WASTE MINIMIZATION OPPORTUNITY ASSESSMENT

A TRUCK ASSEMBLY PLANT

by

Science Applications International Corporation McLean, Virginia 22102

.

EPA Contract No. 68-C8-0061, WA 2-05 SAIC Project No. 1-832-03-200-33

Project Officer

Mary Ann Curran Pollution Prevention Research Branch Risk Reduction Engineering Laboratory Cincinnati, Ohio 45268

RISK REDUCTION ENGINEERING LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268

DISCLAIMER

This report has been reviewed by the Risk Reduction Engineering Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

FOREWORD

Today's rapidly developing and changing technologies and industrial products and practices frequently carry with them the increased generation of materials that, if improperly dealt with, can threaten both public health and the environment. The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. These laws direct the EPA to perform research to define our environmental problems, measure the impacts, and search for solutions.

The Risk Reduction Engineering Laboratory is responsible for planning, implementing, and managing research, development, and demonstration programs to provide an authoritative, defensible engineering basis in support of the policies, programs, and regulations of the EPA with respect to drinking water, wastewater, pesticides, toxic substances, solid and hazardous wastes, and Superfund-related activities. This publication is one of the products of that research and provides a vital communication link between the researcher and the user community.

The Waste Minimization Branch of the Risk Reduction Engineering Laboratory has instituted the Waste Reduction Assessment Program to identify, evaluate and demonstrate waste minimization opportunities in industrial and commercial operations. This report is a waste minimization assessment of a truck assembly plant.

E. Timothy Oppelt, Director Risk Reduction Engineering Laboratory

ABSTRACT

This report summarizes work conducted at a truck assembly plant under the U.S. Environmental Protection Agency's (EPA) Waste Reduction Assessment Program (WRAP) Program. This project was funded by EPA and conducted in cooperation with the truck assembly plant.

The purposes of the WRAP Program are to identify new technologies and techniques for reducing wastes from industrial processes used by selected sites and to enhance the adoption of pollution prevention/waste minimization through technology transfer. New techniques and technologies for reducing waste generation are identified through waste minimization opportunity assessments and may be further evaluated through joint research, development, and demonstration projects.

A waste minimization opportunity assessment was performed which identified areas for waste reduction at a truck assembly plant. The study followed procedures in the EPA <u>Waste Minimization</u> <u>Opportunity Assessment Manual</u>. Although the facility has made substantial progress to date, opportunities were identified for further action. This report identifies potential options to achieve further waste minimization progress.

A number of waste generating processes were initially screened. Detailed technical evaluations were performed on wastes associated with degreasing of frame rails (chassis); spray painting; and phosphating of miscellaneous parts (E-Coat). Options identified were as follows: Option 1 – Paint Solids Dewatering and Water Recycle, Option 2 – Improve Transfer Efficiency, Option 3 – Procedural and Small-Equipment Changes, Option 4 – Reduce Paint Mix Volume, Option 5 – Minimize Contamination of Degreasing Solvent, Option 6 – Ion Exchange Recycle of Rinse Waters and Option 7 – E-Coat Line Bath Maintenance. All were evaluated during the feasibility analysis phase except for Option 3. The study concludes that the best options appear to be Option 4, Option 5, and Option 2.

CONTENTS

		ll tii
		iv
Tables	•••••••••••••••••••••••••••••••••••••••	vii
•		viil
Acknowledge	ments	ix
1.	Project Overview	1
	Purpose	1
	Procedures	1
	Organization of Report	5
2.	Site Description	6
	General Description of the Truck Assembly Plant	6
	Facilities and Operating Procedures	6
	Management and Personnel	6
	Production Processes	6
	Degreasing of Frame Rails (Chassis)	6
	Spray Painting	8
	Phosphating of Miscellaneous Parts (E-Coat)	10
	Waste Generation and Characterization	10
	Degreasing of Frame Rails (Chassis) Wastes	10
	Spray Painting Wastes	15
	Phosphating of Miscellaneous Parts (E-Coat) Wastes	15
	Waste Minimization	17
3.	Summary of Assessment Phase	19
	Waste Minimization Options	19
	Option 1. Belt Filter	21
	Option 2. Improved Transfer Efficiency	21
	Option 3. Procedural and Small-Equipment Changes	21
	Option 4. Paint Mix Volumes (OP-4)	22
	Option 5. Solvent Segregation	23
	Option 6. Ion Exchange with Recycle of Rinse Waters	23
	Option 7. E-Coat Line Bath Maintenance	24
4.	Feasibility Analysis Results	25
	Summary of Feasibility Analysis Phase	25
	Recommendations	25

(continued)

CONTENTS (continued)

Appendices

Α.	Planning and Organizational Phase - Worksheet 2	28
В.	Assessment Phase - Worksheets 4 to 13	30
C.	Feasibility Analysis Phase - Worksheets 14 to 17	91

TABLES

Numbe	<u>er</u>	<u>Page</u>
1	List of Waste Minimization Assessment Worksheets	3
2	Summary of Waste Generation and Disposal Costs at the Truck Assembly Plant	12
3	Process and Wastestream Codes	13
4	Waste Disposal Practices at the Facility for Selected Wastes	14
5	Wastes Generated in 1989 from Spray Painting, Degreasing, and Phosphating Processes	18
6	Summary of Waste Minimization Assessment Phase	20
7	Summary of Waste Minimization Options	20
8	Summary of Waste Minimization Feasibility Analysis Phase	26

FIGURES

Numbe	<u>er</u>	<u>Page</u>
1	The Waste Minimization Assessment Procedure	2
2	Work Flow Diagram - Chassis Degreasing	7
3	Work Flow Diagram - Spray Painting	9
4	Work Flow Diagram - Phosphating (E-Coat) Operation	11
5	Wastestream Diagram of Phosphating (E-Coat) Operation	16

ACKNOWLEDGEMENTS

We acknowledge information provided to us by vendors of equipment and services, and the useful project guidance and review comments of the EPA Project Officer, Mary Ann Curran. Review comments were also provided by Lisa M. Brown and James S. Bridges of the EPA's Risk Reduction Engineering Laboratory, Cincinnati, Ohio.

This report was prepared for EPA's Pollution Prevention Research Branch by George Cushnie and Susan Roman of Science Applications International Corporation for the U.S. Environmental Protection Agency Contract No. 68-C8-0061.

SECTION 1

PROJECT OVERVIEW

PURPOSE

The purpose of this project was to develop waste minimization (WM) plans for a truck assembly facility using the Environmental Protection Agency's (EPA) <u>Waste Minimization Opportunity Assessment</u> <u>Manual</u> (625/7-88/003). This manual provides a systematic planned procedure for identifying ways to reduce or eliminate waste.

PROCEDURES

The project was initiated with a survey of the facility. This survey was also used as a starting point for applying the waste minimization assessment procedures. These procedures consist of four major steps (Figure 1): 1) <u>Planning and Organization</u> – organization and goal setting; 2) <u>Assessment</u> – careful review of a facility's operations and wastestreams and the identification and screening of potential options to minimize waste; 3) <u>Feasibility Analysis</u> – evaluation of the technical and economic feasibility of the options selected and subsequent ranking of options; and 4) <u>Implementation</u> – procurement, installation, implementation, and evaluation. This project completed the first three steps of the procedures for various manufacturing processes used at the facility.

The waste minimization opportunity assessment manual contains a set of 19 worksheets which are designed to facilitate the WM assessment procedure. Table 1 lists the worksheets, according to the particular phase of the program in which they are employed, and a brief description of the purpose of the worksheets. A selected combination of Worksheets 1 through 16 were completed for the wastestreams during this project and are contained in Appendices A, B and C.

The focus of the waste minimization procedures for this project was on spray painting, degreasing and phosphating operations.

A waste minimization opportunity assessment was conducted at the truck assembly plant by an assessment team composed of staff from the facility, EPA personnel, and EPA's contractor, Science Applications International Corporation (SAIC). The assessment phase of the project was initiated with a two-day survey conducted by engineers from SAIC. The survey focused on the collection of process and waste data and the identification of procedures for waste management. This time period was also used to interview operators and to solicit waste minimization ideas through brain storming exercises. During the survey, the assessment team completed many sections for Worksheets 2 through 11.

After completion of the survey, the SAIC team continued to collect data and information from the facility through telephone contacts. This time period was also used to verify data and to resolve any informational discrepancies. SAIC then completed the assessment and feasibility analysis phases of the WM assessment (Worksheets 10 through 16).

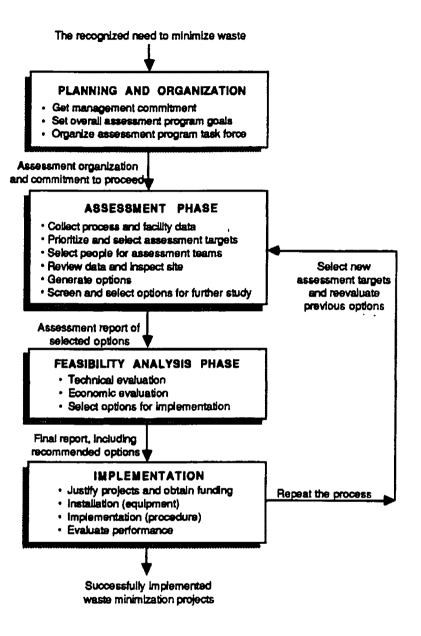


Figure 1. The Waste Minimization Assessment Procedure

Phase	Number and Title	Purpose/Remarks		
	1. Assessment Overview	Summarizes the overall procedure.		
Step 1 - Planning and Organization (Section 2)	2. Program Organization	Records key members in the WMA program task force and the WM assessment teams. Also records the relevant organization.		
	3. Assessment Team Make-up	Lists names of assessment team members as well as duties. Includes a list of potential departments to consider when selecting the teams.		
Step 2 - Assessment Phase	4. Site Description	Lists background information about the facility, including location, products and operations.		
	5. Personnel	Records information about the personnel who work in the area to be assessed.		
	6. Process Information	This is a checklist of useful process information to look for before starting the assessment.		
	7. Input Materials Summary	Records input material information for a specific production or process area. This includes name, supplier, hazardous component or properties, cost, delivery and shelf-life information, and possible substitutes.		
	8. Products Summary	Identifies hazardous components, production rate, revenues, and other information about products.		
	9. Individual Wastestream Characterization	Records source, hazard, generation rate, disposal cost, and method of treatment or disposal for each wastestream.		

TABLE 1. LIST OF WASTE MINIMIZATION ASSESSMENT WORKSHEETS

(continued)

ω

Phase	Number and Title	Purpose/Remarks
Step 2 - Assessment Phase (continued)	10. Wastestream Summary	Summarizes all of the information collected for each wastestream. This sheet is also used to prioritize wastestreams to assess.
	11. Option Generation	Records options proposed during brainstorming or nominal group technique sessions. Includes the rationale for proposing each option.
	12. Option Description	Describes and summarizes information about a proposed option. Also notes approval of promising options.
	13. Options Evaluation by Weighted Sum Method	Used for screening options using the weighted sum method.
Step 3 - Feasibility Analysis Phase	14. Technical Feasibility	Detailed checklist for performinga technical evaluation of a WM option. This worksheet is divided into sections for equipment-related options, personnel/ procedural-related options, and materials-related options.
	15. Cost Information	Detailed list of capital and operating cost information for use in the economic evaluation of an option.
	16. Profitability Worksheet #1 Payback Period	Based on the capital and operating cost information developed from Worksheet 15, this worksheet is used to calculate the payback period.
	17. Profitability Worksheet #2 Cash Flow for NPV and IRR	This worksheet is used to develop cash flows for calculating net present value (NPV) or internal rate of return (IRR).
Step 4 - Implementation	18. Project Summary	Summarizes important tasks to be performed during the implementationof an option. This includes deliverable, responsible person, budget, and schedule
	19. Option Performance	Records material balance information for evaluating the performance of an implementedoption.

TABLE 1. (Continued)

ORGANIZATION OF REPORT

This report contains four sections and three appendices. Section 1 provides an overview of the project. Section 2 describes the processes surveyed during this project, and the waste management procedures employed at the facility. Section 3 presents the results of the assessment phase, including the selection of WM options. Section 4 contains the results of the feasibility analysis phase, including recommendations. Appendices A, B, and C present the WM worksheets completed for the facility. The planning and organizational worksheets (2 and 3) are contained in Appendix A. The worksheets applicable to the assessment phase (4 through 13) are presented in Appendix B. The feasibility analysis worksheets (14, 15 and 16) are contained in Appendix C.

SECTION 2

SITE DESCRIPTION

GENERAL DESCRIPTION OF THE TRUCK ASSEMBLY PLANT

This section contains a description of the site selected for this waste minimization project.

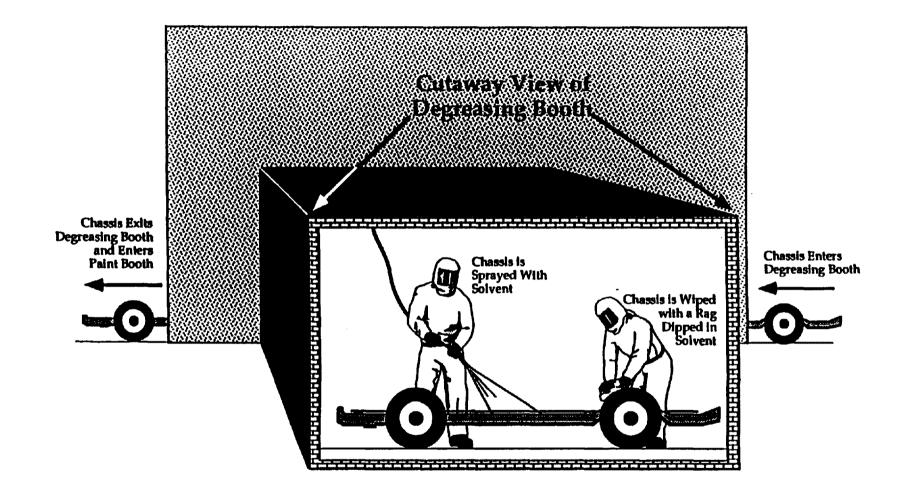
Facilities and Operating Procedures

The facility produces trucks and specializes in custom paint colors and designs. This facility assembles five different models. The production processes are primarily related to assembly and painting while the majority of the components of the vehicles are manufactured at other sites.

Production is done on one main assembly line which begins with the chassis (frame rails) and ends with a ready-to-start truck. Associated assembly/finishing procedures such as cab painting, door assembly, phosphating of small parts, etc., are done on small assembly lines which incorporate their finished work into the main assembly line. The assembly line is continuously moving and a tight schedule is required to produce the specified number of trucks in one 8-hour period.

Management and Personnel

The plant employs over 1,000 people. Production is primarily done on one shift.


PRODUCTION PROCESSES

The various manufacturing activities are located in a concentric manner around the main assembly line. At the outer ring, raw materials are stored outside of the building near the basic fabrication processes in which they are used. These processes in turn deliver parts to the assembly lines. The fabrication processes include cab building, trimming and painting, chassis or frame production, machining, engine preparation, and hydraulic/pneumatic line preparation (air piping). These lines feed the final assembly line.

The remainder of this section describes the production processes selected for this assessment.

Degreasing of Frame Rails (Chassis)

The Chassis is degreased in a booth just prior to entering the chassis paint booth. Chlorinated solvent is sprayed on using a hand held spray wand which enables workers to remove oil and grease from hard to reach areas. Solvent is also wiped onto easily accessible portions of the chassis using rags dipped into a bucket of solvent. The solvent along with the oil and grease drips off of the chassis or is blown off and evaporates from the floor. The chassis then moves into the chassis paint booth. Figure 2 is a work flow diagram of the degreasing operation.

1

Figure 2. Work Flow Diagram-Chassis Degreasing

Prior to 1989, the solvent used in the degreasing operation was nonhazardous and no disposal records were kept. Currently, the solvent used for chassis degreasing is formulated with 90 percent 1,1,1-trichloroethane and 10 percent methylene chloride. Early in 1989, the facility used 100 percent 1,1,1-trichloroethane. The switch in solvents was made for quality reasons.

Spray Painting

The facility has paint booths dedicated to the painting of cabs, chassis', and for touch-up. The touch-up booths were not included in this assessment. The other booths are semi-enclosed rooms with downdraft water pit systems for capturing paint overspray.

The cab paint booths operate with painters working in each booth. Cabs are wheeled into the paint booths on carts that are moved by the automatic mechanism in the floor. They are then painted with two coats of paint. Cabs are automatically wheeled out of the booth and dried in a paint booth oven where the temperature is controlled to protect the fiberglass and plastic.

The chassis paint booth operates with painters. The frame rails (chassis) are wheeled into the paint booth. They are then painted on all sides. The chassis is then dried in a paint booth oven where the temperature is controlled to protect the fiberglass and plastic.

Figure 3 is a work flow diagram of the spray painting process.

The facility converted from conventional solvent paints to high solid paints on all trucks in 1989. This includes most primers and top coats for cabs and chassis paints. The decision to use high solids paints was based on the need to meet standards for volatile organic carbon (VOC) air emissions. The present permit limits the plant to 154 tons of VOC emissions per year.

Most of the paints used at this facility are solvent-based plural (two component) systems (an exception is the interior cab booth which uses a non-solvent paint). Single component solvent paints cannot be used on most of the truck assemblies because of the high usage of plastics and fiberglass in fabrication of the parts (mainly cabs). The single component paints, which are used widely in the automotive industry, require greater application temperatures which can damage the fiberglass and plastic parts.

The facility is in the process of converting from the "hot potting" method of component mixing (i.e., the two paint components are premixed in the spray painting pot) to use of equipment which allows the catalyst component to be injected and mixed at the gun during application. Paints mixed with the hot potting method have a pot life of approximately 3 hours at 72°F. With the catalyst injection system the paints have an indefinite lifespan. The leftover paint can therefore be used at a later time for touchup work. At present, the chassis booth and two cab booths are using the injection mixing.

All spray painting equipment used at the facility is the air assisted airless type. The guns in the chassis booth have been converted to high volume-low pressure guns. They operate at approximately 11 psi. Locks have been placed on the air regulators to prevent operators from using a higher pressure. The result of using lower pressures is a smaller quantity of paint overspray. The guns used in cab painting also have been modified. The painting pressures were reduced from 60 psi to 40 psi by installing new air caps. All paints are heated to reduce viscosity, which also allows for use of lower air pressures.

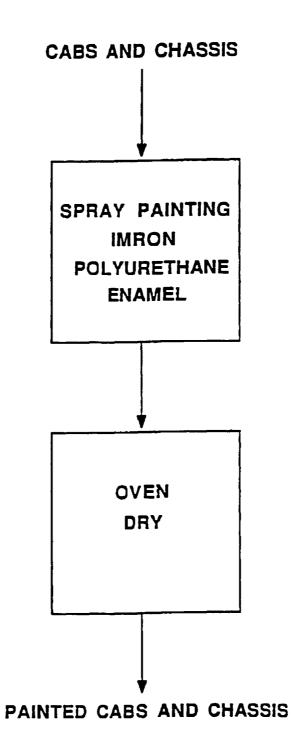


Figure 3. Work Flow Diagram-Spray Painting

Phosphating of Miscellaneous Parts (E-Coat)

An automated phosphating (conversion coating) process and electro-coat painting (E-Coat) is employed for small and medium sized steel parts. This line consists of several processing and rinsing steps. Parts are attached to an overhead conveyor belt with hooks. They are then positioned above the process tanks by the operator who manually controls the movement of the conveyor belt. The tanks are then lifted up to the parts to immerse them in solutions. The parts are immersed for several minutes and then the tanks are lowered. Parts are allowed to drip over the tanks for several minutes and then are moved on to the next process tank. After the last step (E-Coat) the conveyor moves the parts through a drying oven and then returns the parts to the beginning of the line where the operator removes them and they are taken to the assembly areas. Figure 4 is a work flow diagram of the phosphating process. Tank 1 is an initial cleaning step which removes oil and grease and other surface contaminants from the parts. Cleaning improves paint adhesion and corrosion protection. Tank 2 is a hot rinse. Tank 3 contains disodium phosphate with titanium added as a surface activator. Tank 4 contains the zinc phosphating solution. A fluoride based chemical is added to this solution to precipitate aluminum and prevent spoiling of the phosphate bath. A pH adjustment chemical (phosphoric acid) is also added to tank 4. Tank 5 is an ambient temperature rinse. Tank 6 is a nonchromium sealer. Tank 7 is a deionized water rinse. Tanks 8, 9, and 10 contain the E-coat solution.

WASTE GENERATION AND CHARACTERIZATION

The facility closely tracks the generation of wastes at its facility. Waste data for the years 1987 to 1989 are shown in Table 2. The facility has seen a significant decrease in the overall volume of waste generated and the associated disposal and transportation costs. The purpose of this project was to develop waste minimization options that can further reduce the volume of waste generated. This project has focused on the wastes generated during spray painting, degreasing (chassis) and phosphating (E-Coat) operations.

Table 2 lists eight industrial wastes generated at the plant, five of which are hazardous by EPA standards.

The production processes and wastestreams were coded during the project to provide a means of identification throughout the WM assessment. Table 3 provides a description of the code system. Processes are coded 01 through 03. Wastestreams are coded A through H. Process codes are combined with waste codes to identify specific wastestreams. The wastes selected for this assessment are listed in Table 4 and described in the following subsections.

Degreasing of Frame Rails (Chassis) Wastes

The chassis is degreased in a booth prior to entering the chassis paint booth. A chlorinated solvent is used because of the immediate drying action and VOC emissions. The solvent is both sprayed and wiped on the chassis. The waste generated during degreasing comes from the wiping process. The rags are dipped into a bucket of solvent and used to wipe down the chassis. When not in use, the rags are left soaking in the solvent, which becomes contaminated with oil and grease from the dirty rags and is dumped into a drum to await disposal. The dirty rags are sent to an industrial laundry (Simco) and are reused at the facility.

Early in 1989, 100 % 1,1,1-trichloroethane was used as the degreasing solvent. During the course of 1989 a switch to 90 % 1,1,1-trichloroethane/ 10 % methylene chloride solvent was made for quality reasons. The switch to a combined solvent has increased the disposal cost by a factor of four, while the quantity of waste solvent generated has increased by a factor of 1.4.

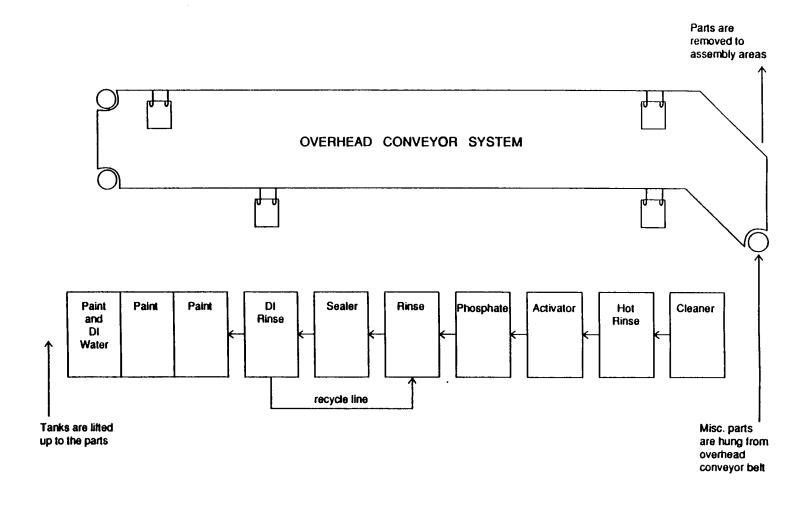


Figure 4. Work Flow Diagram–Phosphating (E-Coat) Operation

.

.

1988 1989' 1987 Trucks Built 8,630 5,845 7,721 Quantity of Industrial Waste Generated (lb) Chassis Degreasing Old Solvent (100% TCA)* NA NA 8,510 New Solvent (90% TCA)* NA NA 11,700 Spray Painting Wastes Waste Paint and Still Bottoms* 162,793 173.496 224,360 **Detackified Paint Sludge** 1,348,725 972,260 523,100 Pretreatment Sludge* 91,440 77,640 96,440 Heavy Drums* 31,600 8,440 ٥ Undercoating* NA NA 3,775 Used Oil 24,920 29,450 37,635 NR Floor Dry & Pigs NR 8,620 1,659,478 1,261,286 914,140 Total Normalized Quantity (lb/truck) Chassis Degreasing Old Solvent (100% TCA)* NA NA 1.0 NA New Solvent (90% TCA)* NA 1.4 Spray Painting Wastes Waste Paint and Still Bottoms* 27.9 22.5 26.0 Detackified Paint Sludge 230.7 125.9 60.6 Pretreatment Sludge* 15.6 10.1 11.2 Heavy Drums* 5.4 1.1 0.0 Undercoating* NA NA 0.4 Used Oil 4.3 3.8 4.4 Floor Dry & Pigs NR NB 1.0 Total 283.9 163.4 105.9 Disposal & Transportation Costs (\$) Chassis Degreasing Old Solvent (100% TCA)* NA NA \$2,087 New Solvent (90% TCA)* NA NA \$8,644 Spray Painting Wastes Waste Paint and Still Bottoms* \$81,103 \$56,074 \$14 552 Detackified Paint Sludge \$37,166 \$28,219 \$16,647 Pretreatment Sludge* \$11,279 \$17,743 \$12,338 Heavy Drums* \$50,513 \$11,430 \$0 Undercoating* NA NA \$2,879 Used Oil \$1,430 \$1,106 \$165 Floor Dry & Pigs NR NR \$8,644 \$181,491 \$114,573 Total Cost for Industrial Wastes \$60,688 Total Cost of Hazardous Waste Only \$142,895 \$85.247 \$40.501 Normalized Cost (\$/truck) Chassis Degreasing Old Solvent (100% TCA)* NA NA \$0.24 New Solvent (90% TCA)* NA NA \$1.00

TABLE 2. SUMMARY OF WASTE GENERATION AND DISPOSAL COSTS AT THE TRUCK ASSEMBLY PLANT

* Hazardous Wastes By EPA Standards.

Waste Paint and Still Bottoms*

Detackified Paint Sludge

Pretreatment Sludge*

Heavy Drums*

Undercoating*

Floor Dry & Pigs

Used Oil

1989 data are estimated.

Spray Painting Wastes

NA - Not Applicable

NR - Not Reported

Total Cost of all Industrial Wastes

Hazardous Waste Cost

\$13.88

\$6.36

\$1.93

\$8.64

\$0.24

NA

NR

\$31.05

\$24.45

\$7.26

\$3.65

\$2.30

\$1.48

\$0.14

NA

NR

\$14.84

\$11.04

\$1.69

\$1.93

\$1.43

\$0.00

\$0.33

\$0.02

\$0.39

\$7.03

\$4.69

Process	Process Code		
Spray Painting	01		
Degreasing	02		
Phosphating (E-Coat)	03		
Waste Type	Waste Code		
Waste Paint - Liquid	А		
Waste Paint - Solid	В		
Detackified Paint	С		
Paint Booth Water	D		
Degreasing Solvent	Е		
Rinse Waters	F		
Spent Process Solutions (Cleaner, Activator and Sealer)	G		
Phosphate Bath and Tank Bottoms	Ĥ		

TABLE 3. PROCESS AND WASTESTREAM CODES

-

Process	Wastestream (Code)	RCRA Regulatory Classification	Disposal Frequency	Disposal Practice
Spray Painting	Waste Paint - Liquid (01-A)	Flammable Waste UN1993 F003/F005	90 Days	Fuel Blending at Cement Kiln Facility
	Waste Paint - Solid (01-B)	Flammable Waste UN1993 F003/F005	90 Days	Incineration at Commercial TSDF
	Detackified Paint (01-C)	None	4 to 6 Weeks	CommercialTSDF
	Paint Booth Water (01-D)	None	Daily	Onsite Pretreatment; POTW*
Degreasing of Frame Rails (Chassis)	Degreasing Solvent (02-E)	F001/F002/D006/D007	90 Days	Fuel Blending at Ecolotec- A Division of Stout Environmental
Phosphating of Misc. Part (E-Coats)	Spent Process Solutions (Cleaner, Activator & Sealer) (03-G)	None	2 Weeks	Onsite Pretreatment; POTW*
	Rinse Waters (03-F)	None	Daily	Onsite Pretreatment; POTW*
	Phosphate Bath and Tank Bottoms (03-H)	None	Annually	Commercial TSDF-Tricil Environmental

TABLE 4. WASTE DISPOSAL PRACTICES AT THE FACILITY FOR SELECTED WASTES

* Onsite pretreatmentproduces a sludge which is sent to a hazardous waste landfill. The treated water is discharged to a publicly owned treatment works (POTW).

Spray Painting Wastes

The two major spray painting processes include the painting of cabs and frame rails (chassis). The wastes generated during spray painting operations include: paint waste (liquid and solid), detackified paint, and paint booth water. A description of each waste follows.

Paint wastes include: 1) unused spray paint (approximately one-third of total), and 2) still bottoms from the distillation of cleanout solvent (approximately two-thirds of total). Paint is prepared daily in the paint mix room, where colors are added, and then taken to the cab paint booths for use. Unused spray paint is returned to the paint mix room and placed into drums to which 5 gal of ethyl alcohol was previously added. The ethyl alcohol neutralizes the paint catalyst. The solution is constantly agitated to prevent solidification of the paint solids. This material is shipped offsite to a fuel blending operation at a cost of \$20 per drum. Previously, the unused spray paint was allowed to harden in the drum. This material was incinerated at a cost of \$450 per drum. This change in disposal practice is reflected in the annual costs of disposal.

The still bottoms are generated from the operation of a recovery still. Wash solvent (Solvent 2506) is used to clean out the paint guns and lines when switching from one paint color to another. The dirty wash solvent is pumped to an onsite distillation unit to be distilled for reuse. Generally, 350 to 400 gal of dirty solvent is distilled each day. This generates still bottoms at a rate of 1 to 2 drums per day. The volume of waste solvent generated has decreased during the past several years. This is due primarily to a change in the cleanout process. Previously the paint line was placed into the solvent container and pumped through at 14 oz/min. With the new system, solvent is introduced at 60 psi and air is injected. The air improves the efficiency of the cleanout process and reduces the volume of solvent required. From 1987 to 1989 the cost of disposal of paint wastes and still bottoms has decreased 82% (Table 2), although the quantity of these wastes during that time period actually increased.

The detackified paint waste is the residual paint overspray which accumulates in the water reservoirs of the downdraft water booths. The paint booths are equipped with water curtains to collect paint overspray. Hydrocyclones are used at several of the booths to remove a portion of the paint solids each day. Each hydrocyclone generates 1/4 to 1 drum of detackified paint waste (20% solids) each day. A portion of the paint booth water (3,000 gal) is discharged daily to the onsite pretreatment system. Approximately every 4 to 6 weeks the detackified paint that has accumulated in the pits of each paint booth is pumped to a tank truck. These cleanouts generate a relatively wet (10% solids) paint sludge.

The water in the paint booth reservoirs is treated chemically to cause the detackification of the paint and to improve the operation of the system. The chemical treatment includes: 1) pH control (9.0 to 9.5), 2) addition of a cationic polymer and aluminum chloride to detackify the paint, 3) a foam controlling agent containing mineral oil to prevent foam from reaching electrical connections at the system pumps, and 4) a biocide to prevent the growth of bacteria which cause odors.

Phosphating of Miscellaneous Parts (E-Coat) Wastes

The E-Coat process generates wastes in the form of spent process solutions, contaminated rinse waters and tank bottoms. Figure 5 illustrates the wastestreams generated and their disposal frequency for the E-Coat process.

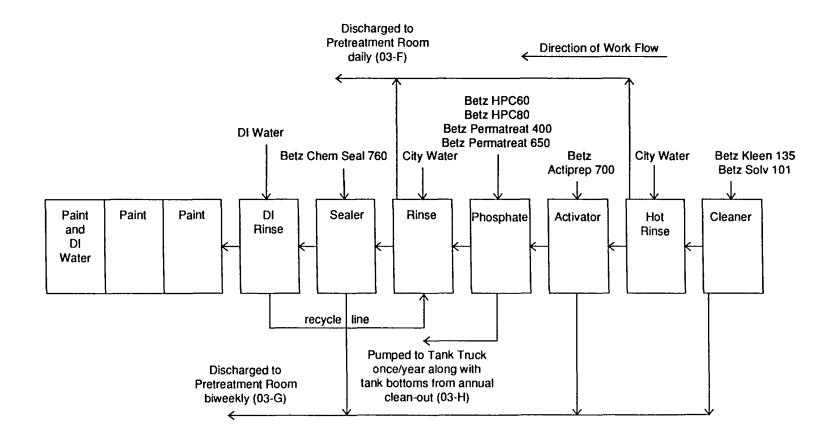


Figure 5. Wastestream Diagram of Phosphating (E-Coat) Operation

Contaminated rinse waters from tanks 2, 5, and 7 are discharged continuously during use to the pretreatment unit. Spent process solutions (Cleaner, Activator and Sealer) are drained and discharged to pretreatment every two weeks. Annually, all of the tanks in the E-Coat line are cleaned. This is done by pumping the tanks to temporary storage and removing the tank bottoms to a tank truck. The phosphate bath is hauled away with the tank bottoms during the annual cleaning.

Pretreatment sludge is generated by operation of the wastewater treatment system which treats wastewater from the paint booths and the phosphating/E-coat line. The system is a ferric chloride/caustic soda flocculation/precipitation process. Sludge from the clarification step is dewatered on a filter press to approximately 35% solids. The sludge (F019 RCRA waste) is sent to a hazardous waste landfill for disposal in bulk shipments. The treatment system generates approximately 10 to 12 tons of sludge every 90 days.

WASTE MINIMIZATION

The processes selected for this assessment, along with their wastestreams are summarized in Table 4. Current waste minimization techniques and waste disposal practices have enabled them to decrease both the volume of wastes and costs of waste disposal (Table 2) for their facility. The present methods of waste management used are presented in this section.

The quantities of wastes generated in 1989 for the spray painting, degreasing and phosphating operations are listed in Table 5 along with their associated disposal costs. Where the facility was unable to supply specific numbers, quantities were estimated on the basis of waste generation data collected during this assessment. In general, this facility sends smaller quantities of hazardous waste off-site than many other facilities with similar production levels. The waste disposal cost per truck produced in 1989 was approximately \$7.03 which is a significant reduction from the cost of \$31.05 per truck in 1987.

This facility has made major strides in waste minimization over the past two years. These efforts have focused on the following areas:

- Changes in paint formulation
- Changes in spray painting equipment
- Implementing operator controls and training
- Changing painting system cleanup procedures and equipment
- Adding dewatering units to spray paint booths
- Improving paint booth reservoir chemistry for detackifying overspray
- Reducing waste paint generation by minimizing the volumes mixed.

The next section of this report will focus on ways that waste generation can be further reduced.

AND PROSPRATING PROCESSES					
Wastestream	Stream Code	Annual Generation	Unit Cost for Disposal	Disposal Cost*	
Waste Paint - Liquid (includes still bottoms from distillation unit)	01-A	213,142 lb	\$.027/lb	\$5,821	
Waste Paint - Solid	01-B	11,218 lb	\$.778	\$8,731	
Detackified Paint	01-C	523,000 lb	\$.032/lb	\$16,647	
Paint Booth Water	01-D	700.0001	\$2.20/1,000 gal [†]	\$1,716	
Degreasing Solvent	02-E	780,000 gal	\$0.5 3/lb	\$10,731	
Rinse Waters	03-F	20,210 lb	\$2.20/1,000 gal [†]	\$1,122	
Spent Process Solutions (Cleaner, Activator and Sealer)	03-G	510,000 gal 43,680 gal	\$2.20/1,000 gal [†]	\$96	
Phosphate Bath and Tank Bottoms	03-H	2,780 gal	\$.24/gal	\$667	
Total Disposal Cost for Selected Wastes				\$45,531	

TABLE 5. WASTES GENERATED IN 1989 FROM SPRAY PAINTING, DEGREASINGAND PHOSPHATING PROCESSES

* Disposal costs include, where applicable, the onsite chemical treatment costs,

transportation costs, and offsite treatment/disposal costs.

⁺ These wastewaters are sent to the pretreatment system and then discharged to the POTW. The pretreatment process also generates a sludge from the treatment of these waters that is sent to a hazardous waste landfill.

SECTION 3

SUMMARY OF ASSESSMENT PHASE

The assessment phase of the waste minimization procedure includes data collection, selection of target areas, data review, and options generation and screening. The applicable worksheets are 4 through 13 (Appendix B). Table 6 lists the 8 wastestreams that were included in this assessment. The volume, characteristics, raw material costs and applicable waste minimization options are shown for each wastestream. The waste minimization options were developed jointly by the assessment team.

The WM screening process consists of a relative comparison of WM options using standard criteria presented in the WM Assessment Manual. This screening exercise is presented on Worksheet 13 and the results are summarized on Table 7. The criteria include various measures of waste minimization impacts relating to safety, cost, ease of implementation, and other relevant factors. Scores for individual WM options are determined by multiplying a weight factor, W, (1 to 10) for each criteria by a score (1 to 10) or measure (termed R-value) for how well each WM option satisfies each criteria (Score = RxW). Then, the scores for each WM option are summed over all criteria to produce a single score for each WM option. As indicated in Table 7, the scores for the identified options range from 348 to 487.

The weighted values (W) for each criteria were based on the goals of the waste minimization program. The measures for each option (R-value) were estimated by the assessment team. Where possible, these estimates were quantified (e.g., costs) and converted to R-values. For other measures, which could not be quantified, the R-values were estimated by the assessment team members through data review and discussion.

The result of the assessment phase was the selection of seven waste minimization options for further evaluation in the feasibility analysis phase (Section 4).

This section contains general descriptions of waste minimization technologies that are applicable to most truck assembly facilities. It also contains a description of the specific waste minimization options that were identified and evaluated during the assessment phase.

WASTE MINIMIZATION OPTIONS

The option generation step of the project (Worksheet 11) identified seven options that were considered to be potentially applicable. Options 1 and 6 relate to the use of water conservation measures with respect to paint booth water and rinse waters. Options 2 through 4 involve the reduction of waste paint generation using specialized equipment and monitoring procedures. Option 5 involves the reduction of waste solvent by avoiding contamination of fresh solvent. Option 7 involves the recycling of process solutions. Each of the seven options is briefly described in this section.

Process/Wastestream Name/ID	Annual Waste Quantity	Value of Input Materials, \$/yr.	WM Options
Spray Painting/Waste Paint - Liquid/01-A	213,142 lb	\$929,360	2, 3,4
Spray Painting/Waste Paint - Solid/01-B	12,280 lb	\$58,897	2, 3, 4
Spray Painting/Detackified Paint/01-C	523,100 lb	\$125,444	1, 2
Spray Painting/Paint Booth Water/01-D	780,000 gal	\$939	1, 2
Degreasing/Degreasing Solvent/02-E	20,210 lb	\$12,116	5
Phosphating/Rinse Waters/03-F	510,000 gal	\$614	6
Spent Process Solutions (Cleaner, Activator and Sealer)/03-G	43,680 gal	\$6383	7
Phosphating/Phosphate Bath and Tank Bottoms/03-H	2,780 gal	\$2,333	

TABLE 6. SUMMARY OF WASTE MINIMIZATION ASSESSMENT PHASE

Waste Minimization Option	Waste Option	Applicable Wastestreams	WM Option Screening Score
Belt Filter	1	01-C, 01-D	348
Transfer Efficiency	2	01-C, 01-D	423
Procedural/Small Equipment Changes	3	01 - A, 01- B	377
Reduce Paint Mix Volumes	4	01-A, 01-B	462
Maintain Solvent Segregation	5	02-E	487
Ion Exchange/Recycle of Rinse Waters	6	03-F	387
E-Coat Line - Bath Maintenance	7	03-G	373

TABLE 7. SUMMARY OF WASTE MINIMIZATION OPTIONS

Option 1 - Paint Solids Dewatering and Water Recycle

Detackified paint that has built-up in the paint booth reservoirs over a period of four to six weeks is pumped directly to a tank truck and hauled to a disposal site. The detackified paint has a high water content (up to 95%) which increases disposal costs that are based solely on volume. The dewatering of this detackified paint can significantly reduce the cost of disposal by reducing the volume of waste sent to disposal. Further, recycling of the booth water will reduce water usage and extend the period between required draining and cleaning of the booths, thus reducing production downtime and booth chemical usage.

The dewatering process can be accomplished with the use of a belt filter (see Appendix C for cost information). The belt filter is an automatic gravity filtration system that typically uses a disposable fabric as the filter media. The detackified paint will be pumped from the paint booth to the belt filter. The fabric media filters out the paint solids and other debris while the water passing through is recycled to the paint booth reservoir. The detackified paint is rolled off of the filter into a drum to await disposal.

Belt filters are available with different filter areas to obtain the desired flow rate. Fabric media is chosen according to the type of filtration desired.

Option 2 - Improve Transfer Efficiency

Transfer efficiency refers to the percentage of paint that leaves the paint gun and is actually deposited on the part's surface. A higher transfer efficiency means more paint is reaching the finished part. Two types of spray painting equipment that have high transfer efficiencies are high volume-low pressure (HVLP) (up to 90% efficiency) and electrostatic (up to 75% efficiency). The facility currently uses HVLP in their chassis paint booth (11 psi) and have obtained a transfer efficiency of approximately 50%. The cab painting equipment is air assisted airless. Previously, it was operated at 60 psi. By modifying the air caps, the facility has reduced operating pressure to 40 psi and have achieved improved transfer efficiency. It is unclear whether further increases in efficiency by installing electrostatic spray painting. It may, however, be possible to further increase chassis painting efficiency by installing electrostatic spray painting. The facility has done some preliminary tests at the plant with electrostatic spray painting and achieved positive results. This change was therefore evaluated under this option. An improved transfer efficiency would decrease raw material costs, decrease the volume of paint solids resulting from overspray, decrease paint booth maintenance, and reduce VOC emissions.

Option 3 - Procedural and Small-Equipment Changes

The facility is currently investigating a variety of procedural and small-equipment changes which will improve their waste minimization efforts for the spray painting operations. The following is a discussion of each change.

Shipping Unused Paint With the Finished Truck--

Small volumes (<1 gal) of unused paint are generated from the cab painting operation. Many of the cabs are custom painted and the unused paint is usually not immediately reusable and therefore is discarded. This change involves packaging the unused paint in a suitable container and shipping it with the truck for later use by the customer for needed touch-ups. Before implementation, regulatory constraints governing this option will be evaluated.

Adjusting the Production Schedules to Reduce Color Changes--

After painting each truck cab, the painting system must be cleaned out unless the same color is used for the subsequent truck. At present, some consideration is given to the painting sequence when the overall production schedule is developed. However, some improvement is still possible. This change involves giving greater consideration to the painting sequence. This change is considered valid since the waste generation rate from painting is so closely tied to the number of clean-outs. Further, this is the only process whose waste generation rate is related to the production sequence.

Installation of Control and Monitoring Devices and Alarms on Painting Systems--

The transfer efficiencies of the spray painting operations are operator dependent and are partly related to the air pressures used. High pressures generally reduce the transfer efficiency and therefore increase waste generation. Operators of spray painting equipment often use higher than necessary air pressures because the higher pressures reduce painting time. This change involves the use of: 1) controls on the painting system to reduce the maximum air pressure level, 2) digital displays of the air pressure being used which are visible by the foremen, and 3) high pressure alarms. These equipment changes will provide greater control over the painting operation.

Another device that could be used is a microprocessor control for paint flow. These devices closely control the flow rate of paint and can be expected to increase transfer efficiency.

One alternative to these changes is the use of robot painting systems. Such systems are used extensively by automobile manufacturers. However, their application is questionable because of the lower production rate and the wide range of cab designs. Also robot systems are relatively expensive and their use cannot be economically justified by the savings from potential waste generation.

Painting Details Over Background Colors--

Many of the trucks produced are custom painted. The painting designs often include details such as stripes. Currently, when stripes are ordered, the cab is entirely painted with the color of the stripe. The stripe is then masked and the cab is repainted with the general or "background" color. This procedure is used because it requires less masking, which is labor intensive.

Changing this procedure by reversing the sequence would significantly reduce the volume of paint sprayed and therefore the waste produced by overspray. The higher masking costs may be justified when considering both the raw material costs for paint and the disposal costs for related wastes.

Option 4 - Reduce Paint Mix Volume

Paints for cab painting are custom mixed using an automated device in the paint mix room and given to the painters prior to the painting of each cab. The volume of paint mixed is recorded in a computer data base by the operator in the paint mix room. The volume of paint mixed depends on: 1) the truck models which vary in painted area, and 2) the type of paint, since coverage varies between paints. After painting is completed, the painters return the unused paint to the mix room where it is discharged into drums. The unused volume is recorded in the data base. A review of the data base indicates that the average unused portion of paint can be reduced.

Option 4 involves more extensive use of the painting data base to reduce paint mix volumes and resultant waste paint volumes. This can be accomplished by using the computer software to generate statistical analyses of paint mix and waste volumes for different truck models and paint types.

Implementation of this option is expected to reduce raw material costs (paint) and waste disposal costs (unused paint).

Option 5 - Minimize Contamination of Degreasing Solvent

This option involves a minor equipment and a procedural change to prevent the contamination of solvent during the wiping process used to degrease frame rails (chassis). Currently, operators use solvent soaked rags which are rinsed and stored in the solvent container (bucket). When the solvent in the bucket becomes overly contaminated with oil, grease, and dirt, it is discarded into a drum to await disposal.

To reduce the volume of solvent discarded, the solvent bucket should be eliminated. The bucket should be replaced with a container that delivers a volume of solvent by hand pumping and has a secure lid to prevent the operators from rinsing rags in the fresh solvent. Once used, the rags should be wrung-out over a waste solvent container and fresh solvent would then be pumped onto the rag.

This option may require that the rags are changed more frequently, because the rinsing step currently used would no longer be available. These rags are currently recycled through an industrial laundry, and therefore additional wastes are not expected from this practice.

Option 6 - Ion Exchange with Recycle of Rinse Waters

The zinc phosphate/E-Coat line consists of several processing and rinsing steps. There are three rinse tanks: one hot rinse, one ambient temperature rinse, and one distilled water (DI water) rinse. The rinse tanks are fed on a continuous basis and discharged to a sewer line that conveys the wastewater to the pretreatment system. At the pretreatment system, the wastewater is combined with paint booth water and is chemically treated. The resultant sludge is considered a listed hazardous waste (FO19 - waste water treatment sludge from chemical conversion coating) by the State regulatory agency. Spent chemicals from the phosphate line are also discharged to the pretreatment system, with the exception of the phosphate solution which is hauled to disposal.

This option involves the use of an ion exchange (anion and cation columns) recycle system. The rinse waters discharged to the sewer would be treated by the system and recycled to the phosphating line on a continuous basis.

The system would reduce water use by recycling. The system may also reduce the volume of sludge generated by the pretreatment system. The pretreatment process currently includes the use of ferric chloride in the flocculation/precipitation system. Ferric chloride is occasionally used in systems where metal complexes are present as a result of phosphating chemicals. It is also applicable to oily wastes such as those discharged from paint booth reservoirs. Use of the ferric chloride results in high sludge volumes since the iron is precipitated as hydroxide. The ion exchange system may reduce the use of ferric chloride by 1) breaking the phosphate complex and 2) by reducing the hydraulic loading of the pretreatment system. The heavy metals, such as zinc, will be retained on the cation column and the anions such as phosphate, will be retained on the anion column. The regenerant from the cation column will contain regulated metals and would require pretreatment before discharge. The regenerant from the anion column may not contain any regulated pollutants and it may be possible to discharge it following simple neutralization, thus eliminating it from the treatment process.

Prior to implementing this option, the facility should conduct treatability tests to select the optimal ion exchange resins and to determine its impact on the ferric chloride requirements.

Option 7 - E-Coat Line Bath Maintenance

The process solutions contained in tanks 1 (cleaner), 3 (surface activator), and 6 (non-chromium sealer) are discarded approximately every two weeks and reformulated with fresh chemicals. The discarded solutions are drained to the treatment system. Concentrated wastewaters such as these can be expected to require a significant volume of chemical reagents for treatment and result in high sludge volumes. This option involves the use of filtration devices to remove undissolved contaminants and maintain the solution in working condition for an extended time period.

SECTION 4

FEASIBILITY ANALYSIS RESULTS

SUMMARY OF FEASIBILITY ANALYSIS PHASE

The purpose of the feasibility analysis phase is to prepare a technical and economic evaluation of the WM options and to select options for implementation.

The technical feasibility evaluation initially determines the nature of the WM options, either equipment-related, personnel/procedure-related, or materials-related. For each of the three types of WM options, specific information and data are required. For equipment-related options, the information requirements relate to the state of the technology, availability of equipment, performance specifications, testing, space and utilities, production effects, and training. For personnel/procedure-related options the required information relates to training and operating instruction changes. For materials-related options, the required information relates to production impacts, storage and handling, training and testing.

The WM options evaluated during this project include five equipment-related options, one personnel/procedure-related option, and one materials-related option. The technical evaluation for each option is detailed on Worksheet 14.

The economic feasibility evaluation includes a cost analysis of both capital and operating costs. Capital costs include equipment, materials, utility connections, site preparation, installation, engineering, start-up, and training.

The operating costs include increases and decreases (cost savings) of utilities, disposal fees, raw materials, labor, and revenues from recovered products. Insurance and liabilities costs were not included in the operating cost calculation, since these costs were undetermined during the project. Also, onsite handling costs which are usually very significant were not included. Therefore, the projected savings that were calculated during this project, understate the actual potential savings.

RECOMMENDATIONS

The technical and economic results of the feasibility analysis phase are summarized in Table 8. This table indicates for each option, the total capital investment, the net operating cost savings and the payback period (total capital investment/net operating cost savings).

To further evaluate the relative benefits of each option, the options have been ranked (1 for the best to 7 for the worst) with respect to the net operating cost savings and the payback period. These rankings were then summed for each option and compared among all options and a final ranking was determined (1 for the best to 7 for the worst). These comparisons are shown in the final column in Table 8. Using these two criteria heavily weights the evaluation in terms of annual cost savings since both criteria contain annual costs factors. Other techniques for comparing options may also be valid. Worksheet 17 (Appendix C) is an alternative method, which calculates profitability based on cash flow.

Process & Wastestream	Waste Minimization Option	Nature of WM Option	Capital Invest- ment (\$)	Net Op. Cost Savings (\$/yr)	Payback Period (yr)	Rank Low to High (1-6)
Spray painting:						
Waste paint (01-A, 01-B)	2	Improve transfer efficiency	27,456	152,698	0.2	2
• • • •	3	Procedural/small-equip.	Unk.*	Unk.*	Unk.*	NA
	4	Reduce paint mix volumes	2,725	26,315	0.1	1
Detackified paint (01-C)	1	Paint solids dewatering	11,151	14,998	0.7	4
	2	Improve transfer efficiency	-			
Paint booth water (01-D)	1	Paint solids dewatering				
· ·	2	Improve transfer efficiency				
Degreasing of frame rails (Chassis):						
Degreasing solvent (02E)	5	Minimize solvent				
		contamination	466	17,219	<0.1	2
Phosphating of misc. parts (E-Coat)						
Rinse waters (03F)	6	lon exchange recycle	45,500	19,311	2.4	4
Spent process solutions (cleaner, activator and sealer)(03-G)	7	Bath maintenance	13,200	3,332	4.0	6

TABLE 8. SUMMARY OF WASTE MINIMIZATION FEASIBILITY ANALYSIS PHASE

* The investment and projected savings for the procedural/small-equipment changes (Option 3) were not determined during the feasibility analysis phase. However, the majority of minimization techniques which make up this option are expected to be implemented by the facility.

The relative comparison used in this study indicates that the best options appear to be: Option 4-reducing paint mix volumes through closer control, Option 5-minimizing solvent contamination by using a different working container and procedures and Option 2-improving transfer efficiency by installing electrostatic painting in the chassis booth. Two options ranked with moderately good scores: Option 1-dewatering paint solids and recycling the booth waters and chemicals and Option 6-using ion exchange to recycle the phosphate/E-coat rinse waters. Option 7-bath maintenance on the phosphate/E-coat line ranked last; however, it is still within a reasonable range. Option 3-procedural and small equipment changes for painting was not evaluated during the feasibility analysis phase because the costs and savings could not be projected at this time. The Option 3 waste minimization techniques however appear to be technically and economically viable.

Some testing is needed before implementation of several of the options. For Option 1, testing should focus on determining if recycle can significantly reduce booth chemical use. A conservative assumption was made during the analysis that a 10% reduction is possible. For Option 2, the facility should contact electrostatic paint equipment suppliers and request an on-site demonstration. For Option 6, bench scale testing and possibly pilot scale testing is needed to determine the most suitable ion exchange resins. Testing is also needed to evaluate the impact of recycle on the current pretreatment process since a significant portion of the savings projected for this option relate to a reduction of treatment reagent use and sludge generation. Bath maintenance (Option 7) can be evaluated using simple cartridge filtration devices to remove solids from one of the process tanks (e.g., tank 1).

Appendix A

Planning and Organizational Phase Worksheet 2

.

-

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PRDC. UNIT/OPER.	CHECKED BY G. Cushnie	
	DATE-REVISED 04/16/90	PRDJ. ND. 1-032-03-942-02	SHEET 1 OF 1 PAGE 1 OF 1	

PROGRAM ORGANIZATION SEPA

.

NAME	LOCATION	TELEPHONE
Mary Ann Curran	EPA/ORD, Cincinnati, OH	(513) 569-7637
		.
George Cushnie	SAIC, McLean, VA	(703) 734-4397
•		
	Mary Ann Curran	Mary Ann Curran EPA/ORD, Cincinnati, OK

Appendix B

Assessment Phase Worksheets 4 to 13

. •

. -

.

.

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PRDC. UNIT/OPER. Sprey Painting	CHECKED BY G. Cushnia	
	DATE-REVISED 04/17/90	PROJ. ND. 1-832-03-942-02	SHEET 1 OF 1	PAGE 1 DF 3

SITE DESCRIPTION

Firm:			
Plant:	Assemi	bly Plant	
Depart	iment:	Production	
Area:	Paint		
Street	Addre	185:	
Ctty:			
State/	Zip		
Teleph	ione:		
Metor	Produc Trucks		
SIC Co 3713	des:		
EPA G	enereto	or Number:	
Major	Unit or		
Produc	t or:		
Operat Sprau pa		if truck cabs and fra	ime rolls
Personn	el:	Ceb Peinting	Frame Ratt (Chassis) Painting
daus/we	ek	5	5
		ulpment Age: booths: 16 years	
			lones are in use on two of the paint booths)

		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman CHECKED BY G. Cushnie	
		PROC. UNIT/OPER. E-Coat		
	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 2 DF 3

WDRKSHEET 4

SITE DESCRIPTION

EPA

Firm:
Plant: Assembly Plant
Department: Fabrication
Area: Fabrication
Street Address:
City:
State/Z1p
Telephone:
Malor Products: Trucks
SIC Codes: 3713
EPA Generator Number:
Major Unit pr:
Product or:
Operations: Automated phosphating process and electro-coat for small and medium sized truck parts
Personnel:
days/week: 5
Fact}ittes/Equipment_Age: E - coat process tanks: 16 years

FIRM	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
	PROC. UNIT/OPER. Degreesing of Frame Ralis (Chassis)	CHECKED BY G. Cushnie	
DATE-INITIAL DATE-REVISED 01/03/90 04/17/90	PROJ. ND. 1-832-03-942-02	SHEET 1 OF 1	PAGE 3 OF 3

	(
WARKELEET			di ka 1975	
WUKKSHEEL	lieite Keenn	107	ሮ ፤ ጠ እ	F.
4 1	ISHE VESLK			١.
	And the second se			

] 😍EPA

•

Firm:		······································		
Plent: Assembly Pl	iant			
Lunna				
Departmant: Prod	luction			 •
Area: Point				
Street Address:				
1				
City:			-	
Stata/Zip				
Telephone:				
Maior Products: Trucks				
SIC Codes: 3713		~		 <u> </u>
EPA Generator Nu	Imber:			
Mejor Unit or:				
Product or:			•••• <u>·</u>	
Operations: Degreasing of frame	reils (chesis)			
0				 ······
Personnel:				
1				
daus/week	5			
Facilitias/Equipm Decreasing booth: 1f	ent Age: 6 ueers			
	·			

FIRM SAIC SITE		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman CHECKED BY S. Custorie	

INPUT MATERIALS SUMMARY

		Description (1)		
Attribute	Stream No. Detacifier	Stream No. Detacifier	Stream No. Feam Centre	
1 Name/ID	Betz Detac 821	Betz Detac 942	Betz Foam Trol 2544	
² Source/Supplier	Betz Metchem	Betz Metchem	Betz Metchem	
3	N/A	N/A	N/A	
4	N/A ·	N/A	N/A	
5	N/A	N/A	N/A	
⁶ Component/Attribute of Concern	Potassium hydroxide/sodium silicate	Aluminum Chlorhydroxide	Mineral Qil	
7 Annual Consumption Rate	N/A	N/A	N/A	
8 Overall	19,425 =	47,160 =	7,600 -	
9 Component(s) of Concern	N/A	N/A	N/A	
10	N/A	N/A	N/A	
1 Purchase Price, \$ per	\$.46/#	\$1.32/=	\$1.14/=	
12 Overall Annual Cost	\$8,936.00	\$62,251.00	\$8,664.00	
13	N/A	N/A	N/A	
¹⁴ Delivery Mode (2)	Shuttle Tank	Shuttle Tank	Truck	
15Ship. Container Size & Type (3)	Tank	Tank	55 gal drum	
16Storage Mode (4)	Outdoor	Outdoor	Warehous	
17Transfer Mode (5)	Pump	Pump	Ton-loader	
¹⁸ Empty Container Disp./Mangt. (6)	Return to supplier	Return to supplier	Sold for reuse	
19 Shelf Life	6 months	6 months	6 months	
20 Supplier Would :	N/A	N/A	N/A	
21 Accept Expired Material (Y/N)	Y	¥	Y	
22 Accept Shipping Containers (Y/N)	Y	Y	N	
23 Revise Expiration Date (Y/N)	Y	¥	Y	
²⁴ Acceptable Substitute(s), if any	N/A	N/A	N/A	
25 Alternate Supplier(s)	N/A	N/A	N/A	

Stream numbers should correspond to those used on process flow diagrams.
 e.g., pipeline, tank car, 100bbl. tank truck, truck, etc.
 e.g., 55 gal. drum, 100 lb. paper bag, tank, etc.
 e.g., outdoor, warehouse, underground, aboveground, etc.

.

e.g., pump, forklift, pneumatic transport, conveyor, etc.
 e.g., crush and landfill, clean and recycle, return to supplier, etc.

FIRM SAIC SITE		•	PREPARED BY S. Roman CHECKED BY G. Cushnie	

WORKSHEET	INF	PUT MATERI	
7		SUMMARY	

		escription (1)	
Attribute	Stream No. Becterie! Control	Streem No. Peint	Stream No. Wesh Solvent
1 Name/JD	Betz Slimicide C-31	Imron polyurethene Enamel	Solvent 2506
² Source/Supplier	Betz Metchem	E I, du Pont de Nemoure & Co (Inc.)	Chemcentrel
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	443	N/A	N/A
⁶ Component/Attribute of Concern	Dodscylguentdins Hydrochioride/Hethylans	Methyl Ethyl Ketone	Toluiens/Actions/Normel Duty: Acetats/isoprocy! o'cohol
7 Annuel Consumption Rate	N/A	N/A	N/A
8 Overall	160 •	42,000 gal.	73,709 gal.
9 Component(s) of Concern	N/A	N/A	N/A
10	N/A	N/A	N/A
¹ Purchase Price, \$ per	\$6.60/*	\$40/ge1	\$1.61/gol
12Overell Annual Cost	\$1,056.00	\$1,680,000	\$36,254
13	N/A	N/A	N/A
¹⁴ Delivery Mode (2)	Truck	Truck	Tenk Truck
15Ship. Container Size & Type (3)	5 gel. peil	55 gel. druma, 5 gel pelle, 1 ga'. cena	N/A
15Storege Mode (4)	Warehouse	Warehouse	Above-ground etoroge tenk
¹⁷ Trensfer Mode (5)	Hend carried	By hend or ton-locder	Pump
¹⁰ Empty Conteiner Disp./Mengt. (6)	Crush and landfill	Sold for rouse or crush & Landfill	Recycle
19Shelf Life	6 months	6 months	N/A
20 Supplier Would;	N/A	N/A	N/A
21 Accept Expired Material (V/N)	Y	N/A	N/A
22 Accept Shipping Conteiners (Y/N)	N	N	N/A
23 Revise Expiration Date (V/N)	Y	N/A	N/A
²⁴ Acceptable Substitute(s), if any	N/A	N/A	N/A
25 _{Alternate} Supplier(s)	N/A	N/A	N/A

Stream numbers should correspond to those used on process flow diagrams.
 e.g., pipeline, tenk car, 100bbl. tenk truck, truck,
 e.g., 55 dei. drum. 100 lb. paper bed. tenk, etc.
 e.g., butdoor, warehouse, underground, eboveground,
 e.g., pump, forkfift, pneumatic transport, conveyor,
 e.g., crush and landfill, clean and recycle, return to supplier,

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY 5. Romen	
SITE			CHECKED BY G. Cushnie	
	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 3 DF 8

**-

WORKSHEET

		Description (1)	
Attribut=	Stream No. Water	Streem No.	Streem No.
1 Name/ID	City water		
² Source/Supplier			
3	N/A		
4	N/A		
5	N/A		
6 Component/Attribute of Concern	pH 10		
7 Annual Consumption Rate	120,000 gal./mon	nth	
8 Dverail	1,440,000 gal.		
9 Compenent(s) of Concern	N/A		
10	N/A		
11Purchase Price, \$ per	\$.90/100 ft3		
12Overell Annual Cost	\$1,730.00		
13	N/A		
14Delivery Mode (2)	Pipeline		
¹⁵ Ship. Container Size & Type (3)	N/A		
16Storage Mode (4)	N/A		
¹⁷ Trenefer Hode (5)	Pipeline		
18 Empty Container Dtep./Mangt. (6)	N/A		
19Shelf Life	N/A		
20 Supplier Would;	N/A		
21 Accept Expired Heteriel (Y/N)	N/A		
22 Accept Shipping Conteiners (Y/N)	N/A		
23 Revies Expiration Date (Y/N)	N/A		
²⁴ Acceptable Substitute(s), if any	N/A		
25Alternets Supplier(s)	N/A		

1. Stream numbers should correspond to those used on process flow diagrams. 2. e.g., pipeline, tenk car, 100bbl. tenk truck, truck,

.

3. e.g., 55 asl. drum. 100 lb. paper bea. tank. etc. 4. e.g., outdoor, warehouse, underground, aboveground,

s.g., pump, forklift, pneumatic transport, conveyor,
 s.g., crush and landfill, clean and recycle, return to supplier,

.

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE			CHECKED BY G. Cushnie	
DATE-INITIAL 02/09/90	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 4 OF 8

INPUT MATERIALS SUMMARY

		Description (1)	
Attribute	Stream No. Cleaner	Stream No. Cleaner	Stream No. Precipitate
1 Name/ID	Betz kleen 128	Betz solv 101	Betz HPC 80
² Source/Supplier	Betz Metchem	Betz Metchem	Betz Metchem
3	N/A	N/A	N/A
4	N/A	NZA	N/A
5	N/A	N/A	N/A
⁶ Component/Attribute of Concern	Sodium carbonate tetrasodium pyrophospate	Alkoxylated fatty alcohol/non-lonic	Ammonium fluoride
⁷ Annual Consumption Rate	N/A	N/A	N/A
8 Overall	1,340 =	920 -	490 =
9 Component(s) of Concern	N/A	N/A	N/A
10	N/A	N/A	N/A
1 Purchase Price, \$ per	\$1.19/ *	\$1.51/#	\$2.64/*
12Overall Annual Cost	\$1,595.00	\$1,389.00	\$1,294.00
13	N/A	N/A	N/A
14Delivery Mode (2)	Truck	Truck	Truck
15Ship. Container Size & Type (3)	Fiber container	55 ga⊡ drum	55 gal. drum
16Storage Mode (4)	Incoor	Indoor	Indoor
17Transfer Mode (5)	By hand	Pump	Pump
18 Empty Container Disp./Mangt. (6)	Crush and landfill	Sold for reuse	Sold for reuse
¹⁹ Shelf Life	6 months	6 months	6 months
20 Supplier Would :	N/A	N/A	N/A
21 Accept Expired Material (Y/N)	Y	Y	Y
22 Accept Shipping Containers (Y/N)	N	N	N
23 Revise Expiration Date (Y/N)	Y	Y	Y
²⁴ Acceptable Substitute(s), if any	N/A	N/A	N/A
25 Alternate Supplier(s)	NZA	N/A	N/A

1. Stream numbers should correspond to those used on process flow diagrams.

2. e.g., pipeline, tank car, 100bbl. tank truck, truck, etc.

e.g., 55 gal. drum, 100 lb. paper bag, tank, etc.
 e.g., outdoor, warehouse, underground, aboveground, etc.

5. e.g., pump, forklift, pneumatic transport, conveyor, etc.

6. e.g., crush and landfill, clean and recycle, return to supplier, etc.

FIRM SAIC		PREPARED BY WASTE MINIMIZATION ASSESSMENT S. Roman		
SITE			CHECKED BY G. Cushnie	
DATE-INITIAL 02/09/90	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 5 OF 8

INPUT MATERIALS SUMMARY

	[(Description (1)	
Attribute	Stream No. Zinc physical string	Stream No. pH adjustment	Stream No. Conversion coating
1 Name/ID	Betz permatreat 400	Betz HPC 60	Betz chemseal 760
² Source/Supplier	Betz Metchem	Betz Metchem	Betz Metchem
3	N/A	N/A	N/A
4	N/A ·	N/A	N/A
5	N/A	N/A	N/A
6 Component/Attribute of Concern	Phosphoric acid	Sodium hydroxide	Phosphonic acid/menoethanolamine
7 Annual Consumption Rate	N/A	N/A	N/A
⁸ Overall	625 =	0 -	1,440 -
9 Component(s) of Concern	N/A	N/A	N/A
10	N/A	N/A	N/A
1 Purchase Price, \$ per	\$1.12/=	\$.60/#	\$1.15/#
12 Overall Annual Cost	\$700.00	\$0.0C	\$1,656.00
13	N/A	N/A	N/A
¹⁴ Delivery Mode (2)	Truck	Truck	Truck
15Ship. Container Size & Type (3)	155 gal. drum	55 gal drum	55 gai drum
16 Storage Mode (4)	Indeor	Indoor	indoor
17Transfer Mode (5)	Pump	Pump	Pump
¹⁸ Empty Container Disp./Mangt. (6)	Sold for reuse	Sold for reuse	Sold for reuse
¹⁹ Shelf Life	6 months	6 months	6 months
²⁰ Supplier Would :	N/A	N/A	N/A
21 Accecpt Expired Material (Y/N)	Ŷ	Y	Ŷ
22 Accept Shipping Containers (Y/N)	N	N	N
23 Revise Expiration Date (Y/N)	Y	Y	Y
²⁴ Acceptable Substitute(s), if any	N/A	N/A	N/A
²⁵ Alternate Supplier(s)	N/A	N/A	N/A

Stream numbers should correspond to those used on process flow diagrams.
 e.g., pipeline, tank car, 100bbl. tank truck, truck, etc.
 e.g., 55 gal. drum, 100 lb. paper bag, tank, etc.
 e.g., outdoor, warehouse, underground, aboveground, etc.

e.g., pump, forklift, pneumatic transport, conveyor, etc.
 e.g., crush and landfill, clean and recycle, return to supplier, etc.

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE			CHECKED BY G. Cushnie	
DATE-INITIAL 02/09/90	DATE-REVISED 03/09/90	PROJ. NC. 1-832-03-942-02	SHEET 1 OF 1	PAGE 6 OF 8

INPUT MATERIALS SUMMARY

ЭЕРА

		Description (1)	
Attribute	Stream No. Conversion coating	Stream No. pH adjustment	Stream No. Corresion inhibitor
1 Name/ID	Betz Actiprep 700	Betz HPC 18	Betz Permatreat 650
² Source/Supplier	Betz Metchem	Betz Metchem	Betz Metchem
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A
⁶ Component/Attribute of Concern	Disodium phosphate	Phosphoric Acid	Sodium Nitrite
7 Annual Consumption Rate	N/A	N/A	N/A
8 Overall	500 *	360 *	565 -
9 Component(s) of Concern	N/A	N/A	N/A
10	N/A	N/A	N/A
11 Purchase Price, \$ per	\$3.38/#	\$1.13/=	\$.60/#
12 Overall Annual Cost	\$1,690.00	\$407.00	\$399.00
13	N/A	N/A	N/A
14Delivery Mode (2)	Truck	Truck	Truck
15 Ship. Container Size & Type (3)	Fiber container	55 gal. drum	55 gal. drum
16 Storage Mode (4)	Indoor	Indoor	Indoor
17 Transfer Mode (5)	By hand	Pump	Pump
¹⁸ Empty Container Disp./Mangt. (6)	Crush and landfill	Sold for reuse	Sold for reuse
19 Shelf Life	6 months	6 months	6 months
²⁰ Supplier Would :	IN/A	N/A	N/A
21 Accept Expired Material (Y/N)	Y	Y	Y
22 Accept Shipping Containers (Y/N)	N	N	N
23 Revise Expiration Date (Y/N)	Y	Y	Y
²⁴ Acceptable Substitute(s), if any	N/A	N/A	N/A
²⁵ Alternate Supplier(s)	N/A	N/A	N/A

Stream numbers should correspond to those used on process flow diagrams.
 e.g., pipeline, tank car, 100bbl. tank truck, truck, etc.
 e.g., 55 gal. drum, 100 lb. paper bag, tank, etc.
 e.g., outdoor, warehouse, underground, aboveground, etc.

•

e.g., pump, forklift, pneumatic transport, conveyor, etc.
 e.g., crush and landfill, clean and recycle, return to supplier, etc.

•

FIRM		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE			CHECKED BY G. Cushnie	
	DATE-REVISED 04/23/90	PRDJ. ND. 1-832-03-942-02	SHEET 1 OF 1	PAGE 7 DF B

WORKSHEET

INPUT MATERIALS SUMMARY

	L	Description (1)	
Attribute	Streem No. Weter	Stream No.	Streem No.
1 Name/ID	City Water		
² Source/Supplier	Municipal Wate	er Source	
3	N/A		
4	N/A		
5	N/A		
⁶ Component/Attribute of Concern	рн 10		
7 Annuel Consumption Rete	200 gal/day		
8 Overali	510,000 gal		
9 Component(s) of Concern	N/A		
10	N/A		
^{1 1} Purchase Price, \$ per	\$.90/100ft(3)		
12Overall Annual Cost	\$614.00		
13	N/A		
14Delivery Mode (2)	Pipeline		
15Ship. Container Size & Type (3)	N/A		
16Storege Mode (4)	N/A		
¹⁷ Transfer Mode (5)	Pipeline		
¹⁸ Empty Container Diep./Mangt. (6)	N/A		
¹⁹ Shelf Life	N/A		
²⁰ Supplier Would:	N/A		
21 Accept Expired Meteriel (Y/N)	N/A		
22 Accept Shipping Conteinere (Y/N)	N/A		
23 Revise Expiration Date (Y/N)	N/A		
²⁴ Acceptable Substitute(s), if any	N/A		
25 _{Alternate} Supplier(s)	N/A		

Stream numbers should correspond to those used on process flow diagrams.
 e.g., pipeline, tank car, 100bbl. tank truck, truck,

3. e.a., 55 asl. drum, 100 lb. paper bea, tank, etc. 4. e.g., outdoor, warehouse, underground, aboveground,

s.g., pump, forklift, pneumatic transport, conveyor,
 s.g., crush and landfill, clean and recycle, return to supplier,

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman					
SITE			CHECKED BY 6 Cushnie					
	DATE-REVISED 04/23/90	PRDJ. ND. 1-832-03-942-02	SHEET 1 OF 1	PAGE 8 DF 8				

												ŝ									

MATERIALS JMMARY

	D	Description (1)									
Attribute	Streem No. Degreesing solvent	Streem No.	Stream No.								
1 Name/ID	K speciel blend										
² Source/Supplier	Colvery Chemical Co.										
3	N/A										
4	N/A .										
5	N/A										
⁶ Component/Attribute of Concern	1,1,1 trichloroethene methylene chlaride										
7 Annual Consumption Rate	275 gal/week										
8 Overall	14,000 gel.										
⁹ Component(s) of Concern	N/A										
10	N/A										
11Purchase Price, \$ per <u>gal.</u>	\$5.00/gal.										
12Overall Annual Cost	\$70,000										
13	N/A										
14Delivery Mode (2)	Truck										
15Ship. Container Size & Type (3)	55 gal. drum										
16Storage Mode (4)	Hazardous waste storinge eres										
¹⁷ Transfer Mode (5)	Ton-loader										
¹⁸ Empty Container Disp./Mangt. (6)	Sold for reuse										
¹⁹ Shelf Life	N/A										
20Supplier Would:	N/A										
21 Accorpt Expired Motorial (Y/N)	N/A										
22 Accept Shipping Conteiners (Y/N)	N										
23 Revise Expiration Date (Y/N)	N/A										
24Acceptable Substitute(s), if any	N/A										
25Allernate Supplier(s)	N/A										

Stream numbers should correspond to those used on process flow diagrams.
 e.g., pipelins, tank car, 100bb1, tank truck, truck,

a.g., pipering, cank bar, to ber bar, took, took,
 a.g., 55 aal. drum. 100 lb. paper bar. tank. etc.
 a.g., outdoor, warehouse, underground, aboveground,
 a.g., pump, forklift, pneumatic transport, conveyor,
 a.g., crush and landfill, clean and recycle, return to supplier,

FIRM	WAS	TE MINIMIZATION	ASSESSMENT	PREPARED BY S. Roman	
SITE		C. UNITZOPER. Painting		CHECKED BY G Cushnie	
DATE-INITIAL DATE-REV 02/09/90 03/09/90	ISED PRO. 1-8	J. NO. 32-03-942-02	2	SHEET 1 OF 4	PAGE 1 OF 8
worksheet 9a	IND	VIDUAL WAS CHARACTERI	TE STREAM ZATION	•	ЕРА
1. Waste Stream Process Unit				Stream Numb	er <u>01-A</u>
2. Waste Chara	cteristics	(attach additi	onal sheets w	ith composition da	ata)
D 9	as	🗙 liquid	solf	d 🗌 m	ixed phase
	•	b/cuft		iting Value, Btu/1	b
	•	-		% w	'ater
 Waste Leaves air emise 			🔲 solid wa	iste 🔀 haz	ardous waste
4. Occurrence Conti disc	nuous				
discharge	triggered	by 🗌 ch	nemica) analysi	S	
Ту;	^{oe:}		I	<u>leftover paint from</u> ength of period: e)	
5. Generation Ra	ate	non-recurren			
	Annua) Maximum	213.142 * (antimater in 1040)	-		
	Average				
	requency		batches per		
Į	Batch Size		Average		Range

.

.

.

•

FIRM		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman
SITE		PROC. UNIT/OPER. Spray Painting	CHECKED BY
DATE-INITIAL 02/09/90	DATE-REVISED 04/23/90	PROJ. ND. 1-832+03+942-02	SHEET 2 of 4 PAGE 1 DF 8

Wasta Streem Waste Paint-Liquid

6. Wests Origins/Sources

Fill out this worksheet to identify the origin of the waste. If the waste is a mixture of waste streams, fill out a sheet for each of the individual waste streams.

is the weste mixed with other wastes? 🔲 Yes 🔀 No

Describe how the weste is generated.

Point is prepared daily in the paint mix room and taken to the cab paint booths. Any leftover paint from the cab paint booths is returned to the paint mix room and placed in a drum for waste paint. The frame rail (chassis) paint booth has a bulk spray system for black paint which should produce no waste paint. However, when a chassis is painted any other color the paint is prepared in the paint mix room and any left over paint is but in a drum in the chassis paint booth. The paint is kept liquid with the addition of ethanol which neutralizes the catalyst in the paint.

A (A) (A)		
· · · · · · · · · · · · · · · · · · ·		
· · · ·		
· · · · · · · · · · · · · · · · · · ·		
•		
	······································	

Example: Formation and removal of an understrable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning waste, obsolete input material, spoiled batch and production run, spill or leak cleanup, evaporative loss, breathing or venting losses, etc.

IRM AIC	WASTE MINIMIZATION ASSESSMENT	SSMENT PREPARED BY S. Roman					
ITE	PROC. UNIT/OPER. Spray Painting	CHECKED BY 3 Cushnie					
ATE-INITIAL DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 3 of 4	PAGE 1 OF 8				
WORKSHEET 9C	NDI VIDUAL WASTE STREAM CHARACTERIZATION (continued)	•	ΈΡΑ				
7. Management Method	aste Paint-Liquid						
Leaves site in:	roll off bins X 55 gal drums	5 1be)					
Disposal Frequency	y Every 90 days						
Applicable Regulat	ions <u>RCRA</u>						
Regulatory Classif	ication <u>Flammaple waste UNIS</u> F003/F005	993					
Managed	 onsite offsite commercial TSDF own TSDF other (describe) <u>Cement</u> 	Kin Facility					
Recycling		blending					
	reclaimed material returned to	site?					
	🗌 Yes 🖾 No 🖾	used by others					
	residue yield						
	residue disposal/ repository						

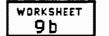
.

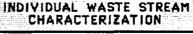
·

FIRM	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S Roman					
SITE	PROC. UNIT/OPER. Spray Painting	CHECKED BY					
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90	PROJ. NO. 1-832-03-942-02	SHEET 4 of 4	PAGE 1 OF 8				
worksheet 9d	INDIVIDUAL WASTE STREAT CHARACTERIZATION (continued)		ΈΡΑ				
Waste Stream <u>W</u>	aste Paint-Liquid						
7. Management Metho	d (continued)						
Treatment	oxidation/reduction incineration pH adjustment precipitation solidification						
	residue disposal/reposito						

Costs as of <u>Jan 1990</u> (quarter and year)

Cost Element:	Unit Price	Reference/Source
) Oneite Storage and Handling	\$0.C0	
2 Pretreatment	\$0.00	
3 Container	\$0.00	
4 Transportation Fee	\$0.00	
5 Disposal Fer	\$1250.00	per 5000 gal - this indcludes a transporation fee
6 Local Taxes	\$0.00	
7 State Tax	\$0.00	
8 Federal Tax	\$0.00	
Yotal Disposal Cost	\$1250.00	Specify units t/ mi


Specify units, \$/ gai


FIRM SAIC	WASTE MINIMIZATION	ASSESSMENT	T PREPARED BY S. Roman					
SITE	PROC. UNIT/OPER. Spray Painting		CHECKED BY G Cushnie					
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90	PROJ. NO. 1-832-03-942-02	2	SHEET 1 OF 4	PAGE 1 OF 8				
WORKSHEET 98	INDIVIDUAL WAS CHARACTERI	TE STREAM ZATION	•	EPA				
 Waste Stream Nam Process Unit/Ope 	re/ID: <u>Waste Pai</u>		Stream Numb	er <u>01-5</u>				
2. Waste Characteri:	stics (attach addition)	onal sheets w	_	ata) nixed phase				
Viso	aity, 1b/cu ft cosity/Consistency Flast		ting Value, Btu/1 	b				
 Waste Leaves Proc air emission 	_	🗙 solid wa	ste 🛛 haz	ardous waste				
4. Occurrence								
discharge trig Type: 5. Generation Rate Annua Maxir Avera	periodic sporadic (irreg non-recurren	ular occurance ht per year per	Emotions of WasterP ength of period:					
Frequ Batch		batches per Average _		Range				

.

.

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Romen	
SITE		PROC. UNIT/OPER. Spray Peinting	CHECKED BY	
	DATE-REVISED	PROJ. ND. 1-832-03-942-02	SHEET 2 of 4	PAGE 1 OF 8

(continued)

Wests Streem Weste Peint-Solid

6. Weets Origins/Sources

Fill out this worksheet to identify the origin of the wests. If the waste is a mixture of waste streams, fill out a sheat for each of the individual waste streams.

SEPA

is the waste mixed with other wastes? 🔲 Yes 🔀 No

Describe how the weste is generated.

waste paint from the cab paint booths and the chassis paint booth is stored in 55 gal. drums to await disposal. These drums are pumped into a tank truck. Any solified paint in the bottom of the drums is screeped out and consolidated into another 55 gal. drum for disposal.

Example: Formation and removal of an understrable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning waste, obsolete input material, spoiled batch and production run, spill or leak cleanup, evaporative loss, breathing or venting losses, etc.

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman
SITE	PROC. UNIT/OPER. Spray Painting	CHECKED BY G Cushnie
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90	PROJ. NO. 1-832-03-942-02	SHEET 3 of 4 PAGE 1 OF 8
WORKSHEET 9C	INDIVIDUAL WASTE STREAT CHARACTERIZATION (continued)	🗧 😌 ЕРА
Waste Stream <u>W</u> 7. Management Metho Leaves site in:	bulk	
Disposal Frequenc Applicable Regula	other (descr y Every 90 days	5 1be)
Regulatory Classif	fication <u>Flammable waste UNIC</u> F003/E005	393
Managed	Ξ	
Recycling	energy recovery	
	reclaimed material returned to	site? used by others
	residue yield	
	residue disposal/	

.

•

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PROC. UNIT/OPER. Spray Painting	CHECKED BY G Custore	
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90		PROJ. NO. 1-832-03-942-02	SHEET 4 of 4	PAGE I OF 8

WORKSHEET	INDIVIDUAL WASTE STREAM CHARACTERIZATION	💝 ЕРА
	(continued)	

 Waste Stream
 Waste Paint-Solid

 7.
 Management Method (continued)

.

Treatment	biological
	residue disposal/repository

.

Costs as of <u>Jan 1990</u> (quarter and year)

Cost Element:	Unit Price	Reference/Source
1 Onsite Storage and Handling	\$0.00	······································
2 Pretreatment	\$0.00	
3 Container	\$0.00	
4 Transportation Fee	\$50.00	per 55 gal. drum
5 Disposal Fee	\$300.00	per 55 gail drum
6 Local Taxes	\$0.00	
7 State Tax	\$0.00	
8 Føderal Tax	\$0.00	
Total Disposa: Cost	\$350.00	Specify units \$/ down

Specify units, \$/ <u>drum</u>

FIRM SAIC		WASTE MINIMIZATION AS	SSESSMENT PREPA	RED BY
SITE		PROC. UNIT/OPER. Spray Painting	CHECK	ED BY
DATE-INIT 02/09/90	IAL DATE-REVISED 03/09/90	PROJ. NO. 1-832-03-942-02		1 OF 4 PAGE 1 OF 8
wo	9a	INDI VIDUAL WAST	E STREAM	😍 ЕРА
1.		e/ID: <u>Detackified</u> ration <u>Spray Paint</u>		eam Number <u>01-C</u>
2.	Waste Characteris	itics (attach addition	nal sheets with com	
	Visc	sity, 1b/cu ft cosity/Consistency Flash		-
3.			solid waste	hazardous waste
4.	Occurrence Continuous M discrete			
	discharge trigg Type:	oth	mical analysis er (describe) <u>Asm</u> length o	
		sporadic (irregu	lar occurance)	
5.	Generation Rate Annua Maxin Avera:	num		
	Frequ	-	batches per	
	Batch	Size	Average	Range

· ·

•

-

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Romen	
SITE	PROC. UNIT/OPER. Sprey Painting	CHECKED BY G. Cushote	
DATE-INITIAL DATE-REVISE 02/09/90 04/23/90	PROJ. NO. 1-832-03-942-02	SHEET 2 of 4	PAGE 1 OF 8

(continued)

Waste Stream Deteckified Point

6. Waste Origins/Sources

Fill out this worksheet to identify the origin of the waste. If the waste is a mixture of weets streams, fill out a sheet for each of the individual weets streams.

is the weste mixed with other westes? 🔲 Yes 🔀 No

Describe how the waste is generated.

The cab paint booths and the chassis paint booth have a water curtain to collect paint overspray. Each booth has its own pit for the collection of the water, and detackification of the paint. A paint sludge builds up in the pits and is collected on an as is needed basis.

Example: Formation and removal of an undersirable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning waste, obsolete input material, spoiled batch and production run, spill or leak cleanup, evaporative loss, breathing or venting losses, etc.

FIRM		WASTE MINIHIZATION ASSESSMENT PREPARED BY S. Romen		
		PROC. UNIT/OPER. Spray Painting	CHECKED BY	
DATE-INITIAL DATE-REVISED 02/09/90 04/23/90		PRDJ. NO. 1-832-03-942-02	SHEET 3 of 4	PAGE 1 OF B

	SHEET C	INDIVIDUAL WASTE STREAM CHARACTERIZATION (continued)
	Waste Stree	m Deteckified Point
7.	Menegement	Method
	Leeves site	Dulk
	Disposal Fre	quency Every 4 to 6 weeks
		Regulations <u>Citu & Federal for metals content, temperature pH and oil</u>
	Menegad	<pre>onsite offsite commercial TSDF own TSDF other (describe)</pre>
	Recycling	<pre>direct use/re-use</pre>
		reclaimed material returned to site?
		residus yield residue disposal/ repository

.

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT		PREPARED BY S. Roman	
SITE		Spray P	. UNIT/OPER. Painting	CHECKED BY 6. Cusphie	
DATE-INITIAL 02/09/90	DATE-REVISED 03/09/90		NO. 2-03-942-02	SHEET 4 of 4	PAGE I OF 8
			(IDUAL WASTE STREAT HARACTERIZATION (continued)		EPA
w	aste Stream <u>D</u>	etackifi	ed Paint		
7. Ma	inagement Meth	od (con	tinued)		
т	reatment		oxidation/reduction incineration pH adjustment precipitation solidification		
			residue disposal/reposito landfill pond lagoon deep well ocean other (describe)		

. E1

Costs as of <u>Jan. 1990</u> (quarter and year)

Cost Element:	Unit Price	Reference/Source
1 Onsite Storage and Handling	\$0.00	
2 Pretreatment	\$0.00	
3 Container	\$0.00	
4 Transportation Fee	\$0.00	
5 Disposal Fee	\$0.24	per gallon includes transportation costs
6 Local Taxes	\$0.00	
7 State Tax	\$0.00	
8 Federal Tax	\$0.00	1
Total Disposal Cost	\$0.24	

Specify units, \$/ gallon

.

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman
SITE	PROC. UNIT/OPER.	CHECKED BY
DATE-INITIAL DATE-REVISED 02/09/90 04/23/90	Spray Painting PRDJ. ND. 1-832-03-942-02	Cushnis SHEET 1 OF 4 PAGE 1 DF B
	NDIVIDUAL WASTE STREA	₫ 🗣ЕРА
	ame/ID: <u>Paint Booth Water</u>	_ Streem Number <u>01-D</u>
	istics(attach additional sheets	_
Visc	ity, Ib/cu ft Hee cosity/Consistency Flesh Point	
3. Waste Leaves Pr Deir emission	ocess es: 🛛 wastewater 🗖 solid w	este 🔲 hezerdous weste
🔀 discrete		
Type: 5. Generation Rate Annua Maxim Avera	periodic 1) <u>Operator discretion</u> ength of period: <u>Daily</u> ice)
Batch	Size Average	Renge

.

•

FIRM SAIC SITE		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman CHECKED BY G. Cushnie	
		PRDC. UNIT/OPER. Sprey Painting		
DATE-INITIAL DATE-REVISED 02/09/90 04/23/90		PRDJ. ND. 1-832-03-942-02	SHEET 2 of 4	PAGE 1 DF B

INDIVIDUAL WASTE STREAM CHARACTERIZATION

(continued)

Waste Stream Paint Booth Water

6. Waste Origins/Sources

Fill out this worksheet to identify the origin of the waste. If the waste is a mixture of waste streams, fill out a sheet for each of the individual waste streams.

EPA

is the waste mixed with other wastes? 🔀 Yes 🔲 No

Describe how the weste is generated.

The cab paint booths and the chassis paint booth each have a water curtain to collect paint overspray. The water becomes contaminated with the oversprayed paint and solvent.

Example: Formation and removal of an understrable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning waste, obsolete input material, spolled batch and production run, spill or leak cleanup, evaporative loss, breathing or venting losses, etc.

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman
SITE	PROC. UNIT/OPER. Spray Painting	CHECKED BY 6 Cushile
DATE-INITIAL DATE-REVISE 02/09/90 03/09/90	D PROJ. NO. 1-832-03-942-02	SHEET 3 of 4 PAGE 1 OF 8
WORKSHEET 9C	INDI VIDUAL WASTE STREAT CHARACTERIZATION (continued)	🔄 😍ера
Waste Stream 7. Management Met Leaves site in:	bulk roll off bins	
Disposal Freque Applicable Regu Regulatory Class	Incy <u>Daily</u> other (descr Dations <u>City & Federal regulations</u>	s ibe) <u>Through sewer pipe</u> on metals, temperature, pH and oil
Managed	onsite offsite	
Recycling	energy recovery	
	reclaimed material returned to	
	residue yield residue disposal/ repository	

•

•

FI RM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S Roman	
SITE		PROC. UNIT/OPER. Spray Painting	CHECKED BY G Cushnie	
DATE-INITIAL 02/09/90	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 4 of 4	PAGE 1 OF 8

worksheet 9d	INDIVIDUAL WASTE STREAM CHARACTERIZATION	EPA
	(continued)	

	Waste Stream	Paint Booth Water
7.	Management Me	thod (continued)
	Treatment	biological oxidation/reduction incineration pH adjustment precipitation Solidification other (describe)
		<pre>residue disposal/repository landfill The sludge is sent to a TSDF pond lagoon lagoon deep well ocean ocean other (describe) The wate water is discharged to a POTW via a Permit to Discharge</pre>

Costs as of <u>Jan. 1990</u> (quarter and year)

Unit Price	Reference/Source
\$0.00	
\$0.00	
\$0.00	
\$0.00	
\$1.65	per 100ft(3) sewer charge
\$0.00	
\$0.00	
\$0.00	
\$1.65	Specify units, \$/
	\$0.00 \$0.00 \$0.00 \$0.00 \$1.65 \$0.00 \$0.00 \$0.00 \$0.00

.

F IRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Romen
	PRDC. UNIT/OPER. Degressing Solvent	CHECKED BY G. Cushnis
DATE-INITIAL DATE-REVISED 02/09/90 04/23/90	PROJ. ND. 1-832-03-942-02	SHEET 1 OF 4 PAGE 1 OF 6

98 INDIVIDUAL WASTE STREAM

1. Waste Streem Name/ID: <u>Decreasing Solvent</u> Stream Number <u>D2-E</u> Process Unit/Operation <u>Decreasing of Frame Rails (Chassis)</u>

2. Weste Cherecteristics(stitch additional sheets with composition date)

	aeg 🗌	🔀 liquid	solid 🗌	easing besim
	Densi	ty, 16/cu ft 🔜		Value, Btu/Ib
	Visco	sity/Consisten	cy	
	pH	F18	sh Point	
3.	Waste Leaves Pro		r 🗆 solid waste	🗙 hazardoue waste
4.	Occurrence			
	🗙 discrete			
	discharge trig	gered by 🗌 d	chamical enalysis	
			other (describe) <u>As</u>	needed
	Туре:			n of period:
	ſ	sporadic (ir	regular occurance)	
	I	non-recurr	ent	
5.	Seneration Rate	20,210 *		
	Annua) Maximi		— per year — per	
	Averag		per	
	-		_ batches per	
			_ Average	
	23(01)		_ mverage	

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Romen	
SITE		PRDC. UNIT/OPER. Degregeting Solvent	CHECKED BY 6 Cushnie	
	DATE-REVISED 04/23/90	PROJ. ND. 1-832-03-942-02	SHEET 2 of 4	PAGE 1 DF 8

Sepa

(continued)

Weste Streem Decreasing Solvent

6. Waste Drigins/Sources

Fill out this worksheet to identify the origin of the waste. If the waste is a mixture of waste streams, fill out a sheet for each of the individual waste streams.

is the weste mixed with other westes? 🔲 Yes 🔀 No

Describe how the waste is generated.

The chassis is degreased in a booth just prior to entering the chassis paint booth. A chlorineted solvent is used because of the immediate drying action and VOCs. The solvent is both spraued and wiped on to the chassis. The waste comes from the wiping process. Rags are dipped into buckets of solvent and used to wipe down the chassis. The solvent in the bucket becomes contaminated with the dirtu rags that are dipped repeatedly into the bucket.

Example: Formation and removal of an undersirable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning waste, obsolete input material, spoiled batch and production run, spill or leak cleanup, evaporative loss, breathing or venting losses, etc.

FIRM		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Romen	
SITE		PROC. UNIT/OPER. Degregeting Solvent	CHECKED BY	
DATE-INITIAL DA 02/09/90 04/	TE-REVISED		SHEET 3 of 4	PAGE 1 DF D
workshee 9 C		NDIVIDUAL WASTE STREA CHARACTERIZATION (continued)		ΈΡΑ
Wast	e Streem <u>De</u>	greesing Solvent		
7. Men	agement Meti	nod		
Lesv	es sile	roll off X 55 gel drum	S	
Dispo	sal Frequen	cy Every 90 days		
Appli	iceble Regul	etions <u>RCRA</u>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
Regu	letory Cleas	ification FOD1/FOO2/DOD6/DOO	7	
Mena	g e d	ansite Soffsite commercial TSDF own TSDF other (describe)	-	
Recy	cling	direct use/re-use energy recovery redistilled other (describs)	na at Ecolotac - A division of	
		reclaimed material returned	to site? useu vy	
		residue yield residue dieposel/ repository		

.

.

-

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PROC. UNIT/OPER. Degregating Solvent	CHECKED BY G. Cushnie	
	DATE-REVISED 04/23/90	PROJ. ND. 1-832-03-942-02	SHEET 4 of 4	PAGE 1 OF 8

WORKSHEET	INDIVIDUAL WASTE STREAM	
9d	CHARACTERIZATION	VEPA

(continued)

Weste Stream Degressing Solvent

7. Management Method (continued)

.

Trestment	biologicel oxidation/reduction incineration pH edjustment precipitation solidification other (describe)
	residue disposal/repository landfill pond legoon deep ocean other (describe)

Costs as of <u>Jen. 1990</u> (quarter end year)

Cost Element:	Unit Price	Raference/Source
1 Onsite Storege and Hendling	\$0.00	
2 Pretrestment	\$0.00	
3 Conteiner	\$0.00	
4 Transportation Fea	\$31.50	for pick-up and transport from 1 to 10 drums
5 Disposal Fes	\$450.00	per drum
6 Local Taxas	\$0.00	
7 State Tex	\$0.00	
8 Faderel Tex	\$0.00	
Totel Disposal Cost	\$481.50	

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE	PROC. UNIT/OPER. E-Coat	CHECKED BY	
DATE-INITIAL DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 4	PAGE L OF 8
WORKSHEET 9a	INDIVIDUAL WASTE STREA CHARACTERIZATION		ЕРА
1. Waste Stream Nam	e/ID: <u>Rinse Waters</u>	Stream Numb	er <u>03-F</u>
Process Unit/Ope	ration <u>E-Coat</u>		
2. Waste Characteris	stics (attach additional sheets	_	ata) nixed phase
Dens	sity, ib/cu ft H	eating Value, Btu/1	b
Viso	osity/Consistency		
pH .	Flash Point		vater
 Waste Leaves Proc air emission 	ess as: X wastewater 🔲 solid v	vaste 🔲 haz	ardous waste
4. Occurrence Continuous discrete	·		
discharge trigg	gered by Chemical analy	sis	
Туре:		e) <u>Chemical bull</u> length of period:	d-up
5. Generation Rate	-		
Annua Maxin	per year		
Avera			
	ency batches po		

.....

·

Batch Size _____ Average _____Range

FIRM SAIC		WASIE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE			CHECKED BY	
DATE-INITIAL 02/09/90	DATE-REVISED 04/23/90	PROJ. NO. 1-832-03-942-02	SHEET 2 of 4	PAGE 1 DF 8

INDIVIDUAL WAS	TE STREAM	
CHARACTERI	ZATION	

(continued)

Weste Stream Rinse Waters

6. Waste Origins/Sources

Fill out this worksheet to identify the origin of the waste. If the waste is a mixture of wasts streams, fill out a sheet for each of the individual waste streems.

is the waste mixed with other wastes? 🛛 Yes 🔲 No

Describe how the weste is generated.

The E-Cost process is a series of 10 dip tenks. Tanks 2.5 and 7 contain rinsewaters. Tank 7 is made up of Di water and is recycled to tank 5 which is made up of city water and DI water. Tank 2 contains only city water. Tanks 2 and 5 are continuous overflow rinses and are discharged to the plants waste treatment sustem.

Example: Formation and removal of an understrable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning waste, obsolete input material, spoiled batch and production run, spill or leak cleanup, evaporative loss, breathing or venting losses, stc.

FIRM SAIC		WASIL MAINIZATION ADDEDDMENT	PREPARED BY S. Roman	
			CHECKED BY 5. Cushote	
	DATE-REVISED 04/23/90	PROJ. ND. 1-832-03-942-02	SHEET 3 of 4	PAGE 1 OF 8

	SHEET	INDIVIDUAL WASTE STREAM CHARACTERIZATION
		(continued)
	Waste Stream	Rinse Waters
7.	Management M	ethad
	Letves site	<pre>bulk roll off 55 gel drums other (describe) <u>Through sewer pipe</u></pre>
	Disposal Frequ	iency <u>Daily</u>
	Applicable Re	gulations <u>City and Federal regulations on matal content, temperature,</u> <u>pH</u> , and oil
	Regulatory Clu	assification <u>None</u>
	Menaged	Image: State stat
	Recycling	direct use/re-use <u>Tank 7 is recucled to Tank 5</u> energy recovery redistilled other (describe)
		reclaimed material returned to eite?
		residue yiald residue disposal/

FIRM		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PROC. UNIT/OPER. CHECKED BY E-Coat G. Cushnie		
DATE-INITIAL 02/09/90	DATE-REVISED 03/09/90	PROJ. NO. 1-832-03-942-02	SHEET 4 of 4	PAGE 1 OF B

WORKSHEET	INDIVIDUAL WASTE STREAM	
9d	CHARACTERIZATION	VEPA

(continued)

Waste Stream <u>Rinse Waters</u>

.

Management Method (continued)	7.	Management	Method	(continued)
---	----	------------	--------	-------------

Treatment	biological
	oxidation/reduction
	incineration
	🔲 pH adjustment
	precipitation <u>Eercic Chloride/Caustic Soda system</u>
	solidification
	other (describe)
	residue disposal/repository
	andfill The sludge is sent to a hazardous waste landfil
	pond
	lagoon
	deep well
	ocean
	other (describe) Wastewater is discharged to the POTW via a Permit to Discharge

Costs as of <u>Jan 1990</u> (quarter and year)

Cost Element:	Unit Price	Reference/Source
j Onsite Storage and Handling	\$0.00	
2 Pretreatment	\$0.00	
3 Container	\$0.00	
4 Transportetion Fee	\$0.00	
5 Disposal Fee	\$1.65	per 100ft(3) of water discharged
6 Local Taxes	\$0.00	
7 State Tak	\$0.00	
8 Federal Tax	\$0.00	
Total Disposal Cost	\$1.65	

_____ Specify units, \$/ ____

FIRM SAIC	WAST	E MINIMIZATION	ASSESSMENT	PREPARED BY S. Roman	
SITE	PROC E-Coat	. UNIT/OPER.		CHECKED BY 3. Cushnie	
DATE-INITIAL DATE-RE 02/09/90 03/09/9	VISED PROJ		2	BHEET 1 OF 4	PAGE 1 OF 8
worksheet 9a		IDUAL WAS	TE STREAM ZATION		ЕРА
1. Waste Strea	am Name/ID:	Process I	anks 1.3.6	_ Stream Numbe	er <u>03-6</u>
Process Ur	nit/Operation	<u>E-Coat</u>			
		(attach additi		Ith composition da	ita) Ixed phase
	•	Consistency		ting Value, Btu/It 	
	s Process as: ssion 🛛 🗙		solid war	ste 🗌 haza	ardous waste
 ••••	tinuous screte				
	ge triggered b ype: X D	ot	jular occurance	<u>Operator discrei</u> ength of period:	
5. Generation		43.680 gal	- per year - per		Range

-

.

66 '

FIRM SAIC SITE		WADIE MINIMERIUN ADDEDENI	S. Roman	
SITE			CHECKED BY G. Cushnis	
	DATE-REVISED 04/23/90	PROJ. ND. 1-832-03-942-02	SHEET 2 of 4	PAGE 1 DF 8

EPA

Waste Stream Process Tanks 1.3.6

6. Weste Drigins/Sources

Fill out this worksheet to identify the origin of the waste. If the waste is a mixture of waste streams, fill out a sheet for each of the individual waste streams.

is the waste mixed with other wastes? 🔀 Yes 🔲 No

Describe how the weste is generated.

The solution in the process tanks 1.3, and 5 becomes conteminated with oil & dirt from parts being dipped in them. Dragout from intermediate rinses dilutes the solutions and they need to be replanished.

Example: Formation and removal of an understrable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning waste, obsolete input material, spoiled batch and production run, spill or leak cleanup, eveporative loss, breathing or venting losses, etc.

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE	PROC. UNIT/OPER. E-Coat	CHECKED BY	
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90	PROJ. NO 1-832-03-942-02	SHEET 3 of 4	PAGE 1 OF 8
WORKSHEET	NDI VIDUAL WASTE STREAM CHARACTERIZATION (continued)	• •	EPA
Waste Stream Pr	ocess Tanks 1.3.6		
7. Management Method	t		
Leaves site in:	roli off bins	be) Through sewe	
Disposal Frequenc			
Applicable Regulat	ions <u>City and Federal regulation</u> and oil	s on metal content.	temporature, pH
Regulatory Classif	ication <u>None</u>		
Managed	onsite offsite commercial TSDF own TSDF other (describe) Pretrea	tment on-site	
Recycling	energy recovery		
	reclaimed material returned to s	site?	
	Yes No	used by others	
	residue yield		
	residue disposal/ repository		

-

FIRM SAIC	WAST	E MINIMIZATION ASSESSMENT	PREPARED BY S Roman	
SITE	PROC E-Ccat	. UNIT/OPER.	CHECKED BY 3 Cushnie	
DATE-INITIAL DATE-REVIS 02/09/90 03/09/90		ND. 2-03-942-02	SHEET 4 of 4	PAGE 1 OF 8
WORKSHEET 90		IDUAL WASTE STREA HARACTERIZATION (continued)		ЕРА
Waste Stream	Process	Tanks 1.3.6		
7. Management Me	thod (con	tinued)		
Treatment		oxidation/reduction incineration pH adjustment precipitation <u>Ferric Ch</u> solidification		system
		residue disposal/reposi landfill <u>The sludge is sen</u> pond lagoon deep well ocean other (describe) <u>Wastu</u> <u>Perm</u>	t to a hazardous wast	

,

Costs as of <u>Jan. 1990</u> (quarter and year)

.

Cost Element:	Unit Price	Reference/Source	
1 Onsite Storage and Handling	\$0.00		
2 Pretreatment	\$0.00		
3 Container	\$0.00		
4 Transportation Fee	\$0.00		
5 Disposal Fee	\$1.65	per 100ft(3) of water discharged	
6 Local Taxes	\$0.00		
7 State Tax	\$0.00		
8 Federal Tax	\$0.00		
Tetal Disposal Cost	\$1.65	Specify units \$/	

Specify units, \$/

FIRM SAIC SITE		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman CHECKED BY S. Cushnie	
		PRDC. UNIT/OPER. E-Coat		
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90		PROJ. NO. 1-832-03-942-02	SHEET 1 OF 4	PAGE OF

WORKSHEET	
9a	

INDIVIDUAL WASTE STREA	M.
CHARACTERIZATION	

🛠 ера

1.	Waste Stream Name/ID: Process Unit/Operation	Phosphate Bath & Tank Bottoms E-Coat	Stream Number <u>03-H</u>
2.	Waste Characteristics (attach additional sheets with	h composition data)
	🗋 gas 🚺	liquid solid	mixed phase
	Density, 16/0	cuft Heats	ng Value, Btu/1b
	Viscosity/Co	onsistency	
	pH <u>20</u>	Flash Point	% Water
3.	Waste Leaves Process as:	vastewater 🔲 solid wast	e 🛛 hazardous waste
4.	🗙 discrete		
	discharge triggered by		
	51		Operator discretion ngth of period: <u>1 year</u>
5.	Generation Rate		
		2,780 gal. per year	
	Maximum _		
	Average _	per	······
	Frequency _	batches per	
	Batch Size _	Average	Range

		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman CHECKED BY G. Cushnia	
DATE-INITIAL DATE-REVISED 02/09/90 04/23/90		PROJ. ND. 1-832-03-942-02	SHEET 2 of 4	PAGE OF

INDIVIDUAL WASTE STREAM

Sepa

Weste Streem Phosphate Bath & Tenk Bottoms

6. Weste Origine/Sources

Fill out this worksheet to identify the origin of the weste. If the waste is a mixture of waste streams, fill out a sheet for each of the individual waste streams.

is the weste mixed with other westes? 🚺 Yes 🔀 No

Describe how the waste is generated.

The quality of the phosphale bath is maintained throughout the year with the addition of chemicals. The entire bath is replaced every one to two years or as needed at the operators discretion. This waste is usually mixed with the sludge from the tank bottoms in the E-Coat System. All of the tanks in the E-Coat system are cleaned once per year.

	and the second se
	and the second se
	and the second se

Example: Formation and removal of an understrable compound, removal of an unconverted input material, depletion of a key component (e.g., drag-out), equipment cleaning wasts, obsolets input material, spoiled batch and production run, spill or lask clashup, evaporative loss, breething or venting losses, etc.

FIRM	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE	PROC. UNIT/OPER. E-Coat	CHECKED BY 3 Cushn e	
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90	PROJ. NO. 1-532-03-942-02	SHEET 3 of 4	PAGE OF
WORKSHEET 9C	INDIVIDUAL WASTE STREAM CHARACTERIZATION (continued)		ЕРА
Waste Stream <u>P</u>	noohate Bath & Tank Bottoms		
7. Management Metho Leaves site in:	 buik roll off bins 55 gal drums 	: 	
Disposal Frequence	_		
Applicable Regula	tions <u>RCRA</u>		
Regulatory Classif	tication <u>F019</u>		
Managed	<pre>onsite offsite commercial TSDF</pre>	Environmental	
Recycling	energy recovery		
	reclaimed material returned to	site?	
	🗌 Yes 🔲 No 🗌	used by others	

·

FIRM SAIC SITE		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman CHECKED BY G. Custionie	
		PROC. UNIT/OPER. E-Cozt		
DATE-INITIAL DATE-REVISED 02/09/90 03/09/90		PROJ. NO. 1-832-03-942-02	SHEET 4 of 4	PAGE OF

WORKSHEET	INDIVIDUAL WASTE STREAM CHARACTERIZATION	💝 ЕРА	•
	(continued)		

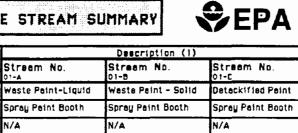
Waste Stream Phosopate Bath & Tank Bottoms

7. Management Method (continued)

•

Treatment	biological
	residue disposal/repository

Costs as of <u>Jan 1990</u> (quarter and year)


Cost Element:	Unit Price	Reference/Source
Onsite Storage and Handling	\$0.00	
2 Pretreatment	\$0.00	
3 Container	\$0.00	
4 Transportation Fee	\$0.00	
5 Disposal Fee	\$0.24	per gal includes transportation fee
6 Local Taxes	\$0.00	
7 State Tax	\$0.00	
8 Federal Tax	\$0.00	
Tota; Disposal Cost	\$0.24	Specify units, \$/ gal

73 ·

FIRM SAIC	WASTE MINIMIZATION ASSESS	MENT PREPARED BY S. Roman	
SITE	PROC, UNIT/OPER. Sproy Peinting	CHECKED BY G. Cushnie	
DATE-INITIAL DATE- 02/09/09 04/23/9		SHEET 1 OF 1	PAGE 1 DF 4

Attribute

WASTE STREAM SUMMARY

Waste Name/ID		Waste Poli	nt-Liquid	Weste Paint - Solid		Detackified Peint		
² Source/Origin		Spray Paint Booth		Spray Pain	Spray Paint Booth		Spray Paint Booth	
³ Component/or Property of C	oncern	N/A		N/A		N/A N/A		
⁴ Annual Generation Rate, units: 5 Overall		N/A		N/A				
		213,142 •		11,218 •		523,100 -	•	
6 Component(s) of Concer	n	N/A		N/A		N/A		
7		N/A		N/A		N/A		
⁸ Cost of Disposal		N/A		N/A		N/A		
9 Unit Cost, \$ per:		\$1,250/50	100 gal.	\$350/55 g	a).	\$.24/gel.		
10 Overell (per year)		\$5,82 1.00		\$8,731.00		\$16,647.00		
11		N/A		N/A		N/A		
¹² Method of Management (2)		Off-site n	ecyc)e	Off-site incineration		Commercial TSDF		
13								
Priority Rating Criteria (3)	Relative Wt (W)	Rating (R)	RxW	Rating (R)	Rx₩	Rating (R)	RxW	
Regulatory Compliance	10.0	9 .0	90.0	9.0	90.0	7.0	70.0	
Treatment/Disposel Cost	9.0	0.3	2.7	8.0	72.0	1.0	9.0	
Potential Liability	10.0	9.0	90.0	B.0	80.0	7.0	70.0	
Wasta Quantity Generated	7.0	0.3	2.1	0.0	0.1	0.8	5.6	
Waste Hazerd	8.0	10.0	80.0	9.0	72.0	7.0	55.0	
Safety Hazard	6.0	10.0	60.0	8.0	48.0	7.0	42.0	
Minimization Potential	5.0	9.0	45.0	2.0	10.0	8.0	40.0	
Potential to Remove Bottlenack	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Potential Dyproduct Recovery	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sum of Priority Scores		Σ(RxW)	369.8	Z(RxW)	372.1	I(RxW)	292.6	
Priority Renk		2		2		4		

Notes:

1. Streem numbers should correspond to those used on process flow diagrams.

2. For exemple, senitary landfill, hezordous waste landfill, onsite recycle, incineration, combustion with heat recovery, distillation, dewatering, etc.

3. Rate such stream in each catsgory on a scale from 0 (none) to 10 (high).

FIRM SAIC SITE		WASTE MINIMIZATION ASSESSMENT		
		PROC. UNIT/OPER. Spray Patholog	CHECKED BY 6 Cushnie	
DATE-INITIAL 02/09/09	DATE-REVISED	PROJ. NO. 1-532-03-942-02	SHEET 1 OF 1	PAGE OF 4

WASTE STREAM SUMMARY

				Descript	1on (1))		
Attribute		Stream /	NO.	Stream N	0.	Stream N	0.	
1 Waste Name/ID		Paint Booth Water						
² Source/Origin		Spray Pall	nt Booth					
³ Component/or Property of C	oncern	N/A						
⁴ Annual Generation Rate, unit	5:	N/A	•					
5 Overall	/0./ 1014 (000000 A	780,100 g	;a).					
6 Component(s) of Concerr)	N/A		1				
7		N/A		1				
⁸ Cost of Disposel		N/A		1		1		
9 Unit Cost, \$ per:		\$1.65/100 ft(3)				1		
10 Overall (per year)		\$96,279.00						
11		N/A						
12 Method of Management (2)		POTW &TSDF						
13		1				1		
Priority Rating Criteria (3)	Relative Wt (W)	Rating (R)	RxW	Rating (R)	Rx₩	Rating (R)	Rx₩	
Regulatory Compliance	10.0	4.0	40.0					
Treatment/Disposal Cost	9.0	1.0	90					
Potential Liability	30.0	5.0	50.0					
Waste Quantity Generated	7.0	10.0	70.0					
Waste Hazard	8.0	40	32.0					
Safety Hazard	6.0	2.0	12.0					
Minimization Potential	5.0	10.0	50.0					
Potential to Remove Bottleneck	0.0	0.0	0.0					
Potential Byproduct Recovery	0.0	0.0	0.0					
Sum of Priority Scores		Σ(RxW)	253.0	Σ(RxW)		Σ(RxW)		
Priority Rank		3						

Notes:

1. Stream numbers should correspond to those used on process flow diagrams.

- For example, sanitary landfill, hazardous waste landfill, onsite recycle, incineration, combustion with heat recovery, distillation, dewatering, etc.
- 3. Rate each stream in each category on a scale from 0 (none) to 10 (high).

FIRM		WASTE MINIMIZATION ASSESSMENT PREPARED BY S Roman		
SITE		PROC. UNIT/OPER. Spray Painting	CHECKED BY G. Cushnie	
DATE-INITIAL 02/09/09	DATE-REVISED 03/09/90	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 1 OF 4

WASTE STREAM SUMMARY

				Descript	(1)		
Attribute		Stream I 02-E	NO.	Stream N	0.	Stream N	0.
1 Waste Name/ID		Degreasing Solvent		T			
² Source/Origin		Degreasing o	of Frame Ralis				
³ Component/or Property of C	oncern	N/A					
⁴ Annual Generation Rate, unit	5: 	N/A		1			
5 Overal!		20,210 #					
6 Component(s) of Concern		N/A					
7		N/A				1	
⁸ Cost of Disposal		N/A			·		
9 Unit Cost, \$ per:		\$.25/# (1	00)				······
10 Overall (per year)			\$.74/# (90/10)				
11		NZA					
12 Method of Management (2)	12 Method of Management (2)		Off-site recycle				
13		T		T		T	
Priority Rating Criteria (3)	Relative Wt (W)	Rating (R)	RxW	Rating (R)	RxW	Rating (R)	RxW
Regulatory Compliance	10.0	10.0	100.0				
Treatment/Disposal Cost	9.0	10.0	90.0				
Potential Liability	10.0	9.0	90.0				
waste Quantity Generated	7.0	0.0	0.2				
waste Hazard	8.C	10.0	80.0				
Safety Hazard	6.0	9.0	54.0				
Minimization Potential	5.0	4.0	20.0				
Potential to Remove Bottleneck	0.0	0.0	0.0				
Potential Byproduct Recovery	0.0	0.0	0.0				
Sum of Priority Scores		Σ(RxW)	434.2	Σ(RxW)		Σ(RxW)	
Priority Rank		1					

Notes:

1. Stream numbers should correspond to those used on process flow diagrams.

 For example, sanitary landfill, hazardous waste landfill, onsite recycle, incineration, combustion with heat recovery, distillation, dewatering, etc.

3. Rate each stream in each category on a scale from 0 (none) to 10 (high).

FIRM		WASTE MINIMIZATION ASSESSMENT	PREPARED BY 5 Roman			
SITE		PRCC. UNIT/OPER. Spray Painting	CHECKED BY G. Cushnie			
DATE-INITIAL 02/09/09	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 1 OF 4		

WASTE STREAM SUMMARY

				Descrip	tion (1)			
Attribute		Stream M	NO.	Stream 1	NO.	Stream I	Stream No. 03-H	
I Waste Name/ID		Rinse Waters		Process Tanks 1,3,6		Phosphate Bath		
² Source/Origin		Dip Tarks		Dip Tanks		D:p Tanks		
Component/or Property of Co	ncern	N/A		N/A		N/A		
⁴ Annual Generation Rate, units	3:	N/A	•	N/A		N/A		
5 Overall		510,000 g	;a).	43,680 ga	4.	2,780 ga		
6 Component(s) of Concerr	1	N/A		N/A		N/A		
7		N/A		N/A		N/A		
⁸ Cost of Disposal		N/A		N/A		N/A		
9 Unit Cost, \$ per:		\$1.65/100	oft(3)	\$1.65/100	\$1.65/100ft(3)		\$.24/gal.	
10 Overall (per year) 11 ¹² Method of Management (2)		\$62,944.0	00	\$5,391.00		\$667.00		
		N/A N/A Pre-treatment onsite Pre-treatment onsi			N/A e commercial TSDF			
				Pre-treatment onsite				
13		& POTW		& POTW		1		
Priority Rating Criteria (3)	Relative	Rating (R)	RxW	Rating (B)	RxW	Rating (R)	RxW	
Regulatory Compliance	10.0	3.0	30.0	6.0	60 C	9.0	90.0	
Treatment/Disposal Cost	9.0	1.0	90	1.0	9.0	0.3	2.7	
Potential Liability	10.0	3.0	30.0	3.C	30.0	7.0	70.0	
Waste Quantity Generated	7.0	5.5	45.5	0.5	3.5	0.0	0.3	
Waste Hazard	8.0	3.0	24.0	7.0	56.C	10.0	80.0	
Safety Hazard	6.0	2.0	12.0	6.0	36.0	5.0	30.0	
Minimization Potential	5.0	7.0	35.0	5.0	25.0	2.0	10.0	
Potential to Remove Bottleneck	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Potential Byproduct Recovery	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sum of Priority Scores		Σ(RxW)	185.5	Σ(RxW)	219.5	Σ(RxW)	283.0	
Priority Rank		6		6		4		

Notes:

1. Stream numbers should correspond to those used on process flow diagrams.

^{2.} For example, sanitary landfill, hazardous waste landfill, onsite recycle, incineration, combustion with heat recovery, distillation, dewatering, etc.

^{3.} Rate each stream in each category on a scale from 0 (none) to 10 (high).

FIRM		WASTE HINIHIZATION ASSESSMENT PREPARED BY S. Roman		
SITE		PROC. UNIT/OPER. Sprey Painting	CHECKED BY G. Cushnie	
DATE-INITIAL 01/03/90	DATE-REVISED 04/17/90	PROJ. ND. 1-832-03-942-09	SHEET 1 OF 1	PAGE 1 OF 4

WORKSHEET
11

OPTION GENERATION

Sepa

Meeting formet (e.g., brainstorming, nominal group technique): <u>informal</u>

Maeting Coordinator: <u>6. Cushnie</u>

Meeting Participants:

The Truck Assembly Plant - EPA Contractor - SAIC, Chemical Supplier - Betz Metchem

LIST SUGGESTED OPTIONS	RATIONALE / REMARKS ON OPTION
 In-house dewatering of the detackified paint with recycle of the water; 	1. Reduces volume of sludge sent to the landfill
2. Sludge dryers	2. Reduces volume of sludge sent to the landfill
3. Inject paint catalyst as paint is sprayed	3. Recently implemented in one of the cab paint
	booths; keeps unused paint liquid so it can be used
	later
4. Ship leftover point (custom colors) with the	4. Customers often request touch-up peint/must
finished truck	meet DOT regulations for shipping
5. Electrostatic Spray System	5. Increases transfer efficiency and reduces over-
	spray/Preliminary testing of this type of equipment
	has already been done increases price
	of spray guns and requires a power pack for each
	painter
6. Yapor-Injection-Euring	
7. Change painting procedures so that custom	7. Reduces VOCs, reduces amount of paint used/

FIRM		WASTE HINIHIZATION ASSESSMENT PREPARED BY S. Roman		
SITE		PRDC. UNIT/DPER. Spray Painting (Continued)	CHECKED BY G. Cushnie	
	DATE-REVISED	PRDJ. ND. 1-832-03-942-09	SHEET 1 OF 1	PAGE 2 OF 4

Meeting format (e.g., breinstorming, naminal group technique): <u>Informal</u>

Meeting Coordinator: <u>G. Cushnie</u>

Meeting Participants:

.

The Truck Assembly Plant - EPA Contractor - SAIC. Chemcial Supplier - Betz Metchem

LIST SUGGESTED OPTIONS	RATIONALE / REMARKS ON OPTION
designs don't require the entire part to be	Increase masking time
painted the color of a stripe or design first	
before the meinceb color is painted over it	
9. Install lock regulators on spray painting guns-	9. Lower air pressure reduces the emount of paint
	overspray/Spray guns in the Chasis Paint Booth
	currently have lock regulators
10. Closer regulation of paint mixed versus paint	10: the point mixed in the point mix
sprayed	room is returned unsprayed/closer tracking and
	careful estimating can reduce this
11. Monitor painting schedule to minimize wosh	11. Painting has some control over its schedule and
sprayed	further monitoring can decrease washout
12. Robotics	12. Problems with "Drange Peel" on finished paint
	coet
13. Belt filter to dewater paint sludge and recycl	e
water back to the paint booth	

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT		
SITE		PROC. UNIT/OPER. Degreesing of Frame Pails - Chassis	CHECKED BY G. Cushnie	
	DATE-REVISED	PROJ. NO. 1-832-03-942-00	SHEET 1 OF 1	PAGE 3 OF 4

WORKSHEET

Meeting formet (e.g., breinstorming, nominel group technique): <u>informel</u>

Meeting Coordinator: <u>G. Cushnie</u>

Meeting Perticipants:

The Truck Assembly Plant - EPA Contractor - SAIC

LIST SUGGESTED OPTIONS	RATIONALE / REMARKS ON OPTION
1. Use Sproy system to degreese entire chassis and	1. Produces no waste solvent or dirty regs/increases
omit wiping with rags	VOC emissions and the amount of solvent used
	increeses.
2. Segregate rags and solvent	2. Solvent will remein unconteminated and won't need
	to be disposed of as frequently thus decreasing the
	amount of solvent sent to disposal and the amount used.
3. Install a still to recover the spent solvent	3. Expensive; would require labor permits; etc. end
	volume of solvent gernerated doesn't warrant its
<u></u>	installation.
4. Change type of solvent used	4. Current solvent produces the desired cleaning
	quolity.
5. New rail washer	5. Reduces the amount of oil & grease on the chassis
	thus reducing the amoun of solvent used.

FIRM		(WASIE DINIDIZALIUN ASSESSDEN) (""""		PREPARED BY S. Roman					
		PROC. UNIT/OPER. Degressing of Frame Pails - Chassis	CHECKED BY G. Cushnie						
	DATE-REVISED 04/23/90	Proj. nd . 1-832-03-942-00	SHEET 1 OF 1	PAGE 3 OF 4					

WORKSHEET	
11	

OPTION GENERATION

Sepa

Meeting format (e.g., brainstorming, nominal group technique): <u>informat</u>

Meeting Coordinator: <u>6. Cushnie</u>

Meeting Participants:

The Truck Assembly Plant - EPA Contractor - SAIC, Chemical Supplier - Betz Metchem

LIST SUGGESTED OPTIONS	RATIONALE / REMARKS ON OPTION
1. IONexchange/ recycle of rinse waters	1. Reduces sludge volume sent off-site and amount of
. <u> </u>	weter used.
2. Phosphete Beth Maintenence	2. Both con lost from 3-5 years if maintained
	proparty thus significantly decreasing raw materials
	used as well as amount sent to disposal.
3. Dil skimmers/filters	3. Remove oil and dirt build-up in the process tanks
	and extends the life of the chemicals in the tank.

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Reman	
SITE		PROC. UNIT/OPER. Spray Painting	CHECKED BY G. Cushnie	
DATE-INITIAL 02709790	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 1 OF 7

WORKSHEET

·

OPTION DESCRIPTION

€РА

Option Name:	Belt Filter (OP-1)	
Briefly Describ	be the Option:	
paint will be pur	ves the dewatering of detackified paint with the use of a belt filter. The detack noed from the bit and the paint sludge is deposited in a drum for disposal while d to the paint booth.	e the
Waste Stream(s	5) Affected:	
Input Material(City water	s) Affected:	
Product(s) Affe	ected	
Indicate Type:	: 🔀 Source Reduction Equipment-Related Change Personnel/Procedure-Related Change Materials-Related Change	
	Recycling/Reuse Onsite Material Reused for Original Purpos Offsite Material Reused for Lower Quality I Material Sold	
	Material Burned for Heat Recovery	
	d By: The truck assembly plant Date: 01/30/90 ed By: SAIC Date: 01/18/90	
proved for Study		

FIRM		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PROC. UNIT/OPER. Sprey Peinting	CHECKED BY G. Cushnie	
	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 2 DF 7

WORKSHEET								
		22						

IDN DESCRIPTION

ЕРА

Option Name: Improved Transfer Efficiency (OP-2)

Briefly Describe the Option:

Currently the cab paint booths have a transfer efficiency of approximately 35% and the chassis paint booth has a transfer efficiency of approximately 50%. The transfer efficiency can be increased up to 75-90% by switching to HYLP or electrostatic spray painting.

Waste Stream(s) Affected:

01-C.01-D

input Material(s) Affected:

Paint

Product(s) Affected:

None

Indicate Type:	\mathbf{X}	Source Reductio	n
		Equipmer	nt-Related Change
		Personne	i/Procedure-Related Change
		Materiais	-Related Change
		Recycling/Reus	Material Reused for Original Purpose Material Reused for Lower Quality Purpose
		Ĺ	Material Sold
		[Material Burned for Heat Recovery
Orignally Proposed	8y: _	SAIC	Dete: 01/04/90
Reviewed	By: 1	SAIC	Date: 01/18/90
Approved for Study Reason for Accepte		Balantinn	

WORKSHEET	OPTION DESCRI	
Briefly Describe the <u>The facility is currently</u> <u>waste minimization proce</u> <u>o</u> shipping unused bi <u>o</u> zojusting the pain <u>o</u> installing high/log <u>o</u> installing a digita <u>o</u> paint stripes and <u>o</u> installing minices	vestigating a variety of procedural a lures. These include of with the finished truck ing schedule pressure alarms display of air pressure rsions over the background color inputers to check fluid flow.	
Waste Stream(s) Aff	cted:	
<u> 01-A. 01-B</u>		
Product(s) Affected <u>None</u>	Source Reduction Equipment-Re Personnel/Pro	lated Change
	Materials-Rela	•
	Recycling/Reuse	laterial Reused for Original Purpose laterial Reused for Lower Quality Purpose laterial Sold laterial Burned for Heat Recovery
rignally Proposed By:		-
Reviewed By:		Date: 01/18/90
approved for Study? Jeason for Acceptance of	yes	no, By:

WASTE MINIMIZATION ASSESSMENT

PROC. UNIT/OPER. Spray Painting PROJ. NO. 1-832-03-942-02

FIRM

SITE

DATE-INITIAL 02/09/90 DATE-REVISED

PREPARED BY S Roman

CHECKED BY G Cushnie

SHEET 1 OF 1

PAGE OF 7

.

3

,

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PROC. UNIT/OPER. Spray Painting	CHECKED BY G Cushnie	
DATE-INITIAL 02/09/90	DATE-REVISED 03/18/91	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 4 OF 7

WORKSHEET		

OPTION DESCRIPTION

EPA

Option Name: Paint Mix Volumes (OP-4)

Briefly Describe the Option:

Paint is prepared daily in the paint mix room and is taken to the cab paint booths. Any left over paint is returned to the paint mix room for use at a later date. The facility has developed a tracking system to determine reliable estimates on the amount of paint required to paint a particular mode! This is done by measuring the volumes of paint mixed as well as the volume of paint returned to the mix room. This estimating process can be refined with careful monitoring of these tracking records which will reduce costs for naw materials and disposal.

Waste Stream(s) Affected:

<u> 01-A. 01-B</u>

Input Material(s) Affected:

Paint

None			
Indicate Type:	□ s [ource Reduction Equipment-Related Cl	hange
	D	Personnel/Procedure-	Related Change
	E	Materials-Related Cha	inge
	F	Recycling/Reuse	
	Γ	Onsite Material F	Reused for Original Purpose
	Ē	Offsite Material F	Reused for Lower Quality Purpose
	_	Material S	Sold
		Material E	Burned for Heat Recovery
ignally Proposed By	The	truck assembly plant/SAIC	Date: 01/04/90
Reviewed By	SAIC		Date: 01/18/90
oproved for Study? eason for Acceptance)y:

FIRM		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE		PROC. UNIT/OPER. Sprøy Painting	CHECKED BY G. Cushnie	
	DATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 5 DF 7

WORKSHEE	Т
12	

OPTION DESCRIPTION

ЭЕРА

Option Name: Solvent Segregation (OP-5)

Briefly Describe the Option:

This option involves the segregation of rags soiled with oil and grease from uncontaminated solvent. The rags will be kept in a separate container and dipped into the solvent just orier to use. When not in use they will remain in a container with other rags not soaking in a container of solvent.

Waste Stream(s) Affected:

02-E

Input Material(s) Affected: Degreesing Solvent

Indicate Type:		Sourc	e Reductio	n	
			Equipmer	nt-Related	Change
		\boxtimes	Personne	l/Procedur	e-Related Change
			Materials	-Related C	hange
		Recy	cling/Reus	8	
			Onsite	Materia	I Reused for Original Purpose
			Offsite	Materia	I Reused for Lower Quality Purpose
			[Materia	I Sold
			Ε	🗌 Materia	I Burned for Heat Recovery
ignally Proposed	By: 3	SAIC			Date: 01/04/90
Reviewed	By: _	SAIC			- Dets: 01/18/90
proved for Study	?		yəs		8y:
eson for Accepte					

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT PREPARED BY S. Roman		
SITE			CHECKED BY G. Cushnie	
	DATE-REVISED 04/24/90	PRDJ. ND. 1-832-03-942-02	SHEET 1 OF 1	PAGE 6 OF 7

WORKSHEET	
12	

DPTION DESCRIPTION

ЕРА

Option Name: ion Exhange/Recycle of Rinse Waters (OP-6)

Brisfly Describe the Option:

This option involves the installation of ion exchange equipment to recycle the rinse waters generated on the phosphate/E-Coat line. The recycle of these waters will reduce water use and reduce the hydraulic loading of the pretreatment system. A smaller flow rate to the treatment system may reduce chemical use and sludge production.

Weste Streem(e) Affected:

03-F

input Material(s) Affected:

None

Product(s) Affected:

None

Indicate Type:		Source Reduction
		Equipment-Related Change
		Personnel/Procedure-Related Change
		Materials-Related Change
	\boxtimes	Recycling/Reuse
		🔀 Onsite 🔀 Material Reused for Original Purpose
		Offsite Material Reused for Lower Quality Purpose
		Material Sold
		Material Burned for Heat Recovery
Orignally Proposed B	រុរៈ _	Dete:
Reviewed B	u : _	Dete:
		yes no, By:
Reeson for Acceptenc	s or	Rejection

•

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman
SITE	PRDC. UNIT/OPER. Sprey Peinting	CHECKED BY G. Cushnie
DATE-INITIAL DATE-REVISED 02/09/90 04/24/90	PRDJ. ND. 1-832-03-942-02	SHEET 1 OF 1 PAGE 7 DF 7
WORKSHEET	OPTION DESCRIPTION	🗍 🛟 ЕРА
Brisfly Describe the Op This option involves the pu phosphate line (tanks 1, 3,	Line Bath Maintenance (OP-7) otion: rchase of equipment to maintain th and 6). The equipment is basically tributed to the baths from the parts	filtretion units which will
Waste Stream(s) Affect 03-G. 03-H Input Material(s) Affec E-Coet process chemicals Product(s) Affected:		·
None Indicate Type:	Source Reduction	
indicate Type.	Equipment-Related Char Personnel/Procedure-Re Materials-Related Char	blated Change
	Offsite Material Red	used for Original Purpose used for Lower Quality Purpose Id rned for Heat Recovery
	yes no, By:	

-

FIRM SAIC		WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE }		PROC. UNIT/OPER.	CHECKED BY G. Cushnie	
DATE-INITIAL D 01/03/90 0	ATE-REVISED	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 1 OF 2

OPTION GENERATION

EPA

Options Rating (R) Weight 1 Option 4 Option #5 Option •2 Option #3 Option Criterie 0P-1 (W) 0P-2 <u>OP-3</u> OP-4 0P-5 RXW R RXW R RXW R RXW R RXW R Reduction in weste's hezerd 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 5.0 5.0 25.0 8.0 **40.0** 5.0 25.0 7.0 35.0 7.0 35.0 Reduction of treatment/disposel costs 7.0 1.0 7.0 4.0 28.0 1.0 7.0 1.0 7.0 1.0 7.0 Reduction of safety hezerd 9.0 1.0 9.0 27.0 7.0 63.0 6.0 54.0 63.0 3.0 Reduction of input material costs 7.0 10.0 5.0 50.0 5.0 50.0 8.0 80.0 8.0 80.0 5.0 50.0 Extent of current use in industry 10.0 10.0 100.0 10.0 100.0 10.0 100.0 10.0 100.0 10.0 100.0 Effect on product quality (no effect=10) 8.0 5.0 40.0 16.0 4.0 32.0 8.0 64.0 9.0 72.0 2.0 Low capital cost 8.0 40.0 64.0 8.0 64.0 7.0 56.0 72.0 5.0 8.0 9.0 Low D&M cost 5.0 25.0 35.0 50.0 10.0 50.0 5.0 3.0 15.0 7.0 10.0 Short implementation period 5.0 20.0 40.0 50.0 4.0 3.0 15.0 8.0 8.0 40.0 10.0 Ease of implementation Sum of Weighted Ratings Z (R X W) 348.0 423.0 382.0 467.0 492.0 Finel Evoluation Option Renking 5 2 1 7 3 Feasibility Analysis Scheduled for (date)

FIRM SAIC	WASTE MINIMIZATION ASSESSMENT	PREPARED BY S. Roman	
SITE	PROC. UNIT/OPER.	CHECKED BY G. Cushnie	
DATE-INITIAL DATE-REVISED 01/03/90 04/24/90	PROJ. NO. 1-832-03-942-02	SHEET 1 OF 1	PAGE 1 OF 2

WORKSHEET
13

OPTION GENERATION

ЗЕРА

			Options Rating (R)									
Criteria	Criteria	Weight (W)	•1 (_0P-(otion 5	•2 <u>0</u> P-	Option 7	•3 0	ption	•4 0 	ption	•5	Option
			R	R RXW	R	RXW	R	RXW	R	RXW	R	RXW
Reduction in v	weste's hozord	2.0	1.0	2.0	1.0	2.0						
Reduction of t	treatment/disposal costs	5.0	5.0	25.0	5.0	25.0						
Reduction of a	sefety hezerd	7.0	1.0	7.0	1.0	7.0						
Reduction of 1	nput moterial costs	9.0	5.0	45.0	5.0	45.0			_			
Extent of curr	ent use in industry	10.0	8.0	80.0	6.0	60.0						
Effect on prod	luct quality (no effect=10)	10.0	9.0	90.0	8.0	80.0						
Low capital co	ost	8.0	4.0	32.0	5.0	40.0			-			<u> </u>
Low D&M cost		8.0	7.0	56.0	8.0	64.0						
Short Impleme	entation period	5.0	4.0	20.0	5.0	25.0						
Ease of imple	mentation	5.0	6.0	30.0	5.0	25.0						
Final	Sum of Weighted Ratings I	(R X W)	387.0		373.0							
Evaluation	Option Ranking		4		6							
Feestbility A	nelysis Scheduled for (date)											

•

Appendix C

•

Feasibility Analysis Phase

Feasibility Analysis Phase Worksheets 14 to 17

.

-

Firm .	SAIC	Waste Minimization Assessment	Prepared By S. Roman
Site	-,	Proc. Unit/Oper.	Checked ByG. Cushnie
Date .	1/3/90	Proj. No. 1-832-03-942-02	Sheet 1 of 6 Page 1 of 6
	WORKSHEET 14a	ECHNICAL FEASIBILIT	Y SEPA
w	W Option DescriptionBelt	Filter (OP-1)	
1.	Nature of WM Option	 Equipment-Related Personnel/Procedure-Related Materials-Related 	
2.	• • • •	Ily feasible, state your rationale for this r applications to dewater deta	
	accumulated in the	paint booth.	
3.	is further analysis required? worksheet. If not, skip to work Equipment - Related Option	X Yes No. If yes, continue wit ksheet 15.	h this
		YES	NO
	Equipment available comme Demonstrated commercially In similar application?	·	
	Successfully?	Similar sprav painting	operations.
	Describe closest industrial a		······································

Prospective Vendor	Working installation(s)	Contact Person(s)	Date Contacted 1
Serfilco		Dan Cooper	2-6-90
Hydro-Seperation Systmes		Roy Lister	2-6-90

1. Also attach filled out phone conversation notes, installation visit report, etc.

.

FirmSAIC	Waste Minimization Assessment	Prepared By S. Roman
Site	Proc. Unit/Oper.	Checked By G. Cushnie
Date 1/3/90	Proj. No	Sheet <u>2</u> of <u>6</u> Page of

WM Option Description _____Belt_Filter (OP-1)

3. Equipment-Related Option (continued)

Performance information required (describe parameters): The following information is required: minimum and maximum flow rates and percent solids achievable. This data can be

EPA

generated by sending a repres	sentative sample of the wet sludge to an experiment
vendor for testing.	
	A. 1. 1
Scaleup information required (descri	ibe): NONE
Testing Required: yes Scale: bench pliot	× no
Test unit available? 🔲 yes	
Number of test runs:	
Amount of material(s) required:	
Testing to be conducted:	
Facility/Product Constraints:	
Approvi	mately 20 ft ² (5.5' X 3.5')

Space RequirementsApproximat	
	Unit will be used every 4 to 6 weeks when the of the paint booth. During use it should be located
where the paint sludge is being	pumped from the booth. When not in use it can be
-	the second state of the se

stored on-site, wherever space is available our left in place if convenient.

•

m <u>SAIC</u>	Waste Minimization Assessment Prepared By S. Ro
	Proc. Unit/Oper Checked By <u>C. Cu</u>
ite <u>1/3/90</u>	Proj. No. <u>1-832-03-942-02</u> Sheet <u>3</u> of <u>6</u> Pag
WORKSHEET	
14c	TECHNICAL FEASIBILITY
ليستحد	(continued)
WM Option Description	Belt Filter (OP-1)
2. Equipment-Related Opt	tion (continued)
Utility Requirements:	
Electric Power	Volts (AC or DC) <u>115/1/6</u> 0 kW <u>23</u>
Process Water (Detackified	Flow 10-45gpm Pressure
(Decackilled	Quality (tap, demin, etc.)
Cooling Water	Flow Pressure
	Temp. In Temp. Out
Coolant/Heat T	Fransfer Fluid
	Temp. In Temp. Out
	Duty
Steam	Pressure Temp
	Duty Flow
Fuel	Type Flow
	Duty
Plant Air	Flow
inert Gas	Flow
	e (after award of contract)_4 to 6 weeks
Estimated Installation t	time A hours
Installation dates	
Estimated production of	downlime
Will moduation be other	erwise affected? Explain the effect and impact on production
will production be othe	erwise anected r Explain the effect and anpact on production.

Firm . Site . Date .	SAIC 1/3/9	0	Waste Minimization Assessment Proc. Unit/Oper Proj. No1-832-03-942-02	Prepared By <u>S. Roman</u> Checked By <u>G. Cushnie</u> Sheet <u>4</u> of <u>6</u> Page of	
		scription <u>Belt</u>		required? Explain. Detackified	
	 	aint would need ank truck. The	• •	r instead of directly to a	
		Number of people Duration of training	to be trained	Onstie Offsite upplies required.	
	Di	Rem isposa-Fabric Me	Rate or Frequency of Replacement día 3-4-times per year	Suppler, Address Serfilco, Glenview, IL	
	 	Yes No	government and company safety and Explain To be determined of (maintenance and technical assistant repair centers or handles thr	nce)? Explain Service through	
	What warrantles are offered? <u>Serfilco - 1 year repair or replacement of defe</u> parts.				

irm <u>SAIC</u> lite late	Waste Minimization Assessment Proc. 'Unit/Opel Proj. No. 1-832-03-942-02	Prepared By S. Roman Checked By G. Cushnie Sheet 5 of 6 Page of				
WORKSHEET 14e WM Option DescriptionBe	(continued) (Continued)	Y SEPA				
3. Equipment-Related Opti						
Describe any additional <u>the filter media wi</u> new drum.	storage or material handling requirement 11 . need to be removed when fil	nts. The drum used to collec led and replaced with a				
Describe any additional	laboratory of analytical requirements.	one				
	elated Changes (skip to workshi	eet 15a)				
Training Requirements	Training Requirements					
Operating instruction Ci	anges. Describe responsible departme	nt s				
5. Materials-Related Chang option as an equipment-	es (Note: If substantial changes in equip related one.)	oment are required, then handla the <u>Yes No</u>				
Has the new materia in a similar application	been demonstrated commercially?					
Successfully? Describe closest app	licetion.					

	Waste Minimization Assessment	Prepared By S. Roman Checked By G. Cushnie
ate <u>1/3/90</u>	Proj. No. 1-832-03-942-02	_ Sheet <u>1</u> of <u>6</u> Page of
	COST INFORMATION	EPA
WM Option Description Belt H	Filter (OP-1)	······································
CAPITAL COSTS - include all co		TOTALS
Price (fob factory)	_7,174 (comp	<u>lete filter sy</u> stem)
Taxes, freight, insura	430.00	
Delivared equipment	cost 7,604.61	
Price for Initial Spare	Parts Inventory	\$7,605
Estimated Materials Cost		
		rcent of equipment
Electrical		
Instruments		
Structural		
insulation/Piping		\$1,521
Estimated Costs for Utilit	ly Connections and New Utility Sy	stems
Electricity		
Steam		
Cooling Water		
Process Water		
Refrigeration	<u> </u>	
Fuel (Gas or Oll)	•	
Plant Air		\$ 0
Inert Gas		· · ·
Estimated Costs for Add		
Storage & Material Ha	andling 55 gallon drum recycled drums	
Laboratory/Analytical		
Other		<u>\$</u> 0
Site Preparation		······································
(Demolition, she clearing	, elc.)	
Estimated installation Co	sta	
Vendor		
Contractor		
in-house Staff	<u>3 workers for</u>	B hrs @13 Hr. \$ 312

⁼irm.	SAIC	Waste Minimization Asses	sement Prepared By S. Roman
		Pmc. Unit/OperSpray Pai	
Date .	1/3/90	Ртој. No	92 Sheet 2_ of 6 Page of
	WORKSHEET	COST INFORMAT	
	15b		
	CAPITAL COSTS (Cont.)		TOTALS
	I Engineering and Procu	Irement Costs (In-house & ou	rtaide)
	Planning		7 of equipment costs
	Engineering	· · · · · · · · · · · · · · · · · · ·	
	Procurement		
	Consultants		\$1,521
	-		· •
	Start-up Costa		
	Vendor		
	Contractor		\$0
	in-house		\$U
	Training Costs		\$0
	Permitting Costs		
	Fees		
	in-house Staff Cost	•	\$0
	Initial Charge of Cataly	sts and Chemicals	
		item #1	
		kem #1	
	Working Control (Berry)	Interiete Province Incontract Ma	Azterials and Supplies (not elsewhere specified
			<u>bric media \$192.</u> /200 yd. roll
		Bern #2	
		Rem #3	
		kem #4	
	Estimated Salvage Valu	ie (if any)	
		· · · · · · · · · · · · · · · · · · ·	

Firm _SAIC	Waste Minimization Assessment	Prepared By <u>S. Roman</u>
Site		Checked By <u>G. Cushnie</u>
Date 1/3/90	Proj. No. 1-832-03-942-02	Sheet <u>3</u> of <u>6</u> Page of

WORKSHEET

CAPITAL COST SUMMARY

Cost item	Cost
Purchased Process Equipment	5.7.605
Materials	1.521
Utility Connections	0
Additional Equipment	0
Site Preparation	0
Installation	321
Engineering and Procurement	1,521
Start-up Cost	0
Training Costs	0
Permitting Coste	0
Initial Charge of Catalysts and Chemicals	0
Fixed Capital Investment	\$10,959
Working Cepital	192
Total Capital Investment	11,151
Salvage Value	

•

FirmSAIC	Waste Minimization Assessment	Prepared By S. Roman
Site	Proc. Unit/Oper	Checked By <u>G. Cushnie</u>
Date	Proj. No. 1-832-03-942-02	Sheet 4_ of 6_ Page of

Estimated Decrease (or Increase) in Utilities

Utility	Unit Cost \$ per unit	Decrease (or increase) in Quantity Unit per time	Total Decrease (or Increase) \$ per time	
Electricity	\$.08/kw-hr	(239 KW. HR/YR)	(\$19/yr)	
Steam				
Cooling Process			· · · · · · · · · · · · · · · · · · ·	
Process Water				
Refrigeration			•	
Fuel (Gae or Oil)				
Plant Air				
Inert Air				
	1			

INCREMENTAL OPERATING COSTS - Include all relevant operating savings. Estimate these costs on an incre-

mental basis (i.e., as decreases or increases over existing costs).

X	BASIS FOR COSTS	Annual X Quarterly	/ Monthly	Daily Other	
LA LA	BASIS FOR COSTS	Annual X Quarterly	/ Monthly	Daily Other	-

Estimated Disposal Cost Saving

Assumes : 1.) 50 Decrease in TSDF Fees

<u>\$5,978 (incl</u>udes Trans.)

of sludge is frogecrease in State Fees and Taxes pit cleanout, 2.)

- 10% solids for Decrease in Transportation Costs
- wet sludge, and Decrease in Onsite Treatment and Handling 3.) 35% solids for
- dewatered sludgeDecrease in Permitting, Reporting and Recordsceping _____

×. •

Total Decrease in Disposel Costa \$5,978

Estimated Decrease in Raw Materials Consumption

Materials	Unit Cost \$ per unit	Reduction in Quantity Units per time	Decrease in Cost \$ per time
City Water	\$2.20/K Gal	780 K. Gal	\$1,716
Booth Chemicals (SEE WS 7)	\$80,907_Yr.	102	\$8,091
Total			\$9,807

Assumes 50% reduction of booth water and 10% reduction of booth chemicals

Firm	SAIC	Waste /	Ainimization Assessment	Prepared By S. Roman	
Site	à			Checked By G. Cushnie	
Date		Proj. No. <u>1-832-03-942-02</u>		Sheet 5 of 6 Page of	
	WORKSHEET 15e			₿ EPA	
	Estimated Decrease (or Incr	ease) in Anci	ilary Catalysis and Chemica	aja	
	Catalyst/Chemical	Unit Cost \$ per unit	Decrease (or increase) in Qu Unit per time	antity Total Decrease (or Increase) \$ per lime	
			· · · · · · · · · · · · · · · · · · ·		
	Estimated Decrease (or Inch (Include cost of supervisio			ce Labor Costs	
XX	Estimated Decrease (or Incn Disposa- Fabric Hed			plies and Costs.	
	Estimated Decrease (or Incr	aase) in insur	ance and Liability Costs (e)	cplain).	
	Estimated Decrease (or increase) in Other Operating Costs (explain).				
	REMENTAL REVENUES Estimated incremental Reve By-products (explain).	nues from an	Increase (or Decrease) in F	Production or Marketable	

Firm SAIC	Waste Minimization Assessment	Prepared By S. Roman
Site	1 Proc. Unit/Oper	Checked By <u>G. Cushnie</u>
Date 1/3/90	Proj. No. 1-932-03-942-02	Sheet <u>6</u> of <u>6</u> Page of

INCREMENTAL OPERATING COST AND REVENUE SUMMARY (ANNUAL BASIS)

Decreases in Operating Cost or increases in Revenue are Positive.

Increases in Operating Cost or Decrease in Revenue are Negative.

Operating Cost/Revenue Item	\$ per year
Decrease in Disposal Cost	\$ 5,978
Decrease in Raw Materials Cost	\$ 9,807
Decrease (or increase) in Utilities Cost	- (19)
Decrease (or increase) in Catalysts and Chemicais	\$ 0
Decrease (or increase) in O & M Labor Costs	s o
Decrease (or increase) in O & M Supplies Costs	- (768)
Decrease (or Increase) in Insurance/Liabilities Costs	ş 0
Decrease (or increase) in Other Operating Costs	\$ 0
incremental Revenues from Increased (Decreased) Production	\$ 0
Incremental Revenues from Marketable By-products	\$ 0
Net Operating Cost Savings	\$14,998

Firm <u>SA</u>	[C	Waste Minimization Assessment	Prepared By 5. Roman
Sile		Proc Unit/Oper	Checked By Cushnie
Date 1/3/	<u> </u>	Proj. No. <u>1-832-03-942-02</u>	Sheet <u>1</u> of <u>1</u> Page of

1

-

.

٦

Annual Net Operating Cost Savings (\$ per year) (from Worksheet 157) \$14,998				
Payback Period (in years	t) = Total Capital I Annual Net Operatil	nvestment ng Cost Savings	0.7 year	

im	Waste Minimization Assessment Pmc, Unit/Oper. Proj. No. 1-832-03-942-02	Prepared By <u>S, Roman</u> Checked By <u>C. Cushnie</u> Sheet <u>1</u> of <u>6</u> Page <u>2</u> of <u>6</u>
WORKSHEET	ECHNICAL FEASIBILI	Y SEPA
WM Option Description <u>Trans</u>	fer Efficiency (OP-2)	<u></u>
1. Nature of WM Option	Equipment-Related Personnel/Procedure-Related	
	ly feasible, state your rationals for th t is used for similar purposes	
Is further analysis required? worksheet. If not, skip to work 3. Equipment - Related Option	× Yes No. If yes, continue w scheet 15.	ih this
3. Equipment - Neizleo Option	YES	NQ
Equipment available comme		
Demonstrated commercially	·	
In similar application?	X	
Successfully?	X	
Describe closest industrial a	nalog <u>Similar spray painting</u>	operations
Describe status of developm	Fully developed and co	ommercialized.

-

Prospective Vendor	Working installation(s)	Contact Person(s)	Date Contacted 1.
Binks- Blue Ridge Supply	703-249-3003	G. Batten	2/90
		· · · · · · · · · · · · · · · · · · ·	-

1. Also attach filled out phone conversation notes, installation visit report, etc.

Firm	Waste Minimization Assessment	Prepared By S. Roman
Site	Proc. Unit/Oper	Checked ByCCushnie
Date 1/3/90	Proj. No. 1-832-03-942-02	Sheet <u>2</u> of <u>6</u> Page of

WORKSHEET 14b

TECHNICAL FEASIBILITY

Devolution

WM Option Description _____ Transfer_Efficiency (OP-2).

3. Equipment-Related Option (continued)

Performance Information required (de	scribe parameters): Spray transfer efficiencies and
FC	······································
	аналан аналан алан английн антлогоон антлогоо антлогоо антлогоо антлогоо антлогоо антлогоо антлогоо антлогоо а
Scaleup information required (descrit	NONE
Testing Required: 🗌 yes	no
Scale: 🗌 bench 🗌 pliot	Demonstation
Test unit available? ves	
······································	
Test Parameters (list)	
Number of test runs:	
Amount of material(s) required:	
Testing to be conducted:	X In-plant
resting to be conducted.	
Facility/Product Constraints:	
Space Regulrements	booths may require some enlargement.
Possible locations within facility	Paint Spray Booths
r veedle woontone within the lity .	

nSAIC	Waste Minimization Assessment	Bronarad Bu
nSAIC		Prepared By <u>S. Roman</u> Checked By <u>G. Cushnie</u>
	Proc. Unit/Oper	
	Proj. No. <u>1-832-03-942-02</u>	Sheet <u>3</u> of <u>6</u> Page of
WORKSHEET T		🦹 🛟 ЕРА
WM Option Description	ansfer Efficiency (OP-2)	
2. Equipment-Related Option (co	ntinued)	
Utility Requirements: (A11	utilities as existing)	
Electric Power	Volis (AC or DC) kW	
Process Water	Flow	
	Quality (tap, demin, etc.)	
Cooling Water	Flow Pressure	
	Temp. in Temp. Out	
Coolant/Heat Transfer	Fluki	
	Temp. In Temp. Out	
	Duty	
Steam	Pressure Temp	
	Duty Flow	
Fuel	Туре Flow	
Plent Air	Flow	
inert Gas	Flow	
Estimated delivery time (after	award of contract) 1 month	
Estimated installation time_1		
	ly during annual plant shut do	Wm
	1-2 days	
Will production be otherwise a	flected? Explain the effect and impac	ct on production.
Will product quality be affected	2? Explain the effect on quality. <u>NO</u>	
	· ····································	
		··········

•

Firm <u>SAIC</u> Site Date _1/3/90	Waste Minimization Assessm Proc. Unit/Oper. Proj. No. 1-832-03-942-02	em Prepared By <u>S. Roman</u> Checked By <u>C. Cushnie</u> Sheet <u>4</u> of <u>6</u> Page of
WORKSHEET 14d	TECHNICAL FEASIBI	
3. Equipment-Related Op	tion (continued) ons to work flow or production procedu	res be required? Explain.
-	maintenance training requirements	⊠ Onsite ☐ Offsite
Duration o Describe catal Item	f training 8 hours yst, chemicals, replacement parts, or oth Rate or Frequency of Replacement	her supplies required. Supplier, Address
· · · · · · · · · · · · · · · · · · ·		
	n meet government and company safety No Explain <u>to be determined</u>	-
How is service	handled (maintenance and technical as	sistance)? ExpleinNot_deter
What warrantk	es are offered? Will vary by manufac	cturer

•

Site ,		Waste Minimization Assessment Proc. Unit/Oper Proj. No. 1-832-03-942-02	Prepared By <u>S. Roman</u> Checked By <u>G. Cushnie</u> Sheet <u>5</u> of <u>6</u> Page of
4.	WM Option DescriptionTr 3. Equipment-Related Option Describe any additional st	orage or material handling requiremen boratory or analytical requirements ted Changes (skip to workshee as	IS. NONE
5.	Materials-Related Changes option as an equipment-re Has the new material b In a similar application Successfully?	een demonstrated commercis#y?	

-

FirmSALCSite Site Date1/3/90	Waste Minimiza Proc. Unit/Oper Proj. No1-		Checked By _	S. Roman G. Cushnic G. Page of
WORKSHEET 15a	COST INF	ORMATION		S EPA
WM Option DescriptionTransf	er Efficiency	(OP-2)		
CAPITAL COSTS - include all o	••••	t s .		TOTALS
Price (fob factory)		New_guns_ pove	r pack	
Taxes, freight, insu	Irance			
Delivered equipma	nt cost			
Price for Initial Spa	re Parts Inventory			\$5,000
Estimated Materials Co	ost			
Piping		see additional	equipment b	elow
Electrical				
instrumenta				
Structural				
Insulation/Piping				\$_0
Estimated Costs for Uti	lity Connections a	nd New Littlity Syste		
Electricity				
Steam				
Cooling Water				
Process Water				
Refrigeration				
Fuel (Gas or OI)				
Plant Air				
inert Gas				<u>\$_0</u>
Estimated Costs for Ad	iditional Equipmen	t		
Storage & Material	Hendling			
Laboratory/Analytic				
Other				\$0
XK Site Preparetion	Paint Booth re	econstruction		<u>\$15,000</u>
(Demolition, alte clearing				
Estimated installation C	Costa			
Vendor				
Contractor				<u>\$_0</u>

Firm <u>SAIC</u>	Waste Minimization	(topeto	d ByS_Roman
Site	Proc. Unit/Oper.		d By <u>G. Cushnie</u>
Date	Proj. No. <u>1-832-03-9</u>	142-02 Sheet 2	2_ of <u>6_</u> Page of
·····			_
NORKSHEET			EPA
CAPITAL COSTS (C	ont.)		IOTALS
💹 Engineering and	d Procurement Costs (In-hous	e & outside)	
Planning	Assum	e 20% of equipment	
Engineering	and r	econstruction costs	<u> </u>
Procuremen	t		
Consultante	l		\$ 4,000
_			
Start-up Costs		109	
Vendor		e 10% of equipment	
Contractor		oustruction costs.	
In-house			\$2,000
X Training Costs	<u>14 ME</u>	N X BHour \$13 Hour	\$1,456
Permitting Cost	8		
Fees		·····	
in-house St	iff Coste		<u>\$</u> 0
Initial Charge of	Catalysts and Chemicala		
	tem di		
	tion #2		\$
		-	
Working Capital	Raw Materials, Product, Inven	tory, Materials and Suppl	ies (not elsewhere specified)].
	kem #1		
	item #2		_
	Kem #3		
	Kem #4		<u> </u>
Estimated Salva	ge Value (If any)		<u>s</u> 0

FirmSAIC	Waste Minimization Assessment	Prepared By <u>s. Roman</u>
Sile		Checked By C. Cushnie
Date 173/90	Proj. No. 1-832-03-942-02	Sheet 3_of 6_ Page of

₿ЕРА

CAPITAL COST SUMMARY

Cost item	Cost
Purchased Process Equipment	\$5,000
Materials	0
Utility Connections	0
Additional Equipment	0
She Preparation	\$15,000
Installation	0
Engineering and Procurement	4,000
Start-up Cost	2,000
Training Costs	1,456
Permitting Costs	
Initial Charge of Catalysts and Chemicals	
Fixed Capital Investment	\$27,456
Working Capital	
Total Capital Investment	\$27,456
Salvage Value	

FirmSAIC	Waste Minimization Assessment	Prepared By Roman
Site	Proc. Unit/Oper.	Checked By G. Cushnie
Date1/3//90	Proj. No. <u>1-832-03-942-02</u>	Sheet 4 of 6 Page of

Estimated Decrease (or increase) in Utilities No significant cost changes expected

Utility	Unit Cost \$ per unit	Decrease (or Increase) in Quantity Unit per time	Total Decrease (or Increase) \$ per time
Electricity			
Steam		·	
Cooling Process			A
Process Water			
Refrigeration			
Fuel (Gas or Oli)			
Plant Air			
Inert Air			· · · · · · · · · · · · · · · · · · ·

INCREMENTAL OPERATING COSTS - include all relevant operating savings. Estimate these costs on an incremental basis (i.e., as decreases or increases over existing costs).

x	BASIS I	FOR COSTS	Annual X Quarterly I	Monthly Da	lly	Other
x	Estimat	led Disposal C	ost Saving			
ussume that	30%	Decrease in TS	SDF Fees	\$1,498		
f painting			ate Fees and Taxes			
<pre>'rame rails 1 30% effici</pre>			ransportation Costs			
		Decrease in O	nsite Treatment and Handling			
<pre>rails will b ichieved.</pre>	e	Decrease in Pe	ermitting, Reporting and Recordkeeph	ng		

Estimated Decrease in Raw Materials Consumption

Materials	Unit Cost \$ per unit	Reduction in Quantity Units per time	Decrease in Cost \$ per time
Imron Polyurethane Enamel	\$40/g21	3,780 gpy	\$151.200/yr

Firm <u>SAIC</u>	Waste Minimization Assessment	Prepared By
Site	Proc. Unit/Oper	Checked By
Date	Proj. No	Sheet 5 of 6 Page of

WORKSHEET 15e

EPA

Estimated Decrease (or Increase) in Ancillary Catalysts and Chemicals

Unit Cost \$ per unit	Decrease (or increase) in Quantity Unit per time	Total Decrease (or Increase) \$ per time
<u> </u>		
		Unit Cost Decrease (or increase) in Quantity S per unit Unil per time

Estimated Decrease (or Increase) in Operating Costs and Maintanance Labor Costs (include cost of supervision, benefits and burden).

Estimated Decrease (or Increase) in Operating and Maintenance Supplies and Costs.

Estimated Decrease (or Increase) in Insurance and Liability Costs (explain).

Estimated Decrease (or increase) in Other Operating Costs (explain).

INCREMENTAL REVENUES

Г

Estimated Incremental Revenues from an increase (or Decrease) in Production or Marketable By-products (explain).

Firm <u>SAIC</u>	Waste Minimization Assessment	Prepared By S. Roman
Site	Proc. Unit/Oper	Checked ByG. Cushnie
Date 1/3/90	Proj. No. 1-832-03-942-02	Sheet <u>6</u> of <u>6</u> Page of

(continued)

INCREMENTAL OPERATING COST AND REVENUE SUMMARY (ANNUAL BASIS)

Decreases in Operating Cost or Increases in Revenue are Positive. Increases in Operating Cost or Decrease in Revenue are Negative.

Operating Cost/Revenue Item	\$ per year
Decrease in Disposal Cost	\$ 1,498
Decrease in Raw Materials Cost	151,200
Decrease (or Increase) In Utilities Cost	0
Decrease (or Increase) In Catalysts and Chemicals	0
Decrease (or Increase) in O & M Labor Costs	0 .
Decrease (or Increase) in O & M Supplies Costa	Ö
Decrease (or Increase) In Insurance/Liabilities Costs	0
Decrease (or increase) In Other Operating Costs	0
incremental Revenues from increased (Decreased) Production	0
Incremental Revenues from Marketable By-products	17
Net Operating Cost Savings	\$ 152,698

FirmSAIC	Waste Minimization Assessment	Prepared By	S. Roman
Site	Proc. Unit/Oper	Checked By	G. Cushnie
Date 1/3/90	Proj. No. <u>1-832-03-942-02</u>	Sheet 1_of	1_ Page of

Option 2

PROFITABILITY WORKSHEET # 1 PAYBACK PERIOD

Ş I	EP/	4
------------	-----	---

·····•	nr gaamiñe (é her Jeer).		Ŋ <u>\$152,698</u>	
Payback Period (in years)	= Total Capital Ir Annual Net Operatin	ig Cost Savings	<u>0.2 years</u>	

Firm SAIC	Waste Minimization	Assessment	Prepared By <u>S. Roman</u>
Site	Proc. Spra	y Painting	Checked By <u>G. Cushnie</u>
Date	Proj. No. <u>1-832-03</u>		Sheet 1_ of 6_ Page of
WORKSHEET 14a	ECHNICAL FE	EASIBILIT	⊻」 🛟 EPA
WM Option DescriptionPain	t Mix Volume (OP-4)	
1. Nature of WM Option	Equipment-Related		
	X Personnel/Procedu	re-Related	
Γ	Materials-Related		
			The facility is current
tracking paint mixed volu			· · · · · · · · · · · · · · · · · · ·
average of 1.3 quarts of monitoring should be abe			
is further analysis required? worksheet. If not, skip to work 3. Equipment - Related Option	X Yes No. If yes ksheet 15.	as, continue witi	h this
		<u>YES</u>	NO
Equipment available comme	rcially?		
Demonstrated commercially	?		
In similar application?			
Successfully?			
Describe closest industrial a	nalog		
			······
Describe status of developm	eni		

Prospective Vendor	Working installation(s)	Contact Person(s)	Date Contacted 1.

1. Also attach filled out phone conversation notes, installation visit report, etc.

-

AIC /3/90		Waste Minimization Assessment Proc. UntroOper. Proj. No. 1-832-03-942-02	Prepared By <u>S. Roman</u> Checked By <u>G. Cushnie</u> Sheel <u>5</u> of <u>6</u> Page <u>of</u>
	4e	TECHNICAL FEASIBILIT	
		(continued)	
VM Op	tion Description —	aint Mix Volumes (OP-4)	
. Equ	Ipment-Related Opti	on (continued)	
Des	cribe any additional	storage or material handling requireme	nis
Des	scribe any additional	laboratory or analytical requirements.	
			····
Per	sonnel/Procedure-Re	elated Changes	
	sonnel/Procedurs-Re acted Departments/A	Deaduction Deat / Deint	Areas - personnel working in
Aff		Deaduction Deat / Deint	Areas - personnel working in
Aff	ected Departments/A	Deaduction Deat / Deint	Areas - personnel working in
Affi <u>the</u> Tra	ected Departments/A paint mix room. Ining Requirements	Feas Production Dept. / Paint Personnel in the paint mix room	are currently monitoring
Affi the Train the	ected Departments/A paint mix room. Ining Requirements volume of paint	Feas Production Dept. / Paint Personnel in the paint mix room wasted due to over mixing and e	are currently monitoring estimating the specific volume
Affi the Train the of	ning Requirements volume of paint paint needed for	Feas Production Dept. / Paint Personnel in the paint mix room wasted due to over mixing and e a particular model. The estimation	a are currently monitoring estimating the specific volume ates will improve with time wit
Affi the Train the of	ning Requirements volume of paint paint needed for	Feas Production Dept. / Paint Personnel in the paint mix room wasted due to over mixing and e	a are currently monitoring estimating the specific volume ates will improve with time wit
Afficient of the second	ning Requirements volume of paint paint needed for eduction in the	Feas Production Dept. / Paint Personnel in the paint mix room wasted due to over mixing and e a particular model. The estimation	are currently monitoring estimating the specific volume ates will improve with time wit remmixing.
Afficient of the second	ning Requirements volume of paint paint needed for eduction in the	Teas Production Dept. / Paint <u>Personnel in the paint mix room</u> wasted due to over mixing and e a particular model. The estima amount of paint wasted due to ov	are currently monitoring estimating the specific volume ates will improve with time wit remmixing.
Afficient of the second	ning Requirements volume of paint paint needed for eduction in the	Teas Production Dept. / Paint <u>Personnel in the paint mix room</u> wasted due to over mixing and e a particular model. The estima amount of paint wasted due to ov	are currently monitoring estimating the specific volume ates will improve with time wit remmixing.
Afficient of the second	ning Requirements volume of paint paint needed for eduction in the	Teas Production Dept. / Paint <u>Personnel in the paint mix room</u> wasted due to over mixing and e a particular model. The estima amount of paint wasted due to ov	are currently monitoring estimating the specific volume ates will improve with time wit remmixing.
Affine the the of a r Ope	ning Requirements volume of paint paint needed for eduction in the	Teas Production Dept. / Paint <u>Personnel in the paint mix room</u> wasted due to over mixing and e a particular model. The estima amount of paint wasted due to ov	are currently monitoring estimating the specific volume ates will improve with time wit rermixing.
Affin the Tranche of a r Ope	ected Departments/A paint mix room. ining Requirements volume of paint paint needed for eduction in the erailing instruction Ci	Personnel in the paint mix room wasted due to over mixing and e a particular model. The estima amount of paint wasted due to ov manges. Describe responsible departme	n are currently monitoring estimating the specific volume ates will improve with time wit vermixing. Ints. None
Afficient of the second	ected Departments/A paint mix room. Ining Requirements volume of paint paint needed for reduction in the eraling instruction Ci erals-Related Chang ion as an equipment-	reas Production Dept. / Paint Personnel in the paint mix room wasted due to over mixing and e a particular model. The estima amount of paint wasted due to over manges. Describe responsible department pea (Note: if substantial changes in equi	n are currently monitoring estimating the specific volume ates will improve with time wit vermixing. Ints. None
Affa the the of a r Ope	ected Departments/A paint mix room. Ining Requirements volume of paint paint needed for reduction in the eraling instruction Ci erals-Related Chang ion as an equipment-	Personnel in the paint mix room wasted due to over mixing and e a particular model. The estima amount of paint wasted due to over manges. Describe responsible departme pages (Note: if substantial changes in equi related one.) (Skip to worksheet 15 i been demonstrated commercially?	n are currently monitoring estimating the specific volume ates will improve with time wit vermixing. Ints. None
Afficient of the second	ected Departments/A paint mix room. Ining Requirements volume of paint paint needed for eduction in the eraling instruction Cl erals-Related Chang ion as an equipment- Has the new materia	Personnel in the paint mix room wasted due to over mixing and e a particular model. The estima amount of paint wasted due to over manges. Describe responsible departme pages (Note: if substantial changes in equi related one.) (Skip to worksheet 15 i been demonstrated commercially?	n are currently monitoring estimating the specific volume ates will improve with time wit vermixing. Ints. None

Firm	Waste Minimization Assessment Proc. Unit/Oper Proj. No. 1-832-03-942-02	Prepared By <u>S. Roman</u> Checked By <u>G. Cushnie</u> Sheet <u>1</u> of <u>6</u> Page of
WORKSHEET		
15a	COST INFORMATION	�₽A
WM Option Description <u>Paint</u> Mi	ix Volume (OP-4)	
CAPITAL COSTS - Include all Purchased Process Eq		TOTALS
	lubmeur	
Price (fob factory)		
Taxes, freight, insu		
Delivered equipme		B. (B. () () () () () () () () () (
	are Parts Inventory	
Estimated Materials Co	ost	
Plping		
Electrical		
Instruments		
Structural		
insulation/Piping	مرين در 100 (100 (100 (100 (100 (100 (100 (100	
Estimated Costs for UI	ility Connections and New Utility Sys	tems
Electricity		
Steam		
Cooling Water	······································	
Process Water	. , <u></u>	
Refrigeration		
Fuel (Gas or Dil)		
Plant Air		
inert Gas		
Estimated Costs for Ac		
Storage & Materiai	-	in use
Laboratory/Analytik Other		\$500.00
Site Preparation		
(Demolition, site clearly	na. elc.)	
Estimated instaliation (
Vendor		
Contractor		
In-house Staff		

SAIC	Waste Minimization Assessment Proc. Unit/Oper Proj. No. ^{1_832-03-942-02}	Prepared By <u>S. Roman</u> Checked By <u>G. Cushnie</u> Sheet <u>2</u> of <u>6</u> Page of
WORKSHEET		€ЕРА
CAPITAL COSTS (Cont.)		TOTALS
X Engineering and Proce	urement Costs (in-house & outside)	
Planning		······································
Engineering	_100_Hr.@ \$22.00/H	hr.
Procurement	<u>.</u>	
Consultants		\$2,200
Start-up Costs		
Vendor		
Contractor		
In-house		
Training Costs		
Permitting Costs		
Fees		
In-house Staff Cos		
🛄 Initial Charge of Cataly	sts and Chemicals	
	item #1	
	kem #2	
X Working Capital (Raw I	viaterials, Product, Inventory, Materials a	and Supplies (not elsewhere specif
	item #1 Log book to track	
	item #2	
	item #3	·····
	item #4	\$ 25.00 (yearly supp
Estimated Salvage Val	ue (if any)	·, ,

	Waste Minimization Assessment	Prepared By S. Roman
Site	Proc. Unit/Oper	Checked By C. Cushnie
Date _1/3/90	Proj. No. <u>1-832-03-942-02</u>	Sheet 3 of 6 Page _ of

WORKSHEET

.

CAPITAL COST SUMMARY

Cost Item	Cost
Purchased Process Equipment	\$ 0
Materials	\$ 0
Utility Connections	s 0
Additional Equipment	\$ 500
Site Preparation	\$ 0
installation	\$ 0
Engineering and Procurement	\$ 2 .200
Start-up Cost	\$ O
Training Costs	ş 0
Permitting Costs	ş 0
Initial Cherge of Catalysts and Chemicals	\$ 0
Fixed Capital Investment	\$ 2.700
Working Capital	\$ 25
Total Capital Invastment	\$ 2,725
Salvage Value	ş 0

Firm SAIC	Waste Minimization Assessment	Prepared By S. Roman
Site	Proc. Unit/Oper	Checked ByG. Cushnie
Date 1/3/90	Proj. No. <u>1-830-03-942-02</u>	Sheet 4 of 6 Page of

X Estimated Decrease (or increase) in Utilities

Ulliky	Unit Cost \$ per unit	Decrease (or increase) in Quantity Unit per time	Total Decrease (or Increase) \$ per time
Electricity	\$.08/kw-hr	(572 kw-hr 1 yr)	(\$46.00 l yr)
Steam			
Cooling Process		· · · · ·	
Process Water			
Refrigeration			
Fuel (Gas or Oil)			
Plant Air		·	
inert Air			

INCREMENTAL OPERATING COSTS - Include all relevant operating savings. Estimate these costs on an incremental basis (i.e., as decreases or increases over existing costs).

BASIS FOR COSTS Annual X Quarterly Monthly Daily Other

X Estimated Disposal Cost Saving

Assumes 0.3 qt. Decrease in TSDF Fees

of paint saved per truck <u>\$496.00 (includes trans.)</u>

ed Decrease in State Fees and Taxes

- Decrease in Transportation Costs
- Decrease in Onsite Treatment and Handling

Decrease in Permitting, Reporting and Recordkeeping

Total Decrease in Disposal Costs \$496.00

Estimated Decrease in Raw Materials Consumption

Materials	Unit Cost \$ per unit	Reduction in Quantity Units per time	Decrease in Cost \$ per time
Imron Poly-urethane Enamel	\$40.00 gal	\$647.25 gals	\$25.890.00

Firm <u>SAIC</u>	-1	Minimization Assessment	Prepared By <u>S. Roman</u>		
Site		1-832-03-942-02	Checked By <u>G. Cushnie</u> Sheet <u>5</u> of <u>6</u> Page of		
WORKSHEET COST INFORMATION SEEPA Ise (continued) (continued) Estimated Decrease (or Increase) in Ancillary Catalysts and Chemicals					
Catalyst/Chemical					
Estimated Decrease (or incr (include cost of supervisio			e Labor Costs		
Estimated Decrease (or Incm Logbooks will need to					
Estimated Decrease (or Incri	ease) in Insur	ance and Liability Costs (ex	ptain).		
Estimated Decrease (or Incre	ease) in Othe	r Operating Costs (explain).			
INCREMENTAL REVENUES Estimated incremental Reven By-products (explain).	nues from an	Increase (or Decrease) In P	roduction or Marketable		

Firm <u>SAIC</u>	Waste Minimization Assessment	Prepared By S. Roman
Site	Proc. Unit/Oper.	Checked By <u>G. Cushine</u>
Date 1/3/90	Proj. No. <u>1-832-03-942-02</u>	Sheet <u>6</u> of <u>6</u> Page of

(continued)

INCREMENTAL OPERATING COST AND REVENUE SUMMARY (ANNUAL BASIS)

Decreases in Operating Cost or Increases in Revenue are Positive. Increases in Operating Cost or Decrease in Revenue are Negative.

Operating Cost/Revenue item	\$ per year	
Decrease in Disposal Cost	\$ 496	
Decrease in Raw Materials Cost	\$25,890	
Decrease (or increase) in Utilities Cost	s - (46)	
Decrease (or increase) in Catalysts and Chemicals	s O	
Decrease (or Increase) In O & M Labor Costs	\$ O	
Decrease (or Increase) In O & M Supplies Costs	\$ - (25)	
Decrease (or increase) in insurance/Liabilities Costs	\$ 0	
Decrease (or increase) in Other Operating Costs	\$ O	
Incremental Revenues from Increased (Decreased) Production	s 0	
Incremental Revenues from Marketable By-products	\$ O	
Net Operating Cost Savings	\$26,315	

Firm <u>SA1C</u>	Waste Minimization Assessment	Prepared By S. Roman
Site	"Proc." Unit/Oper	Checked By G. Cushnie
Date	Proj. No. 1-832-03-942-02	Sheel 1 of 1 Page of

WORKSHEET

PROFITABILITY WORKSHEET # 1 PAYBACK PERIOD

EPA

Paint MIx Volumes (OP-4) Total Capital Investment (\$) (from Worksheet 15c) \$2,725 Annual Net Operating Cost Savings (\$ per year) (from Worksheet 15f) \$26,315 Payback Period (in years) = Annual Net Operating Cost Savings = 0.1 yr

ack Period (In years) = Total Capital Investment Annual Net Operating Cost Savings = <u>0.1 yr</u>

1/3/90 Proj. No. WORKSHEET TECHNI 14a TECHNI 'M Option Description Minimizing Deg Nature of WM Option X Equipmediate Person	nent-Related Inel/Procedure-Rela Ile-Related Ile-Related Is state your rational Iners and changes Is not yet been	IBILITY t Waste Vol to degrea identified	<u>This option require</u> sing procedures. The
1/3/90 Proj. No. WORKSHEET TECHNI 14a TECHNI M Option Description Minimizing Deg Nature of WM Option X Equipment Person Materia Materia H the option appears technically feasible he purchase of new solvent contain auipment nceded for the option ha	1-832-03-942-0 ICAL FEAS areasing Solven ment-Related unel/Procedure-Related b, state your rational bers and changes as not yet been	2 She BILITY t Waste Vol to degrea identified	this option requires. The
WORKSHEET 14a TECHN MOption Description <u>Minimizing Deg</u> Nature of WM Option <u>X</u> Equipm Person Materia H the option appears technically feasible he purchase of new solvent contain auipment needed for the option ha	ICAL FEAS	BILITY t Waste Vol	<u>This option requires</u>
14a TECHN M Option Description Minimizing Deg Nature of WM Option Equipm Person Person Image: Hithe option appears technically feasible he purchase of new solvent contain guipment nceded for the option ha	reasing Solven nent-Related nel/Procedure-Rela nla-Related a, state your railons ners and changes is not yet been	t Waste Vol Hed He for this. 5 to degrea identified	<u>This option requires</u> sing procedures. The
14a TECHN M Option Description Minimizing Deg Nature of WM Option Equipm Person Person Image: Hithe option appears technically feasible he purchase of new solvent contain guipment nceded for the option ha	reasing Solven nent-Related nel/Procedure-Rela nla-Related a, state your railons ners and changes is not yet been	t Waste Vol Hed He for this. 5 to degrea identified	<u>This option requires</u> sing procedures. The
Nature of WM Option Equipm Person Materia If the option appears technically feasible he purchase of new solvent contain auipment needed for the option ha	nent-Related Inel/Procedure-Rela Ile-Related Ile-Related Is state your rational Iners and changes Is not yet been	ited ile for this. to degrea identified	<u>This option require</u> sing procedures. The
Person. Materia If the option appears technically feasible he purchase of new solvent contain auipment needed for the option ha	nel/Procedure-Rela ne-Related o, state your rationa pers and changes is not yet been	ile for this. to degrea identified	sing procedures. The
Materia H the option appears technically feasible he purchase of new solvent contain auipment needed for the option ha	nie-Related a, state your rational hers and changes is not yet been	ile for this. to degrea identified	sing procedures. The
H the option appears technically feasible he purchase of new solvent contain quipment needed for the option ha	b, state your rations hers and changes his not yet been	to degrea	sing procedures. The
he purchase of new solvent contain nuipment needed for the option ha	ers and changes is not yet been	to degrea	sing procedures. The
quipment needed for the option ha	is not yet been	identified	
			, but is assumed to ex
Equipment - Related Option			
	YES		Unknown
Equipment available commercially?			
Demonstrated commercially?			Unknown Unknown
Successfully?		H	Unknown
•	n/a		Dikilowi
Describe status of development	n/a		

Prospective Vendor	Working Installation(s)	Contact Person(s)	Date Contacted 1

1. Also attach filled out phone conversation notes, installation visit report, etc.

Firm SAIC	Waste Minimization Assessment	Prepared By S. Roman
Site	Degreasing of F Proc. Unit/Oper.rail(chassis)	Checked By C. Cushnie
		Sheet 2_ of 6_ Page of

•

WM Option Description ______Solvent_Segregation (OP-5)

3. Equipment-Related Option (continued)

	d (describe parameters):/a
	• • • • • • • • • • • • • • • • • • •
P. 14	
Scaleup Information required (de	escribe):n/a
	-
resting Required:yet Scale:bench plk	
Test unit available? yet	s [] no
1 991 791 (ATTHECOTE (1191)	
lumber of test runs: $\underline{n/a}$	
mount of material(s) required: _	
esting to be conducted:	🔲 In-plant
acility/Product Constraints:	
	mificant space requirements.
Possible locations within facil	liky

Firm <u>SAIC</u>	Waste Minimization Assessment Degreasing of Fram	Prepared By S. Roman
Site		Checked ByG. Cushnie
Date	Proj. No. <u>1-832-03-942-02</u>	Sheet <u>3</u> of <u>6</u> Page of

SEPA -

WM Option Description Solvent Segregation (OP-5)

2. Equipment-Related Option (continued)

WORKSHEET

14c

Utility Requirements: none			
Electric Power	Volts (AC or DC)		
Process Water	Flow	_ Pressure	
	Quality (tap, den	nin, etc.)	
Cooling Water	Flow	_ Pressure	
	Temp. In	Temp. Out	
Coolant/Heat Transfei	Fluid		
	Temp. in		
	Duty		
Steam	Pressure	Temp.	
	Duty	Flow	
Fuel	Туре	Flow.	··· ··· ······························
		Duty	
Plant Air		Flow	·
inert Gas		Flow	
Estimated delivery time (after	award of contract) <u>N/A</u>	
Estimated installation time	N/A		
Installation dates N/A			
Estimated production downlin	none		

Will production be otherwise affected? Explain the effect and impact on production. Production will not be affected.

Will product quality be affected? Explain the effect on quality. <u>Production quality will not</u> be affected.

٠

	KSHEET 1	Waste Minimization Assessment Degreasing of Fra Proc. Unit/Oper.Bails_Chassis Proj. No. 1=832=03-942=02 ECHNICAL FEASIBILIT	Checked By <u>G. Cushnie</u> Sheet <u>4</u> of <u>6</u> Page of
	n Description <u>Solve</u> s	(menumued)	
•	ment-Related Option (C		<u> </u>
			e required? Explain Hinor changes
		<pre>1 be required, however there w g / painting operation.</pre>	111 De little impact to the
		······	
		· · · · · · · · · · · · · · · · · · ·	``````````````````````````````````````
	•	nance training requirements	X Onste
			Ottalte
	Duration of traini Describe catalyst, ch	ng 21 hr. emicals, replacement parts, or other a	upplies required.
	tem	Rate of Frequency of Replacement	Supplier, Address
	None		
•			
•	X Yes 🗌 No	government and company safety and Explain There are no anticipa th requirements.	-
	X Yes No safety and hea	Explain There are no anticipa	ted impacts on the existing

128

SAIC	Waste Minimization Assessment Degreasing of Fram Proc. Unit/OperRails Chassis	Checked By G. Cushnie
	Proj. No. <u>1-832-03-942-02</u>	Sheet 5 of 6 Page of
	TECHNICAL FEASIBILIT	Y SEPA
WM Option Description	······	
3. Equipment-Related Optio	n (continued)	
Describe any additional a	storage or material handling requireme	nts. None
		· · · · · · · · · · · · · · · · · · ·
	4	
Describe any additional is	aboratory or analytical requirements.	None
Personnel/Procedure-Rel	-	et 15a)
Affected Departments/Ar	tat	
Training Requirements _		
Operating instruction Chi	anges. Describe responsible departmi	nts
<u></u> .		
Materials-Related Change	is (Note: If substantial changes in equi	
option as an equipment-n	elated one.)	Yes No
	been demonstrated commercially?	
in a similar application	n?	
Successfully?		

Firm <u>satc</u>	Waste Minimization Assessment Degreasing of Fr	Prepared By S. Roman
Site	Proc Unit/Oper Rails Chassis	Checked By G. Cushnie
Date	Proj. No. <u>1-832-03-942-02</u>	Sheet 1_ of 6_ Page of
WORKSHEET 15a	COST INFORMATION	€ЕРА
will option Description		
CAPITAL COSTS - Include all X Purchased Process Ec Price (fob factory)	quipment	IOTALS \$100 e.a
Taxës, freight, insi	urance	· · · · · · · · · · · · · · · · · · ·
Delivered equipme		
Price for initial Spi	are Parts Inventory	\$400
Estimated Materials C Piping Electrical Instruments	oat 	
Structural		0
insuistion/Piping		
Estimated Costs for Un Electricity Steam Cooling Water Proceas Water Refrigeration Fuel (Gas of Oil)	Ility Connections and New Utility Sys	tems
Plant Air		
inert Gaa		0
Estimated Costs for Ad	ditional Equipment	
Storage & Material	-	
Laboratory/Analylk		0
Other		0
Site Preparation (Demoiltion, alte clear)	ng etc.)	0
Estimated installation		
Vandor		<u> </u>
Contractor		
in-house Staff		0

AIC	Waste Minimization Assessment Pre	epared By <u>S. Roman</u>
		ecked By <u>G. Cushnie</u> eet <u>2</u> of <u>6</u> Page
15b		♣EP
CAPITAL COSTS (Cont.)		IOTALS
Engineering and Procu	rement Costs (in-house & outside)	
Planning		
Engineering	2 hr @ \$23/hr	
Procurement		D
Consultants		<u>\$46</u>
Start-up Costs		
Vendor		
Contractor		
in-house		0
X Training Costs	6 operators for 15 mi	inutes \$20
Permitting Costs	@ \$13/hour	
Fees		
In-house Staff Cost	· · · · · · · · · · · · · · · · · · ·	
Initial Charge of Catalys	its and Chemicals	
	item #1	
	item #2	0
🔲 Working Capital [Raw M	iaterials, Product, Inventory, Materials and S	Supplies (not elsewhere sp
	item #1	
	tem #2	
	item #3	
	tem #4	0
Estimated Salvage Valu	e (if any)	0

-

Firm _SAIC	Waste Minimization Assessment	Prepared By S. Roman
Site	Degreasing of F Proc. Unit/Oper. Rails Chassis	Checked By G. Cushnie
Date _1/3/90	Proj. No. <u>1-832-03-942-02</u>	Sheet 3_ of 6_ Page of

WORKSHEET

CAPITAL COST SUMMARY

Cost Item	Cost
Purchased Process Equipment	\$400
Materials	0
Utility Connections	0
Additional Equipment	0
Site Preparation	0
Installation	0
Engineering and Procurement	\$ 46
Start-up Cost	0
Training Costs	\$ 20
Permitting Costs	0
Initial Charge of Catalysts and Chemicale	0
Fixed Capital Investment	\$466
Working Capital	0
Total Capital Investment	\$466
Salvage Value	0

Firm <u>SAIC</u>	Waste Minimization Assessment Degreasing of Frame	Prepared By S. Roman
Site	1100. One open.	Checked By <u>G. Cushnie</u>
Date 1/3/90	Proj. No. <u>1-832-03-942-02</u>	Sheet 4 of 6 Page of

(continued)

Estimated Decrease (or Increase) in Utilities

Utility	Unit Cost \$ per unit	Decrease (or increase) in Quantity Unit per time	Total Decreese (or increase) \$ per time
Electricity			
Steam			········
Cooling Process			
Process Water			
Refrigeration			
Fuel (Gas or Oli)			
Plant Air			
Inert Air			
			<u> </u>

INCREMENTAL OPERATING COSTS - Include all relevant operating savings. Estimate these costs on an incremental basis (i.e., as decreases or increases over existing costs).

	BASIS FOR COSTS Annua	I Quarterly	Monthly Dally	Other
x	Estimated Disposal Cost Saving	0		
	Decrease in TSDF Fees		\$3,219	
	Decrease in State Fees	and Taxes		
	Decrease in Transporta	tion Costs	. <u> </u>	
	Decrease in Onsite Trea	itment and Handling		
	Decrease in Permitting,	Reporting and Recordkeep	ping <u>\$3.219</u>	
	Tota	I Decrease In Disposal Cos	t s	

Estimated Decrease in Raw Materials Consumption

Materials	Unit Cost \$ per unit	Reduction in Quantity Units per time	Decrease in Cost \$ per time
K Special Blend-degreasing	\$5.00/gal	2,800 gal/yr	\$14,000
solvent			

Based on 20% decrease in the amount of becomes contaminated and is then disposed.

solvent used and 30% for that which

Firm	Waste I	Minimization Assessment	Prepared By		
Site	Proc. Uni	t/Oper	Checked By		
Date	Proj. No.		Sheet 5 of 6 Page of		
WORKSHEET COST INFORMATION (certinued) Estimated Decrease (or Increase) In Anciliary Catalysts and Chemicals					
Catalys!/Chemical	Unit Cost	Decrease (or increase) in Qu			
	\$ per unit	Unit per time	\$ per time		
		· · · · · · · · · · · · · · · · · · ·			
	····				
Estimated Decrease (or incr (include cost of supervisk			Se Labor Costs		
Estimated Decrease (or Incr	ease) in Open	ating and Maintenance Supj	plies and Costs.		
Estimated Decrease (or Incr	ease) in insur	ance and Liability Costs (ex	plain).		
Estimated Decrease (or Incr	esse) in Other	r Operating Costs (explain).			
INCREMENTAL REVENUES Estimated incremental Reve By-products (explain).	nues from an	increase (or Decrease) in P	roduction or Marketable		

Firm <u>SAIC</u>	Waste Minimization Assessment Degreasing of Franc	Prepared By <u>S. Roman</u>
Site	Proc. Unit/Oper.Rail Chassis	Checked By G. Cushnie
Date	Proj. No. <u>1-832-03-942-02</u>	Sheet <u>6</u> of <u>6</u> Page of

INCREMENTAL OPERATING COST AND REVENUE SUMMARY (ANNUAL BASIS)

Decreases in Operating Cost or increases in Revenue are Positive. Increases in Operating Cost or Decrease in Revenue are Negative.

Operating Cost/Revenue Item	\$ per year
Decrease in Disposal Cost	\$ 3,219
Decrease in Raw Materials Cost	\$14,000
Decrease (or increase) in Utilities Cost	
Decrease (or increase) in Catalysts and Chemicals	
Decrease (or Increase) In O & M Labor Costs	
Decrease (or increase) in O & M Supplies Costs	
Decrease (or increase) in insurance/Liabilities Costs	
Decrease (or increase) in Other Operating Costs	
Incremental Revenues from Increased (Decressed) Production	
Incremental Revenues from Marketable By-products	
Net Operating Cost Savings	\$17, 219

Firm <u>SAIC</u>	Waste Minimization Assessment Degreasing of Frame	Prepared By S. Roman
Site		Checked By G. Cushnie
Date 1/3/90	Proj. No. 1-832-03-942-02	Sheet 1_ of 1_ Page of

WORKSHEET

PROFITABILITY WORKSHEET # 1 PAYBACK PERIOD

€ ЕРА

Solvent Segregation (OP-5)				
Total Capital Investment (\$) (from Worksheet 15c)				
Annual Net Operating Cost Savings (\$ per year) (from Worksheet 151) \$17,219				
Payback Period (in years) = -	Total Capital Investment Annual Net Operating Cost Savings *			

Waste Minimization Assessment	- 14 - 5 Prepared By G. Cushnie
Proc. Unit/Oper. <u>E-Coat</u>	Checked By <u>S. Roman</u>
Proj. No.1 <u>-832-03-942-02</u>	Sheet 1_ of 6_ Page 5_ of
TECHNICAL FEASIBILI	тү 😌 ЕРА
Exchange with Recycle of Rins	e Water (OP-6)
X Equipment-Related	
Personnel/Procedure-Related	•
Materials-Related	
Materials-Related ally feasible, state your rationale for t	hls. Ion Exchange is a
ally feasible, state your rationale for t	
ally feasible, state your rationale for t	ines for recycling
ally feasible, state your rationale for t nly used on metal finishing 1	ines for recycling
ally feasible, state your rationale for t nly used on metal finishing 1	ines for recycling
Illy feasible, state your rationale for t nly used on metal finishing l X Yes No. If yes, continue w rksheet 15.	ines for recycling
Ily feasible, state your rationale for the state on metal finishing 1 Image: state your rationale for the state of the sta	ines for recycling
Ily feasible, state your rationale for tinling l Ily used on metal finishing l X Yes No. If yes, continue w rksheet 15. ercially? X Y? X X X X X X X X X X X X X X X X X	ines for recycling
Ily feasible, state your rationale for the state on metal finishing 1 Image: state your rationale for the state of the sta	ines for recycling
ercially? Yes No. If yes, continue w Yes Yes Xo. If yes, continue w YES Ercially? X X X X	ines for recycling
	TECHNICAL FEASIBILI Exchange with Recycle of Ring Equipment-Related

Prospective Vendor	Working Installation(s)	Contact Person(s)	Date Contacted 1.
Numerous manufacturers/vendor			

1. Also attach filled out phone conversation notes, installation visit report, etc.

•

•

FirmSAIC	Waste Minimization Assessment	Prepared By G. Cushnie
Site	Proc. Unit/Oper. E-Coat	Checked By S. Roman
Date	Proj. No. <u>1-832-03-942-02</u>	Sheet <u>2</u> of <u>6</u> Page of

~

WM Option Description Ion Exchange with Recycle of Rinse Water (OP-6)

3. Equipment-Related Option (continued)

Performance information required (describe parameters): Bench scale testing is needed to select the proper ion exchange resin and to determine approximate resin capacity. Also testing is needed to reevaluate the existing chemical precipitation process to determine if the iron salts dosage could be reduced.

Scaleup information required (describe): Described above.

Testing Required: X yes Scale: X bench pilot	□ no □		
Test unit available? [X] yes	no Generally performed by vendor.		
Test Parameters (list) Major ani	ion and cations of concern.		
• •			
	· · · · · · · · · · · · · · · · · · ·		
Number of test runs: As needed.			
Amount of material(s) required:As.	needed		
Testing to be conducted:	In-plant		
	X At yendor's facility		
Facility/Product Constraints:			
Space Requirements			
Possible locations within facility . treatment room.	Near existing ion exchange equipment in waste		

mm	im SAIC	Waste Minimization Assessment	Prepared By G. Cushnie
Ale Proj. No. 1-832-03-942-02 Sheet 3 of 6 Page _ of WORKSHEET TECHNICAL FEASIBILITY CONTINUED Continued WM Option Description <u>Ion Exchange with Recycle of Rinse Water (OP-6)</u> 2. Equipment-Related Option (continued) Utility Requirements: (Dependent on system selected) Electric Power Volts (AC or DC)kW Process Water Flow Pressure Quality (tap, demin, etc.) Cooling Water Flow Pressure Coolant/Heet Transfer Fluid Temp. In Temp. Out Duty Flow Fuel Type Flow Plant Air Flow Estimated delivery time (after sward of contract) <u>Junknovm</u>			
WORKSHEET 120 Itechnical FEASIBILITY Continued Learning Itechnical feasibility UWM Option Description Ion Exchange with Recycle of Rinse Water (OP-6) 2. Equipment-Related Option (continued) Itellity Requirements: Utility Requirements: (Dependent on system selected) Electric Power Volts (AC or DC) kW Process Water Flow Pressure Quality (tap, demin, etc.) Quality (tap, demin, etc.) Quality (tap, demin, etc.) Cooling Water Flow Pressure Duty Temp. In Temp. Out Duty Flow Duty Steam Pressure Temp. Duty Flow Duty Fuel Type Flow Plant Air Flow Duty Inert Gae Flow Estimated delivery time (after award of contract)			
Image: International contract Image: International contract Image: International contract Image: International contract Image: International contract Image: International contract Image: International contract Image: Image		Proj: No. <u>1 052 05 942 02</u>	Sileer <u>3</u> 01 <u>6</u> Fage _ 01
WM Option Description Ion Exchange with Recycle of Rinse Water (OP-6) 2. Equipment-Related Option (continued) Utility Requirements: (Dependent on system selected) Electric Power Volts (AC or DC) kW Process Water Flow Pressure Quality (tap, demin, etc.)		ECHNICAL FEASIBILITY	✓ Sepa
2. Equipment-Related Option (continued) Utility Requirements: (Dependent on system selected) Electric Power Volts (AC or DC)kW Process Water Flow Pressure Quality (tap, demin, etc.) Cooling Water Flow Pressure Coolant/Heat Transfer Flukd Temp. In Temp. Out Coolant/Heat Transfer Flukd Temp. In Temp. Out Duty Steam Pressure Temp Duty Flow Fuel Type Flow Plant Air Flow Estimated delivery time (after award of contract)_unknown Estimated delivery time (after award of contract)_unknown		(continued)	
Utility Requirements: (Dependent on system selected) Electric Power Volts (AC or DC)	WM Option Description Ion Exc	change with Recycle of Rinse Wa	ter (OP-6)
Electric Power Volts (AC or DC) kW Process Water Flow Pressure Quality (tap, demin, etc.)	2. Equipment-Related Option (cr	ontinued)	
Electric Power Volts (AC or DC) kW Process Water Flow Pressure Quality (tap, demin, etc.)	Utility Requirements: (De	pendent on system selected)	
Process Water Flow Pressure Quality (tap, demin, etc.)		• •	
Cooling Water Flow Pressure Temp. In Temp. Out Coolant/Heat Transfer Fluid	Process Water		
Temp. In Temp. Out Coolant/Heat Transfer Fluid		Quality (tap, demin, etc.)	······
Coolant/Heat Transfer Fluid	Cooling Water	Flow Pressure	
Temp. In Temp. Out Duty		Temp. In Temp. Out	
Steam Pressure Temp. Duty Flow	Coolant/Heat Transfe	r Fiuld	
Steam Pressure Temp. Duty Flow		Temp. In Temp. Out	
Duty Fiow Fuel Type Fuel Type Duty Duty Plant Air Flow Inert Gas Flow Estimated delivery time (after award of contract) unknown		Duty	
Fuel Type Flow Duty Duty Duty Plant Air Flow Flow Inert Gas Flow Flow	Steam	Pressure Temp	
Duty Plant Air Flow Inert Gas Flow Estimated delivery time (after award of contract)_unknown		Duty Flow	
Duty Plant Air Flow Inert Gas Flow Estimated delivery time (after award of contract)_unknown			
Plant Air Flow Inert Gas Flow Estimated delivery time (after award of contract) unknown	Fuel	••	
Estimated delivery time (after award of contract) unknown		•	
Estimated delivery time (after award of contract) unknown			
	iner: Gas	Flow	
	Estimated delivery time (effec	awand of contract) unknown	
	• •	•	
Installation dates			
Estimated production downtime			
Will production be otherwise affected? Explain the effect and impact on production. None_expected.	Will production be otherwise	affected? Explain the effect and impac	t on production. None expected.
	·	· · · · · · · · · · · · · · · · · · ·	•
			
·			
<i>,</i> *		,	
Will product quality be affected? Explain the effect on quality. <u>None expected</u>	Will product quality be affecte	d? Explain the effect on quality. <u>Not</u>	ne expected
			· · · · · · · · · · · · · · · · · · ·

-, <u>-</u> ,	Waste Minimization Assessment	Prepared By G. Cushni
	Proc. Unit/Oper. E-Coat	Checked By S. Roman
	Proj. No. <u>1-832-03-942-02</u>	Sheet 4 of 6 Page
4d T	ECHNICAL FEASIBILIT	✓
	(continued)	
Description Lon Excha	ange with Recycle of Rinse Wat	er (OP-6)
ent-Related Option (co	munded)	
Will modifications to v	work flow or production procedures b	e required? Explain ^{No}
	ance training requirements	
Number of people	to be trained No additional	Conste
	persons to be trained	Offsite
Duration of trainin	g	
Describe catalyst, che	emicals, replacement parts, or other s	uppiles required.
ltem	Rate or Frequency of Replacement	Supplier, Address
Cartridge Filters	Usually weekly	Numerous
Acid regenerant	As needed	Numerous
Caustic regenerant	As needed	Numerous
		1
		1
Pose the option most	coverment and company asiably and	beath moulements?
	government and company safety and Fyniain To be determined	health requirements?
	government and company safety and Explain be determined	i health requirements?
		health requirements?
		health requirements?
☐ Yes ☐ No	Explain To be determined	
☐ Yes ☐ No		
How is service handle	Explain To be determined	
How is service handle	Explain To be determined	
How is service handle	Explain To be determined	
How is service handle	Explain <u>To be determined</u>	nce)? Explain <u>Varies and</u>
How is service handle	Explain To be determined	nce)? Explain <u>Varies and</u>
How is service handle	Explain <u>To be determined</u>	nce)? Explain <u>Varies and</u>

FistALC Site Date	5AIC /3/90	Waste Minimization Assessment Proc. Unit/Oper. <u>E= Coat</u> Proj. No. <u>1-832-03-942-02</u>	Prepared By <u>G. Cushnie</u> Checked By <u>S. Roman</u> Sheet <u>5</u> of <u>5</u> Page of
Ľ	Equipment-Related Opt Describe any additiona integrated w/ exis Describe any additiona Personnel/Procedure-R Affected Departments// Training Requirements	i storage or material handling requirement ting IX unit and utilize the same i taboratory or analytical requirements.	ater (OP-6) System could be regenerate feed containers.
5.	option as an equipment Has the new materia in a similar applicat Successfully?	al been demonstrated commercially?	

-

Firm <u>SAIC</u>	Waste Minimization Assess	Le Cusonie
Site	Proc. Unit/Oper. <u>E-Coat</u>	Checked By <u>S. Roman</u>
Date 1/3/90	Proj. No. <u>1-832-03-942-02</u>	Sheel <u>1</u> of <u>6</u> Page of
WORKSHEET 15a	COST INFORMAT	
WM Option DescriptionExchan	ge with Recycle of Rinse	Water (0r-0)
CAPITAL COSTS - Include all	-	TOTALS
Price (fob factory)	Est. (ins	stalled)
Taxes, freight, ins	urance	
Delivered equipme	ent cost	
Price for initial Sp	are Paris Inventory	30,000
X Estimated Materials C	ost	
Piping	Assume 20	07. of Price
Electrical	Assume 10	V of price
Instruments		·····
Structural		
Insulation/Piping		9,000
	tility Connections and New Util	Hu Sustame
Electricity		q apone
Steam		
Cooling Water		
Process Water		
Refrigeration		
Fuel (Gas or Oll)		
Plant Air		
inert Gas		
Estimated Costs for A	dditional Equipment	
Storage & Material	Handling	
Laboratory/Analyti	ca!	
Other		<u></u>
Site Preparation		
(Demolition, site clear	ing, etc.)	
Estimated installation	Costs	
Vendor		
Contractor		
In-house Staff	·	

Firm <u>SAIC</u> Site Date	Waste Minimization Assessment Proc. Unit/Oper. E-Coat Proj. No. 1-832-03-942-02 Proj. No. 1-832-03-942-02	Prepared By <u>G. Cushnie</u> Checked By <u>S. Roman</u> Sheet <u>2</u> of <u>6</u> Page of
WORKSHEET		€ EPA
CAPITAL COSTS (Cont.)		TOTALS
Engineering and Pro Planning Engineering Procurement Consultants	curement Costs (In-house & outside) <u>Assume 207 of pr</u>	6,000
Start-up Costs Vendor Contractor In-house		
Training Costs Permitting Costs Fees In-house Staff Co		
initial Charge of Cata		
	tem #1 Estimate	500
🛄 Working Capital (Raw	Materials, Product, inventory, Materials	and Supplies (not elsewhere specified)].
	item #1 item #2 item #3 item #4	
Estimated Salvage Va	alue (if any)	

Firm SAIC	Waste Minimization Assessment	Prepared By G. Cushnie
Site	Proc. Unit/Oper. E-Coat	Checked ByS. Roman
Date	Proj. No. 1-832-03-942-02	Sheet 3 of 6 Page _ of

WORKSHEET

CAPITAL COST SUMMARY

Cost Nem	Cost
Purchased Process Equipment	\$30,000
Materiais	9,000
Utility Connections	0
Additional Equipment	0
Site Preparation	
Installation	0
Engineering and Procurement	6,000
Start-up Cost	0
Training Costs	0
Permitting Costs	0
Initial Charge of Catalysts and Chemicals	500
Fixed Capital Investment	\$45.500
Working Capital	0
Total Capital Investment	\$45,500
Salvage Value	0

FirmSAIC	Waste Minimization Assessment	Prepared By <u>G. Cushnie</u>
Site	Proc. Unit/Oper. E-Coat	Checked By S. Roman
Date1/3/90	Proj. No. <u>1-832-03-942-02</u>	Sheet 4 of 6 Page of

Estimated Decrease (or Increase) in Utilities

Utany	Unit Cost \$ per unit	Decrease (or Increase) in Quantity Unit per time	Total Decrease (or Increase) \$ per time
Electricity		Estimate	(\$200)
Steam			
Cooling Process			
Process Water			
Refrigeration			
Fuel (Gas or Ol!)		1	
Plant Air			
Inert Air			

INCREMENTAL OPERATING COSTS - Include all relevant operating savings. Estimate these costs on an incremental basis (i.e., as decreases or increases over existing costs).

لعا	BASIS	FOR COSTS	Annual_X Quarterly N	fonthly Daily Other_	
X	Estimat	ted Disposal	Cost Saving		
		Decrease in	TSDF Fees	\$6.169	
Assume 50% reduction		Decrease In	State Fees and Taxes		
F019 sludg	e	Decrease in	Transportation Costs		
		Decrease in	Onsite Treatment and Handling		
			Permitting, Reporting and Recordkeepin	Ig	
Assume 90% use on E-C			Total Decrease in Disposal Costa	\$6,169	

Estimated Decrease in Raw Materials Consumption

Materiala	Unit Cost \$ per unit	Reduction in Quantity Units per time	Decrease in Cost \$ per time
Treatment Chemicals	\$ 18,000/yr	50% reduction	\$ 9 ,800/vr
City Water	\$3.54/Kgal	1,170 K gal	4,142 Ar
Total			\$ 13,142/vr

FirmSAIC	Waste Minimization Assessment	Prepared By <u>G, Cushnie</u>
Site	Proc. Unit/Oper. E-Coat	Checked ByS. Roman
Date	Ртој. No. <u>1-832-03-942-02</u>	Sheet <u>6</u> of <u>6</u> Page of

COST INFORMATION

(continued)

INCREMENTAL OPERATING COST AND REVENUE SUMMARY (ANNUAL BASIS)

Decreases in Operating Cost or Increases in Revenue are Positive. Increases in Operating Cost or Decrease in Revenue are Negative.

Operating Cost/Revenue Item	\$ per year
Decrease in Disposal Cost	\$6,169
Decrease in Raw Materials Cost	\$13,142
Decrease (or increase) in Utilities Cost	(200)
Decrease (or increase) in Catalysts and Chemicals	
Decrease (or increase) in O & M Labor Costs	
Decrease (or increase) in O & M Supplies Costs	
Decrease (or increase) in insurance/Liabilities Costs	
Decrease (or increase) in Other Operating Coats	
Incremental Revenues from Increased (Decreased) Production	
Incremental Revenues from Marketable By-products	
Net Operating Cost Savings	\$19,311

	Waste Minimization Assessment	Prepared By <u>G. Cushnie</u>
Site	Proc. Unit/Oper. E-Coat	Checked By S. Roman
Date	Proj. No. <u>1-832-03-942-03</u>	Sheel <u>1</u> of <u>1</u> Page of

WORKSHEET

.

PROFITABILITY WORKSHEET # 1 PAYBACK PERIOD

EPA

Total Capital Investment (\$)	(from Worksheet 15c) \$45,500	•	
Annual Net Operating Cost 1	Savings (\$ per year) (from Worksheet 15f)_	\$19,311	_
Payback Period (in years) =	Total Capital Investment Annual Net Operating Cost Savings * _	2.4	

	с	Waste Minimization Assessment	Prepared By <u>G</u> Cushnie
ite		Proc. Unit/Oper	Checked By <u>S. Roman</u>
ate	1/3/90	Proj. No. 1-832-03-942-03	Sheet <u>1</u> of <u>6</u> Page <u>6</u> of
	WORKSHEET TI	ECHNICAL FEASIBILIT	Ŷ \$ EPA
WM C	ption Description E -Coat Li	ne Bath Maintenance (OP-7)	
1. Ni	sture of WM Option	Equipment-Related Personnel/Procedure-Related Materials-Related	
2. if	the option appears technically	r feasible, state your rationale for th	bs. Bath maintenance is
oft	en employed on metal fir	hishing lines to extend the u	seful life of process solutio
W	further analysis required? X orksheet. If not, skip to works	Yes No. If yes, continue with theet 15.	
J. EC	upment - Related Option	YES	NO
	Equipment evaluable common		
	Equipment available commerc Demonstrated commercially?		
	In similar application?	R I	
	Successfully?		
	oucessiany :		
	Describe closest industrial ana	log Used for identical pu	ipose at many sites.
	Describe closest industrial ane	log Used for identical pu	Those at many bites.
	Describe closest industrial and		
			······································

Working installation(s)	Contact Person(s)	Date Contacted 1
-	wound instantion(s)	Wonding installation(s) Contact Person(s)

1. Also attach filled out phone conversation notes, installation visit report, etc.

Firm <u>SAIC</u>	Waste Minimization Assessment	Prepared By G. Cushnie
Site	Proc. Unit/Oper. E-Coat	Checked ByS. Roman
Date 1/3/90	Proj. No. <u>1-832-03-942-03</u>	Sheel <u>2</u> of <u>6</u> Page of

WM Option Description _____ E-Coat Line Bath Maintenance (OP-7_)

3. Equipment-Related Option (continued)

Performance information required (describe parameters): The facility should coordinate any changes to the E-Coat line with chemical supplier to assure compatibility

with the existing system.	
Scaleup Information required (descrit	be):
Testing Required: 📃 yes	no no
Scale: bench pilot	
Test unit available?	
Number of test runs:	
Amount of material(s) required:	·
Testing to be conducted:	in-plant
-	
Facility/Product Constraints:	
Space Reguirements	

Firm SAIC	Waste Minimization Assessment	Prepared By G. Cushnie
Site	Proc. Unit/Oper. E-Coat	Checked By S. Roman
Date 1/3/90	Proj. No. 1-832-03-942-03	Sheet 3_ of 6_ Page of
	ECHNICAL FEASIBILITY	r I I I I I I I I I I I I I I I I I I I
	(continued)	
WM Option DescriptionE-Co	oat Line Bath Maintenance (OP-7	2)
2. Equipment-Related Option (co	ntinued)	
	endent on equiptment selected.	
Electric Power		
Process Water	Flow Pressure	
	Quality (tap, demin, etc.)	
Cooling Water	Flow Pressure	
	Temp. In Temp. Out	
Conjent/Heat Transfor	Fluid	
	Temp. In Temp. Out	
	Duty	
Steam	Pressure Temp	
	Duty Flow	
Fuel	Type Flow	
Plant Air	Flow	
Inert Gas		
Estimated delivery time (after	award of contract)	
Estimated installation time		
Installation dates		
Estimated production downtin	NO	
Will production be otherwise a	iffected? Explain the effect and impact	t on production
·-··		
Will product quality be affected	d? Explain the effect on quality	······
	·····	

•

FirmSA Site Date7/9	IC 10	Waste Minimization Assessment Proc. Unit/Oper. <u>E-Coat</u> Proj. No.1 <u>-832-03-942-03</u>	Prepared By G. Cushnie Checked By S. Roman Sheet 4_ of 6_ Page of
	4d		Y SEPA
	DescriptionE-Coat	Line Bath Maintenance (OP-7)	
	nent-Related Option (co		
	Will modifications to v	vork flow or production procedures be	e required? Explain.
	•	ance training requirements to be trainedNone	Onsite
	Duration of trainin Describe catalyst, che	g micals, replacement parts, or other su	_ •
	item	Rate or Frequency of Replacement	Supplier, Address
	Filter Cartridges	As needed	Numerous
	L		
		government and company safety and ExplainTo_be_determined	-
		• • • •	-
	Yes No	• • • •	
	Yes No	Explain To be determined	
	How is service handled vendor selected.	Explain To be determined	nce)? Explain

•

-

Firm <u>SAIC</u> SiteS	Waste Minimization Assessment Proc. Unit/OperE-Coat Proj. No. 1=832=03=942=03	Prepared By <u>G. Cushnie</u> Checked By <u>S. Roman</u> Sheet <u>5</u> of <u>6</u> Page of
	CONUMER CONUMER	
3. Equipment-Related Option		()
	orage or material handling requiremen	HB No_significant
Describe any additional la may be required.	boratory or analytical requirements. H	lore frequent bath analysis
4. Personnel/Procedure-Rela Affected Departments/Are	ned Changes as	
Training Requirements		
Operating Instruction Char	nges. Describe responsible departme	nt s
5. Materials-Related Changet option as an equipment-re) (Note: If substantial changes in equip lated one.)	iment are required, then handle the <u>Yes No</u>
Has the new material b	een demonstrated commercially?	
In a similar application	?	
Successfully? Describe closest appli	cation	

Firm SAIC	waste Minimization Assessment	Prepared By <u>G. Cushnie</u>
Site	Proc. Unit/Oper. E-Coat	Checked ByS. Roman
Date	Proj. No. 1-832-03-942-03	Sheet 1_ of 6_ Page of
NORKSHEET 15a	COST INFORMATION	≎ EPA
WM Option DescriptionE-Coa	at Line Bath Maintenance (OP-7)
CAPITAL COSTS - Include all I	costs as appropriate.	TOTALS
X Purchased Process Eq	luipment	
Price (tob factory)	Estimated cost	is \$2,000
Taxes, freight, insu	rance per process ta	nk
Delivered equipme	ni cost	
Price for Initial Spa	are Parts Inventory	\$6,000
Estimated Materials Co	net .	
Piping	Assume 20% of	price
Electrical	Assume 10% of p	rice
Instruments	······	
Structural		
insulation/Piping	<u>-</u>	1,800
Estimated Costs for U	Illy Connections and New Utility Sys	tema
Electricity	Assume 10% of	price
Steam		
Cooling Water		
Process Water		
Refrigeration	<u></u>	
Fuel (Gas or Oil)		
Plant Alr		
inert Gas		600
Estimated Costs for Ad	iditional Equipment	
Storage & Material	Handling	
Laboratory/Analytic	al	
Other		
Site Preparation		
(Demolition, site clearly	ng, etc.)	
Estimated installation (Costa	
Vendor		
Contractor		
In-house Staff	Assume 20% of	price\$1,200

-

.

-

SAIC	Waste Minimization Assessm	nent Prepared By	G. Cushnie
	Proc. Unit/OperE-Coat	Checked By	S. Roman
1/3/90	Proj. No. 1-832-03-942-03	Sheet 2 of	5 Page of
WORKSHEET	COST INFORMATI	ON	EPA
	(continued)		
CAPITAL COSTS (Cont.)			TOTALS
Engineering and Procus	rement Costs (in-house & outs	lide)	
Planning		for E&P is 20%	
Engineering	of price		
Procurement			
Consultante			\$1,200
_			
X Start-up Costs			
Vendor			
Contractor			
in-house	Assume 20% o	f price	<u>\$1,200</u>
Training Costs			
Permitting Costs			
Fees			
In-house Staff Cost			
initial Charge of Catalys			
,			
	hem #1		
	tem #2		
			alaau daara amaa siisa
🖆 Working Cepital (Raw N	laterials, Product, Inventory, Mat		elsewhere specifie
	tem #1 Assume_20%_c	-	
	tem #2		
	tem #3		\$1 200
	tem #4		\$1,200

Firm <u>SAIC</u>	Waste Minimization Assessment	Prepared By <u>G. Cushnie</u>
Site	Proc. Unit/OperE-Coat	Checked By S. Roman
Date	Proj. No. <u>1-832-03-942-03</u>	Sheet 3 of 6 Page of

WORKSHEET

CAPITAL COST SUMMARY

.

Cost Item	Cost
Purchased Process Equipment	\$ 6,000
Materials	1,800
Utility Connectiona	600
Additional Equipment	
Site Preparation	
Installation	1,200
Engineering and Procurement	1,200
Start-up Cost	1,200
Training Costs	
Permitting Costa	
Initial Charge of Catalysts and Chemicals	
Fixed Capital Investment	\$12,000
Working Capital	1,200
Total Capital Investment	\$13,200
Salvage Value	\$ 0

•

Firm	Waste Minimization Assessment	Prepared By <u>G. Cushnie</u>
Site	Proc. Unit/OperE-Coat	Checked By 5. Roman
Date	Proj. No. <u>1-832-03-942-03</u>	Sheet 4 of 6 Page of

COST INFORMATION

EPA

Estimated Decrease (or Increase) In Utilities

Utility	Unit Cost \$ per unit	Decrease (or increase) in Quantity Unit per time	Total Decrease (or increase) \$ per time
Electricity		Estimated	\$200/yr
Steam			
Cooling Process	1		
Process Water			
Refrigeration			
Fuel (Qas or OII)			<u> </u>
Plant Air			
Inert Air		1	

INCREMENTAL OPERATING COSTS - Include all relevant operating savings. Estimate these costs on an incremental basis (i.e., as decreases or increases over existing costs).

X	BASIS	FOR COSTS	Annual Quarterly I	fonthly Daily Other	r
x	Estima	ited Disposal Cos	t Saving		
		Decrease in TSD)F Fees	\$1,233	
Assumes 107 reduction of		Decrease in Stat	e Fees and Taxes		
F019 sludg		Decrease in Tra	nsportation Costs		
		Decrease in Ons	ite Treatment and Handling		
		Decrease in Pen	mitting, Reporting and Recordkeepi	ng	
			Total Decrease in Disposal Costs	\$1,233	

X Estimated Decrease in Raw Materials Consumption

Materiais	Unit Cost \$ per unit	Reduction in Quantity Units per time	Decrease in Cost \$ per time		
Tanks 1,3,6,(see ws7)	6,330/yr	30% reduction	\$1,899		

Firm SAIC		Prepared By G. Cushnie
Site	Proc. Unit/Oper. E-Coat	Checked By S. Roman
		Sheel 5 of 6 Page of

WORKSHEET 15e

EPA

Estimated Decrease (or Increase) in Ancillary Catalysis and Chemicals

Catalyst/Chemical	Unit Cost \$ per unit	Decrease (or Increase) in Quantity Unit per time	Total Decrease (or Increase) \$ per time
			· · · · · · · · · · · · · · · · · · ·
	T		

Estimated Decrease (or increase) in Operating Costs and Maintenance Labor Costs (include cost of supervision, benefits and burden).

Increases in maintenance labor for equipment are expected to be balanced by decreases in labor for refomulation at the baths.

Estimated Decrease (or increase) in Operating and Maintenance Supplies and Costs.

Estimated Decrease (or increase) in insurance and Liability Costs (explain).

Estimated Decrease (or increase) in Other Operating Costs (explain).

INCREMENTAL REVENUES

Estimated incremental Revenues from an increase (or Decrease) in Production or Marketable By-products (explain).

FirmSAIC	Waste Minimization Assessment	Prepared By <u>G. Cushnie</u>
Site	Proc. Unit/Oper	Checked By S. Roman
Date		Sheet <u>6</u> of <u>6</u> Page of

COST INFORMATION

(sentinued)

INCREMENTAL OPERATING COST AND REVENUE SUMMARY (ANNUAL BASIS)

Decreases in Operating Cost or increases in Revenue are Positive. Increases in Operating Cost or Decrease in Revenue are Negative.

Operating Cost/Revenue Item	\$ per year
Decrease in Disposal Cost	\$1,233
Decrease in Raw Materials Cost	\$1,899
Decrease (or increase) in Utilities Cost	200
Decrease (or increase) in Catalysts and Chemicals	
Decrease (or increase) in O & M Labor Costs	
Decrease (or increase) in O & M Supplies Coste	
Decrease (or increase) in insurance/Liabilities Costs	
Decrease (or increase) in Other Operating Costs	
Incremental Revenues from Increased (Decreased) Production	
Incremental Revenues from Marketable By-products	\$3,332
Net Operating Cost Savings	

	Waste Minimization Assessment	Prepared By G. Cushnie
Site		Checked By <u>S. Rowan</u>
Date 1/3/90	Proj. No. 1-832-03-942-03	Sheet <u>1</u> of <u>1</u> Page of

PROFITABILITY WORKSHEET # 1 PAYBACK PERIOD

€ЕРА

E-Coat Line Bath Maintenance (OP-7)					
Total Capital Investment (\$) (from Worksheet 15c)					
Annual Net Operating Cost Savings (\$ per year) (from Worksheet 15f) <u>\$3,332</u>					
Payback Period (in years) =					

FirmSAIC	Waste Minimization Assessment	Prepared By S. Roman
Site		Checked By <u>G. Cushnie</u>
Date	Proj. No. 1-832-03-942-02	Sheet 1_ of 1_ Page of

EPA

WORKSHEET **PROFITABILITY WORKSHEET #2** CASH FLOW FOR NPV. IRR

17

Cash incomes (such as net operating cost savings and salvage value) are shown as positive. Cash outlays (such as capital investments and increased operating costs) are shown as negative.

Line			Censtr.		Operating' Year						
		Y ear O	1	2	3	4	5	6	7 .	8	
A	Fixed Capital Inv	estment		1	•						
B	+ Working Capita	ul									
C	Total Capital Inve	stment									
D	Salvage Value ¹										
											/-
E	Nel Operating Co	sta Savinga				1	T		1		
F	- Interest on Loar	78									
a	- Depreciation										
н	Taxable income					I					Τ
ł	- Income Tax*					1				1	
L	Aftertax Profit*						T				
ĸ	+ Depreciation							Ι			
L	- Repayment of L	oan Principal									
M	- Capital Investm	ent (line C)									
N	+ Salvage Value (line D)									
0	Cash Flow										
P	Present Value of	Cash Flow									
٩	Net Present Value	(NPV)									
	Present Worth*	(5% diacount)	1.0000	0.9524	0.9070	0.8638	0.8227	0.7835	0.7462	0.7107	0.678
		(10% diacount)	1.0000	0.9091	0.8264	0.7513	0.6830	0.8209	0.5645	0.5132	0.466
		(15% discount)	1.0000	8688.0	0.7581	0.6575	0.5718	0.4972	0.4323	0.3759	0.326
		(20% discount)	1.0000	0.8333	0.5944	0.5787	0.4823	0.4018	0.3349	0.2791	0.232
		(25% discount)	1.0000	0.8000	0.6400	0.5120	0.4096	0.3277	0.2621	0.2097	0.157

Adjust table as necessary if the anticipated project life is less then or more than 8 years. 1

Salvage value includes acrap value of equipment plus sale of working capital minus demo-2

lillion costa. The worksheet is used for calculating an afteriax cash flow. For pretax cash flow, use an income tax rate of 0%. 3.

4

5

The present value of the cash flow is equal to the cash flow multiplied by the present worth factor. The net present value is the sum of the present value of the cash flow for that year and all of the preceeding years. The formula for the present worth factor is _____1 where n is years and r is the discount rate. 6 The formula for the present worth factor is where n is years and r is the discount rate, (1+r)*

7 The internal rate of return (IRR) is the discount rate (r) that results in a net present value of zero over the life of the project.

TECHNICAL REPORT DATA (Please read Instructions on the reverse before complexity)					
1. REPORT NO. 2. EPA/600/2-91/038	3				
4. TITLE AND SUBTITLE	5. REPORT DATE				
Waste Minimization Opportunity Assessment:	A Class 8 21 AUG 91				
Truck Assembly Plant	0.7 En: Chimito Chiganter fon Cobe				
7. AUTHORIS)	EPA/ORD 8. PERFORMING ORGANIZATION REPORT NO.				
Science Applications International Corporat					
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT NO.				
8400 Westpark Drive					
McLean, VA 22102	11. CONTRACT/GRANT NO.				
	68-C8-0062				
12. SPONSORING AGENCY NAME AND ADDRESS	13. TYPE OF REPORT AND PERIOD COVERED				
Risk Reduction Engineering Laboratory	project report 14. sponsoring agency code				
Office of Research and Development	14. SPONSONING AGENCY LODE				
U.S. Environmental Protection Agency Cincinnati, OH 45268	· EPA/600/14				
15. SUPPLEMENTARY NOTES Mary Ann Curran FTS 684-7837 (513) 569-76	337				
or eliminate hazardous waste. The approach is presented in a report entitled, "Waste Minimization Opportunity Assessment Manual" (EPA/625/7-88/003). This report describes the application of the waste minimization assessment procedures to a truck assembly facility in Chillicothe, Ohio. This facility volunteered to participate in the project and provided technical support during the study. The relative comparison used in this study indicates that the best options appear to be: 1) reducing paint mix volumes through closer control, 2) minimizing solvent contamination by using a different working container and procedures and 3) improving transfer efficiency by installing electrostatic painting in the chassis booth. Two options ranked with moderately good scores: 1) dewatering paint solids and recycling the booth waters and chemicals and 2) using ion exchange to recycle the phosphate/E- coat rinse water. The option for bath maintenance on the phosphate/E-coat line ranked last, however still within a reasonable range. One option which recommended procedural and small equipment changes for painting was not evaluated during the feasibility analysis phase, because the costs and savings could not be projected at this time. The associated waste minimization techniques however appear to be technically and economically viable.					
17. KEY WORDS AND DO					
	b.IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group				
painting, degreasing, coatings waste minimization, waste reduction, truck manu-					
	facture, cab assembly				
· · ·					
	·]				
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) 21. NC. OF PAGES Unclassified 170				
Release to public	20. SECURITY CLASS (This page) 22. PRICE				
	Unclassified				

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE