

CHESAPEAKE BAY 1994 OYSTER FISHERY MANAGEMENT PLAN. AGREEMENT COMMITMENT REPORT REVISION

(U.S.) ENVIRONMENTAL PROTECTION AGENCY, ANNAPOLIS, MD

DEC 94

Report Nos: CBP/TRS-123/94

<u>Title</u>: Chesapeake Bay 1994 Oyster Fishery Management Plan. Agreement Commitment Report Revision.

Date: Dec 94

Authors: N. H. Butewski.

Performing Organization: Environmental Protection Agency. Annapolis, MD. Chesapeake Bay Program.

NTIS Field/Group Codes: 48D (Forestry), 98F (Fisheries & Aquaculture), 68D (Water Pollution & Control), 57H (Ecology)

Price: PC A05/MF A01

<u>Availability</u>: Available from the National Technical Information Service. Springfield, VA. 22161

Number of Pages: 84p

Keywords: *Fish management, *Oysters, *Environment management, *Aquatic ecosystems, *Project planning, *Chesapeake Bay, *Interagency cooperation, Project planning, Mollusks, Agreements, Virginia, Maryland, Pennsylvania, US EPA, District of Columbia, Production, Water quality, Habitats, Crassostrea virginica.

Abstract: The 1994 Chesapeake Bay Oyster Management Plan is a continuing effort to fulfill the Living Resources Commitment of the 1987 Chesapeake Say Agreement. The 1994 Plan is a revision of the original Chesapeake Bay Gyster Management Plan that was developed and adopted in 1989. The participants agree to work mogether to implement, by the dates set forth in the Plan, the management actions recommended to address. (1) disease mortality: (2) repletion efforts: (3) habitat restoration and water quality improvement: (4) increased oyster production: and (5) collection of management quality data. The State of Maryland further commits to special management efforts for oyster recovery areas.

#CC

≈C1 PE95-1717CE

#02 Field 480/ 98F/ 680/ 57H

#23 Descriptors: *Fish management/ *Cysters/ *Environment management/ *Aquatic ecosystems/ *Project clanning/ *Chesepeake Bay/ *Interagency cooperation/ Project planning/ Mollusks/ Agreements/ Vinginia/ Maryland/ Pennsylvania/ US ETA/ District of Columpia/ Production/ Water quality/ Habitats.

#25 Identifiers: Crussostrea virginida.

#27 The 1994 Chasabeake Bay Cyster Management Plan is a continuing effort to fulfill the Living Resources Commitment of the 1967 Chasabeake Bay Agreement. The 1994 Plan is a revision of the original Chesareake day Cyster Management Flan that was developed and addoted in 1989. The participants agree to work together to implement, by the dates set forth in the Flan, the management actions recommended to address: (1) disease montality; (2) repletion efforts; (3) habitat restoration and water quality improvement; (4) increased byster production; and (5) collection of management quality date. The State of Manylard further commits to special management efforts for byster recovery areas.

#3Q G

Chesapeake Bay Oyster Fishery Management Plan

Agreement Commitment Report Revision

October 1994

Edited By Nancy H. Butowski

Printed by the U.S. Environmental Protection Agency for the Chesapcake Bay Program

Chesapeake Bay Oyster Fishery Management Plan

Agreement Commitment Report Revision

October 1994

Edited By Nancy H. Butowski

Printed by the U.S. Environmental Protection Agency for the Chesapcake Bay Program

Adoption Statement

We, the undersigned, adopt the 1994 Chesapeake Bay Oyster Management Plan, as a continuing effort to fulfill the Living Resources Commitment of the 1987 Chesapeake Bay Agreement. The 1994 Plan is a revision of the original Chesapeake Bay Oyster Management Plan that was developed and adopted in 1989.

We agree to accept the revised Oyster Management Plan as a guide to enhancing the production of oysters in the Chesapeake Bay ecosystem. We further agree to work together to implement, by the dates set forth in the Plan, the management actions recommended to address: (1) disease mortality; (2) repletion efforts; (3) habitat restoration and water quality improvement; (4) increased oyster production; and (5) collection of management quality data. The State of Maryland further commits to special management efforts for oyster recovery areas.

We recognize the need for long-term, stable financial support and human resources for the task of enhancing the oyster resource. In addition, we direct the Living Resources Subcommittee to review and update the 1994 Plan yearly and to prepare an annual report addressing the progress made in achieving the Plan's management recommendations.

Signatures

	- Al	Date Octo jan 14, Kisy
For the Commonwealth of Virginia	Surge 1	Allen
For the State of Maryland	Silling	and scharfer
For the Commonwealth of Pennsylvania	applet	Masy
For the United States of America	Could	1. Scown_
For the District of Columbia		<u> </u>
For the Chesapeake Bay Commission	Elmo J.	Com.p.

SLE OF CONTENTS

4

•

LIST OF TABLES AND FIGURES	ii
ACKNOWLEDGEMENTS	iii
EXECUTIVE SUMMARY	iv
THE FISHERY MANAGEMENT PLAN PROCESS	vi
INTRODUCTION Ecological Role Current Status of the Oyster Fishery FMF Status and Management Unit Goals and Objectives	1 2 3 7
MANAGEMENT SECTION 1. BAYWIDE PROBLEM AREAS AND MANAGEMENT STRATEGIES Disease Repletion Programs Habitat/Water Quality Magement to Increase Oyster Production Collection of Management Quality Data Implementation Matrix	3 11 14 16 21 23
MANAGEMENT SECTION 2. MANAGEMENT FOR MARYLAND OYSTER RECOVERY AREAS (ORAs) Strategy 1 Strategy 2 Strategy 3	28 28 29
SECTION 3. BIOLOGICAL BACKGROUND Biological Parameters Habitat Requirements Habitat Issues Disease Fishery Parameters The Historic Fisheries The Oyster Resource Laws and Regulations Status of Traditional Vishery Management Approaches References	30 33 33 34 34 34 35 38 39
APPENDIX I: Maryland's Governor's Committee Recommendations. APPENDIX II: Virginia's Holton Plan (Blue Ribbon) Report II APPENDIX III: Summary of MDNR 1993 Oyster Program	I-1 I-1 V-1

LIST OF TABLES

•

.

.

•

							enc plans			viii
2.		-			-		larvae,	-		
	adults.	• • • •	• • • • • •	• • • • •	• • • • • • •	••••	• • • • • • • •	• • • • • •	• • • • • •	. 32

LIST OF FIGURES

	Maryland commercial oyster landings by season	4
2.	Virginia oyster ground production by season	5
з.	Maryland spat set, 1939-1993	6
4.	Oyster fecundity versus size	31

•

٠

ACKNOWLEDGEMENTS

The 1994 Chesapeake Bay Oyster Management Plan was developed as a revision of the 1989 Chesapeake Bay Oyster Management Plan under the direction of the Fisheries Management Plan Workgroup. Staff from the Maryland Department of Natural Resources (MDNR), Tidewater Administration, Fisheries Division were responsible for writing the plan and addressing comments on the draft versions. Support was provided by staff from the Virginia Marine Resources Commission (VMRC). We express gratitude to members of the Maryland Oyster Roundtable, the Maryland Oyster Steering Committee, the Virginia "Blue Ribbon" Panel, and other Chesipeake Bay Program committee members for reviewing and commenting on the plan.

Members of the Fisheries Management Workgroup were:

Mr. K.A. Carpenter, Potomac River Fisheries Commission
Mr. James O. Drummond, Maryland citizen representative
Mr. William Goldsborough, Chesapeake Bay Foundation
Dr. Edward Houde, UMCEES/Chesapeake Scological Laboratory
Mr. W. Pete Jensen, Chair, Maryland Department of Natural Resources
Dr. R. Jesien, Horn Point Environmental Lab
Dr. Ron Klauda, MDNR, Chesapeake Bay Research and Monitoring
Ms. Anne Lange, NOAA Chesapeake Bay Office
Mr. Richard Novotny, Maryland Saltwater Sportfishermen's Assoc.
Mr. Ed O'Brien, Maryland Charter Boat Association
Mr. Ira Palmer, D.C. Department of Consumer and Regulatory Affairs
Mr. Larry Simns, Maryland Watermen's Association
Mr. Jack Travelstead, Virginia Marine Resources Commission
Ms. Nary Roe Walkup, Citizen's Advisory Committee
Col. Franklin I. Wood, MDNR Natural Resources Police

Staff to the Fisheries Management Workgroup were:

Ms. Nancy Butowski, MNDR Mr. Christopher Judy, MDNR Ms. Beverly Sauls, MDNR Mr. Harley Speir, MDNR Dr. James Wesson, VMRC Mr. William Outten, MDNR

EXECUTIVE SUMMARY

Introduction

A Chesapeake Bay Oyster Fishery Management Plan was developed in 1989 as one of the strategies for implementing the Tiving Resources Commitments of the 1987 Chesapeake Bay Agreer ecological value of oysters to water quality was r_{i} p' disease became more limiting, an improved framework 15 managing the oyster resource. Through committee recou JE . from the Maryland Oyster Roundtable and the Virgin a Ho... . an, the 1994 Chesapeake Bay Oyster Fishery Management Plan (i Was developed. The revised 1994 Oyster FMP was drafted by the Maryland Department of Natural Resources (NDNR), the Virginia Marine Resources Commission (VMRC), and the Potomac River Fisheries Commission (PRFC). A FMP workgroup consisting of members from government agencies, the academic community, the fishing industry and public interest groups reviewed and commented on the revised plan. The oyster plan revision is part of the fishery management process to update the status of the resource, include new biological information, control fishing mortality and address habitat issues.

Goal and Objectives

The goal of the 1994 Oyster Fishery Management Plan is:

Enhance the production of oysters in the Chesapeake Bay ecosystem by restoring habitat, controlling fishing mortality, promoting aquaculture and continuing the repletion programs.

In order to meet this goal, a number of objectives must be met. These objectives are incorporated into the areas of concern and management strategies summarized below.

Areas of Concern and Management Strategies

Section 1. Baywide Management Strategies

Disease: The oyster parasite diseases, MSX and Dermo, have impeded the restoration of oyster stocks in the Bay. Currently, there are no known disease-resistant oysters but disease-tolerant oysters do exist. The Bay jurisdictions will monitor the prevalence and intensity of parasite diseases and attempt to minimize their spread. A coordinated, multi-year, goal-oriented disease research program will be implemented and evaluated after five years. Research will continue on developing disease-resistant oysters.

State Repletion Programs: State repletion programs have focused on moving shell and transplanting seed oysters to enhance oyster harvest. The programs are limited by natural reproduction (spat set), disease infection, the amount of available shell, and funding. The state repletion programs will be adapted to promote natural oyster production, meet the changing needs of the oyster resource, and respond to the initiatives recommended in the 1994 plan. Repletion efforts will be monitored then evaluated after a three-year period (1997).

H: itat/Water Quality: Overfishing has contributed to the reduction of oyster habitat by removing shell. With reef flattening, oysters are particularly vulnerable to siltation and increased mortality. The reduction in reef surface area also reduces the amount of substrate for spat settlement. Oysters are an important part of the Bay ecosystem especially in their role as filter-feeders. Adequate water quality is essential for oysters to reproduce, grow and maintain health. The Bay jurisdictions will conduct a phased program to evaluate and implement projects to restore the physical habitat for oysters. In addition, the jurisdictions will ensure that water quality is maintained at levels necessary to support healthy oyster populations.

Management to Increase Oyster Production: The disease problem, the lack of oyster habitat, variability in recruitment, and harvest pressures have placed constraints on oyster production. New technology is needed for the restoration, culture, and production of oysters. The Bay jurisdictions will work to improve and increase oyster production in the private and public oyster fisheries. Increased oyster production will be accomplished by focusing effort and finances into aquaculture projects. Guidelines will be established for controlling fishing mortality.

Collection of Management Quality Data: Improvements in the collection and analysis of oyster data are necessary. In addition to research on disease, research should be encouraged on natural and fishing mortality rates, the stock/recruitment relationship, spawning stock densities needed to repopulate an arca, and factors affecting abundance, survival and growth of larvae and juveniles. The Bay jurisdictions will continue to collect quantitative data on oyster stocks, habitat and diseases.

Section 2. Management for Maryland Oyster Recovery Areas (ORAs) Oyster Recovery Areas: Geographic areas termed "oyster recover areas" (ORAs) will be designated in low salinity reaches of t. Bay and tributaries where MSX and Dermo are less viable. These areas will be managed to limit transplantation activities that have the potential to introduce disease and new rehabilitation techniques for restoring oyster populations will be evaluated.

Strategy 1: The implementation of activities within the ORAs will be guided by an independent advisory committee.

Strategy 2: Each ORA will be comprised of from one to three zones and specific activities will be defined for each area.

Strategy 3: Criteria will be defined for determining the boundaries of each ORA and then adopted into Maryland regulation.

THE FISHERY MANAGEMENT PLAN PROCESS

What is a fishery management plan?

A Chesapeake Bay fishery management plan provides a framework for the Bay jurisdictions to take compatible, coordinated management measures to conserve and utilize a fishery resource. A management plan includes pertinent background information, management strategies, recommended actions, and implementation dates.

A fishery management plan is not an endpoint in the management of a fighery but part of a dynamic, changing process consisting of several steps. The first step consists of analyzing the complex biological, economic and social aspects of a particular finfish or shellfish fishery. The scool step includes defining the concerns of a fishery, identifying potential solutions, and choosing appropriate management strategies. Once specific goals have been defined, it is important to measure progress towards meeting the goals, establish accountability and engage the general public. Plans must be adaptive and flexible to meet the changing needs of a particular resource. They are annually reviewed and updated in order to respond to the most current information on the fishery.

Management Plan Background

As part of the 1987 Chesapeake Bay Agreement's commitment to protect and manage the natural resources of the Chesapeake Bay, the Bay jurisdictions developed a series of fishery management plans for commercially, rec ationally, and selected ecologically valuable species. A comprehensive and coordinated approach by the various local, state ...d federal groups in the Chesapeake Bay watershed is necessary for successful fishery management. Bay fisheries are traditionally managed separately by Pennsylvania, Maryland, Virginia, the District of Columbia, and the Potomac River Fisheries Commission. There is also a federal Mid-Atlantic Fishery Management Council (MAFMC) which has management jurisdiction for offshore fisheries (3-200 miles), and a coastwide organization, the States Marine Fisheries Commission Atlantic (ASMFC), which coordinates the manag ment of migratory species in state waters (internal waters to 3 miles offshore) from Maine to Florida

A Fisheries Management Workgroup under the auspices of the Chesapeake Bay Program's Living Resources Subcommittee, was formed to develop baywide fishery management plans. The workgroup's members represent fishery management agencies from the District of Columbia, Maryland, Pennsylvania, the Potomac River Fisheries Commission, Virginia, and the federal government; the Bay area academic community; the fishing industry; conservation groups; and interested citizens. Establishing Chesapeake Bay FMPs, in addition to coastal FMPs, creates a forum to specifically address problems that are unique to the Chesapeake Bay. They also serve as the basis for implementing regulations in the Bay jurisdictions.

The Chesapeake Bay Program's Fishery Management Planning Process

The planning process starts with input by the Fisheries Management Workgroup and development of a draft plan. This is followed by a review of the management proposals by Bay Frogram committees, other scientists and resource managers, and the public. Comments are incorporated into a final draft of the management plan. It is endorsed by the Chesapeake Bay Program's Living Resources Subcommittee (LRSC), the Implementation Committee (IC), and the Principal Staff Committee (PSC). The plan is sent to the Executive Committee (EC) for adoption.

Upon adoption by the EC, the appropriate management agencies implement the plan. In 1996, the Maryland legislature approved Section 4-215 of the Natural Resource Article giving the Maryland Department of Natural Resources authority to regulate a fishery once a FMP has been adopted by regulation. In Virginia, FMP recommendations are pursued either by legislative changes or through a public regulatory process conducted by the Commission. A periodic review of each FMP is conducted by the Fisheries Ma: agement Workgroup to incorporate new information and to update management strategies as needed.

The first group of fishery management plans, including oysters, was completed in 1989. Additional plans have been completed each year encompassing 16 finfish and shellfish species. With time and changes, it became apparent that a substantive review of each FMP at regular intervals would be necessary. The FMP workgroup developed a review schedule to upgrade each plan (Table 1). The revised FMP must be sent through the regular Chesapeake Bay Program's fishery management planning and adoption processes. Since the major review schedule extends over a 5-year period, important minor changes are addressed through an amendment procedure. This entails developing a description of the proposed changes and sending it through the FMP workgroup for endorsement. The amendment must be published for public comment and reviewed by the LRSC and the IC for their comment and approval. The PSC has been given authority by the EC to approve amendment changes.

SPECIES	ADOPTION DATE	REVIEW DATE
Shad/Herring	1989	June 1995
Blue Crab	1989	1994
Oysters	1989	1994
Striped Bass	1989	August 1995
Weakfish/Seatrout	1990 .	March 1996
Bluefish	1990	June 1995
Croaker/Spot	1991	1996
American Eel	1991	1996
Summer Flounder	1991	March 1996
Black Drum Red Drum	1993 · 1993	1997
Catfish	July 1995	2000
Mackerel	1994	1998
Black Sea Bass	July 1995	2000
Tautog	December 1995	2000
Horseshoe Crabs	1994	1999

.

Table 1. Schedule for reviewing fishery management plans

.

•

.

INTRODUCTION

(Crassostrea virginica) resource in the Chesapeake The ovst Bay has been significantly impacted by the oyster parasites MSX and Dermo, habitat losses, water quality, and harvesting. In 1989, a Chesapeake Bay Oyster Fishery Management Plan (FMP) was completed for oysters and included strategies to address the problems of harvest decline, recruitment, disease mortality, leased ground production, habitat issues, shellfish sanitation, market production and the repletion program. The oyster commercial harvest continued to decline and special committees were organized to review the situation. In Maryland, the role of the State in oyster management was analyzed and evaluated by a special committee appointed by the governor. As a result of the committee recommendations, the Maryland Department of Natural Resources (MDNR) increased oyster taxes and license fees, developed a seed supply for private aquaculture, continued the repletion program, developed stock assessment efforts and increased disease research and monitoring (Refer to Appendix I for a summary of major recommendations from the Governor's Report, also known as the Wolman Report).

In Virginia, a 33-member "Blue Ribbon" Panel met to discuss oyster issues and develop recommendations for restoring Virginia's oyster industry. Four potential oyster sources were considered: traditional state and private culture of <u>C</u>. <u>virginica</u>; off-bottom culture in approved waters; on-bottom culture of a non-native species, <u>C</u>. <u>gigas</u>; and on-shore depuration of moderately polluted oysters. The recommendations of the Virginia Blue Ribbon Panel were prepared and reported in the Virginia Holton Plan (Refer to Appendix II for a summary).

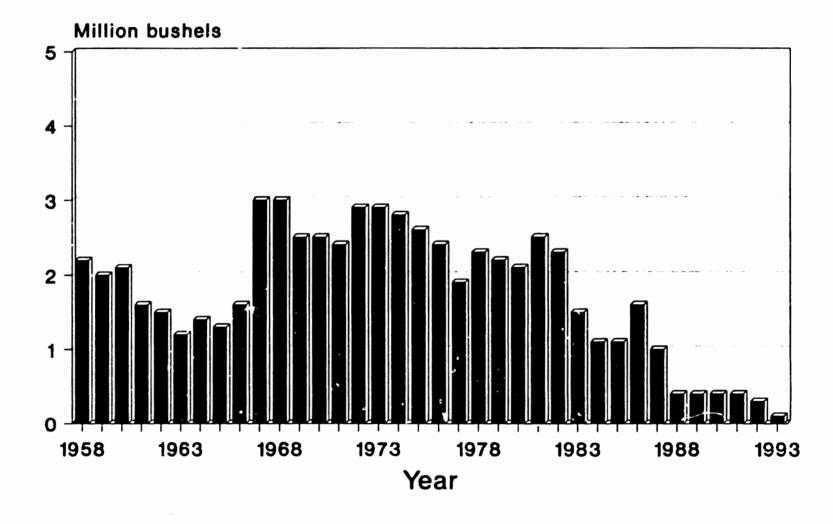
As the ecological value of the oyster resource to water quality was recognized and disease became more limiting, an improved framework was needed for managing the oyster resource. The Chesapeake Bay Program's Scientific and Technical Advisory Committee (STAC) initially played a dominant role in coordinating efforts to draft a baywide oyster restoration action agenda. After several workshops, eight problem areas were defined to maintain the oyster fishery and restore the oyster reef community. These problem areas were: restoration of habitat; recognition of ecological function; control of fishing mortality; improvement of the repletion program; management around disease; support of research; promotion of aquaculture and the establishment of oyster sanctuaries. The STAC work provided the framework for revising the 1989 Oyster FMP. Specific actions and details for each of the problem areas were taken from recommendations made by the Maryland Oyster Roundtable (MOR) and the Virginia Holton Plan (VHP). Although these efforts were independent, the Chesapeake Bay management plan attempts to coordinate and direct baywide efforts in regards to oysters. The Virginia and Maryland committee reports served as the source documents for the 1994 Oyster FMP.

One of the major innovations resulting from the MOR was defining oyster recovery areas (ORA's). Restoration areas will be established in the Chester, Choptank, Magothy, Nanticoke, Patuxent, and Severn Rivers. These areas will be targeted for restoring oyster populations then scientifically monitored to see how well the new techniques are working. A non-profit corporation will be formed by aquaculturists, environmentalists and watermen to play a major role in developing and applying innovative oyster restoration techniques. The delineation of ORA's has resulted in two management sections in the revised 1994 Oyster FMP, the first section addresses baywide strategies and actions, and the second section addresses Maryland strategies and actions for the ORA's. The biological background section from the original 1989 Oyster FMP has been updated and included after the management sections. In addition to establishing ORA's, Maryland DNR will also establish a pilot permitting program for oyster aquaculture demonstration projects.

Ecological Role

The ecological value of oyster reefs to the Chesapeake Bay ecosystem includes the effects of oyster filtration on water quality and the biological diversity associated with reef communities. Oysters filter phytoplankton and other organic particulate matter from the water column, thus clarifying the water and reducing organic loads contributing to anoxia (STAC 1992). Results from oyster modelling (Ulanowicz and Tuttle 1992) suggest that increasing oyster stocks either by aquaculture or enhancing natural oyster bars would augment the attainment of water quality goals. Although the ecological role of oysters in the Chesapeake Bay ecosystem is recognized, its benefit is indirect and hard to measure. Few data are available to quantify oyster reef community structure and function. Myatt and Myatt (1990) conducted an ecological study of hard-substrate communities within the Chesapeake Bay. They concluded that an artificial reef program would be an asset to the Bay environment. Since ecological functions overlap with other problem areas, specific actions addressing these issues have not been developed. Strategies and actions that restore oyster habitat and enhance/increase oyster production will benefit the ecosystem.

Current Status of the Oyster Fishery


Currently, oyster harvest from the Chesapeake Bay is at an all time low. The fishery is restricted to a few areas where legalsized oysters can be harvested. These are low salinity areas, where natu 1 recruitment (spat set) is low and unpredictable, where the State s repletion programs expend the greatest effort, and where /stors are at greatest risk from the influx of freshwater (also /nown as freshets). During the 1992/1993 oyster season, 124,000 bushels were harvested from Maryland, 64,500 bushels from Virginia and 105,000 bushels from the Potomac River. Preliminary 1993/1994 commercial oyster landings from Maryland are 76,000 bushels. This is the seventh consecutive year of harvests below 500,000 bushels (Figure 1 and 2). Preliminary 1993/1994 oyster harvests from Virginia and the Potomac River were 30,000 and 223 bushels, respectively. Oyster surveys in Maryland indicate that oyster diseases have expanded their range. Oyster spat set has been variable (Figure 3). The 1991 spat fall index, the average number of young oysters found on a given amount of oyster shell, was the highest recorded in 27 years at over 200 spat per bushel. The 1993 oyster spat set was 16.2 spat per bushel. For more details on the biology and life history of oysters and an historic perspective on the oyster fishery, refer to the biological background section (p. 26).

Biologists from the Virginia Marine Resources Commission (VMRC) recommended a moratorium on the harvest of market oysters from public grounds during 1993. After public hearings, the VMRC decided to shorten the oyster season and set a 6,000 bushel limit from October 15th through December 31st, restrict the length of tongs to 18 feet, and prohibit harvest after 12 noon. The VMRC's actions did not affect the harvest of oysters from private grounds. The restrictions were similar to those approved by the Potomac River Fisheries Commission (PRFC) in response to high oyster mortalities. Mortalities as high as 90% were reported in parts of the Potomac River due to a high freshwater influx from spring rainfall and snowmelt.

FMP Status and Management Unit

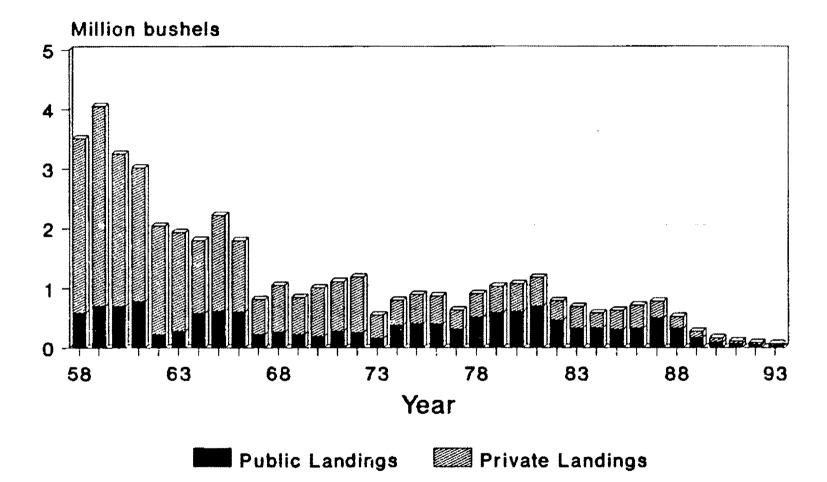
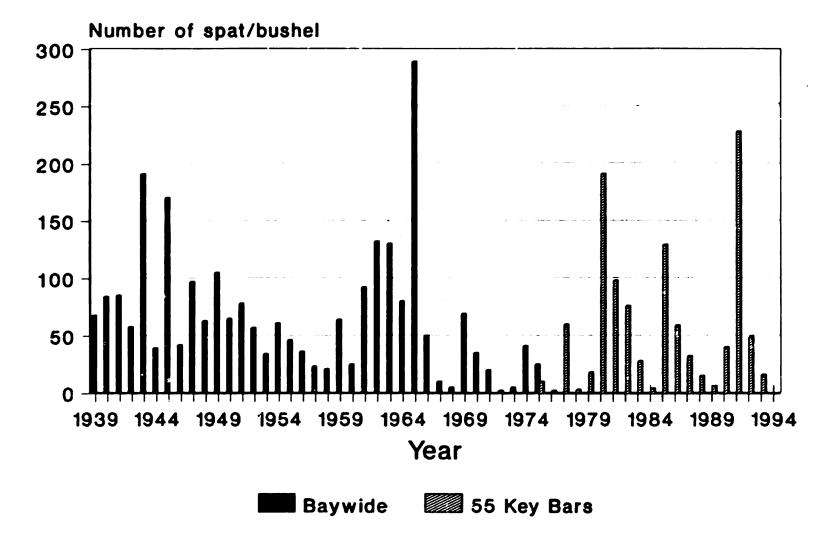

A Chesapeake Bay Oyster Management Plan was _mpleted in 1989. The 1994 Oyster FMP supersedes the 1989 FMP. The management unit is the American or eastern oyster (<u>Crassostrea virginica</u>) throughout its range in the Chesapeake Bay. The Virginia oyster industry has two different environments, the Bay and Seaside. Management considerations for the Virginia resource are for the Bay oyster bars and do not include the intertidal Seaside bars.

Figure 1. Maryland Commercial Oyster Landings by Season



4

Figure 2. Virginia Oyster Ground Production by season

Figure 3. Maryland spat set, 1939-1993

Goals and Objectives

The overall goal of the 1994 Oyster FMP is as follows:

The Bay jurisdictions will enhance the production of oysters in the Chesapeake Bay ecosystem by restoring habitat, controlling fishing mortality, promoting aquaculture and continuing the replation programs.

The objectives defined by the Maryland Oyster Roundtable are:

1) Maximize and enhance the ecological benefits of oysters;

2) Maximize and enhance the economic benefits derived from harvesting in the public and private oyster fisheries; and

3) Maximize the ability of government to respond effectively to the magnitude of the problem.

The objectives defined by the Virginia Holton Plan are:

1) Determine fair and justifiable harvest quotas through a data collection and analysis system.

2) Rejuvenate the public oyster fishery by redesigning the repletion program and evaluate the effectiveness of a redesigned oyster repletion program.

3) Implement a limited entry program for fisheries in order to protect both full-time fishermen and the resource.

4) Implement regulatory reforms and technical advisory service to strengthen off-bottom culture.

5) Explore the feasibility and ultimate construction of a depuration facility for oysters from both the private and public bottom.

6) Test in the laboratory and, conditionally, in the York River, the suitability of the non-native oyster, <u>C. gigas</u>, as a factor in the rejuvenation of Virginia oyster industry.

SECTION 1. BAYWIDE PROBLEM AREAS AND MANAGEMENT STRATEGIES

Disease

Haplosporidium nelsoni (MCZ) and Perkinsus marinus (Cermo) are the major impediments to restaring oyster stocks to the level of abundance of recent decades in the Chesapeake Bay. Approximately 100% of Maryland and Virginia oyster beds are infected with disease. MSX and Dermo are single-celled parasites that grow within oyster tissue. They cause significant mortalities within the first two years of life and have altered the size and age structure of the oyster population. There is r isstantial variation in population structure and relative oyste. Andance from area to area (Smith and Jordan 1992). Maryland stock survey data from limited areas, indicate moderate numbers of juvenile and premarket oysters but greatly reduced numbers of marke -sized oysters. Although oysters exhibit highly variable growth rates, they can reach market size in about 3 years. This is enough time for diseases to eliminate all market-size oysters on a bar. Younger, less than 3" oysters, can still reproduce and maintain moderate recruitment success or spat sel. However, fecundity (the number of eggs produced) increases exponentially with size (see biological background section, Figure 4). Oysters larger than 3" contribute considerably more to the reproductive capacity of the population. It is speculated that continued removal of large oysters due to disease and/or harvest, may confer a competitive advantage on early reproduction and ultimately result in a population of small oysters. Climate and subsequent changes in salinity affect disease distribution and infection. Salinities below 10-15 ppt and above 30-32 ppt are associated with decreased MSX activity. MSX can inhibit oyster growth and gametogenesis in spring. Dermo can tolerate lower and is more persistent and damaging to oyster salinities populations than MSX.

Currently, there are no known disease-resistant oysters available but there are several species that are disease-tolerant. Rutgers has developed an MSX tolerant strain which can become infected with MSX but will survive to market size. This strain, however, is more susceptible to Dermo than regular oysters. The native North Carolina seaside oyster can reach market size in 12 to 18 months with about 25-30% cumulative mortality (Brown et al. 1994). A major breakthrough in 1993 was the culture of Dermo in the laboratory and the ability to detect Dermo in the water column. These breakthroughs will make it easier to study the organism and, hopefully, facilitate some advances in disease research. In order to provide a successful research program, stable and carefully targeted funding must be provided over several years. After a predetermined time frame, the resear: and management program should be critically evaluated to determine 'ts effectiveness in reversing stocks and progress towards the decreasing trend in oyste controlling MSX and Dermo.

Strategy 1.1

The Bay jurisdictions will monitor the prevalence and intensity of MSX and Dermo in the Bay and attempt to minimize the spread of disease.

Actions:

1.1.1 The Bay jurisdictions will continue the annual disease survey, increase sample size and develop new disease detection techniques at the Oxford Laboratory and the Virginia Institute of Marine Science (VIMS).

> Implementation 1.1.1 Continue existing sampling schedule during October/November and March.

1.1.2 The Bay jurisdictions will establish a protocol for certifying oysters, including seed oysters, for the prevalence and intensity of MSX, Dermo, or other pathogens.

Implementation 1.1.2 1995

Maryland and Virginia will continue their repletion 1.1.3 programs using natural seed with low levels of MSX and Dermo contamination until hatchery produced, disease-free seed is produced. At that time in Maryland, movement of seed which cannot be certified (Action 1.1.2) will cease. Techniques for disease monitoring will include histocytology (thioglycolate assays and histological immunological detection analysis), tests and histopathology.

Implementation 1.1.3

Continue. Implement movement of disease-free seed from hatcheries as it becomes available.

1.1.4 The jurisdictions will continue to rotate seed areas to avoid transport of older year classes that have a higher probability of disease infestation.

Implementation 1.1.4 Continue

1.1.5 The jurisdictions will conduct a pilot study to test the difference in survival between seed moved in the fall compared to seed moved in the spring and investigate other approaches for seed planting to reduce the possibility of disease infestation before transport (part of improved repletion program).

Implementation 1.1.5 September 1994- April 1995

Strategy 1.2

The Bay jurisdictions will implement a National Oceanic and Atmospheric Administration (NOAA) coordinated, multigear, goaloriented research program to identify, understand, prevent and control MSX, Dermo, and other potential pathogens. Funding for this research should be stable, carefully targeted for specific research issues and followed by an evaluation after five years to assess progress and determine continuation.

Actions:

1.2.1 The Bay jurisdictions will delegate responsibility for coordinating the research program to a specific person/agency.

Implementation 1.2.1 1994

1.2.2 Maryland will initiate the first five-year phase of a multi-year research program aimed at early detection, prevention, and control of MSX and Dermo which will include the following:

 Improve the methodology for early detection of disease during all life stages of oysters;
 Obtain a becter understanding of the life cycle of MSX and Dermo, including environmental requirements and identification of alternate hosts;

3) Identify existing information and intensify research on the physiological aspects of MSX and Dermo, including immune system function;

4) Determine why some (yster species are not susceptible to MSX or Dermo;

5) Utilize cell culture to learn Dermo's requirements for survival and the best mithods of eradicating it;

6) Understand the effects of cold temperature and low salinity on parasites and relate them to various management scenarios;

7) Examine the response of <u>C</u> virginica from other regions (outside the Chosapeake '3y) to MSX and/or Dermo when transplanted in the Bay.

Implementation 1.2.2 1995-2000

Strategy 1.3

Research will continue on disease-resistan. oysters, i pridization, and the possible effects of introducing a hybrid or exait species into the Bay.

Actions:

1.3.1 The Bay jurisdictions will follow the guidelines set forth in the Exotic Species Policy developed by the Chesapeake Bay Program's Living Resources Subcommittee.

> Tuplementation 1.3.1 1994

1.3.2 Maryland will initiate a pilot field program to plant strains of <u>C</u>. <u>virginica</u> from North Carolina to the Chesapeake Bay in higher salinity areas of the Bay and its tributaries. Adequate precautions will be taken to prevent the introduction of new disease strains and undesirable genetic stock (see Action 1.3.1).

Implementation 1.3.2 1995

1.3.3 A) Virginia, through the Virginia Institute of Marine Science (VIMS), is conducting an environmental impact assessment on the introduction of a non-native oyster, <u>C</u>. <u>gigas</u>. Specific guidelines on the research of triploid individuals are being developed.

> B) Maryland will conduct an environmental impact assessment of the potential introduction of a non-native oyster species as a contingency plan if the action items in this plan re not enough to increase oyster stocks in the Bay. Maryland will utilize the results of the Virginia assessment (Action 1.3.3.A) to avoid duplicating efforts.

Implementation 1.3.3

a) Continue b) Open

Repletion Programs

State repletion programs have focused on increasing the size of the oyster harvest by moving shell and transplanting seed oysters. Currently, state agencies move seed oysters to grow-out regions so watermen who pay a license fee can harvest them for market. Since there is little to no production from natural bars, the repletion program supports a put-and-take fishery.

The State repletion program is the major source for harvestable oysters in Maryland at this time. It is limited by natural reproduction (spat set), disease infection, the amount of available shell or cultch, and funding. Because of high disease pressure in most lower-Bay locations, seed repletion programs move oyster seed from high salinity, high spat set areas, to low salinity, low spat set areas which have slow growth and low disease. Maryland and Virginia currently have no disease-free, seed-producing areas and transplanting seed may facilitate the spread of disease throughout the Bay. The repletion program in each state should be adapted, as appropriate, to the initiatives recommended in this plan. Monitoring efforts should continue and adjustments made to the timing and location of shell and seed plantings in order to enhance oyster production without encouraging the spread of disease. (Refer to Appendix III and IV for a summary of each state's repletion program during 1993).

Strategy 2.1

The Maryland and Virginia repletion programs will minimize the possibility of spreading MSX and Dermo.

Actions:

2.1.1 The Bay jurisdictions will implement NOAA recommended disease strategies and actions defined in the Disease Section of this management pion to minimize the spread of disease.

> Implementation 2.1.3 Variable, depending on actions defined in the previous management section.

Strategy 2.2

The Bay jurisdictions will maintain and adapt their current state repletion programs to promote natural oyster production and meet the changing needs of the oyster resource. This includes adjusting plantings based on salinity patterns and disease information. The programs will be modified as new initiatives from the MOR and VHP are implemented. Repletion efforts will be monitored then evaluated after a three year period (1997).

Actions:

2.2.1 Maryland will maintain the state repletion program as funds are available at a level of at least 2 million bushels of shell and 500,000 bushels of seed if spat set levels permit. The amount of shell and seed may be variable depending on availability. As new initiatives by the MOR are implemented, the repletion program may be modified.

> **Iuplementation 2.2.1** Continue. Seed plantings begin in April 1994 and shell plantings in June and early July 1994.

2.2.2 Maryland will continue the fall dredge survey which provides data on oyster mortality, recruitment (spat set), and disease patterns, to direct the oyster repletion efforts.

Implementation 2.2.2 Continue 2.2.3 Maryland will provide fresh shell to the state hatchery and to community groups for habitat enhancement and develop a policy on the minimum desiccation period to prevent the spread of MSX and Dermo with fresh shell.

> Implementation 2.2.3 1995

2.2.4 Maryland DNR will support the ORA efforts by providing the program with a percentage of available shell. The amount of shell will be determined annually. For 1994/1995, 200,000 bushels of shell will be available.

> Implementation 2.2.4 Beginning in 1994 and continuing annually.

2.2.5 Virginia will restore two major areas where setting is good, the James and the Rappahannock Rivers, forming sanctuaries for maintaining the biological stock. Restoration efforts will include: 1) locating the best substrate; 2) prohibiting harvest in these areas; 3) adding shell or other material to build reef structure; 4) adding seed; and, 5) monitoring the growth of oysters.

Implementation 2.2.5 Begin in 1994

2.2.6 Virginia will turn and clean or add cultch on a rotating basis on oyster beds near sanctuary reefs in the James and Rappahannock Rivers to prepare them to receive spat set from the sanctuary areas. The cleaning and shelling procedure will include: 1) identifying the best areas; 2) delineating the best time to turn or shell the beds; 3) monitoring the growth of new oysters; 4) opening the beds to harvest and setting a quota; and, 5) closing the beds once the quota is met and starting the process again.

Implementation 2.2.6 1995

2.2.7 A) The Bay jurisdictions will continue to monitor their repletion efforts and adjust the timing and location of shell and seed planting based on the best available data. B) Virginia will establish a computer data-base system to monitor the progress of the repletion program on a bar by bar basis.

> **Implementation 2.** a) Continue b) 1995

2.2.8 When the hatchery production of seed is adequate to meet planting needs, the repletion programs will be modified to eliminate the spread of disease with seed plantings.

> Implementation 2.2.8 Open. Dependent on seed production.

Habitat/Water Quality

Historically, overfishing has contributed to the reduction in available oyster habitat in the Chesapeake Bay by breaking up reefs and removing shell. Oyster bars have become small mounds with relatively thin layers of shell scattered over the bottom. Reef flattening has taken oysters out of the higher water column where currents bring fresh food supplies and oxygen, making them particularly vulnerable to siltation. Heavy sediment loads from agricultural and urban run-off, construction activities, natural channel dredging, forestry activities, and seafood erosion, harvesting practices can impact oyster bars. The reduction in reef surface area has also reduced the amount of substrate for oyster larvae to settle. Oyster shell is the most suitable substrate for spat settlement and should be considered an important natural resource. Loss of shell due to the export of oysters out of the Bay is detrimental to restoring oyster beds. Shell conservation should be practiced. Oyster beds can be re-established by building up the base with additional firm substrate. Rebuilding efforts should be focused in shallow areas (less than 10m) where low oxygen is not a problem.

Adequate water quality is essential for oysters to reproduce, grow and maintain health. Habitat requirements for temperature, salinity, sediment, pH, and dirsolved oxygen have been summarized in Table 1 in the Background Section (p.32). Oyster eggs and larvae can be killed by suspended sediments. Adult oysters can withstand periods of increased turbidity and sedimentation but extended exposure can result in damage to their filtering apparatus. Of greatest concern, baywide, are the effects of excess nutrients and the impacts of toxic materials.

Oysters are an important part of the Bay ecosystem especially in their role as filter-feeders. They remove inorganic particles from the water column and deposit them as pseudofeces. They also consume large quantities of suspended organic particles, recycle nutrients, and transfer energy throughout the food web.

Strategy 3.1

The Bay jurisdictions will conduct a phased program to evaluate and implement projects to restore the physical habitat for oysters.

Actions:

3.1.1 The Bay jurisdictions will restore physical oyster habitat through the Maryland and Virginia Aquatic Reef Program (refer to the Aquatic Reef Habitat Plan 1994 for details).

> 1) Approximately 5000 acres each of new oyster reef habitat will be created in Maryland and Virginia and 1000 acres in the Potomac River, over the next 5 years.

> 2) Oyster harvest will be prohibited within permitted reef sites.

3) A research plan will be prepared to obtain hydrodynamics, unit design, and deployment configuration recommendations.

4) The reefs will be monitored to determine compliance and evaluate ecological performance.

5) The Reef Program will expand into additional areas and sites as guided by the findings of research and monitoring.

Implementation 3.1.1 See specifics in the 1994 Aquatic Reef Habitat Plan

3.1.2

The Bay jurisdictions will redefine sanctuaries with adequate geographic extent and distinctiveness.

1) Virginia will expand the 25 acre broodstock sanctuary in the James River (Lower Jail Island/Wreck Shoal) currently used by the Oyster Repletion Program to an area not less than 2000 acres, north of the channel and chosen by the VMRC.

2) Virginia will establish a broodstock sanctuary in a geographically distinct area of approximately 50 acres in the Rappahannock River.

3) Virginia will establish a broodstock sanctuary of less than 50 acres in Mcbjack Bay and manage it according to the repletion plan.

4) Virginia will continue to use specific areas within the Piankatank and Great Wicomico Rivers as seed areas for the repletion program.

Implementation 3.1.2

Variable, but beginning in 1994.

3.1.3 The Bay jurisdictions will evaluate innovative techniques for restoring physical oyster habitat, conduct projects such as cleaning bottom areas, and evaluate optimal physical structures and alternative materials for rebuilding oyster bars.

> Implementation 3.1.3 1995

Strategy 3.2

The Bay jurisdictions will work to ensure that water quality is maintained at levels necessary to support healthy oyster populations.

Actions:

3.2.1 Current programs established order the Chesapeake Bay Program to reduce pollutant sources that adversely affect oyster stocks will be maintained. The Tributary Strategies will identify specific measures to protect and restore water quality in the Bay and its tributaries for the benefit of living resources, including Bay oyster stocks.

> Implementation 3.2.1 Continue

3.2.2 Local, state, and federal agencies will utilize their permitting and environmental review programs to ensure that oyster habitat is not adversely affected by the discharge of pollutants, dredging, and other human activities.

Implementation 3.2.2 Continue

3.2.3 The ORA advisory committees will assess the potential impact of activities which may adversely affect oysters in ORA's and provide recommendations to the appropriate agencies for prevention and restoration of adequate water 'ality.

Implementation 3.2.3 1995

Management to Increase Oyster Production

The disease problem, the lack of oyster habitat, variability in recruitment, and harvest pressures have placed considerable constraints on oyster production. Current production levels of certified oyster larvae and seed oysters will not meet the needs of stocking the ORA's or providing for private aquaculture and community association projects. Past and current oyster culture techniques should be analyzed and coordinated with management approaches to enhance production. New technology is needed for the restoration, culture, and production of oysters. In the past, institutional barriers made it difficult to obtain aquaculture permits. To allow progress toward opportunities for private aquaculture ventures, efforts should be made to assist and encourage the private industry. There will be difficulty enforcing property rights relevant to private oyster aquaculture in the Bay without significant social change. Presently, MDNR has oyster hatcheries at Deal Island and Piney Point, and the University of Maryland has a hatchery at Horn Point. Production at these hatchery facilities in Maryland should be increased to provide spat and larvae.

The advantages and disadvantages of a 'slot limit' should be evaluated as a means of increasing oyster production. Lowering the minimum size to 2.5" in disease impacted areas would allow oysters to be harvested before they succumb to disease. A 4" maximum size would protect larger oysters that have survived MSX and Dermo infestation and allow the possible development of diseaseresistant/tolerant individuals and eventually, the build-up of a disease resistant stock.

Strategy 4.1

The Bay jurisdictions will work to improve and increase oyster production in the private and public oyster fisheries.

Actions:

4.1.1 Maryland and Virginia will prepare a comprehensive analysis of past and current oyster culture techniques in the Chesapeake Bay and other relevant areas to help focus effort and finances into projects with the best chances of success. In preparing the document, existing expertise and experience in the National Marine Fisheries Service will be utilized.

> Implementation 4.1.1 1995

4.1.2 Maryland will increase the hatchery production of oyster larvae and seed oysters by maximizing production at Horn Point and using fresh shells supplied by MDNR. In addition, field surveys are currently underway to evaluate plantings of hatchery reared seed which will guide utilization of larvae and seed from state facilities.

Implementation 4.1.2

Field study of hatchery reared seed is in its second year. Shells were delivered to Horn Point in February 1994.

4.1.3 Maryland will establish remote setting sites for eyedlarvae purchased from public or private hatcheries, in appropriate locations with low levels of MSX and Dermo.

> Implementation 4.1.3 1995

4.1.4 Maryland and Virginia will encourage private companies to develop oyster hatcheries. Encouragement will include competitive bidding for contracts to provide oyster larvae and seed for ORA's and other areas.

> Implementation 4.1.4 1995

4.1.5 Maryland and Virginia will initiate a grant program with matching funds provided by private industry, to stimulate the development of innovative techniques for oyster restoration, culture and production.

Implementation 4.1.5 Dependent and limited by availability of funding.

- 4.1.6 Maryland DNR will establish a pilot permitting program for oyster aquaculture demonstration projects. The pilot program will include the following aspects:
 - 1) an initial 5 year permit;
 - 2) a limit of 20 permits;
 - 3) permits will be limited to 5 acres per individual;

4) total area under a single permit may include more than one location;

5) permittees will be required to prepare and submit a report summarizing the activities on the permitted area to MDNR. The report should include information on what restoration activities were undertaken, the production techniques utilized, and amount of oysters planted and harvested;

6) if a permittee fails to report or does not undertake any production activities, MDNR may revoke the permit;

Implementation 4.1.6 As of February 1994, a draft document entitled, <u>Oyster Aquaculture Permit Guidelines 1994</u> has been developed (see Appendix V for details).

4.1.7 MDNR will establish an aquaculture permit clearinghouse service for applicants which will include:

1) designating a single point of contact for questions related to the regulatory requirements for aquaculture, tracking permit applications, and coordinating state agency permitting activities related to aquaculture permits;

2) coordinating the preparation of a permitting handbook for potential applicants for aquaculture permits.

Implementation 4.1.7 1994 4.1.8 The Bay jurisdictions will define the acreage available for leasing oyster bottom.

 MDNR will identify areas to be characterized as Aquaculture Zones through recommendatic : by the MOR.
 VMRC will implement the following for off bottom culture:

a) VIMS will establish criteria for identifying potentially productive areas, classifying waters as appropriate (I), marginal (II), and not appropriate (III) for aquaculture;

b) establish regulations for aquaculture in regulation title 28.1, Fish, Oysters, Shellfish and Other Marine Life (includes a permitting process for aquacultural off-bottom projects that accommodates structures of changeable configuration and permit time-spans of appropriate length);

c) establish Department of Health regulations specifically for aquaculture through discussions among the Department of Health, industry representatives, and advisors;

d) draft a model legislative package by VIMS that establishes tax incentives for the start-up of private hatcheries to provide a steady supply of seed to farmers;

e) designate a technical advisory agent with the VIMS Advisory Service who will specialize in hatchery advice, grow-out advice, permitting assistance and site selection assistance.

3) PRFC will not permit any leasing except by authorization from both Maryland and Virginia

Implementation 4.1.8

Variable beginning in 1994

4.1.9 The enforcement of property rights relevant to private oyster aquaculture will be added to the public education program.

Implementation 4.1.9 1995

4.1.10 The VMRC will develop and operate a depuration facility to utilize oysters in less than optimum water quality situations. The development of a depuration facility will not lessen the need to continue to improve water quality.

Implementation 4.1.10

1995. Dependent and limited by the availability of funds.

Strategy 4.2

The Bay jurisdictions will reduce and control fishing mortality.

Actions:

4.2.1 Maryland will utilize the following guidelines for controlling fishing mortality:

a) The population structure of oysters on a bar will be established before the harvest season, the areas will be monitored during the season, and harvesting rates will be determined. If harvest rates from the previous year exceed the guidelines (see 4.2.1 b), adjustments will be made concerning the opening and closing of specific areas for harvest.

b) Maryland will regulate harvest on open bars at fishing mortality rates dependent on gear type. The following annual fishing mortality rates will be established in repleted areas:

1) Tributaries -

a.	Hand Tong		50%
	Patent Tong		40%
c.	Dredge	•	40€
d.	Diver		40%

2) Mainstem -

a.	Lower Bay (MD/VA line to Cove Pt)	-	50%
b.	Mid Bay (Cove Pt. to Holland Pt.)	-	40%
c.	Upper Bay (Holland Pt north)	-	40%

The following annual fishing mortality rates will be established in unrepleted areas and apply to all gears:

1) Tributaries - 30% once every 3 years

2) Mainstem -

a. Lower Bay	-	50% once every 2 years;	
b. Mid Bay		50% once every 2 years	
c. Upper Bay	-	0%; area will be closed	

Implementation 4.2.1 1995

4.2.2 The Bay jurisdictions will evaluate the potential advantages and disadvantages of a 'slot limit' with a minimum size for harvesting of 2.5" and a maximum size of 4" for areas impacted by disease.

1) Slot limit already in effect for PRFC below the hand scrape line.

2) Maryland will collect oysters over 4" from diseased areas and test their resistance to disease and the resistance of their progeny. The patent tong survey data will be reviewed to provide estimates of the impact of harvesting small oysters from the population. Implementation 4.2.2

1) Continue. 2) Began collecting in March 1994 and reviewing patent tong data in April 1994.

4.2.3 VMRC will manage the public oyster grounds in specific areas by establishing the following: James River

1) establish an 18' length limit on shaft tongs to protect oysters in deeper water;

 establish a market oyster harvest quota that is updated yearly and based on estimates of standing stock;
 increase the minimum size in clean cull areas to 3";
 as part of the culling practices, reduce the tolerance for blank shells in seed oysters from 10 quarts per bushel to 6 quarts per bushel;

5) open Deep Water Shoal to public fishery on a limited basis;

6) establish beds for intensive repletion near the sanctuary and manage them according to the repletion plan.

Rappahannock River

7) expand the prohibited area for patent tonging to include the area on the southside of the river to the channel above a line connecting Bailey Point (Urbanna/Southside) and the mouth of Beach Creek (Northside) in order to reduce harvest pressure on productive stocks;

8) establish beds for intensive repletion near the sanctuary and manage them according to the repletion plan.

Pocomoke/Tangier Sounds

9) Prohibit patent tonging and dredging for a 3 year period and re-evaluate the health of the rocks at the end of that period.

Seaside Eastern Shore

10) establish a 3" minimum size limit on market oysters.

Implementation 4.2.3 Variable

Collection of Management Quality Data

Oyster population data and harvest information is currently being collected but improvements in bar-specific data should be made. A summary of the Maryland and Virginia 1993 Oyster Programs can be found in Appendix III and IV. The summaries include descriptions of various sampling surveys and management programs already conducted by the states. In addition to the research data on disease (Strategies 1.2 and 1.3), the following research topics and data needs should be encouraged:

1) Determine the density of spawning stock necessary to repopulate an area decimated by disease; 2) Determine natural and fishing mortality rates;

3) Define stock/recruitment relationship;

4) Determine factors affecting abundance, survival and growth of larvae and juveniles;

5) Evaluate the effects of reducing the minimum harvest size from 3" to 2.5" on oyster stocks including effects on the reproductive capacity of the population and long term effects on the gene pool.

Strategy 5.1 The Bay jurisdictions will improve the collection of management quality data.

Actions:

5.1.1 The Bay jurisdictions will continue to collect quantitative data on oyster stocks, habitat and diseases and make the information available in an annual report.

Implementation 5.1.1 Annually.

5.1.2 VMRC will establish a computer data-base system for the collection, storage and analysis on a bar-by-bar basis, updated weekly, of information to estimate standing stock and establish yearly catch quotas. Data will include daily entries for total landings, boat numbers, landings per boat, where harvested, and number of harvesters per boat.

Implementation 5.1.2 1995

5.1.3 The fisheries agencies will make oyster data available to the research community as needed to investigate suggested research topics or in connection with other research.

Implementation 5.1.3 1994

CHESAPEAKE BAY 1994 OYSTER FISHERY MANAGEMENT PLAN IMPLEMENTATION MATRIX

PROBLEM AREAS & STRATEGIES	ACTIONS	DATE	COMMENTS
1. Disease 1.1 Monitor the prevalence and intensity of MSX and Dermo and attempt to minimize the spread of disease	1.1.1. Continue the annual disease survey, increase sample size and develop new disease detection techniques.		
	1.1.2. Establish a protocol for certifying oysters, including seed oysters, for the prevalence and intensity of MSX, Dermo, or other pathogens.	1995	
	1.1.3. Continue the repletion programs using natural seed with low levels of MSX and Dermo contamination until hatchery produced, disease-free seed is produced. At that time in MD, movement of seed which cannot be certified will cease.	Continue	Techniques for disease monitoring will include histocytology (thioglycolate assays and histological analysis), immunological detection tests and histopathology. Implement movement of disease- free used from hatcheries as it becomes available.
	1.1.4. Continue to rotate seed areas to avoid transport of older year classes that have a higher probability of disease infection.	Continue	
	1.1.5. Conduct a pilot study to test the difference in survival between seed moved in the fall compared to seed moved in the spring. Investigate other approaches to reduce disease infestation before transport.	1994-1995	Part of the improved repletion program.
1.2 Implement a coordinated research program.	1.2.1. Delegate responsibility for coordinating the research program to a specific person/agency.	1 994	
	1.2.2. MD will initiate the first 5-year phase of a multi-year research program aimed at early detection, prevention and control of MSX and Dermo.	1995-2000	
1.3 Continue research on disease- resistent system, hybridization, and possible effects of introducing a hybrid or exotic species.	1.3.1. Follow the guidelines set forth in the Exotic Species Policy.	1994	
	1.3.2. MD will initiate a pilot field program to plant strains of <u>C</u> . <u>virginics</u> from North Carolina to the Chesapeake Bay in higher salinity areas of the Bay and tributaries.	1995	Adequate precautions will be taken to prevent the introduction of new disease strains and undesirable genetic stock.
	 1.3.3. a) VA is conducting an environmental impact assessment on the introduction of a non-native syster, <u>C. gigas</u>. b) MD will conduct an environmental impact assessment on the introduction of a non-native syster as a contingency plan if the action items in this plan are not enough to increase syster stocks in the Bay. 	Continue Open	Specific guidelines on the research of triploid individuals are being developed. Maryland will utilize the results of the VA assessment to avoid duplicating efforts.

.

•

1994 OYSTER IMPLEMENTATION (cont'd)

PROBLEM AREAS & STRATEGIES	ACTIONS	DATE	COMMENTS
2. Repletic Programs 2.1 Minimize the possibility of spreading M3X and Dermis.	2.1.1. Implement the disease strategies and actions defined in the Disease Section of this management plan to minimize the spread of disease.	Variable	Implementation depends on actions defined in the previos management section.
2.2 Maintain and adapt current repletion programs to promote natural oyster production and meet the changing needs of the resource.	2.2.1. MD will maintain the state repletion program as funds are available at current levels (2 million bushels of shell & 500,000 bushels of seed if spat set permits). As new initiatives by the MOR are implemented, the repletion program may be modified.	Continue	The amount of shell and seed may be variable from year to year depending on availability. Repletion efforts will be monitored then evaluated after 3 years (1997).
	2.2.2. MD will continue the fall dredge survey.	Continue	The survey provides data on oyster mortality, recruitment (spat set), and disease patterns that help direct the repletion efforts.
	2.2.3. MD will provide fresh shell to the state hatchery and community groups for habitat enhancement and develop a policy on the minimum desiccation period to prevent the spread of MSX and Dermo with fresh shell.	1995	
	2.2.4. MDNR will support the ORA efforts by providing the program with a percentage of available shell. The amount of shell will be determined annually.	1995	For 1994/1995, 200,000 bushels of shell will be svailable.
	2.2.5. VA will restore two major areas where setting is good, the James and Rappahannock Rivers, forming sanctuaries for maintaining the stock.	Begin in 1994	Restoration efforts will include: locating the best substrate; prohibiling harvest; adding shell or other material to build reef structure; adding seed; and, monitoring growth.
	2.2.6. VA will turn and clean or add cultch to oyster beds near sanctuary reefs in the James and Rappahannock Rivers to prepare them to receive spat set from sanctuary areas.	1995	The cleaning and shelling procedure will include: identifying the best areas; delineating the best time; monitoring growth; setting a harvest quota; and, implementing the quota.
	 2.2.7. a) Continue to monitor the repletion efforts and adjust the timing and location of shell and seed planting based on the best available data. b) VA will establish a computer data-base system to monitor the progress of the repletion program on a bar by bar basis. 	a) Continue b) 1995	Maryland has been compiling a computer-based oyster data system as an on-going effort.
	2.2.8. When the hatchery production of seed is adequate to meet planting needs, the repletion programs will be modified to eliminate the spread of disease with seed plantings.	Open	Implementation is dependent on seed production.

.

1994 OY IMPLEMENTATION (cont'd)

PROBLES A STRATEGIES	ACTIONS	DATE '	COMMENTS
3. Habitat/Water Quality 3.1 Conduct a phased program to evaluate and implement projects to restore the missical habitst for oyster.	3.1.1. Restore physical cyster habitat through the Maryland and Virginia Aquatic Reef Program.	Variable	See specifics in the 1994 Aquatic Reef Habitat Plan.
	3.1.2. Redefine senctuaries with adequate geographic extent and distinctiveness.	Variable, beginning in 1994	
	3.1.3. Evaluate innuvative techniques for restoring physical o, ster habitat, conduct projects such as cleaning bottom areas, and evaluate optimal physical structures and alternative materials for rebuilding oyster bars.	1595	
3.2 Will work to ensure that water quality is maintained at levels necessary to support healthy cyster populations.	3.2.1. Current programs established under the CBP to reduce pollutant sources that adversely affect oyster stocks will be maintained.	Continue	The Tributary Strategy will work to identify specific measures to protect and restore water quality for the benefit of living resources including Bay systers.
	3.2.2. Local, state, and federal agencies will utilize their permitting and environmental review programs to ensure that oyster habitat is not adversely affected by the discharge of pollutants, dredging, and other human activities.	Continue	
	3.2.4. The ORA advisory committees will assess the potential impact of activities which may adversely affect oyster an ORA's and provide recommendations to the appropriate agencies for prevention and restoration of idequate water quality.	1995	
 Management to Increase Oyster Production I Work to improve and increase oyster production in the private and public oyster fisheries. 	4.1.1. Prepare a comprehensive analysis of past and current oyster culture techniques and other relevant areas to help focus effort and finances into projects with the bast chances of success.	1995	Existing expertise and experience in the National Marine Fisherics Service will be utilized.
	4.1.2. MD will increase the hatchery production of oyster larvas and seed oysters by maximizing production at Horn Pt. and using fresh shells supplied by MDNR.	Continue	Field surveys are currently underway to evaluate plantings of hatchery reared seed which will guide utilization of larvae and seed from state facilities.

1994 OYSTER IMPLEMENTATION (cont'd)

PROBLEM AREAS & STRATEGIES	ACTIONS	DATE	COMMENTS
4. Management to Increase Oyster Production (cont'd)	4.1.3. MD will establish remote setting sites for eyed-larvae purchased from public or private hatcheries, in appropriate locations with low levels of MSX and Dermo	1995	
	4.1.4. Encourage private companies to develop oyster hatcheries.	1995	Encouragement will include competitive bidding for contracts to provide oyster larvae and seed for ORA's and other areas.
	4.1.5. Initiate a grant progra with matching funds provided by private industry, to stimulate the development of innovative techniques for oyster restoration, culture and production.	Dependent on funding	
	4.1.6. MDNR will establish a pilot permitting program for syster aquaculture demonstration projects.	1994	As of February 1994, a draft document entitled, <u>er Aquaculture Permit Guidelines 1994</u> has a developed (see Appendix V in this plan for details).
	4 1.7. MDNR will establish an aquaculture permit clearinghouse service for applicants.	1994	Includes: designating a single point of contact, tracking permit applications, coordinating state agencies and preparing a permit handbook.
	4.1.5. Will define the acreage silable for leasing oyster bottom.	Variable beginning in 1994	
	4.1.9. The enforcement of property rights relevant to private oyster aquaculture will be added to the public education program.	1995	
	4.1.10. VMRC will develop and operate a depursion facility to utilize oyners in less than optimum while quality situations.	1995	The development of a depuration facility will not lessen the need to continue to improve water quality.
4.2 Reduce and control fishing mortality.	4.2.1. Maryland will utilize apecific guidelines to cestre. ' .ung mortality.	1995	Harvest rates will be determined and adjustments made on annual fishing mortality rates.
	4.2.2. Evaluate the potential advantages and disadvantages of a "alot limit" with a minimum size for harvesting of 2.5" and a maximum size of 4" for areas impacted by disease.	Begin in 1994	Slot limit already in effect for PRFC. MD will collect oysters over 4" from diseased areas and test their resistance to disease. The patent tong survey will provide estimates of the impact of harvesting small oysters from the population.

1994 OYS TER IMPLEMENT ATION (cont'd)

PROBLEM AREAS & STRATEGIES	ACTIONS	DATE	COMMENTS
4.2 Reduce and control fishing montplity (cont'd).	4.2.3. VMRC will manage the public oyster grounds in the James River, Rappahannock River, Pocomoke/Tangier Sounds and Seaside Eastern Shore.	Variable	
5. Collection of Management Quality Data	5.1.1. Continue to collect quantitative data on oyster stocks, habitst and diseases and make the information available in an annual report.	Annually	
	5.1.2. VMRC will establish a computer data-base system for the collection. storage and analysis on a bar-by-bar basis, updated weekly, of infor mation ic estimate standing stock and establish yearly catch quotas.	1995	Data will include daily entries for total landings, boat numbers, landings per boat, area harvested, and number of harvesters per boat.
	5.1.3. The fisheries agencies will make or ster data available to the research community as meded to investigate suggested research topics or in connection with other recearch.	1994	

.

.

•

.

.

LEGEND:

CBP - Chesapeake Bay Program

MDNR - Maryland Department of Natural Resources

•

MOR - Maryland Oyster Roundtable

ORA - Oyster Recovery Area

.

PRFC - Potomec River Fisheries Cor Laission

VIMS - Virginia Institute of Marine Science

VMRC - Virginia Marine Fusheries Commission

27

.

Section 2. Management for Maryland Oyster Recovery Areas (ORAs)

Due to the dominating impact of MSX and Dermo on Chesapeake oyster stocks, geographic areas termed Oyster Recovery Areas (ORAs), will be designated in low salinity reaches of the Bay and its tributaries where MSX and Dermo are less viable. Restoration projects are not limited to these areas and might in the future also include areas along the entire salinity gradient and in diseased waters. The objectives for managing these areas are 1) limit transplantation activities which would serve to perpetuate MSX and Dermo in a region and 2) evaluate different methods to rehabilitate, rebuild, plant and otherwise restore oyster populations in these areas. The following section describes the specific, intensive management effort that will be implemented in the ORAs.

Strategy 1

The implementation of activities within the ORAs by the MDNR will be guided by an advisory committee.

Actions:

- 1.1 Each ORA advisory committee will be constituted by MDNR and include representatives of the following organizations and interests: watermen; aquaculture; environmentalists; scientists; Departments of Natural Resources, Agriculture, and Environment.
- 1.2 A technical committee of scientists will be established to determine the experimental design and oversee the monitoring and evaluation of the ORAs.

Strategy 2

Each ORA will be comprised of from one to three zones and must include a Zone A and/or a Zone B. Specific activities will be defined for each area.

Actions:

2.1 A) Zone A will be in the lowest salinity area of the ORA. The following activities will apply:

1) Clam and oyster harvesting will be suspended for five years, to reopen consistent with management objectives.

2) Sections will be managed as ecological, brood stock sanctuaries.

3) Natural bars will be rehabilitated to facilitate natural set.

4) Intensive monitoring for MSX and Dermo will occur.

5) Only certified seed will be planted on cultch placed on prepared bottom. Plots may be used for

experimental off-bottom culture techniques and other pilot programs. Other plots will be left undisturbed for monitoring purposes.

6) A portion of the plantings will become a permanent sanctuary for broodstock.

7) Sections will be transferred to higher salinity growout areas after 1, 2, and 3 years. Aquaculture permits may be obtained for parallel grow-out experiments using water column and floating raft culture.

B) Zone B will be immediately downstream of Zone A, or in a river without zone A. The following activities will apply:

1) Shellfish harvesting will be allowed.

2) Only certified seed will be planted.

3) Natural bars will be rehabilitated.

4) There will be intensive monitoring for MSX and Dermo.

C) Zone C will be a large zone downstream from Zone B. The following activities will apply:

1) Shellfish harvesting will be allowed.

2) Natural seed will be imported until it can be replaced with certified seed.

3) Experimental seeding will be allowed in selected areas.

4) Natural bars will be rehabilitated in selected areas.

5) Intensive monitoring for MSX and Dermo will occur.

6) One or more sanctuaries will be established to test techniques for rebuilding and rehabilitating oyster populations.

Strategy 3

A subcommittee of the Oyster Roundtable will define the criteria determining where the boundaries of ORAs are and submit them to MDNR for their adoption by regulation.

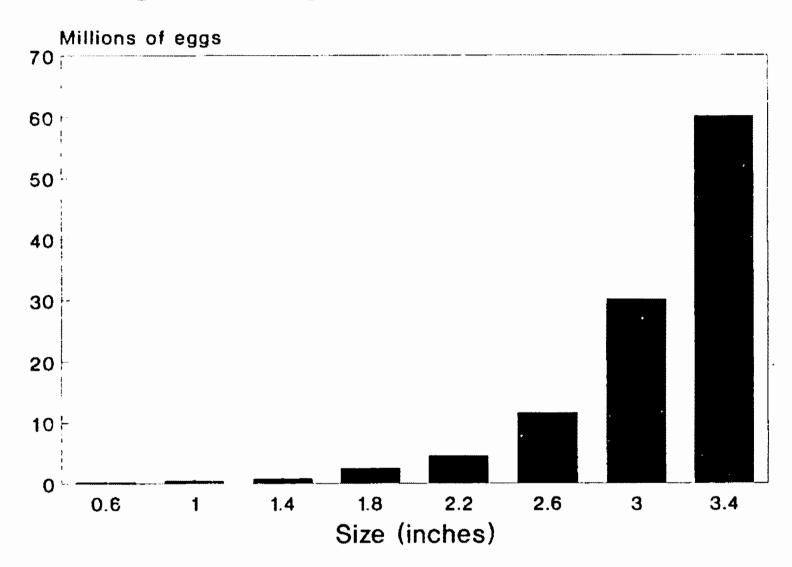
Actions:

- 3.1 The Chester, Choptank, Magothy, Nanticoke, Patuxent, and Severn Rivers will be designated as initial sites for ORAs.
- 3.2 The Oyster Roundtable will review the progress of activities in the initial ORAs and recommend the designation of additional ORAs if warranted, with a long-range objective of restoring and rebuilding all natural bars.

Section 3. Biological Background

American or eastern oysters occur along the east coast of North America from the Gulf of St. Lawrence, Canada, to Key Biscayne, Florida. In the Carribean, the range of American oysters extends to the Yucatan Peninsula of Mexico and the West Indies of Venezuela. Chesapeake Bay, which provides optimal environmental conditions for the species, is close to the center of its geographical distribution. However, oyster production varies within the Bay system depending on environmental and habitat conditions.

Oysters generally spawn from May through September in the Chesapeake Bay. Increases in water temperature to 18-20°C stimulates spawning activity. Eggs hatch into free-swimming larvae that settle to the bottom, two to three weeks after hatching. They attach to oyster shells or other hard substrates and the attaching phase is termed "setting." The newly attached oysters are called "spat." Oysters grow at the rate of about one inch per year. Growth rates can be affected by temperature, food quantity, salinity and parasitic infection. Shell growth usually occurs in the spring and soft body tissue growth occurs after spawning. Oysters usually enter the market three to five years after spat settlement.


Oysters are filter feeders and depend on phytoplankton for their energy requirements. Oysters play an important role in filtering the water. It has been hypothesized (Newell 1988) that the decrease in oyster abundance in the Bay has contributed to an apparent shift to microbial food webs and an increase in zooplankton and their predators (ctenophores and jellyfish).

Biological Parameters

Natural mortality rate:	Currently, very high due to disease and freshwater inflow.
Fecundity:	5 - 15 million eggs at one spawning. Smaller oysters produce less eggs (See Figure 4).
Longevity:	Up to 15 years.
Age at maturity:	2 years

Habitat Requirements (refer to Table 1)

Spawning	season:	May through September.
Spawning	area:	Throughout Cnesapeake Bay.

٠

Figure 3. Oyster fecundity vs. size

Table 1. Habitat requirements for oyster eggs, larvae, upst, and adults. Ranges are based on broad estimates and may very with geographic location (from Habitat Requirements for Chesapoake Bay Living Resources, 1991).

LIFE STAGE	LIFE Zone	TEMP." * C	SALINITY" ppi	SEDIMENT* 81.1	рH	DISSOLVED O ₁ mgL ⁻¹
Eggs	water column	19-32	12.5-35* 7.5-22.5*	<0.25	6.75- 8.75	7
Larves	water column	19-32	12.5-27.0	<0.5	6.75- 8.75	•
Spat	hard substrate	0-32+	15.0-22.5 ^r	7	7	8
Young (30-50mm)	beathce					<0 at 10°C ⁶ 0.8-1.49 at 20°C ⁶ 2.75-4.98 at 30°C ⁶
Aduka	beathoe					
mirvival		0-32+	0-36+	7	?	- 1(5 days)
Sooding		6-32; (15-25 "optimum")	5+	<0.4	7	7
Browip		6-32; (15-25 "optimum")	12+	7	7	7
genetogeneeis		7.5-30+	10+	1	7	7
spewning		20±	10+	7	6-10	7

* Salink - was affect temporature tolorances, and vice versa. Tolarance to temporature is roughly adult = apat > veliger larvae > zygotes.

* Adults acclimated to 26.0-27.9 ppt; optimal egg development at 22.5 ppt and optimal larval growth at 17.5 ppt.

⁴ Adults scolimsted to 9 ppt; optimal egg development at 10-15 ppt.

* Median mortality times in anoxia: 11 hours for \$2µm larvas; larval swimming rates unaffected at 0.5mgL⁴ for up to 12 hours.

" Spat had been set at near marine minities.

* Median mortality times in anoxia: 150 hours for 16mm spat.

^b LC₂₀-PO₂ (mgL⁻¹) causing 50% mortality after 28 days of exposure at 10, 20, and 30°C, with owners hald at 10 ppt, 20 ppt, and 30 ppt at each temperature.

Habitat Issues

Some of the more important environmental factors affecting oyster distribution include substrate type, depth, salinity, and disease provalence. Oysters need a clean, stable substrate on which to set and grow. Soft mud, shifting sand or silted bottom are unsuitable. Oysters are generally limited to waters less than 25' deep due to hypoxic/anoxic conditions that develop in many deeper waters of the Bay. Salinities above about 10-12 ppt increase oyster mortality from predation and disease. Man's activities have impacted the distribution and abundance of oysters. Sediment from channel dredging, upland construction and agricultural activities can smother oyster beds and foul cultch to prevent setting.

Nitrogen and phosphorus enrichment from sewage treatment plants and agricultural runoff have increased the extent of hypoxic and anoxic conditions. Sewage input results in high coliform bacterial counts which force the closure of shellfish harvesting areas. In 1986 only 45,500 out of 158,900 acres in the James River were classified by the National Shellfish Sanitation Program as approved shellfish growing waters. Maryland oyster samples collected and analyzed from 1980-1986 revealed that heavy metal or PCB concentrations were below action levels in all oyster growing areas sampled in the state. However, these oysters did have levels higher than would be found in a pristine environment.

Disease

Oyster diseases have been monitored and studied in the Chesapeake Bay since the late 1950's. Increased natural mortality has been linked to the spread and intensification of two parasites, Perkinsus marinus (Dermo) and Haplosporidian nelsoni (MSX). These parasites are single-celled organisms (protozoans) that infect oysters but have no effects on humans, whether the oysters are eaten raw or cooked. The exact mechanisms by which the parasites kill the oysters are not understood. There are no known cures for the diseases. The only strategy currently available is to move seed oysters, less than 1 year old, to areas where diseases are less prevalent to protect them while they are growing. These areas are usually less saline and do not provide the best growth environment. Low salinity areas rarely where a good natural spat set. Without seed plantings, these are not produce continuing harvests. Seel areas are currently for disease during the fall and not produce continuing harvests. being transplanted to the upper spring disease surveys, Bay and tributary grow-ou . . .

There is no evidence that low levels of pollution have any relationship either to susceptibility to the diseases or to their virulence. There is also very little information that any habitat factors except salinity and temperature, have any significant effects on disease.

Fishery Parameters

Status of exploitation:	Fully exploited.
Long term potential catch:	Highly dependent on prevalence and intensity of diseases, harvesting and freshets.
Importance of recreational fishery:	Insignificant.
Importance of commercial fishery:	Historically, highly significant; harvests have declined in the Chesapeake region, oysters still rank nationwide as one of the top seafood species in dockside value.
Fishing mortality rates:	Highly variable.

The Historic Fisheries

Before the turn of the century, over 10 million bushels of oysters (which yielded approximately 64 million pounds of meat) were harvested annually in Maryland by a large dredge fleet. Virginia harvests at this time were approximately 6-7 million bushels (38-45 million pounds of meat), and were harvested primarily by hand tongers. Landings have declined dramatically since that time and continue to show a downward trend. During the past 30 years, oyster harvests in Maryland ranged from 3.2 million bushels in 1973 to 124,000 bushels in 1993. In Virginia, the harvest of market oysters ranged from 1.9 million bushels in 1964 to 64,500 bushels in 1993. Although commercial landings are used as an indicator of stock levels, they do not necessarily reflect stock abundance. Changing market demands can affect commercial landings without any change in stock abundance.

The Oyster Resource

The Baywide oyster stock can be characterized as severely depleted. Recent expansions of the range of oyster diseases, MSX and Dermo, and past harvesting practices are primarily responsible for the population's current status. Low dissolved oxygen episodes have also contributed to the problem. Average levels of spatfall have dropped in the past decade (refer to Figure 3) and the number of natural beds receiving spatfall adequate for replenishment has been reduced from historic levels. In Maryland, the 1983 and 1984 spat sets were virtually non-existent. Although the 1985 spatfall was exceptionally high and wall distributed, the year class has been effectively wiped out in those areas infected by disease. Maryland's 1986 spatfall was considered average and of limited distribution. Many of the 1986 year class have been infected by MSX and Dermo and may be killed if high salinities continue in the Maryland portion of the Bay. Continued low levels and poor geographic distribution of spatfall levels occurred during 1987 and 1988. The 1991 spat set was a record high but disease has prevented any widespread population recovery from the set.

Since 1985, the James River has become the center of the market oyster landings in Virginia. The low number of surviving spat and decreasing bushel counts of spat, small, and market oysters, as determined from the VIMS oyster shoal surveys since the spring of 1986, indicates that the James River is failing to match the losses in number of oysters with an equal recruitment of spat. Since 1992, spat set in the Piankatank, Great Wicomico and Rappahannock Rivers has been at historically low levels.

Laws and Regulationc

Limited entry:

Maryland adopted a limited entry to the commercial fishery, April 1994, which repeals the Delay of Application Process of September 1, 1988, and allows MDNR to limit the number of tidal fish licenses which may be issued.

Virginia's delayed entry went into effect December 1, 1992. It requires previously unlicensed applicants to wait two years after registering before a license to harvest oysters with commercial gear will be issued.

On the Potomac River, only Maryland and Virginia residents may commercially oyster.

Minimum size limit:

Maryland - 3" with 5% tolerance, market oysters with small oysters or spat attached may be kept if separating the small oysters or spat would kill them.

Potomac River- 3" with 5% tolerance, however, market oysters with small oysters attached must be returned if separating them kills the small oyster (including spat). High salinity areas 2 1/2" minimum and a 4" maximum.

Virginia - Clean cull areas - 3". No cull size for seed areas and leased ground.

Daily catch limit:

Recreational -- Maryland, Potomac River and Virginia: no license required for the taking of one bushel per day from public grounds. **Connercial** -- Maryland: shaft and patent tongs, diving - 15 bushels per licensee, but not to exceed 30 bushels per boat; dredge boat - 150 bushels per boat; power dredging (in designated waters of Somerset county) - 12 bushels per licensee but not to exceed 24 bushels per boat. Commercial--Potomac River: None. Commercial -- Virginia: None.

Harvest quotas:

Virginia: variable by season and area.

<u>Season (actual restrictions determined prior to season) and time</u> restrictions:

Maryland - Shaft tongs, patent tongs and diving: September 15 to March 31, Monday through Saturday, sunrise to sunset, except Worcester County where the season is January 1 to December 31, Monday through Saturday, sunrise to sunset. Dredging: Sail dredging in designated waters state-wide, November 1 to March 15, Monday through Saturday, sunrise to sunset. Power dredging: in designated waters of Somerset County, November 1 to March 15, Monday through Saturday, sunrise to 3 pm. Private grounds: no seasonal restrictions, but harvesting between sunset and sunrise or on Sunday is prohibited.

Potomac River - Hand shaft tongs: October 1 through March 31. Hand Scrape: Months of November, December and March. Hand tongs, lawful only Monday through Friday from sunrise to 12:00 noon EST. Hand scrapes, law. U only Monday through Thursday during March and Monday, Wednesdays and Fridays during November and December from 8:00 a.m. to 12 noon each day

Virginia - Shaft tongs or hand congs: James River Seed Area, October 1 to July 1, sunrise to 12:00 noon. All other public areas, October 1 to Jung 1, sunrise to 12:00 noon. Private grounds, no seasonal restrictions; but harvesting on Sunday or between sunset and sunrise is prohibited. Patent tongs: October 1 to March 1. sunrise to sunset, for all public areas not prohibited by Section 28.1-82 of the Code of Virginia or VMRC Regulations and Orders. October 1 to the last day of February, sunrise to 2 p.m., in the Piankatank River, Pocomoke Sound/Tangier and Chesapeake Bay Management Areas. Private grounds, Sunday and sunset to sunrise harvesting is prohibited. Dredge: Pocomoke/Tangier Management Area, 15 November-last day of February (sunrise-2 P.M.). Chesapeake Bay Management Area, 1 November-last day of February (sunrise-2 P.M.). Private grounds, generally no restrictions, except Sunday and sunset to sunrise harvesting is prohibited. Bay and tributaries sunrise to 12:00 noon; Seaside - sunrise to sunset.

<u>Gear Restrictions:</u>

Maryland - The legal gear types for harvesting oysters in Maryland include hand tongs, patent tongs, diving gear, handscrapes and The use of each gear type is restricted to certain dredges. designated areas as set forth in Maryland's laws and regulations. Dredges or handscrapes cannot exceed 200 lbs. in weight or have a tooth bar greater than 42 inches in length (as measured from the outside teeth) on dredges used on rock bottom, or 44 inches in length for dredges uses on mud bottom. No "devil catch", "devil diver", or similar device is to be attached to the dredge to steer it to the bottom. No power boat may have on board or in tow any gear used for dredging unless it is permitted by the Department to harvest oysters from leased bottom, from State seed areas, or unless it is a sail dredge boat using its yawl boat on push days. On Monday and Tuesday during the oyster dredging season a dredge boat may be propelled by an auxiliary yawl boat in certain areas. Diving -each person engaged in the diving operation must be licensed. Not more than two divers can work from a boat at one time. Each diver shall have one attendant on the boat. An International Code Flag "A" of the proper specifications must be displayed. Power assisted lifting devices may be used subject to specified conditions. Hand tong winders are allowed.

Potomac River - Patent tongs and power or sail scrapes or dredges, power or hand-operated winch, spool, winder, are prohibited. Hand scrapes limited to 22" catching bar. Diving for oysters limited to recreational harvest of 1 bushel per person per day. Legal gear types include hand shaft tongs, power assisted hand shaft tongs and hand scrape.

Virginia - Only one type of gear, either hand tongs, patent tongs (limit of 2) or a single dredge, is allowed on a vessel at one time in the Pocomoke/Tangier and Chesapeake Bay Management areas. Only one type of gear, either hand tongs or patent tongs (limit of 2), is allowed on a vessel at one time in the Piankatank River Management Area. Patent tongs -the teeth of patent tongs shall not exceed four inches in length, and patent tongs exceeding 100 pounds in gross weight, including any attachments (excluding rope for the taking or catching of oysters), are prohibited. Dredge - a dredge and attachment cannot exceed 100 pounds total weight.

<u>Area Restrictions:</u>

Maryland - Hand tongs are 11 and Statewide, with portions of most tributaries reserved for han stangs only. Downstream of these areas, diving is allowed for eact tongs are permitted in the mainstem Chesapeake Bay, for lower Patuxent River and all of Somerset County. Power dredging is restricted to designated waters of Somerset County. Sail dredging is restricted to the Mainstem Bay, Tangier Sound, and portions of the Choptank River. Potomac River - No harvest allowed in 25 acre oyster sanctuary on Jones Shore. Hand tongs, none except sanctuary. Hand scrapes, not allowed on Jones Shore or above a line from Herring Creek, MD to Bonum Creek, VA.

Virginia - Only hand tongs are permitted in most areas, with patent tongs restricted to those areas specified by the Code of Virginia or VMRC Regulations and Orders (Piankatank River, Chesapeake Bay and Pocomoke/Tangier Management Areas). Dredging is restricted to the Pocomoke/Tangier and Chesapeake Bay Management Areas.

Status of Traditional Fishery Management Approaches

Catch-Effort:	Commercial fisheries data for Chesapeake Bay are a reasonable indicator of the current status of the marketable stock. In Maryland and Virginia, catch and effort statistics for the commercial fishery are, in general, of low quality and of limited value in developing fisheries management models. The PRFC catch and effort data are highly reliable.
Estimates of mortality:	Depends on disease prevalence, freshets, and harvesting.
Yield-per-Recruit (spat survival to markets): Stock-Recruitment:	Traditionally, very low. The stock-recruitment relationship for Chesapeake Bay oysters is unknown.

References

- Brown, Butt, A., and K. Paynter. 1994. Performance variation among native and selectively-bred Eastern oyster strains in North Carolina. National Shellfisheries Association.
- Chesapeake Bay Program. 1989. Chesapeake Bay Oyscer Management
- Kennedy, V.S. 1991. Eastern oyster. In: S.L. Funderburk, S.J. Jordan, J.A. Mihursky, D. Riley (eds). Habitat requirements for Chesapeake Bay living resources, Chesapeake Research Consortium, Inc., Solomons, Maryland
- Newell, R.I. 1988. Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster, Crassostrea virginica? In: M. Lynch (ed.) Understanding the estuary: Advances in Chesapeake Bay research. Chesapeake Research Consortium Publication 129:536-546.
- Myatt, E.N. and D.O. Myatt, III. 1990. A study to determine the feasibility of building artificial reefs in Maryland's Chesapeake Bay. MDNR, Tidewater Admin., Fish. Div. International Weighmaster, Inc. contract #F167-89-008.
- Scientific and Technical Advisory Committee (STAC). 1992. Oyster restoration action agenda. Living Resources Subcommittee, Maryland Department of Natural Resources, Virginia Marine Resources Commission.
- Smith G.F. and S.J. Jordan. 1992. Monitoring Maryland's Chr apeake Bay oysters. A comprehensive characterization of modified fall survey results, 1990-1991. MDNR Chesapeake Bay Research and Monitoring, Habitat Impacts Program. Oxford, Maryland
- Ulanowicz R.E. and J.H. Tuttle. 1992. The trophic consequences of oyster stock rehabilitation in Chesapeake Bay. Estuaries 15(3)257-265.

APPENDIX I

.

.

MARYLAND'S GOVERNOR'S COMMITTEE RECOMMENDATIONS

.

.

SUMMARY

COMMITTEE TO REVIEW STATE POLICY FOR FUNDING NARYLAND'S CHESAPEAKE FISHERIES

- <u>Charge</u>: To review the condition of the resource, how DNR manages the resource, and the costs and returns of management programs to the State economy.
 - To recommend future management strategies and whether the State should subsidize the programs.

Members:Dr. M. Gordon Wolman, Chairman
Russel DizeSenator Lewis Riley
Sam Shriver
Delegate John Slade
Dr. Roger NewellDr. Roger NewellDr. Ivar Strand
John Parran

Meetings: August 15, 1989 to August 15, 1990 Monthly

<u>Topics Discussed</u>: Watermen's Compensation Program Freshwater Hatchery Program Oyster Repletion Program

<u>Reports</u>: Watermen's Compe. .ion Program - submitted June 1990 Freshwater Hatchery Program - submitted September 1990 Oyster Repletion Program - submitted September 1990, released for distribution May 1991

Recommendations:

Watermen's Compensation Program

- * Discontinue the Watermen's Compensation Program as structured.
- * If data collection needs are juscifiable, institute a new program open to all qualified watermen.

Freshwater Hatchery Program

* Continue the freshwater hatchery program.

Oyster Repletion Program and Oyster Fishery

- * Encourage the public f shery and develop the private fishery.
- * Continue the repletion program but increase the financial contribution made by the industry by raising license fees and oyster taxes. Conversely, decrease the General Fund subsidy.
- * Promote scientific rather than political management.
- * Develop aquaculture by removing various legal impediments, increasing the bottom available for leasing, and permitting the use of the water column.
- * Intensify enforcement.
- Develop knowledge of oyster pathology, ecology, markets.
- * Develop and enforce standard weights, measures, and minimum quality.
- * Scientifically/quantitatively assess oyster stocks, monitor production and evaluate the quality of oyster beds.

The situation in Maryland's oyster industry is dire and the State must make some crucial changes if the industry is to rebound. Recent outbreaks of oyster disease, past mismanagement and an ever-competitive marketplace have reduced the Maryland oyster industry and resource to neal obscurity. To restore it to economic, social and ecological significance, major shifts in policy must be made. We recommend that the State of Maryland:

- 1. Recourage both the enhancement of the public cyster fishery and the development of a private fishery. Public access to natural cyster beds, a part of Maryland's heritage, should be sustained by continuing the cyster repletion program. The promise of the private fishery must be encouraged by the State through research, permitting processes and law enforcement.
- 2. Continue to enhance the public fishery through the repletion program but insist that an increasing share of its costs be werne by the public fishery. The repletion program is needed for production from public beds and the industry alone is currently unable to bear the entire cost of the program. Current policy should be directed towards generating more tax revenue from the public fishery to offset the existing subsidy in the repletion program. Thus, gradual increases in

1

11. 19

taxes should be instituted with a long-run goal of program self-sufficiency. To implement this recommendation, we suggest that:

- a. The existing severance tax be revised to be a fixed percentage of dockside price and increased to reflect the resources scarcity. When established at its present level in 1982, the current tax of \$.45/bushel represented about 5% of the dockside price. The present tax rate is i.8% of the dockside value. Existing circumstances warrant a tax increase to at least the 1982 percentage rate.
- b. The export tax be raised from its current level to an amount not less than the replacement costs of exported shell. When oysters are exported from Maryland, all legal remedies to guarantee the return of shell are lost. The replacement cost of the lost shell thus should be charged on exports.
- c. The license fees for public harvesters should be raised from the current \$50 per licensee to \$350 per licensee. Some of the costs of the repletion program are essentially overhead, with benefits accruing to all (for example, policing sanctuaries). Raising license fees will assure coverage of fixed costs.

2

• · ·

- 3. Review the industry's legal and regulatory framework with the goal of promoting scientific management and enhancing the officiency of public harvesters. The regulatory framework which has accumulated over the last century is unresponsive to current circumstances.
- 4. Remove certain legal impediments constraining the production of cysters through private aquaculture. Although there appears to be great promise for production from cyster aquaculture, it must be encouraged by:
 - a. expanding the bottom available for private leasing;
 - b. establishing a process to permit use of the water column;
 - c. increasing the leasehold fee (from \$3.50 annual per acre) to provide funds for enforcing leasehold rights and to discourage unproductive use of leases.
- 5. Intensify the enforcement of regulations related to Maryland oyster production. The protection of oyster sanctuaries, enforcement of leasehold rights and the collection of taxes must be guaranteed to assure equity among industry participants and public trust in the programs of the State.

3

, **†** 1

- 6. Increase its knowledge of oyster pathology, ecology and markets. Oyster diseases have recently plagued the industry. A greater understanding of oysters, their diseases and alternatives to avoid them is critical in developing plans for the future of the industry. This should be done in cooperation with adjacent states, the Potomac River Fisheries Commission and the Federal Government. Likewise, reaching aquaculture's potential may only be possible through developing new seed technologies, new product forms and new markets.
- 7. Develop and enforce standard weights, measures and minimum quality both to protect consumers and to enhance demand. While efforts cannot be completely independent of Federal standards, the State, in conjunction with adjacent states, must develop and enforce internally consistent, replicable standards essential to a modern commercial enterprise. Quality control of the oyster product must be guaranteed so that consumer perceptions of Maryland's oyster quality are maintained or improved.
- 8. Strengthen its role in assessing oyster stocks, monitoring production and evaluating the quality of oyster beds. In order to determine policy, appraise programs and assure consumer safety, effort is required to collect, assimilate and analyze data. Both the public and private fisheries will

4

require careful scientific management on the part of the State. Use of less political influence and more scientific information in the allocation of resources within and between the public and private fishery is essential.

٠

APPENDIX II

VIRGINIA'S HOLTON PLAN (BLUE RIBBON) REPORT

.

II

REPORT OF THE "BLUE RIBBON" PANEL

Prepared in late 1991 by a 33-member advisory panel of scientists, environmentalists, watermen, planters, economists, and others, this report (also, "The Holton Plan") sets forth issues and recommendations for restoring Virginia's oyster industry. Four potential oyster sources are considered;

- Traditional state and private culture of C. virginica;
- Off-bottom culture in approved waters;
- On-bottom culture of a non-native speces (C. gigas);
- On-shore depuration of moderately polluted oysters.

The eight recommendations in the Holton Plan are summarized below:

- Data Collection and Monitoring -- The State should establish computerized data base systems for detailed collection, storage, and analysis of stock assessment data and landings data, as well as for detailed monitoring of the Virginia repletion program.
- O Legislation -- The Virginia Marine Resources Commission should be empowered to control or limit entry to the commercial fishery, enabling the VMRC to protect the full-time fishermen and the resource.
- O Repletion -- The State should establish a repletion program for the public fishery, based upon oyster biology and river dynamics, and assure systematic monitoring of the program. The strategy should include programs to:
 - -- Restore two sanctuary reefs in the James and Rappahannock rivers, and cover them with seed oysters to maintain biological stock close to harvest areas (adjacent beds);
 - -- Prepare nearby beds to receive spawn from the sanctuaries, and monitor growth, harvest to quotas, close beds, and repeat;
 - -- Plant seed in low-set areas but with good growth potential, in the Mobjack River and the Pocomoke-Tangier areas; monitor, harvest, close, and repeat.

Initially, this should be a three-year program, with thorough data collection and monitoring, followed by an evaluation of the repletion strategy.

9 Market Evaluation and Development -- Commission a joint effort with the Virginia Institute of Marine Science (VIMS) and Virginia Tech to examine the marketing potential of current oyster products, and possible new product lines, including depurated oysters. In addition, there should be a joint industry-academic study to evaluate current State-funded marketing programs and recommend new or expanded marketing strategies for Virginia seafood products. Finally, a marketing and economics advisory agent should be appointed through VIMS to develop economic markets for off-bottom cultured oysters, and to work closely with aquaculturists and others in the industry.

- Off-Bottom Culture -- The State should identify areas as appropriate, marginal, or non-appropriate for aquaculture (VIMS), and establish regulations and a permitting process for off-bottom oyster culture (VMRC). To encourage start-up of private hatcheries, VIMS should draft model tax incentive legislation. A technical advisory agent shold be appointed through VIMS, who will specialize in hatchery matters.
- O Depuration -- The VMRC should estimate oyster stocks and potential daily supplies of clean and depurable oysters from public and private sources, both on- and off-bottom, supplies that will support year-round depuration plant operations. After a complete economic analysis of such a facility (VIMS), cooperating State agencies should design a pilot plant. If economic analyses warrant, the State should establish a publicprivate partnership to construct an experimental depuration facility, and design a fee system to make it self-supporting.
- Management of Public Grounds -- This recommendation addresses specific management steps for the James and Rappahannock rivers, Pocomoke/Tangier sounds, Seaside Eastern Shore, Mobjack Bay, and the Piankatank and Great Wicomico rivers. Included in these specific steps are limits on shaft length of tongs, quotas, changes in cull length, increases in sanctuary size, new repletion strategies, and harvest prohibitions in some areas.
- Introduction of Non-Native Species -- The State (VIMS) should conduct full laboratory tests of Crassostrea gigas, investigating temperature and salinity tolerances, as well as ecological relationships. If preliminary tests warrant, a pilot study in the York River should be established to evaluate C. gigas' ability to grow and reproduce in a natural Bay environment. These studies should include evaluations of disease resistance. Based on success of preliminary studies, C. gigas sanctury reefs should be expanded.

APPENDIX III

SUMMARY OF MONR 1993 OYSTER PROGRAM

.

An index of servey and program sites, available data and reports, and source soutacts

Prepared by Maryland Department of Natural Resources

Tidevator Administration

Fisheries Division, Shellfish Program

April 1994

III

.

This report includes, by location, the 1993 effort associated with various surveys and management programs conducted by Maryland's Department of Natural Resources Shellfish Group. These are indexed by program and by the location of data files. A substantial amount of this information is stored on computer files and these are noted in this report. Data source contacts and a brief description of each program are included. Computer stored data are kept on the following software packages: Spreadsheet: Quattro Pro 5.0 for Dos and for Window and Axum 3.0.

Database: dBase III⁺ and IV, mBase, and Paradox 1.5.

GIS: Mapinfo for Windows.

REGION	OYSTER BAR	PROGRAM	DATA CONTACT
UPPER BAY EAST	DEEP SHOAL	FS	MA
	TOLCHESTER	FS	MA
	HODGES	FS:SA	MA:PP
	SWAN POINT	MFSD;SA;FT;SSRP3	-
CHESTER RIVER			
UPPER CHESTER	SHEEP .	FSSA	MA:PP
	EMORY HOLLOW	FS:SA	MA:PP
	SPANIARD POINT	FS;FT;SSRP1	MA:PP.TA
	CLIFF	FS:SSRP1	MATA
	EBB POINT	FS:SSRP1	MA:TA
	DRUM POINT	PS	MA
	BOATHOUSE	FS:SSRP1	MATA
	OLDFIELD	MFSD;SA;SSRP1	OXL PP. TA
	CHESTER RIVER MIDDLEGROUND	FS:SSRP1	MATA
	BLUFF POINT	FS:SSRP1	MATA
	HELL'S DELIGHT	FS;SSRP1	MATA
	BAY BUSH POINT	FS	NA
	PINEY POINT	FS;FT;SSRP1	MA:PP.TA
	DURDIN	FS:SSRP1	MATA
	HORSE RACE	FS:SA:SSRP1	MA:PP:TA
	CARPENTER ISLAND	FS;SA	MA:PP
LOWER CHESTER	BUOY ROCK	MFSD:SA:FT	OXL:PP:PP
	WICKES BEACH	FS;SSRP1	MATA
	LOVE POINT	FS;FT;SSRPI	MA:PP:TA
KENT SHORE	BROAD CREEK	FS	ма
	BRICK HOUSE	FS;SA	MAIPP
	GRAVEYARD (KENT POINT)	FS	MA
MILES RIVER	LONG POINT	MFSD	an
	SECOND POINT	FS	MA
	ASH CRAFT	MFS -	0.1
	HERRING ISLAND	FS	MA
	COFFEE	FS	MA .
	TURTLEBACK	MFSD	ave.
WYE RIVER	WHETSTONE	FS	MA
	MILLS	FS	MA
	BRUFF'S ISLAND	MFSD	ONL
EA TERN BAY:	·		
NORTH	BUCBY	MFSD	ONL
NORTH	MILL HILL	FS	MA
	BALD EAGLE ADDITION #3	FS.SSRP3	MA TA
	SAW MILL CREEK	FS	MA
	HOOD	rs rs:ssrpj	MA TA
	WELL COVE	FS	MA
	WALTER WINTE	r5 F5	MA
	DOMINION	rs FS	ALA ALA
	PARSON'S ISLAND NARROWS ADDITION	FSSA	MA:PP

•

•

<u>RFGION</u> EASTERN BAY NORTH (cont)	OYSTER BAR PARSON'S ISLAND	<u>PROGRAM</u> MFSD;SA	DATA CONTACT OXL:PP
	CEDAR ISLAND	FS	MA
	TURKEY POINT	FS	MA
	JONES HOLE	55	MA
·	RINGOLD MIDDLECROUND	FS ····	ма
	WILD GROUNE	MFS	OXL .
	HOLLICUTTS NOOSE	MFSD;SA	OXL:PP
SOUTH	TILGHMANS POINT	FS	MA
	COOPERS HOLLOW	FS;SA	MA;PP
WYE RIVER	WHEISTONE	FS	ма
	MILLS	FS	ма
	BRUFFS ISLAND	MFSD	· OXI.
MILES RIVER	LONG POINT	MFSD	OXL.
	SECOND POINT	FS	ма
	ASH CRAFT	MFS	OXL.
	HERRING ISLAND	FS	ма
	TURTLEBACK	MFSD	OXL.
	COFFEE	FS	MA
THE BOX CHORE		6 7	
TALBOT SHORE	POPLAR ISLAND	FS NGED GAA	MA
	STONEROCK	MFSD;SA*	OXL:PP
POPLAR ISLAND NARROWS	SHELL HILL	MFS	OXL .
CHOPTANK RIVER			
UPPER CHOPTANK	ORUM POINT	FS;SA*;SSRP4	MA:PP;TA
	ABIN CREEK ENTRANCE	SA*;SSRP4	PP:TA
	CABIN CREEK	FS:SA:FT;SSRP4	MA;PP;PP;TA
	SPAR BJOY	SA	PP
	TANNERS PATCH	FS:SA:SSRP4	MA:PP;TA
	JAMAJCA POINT	sa• — ·	P P
	DIXON	FS:SA:SSRP5	MA:PP,TA
	MILL DAM	FS;SA;FT;SSRP3;SSRP5	MA PP PP TA TA
•	GOOSE POINT	SA*	PP
	BRITISH HARBOUR	SA	PP
	OYSTER SHELL POINT	MFSD;SA;FT	OXL:PP,PP
	CHANCELLORS POINT	SA*	PP
	BLACK BUOY	FS;FT	NA:PP
	STATES BANK	SA*	PP
	SUGAR LOAF	SA+	PP
	SHOAL CREEK	FS;SA ·	MAPP
	BOLINBROKE SANDS	FS:SA*	MAPP
MIDDLE CHOPTANK	GREEN MARSH	FS:SA*	MA:PP
	KIRBY	FS SA •	MA;PP
	HAMBROOKS	SA •	PP
	DICKINSON	FS	MA
	SANDY HILL	MFSD,SA;FT	ONL:PP:PP

. .

.

<u>REGION</u> MIDDLE CHOPTANK (cont)	OYSTER BAR HOWELLS POINT	PROGRAM FS:SA+	DA TA CONTACT MA:PP
	HORNS POINT ADDITION	FS	MA
	BEACONS	FS:SA*	MA:PP
	CHLORA POINT	FS:SA*	MA,PP
LOWER CHOPTANK	LIGHT HOUSE	MFSD;SA*	OXL;PP
	CHOPTANK LUMPS	SA*	PP
	TODD POINT	FS	MA
	DAWSON	FSSA	MA;PP
	FRANCE	FS:SA*	MAPP
	COOK'S POINT	MFSD;SA	OXI;PP
TRED AVON RIVER	DOUBLE MILLS	MESD	OXI.
	PECK'S POINT	FS	NA
	TOWN POINT	FSSA*	MA:PP
	STONE CHURCH	FS	NA
	FOX HOLE	FS:SA	MA:PP
	BACHELOR POINT	FS:SA*	MA:PP
BROAD CREEK	MULBERRY PONT	SAS	Ma/OXL ·
	DEEPNECK	MESD	OXL
	BROWN	FS	Ma
	GREAT BAR	FS	MA
	ROYSTON	MESD	012
	IRISH CREEK	FS:SA*	MA;PP
HARRIS CREEK	LITTLE NECK	FS	MA
	MILL POINT	SA*:SAS	PT:MA/OXL
•	EAGLE POINT (LOMAX)	MFS	0/1
	CHANGE	SA'	PP PP
	TILGHMAN WHARF	MESD	OXI.
	GREAT MARSH	FS:S-P3	MA;TA
TRIPPES BAY	BRANNOCK	AZ	PP
	BRANNOCK ADDITION	54 -	rr fP
	DIAMOND	FS	MA
	HILLS POINT NORTH	ES	1(A
LITTLE			
CHOPTANK RIVER	TOWN POINT	FS;SAS	MAM
	GRAPEVINE	FS	MA
	BUTTERPOT	FS	MA
	CASON	MFSD	ONL
	SUSCUEHANNA	FS	MA
	SLAUGHTER CREEK	FS	MA
	CATORS	FS	MA
	RAGGED POINT	MFSD,SAS	ONLMA ONL
	PEANUT HILL	SIS	MA
	CEDAR COVE	SAS	MA
	LITTLE CHOPTANK	SAS	MA
DORCHESTER SHORE	PUNCH ISLAND CRE.X	75	ма
		-	

<u>REGION</u> HONGA RIVER	<u>OYSTER BAR</u> TUBMAN'S DRAIN	PROGRAM FS	DATA CONTACT MA
	SNOKE POINT	FS	MA
	LAKES COVE	FS:SA*	MA;PP
	WINDMILL	MFS;SA"	OXI.:PP
	LONG POINT	•	MA
	NORMAN ADL TTON#1	MTSD;MS	OXI.:MA
HOOPER STRAITS	LIGHTHOUL .	FS	MA
	HOOPER STRAITS ADDITION#1	FS	MA
HOLLAND STRATS	HOLLAND STRAITS WEST	FS	MA
	HOLLAND STRAITS	MFSD	OXI.
		~	•••
KEDGES STRAITS	OYSTER CREEK	FS	MA
	WEST ERN ISLANDS	SAS SSP P2	MA;TA
	KEDGES STRAFT	SAZ	MA
TANGIER SOUND:			
UPPER	SHARKFIN SHOAL	MFSD;SA:MS	OXL:PP:MA
	HAINES	FS	MA
	MUD ROCK	FS	MA
	HOLLAND STRAITS	FS ·	MA
MIDDLE	1 URTLE ECC ISLAND	4 T	017
MIDDLE	CHAIN SHOAL	MS	
	MUSSEL HOLE	FS:SA* FS	MA;PP
			MA
	GRAVEYARD	SA.	PP
•	PINEY ISLAND WEST	FS MITED CANNE	MA
	PINEY ISLAND EAST	MFSD;SA*;MS	OXL:PP:MA
	HARRIS ADDITION	FS NCTD-CANCER PR	MA
	FLACK COVE (BACK COVE)	MFSD;SA*;SSRP2	OXL;PP;TA
	TERRAPIN SANDS INNER ADDITION	FS FS	MA
	TERRAPIN SANDS INNER	FS SA•	ма;рр
LOWER	OLD WOMANS LEG	MFSD;SSRP3	OXI_TA
	GREAT ROCK	MFS	OXL
FISHING BAY	LF-WAY MARK	ß	MA
	HILL	FS	MA
	OLD HOUSE	FS	MA
	GOOSE CREEK	MFSD	ONL
	WARE SANDS	SA	PP
	TEDIOUS CREEK	FS	MA
	CLAY ISLAND	MFS	OXL
	EVANS	PS .	MA
NANTICOKE AND	UPPER STAKE	MS	ALA
WICOMICO RIVERS	WETIPQUIN	MFS:MS	ONLINA
	HICKORY NUT	FS,SSRPI	МА:ТА
	CEDAR SHOAL	FS SA	MA.PP
	LONG SHOAL	FS	MA
	CHERRY TREE	FS	MA
	OUTER HOLE	SA	PP

<u>REGION</u>	OYSTER BAR	PROGRAM	DATA CONTACT
NANTICOKE AND	BEAN SHOAL	FS	MA
WICOMICO RIVERS (cont)	WILSON SHOALS	MFS;SA;MS	OXL: PP: MA
	ROARING POINT EAST	FS	MA
	MIDDLEGROUND	MES	oxa.
	MOUNT VERNON	MFS -	axa.
	GREAT SHOALS	FS	MA
	EVANS	MFS;SA	OXL;PP
	HALLS POINT	FSSA	MA:PP
	WHITE SHOALS	FS;SSRP3	MA;TA
MANOKIN RIVER	GEORGES	MFSD	OXI.
	MARSHY ISLAND		MA
	DRUM POINT	MFS	OXI.
	PINEY ISLAND SWASH	FS	MA
	MINE CREEK	FS	MA
BIC			
ANNEMESSEX RIVER	B'S ANNEMESSEX	FS	MA
LITTLE			
ANNEMESSEX RIVER	OLD HOUSE COVE	FS	ма
POCOMOKE SOUND	MARUMSCO	MFSD	OXI
	GUNBY	MFS	OXL
	FLAT ROCK	FS	MA
	WARE ROCK	FS	ма
	TERRAPIN LEAD	FS	MA
	OLD ROCKS	FS	MA
LOWER BAY EAST	CHURCH CREEK	F S	MA
	FOG PUINT	SAS SSRP2	MA/OXL TA
UPPER BAY WEST	COAL LUMP	FS	MA
	GALES LUMPS	FS:SA	MA:PP
	MAN-O-WAR SHOALS	FS:SA*FT	MA:PP;PP
UPPER ANNE	BODKIN !'OINT NORTH	нѕ	PP
ARUNDELSHORE	SEVEN FOOT ANOLL	FS:SA*	MA:PP
	SD' FOOT KNOLL	FS,FT	MAPP
	CRAIGHILL LUMPS	FS,SSRP1	MATA
	MOUNTAIN POINT	MFS:FT	ONLPP
	OUTER MAGOTILY	FS	MA:PP
YER /	SANDY POINT SOUTH	FS;FT	MA.
ARUNDEL	HAC' TT POINT	MFSD.SA.FT.SSRP1	ONL PP. PP. TA
	TOLLY POINT	FS.SSRP1	MA, TA
	THOMAS POINT NORTH	FS,SSRP1	MALTA
	THREE SISTERS	MFS, SSRP1	ONL TA
	WILD GROUND	FS	MA
	HOLLAND POINT	MFSD	0.11
SEVERN RIVER	FERRY POINT	IIS	ТА

REGION	AVETER RAR	PROCRAM	DATA CONTACT
SOUTH RIVER	<u>OYSTER BAR</u> THUNDER AND LIGHTNING	<u>PROGRAM</u> SAS	<u>DATA CONTACT</u> TA
	SWAN REEF	FS	MA
	MARSHY POINT	FS	MA
UPPER CALVERT SHORE	HOG POINT ADDITION	rs '	··· MA
	FLAG POND	MFSD	and .
LOWER CALVERT SHORE	LITTLE COVE POINT	FSSA*	MAPP
•	SIMMONS	FSSA*	MA:PP
	HOG ISLAND	MFSD;SA	OXL;PP
PATUXENT RIVER			
UPPER	HOLLAND POINT	FS	MA
	BUZZARD ISLAND	FS	MA
	BROAD NECK	FS	MA
	THOMAS	FS	MA
	PRISON POINT	FS	MA
	JACKS MARSH	FS	MA
MIDDLE	BROOME ISLAND	MISD	ox.
	GATTON	FS	NA
LOWER	HELLEN	rs.	MA
	HAWKS NEST	73 FS	MA
	BARN GATES	sa.	~~~ PP
	HUNGERFORD HOLLOW	FS	
	BACK OF THE ISLAND	•=	MA
		MFS	OXI.
	TOWN CREEK	FS Annua	MA
	SANDY POINT LUMPS	SA*;HS	PP; PP
	SWASH	FS FS	MA
	SOUTHEAST MIDDLEGROUND	FS,SSR#3	MATA
ST. MARY'S SHORE	CEDAR POINT HOLLOW	FS	MA
	ROCKY BEACH	F 3	MA
	SHAVING PILE ADDITION	FS -	MA
	BUTLER	MFSD;SA	OXI.
	POINT LOOK-OUT	SAS:SSRP2	PP;TA
POTOMAC RIVER			
UPPER	BEACON	FS: FT	MAPP
	POPES CREEK	FS:FT	MA:PP
	PASCAHANNA	FS.SA*;FT	MA:PP:PP
	LOWER CEDAR POINT	MFSD, SA*, FT, CAS	ONL PP. PP. MA. ONL
	SWAN POINT	FS.SA*:FT	MALPEPP
	STONY POINT	FS	MA
	WATSONS	FS	MA
	COLONIAL BEACH	FS	ALA
	GUM	ES	MA
	OLD FARMS	FS	MA
MIDDLE	COBB ISLAND	FS.SA*	MA PP
	SHEEPSHEAD BAY	FS SAS	MA:MIVONL
	HERON ISLAND	FS	
	TERON ISLAND	13	MA

<u>REGION</u> POTOMAC RIVER MIDDLE (com)	OYSTER BAR KINGSCOPSICO	PROGRAM FS	<u>DATA CONTACT</u> MA
	HUGGINS POINT	FS	NA
	POSEYS BLUFF	FS	NA
	COLES POINT	FS	MA
	RAGGED POINT	MFSD;SA	·· OX1:PP
	NAKE CREEK	ES	MA
LOWER	PINEY POINT HOLLOW (PINEY POINT)	FS	MA
	ST. GEORGES ISLAND	FS	MA
	KITTS	FS;SAS	MA:MA/OXL
	JONES SHORE	SA; SAS	PP;NA/OXL
	CCRNFIELD HARBOR	MFSD;SA;HS	OXL:PP:PP
	BONUMS	FS	MA
	LYNCH POINT	FS	MA
	THICKET POINT	FS	MA
	HOG ISLAND	FS	MA
	GREAT NECK	FS	MA
WICOMICO RIVER	KEY	FT;SA*	PP:PP
	STODDARD	FS:SA*:FT	MAPEPP
	COHOUCK	SA ;FT	PP,PP
	CHAPTICO LUMPS	FS	MA
	MILLS WEST	MFSD:SA*	OXL;PP
	WINDMILL	FS; SA ;;SSRP3	MA:PP.TA
	BRANLEIGH CREEK	FS:SA*	MA:PP
	WHITE POINT	FS SA*	MA:PP
	LANCASTER	MFSD:SA*:FT	OXI:PP:PP
	ROCK POINT	FS:SSRPI	MA:TA
•	MOUTH OF RIVER	FSSRF1 FSSRF1	MA:PP
		•	
	ST. CATHERINE	FS;FT;SSRPI	MA;PP;TA
	SILVER SPRING	FS	MA
ST CLEMENTS AND	GUEST MARSHES	FS	MA
BRETON BAYS	ARFLL	FS	MA
	BLACK WALNUT	MFS	. OX
	BLUE SOW	MFS	oxa.
	DUKEHART CHANNEL	MFS	OX1
' ST MARY'S RIVER:			
UPPER	HORSESHOE	FS	MA
UTTER	PAGAN	MFSD	OX1
	SEMINARY	SAS:HS	MA/ONL:MA
	GRAVELLY RUN	SAS	MA/ONL MA/ONL
		213	70V 0.4
LOWER	COPPAGE	FS	MA
	THOMPSON CREFK	FS	ALA
	CHERRY	FS	MA
	CHICKEN COCK	MFSD, SA	ant pp
ST. GEORGES CREEK	HURDLE	FS	MA
	PINEY POINT AQUACULTURE LEASE	SAS	Pr
			••

.

•

<u>REGION</u> SMITH CREEX	<u>OYSTER BAR</u> GRAVES	<u>PROGRAM</u> FS	DATA CONTACT MA
	BARNES POINT	FS	NA
	CALVERT BAY	SAS	MA
CHINCOTEAGUE BAY:		: • •	`
UPPER	SOUTH POND		
	SOUTH POND ADDITION	cos	19
	HANDY'S HAMMOCK	cos	PP
	LAMBERSTON LANDING	cos	PP
	ENNIS	COS	P P
	TURPIN	cos	PP
	ROBINS MARSH	cos	PP
	ROBINS MARSH ADDITION	cos	PP
	SCARBORO CREEK ADDITION	cos	PP
	NEWPORT	202	PP
LOWER	DIAMOND	cos	PP
	MARTON POINT	COS	PP
	KENNEL	cos	P P
	TOBY	cos	PP .
	WHITE ROCK	cos	PP
	STRIKING MARSH	cos	PP

05,9

Key to Program Abbreviations.

•

.

Abbreviation	Program Name	Site	Sampling Period	Sampling Gear
FS	Annual Fall Survey.	Baywide, 300 to 400 oyster bare.	Oct Nov.	Oyster dredgs.
MPS (MPSD)	Modified Fall Survey (Dizease Survey).	Baywids, 64 "kay" bars, 43 disease bars.	Oct Nov.	Oyster dredgs.
SA (SA*)	Oyster Stock Assessment Program.	Baywide, 20,000 to 30,000 acres annually.	March- Nov.; SA* lists surveys prior to 1993.	Patent tongs.
FT	Preshet Watch Survey	Baywids, 18 bars.	May- July	Oyster drødge.
ЧS	Oyster Montzlity Survey	Lower Bay, 10-12 oyster bars.	June- Aug.	Oyster drødge.
HS	Oyster Habitat Survey	Baywide, site number highly variable.	March- Dec.	Drodge, patent tonys, acoustics.
SAS	Seed Area Survey	Baywide, variablé number of sites.	Spring and Fall	Oyster drødge.
COS	Chincoleague Bay Shellfish Inventory	Coustal Bays, 2,300 acres of syster bars.	April- Nov.	Hydraulie clam escalator, handacrape
SSRP: 1=Seed Pluming; 2=Drodged Shell Pluming; 3=Frush Shell Pluming; 4=Palkee Pluming, Sources 3=Palkee Pluming, Sources 3=Palkee Plumin, Lonoon,	Seed and Shell Repletion Program.	Baywide, highly varuble number of sites.	April- Aug.	Plantings made by various vessels.

Key to Data Core .ct Abbreviations.

.

	DATA C	ONTACT
ABBREVIATION	LOCATION	PERSON/PHONE NUMBER
MA	Matapeake Terminal, Fisheries Division.	Roy Scott/ 4 '0-643-6785.
PP	Piney Point Aquaculture Center, Fisheries Division.	Mark Homer/ 301-994-0214.
ТА	Tawes Building, Fisheries Division.	William Outten, Chris Judy/ 410-974-3733.
OXL	Cooperative Oxford Laboratory, Chesapeake Bay Research and Monitoring Division.	Steve Jordan, Gary Smith, George Krantz/ 410-226-0078.

SYNOPSIS OF OYSTER PROGRAMS

Fall Survey

Initiated in 1939, this survey was designed to provide geographically extensive information on the quality of oyster populations and habitat and to assess spatset. During most years, between 300 and 400 oyster bars are sampled as are numerous seed and shell planting sites. Since 1960, the Oyster Disease Survey has been concurrent with the Fall Survey and in 1990 the Modified fall Survey (see below) was implemented. Samples are collected from oyster dredge tows with data recorded from 0.5 bushel (26 liter) subsamples. Records include the number of live spat, smalls, and markets, the number and stage of dead oysters (boxes), conditional oyster data, and the extent and type of fouling on bottom material. In addition, live oyster size ranges and averages are noted, as are water quality data, the type of sample site, ie. natural, planted with seed, etc., and the geographical position of the sample. A summary of spatfall and oyster parasite data are included in an annual Fall Survey report. Data records are kept on file at the Matapeake Terminal.

Modified Fall Survey/Disease Survey

The Modified Fall Survey focuses on a subset of 64 oyster bars that are annually surveyed. Sampling on these sites involves the collection of 5 independent 0.2 bushel replicate samples. From each of the 5 samples data are recorded on the number of spat, shell height measurements of each live and dead oyster (grouped into 5mm interval categories), and the stage of each oyster box. Additional information as described for the Fall Survey are taken from a pooled sample. At the Disease Survey locations, a subset of 43 of the "key" bars, 30+ oysters > 50mm are randomly selected and shipped to the Cooperative Oxford Laboratory for disease analysis. Data from the Modified Fall Survey and from the Disease Survey are stored in database files linked to a GIS at the Oxford facility. Data from these surveys are included in an annual report.

Ovster Stock Assessment Program

Using a 1m² patent tong-based, randomly initiated systematic sampling scheme, this program obtains unbiased estimates of oyster abundance and shell quantity. Since its implementation in 1990, this monitoring program has surveyed over 50,000 acres of charted oyster bottom in Maryland's Chesapeake Bay. Field records include the stations (corrected) latitude and longitude estimates of the number and volume of live and spat, smalls, and markets per unit area, the size class distribution of live and dead oysters, volumetric estimates, per unit area, of surface and subsurface (gray) oyster shell, softclam shell, recurved mussel shell, and live tunicates, and bottom type and depth. Between 30 and 40 different oyster bars are surveyed each year. with a subset of 15 oyster bars monitored on an annual basis. Between 5,000 and 10,000 acres of oyster grounds previously surveyed in 1975 using similar sampling techniques are resurveyed. Data are stored at the Piney Point facility on spreadsheet and database files linked to a GIS. Annual reports are prepared for the Oyster Stock Assessment Program.

Winter 1993 Freshet Survey

Following the unusually wet winter of 19⁷, a survey was initiated during May, 1993 to track freshet related oyster mortality. Sampling vas conducted using a handscrape on oyster bars in the Potomac, Wicomico, Chester, and Choptan Rivers and in the Upper Bay. The Eastern Shore tributary and Upper Bay oyster populations were sampled once, as the freshet was relatively shortlived in these areas. The Poton:ad and Wicomico Rivers were surveyed intensively, every ten days, over a two month period as freshet effects in these systems persisted. Data recorded included the number of live spat, smalls, and markets and the number and stage of spat, smalls, and market boxes. Conditional oyster information was kept along with water quality data and size range information. Interval and cumulative oyster mortality was calculated. All data were entered and stored in spreadsheet and database files at the Piney Point facility and two reports were prepared.

13

Oyster Mortality Survey

Previously referred to as the "bay Peak", this effort generally takes place during the summer months. It's purpose is to provide an early check on the status of oyster parasite infection and related oyster mortality rates. The biological data are kept on file at the Matapeake Terminal with oyster disease information entered and stored at the Oxford Laboratory.

Habitat Surveys

These are special surveys made when issues arise over the use or proposed use of oyster bottom. Generally dredge-based, these surveys have also used patent tongs, hand tongs, and acoustic gear to assess oyster populations and habitat. Survey results are generally included in reports or memos with some data stored on computer files. Field data are kept at the Tawes Building, while computer file records re stored at the Piney Point facility.

Seed Area Surveys

During the Annual Fall Survey, seed oyster, dredged shell, and fresh shell planting sites are surveyed to provide information on the biological status of seed oysters from shell and hatchery plantings. These data are on file at the Matapeake Terminal with disease data stored in the oyster database located at the Oxford facility. Seed tracking information is included in the annual Fall Survey report.

Chincotengue Bay Shellfish Inventory

In 1993, a program was initiated to survey shellfish resources in Maryland's coastal bays. During the first year, surveys were conducted on hardclam beds using a commercial hydraulic escalator dredge. Numerous sampling locations were on previously charted oyster bottom allowing for the accumulation of data on the current structural status of these areas. In 1994, a more focused effort on the old oyster bars is scheduled with handscrape samples to be collected from most of these sites. In addition, surveys of the intertidal zones are planned. All data are stored at the Piney Point facility in spreadsheet and database files linked to a Gis. Quarterly and annual reports are prepared.

Seed and Shell Repletion Program

Since 1961, Maryland has conducted a program to rehabilitate oyster bars through the planting of dredged and fresh oyster shell, the planting of seed oysters set on dredged shell, and the translocation of "pollute", oysters from areas of elevated fecal coliform counts. Records are kept of all Repletion Program activ es including dredged and fresh shell planting quantities and sites, the source, destination, and quantity of seed and "pollute" oysters, and associated costs. These records are kept on file at the Tawes Building and are included in an annual Seed and Shell Program-report.

APPENDIX IV

٠

SUMMARY OF VMRC 1993 OYSTER PROGRAM

.

.

•

Appendix IV

A Summary of the Virginia Marine Resources Commission 1993 Oyster Repletion Program.

Fall Dredge and Patent Tong Survey

A fall dredge survey has been used by the Repletion Program for many years to provide a qualitative assessment of oyster populations. Usually 150 to 200 oyster bars are sampled throughout Virginia's Bay and tributaries and the seaside of the Eastern Shore. Sampling efforts provide information on bottom condition and water quality, qualitative oyster population data, spatset, mortality rates, and meat condition.

In 1993, a patent tong-based oyster stock assessment program was initiated in Virginia. This assessment provides quantitative estimates of oyster abundance and shell quantity that will provide a statistically evaluated database for future oyster management decisions. Most of the actively harvested oyster rocks in the James and Rappahannock Rivers were sampled in 1993. Future sampling efforts will include all oyster production areas of the state.

Seed and Shell Repletion Program

Virginia has had a repletion fund for the replenishment of oyster beds since 1928. During the past 15 years expenditures have varied from \$660,000 to \$1,590,000 for oyster replenishment activities. In 1993 (Table 1) Virginia planted approximately 500,000 pushels of shell and 12,000 bushels of seed. Several new program were also initiated in 1993, which included the construction of two oyster reer areas, experiments in methods to produce disease-free seed oysters in a natural situation and the evaluat on of a hydraulic excavating machine to recover buried cultch Laterial from old oyster bars. The total 1993 expen tures were over \$686,000 with \$426,000 contributed from the General Fund and \$250,000 from Special Funds derived from oyster taxes and permit and dredging fees.

1993 Oyster Repie alsbewent Pregram Completion Report 12/07/93:

PAGEIOFI

Body of Water	Area	Sbells			Seed		Bydraulie Cultiveling		Baglass Drediging						Total Cost (5)
		Bushels	Tre	Acres	Bushela	Acra	Acres	Hous	Acres	Par Bu.	Per He.	Per Day	Per LF (1)	Per Acro	
Senide, Batters Shore															<u> </u>
Hog Island Bay	Short Prong Out	1,900	(200)	0.11						0.7				E1455	1,26
•	Lower Draft	8,200	(bss)	1.05					_	0.7				5467	5,74
	Loner Draft								0.79			200		1013	80
	Upper Orall						1.92	2.0			100			40	85
	Creb Hosk								0.73			200		1096	80
Outlet Bay	Poles Channel						1.50	15.5			100			981	155
•	Nerrow Chenesi	1,200	(040)	0.57						654.7				3789	2,16
	Nerrom Chessel						2.0	10			100			723	160
	Ramaborn	7,200	(200)	0.9					i	.65/.7				5400	4,66
	Remshorn						3.59	13.75			10			243	137
	Point of Rock	5,600	(100)	8.99						4517			1	3810	3,76
	Point of Bock						1.70	7.15			10			448	71
Quinty 4 with Barrie	E. Broksebany	19,200	(100)	. 1.00						45(3				11305	23,63
Uphurs Bay	Middle Gap	31,200	(red)	2.67						1.00				11665	31,20
	Middle Gop						1.45	13.75		-	100			941	131
	Major Holo Bay						1.01	11.25			100			1213	12
Rossi Bay	Bargs Point	7,200	(red)	0.4		1				1.00				18000	7,20
Wachsprespec	Barga Polet						0.56	11.75			100			2098	117
Bertoni Bay	Hummork	14,800						100.0			1				
period by	Hamrack	10,001	(1991)	1.16						1.00		1		14483	16,00
Bradford Bay	tu Chennel	7,200	1000	0.4			4.35	24			100	1	1	552	240
or matters buy	dat/West	1,000	(red)							1.00				12000	7,20
	Soula Bradiore	4000		1.41		1	• 73	17.5			100			1012	175
Sweeth Boy	Green Chappel		(Isel)	1.41						1.00		•		2137	4,50
Chiner espis -12-20 -12-	GILLE CAREER						3.55	,			100			221	×
Wa	PG 14/20														
WA	PG LIY20				_		4.05	39			100			696	3,90
SUBTOTAL.		111,600		12	0	0	28	191	2					1	\$120,50

¢	C	54	
6	Ú.		

		PAGE3OF3													-
							Slyd	melle	Bagicas	1					
	I -		Shells			ced	1	deg	Dredgieg						Total
Body of Water	Ama	Dusbala	Type	Acres	Dutich	Acres	Acres	Hours	Aares	Per Ba	Per Hr.	Per Day	PerLF(I)	Per Aaro	Cost (\$)
Eastern Shore (Beyntés):															
Ourchasnock Creek	PGI						6.74	20			100			297	200
ODU Experimentation - Hydroulie								89.25			100			•	892
Head Construction								-							
Sonthern Areas															
James Riva	Moberry PL Rock (2)														Cance Bee
	Wrecks Shoels Real												10.08	466.5	251,857
	Construction								1					-	
	Shells	80:00	(Hee)	54						0.65				966	572.0
Histe Ares															
Rappshanacch River	Bowlers Light (3)	•										•			Canceller
	Rest'Rock (4)				12,396	ы				1.40				640	19,83
Pinekatank Röver 1	Paleons Bar							-							
1	Intertified Reef	206,565	(848)	2						454.70			137.91	66954	137,90
*								1							
	Palante Bor	21,824	(hee)	6						0.65				2364	14,18
	Cloosing											4.0		600	3,60
•	Burtons PL	13,000	(het)	8						0.65				2754	22,03
	Chanles											400		547	4.37
	Sime PL	22,096	(hec)	5						0.65				2872	14,36
	Cleaning											400		315	1,57
SUBTOTALS	+	364 783		75	12,398	31									\$320,44

					-				PAGEIOF	3				•	
		Shaila			Seed		Hydroni'. Drodging		frank. Baginsa						
Body of Water	Area	Babch	Туре	Acres	Baks	Acres	Acres	Hours	Aga	Per B-	Per Hir.	Per Day	Per LP (1)	Per Acro	COST (3)
Murthers Areas	Hayaio Ber	29,960	(bee)	5						0.63	5				19,474
	Cleaning											400			4,600
SUBTOTALS		29,960		5	0	0									\$24,274
PROGRAM TOTALS	•	596,343		80	12,398	31		-	2						\$673,228

NOTES 1) LF - Linear Per

. .

2) Mutherry PL, James Rhver p. sjett ennetiled betanns of

confisions of systems and water tamperaturates" "by in James River

3) Bowless Light, Reppubsionet: ILI we project consolied become of

conditions of system and walle comparaturalisticity in James River

() Oys':r seed moved from Palaces Bar 1992 stassed area

.

.

APPENDIX V

DRAFT

MARYLAND OYSTER AQUACULTURE PERMIT GUIDELINES

1994

•

UKAFI

casts incurred for inming the actics will be paid by applicant.

Administration of Tidal Aquaculture Paralis The Maryland Fisherics Division will:

> Provide parmits applications.
> Provide technical edvice for growing and disease avoidance.
> Collect production information.
> Monitor services match data collected by grower.
> Supervise permits for compliance with rules and regulations.

Lows and Regulations which may Partain to Shellfish Aqueculture

Section	Laws	Page
4-102a	State lowe apply regardless of trigin of	2
	melstock	
4-206	Department's anthority over packars &	2.
	dealers Audits, Forus and Reporting	
4-514	Interference with another person's	3
	fishing equipment	
4-741	Domestic animals pre-libited	11
4-742	Restrictions on aking shellfish from	11
	polluted waters	
4-743	Quarantees for shellfish	12
4-10%	License require! to catch aysters and	15
	class commercially	
4-1006	Catching in polluted areas is prohibited	16
4-1007	Duying stations	17
4-1015	Oyster culling - small oysters from	26
(c,đ)	leased bottom, in rate and out of	
	state, sfleet or adore	

4-1017 Dealers license required	27
4-1019 Report of buyers or sellers of	29
shells required	
4-1020 Oyster taxes	30
4-1103(7) Sale of med oysters to lease balders and	4
aguaculture permit holders	•••
4-11A-12 Speciar of shellfish	57
4-1203 Search warrants (suspicion of illegal species	
•••••••••••••••••••••••••••••••••••••••	44
for example)	
4-1204 Sourch warrants	62
4-1205 Seizers and disposition of illegal fish	63
4-1206 Seizare and disposition of equipment	63
4-11A-18 Taking oyutars less than 3" for	60
replaceing	
08.02 Regulations	
.04.04 Oyster Containers	75
.04.06 Daily Catch Limit	76
.08.01 Investation of shellfish - permit required	84
.CE.04 Recording the catch and disposal of systems	15
.14.02 Aquiciante - entre Calque 14	
National Shellfish Sanitation Program - 1993	
Section C Growing Area Survey and	
Classification	
Section C Agunculture	
Conies of Laws and Regulations concerning shellfish	

Copies of Laws and Regulations concerning shellfish may be obtained from the Maryland Fisheries Division, Phone: (410) 974-3733 or by FAX (410) 974-2600.

Oyster Aquaculture Permit Guidelines 1994

A Pilot Permitting Program for Oyster Aquaculture Bemonstration Projects

This guide was prepared for the Oyster Action Plan which was developed by the Oyster Kound Table and is one of many oyster restoration activities being implemented.

998

The Maryland Fishernes Division has assembled this guide to assist in the development of private experimental oyster aqueculture in Maryland idal waters (e.g., both bottom and off-bottom culture).

The stached permit guidelines one-blisk a pilot permitting program for oyster aquaculture demonstration projects.

- Free-year duration for permit subject to review and renewal for additional five year terms
- Initial limit of sumber of permits issued not to exceed 20
- Area permitted not to exceed 5 acres per individual. 1 we or reor: persons may jountly obtain a permit for up to 10 acres
- A single permit may include more than one location
- An annual report is required for each permit summarizing activities on the permit area including information on restoration activities undertaken, production techniques utilized and azount of system plantal and harvested
- Failure to subaut an annual report or to conduct the activities as planned may result in "NR revokung the permit
- The purpose of the pressure of projects is to demonstrate the feasibility of various oyster production inchangues

The Fisheries Division Aqueculture Project, located in the Tawes State Office Building, Annepolis, Maryland (410) 974 3733 will act as a permit clearing house acrvice for applicants. Prior to applying for the accessive permits, the applicant should are that the project astisfies the

following conditions:

- Cannot preclude cyster t
 lesse
 activities
- Must be reviewed and approved by Oyster Row 3 Table representatives

Permitting Process

Two permits are required for all appaculture activities in Maryland tidal weees:

- (1) Tidal Wetland Permit and
- (2) Tidal Aquaculture Permit

An additional permit is also required for importation of abelifish from out of state.

A completed Tidai Wetland Purpit (Joint Pederal/State Application for the alteration of any floodplain, waterway, tidal or nontidal wetland in Maryland) with completed Aquaculture Permit Application attached is submitted to:

> Maryland Department of Natural Resources Water Resources Administration Central Processing Service Tawas State Office Building D-2 Azangolus, MD 21401 ATTN: Andi Cumbough Phone (410) 974-3871 FAX (410) 974-2807

This joint permit application receives a tracking number and is distributed by the Water Resources Permit Service . Conter to all appropriets agancies. These agencies may include:

- Army Corps of Engineers
- Maryland Department of the Environment -
- State Shellfish Control Agency permit Champents Bay Critical Areas Commission

Upon receipt of a Wetlands/squaculture permit all agracies involved will initiate procedures for issuing any other necessary permits. These permits may include water was permit, waste discharge permit and 401 certification.

Progress through the permit process can be monitored by the applicant by contacting the Fisheries Division, Aquaculture Project, Phone (410) 974-3733 Fax (410) 974-2600.

It is the responsibility of the applicant to insure that syster aquaculture will only take place in approved shellfish growing waters. To determine the states of the water at ; repeard site, contact:

> Maryland Department of the E-vironment Standards and Cartification Division Natural Ranources Biologist Kethy Brohiws Phone (410) 631-3609

It is the responsibility of the applicant to obtain appropriate curuity permits. Zoning variance and building permits may be required.

Prior to invoing a Tidal Aquaculture Permit, the Maryland

Required for all operations involving interstate commerce or sale.