EPA/600/R-92/003e March 1992

EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

Volume V: Site 7 Test Report CEMS Evaluation

by

A. Laurie Cone Scott A. Shanklin Entropy Environmentalists, Inc. Research Triangle Park, North Carolina 27709

> EPA Contract No. 68-CO-0027 Work Assignment No. 0-5

> > Technical Managers

Harry E. Bostian, Ph.D. Risk Reduction Engineering Laboratory U. S. Environmental Protection Agency Cincinnati, Ohio 45268

Eugene P. Crumpler Office of Water Regulations and Standards U. S. Environmental Protection Agency Washington, D.C. 20460

RISK REDUCTION ENGINEERING LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U. S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 FOREWORD

Today's rapidly developing and changing technologies and industrial products and practices carry with them the increased generation of materials that, if improperly dealt with, can threaten both public health and the environment. The U. S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. These laws direct the EPA to perform research to define our environmental problems, measure the impacts, and search for solutions.

The Risk Reduction Engineering Laboratory is responsible for planning, implementing, and managing research, development, and demonstration programs to provide an authoritative, defensible engineering basis in support of the policies, programs, and regulations of the EPA with respect to drinking water, wastewater, pesticides, toxic substances, solid and hazardous wastes, and Superfund-related activities. This publication is one of the products of that research and provides a vital communication link between the research and the user community.

The problem of disposing of primary and secondary sludge generated at municipal wastewater treatment facilities is one of growing concern. Sludge of this type may contain toxics such as heavy metals and various organic species. Viable sludge disposal options include methods of land disposal or incineration. In determining the environmental hazards associated with incineration, the Risk Reduction Engineering Laboratory and the Office of Water Regulations and Standards has sponsored a program to monitor the emissions of metals and organics from a series of four municipal wastewater sludge incinerators. The following document presents the final results from the Site 7 emissions test program.

> E. Timothy Oppelt, Director Risk Reduction Engineering Laboratory

ii

ABSTRACT

ъ.

The U. S. Environmental Protection Agency (EPA) Office of Water Regulations and Standards (OWRS) has recently revised the risk-based sludge regulations under Section 405d of the Clean Water Act. The revised regulations include a provision for monitoring total hydrocarbon (THC) and/or carbon monoxide (CO) emissions as a surrogate for organic emissions measurements.

With the assistance of EPA's Risk Reduction Engineering Laboratory (RREL), OWRS has implemented a research program to investigate the relationship of CO and hydrocarbon emissions and the viability of the monitoring systems used to continuously measure these emissions. This test report presents the results obtained at the Site 7 municipal wastewater treatment facility.

The Site 7 plant treats 20-50 million gallons a day of municipal and industrial wastewater. The blended primary/secondary sludge is dewatered to approximately 21% solids on filter presses. The dried filter cakes are incinerated in a seven-hearth unit and emissions are controlled with a cyclone separator and a Hydro-Sonic scrubber.

The CO and THC emission levels showed good agreement during the test program, i.e., increases in CO are accompanied by increases in THC. The actual correlation coefficients ranged from .73-.93 using one-minute averaged data from six test runs. Comparisons of CO and THC values corrected to 7% oxygen levels do not provide the same measure of correlation (r-values from .11 to .83). Possible explanation of the apparent change in agreement is being investigated further. This report presents uncorrected and corrected emission data in both tabular and graphic formats.

This report was submitted in fulfillment of Contract No. 68-CO-0027, Work Assignment No. 0-5 by Entropy Environmentalists, Inc. under the sponsorship of the U.S. Environmental Protection Agency. This report covers a period from October 28 to November 8, 1989, and work was completed as of August 26, 1991.

DISCLAIMER

The research described in this report has been funded wholly by the United States Environmental Protection Agency's Risk Reduction Engineering Laboratory and Office of Water Regulations and Standards under Contract Nos. 68-02-4442, Work Assignment No. 81; 68-02-4462, Work Assignment No. 90-108; and 68-CO-0027, Work Assignment No. 0-5. It has been subjected to the Agency's required peer and administrative review and it has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute an endorsement of recommendation for use.

CONTENTS

Forewo	ordii
Abstra	lctiii
Discla	imeriv
Figure	vi vi
Tables	vi
1.	Introduction
2.	Site 7 Test Summary and Conclusions
3.	Facility Description 4
4.	Test Results
	Continuous Emission Monitoring Results
	Particulate Matter and Metals Testing
5.	Sampling Location and Test Procedures
	Sampling Location 18
	CEMS Description 18
	Sampling Procedures
6.	Quality Assurance and Quality Control

Appendices

.

.

. .

- A. Linear Regression Analysis Moisture Calculations
 B. CEM Data Summaries

FIGURES

•			
	<u>Number</u>		<u>Page</u>
	1	Site 7 plant schematic	. 5
	2	Extended periods of CO and THC CEM data	, 8
	3	CEM data during 10/31 particulate sampling	. 10
	4	CEM data during 11/2 particulate sampling	. 11
	5	CO/THC emissions comparison	. 12
	6	Hot/Cold THC emissions data	. 14
	7	CO/THC sampling system configuration	. 19
	8	Detail of CO/Cold THC sampling system	. 21

TABLES

<u>Number</u>		<u>Page</u>
1	CEM data summaries	. 9
2	Linear regression summaries	. 9
3	CEM data summary	. 14
4	Summary of Particulate/Metals emission rates	. 16
5	Summary of Particulate/Metals concentrations	. 17
6	Summary of CEM drift checks	. 25
7	Linearity check results	. 26

vi

SECTION 1 INTRODUCTION

The U. S. Environmental Protection Agency (EPA) Office of Water Regulations and Standards (OWRS) has been developing new regulations for sewage sludge incinerators. EPA's Risk Reduction Engineering Laboratory has been assisting OWRS in the collection of supporting data. There has been particular concern regarding the continuous demonstration of proper control of organic emissions from the incineration of municipal wastewater sludge.

OWRS drafted risk-based sludge regulations under Section 405d of the Clean Water Act which were published for comment in the <u>Federal Register</u>, Volume 54, No. 23, February 6, 1989. The draft regulations were based on the risk incurred by the "most exposed individual" (MEI). The MEI approach involves calculating the risk associated with residing for 70 years at the point of maximum ground level concentration of the emissions from an individual incineration facility. This proposal for regulating sewage sludge incinerators was based on ensuring that the increase in ambient air concentrations of pollutants emitted from sludge incinerators is below ambient air criteria established for the protection of human health.

Because of the large number of comments received on the risk-based proposal, a revised approach for regulating organic emissions was developed and published for comment on November 9, 1990 (54 FR 47242). The revised approach suggests a technology-based total hydrocarbon (THC) standard and/or a carbon monoxide (CO) emissions standard as a surrogate indicator of organic emissions. This technology-based approach addresses the primary concerns of commenters, namely the feasibility of THC monitoring and the risk assessment methodology used in establishing emission limits.

The Site 7 test program was designed to provide: (1) CO and THC monitor performance data during extended operating periods at a sewage sludge incinerator, and (2) comparative emissions data from CO and hydrocarbon monitoring systems. The data obtained during the test program are intended to supplement the existing OWRS emissions data base and assist in preparation of

the final regulation, now scheduled for publication in the Federal Register in January 1992.

SECTION 2

SITE 7 TEST SUMMARY AND CONCLUSIONS

The Site 7 test program was conducted to characterize CO and hydrocarbon emissions from a multiple hearth incinerator and to obtain performance data on the instruments used to acquire the emissions data. The emission measurement data collected during the test program supplement data collected at other sewage sludge incinerators. The data support the development of appropriate emission standards for these incinerators.

The incinerator emissions were tested under normal operating conditions. Plant-sponsored testing for particulate matter and metals was performed during the program. Concentrations and emission rates were provided for presentation in this report. Only a limited amount of process data was made available to the field test team during the test program. Testing was performed between October 28 and November 8, 1989.

The following conclusions can be drawn from the Site 7 test.

- Increases in CO emission levels are accompanied by increases in THC levels and decreases in O_2 levels.
- Statistical correlation of the CO and THC data is stronger using pollutant concentrations not corrected to $7\% O_2$. A possible explanation of this unexpected finding is presented in Section 4.1. The linear regression analyses performed by Entropy have been confirmed by an OWRS statistician. Additional statistical inquiries are being pursued by OWRS.
- All instruments operated during the test achieved expected performance levels on calibration drift and linearity tests.

SECTION 3

FACILITY DESCRIPTION

Site 7 provides treatment for municipal and industrial wastewater. It has the capacity to treat an average flow of 20 million gallons per day (MGD), and peak rates of up to 50 MGD during wet weather. The plant operates continuously 24 hours per day, 7 days per week.

All wastewater entering the plant is screened to remove trash and pumped to a series of treatment units. Figure 1 is a schematic flow diagram of the treatment plant. The first stage of the treatment process includes aeration tanks designed to remove odorous and corrosive gases from the wastewater, and settling tanks which remove settleable solid materials from the flow stream. Soluble material and solids which do not settle out require biological conversion to a solid residue which is then removed. Biological conversion is done in the second stage of the process using bacteria in aerated tanks. Solid material resulting from the aerobic treatment is removed in settling tanks. The wastewater is chlorinated and aerated before discharge.

The sludge removed from the various treatment units is pumped to receiving and blending tanks. It is pumped from the blending tanks to a thickening tank and then dewatered on filter presses. The dewatered sludge mixture, or sludge cake, contains approximately 21 % dry solids and is conveyed to an incinerator where it is burned at approximately 1400°F.

The incinerator consists of seven vertically stacked hearths. Dewatered sludge cake is fed into the top (No. 1) hearth, and is moved through successive hearths by a center shaft with arms on each hearth. The arms have teeth which continue the flow of material across each hearth and then down through the incinerator, hearth by hearth. The incinerator is equipped with fuel oil-fired burners which ignite the volatile components of the sludge feed. Combustion air is supplied through auxiliary air fans into hearth Nos. 2 through 6. The upper hearths are used for final drying of the sludge, intermediate hearths are used for combustion, and the bottom hearth is used

Figure 1. Site 7 plant schematic

for ash cooling. Ash is discharged to the ash handling system. The combustion gases leave the hearths and enter a quench chamber for cooling. The gases then pass through a two-stage Hydro-Sonic scrubber and cyclone separator for emissions control before being exhausted to the atmosphere via the stack.

SECTION 4

TEST RESULTS

CONTINUOUS EMISSION MONITORING RESULTS

Continuous emission monitoring (CEM) was performed at the stack location of Site 7. The monitoring system included CO, THC, and O_2 monitors. Emissions were measured on a dry basis. On November 8, 1989, a heated hydrocarbon sampling system was included to provide comparative THC data using heated and unheated systems. The hot THC data were corrected to dry-basis using moisture values determined during the particulate matter and metals testing on October 31 and November 2, 1989. The consistent relationship between moisture and O_2 values on these two days is used in selecting the proper moisture corrections for different periods on November 8. Calculations for moisture correction are shown in Appendix A.

The CEM data are presented in several formats:

- Extended emissions characterization periods depicting continuous CO and hydrocarbon measurements are illustrated in Figure 2.
- CO and THC measurement data obtained during the particulate matter and metals testing are presented as measured and corrected to $7\% O_2$, in Table 1 and Figures 3 and 4.
- A 3-hour period of concurrent hot and cold hydrocarbon measurements are presented in Figure 5. Emissions data from all monitoring systems are separated into three shorter periods and summarized in Table 2.

The extended measurement periods, portions of which are shown in Figure 2, provide an indication of the wide range of emissions possible from this facility. Typical O_2 levels accompanying the CO and THC data shown are 5 to 9%, with extremes ranging from 0.3 to 14% O_2 .

Continuous emissions data obtained during the particulate matter and metals testing provide a more in-depth examination of CO, hydrocarbon, and O_2 relationships. The graphs and run summaries using uncorrected data indicate

Date	Run No.	Thermox % 02	TECO 48 ppm CO	Beckman ppm C3	Ratfisch ppm C3	TECO 48 ppm CO @7% O2	Beckman ppm THC @7% O2
10/31	1	8.4	3846.8	113.6	118.8	4291.5	123.1
	2	8.1	4833.7	126.8	127.4	5253.3	137.7
	3	8.1	4122.1	133.0	120.7	4467.0	144.0
11/2	1	5.6	4191.3	241.3	259.0	3837.9	218.1
	2	7.5	2854.3	87.8	93.3	2973.0	91.0
	3	5.8	4678.0	182.4	193.7	4320.5	168.2

TABLE 1. CEM DATA SUMMARIES October 31 and November 2, 1989

TABLE 2. LINEAR REGRESSION SUMMARIES

Date	Run No.	Uncorrected Data	Data @ 7% 0 ₂
	R-Val	ues Using 1-Minute Average	es
10/31	1 2 3	.927 .799 .877	.413 .567 .294
11/2	1 2 3	.890 .737 .778	.825 .110 .605
	R-1	alues Using Run Averages	
10/31		. 491	.201
11/2		.461	.387
ALL SIX RUNS	COMBINED	.796	.724

L

Figure 3. CEM data during 10/31/89 particulate sampling.

Figure 4. CEM data during 11/2/89 particulate sampling.

Figure 5. CO/THC emissions comparison.

that increases in CO are accompanied by increases in THC levels and decreases in O_2 levels. Following correction to 7 % O_2 , the relationship between CO and THC trends becomes less pronounced. (See Figures 3 and 4, and Table 1.) Further investigation using linear regression analysis verified the decreased correlation but did not validate the consistent relationship suggested in the graphs between uncorrected CO and THC values. Regression analysis was performed both on 1-minute averages obtained during the runs and on each run average. Table 2 provides the r-values obtained and Appendix A contains the regression output for each comparison. One-minute averages of all monitoring data obtained during the six particulate test runs are in Appendix B.

The most likely explanation involves the effect of the correction to 7% O_2 on individual data points. Under normal operation, emission levels of CO and THC vary inversely with O_2 levels. In other words, high levels of CO and THC occur during periods of low O_2 and low levels of CO and THC occur under high excess O_2 conditions. As shown in Table 2, the wide range of uncorrected CO and THC emission measurements demonstrate good correlation and low variability. The correction to 7% O_2 essentially lowers the high CO and THC values and raises the low CO and THC values, removing the extremes which define the linear regression line (see Figure 5).

Measurements of hot and cold hydrocarbons were fairly close, as shown in Figure 6. The relatively low stack gas temperature of 160-170°F and the wet scrubber design possibly contributed to the similarity in measured emissions. Using the relative accuracy criterion of agreement within 20% from Performance Specification 2 (40 CFR 60, Appendix B) the data acquired with the two separate sampling systems can be considered the same. No reference organic measurement method nor performance criterion is available against which these instrument can be evaluated as correct or incorrect. Averages for O_2 , CO, and cold and hot THC values are shown in Table 3.

The original intent of the testing on this day was to raise the top hearth temperature to $1100^{\circ}F$ (measured during previous multiple hearth testing). However, as the furnace was being brought up to that temperature over the morning, it became apparent that keeping the temperature and O_2 elevated required too great a decrease in the sludge feed rate. With 25% less sludge being fired, conclusions could not be drawn as to the cause of the lower emissions. In spite of the difficulties, the experiment still produced

HOT/COLD THC Emissions Data 11/8/89 (1-minute averages)

Figure 6. Hot/cold THC emissions data.

TABLE 3. CEM DATA SUMMARY

Time Period	Thermox % 02	TECO 48 ppm CO	Beckman ppm C3	Ratfisch ppm C3	TECO 48 ppm CO @7% O2	Beckman ppm THC @7% O2	Ratfisch ppm THC @ 7% O ₂
12:30-13:30	9.7	1198.0	33.1	27.3	1486.8	41.1	33.9
14:00-14:38	5.8	2224.7	87.0	74.8	2047.9	80.1	68.9
14:47-15:07	4.5	2504.5	103.4	95.4	2122.7	87.6	80.9

the lowest emission levels observed during the Site 7 test program. At 13:00 hrs, the plant operator began bringing the sludge feed rate back to normal levels. Unexpectedly, emissions remained low compared to previous observations, even after the feed rate and temperature had returned to normal levels.

PARTICULATE MATTER AND METALS TESTING

Plant personnel conducted particulate matter and metals testing during the CO and THC monitoring to provide concurrent data under normal operating conditions. The results of this testing are presented in terms of emission rates in Table 4 and in concentration units in Table 5. Plant personnel experimented with hearth temperatures, nozzle pressures, and scrubber pressure drop to determine whether the same or lower emissions could be obtained in a more economical operating mode. The CO and THC emissions data do not suggest conclusive results.

	10/31/1989		1	11/2/1989		
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Particulate Mass Rate (kg/hr)	0.20	0.15	0.25	0.57	0.56	0.39
Flue Gas Metal Mass Emission Rate (mg/hr)						
Arsenic	30	64	140	185	141	128
Beryllium	<100	<111	<105	< 96	<660	< 97
Cadmium	2670	2452	2942	9171	6401	4631
Chromium	<205	<223	<210	<192	<200	<193
Copper	247	279	315	577	522	328
Lead	205	223	210	2311	1598	386
Mercury	1317	1657	1448	2320	1653	1439
Molybdenum	<205	<223	<210	<192	<200	<193
Nickel	<205	<223	<210	<192	<200	<193
Selenium	14	20	16	36	29	21
Zinc	1090	1026	1575	11168	5720	1930

.

- .

•

,

TABLE 4. SUMMARY OF PARTICULATE AND METALS MASS EMISSION RATES

•

	10/31/1989			11/2/198	9	
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Particulate Mass Rate (mg/dscm)	17.7	13.1	21.8	53.5	52.9	38.7
Flue Gas Metals Concentra (ug/dscm)	tion					
Arsenic	2.7	5.6	12.0	17.3	13.4	12.6
Beryllium	<9.2	<9.8	<9.3	<9.0	<9.5	<9.5
Cadmium	238	214	258	858	606	458
Chromium	<18.3	<19.5	<18.6	<18.1	<19.0	<19.1
Copper	21.9	24.5	27.9	54.2	49.4	32.5
Lead	18.3	19.5	18.6	217	152	38.2
Mercury	117	145	127	217	156	143
Molybdenum	<18.3	<19.5	<18.6	<18.1	<19.0	<19.1
Nickel	<18.3	<19.5	<18.6	<18.1	<19.0	<19.1
Selenium	1.2	1.7	1.4	3.4	2.7	2.1
Zinc	97.0	89. 9	139	1048	540	191

TABLE 5. SUMMARY OF PARTICULATE AND METALS CONCENTRATIONS

•

•

SECTION 5

SAMPLING LOCATION AND TEST PROCEDURES

SAMPLING LOCATION

Continuous monitoring was performed at the incinerator exhaust stack using various instruments to measure THC, CO, and O_2 . The sampling location was at the roof-level of the incinerator stack downstream of the emissions control equipment. The inside diameter of the stack is 32 inches. The distance from the sample port to the nearest upstream flow disturbance is nine feet; the top of the stack is 15 feet above the sample port.

CEMS DESCRIPTION

The measurement system consisted of a sampling system and analyzers for the measurement of THC, CO, and O_2 . The analyzers used in this test program had various gas sample conditioning requirements. Two of the THC analyzers were heated internally so that the only sample gas conditioning necessary was filtration of particulate. These hot THC measurement systems must maintain the temperature of all components of the sampling system at a minimum of 150°C. Particulate and water vapor were removed from the gas sample prior to injection into the unheated analyzers. The condensers used in the system to remove the water vapor lowered the sample gas temperature to approximately 5°C; this system is operated as a cold measurement system.

A simplified schematic of the extractive measurement system is depicted in Figure 7. (The ACS CO instruments illustrated were not used because the measurement ranges were too low. The JUM THC instrument had been returned to Entropy without the requested service and therefore was not included in the test.) Effluent gas sample was drawn from the stack via a heated sampling system and delivered to the gas analyzers located in a shelter on the ground. All components of the sampling system were made of Type 316 stainless steel, Teflon, and glass. A heated sample probe was installed on the stack. The gas

`**4**

·

Figure 7. CO/THC sampling system configuration.

19

was filtered and transported through 100 feet of heated Teflon tubing via a heated sample pump. The gas sample was split into two streams at the exit of the pump. One stream was passed through a chilled condenser to remove moisture and was then delivered to Beckman Model 400A THC, Ratfisch Model 102 THC, TECO Model 48 CO, and Thermox O_2 analyzers. The temperature of the second sample stream was maintained at 150°C and passed through a secondary particulate filter and then delivered to JUM VE-7 and Ratfisch Model 55 THC analyzers.

The collected condensate was removed continuously from the condenser in the cold measurement system to minimize condensate contact with the sample gas. (See Figure 8.) A 2-micron glass fiber filter was placed downstream of the condenser. The manifold used in the cold system allowed sample pressures and flowrates to be controlled individually for each analyzer. A zero air generator was used to provide zero-level calibration gas and combustion air for the THC analyzers. Ultra-pure carrier grade air was used to verify the quality of the generated zero air.

Calibration gas injection points were located both at the probe and at the inlet to each analyzer. A calibration gas manifold was used to distribute the various gases to the proper locations.

A portable Compaq computer and an Entropy-designed data acquisition system was used to record emissions and calibration data from the analyzers. Strip chart recorders were also used to display the trends of the emissions during the testing.

<u>Total Hydrocarbon Analyzers</u>

The hydrocarbon instruments used in this study continuously measure the concentration of total organic hydrocarbons in a gaseous sample. This measurement is obtained by using a flame ionization detector (FID). Operation of the FID is based on a burner in which a small flame is sustained by carefully regulated flows of air and fuel gas (40% hydrogen (H_2) and 60% helium (He) or pure H_2). The burner jet is used as an electrode and is connected to the negative side of a power supply. Also in the burner is a "collector" electrode which is connected to an electrical amplifier. These polarized electrodes establish an electrostatic field in the vicinity of the burner flame. When a sample of gas is passed into the burner, it is ionized

Figure 8. Detail of CO/cold THC sampling system.

.

in the flame. The electrostatic field causes the charged particles to migrate toward the electrodes. The resultant current flow between the electrodes is used as an input signal to an electrometer amplifier, and is displayed on the instrument meter as a percentage concentration. If the sample gas does not contain hydrocarbons, the ionization level is extremely small and produces a very low background current. When the sample gas contains hydrocarbons, ionization is increased and, with many compounds, is directly proportional to the number of carbon atoms in the sample.

Sample gas enters the instrument at flows ranging from 1 to 4 L/min. In the instrument, a small slipstream is pushed through capillary tubing to the FID. The remaining sample is exhausted. Precise regulation of the sample pressure is essential to obtain accurate FID measurements. The instrument characteristics are summarized below.

<u>Instrument</u>	<u>Heated</u>	<u>Measurement Range</u>
Beckman 400A	No	1250 ppm
Ratfisch 102	No	1000 ppm
Ratfisch 55	Yes	1000 ppm

Thermo Environmental Instruments (TECO) 48 Carbon Monoxide Analyzer

The TECO Model 48 employs the gas filter correlation (GFC) technique to measure CO by infrared (IR) absorption. GFC employs a correlation wheel consisting of two hemispherical cells, one filled with CO and the other filled with nitrogen (N_2). Radiation from the IR source is chopped and passed through the correlation wheel, alternating between the CO cell and the N_2 cell. Passing an infrared beam through the CO gas cell in the correlation filter provides a reference signal that cannot be attenuated further by the CO in the gas sample. The N_2 cell is transparent to the IR radiation and therefore produces a measurement beam which can be absorbed by CO in the sample cell. Radiation then passes through a narrow bandpass interference filter and enters a multiple optical pass sample cell, where absorption by the sample gas occurs. Other gases in the sample do not cause modulation of the detector signal, since they absorb the reference and measurement beams equally.

Infrared absorption is a non-linear measurement technique. To correct for this characteristic, instrument electronics convert the analyzer signal into a linear output. The exact calibration curve is stored in the instrument's microcomputer memory and is used to linearize the instrument output over all ranges. The microcomputer is also used to process signals from a pressure transducer and a temperature transducer to correct instrument output for changes in the temperature or pressure of the sample gas. The operating range of the instrument was 0-10,000 ppm CO.

<u>Thermox 0, Analyzer</u>

The Thermox Model WDG III O_2 analyzer employs an electrochemical technique to measure the oxygen concentration in the effluent gas. The detector element consists of a closed-end zirconium oxide cell. Half of the cell is exposed to ambient air (reference) and the other half is exposed to the effluent gas sample. When the cell is heated red hot, it conducts an electrical current between porous platinum electrodes that consists of migrating oxygen ions. The ion migration produces a voltage output that is logarithmically proportional to the difference in oxygen concentration (partial pressures) between the reference side of the cell (ambient air) and the measurement side of the cell (sample gas). This voltage output is linearized and converted to a signal representing the oxygen concentration in the effluent gas. The measurement range was 0-25% O_2 .

SAMPLING PROCEDURES

After the measurement system was assembled and satisfactorily completed a brief conditioning period, a cylinder gas audit (CGA) was conducted on the THC and CO analyzers to document the linearity and accuracy of each analyzers' measurement. The CGA was performed according to the procedures outlined in Appendix F, Procedure 1 of 40 CFR 60. Response time tests were also performed in conjunction with the CGA's.

Following the initial CGA, the measurement system was operated continuously for an approximate one-week operational test period. A calibration check was performed daily during this test period to quantify calibration drift for each analyzer. The drift assessment was conducted according to the test procedures of Performance Specification 2, 40 CFR 60, Appendix B.

SECTION 6

QUALITY ASSURANCE AND QUALITY CONTROL

This section discusses the quality assurance and quality control (QA/QC) activities performed for the sewage sludge incineration test program at Site 7. The objective of these activities, i.e., instrument drift and linearity checks, was to provide representative and comparable data of known quality.

Instrument drift checks, which compare pre- and post-test measurement of zero and span gases to the actual value, were performed for each run. These results are presented in Table 6. Zero and upscale drift were within 2 % for every measurement without any operator adjustments.

Five gases were used to determine linearity of the cold hydrocarbon system instruments and CO monitor during cylinder gas audits. Three- and twopoint checks were performed on the Ratfisch 55 and Thermox O_2 analyzer, respectively. Table 7 presents the linearity check results.

During each stage of the test program, every effort was made to guarantee the integrity of the data collected. Additional quality control practices followed were:

- Conducted leak checks of all components, as well as the entire sampling system;
- Determined the calibration status of each analyzer both before and after each test period;
- Operational parameters of the analyzers were recorded throughout the test program. Logbooks were maintained which documented analyzer problems and corrective actions taken, as well as any other operational difficulties or observations; and
- All THC (propane) and CO calibration gases were prepared and certified by the vendor according to EPA Protocol I specifications. Additional hydrocarbon standard gases were <u>+</u>2% N.B.S. traceable gas blends.

	Instrument	Zero and Span D	rift* (% of span)	
Date and	CO	02	Beckman 400A	Ratfisch 102
KUN NO.	Zero Span	Zero Span	Zero Span	Zero Span
10/28	0.01 -0.02	0.04 -0.80	0.0 -0.72	0.06 -0.40
10/29	0.03 -5.5	0.04 -0.68	0.16 0.15	0.03 -0.17
10/30	0.01 0.33	0.04 -0.80	.69 1.71	0.72 0.90
10/31 pre	0.02 0.27	0.40 -0.80	0.54 0.00	0.40 -0.28
post	0.0 -0.27	0.04 -0.80	0.68 -0.40	0.45 0.08
11/02 pre	0.0 0.13	0.04 -1.20	0.43 0.70	0.41 0.64
post	0.0 0.33	0.04 -1.04	0.64 1.14	0.89 0.35
		1		

TABLE 6. SUMMARY OF CEM DRIFT CHECKS

* <u>response - gas value</u> x 100 instrument span

-

GAS	BECKMAN	RESPONSE	RATFIS	SCH 102	RATFISCH 55*	
(ppm)	ppm	% gas	ppm	% gas	ppm	% gas
0	0	0	0.6		-0.7	
11.8	11.8	0	12.2	3.4		
24.8	25.6	3.2	24.5	-1.2		
45.0	46.5	3.3	45.6	1.3		
85.0	85.1	0.1	80.5	-5.3	84.8	002
252					250.5	01
477	480	0.1	480.2	0.1		

TABLE 7.LINEARITY CHECK RESULTSHYDROCARBON INSTRUMENTSOCTOBER 28, 1989

*3-point check conducted November 8, 1989.

CO OCTOBER 28, 1989

Gas	TECO 48 RESPONSE			
(ppm)	ppm	% gas		
0	0.7			
50.1	54.4	8.6		
100	102.5	2.5		
683	648	-5.1		
1972	1984	0.8		
5007	4875	2.6		

OXYGEN OCTOBER 28, 1989

Gas	THERMOX		
(ppm)	%	% gas	
0	0.1		<u> </u>
10.0	9.8	-2.0	
20.9	20.6	-1.4	

APPENDIX A. LINEAR REGRESSION ANALYSES

-

MOISTURE CALCULATIONS

SUMMARY OF 10/31/89 SAMPLING RUNS Correlation using 1-minute averages

Run 1 - Uncorrected Data Regression Output:			Run 1 - Corrected Data Regression Output:		
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	•	-151.569043 17.63483562 0.860073231 84 82	Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	·	-19.6164564 27.59881244 0.17037953 84 82
X Coefficient(s) Std Err of Coef. R Value	0.069128225 0.003079152 0.927		X Coefficient(s) Std Err of Coef. R Value	0.032764911 0.007984231 0.413	
Run 2 - Regress	Uncorrected Data		Run 2 - Regressi		
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom		-7.25097949 5.874637969 0.637731195 75 73	Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom		27.86027225 6.320426695 0.321181046 75 73
X Coefficient(s) Std Err of Coef. R Value	0.027728114 0.002445995 0.799		X Coefficient(s) Std Err of Coef. R Value	0.020911434 0.003558151 0.567	
Run 3 -	Uncorrected Data		Run 3 - (Corrected Data	
Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	ion Output.	-24.4170565 7.417970917 0.769074156 72 70	Constant Std Err of Y Est R Squared No. of Observations Degrees of Freedom	on Output.	60.6368783 8.175286767 0.086250022 72 70
X Coefficient(s) Std Err of Cocf. R Value	0.03820589 0.002502266 0.877		X Coefficient(s) Std Err of Coef. R Value	0.018656895 0.007258125 0.294	

•

SUMMARY OF 11/2/89 SAMPLING RUNS Correlation using 1-minute data averages

Run 1 - Uncorrected Data Regression Output:				Run 1 - Corrected Data Regression Output:		
Constant Std Err of Y I R Squared No. of Observ Degrees of Fr	Est vations reedom		-343.007294 44.52362666 0.792341024 56 54	Constant Std Err of Y Es R Squared No. of Observa Degrees of Free	tions edom	-466.80807 45.31121039 0.681393254 56 54
X Coefficient Std Err of Co R Valuc	e(s) ef.	0.139419063 0.009712803 0.890		X Coefficient(s Std Err of Coef R Value	6) 0.178473535 6. 0.016607548 0.825	
Constant Std Err of Y I R Squared No. of Observ Degrees of Fr	Run 2 - Uncc Regression C Est vations eedom	orrected Data Output:	-60.8055185 9.852468085 0.542955115 73 71	F Constant Std Err of Y Es R Squared No. of Observa Degrees of Free	Run 2 - Corrected Data Regression Output: t tions edom	69.6428649 10.49294926 0.012164216 73 71
X Coefficient Std Err of Coe R Value	(s) ef.	0.052067574 0.005669381 0.737		X Coefficient(s Std Err of Coef R Value) 0.007171676 . 0.007669937 0.110	
Constant Std Err of Y E R Squared No. of Observ Degrccs of Fr	Run 3 - Unco Regression C Est rations eedom	prrected Data Output:	-190.014311 16.20090568 0.604525569 85 83	F R Constant Std Err of Y Es R Squared No. of Observat Degrees of Free	Run 3 - Corrected Data Regression Output: t tions edom	-196.576597 16.27453726 0.365890571 85 83
X Coefficient Std Err of Coe R Value	(s) ef.	0.079614062 0.007068099 0.778		X Coefficient(s Std Err of Coef R Value) 0.0844304 . 0.012200182 0.605	

CO/THC	CO/THC Correlation Using Run Averages						
Date	Run	CO	-	THC			
_		Concentration	@ 7% 02	Concentration	@ 7% O2		
10/31/89	1	3846.8	4291.8	113.6	123.1		
	2	4833.7	5253.3	126.8	137.7		
	3	4122.1	4467.0	133.0	144.0		
11/02/89	1	4191.3	3837.9	241.3	218.1		
	2	2854.3	2973.0	87.8	91.0		
	3	4678.0	4320.0	182.4	168.2		
SUMMARY OF ALL SIX RUNS							
	Uncorrecte	ed Data			Corrected Data		
	Regression	Output:			Regression Output:		
Constant			-10.0162	Constant			
Std Err of	Y Est		53.99703	Std Err of Y Est			
R Squared	1		0.241128	R Squared			
No. of Ob	servations		6	No. of Observation	ons		
Degrees o	f Freedom		4	Degrees of Freed	lom		

.

.-

- -

X Coefficient(s)	0.038530102206	X Coefficient(s)	0.011523
Std Err of Coef.	0.03417673806	Std Err of Coef.	0.028039
R value	0.491	R value	0.201

98.73025 47.25016 0.04051 6

4

SUMMARY OF 10/31 RUNS

Uncorrected Data Regression Output:			Corrected Data Regression Output:		
Std Err of Y Est		12.43487	Std Err of Y Est		13.98106
R Squared		0.212485	485 R Squared 0.		0.149711
No. of Observations		3	3 No. of Observations		3
Degrees of Freedom	Degrees of Freedom 1 Degrees of Freedom			1	
X Coefficient(s)	0.008968353453		X Coefficient(s)	0.008101	
Std Err of Coef.	0.01726545394		Std Err of Coef.	0.019305	
R value	0.461		R value	0.387	

SUMMARY OF 11/2 RUNS

Uncorrected Data Regression Output:			Corrected Data Regression Output:		
Std Err of Y Est		66.34354	Std Err of Y Est		62.46803
R Squared (0.633014	R Squared 0.5		0.524198
No. of Observation	No. of Observations 3		No. of Observations		
Degrees of Freedom 1 Degrees of Freedom			1		
X Coefficient(s)	0.065245517173		X Coefficient(s)	0.067931	
Std Err of Coef.	0.049678569366		Std Err of Coef.	0.06472	
R value	0.796		R value	0.724	

MOISTURE CALCULATIONS FOR HOT/COLD THC COMPARISONS

$$THC (dry) = \underline{THC (wet basis)}_{1 - \%H2O^{\bullet}}$$

* Calculated below using measured O2 and the best-fit line of moisture vs. O2.

		Measured	Measured	
Date	Run	H2O	O2	
10/31/89	1	27.5	8.3	
	2	27.1	8.0	Co
	3	28.7	8.0	Std
11/02/89	1	36.3	5.6	RS
	2	33.2	7.5	No
	3	36	5.8	De
		Calc'd	Measured	X
Date	Time	H2O	O2	Std
11/08/89	1230-1245	26.8	8.61	
	1245-1300	24.3	9.34	
	1300-1315	20.3	10.57	
	1315-1330	20.3	10.56	
	1330-1345	26.0	8.83	
	1345-1400	33.9	6.48	
	1400-1415	37.3	5.44	
	1415-1430	34.3	6.36	
	1430-1445	37.6	5.37	
	1445-1500	40.4	4.51	
	1500-1515	39.6	4.76	

Regress	ion Output:	
Constant	-	55.42948
Std Err of Y Est		1.637735
R Squared		0.879956
No. of Observation	15	6
Degrees of Freedo	m	4
X Coefficient(s)	-3.32817	
Std Err of Cocf.	0.614631	

• •

APPENDIX B.

.

. - .

.

.

. .-

· ·

•

MINUTE-BY-MINUTE CEM DATA SUMMARIES

10 -31 -1989					TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	@7% O2	@7% O2
13:50	7.5	4189.5			4336.1	
13:51	7.5	4214.7	139.9	139.8	4365.4	144.9
13:52	7.3	4268.6	145.8	161.6	4353.2	148.7
13:53	7.3	4395.2	148.6	151.6	4488.9	151.8
13:54	7.6	4235.7	144.5	134.3	4433.5	151.2
13:55	7.7	4244.9	145.2	135.1	4459.9	152.6
13:56	7.7	4235.1	145	134.2	4463.1	152.8
13:57	7.9	4150.2	140.4	129.5	4434.1	150.0
13:58	8.1	4070.4	138.4	132.4	4430.6	150.6
13:59	8.4	3898.5	135.3	122.8	4328.2	150.2
14:00	8.7	3817.7	131	117.6	4339.0	148.9
14:01	8.7	3788.5	129.9	115.5	4319.9	148.1
14:02	8.7	3757	131.9	118.7	4266.5	149.8
14:03	8.8	3808.1	129.3	115.8	4381.8	148.8
14:04	8.8	3683.1	130.1	106.8	4217.1	149.0
14:05	8.6	3727.5	131.7	108.4	4202.1	148.5
14:06	8.4	3828.9	133.6	115.1	4268.0	148.9
14:07	8.0	3999	136.7	120.5	4305.7	147.2
14:08	7.7	4096.4	141.6	113.2	4303.9	148.8
14:09	7.7	4197.2	141.3	114.3	4426.5	149.0
14:10	7.5	4241.5	145.8	118.9	4389.9	150.9
14:11	7.2	4305.6	148.4	109.5	4381.2	151.0
14:12	7.2	4418.1	150.7	109.2	4479.3	152.8
14:13	7.2	4534.6	149.1	108	4587.4	150.8
14:14	6.9	4549.5	155.5	112.8	4510.6	154.2
14:15	7.1	4540.2	153.7	111.2	4556.6	154.3
14:16	6.9	4729.4	153.3	111.2	4695.6	152.2
14:17	6.7	4724.9	159.4	116	4608.8	155.5
14:18	6.9	4716.7	154	111.1	4679.7	152.8
14:19	6.9	4751	151	108	4723.8	150.1
14:20	6.7	4621.1	154.4	110.4	4529,9	151.4
14:21	6.9	4712.8	152.1	108.7	4665.8	150.6
14:22	6.8	4865.7	154.5	110.3	4793.3	152.2
14:23	6.5	4834.5	163.8	118	4653.7	157.7
14:24	6.8	4820.5	158.9	121.9	4758.9	156.9
14:25	7.1	4752.4	157.6	128.9	4786.8	158.7
14:26	6.7	4742.2	170.8	122.8	4655.1	167.7
Run 3						
Average	8.1	4122.1	133.0	120.7	4467.0	144.0

.

10-31-1989					TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	@7% O2	@7% O2
12:10	7.8	4889.3	132.9	134.7	5195.8	141.2
12:11	7.8	4888.3	131.9	133.6	51 98. 7	140.3
12:12	8.0	4960.3	129.3	130.9	5328.3	138.9
12:13	7.8	4825.7	133.2	134.7	5136.1	141.8
12:14	7. 9	4832	129.7	131	5182.5	139.1
12:15	8.0	4751.9	127.6	128.9	5132.2	137.8
12:16	8.0	4703.3	128.7	130.1	5071.8	138.8
12:17	8.0	4701.4	134.1	135.2	5054.1	144.2
Run 2						
Average	81	4833 7	126.8	127.4	52533	1377
Avenage		4055.7	120.0	127.4	0200.0	101.1
13.11	10.0	3529.4	105.9	106	4496 7	134.9
13.12	Q 4	3649	111.2	111.9	4395 2	133.9
13.12	2. 4 85	3057.8	117.2	110.3	4323.L AA27 A	131.5
13.13	0.0	<i>3932.</i> 0	117.4	119.5	4427.4 AA27 A	121.5
13.14	0.5	4010	119	120.8	4437.4	131.5
13:15	0.2	4002.0	119.9	122.1	4432.1	130.8
13:10	8.0	3970.3	121.9	124.2	4274.8	131.2
13:17	8.0	4023.5	121.9	124.2	4332.0	131.2
13:18	8.1	4048.7	121.8	123.9	4407.0	132.6
13:19	8.1	3988.5	122.1	124.2	4341.4	132.9
13:20	8.4	3965.4	119.9	121.9	4420.1	133.6
13:21	8.8	3841.6	119.2	120.5	4405.8	136.7
13:22	9.1	3690.5	115.9	116.5	4336.3	136.2
13:23	9.4	3605.4	113.3	113.6	4369.2	137.3
13:24	9.6	3563	113.4	113.4	4367.3	139.0
13:25	9.3	3636.1	113.5	113.7	4349.6	135.8
13:26	9.1	3793	115	115.6	4460.5	135.2
13:27	9.0	3918.1	118.2	118.9	4580.5	138.2
13:28	8.9	3896	118.1	119	4509.1	136.7
13:29	8.7	4030.9	118.9	120.3	4592.6	135.5
13:30	8.5	4111.7	122.5	123.5	4590.6	136.8
13:31	8.0	4212.8	124.4	126	4553.5	134.5
13:32	8.2	4228.2	122.9	124.3	4627.7	134.5
13:33	8.2	4235.9	126.2	127.7	4632.5	138.0
13:34	8.1	4182.4	126	127.6	4531.2	136.5
13:35	8.2	4138.1	124.7	126.3	4539.8	136.8
13.36	8.7	4030.8	124	124.9	4585.0	141.0
13.30	87	3915.9	122.8	123.7	4447.0	139.5
13.38	88	3896	122.7	123.4	4471.9	140.8
13.30	8.8	3858 3	123.5	124.3	4428.6	141.8
13.40	8 Q	3829.1	123.3	124.5	4450.2	140.7
13.40	0.9	3803.8	110.7	110.6	4450.2	140.7
13:41	9.1	2804 5	120.7	121.0	AAA3 0	140.5
13:42	7.U 07	2002.0	120.7	121.1	4421 0	127.0
13:43	0.1	2072.0 2007 7	121.4	122.1	4461.9 ASN2 0	137.5
13:44	ð.ð	3501.1	121.1	121.9	4303.9	137.0
13:45	8.3	3922	123.4	124.7	4407.1	130./
13:46	/.8	41/2.2	127.0	130.1	4437.2	135.7
13:47	7.7	4247.5	— · · ·		4482.9	
13:48 Port (Change (Parti	iculate/Metals	irain)			
13:49						

10-31-198	39				TECO 48	Bcckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	<u>@7% O2</u>	@7% O2
08:51	10.2	2865.2	59.6	59.6	3718.6	77.4
08:52	10.4	2873.1	60.9	60.9	3796.2	80.5
08:53	10.5	2856.7	61	60.9	3825.4	81.7
08:54	10.9	2806.2	62.3	62.2	3912.4	86.9
08:55	11.0	2804.8	63.8	63.4	3938.1	89.6
08:56	11.2	2814.9	65.5	65	4033.7	93.9
08:57	11.5	2840.6	68.2	67.7	4204.9	101.0
08:58	11.3	2856.6	68.6	68	4123.2	99 .0
08:59	11.6	2917	70.1	69.7	4336.5	104.2
09:00	11.8	2935.7	73	72.4	4504.0	112.0
09:01	12.3	3202.2	74.6	74.1	5175.6	120.6
09:02	12.4	3142.9	76.2	75.7	5157.8	125.1
09:03	12.2	3119.2	77	76.5	4977.8	122.9
09:04	12.0	3184.2	77.9	77.4	4973.1	121.7
09:05	11.9	3281.6	80.1	79.7	5073.9	123.8
09:06	11.8	3344.5	82.6	82.2	5091.8	125.8
09.07	11.5	3373.9	85	85	4989.1	125.7
09.08	10.4	3447.2	85	85.8	4554.8	112.3
09.09	93	3523.9	88.7	90.5	4233.6	106.6
09.02	9.0	3543.3	92.2	94.3	4152.8	108.1
09.10	9.0 8 7	3657.5	95.2	98.2	4150.1	108.0
00.11	86	3741 5	96.6	99.5	4235.1	109.3
09.12	9.0	3709.2	97.8	100.8	4343.5	114.5
00.13	82	3768.6	101.3	104.8	4108.5	110.4
09.14	80	3902.9	101.5	108.8	4205 5	112.8
09.15	7.6	3907.2	110.8	115.5	4095.8	116.1
09.10	7.0	3915 3	115.0	120.6	3995.8	117.7
00.19	7.5 7 7	3080.6	113.5	118.6	4175.9	119.1
00.10	7.7 9 1	2046 7	113.5	116.0	4175.2	121.7
09:19	0.1 7 7	40167	116.7	122.3	4209.2	122.9
09:20	7.1	4010.7	110.7	122.5	4212.6	122.5
09:21	7.3	4124.7	120	120.0	4212.0	122.0
09:22	6.9	4100.2	120.0	134.3	4141.5	120.1
09:23	6.4 C 0	4191.7	135.5	144.5	4023.0	130.1
09:24	6.0	4203.1	144	134.1	3963.0	134.0
09:25	5.4	4455.6	101	1/3.3	4006.0	144.0
09:26	4.3	4/10.6	221.9	240.9	3937.3	185.5
09:27	3.5	5459.3	294.9	322.2	4361.2	235.0
09:28	3.1	6491.6	376.8	413.6	5057.9	293.0
09:29 Pot	rt Change (Part	iculate/Metals	Train)			
09:30			=			151.0
09:31	5.9	4893.2	163.7	176.2	4537.4	151.8
09:32	6.8	4459.7	144.8	154.5	4405.8	143.1
09:33	6.5	4435.7	138.7	148.7	4266.9	133.4
09:34	6.7	4253.8	136.9	146.2	4172.7	134.3
09:35	7.1	4120.2	128.8	137	4159.1	130.0
09:36	7.1	4101.9	128.3	136.1	4140.6	129.5
09:37	6.5	4122.5	137.9	147.3	3965.6	132.7
09:38	6.2	4178	142.9	153.4	3937.2	134.7
09:39	5.9	4233.3	143.1	153.9	3915.0	132.3
09:40	6.0	4249.8	147.7	158.5	3961.9	137.7
09:41	6.2	4389	144.2	154.6	4138.9	136.0

. • •

10-31-1989					TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	@7% O2	@7% O2
09:42	6.1	4276.6	138.2	148	4024.7	130.1
09:43	6.7	4260.8	133.6	142.1	4176.7	131.0
09:44	8. 0	4123.9	126.2	129.9	4443.6	136.0
09:45	8.1	4040.9	121.9	126	4388.2	132.4
09:46	8.8	4116.9	109.9	113.3	4709.9	125.7
09:47	9.3	4095.5	105.7	108.5	4894.9	126.3
09:48	9.4	3996.1	103.1	105.6	4842.7	124.9
09:49	9.5	3910.7	101.9	104.3	4776.7	124.5
09:50	9.6	3871.7	101.5	103.7	4766.8	125.0
09:51	9.7	3882.7	100.1	102.2	4805.8	123.9
09:52	9.5	3882.1	100.8	103.3	4716.9	122.5
09:53	9.1	3892.5	100.7	103.5	4577.5	118.4
09:54	8.5	3939.5	100.8	104.2	4412.5	112.9
09.55	8.3	3868.8	101.5	105.1	4264.6	111.9
09:55	79	38914	103.9	108.2	4157.6	111.2
09.50	7.5	3051	109.2	113.0	4137.3	111.0
09.57	7.5	2066.2	109.1	113.9	4110.7	113.5
09.50	7.0	2026	100.1	113.2	4101.2	113.1
10.00	7.0	2010.0	109.5	114.5	4101.2	113.9
10:00	7.4	3919.9	10.2	113	4030.1	113.5
10:01	7.7	3929.8	108	113	4128.8	113.5
10:02	7.9	3872.3	108.5	112.5	4124.5	115.0
10:03	/.8	3784	109.3	113.4	4024.3	116.2
10:04	7.8	3936.4	109.8	114.1	4180.0	116.6
10:05	7.9	3880.5	110.1	114.4	4136.4	117.4
10:06	7.6	3826	110.6	115.5	3983.6	115.2
10:07	7.3	3859.7	111.6	116.8	3953.6	114.3
10:08	7.4	3833.9	113.3	118.4	3947.5	116.7
10:09	7.5	3826	111.7	116.8	3954.0	115.4
10:10	7.5	3885.2	111	116.2	4024.2	115.0
		·,				
Run 1						
Average	8.4	3846.8	113.6	118.8	4291.5	123.1
11:01	8.5	4569.1	109	108.8	5121.8	122.2
11:02	8.5	4504.5	111.7	111.3	5037.2	124.9
11:03	8.3	4336	121	120.7	4772.0	133.2
11:04	8.6	4597.4	108.4	108	5212.4	122.9
11:05	8.5	4511.3	112.5	112.3	5048.9	125.9
11:06	8.6	4311.3	120	119.8	4872.1	135.6
11:07	8.2	4871.2	119.6	119.4	5310.6	130.4
11:08	8.1	4996.1	128.2	128.7	5404.3	138.7
11:09	8.0	4709.7	133.5	133.4	5074.8	143.8
11:10	8.0	5014.1	123.3	123.1	5415.4	133.2
11:11	7.7	5122.6	143.2	143.9	5406.5	151.1
11:12	7.8	4954.8	143.1	143.4	5269.5	152.2
11:13	7.9	5259.4	134.2	134.2	5610.6	143.2
11:14	7.8	5227.7	143	143.8	5546.9	151.7
11:15	7.9	5143.8	146	146.4	5504.1	156.2
11.16	8.2	5127.1	127.9	127.5	5611.6	140.0
11.10	9.2 9.2	5155.6	135.4	135.9	5683.0	149 3
11:18	8.4	4865.7	128.1	128.2	5393.4	142.0

.•

. • •

•

10-31-198	9				TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3 🕞	ppm C3	@7% O2	<u>@7% O2</u>
11:19	8.7	4700.2	117.3	116.7	5368.3	134.0
11:20	8.7	4779.6	119.8	119.4	5436.7	136.3
11:21	8.8	4457.4	121.5	120.7	5107.8	139.2
11:22	8.7	4647.4	114.6	113.9	5308.0	130.9
11:23	8.6	4522.5	116.5	116.5	5119.1	131.9
11:24	8.3	4650.7	123.9	123.8	5126.5	136.6
11:25	8.5	4583.8	113.9	113.8	5117.7	127.2
11:26	8.3	4601.2	115.5	115.7	5075.9	127.4
11:27	8.2	4636.7	117.3	117.5	5066.8	128.2
11:28	8.4	4586.7	115.4	115.4	5096.3	128.2
11:29	8.4	4690.9	113.6	113.7	5220.5	126.4
11:30	8.4	4533.4	114.6	114.7	5045.2	127.5
11:31	8.6	4484.4	114.5	114.6	5051.3	129.0
11:32	8.6	4616.9	111.6	111.8	5204.8	125.8
11:33	8.4	4470.7	116.5	116.7	4959.5	129.2
11.34	84	4644.5	118.1	118.2	5160.6	131.2
11.35	84	4691.6	117.5	118.2	5196.3	130.1
11.36	84	4649.9	118.7	119.1	5154.2	131.6
11:30	8.5	4571.3	120.6	120.3	5107.8	134.8
11.38	81	4806.4	124.6	124.2	5223.5	135.4
11.39 Por	t Change (Part	iculate/Metals	Train)			
11:40	· •		,			
11:41	7.7	5275.2	135.4	136.4	5538.2	142.1
11:42	7.6	5383.1	139.4	140.9	5609.1	145.3
11:43	7.6	5333	140.9	142.2	5582.0	147.5
11.44	7.6	5300.5	134.2	135.9	5552.1	140.6
11:45	7.4	5451.2	148.3	150.1	5625.2	153.0
11.46	7.4	5364.5	147.9	148.1	5507.1	151.8
11:47	76	5466.1	134.7	135.3	5699.8	140.5
11.48	7.7	5784.8	143.8	144.1	5556.6	151.2
11.49	7.8	5126.3	1393	139.9	5422.8	147.4
11.50	7.8	5162	133 5	134.5	5477.2	141.7
11.50	7.8	5219.8	132.9	134	5551 3	141.3
11.51	7.8	4943 3	131.9	133.1	5257.2	140.3
11.52	7.9	4947 9	126.4	127.4	5289.2	135.3
11.55	80	4834.6	126.5	127.7	5189.3	135.8
11.54	79	4800 1	1336	135.1	5132.4	142.8
11.55	79	5022 3	131	132.7	5357.6	139.7
11:50	81	5025.1	126	127.3	5444.2	136.5
11.57	80	4715 3	128.8	130.1	5092.7	139.1
11.59	82	4659	122.5	123.8	5095.2	134.0
12:00	82	4709 1	174.1	125.1	5137.9	135.4
12.00	7.8	4757 3	137.9	134 3	5055.5	141.2
12.01	2.0 2.0	4872 2	176.7	127.4	5209.3	136.3
12.02	9.0 9.0	4770 1	174 8	125.6	5247 A	137.0
12:03	0.2 0.2	4602 A	170 2	130 6	4071 g	139.0
12:04	0.0	4003.4 1661 9	127.5	175 6	51 <i>1</i> 7 9	137.0
12:05	0.J 0 A	4001.0	124.J 174 2	175 2	5142.0	138.2
12.00	0.4	4022	124.3	178.9	5100 5	130.5
12:07	ð.2 8 a	40/1.2	12/./	120.0	2 TOO'S	137.4
12:00	0.2	4032.3	120.1	121.4	5000.2	140 8
12:07	ō. I	4/77.0	167.7	131'2	J204.2	140.0

.

.

. .

11-02-1989	}				TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	@7% O2	@7% O2
· · · · · · · · · · · · · · · · · · ·						
08:32	8.0	3093.4	83.8	89.3	3325.5	90.1
08:33	7.7	3122.0	86.3	92.1	3297.6	91.2
08:34	7.4	3233.9	92.8	99.5	3322.3	95.3
08:35	7.1	3121.1	97.9	105.1	3136.9	98.4
08:36	7.0	3285.1	101.7	109.3	3275.7	101.4
08:37	6.9	3546.1	107.7	116.1	3520.8	106.9
08:38	6.8	3539.9	125.5	134.5	3479.8	123.4
08:39	6.8	3514.6	123.4	131.7	3472.1	121.9
08:40	6.8	3612.8	113.7	123.2	3554.0	111.8
08:41	6.9	3656.0	128.4	138.0	3635.1	127.7
08:42	7.0	3424.0	133.9	143.4	3411.7	133.4
08:43	7.0	3595.6	121.8	130.3	3585.3	121.5
08:44	7.0	3805.8	133.1	143.0	3803.1	133.0
Invalie	d Data Sam	pling system p	roblem			
09:02	6.4	3691.9	160.8	172.4	3529.4	153.7
09:03	6.4	3479.6	149.0	162.3	3324.2	142.3
09:04	6.3	3462.1	142.8	154.4	3300.6	136.1
09:05	6.4	3836.7	136.3	149.6	3670.3	130.4
09:06	5.9	3777.3	207.2	224.5	3495.6	191.7
09:07	5.5	3981.3	219.1	237.5	3593.5	197.8
09:08	5.6	4268.3	174.4	190.9	3875.2	158.3
09:09 Inv	alid Data P	ort Change pa	rticulate/metal	s train		
09:10			· · · · · · · · · · · · · · · ·			
09:11	5.3	4169.9	238.1	257.1	3713.1	212.0
09:12	5.2	4756.5	217.0	238.3	4216.5	192.4
09:13	5.2	4409.1	261.0	285.5	3891.2	230.3
09:14	5.2	4143.8	267.2	290.0	3666.4	236.4
09:15	5.2	4406.7	207.3	226.3	3904.0	183.7
09:16	5.1	4558.6	232.2	254.3	4020.6	204.8
09:17.	4.8	4179.1	262.0	285.2	3617.0	226.8
09:18	4.6	4275.7	274.6	297.2	3641.7	233.9
09:19	4.2	5071.3	291.7	319.3	4226.1	243.1
09:20	4.4	4926.5	294.3	322.4	4142.7	247.5
09:21	4.3	4540.4	312.4	339.2	3792.8	261.0
09:22	4.1	4762.3	319.5	345.9	3930.9	263.7
09:23	4.2	5172.7	365.1	396.8	4308.0	304.1
09:24	4.5	5174.4	370.5	399.0	4380.3	313.6
09:25	4.3	5091.0	359.5	388.2	4255.3	300.5
09:26	4.3	5216.6	395.2	425.0	4368.1	330.9
09:27	4.7	5265.3	392.3	422.6	4503.9	335.6
09:28	4.9	4813.9	364.0	389.4	4169.0	315.2
09.20	46	5051.6	340.6	365.8	4313.1	290.8
09:22	4.8	5064.5	379.8	408.3	4342.8	325.7
09:30	54	4512.5	319.9	340.7	4036.3	286.1
09:32	5.6	4373.5	245.2	261.3	3981.1	223.2
09:33	5.8	4113.9	226.4	242.5	3794.5	208.8
09:34	5.0	4009.5	284.8	302.0	3676.3	261.1
09.35	60	3986 5	261.5	276.7	3714.0	243.6
09.36	57	4785 5	266.0	281.0	3906.1	242.5
09.30	5.7	4491 A	200.0	373 1	4050.2	273.6
00.28	5.5	4744 K	370 3	388 7	3902 1	340 4
09.30	5.0 K N	4562 7	3394	357.1	4259.3	316.8

. •

•

.

.

11-02-19	89				TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	@7% O2	@7% O2
09:40	5.6	4921.0	360.0	381.1	4462.0	326.4
09:41	5.6	4626.5	398.0	420.7	4214.2	362.5
09:42	6.0	4347.8	340.1	357.9	4053.3	317.1
09:43	6.3	4555.3	314.9	330,3	4336.9	299.8
09:44	7.3	4312.7	226.7	240.5	4394.9	231.0
09:45	6.6	3529.0	240.1	251.0	3432.7	233.5
09:46	6.8	3750.5	235.0	246.1	3694.7	231.5
Run 1						
Average	5.8	4191.3	241.3	259.0	3837.9	218.1
L		<u> </u>				
10:21	8.5	2426.7	73.1	76.1	2713.7	81.7
10:22	8.3	2362.8	71.5	74.8	2608.7	78.9
10:23	8.2	2423.0	71.7	75.4	2660.3	78.7
10:24	8.4	2416.5	71.9	75.1	2682.9	79.8
10:25	8.0	2406.8	74.4	77.3	2595.4	80.2
10:26	8.2	2547.8	74.1	77.1	2782.0	80.9
10:27	8.1	2597.7	77.8	81.5	2812.2	84.2
10:28	7.7	2590.2	79.0	83.4	2733.8	83.4
10:29	7.5	2535.7	79.6	84.7	2620.5	82.3
10:30	7.5	2689.3	78.4	83.8	2795.9	81.5
10:31	7.2	2715.1	90.0	95.5	2750.7	91.2
10:32	6.7	2795.4	96.4	102.5	2726.7	94.0
10:33	6.6	3000.4	98.3	104.8	2916.5	95.6
10.34	6.5	3273 1	116.6	174.8	3166.0	112.8
10.35	6.5	3023.9	116.0	123.9	2908.8	111.7
10.36	63	3106.9	112.0	120.0	2066.1	106.9
10.30	63	3385 1	174.1	133.2	3214.0	117.8
10.37	6.5	3106 1	117.7	135.2	3085 1	102.3
10.30	6.5	2048.8	108.8	116.8	2848 4	105.5
10.55	6.9	2040.0	077	105 2	2040.4	07 1
10.40	6.8	3004.5	101 5	109.2	2068.2	100.3
10.41	67	2059.8	101.5	124.3	2900.2	114 0
10.42	6.6	3115 3	106.6	113.6	3017.5	103.3
10.45	6.6	3308 5	111 7	110.0	3213.7	103.5
10.45	6.0 6.7	3065 7	111.7	120.7	2004.6	110.5
10.45	6.6	2067 4	113.3	120.7	22274.0	110.7
10.40	0.0	2507.4	05 1	121.2	2002.4	04.5
10.47	0.9	28707	93.1 02 7	00.9	2011 1	02 7
10.40	7.2	2013.1	<i>32.1</i>	55.0 104 5	2711.1	93.7 09.4
10:47	7.1	2043.0 2777 5	97.7	05.2	2004.4	90.4 02.1
10:50	1.4	2777.5	87.J 88.0	93.2	2037.7	92.1
10:51	7.5	2913.9	00.0	93.3 104 0	3029.4	91.J 101.4
10:52	1.4	2071.7 2070 5	70.J	104.0	2704.U 2017 2	101.4
10:33	1.2	2017.3	20.1	روب در مرد م ۱۹۱۰ م	2717.3	7/.4 02 1
10.54	7.4	0.000	90./ 07.5	20.3 102 4	5114.5 2022 4	73.I 07 4
10:33	7.0	3029.U	¥1.5	103.0	3033.4	۶/.4 محمد
10:30	/.1	2941.1	97.4 102.2	103.2	2933.9	۶/.ð
10:57	8.0	2928.9	103.2	109.3	2883.3	101.6
10:58 10	ivano Data Po	ort Unange pai	ruculate/metal	s train		
10:59	~ .	2025 4	04.4	102.0	2040.2	~ •
11:00	/.1	2923.4	70.0	103.0	2940.2	97.1
11:01	7.4	29/5.4	88.3	94.1	5061.3	90.8

.

.

• .

.

.

•

11-02-198	9				TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	<u>@</u> 7% O2	@7% O2
11:02	7.4	3061.8	96.2	102.3	3159.5	99.3
11:03	7.6	2888.8	88.9	95.1	3025.9	93.1
11:04	7.5	2801.2	90.6	96.7	2914.4	94.3
11:05	7.6	3076.5	85.8	91.4	3215.3	89.7
11:06	7.7	2925.2	87.7	93.0	3071.0	92.1
11:07	7.8	2727.6	82.9	87.4	2900.8	88.2
11:08	7.9	2746.1	79.9	84.8	2934.0	85.4
11:09	7.8	2781.4	81.0	86.3	2940.0	85.6
11:10	7.6	2813.1	85.7	91.1	2948.9	89.8
11:11	7.5	2753.5	83.2	88.9	2858.4	86.4
11:12	7.6	2856.6	81.2	86.9	2992.2	85.1
11:13	7.5	2944.3	88.2	94.3	3056.4	91.6
11:14	7.3	2852.1	88.3	94.0	2908.6	90.0
11.15	76	2926.5	85.5	91 1	3047 1	89.0
11.15	7.6	2978.2	81.5	87.2	3121.9	85.4
11.10	7.6	2270.2	83.5	88.7	2040 2	875
11.17	7.0	2748 3	80.8	85.7	2894 0	85.1
11.10	79	2812.1	75.1	803	3004.5	80.2
11.12	80	2792 5	79.1	84 7	3011 3	85 3
11.20	80	2709.9	76.6	82.0	2924 5	827
11.21	83	2750 3	74.1	78.8	3022 1	81.4
11.22	83	28094	73.4	70.0 77 Q	3094 3	80 S
11.23	83	2005.4	74.9	793	3029.5	82.6
11.24	84	2697.9	73.8	78.2	3002 5	82.1
11.22	86	2027.2	69.7	78.2	3137.0	78 /
11.20	8.0 8.5	2700.0	713	74.2	3051.0	70.4 70 7
11.27	8.5	2720.3	71.5	75.5 70 7	3031.0	84.7
11.20	0. 4 8 7	2721.3	73.0	79.0	3160.0	04.2 81.5
11.20	83	2000.0	71.5	76.5	37500	70.2
11.30	83	2244.0	71.0	70.1	3233.0	79.2 97.1
11.31	8.5 8.5	2000.0	71.7	75.0	21717	707
11.32	8.J 8.7	2034.0	68 1	71.8	2786 4	13.1 776
11.33	0.7	2004.5	68.1	71.6	2219.1	77.0
11.34	0.0 8 0	2003.7	69.2	71.0	3210.1 2105 1	70.2
11.55	0.9	2143.2	06.2	/1.2	5155.1	73.5
Dun 2						J
Average	76	28512	97 9	02.2	2072.0	01.0
Average	7.0	2034.3	07.0	33.3	2975.0	91.0
13.01	56	5004.0	712 5	762 7	1677 7	?? 0.0
12.02	5.0	JU94.9 4702.2	243.3	203.2	4022.7	220.9
13:02	0.2	4/93.2	220.1	241.0	4332.3	213.0
13:03	0.1	4/10.1	219.0	2.54.1	4425.2	205.4
13:04	0.4	4429.1	1/4./	187.3	42.54.1	107.0
13:03	0.4	4401.4	100.0	201.3	4213.3	180.5
13:00	0.0	4193.3	103.9	1//.1	4083.7	C.101
13:07	0.3	4352.9	10/.3	1//.9	4195.9	161.3
13:08	6.6	4501.2	157.9	16/.8	4192.6	153.9
13:09	6.9	40/6.7	140.5	149.6	40.38.9	139.2
13:10	6.6	4167.4	148.6	158.4	4056.5	144.6
13:11	6.8	4208.8	159.4	168.8	4155.0	157.4
13:12	6.6	4277.3	149.0	158.2	4146.1	144.4
13:13	6.2	4322.8	157.8	167.9	4084.8	149.1
13:14	6.3	4370.4	160.0	169.4	4146.7	151.8

•

.

.

.

11-02-	1989				TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ррт ТНС
TIME	% O2	ppm CO	ppm C3	ppm C3	@7% O2	@7% O2
13:15	6.4	4396.1	149.7	159.3	4214.2	143.5
13:16	6.2	4486.0	164.7	174.1	4244.8	155.8
13:17	6.0	4558.4	188.0	198.6	4246.8	175.1
13:18	6.1	4615.9	171.0	181.2	4320.6	160.1
13:19	6.0	4656.2	183.4	193.9	4335.0	170.7
13:20	5.6	4890.8	232.4	244.6	4431.7	210.6
13:21	5.4	5011.8	229.6	241.9	4497.4	206.0
13:22	5.5	4979.4	203.0	216.1	4503.2	183.6
13:23	5.3	5144.5	250.4	264.1	4592.7	223.5
13:24	5.3	5075.4	223.3	237.2	4533.9	199.5
13.25	57	4891.9	178.8	190.1	4467.6	163.3
13.20	5.8	4801 5	187 1	1977	4419.9	172.2
13.27	5.0	4788.6	200.9	212.0	4381.9	183.8
13.27	57	4700.0	184 3	1Q4 Q	4301.5	168.5
13.20	5.7	4760 8	167.8	178.2	4311.4	156.0
13.29	5 Q	4700.8	107.8	187.1	4307 3	164 1
12.21	5.9	4746.5	165 5	175 2	4357.5	154.6
12.22	6.0	4455.5	142.2	175.2	4160.0	126.1
13:32	0.3	43/3.4	143.2	152.0	4100.3	140.6
13:33	0.3	4300.7	140.1	157.2	4140.5	140.0
13:34	6.2	4410.0	130.1	100.0	4104.3	141.7
13:35	6.0	4333.7	1/4.8	164.1	4030.0	102.7
13:30	0.U	4080.0	133.9	104.0	43/4./	143.9
13:37	5.9	4658.2	180.7	191.7	4322.4	10/./
13:38	6.0	4424.8	168.8	178.9	4133.4	157.7
13:39	6.1	4494.1	147.8	156.9	4232.2	139.2
13:40	6.0	4665.4	173.0	183.5	4358.1	161.6
13:41	6.0	4478.3	176.6	186.2	4163.8	164.2
13:42	6.1	4497.8	161.2	169.5	4230.0	151.6
13:43	6.2	4603.4	149.5	159.9	4361.8	141.7
13:44	5.9	4517.1	172.3	182.8	4191.4	159.9
13:45	6.1	4354.1	163.4	172.8	4092.1	153.6
13:46	6.3	4543.4	140.3	149.3	4310.8	133.1
13:47	6.0	4619.3	173.1	183.5	4309.3	161.5
13:48	5.8	4554.1	177.2	188.1	4189.4	163.0
13:49	5.9	4720.5	174.1	183.7	4374.3	161.3
13:50	5.6	4841.8	170.6	182.4	4407.4	155.3
13:51	Invalid Data Po	ort Change par	rticulate/metal	s train		
13:52						
13:53	5.6	4727.7	174.0	185.3	4300.7	158.3
13:54	5.4	4846.7	217.2	230.0	4349.2	194.9
13:55	5.1	4982.9	225.4	239.7	4394.8	198.8
13:56	5.2	5005.9	236.7	251.2	4423.5	209.2
13:57	5.3	5164.8	214.4	229.2	4599.0	190.9
13:58	5.1	5124.5	235.0	249.5	4511.1	206.9
13:59	5.6	4804.6	202.7	215.0	4350.7	183.6
14:00	5.8	4950.7	178.3	189.9	4557.3	164.1
14:01	5.9	4882.9	182.5	195.1	4518.8	168.9
14:02	5.7	4524.3	184.8	196.5	4148.3	169.4
14:03	5.7	4714.3	189.1	200.6	4308.3	172.8
14:04	5.7	4844.0	189.8	202.4	4415.2	173.0
14:05	5.3	5062.4	219.3	232.8	4519.4	195.8
14:06	5.5	5015.7	209.2	223.1	4536.0	189.2

. .

•

•

11-02-198	39				TECO 48	Beckman
	Thermox	TECO 48	Beckman	Ratfisch	ppm CO	ppm THC
TIME	% O2	ppm CO	ppm C3	ppm C3	@7% O2	
14:07	5.8	5058.6	183.9	196.0	4644.3	168.8
14:08	5.6	4961.6	193.1	205.7	4516.5	175.8
14:09	5.9	4743.4	176.5	188.1	4386.8	163.2
14:10	6.2	4664.4	157.3	167.4	4407.6	148.6
14:11	6.2	4518.4	160.6	170.9	4260.9	151.4
14:12	6.0	4686.8	169.4	179.2	4357.6	157.5
14:13	5.8	4734.3	174.8	185.6	4352.3	160.7
14:14	5.9	4697.5	172.4	182.5	4358.8	1 60.0
14:15	5.8	4673.8	169.1	179.2	4305.2	155.8
14:16	5.7	4678.1	166.5	177.3	4280.8	152.4
14:17	5.7	4717.4	186.3	196.8	4313.9	170.4
14:18	5.9	4787.8	169.0	179.2	4422.0	156.1
14:19	5.7	4775.2	170.9	180.8	4369.7	156.4
14:20	5.6	4690.2	188.6	199.8	4249.9	170.9
14:21	5.4	4842.9	196.4	207.6	4343.0	176.1
14:22	5.4	4865.3	197.4	209.2	4360.3	176.9
14:23	5.1	4844.5	190.5	202.6	4267.3	167.8
14:24	5.2	4835.7	208.8	220.3	4270.4	184.4
14:25	5.2	4806.4	205.7	218.2	4252.6	182.0
14:26	5.2	4899.2	192.3	204.6	4323.7	169.7
14:27	5.1	4670.4	203.5	217.4	4101.0	178.7
Run 3		<u> </u>				
Average	5.9	4678.0	182.4	193.7	4320.5	168.2

. . . .

-

-- .

.

•

-

TECHNICAL RE (Please read Instructions on the	EPORT DATA e reverse before complet					
1. REPORT NO. 2. EPA/600/R-92/003e	3. PB92-1	51596				
4. TITLE AND SUBTITLE EMISSIONS OF METALS, CHROMIUM AND NICKEL SP	ECIES, AND	March 1992				
ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE I VOLUME V: Site 7 Test Report - CEMS Evaluat	NCINERATORS 6. PERFORMING OR	GANIZATION CODE				
7. AUTHOR(S)	8. PERFORMING OF	GANIZATION REPORT NO.				
Cone, A. Laurie, and Scott A. Shanklin						
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEN	AENT NO.				
Entropy Environmentalists, Inc.	11. CONTRACT/GR	NT NO.				
North Carolina, 27709	Contract Work Ass	No. 68-C0-0027 Signment No. 0-5				
12. SPONSORING AGENCY NAME AND ADDRESS Risk Reduction Engineering Laboratory	13. TYPE OF REPOR Draft Re	TAND PERIOD COVERED Port 1989 - 91				
Office of Research and Development	14. SPONSORING A	GENCY CODE				
Cincinnati, OH 45268	EPA/600 /	'14				
15. SUPPLEMENTARY NOTES	<u>_</u>					
EPA Technical Contact: Dr. Harry E. Bostia	an, (513) 569-7619, FTS: 6	684-7619				
16. ABSTRACT						
tions and Standards (OWRS) has recently revised the risk-based sludge regulations under Section 405d of the Clean Water Act. The revised regulations include a provision for monitoring total hydrocarbon (THC) and/or carbon monoxide (CO) emissions as a surrogate for organic emissions measurements. With the assistance of EPA's Risk Reduction Engineering Laboratory (RREL), OWRS has implemented a research program to investigate the relationship of CO and hydrocarbon emissions and the viability of the monitoring systems used to continuously measure these emissions. This test report presents the results						
The CO and THC emission levels showed	ed good agreement during t	he test C. The actual				
correlation coefficients ranged from .73	93 using one-minute ave	raged data				
from six test runs. Comparisons of CO a levels do not provide the same measure of	and THC values corrected t	o 7% oxygen				
.83). Possible explanation of the appar	ent change in agreement i	s being				
investigated further. This report prese data in both tabular and graphic formate	ents uncorrected and corre	cted emission				
This report was submitted in fulfill	lment of Contract No. 68-C	0-0027, Work				
Assignment No. 0-5 by Entropy Environment the U.S. Environmental Protection Agency October 28 to November 8 1989 and work	italists, Inc. under the s 7. This report covers a p 7. was completed as of hugu	ponsorship of eriod from et 26. 1991.				
17. KEY WORDS AND DO	CUMENT ANALYSIS	COSATI Field/Group				
a. DESCRIPTORS	D.IDENTIFIERS/OPEN ENDED TERMS					
Water pollution, sludge disposal.	Emissions,					
incinerator(s), organic compounds,	muicipie nearth, total hydrocarbons,					
combustion products	continuous monitoring					
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report)	21. NO. OF PAGES				
	INCLASSIFIED	22. PRICE				
RELEASE TO PUBLIC	UNCLASSIFIED					

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE

•

i