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INTRODUCTION 

Migration of populations or species of trees ("tree migration") in response to climate change 

is of interest both to paleoecologists who assess past vegetational responses to climate change, 

and to global ecologists concerned with future climate change induced by increasing greenhouse 

gases (GHGs). A major difference between climate-driven tree migrations in prehistory and 

those expected in the future is the high speed of the latter climate change. The 4-6 km which 

temperate-zone July isotherms are predicted to move northward annually (Solomon et al. 1984) 

are about an order of magnitude more rapid than prehistoric rates deduced from paleoecological 

evidence. Assuming prehistoric rates of warming matched the rate of tree migration (T. Webb 

1986; Prentice et al. 1991 ), fossil pollen data allow inference of 400 m/yr (Davis 1983) to 800 

m/yr (Gear and Huntley 1991) of climate change and tree migration at most. The rate may be 

even slower if tree migration includes the establishment and maturity of the tree population 

(Bennett 1986) as well as the processes of seed transport, establishment, growth and seed 

production, normally defined as migration (e.g., Davis, I 989; MacDonald et al. 1993). 

The difference in definition is important for predicting the amount of carbon (CO2 is the 

most important of the GHGs) that will reside in the atmosphere in the future. The oceans 

provide the ultimate long-term control on atmospheric carbon concentrations (e.g., Sundquist 

1985; Prentice et al. 1993). However, the terrestrial biosphere modulates the shorter-term 

changes in carbon content, measured over a few decades or centuries (Gammon et al. 1985; 

Keeling et al. 1995; Denning et al. 1995). Forests store about 2/3 of above-ground terrestrial 

organic carbon and over half of the carbon present in the world's soils (Dixon et al. 1994). The 

presence of a few trees on the landscape (e.g., MacDonald et al. 1993), indicated by 

. establishment and reproductive maturity of seed trees, contributes little carbon to terrestrial 

stocks. Instead, closed-canopy stands of mature mixed or pure species provide the dense 

carbon stocks of interest. These are associated with mature, stable populations. 

Projections of global terrestrial carbon cycle dynamics under warmer climates of a doubled 

GHG concentration have used static vegetation models (Prentice and Solomon 1990). These 

projections hinge on the critical assumption that the migration of trees and the formation of 

mature, stable populations at new locations proceeds at the same rate as the climate change to 

which it is responding (Sedjo and Solomon 1989; Leemans, 1989; Prentice and Fung 1990; 
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Smith, et al. 1992a, b; Smith and Shugart, 1993a, b; Solomon et al. 1993). To date, these static 

model exercises have projected increased global terrestrial carbon storage under future 

wanning, because large new land areas suitable for forest growth are created either by wanning 

of high latitude treeless tundra, or by increased hydrologic cycle intensity in treeless steppe. 

Yet, unchanged or decreased rather than increased carbon storage may result if forests 

cannot migrate and establish in the time required to attain the doubled GHG benchmark. The 

objective of the current paper is to estimate the time required for forests to develop in regions 

new to them, to estimate the time required for forests to die out where they become climatically 

obsolete, then to calculate the i:npacts of those times on future terrestrial carbon stocks. 

MIGRATION RA TE LIMITS 

For our purposes, three time-variable steps may be distinguished in the migration process: 

seed transport, coupled with establishment of seedlings; reproductive maturation of individuals; 

and, forest, i.e., maturation of populations in closed canopy forests. 

Seed Transport. Tree seed transport, whether by wind, animals or running water, requires 

little more than a day. Establishment of tree seeds (seed germination and growth of a taproot 

into mineral soil) requires one to two growing seasons. Taken together, transport and 

establishment are instantaneous compared with the multiple decades required for warming. 

However, transport and establisment is not a singular process but rather, must be repeated 

multiple times, each consisting of several time-variable processes. 

Some shifting populations possess sharp boundaries which resemble a slowly moving wave 

(Davis, 1987). These depend t:pon the regular transport of seeds 10-100 m, followed by a few 

decades to centuries of tree maturity before another 10-100 m "step" is taken. Other population 

· boundaries consist of "infection sites," located well beyond of the main population, surrounded 

by population voids (Davis, 1987, 1990), and derived from irregular transport events. The 

latter pattern results from migration comprised of rare long-distance transport and establishment 

events, and is followed by local population growth via transport and establishment between 

founder seed sources (Bennett 1984, Davis 1987). This migration form probably produces the 

most rapid migration rates (Leishman et al.• 1992; Collingham et al., 1996). Multiple rare 

events, by definition, form a (long) time-ordered process. Jumps of 100-200 km have been 

detected in the Holocene at about 1000 year intervals (S. Webb, 1_986; Davis et al., 1986). 

Tree Maturation. The time required to complete tree life cycles varies considerably. Most 

evergreen and deciduous conifers can reproduce within 10 years of seed germination and 

deciduous hardwoods, within 15 years (Harlow et al. 1979). Yet, these times apply to trees 

growing in full sunlight (i.e., without other trees nearby), and to reproduction by trees still the 

size of saplings (i.e., 2-5 meters tall). Annual seed production in this case is very small ( 1000s 

instead of 100,000s of seeds per tree; Bums and Honkala 1990), and transport distances may 

be quite small because of the low stature of the seed sources (e.g., <50 m for trees <5 m tall, 
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according to experiments by Greene and Johnson 1989). The short life cycling times occur 

when tree populations invade treeless areas and form clumped seed sources (with low carbon 

densities), rather than when populations expand to form areas of continuous forest between 

seed sources, or ~row rapidly within stands already populated by mature forests. 

Forest Maturation. The development of scattered individuals and stands of trees into closed 

canopy forests containing maximum carbon densities takes considerably longer than maturation 

of isolated trees. First, the areas between trees and stands must be occupied. If 10-15 year-old 

trees each generation produce seedlings 50-100 m away, even a founder population of one 

tree/km2 (not a rare event distribution but one calculated by Greene and Johnson, 1995, as rare 

enough to constrain metapopulation expansion) requires 5-10 generations to plant seeds in all 

parts of the square kilometer. The sequential completion of 5 or 10 generations could require 

50-100 years in conifers and 7 5-150 years in deciduous hardwoods from dense populations, 

and a millennium from sparse tree densities (ibid.). The minimum number of life cycles 

obviously depends on the distances between seed sources, but would usually exceed the 5-10 

generations exemplified at distances beyond about 2-10 km from the original forests (ibid.). 

This is consistent with estimates of mid-Holocene hemlock occupation of northern lower 

Michigan in about 500 years (Davis et al., 1986) and documentation of periods exceeding 1000 

years for local forest development during the forestation of the British Isles (Bennett 1986). 

Second, closed forests must develop. Tree growth rates are much slower in the shade than in 

the open. In closed forests, trees must grow to reach the canopy surface before producing 

significant numbers of seeds (Daubenmire, 1959; Waring and Schlesinger, 1985). This 

requires a minimum of 25-50 years in most temperate and boreal regions in which closed 

canopy forests exist (Harlow et al. 1979). Certain shade-tolerant species may require 150 (Acer 

saccharum, Canham 1988) to 450 years ( Tsuga canadensis, Godman and Lancaster 1990) to 

reach the canopy and complete the cycle. Even the 25-50 years for life cycle completion in 

closed canopy forests presumes optimum rates of height and diameter growth. Yet, warming is 

likely to slow growth rates, as it has in the past ( e.g., Fritts 1976; Briffa et al. 1995). 

In sum, the minimum time required for development of mature forests by tree species that 

originate elsewhere is between 100 years (conifers that spread from initial seed sources in an 

arbitrary five 10-year generations and grow to canopy height in 25 years) and 200 years 

(deciduous hardwoods that spread from initial seed sources in ten 15-year generations and 

grow to canopy height in 50 years). This "transient response" to climate changes is consistent 

with forest maturity rates measured in the past and simulated by mechanistic gap models (e.g., 

Solomon 1986; B_ugmann .I 993). The latter models exclude the time needed for development of 

isolated tree seed sources but include crude effects of chronic climate change on tree growth. In 

reality, the rate will probably be much slower, perhaps approaching the >1000 yr period 

inferred by Bennett ( 1986, 1988) in prehistoric data describing forest initiation and maturation. 

Forest Tree Mortality. The other half of the migration question for calculating carbon 

stocks is the concomitant mortality of trees which have become climatically and fatally 

"obsolete" (i.e., after climate variables exceed their climate tolerances). Stress induced by 
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warming and drought may directly slow growth of individual trees and thereby, induce 

mortality, usually in less than a decade (Nichols, 1968; Franklin et al., 1987; Auclair, 1992), 

especially among seedlings and saplings (Peet and Christiansen, 1987). However, climate 

stresses more commonly predispose trees to succumb to other mortality agents (Waring, 1987), 

such as air pollutants (Hinrichsen, 1987), wildfire (Payette 1992), insect infestations (Holling 

1992) and windthrow (Webb 1989). Such direct and indirect stress-induced mortality can be 

viewed as chronic decline over several decades if it is measured at the scale of a large region, 

where new individuals, populations and stands are dying each year (Mueller-Dombois, 1992). 

The amount of time required to extirpate populations from regions in which they have 

become climatically obsolete is exceedingly complex to predict. The fatal obsolescence itself is a 

non-linear time-transgressive property of the rate and spatial distribution of climate change. 

Trees growing in areas undergoing the most rapid climate changes, growing near limits of their 

distribution and growing in stressed habitats may die in only a few years, while others may just 

begin to sense stress by the time GHGs have doubled. Following mortality, release of carbon 

from dead trees may require additional decades. Harmon et al (1986) cite 50% volume loss 

times of 14-172 years for log mineralization of softwoods under temperate climates inducing 

slow decomposition, and 2-24 years for hardwoods. 

Although seedlings and saplings should disappear quickly, the loss of mature trees which 

store most of the carbon is more relevant. Increased, climate-induced mortality ·of mature trees, 

and carbon losses to mortality greatly exceeding carbon gains from new growth (Kirschbaum 

and Fischlin 1996), is expected to generate a future pulse of increased atmospheric CO2 

(Solomon, 1986; King and Neilson, 1992; Smith and Shugart 1993a,b). Epidemics of 

pathogens and insects, mortality agents through which climate change may act, have required 

about 50 years in eastern North America to kill most individuals of American chestnut (Odum, 

1969) and American elm (Gibbs, 1978) in the 20th century and eastern hemlock in mid-

Holocene time (Davis, 1981 ). Based on the foregoing, I assumed that trees would be extirpated 

from areas of fatal obsolescence in the 60-70 years required to reach climate of doubled GHGs. 

MIGRATION RA TES APPLIED 

The minimum of 100 to 200 years required to develop forests composed of new species in a 

given region following the imposition of a changed climate can be compared to the expected 

time climate will take to change. Frequently, the time needed to impose the climate of doubled 

concentrations of CO 2 or of all GHGs (e.g., Houghton et al. 1995) is used, currently expected 

to occur in 60 to 70 years or by about the year 2050 (Greco et al. 1994). At that rate, forest 

migration would be very incomplete at best, even if the forest development began when climate 

change began, rather than following sometime after initiation of the climate change. 

This lag is incompatible with the assumption of instant migration and forest maturity 

incorporated by the static models discussed in the introduction, above. Consider that the static 
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vegetation models utilize a half-degree latitude and longitude grid (one degree by Prentice and 

Fung 1990), with a latitudinal resolution of about 55 km at the equator. Measurement of any 

tree migration which sequesters carbon by the 70 year doubling of GHGs is highly unlikely, if 

not impossible, even at the normal 150-400 m/yr migration rate Davis (1983) estimated from 

fossil pollen data (producing tree migration of only 11-28 km during the 70 yrs). A more 

realistic assumption is that no forest migration occurs in the 70-year time span needed to reach a 

doubling of CO2 or GHGs, although migration would occur eventually. Belotelov et al. ( 1996) 

applied this model condition to the Holdridge Life Zone System to define the absolute range of 

carbon values possible for specified future climate scenarios in the former Soviet Union. 

Solomon and Kirilenko (1996) modified the Biome 1. I model (Prentice et al. 1992, I993) 

to reflect this "delayed migration" condition. They assumed that tree functional types (TFfs) 

which were incompatible with doubled GHG climates would disappear during the 60 or 70 

years from areas acceptable under the initial climate, but that TFfs could not appear in areas in 

which they were absent under the initial climate. Nonarboreal plant functional types (shrubs, 

grasses; NAFfs) were modeled as migrating instantly, on the assumption that they are able to 

produce seed as quickly as their first or second growing seasons, greatly reducing lags in 

response to rapid climate change. 

Figure 1 illustrates a Biome 1.1 model run using climate output from the UKTR coupled 

ocean-atmosphere GCM for climate of current and of doubled GHG concentration (Solomon 

and Kirilenko 1996). Note that differences between instant migration and no migration are 

present at all latitudes. Reduced temperature constraints on tree growth in high latitudes permit 

occupation of latitudinal bands of nonarboreal tundra by boreal forests under instant migration 

Figure 1. Global distribution of land occupied by forest, projected by the BIOME 1.1 
model (Prentice et al., 1993) under the UKTR climate scenario (Murphy and Mitchell 
1996). Areas in black show differences between assuming instant migration and absent 
migration and areas in grey are forested under either instant or absent migration. 
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assumptions. Similarly, increased soil moisture and instant tree migration produces forest 

occupation of longitudinally-oriented steppe and savanna areas by dry temperate forests in 

North and South America and by tropical forests in Africa, India and Asia. In part the patterns 

reflect the great difference in sensitivity of temperature to GHGs at high latitudes compared to 

that at low latitudes which undergo little wanning (Greco et al 1995). 

RES UL TS AND DISCUSSION 

The paper is written to estimate the time required to form closed canopy, mature forests by 

immigrating species and the time required to eliminate trees which have become fatally obsolete. 

The objective is to define the implications of this lagged climate response to the global carbon 

cycle. Prentice et al ( 1993) have transformed biome areas into carbon stocks by appying carbon 

density estimates for aboveground and belowground carbon. 

Table 1 compares terrestrial carbon storage under future climate with migration versus no-

migration assumptions. Like other static models, this exercise with instant migration generated 

more terrestrial carbon under doubled GHG climate than under modern climate. Simulated 

tropical forests invade large areas of grassland and savanna due to the positive moisture balance 

this particular GCM projects for the tropics. The difference between modern and future carbon 

with instant migration is considerably less than others have projected (Prentice and Fung 1990; 

Leemans, 1989; Smith et al, 1992a, b; Smith 1993; Solomon et al. 1993). The UKTR coupled 

ocean-atmosphere GCM is considerably less GHG-sensitive than those used in the past. 

TABLE 1. Above ground (AG)I, below ground (BG)2 and total (TOTAL) biomass in Petagrarns 
(Pg) under modern and doubled GHG climate, with and without tree migration 

MODERN CLIMA TE3 DOUBLED GHG CLIMA TE4 
WITH MIGRATION NO MIGRATION 

BIO.MES AQ_ .6..Q_ TOTAL AG BG TOTAL AG BG TOTAL 

Boreal Forests 170 300 470 179 298 477 165 292 457 
Temperate Forests 169 360 529 174 343 517 147 336 483 
Tropical Forests 300 289 589 346 330 676 287 281 568 
Boreal N onforest 11 177 188 8 127 134 12 151 163 
Temperate Nonforest 22 189 211 25 191 216 33 261 294 
Tropical Nonforest 52 144 196 51 132 183 49 128 177 

Forest Biomass 639 949 1588 699 971 1670 599 909 1508 
Total Biomass 723 1459 2177 783 1420 2203 693 1449 2142 

I. from table converting area to biomass in Prentice et al. 1993, based on Olson, et al. 1983. 
2. from table converting area to biomass in Prentice et al. 1993, based on Zinke et al. 1984. 
3.from data of Leemans and Cramer ( 1990). 
4. from temperature and precipitation differences between 2 X CO2 and 1 X CO2 of Murphy and 
Mitchell (1996) applied to data of Leemans and Cramer (1990). 
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In contrast to carbon increases associated with instant migration, the amount of carbon 

stored in terrestrial vegetation and soils declines under GHG-induced climate when one assumes 

that trees do not migrate (Table 1). All forests decline in biomass and do so both above (40 Pg) 

and belowground (40 Pg). Nonarboreal biomass that replaced forest biomass (9 Pg above 

ground, 30 Pg below ground) does not make up for the forest carbon loses. Despite the 

moderate future climate scenario used, and hence, the moderate amount of forest response 

projected, the difference in forest biomass between the two assumptions is significant. The 

above-ground forest biomass difference is 100 Pg or about 16% of the initial 639 Pg, and the 

total forest biomass difference is 162 Pg, or 10% of the initial 1583 Pg. 

The foregoing values, for vegetation composition responses to climate change alone, exceed 

the calculated amount of carbon sequestered in terrestrial vegetation from carbon fertilization, as 

hypothesized from lab experiments (Melillo et al. 1993; Schimel et al. 1995), or calculated by 

difference from ocean uptake (Denning et al. 1995). Although the global difference for all 

biomes is considerably less (61 Pg), it is the forests, especially those at high latitudes, which are 

suspected of increasing storage of the carbon not accounted for in ocean-atmosphere models. 

Clearly, where this view depends on the future distribution of forests (e.g., Melillo et al. 1993; 

VEMAP Participants 1996), it needs to be reexamined. In any case, the amount of carbon 

tabulated under the traditional instant-migration assumption should be recalculated based on a 

concept of imperceptibly slow forest immigration response to climate change in the 21st century. 
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