
United States Policy, P1anning, EPA 230-05-90-078 
Environmental Protection And Evaluation November 1989 
Agency {PM-221) 

Contingent Valuation Assessment 
Of 1heEconomic Damages 
OfPollutionTo Marine 
Recreational FIShing 



EPA-230-05-90-078 

Contingent Valuation Assessment of The Economic 

Damages of Pollution to Marine Recreational Fishing 

Submitted to: 

Mary Jo Kealy 

Office of Regulat?ry Management and Evaluation 

U.S. Environmental Protection Agency 

Washington, D.C. 20460 

Submitted by: 

Trudy A. Cameron 

Department of Economics 

University of California, Los Angeles 

405 Hilgard Avenue 

Los Angeles, Ca. 90024 

November, 1989 

The information in this document has been funded in part by the 

United States Environmental Protection Agency under Cooperative 

Agreement No. CR 814656020. It has been subject to the Agency's 

peer and administrative review, and it has been approved for 

publication as an EPA document. Mention of trade names or 

commercial products does not constitute endorsement or 

recommendation for use. 



CONTINGENT VALUATION ASSESSMENT OF THE ECONOMIC DAMAGES 
OF POLLUTION TO MARINE RECREATIONAL FISHING 

(EPA Cooperative Agreement# CR-814656-01-0) 

Trudy Ann Cameron 

Executive Summary 

The research performed under this cooperative agreement is summarized in 
the contents of four papers. These are described in the following sections. 

1. "The Determinants of Value for a Marine Estuarine Sportfishery: The 
Effects of Water Quality in Texas Bays," (also Working Paper #523, Department 
of Economics, University of California at Los Angeles). 

This paper gives a detailed description of the data collected in the 
socioeconomic portion of the Texa~ Parks and Wildlife Creel Survey of over 
10,000 recreational anglers between May and November of 1987. It also 
summarizes the auxiliary data sources used to augment these data, which 
include gamefish abundance estimates we have calculated from the data 
collected in the Texas Parks and Wildlife Resource Monitoring Program, water 
quality data from the Texas Department of Water Resources, and five-digit zip 
code sociodemographic averages from the 1980 Census. 

The objective in this first paper is to formulate special statistical 
models that produce estimates of each individual survey respondent's 
willingness to pay for access to the recreational fishery in the eight major 
bays along the Texas Gulf Coast. In this paper, no attempt is made to force 
these models to conform with formal economic theories. Instead, minimally 
sophisticated discrete choice econometric models are used in an attempt to 
establish the apparent systematic relationships between willingness to pay and 
whatever explanatory factors are available. These factors include: 
characteristics of the individual, their current catch, location and time of 
the interview, typical gamefish abundance, and coarse measures of several 
dimensions of water quality by time and location collected both by survey 
personnel and separately by the Department of Water Resources. 

The econometric methods used in this analysis are specially designed to 
accommodate the "limited dependent variable" nature of the data. The paper 
describes the method by which maximum likelihood logit estimates can be 
transformed to yield the implied parameters of an approximation to the demand 
function for recreational fishing access. In particular, we are interested in 



price and income elasticities of demand. But we also focus in this study on 
the extent to which water quality, geographical and seasonal dummy variables, 
socioeconomic and other variables act as shifters of this demand function. 

For this portion of the study, there are mixed findings concerning the 
effects of water quality on the value of the recreational fishery. A wide 
variety of meteorological data and data on water quality is available. In 
most cases, however, it was necessary to aggregate these data up to the level 
of each of the eight major bays and for each month of the sample period. For 
example, we know about average temperature, dissolved oxygen, turbidity, etc., 
as well as nitrogen nitrate levels, phosphate levels, non-filterable residues, 
oil and gas in bottom deposits, and a wide array of other qualities. 

'While several of our water quality variables appear to make 
statistically significant contributions to explaining willingness to pay for 
fishing access, many of them have counter-intuitive signs. It can be inferred 
that water quality probably varies inversely with other unmeasured attributes 
of anglers and the fishing resource that directly affect the value of the 
fishery. For example, if there are fewer substitute recreational 
opportunities in the Houston area, recreational fishing opportunities may be 
valued very highly, but simultaneously, the water quality may be very low. 
The reverse may be true in more remote areas of the coast. If we include 
water quality, but omit alternative recreational opportunities (for lack of 
data), then, it will appear that lower water quality implies higher social 
values of the fishery. I suspect that something like this is precisely what 
is happening. 

This study represents an heroic effort to assemble the most appropriate 
water quality data for the Texas Gulf Coast available from many different 
sources. Countless hours went into matching and merging all of this 
information with the survey responses. Unfortunately, it is an empirical 
issue whether or not the anticipated relationships will show up in these data. 
This paper concludes that it will be necessary to control for other important 
determinants of value before the residual variation attributed to measured 
water quality can be unambiguously identified. However, there is definite 
evidence that respondents perceptions regarding environmental quality are more 
immediate determinants of value than the actual measured quality of the water. 

'While water quality apparently cannot be considered in this much detail 
with the current dataset, other coarser sociodemographic variables, such as 
income, appear to have strong and intuitively plausible effects on values. 
The apparent price elasticity of demand for fishing days (if a market existed) 
appears to be roughly -2.2, meaning that if access cost anglers 1% more, 
demand would decrease by 2.2%. The income elasticity appears to be just less 
than unity, implying that recreational fishing opportunities are borderline 
between being necessities and luxuries. 

There are other implications of these models, also conditional on the 
quality of the data. For example, geographical heterogeneity in the demand 
for recreational fishing days does seem to exist. The water quality 
variables, collectively, seem to explain quite a lot of this geographic 
variation, even if multicollinearity among these variables limits our ability 
to attribute value differences to specific individual dimensions of water 
quality. 



The Vietnamese, as opposed to other cultural groups, seem to have 
markedly different preferences for fishing than the population as a whole. 
Money spent on associated market goods, once thought to be a reasonable proxy 
for the non-market value of a fishery, is positively related to the value of a 
fishing day (but typically completely unrelated to catch rates). Importantly, 
many other explanatory variables make strong contributions to explaining the 
annual value of fishing day access; reliance solely upon market expenditures 
could severely misstate resource values. 

The preliminary specifications explored in detail in this paper produced 
results that were sufficiently provocative to warrant further analysis of 
these data. It was decided that placing a little more structure on the model 
might help. Hence the next paper. 

2. "Combining Contingent Valuation and Travel Cost Data for the Valuation of 
Non-market Goods," (a retitled major revision of Working Paper #503, 
Department of Economics, University of California at Los Angeles). 

This second paper takes advantage of the general sense of the data 
derived from the extensive exploratory modeling described in the first paper. 
It has been determined that there are several apparently robust systematic 
relationships between willingness to pay for access to the fishery and other 
measurable variables. With this established, one can be more confident that 
it is worthwhile to undertake further modeling that is more solidly founded 
upon neoclassical microeconomic principles. 

I am very pleased with the quality of this paper. It develops a new 
methodology, employing novel and very sophisticated econometric techniques 
appropriate to the special features of the data. The analysis is particularly 
careful and rigorous and many tangential issues are considered thoroughly. 

The simplest model of consumers' utility maximization posits that 
consumers have preferences defined over two types of commodities: the good in 
question (sportfishing days) and a composite of all other goods and services. 
More of both of these things makes them happier, but they are constrained by 
their budgets. They must trade off other goods and services in order to 
consume an additional fishing day, and vice versa. They allocate their 
limited budgets between fishing days and other things so as to maximize their 
level of happiness. 

All models of this type are, of course, dramatic simplifications of the 
real world, but they frequently provide v.ery useful insights into the 
essential features of consumer behavior. Individuals with different 
sociodemographic characteristics, under different resource conditions, will 
make different consumption decisions. This type of variation allows us to 
calibrate a model which can then be used to simulate the likely responses of 
particular types of individuals if their decision making environment changes. 
While these models cannot be expected to do very well in predicting the actual 
response of a specific individual to some change, they can perform fairly well 
in the aggregate. 



Earlier research employing these "utility-theoretic" models for the 
valuation of a non-market good such as sportfishing access occasionally used a 
technique known as the travel cost method. If fishing days can be considered 
as a single homogeneous good, information on the cost of a single trip and the 
number of trips taken can be combined to yield a model of demand for fishing 
days. This is the relationship between the implicit price of access and the 
number of days demanded, with accommodation for whatever shift factors 
(income, resource quality, etc.) can be quantified. 

Other attempts to value recreational fishing days have relied upon 
"contingent valuation" survey techniques, where survey participants are 
queried about the decisions they think they would make if a hypothetical 
market for fishing days existed (i.e. if they had to pay a per-day entrance 
fee or purchase a season's pass to fish). The discrete choice form of 
contingent valuation question was posed on the Texas Parks and Wildlife Creel 
Survey. Respondents' answers about whether or not they would be willing to 
pay an arbitrarily selected annual fee to continue fishing were analyzed in ad 
hoc models in the first paper discussed above. 

In the paper being described here, however, the mathematical form of the 
discrete choice model is carefully selected to conform to an underlying family 
of consumer preference functions with desirable properties from the point of 
view of economic theory. By doing this, the calibrated models can ultimately 
be solved to yield corresponding estimates of the formal welfare measures of 
value, including equivalent variation and compensating variation. 

The primary methodological innovation in this paper is to combine both 
travel cost and discrete choice contingent valuation data in one comprehensive 
model. Both methods of eliciting valuation information from survey 
respondents should provide insights regarding the same preference structure. 
We can combine the two different perspectives for a more thorough 
characterization of consumer behavior. 

In the basic model in this paper, all fishing days are treated as 
homogeneous and consumer choices regarding fishing access depend only upon 
their taste for fishing, their incomes, and the price of access to a fishing 
day. 'When this model is explored thoroughly and shown to be relatively 
successful, the assumption that all fishing days are identical is relaxed. 

The illustrative generalization explored in this paper is to allow 
preferences for fishing days (versus all other goods and services) to vary 
systematically with the zip code proportion of people reporting Vietnamese 
heritage on the 1980 Census. This is an imperfect measure of the respondent's 
own sociodemographic category, but we anticipate at least some correlation. 
The proxy turns out to be a significant shifter of preferences. The higher 
the proportion Vietnamese, the less willing is a representative consumer to 
trade off fishing days for other goods. Likewise, the greater will be their 
demand for fishing days at any relative price and the greater would be the 
cost to them of having to forgo some or all of their fishing access. 

The paper provides detailed empirical estimates of the welfare values 
associated with changes in fishing access. However, these dollar values are 
conditional upon the extent to which the data we are using actually capture 
the concepts prescribed by the microeconomic theory underlying the 



specification. The data are far from ideal. Consequently, it would not be 
appropriate in this summary to uphold the dollar values as unambiguous. The 
Texas data are by far the best I had encountered up until that time. But it 
is crucial that this set of papers be regarded as demonstrations of the types 
of analyses that can be conducted. If results as satisfying as these can be 
achieved with mediocre ingredients, then subsequent surveys can be conceived 
and implemented to take maximum advantage of the methodological framework. 
These future studies will undoubtedly produce final empirical value estimates 
which can more confidently be used as a basis for policy making. 

With these qualifications, and others described carefully in the paper, 
some of the welfare estimates can be mentioned. For example, according to the 
basic model, if fishing days were curtailed by 10%, the average survey 
respondent would lose an amount of satisfaction roughly equivalent to the loss 
of $35 of income per year (although individual losses range from $19 to $52). 
A 20% curtailment would match an income loss of $139, on average. Simulating 
a complete loss of access is riskier and less realistic, but the model 
suggests that the average respondent would be hurt by about $3400. 

Generalizing the model to accommodate sociodemographic heterogeneity 
(proportion Vietnamese in zip code) shows how the fitted preference function 
is markedly different (for an otherwise typical respondent) when this 
proportion ranges from Oto 2%. Plots of the estimated "indifference curves" 
and budget constraints make these differences particularly obvious. 

The paper also breaks new ground by freeing up certain parameter 
restrictions within the jointly estimated model so that the travel cost and 
contingent valuation data are allowed to imply different preferences. A 
scheme is also developed for allowing differential weightings in the pooling 
of these data, according to the perceived relative reliability of these two 
types of information. 

3. "Using the Basic 'Auto-Validation' Model to Assess the Effect of 
Environmental Quality on Texas Recreational Fishing Demand: Welfare 
Estimates," (also Working Paper #522, Department of Economics, University of 
California at Los Angeles) 

The initial exploratory study described above (which employed all of the 
available data and used ad hoc models) suggested that measured objective 
dimensions of water quality did not always have clear cut and intuitively 
plausible effects on willingness to pay for access to sportfishing 
opportunities. An alternative possibility is that people's preferences for 
sportfishing are affected by their perceptions of environmental quality, not 
by what is actually out there. (What you don't know won't hurt you?) The 
creel survey asked respondents' subjective opinions about whether they were 
able to enjoy "unpolluted natural surroundings." Answers were recorded on a 
scale of one to ten. In this supplemental paper, we allow preferences to take 
on systematically different configurations depending upon these answers. 

Various welfare implications can be derived from the fitted model, again 
with the same caveats mentioned in the above two summaries. The amount of 
income loss that would be equivalent to a 10% cutback in access to the fishery 
is roughly $29 per year at the mean level of the subjective variable (8.07). 



If environmental quality is perceived to be a 10, the loss would be about $37 
per year. In contrast, if the quality is only 6, the loss of access would be 
only $23. For a complete loss of access, the decrease in value at the mean, 
at 10 and at 6 would be about $2400, $3000, and $1900 respectively. (Note 
that only a smaller subsample of the data could be used for these models, 
since not all respondents were queried regarding environmental quality.) 

Thus, we find that perceptions of environmental quality do affect 
preferences for fishing days as opposed to all other goods and services, and 
thus the value of access to the fishery will almost certainly be influenced by 
perceptible variations in water quality. Furthermore, we can show that 
respondents' answers to the "unpolluted natural surroundings" questions are 
statistically related to several of the measured water quality attributes 
examined in the first paper described above. However, it is clear that more 
research will be necessary to establish how objective water and environmental 
quality data can be translated into individual perceptions. 

With infinite and free computing resources, it would be desirable to 
allow preferences to differ systematically according to the levels of a whole 
range of shift variables. At present, however, there was no budget for such 
an elaborate model, so we were limited to exploring single shift variables 
independently. (Each shift variable adds five new unknown model parameters to 
be estimated.) 

4. "The Effects of Variations in Gamefish Abundance on Texas Recreational 
Fishing Demand: Welfare Estimates." 

Keeping in mind the limitations on complexity, a second supplemental 
paper was also developed. Whether or not the value of this recreational 
fishery is dependent upon the abundance of gamefish is another question of 
vital interest to policy makers. Ideally, one would measure all of the major 
gamefish species (there are seven or eight, described in the first paper, 
above). For this illustration, however, we opt to concentrate upon red drum. 

As a measure of red drum abundance, we could have used each individual's 
reported catch of red drum on the fishing trip when they were surveyed, but 
this catch is dependent upon skill levels, which will be related to the 
individual's resource value. This is undesirable. Consequently, we rely upon 
data produced by the Parks and Wildlife Resource Monitoring program. We used 
data from the thousands of official samples collected by this program and 
aggregated up to average abundance measures by bay system and by month. These 
data are only proxies for the actual local abundance of red drum experienced 
by recreational anglers in each area and month, but they are completely 
unrelated to angler skill. Thus we hope to avoid simultaneity bias in the 
resulting estimates. 

This model, augmented to control for red drum abundance, lets us explore 
the likely changes in the social value of access to the fishery when the 
abundance of red drum changes. Again subject to extensive caveats, we find 
that the income loss that would be equivalent to a 101 reduction in fishing 
access is roughly $35 at mean abundance of red drum. If abundance was higher 
by 201, the same reduction would hurt anglers by an average of $40. If 
abundance was lower by 201, the decrease in access would be equivalent to 



about a $32 decrease in income. A total loss of access would imply a loss of 
about $2800 at mean abundance, a loss of $3200 if abundance was 20% higher and 
of $2600 if abundance was 20% lower. If red drum abundance went to zero, a 
complete loss of access would still imply a loss of about $1800, presumably 
because there are several other gamefish species which can be sought. 

If anglers do not care directly about water quality, except to the 
extent that it affects catch rates of their preferred species, this type of 
model may be the most fruitful to pursue. Future studies might rely upon 
expert biological opinion regarding the expected effects on gamefish of 
changes in different attributes of water quality. Calibrated utility models 
such as those used in this series of studies could then be used to simulate 
the ultimate effects of these changes on social welfare. 

Again, all of these studies do undertake to provide point estimates of 
the dollar value of changes in consumer welfare corresponding to limitations 
on their access to recreational fishing or to changes in the quality of the 
fishing experience. However, due to the tenuousness of the data's ability to 
capture the theoretical concepts employed in these models, I elect not to cite 
all of these specific numbers outside the context of the papers, where the 
full range of caveats is laid out. Conditional upon the data available, I am 
confident of the validity of the findings. However, extensive detailed 
simulation sensitivity analyses would be required to put "true" confidence 
bounds on these estimates. The simple statistical precision of the estimates 
reported in the paper (as is usual in empirical work) presume that the data 
are exact measures of the desired quantities. 
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The Determinants of Value for a Marine Estuarine Sportfishery: 
The Effects of Yater Quality in Texas Bays 

by 

Trudy Ann Cameron 

ABSTRACT 

We use a large number of responses to an in-person creel and contingent 
valuation survey of recreational anglers collected in the bays along the Texas 
Gulf Coast between May and November of 1987, supplemented by concurrent and 
independently gathered water quality data and 1980 Census data. Using 
empirical techniques recently developed by this author (censored logistic 
regression by maximum likelihood), these data are employed to fit implied 
(non-market) demand functions for fishing days which incorporate shift 
variables for water quality, perceived pollution levels, ethnic heterogeneity, 
expenditures on related market goods, and catch rates. The price elasticity 
of demand for fishing days (if a market existed) appears to be roughly -2.2; 
the income elasticity appears to be just less than unity. Geographical 
heterogeneity in the demand for recreational fishing days is partially 
explained by water quality variables. The Vietnamese seem to have markedly 
different preferences for fishing than the population as a whole. Money spent 
on associated market goods, once thought to be a reasonable proxy for the non­
market value of a fishe~y. is indeed positively related to the value of a 
fishing day (but typically completely unrelated to catch success). 
Importantly, many other explanatory variables make strong contributions to 
explaining the annual value of fishing day access; reliance solely upon market 
expenditures could severely misstate resource values. 

• 
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The Non-market Value of Yater Quality Attributes: 
Estimates for Texas' Marine Estuarine Sportfishery 

by 

Trudy Ann Cameron 

1. Introduction 

Decisions regarding the expenditure of public funds to enhance or 

restore environmental assets have frequently been made on the basis of purely 

normative arguments. Until recently, the non-market benefits enjoyed 

collectively by the consumers of environmental resources have been difficult 

to determine. The objective in this paper is to quantify the effects of 

variations in water quality upon the non-market value of the marine 

recreational fishery along the Texas Gulf Coast. Knowing how water quality 

affects the social value of this fishery will allow us to simulate changes in 

that value as a consequence of policies which improve water quality (or as a 

result of decisions to allow water quality to deteriorate). 

The "travel cost" method (TCM) for valuing non-market resources has been 

widely used but is frequently inappropriate for a marine sportfishery because 

the point-to-point distance for these fishing trips is often poorly defined. 

Destinations are diffuse and true opportunity costs for access are difficult 

to measure. These problems with the travel cost method have made hypothetical 

or "contingent" market surveys popular for eliciting resource values. 

In contingent valuation (CV) surveys, it seems to be particularly 

difficult for respondents to state the precise value they would place on the 

resource. Consequently, a variety of value elicitation techniques are 

employed. Different strategies are suitable depending upon whether the 

investigation relies upon personal interviews, telephone interviews, or mailed 

questionnaires. 
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One method is verbal "iterative bidding." An elaboration of this 

method, useful for in-person interviews or mail surveys, is the "payment 

card," where the respondent is merely asked to scan a card and to indicate the 

highest amount willingly paid (or lowest compensation willingly accepted) for 

access to the resource. An extreme form of the iterative bidding strategy 

involves only the first iteration: a single randomly assigned value is 

proposed and the respondent decides whether to "take it or leave it," much as 

in ordinary day-to-day market transactions. This "closed-ended CV" or 

"referendum" question format economizes greatly on respondent effort and 

minimizes strategic bias, but reduces estimation efficiency. The single 

offered sum is varied across respondents, which allows the yes/no responses to 

these questions to imply both the location and the scale of the conditional 

distribution of valuations. Many more responses are required to generate 

equally statistically significant parameter estimates for the valuation 

function, but it is suspected that this value elicitation technique minimizes 

the wide array of biases which have been argued to plague the other CV 

elicitation methods. 

At present, contingent valuation investigations are probably the most 

practical way to quantify the economic benefits to a recreational fishery of 

pollution control activities. CV questions can often be appended quite easily 

to regular creel survey instruments, so the marginal cost of gathering CV data 

is relatively modest. 

In CV valuation models, respondents' valuations of the resource are 

presumed to depend upon (a.) characteristics of the respondent and (b.) 

attributes of the resource (in this case, including the level of pollution and 

indirect manifestations of pollution levels such as the degree of urbanization 

and catch rates). A calibrated CV model can be used to simulate both (a.) the 
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direcc effects of changes in pollution levels--by imposing counterfactual 

changes in the quantities of pollutants and recomputing the fitted individual 

valuations; and (b.) indirect effects of changes in pollution levels--for 

example, by imposing predicted changes in catch rates and recomputing 

individual valuations. The difference in the population weighted sums of 

these individual valuations before and after the simulated reductions in 

pollution levels is a measure of the social benefit of the hypothesized clean­

up program. This overall change in social value can be added to estimates of 

other relevant benefits (i.e. for market activities) and the total can be 

compared to the costs of the program in order to determine its economic 

advisability. 

For our Texas fishery, there is some concern at present about the 

proposed widening and deepening of the Houston Ship Channel, which is 

anticipated to have a substantial negative environmental impact. If 

statistically discernible effects of water quality upon the value of this 

recreational fishery can be found, our fitted models can simulate the changes 

in value resulting from changes in water quality due to projects such as this. 

Section 2 of this paper reviews the intuition and the details of the 

statistical model which we will use to fit valuation functions. Section 3 

outlines the data. Section 4 considers "naive" specifications of the 

"valuation function" and explains how implied demand functions can be 

extracted from the estimated models. Section 5 presents some preliminary 

empirical results. Section 6 digresses to evaluate the determinants of catch 

success, an issue which is important to our ability to assume exogeneity of 

the explanatory variables in the valuation function. Section 7 examines 

respondents' claimed motivations for going fishing and their subsequent 

satisfaction levels, issues which are fundamental to the form of the basic 
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utility functions which underlie the demand for fishing days. Section 8 takes 

advantage of explicit questions regarding perceived pollution levels to 

address whether pollution levels enter directly or indirectly into people's 

utility functions. We conclude with some tentative findings and a preliminary 

set of recommendations for improving subsequent surveys which might be used to 

assess the effects of water quality on the non-market value of recreational 

fishing. 

2. Censored Logistic Regression Models for Referendum Valuation Data 

Before addressing this specific empirical project, it is helpful to 

outline the econometric estimation procedure which will be used to calibrate 

our model of valuation for this fishery. In Cameron and James (1987), and in 

a forthcoming paper (Cameron, 1988) I have made the argument that initial 

estimates of utility-theoretic models of valuation in the spirit of Hanemann 

(1984) (or eve~ entirely data-driven ad hoc valuation models) using referendum 

data can be obtained quite simply using packaged logit or probit maximum 

likelihood algorithms. Since the numbers of observations in the models 

explored in this study are large, and since the specifications involve a wide 

array of potential explanatory variables, I opt here to perform initial 

estimations using censored logistic regression models. The computations 

necessary to optimize the likelihood function underlying these models does not 

involve myriad evaluations of the non-closed-form integral for the cumulative 

normal density function. The optimization is faster and cheaper than it would 

be for a censored normal regression model. Furthermore, since the parameters 

of the censored logistic regression model can be solved-for from the parameter 

estimates produced by conventional packaged maximum likelihood logit models, 

and the SAS computer package provides ML logit routines in its MLOGIT module, 

we find it expedient to pursue initial trial specifications in the context of 
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the SAS package. This also allows us to take advantage of the superior data­

manipulation capabilities of this program. 

Based my earlier studies, the implicit valuation function parameter 

estimates produced by either the censored normal (probit-type) or censored 

logistic (logit-type) estimation procedures are very similar. The slight 

differences in the shape of the conditional density function for the 

regression errors makes only modest differences in the fitted values of the 

ultimate "regression" model. Hence it is safe to presume that explanatory 

variables which make a statistically significant contribution to the valuation 

function in the context of a simple logit specification will also be important 

under alternative distributional hypotheses. 

2.1 Review of Censored Regression Models for Referendum Data 

Since the censored logistic model is not yet in the public domain, I 

will briefly reproduce the derivation of the model. 

"Referendum" survevs have recently become very popular as a technique 

for eliciting the value of public goods or non-market resources. Numerous 

applications of these methods now exist. (For comprehensive assessments of 

these survey instruments and detailed citations to the seminal works and 

specific applications, the reader is referred either to Cummings, Brookshire, 

and Schulze (1986), or to Mitchell and Carson (1988). 

The referendum approach first establishes the attributes of the public 

good or the resource, and then asks the respondent whether or not they would 

pay or accept a single specific sum for access. (It is crucial that the 

arbitrarily assigned sums be varied across respondents.) This questioning 

strategy is attractive because it generates a scenario for each consumer which 

is similar to that encountered in day-to-day market transactions. A 

hypothetical price is stated and the respondent merely decides whether to 

• 
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"take it or leave it." This is less stressful for the respondent than 

requiring that a specific value be named, and circumvents much of the 

potential for strategic response bias. The challenge for estimation arises 

only because the respondent's true valuation is an unobserved random variable. 

We must infer its magnitude through an indicator variable (the consumer's 

"yes/no" response to the offered threshold sum) that tells us whether this 

underlying value is greater or less than the offered value. 

In formulating appropriate econometric methodologies for analyzing these 

data, it is important to begin by imagining how valuation might be modeled if 

we could somehow readily elicit from each respondent their true valuation. If 

valuation could be measured like other variables (i.e. continuously), we would 

simply regress it on all the things that we suspect might affect its level. 

The econometrically interesting complication with referendum data arises from 

the fact that we don't know the exact magnitude of the individual's valuation; 

we only know whether it is greater than or less than some specified amount. 

2.2 Log-likelihood Function for Censored Logistic Regression 

Referendum data are not discrete choice data in the conventional sense 

(see McFadden, 1976, or Maddala, 1983). The procedure developed below is 

based upon the premise that if we could measure valuation exactly, we would 

use it explicitly in a regression-type model. 1 The censoring of valuation to 

be "greater than or less than" a known threshold is a mere statistical 

inconvenience to be worked around. 

1 Here, we would be using it explicitly in a "non-normal" regression model, 
namely, a regression model incorporating a two-parameter logistic density 
function. But that would be nothing special--econometric researchers have for 
several years been using maximum likelihood methods to explore Poisson 
regression, Weibull regression, and a host of other distributional assumptions 
as alternatives to the familiar normal model. 
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Assume that the unobserved continuous dependent variable is the 

respondent's true willingness-to-pay (WTP) 2 for the resource or public good, 

Yi. We can assume that the underlying distribution of Yi, conditional on a 

vector of explanatory variables, x (with elements j-1, ... ,p), has a logistic
1 

(rather than a normal) distribution, with a mean of g(x1 ,P) - x1 'P. 

In the standard maximum likelihood binary logit model, we would assume 

that: 

(1) Y -x•a+u
i i f,/ i 

where Y is unobserved, but is manifested through the discrete indicator 
1 

variable, I
1 

, such that: 

(2) 

- 0 otherwise. 

If we assume that ui is distributed according to a logistic distribution with 

mean O and standard deviation b (and with alternative parameter~ - b)3/~. 

see Hastings and Peacock (1975)), then 

(3) Pr(I - 1) - Pr (Y > 0) - Pr(u > -x 'P)1 1 1 1 

- Pr(u1/K > -x1 'P/K) 

1 - Pr(~1 < -x1 '1), 

where 1 - P/K and we use~ to signify the standard logistic random variable 

with mean O and standard deviation b - ~//3. The formula for the cumulative 

density up to z for the standard logistic distribution is 

(4) F(z) - 1 - (1 + exp[z] }" 1 
. 

2 These models can be adapted very simply to accommodate willingness-to-accept 
(WTA). 
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Therefore the log-likelihood function can be written as: 

(5) log L - r - I 1 log(l + exp[-xi'1] l 

+ (1 - Ii) log(exp[-xi'1]/(l + exp[-xi'1])}. 

Simplification3 yields: 

It is not possible in this model to estimate~ and~ separately, since they 

appear everywhere as~/~- The model must therefore be evaluated in terms of 

its estimated probabilities, since the underlying valuation function, xi•~, 

cannot be recovered. 

With referendum data, however, each individual is confronted with a 

threshold value, ti. Earlier researchers have included t 1 as one of the xi 

variables in the conventional logit model described above. In our new model, 

we conclude by the respondent's (yes/no) response that his true WTP is either 

greater than or less than ti. We can assume a valuation function 4 as in (1) 

with the same distribution for u
1 

, but we can now make use of the variable 

threshold value t. as follows--in a new model which might be described as 
1 

special form of "censored logistic regression": 

(7) 

- 0 otherwise, 

so that 

3 Note that many textbooks (e.g. Maddala, 1983) exploit the symmetry around 
zero of the standard logistic distribution to simplify these formulas even 
further. We simplify this way to preserve consistency with the next model 
where we estimate k explicitly. 

4 However, it is now straightforward to make the mean of the conditional 
distribution any arbitrary function g(x .• ~).

1 
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(8) Pr(Ii - 1) - Pr(Y > t) - Pr(u > t. - x '~)
l l l l i 

- Pr(u /K > (t - x.'fi)/K)
1 l l 

With this modification, the log likelihood function can now be written as: 

(9) log L - L - Ii log{l + exp[(ti - xi'~)/K) l 

+ (1 - Ii) log{exp[(ti - xi'~)/K)/(1 + exp[(ti - xi'~)/K])l. 

As before, this can be simplified to yield: 

The presence oft. allows~ to be identified, which then allows us to isolate 
l 

fi so that the underlying fitted valuation function can be determined. Note 

that if t 
1 

- 0 for all i, (10) collapses to the conventional logit likelihood 

function in (6). 

The log-likelihood function in (10) can be optimized directly using the 

iterative algorithms of a general nonlinear function optimization computer 

program5 and this is undeniably the preferred strategy when the option is 

readily available. There exist function optimization algorithms which will 

find the optimal parameter values using only the function itself (and numeric 

derivatives). However, analytic first (and second) derivatives can sometimes 

reduce computational costs considerably. See Appendix I for a description of 

5 We used a program called GQOPT - A Package for Numerical Optimization of 
Functions, developed by Richard E. Quandt and Stephen Goldfeld at Princeton 
University (Department of Economics). Roughly optimal parameter values are 
first achieved using the DFP (Davidon-Fletcher-Powell) algorithm; these values 
are then used as starting values for the GRADX (quadratic hill-climbing) 
algorithm to achieve refined estimates (i.e. to a function accuracy of 10- 10 

). 

We understand that the programs GAUSS and LIMDEP can also be adapted to 
optimize arbitrary functions. 
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the gradient and Hessian components helpful in nonlinear optimization of this 

log-likelihood function. 

Maximization of the log-likelihood function in (10) will yield separate 

estimates of p and K (and their individual asymptotic standard errors). 

However, estimates of -1/K and P/K can, in the case of g(x
l 
.~) - x

l 
•~. be 

obtained quite conveniently from conventional maximum likelihood "packaged" 

logit algorithms, although we emphasize that this is merely a handy "short­

cut" to be used if a general function-optimization program is not available. 

If we simply include the threshold, t 
1 

, among the "explanatory" variables in 

an ordinary (maximum likelihood) logit model (as has typically been done by 

earlier researchers using referendum data), it is easy to see that: 

1 1( 11) - ( t, X ) [ - 1/IC ] - - X* -y* , 
P/ic 

The augmented vectors of variables, x* and coefficients, -y*, may be treated as 

one would treat the explanatory variables and coefficients in an ordinary 

logit estimation. From -y*, it is possible to compute point estimates of the • 
desired parameters P and ic. If we distinguish the elements of -y* as (o, -y) -

(-1/ic, P/ic) then ic -1/a and PJ - - -yj/a, j - 1, ... ,p. However, accurate 

asymptotic standard errors for these functions of the estimated parameters are 

not produced automatically. If the conventional logit algorithm used allows 

one to save the point estimates and the variance-covariance matrix estimates 

for subsequent calculations, there are some alternative, relatively simple, 

methods for calculating approximate standard errors using only the information 
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gleaned from a conventional logit model. (See the second portion of Appendix 

I.) 

3. Data 

The Texas Parks and Wildlife Coastal Fisheries Branch has conducted a 

major creel survey of recreational fishermen from the Mexican border to the 

Louisiana state line during the period of May to November, 1987. The survey 

records detailed catch information, and appends a list of "socioeconomic" 

questions which make up the contingent valuation portion of questionnaire. 

Over 10,000 responses were collected; our admissibility criteria reduce the 

usable sample to 5526, which is still a very large number of responses. 

Hydrological data are collected simultaneously at each investigation sit,e 

along with the CV investigation. We merge these survey data with an 

assortment of data drawn from other sources, notably the Texas Department of 

Water resources and the 1980 Census. Extensive documentary information on 

variable construction is contained in Appendix II. The reader is referred to 

that section for details. 

4. Specifications 

4.1 "Naive" Hodels 

As always, the very simplest model of fisheries valuation could presume 

that we only wish to know the marginal mean of the value of a year's fishing. 

If we include only the offered threshold as an explanatory variable in a logit 

model to explain the yes/no response, the fitted model will yield the marginal 

mean and marginal standard deviation of values (ignoring heterogeneity among 

respondents). This number is valuable if we can safely assume that the 

interview sample is a truly random sample of the "use" population, and if we 

know the size of the sample relative to the entire population. Under these 
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limited circumstances, we can extrapolate from these per-person estimates to 

the total fitted "use" value of the fishery at the time of the survey and 

under the current conditions of the fishing population and the resource 

itself. 

If we were not concerned with forecasting the effects of changes in the 

fishing population or changes in resource attributes, this single point 

estimate and its standard deviation would tell us most of what we need to 

know. However, resource valuation models can be extremely useful for 

forecasting the anticipated effects upon resource values of changes in 

resource attributes. In this study, we are primarily concerned with changes 

in species abundance and changes in water quality. We will control for cross­

sectional heterogeneity in anglers and in resource attributes. Having 

calibrated a model acknowledging this heterogeneity, we will have a fitted 

model which will be useful for predicting the effects on the value of the 

resource of a wide range of policy-induced changes in our explanatory 

variables. 

Where resource values are sensitive to water quality "parameters," we 

can determine the effect of a change in the level of each parameter on the 

social resource value of the resource. Comparing the social benefits of 

pollution control, for example, with the social costs of a cleanup program can 

provide a useful assessment of the economic efficiency implications of cleanup 

proposals. If resource values are sensitive to species abundance or size 

(either overall or by individual species), there will be important 

implications for fisheries management. Likewise, if access values are 

sensitive to the day of the week interacted with respondent characteristics, 

these valuation models could indicate how fishing licenses and closures could 
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be decided in order to optimize both the resource base and the aggregate 

social value of access. 

One initial problem observed in the data concerns the distinction 

between willingness to pay and actual ability to pay. "Demand" in the 

economic sense might be limited to "effective" demand, not just wishful 

thinking. This distinction is unresolved at present, but must be addressed at 

some point during this study. 

The reason for raising this issue is that we observe in our sample that 

many of the people who claim to be willing to pay $20000 to continue fishing 

over the year come from zip codes where $20000 exceeds the median household 

income. \.Jhile it may be that the respondent's household income is 

substantially larger than their zip code median, these responses cast some 

doubt on the accuracy of "effective" demands implied by responses to the 

$20000 referendum value. Fortunately, however, we have a very large sample, 

by contingent valuation standards. The referendum threshold values were 

assigned randomly to different respondents. Therefore, we will lose little 

except some estimation efficiency by dropping all respondents who were offered 

this extremely high threshold. It is quite possible that many of the 

respondents who respond that they would be willing to pay $20000 for a year's 

access to the recreational fishery are responding strategically, rather than 

realistically. Strategic biases from these responses can be quite high, so 

the results reported here exclude the $20000 offers, regardless of their yes 

or no response. (Current plans for the continuation of the survey call for 

this threshold to be dropped anyway. All specifications will eventually be 

estimated with the full sample, with $20000 threshold respondents deleted, and 

with thresholds exceeding $500, 2000, and $1500 deleted. This allows us to 
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assess the sensitivity of the valuation function parameter estimates to survey 

design.) 

4.2. Derivation of "Demand Functions" Underlying the Valuation Data 

In this survey, the underlying continuous dependent variable Y is the 

respondent's total valuation of a full year's access to the fishery, which we 

will designate as "total willingness to pay," TWTP. We can still estimate 

models for TWTP using censored logistic (or censored normal) regression 

implicitly via an ordinary MLE logit (or probit) algorithm. We can manipulate 

the estimated discrete choice coefficients to uncover the individual 

coefficients (~) for any arbitrary underlying linear-in-parameters fitted 

total TWTP relationship, x '~. However, the TWTP function must then be solved
1 

to yield the corresponding implicit demand function. 

To illustrate, suppose that our explanatory variables included only the 

number of fishing days per year, q, and other shift variables which we will 

denote by the "generic" variable X. Then the fitted quantity log(TWTP) will 

be ~ + ~ log(q) + ~ X, where the parameters are now their estimated values1 2 3 

and we ignore the stochastic component. The price willingly paid for a year's 

access is the total amount willingly paid for all trips. To determine the 

marginal WTP for one additional trip, we need to find the expression for the 

derivative: 8TWTP/8q. Since 8logTWTP/8log(q) is just ~ 
2

, 8TWTP/8q can be 

assumed to be ~ times the ratio of fitted TWTP (- exp[~ + ~ log(q) + X])
2 1 2 

~3 

to q. (To be strictly correct in treating this exponentiated fitted value of 

log(TIITP) as the fitted conditional mean of TIITP, we would scale this quantity 

by r(l+~)r(l-~), but this term affects only the intercept of the resulting 

demand expression, so will will suppress it for simplicity of exposition.) If 

we consider 8TWTP/8q to be p(q), the presumed demand relationship can be 

expressed as: 
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(12) log p(q) - log {32 - log(q) + ~ 1 + ~2 log(q) + /3 3 X. 

- (i9 + log P2 + /3 X) + (/32 - l) log(q)
1 3 

We can rearrange these formulas to isolate log(q) on the left-hand side: 

(13) log(q) - [ (/3 + log(/32))/(1-/32)] - [1/(1-/32) l log p(q)
1 

+ [i93/(l-.82) l X 

log p(q) + a* X.
3 

We have thus arrived at point estimates for the implicit demand function 

corresponding to a log-log functional form for TWTP. The coefficients on 

log(p) have the straightforward interpretation of price elasticities of demand 

for fishing trips. If the X variables contain the logarithm of income, then 

the corresponding coefficient in the a
3
* vector gives the income elasticity of 

demand. Other variables making up the X vector will include respondent and 

resource attributes which shift the demand function. 

Of course, the f3 parameters in the above formulas are transformations of 

the original MLE logit parameters. It will certainly be possible to • 
"automate" the computation of all of the a* parameters of the implied demand 

function if we use software which allows us to save the fitted logit 

parameters to be used in subsequent computations (e.g. SHAZAM). Our initial 

exploratory models focus on the estimation of the /3 parameters, indirectly via 

the ordinary MLE logit approach. However, once promising specifications have 

been identified, and if one is willing (and able) to estimate a censored 

regression log-likelihood function directly, using non-linear optimization 

algorithms, it would be straightforward to reparameterize the censored 

regression likelihood function described above so that the elasticity 

parameter a 2* and the other a * parameters could be estimated directly. Note3 

that /3 1 - -log[a2*/(l+a2*)] - a */a2* (plus an additional term in r functions1

http:i93/(l-.82
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The expression x.•~ in the 
l 

likelihood function should therefore be replaced by: 

(14) g(x
1 

,/3) - - log[a2*/(l+a2*)] - a 1*/a2* 

+ (l+a *)/a * log (qi)+ (-a3*/a2*) X
2 2 

The log-likelihood function to be optimized will now be: 

(15) log L - ~ (1 - I )((t - g(a *,a *,a *,q ,X ))/~]
l l 1 2 3 1 1 

Since the individual parameters a *, a *, and a * are fully identified, the
1 2 3 

nonlinear function optimizing program will produce the desired results. (The 

analytical gradient and Hessian formulas will be different and much more 

complicated, but as noted, many programs will compute their own numeric 

derivatives.) This model would produce not only direct point estimates of the 

demand elasticities, a *, and the other demand function derivatives, but also
2

their direccly estimated asymptotic standard errors. By the invariance 

property of maximum likelihood, the point estimates should be identical, so 

extremely accurate starting values for these nonlinear algorithms can be 

generated by transforming the ordinary logit point estimates. The nonlinear 

optimization of the likelihood function in (15), however, will yield 

asymptotic standard error estimates (and therefore t-ratios for hypothesis 

testing) which could only be approximated with considerable difficulty from 

the asymptotic variance-covariance matrix produced automatically for the 

ordinary logic parameter estimates. 
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5. Preliminary Empirical Results 

5.1 Unspecified Geographic Heterogeneity in Demand 

If we assume geographic homogeneity to begin with and estimate a TWTP 

model in log form simply as a function of the log of the total number of 

fishing trips (LTRIPS), the log of median zip code household income (LINC), 

and market expenditures (MON), we get the ordinary logit point estimates in 

Table la. To determine whether there exists systematic geographical variation 

in the demand function for fishing days, we then extend this model to include 

a set of qualitative dummy variables, one for each major bay system: 

MJl - Sabine-Neches 
MJ2 - Trinity-San Jacinto (Galveston Bay) 
MJ3 - Lavaca-Tres Palacios (Matagorda Bay) 
MJ4 - San Antonio-Espiritu Santo 
MJS - Mission-Aransas 
MJ6 - Corpus Christi-Neuces 
MJ7 - Upper Laguna Madre 
MJS - Lower Laguna Madre 

Since the Galveston Bay area accounts for Houston, we arbitrarily make MJ2 the 

omitted category when we enter sets of major bay dummy variables. 

Coefficients on the other dwnmies therefore represent shifts in the dependent 

variable relative to the values for MJ2. 

Individually, several of these dummy variables are statistically 

significant. Collectively, a likelihood ratio test for the incremental 

contribution of the complete set of dummy variables indicates that 

geographical variation in demand is statistically significant at the 10% 

level. 

If we take the ordinary logit parameter estimates from Table lb and 

transform them to yield the parameters of the log-log demand function 

corresponding to this TWTP function (shown in the last column of Table lb), we 

find that the price elasticity of demand for a fishing day, controlling for 

qualitative geographical variation via the set of major bay dummy variables, 



Table la 

Extremely Simple Model: Geographic Homogeneity of Demand 

Variable Est. Coeff. Asy. t-ratio 

LOFFER -0.5608 -24.631 
LTRIPS 0. 3077 12.05 
LINC 0.2488 2.316 
MON 0.001734 6.167 
constant l. 718 l. 625 

max LogL - -2550.6. 

Table lb 

Augmented Simple Model: with Geographic Heterogeneity (dummies) 

Variable Est. Coeff. Asy. t-ratio Demand fn q 

LOFFER -0.5638 -24.68 
LTRIPS 0.3095 12.08 
LINC 0.1278 1.058 0.5024 
MON 0.001801 6.234 0.0071 
M.Jl -0.1827 -0.7526 -0. 7185 
M.13 -0.2589 -1. 796 -1.018 
M.14 -0.03043 -0.1706 -0 .1197 
M.15 -0.1167 -0.9230 -0.4587 
M.16 -0.3405 -2.819 -1. 339 
M.17 -0.2878 -2.149 -1.131 
M.J8 -0.3184 -2.478 -1. 252 
constant 3 .119 2.563 
log(p) -2.217 

max LogL - -2544.2 (LR test statistic for the set of seven 
major bay dummy variables is 12.8. x2 (.05) critical value -

14.07; x2 (.10) critical value - 12.01. 
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is -2.217. The income elasticity of demand is 0.5024. the change in the log 

of fishing days for a one dollar increase in market expenditures is 0.0071. 

The seven bay dummies shift the log of fishing days by -0.72, -1.02, -0.12, · 

0.46, -1.34, -1.13, and -1.25, respectively. 

5.2 Quantifying Geographical Heterogeneity in Demand 

The evidence therefore suggests that geographical variation exists in 

the demand function for recreational fishing days in Texas. But in the model 

in the last section, the reasons for this geographical variation are non­

specific. Demand could differ by bay system for a variety of reasons. First, 

systematically different types of people, with different preferences or 

constraints, might be utilizing each different bay system. (This is suggested 

by the drop in significance of the LINC variable when bay dummies are 

included.) The quality attributes of the resource could also vary across bay 

systems. If fish abundance affects TWTP, then variations in species abundance 

across bays could be captured by these dummy variables. If fishing conditions 

(weather and water conditions) vary systematically across bays, this effect 

could also be manifested in the dummy coefficients. In particular, however, 

we are curious to see whether measurable variations in water quality 

"parameters" exert any statistically discernible influence on TWTP. In lieu 

of a set of simple bay dummy variables, then, we begin to consider 

specifications employing variables which quantify the inter-bay differences in 

resource attributes. 

Table 2a augments the model in Table la by including a variable, TOTAL, 

for the total number of fish actually caught on the interview day. (In 

subsequent models, we will consider exogenous measures of abundance for 

individual species, by month and bay.) TOTAL current catch is not 

statistically significant, but it bears the anticipated sign, so we will 



Table 2a 

Simple Model with Current Total Catch, No Water Quality 

Variable Est. Coeff: Asy. t-ratio 

LOFFER -0.5617 -24.64 
LTRIPS 0.3064 11. 99 
LINC 0.2504 2.331 
MON 0.001735 6.156 
TOTAL 0.003109 1.090 
constant l. 718 1. 625 

max LogL - -2549.9. 

Table 2b 

Augmented Model: Geographic Heterogeneity in Water Quality 

Variable Est. Coeff. Asy. t-ratio Demand fn q 

LOFFER -0.5637 -24.63 
LTRIPS 0. 3132 12.19 
LING 0.2299 1.888 0.9177 •
MON 0.001675 5.953 0.00669 
TOTAL 0.003603 1.243 0.01438 
RESU 0.005401 2.138 0.02156 
PHOS 1.076 2.685 4.296 
CHLORA 0. 02313 2. 725 0.09233 
LOSSIGN 0.005420 1.359 0.02163 
CHROMB -0.009027 -0.969 -0.03603 
LEADB -0.006231 -1.160 -0.02487 
constant 3.119 2.563 
log(p) -2.250 

max LogL - -2536.9 (LR test statistic for the set of six 
water quality variables is 26.0. x2 (.05) critical value -

12.59. 
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retain it in the model as a rudimentary control for "catch success." TOTAL 

will vary with individual fishing skill or effort, but it will also vary 

across major bays as species abundance varies. Of primary interest for the 

purposes of this study, of course, is the potential influence of water quality 

measures on TWTP, and hence on the demand function for recreational fishing 

days. 

Our supplementary data from the Texas Department of Water Resources 

provides sufficient sample on several common water quality parameters to allow 

us to generate monthly averages for each bay system. For others, however, the 

limited nwnber of samples only allows reliable estimates of annual averages 

for each bay system. (This is particularly true for metals found in bottom 

deposits. We are awaiting further supplementary data on bottom deposits from 

the shellfish division of the Health Department.) In our first pass through 

the data, we examined pairwise correlations between species abundance and a 

wide range of water quality measures and selected several which seemed to have 

an obvious relationship to species abundance. (We have tangentially explored 

regressions of actual catch and monthly abundance of each species on all 

reliably measured water quality attributes, described in Section 6.) 

To illustrate the potential for water quality to affect TWTP for fishery 

access, we display in Table 2a some preliminary results for a rudimentary 

model incorporating a selection of water quality variables. (We emphasize 

that this model is by no means our last word on the subject. We have barely 

"scratched the surface" of a wide variety of potential specifications.) 

The water quality variables we include in Table 2b which are available 

as monthly averages for each bay system are RESU (total non-filterable 

residue, dried at lOSC, in mg/1), PHOS (phosphorous, total, wet method, mg/1 

as P), and CHLORA (chlorophyll-A, µg/1, spectrophotometric acid method). 
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Variables which can at present only be used as annual averages for each bay 

system are LOSSIGN (loss on ignition, bottom deposits, scaled tog/kg), 

CHROMB (chromium, total, in bottom deposits, mg/kg, dry weight), and LEADB 

(lead, total, in bottom deposits, mg/kg as PB dry weight). 

Transforming the ordinary logit parameter point estimates in Table 2b 

according to the formulas suggested above for solving such a model for the 

corresponding log-log demand function yield the demand parameters given in the 

last column of Table 2b. The price elasticity of demand for fishing days is 

now -2.250. The income elasticity of demand is now 0.9177. (The increase is 

probably attributable to the fact that we are not longer implicitly 

controlling for geographic income variation via the set of major bay dummy 

variables, so that this measure is probably more reliable.) A one dollar 

increase in market expenditures corresponds to a 0.0067 increase in the log of 

the number of fishing days demanded, suggesting that market goods associated 

with the fishing day (if typical) are complementary goods. An extra fish 

caught on the interview day affects demand by increasing the log of days 

demanded by 0.0144. Demand is higher where non-filterable residues are 

higher, where phosphorous concentrations are higher, where loss on ignition is 

greater, and where there are greater concentrations of chlorophyll-A. 

However, the presence of metals in bottom deposits, such as chromium and lead, 

corresponds to lesser demand for fishing days. 

5.3 Controlling for Demographic Heterogeneity Among Respondents 

Having determined that there will be some water quality measures which 

appear to have a statistically significant impact upon the value of access to 

this recreational fishery, we now introduce three variables designed to 

control for interregional variations in demographics. Ue use PSPNOENG, 

PVIETNAM, and PURBAN. To the extent that the demographic characteristics of 
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anglers are correlated with the water quality in the areas where they fish, i~ 

will be important to allow for demographic effects in any attempt to identify 

the distinct effects on resource values of water quality measures. 

Table 3 gives the ordinary MLE logit parameter estimates with these 

additional explanatory variables. The last column of the table gives the 

point estimates of the parameters of the corresponding log-log demand function 

(and its shift variables). None of these three variables make statistically 

significant contributions to explaining resource values, but this may be an 

artifact of collinearity among the variables, so we retain them out of 

interest in determining point estimates of their effects on the demand 

function. 6 The proportion of unassimilated Hispanic residents in the 

respondent's zip code (PSPNOENG) tends to decrease the log of fishing days 

demanded by about 1.5; the proportion of Vietnamese (PVIETNAM) has a dramatic 

effect on values (which persists through a variety of alternative 

specifications)--this variable increases the log of fishing days demanded by 

31.8! People from relatively more urbanized areas apparently demand fewer 

fishing days. 

5.4 Introducing Variations in Species Catch Rates, Species Abundance 

The total number of fish caught on the interview day has been included 

as an explanatory variable in several of the specifications discussed above. 

6 Bear in mind that just because a particular variable is not statistically 
significantly different from zero for a particular sample of data does not 
imply that it is zero. We retain variables for which the coefficient 
estimates are stable across alternative specifications. With better data 
(e.g. with a more equal distribution of "yes" and "no" responses) there might 
have been enough information in this sample to reduce the sizes of the 
standard errors. Likewise, the error distribution may have an apparent 
dispersion larger than the actual dispersion because we are using group 
averages as proxies for several of our explanatory variables, including 
income. What could be an excellent "fit" with the true data could be 
converted to a poorer "fit" by the use of group averages. 



Table 3 

Augmented Model: Demographic Variables 

Variable 

LOFFER 
LTRIPS 
LINC 
MON 
PSPNOENG 
PVIETNAM 
PURBAN 
TOTAL 
RESU 
PHOS 
CHLORA 
LOSSIGN 
CHROMB 
LEADB 
constant 
log(p) 

max LogL - -25¼.9 

Est. Coeff. 

-0.5637 
0.3132 
0.2281 
0.001632 

-0.3915 
8.000 

-0 .1190 
0.003624 
0.005333 
1.142 
0.02235 
0. 007762 

-0.01300 
-0.004626 
1.404 

Asy. t-ratio Demand f 0 q 

-24.63 
12.09 
1. 512 0.9068 

5.731 0.006488 
-0.5880 -1. 556 
1. 237 31. 80 

-1. 400 -0.4732 
1.250 0.01441 
2.106 0.02120 
2.819 4.541 
2.631 0.08884 
1.686 0.03085 

-1.194 -0.05169 
-0.8354 -0.01839 
0.9377 

-2.241 
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Given that we have a wealth of data on the catch and on overall abundance, by 

individual species, it seems worthwhile to experiment with valuation models 

which discriminate among the effects of individual species on the annual value 

of access to the fishery. 

Perplexing results emerge as we include variables relating to the catch 

of individual species. There are seven major species in our working data set: 

REDS, TROUT, CROAK, SAND, BLACK, SHEEP, and FLOUND (See Appendix II for 

detailed descriptions). We have experimented with: 

a.) actual current day catch rates; 
b.) monthly average actual catch rates by bay system; 
c.) "annual" average actual catch rates by bay system; 
d.) monthly average abundance indexes by bay system from the TPW resource 

monitoring program; 
e.) annual average abundance indexes by bay system from thr TPW resource 

monitoring program 

For all of these measure~ of catch rates, we find that for at least some 

species, often important ones, the coefficients in MLE logic models imply that 

greater catch rates or greater abundance decreases the value of the resource. 

This seems highly implausible, and points to the existence· of important 

unmeasured variables, negatively correlated with catch rates, which are 

positively correlated with resource values and (by their omission) leave the 

catch rate variables with counterintuitive signs. 

Logically, since we are asking respondents to value a year's access to 

the fishery, it should b~ expected annual catch which influences their values. 

But anglers may be myopi· .. Actual average catch rates or abundance may be 

discounted in favor of current perceptions of catch rates. A variety of 

models have been estimated, but for illustration, we report our findings for 

one which uses monthly bay average catch rates. It is our inclination that 

average catch rates should be preferred to individual current catch rates 

because the latter joes not control for individual expertise or fishing 

• 
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intensity. The monthly averages reflect the catch of the "average" angler, 

abstracting from individual differences in skill or enthusiasm. 

Results for a specification which replaces the TOTAL current catch 

variable with the full set of monthly catch averages for each bay system are 

presented in Table 4. The coefficients on MATROUT, MASAND, and MABLACK are 

negative, and the point estimate for the coefficient on MABLACK is relatively 

large. The set of catch variables collectively results in an improvement of 

only 3.0 in the log-likelihood function, which is not sufficient to reject by 

an LR test the hypothesis that the catch data should be excluded from the 

model. But perhaps we are not measuring the desired variables correctly. 

It is unfortunate that the survey did not collect information from post­

trip respondents regarding their target species. If you only ever fish for 

one particular species, then the abundance if other species will not affect 

your value of access to the resource. In fact, of other species compete for 

the same biological niche as your preferred species, their abundance might 

detract from your value of the fishery. This angle will need to be explored. 

At one point, we made the heroic assumption that observed target proportions 

in each bay and month for pre-interview respondents carry over to the 

population as a whole (which is tenuous). Including these target proportions 

directly in a logistic regression model had no discernible effect, however, 

probably because the information was not specific to individual anglers (a 

severe errors in variables problem). 

Further investigation of the observable (and unobserved) correlates of 

catch rates is clearly warranted. At the time of this writing, we have not 

yet uncovered and explanation for these counterintuitive findings. The 

following section addresses catch rates explicitly, and describes the search 



Table 4 

Augmented Model: Monthly Average Gatch Rates (by bay system) 

Variable 

LOFFER 
LTRIPS 
LING 
MON 
PSPNOENG 
PVIETNAM 
PURBAN 
MAREDS 
MATROUT 
MACROAK 
MASAND 
MABL\CK 
MASHEEP 
MAFLOUND 
RESU 
PHOS 
CHLORA 
LOSSIGN 
CHROM.8 
LEADB 
constant 
log(p) 

max LogL - -2532.7 

Est. Goeff. 

-0.5636 
0.3129 
0.2158 
0.001647 

-0.3705 
7.421 

-0 .1149 
0. 05111 

-0.02823 
0.001740 

-0.02808 
-0.2094 
0.4165 
0.06694 
0.006257 
1.185 
0.02056 
0.006621 

-0.009143 
-0.005987 
1.5419 

Asy. t-ratio 

-24.62 
12.09 

1.432 
5. 725 

-0.5479 
1.142 

-1. 343 
0.4234 

-0.6157 
0.05004 

-0.5756 
-0.6973 
1. 331 
0.5238 
2.328 
2.671 
2.244 
1. 289 

-0.7001 
-0.9940 
1.030 

Demand f" q 

0.8604 
0.006566 

-1.477 
29.58 
-0.4580 
0.2037 

-0 .1125 
0.006935 

-0.1119 
-0.8346 
1.660 
0.2669 
0.02494 
4. 723 
0.08195 
0.02639 

-0.03645 
-0.02387 

-2.247 
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for potential reasons for the results in Table 4 (and similar results for 

other models not reported in this paper). 

6. Actual Current Catch versus Species Abundance: Regression Models 

It is not intuitively obvious whether exogenously measured species 

abundance, or actual catch rates by the respondent, should be the more 

appropriate determinant of valuation for the fishing season. Unfortunately, 

it is rarely easy to extract from respondents a reliable (retros~ective) total 

of each species caught over the past year. We only have the current day's 

catch of each species in our present survey data. But exogenously measured 

abundance of each species is not necessarily a good predictor of variations in 

expected catch from the point of view of the individual who is being asked to 

value a year of access to the fishery. One reason is that Parks and Wildlife 

Resource Monitoring controlled samples are not "caught" using the same 

technology available to recreational fishermen. If fish are present, but are 

not "biting," they may still be swept up in the nets used by the Monitoring 

Program. Ideally, we would like to know the success rates (for each species) 

for a "standardized" recreational angler (with given skills and effort level). 

If we use individual respondents' actual catch rates, unobservable differences 

in skill will potentially bias the coefficients on the catch rate in the 

valuation equations. 

To determine what factors affect individual respondents' current catch 

rates, we ran a set of ordinary least squares regressions of each respondent's 

actual catch of each species (REDS, TROUT, CROAK, SAND, BLACK, SHEEP, and 

FLOUND) against the corresponding monthly and annual abundance indexes for 

that species, current market expenditures related to the fishing day (MON), 

specific fishing experience (SITETRIP, the annual number of trips to the site 

where the respondent was interviewed), non-specific fishing experience 
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(NSWTRIP, annual trips to other saltwater fishing sites in Texas), and a 

number of demographic variables. The demographic variables reflect zip code 

average or median data drawn from the 1980 Census, so they do not necessarily 

capture concurrent demographics, but we will assume they are close. We 

include PRETIRED (the proportion of people in your zip code who are retired), 

?SPANISH (the proportion of people of Hispanic origin), PSPNOENG (the 

proportion speaking Spanish at home and little or no English--unassimilated 

immigrants), ?VIETNAM (the proportion indicating Vietnamese origin, PURBAN 

(the proportion living in areas designated as urban), PTEXNATV (the proportion 

born in Texas--reflecting familiarity with the fishery or the environment), 

PFFFISH (the proportion working in forestry, fishing, or farming), and HHLDINC 

(median household income). 

These variables may affect catch rates for several reasons. First, 

demographic differences may influence the target species chosen. 

Alternatively, these variables may serve as proxies for fishing experience or 

skill. They may also proxy whether or not the objective of the fishing trip 

is purely recreational, or whether the catch is a significant supplement to 

the angler's diet. Demographic measures may also covary systematically with 

geographical regions and therefore with species abundance. 

Table A.l (at the back of this paper) displays the results of the seven 

OLS regressions. Interestingly, the exogenous abundance indexes (MMxxxxx and 

Axxxxx, computed from the Resource Monitoring data) are frequently 

significantly negatively related to the actual catch. Only for sand seatrout 

(SAND) do both abundance indexes enter positively. This result requires 

further investigation. In any event, if the fish are there, but you cannot 

catch them using legal recreational fishing gear, they may contribute 

considerably less to your value of the resource. 



28 

For several species, money spent on market goods related to the fishing 

day is negatively related to the catch. (And it is interesting that MON is 

markedly uncorrelated, at 0.03, with zip code median household income.) Site­

specific fishing experience (SITETRIP) significantly increases one's catch of 

red drum (REDS), spotted seatrout (TROUT), and black drum (BI.ACK). Non­

specific fishing experience (NSW'TRIP) significantly increase one's catch of 

sheepsheads (SHEEP) and southern flounder (FLOUND), but significantly 

diminishes one's catch of croakers (CROAK). 

PRETIRED insignificantly decreases the TROUT, CROAK, BI.ACK and SHEEP 

catch, significantly decreases the SAND catch, but has an insignificant 

positive effect on the FLOUND catch. People from zip codes with relatively 

large numbers of Vietnamese catch significantly (and substantially) fewer of 

several species, notable REDS, and SAND, but they catch dramatically larger 

numbers of CROAK. People from urbanized areas catch fewer REDS, but more 

CROAK, SAND, and FLOUND. Texas natives (or at least people from areas where 

relatively more people are Texas natives) catch significantly fewer REDS, but 

more TROUT, CROAK, BI.ACK, and FLOUND. If more of your neighborhood is 

employed in fishing, farming or forestry, you tend to catch significantly more 

REDS, SAND, and SHEEP, but significantly fewer CROAK. Higher neighborhood 

incomes mean higher REDS catch, but significantly lower CROAK and SAND catch 

rates. These differing results undoubtedly reflect the "sport" versus "food" 

values of different species. 

These tendencies might still reflect regional variations in fishing 

location, which might be correlated with demographic factors. To identify 

non-specific geographical and seasonal variations in catch rates, we also 

estimate OLS regressions of actual catch rates on a set of major bay dummies, 

MJl - MJS, and a set of monthly dummies, MNS - MNll (where MNS is May 1987, 

• 
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etc.). The results of these regressions are displayed in Table A.2. Clearly, 

there is considerable qualitative geographical and seasonal variation in catch 

rates for all species. Table A.3 therefore includes the quantitative 

variables from Table A.l (with the exception of Axxxxx, which takes on only 

one value per bay system), as well as the set of dummy variables MJl - MJ8. 

Geographical variation in resource stocks does not seem to explain completely 

the observed variations in catch rates. Tastes (demographics) still seem to 

matter in many cases. 

Since the abundance indexes derived from the Resource Monitoring data 

set do not seem to be a very good proxy for expected annual catch, we revert 

to using the information present in the contingent valuation sample. With 

over 5000 usable responses, we can average the actual current catch data for 

each respondent across all fishing trips to a particular bay system in a 

particular month. Likewise, we can generate annual average actual catch rates 

in each bay system. Tables A.4a through A.4c describe catch data based on the 

CV sample information. Table A.4a displays the differences in mean catch 

rates across bay systems for each species (AAxxxxx). Table A4.b explains the 

actual individual catch for each species using both monthly average catch 

rates and "annual" (May through November) catch rates, plus a variety of 

demographic variables. The monthly average catch is clearly the preferred 

indicator when both are included. (Its coefficient is always near one and 

highly significant.) However, if only annual catch rates are included, as in 

Table A.4c, these do an excellent job of explaining current individual catch. 

But sociodemographic, "experience," and market expenditure variables still 

contribute significantly to explaining individual catch rates for several 

species. In words, you don't just catch what everybody else catches--who you 

are makes a difference too. 
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In subsequent work, we will contemplate using regression models like 

these to generate fitted reduced form estimates of individual catch to be used 

as explanatory variables in the logistic regression models for the demand 

equation. Purging catch rates of components which might be correlated the 

error term may improve the accuracy of the estimated coefficients. 

7. Explicit Trip Motivation. Trip Goal Satisfaction 

The main objective of this project is to determine whether water quality 

has any statistically discernible effect upon the value of access to a 

recreational fishery. For a subset of respondents--those who were interviewed 

prior to embarking on their fishing trip--respondents were actually asked 

explicit:ly about how important it was to them to be able to "enjoy natural and 

unpolluted surroundings" on a fishing trip. The responses warrant 

investigation. 

In the pre-trip interviews, the TPW survey actually asked direct 

questions about a whole variety of potential motivations for going fishing. 

All respondents were asked to respond on a 10-point Likert scale (with 10 

being "extremely important" and O being "not at all important") the importance 

they place upon recreational fishing as a way to: 

A - Relax (PRERELX) 
B - Catch Fish (PRECAT). 

The third motivation question was drawn at random from a selection of 

alternatives, including: 

C - Get away from crowds of people (NOPEOPLE), 
D - Experience unpolluted natural surroundings (NOPOLLUT), 
E - Do what you want to do (00'\JHTWNT), 
F - Keep the fish you catch (KEEPFISH), 
G - Have a quiet time to think (QUIETIME), 
H - Experience good weather (GOODWTHR), 
I - Spend time with friends or family (FRNDFMLY), and 
J - Experience adventure and excitement (ADVNEXCT). 
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Since the latter eight goals were not asked of everyone, it was 

necessary to focus on the subsamples to which each question was posed. For 

pre-trip interviews which were not matched with post-trip interviews of the 

same anglers, we have a very limited amount of information. It is not 

possible to include demographic data, because zip codes were not collected. 

We therefore rely on whether the professed target species was red drum, trout, 

or flounder (TARGR, TARGT, or TARGF), upon major bay dummies, monthly dummies, 

and upon a dummy variable for weekend days. We use OLS regression of the 

recorded Likert scale response on these variables in an effort to detect 

factors affecting angler's objectives in going fishing. The results are 

contained in Table A.5. 

From Table A.5, we see that target species, geographic dummies, and 

seasonal dummies do not help at all to explain the NOPOLLUT motivation for 

going fishing. However, the target species do affect the NOPEOPLE motivation, 

the KEEPFISH motivation (red drum anglers seem to fish for sport; flounder 

anglers fish for food), and the GOODWTHR motivation (trout anglers enjoy the 

weather more; red drum and flounder anglers are less inclined to go out for 

the nice weather ... they must be more serious). Red drum anglers are less 

likely to go fishing for its social aspects (FRNDFMLY). 

More weekend anglers claim to be strongly motivated by the desire for 

adventure and excitement (ADVNEXCT). Geographical and seasonal dummies 

occasionally make significant differences in the objectives of anglers. 

However, the values of the F-test statistics corresponding to these regression 

suggest that none of the models have particularly good explanatory power. 

Unfortunately, people who were interviewed prior to their fishing trips 

were not a random sample of anglers. Interviewing personnel did not begin to 

collect data until 10:00 a.m. in general, so pre-trip interviews sample 
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individuals who do not embark on fishing trips until relatively late in the 

day. These are probably less avid fishermen. Consequently, what we learn 

from this sample cannot be reliably extrapolated to the entire sample. (It 

would have been helpful if the pollution question, in particular, had been 

posed to everyone, both pre- and post-trip.) Nevertheless, with this caveat 

in mind, we can examine the apparent relationships between attitudes and other 

variables. 

For the pre-trip interview sample which could be matched with 

corresponding post-trip interviews, we have both the attitudinal variables and 

the crucial zip code data which allow us to splice in data (by zip code) on 

our primary Census variables: median household income (HHLDINC), proportion 

of the population over 65 (PRETIRED), proportion of the population with 

birthplace in Texas (PTEXNATV), the proportion living in urban areas (PURBAN), 

the proportion of the population reporting Vietnamese origin (PVIETNAM), and 

proportion of the population speaking Spanish at home and speaking English not 

well or not at all (PSPNOENG). If we assume that zip code areas are 

•
relatively homogeneous, we can use median household income and these 

demographic proportions to control for a certain extent for the respondents 

demographic characteristics. To determine the extent to each motivation 

depends upon the characteristics of the respondent, we can attempt to 

interpret a number of OLS regressions. Other included explanatory variables 

are: number of fishing trips to the interview site over the last year 

(SITETRIP), number of saltwater fishing trips to other sites (NSWTRIP), and 

money spent on market goods during this fishing trip (MON). The results are 

presented in Table A.6. 

In the post-trip interviews, the TP~ survey asked some direct questions 

concerning respondents' ability to achieve certain goals in going fishing. 
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Again, all respondents were asked to respond on a 10-point Likert scale (with 

10 being "completely" and O being "not at all") the extent to which they were 

able to achieve the same set of goals (A through J). All respondents were 

offered the first two goals, and one question from the remaining eight was 

asked of each respondent. 

In subsequent research, we may devote attention to the other attitudinal 

questions in the post-trip surveys, but for the present we will focus on the 

NOPOLLUT question, since this is most relevant to the issue at hand. For 

post-trip respondents' answers to the question "To what extent were you able 

to experience unpolluted natural surroundings," we obtained the regression 

results summarized in Table A.7. This OLS regression demonstrates that who 

you are (the demographic variables) has little to do with your perception of 

your ability to enjoy unpolluted surroundings. The only exception may be the 

?VIETNAM variable. On the other hand, geographic and seasonal dummies 

occasionally make a statistically significant contribution to explaining 

peoples responses. Anglers do seem to have differing perceptions of the level 

of pollution, especially across bay systems. The northern bays are perceived 

to be more polluted than are southern bays. 

It is unfortunate that this attitude question (NOPOLLUT) was not asked 

of the entire sample, so that this variable could be employed as a potential 

explanator for annual resource values. Nevertheless, we can experiment will a 

logistic regression specification based upon the 830 respondents who were 

posed both the NOPOLLUT question and the contingent valuation question. Table 

S summarizes the results of an ordinary logit model (without water quality 

variables or catch data) which includes the Likert scale value for the 

NOPOLLUT variable as a potential shift variable for the demand function. 
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Since only a tiny subsample of the full dataset is being used in this 

case, we might expect some differences in the implication of the fitted models 

(especially if there was anything non-random regarding the choice of whom to 

ask each of the trip satisfaction questions--a factor which has not yet been 

investigated). However, the implied demand derivatives in Table 5 are highly 

consistent with those derived using the full dataset, except for the fact that 

the coefficient on PSPNOENG changes sign. The price elasticity of demand is 

typical, at -2.66; the income elasticity of demand is somewhat higher than in 

the full sample, at 1.589. However, in this subsample, the level of 

significance of LINC has dropped somewhat. 

Of particular interest is the coefficient on NOPOLLUT. This variable is 

statistically significant at the 101 level in the logit model. Adjustments in 

aspects of environmental quality (including water quality) which would 

increase a respondents' Likert scale choice by 1 unit (on the scale of l to 

10) would therefore seem to increase the log of fishing days demanded by 0.28. 

Since the mean Likert scale value is approximately 8.2, this implies that the 

"elasticity of fishing day demand with respect to environmental quality" is 

roughly 2.2--an elastic response. 

8. Perceptions of Pollution versus Measured Water ouality 

When we choose to specify a resource valuation model using water quality 

measures as explanatory variables, we are not being specific about whether 

water quality affects valuation of the recreational fishery directly or 

indirectly. For example, anglers may have no conscious perception of the 

dimensions of water quality when they go fishing, but water quality may be 

closely related to fish abundance and therefore to catch rates, so that water 

quality variables are proxies for other variables which do enter directly into 
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individuals' utility functions. (At present, we are exploring OLS regression 

models for catch rates which include water quality variables.) 

To determine whether perceptions of environmental quality reflect actual 

levels of measured dimensions of water quality, we can select the subsample of 

respondents who were queried regarding their ability to enjoy unpolluted 

natural surroundings. We can then regress the NOPOLLUT variable on a range of 

water quality variables to see whether any statistically significant 

relationships emerge. If anglers appear to perceive water quality directly, 

then we can argue that water quality probably enters directly into their 

utility functions as a detectable resource attribute. If not, we would be 

inclined to say that appreciation of water quality variables is implicit, 

acting through other variables which are manifestations of water quality. 

Results for this experiment are given in Table A.8. There are 695 

observations for which complete data exist for the initial set of explanatory 

variables we use here. Once again, monthly or annual averages for each bay 

system are used for the water quality variables, rather than conditions 

actually existing in the area on the specific day when the NOPOLLUT survey 

response was collected. This averaging process may considerably obscure an 

underlying close relationship between the date- and site-specific values of 

the water quality variables, had we been able to collect this information 

simultaneously with the creel survey. Consequently, the standard error for 

the parameter estimates may well be larger than they would be with more 

accurate data. Therefore t-tests for the statistical significance of 

coefficients are probably not conclusive. 

Table A.8 shows that several water quality measures bear estimated 

coefficients with t-values greater than unity. The two different measures of 

dissolved oxygen, MDO and DISC (from different data sources) enter oppositely 



Alternative Strategy: 

Variable 

LOFFER 
LTRIPS 
LINC 
MON 
TOTAL 
PSPNOENG 
PVIETNAM 
PURBAN 
NOPOLLUT 
constant 
log(p) 

max LogL - -357.53 

Table S 

Use Reported Pollution Perceptions to Explain Value 
(n - 830) 

Est. Coeff. Asy. t-ratio Demand fn q 

-0.6639 -10.22 
0.4145 5.946 
0. 3966 0. 9774 1. 590 
0.004663 3.901 0.01869 
0.003468 0.2962 0.01390 
0.2828 0.1820 1.134 
4.228 0.2686 16.95 

-0.2009 -0.8602 0.8051 
0.07043 1.753 0.2823 
0.08104 0.02007 

-2.661 
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and relatively significantly. Water transparency (TRANSP) significantly 

improves perceptions of low pollution. NH4 and PHOS and CHLORA are positively 

correlated with these perceptions; NITR is negatively related. CHROMB and 

LEADB detract from perceived environmental quality. (Other specifications 

reveal the consequences of the high correlations between OILGRS and LEADB: 

one or the other used alone is strongly negatively significant, but not both.) 

A tentative conclusion from these initial models is that people do seem 

to have perceptions of environmental quality that are somewhat related to 

actual measured dimensions of water quality. Loosely, then, policy actions 

designed to change the levels of arguments which probably figure significantly 

in regressions like that in Table A.8 will change anglers' perceptions of 

pollution levels. The censored logistic regression reported in Table 5 could 

then be used crudely in a "second stage" to infer the effects of such policies 

on the demand for fishery access and on the total social value of the fishery. 

9. Tentative Findings and Directions for Continuing Research 

At this stage, of course, the results we have obtained reflect only our 

"first pass" through the data, to determine whether statistically discernible 

relationships among the variables of interest will assert themselves. Having 

achieved some success, it is now necessary to go back over all the data to 

verify the plausibility of the observed values and to "clean" the sample of 

additional influential observations which may be causing varying degrees of 

mischief in the estimation process. Occasional questionable values emerged 

during the work thus far. Usually, the statistical fit of the models is 

improved by correction of these problems. 

Some remarkable outliers among the water quality data on bottom deposits 

from the Department of Water Resources need to be examined before these 

"parameters" are included in the model. We also need to splice in the water 

• 
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quality data obtained from the Texas Water Development Board. Due to the 

absence of a crucial map, we are not able at present to distinguish accurately 

between the data for the Upper and Lower Laguna Madre areas. With that 

problem resolved, we will have at our disposal a number of other important 

dimensions of water quality. 

With tighter data, we will be able to employ the more refined 

econometric methods described in sections 2.2 and 4.2 of the paper. For now, 

we have been satisfied to obtain point estimates of the demand function 

parameters and to rely upon the statistical significance of the underlying MLE 

logit parameters to imply the significance of the corresponding demand 

function parameters. 

As is typical with survey analyses, the process of utilizing a data set 

reveals many ways in which the questionnaire could be improved from the point 

of view of using its results for particular tasks. We find that these data 

would have been much more useful if the range of offered threshold values had 

been manipulated during the course of the survey to ensure that fairly even 

proportions of "yes" and "no" responses were elicited. The efficiency of the 

estimation process is greater when one is better able to discriminate the 

shape of the distribution in the vicinity of the marginal mean of the 

distribution of implicit valuations. This sample has a disproportionate 

number of "no" responses, which means that the information we have frequently 

concentrates on the upper tail of the distribution, which is less helpful. 

For the pollution aspect of this study, our objectives would have been 

helped by asking all respondents direct questions about their water pollution 

perceptions and explicitly whether these perceptions affect their enjoyment of 

the fishing day (today or over the course of the year). 
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It would have been desirable to elicit retrospective information from 

respondents on their approximate total annual catch of each species, their 

self-assess fishing ability, and especially, their target species (this was 

only asked in pre-trip interviews). 

We need to know more about the econometric literature on utilization of 

group means in lieu of individual values for explanatory variables. Since 

some of our earlier work with San Francisco Bay area data (Cameron and 

Huppert, 1988a, 1988b, and 1988c) has implied that individual income, for 

example, is correlated with Census median zip code income only at a level of 

roughly 0.3 to 0.4, much information may be lost by using these medians as 

proxies. On the other hand, there may be some valid arguments for treating 

zip code median income as a reasonable measure of "permanent income," or the 

operational level of total consumption for the individual relative to 

neighbors. This methodological issue still need to be explored. As we have 

pointed out in the paper, if information is being obscured by the use of group 

means or medians, the standard errors of the point estimates in our models 

could be artificially amplified, making parameters appear to be statistically 

insignificant at any of the typical (arbitrary) levels. With "real" data, the 

proxied variables might be strongly statistically significant. We don't know. 

A major unresolved issue, which has confounded us for some time, is the 

apparent negative effect of catch rates for some species on resource values. 

This is counterintuitive, since we have strong priors that better catch rates 

should imply a more desirable resource. We are confident that some 

explanation can be found. Certainly, five thousand Texans cannot be wrong. 

Effort thus far has been focused on determining the parameters of the 

demand functions corresponding to the fitted total valuation functions for a 

year of fishing access. The basic implications of microeconomic theory for 
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the parameters of a log-log demand specification are readily satisfied. The 

price elasticity of demand for fishing days (if a market existed) appears to 

be roughly -2.2; the income elasticity appears to be just less than unity, 

implying that recreational fishing is borderline between being a necessity and 

a luxury. It is unfortunate that the lack of specific demographic data on our 

respondents prevents us from unambiguously identifying respondent 

characteristics which would lee us segregate the sample and estimate separate 

demand functions for each group. We muse content ourselves with using zip 

code averages as "shift" variables for a common demand specification. 

Geographical heterogeneity in the demand for recreational fishing days 

does seem to exist. Water quality variables seem to explain quite a lot of 

this geographic variation. The Vietnamese seem to have markedly different 

preferences for fishing than the population as a whole. Money spent on 

associated market goods, once thought to be a reasonable proxy for the non­

market value of a fishery, is positively related to the value of a fishing day 

(but typically completely unrelated to catch success). Importantly, many 

other explanatory variables make strong contributions to explaining the annual 

value of fishing day access; reliance solely upon market expenditures could 

severely misstate resource values. 
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APPENDIX I 

NONLINEAR OPTIMIZATION OF THE CENSORED LOGISTIC REGRESSION MODEL 

a.) Gradients and Hessian Elements for Nonlinear Optimization 

For the simplest version of the model, with g(xi,P) - xi'P, we can write 

out these derivatives by first defining the following simplifying 

abbreviations: 

(1) 'IP·l - (t•l - xi'P)/ ,c 

The gradient vector for this model is then given by: 

(2) alog L/apr - L (x1/,c) ( (I
1 

- 1) + R
1 

r - 1, ... ,p 

alog L/a,c - L (tp1/,c) ( (Ii - 1) + Ri 

The elements of the Hessian matrix are: 

(3) a21ogL/ctpraPs - -{l/,c2
) L x. x. s. r,s -1, ... ,p

lr lS 1 

a2logL/apra,c - - (l/,c) 2 L x r (Ii - 1) + Ri(l + tpi) r - 1, ... ,p1

a2logL/a,c 2 - -(l/,c2 
) L {2tp ) ( I - 1) + R } + v,/s1 1 1 1 

The expectation of Ii is (l/(l+exp{tp1))]. The negatives of the 

expectations of the Hessian elements are as follows: 

(4) - E(a 21ogL/apraPs) - (l/,c2
) L xirxis S r,s - l, ... ,p1 

- E(8 2logL/apr,c) - (l/,c2
) L x

1
r"P

1 
S

1 r - 1, ... ,p 

2- E(a 21ogL/a,c2) - (l/,c2
) L ¢ S

1 1 

For models with more general forms of the valuation function, g(x
1
,P), 

the gradient vector and Hessian matrix will have different formulas. In these 



41 

situations, it may prove easier to substitute computing time for programming 

effort by using numeric derivatives in the optimization process. 

b.) Standard Error Estimate for Logistic Regression Parameters from Ordinary 
MLE Logit Algorithms 

One alternative is to use Taylor series approximation formulas for the 

variances of the desired parameters (Kmenta (1971, p. 444)): 

2(5) Var(~) - Var(-1/a) - (l/a2 
] Var(a) 

2Var(/3) - (-y/a2 
] Var(a) + (-l/a] 2 Var(-y)

J J J 

+ 2 (-y /a2 ][-l/a] Cov(a,-y)
J J 

A second possibility is to use the analytical formulas for the Hessian matrix 

given in (3) in conjunction with the optimal values of f3 and~ derived from 

-y*. The negative of the inverse of this matrix can be used to approximate the 

Cramer-Rao lower bound for the variance-covariance matrix for f3 and~­

Alternately, the expected values of the Hessian matrix elements are sometimes 

used in this process. 7 

Whichever way the point estimates are obtained, and by whatever method • 
the asymptotic standard errors are determined, these ingredients are necessary 

for hypothesis testing regarding the signs and sizes of individual f3 
J 

parameters. These can frequently be interpreted as derivatives (or as 

elasticities) of the inverse demand function (or ad hoc "valuation" function), 

and assessments of their probable true values are can be an important 

objective in many empirical investigations. 8 

7 The outer product of the gradient vector evaluated at the optimum is also 
sometimes used. However, since the expectation of the Hessian has simple 
formulas, it is probably preferred in this application. 
8 Of course, if estimates are achieved by optimization of (10), hypothesis 
testing regarding the {Js (individually or jointly) is the same as in any 
maximum likelihood context: by likelihood ratio tests. 
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APPENDIX II 

CONSTRUCTION OF ESTIMATING SAMPLE DATA 

1. Observations from the Texas Parks and Uildlife Survey 

The "high use" season data set from the survey covers primarily the 

period from May 1987 to November 1987, although a few observatio~s are 

included for December, 1987 and for January and February, 1988. We begin our 

analysis with the 9413 responses collected in post-trip interviews alone. 

Relatively fewer respondents were interviewed before their outings, since 

survey interviewers arrived later in the morning than most anglers leave for 

fishing trip. Also included are the 1094 respondents who were interviewed 

both before and after their fishing trip. These respondents were also posed 

the contingent valuation question; they will also be systematically different 

types of individuals because all are characterized by departing typically 

later in the day. This may be related to their implicit resource values. 

Variables from the survey which are available for use in this study 

include the following: 

MAJOR which of eight major bay systems (1 -north; 8-south) 
HOLIDAY whether the survey day was a holiday 
DAYTYPE 1st digit (holiday) 2nd digit (day of week) 
MONDAY year/month/day 
MINOR code identifying minor bay where survey was conducted 
STAT numerical code identifying survey site 
ID boat: ID number 
INTTIME interview time 
TRIP 
ACT activity- recreational fishing or partyboat fishing 
PEOPLE number of people in the party 
COUNTY code for county or state of residence 
MINBAY minor bay where most fish were caught 
GEAR type of fishing gear used by party 
BAIT type of bait which caught the majority of fish 
REDS number of red drum landed 

LRED largest specimen landed and measured 
MLRED average length of <-6 specimens landed and measured 

TROUT number of spotted seatrout landed 
IILTROUT 
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MLTROUT " 
CROAK number of croakers landed 

LCROAI< 
MLCROAI< 

SAND 
LSAND 
MLSAND 

BLACK 
LBLACK 
MLBLACK 

SHEEP 
LSHEEP 
MLSHEEP 

FLOUND 
LFLOUND 
MLFLOUND 

TOTAL 
LTOTAL 
MLTOTAL 

SWTRIP 

SITETRIP 
FWTRIP 
SATISFY 
POSTRELX 

POSTCAT 

POSTVAR 

ZIP 

MON 

CONTVAL 

number of sand seatrout landed 

number of black drum landed 

number of sheepshead landed 

number of South Atlantic flounder 

total landed, all species 

landed 

number of saltwater fishing trips made in the 
last 12 months 

number of trips to the survey sight in last 12 months 
number of freshwater fishing trips in last 12 months 
overall grade given to the fishing trip (0-10) 
answer to the post-trip question on extent person 

was able to relax 
answer to the post-trip question on extent person 

was able to catch fish; 
answer to alternating questions on other dimensions 
of fishing trip 

five-digit zip codes which will be used to merge survey 
data with census tract information on zip code areas 
for the approximately 90% of the sample with Texas 
residency implied. "What is the zip code where you 
currently live?" 

dollars spent on the fishing trip for non-capital 
market purchases: "How much will you spend on this 
fishing trip from when you left home until you get 
home?" 

conveys the arbitrarily assigned threshold value 
proposed to each respondent and their yes/no response 
to the question: "If the total cost of all your 
saltwater fishing last year was dollars more, 
would you have quit fishing completely?" A "no" 
response therefore implies that the resource value 
is greater than the threshold. 

While the data set was quite well checked for consistency prior to our 

receipt of it, several unusable observations had to be deleted. Criteria for 

deletion were: 
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- missing data on the contingent valuation question; 
erroneous codes for the relaxation or catch satisfaction questions; 

- inadmissible codes for the post-trip varying satisfaction-oriented 
questions; 
- inadmissible levels for the relaxation or catch satisfaction 
questions; 
- inadmissible values for the response to the contingent valuation 
question; 
- more than 365 reported saltwater or freshwater fishing trips reported 
over the last year; 
- fractional numbers of salt- or freshwater fishing trips reported; 
- negative or greater than 365 trips per year; 
- satisfaction Likert scale values outside the 0-10 integer range; 
- trout catch greater than 300, total catch greater than 300; 
- zip codes greater than 99999; 
- no average abundance figures for this month or bay system. 

If preliminary specifications on this data set indicate that certain 

variables appear to have no statistically discernible effect on valuations, 

the presence or absence of valid values for these variables will be 

irrelevant, and some of these observations can be reinstated. 

Initial specifications do not incorporate sampling weights to offset any 

bias in estimated valuations which could result from systematic deletions of 

observations upon criteria which are correlated with resource values. If 

necessary, weights will be incorporated in subsequent specifications. 

2. Controlled Catch Rate Data: Resource Monitorin~ Data Set 

Another requirement of this study is some measure of "expected" catch 

rates by time and location. Actual catch associated with the fishing 

excursion during which the survey responses were collected are at best an 

imperfect indicator of catch expectations. Contemporaneous catch effects are 

also confounded by the possibility that the angler's expertise is unmeasured, 

and this expertise will simultaneously affect both their valuation of the 

resource and their current catch. This will result in misleadingly large 

estimates of the impact of catch rates on the total value of the year's access 



to the sportfishery if expertise, catch and resource valuation are all 

positively correlated (which seems likely). 

In order to avoid the omitted expertise variable's biasing effect on the 

catch rate coefficient, we take advantage of a supplementary data source which 

can be merged with the survey data. The Texas Department of Parks and 

Wildlife regularly collects information on individual species abundance, 

sizes, tagging, and other information. We elect to use this resource 

monitoring data for the period 1983 to 1986, for which 23,729 samples are 

available. Since we seek to reproduce a proxy for anglers' expectations about 

catch rates, the 1983-86 period would seem to provide a proxy for recent 

experience. 

Each observation in this large data file conveys information collected 

during a particular controlled harvest. Variables include, gear type (3 

kinds), location, date, effort (which depends on gear type), meteorological 

data (including winds, cloud cover, rain, fog, water temperature, water depth, 

turbidity (TURB), salinity (SAL), dissolved oxygen (DO), barometric pressure, 

tide information, and wave height. The gear is applied to the fishery for a 

measured period of time. At the end of the sample period, the gear is removed 

and a count is taken of each type of organism collected. Mean lengths are 

also available. We focus on information for the major recreational target 

species of finfish: · red drum (REDS), croaker (CROAK), black drum (BLACK), 

spotted seatrout (TROUT), sheepshead (SHEEP), sand seatrout (SAND), and 

southern flounder (FLOUND). 

In distilling this information into a catch expectation variable for 

each species, several manipulations are required. First, we standardize the 

catch using each of the three gear types to the mean number of effort units 

for each gear type. This controls for variations in catch rates due solely to 
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differing sampling durations, yielding catch per unit effort (CPUE) for each 

type of gear, for arbitrary effort units. 

Once these "catch per unit effort" (CPUE) figures have been obtained, we 

compute overall means and standard deviations in CPUE for each species by gear 

type. We then use these means and standard deviations to "standardize" the 

individual CPUE figures for each species and each gear type. The resulting 

quantities are "indices" of CPUE. The different gear types do not necessarily 

yield additive estimates of catch rates, since they differ in effectiveness 

for any given number of hours of application. Therefore, we must resort to 

the standardized indices, which are unit-free (i.e. we subtract the overall 

mean CPUE for each gear type, and divide through by the overall standard 

deviation in CPUE for that gear type). 

The next step is to aggregate these indices across gear types to come up 

with a weighted average (across gear types) of the three indices of 

standardized CPUE. Our objective, initially, is to create indices of expected 

catch rates for each major species for each sample month and each major bay • 
system along the Texas Coast. 

The weights we use are therefore the proportion of samples collected by 

each type of gear in each month and each major bay system. This implies that 

if one type of gear was only infrequently used in a given month or bay system, 

the CPUE index for this type of gear will receive a very low weight in the 

aggregation across gear types. Averages CPUE indices derived from large 

numbers of samples are presumed to be more reliable, and therefore receive 

larger weights. (DATA.CTCHIND2) 

In addition to the weighted average abundance indices by major bay and 

month, we also computed annual average catch rates for each major bay. 

(DATA.ANCATCH2) Since the survey of recreational anglers asked whether they 
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would have given up fishing entirely if the access cost had been a particular 

specified amount, it will also be important to consider whether annual average 

expected catch is a better explanatory variable for resource valuation than 

actual catch on the current fishing trip or even monthly expected catch around 

the time when the survey response was elicited. However, various different 

measure of catch rates will be included in the valuation models, to determine 

which measure, statistically, seems to have the greatest effect of resource 

value. 

Bear in mind that the constructed abundance variables (MMxxxxx for 

monthly averages by bay system; Axxxxx for annual averages by bay system) are 

measured in standard deviation units. 'when these variables are used in 

regressions or logit an __ yses, the coefficient reflects the consequences of a 

one standard deviation change in abundance. 

We may also take advantage of some of the dimensions of water quality 

collected along with the resource monitoring data. The 23,729 observations 

provides a rich quantity of information on turbidity, salinity, and dissolved 

oxygen. We compute average values of these measures for each month and each 

bay system, MTURB, MSAL, and MOO (DATA.TURSALDO), to be employed in 

regressions of pollution perceptions on measured water quality levels. 

3. Texas Department of Water Resources Water Ouality Data 

Dave Buzan and Patrick Roque of the Texas Department of Water Resources 

were kind enough to allow us to utilize information on the characteristics of 

a large number of water samples taken at diverse locations throughout the 

Texas estuarine/bay system for the purpose of monitoring water quality. 

We use only those observations on water quality measures for which a 

precise quantity is given. We excluded all observations for which it was only 

recorded that the amount of the substance was greater than a certain amount. 
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For a few hundred observations, it was reported that the measured amount was 

less than a certain amount. For these cases, the threshold amount was very 

small, so we opted to record "zero" for these measures, so as not to bias 

upwards the mean quantities of these substances. 

While occasional water samples were taken on an incredible variety of 

water quality "parameters," consistent sampling focuses on transparency 

(TRANSP), dissolved oxygen (DIS0), nonfilterable residues (RESU), 

nitrogen/ammonia (NH4), nitrate nitrogen (NITR), total phosphorous (PH0S), and 

chlorophyll-A (CHLORA). There were from 816 to 3884 observations on these 

quality measures; the other parameters all had fewer than 100 measurements, so 

that monthly averages by bay system were deemed to be less reliable. For 

these other water quality measures (having from 90 to 100 observations), we 

generate annual average levels for each bay system. These measures include 

"loss on ignition, bottom deposits" (L0SSIGN), oil and grease (0ILGRS), and 

organic nitrogen (0RGNITR). In bottom deposits, a few records are available 

for each bay system on phosphorous (PHOSB), arsenic (ARSENB), barium 

(BARIUMB), cadmium (CADMIUMB), chromium (CHR0MB), copper (C0PPERB), lead 

(LEADB), manganese (MANGANB), nickel (NICKELB), silver (SILVERB), zinc 

(ZINCB), selenium (SELENB) and mercury (MERCURB). These metals contamination 

data can be employed investigate whether amounts or perceptions of metal 

contamination appear to be statistically related to resource values. 

Locational information for these samples is recorded at the level of 

"stations," which we identified on maps and aggregated into each of the eight 

major bay/estuary systems along the Texas gulf coast. Subsequent research may 

disaggregate further, but for now, we rely on the presumption that each bay is 

a reasonably isolated aquatic system. There is considerable variation across 

bay systems in the average levels of these "parameters." [Early models use 



49 

only those "parameters" which do not seem to involve questionable "outliers" 

among the samples. Further investigation of these outliers will be necessary 

before we can be confident about using bay average levels of contamination as 

accurate measures of true levels.] 

In sum, we have determined average levels for each of these basic water 

quality parameters for each bay system and for each month (DATA.DWRPARM). We 

also aggregate to determine annual averages for each bay system. 

(DATA.ANDWRPAR) For the metals and other parameters for which there are fewer 

observations, we have only eight observations, by major bay system. 

(DATA.HVYMETAL). 

4. Hydrological and Meteorological Data Collected at Survey Sites 

For each day at each survey site, TPW personnel recorded fairly detailed 

information about weather and surface conditions in the vicinity of the survey 

site. Both beginning of "day" and end of "day" values were recorded. We 

begin by considering only the beginning conditions (bearing in mind that this 

was approximately 10:00 a.m.). These data can be merged with the actual 

survey responses according to major bay, date, minor bay, and station numbers. 

Information from this data set which may prove pertinent includes: 

BWINDSP - beginning wind speed; 
BCLOUD - midpoints of cloud cover categories; 
BARO - beginning barometer reading; 
BRAIN - whether it was raining (0 - no, 1 - yes); 
BFOG - whether there was fog (0 • no, 1 - yes); 
BTEMP - temperature in Celsius; 

The temperature data contained obvious reporting errors, where temperatures 

had clearly been recorded in Farenheit instead of Celsius. Fortunately, there 

is very little potential for overlap in the two scales. We discredited any 

supposedly Celsius temperature over 40, presumed it was Farenheit, and 

converted it to the corresponding Celsius measure. Consistency checks 
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confirmed that the corrected data were feasible, give the location and times 

of year. 

We merged these data (DATA.MDMETEOR) directly with the survey response 

records, based on day and location. We also constructed mean monthly levels 

of each of these weather and sea condition variables for each bay system 

(DATA.MMETEOR), as well as annual average levels for each bay system 

(DATA.AMETEOR). 

5. Texas Water Development Board Water Quality Data 

David Brock of the Texas Water Development Board has been very helpful 

in providing us with some of his agency's data on water quality. At the time 

of this writing, we are still seeking additional information necessary for 

merging this information with the other data sets. The original merge 

criteria contained an error. 

The TWDB data measures many of the same water quality "parameters" as 

does the DWR data, plus some additional ones. The included data are: 

Water temperature (C) 
Turbidity (jksn ju) 
Transparency (secchi cm) 
Conductivity field @25 C-mmh 
Conductivity lab @25 C - micromh 
Dissolved oxygen mg/1 
pH SU 

Ammonia NH3 -N mg/1 
Nitrite N02 -N mg/1 
Nitrate N0

3 
-N mg/1 

NitrogenT kjeldl mg/1 
Phos-T P-wet mg/1 
Phos-D ortho mg/1 
Organ. carbon toe mg/1 
Sulfate S0

4 
mg/1 

Chlorophyll-A mg/1 

These data will be incorporated with the main data set as soon as the 

geographical definitions can be conformed accurately. 
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6. Health Department Data 

In February 1988, during a visit to Austin to confer with the other 

agencies mentioned in this Appendix, I met with Texas State Health Department 

data management personnel with Maury Osborn of the TPW Coastal Fisheries 

Branch. The Health Department maintains detailed historical records of water 

contamination, in particular for the purpose of determining shellfish 

"closures." We were informed that if a request for this data was issued by 

Jerry Clark of TPW directly to the Health Department, these data could be 

released to us. This formal request was made, but as yet, no data have 

materialized. We are not sure what accounts for this lack of cooperation, but 

we will persist. 

7. Census Data {1980} for Texas, by 5-Piiit Zip Code 

The Inter-University Consortium for Political and Social Research 

(ICPSR) provided at nominal cost a tape containing detailed information about 

Texas residents aggregated to the level of 5-digit zip codes. Since all post­

trip interviews attempted to collect the respondent's home zip code, we have a 

rich source of supplementary demographic data which we can exploit to reduce 

(to a certain extent) heterogeneity in valuation responses. 

By far the majority of respondents (over 90% of the sample) gave zip 

codes within Texas. For these respondents, then, we can augment our array of 

potential explanatory variables for the valuation models with Census 

information. It is extremely important to keep in mind that zip code 

proportions or medians for these variables are by no means identical to the 

respondents' actual characteristics. At best, we might assert that since 5-

digit zip codes are very small areas, geographically, it is more plausible to 

use zip code demographic averages than, say, county or state averages, to 

control for demographic heterogeneity. 

• 
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The Census data which we suspect may be relevant to explain valuation 

responses were extracted from the Census tape and assembled in a file called 

DATA.TEXCENSl. Our variables are: 

HHLDINC - median household income in 1980 (TABLE69); 
FAMING - median family income in 1980 (TABLE74); 
MEDINC - median individu.: income in 1980 (TABLE82); 
PURBAN - proportion inside urbanized areas (TABLEl); 
PRETIRED - proportion of individuals in zip code over the age of 65 

(computed from TABLElS); 
PSPANISH - proportion of individuals in zip code claiming hispanic 

background (computed from TABLE13); 
PSPNOENG - proportion of over-18 individuals in zip code claiming to speak 

Spanish at home and to speak little or no English (computed from 
TABLE27); 

PVIETNAM - proportion stating "race" as Vietnamese (TABLE12); 
PFFFISH - proportion of individuals in zip code reporting to work in 

"forestry, fishing, or farming" sectors (TABLE66); 
PTEXNATV - proportion of individuals in zip code reporting birthplace 

outside Texas (TABLE33). 

We anticipate that household income (HHLDINC) will be the most 

appropriate explanatory variable reflecting income levels, although the other 

income measures will be explored. Since retired persons' opportunity costs of 

time for going fishing are smaller, we expect that if you come from a 

community with a large proportion of retired persons (PRETIRED), your 

likelihood of being retired yourself is larger, and your valuation of the 

fishery may be systematically different. The proportion of people in your zip 

code living in a designated urban area may also affect your motivations for 

going fishing, and hence your value of access. 

Cultural differences in tastes and preferences (for different species of 

game fish, or for recreation in general) may affect valuations. Especially 

since some people significantly supplement their diets with "game" fish, we 

would like to control for these differences. The PSPANISH variable includes 

people who have lived in the US or Texas for several generations; the PSPNOENG 

variable is intended to capture the proportion of recent immigrants from 

Mexico, since this is by far the most prominent immigrant group in the state. 
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If PSPNOENG is significant where PSPANISH is not, this may reflect 

assimilation of the immigrant group, at least in terms of preferences 

regarding fish and recreation. Although this is 1980 Census data, significant 

numbers of Vietnamese immigrants had already settled in Texas by that time. 

PVIETNAM will be slightly outdated, but may nevertheless be important. 

Unfortunately, the Census tapes do not seem to identify individuals which 

consider themselves to be a member of the prevalent "Cajun" ethnic group. 

PTEXNATV is the proportion of the community which reports being born in Texas, 

versus elsewhere. This variable ignores the cultural background of 

individuals, and simply discriminates the proportion of the community which 

may have less familiarity with Texas recreational resources, fish species, 

angling techniques, etc. 
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Table A.l - Regressions of current catch on monthly and annual 
abundance measures for the species, market expenses, trip 
frequencies, and demographic variables by zip code. 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
MMREDS 
AREDS 
MON 
NSWTRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
MMTROUT 
ATROUT 
MON 
NSWTRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 

REDS 

PARAMETER 
ESTIMATE 

0.55995251 
0.36847595 

-0.10965756 
-0.000016971 
0.000788784 
0.005368462 

0.85482835 
0.75937497 
0.65719318 

-9.52181432 
-0.18475126 
-0.69407659 
4.39061789 

0.000012134 

TROUT 

PARAMETER 
ESTIMATE 

0.32098798 
0.46025045 

-0.10727163 
0.000344210 
0.000856360 
0.008488526 
-2.23625648 
2.50439916 

-4.76702938 
-10.54180776 
0.007574193 

1.61013946 
4.43354471 

0.000016170 

STANDARD 
ERROR 

0.30007121 
0.23700779 
0.04224035 

0.000'!.'!.8226 
0.000874304 
0.000797330 

0.72060800 
0.26831368 
0.83394446 
4.10336572 
0.06936814 
0. 27218848 
l. 80245578 

0.0000073043 

STANDARD 
ERROR 

0.96852747 
0.55181825 
0.08659900 

0.000391106 
0.002804431 
0.002555053 

2.31717300 
0.90968459 
2.65016291 

13.22176053 
0.22341404 
0.92900808 
5.80127597 

0.000023415 

T FOR HO: 
PARAMETER-0 

l. 866 
l. 555 

-2.596 
-0.144 
0.902 
6.733 
1.186 
2.830 
0.788 

-2.320 
-2.663 
-2.550 
2.436 
l. 661 

T FOR HO: 
PARAMETER-0 

0.331 
0.834 

-1. 239 
0.880 
0.305 
3.322 

-0.965 
2.753 

-1. 799 
-0.797 
0.034 
1.733 
0.764 
0.691 



Table A.l, continued 

DEP VARIABLE: CROAK 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 3.30401254 
MMCROAK -1.23508097 
ACROAK 0.08828395 
MON -0.001526458 
NSWTRIP -0.006019254 
SITETRIP -0.001736803 
PRETIRED -3.96485185 
PSPANISH -9.44617850 
PSPNOENG 16.61375283 
PVIETNAM 34.13699452 
PURBAN 1.00645150 
PTEXNATV 4.46549691 
PFFFISH -26.83794821 
HHLDINC -0.000175471 

DEP VARIABLE: SAND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 2.60203861 
MMSAND 0.13525806 
ASANO 0.34725560 
MON 0.003049747 
NSWTRIP 0.000772157 
SITETRIP 0.002321740 
PRETIRED · -6.69928574 
PSPANISH -5.55781967 
PSPNOENG 8.36237511 
PVIETNAM -37.14203944 
PURBAN 1.00236870 
PTEXNATV 1. 47548162 
PFFFISH 18.26459246 
HHLDINC -0.000122238 

STANDARD 
ERROR 

0.98231253 
0.45744060 
0.09482006 

0.000391878 
0.002894183 
0.002636454 

2.37842920 
0.91612331 
2.78349049 

13.59965826 
0.22970427 
0. 89550728 
5.96099955 

0.000024158 

STANDARD 
ERROR 

1. 27890185 
0.62965032 
0.12388076 

0.000506331 
0.003762673 
0.003427697 

3.10020622 
1.15362653 
3.52678402 

17.67071748 
0.29815854 
1.15738569 
7.73754036 

0.000031442 

T FOR HO: 
PARAMETER-0 

3.364 
-2.700 
0.931 

-3.895 
-2.080 
-0.659 
-1.667 

-10.311 
5.969 
2.510 
4.382 
4.987 

-4.502 
-7.263 

T FOR HO: 
PARAMETER-0 

2.035 
0.215 
2.803 
6.023 
0.205 
0.677 

-2.161 
-4.818 
2.371 

-2.102 
3.362 
1. 275 
2.361 

-3.888 



Table A.l, continued 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
MMBLACK 
ABLACK 
MON 
NSWTRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
MMSHEEP 
ASHEEP 
MON 
NS'WTRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 

Bl.ACK 

PARAMETER 
ESTIMATE 

-0.21504911 
-0.03098885 
0.02454022 

-0.000098978 
-0.000610036 
0.000872498 
-0.51376786 
-0.88597982 
2.70210744 

-0.11057677 
0.04845612 
0.66908968 
0.23180632 

- . 0000017218 

SHEEP 

PARAMETER 
ESTIMATE 

0.06836968 
0.12234247 

-0.04147377 
0.000139507 
0.002547533 
0. 00065.5088 
-0.22178639 
0.06904953 

-0.55274431 
-2.34572452 
0.02545117 

-0.002006479 
2.93979145 

-.0000027911 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.15372003 -1. 399 
0.11983304 -0.259 
0.01586489 1.547 

0.000060809 -1. 628 
0.000452134 -1. 349 
0.000411767 2.119 

0.37191902 -1.381 
0.13901951 -6.373 
0.42860428 6.304 
2.12731804 -0.052 
0.03601018 1.346 
0.13901599 4.813 
0.93050578 0.249 

.00000377165 -0.457 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.21828737 0.313 
0.15810969 0. 774 
0.03175789 -1. 306 

0.000087330 1. 597 
0.000636643 4.002 
0.000579990 1.129 

0.52319454 -0.424 
0.19867934 0.348 
0.60979506 -0.906 
3.01854217 -0. 777 
0.05043334 0.505 
0.20671267 -0.010 
1. 31880893 2.229 

.00000531521 -0.525 



Table A.l, continued 

DEP VARIABLE: FLOUND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -0.01970803 
MMFLOUND -0.61281021 
AFLOUND -0.15836960 
MON -0.000077295 
NSWTRIP 0.007868546 
SITETRIP -0.000819604 
PRETIRED 1.13867584 
PSPANISH -0.98520829 
PSPNOENG 2.04588931 
PVIETNAM 1. 06771366 
PURBAN 0.16953815 
PTEXNATV 0.63002837 
PFFFISH -1. 23657529 
HHLDINC -.0000037847 

STANDARD 
ERROR 

0.32426667 
0.20575268 
0.03617201 

0.000129670 
0.000943887 
0.000860134 

0.78206752 
0.30517406 
0.91854214 
4.44847267 
0.07518352 
0.30251588 
1.94501820 

.00000789691 

T FOR HO: 
PARAMETER-0 

-0.061 
-2.978 
-4.378 
-0.596 
8.336 

-0.953 
1.456 

-3.228 
2.227 
0.240 
2.255 
2.083 

-0.636 
-0.479 



Table A.2 - Regressions of current catch on major bay and 
monthly dummy variables 

DEP VARIABLE: 

VARIABLE 

INTERCEP 

MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 

MN5 
MN6 
MNS 
MN9 
MNlO 
MNll 

DEP VARIABLE: 

VARIABLE 

INTERCEP 

MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 

MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 

REDS 

PARAMETER 
ESTIMATE 

0.05034214 

0.09586074 
0.47034606 
0.41556795 
0.19918153 
0.19034190 
0.39698000 
0. 87774944 

0.04357481 
0.04480128 
0.20531995 
0.38649084 
0.39501347 
0.26375298 

TROUT 

PARAMETER 
ESTIMATE 

2.02945978 

-0.30959043 
0.60509801 
1.48200534 

-0.45785320 
-0.23295552 
1. 81081777 
0. 77603162 

-0.19569724 
-0.61720332 
-0.37767862 
-0.51615104 
-0.43755749 
-0.08592488 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.07581144 0.664 

0.16287253 0.589 
0.09943735 4.730 
0.12293509 3.380 
0.08094287 2.461 
0.07985535 2.384 
0.09674908 4.103 
0.08008518 10.960 

0.09756501 0.447 
0.09810146 0.457 
0.08224176 2.497 
0.08346977 4.630 
0.08322912 4.746 
0.10148514 2.599 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.24217103 8.380 

0. 52027779 -0.595 
0.31764131 1.905 
0.39270218 3. 774 
0.25856281 -1. 771 
0.25508884 -0.913 
0.30905394 5.859 
0.25582300 3.033 

0. 31166034 -0.628 
0.31337396 -1. 970 
0.26271195 -1. 438 
0.26663468 -1.936 
0.26586596 -1. 646 
0. 32418277 -0.265 



Table A.2, continued 

DEP VARIABLE: 

VARIABLE 

INTERCEP 

M.Jl 
MJ3 
MJ4 
M.15 
MJ6 
MJ7 
MJ8 

MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 

DEP VARIABLE: 

VARIABLE 

INTERCEP 

M.Jl 
MJ3 
MJ4 
M.15 
MJ6 
MJ7 
MJ8 

MNS 
MN6 
MN8 
MN9 
MNl0 
MNll 

CROAK 

PAR~ETER 
ESTIMATE 

1. 80420655 

0.15435967 
-1.44501071 
-0.96835590 
-1.22670089 
0.12211734 

-0.80625121 
-1. 77502414 

-0.52584969 
-0.52478913 
1.30543161 
0. 54887768 
0.24721955 

-0.73844884 

SAND 

PARAMETER 
ESTIMATE 

1. 49360615 

-1.75665494 
-1.55240358 
-1.25885186 
-1.05708742 
-1. 56950545 
-2.36323791 
-1.87517327 

0.39706249 
-0.32002563 
0.63333692 
0.43997674 
0.84778208 
2.84404560 

STANDARD 
ERROR 

0.25440856 

0.54656879 
0.33369255 
0.41254645 
0. 27162867 
0.26797915 
0.32467124 
0.26875041 

0.32740935 
0. 32920957 
0.27598747 
0.28010843 
0.27930087 
0.34056457 

STANDARD 
ERROR 

0.32742378 

0.70343395 
0.42946227 
0.53094723 
0.34958605 
0.34488913 
0.41785184 
0.34588174 

0.42137579 
0.42369266 
0.35519583 
0.36049951 
0.35946017 
0.43830655 

T FOR HO: 
PARAMETER-0 

7.092 

0.282 
-4.330 
-2.347 
-4.516 
0.456 

-2.483 
-6.605 

-1. 606 
-1. 594 
4.730 
1.960 
0.885 

-2.168 

T FOR HO: 
PARAMETER-0 

4.562 

-2.497 
-3.615 •-2.371 
-3.024 
-4.551 
-5.656 
-5.421 

0.942 
-0.755 
1.783 
1. 220 
2.358 
6.489 



Table A.2, continued 

DEP VARIABLE: BLACK 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 0.20731884 

M.Jl -0.02152089 
MJ3 -0.12508682 
MJ4 -0.12285552 
MJ5 -0.15597693 
MJ6 -0.11956589 
MJ7 -0.13773178 
MJ8 -0.15204360 

MN5 -0.07209143 
MN6 -0.04345460 
MN8 -0.01226179 
MN9 0.02200455 
MNlO 0.14766722 
MNll 0.05904913 

DEP VARIABLE: SHEEP 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 0.12359373 

M.Jl -0.19739614 
MJ3 -0.01479838 
MJ4 -0.06177563 
MJ5 -0.07825227 
MJ6 -0.14568843 
MJ7 -0.24692556 
MJ8 -0.15689291 

MN5 0.05152056 
MN6 -0. 007780611 
MN8 0.03604168 
MN9 -0.004137654 
MNlO 0.05014380 
MNll 0.47535803 

STANDARD 
ERROR 

0.03932264 

0.08448036 
0.05157716 
0.06376521 
0.04198426 
0.04142017 
0.05018278 
0.04153938 

0.05060600 
0.05088425 
0.04265798 
0.04329494 
0.04317011 
0.05263933 

STANDARD 
ERROR 

0.05514031 

0.11846289 
0.07232426 
0.08941499 
0.05887258 
0.05808159 
0.07036899 
0.05824875 

0.07096245 
0.07135262 
0.05981731 
0.06071048 
0.06053545 
0.07381370 

T FOR HO: 
PARAMETER-0 

5. 272 

-0.255 
-2.425 
-1.927 
- 3. 715 
-2.887 
-2.745 
-3.660 

-1. 425 
-0.854 
-0.287 
0.508 
3.421 
1.122 

T FOR HO: 
PARAMETER-O 

2.241 

-1. 666 
-0.205 
-0.691 
-1. 329 
-2.508 
-3.509 
-2.693 

0. 726 
-0.109 
0.603 

-0.068 
0.828 
6.440 



Table A.2, continued 

DEP VARIABLE: FLOUND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 0.82159657 

M.Jl -0.31496533 
M.J3 -0.30390463 
M.J4 -0.63615308 
M.JS -0.79315402 
MJ6 -0.79126378 
M.J7 -0.73886256 
M.J8 -0.63585291 

MN5 0.06951967 
MN6 0 .13816270 
MN8 0.15535632 
MN9 0.05658948 
MNlO 0.23391866 
MNll 0.78029069 

STANDARD 
ERROR 

T FOR HO: 
PARAMETER-0 

0.08199456 10.020 

0.17615627 
0.10754737 
0.13296157 
0.08754450 
0.08636828 
0.10463985 
0.08661686 

-1. 788 
-2.826 
-4.784 
-9.060 
-9.162 
-7.061 
-7.341 

0.10552233 
0.10610253 
0.08894932 
0.09027749 
0. 09001721 
0.10976219 

0.659 
1.302 
1. 747 
0.627 
2.599 
7.109 



Table A.3 - Regressions of current catch on monthly 
abundance index, demographic variables, and major bay 
dummy variables 

DEP VARIABLE: 

VARIABLE 
INTERCEP 
MMREDS 
MON 
NS'WTRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
MMTROUT 
MON 
NS'WTRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 

REDS 

PARAMETER 
ESTIMATE 

0.08249090 
0. 31460321 

-0.000126631 
0.000997362 
0.005338593 

0.40792992 
0. 94774237 

-1. 92730218 
-6.30008634 
-0.17926668 
-0.35985526 
4.06562241 

0.000014557 
0.22117083 
0.41258319 
0.29340746 
0.11045001 
0.14403815 
0.36564235 
0. 80571613 

TROUT 

PARAMETER 
ESTIMATE 

0. 32926072 
o. 72n72191 

0.000418306 
0.001301984 
0. 009021724 
-1.40101257 
2.38954617 

-6.87307423 
•5.11369468 
-0.08751728 
1. 51843888 
1.66646879 

0.000014731 
-0.12522173 
0.46603374 
1.42956747 

-0.73896336 
-0.56608140 
1. 58614179 
0.62707082 

STANDARD 
ERROR 

0.30620085 
0.24591373 

0.000119475 
0.000871506 
0.000792004 

0.72216553 
0.29027646 
0.94335117 
4.13511627 
0.06960719 
0.28079594 
1.79684467 

. 00000727471 
0.16308096 
0.10128207 
0 .11918553 
0.08697339 
0.08637686 
0.09914413 
0.09778452 

STANDARD 
ERROR 

0.98058040 
0.51692313 

0.000383818 
0.002790464 
0.002535271 

2.31274943 
0.93836731 
3.02935838 

13.24493296 
0.22300185 
0.90477954 
5.76057977 

0.000023296 
0. 51372014 
0.32238217 
0. 38169115 
0. 29216032 
0.27586664 
0.30245190 
0.32306103 

T FOR HO: 
PARAMETER-0 

0.269 
1. 279 

-1.060 
1.144 
6.741 
0.565 
3.265 

-2.043 
-1. 524 
-2.575 
-1. 282 
2.263 
2.001 
1. 356 
4.074 
2.462 
1. 270 
1.668 
3.688 
8.240 

T FOR HO: 
PARAMETER-0 

0.336 
1.406 
1.090 
0.467 
3.558 

-0.606 
2.546 

-2.269 
-0.386 
-0.392 
1. 678 
0.289 
0.632 

-0.244 
1.446 
3.745 

-2.529 
-2.052 
5.244 
1. 941 



Table A.3, continued 

DEP VARIABLE: CROAK 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 2.66756373 
MMCROAK -3.98638283 
MON -0. 001477013 
NSWTRIP -0.006107054 
SITETRIP -0.001945570 
PRETIRED -2.84572618 
PSPANISH -10.44237560 
PSPNOENG 21.96652769 
PVIETNAM 42.50799742 
PURBAN 0.88205153 
PTEXNATV 4.60465670 
PFFFISH -25.60229589 
HHLDINC -0.000159420 
MJl -1.32428223 
MJ3 -1.26997939 
MJ4 -1.09222587 
MJ5 -0.23015884 
MJ6 2.96516199 
MJ7 -0.10117965 
MJ8 -0.30969034 

DEP VARIABLE: SAND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 3.49528262 
MMSAND 0. 72768171 
MON 0.003208116 
NSWTRIP 0. 000111362 
SITETRIP 0.002300422 
PRETIRED -6.18159589 
PSPANISH -4.92447442 
PSPNOENG 8.32102379 
PVIETNAM -43.08458320 
PURBAN 0.98033470 
PTEXNATV 1.59438668 
PFFFISH 20.77898656 
HHLDINC -0.000125297 
MJl -1.26918171 
MJ3 -1. 80970744 
MJ4 -1.69999347 
MJ5 -0.93288233 
MJ6 -1.51242967 
MJ7 -1.47083745 
MJ8 -1.88560063 

STANDARD 
ERROR 

1.00525808 
0.40759600 

0.000392887 
0.002860786 
0.002599357 

2. 37166305 
0.96981335 
3.12265143 

13. 57571203 
0.22857272 
0.92367915 
5.90128326 

0.000023899 
0. 52467711 
0.32994369 
0.39260972 
0.28546340 
0.32860335 
0.31440281 
0.32172324 

STANDARD 
ERROR 

1. 33092771 
0.58049126 

0.000516215 
0.003769108 
0.003424049 

3.12377497 
1. 25551174 
4.07928230 

17.88205173 
0. 30113908 
1.21376362 
7.76855507 

0.000031474 
0. 70113740 
0.44122254 
0.55660418 
0.41761009 
0. 37264711 
0.46585384 
0.44713447 

T FOR HO: 
PARAMETER-0 

2.654 
-9.780 
-3.759 
-2.135 
-0.748 
-1. 200 

-10.767 
7.035 
3.131 
3.859 
4.985 

-4.338 
-6.671 
-2.524 
-3.849 
-2.782 
-0.806 
9.024 

-0.322 
-0.963 

T FOR HO: 
PARAMETER-0 

2.626 
1.254 
6.215 
0.030 
0.672 

-1. 979 
- 3. 922 
2.040 

-2.409 
3.255 
1.314 
2.675 

-3.981 
-1. 810 
-4.102 
-3.054 
-2.234 
-4.059 
-3.157 
-4. 217 



Table A.3, continued 

DEP VARIABLE: BLACK 

PARAMETER STANDARD T FOR HO: 
VARIABLE ESTIMATE ERROR PARAMETER-0 

INTERCEP -0.06527348 0.15959629 -0.409 
MMBlACK -0.03127245 0.12061281 -0.259 
MON -0.000069184 0.000062054 -1.115 
NSWTRIP -0.000675180 0.000452805 -1. 491 
SITETRIP 0.000844350 0.000411388 2.052 
PRETIRED -0.38407660 0.37526227 -1. 023 
PSPANISH -0.81824332 0 .15091174 -5.422 
PSPNOENG 2.86581250 0.49012528 5.847 
PVIETNAM -1.20317407 2.14842043 -0.560 
PURBAN 0.04742877 0.03617276 1. 311 
PTEXNATV 0.58276254 0.14602230 3.991 
PFFFISH 0.39924427 0.93388199 0.428 
HHLDINC - . 0000024413 .00000378035 -0.646 
M.Jl -0.04210067 0.08343432 -0.505 
MJ3 -0.12673404 0.05401686 -2.346 
MJ4 -0.15692987 0.06429929 -2.441 
MJ5 -0.11390689 0.04643952 -2.453 
MJ6 -0. 06697295 0.04542878 -1.474 
MJ7 -0.10752456 0.04999241 -2.151 
MJ8 -0.21494500 0. 05137572 -4.184 

DEP VARIABLE: SHEEP 

PARAMETER STANDARD T FOR HO: 
VARIABLE ESTIMATE ERROR PARAMETER-0 

INTERCEP 0.18397633 0.22424085 0.820 
MMSHEEP 0.19706534 0.16868340 1.168 •MON 0.000146931 0.000087682 1. 676 
NS'WTRIP 0.002501075 0.000638205 3.919 
SITETRIP 0.000654810 0.000579796 1.129 
PRETIRED -0.10899880 0.52896178 -0.206 
PSPANISH 0.18634607 0.21297531 0.875 
PSPNOENG -0.98841053 0.69064803 -1. 431 
PVIETNAM -3.18386372 3.02844868 -1.051 
PURBAN 0.02463802 0.05097815 0.483 
PTEXNATV 0.03107763 0.20624852 0.151 
PFFFISH 2.90768177 1. 32049588 2.202 
HHLDINC -.0000038586 .00000532886 -0. 724 
M.Jl -0.11879970 0.11723539 -1.013 
MJ3 -0.08906114 0.07379417 -1. 207 
MJ4 -0.18881993 0.09180317 -2.057 
MJS -0.11501370 0.06391136 -1. 800 
MJ6 -0 .16932811 0.06321095 -2.679 
MJ7 -0.21894058 0. 06971473 -3.141 
MJ8 -0.22701709 0.08198620 -2.769 



Table A.3, continued 

DEP VARIABLE: FLOUND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 0.21204966 
MMFLOUND -0.49321815 
MON -0.000066724 
NSWTRIP 0.007551138 
SITETRIP -0.000819620 
PRETIRED 1. 36027395 
PSPANISH -0.71324691 
PSPNOENG 0.81296362 
PVIETNAM 0.52069004 
PURBAN 0.16554232 
PTEXNATV 0.93747057 
PFFFISH -0.37430053 
HHLDINC -.0000050267 
MJl -0.35044016 
MJ3 -0.43350722 
MJ4 -0.80589558 
MJ5 -0.65223380 
MJ6 -0. 63117761 
MJ7 -0.55085946 
MJ8 -0.42631471 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.33183132 0.639 
0.21939866 -2.248 

0.000129246 -0.516 
0.000943757 8.001 
0.000857429 -0.956 

0.78225188 1.739 
0.31584173 -2.258 
1.02514679 0.793 
4.47714546 0.116 
0.07538672 2.196 
0.30394040 3.084 
1. 94690673 -0.192 

.00000787969 -0.638 
0.17397636 -2.014 
0.10925459 -3.968 
0.12901976 -6.246 
0.10370180 -6.290 
0.09957913 -6.338 
0.10597766 -5.198 
0.10855894 - 3. 927 



Table A.4a - Average "Annual" Actual Catch Rates by Sample Respondents 
(for May-Nov 1987); by Major Bay System 

MAJOR AAREDS AATROUT AACROA.K AASAND AABU\CK AASHEEP AAFLO'L'ND 

1 0.35000 1.44286 1.63571 0.75714 0.214286 0. 061•286 0.785714 
2 0.21942 1.68155 1. 92039 1. 93689 0.219417 0.172816 0.982524 
3 0.70226 2.34292 0.46612 0 .19713 0.117043 0.119097 0.603696 
4 0.57912 3.36027 0.99663 0.36364 0.090909 0.060606 0.202020 
5 0.42059 1. 29244 0.75575 1.05586 0.062432 0 .118291 0.205915 
6 0.45898 1.45691 2.21288 0.63344 0.115265 0.055036 0.236760 
7 0.62898 3.56847 1. 31051 0.15446 0.057325 0.007962 0.340764 
8 1.16386 2.48221 0.33708 0.23034 0.086142 0.014045 0.331461 

Table A.4b - OLS Regressions of Actual Individual Catch Rates on 
Average Rates for Sample Anglers (for each bay and month, MAxxxxxx, 
and for each bay, AAxxxxxx). 

DEP VARIABLE: REDS 

PARAMETER STANDARD T FOR HO: 
VARIABLE ESTIMATE ERROR PARAMETER-0 

INTERCEP -0.12266561 0.29823802 -0.411 
MAREDS 0.95085659 0.08092220 11. 750 
AAREDS -0.05043007 0.12278424 -0. 411 
MON -0.000092812 0.000115702 -0.802 
NS'WTRIP 0.000923382 0.000857973 1.076 
SITETRIP 0.005093002 0.000781527 6.517 
PRETIRED 0.45725770 0.70551913 0.648 
PSPANISH 0.72133204 0.26179804 2.755 
PSPNOENG -1.22854525 0. 82771249 -1. 484 
PVIETNAM -4.92451856 4.04183705 -1. 218 
PURBAN -0.18016933 0.06794174 -2.652 
PTEXNATV -0.34731022 0.26481849 -1. 312 
PFFFISH 2.72013126 1.76799000 1. 539 
HHLDINC 0.000013987 .00000716232 1. 953 



Table A.4b, continued 

DEP VARIABLE: TROUT 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -1. 36523478 
MATROUT 0.98197610 
AATROUT 0.006042790 
MON 0.000286035 
NS'\JTRIP 0.001863515 
SITETRIP 0.008918273 
PRETIRED -1.43720691 
PSPANISH l. 43940886 
PSPNOENG -3.82852658 
PVIETNAM -2.07403981 
PURBAN -0.07554478 
PTEXNATV l. 53446304 
PFFFISH -1. 98870119 
HHLDINC 0.000010671 

DEP VARIABLE: CROAK 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 1.81057461 
MACROAK 0. 83774972 
AACROAK 0.11396771 
MON -0.001215592 
NSWTRIP -0.005338101 
SITETRIP -0.001572947 
PRETIRED -1.90685717 
PSPANISH -8.60976875 
PSPNOENG 18.04502300 
PVIETNAM 31.27438550 
PURBAN 0.82502684 
PTEXNATV 3. 72817129 
PFFFISH -21.13769899 
HHLDINC -0.000159098 

STANDARD 
ERROR 

0.94998077 
0.10033556 
0.14070736 

0.000370669 
0.002757012 
0.002511557 

2.26629296 
0.84354198 
2.58495718 

12.94627157 
0.21864170 
0.84795042 
5.68333396 

0.000023018 

STANDARD 
ERROR 

0. 97371072 
0.06864557 
0.13693499 

0.000383033 
0.002844955 
0.002590113 

2.34453169 
0.88171963 
2.73232498 

13.34679054 
0.22594926 
0.87567771 
5.86344930 

0.000023783 

T FOR HO: 
PARAMETER-0 

-1.437 
9.787 
0.043 
0. 772 
0.676 
3.551 

-0.634 
1.706 

-1. 481 
-0.160 
-0.346 
l. 810 

-0.350 
0.464 

T FOR HO: 
PARAMETER-0 

l. 859 
12.204 

0.832 
-3.174 
-1.876 
-0.607 
-0. 813 
-9.765 
6.604 
2.343 
3.651 
4.257 

-3.605 
-6.690 



Table A.4b, continued 

DEP VARIABLE: SAND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 1.04106408 
MASAND 0.98233478 
AASAND 0.11303100 
MON 0.003017771 
NSWTRIP -0.001733434 
SITETRIP 0.000968215 
PRETIRED -5.89965190 
PSPANISH -4.58440729 
PSPNOENG 7.47884232 
PVIETNAM -46.01016400 
PURBAN 0.91626869 
PTEXNATV 1.94350416 
PFFFISH 18.23397447 
HHLDINC -0.000110765 

DEP VARIABLE: BLACK 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -0.29092946 
MA.BLACK 0.96665317 
AABLACK -0.09573732 
MON -0.000071042 
NSWTRIP -0.000674880 
SITETRIP 0. 0006 71392 
PRETIRED -0.26273281 
PSPANISH -0.61890961 
PSPNOENG 2.06309845 
PVIETNAM -0.74833926 
PURBAN 0. 04133539 
PTEXNATV 0.53988053 
PFFFISH 0.35225404 
HHLDINC -5.35967£-07 

STANDARD 
ERROR 

1. 26437786 
0. 07436923 
0.18715312 

0.000497673 
0.003701859 
0.003369551 

3.04239513 
1.14376694 
3.46885734 

17.40831290 
0.29301929 
1.13489728 
7.61793262 

0.000030901 

STANDARD 
ERROR 

0.15268688 
0.09114036 
0.25278827 

0.000060670 
0.000447214 
0.000407375 

0.36938636 
0.14299078 
0.43075110 
2.10625389 
0.03551921 
0.13864906 
0.92028645 

.00000374053 

T FOR HO: 
PARAMETER-0 

0.823 
13. 209 
0.604 
6.064 

-0.468 
0.287 

-1.939 
-4.008 
2.156 

-2.643 
3.127 
1. 712 
2.394 

-3.585 

T FOR HO: 
PARAMETER-0 

-1. 905 
10.606 
-0.379 
-1.171 
-1. 509 
1.648 

-0. 711 
-4.328 
4.790 

-0.355 
1.164 
3.894 
0.383 

-0.143 



Table A.4b, continued 

DEP VARIABLE: SHEEP 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -0.09047019 
MASHEEP 0.99441736 
AASHEEP 0.04962667 
MON 0.000051587 
NS'WTRIP 0.002201864 
SITETRIP 0.000382545 
PRETIRED 0.05006948 
PSPANISH 0.01381854 
PSPNOENG -0.32208556 
PVIETNAM -3.32365172 
PURBAN 0.04434566 
PTEXNATV 0.04907053 
PFFFISH 2.55337512 
HHLDINC -.0000014707 

DEP VARIABLE: FLOUND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -0.61623401 
MAFLOUND 0.97594742 
AAFLOUND -0.02153132 
MON -0.000030626 
NS'WTRIP 0.006652809 
SITETRIP -0.001277307 
PRETIRED 1. 44956602 
PSPANISH -0.43520381 
PSPNOENG 0.72106186 
PVIETNAM -1.86240792 
PURBAN 0.09270761 
PTEXNATV 0.70903598 
PFFFISH -0.33088056 
HHLDINC -4.07689£-07 

STANDARD 
ERROR 

0.20353089 
0.03670434 
0. 31134446 

0.000080557 
0.000597400 
0.000544200 

0.49119093 
0.18550590 
0.55982006 
2.82850803 
0.04734667 
0.18406197 
1. 22902375 

.00000499508 

STANDARD 
ERROR 

0.31048537 
0.05182762 
0.10986631 

0.000124319 
0.000914079 
0.000831043 
0. 75447296 
0.29352799 
0.88677081 
4.30327459 
0.07250692 
0.28266255 
1. 87895111 

.00000763403 

T FOR HO: 
PARAMETER-0 

-0.445 
27.093 
0.159 
0.640 
3.686 
0.703 
0.102 
0.074 

-0.575 
-1.175 
0.937 
0.267 
2.078 

-0.294 

•T FOR HO: 
PARAMETER-0 

-1. 985 
18.831 
-0.196 
-0.246 
7.278 

-1.537 
1. 921 

-1. 483 
0.813 

-0.433 
1.279 
2.508 

-0.176 
-0.053 



Table A.4c - OLS Regressions of Actual Individual Catch Rates 
on "Annual" Average Catch Rates 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
AAREDS 
MON 
NSiITRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
AATROUT 
MON 
NSiITRIP 
SITETRIP 
PRETIRED 
PSPANISH 
PSPNOENG 
PVIETNAM 
PURBAN 
PTEXNATV 
PFFFISH 
HHLDINC 

REDS 

PARAMETER 
ESTIMATE 

-0.17221294 
0.88499989 

-0.000142307 
0.001071111 
0.005384716 

0.33591552 
0.82939290 

-1. 50245838 
-6.08247392 
-0.17038106 
-0.32388801 
4.01044819 

0.000014969 

TROUT 

PARAMETER 
ESTIMATE 

-1. 46919676 
0.97625433 

0.000416560 
0.001431302 
0.009029381 
-1. 53660877 
2.05603824 

-5.21985591 
-4.62037204 
-0.07380018 
1.39479051 
1.56510528 

0.000015985 

(by bay system, AAxxxxxx) 

STANDARD T FOR HO: 
ERROR PARAMET:i::R-0 

0. 30189259 -0.570 
0.09463395 9.352 

0.000117054 -1.216 
0.000868480 1. 233 
0.000790784 6.809 

0.71415935 0.470 
0.26486900 3 .131 
0.83760654 -1. 794 
4.09055782 -1. 487 
0.06877599 -2.477 
0.26808275 -1. 208 
1. 78637790 2.245 

.00000725031 2.065 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.95805247 -1. 534 
0.10071020 9.694 

0.000373599 1.115 
0.002780255 0.515 
0.002533030 3.565 

2.28566892 -0.672 
0.84838605 2.423 
2.60313817 -2.005 

13.05445151 -0.354 
0.22051315 -0.335 
0.85508754 1. 631 
5.72027055 0.274 

0.000023209 0.689 



Table A.4c, continued 

DEP VARIABLE: CROAK 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 2.28572714 
AACROAK 0.91638532 
MON -0.001416135 
NS'tJTRIP -0.006336075 
SITETRIP -0.001620966 
PRETIRED -2.73498544 
PSPANISH -10.42514263 
PSPNOENG 22.06274250 
PVIETNAM 35.64921090 
PURBAN 0.87878673 
PTEXNATV 4.15492950 
PFFFISH -26.48857430 
HHLDINC -0.000177231 

DEP VARIABLE: SAND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 1.41489731 
AASAND l.08298286 
MON 0.003137767 
NS'tJTRIP 0.000235592 
SITETRIP 0.002220311 
PRETIRED -6.59692145 
PSPANISH -4.84730866 
PSPNOENG 7.61299788 
PVIETNAM -43.06236011 
PURBAN 0.98954192 
PTEXNATV 1.73664712 
PFFFISH 20.49016673 
HHLDINC -0.000123535 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.98589955 2.318 
0.12171787 7.529 

0.000387781 -3.652 
0.002881682 -2.199 
0.002624632 -0.618 

2.37478506 -1.152 
0.88066463 -11.838 
2.74857122 8.027 

13.51980165 2.637 
0.22891726 3.839 
0.88664122 4.686 
5.92496424 -4.471 

0.000024053 -7.368 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

1.28379481 1.102 
0.17483291 6.194 

0.000505358 6.209 
0.003756601 0.063 
0.003420799 0.649 

3.08942598 -2.135 
1.16144683 -4.174 
3.52299589 2.161 

17.67862787 -2.436 
0.29754040 3.326 
1.15250486 1.507 
7.73491401 2.649 

0.000031368 -3.938 



Table A.4c, continued 

DEP VARIABLE: BLACK 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -0.26300398 
AABLACK 0.84957965 
MON -0.000073271 
NSWTRIP -0.000649917 
SITETRIP 0.000826483 
PRETIRED -0.40638490 
PSPANISH -0.70453147 
PSPNOENG 2.21811495 
PVIETNAM -1.10922521 
PURBAN 0.04450246 
PTEXNATV 0.59054447 
PFFFISH 0.35238792 
HHLDINC -.0000025102 

DEP VARIABLE: SHEEP 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -0.03535211 
AASHEEP 1.14481671 
MON 0.000147038 
NSWTRIP 0. 002511729 
SITETRIP 0.000648276 
PRETIRED -0.16218767 
PSPANISH 0.14164609 
PSPNOENG -0.72252764 
PVIETNAM -3.27210423 
PURBAN 0.03013284 
PTEXNATV 0.01242447 
PFFFISH 2.98360822 
HHLDINC -.0000038444 

STANDARD 
ERROR 

0.15420014 
0.23893440 

0.000061280 
0.000451707 
0.000411208 

0.37285190 
0.14419906 
0.43483440 
2.12716746 
0.03587531 
0.13996088 
0.92954552 

.00000377348 

STANDARD 
ERROR 

0.21662870 
0.32859181 

0.000085663 
0.000635759 
0.000579156 

0.52276013 
0.19738974 
0.59566819 
3.01068062 
0.05039299 
0.19591140 
1.30807122 

.00000531597 

T FOR HO: 
PARAMETER-0 

-1. 706 
3.556 

-1.196 
-1. 439 
2.010 

-1.090 
-4.886 
5.101 

-0.521 
1.240 
4.219 
0.379 

-0.665 

T FOR HO: 
PARAMETER-0 

-0.163 
3.484 
1. 716 
3.951 
1.119 

-0.310 
0. 718 

-1.213 
-1. 087 
0.598 
0.063 
2.281 

-0.723 



Table A.4c, continued 

DEP VARIABLE: FLOUND 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP -0.59237667 
AAFLOUND 0.92591610 
MON -0.000037291 
NSWTRIP 0.007522444 
SITETRIP -0.000864638 
PRETIRED 1.39301161 
PSPANISH -0.65905648 
PSPNOENG 1.15633766 
PVIETNAM -0.40499133 
PURBAN 0.16577954 
PTEXNATV 0. 77931103 
PFFFISH -0.12527303 
HHLDINC -.0000051086 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.32028494 -1.850 
0.10075174 9.190 

0.000128243 -0.291 
0.000941733 7.988 
0.000856981 -1.009 

0.77828601 1.790 
0.30254645 -2.178 
0.91445592 l. 265 
4.43841383 -0.091 
0.07468882 2.220 
0.29156099 2.673 
1.93823814 -0.065 

.00000787083 -0.649 



Table A.5 - Pretrip Motivation Questions: OLS Regressions 

DEP VARIABLE: 

F-TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNl0 
MNll 
WKND 

DEP VARIABLE: 

'.f-,TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

NOPEOPLE 

0.943 
603 

PARAMETER 
ESTIMATE 

7.59185247 
0.52836370 

-0.34403082 
0.47487337 
0.64433020 
0.84117457 
0.23616653 
0.34060028 
0. 27210277 
0. 27241992 
0.46534192 

-0.04077979 
-0.04905820 
-0.37063712 
0.32841948 

-0.19742662 
-0.09581740 
-0.01828012 

NOPOLLUT 

C 791 
429 

PARAMETER 
ESTIMATE 

9.28862007 
-0.06010503 
0.02721384 

-0. 18077773 
0.13636153 
0.06243266 

-0.18281956 
-0.40245959 
-0.14210375 
0.02401744 
0.08025961 

-0.007657418 
0.08823009 
0.19207957 
0.25429200 

-0.3']582402 
-0.28337536 
0.10035740 

STANDARD 
ERROR 

0. 44738621 
0.24653310 
0.24382515 
0.47290029 
0.41974765 
0.46032060 
0.44200330 
0.46624780 
0. 50602718 
0.54607083 
0.41754746 
0.38895224 
0. 34417911 
0.35045962 
0.39216770 
0. 36166775 
0.44172970 
0.21044572 

STANDARD 
ERROR 

0.32744825 
0.19483745 
0.18658810 
0.37549661 
0.30518053 
0.36528564 
0.27396226 
0.35735465 
0.33100665 
0.32870964 
0.27896454 
0. 31921439 
0. 329335 79 
0.25276985 
0.27247807 
0.27040307 
0.32430722 
0.19787569 

T FOR HO: 
PARAMETER-0 

16.969 
2.143 

-1. 411 
1.004 
1. 535 
1. 827 
0.534 
0.731 
0.538 
0.499 
1.114 

-0.105 
-0.143 
-1.058 
0.837 

-0.546 
-0.217 
-0.087 

T FOR HO: 
PARAMETER-0 

28.367 
-0.308 
0.146 

-0.481 
0.447 
0.171 

-0.667 
-1. 126 
-0.429 
0.073 
0.288 

-0.024 
0.268 
0.760 
0.933 

-1. 464 
-0.874 
0.507 

• 



DEP VARIABLE: 

F-TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

DEP VARIABLE: 

F-TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

DOWHTWNT 

1. 385 
503 

PARAMETER 
ESTIMATE 

7.70993748 
-0.19641401 
0.10541805 
0.26082970 
0.80886667 
1.33626023 
0.77824468 
0.80050893 
0.48155068 
1.08142499 
0.89569917 
0.50210737 
0.09873351 
0.60081590 

-0 .13628211 
0.002551616 

0.19458545 
0.14459588 

KEEPFISH 

2.619 
536 

PARAMETER 
ESTIMATE 

8.09163143 
-0.63493893 
-0.03000512 
1.16005118 

-0.67785857 
-0.89785739 
-0.21607825 
-1.01361087 
-1.04931986 
-0.41688883 
-0.25730722 
-0.14119910 
0.22085293 

-0.63595454 
1.45515992 
0.18826575 

-0.67293081 
0. 21160550 

STANDARD 
ERROR 

0.44125530 
0.21523229 
0.21296736 
0. 39672252 
0.48840354 
0.43315279 
0.43810012 
0.42618053 
0.40874203 
0 .43207201 
0.44663572 
0.40968952 
0. 31592841 
0.37690952 
0.31189957 
0. 35379013 
0.39803834 
0.25298011 

STANDARD 
ERROR 

0.39754566 
0.28813687 
0.28608262 
0.51360011 
0.48409302 
0.42731459 
0.51354355 
0.52192311 
0 .49730779 
0.45091149 
0.45696247 
0.54846485 
0.39028515 
0.36390967 
0.48851570 
0.36217584 
0.44317159 
0. 26132905 

T FOR HO: 
PARAMETER-0 

17.473 
-0.913 
0.495 
0.657 
1. 656 
3.085 
1. 776 
1. 878 
1.178 
2.503 
2.005 
1. 226 
0. 313 
1. 594 

-0.437 
0.007 
0.489 
0. 572 

T FOR HO: 
PARAMETER-0 

20.354 
-2.204 
-0.105 
2.259 

-1. 400 
-2.101 
-0.421 
-1. 942 
- 2. 110 
-0. 925 
-0.563 
-0.257 
0.566 

-1. 748 
2.979 
0.520 

-1.518 
0.810 



DEP VARIABLE: 

F-TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

DEP VARIABLE: 

F-TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

QUIETIME 

1. 579 
482 

PARAMETER 
ESTIMATE 

8.33047553 
-0.14268653 
-0.18754912 
0.03336624 

-0.73609622 
-0.70451833 
-0.56445054 
-1.14804492 
-1.34006483 
-0.29360849 
0.04573877 

-0.81118400 
-0.09321641 
0.08157845 

-0.10180406 
0.22701246 

-0.45980224 
-0.05979884 

GOODWTHR 

2.759 
381 

PARAMETER 
ESTIMATE 

7.09707233 
-0.48646878 
0.51229235 

-1.49302896 
0.40571747 
1.09149043 
0. 72597107 
0.48019072 
1.23645655 

-0.26498057 
0.22708658 

-0.31701387 
1. 28035717 
0.14411618 
1.14428728 
0.49489729 
0.57428481 
0.34439790 

STANDARD 
ERROR 

0.58638878 
0.29999957 
0.30534004 
0.48896232 
0.69983581 
0.71501660 
0. 70372958 
0.69315901 
0.68904331 
0.69167542 
0.74465338 
0.47981448 
0 .41382943 
0.44580404 
0.53428439 
0.40778226 
0.53274809 
0.32476937 

STANDARD 
ERROR 

0.43106770 
0.32599391 
0.33760558 
0.49194356 
0.49441812 
0. 56904719 
0.44476911 
0.58953742 
0.46327764 
0.44679878 
0.46512018 
0. 38871104 
0.60295514 
0.46022680 
0.46974240 
0.43572265 
0.45843956 
0.25591639 

T FOR HO: 
PARAMETER-0 

14.206 
-0.476 
-0.614 
0.068 

-1.052 
-0.985 
-0.802 
-1.656 
-1. 945 
-0.424 
0.061 

-1. 691 
-0.225 
0.183 

-0.191 
0.557 

-0.863 
-0.184 

T FOR HO: 
PARAMETER-0 

16.464 
-1. 492 
1. 517 

-3.035 
0. 821 
1. 918 
1. 632 
0.815 
2.669 

-0.593 
0.488 

-0.816 
2.123 
0. 313 
2.436 
1.136 
1. 253 
1.346 



DEP VARIABLE: 

F-TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

DEP VARIABLE: 

F-TEST 
OBS 

VARIABLE 

INTERCEP 
TARGR 
TARGT 
TARGF 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

FRNDFMLY 

1. 233 
406 

PARAMETER 
ESTIMATE 

8. 54110823 
-0.59800573 
0 .15487751 
0. 46287229 
0.20963175 
0.66950705 
0.25996020 
0.46650183 
0. 60614119 

-0.09825039 
0.17366924 

-1.35708719 
0.35442366 
0.09749444 
0 .15200115 
0.45811705 
0.19319351 
0.13095893 

ADVNEXCT 

1. 267 
443 

PARAMETER 
ESTIMATE 

7.25608143 
0.23528665 

-0.26195517 
-0.14838342 
0.03723037 

-0.92314231 
-0.04891245 
1.01363017 

· -0. 83621541 
0.03118484 
0.49056525 

-0.01289834 
0.04472742 

-0.34816497 
-0.55696234 
-0.20256002 
0.49999921 
0.44184453 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0.46254806 18.465 
0.25565774 -2.339 
0.25328885 0. 611 
0.40689201 1.138 
0.44760664 0.468 
0.46462665 1.441 
0.42541605 0. 611 
0.43289498 1.078 
0.55775904 1.087 
0.43264822 -0.227 
0.40604008 0.428 
0.70293279 -1.931 
0.34017854 1.042 
0.32599378 0.299 
0.39173057 0.388 
0. 33971443 1.349 
0. 47315411 0.408 
0.23814544 0.550 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

0. 61347890 11. 828 
0.31342257 0.751 
0.30524996 -0.858 
0.47233401 -0.314 
0. 54138594 0.069 
0.71890424 -1. 284 
0.51960706 -0.094 
0.56859825 1. 783 
0.60606846 -1. 380 
0.49129926 0.063 
0. 53133745 0. 923 
0.53358967 -0.024 
0.49114189 0.091 
0.46015875 -0.757 
0.54623163 -1.020 
0.52433722 -0.386 
0.52655699 0.950 
0.26438608 1. 671 



Table A.5, continued 

DEP VARIABLE: PRERELX 
F-TEST l. 585 
OBS 3722 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 8.78987067 
TARGR -0.08702046 
TARGT -0.02271869 
TARGF -0.05306643 
MJl -0.009755689 
MJ3 -0.25145705 
MJ4 -0.36764056 
MJ5 0.03227412 
MJ6 0.008712145 
MJ7 0.05884559 
MJ8 -0.003183858 
MN5 0. 01144559 
MN6 -0.02560113 
MN8 0.13506010 
MN9 0.01645299 
MNlO 0.12827553 
MNll 0.08320163 
WKND -0.01423466 

DEP VARIABLE: PRECAT 
F-TEST 2.063 
OBS 3722 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 6.56236349 
TARGR 0.09004818 
TARGT 0.12237258 
TARGF 0. 52153433 
M.Jl 0.15331075 
MJ3 · -0 .17609374 
MJ4 0.17431650 
MJ5 0.15514299 
MJ6 0. 54007251 
MJ7 0.15005384 
MJ8 0.30449474 
MN5 -0.10320669 
MN6 -0.22755882 
MN8 0.04694627 
MN9 -0.14802188 
MNlO -0.10164869 
MNll 0. 05654611 
WKND 0.11237509 

STANDARD 
ERROR 

0.13274228 
0.08311952 
0.08253455 
0.14142803 
0.13606929 
0 .14111326 
0.13622517 
0.14489392 
0.14303434 
0.13821775 
0 .13112852 
0.12708450 
0.11183769 
0.10587769 
0.12161881 
0.10739298 
0.13371926 
0.06462206 

STANDARD 
ERROR 

0.17428059 
0.10912966 
0.10836163 
0.18568432 
0.17864870 
0.18527106 
0.17885337 
0.19023478 
0.18779330 
0.18146947 
0.17216185 
0.16685235 
0.14683444 
0.13900941 
0.15967631 
0.14099887 
0.17556329 
0.08484389 

T FOR HO: 
PARAMETER-0 

66.218 
-1.047 
-0.275 
-0.375 
-0.072 
-1. 782 
-2.699 
0.223 
0.061 
0.426 

-0.024 
0.090 

-0.229 
l. 276 
0.135 
1.194 
0.622 

-0.220 

T FOR HO: 
PARAMETER-0 

37.654 
0.825 
1.129 
2.809 
0.858 

-0.950 
0.975 
0.816 
2.876 
0.827 
l. 769 

-0.619 
-1. 550 
0.338 

-0.927 
-0. 721 
0. 322 
l. 324 



Table A.6 - For sample interviewed both before and after 
fishing trip; demographic, geographic, and seasonal variables 
and their effects on extent to which "unpolluted natural 

surroundings are a motivation for going fishing. 

DEP VARIABLE: NOPOLLUT 
F-TEST 1. 569 
OBS 85 

PARAMETER 
VARIABLE ESTIMATE 

INTERCEP 19.31015380 
HHLDINC -0.000493022 
PRETIRED -42.07217646 
PTEXNATV -1. 35518067 
PSPNOENG 6.58063295 
PVIETNAM -109.12039 
PURBAN 0.18671766 
SITETRIP 0.04004085 
NS'WTRIP 0.02132592 
MON 0.005535399 
MJl -4.17274793 
MJ3 -9.84498903 
MJ4 1.22590283 
MJ5 - 2 . l13125 7 3 7 
MJ6 4 .13690974 
MJ7 -5.69727465 
MJ8 -15.01756379 
MN5 9.44642008 
MN6 4.20898200 
MN8 8.30827846 
MN9 4.44008039 
MNlO 0.94326577 
MNll 11. 91217331 
'\.lKND 2.07968018 

STANDARD 
ERROR 

26.92078701 
0.000514831 
41. 08032759 
28.42559659 
39.05040280 

406.35400 
5.03175573 
0.01082416 
0 .10230115 
0.01279516 
8.79692225 
9. 81685770 
8.62253424 
8.03930377 
6.64660300 
6.63558981 
8.27448287 
7.95520190 
7.25488897 
6.19106440 
6.2385.J464 
5.99986399 
6.72034145 
4.75885531 

T FOR HO: 
PARAMETER-0 

0. 717 
-0.958 
-1.024 
-0.048 
0.169 

-0.269 
0.037 
3.699 
0.208 
0.433 

-0.474 
-1.003 
0.142 

-0.302 
0.622 

-0.859 
-1.815 •1.187 
0.580 
1.342 
0. 712 
0.157 
1. 773 
0.437 



Table A.7 · Extent to which respondents were able to 
"Experience Unpolluted Natural Surroundings." (n-858) 

DEP VARIABLE: 

VARIABLE 

INTERCEP 
HHLDINC 
PRETIRED 
PTEXNATV 
PSPNOENG 
PVIETNAM 
PURBAN 
MJl 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 
MJ8 
MN5 
MN6 
MN8 
MN9 
MNlO 
MNll 
WKND 

NOPOLLUT 

PARAMETER 
ESTIMATE 

8.42190686 
-0.000011214 

l.58102890 
-0. 61188444 
-1.28938826 
19.42599903 

0.08369006 
-0.86422020 
0.32246599 
0.64005519 
1. 01771109 
0.10662209 
0.46076012 
0.88094389 
0.22148059 

-0.69695574 
-0.02393900 
-0 .18379131 
-0.02430656 
0.45402552 

-0.16900558 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

l. 00903630 8.346 
0.000022673 -0.495 

1.96850152 0.803 
0.85289639 -0.717 
l. 51495547 -0.851 

11. 87295215 l. 636 
0.19819351 0.422 
0.36986443 -2.337 
0.38965319 0.828 
0.25369335 2.523 
0.35532066 2.864 
0.31278854 0.341 
0.29608459 1. 556 
0.32441647 2. 715 
0.35923225 0.617 
0.29829741 -2.336 
0.22370082 -0.107 
0.27529979 -0.668 
0.26243870 -0.093 
0.35517060 1. 278 
0.19266161 -0. 877 



Table A.8 - OLS Regression of "Ability to Enjoy Unpolluted 
Natural Surroundings" on Measured Water Quality Variables 

DEP VARIABLE: 
F-TEST 
OBS 

VARIABLE 

INTERCEP 
MTURB 
MSAL 
MOO 
TRANSP 
DISO 
RESU 
NH4 
NITR 
PHOS 
CHLORA 
LOSSIGN 
CHROMB 
LEADB 

NOPOLLUT 
4.192 

695 

PARAMETER 
ESTIMATE 

7.65156764 
0.000064889 

0. 01185356 
-0. 22131054 
0.02299990 
0.26350825 

0.009595514 
3.99552741 

-1. 40780844 
0.14529883 

0. 009712722 
-0.01482662 

-0.003165001 
-0.04634034 

STANDARD T FOR HO: 
ERROR PARAMETER-0 

1. 88693837 4.055 
0.01043748 0.006 
0.01791982 0.661 
0 .13894215 -1.593 
0. 01366888 1. 683 
0.10926245 2.412 

0.007438127 1. 290 
3.69437706 1. 082 
1.18960581 -1.183 
1.41691553 0.103 
0.02752364 0.353 
0.02449996 -0.605 
0.01881366 -0.168 
0.01468208 -3.156 
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ABSTRACT 

Contingent valuation (CVM) survey methods are now being used quite 
widely to assess the economic value of non-market resources. However, the 
implications of these surveys have sometimes met with a degree of skepticism. 
Here, hypothetical CVM data are combined with travel cost data on actual 
market behavior (exhibited by the same consumers) to internally validate the 
implied CVM resource values. We estimate jointly both the parameters of the 
underlying utility function and its corresponding Marshallian demand function. 
Equivalence of the utility functions implied by the two types of data can be 
tested statistically. Respondent and/or resource heterogeneity can be 
accommodated readily. A sample of Texas recreational anglers illustrates the 
technique. 
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Combining Contingent Valuation and Travel Cost Data 
for the Valuation of Non-market Goods 

Economists have long been skeptical about the reliability of consumers' 

stated intentions, as opposed to their actions in the marketplace. The notion 

that "actions speak louder than words" underlies much of the criticism of 

survey methods as a basis for demand forecasting. In some situations, 

however, market demand activity cannot be directly observed. Surveys and 

other indirect methods are the only glimpses of demand relationships we have. 

In these circumstances, it is valuable to explore methods by which researchers 

can combine survey responses and other available information to formulate the 

best possible characterization of demand when actual market observations "in 

the field" are unattainable. 

For a wide variety of environmental resources and public goods, the 

absence of markets makes it extremely difficult to establish a monetary value 

for access to these commodities. Whenever a proposed change in policy affects 

the quality or availability of these non-market goods, either explicit or 

implicit cost-benefit analysis must be undertaken at some point in the 

decision process. For some time, economists have experimented with 

alternative methods of eliciting or inferring the social value of these non­

market goods. 

The familiar travel cost method (TCM) popularized by Clawson and Knetsch 

(1966) has been widely applied in an extensive array of empirical studies. 

This method interprets variation in travel costs to a particular site where a 



non-market good is consumed as equivalent to the effect of a per-trip entrance 

fee to the same location. Subsequent research has provided numerous 

extensions and qualifications to the original travel cost method. 

A somewhat newer, competing approach to valuation involves directly 

asking individual consumers of the non-market good about its value. A 

hypothetical market scenario is described to each respondent and their 

professed behavior under that scenario is recorded. To avoid the connotations 

of hypotheticality, this has been dubbed the "contingent valuation method" 

(CVM). Despite the potential for a variety of biases in poorly designed CVM 

surveys (described in detail in surveys by Cummings, Brookshire, and Schulze, 

1986, or Mitchell and Carson, 1988) there are still many situations where more 

realistic methods (such as market simulations or actual market experiments) 

are prohibitively difficult, and where some of the other potential methods, 

such as hedonic housing price models or hedonic wage models, are 

inappropriate. In these cases, it has generally been conceded that CVM 

surveys, when interpreted cautiously, can provide useful information about the 

characteristics of demand for a good not presently priced and traded in a real 

market. The CVM technique has also been widely applied. 

Despite the semantic care in naming the CVM, the data it produces have 

still been criticized as "hypothetical answers to hypothetical questions." 

Consequently, "external validation" of empirical applications of CVM has 

received considerable attention in the literature. Some of these compare CVM 

and TCM; others compare CVM with other valuation methods. 

For example, Bishop and Heberlein (1979) and Bishop, Heberlein and Kealy 

(1983) pit CVM estimates against TCM and the results of simulated market 

experiments. They conclude that CVM mechanisms produce "meaningful--albeit 

inaccurate--economic information." CVM and TCM are also compared by Sellar, 
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Stoll and Chavas (1985), who conclude that the two methods do provide 

comparable estimates of consumer surplus, and that whenever possible, both 

methods should be used in future studies as a validity check on the results. 

Schulze, d'Arge, and Brookshire (1981) determine that "all evidence 

obtained to date suggests that the most readily applicable methodologies for 

evaluating environmental quality--hedonic studies of property values or wages, 

travel cost, and [CVM] survey techniques--all yield values well within one 

order of magnitude in accuracy. Such information ... is preferable to complete 

ignorance." Brookshire, Thayer, Schulze, and D'Arge (1982) compare CVM 

estimates with a hedonic property value study. Regarding CVM, they conclude 

that "[a]lthough better accuracy would be highly desirable, in many cases 

where no other technique is available for valuing public goods, this level of 

accuracy is certainly preferable to no information for the decision-making 

process." 

Brookshire and Coursey (1987), on the other hand, compare hypothetical 

non-market CVM responses with market-like elicitation processes (Vernon 

Smith's public good auction experiments in the laboratory and in the field). 

Compared to CVM, the marketplace appears to be "a strong disciplinarian" in 

terms of limiting the tendency for certain types of inconsistencies in 

valuation responses. 

In all these previous studies aimed at external validation of the values 

for non-market goods produced by CVM, the alternative measures of value were 

obtained either by indirect methods (the travel cost approach or hedonic wage 

or rent functions) or by small simulated market experiments. The point 

estimates of value produced by each technique are generated by completely 

separate models which are sometimes even applied to completely separate 



samples of data. This makes rigorous statistical comparisons of the different 

value estimates impossible. 

The new joint models introduced in this paper also appeal to the 

marketplace to "discipline" contingent valuation estimates, while at the same 

time, the CVM information provides insights into the probable behavior of 

respondents under conditions which are far removed from the current market 

scenario. The innovation is that the validation occurs in the context of a 

single joint model applied to a single sample of respondents. Since we 

collect both CVM and TCM information from each respondent, the joint model can 

be estimated both with and without restrictions, allowing the consistency of 

the CVM information and TCM information to be tested in a statistically 

rigorous fashion. 1 

The new joint models described in this paper will be appropriate for a 

whole spectrum of non-market resource valuation tasks wherever CVM or TCM have 

been used separately before. For concreteness in this paper, however, we 

concentrate on an empirical application concerning the non-market demand for 

access to a recreational fishery. The U.S. Fish and Wildlife Service 

estimates that economic activity associated with recreational fishing 

generated $17.3 billion in 1980 and $28.1 billion in 1985, and there are at 

least 60 million Americans who fish regularly (reported in Forbes, May 16, 

1988, pp. 114-120). Recreational fisheries valuation has therefore attracted 

considerable policy-making interest over the past few years. 2 There are many 

1 The conceptual framework for the econometric implementation is similar to 
models of discrete/continuous choice employed by Hanemann (1984) and by Dubin 
and McFadden (1984), but in the present case, the discrete choices are purely 
hypothetical. 

2 Among current related policy issues, for example, is the quantification of 
the social costs of acid precipitation (which kills fish and decreases the 
consumer surplus associated with recreational fishing). These costs are 
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theoretical examinations and empirical attempts at valuation extant. 3 One 

factor accounting for the proliferation of empirical analyses is the 

availability of vast quantities of survey data collected regularly for 

fisheries management purposes. 

Section I of this paper develops the logic whereby a discrete-choice 

direct utility function can be modified into an indirect utility difference 

function (defined over fishing days and a composite of all other goods). Then 

this function and the corresponding Marshallian demand function for fishing 

access days can be modeled jointly. Section II describes a sample of CVM and 

TCM data used to demonstrate this technique. Section III describes 

alternative stochastic specifications. Section IV provides a general outline 

of the types of results these models generate. Section V goes into detail 

regarding the specific empirical results for a basic model and some useful 

extensions. 

I. THE JOINTNESS OF CONTINGENT VALUATION AND TRAVEL COST RESPONSES 

A rigorous utility-theoretic tradition in the analysis of "discrete­

choice" CVM data was initiated by Hanemann (1984b), who elaborated 

substantially upon earlier estimation procedures used by Bishop and Heberlein 

(1979). The discrete choice (or "referendum") format for CVM survey questions 

is often argued to be less subject to some of the usual CVM biases than are 

other formats. Rather than asking the respondent to place his own specific 

generally considered to be one of the most substantial components of acid rain 
damages. 

3 To cite only a few of the more recent recreational fisheries studies: 
McConnell, 1979, Anderson, 1980, Samples and Bishop, undated, McConnell and 
Strand, 1981, Vaughn and Russell, 1982, Morey and Rowe, 1985, Rowe, Morey, 
Ross, and Shaw, 1985, Samples and Bishop, 1985, Donnelly, Loomis, Sorg, and 
Nelson, 1985, Morey and Shaw, 1986, Cameron and James, 1986, 1987, Thomson and 
Huppert, 1987, Cameron 1988a, Cameron and Huppert, 1988, 1989, Agnello, 1988, 
and McConnell and Norton, undated. 
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dollar value on access to the resource, a single threshold value is offered 

and the respondent is asked to indicate whether his personal valuation is 

greater or less than this amount. 

For the survey available for this study, the referendum CVM question 

seems most easily interpreted as asking whether the respondent would entirely 

cease to use the resource if the annual access fee ("tax") were equal to T. 4 

Let Y be the respondent's income, let q be the current number of trips per 

year to the recreation site, and let M be the respondent's typical travel 

costs (i.e. market cost of access and incidental expenses on complementary 

market goods associated with one trip). 5 

With cross-sectional data, it is convenient to begin by assuming a 

common utility function wherein access to the recreational resource can be 

traded off against a composite of all other goods and services, z, for which 

the price can be normalized to unity. If market goods (travel, etc·.) are 

consumed in fixed proportions with the number of recreation trips, then only 

the number of trips appears separately in the utility function: U(z,q) - U(Y­

Mq,q). 

Suppose a respondent to the CVM question indicates that he would 

continue fishing under the hypothetical two-part tariff with fixed tax T and 

marginal price M. This implies that his maximum attainable utility when 

paying the tax and enjoying access exceeds his utility when forgoing all trips 

4 A possible alternative interpretation of the question is addressed in 
Appendix I. 

5 These data do not allow accurate imputation of the opportunity costs of 
travel time. Rather than invoking a completely arbitrary guess about time 
~osts, we opt to ignore this component while acknowledging that the empirical 
:esults will certainly reflect this decision. To the extent that time costs 
are important, the social values of access implied by the travel cost portion 
of the model will be underestimated. 



and thereby avoiding both the tax and the travel costs associated with each 

trip: 

(1) ~U(Y,M,T) - maxq U(Y-Mq-T,q) - U(Y,0) > 0, or 

~V(Y,M,T) - V(Y-T,M) - V(Y) > 0, 

where U signifies the direct utility function and V the corresponding indirect 

utility. Crucially, as pointed out by McConnell (1988), the optimal quantity 

demanded in the first term of the direct utility formulation in (1) would be 

endogenously determined and is presently unobserved. 

The TCM question, however, concerns the respondent's optimal quantity 

demanded under existing conditions. If the utility surface implied by the 

discrete-choice CVM response truly describes the configuration of individuals' 

preferences, then it should also be consistent with the current observed 

behavior, namely demand for access days in an environment where per-day 

specific access prices (beyond M) are currently zero. 6 The Marshallian demand 

function, q(Y,M), corresponding to the same utility function will be given by 

the maximization of the Lagrangian: 

(2) max U(Y-Mq,q) s. t. Y - z + Mq.q 

Theoretically, the utility maximizing decisions of economic agents, 

whether real or hypothetical, should reflect the same underlying structure of 

preferences. Conditional on the extent to which the functional form chosen 

6 Except for.the hypothetical nature of the discrete choice question in the 
contingent valuation context, the models used in this paper have much in 
common with the strategies employed in King (1980) and in Venti and Wise 
(1984), where consumer choices are modeled explicitly as the result of utility 
maximization. In contrast, earlier empirical discrete choice/demand models 
accommodated the choice process in a "reduced form" manner similar to the 
approaches used in the literature on switching regressions or sample 
selection. 
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for U(z,q) is an adequate representation of the preferences of individuals in 

this sample, this supposition will be used to impose parameter constraints 

across the two parts of the model. Requiring that respondents' professed 

behavior in a hypothetical context be consistent with their observed behavior 

in real markets should attenuate the degree of bias due to the hypothetical 

nature of the CVM question. In turn, the CVM information allows the 

researcher to "fill in" some information about demand that is not captured by 

the range of the currently observable demand data and it can temper biases in 

the travel cost information due to underestimation of the true opportunity 

costs of access. 

One key question to be addressed in this study is whether CVM and TCM 

data do indeed elicit the same preferences. When parameter constraints are 

imposed across two models, it is also possible to allow the corresponding 

parameters to differ, taking on any values the data suggest. This option 

allows for a rigorous statistical comparison of the different utility 

configurations implied by the CVM and the TCM data. Contingent on the 

validity of the assumption of quadratic utility, one can test statistically 

the hypothesis that the corresponding parameters in the two models are the 

same. This is implicitly a test of whether professed behavior in the 

hypothetical market is consistent with observed behavior in a real market. If 

utility parameter equivalence is rejected, then one might suspect that the 

contingent valuation technique and/or the travel cost method might be 

unreliable in this specific application. 

Travel cost models seem to enjoy broader acceptance than CVM models, 

although rudimentary travel cost models like the one employed here can also 

have serious deficiencies. Fortunately, if the researcher harbors prior 

opinions regarding the relative or absolute reliability of these two types of 
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information, these priors can be readily incorporated into the estimation 

process. Consequently, even if parameter equivalence is rejected initially, 

there will be some recourse. 

In addition to these basic issues, this paper describes a number of 

extensions which demonstrate the flexibility of this model as a prototype for 

subsequent work in non-market resource valuation. 

II. AN ILLUSTRATIVE EXAMPLE 

Between May and November of 1987, the Coastal Fisheries Branch of the 

Texas Department of Parks and Wildlife conducted a major in-person survey of 

recreational fishermen from the Mexico border to the Louisiana state line. 

The "socioeconomic" portion of the survey is most pertinent here. The 

specific CVM question asked of respondents was: "If the total cost of all 

your saltwater fishing last year was __ more, would you have quit fishing 

completely?" At the start of each survey day, interviewers randomly chose a 

starting value from the list $50, $100, $200, $400, $600, $800, $1000, $1500, 

$2000, $5000, and $20,000. On each subsequent interview, the next value in 

the sequence was used. Therefore, offered values can be presumed to have no 

correlation whatsoever with the characteristics of any respondent. In 

addition to this question, respondents were asked "How much will you spend on 

this fishing trip from when you left home until you get home?" The survey 

also established how many trips the respondent made over the last year to all 

saltwater sites in Texas. 7 Five digit zip codes were collected, which allows 

establishment of residency in Texas. 

7 Unfortunately, the duration of each trip is unknown, so it must be assumed 
that the majority are one-day trips, which may or may not be entirely 
plausible. Here, the term "trip" is used synonymously with "fishing day." 
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Income data were not collected from each respondent, but the five-digit 

zip codes allow merging of the data with 1980 Census median household incomes 

for each zip code. Zip codes cover relatively homogeneous "neighborhoods," at 

least when compared to income data on the county level, for example. 

Individuals' consumption patterns tend to conform somewhat to those of their 

neighbors, so median zip code income may be a better proxy for "permanent" 

disposable income than actual current self-reported income. There is high 

variance in median incomes across zip codes, so the Census income variable may 

actually make a substantial and accurate contribution to controlling for 

income heterogeneity among the survey respondents. 8 

In other work utilizing the entire dataset (Cameron, Clark, and Stoll, 

1988) it has been determined that subsets of individuals in the sample exhibit 

extreme behavior. The full sample has therefore been filtered somewhat for 

use in this demonstration study. Since the initial models presume identical 

underlying utility functions for all individuals, those who report more than 

sixty fishing trips per year are discarded from the sample. It is relatively 

likely that these individuals are atypical, since 901 of usable sample reports 

fewer than this number of days. The median number of trips reported is 

between eleven and twelve. This research is therefore clearly directed at 

"typical" anglers. 

It is also the case in the full usable sample from the survey that some 

individuals respond that they would keep fishing if the cost had been $20,000 

higher when $20,000 exceeds the median household income of their zip code. 

8 While the use of group averages instead of individual income information 
undeniably involves errors-in-variables complications in the estimation 
process, the distortions may in fact be not much greater than they would be 
with the use of self-reported income data in an unofficial context. It is 
well known that many individuals have strong incentives to misrepresent their 
incomes if they do not perceive a legal requirement to state them correctly. 
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Since the assignment of value thresholds was completely exogenous, the 

estimating sample includes only those respondents who were posed values up to 

and including the $2000 offer. Everyone offered values greater than this was 

excluded, regardless of their answer to the CVM question. 

The final criterion for inclusion in the sample for this study was that 

a respondent should not report spending more than $100 on this fishing trip. 

Again, a very large proportion of the sample passes this criterion. When 

market expenditures are reported to be much larger than this, it seems 

reasonable to suspect that capital items have been included, so that it would 

be invalid to treat these costs as "typical" for a single fishing trip. 

Current expenditures over $2000 were reported by several respondents. 

Descriptive statistics for the variables used in this paper are 

contained in Table I. 

III. THE STOCHASTIC SPECIFICATION 

It may be helpful to think of the model developed in the following 

sections as a nonlinear analog to a more familiar econometric model. The 

conceptual framework is similar to a system of two equations with one right­

hand side endogenous variable, cross-equation parameter restrictions, and a 

non-diagonal error covariance matrix. However, one of the dependent variables 

is continuous and one is discrete, both equations are highly nonlinear in 

parameters, and the simultaneity in the model involves an endogenous variable 

which is not observed directly, but must be counterfactually simulated. 

In order to have the option of constraining the coefficients of the 

utility function (and hence the indirect utility function) as well as those of 

the corresponding Marshallian demand function to be identical, the discrete 

:hoice model and the demand equation must be estimated simultaneously. To fix 



Table I 

Descriptive Statistics for the Variables 
(n - 3366) 

Acronym Description Mean Std. dev. 

y median household income for respondent's 
5-digit zip code (in $10,000)• (1980 Census 
scaled to reflect 1987 income; factor-1.699) 

3.1725 0.6712 

M current trip market expenditures, assumed 
to be average for all trips (in $10,000) 

0.002915 0.002573 

T annual lump sum 
(in $10,000) 

tax proposed in CVM scenario 0.05602 0.04579 

q reported total number of salt water fishing 
trips to sites in Texas over the last year 

17.40 16.12 

I indicator variable indicating that respondent 
would choose to keep fishing, despite tax T 

0.8066 0.3950 

PVIET proportion of population in respondent's 
5-digit zip code claiming Vietnamese ancestry 

0.002497 0.006217 

a Dollar-denominated quantities are expressed in $10,000 units throughout 
the study, so that squared income and squared net income do not become 
too large, resulting in extremely small probit coefficient estimates 
which thwart the optimization algorithm. 
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ideas, it is helpful to begin by considering the two components of the joint 

model completely separately, ignoring any potential error correlation. 

A. A Separate CVM Choice Model 

The decision to work within the framework of direct, rather than 

indirect, utility functions buys easy characterization of the shapes of 

consumer indifference curves. Under the hypothetical CVM scenario, the 

respondent is asked to choose between ceasing to use the resource and paying 

no lump-sum tax, or continuing to consume a revised optimal quantity of access 

q(Y-T,M) at a new lower net income. Unless one can assume that there is no 

income effect, q(Y-T,M) will probably be less than the current optimal 

quantity, q(Y,M). But if, for the initial exposition, it is temporarily 

assumed that the income elasticity of demand for access is zero, one can begin 

by considering how the CVM component of the joint model should be estimated. 

It will be convenient to model the discrete choice elicited by the CVM 

question using conventional maximum likelihood probit (rather than logit) 

techniques, where the underlying distribution of the implicit dependent 

variable, the true utility difference, is presumed to be Normal. Since 

AU(Y,M,T) in equation (1) can at best be only an approximation, assume that 

i thfor the observation, AU - AU * + i 1 , where i is a random error term1 1 1 

2distributed N(O, u ). AU *, the systematic portion of the utility difference
1

on the right hand side of equation (1) will be represented in what follows as 

f(x
1 

,/3). 

In conventional probit models, AU
1 

is unobserved, but if AU
1 

is "large" 

(i.e. AUi > 0), one observes an indicator variable, I (the "yes/no"
1 

response), taking on a value of one. Otherwise, this indicator takes the 

value zero. In constructing the likelihood function for this discrete 

response variable, the following algebra is required: 
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(3) 

Since £ has standard error a, dividing through by a will create a standard
1 

normal random variable, Z, with cumulative density function~-

(4) Pr( £ 
1 

> - x
1
'P) - Pr ( Z > - f(x 1 ,P)/a) 

- Pr ( Z < f(x1 ,P)/o) 

- ~ (f(x ,P)/o),1 

by the symmetry of the standard normal distribution. 

At best, in cases where f(x ,P) is linear-in-parameters, the vector P
1 

can only be identified up to a scale factor, since it only ever appears in 

ratio to a. (However, this is quite acceptable, because the solutions to the 

consumer's utility maximization problem are invariant to monotonic 

transformations of the utility function.) The probability of observing I - 0
1 

is just the complement of Pr(I
1 

- 1), namely 1 - ~ (f(x
1
,~)/o), so the log­

likelihood function for n observations will be: 

(5) log L - ~ I log[~ (f(x .~)/o)] + (1 - 1 ) log l 1 -[~ (f(x .~)/o)]1 1 1 1 1 
I 

If f(x .~) was linear in~. and if q(Y-T,M) could be observed or assumed
1 

to be equal to q(Y,M), this separate discrete choice model could readily be 

estimated by any number of maximum likelihood routines in packaged statistical 

programs (such as SAS or SHAZAM). For compatibility with what follows, 

however, when q(Y-T,M) is made endogenous, this application requires a general 

MLE algorithm. (In this paper, the GQOPT nonlinear function optimization 

package is used). The endogenous demands, q(Y-T,M) will be functions of the 

same parameters appearing in (5). When the formulas for these demands are 

substituted into f(x.,P), these functions will usually no longer be linear 
1 

functions of the p parameters. 
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B. A Separate Demand Hodel 

The systematic portion of the TCM Marshallian demand function resulting 

from the optimization problem in (2) will be denoted by g(xi,p). In 

estimating this model separately, one might assume that qi - g(xi,P) + ~ 1 • 

where ~
1 

N(O, u2 ). This suggests that nonlinear least squares (by maximum 

likelihood) is an appropriate estimation method. 

The log-likelihood function associated with the demand model is 

therefore: 

(6) log L - -(n/2)log(2,r) - n log tJ - (1/2) Li( [qi - g(xi,P)]/v} 2 

Again, there exist packaged computational routines to estimate such 

nonlinear models, but this application requires a general function 

optimization program to allow for subsequent constrained joint estimation of 

this model and the utility difference model. 

C. Constrained Joint Estimates, Independent Errors 

To impose the requirement that the two decisions (one real and one 

hypothetical) reflect the identical underlying utility function, the CVM and 

TCM models must be estimated simultaneously. With independent errors, it is 

simple to combine the two specifications by summing the two separate log­

likelihood functions and constraining the corresponding pj coefficients in 

each component to be the same: 

(7) log L - -(n/2)log(2,r) - n log u - (1/2) Li ( [qi - g(xi,/3) )/u} 2 

+ Li ( Ii log[~ (f(xi,/3)/a)) + (1 - I 1 ) log ( 1 -[~ (f(x1 ,P)/a)) l l. 

D. Constrained Joint Estimates, Correlated Errors 

Realistically, unobservable factors which affect respondents' answers to 

the CVM discrete choice question are simultaneously likely to affect their 
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actual number of fishing days demanded. To accommodate the influence of 

unmeasured variables, one can allow for a correlation, p, between the fi error 

terms in the discrete choice model and the ~ error terms in the demand1 

model. 9 Assume that these errors have a bivariate normal distribution, 

BVN(O, 0, t.12' p). 

In empirical discrete/continuous choice models, it is frequently more 

convenient not to work directly with the joint distribution of the errors. 

Instead, one can take advantage of the fact that the joint density can be 

represented equivalently as the product of a conditional density and a 

marginal density. In order to derive the model with nonzero p, one can 

exploit the fact that for a pair of standardized normal random variables, say 

W and W2 , the conditional distribution of W2 , given W - w1 , is univariate1 1 

2Normal with mean (p w
1 

) and variance (1 - p ). 

When allowing for nonzero values of p, then, the term ~(f(x
1 

,/3)/a) in 

the discrete-choice portion of equation (7) will be replaced by: 

(8) ~ { [ (f(xi ,/3)/a) + P ZJ I (1 - p2)112 } 

where 2 - [q - g(x ,/3)]/u, the standardized fitted error in the demand1 1 1 

function, evaluated at the current parameter values. Clearly, if p - 0, this 

model collapses to the model with independent errors described in the previous 

section. 

IV. AN EXPLICIT FUNCTIONAL FORM AND CLASSES OF RESULTS 

The basic model proposed in this paper (and its variants) uses a 

quadratic direct utility specification for U(z,q). Other discrete/continuous 

If the estimated value of the error correlation, p, is substantial and 
statistically significant, one probably ought to generalize the specification, 
if possible, to accommodate systematic heterogeneity across respondents. 
Section V will address this issue. 
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modeling exercises have begun with an indirect utility function, since 

commodity prices (rather than quantities) are more plausibly assumed to be 

exogenous for the typical consumer. In the present context, however, we 

desire to maintain the geometric intuition behind direct utility functions and 

their associated indifference curves. 10 We have selected the quadratic form 

for the direct utility function because of its simplicity and because a number 

of other familiar specifications are unsuitable for the derivation of 

associated Marshallian demand functions (also discussed in Appendix II). 

For identical consumers, the simplest quadratic direct utility 

specification is: 

(9) 

Under the current scenario for the respondent, consumption of the Hicksian 

composite good z is (Y • Mq) and q will be non-zero for anyone being 

interviewed, so the utility function in (9) is really a function of Y and q. 11 

The specific form of the utility difference which dictates a respondent's 

answer to the CVM question will be linear in the same parameters as U: 

(10) AU(Y,M,T) - f(x1 ,P) - ([Y-Mq-T] · Y} + P qP1 2 

([Y·Mq-T] 2 
• Y2 }/2 + [Y·Mq·T]q + (q) 2/2.+ P3 ~ 4 ~ 5 

10 A quadratic indirect utility version of the model is discussed in Appendix 
II. Unfortunately, the calibrated model does not satisfy the regularity 
conditions for valid indirect utility functions. 

11 In-person CVM surveys typically sample only current users of the resource. 
When access price increases ( or simply positive access prices) are being 
contemplated, this does not pose much of a problem. However, when projected 
scenarios involved improved resource attributes, one must really survey 
potential users as well as current users to elicit an accurate measure of 
aggregate demand responsiveness. 
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The first order conditions ~or the Lagrangian in equation (2) yield a 

corresponding Marshallian demand for q of: 

(11) q(Y,M) - g(x1 ,.8) - [ .82 + .8,. Y - .8 1 M - .83 Y (M) ] / 

( 2.8,. (M) - .83 M2 
- .85]. 

Since every additive term in both the numerator and denominator of this 

expression contains a multiplicative .8 coefficient, the demand function is of 

course invariant to the scale of the .8 vector. Consequently, it is necessary 

to adopt some normalization of the demand function parameters (for example, 

,8 - 1, an entirely arbitrary and inconsequential choice). Thus the form of
2 

the demand function actually estimated will be: 

(12) q(Y,M) - [ 1 + (.8 4*) Y - (.81*)(M) - (.83*) Y (M) ] / 

[ 2(.8.*) (M) - (/33*) (M)2 - /35* ] . 

where /JJ* - /JJ//32 • This demand function is highly non-linear in M. 

Crucially, when we endogenize the q in equation (10) by substituting the 

formulas for q(Y-T,M) based on the calibrated demand models in (11) or (12), 

we are effectively converting the direct utility specification into an 

indirect utility specification! But if the indirect utility function V(Y-T,M) 

- U(Y-T,q(Y-T,M)) were to be written out in full, it would be a complex and 

unappealing formula. Instead, we will describe our results in terms of the 

implied direct utility function U(z,q). 

The central empirical results in this study are the estimates of the .8 

parameters of the assumed underlying quadratic direct utility function. All 

of the economically interesting empirical measurements in this paper are 

derived from this calibrated utility function. Throughout, the empirical 
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utility function should exhibit properties which are consistent with economic 

intuition about plausible shapes for these functions. 

First, the derivatives of the underlying direct utility function are: 

( 13) au;az - /3 1 + /33z + /3 4q a2u;az2 
- /33 

au;aq - /3 2 + /3 4z + /3 5q a2u;aq2 - /35 

a2u;azaq - /3 4 

The marginal utilities of the composite good z and of access days q will 

depend on the local values of z and q. Whether or not each marginal utility 

is increasing or decreasing will be revealed by the signs of /33 and /35. 

If both {3
3 

and {3 
5 

are negative, the fitted utility function will be 

globally concave, and a globally optimal combination of z and q will be 

implied. The budget constraint will be binding unless the implied global 

optimum is attainable inside the budget set. The formulas for the global 

optimum will be strictly in terms of the estimated coefficients: 

(14) 

Admissible fitted quadratic utility functions are not necessarily 

strictly concave, however. The bundle at which both marginal utilities go to 

zero may correspond to a saddle point of the complete fitted utility function. 

But only quasi-convexity in the positive orthant is required. To assess 

compliance with this regularity condition, one can easily examine the 

configuration of the fitted utility function's indifference curves. 

An indifference curve through any arbitrarily chosen bundle (z' ,q') can 

be identified by first determining the level of utility this bundle 

represents: 
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(15) U' - P z' + P q' + P z' 2/2 + P z'q' + P q' 2/2.
1 2 3 4 5 

To find all other bundles (z,q) which provide utility U', one merely sets up 

the quadratic formula for z: 

(16) 

Plots of empirical indifference curves are highly intuitive and relatively 

novel and will be used throughout the discussion to highlight the differences 

in estimated preference structures. 

Once the corresponding Marshallian demand function has been calibrated 

by joint estimation of the utility parameters, we are usually curious about 

the implied price and income derivatives: 

(17) 8q/8M - [ -(2P4M-P3M
2 -P5)(P1+P3Y) - 2(P2+P4Y-P1M-P3MY)(P4 -P3M) l / 

[2P4M·P3M2·Psl2 

2aq/aY - [P4 -P3Ml / [2P4M-P3M
2-P5 ] 

From the demand curves, policy makers are also sometimes interested in 

estimates of the reservation price. One simply sets q - 0 in equation (11) 

and solves the resulting quadratic formula for (M). Given the current level 

of M, the reservation level of any additional potential per-day access charge 

can readily be determined. 

One of the ultimate empirical objectives of this research concerns 

estimation of the total social value of recreational access to this fishery. 

One measure of value is the equivalent variation, E, which can be viewed as 

the fixed tax which would make these anglers just indifferent between paying 

the tax and continuing to fish, or not paying the tax and forgoing their 
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fishing opportunities. Algebraically, Eis given by the equation maxq U(Y-Mq­

E,q) - U(Y,0). 

But completely depriving everyone of access to the resource is an 

extremely drastic proposition. So we also consider the equivalent variation 

formulas that give the social costs of limiting access to a proportion a of 

current (fitted) access levels, where O <a< 1 The equivalent variation 

for such partial restrictions is given by max 
q 

U(Y-Mq-E,q) - U(Y-aMq,aq). 

Letting D - (2,84M - ,83M
2 - ,85), R - (,82+,84Y-,81M-,83MY)/D and S - (,84 -,83M)/D, the 

value of Eis the solution of the quadratic formula: 

E2(18) 0 - [ (,83/2)(MS-1) 2 
- ,84S(MS-l) + (,8 /2)S2 

]5

+ [ ,8 1 (MS-l) - ,82S + ,83(Y-MR)(MS-l) + ,8 4 {R(MS-l) - (Y-MR)S) - ,8
5
RS ] E 

+ [ - .81 (1-a)MR + ,8 (1-a)R + (,83/2){(Y-MR) 2 - (Y-oMR.) 2 )2 

+ ,8
4 
{(Y-MR)R - (y-aMR)(aR)) + (,85/2)(1- a 2 )R2 ]. 

When a-0, the formula produces the equivalent variation for a complete loss of 

access. While it would be desirable to compute Taylor's series approximations 

to the standard errors of the value of E computed from the estimated .8 

parameters, this would clearly be a daunting task. 

An alternative measure of value (the compensating variation, C) asks 

what amount of money would have to be given to a respondent who has been 

denied some or all of his access in order to leave him equally well off as 

before the intervention. Algebraically, this C is given by max 
q 

U(Y-Mq,q) -

U(Y+C,0). For a complete loss of access, C is the root of the quadratic 

formula: 

C2(19) 0 - - (/3 /2) - (,8 + ,8 Y) C3 1 3

-- .... -.81Mq + .82q + (.83/2)[ (Y-Mq)2 - y2J + .84(Y-Mq)q + (/35/2)q2. 



21 

A general formula for partial loss of access could easily be devised, but this 

paper will focus on the equivalent variations. 

V. SPECIFIC EMPIRICAL ESTIMATES 

A. The Basic Hodel 

The "basic model" constrains the quadratic direct utility parameters and 

the corresponding parameters in the Marshallian demand function for fishing 

days to be identical. The model initially assumes equal reliability of the 

two types of information (CVM and actual market demand), and allows the post­

tax quantity demanded in the discrete choice model to be determined 

endogenously according to the same demand function. The model also allows for 

correlated errors in the two decisions. The first pair of columns in Table II 

give these results (the second pair of columns will be discussed later). Both 

the estimated quadratic direct utility function parameters and the 

corresponding implied (normalized) Marshallian demand parameters are provided. 

The utility function implied by these parameter estimates is globally 

concave, with a slightly positively sloped principal axes for the ellipses 

that form its level curves. (The relevant lower left portions of these curves 

are interpreted as indifference curves). Of course, the quadratic form is 

merely a local approximation to the true utility function. Nevertheless, if 

the entire surface of the true utility function was quadratic, the apparent 

global optimum of that function would be located at 28.4 fishing days and 

$289,823 in median zip code income (compared to sample means of 17.4 fishing 

days and $31,725 in income). Thus the utility function is well-behaved in the 

relevant region. At the means of the data, the two marginal utilities are 

positive. The implied price elasticity of demand at the means of the data is 

-0.074 and the income elasticity is 0.078, although these elasticities change 

substantially with deviations away from the sample mean values. To establish 



Table II 

Fitted Quadratic Direct Utility Parameters 
(with and without parameters constrained to be identical 

for CVM and TCM portions of model) 

Constrained fJs Unconstrained {Js 

Parameter Point Est. Implied Point Est. Implied 
(Asymp. t-ratio) /J*- /JI/J2 (Asymp. t-ratio) /J*- /JI/J2 

(z) 3.309 27.76 1. 276b 0.04530f31 
(8.237)a (0. 7457) 

/32 (q) 0.1192 1.0 28.17 1.0 
(19.55) (2.573) 

/33 (z 2/2) -0.1167 -0.9790 1.498 0.05318 
(-1. 836) (2.834) 

/J4 (zq) 0.002579 0.02164 2.263 0.08033 
(2.006) (2.147) 

f3s (q2/2) -0.006837 -0.05736 -502.3 -17.83 
(-22.80) (-1.311) 

75.89 
(5.756) 

1.0 

-10.89 
(-2.428) 

-0.01749 
(-0.9029) 

-0.04739 
(-14. 97) 

V 16.01 15.97 
(81. 98) (82.04) 

p 0.2315 0.2505 
(9.086) (9.749) 

max Log L -15708.17 -15640.6lc 

a Asymptotic t-ratios in parentheses. 

b CVM utility parameters do not satisfy regularity conditions. 

c Likelihood ratio test statistic for four parameter restrictions - 115.12. 
Equivalence of utility parameters is soundly rejected. 

http:15708.17


22 

a visual benchmark for this basic model, for an individual with mean income 

and travel costs, an indifference curve for the empirical quadratic utility 

function, the budget constraint through (µy,0), and the fitted maximum 

attainable indifference curve are shown in Figure l. 

Using the basic constrained model that assumes one common utility 

function for all respondents, it is possible to use equation (18) to compute 

fitted values for the equivalent variation (either for each respondent, or at 

the means of the data). Across the 3366 respondents in this sample, the 

fitted values of E for a complete loss of access appear in the first row of 

Table III (a - 0). 12 Over the estimating sample, the average point estimate 

for the equivalent variation for a complete loss of access is $3451 (or, 

alternatively, at the means of the data, it is $3423). Minimum and maximum 

values in the sample are also provided. 

Table III also gives the model's estimates for the equivalent variation 

associated with successively smaller restrictions on days of access (a denotes 

the proportion of current consumption to which each individual's access days 

are restricted). 13 For an across-the-board 10% reduction in fishing days, for 

example, the average calculated utility loss by these respondents would be 

only $35, although values as high as $52 and as low as $19 can obtain, due 

solely to different incomes and travel costs faced by different respondents. 

The main policy interest in equivalent variations for partial 

restrictions on access stems from the need to make optimal allocations of 

finite fish stocks between recreational anglers and commercial harvesters. If 

12 For the single individual with average characteristics in Figure 1, this 
quantity would be determined by taking the parallel downward shift in the 
budget constraint which would leave the new constraint just tangent to the 
lower indifference curve. 

13 The computed equivalent variation, plotted as a function of a, is convex 
when viewed from below. 
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Table III 

Fitted Individual Equivalent and 
Compensating Variation Estimates• for 

the Basic (Constrained) Model (Table II) 

Valuation mean max min 
Measure: 

Equivalent: 
Variat:ion 

a - o.ob $ 3451 $ 5132 $ 1857 

a - 0.1 2799 4166 1505 

Q - 0.2 2214 3298 1190 

a - 0.3 1697 2529 912 

a - 0.4 1248 1861 670 

a - 0.5 867 1294 465 

a - 0.6 555 829 298 

a - 0.7 313 467 168 

a - 0.8 139 207 75 

a - 0.9 35 52 19 

Compensating 
Variation 

a - 0.0 $ 3560 $ 5361 $ 1899 

• Since the same utility function is presumed for 
all respondents, individual variations in 
these quantities stem solely from differences in 
income and travel costs. 

b For access days restricted to the fraction a of 
fitted current access days. 
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faced with a proposal to cut back on recreational access, it would be 

necessary to quantify the social losses to recreational anglers, compare these 

losses to the anticipated gains accruing to commercial harvesters, and then to 

argue that such a redistribution of the catch would result in a potential 

Pareto improvement. 14 

The final row of Table III provides, for comparison, the corresponding 

compensating variation for a complete loss of access (i.e. for a - 0 only). 

As is typical, the compensating variation for the loss is larger than the 

equivalent variation for the same loss. Here, however, the difference is 

largely an artifact of the quadratic form chosen for the utility function. 

The concentric ellipses which form the level curves of a globally concave 

utility function can be expected to have this relationship. 

B. Different Preferences Implied by Real versus Contingent Data 

We require both a constrained and an unconstrained specification if we 

plan to use a formal likelihood ratio test statistic to determine whether the 

utility parameters implied by the CVM data alone are consistent with those 

estimated jointly using both CVM and TCM data. The constrained specification 

(the basic model just described) appears in the first pair of columns in 

Table II. 

For the unconstrained model, the demand information necessary to compute 

the endogenous quantity in the CVM discrete choice model is calculated using 

only the utility function parameters for the CVM portion of the model. We 

therefore allow the discrete choice CVM model exclusively to imply values for 

14 In a richer specification, with enough shift variables to more closely 
capture the variations in quantity demanded, it would be an interesting 
exercise to assess total aggregate losses due to restrictions of access to 
specific numbers of days. The present data are not appropriate for simulating 
these policy changes. 
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and f3 The observed TCM demand decisions will imply separatef3 l' f3 2' f3 3' f3 4' s· 

values for P *, P3*, /3 4*, and /3 5*.1

The second pair of columns in Table II displays results for an 

unconstrained model corresponding to the first pair of columns in the same 

table. The point estimates do not bode well for the consistency of the 

preferences elicited by the two types of responses. First of all, it is 

especially unsettling to note that the quadratic direct utility function 

implied by the CVM data alone does not even conform to the regularity 

conditions expected of a valid utility function. At the means of the data, 

the implied marginal utility from an additional access day is negative; there 

is also increasing marginal utility with respect to the composite good. The 

TCM quadratic direct utility parameters, however, are thoroughly acceptable. 

(The only link between the two submodels is the estimated error correlation, 

p.) 

Nevertheless, there must still be some information about preferences in 

the CVM data, and the recorded responses on these surveys dictate these 

particular parameter values. We can certainly still compare the maximized 

value of the log-likelihood in the constrained and unconstrained models in 

order to assess whether the imposition of cross-equation parameter 

restrictions is tenable. A likelihood ratio test for the set of four 

parameter restrictions embodied in the "basic" model soundly rejects these 

restrictions. 15 For this quadratic specification, the CVM- and TCM-elicited 

preference functions are different. 

15 It may be suspected that the TCM estimates systematically understate the 
true value of access (due to underestimates of the actual opportunity costs of 
access) and that the CVM estimates systematically overstate the true value of 
access (due to the incentives embodied in the way the question was posed). If 
data deficiencies make it too implausible to force compatibility of these 
responses with a common underlying set of preferences, the researcher would of 
course be free to report the two types of value estimates separately. 
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For a respondent with mean characteristics, Figure 2 shows the empirical 

indifference curves passing through the bundle (0,Y) for (i.) the "basic" 

constrained model and (ii.) the demand portion of the unconstrained model. 

The greater curvature of the indifference curve for the restricted parameters 

implies that E (the equivalent variation) based on the joint model, will be 

substantially larger than E based on observed TCM market demand behavior 

alone. For the unrestricted TCM demand parameters, the fitted equivalent 

variation at the means of the data is only $1686 (versus about $3451 for the 

constrained model). 

The implied inverse demand functions corresponding to the different sets 

of preferences implied by the joint model and by the unconstrained TCM model 

are shown in Figure 3. When the CVM responses and observed TCM demand 

behavior are constrained to reflect the same set of quadratic preferences, the 

reservation price is about $409. The unrestricted TCM demand behavior implies 

a much lower reservation price. Thus the CVM (i.e. hypothetical market) 

scenario does seem to invite respondents to overstate the strength of their 

demand for resource access, as one might suspect (and/or the TCM indirect 

market data understates the strength of demand). 

C. Differing Reliability for Real versus Contingent Data 

The basic model (with or without the utility parameters constrained 

across the two sub-models) reflects the presumption that the decisions which 

respondents claim they would make under the hypothetical scenario proposed in 

the CVM question deserve to be treated as equally credible when compared to 

their actual market behavior regarding number of fishing days demanded. This 

need not be the case. 

In other research on CVM (Cameron and Huppert, 1988), Monte Carlo 

techniques were used to demonstrate the wide range of referendum CVM value 
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estimates which can result simply as an artifact of the arbitrary assignment 

of the threshold values on the questionnaires. One conclusion in that study 

was that researchers should probably insist on vastly larger samples for 

referendum CVM data, in order to offset the inefficiencies in estimation which 

result from the highly diffuse information in referendum responses. By 

itself, this property of referendum data might be sufficient to warrant a 

discounting of its credibility when it is combined with "point" information 

from the same sized sample. 

Fortunately, researchers are free to use their own prior opinions to 

adjust the relative credibility of each type of information. This can be done 

in an ad hoc fashion, by employing non-unitary weights on the respective terms 

in the log-likelihood function (see Appendix IV). Alternately, it can be done 

more rigorously, by making assumptions about the variances of the 

distributions of the estimated~ parameters around the "true" mean of the~ 

vector. 16 

In the discussion that follows, we assume that CVM data are presumed to 

be less reliable than travel cost data, since this has been a typical 

sentiment among researchers in this area. However, the demand information 

inferred from the travel cost data is also likely to be unreliable, especially 

since TCM applications often assume that the opportunity cost of access is 

constant as access days increase. If opportunity costs rise, as they most 

likely do, TCM will underestimate the implicit value of access, perhaps 

severely . 17 Also recall that we do not impute an arbitrary value of travel 

16 We owe this helpful suggestion to Ed Leamer. 

17 I f increasing opportunity costs of access can be captured in the data, 
there exist econometric strategies for dealing with non-linear budgets sets 
which could undoubtedly be adapted to this type of problem. (See Hausman, 
1985.) 
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time in this study. Depending upon the relative qualities of the two types of 

data, then, appropriate discounting of each type of information can be decided 

ex ante. 

Utilizing Explicit Priors on the Distributions of P and P* 

Let p continue to denote the utility parameter estimates derived from 

the CVM data, and let p* be the utility parameter estimates from the TCM data. 

Let pt signify the true but unknown utility parameter vector. (Without loss 

of generality, we can normalize the second element, P
2 

, to unity in all three 

cases.) Now assume that conditional on the true pt, P and p* are 

statistically independent and that the elements of p;pt are distributed 

N(l,u2 ) and the elements of p*;pt are distributed N(l,u*2 ). (These as are 

distinct from the unidentifiable probit regression variance employed in 

section III.) 

The researcher is free to make prior assumptions about the magnitudes 

and relative sizes of a 2 and u*2 
, and this prior information can be 

incorporated into the log-likelihood function in (7) as follows. Note that 

T *P, P and P are now all estimated separately, so the parameter space is 

increased. The additional log-likelihood term will be: 

(20) -n log2ff - n(log a+ log u*) 

Maximization of the augmented log-likelihood with respect to the vectors of 

variables P, p*, pr, u, and p, given preselected values of a2 and a*2 will 

yield, for the model with identical consumers, fifteen distinct parameter 

estimates. 18 

18 It is not possible to optimize this likelihood function also with respect 
to a and a*. The algorithm will drive these values to zero. 
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What are the consequences for our ultimate estimates of the equivalent 

variation for a complete loss of access? In Table IV, the first column, 

reproduced from Table II, reflects an implicit assumption that a - a* - 0. 

(The implied Marshallian demand parameters corresponding to the CVM portion of 

the model are given in the second column.) Nothing is "tying together" the 

two sets of estimates for the utility parameters, so they are very different 

indeed. 

In contrast, for arbitrarily selected standard errors a - 1.0 and 

a* - 1.0, the third column of Table IV displays the revised estimates of P and 

fi*, along with the additional, separate, estimates of the true fit. (The 

fourth column again shows the Marshallian demand parameters implied by the CVM 

P estimates.) Ultimately, of course, we are interested in the value 

implications of the estimates. At the means of the data, these "true" pt 

parameters imply an equivalent variation for a complete loss of access of 

$3378 (which is very little different from the $3423 at the means of the data 

for the basic model). 

To illustrate a more-extreme case, we also include another pair of 

columns in Table IV. In this case, the assumed standard error of p;pt (for 

the CVM parameters) is increased to 3.0. A standard error this large would 

seem to discredit the CVM data substantially. The assumption of poorer­

quality information has the anticipated effect upon the precision of the three 

sets of utility parameters in the model. The asymptotic t-ratios for all of 

the different p parameters drop substantially, with the coefficients on z2 

and zq becoming insignificant in all three cases. However, the resulting 

equivalent variation according to pt shrinks only to $3124. 

To assess the sensitivity of the parameter estimates and the welfare 

implications to different assumptions about the distributions of P and fi* 



Table IV 

Joint Models with Separate CVM and TCM Parameters 
(CVM and TCM discounted by disproportionate variances) 

no o , u* , fJ T <J - 1.0 <J - 3.01 1 
<J 2 - 1.0 <J 2 - 1.0 

Parameter Point Implied Point Implied Point Implied 
Est. fJ* Est. fJ* Est. /J* 

/3 l (z) l. 276 0.04530 3.421 28 .11 3.930 30.07 
(0.7457) (8.361) (2.989) 

/32 (q) 28.17 1.0 0.1217 1.0 0.1307 1.0 
(2.573) (16.67) (13.18) 

/33 (z2/2) 1.498 0.05318 -0.1383 -1.136 -0.2572 -1. 968 
(2.834) (-1.883) (-0.5393) 

fJ. (zq) 2.263 0.08033 0.002157 0.01772 0.002038 0.0!j59 
(2.147) (1. 909) (0.7828) 

/J5 (q2/2) -502.3 -17.83 -0.007072 -0.05811 -0.007873 -0.06024 
(-1.311) (-14.36) (-6.875) 

/J1*-/J1I/J2 -:- 3. 89 28.48 32.56 
'.5.756) (9.323) (2.679) 

/32*-/321/32 l.0 1.0 1.0 

/33*-/33//32 -10.89 -1.135 -1. 945 
(-2.428) ( -1. 846) ( -0. 5421) • 

fJ.*-fJ.l/32 -0.01749 0.02069 0.01561 
(-0.9029) (1. 793) (0. 7751) 

/J5*-/J5//J2 -0.04739 -0.05714 -0.05596 
(-14.97) (-25.74) (-14.74) 

T T T
/J1 -/31 //J2 28.30 32.33 

(9.484) (2.707) 
T T T

/J1 -/Ji //J2 1.0 1.0 

T T T
/J3 -/J3 //J2 -1.136 -1. 947 

( -1. 845) (-0.5418) 
T T T

/J4 -/J4 //J2 0.02068 0.01560 
(1. 794) (0.7751) 

T T T
/35 -fJ5 I/J2 -0.05763 -0.05641 

(-23.35) (-13.87) 

V 15.97 16.01 16.00 
(82.04) (81. 95) (81. 87) 

p 0.2505 0.2317 0.2331 
(9.749) (9.120) (9.090) 
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(relative to /3r), one can perform a grid search across different values of a 

and a* to produce a range of values for the "true" 13T coefficients and for the 

implied equivalent variations. These are summarized in Table V. (Since these 

functions are extremely expensive to optimize, we provide results only for 

combinations of a and a* where a> a*. It seems likely, a priori, that the 

CVM data are at least as noisy as the TCM data, although both may be 

questionable.) The implied equivalent variations, EV, for each set of error 

assumptions, appear in bold print, implying a surprising robustness of the 

value estimates to differing reliabilities of the two types of data. 

What conclusion is implied? A very wide range of different assumptions 

can be made about the relative reliability of CVM and TCM data, without 

producing too much difference in the ultimate welfare implications of the 

fitted preference functions. This result should be greatly reassuring, 

although it is conditional upon the maintained hypotheses of quadratic direct 

utility and has been demonstrated for this one sample only. 

D. Accommodating Respondent and/or Resource Heterogeneity 

The models described above have presumed that these respondents are 

homogeneous on all dimensions other than income, Y, proposed tax, T, number of 

fishing days, q, and typical market expenditures, M. It is a simple matter, 

however, to relax this assumption. 

For example, one can explore the effects of allowing the utility 

parameters to vary continuously with the level of a sociodemographic variable. 

In the ad hoc valuation models explored in Cameron, Clark, and Stoll (1988), 

it was found that the Census proportion of people in the respondent's zip code 

who report themselves as being of Vietnamese origin, PVIET, seemed to be 



Table V 

Results of Grid Search across Different Error Assumptions 
For the Distribution of the CVM and the TCM Parameter Vectors 

Travel Cost 
Contingent Information: 
Valuation 
Information: <1* - 0.5 1.0 1.5 2.0 2.5 3.0 

(7 -

T0.5 27.90.81T 
-1.021,83T 
0.02139,84T 

-0.05742.85 
3EV at means: $3412 

T1.0 28.15 28.30.81T 
-1. 070 -1.134.83T 
0.02108 0.02070.84T 

-0.05735 -0.05763.85 
EV at means: $3395 $3378 

T1.5 28.64 28.75 29.01.81T 
-1.177 -1. 224 -1. 335.83T 
0.02043 0.02013 0.01944.84T 

-0.05720 -0.05750 -0.05796 

EV at means: $3364 $3348 $3320 

T 

.85 

2.0 29.39 29.53 29. 74 30.10.81T 
- l. 331 -l. 391 - l. 482 - l. 636.83T 
0.01947 0.01910 0.01852 0.01852.84T 

-0.05698 -0.05725 -0.05773 -0.05773 

EV at means: $3317 $3300 $3272 $3233 

T 

.85 

2.5 30.53 30.64 30.84 31.10 31. 51.81T 
-1.566 -1. 614 -1. 702 -l. 820 -l. 998.83T 
0.01802 0.01770 0.01712 0.01633 0.01516.84-r 

~0.05665 -0.05692 -0.05738 -0.05805 -0.05892.85 
EV at •••n•: $3245 $3229 $3202 $3165 $3116 

T3.0 32.17 32.32 32.51 32. 77 32.96 33.08.81T 
-1. 887 - l. 945 -2.025 -2.142 -2.247 -2.347.83T 
0.01600 0.01561 0.01506 0.01427 0.01350 0.01270.84T 

.85 . -0.05617 -0.05642 -0.05686 -0.05749 -0.05840 -0.05963 

EV at means: $3141 $3125 $3099 $3062 $3019 $2970 

a The values for EV may or may not be statistically significantly different. 
They are the solutions of the elaborate quadratic formulas given in 
equation (18) in the body of the paper. 
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influential in a wide range of models. 19 Allowing this variable to shift the 

parameters of the quadratic utility function, one can replace the constant ~J 

by the varying parameter (~j + ~jPVIET1 ) for j - 1, ... ,5. Table VI 

demonstrates that the PVIET variable does indeed make a statistically 

significant difference to the overall fit of the model and to the parameters 

of the utility function. 20 Individually, only ~ • reflecting the additional
5 

curvature of the utility function with respect to fishing access days, is 

statistically significantly different from zero. However, the whole set of 

shift terms is jointly significant according to the likelihood ratio test 

2statistic value of 28.40 (where x _ (5) - 11.07).05 

A visual display of the effect on preferences of allowing for 

heterogeneity with respect to the PVIET variable is displayed in Figure 4. As 

benchmark levels, PVIET-0 and PVIET-.02 are selected. (Maximum PVIET in the 

sample is 0.0649). Other than this distinction, the indifference curves 

pertain to individuals both having the overall sample's mean income and travel 

costs. 

The higher the proportion of individuals of Vietnamese ancestry in the 

respondent's zip code, the greater the curvature of the indifference curves, 

and the larger the implied equivalent variation for a loss of access to the 

fishery. Current optimal numbers of days are similar for the two 

representative anglers, so the large discrepancy between the vertical 

intercepts of the two empirical indifference curves suggests that while the 

two socioeconomic groups exhibit similar current behavior, they respond 

19 This is consistent with anecdotal evidence which suggests than many people 
in this socioeconomic group supplement their diets with "recreationally­
caught" fish. 

20 Both the income and PVIET variables are certainly measured with a degree of 
error due to reliance on Census zip code means. With specific data at the 
individual level, the following results would certainly be somewhat different. 

http:PVIET-.02


Table VI 

Jointly Estimated Model; 
Heterogeneous Utility Function 

(varies with proportion Vietnamese) 

Coefficient 
and Variable 

/Jl (z) 

-y 
1 

(zPVIET) 

-y
2 

(qPVIET) 

-y3 (z2PVIET/2) 

-y (zqPVIET)
4 

l) 

p 

Max. logL 

Estimate 
(asy. t-ratio) 

2.897 
(2.761) 

0.1195 
(14.87) 

0.1210 
(0. 3711) 

0.003829 
(1. 800) 

-0.007125 
( -21. 84) 

96.64 
(0.7534) 

-0.08279 
(-0.09106) 

-58.89 
( -1. 467) 

-0.3573 
(-1.395) 

0.08352 
(6,583) 

15.95 
(81. 93) 

0.2302 
(8.971) 

-15693.97a 

a Compare to basic model in Table II. 
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systematically differently to the hypothetical CVM question. Respondents from 

zip codes with higher proportions of population with Vietnamese ancestry are 

more inclined to claim that they would continue to fish despite substantial 

annual access fees. Figure 5 shows how these different preferences translate 

into systematically different inverse demand curves. The demand curve for the 

PVIET 0.02 group is situated considerably further out than that for the 

PVIET 0 group. 

What is the policy significance of the finding that prefetences for 

fishing access can vary across sociodemographic groups? Different preferences 

imply that any policy measure the government might contemplate will have 

distributional consequences. This will be true whether the policy affects 

real incomes or the relative price of access or if it consists of access 

restrictions. Distributional effects can be of critical importance in policy­

making. 

Ethnic differences are just one of a variety of sources of heterogeneity 

which could be recognized explicitly in resource valuation models of this 

type. For models intended to allow simulation of specific policy measures, it 

will also be important to incorporate dimensions of heterogeneity which can be 

affected by these policy actions. For example, individual values for access 

to a recreational fishery are affected not only by angler characteristics, but 

also by attributes of th~ resource in question. In one illustration, for a 

subsample of this dataset, we have addressed the effects on social value of 

respondent's perceptions about pollution levels (Cameron, 1988b). Not 

surprisingly, deteriorating environmental quality reduces the demand for 

access and diminishes the social value of the resource. Likewise, 

improvements increase social value. This type of model can be used to 
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simulate anticipated social benefits accruing to recreational anglers if 

government or private expenditures are devoted to cleanup efforts. 

We have also supplemented a subset of the survey data used here with 

independently gathered data on the abundance of the primary gamefishing target 

species (Cameron, 1988c). The experiment reveals that gamefish abundance 

makes intuitively plausible and statistically significant differences in 

preferences and therefore in the social value of the resource. This type of 

model can be used to simulate the social benefits to recreational anglers as a 

consequence of fish stock depletions or enhancement programs. 21 

VI. CONCLUSIONS AND CAVEATS 

A fully utility-theoretic specification distinguishes this analysis from 

much earlier empirical work on the valuation of non-market resources. By 

concentrating on identifying the underlying preference structure for access 

days versus all other goods and services, theoretically sound measures of 

access values (equivalent and compensating variations) can readily be 

produced. 

Several features of the "basic" model should be emphasized. First, it 

starts from an assumption of quadratic direct utility, presumed to explain the 

hypothetical contingent valuation responses. Second, the associated non­

linear Marshallian demand functions are employed to explain the observed 

demand decisions by the respondents (a "travel cost" type of model). Third, 

the corresponding parameters in the utility and the demand functions are 

21 For our three examples of how respondent and resource heterogeneity can be 
accommodated in this prototype model, we have assumed that these sources of 
heterogeneity are mutually orthogonal, so that they may be entered 
individually and separately. For sufficiently large surveys, the complexity 
of these heterogeneous models is limited only by the variables upon which data 
have been collected and by computing capacity. Very elaborate models can 
potentially be accommodated. 
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constrained to be identical. Fourth, the quantity demanded under the CVM 

scenario is fully endogenized. And finally, unobservable attributes of 

respondents are allowed to affect both types of responses simultaneously 

through a non-zero (estimated) error correlation. 

The "basic model" forms a minimal prototype for models in a wide range 

of applications in resource valuation. However, this paper has also described 

a variety of important extensions--potentially very relevant to subsequent 

researchers. "Prior" assumptions about the relative qualities of the 

hypothetical CVM questions and the "real" travel cost data can be used to 

modify the influence of each of these responses during joint estimation the 

utility parameters. Examples have also demonstrated that it is 

straightforward to allow the parameters of the quadratic preference structure 

to vary systematically with the levels of (exogenous) respondent or resource 

attributes. 

To review the central empirical findings (for these data, in combination 

with the assumption of quadratic preferences), the "basic model" yields a 

sample average fitted equivalent variation of $3451 for a complete loss of 

access to the fishery. In contrast, if access days for each individual were 

restricted by only 101, the average equivalent variation would be only $35. 

The implications of the model for small local variations are probably more 

reliable, although in this case, the complete loss is explicitly "within the 

range of the data" because of the information extracted from the CVM 

responses. 

Some caveats should be emphasized. The sample for this application was 

consciously trimmed along a number of dimensions. Most notably, anyone who 

reported fishing more than 60 days per year was dropped from the sample. When 

attempting to fit a single utility function to an entire sample, the 
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assumption of identical preferences must be at least roughly tenable. People 

who fish more than 60 days per year probably have fundamentally different 

preferences. With enough detailed information about the exogenous 

sociodemographic attributes of these individuals that might account for these 

differences, one could accommodate broad heterogeneity. This survey, however, 

provides little such information. In order to highlight the capabilities of 

the model (without obscuring the relationships due to unrecognized 

heterogeneity), it is necessary to disenfranchise some extremely avid anglers. 

Consequently, if these average values are scaled up to the population of 

anglers, the total will underestimate the true value of the fishery. 

Fortunately, with more detailed surveys (and future generations of computing 

hardware and software), more comprehensive models will certainly be 

practicable. 

From a policy standpoint, it is also critical to emphasize that in many 

applications, the benefits computed for the group of resource users 

represented by the survey sample will comprise only a portion of the total 

social benefits generated by the resource. Non-conswnptive use of the 

resource will often be substantial; option and existence value can sometimes 

be larger by orders of magnitude than the user values implied by surveys such 

as the one analyzed in this study. The dollar measures of benefits produced 

here, for example, are only a lower bound on the total social benefits enjoyed 

by residents of Texas, the rest of the United States, the continent, or the 

entire world. 

Methodologically, this research has demonstrated that it is indeed 

feasible, and probably highly desirable, to employ referendum contingent 

valuation data in the context of a fully utility-theoretic model whenever the 

quality of the data justify such an effort. These results also demonstrate 

• 
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that forcing contingent valuation utility parameter estimates to be consistent 

with observed demand behavior can have a substantial effect on the estimated 

preference structure, the implied demand functions, and ultimately on the 

apparent social value of the resource or public good. 

It has also been demonstrated that jointly estimating the 

discrete/continuous choices of respondents without parameter constraints 

allows a rigorous statistical check of the consistency of the hypothetical CVM 

responses with demonstrated real market decisions (conditional on the 

functional form chosen for utility). The implications of this dimension of 

the problem are being explored in greater depth in some follow-up research. 

Previous validation studies have typically relied on entirely separate models 

for CVM data and other types of data, such as travel cost information or 

market experiments. This earlier strategy allows comparisons of point 

estimates of value, but precludes any statistical assessments of the degree of 

similarity between the results. In contrast, the joint models presented here 

permit standard likelihood ratio tests. For this sample, the hypothetical CVM 

data and the observed TCM data appear to imply sharply different sets of 

preferences if completely independent sets of utility parameters are 

estimated. In other applications, however, consistent responses under the 

real and hypothetical scenarios may be readily accepted. Such a finding would 

reinforce the credibility of contingent valuation procedures in those 

contexts. 

When CVM and TCM data are combined in the estimation process, in order 

to exploit all of the information available, it has been demonstrated that the 

researcher can systematically accommodate into the estimation process any 

·ior opinion regarding the relative reliability of the two types of data. It 
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is possible to like the two source of preference information without forcing 

the implied utility function to be exactly identical. 

In sum, this research demonstrates the value of combining both 

contingent valuation and travel data whenever possible. Pooling of these two 

types of valuation information allows the advantages of each technique to 

temper the disadvantages of the other. Making the underlying preference 

structure of consumers the core of the analysis facilitates joint modeling of 

the two decisions. It also allows a rigorous assessment of the probable 

responses of individual consumers under a wide range of simulated 

counterfactual scenarios, and permits welfare estimates which are consistent 

with neoclassical microeconomic theory. 
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APPENDIX I 

An Alternative Interpretation of the Contingent Valuation Question 

In this study, an alternative interpretation of the CVM question is 

conceivably possible. Perhaps respondents think of the access fee T as 

implicitly reflecting a price change at their current consumption level, 

q(Y,M), rather than a lump sum tax. They may interpret the question as asking 

whether or not they would choose non-zero access days if the price per day 

went from M to M+(T/q(Y,M)). In this case, the the CVM question would seem to 

be asking respondents whether their post-price change optimal consumption of 

access days would be positive. (I.e. if their optimal number of access days 

was negative, their highest utility would correspond to zero access days, 

providing that preferences are well-behaved.) The results reported in this 

paper have emphasized the "lump sum tax" interpretation, but some results for 

the alternative "price change" interpretation are provided here for 

comparison, since the interpretation does affect the resulting estimates of 

resource value. 

Rather than the utility-difference underlying the discrete response in 

equation (5), this projected optimal consumption level would "drive" the 

discrete choice portion of the model. A "yes" response implies that the 

respondent's optimal consumption of access days under the hypothesized 

scenario is positive. A "no" would mean that optimal consumption would 

actually be negative, but zero days are the fewest which can be consumed. The 

"yes/no" response thus provides censored information regarding the magnitude 

of optimal quantity demanded. Unlike conventional probit models, where the 

location of the distribution is unknown (and therefore set arbitrarily to 

zero), the "threshold" in this case is exactly zero days. As above, g(xi,/3) 

will be adopted as the generic representation for the Marshallian demand 
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function corresponding to the quadratic utility model, where the variables xi 

include income and the "price" of a day of access. As in Section III, u can 

be used as the same (constant) standard error of the conditional distribution 

of quantities demanded. The magnitude of u can be inferred from observed 

consumption under current prices, so the conditional dispersion of the 

unobservable dependent variable in the CVM model is "known" (in contrast to 

the conventional probit situation). 

Providing, then, that it is reasonable to assume that real and 

hypothetical behavior are derived from the identical set of underlying 

preferences, the discrete responses to the CVM question can be used to 

supplement the estimation of the underlying demand parameters. Specifically, 

the expression (f(xi,P)/o) in equations (5) and (7) will be replaced by 

g(xi*,P)/v, where xi* includes current actual income, but price Mis replaced 

by the hypothesized (M+T/q(Y,M)). 

One difference under this interpretation of the CVM question is that 

this specification no longer allows identification of the individual utility 

parameters (P through p
5 

, up to the scale factor, a, of the unobservable1 

dispersion in the latent variable driving the CVM response). Only the demand 

parameters, P *, P *, P4*, and P * and v can be identified. Fortunately, the1 3 5 

utility function is invariant to the scale of the parameters and arbitrarily 

setting P2 - 1 will result in exactly the same implications in terms of 

optimizing behavior. 

The demand parameter estimates for the utility function under this 

fundamentally different interpretation of the CVM question appear in 

Table 1.1. It is not surprising that the point estimates differ 

systematically from their counterparts in the body of the paper. 
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For this version of the joint model, the marginal utilities at the means 

of the data are positive; the price elasticity of demand for access days is 

about -0.035; the income elasticity is 0.11. The implied global optimum is 

20.2 access days and $78212 in median household income. 

While the fitted utility function under this interpretation is 

completely plausible from a theoretical standpoint, the implications of this 

model are quite a bit different from the "lump-sum tax" interpretation. The 

sample mean of the fitted equivalent variations for a complete loss of 

resource access, according to these preferences, is markedly higher, at $7386 

(with standard deviation $2244). Clearly, subsequent surveys will have to be 

very careful in conveying to respondents exactly what type of scenario is 

intended, since the interpretation of the question can make almost an order of 

magnitude difference in the results. 



Table I. l 

Model with CVM Question Interpreted as Price Change 

Parameter Point Estimate 
(asymp. t-ratio) 

(z) 19.80.81* 
(5,366) 

(q) 1.000.82* 

.83* (z 2/2) -2.613 
(-2.573) 

0.03155.84* (zq) 
(1.726) 

(q2/2) -0.06163.85* 
(-18.23) 

u 16.18 
(86.75) 

p 0.08754 
(3,080) 

Max. LogL -15708.12 
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APPENDIX II 

Alternative Direct and Indirect Utility Specifications 

Other linear-in-parameters functions that have been widely used 

empirically include the translog and the generalized Leontief specifications. 

The translog is quadratic in the logarithms of the arguments, but it is 

critical for the basic model in this paper that direct utility levels be 

defined and non-zero when consumption of one commodity (namely, recreation 

days) goes to zero. This disqualifies the ordinary translog model, since this 

function is only defined over strictly positive quantities of each good. 22 

The generalized Leontief specification satisfies the boundary 

requirements, and is generally considered to be a more "flexible" functional 

form than the quadratic. However, while a generalized Leontief indirect 

utility function can readily be differentiated to yield Marshallian demands, 

this similar functional form for the direct utility function yields 

Marshallian demands which are prohibitively complex. 

Empirical research on consumer decisions has sometimes employed the 

Stone-Geary utility function and its corresponding "linear expenditure system" 

demand equations. This specification may at first seem attractive, but it too 

is only appropriate when one is considering interior consumer optima. In this 

case, the utility function would be: 

(II.l) U (z,q) 

The corresponding demand for fishing days will be given by: 

22 One could, of course, shift the utility surface one unit towards the origin 
along the dimension of each good by adding one to each quantity within the 
functional form for the translog direct utility. However, when the direct 
utility function, rather than the indirect utility function, takes on a 
:ranslog functional form, the associated Marshallian demand functions are 
awkward to derive; they are even more awkward if the function is additively 
shifted. 
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(II.2) 

where the price of the composite good, z, has again been normalized to unity. 

This utility function is not linear in parameters, so initial estimates 

cannot be obtained via a conventional maximum likelihood probit package. But 

there is a bigger problem, stemming from the necessity of considering utility 

levels for zero days of access. In particular, the systematic portion of the 

utility difference function, which would form the non-linear "index" function 

for the discrete choice portion of the model, would take the following form: 

(II.3) 

The problem for estimation stems from the last term. The coefficient fi
4 

is 

often fractional. Attempting to take the fi
4 
-root of a negative number can be 

expected to create difficulties. Furthermore, the usual interpretation of fi
3 

is that is represents "subsistence" consumption levels of commodity q, so 

negative values of the parameter itself are unlikely to result, or to be 

defensible intuitively, if they do. As expected, in attempts to estimate this 

model using the data employed in the rest of this study, the algorithm 

persistently failed. 

The quadratic form is a useful local approximation to any arbitrary 

surface. Why not then expand to third-order terms? Several of the quantities 

of interest which are derived from the calibrated model necessitate solving 

the fitted utility function for the value of one of its arguments. The 

standard formula for computing quadratic roots is straightforward to use. The 

formulas for the roots of cubic equations are considerably less easy. (See 

CRC, 1981, p.9.) However, continuing empirical research explores such forms, 
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since the results for quadratic utility specifications suggest that a higher 

degree of parameterization might be supported. 23 

Contemporaneous work by Huppert (1988) employs an alternative strategy 

in the context of a standard simultaneous equations model. He begins with a 

simple functional form (log-linear) for the Marshallian demand specification 

and accepts the corresponding (unnamed) functional form for the underlying 

utility function. Huppert's payment card contingent valuation responses are 

treated as a continuous variable, so that the joint estimation of the utility 

and demand parameters can be accomplished via standard packaged simultaneous 

non-linear least squares algorithms. 

It is interesting to compare the results derived using a quadratic 

direct utility function (and implicitly its associated indirect utility 

function) with those derived for a model that begins with an indirect utility 

function which is quadratic in prices and income. This will imply a very 

different function form for the direct utility function. 

If indirect utility, V, is quadratic in the price of z, the price of q 

(i.e. M), and income Y, the terms in the unitary price of z will be absorbed 

into a constant and into the coefficients on Mand Y. The effective 

functional form will be: 

(II.4) 

The corresponding Marshallian demand for q is given by application of Roy's 

Identity: 

23 The data appear to support cubed terms in z and q, but the optimization 
algorithm cannot seem to settle upon coefficients for the second-order 
interaction terms, z2q and zq2 . The two cubed terms do make a statistically 
significant improvement in the log-likelihood function for the model. 
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(II.5) q(Y,M) - - (8V/8M)/(8V/8Y) 

or, normalizing a 
2 

to unity: 

(II.6) q(Y,M) - (- a* - a 3*M - a 4*Y) / ( 1 + a 4*M + a S*Y) •l 

The respondent will decide to pay lump sum tax T and continue fishing if 

V(M,Y-T) > V(Y), i.e., if 

(II.7) AV(Y,M,T) - f(x1 ,P) - M + (-T)a 1 a 2 

+ a M2/2 + M(Y - T) + a [(Y-T) 2 
- Y2 ]/2 > 0.3 a 4 5 

The equivalent variation, E, which would leave the respondent 

indifferent between fishing and not fishing is given by the quadratic root E 

of: 

(II.8) 

The joint model can be set up as in the text of the paper, except now we 

have f(xi,P) - AV(Y,M,T) and g(x
1 

,~) is replaced by the Marshallian demand 

formula derived in this section. 

The indirect utility approach has the distinct advantage that it does 

not require endogenous determination of post-tax quantity demanded, q(Y-T,M). 

However, the direct utility specification corresponding to this representation 

of preferences is prohibitively awkward to derive, so the intuitive advantages 

of standard indifference curve diagrams are beyond our reach. 

Nevertheless, it is straightforward to estimate the joint model of 

indirect utility differences and the corresponding Marshallian demands. We 

have done so. The parameter estimates appear in Table II.l. 
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Unfortunately, while the direct utility approach used in the body of the 

paper easily satisfies the regularity conditions for a valid utility function, 

this is not the case for the quadratic indirect utility specification used 

here. V(M,Y) should be nonincreasing in Mand nondecreasing in Y. At the 

means of the data, however, the parameters given in Table II.l produce a value 

or 97.87 for av;aM and a value of -5.653 for av;aY. As a consequence of these 

irregularities, the values we compute for the equivalent variation associated 

with a loss of access are nonsensical. In other applications, however, the 

indirect utility approach (possibly using alternative functional forms) may 

prove to be satisfactory, or even preferable, to the direct utility model, 

especially if it is deemed unnecessary to provide empirical indifference 

curves as a visual aid. 

• 
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Table II .1 

Quadatic Indirect Utility Specification 

Parameter Point Estimate 
(asymp. t-ratio) 

.81* (M) 75.50 
(6.642) 

.82* (Y) -4.123 
(-6.667) 

.83* (M2/2) -4936.81 
(-8.237) 

.84* (MY) 11. 59 
(3.374) 

.85* (Y2/2) -0.4929 
(-2.624) 

15.97 
(82.04) 

p 0.2043 
(8.506) 

Max. LogL -15957.66 
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APPENDIX II I 

Estimates in the absence of travel cost data 

In some applications, M may be measured accurately and may be relatively 

constant across fishing days, but in other cases, it may not. Sometimes, the 

researcher may be better off ignoring the questionable information on M, and 

using a simpler "Engel curve" model as opposed to a "demand function" (where 

equation numbers indicate revisions of the original specification): 

( l' ) 6U - U( Y - T, q 1 ) - U( Y, 0) > 0. 

If the data on Mare excluded, z will be identically Y. 

(10') 6U(Y,T) - /31 {[Y-T] - Y} + {3
2 

q1 

+ /33 {[Y-T]2 - y2}/2 + /34 [Y-T]ql + /35 (ql)2/2. 

(11') q(Y) - [ 1 + (/34*) y l / [ - /35* ] . 

( 17') aq/ap - [ /35<P1·/J3Y) - 2f3.<f32+/J.Y) l / (/3512 

8q/8Y - -/34//35 • 

In order to appreciate the benefits of joint estimation with income data 

and numbers of trips but in the absence of travel costs as proxy data for 

prices, one can consider the estimates of the utility function parameters when 

the data on Min this sample are ignored. Table 111.1 displays these results. 

At the means of the data, these fitted parameters imply a utility function 

with positive marginal utility from other goods, but very slightly negative 

marginal utility from access days. This implies that the utility function in 

this case is not globally concave. The saddle point of the utility function 

is located at 12.25 access days and $-47348. Nevertheless, the level curves 

are still convex to the origin. At the means of the data, the price 
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elasticity of demand for access days is -0.125 and the income elasticity is 

0.0682. 

Figure Ill.l shows the effects on the fitted preference function of 

ignoring travel costs in the estimation phase. As benchmarks, this figure 

includes the "basic" indifference curve for a typical respondent (curve E) as 

well as the indifference curve based on the CVM portion (curve A) and the 

demand portion (curve D) of the unrestricted model. Here, however, attention 

should be focused on the indifference curve for a model similar to the basic 

model except that the available data on travel costs are ignored (curve A). 

Even this very "thin" information about market demand pulls the parameter 

estimates a long way away from the unrestricted CVM estimates depicted by 

curve A. Still, it is not clear in this application that the resulting (much 

smaller) equivalent variation estimates will be superior to those generated by 

the CVM portion of the unrestricted model. 
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Table III .1 

Jointly Estimated Model Ignoring 
Travel Costs (i.e. M - O; Only Engel 
Curves from Observed Demand Employed) 

/31 (z) 3.586 
(1.342) 

f32 (q) 0.1259 
(13.19) 

/33 (z 2/2) 0. 7711 
(0.9538) 

/3 4 (zq) 0.005329 
(2.058) 

/35 (q2/2) -0. 008213 
(-22.46) 

16.12 
(81.85) 

p 0.2343 
(9.076) 

log L -15679.17 

http:15679.17
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Figure ]I.I- For respondent with mean income and travel costs, 
effects of ignoring travel costs during estimation 
of utility parameters by modified basic model: 
actual budge·t constraint (C), indifference curve 
from basic model (E), indifference curve from the CV 
portion of the unrestricted model (A), indifference 
curve from demand portion of unrestricted model (D), 
and indifference curve from model estimated without 
travel cost (using only Engel curve information) (B). 
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APPENDIX IV 

An Ad Hoc Reweighting Scheme 

Researchers who work with maximum likelihood estimation of models using 

sample data are by now very familiar with reweighting procedures for scaling 

the influence of different observations to allow the sample to more nearly 

reflect the proportions of each types of person in the entire population. 

Each observation in the sample is represented by one additive term in the log­

likelihood function, each bearing an implicit unit weight. Non-unit weights, 

based on cross-tabulations performed on the population and on the sample, are 

computed by calculating the ration of population proportions to sample 

proportions in each cell of the cross-tabulation. Respondents who represent 

undersampled groups in the population then have their contribution to 

parameter estimation scaled up; oversampled respondents are given weights of 

less than unity to decrease their influence on the final parameter estimates. 

If CVM and TCM responses are treated as equally credible, the two terms 

in the log-likelihood function in (7) corresponding to each type of 

information each receive an implicit unit weight. Fortunately, the 

dismantling of the joint normal error distribution into a conditional times a 

marginal error distribution leaves the error correlation, p, determined 

entirely within the discrete choice CVM portion of the likelihood function. 

It seems feasible, therefore, tQ "undo" the CVM and TCM terms in the 

likelihood function and to scale the influence of each type of information in 

determining the final parameter estimates. 

If, for example, intuition suggests that the available CVM information 

is only half as reliable as the "real" travel cost information, one might 

change the weights on the CVM terms in the log-likelihood function to 2/3 and -· those on the TCM demand terms to 4/3 (so that the weights still sum to two). 



54 

This ratio of the weights will be designated as a "reliability" factor of .5 

for the CVM information. 

Given the maintained hypothesis of a quadratic utility function, one can 

ask just how small the weight on the CVM information would have to become 

before LR tests could just fail to reject the null hypothesis of parameter 

equivalence for the two models. For equal unit weights (relative weight -

1.0) the results for the constrained and unconstrained models from Table II 

are reproduced in Table IV.l. The second pair of columns in that table show 

the consequences of decreasing the relative weight on the CVM information. 

The relative reliability of the CVM information has been decreased to 0.1 and 

it is still possible to reject the hypothesis of common utility parameters. 

It would therefore be quite a "stretch" to bring the utility implications of 

the hypothetical CVM responses into line with observed demand behavior in this 

particular application. 

Still, the observed demand behavior might itself be misleading if the 

true opportunity costs of access are poorly proxied by travel costs. It may 

be inappropriate to expect the preferences implied by the two types of value 

information to be identical. Likewise, the simple quadratic utility function 

and homogeneous preferences may be too restrictive. Therefore, this finding 

does not necessarily refute the equivalence of the true preferences underlying 

these two types of responses. 24 

24 We have e~tended the specification of the direct utility function to 
include cubic terms in z and q. The data are not rich enough to support 
separate parameters for the terms z2q or zq2 

. For the new "basic" model with 
seven utility parameters, the maximized value of the log-likelihood function 
is -15699.41. For the corresponding "unrestricted" model with separate CVM 
and TCM parameters, convergence has not been attained after several hundred 
iterations, but the log-likelihood function has been driven as high as 
-15631.95, which is more than adequate to reject the restrictions. 

http:15631.95
http:15699.41


Table IV.l 

Joint Models with Separate CVM and TCM Parameters 
(CVM and TCM equally credible; CVM discounted by weighting; 

CVM discounted by disproportionate variances) 

Parameter Rel .wt. - 1.0.a Rel. wt. - 0.1 

Basic Unconstr. Basic Unconstr. 
Model Model Model Model 

{31 (z) 3.909 l. 276 7.840 l. 290 
(8.237) (0. 7457) (6.385) (0.2952) 

{32 (q) 0 .1192 28.17 0 .1399 39.43 
(19.55) (2,573) (12.64) (0.9207) 

{33 (z 2/2) -0.1167 1.498 -1. 036 1.494 
(-1.836) (2.834) (-2.986) (1.111) 

/3 4 (zq) 0.002579 2.263 -0.001093 3.157 
(2,006) (2.147) (-0.6008) (0.8039) 

fJ5 (q2/2) -0.006837 -502.3 -0.007060 -983.3 
(-22.80) (-1.311) (-13.47) (-0.4689) 

f31*-f31lf32 75.89 76.03 
(5,756) (7. 703) 

f32*-f32lf32 1.0 1.0 

/33*-/331/32 -10.89 -11. 88 
(-2.428) (-3.567) 

/J 4*-/3 J /32 -0.01749 -0.02129 
(-0.9029) (-1.495) 

{35*-/351/32 -0.04739 -0. 04721 
(-14.97) (-20.09) 

'U 16.01 15.97 15.98 15.97 
(81. 98) (82.04) (110.5) (110.6) 

p 0.2315 0.2505 0.2324 0.2495 
(9.086) (9.749) (4.030) (4.166) 

max Log L -15708.17 -15640.61b -25938.13 -25920.04c 

a "Rel. Wt, II is the size of the weight on the hypothetical CVM 
information relative to the weight on the observed demand behavior. 

b LR test for hypothesis of same /3 parameters for CVM and TCM utility 
x2functions is 115.12 (when the 5% critical value of the test 

statistic is 9.49 and the 1% critical value is 13.28). 

c LR test for same /3 parameters is 36.1; still rejects hypothesis. 

http:25938.13
http:15708.17
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APPENDIX V 

Implementing These Prototype Models in Other Applications 

The illustration in this paper pertains to the valuation of a particular 

recreational fishery. However, the joint model developed here is potentially 

applicable to the valuation of any non-market good where consumers would have 

to incur varying travel costs in order to engage in the process of 

consumption. Individually, the travel cost method and the contjngent 

valuation methods each have shortcomings. Implications drawn from their 

combined evidence are likely to be much more robust. 

While relatively good, the data used in this paper are still less than 

ideal. The specific implications of the fitted models described here must be 

judged accordingly. But this research has provided vital groundwork for 

future studies. 

First, the sampling procedures used in the gathering of the data 

employed in this study were not ideal. In particular, rotating sites for the 

survey were chosen, and virtually everyone who passed during the 10 a.m. to 5 

p.m. period was interviewed. This precludes "outgoing" surveys for avid 

anglers who may be out well before 10 a.m., although many of these anglers 

would be intercepted upon their return. A more serious problem is that we 

cannot identify respondents who have been interviewed more than once. At 

best, we have a reasonable sample of fishing trips, not anglers, so the 

estimated preferences may be biased towards those of frequent anglers. This 

problem cannot be remedied with this data set. 

It would be highly desirable to have individual-specific measures of 

income (and other sociodemographic variables). Census zip code means are 

helpful, but much information is lost in using group averages as proxies for 
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the true variables. If at all possible, the survey instrument should elicit 

these data for each respondent. 

The contingent valuation question should be phrased so as to make it 

clear whether the hypothesized change is intended to be a lump-sum change in 

income (as modeled in the body of this paper), or a change in relative prices 

(as explored in Appendix I). This information is vital to the utility­

theoretic formulation of the estimating model, and great care must be taken to 

ensure that the CVM question is completely unambiguous. 

The present survey asks about travel costs for the current fishing day. 

What the model requires is typical costs for a typical fishing trip, or better 

yet, enough information to construct the actual schedule of opportunity costs 

as they increase with number of access days. This would make the travel cost 

portion of the model more reliable. The current model also must presume that 

individuals fish most of the time at the same location. Much more 

sophisticated analyses will be required in order to introduce site choice 

modeling into this framework. 25 

Respondents could be asked specifically about how sure they are 

concerning their hypothetical responses to the CVM and travel cost questions. 

This information could be incorporated into the weighting scheme for the auto­

validation of the CVM data. 

Option and existence values cannot be captured with the current data 

set. Selection problems in the assessment of recreation demand have received 

considerable attention recently (e.g. Smith, 1988). A random sample of 

households in the target population could be contacted by telephone. If they 

do not currently consume access days, quantity demanded will simply be zero. 

25 At present, site choice modeling has been pursued in a largely atheoretic 
multiple discrete choice framework. Blending the two approaches might have to 
wait for further computer software and hardware innovations. 

• 
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Travel costs to relevant sites could still be elicited and appropriate CVM 

questions could be formulated to allow extension of this modeling framework to 

non-use demands. 
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ABSTRACT 

In an extensive earlier paper (Cameron, 1988a) we developed a fully 
utility-theoretic model for the demand for recreational fishing access days, 
applied to a sample of 3366 Texas Gulf Coast anglers. The model employs 
"contingent valuation" and "travel cost" data, jointly, in the process of 
calibrating a single utility function defined over fishing days versus all 
other goods and services. The theoretical specification (quadratic direct 
utility) and the econometric implementation will not be reproduced here. In 
this application, we supplement the original data set with information from 
the ongoing Resource Monitoring Program of the Texas Department of Parks and 
Wildlife. The RMP concerns all species, but we focus on the abundance of the 
primary game fish (red drum) across the eight major bay systems and over time. 
This improves upon earlier studies which·utilize endogenous actual catch 
information. We allow the para.meters of the underlying utility function to 
vary systematically with exogenously measured abundance to assess the impact 
of this important resource attribute upon the demand for access days. We use 
empirical estimates (and counterfactual simulations) of equivalent variation 
as measures of the social value of the fishery under current conditions and 
under alternative fish stock scenarios. 

* This research was supported in part by EPA cooperative agreement 
#CR-814656-01-0. The raw data were provided by Jerry Clark of the Texas 

Department of Parks and Wildlife and by ICSPR (the Inter-University Consortium 
for Social and Political Research). 
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The Effects of Variations in Gamefish Abundance 

on Texas Recreational Fishing Demand: Welfare Estimates 

1. Introduction 

In Cameron (1988a), we derived and estimated the parameters of a 

quadratic utility function for a trimmed sample of Texas Gulf Coast 

recreational fishermen. The utility function, in its simplest form, is 

defined over fishing access days and all other goods and services (income). 

The novelty of that paper is primarily its utilization of a fully utility­

theoretic framework for analyzing both "contingent valuation" (CV) data 

(respondents anticipated behavior under hypothetical scenarios) and "travel 

cost" data (respondents' actual behavior in the consumption of access days). 

The latter form of data gives us a feel for the consequences of small local 

variations in access prices; the former provides additional information, 

however hypothetical, regarding more drastic changes in the consumption 

environment. 

The earlier paper develops the basic specification and goes on to 

consider several extensions to that basic model: discounting the influence of 

the CV data in the estimation process; estimation without travel cost data 

(only income and consumption); and the accommodation of heterogeneous 

preferences. In the last category, we demonstrated that it is straightforward 

to adapt these models to allow for systematic variation in the preference 

function according to geographical or sociodemographic factors. 

In this paper, we will again employ heterogeneous utility functions, but 

we will only be able to exploit a subset of the data. We wish to concentrate 

upon the potential effects of respondents' perceptions about resource quality 

on their demand (valuation) of access to the recreational fishery. 
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Readers are referred to Cameron (1988a) for a vital preface to this 

research. We avoid extensive duplication in this paper by presuming readers 

are familiar with the findings of the earlier paper. 

2. Outline of the Specification 

As before, we will adopt the quadratic family of utility functions, for 

the same variety of reasons explained in the earlier paper. We will let U 

denote direct utility, Y will be income, and M will be current fishing day 

expenditures ("travel costs", roughly). Also, q will be the number of fishing 

days consumed and z (- Y - Mq) will denote consumption of other goods and 

services. We will let A denote the abundance of red drum, the primary 

gamefish species. The quadratic direct utility function will thus take the 

form: 

(1) 

where the fij are no longer constants, but will be allowed to vary linearly 

with the level of A: fi/ - fij + -yj A, J-1, ... ,5. 

3. ~ 

The data used for this model consist of a 3318 observation subset of the 

3366 observations used in the earlier paper. The data come from an in-person 

survey conducted by the Texas Department of Parks and Wildlife primarily 

between May and November of 1987 .(although there are a few observations for 

the first days of December). The primary purpose of the survey is to count 

numbers and species of fish making up the recreational catch, but during this 

particular period, additional economic valuation questions were posed to 

respondents. 

- In particular, the contingent valuation question took the form: "If the 

total cost of all your saltwater fishing last year was more, would you 

have quit fishing completely?" At the start of each day, interviewers 
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randomly chose a starting value from the list $50, $100, $200, $400, $600, 

$800, $1000, $1500, $5000, and $20,000. In addition, respondents were queried 

regarding actual market expenditures during the current trip: "How much will 

you spend on this fishing trip from when you left home until you get home?" 

This is as close as we can get to a measure of "travel cost." 

The same basic criteria for deleting particular observations are applied 

in this paper as are described in Cameron (1988a). The same caveats regarding 

the sample also apply in this case. The sample employed in this study is 

slightly smaller only because our gamefish abundance data are drawn from a 

separate source: the Resource Monitoring Program of Texas' Department of 

Parks and Wildlife. We have their data only for April through the end of 

November, so the few December interviews in the survey sample were simply 

dropped. 

The Resource Monitoring Program uses several types of fishing gear: gill 

nets, bag seines, beach seines, trawls, and oyster dredges. The Program 

involves vast numbers of samples being drawn across the entire Gulf Coast. 

For 1983-1986, we had over 23,000 samples, with complete records of the 

numbers of individuals of each species collected in the sample. Since low 

temperatures in 1984 resulted in a substantial fish kill along the Texas Gulf 

Coast, we utilize only those samples drawn in 1985 and 1986 to construct our 

abundance measures. Also, only gill nets capture the types of fish that 

recreational anglers would be seeking, so we use only the catch using this 

gear type. Still, we have roughly 5400 samples to work with. 

One problem, however, is that gill nets were apparently not used during 

the months of July and August. So we must fill in for missing data for these 

two months. Fortunately, for each month and each of the eight major bay 

systems along the coast, we typically have between 40 and 80 samples in each 

of the two years. Once we have computed mean "catch per unit effort" for each 

month and each bay, the time series for the April-November data is fairly 
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smooth for the seven most usual species of game fish (red drum, black drum, 

spotted seatrout, croakers, sand seatrout, sheepshead, and founder). We have 

used quadratic approximations for the May-October range of the data to fill in 

abundance estimates for the two missing months. 

Preliminary atheoretic logit models based upon the contingent valuation 

data suggest that among the top three recreational target species--red drwn, 

spotted seatrout, and flounder--only variations in the number of red drum have 

a statistically significant effect upon the implied value of a recreational 

fishing day. Consequently, we elect to employ only the abundance of red drwn 

as a control for resource quality in this study. 

The means and standard deviations for both the full sample of 3366 and 

the subset of 3318 responses are given in Table l. As can be seen, the subset 

is still representative of the larger sample. 

4. Utility Parameter Estimates 

To assess whether or not the preference function differs systematically 

with the level of gamefish abundance, we estimate two models. First, we re­

estimate the "basic" joint model from the earlier paper using just the subset 

of 3318 observations. This specification constrains the p coefficients to be 

identical across all levels of gamefish abundance. Then we generalize the 

model by allowing each p to be a linear function of A, which involves the 

introduction of five new a parameters. Since the "basic" specification is a 

special case of the model incorporating heterogeneity, a likelihood ratio test 

is the appropriate measure of whether A "matters." Results for the two models 

are presented in Table 2. The LR test statistic is 8.18. The 5% critical 

value for a x2 (5) distribution is 11.07, and 10% critical value is 9.24. Thus 

the LR test just fails to reject independence of the utility function from the 

abundance of gamefish. (However, if one were to generalize the utility 

function to include only the interaction term zA and its coefficient 1
1 

, and 



Table l 

Descriptive Statistics for Full Sample and "Gamefish Abundance" Subset 

Variable Description Full Sample Subset 
(n - 3366) (n - 3318) 

y median household income for respondent's 3 .1725 3. 2772 
5-digit zip code (in $10,000) (1980 Census (0.6712) (0.6705) 
scaled to reflect 1987 income; factor-1.699) 

M current trip market expenditures, assumed 0.002915 0.002927 
to be average for all trips (in $10,000) (0.002573) (0.002576) 

T annual lump sum "tax" proposed in CV 0.05602 0.05608 
scenario (in $10,000) (0.04579) (0.04576) 

q reported total number of salt water fishing 17.40 17.37 
trips to sites in Texas over the last year (16.12) (16.14) 

I indicator variable indicating that respondent 0.8066 0. 8071 
would choose to keep fishing, despite tax T (0.3950) (0.3946) 

A Resource Monitoring Program, catch per unit 0.1487 
effort of red drum (gill nets) by month and (0.06161) 
by major bay system 



Table 2 

Parameter Estimates for "Basic" 
and "Gamefish Abundance" (A) Models 

Parameter Basic Model Abundance 

(n - 3318) 

(z) 3.192.81 
(7. 968) 

(q) 0.1191.82 
(19.18) 

.83 (z 2/2) -0.08953 
(-1.056) 

(zq) 0.002661.84 
(1. 967) 

(q2/2) -0.006862.85 
(-22.16) 

(zA)-Y1 

(qA)-Y2 

-Y3 (z 2A/2) 

(zqA)-Y4 

-Y5 (q2A/2) 

ua 16.03 
(81.46) 

p 0.2354 
(9.187) 

Log L -15485.96 

Model 
(n - 3318) 

5.039 
(6.266) 

0 .1133 
(10.87) 

-0.2622 
(-1.322) 

0.004570 
(1.164) 

-0.006920 
(10.31) 

-12.85 
(-2.390) 

0.03166 
(0.5281) 

1.191 
(0.6256) 

-0.01112 
(-0.4287) 

0.0004552 
(0 .1137) 

16.03 
(81. 38) 

0.2343 
(9.033) 

-15481. 87b 

a See Cameron (1988a) for discussion of the v and p parameters.
b x2 test statistic is 8.18; at 10% level, x2 (5) - 9.24. 

http:15485.96
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none of the other variables or~ coefficients, the incremental improvement in 

the fit of the model would be statistically significant. The 0.5 percent 

critical value of a x2 (1) distribution is only 3.84.) 

5. Implications of Fitted Parameter Estimates 

In the earlier paper, several properties of the estimated models were 

recommended for attention. Here, the properties of the fitted utility 

function vary across levels of gamefish abundance, A. Consequently, we will 

examine the fitted utility function at the subsample mean of A ( ) as 

well as at several other benchmark levels. It is entirely possible to compute 

values for several interesting quantities for each individual in the sample. 

Here, however, we will focus initially on the "mean" consumer. 

Table 3 summarizes several properties of the fitted utility function for 

the several levels of gamefish abundance. As expected, changes in gamefish 

abundance substantially affect the value respondents place on access to this 

fishery. Value in this case is measured several ways. Compensating variation 

(CV) is the amount of additional income a respondent would require, if denied 

access to the resource, to make their utility level the same as that which 

could be achieved with the optimal level of access. Equivalent variation (EV) 

is the loss of income which would leave the respondent just as much worse off 

as would a denial of access. We also compute the equivalent variation for 

partial reductions in the level of access. 

A visual depiction of the effect of gamefish abundance on the 

preferences of anglers (defined over fishing days and all other goods) is 

provided in Figure 1 for A - 0.1 and for A - 0.2. As anticipated, 

indifference curves for A - 0.2 have considerably greater curvature, implying 

that anglers are less willing to trade off fishing days for other goods when 

gamefish abundance is higher. In contrast, with lower abundance, the-
curvature is considerably less, implying that under these circumstances, 
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anglers consider other goods to be relatively better substitutes for fishing 

days. For example, when A - 0.1, the same change in the relative price of a 

fishing day will lead to a larger decrease in the optimal number of days 

consumed than when A - 0.2. 

In addition to the properties of the utility function and its 

corresponding Marshallian demand functions, we might be interested in 

calculating the derivatives of these Marshallian demand functions with respect 

to the level of the A variable. The Marshallian demand function for the model 

with heterogeneity is: 

(2) q - [ (/J2+-y2A) + (/J4+-Y4A)Y · (/Jl+-ylA)M • (/J3+-Y3A)MY ] / 

2 (/J4+-y4A)M - (/33 +-y3A) Mz • (/35+-y5A) ] 

Figure 2 plots the inverses of these fitted Marshallian demand functions 

(with access days q on the vertical axis, and the price of access on the 

horizontal axis). These demand curves are drawn for an individual with mean 

income Y and mean travel costs M. 

As A varies from 0.0 to 0.1 to 0.2 (compared to the actual mean value of 

0.1487), these demand curves shift out further and further. Observe that, 

although the demand function can be highly non-linear in M, the fitted values 

of the parameters (for these data and in combination with the sample mean 

angler characteristics) happen to yield demand functions which are almost 

linear. 

Notice that variations in A, in the fitted model, have rather dramatic 

effects upon the implied "choke price" (reservation price) for access to the 

resource: the greater the gamefish abundance, the higher the choke price. 

This can be interpreted as implying that with greater levels of preferred 

gamefish abundance, higher and higher prices for access would be willingly 

paid before individuals will cease entirely to go fishing. 
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Table 3 also gives the utility maximizing number of fishing days 

demanded, q, at the sample mean values of Mand Y, as a function of the 

changing levels of gamefish abundance, A. Note that this optimal number of 

days is not very sensitive to A. This is a consequence of the fact that 

changes in A seem to have a substantial effect upon the curvature of 

indifference curves; they have less of an effect on their location. 

The variation in the configuration of preferences, and the obvious 

shifts in the demand curves as a function of A imply that the social value of 

access to the fishery will depend upon the level of gamefish abundance at 

fishing sites. To illustrate this sensitivity, we can concentrate upon the 

equivalent variation for a complete loss of access to the resource, as a 

function of A, for a representative consumer with sample mean levels of Y and 

M. These variations can be detected by scanning across the columns in Table 

3. Table 3 suggests that for a typical angler, improving gamefish abundance 

(red drum only) by a factor of 1.5 times its current level of A - .1487 would 

increase the annual value of access to the fishery by about 36% and improving 

abundance by 1.2 would increase access values by about 12%. In contrast, 

decreasing abundance to 0.8 of its current level would decrease the annual 

value of access by about 10%; decreasing abundance to 0.5 of its current level 

would decrease access values by 22%. If it is safe to extrapolate these 

estimates (based on functionally "local" variations in actual abundance 

levels) to a scenario where red drum are completely eliminated, the loss in 

access values would be about 37%. (Remaining value would derive from the 

catch of other species, and from the non-catch utility derived from fishing 

days.) 

6. Discussion and Conclusions 

As mentioned above, a full explanation of the empirical innovations 

embodied in the use of a joint contingent valuation/travel cost model for 



Table 3 

Properties of the Fitted Utility Function (for "Hean" Consumer) 
(n - 3318; valid sample with available abundance data) 

Property at l.5(mean A) 

Utility Function 
Parameters: 

/J1* 2.173 
/J2* 0.1204 
/J3* 0.03545 
/J4* 0.002089 
/J5* -0.006818 

Function Kaximwa: 

z* -528.08 
q* -144.18 

De-nd Elasticity wrt 

price -0.05569 
income 0.05568 

Optimal nuaber of 17.65 
Accass days (q) 

Compensating Variation 
for Complete Loss of $4873 
Accesa 

Equivalent Variation 
for Co� plete Losa of $4796 
Access 

EV for Access Restricted 
to a of Current Fitted Level, 
for a -

0.1 $3885 
0.2 3069 
0.3 2350 
0.4 1726 
0.5 1199 
0.6 767 
0.7 431 
0.8 192 
0.9 48 

at l.2(mean A) 

2.746 
0.1190 

-0.04961 
0.002586 

-0.006838 

57.40 
39.10 

-0.06598 
0.07288 

17.45 

$4046 

$3943 

$3196 
2527 
1936 
1423 

988 
633 
356 
158 
40 

at mean A 

3.129 
0.1180 

-0.08504 
0.002916 

-0.006852 

37. 93 
33. 37 

-0.07278 
0.08428 

17.31 

$3620 

$35H 

$2850 
2254 
1727 
1270 

882 
565 
318 
141 

35 

at 0.8(mean A) 

3. 511 
0.1171 

-0.1205 
0.003247 

-0.006865 

29.98 
31. 23 

-0.07915 
0.09529 

17.17 

$3266 

$3164 

$2566 
2029 
1555 
1143 

795 
509 
286 
127 

32 

at 0.5(mean A) at A - 0 

4.084 5.039 
0.1157 0.1133 

-0.1736 -0.2622 
0.003743 0.004570 

-0.006886 -0.006920 

24.16 19.73 
29.93 29.40 

-0.08919 -0. 1063 
0.1121 0.1405 

16.97 16.62 

$2835 $2299 

$2741 $2221 

$2223 $1801 
1758 1425 
1348 1092 

991 803 
689 558 
441 357 
248 201 
llO 89 

28 22 
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valuing a recreational fishery is given in Cameron (1989). This paper 

represents a specific generalization of the model which allows the parameters 

of the direct quadratic utility function to vary systematically with the level 

of just one species of gamefish. We have selected the most popular gamefish 

species (red drum). A more elaborate model, of course, could let the utility 

parameters vary systematically with any number of characteristics of the 

resource, not just the abundance of a single species of gamefish. 

Since we concentrate only upon red drum abundance, even the reduction to 

zero of red drum stocks (in the most extreme simulation described in the last 

section) will not lead everyone to cease fishing entirely. Other species of 

gamefish will remain. In this specification, variations across location and 

month in red drum abundance may be correlated with the abundance of other 

species. If this is the case, our red drum abundance measure will be 

capturing variations in the abundance of more than one species. Nevertheless, 

we do not capture the distinct effects of any seasonal or location variation 

in species abundance that is uncorrelated with red drum abundance. 

The simulated variations in red drum abundance used as illustrations in 

this paper are by far the coarsest simulations that could be generated by a 

model such as this. We have concentrated solely on variations in abundance as 

they would affect a representative consumer with mean income and travel costs. 

However, since each individual's estimated preference function depends on the 

abundance of red drum during the ~onth and in the bay system in which they are 

fishing, the model is perfectly able to simulate the impact upon the value of 

fishery access to individuals of forecasted changes in red drum abundance 

either by month or by geographical area. As the configurations of 

individuals' indifference curves change, so will their optimal number of 

-is\- :.ng days and the equivalent variation associated with partial or complete 

loss of access. 

http:is\-:.ng
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The intent of this paper, therefore, is to illustrate the versatility of 

the constrained, jointly estimated contingent valuation/travel cost model for 

recreational fisheries valuation. It is satisfying to find thoroughly 

plausible changes in economic quantities as a consequence of exogenous 

variations in resource characteristics. This generalization of the "common 

utility function" model to a "systematically varying utility function" model 

should serve as a very useful prototype for subsequent research. 
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ABSTRACT 

In an extensive earlier paper (Cameron, 1988a) we developed a fully 
utility-theoretic model for the demand for recreational fishing access days, 
applied to a sample of 3366 Texas Gulf coast anglers. The model employs 
"contingent valuation" and "travel cost" data, jointly, in the process of 
calibrating a single utility function defined over fishing days versus all 
other goods and services. The theoretical specification (quadratic direct 
utility) and the econometric implementation will not be reproduced here. 
Instead, we focus specifically on the implications of an extension to this 
model. We employ a subset of 506 observations from the same survey for which 
respondents were asked to indicate their ex pose subjective assessment of the 
environmental quality at the fishing site. We allow the parameters of the 
underlying utility function to vary systematically with the perceived level of 
environmental quality to assess the impact of environmental factors on the 
demand for access days. Treating the 10-point response scale for 
environmental quality (E) as a continuous variable, we find (among other 
results) that for the average angler improving E from one standard deviation 
below the mean to one standard deviation above increases the value of the 
fishery (measured by equivalent variation) by about $1400 (about 501). 

* This research was supported in part by EPA cooperative agreement 
#CR-814656-01-0. 



2 

Using the Basic "Auto-validation" Model 
to Assess the Effect of Environmental Quality 

on Texas Recreational Fishing Demand 

1. Introduction 

In Cameron (1988a), we derived and estimated the parameters of a 

quadratic utility function for a trimmed sample of Texas Gulf Coast 

recreational fishermen. The utility function, in its simplest form, is 

defined over fishing access days and all other goods and services (income). 

The novelty of that paper is primarily its utilization of a fully utility­

theoretic framework for analyzing both "contingent valuation" (CV) data 

(respondents anticipated behavior under hypothetical scenarios) and •travel 

cost" data (respondents' actual behavior in the consumption of access days). 

The latter form of data gives us a feel for the consequences of small local 

variations in access prices; the former provides additional information, 

however hypothetical, regarding more drastic changes in the consumption 

environment. 

The earlier paper develops the basic specification and goes on to 

consider several extensions to that basic model: discounting the influence of 

the CV data in the estimation process; estimation without travel cost data 

(only income and consumption); and the accommodation of heterogeneous 

preferences. In the last category, we demonstrated that it is straightforward 

to adapt these models to allow for systematic variation in the preference 

function according to geographical or sociodemographic factors. 

In this paper, we will again employ heterogeneous utility functions, but 

we will only be able to exploit a subset of the data. We wish to concentrate 

upon the potential effects of respondents' perceptions about enviro1111ental 

quality on their demand (valuation) of access to the recreational fishery. 
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Readers are referred to Cameron (1988a) for a vital preface to this 

research. We avoid extensive duplication in this paper by presuming readers 

are familiar with the findings of the earlier paper. 

2. Outline of the Specification 

As before, we will adopt the quadratic family of utility functions, for 

the same variety of reasons explained in the earlier paper. We will let U 

denote direct utility, Y will be income, and F will be current fishing day 

expenditures ("travel costs", roughly). Also, q will be the number of fishing 

days consumed and z (- Y - Fq) will denote consumption of other goods and 

services. We will let E denote subjective environmental quality. The 

quadratic direct utility function will thus take the form: 

(l) 

where the~. are no longer constants, but will be allowed to vary linearly
J 

with the level of E: ~j* - ~j + ~j E, j-1, ... ,5. 

3. ~ 

The data used for this model consist of a 506 observation subset of the 

3366 observations used in the earlier paper. The data come from an in-person 

survey conducted by the Texas Department of Parks and Wildlife between May and 

November of 1987. The primary purpose of the survey is to count numbers and 

species of fish making up the recreational catch, but during this particular 

period, additional economic valuation questions were posed to respondents. 

In particular, the contingent valuation question took the form: "If the 

total cost of all your saltwater fishing last year was __ more, would you 

have quit fishing completely?" At the start of each day, interviewers 

randomly chose a starting value from the list $50, $100, $200, $400, $600, 
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$800, $1000, $1500, $5000, and $20,000. In addition, respondents were queried 

regarding actual market expenditures during the current trip: "How much will 

you spend on this fishing trip from when you left home until you get home?" 

This is as close as we can get to a measure of "travel cost." 

The same basic criteria for deleting particular observations are applied 

in this paper as are described in Cameron (1988a). The same caveats regarding 

the sample also apply in this case. The sample employed in this study is 

smaller only because the ex post subjective environmental quality questions 

were asked of only approximately one-eighth of the full sample. This question 

was just one of eight rotating questions on special issues. 

The precise wording of the environmental quality question was "To what 

extent were you able to enjoy unpolluted natural surroundings [during this 

fishing trip]?" Responses were given on a Likert-type scale of 1 to 10, with 

10 being highest. The means and standard deviations for both the full sample 

of 3366 and the subset of 506 responses are given in Table 1. As can be seen, 

the subset is fairly representative of the larger sample. 

4. Utility Parameter Estimates 

To assess whether or not the preference function differs systematically 

with the level of environmental quality, we estimate two models. First, we 

re-estimate the "basic" joint model from the earlier paper using Just the 

subset of 506 observations. This specification constrains the P coefficients 

to be identical across all levels of environmental quality. Then we 

generalize the model by allowing each p to be a linear function of E, which 

involves the introduction of five new a parameters. Since the "basic" 

specification is a special case of the model incorporating heterogeneity, a 

likelihood ratio test is the appropriate measure of whether E "matters." 

Results for the two models are presented in Table 2. The LR test statistic is 



Table l 

Descriptive Statistics for Full Sample and "Environmental" Subset 

Variable Description 

y median household income for respondent's 
5-digit zip code (in $10,000) (1980 Census 
scaled to reflect 1987 income; factor-1.699) 

F current trip market expenditures, assumed 
to be average for all trips (in $10,000) 

T annual lump sum "tax" proposed in CV 
scenario (in $10,000) 

q reported total number of salt water fishing 
trips to sites in Texas over the last year 

I indicator variable indicating that respondent 
would choose to keep fishing, despite tax T 

E Likert-scale subjective ex post assessment 
of current environmental quality at site 

Full Sample 
(n - 3366) 

3 .1725 
(0.9995) 

0.002915 
(0.002573) 

0.05602 
(0.04579) 

17.40 
(16.12) 

0.8066 
(0.3950) 

Subset 
(n - 506) 

3.1681 
(1. 0134) 

0.003255 
(0.002767) 

0.05661 
(0. 04 770) 

15.78 
(15.32) 

0.7905 
(0.4073) 

8.073 
(2.177) 



Table 2 

Parameter Estimates for "Basic" 
and "Environmental" Models 

Parameter 

(z).81 

(q)/32 

/33 (z 2/2) 

(zq)/34 

(q2/2)/35 

...,1 (zE) 

...,2 (qE) 

(z 2E/2)"Y3 

(zqE)"Y4 

(q2E/2)"Y5 

Va 

p 

Log L 

Basic Model 

1. 381 
(1.080) 

0 .1109 
(6.635) 

0.6173 
(1.526) 

0.008387 
(1.990) 

-0.008041 
(-8.611) 

15.13 
(31. 79) 

0.2929 
(4.631) 

-2339.80 

Environmental 
Model 

1. 218 
(0.6385) 

0.04825 
(1.051) 

1.081 
(1.106) 

0.006219 
(0.4773) 

-0.003755 
(-1.383) 

0.07805 
(0.4148) 

0.007991 
(1.389) 

-0.07346 
(-0.6631) 

0.0003104 
(0.1882) 

-0.0005533 
( -1. 664) 

15.15 
(31. 76) 

0.2975 
(4.637) 

-2334.69 

• See Cameron (1988a) for discussion of addition&l parameters. 
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10.22. The SI critical value for a x2 (5) distribution is 11.07 and the 10% 

critical value is 9.24. Thus, the improvement in the log-likelihood just 

misses being statistically significant at the 5% level for this small sample. 

Nevertheless, this difference seems large enough to warrant pursuing the 

implications of the fitted model. In any case, we can be confident that the 

statistical significance would improve with larger samples. 

s. Implications of Fitted Parameter Estimates 

In the earlier paper, several properties of the estimated models were 

recommended for attention. Here, the properties of the fitted utility 

function vary across levels of environmental quality, E. Consequently, we 

will evaluate the function at the subsample mean of E (8.0731) as well as at 

the maximum value of E (10) and at a lower benchmark value (6), which 

represents approximately one standard deviation below the mean. It is 

entirely possible to compute values for several interesting quantities for 

each individual in the sample. Here, however, we will focus on the "mean" 

consumer. Note that we have elected to use the mean values for income and 

fishing day expenses computed for the entire sample of 3366, on the 

presumption that the means in this sample are more typical of the mean for the 

population as a whole. (This is arbitrary; the results will be similar for 

the "mean" consume in the smaller subset.) 

Table 3 summarizes several properties of the fitted utility function for 

the three benchmark levels of environmental quality. As expected, decreases 

in enviromaental quality substantially affect the value respondents place on 

access to this fishery. Value in this case is measured several ways. 

Compensating variation is the amount of additional income a respondent would 

require, if denied access to the resource, to make their utility level the 

same as that which could be achieved with the optimal level of access. 



Table 3 

Properties of the Fitted Utility Function 

Property 

Utility Function 
Parameters: 

/31* 
/32* 
/33* 
/34* 
/35* 

Function Saddle 
Point: 

z* 
q* 

Demand Elasticity wrt 

price 
income 

Compensating Variation 
for Complete Loss of 
Access 

Equivalent Variation 
for Complete Loss of 
Access 

EV for Access Restricted 
to a of Current Fitted Level, 
for a -

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

E - 10 

1.998 
0.1282 
0.3467 
0.009324 

-0.009288 

-5.973 
7.802 

-0.06034 
0.1623 

$3742 

$3741 

$3018 
2376 
1814 
1329 

921 
588 
330 
147 

37 

E - 8.0731 

1.848 
0 .1128 
0.4883 
0.008726 

-0.008222 

-3.954 
9.518 

-0.07351 
0.1610 

$2970 

$2997 

$2418 
1903 
1453 
1064 

737 
471 
265 
117 

29 

E - 6 

1.686 
0.09619 
0.6406 
0.008082 

-0.007075 

-2.764 
10.44 

-0.09211 
0.1593 

$2283 

$2314 

$1867 
1470 
1122 

823 
570 
364 
205 

91 
23 
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Equivalent variation is the loss of income which would leave the respondent 

just as much worse off as would a denial of access. We also compute the 

equivalent variation for incomplete reductions in the level of access. 

A visual depiction of the effect of environmental quality on the 

preferences of anglers (defined over fishing days and all other goods) is 

provided in Figure l for E - 10 (which can be considered "good" environmental 

quality) and for E - 6 ("relatively poor" environmental quality). As 

anticipated, indifference curves for E - 10 have considerably greater 

curvature, implying that anglers are less willing to trade off fishing days 

for other goods when the environmental quality is high. In contrast, with 

poorer environmental quality, the curvature is considerably less, implying 

that under these circumstances, anglers consider other goods to be relatively 

better substitutes for fishing days. For example, when E - 6, the same change 

in the relative price of a fishing day will lead to a larger decrease in the 

optimal number of days consumed than when E - 10. 

In addition to the properties of the utility function and its 

corresponding Marshallian demand functions, we might be interested in 

calculating the derivatives of these Marshallian demand functions with respect 

to the level of the E variable. The Marshallian demand function for the model 

with heterogeneity is: 

(2) q (P2+72E) + (P4+7 4E)Y - (P1+--,1E)F - (P3+-y3E)FY] / 

2(P4+-y4E)F - (P3+73E) F2 - CP5+--r5E) ] 

Table 4 gives the utility maximizing number of fishing days demanded at the 

sample mean values of F and Y, as a function of the subjective level of 

environmental quality, E. Locally, there are only very slight differences in 

these fitted demands as a consequence of environmental changes. 
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Table 4 

Optimal Demand, Derivatives and Elasticities 

E q* 

l 14. 72 
2 14.97 
3 15.18 
4 15.34 
5 15.48 
6 15.60 
7 15.70 
8 15.78 
9 15.86 
10 15.92 

wrt Environmental Quality 
(evaluated at mean Y and F, n -

8q/8E (8q/8E)(E/q*) 

0.2876 0.01953 
0.2260 0.03018 
0.1822 0.03601 
0.1501 0.03912 
0.1257 0.04060 
0.1068 0.04110 
0.09193 0.04100 
0.07993 0.04052 
0.07014 0.03981 
0.06204 0.03896 

3366) 

EV for complete 
loss of access 

$ 1046 
1264 
1499 
1751 
2022 
2314 
2630 
2971 
3340 
3741 
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We may be especially interested in the derivative of this fitted demand 

function with respect to E. It will depend not only on F and Y, but also on 

the level of E itself: 

(3) 8q/8E - { [2(P.+-,.E)F • (P3+..,3E) f'2 · (P5+..,5E)) [-,2 + ..,_Y · -ylF • -Yi-YJ 

• [ ({J +-y E) + (/J +-y E)Y • (/J +-y E)F • (fJ3+-y3E)FY]
2 2 4 4 1 1

[ 2 -y 4 F - --, 3f2 . 'Y 5] ) / [ 2 ( fJ 4+--, • E) F - ( /J3+-y3E) f2 - (fJ 5+-y 5 E) ]z . 

This formula is untidy, but can be readily computed. Table 4 gives the values 

of this derivative as well as the corresponding elasticity, (8q/8E)(E/q), for 

the full range of integer values of E which are possible in the data. 

A visual display of the effects of changes in E upon the configuration 

of the fitted inverse demand curve for an individual with mean Y and Fis 

presented in Figure 2. Observe that, although the demand function can be 

highly non-linear in F, the fitted values of the parameters (for these data 

and in combination with the sample mean angler characteristics) yield demand 

functions which are almost linear. Each fitted demand curve passes through 

the value of F and the corresponding particular fitted value of q* (for each 

E) for this representative consumer. Notice that variations in E, in the 

fitted model, have rather dramatic effects upon the implied choke price for 

access to the resource: the better the environmental quality, the higher the 

choke price. 

The variation in the configuration of preferences, and the obvious 

shifts in the demand curves as a function of E imply that the social value of 

access to the fishery will depend upon the subjective level of environmental 

quality at fishing sites. To illustrate this sensitivity, we have computed 

the equivalent variation for a complete loss of access to the resource, as a 

function of E, for a representative consumer with sample mean levels of Y and 
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F. These equivalent variations are also given in Table 4. Bear in mind that 

the range of E from 6 to 10 accounts for approximately one standard deviation 

on either side of the mean value reported in the sample. The EV estimates in 

Table 4 suggest that for a typical angler, improving environmental quality 

from the "6" level to the "10" level would add approximately $1400 to the 

annual value of access to the fishery (an increase of over 501). 

This value must be considered in relation to the actual distribution of 

E values in the sample. Tables 5 and 6 give the details of thes~ responses. 

Almost 40% of the sample is completely satisfied with current environmental 

quality. This suggests an alternative "simulation" based on the fitted model. 

Instead of simply considering the mean angler, it is also possible to simulate 

changes in E for each individual angler in the sample. Under current 

conditions, the equivalent variation for a complete loss of access varies over 

the sample from $648 to $4235, with a mean of $3037 and a standard deviation 

of $778. If we take every respondent who reported a subjective environmental 

quality level of less than 10 and increase their value of Eby one unit, the 

distribution of these fitted equivalent variation values can be expected to 

change. In fact, the new fitted values vary from $839 to $4238, with a mean 

of $3253 and a standard deviation of $715. Thus the increase in the mean of 

the equivalent variations, when we improve by one unit the experiences of 

those who were less than comple~ely satisfied experience currently, is 

approximately $216. If we could scale this up to the entire population, this 

represents an increase in the social value of the fishery of approximately 

6.61. 

6. Subjective Environmental oualities as a Function of Physical Measures 

--... The subjective environmental quality question on the Texas Parks and 

Wildlife Survey elicits information about overall environmental quality. We 



Table 5 

Descriptive Statistics for E Variable 

MOMENTS 

N 506 
MEAN 8.07312 SUM 4085 
STD DEV 2.17742 VARIANCE 4. 74118 
SKE'WNESS -1.216 KURTOSIS 0.897612 

QUANTILES(DEF•4) 

100, MAX 10 991 10 
751 Q3 10 951 10 
so, MED 9 901 10 
251 Ql 7 10, 5 
o, MIN 1 51 4 

11 1 

RANGE 9 
Q3-Ql 3 
MODE 10 



Table 6 

Frequency Distribution of E Values 

FREQ CUM. 

1 ]* 7 
2 ]* 7 
3 l ** 10 
4 ]** 11 
5 ]********* 46 
6 ]***** 25 
7 ]******** 41 
8 ]******************* 93 
9 ]**************** 81 
10 ]************************************* 185 

----+---+---+---+---+---+---+---+---+-
20 40 60 80 100 120 140 160 180 

FREQUENCY 

FREQ 

7 
14 
24 
35 
81 

106 
147 
240 
321 
506 

PERCENT CUM. 

1. 38 
1.38 
1. 98 
2.17 
9.09 
4.94 
8.10 

18.38 
16.01 
36.56 

PERCENT 

1. 38 
2. 77 
4. 74 
6.92 

16.01 
20.95 
29.05 
47 .43 
63 .44 

100.00 
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do not presently have access to typical or specific air quality measurements 

for different areas along the Texas Gulf Coast, but in the course of related 

research (Cameron, 1988b), we have attempted to determine how a variety of 

water quality measures are related to respondents' subjective assessments of 

environmental quality. 

From a variety of auxiliary sources reported in Cameron (1988b), 

including the Texas Department of Water Resources, and the Resource Monitoring 

division of Texas Parks and Wildlife, we have obtained data on the 

characteristics of tens of thousands of water samples over the few years up to 

and including the time period of the valuation survey. Most of the water 

quality "parameters" have been averaged by month and by each of the eight 

major bay systems along the Texas Gulf Coast. A few are available only by bay 

system. (See the original document for details.) 

Table 7 reproduces the results for E regressed on a variety of water 

quality parameters in an ad hoc specification. Not surprisingly, the 

relationship between the subjective environmental quality measure and 

"typical" water quality is quite weak. For this reason, we do not devote 

space in this paper to a discussion of the explanatory variables. The reader 

is referred to Cameron (1988b) for this information. Certainly, many more 

physical factors will affect perceptions than simply the few for which we have 

measurements. Attributes of the respondent can also be expected to have some 

impact upon the subjective assessments of environmental quality. Other 

regressions reported in the appendices of Cameron (1988b) examine the 

influence of socioeconomic variables on these responses. They also establish 

the presence of some seasonal and geographical variation. 



Table 7 

OLS Regression of "Ability to Enjoy Unpolluted 
Natural Surroundings: on Measured Water Quality Variables 

F-TEST 4.247 
OBS 695 

PARAMETER STANDARD T FOR HO: 
VARIABLE ESTIMATE ERROR PARAMETER-0 

INTERCEP 8.334 1.860 4.481 
MTURB 0.001600 0.01016 0.158 
MSAL 0.01851 0.01795 1.031 
MDO -0.2415 0.1387 -1.742 
TRANSP 0.02034 0.01311 1.551 
DISO 0.2204 0 .1077 2.047 
RESU 0.005304 0.006889 0.770 
NH4 6.053 3.659 1.654 
NITR -2.236 1.155 -1. 936 
PHOS 2.357 1.700 1.386 
CHLORA -0.002728 0.02576 -0.106 
LOSSIGN -0.009637 0.02440 -0.395 
OILGRS -0.003734 0. 001145 -3.261 
CHROMB 0.02663 0.02361 1.128 

• 
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s. conclusions 

Clearly, there is good evidence that angler's value of the fishing 

experience is affected by their subjective assessment of environmental 

quality. For this small sample from the Texas survey, allowing for 

heterogeneous preferences which vary with environmental quality makes a 

statistically significant improvement in the econometric model at almost the 

5% level. Despite the fact that we have lumped all other goods in the 

consumption bundle into a single composite, the fundamental regularity 

conditions for a utility-theoretic model are satisfied. Of course, all of the 

caveats mentioned in Cameron (1988a) and Cameron (1988b) also apply to this 

analysis, so the results must be interpreted with some caution. 

Unambiguously, if anglers' perceptions of environmental quality can be 

improved, our model indicates that the social value of the resource will be 

increased (and vice versa, of course). What is clear, however, is that a 

better link must be forged between perceptions and actual physical quantities 

of pollutants (both air and water). We need to know just what it takes to 

raise someone's response from an 8 to a 9 on this type of Likert-scale 

question. This will require cooperation between physical and social 

scientists. 
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