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Driving Pattern Variability and Impacts on 
Vehicle Carbon Monoxide Emissions 

DAVID C. LEBLANC, F. MICHAEL SAUNDERS, MICHAEL 0. MEYER, AND 

RANDALL GUENSLER 

An analysis of instrumented vehicle data revealed significant differ­
ences in operating mode profiles for vehicle operations in Atlanta. Geor­
gia; Baltimore, Maryland; and Spokane, Washington. Differences in 
such operating mode characteristics as acceleration rates and cruise 
speed distributions are important in the development of new emissions 
models because certain vehicle and engine operating modes are prov­
ing to be significant sources of elevated emissions rates. Although not 
conclusive, these data indicate that the variations in operating mode 
fractions across cities may be related to differences in road network 
characteristics. A simple predictive model, based on three operating 
parameters (vehicle speed, engine speed, and manifold absolute pres­
sure) was developed from data collected from eight instrumented Gen­
eral Motors 3.1-L vehicles and is capable of predicting elevated carbon 
monoxide (CO) emission rates for various vehicle and engine activities. 
These emission results do not apply to hydrocarbons (HC) or oxides of 
nitrogen (NO,), which behave differently. The modeling technique dis­
cussed has been developed exclusively for CO. The model is used to 
estimate the relative CO emission differences associated with the dif­
ferences in operating profiles noted from city to city (and potentially 
from driver to driver). This modeling approach appears capable of ade­
quately distinguishing the CO emission effects associated with varia­
tions in engine and vehicle operations for individual vehicle makes and 
models. However, it should be noted that the large variability in vehi­
cle-to-vehicle CO emission response to changes in operating modes that 
has been noted in ongoing studies indicates that a model based on vehi­
cle speed and acceleration profiles alone may not provide sufficient CO 
emission rate predictive capabilities for the fleet. 

Mobile emissions are known to be a significant source of air pollu­
tion in U.S. cities, typically accounting for more than 50 percent of 
the ground-level ozone and 70 to 90 percent of the carbon monox­
ide (CO) (/). It is because of this role in air pollution that federal 
legislation has focused on stringent motor vehicle emission stan­
dards and to a limited extent on the implementation of transporta­
tion control measures (TCMs) to control the levels of pollutants that 
originate from mobile sources. With over I 00 metropolitan areas in 
violation of ozone standards and 60 in violation of CO standards(/), 
there is a significant challenge facing the United States in attaining 
and maintaining ambient air quality standards. 

Of great importance in meeting this challenge is the development 
and validation of a model that can accurately estimate changes in 
pollutant emission rates associated with changes in transportation 
network, vehicle, and driver characteristics. Although existing emis­
sions models have been in use for many years (with improvements 
made in each new generation of model release), these models still 
have serious deficiencies (2,3) that prevent their use in accurately 
assessing emission rates at the corridor level (i.e., for transportation 

system links). Ongoing research continues to add to an understand­
ing of the basic phenomena associated with emissions occurring 
from components of the vehicle fleet. For example, several remote 
sensing studies have shown that a small proportion of the fleet, 
known as "super-emitters," may be responsible for a large propor­
tion of the excess emissions ( 4,5). The public perception is that these 
super-emitters are either poorly maintained or very old vehicles. 
However, recent studies have shown that new, properly maintained 
vehicles can become high emitters under certain operating condi­
tions, such as high load conditions (6,7,8). Hence, a small fraction 
of each vehicle's activity may be responsible for super-emissions, 
or a large fraction of that vehicle's daily emissions (9). New models 
must be capable of addressing the effects of both the presence of 
super-emitters in the fleet and the occurrence of super-emissions 
events associated with various vehicle operating modes. 

Inherent in all the existing emissions models, and in most of the 
new models being developed, is the assumption that there is an aver­
age driver, or at least that the variations in driver to driver behavior is 
insignificant in the production of emissions from the vehicle. Aver­
age values for vehicle miles traveled and speed are used, resulting in 
the loss of variation inherent from vehicle to vehicle and driver to dri­
ver. Much of the research related to developing new test driver cycles 
(which may replace or supplement the federal test procedure cycle) 
for emission rates assumes typical driving in urban areas (/0). How­
ever, if the engine mode of operation is going to become an impor­
tant element of new models, there is clearly a need to better under­
stand how driver behavior can affect the frequency of these modes. 
For example, given the same vehicle, are older drivers likely to drive 
more conservatively than younger drivers, entering into engine 
enrichment modes less often? Is there evidence to suggest that driving 
patterns are indeed different from one city to another? 

This paper examines instrumented vehicle data sets from Balti­
more, Maryland; Spokane, Washington; and Atlanta, Georgia, to 
assess first the variation in driver behavior from one city to another 
and to assess the potential impact this variation might have on CO 
emissions estimation. After the sources and limitations of the data 
used in this study are laid out, this paper examines the differences 
in the frequency of activity that leads to high CO emissions among 
the three urban areas. Then, two methods for estimating CO emis­
sions as a function of vehicle and engine operating modes are pre­
sented and used to assess the potential impacts that different driving 
patterns may have on CO emissions estimation. 

INSTRUMENTED VEHICLE DATA 

School of Civil and Environmental Engineering, Georgia Institute of Tech­ A 1992 study in Spokane, Washington; Baltimore, Maryland; and 
nology, Atlanta. Ga. 30332. Atlanta. Georgia; instrumented approximately 350 vehicles with a 



dc\·icc that recorded data for three parameters: vehicle speed in 
meter~ per second. engine speed in revolutions per minute (RPM). 
and manifold absolute pressure (MAP) in kilopascals (kPa). The 
three-parameter data set yielded 213 vehicles for which valid data 
were recorded on all channels. In Baltimore and Spokane, a six­
parameter data base contained data from 79 vehicles for the fol­
lowing measures: vehicle speed in meters per second, engine speed 
in RPM, throttle position in percentages, and one of three measures 
of air flow, engine coolant temperature, and the output of a wide­
range oxygen sensor that monitored exhaust gas composition (i.e., 
air-to-fuel ratio). The six-parameter data set yielded 46 vehicles 
with valid data on all channels. Both studies recorded each para­
meter once per second, and each device continuously recorded the 
date and time of operation. 

Each resulting data set was subject to strict quality control pro­
cedures. More than 15 error-detection measures were used to track 
the wide vari~ty 0f anomalous conditions that could be part of any 
given data set. Many of the problems detected were transient and 
were corrected by substituting the erroneous value with an interpo­
lated value. Only the vehicle records containing valid data on all 
recorded channels for the entire study period were used in this 
analysis. 

To avoid the emissions modeling problems associated with ele­
vated emissions rates during vehicle warm-up (2), the research team 
used data collected only from hot stabilized engines. Engines were 
assumed to have achieved hot stabilized combustion, and catalytic 
converters were assumed to have reached light-off temperatures 
by the time the engine temperature reached 70°C. Thus, the six­
parameter data used in developing emission rate models excluded 
all data from operations when the engine coolant temperatures were 
lower than 70°C. 

Each vehicle recorded data for approximately I week before the 
instruments were removed. In the three-parameter data set used in 
this study, Atlanta drivers recorded over 3.0 million sec of opera­
tion from 76 vehicles, Baltimore drivers recorded 2.5 million sec of 
operation from 68 vehicles, and Spokane drivers recorded 1.9 mil­
lion sec of operation from 69 vehicles. The six-parameter data used 
in this study recorded 1.6 million sec of operation from 46 vehicles. 

Driver Selection 

Baltimore and Spokane drivers were solicited at centralized emis­
sions inspection centers, with vehicles instrumented at the time of 
solicitation (/ /). Atlanta has no centralized emission inspection. 
Drivers were solicited at three driver's license stations; their vehi­
cles were instrumented later at remote sites. 

Data Limitations 

The six-parameter data base was limited. The sample size wa~ small 
and appears biased in important respects. For example 

• Only fairly new vehicles (i.e., model years between 1989 and 
1991) were instrumented, 

• A limited number of engine types and sizes were included, 
• Young drivers are poorly represented ( only I of the 46 drivers 

was under the age of 25, 
• Manual transmission vehicles were underrepresented, and 
• High-performance vehicles were not included in the sample. 
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For the three-parameter data sets in all three cities, efforts were 
made to select a representative sample of drivers and vehicle types 
from the target population. For example, the three-parameter data 
set was not restricted to the type or age of vehicle instrumented. 
Potential driver bias has not yet been examined in the three­
parameter data set. However, based on the preliminary analysis of 
the Atlanta data set, the three-parameter data set appears less likely 
to be biased than the six-parameter data set. 

Both data sets arc somewhat limited in their usefulness because 
geographic positioning data or accelerometer data were not col­
lected for use in evaluating the impacts of grade on speed, acceler­
ation, and throttle position. Furthermore, without positional infor­
mation, the data could not be directly associated with the roadway 
classification upon which the vehicle was operating. Hence, if the 
noted speed was 56 km/hr (35 mph), it was not possible to deter­
mine directly whether the activity occurred on a congested freeway 
or a free-flowing arterial. 

Despite the potential biases and shortcomings in the data sets, the 
six-parameter and three-parameter data sets from these three cities 
still represent a rich source of information on vehicle activity. The 
data serve as an excellent point of departure for preliminary discus­
sions of the potential impacts of variations in driving patterns. 

DATA ANALYSIS 

Vehicle speed distributions for the three-parameter data set for each 
city are shown in Figure I and indicate the proportion of total driv­
ing time spent in each specific speed range. For example, approxi­
mately 15 percent of the total driving time in Spokane occurred in 
the 48 to 56 km/hr (30 to 35 mph) speed range, compared with only 
8 and 6 percent in Baltimore and Atlanta, respectively. If it is 
assumed that the speed range from 25 to 40 mph (40 to 64 km/hr) 
represents driving that would occur primarily on arterial highways 
or congested freeways, Spokane has the highest percentage of such 
activity in the three cities studied. In addition, Spokane has the low­
est percentage of activity above 60 mph. Atlanta drivers tended to 
drive much faster than their counterparts in the other two cities. 

If drivers in the different cities operated on uncongested free­
ways, the shape of the high end of the speed distributions should be 
the same. Because they are different, it may be because (a) the dri­
vers in the different cities do not drive on uncongested freeways, 
which means that they do not have freeways, they do not drive on 
their freeways, or that their freeways are not uncongested, or (b) the 
drivers in the different cities are driving differently on uncongested 
freeways, which means that the freeways may be physically differ­
ent, causing different responses, or that the freeways are physically 
similar but that there is a behavior difference between drivers in 
various cities. Unfortunately, with the data collected, the reason 
cannot be determined. 

If it is assumed that the largest fraction of vehicle activity occurs 
on arterial highways, this activity occurs in Spokane and Baltimore 
in the 40 to 64 km/hr (25 to 40 mph) speed range. In Atlanta, this 
fraction of activity occurs in the 56 to 80 km/hr (35 to 50 mph) 
speed range. In addition, there appears to be a less distinctive break 
between the arterial highway activity fraction and the freeway frac­
tion in Atlanta. However, depending on congestion conditions, 
some of the data from congested freeways may overlap data from 
arterial operations. 

These results arc perhaps not surprising given the different ter­
rain and road network characteristics of the three cities. Although 
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FIGURE 1 Vehicle speed distributions ror three-parameter data sets. (Bin marked "5-10" 
refers to speeds 2: 5 mph and < 10 mph.) 

the Spokane metropolitan area includes an Interstate highway, the 
Interstate serves primarily as a bypass link and does not serve as a 
major transportation link for trips internal to Spokane. Baltimore is 
a more densely developed, older city than Atlanta and Spokane, 
with a freeway system that is more expansive than Spokane's but 
not as large as Atlanta's. The freeway system in Baltimore is aug­
mented with a highly developed set of arterial highways that have 
traditionally served many of the internal Baltimore trips. Atlanta, on 
the other hand, has a newly expanded freeway system that many 
drivers use as the major means of reaching destinations in the 
Atlanta area. The freeway system is accessed by a large network of 
major arterial roads, many with high levels of capacity that experi­
ence high-speed activity. 

Although the reasons for the noted differences are as yet unclear, 
the data in Figure I clearly indicate that there are substantial differ­
ences in vehicle speeds from one city to another. These differences 
are statistically significant and were substantiated through discrim­
inant analysis, where a set of functions is derived that minimizes the 
variance within a group and maximizes the variance between 
groups (12). The discriminant analysis results are contained in 
Table I. In this case, two functions were needed to classify each 
driver into the three groups. The proportion of total driving time in 
each of 16 speed bins for each driver was used to predict in which 
city the driver operated the vehicle. 

If the speed profiles contained little information about the city in 
which a driver operated, a discriminant analysis would misclassify 
most of the drivers, with a success rate approaching that of chance 
assignment. In this case, the speed profiles worked well in deter-

TABLE 1 Results of Discriminant Analysis Based on Speed Profiles 

Actual Group Predicted Group Membership 
City Cases Baltimore Atlanta Sookane 

Baltimore 68 51 10 7 
75.0% 14.7% 10.3% 

Atlanta 76 13 63 0 
17.1% 82.9% 0.0% 

Spokane 69 13 2 54 
18.8% 2.9% 78.3% 

mining in which city the driver operated, with a success rate of 79 
percent. Atlanta drivers were most frequently correctly grouped, 
indicating that Atlanta drivers' speed profiles are more distinctive 
than those for Baltimore or Spokane. Also, no Atlanta driver was 
misclassified as Spokane drivers were. There is also some overlap 
between the driving patterns found in Baltimore and the other two 
cities. 

However, Figure I does not allow for observations about the style 
or aggressiveness of driver behavior (which could also be related to 
the characteristics of the road network). For the purposes of this 
paper, aggressive is defined to indicate higher acceleration rates. If 
each data set was segregated into subsets by driver according to the 
proportion of driving in arterial or highway modes, previous 
research indicates that the acceleration distributions would not be 
distinctly different for these subsets (13). That is, drivers who spend 
most of their driving time at freeway speeds are not more likely to 
drive more aggressively in any speed range than the drivers who 
spend most of their driving time at arterial speeds. However, one 
possible measure of driver aggressiveness is the distribution of 
acceleration across all speed ranges. 

To examine the potential differences in acceleration profiles 
across cities, the standard deviation of the acceleration and deceler­
ation values was calculated for 8 km/hr (5 mph) bins for each of the 
cities (Figure 2). A larger standard deviation implies a larger num­
ber of vehicles with greater acceleration or deceleration values, or 
both, in that speed group, a phenomenon of great interest in esti­
mating emissions related to engine load or power enrichment. By 
this measure, Atlanta drivers were more aggressive in most speed 
ranges. 

The acceleration profiles were also examined by using discrimi­
nant analysis, and the results are better than those obtained using 
only the speed profiles. The analysis grouped the drivers into their 
correct cities 85 percent of the time, with Atlanta drivers grouped 
properly 88 percent of the time. 

The results of the discriminant analysis clearly sho\': that the 
driving patterns are significantly different across the three cities. It 
may be that particular transportation network characteristics arc the 
most important parameter. For example, higher levels of accelera­
tion changes could be explained by a larger number of opportuni-
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FIGURE 2 Standard deviation of acceleration distributions for three-parameter data sets. 
(Bin marked "5-10" refers to speeds~ 5 mph and< 10 mph.) 

ties in a road network to accelerate or decelerate (e.g., stop signs or 
traffic signals). This could certainly be one explanation for the dif­
ferences in the lower speed ranges (such traffic controls are not 
found on freeways). The greatest differences in acceleration stan­
dard deviations between Atlanta and the other two cities occur in 
the 24 to 72 km/hr ( 15 to 45 mph) speed ranges. This suggests that 
the greatest variation in acceleration behavior may occur on arte­
rial highways (or congested freeways). One possible contributing 
factor is that the Atlanta arterial road network covers a much larger 
geographic area than that of the other two cities, often providing 
drivers with greater distances before signal interruptions. This may 
not only allow greater speeds but also account in part for the distinct 
differences in acceleration activity. Perhaps the transportation sys­
tem characteristics have conditioned drivers to drive in the manner 
noted for each city. That is, drivers may simply respond to various 
infrastructure characteristics, such as lane width or presence of 
highway barriers, in terms of speed and acceleration profiles. 

However, demographic differences or vehicle sample could also 
account for some of these characteristics. It may be that driver char­
acteristics are responsible for the differences noted across the cities. 
Perhaps the age distribution or previous driving experiences play a 
role in modal profiles. Perhaps the vehicles themselves are an 
important explanatory variable or an interaction term with driver 
characteristics. It may even be that local law enforcement habits 
play a role in these differences. There are no clear reasons why such 
differences in vehicle activity occurred. But the Georgia Institute of 
Technology has undertaken additional studies to explain these dif­
ferences. In future studies, vehicle characteristics, driver character­
istics, and infrastructure characteristics will be controlled during 
data collection so that statistical analyses are more likely to reveal 
the factors that appear to affect these activity differences (/4). 

In summary. an examination of instrumented vehicle data sets 
from three U.S. cities indicated that there are significant differences 
among the cities in vehicle activity profiles. These differences may 
be caused by the characteristics of the road networks or the driving 
styles found in separate regions of the United States. The impor-

tance of this finding is that it suggests the existence of potentially 
substantial differences across cities in mobile emissions estimates. 
depending on the relative contribution of modal emissions to the 
overall emissions inventory. To examine the potential impacts of 
these activity differences, two simple predictive models for CO 
emissions. derived as functions of vehicle and engine parameters. 
were developed from the data collected during the six-parameter 
study. These models were then used to examine the relative CO 
emissions from the cities, given the different speed-acceleration 
distributions found in each city. 

POTENTIAL EMISSIONS IMPACT OF 
DRIVER BEHAVIOR VARIABILITY 

CO emissions can be estimated from variables contained in the six­
parameter data set. By coupling the wide-range oxygen sensor 
(which detects the exhaust air-to-fuel ratio) reading with mass air 
flow and assumed catalytic converter efficiency, the CO emissions 
rate can be estimated. The development of this method was covered 
extensively in a previous work (/5) and is not repeated here. 

Using the methodology developed previously (15), two alterna­
tive engine-specific models were developed from the largest subset 
of the six-parameter data available, eight General Motors vehicles 
with 3.1-L engines that were equipped with MAP sensors. The eight 
vehicles in this subset made 350 trips, and emissions were modeled 
on a per-trip basis. Two different models were considered: a speed­
acceleration model and a speed-MAP-RPM model. These parame­
ters were chosen because the three-parameter data included these 
variables. These models could likely be improved if throttle posi­
tion were also used as a predictive variable, because many engine 
control units base commanded enrichment logic on throttle position 
(as well as other factors not included in the model) and because 
throttle position is controlled directly by the driver. 

The speed-acceleration model initially considered six zones of 
operation (Figure 3). The characteristics of the zones are 
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I. Speed and acceleration combinations within the bounds of the 
FTP test. 

2. Speeds less than the maximum FfP speed of 92 km/hr (57 
mph) and acceleration rates higher than the FfP maximum for any 
given speed, 

3. Speeds less than the maximum FfP speed and deceleration 
rates higher than the FfP maximum for any given speed, 

4. Speeds greater than the maximum FfP speed and acceleration 
rates greater than 0.45 m/sec2 (I mph/sec), 

5. Speeds greater than the maximum FfP speed, acceleration 
rates Jess than 0.45 m/sec2 (I mph/sec), and deceleration rates less 
than 0.45 m/sec2 (I mph/sec), 

6. Speeds greater than the maximum FfP speed of 92 km/hr (57 
mph) and deceleration rates greater than 0.45 m/sec2 ( I mph/sec). 

Of these six zones, the two deceleration zones (Zones 3 and 6) 
were not found to be statistically significant. Zones 3 and 6 were 
merged with the FfP zone. The functional fonn of the regression 
equation is 

CO(g/sec) =0.050514 + 0.094067 * (HI_SPEED) + 
0.642077 * (LO_ACCEL) + 0.823341 * (HI_ACCEL) 

where 

HI_SPEED = the proportion of each trip with speeds greater 
than 92 km/hr (57 mph) and acceleration rates 
Jess than 0.45 m/sec2 (I mph/sec) (Zone 5), 

LO_ACCEL = the proportion of each trip with speeds less than 
92 km/hr (57 mph) and accelerations greater than 
those found on the FfP (Zone 2), and 

HI_ACCEL = the proportion of each trip with speeds greater 
92 km/hr (57 mph) and accelerations greater than 
0.45 m/sec2 (I mph/sec) (Zone 4). 

R2The for this model is fairly poor at 0.29, with an 
F-statistic of 46. 9 and a standard error of 0.035 g/sec. 
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The speed-MAP-RPM model is based on the concept that enginc 
paramctcrs govern commanded enrichment and will better predict 
modal emissions for a single engine type. When the CO emissions 
rate is plotted across MAP and RPM, four zones were defined to 
account for different engine modes. These four zones were defined 
arbitrarily as operations with 

• MAP :s 70 kPa and RPM :s 3,500, corresponding to normal 

driving; 
• MAP> 70 kPa and RPM :s 3,500, corresponding to high-load 

conditions. such as climbing a steep hill; 
• MAP :s 70 kPa and RPM > 3,500, corresponding to a high­

RPM. low-load condition. which rarely occurs; and 
• MAP > 70 kPa and RPM > 3,500, corresponding to high-load 

conditions that arc often associated with both commanded enrich­
ment and high-mass air flows. 

Each of these four zones was then examined for variance with 
respect to vehicle speed. With the exception of the rare high-RPM. 
low-load condition, the CO emission rates in each zone varied sim­

ilarly with speed. Each zone showed the lowest emission rates when 
speed was less than 16 km/hr ( I fl mph). Emission rates then became 
speed-invariant to approximately 113 km/hr (70 mph). In light of 
this, each of the four engine zones was divided into three speed 
zones: less than 16 km/hr (IO mph). between 16 and 113 km/hr ( I 0 
and 70 mph), and greater than 113 km/hr (70 mph). 

This model required fine tuning as well. The high-RPM, low-load 
zone had very little data and did not exhibit a clear relationship with 
vehicle speed; thus, the three zones were merged into a single zone. 
The high-load, zone with RPM less than 3,500 had insufficient data 
to support separate groups for moderate and high speeds, and these 
two zones were merged as well. No data points included activity at 
speeds less than 10 mph and with both high MAP and RPM. 

The resulting regression equation displayed much better results 
than the model based only on speed and acceleration with an R2 value 
of 0.56, an F-statistic of 62.8, and a standard error of 0.029 g/sec. 
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The engine-based modL·I clearly explains more of the variation in 
the CO emission rates of vehicles equipped with 3.1-L engines than 
docs the speed-acceleration model. This is hecausc the engine con­
trol unit (on-board computer) commands enrichment based largely 
on monitored engine parameters. A given speed-acceleration com­
hination does not directly determine these engine parameters. 
(Nole. however, that the linear acceleration variable. change in 
speed per change in time. used in the model did not include accel­
eration due to grade.) 

Throttle position is another potentially significant variable 
because it is monitored by the on-board computer system and 
appears to be used by many vehicles in commanded enrichment 
algorithms. Preliminary analyses indicate that emission rate varia­
tion for specific vehicle makes and models can be comparahly 
explained by a model based solely on RPM and throttle position. 
Because throttle position appears to be only partially correlated with 

engine load expressed as MAP (a Pierson correlation coefficient of 
roughly 0.75 for the six-parameter data examined), variation in 

throttle position may be in pan due to the individual differences 

in how th.: driver uses the throttle to interface with the engine. 

It is important to keep in mind, however, that other studies have 
indicated that the vehicle-to-vehicle variations in emissions 
response to various operating modes and loads (i.e., modes that may 
cause commanded enrichment) appear to be large (9). Hence, an 
engine-parameter model developed from single or limited engine 
types may be inappropriate when applied to other vehicles. 

The speed-acceleration and speed-MAP-RPM models were then 
re-derived using the entire six-parameter data set. The three-para­
meter data set was not used because engine sizes were not recorded. 
In the case of the Spokane and Baltimore data, even the vehicle type 
was unknown. It is theoretically possible to derive engine size data 
from the vehicle identification number, but this was not attempted. 
In future analyses, it would be ideal to use some measure of differ­
ences among vehicles, particularly engine size, when extending this 
type of model. As expected, the models did not perform as well 
when they were derived from data collected for several vehicles 
with different engine types and control strategies taken together. In 
the case of the speed-acceleration model. the R2 dropped from 0.29 
to 0.17, with the standard error rising from 0.035 to 0.056 g/sec. The 
speed-MAP-RPM model did not suffer as severe a degradation, 
with the R2 dropping from 0.56 to 0.37, which is a better fit than the 
speed-acceleration model was able to manage over a single vehicle 
type. However, the standard error is also fairly high at 0.050 g/sec. 
The proportion of e~ch trip spent at low speeds and normal engine 
operation was taken as the regression constant because this region 
would usually correspond to idle and was found to be statistically 
insignificant. The regression equation, where the value ofeach vari­
able is the proportion o'f each trip that fell into a given zone is 

CO(g/scc) = 0.029854 + 0.034631(NOR_MED) 
+ 0. I 96595(NOR_HI) 
+ l .304044(HI_RPM) 
+ 0.029 l 55(HI_MAP _LO) 
+ 0.273061 (HI_MAP _MEDHI) 
+ 3.228802(HI_LOAD_LOMED) 
+ 22 74787(Hl_LOAD_HI) 

where 

NOR_MED = activity at speeds between 16 and I 13 km/hr (10 
and 70 mph) and normal engine parameters; 

NOR_HI = normal engine parameters where speed > 113 
km/hr (70 mph); 

HI_RPM = all activity at high RPM and MAP < 70 kPa; 
HI_MAP= activity at high MAP, hut RPM< 3,500, with the 

speed divisions as above; and 
Hl_LOAD= activity where MAP and RPM arc both high. 

The smaller degradation of the engine model may be because any 
engine is likely to be in enrichment at high MAP and RPM, and to 
some degree at high MAP independent of RPM. However, the fre­
quency of high-load activity for any vehicle will vary as a function 
of engine size and vehicle weight (i.e., load is associated with the 
power-to-weight ratio). Engine size appears from other studies to be 
an important causal variable (9). and engine size and vehicle weight 
were not used as explanatory variables in the derived models. Thal 
these variables arc not included is a limitation in the derivation and 
application of these two models. Note, however, that engine size 

may not be a sufficient discriminant variable-the GM 3.1-L vehi­

cles equipped with MAP sensors behaved differently from the GM 
3. 1-L engines equipped with L VS sensors, and there were signifi­

cant differences between these and the 3.0-L Ford. 
It is important to note that the estimate of the CO emissions rate 

does not include measure of startup or cold-operation emissions 
because these data were not used in the analyses. In addition, as 
noted earlier, the six-parameter data base is limited to only a few 
engine types of a limited manufacture date range. Large engines, 
sports cars, manual transmissions, and young drivers are all under­
represented in this data set. Any values obtained by extrapolation to 
the three-parameter data should not be considered an accurate esti­
mate of overall CO emissions for a panicular vehicle, only as a pre­
liminary indication of emission rate differences associated with dif­
ferences in vehicle activities. A much larger study would be 
necessary to obtain enough data to accurately predict the emissions 
rates for the general population. Applying the models developed 
using the six-parameter data to the three-parameter data sets is not 
ideal. The application was intended to explore only the capability 
of the three-parameter data to distinguish among different driving 
patterns and to see whether the differences in speed and accelera­
tion behavior have a possible impact on emissions. As such, these 
models arc taken as a common metric that should be used for com­
parative purposes only. 

These models based on the six-parameter data produce inter­
esting results when applied on a trip-by-trip basis to the three­
parameter data sets. There were 4,354 trips recorded in Atlanta, 
3,70 I trips in Spokane, and 3,641 trips in Baltimore. The speed­
acceleration model tended to predict a much smaller variability than 
the speed-MAP-RPM model (Figure 4). The speed-acceleration 
model yielded a median CO emissions rate (on a per-trip basis) of 
0.078 g/scc for Atlanta drivers, 0.067 g/sec for Baltimore drivers, 
and 0.064 g/sec for Spokane drivers. The speed-MAP-RPM model 
yielded a median CO emissions rate of 0.102 g/sec for Atlanta driv­
ers, 0.087 g/sec for Baltimore drivers, and 0.079 g/scc for Spokane 
drivers (Figure 5). These results are not surprising when compared 
with the overall behavior patterns found using speed and accelera­
tion profiles. (Spokane drivers exhibited the lowest average speeds 
and the lowest acceleration rates, the Baltimore drivers were in the 
middle, and the Atlanta drivers exhibited the highest speeds and 
acceleration rates.) This trend ,s replicated in the results of these two 
models. Interestingly, the speed-acceleration model shows little dif­
ference between the median emissions rates of Spokane and Balti­
more drivers, in contrast with the results of the speed-MAP-RPM 
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FIGURE 4 Cumulative distribution of predicted CO emissions by trip for speed• 
acceleration model. 

model, which predicts larger differences between median emission 
rates in these cities. 

At this time, it is unclear whether the relatively poor performance 
of the speed-acceleration model is due to inherent flaws in attempt­
ing to model emissions based solely on speed and acceleration, lack 
of control over the grade variable, or inadequate model specifica­
tion (i.e., only four activity zones were used in this model), or 
whether poor performance is an artifact of the potential biases 
within this particular data set. Nevertheless, this initial work indi­
cates that the speed-MAP-RPM model may provide greater sensi­
tivity to changes in driving patterns. 

One factor that has not yet been discussed is long-term modeling 
implications of speed-acceleration models versus speed-MAP-
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RPM models. When a CO emission rate model is developed, the 
challenge that remains is to quantify the activity that must be used 
in the modeling process. That is, if a speed-acceleration model is 
used, the vehicle activity on a transportation link must be quantified 
in terms of speed and acceleration profiles. If a speed-MAP-RPM 
model is used, the vehicle activity on a transportation link must be 
quantified in terms of speed, MAP, and RPM profile. This is clearly 
not a simple modeling issue. Whereas the identification of speed 
and acceleration profiles is fairly straightforward and likely to be 
independent of the vehicle subfleet characteristics operating on the 
link, the RPM and MAP profiles are totally dependent on the char­
acteristics of that vehicle subfleet. Hence, the potentially higher 
explanatory power of engine-based models may be compromised if 
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FIGURE 5 Cumulative distribution of predicted CO emissions by trip for 
speed-MAP-RPM model. 
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highly unccnain ,-chick :,.1AP and RPM distribution~ arc linked 
with the emission rate~. Clearly. in rnnstructing long-term cmis­
~ions mndcb. a difficult balance must be reached. 

CONCLUSIONS 

Mobile source emissions arc dependent on vehicle type. vehicle 
activity. and possibly transportation network or driver characteris­
tics, or both. Important and statistically significant differences in 
vehicle activity profiles have been found among the three cities 
studied. It is unclear from this data set whether network character­
istics explain these differences completely or whether other charac­
teristics of these cities also play a role. A study looking for differ­
ences and similarities between drivers in cities with similar 
transportation networks would be necessary to test this hypothesis. 

The differences noted in vehicle activity profiles suggest that 
emissions models must adequately incorp0rate these variations into 
the modeling regime if they arc to be applied across a variety of 
metropolitan areas. An emissions model using engine operating 
parameters could provide a basis for newer, state-of-the-art trans­
portation models where fleets of vehicles are modeled based on the 
characteristics of driving conditions and engine modal operations. 
These models can account for differences in driving habits and pos­
sibly point out locations on the transportation network (such as on­
ramps) where high-emissions driving would occur. However, such 
an application requires accurate vehicle and engine operating pro­
files to be developed for the vehicle fleet for the emission rate algo­
rithms to be applied. Note that these results should not be extrapo­
lated to HC or NO,. 

A model that uses only the speed and acceleration distributions 
for a given roadway segment can be developed and applied. How­
ever, this approach initially appears to be much less sophisticated 
than the engine-based approach. It should be noted, however, that 
the model tested in this research used linear acceleration and did not 
account for grade effects. Once grade effects are included in net 
acceleration, the speed-acceleration model may provide signifi­
cantly improved explanatory power. Also, the effects of grade may 
be more significant at higher speeds than at lower speeds. In addi­
tion, the speed-acceleration model developed used only four activ­
ity zones, and improvements in explanatory power may result from 
a more refined model. Although a model based only on speed and 
acceleration may not perform as well as an engine parameter model, 
the activity data are likely to be more easily and accurately mea­
sured and modeled. Hence, the approach may simply be more 
practical than an engine model. 

Perhaps most important, this paper highlights the need for further 
research on variation in driving behavior. As emissions modeling 
research continues to develop new approaches on emissions pre­
diction based on engine modal operation, the transportation com­
munity needs to know more about the characteristics of drivers that 
would cause these vehicle-and engine-operating distributions to 
occur. Driving patterns vary from one city to the next; hence, it is 
not enough to collect statistically valid vehicle data within a single 
city. At the very least, this would suggest that an important input 
variable for emissions models may be a driving behavior factor that 
represents the driving style and trip cycles found in that particular 
city, perhaps as a function of infrastructure, fleet characteristic, and 
demographics. Additional research is necessary to define better the 
different characteristics of this driving factor. 
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