# **CONTROL OF MERCURY EMISSIONS FROM COAL COMBUSTORS**

S.V. Krishnan, Acurex Environmental Corporation, P.O. Box 13109, Research Triangle Park, NC 27709

Brian K. Gullett<sup>\*</sup>, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Environmental Protection Agency, Research Triangle Park, NC 27711

Wojciech Jozewicz, Acurex Environmental Corporation, P.O. Box 13109, Research Triangle Park, NC 27709

#### ABSTRACT

Injection of activated carbon sorbents has been shown in laboratory and field situations to control total mercury (Hg) emissions from municipal waste combustors (MWCs). Efforts are currently underway to extend this experience to control emissions of Hg from coal-based power units. However, to achieve high removal of Hg (approximately 90 percent) from flue gas, the activated carbon to Hg ratio (by weight) has been found to be significantly higher in coal-based units than in MWCs. In order to optimize Hg removal for coal-based units, we performed bench-scale experiments to study capture of three species of Hg: elemental (Hg<sup>0</sup>), mercuric chloride (HgCl<sub>2</sub>), and mercuric oxide (HgO) by different activated carbon sorbents at temperatures (100 and 140 °C) and Hg concentrations (~ 1 ppb Hg) representative of applications in coal combustors. This paper also reports a comparison of these results with our earlier investigations of Hg control under MWC conditions.

#### **INTRODUCTION**

The Environmental Protection Agency (EPA) "mercury" report to Congress<sup>1</sup> cites the largest emitters of mercury (Hg) as coal-fired utilities, medical waste incinerators (MWIs), municipal waste combustors (MWCs), chlor-alkali plants, copper and lead smelters, and cement manufacturers. These sources account for 90 to 100 percent of anthropogenic Hg emissions. All the sources listed above, except the coal-fired utilities, are subject to intended, proposed, or existing regulations. The EPA "mercury" report suggests the likelihood of utility boilers' being listed under Section 112 of the Clean Air Act Amendments (CAAA)<sup>2</sup>. This will enable EPA to identify Hg emitting utility boilers and promulgate technology-based pollution control requirements.

There are several methods of Hg control either being used or tested in waste incineration plants (MWIs and MWCs). These include a variety of chemical, adsorption, and absorption techniques<sup>3</sup>. Primarily, dry sorbent injection (DSI) followed by a fabric filter (FF), a spray dryer (SD) followed by a FF, and wet scrubbing have been tested to determine Hg control. A database is available <sup>4.5.6</sup> on the levels of Hg control achieved in field tests employing these techniques.

Apart from field tests, laboratory work has also been conducted by investigators <sup>7,8,9,10</sup> to study Hg capture by solid sorbents in MWCs. All tests show that existing flue gas desulfurization units (SD/FF and wet scrubber systems) with the addition of DSI lead to consistently high (> 90 percent) Hg removal in MWCs.

The concentration of total Hg found in the flue gas of a coal-fired utility is typically at least an order of magnitude lower than that found in a MWC flue gas. Moreover, the flue gas composition [in particular, hydrogen chloride (HCl) concentration] of a coal-fired unit differs from that of a MWC unit which may lead to the existence of different proportions of the species of Hg [that is, the fractions of elemental mercury (Hg<sup>0</sup>), mercuric chloride (HgCl<sub>2</sub>), and mercuric oxide (HgO) -- the three species that exist at equilibrium<sup>10</sup> in the flue gas]. Because of these factors -- mainly concentration and speciation of Hg -- there is uncertainty in extending the technology for MWC Hg capture to Hg control in coal-fired utilities.

Existing flue gas cleaning devices -- particulate and sulfur dioxide  $(SO_2)$  removal -- have shown varying levels of Hg control<sup>11-19</sup>. Hg control achieved through various particulate and flue gas desulfurization devices is summarized in Table 1. To resolve uncertainties regarding emissions, the Pittsburgh Energy Technology Center (PETC) of the Department of Energy (DOE) has initiated a program to characterize toxic emissions from coal-fired electric utilities. Table 2 lists the capture of Hg in four of the eight power stations that are to be assessed in the DOE program. The results shown in Tables 1 and 2 suggest the need for additional control processes in coal-fired utilities to consistently achieve high (> 90 percent) Hg removal.

Duct injection of activated carbon has been proposed as an additional process for achieving high levels of Hg removal in coal-fired utilities. This relatively simple add-on technology has been tested by investigators<sup>11,16,20</sup> in pilot-scale units.

In the pilot-plant studies of Felsvang et al.<sup>16</sup>, injection of activated carbon achieved Hg removals greater than 90 percent. The high removals reported by Felsvang were for each of two types of coals. However, to achieve 90 percent Hg removal by injection of activated carbon in each case, the required amounts of activated carbon differed by a factor of five. This was thought to be due to differences in Hg speciation in the flue gas. This conclusion would be contrary to the tests of Chang et al.<sup>11</sup> which showed no dependence of Hg removal on Hg species.

Chang et al.'s<sup>11</sup> slipstream study concluded that injection of activated carbon before a FF is capable of removing Hg. The results suggested a dependence on the flue gas temperature and the amount of activated carbon used in determining the fraction of Hg removed. For temperatures around 120 °C, they reported a carbon:Hg weight ratio of 3,000:1 for high Hg removal. Pilot plant studies conducted at the University of North Dakota's Energy and Environmental Research Center (UNDEERC)<sup>12</sup> employing different coals, however, showed lower Hg removal (60 percent) with activated carbon injection at a similar carbon:Hg weight ratio.

At a carbon:Hg ratio of 3000:1 and an activated carbon cost of \$ 1.125/kg, our estimates indicate that the material cost would be \$ 500,000 per year for a 500 MW power plant. Chang et al.<sup>11</sup> report an annual cost of carbon injection of \$ 100,000 - \$ 1 million for Hg control in a 500 MW

plant. These estimates can vary depending on equipment, installation, and disposal costs. The significant additional costs associated with Hg removal in coal-fired utilities emphasize the need for process optimization.

The factors found to influence Hg removal in the field studies were coal type (leading to different Hg speciation), activated carbon injection rate or method (or both) and type, and flue gas temperature. Bench-scale studies are convenient in order to study the individual effects of these parameters on Hg capture in a controlled environment. Most of the bench-scale efforts have been directed at studying Hg control in MWC situations (that is, relatively higher concentration of Hg)<sup>7-10</sup>. Livengood et al.<sup>21</sup> have studied Hg capture in bench-scale absorbers in nitrogen (N<sub>2</sub>)/air, but, their studies were limited to Hg<sup>0</sup>. Moreover, the Hg<sup>0</sup> concentration in their experiments was approximately 5-11 ppb, compared to approximately 1 ppb total Hg for most coal-fired utilities. Morency<sup>22</sup> studied bench-scale Hg capture in simulated flue gas to quantify Hg<sup>0</sup> and HgCl<sub>2</sub> capture by activated carbons. Here, too, the inlet Hg concentration was much higher (roughly 13 ppb) than found typically in coal flue gas. Hg capture observed at the higher concentrations may not be the same at lower Hg concentrations due to the non-linear effect of concentration on mass transport and sorption kinetics. Also, the HgCl<sub>2</sub> in Morency's study was produced by reacting Hg<sup>0</sup> with HCl which produced very small quantities of HgCl<sub>2</sub>(5-10 percent of total). This may lead to errors in quantifying the separate capture of each species of Hg by activated carbons.

In this paper, we have studied the capture of low concentration  $Hg^0$  (less than 2 ppb) and  $HgCl_2$  (approximately l ppb) by two types of activated carbons. The experiments were conducted with only a single Hg species present in the gas stream in order to obtain information on the capture of each individual species of Hg. The capture of the two Hg species was studied at two temperatures -- 100 and 140 °C. In addition, capture of HgO by the two activated carbons and hydrated lime  $[Ca(OH)_2]$  has been studied in this investigation. Finally, a comparison is made between low concentration Hg control (coal-fired utility) and high concentration Hg control (MWC situation) results obtained in our earlier studies <sup>7-10</sup>.

## SORBENTS

Two types of activated carbons, namely PC-100 and FGD (manufactured by American Norit Company, Inc.), were used in this study as in previous field studies<sup>23</sup>. PC-100 is bituminous-coal-based activated carbon, and FGD is derived from lignite. Both the carbons are thermally activated. PC-100 has a BET surface area of 964 m<sup>2</sup>/g compared to 547 m<sup>2</sup>/g for FGD. The mass median diameters (obtained by gravity sedimentation) for PC-100 and FGD were 17.55 and 6.80  $\mu$ m, respectively. The details of their physical characteristics, including the pore size distributions, are given in an earlier study<sup>8</sup>. Apart from the two activated carbons, reagent grade Ca(OH)<sub>2</sub> was used in this study to compare its capture of HgO with the two activated carbons. The Ca(OH)<sub>2</sub> sample has a BET surface area of 13 m<sup>2</sup>/g.

## EXPERIMENTAL PROCEDURES

 $Hg^0$ 

Figure 1 shows the schematic of the bench-scale apparatus used to study capture of Hg<sup>0</sup> by PC-100 and FGD. The apparatus has been used to study Hg<sup>0</sup> capture by sorbents in earlier studies<sup>7</sup>. Unlike the previous studies, the concentration of Hg<sup>0</sup> used in this study (~ 1 ppb) was very near the detection limit of the online Hg analyzer (Ametek, Model 400). The Hg analyzer was used to provide only an estimate of the Hg<sup>0</sup> concentration in the gas stream. Since online analysis of Hg<sup>0</sup> was not possible, the samples were directly analyzed for total Hg. Therefore, all experiments were conducted in batches (differing in time of exposure of sorbent to Hg<sup>0</sup>).

The reactor (see Figure 1) was typically loaded with 100 mg of fresh test carbon in stage 1 followed by two stages of fresh PC-100 (100 mg each) as breakthrough traps (stages 2 and 3). The three stages [i.e., the test (either PC-100 or FGD) and the two sections of PC-100] were separated by glass wool.

After establishing a  $Hg^0$  baseline (based on a reading from the online analyzer), the gas stream was passed through the reactor where the activated carbons (maintained at a set temperature) capture  $Hg^0$  for 8 to 24 h as indicated in Figure 3. The experimental procedure (i.e., positioning of valves) has been described earlier<sup>7,8</sup>. At the end of the fixed duration, the  $Hg^0$  stream was diverted away from the activated carbons. The three stages were then separately analyzed using x-ray fluorescence (XRF) for total Hg. Two tests were run for a single datum.

The percentage Hg<sup>0</sup> capture by PC-100 or FGD after exposure to Hg<sup>0</sup> for time *t*,  $\phi_t$  was calculated as:

$$\phi_{t} = [\alpha_{1}/(\alpha_{1} + \alpha_{2} + \alpha_{3})]^{*}100 \tag{1}$$

where  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$  are the total Hg measured (ppmw using XRF) in each of the three sequential reactor stages (see Figure 1). In all of our experiments, the fraction of total Hg capture in stage 3,  $\alpha_3/(\alpha_1 + \alpha_2 + \alpha_3)$ , was less than 0.1, indicating little, if any, Hg<sup>0</sup> breakthrough.

# HgCl<sub>2</sub>/HgO

The schematic (Figure 2) of the experimental setup for studying  $HgCl_2$  or HgO capture is similar to that for  $Hg^0$  capture.  $HgCl_2$  or HgO powder was placed in a diffusion vial in the furnace (generator) to provide the source for the two Hg compounds.  $N_2$  is the carrier gas for both  $HgCl_2$  and HgO.

Unlike the online  $Hg^0$  analyzer which provided a rough estimate of the  $Hg^0$  concentration in the gas stream, there is no such instrument for the  $HgCl_2$  or HgO setup. Therefore, trial runs established the necessary furnace temperatures to produce the desired concentrations of either  $HgCl_2$  or HgO. The measurement of the  $HgCl_2$  or HgO concentration in the gas stream proceeded by analyzing for total Hg in each stage of the sorbent bed. The fraction of  $HgCl_2$  or HgO captured by the sorbents is obtained as described earlier [from Equation (1)].

# ANALYSIS OF Hg SPECIES IN FGD, PC-100, AND Ca(OH)2

XRF was employed to quantitatively determine total Hg captured in each of the three stages. Standards were prepared for each sorbent type [the two activated carbons and  $Ca(OH)_2$ ] by doping with known concentrations of Hg solution. The XRF machine (Siemens, Model SRS303) was calibrated for each sorbent in the 0-9 and 0-50 ppm range using these standards. A linear correlation for each sorbent was obtained in both ranges. The strength of the XRF signals obtained from the analysis of sorbents from our experiments was matched with these correlations to obtain the Hg species concentration in the solid samples.

The accuracy of XRF calibration was verified by comparing with the results of the online analyzer (for Hg<sup>0</sup>). Here, a single stage of PC-100 (100 mg) was loaded in the reactor and exposed to 30 ppb of Hg<sup>0</sup>. Integration of the signal from the online analyzer gave an estimate of the Hg in PC-100. The sample was then unloaded from the reactor and analyzed employing XRF. A very close match was seen between the two methods of analysis, indicating the reliability of the XRF technique to measure Hg in samples. Periodically, samples used for calibrating the XRF machine were also analyzed through cold vapor atomic absorption (CVAA) as a further measure of data quality. Results from the CVAA analysis showed that the samples used for calibrating the XRF machine were within 10 percent of the XRF value.

#### **RESULTS AND DISCUSSION**

## Hg<sup>0</sup> Capture

2

Figure 3 shows the capture of 2 ppb  $Hg^0$  (in  $N_2$  gas) by 100 mg of PC-100 and FGD at 100 and 140 °C. The face velocity is 5.5 m/min (18 ft/min) and the bed depth is roughly 0.3 cm.

It can be seen from Figure 3 that PC-100 captures a higher percentage of incoming Hg<sup>0</sup> compared to FGD at both temperatures. PC-100 captures 80-90 percent of incoming Hg<sup>0</sup> up to an exposure time of 24 h. On the other hand, FGD captures 30-50 percent of incoming Hg<sup>0</sup> at 100 °C and 10-30 percent of incoming Hg<sup>0</sup> at 140 °C. Qualitatively, similar results were obtained when PC-100 and FGD were exposed to 30 ppb Hg<sup>0</sup> during MWC studies<sup>9</sup>.

The capture of Hg<sup>0</sup> by PC-100 does not seem to be affected by temperature; whereas, the capture of Hg<sup>0</sup> by FGD is lower at 140 than at 100 °C. A similar trend in Hg<sup>0</sup> sorption with temperature was seen for FGD when exposed to 30 ppb Hg<sup>0</sup> in N<sub>2</sub><sup>9</sup>. This is perhaps indicative of a physisorptive mechanism of Hg<sup>0</sup> capture by FGD.

Despite the long exposure periods (24 h), the amount of  $Hg^0$  captured per gram of PC-100 or FGD is far lower than in our earlier study<sup>9</sup>. For example, after 24 h of exposure, the amount of  $Hg^0$  (mg) per gram of PC-100 is 0.06 (in this study) compared to 0.2 mg/g of PC-100<sup>9</sup> after only 4 h of exposure. This is because the inlet  $Hg^0$  concentration in the current study is lower by a factor of 15. The lower  $Hg^0$  concentration in this study is representative of conditions in a coal flue gas and the higher concentrations in our earlier study<sup>9</sup>, that of conditions in a MWC. Hence, it is very likely that activated carbon would be highly under-utilized with respect to its potential of  $Hg^0$  capture in a coal-fired unit.

A high utilization of the activated carbon with respect to its potential for  $Hg^0$  capture is critical for an economical Hg removal process. Unlike the high HCl concentrations present in a MWC flue gas, the level of HCl is lower in a coal flue gas. This possibly accounts for higher  $Hg^0$  levels in the latter<sup>10</sup>. Therefore, high capture of  $Hg^0$  becomes important in a coal-fired utility. High capture of  $Hg^0$  with the least amount of activated carbon (thereby increasing the utilization of the activated carbon) would reduce operating costs.

The carbon/ $Hg^0$  exposure time is equal to the time between cleaning the particulate collection devices. This time is controlled by the solids handling capacity (or pressure drop) of the device. By injecting activated carbon in pulses downstream of the particulate collection device (and upstream of a secondary collection device for carbon), the time that the carbon particle is exposed to  $Hg^0$  can be substantially increased. Hence, the amount of  $Hg^0$  in the carbon particle would be higher, thereby reducing the material cost. Moreover, this process would allow for regeneration of the spent activated carbon as the secondary particulate collection device traps only the carbon.

## HgCl<sub>2</sub> Capture

Hg speciation of MWC flue gas has shown Hg to exist in the oxidized form (Hg<sup>++</sup>), although the exact distribution of the different Hg<sup>++</sup> species is unclear. However, our equilibrium studies<sup>10</sup> have indicated that presence of minor quantities of HCl in the flue gas leads to a significant fraction as HgCl<sub>2</sub>.

Figure 4 shows the capture of  $HgCl_2$  by PC-100 and FGD at 100 and 140 °C. The concentration of  $HgCl_2$  in the gas stream varied from 0.4 to 0.7 ppb. The experimental conditions (i.e., face velocity, bed depth, sorbent amount) were the same as those for studying  $Hg^0$  capture by these sorbents.

Similar to  $Hg^0$  capture results (see Figure 3), PC-100 captures a higher percentage of incoming  $HgCl_2$  than FGD at each temperature. This behavior is in agreement with our earlier studies involving high concentration (30 ppb)  $HgCl_2^{10}$ . In the earlier study<sup>10</sup>, we had seen that both PC-100 and FGD captured a higher fraction of  $HgCl_2$  at 100 than at 140 °C. This is also in agreement with our current findings for PC-100 at the low concentrations. However, FGD seems to capture higher amounts of  $HgCl_2$  at 140 °C. The percentage of  $HgCl_2$  captured by PC-100 is around 55-65 percent at 100 °C and around 45 percent at 140 °C for the various exposure times tested (see Figure 4). In our earlier study<sup>10</sup>, the percentage of  $HgCl_2$  captured by PC-100 was 90-95 percent and 75-95 percent at 100 and 140 °C, respectively, for similar exposure periods. That is, smaller fractions of  $HgCl_2$  are captured by PC-100 when exposed to lower concentrations of  $HgCl_2$ . The same conclusion is drawn for FGD from a comparison with our earlier results<sup>10</sup>. Two factors that could possibly cause a non-linear sorption behavior (with respect to  $HgCl_2$  concentration) in FGD and PC-100 are intraparticle mass transport and the sorption isotherm.

Our calculations show that exposure of 100 mg of PC-100 to 0.5 ppb of  $HgCl_2$  for a duration of 24 h results in approximately 0.0135 mg  $HgCl_2/g$  of PC-100 (based on 70 percent capture of incoming  $HgCl_2$  at 100 °C). From our past study<sup>10</sup>, we found that 100 mg of PC-100 captures

0.17 mg of  $HgCl_2$ . That is, similar to the results with  $Hg^0$  capture, activated carbon would be highly under-utilized with respect to its potential for  $HgCl_2$  capture. In order to effectively utilize activated carbon's Hg capture potential, longer exposure times to Hg are desirable. This can be achieved as explained in the section on  $Hg^0$  capture by providing a secondary collection unit solely for activated carbon.

## HgO Capture

The two main species of Hg that exist in equilibrium in a flue gas are Hg<sup>0</sup> and HgCl<sub>2</sub>. A third, but not significant species (according to equilibrium predictions at 600-800 °C), is HgO. There has been no reported data in the literature on HgO capture by dry sorbent injection.

Figure 5 shows the capture of HgO (1 ppb in  $N_2$ ) by 100 mg of FGD at 100 and 140 °C. The data show that roughly 35-45 percent of the incoming HgO is captured by FGD. This value is approximately the same as that seen for capture of Hg<sup>0</sup> and HgCl<sub>2</sub> by FGD at the two temperatures. Unlike the capture of Hg<sup>0</sup> and HgCl<sub>2</sub> by FGD, however, the capture of HgO appears to be insensitive to temperature between 100 and 140 °C.

The temperature of the furnace (HgCl<sub>2</sub>/HgO generator) encasing the diffusion vial (see Figure 2) is the controlling factor in determining the concentration of HgCl<sub>2</sub> or HgO in the gas stream. Higher furnace temperatures were required to generate HgO than HgCl<sub>2</sub> for identical amounts of each species in the vapor phase. This is indicative of HgO having a lower volatility than HgCl<sub>2</sub>. However, the lower volatility of HgO did not result in higher capture (compared to the other two Hg species) by FGD. Our earlier studies<sup>9</sup> showed that certain active sites in carbons are responsible for Hg<sup>0</sup> capture. Also, the affinity between HgCl<sub>2</sub> and activated carbon is probably due to an acid/base interaction<sup>10</sup>. Here, HgCl<sub>2</sub> is acidic in nature and, depending on the manufacturing process, activated carbon can be basic in character. HgO, however, is reported to be an extremely weak base when dissolved in water<sup>24</sup>. The same percentage of capture of HgO as HgCl<sub>2</sub> despite HgO's lower volatility may be explained by a weaker interaction between HgO and FGD.

 $Ca(OH)_2$  has been shown to capture high fractions of incoming  $HgCl_2^{10}$ . The reason for the high capture is postulated to be an acid/base reaction. Figure 6 shows the capture of 10 ppb of incoming HgO by reagent grade  $Ca(OH)_2$  (the same material used in our earlier study). Roughly 5-20 percent of incoming HgO is captured. The fraction of  $HgCl_2$  captured by  $Ca(OH)_2$  on the other hand is much higher (45-90 percent)<sup>10</sup>. This is in agreement with the postulate of a weaker interaction of HgO with the sorbents.

A comparison of the percentage of incoming HgO captured by PC-100, FGD, and reagent grade  $Ca(OH)_2$  at 100 and 140 °C can be seen in Figure 6. Here, the concentration of HgO is 10 ppb in N<sub>2</sub>. Similar to the results seen for HgCl<sub>2</sub> capture, PC-100 exhibits the highest reactivity followed by FGD. However, unlike the HgCl<sub>2</sub> capture results, PC-100's and FGD's performance is not significantly affected by temperature. This is in agreement with the results shown in Figure 5 (1 ppb of HgO).

#### SUMMARY AND CONCLUDING REMARKS

Two types of activated carbons -- PC-100 and FGD -- were tested for capture of low concentration (around 1 ppb) of  $Hg^0$  and  $HgCl_2$ . The two sorbents' potential for capture of the two Hg species was tested at two temperatures -- 100 and 140 °C. Experiments were also conducted to determine capture of HgO (1 ppb) by FGD. Finally, a comparison of the capture of HgO (approximately 10 ppb) by FGD, PC-100, and Ca(OH)<sub>2</sub> was carried out.

In general, it was found that all sorbents [the two activated carbons and  $Ca(OH)_2$ ] capture higher amounts of each species of Hg at the lower temperature. The same behavior was observed in our earlier study<sup>9,10</sup> with higher concentrations of Hg<sup>0</sup> and HgCl<sub>2</sub>. This is indicative of a physisorptive mechanism.

Results from the study on higher  $Hg^0$  and  $HgCl_2$  concentration capture<sup>10</sup> by FGD and PC-100 showed that  $HgCl_2$  was captured with greater ease than  $Hg^0$ . This, however, was not the case in the current study. PC-100 was found to capture a higher fraction of the incoming  $Hg^0$  than  $HgCl_2$  at both temperatures. Also, FGD was found to capture similar fractions of  $Hg^0$  and  $HgCl_2$ .

A comparison with our earlier study<sup>10</sup> showed that the fractional capture of incoming HgCl<sub>2</sub> was lower in this study (at the lower concentration). The reason for lower HgCl<sub>2</sub> (1 ppb case; current study) capture by PC-100 and FGD is perhaps the non-linear behavior of HgCl<sub>2</sub> capture by the activated carbons. Assuming linear dependence of external mass transfer on HgCl<sub>2</sub> capture, the possible cause could be non-linear dependence of intraparticle mass transport or sorption kinetics on HgCl<sub>2</sub> concentration.

A higher capture of Hg (mg Hg<sup>0</sup> or HgCl<sub>2</sub> per g of activated carbon) was seen in our earlier studies compared to the current studies. The amount of Hg<sup>0</sup> or HgCl<sub>2</sub> after only 4 h of exposure to 30 ppb of Hg was greater by an order of magnitude compared to the amount of Hg in activated carbons after 24 h of exposure at the lower concentration. This implies that employing the same procedure (injection of activated carbon before a particulate collection device) would require a larger activated carbon:Hg ratio in a coal-fired unit compared to MWC operation. The sorbent and, therefore, operating costs are bound to be higher in a coal-fired utility for identical Hg percentage removal. Activated carbon injected in a coal-fired flue gas can capture more Hg if left exposed to the flue gas until the carbon becomes saturated with Hg. In current practice, the time of exposure may be limited by the particulate collection device's solids handling capacity (pressure drop). Longer exposure time for carbon may therefore be achieved by injecting the particles after the main particulate collection device, but before a secondary particulate collection device (primarily for activated carbon).

Studies on capture of solely HgO (1 ppb) were conducted for the first time in this study. Similar capture as Hg<sup>o</sup> and HgCl<sub>2</sub> was found for FGD at the two temperatures. Experiments were also conducted to study HgO capture (10 ppb) by PC-100, FGD, and Ca(OH)<sub>2</sub>. At the higher HgO concentration, it was found that the fraction of HgO captured by FGD and Ca(OH)<sub>2</sub> was lower than HgCl<sub>2</sub> captured<sup>10</sup>. The capture of HgCl<sub>2</sub> is postulated to be an acid/base reaction, with the three sorbents possessing basic properties. HgO is classified as a weak base in water and, hence,

the solid bases do not have the same capture mechanism for HgO as HgCl<sub>2</sub>.

## ACKNOWLEDGEMENTS

The authors would like to acknowledge Richard E. Valentine (EPA/APPCD) for equipment support and Lisa Adams (Acurex Environmental Corp.) for experimental assistance. This work has been supported in part by the Electric Power Research Institute (EPRI). The technical advice of Ramsay Chang (EPRI) is also appreciated.

## REFERENCES

- 1. Mercury Study Report to Congress, Book 1 of 2, External Review Draft, EPA/600/P-94/002Aa (NTIS PB95-167334), Environmental Criteria and Assessment Office, Cincinnati, OH, January 1995.
- 2. Inside EPA's Clean Air Report, vol. VI, No. 3, February 9, 1995.
- 3. T.G. Brna and J.D. Kilgroe, "The Impact of Particulate Emissions Control on the Control of Other MWC Air Emissions," J. Air & Waste Mgt. Assoc., 40(9), 1324 (1990).
- 4. N.P. Getz, I.B. Thompson, and C.K. Amos, Jr., "Demonstrated and Innovative Control Technologies for Lead, Cadmium and Mercury from Municipal Waste Combustors," presented at the 85th Annual Meeting and Exhibition, Air & Waste Management Association, Kansas City, MS, June 21-26, 1992.
- 5. T.L. Guest, "Mercury Control in Canada," presented at the 86th Annual Meeting and Exhibition, Air & Waste Management Association, Denver, CO, June 13-18, 1993.
- D.M. White, W.E. Kelly, M.J. Stucky, J.L. Swift, and M.A. Palazzolo, "Emission Test Report: Field Test of Carbon Injection for Mercury Control, Camden County Municipal Waste Combustor," EPA-600/R-93-181 (NTIS PB94-101540), September 1993.
- B.K. Gullett and W. Jozewicz, "Bench-scale Sorption and Desorption of Mercury with Activated Carbon," presented at 1993 International Conference on Municipal Waste Combustion, Williamsburg, VA, March 30- April 2, 1993.
- 8. W. Jozewicz, S.V. Krishnan, and B.K. Gullett, "Bench-scale Investigation of Mechanisms of Elemental Mercury Capture by Activated Carbon," presented at the Second International Conference on Managing Hazardous Air Pollutants, Washington, D.C., July 13-15, 1993.

- 9. S.V. Krishnan, B.K. Gullett, and W. Jozewicz, "Sorption of Elemental Mercury by Activated Carbons," <u>Environ. Sci. Technol.</u> 28, 1506-1512 (1994).
- S.V. Krishnan, B.K. Gullett, and W. Jozewicz, "Mercury Control by Injection of Activated Carbon and Calcium-Based Sorbents," presented at The International Conference on Solid Waste Management: Thermal Treatment & Waste to Energy Technologies, Washington, D.C., April 18-21, 1995.
- R. Chang, C.J. Bustard, G. Schott, T. Hunt, H. Noble, and J. Cooper, "Pilot Scale Evaluation of Carbon Compound Additives for the Removal of Trace Metals at Coal-Fired Utility Power Plants," presented at the Second International Conference on Managing Hazardous Air Pollutants, Washington, D.C., July 13-15, 1993.
- S.J. Miller, D.L. Laudal, R. Chang, and P.D. Bergman, "Laboratory-scale Investigation of Sorbents for Mercury Control," presented at the AWMA Annual Meeting, Paper No. 142, Cincinnati, OH, June 20-24, 1994.
- J.D. Wesnor, "ABB's Investigations into the Utility Air Toxics Problem," in Proceedings: 1993 SO<sub>2</sub> Control Symposium, Vol. 3, EPA-600/R-95-015c (NTIS PB95-179248), pp. 61-1 thru 61-19, February 1995.
- J.G. Noblett, Jr., F.B. Meserole, D.M. Seeger, and D.R. Owens, "Control of Air Toxics from Coal-fired Power Plants Using FGD Technology," in Proceedings: 1993 SO<sub>2</sub> Control Symposium, Vol. 3, EPA-600/R-95-015c (NTIS PB95-179248), pp. 60-1 thru 60-15, February 1995.
- 15. K. Felsvang, R. Gleiser, G. Juip, and K.K. Nielsen," Control of Air Toxics by Dry FGD Systems," presented at the Power-Generation Conference, Orlando, FL, November 17-19, 1992.
- 16. K. Felsvang, R. Gleiser, G. Juip, and K.K. Nielsen, "Air Toxics Control by Spray Dryer Absorption Systems," presented at the Second International Conference on Managing Hazardous Air Pollutants, Washington, D.C., July 13-15, 1993.
- H.S. Huang, C.D. Livengood, and S. Zaromb, "Emission of Airborne Toxics from Coal-fired Boilers: Mercury," ANL/ESD/TM-35, NTIS: Springfield, VA, September 1991.
- 18. R. Meij, "The Fate of Mercury in Coal-fired Power Plants and the Influence of Wet Flue-gas Desulphurization," J. Water, Air, and Soil Pollution, 56, 21 (1991).
- 19. T. Tomita et al., "Basic Studies on a Method for Fractional Determinations of Mercury Compounds in Air," Aichi-ken Kogai Chosa Senta Shoho, 15:19-26 (in Chemical Abstracts, 112:41589y), 1987.

- 20. R. Chang and C.J. Bustard, "Sorbent Injection for Flue Gas Mercury Removal," presented at the AWMA Annual Meeting, Cincinnati, OH, June 20-24, 1994.
- C.D. Livengood, H.S. Huang, M.H. Mendelsohn, and J.M. Wu, "Mercury Capture in Bench-Scale Absorbers," presented at the Tenth Annual Coal Preparation, Utilization, and Environmental Control Contractors Conference, Pittsburgh, PA, July 18-21, 1994.
- 22. J.R. Morency, "Control of Mercury in Fossil Fuel-Fired Power Generation," presented at the Tenth Annual Coal Preparation, Utilization, and Environmental Control Contractors Conference, Pittsburgh, PA, July 18-21, 1994.
- K.L. Nebel, D.M. White, C.R. Parrish, T.G. Zirkle, M.A. Palazzolo, and M.W. Hartman, "Emission Test Report: OMSS Field Test on Carbon Injection for Mercury Control," EPA-600/R-92/192 (NTIS PB93-105518), September 1992.
- 24. F. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, Interscience Publishers, New York, NY, p 483, 1962.

| Control Device     | Temperature °C | % Hg (Total) Captured   | Reference No. /Cited By   |
|--------------------|----------------|-------------------------|---------------------------|
| Fabric Filter (FF) | 96             | 50                      | 11, Chang et al., 1993    |
|                    | 99             | 33                      | "                         |
| "                  | 107            | 27                      | "                         |
| "                  | 121            | 20-80                   | 12, Miller et al., 1994   |
| **                 | 135            | 10-60                   | "                         |
| "                  | 204            | 8-30                    | "                         |
| Electrostatic      |                |                         |                           |
| Precipitator (ESP) | NA             | 26-40                   | 13, Wesnor, 1995          |
| Wet Scrubber (WS)  | NA             | 94-98                   | 14, Noblett et al., 1995  |
| 11                 | NA             | 30-95                   | 19, Tomita et al., 1987   |
| "                  | NA             | 10-90                   | PISCES database           |
| "                  | NA             | 36                      | 13, Wesnor, 1995          |
| Hot ESP            | NA             | 0                       | 13, Wesnor, 1995          |
| ESP and WS         | NA             | 10-70 (avg 50)          | 18, Meij, 1991            |
| "                  | NA             | 60 in Germany           | "                         |
| "                  | NA             | 75 in Sweden            | "                         |
| Spray Dryer (SD)   | NA             | 88                      | 17, Huang et al., 1991    |
| and ESP            | NA             | 57-79                   | 15, Felsvang et al., 1992 |
| SD and FF          | NA             | 5-25 (low Cl<br>coal)   | 16, Felsvang et al., 1993 |
| 0                  | NA             | 45-96 (high Cl<br>coal) | n                         |

TABLE 1. MERCURY CONTROL BY EXISTING DEVICES FOR PARTICULATE AND SULFUR DIOXIDE CONTROL

# TABLE 2. MERCURY CAPTURE AT FOUR OF THE EIGHT POWER PLANTS COMMISSIONED TO BE CHARACTERIZED BY DOE/PETC

| Power Plant                                                    | Power (MW) | Control Device | % Hg (Total) Captured           |
|----------------------------------------------------------------|------------|----------------|---------------------------------|
| Yates Unit No. 1<br>(Georgia Power Co.)                        | 100        | ESP and WS     | 50                              |
| Clay Boswell Energy Center<br>Unit No. 2 (Minnesota Power Co.) | 61         | FF             | 70                              |
| Baldwin Power Stations Unit No.<br>2 (Illinois Power Co.)      | 565-575    | ESP            | 25                              |
| Springville Generation System<br>(Tuscon Electric Power Co.)   | 360        | 3 SD and 2 FF  | 15 across FF<br>25 across whole |



Figure 1. Schematic diagram of bench-scale apparatus used for Hg<sup>0</sup> sorption studies (v: valve).



Figure 2. Schematic diagram of bench-scale apparatus to study HgO or HgCl<sub>2</sub> sorption (v: valve).



Figure 3. Capture of low concentration  $H_0^0$  (2 ppb) by PC-100 and FGD at 100 and 140° C.



Figure 4. Capture of low concentration  $\text{HgCl}_2$  (0.4-0.7 ppb) by PC-100 and FGD at 100 and 140°C.



Figure 5. Capture of low concentration HgO (1 ppb) by FGD at 100 and  $140^{\circ}$  C.



Figure 6. Capture of HgO (10 ppb) by PC-100, FGD, and Ca(OH) at 100 and 140 °C.

| NRMRL-RTP-P-029 (Please read Instructions on th                                                                                                                                                                                                                                 | EPORT DATA<br>ne reverse before comple                                | a13                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1. REPORT NO.<br>EPA/600/A-96/053                                                                                                                                                                                                                                               | 3.                                                                    |                                                                                   |
| A. TITLE AND SUBTITLE<br>Control of Mercury Emissions from Coal (                                                                                                                                                                                                               | 5. REPORT DATE                                                        |                                                                                   |
|                                                                                                                                                                                                                                                                                 | 6. PERFORMING                                                         | ORGANIZATION CODE                                                                 |
| 7. AUTHOR(S)<br>B.K.Gullett (EPA) and Wojciech Jozewicz                                                                                                                                                                                                                         | 8, PERFORMING                                                         | ORGANIZATION REPORT NO.                                                           |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Acurex Environmental Corporation                                                                                                                                                                                                 | 10. PROGRAM E                                                         | LEMENT NO.                                                                        |
| P.O. Box 13109                                                                                                                                                                                                                                                                  | 11. CONTRACT/                                                         | GRANT NO.                                                                         |
| Research Triangle Park, North Carolina                                                                                                                                                                                                                                          | 27709 68-D5-00                                                        | 05                                                                                |
| 12. SPONSORING AGENCY NAME AND ADDRESS                                                                                                                                                                                                                                          | 13. TYPE OF REI                                                       | PORT AND PERIOD COVERED                                                           |
| EPA, Office of Research and Development                                                                                                                                                                                                                                         | 14. SPONSORING                                                        | AGENCY CODE                                                                       |
| Air Pollution Prevention and Control Divis                                                                                                                                                                                                                                      | sion                                                                  | 40                                                                                |
| Research Triangle Park, NC 2111                                                                                                                                                                                                                                                 | EPA/600                                                               | /13                                                                               |
| <b>15. SUPPLEMENTARY NOTES</b> AEERL project officer :<br>1534. Presented at EPRI/DOE International<br>Particulate Air Pollutants, Toronto, Cana                                                                                                                                | is Brian K. Gullett, Ma<br>al Conference on Managi<br>da, 8/15-18/95. | il Drop <b>4, 919/541-</b><br>ing Hazardous and                                   |
| coar based power units. To optimize the fit<br>capture of elemental Hg, mercuric chlorid<br>vated carbon sorbents at temperatures (100<br>roximately 1 ppb Hg) representative of app<br>also reports a comparison of these results<br>under Municipal waste combustion conditio | CUMENT ANALYSIS                                                       | by different acti-<br>centrations (app-<br>stors. The paper<br>ions of Hg control |
| 17. KEY WORDS AND DO                                                                                                                                                                                                                                                            | DOUMENT ANALYSIS                                                      | IS C COSATI Field/Groun                                                           |
| Description                                                                                                                                                                                                                                                                     | Dollution Control                                                     | 190                                                                               |
| Activated Carbon                                                                                                                                                                                                                                                                | Stationary Sources                                                    |                                                                                   |
| Coal                                                                                                                                                                                                                                                                            | stationary bources                                                    | 210                                                                               |
| Combustion                                                                                                                                                                                                                                                                      |                                                                       | 21B                                                                               |
| Mercury                                                                                                                                                                                                                                                                         |                                                                       |                                                                                   |
| Emission                                                                                                                                                                                                                                                                        |                                                                       | 07B                                                                               |
|                                                                                                                                                                                                                                                                                 | 1                                                                     | 07B<br>14G                                                                        |
| 18. DISTRIBUTION STATEMENT                                                                                                                                                                                                                                                      | 19. SECURITY CLASS (This Report)                                      | 07B<br>14G<br>21. NO. OF PAGES                                                    |