CONSUMPTION RATES OF POTENTIALLY HAZAROOUS MARINE
 FISH CAUGHT IN THE METROPOLITAN LOS ANGELES AREA

by

Harold W. Puffer, Stanley P. Azen, Marysia J. Düda, David R. Young University of Southern California School of Medicine Departments of Pathology and Preventive Medicine
 Parkview Medical Building
 2025 Zonal Avenue
 Los Angeles, California 90033

Grant No. R 807120010

Project Officer
Robert Brice Marine Division
Environmental Research Laboratory
Corvallis, Oregon 97333

ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
_CORVALLIS, OREGON 97333

NOTICE

Mention of trade names or commercial products does not consititute endorsement or recommendation for use.

This report presents the results of a 1980 survey in the Los Angeles metropolitan area to assess the consumption rates of potentially hazardous marine fish and shellfish by local, non-professional fishermen; to identify population subgroups having a significantly large consumption rate; and to estimate the size of the population potentially exposed to harmful pollutants. The results of this study represent the first phase in the evaluation of the potential hazard to humans by consumption of marine fish and shellfish from polluted waters in the harbor and coastal regions of [os Angeles County.

CONTENTS

Abstract iii
Figures and Tables. vi
Acknowledgements vii

1. Introduction. 1
2. Materials and Methods 2
3. Results 5
4. Discussion. 14
References 16
Appendices
A. 18
B. 22
C. 27

FIGURES
Number Page
la Location of survey sites (Team 1) 5
1b Location of survey sites (Team 2) 6
TABLES
Number Page
1 Demographic characteristics of interviewed sportfishermen 7
2 Estimated demographic characteristics of sportfishermen population. 7
3 Patterns of fishing activity and fish consumption for interviewedsportfishermen.8
4 Description of primary fish kept by sportfishermen. 8
5 Description of consumption patterns for primary fish kept by sportfishermen. 9
6 Cumulative distribution of total fish and shellfish consumption . . 10
7 Analysis of median consumption rates 118 Analysis of demographic characteristics of infrequent vs. frequentsportfishermen.12
9 Size of population of sportfishermen in survey sites 13
10 Estimated annual consumption of PCB 15

ACKNOWLEDGEMENTS

Appreciation is extended to Dr. Herb Frey, Leo Pinkas, and Vickie Wine of the California Department of Fish and Game for their review and critique of this research, to Dr. Donald Baumgartner and Robert Brice of the Environmental Protection Agency for assistance with management of the proposal, and to the staff of the Southern California Coastal Water Research Project for their advice curing the survey. Gratitude is given to the surveyors: Tim Chapman, John Ljubenkov, Dona Mastin, and Corinne Shadoian. We also wish to acknowledge the fine technical assistance of Rosa Aispuro.

SECTION I

INTRODUCTION

In 1978, the California Department of Fish and Game carried out a major independent sportfishing survey in Southern California. ${ }^{1}$ The results of that survey indicated that considerable fishing effort was expended (one million angler-trip hours per year), that 75% of the catch was composed of 20 species, and that one in three fish caught was a white croaker. White croaker has been shown to contain large amounts of DDT (average $=39 \mu \mathrm{~g} / \mathrm{g})^{2-}$ and polychlorinated biphenyl (PCB). Concentrations of PCBs have been shown to range from $0.6 \mu \mathrm{~g} / \mathrm{g}$ within Los Angeles Harbor ${ }^{3}$ to $2.8 \mu \mathrm{~g} / \mathrm{g}$ near the White Point sewage outfall. ${ }^{2}$ The survey a: so reported some catches of shellfish. Shellfish have been shown to be contaminated with heavy metals as well as the carcinogen benzo(a)pyrene ${ }^{4}$ (BaP). No data were obtained, however, to demonstrate that direct consumption of fish or shellfish occurred in this population of sportfishermen.

This report presents the results of a 1980 survey in the Los Angeles metropolitan area to assess the consumption rates of potentially hazardous marine fish and shellfish by local, non-professional fishermen; to identify population subgroups having a significantly large consumption rate; and to estimate the size of the population potentially exposed to harmful pollutants. The results of this study represent the first phase in the evaluation of the potential hazard to humans by consumption of marine fish and shellfish from polluted waters in the harbor and coastal regions of Los Angeles County.

SECTION 2

MATERIALS AND METHODS

During the design period of October 1979 to December 1979, a questionnaire on sportfishing and catch consumption was designed based on several pilot tests. The questionnaire (Appendix A) collected information on: (a) demographic characteristics of the fishermen and their-family/living group; (b) patterns of fishing activity; (c) species, numbers, and weights of fish caught; and (d) characteristics of fish consumption in the family/living group. Distinction was made between those fishermen who caugnt fish for consumption and those who caught fish for other purposes. The final version of the questionnaire was designed for ease of coding and keypunching for computer analysis.

LOCATION OF SURVEY SITES

During the design period, numerous fishing locations in the harbor and coastal areas of Los Angeles were evaluated as possible survey sites. Twelve representative locations were subsequently chosen for the survey. The California Department of Fish and Game confirmed that these sites (Figures la and 16) were frequently used and contained abundant marine life. ${ }^{5}$ In addition, they were affected by varying degrees of pollution. ${ }^{6}$ Two of the sites (sites 7 and 8) were near sewage outfalls. The major Los Angeles County piers were included in the survey (sites 1, 5, and 8-11). Party boats (sites 6 and 12) were included because many sportfishermen do not fish from piers, shore, or breakwater areas. Fishermen utilizing private boats were excluded from this study because their fishing sites were too random, ranging from areas of pollution impact to pristine waters, and covered too broad an area to be surveyed adequately with the resources available.

SURVEYING PROCEDURES

Four surveyors visited each of the twelve sites, usually in teams of two. Attempts were made to survey each site approximately three times/month on different days of the week and different times of the day. The surveying period was January 1 through December 31, 1980.

Surveyors were selected on the basis of their Southern California fishing experience and their knowledge of marine life. Each team was composed of a male and female. Surveyors were presented with appropriate identification.

When the surveyors arrived at a sampling site, they recorded in a logbook the number of fishermen, their sex, race, and approximate age. All fishermen were counted whether or not they had caught fish. However, only those fishermen with fish were subsequently interviewed. No fisherman was interviewed
more than once during the one year study period. When the number of fishermen with fish at the sampling site was greater than 20 , a systematic sampling approach was used (Appendix B).

Although it was not an essential part of the survey, attempts were made to obtain names and addresses of interviewed sportfishermen so that fishermen could be interviewed in more depth in subsequent research. As an incentive, fishing maps, regulations, and/or recipes were mailed to them.

Surveyors interviewed the sportfishermen, identified and counted the number of fish, and estimated the average weights using Ohaus Dial Spring scales (Appendix B). Surveyors also coded the questionnaire for keypunching. Photographs were taken frequently to assure the reliability of the surveyors' taxonomic identification of fish, to document site conditions, and to confirm sportfishermen counts.

DATA MANAGEMENT/STATISTICAL ANALYSIS
Questionnaires were submitted to the analyst/supervisor at biweekly meetings and reviewed for accuracy, consistency, and completeness. Data from questionnaires were keypunched and stored on computer disk, and analyses were carried out using the SPSS computer package. ${ }^{7}$ Appendix C summarizes the codes and coding procedures.

The daily consumption of each species (grams/day/person) was calculated from the equation:

$$
\text { Consumption }=k \times \frac{n W}{e} \times \frac{f}{365}
$$

where $k=$ edible portion (by weight) of fish ($\frac{1}{4} \leq k \leq \frac{1}{2}$, depending on species)
$n=$ number of $f i s h$ in catch
$w=$ average weight (grams) of fish in catch
$e=$ number of fish eaters in family/living group
$f=$ frequency of fishing per year

Assumptions underlying this formula are that the number and average weight of the fish represent a "typical" catch for a given fisherman, the number of family fish eaters is constant over the study period, and the catch is shared equally among family members.

From the questionnaire data, demographic characteristics, and fishing activity of the sportfishermen, as well as average (median) consumption rates, were determined. Differences in median consumption rates were compared across sites and across demographic characteristics using the Kruskal-Wallis non-
parametric analysis of variance procedure. ${ }^{8}$ The size of the sportfishermen population was estimated from the logbook data. Details of the estimation procedure are presented in the next section (Table 9).

SECTION 3

RESULTS

During the period of January 1 to December 31, 1980 a total of 1,059 interviews were conducted; 61% during the week, 39% on the weekend. Nearly two-thirds of the days were sunny, while the remainder were foggy, cloudy, or raining. During January, mid-February, and March, heavy-rains reduced interviewing. Heavy erosion and landslide conditions closed Abalone Cove (site 7) from late March until November. Consequently, Point Vicente was substituted as a survey site (see Figure la and lb). In early spring, quarantines were imposed for about ten days in Santa Monica Bay and Los Angeles/Long Beach harbors due to heavy sewage overflow. During that period, interviews could not be obtained. Also, Gerald Desmond bridge (site 3), which is not legally a public access bridge, was closed in March and from mid-September to December. Illegal disposal of chemicals caused closure of sites $9-11$ from December 9 to 17.

Figure la. Location of survey sites (Team 1).

Figure 1b. Location of survey sites (Team 2).

Table 1 presents the demographic characteristics of the interviewed sportfishermen and their family/living groups. The majority of those interviewed were male, Caucasiar, 18 to 40 years old, employed, and living with three or more persons.

Table 2 shows population estimates of the sex, age, and race distributions obtained from logbook data. When comparing Tables 1 and 2 , it was apparent that youths (< 17 years) who fished with their parents were underrepresented in the interviewed sample since, in most cases, the adult was interviewed as the representative family member. Also, Orientals (especially Samoans) and Mexican-Americans may be under-represented since a small portion of this population (5-10\%) did not speak English and therefore could not be interviewed.

Table 3 presents patterns of fishing activity and fish consumption. Approximately half of the fishermen fished one or more times per week, and more than half had been fishing four or more hours at the time of the interview. The frequency of eating fish was generally the same as or larger than the frequency of fishing.

Table 4 presents a summary of the twelve primary fish species that were taken home (i.e, not, thrown back or used as bait), the median number per catch, ad the average weight per species. White croaker were by far the most common fish caught. Shellfish, primarily crabs and mussels, constituted only 3% of the catch.

TABLE 1. DEMOGRAPHIC CHARACTERISTICS OF INTERVIEWED SPORTFISHERMEN

* Includes fish consumers and non-consumers.

TABLE 2. ESTIMATEO DEMOGRAPHIC CHARACTERISTICS OF SPORTFISHERMEN POPULATION

Sex	Age (years)		Race	
Male 84\%	≤ 17	17\%	Caucasian	38\%
Female 16\%	> 17	83\%	Black	22\%
			Mexican-American	21\%
			Oriental/Samoan	19\%

Table 5 presents a summary by species of the percent of fishermen who primarily consumed their fish or gave it away, the median amount of fish consumed, and the primary methods of preparation. The majority of fishermen interviewed supplemented their diet with the fish they caught, and the most common method of preparation was pan frying. Although few fishermen primarily ate raw fish, 8% said they ate it occasionally. Of the raw fish consumed, 16% were white croaker, 32% were bonito, and 12% were Pacific mackerel. Other uses of fish not shown in Table 5 included use as pet food and fertilizer.

Table 6 presents the cumulative distribution of total fish and shellfish consumption. The median amount consumed was $37 \mathrm{~g} / \mathrm{day} / \mathrm{person}$, with the 90 th percentile at $225 \mathrm{~g} /$ day/person (i.e., 10% of the fishermen consumed more than this amount). These figures are based on total grams of edible fish in each fisherman's catch regardless of species. Broken down by species, the consumption rate will differ, i.e., Tab?e 10.

TABLE 3. PATTERNS OF FISHING ACTIVITY AND FISH CONSUMPTION FOR INTERVIEWED SPORTF I SHERMEN

TABLE 4. DESCRIPTION OF PRIMARY FISH KEPT BY SPORTFISHERMEN

Species	$(n=1,059)$		
	Percent of Fishermen Who Caught	Median Number (range)	```Average (}\pm\mathrm{ sem) Weight (g)```
White Croaker	34\%	$4(1,40)$	153 ± 3
Pacific Mackerel	25\%	$4(1,56)$	334 ± 9
Pacific Bonito	18\%	$2(1,55)$	717 ± 26
Queenfish	17\%	2 (1, 100+)	143 ± 5
Jacksmelt	13\%	$1(1,30)$	223 ± 8
Walleye Perch	10\%	$2(1,21)$	115 ± 5
Shiner Perch	7\%	2 (1, 29)	54 ± 5
Opaleye	6\%	$2(1,13)$	307 ± 38
Black Perch	5\%	$2(1,17)$	196 ± 14
Kelp Bass	5\%	$1(1,7)$	440 ± 61
California Halibut	4\%	$1(1,4)$	1752 ± 144
Shellfish*	3\%	3 (1, 84)	421 ± 124

[^0]TABLE 5. DESCRIPTION OF CONSUMPTION PATTERNS FOR PRIMARY FISH KEPT BY SPORTFISHERMEN

Species	Percent of Fishermen Who Consume/Give Away		$(\mathrm{n}=1,059)$						
			Median Consumption (g/day/person)	Primary Method of Cooking					
			Deep Fry	Pan Fry	Bake and Charcoal Broil	Raw	0ther**		
White Croaker	82\%	15\%		14.8	19\%	64\%	12\%	0\%	5\%
Pacific Mackerel	74\%	15\%	35.8	10\%	41\%	28\%	0\%	21\%	
Pacific Bonito	77\%	18\%	63.6	5\%	33\%	43\%	2\%	17\%	
Queenfish	79\%	13\%	7.8	15\%	70\%	6\%	1\%	8\%	
Jacksmelt	78\%	16\%	9.4	17\%	57\%	19\%	0\%	7\%	
Walleye Perch	83\%	7\%	5.4	12\%	69\%	6\%	0\%	13\%	
Shiner Perch	67\%	10\%	2.0	11\%	72\%	8\%	0\%	11\%	
Opaleye	87\%	7\%	16.1	16\%	56\%	14\%	0\%	14\%	
Black Perch	89\%	5\%	8.1	18\%	53\%	14\%	0\%	15\%	
Kelp Bass	78\%	2\%	3.9	12\%	55\%	21\%	0\%	12\%	
California Halibut	86\%	8\%	143.1	13\%	60\%	24\%	0\%	3\%	
Shellfish*	97\%	0\%	10.0	0\%	0\%	0\%	0\%	100\%	

* Crab, mussels, abalone.
** Boil, soup, steam, stew.

TABLE 6. CUMULATIVE DISTRIBUTION OF TOTAL FISH AND SHELLFISH CONSUMPTION

	Percentile	Consumption Rate* (g/day/persan)
	5\%	2.3
-	10\%	4.0
	20\%	8.3
	30\%	15.5
	40\%	23.9
	50\%	36.9
	60\%	53.2
	70\%	79.8
	80\%	120.8
	90\%	224.8
	95\%	338.8

* Based on total grams of fish regardless of species.

Table 7 presents the median total fish consumption stratified by age, race, site, and fishing season. The Kruskal-Wallis analysis of variance test indicated significantly larger consumption rates among senior citizens (65 years or older) and among the Oriental/Samoan subgroup ($P<0.001$). Also, significantly more fish were consumed from catches in site 8 ($P<0.001$), a site likely to be influenced by waste discharge.

Table 8 compares the demographic characteristics of frequent versus infrequent fishermen. Chi-square tests of significance indicated that frequent fishermen tended to be older, Caucasian, and lived either alone or in a smaller family group.

Logbook data were used to estimate the size of the population of sportfishermen at each of the 10 sites excluding party boats. Party boats were not included since no data were obtained on the number and size of all party boats in the Los Angeles coastal area. Estimates were based on fishermen counts obtained from the logbook data. Distinction was made between weekday and weekend counts.

For each weekday (or weekend day) the recorded count in the logbook represented the peak number of fishermen during the regular surveying hours. This count was an underestimate of the total number of fishermen at the survey site for the entire day. The peak numbers were averaged over all site visits to give 400 fishermen/day for all 10 sites on any weekday and 945 fishermen per day for all 10 sites on any weekend day. These averages ere then adjusted by weighting them by factors equal to the proportion of weekdays per year (= $261 / 365$) and the number of weekend days per day $(=104 / 365)$. The weighted averages were 286 fishermen per day for all 10 sites on a weighted average weekend day. Thus, the average number of fishermen per day for any day was $286+269=555$.

TABLE 7. ANALYSIS OF MEDIAN CONSUMPTION RATES (g/day/person)

* P value obtained from testing the hypothesis of equality of medians using the Kruskal-Wallis non-parametric analysis of variance test procedure. ${ }^{8}$

The average number of fishermen per day by frequency of fishing (Table 9a) was calculated by multiplying this total by the corresponding proportion of fishermen given in the fishing frequency statistics presented in Table 3. The total number of fishermen per year was obtained by multiplying the number of fishermen (by frequency category) by the number of days per year and dividing by a factor to account for the fact that the same fishermen were sometimes being counted more than once. Therefore, this factor represents the number of times that an individual fishermen is seen during the year. From these assumptions it was determined that there were at least 31,351 different sportfishermen per year at the 10 sites. Using data on the distribution of family fish eaters, the total number of people who eat fish caught by the 31,351 fishermen was estimated to be at least 100,950 (Table 9b).

TABLE 8. ANALYSIS OF DEMOGRAPHIC CHARACTERISTICS OF INFREQUENT VS. FREQUENT SPORTFISHERMEN

Sex (3)	Frequent (3-7 times/week)	Infrequent (all others)	p*
Male	86\%	89\%	NS
Female	14\%	11\%	
Age Group (years)			
≤ 17	8\%	11\%	<0.0001
18-40	44\%	54\%	
41-65	27\%	29\%	
> 65	21\%	6\%	
Race			
Caucasian	59\%	43\%	<0.005
Black	22\%	26\%	
Mexican-American	10\%	18\%	
Oriental/Samoan	9\%	13\%	
Number of Family Members*			
1	26\%	14\%	< 0.0001
2	33\%	24\%	
3-4	26\%	31\%	
$5+$	16\%	31\%	
Consumption Rates (g/day/person)	n) 127.2	27.2	<0.001

* P values obtained from chi-square tests of homogeneity for frequency data, and the Kruskal-Wallis non-parametric analysis of variance test for medians. ${ }^{8}$
\dagger Includes fish consumers and non-consumers.

TABLE 9. SIZE OF POPULATION OF SPORTFISHERMEN IN SURVEY SITES

Frequency of Fishing	\%	Number of Fishermen per Day	Coefficient	Number of Fishermen per Year
Infrequent ($<1 \mathrm{mo}$)	28	155	365/2	28,288
1-3 times/month	23	128	365/24	1,947
1-2 times/week	35	194	365/72	983
3-4 times/week	9	50	365/182	100
5-7 times/week	5	28	365/312	33
Total	100	555	--	31,351
D. Total Number of Family Members Who Are Fish Eaters				
Number of Family Fish Eaters			\%	Total Number
0			2	0
1			20	6,270
2			26	16,303
3			13	12,227
4			14	17,557
5			11	17,243
6			6	11,286
7-20			8	20,064
Total			00	100,950

SECTION 4

DISCUSSION
This report represents the results of a fish consumption study carried out during 1980 to characterize sportfishermen and their catches in the coastal regions of Los Angeles County. A total of 400 visits were made to 12 sites (Figure 1); 1,059 interviews were completed from an estimated sportfishing population of at least 31,351 (Table 9). The median consumption rate was found to be $37 \mathrm{~g} /$ day--much higher than the average fish consumption for the U.S. population as a whole (estimated at about $18.7 \mathrm{~g} / \mathrm{day}$). ${ }^{9}$ Although shoreline fishermen are shown to consume fish at rates considerably above the national average, it must be remembered that: (a) these data are biased toward frequent fishermen since they are more likely to be interviewed at any given time; (b) these data do not take into account consumption of storebought fish or dietary sources which might be displaced by eating locally caught fish; and (c) the recorded catch may represent a fraction of the entire catch.

The results of this study also show that there exists a regular fishing population along the Southern California shoreline (14% fish 3 to 7 times/ week), even at sites likely to be influenced by waste discharges (sites 7 and 8). Fish caught by frequent as well as infrequent fishermen are generally shared and consumed among at least 101,000 family members (Table 9).

The catches are dominated by a few species (Table 4) including two, white croaker ano Pacific bonito, which accumulate trace organics including PCBs. PCBs have long been shown to produce toxic effects in prolonged industrial exposure ${ }^{10-12}$ and affect children born to mothers exposed to oil contaminated by PCB. ${ }^{13}$ They have also been found in the milk of nursing mothers in Michigan. ${ }^{14}$

Table 10 shows the estimated 50 th percentile (median) and 90 th percentile consumption levels of PCB for the edible portion of white croaker and Pacific bonito. Data on PCB concentrations for bonito were obtained in 1975-77 by trawl in the relative area of this survey. ${ }^{2}$ Data on PCB concentrations for white croaker were recently reported by Young et al. ${ }^{3}$ from fish taken in the outer Los Angeles harbor region of Cabrillo Beach. Based on these data, which may not be accurate for fish consumed in the present study, the annual median level of PCBs for white croaker consumption would be 3.2 mg ($14.8 \mathrm{~g} /$ day $\times 0.6$ $\mu \mathrm{g} / \mathrm{g} \times 365$ days). Similarly, the annual median level of PCBs for bonito consumption would be 7.2 mg ($63.6 \mathrm{~g} /$ day $\times 0.31 \mu \mathrm{~g} / \mathrm{g} \times 365$ days). If one considers the population of heavy fish eaters at the 90 th percentile, the annual consumption of PCBs would be 18.7 mg for white croaker and 37.8 mg for bonito. However, calculation of daily dose (Table 10) at the 50th percentile indicates a consumption below the permissible FDA guidelines of $1 \mu \mathrm{~g} / \mathrm{kg} /$ day . At the 90 th percentile the calculated dose approaches this permissible level

TABLE 10. ESTIMATED ANNUAL CONSUMPTION OF PCB* (mg)

Species.	Consumption Rate (g/day)	Concentration of PCB ($\mu \mathrm{g} / \mathrm{g}$)	Annual Consumption of PCB (mg)	$\begin{aligned} & \text { Dose }{ }^{\star x} \\ & \mu \mathrm{~g} / \mathrm{kg} / \text { day } \end{aligned}$
White Croaker	14.8	0.60	3.2	0.13
Bonito	63.6	0.31	7.2	0.28

B. goth Percentile

Species	Consumption Rate (g/day)	Concentration of PCB ($\mu \mathrm{g} / \mathrm{g}$)	Anriual Consumption of PCB (mg)	$\begin{gathered} \text { Dose }{ }^{\star \star} \\ \mu \mathrm{g} / \mathrm{kg} / \text { day } \end{gathered}$
White Croaker	85.2	0.60	18.7	0.73
Bonito	334.0	0.31	37.8	1.48

* Data given are for edible portion.
** Calculated as annual consumption per 70 kilogram average adult weight.
for white croaker and exceeds the level by $0.48 \mu \mathrm{~g} / \mathrm{kg} /$ day for bonito. It is recognized that the 90 th percentile population reportedly consumes high levels of white croaker ($85.2 \mathrm{~g} /$ day) and bonito ($334.0 \mathrm{~g} / \mathrm{day}$) which is considerably above the estimated national average. Although fishermen in the 90 th percentile reportedly consume large amounts of fish, there is reasonable agreement between the consumption rate and the quantity of fish in their catch.

Despite what is known about the toxicity of PCBs, it is not yet possible to assign with any certainty a critical risk threshold. Therefore, the long-range public health significance of $P C B$ contamination in humans remains unknown. We do feel, however, that sufficient data exist to warrant further studies. In particular, analyses of the twelve most prevalent fish being consumed should be undertaken to identify and quantify possible contaminants. The effect of cooking methods on levels of contaminants should also be examined. In addition, further work is needed to determine potential subpopulations at risk such as raw fish consumers, individuals over 65 years, Orientals and Samoans, and frequent fishermen at site 8 (Table 7). In-depth health assessments of these subpopulations must then be carried out.

REFERENCES

1. Wine, V. 1979. Southern California Irdependent Sport Fishing Survey, Annual Report \#3, July 1, 1977 to June 30, 1978. Marire Resources Region, Admiristrative Report 79-3.
2. Young, D. R., T. C. Heesen, M. D. Moore, et al. 1975-1979. DDT and PCB contamination of seafood off Los Angeles. $\bar{S} C \overline{C W R P}$ Unpublished manuscript.
3. Young, D. R., A. J. Mearns, H. W. Puffer, and K. L. Duncan. 1979. Pollutant Flow Through the Food Web of Los Angeles Harbor--Pilot Study. Final Report to Sea Grant \#0471584113.
4. Young, D. R., and T. Jan. 1976. Metals in Scallops. Southern California Coastal Water Research Project, Annual Report.
5. Pinkas, L., V. Wine, and H. Frey. Personal communications.
6. Marine Studies of San Pedro Bay, California, Part 10, Physical Water Qualities in Long Beach Harbor Area, D. F. Soule and M. Ouri (eds.). Alan Hancock Foundation Report, University of Southern California, 1977.
7. Nie, N. H., C. Hull, J. Jenkins et al. 1975. SPSS--Statistical Package for the Social Sciences (2nd ed.). McGraw Hill, New York.
8. Hollander, M., and D. A. Wolfe. 1972. Non-parametric statistical methods. Wiley, New York.
9. Cordle, F., P. Corneliussen, C. Jelinek, et al. Human Exposure to PCB's and PBB's. Environ. Health Perspect. 1978:24, 157-172.
10. Schwartz, L. Dermatitis from synthetic resins and waxes. Am. J. Public Health 1936:26, 586-592.
11. Ouw, H. K., G. R. Simpson, and 0. S. Sigali. The use and health effects of Aroclor 1242, a polychlorinated biphenyl, in an electrical industry. Arch. Environ. Health. 1976:31, 189-194.
12. Lloyd, J. W., K. M. Moore, B. S. Woolf, et al. Polychlorinated biphenyls. J. Occup. Med. 1976: 18, 109-113.
13. Yoshimura, T. Epidemiological Study on Yusho babies born to mothers who had consumed oil contaminated by PCB. Fukuoka Acta Med. 1974:65, 74-80.
14. Wickizer, T. M., L. B. Brilliant, R. Copeland, et al. Polychlorinated biphenyl contamination of nursing mothers' milkin Michigan. Am. J. Public Health 1981:71, 132-137.

U.S.C. Fish Usage Survey

APPENDIX A2
U.S.C. Fish Usage Survey

Sampler's name					Date of form design 12/27/79	
Subject number	Date		h Day	Ye	Date of form revisio	$/ 11 / 80$
How often do you eat fish in general?					How often eat fish?	
Do you stock your fish in freezer for	later Yes		sumption? No		Stock fish	$\overline{51}$
Do you fish in this area?					Fish in this area?	
Gerald Desmond Bridge	Yes	1	No			
Queen Mary	Yes	/	No			$\overline{52}$
Cabrillo Pier	Yes	1				
Palos Verde's Peninsula						$\overline{53}$
(a) Point Fermin			No			
(b) White Point	Yes	1	No			$\overline{54}$
(c) Abalone Cover	Yes	1	No			
Hermosa Pier	Yes	1	No			55
Redondo Pier	Yes	1	No			
Other						$\overline{56}$
						57
(Code 8's if White Croaker is caught)						
Do you eat it?	Yes	1	No		White Croaker	58
If YES, how do you cook it?					Eat	
$1=$ charcoal broil						59
2 = bake					Way cook	
3 = deep fry						$\overline{60} \overline{61}$
$4=$ pan fry						
$5=$ steam						
$6=$ boil						
7 = make soup						
8 = raw						
$9=$ stew						
$10=$ other (specify)						
(Code 8's if Queen Fish is caught)						
Do you catch Queen Fish?	Yes	1	No		Queen Fish	
Do you eat it?	Yes	/	No			62
If YES, how do you cook it?					Eat	
1 = charcoal broil						$\overline{63}$
$2=$ bake					Way cook	
3 = deep fry						$\overline{64} \overline{65}$
$4=$ pan fry						
5 = steam						
$6=$ boil						
7 = make soup						
8 = raw						
9 = stew						
$10=$ other (specify)						

APPENDIX A3

U.S.C. Fish Usage Survey

APPENDIX A4

U.S.C. Fish Usage Survey

INSTRUCTIONS TO SURVEYORS

A. Survey Method

Rules in conducting the interview.

1. Interview people only once. Methods of avoiding repetition:
(a) by recognition
(b) If no recognition, then ask:
(i) Have you been interviewed for the "U.S.C. Fish Usage Survey" before?
(ii) If YES, ask when.

- If before January 1, 1980, then proceed with the interview.
- If after January 1, 1981, then S:OP.

If they agree to the interview, then give the individual the Surveyor's business card, thanking him/her for participating in this "U.S.C. Fish Usage Survey." The handing out of the I.D. card will identify this particular survey.
2. Do not interview anyone without any fish caught. Go back to that individual later.

Sample Size
Count the number of fishermen at time of entry. Fill in the \log form. Break a day into two sections as morning and afternoon.
(a) If the number of fishermen is equal to or less than twenty, then proceed to interview them all.
(b) If number is 20-40, then interview every other one.
(c) If number is $40-60$, then interview every third one.
(d) If number is $60-80$, then interview every fourth one.

Random Sampling

By flipping coin to
(a) designate a type (either \dot{A} or B)
(i) If "head" turns up, then Surveyor with even Surveyor with odd number, number, i.e., \#2 i.e., \#1 or \#3 = A or \#4 = B
(ii) If "tail" turns up, then Surveyor with even Surveyor with odd number $=B \quad$ number $=A$
(b) Choose a pattern
(i) If "head" turns up, then use this pattern:

Pick a land mark as the approximate middle.
(ii) If "taiן" turns up, A starts at one end, B starts at middle, and both go in the same direction.
B. Method for Filling Out Questionnaire

```
Location: (Refer to the hand out maps). The choice sites are:
            1. Belmont Beach Pier
            2. Queen Mary
            3. Gerald Desmond Bidge
            4. Navy Mole
            5. Cabrillo Beach
            6. Party Boat
            7. Point Fermin, White Point, Abalone Cove
            8. Redondo Beach, Hermosa Beach, Manhattan Beach
            9. Marina Del Rey
            10. Venice
            11. Santa Monica
            12. Party Boat
Weather condition:
    Determine by the condition at the time when the interview begins.
Temperature:
    Determine by the readings indicated on the thermometer. Each
    surveyor should bring along a thermometer.
```

Tide:
If a distinction of whether high or low tide cannot be made, use the additional choices of waxing--water conditions approaching high tide, and waning--water conditions approaching low tide.

Time of interview:
Determine by the use of a watch, recording hours and minutes.
Subject number:
Assign each interviewee a number starting the first one with number
1 so on numerically. A number list is provided to each surveyor to aid him/her in remembering the last person he/she interviewed. Just make sure to cross off each number for each interview made.

Occupation:
Try to single out retiree and minor. If column 2 is filled, then follow up with questions on occupations. The key word is primary-any job that is held for a duration of at least a year. The phrase "doing other things" means the person is not formally employed at this moment.

Do you generally fish in the area?
"Area" refers to the location that is being interviewed at. Substitute the name of the location for area where the question is asked.

Subject number:
Should match the same number as assigned on page 1.

APPENDIX B3

```
Type of fish/shellfish:
    Refers to one type of fish/shellfish--to be recorced in each column.
    Thus, two types of fish/shellfish can be recorded on a page. Addi-
    tional types of fish/shellfish have to be recorded on second page.
How many:
    Actual count of type of fish/shellfish being caught.
List average weight:
    Determine by the use of a scale. If amount of fish/shellfish is \leqq3,
    weigh all, then take the average. If type of fish/shellfish caught
    is >3, weigh any random 3 and take the average.
Primary usage:
    If an interviewee gave more than one answer, then try to prompt
    him/her to furnish more information so that a decision can be made
    as to answer the key question of "What happens to the majority of
    this type of fish/shellfish?"
If eaten, method of cooking:
    If two answers are given, then prompt him/her to tell which is
    his/her favorite way of cooking this particular type of fish/
    shellfish.
```

APPENDIX B4

U.S.C. Fish Usage Survey Log Sheet

Date $\frac{\text { Day of Week }}{\text { Location }} \frac{\text { Time }}{\text { No. of People Fishing }}$ Comment
\qquad

APPENDIX 85
U.S.C. Fish Usage Survey Time Card

Field Surveyor: \qquad Month: \qquad
Date: \quad Day of Week: \quad Location: \quad Time:
\qquad

APPENDIX C1

Code Explanation for U.S.C. Fish Survey

$\begin{gathered} \text { SPSS } \\ \text { Variable } \\ \text { List } \\ \hline \end{gathered}$	Column	Variable	Code	Code Instruction
ID	1	Sampler's name	$\begin{aligned} & 1=\text { Corinne } \\ & 2=\text { Donna } \\ & 3=\text { John } \\ & 4=\text { Tim } \end{aligned}$	There are four Surveyors. Each is assigned a number.
Zone	2-3	Location, Zone \#	```1 = Belmont Beach Dier 2 = Queen Mary 3 = Gerald Desmond Bridge 4 = Navy Mole 5 = Cabrillo Beach \(6=\) Party Boat \(7=\) Point Fermin, White Point, Abalone Cove \(8=\) Redondo Beach \(9=\) Marina Del Rey \(10=\) Venice 11 = Santa Monica 12 = Party Boat```	There are a total of 12 choice sites.
Date	4-9	Date	Montr. Day Year	Columns 4-5 are for coding of "month." Code 01 as in Jan. and 10 as in Oct., etc. Columns 6-7 are for coding of "day." Code 08 for the $8 t h$, etc. Columns 8-9 are for coding of the year. Code 79 for 1979 and 80 for 1980.
DW'K	10	Day of week	$1=$ Monday 2 = Tuesday 3 = Wednescay 4 = Thursday 5 = Friday $6=$ Saturday 7 = Sunday	
WEATH	11	Weather	$\begin{aligned} & 1=\text { sunny } \\ & 2=\text { foggy } \\ & 3=\text { cloudy } \\ & 4=\text { other } \end{aligned}$	

APPENDIX C2

$\begin{gathered} \text { SPSS } \\ \text { Variable } \\ \text { List } \\ \hline \end{gathered}$	Column	Variable	Code	Code Instruction
TEMP	12	Temperature	$\begin{aligned} & 1=\text { less than } 60^{\circ} \mathrm{F} \\ & 2=60^{\circ} \mathrm{F}-60^{\circ} \mathrm{F} \\ & 3=70^{\circ} \mathrm{F}-79^{\circ} \mathrm{F} \\ & 4=80^{\circ} \mathrm{F}+ \end{aligned}$	-
TIDE	13	Tide	$\begin{aligned} & 1=\text { high } \\ & 2=\text { low } \\ & 3=\text { waxing } \\ & 4=\text { waning } \end{aligned}$	
TIMEB	14-17	?ime begin interviewing	hours and minutes	Columns 14 and 15 are for coding of hours. Code 09 for 9 a.m. and 15 for 3 p.m., etc. Columns 16 and 17 are for coding of minutes. Code 40 for forty minutes, etc.
SUB	18-20	Subject \#	Each subject is assigned a number and follows a sequential order.	Code 004 for \#4 and 082 for \#82 and 110 for \#110, etc.
SEX	21	Sex	$\begin{aligned} & 1=\text { male } \\ & 2=\text { female } \end{aligned}$	
BYR	22-23	Year of Birth	$80=$ unknown	Code C2 for 1902 and 34 for 1945, etc. and code 80 for unknown.
RACE	24	Race	$\begin{aligned} & 1=\text { Caucasian } \\ & 2=\text { Black } \\ & 3=\text { Mexican } \\ & 4=\text { Samoan } \\ & 5=\text { Oriental } \\ & 6=\text { other } \\ & 9=\text { unknown } \end{aligned}$	
NLG	25	Native language	$1=$ English 2 = Spanish 3 = Chinese 4 = Japanese 5 = Korean $6=$ Filipino $7=0$ ther $9=$ unknown	

APPENDIX C3

```SPSS Variable List```	Column	Variable	Code	Code Instruction
OC	26	Occupation	$1=$ student   2 = employed   3 = retired   4 = unemployed   5 = housewife   $9=$ unknown	
EMPL	27-28	Emp loyment	1 = professional, technical, and kindred workers   2 = managers and administrators   3 = sales workers   4 = clerical and kindred workers   5 = craftsmen, foremen, and kindred workers   6 = equipment operatives including transport   7 = laborers except farm workers   8 = farm workers   9 = service workers, incluaing private household workers   $10=$ armed forces and public service workers (see Appendix I for more detailed classification)	
ZIP	29-33	Zip Code	According to the mailing code number as used by the postal service.	
FIAR	34	Fish in area	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
HOFL	35-36	How often fishing	1 = daily   2 = daily except weekends   3 = just weekends   4 = once a week   5 = twice a week   $6=3$ times a week   $7=4$ times a week   8 = once a month   $9=$ twice a month   $10=3$ times a month   11 = other	

SPSS

$\begin{gathered} \text { Variable } \\ \quad \text { List } \\ \hline \end{gathered}$	Column	Variable	Code	Code Instruction
HFRL	37-38	Number of hours fishing		Code 02 for two hours of fishing and 12 for twelve hours of fishing, etc.
FAM	39-40	Number in family		Code 04 for four members of family, and 10 for ten, etc.
AFIE	41-42	Number of adult fish eaters		
CFIE	43-44	Number of children fish eaters		If no children in the family, code it as 88 not applicable. If no fish eaters, code 00 in the space provided.
HOEF1	49-50	How often eat fish	1 = daily, including weekends   2 = daily, except weekends   3 = just weekends   4 = once a week   5 = twice a week   $6=3$ times a week   $7=4$ times a week   8 = once a month   $9=$ twice a month   $10=3$ times a month   11 = other	
STFL	51	Stock fish	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
GDB	52	Fish in Gerald Desmond Bridge	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
QM	53	Fish in Queen Mary	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
GAB	54	Fish in Cabrillo Beach	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
PVP	55	Fish in Palos Verdes	$\begin{aligned} & 1=\text { yes } \\ & 2=n o \end{aligned}$	
HER	56	Fish in Hermosa Pier	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
MAN	57	Fish in Mahattan Pier	$\begin{aligned} & 1=\text { yes } \\ & 2=n 0 \end{aligned}$	

APPENDIX C5

```SPSS Variable List```	Column	Variable	Code	Code Instruction
WCROK	58	White Croaker caught	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
WEAT	59	Eat	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
WCOOK	60-61	Way cook	$\begin{aligned} 1 & =\text { charcoal broil } \\ 2 & =\text { bake } \\ 3 & =\text { deep fry } \\ 4 & =\text { pan fry } \\ 5 & =\text { steam } \\ 6 & =\text { boil } \\ 7 & =\text { make soup } \\ 8 & =\text { raw } \\ 9 & =\text { stew } \\ 10 & =\text { other } \end{aligned}$	-
QUF1	62	Queen fish caught	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
QEAT	63	Eat	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
Q	64-55	Way cook	$\begin{aligned} 1 & =\text { charcoal broil } \\ 2 & =\text { bake } \\ 3 & =\text { deep fry } \\ 4 & =\text { pan fry } \\ 5 & =\text { steam } \\ 6 & =\text { boil } \\ 7 & =\text { make soup } \\ 8 & =\text { raw } \\ 9 & =\text { stew } \\ 10 & =\text { other } \end{aligned}$	
TIMEF	74-77	Time finished	Hours and minutes	Columns 74 and 75 are for coding of hours. Code 08 for 8 a.m and 14 for 2 p.m., etc. Columns 76 and 77 are for coding of minutes. Code 40 for forty minutes, etc.
NTYF1	78-79	Total number of type of fish		
CARDN1	80	Card numbers	```1 = subject information 2 = fish card```	
Note: cco	8's	not applicabl	code 9's for unknown.	

SPSS Variable List	Column	Variable	Code	Code Instruction
TPFII	1-20	Recap and duplicate information from Card 1		
TPFII	21-24	Type of fish/ shellfish	Use the same codes as used by Department of Fish and Game (see Appendix II).	
AMT 1	25-26	How many fish caught?		
WTI	27-28	List average weight	Estimate in ounces.	
USAI	29	Primary usage	```1 = eat 2 = feet to pet 3 = give away 4 = use as iertilizer 5 = throw back 6 = use as bait 7 = other```	
MCOOKI	30-31	If eaten, method of cooking	$\begin{aligned} 1 & =\text { charcoal broil } \\ 2 & =\text { bake } \\ 3 & =\text { deep fry } \\ 4 & =\text { pan fry } \\ 5 & =\text { steam } \\ 6 & =\text { boil } \\ 7 & =\text { make soup } \\ 8 & =\text { raw } \\ 9 & =\text { stew } \\ 10 & =\text { other } \end{aligned}$	
ERAW1	32	Ever eat raw?	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
TPFI2	33-36	Second type of fish/shellfish	Use the same codes as used by Department of Fish and Game (see Appendix II)	
AMT2	37-38	How many		
WF2	39-40	List average weight	Estimate in ounces.	


```SPSS Variable List```	Column	Variable	Code	Code Instructior,
USA2	41	Primary usage	$\begin{aligned} & 1=\text { eat } \\ & 2=\text { feed to pet } \\ & 3=\text { give away } \\ & 4=\text { use as fertilizer } \\ & 5=\text { throw back } \\ & 6=\text { use as bait } \\ & 7=\text { other } \end{aligned}$	
MCOOK2	42-43	If eaten, method of cooking	$\begin{aligned} 1 & =\text { charcoal broil } \\ 2 & =\text { bake } \\ 3 & =\text { deep fry } \\ 4 & =\text { pan fry } \\ 5 & =\text { steam } \\ 6 & =\text { boil } \\ 7 & =\text { make soup } \\ 8 & =\text { raw } \\ 9 & =\text { stew } \\ 10 & =\text { other } \end{aligned}$	
ERAW2	44	Ever eat raw?	$\begin{aligned} & 1=\text { yes } \\ & 2=\text { no } \end{aligned}$	
WFIK	79	Way fish is kept	```I= in a bucket of water 2 = in an ice chest 3 = let dry in air 4 = in sack 5 = other```	
CARDN2	80	Card number	$\begin{aligned} & 1=\text { subiect information } \\ & \text { card } \\ & 2=\text { fish card } \end{aligned}$	
Note:	$\begin{aligned} & \text { de } 8^{\prime} \mathrm{s} f \\ & \text { de } 9^{\prime} \mathrm{s} f \end{aligned}$	for not applicable   or unknown		

## APPENDIX C8

## DEFINITION OF OCCUPATIONS

1. Professional, technical, and kindred workers:
(a) Engineers, technical
(b) Physicians, dentists, and related practitioners
(c) Medical and other health workers except practitioners
(d) Teachers: elementary, secondary, and college
2. Managers and administrators, except farm:

Salaried and self-employed: manufacturing, retail trade, and other industries
3. Sales workers:

Manufacturing and wolesale trade
Retail trade
Other sales workers
4. Clerical and kindred workers:

Bookkeepers
Secretaries, stenographers, typists, and other clerical workers
5. Craftsmen, foremen, and kindred workers:

Auto mechanics and body repair men
Machinists
Metal craftsmen
Carpenters
Construction craftsmen and other craftsmen
6. Equipment operatives including transport:

Truck drivers and other transport
Equipment operatives
Durable goods, manufacturing
Nondurable goods, manufacturing, and other non-manufacturing industries
7. Laborers, except farm:

Construction laborers
Freight, stock, and material handlers and other laborers
8. Farm workers:

Farm laborers, unpaid family workers
9. Service workers, including private household:

Cleaning service workers
Food service workers
Health service workers
Personal service workers
Protective service workers
10. Armed forces and public service workers:

Navy, Marine, Air Force, Coast Guard, Army
Policemen, Firemen
Postal service man

## CODES FOR TYPES OF FISH/SHELLFISH

Soupfin shark	0110
Thresher shark	0111
Gray smoothhound	0135
Blue shark	0137
Banjo fish (shark)	0138
Brown smoothhound	0139
Spiny dogfish	0163
Guitarfish	0212
Thornback	0213
Bat ray	0240
Silver salmon	1103
King salmon	1105
Pacific hake	1303
California lizardfish	1525
Kelp bass (calico bass)	2003
Spotted sand bass	2005
Barred sand bass	2006
Striped bass	2007
Barred perch	2104
Shiner surfperch	2105
Black surfperch	2107
Striped surfperch	2108
Walleye surfperch	2110
Rainbow surfperch	2112
White surfperch	2116
Rubberlip surfperch	2117
Pile surfperch	2118
Redtail surfperch	2119
Silver surfperch	2120
Pacific mackerel	2209
Pacific bonito	2210
Rock fish	2301
Kelp rockfish	2322
Brown rockfish	2302
Gopher rockfish	2304
Copper rockfish	2307
Greenspotted rockfish	2308
Starry rockfish	2309
Greenstriped rockfish	2311
Chili pepper	2315
White bellied rockfish	2319
Widow rockfish	2320
Yellowtail rockfish	2316
Squarespot rockfish	2318
Vermilion rockfish	2322
	2


Blue rockfish	2330
Bocaccio	2334
Canary rockfish	2335
Grass rockfish	2337
Rosy rockfish	2339
Flag rockfish	2341
Olive rockfish	2344
Treefish	2345
Honeycomb rockfish	2346
Greenblotch rockfish	2363
Unident. RF fillets	2398
Cow cod	2399
Redstriped rockfish	2390
Sculpin	2453
Cabezon	2410
White seabass	2504
White croaker	2509
Spotfin croaker	2511
Queenfish (herring)	2512
Corbina	2513
Black croaker	2514
Yellowfin croaker	2508
Ocean whitefish	2610
Halfmoon	2621
Opaleye	2625
Rock wrasse	2631
Senorita	2632
California sheephead	2633
Blacksmith	2640
Garibaldi	2641
Lingcod	2664
Sablefish	2668
Topsmelt	2691
Jacksmelt	2692
California barracuda	2720
Giant kepfish	2757
Fringehead and other clinids	2758
Smooth ronquil	2759
Salema	2800
Pacific sanddab	3001
Bigmouth sole	3004
California halibut	3005

Petrale sole ..... 3103
Rock sole ..... 3105
Diamond turbot ..... 3106
Spotted turbot ..... 3107
Sargo ..... 3200
Pampano ..... 3300
Jack mackerel ..... 3310
Mexican scad ..... 3312
Striped shore crab ..... 5002
Rock carb ..... 5003
Red crab ..... 5005
Yellow crab (dungeness) ..... 5006
Spider crab ..... 5007
Blue crab (callinecter) ..... 5008
Spiny lobster ..... 5145
Abalone - general ..... 5400
Pine abalone ..... 5412
Black abalone ..... 5413
Green abalone ..... 5415
Red abalone ..... 5416
White abalone ..... 5417
Rock scallop ..... 5524
Albacore ..... 5600
Sea urchin (red) ..... 5710
Sea urchin (purple) ..... 5711
Pismo clams ..... 5712
Littleheck clams ..... 5713
Mussel (California) ..... 5714
Mussel (bay) ..... 5715
Whelk (snail) ..... 5716
Octopus ..... 5800
Chiton ..... 5850
Squid ..... 5900
Anemone ..... 5950
Triggerfish ..... 6000


[^0]:    * Crab (spider, red, yellow, rock), mussels, abalone.

