United States Environmental Protection Agency

Äir

Office of Air Quality Planning and Standards Research Triangle Park NC 27711 EPA-450/3-80-023 December 1980

Organic Chemical Manufacturing Volume 1: Program Report

Organic Chemical Manufacturing Volume 1: Program Report

Emissison Standards and Engineering Division

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air, Noise, and Radiation Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711

÷.

December 1980

02

This report was furnished to the Environmental Protection Agency by IT Enviroscience, 9041 Executive Park Drive, Knoxville, Tennessee 37923, in fulfillment of Contract No. 68-02-2577. The contents of this report are reproduced herein as received from IT Enviroscience. The opinions, findings, and conclusions expressed are those of the authors and not necessarily those of the Environmental Protection Agency. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use. Copies of this report are available, as supplies permit, through the Library Services Office (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, or from National Technical Information Services, 5285 Port Royal Road, Springfield, Virginia 22161.

D124R

PROGRAM REPORT

R. E. White

IT Enviroscience 9041 Executive Park Drive Knoxville, Tennessee 37923

Prepared for

Emission Standards and Engineering Division Office of Air Quality Planning and Standards Environmental Protection Agency Research Triangel Park, North Carolona

March 1981

ند

PREFACE

Concern over widespread violation of the national ambient air quality standard for ozone (formerly photochemical oxidants) and over the presence of a number of toxic and potentially toxic chemicals in the atmosphere led the Environmental Protection Agency to initiate standards development programs for the control of volatile organic compound (VOC) emissions. The Synthetic Organic Chemicals Manufacturing Industry (SOCMI) standards development program was initiated in 1976. Its purpose was to gather technical and cost data on the control of air pollution in organic chemical manufacture and then to prepare (1) New Source Performance Standards (NSPS) for total volatile organic compound (VOC) emissions, (2) Control Technique Guidelines (CTG) for VOC emissions, and (3) National Emission Standards for Hazardous Air Pollutants (NESHAP) for specific volatile organic chemical emissions. This program is part of the ongoing technical activities of the Emissions Standards and Engineering Division, Office of Air Quality Planning and Standards, EPA.

IT Enviroscience (ITE) contracted with the EPA to perform the task of gathering, assembling, and analyzing data and to evaluate the VOC emission control options available to SOCMI, assess their practicality, and develop preliminary design and cost-effectiveness conclusions for the most appropriate control options. Four years of work were needed to accomplish the program objectives. The efforts of many ITE and ESED engineers were required. The program organization chart is shown in Appendix A.

The project was initiated by David R. Patrick, who continued to lead the program as the EPA project officer for the first two and one-half years of the ITE . contract. Jack R. Farmer served as project officer from September 1979 to January 1980, when the present EPA project officer, Robert E. Rosensteel, was given responsibility for the program. Ralph E. White served as full-time project manager for ITE.

During the first year of the ITE contract, ITE and ESED engineers worked together as teams for process site visits and data gathering. During this period Paul Clifford and Alan Goldfarb of Mitre Corporation contributed constructively as third-party advisors. Victor Kalcevic (ITE) and Leslie Evans (ESED) served as lead engineers throughout the program. Leslie Evans and David Beck (ESED) have made major contributions to data evaluation and report organization. The ITE task leaders are shown on the organization chart in Appendix A and are listed as report authors for the 54 reports comprising this 10-volume report, which is the final product of the complex four-year program.

CONTENTS

Page

V-3

I. INTRODUCTION I-1 I-1 A. Background I-3 B. Industry Description C. VOC Emissions from the SOCMI I-4 D. Technical Program I-5 E. Summary I-7 II. HISTORY OF THE PROGRAM II-1 II-1 A. Program Evolution B. Survey and Ranking II-4 II-5 C. Data Gathering D. Confidentiality II-8 III. GENERIC REGULATIONS OF SOCMI EMISSIONS III-1 III-1 A. Storage Vents B. Fugitive Leaks III-1 C. Waste Disposal III-2 D. Process Vents III~2 IV-1 IV. PROGRAM REPORTS IV-1 A. Generic Process-Vent Standards IV-4 B. Nonprocess Emissions IV-5 C. Control Device Evaluations D. Product/Process Reports IV-5 V-1 V. TOTAL-VOC-EMISSION SUMMARY A. Estimated Emissions V-1

B. Conclusions

APPENDICES

A.	PROGRAM ORGANIZATION	A-1
Β.	SURVEY AND RANKING	B-1
С.	ESTIMATES OF TOTAL SOCMI VOC EMISSIONS FOR 1982	C-1

vii

TABLES

Number		Page
II-1	VOC Emission Estimates for 1982	II-6
IV-1	Emissions Associated with Unit Processes	IV-2
IV-2	Emissions Associated with Unit Operations	IV-3
IV-3	Cost-Effectiveness Summary of Control Devices	IV-6
IV-4	SOCMI VOC Emissions Addressed	IV-7

FIGURES

Number		Page
11-1	Number of Products Ranked	II-2

I. INTRODUCTION

The Synthetic Organic Chemicals Manufacturing Industry (SOCMI) program was initiated to gather the data necessary to develop New Source Performance Standards (NSPS) and Control Techniques Guidelines (CTG) for volatile organic compound emissions from organic chemical manufacturing. The data would also support development of National Emission Standards for Hazardous Air Pollutants (NESHAP) for benzene and other organic hazardous pollutants to be listed in the future.

The total SOCMI program is complex because the industry is large and complex. First, there are at least 400 or 500 major, commercially significant, organic chemicals being manufactured by 600 to 700 processes. Second, the industry is technologically advanced, growing, and highly competitive; thus new chemicals and processes are being constantly introduced. Finally, a significant portion of the emissions from this industry are from fugitive leaks, storage and handling losses, and secondary sources rather than from process vents.

For these same reasons it was also decided to pursue a new approach to regulation. Consequently, the program was designed to result in generic standards for manufacture of organic chemicals. In other words, instead of writing standards for each of 600 to 700 different processes, the EPA intends to write a relatively limited number of standards for the unit operations (physical processes) and unit processes (chemical processes) in use in the SOCMI. Thus standards would regulate the emissions without regard to the chemical. Aside from providing the best hope of quickly and efficiently regulating a highly complex and constantly changing industry, this approach also provides the added benefit of controlling toxic chemicals now and potentially toxic organic chemicals before they are specifically found to be toxic.

A. BACKGROUND

The SOCMI program was initiated in March 1976 with the formation of an EPA Hydrocarbon Task Force. Their charge was to conceive of and initiate a program that would lead to regulation of air emissions from the organic chemicals industry. It was generally understood that a process and equipment standard approach would be needed, although plans for implementation had not been formulated. Obviously, the first goal was to develop a well-structured, logical program within reasonable resource and time requirements.

68

I-1

Several activities preceded initiation of the program. Energy and Environmental Analysis, Inc., and GCA/Technology Division were asked to outline work plans for generating the information required to implement an air-pollution control program for manufacture of organic chemicals. Concurrently, Monsanto Research Corporation was asked to identify critical organic chemical processes and operations with respect to their pollution potential. Their reports are on file at EPAs Emission Standards and Engineering Division. The results of these studies and internal CMS planning then led to a request of the Mitre Corporation to develop a Request for Proposals (RFP) for a program, to be competitively bid (Mitre is not eligible to bid competitively against profit-making concerns), for gathering the information necessary to develop regulations for organic chemical manufacture. After extensive collaboration, Mitre provided a draft RFP. This draft was further refined by EPA and then submitted to EPA Contracts for bid and award.

During the period preceding award of the ITE contract several other projects were undertaken. First, Mitre was asked to identify and rank potential organic air toxicants. This resulted in the 5-volume report <u>Preliminary Scoring of</u> <u>Selected Organic Air Pollutants</u>, EPA 450/3-77-008. In that report 643 organics were identified that are produced in quantities of about 1 MM (million) lb/yr or more. Pertinent physical, chemical, toxicological, and production data were summarized and the chemicals rank-ordered on the basis of emission potential toxicity.

ORD/IERL, Cincinnati, also completed at that time a study by Radian entitled <u>Organic Chemical Producers Data Base</u>, which was useful in establishing the flow of basic organic chemicals and in initially pinpointing important chemicals, manufacturers, and locations. Other ORD and ESED work available or in progress at that time was also useful.

As a supplement to locating the preliminary chemical industry data, Mitre was asked to identify and survey all pertinent organic chemical information sources, to evaluate those sources, and to provide an annotated bibliography on organic emissions from the SOCMI. This resulted in Mitre report MTR-7377.

03

1-2

A decision document and a public participation plan were prepared. Final program approval by the EPA Administrator was received on September 29, 1976 (copy in CMS files). Following a <u>Federal Register</u> notice on October 22, 1976, announcing the program, additional notification was given to approximately 100 major chemical companies, state and local agencies, public interest groups, and interested federal agencies.

The program planning phase officially ended with the contract award to IT Enviroscience in March 1977.

B. INDUSTRY DESCRIPTION

Organic chemicals are manufactured in an industrial chain that begins with about ten feedstock materials produced principally in petroleum refineries. These feedstocks then proceed through one or more processing tiers that result in literally thousands of final products. Generally speaking, each tier contains more chemicals than the preceding tier, the plants manufacturing the products are smaller than the plants supplying the feedstock, and the volatilities of the product are lower than those of the feedstocks. For these reasons in its early stages the SOCMI program was narrowed to the basic and intermediate organic chemical manufacturing industry, which encompasses about 350 to 400 of the higher volume, higher volatility products. These chemicals are also predominately manufactured in large-scale, continuous processes.

For various reasons about 65% of the SOCMI volume is produced in Texas and Louisiana, although other plants are located in most industrialized areas of the country. Each plant site may manufacture from one to several organic chemicals, using one or more processes. Most processes result in one basic product, although some produce a family of chemicals. Conversely, many chemicals are produced by more than one process. Yearly production quantities at each plant can range from a few million to several billion pounds.

Each SOCMI chemical is generally manufactured by a small number of companies (this averages less than 10, with a range of 1 to more than 20). The SOCMI chemicals are also generally manufactured at a small number of separate plant

I-3

1.0

sites (this, too, averages less than 10, but ranges from 1 to more than 50). Many companies operate more than one plant to manufacture the same chemical.

I-4

When these variations are combined with differences in plant age, location, and operation, it is not surprising that few chemical plants are alike. This is true even within a single company manufacturing the same chemical at different sites. An added complication is that many chemical companies license processes from other chemical companies or third parties, often foreign.

Finally, the SOCMI is a highly competitive industry whose economic lifeblood is technology and that is characterized by rapid growth and technological change. Thus the introduction of new and more economical processes is common, as is the termination of older processes that are no longer economical. Under these conditions it is understandable that the industry is highly protective of its technology.

The above description of the SOCMI clearly shows why regulation of VOC emissions from this industry in the normal way, i.e., by individual chemical process, would have been very difficult. That approach would have necessitated literally hundreds of individual standards. Furthermore, each standard would affect only a limited number of plants and would have to be changed frequently as the industry changed. This would be neither cost effective nor practically achievable. Obviously, a more generalized approach to regulating VOC emissions from the SOCMI was necessary.

C. VOC EMISSIONS FROM THE SOCMI

Preliminary analysis showed that, although the SOCMI is complex and diverse, VOC emissions occur from four main types of sources: vents on storage and transportation vessels (storage and handling emissions), leaks and spills of VOC (fugitive emissions), evaporation of VOC from solid, liquid, and aqueous wastes (secondary emissions), and process vents. Each source is briefly described below.

Emissions from storage vents occur predominately as working and breathing losses from fixed- and floating-roof tanks, and those from transportation vessels result from filling and breathing. Fugitive emissions are principally

leaks from defective or inadequate seals in such equipment as pumps, valves, and compressors. They also include losses from open-ended valves, sampling purge material, and cooling towers. Secondary emissions, so-called because they frequently occur away from the process site at a wastewater treatment plant or landfill, result from waste disposal and include evaporation of VOC from solid, liquid, and aqueous wastes generated within the process. Emissions of VOC from process vents occur predominately as the result of venting of inert gases or from the release of volatiles that cannot be economically captured. Upset releases also fall in this category.

Total SOCMI VOC emissions are projected to be about 1.4 billion lb/yr by 1982. This estimate is adjusted on the basis of a 5.9% industry growth rate per year. Of this amount 9% are attributed to storage losses, 32% to fugitive emissions, 4% to secondary emissions, and 55% to process vent emissions. These estimates are based on Texas and Louisiana emission inventory data supplemented with detailed information obtained through a large number of plant visits and industry inquiries. Uncontrolled plant emissions range from a few thousand to many millions of pounds per year. The total VOC emission estimate is less than half of that presented in the earlier report, <u>Control Techniques for Volatile Organic Emissions from Stationary Sources</u>, EPA-450/2-78-022 (May 1978) and likely reflects recent pollution control efforts by the industry and inaccuracies in the earlier estimates.

D. TECHNICAL PROGRAM

Development of a broad approach to regulate VOC emissions from the SOCMI was initiated in 1976 based on the suggestions of B. J. Steigerwald, EPA. The initial goal was to develop an expeditious method for preparation of NSPS, for the organic chemical industry, that would broadly control both oxidant precursors and potentially toxic organics. A number of possible approaches were identified and assessed. Some of the important problems that were recognized were (1) how to factor toxicity and reactivity into regulations, (2) the lack of authority at that time for EPA promulgating equipment standards, and (3) the uncertainty of methodology for economic analysis.

After three short studies were initiated with contractors to assess some of the problems. GCA/Technology Division and EEA, Inc., recommended longer range EPA

i. L

I-5

activities aimed at efficient regulation of the SOCMI. Monsanto Research Company evaluated the possible use of unit operations and unit processes in SOCMI regulation. After these studies were completed and reviewed, an RFP was issued in July 1976, and a contract was awarded to Hydroscience, Inc. (a wholly owned subsidiary of the Dow Chemical Company) in March 1977. In April 1980 the Knoxville, Tennessee, operations of Hydroscience, Inc., underwent a name and ownership change. The Hydroscience Tennessee operation became IT Enviroscience (ITE), a wholly owned subsidiary of IT Corporation, a California-based environmental management company whose major interests are in hazardous waste treatment, recycle, and disposal. The contract performance continued uninterruptedly under the new entity.

Although structured to generate data and report on unit processes and unit operations, the SOCMI contract laid out only the broad concept of the regulations. ITE was required only to develop relevant technical and cost data, in a form to be agreed upon with the EPA; then the EPA would prepare standards. Actual standards preparation was not planned as part of this contract because the successful bidder was required to have detailed chemical industry experience. Standards development by such a contractor would likely involve conflicts of interest.

After award of the contract EPA and ITE developed a detailed work plan that was believed to be capable of providing the necessary documentation for the desired generic standards. That work plan identified storage and handling, fugitive leaks, and waste disposal as separate emission sources and as sources that could more quickly lead to a generic regulatory package than could the unit processes/ unit operations. The work plan also called for the preparation of detailed technical reports on the manufacture of the 350 or 400 SOCMI chemicals. These reports would be prepared by a small number of very detailed early studies being conducted first and then the level of details progressively reduced and extrapolated to a larger number of later studies. Each chemical report would thus require less effort than the one preceding it.

The first work plan was predicated on several assumptions: (1) It was believed that the SOCMI was easily separable into 350 or 400 chemicals and that there

13

I-6

were significant emissions from most of these. (2) It was assumed that data existed in public and/or open industry files on a majority of the emission sources. (3) It was assumed that there were sufficient similarities between the many chemical manufacturing processes to allow extrapolation across chemical and process lines. (4) It was assumed that some well-controlled examples existed for a majority of emission sources as the result of state or local regulation. These assumptions had to be changed as discussed in the next section.

At the beginning of this program the problem of developing the proper data base for standards and quidelines to cover the manufacture of literally thousands of organic chemicals in hundreds of different processes seemed almost insurmountable. However, after careful analysis of the industry and its sources and an extensive review of basic chemical engineering literature, a solution began to emerge. First, it was found that the bulk of emissions come from the manufacture of a limited number of chemicals. Next, it was found that, although the manufacture of organic chemicals is complex and diverse, VOC emissions occur in only four ways: (1) emissions from storage tanks and transportation vessels, (2) fugitive leaks and spills, (3) losses of VOC from liquid, aqueous, and solid wastes, and (4) emissions from process vents. The solution to the standards problem, then, was to develop a data-base program suitable for standards and quidelines specific to the four sources. These were designated generic because they represented a limited number of standards capable of encompassing a large number of different emission sources independent of the specific chemical and process.

E. SUMMARY

This 10-volume report is the final product of the ITE contract for assessment of SOCMI VOC emissions and evaluation of emission control options. This program report constitutes Volume I. Following is a brief description of the contents of the remaining volumes of this final report:

 Volume II: Analysis of Emissions from Carrier Gas Producing Reactions, Air Oxidation Process Emissions, Vacuum System Emissions, and Upset Releases This volume contains a detailed discussion of the carrier-gas generic standard

approach and explains its use for projecting VOC emissions. Through four separate reports the generic approach is used to demonstrate the projection of VOC emissions from chemical reactions in general, air-oxidation processes specifically, vacuum operations, and potential emissions from upset releases. The VOC emissions discussed in these four reports cover essentially all VOC process emissions from SOCMI. Each report also discusses the control options applicable for the VOC emissions projected.

I-8

- 2. Volume III: Analysis of Fugitive Emission Sources, Storage and Handling, and Secondary Emission Sources This volume contains three reports covering the VOC emission estimates from nonprocess sources. The available control options are discussed, and a cost analysis is presented for each appropriate control device. The EPA plans to develop generic NSPS for the control of VOC emissions covered by Volumes II and III.
- 3. Volume IV: Control Device Evaluations of Thermal Oxidation, Catalytic Oxidation, and Flares

Volume V: Control Device Evaluations of Carbon Adsorption, Absorption, and Condensation

The combustion control devices covered by Volume IV plus the three control device reports of Volume V cover all of the significant add-on VOC emission control devices used by SOCMI. The reports include descriptions of the control devices, their capabilities and limitations in controlling VOC emissions, control efficiencies, cost of control, and environmental impact considerations. This work is intended to be the most comprehensive and up-to-date assessment of VOC emission controls developed by the Office of Air Quality Planning and Standards (OAQPS). These volumes should be valuable not only for selecting and evaluating control options for emission sources within SOCMI but also for other VOC emission sources.

4. Volumes VI—X: Chemical Process Reports

The last five volumes of the report are a consolidation of 39 ITE product reports. Each product report is an in-depth technical analysis presenting information on the plants producing a particular chemical product or products, typical production routes, associated VOC emissions, feasible emission controls, control costs (from a new-plant perspective), and other impacts from application of the controls. These studies substantially constitute the data base for the generic source analyses of Volumes II and III.

All of the data presented in the 39 product reports of Volumes VI-X and the non-process emission reports of Volume III are given in the metric system. This is in keeping with the EPA overall plan to convert to the metric system. By the time these reports were completed, it became apparent that the effort required for this conversion was much more time consuming and costly than had been anticipated. Industry had also expressed strong opposition to the conversion. Furthermore, the concepts covered by the control device evaluations and generic process emission studies are quite complex and comprehension of these concepts would be considerably more difficult if presented in the metric system. Therefore, all of the data in the remaining reports were retained in conventional English units.

5. Product Report Grouping

The chemicals covered in each product report volume are listed in each table of contents. Basically the chemicals are grouped according to the type of feedstock used in their production. The chemicals in Volume VI and VII are produced from cyclic chemical feedstock (mainly benzene and cyclohexane). The chemicals in Volume IX are produced from C_1 and C_2 feedstocks, and those in Volume X are produced from C_3 and C_4 feedstocks. Volume VIII was formed from the decision to include all the major halogenated chemical products in one volume.

II. HISTORY OF THE PROGRAM

A. PROGRAM EVOLUTION

As the study progressed through its first two years the original perception of the SOCMI study underwent drastic changes as the result of data that were gathered from over 75 plant visits, several hundred detailed inquiries of SOCMI companies, and detailed surveys of the Texas and Louisiana air pollution files. Some of the conclusions that were reached, particularly as they relate to the assumptions existing at the time that the program was initiated, are as follows:

First, perhaps as many as two-thirds of the 350 or 400 chemical processes appear to result in negligible nationwide emissions, with the exception of storage and fugitive emissions, with the bulk of industry emissions appearing to be concentrated in the highest volume processes. Figure II-1 shows the cumulative percent of SOCMI estimated emissions for the top 140 ranked products. (The top 140 ranked products are shown in Appendix B.) The 140 ranked products result in almost 90% of the total estimated SOCMI emissions. It can be concluded from this that detailed work on 140 chemicals would be much more cost effective than work on 350 or 400 chemicals.

Second, it became apparent that information on emissions was scarce, particularly for smaller sources. Even the manufacturers themselves do not have data in many emission areas. Furthermore, the emission inventory information in state files was often estimated, as well as frequently confidential and therefore not easily accessible. Also, technical literature was general and was rarely directed toward air emissions. These facts further argued against preparation of 350 or 400 documents and argued for the broader generic approach.

Next, although unit operations and unit processes appeared to be sufficiently similar across chemical processes to allow generic process emission standards to be developed at completion of the program, each complete chemical process was so different that extrapolation across processes for efficiency in report preparation appeared to be virtually impossible. This raised further questions concerning the feasibility of preparing 350 to 400 specific chemical reports.

Preceding page blank

								i Tan
		10	20	Perco w	ent of Total SOCMI VG	C Emissions	80	00 1
10	i							Numb
20 30 Fia								er of Pr
30 40 iq. II-1								oducts Ver
50 60 Number óf								rsus Percent
70 t Products								1t of Tota
80 90 Rankeđ								1 1982 Emi
100 110								ssions Add
120								Addressed
130 140		1						

NOT REPRODUCIBLE

 \bigcap

Finally, although there are many well-controlled plants, many are still significant emitters. State regulations have been responsible for some control, but only a few states have vigorously pursued regulation of the SOCMI. A factor very important to emission reduction has been the controls applied for other than air pollution reasons, for example, odor, flammability, and high chemical costs.

As a result of these findings the program plan was revised to focus on fewer individual chemicals and processes. The revised approach required focus by ITE on the top 140 chemicals and preparation of detailed technical reports for only the more significant ones. Storage, fugitive, and secondary emissions remained as major subject categories, and unit process/unit operation data continued to be gathered for generic process emission standards. Analysis continued to indicate that the ability to develop the necessary industry-wide regulations would not be adversely affected. In other words, the data necessary to support the desired generic standards still appeared to be available, even though fewer individual processes were to be studied.

The only major program casualty was the loss of a large number of individual chemical process CTGs. It had been originally planned that up to 350 or 400 chemical process CTGs would be written as described above. This number had to be dramatically reduced. However, this loss does not appear to be serious, for the following reasons. CTGs are most effective when they apply to a large number of separate sources in several states, when the sources are in nonattainment areas, and when little control is currently present. Since the majority of the emission sources are located in Texas and Louisiana, a large number of CTGs could prove burdensome to those state agencies. Furthermore, many sources are in attainment areas, which would reduce the effectiveness of the CTGs. Finally, many sources are already controlled, and so the CTG benefit would be further reduced. All these facts indicate that the incremental benefits of a large number of CTGs would be marginal at best.

The more reasonable approach appeared to be to prepare individual chemical process CTGs on only the larger, more widely dispersed, and less well-controlled processes and to supplement them with the planned CTGs for storage, fugitive, waste disposal, and unit processes/unit operations, along with technical

II-3

reports on other chemicals for information. Not only would this approach be most likely to best interface with the NSPS program, but it would also probably help state and local agencies to best utilize their resources in meeting their needs to attain the oxidant standard as expeditiously as possible and to control problem chemical processes.

B. SURVEY AND RANKING

At the program inception it was apparent that an important factor in the success of the overall program was going to be the ranking of processes in order of importance. It was considered necessary for the generic concept that unit operations and unit processes be evaluated in proportion to their importance. If the generic concept turned out not to work, it would be important to have studied the most important emission sources for regulation. It was also considered important that the processes with the more toxic emissions take some measure of precedence over those with less toxic emissions. Therefore an extensive survey and ranking operation was established. The goal of this operation was to compile all pertinent data related to VOC emissions, growth, process design, and toxicity. Preliminary survey and ranking studies had previously been performed by Radian and Mitre, but those studies had incorporated simplifying assumptions that were not adequate for the depth and degree of effort expended by this program. By using the Radian and Mitre studies as starting points and incorporating Monsanto Research Corporation studies, Houdry studies, and data from the Texas and Louisiana Air Control Agencies (covering 65% of SOCMI), the resulting survey and ranking tables of Appendix B were believed to be the most up-to-date, complete, and accurate VOC emission projections from SOCMI available. However, several changes have occurred during the programs that necessitated major adjustments.

Prior to this program previous studies had indicated that, in general, storage and handling emissions constituted approximately 8% of SOCMI VOC emissions, fugitive emissions ~20%, and secondary emissions up to 5%. As the result of more recent studies the estimate for storage and handling emissions is now 9%, fugitive emissions 32%, and secondary emissions up to 4%. These estimates are discussed in detail in their respective reports in Volume III. The initial estimates were with reference to a total 1982 SOCMI VOC emission projection of approximately 1779 MM lb. The current estimate is based on a revised total

II-4

1982 VOC emission projection of 1434 MM lb. As a result of the detailed studies covered by the 39 product reports presented in Volumes VI—X, there is every indication that the VOC emissions from the SOCMI have been dramatically reduced.

Table II-1 is a comparison of the initial emission estimates and current estimates for nearly all the individual processes studied and reported in Volumes VI-X. Since the initial estimates were made, the fugitive-emission factors have essentially doubled, the storage-emission factors have decreased, and the secondary emission estimate has remained unchanged. The updated factors have been applied to all components of the current estimate. As with any such table, inconsistencies persist. With both estimates care was taken to include all emissions but avoid double counting. During preparation of the initial program estimates it was often necessary to prorate combined emission data from several different processes. In some cases this proration was very inaccurate and may distort the comparison of emissions for specific products, but does not diminish the accuracy for larger groups of products.

The results clearly indicate that the VOC emissions from the processes studied are only half the emissions estimated at program initiation. Since both emission estimates were created from data reported by industry, it appears that the SOCMI has accomplished a dramatic reduction of VOC emissions. Indications are that, if studies are continued for all products listed in Appendix B, a similar reduction of VOC process emissions would be observed.

C. DATA GATHERING

At the program inception it was reasoned that the air quality control agencies for many states would be visited, requiring a large number of trips to be made to several states. It was soon determined that approximately 65% of SOCMI was concentrated in Louisiana and Texas, especially the first- and second-tier chemicals of major interest for this program. Therefore early efforts were concentrated on obtaining industry emission data from the Louisiana and Texas Air Control Agencies. Both agencies extended excellent cooperation, and after careful attention to prevent the release of confidential information approximately 7000 pages of emissions data were copied that contributed greatly to the survey and ranking information included in this report.

II-5

21

	Production	Growth	VOC Emissions (MM 1b)		
Product	(MM 1b)	(%)	Current Estimate	Initial Estimate	
Acrylonitrile	2,440	8	145.50	254.00	
DMT/TPA	8,243	8	99.38	141.41	
Ethylene dichloride	14,005	5	90.92	116.48	
Ethylene	33,138	4.5	73.31	81.97	
Propylene oxide	2,420	5	29.54 ^a	49.98	
Formaldehyde	7,539	4.5	27.42	40.91	
Cyclohexanol/cyclohexanone	2,448	1.5	26.52	43.35	
Acetic acid	3,315	5	23.4 ^a	26.80	
Acrylic acid	788	8	22.48	25.38	
Ethylene oxide	6,105	5	21.39	137.87	
Maleic anhydride	451	8	16.46	36.18	
Butadiene	3,956	3	15.83 ^a	12.50	
Ethylbenzene/styrene	6,831	6	15.75	57.84	
Ethylene glycols	5,447	4	15.59	15.24	
Fluorocarbons	1,009	5.5	11.44 ^a	5.00	
Phenol/acetone	3,287	4.5	9.68	32.23	
Methanol	9,423	7	8.31	38.49	
Cyclohexane	2,779	5	4.40	1.80	
Chloromethane/MeOH	1,929	8	4.17	2.85	
Perchloroethylene	834	0	3.9 ^a	4.40	
Acetic anhydride	1,555	1	3.18 ^a	18.45	
Alkylbenzene	607	2	3.17	0.08	
Caprolactam	1,071	5.5	2.86 ^a	4.88	
Toluene diisocyanate	684	3.5	2.81 ^a	6.52	
Chlorobenzene	405	0	2.70	2.25	
Chloromethane/methane	440	0	2.37	11.19	
Nitrobenzene	752	7	1.67	3.70	
Vinyl acetate	2,055	6	1.37 ^a	19.73	
Carbon tetrachloride	519	(-10.0)	1.21	9.54	
Cumene	3,282	4.4	0.98	3.99	
Epichlorohydrin	378	5.5	0.68 ^a	1.88	
	22				

Table II-1. VOC Emission Estimates for 1982

II**-**6

	Production	Growth	VOC Emissions (MM 1b)	
Product	(MM lbs)	(%)	Current Estimate	Initial Estimate
Glycerin	125	0	0.59 ^a	21.48
1,1,1-Trichloroethane	710	6	0.48	14.89
Chloroprene	396	3	0.41 ^a	13.69
Acrolein	50	2	0.24 ^a	6.13
Adipic acid	2,020	4.5	0.18	0.41
Aniline	833	8	0.16 ^a	2.66
Glycol ethers	833	5	0.14 ^a	0.47
Methyl ethyl ketone	653	5	0.11 ^a	0.43
Ethyl acetate	183	3	0.04 ^a	1.21
Acetaldehyde	988	3.5	<u>0.01^a</u>	7.27
	136,013		726	1373.78
Waste sulfuric acid recove	ry ^b		7.26	
			733	

Table II-1. (Continued)

^aEstimates were doubled because the study estimate for these products did not include storage, fugitive, or secondary emissions.

^bWas not a part of the initial emissions estimate.

÷

Technical data collection from industry was initiated through the Chemical Manufacturers Association (CMA) and the Texas Chemical Council. Three meetings were held during the first year, including a detailed presentation of the data ITE had assembled on the first ten processes. CMA technical work groups were set up to assist with data collection and to review the ITE draft reports. Draft report reviews by industry and the CMA task groups have been very helpful in improving the quality and accuracy of reports throughout the program.

To obtain the industry data required, it was necessary to have direct contact with the production managers for the products involved. This necessitated more than 60 process discussions involving more than 30 separate companies. On some occasions brief plant tours were included, and on other occasions central meetings were held with a group of production managers during which several processes were covered. In all cases the ITE engineers studied previous EPA reports concerning the process and available technical literature. The ITE engineers always prepared moderately detailed process flow sheets before making the site visit so that discussions of process emissions and factors related to VOC emissions would be as efficient and rewarding as possible. The process information prepared before site visits also established the data as being in the public domain and therefore nonconfidential.

D. CONFIDENTIALITY

After the program was initiated, an additional problem surfaced that necessitated some program redirection. Although it had been anticipated that some resistance would be encountered when data were being gathered that might be considered as proprietary, the determined resistance from some industries was found to be greater than the EPA had expected. It became apparent that the SOCMI, perhaps more than any other industry studied by the ESED, considers their process technology, know-how, and other information to be absolutely vital to their competitive positions. Therefore both ESED and ITE had to spend an inordinate amount of time (weeks) on problems dealing with trade secrets, confidentiality agreements (in excess of 50 agreements between ITE and over 30 separate companies), and in general working out mechanisms by which industry would release information needed for the program and still retain their proprietary protection.

II-8

The standard procedure employed by ITE to protect industry's confidential data was to allow the company to thoroughly review all notes. In many instances all plant visit notes were left with the companies. Any data considered confidential was so indicated or removed. Trip reports were always submitted to the company before release to ensure that they contained no confidential data. No company data were ever reproduced in a product report that did not already appear in the released nonconfidential trip report. At the conclusion of this program confidential data will not be retained by ITE but will be forwarded to ESED, returned to the company, or destroyed.

Although some of the confidential data obtained during the program were useful for verifying design concepts and emission factors, the quality of the reports has not suffered by their exclusion. The most common problem was the desire of industry to keep specific plant capacities and production rates confidential; however, industry always agreed to reveal the emission factors (lb of VOC emission/lb of product), which were the most important data required for this program. To project total emissions from a chemical process, ITE used the model-plant approach as explained in the product reports (Volumes VI—X), combined with production and capacity data from published literature.

When industry was given the opportunity to review draft product reports, they realized that none of their confidential information was revealed and the fear of releasing proprietary information to the public was abated. Once the problem of confidentiality was cleared, industry was quick to realize that it was in their best interest to aid in the development of reports that were as practical and accurate as possible, with an absence of large data gaps that would have required further effort. The cooperation by industry in general has been excellent.

III. GENERIC REGULATIONS OF SOCMI EMISSIONS

As was discussed earlier, are only four major sources of emissions: storage vents, fugitive leaks, waste disposal, and process vents. Although the methods of control differ for these four sources, in each case the emissions result from the volatility of the organic chemicals involved, the conditions (e.g., temperature, pressure, and inert-gas flow) that affect volatility, and the potential for emission (e.g., vent release, high inert-gas flow, etc.). Thus it was assumed from the beginning of the program that all these sources could be regulated and that regulations could be independent of specific chemical or process; that is, that they could be generic in nature. A second assumption was that generic regulation of SOCMI could result in the same degree and extent of control that would be obtained by the more normal process specific regulations but with far fewer total regulations. Finally, analysis indicated that storage, fugitive, and secondary controls should be relatively straightforward but that process vent control would be much more complicated.

A. STORAGE VENTS

Storage emissions are easily characterized and identified. In fact, equations were generally available at program inception both for predicting emissions and pinpointing factors affecting them. The major difficulty in the SOCMI program was characterization of storage in the chemical industry, since this effort spans hundred of chemicals, thousands of tanks and vessels, and a wide range of volatility. Computer assistance was applied to adequately deal with these variables. The regulatory approach, nevertheless, was straightforward. Control equipment (pressure tanks, floating-roof tanks, and add-on control devices)will be required, depending on the volatility of the stored material, the size of the tank or vessel, and analysis of the impacts of the control.

B. FUGITIVE LEAKS

Fugitive emissions were also expected to be easily characterized and identified. Potential leak sources were well known, with predominant emissions coming from defective valve, pump, and compressor seals. The regulatory approach was again seen as straightforward, centering on better housekeeping through a directed leak detection and maintenance program. Certain equipment requirements were also envisioned, all of which were to be based on the potential for leakage,

III-1

which includes consideration of the physical state of the leaking material and the frequency of seal failure. The major difficulties would be in defining the leak potential in the SOCMI and in establishing the best approach for leak detection. Because of the occupational exposure that results from most fugitive leaks, coordination with the Occupational Safety and Health Administration (OSHA) was also expected to be necessary.

C. WASTE DISPOSAL

Secondary emissions were expected to be significant but difficult to define since little relevant literature appeared to be available. The SOCMI program was thus designed specifically to gather information relating to solid, liquid, and aqueous waste streams and the VOC content of those streams. Control of emissions at the waste disposal or treatment sites was beyond the scope of this program; however, focus on control of VOC entry into the waste streams was believed to hold great promise as a general and environmentally sound method of emission reduction. Thus standards were planned to improve plant operation and maintenance. The major difficulty expected to be encountered was lack of data, and thus quantification, on the part of industry. Coordination with pending regulations under the Resource Recovery and Conversation Act (RRCA) was expected to be necessary.

D. PROCESS VENTS

Process vents in the SOCMI create several unique problems that make regulation of air emissions difficult. Normally a regulation is developed to cover a source that is common to a sizable industry segment. In this case, however, there are literally thousands of different process vents associated with the many processes involved in the manufacture of SOCMI chemicals. Waste gases also span a wide range of chemical and physical properties. For these and other reasons, process vents required a more general approach to regulation than had been used in the past.

Chemical engineering principles suggested a way to handle this problem. First, all chemical manufacturing is made up of unit processes and unit operations. Chemical reactions, such as oxidation and chlorination, take place in unit processes. Physical changes, such as separation and drying, take place in unit operations. Although a large number of different unit processes and unit opera-

27

III-2

tions are known, only a small number are both widely used in the SOCMI and capable of emitting significant quantities of VOC.

Next, although there is a wide range of emissions from process vents, only a few different reasons exist for their release. These reasons include pressure relief, removal of inert gases or other undesired volatiles, and evacuation of equipment for vacuum processing. Analysis further indicated that the major causes of SOCMI emissions are release of inert gases or reaction gases and vent-ing of VOCs when their capture is not economical.

The approach to regulation of process vents, then, was to focus on only the significant unit processes and unit operations and to develop regulations around common gas-stream properties.

Several problems were anticipated: (1) Many separate chemical processes would have to be examined in order for sufficient data to be obtained to support standards. (2) It would have to be determined whether the unit processes and unit operations were similar enough across different manufacturing processes to permit common regulations, which, in fact, might not be determined until late in the data-gathering effort. (3) A method of performing the impact analyses for process vent standards, as with the other generic standards, would have to be developed. Nevertheless, it was believed that these hurdles could be overcome. Add-on controls would likely form the basis for process vent control, although improved operation and maintenance should also find use. Size and volatility cutoffs would probably be necessary, depending on the results of the impact analyses.

IV. PROGRAM REPORTS

This final report contains all the specific study reports developed throughout the program. It is intended to serve as the formal compilation of technical and cost data to support the standards to be developed covering process-vent emissions, storage emissions, fugitive emissions, secondary sources, and any other standards developed as a result of this program.

A. GENERIC PROCESS-VENT STANDARDS

The generic process-vent-emission reports comprise Volume II. The approach to development of generic process-vent standards is conceptually straightforward. First, a theoretical prediction of maximum VOC concentration in the emission was developed and the major influencing variables were identified. These variables were checked against the data gathered for the 39 product reports contained in Volumes VI—X. A similar procedure was developed to project flow rate ranges, primarily based on an inert-gas flow relationship. These concepts are explained in detail in Volume II.

A range or regime of potential waste-gas concentrations and flows was established. With reference to the control device evaluations of Volumes IV—V, the control device options applicable to each flow regime are discussed. The next step planned in the subsequent program to develop standards for these processvent emissions will be to determine cost effectiveness based on the costs presented in the control device evaluation reports and to determine the cost impacts on industry. These economic analysis steps are not part of the SOCMI program covered by this report. However, specific cost-effectiveness determinations are presented for the products reported on in Volumes VI—X.

Preliminary estimates indicated the relative emission contributions of the various unit processes and unit operations shown in Tables IV-1 and IV-2. Through analyses of this type of data, including the distribution of reaction modules, process modules, and control modules (Survey and Ranking, Appendix B), it was determined that the process-vent emissions could be essentially covered by the process-emission reports presented in Volume II. The principal emission mechanism and the most important variable is inert-carrier-gas flow. Attempts to characterize this variable have been reasonably successful, with stoichiome-

Unit Process	No. of Products Produced Using Unit Process	No. of Ranked Products Containing Unit Process	Estimated Contribution to Total Unit Process Emissions (%)	Cumulative Contribution (%)
Oxidation	63	43	48.3	48.3
Halogenation	67	43	14.5	62.3
Hydrogenation	26	13	10.8	73.1
Esterification	24	8	6.9	80.0
Alkylation	15	5	4.0	84.0
Sulfonation	11	6	3.4	87.4
Dehydrogenation	15	4	2.7	90.1
Hydrolysis	27	8	2.4	92.5
Reforming	1	1	2.2	94.7
Carbonylation	10	8	1.2	95.9
Oxyacetylation	1	2	1.0	96.9
Nitration	12	1	0.8	97.7
Dehydration	18	4	0.7	98.4
Ammonolysis	11	6	0.6	99.0
Condensation	51	4	0.5	99.5
Dealkylation	4	1	0	99.5*

Table IV-1. Emissions Associated with Unit Processes

*Less than 100 because of rounding errors.

Unit Operation	No. of Times Unit Operation Used in the SOCMI	Estimated Contribution to Total Unit Process Emissions (%)	Cumulative Contribution (%)
Absorption	475	58.1	58.1
Scrubbing/washing	543	27.9	86.0
Distillation	3651	10.4	96.4
Drying	251	3.3	99.7
Filtration	120	0.1	99.8
Extraction	110	0	99.8
Settling	24	0	99.8
Crystallization	144	0	99 .8 *
Separation	384		
Quenching	146		
Evaporation	127		
Ion exchange	120		
Dilution	71		
Mixing/blending	56		

Table IV-2. Emissions Associated with Unit Operations

*Less than 100 because of rounding errors.

. ·

try, vapor pressure, and explosive limits being the major factors influencing waste-gas VOC concentrations. The methodology of projecting waste-gas flow and VOC concentrations is described in detail in Volume II.

The conclusion from the above estimates was that a limited number of processvent standards may very well successfully result in a high degree of coverage of the SOCMI process vents. To be significant and not economically prohibitive, VOC emissions must have either low concentration/high volume or high concentration/low volume. Furthermore, highly efficient, widely applicable control mechanisms for these two types of exit gas streams are limited in number. Therefore present analysis indicates that only very few generic standards will be necessary to deal adequately with SOCMI process vents. The principal difficulty will be in developing appropriate techniques for economic analysis.

B. NONPROCESS EMISSIONS

Volume III presents the nonprocess-emission studies for storage, fugitive, and secondary sources. Based on test results reported by the EPA the estimate of emissions from storage-tank vents has been reduced. This is because the AP-42 emission equations used to estimate storage losses have been found to overstate the breathing losses by a factor of 4.

Fugitive emissions consist primarily of leaks from equipment handling the flow of VOC, i.e., pumps, flanges, and valves. The fugitive emissions estimates reported by this study are based on equipment count estimates for the processes studied and fugitive emission factors provided by other EPA contract studies. These fugitive emission factors are much greater than the emissions factors used at the start of the program and the estimates for fugitive emissions have been increased accordingly.

Even though a serious attempt was made during site visits to obtain data for estimating emissions resulting from VOC waste disposal, very little useful information was obtained. Industry apparently had done very little to assess this situation. Based on the information obtained and with heavy reliance on theoretical calculations, the secondary VOC emissions are estimated to be approximately 90 MM lb/yr. The EPA plans to conduct a sampling program to improve this estimate and to establish a better basis for regulation.

32

IV-4

C. CONTROL DEVICE EVALUATIONS

Volumes IV and V discuss in detail the VOC emission control devices used throughout the SOCMI. For comparison purposes Table IV-3 lists the resulting relative cost-effectiveness estimates for the ranges of VOC concentrations and flow rates for each applicable control device. Table IV-3 does not include the veryhigh-temperature thermal oxidation required for VOC containing halogens or sulfur, nor does it include flares since they are primarily dedicated to intermittent flows at very high flow rates.

D. PRODUCT/PROCESS REPORTS

Table IV-4 lists all the individual products and processes studied during the program. These studies are covered by the 39 reports that constitute Volumes VI-X of this final report. The primary consideration for selecting the product to be studied was the amount of VOC emissions estimated for 1982. Toxicity was also an important selection factor, as is discussed in Appendix B. For study and site visit efficiency, products and processes were studied in groups. Therefore some products were covered that appear far down the survey and ranking list of Appendix B. Even though the studies were initiated on a priority basis, the final completion dates are out of sequence. The product studies shown in Table IV-4 are listed in the essentially random order of completion.

As shown by Table IV-4, the 39 product reports have addressed 64 products manufactured by 97 processes. These reports account for approximately 80% of the SOCMI VOC emissions initially projected for 1982. Since approximately 30% of the SOCMI VOC initial emission estimate is covered by the reports for fugitive, storage and handling, and secondary emissions, this total program has addressed approximately 85% of the total SOCMI VOC emissions. Not counted are the VOC emissions addressed by the generic process-emission reports.

Table IV-3. Cost-Effectiveness Summary of Control Devices^a

VOC	Flow		Cost Eff	ectiveness (per lb	of VOC Removed)	
Concentration (ppmy)	Rate (scfm)	Thermal Oxidation	Catalytic Oxidation	Carbon Adsorption ^C	Gas Absorption ^C	Condensation
1,000	100					
	1,000	\$2.30	\$1.80	\$0.63	\$1.28	
	5,000	0.90	0.73	0.27	0.83	
	50,000	0.60	0.41	0.12	0.55	
	100,000	0.56	0.39	0.11		
5,000	100					0.62
	1,000	0.43	0.32	0.15	0.33	0.14
	5,000	0.17	0.12	0.08	0.14	
	50,000	0.10	0.05	0.05	0.11	
	100,000	0.10	0.05	0.05		
10,000	100					0.32
	1,000	0.19	0.17		0.17	0.08
	5,000	0.06	0.05		0.07	
	50,000	0.03	0.02		0.05	
	100,000	0.03	0.02			
25,000	110					0.14
	1,000	0.08			0.07	0.03
	5,000	0.03			0.04	
	50,000	0.02			0.02	
	100,000	0.02			0.02	

^aValues in some cases interpolated from cost effectiveness given in individual control device reports.

^bBased on recuperative heat recovery.

at the analyt for NOC

IV-6

ين -:ر

Product Pr	ocess (%) ^a
Maleic anhydride Benzene ox	idation 2.2
Butane oxi	lation
Cyclohexane Benzene	0.1
Petroleum	extraction
Ethylbenzene Benzene al	cylation 2.9
Styrene Benzene al	cylation 0.4
Methylene chloride Methanol	0.1
Chloroform Methanol	0.0
Methyl chloride Methanol	0.1
Nitrobenzene Benzene ni	cration 0.2
Ethylene E/P cracki	ng 4.6
N/G cracki	ng
Propylene E/P cracki	ng 1.9
N/G cracki	nd
Acrylic acid Propylene	oxidation 1.4
HP modifie	Reppe
Methyl acrylate Direct este	erification
Ethyl acrylate LP modified	Reppe 0.2
Butyl acrylate Direct este	erification 0.0
2-Ethylhexyl acrylate Trans-ester	rification
Chlorobenzene Benzene ch.	lorination 0.1
o-Dichlorobenzene Benzene ch	lorination
<u>p</u> -Dichlorobenzene Benzene ch	lorination
Acrylonitrile Propylene	ammoxidation 14.3
Hydrogen cyanide Propylene	ammoxidation 2.5
	one oxidation 2.4
cyclohexanone Phenol hyd	cogenation
Linear alkylbenzene Paraffin c	nlorination 0.0
Paraffin d	ehydrogenation

Nitric acid oxidation

Table IV-4. SOCMI VOC Emissions Addressed

Adipic acid

IV-7

35

.,

0.0

Table IV-4. (Continued)

Product	Process	1982 Emissions (%) ^a
Formaldehyde	Dehydrogenation/oxidation - silver catalyst	2.3
	Oxidation - metal oxide catalyst	
Ethylene dichloride	Direct chlorination	6.5
	Oxychlorination	
Ethylene oxide	Air-oxidation	7.7
	Oxygen-oxidation	
Butadiene	n-Butane dehydrogenation	0.7
	n-Butene oxidative dehydrogenation	
	Ethylene by-product	
Vinyl acetate	Ethylene vapor phase	1.1
Methyl chloride	Methane chlorination	0.0
Methylene chloride	Methane chlorination	0.3
Chloroform	Methane chlorination	0.3
Carbon tetrachloride	Methane chlorination	0.0
Acetaldehyde	Ethylene air-oxidation	0.4
	Ethylene oxygen-oxidation	
Acetic anhydride	Acetic acid pyrolysis	1.0
Glycol ethers	Ethylene oxide	0.0
Fluorocarbons	Fluorination	0.2
Methyl methacrylate	Acetone cyanohydrin	2.9
Acetic acid	Methanol carbonylation	0.3
Acetic acid	Butane oxidation	0.6
Acetic acid	Acetaldehyde oxidation	0.6
Formic acid	Butane oxidation	0.0
Methyl ethyl ketone	Butanol dehydrogenation	0.0
Ethyl acetate	Esterificatio.	0.1
Carbon tetrachloride	Hydrocarbon chlorinolysis	0.3
Perchloroethylene	Hydrocarbon chlorinolysis	
Epichlorohydrin	Allyl chloride	0.1
Allyl chloride	Propylene chlorination	0.7
Acrolein	Propylene oxidation	0.3

Table IV-4. (Continued)

IV-9

Product	Process	1982 Emissions (%) ^a
Allyl alcohol	Allyl chloride hydrolysis	0.0
	Propylene oxide	
Glycerin	Epichlorohydrin	0.5
Slycerin	Acrolein	0.0
	Allyl alcohol	
lethanol	Methane	2.2
Caprolactam	Conventional	0.2
Caprolactam	BASF	0.1
Caprolactam	DSM/HOP (Stamicarbon)	0.0
Coluene diisocyanate	Diaminotoluene	0.4
Ethanolamines	Ethylene oxide	0.1
imethyl terephthalate	Via TPA	1.0
)imethyl terephthalate	Hercofina	5.6
erephthalic acid	Oxidation and purification	1.8
,1,1-Trichloroethane	Vinyl chloride	0.8
	Ethane chlorination	
Perchloroethylene	EDC chlorination	0.2
	EDC oxychlorination	
richloroethylene	EDC chlorination	
	EDC oxychlorination	
Vinylidene chloride	Trichloroethane	0.1
Cumene	Phosphoric catalyst	0.2
	Alumium chloride catalyst	
Sthylene glycol	Ethylene oxide	0.9
Sulfuric acid	Direct evaporation	0.2 ^b
	Indirect evaporation	
	Regeneration	
Propylene oxide	Chlorohydrination	2.6
Propylene oxide	Isobutane hydroperoxidation	0.1
	Ethylbenzene hydroperoxidation	0.1
Chloroprene	Butadiene	0.8
Aniline	Nitrobenzene hydrogenation	0.1
Phenol	Cumene	1.1
Acetone	Cumene	0.5
		79.4

^aPercent of initial 1982 SOCMI emission projections addressed.

b Emissions from waste sulfuric acid recovery not initially considered.

V. TOTAL-VOC-EMISSION SUMMARY

A. ESTIMATED EMISSIONS

The generic reports of Volume III present independent estimates of the total SOCMI VOC emissions. These estimates are based primarily on study data of 1978 and have not been projected to 1982.

	VOC Emissions (MM lb)
Storage and handling	80
Secondary	90
Fugitive	460-700

The estimate of total SOCMI emissions presented in the <u>Storage and Handling</u> report in Volume III is 35% lower than the estimate for 1982 projected from the product study reports. This is because the average vapor pressures estimated in the <u>Storage and Handling</u> report are lower than those observed during the product studies and the fact that the <u>Storage and Handling</u> report is based on 1978 data.

For the estimate of total SOCMI emissions presented in the <u>Secondary Emissions</u> report in Volume III it is assumed that the VOC in wastewater has the average vapor pressure of the products. The actual average vapor pressure may be somewhat lower and therefore result in fewer secondary emissions. The secondary emissions projected from product studies are based on a very limited amount of actual data. Both estimates are only order-of-magnitude estimates and the difference between the two estimates presented for secondary emissions is considered to be within the accuracy expected.

The above emissions estimate for fugitive emissions is based on data collected in 1978. The fact that new plants come on stream every year indicates that fugitive emissions would be expected to increase. However, this is largely offset by the fact that many older obsolete plants are shut down and replaced with modern high volume facilities with reduced fugitive emissions because fewer valves and pumps are used for handling a greater volume of VOC liquids.

- 33

The above range of 460 to 700 MM lb of VOC fugitive emissions per year represents the difference between an estimate that the SOCMI has the same degree of fugitive emissions control as observed by a petroleum industry study (defined by this program as uncontrolled emissions) and an estimate that the SOCMI averages 50% of the maintenance and monitoring prescribed to control fugitive emissions. Based on the observations made during the performance of this program and the SOCMI incentives concerning economics, odor, toxicity, and regulatory pressures, it is estimated that the SOCMI fugitive VOC emissions in 1982 will be approximately 460 MM lb.

Based on the SOCMI product studies in Volume VI-X, the emission estimates in Tables II-1 and C-1, and the futitive emissions estimate explained above, the total VOC emissions projected for 1982 are estimated to be 1434 MM lb. The initial projection for 1982 was 1779 MM lb. The methods for determining these projections are explained in Appendix C. The breakdown of this 1982 emission projection by source is as follows:

	VOC Emissions (MM lb)	Amount <u>(%)</u>
Process	792	55
Fugitive	460	32
Storage and handling	124	9
Secondary	58	4
	1434	100

As shown in Table IV-1 and discussed in the <u>Air Oxidation Emission Projection</u> report in Volume II, oxidation process reactions contribute close to 50% of all process-source emissions. From the standpoint of unit operations the greatest volume of VOC emissions is contributed by vacuum systems. As is discussed in the <u>Vacuum System Emission Projections</u> report of Volume II, the number of vacuum systems incorporated by the SOCMI is difficult to estimate, but these systems are believed to contribute at least 158 MM lb of VOC per year.

While the studies described in Volumes VI—X were being conducted, particular attention was given to the potential for benzene emissions. Following is a summary of the SOCMI benzene emissions projected for 1982. Over 90% of the benzene emissions result from the manufacture of four products.

V-2

Product	Estimated Benzene Emissions (MM lb/yr)
Maleic anhydride	12.78
Ethylbenzene/styrene	6.83
Ethylene	2.81
Alkylbenzene	2.62
Nitrobenzene	1.17
Chlorobenzene	0.92
Caprolactam	0.04
Acetic anhydride	0.02
Aniline	0.01
Total	27.20

B. CONCLUSIONS

÷

As shown in Table II-1 and discussed in Appendix C, the estimated emissions from the manufacture of the products studied are only about half the initial estimate made early in the program. The initial estimate was based largely on Louisiana and Texas Air Control Agency data supplied to them by industry surveys for 1975 and 1976. The current estimate is based on site visits to many of these same industry sources. The evidence clearly shows that a dramatic improvement in emissions from the SOCMI has occurred during the last few years. The greatest improvement has been in the control of emissions from process vents. The motivation for these improvements obviously includes the economic advantage of VOC loss prevention, industry's genuine concern for the environment, plus current and anticipated regulatory pressures.

APPENDIX A

PROGRAM ORGANIZATION

APPENDIX A

A·3

MANUFACTURERS IT ENVIROSCIENCE EPA/ESED OF PRESIDENT PROJECT OFFICER SYNTHET IC ORGANIC D. Patrick K. Honeycutt CHEMICALS É R. Rosensteel ٢ ESED ENGS. MITRE/METREX L. Evans ITE MGR-IN-CHARGE EMISSION PROGRAM CONSULTANT D. Beck TESTING P. Clifford A. Goldfarb T. Dehnke J. Shumaker CONTRACTORS D. Mascone R. Weber ITE PROJECT MANAGER R. White PROCESS SPECIALIST TECH. REV. BOARD V. Kalcevic K. Honeycutt J. Hall SAMPLING SPECIALIST C. Parmele W. OConnell R. Fox T. Dehnke R. Novak TECHNICAL EDITOR V. Hamrick CONTROL DEVICE EVAL. COST ESTIMATING PROCESS TASK LEADERS SAMPLING GENERIC PROCESS SURVEY AND RANKING SECONDARY EMISSIONS EVALUATION EMISSIONS J. Blackburn STORAGE AND HANDLING V. Kalcevic S. Dylewski J. Hall J. Blackburn FUGITIVE EMISSIONS J. Fordyce J. Key R. Lovell W. OConnell V. Kalcevic R. Standifer D. Erikson J. Cudahy C. Peterson R. Standifer C. Stueve F. Hobbs TASK ENGINEERS H. Basdekis R. Helsel J. Cudahy O. Ivins D. Erikson D. Pitts 42 T. Schomer

APPENDIX B

SURVEY AND RANKING

APPENDIX B

SURVEY AND RANKING

The primary objective of the survey and ranking task was to provide the necessary data to rank order the processes to assure that the most significant processes were studied in the most detail early in the project.

This report describes the methods used and gives the results for ranking 140 products.

Four areas were identified and considered to rank order the processes:

- Gross Emissions The total quantity of non-methane hydrocarbons emitted from the manufacture of a specific compound by each one or more processes annually.
- 2. Growth Factor The projected rate of annual growth expected through 1982. Very low or negative growth compounds were given lower priority than potentially high growth compounds.
- 3. Modular Contribution A breakdown of the various manufacturing processes into the specific types of reaction processes and emission control modules associated with each process. Primary emphasis was given to processes which would yield information that could be utilized to help study similar aspects of other processes.
- 4. Toxicity Score A means of differentiating the potential health hazards between processes that emit varying amounts of less toxic and more toxic chemicals.

Gross Emissions Determination

Total annual production multiplied by an emission factor (lbs. material lost per lb. of product) yields the annual gross non-methane hydrocarbons (NMHC) emissions. 1976 was used as the base year since it was the most recent year for which complete actual production data could be obtained. Production data was supplied by the annual chemicals manufacturing report in Chemical and Engineering News and Chemicals Economics Handbook published by Stanford Research Institute.

Information used to determine emission factors was gathered from the Texas and Louisiana State Air Control Boards. Non-confidential emissions inventories, some selected construction permit files in Louisiana, and most of the pertinent non-confidential construction permit files in Texas were also used when available. Considerable judgment was used in calculating emission factors from the data in the inventory questionnaires and permits. Many files did not contain adequate production breakdowns for individual plant sites. In these cases, plant production was estimated by taking the capacities listed in The Chemical Marketing Reporter Chemical Profiles or the 1976 Directory of Chemical Producers and multiplying by the average industry percentage of production in relation to capacity. Several questionnaires did not contain sufficient information to enable the designation of which emission point originated with which process. When apparently good analytical data was available and the vented emissions were broken down into components, the processes could be separated with some degree of certainty.

In some cases, where multiple processes used common vents, the emissions had to be allocated, usually on a weight percentage basis of production. Judgments were also required even when all information was available and emission factors could be readily calculated. The factors for two similar facilities were often quite dissimilar. If a factor for one facility agreed well with published data, then that factor was selected as being more accurate. In some cases, where no comparable data was available, an average was taken. In a number of cases, the calculated emission factors were rejected as being unreasonably below expected levels.

In those cases where an emission factor could not be obtained because of the reasons stated above or because there were no producing sites in Texas and/or Louisiana, the Radian, Monsanto, or Houdry data were used when available.

When a compound was produced by two or more distinctly different processes, emission factors were determined for each significant method of manufacture. Radian's production percentage breakdown for each process was used where revised data were not available. The VOC emissions estimated for the top 140 chemicals are shown by Table I.

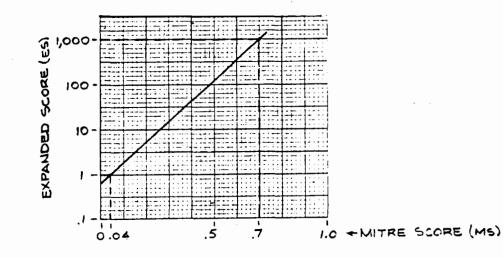
Growth Factor Determination

Rank ordering is based on 1982 projected gross NMHC emissions. Since most pre-1975 growth projections are invalid due to the economic recession of 1975, revised figures were needed. The source of these revised projections were the Chemical Economics Handbook and Chemical Marketing Reporter. Using the new growth rates, the 1982 gross emission data was obtained by compounding the 1976 data over six years. The average annual growth was approximately 6%.

Modular Contribution

The various units which comprise the anatomy of a synthetic organic chemical production plant had to be broken down and identified. Although

each plant has an individual character of its own, there are still common operations or sections which can be related to other processes. These sections or modules were assigned to three categories: reaction, process, and emission control. Reaction modules describe the initial portion of the process where the compound is made, i.e., alkylation, oxidation, chlorination, etc. Process modules comprise the various unit operations that the compound or product must go through during its manufacture and which can result in the release of emissions, i.e., distillation, absorbtion, extraction, etc. Emission control modules define the device or devices used to prevent or control emissions, i.e., flare, condensor, thermal oxidizer, etc.


Modular contribution was a judgment assessment of the value of studying a particular process with regard to the transfer of emission related technology to other process studies where similar process modules can be identified. Three (3) grids depicting the various reaction, process, and emission control modules are shown in Tables II, III, and IV.

Toxicity Score Determination

Toxicity score was obtained by multiplying the annual gross emissions (broken down by MM lbs. of each major component) by a toxicity factor assigned to each component. These quantities are then totaled, resulting in a toxicity score for the compound under consideration. (See Figure 1 as an example).

Two methods were used to determine the toxicity factor and resulting toxicity score.

Exponential toxicity scores were computed from the EPA's formula which uses the MITRE toxicity ratios. The MITRE scoring (EPA-450/3-77-008a) has been "expanded" to show more accurately the "real" difference in toxicity between less toxic and more toxic chemicals. In the MITRE system a very toxic chemical, vinyl chloride, has a score of 0.7 while . a typical chemical, with few toxic properties, methylal, has a score of 0.04. The ratio between these two MITRE scores is only 17.5. A judgment was made that the ratio of 1000 better shows the real difference in toxicity of these two chemicals, then the MITRE scoring was used as an exponent to calculate an "expanded score". The formula for the expansion is ES = $_{657}$ e 10.5 (MS)

17

The expanded score was used in the same way as the MITRE score would be used. The toxicity score is obtained by multiplying the expanded score by the MM lbs. of VOC emissions. The exponential toxicity scores are shown in Table I.

Linear toxicity scores were computed by multiplying the component gross emissions (MM lbs.) times two different toxicity numbers. The first number, ranging from 1 to a maximum of 6, represents the MITRE score <u>plus 1 for acute toxicity</u>. This is consistent with other toxicity scoring such as the one sited in "Clinical Toxicity of Commercial Products". The second number represents the carcinogenic, mutagenic, and teratogenic potential. If a compound was given a 4 or 5 per the MITRE score in <u>any or all</u> of the three categories, it was assigned a 5; if under test, a 3, and if it had not been tested or had scored a negative result, it was given a 1. (See Figure 1 for example). The maximum toxicity factor for this method was 6 x 5 = 30. The minimum was 1 x 1 = 1. The linear toxicity scores are also shown in Table I.

Rank Ordering

The processes, as rank ordered for this study, are listed in Table I. All four of the areas previously described were considered in rank ordering the compounds for selection. The 1982 total projected NMHC emissions were given the most weight in a selection decision; however, modular contribution and toxicity scores were used to choose between compounds having relatively equal amounts of gross emissions.

The study ranking table is ranked according to the most significant process for each compound. The secondary processes are grouped under each compound, and the decision regarding their study priority is made on an individual process comparison basis. Process studies were grouped for practical study convenience.

Other factors also entered into the selection process. Vinyl chloride, for instance, was omitted for study, even though it ranked first because a considerable amount of effort and resulting reports have already been compiled on this compound. Processes which use benzene as a raw material such as nitrobenzene, chlorobenzene, and linear alkyl benzene were assigned early in the project as a result of increased governmental interest and investigation into benzene's toxological effects. Some compounds have arbitrarily been put on hold due to their negative growth forecast.

In some cases, compounds were grouped with other compounds for practical study efficiency and were selected for study earlier than they would have been if they were studied "on their own merits".

This method of survey and ranking is considered to be a significant improvement over previous methods because of the following incorporations:

- 1. Actual plant data, regarding the quantity and composition of emissions, was used to calculate emission factors in the majority of cases.
- 2. Toxicity scores are based on the relative toxicity and amount of <u>each individual component</u> in the emission, not just the compound or product being manufactured.
- 3. The chemical manufactures in the states of Texas and Louisiana, which were used as the data source, accounting for approximately 65% of the total U.S. synthetic organic chemical production.

FIGURE	1
--------	---

FORMALDEHYDE

5

Production M Pounds	x	Emission Factor lb/lb of Product	Component	=	Annual Gro <u>s</u> s Emissions M Pounds	x	EPA Exponential Toxicity Factor	=	Toxicity Score
5621.0	x	.00077	Formaldehyde	=	4.330	x	152.10	- =	659.0
		.00036	Methanol	=	2.020		4.59	=	9.3
		.00400	Ethanol	-	22.480		2.75	=	61.8
		.00513			28.830				730.1

Linear Toxicity Score

Component	<u>Gross Emissions</u>	x	Acute Toxicity Factor	х	Teratogen Carcinogen Mutagen	=	Toxicity Score
Formaldehyde	4.330	x	4	х	5	=	86.6
Methanol	2.020	x	4	, x	1	=	8.1
Ethanol	22.480	x	3	х	1	=	67.4
	28.830						162.1

Growth Rate = 6%/Year (Over next 6 years, i.e. 1982)

Gross Emissions	$28.83 \times 1.419 = 40.92$			
Exponential Toxicity	730.1 x 1.419 = 1036	> 1982 Projected	-	See (+) on Tables II, III, and IV
Linear Toxicity	$162.1 \times 1.419 = 230$			

B-8

TABLE I SURVEY AND RANKING PROCESS STUDIES

						33 310011						
SEL. Rank NO.	CHEMICAL Name	ASSIGNED TASK LEADER	1982 % of Total Prod.		1976 GROSS VMHC EMISSIONS M LBS	PERCENT GROWTH	1982 GF NMH(EMISSIC M LBS F	SNS		DXICITY E RANK LINEAR	ENISSION Factor LB/LB	EMISSION FACTOR SOUNCE
1	VINYL CHLORIDE			ACETYLENE ETHYLENE DICHLORIDE	.395 40.034	6.99% 6.99%	.593 60.080	105 5	27 1	110 6	.00689 .00704	в В
2	ACRYLONITRILE	KEY	100 %	PROPYLENE	151.496	8,99%	254.0*	· 1	5	3	.09979	A/B
3	ETHYLENE DICHLORIDE	KEY	0 %	ACETYLENE								
		KEY	50 X	DIRECT CHLORINATION	29.494	7.36X	45.165	10	4	1	.00759	Α
		KEY	50 8	OXYCHLORINATION	46.569	7 464	71,314	4	3	2		7
4	MALEIC ANHYDRIDE	LAWSON		BENZENE	23.165					c u	.01199	3
. •		LAWSON	-	OXIDATION BUTANE OXIDATION	529107	7.13%	39,180	15	.2	4	.09334	A/B
5	ETHYLENE OXIDE	LOVELL	66 %	AIR DXIDATION/ ETHYLENE	91.955	5,99%	130.4*	2	9	7	.03329	С
		LOVELL	34 x	D2 OXIDATION/ ETHYLENE	5.263	5.99%	7.466	40	96	84	.00369	c
6	DIMETHYL TEREPHTHALATE (DMT)	DYLEWSKI	231	AMOCO VIA TPA	5.551	7.99 x	8,809	34	80	55	.00861	с
		DYLEWSKI	35x	DUPONT	2.204	7.99%	3.499	64	66	33	.00224	<u>^</u>
		DYLEWSKI		EASTMAN VIA TPA	3.084		4.894	54	90	68		c
		DYLEWSKI		HERCULES	53,209			-			.00647	C
7	ETHYLENE	STANDIFER		NAPTHA GAS OIL			100.3+	3	28	5	.09029	C
		STANDIFER		PYROLYSIS	22,355	_	50.302	8	11	19	.00342	D
				NATURAL GAS LIQUIDS PYROLYAS	29.619	1.11%	31.664	15	16	23	.00190	D
		STANDIFER		REFINERY BY PRODUCT								
. 8	ETHYLBENZENE	KEY		JENZENE ALKYLATION	32.250	7,93%	51.000	6	6	8	.00600	٨
		KEY	2%	MIXED XYLENE EXTRACT	.072	-13,1*	.031	158	170	169	.00017	
9	HYDROGEN CYANIDE (HCN)	BLACKBURN		ACRYLONITRILE COPRODUCT	29,999	6.49%	43,773	11	17	17	.09979	۸/9
		BLACKBURN	50 X	ANDRUSSON PROCESS	2.464	6.49%	3,596	63	33	31	.00819	٨
10	STYRENE	KEY	100%	ETHYL BENZENE	4.535	6.99%	6.807	43	7	22	.00071	С
11	I.I.I. TRICHLOROETHANE	STANDIFER		ETHANE CHLORINATION		• •			•			c
		STANDIFER	74%	VINYL CHLORIDE	8.976	B.99%	14.886	23	8	9	.01899	3
		STANDIFER		VINYLIDENE CHLORIDE	_	_ • • • •	2.1000				••*	C.
12	CARBON TETRACHLORIDE	STUEWE	38%	DISULFIDE	5.209	-4.00%	4.077	59	10	29	.01599	8 .

B-9

PAGE 1

с**п**

TABLE I

SEL. Rank ND.	CHEMICAL NAME	ASSIGNED TASK LEADER	1982 % OF TOTAL PROD		1976 SROSS NMHC EMISSIONS M LBS	PERCENT Growth	1982 GI NMH Emissi M Lbs I	C DNS	1982 TO Score Expon.	RANK	EMISSION Factor LB/LB	EMISSION FACTOR Source	(71
12	CARBON TETRACHLORIDE	STUEWE	42%	CHLOROPARAFFIN CHLOROLYSIS	6.117	-4.00%	4.788	56	43	51	.01699	8	
		STUEWE		METHANE	• 956	-4.00%	.670		39	80	.00499	A	
13	FORMALDEHYDE	LOVELL	23%	METAL OXIDE/ METHANOL	6.632	5,99%	9.407	32	48	32	.00512	A	
		LOVELL	77%	SILVER CATALYST/ METHANOL	22.203	5,99%	31,496	16	26	10	.00512	۵	
14	METHYL METHACRYLATE (MMA)	BLACKBURN	100 x	ACETONE CYANOHYDRIN	32.972	7.49%	50,886	7	58	14	.06049	A/3	
15	PROPYLENE OXIDE	STUEWE	60¥	CHLOROHYDRIN	35.067	5.80%	49.199	9	46	12	.02959	3	
		STUEWE	40 X	PEROXIDATION	.433	10.45%			125	104	.00070	ñ	
16	PROPYLENE		54%	NAPTHAZGAS OIL PYROLYSIS	12.730	14.49%	28,673	17	19	26	.00342	0	
				NATURAL GAS LIQUIDS PYROL REFINERY BY	3.049	7.49 %	4.706	58	49	76	.00189	0	н
				PRODUCT									B
17	NITROBENZENE	STUEWE		BENZENE NITRATION	2.268		3,701		12	27	.00299	D	10
18	ETHYLENE GLYCOL	LOVELL		ETHYLENE DXIDE	10.742	5.99%	15.238	22	13	21	.00319	A	
19	CYCLOHEXANOL/ CYCLOHEX-ANONE	BLACKBURN		CYCLOHEXANE	35.020	3.49%	43.048	12	63	15	.04446	۸	
		BLACKBJRN		PHENOL	.241	3.49%			127	128	.00091	۸	
20	CUMENE	STUEWE		BENZENE	2.661		3.994		14	37	.00097	۸	
21	METHANOL (METHYL Alcohol)	KEY	-	METHANE	25.650	6 . 99%	38,494	14	62	19	.00410	A	
22	PHENOL	STUEWE		BENZENE CHLORINATION									
		STUEWE	-	BENZENE									
		STUEWE STUEWE		CUMENE TOLUENE	12.627	6.99%	18.950	19	21	13	.00651	۸	
23	ANILINC	STUEWE	100%	OXIDATION NITROBENZENE HYDROGENATION	1.631	8.49%	2.661	67	15	35	.00299	D	
24	FLUDROCARBONS	STANDIFER	100%		5.001	.00%	5.001	52	18	43	.00499	3	
25	PERCHLOROETHYLENE	STANDIFER/	• 0 K										
		STANDIFER/			1.253	15.59%	2.991	66	34	44	.00544	8	
		STANDIFER/+	34 x		1.314	1.22%	1,413	89	23	64	.00499	۸	
26	TEREPHTHALIC ACID (TPA)			AMOCO	4.334	7.99%			83	63	.00854	C	
		DYLEWSKI	47x	EASTMAN	6.201	7.99x	9.841	30	64	28	.01014	с	
		DYLEWSKI	14%	MOBIL	10.033	• ••	15,922		81	34	.05512	č	
						-	-	-		_			

SURVEY AND RANKING PROCESS STUDIES

:

TABLE I

PAGE 3

SURVEY AND RANKING PROCESS STUDIES

SEL.		ASSIGNED	1982 % OF		1976 GROSS VM40		1982 GF NMH(1982 TO		EMISSION	
RANK	CHEMICAL	TASK	TOTAL	PROCESS	EMISSIONS	PERCENT		-		RANK	FACTOR	
ND.	NAME	LEADER	PROD		4 L95		M LBS F		EXPON.		L3/L3	FACTOR Source
27	CHLOROBENZENE	DYLEWSKI	100%	BENZENE CHLORONATION	1.995	1.99%	2.248	74	20	53	.00434	9
28	ACRYLIC ACID	BLACKBURN	23x	MODIFIED REPP	.218	-4.12%	.169	132	149	134	.00195	٨
		BLACKBURN	77%	PROPYLENE OXIDATION	10.933	14,93%	25,205	18	32	20	.08703	B
29	ACETIC ACID	KEX	33 x	ACETALDEHYDE	10.012	1.82%	11,158	27	56	16	.00980	9
		KEY	44 X	BUTANE OXIDATION	.342	77.43%	10.692	28	71	39	.00704	3
		KEY Key		METHANOL DTHERS	2.915	9,07%	4.911	53	77	69	.00749	Э
30 31	CHLOROPRENE Alkyl Leads	DYLEWSKI		VIA BUTADIENE Eletrolysis	11.975	2.39%	13.691	24	29	11	.03149	۵
				ETHYL CHLORIDE	4.827	-11.0+	2.399	71	22	71	.00812	۸
32	ACETONE	STUEWE		CUMENE	5.658	-	8,517	35	30	24	.00521	۹
33	ETHYL CHLORIDE	STUEWE	4 %	ISOPROPANOL ETHANOL/ETHANE	5.102	-1,13%	4.765	57	87	52	.00649	9
			96%,	CHLORINATION	8.672	-7.00%	5.611	49	25	30	•01349	θ
34	ETHANOLAMINES	LOVELL	100x	ETHYLENE OXIDE	1.431	2.99%	1.709	84	24	45	.00499	9
35	VINYL ACETATE (VA)	DYLEWSKI	13%	ACETYLENE VAPOR PHASE	1.630	6.99X	2.447	70	92	73	.00846	С
		DYLEWSKI	72%	ETHYLENE VAPOR PHASE	6.515	6 .99%	9.777	31	65	25	.00610	C
		DYLEWSKI	15 x	ETHYLENE LIQUID PHASE	5.002	6.99%	7.507	39	61	- 38	.02251	С
36	METHYLENE CHLORIDE	STUEWE	35%	METHANE CHLORINATION	3.561	9.01%	5.978	47	38	42	.01699	в
		STUEWE	65¥	METHANOL/METHYL CHLORIDE	.538	12.18%	1.273	90	51	58	.00194	٨
37	1.3 BUTADIENE	STANDIFER	80%	ETHYLENE COPRODUCT	4.011	14.04%	8.827	33	36	61	.00267	D
		STANDIFER	13%	N-BUTANE	7.157	-12.2+	3.270	65	108	83	.00610	3
		STANDIFER	7 %	N-BUTENE	.975	-11.1+	.481	108	150	140	.00166	3
38	VINYLIDENE CHLORIDE	STANDIFER	50 x	1,1,1 TRICHLORDETH*	1.772	6.99 %	2.660	68	31	48	.01899	8
		STANDIFER	50%	1+1+2 TRICHLORDETH*								
39	TOLUENE DIISOCYANATE (TDI)	STANDIFER	100%	DIAMINDTOLUENE	3.984	0.99%	6.515	45	35	40	.00699	۸/3
40	CHLOROFORM	STUEWE	61 \$	METHANE CHLORONATION	3.017	8.99%	5.060	51	41	49	.01699	В
		STUEWE	39%	METHANOL	•551	8,99%	.371	119	73	86	.00194	A
41	PHTHALATE ANHYDRIDE		30%	NAPTHALENE								•
			70 x	0-XYLENE	1.338	6.49%	1.953	76	37	47	.00211	A

TABLE I

SURVEY AND RANKING PROCESS STUDIES

SEL. (NK 10.	CHEMICAL NAME	ASSIGNED TASK LEADER	1982 X OF Totai Proj	-	1976 GROSS MHC Emissions M LBS	PERCENT Growth	1982 GF NMH EMISSI M LBS F	C DNS	1982 TO Score Expon.	RANK	EMISSION Factor La/Lb	EMISSION FACTOR Source
42	ISOPROPANOL (ISOPROPYL ALCOHOL)		100 %	PROPYLENE/H2SO4	4.566	1,99%	5,142	50	40	60	.00235	۵
43	ACETIC ANHYDRIDE	KEY	100%	ACETIC ACID	15.452	2.998	18.451	20	74	62	.01009	ы
44	GLYCEROL (SYNTHETIC ONLY)	PETERSON		ACOLEIN	.421	1.99%	.474		122	130	.01909	C
	STATE TE SALLY	PETERSON	158	ALLYL ALCOHOL	.756	1.99%	.852	98	86	102	.03199	с
		PETERSON	-	EPICHLOROHYDRIN	7.233	1.99%	-	36	47	65	.06459	C
45	NITROPHENOL			PHENOL	1.937	3.49%	2.258	73	42	46	.05249	B
46	CYCLOHEXANE	BLACKBURN BLACKBURN		BENZENE HYDROGENATION PETROLEUM	1.228	6.53%	1.796	78	44	70	.00072	D
		SCALKBORN	104	DISTILLATION								
47	BISPHENOL A		100x	PHENOL/ACETONE	• 841	10.99%	1.574	87	45	54	.00199	•
48	CELLULOSE ACETATE			CELLULOSE ESTERIFICATI*	7.997	.49%		37	59	56	.01099	A B
49	CA PROLACTAM	BLACKBURN	100*	CYCLOHEXANONE	3.541	5.49%	4.882	55	53	66	.00453	Α
50	PENTAERYTHRITOL	Buntenbonn		FORMALDEHYDE/ ACETALDEHYDE	1.509	2.99%	-	75	57	36	.01719	A
51	NONYL PHENOL		100%	PHENOL	• 511	3.49%	.628	104	50	75	.00655	۸
52	ACRYLAMIDE		100*	ACRYLONITRILE	.122	8.49%	.199	126	52	92	.00239	٨
53	DIETHYLENE.	LAWSON		COPRODUCTS W/	1.157	5.99%	1.641		55	81	.00239	Λ
	TRIETHYLENE	= · • • 5 • • •		ETHYLENE		3 1 77 4	1,0/1	., 5	33	01	.00317	, n
54	FUMARIC ACID		100%	MALEIC ACID/ SOMERIZATION	.398	1.99%	,437	113	54	95	.01149	В
55	PROPYLENE GLYCOLS (MONO+ DI+ TRI)		100%	PROPYLENE OXIDE HYDRATION	6.507	7.49%	10.043	29	75	50	.01258	Α
56	EPICHLORDHYDRIN	PETERSON	100%	ALLYL CHLORIDE/	1.621	2.49%	1.880	77	60	88	.00286	A
57	ALLYL CHLORIDE	PETERSON	100 %	PROPYLENE CHLORINATION	8.963	4.99%	12.012	25	95	74	.02699	۸
58	ADIPONITRILE/HMDA	DYLEWSKI	24 X	ACRYLONITRILE Adipic acto								
59	TRICHLORDETHYLENE		9 X	ACETYLENE	8.336		11.171		101	78	.01499	В
		STANDIFER	_	ETHYLENE	1.486	-8.00%	.901	96	67	82	.00538	A
60	METHYL ISOBUTYL Keytone (MIBK)		-	MESITYL ALCOHOL	8.354	-6.00%	5,763	48	82	41	.04229	۸
61	PYRIJINE		100%	FORMALDEHYDE/ ACETALDEHYDE	.727	2.99%	.868	97	69	67	.01499	3
62	BENZENE		80x	NOT IN PROJECT Scope								
			20X	TOLUENE HYDRODEALKYL+	• 326	.21%	.331	122	68	105	.00010	Α

.

PAGE 4

۳3 دې

B-12

TABLE I

PAGE 5

SEL.		ASSIGNED	1982 ¥ OF		1976 GROSS		1982 GROSS				
RANK	CHENTCAL			BBOGECC	SHAR	052-54-	NMHC		OXICITY		EMISSION
••	CHEMICAL	TASK	TOTAL	_	EMISSIONS		EMISSIONS		E RANK	FACTOR	FACTOR
NO.	NAME	LEADER	PROD	USED	M Las	GROWTH	M LBS RANK	EXPON.	LINEAR	LB/LS	SOURCE
63	ETHANDL (ETHYL ALCOHOL)		100 %	ETHYLENE	5.759	2.49%	6.679 44	91	57	.00384	۸
64	UREA	STANDIFER	100%	NH3/CO2	5.386	5.69%	7.512 38	99	59	.00065	٨
65	ACETALDEHYDE	LOVELL		ETHANOL OXIDATION	1.649				-	.01999	3
56	ISOPRENE	LOVELL	67%	ETHYLENE C4 HYDROCARBONS	5.488	4.90%	7.271 41	93	77	.00586	Α
			33x	SIDAMYLENE EXTRACTION	.245	11,99%	.486 107	70	85	.00218	۸
67	FURFURAL		100%	POLY SACCHARIDES HYDROLYSIS	2.341	1,99%	2,636 69	76	79	.01499	3
68	GLYCOL ETHERS	LOVELL	97x	ETHYLENE OXIDE	. 321	5.99%	.455 112	72	99	.00058	۵
		LOVELL	3%	PROPYLENE OXIDE	.009	5,99%	.014 163	166	165	.00058	۸
69	DINITROTOLUENE		100%	TOLUENE DINITRATION	• 920	10,99%	1.721 83	79	87	.00175	۸
70	SEC-BUTANOL		100%	BUTYLENES	2.426	6.79%	3,601 62	84	72	.00699	8
71	LINEAR ALKYL BENZENE	PETERSON	100%	BENZENE	.068	1.99%	.077 143	78	126	.00009	Ā
72	ACROLEIN	PETERSON	100%	PROPYLENE DXIDATION	4.942	3,99%	6.127 46	107	90	.07449	я
73	DIPHENYLAMINE			ANILINE Amination	.039	4.99%	.053 151	85	127	.00099	Э
74	METHYL STYRENE			CUMENE DEHYDROGENAT +	272	5.000		•••		_	
75	CTUVI CHE DIAMINE /			CUMENE PROCESS BY-PRODUCTE	.272	5.99%	-		103	.00521	۸
75	ETHYLENE DIAMINE/ TRIETHYLENE TETRAMINE		100.0	EDC AMMONDLYSIS	•131	4.99%	.176 130	88	112	.00099	9
76	ETHYL ACRYLATE	BLACKBURN	61%	ACETYLENE (REPPE)	1.098	7.99%	1.742 81	136	114	.00609	9
		BLACKBURN	39%	DIRECT ESTERIFICATI+	1.093	7.99%	1.734 82	104	91	.00949	в
77	METHYL CHLORIDE	STUEWE	2%	METHANE CHLORINATION	.189	-3.26%	.155 135	102	131	.01697	в
		STUEWE	98¥	METHANOL HYDROCHLORIN+	.975	3.67%	1.210 93	106	100	.00269	A
78	METHYLENE DIPHENOL DIISOCYANATE (*		100%	DPMDAZPHOSGENE	.089	10,99%	.168 134	94	118	.00023	۸
79	N-BUTYRALDEHYDE		100 x	OXO PROCESS	1.927	4.24%	2.346 72	109	89	.00243	Λ
80	NITROANILINE		-	NITRO CHLOR BENZENE	.071	.00%	.071 144		122	.00599	3
81	ACETOPHONE			CUMENE PEROXIDATION ETHYL BENZENE	.134	· 5,99%	.191 128	98	116	.00521	۸
			404	OXIDATION							

SURVEY AND RANKING PROCESS STUDIES

54

:

··· -- ···-

/

.

TABLE I

SURVEY AND RANKING PROCESS STUDIES

SEL. Rank ND.	CHEMICAL NAME	ASSIGNED TASK LEADER	1982 8 OF TOTAL PROD		1976 GROSS VMHC EMISSIONS M LBS	PERCENT Growth		C DNS		OXICITY E RANK LINEAR	EMISSION FACTOR L3/L3	EMISSION Factor Source	ся (л
82	ISOPHTHALATE ACID		100*	M-XYLENE DXIDATION	.235	11.99%	.465	110	100	98	.00199	8	
83	BENZDIC ACID		100%	TOLUENE AIR OXIDATION	.279	4.99%	.375	118	105	96	.00199	8	
84	DIISOOCTYL PHTHALATE (DI2- ETHYLHEXYL)		100x	PHTHALATE ANHYDRIDE/ ALCOHOL	• 593	6.19%	.851	99	103	109	.00199	3	
85	2-ETHYL 1-HEXANDL		1008	ALDO COND. /0X0	1.130	7.99%	1.794	79	117	94	.00252	۸	
86	N-BUTANOL (BUTYL ALCOHOL)		20%	ACETALDEHYDE				.,			.00252		
87	PROPIONIC ACID			OKO PROCESS Others	1.265	3,99%	1.601	86	120	97	.00252	Ą	
			93x	OXO PROCESS	. 424	6,99%	.637	103	115	93	.00599	3	
88	ETHYL ACETATE	KEY	100%	ACETIC ACID	1.077	1.99%	1.213	92	121	101	.00499	з	
89	ETHYLENE DIBROMIDE		100%	ETHYLENE BROMINATION	1.508	-5.00%	1.256	91	119	107	.00749	3	
90	ACETONE CYANDHYDRIN	BLACKBURN	100%	ACETONE CYANATION	.283	8.49%	.462	111	110	117	.00051	٨	171
91	BENZYL CHLORIDE		100%	TOLUENE CHLORINATION	.134	3.99%	.170	131	116	108	.00149	9	B-14
92	DICHLOROPHENOL		45 <u>x</u>	PHENOL CHLORINATION	.009	2.99%	.011	165	118	152	.00099	9	4
			55%;	TRICHLOROBENZE*	.219	2.99%	261	124	134	135	.01896	٨	
93 94	ISOBUTYRALDEHYDE CRESYLIC ACIOS (SYN)		4 X	DXO PROCESS CYMENE DXIDATION NATURAL COAL	.941	2.99x	1,123	94	128	105	.00252	٨	
			00.	TAR									
			8 8	PHENOL/METHANOL	.013	4.99%	.018	141	123	149	.00099	в	
			-	TOLUENE	.013	4.99%	.018		130	149	.00099	3	
				SULFONATION			• • • • •		150	A 4 ()	.00077	0	
95	N-N DIMETHYL Aniline		100%	ANALINE	•039	4.99%	.053	150	111	132	.00199	3	
96	ACETYLENE			CALCIUM CARBIDE ETHYLENE BY- PRODUCT									
			62%	HYDROCARBON OXIDATION	1.779	.00%	1.779	80	133	113	.00580	۸	
97	PHOSGENE		100%	CO/CI2	.146	9,99%	.259	125	114	129	.00017	۸	
98	T-BUTANOL		21 x	ISOBUTYLENE	.167	.07%	.168		160	156	.00049	3	
			79¥	PROPYLENE OXIDE CO-PRODUCT	,556	8,36%	,901		126	119	.00070	Å	
99	SALICYLIC ACID		100 g	SODIUM PHENATE	.023	1,99%	.027	160	112	137	.00049	э	
100	DIMETHYL Hydrazine		100%	NITROSODIMETHTL AMINE	.001		.00268	-	113	164	.00049	9 .	
101	DODECENE		100%	MONENE COPRODUCT	1.444	, 99 %	1,533	88	135	120	.00499	3	

PAGE 6

.

TABLE I

SURVEY	AND	RANKING	PROCESS	STUDIES
--------	-----	---------	---------	---------

SEL. Rank NO.	CHEMICAL NAME	ASSIGNED TASK LEADER	1982 % OF TOTAL PRODA		1976 GROSS NMHC Emissions M Las	-	1982 GROSS NMHC Emissions M LBS Rank	1982 TOXICIT Score Rank Expon, Linea	FACTOR	EMISSION Factor Source
102	DIISOLDCYL PHTHALATE		100%	PHTHALATE ANHYDRIDE/	.286	3.49%	.351 121	124 133	.00199	8
103	BUTYL ACRYLATE	BLACKBURN	100%	ISODECANOL ACRYLIC ACID ESTERIFICAION	.410	7,99%	.651 102	132 111	.00199	9
104	CHLOROSULFONIC Acid	۰.	100*		.344	1.99%	.388 116	129 125	.00249	9
105	METHYL ETHYL KEYTONE (MEK)	KEY	25%	BUTANE DXIDATION						
		KEY	75%	SEC-BUTANOL	.321	4.99%	.430 114	139 115	.00099	8
106	ISOBUTANOL (ISOBUTYL ALCOHOL)		100%	DXD PROCESS	•442	2.99%	.528 106	138 121		Å
107	HYDROQUINONE		100%	ACETONE COPRODUCT	.037	.00%	.037 155	131 139	.00149	3
108	MOND. DI. TRI. Methyl Amines		100%	METHANOL	.238	6.97%	.358 120	143 124	.00099	3
109	ADIPIC ACID	BLACKBURN BLACKBURN	-	CYCLOHEXANE PHENOL	.325	4,06%	.412 115	147 123	.00026	A
110	CHLORONITROBENZE*		100%	CHLOROBENZENE NITRATION	.173	1.99%	.195 127	141 136	.00164	3
111	CARBON DISULFIDE		100%	METHANE SULFUR VAPOR	.081	2.99%	.097 140	140 143	.00015	A/C
112	BIPHENYL			TOLUENE HYDRODEALKYL*	.006	.00%	.00625 170	137 166	.00010	Δ
113	ACETYL CHLORIDE		-	SODIUM SCETATE	.039	4.99%	.053 149	144 138	.00099	3
114	MOND, DI, TRI, ETHYL AMINE	·		ETHANDL AMMONOLYSIS	.074	5.99%	.106 139	145 144	.00099	8
115	CHLOROACETIC ACID			ACETIC ACID CHLORONATION	.072	1,99%	.081 141	146 147	.00099	3
116	BENZOPHENONE			BENZENE/CARBON TET	.001	-	.00241 172	142 171	••••	-}
117	METHYL BROMIDE			METHANOL/HBR	.017	6.99%	.027 159	148 159		3
118	PROPYL ALCOHOL			DXO PROCESS	.072	7.97%	.114 138	155 142		۸
			15%	PROPANE OXIDATION	.025	7,99%	.041 154	169 163	.00249	З
119	BUTYL AMINC.		100%	BUTYRALDEHYDE HYDROGENITIN	.125	2.99%	.150 136	153 141	.00599	Э
120	ETHYL (DIETHYL) ETHER		100%	ETHANOL	.179	.00%	.179 129	152 145	.00299	3
151	PROPYL AMINES (M- D-T)		50%	N-PROPYL Alcohol	.056	•99X	•060 146	163 154	.00599	9
				N-PROPYL CHLORIDE	.056	.99%	.060 147	164 155	.00599	3
122	CROTONALDEHYDE			ALDO PROCESS	.009	3,99%	.012 164	154 150	.00049	8
123	ISOOCTYL ALCOHOL		100x	OXO PROCESS/ HYDROGENATION	.143	-3,50%	.116 137	157 146	.00099	8

TABLE I

SURVEY AND RANKING PROCESS STUDIES

SEL. RANK NO.	CHEMICAL Name	ASSIGNED TASK LEADER	1982 N OF Tota Prod		1976 GROSS NMHC EMISSIONS M LBS	-	1982 GROSS NMHC EMISSIONS M LBS RANK	SCOR	OXICITY E RANK LINEAR	EMISSION Factor L3/L3	EMISSION Factor Source
124	FORMIC ACID	KEY	-	N-BUTANE DXIDATION	.027	3,99%	.035 156	151	162	.00049	. 3
125	ETHYLENE GLYCOL Me ether Acetate	KEY		OTHERS ETHOXY ETHANOL ESTER	.046	4.39%	.062.145	156	153	.00049	9
126	LINEAR ALKYL SULFONATE		100%	LAS SULFONATION	.050	1.99%	.056 148	158	158	.00007	٨
127	ISODECANOL		25¥	N-PARAFFIN OXIDATION							
128	ALLYL ALCOHOL	PETERSON	-	DXO PROCESS ALLYL CHLORIDE HYDROLYSIS	.058	4.99%	.078 142	165	151	.00099	В
		PETERSON	65	PROP GLYCOL DEHYDRATION							
		PETERSON	47%	PROP OXIDE ISOMERIZATION	.009	1.99¥	.010 166	159	160	.00025	۸
129	ISOPROPYL ACETATE		100%	ISOPROPANOL ESTERIFICATI*	.039	4.99%	.053 152	162	157	.00099	8
130	NETHYL ACETATE		100%	ACETIC ACTD/ METHANOL	.029	1.99%	.033 157	167	161	.00199	3
131	CYCLOOCTADIENE		100%	BUTADIGNE DIMERIZATION	.030	6,99 x	.045 153	161	167	.00149	9
132	HEXACHLOROBENZENE		100%	HEXACHLORDCYCL+	.001	1.99%	.00180 176	168	173	.00049	Э
133 134	N-BUTYL ACETATE Butyric Acid			ESTERIFICATION BUTYRALDEHYDE OXIDATION	.008	1.49%	.00984 167	171	168	.00007	٨
	-		67 %	N-BUTANE OXIDATION	.005	4.99%	.00732 169	174	172	.00135	Α
135	DINITROPHENOL		100%	DNC BENZENE HYDROLYSIS	.001	4 . 99 %	.00201 174	173	175	.00149	В
136	AMIND ETHYLETHANSLAM+		100%	ETHYLENEDIAMIN+	.007	2.99%	.00888 168	175	170	.00123	۸
137	CYCLOHEXYLAMINC			ANILINE CYCLOHEXANONE	.003	4.39%	.00469 171	172	174	.00049	3
138	TOLUENE SULFONIC ACIDS		100%	TOLUENE SULFONATION	.002	.00%	.00233 175	176	176	.00012	B
139	BENZYL BENZDATE		50 X	BENZALDEHYDE	.000	4.99%	.00093			.00099	9
			50%	BENZYL ALCOHOL/ ACID	.000		.00093			.00099	3
140	BENZOYL CHLORIDE		100%	BENZOIC ACID	.000	4.99%	.00010			.00004	8

Source Codes: A - State EIQ's; B - Monsanto Research Corp./Radian; C - Houdry; D - HI Site Visits;

E - Product Report

B-16

5.7

А А А А А А А А А	A	Oxidation
	A	Chlorination
BB		Hydrogenation
	<u>ک</u>	Pyrclysis
c c D		Esterification
		Hydration
A		Dehydrochlorination
		Amnonolysis
A		Sulfonation
	A	Alkylation
		Hydrorormulation
		Neutralization
		Cehydration
В		Dehydrogenation
		Condensation
B		Hvdrolvsis
		Ammo%1dation
A		<pre>Oxychlorination</pre>
	А	Hydrochlorination
		Peroxidation
		Carbonolation
c		Reduction
		Cleaving
		Acidification
		Oxyacetylation
		Phosgenation
		Alcoholysis
А А		Saponification
E		Hydrocyanation
		NITTATION
		Fusion
		Reforming
		Hydrodimerization
		Addition Ester
		Fluoronation
		Bromination
		Hvdrodealkylation

TABLE II

SURVEY AND RANKING PROCESS STUDIES

Selection Ranking No.	Chemical		1982 of Total oduction	Process
i	Acrylonitrile	٠	100%	Annuxidation
2	Ethylene Dichloride	*	501	Direct chlorination
		٠	50%	Oxychlorination
			-	Acetylene
3	Ethylene Oxide	•	661	Air Oxidation ethylene
		٠	341	O, Oxidation ethylene
4	Ethylbenzone	٠	98%	Benzene alkylation
			28	Mixed xylene extraction (not in
5	Ethylene	•	100%	Cracking scope)
6	Vinyl Chloride		998	Ethylene dichloride
			18	Acetylene
7	Dimethyl Terephthalate	٠	25	Hercules
			351	DuPont
		*	23	λποςο via ΤΡλ
		٠	17%	Eastman via TPA
8	Maleic Anhydride	*	85%	Benzene oxidation
		*	15	Butane oxidation
9	Propylene Oxide	*	60%	Chlorohydrin
		٠	40	Peroxidation
10	Methyl Methacrylate	٠	100%	Acetone cyanohydrin
11	Formaldehyde	٠	775	Silver catalyst high methanol

*Processes assigned for study

 \mathbf{O}

TABLE II	
(Continued)	

SURVEY AND RANKING PROCESS STUDIES

Selection Ranking	Chemical	1982 § of Total Production	Process
		238	Low methanol
12	Nitrobenzene	* 100%	Benzene nitration
13	Cyclohexane	* 848	Benzene
		16%	Petroleum distillation (not in Scope)
14	Acrylic Acid	* 778	Propylene oxidation
		238	Modified Repp
15	Phenol	* 93 \	Cumene
		31	Benzene chlorination
		28	Toluene oxidation
		28	Benzene sulfonation
16	Methanol	• 1001	Methane
17	1,1,1 Trichloroethane	• 743	Vinyl chloride
		161	Vinylidene chloride
		10%	Ethane
18	Acetic Acid	* 33%	Acetaldehyde
		• 448	Butane oxidation
		• 198	Methanol-CO
		41	Others
10	Ethylene Glycol	• 100x	Ethylene oxlde
20	Terephthalic Acid	141	Морії
		* 47 8	Eastman
		• 39	Лшосо

_				-						~	.				RE	A	сı	10	ON	۲	101	DU	LE	s		-					_			× 	ر ت	•		
1 Oxidation	Chlorination	i Hydrocenation	Pyrolysis	Esterification	Hydration	Dehydrochlorination	Armonolysis	Sulfonation	Alkylation	Hydrotormulation	Neutralization	Dehydration	Dehydrogenation	Condensation	Hydrolysis	ALMOXICATION	Oxycnlorination	Hydrochlorination	Peroxidation	Carbonolation	Reduction	Cleaving	Acidification	Oxyacetylation	Phosgenation	<pre>Alcoholysis</pre>	<pre>Saponification</pre>	Hydrocyanation	Nitration	Fusion	Reforming	Hydrodimerization	Addition Ester	Fluoronation	Bromination	Hydrodealkylation	Hydrebromination	
5		2																											A									
A																				A																		
27	A														в							В	с															R-18
	A							A			B							A			A		D							С	в							
A	N																			A	i																	
A A A		B	1		A																																	

*Processes assigned for study

11/1/77

TABLE II (Continued)

.

SURVEY AND RANKING PROCESS STUDIES

Selection Ranking No.	Chemical 4.		1982 of Total oduction	Process
21	Styrene	٠	100%	Ethylbenzene
22	Chloroprene		100%	Butadiene
23	Acetic Anhydride	٠	100%	Acetic acid
24	Cyclohcxanol/Cyclohexanone	٠	75%	Cyclohexane
			25%	Phenol
25	Allyl Chloride		100	Propylene Chlorination
26	Adiponitrile/HMDA		651	Butadiene
			24	Adipic acid
			114	Acrylonitrile
27	Carbon Tetrachloride	*	38%	cs ₂
		*	42%	HC Chlorination
		٠	20%	Methane
28	Vinyl Acetate	*	728	Ethylene vapor phase
			15%	Ethylene liquid phase
			138	Acetylene vapor phase
29	Methylene Chloride	٠	618	Me thang 1
		*	398	Methane
30	Acetone	٠	60%	Cumene
			40%	Isopropanol (two separate processes)
31	Methyl Chloride	٠	971	Methano]
		٠	31	Methane

*Processes assigned for study

.

_		_						-			•				RE	2	C1	10	ЭN	۲	101	JU	LF	s	-													
Cxidation	Chlorination	Hydrogenation	Pyrolysis	Esterification	Hydration	Dehydrochlorination	Ammonolysis	Sulfonation	Alkylation	Hydrotcrmulation	Neutralization	Denvdration	Derydrogenation	Condensation	Hydrolysis	Amnoxidation	0xychlorination	Hydrochlorination	Peroxidation	Carbonolation	Reduction	Cleaving	Acidification	Oxyacetylation	Phosgenation	Alcoholysis	Saponification	Hydrocyanation	Nitration	Fusion	Reforming	Hydrodimerization	Addition Ester	Fluoronation	Bromination	Hvdrodealkylation	Hvdrobromination	
A A		В	B				A				1 B	B										в		A A														B-19
	АЛ																																					11/1/77

\mathfrak{S}_{1}^{+}

REACTION MODULES

TABLE II (Continued)

SURVEY AND RANKING PROCESS STUDIES

Solection Ranking			1982 of Total	_
<u>No.</u>	<u>Chemical</u>	<u>Pro</u>	oduction	Process
32	Glycerol		71 8	Epichlorchydrin
			15%	Allyl alcohol
		٠	14%	Acrolein
33	tirea		100%	NH 2/CO2
34	Acetaldehyde	*	100%	Ethylene
				Ethanol oxidation
32	Toluene Diisocyanate		1001	Diaminotoluene
16	Ethyl Chloride		961	Ethylene
			41	Ethanol/ethane
37	Cumene	•	100%	Benzene
38	Chlorobenzene	•	100%	Benzene
39	llydrogen Cyanide		50	Andrussew process
			50%	Acrylonitrile by-product
40	Fluorocarbons		1001	CCl ₄ /C ₂ Cl ₆ Fluorination
41	Perchloroethylene	٠	661	Ethylene dichloride
		•	34%	HC Chlorination
				Acetylene
42	Butadiene	٠	80%	Ethylene co-product
		•	13	n-butane
		٠	78	n-butenes
43	Acrolein	•	100	Propylene
*Processes	assigned for study			

.

A	A.	OXICATION
AA	А	Chlorination
		Hydrogenation
В		Pyrolysis
		Esterification
	C B C	Hydration
	В	Denydrochlorination
	Α	Ammonolysis
		Sulfonation
A		Alkylation
		Hydroformulation
B		Neutralization
	в	[Dehvdration
		Dehydrogenation
		Condensation
		Hydrolysis
A 4		Amoxidation
		[Oxychlorination
	A	Hydrochlorination
	AB	Peroxidation
		Carbonolation
		Reduction
		Cleaving
		Acidification
		Oxyacetylation
	A	Phosgenation
		Alcoholysis
		Saponification
		Hydrocyanation
		Nitration
		Fusion
		Reforming
		Hydrodimerization
		Addition Ester
A		Fluoronation
		Bromination
		Hvdrodealkylation
		Wydrobromination
11/1/17	В-20	

TABLE II (Continued) SURVEY AND RANKING PROCESS STUDIES

Selection Ranking <u>No.</u>	Chemical		1982 of Total sduction	Process
44	Ethanol		100	Ethylena
45	Chloroform	٠	61	Methane
		•	394	Methanol
46	Ethanolamines		100	Ethylene oxide
47	2-Ethyl Hexanol		1001	Oxd
48	Vinylidene Chloride	٠	501	1,1,1 Trichloroethane
		•	50%	1,1,2 Trichloroethane
49	Alkyl Leads		95	Ethyl chlorida
			51	Electrolysis
50	Isopropanol		100%	H ₂ SO ₄ hydration of propylene
51	Phthalic Anhydride		701	o-xy lene
			30%	Napthalene
52	Methyl Isobutyl ketone		1001	Mesityl alcohol
53	Pentaerythritol		100	HCHO/Acetaldehyde
54	Sec butanol		100	Butylenes
55	Bisphenol A		100%	Phenol acotone
56	Trichlorosthyane	٠	915	Ethylene
			9١	Acetylene
57	n-butyraldchydo		100	OXO process
50	di/tri athylene glycol		100	Ethylene glycol co-products

*Processes assigned for study

1. 19

1

_															RE	A	21	10	ЭN	P	101	ж	LE	s		•												
(celdation	Chlorination	Rydrogenation	Pyrolysis	Esterification	Hydration	Dehydrochlorination	Armonolysis	Sulfonation	Alkylation	Hydrofermulation	Neutralization	Dehyaration	Dehydrogenation	Condensation	Hvdrolysia	Ammoxidation	OXYChiorination	Hydrochlorination	Peroxidation	Carbonolation	Reduction	i Cleaving	Acidification	Oxyacetylation	Phosgenation	Alcoholysis	Saponification	Hydrocyanation	NITERION	Fuston	Reforming	Hydrodimerization	Addition Ester	Fluoronation	Bromination	Hvdrodealkylation	Hverestonination	
	A.A.				Ъ	A			~	~																												T7-8
	AA	A		в	B	B		~		A		C		8 A A																								11/1/17

(ڻ . بر)

REACTION HODULES

TABLE II (Continued)

.

1

1

SURVEY AND RANKING PROCESS STUDIES

Solection Panking No.	Chemical	۱ ٥	1982 of Total oduction	Process
59	Epichlorohydrin	•	100	Allyl chloride chlorohydrination
60	Nonyl Phenol		100%	Phenol alkylation
61	Ethyl acrylate		391	Direct esterification
			614	Acetylene
62	Ethylene dibromide		100%	Bromination of ethylenc
63	Acetylene		62	Natural gas
			30	Calcium carbide (not in scope)
			81	Ethylene co-product
64	n-butanol		80%	OXO process
			201	Acetaldehyde
65	t-butyl alcohol		70	Propylene oxide by-product
			301	Isobutylenes
66	Isoprene		338	Isoamylene extraction
	-		671	C _a 's (not in scope)
67	Giycol ethers	٠	971	¥ Ethylene oxide
	•		38	Propylene oxide
68	Isophthalic acid		100%	m-xylene oxidation
69	Ethyl acctate		100%	Acet.ic acid
70	Methyl ethyl ketone		75	Sec butanol
	··· • -		251	Butane oxidation
*Processes	assigned for study			

	Dxidation
	Chlorination
A A	Hydrogenation
A	Pyrolysis
A	Esterification
	Hydration
	Dehydrochlorination
	Amonolysts
	Sulfonation
	Alkylation
Λ	Rydroformulation
	Neutralization
	Denvdration
	Denydrogenation
A	Condensation
B	Hydrolysis
	Ammox1cation
	Oxychlorination
	Hydrochlorination
	Peroxidation
	Carbonolation
	Reduction
	Cleaving
	Acidification
	Oxyacetylation
	Phosgenation
A	Alconolysis
	Saponification
	Hydrocvanation
	Nitration
	Fusion
	Reforming
	Hydrodimerization
	Addition Ester
	Fluoronation
A	Browinstion
	Hydrodealkylation
	RVGropromination
B-22 ++/ //	

REACTION MODULES

TABLE II (Continued)

SURVEY AND RANKING PROCESS STUDIES

.

Selection Ranking No.	Chemical	1 of	1982 Total Nuction	Process
71	Benzoic acid		100	Toluene oxidation
72	Adipic acid		100	Cyclohexane
73	Benzen e		281	Hydrodealkylation of toluene
			72	Not in project scope
74	Ethylene diamine		100	EDC ammonolysis
. 75	Methyl amines		100%	Methanol ammonolysis
76	Isobutyl alcohol		100	OXO process
77	Phos gene		100	Carbon monoxide chlorination
78	Diisodecyl phthalate		100%	Phthalic anhydride, isodecanol
79	Isobutyraldehyde		100	OXO procesa
80	Methylene diphenyl		100	Diphenyl methane diamine/phosgene
81	Benzyl Chloride		100	Toluene chlorination
82	Diethyl ether		1001	Ethanol based
83	Linear alkyl benzene	٠	100	Benzenc
84	Ethyl amines		100	Ethanol ammonolysis
85	Chloroacetic acid		1001	Acetic acid chlorination
86	Linear alkyl sulfonates		100	LAB sulfonation
87	Formic acid		98.51	Butane oxidation
			1.5%	Others
88	Methyl bromide		1001	Hydrobromination of methanol

A A A	A 2.4	Oxidation
	A	Chlorination
		Hydrogenation
		Pyrolysis
		Esterification
		Hydration
		Dehydrochlorination
A	, A A	Armonolysis
B		Sulfonation
Α.		Alkylation
~	A	Hydroformulation
B		Neutralization
		Dehydration
		Dehydrogenation
		Condensation
A		Hydrolysis
		Ammoxidation
		Oxychlorination
		Hydrochlorination
		Peroxidation
		Carbonolation
		Reduction
		Cleaving
		Acidification
		Cxyacetylation
A		Phosgenation
		Alcoholysis
		Saponification
		Hydrocyanation
		Nitration
		Fusion
		Reforming
		Hydrodimerization
		Addition Ester
		Fluoronation
		Bromination
	A	Hvdrodealkylation
		Reference Merchannand Merchannnand Merchannnand Merchannand Merchannand Merchannand Mer
11/1/1	B-23	

, 19

.

.

TABLE II (Continued)

Rank No.	Chemical	Process	Chication Chicination	Pyrofenation Pyrofysis	Esterication		sul constion	AVEROTORENLACION Externet 1737 On	Denveration Dehveration	Concensation Hedrolvsis	VANCELLALION OXVEELERINGELON	Hvareenlorination Peroxidation	Carbonolation Reduction	Cleaving Areditication	Cxvacetylation	Alconolisis	Redroctanation	Fusion	Serormand Hydroqumerization	Addition Ester	UTCHTRACION Hudrododisviation	Sorecization
89	Propylene glycols	Propylene oxide hydration																				
90	Caprolactam	Cyclohexanone				Π		Π			Π	Π	Π			Π		Π		T		A
91	Dinitrotoluene	Toluene dinitration			\prod	\prod	Π		Π		Π	\prod	Π		IT		T	们	T	\prod	Ťľ	Ħ
92	Fumaric acid	Maleic acid isomerization			\prod	Π	Π	Π	Π	Π	Π	Π	Π				Π				T	A
93	Diisoctyl phthalate	Phthalic anhydride			A	Π	Π		Π	Π		Π	Π		Π			\prod	\uparrow	T	TT	+1
94	Propionic acid	Oxo process			Π		Π	A	Π	Π	Π	Π	Π		Π		TT	Π	T	\prod	T	
		LPG oxidation	 A						\prod					[]	Π	Π	Π	Π	\prod	T		
95	Acetone cyanohydrin	Acetone/HCN			Π					\prod	\prod	Π	Π		Π	Π	A	Π	T	T	T	Π
96	Acrylamide	Acrylonitrile			Π	Π	Π	Π	Π	A		Π	Π	Π	T			\prod		\prod	\prod	Π
97	Methyl styrene	Cumene byproduct			Π	Π	Π		A	\prod	\prod	Π	Π	Π	Π	TT	TT	Π			T	\square
<u></u>		Others			Π		Π			Π	Π		Π	Π	Π	IT	Π	Π	\prod	T		Π.
98	Chloronitrobenzenes	Chlorobenzene			Π	Π	Π	T		Π	Π	Π	Π	IT	Π	\prod	T,	A	\prod	T	\square	T1
99	Carbon disulfide	Thacker process			Π	Π	Π	Π	Π	Π		Π	Π		Π			\prod		\prod		\square
100	Diphenyl	Toluene/Benzene			Π	Π	Π	TT	Π	Π		Π	Π	Π	Π			Π		T	Ţ	Ti -
101	n-butyl acetate	Butanol/acetic acid	Γ	Τ	A	Π	\prod		IT	Π		\prod		IT	T	\prod	Π	Π	T	\prod		TI.
102	Benzophenone	Benzone/carbon tetrachloride	Γ		\prod	Π	A				\prod	IT	Π	T	Π	\prod	\prod	\prod	\prod	T	\prod	Π
103	Benzyl benzoate	Benzaldehyde		T	Ь	Π	Π	TT	Π	\prod		\prod		IT	Π	TT.	\prod	$\uparrow\uparrow$	\uparrow	$\uparrow \uparrow$	$\uparrow \uparrow$	\uparrow
		Benzyl alcohol	Γ		A	\prod	\prod		\prod	Π		\prod					Π	Ш	\square		\square	\prod

<u>с</u>п Г

REACTION MODULES

B.24

TABLE II (Continued)

			REACTION MODULES
Rank No.	Chemical	Process	OKIGASION Chloringtion HVG202713100 FVG202713100 FVG202713100 FVG20270101 FVG20270101 FVG2021101 FVG2021101 FVG2021101 FVG2021101 FVG2021101 FVG2011511100 FVG2011511100 FVG2011511100 FVG2011511100 FVG2011511100 FVG2011511100 FVG2011511100 FVG2011511100 FVG201151100 FVG2021111100 FVG2021111100 FVG2021111100 FVG2021111100 FVG2021111100 FVG2021111100 FVG2021111100 FVG2021111100 FVG2021111100 FVG202111100 FVG202111100 FVG202111100 FVG202111100 FVG202111100 FVG202111100 FVG202111100 FVG202111100 FVG202100 FVG202111100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG202100 FVG20200 FVG2000 FVG2000 FVG2000 FVG2000 FVG20000 FVG20000 FVG20000 FVG20000 FVG20000 FVG20000 FVG20000 FVG20000 FVG20000 FVG200000 FVG20000 FVG20000 FVG200000 FVG200000 FVG200000 FVG200000 FVG2000000 FVG200000 FVG200000 FVG20000000 FVG200000000 FVG200000000 FVG200000000 FVG2000000000000 FVG20000000000000 FVG2000000000000000000000000000000000000
104	Aminoethylethanolamine	Ethylene oxide	
_105	Chlorosulfuric acid	(Chlorobenzene)	
1.06	Dimethylhydrazine	Dimethylamine	
107	n-dimethyl aniline	Aniline/methanol	
108	Hexachlorobenzene	Hexachlorocyclohexane	
109	Methyl acetate	Acetic acid	
110	n-propyl alcohol	Propion aldehyde	
111	Salicylic acid	Sodium phenate	
112	Diphenylamine	Aniline	
113	Acetophenone	Cumene	A
		Ethylbenzene	
114	Acetyl chloride	Sodium acetate	
115	Propylene	Naptha/gas oil	
		Natural gas/liquids	
		Refinery byproduct	
116	Aniline	Nitrobenzene hydrogenation	
117	Furfural	Polysaccharides hydrolysis	
118	Butyl amines	Butyraldehyde hydrogenation	

- 66 -

ст. Т.

;

TABLE	II
(Contir	nued)

--

			REACTION MODULES
Rank No.	Chemical	Process	ColdAtion ColdAtion Fictorention Fictorention Fictorention Field fill Fictorention Fictorention Convertigation Fictorention
119	Allyl alcohol	Allyl chloride hydrolysis	
		Propylene glycol dehydration	
		Propylene oxide isomerization	
120	Pyridine/picoline	Formaldehyde/acetaldehyde	
121	Cyclohexyl amine	Aniline	
		Cyclohexanone	
122	Cresylic acids	Phenol methanol	
		Toluene sulfonation	
		Cymene oxidation	
		Natural coal tar	
123	Crotonaldehyde	Aldo process	A
124	Hydroquinone	Acetone coproduct	
125	Isodecanol	Oxo process	
		n-paraffin oxidation	
126	Isooctyl alcohol	Oxo process	
127	Cellulose acetate	Cellulose esterification	
128	Isopropyl acetate	Isopropanol	
129	Cyclooctadiene	Butadiene	

TABLE	II
(Contin	ued)

			REACTION MODULES
Rank _No	Chemical	Process	Ykt Jacken Cykl Jacken Chilor Indelton Processia Serent Stanton Processia Serent Stanton Processia Serent Stanton Processia Station Processia Station Processia Station Processia Station Processia Station Processia Station Station Processia Station Station Processia Station Stat
130	Dinitrophenol	DNC benzene	
131	Dichlorophenol	Phenol chlorination	
132	Butyl acrylate	Acrylic acid	
133	Propyl amines	n-propanol	
		n-propyl chloride	
134	Dodecene	Nonene coproduct	
135	Nitro aniline	Nitrochlorobenzene	
136	Nitrophenol	Phenol nitration	
137	Ethylene glycol MEE Acetate	Ethoxy ethanol	
138	Butyric acid	Butyraldehyde	
<u> </u>		Butane oxidation	
139	Toluene sulfonic acid	Toluene	
140	Benzoyl chloride	Benzoic acid	

÷

.

TABLE III

			Process Modules *													
<u>No .</u>	Product	Process	Distillation	uctilizester	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration	Quenching	Ion Exchange	Dilution
1.	Acrylonitrile 😽	SOHIO Amoxidation	5	1										1		
2.	Ethylene dichloride	Ethylene pxychlorination	3	1	1									1		
з.	Dimethylterephthalate	p-xylene oxidation	1		2			4	2							
4.	Vinyl chloride	Ethylene dichloride dehydrochlorination	6	1				†					<u> </u>			
5.	Ethylene oxide	Ethylene oxidation	3		<u>├</u>			{		{	{	{		{		—;-
6.	Ethyl benzene	Benzenc alkylation	5				+									
7.	Styrene	Ethyl benzene dehydrogenation	6		1 1						[1				
8.	Maleic anhydride	Benzene oxidation	1	2				1				- 1	1		-+	
າ.	Propylene oxide	Proplyene chlorohydrin	3		1							1				
10.	Vinyl acetate	Ethylene vapor phase		†	2											
11.	Methyl methacrylate	Acetone hydrocyanation	4	1				†	1					t 		
12.	Formaldehyde	Silver catalyst high methanol	1	2	1										2	1
٢١.	Ethylene	Rydrocation pyrolysis	н- <mark>н</mark> -	1	·			†								
14.	1,3 butadiene	Hydrocarbon pyrolysis	10	1	†·— -	2	1	Ť						2		
15.	Acrylic acid/esters	Propylene oxidation	4	1		1	+							1		
16.	Cyclohexane	Benzene hydrogenation	1	+	1											
17.	Acetic acid	Butane exidation	7	1	1			f								
19.	Methanol	High pressure mechane synthesis	2									1				
19.	1.1,1 trichloroethane	Vinvlidenc chloride chlorination	5	1												
20.	Trichloroethylene	EDC dehydrochlorination	3						1					-		
21.	Methylene chloride	Methyl chloride chlorination	2		2									1		
22.	Carbon tetrachloride	Methane chlorination	4	1	<u> </u>				1			3				
23.	Phenol ·	Cunienc	9	1	1_1_											
24.	Acetone	Cumene	9		1						ĺ			[

•

*Number indicates the number of units associated with the process.

B-28

С С

TABLE III (Continued)

			Process Modules													
<u>No.</u>	Product	Frocess	Distillation	tiotidzosqy	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration	Quenching	Ion Exchange	Dílutíon
25.	Chloroform	Methane chlorination	2		1			}	1				ļ			
26.	Methyl chloride	Methanol chlorination	2		2				†							
27.	Nitrobenzene/aniline	Benzene nitration			1	1						2				
28.	Ethylene glycol	Ethylene oxide hydration	-3		·				1							
29.	Glycerol	Allyl chloride - edichlorohydrin	7		2						<u> </u>					
30.	Adiponitrile/HMDA	Butadione chlorination	1	•												
31.	Chloroprene	Butadene chlorination	3	i			3									
32.	Cyclohexanol/cyclohexanone	Cyclohexane oxidation	5		2											
33.	Acetaldehyde	Ethylene oxidation	2		- 1							1		1		
34.	2 ethyl 1 hexanol	n-butryaldebyde aldol condensation	2	<u>†</u>			<u>├</u> ─-		1							
35.	Toluene diisocyanate	Amine phosgenation	4		i		ł									
36.	Chlorobenzene	Benzene chlorination	4	2				1								
37.	Ethyl acrylate	Acrylic acid esterification	4			[ļ	l			.				
3я.	Linear alkyl benzenes/sulfonates	Alkyl benzene sulfonation	2					1	1		1	2		1		
39.	Acrolein	Propylene oxidation	3	1		1.										
40.	Ethyl chloride	Ethylene/HCl	3	1	1	1										
41.	Methyl isobutyl ketone	Acetone dehydraxion	5	1		1	1					3				·
42.	Acetylene	Methane partial oxidation	8	-4	3											
43.	Lead alkyls	Sodium/lead alloying with ethyl chloride	2		2											

B-29

07

. . .

.

		TABLE III (Continued)						Pro	ces	s M	odu	les		71-			
Rank			Distillation	orpt	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration	Quenching	Ion Exchange		
NO.	Chemical	Process		+												_	
44	Terephthalic acid	Eastman	2		1			2	2				3			1	
		Mobil		1				4	3								
	Acetic anhydride	Amoco Acetic acid	4	┥╧	1			-4	3								
<u>45</u> 46	Allyl chloride	Propylene	3	2	-				1			1					
40	Vinyl acetate	Ethylene vapor	8		2				<u> </u>			3			1		φ
-47		Ethylene liquid					+								-		ЗО
		Acetylene	3	+													
48	UREA	Ammonia/carbondioxide	2					1					1				
49	Cumene	Benzene alkylation	2	<u> </u>											- ({	
50	Caprolactam	Cyclohexanone	2			1										1	
51	Hydrogen cyanide	Andrussow process	2	<u> </u>	3												
· <u> </u>		Acrylonitrile byproduct															
52	Fluorocarbons	CCL4/CH ₃ CL ₃ Fluorination	3	1	1				3			1				_	
53	Ethanol	Ethylene	4	1	3							2					
54	Ethanolamines	Ethylene oxide	4	1													
55	Vinylidene chloride	1,1,1 Trichloroethane															
		1,1,2 Trichloroethane									_						
56	Isopropanol	Propylene/H ₂ SO ₄	2	1	1											1	
57	Perchloroethylene	Ethylene dichloride	4		1				2			3]	
_		Methane chlorination	3														

B- 30

		TABLE III (Continued)					I	Pro	ces	s Mo	odu	les					
Rank No.	Chemical	Process	Distillation	Absorption	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration		Ion Exchange	Dilution	
58	Sec-butanol	Butylenes	2		2											1	
59	Phthalic anhydride	o-xylene	3			~		1					1				
		Napthalene	2		1			1					1				
60	Pentaerythritol	HCHO/Acetaldehyde				1		1	1				1				
61	Bisphenol A	Phenol/acetone	1		2				1				1	1			
62	n-butyraldehyde	Oxo process	6									1					B-31
63	Epichlorohydrin	Allyl chloride	2														
64	Di/triethylene glycols	ethylene glycol	2														
65	Dinitrotoluene	Toluene dinitration	1		1		1						1	 		<u> </u>	
66	Nonyl phenol	Phenol alkylation	2								1	 		ļ'		<u> </u>	
67	Fumaric acid	Maleic acid isomer						2		1		1		 			
68	Diisooctyl phthalate	Phthalic anhydride	2		1								1	Ļ			
69	Ethylene dibromide	Ethylene bromination	2		2									l		'	
70	n-butanol	Oxo process	6									1		 		ļ!	
		Acetaldehyde	2		2.							1	 	 		1	
_71	Tert-butanol	Propylene oxide												 		'	
		Isobutylenes	2											 		1	
72	Propylene glycols	Propylene oxide	2				2							_			l
73	Glycol ethers	Ethylene oxide	4											 			
_74	Isoprene	Isoamylene extraction	2	1										L			
		CH4 Hydrocarbons	1											<u> </u>			
_			1	}				ļ	}	ļ	1		1	1			ļ

• - •

.,

•

		TABLE III (Continued)	}					F	roc	cess	s Me	ođu	les		ω 		
Rank No.	Chemical	Process		DISTILATION	Absorption	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	iltrat	Quenching	Ion Exchange	Dilution
75	Isophthalic acid	m-xylenc oxidation	1				T				-		1	1			
76	Ethyl acetate	Acetic acid	3									2	1				
77	Propionic acid	Oxo process															
		LPG oxidation															1
78	Acetone cyanohydrin	Acetone/HCN	2		_			2						1			
79	Benzoic acid	Toluene oxidation	5	1		3						1	1	1			-
80	Methyl ethyl ketone	Sec-butanol	2		_								2				
		Butanol oxidation	3		_		_						2				
81	Adipic acid	Cyclohexane	1	_	_			_	1	1	1	1					
		Phenol	1	<u> </u> .	_	_	_	-+	1	1	1	1					
82	Benzene	Toluene hydrodealkylation		1			-						1				
		Not in Scope			+												
83	Acrylamide	Acrylonitrile		4-	_				1					1	⊢	1	
84	Methyl styrene	Cumene byproduct	2		_		_							· -		-+	
		Others			_	_	_		_								
85	Ethylene diamine	EDC ammonolysis		-	_		_								┝━━╋		
86	Diphenyl methane diisocyanate	Diamide/phosgene	2				_						1		┌──┤		
87	Phosgene	co/c1 ₂			_	2											
88	Methylamines	Methanol ammonolysis		-	- - -	L	_						1	┟──┤			
	Isobutanol	Oxo process	6	1				1				1	1	i	, I	. 1	

73

B-32

2.

		TABLE III (Continued)					I	Pro	ces	5 M	odu	les					
Rank No.	Chemical	Process	Distillation	Absorption	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration	Quenching	Ion Exchange	Dilution	
90	Diisodecyl phthalate	Toluene	2		1							1					·
_91	Isobutyraldehyde	Oxo process	6									1					1
92	Benzyl chloride	Toluene chlorination	2								1						l
93	Chloronitrobenzenes	Chlorobenzene	1					2									
94	Diethyl ether	Ethanol	2		1							-					l
. 05	Ethylamines	Ethanolammopolysis	4														ц Г
<u>96</u>	Carbon disulfide	Methane/sulfur	3		2												ι 1
97	Chloroacetic acid	Acetic acid						1	1				1				
98	Formic acid	Butane oxidation	2		1												(
		Others	2									1					
99	Biphenyl	Toluene/benzene	3	1								1					
100	n-butyl acetate	Butanol/acetic acid	2								1	1					
<u>101</u>	Methyl bromide	Methanol hydrobromination	1						1		1						
102	Benzo phenone	Benzene/CCl4	2	1				1		1							ļ.
103	Beyzyl benzoate	Benzaldehyde															
<u></u>		Benzyl alcohol															
104	Amino ethyl ethanolamine	Ethylene oxide	5	1			1										
105	Chlorosulfonic acid	Chlorobenzenc															
106	Dimethyl hydrazine	Dimethyl amine															
107	n-n dimethyl aniline	Anilinc/methanol															
						ļ											۔ ر

B-33

..

. .

:

... ۰...

		TABLE III (Continued)					I	Pro	ces	5 M	odu.	les					
Rank No.	Chemical	Process	Dictillation	Absorption	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration	Quenching	Ion Exchange	Dilution	
108	Hexachlorobenzene	Hexachlorocyclohexane													Ì		
109	Methyl acetate	Acetic acid/methanol	2		1				1								
110	n-propyl alcohol	Propionaldehyde	4									3					
111	Salicylic acid	Sodium phenate	2		1			1	1				1		-		
112	Diphenylamine	Aniline	1							-		1					
113	Acetophenone	Cumeme	4		1			1			_						0 1 1
		Ethyl benzene	2			1											
114	Acetyl chloride	Sodium acetate		1													
115	Propylene	Naptha/gas oil	8	1					1					1			
		Natural gas/liquids	8	1					1					1			
		Refinery byproduct		 													•
116	Aniline	Nitrobenzene hydrogenation	2	1		1						1					
<u>117</u>	Furfural	Polysacchrides hydrolysis	3						1	1			1				
118	Butylamines	Butyraldehyde	4														
<u>119</u>	Allyl alcohol	Allyl chloride hydrolysis		1										┟┈┧			
		Propylene glycol dehydration		ļ													
		Propylene oxide													$ \rightarrow $		
120	Pyridine/picoline	HCHO/Acetaldehyde												\vdash			
121	Cyclohexylamine	Aniline		_													
		Cyclohexanone			1												
			ļ					ļ									

51

B- 34

		TABLE III (Continued)	L					Pro	ces	s Mo	odu	les					
Rank No.	Chemical	Process	Distillation	Absorption	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration	Quenching	Ion Exchange	Dilution	
122	Cresylic acids	Phenol/methanol	7			1	1					1					1
		Toluene sulf	2														
	· · · · · · · · · · · · · · · · · · ·	Cumene oxidation	2														
		Natural coal tar	6		1		1										
123	Crotonaldehyde	Aldo process	4		1							1	1				l
<u></u> 124	Hydroquinone	Acetone coproduct	2		1			1					2				B- 35
125	Isodecanol	Oxo process	4		2							3					<u></u> и
		n-paraffin oxidation	-														l
126	Cellulose acetate	Esterification	1		1				2		1	2	2				
127	Isopropyl acetate	Isopropanol	4								1	2					Į
128	Cyclooctadiene	Butadiene	2														l
129	Dinitrophenol	DNC Benzene															Ļ
130	Dichlorophenol	Phenol chlorination															
131	Butyl acrylate	Acrylic acid	4						1								Ļ
<u>132</u>	Propyl amines	n-propanol	4														L
		n-propychloride															
133	Dodecene	Nonene coproduct	_														1
134	Nitroaniline	Nitrochlorobenzene															
135	Nitrophenol	Phenol nitration	1	1		1									1		,
136	Ethylene glycol MEE acetate	Ethoxy ethanol	1									1					76-
																	ļ

		TABLE III (Continued)				<u> </u>	F	Proc	ess	5 Mc	odu:	les				1 -		•
Rank No.	Chemical	Process	Distillation	Absorption	Scrubbing/Washing	Extraction	Evaporation	Crystallization	Drying	Screening/Settling	Mixing/Blending	Separating	Filtration	Quenching	Ion Exchange	Dilution		
137	Butyric acid	Butyraldehyde	1									1						
		Butane oxidation	2	1	1													
138	Toluene sulfonic acid	Toluena	1															
133	Benzoyl chloride	Berzoic acid							4			_						
140	Isooctyl alcohol	Oxo process	4		2				-							_	₩ 1	
• • •																	36	

Vent Restriction	i Droplet Separation	Surface Concersation	Querch Concensation	Contact Condensation	Compression Condensation	Solvent Absorption	Solvent Absorption/Stripping	Chemical Absorption	Carbon Adsorption	Molecular Sieve	Combustion	Vapor Thermal Oxidizer	Liquid Thermal Oxidizer	Particulate Removal
	x	x		x							x	x		
	x	x							x		x	x		
	x	x							x		x	x		
				x						x	x	x		
				x						x	x	x		
		x							x		x	x		
	x	x									x	x		x
		x		x							x	x		
		x				x					x	x		x
-		x				x					x	x		x
		x				x					x	x		x
		x				x					х	x		x
		x				x		x	x		x	x		

EMISSION CONTROL MODULES

Selection Ranking

.

1

<u>No .</u>	Chemical	Process
1.	Acrylonitrile	Propylana Ammoxidation
٤.	Ethylene Dichloride	Oxychlorination
		Direct Chlorination
3.	Ethylene Oxide	Air Oxidation/Ethylene
		0 ₂ Oxidation/Ethylene
4.	Vinyl Chloride	Ethylene Dichloride Acetylene
5.	Ethylene	H C Cracking
6.	Ethyl Benzene	Benzene Alkylation Mixed Xylenes
7.	Dimethyl Terephthalate	llercules
		Dupont
		Amoco via TPA
		Eastman via TPA
8.	Maleic Anhydride	Benzene Oxidation
		Butane Oxidation

.

TABLE IV

· · - ----

EMISSION CONTROL MODULES Carbo Selection Quenc Conta Compr ъ βÖ Process Chemical Chlorohydrin Propylene Oxide Peroxidation Acetone Cyanohydrin Methyl Methacrylate lx Formaldehyde Silver Catalyst X X Metal Oxide ١x lχ Nitrobenzene/Aniline Henzene Acrylic Acid Propylene Oxidation Acetylene (Reppe) Cumene Phenol Renzene Chlorination

Toluene Oxidation Benzene Sulfonation

Cyclohexanone

Phenol

Methane

Ranking

No.

9.

10.

11.

12.

13.

14.

15.

16.

Cyclohexanol/Cyclohexanone

Methyl Alcohol (Methanol)

TABLE IV

(continued)

B-38

---1

ند)

>

EMISSION CONTROL MODULES

Selection R

Selection Ranking No	Chemical	Process	Vent Surfa Surfa
17.	1,1,1 Trichloroethane	Vinyl Chloride	x
		Vinylidene Chloride	
18.	Ethylene Glycol	Ethylene Oxide	
19.	Acetic Acid	Acetaldehyde	
		Butane Oxidation	x x
		Methanol/CO	
		Others	
20.	Terephthalic Acid	Mobil	
		Eastman	
		λποςο	
21.	Styrene	Ethylbenzene	x
22.	Chloroprene	Butadiene	x
23.	Acetic Anhydride	Acetic Acid	
24.	Allyl Chloride	Propylene	x x
25.	Vinyl Acetate	Ethylene Vapor	
		Ethylene Liquid	
		Acetylene	
26.	Adiponitrile/HMDA	Butadiene	xx
		Adipic Acid	
		Acrylonitrile	

× Vent Restriction	Drcplet Separation	<pre>x x Surface Condensation</pre>	Quench Condensation	Contact Condensation	Compression Condensation	Solvent Absorption	Solvent Absorption/Stripping	X Chemical Absorption	Carbon Adsorption	Molecular Sieve	Combustion	X Vapor Thermal Oxidizer	X Liquid Thermal Oxidizer	Darticulato Donovial
x		x									x	x		
		x		x				x			x x	x	x	
		x		x				x			x x		x	
		x		x				x			x			

B- 39

.

Selection

٠

Ranking	Chemical
27.	Carbon Tetrachloride
28.	Glycerol
29.	Acetone
30.	Urea
31.	Toluene Diisocyanate
32.	Propylene Glycols
33.	Acetaldehyde
34.	Ethyl Chloride
35.	Methylene Chloride
36.	Butadiene

Process
Carbon Disulfide
Chloro Paraffins
Methane
Epichlorohydrin
Allyl Alcohol
Acrolein
Cumene
Isopropanol
№Н 3/СО
Diamino Toluene
Propylenc Oxide
Ethylene
Ethanol
Ethylene
Ethanol/Ethane
Methane
Methanol
Ethylene Coproduct
n-butane

n-butenes

				Vent Restriction
x				Droplet Separation
x x x x x		x	x	Surface Condensation
				Cuench Condensation
x	x x x x			Contact Condensation
	1			Compression Condensation
				Solvent Absorption
		}		Solvent Absorption/Stripping
x x x x	x	x	x	Chemical Absorption
				Carbon Adsorption
				Molecular Sieve
x x x	x	x		Combustion
x x x	×			Vapor Thermal Oxidizer
x x x	×		x	Liquid Thermal Oxidizer
x	×			Particulate Removal

EMISSION CONTROL MODULES

Selection Ranking

Ranking No	Chemical	Process
37.	Cumene	Benzene Alkylation
38.	Chlorobenzenes	Benzene Chlorination
39.	Chloroform	Methane
		Methanol
40.	Caprolactam	Cyclohexanone
41.	Hydrogen Cyanide	Andrussow Process
		Acrylonitrile
42.	Fluorocarbons	CC14/C2C16 Fluoro.
43.	Acrolein	Propylene Oxidation
44.	Ethyl Alcohol	Ethylene
45.	Ethanol Amines	Ethylene Oxide
46.	Vinylidene Chloride	1,1,1 Trichloro Ethane
		1,1,1 Trichloro Ethane
47.	Alkyl Leads	Ethyl Chloride
		Electrolysis
48.	Isopropanol	Propylene/H ₂ SO ₄
49.	Methyl Isobutyl Ketone	Mesityl Alcohol
50.	Perchloroethylene	Ethylene Dichloride
		Methane

X Vent Restriction	X Droplet Separation	X X Surface Condensation	Cuench Condensation	K Contact Condensation	Compression Condensation	Solvent Absorption	Solvent Absorption/Stripping	X X Chemical Absorption	Carbon Adsorption		Molecular Sieve	x Combustion	Vapor Thermal Cxidizer	<pre>x Liquid Thermal Oxidizer</pre>	Particulate Removal
				×				×				× × ×	×		
x		x		X								x x			;
		x										x			
		x x x		x	x					İ		x			;

B-41

EMISSION CONTROL MODULES

Selection

Ranking No	Chemical	Process
51.	Sec-butanol	Hutylenes
52.	Phthalic Anhydride	o-xylene
		Napthalene
53.	Pentaerythritol	HCHO/Acetaldehyde
54.	Bisphenol A	Phenol/Acetone
55.	n-Butyraldehyde	Oxo Process
56.	Cyclohexane	Benzene
		Petroleum Distillation
57.	Epichlorohydrin	Allyl Chloride
58.	di/Triethylene Glycols	Ethylene Glycol
59.	Dinitro Toluene	Toluene Dinitration
60.	Nonyl Phenol	Phenol Alkylation
61.	Fumaric Acid	Maleic Acid Isomer
62.	2-Ethyl Hexanol	Aldo Condensation
63.	Ethyl Acrylate	Esterification
		Acetylene
64.	Trichloroethylene	Ethylene
		Acetylene
65.	Methyl Chloride	Methanol
		Methane

x		x	x	Vent Restriction
				Droplet Separation
x	x x		x x x	× Surface Condensation
				Quench Condensation
				Contact Condensation
				I Compression Condensation
		×		Solvent Absorption
				Solvert Absorption/Stripping
x		x x x	x x x	x Chemical Absorption
				Carbon Adsorption
				Molecular Sieve
	x		x x	x Combustion
	x	x	x	Vapor Thermal Oxidizer
k	x			Liquid Thermal Cxidizer
	>		x	Particulate Removal

B-42

2

ာ ယ

EMISSION CONTROL MODULES

Selection

Ranking No	Chemical	Process
66.	Diisooctyl Phthalate	Phthalic Anhydride
67.	Ethylene Dibromide	Ethylene Bromination
68.	Acetylene	H.C. Oxidation
		Calcium Carbide
		Ethylene
69.	n-Butanol	Oxo Process
		Acetaldehyde
70.	t-Butano]	Propylene Oxide
		Isobutylenes
71.	Glycol Ethers	Ethylene Oxide
		Propylene Oxide
72.	Isoprene	Isoamylene Extraction
		C _A Hydrocarbons
73.	Isopthalic Acid	m-Xylene Oxidation
74.	Ethyl Acetate	Acetic Acid
75.	Propionic Acid	Oxo Process
		LPG Oxidation
76.	Acetone Cyanohydrin	Acetone/HCN
77.	Benzoic Acid	Toluene Oxidation

Vent Restriction	Droplet Separation	Surface Condensation	Quench Condensation	Contact Condensation	Compression Condensation	Solvent Absorption	Solvent Absorption/Stripping	Chemical Absorption	Carbon Adsorption -		r Sieve	u o	Vapor Thermal Oxidizer	× Liquid Thermal Oxidizer	Darticulare Removal
Cent Res	Droplet	Surface	Quench C	Contact	Compress	Solvent	Solvert	Chemical	Carbon A	 	, Molecular Sieve	: Combustion	i Vapor Th	Liquid T	Particul
		x		x				x				x		X	
		x				x		1				x			
								x x							
			x x									X X	x x		
		x						x				x		x	
								x				x			

B-43

EMISSION	CONTROL	MODULES

۰.

.

Selection

.

Selection Ranking No.	Chemical	Process
79.	Methyl Ethyl Ketone	Sec-butanol
		Butane Oxidation
79.	Adipic Acid	Cyclohexane
		Phenol
80.	Benzene	Toluene Hydrode Alkylation
		Not in Project Scope
81.	Acrylamide	Acrylonitrile
82.	a-Methyl Styrene	Cumens Product
		Others
83.	Ethylene Diamine	EDC Ammonolysis
84.	Methylene Diisocyanate	Diamide/Phosgene
85.	Phosgene	co/c1 ₂
86.	Methyl Amines	Methanol Ammonolysis
87.	Isobutanol	Oxo Process
88.	Diisodecyl Phthalate	P.A./Isodecanol
89.	Isobutyraldehyde	Oxo Process
90.	Benzyl Chloride	Toluene Chlorination
91.	Chloronitro Benzenes	Chlorobenzene
92.	Diethyl (Ethyl) Ether	Ethanol

Vent Restriction	Droplet Separation	Surface Condensation	Çuench Condensation	Contact Condensation	Compression Condensation	Solvent Absorption	Solvent Absorption/Stripping	Chemical Absorption	Carbon Adsorption	Molecular Sieve	Combustion	Vapor Thermal Oxidizer	Liquid Thermal Oxidizer	Particulate Removal
			x		-			X	-	-	x		x	x
x	x					x		x		ļ		x		x
х		x				x					x			
		x									x		x	
x								x						
1						x	x	x x x x x		ļ	x	x		
x		x			x			x)				
		x						x		1	x			
		x						x			x		x	
		x		x				x						

(72) (27)

EMISSION CONTROL MODULES

Selection Ranking

. . .

·· • · · · ·

...

<u><u><u>No.</u></u></u>	Chemical
93.	Linear Alkyl Benzene
94.	Ethyl Amines
95.	Carbon Disulfide
96.	Chloro Acetic Acid
97.	Linear Alkyl Sulfonates
98.	Formic Acid
99.	Methyl Bromide
100.	Biphenyl
101.	n-Butyl Acetate

Process Benzene Alkylation Ethanol Ammonolysis Methane/Sulfur Acetic Acid LAB Sulfonation Butane Oxidation Others Methanol/HBr Toluene/Benzene Butanol/HÖAC

Notice Notice Separation Surface Condensation Name Name Name Name Name Name Name Solvent Absorption Name Solvent Absorption		Vent Restriction
		Droclet Separation
		Surface Condensation
x x x x x x x x x x x x x x x x x x x		Quench Condensation
	x	┢╴
		Corpression Condensation
x		Solvent Absorption
x		Solvent Absorption/Stripping
		Chemical Absorption
		Carbon Adsorntion
x.		Molecular Steve
Wapor Thornal Oxidat		Combustion
		Vapor Thernal Oxiduter
Liquid Thermal Oxidi		Liquid Thermal Oxidizer
x Farticulate Removal		TURE OF STORES

sed: 12/6/71 DGE

 \sim

				Control Modules													
		TABLE IV (Continued)	r Res	Droplet Separation	Surface Concensation	ondensation	Contact Condensation Commension Condensation	Absorbtion	Solvent Absorption/Stripping	al Absorption	10	ave Sieve	Combustion	Vapor Thermal Owidizer	quid Thermal Oxidiaer		
Rank No.	Chemical	Process	Vent	Dr(Su.	ň		S	S o	č	C			ip/		1	
102	Benzo phenone	Benzene/carbon_tetrachloride												\square	-1-	-	
103	Benzyl benzoate	Benzaldehyde							\uparrow			-+-		-+	-+		
		Benzyl alcohol		1				T				1	1-1	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	+	-	
104	Aminoethylethanolamine	Ethylene oxide		x							\square	1-	1-1	\square	x	- 0	7
105	Chlorosulfuric acid	(Chlorobenzene)													-	_ 0	ì
106	Dimethyl hydrazine															1	
107	n-dimethyl aniline	Aniline/methanol														1	
108	Hexachlorobenzene	Hexachloro cyclohexane		x			x									1	
109	Methyl acetate	Acetic acid										T	T		T	1	
_110	n-propyl alcohol	Propionaldehyde											x		1	1	
111	Salicylic acid	Sodium phenate],	x	
	Diphenylamine	Aniline													T	7	
113	Acetophenone	Cumene			x								x				
		Ethylbenzene														7	
114	Acetychloride	Sodium acetate														7	
115	Propylene	Naptha/gas oil		x	x								x	x	>	$\langle]$	
		Natural gas/liquid		x	x								x	x	X	<	
	-	Refinery byproduct															

-

			Control Modules
		TABLE IV (Continued)	on tion sation sation ndensation tion/Stripping tion tion tion culticer Oxidizer moval
Rank No.	Chemical	Process	Vent Restriction Vent Restriction Droplet Separation Surface Condensation Quench Condensation Contact Condensation Contact Condensation Contact Condensation Solvent Absorption Solvent Absorption Solvent Absorption Ciemical Absorption Solvent Absorption Conduction Carbon Adsorption Carbon Adsorption Conduction Molecular Sieve Combustion Vapor Thermal Oxidia Liquid Thermal Oxidia Liquid Thermal Oxidia
116	Aniline		
117	Furfural	Nitrobenzene hydrogenation	╾╾╍╍┝┝┟┥┾┼╳┝╌┥╸┝┍┝┥┥┥┥╸┥╴┥
	Butylamines	Polysaccabrides hydrolysis	╶╼╾╾╸┼┼╶┼╶╄╶┼╶┼╸┽╶┽╶┽╴┽╴┽╴┽╴┽
118		Butyraldehyde	
119	Allyl alcohol	Allyl chloride hydrolysis	
		Propylenc glycol	╾╾╾╍┽┽┽┽╫┥┿╎╴┝┾┾┼┼┝┝┽┼╶┧╴┤
		Propylene oxide	
120	Pyridine/picoline	HCHO/acetaldehyde	
121	Cyclohexylamine	Λniline	
		Cyclohexanone	
122	Cresylic acids	Phenol/methanol	
		Toluene sulfonation	
		Cumenc oxidation	
		Natural coal tar	
_123	Crotonaldehyde	Aldo process	
124	Hydroquinone	Acetone coproduct	
125	Isodecanol	Oxo process	X
<u> </u>		n-paraffin oxidation	
126	Isooctyl alcohol	Oxo process	

			Ī		1	1. L	-T	-10 		1	- 1 	les I		- <u>1</u> -	-1	Т
Rank		TABLE IV (Continued)	1	Vene Negerilories	Surface Condensation	ondensatio	Condensation	STON CONG	bsorption	Solvent Absorption/Stripping	1 ***		alua	mbustion For Thermal Condine	duid Thermal Oxid	
No.	Chemical	Process			លី		ŏ	Ŭ 	й (i		5	; 		85		1
127	Cellulose acetate	Cellulose esterification					x									
128	Isopropyl acetate	Tsopropanol									ŀ				1	
129	Cyclooctadiene	Butadiene														
130	Dinitrophenol	Dinitrochlorobenzene														
131	Dichlorophenol	Phenol chlorination							x							
132	Butyl acrylate	Acrylic acid														
133	Propylamines	n-propanol	>		x			x		>	<					
		n-propylchloride	>		x			x		/>						
134	Dodecene	Nonene coproduct		_			_	_						x		
135	Nitroaniline	Nitrochlorobenzene						\downarrow								
136	Nitrophenol	Phenol nitration							$ \downarrow$						1	
137	Ethylene glycol MEE acetate	Ethoxy_ethanol						-			1					
138	Butyric acid	Butyraldehyde			1				$- \downarrow$	_	\perp				1	
	· · · · · · · · · · · · · · · · · · ·	Butane oxidation			+		-								1.	
139	Toluene sulfonic acid	Toluene		x	1		$ \downarrow$	_	_	×	:					
140	Benzoyl chloride	Benzoid acid		{	1	11			1						1	

APPENDIX C

ESTIMATES OF TOTAL SOCMI VOC EMISSIONS FOR 1982

ESTIMATES OF TOTAL SOCMI VOC EMISSIONS FOR 1982

A. INITIAL EMISSIONS ESTIMATE

Basis: Survey and Ranking Studies

SOCMI production = 200,000 MM lb (1976) 6% growth = 283,700 MM lb (1982)

140 products address 205,438 MM lb of production (1982) 72.6% 1,584 MM lb of emissions (1982)

283,700-205,438 = 78,262 MM lb of production not covered by survey and ranking studies.

An estimated emission factor for the unranked chemicals was obtained by using the weighted average for the last 25 chemicals ranked on Fig. II-1 (0.0025 lb of VOC emissions/lb of production):

78,262 X 0.0025 = 195 MM lb of VOC emissions from unranked chemicals

1,584 + 195 = 1779 MM lb of VOC emissions for SOCMI in 1982, based on the initial survey and ranking studies.

B. REVISED EMISSIONS ESTIMATE

From Table II-1 the estimated emissions for the products studied are reduced from 1374 MM lb to 733 MM lb, a reduction of 47%. From all indications it appears to be a logical assumption that process emissions would be reduced by a similar amount for the remainder of the industry. However, as discussed in the <u>Fugitive Emissions</u> report of Volume III, fugitive emissions are more a function of equipment count than of production volume. This indicates that the initial VOC emission estimate shown above underestimated fugitive emissions for the large number of plants not studied.

By analysis of Tables II-1 and C-1 it can be seen that the first four products account for more than half of the VOC production addressed by all full-report studies. They are considered to be atypical of the great majority of production sites and were not used to determine emission factors for the remainder of the industry. The VOC emission-to-production-volume ratios for all the remaining full-study reports were used as the basis for projecting the VOC emission

		vo	C Emissions (M	M 1b)	
Product	Process	Fugitive	Storage and Handling	Secondary	Total
Acrylonitrile	130.9	1.5	1.5	11.6	145.50
DMT/TPA	93.3	4.0	2.0	Neg	99.38
Ethylene dichloride	87.7	0.5	0.9	1.8	90.92
Ethylene	32.3	33.0	7.3	0.7	73.31
Formaldehyde	19.7	6.9	0.8	Neg	27.42
Cyclohexanol/cyclohexonone	24.7	1.3	0.3	0.3	26.52
Acrylic acid	4.6	7.3	2.5	8.1	22.48
Ethylene oxide	19.9	1.3	0.2	Neg	21.39
Maleic anhydride	9.1	4.4	2.6	0.3	16.46
Ethylbenzene/styrene	7.6	0.9	6.5	0.8	15.75
Ethylene glycol	14.0	0.8	0.1	0.6	15.59
Phenol/acetone	3.1	5.1	1.4	0.1	9.68
Methanol	0.6	3.2	4.4	0.1	8.31
Cyclohexane	Neg	0.9	3.4	0.1	4.40
Chloromethane-methanol	0.8	1.0	2.3	0.1	4.17
Alkylbenzene	1.3	0.6	1.0	0.3	3.17
Chlorobenzene	1.6	0.8	0.2	0.1	2.70
Chloromethane-methane	1.0	0.8	0.5	0.1	2.37
Nitrobenzene	0.4	0.8	0.2	0.2	1.67
Carbon tetrachloride	0.1	0.8	0.3	Neg	1.21
Cumene	Neg	0.4	0.5	0.1	0.98
1,1,1-Trichloroethane	Neg	0.3	0.2	Neg	0.48
Adipic acid	0.1	0.1	Neg	Neg	0.18
Full-study ^a	* 453 (76.2%)	75.7 (14.0%)	40.1 (6.7%)	25.4 (4.3%)	594
Starting with formal-	108.6	37.7	27.4	11.3	185
dehyde ^D	(58.7%)	(20.4%)	(14.8%)	(6.1%)	

Table C-1. VOC Emission Estimates by Point Source for 1982

^aFull-study reports addressed a total annual production of 113,588 MM lb.

^bAll full-study reports (except the first four) starting with formaldehyde address a total annual production of 55,762 MM lb.

estimate for all SOCMI products not covered by a full-study report. Since the ratio of equipment components to production volume increases so dramatically in the many smaller volume plants not studied and since fugitive emissions are more a function of equipment count than of production volume, no fugitive emission factor was developed for processes not covered by study reports.

The emission projection factors derived from Table C-1 are as follows:

Process Emissions $\frac{109}{55.762}$ = 0.002 lb of VOC/lb of production

Storage and handling $\frac{27.4}{55.762}$ = 0.0005 lb of VOC/lb of production

Secondary $\frac{11.3}{55,762}$ = 0.0002 lb of VOC/lb of production

The abbreviated product studies represent 22,425 MM lb of production projected to 1982. Based on the above factors to project the 1982 emission estimates for the abbreviated studies and the 147,627 MM lb of production not covered by full-study reports, the total estimated VOC emissions for 1982 are as follows:

•			Amount (MM 1b))	
	Process	Fugitive	Storage and Handling	Secondary	Total
Full report studies	453	76	40	25	594
Abbreviated-report studies	45	29	11	4	89
Not studied	294	355		29	751
	792	460	124	58	1434
	(55%)	(32%)	(9%)	(4%)	

TECHNICAL F Please read Instructions on t	REPORT DATA he reverse before completing)								
1 REPORT NO. EPA-450/3-80-023		DSO 1							
Organic Chemical Manufacturing	5. REPORT DATE December 198	80							
Volume 1: Study Summary	6. PERFORMING OF	IGANIZATION CODE							
7. AUTHOR(S)	8. PERFORMING OF	GANIZATION REPORT NO.							
R. E. White									
9 PERFORMING ORGANIZATION NAME AND ADDRESS IT Enviroscience, Inc.	10. PROGRAM ELEP	MENT NO.							
9041 Executive Park Drive Suite 226	11. CONTRACT/GR	ANT NO.							
Knoxville, Tennessee 37923	68-02-2577	68-02-2577							
12. SPONSORING AGENCY NAME AND ADDRESS DAA for Air Quality Planning and Standards	13. TYPE OF REPOR	T AND PERIOD COVERED							
Office of Air, Noise, and Radiation	14. SPONSORING A	AGENCY CODE							
U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27	711 EPA/200/04	. ·							
15. SUPPLEMENTARY NOTES	<u>-</u>	<u></u>							
16. ABSTRACT		·····							
EPA is developing new source performant the Clean Air Act and national emission stu under Section 112 for volatile organic comp chemical manufacturing facilities. In sup on chemical processing routes, VOC emission and environmental impacts resulting from co and assimilated into the ten volumes compr This volume contains a brief history of emission ranking information for 140 manufo	andards for hazardous air p pound emissions (VOC) from port of this effort, data w ns, control techniques, cor ontrol. These data have be ising this report. of the four year project ar	collutants organic ere gathered trol costs, een analyzed							
17. KEY WORDS AND DO	CUMENT ANALYSIS								
a DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERMS	e. COSATI Field/Group							
		138							
16 DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report)	21. NO. OF PAGES							
Unlimited Distribution	Unclassified 20. SECURITY CLASS (This page) Unclassified	92 22 PRICE							
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE	n1								