United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711 EPA-450/4-79-028 September 1979

÷÷





# Particulate Emission Factors Applicable to Iron and Steel Industry



.

# Particulate Emission Factors Applicable to the Iron and Steel Industry

by

Thomas A. Cuscino, Jr.

Midwest Research Institute 425 Volker Blvd. Kansas City, Missouri 64110

Contract No. 68-02-2814

EPA Project Officer: Charles C. Masser

#### Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air, Noise, and Radiation Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711

.

September 1979

| AP-42 | Section | Number: | 12.2 |
|-------|---------|---------|------|
|-------|---------|---------|------|

**Reference Number:** 

Title:

,

Particulate Emissions Factors Applicable to the Iron and Steel Industry

EPA-450/479-028

US EPA

7

September 1979

PREFACE

This report was prepared for the Environmental Protection Agency (Mr. Charles Masser, Project Officer) under EPA Contract No. 68-02-2814. The work was performed in the Environmental and Materials Sciences Division of Midwest Research Institute, under the supervision of Dr. Chatten Cowherd, Head, Air Quality Assessment Section. Mr. Thomas Cuscino, Jr., Project Leader, is the author of this report. He was assisted in data compilation by Mr. Mark Golembiewski and Dr. Ralph Keller. Mr. Charles Masser wrote the Introduction of this report. This document is issued by the Environmental Protection Agency to report technical data of interest to a limited number of readers. Copies are available free of charge to Federal employees, current contractors and grantees, and nonprofit organizations - in limited quantities - from the Library Services Office (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711; or, for a fee, from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

This report was furnished to the Environmental Protection Agency by Midwest Research Institute, 425 Volker Blvd., Kansas City, Missouri 64110, in fulfillment of Contract No. 68-02-2814. The contents of this report are reproduced herein as received from Midwest Research Institute. The opinions, findings, and conclusions expressed are those of the author and not necessarily those of the Environmental Protection Agency.

Publication No. EPA-450/4-79-028

#### CONTENTS

| Preface     |                                                              |
|-------------|--------------------------------------------------------------|
| Figures     | · · · · · · · · · · · · · · · · · · ·                        |
| Tables      | · · · · · · · · · · · · · · · · · · ·                        |
| 1.0         | Introduction                                                 |
| 2.0         | Background                                                   |
|             | 2.1 By-product coke oven process                             |
|             | 2.2 Sintering process                                        |
|             | 2.3 Iron manufacturing process                               |
|             | 2.4 Basic oxygen furnaces                                    |
|             | 2.5 Electric arc furnaces                                    |
|             | 2.6 Open hearth furnaces                                     |
|             | 2.7 Scarfing                                                 |
|             | 2.8 Miscellaneous combustion sources                         |
|             | 2.9 Open dust source processes                               |
| 3.0         | Emission Factors and Support Data                            |
|             | 3.1 By-product coke ovens                                    |
|             | 3.2 Blast furnaces                                           |
|             | 3.3 Sintering                                                |
|             | 3.4 Basic oxygen furnaces                                    |
|             | 3.5 Electric arc furnaces                                    |
|             | 3.6 Open hearth furnaces                                     |
|             | 3.7 Teeming                                                  |
|             | 3.8 Scarfing                                                 |
|             | 3.9 Miscellaneous combustion sources                         |
|             | 3.10 Open dust sources                                       |
| 4.0         | Development of Representative Emission Factors               |
|             | 4.1 Process stack and fugitive emissions                     |
|             | 4.2 Open dust sources                                        |
| 5.0         | Summary                                                      |
| References. | 63                                                           |
| Appendix -  | Typical Conversion Factors for Material Flow Calculations 74 |

.

.

#### FIGURES

#### Number 4 1 General flow diagram for the iron and steel industry . . . . . 2 5 3 Building evacuation (BE) system closed roof-Configuration 1. . . 33 4 34

#### TABLES

#### Number

| 1   | Particulate Emission Sources in the Iron and Steel Industry      | 6  |
|-----|------------------------------------------------------------------|----|
| 2   | Summary of Emission Factors for Coke Pushing Operations          | 13 |
| 3   | Summary of Emission Factors for Coke Quenching Operations        | 16 |
| 4   | Summary of Uncontrolled Emission Factors for By-Product Coke     |    |
|     | Oven Combustion Stacks                                           | 18 |
| 5   | Summary of Emission Factors for Blast Furnace Cast House         |    |
|     | Operations                                                       | 21 |
| 6   | Table of Emission Factors for Sinter Plants                      | 22 |
| 7   | Summary of Emission Factors for Basic Oxygen Furnaces            | 27 |
| 8   | Summary of Emission Factors for Electric Arc Furnaces            | 36 |
| 9   | Summary of Emission Factors for Open Hearth Furnaces             | 39 |
| 10  | Emissions from Leaded Steel Teeming at Wisconsin Steel, Chicago, |    |
|     | Illinois - Summary of Test Procedures and Results                | 41 |
| 11  | Emissions from Unleaded Steel Teeming at Wisconsin Steel,        |    |
|     | Chicago, Illinois - Summary of Test Procedures and Results       | 42 |
| 12  | Summary of Emission Factors for Scarfing Operations              | 43 |
| 13  | Fugitive Dust Emission Factors Experimentally Determined by MRI. | 48 |
| 14  | Emission Factor Quality Assurance Limitations                    | 49 |
| 15  | Silt Content Values Applicable in the Iron and Steel Industry    | 51 |
| 16  | Surface Moisture Content Values Applicable in the Iron and Steel |    |
|     | Industry                                                         | 52 |
| 17  | Surface Loading on Traveled Lanes of Paved Roads in Iron and     |    |
|     | Steel Plants                                                     | 52 |
| 18  | Selection of Single Emission Factor Values to Represent Each     |    |
|     | Particulate Source Category in the Iron and Steel Industry       | 54 |
| A-1 | Typical Conversion Factors Utilized for Engineering Estimates    |    |
|     | of Quantities of Material Handled                                | 75 |

#### Page

### Page

#### SECTION 1.0

#### INTRODUCTION

An intensified effort has occurred in the last 3 years to update the iron and steel industry particulate emission factors presented in AP-42 and to add, for the first time, fugitive source emission factors. The emission factors in AP-42 for the iron and steel industry are dated April 1973. $\frac{1}{2}$ 

The intensified effort began in August 1975 when Gary McCutchen of the Environmental Protection Agency's (EPA's) Emission Standards and Engineering Division (ESED), Office of Air Quality Planning and Standards (OAQPS) compiled a table of particulate point and fugitive emission factors for eight generic categories of sources. By March 1976, a task force consisting of the American Iron and Steel Institute (AISI) Fugitive Emission Committee and specific EPA personnel had been formed at the request of the director of OAQPS.

In July 1976, AISI presented a compilation of particulate source test data performed at AISI member plants.<sup>27</sup> This compilation and its support documentation provided significant new test data and became the focal point of discussions for the following 2 years. From late July until November 1976, Peter Westlin, Test Support Section, OAQPS, reviewed the support data and corresponded with Bill Benzer of AISI to acquire additional information necessary to evaluate the AISI compilation of test results. By mid-November, Mr. Westlin had selected a major portion of the tests presented in the AISI compilation as acceptable. The task force discussions since November 1976 centered mainly on the development of a methodology which would result in single emission factor values to represent each process stack, process fugitive, and open dust source.

It is the objective of this report to present the results of this data gathering and analysis effort. The report is divided into three major areas. First, background information will be presented related to the processes in the iron and steel industry along with a process flow chart. Second, all of the particulate source test data will be presented and summarized in chart form. Third, the methodology for selecting single source specific emission factors and the resulting particulate emission factors will be presented. All of the particulate emission source test data that were in the possession of the EPA/AISI task force on June 1, 1979, have been included in the evaluation and emission factor development. If you, as the reader, feel you are in possession of documented source test data that would further enhance the understanding of emissions from processes within the iron and steel industry, please send a copy to the present EPA task coordinator:

> Charles C. Masser (MD-14) Environmental Protection Agency, OAQPS Monitoring and Data Analysis Division Research Triangle Park, North Carolina 27711

As with all average or "typical" emission factors, they are obtained from a wide range of data of varying degrees of accuracy. The reader must be cautioned not to use these emission factors indiscriminately. That is, the factor generally may not yield precise emission estimates for an individual installation. Only on-site source tests can provide data sufficiently accurate and pre cise to determine actual emissions for that source. Emission factors are most appropriate when used in diffusion models for the estimation of the impact of proposed new sources upon the ambient air quality and for community or nationwide air pollution emission estimates.

This report represents the combined efforts of EPA and steel industry experts to establish reasonable particulate emission factors with ranges for all known stack and fugitive sources within an integrated steel mill. The EPA task coordinator wants to thank the AISI Fugitive Emission Committee, the EPA ESED, the Industrial Environmental Research Laboratory (IERL), Research Triang Park, the Enforcement Division of the EPA Regional Offices, and the EPA Divisi of Stationary Source Enforcement in Washington, D.C., for the data and review comments which resulted in this report.

#### SECTION 2.0

#### BACKGROUND

Particulate emission sources in the iron and steel industry can be generically classified as (a) process stack emission sources, (b) process fugitive emission sources, and (c) open dust sources. Process stack emissions are any emissions exhausted to the atmosphere through a stack duct, or flue. Process fugitive emissions and open dust sources are both defined as any emissions not entering the atmosphere from a duct, stack, or flue. Open dust sources traditionally have included (a) vehicular traffic on paved and unpaved roads, (b) raw material handling outside of buildings, and (c) wind erosion from storage piles and exposed terrain, while all other nonducted sources have been classified as process fugitive emissions.

Figure 1 portrays a process flow diagram for a representative integrated iron and steel plant. Industry-wide material flows are presented in Figure 2. The Appendix presents typical material quantity conversion factors useful in calculating material flows.

Table 1 shows the main sources of particulate emissions in the integrated iron and steel industry. Not all sources are listed, but those of most common interest are shown. Such sources as dry quenching, hot metal desulfurization, and argon-oxygen decarburization will not be considered, since little or no data are currently available.

#### 2.1 BY-PRODUCT COKE OVEN PROCESS

Coking is the process of heating coal in an atmosphere of low oxygen content, i.e., destructive distillation. During this process, organic compounds in the coal break down to yield gases and a residue of relatively nonvolatile nature.

The integrated iron and steel industry produces coke using the by-product process. This process will not be found at plants which produce steel only via the electric arc furnace process. Plants producing steel via the basic oxygen furnace or open hearth furnace process will normally have a coke plant but this is not always the case since some plants have their coke brought in by rail or barge.



FIGURE I - GENERAL FLOW DIAGRAM FOR THE IRON AND STEEL INDUSTRY.



Figure 2. 1976 Iron and steel industry material flows. $\frac{3.4}{}$ 

S

| Process<br>equipment                           | Process stack and<br>fugitive emission<br>sources                                                                                                                                                                                                       | Process associated<br>open dust<br>sources <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. By-product coke ovens                       | <ul> <li>Coal Preheating</li> <li>Charging of coal</li> <li>Oven door leaks</li> <li>Coke pushing</li> <li>Wat coke quenching</li> <li>Coal Preheating</li> <li>Topside Leaks</li> </ul>                                                                | <ul> <li>Coal unloading from rail or<br/>barge</li> <li>Coal storage pile load-in</li> <li>Coal storage pile load-out,</li> <li>Coal storage pile wind erosion</li> <li>Coal conveyor transfer stations</li> </ul>                                                                                                                                                                                                                                    |
| II. Sinter plants                              | <ul> <li>Windbox</li> <li>Discharge (crusher and hot screen)</li> <li>Cooler</li> <li>Cold screen</li> </ul>                                                                                                                                            | <ul> <li>Sinter plant input pile load-in</li> <li>Sinter plant input pile load-out</li> <li>Sinter plant input pile wind<br/>erosion</li> <li>Sinter plant input and output<br/>conveyor transfer stations</li> </ul>                                                                                                                                                                                                                                 |
| III. Blast furnaces                            | <ul> <li>Slips</li> <li>Cast house monitor</li> </ul>                                                                                                                                                                                                   | <ul> <li>* Pellat, lump iron ore, loke and<br/>flux stone unloading from rail<br/>or barge</li> <li>* Pellet, lump iron ore, coke and<br/>flux stone storage pile load-in</li> <li>* Pellet, lump iron ore, coke and<br/>flux stone storage pile load-out</li> <li>* Pellet, lump iron ore, loke and<br/>flux stone storage pile wind<br/>erosion</li> <li>* Pellet, lump iron ore, loke and<br/>flux stone conveyor transfer<br/>stations</li> </ul> |
| [7. Basic oxygen čurnaces<br>(30Fs)            | <ul> <li>Hoc metal transfer to<br/>charging ladle</li> <li>Scrap and hoc metal<br/>charging</li> <li>Steel refining and melting (si<br/>heat, O<sub>2</sub> blowing, turndown)</li> <li>Slag dumping</li> <li>Steel tapping</li> <li>Teeming</li> </ul> | icrap pre-                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <pre>V. Electric arc furnaces     (EAFs)</pre> | <ul> <li>Scrap charging</li> <li>Steel refining and malting</li> <li>Siag lumping;</li> <li>Steel tapping</li> <li>Teeming</li> </ul>                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 71. Open hearth formaces<br>(OHFs)             | <ul> <li>Hot metal transfer to<br/>charging ladle</li> <li>Scrap and/or hot metal<br/>charging</li> <li>Steel refining and Melting</li> <li>Slag dumping and steel<br/>tapping</li> <li>Teeming</li> </ul>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VII. Scarfers                                  | <ul> <li>Hend scarfing</li> <li>Machine scarfing</li> </ul>                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VIII. Miscellaneous<br>combustion units        | <ul> <li>Boilers</li> <li>Sosking pics</li> <li>Reheat furnaces</li> </ul>                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IX. Venicles                                   |                                                                                                                                                                                                                                                         | <ul> <li>Traffic on paved and unpaved<br/>roads</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                            |

# TABLE 1. PARTICULATE EMISSION SOURCES IN THE IRON AND STEEL INDUSTRY

\_\_\_\_

a/ Wind erosion of exposed plant terrain is also a source but is not shown in the above table, since it is not associated with any particular process or piece of equipment.

The by-product process is oriented toward the recovery of the gases produced during the coking cycle. The rectangular coking ovens are grouped together in a series, alternately interspersed with heating flues, called a coke battery. Coal is charged to the ovens through ports in the top, which are then sealed. Heat is supplied to the ovens by burning some of the coke gas produced. Coking is largely accomplished at temperatures of  $1100^{\circ}$  to  $1150^{\circ}$ C (2000° to  $2100^{\circ}$ F) for a period of about 16 to 20 hr. At the end of the coking period, the coke is pushed from the oven by a ram and cooled by quenching with water or via a dry quenching process.

#### 2.2 SINTERING PROCESS

Sintering provides a method of agglomerating the fine-sized raw materials that are input to the blast furnace. This reduces the occurrence of "bridging" in the blast furnace and the subsequent occurrence of blast furnace slips.

Sintering is the process of fusing fine iron ore, coke, fluxstone, mill scale, coke, and flue dust at temperatures between  $1300^{\circ}$  and  $1480^{\circ}C$  (2400° and 2700°F). The sinter bed is ignited on the top surface in the furnace. The combustion front is propagated as the windboxes draw air down through the bed. The fused sinter is discharged from the end of the sinter machine where it is crushed and screened. The larger material is cooled and screened again before being input to the blast furnace.

#### 2.3 IRON MANUFACTURING PROCESS

Iron\_is produced-in-blast furnaces, which are large refractory-lined chambers into which iron in the form of natural ore, or agglomerated products such as pellets or sinter, coke, and limestone are charged and allowed to react with large amounts of hot air to produce molten iron. Slag and blast turnace gases are by-products of this operation. The production of 1 unit weight of iron requires an average charge of 1.7 unit weights of iron bearing charge, 0.55 unit weight of coke, 0.20 unit weight of limestone, and 1.9 unit weight of air. Blast furnace by-products consist of 0.3 unit weight of slag, 0.05 unit weight of flue dust, and 3.0 unit weights of gas per unit of pig iron produced. The coke used in the process is produced in by-product coke ovens. The flue dust and other iron ore fines from the process are converted into useful blast furnace charge via sintering operations.

#### 2.4 BASIC OXYGEN FURNACES

The basic oxygen process is employed to produce steel from a furnace charge composed, on the average, of 70% molten blast furnace metal and 30% scrap metal by use of a stream of commercially pure oxygen to oxidize the impurities, principally carbon and silicon. Cycle time for the basic oxygen process ranges from 25 to 45 min.

7

Most of the basic oxygen furnaces (BOF) in the United States have oxygen blown through a lance in the top of the furnace. However, the Q-BOP which is growing in use, has oxygen blown through tuyeres in the bottom of the furnace.

There is much CO produced by the reactions in the furnace. This CO can be combusted at the mouth of the furnace and then vented to gas cleaning devices as is the case with the open hood, or the combustion can be suppressed at the furnace mouth as is the case with the closed hood. The term "closed hood" is actually a misnomer since the opening is large enough to allow approximately 10% theoretical air to enter at the furnace mouth. Nearly all the Q-BOPs in the United States have closed hoods and most of the new top-blown furnaces are being designed with closed hoods. Most of the furnaces installed prior to 1975 were of the open hood design.

#### 2.5 ELECTRIC ARC FURNACES

Electric arc furnaces (EAF) are used to produce carbon, alloy, and stainless steel. All the stainless steel made in the United States in 1976 was via electric arc furnaces. Cycles range from 1-1/2 to 5 hr for carbon steel and from about 5 to 10 hr or more to produce alloy steel.

The charges to an electric arc furnace is nearly always 100% scrap. Heat is furnished to melt the scrap normally via direct-arc electrodes extending through the roof of the furnace. An oxygen lance may or may not be used to speed the melting and refining process.

#### 2.6 OPEN HEARTH FURNACES

In the open hearth furnace (OHF), a mixture of scrap iron and steel, and hot metal (molten iron) is melted in a shallow rectangular basin, or "hearth." Burners producing a flame above the charge provide the heat necessary for melting. The mixture of scrap and hot metal can vary from 100% scrap to 100% hot metal but 50% scrap and 50% hot metal is a reasonable industry-wide average. The process may or may not be oxygen lanced and this effects the process cycle time which is approximately 8 hr or 10 hr, respectively.

#### 2.7 SCARFING

Scarfing is a method of surface preparation of semi-finished steel. A scarfing machine removes surface defects from the steel billets, blooms, and slabs before they are shaped or rolled by applying jets of oxygen to the surface of the steel which is at orange heat thus removing a thin upper layer of the metal by rapid oxidation. Scarfing is normally performed by machine on hot semi-finished steel or by hand on cold or slightly preheated semi-finished steel.

#### 2.8 MISCELLANEOUS COMBUSTION SOURCES

Iron and steel plants require energy in the form of heat or electricity for every plant operation. Some energy intensive operations that produce particulate emissions on plant property are boilers, soaking pits and slab furnaces burning such fuels as coal, No. 2 fuel oil, natural gas, coke oven gas, or blast furnace gas.

In soaking pits, ingots are heated such that the temperature distribution across the cross-section of the ingots is acceptable and the surface temperature uniform for further rolling into semi-finished products such as blooms, billets, and slabs. In slab furnaces, a slab is heated before being rolled into finished products such as plate, sheet, or strip.

#### 2.9 OPEN DUST SOURCE PROCESSES

As was previously stated, open dust sources include (a) vehicular traffic on paved and unpaved roads, (b) raw material handling outside of buildings, and (c) wind erosion from storage piles and exposed terrain.

Vehicular traffic consists of plant personnel and visitor vehicles, plant service vehicles, and trucks for hauling raw materials, plant deliverables, steel products, and waste materials.

Raw material is handled by clamshell buckets, bucket-ladder conveyors, rotary railcar dumps, bottom railcar dumps, front-end loaders, truck dumps, and at conveyor transfer stations. All these activities disturb the raw materials and expose the fines to the wind.

Even fine materials resting on flat areas or in storage piles are exposed to the wind. It is not unusual to have several million tons of raw material stored at a plant nor is it unusual to have in the range of 10 to 100 acres of flat exposed area at a plant. These types of sources are subject to wind erosion.

#### SECTION 3.0

#### EMISSION FACTORS AND SUPPORT DATA

This section presents all the known particulate emission factors (EFs) applicable to iron and steel industry sources and also the details of process operation and test methodology necessary to evaluate the reliability of the EFs. A reliability rating is given to each EF based on the following scale:

#### Rating

#### Rating description

- A EF was based on a sound test methodology and all test methodology and process operation support data were presented in detail.
- B EF was based on a sound test methodology, but all test methodology and process operation support data were not presented in detail.
- C EF was based on questionable or unreported test methodology.
- D EF based on calculations and/or experienced estimate.

Some tests are listed as unrateable. This is because no emission factor was reported or able to be calculated from the reported data. An unrateable category does not indicate that the test was not performed properly but simply indicates that there was no emission factor to rate.

#### 3.1 BY-PRODUCT COKE OVENS

Particulate emissions occur during the coking operation from the following sources: (a) charging of coal, (b) oven door leaks, (c) coke pushing, (d) coke quenching, (e) oven combustion stacks, (f) coal preheating, and (g) topside leaks. The present practice is to report EFs in pounds per ton of coal so that the various sources can be compared.

#### 3.1.1 Coal Charging

One of the coal charging values presently included in the data base originated in a document which was very relevant for its time but is now technically outdated.<sup>5/</sup> By estimates and by measurement techniques using greased plates to quantify deposition, a range of 0.1 to 2.4 lb/ton of coal charged was acquired. There were no supportive test details listed in the document. AP-42 presently uses 1.5 lb/ton which is an average of the EFs presented in Reference 5. This EF is given a D rating.

Measurements were also performed at Bethlehem Steel's Burns Harbor Plant. Measurements were taken before and after a scrubbing system. The uncontrolled emissions were measured as 0.52 lb/ton coal and the controlled emissions as 0.02 lb/ton coal. The uncontrolled emissions do not represent all the emissions from charging since emissions from the chuck door during leveling and from the coal hoppers after emptying were not captured by the system. Specific details of the tests are not available in the reference. This EF is given a C rating.

The most rigorous work in measuring the mass of charging emissions was performed under U.S. EPA Contract at the Pittsburgh Works of the J&L Steel Corporation. 141/ Emission factors for charging wet coal from a Wilputte larry car for uncontrolled coal charging and from a specifically designed semiautomated sequential charging car called the AISI/EPA car were determined. Mass emissions were measured with a specialized sampling train containing an in-stack probe followed by an out-of-stack heated cyclone and filter followed by a heated line connected to a condensate trap. The train was similar to a Method 5 train although the sampling flow rate and time permitted a much smaller sample volume than is recommended by Method 5. The six emission points on the Wilputte car and the three on the AISI/EPA car were each tested three to four times. Given a charging rate of 16.7 tons of coal per charge,  $\frac{142}{142}$  the Wilputte car uncontrolled wet coal charging process yielded an emission factor of 0.11 lb/ton of coal while the AISI/EPA car yielded a controlled emission factor of 0.016 lb/ton of coal for sequential charging. Because of the non-isokinetic nature of the sampling, both emission factors were given a C rating.

None of the references provides definitive data, but, in the absence of such data, an average of 0.85 lb/ton coal will be used to represent uncontrolled charging emissions. This average EF is given a C rating.

#### 3.1.2 Door Leaks

AISI submitted data for door leaks from Plant A which showed results of three coke-side shed tests performed when no pushing was occurring.<sup>7/</sup> If one concludes that the emissions measured must then represent door leaks, the average door leak EF on the push side of the tested battery was 0.18 lb/ton coal (range 0.14 to 0.24 lb/ton coal). These tests were conducted before the scrubber using test method WP-50. The details of the testing effort are not known. If the value of 0.18 lb/ton coal is doubled to allow for door leaks on both sides, then a value of 0.36 lb/ton coal represents the total door leak-age emissions.

A similar value was found in another coke-side shed test series.<sup>8</sup>/ The results of three tests yielded an average of 0.22 lb/ton dry coal (range 0.04 to 0.41 lb/ton dry coal based on particulate captured in the front half of the sampling train). Doubling this result to allow for door leaks on both sides yields 0.44 lb/ton dry coal.

In a coke-side shed testing effort at a third  $plant_{-}^{9/}$  particulate emissions sampled during the nonpushing cycle ranged from 0.20 to 0.52 lb/ton dry coal with an average over three tests of 0.36 lb/ton dry coal. These values are based on particulate collected in the front half of the sampling train. Assuming that the nonpushing emissions were mainly comprised of door leaks and allowing for leaks on the other side of the battery, the emissions from door leaks averaged 0.72 lb/ton dry coal.

A factor of 0.5 lb/ton dry coal represents the average door leak EF. Unfortunately, the percent of doors leaking is not known for these tests so that application to other batteries is difficult. This average EF is given a B rating.

#### 3.1.3 Coke Pushing

The test data for coke pushing currently available in the data base are shown in Table 2. Average EFs and their reliabilities along with process parameters and test methodology are presented. There are five A-rated EFs, fourteen B-rated EFs and six-C-rated EFs in Table 2.

#### 3.1.4 Coke Quenching

The test data for coke quenching currently available in the data base are shown in Table 3. Average EFs and their reliabilities along with process parameters and test methodology are presented. There are four A-rated EFs and five C-rated EFs in Table 3.

The reasons for the large differences shown in Table 3 between the A-rated quench test results at Dofasco's Hamilton, Ontario, plant and those at U.S. Steel's Lorain Works are currently the topic of much debate. There are five hypothesized independent variables which may explain the wide variation in emission factor measurements:

- 1. The vertical speed of the combined air and water vapor mixture,
- 2. The water application technique,
- 3. The total suspended solids in the quench water,
- 4. The amount of volatiles remaining in the coke, and
- 5. The existence and design of baffles.

| ······································                                                                                           |                      |                                                |             |               |                |               | Dre                  |                                       | 020                                                   |                            |                                                                                                                 |                                       | T                                    | • h o d = 1                |            |            | Auguara             |                                                                         |                                                                                              |                            |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|-------------|---------------|----------------|---------------|----------------------|---------------------------------------|-------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|----------------------------|------------|------------|---------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|
| Average<br>emission factor <u>b</u> /                                                                                            | E.F.                 | Company/                                       | Battery     | Test          | Oven<br>height | Tons of coke/ | Coke                 | Emission<br>capture                   | Gas<br>flow rate                                      | Gas                        | $-\frac{1}{\text{Sampling}}$                                                                                    |                                       | No. No.                              | chodolo<br>o. of<br>ushes/ | Sample     | Percent    | Average<br>measured | Average<br>emission<br>factor                                           |                                                                                              |                            |
| (lb/ton coal)                                                                                                                    | reliability          | location                                       | designation | date          | (ft)           | pushb/        | quality              | system                                | (dscfm)                                               | (°F)                       | methodology                                                                                                     | r r                                   | uns                                  | run                        | (min)      | isokinetic | (gr/dscf)           | (1b/ton coal)                                                           | Comments                                                                                     | Reference                  |
| 2.0 (Total emis-<br>sions from                                                                                                   | В.                   | Northwest<br>Indiana                           | <u>a</u> /  | 12/77<br>and  | 12             | <u>a</u> /    | Green                | None                                  | 175,400 <u>c</u> /                                    | 232 <u>d</u> /<br>(81-534) | High-volume                                                                                                     | 2                                     | 39                                   | 1                          | <u>a</u> / | <u>a</u> / | 1.44                | 2.0                                                                     | Cross-sectional shape of                                                                     | 10                         |
| 0.7 pushing as measured                                                                                                          | В                    | ;                                              |             | 4/78          |                |               | Clean                |                                       | 210,400 <u>c</u> /                                    | 117<br>(71-167)            | isokinetic                                                                                                      |                                       | 25                                   | 1                          | <u>a</u> / | <u>a</u> / | 0.787               | (0.05 - 2.0)                                                            | 2 motion picture cameras.                                                                    |                            |
| 1.5 directly<br>over car)                                                                                                        | В                    |                                                |             |               |                |               | Overall              |                                       | 186,400<br>(50,000 -<br>749,000)                      | 191<br>(71–534)            | single pt<br>suspended f<br>center of p<br>Used 8 in.<br>in. glass f<br>filter. Cu<br>anemometer<br>velocity me | in<br>x 10<br>iber<br>p<br>for<br>a-  | 64                                   | 1                          | <u>a</u> / | <u>a</u> / | 1.18                | 1.5<br>(0.05-9.0)                                                       |                                                                                              |                            |
|                                                                                                                                  |                      |                                                |             |               |                |               |                      |                                       |                                                       |                            | surements.                                                                                                      |                                       |                                      |                            |            |            |                     |                                                                         | ł                                                                                            |                            |
| 0.49                                                                                                                             | С                    |                                                | No. 1       | 10/74         | 20             | 23.5          | Moderate<br>to Green | Coke-<br>side<br>shed                 | 171,000-<br>308,000                                   | 160                        | Andersen ir<br>stack impac<br>in duct lea<br>ing to col-<br>lector.                                             | i-<br>itor<br>id-                     | 3 -<br>during<br>peak<br>emissions   | 1-3<br>s                   | 2-6        | <u>a</u> / | 0.145               | 0.49                                                                    | Tests by Bethlehem Steel<br>Corporation Research Depart-<br>ment. Neglected probe losses.    | 11<br>pp• 7,11,27          |
| 0.68                                                                                                                             | В                    | ' Bethlehem<br>Steel, Burns<br>Harbor, Indiana | No. 1       | 11/74         | 20             | 23.5          | <u>a</u> /'          | Coke-<br>side<br>shed                 | 171,000-<br>308,000                                   | 115-<br>170                | Alundum Thi<br>ASTM method<br>duct leadin<br>collector.<br>condensate                                           | mble-<br>l in<br>ng to<br>No<br>trap. | 2 - :<br>during<br>peak<br>emissions | 10<br>s                    | 20         | <u>a</u> / | 0.186               | 0.68                                                                    | Tests by Bethlemen Environ-<br>mental Quality Control Divi-<br>sion. 10 pts sampled per run. | 11<br>pp• <b>7,</b> 11,32- |
| 0.69 <sup>e/</sup> -Suspended<br>emissions                                                                                       | А                    |                                                | No. 1       | 3/75          | 20             | 22-24         | <u>a</u> /           | Coke-side                             | 268,000-                                              | <u>a</u> /                 | EPA Method                                                                                                      | 5                                     | 3 -                                  | 23-25                      | 288        | <u>a</u> / | 0.054 <u>e</u> /    | 0.69 <u>e</u> /                                                         | Tests by Clayton Environmental                                                               | 8<br>p•63 and 12           |
| 0.45 - Dustfall<br>bucket catch f<br>all push side<br>operations                                                                 | C<br>Erom            |                                                |             |               |                |               |                      | capture<br>efficiency                 | sampling;<br>257,000-<br>sampling dur<br>peak emissio | 124<br>ing<br>ns           | in duct lea<br>ing to col-<br>lector.                                                                           | ια-                                   | during<br>peak<br>emissions          | 20<br>s                    | 60         | <u>a</u> / | 0.19 <u>e</u> /     |                                                                         | factor includes fugitive and shed<br>captured particulate.                                   | <b>p</b> • 3−25            |
| 0.55 <u>e</u> / without sprays<br>0.39 <u>e</u> / with sprays<br>1.4 <u>e.f</u> / without sprays<br>1.2 <u>e.f</u> / with sprays | ays A<br>A<br>B<br>B |                                                | No. 1       | 3/76-<br>4/76 | 20             | 23.5          | <u>a</u> /           | Coke-<br>side<br>shed; 85%<br>capture | <u>a</u> /                                            | <u>a</u> /                 | EPA Method<br>in duct lea<br>to collecto                                                                        | 5<br>ading<br>or                      | 4-<br>without<br>sprays;<br>15-      | 8                          | <u>a</u> / | <u>a</u> / | <u>a</u> /          | 0.55 <u>e</u> /<br>Without<br>sprays;<br>0.39 <u>e</u> /<br>With sprays | Special tests to determine effects<br>of water sprays as control.                            | 13                         |

## TABLE 2. SUMMARY OF EMISSION FACTORS FOR COKE PUSHING OPERATIONS

|                                                                                                            |                     |                                                                   |                        |                            |                        |                                     | Pro                                       | cess parameter                                              | 5                                   |                      | ļ,                                                                                              | Te                | st methodol              | ogy                                                          |                                    | Average                                | Average                                         |                                                                                                                                                     |                                    |
|------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------|------------------------|----------------------------|------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------------------------|-------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|-------------------|--------------------------|--------------------------------------------------------------|------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Average<br>emission factor <u>b</u> /<br>(lb/ton coal)                                                     | E.F.<br>reliability | Company/<br>location                                              | Battery<br>designation | Test<br>date               | Oven<br>height<br>(ft) | Tons of<br>coke/<br>push <u>b</u> / | ¦ Coke<br>quality                         | Emission<br>capture<br>system                               | Gas<br>flow rate<br>(dscfm)         | Gas<br>temp.<br>(°F) | Sampling<br>methodology                                                                         | No.<br>of<br>runs | No. of<br>pushes/<br>run | Sample<br>time<br>(min)                                      | Percent <sup> </sup><br>isokinetic | measured<br>concentration<br>(gr/dscf) | emission<br>factor<br>(lb/ton coal)             | Comments                                                                                                                                            | Reference                          |
| 0.25 <u>e</u> /Suspended<br>emissions<br>1.1 Dustfall<br>bucket catch from<br>all push side<br>operations. | A<br>C<br>n         | Great Lakes<br>Carbon<br>St. Louis,<br>Missouri                   | South                  | 4/75                       | 11                     | 10.5                                | <u>a</u> /                                | Coke-side<br>shed; 91%<br>avg. capture<br>efficiency        | 119,000-<br>132,000                 | 69-85                | Modified EPA<br>Method 5 in<br>duct leading<br>to collector.                                    | 3                 | 10-15                    | 192-288<br>pushing<br>cycle<br>168-192<br>non-push:<br>cycle | 99.9-102.9<br>ing                  | 0.017 <u>e</u> /<br>pushing cycle      | 0.25 <u>e</u> /<br>suspended<br>1.1<br>dustfall | Each sample taken at 20<br>pts in duct. Emission<br>factor includes uncaptured<br>fugitive and shed-captured<br>particulate for pushing<br>only.    | 9 - page 47 and<br>12 - page 3-25. |
| 2.3 <sup>e/</sup> Total uncon-<br>trolled emissions<br>from pushing as<br>measured directly<br>over car.   | A<br>S<br>Y         | Ford Motor<br>Company,<br>Steel Division<br>Dearborn,<br>Michigan | A                      | 6/24/75<br>to<br>7/16/75   | 5 13                   | 12                                  | Avg.<br>between<br>green<br>and<br>clean. | Travelling<br>hood fitted<br>directly<br>over car.          | 77,000-<br>82,800                   | 130-209              | Modified EPA<br>Method 5 in<br>duct leading<br>to scrubber.                                     | 9                 | 16 or 24                 | 16 or 24                                                     | 100-108.6                          | 1.67 <u>e</u> /                        | 2.3 <sup>e/</sup>                               | Hood capture efficiency<br>estimates ranged from<br>32 to 80%. Scrubber<br>removed 99.3% of what<br>was captured.                                   | 14 - pp. 11, 98<br>182, 220        |
| 0.29                                                                                                       | <u>B</u> <u>B</u> / | Company A<br>(AISI Data)                                          | <u>a</u> /             | 9/75 <del>-</del><br>11/75 | <u>a</u> /             | 11.3                                | <u>a</u> /                                | Coke-side<br>shed                                           | 175,100                             | 81                   | WP-50 in duct<br>leading to<br>collector                                                        | 28                | 8                        | 24                                                           | <u>a</u> /                         | 0.063                                  | 0.29                                            |                                                                                                                                                     | 15                                 |
| 0.26                                                                                                       | <u>B</u> <u>8</u> / | Company A<br>(AISI Data)                                          | <u>a</u> /             | 2/76-<br>3/76              | <u>a</u> /             | 11.3                                | <u>a</u> /                                | Coke-side<br>shed                                           | 168,900                             | 113                  | ("EPA-approved"<br>in duct leading<br>to collector)                                             | 4                 | 24                       | <u>a</u> /                                                   | <u>a</u> /                         | 0.060                                  | 0.26                                            |                                                                                                                                                     | 15                                 |
| 0.4 <u>e</u> /                                                                                             | С                   | Company B<br>(AISI Data)                                          | No. 3                  | 12/73                      | <u>a</u> /             | 24                                  | <u>a</u> /                                | Enclosed cok<br>car & guide<br>venturi scru<br>via stationa | e 61,300<br>to<br>bbers<br>ry main. | 118                  | ASTM PTC-21<br>in duct leading<br>to east and<br>west scrubbers.                                | 6                 | 7-13                     | 28-78                                                        | <u>a</u> /                         | 0.16 <sup>/</sup>                      | 0.4 <u>e</u> /                                  | Unclear how testing<br>east and west<br>scrubbers coincides<br>with pushing process.                                                                | 16 - p. 4                          |
| 0.024 <u>e</u> /                                                                                           | С                   | Company B<br>(AISI Data)                                          | No. 3                  | 12/73                      | <u>a</u> /             | 24                                  | <u>a</u> /                                | Same as abov                                                | e 66,500                            | 108                  | ASTM PTC-21 in<br>stacks exiting<br>east and west<br>scrubbers.                                 | 6                 | 7-13                     | 28-78                                                        | <u>a</u> /                         | 0.071 <u>e</u> /                       | 0.024 <u>e</u> /                                | Unclear how testing<br>east and west<br>scrubbers coincides<br>with pushing process.                                                                | 16 - p. 4                          |
| 14.4 <u>e</u> / Lb/push                                                                                    | В                   | CF&I<br>Pueblo,<br>Colorado                                       | B, C, D                | 8/10/76<br>to<br>8/17/76   | 5 <u>a</u> /           | <u>a</u> /                          | <u>a</u> /                                | <u>a</u> /                                                  | 52,400<br>scfm                      | 254                  | Single point<br>sample through<br>probe suspended<br>in the plume.<br>Sampled at<br>45-61 scfm. | 12                | 1                        | 14-30<br>sec                                                 | <u>a</u> /                         | 1.852 gr/scf                           | 14.4 <u>e</u> /<br>1b/push                      | Plume cross-<br>sectional area<br>determined photo-<br>graphically. Plume<br>temperature measured<br>at single point with<br>a hot wire anemometer. | 136                                |

•

٠

• 1

..

٦.

TABLE 2. (Continued)

| Average                                           |                     |                                                 |                        |              |                        |                                         | Pro             | ocess paramet                 | ers                         |                                   |                                                           | Te                | st methodol              | logy                    |                       | Average                               | Average                             |                                                                         |               |
|---------------------------------------------------|---------------------|-------------------------------------------------|------------------------|--------------|------------------------|-----------------------------------------|-----------------|-------------------------------|-----------------------------|-----------------------------------|-----------------------------------------------------------|-------------------|--------------------------|-------------------------|-----------------------|---------------------------------------|-------------------------------------|-------------------------------------------------------------------------|---------------|
| emission factor <sup>b</sup> /<br>(1b/ton coal)   | E.F.<br>reliability | Company/<br>location                            | Battery<br>designation | Test<br>date | Oven<br>height<br>(ft) | Tons of<br>coke/<br>push <sup>b</sup> / | Coke<br>quality | Emission<br>capture<br>system | Gas<br>flow rate<br>(dscfm) | Gas<br>temp.<br>( <sup>°</sup> F) | Sampling<br>methodology                                   | No.<br>of<br>runs | No. of<br>pushes/<br>run | Sample<br>time<br>(min) | Percent<br>isokinetic | measured<br>concentration<br>(gr/scf) | emission<br>factor<br>(lb/ton coal) | Compents                                                                | Reference     |
| . 34 <u>e</u> /                                   | В                   | Bethlehem<br>Steel,<br>Burns Harbor,<br>Indiana | No. 1                  | 7/74         | 20                     | 23.5                                    | <u>a</u> /      | Coke-<br>side<br>shed         | <u>a</u> /                  | <u>a</u> /                        | EPA train with<br>sampling at a<br>single point           | 2                 | 8–12                     | 16-24                   | <u>a</u> /            | <u>a</u> /                            | 0.34 <u>e</u> /                     | Emission factor repre-<br>sents emissions captured<br>by shed           | 17            |
| ).4 <u>3</u> e/                                   | В                   | Bethlehem<br>Steel,<br>Burns Harbor,<br>Indiana | No. 1                  | 7/74         | 20                     | 23.5                                    | <u>a</u> /      | Coke-<br>side<br>shed         | <u>a</u> /                  | <u>a</u> /                        | EPA train with<br>full Method 5<br>multipoint<br>traverse | 2                 | 8-12                     | 16-24                   | <u>a</u> /            | <u>a</u> /                            | 0.43 <u>e</u> /                     | Emission factor repre-<br>sents emissions captured<br>by shed           | 17            |
| .56 (front and<br>back half of<br>sampling train) | В                   | Bethlehem<br>Steel,<br>Burns Harbor,<br>Indiana | No. l                  | 7/74         | 20                     | 23.5                                    | <u>a</u> /      | Coke-<br>side<br>shed         | <u>a</u> /                  | <u>a</u> /                        | Modified ASTM<br>train with<br>out-of-stack<br>filter     | 7                 | 8-12                     | 16-24                   | <u>a</u> /            | <u>a</u> /                            | 0.56                                | Emission factor repre-<br>sents emissions captured<br>by shed           | 17            |
| .53                                               | В                   | Bethlehem<br>Steel,<br>Burns Harbor,<br>Indiana | <u>a</u> /             | <u>a</u> /   | <u>a</u> /             | <u>a</u> /                              | <u>a</u> /      | Coke-<br>side<br>shed         | <u>a</u> /                  | <u>a</u> /                        | ASTM sampling<br>train                                    | 23                | 8-10                     | 16-20                   | <u>a</u> /            | <u>a</u> /                            | 0.63                                | Emission factor repre-<br>sents emissions captured<br>by shed           | 12<br>p. 3-25 |
| 48 - dustfall                                     | C                   | Bethlehem<br>Steel,<br>Burns Harbor,<br>Indiana | <u>a</u> /             | <u>a</u> /   | <u>a</u> /             | <u>a</u> /                              | <u>a</u> /      | Coke-<br>side<br>shed         | <u>a</u> /                  | <u>a</u> /                        | <u>a</u> / .                                              | <u>a</u> /        | <u>a</u> /               | <u>a</u> /              | NA                    | NA                                    | 0.48                                | Emission factor repre-<br>sents emissions settling<br>on ground in shed | 12<br>p. 3-25 |
| . 32 <sup>e</sup> /                               | В                   | <u>P</u>                                        | . Battery C            | 3/75         | <u>a</u> /             | <u>a</u> / .,                           | - <u>a</u> /    | Coke<br>side<br>shed          | <u>a</u> /                  | - 100                             | -Method 5 -                                               | - 2               | 8                        | 24                      | <u>a</u> / ;          | 0.016                                 | 0.32 <sup>e/</sup>                  | In stack after scrubber<br>with scrubber off                            | 12<br>p. 3-25 |

· •

•

· ->

a/ Reference provides insufficient data or corroboration of data.
 b/ Used 0.7 tons coke per ton of coal as conversion where necessary.
 c/ Average for 66 tests.
 d/ Average temperature for 33 tests.
 e/ Based on particulate collected in front half of sampling train.
 f/ Includes 1.25 lb/ton coke for tests without sprays and 1.1 lb/ton coke for tests with sprays as determined by dustfall buckets.
 g/ AISI - compiled tests selected as acceptable by Peter Westlin, Test Support Section, OAQPS.

...

TABLE 2. (Concluded)

,

|                                                                                                    |                                     |                                                            |                                  |                                                        | Process                    | parameters                      |                          |                                           |                                                                                                                                                                                   | Test                                                                                          | methodo                  | ology                                         |                               | · ·                   |                                        |                                   |                                                |                                                                                             |            |
|----------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------|----------------------------------|--------------------------------------------------------|----------------------------|---------------------------------|--------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------|-------------------------------|-----------------------|----------------------------------------|-----------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|------------|
| Average<br>emission<br>factor<br>lb/ton coal)                                                      | E.F.<br>reliability                 | Company/<br>location                                       | Test<br>date                     | Tower<br>dimensions<br>at sampling<br>level            | Tons of<br>coal/<br>hr     | Exhaust<br>flow rate<br>(dscfm) | Exhaust<br>temp.<br>(°F) | Gallons<br>H <sub>2</sub> O per<br>quench | Sampling<br>methodology                                                                                                                                                           | Sampling<br>location                                                                          | Sample<br>No. of<br>runs | Sample<br>time/<br>run<br>(min)               | No. of<br>quenches<br>per run | Percent<br>isokinetic | Avera<br>measu<br>concent<br>(gr/dscf) | age<br>ired<br>tration<br>(lb/hr) | Average<br>emission<br>factor<br>(lb/ton_coal) | Comments                                                                                    | References |
| .4 +<br>.00018 x TDS <u>b,e</u> /<br>.4 <u>d</u> / - clean<br>water tests<br>.6 <u>d</u> / - dirty | A                                   | U.S. Steel<br>Lorain,<br>Ohio                              | 8/76                             | Tapered,<br>cylindrical<br>14 ft ID at<br>100 ft level | 41-55                      | 181,900                         | <u>a</u> /               | 6,000-<br>12,000                          | High volume, 2 cfm<br>singlepoint samplin<br>using EPA Method 5<br>train with pre-<br>cyclone.                                                                                    | After baffles<br>g                                                                            | 25                       | Only during<br>quench (2<br>to 3 min<br>each) | 4                             | 91.1-109.5            | <u>a</u> /                             | <u>a</u> /                        | 1.4 +<br>0.00018 x<br>TDS <u>b,e</u> /         | E.F. determined from<br>best-fit line; 12 clean<br>water tests and 13 dirty<br>water tests. | 18,19      |
| 7 <u>c</u> /                                                                                       | С                                   | Bethlehem<br>Steel<br>Lackawanna,<br>New York              | 4/74                             | 16 ft x 16 ft                                          | 149                        | 382,300<br>wet scfm             | 142                      | <u>a</u> /                                | Single point sam-<br>pling using EPA<br>Method 5 sampling<br>train                                                                                                                | After baffles<br>with sprays                                                                  | 6                        | About 3 min<br>per quench.                    | 18                            | 67-77                 | 0.19 <u>c</u> /                        | 101.9 <sup>c/</sup>               | 0.7 <u>c</u> /                                 | Sampled north quench<br>tower handling mainly<br>Battery 9 coke ovens.                      | 20         |
| . 44                                                                                               | C                                   | France                                                     | <u>a</u> /                       | <u>a</u> /                                             | <u>a</u> /                 | <u>a</u> /                      | <u>a</u> /               | <u>a</u> /                                | Greased disks                                                                                                                                                                     | <u>a</u> /                                                                                    | <u>a</u> /               | <u>a</u> /                                    | <u>a</u> /                    | NA                    | <u>a</u> /                             | <u>a</u> /                        | <u>a</u> /                                     | Estimate.                                                                                   | 5, p. 6    |
| .40                                                                                                | с                                   | Poland                                                     | <u>a</u> /                       | <u>a</u> /                                             | <u>a</u> /                 | <u>a</u> /                      | <u>a</u> /               | <u>a</u> /                                | <u>a</u> /                                                                                                                                                                        | <u>a</u> /                                                                                    | <u>a</u> /               | <u>a</u> /                                    | <u>a</u> /                    | <u>a</u> /            | <u>a</u> /                             | <u>a</u> /                        | <u>a</u> /                                     | Also contains emissions<br>from coke pushing.                                               | 5, p. 19   |
| . 25 <u>d</u> /                                                                                    | A                                   | Dofasco<br>Hamilton,<br>Ontario                            | 8/77                             | 18 ft x 37 ft                                          | 16 <u>T coal</u><br>quencl | 1 152,000-<br>308,400           | 155                      | <u>a</u> /                                | High volume, 2 cfm<br>sampling at 2-6<br>points using cy-<br>clone and heated<br>probe in the tower<br>and heated filter<br>putside the tower<br>followed by conden-<br>sate trap | 5 fc<br>above<br>baftles                                                                      | 9                        | 9-14                                          | 6                             | 92-107                | 0.0613₫/                               | 3.965 <sup>d/</sup>               | 0.25 <u>d</u> /                                | Using normal recycle<br>water.                                                              | 21         |
| .21 <u>d</u> /                                                                                     | А                                   | Dofasco<br>Hamilton,<br>Ontario                            | 8/77                             | 18 ft x 37 ft                                          | 16 <u>T_coal</u><br>quench | 1 168,100-                      | 155                      | <u>a</u> /                                | Same as above                                                                                                                                                                     | 5 ft<br>above<br>baffles                                                                      | 2                        | 11-13                                         | 6                             | 106-108               | 0.0655 <u>d</u> /                      | 3.417 <u>d</u> /                  | 0.21 <u>d</u> /                                | Using normal recycle<br>water with baffle<br>sprays operating.                              | 21         |
| .2 <u>3</u> d/                                                                                     | Α                                   | Dofasco<br>Hamilton,<br>Ontario                            | 8/77                             | 18 ft x 37 ft                                          | 16 <u>1 coal</u><br>quenci | 1 149,300-<br>h 278,700         | 155                      | <u>a</u> /                                | Same as above                                                                                                                                                                     | 5 ft<br>above<br>baffles                                                                      | 6                        | 6-13                                          | 3-6                           | 81-108                | 0.0611 <u>d</u> /                      | 3.739 <u>d</u> /                  | 0.23 <sup>d/</sup>                             | Using once through bay<br>water                                                             | 21         |
| . 32                                                                                               | С                                   | U.S. Steel<br>Clairton, H                                  | 12/67<br>'a.                     | 15 ft x 15 ft                                          | 186                        | 391,000<br>wet scfm             | 150                      | 4,000                                     | Greased plate                                                                                                                                                                     | In tower with no baffles                                                                      | <u>a</u> /               | <u>a</u> /                                    | <u>a</u> /                    | NA                    | <u>a</u> /                             | 6 lb/quen                         | ch 0.32                                        |                                                                                             | 22         |
| 04<br>/ Reference pro<br>/ TDS = Total d                                                           | C<br>vides induffi<br>issolved soli | U.S. Steel<br>Clairton, F<br>cient data or<br>ds in quench | 12/67<br>'a.<br>n corro<br>water | 15 ft x 15 ft<br>boration of data<br>in parts per mil  | 186<br>lion by ma          | 391,000<br>wet scfm             | 150                      | 4,000                                     | Greased plate                                                                                                                                                                     | In tower with<br>45-degree<br>baffles spaced<br>1-1/2 to 3 in.<br>apart. Baffle<br>are washed | <u>a</u> /<br>s          | <u>a</u> /                                    | <u>a</u> /                    | NA                    | <u>a</u> /                             | 0.75 lb/q                         | uench 0.04                                     |                                                                                             | 22         |

2

•

 $\underline{d}$ / Based on particulate collected in front half of sampling train.

-ر

۰.

:

.

e/ Based on particulate collected in front and back halves of sampling train.

Additional source testing is required to develop an equation relating emissions to the independent variables.

#### 3.1.5 Coke Oven Battery Combustion Stacks

The test data for coke oven battery combustion stacks currently available in the data base are shown in Table 4. Average EFs and their reliabilities along with process parameters and test methodology are presented. There are 21 B-rated EFs, four C-rated EFs, and one unrateable EF in Table 4.

#### 3.1.6 Coal Preheaters

Some limited data exist on emissions from Cerchar coal preheaters.  $\frac{135}{}$ Uncontrolled emissions of total particulate were measured during 18 tests at one plant and ranged from 5.3-8.8 lb/ton coal with an average of 7.0 lb/ton coal. Controlled emissions of total particulate were measured during 18 tests at Venturi scrubber outlets and ranged from 0.25-1.82 lb/ton coal with an average of 0.65 lb/ton coal. The original testing reports were not available to identify the test methodology; consequently, the values are C-rated.

#### 3.2 BLAST FURNACES

Emissions occur during the production of iron when blast furnaces slip and when emissions escape the cast house monitor.

#### 3.2.1 <u>Slips</u>

Slips occur when a strata of the material charged to a blast furnace does not settle with the input material below it, thus leaving a gas-filled space between the two portions of the charge. When this unsettled strata of charge collapses, the displaced gas may cause the top gas pressure to increase above the safety limit, thus opening a counterweighted bleeder valve which is open to the atmosphere.

The only EFs available to quantify slip emissions were estimated by Battelle. $\frac{26}{}$  An EF range of 0.0046 to 0.046 lb/ton of hot metal reported by the Battelle researchers was estimated by the following method.

The amount of dust emitted per slip was estimated by assuming that the slip-induced dust loading would be 10 to 100 times the maximum normal dust loading of blast furnace off-gas, which is in the range of 7 to 30 gr/scf. $\frac{27}{}$  Therefore, 300 to 3,000 gr/scf would be contained in the slip-generated gas volume. This gas volume was quantified using the dimensions of a typical furnace (30-ft diameter) and assuming a 2-ft slip height, an actual temperature of 927°C, and an actual pressure of 2 atm absolute. The gas volume calculated via the ideal gas law was 18,200 normal liters (643 scf). The entire volume of slip-generated gas was then assumed to be released through the

| Average         |        |                                          |                           |               |                    | <u>Free</u> | ess condit               | ions        |                 |              |                                                      |           |            | <b>A</b> |             | Endeddar          |           |
|-----------------|--------|------------------------------------------|---------------------------|---------------|--------------------|-------------|--------------------------|-------------|-----------------|--------------|------------------------------------------------------|-----------|------------|----------|-------------|-------------------|-----------|
| factor          | E.F.   |                                          | Coke                      |               |                    | charged     | Coal                     |             | Stack gas       | Stack        | Test (                                               | nethodolo | £Y         | meas     | nge<br>ured | factor <u>a</u> / |           |
| (1b/ton         | relia- | Company/                                 | hattery                   | Test          | No. of             | per oven    | Input                    | Fuelb/      | flow rate       | Լոդր<br>(ՐԵՆ | Sampling                                             | No. of    | Percent    | concent  | ration      | (lh/ton           |           |
| coal)           | bility | location                                 | designation               | i date        | OVC115             | (Cons)      | (Cons/hr)                | Cype-       | (scim)          |              | method                                               | runs      | 150Kinetic | gt/usci  | 10/11       | COal)             | Kelerence |
| 0.35            | 8      | Alahama<br>By-Products                   | Nos. 5 and<br>fi(common   | 10/75         | 54                 | 17          | 57.4                     | നദ          | 61,900          | 329          | ድኮለ- 5                                               | ١         | ₫1         | 0.038    | 20.1        | 0.35              | 23        |
|                 |        | Torrant, AL                              | stack)                    |               |                    |             | +/-                      |             |                 |              |                                                      |           |            |          |             |                   |           |
| 0.12            | в      | Armco                                    | L                         | 7/73          | 31                 | 14.5        | 41./F/                   | NG          | 30,500          | 445          | EFA- 5/ Texas                                        | ,         | <u>a</u> / | 0.014    | 5.1         | 0.12              | 23        |
| 0.21            | 8      | Steel                                    | 1                         | 4/75          | 33                 | 18.5        | 41.15                    | NG          | 31,870          | 499          | Compliance                                           | 3         | <u>a</u> , | 0.032    | 3.5         | 0.21              |           |
| 0.06            | ß      | Bouston, TX                              | 1                         | 11/76         | 34                 | LR.5        | 41.4                     | NC:         | 39,350          | 414          | Nethod                                               | 3         | <u>a</u> / | 0.008    | 2.6         | 0.05              |           |
| 0.42            |        |                                          | . 2                       | 11/76         | - 15               | -19.2       | - 13.2                   | NG          | _ 8,550         | _431         |                                                      | -3        | /          | _0.074   | 3.3         | . 0.42            |           |
| 0.36            | R      | Bethlehem                                | 8                         | 3/75          | 61 <del>-</del> /  | <u>a</u> /  | 51.4                     | cod         | 35,890          | 525          | State of                                             | 1         | <u>d</u> / | 0.060    | 18-5        | 1.36              | 23        |
| 0.42            | B      | Steel                                    | 8                         | 3/75          | 61 <del>~</del>    | <u>d</u> /  | 51+8                     | BEG         | 47, 380         | 565          | Maryland                                             | 2         | <u>a</u> / | 0.051    | 21.6        | 0.42              |           |
| 0.74            | 8      | Spacrows                                 | 9                         | 7/75          | 63 <sup>±</sup> c/ | <u>d</u> /  | 54.8                     | 00G         | 33, 100         | 560          | Stack Test                                           | 3         | <u>d</u> / | 0.[4]    | 40.4        | 0.74              |           |
| 0.18            | B      | Point,10                                 | 0                         | 6/75          | 63° c/             | <u>व</u> /  | 56.8                     | NFG         | 51,660          | 527          | Bethod                                               | 2         | <u>d</u> / | 0.024    | 10.3        | 0.18              |           |
| 0.43            | в      |                                          | 10                        | 6/75          | 63                 | <u>a</u> /  | 55.3                     | BFG         | 55,410          | 522          |                                                      | 5         | <u>d</u> / | 0.050    | 23.8        | 0.43              |           |
| 0.42            | в      |                                          | 11                        | 6/75          | 63 <u>-</u> /      | <u>d</u> /  | 57.8                     | coc         | 29, 130         | 576          |                                                      | )         | <u>a</u> / | 0.0%6    | 24.1        | 0.42              |           |
| 0.90            |        |                                          | 12                        | 6/15          | . <u>61</u> ,      |             | _ <u>\$</u> 7 <u>•</u> 1 | _woc        | _16,270         | -519         |                                                      |           |            | _0.105   | <u></u>     | 0.90              |           |
| 2.59 <u>h</u> / | B      | Bethlehem<br>Steel<br>Johnstown          | 17                        | 12/75         | 7 <b>7-</b> 1      | 11.5        | 47.9                     | COC         | 66, 300         | 576          | State Hethod                                         | 1         | <u>a</u> , | 0.215    | (24         | 2.39              | 2.3       |
|                 |        | <u>PA</u>                                |                           |               |                    |             |                          |             |                 |              |                                                      |           |            |          |             |                   |           |
| 0.53            | P      | Donner                                   | 0                         | 12/73         | 36                 | 12          | 28.5                     | 000         | 22,860          | 58R          | EPA- 5                                               | 3         | <u>d</u> / | 0.077    | 15+2        | 0.53              | 23        |
|                 |        | Hanna Goke<br>Gerporation                |                           |               |                    |             |                          |             |                 |              |                                                      |           |            |          |             |                   |           |
|                 |        | Buffalo,NY_                              |                           |               |                    |             |                          |             |                 |              |                                                      |           |            |          |             |                   |           |
| 1.31            | B      | Kaiser Steel<br>Fontana,CA               | ٨                         | 9/75-<br>1/76 | 45                 | 14          | 31.5                     | cor;        | 3 <b>8,</b> 450 | 425          | ደቦለ- 5                                               | 47        | <u>d</u> / | 0.125    | 41.2        | 1.31              | 23        |
| 0.16            | С      |                                          | P                         | 12/72         | 45                 | 14          | 37.1                     | COC         | 47,500          | 270          | Gelman Filter                                        | 2         | <u>d</u> / | 0.016    | 5.8         | 0.16              | 2.3       |
| 0.12            | С      |                                          | F.                        | 12/72         | 45                 | 14          | 37.1                     | RFC         | 56,100          | 160          | with glass<br>wool filter<br>preceeding<br>impingers | 1         | <u>d</u> / | 0.009    | 4.3         | 0.12              |           |
| 0.36            | B      | lone Star<br>Steel<br>Lone Star,         | A & B (com-<br>mon stack) | 2/73          | 77                 | 17.3        | 51.9                     | <u>00</u> 6 | 37,200          | 468          | State of<br>Texas with<br>EPA train                  |           | <u>4</u> / | 0.039    | 18.8        | 0.36              | 23        |
| 1.04            |        | National<br>Steel<br>Granite<br>City, IL | B                         | 9/76          | 49                 | 16.2        | 45.4                     | ione – –    | 28,170          | 600          | ЕРА- 5                                               | 2         | <u>d</u> / | 0.195    | 47.1        | 1.04              | 23        |

·.

•

#### TABLE 4. SUMMARY OF UNCONTROLLED EMISSION FACTORS FOR BY-PRODUCT COKE OVEN COMBUSTION STACKS

TABLE 4. (concluded)

| Average                   |                   |                                                  |                          |              |            | Fi              | ocess cond         | itions     |                     | -            |                                   |               |                              |                                  |       |                    |            |
|---------------------------|-------------------|--------------------------------------------------|--------------------------|--------------|------------|-----------------|--------------------|------------|---------------------|--------------|-----------------------------------|---------------|------------------------------|----------------------------------|-------|--------------------|------------|
| emission<br>factor        | E.F.              |                                                  | Coke                     |              |            | Coal<br>charged | Coal               |            | Stack gas           | Stack        | Test                              | nethodo       | logy                         | Avera                            | nge   | Emission<br>factor |            |
| (lb/ton<br>_coal)         | relia-<br>bility  | Company/<br>location                             | battery<br>designation   | Test<br>date | Nr. of     | (tons)          | input<br>(tons/hr) | Fuelb/     | (low rate<br>(sctm) | temp<br>("F) | Sampling<br>method                | No.of<br>runs | Percent<br><u>isokinetic</u> | <u>concent</u><br><u>gr/dscf</u> | lb/hr | (lb/ton<br>coal)   | References |
| 0.67 <u>h</u> /           | В                 | Shenango, Inc.<br>Fittsburgh,                    | 2 & 3 (com-<br>mon stack | 7/76         | 35         | 19.8            | 77.0               | 000        | 46,830              | SOR          | EPA-5/State<br>of<br>Pennsylvania | 10            | <u>d</u> /                   | 0.131                            | 51.8  | 0.67               | 23         |
| 0.82 <sup><b>X</b>/</sup> | <u>-</u> e+<br>13 | H.S. Steel<br>Fairfield,                         | 3                        | 8/75         | 49         | 15.2            | 45.6               | ົາເກ       | 37,300              | 48)          | Mr-50<br>(thimble)                | - ī           | <u>a</u> 7                   | 0.117                            | 37.5  | 0.82               | 2.1        |
| 0.46                      | B                 | Youngstown<br>Sheet & Tube<br>Company<br>Indiana | 4                        | 11/76        | 75         | 18.1            | 71.4               |            | 72,940              | 527          | El.Y-2                            | ī —           | <u>d</u> /                   | 0.052                            | 12.6  | n.46               | 23         |
| 0.7                       | c                 | Company D<br>(AISI data)                         | <u>d</u> /               | 4/75         | <u>a</u> / | <u>d</u> /      | <u>d</u> /         | <u>d</u> / | 55,000              | 581          | <u>d</u> /                        | īn            | <u>d</u> /                   | 0.194                            | 40.3  | 0.7                | 24         |
| 0.08                      | 8 <sup>e</sup> /  | Company A<br>(AISI data)                         | No. 2                    | 5/75         | <u>d</u> / | <u>d</u> /      | <u>d</u> /         | <u>d</u> / | 70, 325             | 565          | <b>ዛ</b> ም-                       | 4             | <u>d</u> /                   | 0.008                            | 5.25  | 0.08               | 25         |
| 0.8                       | c <u>e</u> ∕      | (AISI data)<br>(AISI data)                       | <u>d</u> /               | 4/75         | <u>d</u> / | <u>d</u> /      | đ/                 | d/         | 66,100              | 499          | ₫ <b>/</b>                        | 10            | <u>d</u> /                   | 0.210                            | 42.8  | 0.8                | 24         |
| <u>d</u> /                | <u>d</u> /        | CFAI<br>Areblo, CO                               | D                        | 6/78         | 31         | <u>d</u> /      | <u>d</u> /         | <u>d</u> / | 17,420              | 441          | ерл-5                             | 3             | 96.9-108.4                   | 0.00650                          | 0.98  | <u>d</u> /         | 139        |

"Front half" particulate only." <u>a</u>/

b/ GOG: coke oven gas; BFC: blast furnace gas; NG: natural gas.

c/ Exact number of ovens in operation during testing not known.

d/ Reference provides insufficient data or corroboration of data.

g/ AISI-compiled tests selected as acceptable by Prter, Westlin, Test Support Section, OAQES.

 $\underline{f}$  Reported as 56-60 tons of coml/hr in a 10/11/76 letter from Bill Benzet to Peter Westlin-

g/ Sample taken only during charging period.

h/ May include particulate captured in front and back balves of train.

19

dirty-gas bleeder valve. Thus, the quantity of dust emitted per slip would range from 27.6 to 276 lb.

Of the total of 135 blast furnaces operating in the United States in 1974 to 1975, it was assumed that 22 were "problem" furnaces which averaged 30 slips per month. The remaining 113 furnaces were assumed to average four slips per month. Therefore, the total number of slip-induced bleeder valve emissions in the United States in 1974 was 13,350. Using the 27.6 to 276 1b/slip range and the 1974 net hot metal production rate of 79.9 x  $10^6$  tons, the EFs for slip-induced emissions are found to range from 0.0046 to 0.046 1b/ton of hot metal produced. The document qualifies this as a first attempt order of magnitude calculation.

#### 3.2.2 Cast House Monitor

The test data for cast house emissions currently available in the data base are shown in Table 5. Average EFs and their reliabilities along with process parameters and test methodology are presented. There is one A-rated EF, five B-rated EFs, and four C-rated EFs in Table 5.

#### 3.3 SINTERING

Emissions occur at several points in the sintering process. The points of particulate generation are (a) the windbox, (b) the discharge (sinter crusher and hot screen), (c) the cooler, and (d) the cold screen. In addition to these sources, there are in-plant transfer stations which generate emissions and can be controlled by localized enclosures. All the above sources, except the cooler, are normally vented to one or two control systems.

The main problem with the EFs related to sintering compiled in Table 6 is that the sources contributing to the factor are not delineated in many cases. There are fifteen A-rated EFs in Table 6, twenty-seven B-rated EFs, eight C-rated EFs, and ten unrateable factors.

#### 3.4 BASIC OXYGEN FURNACES

There are several sources of particulate emissions in the basic oxygen -furnace steelmaking process. The emission sources are (a) emissions from the furnace mouth during refining-collected by local full (open) or suppressed (closed) combustion hoods, (b) hot metal transfer to charging ladle, (c) charging scrap and hot metal, (d) dumping slag, and (e) tapping steel.

Table 7 lists EFs from several of the above sources. The roof monitor emissions are a composite of the portion of charging, tapping, slagging, and hot metal transfer emissions that escape to the atmosphere.

| verage                                   |                          |                                               |                             |                 |                            | Proc                         | es naramet                | Prs                               |                                                    | Te                                                       | ;<br> <br>st met] | hodology                    |                            | A                                         |                            | Average                        |                                                                |                      |
|------------------------------------------|--------------------------|-----------------------------------------------|-----------------------------|-----------------|----------------------------|------------------------------|---------------------------|-----------------------------------|----------------------------------------------------|----------------------------------------------------------|-------------------|-----------------------------|----------------------------|-------------------------------------------|----------------------------|--------------------------------|----------------------------------------------------------------|----------------------|
| mission<br>factor<br>lb/ton<br>ot metal) | E.F.<br>relia-<br>bility | Company/<br>location                          | Furnace<br>desig-<br>nation | Test<br>date    | Tons hot<br>metal/<br>cast | Duration<br>of cast<br>(min) | Exhaust<br>rate<br>(scfm) | Gas<br>temp.<br>( <sup>o</sup> F) | Emission<br>capture<br>system                      | Sampling<br>methodology                                  | No. of            | Sample<br>time/run<br>(min) | Percent<br>Iso-<br>kinetic | Measure<br><u>concentra</u><br>(gr/scf) ( | d<br><u>tion</u><br>1b/hr) | factor<br>(1b/ton<br>hot metal | ) Comments                                                     | Referenc             |
| 0.1 <u>c</u> /                           | В                        | Bethlehem                                     | E                           | 9/76            | <u>a</u> /                 | <u>a</u> /                   | 83,500                    | 111                               | < 75%                                              | EPA Method 5,                                            | 3                 | 30-40                       | <u>a</u> /                 | 0.050 <sup>c</sup> /                      | 35.5 <u>c</u> /            | 0.10 <sup>c</sup> /            | Capture efficiency based on                                    | 28;                  |
| 0.26 <u>c</u> /                          | В                        | Bethlehem,                                    |                             |                 | <u>a</u> /                 | <u>a</u> /                   | 283,700                   | 108                               |                                                    | after hood and                                           | 3                 | 35-65                       | <u>a</u> /                 | 0.041 <u>c</u> /                          | 98.5 <u>c</u> /            | 0.260/                         | hood collection system. EF                                     | pp. 52-5             |
| 0.25 <u>c</u> /                          | В                        |                                               |                             |                 | <u>a</u> /                 | <u>a</u> /                   | 144,100                   | 125                               | 80-95%<br>capture                                  | control device                                           | 3                 | 31-35                       | <u>a</u> /                 | 0.097 <u>c</u> /                          | 120                        | 0.25 <u>c</u> /                | tured taphole and trough<br>emissions.                         | -                    |
| 0.78 <u>c</u> /                          | Α                        | Dofasco,                                      | No. 1                       | 8-11/76         | 277                        | 37                           | 308,300                   | 134                               | 100% open<br>fan setting                           | EPA Method 5,<br>Sampled in duc                          | 2                 | 35                          | 101                        | 0.142 <u>c</u> /                          | 368 <u>c</u> /             | 0.78 <sup>c</sup> /            | Total cast house evacuation.                                   | 29<br>P. 45.         |
| 0.48 <u>c</u> /                          | С                        | Ontario<br>Canada                             | No. 1                       |                 | 321                        | 32                           | 293,600                   | 140                               | 70% open<br>fan setting                            | leading to bag<br>house                                  | _ 2               | 22                          | 106-111                    | 0.126 <u>c</u> /                          | 29 <u>9</u> 2/             | 0.48 <sup>c</sup> /            |                                                                | p. C-1f              |
| 0.68 <u>c</u> /                          | С                        | (                                             | No. 1                       |                 | 283                        | 36                           | 208,100                   | 155                               | 40% open<br>fan setting                            |                                                          | 2                 | 33                          | 111-116                    | 0.200 <u>c</u> /                          | 326 <u>c</u> /             | 0.68 <sup>c</sup>              | )                                                              |                      |
| 0.20 <sup>c</sup> /                      | В                        | Bethlehem<br>Steel,<br>Johnstown,<br>Pa.      | E                           | 10/76-<br>11/76 | 180                        | 33                           | 289,900                   | 82                                | Total cast<br>house evac-<br>uation to<br>baghouse | EPA- 5                                                   | 19                | 33                          | <u>a</u> /                 | 0.029 <sup>c</sup> /                      | 60.9 <u>c</u> /            | 0.205/                         | One test per cast.<br>Sampling in duct leading<br>to baghouse. | 29<br>p. 52,5<br>D-1 |
| 0.25                                     | С                        | CF&I,<br>Pueblo,<br>Colorado                  | <u>a</u> /                  | <u>a</u> /      | <u>a</u> /                 | <u>a</u> /                   | <u>a</u> /                | <u>a</u> /                        | <u>a</u> /                                         | Time lapse<br>photography                                | <u>a</u> /        | <u>a</u> /                  | <u>a</u> /                 | <u>a</u> /                                | <u>a</u> /                 | 0.25                           | Study done by Celesco<br>Ind. (Report No, 156).                | 29<br>p• 52          |
| 0.52                                     | С                        | Dofasco,<br>Hamilton,<br>Ontario<br>Canada    | No. 1                       | 8/76-<br>11/76  | <u>a</u> /                 | <u>a</u> /                   | 300,000<br>acfm           | <u>a</u> /                        | Building<br>evacuation<br>to baghouse              | Weight of<br>particulate<br>captured by<br>the baghouse  | <br> <br>!        |                             |                            |                                           |                            |                                | oes not include weight<br>of emissions passed by<br>aghouse.   | 29<br>pp. 45-46      |
| 0.31                                     | <u>B</u> P/              | Bethlehem<br>Steel,<br>Sparrows<br>Point, Md. | J                           | 11/76-<br>12/76 | 391                        | 32-70                        | 458,400-<br>695,200       | 95                                | None                                               | Hi-Vols sus-<br>pended in<br>bays of the<br>roof monitor | 10                | 32-70                       | <u>a</u> /                 | 0.028                                     | 157                        | 0.31                           |                                                                | 29<br>p. 52;<br>30   |

 $\underline{b}$ / AISI - compiled tests selected as acceptable by Peter Westlin, Test Support Section, OAQPS.

 $\underline{c}$  / Based on particulate collected in front half of sampling train.

.

.

.-

۰.

TABLE 5. SUMMARY OF EMISSION FACTORS FOR BLAST FURNACE CAST HOUSE OPERATIONS

•

21

.

| 4.107000                                                                                        |                   |                                                                                              |                            |           |                                     | Process condit              | ions       |                                                                                |                                                                                              | Test methodology                                                                             |            |                                             | _             |                                                           |                                   | Test results           |                         |                          |                                                                                                                                                                                       |           |
|-------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|----------------------------|-----------|-------------------------------------|-----------------------------|------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------|---------------------------------------------|---------------|-----------------------------------------------------------|-----------------------------------|------------------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Average                                                                                         | Emission          |                                                                                              |                            |           | Process                             | Gas                         |            | Type of                                                                        | Location of                                                                                  |                                                                                              |            | Sampling time                               | Gas           | No.                                                       | Measured conce                    | entrations             | Emission facto          | ors                      |                                                                                                                                                                                       |           |
| factor                                                                                          | factor            |                                                                                              | Company/                   | Test      | production                          | flow rate                   | Gas        | sampling                                                                       | sampling                                                                                     | Sampling                                                                                     | Percent    | per run                                     | flow rate     | of runs                                                   | Range                             | Avg.                   | Range                   | Avg.                     | Quere entre                                                                                                                                                                           | Poferonce |
| (1b/ton sinter)                                                                                 | reliabilit        | ty Source                                                                                    | location                   | date      | rate                                | (dscfm)                     | temp. (°F) | device                                                                         | device                                                                                       | methodology                                                                                  | isokineti  | <u>c (min)</u>                              | (dscfm)       | performed                                                 | (gr/dscf)                         | (gr/dscf)              | (1b/ton sinter)         | (1D/ton sinter)          | Commettes                                                                                                                                                                             | leterence |
| 10.8 <u>b</u> / (leaving grate)                                                                 | В                 | Uncontrolled windbox<br>exhaust stack                                                        | Company D<br>(AISI data)   | 3/75      | 1,368-2,369 tons<br>sinter/day      | 140,000-224,000             | 188-287    | In stack thimble                                                               | In windbox<br>exhaust stack                                                                  | <u>a</u> /                                                                                   | <u>a</u> / | <u>a</u> /                                  | <u>a</u> /    | 17                                                        | 0.082-0.196 <sup>b/</sup>         | 0.135                  | 5.1-19.0 <u>b</u> /     | 10.8 <u>b</u> /          |                                                                                                                                                                                       | 31        |
| 6.8 <sup><u>b</u>/</sup>                                                                        | В                 | Uncontrolled strand<br>discharge emissions                                                   | Company D<br>(AISI data)   | 3/4-5/75  | 1,500-2,340 tons<br>sinter/day      | 34,000                      | 112–151    | 10 min tests-<br>47 mm glass<br>fiber filter<br>2 hr tests-<br>alundum thimble | In discharge stack                                                                           | 10 min tests - single pt in stack<br>2 hr tests - 24 pt traverse                             | <u>a</u> / | 4 tests-2 hr eac<br>11 tests-10 min<br>each | h; <u>a</u> / | 15                                                        | 0.97-1.96 <u>b</u> /<br>gr/acf    | 1.54 gr/acf <u>b</u> / | 5.3-8. <u>3b</u> /      | 6.8 <u>b</u> /           | Tests performed after cyclone-efficiency of 79% determined<br>by weighing cyclone catch. This efficiency used to calculate<br>uncontrolled emissions.                                 | 32        |
| 11.8 <u>b</u> / (leaving<br>grate)                                                              | В                 | Uncontrolled windbox<br>exhaust stack                                                        | Company C<br>(AISI data)   | 10/1/69   | 150 tons sinter/hr                  | 165,000                     | 260        | Alundum thimble                                                                | In 9 ft sq duct before<br>fan and after coarse<br>particulate control<br>devices.            | <u>a</u> /                                                                                   | <u>a</u> / | <u>a</u> /                                  | <u>a</u> /    | 6                                                         | 0.16-0.31 <u>b</u> /<br>gr/acf    | 0.21 gr/acf            | 8.8-17.4 <u>b</u> /     | 11.8 <u>b</u> /          | Tests performed after inertial trap, multiclones and police-<br>man. Efficiency of 75% determined by unspecified method.<br>This efficiency used to calculate uncontrolled emissions. | 33        |
| 1.0 <u>b</u> /                                                                                  | E <u>e</u> /      | Controlled windbox<br>exhaust stack                                                          | Company C<br>(AISI data)   | 3/70-4/70 | 0 150 tons sinter/<br>hr            | 125,000-135,000<br>wet scfm | 206        | Alundum thimble                                                                | In 8 ft Ø stack, 85 ft<br>above ground and 15 ft<br>from top                                 | Single point in stack                                                                        | <u>a</u> / | <u>a</u> /                                  | <u>a</u> /    | 16                                                        | 0.13-0. <u>3b</u> /<br>gr/wet scf | 0.21 <u>b</u> /        | 0.64-1.5 <u>b</u> /     | 1.0 <u>b</u> /           | Smapled after cyclones.                                                                                                                                                               | 34        |
| 8.7 <u>b</u> /                                                                                  | A <u>e</u> /      | Uncontrolled emissions<br>from unspecified source                                            | Company N<br>(AISI data)   | 10/75-11, | /75 113-132 tons<br>sinter/hr       | 240,000-284,000             | 102-215    | <u>a</u> /                                                                     | <u>a</u> /                                                                                   | EPA Method 5                                                                                 | 101-108    | 90                                          | <u>a</u> /    | 10                                                        | 0.176-1.01 <u>b</u> /             | 0.47 <u>b</u> /        | 3.1-18.9 <u>b</u> /     | 8.7 <u>b</u> /           | Sampled at precipitator inlet.                                                                                                                                                        |           |
| <pre>1.9<sup>b/</sup>(avg of all<br/>tests) 2.2<sup>b/</sup>(avg of<br/>isokinetic tests)</pre> | C <u>e</u> /<br>A | (assume windbox)<br>Controlled emissions<br>from unspecified<br>source (assume wind-<br>box) | Company N<br>(AISI data)   | 10/75-11, | /75 113-132 tons<br>sinter/hr       | 239,000-312,000             | 128-208    | <u>a</u> /                                                                     | <u>a</u> /                                                                                   | EPA Method 5                                                                                 | 92-199     | 120                                         | <u>a</u> /    | 10                                                        | 0.043-0.17 <u>b</u> /             | 0.11 <u>b/</u>         | 0.83-3.8 <u>b</u> /     | 1.9 <u>b</u> /           | Samples taken at ESP outlet. Five tests were well above the +10% nonisokinetic sampling tolerance.                                                                                    | 35        |
| 9.55 <u>b</u> /                                                                                 | С                 | (Assume controlled<br>windbox) <u>a</u> /                                                    | Company N<br>(AISI data)   | 4/18-25/  | 74 10,604-11,167<br>tons sinter/day | 256,000-274,000             | 147-175    | In-stack thimble                                                               | <u>a</u> /                                                                                   | <u>a</u> /                                                                                   | 82-99      | <u>a</u> /                                  | <u>a</u> /    | 2                                                         | 0.188-0.212 <sup>b</sup> /        | 0.2 <u>b</u> /         | 0.4-0.7 <u>b</u> /      | 0.55 <u>5</u> /          |                                                                                                                                                                                       |           |
| 107 <u>c</u> /                                                                                  | Α                 | Uncontrolled emissions<br>from windbox                                                       | Company P<br>(AISI data)   | 12/29/72  | 1,350 tons<br>sinter/day            | 296,000-302,000             | 90-95      | Standard EPA-<br>approved train                                                | In 4 ft x 14.5 ft tile-<br>lined plenum                                                      | Modified EPA Method 5. Each test<br>was a traverse along a different<br>single axis.         | 108-113    | 97-133                                      | 0.4-0.54      | 3                                                         | 0.4019-5.0207 <u>C</u>            | / 2.3676 <u>c</u> /    | 18-228 <u>c</u> /       | 107 <u>c</u> /           | Uncontrolled emissions were observed to be the worst the plant had experienced.                                                                                                       | 37        |
| 0.7 <u>c</u> /                                                                                  | A <u>e</u> /      | Controlled emissions<br>from windbox                                                         | Company P<br>(AISI data)   | 12/29/72  | 1,350 tons<br>sinter/day            | 305,000-308,000             | 70-73      | Standard EPA-<br>approved train                                                | In 8 ft Ø stack                                                                              | EPA Method 5                                                                                 | 99-103     | 100                                         | 0.53          | 3                                                         | 0.014-0.0157 <u>c</u> /           | 0.0148 <sup>c/</sup>   | 0.65-0.73 <sup>c/</sup> | 0.7 <sup><u>c</u>!</sup> | Control consists of water spray followed by tray-type scrubber.                                                                                                                       | 37        |
| 47 <u>c</u> /avg of 2 tests<br>32 <u>c</u> / avg including<br>suspect test                      | B<br>B <u>e</u> / | Uncontrolled emissions<br>from unspecified<br>source                                         | Company P<br>(AISI data)   | 3/27/73   | 1,471 tons sinter<br>day            | / 111,800 acfm              | <u>a</u> / | <u>a</u> /                                                                     | Directly after bend<br>in duct leading to<br>baghouse                                        | EPA Method 5(unspecified number of points in traverses)                                      | <u>a</u> / | <u>a</u> /                                  | <u>a</u> /    | 2(3rd test suspect<br>due to temporary<br>line shut-down) | 2.9049-3.749 <u>30</u>            | / 3.3271 <u>c</u> /    | 42-52 <u>c</u> /        | 47 <u>c</u> /            |                                                                                                                                                                                       | 20        |
| 0.35 <u>c</u> /                                                                                 | B <u>e</u> /      | Controlled emissions<br>from unspecified sourc                                               | Company P<br>e (AISI data) | 3/27/73   | l,471 tons sinter<br>day            | / 111,000 acfm              | <u>a</u> / | <u>a</u> /                                                                     | In 3 ft Ø stack 1 ft<br>beyond fan and 2 ft<br>from stack exit. Bag-<br>house had 14 stacks, | EPA Method 5 (unspecified number<br>of points in traverse-sampling<br>ports 1 ft beyond fan) | <u>a</u> / | <u>a</u> /                                  | <u>a</u> /    | 2(3rd test suspect)                                       | 0.02275-0.0249                    | <u>oc/ 0.0238c/</u>    | 0.32-0.39 <u>c</u> /    | 0.350/                   | After Mikropul baghouse.<br>22                                                                                                                                                        | 38        |

#### TABLE 6. TABLE OF EMISSION FACTORS FOR SINTER PLANTS

| Average                                                                                        |                     |                                                                                                         |                                |              |                                                                                                    | Process condition    | ons                            |                                                                                                                |                                                                                | Test methodology                                                                                                                                                                                           |                      |                    |                     |           | _                    |                                        | Test results                                 |                                                  |                                                 |                                                                                                                                                                                                                                                |                   |
|------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------|--------------------------------|--------------|----------------------------------------------------------------------------------------------------|----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|---------------------|-----------|----------------------|----------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| emission                                                                                       | Emission            | 1                                                                                                       |                                |              | Process                                                                                            | Gas                  |                                | Type of                                                                                                        | Location of                                                                    |                                                                                                                                                                                                            |                      | Sampling time      | Gas                 | No.       | l'easured            | d concent                              | rations                                      | Emission fact                                    | tors                                            |                                                                                                                                                                                                                                                |                   |
| factor<br>(1b/ton sinter)                                                                      | factor<br>reliabili | lty Source                                                                                              | Company/<br>location           | Test<br>date | production<br>rate                                                                                 | flow rate<br>(dscfm) | Gas<br>temp. ( <sup>o</sup> F) | sampling<br>device                                                                                             | sampling<br>device                                                             | Sampling<br>methodology                                                                                                                                                                                    | Percent<br>isokineti | per run<br>c (min) | flow rat<br>(dscfm) | e of runs | Range<br>d (gr/dscf  | ) (                                    | Avg.<br>(gr/dscf)                            | Range<br>(lb/ton_sinter)                         | Avg.<br>(1b/ton sinter)                         | Comments                                                                                                                                                                                                                                       | Reference         |
| 98 <u>c</u> / most accurate<br>46 <u>c</u> / avg of all 4 te                                   | B<br>ests C         | Uncontrolled emissions<br>from windbox                                                                  | Company P<br>(AISI data)       | 2/73         | 75 tons sinter/hr                                                                                  | 300,000              | 130                            | EPA-approved train                                                                                             | In 4 ft x 14 ft scrubber<br>inlet duct at a bend                               | Modified EPA Method 5 (2 tests at<br>only a single point; 1 test using<br>a partial traverse; 1 test using a<br>full traverse in one direction.<br>Temp. of probe and filter kept the<br>same as duct gas. | = <u>a</u> /<br>a    | 90                 | <u>a</u> /          | 4         | 0.379-2.             | 86 <sup>c/</sup> 2.8<br>t              | 36 (most accurate<br>cest) <u>c</u> /        | 13-985/                                          | 98 (most accurate<br>test) <sup><u>c</u>/</sup> | Number of traverse points in the "most accurate" test<br>unclear. Lab analysis performed so as not to drive off<br>condensible hydrocarbons. Report noted that Method 5<br>analysis produced factor of 2 lower total particulate<br>emissions. | 39                |
| /عو.ر                                                                                          | В                   | Controlled emissions<br>from windbox                                                                    | Company P<br>(AISI data)       | 2/73         | 75 tons sinter/hr                                                                                  | 250,000-289,000      | 100                            | EPA-approved train                                                                                             | After tray type scrubber<br>(assume 8 ft Ø stack)                              | Modified EPA Method 5 (probe and filter temp. set to coincide with flue gas temp.)                                                                                                                         | <u>a</u> /           | 90                 | <u>a</u> /          | 3         | n.0195-0             | .0388 <sup>_/</sup> 0                  | 0.029 <u>5</u> e/                            | 0.6-1.2 <u>c</u> /                               | 0.91 <u>c</u> /                                 | Tray-type scrubber pressure drop of 9 to ll in. H <sub>2</sub> O.<br>Lab analysis performed so as not to drive off conden-<br>sible hydrocarbons.                                                                                              | 39                |
| 11 <u>d</u> /                                                                                  | В                   | Uncontrolled emissions<br>from discharge and<br>other unspecified<br>sources                            | Company A<br>(AISI data)       | 1/71         | 3,400 tons sinter/<br>day                                                                          | <u>a</u> /           | <u>a</u> /                     | Thimble                                                                                                        | <u>a</u> /                                                                     | WP-50                                                                                                                                                                                                      | <u>a</u> /           | <u>a</u> /         | <u>a</u> /          | 1         | None                 | 5                                      | 5.65 <u>d</u> /                              | None                                             | 11 <u>d</u> /                                   | Emissions from hot screen hood, sinter breaker, and two<br>unknown sources.                                                                                                                                                                    | 40                |
| 0.05 <u>d</u> /                                                                                | В                   | Controlled emissions<br>from discharge and<br>other unspecified<br>sources                              | Company A<br>(AISI data)       | 1/71         | 3,400 tons sinter/<br>day                                                                          | 138,200              | 120                            | Thimble                                                                                                        | After baghouse                                                                 | WP-50                                                                                                                                                                                                      | <u>a</u> /           | <u>a</u> /         | <u>a</u> /          | 1         | None                 | (                                      | 0.006 <u>d</u> /                             | None                                             | 0.05 <u>d</u> /                                 |                                                                                                                                                                                                                                                | 40                |
| ).6 <u>3</u> b/                                                                                |                     | Controlled emissions<br>from windbox                                                                    | Company A<br>(AISI data)       | 5/75         | 3,600 tons sinter/<br>day                                                                          | 288,000              | 300                            | Model EPA-2<br>emissions para-<br>meter analyzer by<br>Western Precipi-<br>tation Div. of<br>Joy Manufacturing | In 153 in. Ø stack<br>after ESP                                                | EPA Method 5. 48 points along 2<br>p≥rpendicular línes.                                                                                                                                                    | 87-91                | 192                | 0.5                 | 3         | 0.034-0.             | 04 <u>5</u> b/ (                       | 0.03RD/                                      | 0.56-0.74 <u>b</u> /                             | 0.63 <u>b</u> /                                 |                                                                                                                                                                                                                                                | 41                |
| 2.6 <sup>b/</sup> (in stack)<br>1b/ton feed<br>0.5 <u>b</u> /(leaving<br>grate) lb/ton<br>feed | B<br>B              | Uncontrolled windbox<br>(every windbox has at<br>least an inertial<br>collector for large<br>particles) | Armco, Inc.<br>Ashland, KY     | 8/70-11/     | 70 150 tons feed/hr<br>(feed here includes<br>hot recycle fines<br>from windbox and<br>hot screen) | <u>a/</u> s          | <u>a</u> /                     | Alundum thimble<br>filter packed<br>with fine glass<br>wool. Wet impinger<br>Water trap.                       | Induced draft stack.<br>After S-collector,<br>multicyclones, and<br>policeman. | <u>a</u> ;                                                                                                                                                                                                 | <u>a</u> /           | <u>a</u> /         | <u>a</u> /          | 40        | 0.2-0.44<br>gr/scf   | <u>,</u> b/                            | 0.31 <sup>b/</sup> gr/scf                    | <u>a</u> /                                       | 2.6 lb/ton feed<br>(in stack)                   | 75% of dust leaving grate is captured by S-collectors mult<br>cyclones and policeman. Only dust emissions are reported, r                                                                                                                      | i- 42<br>not oil. |
| <u>a</u> /                                                                                     | _ə/                 | Controlled windbox                                                                                      | Armco, Inc.<br>Ashland, KY     | 8/70-11/     | 70 150 tons feed/hr                                                                                | <u>a</u> /           | <u>a</u> /                     | Same as above                                                                                                  | After pilot scrubber                                                           | <u>a</u> /                                                                                                                                                                                                 | <u>a</u> /           | <u>a</u> /         | <u>a</u> /          | 8         | 0.005-0.             | .021 <u>b</u> /                        | <u>a</u> /                                   | <u>a</u> /                                       | <u>a</u> /                                      | Concentration varies from high to low as pressure drops ac<br>scrubber was increased from 23 to 76 in. of H <sub>2</sub> O.                                                                                                                    | ross 42           |
| ).03 <u>c</u> /<br>0.0012 <u>b</u> /                                                           | A<br>A              | <u>a</u> /                                                                                              | Inland Steel<br>E. Chicago, II | 7/75<br>L    | 159 tons sinter/<br>hr                                                                             | 118,500              | 118                            | Standard EPA<br>sampling train                                                                                 | In stack after baghouse                                                        | EPA Method 5                                                                                                                                                                                               | 98.4                 | 60                 | 0.6                 | 3         | 0.0040-(<br>0.0012-( | 0.0051 <u>c</u> /<br>0.0016 <u>b</u> / | 0.0047 <mark>c</mark> /<br>0.0014 <u>b</u> / | 0.026-0.034 <u>c</u> /<br>0.0079-0.01 <u>b</u> / | 0.030 <sup>c/</sup><br>0.0092 <u>b</u> /        | 12 sample point/run; 5 min/sampling point; stainless stee<br>probe on tests 1 and 2,glass lined probe in test 3.                                                                                                                               | 43                |

.

~

.

TABLE 6. (CONTINUED)

|                                                   |                                  |                                                                                                                             |                                               |                                                                               | Duran                |                                |                                                                                                                                  |                                             | Test methodology        |                      |                    |                      |                      |                                                  | Test resul                                       | ts                                             |                                                 |                                                                                                          |           |
|---------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|----------------------|--------------------|----------------------|----------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|
| Average                                           |                                  |                                                                                                                             |                                               | Ducasa                                                                        | Process conditi      | ons                            | Turs of                                                                                                                          | Leasting of                                 | Test methodology        |                      | Sampling time      | Gas                  | No.                  | Measured conc                                    | entrations                                       | Emission fac                                   | tors                                            |                                                                                                          |           |
| emission<br>factor<br>(lb/ton sinter)             | Emission<br>factor<br>reliabilit | ty Source                                                                                                                   | Company/ Test<br>location date                | production<br>rate                                                            | flow rate<br>(dscfm) | Gas<br>temp. ( <sup>°</sup> F) | sampling<br>device                                                                                                               | sampling<br>device                          | Sampling<br>methodology | Percent<br>isokineti | per run<br>c (min) | flow rate<br>(dscfm) | of runs<br>performed | Range<br>(gr/dscf)                               | Avg.<br>(gr/dscf)                                | Range<br>(1b/ton sinter)                       | Avg.<br>(1b/ton_sinter)                         | Comments                                                                                                 | Reference |
| 4.8 <u>c</u> /<br>3.8 <u>b</u> /<br>1b/tons input | С                                | Controlled Windboxes                                                                                                        | Bethlehem Steel 12/75<br>Johnstown, PA        | 105 tons feed/hr<br>(including recycle<br>fines but excludes<br>hearth layer) | 184,600<br>ed        | 225                            | Modified EPA<br>sampling train                                                                                                   | In stack after Research<br>Cottrell ESP     | EPA Method 5            | 105                  | 120                | 0.6                  | 1                    | NA                                               | 0.32 <u>c</u> /<br>0.256 <u>b</u> /              | NA                                             | 4.8 <u>c/</u><br>3.8 <u>b/</u><br>1b/tons input | Emission factor based on tonnage input and not sinter outp<br>12 sampling points; 10 min/sampling point. | put, 44   |
| <u>v</u> /                                        | <u>a</u> /                       | Uncontrolled windbox                                                                                                        | Armco, Inc. 7/71<br>Houston, TX               | 1194 tons input/<br>day                                                       | <u>a</u> /           | <u>a</u> /                     | Modified EPA<br>sampling trains<br>w/2 impingers                                                                                 | In inlet to pilot sized<br>venturi scrubber | <u>a</u> /              | <u>a</u> /           | <u>a</u> /         | <u>a</u> /           | 55                   | 0.02-0.33 <u>b</u> /<br>gr/wet scf               | 0.205 <u>b</u> /<br>gr/wet scf                   | <u>a</u> /                                     | <u>a</u> /                                      | Concentrations represent only dust emissions and not condensed hydrocarbons.                             | 45        |
| <u>a</u> /                                        | . <u>a</u> /                     | Controlled windbox                                                                                                          | Armco, Inc. 7/71<br>Houston, TX               | ll94 tons input/<br>day                                                       | <u>a</u> /           | <u>a</u> /                     | Modified EPA<br>sampling trains<br>w/2 impingers                                                                                 | In out from pilot<br>sized venturi          | <u>a</u> /              | <u>a</u> /           | <u>a</u> /         | <u>a</u> /           | 55                   | 0.003-0.0125 <u>b</u> /<br>gr/wet scf            | 0.003 <u>b</u> /<br>gr/wet scf                   | <u>a</u> /                                     | <u>a</u> /                                      | Pressure drops were varied between 23 and 61 in. H <sub>2</sub> O during the 55 tests.                   | 45        |
| <u>a</u> /                                        | <u>a</u> /                       | Controlled emissions<br>(Assume windbox<br>emissions)                                                                       | Alan Wood Steel 5/71-6/71<br>Conshohocken, PA | <u>a</u> /                                                                    | 2000-3000            | 123-180                        | Glass probe<br>in stainless<br>steel housing,<br>glass cyclone,<br>and glass fiber<br>filter                                     | After hydro-clean<br>scrubber pilot unit    | Modified EPA Method 5   | <u>a</u> /           | 33-53              | 0.35-0.72            | 2 15                 | 0.0049-0.0403 <u>b</u>                           | 0.017 <u>b</u> /                                 | <u>a</u> /                                     | <u>a</u> /                                      |                                                                                                          | 46        |
| 0.49 <u>c</u> /                                   | С                                | Combined effluent<br>from sinter machines<br>1, 2, and 3                                                                    | Alan Wood Steel 4/74<br>Conshohocken, PA      | 73.5 tons/hr of<br>sinter (including<br>recycled fines)                       | 279,200 scfm         | 87                             | Standard EPA<br>sampling train                                                                                                   | In stack after hydro<br>cleaners            | EPA Method 5            | 94.2                 | 120                | <u>a</u> /           | 1                    | NA                                               | 0.015 <u>c</u> /                                 | NA                                             | .49 <u>c</u> /                                  |                                                                                                          | 47        |
| 0.43 <u>b</u> /<br>0.9 <u>c</u> /                 | B<br>B                           | Controlled effluent<br>from two windboxes                                                                                   | Bethlehem Steel 6/75<br>Bethlehem, PA         | 120 tons/hr of<br>sinter/two<br>machines                                      | 200,300              | 268                            | Modified EPA<br>sampling train                                                                                                   | In stack after ESP                          | EPA Method 5            | <u>a</u> /           | 144                | <u>a</u> /           | 3                    | 0.0203-0.0417 <u>b</u><br>0.0472-0.0759 <u>c</u> | o/ 0.0301 <u>b</u> /<br>o/ 0.0631 <u>c</u> /     | 0.146-0.299 <u>b</u> /<br>0.34-0.54 <u>c</u> / | 0.43 <u>b</u> /<br>0.9 <u>c</u> /               |                                                                                                          | 48        |
| 0.1 <u>b</u> /                                    | В<br>-                           | Controlled effluent<br>from 4 sinter machine<br>breakers and hot screen                                                     | Bethlehem Steel 5/75<br>Bethlehem, PA<br>s    | 239 tons/hr of<br>sinter/four<br>machines                                     | 138,100              | 237                            | Modified EPA<br>sampling train                                                                                                   | In stack after baghouse                     | EPA Method 5            | <u>a</u> /           | 120                | <u>a</u> /           | 3                    | 0.019-0.022 <u>b</u> /                           | 0.02 <u>b</u> /                                  | 0.19-0.22 <u>b</u> /                           | 0.2 <u>b</u> /                                  |                                                                                                          | 48        |
| 0.30 <u>b</u> /<br>0.41 <u>c</u> /                | A<br>A                           | Controlled effluent<br>from sinter draft<br>system from machine<br>No. 2 (Includes wind-<br>box and discharge<br>emissions) | Kaiser Steel 6/75<br>Fontana, CA              | 160 tons/hr of<br>sinter                                                      | 132,700              | 302                            | Microchemical<br>Specialties Co.<br>Misco Model<br>7200 CM glass<br>lined stainless<br>steel probe and<br>glass fiber<br>filters | In stack after baghouse                     | EPA Method 5            | 96.2                 | 180                | 0.9                  | 3                    | 0.03-0.497 <u>b</u> /<br>0.0450-0.0672 <u>c</u>  | 0.042 <u>b</u> /<br><u>2</u> / 0.0578 <u>c</u> / | 0.21-0.38 <u>b</u> /<br>0.31-0.52 <u>c</u> /   | 0.30 <u>b</u> /<br>0.41 <u>c</u> /              |                                                                                                          | 140       |

TABLE 6. (CONTINUED)

| Average                            |                       |                                                          |                                                    |                   | Pi                                                      | rocess conditions    |                                |                                                          |                                                                             | Test methodology                     |                       |                    |                      |                      |                                                  | Test result                          | S                                            |                                    |                                                                                             |           |
|------------------------------------|-----------------------|----------------------------------------------------------|----------------------------------------------------|-------------------|---------------------------------------------------------|----------------------|--------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|-----------------------|--------------------|----------------------|----------------------|--------------------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|-----------|
| emission                           | Emission              |                                                          |                                                    |                   | Process                                                 | Gas                  |                                | Type of                                                  | Location of                                                                 |                                      |                       | Sampling time      | Gas                  | No.                  | Measured conce                                   | entrations                           | Emission fac                                 | tors                               |                                                                                             |           |
| factor<br>(1b/ton_sinter)          | factor<br>reliability | v Source                                                 | Company/<br>location                               | Test<br>date      | production<br>rate                                      | flow rate<br>(dscfm) | Gas<br>temp. ( <sup>°</sup> F) | sampling<br>device                                       | sampling<br>device                                                          | Sampling<br>methodology              | Percent<br>isokinetio | per run<br>c (min) | flow rate<br>(dscfm) | of runs<br>performed | Range<br>(gr/dscf)                               | Avg.<br>(gr/dscf)                    | Range<br>(1b/ton sinter)                     | Avg.<br>(1b/ton sinter)            | Comments                                                                                    | Reference |
| 2.0 <u>b</u> /                     | A                     | Controlled effuent                                       | CF&I                                               | 6/75              | 329 ton/hr feed                                         | 232,400              | 221                            | <u>a</u> /                                               | In stack after multi-                                                       | EPA Method 5                         | 101.6                 | 143                | 0.4                  | 3                    | 0.148-0.179 <u>b</u> /                           | 0.159 <u>b</u> /                     | 1.8-2.0 <u>b</u> /                           | 2.0 <sup><u>b</u>/</sup>           |                                                                                             | 49        |
| 2 <u>.3</u> c/                     | A                     | from windboxes.                                          | Pueblo, CO                                         |                   | rate (including<br>recycled fines)<br>164 ton sinter/hr |                      |                                |                                                          | clones and ESP                                                              |                                      |                       |                    |                      |                      | 0.168-0.229 <u>c</u> /                           | 0.192 <u>c</u> /                     | 2.16-2.7 <sup>c/</sup>                       | 2.34 <u>°</u> /                    | ·                                                                                           |           |
| $6.87\frac{b}{}$                   | C                     | Uncontrolled effluent                                    | CF&I<br>Fuchlo, CO                                 | 6/75              | 329 ton/hr feed                                         | 247,500              | 195                            | <u>a</u> /                                               | In ducting before multi-                                                    | EPA Method 5                         | 117                   | 108                | 0.4                  | 3                    | 0.510-1.494 <u>b</u> /                           | 1.053 <u>b</u> /                     | 3.01-10.63 <u>b</u> /                        | 6.87 <u>b</u> /<br>lb/top_feed     | 4 of the six tests were above 110% isokinetic.                                              | 49        |
| 6.96C/<br>1b/ton feed              | C                     |                                                          | 140010, 00                                         |                   | recycled fines)<br>164 ton sinter/hr                    |                      |                                |                                                          |                                                                             |                                      |                       |                    |                      |                      | 0.544-1.528 <u>c</u> /                           | 1.078 <u>c</u> /                     | 3.21-10.87 <u>c</u> /                        | 6.96 <u>c</u> /<br>1b/ton feed     |                                                                                             |           |
| 0.32 <u>b</u> /<br>0.72 <u>c</u> / | A<br>A                | Controlled effluent<br>gases from windboxes              | Granite City<br>Steel Division<br>Granite City, II | 5 <b>/75</b><br>L | 102 tons/ hr of<br>sinter                               | 199,000              | 149                            | Standard EPA<br>sampling train                           | In stack after venturi<br>scrubber                                          | EPA Method 5                         | 99                    | 176                | <u>a</u> /           | 3                    | 0.017-0.025 <u>b</u> /<br>0.039-0.053 <u>c</u> / | 0.019 <u>b</u> /<br>0.042 <u>c</u> / | 0.28-0.37 <u>b</u> /<br>0.64-0.82 <u>c</u> / | 0.32 <u>ь</u> /<br>0.72 <u>с</u> / |                                                                                             | 50        |
| <u>a</u> /                         | <u>a</u> /            | Controlled emissions (source unclear).                   | Jones & Laughlin<br>Steel<br>Aliquippa, PA         | n8/72             | <u>a</u> /                                              | 146,200              | 407                            |                                                          | "A" Duct leading to main stack after precipitator                           | EPA Method 5                         | 99                    | 180                | <u>a</u> /           | 5                    | 0.042-0.158 <u>b</u> /                           | 0.11 <u>b</u> /                      | <u>a</u> /                                   | <u>a</u> /                         | ·                                                                                           | 51        |
| <u>a</u> /                         | <u>a</u> /            | Controlled emissions<br>(source unclear).                | Jones & Laughlin<br>Steel<br>Aliquippa, PA         | n8/72             | <u>a</u> /                                              | 138,200              | 419                            |                                                          | "B" Duct leading to main<br>stack after precipitator                        | EPA Method 5                         | 99.6                  | 180                | <u>a</u> /           | 5                    | 0.067-0.252 <u>b</u> /                           | 0.131 <u>b</u> /                     | <u>a</u> /                                   | <u>a</u> /                         |                                                                                             | 51        |
| <u>a</u> /                         | <u>a</u> /            | Controlled effluent.<br>Portion of windbox<br>emissions. | Jones & Laughlin<br>Steel<br>Aliquippa, PA         | n2/73             | <u>a</u> /                                              | 2,010                | 320                            | Modified EPA<br>sampling train                           | After precipitator                                                          | EPA Method 5                         | <u>a</u> /            | 180                | 0.5                  | 3                    | 0.0122-0.0988 <u>b</u>                           | o/ 0.0312 <u>b</u> /                 | 0.195-0.997 lb/hr                            | 0.565 lb/hr                        | Test on ESP pilot unit.                                                                     | 52        |
| 0.03 (solid part.)                 | C                     | Controlled effuent.<br>Portion of windbox<br>emissions.  | Jones & Laughlir<br>Steel<br>Aliquippa, PA         | n2/74             | <u>a</u> /                                              | 2,130                | 113                            | Stainless steel<br>probe, impingers<br>fiberglass filter | After precipitator                                                          | <u>a</u> /                           | <u>a</u> /            | 125                | <u>a</u> /           | 6                    | 0.0065-0.0174<br>(solid part. a<br>0.0011-0.0033 | 0.0115<br>and cond. HC)<br>0.0092    | 0.04-0.08                                    | 0.16<br>0.03                       | Test on Mikropul pilot wet ESP.<br>Sample not analyzed by EPA Method 5.                     | 53        |
|                                    |                       |                                                          |                                                    |                   |                                                         |                      |                                |                                                          |                                                                             |                                      |                       |                    |                      |                      | (solid particu                                   | late)                                |                                              | -                                  |                                                                                             |           |
| 0.13 (solid part.)                 | В                     | Controlled effleunt.<br>Portion of windbox               | Jones & Laughlir<br>Steel                          | n4/73             | <u>a</u> /                                              | 1,632                | 246                            | Stainless steel<br>probe, impinters                      | After gravel bed                                                            | Sample taken at center point of duct | <u>a</u> /            | 60-120             | <u>a</u> /           | 7                    | 0.005~0.0206<br>(solid particu                   | 0.0092<br>Late)                      | <u>a</u> /                                   | 0.13                               | Test on pilot gravel bed filter. Sample not<br>analyzed by EPA Method 5 since drying filter | 54        |
|                                    |                       | emissions.                                               | Aliquippa, PA                                      |                   |                                                         |                      |                                | (no filter)                                              |                                                                             |                                      |                       |                    |                      |                      | 0.0333-0.0472<br>(solid part. a                  | 0.039<br>and cond. HC)               |                                              | 0.56                               | and evaporating impinger water drives off<br>condensible hydrocarbons.                      |           |
| <u>a</u> /                         | <u>a</u> /            | Controlled effluent<br>from windboxes.                   | Jones & Laughlir<br>Steel<br>Aliquippa, PA         | 15/75             | <u>a</u> /                                              | <u>a</u> /           | 351                            | Standard EPA<br>sampling train                           | East breeching 15 ft<br>downstream of fan outlet<br>& after mechanical col- | EPA Method 5                         | <u>a</u> /            | 120                | 0.49                 | 1                    | NA                                               | 0.15 <u>b</u> /                      | NA                                           | <u>a</u> /                         |                                                                                             | 55        |

lectors

.

-

-

| verage               |             |                                                                                                                                        |                                           |            |                 |              |           |                                | <u>;</u>                                                                                     | Test methodology             |            |               |            |           |                                                      | Tes                                    | t_results                                                                  |                                                                  |                                                                                                                |           |
|----------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|-----------------|--------------|-----------|--------------------------------|----------------------------------------------------------------------------------------------|------------------------------|------------|---------------|------------|-----------|------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|
| mission              | Emission    |                                                                                                                                        |                                           |            | Process         | Gas          |           | Type of                        | Location of                                                                                  |                              |            | Sampling time | Gas        | No.       | Measured concent                                     | rations                                | Emission fa                                                                | actors                                                           |                                                                                                                |           |
| factor               | factor      |                                                                                                                                        | Company/                                  | Test       | production      | flow rate    | Gas (8 P) | sampling                       | sampling                                                                                     | Sampling                     | Percent    | per run       | flow rate  | of runs   | Range                                                | Average                                | Kange<br>(1b/ton_sinter)                                                   | Average<br>(lb/ton_sinter)                                       | Comments                                                                                                       | Peferance |
| ton sinter)          | reliability | Source                                                                                                                                 | location                                  | date       | rate            | (dscfm)      | temp ("F) | device                         | device                                                                                       | mechodology                  | isokinetic | (#111)        | (dscim)    | periormed |                                                      | (gr/dscr/                              | (ID/ CON SINCEL)                                                           | (10/con sincer)                                                  |                                                                                                                | Reference |
|                      | <u>a</u> /  | Controlled emissions J<br>from windboxes S<br>A                                                                                        | Jones & Laughlin<br>Steel<br>Alquippa, PA | 5/75       | <u>a</u> /      | 207,400      | 310       | Standard EPA<br>sampling trair | West breeching 15 ft<br>n downstream of fan out-<br>let and after mechani-<br>cal collectors | EPA Method 5                 | <u>a</u> / | 120           | 0.47       | 1         | NA                                                   | 0.19 <u>5</u> /                        | NA                                                                         | <u>a</u> /                                                       |                                                                                                                | 55        |
| <u>b</u> /<br>n feed | В           | Controlled emissions F<br>from windboxes                                                                                               | Facility C                                | 2/76       | 184 tons feed/h | nr 351,900   | 229       | <u>a</u> /                     | λfter baghouse                                                                               | Modified EPA Method 5        | <u>a</u> / | 75            | <u>a</u> / | 3         | 0.0085-0.0132 <u>b</u> /                             | 0.0113 <u>b</u> /                      | 0.13-0.21 <u>b</u> /<br>lb/ton feed                                        | 0.185 <u>b</u> /<br>lb/ton feed                                  | Method 5 analytical procedures were modified to include chloroform-ether extractions of the impinger fraction. | 56        |
|                      | <u>a</u> /  | Controlled emissions F<br>from discharge hood,<br>breakers, hot fines<br>bin, two transfer<br>points and vibrating<br>feeder to cooler | Facility C                                | 7/75       | <u>a</u> /      | 118,500      | 169       | <u>a</u> /                     | After baghouse                                                                               | Modified EPA Method 5        | <u>a</u> / | <u>a</u> /    | <u>a</u> / | 3         | 0.004-0.0051 <u>b</u> /                              | 0.0047 <u>b</u> /                      | <u>a</u> /                                                                 | <u>a</u> /                                                       | Same as above                                                                                                  | 56        |
| feed                 | В           | Uncontrolled emis- I<br>sions from windboxes                                                                                           | Facility F                                | 6/75       | 329 tons feed/h | nr 247,500   | 194       | <u>a</u> /                     | Cyclone inlet                                                                                | Modified EPA Method 5        | <u>a</u> / | 107           | <u>a</u> / | 3         | 0.94-1.16 <u>b</u> /<br>0.94-1.16 <u>c</u> /         | 1.05 <u>b</u> /<br>1.05 <u>c</u> /     | 5.86-7.37 <u>b</u> /<br>1b/ton feed<br>5.9-7.4 <u>c</u> /                  | 6.86 <u>b</u> /<br>1b/ton feed<br>6.86 <u>c</u> /                | Same as above                                                                                                  | 56        |
| feed<br>feed         | B<br>B      | Uncontrolled emis- E<br>sions from windboxes                                                                                           | Facility G                                | 5/75       | 257 tons feed/H | nr 179,000   | 272       | <u>a</u> /                     | Scrubber inlet                                                                               | Modified EPA Method 5        | <u>a</u> / | 180           | <u>a</u> / | 4         | 0.323-0.362 <u>b</u> /<br>0.349-0.392 <u>c</u> /     | 0.338 <u>b</u> /<br>0.369 <u>c</u> /   | 1.9-2.2 <u>b</u> /<br>1b/ton feed<br>2.0-2.4 <u>c</u> /<br>1b/ton feed     | 2.0 <u>b</u> /<br>1b/ton feed<br>2.2 <u>c</u> /<br>1b/ton feed   | Same as above                                                                                                  | 56        |
| feed<br>feed         | B           | Controlled emissions H<br>fron windboxes                                                                                               | Facility G                                | 5/75       | 257 tons feed/} | nr 199,000   | 149       | <u>a</u> /                     | Scrubber outlet                                                                              | Modified EPA Method 5        | <u>a</u> / | 175           | <u>a</u> / | 4         | 0.017-0.025 <u>b</u> /<br>0.023-0.033 <u>c</u> /     | 0.019 <u>b</u> /<br>0.027 <u>c</u> /   | 0.11-0.16 <u>b</u> /<br>1b/ton feed<br>0.15-0.21 <u>c</u> /<br>1b/ton feed | 0.13 <u>b</u> /<br>lb/ton feed<br>0.19 <u>c</u> /<br>lb/ton feed | Same as above                                                                                                  | 56        |
|                      | В           | Controlled emissions H<br>from windboxes                                                                                               | Facility R                                | 4/76       | 473 tons sinter | r/hr 272,200 | 125       | <u>a</u> /                     | Scrubber outlet                                                                              | Modified EPA Method 5        | <u>a</u> / | <u>a</u> /    | <u>a</u> / | 3         | 0.019-0.022 <u>b</u> /                               | 0.0198 <u>b</u> /                      | <u>a</u> /                                                                 | 0.093 <u>b</u> /                                                 |                                                                                                                | 56        |
|                      | B<br>B      | Controlled emissions l<br>from windboxes                                                                                               | Facility S                                | <u>a</u> / | 55 tons sinter/ | /hr 49,600   | 105       | <u>a</u> /                     | Wet ESP outlet                                                                               | Modified EPA Method 5        | <u>a</u> / | <u>a</u> /    | <u>a</u> / | 38        | 0.003-0.022 <u>b</u> /<br>0.003-0.017 <u>c</u> /     | 0.01 <u>b</u> /<br>0.012 <u>c</u> /    | <u>a</u> /<br><u>a</u> /                                                   | 0.17 <u>b</u> /<br>0.21 <u>c</u> /                               |                                                                                                                | 56        |
|                      | A           | Controlled emissions (<br>from windboxes for l<br>east sinter strand                                                                   | Geneva Works,<br>USS                      | 6/7-9/78   | 61 tons sinter/ | /hr 192,000  | 103       | EPA Method<br>5 train          | In north orifice<br>scrubber outlet<br>stack                                                 | EPA Method 5 at 48<br>points | 98.4-100   | 0.9 120-144   | 0.49-0.57  | 3         | 0.0273-0.0437 <u>b</u> /<br>0.0334-0.0513 <u>c</u> / | 0.0359 <u>b</u> /<br>0.0442 <u>c</u> / | 0.812-1.1 <u>b</u> /<br>0.993-1.291 <u>c</u> /                             | 0.956 <u>b</u> /<br>1.18 <u>c</u> /                              |                                                                                                                | 138       |
|                      | A           | Controlled emissions (<br>from windboxes for<br>west sinter strand                                                                     | Geneva Works,<br>USS                      | 6/7-9/78   | 58 tons sinter/ | 'hr 181,000  | 105       | EPA Method<br>5 train          | In south orifice<br>scrubber outlet<br>stack                                                 | EPA Method 5 at<br>32 points | 98.9-10    | 2.4 112-128   | 0.54-0.57  | 3         | 0•0265-0•0439 <u>b</u> /<br>0•0342-0•0553 <u>c</u> / | 0.0354 <u>b</u> /<br>0.0451 <u>c</u> / | 0.72-1.13 <u>b</u> /<br>0.93-1.423 <u>c</u> /                              | 0.934 <u>b</u> /<br>1.19 <u>c</u> /                              |                                                                                                                | 138       |
|                      | А           | Controlled emissions (<br>from discharge ends )<br>of east and west                                                                    | Geneva Works,<br>USS                      | 6/7-9/78   | 119 tons sinter | r/hr 41,200  | 104       | EPA Method<br>5 train          | In orifice scrubber<br>outlet stack                                                          | EPA Method 5 at 48<br>points | 95.7-10    | 2.2 120-144   | 0.46-0.49  | 3         | 0•0941-0•2727 <u>b</u> /<br>0•0963-0•282 <u>c</u> /  | 0.2013 <u>b</u> /<br>0.206 <u>c</u> /  | 0.286-0.782 <u>b</u> /<br>0.293-0.809 <u>c</u> /                           | 0.59 <u>b</u> /<br>0.604 <u>c</u> /                              |                                                                                                                | 138       |

<u>a/</u> Reference provides insufficient data or corroboration of data.
 <u>b/</u> Based on particulate collected in the front half of sampling train.
 <u>c/</u> Based on particulate collected in the front and back halves of the sampling train.
 <u>d/</u> Unclear whether value is based on particulate collected in front half of sampling or in front and back halves combined.
 <u>e/</u> AISI-compiled tests selected as acceptable by Peter Westlin, Test Support Section, OAQPS.

#### TABLE 6. (CONCLUDED)

| Average                            |                   |                                                                             |                                 |             |                                                              | Process condi       | tione      |             |                                                  |                                                        |                                       | Test methodolog | 3 <b>y</b>                               |                   |                                      |                                                              | Test re                                                          | sults                                                      |                                    |                                                                                                               |            |
|------------------------------------|-------------------|-----------------------------------------------------------------------------|---------------------------------|-------------|--------------------------------------------------------------|---------------------|------------|-------------|--------------------------------------------------|--------------------------------------------------------|---------------------------------------|-----------------|------------------------------------------|-------------------|--------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|------------|
| emission                           | Emission          |                                                                             |                                 |             | Process                                                      | Gas                 | Gas        | Gas         | Type of                                          | Location of                                            |                                       |                 | Sampling time                            | Sampling          | No.                                  | Measured con                                                 | centrations                                                      | Emission fac                                               | tors                               |                                                                                                               |            |
| factor                             | factor            |                                                                             | Company/                        | Test        | production                                                   | flow rate           | temp.      | velocity    | sampling                                         | sampling                                               | Sampling                              | Percent         | per run                                  | flow rate         | of runs                              | Range                                                        | Avg.                                                             | Range                                                      | Avg.                               | <b>.</b> .                                                                                                    | Defense    |
| (lb/ton steel)                     | reliability       | Source                                                                      | location                        | date        | rate                                                         | (dscfm)             | (°F)       | (fpm)       | device                                           | device                                                 | methodology                           | isokinetic      | (min)                                    | (dscfm)           | performed                            | (gr/dscf)                                                    | (gr/dscf)                                                        | (1b/ton_steel)                                             | (1b/ton steel)                     | Comments                                                                                                      | References |
| 30 lb/ton of<br>input              | D                 | Uncontrolled<br>melting and<br>refining                                     | Company B<br>(AISI data)        | <u>a</u> /  | <u>a</u> /                                                   | <u>a</u> /          | <u>a</u> / | <u>a</u> /  | <u>a</u> /                                       | <u>a</u> /                                             | <u>a</u> /                            | <u>a</u> /      | <u>a</u> /                               | <u>a</u> /        | <u>a</u> /                           | <u>a</u> /                                                   | <u>a</u> /                                                       | <u>a</u> /                                                 | 30 lb/ton<br>of input              | Estimate; open hood                                                                                           | 57 .       |
| 37                                 | В                 | Uncontrolled<br>melting and<br>refining                                     | Company H<br>(AISI data)        | 8/29-30/72  | 80 tons of steel<br>per hour                                 | 159,000<br>scfm     | 380-440    | <u>a</u> /  | ASTM sampling<br>train assemble<br>as components | In 8.5 ft Ø<br>d duct before<br>scrubber               | ASTM D2928                            | <u>a</u> /      | Approx. 20 min<br>to 30 min              | <u>a</u> /        | 2 - Silicon steel<br>3 - Alloy steel | 2.83-5.57                                                    | 3.28 for<br>silicon<br>steel 4.96<br>for alloy<br>steel          | 22-50                                                      | 37                                 | Sampling during blowing; open hood                                                                            | 58,59      |
| 0.11 <u>b</u> /1b/ton of<br>input  | A                 | Controlled melt-<br>ing and refining<br>emissions col-<br>lected from 4 hea | Company B<br>(AISI data)<br>ats | 12/19/74    | 290.9 tons of<br>input to<br>furnace per<br>hour             | 269,000             | 245        | 3,564 avg   | Lear-Siegler<br>PM100 manual<br>stack sampler    | In 18 ft Ø<br>stack follow-<br>ing ESP                 | EPA Method 5                          | 106             | 2.3 hr during<br>4 hr of produc-<br>tion | 0.53              | 1                                    | None                                                         | 0.02 <u>b</u> /                                                  | None                                                       | 0.11 <u>b</u> / 1b/ton<br>of input | Open hood                                                                                                     | 60         |
| 0.09 <u>b</u> /<br>0.11 <u>c</u> / | С <u>е</u> /<br>С | Controlled melt-<br>ing and refining<br>emissions col-<br>lected from 4 hea | Company B<br>(AISI data)<br>ats | 12/8-10/71  | <u>a</u> /                                                   | 214,000-<br>224,900 | <u>a</u> / | <u>a</u> /  | RAC 2343<br>Staksamplr                           | In 17 ft Ø<br>stack follow-<br>ing venturi<br>scrubber | EPA Method 5                          | 81.1-93.3       | 120                                      | <u>a</u> /        | 3                                    | 0•0199-<br>0•0353 <u>b</u> /<br>0•0281-<br>0•0424 <u>c</u> / | 0 <sub>0</sub> 0293 <u>b</u> /<br>0 <sub>0</sub> 0369 <u>c</u> / | 0.0705-<br>0.106 <u>b</u> /<br>0.0998-<br>0.127 <u>c</u> / | 0.09 <u>b</u> /<br>0.11 <u>c</u> / | In two of the 3 tests, some<br>particulates passed around<br>filter and passed into impingers;<br>open hood   | 57         |
| 0.21 reported<br>0.15 avg          | C <u>e</u> /<br>B | Controlled melt-<br>ing and refining<br>emissions                           | Company H<br>(AISI data)        | 9/9-10/75   | 80 tons of<br>steel per<br>hour                              | <u>a</u> /          | <u>a</u> / | <u>a</u> /  | <u>a</u> /                                       | In 8.5 ft Ø<br>duct after<br>scrubber                  | EPA Method 5                          | <u>a</u> /      | <u>a</u> /                               | <u>a</u> /        | 7                                    | <u>a</u> /                                                   | <u>a</u> /                                                       | 0.07-<br>0.28                                              | 0.15                               | Scrubber operated between 50 and 60 in. H <sub>2</sub> O.                                                     | 58         |
| 0.033                              | В                 | Controlled melt-<br>ing and refining<br>emissions                           | Company A<br>(AISI data)        | <u>a</u> /  | 216–230 tons of<br>steel per heat                            | 245,000-<br>262-500 | 82-122     | <u>a</u> /  | ASME sampling<br>train                           | In stack after<br>quencher and<br>scrubber             | ASME PTC 27<br>only during<br>blowing | <u>a</u> /      | 69                                       | <u>a</u> /        | 3                                    | 0.004-0.02                                                   | 0.011                                                            | 0.012-<br>0.059                                            | 0.033                              | Sampled during blowing of 4 heats;<br>Scrubber operated between 65 and<br>76 in. H <sub>2</sub> O; open hood. | 61         |
| 0.015 <u>d</u> /                   | C <u>e</u> /      | Controlled melt-<br>ing and refining<br>emissions                           | Company A<br>(AISI data)        | 11/6-7/74   | 200 tons of<br>steel per hour                                | 67,900-<br>69,200   | 140-155    | 2,660       | Unspecified<br>but EPA<br>approved               | In 6.5 ft Ø<br>stack                                   | EPA Method 5                          | 100-102         | 59-75                                    | <u>a</u> /        | 3                                    | 0.013-<br>0.015 <u>d</u> /                                   | 0.014 <u>d</u> /                                                 | 0.0138-<br>0.0163 <u>d</u> /                               | 0.015 <u>d</u> /                   | After unknown gas cleaning system;<br>Closed hood; sampled during blowing<br>of 4-5 heats per run.            | 62,143     |
| 0.007                              | С                 | Controlled melt-<br>ing and refining                                        | Company A<br>(AISI data)        | 11/16-18/71 | 200 tons of<br>steel per hour                                | 56,600-<br>62,400   | <u>a</u> / | <u>a/</u>   | <u>a</u> /                                       | <u>a</u> /                                             | <u>a</u> /                            | 101-113         | <u>a</u> /                               | <u>a</u> /        | 3                                    | 0.005-<br>0.014                                              | 0.008                                                            | 0.004-<br>0.0089                                           | 0.007                              | Same as above.                                                                                                | 63,143     |
| 0.105 <u>b</u> /                   | A <u>e</u> /      | emissions<br>Controlled melt-<br>ing and refining<br>emissions              | Company J<br>(AISI data)        | 10/20-22/75 | 170 tons of<br>steel per hour.<br>(42 min avg cycle<br>time) | 227,000~<br>258,000 | 202–207    | 3,100-3,600 | RAC Staksampl                                    | r In 12 ft Ø<br>stack after<br>dry ESP                 | EPA Method 5                          | 100-108         | 140                                      | 1.06-1.09<br>acfm | 3                                    | 0.012-<br>0.013 <sup>b</sup> /                               | 0.012                                                            | 0.0926-<br>0.115                                           | 0.105                              | Sampled during blowing of consecutive heats; open hood                                                        | 64         |

## TABLE 7. SUMMARY OF EMISSION FACTORS FOR BASIC OXYGEN FURNACES

.

| Average                  |             |                                                   |                                          |            |                                           | Process condi        | tions         |                   |                                                                              |                           |                         | est methodology       | 7                |                      |                      | ·                                                          | Test re                                    | sults                            |                         |                                                                                         |           |
|--------------------------|-------------|---------------------------------------------------|------------------------------------------|------------|-------------------------------------------|----------------------|---------------|-------------------|------------------------------------------------------------------------------|---------------------------|-------------------------|-----------------------|------------------|----------------------|----------------------|------------------------------------------------------------|--------------------------------------------|----------------------------------|-------------------------|-----------------------------------------------------------------------------------------|-----------|
| emission                 | Emission    |                                                   |                                          | <b>m</b> . | Process                                   | Gas                  | Gas           | Gas               | Type of                                                                      | Location of               |                         | _                     | Sampling time    | Sampling             | No.                  | Measured conc                                              | entrations                                 | Emission fact                    | ors                     |                                                                                         |           |
| factor<br>(1b/ton steel) | reliability | Source                                            | Company/<br>location                     | date       | production<br>rate                        | flow rate<br>(dscfm) | temp.<br>(°F) | velocity<br>(fpm) | sampling<br>device                                                           | sampling<br><u>device</u> | Sampling<br>methodology | Percent<br>isokinetic | per run<br>(min) | flow rate<br>(dscfm) | of runs<br>performed | Range<br>(gr/dscf)                                         | Avg.<br>(gr/dscf)                          | Range<br>(1b/ton_steel)          | Avg.<br>(lb/ton steel)  | Comments                                                                                | Reference |
| 0.269 <u>c</u> /         | A           | Controlled melt-                                  | Bethlehem Steel,<br>Bethlehem, PA        | 1/72       | 274 tons of steel                         | 493500               | 200           | 2,955             | RAC Model 2343<br>Stakesmplr modi-                                           | In 18 ft Ø                | Modified EPA            | 106.5                 | 120              | 0.72                 | 3                    | $0.0231 - 0.0516^{\circ}$                                  | 0.0347 <u>c</u> /                          | 0.161-0.402 <u>c</u> /           | 0.269 <u>c</u> /        | Sampling from end of charge to                                                          | 65        |
| 0.21 <u>b</u> /          | Α           | emissions                                         | ,,                                       |            | 344 tons of steel<br>per hour             |                      |               |                   | fied with EPA<br>approval                                                    | ESP                       | Methou 3                |                       |                  |                      |                      | 0.0156 -<br>0.0451 <u>b</u> /                              | 0.027 <u>b</u> /                           | 0.109-0.352 <sup>b/</sup>        | 0.2 <u>1</u> b/         | heats; open hood.                                                                       |           |
| 0.083c/                  | С           | Controlled melt-<br>ing and refining              | Alan Wood Steel,<br>Conshohocken, PA     | 11/71      | 146 tons of steel<br>per heat             | 211900               | 240           | 1,555             | RAC Model 2343<br>Staksamplr                                                 | 190 ft up in<br>16.5 ft Ø | EPA Method 5            | 116.2<br>(113.7 -     | 94               | 0.42                 | 3                    | 0.00831 -<br>0.0138 <sup>c</sup> /                         | 0.0106 <u>c</u> /                          | 0.0631-0.107 <u>c</u> /          | 0.083 <u>c</u> /        | Sampling from beginning of scrap                                                        | 66        |
| 0.052 <u>b</u> /         | C           | emissions                                         |                                          |            | 160 tons of steel<br>per hour             |                      |               |                   | Modified                                                                     | stack after<br>ESP        |                         | 119.2)                |                  |                      |                      | 0.00499 -<br>0.00939 <u>b</u> /                            | 0.0067 <u>b</u> /                          | 0.037-0.073 <u>b</u> /           | 0.052 <u>b</u> /        | covered 4 heats/run; open hood.                                                         |           |
| 0.0047 <u>c</u> /        | Α           | Controlled melt-                                  | U.S. Steel,                              | 1/72       | 230 tons of steel                         | 57650                | 126           | 2,597             | RAC Model 2343<br>Staksamplr                                                 | After cyclone             | EPA Method 5            | 103.4                 | 161              | 0.72                 | 3                    | 0.00375 -<br>0.00637c/                                     | 0.0049 <u>c</u> /                          | 0.00335-0.00612 <mark>c</mark> / | 0.0047 <u>c</u> /       | Sampling from beginning of blow to                                                      | 67        |
| 0.0028 <u>b</u> /        | Α           | emissions                                         | Lorain, Unio                             |            | 276 tons of steel<br>per hour             |                      |               |                   | Modified                                                                     | scrubber.                 |                         |                       |                  |                      |                      | 0.00164 -<br>0.0050 <u>3</u> b/                            | 0.0029 <sup>b/</sup>                       | 0.00147-0.00484 <u>b</u> /       | 0.0028 <u>b</u> /       | beginning of tap; 6 heats covered;<br>closed hood.                                      |           |
| 0.007 <u>9</u> c/        | A           | Controlled melt-                                  | U.S. Steel,                              | 11/71      | 230 tons of steel                         | 58770                | 120           | 2,620             | RAC Model 2343                                                               | After cyclone             | EPA Method 5            | 106.4                 | 160              | 0.76                 | 3                    | 0.00466 -                                                  | 0.0081c/                                   | 0.00515-0.0135 <sup>c/</sup>     | 0.0079 <u>c</u> /       | Sampling from end of charge to                                                          | 68        |
| 0.0044 <u>b</u> /        | А           | ing and refining<br>emissions                     | Lorain, Ohio                             |            | per heat<br>276 tons of steel<br>per hour |                      |               |                   | Modified                                                                     | scrubber.                 |                         |                       |                  |                      |                      | 0.0143<br>0.00222 -<br>0.007 <u>b</u> /                    | 0.0036 <u>b</u> /                          | 0.00202–0.00827 <u>b</u> /       | 0.0044 <mark>b</mark> / | beginning of tap; 6 heats covered;<br>newly installed scrubbers; closed<br>hood.        |           |
| <u>a</u> /               | В           | Controlled melt-<br>ing and refining<br>emissions | Inland Steel,<br>E. Chicago,<br>Illinois | 4/75       | 257 tons of input<br>per heat             | 50580                | 123.2         | 2,160             | Model No. AP-<br>5000 Modular<br>Stack-o-Lator                               | <u>a</u> /                | EPA Method 5            | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | 6                    | 0.004 -<br>0.006 <u>b</u> /                                | 0.005 <u>b</u> /                           | <u>a</u> /                       | <u>a</u> /              | Sampling from beginning of blow to<br>beginning of tap; 2 heats/run;<br>closed hood.    | 69        |
| <u>a</u> /               | В           | Controlled melt-<br>ing and refining<br>emissions | Inland Steel,<br>E. Chicago, IL          | 5/75       | 257 tons of input<br>per heat             | 54250                | 139.8         | 2,382             | Model No. AP-<br>5000 Modular<br>Stack-o-Lator                               | <u>a</u> /                | EPA Method 5            | <u>a</u> /            | . <u>a</u> /     | <u>a</u> /           | 6                    | 0.007 -<br>0.027 <u>c</u> /<br>0.006 -<br>0.011 <u>b</u> / | 0.014 <sup>_/</sup><br>0.008 <sup>_/</sup> | <u>a</u> /                       | <u>a</u> /              | Sampling from beginning of preheat<br>to beginning of tap; 2 heats/run;<br>closed hood. | 69        |
| <u>a</u> /               | С           | Controlled melt-<br>ing and refining<br>emissions | Kaiser Steel,<br>Fontana, Calif.         | 7/72       | <u>a</u> /                                | 190900               | 340           | <u>a</u> /        | 47 mm filter<br>attached to front<br>of probe followed<br>by condensate trap | Precipitator<br>stacks    | <u>a</u> /              | <u>a</u> /            | 15-20            | <u>a</u> /           | 2                    | <u>a</u> /                                                 | 0.01134<br>gr/scf                          | <u>a</u> /                       | <u>a</u> /              | Sampling during one blow period/ru<br>open hood.                                        | n; 70     |

•

-

··.

•

•

\_\_\_\_\_

## TABLE 7. (CONTINUED)

•

| emission                                                                   | Friction   |                                                                                    |                                     |       |                                                              | Process conditi                                       | ons                                                         |                   |                                                               |                                                                |                                                  | Test methodolog                          | v                        |                       |                                         |                                                                                         | Test r                                                  | esults                                                                                            |                                                                            |                                                                                                                                                       |           |
|----------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------|-------------------------------------|-------|--------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------|---------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------|-----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| factor<br>(1b/ton steel)                                                   | factor     | Source                                                                             | Company/                            | Test  | Process<br>production                                        | Gas<br>flow rate                                      | Gas<br>temp.                                                | Gas<br>velocity   | Type of sampling                                              | Location of sampling                                           | Sampling                                         | Percent                                  | Sampling time<br>per run | Sampling<br>flow rate | No.<br>of runs                          | Measured cond                                                                           | centrations<br>Avg.                                     | Emission fact<br>Range                                                                            | ors<br>Avg.                                                                |                                                                                                                                                       |           |
|                                                                            |            | Source                                                                             | location                            | date  | rate                                                         | (dscfm)                                               | (°F)                                                        | (fpm)             | device                                                        | device                                                         | methodology                                      | isokinetic                               | (min)                    | (dscfm)               | performed                               | (gr/dscf)                                                                               | (gr/dscf)                                               | (1b/ton steel)                                                                                    | (1b/ton steel)                                                             | Comments                                                                                                                                              | Reference |
| 0.0158 <sup>6/</sup><br>0.0132 <sup>b/</sup>                               | A<br>A     | Controlled melt-<br>ing and refining<br>emissions                                  | Armco Steel,<br>Middletown, Ohio    | 10/71 | 200 tons of<br>steel per<br>heat                             | 39,300                                                | 148                                                         | 1,835             | RAC Model 2343<br>Staksamplr con-<br>forming to<br>Method 5   | BOF Stack No.<br>15, after<br>venturi<br>scrubbers             | EPA Method 5                                     | 103                                      | 237                      | 0.49                  | 3                                       | 0.0125-0.0164<br>0.0112-0.0145b                                                         | / 0.0145 <u>e</u> /<br>/ 0.0125 <u>b</u> /              | 0.0158 <u>c</u> /<br>0.0115-0.014 <u>1b</u> /                                                     | 0.0158 <u>c</u> /<br>0.0132 <u>b</u> /                                     | Sampling from end of charge to<br>beginning of tap; 6 heats per<br>test; closed hood.                                                                 | 71        |
| ).114 <sup>c</sup> /<br>).106 <sup>b/</sup>                                | c<br>c     | Controlled melt-<br>ing and refining<br>emissions                                  | National Steel,<br>Weirton, WVA     | 12/71 | 340 tons of<br>steel per<br>heat                             | 219,000                                               | 138                                                         | 1,304             | RAC Model 2343<br>Staksamplr<br>Modified with<br>EPA approval | In stack after<br>venturi<br>scrubber                          | EPA Method 5                                     | 87 (only or<br>test betwee<br>90 and 110 | ne 137<br>en<br>)        | 0.65                  | 3                                       | 0.0281-0.0424<br>0.0353 <u>b</u> /                                                      | / 0.0369 <u>c</u> /<br>0.0353 <u>b</u> /                | 0.0998-0.127 <u>c</u> /<br>0.106 <u>b</u> /                                                       | 0.1143e/<br>0.106 <u>b</u> /                                               | Sampling from end of charge to<br>beginning of tap; 4 heats per<br>run; open hood.                                                                    | 72        |
| 0.0556 <u>b</u> /-<br>primary hood<br>0.0504 <u>b</u> /-<br>secondary hood | A<br>A     | Controlled melting,<br>refining, charging and<br>tapping emissions from<br>a Q-BOP | Republic Steel,<br>Chicago, IL      | 8/77  | 247 tons of<br>input per heat<br>247 tons of<br>input per hr | 90,000-<br>primary hood<br>180,000-<br>secondary hood | 140-<br>primary ho<br>120<br>secondary<br>hood stack<br>gas | <u>a</u> /<br>pod | <u>a</u> /                                                    | In stack after<br>venturi scrubbe                              | EPA Method 5<br>r with approved<br>modifications | 98                                       | <u>a</u> /               | <u>a</u> /            | 2-primary<br>hood<br>2-secondat<br>hood | 0.0221-0.0225 <u>b</u><br>(primary hood)<br>ry 0.0066-0.0112 <u>b</u><br>(secondary hoo | / 0.0223b/<br>(primary h<br>/ 0.0089b/<br>d) (sec. hood | 0.0548-0.0564 <u>b</u> /<br>nood)(primary hood)<br>0.037-0.0638 <u>b</u> /<br>1) (secondary hood) | 0.0556 <u>b</u> /<br>(primary hood)<br>0.0504 <u>b</u> /<br>(second. hood) | <pre>6 heats per run; secondary hood<br/>collects charging and tapping<br/>emissions; primary hood collects<br/>blowing emissions; closed hood.</pre> | 73        |
| .0092 <u>d</u> / 1b per<br>on of input                                     | C          | Controlled melting<br>refining, charging and<br>tapping emissions from<br>a Q-BOP  | U.S. Steel,<br>Fairfield, AL        | 11/74 | 227 tons of input<br>per heat<br>332 tons of input<br>per hr | : 68,600                                              | 145                                                         | <u>a</u> /        | <u>a</u> /                                                    | In stack after<br>gravity collect<br>quencher, and<br>scrubber | <u>a</u> /<br>or,                                | 101                                      | 60                       | <u>a</u> /            | 3                                       | 0.013-0.015 <u>d</u> /                                                                  | 0.014 <u>d</u> /                                        | <u>a</u> /                                                                                        | 0 <b>.</b> 0092 <u>d</u> /                                                 | Closed hood; pressure drop<br>across scrubber is 57 in. H <sub>2</sub> O;<br>sampled during oxygen blow.                                              | 74        |
| ./                                                                         | <u>a</u> / | Controlled melting<br>refining, charging and<br>tapping emissions from.<br>a Q-BOP | U.S. Steel,<br>Fairfield, AL        | 10/78 | <u>a</u> /                                                   | 76,300                                                | 163                                                         | 3,352             | Standard EPA<br>Method 5 train                                | After scrubber<br>controlling<br>primary hood ca               | EPA Method 5<br>tch                              | 98.7                                     | 60                       | <u>a</u> /            | 3                                       | 0.02108-<br>0.02311 <u>b</u> /                                                          | 0.02180 <u>b</u> /                                      | <u>a</u> /                                                                                        | <u>a</u> /                                                                 | Sampled during oxygen blow;<br>closed hood.                                                                                                           | 75        |
| <u>n</u> /                                                                 | <u>a</u> / | Controlled melting,<br>refining, charging and<br>tapping emissions from<br>a Q-BOP | U.S. Steel<br>Fairfield, AL         | 10/78 | <u>a</u> /                                                   | 92,700                                                | 158                                                         | 3,752             | Standard EPA<br>Method 5 train                                | After scrubber<br>controlling pri<br>mary hood catch           | EPA Method 5<br>-                                | 105                                      | 63                       | <u>a</u> /            | 3                                       | 0.00997-<br>0.01573 <u>b</u> /                                                          | 0.01006 <u>b</u> /                                      | <u>a</u> /                                                                                        | <u>a</u> /                                                                 | Sampled from beginning of blow to<br>beginning of tapping (therefore,<br>includes turndown); closed hood.                                             | 75        |
|                                                                            | <u>a</u> / | Controlled melt-<br>ing and refining<br>emissions                                  | Bethlehem Steel<br>Burns Harbor, IL | 1974  | 300 tons per heat                                            | <u>a</u> /                                            | <u>a</u> /                                                  | <u>a</u> /        | <u>a</u> /                                                    | After venturi<br>scrubber                                      | EPA Method 5                                     | <u>a</u> /                               | 60                       | 0.53                  | 3                                       | <u>a</u> /                                                                              | 0.022 <u>b</u> /                                        | <u>a</u> /                                                                                        | <u>a</u> /                                                                 | Open hood; pressure drop across<br>scrubber is 55 in. H2O.                                                                                            | 76        |
|                                                                            | <u>a</u> / | Controlled melt-<br>ing and refining<br>emissions                                  | Kaiser Steel,<br>Fontana, Calif.    | 1972  | 120 tons per heat                                            | <u>a</u> /                                            | <u>.a</u> /                                                 | <u>a</u> /        | <u>a</u> /                                                    | After ESP                                                      | <u>a</u> /                                       | <u>a</u> /                               | 60                       | 0.53                  | 3                                       | <u>a</u> /                                                                              | 0.006 <u>b</u> /                                        | <u>a</u> /                                                                                        | <u>a</u> /                                                                 | Open hood.                                                                                                                                            | 76        |
| ./                                                                         | <u>a</u> / | Controlled melt-<br>ing and refining<br>emissions                                  | Interlake Steel,<br>Chicago, IL     | 1975  | 80 tons per heat                                             | <u>a</u> /                                            | <u>a</u> /                                                  | <u>a</u> /        | <u>a</u> /                                                    | After ESP                                                      | <u>a</u> /                                       | <u>a</u> /                               | 60                       | 0.53                  | 3                                       | <u>a</u> /                                                                              | 0.00 <u>9</u> b/                                        | <u>a</u> /                                                                                        | <u>a</u> /                                                                 | Open hood.                                                                                                                                            | 76        |

-----

----

.

TABLE 7. (continued)

-----
|                                                                                                                                      |                                                  |                                                             |                             |                        |                                                           | Process cond                                                   | tions            |                                     |                                                                                                                   |                                                                       | Test methodology                                                                                                                                                                                                                                         |                    |               |               |                                                                 |                                | Test re              | sults                                           |                                        |                                                                                                             |           |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|-----------------------------|------------------------|-----------------------------------------------------------|----------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|---------------|-----------------------------------------------------------------|--------------------------------|----------------------|-------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|
| verage                                                                                                                               | Emission                                         |                                                             |                             |                        | Process                                                   | Gas                                                            | Gas              | Gas                                 | Type of                                                                                                           | Location of                                                           |                                                                                                                                                                                                                                                          |                    | Sampling time | Sampling      | No.                                                             | Measured cond                  | entrations           | Emission fact                                   | ors                                    |                                                                                                             |           |
| factor                                                                                                                               | factor                                           |                                                             | Company/                    | Test                   | production                                                | flow rate                                                      | temp.            | velocity                            | sampling                                                                                                          | sampling                                                              | Sampling                                                                                                                                                                                                                                                 | Percent            | per run       | flow rate     | of runs                                                         | Range                          | Avg.                 | Range                                           | AVg.                                   | Comments                                                                                                    | Reference |
| n steel)                                                                                                                             | reliability                                      | Source                                                      | location                    | date                   | rate                                                      | (dscfm)                                                        | (°F)             | (fpm)                               | device                                                                                                            | device                                                                | methodology                                                                                                                                                                                                                                              | isokinetic         | (min)         | (dscfm)       | performed                                                       | (gr/dscf)                      | (gr/dscf)            | (1b/ton steel)                                  | (ID/ton steel)                         |                                                                                                             | 127       |
|                                                                                                                                      | Λ                                                | Uncontrolled melt-                                          | CF&I Steel,<br>Pueblo, CO   | 4/10-17/78             | 120 tons/heat                                             | 90,600-104,400                                                 | 458 <b>-</b> 515 | 4,780-5,550                         | In-stack alundum<br>thimble                                                                                       | In duct before ESP                                                    | ASME PTC 27                                                                                                                                                                                                                                              | 90-109             | 72-79         | 0.3           | 5                                                               | 7•26-9•32 <u>b</u> /           | 8.1 <u>b</u> /       | 21•4-27•7 <u>b</u> /                            | 24.2 <u>b</u> /                        | Sampled during blowing and reblowing;<br>open hood.                                                         | : 137     |
|                                                                                                                                      | A                                                | emissions.<br>Controlled melting and<br>refining emissions. | i CF&I Steel,<br>Pueblo, CO | 4/10-17/78             | 120 tons/heat                                             | 151,500-169,900                                                | 247-289          | 4,040-4,410                         | Method 5 train                                                                                                    | In stack after ESP                                                    | EPA Method 5 (undetermined<br>No. of points)                                                                                                                                                                                                             | 92-100             | 75-83         | 0.6           | 5                                                               | 0•00935-0•022 <u>1</u>         | 2/ 0.0125 <u>b</u> / | 0.0426-0.1122 <u>b</u> /                        | 0.0614 <u>b</u> /                      | open hood.                                                                                                  | 70        |
| / lb/ton of<br>t                                                                                                                     | C <u>e</u> ∕                                     | Controlled melting<br>and refining emis-<br>sion            | Company J<br>(AISI data)    | 2/11,12,<br>17/76      | 305 tons charged<br>per hour<br>45 min. avg<br>cycle time | 383,000-<br>399,000                                            | 250-282          | 5,900-<br>6,400                     | <u>a</u> /                                                                                                        | In 12 ft Ø<br>stack after<br>dry ESP                                  | EPA Method 5                                                                                                                                                                                                                                             | 85-94              | 144           | <u>a</u> /    | 3                                                               | 0.0115-<br>0.018 <u>d</u> /    | 0.0165 <u>d</u> /    | 0.12-0.15 <sup><u>d</u>/</sup>                  | 0.137 <sup>d/</sup><br>lb/ton input    | Sampled during oxygen blow of<br>consecutive heats. Open Hood                                               | 78        |
| lb/ton of                                                                                                                            | <u>دو</u> /                                      | Controlled melting<br>and refining emis-<br>sion            | Company J<br>(AISI data)    | 12/8-10/75             | <u>a</u> /                                                | 268,000-<br>287,000                                            | 247-269          | 4,400-<br>5,000                     | <u>a</u> /                                                                                                        | After dry ESP                                                         | EPA Method 5                                                                                                                                                                                                                                             | <u>a</u> /         | <u>a</u> /    | <u>a</u> /    | 5                                                               | 0.014-<br>0.029 <sup>d</sup> / | 0.019 <u>d</u> /     | 0.14-0.21 <sup><u>d</u>/<br/>1b/ton input</sup> | 0.162 <sup>d/</sup><br>lb/ton input    | Open hood                                                                                                   | 79        |
|                                                                                                                                      | <u>ве</u> /                                      | Tapping                                                     | Company D<br>(AISI data)    | 4/28-29/75             | 196-216 tons of<br>steel per heat                         | <u>a</u> /                                                     | <u>a</u> /       | <u>a</u> /                          | <u>a</u> /                                                                                                        | <u>a</u> /                                                            | In-stack filter; tapping<br>emissions captured by<br>primary hood.                                                                                                                                                                                       | <u>a</u> /         | <u>a</u> /    | <u>a</u> /    | 15                                                              | 0.0218<br>0.387<br>gr/acf      | 0.0935<br>gr/acf     | 0.051-0.891                                     | 0.291                                  | Value represents uncontrolled<br>emissions factor calculated<br>assuming 93% avg capture effi-<br>ciency.   | 50        |
| b/ton of<br>etal charged                                                                                                             | <u>ве</u> /                                      | Charging                                                    | Company D<br>(AISI data)    | 4/28-29/75             | 147–182 tons of<br>hot metal charged<br>per heat          | <u>a</u> /<br>d                                                | <u>a</u> /       | <u>a</u> /                          | <u>a</u> /                                                                                                        | <u>a</u> /                                                            | In-stack filter; charging<br>emissions captured by primary<br>hood.                                                                                                                                                                                      | <u>a</u> /         | <u>a</u> /    | <u>a</u> /    | 15                                                              | 0.0675-<br>0.526<br>gr/acf     | 0.210<br>gr/acf      | 0.025-0.369<br>1b/ton hot<br>metal charged      | 0.142<br>15/ton hot<br>metal charged   | Value represents uncontrolled<br>emission factor calculated<br>assuming 78% avg capture effi-<br>ciency.    | 81        |
| poured                                                                                                                               | <u>ве</u> /                                      | Hot metal transfer                                          | Company D<br>(AISI data)    | 5/1/75                 | 160–184 tons of<br>hot metal poured<br>per heat           | <u>a</u> /                                                     | <u>a</u> /       | <u>a</u> /                          | <u>a</u> /                                                                                                        | <u>a</u> /                                                            | In-stack filter; emissions<br>captured by reladling station<br>hood.                                                                                                                                                                                     | <u>a</u> /         | <u>a</u> /    | <u>a</u> /    | 8                                                               | 0.0690-<br>0.237<br>gr/acf     | 0.13<br>gr/acf       | 0.029-0.098<br>1b/ton hot<br>metal poured       | 0.056<br>lb/ton<br>hot metal<br>poured | Assumed 100% capture efficiency.                                                                            | 82        |
|                                                                                                                                      | с                                                | Monitor emissions                                           | Company A<br>(AISI data)    | <u>a</u> /             | <u>a</u> /                                                | <u>a</u> /                                                     | <u>a</u> /       | <u>a</u> /                          | Hi-Vols and<br>hot wire<br>anemometers                                                                            | In roof<br>monitor                                                    | Divided monitor into 12 equal<br>area sections and sampled in<br>each section.                                                                                                                                                                           | <u>a</u> /         | <u>a</u> /    | <u>a</u> /    | l in each of<br>12 sections.                                    | <u>a</u> /                     | <u>a</u> /           | <u>a</u> /                                      | <u>a</u> /                             |                                                                                                             | 33        |
| -Emissions escap<br>hitor during 1 h<br>me<br>-captured charge<br>issions<br>captured charge<br>hissions and unc<br>ured monitor emi | oing <u>Be</u> /<br>nr<br>ing<br>ng<br>ap-<br>s- | Uncontrolled monitor<br>emissions                           | Company A<br>(AISI data)    | Feb. and<br>March 1975 | 6,400 tons of<br>steel per day                            | 30,700-104,000<br>acfm (through<br>an opening withi<br>a zone) | <u>a</u> /       | 169-378<br>fpm (throug<br>openings) | 3 Gelman Hurri-<br>h cane air samplers<br>and Datametrics<br>air flow multi-<br>meters (hot-<br>wire anemometers) | In front of<br>openings in<br>room monitor<br>and side of<br>building | Divided building into 8 zones.<br>Each zone has 3 openings:<br>an east and west monitor<br>opening and an opening in the<br>east side of the building at<br>at intermediate level. Sample<br>all 3 openings simultaneously.<br>Repeated process for each | a <u>a</u> /<br>ed | l hr/zone     | 33-57<br>acfm | 3 simultaneous<br>runs/zone and<br>8 zones/test<br>and 3 tests. | 5 0.0026-<br>0.0389<br>gr/acf  | -                    | 0.28-0.44                                       | 0.34                                   | This BOF shop had a secondary hood<br>capturing charging emissions. 0.1<br>lb/ton was captured in the hood. | 84<br>6   |

\_\_\_\_\_

. . .

TABLE 7 (continued)

.

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| $\frac{1}{2} \left( \frac{1}{2} \right)^{1} \left( \frac{1}{2} \left( \frac{1}{2} \right)^{1} \left( \frac{1}{2} \left( \frac{1}{2} \right)^{2} \right)^{1} \left( \frac{1}{2} \left( \frac{1}{2} \right)^{2} \right)^{1} \left( \frac{1}{2} \left( \frac{1}{2} \right)^{1} \left( \frac{1}{2} \right)^{1} \left$ | Poforono                              |
| 0.147       0       bolto relision       bolto series       0       0.00       0       bolto relision       0.00       0.00       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000 <td>85</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | locity measure- 86,87<br>inemometers. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tiation to time 88                    |
| $\frac{a}{a}$ $\frac{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | time the building<br>88               |
| $a'$ $a'$ $b_{controlled}$ $b_{controll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gging<br>88                           |
| 0.19b/ Ib/ton metal A Hot metal transfer Wisconsin Steel April, May 29.1-90.4 tons 33,000-46,000 135-248 3,840-4,530 Method 5 train fer hood branch dust sampled per test.<br>0.19b/ Ib/ton hot metal $A$ Hot metal transfer Wisconsin Steel April, May 29.1-90.4 tons 33,000-46,000 135-248 3,840-4,530 Method 5 train fer hood branch dust sampled per test.<br>0.192c/ Ib/ton hot metal $A$ Hot metal transfer $A$ Hot metal transfer $A$ hot metal transfer $A$ hot metal transfer $A$ hot metal $A$ hot metal $A$ hot metal transfer $A$ hot metal $A$ hot metal $A$ hot metal transfer $A$ hot metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rge initiation. 88                    |
| 0.379-2.359b/0.917b/0.2-1.2b/0.6b/ Sampling was done at a different p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ions. Avg EF in 133<br>ount for       |
| 0.6b/ lb/ton hot metal A Charging Republic Steel March, May 49.5-91.6 tons 268,000-<br>0.66c/ lb/ton hot metal Chicago, IL 1978 of hot metal/min 463,000<br>0.66c/ lb/ton hot metal Chicago, IL 1978 of hot metal/min 463,000<br>0.6445-2.3902c/ 1.0118c/<br>1b/ton hot metal lb/ton hot metal contact is representative<br>0.6445-2.3902c/ 1.0118c/<br>1b/ton hot metal lb/ton hot metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oint along the 134<br>ly the avg of   |
| of bend in duct<br>EPA Method 5. 10-12 92.6-102.5 4.7-6.0 1.0-2.0 3 0.3853-3.8973b/ 1.6558b/ 0.15-2.28b/ 0.92b/<br>0.4413-3.9714c/ 1.7269c/ 0.18-2.32c/ 0.96c/<br>0.4413-3.9714c/ 1.7269c/ 0.18-2.32c/ 0.96c/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 134                                   |
| $0.92\underline{b}/$ A Tapping Republic Steel March 1978 Steel ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77                                    |
| 0.3=0.4 D Charging <u>a</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77                                    |
| 0.15-0.2 D Tapping $\underline{a}/$ $\underline{a}/$ $\underline{a}/$ $\underline{a}/$ $\underline{a}/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |

<u>a</u>/ Reference provides insufficient data or corroboration of data.
 <u>b</u>/ Based on particulate collected in front half of sampling train.

<u>c</u>/ Based on particulate collected in front and back halves of sampling train.
 <u>d</u>/ Unclear whether value is based on particulate collected in front half of sampling train or in fron and back halves combined.
 <u>e</u>/ AISI-compiled tests selected as acceptable by Peter Westlin, Test Support Section, OAQPS.

TABLE 7. (CONCLUDED)

31

There are also specific charging and tapping EFs listed in Table 7. There are seventeen A-rated EFs, nine B-rated factors, sixteen C-rated factors, three D-rated factors, and nine unrateable tests in Table 7.

Also shown in Table 7, where data were avilable is whether the furnace was top or bottom blown and whether the hood was open or closed. Under the table heading entitled <u>Source</u>, a top blown furnace should be inferred unless the furnace is specifically identified as a Q-BOP. Whether the hood is open or closed is a fact to be found under the table heading entitled <u>Comments</u>.

The exact processes included in the source listed as <u>Melting and Refining</u> in Table 7 are of importance in utilizing the emission factor value given. There are three possible sources: (a) scrap preheat, (b) blowing or refining, and (c) turndown, i.e., the period during which a sample of the heat is taken and analyzed. Where the data were available, what precise processes were tested are listed under the table heading entitled <u>Comments</u>.

### 3.5 ELECTRIC ARC FURNACES

(There are several sources of particulate emission in the electric arc furnace steelmaking process. The emission sources are (a) emissions from the melting and refining of the heat itself, often vented through a hole in the furnace roof, (b) charging scrap, (c) dumping slag, and (d) tapping steel.

There are several possible configurations of control systems to capture and remove emissions. Figures 3 and 4 show some of the more common configurations. Configuration 1 in Figure 3 is the building evacuation system; Configuration 2 in Figure 4 is direct shell evacuation (DSE) of melting and refining emissions and canopy hood capture of charging, tapping, and slagging emissions with both venting to a common baghouse. There are several variations on Configuration 2: (a) the roof monitor can be open to release those emissions not captured by the canopy hood or closed, or (b) the canopy hood and the DSE system can be vented to separate control devices rather than a common emission removal device.

In interpreting emission factor data for EAFs, it is important to know which configuration was sampled and where the sample was collected. For example, suppose Configurations 1 and 2 shown in Figures 3 and 4 are both sampled at the baghouse inlet. The value obtained from Configuration 1 would represent all melting, refining, charging, tapping, and slagging emissions which ascended to the building roof while the value obtained from Configuration 2 would represent nearly all the melting and refining emissions but only that portion of the charging, tapping, and slagging emissions which were captured by the canopy hood.



Figure 3. Building evacuation (BE) system closed roof--Configuration 1.

٠.

٠

•



• 1

<u>م</u>

Figure 4. Canopy hood (CH) open roof--Configuration 2.

.

• .

•

Table 8 lists EFs for particulate sources in EAF shops. Melting and refining, referred to in Table 8, imply mainly emissions captured by direct shell evacuation through a hole in the furnace roof. Monitor emissions include the portion of charging, tapping, and slagging emissions that escape into the atmosphere. When the secondary controls are not specified for a monitor test, it is difficult to judge the typicalness of or to utilize the results.

Listed in the comments column of Table 8 are two of the important parameters which effect the emission factors: (a) whether the process was to produce carbon or alloy steel (two significantly different processes), and (b) what control device configuration was used.

There are four A-rated EFs in Table 8 and twenty-one C-rated EFs. The dearth of A- and B-rated EFs is due to poor sampling methods or a failure to report the sampling method. The poor sampling methods were often not the fault of the test designer but coupled more with the problems encountered in sampling a pressure baghouse.

### 3.6 OPEN HEARTH FURNACES

There are several sources of particulate emission in the open hearth furnace steelmaking process. The activities generating emissions are (a) transferring hot metal, (b) melting and refining the heat, (c) charging of scrap and/or hot metal, (d) dumping slag, and (e) tapping steel.

Table 9 lists EFs for particulate sources in OHF shops. Monitor emissions refer to the portion of the hot metal transfer, charging, tapping, and slagging emissions that enter the atmosphere through the shop roof monitor. There are only 10 total EFs presently included in the data base. Four of these are A-rated, one is B-rated, and five are C-rated. The main problem is failure to report not only the details of the tests, but the test methodologies themselves.

### 3.7 TEEMING

Only one investigative effort to quantify an emission factor for teeming is available.<sup>133</sup> The emission factors were measured via stack testing in the ductwork leaving a side draft hood which captured emissions from a teeming operation. Emissions were measured simultaneously before and after the baghouse removing the captured emissions.

Tests were performed during the teeming of leaded and unleaded steel. Only the material captured by the hood could be measured via stack tests. The material captured varied from nearly 100% of that emitted to a much lower efficiency (not quantified) when the wind was blowing from directions where building openings occurred.

|                                                  |                                 |                                                                                           |                                        |                           | Proces                                                                                | s conditions                                      |                      |                               | Toopedan - 6                          | Test methodology                                                          | · · · · · · · · · · · · · · · · · · · |                           |                             |                                |                                                              | Test results                           |                                              |                                    |                                                                                                              |           |
|--------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|----------------------|-------------------------------|---------------------------------------|---------------------------------------------------------------------------|---------------------------------------|---------------------------|-----------------------------|--------------------------------|--------------------------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|
| Average<br>emission<br>factor<br>(1b/ton_steel)  | Emission<br>factor<br>reliabili | n<br>ity Source                                                                           | Company/<br>location                   | Test<br>date              | Process<br>production<br>rate                                                         | Gas<br>flow rate<br>(dscfm)                       | Gas<br>temp.<br>(°F) | Type of<br>sampling<br>device | sampling<br>device                    | Sampling<br>methodology                                                   | Percent<br>isokinetic                 | Sampling<br>time<br>(min) | Gas<br>flow rate<br>(dscfm) | Number<br>of runs<br>performed | Range<br>(gr/dscf)                                           | Average<br>(gr/dscf)                   | Emission<br>Range<br>lb/ton steel            | factors<br>Average<br>lb/ton steel | Comments                                                                                                     | Reference |
| 0.3 <u>d</u> /(Alloy Steel)<br>0.58 <u>e</u> /   | A                               | Controlled EAF melting,<br>refining, charging, tap-<br>ping, and slagging<br>emissions.   | Babcock and<br>Wilcox<br>Beaver Fails, | 10/18-20/72<br>, PA       | 18T steel/hr                                                                          | 452,000 (bldg<br>evacuation sys-<br>tem included) | 98                   | Method 5<br>EPA train         | In short stacks<br>after baghouse     | EPA method 5 except<br>probe was not heate                                | 96-104.7<br>ed                        | 240                       | 0.75-0.79                   | 9                              | 0.0005-<br>0.0032 <u>d</u> /<br>0.0014-<br>0.0047 <u>e</u> / | 0.0014 <u>c</u> /<br>0.0027 <u>e</u> / | 0.11-0.66 <u>d</u> /<br>0.34-0.95 <u>e</u> / | 0.3<br>0.58 <u>e</u> /             | Shop has 1/50 T and 1/75 T alloy<br>Steel EAF; control device<br>configuration 1                             | 89        |
| 11.3 <u>d</u> / (Alloy Steel)<br>11.7 <u>e</u> / | A<br>A                          | Uncontrolled EAF melting,<br>refining, charging, tap-<br>ping, and slagging<br>emissions. | Babcock and<br>Wilcox<br>Beaver Falls  | 10/18-20/72<br>, PA       | 18T steel/hr                                                                          | 452,000 (bldg<br>evacuation sys-<br>tem included) | 98                   | Method 5<br>EPA train         | In 12 ft Ø<br>duct before<br>baghouse | EPA Method 5<br>except probe<br>was not heated                            | 97.4-99.5                             | 240                       | 0.72-0.79                   | 3                              | 0.0386-<br>0.0605d/<br>0.0397-<br>0.0618 <u>e</u> /          | 0.0518 <u>d</u> /<br>0.0537 <u>e</u> / | 8-13.6 <u>d</u> /<br>8.2-13.9 <u>e</u> /     | 11.3 <u>d</u> /<br>11.7 <u>e</u> / | Shop has 1/50 T and 1/75 T alloy<br>steel EAF; control device<br>configuration l                             | 89        |
| 7.6                                              | С                               | Uncontrolled EAF<br>melting and re-<br>fining emissions.                                  | <u>a</u> /                             | <u>a</u> /                | 14.4T input/hr                                                                        | 23,920                                            | 209                  | <u>a</u> /                    | <u>a</u> /                            | <u>a</u> /                                                                | <u>a</u> /                            | <u>a</u> /                | <u>a</u> /                  | 1                              | None                                                         | 0.5373                                 | None                                         | 7.6                                | 50 T furnace. Unclear whether carbon or alloy steel.                                                         | 90        |
| 11.0                                             | С                               | Uncontrolled EAF<br>melting and re-<br>fining emissions.                                  | <u>a</u> /                             | <u>a</u> /                | 13.6-23.5T/hr                                                                         | <u>a</u> /                                        | 281-297              | <u>a</u> /                    | <u>a</u> /                            | <u>a</u> /                                                                | <u>a</u> /                            | <u>a</u> /                | <u>a</u> /                  | 5                              | <u>a</u> /                                                   | <u>a</u> /                             | 6.9-18.6                                     | 11.0                               | 50 and 75 T furnace. Unclear whether carbon or alloy steel.                                                  | 90        |
| 4.8                                              | C                               | Controlled EAF melt-<br>ing and refining<br>emissions.                                    | <u>a</u> /                             | <u>a</u> /                | 13.6-22 T input<br>hr                                                                 | 25,900                                            | 297                  | <u>a</u> /                    | In stack after<br>scrubber            | <u>a</u> /                                                                | <u>a</u> /                            | <u>a</u> /                | <u>a</u> /                  | 2                              | 0.109-<br>0.556                                              | 0.333                                  | 2.04-7.65                                    | 4.8                                | 50 and 75 furnace. Scrubber<br>control efficiencies of 37 and 70%.<br>Unclear whether carbon or alloy steel. | 90        |
| 19.5 lb/ingot ton                                | С                               | Uncontrolled EAF<br>melting and refin-<br>ing emissions.                                  | Company K<br>(AISI data)               | 1/15-24/75                | <u>a</u> /                                                                            | <u>a</u> /                                        | <u>a</u> /           | <u>a</u> /                    | <u>a</u> /                            | Weighed control<br>device catch and<br>divided by ingot<br>tons produced  | <u>a</u> /                            | <u>a</u> /                | <u>a</u> /                  | 10                             | None                                                         | None                                   | 15.1-34.8<br>1b/ingot<br>ton                 | 19.5<br>1b/ingot<br>ton            | Carbon steel                                                                                                 | 91,143    |
| 28.8 lb/T of input<br>(stainless and alloy       | C<br>)                          | Uncontrolled EAF<br>melting and refin-<br>ing emissions.                                  | Company J<br>(AISI data)               | Jan.—April<br>1976        | 78,000-83,000<br>T steel/month                                                        | <u>a</u> /                                        | <u>a</u> /           | <u>a</u> /                    | <u>a/</u>                             | Weighed control<br>device catchand<br>divided by tons<br>of steel melted  | <u>a</u> /                            | <u>a</u> /                | <u>a</u> /                  | 4                              | None                                                         | None                                   | <b>29-</b> 34.2<br>1b/T steel                | 31.7<br>1b/T steel                 |                                                                                                              | 92        |
| 17.1                                             | С                               | Uncontrolled EAF<br>melting and refin-<br>ing emissions.                                  | Company H<br>(AISI data)               | 10/18-25/75<br>and 6/8/76 | 5 4,080 T steel<br>tapped over 7-c<br>test period.<br>T steel tapped<br>over weekend. | <u>a</u> /<br>day<br>536                          | <u>a</u> /           | <u>a</u> /                    | <u>a</u> /                            | Weighed control<br>device catch and<br>divided by tons<br>of steel tapped | <u>a</u> /                            | <u>a</u> /                | <u>a</u> /                  | 2                              | None                                                         | None                                   | 13.4-20.8                                    | 17.1                               | Alloy steel                                                                                                  | 93,143    |

•

| TABLE 8. | SUMMARY O | F EMISSION | FACTORS | FOR   | ELECTRIC  | ARC  | FURNACES |
|----------|-----------|------------|---------|-------|-----------|------|----------|
|          |           |            |         | ~ 010 | DHHOTICTO | ni/U | TURNACES |

| Average<br>emission<br>factor |              |                                                                                                                 |                                               |                     | Pro            | ocess conditions       |               |                                                |                                                | Test meth                            | nodology              |                  |                      |                      |                     | Test r               | esults                |                         |                                                                                                                                                                                               |           |
|-------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|----------------|------------------------|---------------|------------------------------------------------|------------------------------------------------|--------------------------------------|-----------------------|------------------|----------------------|----------------------|---------------------|----------------------|-----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| emission                      | Emission     | 1                                                                                                               |                                               |                     | Process        | Gas                    | Gas           | Type of                                        | Location of                                    |                                      | <b>.</b> .            | Sampling         | Gas                  | Number               | Measured con        | centrations          | Emission f            | actors                  | -                                                                                                                                                                                             |           |
| (lb/ton_steel)                | reliabili    | ity Source                                                                                                      | location                                      | date                | rate           | flow rate<br>(dscfm)   | temp.<br>(°F) | sampling<br>device                             | sampling<br>device                             | Sampling<br>methodology              | Percent<br>isokinetic | time<br>(min)    | flow rate<br>(dscfm) | of runs<br>performed | Range<br>(gr/dscf)  | Average<br>(gr/dscf) | Range<br>1b/ton steel | Average<br>1b/ton steel | Comments                                                                                                                                                                                      | Reference |
| 0.043                         | с <u>ь</u> / | Controlled EAF melt-<br>ing and fugitive emis-<br>sions and uncontrolled,<br>uncaptured monitor emis-<br>sions. | Company L<br>(AISI data)                      | 10/9/74             | 33 ton steel/1 | hr 247,000-<br>256,000 | <u>a</u> /    | Rader pneumat<br>ics high vol-<br>ume sampler. | - In north ex-<br>haust plenum<br>of baghouse. | Single point<br>sampled              | 150 <b>-</b> 204      | 140 <b>-</b> 245 | 17.3                 | 2                    | 0.00065-<br>0.00121 | 0.0009               | 0.041-0.045           | 0.043                   | Ganopy hood is 70 ft above<br>furnace. Estimated that 25%<br>of total emissions escaped<br>capture and left monitor; O <sub>2</sub><br>lanced carbon steel; control<br>device configuration 2 | 94        |
| 25                            | С            | Uncontrolled EAF melt-<br>ing and refining emis-<br>sions.                                                      | <u>a</u> /                                    | <u>a</u> /          | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / <u>a</u>                            | <u>a</u> /                                     | <u>a</u> /                           | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | <u>a</u> /          | <u>a</u> /           | 20-30                 | 25                      | Unclear whether carbon or alloy steel.                                                                                                                                                        | 95        |
| 16                            | С            | Uncontrolled EAF meltin<br>and refining emissions.                                                              | <u>a</u> /                                    | <u>a</u> /          | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / <u>a</u>                            | <u>a</u> /                                     | <u>a</u> /                           | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | <u>a</u> /          | <u>a</u> /           | 3-30                  | 16                      | Unclear whether carbon or alloy steel.                                                                                                                                                        | 96        |
| 50                            | С            | Uncontrolled EAF meltin<br>and refining emissions.                                                              | g Lukens Steel<br>Coatsville, PA              | <u>a</u> /          | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / <u>a</u>                            | <u>n</u> /                                     | Weighed baghouse<br>catch            | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | None                | <u>a</u> /           | <u>a</u> /            | 50                      | Garbon steel; control device<br>configuration 2                                                                                                                                               | 97        |
| 51 <u>c</u> /                 | С            | Uncontrolled EAF meltin<br>and refining emissions                                                               | 9g Jones &<br>Laughlin<br>Cleveland, OH       | <u>a</u> /          | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / 1<br>t                              | est at inlet<br>o ESP                          | <u>a</u> /                           | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | <u>a</u> /          | <u>a</u> /           | <u>a</u> /            | 51 <u>c</u> /           | Carbon steel; modified control<br>device configuration consists<br>of DSE vented to ESP.                                                                                                      | 98        |
| 22                            | С            | Uncontrolled EAF meltin<br>and refining emissions.                                                              | 8: Bethlehem Stee<br>Seattle, WA              | 21 <u>a</u> /       | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / <u>a</u>                            | <u>.</u> /                                     | Weighed baghouse<br>catch            | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | None                | None                 | <u>a</u> /            | 22                      | Carbon steel; modified control<br>device configuration 1 with<br>DSE. Building evaluation and                                                                                                 | 99        |
| 1.2                           | С            | Charging and tapping<br>emissions.                                                                              | Bethlehem Ster<br>Seattle, WA                 | el <u>a</u> /       | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a/</u>                                      | ./                                             | Weighed baghouse<br>catch            | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | None                | None                 | 0.9-1.5               | 1.2                     | DSE each vented to separate baghouse.                                                                                                                                                         | 99        |
| 1.7                           | С            | Charging and tapping<br>emissions.                                                                              | Bethlehem Stee<br>Steelton, PA                | 1 <u>a</u> /        | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / <u>a</u>                            | ./                                             | Took measurements<br>in roof monitor | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | <u>a</u> /          | <u>a</u> /           | <u>a</u> /            | 1.7                     | Carbon steel; control device<br>configuration consists of DSE<br>vented to baghouse.                                                                                                          | 100       |
| 27.5                          | с            | Uncontrolled EAF meltin<br>and refining emissions.                                                              | g Bethlehem Stee<br>Steelton, PA              | 61 <u>a</u> /       | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / <u>a</u>                            | !                                              | Weighed baghouse<br>catch            | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | None                | None                 | <u>a</u> /            | 25-30                   | Carbon steel; control device<br>configuration consists of DSE<br>vented to baghouse.                                                                                                          | 99        |
| 43.0                          | С            | Uncontrolled EAF meltin<br>and refining emissions<br>plus all fugitive emis-<br>sions.                          | <sup>g</sup> Bethlehem Stee<br>Los Àngeles, ( | 21 <u>a</u> /<br>CA | <u>a</u> /     | <u>a</u> /             | <u>a</u> /    | <u>a</u> / <u>a</u>                            | /                                              | Weighed baghouse<br>catch            | <u>a</u> /            | <u>a</u> /       | <u>a</u> /           | <u>a</u> /           | None                | None                 | <u>a</u> /            | 43                      | Carbon steel; control device<br>configuration 2 with motorized<br>monitor louvers to enable<br>closing the monitor to<br>capture fugitive emissions.<br>37                                    | 99        |

\_\_\_\_\_

TABLE 8. (continued)

.

| Average                              |                    |                                                                                  |                                                                     |            | Process                   | conditions       |              |                                        |                                                                                                            | Test methodo                                            | ogy        |                        |                             |                   |                      | Test                          | results            |                           |                                                                                                                                                         |               |
|--------------------------------------|--------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|------------|---------------------------|------------------|--------------|----------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------|------------------------|-----------------------------|-------------------|----------------------|-------------------------------|--------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| emission<br>factor                   | Emission<br>factor | n<br>An an                                   | Company/                                                            | Test       | Process<br>production     | Gas<br>flow rate | Gas<br>temp. | Type of<br>sampling                    | Location of<br>sampling                                                                                    | Sampling                                                | Percent    | Sampling<br>time       | Gas<br>flow rate<br>(doofm) | Number<br>of runs | Measured co<br>Range | ncentration<br>Average        | Emission<br>Range  | Average                   |                                                                                                                                                         |               |
| (1b/ton steel)                       | reliabili          | ity Source                                                                       | location                                                            | date       | rate                      | (dscim)          | (°F)         | device                                 | device                                                                                                     | methodology                                             | Isokinetic | (m11)                  | (dscim)                     | periormed         | (gr/dscr)            | (gr/user)                     | ID/LOH SLEEL       | lb/ton_steel              | Gomments                                                                                                                                                | Reterence     |
| 58.0                                 | C                  | Uncontrolled EAF melting,<br>and refining emissions<br>plus portion of charging, | Inland Steel<br>E. Chicago, IN                                      | <u>a</u> / | <u>a</u> /                | <u>a</u> /       | <u>a</u> /   | <u>a</u> /                             | <u>a</u> /                                                                                                 | Weighed baghouse<br>catch                               | <u>a</u> / | <u>a</u> /             | <u>a</u> /                  | <u>a</u> /        | None                 | None                          | 33-83              | 58                        | Carbon steel; control device configuration 2.                                                                                                           | 101           |
| .029 <u>c</u> /                      | С                  | tapping, slagging emission<br>Controlled EAF melting<br>and refining emissions.  | s.<br>Witteman<br>Steel Mills<br>Fontana, CA                        | 2/20/75    | 6.2 T steel/hr            | 4 <b>,</b> 290   | <u>a</u> /   | In stack gla<br>filter                 | ss In stack after<br>scrubber                                                                              | Single point<br>sampled                                 | <u>a</u> / | <u>a</u> /             | <u>a</u> /                  | <u>a</u> /        | <u>a</u> /           | 0 <sub>•</sub> 005 <u>c</u> / | <u>a</u> /         | 0•029 <u>c</u> /          | 1-25 T furnace making carbon steel.                                                                                                                     | 102           |
| 0.145 <u>c</u> /1b/T<br>scrap melted | C                  | Controlled EAF melting,<br>refining building evacu-<br>ation emissions.          | TAMCO (Affiliat<br>of Ameron Steel<br>Corp) Etiwanda,<br>California | e 3/21/78  | 41.7 T scrap<br>melted/hr | 549,000          | 119          | Rader Hi-vol<br>with 3-1/2 i<br>nozzle | <ul> <li>After open</li> <li>baghouse         <ul> <li>(i.e., no shell around bags)</li> </ul> </li> </ul> | Sampled 8 random<br>points over top of<br>open baghouse | 103        | <u>a</u> /             | <u>a</u> /                  | <u>a</u> /        | <u>a</u> /           | 0•00128 <u>c</u>              | / <u>a</u> /       | 0 <b>.1</b> 45 <u>c</u> / | No sampling was performed while bags were<br>being cleaned. 1-120 T furnace; unclear<br>whether carbon or alloy steel was being<br>made during testing. | 103           |
| 1.7 <u>d</u> / 1b/T input            | C                  | Controlled EAF melting,<br>refining and building<br>evacuation emissions.        | Marathon Steel<br>Tempe, AZ                                         | 4/16/77    | 7.9 T input/hr            | 35,800           | 213          | <u>a</u> /                             | In stack after<br>old baghouse                                                                             | <u>a</u> /                                              | 94.6-99.2  | (54-57 dsc<br>per run) | ocf sampled                 | 3                 | 0 <b>•039-0</b> •04  | 9 <u>d</u> / 0.044 <u>d</u> / | 1•5-1•9 <u>d</u> / | 1•7 <u>d</u> /            | Old baghouse on furnace #1 (120 T capacity<br>possibility of leaking bags; unclear<br>whether carbon or alloy steel was being<br>made during testing.   | <b>);</b> 104 |
| 0.33 <u>d</u> /1b/T input            | C                  | Controlled EAF melting,<br>refining and building<br>evacuation emissions.        | Marathon Steel<br>Tempe, AZ                                         | 9/13-16/7  | 7 18.7 T input/hr         | 146,000          | 161          | <u>a</u> /                             | In stack after<br>new baghouse                                                                             | <u>a</u> /                                              | 98.2-108.9 | (40.8-57.4<br>per run) | 4 dscf sampled              | 18                | <u>a</u> /           | 0•0051 <u>d</u> /             | <u>a</u> /         | 0•33 <u>d</u> /           | New baghouse on furnaces #2 and #3; unclea<br>whether carbon or alloy steel was being ma<br>during testing.                                             | r 104<br>de   |

TABLE 8. (Concluded).

a/ Reference provides insufficient data or corroboration of data.

b/ Tests selected as acceptable by Peter Westlin. Test Support Section, OAQPS.

c/ Unclear whether value is based on particulate collected in front half of sampling train or in front and back halves combined.

 $<sup>\</sup>underline{d}$  / Based on particulate collected in front half of sampling train.

 $<sup>\</sup>underline{e}$ / Based on particulate collected in front and back halves of sampling train.

|                                                                                                                                                                      |                           |                                                        |                                       |                                |                               |                                                                                    |                                                              |                                                                                     |                                                                 | m                                                                                                                                           |                                                                |                                                                                                            |                                             |                      |                                                                                                 | Test res                                                                | ults                                                                                                                            |                                                                                                                      |                                                                                                                                     |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|---------------------------------------|--------------------------------|-------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                                                      | <b>D</b>                  |                                                        |                                       |                                |                               | Process condition                                                                  | ons                                                          |                                                                                     | Tranking of                                                     | Test methodology                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                          |                                                                                                            | Sampling                                    | Number               | Measured concer                                                                                 | ntrations                                                               | Emission fa                                                                                                                     | actors                                                                                                               |                                                                                                                                     |           |
| Average<br>emission factor<br>(lb/ton steel) r                                                                                                                       | factor factor factor      | y Source                                               | Company/<br>location                  | Test<br>date                   | process<br>production<br>rate | Gas<br>flow rate<br>(dscfm)                                                        | cas<br>temp.<br>(°F)                                         | iype of<br>sampling<br>device                                                       | sampling<br>device                                              | Sampling<br>methodology                                                                                                                     | Percent<br>isokinetic                                          | Sampling time<br>(min)                                                                                     | flow rate<br>(dscfm)                        | of runs<br>performed | Range<br>(gr/dscf)                                                                              | Average<br>(gr/dscf)                                                    | Range<br>(1b/ton steel)                                                                                                         | Average<br>(1b/ton_steel)                                                                                            | Comments                                                                                                                            | Reference |
| 5.3 <u>c</u> /                                                                                                                                                       | C U<br>i                  | ncontrolled OHF melt<br>ng, and refining emi           | - Company A<br>s- (AISI dat           | 7/5-6/<br>a)                   | 73 3,840 T/d                  | y 301,000                                                                          | 350                                                          | <u>a</u> /                                                                          | Precipitator inlet                                              | <u>a</u> /                                                                                                                                  | <u>a</u> /                                                     | <u>a</u> /                                                                                                 | <u>a</u> /                                  | 8                    | 0.14-0.58 <u>c</u> /                                                                            | 0.33 <u>c</u> /                                                         | 2.2-9.4 <u>c</u> /                                                                                                              | 5.3 <u>c</u> /                                                                                                       | 8 furnaces in operation.                                                                                                            | 105       |
| 0.64 <u>c</u> /                                                                                                                                                      | c C<br>i                  | controlled OHF melt-<br>ng and refining                | Company A<br>(AISI dat                | 7/5-6/3<br>a)                  | 73 3,840 T/da                 | y 301,000                                                                          | <u>a</u> /                                                   | <u>a</u> /                                                                          | Precipitator outlet                                             | <u>a</u> /                                                                                                                                  | <u>a</u> /                                                     | <u>a</u> /                                                                                                 | <u>a</u> /                                  | 2                    | 0.02-0.05 <u>c</u> /                                                                            | 0.04 <u>c</u> /                                                         | 0.32-0.81 <u>c</u> /                                                                                                            | 0.64 <u>c</u> /                                                                                                      | 8 furnaces in operation                                                                                                             | · 105     |
| 0.28 <u>d</u> /                                                                                                                                                      | <u>A</u> b∕G<br>i         | Controlled OHF melt-<br>ng and refining<br>missions    | Company A<br>(AISI dat                | 6/25-2<br>a)                   | 7/74 4,750-5,<br>T/day        | 012 296,000-<br>326,000                                                            | 430-450                                                      | EPA Method 5<br>sampling train                                                      | In 12 ft Ø precipitator<br>exit stack                           | EPA Method 5                                                                                                                                | 103-104                                                        | 144                                                                                                        | 0.57                                        | 3                    | 0.015-0.029 <u>d</u> /                                                                          | 0.022 <u>d</u> /                                                        | 0.18-0.36 <u>d</u> /                                                                                                            | 0.28 <u>d</u> /                                                                                                      | 10-11 furnaces in operation;<br>3-4 furnaces were being<br>blown.                                                                   | 106       |
| 0.1 <u>c</u> /                                                                                                                                                       | B                         | Controlled OHF melt-<br>ing and refining<br>emissions. | Company N<br>(AISI dat                | 3/20/72<br>a)                  | 2 176 T ste                   | el/hr 534,000                                                                      | 385                                                          | Western precipitation<br>stack sampling train.<br>In-stack thimble.                 | In 16.5 ft Ø precipitator<br>exit stack                         | WP-50                                                                                                                                       | <u>a</u> /                                                     | 180                                                                                                        | 0.55                                        | 1                    | None                                                                                            | 0.004 <u>c</u> /                                                        | None                                                                                                                            | 0.1 <u>c</u> /                                                                                                       | 6 furnaces with O <sub>2</sub> lances                                                                                               | 107       |
| 0.33 <u>c</u> /reported<br>0.45 <u>c</u> /average                                                                                                                    | C<br>C                    | Controlled OHF melt-<br>ing and refining<br>emissions. | Company C<br>(AISI dat                | 5/16-20<br>a)                  | 5/71 27 T stee<br>furnace     | el/hr/ 94,500                                                                      | <u>a</u> /                                                   | <u>a</u> /                                                                          | <u>a</u> /                                                      | <u>a</u> /                                                                                                                                  | <u>a</u> /                                                     | <u>a</u> /                                                                                                 | <u>a</u> /                                  | 24                   | 0.0055-0.037 <u>c</u> /                                                                         | 0.015 <u>c</u> /                                                        | 0.16-1.1 <u>c</u> /                                                                                                             | 0.45 <u>c</u> /                                                                                                      | Venturi scrubber pressures<br>from 25 to 47 in. H <sub>2</sub> O.                                                                   | 108       |
| 0.168 weighted<br>by sampling time<br>above and between<br>furnaces                                                                                                  | С                         | Roof monitor<br>emissions                              | Company F<br>(AISI dat                | 6/14-18<br>a)                  | 3/73 125 T sto                | el/hr 1,117,000<br>acfm (tota<br>flow above<br>and on ei<br>side of or<br>furnace) | 118 above<br>1 furnace;<br>102 betwee<br>ther furnaces<br>ae | <u>a</u> /<br>n                                                                     | In roof monitor over one<br>furnace and between two<br>furnaces | Profiled velocity across<br>19 ft wide monitor with<br>vane type anemometer.<br>Unknown particle con-<br>centration measuring<br>technique. | s 65% of the data<br>was more than<br>10% above<br>isokinetic. | 8-75 (tests<br>conducted durin<br>various segment<br>of the operatio<br>such as refinin<br>scrap melt, etc | 0.3-0.4 acf<br>ng<br>ts<br>on<br>ng,<br>c.) | m 28                 | 0.000639-0.0116<br>gr/acf (above<br>furnace)<br>0.000881-0.0045<br>gr/acf (between<br>furnaces) | 0.00504 gr/acf<br>(above furnace)<br>0.00261 gr/acf<br>(between furnace | 0.07-0.64<br>(various segments<br>of the operation<br>s)as measured above<br>furnace)<br>0.029-0.12 (various<br>segments of the | 0.22 avg. of the<br>entire operation as<br>measured above<br>furnace.<br>0.063 avg of entire<br>operation as measure | Only iron oxide was collected.<br>No kish was deposited on filter                                                                   | 109<br>s. |
| <ul> <li>23.7<u>d</u>/ducted emissions<br/>avg during charging<br/>'and blowing;</li> <li>0.5<u>d</u>/avg during chargi<br/>21.1<u>d</u>/avg during blowi</li> </ul> | s A j<br>ing; A<br>ing. A | Uncontrolled OHF melt<br>and refining emission         | t-United Sta<br>nsSteel,<br>Fairfield | ates 9/30/2<br>10/1-2,<br>, AL | 75 30 T stee<br>75 hr/furnace | / 52,600                                                                           | 608                                                          | In-stack alundum thimble<br>followed by heated cyclone<br>and filter outside stack. | In 88 in. Ø stack                                               | Modified EPA Method 5                                                                                                                       | 98.4-104.4                                                     | 126-236                                                                                                    | 0.66                                        | 3                    | 0.8685-1.5429 <u>d</u> /                                                                        | 1.4101 <u>d</u> /                                                       | operation as measure<br>between furnaces)<br>12.3-30.8 <u>d</u> /                                                               | d between furnaces<br>23.7 <u>d</u> /                                                                                | Only two tests were performed<br>for charging and blowing alone<br>while three were performed for<br>charging and blowing combined. | 110       |

-----

and the second s

 $\underline{a}$ / Reference provides insufficient data or corroboration of data.

b/ Tests selected as acceptable by Peter Westlin, Test Support Section, OAQPS.
 c/ Unclear whether value represents particulate collected in front half of sampling train or in front and back halves combined.

d/ Based on particulate collected in front half of sampling train.

| TABLE 9. | SUMMARY | OF | EMISSION | FACTORS | FOR | OPEN | HEARTH | FURNACES |
|----------|---------|----|----------|---------|-----|------|--------|----------|
|          |         |    |          |         |     |      |        |          |

.

The results of the tests on the teeming of leaded steel are shown in Table 10. The average uncontrolled emission factor measured by the front half of a Method 5 train was 0.81 lb/ton steel teemed. The average controlled emission factor measured by the front half of a Method 5 train after the baghouse was 0.0038 lb/ton steel teemed. The average EFs are given an A rating.

The results of six tests on the teeming of unleaded steel are shown in Table 11. The average uncontrolled emission factor measured by the front half of a Method 5 train was 0.07 lb/ton steel teemed. The average controlled emission factor measured by the front half of a Method 5 train after the baghouse was 0.0016 lb/ton steel teemed. These average EFs are given an A rating.

### 3.8 SCARFING

Particulate emissions occur when semi-finished steel products are manually or machine scarfed to remove surface defects. Table 12 lists controlled and uncontrolled EFs for machine scarfing. There are seven A-rated, five B-rated, and three unrateable EFs.

In comparing hand scarfing EFs to machine scarfing EFs, one must consider the units of the EFs and the process differences. The units for the machine scarfing EFs are a pound of particulate per ton of steel put through the machine. In machine scarfing, the entire surface of the product is removed to a depth that is dependent on the speed of the product through the machine and on the flame temperature. Hand scarfing does not involve removal of an entire surface but rather only spots on the product are scarfed.

If hand and machine scarfing were compared on a pound of particulate per ton of material removed basis, then one might, as a first estimate, assume that the hand scarfing EF can be likened in quantity to uncontrolled machine scarfing. But if the comparison is performed on the basis of pound of particulate per ton of steel put through the process, it is believed that hand scarfing is significantly less than uncontrolled machine scarfing. Unfortunately, no test data are available to support this assumption for hand scarfing emissions.

### 3.9 MISCELLANEOUS COMBUSTION SOURCES

Miscellaneous combustion sources include the burning of blast furnace gas, coke oven gas, natural gas, No. 6 fuel oil, or coal for heat used in boilers, soaking pits, and slab furnaces.

| Variable                                                                              | Baghouse inlet             | Baghouse outlet      |
|---------------------------------------------------------------------------------------|----------------------------|----------------------|
| Test date                                                                             | April and May, 1978        | April and May, 1978  |
| Process production rate<br>(T/min of teeming                                          | 5.1-5.4                    | 5.1-5.4              |
| Cas flowrate (dscfm)                                                                  | 28 000-42 600 $\frac{b}{}$ | 56,600 <sup>b/</sup> |
| Cas temperature (OF)                                                                  | 90-127                     | 78-118               |
| Cas velocity (fpm)                                                                    | 2 760-4 240                | 3,070-3,800          |
| Type of sampling device                                                               | Method 5 train             | Method 5 train       |
| Location of sampling                                                                  | In 6' 0 BH inlet           | In 3! (A BH out let  |
| device                                                                                | duct                       | duct                 |
| Sampling methodology                                                                  | FPA Method 5 24 pts        | FDA Method 5 36 pts  |
| Sampling methodology                                                                  | sampled per test.          | sampled per test.    |
| Percent isokinetic                                                                    | 100.3-101.1                | 95.4-103.1           |
| Sampling time per<br>run (min)                                                        | 24                         | 27-29                |
| Sampling flowrate (dscfm)                                                             | 2.6-4.0                    | 4.5-5.0              |
| Number of runs performed                                                              | 3                          | 3                    |
| Range/average of front                                                                | 0.6794-1.0877              | 0.0012-0.0033        |
| half concentrations<br>measured (gr/dscf)                                             | (0.8172)                   | (0.0025)             |
| Range/average of combined                                                             | 0.6918-1.0968              | 0.0103-0.0155        |
| front and back half<br>concentrations (gr/dscf)                                       | (0.8285)                   | (0.0135)             |
| Range/average of front                                                                | 0.51-1.14                  | -                    |
| half emission factors                                                                 | (0.81)                     | (0.0038)             |
| Average of combined front<br>and back half emission<br>factors (1b/T steel<br>teemed) | 0.81                       | 0.021                |

# TABLE 10. EMISSIONS FROM LEADED STEEL TEEMING AT WISCONSIN STEEL, CHICAGO, ILLINOIS - SUMMARY OF TEST PROCEDURES AND RESULTS

- <u>a</u>/ The averaging time began with the initiation of teeming into the first mold and ended with the conclusion of teeming into the last mold.
- b/ Some of the flow rate data were incomplete since velocity traverses were not completed. It still appears, through, that there was a leak in the collection system that will cause the outlet concentrations to be reported lower than actual. However, this problem will not affect the emission factor values.

| Variable                                                                              | Baghouse inlet                         | Baghouse outlet                           |
|---------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|
| Test date                                                                             | April and May, 1978                    | April and May, 1978                       |
| Process production rate<br>(T/min of teeming                                          | 3.8-5.9                                | 3.8-5.9                                   |
| Cas flowrate (decfm)                                                                  | $38.700-44.700^{b/}$                   | 40-100-44-800 <sup>b</sup> /              |
| Cas tomparature (OF)                                                                  | 81_101                                 | 88-92                                     |
| Cas velocity (for)                                                                    | 4 860-6 060                            | 2.450-3.530                               |
| Type of sampling<br>device                                                            | Method 5 train                         | Method 5 train                            |
| Location of sampling<br>device                                                        | In 6' Ø BH inlet<br>duct               | In 3' Ø BH outlet<br>duct                 |
| Sampling methodology                                                                  | EPA Method 5. 24 pts sampled per test. | EPA Method 5. 36 pts<br>sampled per test. |
| Percent isokinetic                                                                    | 97.2-108.1                             | 92.1-108.9                                |
| Sampling time per run<br>(min)                                                        | 20-24                                  | 24-30                                     |
| Sampling flowrate (dscfm)                                                             | 3.7-4.1                                | 3.6-4.6                                   |
| Number of runs performed                                                              | 6                                      | 6                                         |
| Range/average of front                                                                | 0.035-0.068                            | 0.004-0.0028                              |
| half concentrations<br>measured (gr/dscf)                                             | (0.0565)                               | (0.0011)                                  |
| Range/average of combined                                                             | 0.0375-0.0753                          | 0.0039-0.0133                             |
| front and back half<br>concentrations (gr/dscf)                                       | (0.061)                                | (0.0067)                                  |
| Range/average of front                                                                | 0.04-0.11                              | -                                         |
| half emission factors<br>(1b/T steel teemed)                                          | (0.07)                                 | (0.0016)                                  |
| Average of combined front<br>and back half emission<br>factors (1b/T steel<br>teemed) | 0.076                                  | 0.0093                                    |

### TABLE 11. EMISSIONS FROM UNLEADED STEEL TEEMING AT WISCONSIN STEEL, CHICAGO, ILLINOIS - SUMMARY OF TEST PROCEDURES AND RESULTS

:

٠,

:

a/ The averaging time began with the initiation of teeming into the first mold and ended with the conclusion of teeming into the last mold.

 L

b/ Some of the flow rate data were incomplete since velocity traverses were not completed.

| Average                          |                       |                          |                        |        |                 | Process pa          | arameters                   |                      |                   | Test me   | thodology          | ¥                      | Average                                | Average                          |                                                                                                           |            |
|----------------------------------|-----------------------|--------------------------|------------------------|--------|-----------------|---------------------|-----------------------------|----------------------|-------------------|-----------|--------------------|------------------------|----------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------|------------|
| emission factor<br>(lb/ton metal | E.F.                  | Company/                 | Scarfer                | Test   | Tons<br>scarfed | Emission<br>control | Gas<br>flow rate<br>(dccfm) | Gas<br>temp.<br>(°F) | Sampling          | No.<br>of | Sample<br>time     | Percent                | measured<br>concentration<br>(gr/dscf) | emission factor<br>(lb/ton metal | Commente                                                                                                  | Pofemeraz  |
| scaried)                         | reliability           | 1004(100                 | designation            | uale   | per III         | System              | (userm)                     | <u>( I)</u>          | methodorogy       | - L'UIIS  | (1111)             | ISOKINECIC             | (gr/user)                              | scarredy                         | Comments                                                                                                  | Kelerences |
| 0.08 <u>c</u> /                  | A <sup>b</sup> /      | Company A<br>(AISI data) | 40 in. bloom           | 2/76   | 60              | ESP                 | 69,900                      | 80                   | EPA- 5            | 3         | 120                | 99.7-100.7             | 0.008 <u>c</u> /                       | 0.08 <u>c</u> /                  | <u>After</u> ESP                                                                                          | 111        |
| 0.001 <u>c</u> /                 | A <sup>b</sup> /      |                          | 46 in. slab            | 10/75  | 486             | ESP                 | 69,900<br>(wet scfm)        | 83                   | EPA-5             | 3         | 140                | 99.1-100.5             | 0.001 <u>c</u> /                       | 0.001 <u>c</u> /                 | After ESP                                                                                                 | 112        |
| 0.008 <u>c</u> /                 | <u>к<sup>b</sup>/</u> |                          | 24 in. billet          | 10/75  | 147             | ESP                 | 17,000<br>(wet scfm)        | 84                   | EPA-5             | 3         | 140                | 97.5-99.4              | 0.003 <u>c</u> /                       | 0.008 <u>c</u> /                 | After ESP                                                                                                 | 112        |
| 0.032 <u>c</u> /                 | А <u>р</u> \          |                          | 18 in. billet<br>No. 1 | 10/75  | 105             | ESP                 | 18,700                      | 77                   | EPA-5             | 3         | 140                | 96.8 <del>-9</del> 8.9 | 0.007 <u>c</u> /                       | 0.032 <u>c</u> /                 | After ESP                                                                                                 | 112        |
| 0.014 <u>c</u> /                 | A <sup>b/</sup>       |                          | 18 in. billet<br>No. 2 | 10/75  | 89              | ESP                 | 19,300                      | 80                   | EPA-5             | 3         | 140                | 98.2-100.2             | 0.002 <u>c</u> /                       | 0.014 <u>c</u> /                 | After ESP                                                                                                 | 112        |
| 0.003 <u>c</u> /                 | A <sup>b</sup>        |                          | Rail-mill              | 11/75  | 111             | ESP                 | 11,300                      | 90                   | EPA-5             | 3         | 140                | 99.9-101.1             | 0.002 <u>c</u> /                       | 0.003 <u>c</u> /                 | After ESP                                                                                                 | 112        |
| 0.10                             | В                     |                          | 46 in. slab            | 1/67   | 207             | -                   | 72,700                      | 60                   | WP-50             | 3         | 7-41               | <u>a</u> /             | 0.25 <u>d</u> /                        | 0.1 <u>d</u> /                   | Uncontrolled-sampled<br>only while slabs were<br>being scarfed. Assumed<br>zero emissions between scarfs. | 113        |
| 0.087 <u>d</u> /                 | <u>а<sup>b</sup>/</u> |                          | Blooming mill          | 7/74   | 275             | -                   | 31,600                      | 110                  | EPA-5             | 3         | 144                | 98-103                 | 0.089 <u>d</u> /                       | 0.087 <u>d</u> /                 | Uncontrolled; concentration probably represents combined scarfing and non-                                | 114        |
| <u>a</u> /                       | <u>a</u> /            | Company B<br>(AISI data) | No. 3 slabbing<br>mill | g 5/73 | <u>a</u> /      | -                   | 95,500                      | 114                  | ASME<br>PTC-21,27 | 3         | 39 <b>-</b><br>150 | <u>a</u> /             | 0.14 <u>e</u> /                        | <u>a</u> /                       | Uncontrolled                                                                                              | 115        |
| <u>a</u> /                       | <u>a</u> /            | Company C<br>(AISI data) | <u>a</u> /             | 1/66   | 200             | -                   | 62,800                      | 146                  | <u>a</u> /        | 5         | 150-<br>180        | <u>a</u> /             | 0.570                                  | <u>a</u> /                       | Uncontrolled; concentration<br>may or may not be converted<br>to scarfing period only.                    | 116        |
| <u>a</u> /                       | <u>a</u> /            |                          | <u>a</u> /             | 1/66   | 200             | Kinpactor           | 62,800                      | 133                  | NA                | 5         | 150-<br>180        | <u>a</u> /             | 0.04                                   | <u>a</u> /                       | After Kinpactor and Type<br>R rotoclone.                                                                  | 116        |
| 0.22 <u>d</u> /                  | В                     |                          | <u>a</u> /             | 8/71   | 98.8            | -                   | 22,700<br>ACFM              | 120                  | EPA-5             | 1         | 4                  | <u>a</u> /             | 0.54 <u>d</u> /                        | 0.22 <u>d</u> /                  | Uncontrolled; sampled only during scarfing.                                                               | 117        |

# TABLE 12. SUMMARY OF EMISSION FACTORS FOR SCARFING OPERATIONS

. . . . .

| Average                                      |                     |                          |                        | - <u></u>    |                           | Process pa                    | arameters                   |                                   | Tes                     | st method         | lology                  |                       | Average                                       | Average                                      |                                                         |           |
|----------------------------------------------|---------------------|--------------------------|------------------------|--------------|---------------------------|-------------------------------|-----------------------------|-----------------------------------|-------------------------|-------------------|-------------------------|-----------------------|-----------------------------------------------|----------------------------------------------|---------------------------------------------------------|-----------|
| emission factor<br>(lb/ton metal<br>scarfed) | E.F.<br>reliability | Company/<br>location     | Scarfer<br>designation | Test<br>date | Tons<br>scarfed<br>per hr | Emission<br>control<br>system | Gas<br>flow rate<br>(dscfm) | Gas<br>temp.<br>( <sup>°</sup> F) | Sampling<br>methodology | No.<br>of<br>runs | Sample<br>time<br>(min) | Percent<br>isokinetic | measured<br><u>concentration</u><br>(gr/dscf) | emission factor<br>(1b/ton metal<br>scarfed) | Comments                                                | Reference |
| 0.24 <u>d</u> /                              | В                   |                          | <u>a</u> /             | 8/71         | 112.5                     | -                             | 10,500<br>ACFM              | 85-120                            | EPA-5                   | 1                 | 80                      | <u>a</u> /            | 0.34 <u>d</u> /                               | 0.24 <u>d</u> /                              | Uncontrolled; sampled during scarfing and non-scarfing. | 117       |
| 0.10 <u>e</u> /                              | В                   | Company Q<br>(AISI data) | Blooming mill          | 9/73         | 125                       | Scrubber                      | <u>a</u> /                  | <u>a</u> /                        | ASME<br>PTC-27          | 4                 | 46                      | <u>a</u> /            |                                               | 0.11 <u>e</u> /                              | After scrubber.                                         | 118       |
| 0.07 <u>c</u> /                              | В                   |                          | <u>a</u> /             | 3/73         | 236.5                     | <u>a</u> /                    | <u>a</u> /                  | <u>a</u> /                        | In stack<br>thimble     | 3                 | 50                      | <u>a</u> /            | 0.035 <u>c</u> /                              | 0.07 <u>c</u> /                              | Unclear whether controlled or uncontrolled.             | 119       |

a/ Reference provides insufficient data or corroboration of data.

b/ Tests selected as acceptable by Peter Westlin, Test Support Section, OAQPS.
 c/ Based on particulate measured in front half of sampling train.
 d/ Unclear whether value represents particulate captured in front half of sampling train or in front and back halves combined.

 $\underline{e}/$  Based on particulate measured in front and back halves of sampling train.

The EFs to be used for burning natural gas, No. 6 fuel oil, or coal in boilers can be acquired from AP-42 as follows:

|                 | Uncontrolled                                                                                      |        |
|-----------------|---------------------------------------------------------------------------------------------------|--------|
| Fuel            | emission factor                                                                                   | Rating |
| Bituminous coal | <pre>16 A lb/ton coal (A is ash content in<br/>percent; assume 10%)</pre>                         | A      |
| No• 6 fuel oil  | <pre>10 (S) + 3 lb/1,000 gal. (S is sulfur<br/>content in percent by weight; assume<br/>1%)</pre> | A      |
| Natural gas     | $10 \ 1b/10^6 \ ft^3$                                                                             | A      |

The EFs for burning of the above fuels in soaking pits or slab furnaces can be estimated to be the same as those for boilers, but since this is an estimate, the rating would drop to D.

The EFs for blast furnace gas and coke oven gas have not been researched by experimentation. The EFs must therefore be acquired by estimation. There are three facts available in making the estimation. First, the gas exiting the blast furnace passes through primary and secondary cleaners and can be cleaned to less than  $0.02 \text{ gr/ft}^3$  (2.86 1b/10<sup>6</sup> ft<sup>3</sup>).120/ Second, nearly one-third of coke oven gas is methane. Third, there are no constituents of blast furnace gas that generate particulate when burned.121/ The combustible constituent of blast furnace gas is CO which burns clean.

Based on the above three facts, the EFs for burning blast furnace gas can be estimated. The EF for burning blast furnace gas is assumed to equal the particulate carried into the burning process with the fuel plus the particulate generated in burning the fuel. The particulate carried in with blast furnace gas is  $2.86 \text{ lb}/10^6 \text{ ft}^3$ . There is no appreciable amount of particulate generated in burning blast furnace gas since there is no particulate generating combustible gas in it. Consequently, the EF for burning blast furnace gas is estimated at  $2.86 \text{ lb}/10^6 \text{ ft}^3$ .

The EF for burning coke oven gas can be estimated in the same fashion. Assuming that cleaned coke oven gas has as much particulate in it initially as cleaned blast furnace gas, the particulate carried in with coke oven gas is estimated at 2.86  $1b/10^6$  ft<sup>3</sup>. Since one-third of coke oven gas is methane, the main component of natural gas, it is assumed that the burning of coke oven gas generates one-third the particulate that the burning of natural gas does, i.e., 3.33  $1b/10^6$  ft<sup>3</sup>. Thus, the EF for burning coke oven gas is estimated at  $6.2 \ 1b/10^6$  ft<sup>3</sup>.

45

Also necessary for calculations is the heating value of each fuel. The following is a list of heating values and the reference from which they were obtained:

| Heating value<br><u>(sensible heat)</u> | Reference                                                                                                                                                       |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $75-90 \text{ Btu/ft}^{3}$              | 122                                                                                                                                                             |
| $500 \text{ Btu/ft}^3$                  | 123                                                                                                                                                             |
| 141,000 Btu/gal.                        | 124                                                                                                                                                             |
| 25 million Btu/ton                      | 125                                                                                                                                                             |
| 1,000 Btu/ft <sup>3</sup>               | 126                                                                                                                                                             |
|                                         | Heating value<br>(sensible heat)<br>75-90 Btu/ft <sup>3</sup><br>500 Btu/ft <sup>3</sup><br>141,000 Btu/gal.<br>25 million Btu/ton<br>1,000 Btu/ft <sup>3</sup> |

Putting the EFs into similar units yields the following table:

|                   | Uncontrolled<br>emission factor | Emiss   | ion factor rel | iability      |
|-------------------|---------------------------------|---------|----------------|---------------|
| Fuel              | (1b/106 Btu)                    | Boilers | Soaking pits   | Slab furnaces |
| Blast furnace gas | 0.035                           | D       | D              | D             |
| Coke oven gas     | 0.012                           | D       | D              | D             |
| No. 6 fuel oil    | 0.09                            | А       | D              | D             |
| Bituminous coal   | 6•4                             | А       | D              | D             |
| Natural gas       | 0.01                            | Α       | D              | D             |

### 3.10 OPEN DUST SOURCES

In addition to process sources, open dust sources contribute to the atmospheric particulate burden. Open dust sources at iron and steel plants include vehicular traffic on paved and unpaved roads, loading into and loading from storage piles, storage pile maintenance, and storage pile and exposed area wind erosion.

### 3.10.1 Identification of Emission Sources

Emissions occur when vehicles travel on unpaved surfaces. Such vehicles as passenger cars, pick-up trucks, haul trucks, and delivery trucks all produce emissions as the tires interact with the road. The heavier the vehicle, all other variables being the same, the more emissions one can expect.

Emissions occur when vehicles traveling on paved roads elevate dust from the road surface. The dust is deposited on the road surface by carryon, pavement wear, tire wear, and erosion from adjacent areas, to name a few points of origin. As stated above, storage piles are also sources of dust. Dust producing mechanical activities include:

1. Unloading of raw materials from a barge by a clamshell or bucket wheel and from a railcar by dumping.

2. Adding material to a storage pile via stacker, loader, or truck.

3. Loading of material from the pile onto a conveyor or into a truck.

4. Maintenance of pile shape with loaders or dozers.

In addition to mechanical activities which produce dust, natural activities such as wind erosion occur. Particulate is generated from exposed areas and storage piles where wind speed exceeds the threshold velocity which for some materials is about 12 mph at 1 ft above the surface. $\frac{127}{}$ 

Finally, emissions occur when material drops from one conveyor to another. This is the standard procedure for changing transport direction. It is thought that little emissions occur elsewhere in the conveying process. The belts themselves rest on idler rolls which cause the belts to incline upward 20 or 30 degrees on both edges. This provides a shield from the wind and minimizes spillage.

### 3.10.2 Quantification of Emission Factors

Empirically derived predictive EF equations for open dust sources have been developed by Midwest Research Institute (MRI). $\frac{127-130}{127-130}$  The predictive equations have been modified as more tests have been added to the data base. A summary of the most currently refined predictive equations is shown in Table 13.

The predictive EFs listed in Table 13 can be used for, but are not limited to, iron and steel plants. Table 14 shows the quality assurance rating currently assigned to the EFs for each of the source categories listed in Section 3.10.1. While many of the emission factors are rated A or B when applied to the source categories listed in Table 14, the rating would be lowered for some of the factors if controlled emission factors were to be predicted. For example, the effects of watering and chemical dust suppressants on the emissions from vehicles traveling on unpaved roads are not well known.

Some of the correction parameters in Table 13 can be determined from published literature. Vehicle weight and dumping device capacity, for example, can be found in manufacturer literature. Mean wind speed, number of dry days, and percent of time the wind speed exceeds 12 mph at 1 ft above the ground can be found in the Climatic Atlas $\frac{131}{}$  or from other local weather stations. The precipitation-evaporation index has been calculated by MRI for all the state

|    | Source category                                            | Measure of extent                      | Bmission (actor <sup>2)</sup><br>(th/unit of source extent)                                                                                                                         | Correction Parameters                                                        |
|----|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1. | Unpaved roads                                              | Vehicle-Hiles Traveled                 | $5.9 \left(\frac{s}{12}\right) \left(\frac{s}{10}\right) \left(\frac{w}{1}\right)^{0.7} \left(\frac{w}{4}\right)^{0.5} \left(\frac{d}{365}\right)$                                  | s = Hatorial Silt Content (%)                                                |
| 2. | Paved Roads                                                | Vehicle-Miles Traveled                 | $0.09 1 (4)(5)(-L_{-})(4)$                                                                                                                                                          | 5 = Average Vehicle Speed (mph)                                              |
| _  |                                                            |                                        | (N/(TO/(T,000)(T))<br>(*)(U/(b))                                                                                                                                                    | W = Vehicle Weight (tens)                                                    |
| 3. | Batch Load-In<br>(e-g-, front-end Loader,<br>ralicar dump) | Tons of material Loaded In             | (1-1)(1-1)(1-1)(1-1)(1-1)(1-1)(1-1)(1-1                                                                                                                                             | L = Surface Dust Loading on Traveled Portion<br>of Road (1b/mile)            |
| 4. | Continuous Load-In                                         | Tens of Material Loaded In             | $0.0018 \left(\frac{5}{5}\right)\left(\frac{1}{5}\right)\left(\frac{1}{10}\right)$                                                                                                  | II == Hean Wind Spred (mph)                                                  |
|    | (n.g., stacker, transfer<br>station)                       |                                        | $\left(\frac{M}{2}\right)^2$                                                                                                                                                        | H - Haterial Surface Hoisture Content (%)                                    |
| ç  | Active Storage Bile Maintenance                            | Tons of Natorial But Through Storage   | $0.10 \times \frac{s}{2} \left(\frac{d}{2}\right)$                                                                                                                                  | $Y = Dumping Device Gapacity (yd^3)$                                         |
| 5. | and Traffic                                                | Tota of the certar for photoge scorege | 1.5 (235)                                                                                                                                                                           | K = Activity Correction                                                      |
| 6. | Active Storage Pile Wind Erosion                           | Tons of Material Nit Through Storage   | $\frac{n \cdot n \cdot n}{(1 \cdot 5)} \left(\frac{d}{(2 \cdot 5)}\right) \left(\frac{d}{(1 \cdot 5)}\right) \left(\frac{b}{(1 \cdot 5)}\right) \left(\frac{D}{(1 \cdot 5)}\right)$ | d - Number of Dry Days For Year                                              |
| 7. | Batch Load-Out                                             | Tons of Material Loaded Out            | $0.0018 \left(\frac{5}{5}\right)\left(\frac{1}{5}\right)\left(\frac{1}{10}\right)$                                                                                                  | I = Percentage of Time Wind Speed Exceeds 12<br>mph at 1 ft above the ground |
|    |                                                            |                                        | $\begin{pmatrix} \underline{H} \\ 2 \end{pmatrix} \begin{pmatrix} \underline{X} \\ 6 \end{pmatrix}$                                                                                 | D = Duration of Material Storage (days)                                      |
| 8. | Wind Erosion of Exposed Areas                              | Acre-Years of Exposed Land             | $(\frac{e}{50})(\frac{s}{15})(\frac{1}{25})(\frac{1}{25})$                                                                                                                          | e = Surface Erodibility (tons/acre/year)                                     |
|    |                                                            |                                        | $\left(\frac{1-\varphi}{50}\right)$                                                                                                                                                 | P-E = Thornthwaite's Precipitation-Evaporation<br>Index                      |
|    |                                                            |                                        |                                                                                                                                                                                     | N = Number of Traveled Lanes                                                 |
|    |                                                            |                                        |                                                                                                                                                                                     | l = Industrial Road Augmentation Factor'                                     |
|    |                                                            |                                        |                                                                                                                                                                                     | w ≅ Average Number of Wigels on Vehicle Hix                                  |
| _  |                                                            |                                        |                                                                                                                                                                                     | h = Drop fleight (ft)                                                        |

### TABLE 13. FUGITIVE DUST EMISSION FACTORS EXPERIMENTALLY DETERMINED BY MRI

 $\underline{a}$ / Represents particulate smaller than 30  $\mu$ m in diameter based on particle density of 2.5 g/cm<sup>3</sup>.

b/ Equals 1.0 for front-end loader maintaining pile tidiness and 50 round trips per truck per day in the sturage area-

c/ \* Equals 7.0 for trucks coming from unpaved to paved roads and releasing dust from underbody of vehicle;

\* Equals 3.5 when 207 of the vehicles are forced to travel temporarily with one set of wheels whan unpaved road herm while passing on marrow roads;

\* Equals 1.0 for traffic entirely on paved surfaces.

€

t . '

| Source category                                                    | Quality<br>assurance<br>rating |
|--------------------------------------------------------------------|--------------------------------|
| Vehicular Traffic on Unpaved Roads - Dry<br>Conditions             | A                              |
| Vehicular Traffic on Unpaved Roads - Con-<br>trolled Conditions    | C                              |
| Vehicular Traffic on Paved Roads                                   | В                              |
| Storage Pile Formation by Means of Translating<br>Conveyor Stacker | В                              |
| Transfer of Aggregate from Loader to Truck                         | В                              |
| Storage Pile Maintenance and Related Traffic                       | С                              |
| Wind Erosion from Storage Piles and Exposed<br>Areas               | С                              |

# TABLE 14. EMISSION FACTOR QUALITY ASSURANCE LIMITATIONS (Effective September 1979)

climatic regions in the United States and is reported in published literature. $\frac{127}{}$  The erodibility of materials can also be obtained from published literature. $\frac{132}{}$ 

Some of the correction parameters in Table 13 can be determined with reasonable accuracy by estimation. Average vehicle speed and number of wheels can be estimated. The number of traveled paved road lanes can be estimated for a particular iron and steel plant by plant personnel. The drop height for aggregate material can be measured or visually estimated with reasonable accuracy.

Finally, there are correction parameters in Table 13 that can best be estimated by MRI personnel. These parameters are raw material silt and moisture content, paved and unpaved road material silt content, and total surface dust loading on paved roads.

Tables 15 through 17 show the results of silt, moisture, and loading analysis of field samples collected by MRI. For each type of material, the number of samples obtained, the range of values measured, and the mean values for these correction parameters are given. Samples listed in Tables 15 through 17 were collected at as many as 12 different iron and steel plants in a wide range of geographic locations.

|                          | Source                                             | Number<br>of tests | Range of silt<br>content<br>(%) | Average silt<br>content (%) |
|--------------------------|----------------------------------------------------|--------------------|---------------------------------|-----------------------------|
| . Unpave                 | d roads                                            | 12                 | 4-13                            | 7.3                         |
| 2. Paved                 | roads                                              | 9                  | 1.1-13                          | 5.9                         |
| ), Materi<br>and<br>eros | al handling activities<br>storage pile wind<br>ion |                    |                                 |                             |
| a. Co                    | a1                                                 | 7                  | 2-7.7                           | 5.0                         |
| b. Ir                    | on ore pellets                                     | 10                 | 1.4-13                          | 4.9                         |
| c.Lu                     | mp iron ore                                        | 9                  | 2.8-19                          | 9.5                         |
| d. Co                    | ke b <b>reeze</b>                                  | 1                  | -                               | 5.4                         |
| e. S1                    | ag                                                 | 3                  | 3.0-7.3                         | 5.3                         |
| f. B1                    | ended ore                                          | 1                  | -                               | 15.0                        |
| g. Si                    | nter                                               | 1                  | -                               | 0.7                         |
| h. Li                    | mestone                                            | 1                  | -                               | 0.4                         |
| i. F1                    | ue dust                                            | 2                  | 14-23                           | 18.0                        |

:

, .

### TABLE 15. SILT CONTENT VALUES APPLICABLE IN THE IRON AND STEEL INDUSTRY

|    | Source                                                           | Number<br>of tests | Range of surface<br>moisture content<br>(%) | Average<br>surface moisture<br>content (%) |
|----|------------------------------------------------------------------|--------------------|---------------------------------------------|--------------------------------------------|
| 1. | Material handling activities<br>and storage pile wind<br>erosion |                    |                                             |                                            |
|    | a. Coal                                                          | 6                  | 2.8-11                                      | 4.8                                        |
|    | b. Iron ore pellets                                              | 8                  | 0.64-3.5                                    | 2.1                                        |
|    | c. Lump iron ore                                                 | 6                  | 1.6-8.1                                     | 5.4                                        |
|    | d. Coke breeze                                                   | 1                  | -                                           | 6.4                                        |
|    | e. Slag                                                          | 3                  | 0.25-2.2                                    | 0.92                                       |
|    | f. Blended ore                                                   | 1                  | -                                           | 6.6                                        |
|    | g. Flue dust                                                     | 1                  | -                                           | 12.4                                       |

# TABLE 16. SURFACE MOISTURE CONTENT VALUES APPLICABLE IN THE IRON AND STEEL INDUSTRY

### TABLE 17. SURFACE LOADING ON TRAVELED LANES OF PAVED ROADS IN IRON AND STEEL PLANTS

-----

| Number of tests | Range of surface<br>loading<br>(lb/mile) | Average surface<br>loading<br>(lb/mile) |
|-----------------|------------------------------------------|-----------------------------------------|
| 9               | 65-17,000                                | 2,700                                   |

١

#### SECTION 4.0

### DEVELOPMENT OF REPRESENTATIVE EMISSION FACTORS

The final objective of this report is to develop a representative EF value or predictive equation for each particulate emission source in the iron and steel industry. Section 3.0 presents all the EF data presently available. It is from the data in Section 3.0 that the representative EF values were developed.

#### 4.1 PROCESS STACK AND FUGITIVE EMISSIONS

Table 18 shows a summary of the EFs by source and by reliability rating. (The rating system was defined in Section 3.0). Recalling that nearly every EF in the left-hand column of Tables 2 through 10 represents an average of a number of runs (test series), the average of these test series average values as presented in Table 18 was calculated as follows:

$$EF_{avg} = \sum_{i=1}^{i=T} EF_i N_i / \sum_{i=1}^{i=T} N_i$$

.\*

 $EF_i$  = average of test series i, N<sub>i</sub> = number of runs in test series i (if N<sub>i</sub> > 3, then set N<sub>i</sub> = 3),

T = number of test series, and

EF = emission factor average for a specific reliability rating category.

The philosophy behind Equation 1 is that within the same rating category the test series composed of the most runs should receive the most weight. However, a limit to the weighting is set at a value of 3. This is to eliminate the possibility that a very high number of tests performed at a very dirty or very clean, and consequently nonrepresentative, plant could unfairly weight the overall average. Thus, a test series with three tests will be weighted three times that with only one test while the possibility of a nonrepresentative plant with many tests distorting the overall average is eliminated.

(1)

|      |                                            |          |                    | Tent Ber  | 108        |              | Average EF<br>for rating |          |             |         |
|------|--------------------------------------------|----------|--------------------|-----------|------------|--------------|--------------------------|----------|-------------|---------|
|      |                                            |          | Average EF         |           | Number of  | Bibliography | category                 | Calculat | ed single F | F value |
|      | Source                                     | Rating   | (हг <sub>і</sub> ) | EF units  | C101.5     | reference    | (EF average)             | Average  | Range       | Ratin   |
| τ. ι | By-product Coke Ovens                      |          |                    |           |            |              |                          |          |             |         |
|      | A. Coal Charging                           |          |                    | 1h/T coal |            |              |                          |          |             |         |
|      | 1. Uncontrolled                            | с        | 0.11               |           | 10         | 141          | 0.23                     | 0.85     | 0.11-1.5    | c       |
|      |                                            | С        | 0.52               |           | 7-assume 1 | б.           |                          |          |             |         |
|      |                                            | p        | 1.5                |           | ?-assume l | 5            | 1.5                      |          |             |         |
|      | 2. Controlled                              |          |                    |           |            |              |                          |          |             |         |
|      | a. Larry car vented to<br>accubber         | С        | 0.02               |           | 7-assume 1 | 6            | n.02                     | 0.02     |             | с       |
|      | b. Sequential charging                     | С        | 0.016              |           | 6          | 141          | 0.016                    | 0.016    |             | ¢       |
| 1    | B. Uncontrolled Door Leaks                 | *        | 0.44               | 15/T coal | 3          | 8            | 0.58                     | 0.51     | 0.36-0.72   | 8       |
|      |                                            |          | n, 77              |           | ۲          | 9            |                          |          |             |         |
|      |                                            | 8        | 0.16               |           | 3          | 7            | 0.36                     |          |             |         |
| 0    | C. Coke Pushing                            |          |                    | Jb/T coml |            |              |                          |          |             |         |
|      | <ol> <li>Uncentrolled Suspended</li> </ol> | •        | 0.69               |           | 1          | 8,12         | 0.5                      | 0.47     | 0.25-0.68   | A       |
|      | Emissions (as mea-                         |          | 0.55               |           | 4          | 13           |                          |          |             |         |
|      | sured in duct venting                      |          | 0.25               |           | 3          | 9,12         |                          |          |             |         |
|      | roke side shed)                            | B        | 0.68               |           | 2          | 11           | 0.4                      |          |             |         |
|      |                                            |          | 0.29               |           | 28         | 15           |                          |          |             |         |
|      |                                            |          | 0.2 <del>6</del>   |           | 4          | 15           |                          |          |             |         |
|      |                                            |          | 0.34               |           | 2          | 17           |                          |          |             |         |
|      |                                            |          | 0.43               |           | 2          | 17           |                          |          |             |         |
|      |                                            |          | 0.53               |           | 23         | 12           |                          |          |             |         |
|      |                                            |          | 0.37               |           | 2          | 12           |                          |          |             |         |
|      |                                            | C        | 0.49               |           | 3          | 11           | 0.49                     |          |             |         |
|      | 2. Controlled Suspenden                    |          |                    |           |            |              |                          |          |             |         |
|      | Emissions                                  |          | 0 19               |           | 15         | 13           | n.39                     | 0.39     |             | •       |
|      | a. Water sprays                            | <u>.</u> | 2.34               |           | 9          | 14           | 2.3                      | 2.0      | 0.7-2.3     | в       |
|      | 3. Uncontrolled Total Emissions            | Â        | 7. 7               |           | 39         | 10           | 1.4                      |          |             |         |
|      | (suspended plus dust(sil)                  | •        | 0.7                |           | 25         | 10           |                          |          |             |         |
|      |                                            | с        | 0.4                |           | 6          | 16           | 0.4                      |          |             |         |
|      | 6 Controlled Total Emissions               |          |                    |           |            |              |                          |          |             |         |
|      | (mapended plus dustfall)                   |          |                    |           |            |              |                          | 1 2      |             | 8       |
|      | - Unter sprays                             | R        | 1.2                |           | 15         | 13           | 1.2                      | 1.7      |             | ŗ       |
|      | b. Enclosed coke car and                   | с        | 0.024              |           | 6          | 16           | 0,024                    | 0,024    |             | ,       |

# TABLE 18. SELECTION OF SINGLE EMISSION FACTOR VALUES TO REPRESENT EACH PARTICULATE SOURCE CATEGORY IN THE IRON AND STEEL INDUSTRY

(continued)

: . '

scrubber

•. •.

|                                          |        |                    |                  |               |             | Average EF   |         |             |       |
|------------------------------------------|--------|--------------------|------------------|---------------|-------------|--------------|---------|-------------|-------|
|                                          |        | Auguage FK         | lest ser         | lea Nuchara a | R/hl/assabu | Inc rating   | Calanta | ad adapte F | F     |
| Source                                   | Rating | (EF <sub>1</sub> ) | EF units         | runs          | reference   | (EF average) | Average | Range       | Ratin |
|                                          |        |                    |                  |               |             |              |         |             |       |
| L. Controlled by Baffles                 | ٨      | 1.4                |                  | 13            | 18 19       | 10 •/        | 1.04/   | 0 77-2 6    |       |
|                                          | 'n     | 2.6                |                  | 12            | 18,19       | 1.0          | 1.0     | 9.21-2.0    | ~     |
|                                          |        | 0.25               |                  | 9             | 21          |              |         |             |       |
| • •                                      |        | 0.21               |                  | 2             | 21          |              |         |             |       |
|                                          |        | 0.23               |                  | 6             | 21          |              |         |             |       |
|                                          | с      | 0.04               |                  | ?-assume ]    | 22          | 0.04         |         |             |       |
| E. Uncontrolled Combustion Stacks        | 8      | 0.35               | Ib/T_coal        | 3             | 23          | 0.58         | 0.58    | 0.08-1.31   | ß     |
|                                          |        | 0.53               |                  | 1             | 23          |              |         |             |       |
|                                          |        | 1.31               |                  | 47            | 71          |              |         |             |       |
|                                          |        | 0.36               |                  | 2             | 23          |              |         |             |       |
|                                          |        | 1.04               |                  | 2             | 23          |              |         |             |       |
|                                          |        | 0.08               |                  | 4             | 25          |              |         |             |       |
|                                          |        | 0.46               |                  | 3             | 23          |              |         |             |       |
|                                          |        | 0.36               |                  | 1             | 23          |              |         |             |       |
|                                          |        | 0.42               |                  | 2             | 23          |              |         |             |       |
|                                          |        | 0.74               |                  | 3             | 23          |              |         |             |       |
|                                          |        | 0.18               |                  | 2             | 23          |              |         |             |       |
|                                          |        | n.43               |                  | 5             | 23          |              |         |             |       |
|                                          |        | 0.42               |                  | 3             | 23          | •            |         |             |       |
|                                          |        | 0.9                |                  | ٦             | 23          |              |         |             |       |
|                                          |        | 0.53               |                  | 3             | 23          |              |         |             |       |
|                                          |        | 0.82               |                  | 1             | 23          |              |         |             |       |
|                                          | C      | 0.16               |                  | 2             | 23          | 0.55         |         |             |       |
|                                          |        | 0.12               |                  | I.            | 2.3         |              |         |             |       |
|                                          |        | n.7                |                  | 10            | 24          | •.           |         |             |       |
| •                                        |        | 0.8                |                  | 10            | 24          |              |         |             |       |
| F. Coal Preheaters                       |        |                    | 1b/T coal        |               |             |              |         |             |       |
| 1. Uncontrolled                          | С      | 7.0                |                  | 18            | 135         | 7.0          | 7.0     |             | С     |
| <ol><li>Controlled by Scrubber</li></ol> | с      | 0.65               |                  | 18            | 135         | 0.65         | 0.65    |             | с     |
| Blast Furnaces                           |        |                    |                  |               |             |              |         |             |       |
| A. Slips                                 | n      |                    | lh/≉ <b>li</b> p |               | 26          | 87.0         | 87.0    | 27.6-276    | D     |
| B. Uncontrolled Cost House               |        |                    | Th/T bot         |               |             |              |         |             |       |
| Entasiona                                |        |                    | metal            |               |             |              |         |             |       |
| 1. Honitor                               | ٨      | 0.78               |                  | 2.            | 20          | 0.78         | ņ.s     | 0.2-0.78    | B     |
|                                          | В      | 0.2                |                  | 19            | 29          | 0.25         |         |             |       |
|                                          |        | 0.31               |                  | 10            | 30          |              |         |             |       |
|                                          | C      | 0.25               |                  | 7-assume 1    | 29          | 0.39         |         |             |       |
|                                          |        | 0.52               |                  | ?-assume 1    | 29          |              |         |             |       |
| 2. Tap Hole and Trough                   | n      | 0.31               |                  | 3             | 28          | 0.1          | 0.3     | 0.29-0.31   | B     |
| (not rungers)                            |        | 0.29               |                  | 1             | 28          |              |         |             |       |

,

# TABLE 18. (continued)

(continued)

|     |     |                                                            |            |                     |             |      |           | Average EF   |         |            |       |
|-----|-----|------------------------------------------------------------|------------|---------------------|-------------|------|-----------|--------------|---------|------------|-------|
|     |     |                                                            |            |                     | Test ser    | C.8  |           | for rating   |         |            |       |
|     |     | Source                                                     | Rating     | Average EF<br>(EF1) | EF units    | runs | reference | (EF average) | Average | Range      | Ratin |
|     |     |                                                            |            |                     |             |      |           |              |         |            |       |
| IU. | Sin | itering                                                    |            |                     |             |      |           |              |         |            |       |
|     | ۸.  | Windbox Emissions                                          |            |                     | 16/T sinter |      |           |              |         |            |       |
|     |     | 1. Uncontrolled                                            |            |                     |             |      |           |              |         |            | -     |
|     |     | a. Leaving grate                                           | •          | 10.8                |             | 17   |           | 11.1         | 11.1    | 10.8-11.6  | Б     |
|     |     |                                                            |            | 11.×                |             | 10   | 11        | 9.7          | 97      |            |       |
|     |     | b. Alter coarse partic-<br>ulate removal                   | ^          | 8.7                 |             | 10   | 33        | n. /         | 0.7     |            | ň     |
|     |     | 2. Controlled by Dry ESP                                   | ۸          | 2.2                 |             | 10   | 15        | 2.1          | 1.6     | 0.43-2.2   | я     |
|     |     |                                                            |            | 2.0                 |             | 3    | 49        |              |         |            |       |
|     |     |                                                            | в          | 0.41                |             | 3    | 48        | 0.53         |         |            |       |
|     |     |                                                            |            | 0.63                |             | 1    | 41        |              |         |            |       |
|     |     | <ol><li>Controlled by Wet ESP</li></ol>                    | В          | 0.17                |             | 38   | 56        | 0.17         | 0.17    |            | 8     |
|     |     |                                                            | r          | 0.01                |             | 6    | 43        | 0.03         |         |            |       |
|     |     | 4. Controlled by Scrubber                                  | ^          | 0.7                 |             | 3    | 37        | 0.66         | 0.47    | 0.093-0.95 | В     |
|     |     |                                                            |            | 0.32                |             | 3    | 50        |              |         |            |       |
|     |     |                                                            |            | 0.95                |             | 6    | 138       |              |         |            |       |
|     |     |                                                            | R          | 0.093               |             | 3    | 56        | 0.093        |         |            |       |
|     |     | 5. Controlled by Cyclone                                   | R          | 1.0                 |             | 16   | 14        | 1.0          | 1.0     |            | Ŗ     |
|     | B.  | Sinter Discharge (breaker and                              |            |                     | 16/T_sloter |      |           |              |         |            |       |
|     |     | hot screens)                                               |            |                     |             |      |           |              |         |            |       |
|     |     | 1. Uncontrolled                                            | R          | 6.R                 |             | 15   | 12        | 6.8          | 6.8     |            | B     |
|     |     | 2. Controlled by Baghouse                                  | . <b>R</b> | 0.1                 |             | 3    | 48        | 0.1          | 0.1     |            | R     |
|     |     | 3. Controlled by Orifice<br>Scrubber                       | ^          | 0.59                |             | 3    | 138       | 0.59         | 0.59    |            | ۸     |
|     | c.  | Windhox and Discharge                                      |            | 0.3                 |             | 3    | 140       | n. 3         | 0.3     |            | ۸     |
|     |     | 1. Controlled by baghouse                                  |            |                     |             |      |           |              |         |            |       |
| ſ٧. | BOF | Fa                                                         |            |                     |             |      |           |              |         |            |       |
|     | ۸.  | Top Blown Furnace Melting and                              | Refining   |                     | 16/T steel  |      |           |              |         |            |       |
|     |     | 1. Uncontrolled                                            | ٨          | 24.2                |             | 5    | 137       | 24.2         | 28.5    |            | в     |
|     |     |                                                            | R.         | 37.0                |             | 5    | 58,59     | 37.0         |         |            |       |
|     |     | <ol> <li>Controlled by Open Hood<br/>Vented to:</li> </ol> |            |                     |             |      |           |              |         |            |       |
|     |     | a. ESP                                                     | ٨          | 0.0614              |             | 5    | 117       | 0.13         | 0.11    | 0.0614-0.2 | 1 A   |
|     |     |                                                            |            | 0.105               |             | 3    | 64        |              |         |            |       |
|     |     |                                                            |            | 0.21                |             | 1    | 65        |              |         |            |       |
|     |     |                                                            | С          | 0.052               |             | 3    | 66        | 0.052        |         |            |       |
|     |     | h. Scrubber                                                | B          | 0.15                |             | 7    | 58        | 0.09         | 0.09    | 0.033-0.15 | В     |
|     |     |                                                            |            | 0.033               |             | 3    | 61        |              |         |            |       |
|     |     |                                                            | C.         | 0.09                |             | 3    | 57        | 0,098        |         |            |       |
|     |     |                                                            |            | 0-106               |             | ۱    | 12        |              |         |            |       |

# TABLE 18. (continued)

(continued)

56

.

· · · ·

|                                                                                   |        | Test series        |                |            |              |              |          |             |         |
|-----------------------------------------------------------------------------------|--------|--------------------|----------------|------------|--------------|--------------|----------|-------------|---------|
|                                                                                   |        | Average EF         |                | Number of  | Bibliography | category     | Calculat | ed single E | F value |
| Source                                                                            | Rating | (EF <sub>1</sub> ) | EF units       | runs       | reference    | (EF average) | Average  | Range       | Ratin   |
| 3. Controlled by Closed Bood                                                      |        |                    |                |            |              |              |          |             |         |
| Vonted to:                                                                        |        |                    |                |            |              |              |          |             |         |
| a. Scrubber                                                                       | ٨      | 0.0028             |                | .3         | 67           | 0.0068       | 0.0068   | 0.0028-     | ٨       |
|                                                                                   |        | 0.0044             |                | 3          | 68           |              |          | 0.0132      |         |
|                                                                                   |        | 0.0132             |                | 3          | 71           |              |          |             |         |
| B. Q-BOP Metting and Refining                                                     |        |                    | 1b/T_steel     |            |              |              |          |             |         |
| 1. Controlled by Scrubber                                                         | ۸      | 0.0556             |                | Z          | 73           | 0.056        | 0.056    |             | ٨       |
| C. BOF Charging                                                                   |        |                    | 16/T hot metal |            |              |              |          |             |         |
| 1. At Source                                                                      | ٨      | 0.6                |                | 6          | 134          | D.6          | 0.6      |             | A       |
| 2. At Building Homitor                                                            | R      | 0.142              |                | 15         | 81           | 0.142        | 0.142    |             | В       |
| D. BOF Tapping                                                                    |        |                    | lb/T steel     |            |              |              |          |             |         |
| 1. At Source                                                                      | ۸      | 0.92               |                | 3          | 134          | 0.92         | 0.92     |             |         |
| 2. At Building Honitor                                                            | n      | n.29               |                | 15         | 80           | 0.29         | 0.29     |             | B       |
| E. Hot Metal Transfer                                                             |        |                    | 1b/T hot metal |            |              |              |          |             |         |
| 1. At Source                                                                      | ٨      | 0.19               |                | 8          | 133          | 0.19         | 0.19     |             | ٨       |
| 2. At Building Monitor                                                            | B      | n.nşĸ              |                | 8          | 82           | 0.056        | በ. በ56   |             | В       |
| F. BOF Honitor (all sources)                                                      | B      | 0.5                | lb/T_steel     | ٦          | R4           | 0.5          | 0.5      |             | B       |
|                                                                                   | с      | 0.28               |                | 1          | 81           | 0.23         |          |             |         |
|                                                                                   |        | 0.3                |                | 3          | 85,143       |              |          |             |         |
|                                                                                   |        | 0.147              |                | 4          | 86,87        |              |          |             |         |
| V. EAFs                                                                           |        |                    |                |            |              |              |          |             |         |
| A. Helting and Reffning                                                           |        |                    | lb/T_steel     |            |              |              |          |             |         |
| <ol> <li>Uncontrolled</li> </ol>                                                  |        |                    |                |            |              |              |          |             |         |
| a. Carbou strel                                                                   | C      | 50                 |                | 7-Assume 1 | 97           | 18           | 38       | 22-51       | c       |
|                                                                                   |        | 51                 |                | ?-05811MP  | 98           |              |          |             |         |
|                                                                                   |        | 22                 |                | ?-assume 1 | 99           |              |          |             |         |
| B Charalas Tanatas ant Stratt                                                     |        | 27.5               |                | 7-assume 1 | <b>q</b> ŋ   |              |          |             |         |
| <ul> <li>Unarging, Japping, and Slagging</li> <li>Unapping field field</li> </ul> |        |                    | lb/T sterl     |            |              |              |          |             |         |
| E. Uncontrolled Emissions                                                         | С      | 1.2                |                | ?-#sime l  | 99           | 1.2          | 1.4      | 1.2-1.7     | с       |
| Bacaping monitor                                                                  |        | 1.7                |                | ?-assume 1 | 100          | 1.7          |          |             | -       |

# TABLE 18. (continued)

(continued)

|      |            |                                                | Test series |        |                    |              | for rating |                            |         |            |        |
|------|------------|------------------------------------------------|-------------|--------|--------------------|--------------|------------|----------------------------|---------|------------|--------|
|      |            | Average EF                                     |             |        | Number of          | Bibilography | category   | Calculated single EF value |         |            |        |
|      | Source     |                                                | Rating      | (031)  | EF units           | F (101A      | 1 eference | (EF average)               | Average | Range      | Rating |
|      | c.         | Melting, Refining, Charging,                   |             |        | lh/T steel         |              |            |                            |         |            |        |
|      |            | Tapping, and Slagging                          |             |        |                    |              |            |                            |         |            |        |
|      |            | L. Nucentrolled                                |             |        |                    |              |            |                            |         |            |        |
|      |            | n. Alley steel                                 | ۸           | 11.3   |                    | 1            | 80         | 11.1                       | 11.3    |            | ۸      |
|      |            | h. Carbou steel                                | С           | 43.0   |                    | 7-45/0000-1  | 99         | 50                         | 50      |            | с      |
|      |            |                                                |             | 58_()  |                    | 7-assume 1   | 101        |                            |         |            |        |
|      |            | 2. Controlled by:                              |             |        |                    |              |            |                            |         |            |        |
|      |            | A. Configuration 1                             | ^           | 0,3    |                    | ſ            | 89         | 0.5                        | 0.3     |            | ^      |
|      |            | (building evacuation                           |             |        |                    |              |            |                            |         |            |        |
|      |            | to baghouse for                                |             |        |                    |              |            |                            |         |            |        |
|      |            | attoy steel}                                   |             |        |                    |              |            |                            |         |            |        |
|      |            | b. Configuration 2                             | с           | 0.041  |                    | 7            | 94         | 0,043                      | 0.043   |            | C      |
|      |            | (DSE plus charging                             |             |        |                    |              |            |                            |         |            |        |
|      |            | hood vented to                                 |             |        |                    |              |            |                            |         |            |        |
|      |            | common baghouse for                            |             |        |                    |              |            |                            |         |            |        |
|      |            | carbon siret)                                  |             |        |                    |              |            |                            |         |            |        |
| VI.  | OHF        |                                                |             |        | W/F steel          |              |            |                            |         |            |        |
|      | ۸.         | Helting and Refining                           |             | •• •   | 11/1 2040          | ,            | 110        | 71 1                       | 21.1    |            | ٨      |
|      |            | L. Uncontrolled                                | <u>^</u>    | 21.1   |                    | ,            | 106        | 0.78                       | 0.28    |            | ٨      |
|      |            | 2. Controlled by ESP                           | ^           | 0.28   |                    | ,            | 100        | 0.168                      | 0.168   |            | c      |
|      | e.         | Roof Heniter Emissions                         | С           | 0.168  |                    | 70           |            |                            |         |            |        |
| vtr. | Tre        | ming                                           |             |        | th/T steel         |              |            |                            |         |            |        |
|      | ۸.         | Leaded Steel                                   |             |        |                    |              |            |                            |         |            |        |
|      |            | 1. Uncontrolled (as measured                   | ٨           | 0,81   |                    | ۱            | 111        | 0.81                       | 0.81    |            | ^      |
|      |            | at the source)                                 |             |        |                    |              |            |                            |         |            |        |
|      |            | 2. Controlled by Side-draft                    | •           | 0,0038 |                    | ٦            | 133        | 0.0038                     | 0.0018  |            | •      |
|      |            | Hood Vented to Baghouse                        |             |        |                    |              |            |                            |         |            |        |
|      | R.         | Unloaded Steel                                 |             |        |                    |              |            |                            |         |            |        |
|      |            | <ol> <li>Uncontrolled (as measured)</li> </ol> | ۸           | 0.07   |                    | 6            | 131        | 0,07                       | 0.07    |            | A      |
|      |            | at the source)                                 |             |        |                    |              |            |                            |         |            |        |
|      |            | 2. Controlled by Side-draft                    | ۸           | 0,0016 |                    | 6            | 111        | 0.0016                     | 0.0016  |            | ^      |
|      |            | Hood Vented to Baghouse                        |             |        |                    |              |            |                            |         |            |        |
|      | Mac        | bing Scarfing                                  |             |        |                    |              |            |                            |         |            |        |
|      | A .        | Uncontrollad                                   | R           | 0.1    | Ib/T metal through | 3            | 113        | 0.1                        | 0.1     |            | В      |
|      | <i>A</i> . |                                                | •           |        | scarler            |              |            |                            |         |            |        |
|      | 8          | Controlled by ESP                              | ٨           | 0.08   | 16/T metal through | 3            | 111        | 0.023                      | 0.023   | 0.001-0.08 | ۸      |
|      | <i>n</i> . |                                                |             |        | scarfer            |              |            |                            |         |            |        |
|      |            |                                                |             | 0.001  |                    | 1            | 112        |                            |         |            |        |
|      |            |                                                |             | 0.008  |                    | 3            | 112        |                            |         |            |        |
|      |            |                                                |             | 0.032  |                    | ٦            | 112        |                            |         |            |        |
|      |            |                                                |             | 0.014  |                    | ١            | 112        |                            |         |            |        |
|      |            |                                                |             | 0.001  |                    | 1            | 117        |                            |         |            |        |

# TABLE 18. (continued)

58

۰.

|    |                                | -           | Average EF         |                        |           |           |              |                           |        |  |
|----|--------------------------------|-------------|--------------------|------------------------|-----------|-----------|--------------|---------------------------|--------|--|
|    |                                | Test series |                    |                        |           |           | for rating   |                           |        |  |
|    |                                |             | Average EF         |                        | Number of |           | category     | Calculated single EF valu |        |  |
|    | Source                         |             | (EF <sub>1</sub> ) | EF units               | rons      | reference | (EF average) | Average Rang              | e Rati |  |
| н  | scellaneous Combustion Sources |             |                    |                        |           |           |              |                           |        |  |
| ۸. | Botters Burning the Following: |             |                    | 16/10 <sup>6</sup> Bto |           |           |              |                           |        |  |
|    | 1. Blast Furnace Gas           | P           | 0.035              |                        | -         | 120-122   | 0.035        | 0.035                     | n      |  |
|    | 2. Coke Oven Gas               | D           | 0.012              |                        | -         | 120-122   | 0.012        | 0.012                     | Ð      |  |
|    | 3. No. 6 Funt Oll              | ۸           | n.m                |                        | -         | AF-42     | 0.09         | 0, 02                     | ^      |  |
|    | 4. Bituminous Coal             | ••          | 6.4                |                        | -         | AP-42     | 6.4          | 6.4                       | •      |  |
|    | 5. Natural Gas                 | ۸           | 0.01               |                        | -         | AP-42     | 0.01         | 0.01                      | ۸      |  |
| В. | Soaking Fits Burning the       |             |                    | 16/10 <sup>6</sup> Btu |           |           |              |                           |        |  |
|    | Following:                     |             |                    |                        |           |           |              |                           |        |  |
|    | 1. Coke Oven Cas               | p           | 0.012              |                        | -         | 120-122   | 0.012        | 0.012                     | D      |  |
|    | 2. No. 6 Fuel, 011             | p           | 0.09               |                        |           | AP42      | 0.09         | 0.09                      | n      |  |
|    | 3. Natural Gas                 | P           | 0.01               |                        | -         | AP-47     | 0.01         | 0.01                      | n      |  |
| с. | Slab Reheat Fornaces Burning   |             |                    | Jh/10 <sup>6</sup> Btu |           |           |              |                           |        |  |
|    | the Following:                 |             |                    |                        |           |           |              |                           |        |  |
|    | 1. Coke Oven Cas               | Ð           | 0.017              |                        | -         | 120-122   | 0.012        | 0.012                     | D      |  |
|    | 2. No. 6 Fuel OIL              | D           | 0.09               |                        | -         | AP42      | 0.09         | 0.09                      | n      |  |
|    | 3. Natural Cas                 | n           | 0.01               |                        |           | AP - 42   | 0.01         | 0.01                      | D      |  |

### TABLE 18. (concluded)

Even though the tests were performed in an acceptable manuer and all data were reported (A-rating), there are independent variables which effect the EF measurement and caused the wide range of results (see p. 12). The value 3 was selected as the cutoff point for weighting averages of test series averages. This value arises from the unwritten rule generally followed by the U.S. EPA that 3 tests are sufficient to quantify emissions from a source. This is evidenced by the multiplicity of sets of three tests used in the published background documents for BOF65-68, 71-72/ and EAF89/ standards.

The process for identifying the test series averages that were excluded from Table 18 was as follows:

1. Test series averages reported in units incompatible with the selected reporting units shown in the Table 18 column entitled "EF Units" were excluded. For example, EFs for sintering operations reported in pounds per ton input could not be converted to pounds per ton sinter for two reasons. First, input can be defined in three ways--raw material from bins, raw material from bins and recycle fines, and finally, raw material from bins, recycle fines, and hearth layer. The definition utilized was not made clear in many of the reports. Second, depending on plant operations, the mass ratio between input and output product may not be the same from plant to plant.

2. Test series averages representing front and back half particulate as measured by EPA Method 5 were excluded. Test series which were reported unclearly as to whether they represented front and back half or just front half particulate were also excluded.

3. Test series for controlled tests for which the control device was not specified were excluded.

4. Test series that were unclearly reported as to what process source they represented were excluded.

5. Test series that were reported unclearly as to whether they were controlled or uncontrolled were excluded.

The rules for calculating the representative EF for a source were:

1. If any source category has four or more A-rated test series, then the representative EF value shall be equal to the average of these A-rated test series as determined by Equation 1.

2. If any source category has less than four A-rated test series but more than zero, then the representative EF value shall be a weighted average of the A- and B-rated averages with the A-rated EF average receiving twice the weight that the B-rated EF average does.

3. If there are no A-rated values, then the representative EF value shall be equal to the average of the B-rated test series averages as determined by Equation 1.

If there are no A- and B-rated values, then the representative EF value shall be equal to the average of C- and D-rated values.

The philosophy behind the above rules is as follows. If there is a siginificant number of A-rated test series, that is, tests performed by a sound methodology and reported in enough detail to adequately validate the test series, then the single value should be set equal to the average of the Arated values alone. If there is not enough A-rated test series to cover a significant number of plants (estimated as four), then the B-rated test series should also be included in the averaging process so that the single EF value approaches a true industry-wide average. But, in order to counterbalance the fact that B-rated test series may not have been performed properly, the A-rated average should be weighted as more important than (twice as heavily as) the B-rated average. If there are no A-rated test series, then the single value should be set equal to the average of the B-rated test series. No C- or D-rated test series should be included with A- or B-rated tests in determining the single EF, since they were performed by either an unacceptable or unknown methodology or are based on estimates which cannot be corroborated. If there are no A- or B-rated test series, then the single EF value should be set equal to the average of the C- and D-rated test series. This provides at least an order of magnitude value for the source, but should by no means be expected to provide any more precision. These C- and D-rated test series are only used as a last resort since no other data are available.

### 4.2 OPEN DUST SOURCES

The single EFs that should be used to represent open dust sources at existing plants are shown in Table 13. These factors are in the form of predictive equations and, consequently, their use necessitates that the independent variables be quantified. For cases where estimates must be made for plant expansions or new plants, the equations in Table 13 can also be used, but the independent variables will necessarily have to be estimated. The average values presented in Tables 15-17 could be used for these estimates.

### SECTION 5.0

### SUMMARY

The purpose of this report was to develop a representative particulate EF or predictive equation for each significant source in the iron and steel industry. To accomplish this, results of emission tests performed by industry, EPA contractors, local, state, and regional environmental regulatory bodies were compiled in Section 3.0 and each EF rated as to its reliability.

For process stack and fugitive emissions, weighted averages of the most reliable tests were then calculated in Section 4.0 to develop representative particulate EF values as shown in Table 18. Unfortunately, much of the compiled data were not useful in determining the final representative EF value for reasons of unreliability, reporting of the production rate in incompatible units, inclusion of condensable emissions, unspecified control devices, and lack of clarity concerning which sources were actually sampled.

For open dust sources, predictive equations as shown in Table 13 were selected as the most accurate method to predict emissions from existing and proposed plants. The large difference in EF values for the same source due to varying raw or intermediate material characteristics or climatic variation with geographic location can then be predicted.

In conclusion, it is important to repeat the caution in Section 1.0 that the values in Tables 13 and 18 are average EFs obtained from a wide range of data of varying degrees of accuracy. The reader must be cautioned not to use these emission factors indiscriminately. That is, the factors generally may not yield precise emission factors for an individual installation. Only on-site source tests can provide data sufficiently accurate and precise to determine actual emissions for that source. Emission factors are most appropriate when used in diffusion models for the estimation of the impact of proposed new sources upon the ambient air quality and for community or nationwide air pollution emission estimates.

#### REFERENCES

- Vatavuk, W. M., and L. K. Felleisen. Iron and Steel Mills. In: Compilation of Air Pollutant Emission Factors, AP-42, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1976.
- American Iron and Steel Institute. Source Data for Steel Facility Factors. Final prepared July 13, 1976. 10 pp.
- Rehmus, F. H., D. P. Manka, and E. A. Upton. Control of H<sub>2</sub>S Emissions During Slag Quenching. Journal of the Air Pollution Control Association, 23(10):864-869, 1973.
- 4. American Iron and Steel Institute. 1976 Annual Statistics of the AISI. Washington, D.C., 1977. pp. 67-71.
- United Nations. Air Pollution by Coking Plants. Economic Commission for Europe, ST/ECE/Coal/26, 1968. pp. 3-27.
- Balla, P. A., and G. E. Wieland. Performance of Gas Cleaning System on Coke Oven Larry Car at Burns Harbor. Blast Furnace and Steel Plant, 55(1):22-26, 1971.
- 7.\* Company A. Untitled Summary Tables. Undated.
- Lock, T. A., et al. (Clayton Environmental Consultants, Inc.). Source Testing of a Stationary Coke-Side Enclosure: Burns Harbor Plant, Bethlehem Steel Corporation, Chestertown, Indiana. EPA-340/1-76-012, U.S. Environmental Protection Agency, Washington, D.C., May 1977.
- Lock, T. A., et al. (Clayton Environmental Consultants, Inc.). Source Testing of a Stationary Coke-Side Enclosure: Great Lakes Carbon Corporation, St. Louis, Missouri, Plant. EPA-340/1-76-014a, U.S. Environmental Protection Agency, Washington, D.C., August 1977.
- Jacko, R. B., D. W. Neuendorf, and J. R. Blandford. Plume Parameters and Particulate Emissions From the By-Product Coke Oven Pushing Operation. 71st Annual Meeting, Air Pollution Control Association, June 1978. 14 pp.

- Dennis, R., and R. Hall. Particle Size Distribution of Coke-Side Emissions From By-Product Coke Ovens. Draft Final Report, GCA/Technology Division, GCA Corporation, Bedford, Massachusetts, EPA Contract No. 68-01-3155, August 1976.
- Trenholm, A. R., and R. Jenkins. An Investigation of the Best Systems of Emission Reduction for the Pushing Operation on By-Product Coke Ovens. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, July 1976.
- Summary Report on Bethlehem Steel Corporation Spray System Pushing Emission Tests. U.S. Environmental Protection Agency, DSSE, August 25, 1976. 8 pp.
- 14. Clayton Environmental Consultants. Emission Testing and Evaluation of Ford/Koppers Coke Pushing Control System: Volume I. Final Report, EPA-600/2-77-187a, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, September 1977.
- 15.\* Company A. Two Data Tables and Test Method Description From Undefined Report. Supplemental Information.
- 16.\* Company B. Test Report on Arco Venturi Scrubber on Coke Battery No. 3, December 28, 1973.
- Letter from David Anderson, Corporate Office for Plant T to Don Goodwin, Environmental Protection Agency, April 18, 1975.
- Edlund, C., A. H. Laube, and J. Jeffrey. Effects of Water Quality on Coke Quench Tower Particulate Emissions. Presented at the APCA Annual Meeting in Toronto, Ontario, June 20-24, 1977. 14 pp.
- 19. Laube, A. H., J. Jeffrey, and C. Edlund. Particulate Sampling Techniques for a Coke Quench Tower. Proceedings of the Second Fugitive Emissions Symposium, sponsored by APCA and IERL, May 1977. pp. II-C-1 through II-C-24.
- Memorandum from Robert A. Armburst, Region 9 of New York State Department of Environmental Conservation to Bernard Bloom, DSSE, U.S. Environmental Protection Agency, November 6, 1975.
- Jeffrey, J. D. Test Report for Quench Tower Emissions Tests at Dominion Foundries and Steel, Ltd., Hamilton, Ontario, 1977-1978.
- Fullerton, R. W. Impingement Baffles to Reduce Emissions From Coke Quenching. Journal of the Air Pollution Control Association, 17(12): 807-809, 1967.

- Midwest Research Institute. Study of Coke Oven Battery Stack Emission Control Technology. Final Report: Volume I - Collection and Analyses of Existing Emissions Data. March 1979.
- 24.\* Solitary Table Entitled, Exhibit 1, Plant D, Coke Plant, Combustion Stacks - Uncontrolled.
  - 25.\* Company A. Supplemental Information. Letter with summary table dated June 10, 1975. Particulate Emission From Coke Battery Stack.
  - Mobley, C. E., A. D. Hoffman, and H. W. Lownie. Blast Furnace Slips and Accompanying Emissions as an Air Pollution Source. EPA-600/2-76-268, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, October 1976.
  - 27. Anonymous. The Manufacture of Pig Iron. In: The Making, Shaping, and Treating of Steel, H. E. McGannon, ed. 9th Edition, 1971. p. 442.
  - Internal Memorandum from T. G. Keller to R. M. McMullen, Bethlehem Steel Corporation, November 15, 1976. 2 pp.
  - May, W. P. (Betz Environmental Engineers, Inc.). Blast Furnace Cast House Emission Control Technology Assessment. EPA-600/2-77-231, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, November 1977. 158 pp.
  - 30.\* Company G. Measurement of Cast House Ventilation Rate and Particulate Emissions During Casting, October 24, 1974.

1

- 31.\* Company D. Two Tables Entitled, Sinter Plant Emissions Windbox Exhaust - Uncontrolled, March 10, 1975.
- 32.\* Company D. Six Tables Entitled, Sinter Plant Emissions Discharge End -Uncontrolled.
- 33.\* Company C. Portion of Report Entitled, Air Pollution Survey . . . , October 1, 1969.
- 34.\* Company C. Portion of Report Entitled, Air Pollution Survey Sinter Plant Induced Draft - Houston Works, January 6, 1971.
- 35.\* Company N. Summary Tables Showing Results of Sintering Plant Precipitator Testing, October 15 through November 11, 1978.
- 36.\* Company N. Memorandum Entitled, Sinter Plant Stack Emission Tests, May 13, 1974.
37.\* Company P. Portion of Report Entitled, Performance Evaluation of the . . . Installed at the Sinter Plant . . . , January 1973.

1

- 38.\* Company P. Portion of Untitled, Undated Report.
- 39.\* Company P. Memorandum Entitled, Sinter Plant Windbox Collection Efficiencies, June 19, 1973.
- 40.\* Company A. Inter-Organization Memorandum Entitled, Performance Test of Sinter Plant Baghouse at . . . , February 2, 1971.
- 41.\* Company A. Inter-Organization Memorandum Entitled, Stack Sampling . . . Sinter Plant, June 12, 1975.
- 42. Armco, Inc. Sinter Plant Air Pollution Control. Pilot Plant Study at Ashland, Report No. 1, Final, August 9, 1971.
- Clean Air Engineering. Report of Emissions Tests for Inland Steel Company, July 1975.
- 44. Pennsylvania DER. Testing at Bethlehem Steel Corporation, Johnstown, Pennsylvania, December 3, 1975.
- 45. Armco, Inc. Sinter Plant Air Pollution Control. Pilot Plant Study at Houston, Report No. 1, Final, February 17, 1972.
- 46. Betz Environmental Engineers. Report and Analysis of the Field Testing Program for the Hydro-Clean Scrubber of Control Research, Inc., at the Alan Wood Steel Plant in Conshohocken, Pennsylvania, June 1971.
- 47. Schlosser, R. W. (PA DER, Norristown, Pennsylvania). Report on Emissions From Sinter Plant, September 1974.
- 48. York Research Corporation. Test Report of Sinter Plant Emissions at Bethlehem Plant, Bethlehem, Pennsylvania. U.S. Environmental Protection Agency, EMB Report No. 75-SIN-1, December 1975.
- 49. U.S. Environmental Protection Agency. Air Pollution Emission Test: Colorado Fuel and Iron. Report No. 75-SIN-5, June 1975.
- Loch, T. A. (Clayton Environmental Specialists). Air Pollution Emission Test - Sinter Plant, Granite City Steel. U.S. Environmental Protection Agency, EMB Report No. SIN4, November 1975.
- 51. Environmental Sciences, Inc. Particulate Emissions From the Aliquippa Main Stack and Recycle Duct. September 1972.

- 52. Environmental Sciences, Inc. Particulate Testing of the Emissions From Koppers Electrostatic Precipitator Pilot Unit. October 1973.
- 53. WFI Sciences Company. Precipitator Efficiency Tests Mikropul Pilot Wet Precipitator Sinter Plant Main Exhaust. March 1974.
- 54. Environmental Sciences, Inc. Particulate Testing of the Envirex Gravel Bed Pilot Unit. October 1973.
- 55. PA DER. Report on Emission Test From Sinter Plant at Aliquippa Works. July 1975.
- 56. U.S. Environmental Protection Agency. Draft Report Standards Support and Environmental Impact Statement - An Investigation of the Best Systems of Emission Reduction for Sinter Plants in the Iron and Steel Industry. Research Triangle Park, North Carolina, May 1977.
- 57.\* Company B. Report of Work Performance Under EPA Contract. Report Dated March 23, 1972.
- 58.\* Company H. Letter Dated February 1976.

. •.

- 59.\* Company H. Field Survey Conducted on the Basic Oxygen Furnace, September 8, 1972.
- 60.\* Company B. Stack Test Report of the Electrostatic Precipitator at the Basic Oxygen Furnace Shop, December 19, 1974.
- 61.\* Company A. Memorandum Entitled, Dust Emission From BOP and BOP Cleaning System, June 23, 1972.
- 62.\* Company A. Memorandum Entitled, Particulate Emission Tests for . . . , December 12, 1974.
- 63.\* Undated Single Table Entitled, Summary of Results BOF Emissions.
- 64.\* Company J. Report Entitled, Basic Oxygen Furnace Stack Emission Tests, November 1975.
- 65. Roy F. Weston, Inc. Source Testing Report, Bethlehem Steel Corporation, Basic Oxygen Furnace, Bethlehem, Pennsylvania. April 1972.
- 66. Engineering Sciences, Inc. EPA Test No. 71-MM-23, Alan Wood Steel Company, Conshohocken, Pennsylvania. June 1972.
- 67. Engineering Sciences, Inc. EPA Test No. 72-MM-02, Basic Oxygen Furnace, U.S. Steel Corporation, Lorain, Ohio. June 1972.

- 68. Engineering Science, Inc. EPA Test No. 71-MM-24, U.S. Steel Corporation, Lorain, Ohio. March 1972.
- Schmidt, J. H., and R. Robertson (NALCO). Source Sampling Studies, Inland Steel Company, Chicago, Illinois. June 1975.
- 70. Nishimura, B. San Bernadino County APCD Source Test Report on Kaiser Steel. July 1972.
- Cowherd, C., Jr. (Midwest Research Institute). Source Testing Armco Steel. February 1972.
- 72. Meffert, D. P. EPA Test No. 71-MM-26, Weirton Steel Division, National Steel Corporation, Weirton, West Virginia. March 1972.
- 73. Mostardi-Platt Associates, Inc. Particulate Emission Studies at Republic Steel Corporation. August 1977.
- 74. Jefferson County Department of Health. U.S. Steel Fairfield Works Q-BOP Particulate Source Test. August 1977.
- 75. CH2M Hill. Particulate Emission Measurement on Q-BOP "C" at U.S. Steel Corporation, Fairfield, Alabama. November 1978.
- 76. Drabkin, M., and R. Helfand (Mitre Corporation). A Review of Standards of Performance for New Stationary Sources, Iron and Steel Plants/Basic Oxygen Furnaces. June 1978.
- 77. Nicola, A. G. Fugitive Emission Control in the Steel Industry. Iron and Steel Engineer, 53(7):25-30, 1976.
- 78.\* Company J. Undated Report Entitled, Basic Oxygen Furnace Stack Emission Tests.
- 79.\* Company J. Single Table Entitled, BOP Test Results, December 29, 1975.
- 80.\* Company D. Single Undated Table Entitled, No. 2 BOF Shop Tapping Emissions.
- 81.\* Company D. Single Undated Table Entitled, No. 2 BOF Shop Hot Metal Charging to Vessel.
- 82.\* Company D. Single Undated Table Entitled, BOF Shop Reladling Station.
- 83.\* Company A. Untitled Memorandum of November 9, 1973.

1

84.\* Company A. Memorandum Entitled, Fugitive Emissions . . . , April 2, 1975.

85.\* Company A. Memorandum Entitled, Roof Emissions . . . , August 19, 1975.

- 86. Letter from R. Neulicht, Test Support Section, Emission Measurement Branch to G. McCutchen, ESED, dated March 23, 1976.
- Interlake, Inc. Environmental and Energy Impact BOF Melt Shop. December 19, 1973. 13 pp.
- 88. Seton, Johnson, and Odell, Inc. Investigation of Particulate Emissions -Basic Oxygen Furnace Roof Monitors. January 1976.
- 89. U.S. Environmental Protection Agency. Background Information for Standards of Performance: Electric Arc Furnaces in the Steel Industry, Volume 2: Test Data Summary. EPA-450/2-74-017b, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina. pp. 10-13.
- 90. Hammond, W. F., et al. Metallurgical Equipment Steel Manufacturing Processes. In: Air Pollution Engineering Manual, J. A. Danielson, ed. AP-40, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1973. pp. 245-255.
- 91.\* Company K. Untitled Table. Undated.
- 92.\* Company J. Single Table Entitled, Dust Collected by Baghouse in 1976, May 21, 1976.
- 93.\* Company H. Memorandum Entitled, Flue Dust Collection, October 28, 1975.
- 94.\* Company L. Untitled, Undated Report.
- 95. Environmental Engineering, Inc. Iron and Steel Industry, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, March 15, 1971. pp. 3-7.
- 96. Battelle Memorial Institute. A Systems Analysis Study of the Integrated Iron and Steel Industry. U.S. HEW, May 15, 1969. pp. C-79 to C-83.
- 97. Seiffert, R. D. EPA Trip Report for Visit to Plant M, September 13, 1972.
- 98. Report of Emissions Tests at Plant N, Submitted by the Owner, April 21, 1972.
- 99. Letter from J. E. Barker, Chairman of an American Iron and Steel Institute Ad Hoc Committee to D. R. Goodwin, U.S. Environmental Protection Agency, May 22, 1973.

- 100. Plant E. Roof Monitor Emission Data Summary of Test Results, Submitted by Owner of Plant E. Undated.
- 101. Seiffert, R. D. EPA Trip Report for Visit to Plant F, March 28, 1973.
- 102. San Bernadino County Air Pollution Control District. Report of Source Test Conducted at Witteman Steel Mills, Fontana, California. April 1975.
- 103. South Coast Air Quality Management District. Source Test Report Summary. June 1978.
- 104. U.S. Environmental Protection Agency, Region IX. Emission Testing at Marathon Steel, Tempe, Arizona. June 1977.
- 105.\* Company A. Single Table Entitled, Open Hearth Precipitator Test Results at Low Stack Draft. Undated.
- 106.\* Company A. Memo Entitled, Open Hearth Precipitator Dust Emission Tests
   at . . , July 16, 1974. Also included is a separate untitled packet
   of supplemental information.
- 107.\* Company N. Report Entitled, Oxygen Lanced Open Hearths Precipitator Stack Emission Test, December 3, 1973.
- 108.\* Company C. Single Undated Table Entitled, Open Hearth Shop Performance Tests, May 1971.
- 109.\* Company F. Report Entitled, Data Tables for Roof Monitor Above No. 35 and Between Nos. 34 and 35, July 25, 1973. 35 pp.
- 110. Black, Crow, and Eidsness, Inc. Particulate Emission Measurements on No. 9 Open Hearth Furnace at the Ensley Works of U.S. Steel Corporation, Birmingham, Alabama. October 1975.
- 111.\* Company A. Inter-Organization Correspondence. Particulate Emission Tests on 40-Inch Bloom Scarfer Precipitators. March 17, 1976. 4 pp.
- 112.\* Company A. Inter-Organization Correspondence. Particulate Emission Tests on Five Scarfer Wet Precipitators. December 30, 1975. 8 pp.
- 113.\* Company A. Memorandum. Dust Emissions From Scarfing Machine. February
  6, 1967. 2 pp.
- 114.\* Company A. Inter-Organization Correspondence. Emission Tests on Scarfer Stack. September 6, 1974. 3 pp.

- 115.\* Company B. Emission Test Report. Emission Study Scarfer Exhaust -No. 3 Slabbing Mill. May 8 and 10, 1973. 23 pp.
- 116.\* Company C. Performance Tests on Kinpactor Installation Hot Scarfing
  Application. February 24, 1966. 8 pp.
- 117.\* Company C. Air Pollution Survey Final Report. May to November 1971.
  6 pp.
- 118.\* Company Q. Particulate Emission Testing Blooming Mill Hot Scarfer.
  3 pp.
- 119.\* Company Q. Summary of Emission Data Mill Hot Scarfer Testing. Three tables plus data sheets. 7 pp.
- 120. Reference 27, p. 443.
- 121. Anonymous. Steel Plant Fuels and Fuel Economy. In: The Making, Shaping, and Treating of Steel, H. E. McGannon, ed. 9th Edition, 1971. p. 97.
- 122. Reference 121, p. 94.
- 123. Reference 121, p. 95.
- 124. Reference 121, p. 90.
- 125. Reference 121, p. 81.
- 126. Reference 121, p. 92.
- 127. Cowherd, C., Jr., K. Axetell, Jr., C. M. Guenther (Maxwell), and G. Jutze. Development of Emission Factors for Fugitive Dust Sources. EPA-450/3-74-037, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, June 1974. 190 pp.
- 128. Cowherd, C., Jr., C. M. Maxwell, and D. W. Nelson. Quantification of Dust Entrainment from Paved Roads. EPA-450/3-77-027, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, July 1977. 89 pp.
- 129. Bohn, R., T. Cuscino, Jr., and C. Cowherd, Jr. Fugitive Emissions from Integrated Iron and Steel Plants. EPA-600/2-78-050, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, March 1978, 276 pp.

- 130. Cowherd, C. Jr., R. Bohn, and T. Cuscino Jr., Iron and Steel Plant Open Source Fugitive Emission Evaluation. EPA Contract 600/2-79-103, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, May 1979.
- 131. U.S. Department of Commerce, Environmental Science Service Administration. Climatic Atlas, June 1968.
- Woodruff, M. P. and F. H. Siddoway. A Wind Erosion Equation. Soil Science Society of America Proceedings, 29(5):602-608, 1965.
- 133. Steiner, Jim and Jeff Knirck (Acurex). Particulate Matter Emission Factor Tests for Hot Metal Transfer and Teeming Operations at Wisconsin Steel, Chicago, Illinois. Region V, U.S. EPA, Chicago, Illinois, November 1978.
- 134. ' Steiner, Jim and Jeff Knirck (Acurex). Particulate Matter Emissions Factor Tests for Q-BOP Hot Metal Addition and Tapping Operations at Republic Steel, Chicago, Illinois. Region V, U.S. EPA, Chicago, Illinois, March 1979.
- 135. Kemner, W., D. Loudin, J. Smith, and G. Saunders. Control of Emissions from Dry Coal Charging at Coke Oven Batteries. EPA Contract No. 68-02-2603, Task 28, U.S. EPA, Research Triangle Park, North Carolina. Undated Report Written Between August 1978 and May 1979.
- 136. York Research Corporation. Measurement of Coke Pushing Particulate Emissions at CF&I Corporation Coke Plant, Pueblo, Colorado. Report for CF&I Corporation, October 4, 1976.
- 137. York Research Corporation. Performance Testing of Basic Oxygen Furnace Electrostatic Precipitators. Report for CF&I Steel Corporation, May 1978.
- 138. Coy, David W. Report of Stack Test at U.S. Steel, Geneva Works, Sinter Plant. EPA Contract No. 68-01-4141, Task 13, September 1978.
- 139. York Research Corporation, Report on Particulate Emissions Measurements, "D" Battery Coke Oven Stack. Prepared for CF&I Steel Corporation, July 24, 1978.
- 140. Pacific Environmental Services. Air Pollution Emission Test: Kaiser Steel Corporation, Fontana, California. Report No. 75-SIN-3, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, November 1975.
- 141. Bee, R. W. et al. Coke Oven Charging Emission Control Test Program -Volume I. EPA-650/2-74/062. U.S. Environmental Protection Agency, Washington, D.C., July 1974.

- 142. Stoltz, J. H. Coke Charging Pollution Control Demonstration. EPA-650/2-74-022. U.S. Environmental Protection Agency, Washington, D.C., March 1974.
- 143. Letter from William Benzer of the American Iron and Steel Institute to Charles Masser of U.S. Environmental Protection Agency, September 11, 1979.
- \* Submitted by AISI as support documentation for the EFs presented in their summary table entitled, "Source Data for Steel Facility Factors," July 13, 1976. Names of plants and personnel were deleted by AISI.

,

APPENDIX

## TYPICAL CONVERSION FACTORS FOR MATERIAL FLOW CALCULATIONS

| Process              | Conversion factor                                    | Reference                          |  |
|----------------------|------------------------------------------------------|------------------------------------|--|
| Coke manufacture     | <u>1.0 unit coal</u><br>0.69 unit coke               | -                                  |  |
| Iron production      | 0.55 unit coke<br>1.0 unit iron                      | L                                  |  |
|                      | 1.55 units of iron bearing material<br>1.0 unit iron | 1                                  |  |
|                      | 0.5 unit sinter<br>1.0 unit iron                     | Average of 5 years of<br>AISI data |  |
|                      | 1.0 unit iron ore<br>1.0 unit iron                   | Calculated by dif-<br>ference      |  |
|                      | 0.2 unit limestone<br>1.0 unit iron                  | 1                                  |  |
|                      | 0.2 unit slag<br>1.0 unit iron                       | 1                                  |  |
|                      | or                                                   |                                    |  |
|                      | 0.3-0.4 unit slag<br>1.0 unit iron                   | 2                                  |  |
|                      | or                                                   |                                    |  |
|                      | 0.2-0.35 unit slag<br>1.0 unit iron                  | 3                                  |  |
| BOF steel production | 0.7 unit hot metal<br>1.0 unit BOF steel             |                                    |  |
|                      | 0.3 unit scrap<br>1.0 unit BOF steel                 | ,                                  |  |
| OHF steel production | 0.45-0.55 unit hot metal<br>1.0 unit OHF steel       | 4                                  |  |
|                      | 0.45-0.55 unit scrap<br>1.0 unit OHF steel           |                                    |  |

## TABLE A-1. TYPICAL CONVERSION FACTORS UTILIZED FOR ENGINEERING ESTIMATES OF QUANTITIES OF MATERIAL HANDLED

## APPENDIX REFERENCES

- Vatavuk, W. M., and L. K. Felleisen. Iron and Steel Mills. In: Compilation of Air Pollutant Emission Factors. AP-42, Environmental Protection Agency, Research Triangle Park, North Carolina, 1976.
- Rehmus, F. H., D. P. Manka, and E. A. Upton. Control of H<sub>2</sub>S Emissions During Slag Quenching. Journal of the Air Pollution Control Association, 23(10):864-869, 1973.
- 3. Steiner, B. A. Air Pollution Control in the Iron and Steel Industry. International Metal Review, (9):171-192, 1976.
- 4. Anonymous. Evolution of Iron and Steelmaking. In: The Making, Shaping, and Treating of Steel, H. E. McGannon, ed. 9th Edition, 1971. p. 34.

•`•

|                                                                           | TECHNICAL REPORT DATA<br>(Please read lastructions on the reverse before completing) |                                              |                                 |                        |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|------------------------|--|--|
| 1. REI                                                                    | PORT NO.<br>PA-450/4-79-028                                                          | 3.                                           | RECIPIENT'S ACC                 | CESSIONNO.             |  |  |
| 4. 111                                                                    | LE AND SUBTITLE                                                                      | 5.                                           | 5. REPORT DATE                  |                        |  |  |
|                                                                           | articulate Emission Factors Applicable to                                            | othe _                                       | September 1979                  |                        |  |  |
|                                                                           | ron and Steel Industry                                                               | б.                                           | B. FERFORMING ONGONIZO HON COUC |                        |  |  |
| 7. AU                                                                     | THORIS                                                                               | 8.                                           | PERFORMING OR                   | IGANIZATION REPORT NO. |  |  |
| Т                                                                         | homas A. Cuscino, Jr.                                                                |                                              |                                 |                        |  |  |
| 9. PER                                                                    | FORMING ORGANIZATION NAME AND ADDRESS                                                | 10                                           | 10. PROGRAM ELEMENT NO.         |                        |  |  |
|                                                                           | 10West Research Institute<br>25 Volker Blvd                                          | 11. CONTRACT/GR/<br>68-02-2814<br>Task Numbe |                                 | ANT NO.                |  |  |
| ĸ                                                                         | ansas City, MO 64110                                                                 |                                              |                                 |                        |  |  |
| £                                                                         |                                                                                      |                                              |                                 | er 23                  |  |  |
| 12. SF                                                                    | CONSORING AGENCY NAME AND ADDRESS                                                    | 13. TYPE OF REPOR                            |                                 | AT AND PERIOD COVERED  |  |  |
| M M                                                                       | onitoring and Data Analysis Division (MD                                             | -14)                                         | 14. SPONSORING AGENCY CODE      |                        |  |  |
| R                                                                         | esearch Triangle Park, NC 27711                                                      | 1                                            |                                 |                        |  |  |
|                                                                           |                                                                                      | L                                            |                                 |                        |  |  |
| 15.50                                                                     | OFFLEMENTARY NOTES                                                                   |                                              |                                 |                        |  |  |
| EPA Task Officer – Charles C. Masser                                      |                                                                                      |                                              |                                 |                        |  |  |
| 16. A                                                                     | BSTRACT                                                                              |                                              |                                 |                        |  |  |
| An intensified effort has occurred in the last 3 years to update the iron |                                                                                      |                                              |                                 |                        |  |  |
|                                                                           | for the first time fugitive source emission factors                                  |                                              |                                 |                        |  |  |
|                                                                           | for the first time, rugitite source emission forces at                               |                                              |                                 |                        |  |  |
|                                                                           | It is the objective of this report                                                   | to present the                               | e results of                    | this data              |  |  |
|                                                                           | First, background information will be p                                              | resented relate                              | ed to the pr                    | ocesses in             |  |  |
|                                                                           | the iron and steel industry along with a process flow chart. Second, all of          |                                              |                                 |                        |  |  |
|                                                                           | the particulate source test data will be presented and summarized in chart           |                                              |                                 |                        |  |  |
|                                                                           | form. Third, the methodology for selec                                               | ting single sou<br>mission factors           | irce specifi<br>will be pr      | c emission<br>resented |  |  |
|                                                                           | factors and the resulting particulate c                                              |                                              |                                 | cochica.               |  |  |
|                                                                           |                                                                                      |                                              |                                 |                        |  |  |
|                                                                           |                                                                                      |                                              |                                 |                        |  |  |
|                                                                           |                                                                                      |                                              |                                 |                        |  |  |
|                                                                           |                                                                                      |                                              |                                 |                        |  |  |
|                                                                           |                                                                                      |                                              |                                 |                        |  |  |
| 17.                                                                       | KEY WORDS AND DO                                                                     | CUMENT ANALYSIS                              |                                 |                        |  |  |
| a                                                                         | DESCRIPTORS                                                                          | b.IDENTIFIERS/OPEN                           | ENDED TERMS                     | c. COSATI Field/Group  |  |  |
| Air Pollution Iron and Steel                                              |                                                                                      |                                              |                                 |                        |  |  |
| Particulate                                                               |                                                                                      | Particulate Emissions                        |                                 |                        |  |  |
| Emissions                                                                 |                                                                                      | Emission Factor                              |                                 |                        |  |  |
|                                                                           | Emission Factor                                                                      |                                              |                                 |                        |  |  |
|                                                                           |                                                                                      |                                              |                                 |                        |  |  |
| 18. DI                                                                    | STRIBUTION STATEMENT                                                                 | 19 SECURITY CLASS                            | (This Report)                   | 21. NO. OF PAGES       |  |  |
|                                                                           |                                                                                      | Unclassifie                                  | This page 1                     | 81<br>22. PRICE        |  |  |
|                                                                           | Unlimited                                                                            | Unclassifie                                  | d                               |                        |  |  |
|                                                                           |                                                                                      |                                              |                                 |                        |  |  |

EPA Form 2220-1 (9-73)