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Abstract 

Bank storage is a process in which volumes of water are temporally retained by alluvial 
stream banks during flood events, and gradually released as baseflows. This process has 
implications on ground-water resource management, reducing flood peaks, and sustaining 
riparian vegetation. In this paper, analytical solutions are developed that describe ground water­
surface water interactions and the impact of bank storage on the attenuation of stream channel 
discharges. In effect, the stream flow routing Muskingum method is modified for bank storage. 
The analysis is based on one-dimensional lateral groundwater flow in semi-infinite homogeneous 
unconfined aquifers, which are in hydraulic contact with streams through semipervious bed 
sediments. Storage in the stream reach, according to the Muskingum method, is assumed to be 
proportional to the reach inflow and outflow rates. The stream-reach impulse response and unit 
step response functions are modified for bank storage by applying the method of Laplace 
transformation to the coupled stream-aquifer system. Results indicate that increasing 
conductivity of the bank reduces the stream impulse response function at earlier times but with 
greater and more persisting values later. In contrast, greater aquifer conductivity decreases the 
unit step response at earlier time but with a diminishing effect at later times. The stream flows 
are routed for a hypothetical asymmetric flood hydrograph, and the results show increasingly 
attenuated and delayed peaks and extended tailing, with greater values of the hydraulic 
conductivity. The simulated stream losses to bank storage and subsequent baseflows are 
significant in typical alluvial sediments. Ground-water discharges are highly dependent on the 
retardation coefficient. 

Introduction 

The problem of stream-aquifer interactions is important to watershed management efforts 
aiming at mitigating hazardous flood events and optimizing surface water and ground-water 
resources, and has significant ecological implications. For example, urbanization increases the 
fraction of impervious lands in watersheds, which reduces ground-water recharge and increases 
surface runoff and, thus, the potential for greater stream flows during flood events. Aquifers may 
provide a temporary relief for increased stream flows through bank storage and, in effect, may 
reduce and delay flood peaks. The temporally stored volumes of water in stream banks provide 
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moisture needed to sustain riparian vegetation, and when released gradually from storage sustain 
aquatic organisms during baseflow periods. 

The lateral stream losses to bank sediments during a flood stage and the subsequent 
gradual releases of the volume of waters in storage to sustain baseflows between flood events is a 
process called bank storage (Todd, 1955). This problem has been the topic of num<(rous papers in 
the literature; it has been analyzed numerically by accounting for streams as time-varying 
boundary conditions (Yeh, 1970; Marino, 1975), and by modeling the stream-aquifer system as 
two interacting dynamic systems (Pinder and Sauer, 1971; Zitta and Wigger!, 1971 ). Although 
more restrictive, practical_ analytical solutions were also developed for solving the linearized 
Boussinesq groundwater flow equation subject to fluctuating stream stages (Cooper and 
Rorabaugh, 1963; Marino, 1973; Moench et al., 1974; Govindaraju and Koelliker, 1994; and 
Zlotnik and Huang, 1999). These analytical solutions, however, do not consider the simultaneous 
interactions, which are inherent to a dynamically coupled stream-aquifer system; rather, their use 
is conditioned on a priori knowledge of the stream-stage fluctuations. Thus, they cannot be used 
for routing stream flows directly, unless iterative procedures are implemented, and their utility to 
watershed planning and management (e.g., evaluating the "impact of watershed landscape 
changes) is thereby questionable. Hunt (1990) derived an analytical solution, which couples a 
linearized approximation of the kinematic wave equation in open channels to aquifer flow, and 
presented a dynamic model for simulating stream-aquifer interactions. The solution, however, 
required iterating between the groundwater solution and the flood-routing problem. Harada et al. 
(2000) introduced the concept of impulse response function to relate stream outflows to bank 
storage, by coupling a linear reservoir model to a semi-infinite aquifer in perfect hydraulic 
connection with the aquifer. The presented analytical solution, however, is limited to narrow 
streams and aquifer conductivities that are much greater than typically encountered in alluvial 
sediments. This paper presents an analytical solution to a dynamic stream-aquifer system, by 
modifying the stream routing Muskingum method (Chow et al., 1988) for bank storage in 
alluvial aquifers of semi-infinite extent and separated from the streams by semi-pervious bed 
deposits. 

Stream Flow 

The Muskingum method is a widely used method for hydrologic routing in streams 
channels. In this method, the volume storage, S(t), in a stream channel is expressed as a 
combination of a wedge storage, Tl ~ [l(t) - O(t)], and a prizm storage, Tl O(t) (Chow et al., 
1988), 

S (t) =Tl [~ I (t) + ( 1 - ~) 0 ( t)] (1) 

in which S(t) =channel storage [L3
]; l(t) =inflow rate relative to the initial discahrge [L3/T]; O(t) 

= ouflow rate relative to the initial discharge [L3/T]; Tl = storage time constant for the reach [T]; 
and~= a weighting factor that varies from 0 to 0.5. In natural streams, ~varies from 0 to 0.3 and 
averages about 0.2. The storage time constant, T), is approximately the kinematic wave travel 
time through the reach, and can be estimated as the time interval between the inflow and outflow 
peaks. If~= 0, S(t) =Tl O(t). This storage-discharge relationship is commonly used in level pool 
routing. 
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The storage in a stream reach of length L penetrating an aquifer may be described by the 
continuity equation (Fig. l ): 

dS(t)- = l(t)-O(t)-2 Q(t) (2)
dt 

in which Q(t) =half the lateral flow rate to or out of the aquifer [L3/T] integrated over the reach 
length. In the following section, we present the boundary-value problem which describes the 
ground water-surface water interactions, Q(t). It is assumed that S(t) is related to the average 
stream stage fluctuations, H(t), 

S(t) =L H(t) (3) 
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Fig. l Schematic diagram of the stream-aquifer system. 

in which H(t) = stream-stage fluctuations, relative to the initial equilibrium stage (Fig. l ), 
averaged over the stream-reach length, L. This assumption is intended to simplify the analysis. 
Also, it is assumed that the stream stage is initially at equilibrium with the water table in the 
aquifer and, thus, flow in the stream is initially uniform, i.e., /(0) = 0(0) = 0. 

Ground-water Flow at the Interface 

Ground-water flow in a semi-infinite homogeneous unconfined aquifer may be described 
by the linearized Boussinesq partial differential equation (Fig. l ): 

ah(x,t) =D a
2
h(x,t) (4)

2at ax 
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and subject to the initial and boundary conditions: 

h(x,O) =0 (5) 

_ T dh(O, t) =p K' [H(t)-h(O, t)] (6)ax b 
h(=,t) =0 (7) 

in which h(x,t) =water-table fluctuations relative to the initial equilibrium position [L!; D = TIS 
= aquifer diffusivity [L2/T]; T = K ho = average transmissivity of the aquifer [LIT]; K = 

hydraulic conductivity [LIT]; ho = average water-table elevation above the base of the aquifer 
(Fig. 1) [L]; S = specific yield of the unconfined aquifer; P = half the wetted perimeter of the 
stream [L]; K' = the hydraulic conductivity of the stream bed [LIT]; and b = thickness of the 
stream bed [L]. In Eq. (4) the water-table fluctuations are assumed to be small relative to the 
average saturated thickness of the aquifer. Also, the third-type boundary condition (6) assumes 
that compressibility of the aquifer below the stream can be ignored. Thus, ground-water flow 
below the stream is at quasi-steady state, which may be valid only for aquifers deeply incised by 
the streams. 

Stream losses (or baseflow) across a channel length L is given by 

Q(t) =p L K' [H(t)-h(O,t)] (8)
b 

In the following section, we use the above equations to derive the impulse response and unit step 
input response functions for streams modified for stream-aquifer interactions. 

Impulse Response Functions 

It can bee seen that the substitution of the Muskingum relationship ( 1) for S(t) in (2) 
results in a linear system, which relates O(t) to !(t) and Q(t). Thus, O(t) is uniquely characterized 
by its impulse response function and can be described by the convolution integral: 

I 

O(t)= fu(t-'t)l(1:)dr (9) 
0 

in which u(t) = impulse response function [T1
], which describes the temporal variations of the 

outflow from the stream reach due to an instantaneous input of unit amount at t = 0 at the 
upstream inflow boundary. In the Laplace transform domain, Eq. (9) is described by 

O(p) =u(p) l(p) (10) 

where the Laplace transform of a function fit) is defined by f(p) =f f(t)e-pr dt. The 
0 

application of the Laplace transformation to Eqs. ( 1-8) and comparison with ( 10) should yield 
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1 l+RfP/i5 __S_ 
u(p)=o-s)2 ri cR1Ji5)p 312 +p+rcR1.fi5)JP+[11crio-s)J 1-s (ll) 

where y=ll(T](l-1;))+(2P/W)(K'!b), and R =Tb/PK. is the retardation coefficient [L] 

modified for partial penetration. In the specific case of P :::: h0 , we have R = Kb/ K', which is 

equivalent to a stream completely penetrating the aquifer. The inverse Laplace transform of (11) 
is given by 

u(t)= 1 1 a+r l+R.[;/i5 ezt dz--S-8(t) (12) 
(1- S) 2 Tl 2rci a-ioo (RI Ji5)z 312 + z + y(R I JD) .Fz + [1 /(TJ (1- s)] 1- s 

in which 8(t) is the Dirac delta function. Noting that the denominator in the integrand (we refer 
to the integrand as F(z)) is a multiple-valued function of the complex variable z, then the integral 
is evaluated on the complex plane by introducing a branch cut along the negative real axis (Fig. 

2) with the argument of the principal branch of .Fz defin~d from -7t to 7t ( z = r e;e and 

- 7t ~ 8 ~TC ): 

1 a+ioo 1 { }
-. f F(z)dz =--.lime-to. cfF(z)dz+ fF(z)dz+ cfF(z)dz+ fF(z)dz (13)
2m a-ioo 2m p-;oo c p rI r< r2 

The evaluation of the integrals, the details of which are not shown, yields the following integral 
expression for the impulse response function: 

(14) 

where 

(15) 

Harada et al. (2000) obtained a closed-form solution for u(t) for the specific case of level pool 

routing (S = 0), perfect hydraulic connection with aquifer (R = 0), and when SK h0 I W
2 > 1IT]. 

This latter condition, however, is limited to narrow channel widths and aquifer conductivities 
much greater than those encountered in natural alluvial sediments. Figure 3 shows the effect of 
the hydraulic conductivity on the impulse response function (the Dirac-delta contribution is not 
shown). Notice that as K increases, u(t) shows increasingly smaller values at earlier time t but 
increasingly greater values at later time t and extended tailing. This implies that bank storage 
regulates stream discharges by attenuating their peaks due to initial lateral losses to the aquifer 
and continuously supplying the stream outflows by gradual releases from bank storage through 
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Fig. 2 Contour integration for the Laplace inverse transformation of the multiple-valued 
function F(z). 

baseflows. The Laplace transform of Q(t) can be shown to be 

- T JPTi5 ­
Q(p) = r;::: ~ C I (p) (16) 

(1-s)W (RlvD)p 31 
- + p+y(R!lD)-vP +[l/(Tj(l-s)] 

From this equation one can deduce that the impulse response function that describes ground 
water-surface water intearctions is given by the Laplace inverse transform of the product of the 
first two terms on the right-hand side, 

• T 1 a.+i~ .Jz ID ez' 
u (t) = f dz (17)

(1- S) W 2rri a.-i~ (RI JD)z 312 + z + y(R I JD) Fz + (1 /(rt (1- s)] 

Similarly, the integration of the complex-valued function is carried along the contour lines 
shown in Fig. 2, and can be shown to be: x 12. 

u' (t) = 2 T,Ji5 j e-rf[y _ l )dy2 (18)
w(l-s)rroA(y) 110-s) 

and Q(t) is given by the convolution integral: 
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0 
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K= 2 mlhr W=20m 

0.0 0.5 1.0 1.5 2.0 

t (hrs) 
Fig. 3 Impulse response function for K = 0 (no-bank storage), 2, and 40 m/hr. 

I 

Q(t) = fii°(t-'t)l('t)dt: (19) 
0 

Figures 4(a)-4(b) display the stream outflow and ground-water flow hydrographs in response to a 
hypothetical asymmetric flood-inflow hydrograph and assumed hydraulic parameters. The inflow 
hydrograph is assumed to be of the type proposed by Cooper and Rorabaugh (1963), l(t) = N l 
e-0 1 [I-cos(cot)], when 0 ~ t ~le, and l(t) = 0, t ~ fc. The routed outflow hydrograph, O(t)!l (l is 
the peak of the inflow flood event), is obtained by numerical integration of (9) with the impulse 
response function, u(t), given by (14 and 15), for K = 0, 2, and 40 m/hr. As the aquifer hydraulic 
conductivity increases, the outflow hydrograph displays greater attenuation and a delayed peak 
outflow, but with extended tailing; that is, greater baseflow rates proceed after the end of the 
flood event. Figure 4(b) shows ground-water flux at the interface, 2 x Q(t)!l, for K = 2 m/hr and 
R = 0, 5, 20, and 50 m, and K = 40 m/hr and R = 0 m. It is clear that bank storage has greater 
effect on ground water-surface water interactions as K increases. The hydraulic conductivity K = 

40 m/hr may be encountered in predominantly gravelly-coarse sand sediments. Also, note that 
increased retardation coefficient results in delal'ed but decreasing baseflow rates. Q(t)! l is 
calculated by numerical integration of ( 19) with u (t) given by (18). 

Unit Step Response Function 

If the stream inflow rate increases from 0 to I at time t = 0, and continues indefinitely at 
that rate, then the outflow rate in response to this unit step increase is given by the unit step 
response function g(t) (Chow et al., 1988). It is given by the integration of the impulse response 
function, 
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...,,,..-- O(t) (K = 0 mlhr) 0.30 (\_R = 0 m, K = 40 mlhr S = 0.2 

· O(t) (K = 2.0 mlhr) . \ 	 ;=0.15 
0.25 !J=0.4hr

I . 	 ~=20m~O(t) (K = 40 mlhr) 
0.20 · \ P = 20 m 

W=Wm.
R =Om 	 ~ 0.15 I . R = 0 m, K = 2 mlh;. 
......._
S= 0.2 ,__. -	 R=5m;=0.15 	 ()) 0.10 
N I!J =0.4 hr 

0.05\ h0 : 20111 
. \ p - 20111 

·. · W= 20 m 0.00 

,,....- . -·"~. -0.05 . ·":--:-- ::::- . 

0 	 5 

t (hrs) 
t (hrs) 

Fig. 4 (a) Outflow hydrograph (K = 0, 2, and 40 m/hr), and (b) Ground-water flow hydrograph at 
the interface (R= 0 and K = 40 m/hr, and K = 2 m/hr with R = 0, 5, 20, and 50m). 

I 

g(t) = fu(-r)dt 	 (20) 
0 

By substituting (14) and (15) for u( i) and carrying out the integration one obtains: 

l 4r.fi5~1-e-/ 1 s 
(21)

g(r) =o-s)2 ri n w l A(y) dy- 1-s 

Figure 5 shows the behavior of the function g(t) for K = 0 (no-bank storage), 2, and 40 m/hr. It 
can be seen that in response to a unit increase in the inflow rate at the beginning of the flood 
event, increased aquifer conductivity, thereby bank storage effect, can significantly reduce the 
outflow from the stream channel during the earlier stages of the event. Also, significant volumes 
of water entering the channel will be retained in the bank sediments for extended periods of time, 
as K increases. It can be shown that as t --7 co, g(t) --7 1, and shows less variation with K. This 
implies that the impact of bank storage diminishes after large time, assuming that the flood 
event persists. 

The unit step response function g(t) is useful in routing stream flows when the inflow 
hydro graph is of a general form and measured at discrete points rather than continuously in time, 
as shown in Fig. 6. In this case, the outflow hydro graph ( 0 11 = O(t,,)) at a discrete point in time, 
t,,, can be obtained by breaking the convolution integral in (9) into summation of integrals over 

8 

10 



1.a 
K=Om/. 

. · · · K=40 mlhr 

a.a a.5 1.a 1.5 2.a 

t(hrs) 
Fig. 5 Unit step response function g(t) as a function of time (K = 0, 2, 40 m/hr). 

time increments !J.tm = lm - lm-f, between successive discrete measurements of l(t), Im, 0 ::;; m::;; M, 
as shown in Fig. 6, and integrating (following Chow et al., 1988): 

Q =n~\.fp g(tn - lm-1) - g(tn - Im) (26)n ~ m 
m=I !J.tm 

where 

(27) 

l(t) 

t,,. J t,, t,\f 

Fig. 6. Illustration of a discrete inflow hydrograph. 

Summary 
Stream-aquifer interactions are important for ground-water resource management, flood 

control, and sustaining vegetation and healthy ecological conditions in riparian zones. An 
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analytic methodology is presented, which modifies the Muskingum hydrologic routing method 
for bank storage in streams cutting through alluvial aquifers. Integral expressions are obtained 
for the impulse response functions, which allow for routing continuous-time inflow hydrographs 
in streams, and estimating lateral losses to the surrounding bank sediments, and subsequent 
baseflows. An analytical expression is presented for the unit step response function, which is 
useful for routing general and discrete inflow hydrographs. Simulation results shQwed that with 
K typical to alluvial sediments, bank storage can significantly reduce flood peaks and sustain 
baseflows. The results also indicated that ground-water fluxes decrease significantly with 
increasing retardation coefficient, thus minimizing the effect on regulating stream outflows. 

Notice: This paper has been reviewed in accordance with the U.S. Environmental Protection 
Agency's peer and administrative review policies and approved for presentation and publication. 
This research reported in this paper is part of Project 4940-H of the Agricultural Experiment 
Station of the University of California, Davis. 
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