (Ceft) and Silverado 2500 (Right)       136         Image 3.5 - 3: Sumper Guard - Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5 - 4: Sumper Guard - Rear Door for the Silverado 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Image 3.4–7: Interior Trim and Ornamentation Subsystem for Silverado 1500 (Left) and the Mercedes Sprin    | ter 311 |
| <ul> <li>Image 3.4–8: Sealing Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>Image 3.4–9: Seating Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>Inage 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)</li> <li>I22</li> <li>Image 3.4–11: Occupant Restraining Device Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)</li> <li>I23</li> <li>Image 3.4–12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–13: Sealing Subsystem for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–16: Occupant Restraining Device Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System</li> <li>Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)</li> <li>Image 3.5–3: Bumper Guard - From Door for the Silverado 1500 (Left) and Silverado 2500 (Bottom)</li> <li>Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Bottom)</li> <li>Image 3.5–5: Toulgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–7: Cowl End Cap -RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–8: Exterior Mirror (Driver and Passenger Side) for the Silverado 2500 (Right)</li> <li>Image 3.5–10: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–12: R</li></ul>                                                                                                                      | CDi (Right)                                                                                                | 120     |
| <ul> <li>Image 3.4–9: Seating Subsystem's for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li> <li>I21</li> <li>Image 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)</li> <li>I22</li> <li>Image 3.4–11: Occupant Restraining Device Subsystem for the Silverado 1500 (Lop) and Mercedes Sprinter 311 CDi (Bottom)</li> <li>Image 3.4–12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–13: Sealing Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–13: Sealing Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Bottom)</li> <li>Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System</li> <li>Image 3.5–2: Radiator Grill for the Silverado 1500 (Left) and Silverado 2500 (Bottom)</li> <li>Image 3.5–3: Sumper Guard - From Door for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–4: Bumper Guard - Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–4: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–10: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>Image 3.5–12: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> &lt;</ul>                                                                                                                        | Image 3.4–8: Sealing Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         | 120     |
| <ul> <li>Image 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311 (CD) (Bottom)</li> <li>122</li> <li>Image 3.4–11: Occupant Restraining Device Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311 (CD) (Rottom)</li> <li>123</li> <li>Image 3.4–12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3 (Right)</li> <li>128</li> <li>Image 3.4–13: Sealing Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>129</li> <li>Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>129</li> <li>Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>130</li> <li>Image 3.4–16: Occupant Restraining Device Subsystem for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li> <li>130</li> <li>Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System</li> <li>133</li> <li>Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)</li> <li>136</li> <li>Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>137</li> <li>Image 3.5–4: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>138</li> <li>Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>138</li> <li>Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>138</li> <li>Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>138</li> <li>Image 3.5–10: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>139</li> <li>Image 3.5–12: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>139</li> <li>Image 3.5–13: Radiator Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)</li> <li>140</li> <li>Image 3.5–14</li></ul>                                                                                                                      | Image 3.4–9: Seating Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)        | 121     |
| CDi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Image 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinte    | er 311  |
| <ul> <li>Image 3.4–11: Occupant Restraining Device Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311<br/>(CDi (Bottom)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CDi (Bottom)                                                                                               | 122     |
| CDi (Bottom)       [123]         Image 3.4–12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3<br>DCi (Right)       [128]         Image 3.4–13: Sealing Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       [129]         Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       [129]         Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       [130]         Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       [130]         Image 3.5–1: Chevrolet Silverado 2500 Body Group -C. System       [130]         Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       [136]         Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Bottom)       [136]         Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       [137]         Image 3.5–5: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)       [138]         Image 3.5–4: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       [139]         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       [139]         Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       [139]         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.4–11: Occupant Restraining Device Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter     | 311     |
| Image 3.4–12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3       128         DCi (Right)       128         Image 3.4–13: Sealing Subsystem for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       129         Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       129         Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)       130         Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       130         Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System       133         Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–4: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–10: Front Fascia or the Silverado 1500 (Left) and Silv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CDi (Bottom)                                                                                               | 123     |
| DCi (Right)       128         Image 3.4–13: Sealing Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       128         Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       129         Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)       130         Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       130         Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System       133         Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard - Front Door for the Silverado 1500 (Left) and Silverado 2500 (Bottom)       136         Image 3.5–4: Bumper Guard - Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–11: Rear Bumper Cover for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Lef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Image 3.4–12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Maste   | er 2.3  |
| <ul> <li>Image 3.4–13: Sealing Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCi (Right)                                                                                                |         |
| <ul> <li>Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Image 3.4–13: Sealing Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)              |         |
| Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)       130         Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)       130         Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System       133         Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Bottom)       136         Image 3.5–4: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Bottom)       137         Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–6: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–10: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–12: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–12: Front Fascia for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)       139         Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143 <t< td=""><td>Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)           |         |
| (Bottom)       130         Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi<br>(Right)       130         Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System       133         Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–2: Rumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–12: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5–13: Radiator Grill for the Silverado 1500 (Lop) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–13: Radiator Grill for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Renault Master 2.    | 3 DCi   |
| Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Bottom)                                                                                                   | 130     |
| (Right)       130         Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System       133         Image 3.5–1: Chevrolet Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–4: Bumper Guard – Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–5: Tailgate Trim for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5–6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5–12: Rear Bumper Guard (Front Door) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–14: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 D    | Ci      |
| Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System       133         Image 3.5–1: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–4: Bumper Guard – Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–6: Cowl Grill for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–10: Front Fascia of the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5–12: Rear Bumper Guard (Front Door) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–13: Radiator Grill for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–14: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       144         Image 3.5–1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Right)                                                                                                    | 130     |
| Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5–3: Bumper Guard - Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5–5: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Bottom)       144         Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       144         Image 3.5–13: Radiator Grill for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Bottom)       144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System                                                | 133     |
| Image 3.5-3: Bumper Guard – Front Door for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       136         Image 3.5-4: Bumper Guard - Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5-5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5-6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5-7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5-8: Exterior Mirror (Driver and Passenger Side) for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5-10: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5-11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5-12: Rear Bumper Cover for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5-13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5-15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and       144         Image 3.5-16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-16: Front Fascia for the Silverado 1500 (Left) and Mercedes Spr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                       | 136     |
| Image 3.5-4: Bumper Guard - Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5-5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5-6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5-6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5-7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5-8: Exterior Mirror (Driver and Passenger Side) for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5-9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5-10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5-11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5-12: Rear Bumper Cover for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5-15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-17: Rear Bumper Cover (LH/RH) for the Silverado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Top) and Silverado 2500 (Bottom)            | 136     |
| Image 3.5-5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)       137         Image 3.5-6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5-7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5-7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5-8: Exterior Mirror (Driver and Passenger Side) for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5-9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5-10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5-11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5-12: Rear Bumper Cover for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5-15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5-17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Top) and Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.5-4: Bumper Guard - Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right)             | 137     |
| Image 3.5–6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)       138         Image 3.5–6: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)       138         Image 3.5–8: Exterior Mirror (Driver and Passenger Side) for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)       139         Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)       140         Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       140         Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)       143         Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Bottom)       144         Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       144         Image 3.5–17: Rear Bumper Cover – Center for the Silverado 1500 (Top) and Sprinter 311 CDi (Right)       144         Image 3.5–18: Rear Bumper Cover – Center for the Silverado 1500 (Top) and Sprinter 311 CDi (Bottom)       144         Image 3.5–18: Rear Bumper Cover –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right)                        | 137     |
| Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image 3.5–6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                           | 138     |
| Image 3.5–8: Exterior Mirror (Driver and Passenger Side) for the Silverado 1500 (Left) and Silverado 2500 (Right)         138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)         139         Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)         139         Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)         140         Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)         143         Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)         143         Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and         Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–18: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–19: Radiator Grill for the Silverado 1500 (Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right)             | 138     |
| 138         Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)         139         Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)         139         Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)         140         Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Silverado 2500 (Bottom)         140         Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)         143         Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and         Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–18: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–18: Rear Bumper Cover - Center for the Silverado 1500 (Top) and Sprinter 311 CDi (Bottom)         144         Image 3.5–19: Radiator Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)         144         Image 3.5–19: Radiator Grill for the Silvera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image 3.5–8: Exterior Mirror (Driver and Passenger Side) for the Silverado 1500 (Left) and Silverado 2500  | (Right) |
| <ul> <li>Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            | 138     |
| <ul> <li>Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right)                         | 139     |
| <ul> <li>Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right)              | 139     |
| <ul> <li>Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Silverado 2500 (Bottom)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right)           |         |
| <ul> <li>Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                   |         |
| <ul> <li>Image 3.5–14: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)</li> <li>Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and</li> <li>Mercedes Sprinter 311 CDi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)           |         |
| <ul> <li>Image 1.6 1.7 Eamper Court (Iron 2007) for the Strends 1000 (10p) and Mercedes Sprinter 011 CD4 (20104), 143</li> <li>Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image 3.5–14: Rumper Guard (Front Door) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (B      | ottom)  |
| <ul> <li>Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and<br/>Mercedes Sprinter 311 CDi (Right)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            | 143     |
| Mercedes Sprinter 311 CDi (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image 3.5–15: Exterior Mirror (Driver Side shown: Passenger Side similar) for the Silverado 1500 (Left) an | d       |
| Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercedes Sprinter 311 CDi (Right)                                                                          | ]44     |
| Image 3.5–17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)         144         Image 3.5–18: Rear Bumper Cover – Center for the Silverado 1500 (Top) and Sprinter 311 CDi (Bottom)145         Image 3.5–19: Radiator Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)147         Image 3.5–20: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom).148         Image 3.5–21: Cowl Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)             | 144     |
| 144         144         Image 3.5–18: Rear Bumper Cover – Center for the Silverado 1500 (Top) and Sprinter 311 CDi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image 3.5–17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (1     | (Right) |
| Image 3.5–18: Rear Bumper Cover – Center for the Silverado 1500 (Top) and Sprinter 311 CDi (Bottom)145<br>Image 3.5–19: Radiator Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)147<br>Image 3.5–20: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)148<br>Image 3.5–21: Cowl Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                      | 144     |
| Image 3.5–19: Radiator Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image 3.5–18: Rear Bumper Cover – Center for the Silverado 1500 (Ton) and Sprinter 311 CDi (Bottom)        | 145     |
| Image 3.5–20: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)148<br>Image 3.5–21: Cowl Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Image 3.5–19: Radiator Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)              | ]47     |
| Image 3.5–21: Cowl Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Image 3.5–20: Bumper Guard (Front Door) for the Silverado 1500 (Ton) and Renault Master 2.3 DCi (Botto     | (m) 148 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image 3.5–21: Cowl Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)                  | 148     |

| Image 3.5–22: Exterior Mirror (Driver side shown; passenger side similar) for the Silverado 1500 (Left) and                                                                                                   |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Renault Master 2.3 DCi (Right)                                                                                                                                                                                | .149      |
| Image 3.5–23: Front Fascia for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                                                                                                                   | .149      |
| Image 3.5–24: Rear Bumper Cover – RH and LH Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                                                                                                          | .149      |
| Image 3.5–25: Rear Bumper Cover (Center) for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom                                                                                                      | )150      |
| Image 3.6–1: Chevrolet Silverado 2500 Body Group -D- System                                                                                                                                                   | .152      |
| Image 3.6–2: Windshield for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                              | .153      |
| Image 3.6–3: Back Window for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                                                                                                                             | .154      |
| Image 3.6-4: Rear door glass for the Silverado 1500 (Left) and 2500 (Right)                                                                                                                                   | .154      |
| Image 3.6–5: Washer Tank Assembly for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                    | .155      |
| Image 3.6–6: Windshield for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)                                                                                                                   | .157      |
| Image 3.6–7: Washer Tank for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)                                                                                                                  | .158      |
| Image 3.6–8: Windshield for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                                                                                                                      | .160      |
| Image 3.6–9: Washer Tank for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                                                                                                                     | .161      |
| Image 3.7–1: Lower Control Arm for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                       | .167      |
| Image 3.7–2: Aluminum Lower Control Arm                                                                                                                                                                       | .167      |
| Image 3.7–3: Upper Control Arm for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                       | .168      |
| Image 3.7-4: Mass Reduced Upper Control Arm                                                                                                                                                                   | .168      |
| Image 3.7–5: Knuckle for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                 | 169       |
| Image 3.7–6: Aluminum Knuckle.                                                                                                                                                                                | 169       |
| Image 37–7. Leaf Spring Assembly for the Silverado 1500 (Top) and the Silverado 2500 (Bottom)                                                                                                                 | 170       |
| Image 3.7–8: GFRP Leaf Spring Assembly                                                                                                                                                                        | 170       |
| Image 3.7–9: Road Wheel for the Silverado 1500 (Left) and the Silverado 2500 (Right)                                                                                                                          | 171       |
| Image 3.7 9. Roba Wheel for the Suverado 1900 (Left) and the Suverado 2900 (Right)                                                                                                                            | 171       |
| Image 3.7–11: Spare Wheel for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                            | 172       |
| Image 3.7–11. Spare wheel for the Suverado 1500 (Left) and Suverado 2500 (Right)                                                                                                                              | 172       |
| Image 3.7–12. Manunum Spare Wheel                                                                                                                                                                             | 173       |
| Image 3.7 1/1: Mercedes Sprinter Provident Suspension System.                                                                                                                                                 | 174       |
| Image 3.7–14. Mercedes Sprinter Real Suspension System                                                                                                                                                        | 174       |
| Image 3.7–15. Mercedes Sprinter Koud Wheel Assembly                                                                                                                                                           | 174       |
| Image 5.7–10. Mercedes Sprinter Spare Wheel Assembly                                                                                                                                                          | 175       |
| Image 5.7–17: Merceaes Sprinter Spare wheel Support                                                                                                                                                           | .173      |
| Image 5.7–10. Lower Control Arm for the Silverdao 1500 (Left) and Mercedes Sprinter (Right)                                                                                                                   | 170       |
| Image 5.7–19: 2009 Chevrolet Suverado Lower Control Arm Bulet                                                                                                                                                 | .170      |
| Image $3.7-20$ : Steering Knuckie for the Silverado 1500 (Left) and Mercedes Sprinter (Right)                                                                                                                 | .179      |
| Image 3.7–21: Aluminum Steering Knuckle                                                                                                                                                                       | .1/9      |
| Image 3.7–22: Leaf Spring Assembly for the Silverado 1500 (10p) and Sprinter (Bottom)                                                                                                                         | .180      |
| Image 3.7–23: Glass Fiber Reinforced Plastic Leaf Spring Assembly                                                                                                                                             | .180      |
| Image 3.7–24: Spare Wheel for the Silverado 1500 (Left) and Mercedes Sprinter (Right)                                                                                                                         | .181      |
| Image 3.7–25: Aluminum Spare Wheel                                                                                                                                                                            | .181      |
| Image 3.8–1: Silverado 1500 Driveline System                                                                                                                                                                  | .186      |
| Image 3.8–2: Forward Propeller Shaft for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                                                                                                                 | .189      |
| Image 3.8–3: Rear Axle Shaft Silverado 1500 (Top), Rear Axle Shaft Silverado 2500 (Bottom)                                                                                                                    | .189      |
| Image 3.8–4: Example of technology used on rear axle shaft of varied wall thicknesses                                                                                                                         | .190      |
| Image 3.8–5: Rear Axle Cover Plate for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                   | .190      |
| Image 3.8–6: Rear Carrier Casting for the Silverado 1500 (Right) and Silverado 2500 (Left)                                                                                                                    | .191      |
| Image 3.8–7: Example of new carrier                                                                                                                                                                           | .191      |
| Image 3.8–8: Rear Carrier Ring Gear Silverado 1500 (Right), Rear Carrier Ring Gear Silverado 2500 (Left)                                                                                                      | .191      |
| Image 3.8–9: Front Differential Output Shaft with Hub for the Silverado 1500 (Top) and Silverado 2500 (Botto                                                                                                  | m)<br>192 |
| Image 3 8–10: Front Carrier Casting for the Silverado 1500 (Right) and Silverado 2500 (Left)                                                                                                                  | 192       |
| Image 3.8–11. New Lightweight Differential Frample                                                                                                                                                            | 193       |
| Image 3.0-11. Ivew Lightweight Dyjerennut Example                                                                                                                                                             | 102       |
| Image 3.0-12. From Currier King Gear for the Suverado 1500 (Kigili) and Suverado 2500 (Left)<br>Image 3.8, 13: Front Differential Mounting Bracket RH for the Silverado 1500 (Dight) and Silverado 2500 (Left | 4)102     |
| image 5.0–15. From Dijerennan mounting Dracket Kri jor the Suverado 1500 (Kigni) and Suverado 2500 (Lej                                                                                                       | 101       |
| Image 3.0–14: From mail Shaft Hele shaft for the Suverado 1500 (10p) and Suverado 2500 (Bottom)                                                                                                               | .194      |
| Image 3.0–13: Front Haij Snajt Hub with locations for ariting lightening holes                                                                                                                                | .194      |
| Image 5.6–10: Merceaes Sprinter 511 CDi Driveline rear axle                                                                                                                                                   | .19/      |
| Image 3.8–1/: Rear Axle Sleeve for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)                                                                                                            | .198      |
| Image 3.8–18: Rear Axle Shaft for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom)                                                                                                             | .198      |
| Image 3.8–19: Rear Axle Cover Plates for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom).                                                                                                     | .199      |

| Image 3.8–20: Rear Carrier Casting for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)       | 199        |
|--------------------------------------------------------------------------------------------------------------|------------|
| Image 3.8–21: New Carrier Example                                                                            | 200        |
| Image 3.8–22: Rear Carrier Ring Gear for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)     | 200        |
| Image 3.8–23: Renault Master 2.3 DCi Rear Driveline                                                          | 203        |
| Image 3.8–24: Rear Axle Sleeves for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)             | 203        |
| Image 3.8–25: Rear Axle Shaft for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom)               | 204        |
| Image 3.8–26: Rear Axle Cover Plate for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)         | 204        |
| Image 3.8–27: Rear Carrier Casting for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)          | 205        |
| Image 3.8–28: New Carrier Example                                                                            | 205        |
| Image 3.8–29: Rear Carrier Ring Gear for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)        | 205        |
| Image 3.9–1: Front Rotor for the Silverado 1500 (Left) and Silverado 2500 (Right)                            | 212        |
| Image 3.9–2: Front Rotor Mass Reduced Component Example                                                      | 212        |
| Image 3.9–3: Front Caliper Housing; 1500 Series (Left), 2500 Series (Right)                                  | 213        |
| Image 3.9–4: Front Caliper Housing Mass Reduced Component example                                            | 213        |
| Image 3.9–5: Front Caliper Mounting Bracket; 1500 Series (Left), 2500 Series (Right)                         | 214        |
| Image 3.9–6: Front Caliper Mounting Bracket Mass Reduced Component Example                                   | 214        |
| Image 3.9–7: Rear Drum for the Silverado 1500 (Left) and Silverado 2500 (Right)                              | 215        |
| Image 3.9–8: Rear Drum Mass Reduced Component                                                                | 215        |
| Image 3.9–9: Brake Pedal Frame: 1500 Series (Left), 2500 Series (Right)                                      | 216        |
| Image 3.9–10: Brake Pedal Arm Frame Mass Reduced Assembly Example                                            | 216        |
| Image 3.9–11: Mercedes Sprinter Front Rotor/Drum and Shield Subsystem                                        | 217        |
| Image 3.9–12: Mercedes Sprinter Rear Rotor/Drum and Shield Subsystem                                         | 218        |
| Image 3.9–13: Front Rotor: 1500 Series (Left), Sprinter Series (Right)                                       | 221        |
| Image 3.9–14: Front Rotor Mass Reduced Component Example                                                     | 221        |
| Image 3.9–15: Caliner Housing, 1500 Series (Left), Sprinter Series (Right)                                   | 222        |
| Image 3.9–16: Front Caliner Housing Mass Reduced Component example                                           | 222        |
| Image 3.9–17: Front Caliper Mounting Bracket for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi     |            |
| (Right)                                                                                                      | 223        |
| Image 3 9–18: Front Caliper Mounting Bracket Mass Reduced Component Frample                                  | 223        |
| Image 3.9–10: Prom Camper Mounting Bracker Mass Reduced Component Example                                    | 223        |
| Image 3.9–70: Rear Drum, Suverauo 1500 (Left) una merecues Sprimer 511 CDt (Rigm)                            | 224<br>224 |
| Image 3.9–20. Keur Dram Mass Reduced Component                                                               | 227        |
| Image 3.0 22: Vacuum Booster Jor the Suverado 1500 (Left) and Mercedes Sprinter 511 CDI (Right)              | 225        |
| Image 3.10. 1: Chaurolat Silvarada Frama System                                                              | 225        |
| Image 3.10-2: Frame for the Silverado 1500 (Top) and Silverado 2500 (Bottom)                                 | 229        |
| Image 3.11–2. Flame for the Silverado 1500 (10p) and Silverado 2500 (Bollom)                                 | 231        |
| Image 2.11–1. Chevrolet Suverado 2500 Exhaust System                                                         | 233        |
| Image 2.11–2: Crossover Pipe for the Silverado 1500 (Left) and Silverado 2500 (Right)                        | 220        |
| Image 5.11–5. Down Fipe for the Suverado 1500 (10p) and Suverado 2500 (Bottom)                               | 239        |
| Image 3.11–4: Steel hanger brackets 1300 (Left), 2300 (Right)                                                | 239        |
| image 5.11–5: Hollow Statiliess Steel Hanger Brackets Example                                                | 239        |
| Image 3.11–0: EPDM hangers for the Suverado 1500 (Left) and Suverado 2500 (Right)                            | 240        |
| Image 3.11–7: Example of SGF° fiber reinforced hanger                                                        | 240        |
| Image 3.11–8: Muffler skin for the Silverado 1500 (Left) and Silverado 2500 (Right)                          | 241        |
| Image 3.11–9: Muffler end plates for the Silverado 1500 (Left) and Silverado 2500 (Right)                    | 242        |
| Image 3.11–10: Muffler pipe for the Silverado 1500 (10p) and Silverado 2500 (Bottom)                         | 242        |
| Image 3.11–11: Mercedes Sprinter 311 CDi Exhaust                                                             | 245        |
| Image 3.11–12: Muffler skin for the Silverado 1500 (Left) and Mercedes Sprinter (Right)                      | 246        |
| Image 3.11–13: Muffler end plates for the Silverado 1500 (Left) and Mercedes Sprinter (Right)                | 246        |
| Image 3.11–14: Muffler pipes for the Silverado 1500 (Top) and Mercedes Sprinter (Bottom)                     | 247        |
| Image 3.11–15: EPDM hangers for the Silverado 1500 (Left) and Mercedes Sprinter (Right)                      | 248        |
| Image 3.11–16: Example of SGF <sup>®</sup> fiber reinforced hanger                                           | 248        |
| Image 3.11–17: Renault Master 2.3 DCi Exhaust                                                                | 250        |
| Image 3.11–18: Muffler skin for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                 | 251        |
| Image 3.11–19: Muffler end plates for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)           | 251        |
| Image 3.11–20: Muffler pipes 1500 (Top), Renault Master 2.3 DCi (Bottom)                                     | 252        |
| Image 3.12–1: Chevrolet Silverado 2500 Fuel System                                                           | 254        |
| Image 3.12–2: Fuel Tank Side - Fuel Pump Retaining Ring for the Silverado 1500 (Left) and Silverado 2500 (Ri | ight)      |
|                                                                                                              | 257        |
| Image 3.12–3: Fuel Tank Bottom Shield for the Silverado 1500 (Top) and Silverado 2500 (Bottom)               | 257        |

| Image 3.12-4: Fuel Pumping Module Retaining Ring for the Silverado 1500 (Left) and Silverado 2500 (Right   | )258             |
|------------------------------------------------------------------------------------------------------------|------------------|
| Image 3.12–5: Example of Plastic POM Fuel Pumping Module Retaining Ring                                    | 258              |
| Image 3.12-6: Fuel Filler Neck for the Silverado 1500 (Left) and Silverado 2500 (Right)                    | 259              |
| Image 3.12–7: Fuel Filler Cap Housing for the Silverado 1500 (Left) and Silverado 2500 (Right)             | 259              |
| Image 3.12-8: Fuel Cap for the Silverado 1500 (Left) and Silverado 2500 (Right)                            | 260              |
| Image 3.12–9: Hose clamps for both the Silverado 1500 and 2500                                             | 260              |
| Image 3.12–10: Example of a lighter hose clamp                                                             | 260              |
| Image 3.12–11: Vapor Canister for the Silverado 1500 (Left) and Silverado 2500 (Right)                     | 261              |
| Image 3.12–12: Mercedes Sprinter 311 CDi Fuel system                                                       | 263              |
| Image 3.12–13: Fuel Filler Cap Housing for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right  | t).264           |
| Image 3.12–14: Fuel Cap for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)                | 264              |
| Image 3.12–15: Renault Master 2.3 DCi Fuel System                                                          | 266              |
| Image 3.12–16: Fuel Filler Cap Housing for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)    | 267              |
| Image 3.12–17: Fuel Cap for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                   | 267              |
| Image 3.13–1: Chevrolet Silverado Steering system                                                          | 269              |
| Image 3.13–2: Steering Column for the Silverado 1500 (Left) and Silverado 2500 (Right)                     | 272              |
| Image 3.13–3: Steering Wheel for the Silverado 1500 (Left) and Silverado 2500 (Right)                      | 272              |
| Image 3.13-4: Column cowl for the Silverado 1500 (Left) and Silverado 2500 (Right)                         | 272              |
| Image 3.13–5: Mercedes Sprinter 311 CDi Steering                                                           | 275              |
| Image 3.13–6: Steering Gear for the Silverado 1500 (Left) and Sprinter 311 (Right)                         | 276              |
| Image 3.13–7: Pump for the Silverado 1500 (Left) and Mercedes Sprinter 311 (Right)                         | 277              |
| Image 3.13–8: Steering Tubes for the Silverado 1500 (Left) and Sprinter 311 (Right)                        |                  |
| Image 3.13–9: Steering Column for the Silverado 1500 (Ton) and Sprinter 311 (Bottom)                       |                  |
| Image 3.13–10: Steering Wheel for the Silverado 1500 (Left) and Sprinter 311 (Right)                       |                  |
| Image 3 13–11: Renault Master 2 3 DCi Steering Components                                                  | 280              |
| Image 3 13–12: Steering Gear for the Silverado 1500 (Left) and Renault Master 2 3 (Right)                  | 281              |
| Image 3.13–13: Pump for the Silverado 1500 (Left) and Renault Master 2.3 (Right)                           | 281              |
| Image 3.13–14: Steering Tubes for the Silverado 1500 (Left) and Renault Master 2.3 (Right)                 | 282              |
| Image 3.13–15: Heat Exchangers for the Silverado 1500 (Left) and Renault Master 2.3 (Right)                | 282              |
| Image 3.13–16: Steering Column for the Silverado 1500 (Left) Renault Master 2.3 (Right)                    | 283              |
| Image 3.13–17: Steering Wheel for the Silverado 1500 (Left) and the Renault Master 2.3 (Right)             | 283              |
| Image 3.14–1: Chevrolet Silverado 1500 and 2500 Climate Control System                                     | 285              |
| Image 3.14-2: Air Distribution Duct Components are the same for Silverado 1500 and 2500                    | 287              |
| Image 3.14–2: HVAC Main Units are the same for Silverado 1500 and 2500                                     | 287              |
| Image 3.14-4: Marcadas Sprinter 311 CDi Climate Control System                                             | 280              |
| Image 3.14–5: Air Distribution Duct Components for the Silverado 1500 and 2500 (Top) and Mercedes Sprin    | nter             |
| 311 CDi (Bottom)                                                                                           | 200              |
| Image 3 14_6: HVAC Main Unit for Silverado 1500 and 2500 (Ton) and Mercedes Sprinter 311 CDi (Bottom       | 291              |
| Image 3.14–7: Renault Master 2.3 DCi Climate Control System                                                | 203              |
| Image 3.14-9: Kenduli Musier 2.5 Det Cumare Control System                                                 | 275              |
| DCi (Bottom)                                                                                               | 2.5              |
| Image 3.14. 9: HVAC Main Unit for the Silverado 1500 and 2500 (Top) and Renault Master 2.3 DCi (Bottom     | 293              |
| Image 3.15 1: Chevrolet Silverado 2500 Information, Gage and Warning Device System                         | 206              |
| Image 3.15–1. Cheviolet Suverado 2500 Information, Gage and Warning Device System                          | 208              |
| Image 3.15-2. Cluster Mask Assembly is the same for the Silverado 1500 and 2500                            | 200              |
| Image 3.15–3. Cluster Real Housing is the same for the Silverado 1500 and 2500                             | 200              |
| Image 5.15–4. Display Housing is the same for the Suverado 1500 and 2500                                   | 299              |
| Image 3.15–5: Horn outer plastic cover (LH/RH) is the same for the Silverado 1500 and 2500                 | 200              |
| Image 3.15–0: Horn outside steel cover (LH/RH) is the same for the Silverado 1500 and 2500                 |                  |
| Image 3.15–7: Horn Mounting bracket (LH/KH) is the same for the Silverado 1500 and 2500                    |                  |
| Image 5.15–6: Merceaes Sprinter 511 CDI Information, Gage, and Warning Device System                       |                  |
| Image 5.15–9: Cluster Mask Assembly for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 511 CD    | <i>יו</i><br>202 |
| (Kight)                                                                                                    |                  |
| Image 5.15–10: Cluster Kear Housing for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CD    | 1                |
| (Kigni)                                                                                                    |                  |
| Image 5.15–11: Display Housing for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Rig   | 304 sht)         |
| Image 5.15–12: Horn Outside steel cover for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 ( | CDi              |
| ( <i>Kight</i> )                                                                                           |                  |
| Image 3.15–13: Horn Mounting bracket for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 C    | Di               |
| ( <i>Ktght</i> )                                                                                           | 305              |

| Image 3.15–14: Renault Master 2.3 DCi Information, Gage and Warning Device System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .307                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Image 3.15–15: Cluster Mask Assembly for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Renault Master 2.3 DCi | ight)<br>308          |
| Image 3.15–16: Cluster Rear Housing for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Rig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t)                    |
| Image 3.15–17: Horn Outside steel cover for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                   |
| Image 3.15–18: Horn Mounting bracket for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .309<br>light)<br>300 |
| Image 3 16_1: Chevrolet Silverado electrical power supply system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 311                   |
| Image 3.16–2: Battery for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 313                   |
| Image 3.16–3: Battery Tray for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .313                  |
| Image 3.16–4: 2012 Ford F150 Battery Tray Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .313                  |
| Image 3.16–5: Auxiliary battery tray for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .314                  |
| Image 3.16–6: Mercedes Sprinter 311 CDi Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .316                  |
| Image 3.16–7: Battery for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .316                  |
| Image 3.16–8: Renault Master 2.3 DCi Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .318                  |
| Image 3.16–9: Battery for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .319                  |
| Image 3.17–1: Headlamps for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .321                  |
| Image 3.17–2: Headlamp Housing for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .322                  |
| Image 3.17–3: Headlamp inner reflector for the Silverado 1500 (Left) and Silverado 2500 (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .323                  |
| Image 3.17–4: Mercedes Sprinter 311 CDi Headlamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .325                  |
| Image 3.17–5: Headlamp housing for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .325                  |
| Image 3.17–0: Headiamp inner reflector for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .320                  |
| Image 3.17-7: Renault Master 2.5 DCI Headlamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .327                  |
| Image 3.17–6. Headlamp housing for the Silverado 1500 (Left) and Renault Master 2.5 DCi (Right)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 328                   |
| Image 3.17–9. Heddiamp inner reflector for the Silverado 1500 (Left) and Kenduli Musler 2.5 DCi (Kight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 331                   |
| Image 3.18-7: Front Rumper Harness (Wiring on front module) for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 334                   |
| Image 3.18–3: Engine Wire Harness for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 334                   |
| Image 3.18–4: Power train mass cable (ground cable) for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .335                  |
| Image 3.18–5: Alternator Power Cable for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .335                  |
| Image 3.18-6: IP Harness 1 for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .336                  |
| Image 3.18–7: IP Harness 2 for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .337                  |
| Image 3.18-8: Body and Rear End Wiring (Complete) for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .337                  |
| Image 3.18–9: Body and Rear End Wiring (Complete) for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .338                  |
| Image 3.18–10: Differential wiring for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .338                  |
| Image 3.18–11: Under frame/tow harness (wiring on understructure) for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .339                  |
| Image 3.18–12: Battery cable – primary positive (starter wiring harness) for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .339                  |
| Image 3.18–13: Battery Cable - Primary Negative for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .340                  |
| Image 3.18–14: Battery Cable - Positive for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .341                  |
| Image 3.18–15: Fuse Box (Support) for the Silverado 1500 and 2500 $\dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .341                  |
| Image 3.18–10: Fuse box – cover for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .342                  |
| Image 3.18–17: Center console wiring for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .342                  |
| Image 3.18–10: Front door harness for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 345                   |
| Image 3.18–19. From abor harness for the Silverado 1500 and 2500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 345                   |
| Image 3.18–20. Real above numers for the Silverado 1500 and 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .344<br>ts347         |
| Image 3.18–22: Front Bumper Harness (Wiring on front module) for the Silverado 1500 and 2500 (Top) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5517                  |
| Mercedes Sprinter 311 CDi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .348                  |
| Image 3.18–23: Engine Wire Harness for the Silverado 1500 and 2500 (Top) and Mercedes Sprinter 311 CDi<br>(Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 348                   |
| Image 3.18–24: Fuse Box (Support) for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>ight</i> )         |
| Image 3.18–25: Renault Master 2.3 DCi Electrical Distribution and Electrical Controls System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .349                  |
| Image 3.18–26: Engine Wire Harness for the Silverado 1500 and 2500 (Top) and Renault Master 2.3 DCi (Bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tom)<br>.353          |
| Image 3.18–27: Body and Rear End Wiring (Complete) for the Silverado 1500 and 2500 (Top) and Renault Ma 2.3 DCi (Bottom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ster. 355             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

## List of Tables

| Table 0-1: Vehicle Level Summary, Silverado 2500                                        | 22  |
|-----------------------------------------------------------------------------------------|-----|
| Table 0-2: Vehicle Level Summary, Mercedes Sprint                                       | 23  |
| Table 0-3: Vehicle Level Summary, Renault Master                                        | 24  |
| Table 2-1: Vehicle Level Summary, Silverado 2500                                        | 32  |
| Table 2-2: Vehicle Cost Curve w/ Trendline, Silverado 2500                              | 33  |
| Table 2-3: Vehicle Level Summary, Mercedes Sprinter                                     | 34  |
| Table 2-4: Vehicle Cost Curve w/ Trendline, Mercedes Sprinter                           | 35  |
| Table 2-5: Vehicle Level Summary, Renault Master                                        | 36  |
| Table 2-6: Vehicle Cost Curve w/ Trendline, Renault Master                              | 37  |
| Table 3-1: Mass-Reduction and Cost Impact, Silverado 1500                               |     |
| Table 3-2: Mass Reduction and Cost Impact for Engine System, Silverado 2500             | 43  |
| Table 3-3: System Scaling Analysis, Silverado 2500                                      | 44  |
| Table 3-4: Engine System Comparison, Silverado 1500 and 2500                            | 51  |
| Table 3-5: Mass-Reduction and Cost Impact for Engine System, Mercedes Sprinter          | 53  |
| Table 3-6: System Scaling Analysis, Mercedes Sprinter                                   | 54  |
| Table 3-7: Mass-Reduction and Cost Impact for Engine System, Renault Master             | 58  |
| Table 3-8: System Scaling Analysis, Renault Master                                      | 60  |
| Table 3-9: Transmission System Mass Reduction Summary, Silverado 1500                   | 61  |
| Table 3-10: Mass-Reduction and Cost Impact for Transmission System, Silverado 2500      | 64  |
| Table 3-11: System Scaling Analysis for Transmission System, Silverado 2500             | 66  |
| Table 3-12: Transmission System Comparison, Silverado 1500 and 2500                     | 70  |
| Table 3-13: Mass-Reduction and Cost Impact for Transmission System, Mercedes Sprinter   | 71  |
| Table 3-14: System Scaling Analysis for Transmission System, Mercedes Sprinter          | 72  |
| Table 3-15: Mass-Reduction and Cost Impact for Transmission System, Renault Master      | 75  |
| Table 3-16: System Scaling Analysis for Transmission System, Renault Master             | 76  |
| Table 3-17: Body Group -A- System Mass Reduction Summary Silverado 1500                 | 79  |
| Table 3-18: Mass-Reduction and Cost Impact for Body Group -A- System, Silverado 2500    | 82  |
| Table 3-19: System Scaling Analysis Body Group -A- System, Silverado 2500               | 83  |
| Table 3-20: Body Group -A- System Comparison, Silverado 1500 and 2500                   | 94  |
| Table 3-21: Mass-Reduction and Cost Impact for Body Group -A- System, Mercedes Sprinter | 95  |
| Table 3-22: System Scaling Analysis for Body Group -A- System, Mercedes Sprinter        | 96  |
| Table 3-23: Mass-Reduction and Cost Impact for Body Group -A- System, Renault Master    | 100 |
| Table 3-24: System Scaling Analysis for Body Group -A- System, Renault Master           | 101 |
| Table 3-25: Body Group -B- System Mass Reduction Summary, Silverado 1500                | 105 |
| Table 3-26: Mass-Reduction and Cost Impact for Body Group -B- system, Silverado 2500    | 108 |
| Table 3-27: System Scaling Analysis Body Group -B- System, Silverado 2500               | 109 |
| Table 3-28: Body Group -B- System Comparison, Silverado 1500 and 2500                   | 115 |
| Table 3-29: Mass-Reduction and Cost Impact for Body Group -B- System, Mercedes Sprinter | 116 |
| Table 3-30: System Scaling Analysis, Body Group -B- System, Mercedes Sprinter           | 117 |
| Table 3-31: Mass-Reduction and Cost Impact for Body Group -B- Subsystem, Renault Master | 124 |
| Table 3-32: System Scaling Analysis Body Group -B- Subsystem, Renault Master            | 125 |
| Table 3-33: Body Group -C- System Mass Reduction Summary, Silverado 1500                | 132 |
| Table 3-34: Mass-Reduction and Cost Impact for Body Group -C- System, Silverado 2500    | 134 |
| Table 3-35: System Scaling Analysis Body Group C System, Silverado 2500                 | 135 |
| Table 3-36: Body Group -C- System Comparison, Silverado 2500                            | 140 |
| Table 3-37: Mass-Reduction and Cost Impact for Body Group -C- System, Mercedes Sprinter | 141 |
| Table 3-38: System Scaling Analysis Body Group -C- System, Mercedes Sprinter            | 142 |
| Table 3-39: Mass-Reduction and Cost Impact for Body Group -C- System, Renault Master    | 146 |
| Table 3-40: System Scaling Analysis Body Group -C- System, Renault Master               | 147 |
| Table 3-41: Body Group -D- System Mass Reduction Summary, Silverado 1500                | 151 |
| Table 3-42: Mass-Reduction and Cost Impact for Body Group -D- System, Silverado 2500    | 152 |
| Table 3-43: System Scaling Analysis Body Group D System, Silverado 2500                 | 153 |
| Table 3-44: Body Group -D-System Comparison, Silverado 1500 and 2500                    | 155 |
| Table 3-45: Mass-Reduction and Cost Impact for Body Group -D- System, Mercedes Sprinter | 156 |
| Table 3-46: System Scaling Analysis Body Group -D- System, Mercedes Sprinter            |     |
| Table 3-47: Mass-Reduction and Cost Impact for Body Group -D- System, Renault Master    | 159 |
| Table 3-48: System Scaling Analysis Body Group -D- System, Renault Master               | 160 |

| Table 3-49:                | Suspension System Mass Reduction Summary, Silverado 1500                     | 162 |
|----------------------------|------------------------------------------------------------------------------|-----|
| Table 3-50:                | Mass-Reduction and Cost Impact for Suspension System, Silverado 2500         | 165 |
| Table 3-51:                | Suspension Components Scaling Analysis Results, Silverado 2500               | 166 |
| Table 3-52:                | Suspension System Comparison, Silverado 1500 and 2500                        | 173 |
| Table 3-53:                | Mass-Reduction and Cost Impact for Suspension System, Mercedes Sprinter      | 175 |
| Table 3-54:                | Suspension Components Scaling Analysis Results, Mercedes Sprinter            | 176 |
| Table 3-55:                | Mass-Reduction and Cost Impact for Suspension System, Renault Master         | 182 |
| Table 3-56:                | Suspension Components Scaling Analysis Results, Renault Master               |     |
| Table 3-57:                | Driveline System Mass Reduction Summary, Silverado 1500                      | 184 |
| Table 3-58:                | Mass-Reduction and Cost Impact for Driveline System, Silverado 2500          |     |
| Table 3-59:                | System Scaling Analysis Driveline System, Silverado 2500                     |     |
| Table 3-60:                | Driveline System Comparison, Silverado 1500 and 2500                         |     |
| Table 3-61:                | Mass-Reduction and Cost Impact for Driveline System, Mercedes Sprinter       |     |
| Table 3-62:                | System Scaling Analysis Driveline System. Mercedes Sprinter                  |     |
| Table 3-63:                | Mass-Reduction and Cost Impact for Driveline System, Renault Master          |     |
| Table 3-64:                | System Scaling Analysis Driveline System, Renault Master                     | 202 |
| Table 3-65                 | Brake System Mass Reduction Summary Silverado 1500                           | 206 |
| Table 3-66:                | Mass-Reduction and Cost Impact for Brake System Silverado 2500               | 210 |
| Table 3-67:                | Brake Components Scaling Analysis Results Silverado 2500                     | 211 |
| Table 3-68:                | Brake System Comparison Silverado 1500 and 2500                              | 217 |
| Table 3-69:                | Mass-Reduction and Cost Impact for Brake System Mercedes Sprinter            | 219 |
| Table 3-70:                | Brake Components Scaling Analysis Results Mercedes Sprinter                  | 220 |
| Table 3-71:                | Mass-Reduction and Cost Impact for Brake System Renault Master               | 226 |
| Table 3-71.                | Components Scaling Analysis Results Renault Master Brake                     | 220 |
| Table 3-72.                | Frame and Mounting System Mass Reduction Summary                             |     |
| Table 3-75.                | Mass Reduction and Cost Impact for Frame and Mounting System Silverado 2500  | 230 |
| Table 3-74.                | System Scaling Analysis Frame and Mounting System, Silverado 2500            | 230 |
| Table 2-75.                | Example 6 Mounting System Comparison Silvarado 1500 and 2500                 | 230 |
| Table 3-70.<br>Table 2 77. | Frame & Mounting System Comparison, Suverado 1500 and 2500                   | 232 |
| Table 3-77:                | System Sociling Anglusis Engues System Managlas Sprinter                     |     |
| Table 2-76.                | System Scaling Analysis Flame System, Merceaes Sprinter                      |     |
| Table 2-79.                | System Sealing Analysis Engues System, Pengult Master                        |     |
| Table 3-60.                | System Scaling Analysis Frame System, Kenami Master                          | 234 |
| Table 3-01:                | Exhaust System Mass Reduction Summary, Suverado 1500                         |     |
| Table 3-82:                | Mass-Reduction and Cost Impact for Exhaust System, Silverado 2500            |     |
| Table 3-83:                | System Scaling Analysis for Exhaust System, Silverado 2500                   |     |
| Table 3-84:                | System Comparison, Silverado 2500                                            |     |
| Table 3-85:                | Mass-Reduction and Cost Impact for Exhaust System, Mercedes Sprinter         |     |
| Table 3-80:                | System Scaling Analysis for Exhaust System, Merceaes Sprinter                |     |
| Table 3-8/:                | Mass-Reduction and Cost Impact for Exhaust System, Renault Master            |     |
| Table 3-88:                | System Scaling Analysis Exhaust System, Renault Master                       |     |
| Table 3-89:                | Fuel System Mass Reduction Summary, Silverado 1500                           |     |
| Table 3-90:                | Mass-Reduction and Cost Impact for Fuel System, Silverado 1500               |     |
| <i>Table 3-91:</i>         | System Scaling Analysis Fuel System, Silverado 2500                          |     |
| <i>Table 3-92:</i>         | Fuel System Comparison, Silverado 1500 and 2500                              |     |
| <i>Table 3-93:</i>         | Mass-Reduction and Cost Impact for Fuel System, Mercedes Sprinter            |     |
| Table 3-94:                | System Scaling Analysis Fuel System, Mercedes Sprinter                       |     |
| Table 3-95:                | Mass-Reduction and Cost Impact for Fuel System, Renault Master               |     |
| Table 3-96:                | System Scaling Analysis Fuel System, Renault Master                          |     |
| Table 3-97:                | Steering System Mass Reduction Summary, Silverado 1500                       |     |
| Table 3-98:                | Mass-Reduction and Cost Impact for Steering System, Silverado 2500           |     |
| Table 3-99:                | System Scaling Analysis Steering System, Silverado 2500                      | 271 |
| Table 3-100                | ): Steering System Comparison, Silverado 1500 and 2500                       |     |
| Table 3-101                | l: Mass-Reduction and Cost Impact for Steering System, Mercedes Sprinter     |     |
| Table 3-102                | 2: System Scaling Analysis Steering System, Mercedes Sprinter                |     |
| Table 3-103                | 3: Mass-Reduction and Cost Impact for Steering System, Renault Master        |     |
| Table 3-104                | I: System Scaling Analysis Steering System, Renault Master                   |     |
| Table 3-105                | 5: Climate Control System Mass Reduction Summary, Silverado 1500             |     |
| Table 3-106                | 6: Mass-Reduction and Cost Impact for Climate Control System, Silverado 2500 |     |
| Table 3-107                | 7: System Scaling Analysis Climate Control System, Silverado 2500            |     |

| Table 3-108: Climate Control System Comparison, Silverado 1500 and 2500                                                                                                                               | 288     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table 3-109: Mass-Reduction and Cost Impact for Climate Control System, Mercedes Sprinter                                                                                                             | 288     |
| Table 3-110: System Scaling Analysis Climate Control System, Mercedes Sprinter                                                                                                                        | 289     |
| Table 3-111: Mass-Reduction and Cost Impact for Climate Control System, Renault Master                                                                                                                | 292     |
| Table 3-112: System Scaling Analysis Climate Control System, Renault Master                                                                                                                           | 292     |
| Table 3-113: Information, Gage and Warning Device System Mass Reduction Summary, Silverado 1500                                                                                                       | 295     |
| Table 3-114: Mass-Reduction and Cost Impact for Information, Gage and Warning Device System, Silverado                                                                                                | 2500    |
| Table 3-115: System Scaling Analysis for Information, Gage and Warning Device System, Silverado 2500                                                                                                  | 296     |
| Table 3-115: System Scaling Analysis for Information, Oage and Warning Device System, Silverado 2500                                                                                                  | 301     |
| Table 3-110. Information, Ouge, and Warning Device System Comparison, Suverado 1500 and 2500<br>Table 3-117: Mass Reduction and Cost Impact for Information, Gage and Warning Device System, Marcades |         |
| Surintar                                                                                                                                                                                              | 302     |
| Table 3-118: System Scaling Analysis Information Gage and Warning Device System Mercedes Sprinter                                                                                                     | 302     |
| Table 3-110: Mass-Reduction and Cost Impact for Information, Gage and Warning Device System, Merceues Spriner                                                                                         |         |
| Tuble 5 117. Muss Reduction and cost impact for information, ouge and warning before system, Rehaut in                                                                                                | 305     |
| Table 3-120: System Scaling Analysis Information Gage and Warning Device System Renault Master                                                                                                        | 306     |
| Table 3-121: Electrical Power Supply System Mass Reduction Summary Silverado 1500                                                                                                                     | 300     |
| Table 3-122: Mass-Reduction and Cost Impact for Electrical Power Supply System Silverado 2500                                                                                                         | 312     |
| Table 3-123: Flectrical Power Supply System Scaling Analysis for the Silverado 1500 and 2500                                                                                                          | 312     |
| Table 3-124: Electrical Power Supply System Comparison Silverado 1500 and 2500                                                                                                                        | 314     |
| Table 3-125: Mass-Reduction and Cost Impact for Electrical Power Supply System Mercedes sprinter                                                                                                      | 314     |
| Table 3-126: System Scaling Analysis Flectrical Power Supply System Mercedes Sprinter                                                                                                                 | 315     |
| Table 3-127: Mass-Reduction and Cost Impact for Electrical Power Supply System, increased Sprinter manual Master                                                                                      | 317     |
| Table 3-128: System Scaling Analysis for Electrical Power Supply System, Renault Master                                                                                                               | 318     |
| Table 3-129: Lighting System Mass Reduction Summary Silverado 1500                                                                                                                                    | 320     |
| Table 3-130: Mass-Reduction and Cost Impact for Lighting System Silverado 2500                                                                                                                        | 321     |
| Table 3-131: System Scaling Analysis Lighting System Silverado 2500                                                                                                                                   | 322     |
| Table 3-132: Lighting System Comparison Silverado 1500 and 2500                                                                                                                                       | 323     |
| Table 3-133: Mass-Reduction and Cost Impact for Lighting System Mercedes Sprinter                                                                                                                     | 323     |
| Table 3-134: System Scaling Analysis Lighting System Mercedes Sprinter                                                                                                                                | 324     |
| Table 3-135: Mass-Reduction and Cost Impact for Lighting System, Renault Master.                                                                                                                      |         |
| Table 3-136: System Scaling Analysis Lighting System, Renault Master                                                                                                                                  |         |
| Table 3-137: Electrical Distribution and Electrical Controls System Mass Reduction Summary, Silverado 150                                                                                             | 0 328   |
| Table 3-138: Mass-Reduction and Cost Impact for Electrical Distribution and Electrical Controls System. Sil                                                                                           | verado  |
| 2500                                                                                                                                                                                                  |         |
| Table 3-139: System Scaling Analysis Electrical Distribution and Electrical Controls System. Silverado 2500                                                                                           | 333     |
| Table 3-140: Electrical Distribution and Electrical Controls System Comparison, Silverado 1500 and 2500                                                                                               | 344     |
| Table 3-141: Mass-Reduction and Cost Impact for Electrical Distribution and Electrical Controls System, Me                                                                                            | ercedes |
| Sprinter                                                                                                                                                                                              | 346     |
| Table 3-142: System Scaling Analysis Electrical Distribution and Electrical Controls System, Mercedes Sprin                                                                                           | ter346  |
| Table 3-143: Mass-Reduction and Cost Impact for Electrical Distribution and Electrical Controls System, Red                                                                                           | nault   |
| Master                                                                                                                                                                                                | 351     |
| Table 3-144: System Scaling Analysis Electrical Distribution and Electrical Controls System, Renault Master                                                                                           | 352     |

## **EXECUTIVE SUMMARY**

The United States Environmental Protection Agency (EPA) contracted with FEV, Inc. to determine incremental direct manufacturing costs for a set of advanced medium-duty vehicle technologies. The technologies selected are on the leading edge for reducing emissions of greenhouse gases in the future, primarily in the form of tailpipe carbon dioxide ( $CO^2$ ).

The purpose of this study was to evaluate the incremental costs of mass reduction levels that are feasible within a given timeframe, without sacrificing utility, performance, or safety.

It has been proven that reducing vehicle mass has a beneficial correlation to fuel economy and reduction in greenhouse gases so to the extent that cost-effective mass reduction can be achieved, techniques like those described in this report may be employed by manufacturers to reduce greenhouse gas emissions and improve fuel economy.

The scope of this study was to take the original mass reduction ideas from the previous Silverado 1500 Mass Reduction and Cost Analysis<sup>[1]</sup> and apply them to the three selected vehicles in this study:

- 2013 Chevy Silverado 2500 4WD LT Ext Cab
- 2007 Mercedes Sprinter 311 CDi
- 2010 Renault Master 2.3 DCi 125 L3H2

The methodology employed was based on a comparison and scaling approach. Results from the previous 2011 Silverado 1500 analysis were evaluated for applicability to the three light/medium duty vehicles in this study. In general this analysis did not investigate and implement alternative mass reduction ideas which were not applied to the Silverado 1500. Any exceptions to this methodology are identified within the report.

Each study vehicle was evaluated against the Silverado 1500 relative to component content and similarities (e.g. design, function, material). This was accomplished by assembling BOMs for each of the three vehicles in the same format as used on the 1500 Silverado. At each product structure level (i.e., system, subsystem, sub-subsystem and assemblies and components) a comparison evaluation was made.

Where component matches were made (i.e., between the 1500 Silverado and study vehicle), the Silverado 1500 mass reduction and cost results were applied to case study vehicle. For example if the 1500 Silverado achieved a mass reduction of 40.31% on the front lower control arm, converting from cast iron to forge aluminum, and the 2500 Silverado had a cast iron lower control arm, the same 40.31% mass reduction was taken. Using the developed incremental cost/kilogram for lightweighting the Silverado lower control, a cost estimate can be made for the 2500; mass reduction of the 2500 lower control arm multiplied by the 1500 Silverado cost/kilogram.

When differences existed between components evaluated in the Silverado 1500 and each of the three case study vehicles, the team made engineering estimates on how much of the Silverado 1500 mass-reduction concept could be applied to the similar component on the case study vehicle. This

<sup>&</sup>lt;sup>1</sup> FEV-P310324-02\_R2.0: Mass Reduction and Cost Analysis – Light-Duty Pickup Truck Model Years 2020-2025

generally happened at the assembly level were multiple mass-reduction concepts were applied. If component differences were significant (i.e., design, function, performance, material) or the component design was already similar to the mass reduced concept on the 1500 Silverado, no mass reduction was taken.

To support the development of the vehicle BOMs and acquisition of component and assembly attribute data (mass, size, material, quantity, etc.) two methods were implemented.

- For the 2500 Silverado, the vehicle was purchased and disassembled using the standard FEV teardown and BOM development methodology.
- For the Mercedes Sprinter and Renault Master, the A2MAC1 database was used to acquire the relevant vehicle, component and assembly attribute data.

The foundation of this comparison and scaling work was the Silverado 1500 Mass Reduction and Cost Analysis<sup>1</sup> which was based on a detailed and comprehensive teardown, BOM creation, mass-reduction technology investigation, engineering assessment of applicable ideas, and comprehensive model validation. In addition detailed, transparent and production representative cost models consisting of an extensive set of linked spreadsheets and associated macros were used to determine the Net Incremental Direct Manufacturing Cost (NIDMC) impact of the mass reduced pickup truck with respect to the production stock 1500 Silverado. The mass reduction achieved in the final solution of the 1500 Silverado analysis was 511 kilograms (20.8% vehicle mass reduction). The NIDMC impact was an increase of \$2,224 resulting in an average cost per kilogram of \$4.35.

Key boundary conditions for the analysis included mass production volume (i.e., 450K), manufacturing in the US, mature market conditions, and a high level of product maturity.

The results are provided in the following tables and charts which summarize the study findings.

<u>Reference Overview</u>

The reference for this study was: FEV-P310324-02\_R2.0: Mass Reduction and Cost Analysis – Light-Duty Pickup Truck Model Years 2020-2025

#### <u>Vehicle Level Summaries Overview</u>

The Vehicle Level Summaries <sup>[2]</sup> provide information on Mass Reduction and Cost at a vehicle system level. At the bottom of each table (row "a"), vehicle system mass and cost are summed establishing vehicle level results.

This study, like the original 1500 Silverado, did not include a comprehensive, full vehicle, noise, vibration and harshness (NVH) evaluation. As a result an NVH countermeasure, proportional to that applied in the 1500 Silverado study, was also applied to each vehicle in this study. The vehicle NVH countermeasure allowance is captured in row "b" of each vehicle summary table below. Row "c" of the vehicle summary table provides the vehicle total with the NVH countermeasure allowance.

The values in each vehicle summary table column were determined based on a standard assumptions and methodologies.

| Mass Reduction Impact by System           |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
|-------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|--|
| Mass<br>Reduction<br>New Tech<br>"kg" (1) | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |

| Column                       | Explanation                                                                                                                                    |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass Reduction New Tech "kg" | Mass reduction ideas that were originated from<br>the original Silverado 1500 Lightweighting<br>study that were applied to the select vehicles |
| Mass Reduction Comp "kg"     | Added weight reduction from compounding/secondary mass savings                                                                                 |
| Mass Reduction Total "kg"    | Combined weight reduction from applying the new tech and the compounding/secondary mass savings                                                |
| Cost Impact New Tech "\$"    | Cost for applying the new tech mass reduction<br>ideas from the original Silverado 1500<br>Lightweighting study to the select vehicles.        |
| Cost Impact Comp "\$"        | Cost for additional compounding/secondary mass savings.                                                                                        |
| Cost Impact Total "\$"       | Combined cost from applying the new tech and compounding/secondary cost savings.                                                               |
| Cost/Kilogram Total "\$/kg"  | "Cost Impact Total" divided by the "Mass<br>Reduction Total" to equal a cost per kilogram.                                                     |

 $<sup>^{2}</sup>$  See section 2.1 for a complete explanation of the Vehicle Level Summaries and Cost Curve assumptions and methodologies.

| Column                           | Explanation                                                                 |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| Vehicle Mass Reduction Total "%" | Mass reduction as a percentage of the original production stock curb weight |  |  |  |  |

<u>Vehicle Cost Curve with Trendlines Overview</u>

Cost curves with and without secondary mass savings were developed for each vehicle evaluated. In addition piecewise trendlines were developed for cost curves with secondary mass savings. The trendlines<sup>[3]</sup> formulas are located in a table directly under each chart. Cost curves and formulas include the NVH countermeasure allowance.

| Column                                  | Explanation                                                                                                  |  |  |  |  |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Cost/Kilogram Mass Reduction<br>Formula | Average cost of cumulative mass reduction<br>summed in order of best value (i.e., cost/kg) to<br>least value |  |  |  |  |  |  |  |
| % Vehicle Mass Reduction                | Mass reduction as a percentage of the original production stock curb weight                                  |  |  |  |  |  |  |  |
|                                         |                                                                                                              |  |  |  |  |  |  |  |
| Trendline                               | Linear piecewise trendlines reprenting two                                                                   |  |  |  |  |  |  |  |

general regions of vehicle mass reduction (VMR): 0 to  $\approx 4\%$  VMR and 4 to 20% VMR

Following are the Vehicle Level Summaries and Cost Curves for the three select vehicles used in this study. Because the 2500 Silverado was similar in primary design to the 1500 Silverado, many of the 1500 Silverado mass reduction ideas were transferable. This led to mass reduction and cost values comparable between the two vehicles. If the mass of the CNG dual fuel components (239 kg) are removed from the curb weight of the 2500 Silverado (3086 kg), the percent vehicle mass reduction increases to 20.4% versus the 1500 Silverado at 20.8% (the 1500 Silverado evaluated was not a dual fuel CNG vehicle). The lower cost/kilogram of the 2500 Silverado is largely associated with more absolute mass reduction coming from vehicle systems where mass reduction is more affordable (i.e., engine, transmission, brakes, suspension at \$2.50-3.50/kg) versus more expensive systems like body-in-white and enclosures at \$5.50-\$6.00/kg (Table 0-1). The absolute mass reduction difference, for systems like Body Group A (body-in-white and enclusures), between the 1500 and 2500 Silverado was minimal due to similarities in production stock designs and component mass.

In comparion the Sprinter and Master vehicles are unibody vans with less commonality to the 1500 Silverado. Although because some of the larger system contributors to mass reduction were transferable (i.e., Body Group A, Body Group B, Suspension, Brakes), significant mass reduction was still achieved. As shown in Table 0-2 and Table 0-3, the largest contributor to vehicle mass reduction was Body Group A contributing over 50% of the overall vehicle mass reduction. This

<sup>&</sup>lt;sup>3</sup> See section 2.1 for a complete explanation of the Vehicle Level Summaries and Cost Curve assumptions and methodologies.

large contribution also had a negative impact on costs increasing the average cost/kilogram for mass reduction to near \$6/kg for both van applications.

The impact of having less mass reduction concepts transferable to the van applications, compounded with the large contribution from Body Group A, is also visible on the cost curves for both the Sprinter and Master vehicles (Figure 0-2 and Figure 0-3). This is witnessed by the large gap in datapoints between  $\approx 7\%$  and  $\approx 17\%$  vehicle mass reduction.

#### 2013 Chevy Silverado 2500 4WD LT Ext Cab ٠

|        | <u></u>                                                  | Mass Reduction Impact by System           |                                       |                                        |                            |                                    |                           |                                       |                                              |  |  |
|--------|----------------------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------|----------------------------|------------------------------------|---------------------------|---------------------------------------|----------------------------------------------|--|--|
| System | Description                                              | Mass<br>Reduction<br>New Tech<br>"kg" (1) | Mass<br>Reduction<br>Comp<br>"kg" (1) | Mass<br>Reduction<br>Total<br>"kg" (1) | Cost<br>Impact<br>New Tech | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total   | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
| 00     | Silverado 2500                                           |                                           |                                       |                                        |                            |                                    |                           |                                       |                                              |  |  |
| 01     | Engine System                                            | 63.48                                     | 8.55                                  | 72.03                                  | \$224.28                   | \$40.70                            | \$183.58                  | \$2.55                                | 2.72%                                        |  |  |
| 02     | Transmission System                                      | 33.75                                     | 4.86                                  | 38.61                                  | \$110.67                   | \$20.76                            | -\$89.91                  | -\$2.33                               | 1.25%                                        |  |  |
| 03     | Body System (Group -A-)                                  | 187.20                                    | 17.85                                 | 205.05                                 | -\$1,143.26                | -\$76.73                           | -\$1,219.98               | -\$5.95                               | 6.65%                                        |  |  |
| 03     | Body System (Group -8-)                                  | 32.10                                     | 0.00                                  | 32.10                                  | -\$125.41                  | \$0.00                             | -\$125.41                 | -\$3.91                               | 1.04%                                        |  |  |
| 03     | Body System (Group -C-)                                  | 2.07                                      | 0.00                                  | 2.07                                   | \$3.23                     | \$0.00                             | \$3.23                    | \$1.56                                | 0.07%                                        |  |  |
| 03     | Body System (Group -D-) Glazing & Body<br>Mechatronics   | 3.80                                      | 0.00                                  | 3.80                                   | \$1.94                     | \$0.00                             | \$1.94                    | \$0.51                                | 0.12%                                        |  |  |
| 04     | Suspension System                                        | 113.32                                    | 12.49                                 | 125.81                                 | \$386.64                   | \$90.61                            | -\$296.03                 | \$2.35                                | 4.08%                                        |  |  |
| 05     | Driveline System                                         | 25.11                                     | 0.00                                  | 25.11                                  | \$48.71                    | \$0.00                             | \$48.71                   | \$1.94                                | 0.81%                                        |  |  |
| 06     | Brake System                                             | 54.31                                     | 2.08                                  | 56.39                                  | -\$192.82                  | \$21.56                            | -\$171.27                 | -\$3.04                               | 1.83%                                        |  |  |
| 07     | Frame and Mounting System                                | 0.00                                      | 32.80                                 | 32 80                                  | \$0.00                     | -\$75.31                           | -\$75.31                  | -\$2.30                               | 1 06%                                        |  |  |
| 80     | Clutch System                                            | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                     | \$0.00                             | \$0.00                    | \$0.00                                | 0.00%                                        |  |  |
| 09     | Exhaust System                                           | 8.68                                      | 0.48                                  | 9.16                                   | -\$21.96                   | \$6.55                             | -\$15.41                  | -\$1.68                               | 0.30%                                        |  |  |
| 10     | Fuel System                                              | 0.65                                      | 8.21                                  | 8.86                                   | \$1.00                     | \$12.42                            | \$13.42                   | \$1.52                                | 0.29%                                        |  |  |
| 11     | Steering System                                          | 3.54                                      | 0.00                                  | 3.54                                   | \$5.53                     | \$0.00                             | \$5.53                    | \$1.56                                | 0.11%                                        |  |  |
| 12     | Climate Control System                                   | 1.75                                      | 0.00                                  | 1 75                                   | \$13.40                    | \$0.00                             | \$13.40                   | \$7.68                                | 0.06%                                        |  |  |
| 13     | Information, Gage and Warning Divice System              | 0.25                                      | 0.00                                  | 0.25                                   | \$0.65                     | \$0.00                             | \$0.65                    | \$2.62                                | 0.01%                                        |  |  |
| 14     | Electrical Power Supply System                           | 12.67                                     | 0.00                                  | 12.67                                  | \$170.81                   | \$0.00                             | -\$170.81                 | \$13.48                               | 0.41%                                        |  |  |
| 15     | In-Vehicle Entertainment System                          | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                     | \$0.00                             | \$0.00                    | \$0.00                                | 0.00%                                        |  |  |
| 16     | Vacuum Distrbution Subsystem                             | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                     | \$0.00                             | \$0.00                    | \$0.00                                | 0.00%                                        |  |  |
| 17     | Lighting System                                          | 0.39                                      | 0.00                                  | 0.39                                   | -\$2.02                    | \$0.00                             | -\$2.02                   | -\$5.23                               | 0.01%                                        |  |  |
| 18     | Electrical Distribution and Electronic Control<br>System | 8.47                                      | 0.00                                  | 8.47                                   | \$61.54                    | \$0.00                             | \$61.54                   | \$7.26                                | 0.27%                                        |  |  |
| 19     | Electronic Features System                               | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                     | \$0.00                             | \$0.00                    | \$0.00                                | 0.00%                                        |  |  |
| a      | Analysis TotalsWithout NVH Counter Measures              | 551.54                                    | 87 32                                 | 638.85                                 | -\$2,241.86                | \$40.55                            | -\$2,201.31               | -\$3.45                               | 20 70%                                       |  |  |
| b      | Vehicle NVH Counter Measures                             | -                                         | -                                     | -56.95                                 |                            |                                    | -\$170.84                 |                                       |                                              |  |  |
| C      | Analysis Totals With NVH Counter Measures →              |                                           |                                       | 581.90<br>(Decrease)                   |                            |                                    | -\$2,372.16<br>(Increase) | -\$4.08<br>(Increase)                 | 18.86%                                       |  |  |

#### Table 0-1: Vehicle Level Summary, Silverado 2500

(1) "+" = mass decrease, "-" = mass increase (2) "+" = cost decrease, "-" = cost increase



| Trendline Description                        | Cost/Kilogram Mass          | % Vehicle Mass   |  |  |
|----------------------------------------------|-----------------------------|------------------|--|--|
|                                              | Reduction Formula           | Reduction Zone   |  |  |
| With Mass Compounding/Socondary Mass Savings | \$/kg =163.26*(VMR) -7.8466 | 0% < VMR ≤ 4.1%  |  |  |
| with mass compounding/Secondary mass savings | \$/kg = 34.482*(VMR)-2.5938 | 4.1% < VMR ≤ 19% |  |  |

VMR = Vehicle Mass Reduction (Silverado 2500)

Figure 0-1: Vehicle Cost Curve w/ Trendline, Silverado 2500

#### 2007 Mercedes Sprinter 311 CDi ٠

|        |                                                          | Mass Reduction Impact by System           |                                       |                                        |                                        |                        |                                     |                                       |                                              |  |  |
|--------|----------------------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System | Description                                              | Mass<br>Reduction<br>New Tech<br>"kg" (1) | Mass<br>Reduction<br>Comp<br>*kg* (1) | Mass<br>Reduction<br>Total<br>"kg" (1) | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg* | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
| 00     | Mercedes Sprinter 311 CDi                                |                                           |                                       |                                        |                                        |                        |                                     |                                       | -                                            |  |  |
| 01     | Engine System                                            | 28.49                                     | 5.07                                  | 33.56                                  | -\$98.12                               | \$21.50                | -\$76.62                            | -\$2.28                               | 1.57%                                        |  |  |
| 02     | Transmission System                                      | 6.84                                      | 2.14                                  | 8.99                                   | -\$8.43                                | \$5.59                 | -\$2.83                             | -\$0.32                               | 0.42%                                        |  |  |
| 03     | Body System (Group -A-)                                  | 246.57                                    | 2.42                                  | 248.99                                 | -\$1,597.49                            | -\$5.83                | -\$1,603.32                         | -\$6.44                               | 11.68%                                       |  |  |
| 03     | Body System (Group -B-)                                  | 20.02                                     | 0.00                                  | 20.02                                  | -\$53.33                               | \$0.00                 | -\$53.33                            | \$2.66                                | 0.94%                                        |  |  |
| 03     | Body System (Group -C-)                                  | 1.17                                      | 0.00                                  | 1.17                                   | \$1.65                                 | \$0.00                 | \$1.65                              | \$1.42                                | 0.05%                                        |  |  |
| 03     | Body System (Group -D-) Glazing & Body<br>Mechatronics   | 2 14                                      | 0.00                                  | 2 14                                   | \$1.10                                 | \$0.00                 | \$1.10                              | \$0.51                                | 0.10%                                        |  |  |
| 04     | Suspension System                                        | 42.02                                     | 2.04                                  | 44.06                                  | -\$110.81                              | \$13.42                | -\$97.39                            | -\$2.21                               | 2.07%                                        |  |  |
| 05     | Driveline System                                         | 7.45                                      | 0.00                                  | 7.45                                   | \$17.70                                | \$0.00                 | \$17.70                             | \$2.38                                | 0.35%                                        |  |  |
| 06     | Brake System                                             | 27.75                                     | 0.52                                  | 28.26                                  | -\$110.53                              | \$5.26                 | -\$105.27                           | -\$3.72                               | 1.33%                                        |  |  |
| 07     | Frame and Mounting System                                | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                 | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 08     | Clutch System                                            | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                 | \$0.00                              | \$0.00                                | 0,00%                                        |  |  |
| 09     | Exhaust System                                           | 2.31                                      | 0.15                                  | 2.46                                   | -\$12.20                               | \$2.05                 | -\$10.15                            | -\$4.12                               | 0.12%                                        |  |  |
| 10     | Fuel System                                              | 0.02                                      | 6.05                                  | 6.06                                   | \$0.18                                 | \$9.15                 | \$9.32                              | \$1.54                                | 0.28%                                        |  |  |
| 11     | Steering System                                          | 3.85                                      | 0.00                                  | 3.85                                   | -\$110.88                              | \$0.00                 | -\$110.88                           | -\$28.76                              | 0.16%                                        |  |  |
| 12     | Climate Control System                                   | 1.16                                      | 0.00                                  | 1.16                                   | \$7.99                                 | \$0.00                 | \$7.99                              | \$6.90                                | 0.05%                                        |  |  |
| 13     | Information, Gage and Warning Divice System              | 0.23                                      | 0.00                                  | 0.23                                   | \$1.26                                 | \$0.00                 | \$1.26                              | \$5.49                                | 0.01%                                        |  |  |
| 14     | Electrical Power Supply System                           | 12.96                                     | 0.00                                  | 12.96                                  | -\$184.33                              | \$0.00                 | -\$184.33                           | -\$14.22                              | 0.61%                                        |  |  |
| 15     | In-Vehicle Entertainment System                          | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                 | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 16     | Vacuum Distrbution Subsystem                             | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                 | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 17     | Lighting System                                          | 0.39                                      | 0.00                                  | 0.39                                   | -\$2.02                                | \$0.00                 | -\$2.02                             | -\$5.23                               | 0.02%                                        |  |  |
| 18     | Electrical Distribution and Electronic Control<br>System | 2.85                                      | 0.00                                  | 2.85                                   | \$27.22                                | \$0.00                 | \$27.22                             | \$9.54                                | 0.13%                                        |  |  |
| 19     | Electronic Features System                               | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                 | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| a      | Analysis TotalsWithout NVH Counter Measures →            | 406.22                                    | 18.38                                 | 424.59                                 | -\$2,231.06                            | \$51.14                | -\$2,179.91                         | -\$5.13                               | 19.92%                                       |  |  |
| b      | Vehicle NVH Counter Measures →                           |                                           | -                                     | -37.85                                 |                                        |                        | -\$113.55                           |                                       |                                              |  |  |
| c      | Analysis Totals With NVH Counter Measures →              |                                           |                                       | 386.75<br>(Decrease)                   |                                        |                        | -\$2,293.46<br>(Increase)           | -\$5.93<br>(increase)                 | 18.15%                                       |  |  |

#### Table 0-2: Vehicle Level Summary, Mercedes Sprint

(1) "+" = mass decrease, "-" = mass increase (2) "+" = cost decrease, "-" = cost increase



| Trandling Description                        | Cost/Kilogram Mass          | % Vehicle Mass   |  |  |  |  |  |
|----------------------------------------------|-----------------------------|------------------|--|--|--|--|--|
| Trendine Description                         | Reduction Formula           | Reduction Zone   |  |  |  |  |  |
| With Mass Compounding/Coconders Mass Cavings | \$/kg =172.86*(VMR) -6.314  | 0% < VMR ≤ 4.2%  |  |  |  |  |  |
| With Mass Compounding/Secondary Mass Savings | \$/kg = 34.497*(VMR)-0.5536 | 4.2% < VMR ≤ 18% |  |  |  |  |  |
| VMR = Vehicle Mass Reduction (Sprinter)      |                             |                  |  |  |  |  |  |

Figure 0-2: Vehicle Cost Curve w/ Trendline, Mercedes Sprinter

#### 2010 Renault Master 2.3 DCi 125 L3H2 •

| _      |                                                          | Mass Reduction Impact by System           |                                       |                                        |                                        |                                    |                                     |                                       |                                              |  |  |
|--------|----------------------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System | Description                                              | Mass<br>Reduction<br>New Tech<br>"kg" (1) | Mass<br>Reduction<br>Comp<br>"kg" (1) | Mass<br>Reduction<br>Total<br>"kg" (1) | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
| 00     | Renault Master DCi                                       |                                           |                                       |                                        |                                        |                                    |                                     |                                       |                                              |  |  |
| 01     | Engine System                                            | 30.51                                     | 5.46                                  | 35.98                                  | -\$132.57                              | \$23.75                            | -\$108.83                           | -\$3.03                               | 1.53%                                        |  |  |
| 02     | Transmission System                                      | 7.00                                      | 2.43                                  | 9.44                                   | -\$10.14                               | \$7.78                             | -\$2.36                             | -\$0.25                               | 0.40%                                        |  |  |
| 03     | Body System (Group -A-)                                  | 258.80                                    | 5.86                                  | 264.66                                 | -\$1,685.32                            | -\$33.77                           | -\$1,719.09                         | -\$6.50                               | 11.25%                                       |  |  |
| 03     | Body System (Group -B-)                                  | 23.67                                     | 0.00                                  | 23.67                                  | -\$91.43                               | \$0.00                             | -\$91.43                            | -\$3,86                               | 1.01%                                        |  |  |
| 03     | Body System (Group -C-)                                  | 1.62                                      | 0.00                                  | 1.62                                   | \$2.27                                 | \$0.00                             | \$2.27                              | \$1.40                                | 0.07%                                        |  |  |
| 03     | Body System (Group -D-) Glazing & Body<br>Mechatronics   | 2.18                                      | 0.00                                  | 2.18                                   | \$1.12                                 | \$0.00                             | \$1.12                              | \$0.51                                | 0.09%                                        |  |  |
| 04     | Suspension System                                        | 56.87                                     | 2.86                                  | 59.73                                  | -\$140.45                              | \$18.76                            | -\$121.70                           | -\$2.04                               | 2,54%                                        |  |  |
| 05     | Driveline System                                         | 13.38                                     | 0.00                                  | 13.38                                  | \$35.93                                | \$0.00                             | \$35.93                             | \$2.68                                | 0.57%                                        |  |  |
| 06     | Brake System                                             | 31.34                                     | 0.60                                  | 31.94                                  | -\$123.41                              | \$6.17                             | -\$117.24                           | -\$3.67                               | 1.36%                                        |  |  |
| 07     | Frame and Mounting System                                | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 08     | Clutch System                                            | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 09     | Exhaust System                                           | 2.13                                      | 0.18                                  | 2.31                                   | -\$11.48                               | \$2.33                             | -\$9.15                             | \$3.97                                | 0.10%                                        |  |  |
| 10     | Fuel System                                              | 0.01                                      | 5.81                                  | 5.82                                   | \$0.14                                 | \$8.79                             | \$8.92                              | \$1.53                                | 0.25%                                        |  |  |
| 11     | Steering System                                          | 5.47                                      | 0.00                                  | 5.47                                   | -\$90.37                               | \$0.00                             | -\$90.37                            | -\$16.53                              | 0.23%                                        |  |  |
| 12     | Climate Control System                                   | 0.59                                      | 0.00                                  | 0.59                                   | \$2.91                                 | \$0.00                             | \$2.91                              | \$4.96                                | 0.02%                                        |  |  |
| 13     | Information, Gage and Warning Divice System              | 0.13                                      | 0.00                                  | 0.13                                   | \$0.66                                 | \$0.00                             | \$0.66                              | \$4.91                                | 0.01%                                        |  |  |
| 14     | Electrical Power Supply System                           | 18.13                                     | 0.00                                  | 18 13                                  | -\$257.84                              | \$0.00                             | -\$257.84                           | -\$14.22                              | 0.77%                                        |  |  |
| 15     | In-Vehicle Entertainment System                          | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 16     | Vacuum Distrbution Subsystem                             | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 17     | Lighting System                                          | 0.39                                      | 0.00                                  | 0.39                                   | -\$2.02                                | \$0.00                             | -\$2.02                             | \$5.23                                | 0.02%                                        |  |  |
| 18     | Electrical Distribution and Electronic Control<br>System | 3.81                                      | 0.00                                  | 3.81                                   | \$32.99                                | \$0.00                             | \$32.99                             | \$8.65                                | 0.16%                                        |  |  |
| 19     | Electronic Features System                               | 0.00                                      | 0.00                                  | 0.00                                   | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| a      | Analysis TotalsWithout NVH Counter Measures →            | 456.06                                    | 23.20                                 | 479.25                                 | -\$2,469.04                            | \$33.80                            | -\$2,435.24                         | \$5.08                                | 20.36%                                       |  |  |
| b      | Vehicle NVH Counter Measures →                           |                                           |                                       | -42.72                                 |                                        |                                    | -\$128.16                           |                                       |                                              |  |  |
| c      | Analysis Totals With NVH Counter Measures →              |                                           |                                       | 436.53<br>(Decrease)                   |                                        |                                    | -\$2,563.40<br>(increase)           | -\$5.87<br>(Increase)                 | 18.55%                                       |  |  |

#### Table 0-3: Vehicle Level Summary, Renault Master

(1) "+" = mass decrease, "-" = mass increase (2) "+" = cost decrease, "-" = cost increase



Figure 0-3: Vehicle Cost Curve w/ Trendline, Renault Master

## **1. INTRODUCTION AND PROGRAM OBJECTIVES**

### 1.1 OBJECTIVE

The primary project objective of this study was to determine the minimum cost per kilogram for various levels of vehicle mass reduction on selected light/medium duty vehicles. The three select vehicles are:

- 2013 Chevy Silverado 2500 4WD LT Ext Cab
- 2007 Mercedes Sprinter 311 CDi
- 2010 Renault Master 2.3 DCi 125 L3H2

The approach for determining feasible component mass reduction alternatives, and the associated cost impact, was based on a comparison and scaling methodology. Results from a previously completed 2011 1500 Chevrolet Mass Reduction and Cost Analysis Project<sup>[4]</sup> were evaluated for applicability to the three case study vehicles listed above. If the mass reduction was applicable, mass and costs factors drived from the 1500 Silverado analysis where applied to the case study vehicles to establish a comparable mass reduction and incremental manufacturing cost. For many components and assemblies the mass reduction ideas were not transferable due to differences in the baseline designs and/or the mass reduction idea was already implemented. For other components and assemblies, partial applicability was determined resulting in a percentage reduction of the mass savings taken in the original 1500 Silverado analysis.

### 1.2 BACKGROUND

Vehicle mass reduction is considered one of many advance vehicle technologies available to help improve vehicle fuel economy and reduce greenhouse gas (GHG) emissions. Successful mass reduction must not degrade vehicle function and performance including occupant safety. To help assess the feasibility of mass reduction in light- and medium-duty trucks (i.e., pickup trucks and vans), and determine the associated cost impact, EPA contracted FEV to conduct a comparison and scaling analysis. The analysis is founded on the results developed in a prior detailed mass reduction and cost analysis performed a 2011 Chevrolet Silverdo.

## 1.3 COSTING METHODOLOGY

The methodology employed was based on a comparison and scaling approach. Results from the previously completed detailed 1500 Silverado mass reduction and cost analysis were each product structure level (i.e., system, subsystem, sub-subsystem and assemblies and components) a comparison evaluation was made and evaluated for applicability to the three selected medium duty vehicles used in this study.

To support the development of the vehicle BOMs and acquisition of component and assembly attribute data (mass, size, material, quantity, etc.) two methods were implemented. For the 2500 Silverado, the vehicle was purchase and disassembled using the standard FEV teardown and BOM development methodology. For the Mercedes Sprinter and Renault Master, the A2MAC1 database was used to acquire the relevant vehicle and component and assembly attribute data.

<sup>&</sup>lt;sup>4</sup> FEV-P310324-02\_R2.0: Mass Reduction and Cost Analysis – Light-Duty Pickup Truck Model Years 2020-2025

A model consisting of an extensive set of linked spreadsheets and associated macros has been developed to perform the calculations, to track the 1500 Silverado input data, assess applicability to the medium duty trucks, and calculate the final mass reduction and net incremental direct manufacturing costs. This included independent calculations on the primary mass savings, also referred to as "Mass Reduction New Technology", and secondary mass savings (SMS) also referred to as "Mass Reduction Compounding".

Each study vehicle was evaluated against the Silverado 1500 relative to component content and similarities (e.g. design, function, material). This was accomplished by assembling BOMs for each of the major systems of the 1500 Silverado. At each product structure level (i.e., system, subsystem, sub-subsystem and assemblies and components) a comparison evaluation was made to determine if the component was on the vehicle being evaluated.

All calculations are based off of the Silverado 1500 analysis<sup>[5]</sup>. A high level overview of the calculations performed as follows:

- A Comparison BOM (CBOM) template was constructed using the traditional FEV system, subsystem, assembly and component hierarchy. Only items that were lightweighted in the original Silverado 1500 study were included in the CBOM.
- Each case study vehicle had its' own set of CBOM templates for conducting the comparison and scaling analysis.
- Using BOMs created for the three new case study vehicles, a review and comparison analysis was conducted to determine if the Silverado mass reduced components existed in each comparion vehicle.
- If some portion of mass reduction was possible, component details from the case study vehicle were entered into the CBOM.
- A series of logical and attribute parameters, related to scalability and secondary mass savings, were entered in by the user supporting the algorithms used to calculate the component mass reduction and associated manufacturing costs.
- Within the CBOM templates, mass reduction and costs were summed into sub-subsystem, subsystem and system level values. In addition primary and secondary mass savings were tracked separately for use in the development of the cost curves.

<sup>&</sup>lt;sup>5</sup> FEV-P310324-02\_R2.0: Mass Reduction and Cost Analysis – Light-Duty Pickup Truck Model Years 2020-2025

#### 1.4 SELECT VEHICLES

## 1.4.1 2013 Chevrolet Silverado 2500 4WD LT Extended CAB

- Segment: Heavy Duty Pickup Truck
- Engine: 6.0L 16V V8 GAS/CNG bi-fuel (360 hp)
- Transmission: 6 Automatic
- Drivetrain: Rear Wheel Drive
- Body Style: Crew Cab
- Doors: 4
- Seating Capacity: 5



Image 1.4–1: 2013 Chevrolet Silverado 2500 4WD LT Extended Cab

#### 1.4.2 2007 Mercedes Sprinter 311 CDi

- Segment: Light Commercial Vehicle (LCV)
- Engine: 2.1L 16V Turbo Diesel (109 hp)
- Transmission: 6 speed manual
- Drivetrain: rear wheel drive
- Body Style: L2H2
- Doors: 5
- Seating Capacity: 2



Image 1.4-2: 2007 Mercedes Sprinter 311 CDi

## 1.4.3 2010 Renault Master 2.3 DCi 125 L3H2

- Segment: LCV
- Engine: 2.3L 16V Turbo Diesel (125 hp)
- Transmission: 6 speed manual
- Drivetrain: rear wheel drive
- Body Style: L3H2
- Doors: 5
- Seating Capacity: 3



Image 1.4–3: 2010 Renault Master 2.3 DCi L3H2

# 2. MASS-REDUCTION AND COST ANALYSIS RESULTS, VEHICLE LEVEL

### 2.1 MASS REDUCTION TABLE AND COST CURVE OVERVIEW

#### Mass Reduction Table

The first 3 columns deal with weight in kg: "Mass Reduction New Tech", "Mass Reduction Comp" and "Mass Reduction Total".

- Mass Reduction New Tech; are the mass reduction ideas that were originated from the original Silverado 1500 Lightweighting study that were applied to the select vehicles (e.g., change the crankshaft design to a hollow cast design to lightweight the crankshaft).
- Mass Reduction Comp; is the added weight reduction from compounding/secondary mass savings (e.g., the engine can be downsized in displacement as a result of the lower vehicle curb weight maintaining the original vehicle performance)
- Mass Reduction Total; is the combined weight reduction from applying the new technology and the compounding/secondary mass savings.

The next set of 3 columns deal with cost: "Cost Impact New Tech", "Cost Impact Comp" and "Cost Impact Total".

- Cost Impact New Tech; is the cost for applying the new technology mass reduction ideas from the original Silverado 1500 Lightweighting study to the select vehicles.
- Cost Impact Comp; is the cost savings as the result of compounding/secondary mass savings.
- Cost Impact Total; is the combined cost from applying the new technology and compounding/secondary cost savings.

The last 2 columns are a dollar value per kg and a percentage: "Cost/Kilogram Total" and "Vehicle Mass Reduction Total".

- Cost/Kilogram Total; is the "Cost Impact Total" divided by the "Mass Reduction Total" to equal a cost per kilogram.
- Vehicle Mass Reduction %Total; is the percentage vehicle system mass reduction with respect to the baseline vehicle curb weight

It should be noted that an NVH countermeasure was added to the final solution to protect for additional material and cost which may need to be added back into the vehicle in selected areas as a result of lightweight adjustments. This could include additional hood insulation, body-in-white mastic, weight counterbalances, etc.

The cost curve consists of a dollar value per kilogram and a percentage: "Average Cost of Cumulative Mass Reduction" and "% Vehicle Mass Reduction" with a Trendline.

- % Vehicle Mass Reduction (VMR); is the percentage vehicle system mass reduction with respect to the baseline vehicle curb weight
- Average Cost of Cumulative Mass Reduction (\$/kg); is the calculated cost/kg of mass reduction at a given percent vehicle mass reduction. The cost curves are developed by cumulatively summing mass reduction and associated cost impact, from "best value" to most expensive mass reduction component/assembly/subsystem ideas. Additional details on the development of mass reduction and cost impact cost curves can be found in the Silverado 1500 report<sup>6</sup>. Cost curves are developed with and without the addition of secondary mass savings illustrating the benefit of secondary mass reduction and cost impact in the final solution also found at the bottom of each Vehicle Level Summary table below (i.e., Analysis Totals with NVH Countermeasures)
- Piecewise Trendlines were added to the compounding plots for each vehicle solution. From the Trendline plots the average cost per kilogram, as a function of percent vehicle mass reduction can be calculated. The Trendline formulas can be found underneath each cost curve plot.

<sup>&</sup>lt;sup>6</sup> FEV-P310324-02\_R2.0: Mass Reduction and Cost Analysis – Light-Duty Pickup Truck Model Years 2020-2025

#### 2.2 **SILVERADO 2500**

Shown below is the Vehicle Level Summary chart (Table 2-1) by system new tech and secondary mass savings.

|        |                                                          | Mass Reduction Impact by System           |                                                  |                                                   |                                                   |                                    |                                                |                                       |                                              |  |  |
|--------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System | Description                                              | Mass<br>Reduction<br>New Tech<br>"kg" (1) | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
|        |                                                          |                                           |                                                  |                                                   |                                                   |                                    |                                                |                                       |                                              |  |  |
| 00     | Silverado 2500                                           | 00.40                                     | 0.55                                             | 70.00                                             | A004.00                                           | <b>A 40 70</b>                     | A400 50                                        | <u> </u>                              | 0.700/                                       |  |  |
| 01     | Engine System                                            | 63.48                                     | 8.55                                             | 72.03                                             | -\$224.28                                         | \$40.70                            | -\$183.58                                      | -\$2.55                               | 2.72%                                        |  |  |
| 02     | Iransmission System                                      | 33.75                                     | 4.86                                             | 38.61                                             | -\$110.67                                         | \$20.76                            | -\$89.91                                       | -\$2.33                               | 1.25%                                        |  |  |
| 03     | Body System (Group -A-)                                  | 187.20                                    | 17.85                                            | 205.05                                            | -\$1,143.26                                       | -\$76.73                           | -\$1,219.98                                    | -\$5.95                               | 6.65%                                        |  |  |
| 03     | Body System (Group -B-)                                  | 32.10                                     | 0.00                                             | 32.10                                             | -\$125.41                                         | \$0.00                             | -\$125.41                                      | -\$3.91                               | 1.04%                                        |  |  |
| 03     | Body System (Group -C-)                                  | 2.07                                      | 0.00                                             | 2.07                                              | \$3.23                                            | \$0.00                             | \$3.23                                         | \$1.56                                | 0.07%                                        |  |  |
| 03     | Body System (Group -D-) Glazing & Body<br>Mechatronics   | 3.80                                      | 0.00                                             | 3.80                                              | \$1.94                                            | \$0.00                             | <b>\$</b> 1.94                                 | \$0.51                                | 0.12%                                        |  |  |
| 04     | Suspension System                                        | 113.32                                    | 12.49                                            | 125.81                                            | -\$386.64                                         | \$90.61                            | -\$296.03                                      | -\$2.35                               | 4.08%                                        |  |  |
| 05     | Driveline System                                         | 25.11                                     | 0.00                                             | 25.11                                             | \$48.71                                           | \$0.00                             | \$48.71                                        | \$1.94                                | 0.81%                                        |  |  |
| 06     | Brake System                                             | 54.31                                     | 2.08                                             | 56.39                                             | -\$192.82                                         | \$21.56                            | -\$171.27                                      | -\$3.04                               | 1.83%                                        |  |  |
| 07     | Frame and Mounting System                                | 0.00                                      | 32.80                                            | 32.80                                             | \$0.00                                            | -\$75.31                           | -\$75.31                                       | -\$2.30                               | 1.06%                                        |  |  |
| 08     | Clutch System                                            | 0.00                                      | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 09     | Exhaust System                                           | 8.68                                      | 0.48                                             | 9.16                                              | -\$21.96                                          | \$6.55                             | -\$15.41                                       | -\$1.68                               | 0.30%                                        |  |  |
| 10     | Fuel System                                              | 0.65                                      | 8.21                                             | 8.86                                              | \$1.00                                            | \$12.42                            | \$13.42                                        | \$1.52                                | 0.29%                                        |  |  |
| 11     | Steering System                                          | 3.54                                      | 0.00                                             | 3.54                                              | \$5.53                                            | \$0.00                             | \$5.53                                         | \$1.56                                | 0.11%                                        |  |  |
| 12     | Climate Control System                                   | 1.75                                      | 0.00                                             | 1.75                                              | \$13.40                                           | \$0.00                             | \$13.40                                        | \$7.68                                | 0.06%                                        |  |  |
| 13     | Information, Gage and Warning Divice System              | 0.25                                      | 0.00                                             | 0.25                                              | \$0.65                                            | \$0.00                             | \$0.65                                         | \$2.62                                | 0.01%                                        |  |  |
| 14     | Electrical Power Supply System                           | 12.67                                     | 0.00                                             | 12.67                                             | -\$170.81                                         | \$0.00                             | -\$170.81                                      | -\$13.48                              | 0.41%                                        |  |  |
| 15     | In-Vehicle Entertainment System                          | 0.00                                      | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 16     | Vacuum Distrbution Subsystem                             | 0.00                                      | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 17     | Lighting System                                          | 0.39                                      | 0.00                                             | 0.39                                              | -\$2.02                                           | \$0.00                             | -\$2.02                                        | -\$5.23                               | 0.01%                                        |  |  |
| 18     | Electrical Distribution and Electronic Control<br>System | 8.47                                      | 0.00                                             | 8.47                                              | \$61.54                                           | \$0.00                             | \$61.54                                        | <b>\$7</b> .26                        | 0.27%                                        |  |  |
| 19     | Electronic Features System                               | 0.00                                      | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| а      | Analysis TotalsWithout NVH Counter Measures →            | 551.54                                    | 87.32                                            | 638.85                                            | -\$2,241.86                                       | \$40.55                            | -\$2,201.31                                    | -\$3.45                               | 20.70%                                       |  |  |
| b      | Vehicle NVH Counter Measures →                           |                                           |                                                  | -56.95                                            |                                                   |                                    | -\$170.84                                      |                                       |                                              |  |  |
| С      | Analysis Totals With NVH Counter Measures →              |                                           |                                                  | 581.90                                            |                                                   |                                    | -\$2,372.16                                    | -\$4.08                               | 18.86%                                       |  |  |
|        |                                                          |                                           |                                                  | (Decrease)                                        |                                                   |                                    | (Increase)                                     | (Increase)                            |                                              |  |  |

Table 2-1: Vehicle Level Summary, Silverado 2500

(1) "+" = mass decrease, "-" = mass increase (2) "+" = cost decrease, "-" = cost increase

Shown below is the vehicle cost curve w/ Trendline and secondary mass savings with description (Table 2-2).



| Trendline Description                        | Cost/Kilogram Mass<br>Reduction Formula                    | % Vehicle Mass<br>Reduction Zone    |
|----------------------------------------------|------------------------------------------------------------|-------------------------------------|
| With Mass Compounding/Secondary Mass Savings | \$/kg =163.26*(VMR) -7.8466<br>\$/kg = 34.482*(VMR)-2.5938 | 0% < VMR ≤ 4.1%<br>4.1% < VMR ≤ 19% |

VMR = Vehicle Mass Reduction (Silverado 2500)

#### 2.3 **MERCEDES SPRINTER**

Shown below is the Vehicle Level Summary chart (Table 2-3) by system new tech and secondary mass savings.

|        |                                                          | Mass Reduction Impact by System                      |                                                  |                                                   |                                                   |                                    |                                                |                                       |                                              |
|--------|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|
| System | Description                                              | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |
|        |                                                          |                                                      |                                                  |                                                   |                                                   |                                    |                                                |                                       |                                              |
| 00     | Mercedes Sprinter 311 CDi                                |                                                      |                                                  |                                                   |                                                   |                                    |                                                |                                       |                                              |
| 01     | Engine System                                            | 28.49                                                | 5.07                                             | 33.56                                             | -\$98.12                                          | \$21.50                            | -\$76.62                                       | -\$2.28                               | 1.57%                                        |
| 02     | Transmission System                                      | 6.84                                                 | 2.14                                             | 8.99                                              | -\$8.43                                           | \$5.59                             | -\$2.83                                        | -\$0.32                               | 0.42%                                        |
| 03     | Body System (Group -A-)                                  | 246.57                                               | 2.42                                             | 248.99                                            | -\$1,597.49                                       | -\$5.83                            | -\$1,603.32                                    | -\$6.44                               | 11.68%                                       |
| 03     | Body System (Group -B-)                                  | 20.02                                                | 0.00                                             | 20.02                                             | -\$53.33                                          | \$0.00                             | -\$53.33                                       | -\$2.66                               | 0.94%                                        |
| 03     | Body System (Group -C-)                                  | 1.17                                                 | 0.00                                             | 1.17                                              | \$1.65                                            | \$0.00                             | \$1.65                                         | \$1.42                                | 0.05%                                        |
| 03     | Body System (Group -D-) Glazing & Body<br>Mechatronics   | 2.14                                                 | 0.00                                             | 2.14                                              | \$1.10                                            | \$0.00                             | \$1.10                                         | \$0.51                                | 0.10%                                        |
| 04     | Suspension System                                        | 42.02                                                | 2.04                                             | 44.06                                             | -\$110.81                                         | \$13.42                            | -\$97.39                                       | -\$2.21                               | 2.07%                                        |
| 05     | Driveline System                                         | 7.45                                                 | 0.00                                             | 7.45                                              | \$17.70                                           | \$0.00                             | \$17.70                                        | \$2.38                                | 0.35%                                        |
| 06     | Brake System                                             | 27.75                                                | 0.52                                             | 28.26                                             | -\$110.53                                         | \$5.26                             | -\$105.27                                      | -\$3.72                               | 1.33%                                        |
| 07     | Frame and Mounting System                                | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| 08     | Clutch System                                            | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| 09     | Exhaust System                                           | 2.31                                                 | 0.15                                             | 2.46                                              | -\$12.20                                          | \$2.05                             | -\$10.15                                       | -\$4.12                               | 0.12%                                        |
| 10     | Fuel System                                              | 0.02                                                 | 6.05                                             | 6.06                                              | \$0.18                                            | \$9.15                             | \$9.32                                         | \$1.54                                | 0.28%                                        |
| 11     | Steering System                                          | 3.85                                                 | 0.00                                             | 3.85                                              | -\$110.88                                         | \$0.00                             | -\$110.88                                      | -\$28.76                              | 0.16%                                        |
| 12     | Climate Control System                                   | 1.16                                                 | 0.00                                             | 1.16                                              | \$7.99                                            | \$0.00                             | \$7.99                                         | \$6.90                                | 0.05%                                        |
| 13     | Information, Gage and Warning Divice System              | 0.23                                                 | 0.00                                             | 0.23                                              | \$1.26                                            | \$0.00                             | \$1.26                                         | \$5.49                                | 0.01%                                        |
| 14     | Electrical Power Supply System                           | 12.96                                                | 0.00                                             | 12.96                                             | - <b>\$184.33</b>                                 | \$0.00                             | -\$184.33                                      | -\$14.22                              | 0.61%                                        |
| 15     | In-Vehicle Entertainment System                          | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| 16     | Vacuum Distrbution Subsystem                             | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| 17     | Lighting System                                          | 0.39                                                 | 0.00                                             | 0.39                                              | -\$2.02                                           | \$0.00                             | -\$2.02                                        | -\$5.23                               | 0.02%                                        |
| 18     | Electrical Distribution and Electronic Control<br>System | 2.85                                                 | 0.00                                             | 2.85                                              | \$27.22                                           | <b>\$0.00</b>                      | \$27.22                                        | \$9.54                                | 0.13%                                        |
| 19     | Electronic Features System                               | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                            | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| а      | Analysis TotalsWithout NVH Counter Measures →            | 406.22                                               | 18.38                                            | 424.59                                            | -\$2,231.06                                       | \$51.14                            | -\$2,179.91                                    | -\$5.13                               | 19.92%                                       |
| b      | Vehicle NVH Counter Measures →                           |                                                      |                                                  | -37.85                                            |                                                   |                                    | -\$113.55                                      |                                       |                                              |
| С      | Analysis Totals With NVH Counter Measures →              |                                                      |                                                  | 386.75                                            |                                                   |                                    | -\$2,293.46                                    | -\$5.93                               | 18.15%                                       |
|        |                                                          |                                                      |                                                  | (Decrease)                                        |                                                   |                                    | (Increase)                                     | (Increase)                            |                                              |

| Table 2-3: | · Vehicle Leve | l Summary, | Mercedes | Sprinter |
|------------|----------------|------------|----------|----------|
|------------|----------------|------------|----------|----------|

(1) "+" = mass decrease, "-" = mass increase (2) "+" = cost decrease, "-" = cost increase

Shown below is the vehicle cost curve w/ Trendline and secondary mass savings with description.

Table 2-4: Vehicle Cost Curve w/ Trendline, Mercedes Sprinter



| Trendline Description                        | Cost/Kilogram Mass<br>Reduction Formula | % Vehicle Mass<br>Reduction Zone |
|----------------------------------------------|-----------------------------------------|----------------------------------|
| With Mass Compounding/Socondary Mass Savings | \$/kg =172.86*(VMR) -6.314              | 0% < VMR ≤ 4.2%                  |
| with mass compounding/secondary mass savings | \$/kg = 34.497*(VMR)-0.5536             | 4.2% < VMR ≤ 18%                 |

VMR = Vehicle Mass Reduction (Sprinter)
#### 2.4 **RENAULT MASTER**

Shown below is the Vehicle Level Summary chart by system new tech and secondary mass savings.

|        |                                                          | Mass Reduction Impact by System                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |  |
|--------|----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|--|
| System | Description                                              | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |  |
| 00     | Penguit Master DCi                                       |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |  |
| 01     | Engine System                                            | 30.51                                                | 5.46                                             | 35.08                                             | \$132.57                               | \$23.75                            | \$108.83                                       | \$3.03                                | 1 53%                                        |  |  |  |
| 02     | Transmission System                                      | 7.00                                                 | 2/3                                              | Q //                                              | -\$10.14                               | \$7.78                             | -\$2.36                                        | -\$0.05                               | 0.40%                                        |  |  |  |
| 03     | Body System (Group -A-)                                  | 258.80                                               | 5.86                                             | 264.66                                            | -\$1 685 32                            | -\$33.77                           | _\$1 710 00                                    | -\$6.50                               | 11 25%                                       |  |  |  |
| 03     | Body System (Group -R-)                                  | 23 67                                                | 0.00                                             | 23 67                                             | -\$91.43                               | \$0.00                             | -\$91.43                                       | -\$3.86                               | 1.01%                                        |  |  |  |
| 03     | Body System (Group -C-)                                  | 1.62                                                 | 0.00                                             | 1 62                                              | \$2 27                                 | \$0.00                             | \$2 27                                         | \$1.40                                | 0.07%                                        |  |  |  |
| 03     | Body System (Group -D-) Glazing & Body<br>Mechatronics   | 2.18                                                 | 0.00                                             | 2.18                                              | \$1.12                                 | \$0.00                             | \$1.12                                         | \$0.51                                | 0.09%                                        |  |  |  |
| 04     | Suspension System                                        | 56.87                                                | 2.86                                             | 59.73                                             | -\$140.45                              | \$18.76                            | -\$121.70                                      | -\$2.04                               | 2.54%                                        |  |  |  |
| 05     | Driveline System                                         | 13.38                                                | 0.00                                             | 13.38                                             | \$35.93                                | \$0.00                             | \$35.93                                        | \$2.68                                | 0.57%                                        |  |  |  |
| 06     | Brake System                                             | 31.34                                                | 0.60                                             | 31.94                                             | -\$123.41                              | \$6.17                             | -\$117.24                                      | -\$3.67                               | 1.36%                                        |  |  |  |
| 07     | Frame and Mounting System                                | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 08     | Clutch System                                            | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 09     | Exhaust System                                           | 2.13                                                 | 0.18                                             | 2.31                                              | -\$11.48                               | \$2.33                             | - <b>\$</b> 9.15                               | -\$3.97                               | 0.10%                                        |  |  |  |
| 10     | Fuel System                                              | 0.01                                                 | 5.81                                             | 5.82                                              | \$0.14                                 | \$8.79                             | \$8.92                                         | \$1.53                                | 0.25%                                        |  |  |  |
| 11     | Steering System                                          | 5.47                                                 | 0.00                                             | 5.47                                              | -\$90.37                               | \$0.00                             | -\$90.37                                       | -\$16.53                              | 0.23%                                        |  |  |  |
| 12     | Climate Control System                                   | 0.59                                                 | 0.00                                             | 0.59                                              | \$2.91                                 | \$0.00                             | \$2.91                                         | \$4.96                                | 0.02%                                        |  |  |  |
| 13     | Information, Gage and Warning Divice System              | 0.13                                                 | 0.00                                             | 0.13                                              | \$0.66                                 | \$0.00                             | \$0.66                                         | \$4.91                                | 0.01%                                        |  |  |  |
| 14     | Electrical Power Supply System                           | 18.13                                                | 0.00                                             | 18.13                                             | -\$257.84                              | \$0.00                             | -\$257.84                                      | -\$14.22                              | 0.77%                                        |  |  |  |
| 15     | In-Vehicle Entertainment System                          | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 16     | Vacuum Distrbution Subsystem                             | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 17     | Lighting System                                          | 0.39                                                 | 0.00                                             | 0.39                                              | -\$2.02                                | \$0.00                             | -\$2.02                                        | -\$5.23                               | 0.02%                                        |  |  |  |
| 18     | Electrical Distribution and Electronic Control<br>System | 3.81                                                 | 0.00                                             | 3.81                                              | \$32.99                                | \$0.00                             | \$32.99                                        | \$8.65                                | 0.16%                                        |  |  |  |
| 19     | Electronic Features System                               | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| а      | Analysis TotalsWithout NVH Counter Measures →            | 456.06                                               | 23.20                                            | 479.25                                            | -\$2,469.04                            | \$33.80                            | -\$2,435.24                                    | -\$5.08                               | 20.36%                                       |  |  |  |
| b      | Vehicle NVH Counter Measures →                           |                                                      |                                                  | -42.72                                            |                                        |                                    | -\$128.16                                      |                                       |                                              |  |  |  |
| С      | Analysis Totals With NVH Counter Measures →              |                                                      |                                                  | 436.53                                            |                                        |                                    | -\$2,563.40                                    | -\$5.87                               | 18.55%                                       |  |  |  |
|        |                                                          |                                                      |                                                  | (Decrease)                                        |                                        |                                    | (Increase)                                     | (Increase)                            |                                              |  |  |  |

Table 2-5: Vehicle Level Summary, Renault Master

(1) "+" = mass decrease, "-" = mass increase
(2) "+" = cost decrease, "-" = cost increase

Shown below is the vehicle cost curve w/ Trendline and secondary mass savings with description.



Table 2-6: Vehicle Cost Curve w/ Trendline, Renault Master

| Trendline Description                        | Cost/Kilogram Mass<br>Reduction Formula                     | % Vehicle Mass<br>Reduction Zone    |
|----------------------------------------------|-------------------------------------------------------------|-------------------------------------|
| With Mass Compounding/Secondary Mass Savings | \$/kg =170.94*(VMR) - 6.1459<br>\$/kg = 32.718*(VMR)-0.3747 | 0% < VMR ≤ 4.2%<br>4.2% < VMR ≤ 19% |

VMR = Vehicle Mass Reduction (Master)

# 3. MASS-REDUCTION AND COST ANALYSIS, SYSTEM LEVEL

#### 3.1 ENGINE SYSTEM

#### 3.1.1 Silverado 1500

#### 3.1.1.1 Baseline Technology, Silverado 1500

The Chevrolet Silverado 1500 came equipped with a 5.3 Liter V8 producing 315 horse power and 335 ft-lbs of torque. Designated by Chevrolet as their LC9 variant, this engine features cylinder deactivation and flex fuel compatibility. Other features include aluminum deep skirt, closed deck block with cast-in liners and six bolt mains. The cam-in-block pushrod design has been outfitted with phaser-enabled variable valve timing. This naturally aspirated, port-injected layout utilizes a single runner intake manifold. All aluminum construction and plastic intake manifold are lightweight features already implemented by GM for the Gen IV Small Block in 2006<sup>[7]</sup>. Currently, research is being done to make aluminum stronger and cast iron lighter in mass<sup>[8]</sup>.



*Image 3.1–1: Silverado 1500 base engine (5.3 liter LC9)* (Source: http://www.gmpowertrain.ca/product.html)

#### 3.1.1.2 Mass-Reduction and Cost Impact, Silverado 1500

The Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Engine System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-1 provides a summary of mass reduction and cost impact for select sub-subsystems

<sup>&</sup>lt;sup>7</sup> GM Authority – "GM 5.3 Liter V8 Vortec LC9 Engine", accessed on April 2015, http://gmauthority.com/blog/gm/gm-engines/lc9/

<sup>&</sup>lt;sup>8</sup> ENERGY.GOV – "Vehicle Technologies Office: Lightweight Materials for Cars and Trucks", accessed on June 2015, http://energy.gov/eere/vehicles/vehicle-technologies-office-lightweight-materials-cars-and-trucks

evaluated. Only sub-subsystems with significant mass savings were included and account for over 80% of the total mass savings found on the engine. Total system mass was reduced by 23.8 kg (9.92%). This increased cost by \$114.63, or \$4.82 per kg. Mass reduction for this system reduced vehicle curb weight by 0.97%.

|          |           |               |                                                                  | Net Value of Mass Reduction |                                          |                                     |                                                        |                          |                                     |  |  |  |
|----------|-----------|---------------|------------------------------------------------------------------|-----------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|--|
| System   | Subsystem | Sub-Subsystem | Description                                                      | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |  |
| 01       | 00        | 00            | Engine System                                                    |                             |                                          |                                     |                                                        |                          |                                     |  |  |  |
| 01       | 02        | 00            | Engine Frames, Mounting, and Brackets<br>Subsystem               | 6.07                        | 1.10                                     | -\$0.01                             | -\$0.01                                                | 18.18%                   | 0.04%                               |  |  |  |
| 01       | 03        | 00            | Crank Drive Subsystem                                            | 37.00                       | 2.38                                     | \$2.95                              | \$1.24                                                 | 6.42%                    | 0.10%                               |  |  |  |
| 01       | 03        | 01            | Crankshaft                                                       | 24.01                       | 1.03                                     | -\$2.29                             | -\$2.22                                                | 4.30%                    | 0.04%                               |  |  |  |
| 01       | 03        | 03            | Connect Rods (Assemblies: Connecting Rod,<br>Connecting Rod Cap) | 5.41                        | 1.07                                     | \$6.34                              | \$5.92                                                 | 19.82%                   | 0.04%                               |  |  |  |
| 01       | 03        | 04            | Other Components                                                 | 7.59                        | 0.272                                    | -\$1.10                             | -\$4.05                                                | 3.58%                    | 0.01%                               |  |  |  |
| 01       | 05        | 00            | Cylinder Block Subsystem                                         | 59.86                       | 3.30                                     | \$0.80                              | \$0.24                                                 | 5.51%                    | 0.13%                               |  |  |  |
| 01       | 05        | 01            | Cylinder Block                                                   | 47.15                       | 2.93                                     | \$2.78                              | \$0.95                                                 | 6.22%                    | 0.12%                               |  |  |  |
| 01       | 05        | 02            | Other Components                                                 | 12.71                       | 0.364                                    | -\$1.98                             | -\$5.45                                                | 2.86%                    | 0.01%                               |  |  |  |
| 01       | 06        | 00            | Cylinder Head Subsystem                                          | 24.90                       | 1.16                                     | \$6.06                              | \$5.22                                                 | 4.66%                    | 0.05%                               |  |  |  |
| 01       | 06        | 20            | Cylinder Head Covers                                             | 2.64                        | 1.16                                     | \$6.06                              | \$5.22                                                 | 43.96%                   | 0.05%                               |  |  |  |
| 01       | 07        | 00            | Valvetrain Subsystem                                             | 16.26                       | 0.192                                    | \$0.05                              | \$0.26                                                 | 1.18%                    | 0.01%                               |  |  |  |
| 01       | 07        | 06            | Camshafts                                                        | 4.60                        | 0.085                                    | -\$0.03                             | -\$0.39                                                | 1.85%                    | 0.00%                               |  |  |  |
| 01       | 07        | 07            | Other Components                                                 | 11.65                       | 0.107                                    | \$0.08                              | \$0.78                                                 | 0.92%                    | 0.00%                               |  |  |  |
| 01       | 08        | 00            | Timing Drive Subsystem                                           | 1.75                        | 0.415                                    | -\$2.44                             | -\$5.88                                                | 23.72%                   | 0.02%                               |  |  |  |
| 01       | 09        | 00            | Accessory Drive Subsystem                                        | 8.27                        | 1.73                                     | \$0.73                              | \$0.42                                                 | 20.94%                   | 0.07%                               |  |  |  |
| 01       | 09        | 01            | Pulleys                                                          | 7.27                        | 1.73                                     | \$0.73                              | \$0.42                                                 | 23.82%                   | 0.07%                               |  |  |  |
| 01       | 10        | 00            | Air Intake Subsystem                                             | 11.95                       | 0.941                                    | -\$0.54                             | -\$0.58                                                | 7.88%                    | 0.04%                               |  |  |  |
| 01       | 11        | 00            | Fuel Induction Subsystem                                         | 1.12                        | 0.00                                     | \$0.00                              | \$0.00                                                 | 0.00%                    | 0.00%                               |  |  |  |
| 01       | 12        | 00            | Exhaust Subsystem                                                | 12.17                       | 3.15                                     | -\$20.00                            | -\$6.35                                                | 25.88%                   | 0.13%                               |  |  |  |
| 01       | 12        | 01            | Exhaust Manifold                                                 | 12.17                       | 3.15                                     | -\$20.00                            | -\$6.35                                                | 25.88%                   | 0.13%                               |  |  |  |
| 01       | 13        | 00            | Lubrication Subsystem                                            | 10.55                       | 3.01                                     | -\$11.24                            | -\$3.74                                                | 28.53%                   | 0.12%                               |  |  |  |
| 01       | 13        | 01            | Oil Pans (Oil Sump)                                              | 7.78                        | 2.58                                     | -\$11.29                            | -\$4.37                                                | 33.18%                   | 0.11%                               |  |  |  |
| 01       | 13        | 02            | Other Components                                                 | 2.77                        | 0.429                                    | \$0.04                              | \$0.10                                                 | 15.48%                   | 0.02%                               |  |  |  |
| 01       | 14        | 00            | Cooling Subsystem                                                | 24.32                       | 3.31                                     | -\$92.06                            | -\$27.78                                               | 13.63%                   | 0.14%                               |  |  |  |
| 01       | 14        | 01            | Water Pumps                                                      | 4.68                        | 2.43                                     | -\$94.12                            | -\$38.71                                               | 51.91%                   | 0.10%                               |  |  |  |
| 01       | 14        | 04            | Heat Exchangers                                                  | 14.23                       | 1.06                                     | \$2.16                              | \$2.04                                                 | 7.45%                    | 0.04%                               |  |  |  |
| 01       | 14        | 05            | Other Components                                                 | 5.41                        | -0.176                                   | -\$0.10                             | \$0.58                                                 | -3.26%                   | -0.01%                              |  |  |  |
| 01       | 16        | 00            | Exhaust Gas Re-circulation Subsystem                             | 0.050                       | 0.00                                     | \$0.00                              | \$0.00                                                 | 0.00%                    | 0.00%                               |  |  |  |
| 01       | 17        | 00            | Breather Subsystem                                               | 0.109                       | 0.00                                     | \$0.00                              | \$0.00                                                 | 0.00%                    | 0.00%                               |  |  |  |
| 01       | 60        | 00            | Engine Management, Engine Electronic,<br>Electrical Subsystem    | 5.67                        | 0.886                                    | \$1.97                              | \$2.23                                                 | 15.63%                   | 0.04%                               |  |  |  |
| 01       | 70        | 00            | Accessory Subsystems (Start Motor,<br>Generator, etc.)           | 19.89                       | 2.23                                     | -\$0.89                             | -\$0.40                                                | 11.20%                   | 0.09%                               |  |  |  |
| 01       | 70        | 99            | Misc.                                                            | 3.69                        | 1.86                                     | \$1.53                              | \$0.82                                                 | 50.47%                   | 0.08%                               |  |  |  |
| 01       | 70        | 01            | Other Components                                                 | 16.21                       | 0.369                                    | -\$2.42                             | -\$6.55                                                | 2.28%                    | 0.02%                               |  |  |  |
| $\vdash$ |           |               |                                                                  | 239.95                      | 23.80                                    | -\$114.63                           | -\$4.82                                                | 9.92%                    | 0.97%                               |  |  |  |
|          |           |               |                                                                  |                             | (Decrease)                               | (Increase)                          | (Increase)                                             |                          |                                     |  |  |  |
|          |           |               |                                                                  |                             |                                          |                                     |                                                        |                          |                                     |  |  |  |

Table 3-1: Mass-Reduction and Cost Impact, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase
(2) "+" = cost decrease, "-" = cost increase

#### 3.1.1.3 Lightweighting Technology, Silverado 1500

Mass savings opportunities were identified for the following components: crankshaft, connecting rod, cylinder block, cylinder head covers, pulleys, exhaust manifolds, oil pans, water pump, radiator, and accessory drive bracket.

<u>Crankshaft:</u> The crankshaft mass was reduced by changing the cast crankshaft to a hollow cast design. The main bearing journals were cast with a core to remove excess material. Mass was reduced by 4.3% from 24.0 kg to 23.0 kg.

Production applications include the BMW 4.4L V8 and the Nissan 4.5L V8.

<u>Connecting Rod:</u> Connecting rod mass reduction was achieved by changing the primary forming operation from powder forged to billet forged. The connecting rod mass was reduced by 19.8% from 5.41 kg to 4.34 kg.

FEV validated this change by creating CAD models for both connecting rods and performing fatigue analysis. Mahle manufactures connecting rods using this technology.

<u>Cylinder Block:</u> Cylinder block mass was reduced by replacing cast iron bore liners with plasma liner technology. Mass was reduced by 6.2% from 47.1 kg to 44.2 kg.

Production vehicles utilizing this technology include Nissan GT-R, 2011 Shelby Mustang GT500, and VW Lupo and were used as the base technology mass reduction for the Silverado 1500 original study.

Cylinder Head Covers: Aluminum valve covers were replaced by plastic. Mass was reduced by 44.0% from 2.64 kg to 1.48 kg.

Production examples include Chrysler's 4.7L V8 and the Ford Duratec<sup>®</sup> 2.0L.

<u>Pulleys:</u> The idler and AC compressor pulleys were all found to have Lightweighting opportunities. The steel idler pulley was replaced with a plastic design, which reduced mass by 58.0% from 0.455 kg to 0.191 kg. Plastic idler pulleys are commonplace and have proven durability.

The AC compressor pulley was changed from steel to plastic, which reduced mass by 59.8% from 0.695 kg to 0.279 kg. The VW Polo is a production example containing a plastic AC compressor pulley and was used as the base technology mass reduction for the Silverado 1500 original study.

Exhaust Manifold: Cast iron exhaust manifolds were eliminated by replacing the components with a stainless steel fabricated assembly. Mass was reduced by 26.2% from 12.2 kg to 9.02 kg.

Production examples of fabricated manifolds include the Toyota Avensis 2.0-R4 4V and LS7 Corvette and were used as the base technology mass reduction for the Silverado 1500 original study.

<u>Oil Pan:</u> Mass reduction of the oil pan was achieved by replacing aluminum with magnesium. Mass was reduced by 25% from 5.27 kg to 3.96 kg. The Nissan GT-R oil pan is constructed from magnesium and was used as the base technology mass reduction for the Silverado 1500 original study.

Steel baffle plates were used to control oil flow within the oil pan region. These stamped steel plates were changed to plastic. Mass was reduced by 70.6% from 1.65 kg to 0.49 kg. The Ford Mustang utilizes plastic for this component.

<u>Water Pump</u>: The conventional mechanical water pump was replaced with an electric water pump. Mass was reduced by 51.9% from 4.68 kg to 2.43 kg.

Electric water pumps are found on vehicles such as the BMW 328, 528, and X3/5 and were used as the base technology mass reduction for the Silverado 1500 original study.

<u>Radiator:</u> The radiator found on the Silverado was designed for a range of applications. A radiator designed specifically for the 5.3L Silverado could be smaller reducing component and fluid mass. Mass was reduced by 4% from 6.79 kg to 6.52 kg. MuCell<sup>®</sup> applied to the fan shroud and fan blades, which yielded an additional mass savings of 0.32 kg.

<u>Accessory Drive Bracket:</u> The accessory drive bracket provides mounting for both the alternator and power steering pump. This aluminum component was replaced with a magnesium version and the power steering provision eliminated as this feature is no longer needed with electric power steering. Mass was reduced by 50.5% from 3.69 kg to 1.83 kg. An example of a magnesium bracket can be found on the Nissan 350Z and was used as the base technology mass reduction for the Silverado 1500 original study.

# 3.1.2 Silverado 2500

#### 3.1.2.1 Baseline Technology, Silverado 2500

The Chevrolet Silverado 2500 came equipped with a 6.0 Liter V8 producing 360 hp and 380 ft-lbs of torque<sup>[9]</sup>. This GM LC8 engine (Image 1.4–2) is equipped with Compressed Natural Gas (CNG) compatibility. Other standard GM generation IV features include traditional cam in block design with wedge style cylinder heads and six bolt mains. The LC8 engine variant was not equipped with cylinder deactivation and utilizes a cast iron cylinder block. Components included in the CNG adaptation of this engine (i.e., fuel rail, injectors, etc.) are considered a separate system and not included in this analysis.



<sup>&</sup>lt;sup>9</sup> The Chevrolet Bi-Fuel CNG Silverado 2500 HD Truck. Retrieved from GM Fleet & Commercial: http://www.gmfleet.com/vehicle-overviews/fuel-efficiency/bi-fuel.html

# 3.1.2.2 Mass Savings and Cost Impact, Silverado 2500

Table 3-2 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Silverado 2500. Total engine mass savings was 33.08 kg at a cost increase of \$2.44 per kg. The total mass savings using an aluminum block in place of a cast iron block for the 2500, for a greater weight savings was 71.64kg and a cost increase of \$2.58 per kg.

| System     Subsystem     Mass Reduction<br>New Tech<br>"kg" (1)     Mass Reduction<br>New Tech<br>"kg" (1)                                                                                            | ss Mass<br>ction Reducti<br>mp Total<br>"(1) <sup>"kg"</sup> (1         | Cost<br>Impact<br>New Tech<br>) "\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                       |                                                                         |                                          |                                    |                                     |                                       |                                              |  |  |  |  |  |  |
| 01 00 00 Engine System                                                                                                                                                                                |                                                                         |                                          |                                    |                                     |                                       |                                              |  |  |  |  |  |  |
| 01         02         00         Engine Frames, Mounting, and Brackets         0.95         0.3           Subsystem         0.95         0.3                                                          | 37 1.32                                                                 | \$0.12                                   | \$0.60                             | \$0.73                              | \$0.55                                | 0.04%                                        |  |  |  |  |  |  |
| 01 03 00 Crank Drive Subsystem 2.37 2.0                                                                                                                                                               | 00 4.37                                                                 | \$2.88                                   | \$3.83                             | \$6.71                              | \$1.53                                | 0.14%                                        |  |  |  |  |  |  |
| 01 04 00 Counter Balance Subsystem 0.00 0.0                                                                                                                                                           | 0.00 0.00                                                               | \$0.00                                   | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |  |  |  |  |
| 01 05 00 Cylinder Block Subsystem (Aluminum) 0.60 6.9                                                                                                                                                 | 97 7.57                                                                 | -\$2.20                                  | \$21.29                            | \$19.09                             | \$2.52                                | 0.25%                                        |  |  |  |  |  |  |
| 01 05 00 Cylinder Block Subsystem (Iron to Aluminum) 43.08 3.0                                                                                                                                        | 04 46.12                                                                | -\$111.42                                | \$26.83                            | -\$84.59                            | -\$1.83                               | 1.88%                                        |  |  |  |  |  |  |
| 01 06 00 Cylinder Head Subsystem 1.17 1.4                                                                                                                                                             | 45 2.62                                                                 | \$6.12                                   | \$4.39                             | \$10.51                             | \$4.01                                | 0.08%                                        |  |  |  |  |  |  |
| 01 07 00 Valvetrain Subsystem 0.19 0.1                                                                                                                                                                | 14 0.33                                                                 | \$0.06                                   | \$0.49                             | \$0.55                              | \$1.67                                | 0.01%                                        |  |  |  |  |  |  |
| 01 08 00 Timing Drive Subsystem 0.44 0.0                                                                                                                                                              | 00 0.44                                                                 | -\$2.57                                  | \$0.00                             | -\$2.57                             | \$0.00                                | 0.01%                                        |  |  |  |  |  |  |
| 01 09 00 Accessory Drive Subsystem 0.66 0.3                                                                                                                                                           | 35 1.01                                                                 | \$0.73                                   | \$0.00                             | \$0.73                              | \$0.72                                | 0.03%                                        |  |  |  |  |  |  |
| 01 10 00 Air Intake Subsystem 0.87 0.0                                                                                                                                                                | 00 0.87                                                                 | -\$0.56                                  | \$0.00                             | -\$0.56                             | -\$0.64                               | 0.03%                                        |  |  |  |  |  |  |
| 01 11 00 Fuel Induction Subsystem 0.00 0.0                                                                                                                                                            | 0.00                                                                    | \$0.00                                   | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |  |  |  |  |
| 01 12 00 Exhaust Subsystem 3.15 0.2                                                                                                                                                                   | 22 3.37                                                                 | -\$20.00                                 | \$0.78                             | -\$19.22                            | -\$5.70                               | 0.11%                                        |  |  |  |  |  |  |
| 01 13 00 Lubrication Subsystem 2.94 0.0                                                                                                                                                               | 3.02                                                                    | -\$10.70                                 | \$0.39                             | -\$10.31                            | -\$3.41                               | 0.10%                                        |  |  |  |  |  |  |
| 01 14 00 Cooling Subsystem 4.33 0.5                                                                                                                                                                   | 02 4.85                                                                 | -\$90.22                                 | \$2.40                             | -\$87.81                            | -\$18.11                              | 0.16%                                        |  |  |  |  |  |  |
| 01 15 00 Induction Air Charging Subsystem 0.00 0.0                                                                                                                                                    | 0.00                                                                    | \$0.00                                   | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |  |  |  |  |
| 01 16 00 Exhaust Gas Re-circulation Subsystem 0.00 0.0                                                                                                                                                |                                                                         | \$0.00                                   | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |  |  |  |  |
| UI 17 00 Breather Subsystem 0.00 0.0                                                                                                                                                                  | 0.00                                                                    | \$0.00                                   | \$U.UU                             | \$0.00                              | <b>\$</b> 0.00                        | 0.00%                                        |  |  |  |  |  |  |
| 01 60 00 Engine Management, Engine Electronic, Electrical 0.93 0.0<br>Subsystem                                                                                                                       | 0.93                                                                    | \$2.07                                   | \$0.00                             | \$2.07                              | \$0.00                                | 0.03%                                        |  |  |  |  |  |  |
| 01 70 00 Accessory Subsystems (Start Motor, Generator, 2.40 0.0                                                                                                                                       | 00 2.40                                                                 | -\$0.80                                  | \$0.00                             | - <b>\$</b> 0.80                    | -\$0.33                               | 0.08%                                        |  |  |  |  |  |  |
| Original aluminum black tatala 24.00 42                                                                                                                                                               | 00 22.00                                                                | ¢445.00                                  | ¢04.47                             | ¢00.00                              | ¢2.44                                 | 4.070/                                       |  |  |  |  |  |  |
| Original aluminum block totals 21.00 12.                                                                                                                                                              | 09 33.08                                                                | -\$115.06                                | \$34.17                            | -\$80.89                            | -\$2.44                               | 1.07%                                        |  |  |  |  |  |  |
| Aluminum cyclinder block totals 63.48 8.1                                                                                                                                                             | 16 /1.64                                                                | -\$224.28                                | \$39.71                            | -\$184.57                           | -\$2.58                               | 2.71%                                        |  |  |  |  |  |  |
| (Decrease) (Decre                                                                                                                                                                                     | ease) (Decreas                                                          | e) (Increase)                            | (Decrease)                         | (Increase)                          | (Increase)                            |                                              |  |  |  |  |  |  |
| Mass Savings, Select Vehicle, New Technology "kg"       21.00         Mass Savings, Silverado 1500, New Technology "kg"       23.80         Mass Savings Select Vehicle/Mass Savings 1500       88.2% |                                                                         |                                          |                                    |                                     |                                       |                                              |  |  |  |  |  |  |
| 0.9% -0.2%                                                                                                                                                                                            | <b>%</b>                                                                | aved, techr                              | ology app                          | lies                                |                                       |                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                       | ■%                                                                      | ost, compo.                              | nent does i                        | n't exist                           |                                       |                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                       | <b>%</b>                                                                | ost, techno.                             | logy doesn                         | 't apply                            |                                       |                                              |  |  |  |  |  |  |
| 88.2%                                                                                                                                                                                                 | ■%                                                                      | ost, techno                              | logy alread                        | ly impler                           | nented                                |                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                       | ■%                                                                      | ost, techno                              | logy reduc                         | ed impac                            | t                                     |                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                       |                                                                         |                                          |                                    |                                     |                                       |                                              |  |  |  |  |  |  |
| *SMS not included - has no significant impact on perecent contributions                                                                                                                               | 'SMS not included - has no significant impact on perecent contributions |                                          |                                    |                                     |                                       |                                              |  |  |  |  |  |  |

Table 3-2: Mass Reduction and Cost Impact for Engine System, Silverado 2500

Note: The gray shaded areas in the chart above indicate using an aluminum block in place of a cast iron block for the 2500, for a greater weight savings. This iron to aluminum weight savings will be used for all vehicle summary charts.

The Silverado 1500 engine block was aluminum and further light weighted by reducing the mass of the iron cylinder liners. General Motors selected a cast iron engine block for the Silverado 2500. Plasma cylinder liner technology does not apply to cast iron engine blocks. The Silverado 1500 mass savings associated with the cylinder liner comprises the portion of the pie titled "% Lost, technology doesn't apply." The flywheel and accessory bracket were both slightly larger on the 2500 series truck; therefore, saw more benefit from Lightweighting technologies. For this reason "% Lost, technology reduced impact" is a negative 1.3%. The 2500 series engine mount fastened directly to the engine block with no additional bracket as was found on the 1500 series. This is an example of "% Lost, component does not exist."

# 3.1.2.3 System Scaling Analysis, Silverado 2500

The Silverado 2500 engine components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-3.

|        |           |                   | Silverado 15                       | 00           |                                          |                                  |                 |              |                                          | Select Vehicle                                                                               |
|--------|-----------|-------------------|------------------------------------|--------------|------------------------------------------|----------------------------------|-----------------|--------------|------------------------------------------|----------------------------------------------------------------------------------------------|
| System | Subsystem | Sub-<br>Subsystem | Component/Assembly                 | Base<br>Mass | Mass<br>Savings<br><mark>New Tech</mark> | % of Mass<br>Savings<br>New Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br><mark>New Tech</mark> | Notes                                                                                        |
| 01     | Er        | ngir              | ie System                          | 239.95       | 23.80                                    | 10%                              |                 |              | 21.00                                    |                                                                                              |
| 01     | 02        | 02                | Engine Mount                       | 4.00         | 0.55                                     | 14%                              | Yes             | 4.48         | 0.61                                     | Tech DOES apply: AHSS applies                                                                |
| 01     | 02        | 02                | Engine Mount Bracket               | 0.98         | 0.22                                     | 22%                              | No              |              |                                          | Tech does NOT apply: Component does not exist on 2500 series.                                |
| 01     | 02        | 10                | Engine Lift Bracket & Bolt         | 0.33         | 0.33                                     | 100%                             | Yes             | 0.34         | 0.33                                     | Tech <b>DOES</b> apply: Mass reduction by bracket removal after installation applies.        |
| 01     | 03        | 01                | Crankshaft Assembly                | 24.01        | 1.03                                     | 4%                               | Yes             | 24.19        | 1.04                                     | Tech DOES apply: Cored crankshaft technology applies.                                        |
| 01     | 03        | 03                | Connect Rod                        | 4.66         | 1.07                                     | 23%                              | Yes             | 4.62         | 1.06                                     | Tech <b>DOES</b> apply: Powder forged connecting rod; billet forged mass<br>savings applies. |
| 01     | 03        | 04                | Piston                             | 3.39         | 0.00                                     | 0%                               | No              |              |                                          | Tech does NOT apply: Secondary mass savings applies                                          |
| 01     | 03        | 04                | Wrist Pin                          | 1.19         | 0.27                                     | 23%                              | Yes             | 1.19         | 0.27                                     | Tech DOES apply: Tapered wrist pin techology applies.                                        |
| 01     | 05        | 01                | Cylinder Block                     | 46.05        | 2.64                                     | 6%                               | No              |              |                                          | Tech does <b>NOT</b> apply: Cast Iron Block; plasma liner technology does<br>not apply.      |
| 01     | 05        | 01                | Rear Main Seal Retainer            | 0.79         | 0.30                                     | 38%                              | Yes             | 0.78         | 0.29                                     | Tech DOES apply: Metal to plastic replacement applies                                        |
| 01     | 05        | 99                | Cylinder Deactivation Assembly     | 1.19         | 0.36                                     | 31%                              | Yes             | 1.00         | 0.31                                     | Tech DOES apply: Aluminum to magnesium savings applies                                       |
| 01     | 06        | 01                | Cylinder Head                      | 18.64        | 0.00                                     | 0%                               | No              |              |                                          | Tech does NOT apply: Secondary mass savings applies                                          |
| 01     | 06        | 20                | Valve Covers                       | 2.28         | 1.16                                     | 51%                              | Yes             | 2.30         | 1.17                                     | Tech DOES apply: metal to plastic technology applies                                         |
| 01     | 07        | 06                | Camshaft                           | 4.38         | 0.00                                     | 0%                               | Yes             | 4.37         |                                          | Secondary mass savings applies                                                               |
| 01     | 07        | 06                | Camshaft Retainer Plate            | 0.19         | 0.09                                     | 45%                              | Yes             | 0.19         | 0.08                                     | Tech <b>DOES</b> apply: Steel to Aluminum technology applies.                                |
| 01     | 07        | 08                | Phaser Wire Harness Bracket        | 0.14         | 0.11                                     | 75%                              | Yes             | 0.14         | 0.11                                     | Tech DOES apply: Metal to plastic replacement applies                                        |
| 01     | 08        | 06                | Front Cover                        | 1.11         | 0.42                                     | 37%                              | Yes             | 1.17         | 0.44                                     | Tech DOES apply: Metal to plastic replacement applies                                        |
| 01     | 09        | 01                | Idler Pulley                       | 0.46         | 0.26                                     | 58%                              | Yes             | 0.42         | 0.25                                     | I ech DOES apply: Metal to plastic replacement applies                                       |
| 01     | 09        | 01                | Crank Pulley                       | 4.64         | 0.00                                     | 0%                               | Yes             | 4.54         | 0.40                                     | Secondary mass savings applies                                                               |
| 01     | 09        | 01                | AC Compressor Pulley               | 0.85         | 0.42                                     | 49%                              | Yes             | 0.86         | 0.42                                     | Tech DOES apply: Metal to plastic replacement applies                                        |
| 01     | 10        | 01                | Air Filter Box                     | 5.76         | 0.26                                     | 3%                               | Yee             | 5.67         | 0.27                                     | Tech DOES apply. SW glass bubble technology applies.                                         |
| 01     | 10        | 02                | All Filler BOX                     | 4.50         | 0.00                                     | 10%                              | Ves             | 4.02         | 0.59                                     | Tech DOES apply. Mucell technology applies.                                                  |
| 01     | 12        | 01                | Oil Pan                            | 5.47         | 1.41                                     | 20%                              | Vec             | 5.17         | 1.34                                     | Tech DOES apply. Fabricated exhaust manifold technology applies.                             |
| 01     | 13        | 01                | Oil Pan Baffle Plate               | 0.38         | 0.27                                     | 70%                              | Yes             | 0.38         | 0.27                                     | Tech DOES apply: Adminian to magnesiam savings applies                                       |
| 01     | 13        | 01                | Crank Cover Baffle Plate           | 1.27         | 0.90                                     | 71%                              | Yes             | 1.27         | 0.90                                     | Tech DOES apply: Metal to plastic replacement applies                                        |
| 01     | 13        | 02                | Oil Pick-Up Tube                   | 0.67         | 0.43                                     | 64%                              | Yes             | 0.68         | 0.44                                     | Tech DOES apply: Metal to plastic replacement applies                                        |
| 01     | 14        | 00                | Water Pumps, Pulley, Thermostat    | 6.05         | 3.25                                     | 54%                              | Yes             | 5.94         | 3.19                                     | Tech DOES apply: Electric water pump technology applies.                                     |
| 01     | 14        | 04                | Engine Heat Exchanger Assembly     | 6.79         | 0.27                                     | 4%                               | Yes             | 7.35         | 0.29                                     | Tech <b>DOES</b> apply: Application specific heat exchanger savings applies                  |
| 01     | 14        | 04                | Main Coolant Fan Assembly          | 2.55         | 0.79                                     | 31%                              | Yes             | 2.56         | 0.80                                     | Tech DOES apply: MuCell technology applies                                                   |
| 01     | 17        | 99                | Coolant Bleed Line (Cylinder Head) | 0.12         | 0.05                                     | 45%                              | Yes             | 0.12         | 0.05                                     | Tech DOES apply: Metal to plastic replacement applies                                        |
| 01     | 60        | 03                | Coil Bracket (DS)                  | 0.56         | 0.44                                     | 79%                              | Yes             | 0.59         | 0.46                                     | Tech DOES apply: Steel integrated into existing Al component savings<br>applies              |
| 01     | 60        | 03                | Coil Bracket (PS)                  | 0.56         | 0.44                                     | 79%                              | Yes             | 0.59         | 0.46                                     | Tech <b>DOES</b> apply: Steel integrated into existing AI component savings<br>applies       |
| 01     | 70        | 05                | AC Compressor Bracket              | 1.24         | 0.37                                     | 30%                              | Yes             | 1.27         | 0.38                                     | Tech DOES apply: Aluminum to magnesium savings applies                                       |
| 01     | 70        | 99                | Accessory Bracket                  | 3.36         | 1.86                                     | 55%                              | Yes             | 3.65         | 2.02                                     | Tech DOES apply: Aluminum to magnesium savings applies                                       |

Table 3-3: System Scaling Analysis, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Silverado 2500 series include the connecting rod, exhaust manifold, crankshaft, oil pan, and water pump.

#### **Connecting Rod**

As shown in Image 3.1–3, the 1500 series with LC9 engine uses the same connecting rod as the 2500 series LC8 engine. Component masses are 4.66 kg for the 1500 versus 4.62 kg for the 2500 respectively. The factory LC8 connecting rod as well as an optimized billet forged version can be seen in Image 3.1–4. Forged C-70's strength advantage allows for mass reduction and its compatibility with the crack-break manufacturing process maintains costs. Due to similarities in component design and material, full percentage of the Silverado 1500 connecting rod mass reduction can be applied to the 2500. (Refer to Table 3-3).



Image 3.1–3: Connecting rod for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right) (Source: FEV, Inc.)



Image 3.1–4: Connecting rod for 5.3 liter LC9 (Left) and C-70 rod (Right) (Source: FEV, Inc.)

# Exhaust Manifold

The LC9 and LC8 share common exhaust manifolds down to the part number (Image 3.1–5). Fabricated exhaust manifolds saves significant mass. Image 3.1–6 and Image 3.1-7 are examples of fabricated exhaust manifolds. Due to similarities in component design and material, full percentage of the Silverado 1500 exhaust manifold mass reduction can be applied to the 2500. (Refer to Table 3-3).



Image 3.1–5: Exhaust manifold for 5.3 liter LC9 (Left), 6.0 liter LC8 (Right) (Source: FEV, Inc.)



Image 3.1–6: Fabricated V8 Exhaust Manifold (LS7 Corvette) (Source: http://www.ebay.com)



*Image 3.1-7: Fabricated Exhaust Manifold* (Source: http://www.ddperformanceresearch.com)

#### <u>Crankshaft</u>

As shown below in Image 3.1–8, the LC9 and LC8 crankshafts are very similar with the mass of the LC8 being 0.19 kg, or 0.7% more. Crankshaft coring (Image 3.1–9) for weight reduction does apply to the LC8 crankshaft. Due to similarities in component design and material, full percentage of the Silverado 1500 crankshaft mass reduction can be applied to the 2500. (Refer to Table 3-3).



Image 3.1–8: Crankshaft for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right) (Source: FEV, Inc.)



Image 3.1–9: Cored crankshaft for BMW 4.4L V8 (Source: eurochopshop.com photo)

<u>Oil Pan</u>

As shown in Image 3.1-10, the LC9 and LC8 oil pans are the same. Component masses are 5.47 kg for the 1500 and 5.17 kg for the 2500 respectively. Magnesium in this application offers a weight reduction (Image 3.1-11). Due to similarities in component design and material, full percentage of the Silverado 1500 oil pan mass reduction can be applied to the 2500. (Refer to Table 3-3).



Image 3.1–10: Oil pan for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right) (Source: FEV, Inc.)



Image 3.1–11: Oil pan (magnesium) for Nissan GTR (Source: www.conceptzperformance.com)

#### Water Pump

As shown in Image 3.1–12, the LC9 and LC8 water pumps are the same. An electric water pump offers the advantage of a tailored flow rate to match engine cooling requirements. This presents an energy savings versus directly coupled mechanical pumps, which are sized to cool engines at low engine speed and over-deliver at high engine speed. Additionally, electric water pumps coupled with electronically controlled thermostats present a mass savings (Image 3.1–13). An electric water pump in this application saves an estimated 3.19 kg and improves fuel efficiency. Due to similarities in component design and material, full percentage of the Silverado 1500 water pump mass reduction can be applied to the 2500. (Refer to Table 3-3).



Image 3.1–12: Water pump for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right) (Source: FEV, Inc.)



Image 3.1–13: Water pump assembly components, electric water pump (Left) and thermostat (Right) (Source: left – www.daviescraig.com.au; right - www.autopartsway.com)

#### **Accessory Bracket**

As shown in Image 3.1–14, the LC9 and LC8 accessory brackets are very similar. Magnesium in this application saves weight versus aluminum. Component masses are 3.36 kg for the 1500 and 3.65 kg for the 2500 respectively. Due to similarities in component design and material, full percentage of the Silverado 1500 accessory bracket mass reduction can be applied to the 2500. (Refer to Table 3-3).



Image 3.1–14: Accessory bracket for 5.3 liter LC9 (Left) and 6.0 liter LC8 (Right) (Source: FEV, Inc.)

#### 3.1.2.4 System Comparison, Silverado 2500

Table 3-4 summarizes the Silverado 1500 and 2500 Lightweighting results. The LC8 engine weighs 50 kg more than the LC9, primarily because of its cast iron engine block. The LC8 engine did not feature cylinder deactivation, but did have a cover to replace the solenoid mechanism. Other changes included a mechanical fan instead of electric and larger pistons. A majority of the components were visually the same between the two engines. The engine block is responsible for the decrease in new technology mass savings for 2500.

|        |                      |                                     |                                                      | Net                                              | t Value o                                         | of Mass                            | Reduct                                 | ion                                |                                     |                                       |
|--------|----------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|
| System | Description          | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |
|        |                      |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |
| 01     | Engine System        |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |
| 01     | Silverado 1500 (LC9) | 239.95                              | 21.00                                                | 12.09                                            | 33.08                                             | 13.79%                             | -\$115.06                              | \$34.17                            | -\$80.89                            | -\$2.44                               |
| 01     | Silverado 2500 (LC8) | 289.75                              | 63.48                                                | 8.16                                             | 71.64                                             | 24.72%                             | -\$224.28                              | \$39.71                            | -\$184.57                           | -\$2.58                               |
|        |                      |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |

Table 3-4: Engine System Comparison, Silverado 1500 and 2500

#### 3.1.3 Mercedes Sprinter

#### 3.1.3.1 Baseline Technology, Mercedes Sprinter

Mercedes Sprinter is powered by a 2.1 liter inline four-cylinder diesel engine (Image 3.1–15). The engine features common rail injection and fixed geometry turbo charging. Maximum power rating is 81kW with 280N•m of torque.



Image 3.1–15: Mercedes sprinter base engine (2.1 CDI) (Source: www.A2mac1.com)

# 3.1.3.2 Mass Savings and Costa Impact, Mercedes Sprinter

Table 3-5 summarizes the mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Mercedes Sprinter. Total engine mass savings is 13.75 kg at a cost increase of \$2.01 per kg. The total mass savings using an aluminum block in place of a cast iron block for the Mercedes Sprinter, for a greater weight savings was 33.20 kg and a cost increase of \$2.33 per kg.



Table 3-5: Mass-Reduction and Cost Impact for Engine System, Mercedes Sprinter

Note: The gray shaded areas in the chart above indicate using an aluminum block in place of a cast iron block for the Mercedes Sprinter, for a greater weight savings. This iron to aluminum weight savings will be used for all vehicle summary charts.

Mass savings could not be credited for components for which Lightweighting technologies did not apply. Reasons for this could be that the technology was already implemented such as in the Sprinter camshaft which was already hollow-cast. For other components the Lightweighting Technology may not apply because of part design. For example, the Sprinter crankshaft could not be hollow-cast because forging is required for strength in this diesel application. Some light weighted components of the Silverado 1500 analysis did not exist in the Sprinter, such as the flexplate, which did not exist on the manual transmission Sprinter.

#### 3.1.3.3 System Scaling Analysis, Mercedes Sprinter

The Mercedes Sprinter Engine components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-6.

|        |           |           | Silverado 15                       | 00           |                                          |                                               |                 |              |                             | Select Venicle                                                                                                                                                                                                                                       |
|--------|-----------|-----------|------------------------------------|--------------|------------------------------------------|-----------------------------------------------|-----------------|--------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System | Subsystem | Subsystem | Component/Assembly                 | Base<br>Mass | Mass<br>Savings<br><mark>New Tech</mark> | % of Mass<br>Savings<br><mark>New Tech</mark> | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New Tech | Notes                                                                                                                                                                                                                                                |
| 01     | Er        | ngir      | ne System                          | 239.95       | 23.80                                    | 10%                                           |                 |              | 7.64                        |                                                                                                                                                                                                                                                      |
| 01     | 02        | 02        | Engine Mount                       | 4.00         | 0.55                                     | 14%                                           | No              |              |                             | Tech does NOT apply: Aluminum Mounts; AHSS does not apply.                                                                                                                                                                                           |
| 01     | 02        | 02        | Engine Mount Bracket               | 0.98         | 0.22                                     | 22%                                           | Yes             | 1.91         | 0.43                        | Tech <b>DOES</b> apply: Stamped steel engine mount bracket. Deep draw, may<br>require redesign for AHSS.                                                                                                                                             |
| 01     | 02        | 10        | Engine Lift Bracket & Bolt         | 0.33         | 0.33                                     | 100%                                          | Yes             | 0.67         | 0.67                        | Tech <b>DOES</b> apply: Assuming all lift bracket bolts are accessable for removal<br>after engine installation. 2 of 3 lift brackets appear accessable based on<br>engine assembly images. 3rd bracket cannot be seen in engine assembly<br>images. |
| 01     | 03        | 01        | Crankshaft Assembly                | 24.01        | 1.03                                     | 4%                                            | No              |              |                             | Tech does NOT apply: Forged crank for turbo application; cannot core cast.                                                                                                                                                                           |
| 01     | 03        | 03        | Connect Rod                        | 4.66         | 1.07                                     | 23%                                           | No              |              |                             | Tech does NOT apply: Forged diesel conrod; Not Powder metal gas.                                                                                                                                                                                     |
| 01     | 03        | 04        | Piston                             | 3.39         | 0.00                                     | 0%                                            | No              |              |                             | Tech does NOT apply: Secondary mass savings applies                                                                                                                                                                                                  |
| 01     | 03        | 04        | Wrist Pin                          | 1.19         | 0.27                                     | 23%                                           | No              |              |                             | Tech does NOT apply: Piston pin is already tapered.                                                                                                                                                                                                  |
| 01     | 05        | 01        | Cylinder Block                     | 46.05        | 2.64                                     | 6%                                            | No              |              |                             | Tech does NOT apply: Cast Iron cylinder block; Plasma liners do not apply.                                                                                                                                                                           |
| 01     | 05        | 01        | Rear Main Seal Retainer            | 0.79         | 0.30                                     | 38%                                           | Yes             | 0.18         | 0.07                        | Tech DOES apply: Aluminum component; could be made from plastic.                                                                                                                                                                                     |
| 01     | 05        | 99        | Cylinder Deactivation Assembly     | 2.60         | 0.36                                     | 14%                                           | No              |              |                             | Tech does <b>NOT</b> apply: 4 cylinder tubo-diesel; no cylinder decativation<br>system.                                                                                                                                                              |
| 01     | 06        | 01        | Cylinder Head                      | 18.64        | 0.00                                     | 0%                                            | No              |              |                             | Tech does NOT apply: Secondary mass savings applies.                                                                                                                                                                                                 |
| 01     | 06        | 20        | Valve Covers                       | 2.28         | 1.16                                     | 51%                                           | Yes             | 2.95         | 1.50                        | Tech DOES apply: Aluminum valve cover is candidate for plastic.                                                                                                                                                                                      |
| 01     | 07        | 06        | Camshaft                           | 4.38         | 0.00                                     | 0%                                            | No              |              |                             | Secondary mass savings applies.                                                                                                                                                                                                                      |
| 01     | 07        | 06        | Camshaft Retainer Plate            | 0.19         | 0.09                                     | 45%                                           | No              |              |                             | Tech does NOT apply: Overhead cam; no retainer comparable to 1500.                                                                                                                                                                                   |
| 01     | 07        | 08        | Phaser Wire Harness Bracket        | 0.14         | 0.11                                     | 75%                                           | No              |              |                             | Tech does NOT apply: No cam phaser.                                                                                                                                                                                                                  |
| 01     | 08        | 06        | Front Cover                        | 1.11         | 0.42                                     | 37%                                           | No              |              |                             | Tech does <b>NOT</b> apply: Front cover integrates other components. Cannot<br>confirm plastic as material option.                                                                                                                                   |
| 01     | 09        | 01        | Idler Pullev                       | 0.46         | 0.26                                     | 58%                                           | No              |              |                             | Tech does NOT apply: Components is already plastic.                                                                                                                                                                                                  |
| 01     | 09        | 01        | Crank Pulley                       | 4.64         | 0.00                                     | 0%                                            | Yes             | 2.62         |                             | Secondary mass savings applies.                                                                                                                                                                                                                      |
| 01     | 09        | 01        | AC Compressor Pulley               | 0.70         | 0.42                                     | 60%                                           | No              |              |                             | Tech does NOT apply: Pulley appears to already be plastic.                                                                                                                                                                                           |
| 01     | 10        | 01        | Intake Manifold                    | 5.76         | 0.28                                     | 5%                                            | Yes             | 1.09         | 0.05                        | Tech <b>DOES</b> apply: Plastic intake manifold is a candidate for glass bubbles.                                                                                                                                                                    |
| 01     | 10        | 02        | Air Filter Box                     | 4.50         | 0.66                                     | 15%                                           | Yes             | 1.76         | 0.26                        | Tech DOES apply: MuCell applies.                                                                                                                                                                                                                     |
| 01     | 12        | 01        | Exhaust Manifold                   | 12.17        | 3.15                                     | 26%                                           | Yes             | 2.97         | 0.77                        | Tech DOES apply: Fabricated exhaust manifold technology applies.                                                                                                                                                                                     |
| 01     | 13        | 01        | Oil Pan                            | 5.47         | 1.41                                     | 26%                                           | Yes             | 4.76         | 1.23                        | Tech DOES apply: Aluminum oil pan could be Magnesium.                                                                                                                                                                                                |
| 01     | 13        | 01        | Oil Pan Baffle Plate               | 0.38         | 0.27                                     | 70%                                           | No              |              |                             | Tech does NOT apply: No baffle plate could be found.                                                                                                                                                                                                 |
| 01     | 13        | 01        | Crank Cover Baffle Plate           | 1.27         | 0.90                                     | 71%                                           | No              |              |                             | Tech does NOT apply: No baffle plate could be found.                                                                                                                                                                                                 |
| 01     | 13        | 02        | Oil Pick-Up Tube                   | 0.67         | 0.43                                     | 64%                                           | Yes             | 0.21         | 0.14                        | Tech DOES apply: Steel pick up tube; Technology applies.                                                                                                                                                                                             |
| 01     | 14        | 00        | Water Pumps, Pulley, Thermostat    | 6.05         | 3.25                                     | 54%                                           | Yes             | 2.52         | 1.35                        | Tech DOES apply: All Aluminum pump and housing, steel pulley.                                                                                                                                                                                        |
| 01     | 14        | 04        | Engine Heat Exchanger Assembly     | 6.79         | 0.27                                     | 4%                                            | Yes             | 2.45         | 0.10                        | Tech DOES apply: Could be shared with other applications.                                                                                                                                                                                            |
| 01     | 14        | 04        | Main Coolant Fan Assembly          | 2.55         | 0.79                                     | 31%                                           | Yes             | 3.45         | 1.07                        | Tech DOES apply: MuCell Applies                                                                                                                                                                                                                      |
| 01     | 17        | 99        | Coolant Bleed Line (Cylinder Head) | 0.12         | 0.05                                     | 45%                                           | No              |              |                             | Tech does NOT apply: Component does not exist.                                                                                                                                                                                                       |
| 01     | 60        | 03        | Coil Bracket (DS)                  | 0.56         | 0.44                                     | 79%                                           | No              |              |                             | Tech does NOT apply: Diesel; no coil exists.                                                                                                                                                                                                         |
| 01     | 60        | 03        | Coil Bracket (PS)                  | 0.56         | 0.44                                     | 79%                                           | No              |              |                             | Tech does NOT apply: Diesel; no coil exists.                                                                                                                                                                                                         |
| 01     | 70        | 05        | AC Compressor Bracket              | 1.24         | 0.37                                     | 30%                                           | No              |              |                             | Tech does NOT apply: Mount is integrated into front cover.                                                                                                                                                                                           |
| 01     | 70        | 99        | Accessory Bracket                  | 3.36         | 1.86                                     | 55%                                           | No              |              |                             | Tech does NOT apply: Bracket does not exist                                                                                                                                                                                                          |

Table 3-6: System Scaling Analysis, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Key Components for mass reduction include the exhaust manifold, oil pan, and water pump assembly.

#### Exhaust Manifold

The Sprinter 2.1 CDI has a traditional cast exhaust manifold (Image 3.1–16). The BMW N54 is an example of a turbo engine with fabricated manifolds that can save significant mass. The base mass is 2.97 kg; with fabricated exhaust manifold in this application it saves 0.77 kg. Due to similarities in component design and material, full percentage of the Silverado 1500 exhaust manifold mass reduction can be applied to the Sprinter. (Refer to Table 3-6). Image 3.1–16 is the Silverado 1500 and Sprinter exhaust manifold.





Image 3.1–16: Exhaust manifold for Silverado 1500 5.3L LC9 (Left) and Sprinter 2.1 CDI (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### <u>Oil Pan</u>

The Sprinter 2.1 CDI has a deep skirt engine block and a single piece oil pan (Image 3.1–17). The Nissan GT-R<sup>[10]</sup> is an example of an upper oil pan made from Magnesium. The base mass is 4.76 kg; with Magnesium in this application it saves 1.23 kg. Due to similarities in component design and material, full percentage of the Silverado 1500 oil pan mass reduction can be applied to the Sprinter. (Refer to Table 3-6).



Image 3.1–17: Aluminum oil pan for Silverado 1500 5.3L LC9 (Left) and Sprinter 2.1 CDI (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Water Pump Assembly

The Sprinter 2.1 CDI water pump assembly consisting of drive pulley, mechanical water pump, pump housing (integrated into timing cover) and thermostat assembly are shown in Image 3.1–19. Electric water pumps offer the advantage of tailored flow rate to match engine cooling requirements. This presents an energy savings verses directly coupled mechanical pumps, which are sized to cool engines at low engine speed and over deliver at high engine speed. Additionally electric water pumps coupled with electronically controlled thermostats present a mass savings.

<sup>10</sup> Nissan GT-R. Retrieved from Nissan Official Global Site: http://www.gtrnissan.com/

The base mass is 2.52 kg, with an electric water pump in this application it saves and estimated 1.35 kg and has improved fuel efficiency. Due to similarities in component design and material, full percentage of the Silverado 1500 water pump assembly mass reduction can be applied to the Sprinter. (Refer to Table 3-6).The Silverado 1500 water pump is shown in Image 3.1–18.



Image 3.1–18: Water pump for 5.3 liter Silverado 1500 5.3L LC9 (Source: FEV, Inc.)



Image 3.1–19: Water pump assembly components for Sprinter 2.1 CDI (Source: www.A2mac1.com)

#### 3.1.4 Renault Master

#### 3.1.4.1 Baseline Technology, Renault Master

The Renault Master is powered by a 2.3 liter four-cylinder diesel engine (Image 3.1–20). The engine features common rail injection and fixed geometry turbo charging. Maximum power rating is 92kW with 310 N•m of torque.



Image 3.1–20: Renault Master base engine (2.3 dCi) (Source: www.A2mac1.com)

#### 3.1.4.2 Mass Savings and Cost Impact, Renault Master

Table 3-7 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Renault Master. Total engine mass savings is 14.32 kg at a cost increase of \$3.82 per kg. Cost is higher on this vehicle because plastic valve and timing covers both save cost and did not apply, plastic had already been implemented on the lubrication system, and the cooling system mass drives higher cost. The total mass savings using an aluminum block in place of a cast iron block for the Renault Master, for a greater weight savings is 35.60 kg and a cost increase of \$3.08 per kg.

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                     | Net Value of Mass Peduction                          |                                                  |                                                   |                                        |                                               |                                                |                                       |                                              |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|--|
| _              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                     |                                                      | N                                                | iet valu                                          | e or ma                                | iss Rec                                       | JUCLIOI                                        | 1                                     | 1                                            |  |  |  |
| System         | Subsystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sub-Subsystem | Description                                                         | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |  |
| 01             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Engine System                                                       |                                                      |                                                  |                                                   |                                        |                                               |                                                |                                       |                                              |  |  |  |
| 01             | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Engine System<br>Engine Frames, Mounting, and Brackets<br>Subsystem | 0.28                                                 | 0.39                                             | 0.67                                              | -\$0.26                                | \$0.63                                        | \$0.38                                         | \$0.57                                | 0.03%                                        |  |  |  |
| 01             | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Crank Drive Subsystem                                               | 0.00                                                 | 1.47                                             | 1.47                                              | \$0.00                                 | \$2.86                                        | \$2.86                                         | \$1.94                                | 0.06%                                        |  |  |  |
| 01             | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Counter Balance Subsystem                                           | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                                        | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 01             | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Cylinder Block Subsystem                                            | 0.00                                                 | 3.27                                             | 3.27                                              | \$0.00                                 | \$9.99                                        | \$9.99                                         | \$3.05                                | 0.14%                                        |  |  |  |
| 01             | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Cylinder Block Subsystem (Aluminum)                                 | 22.94                                                | 1.62                                             | 24.56                                             | -\$59.32                               | \$14.28                                       | -\$45.04                                       | -\$1.83                               | 1.04%                                        |  |  |  |
| 01             | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Cylinder Head Subsystem                                             | 0.00                                                 | 0.90                                             | 0.90                                              | \$0.00                                 | \$2.71                                        | \$2.71                                         | \$3.02                                | 0.04%                                        |  |  |  |
| 01             | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Valvetrain Subsystem                                                | 0.00                                                 | 0.04                                             | 0.04                                              | \$0.00                                 | \$0.15                                        | \$0.15                                         | \$3.57                                | 0.00%                                        |  |  |  |
| 01             | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Timing Drive Subsystem                                              | 0.62                                                 | 0.00                                             | 0.62                                              | -\$3.67                                | \$0.00                                        | -\$3.67                                        | -\$5.90                               | 0.03%                                        |  |  |  |
| 01             | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Accessory Drive Subsystem                                           | 0.42                                                 | 0.19                                             | 0.61                                              | \$0.63                                 | \$0.00                                        | \$0.63                                         | \$1.04                                | 0.03%                                        |  |  |  |
| 01             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Air Intake Subsystem                                                | 0.21                                                 | 0.00                                             | 0.21                                              | \$0.09                                 | \$0.00                                        | \$0.09                                         | \$0.41                                | 0.01%                                        |  |  |  |
| 01             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Exhaust Subsystem                                                   | 1.00                                                 | 0.00                                             | 1.07                                              | \$U.UU<br>¢C 20                        | \$0.00                                        | \$0.00<br>CC 1C                                | \$0.00<br>¢£ 77                       | 0.00%                                        |  |  |  |
| 01             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Lubrication Subsystem                                               | 2.00                                                 | 0.00                                             | 2 22                                              | -90.30<br>©15.62                       | \$0.22<br>\$0.57                              | -30.10<br>\$15.07                              | 01.32                                 | 0.05%                                        |  |  |  |
| 01             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Cooling Subsystem                                                   | 2.21                                                 | 0.11                                             | 2.32                                              | -\$47.11                               | \$1.40                                        | -\$45.71                                       | -\$15.28                              | 0.10%                                        |  |  |  |
| 01             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Induction Air Charging Subsystem                                    | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                                        | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 01             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Exhaust Gas Re-circulation Subsystem                                | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                                        | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 01             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Breather Subsystem                                                  | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                                        | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 01             | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Engine Management, Engine Electronic, Electrical<br>Subsystem       | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                                        | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |  |
| 01             | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00            | Accessory Subsystems (Start Motor, Generator,<br>etc.)              | 0.14                                                 | 0.00                                             | 0.14                                              | -\$0.92                                | \$0.00                                        | -\$0.92                                        | -\$6.53                               | 0.01%                                        |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                     | 7.58                                                 | 6 74                                             | 14 32                                             | \$73.25                                | \$18.54                                       | \$54.71                                        | \$3.82                                | 0.61%                                        |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Aluminum cyclinder block totals                                     | 30.51                                                | 5.09                                             | 35.60                                             | -\$132.57                              | \$22.83                                       | -\$109.75                                      | -\$3.08                               | 1.51%                                        |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                     | (Decrease)                                           | (Decrease)                                       | (Decrease)                                        | (Increase)                             | (Decrease)                                    | (Increase)                                     | (Increase)                            |                                              |  |  |  |
| Ma<br>Ma<br>Ma | Iass Savings, Select Vehicle, New Technology "kg"       7.58         Iass Savings, Silverado 1500, New Technology "kg"       23.80         Iass Savings Select Vehicle/Mass Savings 1500       31.8%         Image: Select Vehicle/Mass Savings 1500       31.8% |               |                                                                     |                                                      |                                                  |                                                   |                                        |                                               |                                                |                                       |                                              |  |  |  |

| Table 3-7. Mass-Reduction an | nd Cost Im       | nact for Engin | e System  | Renault Master |
|------------------------------|------------------|----------------|-----------|----------------|
| Tuble 5-7. Muss-Reduction ut | $u \cos m_{\mu}$ |                | e bystem, | Renault musier |

% Lost, technology doesn't apply

- % Lost, technology already implemented
- % Lost, technology reduced impact

\*SMS not included - has no significant impact on perecent contributions

19.9%

22.3%

Note: The gray shaded areas in the chart above indicate using an aluminum block in place of a cast iron block for the Renault Master, for a greater weight savings. This iron to aluminum weight savings will be used for all vehicle summary charts.

Mass savings could not be credited for components for which Lightweighting technologies did not apply. Reasons for this could be that the technology was already implemented such as in the Renault oil system which already utilized plastic for the baffle plates and oil pick-up. For other components the Lightweighting Technology may not apply because of part design. For example the Renault crankshaft could not be hollow-cast because forging is required for strength in this diesel engine. Some components that were light weighted as part of the Silverado 1500 analysis did not exist in the Renault engine, such as the cylinder deactivation assembly.

# 3.1.4.3 System Scaling Analysis, Renault Master

The Renault Master engine components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-8.

|        |           |                   | Silverado 15                       | 00           |                                          |                                  | Select Vehicle  |              |                                          |                                                                                                                                                                                              |  |  |
|--------|-----------|-------------------|------------------------------------|--------------|------------------------------------------|----------------------------------|-----------------|--------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| System | Subsystem | Sub-<br>Subsystem | Component/Assembly                 | Base<br>Mass | Mass<br>Savings<br><mark>New Tech</mark> | % of Mass<br>Savings<br>New Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br><mark>New Tech</mark> | Notes                                                                                                                                                                                        |  |  |
| 01     | Er        | ngir              | ne System                          | 239.95       | 23.80                                    | 10%                              |                 |              | 7.58                                     |                                                                                                                                                                                              |  |  |
| 01     | 02        | 02                | Engine Mount                       | 4.00         | 0.55                                     | 14%                              | No              |              |                                          | Tech does NOT apply: Aluminum mounts; AHSS does not apply.                                                                                                                                   |  |  |
| 01     | 02        | 02                | Engine Mount Bracket               | 0.98         | 0.22                                     | 22%                              | No              |              |                                          | Tech does NOT apply: Single piece engine mount; no bracket.                                                                                                                                  |  |  |
| 01     | 02        | 10                | Engine Lift Bracket & Bolt         | 0.33         | 0.33                                     | 100%                             | Yes             | 0.28         | 0.28                                     | Tech <b>DOES</b> apply: Lift eye appears accessable for removal; 2nd lift<br>eye is used as bracket and cannot be removed.                                                                   |  |  |
| 01     | 03        | 01                | Crankshaft Assembly                | 24.01        | 1.03                                     | 4%                               | No              |              |                                          | lech does NOT apply: Forged crank for turbo application; core cast does not apply.                                                                                                           |  |  |
| 01     | 03        | 03                | Connect Rod                        | 4.66         | 1.07                                     | 23%                              | No              |              |                                          | steel does not apply. Forged diesel conrod; powder metal to forged                                                                                                                           |  |  |
| 01     | 03        | 04                | Piston                             | 3.39         | 0.00                                     | 0%                               | No              |              |                                          | Lech does NOT apply: Secondary mass savings applies                                                                                                                                          |  |  |
| 01     | 03        | 04                | Wrist Pin                          | 1.19         | 0.27                                     | 23%                              | No              |              |                                          | l ech does NOT apply: Piston pin is already tapered; technology<br>does not apply.                                                                                                           |  |  |
| 01     | 05        | 01                | Cylinder Block                     | 46.05        | 2.64                                     | 6%                               | No              |              |                                          | Tech does <b>NOT</b> apply: Cast iron cylinder block; Plasma cylinder<br>liners do not apply.                                                                                                |  |  |
| 01     | 05        | 01                | Rear Main Seal Retainer            | 0.79         | 0.30                                     | 38%                              | No              |              |                                          | Tech does <b>NOT</b> apply: Retainer is stamped steel, not Aluminum.<br>Design is already lightweight. Technology does not apply.                                                            |  |  |
| 01     | 05        | 99                | Cylinder Deactivation Assembly     | 2.60         | 0.36                                     | 14%                              | No              |              |                                          | Tech does <b>NOT</b> apply: 4 cylinder tubo-diesel; no cylinder<br>decativation system. Technology does not apply.                                                                           |  |  |
| 01     | 06        | 01                | Cylinder Head                      | 18.64        | 0.00                                     | 0%                               | No              |              |                                          | Tech does <b>NOT</b> apply: Aluminum cylinder head; secondary mass<br>savings applies.                                                                                                       |  |  |
| 01     | 06        | 20                | Valve Covers                       | 2.28         | 1.16                                     | 51%                              | No              |              |                                          | Tech does NOT apply: Component does not exist.                                                                                                                                               |  |  |
| 01     | 07        | 06                | Camshaft                           | 4.38         | 0.00                                     | 0%                               | No              |              |                                          | Secondary mass savings applies                                                                                                                                                               |  |  |
| 01     | 07        | 06                | Camshaft Retainer Plate            | 0.19         | 0.09                                     | 45%                              | No              |              |                                          | Tech does NOT apply: Component does not exist.                                                                                                                                               |  |  |
| 01     | 07        | 08                | Phaser Wire Harness Bracket        | 0.14         | 0.11                                     | 75%                              | No              |              |                                          | Tech does NOT apply: No Cam Phaser                                                                                                                                                           |  |  |
| 01     | 08        | 06                | Front Cover                        | 1.11         | 0.42                                     | 37%                              | Yes             | 1.66         | 0.62                                     | applies.                                                                                                                                                                                     |  |  |
| 01     | 09        | 01                | Idler Pulley                       | 0.46         | 0.26                                     | 58%                              | No              | 0.00         |                                          | Tech does <b>NOT</b> apply: Part is already plastic (PA66-GF25).                                                                                                                             |  |  |
| 01     | 09        | 01                | Crank Pulley                       | 4.64         | 0.00                                     | 0%                               | res             | 2.82         |                                          | Secondary mass savings applies                                                                                                                                                               |  |  |
| 01     | 09        | 01                | AC Compressor Pulley               | 0.70         | 0.42                                     | 60%                              | Yes             | 0.70         | 0.42                                     | mass estimated to be same as 1500                                                                                                                                                            |  |  |
| 01     | 10        | 01                | Intake Manifold                    | 5.76         | 0.28                                     | 5%                               | No              |              |                                          | implement glass bubbles.                                                                                                                                                                     |  |  |
| 01     | 10        | 02                | Air Filter Box                     | 4.50         | 0.66                                     | 15%                              | Yes             | 1.44         | 0.21                                     | Tech DOES apply: MuCell applies                                                                                                                                                              |  |  |
| 01     | 12        | 01                | Exhaust Manifold                   | 12.17        | 3.15                                     | 26%                              | Yes             | 3.88         | 1.00                                     | Tech DOES apply: Fabricated exhaust manifold technology applies.                                                                                                                             |  |  |
| 01     | 13        | 01                | Oil Pan                            | 5.47         | 1.41                                     | 26%                              | Yes             | 8.55         | 2.21                                     | Tech <b>DOES</b> apply: Upper Oil Pan appears to be aluminum; could be Mg. Technology apples.                                                                                                |  |  |
| 01     | 13        | 01                | Oil Pan Baffle Plate               | 0.38         | 0.27                                     | 70%                              | No              |              |                                          | Tech does NOT apply: Already Plastic                                                                                                                                                         |  |  |
| 01     | 13        | 01                | Crank Cover Battle Plate           | 1.27         | 0.90                                     | 71%                              | No              |              |                                          | Lech does NOT apply: Already Plastic                                                                                                                                                         |  |  |
| 01     | 14        | 02                | Water Pumps, Pulley, Thermostat    | 6.05         | 3.25                                     | 54%                              | Yes             | 3.15         | 1.69                                     | Tech DOES NOT apply: Already Plastic<br>Tech DOES apply: Water pump housing is integrated into cylinder<br>block. Estimated 2kg for block reduction. Design is more compact<br>= .85 credit. |  |  |
| 01     | 14        | 04                | Engine Heat Exchanger Assembly     | 6.79         | 0.27                                     | 4%                               | Yes             | 4.87         | 0.19                                     | Tech <b>DOES</b> apply: Assumes Radiator has extra capacity for shared<br>applications and could be optimized for the Renault. Technology<br>applies.                                        |  |  |
| 01     | 14        | 04                | Main Coolant Fan Assembly          | 2.55         | 0.79                                     | 31%                              | Yes             | 2.59         | 0.81                                     | Tech <b>DOES</b> apply: Plastic material callouts indicate no MuCell.<br>Technology applies.                                                                                                 |  |  |
| 01     | 17        | 99                | Coolant Bleed Line (Cylinder Head) | 0.12         | 0.05                                     | 45%                              | No              |              |                                          | Tech does NOT apply: No bleed line could be identified                                                                                                                                       |  |  |
| 01     | 60        | 03                | Coll Bracket (DS)                  | 0.56         | 0.44                                     | 79%                              | No              |              |                                          | Lech does NOT apply: Diesel; no coil bracket.                                                                                                                                                |  |  |
| 01     | 60        | 03                | Coll Bracket (PS)                  | 0.56         | 0.44                                     | 79%                              | NO              |              |                                          | Lech does NUT apply: Diesel; no coll bracket.                                                                                                                                                |  |  |
| 01     | 70        | 05                | AC Compressor Bracket              | 1.24         | 0.37                                     | 30%                              | Yes             | 0.48         | 0.14                                     | technology applies.                                                                                                                                                                          |  |  |
| 01     | 70        | 99                | Accessory Bracket                  | 3.36         | 1.86                                     | 55%                              | No              |              |                                          | block. Component does not exist.                                                                                                                                                             |  |  |

Table 3-8: System Scaling Analysis, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Key Components for mass reduction include the exhaust manifold, oil pan, and water pump assembly.

#### Exhaust Manifold

The Renault 2.3 dCi has a traditional cast exhaust manifold. The BMW N54 is an example of a turbo engine with fabricated manifolds that can save significant mass. The base mass is 3.88 kg;

fabricated exhaust manifold in this application it saves 1.00 kg. Due to similarities in component design and material, full percentage of the Silverado 1500 exhaust manifold mass reduction can be applied to the Renault. (Refer to Table 3-8).

#### <u>Oil Pan</u>

The Renault 2.3 dCi oil pan is two-piece with upper and lower sections. The upper section is a structural aluminum component and provides stiffening for the crankcase. The Nissan GT-R is an example of an upper oil pan made from magnesium. The base mass is 8.55 kg; with Magnesium in this application it saves 2.21 kg. Due to similarities in component design and material, full percentage of the Silverado 1500 oil pan mass reduction can be applied to the Renault. (Refer to Table 3-8).

#### Water Pump Assembly

The Renault 2.3 dCi water pump assembly consists of a drive pulley, mechanical water pump, pump housing (integrated into cylinder block) and thermostat assembly. Electric water pumps offer the advantage of tailored flow rate to match engine cooling requirements. This presents an energy savings verses directly coupled mechanical pumps, which are sized to cool engines at low engine speed and over deliver at high engine speed. Additionally electric water pumps coupled with electronically controlled thermostats present a mass savings. The base mass is 3.15 kg, with an electric water pump in this application it saves and estimated 1.69 kg and has improved fuel efficiency. Due to similarities in component design and material, full percentage of the Silverado 1500 water pump assembly mass reduction can be applied to the Renault. (Refer to Table 3-8).

# 3.2 TRANSMISSION SYSTEM

#### 3.2.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 transmission package (6L80e) (and similar 6L90) is a 6-speed automatic transmission built by General Motors at its Toledo Transmission (also called Toledo Transmission Operations, TTO, and Power train Toledo).

The Chevrolet Silverado 1500 transmission analysis features clutch-to-clutch shifting, which eliminated the one-way clutches used on older transmission designs. Some weight reduction concepts were employed when it was designed but durability and reliability were foremost in the design process. As shown in Table 3-9, we have targeted some key areas in the unit that hold mass reduction opportunities. The total mass savings found on the transmission system mass was reduced by 34.2 kg (23.5%). This increased cost by \$128.20, or \$3.75 per kg. Mass reduction for this system reduced vehicle curb weight by 1.43%.

Table 3-9: Transmission System Mass Reduction Summary, Silverado 1500

|        |           |               |                                             | Net Value of Mass Reduction |                                          |                                     |                                                        |                          |                                     |  |  |  |
|--------|-----------|---------------|---------------------------------------------|-----------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|--|
| System | Subsystem | Sub-Subsystem | Description                                 | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |  |
| 02     | 00        | 00            | Transmission System                         |                             |                                          |                                     |                                                        |                          |                                     |  |  |  |
| 02     | 01        | 00            | External Components                         | 0.02                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 02     | 02        | 00            | Case Subsystem                              | 30.73                       | 10.66                                    | -30.60                              | -17.43                                                 | 34.69%                   | 0.45%                               |  |  |  |
| 02     | 02        | 01            | Tranmission Case                            | 18.78                       | 6.93                                     | -21.38                              | -3.08                                                  | 36.91%                   | 0.29%                               |  |  |  |
| 02     | 02        | 02            | Transfer Housing                            | 10.09                       | 3.41                                     | -4.50                               | -1.32                                                  | 33.77%                   | 0.14%                               |  |  |  |
| 02     | 02        | 03            | Covers                                      | 0.04                        | 0.01                                     | -0.13                               | -9.51                                                  | 37.84%                   | 0.00%                               |  |  |  |
| 02     | 02        | 04            | Transmission Fluid measurement              | 0.36                        | 0.30                                     | -1.07                               | -3.52                                                  | 83.47%                   | 0.01%                               |  |  |  |
| 02     | 02        | 05            | Bolts                                       | 1.30                        | 0.00                                     | -3.53                               | 0.00                                                   | 0.01%                    | 0.00%                               |  |  |  |
| 02     | 03        | 00            | Gear Train Subsystem                        | 12.39                       | 2.05                                     | 24.18                               | 512.45                                                 | 16.56%                   | 0.09%                               |  |  |  |
| 02     | 03        | 01            | Sun Gears                                   | 1.11                        | 0.17                                     | -3.11                               | -18.59                                                 | 15.00%                   | 0.01%                               |  |  |  |
| 02     | 03        | 02            | Ring Gears                                  | 3.14                        | 0.47                                     | -5.75                               | -12.21                                                 | 15.00%                   | 0.02%                               |  |  |  |
| 02     | 03        | 03            | Planetary Gears                             | 2.03                        | 0.30                                     | 5.85                                | 19.18                                                  | 15.00%                   | 0.01%                               |  |  |  |
| 02     | 03        | 04            | Planetary Carriers                          | 4.64                        | 0.70                                     | 4.13                                | 5.94                                                   | 14.99%                   | 0.03%                               |  |  |  |
| 02     | 03        | 05            | Bearings                                    | 1.02                        | 0.04                                     | 23.06                               | 518.13                                                 | 4.37%                    | 0.00%                               |  |  |  |
| 02     | 03        | 99            | Misc.                                       | 0.45                        | 0.37                                     | 0.00                                | 0.00                                                   | 82.00%                   | 0.02%                               |  |  |  |
| 02     | 04        | 00            | Internal Clutch Subsystem                   | 30.47                       | 4.23                                     | -39.94                              | -39.76                                                 | 13.89%                   | 0.18%                               |  |  |  |
| 02     | 04        | 01            | Sprague / One-Way Clutches                  | 2.24                        | 0.34                                     | -4.79                               | -14.28                                                 | 15.00%                   | 0.01%                               |  |  |  |
| 02     | 04        | 03            | Clutch & Brake Hubs                         | 20.72                       | 3.84                                     | -34.21                              | -8.91                                                  | 18.54%                   | 0.16%                               |  |  |  |
| 02     | 04        | 99            | Misc.                                       | 0.59                        | 0.06                                     | -0.94                               | -16.57                                                 | 9.66%                    | 0.00%                               |  |  |  |
| 02     | 05        | 00            | Launch Clutch Subsystem                     | 20.29                       | 8.62                                     | -21.73                              | -2.52                                                  | 42.49%                   | 0.36%                               |  |  |  |
| 02     | 05        | 01            | Torque Converter Asm                        | 19.32                       | 8.62                                     | -21.73                              | -2.52                                                  | 44.63%                   | 0.36%                               |  |  |  |
| 02     | 06        | 00            | Oil Pump and Filter Subsystem               | 7.50                        | 2.42                                     | -11.52                              | -7.74                                                  | 32.27%                   | 0.10%                               |  |  |  |
| 02     | 06        | 01            | Oil Pump Asm                                | 4.71                        | 1.44                                     | -12.27                              | -8.51                                                  | 30.65%                   | 0.06%                               |  |  |  |
| 02     | 06        | 04            | Oil Cooler                                  | 2.35                        | 0.98                                     | 0.75                                | 0.77                                                   | 41.56%                   | 0.04%                               |  |  |  |
| 02     | 07        | 00            | Mechanical Controls Subsystem               | 7.14                        | 0.87                                     | -5.03                               | -5.76                                                  | 12.22%                   | 0.04%                               |  |  |  |
| 02     | 08        | 00            | Electrical Controls Subsystem               | 4.30                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 02     | 09        | 00            | Parking Mechanism Subsystem                 | 0.88                        | 0.06                                     | 5.24                                | 87.45                                                  | 6.84%                    | 0.00%                               |  |  |  |
| 02     | 10        | 00            | Misc. Subsystem                             | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 02     | 11        | 00            | Electric Motor & Controls Subsystem         | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 6.68%                    | 0.00%                               |  |  |  |
| 02     | 12        | 00            | Transfer Case Subsystem                     | 28.44                       | 5.27                                     | -48.81                              | -152.39                                                | 18.53%                   | 0.22%                               |  |  |  |
| 02     | 12        | 01            | Carrier                                     | 1.95                        | 0.29                                     | 3.60                                | 12.31                                                  | 15.00%                   | 0.01%                               |  |  |  |
| 02     | 12        | 02            | Planetary Gears                             | 3.66                        | 0.49                                     | -6.43                               | -13.17                                                 | 13.33%                   | 0.02%                               |  |  |  |
| 02     | 12        | 03            | Drive Gears & Shatts                        | 12.75                       | 2.25                                     | -33.00                              | -14.68                                                 | 17.63%                   | 0.09%                               |  |  |  |
| 02     | 12        | 04            | Clutch & Brake Hubs                         | 3.72                        | 0.14                                     | -20.38                              | -145.57                                                | 3.76%                    | 0.01%                               |  |  |  |
| 02     | 12        | 05            | Snin Fork Assembly                          | 1.75                        | 1.00                                     | 9.57                                | 9.53                                                   | 57.54%                   | 0.04%                               |  |  |  |
| 02     | 12        | 07            | Bearings & Spacers                          | 1.19                        | 0.88                                     | -2.63                               | -2.98                                                  | /4.49%                   | 0.04%                               |  |  |  |
| 02     | 12        | 08            | Case Pump                                   | 0.63                        | 0.21                                     | 0.46                                | 2.16                                                   | 33.97%                   | 0.01%                               |  |  |  |
| 02     | 20        | 00            | Driver Operated External Controls Subsystem | 3.13                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
|        |           |               |                                             | 445.00                      | 04.40                                    | 400.00                              | 0.75                                                   | 00.50%                   | 4 400/                              |  |  |  |
| 1      |           |               |                                             | 145.28                      | 34.19                                    | -128.20                             | -3.75                                                  | 23.53%                   | 1.43%                               |  |  |  |
|        |           |               |                                             |                             | (Decrease)                               | (Increase)                          | (Increase)                                             |                          |                                     |  |  |  |

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Mass savings opportunities were identified for the following components: transmission case, transfer housing, covers, fluid measurement, sun gears, ring gears, planetary gears, planetary carriers, bearings, other components, Sprague, clutch and brake hubs, other components, torque converter, oil pump assembly, oil cooler, transfer case carrier, TC planetary gears, TC drive gears and shafts, TC clutch and brake hubs, TC shift fork assembly, TC bearings and spacers and TC case pump.

<u>Transmission Case</u>: The transmission case consists of three components bell housing, gear case and adapter: the mass of the three was reduced by changing the material from aluminum to magnesium. Mass was reduced by 36.9% from 18.8 kg to 11.9 kg.

<u>Transfer Case Housing</u>: The transfer case consist of two components front half and rear half: the mass of the two were reduced by changing the material from aluminum to magnesium. Mass was reduced by 33.8% from 10.1 kg to 6.68 kg.

<u>Covers:</u> The covers mass was reduced by changing the base grade 6061-T6 aluminum to AZ31B magnesium and go from 1 mm wall to 1.4 mm. Mass was reduced by 37.8% from 0.04 kg to 0.01 kg.

<u>Transmission Fluid Measurement:</u> The steel dip stick and tube mass was reduced by changing the solid steel assembly to a plastic assembly. Mass was reduced by 83.5% from 0.36 kg to 0.06 kg.

<u>Sun Gears:</u> The sun gears mass was reduced by changing the 8620 material to a 9310 high strength gear steel and downsizing the gears. Mass was reduced by 15% from 1.11 kg to 0.94 kg.

<u>Ring Gears:</u> The ring gears mass was reduced by changing the 4140 material to a 6265 high strength gear steel and downsizing the gears. Mass was reduced by 15% from 3.14 kg to 2.67 kg.

<u>Planetary Gears:</u> The planetary gears mass was reduced by changing the 8620 material to a 9310 high strength gear steel and downsizing the gears. Mass was reduced by 15% from 2.03 kg to 1.73 kg.

<u>Planetary Carriers</u>: The planetary carriers mass was reduced by changing the PM carriers with Schaeffler design 4130 stamped steel assembly. Mass was reduced by 14.9% from 4.64 kg to 3.94 kg.

<u>Bearings:</u> The thrust bearings mass was reduced by changing the 52100 steel to a Vespel<sup>®</sup> SP-21D composite material. Mass was reduced by 4.4% from 1.02 kg to 0.98 kg.

<u>Sprag/One-Way Clutch</u>: The sprag mass was reduced by changing the 8620 material to a 9310 high strength gear steel and downsizing the gears. Mass was reduced by 15% from 2.24 kg to 1.9 kg.

<u>Clutch and Brake Hubs</u>: The hubs mass was reduced by changing the mild steel to high strength steel with a thinner wall steel. Mass was reduced by 18.54% from 20.7 kg to 16.9 kg.

<u>Torque Converter:</u> The converter mass was reduced by changing the steel assembly to a cast aluminum assembly. Mass was reduced by 71.7% from 19.3 kg to 10.7 kg.

<u>Oil Pump Assembly:</u> The oil pump housing mass was reduced by changing the cast iron housing to aluminum housing. Mass was reduced by 30.6% from 4.71 kg to 3.27 kg.

<u>Oil Cooler:</u> The cooler hangers mass was reduced by changing the mild steel to aluminum hangers. Mass was reduced by 41.6% from 2.35 kg to 1.37 kg.

<u>Transfer Case Carrier</u>: The planetary carriers mass was reduced by changing the PM carriers with Schaeffler design 4130 stamped steel assembly. Mass was reduced by 15% from 1.95 kg to 1.66 kg.

<u>Transfer Case Planetary Gears:</u> The planetary gears mass was reduced by changing the 8620 material to a 9310 high strength gear steel and downsizing the gears. Mass was reduced by 13.3% from 3.66 kg to 3.17 kg.

<u>Transfer Case Drive Gears and Shafts:</u> The main shaft mass was reduced by changing the solid steel shaft to an extruded Mubea shaft. Mass was reduced by 17.6% from 12.8 kg to 10.5 kg.

<u>Transfer Case Clutch and Brake Hubs:</u> The hubs mass was reduced by changing the mild steel to high strength steel with thinner wall steel. Mass was reduced by 3.8% from 3.72 kg to 3.58 kg.

<u>Transfer Case Shift Fork Assembly:</u> The forks mass was reduced by changing the PM material to an AL-MMC 2 material. Mass was reduced by 57.5% from 1.75 kg to 0.75 kg.

<u>Transfer Case Bearings</u>: The thrust bearings mass was reduced by changing the 52100 steel to a Vespel<sup>®</sup> SP-21D composite material. Mass was reduced by 74.5% from 1.19 kg to 0.31 kg.

<u>Transfer Case Pump</u>: The pump mass was reduced by changing the steel tubes to plastic. Mass was reduced by 34% from 0.63 kg to 0.42 kg.

#### 3.2.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 transmission system is very similar to the 1500, but on a larger scale due to the larger engine size (6.0 liter to 5.3 liter) and increased load requirements on the truck. The 1500 used GM's 6L80 system, while the 2500 used the 6L90 system.



(Source: FEV, Inc.)

#### 3.2.1.2 Silverado 2500 System Scaling Summary

Table 3-10 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Silverado 2500. Total transmission mass savings is 38.27 kg at a cost increase of \$91.38, or \$2.39 per kg.

Table 3-10: Mass-Reduction and Cost Impact for Transmission System, Silverado 2500

|         |           |               |                                             |                                                      | Ν                                                | let Valu                                          | e of Ma                                | iss Rec                            | luctior                             | 1                                     |                                              |
|---------|-----------|---------------|---------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|
| System  | Subsystem | Sub-Subsystem | Description                                 | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |
|         |           |               |                                             |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |
| 02      | 00        | 00            | Transmission                                |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |
| 02      | 01        | 00            | External Components                         | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |
| 02      | 02        | 00            | Case Subsystem                              | 11.71                                                | 0.90                                             | 12.61                                             | -\$34.85                               | \$3.94                             | -\$30.90                            | -\$2.45                               | 0.41%                                        |
| 02      | 03        | 00            | Gear Train Subsystem                        | 2.20                                                 | 1.64                                             | 3.84                                              | \$10.27                                | \$2.18                             | \$12.46                             | \$3.24                                | 0.12%                                        |
| 02      | 04        | 00            | Internal Clutch Subsystem                   | 2.69                                                 | 0.60                                             | 3.29                                              | -\$26.70                               | \$2.81                             | -\$23.89                            | -\$7.26                               | 0.11%                                        |
| 02      | 05        | 00            | Launch Clutch Subsystem                     | 9.18                                                 | 0.72                                             | 9.90                                              | -\$23.14                               | \$1.54                             | -\$21.60                            | -\$2.18                               | 0.32%                                        |
| 02      | 06        | 00            | Oil Pump and Filter Subsystem               | 1.78                                                 | 0.00                                             | 1.78                                              | -\$11.74                               | \$0.00                             | -\$11.74                            | -\$6.60                               | 0.06%                                        |
| 02      | 07        | 00            | Mechanical Controls Subsystem               | 0.87                                                 | 0.13                                             | 1.00                                              | -\$5.00                                | \$1.51                             | -\$3.49                             | -\$3.50                               | 0.03%                                        |
| 02      | 08        | 00            | Electrical Controls Subsystem               | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |
| 02      | 09        | 00            | Parking Mechanism Subsystem                 | 0.11                                                 | 0.01                                             | 0.12                                              | \$9.60                                 | \$0.57                             | \$10.17                             | \$86.68                               | 0.00%                                        |
| 02      | 10        | 00            | Misc. Subsystem                             | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |
| 02      | 11        | 00            | Electric Motor & Controls Subsystem         | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |
| 02      | 12        | 00            | Transfer Case Subsystem                     | 5.21                                                 | 0.52                                             | 5.73                                              | -\$29.11                               | \$6.72                             | -\$22.39                            | -\$3.91                               | 0.19%                                        |
| 02      | 20        | 00            | Driver Operated External Controls Subsystem | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |
| <b></b> |           |               |                                             |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |
|         |           |               |                                             | 33.75                                                | 4.52                                             | 38.27                                             | -\$110.67                              | \$19.28                            | -\$91.38                            | -\$2.39                               | 1.24%                                        |
|         |           |               |                                             | (Decrease)                                           | (Decrease)                                       | (Decrease)                                        | (Increase)                             | (Decrease)                         | (Increase)                          | (Increase)                            |                                              |

34.493 33.750 97.8%

Mass Savings, Select Vehicle, New Technology "kg" Mass Savings, Silverado 1500, New Technology "kg" Mass Savings Select Vehicle/Mass Savings 1500



% Saved, technology applies

% Lost, component doesn't exist

% Lost, technology doesn't apply

% Lost, technology already implemented

% Lost, technology reduced impact

\*SMS not included - has no significant impact on perecent contributions

# 3.2.1.3 System Scaling Analysis

The Silverado 2500 Transmission components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-11.

| Silverado 1500  |           |               |                                |              |                                |                                        | Select Vehicle  |              |                                |                                                                                                              |  |  |
|-----------------|-----------|---------------|--------------------------------|--------------|--------------------------------|----------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| System          | Subsystem | Sub-Subsystem | Component/Assembly             | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of<br>Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                        |  |  |
| 02 Transmission |           |               | smission                       | 145.28       | 34.49                          | 24%                                    |                 |              | 33.75                          |                                                                                                              |  |  |
| 02              | 02        | 01            | Tranmission Case               | 18.78        | 6.93                           | 37%                                    | yes             | 19.42        | 7.17                           | Tech DOES apply: Base material was also aluminum<br>and our savings was going to magnesium with the<br>unit. |  |  |
| 02              | 02        | 02            | Transfer Housing               | 10.09        | 3.41                           | 34%                                    | yes             | 10.38        | 3.51                           | Tech DOES apply: Base material was also aluminum<br>and our savings was going to magnesium with the<br>unit. |  |  |
| 02              | 02        | 03            | Covers                         | 0.04         | 0.01                           | 38%                                    | yes             | 1.95         | 0.74                           | Tech DOES apply: Steel covers and pan changed to<br>magnesium                                                |  |  |
| 02              | 02        | 04            | Transmission Fluid measurement | 0.36         | 0.30                           | 83%                                    | yes             | 0.36         | 0.30                           | Tech DOES apply: Steel tub and dip stick went to<br>carbon fiber                                             |  |  |
| 02              | 03        | 01            | Sun Gears                      | 1.11         | 0.17                           | 15%                                    | yes             | 1.27         | 0.19                           | Tech DOES apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |  |  |
| 02              | 03        | 02            | Ring Gears                     | 3.14         | 0.47                           | 15%                                    | yes             | 2.48         | 0.37                           | Tech DOES apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |  |  |
| 02              | 03        | 03            | Planetary Gears                | 2.03         | 0.31                           | 15%                                    | yes             | 1.88         | 0.28                           | Tech DOES apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |  |  |
| 02              | 03        | 04            | Planetary Carriers             | 4.64         | 0.70                           | 15%                                    | yes             | 8.97         | 1.35                           | Tech DOES apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |  |  |
| 02              | 03        | 05            | Bearings                       | 1.02         | 0.04                           | 4%                                     | yes             | 0.22         | 0.01                           | Tech DOES apply: Converted steel thrust bearings to<br>Vespel P21                                            |  |  |
| 02              | 04        | 01            | Sprague / One-Way Clutches     | 2.24         | 0.34                           | 15%                                    | yes             | 2.62         | 0.39                           | Tech DOES apply: Steal base material converted to<br>light weight MMC                                        |  |  |
| 02              | 04        | 99            | Clutch & Brake Hubs            | 20.72        | 3.84                           | 19%                                    | yes             | 11.95        | 2.22                           | Tech DOES apply: converted carbon steel hubs to<br>light weight high strength alloy and downsized.           |  |  |
| 02              | 04        | 99            | Misc.                          | 0.59         | 0.06                           | 10%                                    | yes             | 0.84         | 0.08                           | Tech DOES apply: Base grade meterials were<br>replaced with lightweight materials                            |  |  |
| 02              | 05        | 01            | Torque Converter Asm           | 19.32        | 8.62                           | 45%                                    | yes             | 20.57        | 9.18                           | Tech DOES apply: Base grade carbon steel replaced<br>with aluminum                                           |  |  |
| 02              | 06        | 01            | Oil Pump Asm                   | 4.71         | 1.44                           | 31%                                    | yes             | 4.61         | 1.41                           | Tech DOES apply: Cas iron housing replaced with<br>aluminum                                                  |  |  |
| 02              | 06        | 04            | Oil Cooler                     | 2.35         | 0.98                           | 42%                                    | yes             | 0.88         | 0.37                           | Tech DOES apply: Base grade Al/steel to 304SS &<br>304SS and go from 1.4mm wall to 1mm                       |  |  |
| 02              | 07        | 01            | Valve Body Asm                 | 6.56         | 0.87                           | 13%                                    | yes             | 6.52         | 0.87                           | Tech DOES apply: Converted aluminum to manesium                                                              |  |  |
| 02              | 09        | 03            | Pawls                          | 0.88         | 0.06                           | 7%                                     | yes             | 1.60         | 0.11                           | Tech DOES apply: Base grade 52100 steel to a light<br>weight MMC                                             |  |  |
| 02              | 12        | 01            | Carrier                        | 1.95         | 0.29                           | 15%                                    | yes             | 5.07         | 0.76                           | Tech DOES apply: Base grade Powder Metal to<br>Stamped Steel                                                 |  |  |
| 02              | 12        | 02            | Planetary Gears                | 3.66         | 0.49                           | 13%                                    | yes             | 1.21         | 0.16                           | Tech DOES apply: Replace Base grade 3150 with<br>9310                                                        |  |  |
| 02              | 12        | 03            | Drive Gears & Shafts           | 12.75        | 2.25                           | 18%                                    | yes             | 13.44        | 2.37                           | Tech DOES apply: Replace Base 8620 with 6265                                                                 |  |  |
| 02              | 12        | 04            | Clutch & Brake Hubs            | 3.72         | 0.14                           | 4%                                     | yes             | 0.91         | 0.03                           | Tech DOES apply: Replaced 4140 & PM with C61 and<br>MMC                                                      |  |  |
| 02              | 12        | 05            | Shift Fork Assembly            | 1.75         | 1.00                           | 58%                                    | yes             | 0.90         | 0.52                           | Tech DOES apply: Replace PM steel with AL-MMC 2                                                              |  |  |
| 02              | 12        | 07            | Bearings & Spacers             | 1.86         | 1.56                           | 84%                                    | yes             | 1.42         | 1.19                           | Vespel P21                                                                                                   |  |  |
| 02              | 12        | 08            | Case Pump                      | 0.63         | 0.21                           | 34%                                    | yes             | 0.52         | 0.18                           | Lech DOES apply: Steel tube to Plastic                                                                       |  |  |

Table 3-11: System Scaling Analysis for Transmission System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Silverado 2500 series include the transmission case and transfer housing, gears, clutch and brake hubs, torque converter, and valve body.

#### Transmission Case and Transfer Housing

Shown in Image 3.2–2 are the Silverado 1500 and 2500 series transmission housings. Component masses were 28.9 kg for the 1500 versus 29.8 kg for the 2500. The 2500 is a newer, heavy-duty version of the 1500 transmission. The Lightweighting Technology used on the housings was to change the aluminum material from A 308 aluminum to AZ 91 magnesium, this material is used in the 2015 Chevrolet Corvette Stingray transmission housing. Due to similarities in component design and material, full percentage of the Silverado 1500 transmission housing mass reduction can be applied to the 2500. (Refer to Table 3-11).



Image 3.2–2: Transmission for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### <u>Gears</u>

Shown in Image 3.2–3 are the Silverado 1500 and 2500 series gears. Component masses are 6.28 kg for the 1500 versus 5.62 kg for the 2500 respectively. The Lightweighting Technology used on the gears was to change the 8620 and 4120 steel materials to 6265 and 9310 high strength gear steel. Some automotive companies are currently using these materials for gears that are in need of integrity help in their application. Premium material will be used as much as possible within the parameters of this study. Due to similarities in component design and material, full percentage of the Silverado 1500 gears mass reduction can be applied to the 2500. (Refer to Table 3-11).



Image 3.2–3: Planet gears for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

# Clutch and Brake Hubs

Shown in Image 3.2–4 are the Silverado 1500 and 2500 series hubs. Component masses were 20.7 kg for the 1500 versus 11.9 kg for the 2500. The Lightweighting Technology used on the steel hubs was to use a low carbon steel that allowed ease of manufacturing. The material was changed to a higher strength grade of steel with a thinner wall to achieve weight savings. Due to similarities in component material, full percentage of the Silverado 1500 clutch and brake hub mass reduction can be applied to the 2500. (Refer to Table 3-11).



Image 3.2–4: Hubs for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### **Torque Converter**

Shown in Image 3.2–5 are the Silverado 1500 and 2500 series torque converters. Component masses were 19.3 kg for the 1500 versus 20.6 kg for the 2500. The Lightweighting Technology used on the torque converters was low-carbon steel stampings for the components that go into the assembly. The weight savings for these units was achieved by going to aluminum and Metal Matrix Composite (MMC) cast converter, an example of which is shown in Image 3.2–6. Due to similarities in component design and material, full percentage of the Silverado 1500 torque converter mass reduction can be applied to the 2500. (Refer to Table 3-11).



Image 3.2–5: Steel torque converter for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)



Image 3.2–6: Example of a cast aluminum converter (Source: SGF)

# Valve Body

Shown in Image 3.2–7 are the Silverado 1500 and 2500 valve bodies. Component masses are 6.56 kg for the 1500 versus 6.52kg for the 2500. The Lightweighting Technology used on both bodies was to die cast the component, then machine the ports and valve holes. The weight saving technology on these components was to go to magnesium as the material. Due to similarities in component design and material, full percentage of the Silverado 1500 valve body mass reduction can be applied to the 2500. (Refer to Table 3-11).





Image 3.2–7: Valve body for Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

# 3.2.1.4 System Comparison, Silverado 2500

Table 3-12 summarizes the Silverado 1500 and 2500 Lightweighting results. The majority of the components were visually the same between the two transmissions. The 2500 transmission was a little longer but fit under the same body as the 1500.

|        |                | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |
|--------|----------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|
| System | Description    | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |
|        |                |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |
| 02     | Transmission   |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |
| 02     | Silverado 1500 | 145.28                              | 34.49                                                | 5.91                                             | 40.41                                             | 27.81%                             | -\$124.61                              | \$26.73                            | -\$97.88                            | -\$2.42                               |  |
| 02     | Silverado 2500 | 156.36                              | 33.75                                                | 4.52                                             | 38.27                                             | 24.47%                             | -\$110.67                              | \$19.28                            | -\$91.38                            | -\$2.39                               |  |
|        |                |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |

| Table 3-12: Transmission System C | Comparison, Silverado 1500 and 2500 |
|-----------------------------------|-------------------------------------|
|-----------------------------------|-------------------------------------|

#### 3.2.2 Mercedes Sprinter 311 CDi

Table 3-13 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Mercedes Sprinter 311 CDi. Total transmission mass savings was 8.77 kg at a cost increase of \$3.39, or \$.39 per kg.

|                                                                                                                             |                                                                         |                   |                                                                                                                              |                                                            | Net Value of Mass Reduction                      |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System                                                                                                                      | Subsystem                                                               | Sub-Subsystem     | Description                                                                                                                  | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub>       | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
|                                                                                                                             |                                                                         |                   | T                                                                                                                            |                                                            |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
| 02                                                                                                                          | 01                                                                      | 00                | Fitemal Components                                                                                                           | 0.00                                                       | 0.00                                             | 0.00                                              | CO 00                                  | EO 00                              | CO 00                                          | c0 00                                 | 0.009/                                       |  |  |
| 02                                                                                                                          | 02                                                                      | 00                | Case Subsystem                                                                                                               | 0.00                                                       | 0.00                                             | 6.14                                              | \$0.00<br>\$20.58                      | \$U.UU<br>\$2.52                   | \$0.00<br>\$17.05                              | \$0.00<br>\$2.78                      | 0.00%                                        |  |  |
| 02                                                                                                                          | 02                                                                      | 00                | Gear Train Subsystem                                                                                                         | 1.00                                                       | 1.40                                             | 2.64                                              | \$12.15                                | \$3.55<br>\$1.51                   | \$13.66                                        | -92.70<br>\$5.18                      | 0.23%                                        |  |  |
| 02                                                                                                                          | 04                                                                      | 00                | Internal Clutch Subsystem                                                                                                    | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 05                                                                      | 00                | Launch Clutch Subsystem                                                                                                      | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 06                                                                      | 00                | Oil Pump and Filter Subsystem                                                                                                | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 07                                                                      | 00                | Mechanical Controls Subsystem                                                                                                | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 08                                                                      | 00                | Electrical Controls Subsystem                                                                                                | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 09                                                                      | 00                | Parking Mechanism Subsystem                                                                                                  | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 10                                                                      | 00                | Misc. Subsystem                                                                                                              | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 11                                                                      | 00                | Electric Motor & Controls Subsystem                                                                                          | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 12                                                                      | 00                | Transfer Case Subsystem                                                                                                      | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
| 02                                                                                                                          | 20                                                                      | 00                | Driver Operated External Controls Subsystem                                                                                  | 0.00                                                       | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |  |
|                                                                                                                             |                                                                         |                   |                                                                                                                              |                                                            |                                                  |                                                   |                                        |                                    | 10.00                                          |                                       |                                              |  |  |
|                                                                                                                             |                                                                         |                   |                                                                                                                              | 6.84                                                       | 1.93                                             | 8.77                                              | -\$8.43                                | \$5.04                             | -\$3.39                                        | -\$0.39                               | 0.41%                                        |  |  |
|                                                                                                                             |                                                                         |                   |                                                                                                                              | (Decrease)                                                 | (Decrease)                                       | (Decrease)                                        | (Increase)                             | (Decrease)                         | (Increase)                                     | (Increase)                            |                                              |  |  |
| Mas<br>Mas<br>Mas                                                                                                           | is S<br>is S<br>is S                                                    | avi<br>avi<br>avi | ngs, Select Vehicle, New Technology "kg"<br>ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500 | 31.701<br>6.845<br>21.6%                                   |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
| 0.0%<br>21.7%<br>21.6%<br>= % Saved, technology applies<br>= % Lost, component doesn't exist<br>= % Lost technology applies |                                                                         |                   |                                                                                                                              |                                                            |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
|                                                                                                                             |                                                                         |                   | 72.8%                                                                                                                        | <ul> <li>% Lost, technology already implemented</li> </ul> |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
|                                                                                                                             | % Lost, technology reduced impact                                       |                   |                                                                                                                              |                                                            |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
| *SN                                                                                                                         | *SMS not included - has no significant impact on perecent contributions |                   |                                                                                                                              |                                                            |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |

Table 3-13: Mass-Reduction and Cost Impact for Transmission System, Mercedes Sprinter
## 3.2.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Transmission components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-14.

|                 |           |                   | Silverado 150                 |              | Select Vehicle                 |                                        |              |              |                 | Vehicle      |                                |                                                                                                                     |
|-----------------|-----------|-------------------|-------------------------------|--------------|--------------------------------|----------------------------------------|--------------|--------------|-----------------|--------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|
| System          | Subsystem | Sub-<br>Subsystem | Component/Assembly            | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of<br>Mass<br>Savings<br>New<br>Tech | Tech Applies | Base<br>Mass | Mass<br>Savings | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                               |
| 02              | Tra       | ins               | mission                       | 145.276      | 34.493                         | 24%                                    |              |              |                 |              | 6.845                          |                                                                                                                     |
| 02              | 02        | 01                | Tranmission Case              | 18.78        | 6.93                           | 37%                                    | yes          | 13.78        | 5.09            | 13.78        | 5.09                           | Tech <b>DOES</b> apply: Base material was also<br>aluminum and our savings was going to<br>magnesium with the unit. |
| 02              | 02        | 02                | Transfer Housing              | 10.09        | 3.41                           | 34%                                    | no           |              |                 |              |                                | Tech dose Not apply: No transfer case in system.                                                                    |
| 02              | 02        | 03                | Covers                        | 0.04         | 0.01                           | 38%                                    | yes          | 1.36         | 0.52            | 1.36         | 0.52                           | Tech DOES apply: Steel covers and pan changed<br>to magnesium                                                       |
| 02              | 02        | 04                | Transmission Fluid measuremen | 0.36         | 0.30                           | 83%                                    | no           |              |                 |              |                                | Tech dose Not apply:                                                                                                |
| <mark>02</mark> | 03        | 01                | Sun Gears                     | 1.11         | 0.17                           | 15%                                    | yes          | 1.82         | 0.27            | 1.82         | 0.27                           | Tech <b>DOES</b> apply: Base grade of gear steel went<br>to high strength gear alloy and down sized in<br>mass      |
| 02              | 03        | 02                | Ring Gears                    | 3.14         | 0.47                           | 15%                                    | yes          | 1.49         | 0.22            | 1.49         | 0.22                           | Tech DOES apply: Base grade of gear steel went<br>to high strength gear alloy and down sized in<br>mass             |
| 02              | 03        | 03                | Planetary Gears               | 2.03         | 0.31                           | 15%                                    | yes          | 2.13         | 0.32            | 2.13         | 0.32                           | Tech DOES apply: Base grade of gear steel went<br>to high strength gear alloy and down sized in<br>mass             |
| 02              | 03        | 04                | Planetary Carriers            | 4.64         | 0.70                           | 15%                                    | yes          | 2.68         | 0.40            | 2.68         | 0.40                           | Tech DOES apply: Base grade of gear steel went<br>to high strength gear alloy and down sized in<br>mass             |
| 02              | 03        | 05                | Bearings                      | 1.02         | 0.04                           | 4%                                     | yes          | 0.51         | 0.02            | 0.51         | 0.02                           | Tech DOES apply: Converted steel thrust<br>bearings to Vespel P21                                                   |
| 02              | 04        | 01                | Sprague / One-Way Clutches    | 2.24         | 0.34                           | 15%                                    | no           |              |                 |              |                                | Tech dose Not apply: No sprag                                                                                       |
| 02              | 04        | 99                | Clutch & Brake Hubs           | 20.72        | 3.84                           | 19%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans, no internal<br>clutch                                                            |
| 02              | 04        | 99                | Misc.                         | 0.59         | 0.06                           | 10%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| 02              | 05        | 01                | Torque Converter Asm          | 19.32        | 8.62                           | 45%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| 02              | 06        | 01                | Oil Pump Asm                  | 4.71         | 1.44                           | 31%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| 02              | 06        | 04                | Oil Cooler                    | 2.35         | 0.98                           | 42%                                    | no           |              |                 |              |                                | Lech dose Not apply: manual trans,                                                                                  |
| 02              | 07        | 01                | Valve Body Asm                | 6.56         | 0.87                           | 13%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| 02              | 10        | 03                | Corrier                       | 0.88         | 0.00                           | 1%                                     | no           |              |                 |              |                                | Tech dose Not apply, manual trans,                                                                                  |
| 02              | 12        | 01                | Califier<br>Planatary Coore   | 2.66         | 0.29                           | 10%                                    | 110          |              |                 |              |                                | Tech dose Not apply, manual trans,                                                                                  |
| 02              | 12        | 03                | Drive Gears & Shafts          | 12.75        | 2.25                           | 13%                                    | 0            |              |                 |              |                                | Tech dose Not apply: manual trans                                                                                   |
| 02              | 12        | 04                | Clutch & Brake Hubs           | 3.72         | 0.14                           | 4%                                     | no           |              |                 |              |                                | Tech dose Not apply: manual trans.                                                                                  |
| 02              | 12        | 05                | Shift Fork Assembly           | 1.75         | 1.00                           | 58%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans.                                                                                  |
| 02              | 12        | 07                | Bearings & Spacers            | 1.86         | 1.56                           | 84%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| 02              | 12        | 08                | Case Pump                     | 0.63         | 0.21                           | 34%                                    | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |

Table 3-14: System Scaling Analysis for Transmission System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter include: the transmission case and gears. Image 3.2–8 shows the Mercedes Sprinter 311 Transmission components.



Image 3.2–8: Mercedes Sprinter 311 CDi transmission (Source: www.A2mac1.com)

#### **Transmission Case**

Shown in Image 3.2–9 are the Silverado 1500 and 311 series Transmission Case Housings. Component masses are 18.8 kg for the 1500 versus 13.8 kg for the 311. The Lightweighting Technology used on the housings was to change the aluminum material from A 308 aluminum to AZ 91 magnesium. This material is used in the 2015 Chevrolet Corvette Stingray transmission housing. Due to similarities in component design and material, full percentage of the Silverado 1500 transmission housing mass reduction can be applied to the Sprinter. (Refer to Table 3-14).



Image 3.2–9: Transmission for the Silverado 1500 (Left) and Sprinter 311 CDi (Right) (Source: FEV, Inc.)

**Gears** 

Shown in Image 3.2–10 are the Silverado 1500 and Sprinter 311 series gears. Component masses were 6.58 kg for the 1500 versus 5.44 kg for the 311. The Lightweighting Technology used on the gears was to change the 8620 and 4120 steel materials to 6265 and 9310 high-strength gear steel. Some automotive companies are currently using these materials for gears that are in need of integrity help in their application. Premium material will be used as much as possible within the parameters of this study. Due to similarities in component material, full percentage of the Silverado 1500 gears mass reduction can be applied to the Sprinter. (Refer to Table 3-14).



Image 3.2–10: Planet gears for the Silverado 1500 (Left) and drive gears for the Sprinter 311 (Right) (Source: FEV, Inc.)

# 3.2.3 Renault Master 2.3 DCi

Table 3-15 summarizes the mass and cost impact of the Silverado 1500 Lightweighting technologies applied to the Renault Master 2.3 DCi. Total transmission mass savings is 9.20 kg at a cost increase of \$3.11, or \$0.34 per kg.



Table 3-15: Mass-Reduction and Cost Impact for Transmission System, Renault Master

# 3.2.3.1 System Scaling Analysis

The Renault Master 2.3 DCi transmission components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-16.

| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |           |               | Silverado 15                   | ·            | Select Vehicle                 |                                     |              |              |                 |              |                                |                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|---------------|--------------------------------|--------------|--------------------------------|-------------------------------------|--------------|--------------|-----------------|--------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|
| O2         Textmission         145.276         34.493         24%         Model         7.005         Tech DOES apply: Base material was also a laminum and our savings was going to magnet with the unit.           02         02         01         Transission Case         18.78         6.93         37%         yes         13.65         5.04         13.65         5.04         aluminum and our savings was going to magnet with the unit.           02         02         02         Transfer Housing         10.09         3.41         34%         no         Tech DOES apply: Steel covers and pain change magnetim.           02         02         02         02         04         Transmission Fluid measurement         0.36         0.30         83%         no         Tech DOES apply: Steel covers and pain change magnetim.           02         03         01         Sun Gears         1.11         0.17         15%         yes         1.65         0.25         1.65         0.25         high strength gear alloy and down sized in mas           02         03         02         Ring Gears         3.14         0.47         15%         yes         1.88         0.28         1.88         0.28         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas         1.88         0.28 <t< th=""><th>System</th><th>Subsystem</th><th>Sub-Subsystem</th><th>Component/Assembly</th><th>Base<br/>Mass</th><th>Mass<br/>Savings<br/>New<br/>Tech</th><th>% of Mass<br/>Savings<br/>New<br/>Tech</th><th>Tech Applies</th><th>Base<br/>Mass</th><th>Mass<br/>Savings</th><th>Base<br/>Mass</th><th>Mass<br/>Savings<br/>New<br/>Tech</th><th>Notes</th></t<>                                                                                                                                                                                                                                                                                                                                                                                             | System | Subsystem | Sub-Subsystem | Component/Assembly             | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech Applies | Base<br>Mass | Mass<br>Savings | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                               |
| Q2         Q2         Q1         Tranmission Case         18.78         6.93         37%         yes         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         5.04         13.65         16.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02     | Tra       | ans           | mission                        | 145.276      | 34.493                         | 24%                                 |              |              |                 |              | 7.005                          |                                                                                                                     |
| Q2         Q2         Q2         Transfer Housing         10.09         3.41         34%         no         Tech does Not apply: No transfer case in syste           Q2         Q3         Covers         0.04         0.01         38%         yes         1.52         0.58         1.52         0.58         Tech DOES apply: Steel covers and pan change magnesium           Q2         Q4         Transmission Fluid measurement         0.36         0.30         83%         no         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           Q3         Q4         Ring Gears         3.14         0.47         15%         yes         1.65         0.25         1.65         0.25         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           Q2         Q3         Q3         Planetary Gears         2.03         0.31         15%         yes         1.88         0.28         1.88         0.28         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           Q3         Q4         Planetary Gears         2.03         0.31         15%         yes         3.11         0.47         3.41         0.47         3.41         0.48         0.28         Tech DOES apply: Base grade of gear steel we high st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02     | 02        | 01            | Tranmission Case               | 18.78        | 6.93                           | 37%                                 | yes          | 13.65        | 5.04            | 13.65        | 5.04                           | Tech <b>DOES</b> apply: Base material was also<br>aluminum and our savings was going to magnesium<br>with the unit. |
| 02         02         03         Covers         0.04         0.01         38%         yes         1.52         0.58         1.52         0.58         Tech DOES apply: Stell covers and pan change<br>magnesium           02         02         04         Transmission Fluid measurement         0.36         0.30         83%         no         Tech does Not apply:         Tech does Not apply:           02         03         01         Sun Gears         1.11         0.17         15%         yes         1.65         0.25         1.65         0.25         Tech DOES apply: Base grade of gear stell we<br>high strength gear alloy and down sized in mas           02         03         02         Ring Gears         2.03         0.31         15%         yes         1.88         0.28         1.88         0.28         Tech DOES apply: Base grade of gear stell we<br>high strength gear alloy and down sized in mas           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         3.11         0.47         3.11         0.47         Tech DOES apply: Base grade of gear stell we<br>high strength gear alloy and down sized in mas           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         0.52         0.02<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02     | 02        | 02            | Transfer Housing               | 10.09        | 3.41                           | 34%                                 | no           |              |                 |              |                                | Tech dose Not apply: No transfer case in system.                                                                    |
| O2         O2         O4         Transmission Fluid measurement         0.36         0.30         83%         no         Tech does Not apply:           02         03         01         Sun Gears         1.11         0.17         15%         yes         1.65         0.25         1.65         0.25         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         02         Ring Gears         3.14         0.47         15%         yes         2.48         0.37         2.48         0.37         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         03         Planetary Gears         2.03         0.31         15%         yes         1.88         0.28         1.88         0.28         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         0.52         0.02         0.52         0.02         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         05         Bearings         1.02         0.04         4%         yes         0.52         0.02 <td>02</td> <td>02</td> <td>03</td> <td>Covers</td> <td>0.04</td> <td>0.01</td> <td>38%</td> <td>yes</td> <td>1.52</td> <td>0.58</td> <td>1.52</td> <td>0.58</td> <td>Tech <b>DOES</b> apply: Steel covers and pan changed to<br/>magnesium</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02     | 02        | 03            | Covers                         | 0.04         | 0.01                           | 38%                                 | yes          | 1.52         | 0.58            | 1.52         | 0.58                           | Tech <b>DOES</b> apply: Steel covers and pan changed to<br>magnesium                                                |
| 02         03         01         Sun Gears         1.11         0.17         15%         yes         1.65         0.25         1.65         0.25         Tech DOEs apply: Base grade of gear steel we high strength gear alloy and down sized in mass           02         03         02         Ring Gears         3.14         0.47         15%         yes         2.48         0.37         2.48         0.37         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mass           02         03         03         Planetary Gears         2.03         0.31         15%         yes         1.88         0.28         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mass           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         3.11         0.47         3.41         0.47         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         0.52         0.02         0.52         0.02         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         04         09         Cluch & Brake Hubs <t< td=""><td>02</td><td>02</td><td>04</td><td>Transmission Fluid measurement</td><td>0.36</td><td>0.30</td><td>83%</td><td>no</td><td></td><td></td><td></td><td></td><td>Tech dose Not apply:</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02     | 02        | 04            | Transmission Fluid measurement | 0.36         | 0.30                           | 83%                                 | no           |              |                 |              |                                | Tech dose Not apply:                                                                                                |
| 02         03         02         Ring Gears         3.14         0.47         15%         yes         2.48         0.37         2.48         0.37         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         03         Planetary Gears         2.03         0.31         15%         yes         1.88         0.28         1.88         0.28         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         3.11         0.47         3.11         0.47         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         0.52         0.02         0.52         0.02         Tech DOES apply: Converted steel thrust bearir to vespel P21           02         04         05         Bearings         1.02         0.04         4%         yes         0.52         0.02         0.52         0.02         Tech DOES apply: Converted steel thrust bearir to vespel P21           02         04         09         Clutch & Brake Hubs         20.72         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02     | 03        | 01            | Sun Gears                      | 1.11         | 0.17                           | 15%                                 | yes          | 1.65         | 0.25            | 1.65         | 0.25                           | Tech <b>DOES</b> apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |
| 02         03         03         Planetary Gears         2.03         0.31         15%         yes         1.88         0.28         1.88         0.28         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         04         Planetary Carriers         4.64         0.70         15%         yes         3.11         0.47         3.11         0.47         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         05         Bearings         1.02         0.04         4%         yes         0.52         0.02         0.52         0.02         Tech DOES apply: Converted steel thrust beair to vespel P21           02         04         01         Sprague / One-Way Clutches         2.24         0.34         15%         no         Tech does Not apply: moult trans, no internal clutch           02         04         99         Clutch & Brake Hubs         20.72         3.84         19%         no         Tech dose Not apply: manual trans, no internal clutch           02         04         99         Kitch & Brake Hubs         20.72         3.84         19%         no         Tech dose Not apply: manual trans, no internal clutch           02         04         99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02     | 03        | 02            | Ring Gears                     | 3.14         | 0.47                           | 15%                                 | yes          | 2.48         | 0.37            | 2.48         | 0.37                           | Tech <b>DOES</b> apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |
| 02         03         04         Planetary Carriers         4.64         0.70         15%         yes         3.11         0.47         3.11         0.47         Tech DOES apply: Base grade of gear steel we high strength gear alloy and down sized in mas           02         03         05         Bearings         1.02         0.04         4%         yes         0.52         0.02         0.52         0.02         0.52         0.02         0.52         0.02         to Vespel P21           02         04         01         Sprague / One-Way Clutches         2.24         0.34         15%         no         Tech DOES apply: No sprag           02         04         99         Clutch & Brake Hubs         20.72         3.84         19%         no         Tech dose Not apply: manual trans, no internal clutch           02         04         99         Misc.         0.59         0.06         10%         no         Tech dose Not apply: manual trans,           02         06         01         Torque Converter Asm         19.32         8.62         45%         no         Tech dose Not apply: manual trans,           02         06         01         Oli Pump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02     | 03        | 03            | Planetary Gears                | 2.03         | 0.31                           | 15%                                 | yes          | 1.88         | 0.28            | 1.88         | 0.28                           | Tech <b>DOES</b> apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |
| 02         03         05         Bearings         1.02         0.04         4%         yes         0.52         0.02         0.52         0.02         Tech DOES apply: Converted steel thrust bearing to Vespel P21           02         04         01         Sprague / One-Way Clutches         2.24         0.34         15%         no         Tech dose Not apply: No sprag           02         04         99         Clutch & Brake Hubs         20.72         3.84         19%         no         Tech dose Not apply: manual trans, no internal clutch           02         04         99         Clutch & Brake Hubs         0.59         0.06         10%         no         Tech dose Not apply: manual trans, no internal clutch           02         06         01         Dirque Converter Asm         19.32         8.62         45%         no         Tech dose Not apply: manual trans,           02         06         01         Dirque Converter Asm         1.44         31%         no         Tech dose Not apply: manual trans,           02         06         01         Dirup Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02         06         04         Oil Valve Body Asm         6.56         0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02     | 03        | 04            | Planetary Carriers             | 4.64         | 0.70                           | 15%                                 | yes          | 3.11         | 0.47            | 3.11         | 0.47                           | Tech <b>DOES</b> apply: Base grade of gear steel went to<br>high strength gear alloy and down sized in mass         |
| O2         O4         O1         Sprague / One-Way Clutches         2.24         0.34         15%         no         Tech dose Not apply: No sprag           O2         04         99         Clutch & Brake Hubs         20.72         3.84         19%         no         Tech dose Not apply: manual trans, no internal clutch           O2         04         99         Glutch & Brake Hubs         0.59         0.06         10%         no         Tech dose Not apply: manual trans, no internal clutch           O2         06         01         Torque Converter Asm         19.32         8.62         45%         no         Tech dose Not apply: manual trans,           02         06         01         DiPump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02         06         04         Oil Cooler         2.35         0.98         42%         no         Tech dose Not apply: manual trans,           02         06         04         Oil Cooler         2.35         0.98         42%         no         Tech dose Not apply: manual trans,           02         09         03         Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans, <t< td=""><td>02</td><td>03</td><td>05</td><td>Bearings</td><td>1.02</td><td>0.04</td><td>4%</td><td>yes</td><td>0.52</td><td>0.02</td><td>0.52</td><td>0.02</td><td>Tech <b>DOES</b> apply: Converted steel thrust bearings to Vespel P21</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02     | 03        | 05            | Bearings                       | 1.02         | 0.04                           | 4%                                  | yes          | 0.52         | 0.02            | 0.52         | 0.02                           | Tech <b>DOES</b> apply: Converted steel thrust bearings to Vespel P21                                               |
| 02         04         99         Clutch & Brake Hubs         20.72         3.84         19%         no         Tech dose Not apply: manual trans, no internal clutch           02         04         99         Misc.         0.59         0.06         10%         no         Tech dose Not apply: manual trans,           02         04         99         Misc.         0.59         0.06         10%         no         Tech dose Not apply: manual trans,           02         06         01         Dil Pump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02         06         01         Coller         2.35         0.98         42%         no         Tech dose Not apply: manual trans,           02         06         04         Dil Cooler         2.35         0.98         42%         no         Tech dose Not apply: manual trans,           02         09         03         Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans,           02         12         02         10         Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02         12         02<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02     | 04        | 01            | Sprague / One-Way Clutches     | 2.24         | 0.34                           | 15%                                 | no           |              |                 |              |                                | Tech dose Not apply: No sprag                                                                                       |
| O2 (04 (99) Misc.         0.59         0.06         10%         no         Tech dose Not apply: manual trans,           02 (05 (01) Torque Converter Asm         19.32         8.62         45%         no         Tech dose Not apply: manual trans,           02 (05 (01) Di Pump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02 (05 (01) Di Pump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02 (05 (01) Oil Pump Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 (07 (01) Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 (09 (02) Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans,           02 (12 (01) Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02 (12 (02) Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 (12 (02) Planetary Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02 (12 (02) Shift Fork Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02     | 04        | 99            | Clutch & Brake Hubs            | 20.72        | 3.84                           | 19%                                 | no           |              |                 |              |                                | Tech dose <b>Not</b> apply: manual trans, no internal<br>clutch                                                     |
| O2 [05 [01]         Torque Converter Asm         19.32         8.62         45%         no         Tech dose Not apply: manual trans,           02 [06 [01]         Dil Pump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02 [06 [04]         Dil Pump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02 [06 [04]         Dil Cooler         2.35         0.98         42%         no         Tech dose Not apply: manual trans,           02 [07 [01]         Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 [09 [03] Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans,           02 [12 [01] Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02 [12 [02] Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12 [02] Planetary Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02 [12 [03] Dive Gears & Shafts         12.75         2.25         18%         no         Tech dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02     | 04        | 99            | Misc.                          | 0.59         | 0.06                           | 10%                                 | no           |              | <i>r</i>        |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| O2 [06 [01] Oil Pump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02 [06 [04] Oil Poump Asm         4.71         1.44         31%         no         Tech dose Not apply: manual trans,           02 [06 [04] Oil Cooler         2.35         0.98         42%         no         Tech dose Not apply: manual trans,           02 [07 [01] Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 [07 [01] Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 [09 [03] Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans,           02 [12 [01] Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02 [12 [02] Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12 [03] Dive Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02 [12 [04] Clutch & Brake Hubs         3.72         0.14         4%         no         Tech dose Not apply: manual trans,           02 [12 [05] Shift Fork Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02     | 05        | 01            | Torque Converter Asm           | 19.32        | 8.62                           | 45%                                 | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| O2 [06 [04 Oil Cooler         2.35         0.98         42%         no         Tech dose Not apply: manual trans,           02 [07 0il Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 [07 0il Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 [07 0il Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 [09 [03 Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans,           02 [12 [02 Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12 [02 Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12 [02 Planetary Gears         3.66         0.44         13%         no         Tech dose Not apply: manual trans,           02 [12 [02 Dive Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02 [12 [03 Shift Fork Assembly         3.72         0.14         4%         no         Tech dose Not apply: manual trans,           02 [12 [05 Shift Fork Assembly <td>02</td> <td>06</td> <td>01</td> <td>Oil Pump Asm</td> <td>4.71</td> <td>1.44</td> <td>31%</td> <td>no</td> <td></td> <td></td> <td></td> <td></td> <td>Tech dose Not apply: manual trans,</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02     | 06        | 01            | Oil Pump Asm                   | 4.71         | 1.44                           | 31%                                 | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| O2 [07] O1 Valve Body Asm         6.56         0.87         13%         no         Tech dose Not apply: manual trans,           02 [09] O3 Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans,           02 [12] O1 Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02 [12] O1 Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02 [12] O2 Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12] O2 Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12] O3 Dive Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02 [12] O4 Clutch & Brake Hubs         3.72         0.14         4%         no         Tech dose Not apply: manual trans,           02 [12] O5 Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02 [12] O5 Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02 [12] O5 Shift Fork Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02     | 06        | 04            | Oil Cooler                     | 2.35         | 0.98                           | 42%                                 | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| O2 [09] [03] Pawls         0.88         0.06         7%         no         Tech dose Not apply: manual trans,           02 [12 [01] Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02 [12 [02] Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12 [02] Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02 [12 [02] Planetary Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02 [12 [03] Drive Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02 [12 [04] Clutch & Brake Hubs         3.72         0.14         4%         no         Tech dose Not apply: manual trans,           02 [12 [05] Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02 [12 [05] Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02 [12 [05] Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02     | 07        | 01            | Valve Body Asm                 | 6.56         | 0.87                           | 13%                                 | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| U2         12         01         Carrier         1.95         0.29         15%         no         Tech dose Not apply: manual trans,           02         12         02         Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02         12         02         Dive Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02         12         04         Clutch & Brake Hubs         3.72         0.14         4%         no         Tech dose Not apply: manual trans,           02         12         05         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02         12         05         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02         12         05         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02     | 09        | 03            | Pawls                          | 0.88         | 0.06                           | 7%                                  | no           |              |                 | 4            |                                | Tech dose Not apply: manual trans,                                                                                  |
| Old         12 (02)         Planetary Gears         3.66         0.49         13%         no         Tech dose Not apply: manual trans,           02         12 (02)         Drive Gears & Shafts         12.75         2.25         18%         no         Tech dose Not apply: manual trans,           02         12 (03)         Drive Gears & Shafts         3.72         0.14         4%         no         Tech dose Not apply: manual trans,           02         12 (05)         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02         12 (05)         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02         12 (05)         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02     | 12        | 01            | Carrier                        | 1.95         | 0.29                           | 15%                                 | no           |              |                 |              | -                              | Tech dose Not apply: manual trans,                                                                                  |
| OI         12         OS         Diffe         Tech dose         Not apply: manual trans,           02         12         04         Clutch & Brake Hubs         3.72         0.14         4%         no         Tech dose         Not apply: manual trans,           02         12         05         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose         Not apply: manual trans,           02         12         05         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,           02         12         05         Shift Fork Assembly         1.75         1.00         58%         no         Tech dose Not apply: manual trans,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02     | 12        | 02            | Planetary Gears                | 3.66         | 0.49                           | 13%                                 | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| U2 12         U3 12 <th< td=""><td>02</td><td>12</td><td>03</td><td>Drive Gears &amp; Sharts</td><td>12.75</td><td>2.25</td><td>18%</td><td>no</td><td></td><td></td><td></td><td>-</td><td>Tech doos Not apply: manual trans,</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02     | 12        | 03            | Drive Gears & Sharts           | 12.75        | 2.25                           | 18%                                 | no           |              |                 |              | -                              | Tech doos Not apply: manual trans,                                                                                  |
| 1/2 1/2 UD STILL FURK ASSEILUDY 1.73 1.00 30% 10 Tech dose Not apply: manual trans,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02     | 12        | 04            | Child Fork Assembly            | 3.12         | 0.14                           | 4%                                  | no           |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02     | 12        | 03            | Description & Spaceton         | 1.75         | 1.00                           | 0.40/                               | 110          |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |
| 02 12 07 Beamgs & Spaces 1.00 1.00 0476 10 rectified and the space of | 02     | 12        | 07            |                                | 0.63         | 0.21                           | 3/1%                                | 110          |              |                 |              |                                | Tech dose Not apply: manual trans,                                                                                  |

Table 3-16: System Scaling Analysis for Transmission System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi include the transmission case and gears. Image 3.2–11 shows the Renault Master 2.3 DCi transmission.



Image 3.2–11: Renault Master 2.3 DCi transmission (Source: www. A2mac1.com)

#### Transmission Case

Shown in Image 3.2–12 are the Silverado 1500 and Renault Master 2.3 series transmission housings. Component masses were 18.78 kg for the Silverado 1500 versus 13.65 kg for the Renault Master 2.3. The Lightweighting Technology used on the housings was to change the aluminum material from A 308 aluminum to AZ 91 magnesium. This material is used in the 2015 Chevrolet Corvette Stingray transmission housing. Due to similarities in component material, full percentage of the Silverado 1500 transmission housing mass reduction can be applied to the Renault. (Refer to Table 3-16).



Image 3.2–12: Transmission for the Silverado 1500 (Left) and Renault Master 2.3 (Right) (Source: FEV, Inc.)

#### <u>Gears</u>

Shown in Image 3.2–13 are the Silverado 1500 and Renault Master 2.3 series gears. Component masses were 6.58 kg for the Silverado 1500 versus 5.1 kg for the Renault Master 2.3. The Lightweighting Technology used on the gears was to change the 8620 and 4120 steel materials to 6265 and 9310 high-strength gear steel. Some automotive companies are currently using these materials for gears which are in need of integrity help in their application. Premium material will be used as much as possible within the parameters of this study. Due to similarities in component material, full percentage of the Silverado 1500 gears mass reduction can be applied to the Renault. (Refer to Table 3-16).



Image 3.2–13: Planet Gears for the Silverado 1500 (Left) and Drive Gears Master 2.3 (Right) (Source: FEV, Inc.)

# 3.3 BODY GROUP -A- SYSTEM

## 3.3.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Body Group -A- System included the Body Structure Subsystem (Cabin); Front End Subsystem (radiator structure, extra cabin – radiator support); Front Wheelhouse Arch Liners [RH/LH], front rock shield, under hood cover, radiator; Body Closures Subsystem – front fenders (LH/RH); Body Closures Subsystem – hood assembly w/o hinges; Body Closures Subsystem – front door assemblies (RH/LH); Body Closures Subsystem – rear door assemblies (RH/LH); front bumper, rear bumper, pickup box assembly, and pickup box gate. The Body Group -A- System is made of welded steel stampings to form panels and structures.

The Chevrolet Silverado 1500 analysis identifies mass reduction alternatives and cost implications for the Body Group -A- System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-17 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Body Group -A- System was reduced by 207.1 kg (36.04%). This increased cost by \$1,194.79, or \$5.77 per kg. Mass reduction for this system reduced vehicle curb weight by 8.68%.

|        |           |               |                                                           |                      | Net Valu                                 | ue of M                             | ass Reo                                                | duction                  |                                     |
|--------|-----------|---------------|-----------------------------------------------------------|----------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System | Subsystem | Sub-Subsystem | Description                                               | Base<br>Mass<br>"kg" | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| 03     | 01        | 00            | Body Structure Subsystem                                  | 207.20               | 75.40                                    | -505.28                             | -6.70                                                  | 36.39%                   | 3.16%                               |
| 03     | 01        | 01            | Body Structure Subsystem - Cabin                          | 207 20               | 75 40                                    | -505 28                             | -6 70                                                  | 36.39%                   | 3 16%                               |
| 03     | 02        | 00            | Front End Subsystem                                       | 38.32                | 12.30                                    | -62.32                              | -5.07                                                  | 32.11%                   | 0.52%                               |
| 03     | 02        | 01            | Front End Subsystem (Radiator Structure)                  | 12.90                | 5.70                                     | -10.58                              | -1.86                                                  | 44.19%                   | 0.24%                               |
| 03     | 02        | 02            | Extra Cabin - Radiator Support                            | 12.10                | 5.90                                     | -52.59                              | -8.91                                                  | 48.76%                   | 0.25%                               |
| 03     | 02        | 04            | Front Wheel Arch Liners                                   | 3.70                 | 0.36                                     | 0.17                                | 0.47                                                   | 9.81%                    | 0.02%                               |
| 03     | 02        | 10            | Under Engine Closures or Rock Shields                     | 1.52                 | 0.13                                     | 0.09                                | 0.72                                                   | 8.67%                    | 0.01%                               |
| 03     | 02        | 11            | Under Hood Covers                                         | 2.09                 | 0.21                                     | 0.59                                | 2.83                                                   | 9.94%                    | 0.01%                               |
| 03     | 02        | 12            | Tow hooks                                                 | 2.25                 | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03     | 02        | 13            | Hood Hinges                                               | 3.75                 | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03     | 03        | 00            | Body Closure Subsystem                                    | 153.70               | 60.00                                    | -289.24                             | -4.82                                                  | 39.04%                   | 2.51%                               |
| 03     | 03        | 01            | Body Closures Subsystem - Front Fenders (LH & RH)         | 28.90                | 14.50                                    | -37.90                              | -2.61                                                  | 50.17%                   | 0.61%                               |
| 03     | 03        | 02            | Body Closures Subsystem - Hood Assembly w/o Hinges        | 22.70                | 11.00                                    | -35.18                              | -3.20                                                  | 48.46%                   | 0.46%                               |
| 03     | 03        | 03            | Body Closures Subsystem - Front Door Assemblies (LH & RD) | 57.90                | 20.30                                    | -117.72                             | -5.80                                                  | 35.06%                   | 0.85%                               |
| 03     | 03        | 04            | Body Closures Subsystem - Rear Door Assemblies (LH & RD)  | 44.20                | 14.20                                    | -98.44                              | -6.93                                                  | 32.13%                   | 0.60%                               |
| 03     | 19        | 00            | Body Closure Subsystem                                    | 48.40                | 16.40                                    | -70.15                              | -4.28                                                  | 33.88%                   | 0.69%                               |
| 03     | 19        | 01            | Front Bumper                                              | 28.50                | 9.90                                     | -23.88                              | -2.41                                                  | 34.74%                   | 0.41%                               |
| 03     | 19        | 02            | Rear Bumper                                               | 19.90                | 6.50                                     | -46.27                              | -7.12                                                  | 32.66%                   | 0.27%                               |
| 03     | 26        | 00            | Body Closure Subsystem                                    | 127.10               | 43.00                                    | -267.80                             | -6.23                                                  | 33.83%                   | 1.80%                               |
| 03     | 26        | 01            | Pickup Box Assembly                                       | 108.30               | 34.40                                    | -241.45                             | -7.02                                                  | 31.76%                   | 1.44%                               |
| 03     | 26        | 02            | Pickup Box Gate                                           | 18.80                | 8.60                                     | -26.35                              | -3.06                                                  | 45.74%                   | 0.36%                               |
|        |           |               |                                                           |                      |                                          |                                     |                                                        |                          |                                     |
|        |           |               |                                                           | 574.72               | 207.10                                   | -1194.79                            | -5.77                                                  | 36.04%                   | 8.68%                               |
|        |           |               |                                                           |                      | (Decrease)                               | (Increase)                          | (Increase)                                             |                          |                                     |

| Table 3-17: Body Group | -A- System Mas      | s Reduction Su                          | ummary Silverado                        | 1500 |
|------------------------|---------------------|-----------------------------------------|-----------------------------------------|------|
|                        | 11 0 /0000000000000 | 110000000000000000000000000000000000000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1000 |

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Mass savings opportunities were identified for the following components: Body Structure Subsystem – Cabin, Front End Subsystem (Radiator Structure), extra cabin – radiator support, front wheelhouse arch (RH/LH), front splash shield, splash shield (RH/LH corner), engine cover, cover – radiator; Body Closures Subsystem – front fenders (RH/LH); Body Closures Subsystem – Hood

Assembly w/o Hinges, Body Closures Subsystem – front door assemblies (RH/LH); Body Closures Subsystem – rear door assemblies (RH/LH), front bumper, rear bumper, pickup box assembly, and pickup box gate.

<u>Cabin:</u> The cabin mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 36.4%, from 207.2 kg to 131.8 kg.

<u>Radiator Structure</u>: The radiator structure mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 44.2% from 12.9 kg to 7.20 kg.

<u>Extra Cabin - Radiator Support:</u> The extra cabin - radiator support mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 48.8% from 12.1 kg to 6.20 kg.

<u>Front Wheelhouse Arch - LH</u>: The front wheelhouse arch – LH mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.81 kg to 1.63 kg.

<u>Front Wheelhouse Arch - RH:</u> The front wheelhouse arch - RH mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.81 kg to 1.63 kg.

<u>Front Splash shield:</u> The front splash shield mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.91 kg to 0.82 kg.

<u>Splash Shield - LH Corner:</u> The splash shield - LH corner mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.12 kg to 0.11 kg.

<u>Splash Shield - RH Corner:</u> The splash shield - RH corner mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from .28 kg to .25 kg.

Engine Cover: The engine cover mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from .99 kg to .89 kg.

<u>Cover - Radiator</u>: The cover - radiator mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.07 kg to .96 kg.

<u>Front Fenders LH and RH:</u> The front fenders LH and RH mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 50.2% from 28.9 kg to 14.4 kg.

<u>Hood Assembly w/o Hinges:</u> The hood assembly w/o hinges mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 48.5% from 22.7kg to 11.7kg.

<u>Front Door Assemblies LH and RH:</u> The front door assemblies LH and RH mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 35.1% from 57.9 kg to 37.6 kg.

<u>Rear Door Assemblies LH and RH:</u> The rear door assemblies LH and RH mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 32.1% from 44.2 kg to 30.0 kg.

<u>Front Bumper:</u> The front bumper mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 34.7% from 28.50kg to 18.60kg.

<u>Rear Bumper</u>: The rear bumper mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 32.7% from 19.9 kg to 13.4 kg.

<u>Pickup Box Assembly:</u> The pickup box assembly mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 31.8% from 108.3 kg to 73.9 kg.

<u>Pickup Box Gate:</u> The pickup box gate mass was reduced by using aluminum stampings that were glued, welded, or riveted together. Mass was reduced by 45.7% from 18.8 kg to 10.2 kg.

## 3.3.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Body Group -A- System (Image 3.3–1) is very similar to that of the 1500, even though the 1500 used for analysis was a crew cab and the 2500 an extended cab.



Image 3.3–1: Chevrolet Silverado 2500 Body Group -A- System (Source: FEV, Inc.)

## 3.3.1.2 2500 System Scaling Summary

Table 3-18 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Silverado 2500. Total Body Group -A- System mass savings is 205.05 kg at a cost increase of \$1,219.98, or \$5.95 per kg. This system uses compounding mass reductions only.



# 3.3.1.3 System Scaling Analysis

The Silverado 2500 Body Group -A- System components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-19.

|        | Silverado 1500 |               |                                                           |              |                                |                                     |                 |              | Select Vehicle                 |                                            |  |  |  |
|--------|----------------|---------------|-----------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------|--|--|--|
| System | Subsystem      | Sub-Subsystem | Component/Assembly                                        | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                      |  |  |  |
| 03     | В              | ody           | Group A System                                            | 574.72       | 203.50                         | 35%                                 |                 |              | 205.05                         |                                            |  |  |  |
| 03     | 01             | 01            | Body Structure Subsystem - Cabin                          | 207.20       | 75.40                          | 36%                                 | yes             | 191.00       | 69.50                          | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 02             | 01            | Front End Subsystem (Radiator Structure)                  | 12.90        | 5.70                           | 44%                                 | yes             | 13.60        | 6.01                           | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 02             | 02            | Extra Cabin - Radiator Support                            | 12.10        | 5.90                           | 49%                                 | yes             | 12.30        | 6.00                           | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 02             | 04            | Front Wheelhouse Arch - LH                                | 1.81         | 0.18                           | 10%                                 | yes             | 1.90         | 0.19                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03     | 02             | 04            | Front Wheelhouse Arch - RH                                | 1.81         | 0.18                           | 10%                                 | yes             | 1.99         | 0.20                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03     | 02             | 10            | Frt Splash shield                                         | 0.91         | 0.09                           | 10%                                 | yes             | 0.71         | 0.07                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03     | 02             | 10            | Splash Shield - LH Corner                                 | 0.13         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03     | 02             | 10            | Splash Shield - RH Corner                                 | 0.28         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03     | 02             | 11            | Eng Cover                                                 | 1.00         | 0.10                           | 10%                                 | yes             | 0.81         | 0.08                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03     | 02             | 11            | Cover - Radiator                                          | 1.08         | 0.11                           | 10%                                 | yes             | 2.56         | 0.26                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03     | 03             | 01            | Body Closures Subsystem - Front Fenders (LH & RH)         | 28.90        | 10.90                          | 38%                                 | yes             | 26.80        | 10.11                          | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 03             | 02            | Body Closures Subsystem - Hood Assembly w/o Hinges        | 22.70        | 11.00                          | 48%                                 | yes             | 24.70        | 11.97                          | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 03             | 03            | Body Closures Subsystem - Front Door Assemblies (LH & RD) | 57.90        | 20.30                          | 35%                                 | yes             | 55.20        | 19.35                          | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 03             | 04            | Body Closures Subsystem - Rear Door Assemblies (LH & RD)  | 44.20        | 14.20                          | 32%                                 | yes             | 42.70        | 13.72                          | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 19             | 01            | Front Bumper                                              | 28.50        | 9.90                           | 35%                                 | yes             | 30.80        | 10.70                          | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 19             | 02            | Rear Bumper                                               | 19.90        | 6.50                           | 33%                                 | yes             | 21.90        | 7.15                           | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 26             | 01            | Pickup Box Assembly                                       | 108.30       | 34.40                          | 32%                                 | yes             | 130.40       | 41.42                          | Tech DOES apply: Use Aluminum              |  |  |  |
| 03     | 26             | 02            | Pickup Box Gate                                           | 18.80        | 8.60                           | 46%                                 | yes             | 18.20        | 8.33                           | Tech DOES apply: Use Aluminum              |  |  |  |

Table 3-19: System Scaling Analysis Body Group -A- System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Silverado 2500 included the Body Structure Subsystem – Cabin, Front End Subsystem (Radiator Structure), extra cabin (radiator support), front wheelhouse arch (LH/RH), front splash shield, engine cover, cover – radiator, Body Closures Subsystem – Front Fenders (LH/RH), Body Closures Subsystem – Hood Assembly w/o Hinges, Body Closures Subsystem – Front Door Assemblies (LH/RH), Body Closures Subsystem – Rear Door Assemblies (LH/RH), front bumper, rear bumper, pickup box assembly, and pickup box gate.

#### Cabin

Shown in Image 3.3–2 are the Silverado 1500 and 2500 cabins. Component masses were 207.2 kg for the 1500 (crew cab configuration) versus 191.0 kg for the 2500 (an extended cab). The Lightweighting Technology used on the cabin was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 cabin mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–2: Cabin for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Radiator Structure

Shown in Image 3.3–3 are the Silverado 1500 and 2500 radiator structures. Component masses were 12.9 kg for the 1500 versus 13.6 kg for the 2500. The Lightweighting Technology used on the cabin is to use aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 radiator structure mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–3: Radiator structure for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Extra Cabin - Radiator Support

Shown in Image 3.3–4 is the Silverado 1500 and 2500 extra cabin – radiator support. Component masses were 12.1 kg for the 1500 versus 12.3 kg for the 2500. The Lightweighting Technology used on the cabin is to use aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 extra cabin – radiator support assembly mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–4: Extra cabin – radiator support Silverado 2500 (Silverado 1500 similar) (Source: FEV, Inc.)

## Front Wheelhouse Arch (RH/LH)

Shown in Image 3.3–5 are the Silverado 1500 and 2500 RH/LH front wheelhouse arches. Component masses were 3.63 kg for the 1500 versus 3.90 kg for the 2500. The Lightweighting Technology used was the PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 front wheelhouse arch mass reduction can be applied to the 2500. (Refer to Table 3-19).





Image 3.3–5: RH/LH front wheelhouse arch for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Front Splash Shield

Shown in Image 3.3–6 are the Silverado 1500 and 2500 front splash shields. Component masses were 0.91 kg for the 1500 versus 0.71 kg for the 2500. The Lightweighting Technology used was the PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 front splash shield mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–6: Front splash shield for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Engine Cover

Shown in Image 3.3–7 are the Silverado 1500 and 2500 engine covers. Component masses were 1.00 kg for the 1500 versus 0.81kg for the 2500. The Lightweighting Technology used was PolyOne<sup>®</sup> foaming agent in the plastic to reduce mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 engine cover mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–7: Engine cover for Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Cover - Radiator

Shown in Image 3.3–8 are the Silverado 1500 and 2500 radiator covers. Component masses were 1.08 kg for the 1500 versus 2.56 kg for the 2500. The Lightweighting Technology used was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component material, full percentage of the Silverado 1500 radiator cover mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–8: Radiator covers for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

## Front Fenders (RH/LH)

Shown in Image 3.3–9 are the Silverado 1500 and 2500 RH/LH front fenders. The component masses were 28.9 kg for the 1500 versus 26.8 kg for the 2500. The Lightweighting Technology used on the front fenders were aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 front fenders RH/LH mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–9: Front fenders (RH/LH) Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Hood Assembly without Hinges

Shown in Image 3.3–10 are the Silverado 1500 and 2500 hood assemblies without hinges. Component masses were 22.7 kg for the 1500 versus 24.7 kg for the 2500. The Lightweighting Technology used is aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 hood assembly mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–10: Hood assembly without hinges, Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Front Door Assemblies (RH/LH)

Shown in Image 3.3–11 are the Silverado 1500 and 2500 RH/LH front door assemblies. The component masses were 57.9 kg for the 1500 versus 55.2 kg for the 2500. The Lightweighting

Technology used was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 front door assembly mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–11: Front door assemblies for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Rear Door Assemblies (RH/LH)

Shown in Image 3.3–12 are the Silverado 1500 and 2500 RH/LH rear door assemblies. Component masses were 44.20 kg for the 1500 versus 42.70 kg for the 2500. The Lightweighting Technology used on the rear door assemblies was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component material, full percentage of the Silverado 1500 rear door assembly RH/LH mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–12: Rear door assemblies for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Front Bumper

Shown in Image 3.3–13 are the Silverado 1500 and 2500 front bumpers. The component masses were 28.5 kg for the 1500 versus 30.8 kg for the 2500. The Lightweighting Technology used was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 front bumper mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–13: Front bumper for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Rear Bumper

Shown in Image 3.3–14 are the Silverado 1500 and 2500 rear bumpers. Component masses were 19.9 kg for the 1500 versus 21.9 kg for the 2500. The Lightweighting Technology used on the rear bumper was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–14: Rear bumper for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Pickup Box Assembly

Shown in Image 3.3–15 are the Silverado 1500 and 2500 series pickup box assemblies. The component masses were 108.3 kg for the 1500 versus 130.4 kg for the 2500. The Lightweighting Technology used in the pickup box assembly was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component material, full percentage of the Silverado 1500 pickup box assembly mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–15: Pickup box assembly for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

## Pickup Box Gate

Shown in Image 3.3–16 are the Silverado 1500 and 2500 series pickup box gates. The component masses were 18.8 kg for the 1500 versus 18.2 kg for the 2500. The Lightweighting Technology used on the pickup box gate was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 pickup box gate mass reduction can be applied to the 2500. (Refer to Table 3-19).



Image 3.3–16: Pickup box gate for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

# 3.3.1.4 System Comparison, Silverado 2500

Table 3-20 summarizes the Silverado 1500 and 2500 Lightweighting results. The majority of the components were visually the same among the two Body Group -A- systems.

|                |                                                  |                                     |                                                      | Ne                                               | t Value                                           | of Mas                             | s Redu                                            | ction                              |                                                |                                       |
|----------------|--------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|
| System         | Description                                      | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" |
| 03<br>03<br>03 | Body Group A<br>Silverado 1500<br>Silverado 2500 | 574.72<br>587.12                    | 0.00                                                 | 203.50<br>205.05                                 | 203.50<br>205.05                                  | 35.41%<br>34.93%                   | 0.00                                              | -\$1,213.18<br>-\$1,219.98         | -\$1,213.18<br>-\$1,219.98                     | -\$5.96<br>-\$5.95                    |

| <i>Table 3-20:</i> | Body Group | -A- System | Comparison, | Silverado | 1500 a | ınd 2500 |
|--------------------|------------|------------|-------------|-----------|--------|----------|

# 3.3.2 Mercedes Sprinter 311 CDi

Table 3-21 summarizes mass and cost impact of the Silverado 1500 Lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total Body Group -A- mass savings was 248.99 kg at a cost increase of \$1603.32, or \$6.44 per kg.

|                                  |                                  |                                  |                                                                                                                                 | Net Val                                              | alue of Mass Reduction                           |                                                   |                                                                                                 |                                                                     |                                                                              |                                                  |                                              |
|----------------------------------|----------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|
| System                           | Subsystem                        | Sub-Subsystem                    | Description                                                                                                                     | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2)                                                          | Cost<br>Impact<br>Comp<br>"\$" (2)                                  | Cost<br>Impact<br>Total<br>"\$" (2)                                          | Cost/<br>Kilogram<br>Total<br>"\$/kg"            | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |
| 03<br>03<br>03<br>03<br>03<br>03 | 00<br>01<br>02<br>03<br>19<br>26 | 00<br>00<br>00<br>00<br>00<br>00 | Body System "A"<br>Body Structure Subsystem<br>Front End Subsystem<br>Body Closure Subsystem<br>Bumpers Subsystem<br>Pickup Box | 217.98<br>0.46<br>28.14<br>2.42<br>0.00              | 0.00<br>0.00<br>0.00<br>0.00<br>0.00             | 217.98<br>0.46<br>28.14<br>2.42<br>0.00           | \$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00                                                  | -\$1,460.73<br>\$0.52<br>-\$137.29<br>-\$5.83<br>\$0.00             | -\$1,460.73<br>\$0.52<br>-\$137.29<br>-\$5.83<br>\$0.00                      | \$0.00<br>\$1.12<br>-\$4.88<br>-\$2.41<br>\$0.00 | 10.23%<br>0.02%<br>1.32%<br>0.11%<br>0.00%   |
|                                  |                                  |                                  |                                                                                                                                 | 248.99<br>(Decrease)                                 | 0.00                                             | 248.99<br>(Decrease)                              | 0.00                                                                                            | -1603.32<br>(Increase)                                              | - <b>\$1,603.32</b><br>(Increase)                                            | - <b>\$6.44</b><br>(Increase)                    | 11.68%                                       |
| Ma<br>Ma<br>Ma                   | ss S<br>ss S<br>ss S             | avi<br>avi<br>avi<br>avi<br>8.   | ngs, Select Vehicle, New Technology "<br>ngs, Silverado 1500, New Technology "<br>ngs Select Vehicle/Mass Savings 1500          | 248.99<br>203.50<br>122.4%                           | 4%                                               |                                                   | <ul> <li>% Saved</li> <li>% Lost,</li> <li>% Lost,</li> <li>% Lost,</li> <li>% Lost,</li> </ul> | l, technolog<br>component<br>technology<br>technology<br>technology | gy applies<br>t does n't ex<br>r does n't ap<br>r already im<br>r reduced in | ist<br>ply<br>plemente<br>npact                  | d                                            |

Table 3-21: Mass-Reduction and Cost Impact for Body Group -A- System, Mercedes Sprinter

\*SMS not included - has no significant impact on perecent contributions

# 3.3.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Body Group -A- components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-22.

|                                      | Silverado 1500                                            |              |                                |                                     |                 |              | Select Vehicle                 |                                                                    |  |  |
|--------------------------------------|-----------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------------------------|--|--|
| Sub-Subsystem<br>Subsystem<br>System | Component/Assembly                                        | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                              |  |  |
| 03 Body                              | / Group A System                                          | 574.720      | 203.502                        | 35%                                 |                 |              | 248.991                        |                                                                    |  |  |
| 03 01 01                             | Body Structure Subsystem - Cabin                          | 207.20       | 75.40                          | 36%                                 | yes             | 599.00       | 217.98                         | Tech DOES apply: Use Aluminum                                      |  |  |
| 03 02 01                             | Front End Subsystem (Radiator Structure)                  | 12.90        | 5.70                           | 44%                                 | no              |              |                                | Tech does NOT apply: Part on vehicle but technology does not apply |  |  |
| 03 02 02                             | Extra Cabin - Radiator Support                            | 12.10        | 5.90                           | 49%                                 | no              |              |                                | Tech does NOT apply: Part on vehicle but technology does not apply |  |  |
| 03 02 04                             | Front Wheelhouse Arch - LH                                | 1.81         | 0.18                           | 10%                                 | yes             | 1.72         | 0.17                           | Tech DOES apply: Use Polyone foaming agent                         |  |  |
| 03 02 04                             | Front Wheelhouse Arch - RH                                | 1.81         | 0.18                           | 10%                                 | yes             | 1.70         | 0.17                           | Tech DOES apply: Use Polyone foaming agent                         |  |  |
| 03 02 10                             | Frt Splash shield                                         | 0.91         | 0.09                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |  |  |
| 03 02 10                             | Splash Shield - LH Corner                                 | 0.13         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |  |  |
| 03 02 10                             | Splash Shield - RH Corner                                 | 0.28         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |  |  |
| 03 02 11                             | Eng Cover                                                 | 1.00         | 0.10                           | 10%                                 | yes             | 1.20         | 0.12                           | Tech DOES apply: Use Polyone foaming agent                         |  |  |
| 03 02 11                             | Cover - Radiator                                          | 1.08         | 0.11                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |  |  |
| 03 03 01                             | Body Closures Subsystem - Front Fenders (LH & RH)         | 28.90        | 10.90                          | 38%                                 | yes             | 15.82        | 5.97                           | Tech DOES apply: Use Aluminum                                      |  |  |
| 03 03 02                             | Body Closures Subsystem - Hood Assembly w/o Hinges        | 22.70        | 11.00                          | 48%                                 | yes             | 17.53        | 8.49                           | Tech DOES apply: Use Aluminum                                      |  |  |
| 03 03 03                             | Body Closures Subsystem - Front Door Assemblies (LH & RD) | 57.900       | 20.30                          | 35%                                 | yes             | 39.01        | 13.68                          | Tech DOES apply: Use Aluminum                                      |  |  |
| 03 03 04                             | Body Closures Subsystem - Rear Door Assemblies (LH & RD)  | 44.20        | 14.20                          | 32%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |  |  |
| 03 19 01                             | Front Bumper                                              | 28.50        | 9.90                           | 35%                                 | yes             | 6.96         | 2.42                           | Tech DOES apply: Use Aluminum                                      |  |  |
| 03 19 02                             | Rear Bumper                                               | 19.90        | 6.50                           | 33%                                 | no              |              |                                | Tech does NOT apply: Part on vehicle but technology does not apply |  |  |
| 03 26 01                             | Pickup Box Assembly                                       | 108.30       | 34.40                          | 32%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |  |  |
| 03 26 02                             | Pickup Box Gate                                           | 18.80        | 8.60                           | 46%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |  |  |

Table 3-22: System Scaling Analysis for Body Group -A- System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter include the Front Wheelhouse Arch - LH, Front Wheelhouse Arch - RH, Engine Cover, Front Fenders LH and RH, Hood Assembly w/o Hinges, Front Door Assemblies LH and RH, and Rear Door Assemblies LH and RH.

#### Front Wheelhouse Arch (RH/LH)

Shown in Image 3.3–17 are the Silverado 1500 and Mercedes Sprinter 311 CDi RH/LH front wheelhouse arch. The component masses were 3.62 kg for the 1500 versus 3.42 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used on the component was applying PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 front wheelhouse arch mass reduction can be applied to the Sprinter. (Refer to Table 3-22).



Image 3.3–17: Front Wheelhouse Arch for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

Engine Cover

Shown in Image 3.3–18 are the Silverado 1500 and Mercedes Sprinter 311 CDi engine covers. The component masses were 1.00 kg for the 1500 versus 1.20 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used on the CDi Engine Cover was applying PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 engine cover mass reduction can be applied to the Sprinter. (Refer to Table 3-22).



Image 3.3–18: CDi Engine Cover for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

## Front Fenders (RH and LH)

Shown in Image 3.3–19 are the Silverado 1500 and Mercedes Sprinter 311 CDi RH/LH front fenders. Component masses were 28.9 kg for the Silverado 1500 versus 15.8 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component material, full percentage of the Silverado 1500 front fender mass reduction can be applied to the Sprinter. (Refer to Table 3-22).



Image 3.3–19: RH/LH front fenders for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Hood Assembly w/o Hinges

Shown in Image 3.3–20 are the Silverado 1500 and Mercedes Sprinter 311 CDi hood assemblies without hinges. The component masses were 22.7 kg for the Silverado 1500 versus 17.5 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 hood assembly mass reduction can be applied to the Sprinter. (Refer to Table 3-22).



Image 3.3–20: Hood assembly without hinges for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Front Door Assemblies (RH/LH)

Shown in Image 3.3–21 are the RH/LH Silverado 1500 and Mercedes Sprinter 311 CDi front door assemblies. The component masses were 57.9 kg for the Silverado 1500 versus 39.0 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used on the assemblies was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component material, full percentage of the Silverado 1500 front door assembly mass reduction can be applied to the Sprinter. (Refer to Table 3-22).



Image 3.3–21: Front door assemblies for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Source: FEV, Inc. and www.A2mac1.com)

Front Bumper

Shown in Image 3.3–22 are the Silverado 1500 and Mercedes Sprinter 311 CDi front bumpers. The component masses were 28.5 kg for the Silverado 1500 versus 6.96 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 front bumper mass reduction can be applied to the Sprinter. (Refer to Table 3-22).





Image 3.3–22: Front bumper for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

## 3.3.3 Renault Master 2.3 DCi

Table 3-23 summarizes the mass and cost impact of the Silverado 1500 Lightweighting technologies applied to the Renault Master 2.3 DCi. The total Body Group -A- system mass savings was 264.44 kg at a cost increase of \$1,719.09, or \$6.50 per kg.

|                  |                      |                     |                                                                                                                              |                                                      |                                                  | Net Valı                                          | ue of M                                | ass Rec                            | duction                             |                                       |                                              |
|------------------|----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|
| System           | Subsystem            | Sub-Subsystem       | Description                                                                                                                  | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |
| 02               | 00                   |                     | Dentra Contana IIAI                                                                                                          |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |
| 03               | 00                   | 00                  | Body System A                                                                                                                | 224.00                                               | 0.00                                             | 024.00                                            | CO 00                                  | C1 EE2 20                          | C1 EE2 20                           | E0 00                                 | 0.959/                                       |
| 03               |                      | 00                  | Erent End Subsystem                                                                                                          | 231.00                                               | 0.00                                             | 231.00                                            | \$0.00                                 | -\$1,553.39<br>¢0.27               | -\$1,553.39<br>¢0.27                | \$0.00<br>©0.00                       | 9.00%                                        |
| 03               | 02                   | 00                  | Pront End Subsystem                                                                                                          | 0.55                                                 | 0.00                                             | 0.00                                              | \$U.UU<br>©0.00                        | \$U.37<br>©122.20                  | \$U.37<br>¢122.20                   | \$U.00                                | 0.0270                                       |
| 03               | 03                   | 00                  | Body Closure Subsystem                                                                                                       | 20.44                                                | 0.00                                             | 20.44                                             | \$0.00                                 | -\$132.30                          | -\$132.30                           | -\$5.00                               | 1.12%                                        |
| 03               | 19                   | 00                  | Bumpers Subsystem                                                                                                            | 5.86                                                 | 0.00                                             | 5.86                                              | \$0.00                                 | -\$33.77                           | -\$33.77                            | -\$5.77                               | 0.25%                                        |
| 03               | 26                   | 00                  | Pickup Box                                                                                                                   | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |
|                  |                      | <u> </u>            |                                                                                                                              | <u>لــــــا</u>                                      |                                                  |                                                   |                                        |                                    |                                     |                                       | L                                            |
|                  | $\Box$               | $\Box'$             |                                                                                                                              | 264.66                                               | 0.00                                             | 264.66                                            | 0.00                                   | -1719.09                           | -\$1,719.09                         | -\$6.50                               | 11.25%                                       |
|                  |                      | $\square'$          |                                                                                                                              | (Decrease)                                           |                                                  | (Decrease)                                        |                                        | (Increase)                         | (Increase)                          | (Increase)                            |                                              |
| Ma:<br>Ma:<br>Ma | ss S<br>ss S<br>ss S | avii<br>avii<br>avi | ngs, Select Vehicle, New Technology "kg"<br>ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500 | 264.66<br>203.50<br>130.1%                           |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |
|                  |                      |                     |                                                                                                                              |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |

Table 3-23: Mass-Reduction and Cost Impact for Body Group -A- System, Renault Master



| % Saved, | techno | logy | applies |
|----------|--------|------|---------|
|----------|--------|------|---------|

% Lost, component does n't exist

% Lost, technology doesn't apply

% Lost, technology already implemented

% Lost, technology reduced impact

\*SMS not included - has no significant impact on perecent contributions

# 3.3.3.1 System Scaling Analysis

The Renault Master 2.3 DCi Body Group -A- System components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-24.

|                                      | Silverado 1500                                            |              |                                | Select Vehicle                      |                 |              |                                |                                                                    |
|--------------------------------------|-----------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------------------------|
| Sub-Subsystem<br>Subsystem<br>System | Component/Assembly                                        | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                              |
| 03 Body                              | / Group A System                                          | 574.720      | 203.502                        | 35%                                 |                 |              | 264.657                        |                                                                    |
| 03 01 01                             | Body Structure Subsystem - Cabin                          | 207.20       | 75.40                          | 36%                                 | yes             | 637.00       | 231.80                         | Tech DOES apply: Use Aluminum                                      |
| 03 02 01                             | Front End Subsystem (Radiator Structure)                  | 12.90        | 5.70                           | 44%                                 | no              |              |                                | Tech does NOT apply: Part on vehicle but technology does not apply |
| 03 02 02                             | Extra Cabin - Radiator Support                            | 12.10        | 5.90                           | 49%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |
| 03 02 04                             | Front Wheelhouse Arch - LH                                | 1.81         | 0.18                           | 10%                                 | yes             | 1.27         | 0.13                           | Tech DOES apply: Use Polyone foaming agent                         |
| 03 02 04                             | Front Wheelhouse Arch - RH                                | 1.81         | 0.18                           | 10%                                 | yes             | 1.24         | 0.12                           | Tech DOES apply: Use Polyone foaming agent                         |
| 03 02 10                             | Frt Splash shield                                         | 0.91         | 0.09                           | 10%                                 | yes             | 2.68         | 0.27                           | Tech DOES apply: Use Polyone foaming agent                         |
| 03 02 10                             | Splash Shield - LH Corner                                 | 0.13         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |
| 03 02 10                             | Splash Shield - RH Corner                                 | 0.28         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |
| 03 02 11                             | Eng Cover                                                 | 1.00         | 0.10                           | 10%                                 | yes             | 0.35         | 0.04                           | Tech DOES apply: Use Polyone foaming agent                         |
| 03 02 11                             | Cover - Radiator                                          | 1.08         | 0.11                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |
| 03 03 01                             | Body Closures Subsystem - Front Fenders (LH & RH)         | 28.90        | 10.90                          | 38%                                 | yes             | 12.85        | 4.85                           | Tech DOES apply: Use Aluminum                                      |
| 03 03 02                             | Body Closures Subsystem - Hood Assembly w/o Hinges        | 22.70        | 11.00                          | 48%                                 | yes             | 14.26        | 6.91                           | Tech DOES apply: Use Aluminum                                      |
| 03 03 03                             | Body Closures Subsystem - Front Door Assemblies (LH & RD) | 57.900       | 20.30                          | 35%                                 | yes             | 41.89        | 14.69                          | Tech DOES apply: Use Aluminum                                      |
| 03 03 04                             | Body Closures Subsystem - Rear Door Assemblies (LH & RD)  | 44.20        | 14.20                          | 32%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |
| 03 19 01                             | Front Bumper                                              | 28.50        | 9.90                           | 35%                                 | yes             | 4.85         | 1.68                           | Tech DOES apply: Use Aluminum                                      |
| 03 19 02                             | Rear Bumper                                               | 19.90        | 6.50                           | 33%                                 | yes             | 12.78        | 4.17                           | Tech DOES apply: Use Aluminum                                      |
| 03 26 01                             | Pickup Box Assembly                                       | 108.30       | 34.40                          | 32%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |
| 03 26 02                             | Pickup Box Gate                                           | 18.80        | 8.60                           | 46%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle                           |

Table 3-24: System Scaling Analysis for Body Group -A- System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi include the front wheelhouse arch (RH/LH), front splash shield, engine cover, front fenders (RH/LH), hood assembly without hinges, front door assemblies (RH/LH), front bumper, and rear bumper.

## Front Wheelhouse Arch (RH/LH)

Shown in Image 3.3–23 are the Silverado 1500 and Renault Master 2.3 DCi RH/LH front wheelhouse arches. The component masses were 3.62 kg for the Silverado 1500 versus 2.51 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used was to apply PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 front wheelhouse arch mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–23: Front wheelhouse arch for the Silverado 1500 (Left) and the Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

Front Splash Shield

Shown in Image 3.3–24 are the Silverado 1500 and Renault Master 2.3 DCi front splash shield. The component masses were 0.91 kg for the Silverado 1500 versus 2.68 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used on the front splash shield was to apply PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 front splash shield mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–24: Front splash shield for the Silverado 1500 (Left) and the Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Engine Cover

Shown in Image 3.3–25 are the Silverado 1500 and Renault Master 2.3 DCi engine covers. The component masses were 1.00 kg for the Silverado 1500 versus 0.33kg for the Renault Master 2.3 DCi. The Lightweighting Technology used on the engine cover was to apply PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component material, full percentage of the Silverado 1500 engine cover mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–25: Engine covers for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

## Front Fenders (RH/LH)

Shown in Image 3.3–26 are the Silverado 1500 and Renault Master 2.3 DCi RH/LH front fenders. The component masses were 28.9 kg for the Silverado 1500 versus 12.9 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used on the front fenders was aluminum stampings that were glued, welded, or riveted together. Due to similarities in material, full percentage of the Silverado 1500 front fender mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–26: RH/LH front fenders for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

## Hood Assembly without Hinges

Shown in Image 3.3–27 are the Silverado 1500 and Renault Master 2.3 DCi hood assemblies without hinges. The component masses were 22.7 kg for the Silverado 1500 versus 14.3 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the assembly was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 hood assembly mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–27: Hood assembly without hinges for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Front Door Assemblies (RH/LH)

Shown in Image 3.3–28 are the Silverado 1500 and Renault Master 2.3 DCi front door assemblies, RH. Component masses were 57.9 kg for the 1500 versus 41.9 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used on the assemblies was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component material, full percentage of the Silverado 1500 front door assembly mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–28: RH front door assemblies for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Front Bumper

Shown in Image 3.3–29 are the Silverado 1500 and Renault Master 2.3 DCi front bumpers. The component masses were 28.5 kg for the Silverado 1500 versus 4.85 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the front bumper was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 front bumper mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–29: Front bumper for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### Rear Bumper

Shown in Image 3.3–30 are the Silverado 1500 and Renault Master 2.3 DCi rear bumpers. Component masses were 19.9 kg for the Silverado 1500 versus 12.8 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used on the rear bumper was aluminum stampings that were glued, welded, or riveted together. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper mass reduction can be applied to the Renault. (Refer to Table 3-24).



Image 3.3–30: Rear Bumper for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

# 3.4 BODY GROUP -B- SYSTEM

# 3.4.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Body Group -B- System included the vehicle interior (including the front and rear left and right door trim parts as well as the main compartment trim), all sealing/weather stripping, all seating frames and trim, the cross car beam and IP trim, and all air bags. The plastic trim parts mass was reduced by using PolyOne<sup>®</sup> foaming agent. The sealing/weather stripping mass was reduced by changing from EPDM (ethylene propylene diene monomer) rubber to TPV (thermoplastic vulcanizate). The front seating mass was reduced by changing from seating mass was reduced by changing the welded steel construction to cast magnesium. The cross car beam was also changed from welded steel construction to cast magnesium. The cross car beam was also changed from welded steel construction to cast magnesium. Other changes include the passenger side air bag housing going from steel to Nylon 6 plastic and the steering wheel air bag changing from a dual stage inflator to a single stage inflator.

The Chevrolet Silverado 1500 analysis identifies mass reduction alternatives and cost implications for the Body Group -B- System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-25 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Body Group -B- System mass was reduced by 34.02 kg (13.77%). This increased cost by \$127.23, or \$3.74 per kg. Mass reduction for this system reduced vehicle curb weight by 1.43%.

Table 3-25: Body Group -B- System Mass Reduction Summary, Silverado 1500

|          |           |               |                                                 | Net Value of Mass Reduction |                                          |                                               |                                                        |                          |                                     |
|----------|-----------|---------------|-------------------------------------------------|-----------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System   | Subsystem | Sub-Subsystem | Description                                     | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NDMC<br>"\$" <sub>(2)</sub> | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| 03       | 05        | 00            | Interior Trim and Ornamentation Subsystem       | 56.55                       | 2.06                                     | 6.84                                          | 3.32                                                   | 3.65%                    | 0.09%                               |
| 03       | 05        | 01            | Main Floor Trim                                 | 9.31                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 05        | 02            | NVH Pads                                        | 12.91                       | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 05        | 03            | Headliner Assembly                              | 5.28                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 05        | 04            | Sun Visors                                      | 1.26                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 05        | 05            | Front RH & LH Door Trim Panel                   | 9.86                        | 0.84                                     | 2.06                                          | 2.44                                                   | 8.55%                    | 0.04%                               |
| 03       | 05        | 06            | Rear Door or Rear Quarter Trim Panel            | 5.68                        | 0.55                                     | 1.62                                          | 2.95                                                   | 9.69%                    | 0.02%                               |
| 03       | 05        | 07            | Pillar Trim Lower                               | 5.58                        | 0.53                                     | 2.81                                          | 5.32                                                   | 9.46%                    | 0.02%                               |
| 03       | 05        | 08            | Pillar Trim Upper                               | 2.83                        | 0.14                                     | 0.35                                          | 2.46                                                   | 4.97%                    | 0.01%                               |
| 03       | 05        | 09            | Floor Mats - OEM                                | 3.84                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 06        | 00            | Sound and Heat Control Subsystem (Body)         | 4.78                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 06        | 01            | Heat Insulation Shields - Eng. Bay & Underfloor | 0.90                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 06        | 02            | Noise Insulation, Engine Bay and Underfloor     | 1.38                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 06        | 03            | Heat Shield - Transmission                      | 0.38                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 06        | 04            | Heat Shield - Fuel Tank                         | 2.12                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 07        | 00            | Sealing Subsystem                               | 14.52                       | 4.72                                     | 32.23                                         | 6.84                                                   | 32.48%                   | 0.20%                               |
| 03       | 07        | 01            | Front Side Door Dynamic Weatherstrip            | 4.90                        | 1.59                                     | 10.86                                         | 6.83                                                   | 32.45%                   | 0.07%                               |
| 03       | 07        | 02            | Static Sealing                                  | 9.62                        | 3.13                                     | 21.37                                         | 6.84                                                   | 32.50%                   | 0.13%                               |
| 03       | 10        | 00            | Seating Subsystem                               | 120.69                      | 19.16                                    | -127.89                                       | -6.68                                                  | 15.87%                   | 0.80%                               |
| 03       | 10        | 01            | Seat Drivers Frt                                | 31.76                       | 3.11                                     | -15.00                                        | -4.83                                                  | 9.78%                    | 0.13%                               |
| 03       | 10        | 02            | Seat Passenger Frt                              | 26.77                       | 3.10                                     | -15.36                                        | -4.96                                                  | 11.56%                   | 0.13%                               |
| 03       | 10        | 03            | Rear 60% Seat                                   | 25.86                       | 5.55                                     | -43.73                                        | -7.88                                                  | 21.47%                   | 0.23%                               |
| 03       | 10        | 04            | Rear 40% Seat                                   | 17.24                       | 3.35                                     | -23.87                                        | -7.13                                                  | 19.43%                   | 0.14%                               |
| 03       | 10        | 05            | Frt center seat & console                       | 19.06                       | 4.05                                     | -29.93                                        | -7.38                                                  | 21.27%                   | 0.17%                               |
| 03       | 12        | 00            | Instrument Panel and Console Subsystem          | 30.84                       | 6.82                                     | -35.29                                        | -5.17                                                  | 22.13%                   | 0.29%                               |
| 03       | 12        | 01            | Cross-Car Beam (IP)                             | 11.92                       | 5.45                                     | -38.15                                        | -7.00                                                  | 45.74%                   | 0.23%                               |
| 03       | 12        | 02            | Instrument Panel Main Molding                   | 7.22                        | 0.53                                     | 1.40                                          | 2.61                                                   | 7.41%                    | 0.02%                               |
| 03       | 12        | 03            | Closure Panel or Knee Bolster - (IP)            | 6.94                        | 0.66                                     | 1.01                                          | 1.53                                                   | 9.57%                    | 0.03%                               |
| 03       | 12        | 04            | Applied Decorative Trim - (IP)                  | 2.80                        | 0.14                                     | 0.25                                          | 1.86                                                   | 4.84%                    | 0.01%                               |
| 03       | 12        | 05            | Switch Pack - Instrument Panel (IP)             | 1.96                        | 0.04                                     | 0.20                                          | 5.38                                                   | 1.88%                    | 0.00%                               |
| 03       | 20        | 00            | Occupant Restraining Device Subsystem           | 19.64                       | 1.26                                     | -3.12                                         | -2.41                                                  | 6.42%                    | 0.05%                               |
| 03       | 20        | 01            | Seat Belt Assembly Front Row                    | 3.96                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 20        | 03            | Passenger Airbag / Cover Unit                   | 4.03                        | 0.62                                     | 0.99                                          | 1.60                                                   | 15.43%                   | 0.03%                               |
| 03       | 20        | 06            | Restraint Electronics                           | 0.80                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 20        | 10            | Seat Delts - Second Row                         | 4.00                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 20        | 12            | Curtain Airbag System                           | 5.01                        | 0.37                                     | -0.31                                         | -0.82                                                  | 1.48%                    | 0.02%                               |
| 03       | 20        | 15            | retrier Anchorages - INON Integrated            | 0.46                        | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 03       | 20        | 10            | Steering vvneel Airbag                          | 1.39                        | 0.26                                     | -3.80                                         | -14.39                                                 | 19.07%                   | 0.01%                               |
| $\vdash$ |           |               |                                                 | 247.02                      | 24.02                                    | 407.00                                        | 2.74                                                   | 40 770/                  | 4 429/                              |
|          |           |               |                                                 | 241.02                      | 34.02                                    | -121.23                                       | -3.14                                                  | 13.11%                   | 1.45%                               |
| Ļ        |           |               |                                                 |                             | (Decrease)                               | (increase)                                    | (increase)                                             |                          |                                     |

(1) "+" = mass decrease, "-" = mass increasing (2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Due to the large size of the Body Group -B- System it was not broken down per component, but rather per subsystem. Mass savings opportunities were identified for the following subsystems: Interior Trim and Ornamentation, Sealing, Seating, Instrument Panel and Console, and Occupant Restraining Device.

Interior Trim and Ornamentation Subsystem: The Interior Trim and Ornamentation Subsystem mass was made up of the front and rear right and left door trims, as well as all of the inner cabin plastic trim parts. The mass was reduced by using PolyOne<sup>®</sup> foaming agent on the plastic parts. Mass was reduced by 9.96% from 16.5 kg to 14.9 kg.

<u>Sealing Subsystem</u>: The Sealing Subsystem mass was made up of all the sealing/weather stripping for the doors and windows. Mass was reduced by changing from EPDM to TPV material. Mass was reduced by 27.6%, from 15.1 kg to 11.0 kg.

<u>Seating Subsystem:</u> The Seating Subsystem mass was reduced by using PolyOne<sup>®</sup> on all plastic trim parts. The welded steel construction on the front seats was changed to BASF plastic and glass fiber laired laminate. The welded steel construction for the 60/40 seat and the center console was also switched to cast magnesium. Mass was reduced by 40.4%, from 46.2 kg to 27.5 kg.

<u>Instrument Panel and Console Subsystem:</u> The Instrument Panel and Console Subsystem mass were reduced by using PolyOne<sup>®</sup> on all plastic trim parts and by changing the welded steel construction on the cross car beam to cast magnesium. Also, by changing the welded steel construction for the knee bolster reinforcement bracket to plastic. Mass was reduced by 29.42%, from 23.2 kg to 16.4 kg.

<u>Occupant Restraining Device Subsystem:</u> The Occupant Restraining Device Subsystem mass was reduced by using PolyOne<sup>®</sup> on all plastic parts and by changing the welded steel construction on the passenger air bag housing to DSM Akulon<sup>®</sup> Nylon 6. By also changing the steering wheel air bag dual stage inflator to a single stage inflator. Mass was reduced by 44.82%, from 1.85kg to 1.02kg.

# 3.4.2 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Body Group -B- System is very similar to the 1500, except that the 1500 vehicle used in the original study was a crew cab and the 2500 an extended cab. This made the 1500 vehicle interior larger and the box size 5.5 feet, whereas the 2500 had a smaller interior and the box size larger at 6 feet (Image 3.4–1).



Image 3.4–1: Chevrolet Silverado 2500 (Source: FEV, Inc.)
## 3.4.2.1 2500 System Scaling Summary

Table 3-26 summarizes the mass and cost impact of Silverado 1500 Lightweighting technologies as applied to the Silverado 2500. Total Body Group -B- System mass savings was 32.10 kg at a cost increase of \$125.41, or \$3.91 per kg.



Table 3-26: Mass-Reduction and Cost Impact for Body Group -B- system, Silverado 2500

## 3.4.2.2 System Scaling Analysis

The Silverado 2500 Body Group -B- system components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-27.

|        |           |               | Silverado 1500                                       |              |                                | Select Vehicle                      |                 |              |                                |                                                |
|--------|-----------|---------------|------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|------------------------------------------------|
| System | Subsystem | Sub-Subsystem | Component/Assembly                                   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                          |
| 03     | Bo        | ody           | Group B System                                       | 247.02       | 34.02                          | 14%                                 |                 |              | 32.10                          |                                                |
| 03     | 05        | 05            | LH drivers door window switch cover                  | 0.10         | 0.010                          | 10%                                 | yes             | 0.10         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH drivers Door arm rest attachment cover            | 0.03         | 0.003                          | 11%                                 | yes             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH drivers Door Pull handle attachment cover         | 0.01         | 0.001                          | 17%                                 | yes             | 0.01         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH drivers Door vertical Pull handle                 | 0.13         | 0.013                          | 10%                                 | yes             | 0.13         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH drivers Door corner cover                         | 0.06         | 0.006                          | 11%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone toaming agent     |
| 03     | 05        | 05            | PH passenger Door arm rest attachment cover          | 0.10         | 0.010                          | 10%                                 | yes             | 0.10         | 0.01                           | Tech DOES apply: Use Polyone loarning agent    |
| 03     | 05        | 05            | RH passenger Door Pull handle attachment cover       | 0.03         | 0.003                          | 17%                                 | Ves             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door vertical Pull handle               | 0.13         | 0.013                          | 10%                                 | ves             | 0.13         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door corner cover                       | 0.06         | 0.006                          | 11%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door lwr main trim                      | 2.09         | 0.209                          | 10%                                 | yes             | 2.09         | 0.21                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door lwr main trim map pocket           | 0.50         | 0.050                          | 10%                                 | yes             | 0.50         | 0.05                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door lwr main trim close out            | 0.05         | 0.005                          | 10%                                 | yes             | 0.05         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door Iwr main trim inner support brkt#1 | 0.28         | 0.028                          | 10%                                 | yes             | 0.28         | 0.03                           | Tech DOES apply: Use Polyone toaming agent     |
| 03     | 05        | 05            | RH passenger Door lwr main trim inner support brkt#2 | 0.00         | 0.005                          | 9%                                  | yes             | 0.00         | 0.01                           | Tech DOES apply. Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door lwr main trim inner support brkt#6 | 0.03         | 0.003                          | 9%                                  | ves             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | RH passenger Door upr main trim                      | 0.76         | 0.076                          | 10%                                 | yes             | 0.76         | 0.08                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH passenger Door lwr main trim                      | 2.09         | 0.209                          | 10%                                 | yes             | 2.09         | 0.21                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH passenger Door lwr main trim map pocket           | 0.50         | 0.050                          | 10%                                 | yes             | 0.50         | 0.05                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH passenger Door lwr main trim close out            | 0.05         | 0.005                          | 10%                                 | yes             | 0.05         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | LH passenger Door lwr main trim inner support brkt#1 | 0.28         | 0.028                          | 10%                                 | yes             | 0.28         | 0.03                           | Tech DOES apply: Use Polyone toaming agent     |
| 03     | 05        | 05            | LH passenger Door lwr main trim inner support brkt#2 | 0.05         | 0.005                          | 9%                                  | yes             | 0.05         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | En passenger Door Iwr main trim inner support brkt#5 | 0.03         | 0.003                          | 10%                                 | yes             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | I H passenger Door upr main trim                     | 0.01         | 0.001                          | 10%                                 | ves             | 0.01         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 05            | Fit dorr harness feed through                        | 0.23         | 0.023                          | 10%                                 | ves             | 0.23         | 0.02                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | RH Rear door window switch cover                     | 0.08         | 0.008                          | 10%                                 | yes             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | RH Rear Door arm rest attachment cover               | 0.02         | 0.002                          | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | RH Rear Door Pull handle attachment cover            | 0.01         | 0.001                          | 10%                                 | yes             | 0.01         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | RH rear door arm rest                                | 0.27         | 0.027                          | 10%                                 | yes             | 0.15         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 00            | LH Rear door window switch cover                     | 0.08         | 0.008                          | 10%                                 | yes             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 00            | LI Rear Door Pull handle attachment cover            | 0.02         | 0.002                          | 10%                                 | ves             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | LH rear door arm rest                                | 0.27         | 0.027                          | 10%                                 | ves             | 0.15         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | RH rear door lwr main trim                           | 1.53         | 0.153                          | 10%                                 | yes             | 1.69         | 0.17                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | RH rear door lwr main trim map pocket                | 0.23         | 0.023                          | 10%                                 | yes             | 0.23         | 0.02                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | RH rear door lwr main trim mounting bkt #1           | 0.02         | 0.002                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 06            | RH rear door lwr main trim mounting bkt #2           | 0.01         | 0.001                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 00            | RH rear door upr main trim                           | 0.58         | 0.058                          | 10%                                 | no              | 1.60         | 0.17                           | Tech DOES apply: Not on venicle                |
| 03     | 05        | 06            | H rear door lwr main trim map pocket                 | 0.23         | 0.023                          | 10%                                 | ves             | 0.23         | 0.02                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 06            | LH rear door lwr main trim mounting bkt #1           | 0.02         | 0.002                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 06            | LH rear door lwr main trim mounting bkt #2           | 0.01         | 0.001                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 06            | LH rear door upr main trim                           | 0.58         | 0.058                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 07            | Driver Lwr A-Pillar                                  | 0.23         | 0.023                          | 10%                                 | yes             | 0.23         | 0.02                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | Passenger Lwr A-Pillar<br>Front Driver kick plate    | 0.22         | 0.022                          | 10%                                 | yes             | 0.22         | 0.02                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | Front Driver kick plate mount                        | 0.20         | 0.020                          | 10%                                 | no              | 0.10         | 0.02                           | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 07            | Rear Driver kick plate                               | 0.14         | 0.014                          | 10%                                 | ves             | 0.12         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | Rear Driver kick plate mount                         | 0.12         | 0.012                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 07            | LH B-Pillar Lwr                                      | 0.63         | 0.063                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 07            | Front Passenger kick plate                           | 0.21         | 0.020                          | 10%                                 | yes             | 0.16         | 0.02                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | Front Passenger kick plate mount                     | 0.18         | 0.018                          | 10%                                 | no              | 0.40         | 0.04                           | Lech does NOT apply: Not on vehicle            |
| 03     | 05        | 07            | Rear Passenger kick plate mount                      | 0.14         | 0.012                          | 10%                                 | yes             | 0.12         | 0.01                           | Tech doos NOT apply: Use Polyone toaming agent |
| 03     | 05        | 07            | RH B-Pillar I wr                                     | 0.63         | 0.012                          | 10%                                 | 0               |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 07            | C-Pillar cover RH upr                                | 0.34         | 0.034                          | 10%                                 | ves             | 0.11         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | C-Pillar cover RH Lwr                                | 0.53         | 0.053                          | 10%                                 | yes             | 0.87         | 0.09                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | Small Cover piece                                    | 0.0020       | 0.0002                         | 10%                                 | yes             | 0.00         | 0.00                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | C-Pillar cover LH upr                                | 0.34         | 0.034                          | 10%                                 | yes             | 0.11         | 0.01                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | C-Pillar cover LH Lwr                                | 0.52         | 0.052                          | 10%                                 | yes             | 0.90         | 0.09                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 07            | C-Pillar to C-Pillar cross trim                      | 0.00         | 0.000                          | 10%                                 | yes             | 0.00         | U.UU                           | Tech does NOT apply: Use Polyone foaming agent |
| 03     | 05        | 08            | Drivers Upr A-Pillar cover                           | 0.35         | 0.050                          | 10%                                 | Ves             | 0.43         | 0.04                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 08            | Drivers upr A-pillar mounting screw cover            | 0.00         | 0.00                           | 0%                                  | no              | 0.40         | 0.07                           | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 08            | Driver LH Upper B-Pillar Cover                       | 0.29         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 08            | Driver LH Upper B-Pillar Cover slide                 | 0.06         | 0.01                           | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 08            | Driver restraint upr B-pillar bolt cover             | 0.01         | 0.00                           | 7%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 08            | Drivers B pillar mounting screw cover                | 0.01         | 0.00                           | 17%                                 | no              | 0.10         | 0.01                           | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 08            | Passenger Upr A-Pillar cover                         | 0.33         | 0.03                           | 10%                                 | yes             | 0.40         | 0.04                           | Tech DOES apply: Use Polyone foaming agent     |
| 03     | 05        | 08            | Fassenger RH Upper D-Pillar Cover elide              | 0.28         | 0.03                           | 11%                                 | 110             |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 08            | Passenger restraint upr B-pillar bolt cover          | 0.00         | 0.00                           | 7%                                  | no<br>po        |              |                                | Tech does NOT apply: Not on vehicle            |
| 03     | 05        | 08            | Passenger B pillar mounting screw                    | 0.00         | 0.00                           | 0%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle            |
|        |           |               | p                                                    |              |                                | - /*                                |                 |              |                                |                                                |

Table 3-27: System Scaling Analysis Body Group -B- System, Silverado 2500

Table 3.4-3 Continued Next Page

|        |           |               | Silverado 1500                                                                                        |              |                                |                                     | Select Vehicle  |              |                                |                                                                                                          |  |
|--------|-----------|---------------|-------------------------------------------------------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|----------------------------------------------------------------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly                                                                                    | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                    |  |
| 03     | B         | ody           | Group B System                                                                                        | 247.02       | 34.02                          | 14%                                 |                 |              | 32.10                          |                                                                                                          |  |
| 03     | 07        | 01            | LH Driver Door Lower seal                                                                             | 0.14         | 0.05                           | 33%                                 | yes             | 0.14         | 0.05                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | RH Passenger Door Lower seal                                                                          | 0.14         | 0.05                           | 33%                                 | yes             | 0.14         | 0.05                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | LH Rear Door Lower seal                                                                               | 0.07         | 0.04                           | 32%                                 | yes<br>ves      | 0.11         | 0.03                           | Tech DOES apply: Change from EDPW to TPV                                                                 |  |
| 03     | 07        | 01            | RH Rear Door Lower seal                                                                               | 0.11         | 0.04                           | 32%                                 | yes             | 0.11         | 0.03                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | RH Rear Door hinge side upr seal                                                                      | 0.07         | 0.02                           | 33%                                 | yes             | 0.07         | 0.02                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | RH rear door inside window track seal                                                                 | 0.52         | 0.17                           | 33%                                 | yes             | 0.47         | 0.15                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | RH rear door inside window track bottom outer seal                                                    | 0.30         | 0.00                           | 33%                                 | ves             | 0.19         | 0.06                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | LH rear door inside window track seal                                                                 | 0.52         | 0.17                           | 33%                                 | yes             | 0.47         | 0.15                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | LH rear door inside window track bottom inner seal                                                    | 0.16         | 0.05                           | 33%                                 | yes             | 0.19         | 0.06                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | LH drivers door inside window track bottom outer sear                                                 | 0.50         | 0.10                           | 33%                                 | ves             | 0.19         | 0.08                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | LH drivers door inside window track bottom inner seal                                                 | 0.19         | 0.06                           | 33%                                 | yes             | 0.35         | 0.12                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | LH drivers door inside window track bottom outer seal                                                 | 0.35         | 0.11                           | 33%                                 | yes             | 0.34         | 0.11                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 01            | RH passenger door inside window track seal<br>RH passenger door inside window track bottom inner seal | 0.60         | 0.20                           | 33%                                 | yes<br>ves      | 0.64         | 0.21                           | Tech DOES apply: Change from EDPN to TPV                                                                 |  |
| 03     | 07        | 01            | RH passenger door inside window track bottom outer seal                                               | 0.35         | 0.00                           | 33%                                 | yes             | 0.34         | 0.12                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 02            | Drivers Upr Outside seal                                                                              | 0.82         | 0.27                           | 33%                                 | yes             | 0.82         | 0.27                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 02            | Front driver door seal                                                                                | 2.10         | 0.68                           | 33%                                 | yes             | 2.10         | 0.68                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 02            | Passenger Upr Outside seal                                                                            | 0.82         | 0.03                           | 33%                                 | ves             | 0.82         | 0.35                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 02            | Front passenger door seal                                                                             | 2.05         | 0.67                           | 33%                                 | yes             | 2.05         | 0.67                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 07        | 02            | Rear passenger door seal                                                                              | 1.91         | 0.62                           | 33%                                 | yes             | 1.07         | 0.35                           | Tech DOES apply: Change from EDPM to TPV                                                                 |  |
| 03     | 10        | 01            | Driver seat back frame<br>Driver seat man back inner                                                  | 2.20         | 1.10                           | 50%                                 | yes<br>ves      | 2.20         | 1.10                           | Tech DOES apply: Change from weided steel to BASE Plastic                                                |  |
| 03     | 10        | 01            | Driver Seat map back                                                                                  | 0.64         | 0.06                           | 10%                                 | yes             | 0.64         | 0.06                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat safety belt cover                                                                         | 0.04         | 0.00                           | 10%                                 | yes             | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver seat bottom frame                                                                              | 3.60         | 1.80                           | 50%                                 | yes             | 3.60         | 1.80                           | Tech DOES apply: Change from welded steel to BASF Plastic                                                |  |
| 03     | 10        | 01            | Driver Seat in Nut Cover EH                                                                           | 0.02         | 0.00                           | 10%                                 | ves             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat rear Bolt Cover LH                                                                        | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat rear Bolt Cover RH                                                                        | 0.07         | 0.01                           | 10%                                 | yes             | 0.07         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver seat Wire namess cover<br>Driver Seat I H Track cover                                          | 0.04         | 0.00                           | 10%                                 | yes<br>ves      | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat LH Track cover end cap rear                                                               | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat LH Track cover end cap frt                                                                | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat LH cover                                                                                  | 0.31         | 0.03                           | 10%                                 | yes             | 0.31         | 0.03                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat LH cover seat belt insert cover                                                           | 0.05         | 0.00                           | 10%                                 | ves             | 0.05         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat LH cover lumbar knob                                                                      | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat LH cover recline handle                                                                   | 0.03         | 0.00                           | 10%                                 | yes             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 01            | Driver Seat RH cover<br>Passenger seat back frame                                                     | 2.20         | 1.10                           | 50%                                 | yes<br>ves      | 2.20         | 1.10                           | Tech DOES apply: Use Polyone toarning agent<br>Tech DOES apply: Change from welded steel to BASE Plastic |  |
| 03     | 10        | 02            | Pass seat map back inner                                                                              | 0.49         | 0.05                           | 10%                                 | yes             | 0.49         | 0.05                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Pass Seat map back                                                                                    | 0.64         | 0.06                           | 10%                                 | yes             | 0.64         | 0.06                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Pass Seat satety belt cover<br>Passenger seat hottom frame                                            | 0.04         | 0.00                           | 10%                                 | yes<br>ves      | 3.59         | 0.00                           | Tech DOES apply: Use Polyone toaming agent<br>Tech DOES apply: Change from welded steel to BASE Plastic  |  |
| 03     | 10        | 02            | Frt Passenger Seat frt RH Nut Cover                                                                   | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Frt Passenger Seat frt LH Nut Cover                                                                   | 0.04         | 0.00                           | 10%                                 | yes             | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Passenger Seat rear Bolt Cover LH Passenger Seat rear Bolt Cover RH                                   | 0.06         | 0.01                           | 10%                                 | yes<br>ves      | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Passenger seat wire harness cover                                                                     | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Pass Seat LH Track cover                                                                              | 0.16         | 0.02                           | 10%                                 | yes             | 0.16         | 0.02                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Pass Seat LH Track cover end cap rear                                                                 | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Pass Seat LH cover                                                                                    | 0.02         | 0.00                           | 10%                                 | yes             | 0.31         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Passenger Seat LH cover close out                                                                     | 0.05         | 0.01                           | 10%                                 | yes             | 0.05         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Passenger Seat LH cover seat belt insert cover                                                        | 0.01         | 0.00                           | 10%                                 | yes             | 0.01         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Passenger Seat LH cover recline handle                                                                | 0.02         | 0.00                           | 10%                                 | ves<br>ves      | 0.02         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 02            | Passenger Seat RH cover                                                                               | 0.11         | 0.01                           | 10%                                 | yes             | 0.11         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 03            | 60% Seat back frame                                                                                   | 5.78         | 2.78                           | 48%                                 | yes             | 5.78         | 2.78                           | Tech DOES apply: Change from welded steel to mag.                                                        |  |
| 03     | 10        | 03            | Arm rest inner tub<br>Arm rest frame                                                                  | 0.28         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                                                                      |  |
| 03     | 10        | 03            | Arm rest cup holder                                                                                   | 0.13         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                                                                      |  |
| 03     | 10        | 03            | Arm rest cup holder retainer ring                                                                     | 0.09         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                                                                      |  |
| 03     | 10        | 03            | 60% Seat bottom frame                                                                                 | 4.28         | 2.24                           | 52%                                 | yes             | 4.28         | 2.24                           | Tech DOES apply: Change from welded steel to mag.                                                        |  |
| 03     | 10        | 03            | RH recliner cover #2                                                                                  | 0.14         | 0.01                           | 10%                                 | yes             | 0.24         | 0.02                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 03            | LH recliner cover #1                                                                                  | 0.08         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                                                                      |  |
| 03     | 10        | 04            | 40% Seat bottom frame                                                                                 | 2.98         | 1.55                           | 52%                                 | yes             | 2.98         | 1.55                           | Tech DOES apply: Change from welded steel to mag.                                                        |  |
| 03     | 10        | 04            | чоло зеал раск mame<br>RH Brkt close out #1                                                           | 0.23         | 0.02                           | 10%                                 | yes<br>po       | 3.16         | 1.76                           | Tech does NOT apply: Online from welded steel to mag.                                                    |  |
| 03     | 10        | 04            | RH Brkt close out #2                                                                                  | 0.14         | 0.01                           | 10%                                 | yes             | 0.14         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 04            | LH Brkt close out #1                                                                                  | 0.07         | 0.01                           | 10%                                 | no              | 0.07         |                                | Tech does NOT apply: Not on vehicle                                                                      |  |
| 03     | 10        | 05            | Frt center riser                                                                                      | 2.97         | 1.04                           | 35%<br>10%                          | yes<br>ves      | 2.97         | 1.04                           | Liech DOES apply: Change from welded steel to mag.                                                       |  |
| 03     | 10        | 05            | LH Pivot cover inner                                                                                  | 0.05         | 0.00                           | 10%                                 | yes             | 0.05         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 05            | RH Pivot cover outer                                                                                  | 0.06         | 0.01                           | 10%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 05            | RH Pivot cover inner                                                                                  | 0.05         | 0.00                           | 10%                                 | yes voo         | 0.05         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                               |  |
| 03     | 10        | 05            | Bottom tub innor                                                                                      | 0.05         | 0.00                           | 10%                                 | yes             | 0.05         | 0.00                           | Tech DOES apply: Use Polyone toaming agent                                                               |  |

# Table 3-27: System Scaling Analysis Body Group -B- System, Silverado 2500

Table 3.4–3 Continued Next Page

| Silverado 1500                                         |              |                                |                                     |                 | Select Vehicle |                                |                                                                |
|--------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|----------------|--------------------------------|----------------------------------------------------------------|
| Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-               | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                                          |
| 03 Body Group B System                                 | 247.02       | 34.02                          | 14%                                 |                 |                | 32.10                          |                                                                |
| 03 10 05 Frt wrap around close out                     | 0.51         | 0.05                           | 10%                                 | yes             | 0.51           | 0.05                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Rear wrap around close out                    | 0.65         | 0.06                           | 10%                                 | yes             | 0.65           | 0.06                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Cup holder                                    | 0.31         | 0.03                           | 10%                                 | yes             | 0.31           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Cup holder top                                | 0.12         | 0.01                           | 10%                                 | yes             | 0.12           | 0.01                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Frt center box comp                           | 3.77         | 1.66                           | 44%                                 | yes             | 3.77           | 1.66                           | Tech DOES apply: Change from welded steel to mag.              |
| 03 10 05 Frt center cover plt                          | 1.60         | 0.81                           | 50%                                 | yes             | 1.60           | 0.81                           | Tech DOES apply: Change from welded steel to mag.              |
| 03 10 05 Seat frame cover handle #1                    | 0.02         | 0.00                           | 10%                                 | yes             | 0.02           | 0.00                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Seat frame cover handle #2                    | 0.04         | 0.00                           | 10%                                 | yes             | 0.04           | 0.00                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Center tub                                    | 1.08         | 0.11                           | 10%                                 | yes             | 1.08           | 0.11                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03 10 05 Divider                                       | 0.06         | 0.01                           | 10%                                 | yes             | 0.06           | 0.01                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03 10 05 Cup noider                                    | 0.20         | 0.02                           | 10%                                 | yes             | 0.20           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Center tub top ring                           | 0.28         | 0.03                           | 10%                                 | yes             | 0.28           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 10 05 Center tub top lid inner                      | 0.05         | 0.07                           | 10%                                 | yes             | 0.00           | 0.07                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03 10 05 Center tub top lid build                      | 0.02         | 0.03                           | 10%                                 | yes             | 0.02           | 0.03                           | Tech DOES apply. Use Polyone loarning agent                    |
| 03 10 05 Center tub top lid handle #1                  | 0.02         | 0.00                           | 10%                                 | yes             | 0.02           | 0.00                           | Tech DOES apply. Use Polyone loarning agent                    |
| 02 12 01 Cross Car Roam                                | 11.24        | 6.00                           | 10.70                               | yes             | 11.24          | 5.44                           | Tech DOES apply. Use Polyone loanning agent                    |
| 03 12 01 Closs Cal Dealli                              | 0.10         | 0.01                           | 40 /0                               | yes             | 0.10           | 0.01                           | Tech DOES apply. Change from weided steel to mag.              |
| 03 12 01 Closs Cal Deall to 1 loor Dirkt Cover         | 1.60         | 0.01                           | 10%                                 | yes             | 1.60           | 0.01                           | Tech DOES apply: Use Polyone loaning agent                     |
| 03 12 02 IP Main Sub Wolding                           | 3.37         | 0.10                           | 10%                                 | yes             | 3.37           | 0.10                           | Tech DOES apply: Use Polyone loaning agent                     |
| 03 12 02 IP Main Molding support hox                   | 0.27         | 0.03                           | 10%                                 | Ves             | 0.27           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 02 Flec Breaker box cover                        | 0.10         | 0.03                           | 10%                                 | Ves             | 0.10           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 03 Knee Bolster cover                            | 0.59         | 0.06                           | 10%                                 | ves             | 0.59           | 0.06                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 03 Knee Bolster Beinforcement brkt               | 0.42         | 0.24                           | 57%                                 | Vec             | 0.42           | 0.24                           | Tech DOES apply: Change from steel to ABS plastic and use      |
|                                                        | 0.42         | 0.24                           | 5170                                | yes             | 0.42           | 0.24                           | Polyone foaming agent                                          |
| 03 12 03 Glove box brkt                                | 0.35         | 0.04                           | 10%                                 | yes             | 0.35           | 0.04                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 03 Glove box inner tub                           | 0.85         | 0.09                           | 10%                                 | yes             | 0.85           | 0.09                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 03 Glove box inner tub cover                     | 0.40         | 0.04                           | 10%                                 | yes             | 0.40           | 0.04                           | Tech DOES apply: Use Polyone foaming agent                     |
| U3 12 U3 Decorative glove box trim                     | 0.05         | 0.01                           | 10%                                 | yes             | 0.05           | 0.01                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03 12 03 Lwr Center IP Cover                           | 0.45         | 0.05                           | 10%                                 | yes             | 0.45           | 0.05                           | Tech DOES apply. Use Polyone loarning agent                    |
| 02 12 03 LW Center IP Cover ashtray door               | 0.09         | 0.01                           | 10%                                 | yes             | 0.09           | 0.01                           | Tech DOES apply. Use Polyone loarning agent                    |
| 03 12 03 Astriay                                       | 0.00         | 0.01                           | 10%                                 | yes             | 0.00           | 0.01                           | Tech DOES apply. Use Polyone loaming agent                     |
| 03 12 03 Upr glove box door inner                      | 0.34         | 0.03                           | 10%                                 | yes             | 0.34           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 03 Upr glove box door inner                      | 0.20         | 0.05                           | 10%                                 | yes             | 0.49           | 0.05                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 03 Top IP Cover                                  | 0.45         | 0.03                           | 10%                                 | ves             | 0.45           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 04 IP Driver side cover                          | 0.15         | 0.03                           | 10%                                 | Ves             | 0.15           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 04 IP Passenger side cover                       | 0.15         | 0.02                           | 10%                                 | Ves             | 0.15           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 04 Ton IP Decretive trim                         | 1.06         | 0.02                           | 10%                                 | Ves             | 1.06           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 05 IP Control Module 1 mounting brkt             | 0.13         | 0.01                           | 10%                                 | ves             | 0.13           | 0.01                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 05 IP Control Module 2 & 3 mounting brkt         | 0.15         | 0.02                           | 10%                                 | ves             | 0.15           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 12 05 IP Control Module 4 mounting brkt             | 0.09         | 0.01                           | 10%                                 | ves             | 0.09           | 0.01                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 20 03 Housing Assy, Passenger Side Airbag           | 1.09         | 0.62                           | 57%                                 | ves             | 1.09           | 0.62                           | Tech DOES apply: Change from steel to DSM Akulon Nvlon6        |
| 03 20 12 Drivers side curtain airbag mounting brkt     | 0.30         | 0.19                           | 62%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                            |
| 03 20 12 Passenger side curtain airbag mounting brkt   | 0.31         | 0.19                           | 62%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                            |
| 03 20 18 Front Cover, Steering Wheel Airbag Assy       | 0.14         | 0.02                           | 10%                                 | yes             | 0.14           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03 20 18 Bracket #1, Drivers side airbag               | 0.25         | 0.11                           | 44%                                 | yes             | 0.12           | 0.05                           | Tech DOES apply: Change from steel to plastic                  |
| 03 20 18 Ignition Canister, Steering Wheel Airbag Assy | 0.49         | 0.14                           | 28%                                 | yes             | 0.49           | 0.14                           | Tech DOES apply: Replace dual stage inflator with single stage |

## Table 3-27: System Scaling Analysis Body Group -B- System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Due to the large size of the Body Group -B- System it was not broken down by component, but by subsystem. Mass savings opportunities were identified for the following subsystems: Interior Trim and Ornamentation, Sealing, Seating, Instrument Panel and Console, and Occupant Restraining Device.

## Interior Trim and Ornamentation Subsystem

Shown in Image 3.4–2 are the Silverado 1500 and 2500 Interior Trim and Ornamentation Subsystems. Subsystem masses are 20.62 kg for the 1500 versus 16.51 kg for the 2500. The Lightweighting Technology used on the Interior Trim and Ornamentation Subsystem was to apply PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 interior trim mass reduction can be applied to the 2500. (Refer to Table 3-27).



Image 3.4–2: Interior Trim and Ornamentation Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Sealing Subsystem

Shown in Image 3.4–3 are the Silverado 1500 and 2500 Sealing Subsystems. Subsystem masses were 14.5 kg for the 1500 versus 15.1 kg for the 2500. The Lightweighting Technology used on the Sealing Subsystem was to change from EPDM to TPV material. Due to similarities in component design and material, full percentage of the Silverado 1500 sealing subsystem mass reduction can be applied to the 2500. (Refer to Table 3-27).



Image 3.4–3: Sealing Subsystem for the Silverado 1500 (Left) and the Silverado 2500 (Right) (Source: FEV, Inc.)

## Seating Subsystem

Shown in Image 3.4–4 are the Silverado 1500 and 2500 Seating Subsystems. Subsystem masses were 48.2 kg for the 1500 versus 46.1 kg for the 2500. The Lightweighting Technology used on the Seating Subsystem was to change the welded steel construction on the front seats to BASF plastic and glass fiber laired laminate. Also, by changing the welded steel construction for the 60/40 seat and the center console to cast magnesium. Due to similarities in component design and material, full percentage of the Silverado 1500 seating subsystem mass reduction can be applied to the 2500. (Refer to Table 3-27).



Image 3.4–4: Seating Subsystem for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Instrument Panel and Console Subsystem

Shown in Image 3.4–5 are the Silverado 1500 and 2500 series Instrument Panel and Console Subsystems. Subsystem masses were 23.19 kg for both the 1500 and the 2500. The Lightweighting Technology used on the Instrument Panel and Console Subsystem was to change the welded steel construction on the cross car beam to cast magnesium. Also, by changing the welded steel construction for the knee bolster reinforcement bracket to plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 instrument panel and console subsystem mass reduction can be applied to the 2500. (Refer to Table 3-27).



Image 3.4–5: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

## Occupant Restraining Device Subsystem

Shown in Image 3.4–6 are the Silverado 1500 and 2500 series Occupant Restraining Device Subsystems (they look the same). Subsystem masses were 2.59 kg for the 1500 versus 1.85 kg for the 2500. The Lightweighting Technology used on both Occupant Restraining Device Subsystems was to change the welded steel construction on the passenger air bag housing to DSM Akulon<sup>®</sup> Nylon 6. The steering wheel air bag dual stage inflator was changed as well, to a single stage inflator. Due to similarities in component design and material, full percentage of the Silverado 1500 occupant restraining device subsystem mass reduction can be applied to the 2500. (Refer to Table 3-27).



Image 3.4–6: Occupant Restraining Device Subsystem for the Silverado 1500 and Silverado 2500 (Source: FEV, Inc.)

## 3.4.2.3 System Comparison, Silverado 2500

Table 3-28 summarizes the Silverado 1500 and 2500 Lightweighting results. The majority of the components were visually the same among the two Body Group -B- Systems.

|        |                |                                     |                                                      | Net \                                            | /alue of                                          | f Mass                             | Reduct                                            | ion                                |                                                |                                       |
|--------|----------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|
| System | Description    | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" |
|        |                |                                     |                                                      |                                                  |                                                   |                                    |                                                   |                                    |                                                |                                       |
| 03     | Body Group B   |                                     |                                                      |                                                  |                                                   |                                    |                                                   |                                    |                                                |                                       |
| 03     | Silverado 1500 | 247.02                              | 34.02                                                | 0.00                                             | 34.02                                             | 13.77%                             | -\$127.22                                         | \$0.00                             | -\$127.22                                      | -\$3.74                               |
| 03     | Silverado 2500 | 220.48                              | 32.10                                                | 0.00                                             | 32.10                                             | 14.56%                             | -\$125.41                                         | \$0.00                             | -\$125.41                                      | -\$3.91                               |

Table 3-28: Body Group -B- System Comparison, Silverado 1500 and 2500

## 3.4.3 Mercedes Sprinter 311 CDi

Table 3-29 summarizes the mass and cost impact of Silverado 1500 Lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total Body Group -B- System mass savings were 20.02 kg at a cost increase of \$53.33, or \$2.66 per kg.

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                                                                                                                                                                                                                                      |                                                      | Ne                                               | et Value                                          | of Mas                                                      | ss Re                                                    | ductio                                                        | n                                                          |                                                    |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Sub-Subsystem<br>System                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | Description                                                                                                                                                                                                                          | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub>           | Cost<br>Impact<br>Comp<br>"\$" (2)                       | Cost<br>Impact<br>Total<br>"\$" (2)                           | Cost/<br>Kilogram<br>Total<br>"\$/kg"                      | Vehicle<br>Mass<br>Reduction<br>Total<br>"%"       |  |  |  |
| 03<br>03<br>03<br>03<br>03<br>03<br>03<br>03 | 00<br>05<br>06<br>07<br>10<br>12<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00<br>00<br>00<br>00<br>00<br>00 | Body System "B"<br>Interior Trim and Ornamentation Subsystem<br>Sound and Heat Control Subsystem (Body)<br>Sealing Subsystem<br>Seating Subsystem<br>Instrument Panel and Console Subsystem<br>Occupant Restraining Device Subsystem | 2.16<br>0.00<br>1.80<br>7.08<br>6.67<br>2.30         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00     | 2.16<br>0.00<br>1.80<br>7.08<br>6.67<br>2.30      | \$6.23<br>\$0.00<br>\$12.31<br>-\$37.27<br>-\$36.26<br>1.66 | \$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00 | \$6.23<br>\$0.00<br>\$12.31<br>-\$37.27<br>-\$36.26<br>\$1.66 | \$2.88<br>\$0.00<br>\$6.83<br>-\$5.26<br>-\$5.43<br>\$0.00 | 0.10%<br>0.00%<br>0.08%<br>0.33%<br>0.31%<br>0.11% |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                                                                                                                                                                                                                                      | 20.02                                                | 0.00                                             | 20.02                                             | -53.33                                                      | 0.00                                                     | -\$53.33                                                      | -\$2.66                                                    | 0.94%                                              |  |  |  |
| Mas<br>Mas                                   | 20.02       0.00       20.02       -53.33       0.00       -\$53.33       -\$2.66       0.94%         Mass Savings, Select Vehicle, New Technology "kg"       20.02       (Increase)       (Increase)       0.00       -\$53.33       -\$2.66       0.94%         Mass Savings, Silverado 1500, New Technology "kg"       33.92       33.92       33.92       33.92       33.92         Mass Savings Select Vehicle/Mass Savings 1500       59.0%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0%       -11.7%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0%       59.0%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0%       -52.6%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0%       -59.0%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0%       0.0%       9.0%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0%       0.0%       0.0%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0%       0.0%       0.0%       9.0%       9.0%       9.0%       9.0%         0.0%       0.0% |                                  |                                                                                                                                                                                                                                      |                                                      |                                                  |                                                   |                                                             |                                                          |                                                               |                                                            |                                                    |  |  |  |
| 31                                           | SMS not included - has no significant impact on perecent contributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                                                                                                                                                                                                                      |                                                      |                                                  |                                                   |                                                             |                                                          |                                                               |                                                            |                                                    |  |  |  |

Table 3-29: Mass-Reduction and Cost Impact for Body Group -B- System, Mercedes Sprinter

## 3.4.3.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Body Group -B- System components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed below.

| B         B         Component/Asamply         Data         None         None         None         None           05         Def Corque 8 system         24.70         34.02         14%         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |           |               | Silverado 1500                                                                       |              |                                | Select Vehicle                      |                 |              |                                | Select Vehicle                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|---------------|--------------------------------------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------|--|--|--|
| Box B = B + Memory and an additionant over a sequence of the sequence o | System | Subsystem | Sub-Subsystem | Component/Assembly                                                                   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                      |  |  |  |
| B) B) B) D) And B) D And B) D And B) D         In the box much and box much communication of the box m          | 03     | Bo        | ody           | Group B System                                                                       | 247.02       | 34.02                          | 14%                                 |                 |              |                                |                                            |  |  |  |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03     | 05        | 05            | LH drivers door window switch cover                                                  | 0.10         | 0.010                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 01         01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03     | 05        | 05            | LH drivers Door arm rest attachment cover                                            | 0.03         | 0.003                          | 11%                                 | no              |              |                                | Fech does NOT apply: Not on vehicle        |  |  |  |
| 0         0         0         0         0         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03     | 05        | 05            | LH drivers Door Pull handle attachment cover                                         | 0.01         | 0.001                          | 17%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | LH drivers Door vertical Pull handle                                                 | 0.13         | 0.013                          | 10%                                 | yes             | 0.09         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | RH passenger door window switch cover                                                | 0.06         | 0.006                          | 10%                                 | no<br>no        |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| Bits         Bits         Bits         Column         Tech. Bots apply lab Crawthole           Bits         Bits         Service         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | RH passenger Door arm rest attachment cover                                          | 0.03         | 0.003                          | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 61         61         61         61         64         7         Tech DDCS sppy. Use Polyace harming agest           61         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65         65 <td>03</td> <td>05</td> <td>05</td> <td>RH passenger Door Pull handle attachment cover</td> <td>0.01</td> <td>0.001</td> <td>17%</td> <td>no</td> <td></td> <td></td> <td>Tech does NOT apply: Not on vehicle</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03     | 05        | 05            | RH passenger Door Pull handle attachment cover                                       | 0.01         | 0.001                          | 17%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 05         05         05         07         07         0.0         10         0.0         10         0.0         10         0.0         10         0.0         10         0.0         10         0.0         10         0.0         10         0.0         10         0.0         10         10         0.0         10         10         0.0         10         10         10         0.0         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03     | 05        | 05            | RH passenger Door vertical Pull handle                                               | 0.13         | 0.013                          | 10%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>03</td> <td>05</td> <td>05</td> <td>RH passenger Door corner cover</td> <td>0.06</td> <td>0.006</td> <td>11%</td> <td>no</td> <td>2.20</td> <td>0.22</td> <td>Tech does NOT apply: Not on vehicle</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03     | 05        | 05            | RH passenger Door corner cover                                                       | 0.06         | 0.006                          | 11%                                 | no              | 2.20         | 0.22                           | Tech does NOT apply: Not on vehicle        |  |  |  |
| 90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | RH passenger Door lwr main trim man pocket                                           | 2.09         | 0.209                          | 10%                                 | yes<br>ves      | 0.67         | 0.33                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 01         01         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | RH passenger Door Iwr main trim close out                                            | 0.05         | 0.005                          | 10%                                 | ves             | 0.59         | 0.06                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | RH passenger Door lwr main trim inner support brkt#1                                 | 0.28         | 0.028                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         03         04         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | RH passenger Door lwr main trim inner support brkt#2                                 | 0.06         | 0.005                          | 9%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000 <td>03</td> <td>05</td> <td>05</td> <td>RH passenger Door lwr main trim inner support brkt#5</td> <td>0.03</td> <td>0.003</td> <td>11%</td> <td>no</td> <td></td> <td></td> <td>Tech does NOT apply: Not on vehicle</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03     | 05        | 05            | RH passenger Door lwr main trim inner support brkt#5                                 | 0.03         | 0.003                          | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010         010 <td>03</td> <td>05</td> <td>05</td> <td>RH passenger Door ivr main trim inner support brkt#6</td> <td>0.01</td> <td>0.001</td> <td>9%</td> <td>no<br/>Vec</td> <td>2.54</td> <td>0.25</td> <td>Tech DOES apply: Not on venicle</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03     | 05        | 05            | RH passenger Door ivr main trim inner support brkt#6                                 | 0.01         | 0.001                          | 9%                                  | no<br>Vec       | 2.54         | 0.25                           | Tech DOES apply: Not on venicle            |  |  |  |
| 03       05       04       0.69       0.69       196       yes       0.67       0.77       Tch. DOC 5 app/: Use Polyone famma gapent         03       05       05       0.69       0.75       0.75       Tch. Doc 5 app/: Use Polyone famma gapent         03       05       05       0.75       0.75       0.75       0.75       Tch. Doc 5 app/: Use Polyone famma gapent         03       05       05       0.75       0.75       Tch. Doc 5 app/: Use Polyone famma gapent         03       05       05       0.75       0.75       0.75       Tch. Doc 5 app/: Use Polyone famma gapent         03       05       05       0.75       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76       0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03     | 05        | 05            | LH passenger Door lwr main trim                                                      | 2.09         | 0.209                          | 10%                                 | ves             | 3.30         | 0.33                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03         03         05         1 passange Dot main tim mer sugad bild?         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03     | 05        | 05            | LH passenger Door lwr main trim map pocket                                           | 0.50         | 0.050                          | 10%                                 | yes             | 0.67         | 0.07                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03         06         b1 passenger Doer km mat km mer support brieff         0.68         0.028         04%         no         Tech does NOT apply. Mot on whicle           03         06         b1 passenger Doer km mat km mer support brieff         0.03         0.03         0.03         11%         no         Tech does NOT apply. Mot on whicle           03         06         b1 passenger Doer km mat km mer support brieff         0.03         11%         no         Tech does NOT apply. Mot on whicle           03         06         b1 passenger Doer km mat km         0.03         11%         no         Tech does NOT apply. Mot on whicle           03         06         b1 passenger Doer km hand         0.03         10%         no         Tech does NOT apply. Mot on whicle           03         06         06         RH and bit passenger Doer km hand         0.03         10%         no         Tech does NOT apply. Mot on whicle           03         06         RH and bit passenger Doer km hand         0.04         0.001         10%         no         Tech does NOT apply. Mot on whicle           03         06         RH and bit passenger Doer km mat km mer support bit passenger Doer k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03     | 05        | 05            | LH passenger Door lwr main trim close out                                            | 0.05         | 0.005                          | 10%                                 | yes             | 0.59         | 0.06                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | LH passenger Door lwr main trim inner support brkt#1                                 | 0.28         | 0.028                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 0.0         0.0         0.001         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10% </td <td>03</td> <td>05</td> <td>05</td> <td>LH passenger Door lwr main trim inner support brkt#2</td> <td>0.06</td> <td>0.005</td> <td>9%</td> <td>no</td> <td></td> <td></td> <td>Tech does NOT apply: Not on vehicle</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03     | 05        | 05            | LH passenger Door lwr main trim inner support brkt#2                                 | 0.06         | 0.005                          | 9%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 013         05         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07         07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 05            | LA passenger Door Iwr main trim inner support brkt#6                                 | 0.03         | 0.003                          | 10%                                 | no<br>no        |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 02       65       Fr. dorn harmess feed through       0.22       0.02       Tech DOE 3 ppy: Use Polyone harming agent         03       05       66       H.Raz Door ammet attachment cover       0.02       10%       no       Tech does NOT apply: Not on whicle         03       05       66       H.Raz Door Jull handle dattachment cover       0.02       10%       no       Tech does NOT apply: Not on whicle         03       05       66       H.Raz door amm set       0.02       10%       no       Tech does NOT apply: Not on whicle         03       05       66       H.Raz door amm set       0.02       10%       no       Tech does NOT apply: Not on whicle         03       05       66       H.Raz door amm set       0.02       10%       no       Tech does NOT apply: Not on whicle         03       05       66       H.Raz door lamm met attachment cover       0.01       0.001       10%       no       Tech does NOT apply: Not on whicle         03       65       66       H.Raz door lamm matim map pocket       0.23       10%       no       Tech does NOT apply: Not on whicle         03       65       66       H.Raz door lamm matim map pocket       0.23       10%       no       Tech does NOT apply: Not on whicle         03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03     | 05        | 05            | LH passenger Door wir main trim                                                      | 0.76         | 0.076                          | 10%                                 | ves             | 2.54         | 0.25                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 30         60         60         70         0.000         10%         no         Inch dees NOT apply. Not on whicle           30         60         60         70         0.000         10%         yet         0.20         10%         Not on whicle           30         60         60         70         0.001         10%         yet         0.20         10%         Not on whicle           30         60         60         70         70%         Not         Inch dees NOT apply. Not on whicle           30         60         60         70%         Not         Inch dees NOT apply. Not on whicle           30         60         60         70%         Not         Inch dees NOT apply. Not on whicle           30         60         60         70%         Not         Inch dees NOT apply. Not on whicle           30         60         60         70%         Not         Inch dees NOT apply. Not on whicle           30         60         60         70%         Not         Inch dees NOT apply. Not on whicle           30         60         60         70%         Not         Inch dees NOT apply. Not on whicle           30         60         60         70%         Not <td< td=""><td>03</td><td>05</td><td>05</td><td>Frt dorr harness feed through</td><td>0.23</td><td>0.023</td><td>10%</td><td>yes</td><td>0.05</td><td>0.00</td><td>Tech DOES apply: Use Polyone foaming agent</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03     | 05        | 05            | Frt dorr harness feed through                                                        | 0.23         | 0.023                          | 10%                                 | yes             | 0.05         | 0.00                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03         05         06         PH Arez Door Pul handle attachment cover         0.02         19%         no         Tech DOS Syny, Use Polyone Raming agent           03         05         06         PH Area door am rest attachment cover         0.01         10%         no         Tech DOS Syny, Use Polyone Raming agent           03         05         06         PH Area door am rest attachment cover         0.02         10%         no         Tech does NOT apply. Not on whicle           03         05         06         H Area Door am rest attachment cover         0.01         0.021         10%         no         Tech does NOT apply. Not on whicle           05         06         H Area door Arm rest attachment cover         0.01         0.032         10%         no         Tech does NOT apply. Not on whicle           05         06         H Area door Arm rest attachment cover         0.01         10%         no         Tech does NOT apply. Not on whicle           05         06         H Area door Arm rest attachment cover         0.01         10%         no         Tech does NOT apply. Not on whicle           05         06         H Area door Arm rest attachment cover         0.021         10%         no         Tech does NOT apply. Not on whicle           05         06         H Area door                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03     | 05        | 06            | RH Rear door window switch cover                                                     | 0.08         | 0.008                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 0.0         0.0         0.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03     | 05        | 06            | RH Rear Door arm rest attachment cover                                               | 0.02         | 0.002                          | 10%                                 | no              | 0.00         | 0.00                           | Tech does NOT apply: Not on vehicle        |  |  |  |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03     | 05        | 00            | RH Rear Door Pull handle attachment cover                                            | 0.01         | 0.001                          | 10%                                 | yes             | 0.22         | 0.02                           | Tech DOES apply: Use Polyone toaming agent |  |  |  |
| 02         05         06         [H Rear Door ann rest attachment cover         0.02         0.022         10%         no         Tech does NOT apply. Not on whicle           03         05         06         [H Rear Door ann intim         0.01         10%         no         Tech does NOT apply. Not on whicle           03         05         06         [H Rear Door ann intim         0.01         10%         no         Tech does NOT apply. Not on whicle           03         05         06         [H rear door intim main tim mounting bit #1         0.02         10%         no         Tech does NOT apply. Not on whicle           03         05         06         [H rear door intim mounting bit #2         0.01         0.01         10%         no         Tech does NOT apply. Not on whicle           03         05         06         [H rear door intim mounting bit #2         0.01         0.021         10%         no         Tech does NOT apply. Not on whicle          03         05         [06]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         [16]         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03     | 05        | 06            | LH Rear door window switch cover                                                     | 0.08         | 0.027                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 010         05         (b) (H Raer Door Public handle attachment cover)         0.01         0.01         10%         no         Tech does NOT apply: Not on vehicle           03         05         06         (H rear door mr main tim map pockt         0.227         10%         no         Tech DOES apply: Use Polyone foarming agent           03         05         06         (H rear door Wr main tim map pockt         0.23         10%         no         Tech does NOT apply: Not on vehicle           03         05         06         (H rear door Wr main tim mounting bit #1         0.02         0.022         10%         no         Tech does NOT apply: Not on vehicle           03         05         06         (H rear door Wr main tim mounting bit #1         0.02         0.023         10%         no         Tech does NOT apply: Not on vehicle           03         06         (H rear door Wr main tim mounting bit #1         0.02         0.023         10%         no         Tech does NOT apply: Not on vehicle           03         06         (H rear door Wr main tim mounting bit #1         0.02         0.022         10%         no         Tech does NOT apply: Not on vehicle           03         06         (H rear door Wr main tim mounting bit #1         0.020         10%         no         Tech does NOT apply: Not on ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 03     | 05        | 06            | LH Rear Door arm rest attachment cover                                               | 0.02         | 0.002                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         06         [H rear door Arm main timin         0.27         0.027         10%         no         Tech does NOT apply. Not on vehicle           03         05         06         [R rear door Arm main timin mounting bit #1         0.02         10%         no         Tech does NOT apply. Not on vehicle           03         05         06         [R rear door Arm main timin mounting bit #2         0.01         0.002         10%         no         Tech does NOT apply. Not on vehicle           03         05         06         [R rear door Arm main timin mounting bit #2         0.01         0.011         0.061         10%         no         Tech does NOT apply. Not on vehicle           03         05         06         [H rear door V rm anin timin map pocket         0.23         10%         no         Tech does NOT apply. Not on vehicle           03         06         [L H rear door V rm anin timin mounting bit #2         0.011         0.0%         no         Tech does NOT apply. Not on vehicle           03         06         [L H rear door V rm anin timin mounting bit #2         0.011         0.0%         no         Tech does NOT apply. Not on vehicle           03         06         [L H rear door V rm ani timin mounting bit #2         0.012         0.02         10%         yes <td< td=""><td>03</td><td>05</td><td>06</td><td>LH Rear Door Pull handle attachment cover</td><td>0.01</td><td>0.001</td><td>10%</td><td>no</td><td></td><td></td><td>Tech does NOT apply: Not on vehicle</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03     | 05        | 06            | LH Rear Door Pull handle attachment cover                                            | 0.01         | 0.001                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 06            | LH rear door arm rest                                                                | 0.27         | 0.027                          | 10%                                 | no              | 0.00         | 0.04                           | Tech does NOT apply: Not on vehicle        |  |  |  |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03     | 05        | 06            | RH rear door lwr main trim<br>PH rear door lwr main trim man nockot                  | 1.53         | 0.153                          | 10%                                 | yes             | 2.36         | 0.24                           | Tech DOES apply: Use Polyone toaming agent |  |  |  |
| 30         65         RH ray door µr main trim mounting bkt #2         0.01         1096         No         Tech does NOT apply. Not on whicle           30         65         RH ray door µr main trim map packt         0.23         0.031         1096         No         Tech does NOT apply. Not on whicle           30         65         LH ray door µr main trim map packt         0.23         0.023         1096         no         Tech does NOT apply. Not on whicle           30         65         LH ray door µr main trim mounting bkt #1         0.02         1096         no         Tech does NOT apply. Not on whicle           30         65         LH ray door µr main trim mounting bkt #1         0.62         0.002         10%         no         Tech does NOT apply. Not on whicle           30         65         LH ray door µr main trim         0.23         0.022         10%         no         Tech does NOT apply. Not on whicle           30         65         OT Pask door µr main trim         0.24         0.022         10%         yes         0.33         0.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.33         10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03     | 05        | 06            | RH rear door lwr main trim mounting becket                                           | 0.02         | 0.023                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 30         050         60         Ref are door upr main trim         0.58         0.058         0.07         Tech DOES apply. Use Polyone foaming agent           30         50         60         Hare door hur main trim mounting bit #1         0.023         10%         no         Tech does NOT apply. Not on whicle           30         50         60         Hare door hur main trim mounting bit #1         0.023         10%         no         Tech does NOT apply. Not on whicle           30         50         60         Hare door hur main trim         0.68         0.088         10%         no         Tech does NOT apply. Not on whicle           30         50         60         Hare door upr main trim         0.68         0.082         10%         no         Tech does NOT apply. Not on whicle           30         50         Fort Hare door upr main trim         0.22         0.022         10%         yes         0.38         0.04         Tech does NOT apply. Not on whicle           30         50         Fort Inter Ador upr main trim         0.22         0.022         10%         yes         0.38         0.04         Tech does NOT apply. Not on whicle           30         50         Fort Inter Ador upr main trim         0.18         0.018         10%         no         Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03     | 05        | 06            | RH rear door lwr main trim mounting bkt #2                                           | 0.01         | 0.001                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         06         LH rear door km main tim map pockt         0.23         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.035         0.017         Tech does NOT apply. Not on vehicle           03         05         07         From Driver kick plate mount         0.18         0.018         10%         yes         0.33         0.03         Tech does NOT apply. Not on vehicle           03         05         07         From Driver kick plate mount         0.18         0.018         10%         yes         1.23         0.12         Tech d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03     | 05        | 06            | RH rear door upr main trim                                                           | 0.58         | 0.058                          | 10%                                 | yes             | 0.65         | 0.07                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03 06 jbb LH rear door km main trim mourting bkt #1         0.23         0.023         10%         no         Tech does NOT apply. Not on vehicle           03 06 jbb LH rear door km main trim mourting bkt #2         0.01         0.001         10%         no         Tech does NOT apply. Not on vehicle           03 05 jbb LH rear door km main trim mourting bkt #2         0.01         0.001         10%         no         Tech does NOT apply. Not on vehicle           03 05 jbb LH rear door km main trim         0.58         0.058         10%         no         Tech does NOT apply. Not on vehicle           03 05 jbb LH rear door km main trim         0.23         0.023         10%         yes         0.36         0.04         Tech does NOT apply. Not on vehicle           03 05 jbb TForn Diver kick plate nount         0.18         0.18         10%         no         Tech does NOT apply. Not on vehicle           03 05 jbb TForn Diver kick plate nount         0.18         0.014         10%         no         Tech does NOT apply. Not on vehicle           03 05 jbb TForn Diver kick plate nount         0.12         0.102         10%         no         Tech does NOT apply. Not on vehicle           03 05 jbb TForn Passenger kick plate nount         0.18         0.048         10%         no         Tech does NOT apply. Not on vehicle           03 05 jbb TForn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03     | 05        | 06            | LH rear door lwr main trim                                                           | 1.53         | 0.153                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 0000         00000         00000         00000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         100000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         10000000         10000000         10000000000         100000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 06            | LH rear door lwr main trim map pocket                                                | 0.23         | 0.023                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 01         05         05         0.1         05         05         0.1         05         05         0.1         05         05         0.1         05         05         0.1         05         0.1         05         05         0.1         05         05         0.1         05         0.1         05         0.1         05         0.1         05         0.1         05         0.1         05         0.1         05         0.1         05         0.1         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05         05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03     | 05        | 06            | LH rear door lwr main trim mounting bkt #2                                           | 0.02         | 0.002                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05/         Diver Lwr A-Pillar         0.23         0.23         0.24         Tech DOES apply: Use Polyone foaming agent           03         05         D' Passenger Lwr A-Pillar         0.22         10%         yes         0.33         0.03         Tech DOES apply: Use Polyone foaming agent           03         05         D' Front Diver kick plate         0.20         0.020         10%         no         Tech DOES apply: Use Polyone foaming agent           03         05         D' Rear Diver kick plate         0.14         0.014         10%         no         Tech does NOT apply. Not on vehicle           03         05         D' Rear Diver kick plate         0.14         0.014         10%         no         Tech does NOT apply. Not on vehicle           03         05         D' Rear Diver kick plate         0.21         0.020         10%         no         Tech does NOT apply. Not on vehicle           03         05         D' I Front Passanger kick plate         0.14         0.018         no         Tech does NOT apply. Not on vehicle           03         05         D' I Front Passanger kick plate mount         0.18         0.018         no         Tech does NOT apply. Not on vehicle           03         05         D' Rear Passanger kick plate mount         0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03     | 05        | 06            | LH rear door upr main trim                                                           | 0.58         | 0.058                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         Passenger Luw A-Pillar         0.22         0.022         10%         yes         0.33         Tech DOES apply. Use Polyone foraming agent           03         05         07         Front Driver kick plate         0.18         0.018         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Driver kick plate         0.14         0.014         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Driver kick plate mount         0.12         0.012         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Passenger kick plate         0.11         0.020         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Passenger kick plate mount         0.18         0.018         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03     | 05        | 07            | Driver Lwr A-Pillar                                                                  | 0.23         | 0.023                          | 10%                                 | yes             | 0.36         | 0.04                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03         05         05         07         Print Diver kick plate         0.20         0.20         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Diver kick plate         0.14         0.018         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Diver kick plate         0.12         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Diver kick plate mount         0.63         0.63         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Diver kick plate         0.21         0.020         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Passenger kick plate         0.14         0.018         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Frait Passenger kick plate mount         0.14         0.014         10%         no         Tech does                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03     | 05        | 07            | Passenger Lwr A-Pillar                                                               | 0.22         | 0.022                          | 10%                                 | yes             | 0.33         | 0.03                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03         03         03         04         01         04         100         Tech does NOT apply. Not on vehicle           03         05         07         Rear Driver kick plate mount         0.12         0.014         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Driver kick plate mount         0.12         0.014         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Passenger kick plate         0.11         0.018         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Front Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply. Not on vehicle           03         05         07         C-Pillar cover H upr         0.34         0.033         10%         no         Tech does NOT apply. Not on vehicl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 07            | Front Driver kick plate                                                              | 0.20         | 0.020                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         Rear Driver kick plate mount         0.12         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         IH B-Pillar Lwr         0.63         0.063         10%         yes         1.22         0.12         Tech does NOT apply: Not on vehicle           03         05         07         Front Passenger kick plate mount         0.18         0.018         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Front Passenger kick plate mount         0.18         0.014         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.63         0.063         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover RH upr         0.53         0.63<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 07            | Rear Driver kick plate                                                               | 0.10         | 0.014                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         I/H B-Pillar Lwr         0.63         0.063         10%         yes         1.22         0.12         Tech DOES apply: Use Polyone foaming agent           03         05         07         Front Passenger kick plate         0.21         0.020         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Frant Passenger kick plate mount         0.14         0.014         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.63         0.063         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         CPillar cover RH upr         0.63         0.063         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         CPillar cover RH upr         0.63         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         CPillar cover HL upr         0.34         0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03     | 05        | 07            | Rear Driver kick plate mount                                                         | 0.12         | 0.012                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         Front Passenger kick plate mount         0.18         0.20         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Front Passenger kick plate mount         0.18         0.018         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger kick plate mount         0.13         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Feld P-Brillar Low         0.53         0.053         10%         no         Tech DOES apply: Not on vehicle           03         05         07         C-Pillar cover RH Lwr         0.53         0.053         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.0020         0.0002         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover H Lwr         0.52         0.52         10%         no         Tech doe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03     | 05        | 07            | LH B-Pillar Lwr                                                                      | 0.63         | 0.063                          | 10%                                 | yes             | 1.22         | 0.12                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| OS         OF         Print Passenger Rick plate mount         0.18         0.018         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger Rick plate mount         0.13         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Rear Passenger Rick plate mount         0.13         0.012         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         CP-Illar cover RH upr         0.34         0.034         10%         yes         1.23         0.12         Tech does NOT apply: Not on vehicle           03         05         07         CP-Illar cover RH upr         0.34         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         CP-Illar cover RH upr         0.34         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         CP-Illar cover HH upr         0.34         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         CP-Illar cover HH upr         0.34         0.034         10%         no<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03     | 05        | 07            | Front Passenger kick plate                                                           | 0.21         | 0.020                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03         03<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 07            | Front Passenger kick plate mount                                                     | 0.18         | 0.018                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         RH B-Pillar Lwr         0.63         0.063         10%         yes         1.23         0.12         Tech DOE S apply: Use Polyone foaming agent           03         05         07         C-Pillar cover RH upr         0.34         0.083         10%         no         Tech DOE S apply: Use Polyone foaming agent           03         05         07         C-Pillar cover RH Lwr         0.53         0.053         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH Lwr         0.34         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH Lwr         0.52         0.52         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH Lwr         0.52         0.52         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.00         0.000         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.035         0.04         10%         yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03     | 05        | 07            | Rear Passenger kick plate mount                                                      | 0.14         | 0.014                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         C-Pillar cover RH upr         0.34         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover RH Lwr         0.53         0.063         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH Lwr         0.63         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH upr         0.34         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH upr         0.34         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH Lwr         0.52         0.052         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH Lwr         0.56         0.056         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH Lwr         0.56         0.056         10%         no         Tech does NOT apply: Not on vehicle           03         05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03     | 05        | 07            | RH B-Pillar Lwr                                                                      | 0.63         | 0.063                          | 10%                                 | yes             | 1.23         | 0.12                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| 03         05         07         C-Pillar cover RH Lwr         0.63         0.063         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.002         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.034         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH upr         0.34         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.00         0.000         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.00         0.000         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar coser tH         Upr         Applic Mot on vehicle         0.04         10%         no         Tech does NOT apply: Not on vehicle           03         05         08         Drivers Upr A-Pillar cover         0.01         0.04         10%         no         Tech does NOT apply: Not on vehicle <td>03</td> <td>05</td> <td>07</td> <td>C-Pillar cover RH upr</td> <td>0.34</td> <td>0.034</td> <td>10%</td> <td>no</td> <td></td> <td></td> <td>Tech does NOT apply: Not on vehicle</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03     | 05        | 07            | C-Pillar cover RH upr                                                                | 0.34         | 0.034                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         Small Cover piece         0.002/0         0.0002         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH upr         0.34         0.034         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         C-Pillar cover LH upr         0.52         0.052         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.00         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Small Cover piece         0.00         10%         no         Tech does NOT apply: Not on vehicle           03         05         07         Chilar to C-Pillar to C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03     | 05        | 07            | C-Pillar cover RH Lwr                                                                | 0.53         | 0.053                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| OS 05 07         C+rillar Cover         0.3-4         0.0-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34         10-34 <td>03</td> <td>05</td> <td>07</td> <td>Small Cover piece</td> <td>0.0020</td> <td>0.0002</td> <td>10%</td> <td>no</td> <td></td> <td></td> <td>Tech does NOT apply: Not on vehicle</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03     | 05        | 07            | Small Cover piece                                                                    | 0.0020       | 0.0002                         | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| Operation         Operation <thoperation< th="">         Operation         <thoperation< th="">         Operation         Operation</thoperation<></thoperation<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03     | 05        | 07            | C-Pillar cover LH Lwr                                                                | 0.54         | 0.034                          | 10%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         07         C-Pillar to C-Pillar cross trim         0.56         0.056         10%         no         Tech does NOT apply: Not on vehicle           03         05         08         Drivers Upr A-Pillar cover         0.35         0.04         10%         yes         0.38         0.04         Tech does NOT apply: Not on vehicle           03         05         08         Drivers Upr A-Pillar cover         0.00         0.00         0%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver LH Upper B-Pillar Cover         0.29         0.03         10%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver LH Upper B-Pillar Cover         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver LH Upper B-Pillar Cover         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver LH Upper B-Pillar Cover         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver restrating upr B-Pillar Dit cover         0.01         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03     | 05        | 07            | Small Cover piece                                                                    | 0.00         | 0.000                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         06         Drivers upr A-Pillar cover         0.35         0.04         10%         yes         0.38         0.44         Tech DOES apply: Use Polyone foaming agent           03         05         06         Drivers upr A-Pillar mounting screw cover         0.00         0.00         0%         no         Tech does NOT apply: Not on vehicle           03         05         06         Driver LH Upper B-Pillar Cover slide         0.06         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver LH Upper B-Pillar Cover slide         0.06         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver LH Upper B-Pillar Cover slide         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver restraint up B-pillar bolt cover         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Driver restraint up B-pillar cover         0.23         0.03         10%         yes         0.38         0.04         Tech does NOT apply: Not on vehicle           03         05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03     | 05        | 07            | C-Pillar to C-Pillar cross trim                                                      | 0.56         | 0.056                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| US UD US [Univers up A-pillar mounting screw cover         0.00         0.00         0%         no         Tech does NOT apply: Not on vehicle           03 05 08 [Driver LH Upper B-Pillar Cover         0.29         0.03         10%         no         Tech does NOT apply: Not on vehicle           03 05 08 [Driver LH Upper B-Pillar Cover slide         0.06         0.01         11%         no         Tech does NOT apply: Not on vehicle           03 05 08 [Driver LH Upper B-Pillar Cover slide         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03 05 08 [Driver LS pillar mounting screw cover         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03 05 08 [Driver S Billar mounting screw cover         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03 05 08 [Passenger Upr A-Pillar Cover         0.23         0.03         10%         yes         0.38         0.04         Tech does NOT apply: Not on vehicle           03 05 08 [Passenger LH Upper B-Pillar Cover         0.23         0.03         10%         no         Tech does NOT apply: Not on vehicle           03 05 08 [Passenger LH Upper B-Pillar Cover slide         0.06         0.01         11%         no         Tech does NOT apply: Not on vehicle           03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 03     | 05        | 08            | Drivers Upr A-Pillar cover                                                           | 0.35         | 0.04                           | 10%                                 | yes             | 0.38         | 0.04                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| Op top [Driver L4 Upper B-Pillar Cover         Outsol         Outsol <th< td=""><td>03</td><td>05</td><td>08</td><td>Drivers upr A-pillar mounting screw cover</td><td>0.00</td><td>0.00</td><td>0%</td><td>no</td><td></td><td></td><td>Tech does NOT apply: Not on vehicle</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03     | 05        | 08            | Drivers upr A-pillar mounting screw cover                                            | 0.00         | 0.00                           | 0%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| Operation         Operation <t< td=""><td>03</td><td>05</td><td>00</td><td>Driver LH Upper B-Pillar Cover slide</td><td>0.29</td><td>0.03</td><td>11%</td><td>10</td><td></td><td></td><td>Tech does NOT apply: Not on vehicle</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03     | 05        | 00            | Driver LH Upper B-Pillar Cover slide                                                 | 0.29         | 0.03                           | 11%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         08         Drivers B pillar mounting screw cover         0.01         0.00         17%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger Upr A-Pillar cover         0.33         0.03         10%         yes         0.38         0.04         Tech does NOT apply: Not on vehicle           03         05         08         Passenger Upr A-Pillar cover         0.28         0.03         10%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger LH Upper B-Pillar Cover slide         0.06         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger restraint upr B-pillar bolt cover         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger restraint upr B-pillar bolt cover         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger B upr applinar mounting screw         0.00         7%         no         Tech does NOT apply: Not on vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 03     | 05        | 08            | Driver restraint upr B-pillar bolt cover                                             | 0.01         | 0.00                           | 7%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         08         Passenger Upr A-Pillar cover         0.33         0.03         10%         yes         0.38         0.04         Tech DOES apply: Use Polyone foaming agent           03         05         08         Passenger RH Upper B-Pillar Cover         0.28         0.03         10%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger LH Upper B-Pillar Cover slide         0.06         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger restraint upr B-pillar bolt cover         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger restraint upr B-pillar bolt cover         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         06         Passenger B pillar mounting screw         0.00         0.00         0%         no         Tech does NOT apply: Not on vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03     | 05        | 08            | Drivers B pillar mounting screw cover                                                | 0.01         | 0.00                           | 17%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 03         05         08         Passenger RH Upper B-Pillar Cover         0.28         0.03         10%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger LH Upper B-Pillar Cover slide         0.06         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger restraint upr B-pillar bolt cover         0.01         11%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger Billar mounting screw         0.00         7%         no         Tech does NOT apply: Not on vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 03     | 05        | 08            | Passenger Upr A-Pillar cover                                                         | 0.33         | 0.03                           | 10%                                 | yes             | 0.38         | 0.04                           | Tech DOES apply: Use Polyone foaming agent |  |  |  |
| Uo uo prassenger Ln Opper D-minar Cover situe         U.U         11%         no         lefch does NOT apply: Not on vehicle           03         05         08         Passenger restraint upr B-pillar bolt cover         0.01         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger En Upper D-minar Cover situe         0.00         7%         no         Tech does NOT apply: Not on vehicle           03         05         08         Passenger En Upper D-minar Cover situe         0.00         0.00         7%         no         Tech does NOT apply: Not on vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03     | 05        | 08            | Passenger RH Upper B-Pillar Cover                                                    | 0.28         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
| 20 05 08 Passenger B pillar mounting screw 0.00 0.00 0.00 0% no Tech does NOT apply: Not on vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03     | 05        | 00            | Passenger LE Opper D-Prillar Cover Silde Passenger restraint upr B-pillar bolt cover | 0.06         | 0.01                           | 7%                                  | n0<br>n0        |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03     | 05        | 08            | Passenger B pillar mounting screw                                                    | 0.00         | 0.00                           | 0%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |  |  |  |

Table 3-30: System Scaling Analysis, Body Group -B- System, Mercedes Sprinter

Table 3.4–6 Continued Next Page

|        |              |                 | Silverado 1500                                                  |              |                                |                                     |                 |              |                                | Select Vehicle                                                |
|--------|--------------|-----------------|-----------------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|---------------------------------------------------------------|
| System | Cubevetern   | Sub-Subsystem   | Component/Assembly                                              | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                         |
| 03 E   | Bo           | dy G            | Group B System                                                  | 247.02       | 34.02                          | 14%                                 |                 |              | 20.02                          |                                                               |
| 03 0   | 7 (          | )1 L⊦           | H Driver Door Lower seal                                        | 0.14         | 0.05                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 (          | )1 RH           | H Passenger Door Lower seal                                     | 0.14         | 0.05                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 (          | )1 L⊦           | Rear Door Lower seal                                            | 0.11         | 0.04                           | 32%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 0          |                 | Rear Door hinge side upr seal                                   | 0.07         | 0.02                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 0          |                 | H Rear Door Lower seal                                          | 0.11         | 0.04                           | 32%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 0          |                 | H rear door inside window track seal                            | 0.07         | 0.02                           | 33%                                 | 10              |              |                                | Tech does NOT apply. Not on vehicle                           |
| 03 0   | 7 0          | 1 RH            | H rear door inside window track bottom inner seal               | 0.16         | 0.05                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 (          | )1 RH           | H rear door inside window track bottom outer seal               | 0.30         | 0.10                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 (          | )1 L⊦           | I rear door inside window track seal                            | 0.52         | 0.17                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 (          | )1 LF           | rear door inside window track bottom inner seal                 | 0.16         | 0.05                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 0          |                 | rear door inside window track bottom outer seal                 | 0.30         | 0.10                           | 33%                                 | no              | 0.77         | 0.05                           | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 70           |                 | 1 drivers door inside window track seal                         | 0.60         | 0.20                           | 33%                                 | yes             | 0.17         | 0.25                           | Tech DOES apply: Change from EDPM to TPV                      |
| 03 0   | 7 0          |                 | drivers door inside window track bottom outer seal              | 0.15         | 0.00                           | 33%                                 |                 | 0.10         | 0.00                           | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 0          | 01 RH           | H passenger door inside window track seal                       | 0.60         | 0.20                           | 33%                                 | ves             | 0.77         | 0.25                           | Tech DOES apply: Change from EDPM to TPV                      |
| 03 0   | 7 (          | )1 RH           | H passenger door inside window track bottom inner seal          | 0.19         | 0.06                           | 33%                                 | yes             | 0.18         | 0.06                           | Tech DOES apply: Change from EDPM to TPV                      |
| 03 0   | 7 0          | )1 RH           | H passenger door inside window track bottom outer seal          | 0.35         | 0.11                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 0          | )2 Dr           | ivers Upr Outside seal                                          | 0.82         | 0.27                           | 33%                                 | no              | 1.00         | 0.50                           | Tech does NOT apply: Not on vehicle                           |
| 03 0   | 7 0          | J2 Fr           | ont driver door seal                                            | 2.10         | 0.68                           | 33%                                 | yes             | 1.82         | 0.59                           | Tech DOES apply: Change from EDPM to TPV                      |
| 03 0   | 7 0          | 12 RE           | ear driver door sear                                            | 0.82         | 0.65                           | 33%                                 | 10              |              |                                | Tech does NOT apply. Not on vehicle                           |
| 03 0   | 7 0          | $\frac{12}{12}$ | ont passenger door seal                                         | 2.05         | 0.67                           | 33%                                 | ves             | 1.82         | 0.59                           | Tech DOES apply: Not on venicle                               |
| 03 0   | 7 0          | 02 Re           | ear passenger door seal                                         | 1.91         | 0.62                           | 33%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver seat back frame                                            | 2.20         | 1.10                           | 50%                                 | yes             | 3.95         | 1.97                           | Tech DOES apply: Change from welded steel to BASF Plastic     |
| 03 1   | 0 0          | )1 Dr           | iver seat map back inner                                        | 0.49         | 0.05                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver Seat map back                                              | 0.64         | 0.06                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   |              |                 | iver seat safety belt cover                                     | 0.04         | 0.00                           | 10%                                 | no              | 2.00         | 1.60                           | Tech does NOT apply: Not on vehicle                           |
| 03 1   |              |                 | iver Seat fit Nut Cover I H                                     | 0.02         | 0.00                           | 50%                                 | yes             | 3.00         | 1.50                           | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver Seat frt Nut Cover RH                                      | 0.03         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver Seat rear Bolt Cover LH                                    | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver Seat rear Bolt Cover RH                                    | 0.07         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver seat wire harness cover                                    | 0.04         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   |              |                 | iver Seat LH Track cover                                        | 0.16         | 0.02                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver Seat LH Track cover end cap feat                           | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver Seat LH cover                                              | 0.31         | 0.03                           | 10%                                 | yes             | 0.29         | 0.03                           | Tech DOES apply: Use Polyone foaming agent                    |
| 03 1   | 0 0          | )1 Dr           | iver Seat LH cover close out                                    | 0.05         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )1 Dr           | iver Seat LH cover seat belt insert cover                       | 0.01         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | 1 Dr            | river Seat LH cover lumbar knob                                 | 0.02         | 0.00                           | 10%                                 | yes             | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                    |
| 03 1   |              |                 | iver Seat RH cover                                              | 0.03         | 0.00                           | 10%                                 | ves             | 0.00         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                    |
| 03 1   | 0 0          | )2 Pa           | assenger seat back frame                                        | 2.20         | 1.10                           | 50%                                 | ves             | 3.95         | 1.97                           | Tech DOES apply: Change from welded steel to BASF Plastic     |
| 03 1   | 0 0          | )2 Pa           | ass seat map back inner                                         | 0.49         | 0.05                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2 Pa           | ass Seat map back                                               | 0.64         | 0.06                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2  Pa          | ass Seat safety belt cover                                      | 0.04         | 0.00                           | 10%                                 | no              | 2.00         | 4.40                           | Tech does NOT apply: Not on vehicle                           |
| 03 1   |              | 12 Pa           | assenger seat bottom frame<br>t Passanger Soat fit PH Nut Cover | 3.59         | 1.79                           | 50%                                 | yes             | 3.00         | 1.49                           | Tech does NOT apply: Unange from weided steel to BASE Plastic |
| 03 1   |              | 12 Fr           | t Passenger Seat fit I H Nut Cover                              | 0.02         | 0.00                           | 10%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2 Pa           | assenger Seat rear Bolt Cover LH                                | 0.06         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2 Pa           | assenger Seat rear Bolt Cover RH                                | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2 Pa           | assenger seat wire harness cover                                | 0.04         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2 Pa           | ass Seat LH Track cover                                         | 0.16         | 0.02                           | 10%                                 | no              |              |                                | Lech does NOT apply: Not on vehicle                           |
| 03 1   |              | 12 Pa           | ass Seat LH Track cover end cap fear                            | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Lech does NOT apply: Not on vehicle                           |
| 03 1   |              | 12 Pa           | ass Seat I H cover                                              | 0.02         | 0.00                           | 10%                                 | Ves             | 0.29         | 0.03                           | Tech DOES apply: Use Polyone foaming agent                    |
| 03 1   | 0 0          | )2 Pa           | assenger Seat LH cover close out                                | 0.05         | 0.01                           | 10%                                 | no              | 0.20         | 0.00                           | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2 Pa           | assenger Seat LH cover seat belt insert cover                   | 0.01         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )2 Pa           | assenger Seat LH cover lumbar knob                              | 0.02         | 0.00                           | 10%                                 | yes             | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent                    |
| 03 1   | 0 0          | )2 Pa           | assenger Seat LH cover recline handle                           | 0.03         | 0.00                           | 10%                                 | yes             | 0.08         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                    |
| 03 1   | 0 0          | )2 Pa           | assenger Seat RH cover                                          | 0.11         | 0.01                           | 10%                                 | yes             | 0.31         | 0.03                           | Tech DOES apply: Use Polyone foaming agent                    |
| 03 1   |              | 13 Dr           | m rest inner tub                                                | 0.28         | 2.70                           | 40%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )3 Ar           | m rest frame                                                    | 1.11         | 0.43                           | 39%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )3 Ar           | m rest cup holder                                               | 0.13         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 (          | )3 Ar           | m rest cup holder retainer ring                                 | 0.09         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | 03 60           | % Seat bottom frame                                             | 4.28         | 2.24                           | 52%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   |              | 13 RF           | recliner cover #1                                               | 0.14         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   |              | )3 I F          | Hecliner cover #1                                               | 0.24         | 0.02                           | 10%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )4 40           | 0% Seat bottom frame                                            | 2.98         | 1.55                           | 52%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )4 40           | 9% Seat back frame                                              | 3.16         | 1.76                           | 56%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | )4  R           | H Brkt close out #1                                             | 0.23         | 0.02                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | 0 0          | 14 RH           | H Brkt close out #2                                             | 0.14         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                           |
| 03 1   | <b>u</b>   ( | 14 JTF          | T DIKL CIUSE OUT #1                                             | 0.07         | 0.01                           | 10%                                 | ll no           | 1            | I                              | rech does NOT apply: Not on vehicle                           |

Table 3.4–6 Continued: System Scaling Analysis, Body Group -B- System, Mercedes Sprinter

 0.07
 0.01
 10%
 no

 Table 3.4–6 Continued Next Page

|        |           | Silverado 1500                                   |              | Select Vehicle                 |                                     |                 |              |                                |                                                                |
|--------|-----------|--------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|----------------------------------------------------------------|
| System | Subsystem | SC EF SUBSYSTEM                                  | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                          |
| 03     | Bo        | ody Group B System                               | 247.02       | 34.02                          | 14%                                 |                 |              | 20.02                          |                                                                |
| 03     | 10        | 05 Frt center riser                              | 2.97         | 1.04                           | 35%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 LH Pivot cover outer                          | 0.07         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 LH Pivot cover inner                          | 0.05         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 RH Pivot cover outer                          | 0.06         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 RH Pivot cover inner                          | 0.05         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 RH Pivot cover inner top                      | 0.05         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Bottom tub inner                              | 0.85         | 0.09                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Frt wrap around close out                     | 0.51         | 0.05                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Rear wrap around close out                    | 0.65         | 0.06                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Cup holder                                    | 0.31         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Cup holder top                                | 0.12         | 0.01                           | 10%                                 | no              |              |                                | lech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Frt center box comp                           | 3.77         | 1.66                           | 44%                                 | no              |              |                                | lech does NOT apply: Not on vehicle                            |
| 03     | 10        | US Prit center cover plt                         | 1.60         | 0.81                           | 50%                                 | no              |              |                                | lech does NOT apply: Not on vehicle                            |
| 03     | 10        | U5 Seat frame cover handle #1                    | 0.02         | 0.00                           | 10%                                 | no              |              |                                | lech does NOT apply: Not on vehicle                            |
| 03     | 10        | US Seat trame cover handle #2                    | 0.04         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub                                    | 0.06         | 0.11                           | 10%                                 | 10              |              |                                | Tech does NOT apply. Not on vehicle                            |
| 03     | 10        | 05 Divider                                       | 0.00         | 0.01                           | 10%                                 | 10              |              |                                | Tech does NOT apply. Not on vehicle                            |
| 03     | 10        | 05 Cap holder                                    | 0.20         | 0.02                           | 10%                                 | 110             |              |                                | Tech does NOT apply. Not on vehicle                            |
| 03     | 10        | 05 Center tub top lid inner                      | 0.20         | 0.03                           | 10%                                 | 110             |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub top lid niner                      | 0.03         | 0.07                           | 10%                                 | 00              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub top lid bandle #1                  | 0.04         | 0.03                           | 10%                                 | 00              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub top lid handle #2                  | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 01 Cross Car Beam                                | 11.34        | 5.44                           | 48%                                 | ves             | 11 60        | 5.57                           | Tech DOFS apply: Change from welded steel to mag               |
| 03     | 12        | 01 Cross Car Beam to Floor Brkt Cover            | 0.10         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 02 IP Main Sub Molding                           | 1.60         | 0.16                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 02 IP Main Molding                               | 3.37         | 0.34                           | 10%                                 | yes             | 5.91         | 0.59                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 02 IP Main Molding support box                   | 0.27         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 02 Elec. Breaker box cover                       | 0.10         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 03 Knee Bolster cover                            | 0.59         | 0.06                           | 10%                                 | yes             | 0.30         | 0.03                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 03 Knee Bolster Reinforcement brkt               | 0.42         | 0.24                           | 57%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 03 Glove box brkt                                | 0.35         | 0.04                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 03 Glove box inner tub                           | 0.85         | 0.09                           | 10%                                 | yes             | 0.66         | 0.07                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 03 Glove box inner tub cover                     | 0.40         | 0.04                           | 10%                                 | yes             | 1.11         | 0.11                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 03 Decorative glove box trim                     | 0.05         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 03 Lwr Center IP Cover                           | 0.45         | 0.05                           | 10%                                 | yes             | 0.69         | 0.07                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03     | 12        | 03 Lwr Center IP Cover ashtray door              | 0.11         | 0.01                           | 10%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03     | 12        | 03 Ashtray                                       | 0.08         | 0.01                           | 10%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03     | 12        | 03 Upr glove box door                            | 0.34         | 0.03                           | 10%                                 | yes             | 0.22         | 0.02                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03     | 12        | 03 Upr glove box door inner                      | 0.26         | 0.03                           | 10%                                 | yes             | 0.82         | 0.08                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03     | 12        | 02 Top ID Cover                                  | 0.49         | 0.05                           | 10%                                 | 10              | 0.50         | 0.05                           | Tech does NOT apply. Not on vehicle                            |
| 03     | 12        | 04 IP Driver side cover                          | 0.25         | 0.03                           | 10%                                 | yes             | 0.50         | 0.05                           | Tech DOES apply: Use Polyone loaning agent                     |
| 03     | 12        | 04 IP Passanger side cover                       | 0.15         | 0.02                           | 10%                                 | yes<br>         | 0.12         | 0.01                           | Tech DOES apply: Use Polyone feaming agent                     |
| 03     | 12        | 04 Top IP Decretive trim                         | 1.06         | 0.02                           | 10%                                 | yes<br>         | 0.12         | 0.01                           | Tech DOES apply: Use Polyone feaming agent                     |
| 03     | 12        | 05 IP Control Module 1 mounting brkt             | 0.13         | 0.01                           | 10%                                 | no              | 0.00         | 0.05                           | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 05 IP Control Module 2 & 3 mounting brkt         | 0.15         | 0.02                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 05 IP Control Module 4 mounting brkt             | 0.09         | 0.02                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 20        | 03 Housing Assy. Passenger Side Airbag           | 1 09         | 0.62                           | 57%                                 | Ves             | 3 39         | 1.93                           | Tech DOES apply: Change from steel to DSM Akulon Nvlon6        |
| 0.3    | 20        | 12 Drivers side curtain airbag mounting brkt     | 0.30         | 0.19                           | 62%                                 |                 | 0.00         | 1.00                           | Tech does NOT apply: Not on vehicle                            |
| 03     | 20        | 12 Passenger side curtain airbag mounting brkt   | 0.31         | 0.19                           | 62%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 20        | 18 Front Cover, Steering Wheel Airbag Assy       | 0.14         | 0.02                           | 10%                                 | ves             | 1.26         | 0.04                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 20        | 18 Bracket #1, Drivers side airbag               | 0.25         | 0.11                           | 44%                                 | ves             | 0.19         | 0.08                           | Tech DOES apply: Change from steel to plastic                  |
| 03     | 20        | 18 Ignition Canister, Steering Wheel Airbag Assy | 0.49         | 0.14                           | 28%                                 | yes             | 1.26         | 0.25                           | Tech DOES apply: Replace dual stage inflator with single stage |

Table 3.4–6 Continued: System Scaling Analysis, Body Group -B- System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Due to the large size of the Body Group -B- System it was not broken down by component, but by subsystem. Mass savings opportunities were identified for the following subsystems: Interior Trim and Ornamentation, Sealing, Seating, Instrument Panel and Console, and Occupant Restraining Device.

## Interior Trim and Ornamentation Subsystem

Shown in Image 3.4–7 are the Silverado 1500 and Mercedes Sprinter 311 CDi Interior Trim and Ornamentation Subsystems. Subsystem masses were 20.6 kg for the 1500 versus 16.5 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the Interior Trim and Ornamentation Subsystem was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 interior trim mass reduction can be applied to the Sprinter.



Image 3.4–7: Interior Trim and Ornamentation Subsystem for Silverado 1500 (Left) and the Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Sealing Subsystem

Shown in Image 3.4–8 are the Silverado 1500 and Mercedes Sprinter 311 CDi Sealing Subsystems. Component masses were 14.5 kg for the 1500 versus 5.54 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used on the Sealing Subsystem was to change to TPV from EPDM material. Due to similarities in component design and material, full percentage of the Silverado 1500 sealing subsystem mass reduction can be applied to the Sprinter.



Image 3.4–8: Sealing Subsystem for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Seating Subsystem

Shown in Image 3.4–9 are the Silverado 1500 and Mercedes Sprinter 311 CDi Seating Subsystem. Subsystem masses were 48.2 kg for the 1500 versus 15.4 kg for the Mercedes Sprinter 311 CDi.

The Lightweighting Technology used on the Seating Subsystem was to change the welded steel construction in the front seats to BASF plastic and glass fiber laired laminate. The welded steel construction for the 60/40 seat and the center console was changed to cast magnesium. Due to similarities in component design and material, full percentage of the Silverado 1500 seating subsystem mass reduction can be applied to the Sprinter.



Image 3.4–9: Seating Subsystems for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc.)

#### Instrument Panel and Console Subsystem

Shown in Image 3.4–10 are the Silverado 1500 and Mercedes Sprinter 311 CDi Instrument Panel and Console Subsystems. The subsystem masses were 23.2 kg for the Silverado 1500 versus 22.7 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used for the Instrument Panel and Console Subsystem was to change the welded steel construction in the cross car beam to cast magnesium. The welded steel construction for the knee bolster reinforcement bracket was also changed to plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 instrument panel and console subsystem mass reduction can be applied to the Sprinter.



Image 3.4–10: Instrument Panel and Console Subsystems for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

### Occupant Restraining Device Subsystem

Shown in Image 3.4–11 are the Silverado 1500 and Mercedes Sprinter 311 CDi Occupant Restraining Device Subsystems. The subsystem masses were 2.59 kg for the 1500 versus 6.10 kg for the Mercedes Sprinter 311 CDi respectively. The Lightweighting Technology used in both the Occupant Restraining Device Subsystem was to change the welded steel construction on the passenger air bag housing to DSM Akulon<sup>®</sup> Nylon 6. The steering wheel air bag dual stage inflator was also changed to a single stage inflator. Due to similarities in component design and material, full percentage of the Silverado 1500 occupant restraining device subsystem mass reduction can be applied to the Sprinter. (Refer to

Table 3-30).



Image 3.4–11: Occupant Restraining Device Subsystem for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

## 3.4.4 Renault Master 2.3 DCi

Table 3-31 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Renault Master 2.3 DCi. Total Body Group -B- Subsystem mass savings is 23.67 kg at a cost increase of \$91.43, or \$3.86 per kg.

|          |                                                        |               |                                                      |                                                      | Ne                                               | et Value                                          | e of Mas                               | ss Re                              | ductio                              | n                                     |                                              |  |
|----------|--------------------------------------------------------|---------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|--|
| System   | Subsystem                                              | Sub-Subsystem | Description                                          | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |
|          |                                                        |               |                                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
| 03       | 00                                                     | 00            | Body System "B"                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
| 03       | 05                                                     | 00            | Interior Trim and Ornamentation Subsystem            | 1.21                                                 | 0.00                                             | 1.21                                              | \$3.25                                 | \$0.00                             | \$3.25                              | \$2.68                                | 0.05%                                        |  |
| 03       | 06                                                     | 00            | Sound and Heat Control Subsystem (Body)              | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |
| 03       | 07                                                     | 00            | Sealing Subsystem                                    | 1.73                                                 | 0.00                                             | 1.73                                              | \$11.81                                | \$0.00                             | \$11.81                             | \$6.83                                | 0.07%                                        |  |
| 03       | 10                                                     | 00            | Seating Subsystem                                    | 13.99                                                | 0.00                                             | 13.99                                             | -\$75.97                               | \$0.00                             | -\$75.97                            | -\$5.43                               | 0.59%                                        |  |
| 03       | 12                                                     | 00            | Instrument Panel and Console Subsystem               | 6.49                                                 | 0.00                                             | 6.49                                              | -\$32.51                               | \$0.00                             | -\$32.51                            | -\$5.01                               | 0.28%                                        |  |
| 03       | 20                                                     | 00            | Occupant Restraining Device Subsystem                | 0.25                                                 | 0.00                                             | 0.25                                              | 1.99                                   | \$0.00                             | \$1.99                              | \$0.00                                | 0.01%                                        |  |
|          |                                                        |               |                                                      | 00.07                                                | 0.00                                             | 00.07                                             | 04.40                                  | 0.00                               | <b>*</b> 04.40                      | <b>*</b> 2.00                         | 4.049/                                       |  |
|          |                                                        |               |                                                      | 23.67                                                | 0.00                                             | 23.67                                             | -91.43                                 | 0.00                               | -\$91.43                            | -\$3.86                               | 1.01%                                        |  |
| <u> </u> | (Decrease) (Decrease) (Increase) (Increase) (Increase) |               |                                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
| Ma       | ss S                                                   | avi           | ngs, Select Vehicle, New Technology "kg"             | 23.67                                                |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
| Ma       | SS 3                                                   | avi           | ngs, Silverado 1500, New Technology Kg               | 33.92                                                |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
| IMa      | 55 0                                                   | avi           | ngs select venicie/mass savings 1500                 | 69.6%                                                |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
|          |                                                        |               | 0.0%                                                 |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
|          | 0                                                      | 0.0           | 69.8                                                 | 3%                                                   |                                                  | 🔳 % Sav                                           | /ed, techn                             | ology a                            | pplies                              |                                       |                                              |  |
|          |                                                        |               |                                                      |                                                      |                                                  | % Los                                             | st, compoi                             | nent do                            | esn't exi                           | st                                    |                                              |  |
|          |                                                        |               | 54.9%                                                |                                                      |                                                  | 📕 % Los                                           | t, technol                             | ogy do                             | esn't app                           | oly                                   |                                              |  |
|          |                                                        |               |                                                      |                                                      |                                                  | 🔳 % Los                                           | st, technol                            | ogy alr                            | eady imp                            | olemente                              | d                                            |  |
|          | % Lost, technology reduced impact                      |               |                                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
|          |                                                        |               |                                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
|          |                                                        |               |                                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
| *SI      | /IS n                                                  | iot i         | ncluded - has no significant impact on perecent cont | tributions                                           |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
|          |                                                        |               |                                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |
|          |                                                        |               |                                                      |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |

Table 3-31: Mass-Reduction and Cost Impact for Body Group -B- Subsystem, Renault Master

## 3.4.4.1 System Scaling Analysis

The Renault Master 2.3 DCi Body Group -B- Subsystem was reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-32.

|        |           | Silverado 1500                                          |              |                                |                                     |                 |              |                                | Select Vehicle                             |
|--------|-----------|---------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------|
| System | Subsystem | Component/Assembly                                      | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                      |
| 03     | B         | ody Group B System                                      | 247.02       | 34.02                          | 14%                                 |                 |              | 23.67                          |                                            |
| 03     | 05        | 05 LH drivers door window switch cover                  | 0.10         | 0.010                          | 10%                                 | ves             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 LH drivers Door arm rest attachment cover            | 0.03         | 0.003                          | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 LH drivers Door Pull handle attachment cover         | 0.01         | 0.001                          | 17%                                 | ves             | 0.05         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 LH drivers Door vertical Pull handle                 | 0.13         | 0.013                          | 10%                                 | Ves             | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 I H drivers Door corner cover                        | 0.06         | 0.006                          | 11%                                 | Ves             | 0.21         | 0.02                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 RH passenger door window switch cover                | 0.10         | 0.010                          | 10%                                 | ves             | 0.03         | 0.00                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 RH passenger Door arm rest attachment cover          | 0.03         | 0.003                          | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 RH passenger Door Pull handle attachment cover       | 0.01         | 0.001                          | 17%                                 | ves             | 0.05         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 RH passenger Door vertical Pull handle               | 0.13         | 0.013                          | 10%                                 | ves             | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 RH passenger Door corner cover                       | 0.06         | 0.006                          | 11%                                 | ves             | 0.21         | 0.02                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 RH passenger Door lwr main trim                      | 2.09         | 0.209                          | 10%                                 | yes             | 2.46         | 0.25                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 RH passenger Door lwr main trim map pocket           | 0.50         | 0.050                          | 10%                                 | yes             | 0.36         | 0.04                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 RH passenger Door lwr main trim close out            | 0.05         | 0.005                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 RH passenger Door lwr main trim inner support brkt#1 | 0.28         | 0.028                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 RH passenger Door lwr main trim inner support brkt#2 | 0.06         | 0.005                          | 9%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 RH passenger Door lwr main trim inner support brkt#5 | 0.03         | 0.003                          | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 RH passenger Door lwr main trim inner support brkt#6 | 0.01         | 0.001                          | 9%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 RH passenger Door upr main trim                      | 0.76         | 0.076                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 LH passenger Door lwr main trim                      | 2.09         | 0.209                          | 10%                                 | yes             | 2.46         | 0.25                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 LH passenger Door lwr main trim map pocket           | 0.50         | 0.050                          | 10%                                 | yes             | 0.36         | 0.04                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 05 LH passenger Door lwr main trim close out            | 0.05         | 0.005                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 LH passenger Door lwr main trim inner support brkt#1 | 0.28         | 0.028                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 LH passenger Door lwr main trim inner support brkt#2 | 0.06         | 0.005                          | 9%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 LH passenger Door lwr main trim inner support brkt#5 | 0.03         | 0.003                          | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 LH passenger Door lwr main trim inner support brkt#6 | 0.01         | 0.001                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 LH passenger Door upr main trim                      | 0.76         | 0.076                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 05 Frt dorr harness feed through                        | 0.23         | 0.023                          | 10%                                 | yes             | 0.70         | 0.07                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 06 RH Rear door window switch cover                     | 0.08         | 0.008                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 RH Rear Door arm rest attachment cover               | 0.02         | 0.002                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 RH Rear Door Pull handle attachment cover            | 0.01         | 0.001                          | 10%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 06 RH rear door arm rest                                | 0.27         | 0.027                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 LH Rear door window switch cover                     | 0.08         | 800.0                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 LH Rear Door arm rest attachment cover               | 0.02         | 0.002                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 LH Rear Door Pull handle attachment cover            | 0.01         | 0.001                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 LH rear door arm rest                                | 0.27         | 0.027                          | 10%                                 | no              | 0.44         | 0.04                           | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 RH rear door lwr main trim                           | 1.53         | 0.153                          | 10%                                 | yes             | 2.44         | 0.24                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 06 RH rear door lwr main trim map pocket                | 0.23         | 0.023                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 RH rear door lwr main trim mounting bkt #1           | 0.02         | 0.002                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 RH rear door lwr main trim mounting bkt #2           | 0.01         | 0.001                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 Kin fear door up main trim                           | 1.50         | 0.050                          | 10%                                 | 10              |              |                                | Tech does NOT apply. Not on vehicle        |
| 03     | 05        | 06 Lift fear door lwr main trim man neeket              | 0.22         | 0.100                          | 10%                                 | 10              |              |                                | Tech does NOT apply. Not on vehicle        |
| 03     | 05        | 06 Li Frear door lwr main trim mounting blt #1          | 0.23         | 0.023                          | 10%                                 | 10              |              |                                | Tech does NOT apply. Not on vehicle        |
| 03     | 05        | 06 LH rear door lwr main trim mounting bkt #1           | 0.02         | 0.002                          | 10%                                 | 0               |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 06 I H rear door upr main trim                          | 0.58         | 0.058                          | 10%                                 | 0               |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Driver Lwr A-Pillar                                  | 0.23         | 0.023                          | 10%                                 | Ves             | 0.11         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 07 Passenger I wr A-Pillar                              | 0.22         | 0.022                          | 10%                                 | Ves             | 0.14         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 07 Front Driver kick plate                              | 0.20         | 0.020                          | 10%                                 | ,000<br>no      | 0.11         | 0.01                           | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Front Driver kick plate mount                        | 0.18         | 0.018                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 0.3    | 05        | 07 Rear Driver kick plate                               | 0.14         | 0.014                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Rear Driver kick plate mount                         | 0.12         | 0.012                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 LH B-Pillar Lwr                                      | 0.63         | 0.063                          | 10%                                 | yes             | 0.90         | 0.09                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 07 Front Passenger kick plate                           | 0.21         | 0.020                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Front Passenger kick plate mount                     | 0.18         | 0.018                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Rear Passenger kick plate                            | 0.14         | 0.014                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Rear Passenger kick plate mount                      | 0.13         | 0.012                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 RH B-Pillar Lwr                                      | 0.63         | 0.063                          | 10%                                 | yes             | 0.89         | 0.09                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 07 C-Pillar cover RH upr                                | 0.34         | 0.034                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 C-Pillar cover RH Lwr                                | 0.53         | 0.053                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Small Cover piece                                    | 0.0020       | 0.0002                         | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 C-Pillar cover LH upr                                | 0.34         | 0.034                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 C-Pillar cover LH Lwr                                | 0.52         | 0.052                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 Small Cover piece                                    | 0.00         | 0.000                          | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 07 C-Pillar to C-Pillar cross trim                      | 0.56         | 0.056                          | 10%                                 | no              |              |                                | Lech does NOT apply: Not on vehicle        |
| 03     | 05        | 08 Drivers Upr A-Pillar cover                           | 0.35         | 0.04                           | 10%                                 | yes             | 0.25         | 0.02                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 05        | 08 Drivers upr A-pillar mounting screw cover            | 0.00         | 0.00                           | 0%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 08 Driver LH Upper B-Pillar Cover                       | 0.29         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 08 Driver LH Upper B-Pillar Cover slide                 | 0.06         | 0.01                           | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 08 Driver restraint upr B-pillar bolt cover             | 0.01         | 0.00                           | 7%                                  | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 08 Drivers B pillar mounting screw cover                | 0.01         | 0.00                           | 1/%                                 | no              | 0.05         | 0.00                           | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | uo Passenger Upr A-Pillar cover                         | 0.33         | 0.03                           | 10%                                 | yes             | 0.25         | 0.02                           | Lech DOES apply: Use Polyone toaming agent |
| 03     | 05        | 00 Passenger KH Upper B-Pillar Cover                    | 0.28         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 08 Desenance seats int up R niller to the sure          | 0.06         | 0.01                           | 11%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 05        | 00 Dessenger restraint upr d-pillar bolt cover          | 0.01         | 0.00                           | 1%                                  | 10              |              |                                | Tech does NOT apply: Not on vehicle        |
| 03     | 105       | vo Passenger o pillar mounting screw                    | 0.00         | 0.00                           | 0%                                  | no              |              |                                | rech does NOT apply: Not on vehicle        |

Table 3-32: System Scaling Analysis Body Group -B- Subsystem, Renault Master

Table 3.4–8 Continued Next Page

Table 3.4–8 Continued: System Scaling Analysis Body Group -B- Subsystem, Renault Master

| Silverado 1500 Select Vehicle |               |                                                                           |              |                                |                                     |                 | Select Vehicle |                                |                                                                                                  |
|-------------------------------|---------------|---------------------------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|----------------|--------------------------------|--------------------------------------------------------------------------------------------------|
| System                        | Sub-Subsystem | Component/Assembly                                                        | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                                                                            |
| 03                            | Bod           | y Group B System                                                          | 247.02       | 34.02                          | 14%                                 |                 |                | 23.67                          | T. I. I. NOT. I. N                                                                               |
| 03                            | 07 01         | LH Driver Door Lower seal                                                 | 0.14         | 0.05                           | 33%                                 | 00              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | LH Rear Door Lower seal                                                   | 0.11         | 0.04                           | 32%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | LH Rear Door hinge side upr seal                                          | 0.07         | 0.02                           | 33%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | RH Rear Door Lower seal                                                   | 0.11         | 0.04                           | 32%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | RH Rear Door ninge side upr seal<br>RH rear door inside window track seal | 0.07         | 0.02                           | 33%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | RH rear door inside window track bottom inner seal                        | 0.16         | 0.05                           | 33%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | RH rear door inside window track bottom outer seal                        | 0.30         | 0.10                           | 33%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | LH rear door inside window track seal                                     | 0.52         | 0.17                           | 33%                                 | 00              | -              |                                | Tech does NOT apply. Not on vehicle                                                              |
| 03                            | 07 01         | LH rear door inside window track bottom outer seal                        | 0.30         | 0.10                           | 33%                                 | no              | 1              |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 01         | LH drivers door inside window track seal                                  | 0.60         | 0.20                           | 33%                                 | yes             | 0.57           | 0.19                           | Tech DOES apply: Change from EDPM to TPV                                                         |
| 03                            | 07 01         | LH drivers door inside window track bottom inner seal                     | 0.19         | 0.06                           | 33%                                 | yes             | 0.12           | 0.04                           | Tech DOES apply: Change from EDPM to TPV                                                         |
| 03                            | 07 01         | RH passenger door inside window track seal                                | 0.60         | 0.20                           | 33%                                 | yes             | 0.57           | 0.19                           | Tech DOES apply: Change from EDPM to TPV                                                         |
| 03                            | 07 01         | RH passenger door inside window track bottom inner seal                   | 0.19         | 0.06                           | 33%                                 | yes             | 0.12           | 0.04                           | Tech DOES apply: Change from EDPM to TPV                                                         |
| 03                            | 07 01         | RH passenger door inside window track bottom outer seal                   | 0.35         | 0.11                           | 33%                                 | yes             | 0.50           | 0.16                           | Tech DOES apply: Change from EDPM to TPV                                                         |
| 03                            | 07 02         | Front driver door seal                                                    | 2.10         | 0.68                           | 33%                                 | yes             | 1.47           | 0.48                           | Tech DOES apply: Change from EDPM to TPV                                                         |
| 03                            | 07 02         | Rear driver door seal                                                     | 1.93         | 0.63                           | 33%                                 | yes             | 1.47           | 0.48                           | Tech DOES apply: Change from EDPM to TPV                                                         |
| 03                            | 07 02         | Passenger Upr Outside seal                                                | 0.82         | 0.27                           | 33%                                 | 10              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 07 02         | Rear passenger door seal                                                  | 1.91         | 0.62                           | 33%                                 | no              | 1              |                                | Tech does NOT apply. Not on vehicle                                                              |
| 03                            | 10 01         | Driver seat back frame                                                    | 2.20         | 1.10                           | 50%                                 | yes             | 4.67           | 2.34                           | Tech DOES apply: Change from welded steel to BASF Plastic                                        |
| 03                            | 10 01         | Driver seat map back inner                                                | 0.49         | 0.05                           | 10%                                 | no              | V              |                                | Tech does NOT apply. Not on vehicle                                                              |
| 03                            | 10 01         | Driver Seat map back                                                      | 0.64         | 0.06                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 01         | Driver seat bottom frame                                                  | 3.60         | 1.80                           | 50%                                 | yes             | 4.67           | 2.34                           | Tech DOES apply: Change from welded steel to BASF Plastic                                        |
| 03                            | 10 01         | Driver Seat frt Nut Cover LH                                              | 0.02         | 0.00                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 01         | Driver Seat fit Nut Cover RH<br>Driver Seat rear Bolt Cover LH            | 0.03         | 0.00                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 01         | Driver Seat rear Bolt Cover RH                                            | 0.07         | 0.01                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 01         | Driver seat wire harness cover                                            | 0.04         | 0.00                           | 10%                                 | no              |                |                                | Tech does NOT apply. Not on vehicle                                                              |
| 03                            | 10 01         | Driver Seat LH Track cover<br>Driver Seat LH Track cover end can rear     | 0.16         | 0.02                           | 10%                                 | 00              | -              |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 01         | Driver Seat LH Track cover end cap fit                                    | 0.02         | 0.00                           | 10%                                 | no              | 1              | 1                              | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 01         | Driver Seat LH cover                                                      | 0.31         | 0.03                           | 10%                                 | yes             | 0.17           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                                                       |
| 03                            | 10 01         | Driver Seat LH cover close out                                            | 0.05         | 0.01                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 01         | Driver Seat LH cover lumbar knob                                          | 0.02         | 0.00                           | 10%                                 | yes             | 0.04           | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                       |
| 03                            | 10 01         | Driver Seat LH cover recline handle                                       | 0.03         | 0.00                           | 10%                                 | yes             | 0.09           | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                       |
| 03                            | 10 01         | Driver Seat RH cover                                                      | 0.11         | 0.01                           | 10%                                 | no              | 9.28           | 4.64                           | Tech does NOT apply: Not on vehicle<br>Tech DOES apply: Change from welded steel to BASE Plastic |
| 03                            | 10 02         | Pass seat map back inner                                                  | 0.49         | 0.05                           | 10%                                 | no              | 5.20           | 4.04                           | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Pass Seat map back                                                        | 0.64         | 0.06                           | 10%                                 | no              | -              |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Pass Seat safety belt cover                                               | 0.04         | 0.00                           | 10%                                 | no              | 0.28           | 1.63                           | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Fit Passenger Seat fit RH Nut Cover                                       | 0.02         | 0.00                           | 10%                                 | no              | 5.20           | 4.05                           | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Frt Passenger Seat frt LH Nut Cover                                       | 0.04         | 0.00                           | 10%                                 | no              | 0              | 1                              | Tech does NOT apply. Not on vehicle                                                              |
| 03                            | 10 02         | Passenger Seat rear Bolt Cover LH                                         | 0.06         | 0.01                           | 10%                                 | no              | -              |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Passenger seat wire harness cover                                         | 0.02         | 0.00                           | 10%                                 | no              | 1              |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Pass Seat LH Track cover                                                  | 0.16         | 0.02                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Pass Seat LH Track cover end cap rear                                     | 0.02         | 0.00                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Pass Seat LH cover                                                        | 0.31         | 0.03                           | 10%                                 | yes             | 0.26           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                                                       |
| 03                            | 10 02         | Passenger Seat LH cover close out                                         | 0.05         | 0.01                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Passenger Seat LH cover seat belt insert cover                            | 0.01         | 0.00                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 02         | Passenger Seat LH cover recline handle                                    | 0.02         | 0.00                           | 10%                                 | Ves             | 0.05           | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                       |
| 03                            | 10 02         | Passenger Seat RH cover                                                   | 0.11         | 0.01                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 03         | 60% Seat back frame                                                       | 5.78         | 2.78                           | 48%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 03         | Arm rest frame                                                            | 1.11         | 0.03                           | 39%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 03         | Arm rest cup holder                                                       | 0.13         | 0.01                           | 10%                                 | no              | 1              |                                | Tech does NOT apply. Not on vehicle                                                              |
| 03                            | 10 03         | Arm rest cup holder retainer ring                                         | 0.09         | 0.01                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 03         | RH recliner cover #1                                                      | 0.14         | 0.01                           | 10%                                 | n0<br>n0        |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 03         | RH recliner cover #2                                                      | 0.24         | 0.02                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 03         | LH recliner cover #1                                                      | 0.08         | 0.01                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 04         | 40% Seat back frame                                                       | 2.98         | 1.55                           | 52%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 04         | RH Brkt close out #1                                                      | 0.23         | 0.02                           | 10%                                 | no              |                |                                | Tech does NOT apply. Not on vehicle                                                              |
| 03                            | 10 04         | RH Brkt close out #2                                                      | 0.14         | 0.01                           | 10%                                 | no              |                |                                | Tech does NOT apply: Not on vehicle                                                              |
| 03                            | 10 04         | ILT DIKE CIOSE OUT #1                                                     | T 11 2       | 0.01                           | 10%                                 | 1.3.1           |                |                                | rech does NOT apply: Not on vehicle                                                              |
|                               |               |                                                                           | Table 3      | .4–8 (                         | ontinu                              | ea Nex          | t Pag          | e                              |                                                                                                  |

|        |           | Silverado 1500                                     |              |                                | Select Vehicle                      |                 |              |                                |                                                                |
|--------|-----------|----------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|----------------------------------------------------------------|
| System | Subsystem | Sibb<br>Sibb<br>Subsy<br>Step<br>M                 | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                          |
| 03     | В         | Body Group B System 2                              | 247.02       | 34.02                          | 14%                                 |                 |              | 23.67                          |                                                                |
| 03     | 10        | 0 05 Frt center riser                              | 2.97         | 1.04                           | 35%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 LH Pivot cover outer                            | 0.07         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 LH Pivot cover inner                          | 0.05         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 RH Pivot cover outer                          | 0.06         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 RH Pivot cover inner                            | 0.05         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 RH Pivot cover inner top                      | 0.05         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 Bottom tub inner                              | 0.85         | 0.09                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 Frt wrap around close out                     | 0.51         | 0.05                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 Rear wrap around close out                    | 0.65         | 0.06                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Cup holder                                      | 0.31         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 US Cup noider top                                | 0.12         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0.05 Est center box comp                           | 3.11         | 0.91                           | 44 %<br>50%                         | 110             |              |                                | Tech does NOT apply. Not on vehicle                            |
| 03     | 10        | 0.05 Soat frame cover bandle #1                    | 0.02         | 0.01                           | 10%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0.05 Seat frame cover handle #2                    | 0.02         | 0.00                           | 10%                                 | 110             |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub                                      | 1.08         | 0.00                           | 10%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0.05 Divider                                       | 0.06         | 0.01                           | 10%                                 | 10              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 Cup holder                                    | 0.20         | 0.02                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 Center tub top ring                           | 0.28         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub top lid inner                        | 0.65         | 0.07                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub top lid outer                        | 0.34         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 05 Center tub top lid handle #1                    | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 10        | 0 05 Center tub top lid handle #2                  | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 01 Cross Car Beam                                | 11.34        | 5.44                           | 48%                                 | yes             | 10.68        | 5.12                           | Tech DOES apply: Change from welded steel to mag.              |
| 03     | 12        | 2 01 Cross Car Beam to Floor Brkt Cover            | 0.10         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 02 IP Main Sub Molding                           | 1.60         | 0.16                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 02 IP Main Molding                               | 3.37         | 0.34                           | 10%                                 | yes             | 8.06         | 0.81                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 02 IP Main Molding support box                   | 0.27         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 02 Elec. Breaker box cover                       | 0.10         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 03 Knee Bolster cover                            | 0.59         | 0.06                           | 10%                                 | yes             | 0.94         | 0.09                           | Tech DOES apply: Use Polyone toaming agent                     |
| 03     | 12        | 2 03 Knee Boister Reinforcement brkt               | 0.42         | 0.24                           | 57%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 03 Glove box brkt                                | 0.35         | 0.04                           | 10%                                 | no              | 1.05         | 0.10                           | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 03 Glove box inner tub covor                     | 0.40         | 0.09                           | 10%                                 | yes             | 0.47         | 0.10                           | Tech DOES apply. Use Polyone toarning agent                    |
| 03     | 12        | 2 03 Decerative glave box trim                     | 0.40         | 0.04                           | 10%                                 | yes             | 0.47         | 0.05                           | Tech DOES apply: Use Polyone feaming agent                     |
| 03     | 12        | 2 03 Decolative glove box till                     | 0.05         | 0.01                           | 10%                                 | yes             | 0.35         | 0.04                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 03 Lwr Center IP Cover ashtrav door              | 0.11         | 0.03                           | 10%                                 | , yes           | 0.20         | 0.05                           | Tech does NOT apply: Ose Folyone loaning agent                 |
| 03     | 12        | 2 03 Ashtray                                       | 0.08         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 03 Upr glove box door                            | 0.34         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 03 Upr glove box door inner                      | 0.26         | 0.03                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 03 Upr glove box bucket                          | 0.49         | 0.05                           | 10%                                 | yes             | 0.65         | 0.07                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 03 Top IP Cover                                  | 0.29         | 0.03                           | 10%                                 | yes             | 0.83         | 0.08                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 04 IP Driver side cover                          | 0.15         | 0.02                           | 10%                                 | yes             | 0.13         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 04 IP Passenger side cover                       | 0.15         | 0.02                           | 10%                                 | yes             | 0.13         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 04 Top IP Decretive trim                         | 1.06         | 0.11                           | 10%                                 | yes             | 0.71         | 0.07                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 05 IP Control Module 1 mounting brkt             | 0.13         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 12        | 2 05 IP Control Module 2 & 3 mounting brkt         | 0.15         | 0.02                           | 10%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent                     |
| 03     | 12        | 2 05 IP Control Module 4 mounting brkt             | 0.09         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 20        | 0 03 Housing Assy, Passenger Side Airbag           | 1.09         | 0.62                           | 57%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                            |
| 03     | 20        | 12 Drivers side curtain airbag mounting brkt       | 0.30         | 0.19                           | 62%                                 | no              |              |                                | Lech does NOT apply: Not on vehicle                            |
| 03     | 20        | 12 Passenger side curtain airbag mounting brkt     | 0.31         | 0.19                           | 62%                                 | no              | 0.00         | 0.00                           | Lech does NOT apply: Not on vehicle                            |
| 03     | 20        | 16 Front Cover, Steering Wheel Airbag Assy         | 0.14         | 0.02                           | 10%                                 | yes             | 0.33         | 0.03                           | Lech DUES apply: Use Polyone toaming agent                     |
| 03     | 20        | 1 10 Dracket #1, Univers side airbag               | 0.25         | 0.11                           | 44%                                 | no              | 0.77         | 0.00                           | Tech does NOT apply: Not on vehicle                            |
| 03     | 20        | To lightion Callister, Steering vineel Airbag Assy | 0.49         | U. 14                          | 20%                                 | yes             | 0.11         | U.22                           | Tech DOES apply: Replace dual stage initator with single stage |

Table 3.4–8 Continued: System Scaling Analysis Body Group -B- Subsystem, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Due to the large size of the Body Group -B- System it was not broken down per component, but per subsystem. Mass savings opportunities were identified for the following subsystems: Interior Trim and Ornamentation, Sealing, Seating, Instrument Panel and Console, and Occupant Restraining Device.

#### Interior Trim and Ornamentation Subsystem

Shown in Image 3.4–12 are the Silverado 1500 and Renault Master 2.3 DCi Interior Trim and Ornamentation Subsystems. The subsystem masses were 20.6 kg for the 1500 versus 12.0 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the Interior Trim and Ornamentation Subsystem was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 interior trim mass reduction can be applied to the Renault. (Refer to Table 3-32).



Image 3.4–12: Interior Trim and Ornamentation Subsystems for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Sealing Subsystem

Shown in Image 3.4–13 are the Silverado 1500 and Renault Master 2.3 DCi Sealing Subsystems. The component masses were 14.5 kg for the 1500 versus 5.32 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the Sealing Subsystem was to change to TPV from EPDM material. Due to similarities in component design and material, full percentage of the Silverado 1500 sealing subsystem mass reduction can be applied to the Renault. (Refer to Table 3-32).



Image 3.4–13: Sealing Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Seating Subsystem

Shown in Image 3.4–14 are the Silverado 1500 and Renault Master 2.3 DCi Seating Subsystem. Subsystem masses were 48.2 kg for the 1500 versus 28.5 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the Seating Subsystem was to change the welded steel construction on the front seats to BASF plastic and glass fiber-layered laminate. The welded steel construction of the 60/40 seat and the center console was also changed to cast magnesium. Due to similarities in component material, only a portion of the percentage of the Silverado 1500 seating subsystem mass reduction can be applied to the Renault. (Refer to Table 3-32).



Image 3.4–14: Seating Subsystem for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc.)

### Instrument Panel and Console Subsystem

Shown in Image 3.4–15 are the Silverado 1500 and Renault Master 2.3 DCi Instrument Panel and Console Subsystems. The subsystem masses were 23.2 kg for the 1500 versus 24.4 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the Instrument Panel and Console Subsystem was to change the welded steel construction on the cross car beam to cast magnesium. The welded steel construction for the knee bolster reinforcement bracket was also changed to plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 instrument panel and console subsystem mass reduction can be applied to the Renault. (Refer to Table 3-32).



Image 3.4–15: Instrument Panel and Console Subsystem for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

### Occupant Restraining Device Subsystem

Shown in Image 3.4–16 are the Silverado 1500 and Renault Master 2.3 DCi Occupant Restraining Device Subsystems. The subsystem masses were 2.59 kg for the 1500 versus 1.10 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in both Occupant Restraining Device Subsystems was to change the welded steel construction on the passenger air bag housing to DSM Akulon<sup>®</sup> Nylon 6. Also, the steering wheel air bag dual stage inflator was changed to a single stage inflator. Due to similarities in component design and material, only a portion of the percentage of the Silverado 1500 occupant restraining device subsystem mass reduction can be applied to the Renault. (Refer to Table 3-32).



Image 3.4–16: Occupant Restraining Device Subsystems for Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)

## 3.5 BODY GROUP -C- SYSTEM

#### 3.5.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Body Group -C- System included the radiator grill, lower exterior finishers, rear closure finishers, cowl vent grill, exterior mirrors, front bumper and fascia, and rear bumper and fascia. The Body Group -C- System was made of plastic material, which is typical for these types of systems.

The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Body Group -C- System with the intent to meet the function and performance requirements of the baseline vehicle.

Table 3-33 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Body Group -C- System mass was reduced by 2.14 kg (5.28%). This decreased cost by \$2.73, or \$1.28 per kg. Mass reduction for this system reduced vehicle curb weight by 0.09%.

|        |           |               |                                           | Net Value of Mass Reduction |                                          |                                     |                                                        |                          |                                     |  |  |  |  |  |
|--------|-----------|---------------|-------------------------------------------|-----------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|--|--|--|
| System | Subsystem | Sub-Subsystem | Description                               | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |  |  |  |
| 03     | <b>08</b> | 00            | Exterior Trim and Ornamentation Subsystem | 12.82                       | 0.99                                     | 1.05                                | 1.06                                                   | 7.71%                    | 0.04%                               |  |  |  |  |  |
| 03     | 80        | 01            | Radiator Grill                            | 6.79                        | 0.49                                     | 0.44                                | 0.90                                                   | 7.21%                    | 0.02%                               |  |  |  |  |  |
| 03     | 08        | 02            | Lower Exterior Finishers                  | 2.05                        | 0.20                                     | 0.26                                | 1.25                                                   | 10.00%                   | 0.01%                               |  |  |  |  |  |
| 03     | 08        | 04            | Upper Exterior and Roof Finish            | 0.68                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |  |  |
| 03     | 08        | 07            | Rear Closure Finishers                    | 1.16                        | 0.11                                     | 0.12                                | 1.10                                                   | 9.76%                    | 0.00%                               |  |  |  |  |  |
| 03     | 08        | 12            | Badging                                   | 0.31                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |  |  |
| 03     | 08        | 15            | Cowl Vent Grill                           | 1.84                        | 0.18                                     | 0.23                                | 1.28                                                   | 9.90%                    | 0.01%                               |  |  |  |  |  |
| 03     | 09        | 00            | Rear View Mirrors Subsystem               | 4.28                        | 0.37                                     | 0.94                                | 2.51                                                   | 8.73%                    | 0.02%                               |  |  |  |  |  |
| 03     | 09        | 01            | Interior Mirror                           | 0.53                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |  |  |
| 03     | 09        | 02            | Exterior Mirrors                          | 3.73                        | 0.37                                     | 0.94                                | 2.51                                                   | 10.00%                   | 0.02%                               |  |  |  |  |  |
| 03     | 09        | 99            | Misc.                                     | 0.01                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |  |  |
| 03     | 23        | 00            | Front End Modules                         | 21.08                       | 0.57                                     | 0.50                                | 0.87                                                   | 2.73%                    | 0.02%                               |  |  |  |  |  |
| 03     | 23        | 02            | Module - Front Bumper and Fascia          | 21.08                       | 0.57                                     | 0.50                                | 0.87                                                   | 2.73%                    | 0.02%                               |  |  |  |  |  |
| 03     | 24        | 00            | Rear End Modules                          | 2.30                        | 0.20                                     | 0.24                                | 1.20                                                   | 8.72%                    | 0.01%                               |  |  |  |  |  |
| 03     | 24        | 02            | Module - Rear Bumper and Fascia           | 2.30                        | 0.20                                     | 0.24                                | 1.20                                                   | 8.72%                    | 0.01%                               |  |  |  |  |  |
|        |           |               |                                           |                             |                                          |                                     |                                                        |                          |                                     |  |  |  |  |  |
|        |           |               |                                           | 40.48                       | 2.14                                     | 2.73                                | 1.28                                                   | 5.28%                    | 0.09%                               |  |  |  |  |  |
|        |           |               |                                           |                             | (Decrease)                               | (Decrease)                          | (Decrease)                                             |                          |                                     |  |  |  |  |  |

| Table  | 3-33. | Rody | Groun | -C- | System | Mass | Reduction | Summary  | Silverado | 1500 |
|--------|-------|------|-------|-----|--------|------|-----------|----------|-----------|------|
| Tuble. | 5-55. | Douy | Group | -U- | system | mass | кецисион  | Summury, | Suverauo  | 1500 |

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: radiator grill; bumper guard – front door; bumper guard – rear door; tailgate trim; cowl grill; cowl end cap – LH; cowl end cap – RH; exterior mirror – driver side; exterior mirror – passenger side; front fascia; front fascia – air dam; rear bumper cover – LH; rear bumper cover – RH; and rear bumper cover – center.

<u>Radiator Grill:</u> The radiator grill mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 4.89 kg to 4.40 kg.

<u>Bumper Guard (Front Door)</u>: The bumper guard (front door) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.14 kg to 1.03 kg.

<u>Bumper Guard (Rear Door)</u>: The bumper guard (rear door) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.90 kg to 0.81 kg.

<u>Tailgate Trim</u>: The tailgate trim mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.13 kg to 1.01 kg.

<u>Cowl Grill:</u> The cowl grill mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.65 kg to 1.48 kg.

<u>Cowl End Cap (LH)</u>: The cowl end cap (LH) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.087 kg to 0.078 kg.

<u>Cowl End Cap (RH)</u>: The cowl end cap (RH) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.087 kg to 0.078 kg.

Exterior Mirror (Driver Side): The exterior mirror (driver side) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.86 kg to 1.68 kg.

Exterior Mirror (Passenger Side): The exterior mirror (passenger side) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.86 kg to 1.68 kg.

<u>Front Fascia:</u> The front fascia mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 2.67 kg to 2.40 kg.

<u>Front Fascia (Air Dam)</u>: The front fascia (air dam) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.75 kg to 0.67 kg.

<u>Rear Bumper Cover (LH)</u>: The rear bumper cover (LH) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.47 kg to 0.42 kg.

<u>Rear Bumper Cover (RH)</u>: The rear bumper cover (RH) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 0.48 kg to 0.43 kg.

<u>Rear Bumper Cover (Center)</u>: The rear bumper cover (center) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10% from 1.05 kg to 0.94 kg.

## 3.5.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Body Group -C- System is very similar to the 1500.



Image 3.5–1: Chevrolet Silverado 2500 Body Group -C- System (Source: FEV, Inc.)

## 3.5.1.2 2500 System Scaling Summary

Table 3-34 summarizes the mass and cost impact of the Silverado 1500 Lightweighting technologies as applied to the Silverado 2500. Total Body Group -C- System mass savings was 2.07 kg at a cost decrease of \$3.23, or \$1.56 per kg.



Table 3-34: Mass-Reduction and Cost Impact for Body Group -C- System, Silverado 2500

## 3.5.1.3 System Scaling Analysis

The Silverado 2500 Body Group -C- system components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-35.

|        |           |               | Silverado 150                    | 0            |                                | Select Vehicle                         |                 |              |                                |                                            |
|--------|-----------|---------------|----------------------------------|--------------|--------------------------------|----------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------|
| System | Subsystem | Sub-Subsystem | Component/Assembly               | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of<br>Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                      |
| 03     | В         | ody           | Group C System                   | 40.48        | 2.14                           | <b>5%</b>                              |                 |              | 2.07                           |                                            |
| 03     | 08        | 01            | Radiator Grill                   | 4.89         | 0.49                           | 10%                                    | yes             | 3.85         | 0.38                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 08        | 02            | Bumper Guard - Front Door        | 1.15         | 0.11                           | 10%                                    | yes             | 1.30         | 0.13                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 08        | 02            | Bumper Guard - Rear Door         | 0.90         | 0.09                           | 10%                                    | yes             | 1.30         | 0.10                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 08        | 07            | Tailgate Trim                    | 1.13         | 0.11                           | 10%                                    | yes             | 0.90         | 0.09                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 08        | 15            | Cowl Grill                       | 1.65         | 0.17                           | 10%                                    | yes             | 1.63         | 0.16                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 08        | 15            | Cowl End Cap - LH                | 0.09         | 0.01                           | 10%                                    | yes             | 0.10         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 08        | 15            | Cowl End Cap - RH                | 0.09         | 0.01                           | 10%                                    | yes             | 0.09         | 0.01                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 09        | 02            | Exterior Mirror - Driver Side    | 1.87         | 0.19                           | 10%                                    | yes             | 3.26         | 0.33                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 09        | 02            | Exterior Mirror - Passenger Side | 1.87         | 0.19                           | 10%                                    | yes             | 3.26         | 0.33                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 23        | 02            | Bumper Corner - LH               | 1.12         | 0.11                           | 10%                                    | no              |              |                                | Tech does NOT apply: Part not on vehicle   |
| 03     | 23        | 02            | Bumper Corner Trim - LH          | 0.05         | 0.01                           | 11%                                    | no              |              |                                | Tech does NOT apply: Part not on vehicle   |
| 03     | 23        | 02            | Bumper Corner - RH               | 1.12         | 0.11                           | 10%                                    | no              |              |                                | Tech does NOT apply: Part not on vehicle   |
| 03     | 23        | 02            | Bumper Corner Trim - RH          | 0.046        | 0.01                           | 11%                                    | no              |              |                                | Tech does NOT apply: Part not on vehicle   |
| 03     | 23        | 02            | Front Fascia                     | 2.67         | 0.27                           | 10%                                    | yes             | 2.09         | 0.21                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 23        | 02            | Front Fascia - Air Dam           | 0.75         | 0.08                           | 10%                                    | yes             | 0.68         | 0.07                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 24        | 02            | Rear Bumper Cover - LH           | 0.47         | 0.05                           | 10%                                    | yes             | 0.78         | 0.08                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 24        | 02            | Rear Bumper Cover - RH           | 0.48         | 0.05                           | 10%                                    | yes             | 0.78         | 0.08                           | Tech DOES apply: Use Polyone foaming agent |
| 03     | 24        | 02            | Rear Bumper Cover - CTR          | 1.05         | 0.11                           | 10%                                    | yes             | 1.00         | 0.10                           | Tech DOES apply: Use Polyone foaming agent |

Table 3-35: System Scaling Analysis Body Group C System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Silverado 2500 series included the radiator grill; bumper guard (front door); bumper guard (rear door); tailgate trim; cowl grill; cowl end cap (LH); cowl end cap (RH); exterior mirror (driver side); exterior mirror (passenger side); front fascia; front fascia (air dam); rear bumper cover (LH); rear bumper cover (RH); and rear bumper cover (center).

### Radiator Grill

Shown in Image 3.5–2 are the Silverado 1500 and 2500 series radiator grills. The component masses are 4.89 kg for the 1500 versus 3.85 kg for the 2500. The Lightweighting Technology used in the radiator grill was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 radiator grill mass reduction can be applied to the 2500. (Refer to Table 3-35).





Image 3.5–2: Radiator Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

## Bumper Guard (Front Door)

Shown in Image 3.5–3 are the Silverado 1500 and 2500 series bumper guards (front door). The component masses were 1.15 kg for the 1500 versus 1.30 kg for the 2500. The Lightweighting Technology used was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 bumper guard (front door) mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–3: Bumper Guard – Front Door for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

## Bumper Guard (Rear Door)

Shown in Image 3.5–4 are the Silverado 1500 and 2500 series bumper guards (rear door). The component masses were 0.90 kg for the 1500 versus 1.30 kg for the 2500. The Lightweighting Technology used in the bumper guard (rear door) was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, only a portion of the percentage of the Silverado 1500 bumper guard (rear door) mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–4: Bumper Guard - Rear Door for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Tailgate Trim

Shown in Image 3.5–5 are the Silverado 1500 and 2500 series tailgate trim. The component masses were 1.13 kg for the Silverado 1500 versus 0.90 kg for the 2500. The Lightweighting Technology used in the tailgate trim was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 tailgate trim mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–5: Tailgate Trim for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Cowl Grill

Shown in Image 3.5–6 are the Silverado 1500 and 2500 series cowl grills. The component masses were 1.65 kg for the 1500 versus 1.63 kg for the 2500. The Lightweighting Technology used in the cowl grill was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 cowl grill mass reduction can be applied to the 2500. (Refer to Table 3-35).





Image 3.5–6: Cowl Grill for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

## Cowl End Cap (RH/LH)

Shown in Image 3.5–7 are the Silverado 1500 and 2500 series cowl end caps (RH/LH). Component masses were 0.18 kg for the Silverado 1500 versus 0.19 kg for the 2500. The Lightweighting Technology used was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 cowl end cap mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–7: Cowl End Cap – RH and LH for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Exterior Mirror (Driver and Passenger Side)

Shown in Image 3.5–8 are the Silverado 1500 and 2500 series exterior mirrors (driver and passenger side). Component masses were 3.74 kg for the 1500 versus 6.52 kg for the 2500. The Lightweighting Technology used was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component material, full percentage of the Silverado 1500 exterior mirror mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–8: Exterior Mirror (Driver and Passenger Side) for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### Front Fascia

Shown in Image 3.5–9 are the Silverado 1500 and 2500 series front fascia. Component masses were 2.67 kg for the Silverado 1500 versus 2.09 kg for the 2500. The Lightweighting Technology used in the front fascia was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to

similarities in component design and material, full percentage of the Silverado 1500 front fascia mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–9: Front Fascia for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Front Fascia (Air Dam)

Shown in Image 3.5–10 are the Silverado 1500 and 2500 series front fascia's (air dam). Component masses were 0.75 kg for the Silverado 1500 versus 0.68 kg for the 2500. The Lightweighting Technology used in the front fascia (air dam) is to use PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 front fascia (air dam) mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–10: Front Fascia - Air Dam for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Rear Bumper Cover (RH/LH)

Shown in Image 3.5–11 are the Silverado 1500 and 2500 series rear bumper covers (RH/LH). Component masses are 0.95 kg for the 1500 versus 1.56 kg for the 2500. The Lightweighting Technology used in the rear bumper cover was to use PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper cover (right and LH) mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–11: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

## Rear Bumper Cover - Center

Shown in Image 3.5–12 are the Silverado 1500 and 2500 series Rear Bumper Covers (center). Component masses were 1.05 kg for the 1500 versus 1.00 kg for the 2500. The Lightweighting Technology used in the rear bumper cover (center) was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper cover (center) mass reduction can be applied to the 2500. (Refer to Table 3-35).



Image 3.5–12: Rear Bumper Cover for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

## 3.5.1.4 System Comparison, Silverado 2500

Table 3-36 summarizes the Silverado 1500 and 2500 Lightweighting results. The majority of the components were visually the same among the two Body Group -C- Systems.

Table 3-36: Body Group -C- System Comparison, Silverado 2500

|                |                                                  | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |
|----------------|--------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|
| System         | Description                                      | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
| 03<br>03<br>03 | Body Group C<br>Silverado 1500<br>Silverado 2500 | 40.48<br>28.77                      | 2.14<br>2.07                                         | 0.00                                             | 2.14<br>2.07                                      | 5.28%<br>7.19%                     | \$2.60<br>\$3.23                       | \$0.00<br>\$0.00                   | \$2.60<br>\$3.23                    | \$1.22<br>\$1.56                      |  |  |

## 3.5.2 Mercedes Sprinter 311 CDi

Table 3-37 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Mercedes Sprinter 311 CDi. Total Body Group -C- mass savings was 1.17 kg at a cost decrease of \$1.65, or \$1.42 per kg.

Table 3-37: Mass-Reduction and Cost Impact for Body Group -C- System, Mercedes Sprinter

|          |                                                                                                                                                                         |               |                                           | Net Value of Mass Reduction                          |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System   | Subsystem                                                                                                                                                               | Sub-Subsystem | Description                               | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
| 02       | 00                                                                                                                                                                      | 00            | Pody System "C"                           |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
| 03       | 00                                                                                                                                                                      | 00            | Exterior Trim and Ornamentation Subsystem | 0.21                                                 | 0.00                                             | 0.21                                              | \$0.20                                 | \$0.00                             | \$0.20                                         | <u>20 02</u>                          | 0.01%                                        |  |  |
| 03       | 00                                                                                                                                                                      | 00            | Rear View Mirrors Subsystem               | 0.21                                                 | 0.00                                             | 0.21                                              | \$0.20                                 | \$0.00                             | \$0.20                                         | \$2.50                                | 0.01%                                        |  |  |
| 03       | 23                                                                                                                                                                      | 00            | Front End Modules                         | 0.44                                                 | 0.00                                             | 0.44                                              | \$0.45                                 | \$0.00                             | \$0.45                                         | \$1.01                                | 0.02%                                        |  |  |
| 03       | 24                                                                                                                                                                      | 00            | Rear End Modules                          | 0.23                                                 | 0.00                                             | 0.23                                              | \$0.29                                 | \$0.00                             | \$0.29                                         | \$1.26                                | 0.01%                                        |  |  |
|          |                                                                                                                                                                         |               |                                           |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
|          |                                                                                                                                                                         |               |                                           | 1.17                                                 | 0.00                                             | 1.17                                              | \$1.65                                 | \$0.00                             | \$1.65                                         | \$1.42                                | 0.05%                                        |  |  |
|          |                                                                                                                                                                         |               |                                           | (Decrease)                                           |                                                  | (Decrease)                                        | (Decrease)                             |                                    | (Decrease)                                     | (Decrease)                            |                                              |  |  |
| Ma<br>Ma | Mass Savings, Select Vehicle, New Technology "kg" 1.17<br>Mass Savings, Silverado 1500, New Technology "kg" 2.14<br>Mass Savings Select Vehicle/Mass Savings 1500 54.5% |               |                                           |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |
| *SI      | *SMS not included - has no significant impact on perecent contributions                                                                                                 |               |                                           |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |  |

## 3.5.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Body Group -C- components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-38.

| Silverado 1500 |           |               |                                  |              |                                |                                        |                 | Select Vehicle |                                |                                            |  |  |
|----------------|-----------|---------------|----------------------------------|--------------|--------------------------------|----------------------------------------|-----------------|----------------|--------------------------------|--------------------------------------------|--|--|
| System         | Subsystem | Sub-Subsystem | Component/Assembly               | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of<br>Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                      |  |  |
| 03             | B         | ody           | Group C System                   | 40.48        | 2.14                           | 5%                                     |                 |                | 1.17                           |                                            |  |  |
| 03             | 08        | 01            | Radiator Grill                   | 4.89         | 0.49                           | 10%                                    | yes             | 1.60           | 0.16                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03             | 08        | 02            | Bumper Guard - Front Door        | 1.15         | 0.11                           | 10%                                    | yes             | 0.49           | 0.05                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03             | 08        | 02            | Bumper Guard - Rear Door         | 0.90         | 0.09                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 08        | 07            | Tailgate Trim                    | 1.13         | 0.11                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 08        | 15            | Cowl Grill                       | 1.65         | 0.17                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 08        | 15            | Cowl End Cap - LH                | 0.09         | 0.01                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 08        | 15            | Cowl End Cap - RH                | 0.09         | 0.01                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 09        | 02            | Exterior Mirror - Driver Side    | 1.87         | 0.19                           | 10%                                    | yes             | 2.35           | 0.14                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03             | 09        | 02            | Exterior Mirror - Passenger Side | 1.87         | 0.19                           | 10%                                    | yes             | 2.35           | 0.14                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03             | 23        | 02            | Bumper Corner - LH               | 1.12         | 0.11                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 23        | 02            | Bumper Corner Trim - LH          | 0.05         | 0.01                           | 11%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 23        | 02            | Bumper Corner - RH               | 1.12         | 0.11                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 23        | 02            | Bumper Corner Trim - RH          | 0.046        | 0.01                           | 11%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 23        | 02            | Front Fascia                     | 2.67         | 0.27                           | 10%                                    | yes             | 4.43           | 0.44                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03             | 23        | 02            | Front Fascia - Air Dam           | 0.75         | 0.08                           | 10%                                    | no              |                |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03             | 24        | 02            | Rear Bumper Cover - LH           | 0.47         | 0.05                           | 10%                                    | yes             | 0.61           | 0.06                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03             | 24        | 02            | Rear Bumper Cover - RH           | 0.48         | 0.05                           | 10%                                    | yes             | 0.60           | 0.06                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03             | 24        | 02            | Rear Bumper Cover - CTR          | 1.05         | 0.11                           | 10%                                    | yes             | 1.12           | 0.11                           | Tech DOES apply: Use Polyone foaming agent |  |  |

Table 3-38: System Scaling Analysis Body Group -C- System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter include the radiator grill, bumper guard (front door), exterior mirror (driver side), exterior mirror (passenger side), front fascia, rear bumper cover (LH), rear bumper cover (RH), and rear bumper cover (center).

#### Radiator Grill

Shown in Image 3.5–13 are the Silverado 1500 and Mercedes Sprinter 311 CDi radiator grill. Component masses were 4.89 kg for the Silverado 1500 versus 1.60 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the radiator grill was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 radiator grill mass reduction can be applied to the Sprinter. (Refer to Table 3-38).



Image 3.5–13: Radiator Grill for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and <u>www.A2mac1.com</u>)

## Bumper Guard (Front Door)

Shown in Image 3.5–14 are the Silverado 1500 and Mercedes Sprinter 311 CDi bumper guard (front door). Component masses were 1.15 kg for the Silverado 1500 versus 0.49 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the bumper guard (front door) was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 bumper guard mass reduction can be applied to the Sprinter. (Refer to Table 3-38).



Image 3.5–14: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

## Exterior Mirror (Driver and Passenger Side)

Shown in Image 3.5–15 are the Silverado 1500 and Mercedes Sprinter 311 CDi Exterior Mirror – Driver and Passenger Side. Component masses were 3.74 kg for the 1500 versus 4.70 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the Exterior Mirrors was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, only a portion of the percentage of the Silverado 1500 exterior mirror mass reduction can be applied to the Sprinter. (Refer to Table 3-38).


Image 3.5–15: Exterior Mirror (Driver Side shown; Passenger Side similar) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Front Fascia

Shown in Image 3.5–16 are the Silverado 1500 and Mercedes Sprinter 311 CDi Front Fascia. Component masses were 2.67 kg for the 1500 versus 4.43 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the Front Fascia was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 front fascia mass reduction can be applied to the Sprinter. (Refer to Table 3-38).



Image 3.5–16: Front Fascia for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right)

(Source: FEV, Inc. and www.A2mac1.com)

## Rear Bumper Cover – RH/LH

Shown in Image 3.5–17 are the Silverado 1500 and Mercedes Sprinter 311 CDi Rear Bumper Cover – RH and LH. Component masses were 0.95 kg for the 1500 versus 1.21 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the rear bumper cover was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper cover (RH/LH) mass reduction can be applied to the Sprinter. (Refer to Table 3-38).



Image 3.5–17: Rear Bumper Cover (LH/RH) for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc.)

#### Rear Bumper Cover - Center

Shown in Image 3.5–18 are the Silverado 1500 and Mercedes Sprinter 311 CDi Rear Bumper Covers – Center. Component masses were 1.05 kg for the 1500 versus 1.12 kg for the Mercedes

Sprinter 311 CDi. The Lightweighting Technology used in the Rear Bumper Cover – Center was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper cover (center) mass reduction can be applied to the Sprinter. (Refer to Table 3-38).



Image 3.5–18: Rear Bumper Cover – Center for the Silverado 1500 (Top) and Sprinter 311 CDi (Bottom) (Source: FEV, Inc.)

## 3.5.3 Renault Master 2.3 DCi

Table 3-39 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Renault Master 2.3 DCi. Total Body Group -C- System mass savings is 1.62 kg at a cost decrease of \$2.27, or \$1.40 per kg.



Table 3-39: Mass-Reduction and Cost Impact for Body Group -C- System, Renault Master

#### 3.5.3.1 System Scaling Analysis

The Renault Master 2.3 DCi Body Group -C- system components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed below.

|        |                           |     | Silverado 150                    | 00           |                                |                                     | Select Vehicle  |              |                                |                                            |  |  |
|--------|---------------------------|-----|----------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------|--|--|
| System | Subsystem<br>System<br>O3 |     | Component/Assembly               | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                      |  |  |
| 03     | B                         | ody | / Group C System                 | 40.48        | 2.14                           | 5%                                  |                 |              | 1.62                           |                                            |  |  |
| 03     | 08                        | 01  | Radiator Grill                   | 4.89         | 0.49                           | 10%                                 | yes             | 2.53         | 0.25                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 08                        | 02  | Bumper Guard - Front Door        | 1.15         | 0.11                           | 10%                                 | yes             | 0.33         | 0.03                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 08                        | 02  | Bumper Guard - Rear Door         | 0.90         | 0.09                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 08                        | 07  | Tailgate Trim                    | 1.13         | 0.11                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 08                        | 15  | Cowl Grill                       | 1.65         | 0.17                           | 10%                                 | yes             | 1.11         | 0.11                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 08                        | 15  | Cowl End Cap - LH                | 0.09         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 08                        | 15  | Cowl End Cap - RH                | 0.09         | 0.01                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 09                        | 02  | Exterior Mirror - Driver Side    | 1.87         | 0.19                           | 10%                                 | yes             | 1.93         | 0.19                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 09                        | 02  | Exterior Mirror - Passenger Side | 1.87         | 0.19                           | 10%                                 | yes             | 1.93         | 0.19                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 23                        | 02  | Bumper Corner - LH               | 1.12         | 0.11                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 23                        | 02  | Bumper Corner Trim - LH          | 0.05         | 0.01                           | 11%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 23                        | 02  | Bumper Corner - RH               | 1.12         | 0.11                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 23                        | 02  | Bumper Corner Trim - RH          | 0.046        | 0.01                           | 11%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 23                        | 02  | Front Fascia                     | 2.67         | 0.27                           | 10%                                 | yes             | 5.23         | 0.52                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 23                        | 02  | Front Fascia - Air Dam           | 0.75         | 0.08                           | 10%                                 | no              |              |                                | Tech does NOT apply: Part not on vehicle   |  |  |
| 03     | 24                        | 02  | Rear Bumper Cover - LH           | 0.47         | 0.05                           | 10%                                 | yes             | 0.63         | 0.06                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 24                        | 02  | Rear Bumper Cover - RH           | 0.48         | 0.05                           | 10%                                 | yes             | 0.63         | 0.06                           | Tech DOES apply: Use Polyone foaming agent |  |  |
| 03     | 24                        | 02  | Rear Bumper Cover - CTR          | 1.05         | 0.11                           | 10%                                 | yes             | 1.92         | 0.19                           | Tech DOES apply: Use Polyone foaming agent |  |  |

Table 3-40: System Scaling Analysis Body Group -C- System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi included the radiator grill, bumper guard (front door), cowl grill, exterior mirror (driver side), exterior mirror (passenger side), front fascia, front fascia (air dam), rear bumper cover (LH), rear bumper cover (RH), and rear bumper cover (center).

#### Radiator Grill

Shown in Image 3.5–19 are the Silverado 1500 and Renault Master 2.3 DCi radiator grills. Component masses were 4.89 kg for the Silverado 1500 versus 2.53 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the radiator grill was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 radiator grill mass reduction can be applied to the Renault.



Image 3.5–19: Radiator Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### Bumper Guard - Front Door

Shown in Image 3.5–20 are the Silverado 1500 and Renault Master 2.3 DCi bumper guards (front door). Component masses were 1.15 kg for the Silverado 1500 versus 0.33 kg for the Renault

Master 2.3 DCi. The Lightweighting Technology used in the bumper guard (front door) was  $PolyOne^{(R)}$  foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 bumper guard – front door mass reduction can be applied to the Renault.



Image 3.5–20: Bumper Guard (Front Door) for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

### Cowl Grill

Shown in Image 3.5–21 are the Silverado 1500 and Renault Master 2.3 DCi cowl grills. Component masses were 1.13 kg for the 1500 versus 1.11 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the cowl grill was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 cowl gill mass reduction can be applied to the Renault.



Image 3.5–21: Cowl Grill for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### Exterior Mirror (Driver and Passenger Side)

Shown in Image 3.5–22 are the Silverado 1500 and Renault Master 2.3 DCi exterior mirrors (driver and passenger side). Component masses are 3.73 kg for the 1500 versus 3.85 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component material, full percentage of the Silverado 1500 exterior mirror mass reduction can be applied to the Renault.



Image 3.5–22: Exterior Mirror (Driver side shown; passenger side similar) for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

## Front Fascia

Shown in Image 3.5–23 are the Silverado 1500 and Renault Master 2.3 DCi front fascia. Component masses were 2.67 kg for the Silverado 1500 versus 5.23 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the front fascia was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component material, full percentage of the Silverado 1500 front fascia mass reduction can be applied to the Renault.



Image 3.5–23: Front Fascia for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Rear Bumper Cover (RH/LH)

Shown in Image 3.5–24 are the Silverado 1500 and Renault Master 2.3 DCi rear bumper covers (RH/LH). Component masses were 0.95kg for the Silverado 1500 versus 1.26 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper cover (RH/LH) mass reduction can be applied to the Renault.



Image 3.5–24: Rear Bumper Cover – RH and LH Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Rear Bumper Cover - Center

Shown in Image 3.5–25 are the Silverado 1500 and Renault Master 2.3 DCi rear bumper covers (center). Component masses were 1.05 kg for the 1500 versus 1.92 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the rear bumper cover (center) was PolyOne<sup>®</sup>

foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 rear bumper cover (center) mass reduction can be applied to the Renault.



Image 3.5–25: Rear Bumper Cover (Center) for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

## 3.6 BODY GROUP -D- SYSTEM

### 3.6.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Body Group -D- System includes the Glass (Glazing), Frame, and Mechanism Subsystem; Handles, Locks, Latches and Mechanisms Subsystem; and Wipers and Washers Subsystem.

The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Body Group -D- System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-41 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Body Group -D- System mass was reduced by 4.50 kg (8.85%). This decreased cost by \$2.30, or \$0.51 per kg. Mass reduction for this system reduced vehicle curb weight by 0.19%.

|        |           |               |                                                  | Net Value of Mass Reduction |                                          |                                    |                                                        |                          |                                     |  |  |
|--------|-----------|---------------|--------------------------------------------------|-----------------------------|------------------------------------------|------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|
| System | Subsystem | Sub-Subsystem | Description                                      | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |
| 03     | 00        | 00            | Body Group D                                     |                             |                                          |                                    |                                                        |                          |                                     |  |  |
| 03     | 11        | 00            | Glass (Glazing), Frame, and Mechanism Subsystem  | 39.60                       | 4.43                                     | 2.23                               | 0.50                                                   | 11.19%                   | 0.19%                               |  |  |
| 03     | 11        | 01            | Windshield and Front Quarter Window (Fixed)      | 15.87                       | 1.59                                     | 0.80                               | 0.50                                                   | 10.02%                   | 0.07%                               |  |  |
| 03     | 11        | 05            | Back Window Assy                                 | 6.59                        | 1.34                                     | 0.68                               | 0.50                                                   | 20.39%                   | 0.06%                               |  |  |
| 03     | 11        | 13            | Front Side Door Glass                            | 8.39                        | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 03     | 11        | 14            | Rear Side Door Glass                             | 8.75                        | 1.50                                     | 0.76                               | 0.51                                                   | 17.10%                   | 0.06%                               |  |  |
| 03     | 14        | 00            | Handles, Locks, Latches and Mechanisms Subsystem | 5.66                        | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 03     | 14        | 03            | Hood Latch & Actuation                           | 1.95                        | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 03     | 14        | 04            | Side Door Latches                                | 2.19                        | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 03     | 14        | 05            | Rear Closure Latches                             | 0.53                        | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 03     | 14        | 13            | Outer Handles and Actuation                      | 0.99                        | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 03     | 16        | 00            | Wipers and Washers Subsystem                     | 5.61                        | 0.07                                     | 0.06                               | 0.84                                                   | 1.32%                    | 0.00%                               |  |  |
| 03     | 16        | 01            | Wiper Assembly Front                             | 4.63                        | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 03     | 16        | 99            | Misc.                                            | 0.97                        | 0.07                                     | 0.06                               | 0.84                                                   | 7.61%                    | 0.00%                               |  |  |
|        |           |               |                                                  |                             |                                          |                                    |                                                        |                          |                                     |  |  |
|        |           |               |                                                  | 50.86                       | 4.50                                     | 2.30                               | 0.51                                                   | 8.85%                    | 0.19%                               |  |  |
|        |           |               |                                                  |                             | (Decrease)                               | (Decrease)                         | (Decrease)                                             |                          |                                     |  |  |

Table 3-41: Body Group -D- System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase
(2) "+" = cost decrease, "-" = cost increase

Mass savings opportunities were identified for the following components: windshield and front quarter window (fixed), back window assembly, rear side door glass, washer tank assembly.

Windshield: The windshield mass was reduced by replacing 2.27 mm thick glass with 1.6 mm thick using the Pilkington<sup>®</sup> laminated glass process. Mass was reduced 10%, from 15.87 kg to 14.28 kg.

Back Window: The back window mass was reduced by replacing 4.00 mm thick glass with 3.15 mm thick using the Pilkington<sup>®</sup> laminated glass process. Mass was reduced 20.39%, from 6.59 kg to 5.25 kg.

Rear Side Door Glass: The rear side door glass mass was reduced by replacing 3.85 mm thick glass with 3.15 mm thick using the Pilkington<sup>®</sup> laminated glass process. Mass was reduced 17.10%, from 8.75 kg to 7.25 kg.

Washer Tank Assembly: The washer tank assembly mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced 7.6%, from .97 kg to .90 kg.

### 3.6.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Body Group -D- System was very similar to the 1500; although, the 1500 used for analysis was a crew cab and the 2500 used was an extended cab.



Image 3.6–1: Chevrolet Silverado 2500 Body Group -D- System (Source: FEV, Inc.)

## 3.6.1.2 2500 System Scaling Summary

Table 3-42 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Silverado 2500. Total Body Group -D- System mass savings is 3.80 kg at a cost decrease of \$1.94, or \$0.51 per kg.

|        |                      |               |                                                                                                                            | Net Value of Mass Reduction                          |                                                  |                                                   |                                                                       |                                           |                                                               |                                       |                                              |  |  |
|--------|----------------------|---------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System | Subsystem            | Sub-Subsystem | Description                                                                                                                | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub>                     | Cost<br>Impact<br>Comp<br>"\$" (2)        | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub>                | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
| 03     | 00                   | 00            | Body System "D"                                                                                                            |                                                      |                                                  |                                                   |                                                                       |                                           |                                                               |                                       |                                              |  |  |
| 03     | 11                   | 00            | Glass (Glazing), Frame, and Mechanism<br>Subsystem                                                                         | 3.73                                                 | 0.00                                             | 3.73                                              | <b>\$1</b> .88                                                        | \$0.00                                    | \$1.88                                                        | \$0.50                                | 0.12%                                        |  |  |
| 03     | 14                   | 00            | Handles, Locks, Latches and Mechanisms<br>Subsystem                                                                        | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                                                | \$0.00                                    | \$0.00                                                        | \$0.00                                | 0.00%                                        |  |  |
| 03     | 16                   | 00            | Wipers and Washers Subsystem                                                                                               | 0.07                                                 | 0.00                                             | 0.07                                              | \$0.06                                                                | \$0.00                                    | \$0.06                                                        | \$0.84                                | 0.00%                                        |  |  |
|        |                      |               |                                                                                                                            | 3.80<br>(Decrease)                                   | 0.00                                             | 3.80<br>(Decrease)                                | \$1.94<br>(Decrease)                                                  | \$0.00                                    | \$1.94<br>(Decrease)                                          | \$0.51<br>(Decrease)                  | 0.12%                                        |  |  |
| Ma     | ss s<br>ss S<br>ss S | 0.0           | ngs, select vehicle, New Technology kg<br>ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500 | 3.80<br>4.50<br>84.4%                                |                                                  | ■ % Sa<br>■ % Lo<br>■ % Lo<br>■ % Lo<br>■ % Lo    | aved, tech<br>ost, compo<br>ost, techno<br>ost, techno<br>ost, techno | nology<br>onent d<br>ology do<br>ology al | applies<br>oesn't ex<br>oesn't app<br>ready imp<br>educed int | ist<br>oly<br>olemente<br>opact       | d                                            |  |  |

# 3.6.1.3 System Scaling Analysis

The Silverado 2500 Body Group D system components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-43.

|        |                          |               | Silverado 1500                              |              |                                |                                     | Select Vehicle  |              |                                                                  |                                                                  |  |  |  |
|--------|--------------------------|---------------|---------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| System | Subsystem                | Sub-Subsystem | Component/Assembly                          | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech                                   | Notes                                                            |  |  |  |
| 03     | Bo                       | ody           | Group D System                              | 50.86        | 4.50                           | <b>9%</b>                           |                 |              | 3.80                                                             |                                                                  |  |  |  |
| 03     | 11                       | 01            | Windshield and Front Quarter Window (Fixed) | 15.87        | 1.590                          | 10%                                 | yes             | 15.30        | 1.53                                                             | Tech DOES apply: Thin glass using Pilkington window applications |  |  |  |
| 03     | 3 11 05 Back Window Assy |               | 6.59                                        | 1.343        | 20%                            | yes                                 | 6.35            | 1.29         | Tech DOES apply: Thin glass using Pilkington window applications |                                                                  |  |  |  |
| 03     | 11                       | 14            | Rear Side Door Glass                        | 8.75         | 1.496                          | 17%                                 | yes             | 5.27         | 0.90                                                             | Tech DOES apply: Thin glass using Pilkington window applications |  |  |  |
| 03     | 16                       | 99            | Washer Tank Assembly                        | 0.74         | 0.074                          | 10%                                 | yes             | 0.73         | 0.07                                                             | Tech DOES apply: Use Polyone foaming agent                       |  |  |  |

Table 3-43: System Scaling Analysis Body Group D System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the 2500 series Silverado included the windshield and front quarter window (fixed), back window assembly, rear side door glass, washer tank assembly.

#### Windshield

Shown in Image 3.6–2 are the Silverado 1500 and 2500 windshields. Component masses were 15.9 kg for the 1500 versus 15.3 kg for the 2500. The Lightweighting Technology used in the windshield was to replace 2.27 mm thick glass with 1.6 mm thick using the Pilkington<sup>®</sup> laminated glass process. Due to similarities in component design and material, only a portion of the percentage of the Silverado 1500 windshield mass reduction can be applied to the 2500. (Refer to Table 3-43).



Image 3.6–2: Windshield for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Back Window

Shown in Image 3.6–3 are the Silverado 1500 and 2500 series back windows. Component masses were 6.58 kg for the 1500 versus 6.15 kg for the 2500. The Lightweighting Technology used in the back window was to replace 4.00 mm thick glass with 3.15mm thick using the Pilkington<sup>®</sup> laminated glass process. Due to similarities in component design and material, only a portion of the percentage of the Silverado 1500 back window mass reduction can be applied to the 2500. (Refer to Table 3-43).



Image 3.6–3: Back Window for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Rear Side Door Glass

Shown in Image 3.6–4 is the Silverado 1500 and 2500 series rear side door glass. Component masses were 8.75 kg for the 1500 versus 5.27 kg for the 2500. The 1500 and the 2500 series Rear Side Door Glass the 1500 used for analysis was a crew cab and the 2500 used was an extended cab. The Lightweighting Technology used in the Rear Side Door Glass was to replace the 3.85 mm thick glass with 3.15mm thick using the Pilkington<sup>®</sup> laminated glass process. Due to similarities in component design and material, full percentage of the Silverado 1500 rear side door glass mass reduction can be applied to the 2500. (Refer to Table 3-43).



Image 3.6–4: Rear door glass for the Silverado 1500 (Left) and 2500 (Right) (Source: FEV, Inc.)

#### Washer Tank Assembly

Shown in Image 3.6–5 are the Silverado 1500 and 2500 series washer tank assembly. Component masses were 0.74 kg for the 1500 versus 0.72 kg for the 2500. The Lightweighting Technology used in the washer tank assembly was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 7.6%. Due to similarities in component design and material, full percentage of the Silverado 1500 washer tank assembly mass reduction can be applied to the 2500. (Refer to Table 3-43).



Image 3.6–5: Washer Tank Assembly for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

# 3.6.1.4 System Comparison, Silverado 2500

Table 3-44 summarizes the Silverado 1500 and 2500 Body Group -D- system Lightweighting results.

|          |                                | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |
|----------|--------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|
| System   | Description                    | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
| 03<br>03 | Body Group D<br>Silverado 1500 | 50.86                               | 4.50                                                 | 0.00                                             | 4.50                                              | 8.85%                              | \$2.30                                 | \$0.00                             | \$2.30                              | \$0.51                                |  |  |
| 03       | Silverado 2000                 | 01.29                               | 3.80                                                 | 0.00                                             | 3.60                                              | 0.20%                              | φ1.94                                  | -φU.UU                             | φ1.94                               | -<br>ΦU.51                            |  |  |

Table 3-44: Body Group -D-System Comparison, Silverado 1500 and 2500

### 3.6.2 Mercedes Sprinter 311 CDi

Table 3-45 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Mercedes Sprinter 311 CDi. Total Body Group -D- mass savings is 2.14 kg at a cost decrease of \$1.10, or \$.51 per kg.

|            |                                                                                                                                                                                                                                                                                                                                                                            |               |                                                     | Net Value of Mass Reduction                          |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System     | Subsystem                                                                                                                                                                                                                                                                                                                                                                  | Sub-Subsystem | Description                                         | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                            |               |                                                     |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |  |
| 03         | 00                                                                                                                                                                                                                                                                                                                                                                         | 00            | Body System "D"                                     |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |  |
| 03         | 11                                                                                                                                                                                                                                                                                                                                                                         | 00            | Glass (Glazing), Frame, and Mechanism<br>Subsystem  | 2.06                                                 | 0.00                                             | 2.06                                              | \$1.04                                 | \$0.00                             | \$1.04                              | \$0.50                                | 0.10%                                        |  |  |
| 03         | 14                                                                                                                                                                                                                                                                                                                                                                         | 00            | Handles, Locks, Latches and Mechanisms<br>Subsystem | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                              | \$0.00                                | 0.00%                                        |  |  |
| 03         | 16                                                                                                                                                                                                                                                                                                                                                                         | 00            | Wipers and Washers Subsystem                        | 0.07                                                 | 0.00                                             | 0.07                                              | \$0.06                                 | \$0.00                             | \$0.06                              | \$0.84                                | 0.00%                                        |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                            |               |                                                     | 2.14<br>(Decrease)                                   | 0.00                                             | 2.14<br>(Decrease)                                | \$1.10<br>(Decrease)                   | \$0.00                             | <b>\$1.10</b><br>(Decrease)         | <b>\$0.51</b><br>(Decrease)           | 0.10%                                        |  |  |
| Mas<br>Mas | Mass Savings, Silverado 1500, New Technology "kg"<br>4.50<br>Mass Savings Select Vehicle/Mass Savings 1500<br>47.5%<br>63.0%<br>63.0%<br>47.5%<br>47.5%<br>4.50<br>4.50<br>47.5%<br>8% Saved, technology applies<br>8% Lost, component doesn't exist<br>8% Lost, technology doesn't apply<br>8% Lost, technology already implemented<br>8% Lost, technology reduced impact |               |                                                     |                                                      |                                                  |                                                   |                                        |                                    |                                     |                                       |                                              |  |  |

 Table 3-45: Mass-Reduction and Cost Impact for Body Group -D- System, Mercedes Sprinter

# 3.6.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Body Group -D- components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-46.

|        |           | Silverado 1500                                 |              |                                |                                     | Select Vehicle  |              |       |                                                                  |  |  |
|--------|-----------|------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|-------|------------------------------------------------------------------|--|--|
| System | Subsystem | Component/Assembly                             | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Notes |                                                                  |  |  |
| 03     | Во        | ody Group D System                             | 50.86        | 4.50                           | <b>9%</b>                           |                 |              | 2.14  |                                                                  |  |  |
| 03     | 11        | 01 Windshield and Front Quarter Window (Fixed) | 15.87        | 1.590                          | 10%                                 | yes             | 20.58        | 2.06  | Tech DOES apply: Thin glass using Pilkington window applications |  |  |
| 03     | 11        | 05 Back Window Assy                            | 6.59         | 1.343                          | 20%                                 | no              |              |       | Tech does NOT apply: Part not on vehicle                         |  |  |
| 03     | 11        | 14 Rear Side Door Glass                        | 8.75         | 1.496                          | 17%                                 | no              |              |       | Tech does NOT apply: Part not on vehicle                         |  |  |
| 03     | 16        | 99 Washer Tank Assembly                        | 0.74         | 0.074                          | 10%                                 | yes             | 0.75         | 0.07  | Tech DOES apply: Use Polyone foaming agent                       |  |  |

Table 3-46: System Scaling Analysis Body Group -D- System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter include the Windshield and Washer Tank Assembly.

### Windshield

Shown in Image 3.6–6 are the Silverado 1500 and Mercedes Sprinter 311 CDi windshields. Component masses were 15.9 kg for the Silverado 1500 versus 20.6 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the windshield was to replace the 2.27 mm thick glass with 1.6 mm thick using the Pilkington<sup>®</sup> laminated glass process. Due to similarities in component design and material, full percentage of the Silverado 1500 windshield mass reduction can be applied to the Sprinter. (Refer to Table 3-46).



Image 3.6–6: Windshield for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Washer Tank Assembly

Shown in Image 3.6–7 are the Silverado 1500 and Mercedes Sprinter 311 CDi washer tank assemblies. Component masses were 0.74 kg for the Silverado 1500 versus 0.75 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the washer tank was PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 washer tank assembly mass reduction can be applied to the Sprinter. (Refer to Table 3-46).



Image 3.6–7: Washer Tank for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### 3.6.3 Renault Master 2.3 DCi

Table 3-47 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Renault Master 2.3 DCi. Total Body Group -D- system mass savings is 2.18 kg at a cost decrease of \$1.12, or \$0.51 per kg.

|        |           |                                                    |                                                     |                                                      | N                                                | et Value                                          | e of Ma                                | ss Re                              | eductio                                        | n                                     |                                              |  |
|--------|-----------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|--|
| System | Subsystem | Sub-Subsystem                                      | Description                                         | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |
| 02     | 00        | 00                                                 | Pody System "D"                                     |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |
| 03     | 11        | 00                                                 | Glass (Glazing), Frame, and Mechanism<br>Subsystem  | 2.12                                                 | 0.00                                             | 2.12                                              | \$1.07                                 | \$0.00                             | \$1.07                                         | \$0.50                                | 0.09%                                        |  |
| 03     | 14        | 00                                                 | Handles, Locks, Latches and Mechanisms<br>Subsystem | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |  |
| 03     | 16        | 00                                                 | Wipers and Washers Subsystem                        | 0.06                                                 | 0.00                                             | 0.06                                              | \$0.05                                 | \$0.00                             | \$0.05                                         | \$0.84                                | 0.00%                                        |  |
|        |           |                                                    |                                                     | 2.18<br>(Decrease)                                   | 0.00                                             | 2.18<br>(Decrease)                                | \$1.12<br>(Decrease)                   | \$0.00                             | \$1.12<br>(Decrease)                           | <b>\$0.51</b><br>(Decrease)           | 0.09%                                        |  |
| Ma     | ss S      | ss Savings Select Vehicle New Technology "kg" 2.18 |                                                     |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |  |

4.50

48.5%

Table 3-47: Mass-Reduction and Cost Impact for Body Group -D- System, Renault Master





- % Saved, technology applies
- % Lost, component does n't exist
- % Lost, technology doesn't apply
- % Lost, technology already implemented
- % Lost, technology reduced impact

\*SMS not included - has no significant impact on perecent contributions

# 3.6.3.1 System Scaling Analysis

The Renault Master 2.3 DCi Body Group -D- system components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-48.

|        |                                                  |               | Silverado 1500       |              |                                |                                     |                 | Select Vehicle |                                |                                                                  |  |  |  |
|--------|--------------------------------------------------|---------------|----------------------|--------------|--------------------------------|-------------------------------------|-----------------|----------------|--------------------------------|------------------------------------------------------------------|--|--|--|
| System | Subsystem                                        | Sub-Subsystem | Component/Assembly   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                                            |  |  |  |
| 03     | В                                                | ody           | Group D System       | 50.86        | 4.50                           | 9%                                  |                 |                | 2.18                           |                                                                  |  |  |  |
| 03     | 11 01 Windshield and Front Quarter Window (Fixed |               |                      | 15.87        | 1.590                          | 10%                                 | yes             | 21.19          | 2.12                           | Tech DOES apply: Thin glass using Pilkington window applications |  |  |  |
| 03     | 11                                               | 05            | Back Window Assy     | 6.59         | 1.343                          | 20%                                 | no              |                |                                | Tech does NOT apply: Part not on vehicle                         |  |  |  |
| 03     | 11                                               | 14            | Rear Side Door Glass | 8.75         | 1.496                          | 17%                                 | no              |                |                                | Tech does NOT apply: Part not on vehicle                         |  |  |  |
| 03     | 16                                               | 99            | Washer Tank Assembly | 0.74         | 0.074                          | 10%                                 | yes             | 0.59           | 0.06                           | Tech DOES apply: Use Polyone foaming agent                       |  |  |  |

Table 3-48: System Scaling Analysis Body Group -D- System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi included the windshield and washer tank assembly.

### Windshield

Shown in Image 3.6–8 are the Silverado 1500 and Renault Master 2.3 DCi windshields. Component masses are 15.9 kg for the Silverado 1500 versus 21.2 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the windshield was to replace the 2.27 mm thick glass with 1.6 mm thick using the Pilkington<sup>®</sup> laminated glass process. Due to similarities in component design and material, full percentage of the Silverado 1500 windshield mass reduction can be applied to the Renault. (Refer to Table 3-48).



Image 3.6–8: Windshield for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Washer Tank Assembly

Shown in Image 3.6–9 are the Silverado 1500 and Renault Master 2.3 DCi Washer Tank. Component masses are 0.74 kg for the Silverado 1500 versus .59 kg for the Renault Master 2.3 DCi

respectively. The Lightweighting Technology used in the Washer Tank is to use PolyOne<sup>®</sup> foaming agent in the plastic to reduce the mass by 10%. Due to similarities in component design and material, full percentage of the Silverado 1500 washer tank assembly mass reduction can be applied to the Renault. (Refer to Table 3-48).



Image 3.6–9: Washer Tank for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

## 3.7 SUSPENSION SYSTEM

### 3.7.1 Silverado 1500 Summary

This summary details FEV's work and findings relative to the Suspension System to prove the design concept, cost effectiveness, and manufacturing feasibility that can meet the function and performance of the baseline vehicle (2011 Chevrolet Silverado). Table 3-49 is a summary of the calculated mass reduction and cost impact for each sub-subsystem evaluated. This project recorded a system mass reduction of 30.5% (92 kg system mass reduction) at a cost increase of \$2.00 per kg (\$183.78 increase). Furthermore, the contribution of the suspension system to the overall vehicle mass reduction is 3.85%.

|           |           |               | Net Value of Mass Reduction |                      |                                          |                                                |                                                        |                          |                                     |  |  |  |  |  |
|-----------|-----------|---------------|-----------------------------|----------------------|------------------------------------------|------------------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|--|--|--|
| System    | Subsystem | Sub-Subsystem | Description                 | Base<br>Mass<br>"kg" | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" <sub>(2)</sub> | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |  |  |  |
| <b>04</b> | 00        | 00            | Suspension System           |                      |                                          |                                                |                                                        |                          |                                     |  |  |  |  |  |
| 04        | 01        | 00            | Front Suspension Subsystem  | 54.76                | 20.07                                    | -77.45                                         | -3.86                                                  | 36.65%                   | 0.84%                               |  |  |  |  |  |
| 04        | 01        | 02            | Lower Control Arm           | 19.10                | 7.70                                     | -56.78                                         | -7.38                                                  | 40.31%                   | 0.32%                               |  |  |  |  |  |
| 04        | 01        | 03            | Upper Control Arm           | 4.57                 | 3.05                                     | -2.47                                          | -0.81                                                  | 66.77%                   | 0.13%                               |  |  |  |  |  |
| 04        | 01        | 04            | Steering Knuckle            | 15.35                | 7.89                                     | -12.07                                         | -1.53                                                  | 51.39%                   | 0.33%                               |  |  |  |  |  |
| 04        | 01        | 04            | Other Components            | 15.75                | 1.43                                     | -6.13                                          | -4.28                                                  | 9.09%                    | 0.06%                               |  |  |  |  |  |
| 04        | 02        | 00            | Rear Suspension Subsystem   | 63.52                | 35.75                                    | -113.47                                        | -3.17                                                  | 56.28%                   | 1.50%                               |  |  |  |  |  |
| 04        | 02        | 01            | Leaf Spring Assembly        | 52.43                | 31.46                                    | -115.17                                        | -3.66                                                  | 60.00%                   | 1.32%                               |  |  |  |  |  |
| 04        | 02        | 01            | Other Components            | 11.08                | 4.29                                     | 1.70                                           | 0.40                                                   | 38.69%                   | 0.18%                               |  |  |  |  |  |
| 04        | 03        | 00            | Shock Absorber Subsystem    | 24.36                | 6.44                                     | -5.78                                          | -0.90                                                  | 26.46%                   | 0.27%                               |  |  |  |  |  |
| 04        | 03        | 01            | Front Strut Coil Spring     | 11.06                | 5.60                                     | -2.31                                          | -0.41                                                  | 50.62%                   | 0.23%                               |  |  |  |  |  |
| 04        | 03        | 02            | Other Components            | 13.29                | 0.84                                     | -3.47                                          | 0.00                                                   | 6.35%                    | 0.04%                               |  |  |  |  |  |
| 04        | 04        | 00            | Wheel and Tires Subsystem   | 158.61               | 29.64                                    | 12.93                                          | 0.44                                                   | 18.69%                   | 1.24%                               |  |  |  |  |  |
| 04        | 04        | 01            | Road Wheels                 | 48.51                | 9.70                                     | -28.03                                         | -2.89                                                  | 20.00%                   | 0.41%                               |  |  |  |  |  |
| 04        | 04        | 01            | Road Tires                  | 69.45                | 9.92                                     | 41.14                                          | 4.15                                                   | 14.28%                   | 0.42%                               |  |  |  |  |  |
| 04        | 04        | 02            | Spare Wheel                 | 14.54                | 7.42                                     | -7.98                                          | -1.08                                                  | 3.16%                    | 0.31%                               |  |  |  |  |  |
| 04        | 04        | 02            | Spare Tire                  | 16.96                | 2.09                                     | 8.67                                           | 4.15                                                   | 3.16%                    | 0.09%                               |  |  |  |  |  |
| 04        | 04        | 02            | Other Components            | 9.14                 | 0.50                                     | -0.87                                          | -1.72                                                  | 3.16%                    | 0.02%                               |  |  |  |  |  |
|           |           |               |                             |                      |                                          |                                                |                                                        |                          |                                     |  |  |  |  |  |
|           |           |               |                             | 301.24               | 91.90                                    | -183.78                                        | -2.00                                                  | 30.51%                   | 3.85%                               |  |  |  |  |  |
|           |           |               |                             |                      | (Decrease)                               | (Increase)                                     | (Increase)                                             |                          |                                     |  |  |  |  |  |

Table 3-49: Suspension System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

The major components contributing to the mass reduction within the Front Suspension Subsystem are the lower control arms, upper control arms, and the steering knuckles.

<u>Lower Control Arm</u>: The mass reduction idea for the lower control arms was to change the component material from steel to aluminum. The individual baseline component mass was 9.55 kg and the redesign mass was 5.70 kg, resulting in an overall mass savings of 7.70 kg, or 40.31%, compared to the steel units.

In 2009, General Motors offered two XFE (eXtra Fuel Economy) models for the Chevrolet Silverado and GMC Sierra that included, among other fuel saving ideas, aluminum lower control arms. The aluminum control arms were eventually switched back to cast iron due to cost reduction efforts. GM then announced that the 2014 Silverado would come equipped with aluminum control arms and aluminum knuckles.

<u>Upper Control Arm</u>: The mass reduction ideas for the upper control arms were to normalize the control arm based on the 2012 Dodge Durango, and then change the component material from forged steel to cast magnesium.

The normalizing process compared the Gross Vehicle Weight (GVW) of the Durango to the GVW of the Silverado and adjusted the mass of the Silverado control arm, up or down, based on the ratios of the two vehicles GVW and the component mass of the Durango control arm. As a result of this normalization process the baseline mass of the Silverado control arm was reduced by 1.72 kg.

The individual baseline component mass was 2.28 kg and the redesign mass 0.759 kg, resulting in an overall mass savings of 3.04 kg for both arms, or 66.7%, compared to the steel units.

General Motors China Advanced Technical Center (ATC) announced in May 2012 that they had successfully casted a prototype magnesium alloy control arm and noted that the part is 30% lighter than a similar part made of aluminum.

It is understood that most OEMs in the United States are reluctant to use magnesium due in part to price volatility, availability; manufacturing plants were not facilitated for magnesium processing, and recycling concerns.

Additionally, in 2001, the U.S. Department of Commerce (DoC) imposed anti-dumping duties (ADD) on magnesium in granular form imported from the People's Republic of China (PRC). Dumping duties of 24.67% to 305.56% were determined and maintained during the first sunset review in 2006 and the second sunset review, which concluded on September 12, 2012.

Magnesium is used in the automotive and aeronautic industries. According to Asia Trade Watch, "ADD on magnesium adversely affects the American auto industry and inflates U.S. magnesium prices by approximately 50%. Increased costs have made American companies less competitive and raised industry costs for meeting stricter fuel standards for vehicles."

Even with these concerns, magnesium represents a major opportunity for mass reduction that European OEMs are embracing.

<u>Steering Knuckle</u>: The mass reduction idea for the steering knuckles was to change the base component material from steel to aluminum. The individual baseline component mass was 7.67 kg, and the redesign mass 3.73 kg. This resulted in an overall mass savings of 7.89 kg for both knuckles, and 51.4% compared to the steel units.

The major component contributing to the mass reduction within the Rear Suspension Subsystem is the rear leaf spring assembly.

<u>Leaf Spring Assembly</u>: The mass reduction idea for the rear leaf spring assemblies was to change the base component material from steel to glass fiber reinforced plastic. The individual baseline

component mass was 26.2 kg and the redesign mass 10.5 kg. This resulted in an overall mass savings of 31.4 kg for either leaf spring assemblies, or 60.0% compared to the steel units.

Liteflex<sup>®</sup> LLC, a manufacturer of OEM composite leaf springs, has supplied composite leaf springs since 1998 to support production requirements on the Sprinter commercial vehicles, namely the NCV3 Sprinter. Other customers using Liteflex<sup>®</sup> composite leafs springs are the GM Corvette and Land Rover. Liteflex<sup>®</sup> also produces composite leaf springs for heavy duty truck applications for Kenworth, Peterbilt, Freightliner, and International.

Additionally, Liteflex<sup>®</sup> states "Suspension designers realized a 55% reduction in weight when replacing two steel leaf springs with Liteflex<sup>®</sup> lightweight composite springs for a three-quarter ton 4x4 pickup. The original, all-steel design tipped the scales at 69 pounds while the hybrid steel-and-composite version weighed in at just 31 pounds."

The major component contributing to the mass reduction within the Shock Absorber Subsystem is the front strut coil spring.

<u>Front Strut Coil Spring</u>: The mass reduction idea for the Front Strut Coil Springs was to change the base component material from steel to the Mubea High-Strength Low-Alloy Steel (HSLA) steel coil. The individual baseline component mass was 5.35 kg and the redesign mass 2.73 kg. This resulted in an overall mass savings of 5.60 kg for both springs, and 50.62% compared to the steel units.

The major components contributing to the mass reduction within the Wheels and Tires Subsystem are the road wheels, road tires, spare wheel, and spare tire.

<u>Road Wheels</u>: The mass reduction idea for the road wheels was to change the base component material from aluminum to ultra-Lightweight forged aluminum. The total baseline component mass were 48.5 kg and the total redesign mass 38.8 kg. This resulted in an overall mass savings of 9.7 kg for all four wheels, or 20.0% compared to the steel units.

<u>Road Tires</u>: The mass reduction idea for the road tires was to normalize the base tires to the 2007 Ford F-150 road tires. The total baseline component mass was 69.5 kg and the redesign mass 59.5 kg. This resulted in an overall mass savings of 9.92 kg for all four tires, or 14.28% compared to the Silverado road tires.

<u>Spare Wheel</u>: The mass reduction idea for the spare wheel was to change the base component material from stamped steel to cast aluminum. The baseline component mass was 15.5 kg and the redesign mass 7.12 kg. This resulted in an overall mass savings of 8.40 kg, or 54.1% compared to the steel unit.

<u>Spare Tire</u>: The mass reduction idea for the spare tire was to normalize the base component to the 2006 Dodge Ram spare tire. The baseline component mass was 17.0 kg and the redesign mass 14.9 kg. This resulted in an overall mass savings of 2.10 kg, or 12.4% compared to the Silverado spare tire.

#### 3.7.1.1 Silverado 2500 Analysis

Front Suspension System: The Silverado 1500 front suspension system utilizes a coil-over shock system with forged steel upper control arms, cast iron lower control arms, and a torsion bar system. The 2500 front suspension system is independent with forged steel upper control arms and cast iron lower control arms. A torsion bar is used instead of springs to allow for easy trim height adjustment.

Rear Suspension System: The Silverado 2500 rear suspension system utilizes an asymmetrical two-stage leaf-spring design that minimizes axle hop and enhances traction control efficiency.

Wheels and Tires: The Silverado 2500 comes standard with 17" machine-finish aluminum wheels and 17" all-season tires.

## 3.7.1.2 2500 System Scaling Summary

Table 3-50 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Silverado 2500. Total suspension mass savings is 113.32 kg at a cost increase of \$243.15, or \$1.83 per kg.

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                                                                                        | Net Value of Mass Reduction                          |                                                  |                                                   |                                              |                                         |                                             |                                         |                                              |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|----------------------------------------------|--|--|--|
| System               | Subsystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sub-Subsystem        | Description                                                                                                                            | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2)       | Cost<br>Impact<br>Comp<br>"\$" (2)      | Cost<br>Impact<br>Total<br>"\$" (2)         | Cost/<br>Kilogram<br>Total<br>"\$/kg"   | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |  |
| 04<br>04<br>04<br>04 | 00<br>02<br>03<br>04<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00<br>00<br>00<br>00 | Suspension System<br>Front Suspension Subsystem<br>Rear Suspension Subsystem<br>Shock Absorber Subsystem<br>Wheels And Tires Subsystem | 38.56<br>60.67<br>0.00<br>14.09                      | 3.53<br>3.00<br>0.00<br>13.26                    | 42.08<br>63.67<br>0.00<br>27.35                   | -\$42.45<br>-\$206.74<br>\$0.00<br>-\$137.45 | \$13.48<br>\$32.89<br>\$0.00<br>\$97.12 | -\$28.96<br>-\$173.86<br>\$0.00<br>-\$40.33 | -\$0.69<br>-\$2.73<br>\$0.00<br>-\$1.47 | 1.36%<br>2.06%<br>0.00%<br>0.89%             |  |  |  |
| 04<br>04<br>04       | 06<br>07<br>08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00<br>00<br>00       | Suspension Load Leveling Control Subsystem<br>Rear Suspension Modules Subsystem<br>Front Suspension Modules Subsystem                  | 0.00 0.00 0.00                                       | 0.00                                             | 0.00<br>0.00<br>0.00                              | \$0.00<br>\$0.00<br>\$0.00                   | \$0.00<br>\$0.00<br>\$0.00              | \$0.00<br>\$0.00<br>\$0.00                  | \$0.00<br>\$0.00<br>\$0.00              | 0.00%                                        |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                                                                                        | 113.32<br>(Decrease)                                 | 19.79                                            | 133.10<br>(Decrease)                              | -\$386.64<br>(Increase)                      | \$143.49<br>(Decrease)                  | -\$243.15<br>(Increase)                     | -\$1.83<br>(Increase)                   | 4.31%                                        |  |  |  |
| Ma<br>Ma<br>Ma       | 04       08       00       Front Suspension Modules Subsystem       0.00       0.00       0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0.00       \$0. |                      |                                                                                                                                        |                                                      |                                                  |                                                   |                                              |                                         |                                             |                                         |                                              |  |  |  |

Table 3-50: Mass-Reduction and Cost Impact for Suspension System, Silverado 2500

Mass savings could not be credited for components for which Lightweighting technologies did not apply. One reason for this could be that the technology was already implemented. Some components light weighted, as part of the 1500 Silverado analysis, do not exist in the 2500 suspension system, such as the front coil springs and rear leaf spring spacer blocks.

# 3.7.1.3 System Scaling Analysis

The Silverado 2500 Suspension components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-51.

| Silverado 1500 |           |               |                                          |           |                             |                                               |                 | Select Vehicle |                 |              |                             |                                                                                                        |  |  |
|----------------|-----------|---------------|------------------------------------------|-----------|-----------------------------|-----------------------------------------------|-----------------|----------------|-----------------|--------------|-----------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| System         | Subsystem | Sub-Subsystem | Component/Assembly                       | Base Mass | Mass<br>Savings<br>New Tech | % of Mass<br>Savings<br><mark>New Tech</mark> | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings | Base<br>Mass | Mass<br>Savings<br>New Tech | Notes                                                                                                  |  |  |
| 04             | 04 Su     |               | ensionSystem                             | 301.2     | 83.0                        | 28%                                           |                 |                |                 |              | 113.3                       |                                                                                                        |  |  |
| 04             | 01        | 02            | Lower Control Arm, LH                    | 9.63      | 4.53                        | 47%                                           | Yes             | 18.45          | 8.68            | 18.45        | 8.68                        | ech DOES apply: Use forged aluminum                                                                    |  |  |
| 04             | 01        | 02            | Lower Control Arm, LH, Long Bushing Asm  | 0.39      | 0.16                        | 41%                                           | Yes             | 0.50           | 0.21            | 0.50         | 0.21                        | ech DOES apply: Use plastic spacer & nylon bushing                                                     |  |  |
| 04             | 01        | 02            | Lower Control Arm, LH, Short Bushing Asm | 0.30      | 0.13                        | 41%                                           | Yes             | 0.39           | 0.16            | 0.39         | 0.16                        | ech DOES apply: Use plastic spacer & nylon bushing                                                     |  |  |
| 04             | 01        | 02            | Lower Control Arm, RH                    | 9.47      | 4.37                        | 46%                                           | Yes             | 18.56          | 8.56            | 18.56        | 8.56                        | Tech DOES apply: Use forged aluminum                                                                   |  |  |
| 04             | 01        | 02            | Lower Control Arm, RH, Long Bushing Asm  | 0.39      | 0.16                        | 41%                                           | Yes             | 0.50           | 0.21            | 0.50         | 0.21                        | Tech DOES apply: Use plastic spacer & nylon bushing                                                    |  |  |
| 04             | 01        | 02            | Lower Control Arm, RH, Short Bushing Asm | 0.30      | 0.13                        | 41%                                           | Yes             | 0.39           | 0.16            | 0.39         | 0.16                        | Tech DOES apply: Use plastic spacer & nylon bushing                                                    |  |  |
| 04             | 01        | 02            | Upper Control Arm, LH                    | 2.28      | 1.53                        | 67%                                           | Yes             | 3.74           | 2.50            | 3.74         | 2.50                        | Tech DOES apply: Use cast magnesium                                                                    |  |  |
| 04             | 01        | 02            | Upper Control Arm, LH, Front Bushing Asm | 0.29      | 0.12                        | 40%                                           | Yes             | 0.54           | 0.22            | 0.54         | 0.22                        | Fech DOES apply: Use aluminum spacer & nylon bushing                                                   |  |  |
| 04             | 01        | 02            | Upper Control Arm, LH, Rear Bushing Asm  | 0.29      | 0.12                        | 40%                                           | Yes             | 0.54           | 0.22            | 0.54         | 0.22                        | Tech DOES apply: Use aluminum spacer & nylon bushing                                                   |  |  |
| 04             | 01        | 02            | Upper Ball Joint Asm TH                  | 0.58      | 0.05                        | 9%                                            | No              | 0.00           | 0.00            |              |                             | Tech does NOT apply: The 1500 ball joint was normalized. No                                            |  |  |
|                |           |               |                                          |           |                             |                                               |                 |                |                 |              |                             | nown comperable vehicle for the 2500.                                                                  |  |  |
| 04             | 01        | 02            | Upper Control Arm, RH                    | 2.28      | 1.53                        | 67%                                           | Yes             | 3.76           | 2.51            | 3.76         | 2.51                        | Tech DOES apply: Use cast magnesium                                                                    |  |  |
| 04             | 01        | 02            | Upper Control Arm, RH, Front Bushing Asm | 0.29      | 0.12                        | 40%                                           | Yes             | 0.54           | 0.22            | 0.54         | 0.22                        | lech DOES apply: Use aluminum spacer & nylon bushing                                                   |  |  |
| 04             | 01        | 02            | Upper Control Arm, RH, Rear Bushing Asm  | 0.29      | 0.12                        | 40%                                           | Yes             | 0.54           | 0.22            | 0.54         | 0.22                        | Tech DOES apply: Use aluminum spacer & nylon bushing                                                   |  |  |
| 04             | 01        | 02            | Upper Ball Joint Asm, RH                 | 0.58      | 0.05                        | 9%                                            | No              | 0.00           | 0.00            |              |                             | lech does NOT apply: The 1500 ball joint was normalized. No<br>known comperable vehicle for the 2500.  |  |  |
| 04             | 01        | 04            | Knuckle, LH                              | 7.67      | 3.94                        | 51%                                           | Yes             | 13.85          | 7.12            | 13.85        | 7.12                        | Tech DOES apply: Use forged aluminum                                                                   |  |  |
| 04             | 01        | 04            | Knuckle, RH                              | 7.67      | 3.94                        | 51%                                           | Yes             | 13.80          | 7.09            | 13.80        | 7.09                        | Tech DOES apply: Use forged aluminum                                                                   |  |  |
| 04             | 01        | 05            | Front Stabilizer Bar - Mounting Bushings | 0.16      | 0.02                        | 14%                                           | Yes             | 0.25           | 0.04            | 0.25         | 0.04                        | Tech DOES apply: Use nylon bushings                                                                    |  |  |
| 04             | 01        | 05            | Front Stabilizer Bar - Mounting Brackets | 0.46      | 0.22                        | 48%                                           | Yes             | 0.60           | 0.29            | 0.60         | 0.29                        | Tech DOES apply: Use aluminum & single bolt design                                                     |  |  |
| 04             | 01        | 05            | Front Stabilizer Bar - Mounting Bolts    | 0.12      | 0.06                        | 50%                                           | Yes             | 0.35           | 0.17            | 0.35         | 0.17                        | Tech DOES apply: Use single bolt design                                                                |  |  |
| 04             | 02        | 01            | Leaf Spring Asm, LH                      | 26.22     | 15.73                       | 60%                                           | Yes             | 47.62          | 28.57           | 47.62        | 28.57                       | Tech DOES apply: Use glass fiber reinforced plastic                                                    |  |  |
| 04             | 02        | 01            | Leaf Spring Asm, RH                      | 26.22     | 15.73                       | 60%                                           | Yes             | 47.62          | 28.57           | 47.62        | 28.57                       | Tech DOES apply: Use glass fiber reinforced plastic                                                    |  |  |
| 04             | 02        | 01            | Saddle Bracket, LH                       | 1.30      | 0.81                        | 62%                                           | Yes             | 1.74           | 1.08            | 1.74         | 1.08                        | Tech DOES apply: Use cast magnesium                                                                    |  |  |
| 04             | 02        | 01            | Saddle Bracket, RH                       | 1.30      | 0.81                        | 62%                                           | Yes             | 1.74           | 1.08            | 1.74         | 1.08                        | Tech DOES apply: Use cast magnesium                                                                    |  |  |
| 04             | 02        | 01            | Leaf Spring Spacer Block, LH             | 1.51      | 0.94                        | 62%                                           | No              | 0.00           | 0.00            |              |                             | Tech does NOT apply: Not on vehicle                                                                    |  |  |
| 04             | 02        | 01            | Leaf Spring Spacer Block, RH             | 1.51      | 0.94                        | 62%                                           | No              | 0.00           | 0.00            |              |                             | Tech does NOT apply: Not on vehicle                                                                    |  |  |
| 04             | 02        | 01            | Shackle Bracket Asm, LH                  | 0.85      | 0.40                        | 47%                                           | Yes             | 1.45           | 0.69            | 1.45         | 0.69                        | Tech DOES apply: Use stamped aluminum                                                                  |  |  |
| 04             | 02        | 01            | Shackle Bracket Asm, RH                  | 0.85      | 0.40                        | 47%                                           | Yes             | 1.45           | 0.69            | 1.45         | 0.69                        | Tech DOES apply: Use stamped aluminum                                                                  |  |  |
| 04             | 03        | 01            | Lower Strut Mount Asm, LH                | 1.16      | 0.42                        | 36%                                           | No              | 0.00           | 0.00            |              |                             | Tech does NOT apply: Not on vehicle                                                                    |  |  |
| 04             | 03        | 01            | Coil Spring, LH                          | 5.53      | 2.80                        | 51%                                           | No              | 0.00           | 0.00            |              |                             | Tech does NOT apply: Not on vehicle                                                                    |  |  |
| 04             | 03        | 01            | Lower Strut Mount Asm, RH                | 1.16      | 0.42                        | 36%                                           | No              | 0.00           | 0.00            |              |                             | Tech does NOT apply: Not on vehicle                                                                    |  |  |
| 04             | 03        | 01            | Coil Spring, RH                          | 5.53      | 2.80                        | 51%                                           | No              | 0.00           | 0.00            |              |                             | Tech does NOT apply: Not on vehicle                                                                    |  |  |
| 04             | 04        | 01            | Road Wheel                               | 48.51     | 6.06                        | 13%                                           | Yes             | 54.43          | 6.80            | 54.43        | 6.80                        | Tech DOES apply: Use lightweight aluminum monoblock wheel                                              |  |  |
| 04             | 04        | 01            | Road Tire                                | 69.45     | 5.60                        | 8%                                            | No              | 0.00           | 0.00            |              |                             | comperable vehicle for the 2500.                                                                       |  |  |
| 04             | 04        | 01            | Lug/Wheel Nuts                           | 1.01      | 0.50                        | 50%                                           | Yes             | 2.01           | 1.01            | 2.01         | 1.01                        | Tech DOES apply: Use forged aluminum                                                                   |  |  |
| 04             | 04        | 01            | Spare Wheel                              | 14.54     | 5.30                        | 36%                                           | Yes             | 17.24          | 6.28            | 17.24        | 6.28                        | Tech DOES apply: Use forged aluminum                                                                   |  |  |
| 04             | 04        | 01            | Spare Tire                               | 16.96     | 2.09                        | 12%                                           | No              | 0.00           | 0.00            |              |                             | Tech does <b>NOT</b> apply: The 1500 tire was normalized. No known<br>comperable vehicle for the 2500. |  |  |

Table 3-51: Suspension Components Scaling Analysis Results, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the 2500 series Silverado include the Upper Control Arms, Lower Control Arms, Knuckles, Leaf Spring Assemblies, Road Wheels, and Spare Wheel.

#### Lower Control Arm

As shown in Image 3.7–1, the Silverado 1500 series suspension system used a similar lower control arm design as the 2500 series. Component masses were 9.63 kg versus 18.45 kg, respectively. Image 3.7–2 is an aluminum billet for the 2009 Chevrolet Silverado lower control arm, which represents the mass reduction idea associated with this component. Due to similarities in component design and material, full percentage of the Silverado 1500 lower control arm mass reduction can be applied to the 2500. (Refer to Table 3-51).



Image 3.7–1: Lower Control Arm for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc. Photo)



Image 3.7–2: Aluminum Lower Control Arm (Source: FEV, Inc. Photo)

#### Upper Control Arm

As shown in Image 3.7–3, the Silverado 1500 series suspension system used a similar upper control arm design as the 2500 series. Component masses were 2.3 kg versus 3.7 kg, respectively. The redesign idea for the upper control arm was to cast it out of magnesium, shown in Image 3.7–4. Due to similarities in component design and material, full percentage of the Silverado 1500 lower control arm mass reduction can be applied to the 2500. (Refer to Table 3-51).



Image 3.7–3: Upper Control Arm for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc. Photo)



Image 3.7–4: Mass Reduced Upper Control Arm (Source: http://i.ebayimg.com/t/02-05-Dodge-Ram-1500-Front-Upper-Control-Arm-Lower-Ball-Joint-Kit-Set-New/00/s/NDkyWDQ5Mg==/\$%28KGrHqVHJBsFCEURKRgpBQj2sl%29HCw~~60\_35.JPG)

#### Knuckle

As shown in Image 3.7–5, the Silverado 1500 series suspension system used a similar forged knuckle design as the 2500 series. Component masses were 7.70 kg versus 13.8 kg, respectively. The redesign idea for the knuckle was to forge it out of aluminum, shown in Image 3.7–6. Due to similarities in component design and material, full percentage of the Silverado 1500 knuckle mass reduction can be applied to the 2500. (Refer to Table 3-51).



Image 3.7–5: Knuckle for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc. Photo)



Image 3.7–6: Aluminum Knuckle (Source: FEV, Inc. photo)

### Leaf Spring Assemblies

As shown in Image 3.7–7, the Silverado 1500 series suspension system used a similar leaf spring design as the 2500 series. Component masses were 26.2 kg versus 47.6 kg respectively. The redesign idea for the leaf spring assembly is to change the base leaf spring material from steel to glass fiber reinforced plastic (GFRP). Image 3.7–8 is an example of a GFRP leaf spring. Due to similarities in component design and material, full percentage of the Silverado 1500 leaf spring assembly reduction can be applied to the 2500. (Refer to Table 3-51).



Image 3.7–7: Leaf Spring Assembly for the Silverado 1500 (Top) and the Silverado 2500 (Bottom) (Source: FEV, Inc. Photo)



*Image 3.7–8: GFRP Leaf Spring Assembly* (Source: http://www.hypercoils.com/leaf-springs.html)

#### Road Wheels

As shown in Image 3.7–9, the Silverado 1500 and 2500 share a common road wheel design. Component masses for all four wheels of the 1500 and 2500 are 48.5 kg versus 54.4 kg,

respectively. The redesign idea for the road wheels was to change the base wheel material from forged aluminum to an ultra-Lightweight forged aluminum monoblock spoked wheel. Image 3.7–10 is an example of an ultra-Lightweight forged aluminum monoblock wheel. Due to similarities in component design and material, full percentage of the Silverado 1500 road wheel reduction can be applied to the 2500. (Refer to Table 3-51).



Image 3.7–9: Road Wheel for the Silverado 1500 (Left) and the Silverado 2500 (Right) (Source: FEV, Inc. Photo)



Image 3.7–10: Ultra-Lightweight Forged Aluminum Monoblock Wheel (Source: http://www.benzinsider.com/zenphoto/brabus-monoblock-f-g-qwheels/The+New+BRABUS+Monoblock+F, +G+and+Q+Wheels\_05.jpg.php)

#### Spare Wheel

As shown in Image 3.7–11, the Silverado 1500 and 2500 share a common stamped steel spare wheel design. Component masses for the 1500 and 2500 are 14.5 kg versus 17.2 kg, respectively. The redesign idea for the spare wheel is to change the spare wheel material from stamped steel to aluminum. Image 3.7–12 is an example of an aluminum wheel. Due to similarities in component

design and material, full percentage of the Silverado 1500 spare wheel reduction can be applied to the 2500. (Refer to Table 3-51).



Image 3.7–11: Spare Wheel for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc. Photo)



Image 3.7–12: Aluminum Spare Wheel (Source: http://www.autopartswarehouse.com/sku/Keystone\_Wheels/Wheel/K16425884.html)

# 3.7.1.4 System Comparison, Silverado 2500

Table 3-52 summarizes the Silverado 1500 and 2500 Suspension System Lightweighting results.

|                |                                                       | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                                |                                       |  |
|----------------|-------------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|--|
| System         | Description                                           | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |
| 04<br>04<br>04 | Suspension System<br>Silverado 1500<br>Silverado 2500 | 301.24<br>400.45                    | 83.02<br>113.32                                      | 22.53<br>19.79                                   | 105.55<br>133.10                                  | 35.04%<br>33.24%                   | -\$259.57<br>-\$386.64                 | \$105.95<br>\$143.49               | -\$153.62<br>-\$243.15                         | -\$1.46<br>-\$1.83                    |  |

Table 3-52: Suspension System Comparison, Silverado 1500 and 2500

## 3.7.2 Mercedes Sprinter 311 CDi Analysis

The Mercedes Sprinter 311 CDi's front suspension system (Image 3.7–13) was comprised of a frame, lower control arms, shock absorber strut (not shown), stabilizer bar system, steering knuckles, and a single composite leaf spring system. The rear suspension system (Image 3.7–14) included the spring blade system and shock absorbers. Finally, the wheel system included the road wheels (Image 3.7–15), spare wheel (Image 3.7–16), and spare wheel support (Image 3.7–17).



Image 3.7–13: Mercedes Sprinter Front Suspension System (Source: www.A2mac1.com)



Image 3.7–14: Mercedes Sprinter Rear Suspension System (Source: www.A2mac1.com)



Image 3.7–15: Mercedes Sprinter Road Wheel Assembly (Source: www.A2mac1.com)



Image 3.7–16: Mercedes Sprinter Spare Wheel Assembly (Source: www.A2mac1.com)



Image 3.7–17: Mercedes Sprinter Spare Wheel Support (Source: www.A2mac1.com)

## 3.7.2.1 Mercedes Sprinter System Scaling Summary

Table 3-53 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Mercedes Sprinter. Total suspension system mass savings was 42.02 kg at a cost increase of \$90.20, or \$2.00 per kg.

Table 3-53: Mass-Reduction and Cost Impact for Suspension System, Mercedes Sprinter



Mass savings could not be credited for components for which Lightweighting technologies did not apply. Reasons for this could be that the technology was already implemented. Some components light weighted, as part of the 1500 Silverado analysis, do not exist in the Sprinter suspension system, such as the upper control arms and leaf spring spacer blocks.

## 3.7.2.2 System Scaling Analysis, Mercedes Sprinter

The Mercedes Sprinter Suspension System components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-54.

Table 3-54: Suspension Components Scaling Analysis Results, Mercedes Sprinter

|                                    |           |               | Silverado 1500                           |              |                             | Select Vehicle                   |                 |              |                             |                                                                                                 |
|------------------------------------|-----------|---------------|------------------------------------------|--------------|-----------------------------|----------------------------------|-----------------|--------------|-----------------------------|-------------------------------------------------------------------------------------------------|
| System                             | Subsystem | Sub-Subsystem | Component/Assembly                       | Base Mass    | Mass<br>Savings<br>New Tech | % of Mass<br>Savings<br>New Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New Tech | Notes                                                                                           |
| 04 SuspensionSystem 301.2 83.0 28% |           |               |                                          |              |                             |                                  |                 |              | 42.0                        |                                                                                                 |
| 04                                 | 01        | 02            | Lower Control Arm, LH                    | 9.63         | 4.53                        | 47%                              | Yes             | 7.02         | 3.30                        | Tech DOES apply: Use forged aluminum                                                            |
| 04                                 | 01        | 02            | Lower Control Arm, LH, Long Bushing Asm  | 0.39         | 0.16                        | 41%                              | Yes             | 0.28         | 0.12                        | Tech DOES apply: Use plastic spacer & nylon bushing                                             |
| 04                                 | 01        | 02            | Lower Control Arm, LH, Short Bushing Asm | 0.30         | 0.13                        | 41%                              | Yes             | 0.22         | 0.09                        | Tech DOES apply: Use plastic spacer & nylon bushing                                             |
| 04                                 | 01        | 02            | Lower Control Arm, RH                    | 9.47         | 4.37                        | 46%                              | Yes             | 7.01         | 3.23                        | Tech DOES apply: Use forged aluminum                                                            |
| 04                                 | 01        | 02            | Lower Control Arm, RH, Long Bushing Asm  | 0.39         | 0.16                        | 41%                              | Yes             | 0.29         | 0.12                        | Tech DOES apply: Use plastic spacer & nylon bushing                                             |
| 04                                 | 01        | 02            | Lower Control Arm, RH, Short Bushing Asm | 0.30         | 0.13                        | 41%                              | Yes             | 0.22         | 0.09                        | Tech DOES apply: Use plastic spacer & nylon bushing                                             |
| 04                                 | 01        | 02            | Upper Control Arm, LH                    | 2.28         | 1.53                        | 67%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 02            | Upper Control Arm, LH, Front Bushing Asm | 0.29         | 0.12                        | 40%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 02            | Upper Control Arm, LH, Rear Bushing Asm  | 0.29         | 0.12                        | 40%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 02            | Upper Ball Joint Asm, LH                 | 0.58         | 0.05                        | 9%                               | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 02            | Upper Control Arm, RH                    | 2.28         | 1.53                        | 67%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 02            | Upper Control Arm, RH, Front Bushing Asm | 0.29         | 0.12                        | 40%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 02            | Upper Control Arm, RH, Rear Bushing Asm  | 0.29         | 0.12                        | 40%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 02            | Upper Ball Joint Asm, RH                 | 0.58         | 0.05                        | 9%                               | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 01        | 04            | Knuckle, LH                              | 7.67         | 3.94                        | 51%                              | Yes             | 8.55         | 4.40                        | Tech DOES apply: Use forged aluminum                                                            |
| 04                                 | 01        | 04            | Knuckle, RH                              | 7.67         | 3.94                        | 51%                              | Yes             | 8.55         | 4.40                        | Tech DOES apply: Use forged aluminum                                                            |
| 04                                 | 01        | 05            | Front Stabilizer Bar - Mounting Bushings | 0.16         | 0.02                        | 14%                              | Yes             | 0.18         | 0.03                        | Tech DOES apply: Use nylon bushings                                                             |
| 04                                 | 01        | 05            | Front Stabilizer Bar - Mounting Brackets | 0.46         | 0.22                        | 48%                              | Yes             | 0.16         | 0.08                        | Tech DOES apply: Use aluminum & single bolt design                                              |
| 04                                 | 01        | 05            | Front Stabilizer Bar - Mounting Bolts    | 0.12         | 0.06                        | 50%                              | Yes             | 0.11         | 0.06                        | Tech DOES apply: Use single bolt design                                                         |
| 04                                 | 02        | 01            | Lear Spring Asm, LH                      | 26.22        | 15.73                       | 60%                              | Yes             | 10.07        | 10.00                       | Tech DOES apply: Use glass fiber reinforced plastic                                             |
| 04                                 | 02        | 01            | Lear Spring Asm, KH                      | 26.22        | 15.73                       | 60%                              | Yes             | 16.67        | 10.00                       | Tech DOES apply: Use glass fiber reinforced plastic                                             |
| 04                                 | 02        | 01            | Saddle Bracket, LH                       | 1.30         | 0.81                        | 62%                              | INO<br>No       |              |                             | Tech does NOT apply: Different design                                                           |
| 04                                 | 02        | 01            | Saddle Bracket, RH                       | 1.30         | 0.81                        | 62%                              | INO<br>No       |              |                             | Tech does NOT apply: Different design                                                           |
| 04                                 | 02        | 01            | Leaf Spring Spacer Block, LH             | 1.51         | 0.94                        | 62%                              | INO<br>No       |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 02        | 01            | Shaakla Braakat Aam 1 H                  | 1.51         | 0.94                        | 02%                              | NO<br>Vac       | 1 20         | 0.62                        | Tech does NOT apply. Not on venicle                                                             |
| 04                                 | 02        | 01            | Shackle Bracket Asm, LH                  | 0.05         | 0.40                        | 4170                             | Vec             | 1.30         | 0.62                        | Tech DOES apply. Use stamped aluminum                                                           |
| 04                                 | 02        | 01            | Lower Strut Mount Acm, LH                | 0.05         | 0.40                        | 4170                             | No              | 1.30         | 0.02                        | Tech doos NOT apply: Not an vehicle                                                             |
| 04                                 | 03        | 01            | Coil Spring, LH                          | 1.10<br>5.52 | 2.90                        | J070<br>E10/                     | No              |              |                             | Tech does NOT apply. Not on venicle                                                             |
| 04                                 | 03        | 01            | Lower Strut Mount Acm, PH                | 1.16         | 0.42                        | 36%                              | No              |              |                             | Tech does NOT apply: Different design                                                           |
| 04                                 | 03        | 01            | Coil Spring, DH                          | 5.53         | 2.80                        | 51%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                             |
| 04                                 | 04        | 01            | Road Wheel                               | 48.51        | 6.06                        | 13%                              | No              |              |                             | Tech does NOT apply. Different design                                                           |
| 04                                 | 04        | VI            | I Coad Wheel                             | 40.51        | 0.00                        | 1370                             |                 |              |                             | Tech does NOT apply: The 1500 tire was normalized. No                                           |
| 04                                 | 04        | 01            | Road Tire                                | 69.45        | 5.60                        | 8%                               | No              |              |                             | known comperable vehicle for the 2500.                                                          |
| 04                                 | 04        | 01            | Lug/Wheel Nuts                           | 1.01         | 0.50                        | 50%                              | Yes             | 0.69         | 0.34                        | Tech DOES apply: Use forged aluminum                                                            |
| 04                                 | 04        | 01            | Spare Wheel                              | 14.54        | 5.30                        | 36%                              | Yes             | 12.42        | 4.53                        | Tech DOES apply: Use forged aluminum                                                            |
| 04                                 | 04        | 01            | Spare Tire                               | 16.96        | 2.09                        | 12%                              | No              |              |                             | Tech does NOT apply: The 1500 tire was normalized. No<br>known comperable vehicle for the 2500. |

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Key Components for mass reduction included the lower control arms, knuckles, leaf spring assemblies, and spare wheel.

#### Lower Control Arm

Shown in Image 3.7–18, the Silverado 1500 lower control arm used a cast iron design whereas the Sprinter used stamped steel and welded construction. Component masses were 9.63 kg versus 7.02 kg, respectively. Image 3.7–19 shows an aluminum billet for the 2009 Chevrolet Silverado lower control arm, which represents the mass reduction idea associated with this component. Due to similarities in component design and material, full percentage of the Silverado 1500 lower control arm mass reduction can be applied to the Sprinter. (Refer to Table 3-54).



Image 3.7–18: Lower Control Arm for the Silverado 1500 (Left) and Mercedes Sprinter (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.7–19: 2009 Chevrolet Silverado Lower Control Arm Billet (Source: FEV, Inc. Photo)

### Steering Knuckles

As shown in Image 3.7–20, the Silverado 1500 Suspension System used a similar steering knuckle design as the Sprinter suspension system. Component masses were 7.67 kg versus 8.55 kg, respectively. The redesign idea for the steering knuckle is to cast it from aluminum (Image 3.7–21). Due to similarities in component design and material, full percentage of the Silverado 1500 steering knuckle arm mass reduction can be applied to the Sprinter. (Refer to Table 3-54).



Image 3.7–20: Steering Knuckle for the Silverado 1500 (Left) and Mercedes Sprinter (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.7–21: Aluminum Steering Knuckle (Source: FEV, Inc. Photo)

#### Leaf Spring Assembly

As shown in Image 3.7–22, the Silverado 1500 Suspension System used a multi-leaf spring design whereas the Sprinter used a mono-leaf design. Component masses were 26.2 kg versus 16.7 kg, respectively. The redesign idea for the leaf spring assembly is to change the base leaf spring material from steel to glass fiber reinforced plastic (GFRP). Image 3.7–23 is an example of a GFRP leaf spring. Due to similarities in component material, full percentage of the Silverado 1500 leaf spring assembly arm mass reduction can be applied to the Sprinter. (Refer to Table 3-54).


Image 3.7–22: Leaf Spring Assembly for the Silverado 1500 (Top) and Sprinter (Bottom) (Source: FEV, Inc. and A2mac1.com)



Image 3.7–23: Glass Fiber Reinforced Plastic Leaf Spring Assembly (Source: http://www.hypercoils.com/leaf-springs.html)

## Spare Wheel

As shown in Image 3.7–24, the Silverado 1500 and Sprinter share a common stamped steel spare wheel design. Component masses were 14.5 kg versus 12.4 kg, respectively. The redesign idea for the spare wheel was to change the spare wheel material from stamped steel to aluminum. Image 3.7–25 is an example of an aluminum wheel. Due to similarities in component design and material, full percentage of the Silverado 1500 spare wheel mass reduction can be applied to the Sprinter. (Refer to Table 3-54).



Image 3.7–24: Spare Wheel for the Silverado 1500 (Left) and Mercedes Sprinter (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.7–25: Aluminum Spare Wheel (Source: http://www.autopartswarehouse.com/sku/Keystone\_Wheels/Wheel/K16425884.html)

#### 3.7.3 Renault Master 2.3 DCi Analysis

#### 3.7.3.1 Renault Master System Scaling Summary

Table 3-55 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Renault Master. Total Suspension System mass savings was 56.87 kg at a cost increase of \$111.59, or \$1.82 per kg.



Table 3-55: Mass-Reduction and Cost Impact for Suspension System, Renault Master

Mass savings could not be credited for components for which Lightweighting technologies did not apply. Reasons for this could be that the technology was already implemented. Some components light weighted as part of the Silverado 1500 analysis do not exist in the Renault Master Suspension System, such as the upper control arms and rear suspension saddle brackets.

# 3.7.3.2 System Scaling Analysis, Renault Master

The Renault Master suspension components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-56.

|        |           |               | Silverado 1500                           |           |                             |                                  | Select Vehicle  |              |                             |                                                                                                                                           |  |  |
|--------|-----------|---------------|------------------------------------------|-----------|-----------------------------|----------------------------------|-----------------|--------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly                       | Base Mass | Mass<br>Savings<br>New Tech | % of Mass<br>Savings<br>New Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New Tech | Notes                                                                                                                                     |  |  |
| 04     | s         | usc           | pensionSystem                            | 301.2     | 83.0                        | 28%                              |                 |              | 56.9                        |                                                                                                                                           |  |  |
| 04     | 01        | 02            | Lower Control Arm, LH                    | 9.63      | 4.53                        | 47%                              | Yes             | 8.69         | 4.09                        | Tech DOES apply: Use forged aluminum                                                                                                      |  |  |
| 04     | 01        | 02            | Lower Control Arm, LH, Long Bushing Asm  | 0.39      | 0.16                        | 41%                              | Yes             | 0.35         | 0.14                        | Tech DOES apply: Use plastic spacer & nylon<br>bushing                                                                                    |  |  |
| 04     | 01        | 02            | Lower Control Arm, LH, Short Bushing Asm | 0.30      | 0.13                        | 41%                              | Yes             | 0.27         | 0.11                        | Tech DOES apply: Use plastic spacer & nylon<br>bushing                                                                                    |  |  |
| 04     | 01        | 02            | Lower Control Arm, RH                    | 9.47      | 4.37                        | 46%                              | Yes             | 8.68         | 4.00                        | Tech DOES apply: Use forged aluminum                                                                                                      |  |  |
| 04     | 01        | 02            | Lower Control Arm, RH, Long Bushing Asm  | 0.39      | 0.16                        | 41%                              | Yes             | 0.36         | 0.15                        | Tech DOES apply: Use plastic spacer & nylon<br>bushing                                                                                    |  |  |
| 04     | 01        | 02            | Lower Control Arm, RH, Short Bushing Asm | 0.30      | 0.13                        | 41%                              | Yes             | 0.28         | 0.11                        | Tech DOES apply: Use plastic spacer & nylon<br>bushing                                                                                    |  |  |
| 04     | 01        | 02            | Upper Control Arm, LH                    | 2.28      | 1.53                        | 67%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 02            | Upper Control Arm, LH, Front Bushing Asm | 0.29      | 0.12                        | 40%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 02            | Upper Control Arm, LH, Rear Bushing Asm  | 0.29      | 0.12                        | 40%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 02            | Upper Ball Joint Asm, LH                 | 0.58      | 0.05                        | 9%                               | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 02            | Upper Control Arm, RH                    | 2.28      | 1.53                        | 67%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 02            | Upper Control Arm, RH, Front Bushing Asm | 0.29      | 0.12                        | 40%                              | NO              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 02            | Upper Control Arm, RH, Rear Bushing Asm  | 0.29      | 0.12                        | 40%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 02            | Upper Ball Joint Asm, RH                 | 0.58      | 0.05                        | 9%                               | INO<br>X        | 7.00         | 4.04                        | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 01        | 04            | Knuckle, LH                              | 1.67      | 3.94                        | 51%                              | Yes             | 7.86         | 4.04                        | Tech DOES apply: Use forged aluminum                                                                                                      |  |  |
| 04     | 01        | 04            | Knuckle, RH                              | 1.67      | 3.94                        | 51%                              | Yes             | 7.66         | 4.04                        | Tech DOES apply: Use forged aluminum                                                                                                      |  |  |
| 04     | 01        | 05            | Front Stabilizer bar - Mounting Bushings | 0.10      | 0.02                        | 14 %                             | res             | 0.09         | 0.01                        | Tech DOES apply. Use hypon bushings                                                                                                       |  |  |
| 04     | 01        | 05            | Front Stabilizer Bar - Mounting Brackets | 0.46      | 0.22                        | 48%                              | Yes             | 0.27         | 0.13                        | design                                                                                                                                    |  |  |
| 04     | 01        | 05            | Front Stabilizer Bar - Mounting Bolts    | 0.12      | 0.06                        | 50%                              | Yes             | 0.31         | 0.16                        | Tech DOES apply: Use single bolt design                                                                                                   |  |  |
| 04     | 02        | 01            | Leaf Spring Asm, LH                      | 26.22     | 15.73                       | 60%                              | Yes             | 23.10        | 13.86                       | lech DOES apply: Use glass fiber reinforced<br>plastic                                                                                    |  |  |
| 04     | 02        | 01            | Leaf Spring Asm, RH                      | 26.22     | 15.73                       | 60%                              | Yes             | 23.10        | 13.86                       | Tech DOES apply: Use glass fiber reinforced<br>plastic                                                                                    |  |  |
| 04     | 02        | 01            | Saddle Bracket, LH                       | 1.30      | 0.81                        | 62%                              | No              |              |                             | Tech does NOT apply: Different design                                                                                                     |  |  |
| 04     | 02        | 01            | Saddle Bracket, RH                       | 1.30      | 0.81                        | 62%                              | No              |              |                             | Tech does NOT apply: Different design                                                                                                     |  |  |
| 04     | 02        | 01            | Leaf Spring Spacer Block, LH             | 1.51      | 0.94                        | 62%                              | Yes             | 1.01         | 0.63                        | Tech DOES apply: Use cast magnesium                                                                                                       |  |  |
| 04     | 02        | 01            | Leaf Spring Spacer Block, RH             | 1.51      | 0.94                        | 62%                              | Yes             | 1.01         | 0.63                        | Tech DOES apply: Use cast magnesium                                                                                                       |  |  |
| 04     | 02        | 01            | Shackle Bracket Asm, LH                  | 0.85      | 0.40                        | 4/%                              | Yes             | 0.87         | 0.41                        | Tech DOES apply: Use stamped aluminum                                                                                                     |  |  |
| 04     | 02        | 01            | Shackle Bracket Asm, RH                  | 0.85      | 0.40                        | 4/%                              | Yes             | 0.87         | 0.41                        | Tech DOES apply: Use stamped aluminum                                                                                                     |  |  |
| 04     | 03        | 01            | Lower Strut Mount Asm, LH                | 1.16      | 0.42                        | 36%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 03        | 01            | Coll Spring, LH                          | 5.53      | 2.80                        | 51%                              | Yes             | 4.79         | 2.43                        | Tech DOES apply: Use Mubea winding process                                                                                                |  |  |
| 04     | 03        | 01            | Lower Strut Mount Asm, RH                | 1.16      | 0.42                        | 36%                              | INO<br>X        | 4.70         | 0.42                        | Tech does NOT apply: Not on vehicle                                                                                                       |  |  |
| 04     | 03        | 01            | Coll Spring, RH                          | 5.53      | 2.80                        | 51%                              | Yes             | 4.79         | 2.43                        | Tech DOES apply: Use Mubea winding process                                                                                                |  |  |
| 04     | 04        | 01            | Road Tire                                | 69.45     | 5.60                        | 8%                               | No              |              |                             | Tech does NOT apply: Not on vehicle<br>Tech does NOT apply: The 1500 tire was<br>normalized. No known comperable vehicle for the<br>2500. |  |  |
| 04     | 04        | 01            | Lug/Wheel Nuts                           | 1.01      | 0.50                        | 50%                              | Yes             | 0.75         | 0.37                        | Tech DOES apply: Use forged aluminum                                                                                                      |  |  |
| 04     | 04        | 01            | Spare Wheel                              | 14.54     | 5.30                        | 36%                              | Yes             | 13.35        | 4.87                        | Tech DOES apply: Use forged aluminum                                                                                                      |  |  |
| 04     | 04        | 01            | Spare Tire                               | 16.96     | 2.09                        | 12%                              | No              |              |                             | Tech does NOT apply: The 1500 tire was<br>normalized. No known comperable vehicle for the<br>2500.                                        |  |  |

Table 3-56: Suspension Components Scaling Analysis Results, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Front Suspension System: The Renault Master's front suspension system is similar to the Silverado 1500 in that they both use a frame system with lower control arms and a stabilizer bar. The major difference between the two vehicles is the Mercedes Sprinter uses a single mono-leaf composite leaf spring, whereas the Silverado uses a coil over shock system.

Rear Suspension System: The Renault Master's rear suspension system is similar to the Silverado 1500 in that they both use a steel leaf spring system with similar mounting hardware. The major difference between the two vehicles is the Mercedes Sprinter uses a single steel blade leaf spring whereas the Silverado 1500 uses a double steel leaf spring assembly.

#### 3.8 DRIVELINE SYSTEM

#### 3.8.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Driveline System included these subsystems: Driveshaft, Rear Drive Housed Axle, Front Drive Housed Axle, Front Drive Half-Shafts, and 4WD Driveline Control.

The Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Driveline System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-57 provides a summary of mass reduction and cost impact for select subsubsystems evaluated. The total mass savings found on the Driveline system mass was reduced by 20.4 kg (11.1%). This decreased cost by \$38.01, or \$1.86 per kg. Mass reduction for this system reduced vehicle curb weight by 0.86%.

|           |           |               |                                       |                      | Net Val                                  | ue of M                             | ass Red                                                | duction                  |                                     |
|-----------|-----------|---------------|---------------------------------------|----------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System    | Subsystem | Sub-Subsystem | Description                           | Base<br>Mass<br>"kg" | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| <b>05</b> | 00        | 00            | Driveline System                      |                      |                                          |                                     |                                                        |                          |                                     |
| 05        | 01        | 00            | Driveshaft Subsystem                  | 14.31                | 2.10                                     | 3.38                                | 1.61                                                   | 14.69%                   | 0.09%                               |
| 05        | 01        | 01            | Rearward Propeller Shaft w/ Yokes (2) | 7.51                 | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |
| 05        | 01        | 05            | Forward Propeller Shaft w/ Yokes (2)  | 6.80                 | 2.10                                     | 3.38                                | 1.61                                                   | 30.92%                   | 0.09%                               |
| 05        | 02        | 00            | Rear Drive Housed Axle Subsystem      | 89.07                | 10.47                                    | 25.78                               | 2.46                                                   | 11.76%                   | 0.44%                               |
| 05        | 02        | 01            | Beam Rear Axle Assembly               | 66.60                | 7.56                                     | 0.00                                | 0.00                                                   | 11.35%                   | 0.32%                               |
| 05        | 02        | 04            | Rear Drive Unit                       | 7.56                 | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |
| 05        | 02        | 05            | Rear Axle Differential Carrier Assy   | 14.91                | 2.91                                     | 25.78                               | 8.85                                                   | 19.54%                   | 0.12%                               |
| 05        | 03        | 00            | Front Drive Housed Axle Subsystem     | 52.53                | 6.49                                     | 6.27                                | 0.97                                                   | 12.35%                   | 0.27%                               |
| 05        | 03        | 04            | Front Drive Unit                      | 52.53                | 6.49                                     | 6.27                                | 0.97                                                   | 12.35%                   | 0.27%                               |
| 05        | 04        | 00            | Front Drive Half-Shafts Subsystem     | 27.62                | 1.36                                     | 2.58                                | 1.90                                                   | 4.91%                    | 0.06%                               |
| 05        | 04        | 01            | Front Half Shaft                      | 27.62                | 1.36                                     | 2.58                                | 1.90                                                   | 4.91%                    | 0.06%                               |
| 05        | 07        | 00            | 4WD Driveline Control Subsystem       | 0.29                 | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |
| 05        | 07        | 01            | Driveline Control Unit                | 0.29                 | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |
|           |           |               |                                       |                      |                                          |                                     |                                                        |                          |                                     |
|           |           |               |                                       | 183.82               | 20.42                                    | 38.01                               | 1.86                                                   | 11.11%                   | 0.86%                               |
|           |           |               |                                       |                      | (Decrease)                               | (Decrease)                          | (Decrease)                                             |                          |                                     |
| 145       |           |               |                                       |                      |                                          |                                     |                                                        |                          |                                     |

Table 3-57: Driveline System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase
(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: forward propeller shaft, rear axle sleeves, rear axle hubs, rear differential cover plate, rear carrier rear ring gear, front differential output shaft with hubs, front carrier, front ring gear, front differential RH and LH mounting brackets, front axle shaft, and front wheel hubs.

Forward Propeller Shaft: The forward propeller shaft mass was reduced by changing from a standard steel shaft to aluminum technology. Mass was reduced by 59% from 3.55 kg to 1.44 kg.

Rear Axle Sleeves: The rear axle sleeves mass was reduced by using extrude steel tube with varied wall thickness in strategic locations. Mass was reduced by 20% from 10.9 kg to 8.73 kg.

<u>Rear Axle Shaft with Hub:</u> The rear axle shaft with hub mass was reduced by using extrude steel tube with varied wall thickness in strategic locations and drilling lightening holes in the hub face. Mass was reduced by 20% from 21.4 kg to 17.1 kg.

<u>Rear Axle Differential Cover Plate:</u> The rear axle differential cover plate mass was reduced by changing from stamped steel to stamped aluminum. Mass was reduced by 58% from 1.87 kg to 0.77 kg.

<u>Rear Carrier Casting:</u> The rear carrier casting mass was reduced by changing to a welded assembly with a lighter ring gear and carrier no mechanical fasteners. Mass was reduced by 30% from 5.25 kg to 3.67 kg.

<u>Rear Carrier Ring Gear:</u> The rear ring gear mass was reduced by removal of material for bolts. Mass was reduced by 27% from 4.48kg to 3.27kg.

<u>Rear Ring Gear mounting bolts:</u> The rear ring gear mounting bolts mass was reduced by reducing the bolt count from 10 to six. Mass was reduced by 40% from 0.31 kg to 0.18 kg.

<u>Front Differential Output Shaft with Hub:</u> The front differential output shaft with hub mass was reduced by using extrude steel tube with varied wall thickness in strategic locations and drilling lightening holes in the hub face. Mass was reduced by 28% from 3.10 kg to 2.22 kg.

<u>Front Carrier Casting:</u> The front carrier casting mass was reduced by changing to a welded assembly and lighter ring gear. Mass was reduced by 30% from 4.16 kg to 2.91 kg.

<u>Front Ring Gear:</u> The front ring gear mass was reduced by going to a forged ring gear. Mass was reduced by 32% from 3.33 kg to 2.24 kg.

<u>Front Ring Gear mounting bolts:</u> The front ring gear mounting bolts mass was reduced by reducing the bolt count from 10 to 6. Mass was reduced by 40% from 0.31 kg to 0.18 kg.

<u>Differential Mounting Bracket – Left</u>: The left side differential mounting bracket mass was reduced by changing from cast iron to cast aluminum. Mass was reduced by 50% from 3.60 kg to 1.78 kg.

<u>Differential Mounting Bracket – Right:</u> The right side differential mounting bracket mass was reduced by changing from cast iron to cast aluminum. Mass was reduced by 50% from 2.63 kg to 1.31 kg.

<u>Front Half Shaft Axle Shaft:</u> The front axle shaft mass was reduced by using extrude steel tube with varied wall thickness in strategic locations. Mass was reduced by 25% from 4.49 kg to 3.37 kg.

<u>Front Half Shaft Wheel Hubs:</u> The front half shaft wheel hubs mass was reduced by drilling lightening holes in the hub face. Mass was reduced by 4% from 5.40 kg to 5.16 kg.

## 3.8.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Driveline System is very similar to the 1500, but on a larger scale to handle the added required payload.



Image 3.8–1: Silverado 1500 Driveline System (Source: www.A2mac1 database)

## 3.8.1.2 2500 System Scaling Summary

Table 3-58 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Silverado 2500. Total driveline system mass savings was 25.11 kg at a cost decrease of \$48.71, or \$1.94per kg.



Table 3-58: Mass-Reduction and Cost Impact for Driveline System, Silverado 2500

# 3.8.1.3 System Scaling Analysis

The Silverado 2500 driveline components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-59.

|        |           |               | Silverado 1500                           |              |                                | 0                                   | Select Vehicle  |              |                                |                                                                                                                             |  |
|--------|-----------|---------------|------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly                       | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                                       |  |
| 05     | D         | rive          | line System                              | 183.82       | 20.42                          | 11%                                 |                 |              | 25.11                          |                                                                                                                             |  |
| 05     | 01        | 05            | Forward Propeller Shaft                  | 3.55         | 2.10                           | 59%                                 | yes             | 4.50         | 2.66                           | Tech DOES Apply: Change from steel to aluminum                                                                              |  |
| 05     | 02        | 01            | Rear Axle Sleeves                        | 10.92        | 2.18                           | 20%                                 | no              |              |                                | Tech does NOT Apply: variation inner wall thickness already done                                                            |  |
| 05     | 02        | 01            | Rear Axle Shaft w/ Hub                   | 21.38        | 4.28                           | 20%                                 | yes             | 15.61        | 3.12                           | Tech DOES Apply: lightin shaft by making hollow with variation of<br>inner wall thickness and putting lighting holes in hub |  |
| 05     | 02        | 01            | Rear Axle Differential Cover Plate       | 1.88         | 1.10                           | 59%                                 | yes             | 1.92         | 1.13                           | Tech DOES Apply: Change from steel to aluminum                                                                              |  |
| 05     | 02        | 05            | Rear Carrier Casting                     | 5.25         | 1.58                           | 30%                                 | yes             | 10.25        | 3.08                           | Tech DOES Apply: Change from steel casting to sheet steel<br>welded assy                                                    |  |
| 05     | 02        | 05            | Rear Ring Gear                           | 4.48         | 1.21                           | 27%                                 | yes             | 6.43         | 1.74                           | Tech DOES Apply: Change from stadard gear manufacturing to<br>cold form with no machining                                   |  |
| 05     | 02        | 05            | Rear Ring Gear Mounting Bolts            | 0.32         | 0.13                           | 40%                                 | no              |              |                                | Tech does NOT Apply: Reduce from 10 to 6 bolts                                                                              |  |
| 05     | 03        | 04            | Front Differential Output Shaft w/ Hub   | 3.10         | 0.88                           | 28%                                 | yes             | 4.00         | 1.13                           | Tech DOES Apply: lightin shaft by making hollow with variation of<br>inner wall thickness and putting lighting holes in hub |  |
| 05     | 03        | 04            | Front Carrier                            | 4.16         | 1.25                           | 30%                                 | yes             | 9.23         | 2.77                           | Tech DOES Apply: Change from steel casting to sheet steel<br>welded assy                                                    |  |
| 05     | 03        | 04            | Front Ring Gear                          | 3.34         | 1.10                           | 33%                                 | yes             | 5.37         | 1.77                           | Tech DOES Apply: Change from stadard gear manufacturing to<br>cold form with no machining                                   |  |
| 05     | 03        | 04            | Front Ring Gear Mounting Bolts           | 0.31         | 0.12                           | 40%                                 | no              |              |                                | Tech does NOT Apply: Reduce from 10 to 6 bolts                                                                              |  |
| 05     | 03        | 04            | Front Differential Mounting Bracket - LH | 3.60         | 1.81                           | 50%                                 | yes             | 6.97         | 3.51                           | Tech DOES Apply: Change from cast steel to cast aluminum                                                                    |  |
| 05     | 03        | 04            | Front Differential Mounting Bracket - RH | 2.64         | 1.33                           | 50%                                 | yes             | 5.04         | 2.54                           | Tech DOES Apply: Change from cast steel to cast aluminum                                                                    |  |
| 05     | 04        | 01            | Front Axle Shaft                         | 4.50         | 1.12                           | 25%                                 | yes             | 5.42         | 1.35                           | Tech DOES Apply: lightin shaft by making hollow with variation of<br>inner wall thickness                                   |  |
| 05     | 04        | 01            | Front Wheel Hub                          | 5.40         | 0.23                           | 4%                                  | yes             | 7.26         | 0.31                           | Tech DOES Apply: Putting lighting holes in hub                                                                              |  |

Table 3-59: System Scaling Analysis Driveline System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Silverado 2500 included the forward propeller shaft, rear axle sleeves, rear axle hubs, rear differential cover plate, rear carrier rear ring gear, front differential output shaft with hubs, front carrier, front ring gear, front differential RH and LH mounting brackets, front axle shaft, and front wheel hubs.

#### Forward Propeller Shaft

Shown in Image 3.8–2 are the Silverado 1500 and 2500 forward propeller shafts. Component masses were 3.55 kg for the 1500 versus 4.50 kg for the 2500. The Lightweighting Technology used in the forward propeller shaft was to change from steel to aluminum. Due to similarities in component design and material, full percentage of the Silverado 1500 forward propeller shaft mass reduction can be applied to the 2500. (Refer to Table 3-59).





Image 3.8–2: Forward Propeller Shaft for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Rear Axle Shaft w/ Hub:

Shown in Image 3.8–3 are the Silverado 1500 and 2500 rear axle shafts. Component masses were 21.4 kg for the 1500 versus 15.6 kg for the 2500. The Lightweighting Technology used in the forward propeller shaft was to extrude steel tube with varied wall thickness in strategic locations. Image 3.8–4 is an example of an extruded tube with varied wall thicknesses. Due to similarities in component design and material, full percentage of the Silverado 1500 rea axle shaft mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–3: Rear Axle Shaft Silverado 1500 (Top), Rear Axle Shaft Silverado 2500 (Bottom) (Source: FEV, Inc.)



Image 3.8–4: Example of technology used on rear axle shaft of varied wall thicknesses (Source: FEV, Inc.)

# Rear Axle Differential Cover Plate

Shown in Image 3.8–5 are the Silverado 1500 and 2500 rear axle shaft cover plates. Component masses were 1.87 kg for the 1500 versus 1.91 kg for the 2500. The Lightweighting Technology used in the rear axle shaft cover plates was to change from stamped steel to stamped aluminum. Due to similarities in component design and material, full percentage of the Silverado 1500 rea axle differential cover plate mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–5: Rear Axle Cover Plate for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Rear Carrier Casting

Shown in Image 3.8–6 are the Silverado 1500 and 2500 rear carrier castings. Component masses were 5.25 kg for the 1500 versus 10.3 kg for the 2500. The Lightweighting Technology used in the rear carrier casting was the differential casting redesigned as a stamped housing and two identical halves are riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the ring gear due to different design. Image 3.8–7 shows an example of the new stamped design. Due to similarities in component

design and material, full percentage of the Silverado 1500 rear carrier casting mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–6: Rear Carrier Casting for the Silverado 1500 (Right) and Silverado 2500 (Left) (Source: FEV, Inc.)



Image 3.8–7: Example of new carrier (Source: Schaeffler Group)

#### Rear Carrier Ring Gear

Shown in Image 3.8–8 are the Silverado 1500 and 2500 series rear carrier ring gears. Component masses were 4.48 kg for the 1500 versus 6.42 kg for the 2500. The Lightweighting Technology used in the rear carrier ring gear was the differential casting redesigned as a stamped housing and two identical halves are riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the ring gear because of the different design. Due to similarities in component design and material, full percentage of the Silverado 1500 rear carrier ring gear mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–8: Rear Carrier Ring Gear Silverado 1500 (Right), Rear Carrier Ring Gear Silverado 2500 (Left) (Source: FEV, Inc.)

#### Front Differential Output Shaft with Hub

Shown in Image 3.8–9 are the Silverado 1500 and 2500 series front differential output shafts with hub. Component masses were 3.10 kg for the 1500 versus 3.99 kg for the 2500. The Lightweighting Technology used was to extrude steel tube with varied wall thickness in strategic locations and drill lightening holes in the hub face. Image 3.8–4 is an example of an extruded tube with varied wall

thicknesses. Due to similarities in component design and material, full percentage of the Silverado 1500 front differential output shaft mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–9: Front Differential Output Shaft with Hub for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Front Carrier Casting

Shown in Image 3.8–10 are the Silverado 1500 and 2500 front carrier castings. Component masses were 4.16 kg for the 1500 versus 9.23 kg for the 2500. The Lightweighting Technology used in the front carrier casting was the differential casting redesigned as a stamped housing and two identical halves are riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the front carrier casting due to different design. Image 3.8–11 shows an example of the new stamped design. Due to similarities in component design and material, full percentage of the Silverado 1500 front carrier casting mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–10: Front Carrier Casting for the Silverado 1500 (Right) and Silverado 2500 (Left) (Source: FEV, Inc.)



#### Front Carrier Ring Gear

Shown in Image 3.8–12 are the Silverado 1500 and 2500 front carrier ring gears. Component masses were 3.33 kg for the 1500 versus 5.34 kg for the 2500. The Lightweighting Technology used in the front ring gear was the differential casting redesigned as a stamped housing and two identical halves are riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the front carrier ring gear because of the different design. Due to similarities in component design and material, full percentage of the Silverado 1500 front ring gear casting mass reduction can be applied to the 2500.



Image 3.8–12: Front Carrier Ring Gear for the Silverado 1500 (Right) and Silverado 2500 (Left) (Source: FEV, Inc.)

#### Front Differential Mounting Bracket (Right and Left)

Shown in Image 3.8–13 are the Silverado 1500 and 2500 RH/LH front differential mounting brackets. Component masses were 6.23 kg for the 1500 versus 12.0 kg for the 2500. The Lightweighting Technology used in the front differential mounting brackets changed from forged steel to forged aluminum. Due to similarities in component design and material, full percentage of the Silverado 1500 rear differential mounting bracket mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–13: Front Differential Mounting Bracket RH for the Silverado 1500 (Right) and Silverado 2500 (Left) (Source: FEV, Inc.)

#### Front Half Shaft Axle Shaft

Shown in Image 3.8–14 are the Silverado 1500 and 2500 front half shaft axle shafts. Component masses were 4.49 kg for the 1500 versus 5.42 kg for the 2500. The Lightweighting Technology used in the front half shaft axle shaft was to extrude steel tube with varied wall thickness in strategic locations and drill lightening holes in the hub face. Image 3.8–15 shows were lightening holes

would be. Due to similarities in component design and material, full percentage of the Silverado 1500 front half shaft axle shaft mass reduction can be applied to the 2500. (Refer to Table 3-59).



Image 3.8–14: Front Half Shaft Axle Shaft for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)



Image 3.8–15: Front Half Shaft Hub with locations for drilling lightening holes (Source: FEV, Inc.)

# 3.8.1.4 System Comparison, Silverado 2500

Table 3-60 summarizes the Silverado 1500 and 2500 Lightweighting results. A majority of the components were visually the same between the driveline systems.

Table 3-60: Driveline System Comparison, Silverado 1500 and 2500

|           |                  |                                     |                                                      | Net V                                            | alue of                                           | Mass F                             | Reducti                                | on                                 |                                                |                                       |
|-----------|------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|
| System    | Description      | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" |
|           |                  |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                                |                                       |
| <b>05</b> | Driveline System | /                                   |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                                |                                       |
| 05        | Silverado 1500   | 183.82                              | 20.42                                                | 0.00                                             | 20.42                                             | 11.11%                             | \$37.98                                | \$0.00                             | \$38.01                                        | \$1.86                                |
| 05        | Silverado 2500   | 288.89                              | 25.11                                                | 0.00                                             | 25.11                                             | 8.69%                              | \$48.71                                | \$0.00                             | \$48.71                                        | \$1.94                                |
|           |                  | ,                                   | [                                                    |                                                  |                                                   |                                    |                                        |                                    | ,                                              |                                       |

#### Mercedes Sprinter 311 CDi Analysis 3.8.2

Table 3-61 summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Mercedes Sprinter 311 CDi. Total Driveline System mass savings was 7.45 kg at a cost decrease of \$17.70, or \$2.38 per kg.

|        |           |               |                                          |                                                      | N                                                | et Value                                          | e of Ma                                | ss Re                              | ductio                                         | n                                     |                                              |
|--------|-----------|---------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------|
| System | Subsystem | Sub-Subsystem | Description                              | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |
| 05     | 00        | 00            | Driveline System                         |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |
| 05     | 01        | 00            | Driveshaft Subsystem                     | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| 05     | 02        | 00            | Rear Drive Housed Axle Subsystem         | 7.45                                                 | 0.00                                             | 7.45                                              | \$17.70                                | \$0.00                             | \$17.70                                        | \$2.38                                | 0.35%                                        |
| 05     | 03        | 00            | Front Drive Housed Axle Subsystem        | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| 05     | 04        | 00            | Front Drive Half-Shafts Subsystem        | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| 05     | 07        | 00            | 4WD Driveline Control Subsystem          | 0.00                                                 | 0.00                                             | 0.00                                              | \$0.00                                 | \$0.00                             | \$0.00                                         | \$0.00                                | 0.00%                                        |
| ┢─     | $\vdash$  | $\vdash$      |                                          | 7.45                                                 | 0.00                                             | 7.45                                              | \$17.70                                | \$0.00                             | \$17.70                                        | \$2.38                                | 0.35%                                        |
|        |           |               |                                          | (Decrease)                                           | (Decrease)                                       | (Decrease)                                        | (Decrease)                             |                                    | (Decrease)                                     | (Decrease)                            |                                              |
| Ма     | ss S      | avi           | ngs, Select Vehicle, New Technology "kg" | 7.45                                                 |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |
| Ma     | ss S      | avi           | ngs, Silverado 1500, New Technology "kg" | 20.42                                                |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |
| Ma     | ss S      | avi           | ngs Select Vehicle/Mass Savings 1500     | 36.5%                                                |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |
|        |           |               |                                          |                                                      |                                                  |                                                   |                                        |                                    |                                                |                                       |                                              |
|        |           | 0             | .6%14.2%                                 |                                                      | I                                                |                                                   |                                        |                                    |                                                |                                       |                                              |

Table 3-61: Mass-Reduction and Cost Impact for Driveline System, Mercedes Sprinter



- % Saved, technology applies
- % Lost, component does n't exist
- % Lost, technology doesn't apply
- % Lost, technology already implemented
- % Lost, technology reduced impact

\*SMS not included - has no significant impact on perecent contributions

# 3.8.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Driveline components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-62.

|        |           |               | Silverado 1500                           | ,            |                                | <u> </u>                            | Select Vehicle                   |       |      |                                                                                                                             |  |
|--------|-----------|---------------|------------------------------------------|--------------|--------------------------------|-------------------------------------|----------------------------------|-------|------|-----------------------------------------------------------------------------------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly                       | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech Base Savings Notes New Tech |       |      | Notes                                                                                                                       |  |
| 05     | D         | rive          | line System                              | 183.82       | 20.42                          | 11%                                 |                                  |       | 7.45 |                                                                                                                             |  |
| 05     | 01        | 05            | Forward Propeller Shaft                  | 3.55         | 2.10                           | 59%                                 | no                               |       |      | Tech does NOT Apply: No front shaft                                                                                         |  |
| 05     | 02        | 01            | Rear Axle Sleeves                        | 10.92        | 2.18                           | 20%                                 | yes                              | 14.15 | 2.83 | Tech DOES Apply: lightin shaft by making hollow with variation of<br>inner wall thickness and putting lighting holes in hub |  |
| 05     | 02        | 01            | Rear Axle Shaft w/ Hub                   | 21.38        | 4.28                           | 20%                                 | yes                              | 4.06  | 0.81 | Tech DOES Apply: lightin shaft by making hollow with variation of<br>inner wall thickness and putting lighting holes in hub |  |
| 05     | 02        | 01            | Rear Axle Differential Cover Plate       | 1.88         | 1.10                           | 59%                                 | yes                              | 1.17  | 0.69 | Tech DOES Apply: Change from steel to aluminum                                                                              |  |
| 05     | 02        | 05            | Rear Carrier Casting                     | 5.25         | 1.58                           | 30%                                 | yes                              | 8.00  | 2.40 | Tech DOES Apply: Change from steel casting to sheet steel<br>welded assy                                                    |  |
| 05     | 02        | 05            | Rear Ring Gear                           | 4.48         | 1.21                           | 27%                                 | yes                              | 2.67  | 0.72 | Tech DOES Apply: Change from stadard gear manufacturing to<br>cold form with no machining                                   |  |
| 05     | 02        | 05            | Rear Ring Gear Mounting Bolts            | 0.32         | 0.13                           | 40%                                 | no                               |       |      | Tech does NOT Apply:                                                                                                        |  |
| 05     | 03        | 04            | Front Differential Output Shaft w/ Hub   | 3.10         | 0.88                           | 28%                                 | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05     | 03        | 04            | Front Carrier                            | 4.16         | 1.25                           | 30%                                 | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05     | 03        | 04            | Front Ring Gear                          | 3.34         | 1.10                           | 33%                                 | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05     | 03        | 04            | Front Ring Gear Mounting Bolts           | 0.31         | 0.12                           | 40%                                 | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05     | 03        | 04            | Front Differential Mounting Bracket - LH | 3.60         | 1.81                           | 50%                                 | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05     | 03        | 04            | Front Differential Mounting Bracket - RH | 2.64         | 1.33                           | 50%                                 | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05     | 04        | 01            | Front Axle Shaft                         | 4.50         | 1.12                           | 25%                                 | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05     | 04        | 01            | Front Wheel Hub                          | 5.40         | 0.23                           | 4%                                  | no                               |       |      | Tech does NOT Apply: No front drive system                                                                                  |  |

Table 3-62: System Scaling Analysis Driveline System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter included the rear axle hubs, rear differential cover plate, and rear carrier rear ring gear. Image 3.8–16 shows the Mercedes Sprinter 311 CDi driveline components.



Image 3.8–16: Mercedes Sprinter 311 CDi Driveline rear axle (Source: www.A2mac1.com)

#### Rear Axle Sleeves

Shown in Image 3.8–17 are the Silverado 1500 and Mercedes Sprinter 311 CDi rear axle sleeves. Component masses were 10.9 kg for the 1500 versus 14.2 kg for the Mercedes Sprinter 311 CDi.

The Lightweighting Technology used in the rear axle sleeves was to extrude steel tube with varied wall thickness in strategic locations. Due to similarities in component design and material, full percentage of the Silverado 1500 rear axle sleeve mass reduction can be applied to the Sprinter. (Refer to Table 3-62).



Image 3.8–17: Rear Axle Sleeve for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1 database)

## Rear Axle Shaft with Hub

Shown in Image 3.8–18 are the Silverado 1500 and Mercedes Sprinter 311 CDi rear axle shafts with hubs. Component masses were 21.4 kg for the 1500 versus 4.06 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used was to extrude steel tube with varied wall thickness in strategic locations. Due to similarities in component design and material, full percentage of the Silverado 1500 rear axle shaft mass reduction can be applied to the Sprinter. (Refer to Table 3-62).



Image 3.8–18: Rear Axle Shaft for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1 database)

#### Rear Axle Differential Cover Plate

Shown in Image 3.8–19 are the Silverado 1500 and Mercedes Sprinter 311 CDi rear axle shaft cover plates. Component masses were 1.87 kg for the 1500 versus 1.17 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the rear axle shaft cover plates was to change from stamped steel to stamped aluminum. Due to similarities in component design and material, full percentage of the Silverado 1500 rear axle differential cover plate mass reduction can be applied to the Sprinter. (Refer to Table 3-62).



Image 3.8–19: Rear Axle Cover Plates for the Silverado 1500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1 database)

#### Rear Carrier Casting

Shown in Image 3.8–20 are the Silverado 1500 and Mercedes Sprinter 311 CDi rear carrier castings. Component masses were 5.25 kg for the 1500 versus 8.00 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the rear carrier casting was the differential casting redesigned as a stamped housing and two identical halves are riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the ring gear due to different design. Image 3.8–21 shows an example of the new stamped design. Due to similarities in component design and material, full percentage of the Silverado 1500 rear carrier casting mass reduction can be applied to the Sprinter. (Refer to Table 3-62).



Image 3.8–20: Rear Carrier Casting for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1 database)



#### Rear Carrier Ring Gear

Shown in Image 3.8–22 are the Silverado 1500 and Mercedes Sprinter 311 CDi rear carrier ring gears. Component masses were 4.48 kg for the 1500 versus 2.67 kg for the Mercedes Sprinter 311 CDi. The Lightweighting Technology used in the rear carrier ring gear was the differential casting redesigned as a stamped housing and two identical halves riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the ring gear because of the different design. Due to similarities in component design and material, full percentage of the Silverado 1500 rear carrier ring gear mass reduction can be applied to the Sprinter. (Refer to Table 3-62).



Image 3.8–22: Rear Carrier Ring Gear for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2macl database)

## 3.8.3 Renault Master 2.3 DCi

The following table summarizes mass and cost impact of Silverado 1500 Lightweighting technologies applied to the Renault Master 2.3 DCi. Total driveline system mass savings was 13.38 kg at a cost decrease of \$35.93, or \$2.68 per kg.



| Table 3-63: Mass-Reduction | and Cost Impact | for Driveline Svster | n. Renault Master |
|----------------------------|-----------------|----------------------|-------------------|
|                            |                 |                      |                   |

\*SMS not included - has no significant impact on perecent contributions

# 3.8.3.1 System Scaling Analysis

The Renault Master 2.3 DCi driveline components were reviewed for compatibility with Lightweighting technologies. The results of this analysis are listed in Table 3-64.

|                  |           |               | Silverado 1500                           |              |                                |                                     | Select Vehicle  |              |                                |                                                                                                                             |  |
|------------------|-----------|---------------|------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| System           | Subsystem | Sub-Subsystem | Component/Assembly                       | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                                       |  |
| 05               | D         | rive          | eline System                             | 183.82       | 20.42                          | 11%                                 |                 |              | 13.38                          |                                                                                                                             |  |
| 05               | 01        | 05            | Forward Propeller Shaft                  | 3.55         | 2.10                           | 59%                                 | no              |              |                                | Tech does NOT Apply: No front shaft                                                                                         |  |
| <mark>0</mark> 5 | 02        | 01            | Rear Axle Sleeves                        | 10.92        | 2.18                           | 20%                                 | yes             | 12.91        | 2.58                           | Tech DOES Apply: lightin shaft by making hollow with variation of<br>inner wall thickness and putting lighting holes in hub |  |
| 05               | 02        | 01            | Rear Axle Shaft w/ Hub                   | 21.38        | 4.28                           | 20%                                 | yes             | 25.83        | 5.17                           | Tech DOES Apply: lightin shaft by making hollow with variation of<br>inner wall thickness and putting lighting holes in hub |  |
| 05               | 02        | 01            | Rear Axle Differential Cover Plate       | 1.88         | 1.10                           | 59%                                 | yes             | 1.92         | 1.13                           | Tech DOES Apply: Change from steel to aluminum                                                                              |  |
| 05               | 02        | 05            | Rear Carrier Casting                     | 5.25         | 1.58                           | 30%                                 | yes             | 8.50         | 2.55                           | Tech DOES Apply: Change from steel casting to sheet steel<br>welded assy                                                    |  |
| 05               | 02        | 05            | Rear Ring Gear                           | 4.48         | 1.21                           | 27%                                 | yes             | 7.24         | 1.96                           | Tech DOES Apply: Change from stadard gear manufacturing to<br>cold form with no machining                                   |  |
| 05               | 02        | 05            | Rear Ring Gear Mounting Bolts            | 0.32         | 0.13                           | 40%                                 | no              |              |                                | Tech does NOT Apply:                                                                                                        |  |
| 05               | 03        | 04            | Front Differential Output Shaft w/ Hub   | 3.10         | 0.88                           | 28%                                 | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05               | 03        | 04            | Front Carrier                            | 4.16         | 1.25                           | 30%                                 | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05               | 03        | 04            | Front Ring Gear                          | 3.34         | 1.10                           | 33%                                 | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05               | 03        | 04            | Front Ring Gear Mounting Bolts           | 0.31         | 0.12                           | 40%                                 | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05               | 03        | 04            | Front Differential Mounting Bracket - LH | 3.60         | 1.81                           | 50%                                 | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05               | 03        | 04            | Front Differential Mounting Bracket - RH | 2.64         | 1.33                           | 50%                                 | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05               | 04        | 01            | Front Axle Shaft                         | 4.50         | 1.12                           | 25%                                 | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |
| 05               | 04        | 01            | Front Wheel Hub                          | 5.40         | 0.23                           | 4%                                  | no              |              |                                | Tech does NOT Apply: No front drive system                                                                                  |  |

Table 3-64: System Scaling Analysis Driveline System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi included the rear axle hubs, rear differential cover plate, and rear carrier rear ring gear. Image 3.8–23 shows the Renault Master 2.3 DCi driveline components.



Image 3.8–23: Renault Master 2.3 DCi Rear Driveline (Source: A2mac1.com)

#### Rear Axle Sleeves

Shown in Image 3.8–24 are the Silverado 1500 and Renault Master 2.3 DCi rear axle shafts. Component masses were 10.9 kg for the Silverado 1500 versus 12.9 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used in the forward propeller shaft was to extrude steel tube with varied wall thickness in strategic locations. Due to similarities in component design and material, full percentage of the Silverado 1500 rear axle sleeves mass reduction can be applied to the Renault. (Refer to Table 3-64).



Image 3.8–24: Rear Axle Sleeves for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1 database)

## Rear Axle Shaft with Hub

Shown in Image 3.8–25 are the Silverado 1500 and Renault Master 2.3 DCi rear axle shafts with hubs. Component masses were 21.4 kg for the 1500 versus 25.8 kg for the Renault Master 2.3 DCi. The Lightweighting Technology used was to extrude steel tube with varied wall thickness in strategic locations. Due to similarities in component design and material, full percentage of the Silverado 1500 rear axle shaft mass reduction can be applied to the Renault. (Refer to Table 3-64).



Image 3.8–25: Rear Axle Shaft for the Silverado 1500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1 database)

## Rear Axle Differential Cover Plate

Shown in Image 3.8–26 are the Silverado 1500 and Renault Master 2.3 DCi rear axle shaft cover plates. Component masses were 1.87 kg for the 1500 versus 1.92 kg for the Renault Master 2.3 DCi. The lightweighting technology used in the rear axle shaft cover plates was to change from stamped steel to stamped aluminum. Due to similarities in component design and material, full percentage of the Silverado 1500 rear axle differential cover plate mass reduction can be applied to the Renault. (Refer to Table 3-64).



Image 3.8–26: Rear Axle Cover Plate for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1 database)

#### Rear Carrier Casting

Shown in Image 3.8–27 are the Silverado 1500 and Renault Master 2.3 DCi rear carrier castings. Component masses were 5.25 kg for the 1500 versus 8.50 kg for the Renault Master 2.3 DCi. The lightweighting technology used in the rear carrier casting was the differential casting redesigned as a stamped housing and two identical halves riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the ring gear because of the different design. Image 3.8–28 shows an example of the new stamped design. Due to similarities in component design and material, full percentage of the Silverado 1500 rear carrier casting mass reduction can be applied to the Renault. (Refer to Table 3-64).



Image 3.8–27: Rear Carrier Casting for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1 database)



Image 3.8–28: New Carrier Example (Source: Schaeffler Group)

#### Rear Carrier Ring Gear

Shown in Image 3.8–29 are the Silverado 1500 and Renault Master 2.3 DCi rear carrier ring gears. Component masses were 4.48 kg for the 1500 versus 7.24 kg for the Renault Master 2.3 DCi. The lightweighting technology used in the rear carrier ring gear was redesigning the differential casting as a stamped housing and two identical halves are riveted together. The ring gear was then bolted onto the mounting flanges featured on the stamped housing. This change also allowed for mass reduction of the ring gear because of the different design. Due to similarities in component design and material, full percentage of the Silverado 1500 rear carrier ring gear mass reduction can be applied to the Renault. (Refer to Table 3-64).



Image 3.8–29: Rear Carrier Ring Gear for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1 database)

## 3.9 BRAKE SYSTEM

## 3.9.1 Silverado 1500 Summary

This report details FEV's work and findings relative to the Brake System to prove the design concept, cost effectiveness, and manufacturing feasibility that can meet the function and performance of the baseline vehicle (2011 Chevrolet Silverado). In Table 3-65 is a summary of the calculated mass reduction and cost impact for each sub-subsystem evaluated. This project recorded

a system mass reduction of 46.65 kg system at a cost increase of \$160.04 or \$3.43 per kg. The contribution of the Brake System to the overall vehicle mass reduction was 1.96%.

|           |           |               |                                       | Net Value of Mass Reduction |                                          |                                     |                                                        |                          |                                     |  |  |
|-----------|-----------|---------------|---------------------------------------|-----------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|
| System    | Subsystem | Sub-Subsystem | Description                           | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |
| <b>06</b> | 00        | 00            | Brake System                          |                             |                                          |                                     |                                                        |                          |                                     |  |  |
| 06        | 03        | 00            | Front Rotor/Drum and Shield Subsystem | 42.98                       | 22.82                                    | -57.95                              | -2.54                                                  | 53.11%                   | 0.96%                               |  |  |
| 06        | 03        | 01            | Front Rotor                           | 23.32                       | 12.43                                    | -68.42                              | -5.51                                                  | 53.28%                   | 0.52%                               |  |  |
| 06        | 03        | 02            | Caliper Housing                       | 9.61                        | 6.41                                     | 6.72                                | 1.05                                                   | 66.75%                   | 0.27%                               |  |  |
| 06        | 03        | 02            | Caliper Mounting Bracket              | 4.36                        | 2.98                                     | 1.96                                | 0.66                                                   | 68.27%                   | 0.12%                               |  |  |
| 06        | 03        | 00            | Other Components                      | 5.69                        | 1.01                                     | 1.79                                | 1.77                                                   | 17.72%                   | 0.04%                               |  |  |
| 06        | 04        | 00            | Rear Rotor/Drum and Shield Subsystem  | 34.26                       | 18.26                                    | -60.03                              | -3.29                                                  | 53.31%                   | 0.77%                               |  |  |
| 06        | 04        | 07            | Rear Drum                             | 22.09                       | 14.15                                    | -67.42                              | -4.76                                                  | 64.08%                   | 0.59%                               |  |  |
| 06        | 04        | 08            | Backing Plate                         | 5.79                        | 2.78                                     | 1.59                                | 0.57                                                   | 48.12%                   | 0.12%                               |  |  |
| 06        | 04        | 08            | Wheel Cylinder Housing                | 0.92                        | 0.46                                     | 6.11                                | 13.23                                                  | 50.44%                   | 0.02%                               |  |  |
| 06        | 04        | 00            | Other Components                      | 5.46                        | 0.86                                     | -0.31                               | -0.36                                                  | 15.73%                   | 0.04%                               |  |  |
| 06        | 05        | 00            | Parking Brake and Actuation Subsystem | 4.70                        | 1.45                                     | -19.85                              | -13.68                                                 | 30.87%                   | 0.06%                               |  |  |
| 06        | 05        | 01            | Parking Brake Lever & Frame           | 1.61                        | 0.93                                     | -3.88                               | -4.16                                                  | 57.84%                   | 0.04%                               |  |  |
| 06        | 05        | 00            | Other Components                      | 3.09                        | 0.52                                     | -15.97                              | -30.79                                                 | 16.79%                   | 0.02%                               |  |  |
| 06        | 06        | 00            | Brake Actuation Subsystem             | 10.66                       | 2.53                                     | -1.32                               | -0.52                                                  | 23.72%                   | 0.11%                               |  |  |
| 06        | 06        | 02            | Brake Pedal Arm                       | 1.30                        | 0.56                                     | -1.11                               | 0.00                                                   | 42.56%                   | 0.02%                               |  |  |
| 06        | 06        | 02            | Brake Pedal Frame                     | 1.70                        | 0.99                                     | 1.14                                | 1.16                                                   | 57.84%                   | 0.04%                               |  |  |
| 06        | 06        | 02            | Brake Pedal Bracket Assy              | 0.97                        | 0.56                                     | -1.78                               | -3.17                                                  | 57.88%                   | 0.02%                               |  |  |
| 06        | 06        | 00            | Other Components                      | 6.69                        | 0.43                                     | 0.43                                | 1.02                                                   | 6.40%                    | 0.02%                               |  |  |
| 06        | 07        | 00            | Power Brake Subsystem                 | 4.24                        | 1.58                                     | -20.89                              | -13.21                                                 | 37.33%                   | 0.07%                               |  |  |
| 06        | 07        | 01            | Vacuum Booster Assembly               | 4.24                        | 1.58                                     | -20.89                              | -13.21                                                 | 37.33%                   | 0.07%                               |  |  |
| 06        | 07        | 00            | Other Components                      | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 06        | 09        | 00            | Brake Controls Subsystem              | 4.17                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
| 06        | 09        | 01            | Brake Controls                        | 4.17                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |
|           |           |               |                                       |                             |                                          |                                     |                                                        |                          |                                     |  |  |
|           |           |               |                                       | 101.01                      | 46.65                                    | -160.04                             | -3.43                                                  | 46.18%                   | 1.96%                               |  |  |
|           |           |               |                                       |                             | (Decrease)                               | (Increase)                          | (Increase)                                             |                          |                                     |  |  |
| 141       | 11.11     |               |                                       |                             |                                          |                                     |                                                        |                          |                                     |  |  |

Table 3-65: Brake System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase
(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

The major components contributing to the mass reduction within the Front Rotor/Drum and Shield Subsystem were the front rotor, caliper housing, and caliper mounting bracket.

Front Rotor: The mass reduction idea for the front rotor involved making eight different changes to the baseline design. The changes included normalizing to the 2006 Dodge Ram, two-piece rotor design, drilling clearance holes in the rotor hat top and sides, changing disc material from steel to an aluminum metal matrix, changing cooling vanes from a straight to directional configuration, adding venting slots to the disc face, and adding cross-drilled holes to the rotor disc. The individual baseline component mass was 11.7 kg and the redesign mass was 5.45 kg, resulting in an overall mass savings of 12.4 kg, or 53.3% compared to the steel units.

Each of these individual rotor ideas is not unique; however, it is unique to see all of them incorporated in a single design. This redesigned rotor incorporates all the latest rotor lightweighting ideas into a single unit that captures all the potential weight-saving opportunities.

<u>Caliper Housing</u>: The mass reduction ideas for the caliper housing were to normalize to the 2002 Chevrolet Avalanche 1500 and then change the component material from cast iron to cast magnesium. The individual baseline component mass was 4.80 kg with the redesign mass 1.60 kg, resulting in an overall mass savings of 6.41 kg, or 66.7%, compared to the steel units.

For the caliper housing, as well as several other brake components, magnesium was the redesign material of choice. While this is not popular within the automotive industry in the United States, it is becoming much more common with the European OEMs.

Magnesium has long been used in commercial and specialty automotive vehicles. Racing cars have used magnesium parts since the 1920s. Volkswagen used, in 1936, approximately 20.0 kg of magnesium in the power train system for its Beetle.

Over the past 10 years there has been significant growth in the high-pressure die-casting sector as OEMs search for light-weighting opportunities. With advances in the creation of magnesium alloys, there are many applications for the automotive industry – particularly within brake and suspension systems.

In Europe, Volkswagen, Chrysler, BMW, Ford, and Jaguar are using magnesium as a structural lightweight material. Presently, around 14 kg of magnesium are used in the VW Passat and Audi A4 and A6 for transmission castings. Other applications include instrument panels, intake manifolds, cylinder head covers, inner boot lid sections, and steering components. In North America, the full-size GM Savana and Express vans use up to 26.0 kg of magnesium alloy.

<u>Caliper Mounting Bracket</u>: The mass reduction ideas for the caliper mounting bracket were to first normalize to the 2002 Chevrolet Avalanche 1500 and then change the component material from cast iron to cast magnesium. The individual baseline component mass was 2.18 kg and the redesign mass was 0.69 kg, resulting in an overall mass savings of 2.98 kg or 68.3% for both brackets compared to the steel units.

The major components contributing to the mass reduction within the Rear Rotor/Drum and Shield Subsystem were the rear drum, backing plate, and the wheel cylinder housing.

<u>Rear Drum</u>: The mass reduction idea for the rear drum was a combination of six different changes to the baseline design. These changes included changing the baseline material from cast iron to aluminum metal matrix composite, adding cooling fins on the external surface, cross-drilling holes in the mounting surface, cross-drilling holes in the side surface, and adding cooling slots to the side surfaces. The individual baseline component mass was 11.1 kg and the redesign mass 3.97 kg, resulting in an overall mass savings of 14.2 kg or 64.1% compared to the baseline units.

<u>Backing Plate</u>: The mass reduction idea for the backing plate involved changing the baseline material from steel to aluminum and then to add cooling slots to the back surface. The individual baseline component mass was 2.9 kg while the redesign mass was 1.5 kg, resulting in an overall mass savings of 4.4 kg for both backing plates or 48.3% compared to the steel units.

<u>Wheel Cylinder Housing</u>: The mass reduction idea for the wheel cylinder housing was to change the baseline material from cast iron to cast aluminum. The individual baseline component mass was 0.46 kg while the redesign mass is 0.23 kg resulting in an overall mass savings of 0.5 kg for both backing plates or 50.0% compared to the cast iron units.

The major component contributing to the mass reduction within the Parking Brake and Actuation Subsystem was the park brake lever and frame.

<u>Park Brake Lever and Frame</u>: The mass reduction idea for the park brake lever and frame was to change the parking brake mounting frame, cover plate, and lever from stamped steel to cast magnesium. The baseline mass for all three components was 1.61 kg and the redesign mass 0.68 kg, resulting in an overall mass savings of 0.93 kg or 57.8% compared to the stamped steel units.

The major components contributing to the mass reduction within the Brake Actuation Subsystem were the brake pedal arm, brake pedal frame, and brake pedal bracket.

<u>Brake Pedal Arm</u>: The mass reduction idea for the brake pedal arm was to change the baseline component material from stamped steel to glass-filled nylon. The total baseline mass was 1.5 kg and the redesign mass 0.75 kg, resulting in an overall mass savings of 0.75 kg, or 50.0%, compared to the steel unit.

<u>Brake Pedal Frame</u>: The mass reduction idea for the brake pedal frame was to change it from a multi-piece stamped steel welded construction to a cast magnesium design. The baseline mass was 1.7 kg and the redesign mass was 0.72 kg, resulting in an overall mass savings of 0.98 kg or 57.6%.

<u>Brake Pedal Bracket Assembly</u>: The mass reduction idea for the brake pedal bracket assembly was to change the side plates from stamped steel to cast magnesium. The baseline assembly mass of 1.54 kg versus the redesigned assembly mass of 0.98 kg resulted in an overall mass savings of 0.60 kg, or 36.4%.

The major component contributing to the mass reduction within the Power Brake Subsystem was the vacuum booster assembly.

<u>Vacuum Booster Assembly</u>: The mass reduction ideas for the vacuum booster assembly affected each internal plate as well as the outer housings. These ideas included changing the front housing, rear housing, front backing plate, and the spacer ring from stamped steel to cast magnesium. The rear backing plate idea changed the baseline material from stamped steel to stamped aluminum. The actuator shaft changes from steel to titanium and the mounting studs change from steel to aluminum. The baseline booster unit had a mass of 4.2 kg and the redesign mass was 2.7 kg, resulting in an overall mass savings of 1.5 kg, or 35.7%, compared to the steel unit.

## 3.9.2 Silverado 2500 Analysis

## 3.9.2.1 System Architecture

Front Rotor/Drum and Shield Subsystem: The Chevrolet Silverado 2500 front rotor/drum and shield subsystem used a similar architecture as the 1500. Both utilized a floating cast iron brake caliper with double pistons, brake pads, a cast iron caliper mounting bracket, a cast iron rotor, and a stamped steel splash shield.

Rear Rotor/Drum and Shield Subsystem: The Chevrolet Silverado 2500 rear rotor/drum and shield subsystem architecture was unique compared to the 1500. The 2500 utilized a cast iron drum-in-hat brake drum and rotor which allowed it to use brake shoes for the parking brake function and brake pads for stopping the vehicle, brake shoes with associated mounting hardware, brake pads, a cast iron brake caliper with double pistons, a cast iron caliper mounting bracket, and a stamped steel dust shield.

Parking Brake and Actuation Subsystem: As mentioned, the Silverado 2500 used a drum-in-hat park brake design that separated the parking brake function from the vehicle stopping function. The

parking brake was engaged by a cable system directly connected to the brake shoes at one end and the actuator at the other end. The 2500 used the same park brake actuation design as the 1500, which includes a stamped steel frame and foot actuated lever.

Brake Actuation Subsystem: Both the Silverado 2500 and the 1500 used the same brake pedal and accelerator pedal design. The brake pedal and frame were of a stamped steel construction, while the accelerator pedal consisted of a set of plastic injection molded components that were assembled together.

Power Brake Subsystem: The Silverado 2500 came standard with four-wheel disc brakes with hydro-boost, whereas the 1500 used a traditional vacuum booster. Both vehicles have an ABS module and a common brake actuation design.

# 3.9.3 System Scaling Summary

Table 3-66 summarizes mass and cost impact of Silverado 1500 lightweighting technologies applied to the Silverado 2500. Total brake mass savings was 54.31 kg at a cost increase of 172.80 or \$3.07 per kg.

|                                  | Net Value of Mass Reduction                  |                                              |                                                                                                                                                                                                                                                                                                                        |                                                        |                                                      |                                                        |                                                                          |                                                                               |                                                                                    |                                                                        |                                                    |
|----------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|
| System                           | Subsystem                                    | Sub-Subsystem                                | Description                                                                                                                                                                                                                                                                                                            | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub>   | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub>     | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub>      | Cost<br>Impact<br>New Tech<br>"\$" (2)                                   | Cost<br>Impact<br>Comp<br>"\$" (2)                                            | Cost<br>Impact<br>Total<br>"\$" (2)                                                | Cost/<br>Kilogram<br>Total<br>"\$/kg"                                  | Vehicle<br>Mass<br>Reduction<br>Total<br>"%"       |
| 06<br>06<br>06<br>06<br>06<br>06 | 00<br>03<br>04<br>05<br>06<br>07<br>09<br>10 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | Brake System           Front Rotor/Drum and Shield Subsystem           Rear Rotor/Drum and Shield Subsystem           Parking Brake and Actuation Subsystem           Brake Actuation Subsystem           Power Brake Subsystem (for Hydraulic)           Brake Controls Subsystem           Auxiliary Brake Subsystem | 30.42<br>20.10<br>1.57<br>2.23<br>0.00<br>0.00<br>0.00 | 1.28<br>0.65<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 31.70<br>20.75<br>1.57<br>2.23<br>0.00<br>0.00<br>0.00 | -\$82.61<br>-\$88.23<br>-\$22.53<br>\$0.55<br>\$0.00<br>\$0.00<br>\$0.00 | \$12.66<br>\$7.37<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00 | -\$69.95<br>-\$80.86<br>-\$22.53<br>\$0.55<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00 | -\$2.21<br>-\$3.90<br>-\$14.39<br>\$0.24<br>\$0.00<br>\$0.00<br>\$0.00 | 1.03%<br>0.67%<br>0.05%<br>0.07%<br>0.00%<br>0.00% |
|                                  |                                              |                                              |                                                                                                                                                                                                                                                                                                                        | 54.31<br>(Decrease)                                    | 1.93<br>(Decrease)                                   | 56.24<br>(Decrease)                                    | -\$192.82<br>(Increase)                                                  | <b>\$20.03</b><br>(Decrease)                                                  | -\$172.80<br>(Increase)                                                            | -\$3.07<br>(Increase)                                                  | 1.82%                                              |
| Mas<br>Mas                       | ss S<br>ss S<br>0.0<br>3.                    | avin<br>avin<br>avin<br>7%<br>6.:            | ngs, Select Vehicle, New Technology "kg"<br>ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500                                                                                                                                                                                           | 54.3<br>43.2<br>125.7%                                 |                                                      | ■ % S:<br>■ % La<br>■ % La<br>■ % La                   | aved, tech<br>ost, compo<br>ost, techno<br>ost, techno<br>ost, techno    | nology ap<br>onent doe<br>ology doe<br>ology alre<br>ology redu               | oplies<br>sn't exis<br>sn't appl<br>ady impl<br>uced imp                           | t<br>Y<br>ementec<br>Pact                                              | 1                                                  |

| <b>T</b> 11 2 | ~ .   |       | <b>.</b>  | ,   | ~    |        | c   | n 1   | a       | au 1      | 2500 |
|---------------|-------|-------|-----------|-----|------|--------|-----|-------|---------|-----------|------|
| Table 3-      | 66: I | Mass- | Reduction | and | Cost | Impact | for | Brake | System, | Silverado | 2500 |

Mass savings could not be credited for components for which lightweighting technologies did not apply. One reason for this could be that the technology was already implemented. For other components the lightweighting technology may not apply because of design. For example, the Silverado 2500 used a hydraulic brake booster whereas the 1500 used a vacuum operated brake booster. Some components lightweighted as part of the Silverado 1500 analysis did not exist in the 2500 brake system, such as the rear backing plates, rear wheel cylinders, and the side plates associated with the adjustable brake pedal height mechanism.

## 3.9.3.1 System Scaling Analysis

The Silverado 2500 brake components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-67.

|        |           |               | Silverado 1                     | 500       |                             |                                  | Select Vehicle  |              |                             |                                                                  |
|--------|-----------|---------------|---------------------------------|-----------|-----------------------------|----------------------------------|-----------------|--------------|-----------------------------|------------------------------------------------------------------|
| System | Subsystem | Sub-Subsystem | Component/Assembly              | Base Mass | Mass<br>Savings<br>New Tech | % of Mass<br>Savings<br>New Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New Tech | Notes                                                            |
| 06     | в         | rak           | e System                        | 101.0     | 43.2                        | 43%                              |                 |              | 54.3                        |                                                                  |
| 06     | 03        | 01            | Front Rotor J H & RH            | 23.32     | 12 11                       | 52%                              | Yes             | 33.56        | 17 43                       | Tech DOES apply: Use two-piece<br>aluminum/aluminum matrix metal |
| 06     | 03        | 01            | Brake Shield, LH                | 0.48      | 0.25                        | 52%                              | Yes             | 0.67         | 0.35                        | Tech DOES apply: Use plastic w/slots                             |
| 06     | 03        | 01            | Brake Shield, RH                | 0.48      | 0.25                        | 52%                              | Yes             | 0.68         | 0.35                        | Tech DOES apply: Use plastic w/slots                             |
| 06     | 03        | 02            | Caliper Housing, LH             | 4.80      | 3.21                        | 67%                              | Yes             | 6.59         | 4.40                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 03        | 02            | Caliper Mounting Bracket, LH    | 2.18      | 1.49                        | 68%                              | Yes             | 2.55         | 1.74                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 03        | 02            | Caliper Housing, RH             | 4.80      | 3.21                        | 67%                              | Yes             | 6.59         | 4.40                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 03        | 02            | Caliper Mounting Bracket, RH    | 2.18      | 1.49                        | 68%                              | Yes             | 2.55         | 1.74                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 04        | 07            | Rear Drum, LH & RH              | 22.09     | 13.69                       | 62%                              | Yes             | 32.43        | 20.10                       | Tech DOES apply: Use aluminum matrix metal                       |
| 06     | 04        | 08            | Rear Backing Plate, LH & RH     | 5.79      | 1.41                        | 24%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                              |
| 06     | 04        | 08            | Wheel Cylinder Housing, LH & RH | 0.92      | 0.46                        | 50%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                              |
| 06     | 04        | 08            | Actuation Lever, LH & RH        | 0.61      | 0.27                        | 44%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                              |
| 06     | 05        | 01            | Mounting Plate                  | 0.77      | 0.44                        | 58%                              | Yes             | 0.76         | 0.44                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 05        | 01            | Cover Plate                     | 0.41      | 0.23                        | 58%                              | Yes             | 0.40         | 0.23                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 05        | 01            | Park Brake Lever                | 0.44      | 0.26                        | 58%                              | Yes             | 0.48         | 0.28                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 05        | 02            | Parking Brake Cable Asm         | 1.73      | 0.52                        | 30%                              | Yes             | 2.07         | 0.62                        | Tech DOES apply: Use synthetic cable                             |
| 06     | 06        | 02            | Accelerator Pedal Asm           | 2.14      | 0.04                        | 2%                               | Yes             | 0.37         | 0.01                        | Tech DOES apply: Use MuCell®                                     |
| 06     | 06        | 02            | Brake Pedal Frame               | 1.70      | 0.99                        | 58%                              | Yes             | 2.49         | 1.44                        | Tech DOES apply: Use cast magnesium                              |
| 06     | 06        | 02            | Pedal Arm Asm                   | 1.50      | 0.75                        | 50%                              | Yes             | 1.57         | 0.78                        | Tech DOES apply: Use plastic                                     |
| 06     | 06        | 02            | Side Plate Asm                  | 1.54      | 0.56                        | 37%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                              |
| 06     | 07        | 01            | Vacuum Booster                  | 4.24      | 1.58                        | 37%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                              |

Table 3-67: Brake Components Scaling Analysis Results, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Silverado 2500 included the front rotor, front caliper, front caliper mounting bracket, rear drum-in-hat, and the brake pedal frame.

#### Front Rotor

As shown in Image 3.9–1, the Silverado 1500 series brake system uses the same basic cast-iron rotor design as the 2500 series brake system. Component masses, for both front rotors, were 23.3 kg versus 33.5 kg, respectively. Image 3.9–2 is an approximate example of a two-piece rotor which represents the mass reduction idea associated with this component. This redesign idea comprises of an aluminum hat with side and top cross-drilling, and an aluminum Metal-Matrix Composite (MMC) disc with directional cooling fins, disc surface slotting, and disc surface cross-drilling. Due to similarities in component design and material, full percentage of the Silverado 1500 front rotor mass reduction can be applied to the 2500. (Refer to Table 3-67).



Image 3.9–1: Front Rotor for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc. Photo)



Image 3.9–2: Front Rotor Mass Reduced Component Example (Source: http://www.girodisc.com/Girodisc-Front-2-piece-rotors-for-Mazda-RX8\_p\_6346.html)

#### Front Caliper Housing

As shown in Image 3.9–3, the Silverado 1500 and the 2500 share a common front caliper housing design in which both vehicles utilize cast-iron housing with dual pistons. Component masses were 4.8 kg versus 6.59 kg, respectively. Shown in Image 3.9–4, the new technology idea was to cast the caliper housings out of magnesium. Due to similarities in component design and material, full percentage of the Silverado 1500 front caliper housing mass reduction can be applied to the 2500. (Refer to Table 3-67).



Image 3.9–3: Front Caliper Housing; 1500 Series (Left), 2500 Series (Right) (Source: FEV, Inc. Photo)



Image 3.9–4: Front Caliper Housing Mass Reduced Component example (Source:http://www.peterverdone.com/wiki/index.php?title=PVD\_Land\_Speed\_Record\_Bike#Caliper)

## Front Caliper Mounting Bracket

As shown in Image 3.9–5, the Silverado 1500 and 2500 share a similar cast-iron front caliper mounting bracket design. Component masses were 2.2 kg versus 2.6 kg, respectively. Casting the bracket from magnesium saves significant mass. Image 3.9–6 is an approximate example of a cast-magnesium caliper mounting bracket. Due to similarities in component design and material, full percentage of the Silverado 1500 front caliper mounting bracket mass reduction can be applied to the 2500. (Refer to Table 3-67).



Image 3.9–5: Front Caliper Mounting Bracket; 1500 Series (Left), 2500 Series (Right) (Source: FEV, Inc. Photo)



Image 3.9–6: Front Caliper Mounting Bracket Mass Reduced Component Example (Source: http://www.gforcebuggies.com/Parts)

#### Rear Drum-in-Hat

As shown in Image 3.9–7, the Silverado 1500 uses a standard drum design for the rear brakes whereas the 2500 uses a drum-in-hat design. Component masses, for both drums, were 22.0 kg versus 32.4 kg, respectively. Although the two vehicles used a different cast-iron design, the lightweighting idea still applies and saves significant mass. Image 3.9–8 is an approximate example of an aluminum metal-matrix drum. Due to similarities in component material, full percentage of the Silverado 1500 rear drum mass reduction can be applied to the 2500. (Refer to Table 3-67).



Image 3.9–7: Rear Drum for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc. Photo)



Image 3.9–8: Rear Drum Mass Reduced Component (Source: http://www.compositesworld.com/articles/metal-matrix-composites-used-to-lighten-military-brake-drums)

#### Brake Pedal Frame

As shown in Image 3.9–9, the Silverado 1500 and 2500 share a similar brake pedal frame design. Component masses were 1.7 kg versus 2.5 kg, respectively. Changing the base material from stamped steel to cast-magnesium, as is being used in the 2013 Dodge RAM 1500 Laramie Crew Cab 4x4 (Image 3.9–10), simplified the design by reducing the number of components and easing assembly. Due to similarities in component design and material, full percentage of the Silverado 1500 brake pedal frame mass reduction can be applied to the 2500. (Refer to Table 3-67).


Image 3.9–9: Brake Pedal Frame; 1500 Series (Left), 2500 Series (Right) (Source: FEV, Inc. Photo)



Image 3.9–10: Brake Pedal Arm Frame Mass Reduced Assembly Example (Source: www.A2mac1.com)

# 3.9.4 Brake System Comparison, Silverado 2500

Table 3-68 summarizes the 1500 and 2500 lightweighting results for the Brake System.

|                |                                                  |                                     |                                                      | Net \                                            | /alue of                                          | f Mass                             | Reduct                                 | ion                                |                                                |                                       |
|----------------|--------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|
| System         | Description                                      | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" |
| 04<br>04<br>04 | Brake System<br>Silverado 1500<br>Silverado 2500 | 101.01<br>150.12                    | 43.19<br>54.31                                       | 2.01<br>1.93                                     | 45.21<br>56.24                                    | 44.76%<br>37.47%                   | -\$169.66<br>-\$192.82                 | \$18.95<br>\$20.03                 | -\$150.71<br>-\$172.80                         | -\$3.33<br>-\$3.07                    |

Table 3-68: Brake System Comparison, Silverado 1500 and 2500

# 3.9.5 Mercedes Sprinter 311 CDi Analysis

# 3.9.5.1 System Architecture - Sprinter

Front Rotor/Drum and Shield Subsystem: The Mercedes Sprinter Front Rotor/Drum and Shield Subsystem (Image 3.9–11) used a similar architecture as the Silverado 1500. Both vehicles utilized a floating cast iron brake caliper with double pistons, brake pads, a cast-iron caliper mounting bracket, and a cast-iron rotor. One minor difference was the Sprinter does not use a splash shield.



Image 3.9–11: Mercedes Sprinter Front Rotor/Drum and Shield Subsystem (Source: www.A2mac1.com)

Rear Rotor/Drum and Shield Subsystem: The Mercedes Sprinter Rear Rotor/Drum and Shield Subsystem architecture (Image 3.9–12) is unique compared to the 1500 architecture. The Mercedes Sprinter utilizes a cast iron drum-in-hat brake drum and rotor which allows it to use brake shoes for the parking brake function and brake pads for stopping the vehicle. This subsystem also includes: brake shoes with associated mounting hardware, brake pads, a cast iron brake caliper, a cast iron caliper mounting bracket, and a stamped steel dust shield.



Image 3.9–12: Mercedes Sprinter Rear Rotor/Drum and Shield Subsystem (Source: www.A2mac1.com)

Parking Brake and Actuation Subsystem: As mentioned, the Mercedes Sprinter uses a drum-in-hat park brake design that separates the parking brake function from the vehicle's stopping function. The parking brake is engaged by a cable system directly connected to the brake shoes at one end and the actuator at the other end. Unlike the 1500, the Sprinter uses a hand operated lever instead of a foot operated pedal which includes a stamped steel frame and actuation lever.

Brake Actuation Subsystem: Both the Sprinter and the Silverado 1500 used similar brake and accelerator pedal designs. The brake pedal and frame were of a stamped steel construction while the accelerator pedal consisted of a set of plastic injection-molded components that are assembled together.

Power Brake Subsystem: As with the Silverado 1500, the Mercedes Sprinter used a traditional vacuum booster. Both vehicles have an ABS module and a common brake actuation design.

# 3.9.5.2 System Scaling Summary

The following table summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter. Total brake system mass savings was 28.21 kg at a cost increase of \$105.79 or \$3.75 per kg.



| Table 3-69: Mass-Re   | eduction and Cos    | t Impact for Brake | System Mer     | cedes Sprinter   |
|-----------------------|---------------------|--------------------|----------------|------------------|
| 14010 0 071 11400 144 | contentent anta cob | impact jet Diane   | 5,50000, 11200 | courses sprince. |

Mass savings could not be credited for components for which lightweighting technologies did not apply. Reasons for this could be that the technology was already implemented. Some components lightweighted as part of the 1500 Silverado analysis did not exist in the Sprinter brake system, such as the front brake shields.

### 3.9.5.3 System Scaling Analysis

The Mercedes Sprinter Brake system components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-70.

|        |           |               | Silverado 1                     | 500       |                             |                                  | Select Vehicle  |              |                             |                                                                                                         |  |
|--------|-----------|---------------|---------------------------------|-----------|-----------------------------|----------------------------------|-----------------|--------------|-----------------------------|---------------------------------------------------------------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly              | Base Mass | Mass<br>Savings<br>New Tech | % of Mass<br>Savings<br>New Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New Tech | Notes                                                                                                   |  |
| 06     | В         | rak           | e System                        | 101.0     | 43.4                        | 43%                              |                 |              | 27.7                        |                                                                                                         |  |
| 06     | 03        | 01            | Front Rotor, LH & RH            | 23.32     | 12.11                       | 52%                              | Yes             | 18.16        | 9.43                        | Tech DOES apply: Use two-piece<br>aluminum/aluminum matrix metal                                        |  |
| 06     | 03        | 01            | Brake Shield, LH                | 0.48      | 0.25                        | 52%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                     |  |
| 06     | 03        | 01            | Brake Shield, RH                | 0.48      | 0.25                        | 52%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                     |  |
| 06     | 03        | 02            | Caliper Housing, LH             | 4.80      | 3.21                        | 67%                              | Yes             | 4.69         | 3.13                        | Tech DOES apply: Use cast magnesium                                                                     |  |
| 06     | 03        | 02            | Caliper Mounting Bracket, LH    | 2.18      | 1.49                        | 68%                              | Yes             | 2.13         | 1.45                        | Tech DOES apply: Use cast magnesium                                                                     |  |
| 06     | 03        | 02            | Caliper Housing, RH             | 4.80      | 3.21                        | 67%                              | Yes             | 4.69         | 3.13                        | Tech DOES apply: Use cast magnesium                                                                     |  |
| 06     | 03        | 02            | Caliper Mounting Bracket, RH    | 2.18      | 1.49                        | 68%                              | Yes             | 2.13         | 1.45                        | Tech DOES apply: Use cast magnesium                                                                     |  |
| 06     | 04        | 07            | Rear Drum, LH & RH              | 22.09     | 13.69                       | 62%                              | Yes             | 8.69         | 5.39                        | Tech DOES apply: Use aluminum matrix metal                                                              |  |
| 06     | 04        | 08            | Rear Backing Plate, LH & RH     | 5.79      | 1.41                        | 24%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                     |  |
| 06     | 04        | 08            | Wheel Cylinder Housing, LH & RH | 0.92      | 0.46                        | 50%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                     |  |
| 06     | 04        | 08            | Actuation Lever, LH & RH        | 0.61      | 0.27                        | 44%                              | No              |              |                             | Tech does NOT apply: Not on vehicle                                                                     |  |
| 06     | 05        | 01            | Mounting Plate                  | 0.77      | 0.44                        | 58%                              | Yes             | 0.63         | 0.36                        | Tech DOES apply: Use cast magnesium                                                                     |  |
| 06     | 05        | 01            | Cover Plate                     | 0.41      | 0.23                        | 58%                              | Yes             | 0.33         | 0.19                        | Tech DOES apply: Use cast magnesium                                                                     |  |
| 06     | 05        | 01            | Park Brake Lever                | 0.44      | 0.26                        | 58%                              | Yes             | 0.36         | 0.21                        | Tech DOES apply: Use cast magnesium                                                                     |  |
| 06     | 05        | 02            | Parking Brake Cable Asm         | 1.73      | 0.52                        | 30%                              | Yes             | 1.55         | 0.47                        | Tech DOES apply: Use synthetic cable                                                                    |  |
| 06     | 06        | 02            | Accelerator Pedal Asm           | 2.14      | 0.04                        | 2%                               | Yes             | 0.30         | 0.01                        | Tech DOES apply: Use MuCell®                                                                            |  |
| 06     | 06        | 02            | Brake Pedal Asm                 | 5.45      | 2.49                        | 46%                              | Yes             | 1.20         | 0.55                        | Tech DOES apply: Use plastic                                                                            |  |
| 06     | 06        | 02            | Vacuum Booster                  | 4.24      | 1.58                        | 37%                              | Yes             | 5.32         | 1.99                        | Tech <b>DOES</b> apply: Use cast magnesium shells,<br>titanium actuator, aluminum studs & backing plate |  |

Table 3-70: Brake Components Scaling Analysis Results, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Key Components for mass reduction include the Front Rotor, Front Caliper Housing, Front Caliper Mounting Bracket, Rear Drum-in-Hat, and the Vacuum Booster.

#### Front Rotor

As shown in Image 3.9–13, the Silverado 1500 Brake System uses the same basic cast-iron rotor design as the Mercedes Sprinter series Brake System. Component masses for both front rotors were 23.3 kg versus 18.2 kg, respectively. Image 3.9–14 is an approximate example of a two-piece rotor which represents the mass reduction idea associated with this component. This redesign idea comprises of an aluminum hat with side and top cross-drilling, an aluminum metal-matrix composite disc with directional cooling fins, disc surface slotting, and disc surface cross-drilling. Due to similarities in component design and material, full percentage of the Silverado 1500 front rotor mass reduction can be applied to the Sprinter. (Refer to Table 3-70).



Image 3.9–13: Front Rotor; 1500 Series (Left), Sprinter Series (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.9–14: Front Rotor Mass Reduced Component Example (Source: http://www.girodisc.com/Girodisc-Front-2-piece-rotors-for-Mazda-RX8\_p\_6346.html)

#### Front Caliper Housing

Shown in Image 3.9–15, the Silverado 1500 and the Mercedes Sprinter share a common front caliper housing design in-which both vehicles utilize cast-iron housing with dual pistons. Component masses are 4.8 kg versus 4.7 kg respectively. Shown in Image 3.9–16, the new technology idea is to cast the caliper housings out of magnesium. Due to similarities in component design and material, full percentage of the Silverado 1500 front caliper housing mass reduction can be applied to the Sprinter. (Refer to Table 3-70).



Image 3.9–15: Caliper Housing, 1500 Series (Left), Sprinter Series (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.9–16: Front Caliper Housing Mass Reduced Component example (Source: http://www.peterverdone.com/wiki/index.php?title=PVD\_Land\_Speed\_Record\_Bike#Caliper)

### Front Caliper Mounting Bracket

As shown in Image 3.9–17, the Silverado 1500 and Mercedes Sprinter share a similar cast-iron front caliper mounting bracket design. Component masses were 2.2 kg versus 2.1 kg, respectively. Casting the bracket out of magnesium saves significant mass. Image 3.9–18 is an approximate example of a cast-magnesium caliper mounting bracket. Due to similarities in component design and material, full percentage of the Silverado 1500 front caliper mounting bracket mass reduction can be applied to the Sprinter. (Refer to Table 3-70).



Image 3.9–17: Front Caliper Mounting Bracket for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.9–18: Front Caliper Mounting Bracket Mass Reduced Component Example (Source: http://www.gforcebuggies.com/Parts)

#### Rear Drum-in-Hat

As shown in Image 3.9–19, the Silverado 1500 uses a standard drum design for the rear brakes whereas the Mercedes Sprinter uses a drum-in-hat design. Component masses, for both drums, were 22.0 kg versus 8.7 kg, respectively. Although the two vehicles use a different cast-iron design, the lightweighting idea still applied and saved significant mass. Image 3.9–20 is an approximate example of an aluminum metal-matrix drum. Due to similarities in component material, full percentage of the Silverado 1500 rear drum mass reduction can be applied to the Sprinter. (Refer to Table 3-70).



Image 3.9–19: Rear Drum; Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.9–20: Rear Drum Mass Reduced Component (Source: http://www.compositesworld.com/articles/metal-matrix-composites-used-to-lighten-military-brake-drums)

#### Vacuum Booster

As shown in Image 3.9–21, the Silverado 1500 and the Mercedes Sprinter use a standard vacuum booster design. The vacuum booster assembly was made largely out of steel stampings and rubber bladders. The mass reduction ideas for the vacuum booster assembly affected each internal plate as well as the outer housings. These ideas included changing the front housing, rear housing, front backing plate, and the spacer ring from stamped steel to cast magnesium. The rear backing plate idea changes the baseline material from stamped steel to stamped aluminum. The actuator shaft changes for steel to titanium and the mounting studs change from steel to aluminum. Component masses for both vacuum boosters are 4.2 kg for the Silverado 1500 versus 5.3 kg for the Mercedes Sprinter. Image 3.9–22 is an approximate example of a mass-reduced vacuum booster. Due to

similarities in component design and material, full percentage of the Silverado 1500 vacuum booster mass reduction can be applied to the Sprinter. (Refer to Table 3-70).



Image 3.9–21: Vacuum Booster for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV Inc. and www.A2mac1.com)



*Image 3.9–22: Vacuum Booster Mass Reduced Sub-Assembly Example* (Source: http://brakematerialsandparts.webs.com/boosterrebuilding.htm)

### 3.9.6 Renault Master Analysis

### 3.9.6.1 System Architecture – Renault Master 2.3 CDi

- Front Rotor/Drum and Shield Subsystem
- Rear Rotor/Drum and Shield Subsystem
- Parking Brake and Actuation Subsystem
- Brake Actuation Subsystem
- Power Brake Subsystem

# 3.9.6.2 System Scaling Summary

Table 3-71 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Renault Master. Total brake system mass savings was 31.89 kg at a cost increase of \$ 117.84 or \$3.70 per kg.

|                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                        | Net Value of Mass Reduction                                    |                                                              |                                                                |                                                                                       |                                                                                        |                                                                                       |                                                                                         |                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Subsystem<br>System                                                                                                                                                                   | Sub-Subsystem                          | Description                                                                                                                                                                                                                                                                                                            | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub>           | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub>             | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub>              | Cost<br>Impact<br>New Tech<br>"\$" (2)                                                | Cost<br>Impact<br>Comp<br>"\$" <sub>(2)</sub>                                          | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub>                                        | Cost/<br>Kilogram<br>Total<br>"\$/kg"                                                   | Vehicle<br>Mass<br>Reduction<br>Total<br>"%"                         |
| 06         00           06         03           06         04           06         05           06         06           06         07           06         09           06         10 | 00<br>00<br>00<br>00<br>00<br>00<br>00 | Brake System           Front Rotor/Drum and Shield Subsystem           Rear Rotor/Drum and Shield Subsystem           Parking Brake and Actuation Subsystem           Brake Actuation Subsystem           Power Brake Subsystem (for Hydraulic)           Brake Controls Subsystem           Auxiliary Brake Subsystem | 19.12<br>8.25<br>1.89<br>0.35<br>1.73<br>0.00<br>0.00<br>31.34 | 0.40<br>0.14<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.54 | 19.52<br>8.39<br>1.89<br>0.35<br>1.73<br>0.00<br>0.00<br>31.89 | -\$44.23<br>-\$36.23<br>-\$18.65<br>-\$0.49<br>-\$23.81<br>\$0.00<br>\$0.00<br>\$0.00 | \$3.99<br>\$1.58<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00<br>\$5.57 | -\$40.24<br>-\$34.65<br>-\$18.65<br>-\$0.49<br>-\$23.81<br>\$0.00<br>\$0.00<br>\$0.00 | -\$2.06<br>-\$4.13<br>-\$9.85<br>-\$1.40<br>\$0.00<br>\$0.00<br>\$0.00<br><b>\$0.00</b> | 0.83%<br>0.36%<br>0.08%<br>0.01%<br>0.07%<br>0.00%<br>0.00%<br>1.35% |
| Mass Sa<br>Mass Sa<br>Mass Sa<br>7.4                                                                                                                                                  | 2.3<br>4%                              | ngs, Select Vehicle, New Technology "kg"<br>ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500                                                                                                                                                                                           | (Decrease)<br>31.34<br>43.13<br>72.7%                          | (Decrease)                                                   | (Decrease)<br>% S<br>% L<br>% L<br>% L<br>% L                  | aved, tech<br>ost, comp<br>ost, techn<br>ost, techn<br>ost, techn                     | (Decrease)<br>nnology a<br>onent doo<br>ology doe<br>ology alre<br>ology red           | (Increase)<br>pplies<br>esn't exis<br>esn't appl<br>eady impl<br>uced imp             | (increase)<br>t<br>y<br>emented<br>act                                                  |                                                                      |

| Table 3 71. Mass Reduction | and Cost Impact | for Brake Syste | m Pongult Master  |
|----------------------------|-----------------|-----------------|-------------------|
| Tuble 5-71. Mass-Reduction | una Cosi Impaci | joi brake syste | n, Renauli Masier |

Mass savings could not be credited for components for which lightweighting technologies did not apply. Reasons for this could be that the technology was already implemented. Some components lightweighted as part of the 1500 Silverado analysis do not exist in the Renault Master brake system, such as the rear wheel cylinders.

# 3.9.6.3 System Scaling Analysis – Renault Master

The Renault Master brake system components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-72.

|        |           |               | Silverado 1                     | 500       |                             |                                  | Select Vehicle  |              |                                          |                                                                                                  |  |
|--------|-----------|---------------|---------------------------------|-----------|-----------------------------|----------------------------------|-----------------|--------------|------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly              | Base Mass | Mass<br>Savings<br>New Tech | % of Mass<br>Savings<br>New Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br><mark>New Tech</mark> | Notes                                                                                            |  |
| 06     | В         | rak           | e System                        | 101.0     | 43.1                        | 43%                              |                 |              | 31.3                                     |                                                                                                  |  |
| 06     | 03        | 01            | Front Rotor, LH & RH            | 23.32     | 12.11                       | 52%                              | Yes             | 18.65        | 9.69                                     | Tech DOES apply: Use two-piece<br>aluminum/aluminum matrix metal                                 |  |
| 06     | 03        | 01            | Brake Shield, LH                | 0.48      | 0.25                        | 52%                              | No              |              |                                          | Tech does NOT apply: Not on vehicle                                                              |  |
| 06     | 03        | 01            | Brake Shield, RH                | 0.48      | 0.25                        | 52%                              | No              |              |                                          | Tech does NOT apply: Not on vehicle                                                              |  |
| 06     | 03        | 02            | Caliper Housing, LH             | 4.80      | 3.21                        | 67%                              | Yes             | 4.83         | 3.22                                     | Tech DOES apply: Use cast magnesium                                                              |  |
| 06     | 03        | 02            | Caliper Mounting Bracket, LH    | 2.18      | 1.49                        | 68%                              | Yes             | 2.19         | 1.50                                     | Tech DOES apply: Use cast magnesium                                                              |  |
| 06     | 03        | 02            | Caliper Housing, RH             | 4.80      | 3.21                        | 67%                              | Yes             | 4.83         | 3.22                                     | Tech DOES apply: Use cast magnesium                                                              |  |
| 06     | 03        | 02            | Caliper Mounting Bracket, RH    | 2.18      | 1.49                        | 68%                              | Yes             | 2.19         | 1.50                                     | Tech DOES apply: Use cast magnesium                                                              |  |
| 06     | 04        | 07            | Rear Drum, LH & RH              | 22.09     | 13.69                       | 62%                              | Yes             | 13.32        | 8.25                                     | Tech DOES apply: Use aluminum matrix metal                                                       |  |
| 06     | 04        | 08            | Rear Backing Plate, LH & RH     | 5.79      | 1.41                        | 24%                              | No              |              |                                          | Tech does NOT apply: Not on vehicle                                                              |  |
| 06     | 04        | 08            | Wheel Cylinder Housing, LH & RH | 0.92      | 0.46                        | 50%                              | No              |              |                                          | Tech does NOT apply: Not on vehicle                                                              |  |
| 06     | 04        | 08            | Actuation Lever, LH & RH        | 0.61      | 0.27                        | 44%                              | No              |              |                                          | Tech does NOT apply: Not on vehicle                                                              |  |
| 06     | 05        | 01            | Mounting Plate                  | 0.77      | 0.44                        | 58%                              | Yes             | 1.22         | 0.70                                     | Tech DOES apply: Use cast magnesium                                                              |  |
| 06     | 05        | 01            | Cover Plate                     | 0.41      | 0.23                        | 58%                              | Yes             | 0.64         | 0.37                                     | Tech DOES apply: Use cast magnesium                                                              |  |
| 06     | 05        | 01            | Park Brake Lever                | 0.44      | 0.26                        | 58%                              | Yes             | 0.70         | 0.41                                     | Tech DOES apply: Use cast magnesium                                                              |  |
| 06     | 05        | 02            | Parking Brake Cable Asm         | 1.73      | 0.52                        | 30%                              | Yes             | 1.37         | 0.41                                     | Tech DOES apply: Use synthetic cable                                                             |  |
| 06     | 06        | 02            | Accelerator Pedal Asm           | 2.14      | 0.04                        | 2%                               | Yes             | 0.22         | 0.00                                     | Tech DOES apply: Use MuCell®                                                                     |  |
| 06     | 06        | 02            | Brake Pedal Frame               | 1.70      | 0.99                        | 58%                              | No              |              |                                          | Tech does NOT apply: Already plastic                                                             |  |
| 06     | 06        | 02            | Pedal Arm Asm                   | 1.50      | 0.75                        | 50%                              | Yes             | 0.70         | 0.35                                     | Tech DOES apply: Use plastic                                                                     |  |
| 06     | 06        | 02            | Side Plate Asm                  | 1.54      | 0.56                        | 37%                              | No              |              |                                          | Tech does NOT apply: Not on vehicle                                                              |  |
| 06     | 07        | 01            | Vacuum Booster                  | 4.24      | 1.51                        | 36%                              | Yes             | 4.83         | 1.73                                     | Tech DOES apply: Use cast magnesium shells,<br>titanium actuator, aluminum studs & backing plate |  |

Table 3-72: Components Scaling Analysis Results, Renault Master Brake

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Front Rotor/Drum and Shield Subsystem: The Renault Master Front Rotor/Drum and Shield Subsystem used a similar architecture as the Chevrolet Silverado 1500. Both vehicles utilized a floating cast-iron brake caliper with double pistons, brake pads, a cast-iron caliper mounting bracket, and a cast-iron rotor. One minor difference was the Master did not use a splash shield.

Rear Rotor/Drum and Shield Subsystem: The Renault Master rear rotor/drum and shield subsystem architecture is unique compared to the Chevrolet Silverado 1500 architecture. The Renault Master utilizes a cast iron drum-in-hat brake drum and rotor which allows it to use brake shoes for the parking brake function and brake pads for stopping the vehicle. This subsystem also included brake shoes with associated mounting hardware, brake pads, a cast iron brake caliper and mounting bracket, and a stamped steel backing plate.

Parking Brake and Actuation Subsystem: As mentioned, the Renault Master used a drum-in-hat park brake design that separated the parking brake function from the vehicle's stopping function. The parking brake was engaged by a cable system directly connected to the brake shoes at one end and the actuator at the other. Unlike the Silverado 1500, the Renault Master used a hand-operated lever instead of a foot-operated pedal, which included a stamped steel frame and actuation lever.

Brake Actuation Subsystem: Unique to the Renault Master, the brake and accelerator pedals mount to a plastic injection molded base. The brake pedal was a stamped steel and welded construction while the accelerator pedal consists of a set of plastic injection molded components that are assembled together.

Power Brake Subsystem: As with the Silverado 1500, the Renault Master used a traditional vacuum booster. Both vehicles had an ABS module and a common brake actuation design.

### 3.10 FRAME AND MOUNTING SYSTEM

#### 3.10.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Frame and Mounting system includes the complete Frame Assembly.

The Chevrolet Silverado 1500 analysis identifies mass reduction alternatives and cost implications for the Frame and Mounting System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-73 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Frame and Mounting system mass was reduced by 23.70 kg (8.9%). This increased cost by \$54.42, or \$2.30 per kg. Mass reduction for this system reduced vehicle curb weight by .99%.

|        |           |               |                                           |                      | Net Val                                  | ue of M                                       | ass Re                                                 | duction                  |                                     |
|--------|-----------|---------------|-------------------------------------------|----------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System | Subsystem | Sub-Subsystem | Description                               | Base<br>Mass<br>"kg" | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NDMC<br>"\$" <sub>(2)</sub> | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| 07     | 00        | 00            | Frame & Mounting                          |                      |                                          |                                               |                                                        |                          |                                     |
| 07     | 01        | 00            | Frame Sub System                          | 252.27               | 23.70                                    | -54.42                                        | -2.30                                                  | 9.39%                    | 0.99%                               |
| 07     | 01        | 01            | Full Frame                                | 242.00               | 23.70                                    | -54.42                                        | -2.30                                                  | 9.79%                    | 0.99%                               |
| 07     | 01        | 03            | Body Isolators                            | 10.27                | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 07     | 03        | 00            | Engine Transmission Mounting Subsystem    | 2.14                 | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 07     | 03        | 02            | Transmission Mount                        | 2.14                 | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 07     | 04        | 00            | Towing and Coupling Attachments Subsystem | 13.23                | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
| 07     | 04        | 01            | Towing Provisions                         | 13.23                | 0.00                                     | 0.00                                          | 0.00                                                   | 0.00%                    | 0.00%                               |
|        |           |               |                                           |                      |                                          |                                               |                                                        |                          |                                     |
|        |           |               |                                           | 267.63               | 23.70                                    | -54.42                                        | -2.30                                                  | 8.86%                    | 0.99%                               |
|        |           |               |                                           |                      | (Decrease)                               | (Increase)                                    | (Increase)                                             |                          |                                     |

Table 3-73: Frame and Mounting System Mass Reduction Summary

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Mass savings opportunities were identified for the following components: the full frame.

<u>Full Frame</u>: The frame assembly mass was reduced by changing the frame to a combination of aluminum and high strength steel. Mass was reduced by 9.79% from 242 kg to 218.30 kg.

#### 3.10.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Frame system is very similar to the 1500, but on a larger scale due to the larger engine 6.0L to 5.3L size and ability to carry a larger pay load Image 3.10–1.



Image 3.10–1: Chevrolet Silverado Frame System (Source: FEV, Inc. Photo)

# 3.10.1.2 2500 System Scaling Summary

Table 3-74 summarizes the mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Silverado 2500. Total frame and mounting system mass savings was 32.8 kg at a cost increase of \$75.31, or \$2.30 per kg.

|                      |                            |                           |                                                                                                                                  | Net Value of Mass Reduction                          |                                                  |                                                                        |                                                       |                                         |                                               |                                       |                                              |  |
|----------------------|----------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------|--|
| System               | Subsystem                  | Sub-Subsystem             | Description                                                                                                                      | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub>                      | Cost<br>Impact<br>New Tech<br>"\$" (2)                | Cost<br>Impact<br>Comp<br>"\$" (2)      | Cost<br>Impact<br>Total<br>"\$" (2)           | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |
| 07<br>07<br>07<br>07 | 00<br>01<br>03<br>04       | 00<br>00<br>00<br>00      | Frame and Mounting System<br>Frame Sub System<br>Engine Transmission Mounting Subsystem<br>Towing and Coupling Attach. Subsystem | 0.00<br>0.00<br>0.00                                 | 32.80<br>0.00<br>0.00                            | 32.80<br>0.00<br>0.00                                                  | -\$75.31<br>\$0.00<br>\$0.00                          | \$0.00<br>\$0.00<br>\$0.00              | -\$75.31<br>\$0.00<br>\$0.00                  | -\$2.30<br>\$0.00<br>\$0.00           | 1.06%<br>0.00%<br>0.00%                      |  |
|                      |                            |                           |                                                                                                                                  | 0.00                                                 | 32.80<br>(Decrease)                              | 32.80<br>(Decrease)                                                    | - <b>\$75.31</b><br>(Increase)                        | \$0.00                                  | -\$75.31<br>(Increase)                        | -\$2.30<br>(Increase)                 | 1.06%                                        |  |
| Ma<br>Ma             | ss S<br>ss S<br>0.0<br>0.0 | avir<br>avir<br>0%_<br>0% | ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500                                                 | 23.70<br>138.4%                                      |                                                  | <ul> <li>% Sav</li> <li>% Los</li> <li>% Los</li> <li>% Los</li> </ul> | ved, techn<br>it, compo<br>it, technol<br>it, technol | ology a<br>nent do<br>ogy do<br>ogy alr | ipplies<br>æsn't exi<br>esn't app<br>eady imp | st<br>bly<br>blemente                 | :d                                           |  |
| *SI                  | /IS n                      | not ir                    | ncluded - has no significant impact on perecent con                                                                              | tributions                                           |                                                  | Nos %                                                                  | t, technol                                            | ogy rec                                 | luced im                                      | pact                                  |                                              |  |

Table 3-74: Mass-Reduction and Cost Impact for Frame and Mounting System, Silverado 2500

### 3.10.1.3 System Scaling Analysis

The Silverado 2500 Frame and mounting components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-75.

|                                      | 10010070                   | · System     | Section 8                      | 11111/0101                          |                 |              |                                | , 511, 61446 2000                            |  |
|--------------------------------------|----------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|----------------------------------------------|--|
|                                      | Silverado 1                | 500          |                                |                                     | Select Vehicle  |              |                                |                                              |  |
| Sub-Subsystem<br>Subsystem<br>System | Component/Assembly         | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                        |  |
| 07 Fran                              | 17 Frame & Mounting System |              | 23.70                          | 9%                                  |                 |              | 32.80                          |                                              |  |
| 07 01 01                             | Full Frame                 | 242.00       | 23.70                          | 10%                                 | yes             | 334.90       | 32.80                          | Tech DOES apply: Use hydrid steel & aluminum |  |

Table 3-75: System Scaling Analysis Frame and Mounting System, Silverado 2500

Components with significant mass savings identified on the Silverado 2500 included the full frame.

#### Full Frame

Shown in Image 3.10–2 are the Silverado 1500 and 2500 frames. Masses were 242.0 kg for the 1500 versus 334.9 kg for the 2500. Both frames were similar in configuration, although the 2500 was more robust to allow for handling a larger payload. Due to similarities in component design and material, full percentage of the Silverado 1500 full frame mass reduction can be applied to the 2500. (Refer to Table 3-75).



Image 3.10–2: Frame for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc. and Car and Driver)

# 3.10.1.4 System Comparison, Silverado 2500

Table 3-76 summarizes the Silverado 1500 and 2500 lightweighting results. The majority of the components were visually the same between the two frames. The 2500 frame is more robust to allow for handling a larger payload.

|                             |                                                      |                                     |                                                      | Net \                                            | /alue o                                           | f Mass                             | Reduct                                 | ion                                |                                     |                                       |
|-----------------------------|------------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|
| System                      | Description                                          | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |
| <mark>07</mark><br>07<br>07 | Frame & Mounting<br>Silverado 1500<br>Silverado 2500 | 267.63<br>396.88                    | 23.70<br>32.80                                       | 0.00                                             | 23.70<br>32.80                                    | 8.86%<br>8.26%                     | \$479.02<br>-\$75.31                   | -\$533.44<br>\$0.00                | -\$54.42<br>-\$75.31                | -\$2.30<br>-\$2.30                    |

Table 3-76: Frame & Mounting System Comparison, Silverado 1500 and 2500

### 3.10.2 Mercedes Sprinter 311 CDi

Table 3-77 summarizes the mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total frame mass savings were 0 kg at a cost increase of \$0, or \$0 per kg. There is no frame assembly on the Mercedes Sprinter 311 CDi.

Table 3-77: Mass-Reduction and Cost Impact for Frame System, Mercedes Sprinter

|                      |                         |                      |                                                                                                                                             | Net Value of Mass Reduction                          |                                                  |                                                                                                            |                                                                           |                                                        |                                                      |                                             |                                              |  |  |
|----------------------|-------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------------------|----------------------------------------------|--|--|
| System               | Subsystem               | Sub-Subsystem        | Description                                                                                                                                 | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub>                                                          | Cost<br>Impact<br>New Tech<br>"\$" (2)                                    | Cost<br>Impact<br>Comp<br>"\$" (2)                     | Cost<br>Impact<br>Total<br>"\$" (2)                  | Cost/<br>Kilogram<br>Total<br>"\$/kg"       | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
| 07<br>07<br>07<br>07 | 00<br>01<br>03<br>04    | 00<br>00<br>00<br>00 | Frame and Mounting System<br>Frame Sub System<br>Engine Transmission Mounting Subsystem<br>Towing and Coupling Attach. Subsystem            | 0.00<br>0.00<br>0.00<br>0.00                         | 0.00<br>0.00<br>0.00<br>0.00                     | 0.00<br>0.00<br>0.00<br>0.00                                                                               | \$0.00<br>\$0.00<br>\$0.00<br><b>\$0.00</b>                               | \$0.00<br>\$0.00<br>\$0.00<br>\$0.00                   | \$0.00<br>\$0.00<br>\$0.00<br><b>\$0.00</b>          | \$0.00<br>\$0.00<br>\$0.00<br><b>\$0.00</b> | 0.00%<br>0.00%<br>0.00%<br>0.00%             |  |  |
| Ma<br>Ma<br>Ma       | iss S<br>iss S<br>iss S | avi<br>avi<br>avi    | ngs, Select Vehicle, New Technology "kg"<br>ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500<br><b>0.0%</b> | 0.00<br>23.70<br>0.0%                                |                                                  |                                                                                                            |                                                                           |                                                        |                                                      |                                             |                                              |  |  |
|                      |                         |                      | 100.0%                                                                                                                                      |                                                      |                                                  | <ul> <li>% Save</li> <li>% Lose</li> <li>% Lose</li> <li>% Lose</li> <li>% Lose</li> <li>% Lose</li> </ul> | ved, techno<br>st, compon<br>st, technolo<br>st, technolo<br>st, technolo | ology ap<br>ent doe<br>ogy doe<br>ogy alre<br>ogy redr | oplies<br>sn't exi<br>sn't app<br>ady imp<br>uced im | st<br>bly<br>plementer<br>pact              | 4                                            |  |  |
| *SI                  | MS r                    | iot i                | ncluded - has no significant impact on perecent cont                                                                                        | tributions                                           |                                                  |                                                                                                            |                                                                           |                                                        |                                                      |                                             |                                              |  |  |

# 3.10.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi frame components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-78.

| _      |                         |               | 1 1016             | e <u>J-70. D</u> | ysiem bee                      | ung mui                             | ysis i rum      | e Dysiei     | m, merce                       | ues spriner                                 |  |
|--------|-------------------------|---------------|--------------------|------------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|---------------------------------------------|--|
|        |                         |               | Silverado 1        | 500              |                                |                                     | Select Vehicle  |              |                                |                                             |  |
| System | Subsystem               | Sub-Subsystem | Component/Assembly | Base<br>Mass     | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                       |  |
| 07     | Frame & Mounting System |               |                    | 267.63           | 23.70                          | <b>9%</b>                           |                 |              | 0.00                           |                                             |  |
| 07     | 7 01 01 Full Frame      |               |                    | 242.00           | 23.70                          | 10%                                 | no              |              |                                | Tech does NOT apply: No full frame assembly |  |

Table 3-78: System Scaling Analysis Frame System, Mercedes Sprinter

# 3.10.3 Renault Master 2.3 DCi

Table 3-79 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Renault Master 2.3 DCi. Total frame mass savings were 0 kg at a cost increase of \$0, or \$0 per kg.



Table 3-79: Mass-Reduction and Cost Impact for Frame System, Renault Master

# 3.10.3.1 System Scaling Analysis – Renault Master 2.3 DCi

The Renault Master 2.3 DCi Frame components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-80.

|                                            |           |               | Silverado 1        | 500          |                                |                                     | Select Vehicle  |              |                                |                                             |
|--------------------------------------------|-----------|---------------|--------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|---------------------------------------------|
| System                                     | Subsystem | Sub-Subsystem | Component/Assembly | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                       |
| 07 Frame & Mounting System 267.63 23.70 9% |           |               |                    |              |                                | 9%                                  |                 |              | 0.00                           |                                             |
| 07 01 01 Full Frame 242.00 23.70 10%       |           |               |                    |              |                                | 10%                                 | no              |              |                                | Tech does NOT apply: No full frame assembly |

Table 3-80: System Scaling Analysis Frame System, Renault Master

# 3.11 EXHAUST SYSTEM

# 3.11.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Exhaust system included the front crossover pipe assembly section, which includes three catalytic converters. The crossover pipe and the down pipe were made of 409 grade stainless steel. The muffler with tail pipe was made from aluminized steel. Other technologies included EPDM hangers and welded steel hanger brackets.

The Chevrolet Silverado 1500 analysis identifies mass reduction alternatives and cost implications for the Exhaust System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-81 provides a summary of mass reduction and cost impact for select subsubsystems evaluated. The total mass savings found on the exhaust system mass were reduced by 6.34 kg (16.52%). This increased cost by \$19.54, or \$3.08 per kg. Mass reduction for this system reduced vehicle curb weight by 0.27%.

|        |           |               |                                         |                      | Net Val                                  | ue of M                             | ass Re                                                 | duction                  |                                     |
|--------|-----------|---------------|-----------------------------------------|----------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System | Subsystem | Sub-Subsystem | Description                             | Base<br>Mass<br>"kg" | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| 09     | 00        | 00            | Exhaust                                 |                      |                                          |                                     |                                                        |                          |                                     |
| 09     | 01        | 00            | Acoustical Control Components Subsystem | 38.37                | 6.34                                     | -19.54                              | -3.08                                                  | 16.52%                   | 0.27%                               |
| 09     | 01        | 01            | Cross Over Pipe Assembly                | 15.53                | 1.46                                     | 0.79                                | 0.54                                                   | 9.40%                    | 0.06%                               |
| 09     | 01        | 02            | Expantion clamp assy                    | 3.81                 | 0.71                                     | -1.09                               | -1.53                                                  | 18.68%                   | 0.03%                               |
| 09     | 01        | 03            | Muffler                                 | 19.03                | 4.17                                     | -19.24                              | -4.61                                                  | 21.91%                   | 0.17%                               |
|        | [         |               |                                         |                      |                                          |                                     |                                                        |                          |                                     |
|        |           |               |                                         | 38.37                | 6.34                                     | -19.54                              | -3.08                                                  | 16.52%                   | 0.27%                               |
|        |           |               |                                         |                      | (Decrease)                               | (Increase)                          | (Increase)                                             |                          |                                     |

Table 3-81: Exhaust System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: crossover pipe, down pipe, muffler, steel hanger brackets, and EPDM hangers.

<u>Crossover pipe:</u> The crossover pipe mass was reduced by changing the wall thickness from 1.9 mm 409 Stainless Steel (SS) wall to 1.2 mm 304SS (cannot reduce pipe wall without going to 304SS). Mass was reduced by 34.5%, from 4.2 kg to 2.7 kg.

<u>Down pipe:</u> The down pipe mass was reduced by changing the wall thickness from 1.9 mm 409SS wall to 1.2 mm 304SS (cannot reduce pipe wall without going to 304SS). Mass was reduced by 22.2%, from 2.1 kg to 1.6 kg.

<u>Muffler skin and end plates:</u> The muffler skin and end plates mass was reduced by changing the base grade aluminum/steel to 304SS and changing wall thickness from 1.4mm to 1mm. Mass was reduced by 30.8%, from 7.1 kg to 4.9 kg.

<u>Steel hanger brackets:</u> The steel hanger brackets mass was reduced by changing the solid steel hanger brackets to a hollow 304SS. Mass was reduced by 30.9%, from 1.5 kg to 1.0 kg.

<u>EPDM Hangers</u>: The EPDM hangers mass was reduced by changing the EPDM to a fiberreinforced SGF<sup>®</sup> Hanger. Mass was reduced by 71.7%, from 0.63 kg to 0.18 kg.

### 3.11.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Exhaust System (Image 3.11–1) was very similar to the 1500, but on a larger scale due to the larger engine size (6.0L versus 5.3L) and more exhaust being pushed through the system. The pipes used in the system had a larger diameter and a thicker wall.



Image 3.11–1: Chevrolet Silverado 2500 Exhaust System (Source: www.A2mac1 Database)

### 3.11.1.2 2500 System Scaling Summary

Table 3-82 summarizes mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Silverado 2500. Total exhaust mass savings was 9.12 kg at a cost increase of \$15.87, or \$1.74 per kg.



Table 3-82: Mass-Reduction and Cost Impact for Exhaust System, Silverado 2500

# 3.11.1.3 System Scaling Analysis – Silverado 2500

The Silverado 2500 exhaust components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-83.

|        |           |               | Silverado                | 1500         |                                |                                     | Select Vehicle  |              |                                |                                                                                                                                                            |  |
|--------|-----------|---------------|--------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly       | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                                                                      |  |
| 09     | E         | kha           | ust System               | 38.37        | 6.34                           | 17%                                 |                 |              | 8.68                           |                                                                                                                                                            |  |
| 09     | 01        | 01            | Cross Over Pipe Assembly | 4.23         | 1.46                           | 34%                                 | yes             | 8.32         | 2.87                           | Tech DOES apply: Base cross pipe reduce wall<br>thickness from 1.9mm 409ss wall to 1.2mm 304ss<br>((Can't reduce pipe wall without going to 304ss))        |  |
| 09     | 01        | 02            | Down pipe to muffler     | 2.14         | 0.48                           | 22%                                 | yes             | 2.74         | 0.58                           | Tech <b>DOES</b> apply: Base cross pipe reduce wall<br>thickness from 1.9mm 409ss wall to 1.2mm 304ss<br>((Can't reduce pipe wall without going to 304ss)) |  |
| 09     | 01        | 02            | Steel hanger brkt        | 0.40         | 0.12                           | 31%                                 | yes             | 0.75         | 0.23                           | Tech DOES apply: Hollow exhaust hangers 304SS (pipe side)                                                                                                  |  |
| 09     | 01        | 02            | Rubber hanger            | 0.16         | 0.11                           | 72%                                 | yes             | 0.32         | 0.23                           | Tech DOES apply: SGF for rubber Hanger Isolators                                                                                                           |  |
| 09     | 01        | 03            | Muffler skin             | 5.48         | 1.69                           | 31%                                 | yes             | 5.35         | 1.65                           | Tech DOES apply: Base grade Al/steel to 304SS &<br>304SS and go from 1.4mm wall to 1mm                                                                     |  |
| 09     | 01        | 03            | Muffler skin end plts    | 1.67         | 0.52                           | 31%                                 | yes             | 1.40         | 0.43                           | Tech DOES apply: Base grade Al/steel to 304SS &<br>304SS and go from 1.4mm wall to 1mm                                                                     |  |
| 09     | 01        | 03            | Muffler pipe             | 4.13         | 1.27                           | 31%                                 | yes             | 6.76         | 2.08                           | Tech DOES apply: Base grade Al/steel to 304SS &<br>304SS and go from 1.4mm wall to 1mm                                                                     |  |
| 09     | 01        | 03            | Steel hanger brkt Ig     | 0.83         | 0.26                           | 31%                                 | yes             | 0.79         | 0.24                           | Tech DOES apply: Hollow exhaust hangers 304SS (pipe side)                                                                                                  |  |
| 09     | 01        | 03            | Steel hanger brkt small  | 0.31         | 0.10                           | 31%                                 | yes             | 0.47         | 0.15                           | Tech DOES apply: Hollow exhaust hangers 304SS (pipe side)                                                                                                  |  |
| 09     | 01        | 03            | Rubber hanger            | 0.48         | 0.34                           | 72%                                 | yes             | 0.32         | 0.23                           | Tech DOES apply: SGF for rubber Hanger Isolators                                                                                                           |  |

Table 3-83: System Scaling Analysis for Exhaust System, Silverado 2500

Components with significant mass savings identified on the Silverado 2500 included the crossover pipe, down pipe, muffler, muffler end plates, muffler pipe, steel hanger brackets, and EPDM hangers.

#### Crossover pipe

Shown in Image 3.11–2 are the Silverado 1500 and 2500 crossover pipes. Component masses were 4.23 kg for the 1500 versus 8.32 kg for the 2500. The Silverado 1500 and the 2500 series crossover pipes were similar in configuration, although the 2500 pipe diameters were larger, with a slightly thicker wall. The 2500 had a bolt on flange to the muffler, and the 1500 had the stainless steel mess coupler. Both systems also had three catalytic converters and three oxygen sensors. The lightweighting technology used in the crossover pipe was to change the stainless steel material from a 409 stainless steel to a 304 stainless steel. This allowed for a reduction in the pipe wall thickness. Due to similarities in component design and material, full percentage of the Silverado 1500 crossover pipe reduction can be applied to the 2500. (Refer to Table 3-83).



Image 3.11–2: Crossover Pipe for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### Down pipe

Shown in Image 3.11–3 are the Silverado 1500 and 2500 down pipes. Component masses were 2.14 kg for the 1500 versus 2.74 kg for the 2500. The 1500 down pipe had a mesh stainless steel coupler to connect to the crossover pipe, whereas the 2500 did not. The 2500 pipe diameter was larger, with a slightly thicker wall. The lightweighting technology used in the crossover pipe was to change the stainless steel material from a 409 stainless steel to a 304 stainless steel. This allowed for a reduction in the pipe wall thickness. Due to similarities in component material, full percentage of the Silverado 1500 down pipe mass reduction can be applied to the 2500. (Refer to Table 3-83).





Image 3.11–3: Down Pipe for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Steel hanger brackets

Shown in Image 3.11–4 are the Silverado 1500 and 2500 steel hanger brackets. Component masses were 1.54 kg for the 1500 versus 2.01 kg for the 2500. There are slight differences as to where they were placed and the contortion of the bracket, but both serve the same purpose. The lightweighting technology used in the steel hanger brackets was to use a 304 stainless steel that allowed for a smaller diameter hanger and to hollow out the center of the bracket (Image 3.11–5). Due to similarities in component design and material, full percentage of the Silverado 1500 steel hanger bracket mass reduction can be applied to the 2500. (Refer to Table 3-83).



Image 3.11–4: Steel hanger brackets 1500 (Left), 2500 (Right) (Source: FEV, Inc.)



Image 3.11–5: Hollow Stainless Steel Hanger Brackets Example (Source: FEV, Inc.)

EPDM hangers

Shown in Image 3.11–6 are the Silverado 1500 and 2500 EPDM hangers. Component masses were 0.64 kg for the 1500 versus 0.64 kg for the 2500. There were slight differences as to the location on each respective vehicle, but both served the same purpose. The lightweighting technology used in the EPDM hanger brackets was to use an SGF<sup>®</sup> fiber reinforced hanger. This allowed for smaller, lighter weight hangers. An example is shown in Image 3.11–7. Due to similarities in component design and material, full percentage of the Silverado 1500 EPDM hanger mass reduction can be applied to the 2500. (Refer to Table 3-83).



Image 3.11–6: EPDM hangers for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)



Image 3.11–7: Example of SGF<sup>®</sup> fiber reinforced hanger (Source: SGF)

#### Muffler skin

Shown in Image 3.11–8 are the Silverado 1500 and 2500 muffler skins. Component masses were 5.4 kg for the 1500 versus 5.3 kg for the 2500. Both muffler skins were made of aluminized steel. The lightweighting technology used in both muffler skins was changing the aluminized steel to a 304 stainless steel that will allow for a reduced wall thickness. Due to similarities in component design and material, full percentage of the Silverado 1500 muffler skin mass reduction can be applied to the 2500. (Refer to Table 3-83).



Image 3.11–8: Muffler skin for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Muffler end plates

Shown in Image 3.11–9 are the Silverado 1500 and 2500 series muffler end plates. Component masses are 1.6 kg for the 1500 versus 1.4 kg for the 2500 respectively. Both the mufflers are made of aluminized steel. The lightweighting technology used in both the muffler end plates is to change the aluminized steel to a 304 stainless steel that will allow of a wall thickness reduction. Due to similarities in component design and material, full percentage of the Silverado 1500 muffler end plates mass reduction can be applied to the 2500. (Refer to Table 3-83).



Image 3.11–9: Muffler end plates for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### Muffler pipe

Shown in Image 3.11–10 are the Silverado 1500 and 2500 muffler pipes. Component masses were 4.1 kg for the 1500 versus 6.6 kg for the 2500. Both muffler pipes were made of aluminized steel. The 2500 muffler was much larger than the 1500. The lightweighting technology used in both muffler pipes was to change the aluminized steel to a 304 stainless steel which will allow a wall thickness reduction. Due to similarities in component design and material, full percentage of the Silverado 1500 muffler pipe mass reduction can be applied to the 2500. (Refer to Table 3-83).



Image 3.11–10: Muffler pipe for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

# 3.11.1.4 System Comparison – Silverado 2500

Table 3-84 summarizes the Silverado 1500 and 2500 lightweighting results. The majority of the components were visually the same between the two exhausts. The 2500 exhaust had larger diameter pipes with slightly thicker walls.

|                       |                           | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |  |
|-----------------------|---------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|--|
| System                | Description               | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |  |
| <mark>09</mark><br>09 | Exhaust<br>Silverado 1500 | 38.37                               | 6.34                                                 | 1.67                                             | 8.01                                              | 20.87%                             | -\$19.54                               | \$12.13                            | -\$7.41                             | -\$0.93                               |  |  |  |
| 09                    | Silverado 2500            | 45.52                               | 8.68                                                 | 0.44                                             | 9.12                                              | 20.04%                             | -\$21.96                               | \$6.08                             | -\$15.87                            | -\$1.74                               |  |  |  |

#### Table 3-84: System Comparison, Silverado 2500

# 3.11.2 Mercedes Sprinter 311 CDi

Table 3-85 summarizes mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total exhaust mass savings was 2.45 kg at a cost increase of \$10.36, or \$4.23 per kg.



Table 3-85: Mass-Reduction and Cost Impact for Exhaust System, Mercedes Sprinter

### 3.11.2.1 System Scaling Analysis – Mercedes Sprinter 311 CDi

The Mercedes Sprinter 311 CDi Exhaust components were reviewed for compatibility with lightweighting technologies.

|        |           |               | Silverado                | 1500         |                                |                                     | Select Vehicle  |              |                                |                                                                                                                  |
|--------|-----------|---------------|--------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|
| System | Subsystem | Sub-Subsystem | Component/Assembly       | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                            |
| 09     | E         | kha           | ust System               | 38.37        | 6.34                           | 17%                                 |                 |              | 2.31                           |                                                                                                                  |
| 09     | 01        | 01            | Cross Over Pipe Assembly | 4.23         | 1.46                           | 34%                                 | no              |              |                                | Tech does NOT Apply: Single exhaust does not have a cross<br>over pipe assy                                      |
| 09     | 01        | 02            | Down pipe to muffler     | 2.14         | 0.48                           | 22%                                 | no              |              |                                | Tech does NOT apply: No down pipe assy. From header to<br>SS felx assy                                           |
| 09     | 01        | 02            | Steel hanger brkt        | 0.40         | 0.12                           | 31%                                 | no              |              |                                | Tech does NOT apply: With no cross over or down pipe, no<br>steel hanger required                                |
| 09     | 01        | 02            | Rubber hanger            | 0.16         | 0.11                           | 72%                                 | no              |              |                                | Tech does NOT apply: With no cross over pipe, no down pipe<br>and no steel hanger - no rubber hanger is required |
| 09     | 01        | 03            | Muffler skin             | 5.48         | 1.69                           | 31%                                 | yes             | 3.63         | 1.12                           | Tech DOES apply: Base grade Al/steel to 304SS & 304SS<br>and go from 1.4mm wall to 1mm                           |
| 09     | 01        | 03            | Muffler skin end plts    | 1.67         | 0.52                           | 31%                                 | yes             | 0.89         | 0.27                           | Tech DOES apply: Base grade Al/steel to 304SS & 304SS<br>and go from 1.4mm wall to 1mm                           |
| 09     | 01        | 03            | Muffler pipe             | 4.13         | 1.27                           | 31%                                 | yes             | 2.81         | 0.87                           | Tech DOES apply: Base grade Al/steel to 304SS & 304SS<br>and go from 1.4mm wall to 1mm                           |
| 09     | 01        | 03            | Steel hanger brkt Ig     | 0.83         | 0.26                           | 31%                                 | no              |              |                                | Tech does NOT apply: Steel hanger already hollow                                                                 |
| 09     | 01        | 03            | Steel hanger brkt small  | 0.31         | 0.10                           | 31%                                 | no              |              |                                | Tech does NOT apply: Steel hanger already hollow                                                                 |
| 09     | 01        | 03            | Rubber hanger            | 0.48         | 0.34                           | 72%                                 | yes             | 0.07         | 0.05                           | Tech DOES apply: SGF for rubber Hanger Isolators                                                                 |

Table 3-86: System Scaling Analysis for Exhaust System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter included the muffler, muffler pipe, and EPDM hangers. Image 3.11–11 shows the Mercedes Sprinter 311 CDi Exhaust components.



Image 3.11–11: Mercedes Sprinter 311 CDi Exhaust (Source: www.A2mac1.com)

### Muffler Skin

As shown in Image 3.11–12, the Mercedes Sprinter 311 CDi and the Silverado 1500 muffler skins are different. Component masses were 5.4 kg for the 1500 versus 3.6 kg for the Mercedes Sprinter. Both mufflers were made of aluminized steel. The Silverado 1500 muffler was much larger than the Mercedes Sprinter. The lightweighting technology used in both muffler skins was to change the aluminized steel to a 304 stainless steel, which would allow for a wall thickness reduction. Due to similarities in component design and material, full percentage of the Silverado 1500 muffler skin mass reduction can be applied to the Sprinter.



Image 3.11–12: Muffler skin for the Silverado 1500 (Left) and Mercedes Sprinter (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Muffler End Plates

As shown in Image 3.11–13, the Mercedes Sprinter 311 CDi and the Silverado 1500 muffler end plates are different. Component masses are 1.6 kg for the 1500 versus 0.89 kg for the Mercedes Sprinter. Both muffler end plates are made of aluminized steel. The Silverado 1500 muffler end plates were much larger than the Mercedes Sprinter. The lightweighting technology used for both muffler end plates was to change the aluminized steel to a 304 stainless steel that would allow a wall thickness reduction. Due to similarities in component design and material, full percentage of the Silverado 1500 muffler end plate mass reduction can be applied to the Sprinter.



Image 3.11–13: Muffler end plates for the Silverado 1500 (Left) and Mercedes Sprinter (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Muffler Pipe

The Silverado 1500 and Mercedes Sprinter muffler pipes are shown in

Image 3.11–14. Component masses are 4.1 kg for the Silverado 1500 versus 2.81 kg for the Mercedes Sprinter respectively. Both the muffler pipes were made of aluminized steel. The Silverado 1500 muffler was much larger than the Mercedes Sprinter. The lightweighting technology used in both muffler pipes was to change the aluminized steel to a 304 stainless steel that would allow wall thickness reduction. Due to similarities in component design and material, full percentage of the Silverado 1500 muffler pipe mass reduction can be applied to the Sprinter.



Image 3.11–14: Muffler pipes for the Silverado 1500 (Top) and Mercedes Sprinter (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### EPDM Hangers

Shown in Image 3.11–15 are the Silverado 1500 and Mercedes Sprinter EPDM hangers. Component masses are 0.48 kg for the Silverado 1500 versus 0.07 kg for the Mercedes Sprinter. The EPDM hanger for both the 1500 and the Sprinter were manufactured the same. There were slight differences to the location of the hangers on their respective vehicles, but both serve the same purpose. The lightweighting technology used in the EPDM hanger brackets was to use a SGF<sup>®</sup> fiber reinforced hanger (Image 3.11–16). This allows for smaller, lighter weight hangers. Due to similarities in component design and material, full percentage of the Silverado 1500 EPDM hanger mass reduction can be applied to the Sprinter.



Image 3.11–15: EPDM hangers for the Silverado 1500 (Left) and Mercedes Sprinter (Right) (Source: FEV, Inc. and www.A2mac1.com)



Image 3.11–16: Example of SGF<sup>®</sup> fiber reinforced hanger (Source: SGF)

#### 3.11.3 Renault Master 2.3 DCi

Table 3-87 summarizes mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Renault Master 2.3 DCi. Total exhaust mass savings was 2.29 kg at a cost increase of \$9.38, or \$4.09 per kg.



Table 3-87: Mass-Reduction and Cost Impact for Exhaust System, Renault Master

# 3.11.3.1 System Scaling Analysis – Renault Master 2.3 DCi

The Renault Master 2.3 DCi Exhaust components were reviewed for compatibility with lightweighting technologies.

|        |           |               | Silverado                | 1500         |                                |                                     | Select Vehicle  |              |                                |                                                                                                                  |
|--------|-----------|---------------|--------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|
| System | Subsystem | Sub-Subsystem | Component/Assembly       | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                            |
| 09     | E         | kha           | ust System               | 38.37        | 6.34                           | 17%                                 |                 |              | 2.13                           |                                                                                                                  |
| 09     | 01        | 01            | Cross Over Pipe Assembly | 4.23         | 1.46                           | 34%                                 | no              |              |                                | Tech does NOT Apply: Single exhaust does not have a cross<br>over pipe assy                                      |
| 09     | 01        | 02            | Down pipe to muffler     | 2.14         | 0.48                           | 22%                                 | no              |              |                                | Tech does NOT apply: No down pipe assy. From header to<br>SS felx assy                                           |
| 09     | 01        | 02            | Steel hanger brkt        | 0.40         | 0.12                           | 31%                                 | no              |              |                                | Tech does NOT apply: With no cross over or down pipe, no<br>steel hanger required                                |
| 09     | 01        | 02            | Rubber hanger            | 0.16         | 0.11                           | 72%                                 | no              |              |                                | Tech does NOT apply: With no cross over pipe, no down pipe<br>and no steel hanger - no rubber hanger is required |
| 09     | 01        | 03            | Muffler skin             | 5.48         | 1.69                           | 31%                                 | yes             | 3.39         | 1.04                           | Tech DOES apply: Base grade Al/steel to 304SS & 304SS<br>and go from 1.4mm wall to 1mm                           |
| 09     | 01        | 03            | Muffler skin end plts    | 1.67         | 0.52                           | 31%                                 | yes             | 0.90         | 0.28                           | Tech DOES apply: Base grade Al/steel to 304SS & 304SS<br>and go from 1.4mm wall to 1mm                           |
| 09     | 01        | 03            | Muffler pipe             | 4.13         | 1.27                           | 31%                                 | yes             | 2.63         | 0.81                           | Tech DOES apply: Base grade Al/steel to 304SS & 304SS<br>and go from 1.4mm wall to 1mm                           |
| 09     | 01        | 03            | Steel hanger brkt Ig     | 0.83         | 0.26                           | 31%                                 | no              |              |                                | Tech does NOT apply: Steel hanger already hollow                                                                 |
| 09     | 01        | 03            | Steel hanger brkt small  | 0.31         | 0.10                           | 31%                                 | no              |              |                                | Tech does NOT apply: Steel hanger already hollow                                                                 |
| 09     | 01        | 03            | Rubber hanger            | 0.48         | 0.34                           | 72%                                 | no              |              |                                | Tech DOES apply: SGF for rubber Hanger Isolators                                                                 |

Table 3-88: System Scaling Analysis Exhaust System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi included the muffler, muffler pipe, and EPDM hangers. Image 3.11–17 shows the Renault Master 2.3 DCi Exhaust components.



Image 3.11–17: Renault Master 2.3 DCi Exhaust (Source: www.A2mac1.com)

### Muffler Skin

As shown in Image 3.11–18, the Renault Master 2.3 DCi and the Silverado 1500 mufflers are different. Component masses were 5.4 kg for the Silverado 1500 versus 3.3 kg for the Renault Master 2.3 DCi. Both mufflers were made of aluminized steel. The 1500 muffler was much larger than the Renault Master 2.3 DCi. The lightweighting technology used in both muffler skins was to change the aluminized steel to a 304 stainless steel that will allow a reduction in wall thickness. Due to similarities in component material, full percentage of the Silverado 1500 muffler skin mass reduction can be applied to the Renault.



Image 3.11–18: Muffler skin for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Muffler End Plates

As shown in Image 3.11–19, the Renault Master 2.3 DCi and the Silverado 1500 muffler end plates are different. Component masses are 1.6 kg for the 1500 versus .83 kg for the Renault Master 2.3 DCi respectively. Both the muffler end plates are made of aluminized steel. The 1500 muffler end plates are much larger than the Renault Master 2.3 DCi. The lightweighting technology used in both the muffler end plates is to change the aluminized steel to a 304 stainless steel that will allow of a wall thickness reduction. Due to similarities in component material, full percentage of the Silverado 1500 muffler end plate mass reduction can be applied to the Renault.



Image 3.11–19: Muffler end plates for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)
#### Muffler Pipe

Shown in Image 3.11–20 are the Silverado 1500 and Renault Master 2.3 DCi muffler pipes. Component masses were 4.1 kg for the Silverado 1500 versus 2.6 kg for the Renault Master 2.3 DCi. Both muffler pipes were made of aluminized steel. The 1500 muffler is much larger than the Renault Master 2.3 DCi. The lightweighting technology used in both muffler pipes was to change aluminized steel to a 304 stainless steel that will allow for wall thickness reduction. Due to similarities in component material, full percentage of the Silverado 1500 muffler pipe mass reduction can be applied to the Renault.



Image 3.11–20: Muffler pipes 1500 (Top), Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

# 3.12 FUEL SYSTEM

### 3.12.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Fuel System included the fuel tank assembly, fuel tank shields, Fuel Subsystem, Fuel Filler Subsystem, and Fuel Vapor Subsystem. The fuel tank is made of plastic, Polyoxymethylene (POM) material with a molded in metal top ring for attaching the fuel pumping module. The rest of the Fuel System is typical for fuel systems.

The Chevrolet Silverado 1500 analysis identifies mass reduction alternatives and cost implications for the Fuel System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-89 provides a summary of mass reduction and cost impact for select subsubsystems evaluated. The total mass savings found on the Fuel System mass was reduced by 1.61 kg (6.1%). This decreased cost by 3.25, or 2.02 per kg. Mass reduction for this system reduced vehicle curb weight by 0.07%.

|        |           |               |                                 |                      | Net Val                                  | ue of M                            | ass Re                                                 | duction                  |                                     |
|--------|-----------|---------------|---------------------------------|----------------------|------------------------------------------|------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System | Subsystem | Sub-Subsystem | Description                     | Base<br>Mass<br>"kg" | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| 10     | 00        | 00            | Fuel                            |                      |                                          |                                    |                                                        |                          |                                     |
| 10     | 01        | 00            | Fuel Tank and Lines Subsystem   | 22.60                | 0.73                                     | 2.36                               | 3.23                                                   | 3.23%                    | 0.03%                               |
| 10     | 01        | 01            | Fuel Tank Assy                  | 15.48                | 0.19                                     | 0.93                               | 4.93                                                   | 1.22%                    | 0.01%                               |
| 10     | 01        | 02            | Fuel Distribution               | 5.09                 | 0.37                                     | 1.30                               | 3.50                                                   | 7.31%                    | 0.02%                               |
| 10     | 01        | 03            | Fuel Filler (Refueling)         | 0.91                 | 0.17                                     | 0.13                               | 0.74                                                   | 18.59%                   | 0.01%                               |
| 10     | 01        | 04            | Fuel Tank Control Module (FTCM) | 1.12                 | 0.00                                     | 0.00                               | 0.00                                                   | 0.00%                    | 0.00%                               |
| 10     | 02        | 00            | Fuel Vapor Management Subsystem | 3.74                 | 0.88                                     | 0.89                               | 1.02                                                   | 23.42%                   | 0.04%                               |
| 10     | 02        | 01            | Fuel Vapor Canister             | 2.83                 | 0.70                                     | 0.96                               | 1.37                                                   | 24.75%                   | 0.03%                               |
| 10     | 02        | 02            | Purge Valve Assy                | 0.91                 | 0.18                                     | -0.07                              | -0.38                                                  | 19.31%                   | 0.01%                               |
|        |           |               |                                 |                      |                                          |                                    |                                                        |                          |                                     |
|        |           |               |                                 | 26.34                | 1.61                                     | 3.25                               | 2.02                                                   | 6.10%                    | 0.07%                               |
|        |           |               |                                 |                      | (Decrease)                               | (Decrease)                         | (Decrease)                                             |                          |                                     |

Table 3-89: Fuel System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: fuel tank side - fuel pump retaining ring, fuel tank shield (bottom), fuel pumping module retaining ring, fuel filler neck, fuel filler cap housing, fuel cap, hose clamp (large), hose clamp (small), and vapor canister.

<u>Fuel Tank Side - Fuel Pump Retaining Ring:</u> The fuel tank side - fuel pump retaining ring mass was increased by adding material to the fuel tank side to allow for a threaded lip to add a POM screw on top style fuel pump retaining system used in other vehicles. A reduction will be taken in the fuel pumping module retaining ring. Mass was increased by 31.7%, from 0.139 kg to 0.183 kg.

<u>Fuel Tank Shield (Bottom)</u>: The fuel tank shield (bottom) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10%, from 2.33 kg to 2.09 kg.

<u>Fuel Pumping Module Retaining Ring:</u> The fuel pumping module retaining ring mass was reduced by removing the steel ring and combining with a POM fuel tank ring assembly. Mass was reduced by 48.6%, from 0.247 kg to 0.127 kg.

<u>Fuel Filler Neck:</u> The fuel filler neck mass was reduced by changing steel for a combination plastic and PolyOne<sup>®</sup> assembly. Mass was reduced by 69.3%, from .212 kg to 0.065 kg.

<u>Fuel Filler Cap Housing</u>: The fuel filler cap housing mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 9.8%, from 0.102 kg to 0.092 kg.

<u>Fuel Cap:</u> The fuel cap mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10.1%, from 0.079 kg to 0.071 kg.

<u>Hose Clamp (Large)</u>: The hose clamp (large) mass was reduced by using a smaller width. Mass was reduced by 10%, from 0.02 kg to 0.018 kg.

<u>Hose Clamp (Small)</u>: The hose clamp (small) mass was reduced by using a smaller width. Mass was reduced by 10%, from 0.004 kg to 0.0036 kg.

<u>Vapor Canister</u>: The vapor canister mass was reduced by normalize it to the 2013 Chevy Malibu Eco 2.4. Mass was reduced by 3%, from 1.96 kg to 1.90 kg.

### 3.12.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Fuel System was very similar to the Silverado 1500.



Image 3.12–1: Chevrolet Silverado 2500 Fuel System (Source: GM)

# 3.12.1.2 Silverado 2500 System Scaling Summary

Table 3-90 summarizes mass and cost impact of Silverado 1500 lightweighting technologies applied to the Silverado 2500. Total fuel mass savings was 8.28 kg, at a cost decrease of \$12.54, or \$1.52 per kg.

Table 3-90: Mass-Reduction and Cost Impact for Fuel System, Silverado 1500



- % Lost, technology doesn't apply
- % Lost, technology already implemented
- % Lost, technology reduced impact

#### \*SMS not included - has no significant impact on perecent contributions

66.7%

# 3.12.1.3 System Scaling Analysis – Silverado 2500

The Silverado 2500 Fuel System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-91.

|        | Silverado 1500 |               |                                      |              |                                |                                     |                 | Select Vehicle |                                |                                                                                                                                                            |  |  |  |
|--------|----------------|---------------|--------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|----------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| System | Subsystem      | Sub-Subsystem | Component/Assembly                   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                                                                      |  |  |  |
| 10     | F              | uel           | System                               | 26.34        | 1.61                           | 6%                                  |                 |                | 0.65                           |                                                                                                                                                            |  |  |  |
| 10     | 01             | 01            | Fuel Tank                            | 10.75        | 0.00                           | 0%                                  | no              |                |                                | Tech does NOT Apply: componding only                                                                                                                       |  |  |  |
| 10     | 01             | 01            | Fuel Tank side - fuel pump ret. Ring | 0.14         | -0.04                          | -32%                                | yes             | 0.14           | -0.04                          | Tech DOES apply: Remove ring and add POM to tank to<br>make plastic ring for new POM (fuel pumping module<br>retaining ring made out of POM to screw onto) |  |  |  |
| 10     | 01             | 01            | Fuel Tank Shield-Bottom              | 2.33         | 0.23                           | 10%                                 | yes             | 2.52           | 0.25                           | Tech DOES apply: Use Polyone foaming agent                                                                                                                 |  |  |  |
| 10     | 01             | 02            | Fuel Line Bracket                    | 0.21         | 0.16                           | 75%                                 | no              |                |                                | Tech does NOT apply: No part on truck                                                                                                                      |  |  |  |
| 10     | 01             | 02            | Fuel Line holder on brkt             | 0.01         | 0.00                           | 11%                                 | no              |                |                                | Tech does NOT apply: No part on truck                                                                                                                      |  |  |  |
| 10     | 01             | 02            | Fuel Pumping Module                  | 1.74         | 0.09                           | 5%                                  | no              |                |                                | Tech does NOT apply: POM already                                                                                                                           |  |  |  |
| 10     | 01             | 02            | Fuel Pumping Module Retaining Ring   | 0.25         | 0.12                           | 49%                                 | yes             | 0.24           | 0.12                           | Tech DOES apply: Remove, and combine with POM style fuel<br>tank ring assy                                                                                 |  |  |  |
| 10     | 01             | 03            | Fuel filler neck                     | 0.21         | 0.15                           | 69%                                 | yes             | 0.36           | 0.25                           | Tech DOES apply: Combo, plastic and PolyOne                                                                                                                |  |  |  |
| 10     | 01             | 03            | Fuel filler Cap housing              | 0.10         | 0.01                           | 10%                                 | yes             | 0.09           | 0.01                           | Tech DOES apply: Use Polyone foaming agent                                                                                                                 |  |  |  |
| 10     | 01             | 03            | Fuel cap                             | 0.08         | 0.01                           | 10%                                 | yes             | 0.02           | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                                                                                                 |  |  |  |
| 10     | 01             | 03            | Hose clamp-Large                     | 0.02         | 0.00                           | 10%                                 | yes             | 0.04           | 0.00                           | Tech DOES apply: Smaller width                                                                                                                             |  |  |  |
| 10     | 01             | 03            | Hose clamp-Medium                    | 0.02         | 0.00                           | 10%                                 | no              |                |                                | Tech does NOT apply: No part on truck                                                                                                                      |  |  |  |
| 10     | 01             | 03            | Hose clamp-Small                     | 0.004        | 0.00                           | 10%                                 | yes             | 0.01           | 0.00                           | Tech DOES apply: Smaller width                                                                                                                             |  |  |  |
| 10     | 02             | 01            | Vapor canister                       | 1.96         | 0.06                           | 3%                                  | yes             | 2.17           | 0.07                           | Tech DOES apply: Normalize to 2013 Chevy Malibu Eco 2.4                                                                                                    |  |  |  |
| 10     | 02             | 01            | Vapor Canister Support on frame      | 0.71         | 0.64                           | 90%                                 | no              |                |                                | Tech does NOT apply: Does not apply                                                                                                                        |  |  |  |
| 10     | 02             | 02            | Purge Valve Dust filter Support      | 0.04         | 0.00                           | 9%                                  | no              |                |                                | Tech does NOT apply: Does not apply                                                                                                                        |  |  |  |
| 10     | 02             | 02            | Purge Line - Bracket                 | 0.23         | 0.17                           | 75%                                 | no              |                |                                | Tech does NOT apply: Does not apply                                                                                                                        |  |  |  |

Table 3-91: System Scaling Analysis Fuel System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Silverado 2500 included the fuel pumping module retaining ring, fuel filler neck, fuel tank shield (bottom).

#### Fuel Tank side - Fuel Pump Retaining Ring

Shown in Image 3.12–2 are the Silverado 1500 and 2500 fuel tank side - fuel pump retaining rings. Component masses were 0.14 kg for the 1500 versus 0.14 kg for the 2500. The mass was increased by adding material to the fuel tank side in order to allow for a threaded lip to add a POM screw on top style fuel pump retaining system used in other vehicles. A reduction will be taken in the fuel pumping module retaining ring Due to similarities in component design and material, full percentage of the Silverado 1500 fuel tank side-fuel pump retaining ring mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–2: Fuel Tank Side - Fuel Pump Retaining Ring for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Fuel Tank Bottom Shield

Shown in Image 3.12–3 are the Silverado 1500 and 2500 fuel tank bottom shields. Component masses were 2.33 kg for the 1500 versus 2.52 kg for the 2500. The lightweighting technology used in the fuel tank bottom shield was to use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 fuel tank bottom shield mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–3: Fuel Tank Bottom Shield for the Silverado 1500 (Top) and Silverado 2500 (Bottom) (Source: FEV, Inc.)

#### Fuel Pumping Module Retaining Ring

Shown in Image 3.12–4 are the Silverado 1500 and 2500 series fuel pumping module retaining rings. Component masses were 0.25 kg for the Silverado 1500 versus 0.24 kg for the 2500. The lightweighting technology used in the fuel pumping module retaining ring was to change from a steel ring system to a plastic POM screw-down system. Image 3.12–5 shows the plastic POM system. Due to similarities in component design and material, full percentage of the Silverado 1500

fuel pumping module retaining ring mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–4: Fuel Pumping Module Retaining Ring for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)



Image 3.12–5: Example of Plastic POM Fuel Pumping Module Retaining Ring (Source: www.A2mac1.com)

#### Fuel Filler Neck

Shown in Image 3.12–6 are the Silverado 1500 and 2500 fuel filler necks. Component masses were 0.21 kg for the 1500 versus 0.36 kg for the 2500. The lightweighting technology used in the fuel filler neck was a combination of changing some steel components to plastic and then using PolyOne<sup>®</sup> foaming agent on the plastic to take another 10% from the mass of the plastic parts. Due to similarities in component design and material, full percentage of the Silverado 1500 fuel filler neck mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–6: Fuel Filler Neck for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### Fuel Filler Cap Housing

Shown in Image 3.12–7 are the Silverado 1500 and 2500 fuel filler cap housings. Component masses were 0.10 kg for the 1500 versus 0.09 kg for the 2500. The lightweighting technology used in both was PolyOne<sup>®</sup> foaming agent in the plastic Due to similarities in component design and material, full percentage of the Silverado 1500 fuel filler cap housing mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–7: Fuel Filler Cap Housing for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### Fuel Cap

Shown in Image 3.12–8 are the Silverado 1500 and 2500 series fuel caps. Component masses were 0.08 kg for the 1500 versus 0.02 kg for the 2500. The lightweighting technology used in both the fuel caps was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 fuel cap mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–8: Fuel Cap for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### Hose Clamps Large and Small

Shown in Image 3.12–9 are the Silverado 1500 and 2500 series hose clamps. Component masses were 0.024 kg for the 1500 versus 0.05 kg for the 2500. The lightweighting technology used in both large and small hose clamps was to exchange a clamp for a smaller one while maintaining the clamp force needed for the application. The standard hose clamp is approximately 9/16" band width. The new lighter version has a 5/16" band width. Image 3.12–10 shows an example of a lighter hose clamp. Due to similarities in component design and material, full percentage of the Silverado 1500 hose clamp mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–9: Hose clamps for both the Silverado 1500 and 2500 (Source: FEV, Inc.)



Image 3.12–10: Example of a lighter hose clamp (Source: FEV, Inc.)

Vapor Canister

Shown in Image 3.12–11 are the Silverado 1500 and 2500 series vapor canisters. Component masses were 1.96 kg for the 1500 versus 2.17 kg for the 2500. The lightweighting technology used for both vapor canisters was to normalize the 2012 Chevrolet Malibu. Due to similarities in component design and material, full percentage of the Silverado 1500 vapor canister mass reduction can be applied to the 2500. (Refer to Table 3-91).



Image 3.12–11: Vapor Canister for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

# 3.12.1.4 System Comparison – Silverado 2500

Table 3-92 summarizes the Silverado 1500 and 2500 lightweighting results. The majority of the components were visually the same between the two fuel systems.

|        |                | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |
|--------|----------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|
| System | Description    | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
|        |                |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |
| 09     | Fuel           |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |
| 09     | Silverado 1500 | 26.34                               | 1.61                                                 | 12.19                                            | 13.79                                             | 52.37%                             | \$3.20                                 | \$30.95                            | \$34.15                             | \$2.48                                |  |  |
| 09     | Silverado 2500 | 32.15                               | 0.65                                                 | 7.62                                             | 8.28                                              | 25.74%                             | \$1.00                                 | \$11.54                            | \$12.54                             | \$1.52                                |  |  |
|        |                |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     | 1                                     |  |  |

| Table 3-92: | Fuel System | Comparison, | Silverado | 1500 and 2500 |  |
|-------------|-------------|-------------|-----------|---------------|--|
|             |             |             |           |               |  |

### 3.12.2 Mercedes Sprinter 311 CDi

Table 3-93 summarizes the mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total fuel mass savings were 5.47 kg, at a cost decrease of \$8.42, or \$1.54 per kg.



Table 3-93: Mass-Reduction and Cost Impact for Fuel System, Mercedes Sprinter

## 3.12.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Fuel components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-94.

|        |           |               | Silverado 15                         | 00           |                                |                                     | Select Vehicle  |              |                                |                                                  |  |
|--------|-----------|---------------|--------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly                   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                            |  |
| 1      | ) Fi      | uel           | System                               | 26.34        | 1.61                           | 6%                                  |                 |              | 0.02                           |                                                  |  |
| 10     | 01        | 01            | Fuel Tank                            | 10.75        | 0.00                           | 0%                                  | no              |              |                                | Tech does NOT Apply: componding only             |  |
| 10     | 01        | 01            | Fuel Tank side - fuel pump ret. Ring | 0.14         | -0.04                          | -32%                                | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10     | 01        | 01            | Fuel Tank Shield-Bottom              | 2.33         | 0.23                           | 10%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 01        | 02            | Fuel Line Bracket                    | 0.21         | 0.16                           | 75%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 01        | 02            | Fuel Line holder on brkt             | 0.01         | 0.00                           | 11%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 01        | 02            | Fuel Pumping Module                  | 1.74         | 0.09                           | 5%                                  | no              |              |                                | Tech does NOT apply: POM already                 |  |
| 1(     | 01        | 02            | Fuel Pumping Module Retaining Ring   | 0.25         | 0.12                           | 49%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 01        | 03            | Fuel filler neck                     | 0.21         | 0.15                           | 69%                                 | no              |              |                                | Tech does NOT Apply: Mass reduction already done |  |
| 1(     | 01        | 03            | Fuel filler Cap housing              | 0.10         | 0.01                           | 10%                                 | yes             | 0.13         | 0.01                           | Tech DOES apply: Use Polyone foaming agent       |  |
| 10     | 01        | 03            | Fuel cap                             | 0.08         | 0.01                           | 10%                                 | yes             | 0.06         | 0.01                           | Tech DOES apply: Use Polyone foaming agent       |  |
| 1(     | 01        | 03            | Hose clamp-Large                     | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 01        | 03            | Hose clamp-Medium                    | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 01        | 03            | Hose clamp-Small                     | 0.00         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 02        | 01            | Vapor canister                       | 1.96         | 0.06                           | 3%                                  | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10     | 02        | 01            | Vapor Canister Support on frame      | 0.71         | 0.64                           | 90%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 02        | 02            | Purge Valve Dust filter Support      | 0.04         | 0.00                           | 9%                                  | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 1(     | 02        | 02            | Purge Line - Bracket                 | 0.23         | 0.17                           | 75%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |

Table 3-94: System Scaling Analysis Fuel System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter include the fuel filler cap housing, and fuel cap. Image 3.12–12 shows the Mercedes Sprinter 311 CDi fuel components.



Image 3.12–12: Mercedes Sprinter 311 CDi Fuel system (Source: ww.A2mac1.com)

### Fuel Filler Cap Housing

Shown in Image 3.12–13 are the Silverado 1500 and Mercedes Sprinter 311 CDi fuel filler cap housings. Component masses were 0.10 kg for the 1500 versus 0.13 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used in both the fuel filler cap housings was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component material, full percentage of the Silverado 1500 fuel filler cap housing mass reduction can be applied to the Sprinter. (Refer to Table 3-94).



Image 3.12–13: Fuel Filler Cap Housing for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Fuel Cap

Shown in Image 3.12–14 are the Silverado 1500 and Mercedes Sprinter 311 CDi fuel caps. Component masses were 0.08 kg for the 1500 versus 0.06 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used in both fuel caps was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 fuel cap housing mass reduction can be applied to the Sprinter. (Refer to Table 3-94).



Image 3.12–14: Fuel Cap for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### 3.12.3 Renault Master 2.3 DCi

Table 3-95 summarizes the mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Renault Master 2.3 DCi. Total Fuel System mass savings was 5.24 kg at a cost decrease of \$8.07, or \$1.53 per kg.



Table 3-95: Mass-Reduction and Cost Impact for Fuel System, Renault Master

## 3.12.3.1 System Scaling Analysis

The Renault Master 2.3 DCi fuel system components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-96.

|                     | Silverado 150                           | 00           |                                |                                     | Select Vehicle  |              |                                |                                                  |  |
|---------------------|-----------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------|--|
| Subsystem<br>System | Sub-Sub-Sub-Sembly                      | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                            |  |
| 10 Fi               | uel System                              | 26.34        | 1.61                           | 6%                                  |                 |              | 0.01                           |                                                  |  |
| 10 01               | 01 Fuel Tank                            | 10.75        | 0.00                           | 0%                                  | no              |              |                                | Tech does NOT Apply: componding only             |  |
| 10 01               | 01 Fuel Tank side - fuel pump ret. Ring | 0.14         | -0.04                          | -32%                                | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 01               | 01 Fuel Tank Shield-Bottom              | 2.33         | 0.23                           | 10%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 01               | 02 Fuel Line Bracket                    | 0.21         | 0.16                           | 75%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 01               | 02 Fuel Line holder on brkt             | 0.01         | 0.00                           | 11%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 01               | 02 Fuel Pumping Module                  | 1.74         | 0.09                           | 5%                                  | no              |              |                                | Tech does NOT apply: POM already                 |  |
| 10 01               | 02 Fuel Pumping Module Retaining Ring   | 0.25         | 0.12                           | 49%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 01               | 03 Fuel filler neck                     | 0.21         | 0.15                           | 69%                                 | no              |              |                                | Tech does NOT Apply: Mass reduction already done |  |
| 10 01               | 03 Fuel filler Cap housing              | 0.10         | 0.01                           | 10%                                 | yes             | 0.09         | 0.01                           | Tech DOES apply: Use Polyone foaming agent       |  |
| 10 01               | 03 Fuel cap                             | 0.08         | 0.01                           | 10%                                 | yes             | 0.04         | 0.00                           | Tech DOES apply: Use Polyone foaming agent       |  |
| 10 01               | 03 Hose clamp-Large                     | 0.02         | 0.00                           | 10%                                 | yes             | 0.02         | 0.00                           | Tech DOES apply: Smaller width                   |  |
| 10 01               | 03 Hose clamp-Medium                    | 0.02         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 01               | 03 Hose clamp-Small                     | 0.00         | 0.00                           | 10%                                 | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 02               | 01 Vapor canister                       | 1.96         | 0.06                           | 3%                                  | no              |              |                                | Tech does NOT Apply: componenet does not exsist  |  |
| 10 02               | 01 Vapor Canister Support on frame      | 0.71         | 0.64                           | 90%                                 | no              |              |                                | Tech does NOT apply: Does not apply              |  |
| 10 02               | 02 Purge Valve Dust filter Support      | 0.04         | 0.00                           | 9%                                  | no              |              |                                | Tech does NOT apply: Does not apply              |  |
| 10 02               | 02 Purge Line - Bracket                 | 0.23         | 0.17                           | 75%                                 | no              |              |                                | Tech does NOT apply: Does not apply              |  |

Table 3-96: System Scaling Analysis Fuel System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi included the fuel filler cap housing, fuel cap, and large hose clamp. Image 3.12–15 shows the Renault Master 2.3 DCi Fuel System components.



Image 3.12–15: Renault Master 2.3 DCi Fuel System (Source: www.A2mac1.com)

#### Fuel Filler Cap Housing

Shown in Image 3.12–16 are the Silverado 1500 and Renault Master 2.3 DCi fuel filler cap housings. Component masses were 0.10 kg for the 1500 versus 0.09 kg for the Renault Master 2.3

DCi. The lightweighting technology used in both was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 fuel filler cap housing mass reduction can be applied to the Renault. (Refer to Table 3-96).



Image 3.12–16: Fuel Filler Cap Housing for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Fuel Cap

Shown in Image 3.12–17 are the Silverado 1500 and Renault Master 2.3 DCi fuel caps. Component masses were 0.08 kg for the 1500 versus 0.04 kg for the Renault Master 2.3 DCi. The lightweighting technology used in both was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 fuel cap mass reduction can be applied to the Renault. (Refer to Table 3-96).



Image 3.12–17: Fuel Cap for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

# 3.13 STEERING SYSTEM

# 3.13.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Steering System includes the steering gear, steering pump, steering equipment, and steering column assembly sections. All these assemblies have weight save opportunities that will be identified.

The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Steering System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-97 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found in the Steering System mass was reduced by

11.4 kg (35.16%). This increased cost by \$57.21, or \$5.00 per kg. Mass reduction for this system reduced vehicle curb weight by 0.48%.

|        |           |               |                              | Net Value of Mass Reduction |                                          |                                     |                                                        |                          |                                     |  |  |
|--------|-----------|---------------|------------------------------|-----------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|
| System | Subsystem | Sub-Subsystem | Description                  | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |
| 11     | 00        | 00            | Steering                     |                             |                                          |                                     |                                                        |                          |                                     |  |  |
| 11     | 01        | 00            | Steering Gear                | 13.89                       | -1.47                                    | -247.24                             | 168.57                                                 | -10.56%                  | -0.06%                              |  |  |
| 11     | 01        | 01            | Steering Gear                | 13.89                       | -1.47                                    | -247.24                             | 168.57                                                 | -10.56%                  | -0.06%                              |  |  |
| 11     | 02        | 00            | Power Steering Pump          | 5.44                        | 5.44                                     | 40.69                               | 0.00                                                   | 100.00%                  | 0.23%                               |  |  |
| 11     | 02        | 01            | Pump                         | 5.44                        | 5.44                                     | 40.69                               | 7.48                                                   | 100.00%                  | 0.23%                               |  |  |
| 11     | 03        | 00            | Power Steering Equipment     | 1.01                        | 1.01                                     | 54.32                               | 53.73                                                  | 100.00%                  | 0.04%                               |  |  |
| 11     | 03        | 01            | Power Steering Tube Assembly | 0.65                        | 0.65                                     | 33.78                               | 51.97                                                  | 100.00%                  | 0.03%                               |  |  |
| 11     | 03        | 02            | Heat Exchange Assy           | 0.36                        | 0.36                                     | 20.54                               | 56.91                                                  | 100.00%                  | 0.02%                               |  |  |
| 11     | 04        | 00            | Steering Column Assy         | 12.17                       | 14.91                                    | 4.76                                | 0.32                                                   | 122.47%                  | 0.62%                               |  |  |
| 11     | 04        | 01            | Steering column assy         | 10.18                       | 3.25                                     | 0.09                                | 0.03                                                   | 31.91%                   | 0.14%                               |  |  |
| 11     | 04        | 02            | Steering wheel assy          | 1.78                        | 0.20                                     | 4.34                                | 21.22                                                  | 11.47%                   | 0.01%                               |  |  |
| 11     | 04        | 03            | Column Cowl                  | 0.21                        | 0.02                                     | 0.34                                | 15.84                                                  | 10.00%                   | 0.00%                               |  |  |
|        |           |               |                              |                             |                                          |                                     |                                                        |                          |                                     |  |  |
|        |           |               |                              | 32.51                       | 11.43                                    | -57.21                              | -5.00                                                  | 35.16%                   | 0.48%                               |  |  |
|        |           |               |                              |                             | (Decrease)                               | (Increase)                          | (Increase)                                             |                          |                                     |  |  |

Table 3-97: Steering System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Mass savings opportunities were identified for the following components: steering gear, pump, pump tube assembly, heat exchanger, steering column, steering wheel and column cowl.

<u>Steering Gear:</u> The steering gear mass was increased by changing from hydraulic to electric. Mass was increased by 10.6% from 13.9 kg to 15.4 kg.

<u>Pump:</u> The pump mass was reduced by eliminating it because of using electric steering unit. Mass was reduced by 100% from 5.44 kg to 0 kg.

<u>Pump Tube Assembly:</u> The pump tube assembly mass was reduced by eliminating it because of using electric steering unit. Mass was reduced by 100% from 0.65 kg to 0 kg.

<u>Heat Exchanger:</u> The heat exchanger assembly mass was reduced by eliminating it because of using electric steering unit. Mass was reduced by 100% from 0.36 kg to 0 kg.

<u>Steering Column</u>: The steering column mass was reduced by changing the steel tube fabrication to a cast aluminum component. Mass was reduced by 32% from 10.2 kg to 7.0 kg.

<u>Steering Wheel:</u> The steering wheel mass was reduced by changing a steel frame to a cast magnesium wheel. Mass was reduced by 11.24% from 1.78 kg to 1.58 kg.

<u>Column Cowl</u>: The cowl mass was reduced by changing the Polyphenylene Ether (PPE) to a PolyOne<sup>®</sup>. Mass was reduced by 10% from .21 kg to 0.19 kg.

# 3.13.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Steering system is similar to the 1500. Because of the load and durability concerns the electric steering option was not seen to be applicable for this vehicle.



Image 3.13–1: Chevrolet Silverado Steering system (Source: FEV, Inc.)

### 3.13.1.2 2500 System Scaling Summary

Table 3-98 summarizes the mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Silverado 2500. Total Steering System mass savings is 3.54 kg at a cost decrease of \$5.53, or \$1.56 per kg.



# 3.13.1.3 System Scaling Analysis

The Silverado 2500 Steering System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-99.

|        |           |               | Silverado 1                  | 500          |                                |                                     | Select Vehicle |              |                                |                                                                                                                                                          |  |
|--------|-----------|---------------|------------------------------|--------------|--------------------------------|-------------------------------------|----------------|--------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| System | Subsystem | Sub-Subsystem | Component/Assembly           | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech Applies   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                                                                    |  |
| 11     | Ste       | eeri          | ng                           | 32.514       | 8.456                          | 26%                                 |                |              | 3.541                          |                                                                                                                                                          |  |
| 11     | 01        | 01            | Steering Gear                | 13.89        | -1.47                          | -11%                                | no             |              |                                | Tech dose <b>Not</b> apply: Vehicle is not a candidate for<br>electric steering conversion because of application                                        |  |
| 11     | 02        | 01            | Pump                         | 5.44         | 5.44                           | 100%                                | no             |              |                                | Tech dose <b>Not</b> apply: Vehicle is not a candidate for<br>electric steering conversion because of application                                        |  |
| 11     | 03        | 01            | Power Steering Tube Assembly | 0.65         | 0.65                           | 100%                                | no             |              |                                | Tech dose Not apply: Vehicle is not a candidate for<br>electric steering conversion because of application                                               |  |
| 11     | 03        | 02            | Heat Exchange Assy           | 0.36         | 0.36                           | 100%                                | no             |              |                                | Tech dose <b>Not</b> apply: Vehicle is not a candidate for<br>electric steering conversion because of application                                        |  |
| 11     | 04        | 01            | Steering column assy         | 10.18        | 3.25                           | 32%                                 | yes            | 10.39        | 3.32                           | Tech <b>DOES</b> apply: The 2500 used the same sheet<br>metal steering colum system as the Silverado 1500 is<br>a candidate to use cast magnesium column |  |
| 11     | 04        | 02            | Steering wheel assy          | 1.78         | 0.20                           | 11%                                 | yes            | 1.78         | 0.20                           | Tech <b>DOES</b> apply: Very simular to Silverado 1500<br>rubber coated aluminum framed wheel, is agood<br>candidate for plastic wheel.                  |  |
| 11     | 04        | 03            | Column Cowl                  | 0.21         | 0.02                           | 10%                                 | yes            | 0.21         | 0.02                           | Tech <b>DOES</b> apply: Same as Silverado 1500 used<br>Polyone as a solutin maintain integrity and reduce<br>weight on cowls                             |  |

Table 3-99: System Scaling Analysis Steering System, Silverado 2500

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the 2500 series Silverado include the, steering column, steering wheel and column cowl. Because of the load and functionality concerns the steering gear, pump, pump steering tube assembly, and heat exchanger do not apply.

#### Steering Column

Shown in Image 3.13–2 are the Silverado 1500 and 2500 steering columns. Component masses were 10.2 kg for the 1500 versus 10.4 kg for the 2500. Both steering columns were made of steel tubes and stampings welded into an assembly. The technology to lighten these units was the same. A cast aluminum assembly is being used in other segments of the automotive industry successfully and is a good application for these trucks. Due to similarities in component design and material, full percentage of the Silverado 1500 steering column mass reduction can be applied to the 2500. (Refer to Table 3-99).





#### Steering Wheel

Shown in Image 3.13–3 are the Silverado 1500 and 2500 steering wheels. Component masses were 1.78 kg for the 1500 versus 1.78 kg for the 2500. Both steering wheels were steel frames with plastic wrapping. The lightweighting technology used in both the steering wheels was the same. Due to similarities in component design and material, full percentage of the Silverado 1500 steering wheel mass reduction can be applied to the 2500. (Refer to Table 3-99).



Image 3.13–3: Steering Wheel for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Column Cowl

Shown in Image 3.13–4 are the Silverado 1500 and 2500 column cowls. Component masses were 0.21 kg for both the 1500 and the 2500. The lightweighting technology used in the column cowl was to use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 column cowl mass reduction can be applied to the 2500. (Refer to Table 3-99).



Image 3.13–4: Column cowl for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

# 3.13.1.4 System Comparison, Silverado 2500

Table 3-100 summarizes the Silverado 1500 and 2500 lightweighting results. The majority of the components were visually the same between the steering. The 2500 steering was much more robust than the 1500 that it prevented consideration of the electric steering option.

|                |                                              | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                                   |                                    |                                                |                                       |  |  |
|----------------|----------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|--|--|
| System         | Description                                  | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
| 11<br>11<br>11 | Steering<br>Silverado 1500<br>Silverado 2500 | 32.51<br>49.86                      | 8.46<br>3.54                                         | 0.00                                             | 8.46<br>3.54                                      | 26.01%<br>7.10%                    | -\$146.70<br>\$5.53                               | \$0.01<br>\$0.00                   | -\$146.70<br>\$5.53                            | -\$17.35<br>\$1.56                    |  |  |
| 11             | Silverado 2500                               | 49.86                               | 3.54                                                 | 0.00                                             | 3.54                                              | 7.10%                              | \$5.53                                            | \$0.00                             | \$5.53                                         | <b>\$1</b> .                          |  |  |

#### Table 3-100: Steering System Comparison, Silverado 1500 and 2500

### 3.13.2 Mercedes Sprinter 311 CDi

The following table summarizes the mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total steering mass savings was 3.85 kg at a cost increase of \$110.88, or \$28.76 per kg.



Table 3-101: Mass-Reduction and Cost Impact for Steering System, Mercedes Sprinter

### 3.13.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Steering components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-102.

|        |                  |               | Silverado 1                  | 500          |                                |                                     | Select Vehicle |              |                                |                                                                                                                                                       |  |
|--------|------------------|---------------|------------------------------|--------------|--------------------------------|-------------------------------------|----------------|--------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| System | Subsystem        | Sub-Subsystem | Component/Assembly           | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech Applies   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                                                                 |  |
| 11     | Ste              | eeri          | ing                          | 32.514       | 8.456                          | 26%                                 |                |              | 3.855                          |                                                                                                                                                       |  |
| 11     | 01               | 01            | Steering Gear                | 13.89        | -1.47                          | -11%                                | yes            | 11.26        | -1.19                          | Tech DOES apply: The Sprinter used the same<br>steering gear system as the Silverado 1500 and<br>electric steering is a good option                   |  |
| 11     | 02               | 01            | Pump                         | 5.44         | 5.44                           | 100%                                | yes            | 2.01         | 2.01                           | Tech DOES apply: The Sprinter used the same<br>pump as the Silverado 1500 and will not need with<br>the electric application                          |  |
| 11     | <mark>0</mark> 3 | 01            | Power Steering Tube Assembly | 0.65         | 0.65                           | 100%                                | yes            | 1.36         | 1.36                           | Tech DOES apply: The Sprinter used the same<br>power steering tube as the Silverado 1500 and<br>tubes will not be required.                           |  |
| 11     | 03               | 02            | Heat Exchange Assy           | 0.36         | 0.36                           | 100%                                | no             |              |                                | Tech dose Not apply: The Sprinter did not use a<br>heat exchanger.                                                                                    |  |
| 11     | 04               | 01            | Steering column assy         | 10.18        | 3.25                           | 32%                                 | yes            | 4.75         | 1.52                           | Tech DOES apply: The Sprinter used the same<br>sheet metal steering colum system as the Silverado<br>1500 is a candidate to use cast magnesium column |  |
| 11     | 04               | 02            | Steering wheel assy          | 1.78         | 0.20                           | 11%                                 | yes            | 1.33         | 0.15                           | Tech <b>DOES</b> apply: Very simular to Silverado 1500<br>rubber coated aluminum framed wheel, is a good<br>candidate for plastic wheel.              |  |
| 11     | 04               | 03            | Column Cowl                  | 0.21         | 0.02                           | 10%                                 | yes            | 0.09         | 0.01                           | Tech DOES apply: Same as Silverado 1500 used<br>Polyone as a solutin maintain integrity and reduce<br>weight on cowls                                 |  |

Table 3-102: System Scaling Analysis Steering System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter 311 include: the steering gear, pump, pump steering tube assembly, steering column, steering wheel, and column cowl.



Image 3.13–5: Mercedes Sprinter 311 CDi Steering (Source: www.A2mac1.com)

#### Steering Gear

Shown in Image 3.13–6 are the Silverado 1500 and Mercedes Sprinter 311 steering gear. Component masses were 13.9 kg for the Silverado 1500 versus 11.3 kg for the Mercedes Sprinter 311. Due to similarities in component design and material, full percentage of the Silverado 1500 steering gear mass reduction can be applied to the Sprinter. (Refer to Table 3-102).



Image 3.13–6: Steering Gear for the Silverado 1500 (Left) and Sprinter 311 (Right) (Source: FEV, Inc.)

#### <u>Pump</u>

Shown in Image 3.13–7 are the Silverado 1500 and Mercedes Sprinter 311 hydraulic pumps. Component masses were 5.44 kg for the Silverado 1500 versus 2.00 kg for the Sprinter 311. Due to similarities in component design and material, full percentage of the Silverado 1500 pump mass reduction can be applied to the Sprinter. (Refer to Table 3-102).



Image 3.13–7: Pump for the Silverado 1500 (Left) and Mercedes Sprinter 311 (Right) (Source: FEV, Inc.)

#### Power Steering Tubes

Shown in Image 3.13–8 are the Silverado 1500 and Mercedes Sprinter 311 series power steering tubes. Component masses were 0.65 kg for the Silverado 1500 versus 1.36 kg for the Sprinter 311. Due to similarities in component design and material, full percentage of the Silverado 1500 power steering tube mass reduction can be applied to the Sprinter. (Refer to Table 3-102).



Image 3.13–8: Steering Tubes for the Silverado 1500 (Left) and Sprinter 311 (Right) (Source: FEV, Inc.)

#### Steering Column

Shown in Image 3.13–9 are the Silverado 1500 and 311 steering columns. Component masses are 10.178 kg for the 1500 versus 4.75 kg for the 311 respectively. Both the Steering columns are made of steel tubes and stampings that are welded into an assembly. The technology to lighten these units is the same. A cast aluminum assembly is being used in other segments of the automotive industry successfully and is a good application for these trucks. Due to similarities in component design and material, full percentage of the Silverado 1500 steering column mass reduction can be applied to the Sprinter. (Refer to Table 3-102).



Image 3.13–9: Steering Column for the Silverado 1500 (Top) and Sprinter 311 (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### Steering Wheel

Shown in Image 3.13–10 are the Silverado 1500 and Mercedes Sprinter 311 steering wheels. Component masses were 1.78 kg for the Silverado 1500 versus 1.37 kg for the Sprinter 311. Both steering wheels were steel frames with plastic wrapping. The lightweighting technology used in both steering wheels was the same. Due to similarities in component design and material, full percentage of the Silverado 1500 steering wheel mass reduction can be applied to the Sprinter. (Refer to Table 3-102).



Image 3.13–10: Steering Wheel for the Silverado 1500 (Left) and Sprinter 311 (Right) (Source: FEV, Inc.)

### 3.13.3 Renault Master 2.3 DCi

Table 3-103 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Renault Master 2.3 DCi. Total Steering mass savings was 5.47 kg at a cost increase of \$90.37, or \$16.53 per kg.

|          |              |                          |                                                                                                    | Net Value of Mass Reduction                          |                                                  |                                                                                            |                                                                   |                                                    |                                                          |                                       |                                              |  |
|----------|--------------|--------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|---------------------------------------|----------------------------------------------|--|
| System   | Subsystem    | Sub-Subsystem            | Description                                                                                        | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub>                                          | Cost<br>Impact<br>New Tech<br>"\$" (2)                            | Cost<br>Impact<br>Comp<br>"\$" (2)                 | Cost<br>Impact<br>Total<br>"\$" (2)                      | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |
| 11       | 00           | 00                       | Stearing System                                                                                    |                                                      |                                                  |                                                                                            |                                                                   |                                                    |                                                          |                                       |                                              |  |
| 11       | 01           | 00                       | Steering Gear                                                                                      | -1.387                                               | 0.000                                            | -1.387                                                                                     | -\$233.82                                                         | \$0.00                                             | -233.82                                                  | \$168.53                              | -0.06%                                       |  |
| 11       | 02           | 00                       | Power Steering Pump                                                                                | 2.170                                                | 0.000                                            | 2.170                                                                                      | \$16.23                                                           | \$0.00                                             | 16.23                                                    | \$7.48                                | 0.09%                                        |  |
| 11       | 03           | 00                       | Power Steering Equipment                                                                           | 2.298                                                | 0.000                                            | 2.298                                                                                      | \$123.93                                                          | \$0.00                                             | 123.93                                                   | \$53.93                               | 0.10%                                        |  |
| 11       | 04           | 00                       | Steering Column Assembly                                                                           | 2.386                                                | 0.000                                            | 2.386                                                                                      | \$3.28                                                            | \$0.00                                             | 3.28                                                     | \$1.38                                | 0.10%                                        |  |
|          |              |                          |                                                                                                    |                                                      |                                                  |                                                                                            |                                                                   |                                                    |                                                          |                                       |                                              |  |
|          |              |                          |                                                                                                    | 5.47                                                 | 0.00                                             | 5.47                                                                                       | -\$90.37                                                          | \$0.00                                             | -90.37                                                   | -16.53                                | 0.23%                                        |  |
|          |              |                          |                                                                                                    | (Decrease)                                           |                                                  | (Decrease)                                                                                 | (Increase)                                                        |                                                    | (Increase)                                               | (Increase)                            |                                              |  |
| Ma<br>Ma | 55 S<br>55 S | avii<br>avii<br>(<br>0.0 | ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500<br>35.3%<br>64.7% | 8.5<br>64.7%                                         |                                                  | <ul> <li>% Save</li> <li>% Lost</li> <li>% Lost</li> <li>% Lost</li> <li>% Lost</li> </ul> | ed, techno<br>, compone<br>, technolo<br>, technolo<br>, technolo | logy ap<br>ent doe<br>gy doe<br>gy alre<br>gy redu | oplies<br>sn't exis<br>sn't appl<br>ady impl<br>uced imp | t<br>Y<br>emented                     | I                                            |  |
| *SN      | 1S n         | ot in                    | 0.0%                                                                                               | ins                                                  |                                                  |                                                                                            |                                                                   |                                                    |                                                          |                                       |                                              |  |
| 0        | .e n         | 51.11                    | induced the organization input on percedition                                                      |                                                      |                                                  |                                                                                            |                                                                   |                                                    |                                                          |                                       |                                              |  |

Table 3-103: Mass-Reduction and Cost Impact for Steering System, Renault Master

# 3.13.3.1 System Scaling Analysis

The Renault Master 2.3 DCi Steering components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-104.

Table 3-104: System Scaling Analysis Steering System, Renault Master

|        |                  |               | Silverado 1                  | 500          |                                |                                     | Select Vehicle |              |                                |                                                                                                                                                             |  |
|--------|------------------|---------------|------------------------------|--------------|--------------------------------|-------------------------------------|----------------|--------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| System | Subsystem        | Sub-Subsystem | Component/Assembly           | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech Applies   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                                                                                       |  |
| 11     | Ste              | eer           | ing                          | 32.514       | 8.456                          | 26%                                 |                |              | 5.467                          |                                                                                                                                                             |  |
| 11     | 01               | 01            | Steering Gear                | 13.89        | -1.47                          | -11%                                | yes            | 13.14        | -1.39                          | Tech DOES apply: The Renault used the same<br>steering gear system as the Silverado 1500 and<br>electric steering is a good option                          |  |
| 11     | 02               | 01            | Pump                         | 5.44         | 5.44                           | 100%                                | yes            | 2.17         | 2.17                           | Tech DOES apply: The Renault used the same<br>pump as the Silverado 1500 and will not need with<br>the electric application                                 |  |
| 11     | <mark>0</mark> 3 | 01            | Power Steering Tube Assembly | 0.65         | 0.65                           | 100%                                | yes            | 1.39         | 1.39                           | Tech <b>DOES</b> apply: The Renault used the same<br>power steering tube as the Silverado 1500 and<br>tubes will not be required.                           |  |
| 11     | <mark>0</mark> 3 | 02            | Heat Exchange Assy           | 0.36         | 0.36                           | 100%                                | yes            | 0.91         | 0.91                           | Tech <b>DOES</b> apply: The Renault used the same heat<br>exchange system as the Silverado 1500 and the<br>heat exchange will not be needed.                |  |
| 11     | 04               | 01            | Steering column assy         | 10.18        | 3.25                           | 32%                                 | yes            | 7.05         | 2.25                           | Tech <b>DOES</b> apply: The Renault used the same<br>sheet metal steering colum system as the Silverado<br>1500 is a candidate to use cast magnesium column |  |
| 11     | 04               | 02            | Steering wheel assy          | 1.78         | 0.20                           | 11%                                 | yes            | 1.12         | 0.13                           | Tech DOES apply: Very simular to Silverado 1500<br>rubber coated aluminum framed wheel, is a good<br>candidate for plastic wheel.                           |  |
| 11     | 04               | 03            | Column Cowl                  | 0.21         | 0.02                           | 10%                                 | yes            | 0.08         | 0.01                           | Tech <b>DOES</b> apply: Same as Silverado 1500 used<br>Polyone as a solutin maintain integrity and reduce<br>weight on cowls                                |  |

Components with significant mass savings identified on the Renault Master 2.3 DCi include: the steering gear, pump, pump steering tube assembly, heat exchanger, steering column, steering wheel, and column cowl. Image 3.13–11 shows the Renault Master 2.3 DCi steering components.



Image 3.13–11: Renault Master 2.3 DCi Steering Components (Source: www.A2mac1.com)

Steering Gear

Shown in Image 3.13–12 are the Silverado 1500 and Renault Master 2.3 steering gear. Component masses were 13.9 kg for the Silverado 1500 versus 13.1 kg for the Renault Master 2.3. Due to similarities in component design and material, full percentage of the Silverado 1500 steering gear mass reduction can be applied to the Renault. (Refer to Table 3-104).



Image 3.13–12: Steering Gear for the Silverado 1500 (Left) and Renault Master 2.3 (Right) (Source: FEV, Inc.)

#### <u>Pump</u>

Shown in Image 3.13–13 are the Silverado 1500 and Renault Master 2.3 hydraulic pumps. Component masses were 5.44 kg for the 1500 versus 2.17 kg for the 2.3. Due to similarities in component design and material, full percentage of the Silverado 1500 pump mass reduction can be applied to the Renault. (Refer to Table 3-104).



Image 3.13–13: Pump for the Silverado 1500 (Left) and Renault Master 2.3 (Right) (Source: FEV, Inc.)

#### Power Steering Tubes

Shown in Image 3.13–14 are the Silverado 1500 and Renault Master 2.3 power steering tubes. Component masses were 0.65 kg for the Silverado 1500 versus 1.39 kg for the Renault Master 2.3. Due to similarities in component design and material, full percentage of the Silverado 1500 power steering tube mass reduction can be applied to the Renault. (Refer to Table 3-104).



Image 3.13–14: Steering Tubes for the Silverado 1500 (Left) and Renault Master 2.3 (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Heat Exchanger

Shown in Image 3.13–15 are the Silverado 1500 and Renault Master 2.3 heat exchangers. Component masses were 0.36 kg for the Silverado 1500 versus 0.91 kg for the Renault Master 2.3. Due to similarities in component design and material, full percentage of the Silverado 1500 heat exchanger mass reduction can be applied to the Renault. (Refer to Table 3-104).



Image 3.13–15: Heat Exchangers for the Silverado 1500 (Left) and Renault Master 2.3 (Right) (Source: FEV, Inc.)

#### Steering Column

Shown in Image 3.13–16 are the Silverado 1500 and Renault Master 2.3 steering columns. Component masses were 10.2 kg for the Silverado 1500 versus 7.05 kg for the Renault Master 2.3. Both steering columns were made of steel tubes and stampings welded onto an assembly. The

technology to lighten these units is the same. A cast aluminum assembly is being used in other segments of the automotive industry successfully and is a good application for these trucks. Due to similarities in component design and material, full percentage of the Silverado 1500 steering column mass reduction can be applied to the Renault. (Refer to Table 3-104).



Image 3.13–16: Steering Column for the Silverado 1500 (Left) Renault Master 2.3 (Right) (Source: FEV, Inc.)

#### Steering Wheel

Shown in Image 3.13–17 the Silverado 1500 and Renault Master 2.3 steering wheels. Component masses are 1.78 kg for the 1500 versus 1.12 kg for the Renault Master 2.3 respectively. Both the steering wheels are steel frames with plastic wrapping. The respectively technology used on both the steering wheels is the same. Due to similarities in component design and material, full percentage of the Silverado 1500 steering wheel mass reduction can be applied to the Renault. (Refer to Table 3-104).



Image 3.13–17: Steering Wheel for the Silverado 1500 (Left) and the Renault Master 2.3 (Right) (Source: FEV, Inc.)

### 3.14 CLIMATE CONTROL SYSTEM

### 3.14.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Climate Control System included the air distribution duct components and HVAC main unit.

The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Climate Control System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-105 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Climate Control System mass was reduced by 1.94kg (9.5%). This decreased cost by \$14.71, or \$7.59 per kg. Mass reduction for this system reduced vehicle curb weight by 0.08%.

|        |           |               |                                            | Net Value of Mass Reduction |                                          |                                     |                                                        |                          |                                     |
|--------|-----------|---------------|--------------------------------------------|-----------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System | Subsystem | Sub-Subsystem | Description                                | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| 12     | 00        | 00            | Climate Control System                     |                             |                                          |                                     |                                                        |                          |                                     |
| 12     | 01        | 00            | Air Handling / Body Ventilation Subsystem  | 14.88                       | 1.94                                     | 14.71                               | 7.59                                                   | 13.03%                   | 0.08%                               |
| 12     | 01        | 02            | Air Distribution Duct Components           | 2.89                        | 1.43                                     | 14.02                               | 9.82                                                   | 49.49%                   | 0.06%                               |
| 12     | 01        | 04            | HVAC Main Unit                             | 12.00                       | 0.51                                     | 0.69                                | 1.35                                                   | 4.26%                    | 0.02%                               |
|        |           |               |                                            |                             |                                          |                                     |                                                        |                          | 0.00%                               |
| 12     | 02        | 00            | Heating/Defrosting Subsystem               | 0.29                        | 0.00                                     | 0.00                                |                                                        |                          | 0.00%                               |
| 12     | 02        | 01            | Supplementary Heat Source                  | 0.29                        | 0.00                                     | 0.00                                |                                                        |                          | 0.00%                               |
|        |           |               |                                            |                             |                                          |                                     |                                                        |                          |                                     |
| 12     | 03        | 00            | Refrigeration / Air Conditioning Subsystem | 4.74                        | 0.00                                     | 0.00                                |                                                        |                          | 0.00%                               |
| 12     | 03        | 05            | AC Lines, Receiver Drier and Accumulator   | 4.74                        | 0.00                                     | 0.00                                |                                                        |                          | 0.00%                               |
|        |           |               |                                            |                             |                                          |                                     |                                                        |                          |                                     |
| 12     | 04        | 00            | Controls Subsystem                         | 0.39                        | 0.00                                     | 0.00                                |                                                        |                          | 0.00%                               |
| 12     | 04        | 03            | Electronic Climate Control Unit            | 0.39                        | 0.00                                     | 0.00                                |                                                        |                          | 0.00%                               |
|        |           |               |                                            |                             |                                          |                                     |                                                        |                          |                                     |
|        |           |               |                                            |                             |                                          |                                     |                                                        |                          |                                     |
|        |           |               |                                            | 20.31                       | 1.94                                     | 14.71                               | 7.59                                                   | 9.55%                    | 0.08%                               |
|        |           |               |                                            |                             | (Decrease)                               | (Decrease)                          | (Decrease)                                             |                          |                                     |

Table 3-105: Climate Control System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: air distribution duct and HVAC main unit.

<u>Air Distribution Duct Components:</u> The air distribution duct components mass was decreased by using Azote, from Zotefoams, Inc.<sup>®</sup> Mass was reduced by 49%, from 2.64 kg to 1.34 kg.

<u>HVAC Main Unit</u>: The HVAC main unit mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 4% from 10.4 kg to 9.92 kg.

# 3.14.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Climate Control System is very similar to that of the Silverado 1500.





Image 3.14–1: Chevrolet Silverado 1500 and 2500 Climate Control System (Source: GM)

# 3.14.1.2 2500 System Scaling Summary

Table 3-106 summarizes mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Silverado 2500. Total Climate Control System mass savings was 1.75 kg at a cost decrease of \$13.40, or \$7.68 per kg.





# 3.14.1.3 System Scaling Analysis

The Silverado 2500 Climate Control System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-107.

| Silverado 1500                       |           |               |                                  |              |                                |                                     |                 | Select Vehicle |                                |                                                                  |  |
|--------------------------------------|-----------|---------------|----------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|----------------|--------------------------------|------------------------------------------------------------------|--|
| System                               | Subsystem | Sub-Subsystem | Component/Assembly               | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                                            |  |
| 12 Climate Control System 20.31 1.94 |           |               |                                  |              | 10%                            |                                     |                 | 1.75           |                                |                                                                  |  |
| 12                                   | 01        | 02            | Air Distribution Duct Components | 2.89         | 1.43                           | 49%                                 | yes             | 2.64           | 1.30                           | Tech DOES apply: Change plastic material to Zotefoams<br>Azote   |  |
| 12                                   | 01        | 04            | HVAC Main Unit                   | 12.00        | 0.51                           | 4%                                  | yes             | 10.36          | 0.44                           | Tech DOES apply: Use MuCell Foam injection molding<br>technology |  |

Table 3-107: System Scaling Analysis Climate Control System, Silverado 2500

Components with significant mass savings identified on the Silverado 2500 include the air distribution duct and HVAC main unit.

### Air Distribution Duct Components

Shown in Image 3.14–2 are the Silverado 1500 and 2500 series air distribution duct components. Component masses were 2.89 kg for the 1500 versus 2.64 kg for the 2500. The lightweighting technology used in the air distribution duct components was Azote, from Zotefoams, Inc.<sup>®</sup>. Due to similarities in component design and material, full percentage of the Silverado 1500 air distribution duct mass reduction can be applied to the 2500. (Refer to Table 3-107).



Image 3.14–2: Air Distribution Duct Components are the same for Silverado 1500 and 2500 (Source: FEV, Inc.)

# HVAC Main Unit

Shown in Image 3.14–3 are the Silverado 1500 and 2500 series HVAC main units. Component masses were 12.0 kg for the Silverado 1500 versus 10.4 kg for the 2500. The respective technology used on the HVAC main unit was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 HVAC main unit duct mass reduction can be applied to the 2500. (Refer to Table 3-107).



Image 3.14–3: HVAC Main Units are the same for Silverado 1500 and 2500 (Source: FEV, Inc.)
## 3.14.1.4 System Comparison, Silverado 2500

The following table summarizes the Silverado 1500 and 2500 lightweighting results. The majority of the components were visually the same between the two Climate Control Systems.

|                |                                                     | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                                   |                                    |                                     |                                       |  |  |
|----------------|-----------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|---------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|
| System         | Description                                         | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
| 12<br>12<br>12 | Climate Control<br>Silverado 1500<br>Silverado 2500 | 20.31<br>32.53                      | 1.94<br>1.75                                         | 0.00                                             | 1.94<br>1.75                                      | 9.55%<br>5.37%                     | \$14.71<br>\$13.40                                | \$0.00<br>\$0.00                   | \$14.71<br>\$13.40                  | \$7.59<br>\$7.68                      |  |  |

Table 3-108: Climate Control System Comparison, Silverado 1500 and 2500

### 3.14.2 Mercedes Sprinter 311 CDi

Table 3-109 summarizes mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total Climate Control System mass savings was 1.16 kg at a cost decrease of \$7.99, or \$6.90 per kg.



Table 3-109: Mass-Reduction and Cost Impact for Climate Control System, Mercedes Sprinter

## 3.14.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Climate Control System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-110.

|        |                          |               | Silverado 150                    | 0            |                                |                                     | Select Vehicle  |              |                                |                                                                  |  |  |
|--------|--------------------------|---------------|----------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|------------------------------------------------------------------|--|--|
| System | Subsystem                | Sub-Subsystem | Component/Assembly               | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                            |  |  |
| 12     | 2 Climate Control System |               | ate Control System               | 20.31        | 1.94                           | 10%                                 |                 |              | 1.16                           |                                                                  |  |  |
| 12     | 01                       | 02            | Air Distribution Duct Components | 2.89         | 1.43                           | 49%                                 | yes             | 1.53         | 0.76                           | Tech DOES apply: Change plastic material to Zotefoams<br>Azote   |  |  |
| 12     | 01                       | 04            | HVAC Main Unit                   | 12.00        | 0.51                           | 4%                                  | yes             | 9.37         | 0.40                           | Tech DOES apply: Use MuCell Foam injection molding<br>technology |  |  |

Table 3-110: System Scaling Analysis Climate Control System, Mercedes Sprinter

Components with significant mass savings identified on the Mercedes Sprinter included the air distribution duct components and HVAC Main Unit. Image 3.14–4 shows the Mercedes Sprinter 311 CDi Climate Control System components.



Image 3.14–4: Mercedes Sprinter 311 CDi Climate Control System (Source: www.A2mac1.com)

### Air Distribution Duct Components

Shown in Image 3.14–5 are the Silverado 1500 and Mercedes Sprinter 311 CDi air distribution duct components. Component masses were 2.89 kg for the Silverado 1500 versus 1.53 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the air distribution duct components was Azote, from Zotefoams, Inc.<sup>®</sup> Due to similarities in component design and material, full percentage of the Silverado 1500 air distribution duct mass reduction can be applied to the Sprinter. (Refer to Table 3-110Table 3-107).





Image 3.14–5: Air Distribution Duct Components for the Silverado 1500 and 2500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### HVAC Main Unit

Shown in Image 3.14–6 are the Silverado 1500 and Mercedes Sprinter 311 CDi HVAC main units. Component masses were 12.0 kg for the Silverado 1500 versus 9.37 kg for the Mercedes Sprinter 311 CDi. Both HVAC main units were made of plastic. The lightweighting technology used on both the HVAC main units was PolyOne<sup>®</sup> foaming agent on the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 HVAC main unit mass reduction can be applied to the Sprinter. (Refer to Table 3-110Table 3-107).





Image 3.14–6: HVAC Main Unit for Silverado 1500 and 2500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

## 3.14.3 Renault Master 2.3 DCi

Table 3-111 summarizes mass and cost impact of Silverado 1500 lightweighting technologies applied to the Renault Master 2.3 DCi. Climate Control System mass savings was 0.59 kg at a cost decrease of \$2.91, or \$4.96 per kg.



| Table 3-111: Mass-Reduction and | Cost Impact for Climate | Control System, Renault Master       |
|---------------------------------|-------------------------|--------------------------------------|
|                                 | cost impact jot connate | control bystend, itendation intester |

# 3.14.3.1 System Scaling Analysis

The Renault Master 2.3 DCi Climate Control System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-112.

|        |                           |               | Silverado 150                    | 0            |                                |                                     |                 | Select Vehicle               |      |                                                                  |
|--------|---------------------------|---------------|----------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|------------------------------|------|------------------------------------------------------------------|
| System | Subsystem                 | Sub-Subsystem | Component/Assembly               | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Tech Base Sa<br>Applies Mass |      | Notes                                                            |
| 12     | 12 Climate Control System |               | ate Control System               | 20.31        | 1.94                           | 10%                                 |                 |                              | 0.59 |                                                                  |
| 12     | 01                        | 02            | Air Distribution Duct Components | 2.89         | 1.43                           | 49%                                 | yes             | 0.51                         | 0.25 | Tech DOES apply: Change plastic material to Zotefoams<br>Azote   |
| 12     | 01                        | 04            | HVAC Main Unit                   | 12.00        | 0.51                           | 4%                                  | yes             | 7.90                         | 0.34 | Tech DOES apply: Use MuCell Foam injection molding<br>technology |

Table 3-112: System Scaling Analysis Climate Control System, Renault Master

Components with significant mass savings identified on the Renault Master 2.3 DCi include the Air Distribution Duct Components and HVAC Main Unit. Image 3.14–7 shows the Renault Master 2.3 DCi Climate Control System components



Image 3.14–7: Renault Master 2.3 DCi Climate Control System (Source: www.A2mac1.com)

Air Distribution Duct Components

Shown in Image 3.14–8 are the Silverado 1500 and Renault Master 2.3 DCi Air Distribution Duct Components. Component masses were 2.89 kg for the Silverado 1500 versus 1.53 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the Air Distribution Duct Components was Azote, from Zotefoams, Inc.<sup>®</sup> Due to similarities in component material, full percentage of the Silverado 1500 air distribution duct mass reduction can be applied to the Renault. (Refer to Table 3-112Table 3-107).



Image 3.14–8: Air Distribution Duct Components for the Silverado 1500 and 2500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### HVAC Main Unit

Shown in Image 3.14–9 are the Silverado 1500 and Renault Master 2.3 DCi HVAC main unit. Component masses were 12.0 kg for the 1500 versus 9.37 kg for the Renault Master 2.3 DCi. Both HVAC main units were made of plastic. The lightweighting technology used on both the HVAC main units was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and

material, full percentage of the Silverado 1500 HVAC main unit mass reduction can be applied to the Renault. (Refer to Table 3-112Table 3-107).



Image 3.14–9: HVAC Main Unit for the Silverado 1500 and 2500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and A2mac1.com)

## 3.15 INFORMATION, GAGE AND WARNING DEVICE SYSTEM

### 3.15.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Information, Gage and Warning Device System included the driver information center and traffic horn assembly. The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Information, Gage, and Warning Device System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-113 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Information, Gage, and Warning Device System mass was reduced by 0.25 kg (15.72%). This decreased cost by \$0.66, or \$2.66 per kg. Mass reduction for this system reduced vehicle curb weight by 0.01%.

|        |           |               |                              | Net Value of Mass Reduction |                                          |                                    |                                                        |                          |                                     |  |  |
|--------|-----------|---------------|------------------------------|-----------------------------|------------------------------------------|------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|
| System | Subsystem | Sub-Subsystem | Description                  | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |
| 13     | 01        | 00            | Instrument Cluster Subsystem | 1.06                        | 0.06                                     | 0.49                               | 7.67                                                   | 5.99%                    | 0.00%                               |  |  |
| 13     | 01        | 01            | Driver Information Center    | 1.06                        | 0.06                                     | 0.49                               | 7.67                                                   | 5.99%                    | 0.00%                               |  |  |
| 13     | 02        | 00            | Traffic Horns (Electric)     | 0.52                        | 0.18                                     | 0.17                               | 0.93                                                   | 35.64%                   | 0.01%                               |  |  |
| 13     | 02        | 01            | Traffic Horn Assembly - LH   | 0.26                        | 0.09                                     | 0.09                               | 0.93                                                   | 35.64%                   | 0.00%                               |  |  |
| 13     | 02        | 02            | Traffic Horn Assembly - RH   | 0.26                        | 0.09                                     | 0.09                               | 0.93                                                   | 35.64%                   | 0.00%                               |  |  |
|        |           |               |                              |                             |                                          |                                    |                                                        |                          |                                     |  |  |
|        |           |               |                              | 1.58                        | 0.25                                     | 0.66                               | 2.66                                                   | 15.72%                   | 0.01%                               |  |  |
|        |           |               |                              |                             | (Decrease)                               | (Decrease)                         | (Decrease)                                             |                          |                                     |  |  |

Table 3-113: Information, Gage and Warning Device System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase
(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: cluster mask assembly, cluster rear housing, display housing, LH/RH horn outer plastic cover, LH/RH horn outside steel cover, and LH/RH horn mounting bracket.

Cluster Mask Assembly: The cluster mask assembly mass was decreased by using PolyOne® foaming agent. Mass was reduced by 10%, from 0.18 kg to 0.16 kg.

Cluster Rear Housing: The cluster rear housing mass was reduced by using PolyOne® foaming agent. Mass was reduced by 10% from 0.20 kg to 0.18 kg.

Display Housing: The display housing mass was reduced by using PolyOne® foaming agent. Mass was reduced by 10%, from 0.25 kg to 0.22 kg.

Horn Outer Plastic Cover (LH/RH): The horn outer plastic cover LH/RH mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 10%, from 0.04 kg to 0.03 kg.

Horn Outside Steel Cover (LH/RH): The horn outside steel cover LH/RH mass was reduced by changing from steel to plastic and then using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 78%, from 0.04 kg to 0.01 kg.

Horn Mounting bracket (LH/RH): The horn mounting bracket LH/RH mass was reduced by changing from steel to plastic and then using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 78%, from 0.03 kg to 0.008 kg.

### 3.15.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Information, Gage and Warning Device System is very similar to the 1500.



Image 3.15–1: Chevrolet Silverado 2500 Information, Gage and Warning Device System (Source: FEV, Inc.)

## 3.15.1.2 2500 System Scaling Summary

Table 3-114: Mass-Reduction and Cost Impact for Information, Gage and Warning Device System summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Silverado 2500. Total Information, Gage, and Warning Device System mass savings is 0.25 kg at a cost decrease of \$.65, or \$2.62 per kg.

Table 3-114: Mass-Reduction and Cost Impact for Information, Gage and Warning Device System, Silverado 2500



# 3.15.1.3 System Scaling Analysis

The Silverado 2500 Information, Gage and Warning Device System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-115.

|        |           |               | Silverado 1500                         |              | -                              |                                     |                 | Select Vehicle |                                |                                                                                |
|--------|-----------|---------------|----------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|----------------|--------------------------------|--------------------------------------------------------------------------------|
| System | Subsystem | Sub-Subsystem | Component/Assembly                     | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                                                          |
| 13     | l In      | fori          | mation, Gage and Warning Device System | 1.58         | 0.25                           | 16%                                 |                 |                | 0.25                           |                                                                                |
| 13     | 01        | 01            | Cluster Mask Assy                      | 0.19         | 0.018                          | 10%                                 | yes             | 0.19           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 01        | 01            | Cluster Rear Housing                   | 0.20         | 0.020                          | 10%                                 | yes             | 0.20           | 0.02                           | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 01        | 01            | Display Housing                        | 0.25         | 0.025                          | 10%                                 | yes             | 0.25           | 0.03                           | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 02        | 01            | Outer plastic cover                    | 0.04         | 0.004                          | 9%                                  | yes             | 0.04           | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 02        | 01            | Outside stl cover                      | 0.07         | 0.058                          | 78%                                 | yes             | 0.07           | 0.06                           | Tech DOES apply: Change from steel to plastic and<br>use Polyone foaming agent |
| 13     | 02        | 01            | Mounting brkt                          | 0.04         | 0.030                          | 79%                                 | yes             | 0.04           | 0.03                           | Tech DOES apply: Change from steel to plastic and<br>use Polyone foaming agent |
| 13     | 02        | 01            | Outer plastic cover                    | 0.04         | 0.004                          | 9%                                  | yes             | 0.04           | 0.00                           | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 02        | 01            | Outside stl cover                      | 0.07         | 0.058                          | 78%                                 | yes             | 0.07           | 0.06                           | Tech DOES apply: Change from steel to plastic and<br>use Polyone foaming agent |
| 13     | 02        | 01            | Mounting brkt                          | 0.04         | 0.030                          | 79%                                 | yes             | 0.04           | 0.03                           | Tech DOES apply: Change from steel to plastic and<br>use Polyone foaming agent |

Table 3-115: System Scaling Analysis for Information, Gage and Warning Device System, Silverado 2500

Components with significant mass savings identified on the Silverado 2500 include the cluster mask assembly, cluster rear housing, display housing, and horn outer plastic cover (LH/RH), horn outside steel cover (LH/RH), and horn mounting bracket (LH/RH).

#### Cluster Mask Assembly

Shown in Image 3.15–2 is the Silverado 1500 and 2500 series cluster mask assembly. Component masses were 0.19 kg for both the Silverado 1500 and for the 2500. The lightweighting technology used in the cluster mask assembly was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 cluster mask assembly mass reduction can be applied to the 2500. (Refer to Table 3-115Table 3-107).



Image 3.15–2: Cluster Mask Assembly is the same for the Silverado 1500 and 2500 (Source: FEV, Inc.)

#### Cluster Rear Housing

Shown in Image 3.15–3 is the Silverado 1500 and 2500 series cluster rear housing. Component masses were 0.20 kg for both the Silverado 1500 and the 2500. The lightweighting technology used on the cluster rear housing was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 cluster rear housing mass reduction can be applied to the 2500. (Refer to Table 3-115Table 3-107).



Image 3.15–3: Cluster Rear Housing is the same for the Silverado 1500 and 2500 (Source: FEV, Inc.)

#### Display Housing

Shown in Image 3.15–4 is the Silverado 1500 and 2500 Display Housing. Component masses were 0.25 kg for both the Silverado 1500 and for the 2500. The lightweighting technology used in the Display Housing is to use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 display housing mass reduction can be applied to the 2500. (Refer to Table 3-115Table 3-107).



Image 3.15–4: Display Housing is the same for the Silverado 1500 and 2500 (Source: FEV, Inc.)

### Horn Outer plastic covers (LH/RH)

Shown in Image 3.15–5 is the Silverado 1500 and 2500 horn outer plastic cover (LH/RH). Component masses were 0.04 kg for both the 1500 and for the 2500. The lightweighting technology used in the horn outer plastic covers was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 horn outer plastic cover mass reduction can be applied to the 2500. (Refer to Table 3-115Table 3-107).



Image 3.15–5: Horn outer plastic cover (LH/RH) is the same for the Silverado 1500 and 2500 (Source: FEV, Inc.)

#### Horn Outside steel covers RH and LH

Shown in Image 3.15–6 is the Silverado 1500 and 2500 series horn outside steel cover (LH/RH). Component masses were 0.07 kg for both the 1500 for the 2500. The lightweighting technology used was to change from steel to plastic and use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 horn outside steel cover mass reduction can be applied to the 2500. (Refer to Table 3-115).



Image 3.15–6: Horn outside steel cover (LH/RH) is the same for the Silverado 1500 and 2500 (Source: FEV, Inc.)

#### Horn Mounting bracket RH and LH

Shown in Image 3.15–7 is the Silverado 1500 and 2500 series Horn Mounting bracket RH and LH. Component masses are .04 kg for both the 1500 and 2500. The lightweighting technology used on the Horn Mounting bracket RH and LH is to change from steel to plastic and use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 horn mounting bracket mass reduction can be applied to the 2500. (Refer to Table 3-115Table 3-107).



Image 3.15–7: Horn Mounting bracket (LH/RH) is the same for the Silverado 1500 and 2500 (Source: FEV, Inc.)

### 3.15.1.4 System Comparison, Silverado 2500

Table 3-116 summarizes the Silverado 1500 and 2500 lightweighting results. The majority of the components were visually the same between the Information, Gage, and Warning Device Systems.

|                |                                                 | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |
|----------------|-------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|
| System         | Description                                     | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
| 13<br>13<br>13 | Info & Gage<br>Silverado 1500<br>Silverado 2500 | 1.58<br>1.58                        | 0.25<br>0.25                                         | 0.00                                             | 0.25<br>0.25                                      | 15.65%<br>15.65%                   | \$0.65<br>\$0.65                       | \$0.00<br>\$0.00                   | \$0.65<br>\$0.65                    | \$2.62<br>\$2.62                      |  |  |

Table 3-116: Information, Gage, and Warning Device System Comparison, Silverado 1500 and 2500

## 3.15.2 Mercedes Sprinter 311 CDi

Table 3-117 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total Information, Gage and Warning Device System mass savings was 0.23 kg, at a cost decrease of \$1.26, or \$5.49 per kg.



Table 3-117: Mass-Reduction and Cost Impact for Information, Gage and Warning Device System, Mercedes Sprinter

## 3.15.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Information, Gage and Warning Device System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-118.

|        |                            |               | Silverado 1500                         |              |                                |                                     | Select Vehicle  |              |                                          |                                                                                |
|--------|----------------------------|---------------|----------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|------------------------------------------|--------------------------------------------------------------------------------|
| System | Subsystem                  | Sub-Subsystem | Component/Assembly                     | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech           | Notes                                                                          |
| 13     | In                         | fori          | nation, Gage and Warning Divice System | 1.58         | 0.25                           | 16%                                 |                 |              | 0.23                                     |                                                                                |
| 13     | 01                         | 01            | Cluster Mask Assy                      | 0.19         | 0.018                          | 10%                                 | yes             | 0.79         | 0.08                                     | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 01                         | 01            | Cluster Rear Housing                   | 0.20         | 0.020                          | 10%                                 | yes             | 0.39         | 0.04                                     | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 01                         | 01            | Display Housing                        | 0.25         | 0.025                          | 10%                                 | yes             | 0.39         | 0.04                                     | Tech DOES apply: Use Polyone foaming agent                                     |
| 13     | 02                         | 01            | Outer plastic cover                    | 0.04         | 0.004                          | 9%                                  | no              |              |                                          | Tech does NOT apply: Outer cover is steel                                      |
| 13     | 02                         | 01            | Outside stl cover                      | 0.07         | 0.058                          | 78%                                 | yes             | 0.07         | 0.06                                     | Tech DOES apply: Change from steel to plastic and use<br>Polyone foaming agent |
| 13     | 02                         | 01            | Mounting brkt                          | 0.04         | 0.030                          | 79%                                 | yes             | 0.02         | 0.02                                     | Tech DOES apply: Change from steel to plastic and use<br>Polyone foaming agent |
| 13     | 02                         | 01            | Outer plastic cover                    | 0.04         | 0.004                          | 9%                                  | no              |              |                                          | Tech does NOT apply: Part not on vehicle                                       |
| 13     | 13 02 01 Outside stl cover |               | 0.07                                   | 0.058        | 78%                            | no                                  |                 |              | Tech does NOT apply: Part not on vehicle |                                                                                |
| 13     | 13 02 01 Mounting brkt     |               |                                        | 0.04         | 0.030                          | 79%                                 | no              |              |                                          | Tech does NOT apply: Part not on vehicle                                       |

Table 3-118: System Scaling Analysis Information, Gage and Warning Device System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter included the cluster mask assembly, cluster rear housing, display housing, and horn outside steel cover, horn mounting bracket. Image 3.15–8 shows the Mercedes Sprinter 311 CDi Information, Gage, and Warning Device System components.



Image 3.15–8: Mercedes Sprinter 311 CDi Information, Gage, and Warning Device System (Source: www.A2mac1.com)

### Cluster Mask Assembly

Shown in Image 3.15–9 are the Silverado 1500 and Mercedes Sprinter 311 CDi cluster mask assembly. Component masses were 0.19 kg for the Silverado 1500 versus 0.79 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the cluster mask assembly is to use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component material, full percentage of the Silverado 1500 cluster mask assembly mass reduction can be applied to the Sprinter. (Refer to Table 3-118Table 3-107).



Image 3.15–9: Cluster Mask Assembly for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc.)

#### Cluster Rear Housing

Shown in Image 3.15–10 are the Silverado 1500 and Mercedes Sprinter 311 CDi cluster rear housings. Component masses were 0.20 kg for the Silverado 1500 versus 0.39 kg for the Mercedes Sprinter 311 CDi. Both cluster rear housings were made of plastic. The lightweighting technology used on both was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 cluster rear housing mass reduction can be applied to the Sprinter. (Refer to Table 3-118Table 3-107).



Image 3.15–10: Cluster Rear Housing for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Display Housing

Shown in Image 3.15–11 are the Silverado 1500 and Mercedes Sprinter 311 CDi display housings. Component masses were 0.25 kg for the Silverado 1500 versus 0.39 kg for the Mercedes Sprinter 311 CDi. Both display housings were made of plastic. The lightweighting technology used on both was to use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 display housing mass reduction can be applied to the Sprinter. (Refer to Table 3-118Table 3-107).



Image 3.15–11: Display Housing for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Horn Outside steel cover

Shown in Image 3.15–12 are the Silverado 1500 and Mercedes Sprinter 311 CDi Horn Outside steel covers. Component masses were 0.07 kg for both the 1500 and for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the Horn Outside steel cover is to change from steel to plastic and use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 horn outside steel cover mass reduction can be applied to the Sprinter. (Refer to Table 3-118Table 3-107).



Image 3.15–12: Horn Outside steel cover for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Horn Mounting bracket

Shown in Image 3.15–13 are the Silverado 1500 and Mercedes Sprinter 311 CDi Horn Mounting brackets. Component masses were 0.04 kg for the Silverado 1500 versus 0.02 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the horn mounting bracket was to change from steel to plastic, and use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 horn mounting bracket mass reduction can be applied to the Sprinter. (Refer to Table 3-118Table 3-107).



Image 3.15–13: Horn Mounting bracket for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### 3.15.3 Renault Master 2.3 DCi

Table 3-119 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Renault Master 2.3 DCi. Information, Gage and Warning Device System mass savings was 0.13 kg at a cost decrease of \$0.66, or \$4.91 per kg.

Table 3-119: Mass-Reduction and Cost Impact for Information, Gage and Warning Device System, Renault Master



## 3.15.3.1 System Scaling Analysis

The Renault Master 2.3 DCi Information, Gage and Warning Device System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-120.

|        |                       |               | Silverado 1500                         |              |                                |                                     |                 | Select Vehicle |                                |                                                       |
|--------|-----------------------|---------------|----------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|----------------|--------------------------------|-------------------------------------------------------|
| System | Subsystem             | Sub-Subsystem | Component/Assembly                     | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass   | Mass<br>Savings<br>New<br>Tech | Notes                                                 |
| 13     | In                    | fori          | nation, Gage and Warning Divice System | 1.58         | 0.25                           | 16%                                 |                 |                | 0.13                           |                                                       |
| 13     | 01                    | 01            | Cluster Mask Assy                      | 0.19         | 0.018                          | 10%                                 | yes             | 0.44           | 0.04                           | Tech DOES apply: Use Polyone foaming agent            |
| 13     | 01                    | 01            | Cluster Rear Housing                   | 0.20         | 0.020                          | 10%                                 | yes             | 0.34           | 0.03                           | Tech DOES apply: Use Polyone foaming agent            |
| 13     | 01                    | 01            | Display Housing                        | 0.25         | 0.025                          | 10%                                 | no              |                |                                | Tech DOES apply: No part on vehicle                   |
| 13     | 02                    | 01            | Outer plastic cover                    | 0.04         | 0.004                          | 9%                                  | no              |                |                                | Tech does NOT apply: Outer cover is steel             |
| 13     | 02                    | 01            | Outside stl.cover                      | 0.07         | 0.058                          | 78%                                 | 1/00            | 0.05           | 0.04                           | Tech DOES apply: Change from steel to plastic and use |
| 13     | 02                    | 01            |                                        | 0.07         | 0.050                          | 1078                                | yes             | 0.05           | 0.04                           | Polyone foaming agent                                 |
| 13     | 3 02 01 Mounting held |               |                                        | 0.04         | 0.030                          | 70%                                 | 1/00            | 0.02           | 0.02                           | Tech DOES apply: Change from steel to plastic and use |
| 13     | 02                    | 01            | Woulding bree                          | 0.04         | 0.050                          | 1370                                | yes             | 0.02           | 0.02                           | Polyone foaming agent                                 |
| 13     | 02                    | 01            | Outer plastic cover                    | 0.04         | 0.004                          | 9%                                  | no              |                |                                | Tech does NOT apply: Only one horn on vehicle         |
| 13     | 02                    | 01            | Outside stl cover                      | 0.07         | 0.058                          | 78%                                 | no              |                |                                | Tech does NOT apply: Only one horn on vehicle         |
| 13     | 02                    | 01            | Mounting brkt                          | 0.04         | 0.030                          | 79%                                 | no              |                |                                | Tech does NOT apply: Only one horn on vehicle         |

Table 3-120: System Scaling Analysis Information, Gage and Warning Device System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi include the Cluster Mask Assembly, Cluster Rear Housing, and Horn Outside steel cover, Horn Mounting bracket. Image 3.15–14 shows the Renault Master 2.3 DCi Information, Gage and Warning Device System.





Image 3.15–14: Renault Master 2.3 DCi Information, Gage and Warning Device System (Source: www.A2mac1.com)

#### Cluster Mask Assembly

Shown in Image 3.15–15 are the Silverado 1500 and Renault Master 2.3 DCi cluster mask assembly components. Component masses were 0.19 kg for the Silverado 1500 versus 0.44 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the cluster mask assembly was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 cluster mask assembly mass reduction can be applied to the Renault. (Refer to Table 3-120 Table 3-107).



Image 3.15–15: Cluster Mask Assembly for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Cluster Rear Housing

Shown in Image 3.15–16 are the Silverado 1500 and Renault Master 2.3 DCi cluster rear housing. Component masses were 0.20 kg for the 1500 versus 0.34 kg for the Renault Master 2.3 DCi. The cluster rear housing was made of plastic. The lightweighting technology used in the cluster rear housing was PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 cluster rear housing mass reduction can be applied to the Renault. (Refer to Table 3-120Table 3-107).



Image 3.15–16: Cluster Rear Housing for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Horn Outside steel cover

Shown in Image 3.15–17 are the Silverado 1500 and Renault Master 2.3 DCi horn outside steel cover. Component masses were 0.07 kg for the Silverado 1500 versus 0.05 kg for the Renault Master 2.3 DCi. The lightweighting technology used in the horn outside steel cover was to change from steel to plastic and use PolyOne<sup>®</sup> foaming agent in the plastic. Due to similarities in

component design and material, full percentage of the Silverado 1500 horn outside steel cover mass reduction can be applied to the Renault. (Refer to Table 3-120Table 3-107).



Image 3.15–17: Horn Outside steel cover for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Horn mounting bracket

Shown in Image 3.15–18 are the Silverado 1500 and Renault Master 2.3 DCi Horn Mounting brackets. Component masses are .04 kg for the 1500 versus .02 kg for the Renault Master 2.3 DCi respectively. The lightweighting technology used on the Horn Mounting bracket was to change from steel to plastic and use PolyOne foaming agent in the plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 horn mounting bracket mass reduction can be applied to the Renault. (Refer to Table 3-120Table 3-107).



Image 3.15–18: Horn Mounting bracket for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

# 3.16 ELECTRICAL POWER SUPPLY

### 3.16.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Electrical Power Supply System included the battery, battery tray, battery hold down, and auxiliary battery tray. The battery was a lead acid battery with a steel battery tray. The hold down was made of plastic and the auxiliary battery tray of steel.

The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Electrical Power Supply System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-121 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Electrical Power Supply System mass was reduced by 12.8 kg (60.6%). This increased cost by \$172.73, or \$13.49 per kg. Mass reduction for this system reduced vehicle curb weight by 0.54%.

|        |           |               |                                          | Net Value of Mass Reduction |                                          |                                    |                                                        |                          |                                     |  |  |
|--------|-----------|---------------|------------------------------------------|-----------------------------|------------------------------------------|------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|
| System | Subsystem | Sub-Subsystem | Description                              | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |
| 14     | 01        | 00            | Service Battery Subsystem                | 21.12                       | 12.81                                    | -172.73                            | -13.49                                                 | 60.64%                   | 0.54%                               |  |  |
| 14     | 01        | 01            | Battery Heat Shield & Battery Management | 21.12                       | 12.81                                    | -172.73                            | -13.49                                                 | 60.64%                   | 0.54%                               |  |  |
|        |           |               |                                          |                             |                                          |                                    |                                                        |                          |                                     |  |  |
|        |           |               |                                          | 21.12                       | 12.81                                    | -172.73                            | -13.49                                                 | 60.64%                   | 0.54%                               |  |  |
|        |           |               |                                          |                             | (Decrease)                               | (Increase)                         | (Increase)                                             |                          |                                     |  |  |

 <sup>(1) &</sup>quot;+" = mass decrease, "-" = mass increase
 (2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: battery, battery tray, and auxiliary battery tray.

<u>Battery:</u> The battery mass was reduced by changing the lead acid battery to a lithium-ion battery. Mass was reduced by 66.7%, from 17.7 kg to 5.9 kg.

<u>Battery tray</u>: The battery tray mass was reduced by changing the tray from steel to plastic. Mass was reduced by 34.2%, from 1.9 kg to 1.2 kg.

<u>Auxiliary battery tray</u>: The battery tray mass was reduced by changing the tray from steel to plastic. Mass was reduced by 34.2%, from 0.98 kg to 0.65 kg.

## 3.16.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Electrical Power Supply System was very similar to the 1500 system.



Image 3.16–1: Chevrolet Silverado electrical power supply system (Source: www.A2mac1 database)

## 3.16.1.2 2500 System Scaling Summary

The following table summarizes mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Silverado 2500. Total Electrical Power Supply System mass savings was 12.67 kg at a cost increase of \$170.81, or \$13.48 per kg.



Table 3-122: Mass-Reduction and Cost Impact for Electrical Power Supply System, Silverado 2500

## 3.16.1.3 System Scaling Analysis

The Silverado 2500 Electrical Power Supply components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-123.

|        |                            | Silverado 150              | 0            |                                |                                     | Select Vehicle  |              |                                |                                                |  |
|--------|----------------------------|----------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|------------------------------------------------|--|
| System | Sub-Subsystem<br>Subsystem | Component/Assembly         | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                          |  |
| 14     | Elect                      | trical Power Supply System | 21.12        | 12.81                          | 61%                                 |                 |              | 12.67                          |                                                |  |
| 14     | 01 01                      | Battery                    | 17.71        | 11.81                          | 67%                                 | yes             | 17.51        | 11.67                          | Tech DOES Apply: Change to Lithium-Ion Battery |  |
| 14     | 4 01 01 Battery Tray       |                            | 1.95         | 0.67                           | 34%                                 | yes             | 1.94         | 0.66                           | Tech DOES Apply: Change from steel to plastic  |  |
| 14     | 01 01                      | Aux Battery Tray           | 0.98         | 0.34                           | 34%                                 | yes             | 0.98         | 0.34                           | Tech DOES Apply: Change from steel to plastic  |  |

Table 3-123: Electrical Power Supply System Scaling Analysis for the Silverado 1500 and 2500

Components with significant mass savings identified on the Silverado 2500 included the battery, battery tray, and auxiliary battery tray.

Battery

Shown in Image 3.16–2 are the Silverado 1500 and 2500 batteries. Component masses were 17.7 kg for the 1500 versus 17.5 kg for the 2500. The lightweighting technology used on the batteries was to change from a lead acid battery to a lithium-ion battery. Due to similarities in component design and material, full percentage of the Silverado 1500 battery mass reduction can be applied to the 2500. (Refer to Table 3-123Table 3-107).



Image 3.16–2: Battery for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Battery Tray

Shown in Image 3.16–3 are the Silverado 1500 and 2500 series battery trays. Component masses were 1.95 kg for the 1500 versus 1.94 kg for the 2500. The lightweighting technology used on the battery tray was to change from a steel tray to plastic. Image 3.16–4 shows the Ford F150 plastic battery tray for example. Due to similarities in component design and material, full percentage of the Silverado 1500 battery tray mass reduction can be applied to the 2500. (Refer to Table 3-123Table 3-107).



Image 3.16–3: Battery Tray for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)



Image 3.16–4: 2012 Ford F150 Battery Tray Assembly (Source: www.A2mac1 database)

#### Auxiliary battery tray

Shown in Image 3.16–5 are the Silverado 1500 and 2500 series auxiliary battery trays. Component masses were 0.98 kg for both the 1500 and 2500. The lightweighting technology used on the auxiliary battery tray was to change from a steel tray to plastic. Due to similarities in component design and material, full percentage of the Silverado 1500 auxiliary battery mass reduction can be applied to the 2500. (Refer to Table 3-123Table 3-107).



Image 3.16–5: Auxiliary battery tray for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### 3.16.1.4 System Comparison, Silverado 2500

Table 3-124 summarizes the Silverado 1500 and 2500 lightweighting results. A majority of the components were visually the same between the electrical power supplies.

|        |                         | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                                |                                       |  |  |
|--------|-------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------|--|--|
| System | Description             | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub> | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
| 14     | Electrical Power Supply |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                                |                                       |  |  |
| 14     | Silverado 1500          | 21.12                               | 12.81                                                | 0.00                                             | 12.81                                             | 60.64%                             | -\$172.73                              | \$0.00                             | -\$172.73                                      | -\$13.49                              |  |  |
| 14     | Silverado 2500          | 20.95                               | 12.67                                                | 0.00                                             | 12.67                                             | 60.49%                             | -\$170.81                              | \$0.00                             | -\$170.81                                      | -\$13.48                              |  |  |
|        | 1                       |                                     |                                                      |                                                  |                                                   |                                    |                                        |                                    |                                                |                                       |  |  |

Table 3-124: Electrical Power Supply System Comparison, Silverado 1500 and 2500

### 3.16.2 Mercedes Sprinter 311 CDi

The following table summarizes the mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total Electrical Power Supply System mass savings was 12.96 kg at a cost increase of \$184.33, or \$14.22 per kg.

Table 3-125: Mass-Reduction and Cost Impact for Electrical Power Supply System, Mercedes sprinter



## 3.16.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Electrical Power Supply components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-126.

| Silverado 1500                                    |                                    |               |                               |              |                                |                                     |                 | Select Vehicle                              |                                |                                                                                |  |  |  |
|---------------------------------------------------|------------------------------------|---------------|-------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|---------------------------------------------|--------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Cystem.                                           | Subsystem                          | Sub-Subsystem | Component/Assembly            | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass                                | Mass<br>Savings<br>New<br>Tech | Notes                                                                          |  |  |  |
| 14 Electrical Power Supply System 21.12 12.81 61% |                                    |               |                               |              |                                | <b>61%</b>                          |                 |                                             | 12.96                          |                                                                                |  |  |  |
| 1                                                 | 14 01 01 Battery                   |               |                               |              | 11.81                          | 67%                                 | yes             | 19.44                                       | 12.96                          | Tech DOES Apply: Change to Lithium-Ion Battery                                 |  |  |  |
| 1                                                 | 4 01                               | 01            | 01 Battery Tray 1.95 0.67 34% |              |                                |                                     | no              | Tech does NOT apply: Battery tray already p |                                | Tech does NOT apply: Battery tray already plastic                              |  |  |  |
| 1                                                 | 4 01 01 Aux Battery Tray 0.98 0.34 |               |                               |              |                                | 34%                                 | no              |                                             |                                | Tech does NOT apply: With no aux battery tray, no need to<br>change to plastic |  |  |  |

Table 3-126: System Scaling Analysis Electrical Power Supply System, Mercedes Sprinter

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter included the battery. Image 3.16–6 shows the Mercedes Sprinter 311 CDi Electrical Power Supply components.



Image 3.16–6: Mercedes Sprinter 311 CDi Battery (Source: www.A2mac1.com)

Battery

Shown in Image 3.16–7 are the Silverado 1500 and Mercedes Sprinter 311 CDi batteries. Component masses were 17.7 kg for the Silverado 1500 versus 19.4 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the batteries was to change from a lead acid battery to a lithium-ion battery. Due to similarities in component design and material, full percentage of the Silverado 1500 battery mass reduction can be applied to the Sprinter. (Refer to Table 3-126Table 3-107).



Image 3.16–7: Battery for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

## 3.16.3 Renault Master 2.3 DCi

Table 3-127 summarizes mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Renault Master 2.3 DCi. Total electrical power supply system mass savings was 18.13 kg at a cost increase of \$257.84, or \$14.22 per kg.



Table 3-127: Mass-Reduction and Cost Impact for Electrical Power Supply System, Renault Master

### 3.16.3.1 System Scaling Analysis

The Renault Master 2.3 DCi electrical power supply components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-127.



| _                                                 |           |               | ······             |              |                                |                                     |                 |                                                   |                                                                                |                                                |  |  |
|---------------------------------------------------|-----------|---------------|--------------------|--------------|--------------------------------|-------------------------------------|-----------------|---------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|--|--|
|                                                   |           |               | Silverado 150      | 0            |                                |                                     | Select Vehicle  |                                                   |                                                                                |                                                |  |  |
| System                                            | Subsystem | Sub-Subsystem | Component/Assembly | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base Savings Notes Notes                          |                                                                                | Notes                                          |  |  |
| 14 Electrical Power Supply System 21.12 12.81 61% |           |               |                    |              |                                | 61%                                 |                 |                                                   | 18.13                                                                          |                                                |  |  |
| 14 01 01 Battery                                  |           |               | Battery            | 17.71        | 11.81                          | 67%                                 | yes             | 27.19                                             | 18.13                                                                          | Tech DOES Apply: Change to Lithium-Ion Battery |  |  |
| 14                                                | 01        | 01            | Battery Tray       | ry Tray 1.95 |                                |                                     | no              | Tech does NOT apply: battery tray already plastic |                                                                                |                                                |  |  |
| 14 01 01 Aux Battery Tray 0.98 0                  |           |               |                    | 0.34         | 34%                            | no                                  |                 |                                                   | Tech does NOT apply: With no aux battery tray, no need to<br>change to plastic |                                                |  |  |

Table 3-128: System Scaling Analysis for Electrical Power Supply System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi included the battery and battery tray. Image 3.16–8 shows the Renault Master 2.3 DCi electrical power supply components.



Image 3.16–8: Renault Master 2.3 DCi Battery (Source: www.A2mac1.com)

### Battery

Shown in Image 3.16–9 are the Silverado 1500 and Renault Master 2.3 DCi batteries, respectively. Component masses were 17.7 kg for the Silverado 1500 versus 27.2 kg for the Renault Master 2.3 DCi. The lightweighting technology used in the batteries was to change from a lead acid battery to a lithium-ion battery. Due to similarities in component design and material, full percentage of the Silverado 1500 battery mass reduction can be applied to the Renault. (Refer to

Table 3-128Table 3-107).



Image 3.16–9: Battery for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

# 3.17 LIGHTING

## 3.17.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Lighting system included all interior and exterior lighting. Only the front headlamps were used as a mass savings in the Silverado 1500.

The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Lighting System with the intent to meet the function and performance requirements of the baseline vehicle.

Table 3-129 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Lighting System mass was reduced by 0.39 kg (4.04%). This increased cost by \$2.00, or \$5.18 per kg. Mass reduction for this system reduced vehicle curb weight by .02%.

|        |           |               |                                                | Net Value of Mass Reduction |                                          |                                     |                                                        |                          |                                     |  |  |  |
|--------|-----------|---------------|------------------------------------------------|-----------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|--|--|--|
| System | Subsystem | Sub-Subsystem | Description                                    | Base<br>Mass<br>"kg"        | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |  |  |  |
| 17     | 01        | 00            | Front Lighting Subsystem                       | 6.70                        | 0.39                                     | -2.00                               | -5.18                                                  | 5.76%                    | 0.02%                               |  |  |  |
| 17     | 01        | 01            | Headlamp Cluster                               | 6.18                        | 0.39                                     | -2.00                               | -5.18                                                  | 6.25%                    | 0.02%                               |  |  |  |
| 17     | 01        | 04            | Supplemental Front Lamps                       | 0.52                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 02        | 00            | Interior Lighting Subsystem                    | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 02        | 02            | Interior Lighting                              | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 02        | 07            | Lighting - Instrument Panel (IP) & Consoles    | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 02        | 08            | Lighting - Ambient Inst. Panel (IP) & Consoles | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 03        | 00            | Rear Lighting Subsystem                        | 2.74                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 03        | 01            | Rear Combination Lamp                          | 2.39                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 03        | 04            | Supplemental Rear Lamps                        | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 03        | 08            | License Plate Lamp                             | 0.03                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 03        | 09            | CHMSL (Center High Mount Stop Light)           | 0.31                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 04        | 00            | Lighting - Special Mechanisms Subsystem        | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 04        | 07            | Rain Sensor/Daylight Sensor                    | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 04        | 08            | Headlamp Control Module                        | 0.00                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 05        | 00            | Lighting Switches Subsystem                    | 0.13                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
| 17     | 05        | 01            | Master Lighting Switchpack                     | 0.13                        | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |  |  |  |
|        |           |               |                                                |                             |                                          |                                     |                                                        |                          |                                     |  |  |  |
|        |           |               |                                                | 9.56                        | 0.39                                     | -2.00                               | -5.18                                                  | 4.04%                    | 0.02%                               |  |  |  |
|        |           |               |                                                |                             | (Decrease)                               | (Increase)                          | (Increase)                                             |                          |                                     |  |  |  |

Table 3-129: Lighting System Mass Reduction Summary, Silverado 1500

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: headlamp housings, headlamp inner reflectors.

<u>Headlamp housings</u>: The headlamp housings mass was reduced by using the MuCell<sup>®</sup> microcellular gas injection molding technology. Mass was reduced by 2%, from 0.73 kg to 0.71 kg per headlamp.

<u>Headlamp housing inner reflector</u>: The headlamp housings inner reflectors mass was reduced by replacing the reflector coating from UP-(MD60+GF20) to SABIC ULTEM<sup>TM</sup>. Mass was reduced by 40%, from 0.44 kg to 0.26 kg per headlamp reflector.

### 3.17.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Lighting system was very similar to the 1500 system.



Image 3.17–1: Headlamps for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

### 3.17.1.2 2500 System Scaling Summary

Table 3-130 summarizes mass and cost impact of Silverado 1500 lightweighting technologies applied to the Silverado 2500. Total lighting system mass savings is .39 kg at a cost increase of \$2.02, or \$5.23 per kg.



Table 3-130: Mass-Reduction and Cost Impact for Lighting System, Silverado 2500

# 3.17.1.3 System Scaling Analysis

The Silverado 2500 Lighting components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-131.

|        | Silverado 1500 |               |                                      |              |                                |                                     |                 |              | Select Vehicle                 |                                                                                      |  |  |  |  |
|--------|----------------|---------------|--------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| System | Subsystem      | Sub-Subsystem | Component/Assembly                   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                |  |  |  |  |
| 17     | Li             | ght           | ting System                          | 9.56         | 0.39                           | 4%                                  |                 |              | 0.39                           |                                                                                      |  |  |  |  |
| 17     | 01             | 01            | LH Head lamp housing                 | 0.73         | 0.02                           | 2%                                  | yes             | 0.73         | 0.02                           | Tech DOES Apply: MuCell® applied to Housings                                         |  |  |  |  |
| 17     | 01             | 01            | LH Head lamp housing inner reflector | 0.45         | 0.18                           | 40%                                 | yes             | 0.45         | 0.18                           | Tech DOES Apply: Change Inner Reflectors Replace UP-<br>(MD60+GF20) with SABIC ULTEM |  |  |  |  |
| 17     | 01             | 01            | RH Head lamp housing                 | 0.73         | 0.02                           | 2%                                  | yes             | 0.73         | 0.02                           | Fech DOES Apply: MuCell® applied to Housings                                         |  |  |  |  |
| 17     | 01             | 01            | RH Head lamp housing inner reflector | 0.45         | 0.18                           | 40%                                 | yes             | 0.45         | 0.18                           | Fech DOES Apply: Change Inner Reflectors Replace UP-<br>(MD60+GF20) with SABIC ULTEM |  |  |  |  |

Table 3-131: System Scaling Analysis Lighting System, Silverado 2500

Components with significant mass savings identified on the Silverado 2500 included the headlamp housings and headlamp inner reflectors.

#### Headlamp Housing

Shown in Image 3.17–2 are the Silverado 1500 and 2500 series headlamps. Component masses were 0.73 kg for both the 1500 and 2500. The lightweighting technology used on the headlamp housings was MuCell<sup>®</sup> microcellular gas injection molding technology. Due to similarities in component design and material, full percentage of the Silverado 1500 headlamp housing mass reduction can be applied to the 2500. (Refer to Table 3-131Table 3-107).



Image 3.17–2: Headlamp Housing for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

#### Headlamp Inner Reflector

Shown in Image 3.17–3 are the Silverado 1500 and 2500 series headlamp inner reflectors. Component masses were 0.45 kg for both the 1500 and for the 2500. The lightweighting technology used on the headlamp inner reflectors was to change from UP-(MD60+GF20) to SABIC ULTEM<sup>TM</sup>. Due to similarities in component design and material, full percentage of the Silverado 1500 headlamp inner reflector mass reduction can be applied to the 2500. (Refer to Table 3-131Table 3-107).



Image 3.17–3: Headlamp inner reflector for the Silverado 1500 (Left) and Silverado 2500 (Right) (Source: FEV, Inc.)

# 3.17.1.4 System Comparison, Silverado 2500

Table 3-132 summarizes the Silverado 1500 and 2500 lightweighting results. A majority of the components were visually the same between the two lighting systems.

|        |                 | Net Value of Mass Reduction         |                                                      |                                                  |                                                   |                                    |                                                   |                                    |                                     |                                       |  |  |  |
|--------|-----------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|---------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|--|
| System | Description     | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" <sub>(2)</sub> | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |  |
| 17     | Lighting System | 0.56                                | 0.20                                                 | 0.00                                             | 0.20                                              | 4 04%                              | ¢2 02                                             | s0 00                              | ¢2.02                               | ¢£ 02                                 |  |  |  |
| 17     | Silverado 2500  | 7.86                                | 0.39                                                 | 0.00                                             | 0.39                                              | 4.91%                              | -\$2.02                                           | \$0.00                             | -\$2.02                             | -\$5.23                               |  |  |  |
|        |                 |                                     |                                                      |                                                  |                                                   |                                    |                                                   |                                    |                                     |                                       |  |  |  |

#### Table 3-132: Lighting System Comparison, Silverado 1500 and 2500

# 3.17.2 Mercedes Sprinter 311 CDi

The following table summarizes mass and cost impact of the Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. The total Lighting System mass savings was 0.39 kg at a cost increase of \$2.02, or \$5.23 per kg.

Table 3-133: Mass-Reduction and Cost Impact for Lighting System, Mercedes Sprinter


# 3.17.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Lighting components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-134.

| _                                    |    |               | 14616 5                              | 0 11 0 90    | rent seat                      | sis Eighning System, increaces Sprinter |                 |              |                                |                                                                                      |  |
|--------------------------------------|----|---------------|--------------------------------------|--------------|--------------------------------|-----------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------------------------------------------|--|
|                                      |    |               | Silverado 150                        | 0            |                                |                                         | Select Vehicle  |              |                                |                                                                                      |  |
| Sub-Subsystem<br>Subsystem<br>System |    | Sub-Subsystem | Component/Assembly                   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech     | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                |  |
| 17                                   | Li | ght           | ting System                          | 9.56         | 0.39                           | 4%                                      |                 |              | 0.39                           |                                                                                      |  |
| 17                                   | 01 | 01            | LH Head lamp housing                 | 0.73         | 0.02                           | 2%                                      | yes             | 0.73         | 0.02                           | Tech DOES Apply: MuCell® applied to Housings                                         |  |
| 17                                   | 01 | 01            | LH Head lamp housing inner reflector | 0.45         | 0.18                           | 40%                                     | yes             | 0.44         | 0.18                           | Tech DOES Apply: Change Inner Reflectors Replace UP-<br>(MD60+GF20) with SABIC ULTEM |  |
| 17                                   | 01 | 01            | RH Head lamp housing                 | 0.73         | 0.02                           | 2%                                      | yes             | 0.73         | 0.02                           | Tech DOES Apply: MuCell® applied to Housings                                         |  |
| 17                                   | 01 | 01            | RH Head lamp housing inner reflector | 0.45         | 0.18                           | 40%                                     | yes             | 0.44         | 0.18                           | Tech DOES Apply: Change Inner Reflectors Replace UP-<br>(MD60+GF20) with SABIC ULTEM |  |

Table 3-134: System Scaling Analysis Lighting System, Mercedes Sprinter

Components with significant mass savings identified on the Mercedes Sprinter included the headlamp housing and the headlamp inner reflector. Image 3.17–4 shows the Mercedes Sprinter 311 CDi lighting components.



Image 3.17–4: Mercedes Sprinter 311 CDi Headlamp (Source: www.A2mac1.com)

### Headlamp Housing

Shown in Image 3.17–5 are the Silverado 1500 and Mercedes Sprinter 311 CDi headlamps. Component masses were .73 kg for both the 1500 and the Mercedes Sprinter 311 CDi. The lightweighting technology used on the headlamp housings is to use MuCell<sup>®</sup> microcellular gas injection molding technology. Due to similarities in component design and material, full percentage of the Silverado 1500 headlamp housing mass reduction can be applied to the Sprinter. (Refer to Table 3-134Table 3-107).



Image 3.17–5: Headlamp housing for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Headlamp Inner Reflector

Shown in Image 3.17–6 are the Silverado 1500 and Mercedes Sprinter 311 CDi headlamp inner reflectors. Component masses were 0.45 kg for both the Silverado 1500 and the Mercedes Sprinter 311 CDi. The lightweighting technology used on the headlamp inner reflectors was to change from UP-(MD60+GF20) to SABIC ULTEM<sup>™</sup>. Due to similarities in component design and material, full percentage of the Silverado 1500 headlamp inner reflector mass reduction can be applied to the Sprinter. (Refer to Table 3-134Table 3-107).



Image 3.17–6: Headlamp inner reflector for the Silverado 1500 (Left) and Mercedes Sprinter 311 CDi (Right) (Source: FEV, Inc. www.and A2mac1.com)

### 3.17.3 Renault Master 2.3 DCi

Table 3-135 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies applied to the Renault Master 2.3 DCi. Total lighting system mass savings is .39 kg at a cost increase of \$2.02, or \$5.23 per kg.



Table 3-135: Mass-Reduction and Cost Impact for Lighting System, Renault Master

# 3.17.3.1 System Scaling Analysis

The Renault Master 2.3 DCi lighting components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-136.

|                    |           |               | Silverado 150                        | 0            |                                |                                     | Select Vehicle  |              |                                |                                                                                      |  |
|--------------------|-----------|---------------|--------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------------------------------------------|--|
| System             | Subsystem | Sub-Subsystem | Component/Assembly                   | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                                |  |
| 17 Lighting System |           |               |                                      | 9.56         | 0.39                           | 4%                                  |                 |              | 0.39                           |                                                                                      |  |
| 17                 | 01        | 01            | LH Head lamp housing                 | 0.73         | 0.02                           | 2%                                  | yes             | 0.73         | 0.02                           | Tech DOES Apply: MuCell® applied to Housings                                         |  |
| 17                 | 01        | 01            | LH Head lamp housing inner reflector | 0.45         | 0.18                           | 40%                                 | yes             | 0.44         | 0.18                           | Tech DOES Apply: Change Inner Reflectors Replace UP-<br>(MD60+GF20) with SABIC ULTEM |  |
| 17                 | 01        | 01            | RH Head lamp housing                 | 0.73         | 0.02                           | 2%                                  | yes             | 0.73         | 0.02                           | Tech DOES Apply: MuCell® applied to Housings                                         |  |
| 17                 | 01        | 01            | RH Head lamp housing inner reflector | 0.45         | 0.18                           | 40%                                 | yes             | 0.44         | 0.18                           | Tech DOES Apply: Change Inner Reflectors Replace UP-<br>(MD60+GF20) with SABIC ULTEM |  |

Table 3-136: System Scaling Analysis Lighting System, Renault Master

Components with significant mass savings identified on the Renault Master 2.3 DCi included the headlamp housing and headlamp inner reflector. Image 3.17–7 shows the Renault Master 2.3 DCi lighting components.



Image 3.17–7: Renault Master 2.3 DCi Headlamp (Source: www.A2mac1.com)

### Headlamp Housing

Shown in Image 3.17–8 are the Silverado 1500 and Renault Master 2.3 DCi headlamps. Component masses were 0.73 kg for both the Silverado 1500 and the Renault Master 2.3 DCi. The lightweighting technology used on the headlamp housings was MuCell<sup>®</sup> microcellular gas injection molding technology. Due to similarities in component design and material, full percentage of the Silverado 1500 headlamp housing mass reduction can be applied to the Renault. (Refer to Table 3-136Table 3-107).



Image 3.17-8: Headlamp housing for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right)

#### Headlamp Inner Reflector

Shown in Image 3.17–9 are the Silverado 1500 and Renault Master 2.3 DCi headlamp inner reflectors. Component masses were 0.45 kg for both the Silverado 1500 and the Renault Master 2.3 DCi. The lightweighting technology used on the headlamp inner reflectors was to change from UP-(MD60+GF20) to SABIC ULTEM<sup>TM</sup>. Due to similarities in component design and material, full percentage of the Silverado 1500 headlamp inner reflector mass reduction can be applied to the Renault. (Refer to Table 3-136Table 3-107).



Image 3.17–9: Headlamp inner reflector for the Silverado 1500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### 3.18 ELECTRICAL DISTRIBUTION AND ELECTRICAL CONTROLS SYSTEM

#### 3.18.1 Silverado 1500 Summary

The Chevrolet Silverado 1500 Electrical Distribution and Electrical Controls System included overall vehicle wiring, which includes standard copper wire with Polyvinyl Chloride (PVC) sheathing and miscellaneous brackets.

The Chevrolet Silverado 1500 analysis identified mass reduction alternatives and cost implications for the Electrical Distribution and Electrical Controls System with the intent to meet the function and performance requirements of the baseline vehicle. Table 3-137 provides a summary of mass reduction and cost impact for select sub-subsystems evaluated. The total mass savings found on the Electrical Distribution and Electrical Controls System mass was reduced by 8.47 kg (25.21%). This decreased cost by \$61.44, or \$7.26 per kg. Mass reduction for this system reduced vehicle curb weight by 0.35%.

Table 3-137: Electrical Distribution and Electrical Controls System Mass Reduction Summary, Silverado 1500

|        |           |               |                                                    |                      | Net Val                                  | ue of M                             | ass Red                                                | duction                  |                                     |
|--------|-----------|---------------|----------------------------------------------------|----------------------|------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------------|-------------------------------------|
| System | Subsystem | Sub-Subsystem | Description                                        | Base<br>Mass<br>"kg" | Mass<br>Reduction<br>"kg" <sub>(1)</sub> | Cost<br>Impact<br>NIDMC<br>"\$" (2) | Average<br>Cost/<br>Kilogram<br>"\$/kg" <sub>(2)</sub> | Mass<br>Reduction<br>"%" | Vehicle<br>Mass<br>Reduction<br>"%" |
| 18     | 01        | 00            | Electrical Wiring and Circuit Protection Subsystem | 33.59                | 8.47                                     | 61.44                               | 7.26                                                   | 25.21%                   | 0.35%                               |
| 18     | 01        | 01            | Front End and Engine Compartment Wiring            | 5.79                 | 1.50                                     | 15.34                               | 10.25                                                  | 25.86%                   | 0.06%                               |
| 18     | 01        | 02            | Instrument Panel Harness                           | 6.88                 | 1.70                                     | 15.91                               | 0.00                                                   | 24.76%                   | 0.07%                               |
| 18     | 01        | 03            | Body and Rear End Wiring                           | 3.52                 | 0.95                                     | 9.37                                | 0.00                                                   | 27.10%                   | 0.04%                               |
| 18     | 01        | 04            | Trailer Tow Wiring                                 | 5.23                 | 1.42                                     | 13.91                               | 0.00                                                   | 0.00%                    | 0.06%                               |
| 18     | 01        | 05            | Battery Cables                                     | 1.78                 | 0.50                                     | 6.94                                | 0.00                                                   | 0.00%                    | 0.02%                               |
| 18     | 01        | 06            | Load Compartment Fuse Box / Passive                | 2.95                 | 0.27                                     | -0.80                               | 0.00                                                   | 0.00%                    | 0.01%                               |
| 18     | 01        | 07            | Interior & Console wiring                          | 1.40                 | 0.67                                     | 0.77                                | 0.00                                                   | 47.76%                   | 0.03%                               |
| 18     | 01        | 08            | Frt & Rear door harness                            | 1.81                 | 1.45                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.06%                               |
| 18     | 01        | 99            | Misc.                                              | 4.24                 | 0.00                                     | 0.00                                | 0.00                                                   | 0.00%                    | 0.00%                               |
|        |           |               |                                                    |                      |                                          |                                     |                                                        |                          |                                     |
|        |           |               |                                                    | 33.59                | 8.47                                     | 61.44                               | 7.26                                                   | 25.21%                   | 0.35%                               |
|        |           |               |                                                    |                      | (Decrease)                               | (Decrease)                          | (Decrease)                                             |                          |                                     |

(1) "+" = mass decrease, "-" = mass increase
(2) "+" = cost decrease, "-" = cost increase

Columns in the "Net Value of Mass Reduction" chart above may contain combined masses of assembly hardware such as nuts, bolt, washer, etc. that were not mass reduced at the component level, and may not match base mass and mass reduction totals in text below component reduction weights.

Mass savings opportunities were identified for the following components: front bumper harness (wiring on front module); engine wire harness; power train mass cable (ground cable); alternator power cable; IP harness 1; IP harness 1 connector box bracket; IP harness 2; body and rear end wiring (complete); differential wiring; under frame/tow harness (wiring on understructure); battery cable – primary positive (starter wiring harness); battery cable – primary negative; battery cable – positive; fuse box (support); fuse box – cover; center console wiring, headliner wiring, front door harness, rear door harness.

Front Bumper Harness (Wiring on front module): The front bumper harness (wiring on front module) mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to Polyphenylene Oxide (PPO) sheathing. Mass was reduced by 42%, from 0.97 kg to 0.56 kg.

<u>Engine Wire Harness</u>: The engine wire harness mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 42%, from 2.79 kg to 1.6 kg.

<u>Power train Mass Cable (ground cable)</u>: The power train mass cable (ground cable) mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 48%, from 0.07 kg to 0.04 kg.

<u>Alternator Power Cable:</u> The alternator power cable mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 45% from 0.24 kg to 0.13 kg.

<u>IP Harness 1:</u> The IP harness 1 mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 42%, from 3.75 kg to 2.16 kg.

<u>IP Harness 1 Connector Box Bracket:</u> The IP harness 1 connector box bracket mass was reduced by changing from steel to plastic and using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 42%, from 0.38 kg to 0.27 kg.

<u>IP Harness 2:</u> The IP harness 2 mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 42%, from 0.48 kg to 0.27 kg.

<u>Body and Rear End Wiring (Complete)</u>: The body and rear end wiring (complete) mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 42%, from 2.44 kg to 1.40 kg.

<u>Differential Wiring</u>: The differential wiring mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 44%, from 0.08 kg to 0.04 kg.

<u>Under Frame/Tow harness (Wiring on Understructure)</u>: The under frame/tow harness (wiring on understructure) mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 42%, from 3.74 kg to 2.15 kg.

<u>Battery Cable – Primary Positive (Starter Wiring Harness)</u>: The battery cable – primary positive (starter wiring harness) mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 46%, from 0.44 kg to 0.23 kg.

<u>Battery Cable – Primary Negative:</u> The battery cable – primary negative mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 46%, from 0.41 kg to 0.22 kg.

<u>Battery Cable – Positive:</u> The battery cable – positive mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 45%, from 0.39 kg to 0.21 kg.

<u>Fuse Box (Support)</u>: The fuse box (support) mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 19%, from 1.41 kg to 1.15 kg.

<u>Fuse Box Cover:</u> The fuse box cover mass was reduced by using PolyOne<sup>®</sup> foaming agent. Mass was reduced by 17%, from 0.45 kg to 0.37 kg.

<u>Center Console Wiring</u>: The center console wiring mass was reduced by changing the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Mass was reduced by 42%, from 0.20 kg to 0.12 kg.

<u>Headliner Wiring:</u> The headliner wiring mass was reduced by using flat wire. Mass was reduced by 80%, from 0.35 kg to 0.07 kg.

<u>Front Door Harness:</u> The front door harness mass was reduced by using flat wire. Mass was reduced by 80%, from 0.68 kg to 0.14 kg.

<u>Rear Door Harness:</u> The rear door harness mass was reduced by using flat wire. Mass was reduced by 80%, from 0.43 kg to 0.08 kg.

# 3.18.1.1 Silverado 2500 Analysis

The Chevrolet Silverado 2500 Electrical Distribution and Electrical Controls System is very similar to the 1500.



*Image 3.18–1: Chevrolet Silverado engine wiring* (Source: http://parts.nalleygmc.com/showAssembly.aspx?ukey\_assembly=382010)

# 3.18.1.2 2500 System Scaling Summary

Table 3-138 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Silverado 2500. Total Electrical Distribution and Electrical Controls System mass savings was 8.47 kg at a cost decrease of \$61.54, or \$7.26 per kg.



Table 3-138: Mass-Reduction and Cost Impact for Electrical Distribution and Electrical Controls System, Silverado 2500

# 3.18.1.3 System Scaling Analysis

The Silverado 2500 Electrical Distribution and Electrical Controls System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-139.

|        |                            | Silverado 1500                                             |              |                                | Select Vehicle                      |                 |              |                                |                                                                                |  |
|--------|----------------------------|------------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|--------------------------------------------------------------------------------|--|
| System | Sub-Subsystem<br>Subsystem | Component/Assembly                                         | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                                                          |  |
| 18     | Elec                       | trical Distribution & Electrical Controls System           | 33.60        | 8.47                           | 25%                                 |                 |              | 8.47                           |                                                                                |  |
| 18     | 01 0                       | Front Bumper Harness ((Wiring on frt module))              | 0.87         | 0.37                           | 42%                                 | yes             | 0.97         | 0.41                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 0                       | I Engine Wire Harness                                      | 2.41         | 1.02                           | 42%                                 | yes             | 2.79         | 1.18                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 0                       | Power train mass cable (cyl ground cable)                  | 0.07         | 0.03                           | 48%                                 | yes             | 0.07         | 0.03                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 0                       | Alternator Power Cable                                     | 0.21         | 0.10                           | 45%                                 | yes             | 0.24         | 0.11                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 02                      | P Harness 1                                                | 3.35         | 1.42                           | 42%                                 | yes             | 3.75         | 1.60                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 02                      | P Harness 1 connector box brkt                             | 0.34         | 0.10                           | 29%                                 | yes             | 0.38         | 0.11                           | Tech DOES apply: Change from steel to plastic and use<br>PolyOne foaming agent |  |
| 18     | 01 02                      | P Harness 2                                                | 0.43         | 0.18                           | 42%                                 | yes             | 0.48         | 0.20                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 03                      | Body and Rear End Wiring ((Complete))                      | 2.17         | 0.92                           | 42%                                 | yes             | 2.44         | 1.04                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 03                      | B Differential wiring                                      | 0.07         | 0.03                           | 44%                                 | yes             | 0.08         | 0.03                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 04                      | Under frame/tow harness ((Wiring on understructure))       | 3.33         | 1.42                           | 42%                                 | yes             | 3.74         | 1.59                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 0                       | Battery Cable - Primary Positive((Starter wiring harness)) | 0.39         | 0.18                           | 46%                                 | yes             | 0.44         | 0.20                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 0                       | Battery Cable - Primary Negative                           | 0.36         | 0.17                           | 46%                                 | yes             | 0.41         | 0.19                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 0                       | Battery Cable - Positive                                   | 0.35         | 0.16                           | 45%                                 | yes             | 0.39         | 0.18                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 00                      | Fuse Box ((Support))                                       | 1.04         | 0.20                           | 19%                                 | yes             | 1.41         | 0.26                           | Tech DOES apply: Use PolyOne foaming agent                                     |  |
| 18     | 01 00                      | Fuse Box - Cover                                           | 0.45         | 0.08                           | 17%                                 | yes             | 0.45         | 0.08                           | Tech DOES apply: Use PolyOne foaming agent                                     |  |
| 18     | 01 07                      | Center console wiring                                      | 0.18         | 0.08                           | 42%                                 | yes             | 0.20         | 0.09                           | Tech DOES apply: Use aluminum wire & PPO sheathing                             |  |
| 18     | 01 07                      | / Headliner wiring                                         | 0.47         | 0.38                           | 80%                                 | yes             | 0.35         | 0.28                           | Tech DOES apply: Use flat wire                                                 |  |
| 18     | 01 08                      | Frt door harness                                           | 0.83         | 0.66                           | 80%                                 | yes             | 0.68         | 0.54                           | Tech DOES apply: Use flat wire                                                 |  |
| 18     | 01 08                      | Rear door harness                                          | 0.33         | 0.27                           | 80%                                 | yes             | 0.43         | 0.34                           | Tech DOES apply: Use flat wire                                                 |  |

Table 3-139: System Scaling Analysis Electrical Distribution and Electrical Controls System, Silverado 2500

Components with significant mass savings identified on the 2500 series Silverado include the front bumper harness (wiring on front module); engine wire harness; power train mass cable (ground cable); alternator power cable; IP harness 1; IP harness 1 connector box bracket; IP harness 2; body and rear end wiring (complete); differential wiring; under frame/tow harness (wiring on understructure); battery cable – primary positive (starter wiring harness), battery cable – primary negative; battery cable – positive; fuse box (support); fuse box – cover; center console wiring; headliner wiring; front door harness; rear door harness.

### Front Bumper Harness (Wiring on Front Module)

Shown in Image 3.18–2 is the Silverado 1500 and 2500 series front bumper harness (wiring on front module). Component masses were 0.87 kg for the Silverado 1500 versus 0.97 kg for the 2500. The lightweighting technology used on the front bumper harness (wiring on front module) was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 front bumper harness mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–2: Front Bumper Harness (Wiring on front module) for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Engine Wire Harness

Shown in Image 3.18–3 is the Silverado 1500 and 2500 series engine wire harness. Component masses were 2.41 kg for the 1500 versus 2.79 kg for the 2500. The lightweighting technology used on the engine wire harness was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 engine wire harness mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–3: Engine Wire Harness for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Power train mass cable (ground cable)

Shown in Image 3.18–4 is the Silverado 1500 and 2500 power train mass cable (ground cable). Component masses were 0.07 kg for both the 1500 and 2500. The lightweighting technology used in the power train mass cable (ground cable) was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 power train mass cable mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).





Image 3.18–4: Power train mass cable (ground cable) for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Alternator Power Cable

Shown in Image 3.18–5 is the Silverado 1500 and 2500 series alternator power cable. Component masses were 0.21 kg for the 1500 versus 0.24 kg for the 2500. The lightweighting technology used on the alternator power cable was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 alternator power cable mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–5: Alternator Power Cable for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### IP Harness 1

Shown in Image 3.18–6 is the Silverado 1500 and 2500 series IP harness 1. Component masses are 3.35 kg for the 1500 versus 3.75 kg for the 2500. The lightweighting technology used on IP harness was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 IP harness 1 mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–6: IP Harness 1 for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### IP Harness 1 Connector Box Bracket

(No image for the Silverado 1500 and 2500 IP Harness 1 Connector Box Bracket.) Component masses for the Silverado 1500 and 2500 series IP harness 1 connector box bracket were 0.34 kg for the 1500 versus 0.38 kg for the 2500. The lightweighting technology used on the IP harness 1 connector box bracket was to change from steel to plastic and apply PolyOne<sup>®</sup> foaming agent. Due to similarities in component design and material, full percentage of the Silverado 1500 IP harness 1 connector box bracket mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).

### IP Harness 2

Shown in Image 3.18–7 is the Silverado 1500 and 2500 series IP harness 2. Component masses were 0.43 kg for the 1500 versus 0.48 kg for the 2500. The lightweighting technology used on the IP harness 2 was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 IP harness 2 mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–7: IP Harness 2 for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Body and Rear End Wiring (Complete)

Shown in Image 3.18–9 are the Silverado 1500 and 2500 series body and rear end wiring (complete). Component masses were 2.17 kg for the 1500 versus 2.44 kg for the 2500 respectively. The lightweighting technology used on body and rear end wiring (complete) was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 body and rear end wiring mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–8: Body and Rear End Wiring (Complete) for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)



Image 3.18–9: Body and Rear End Wiring (Complete) for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Differential wiring

Shown in Image 3.18–10 is the Silverado 1500 and 2500 differential wiring. Component masses were 0.07 kg for the 1500 versus 0.08 kg for the 2500. The lightweighting technology used on the differential wiring was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 differential wiring mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–10: Differential wiring for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Under frame/tow harness (Wiring on understructure)

Shown in Image 3.18–11 is the Silverado 1500 and 2500 series under frame/tow harness (wiring on understructure). Component masses are 3.33 kg for the 1500 versus 3.74 kg for the 2500. The lightweighting technology used on the under frame/tow harness (wiring on understructure) was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to

similarities in component design and material, full percentage of the Silverado 1500 under frame/tow harness mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–11: Under frame/tow harness (wiring on understructure) for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Battery Cable - Primary Positive (Starter wiring harness)

Shown in Image 3.18–12 is the Silverado 1500 and 2500 series battery cable – primary positive (starter wiring harness). Component masses were 0.39 kg for the 1500 versus 0.44 kg for the 2500. The lightweighting technology used on the battery cable – primary positive (starter wiring harness) was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 battery cable – primary positive mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–12: Battery cable – primary positive (starter wiring harness) for the Silverado 1500 and 2500 (Source: FEV, Inc.)

#### Battery Cable - Primary Negative

Shown in Image 3.18–13 is the Silverado 1500 and 2500 series battery cable – primary negative. Component masses were 0.36 kg for the 1500 versus 0.41 kg for the 2500. The lightweighting technology used on battery cable – primary negative was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and

material, full percentage of the Silverado 1500 battery cable - primary negative mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–13: Battery Cable - Primary Negative for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Battery Cable - Positive

Shown in Image 3.18–14 is the Silverado 1500 and 2500 series battery cable – positive. Component masses were 0.35 kg for the 1500 versus 0.39 kg for the 2500. The lightweighting technology used on the Battery Cable - Positive was to change the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 battery cable - positive mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–14: Battery Cable - Positive for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Fuse Box (Support)

Shown in Image 3.18–15 the Silverado 1500 and 2500 series fuse box (support). Component masses are 1.04 kg for the 1500 versus 1.41 kg for the 2500 respectively. The lightweighting technology used on fuse box (support) was to change from steel to plastic and using PolyOne<sup>®</sup> foaming agent. Due to similarities in component design and material, full percentage of the Silverado 1500 fuse box (support) mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–15: Fuse Box (Support) for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Fuse Box - Cover

Shown in Image 3.18–16 is the Silverado 1500 and 2500 series fuse box – cover. Component masses were 0.45 kg for both the 1500 and for the 2500. The lightweighting technology used in fuse box – cover was to change from steel to plastic and apply  $PolyOne^{\text{®}}$  foaming agent. Due to

similarities in component design and material, full percentage of the Silverado 1500 fuse box-cover mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–16: Fuse box – cover for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

#### Center console wiring

Shown in Image 3.18–17 the Silverado 1500 and 2500 series center console wiring. Component masses were 0.18 kg for the 1500 versus 0.20 kg for the 2500. The lightweighting technology used on the center console wiring was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 center console wiring mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–17: Center console wiring for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

### Headliner wiring

Shown in Image 3.18–18 is the Silverado 1500 and 2500 series headliner wiring. Component masses were 0.47 kg for the 1500 versus 0.35 kg for the 2500. The lightweighting technology used on the headliner wiring was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 headliner wiring mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–18: Headliner wiring for the Silverado 1500 and 2500 (Source: FEV, Inc. and www.A2mac1.com)

#### Front door harness

Shown in Image 3.18–19 is the Silverado 1500 and 2500 series front door harness. Component masses were 0.83 kg for the 1500 versus 0.68 kg for the 2500. The lightweighting technology used on the front door harness was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 front door harness mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–19: Front door harness for the Silverado 1500 and 2500

#### Rear Door Harness

Shown in Image 3.18–20 is the Silverado 1500 and 2500 rear door harness. Component masses were 0.33 kg for the 1500 versus 0.43 kg for the 2500. The lightweighting technology used in the rear door harness was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 rear door harness mass reduction can be applied to the 2500. (Refer to Table 3-139Table 3-107).



Image 3.18–20: Rear door harness for the Silverado 1500 and 2500 (Source: FEV, Inc.)

### 3.18.1.4 System Comparison, Silverado 2500

Table 3-140 summarizes the Silverado 1500 and 2500 lightweighting results. The majority of the components were visually the same between the two Electrical Distribution and Electrical Controls Systems.

|                |                                                                                          |                                     | Net Value of Mass Reduction                          |                                                  |                                                   |                                    |                                        |                                    |                                     |                                       |  |  |
|----------------|------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--|--|
| System         | Description                                                                              | Mass<br>Base<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub> | System<br>Mass<br>Reduction<br>"%" | Cost<br>Impact<br>New Tech<br>"\$" (2) | Cost<br>Impact<br>Comp<br>"\$" (2) | Cost<br>Impact<br>Total<br>"\$" (2) | Cost/<br>Kilogram<br>Total<br>"\$/kg" |  |  |
| 18<br>18<br>18 | Electrical Distribution & Electrical Controls System<br>Silverado 1500<br>Silverado 2500 | 33.60<br>33.64                      | 7.75<br>8.47                                         | 0.00                                             | 7.75<br>8.47                                      | 23.07%<br>25.18%                   | \$61.44<br>\$61.54                     | \$0.00<br>\$0.00                   | \$61.44<br>\$61.54                  | \$7.93<br>\$7.26                      |  |  |

Table 3-140: Electrical Distribution and Electrical Controls System Comparison, Silverado 1500 and 2500

# 3.18.2 Mercedes Sprinter 311 CDi

Table 3-141 summarizes the mass and cost impact of Silverado 1500 lightweighting technologies as applied to the Mercedes Sprinter 311 CDi. Total Electrical Distribution and Electrical Controls System mass savings was 2.85 kg at a cost decrease of \$27.22, or \$9.54 per kg.



Table 3-141: Mass-Reduction and Cost Impact for Electrical Distribution and Electrical Controls System, Mercedes Sprinter

### 3.18.2.1 System Scaling Analysis

The Mercedes Sprinter 311 CDi Electrical Distribution and Electrical Controls System components were reviewed for compatibility with lightweighting technologies. The results of this analysis are listed in Table 3-142.

Table 3-142: System Scaling Analysis Electrical Distribution and Electrical Controls System, Mercedes Sprinter

| Silverado 1500                       |                                                            |              |                                |                                     |                 |              | Select Vehicle                 |                                                    |  |  |  |
|--------------------------------------|------------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|----------------------------------------------------|--|--|--|
| Sub-Subsystem<br>Subsystem<br>System | Component/Assembly                                         | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                              |  |  |  |
| 18 Elec                              | trical Distribution & Electrical Controls System           | 33.60        | 7.75                           | 23%                                 |                 |              | 2.85                           |                                                    |  |  |  |
| 18 01 01                             | Front Bumper Harness ((Wiring on frt module))              | 0.87         | 0.37                           | 42%                                 | yes             | 0.52         | 0.23                           | Tech DOES apply: Use aluminum wire & PPO sheathing |  |  |  |
| 18 01 01                             | Engine Wire Harness                                        | 2.41         | 1.02                           | 42%                                 | yes             | 1.46         | 0.63                           | Tech DOES apply: Use aluminum wire & PPO sheathing |  |  |  |
| 18 01 01                             | Power train mass cable (cyl ground cable)                  | 0.07         | 0.03                           | 48%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 01                             | Alternator Power Cable                                     | 0.21         | 0.10                           | 45%                                 | yes             | 0.14         | 0.06                           | Tech DOES apply: Use aluminum wire & PPO sheathing |  |  |  |
| 18 01 02                             | IP Harness 1                                               | 3.35         | 1.42                           | 42%                                 | yes             | 2.02         | 0.88                           | Tech DOES apply: Use aluminum wire & PPO sheathing |  |  |  |
| 18 01 02                             | IP Harness 1 connector box brkt                            | 0.34         | 0.10                           | 29%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 02                             | IP Harness 2                                               | 0.43         | 0.18                           | 42%                                 | yes             | 0.26         | 0.11                           | Tech DOES apply: Use aluminum wire & PPO sheathing |  |  |  |
| 18 01 03                             | Body and Rear End Wiring ((Complete))                      | 2.172        | 0.92                           | 42%                                 | yes             | 1.31         | 0.57                           | Tech DOES apply: Use aluminum wire & PPO sheathing |  |  |  |
| 18 01 03                             | Differential wiring                                        | 0.07         | 0.03                           | 44%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 04                             | Under frame/tow harness ((Wiring on understructure))       | 3.33         | 1.42                           | 42%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 05                             | Battery Cable - Primary Positive((Starter wiring harness)) | 0.39         | 0.18                           | 46%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 05                             | Battery Cable - Primary Negative                           | 0.36         | 0.17                           | 46%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 05                             | Battery Cable - Positive                                   | 0.35         | 0.16                           | 45%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 06                             | Fuse Box ((Support))                                       | 1.04         | 0.20                           | 19%                                 | yes             | 0.19         | 0.04                           | Tech DOES apply: Use PolyOne foaming agent         |  |  |  |
| 18 01 06                             | Fuse Box - Cover                                           | 0.45         | 0.08                           | 17%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 07                             | Center console wiring                                      | 0.18         | 0.08                           | 42%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |
| 18 01 07                             | Headliner wiring                                           | 0.47         | 0.38                           | 80%                                 | yes             | 0.28         | 0.23                           | Tech DOES apply: Use flat wire                     |  |  |  |
| 18 01 08                             | Frt door harness                                           | 0.83         | 0.66                           | 80%                                 | yes             | 0.13         | 0.10                           | Tech DOES apply: Use flat wire                     |  |  |  |
| 18 01 08                             | Rear door harness                                          | 0.33         | 0.27                           | 80%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |  |  |  |

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Mercedes Sprinter included the front bumper harness (wiring on front module); engine wire harness; alternator power cable; IP harness 1; IP harness 2; body and rear end wiring (complete); fuse box (support); headliner wiring; and front door harness. Image 3.18–21 shows the Mercedes Sprinter 311 CDi Electrical Distribution and Electrical Controls System components.



Image 3.18–21: Mercedes Sprinter 311 CDi Electrical Distribution and Electrical Controls System Components (Source: www.A2mac1.com)

### Front Bumper Harness (Wiring on front module)

Shown in Image 3.18–22 is the Mercedes Sprinter 311 CDi front bumper harness (wiring on front module). Component masses are 0.87 kg for the Silverado 1500 versus 0.52 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the front bumper harness (wiring on front module) was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 front bumper harness mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).



Image 3.18–22: Front Bumper Harness (Wiring on front module) for the Silverado 1500 and 2500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### Engine Wire Harness

Shown in Image 3.18–23 are the Silverado 1500 and Mercedes Sprinter 311 CDi engine wire harness. Component masses were 2.41 kg for the 1500 versus 1.46 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the engine wire harness was to change from copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 engine wire harness mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).



Image 3.18–23: Engine Wire Harness for the Silverado 1500 and 2500 (Top) and Mercedes Sprinter 311 CDi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

### Alternator Power Cable

(No image for the Mercedes Sprinter 311 CDi alternator power cable.) The alternator power cable is part of the main engine harness. Component masses were 0.21 kg for the Silverado 1500 versus 0.14 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the alternator power cable was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 alternator power cable mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).

### IP Harness 1

(No image for the Mercedes Sprinter 311 CDi IP harness 1.) The harness is part of the main cockpit harness. Component masses were 3.35 kg for the 1500 versus 2.02 kg for the Mercedes Sprinter 311 CDi respectively. The lightweighting technology used on the IP Harness 1 was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 IP harness 1 mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).

### IP Harness 2

(No image for the Mercedes Sprinter 311 CDi IP harness 2.) The harness is part of the main cockpit harness. Component masses were 0.43 kg for the Silverado 1500 versus 0.26 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the IP harness 2 was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 IP harness 2 mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).

### Body and Rear End Wiring (Complete)

(No image for the Mercedes Sprinter 311 CDi body and rear end wiring (Complete). The harness is part of the main cockpit harness. Component masses were 2.17 kg for the Silverado 1500 versus 1.31 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the body and rear end wiring (complete) was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 body and rear end wiring mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).

### Fuse Box (Support)

Shown in Image 3.18–24 are the Silverado 1500 and Mercedes Sprinter 311 CDi fuse boxes (support). Component masses were 1.04 kg for the Silverado 1500 versus 0.19 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on fuse box (support) was to change from steel to plastic and apply PolyOne<sup>®</sup> foaming agent Due to similarities in component design and material, full percentage of the Silverado 1500 fuse box (support) mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).



Image 3.18–24: Fuse Box (Support) for the Silverado 1500 and 2500 (Left) and Mercedes Sprinter 311 CDi (Right)

#### Headliner wiring

(No image for the Mercedes Sprinter 311 CDi headliner wiring.) The harness is part of the main cockpit harness. Component masses were 0.47 kg for the Silverado 1500 versus 0.28 kg for the Mercedes Sprinter 311 CDi respectively. The lightweighting technology used on the headliner wiring was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 headliner wiring mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).

#### Front door harness

(No image for the Mercedes Sprinter 311 CDi front door harness.) The harness is part of the main cockpit harness. Component masses were 0.837 kg for the Silverado 1500 versus 0.13 kg for the Mercedes Sprinter 311 CDi. The lightweighting technology used on the front door harness was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 front door harness mass reduction can be applied to the Sprinter. (Refer to Table 3-142Table 3-107).

### 3.18.3 Renault Master 2.3 DCi

Table 3-143 summarizes mass and cost impact of Silverado 1500 lightweighting technologies applied to the Renault Master 2.3 DCi. Total Electrical Distribution and Electrical Controls System mass savings is 3.81 kg at a cost decrease of \$32.99, or \$8.65 per kg.

|          |              |               |                                                                                  | Net Value of Mass Reduction                          |                                                  |                                                                                                |                                                                       |                                                      |                                                                 |                                       |                                              |  |  |
|----------|--------------|---------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|----------------------------------------------|--|--|
| System   | Subsystem    | Sub-Subsystem | Description                                                                      | Mass<br>Reduction<br>New Tech<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Comp<br>"kg" <sub>(1)</sub> | Mass<br>Reduction<br>Total<br>"kg" <sub>(1)</sub>                                              | Cost<br>Impact<br>New Tech<br>"\$" (2)                                | Cost<br>Impact<br>Comp<br>"\$" (2)                   | Cost<br>Impact<br>Total<br>"\$" <sub>(2)</sub>                  | Cost/<br>Kilogram<br>Total<br>"\$/kg" | Vehicle<br>Mass<br>Reduction<br>Total<br>"%" |  |  |
| 18       | 00           | 00            | Electrical Dist. and Electronic Control System                                   |                                                      |                                                  |                                                                                                |                                                                       |                                                      |                                                                 |                                       |                                              |  |  |
| 18       | 01           | 00            | Electrical Wiring and Circuit Protection<br>Subsystem                            | 3.81                                                 | 0.00                                             | 3.81                                                                                           | \$32.99                                                               | \$0.00                                               | 32.99                                                           | \$8.65                                | 0.16%                                        |  |  |
|          |              |               |                                                                                  | 3.81<br>(Decrease)                                   | 0.00                                             | 3.81<br>(Decrease)                                                                             | \$32.99<br>(Decrease)                                                 | \$0.00                                               | \$32.99<br>(Decrease)                                           | \$8.65<br>(Decrease)                  | 0.16%                                        |  |  |
| Ma<br>Ma | ss S<br>ss S | o.<br>C       | ngs, Silverado 1500, New Technology "kg"<br>ngs Select Vehicle/Mass Savings 1500 | 7.749<br>49.2%                                       |                                                  | <ul> <li>% Sa</li> <li>% Lo</li> <li>% Lo</li> <li>% Lo</li> <li>% Lo</li> <li>% Lo</li> </ul> | aved, tech<br>ost, compo<br>ost, techno<br>ost, techno<br>ost, techno | nology<br>onent d<br>ology d<br>ology al<br>ology re | applies<br>loesn't ex<br>oesn't app<br>lready imp<br>educed int | ist<br>ply<br>plemente<br>spact       | d                                            |  |  |

Table 3-143: Mass-Reduction and Cost Impact for Electrical Distribution and Electrical Controls System, Renault Master

# 3.18.3.1 System Scaling Analysis

The Renault Master 2.3 DCi Electrical Distribution and Electrical Controls System components were reviewed for compatibility with lightweighting technologies.

|        |                            | Silverado 1500                                             |              |                                |                                     | Select Vehicle  |              |                                |                                                    |
|--------|----------------------------|------------------------------------------------------------|--------------|--------------------------------|-------------------------------------|-----------------|--------------|--------------------------------|----------------------------------------------------|
| System | Sub-Subsystem<br>Subsystem | Component/Assembly                                         | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | % of Mass<br>Savings<br>New<br>Tech | Tech<br>Applies | Base<br>Mass | Mass<br>Savings<br>New<br>Tech | Notes                                              |
| 18     | Elec                       | trical Distribution & Electrical Controls System           | 33.60        | 7.75                           | 23%                                 |                 |              | 3.81                           |                                                    |
| 18     | 01 01                      | Front Bumper Harness ((Wiring on frt module))              | 0.87         | 0.37                           | 42%                                 | yes             | 0.62         | 0.27                           | Tech DOES apply: Use aluminum wire & PPO sheathing |
| 18     | 01 01                      | Engine Wire Harness                                        | 2.41         | 1.02                           | 42%                                 | yes             | 1.72         | 0.75                           | Tech DOES apply: Use aluminum wire & PPO sheathing |
| 18     | 01 01                      | Power train mass cable (cyl ground cable)                  | 0.07         | 0.03                           | 48%                                 | yes             | 0.18         | 0.09                           | Tech DOES apply: Use aluminum wire                 |
| 18     | 01 01                      | Alternator Power Cable                                     | 0.21         | 0.10                           | 45%                                 | yes             | 0.16         | 0.08                           | Tech DOES apply: Use aluminum wire & PPO sheathing |
| 18     | 01 02                      | IP Harness 1                                               | 3.35         | 1.42                           | 42%                                 | yes             | 2.40         | 1.04                           | Tech DOES apply: Use aluminum wire & PPO sheathing |
| 18     | 01 02                      | IP Harness 1 connector box brkt                            | 0.34         | 0.10                           | 29%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |
| 18     | 01 02                      | IP Harness 2                                               | 0.43         | 0.18                           | 42%                                 | yes             | 0.31         | 0.13                           | Tech DOES apply: Use aluminum wire & PPO sheathing |
| 18     | 01 03                      | Body and Rear End Wiring ((Complete))                      | 2.172        | 0.92                           | 42%                                 | yes             | 1.56         | 0.68                           | Tech DOES apply: Use aluminum wire & PPO sheathing |
| 18     | 01 03                      | Differential wiring                                        | 0.07         | 0.03                           | 44%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |
| 18     | 01 04                      | Under frame/tow harness ((Wiring on understructure))       | 3.33         | 1.42                           | 42%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |
| 18     | 01 05                      | Battery Cable - Primary Positive((Starter wiring harness)) | 0.39         | 0.18                           | 46%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |
| 18     | 01 05                      | Battery Cable - Primary Negative                           | 0.36         | 0.17                           | 46%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |
| 18     | 01 05                      | Battery Cable - Positive                                   | 0.35         | 0.16                           | 45%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |
| 18     | 01 06                      | Fuse Box ((Support))                                       | 1.04         | 0.20                           | 19%                                 | yes             | 0.70         | 0.13                           | Tech DOES apply: Use PolyOne foaming agent         |
| 18     | 01 06                      | Fuse Box - Cover                                           | 0.45         | 0.08                           | 17%                                 | yes             | 0.27         | 0.05                           | Tech DOES apply: Use PolyOne foaming agent         |
| 18     | 01 07                      | Center console wiring                                      | 0.18         | 0.08                           | 42%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |
| 18     | 01 07                      | Headliner wiring                                           | 0.47         | 0.38                           | 80%                                 | yes             | 0.30         | 0.24                           | Tech DOES apply: Use flat wire                     |
| 18     | 01 08                      | Frt door harness                                           | 0.83         | 0.66                           | 80%                                 | yes             | 0.45         | 0.36                           | Tech DOES apply: Use flat wire                     |
| 18     | 01 08                      | Rear door harness                                          | 0.33         | 0.27                           | 80%                                 | no              |              |                                | Tech does NOT apply: Not on vehicle                |

Table 3-144: System Scaling Analysis Electrical Distribution and Electrical Controls System, Renault Master

If the original Silverado 1500 mass reduction concept idea was not able to be applied to the comparison vehicle it is not described in the section below.

Components with significant mass savings identified on the Renault Master 2.3 DCi included the front bumper harness (wiring on front module); engine wire harness; power train mass cable (ground cable); alternator power cable; IP harness 1; IP harness 2; body and rear end wiring (complete); fuse box (support); fuse box – cover; headliner wiring; and front door harness. Image 3.18–25 shows the Renault Master 2.3 DCi Electrical Distribution and Electrical Controls System components.



Image 3.18–25: Renault Master 2.3 DCi Electrical Distribution and Electrical Controls System (Source: www.A2mac1.com)

### Front Bumper Harness (Wiring on front module)

(No Image for the Renault Master 2.3 DCi front bumper harness (wiring on front module). The harness is part of the main cockpit harness. Component masses were 0.87 kg for the Silverado 1500 versus 0.62 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the front bumper harness (wiring on front module) was to change the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 front bumper harness mass reduction can be applied to the Renault. (Refer to Table 3-144).

### Engine Wire Harness

Shown in Image 3.18–26 are the Silverado 1500 and Renault Master 2.3 DCi Engine Wire Harness. Component masses are 2.41 kg for the 1500 versus 1.72 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the engine wire harness was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 engine wiring harness mass reduction can be applied to the Renault. (Refer to Table 3-144).



Image 3.18–26: Engine Wire Harness for the Silverado 1500 and 2500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

### Power Train Mass Cable (Ground Cable)

(No image for the Renault Master 2.3 DCi power train mass cable [ground cable].) Component masses were 0.07 kg for the Silverado 1500 versus 0.18 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the power train mass cable (ground cable) was to change the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 power train mass cable mass reduction can be applied to the Renault. (Refer to Table 3-144).

#### Alternator Power Cable

(No image for the Renault Master 2.3 DCi alternator power cable.) The harness is part of the main cockpit harness. Component masses were 0.21 kg for the Silverado 1500 versus 0.16 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the alternator power cable was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 alternator power cable mass reduction can be applied to the Renault. (Refer to Table 3-144).

### IP Harness 1

(No image for the Renault Master 2.3 DCi IP harness 1.) The harness is part of the main cockpit harness. Component masses were 3.35 kg for the Silverado 1500 versus 2.40 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the IP harness 1 was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 IP harness 1 mass reduction can be applied to the Renault. (Refer to Table 3-144).

#### IP Harness 2

(No image for the Renault Master 2.3 DCi IP harness 2.) The harness is part of the main cockpit harness. Component masses were 0.43 kg for the Silverado 1500 versus 0.31 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the IP harness 2 was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 IP harness 2 mass reduction can be applied to the Renault. (Refer to Table 3-144).

### Body and Rear End Wiring (Complete)

Shown in Image 3.18–27 are the Silverado 1500 and Renault Master 2.3 DCi body and rear end wiring (complete). Component masses were 2.17 kg for the Silverado 1500 versus 1.56 kg for the Renault Master 2.3 DCi respectively. The lightweighting technology used on the body and rear end wiring (complete) was to change the copper wire to aluminum wire and changing the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 body and rear end wiring mass reduction can be applied to the Renault. (Refer to Table 3-144).



Image 3.18–27: Body and Rear End Wiring (Complete) for the Silverado 1500 and 2500 (Top) and Renault Master 2.3 DCi (Bottom) (Source: FEV, Inc. and www.A2mac1.com)

#### Fuse Box (Support)

Shown in Image 3.18–28 are the Silverado 1500 and Renault Master 2.3 DCi fuse box (support). Component masses were 1.04 kg for the Silverado 1500 versus 0.70 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the fuse box (support) was to change from steel to plastic and apply PolyOne<sup>®</sup> foaming agent. Due to similarities in component design and material, full percentage of the Silverado 1500 fuse box (support) mass reduction can be applied to the Renault. (Refer to Table 3-144).



Image 3.18–28: Fuse Box (Support) for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Fuse Box Cover

Shown in Image 3.18–29 are the Silverado 1500 and Renault Master 2.3 DCi fuse box cover. Component masses were 0.45 kg for the Silverado 1500 versus 0.27 kg for the Renault Master 2.3 DCi. Both the Silverado 1500 and the Renault Master 2.3 DCi fuse box cover were similar in configuration. The lightweighting technology used in the fuse box cover was to change from steel to plastic and apply PolyOne<sup>®</sup> foaming agent Due to similarities in component design and material, full percentage of the Silverado 1500 fuse box cover mass reduction can be applied to the Renault. (Refer to Table 3-144).



Image 3.18–29: Fuse Box Cover for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

### Headliner wiring

Shown in Image 3.18–30 are the Silverado 1500 and Renault Master 2.3 DCi headliner wiring. Component masses were 0.47 kg for the Silverado 1500 versus 0.30 kg for the Renault Master 2.3 DCi. The lightweighting technology used on the headliner wiring was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 headliner wiring mass reduction can be applied to the Renault. (Refer to Table 3-144).



Image 3.18–30: Headliner wiring for the Silverado 1500 and 2500 (Left) and the Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

#### Front door harness

Shown in Image 3.18–31 are the Silverado 1500 and Renault Master 2.3 DCi front door harnesses. Component masses were 0.83 kg for the Silverado 1500 versus 0.45 kg for the Renault Master 2.3 DCi. Both the Silverado 1500 and the Renault Master 2.3 DCi front door harness are similar in configuration. The lightweighting technology used on the front door harness was to change the copper wire to aluminum wire and the PVC sheathing to PPO sheathing. Due to similarities in component design and material, full percentage of the Silverado 1500 front door harness mass reduction can be applied to the Renault. (Refer to Table 3-144).



Image 3.18–31: Front door harness for the Silverado 1500 and 2500 (Left) and Renault Master 2.3 DCi (Right) (Source: FEV, Inc. and www.A2mac1.com)

# 4. CONCLUSION

The primary project objective was to determine the minimum cost per kilogram for various levels of vehicle mass reduction for the medium-duty trucks/vans, up to and possibly beyond 20%. The selection criteria for the truck chosen for evaluation specified a mainstream vehicle in terms of design and manufacturing, with a substantial market share in the North American medium-duty truck market. Selecting a high-volume, mainstream vehicle increased the probability that the ideas generated and their associated costs would be applicable to other pickups trucks within the same market segment.

The Silverado 2500 total mass-reduction was 581.90 kg (18.86%). This increased cost by \$2,372.16, or \$4.08 per kg. Most of which came from the engine, transmission, body group a, suspension and brake systems. Mass-reduction came from changing the metals to a lighter version (i.e., cast iron to aluminum, or steel to aluminum and aluminum to magnesium). Other notable systems with mass-reductions are body group b, driveline, frame and mounting, and electrical power supply systems. Some systems had very little or no mass-reduction at all - body group c, climate control, lighting, clutch, in-vehicle entertainment, steering system and vacuum distribution systems. The steering system for example could not use the electric power steering system on the Silverado 1500 because it would affect function and performance of the baseline vehicle. Mass-reduction could not be achieved on these systems because technology did not apply and/or lightweighting of the materials were already implemented. Refer to Table 2-1 for details on each sub-system.

The Mercedes Sprinter 311 CDi total mass-reduction was 386.75 kg (18.15%). This increased cost by \$2293.46, or \$5.93 per kg. Most of which came from the engine, body group a, body group b, suspension, brakes and electrical power supply systems. The Body Group A had the single highest amount of mass-reduced, 248.99 kg, which came from changing the body sheet metal to aluminum. The biggest change with-in the suspension system came from the leaf spring assembly by changing from steel to glass fiber reinforced plastic. Other notable systems with mass-reductions include: transmission, driveline and electrical power supply. Some systems had no mass-reduction at all – frame and mounting, clutch, in-vehicle entertainment and vacuum distribution. The frame and mounting system for example could not use the lightweighting technologies used on the Silverado 1500 because they don't apply (i.e., Mercedes Sprinter does not have a full frame and the Silverado 1500 does). Refer to Table 2-3 for details on each sub-system.

The Renault Master 2.3 DCi total mass-reduction was 436.53 kg (18.55%). This increased cost by \$2563.40, or \$5.87 per kg. Most of which came from the engine, body group a, body group b, suspension and brake systems. Most of the mass-reduction came from changing the metals to a lighter version (i.e., cast iron to aluminum, or steel to aluminum and aluminum to magnesium). Other notable systems with mass-reductions include: transmission, driveline and electrical power supply. Some systems had no mass-reduction at all – frame and mounting, clutch, in-vehicle entertainment and vacuum distribution. The clutch system for example could not use lightweighting technologies used on the Silverado 1500 because they don't apply (i.e., Renault Master has a manual transmission and the Silverado 1500 has an automatic). Refer to Table 2-5 for details on each sub-system.

End of Document