Draft Technical Support Document for CAP 2000 Proposal

I. Introduction

The purpose of this report is to supply supplemental information to support EPA's proposed rulemaking regarding compliance programs for light-duty vehicles and trucks (CAP 2000) rulemaking. Some of the data referenced in the this report are claimed by the manufacturer to be confidential. In those cases, non-confidential summaries of the data are included to assist commenters in understanding the basis for the Agency's actions in the rulemaking.

The bulk of the report is a review of the revised durability program (RDP) which is a current regulatory option to obtain certification. To date, thirteen manufacturers have Agency approval to use the RDP provisions for certification. To a large extent the proposed CAP 2000 durability procedures are built upon the RDP procedures.

Other topics included in this staff report are:

(1) A discussion of the correlation procedures used by the Agency to assure that accurate tests are run by manufacturers,

(2) A discussion of the information collected from manufacturers which is not directly used in reaching the decision to grant a Certificate of Conformity,

(3) A discussion of the effect of ambient weather patterns (warm versus cold climates) on in-use deterioration and recalls in support of the CAP 2000 requirement that some vehicles tested be recruited from cold weather locales, and

(4) A discussion of the rationale used in proposing a durability group concept for CAP 2000 rather than the current engine family definition.

This report has been placed in the docket number A-96-50 associated with the CAP 2000 rule.

II. Review of the Revised Durability Program (RDP)

A. Background

The Clean Air Act (CAA) prohibits manufacturers of new motor vehicles from selling or introducing new motor vehicles into commerce unless the vehicles are covered by a certificate of conformity. EPA is charged with the responsibility of issuing certificates of conformity based on testing which verifies compliance with the appropriate emission standards over the vehicles' useful life. This necessitates a prediction of the durability or rate of deterioration of the vehicle's useful life emission levels before actual production begins.

Light Duty Vehicle Durability.

The process of demonstrating emission durability for the purpose of certification begins well in advance of production. For light-duty vehicles, EPA's current standard durability process requires manufacturers to accumulate mileage on a preproduction vehicle over a prescribed driving cycle for 100,000 miles to simulate deterioration over the useful life. These vehicles are termed durability data vehicles (DDVs); the mileage accumulation cycle, specified in 40 CFR Part 86, is commonly referred to as the AMA cycle.

In this process, emission data are generated at periodic intervals during AMA mileage accumulation and a linear regression of the data is performed to calculate a multiplicative deterioration factor (DF)¹ for each exhaust constituent. In the current certification program, low mileage vehicles (referred to as "emission data vehicles," or EDVs) are tested with calibrations that the manufacturer intends to produce. The emissions from these tests are multiplied by the DFs to calculate the projected emissions levels (referred to as the "certification

¹A multiplicative DF is calculated by performing a least-squares regression of the emission versus mileage data for each exhaust emission constituent and dividing the 100,000-mile emission level by the 4,000-mile emission level. The DF is than used with other test vehicles to determine compliance with the standards. The product of the emissions multiplied by the DF (referred to as the certification level) must be less than or equal to the emission standard to receive a certificate of conformity.

levels") at 100,000 miles. The certification levels must be at or below the applicable emission standards in order to obtain a certificate of conformity.

Light Duty Truck Durability

Beginning with the 1984 model year, EPA durability regulations² for light-duty trucks (LDTs) have permitted manufacturers to use their own methods, based on good engineering judgment and targeted to represent in-use performance, to determine DFs subject to review by EPA. Although EPA had concerns initially regarding the accuracy of the DFs generated by this method,³ the manufacturers improved their processes after discussions between EPA and industry. As a result of these discussions, manufacturers now generally base their light truck dfs on actual AMA or RDP durability test data and, in some cases, in-use data collected by the manufacturers. Also several manufacturers combine data from several truck engine families into groups (not unlike the durability groups proposed in CAP 2000) to expand the data pool and minimize the effect of outlier data. The additional data collected under some of these truck deterioration programs coupled with the incorporation of in-use data represents an improvement over single AMA durability tests run under the standard AMA durability process. Targeting a process to represent in-use emission performance rather than running a standard AMA cycle also represents an improvement over AMA based durability. The Agency now believes that the lightduty truck DFs generated by manufacturers using their own methods are on the whole at least as representative as those based on AMA mileage accumulation and in some cases represent an improvement over AMA due to the addition of in-use data.

EPA has been concerned about the ability of any fixed cycle - including the AMA cycle - to accurately predict in-use deterioration for all vehicles. In fact, EPA has particular concerns that the AMA does not represent the driving patterns of today and does not appropriately age current design vehicles. As a result, EPA believes that the AMA may have become outdated.

 $^{^2}$ Reference CFR 86.092-24 (c) (2) prior to the 1994 model year. Reference 40 CFR 86.094-13 (e).

³See 57 FR 18545 NPRM (April 30, 1992) on RDP 1.

The AMA cycle, which was developed before vehicles were equipped with catalytic converters, contains a substantial portion of low speed driving to address concerns about engine deposits (which were a major source of deterioration in precatalyst vehicles). However, since the advent of catalytic converters, better fuel control, and the use of unleaded fuel, causes of deterioration have shifted from low speed driving to driving modes which include higher speed/load regimes that cause elevated catalyst temperatures. The AMA driving cycle does not adequately focus on these higher catalyst temperature driving modes and contains numerous driving modes which do not significantly contribute to deterioration but do make the process longer with little added benefit.

Instead of requiring an alternative mileage accumulation procedure, EPA began a voluntary program in the 1994 model year for light-duty vehicles which allows manufacturers to develop and use their own procedures to evaluate durability and deterioration (subject to prior Agency approval), provided that the manufacturer conduct or fund an in-use "reality check" test program to evaluate the effectiveness of its predictions. The initial program, referred to as revised durability program I (RDP I), was an interim program scheduled to expire after the 1995 model year and was intended to serve as a bridge to an anticipated complete revision to the durability process (RDP II). The provisions of RDP I have since been extended in a series of regulatory actions.⁴

Although EPA investigated developing a standard mileage accumulation procedure⁵ to replace the AMA as part of the RDP II development, EPA was concerned about the appropriateness of any single durability program to effectively predict in-use emission deterioration for the entire range of automobile products. Different catalysts formulations may have different sensitivity to temperature extremes. Fuel control differences and different catalyst placements could impact the amount of high catalyst

 $^{^{4}59}$ FR 36368 (July 18, 1994), 62 FR 11082 (March 11, 1997), 62 FR 11138 (March 11, 1997) and 62 FR 44872 (August 22, 1997).

⁵Presented at an April 26, 1994 EPA workshop. See Appendix II for details.

temperatures that would occur in use. Vehicle engine, exhaust system and drive train differences could cause the vehicle to achieve different catalyst temperature exposures during identical vehicle operation.

The Agency has now decided to address the revisions it was considering in RDP II as part of the comprehensive redesigned certification process, the CAP 2000 Program, for which this staff paper provides supplementary information.

B. Types of Revised Durability Programs

Two major types of durability processes have emerged from the RDP I experience: whole vehicle mileage accumulation cycles and bench aging procedures.

The whole vehicle aging concept involves driving vehicles on a track or dynamometer on an aggressive driving cycle of the manufacturer's design. Typically, the speed, acceleration rates, and/or vehicle load are significantly increased compared to the AMA cycle or normal in-use driving patterns. The vehicle can be driven either for full useful-life mileage, or, for a higher stress cycle, the vehicle can be driven for a reduced number of miles (e.g., 1 mile on the high speed cycle equals 2 miles in use). In either case, the vehicle is tested periodically and a DF is calculated. By choosing the profile of the cycle carefully, manufacturers have been able to meet or exceed the inuse deterioration goals of the program (based on the limited inuse verification data receive to date) while taking significantly less time to complete the durability process. Such a program could take a quarter to half the time to complete as the AMA cycle with the attendant cost savings.

The second type of RDP is bench aging. The bench aging procedures involve the removal of critical emission components (such as the catalyst and oxygen sensor) and the accelerated aging of those components on an engine dynamometer bench.⁶

⁶An engine dynamometer bench consists of an engine dynamometer, a "slave" engine, and required controllers and sensors to achieve the desired operation of the engine on the dynamometer.

During the aging process important engine/catalyst parameters are controlled to assure proper aging. Typically, elevated catalyst temperatures are maintained while fuel is controlled to include lean and rich spikes and stoichiometric control. Typical bench aging periods are 100-200 hours. Even with the setup time of the engine test bench, the cost savings of such bench aging procedures are very significant.

These bench aging procedures are based on the implicit assumptions that (1) most emission deterioration on light-duty vehicles and trucks is due to catalyst and oxygen sensor deterioration, (2) that catalyst deterioration is largely due to high thermal exposure during typical fuel control (including lean and rich spikes), (3) other sources of deterioration can be covered by additional aging of the catalyst.⁷ Through a series of tests and measurements, manufacturers determine the amount of time needed to bench-age a catalyst the equivalent of 100,000 miles. Other sources of deterioration (including any engine-out deterioration) can be accounted for by aging the catalyst for an additional amount of time. The overall effectiveness of the RDP program is supported by the data presented by manufacturer during the approval process.

C. EPA's RDP Review Process

EPA has been approving manufacturer alternative durability programs under RDP-I since 1992 (starting in the 1994 model year for Federal certification) and has provided guidance to assist manufacturers in the approval process⁸. To receive approval under RDP I, manufacturers are required to show that their durability processes are designed to cover a significant majority

⁷To obtain approval to use this process, manufacturers supply evidence that these assumptions are valid for their vehicles. Additional sources of deterioration (such as engine-out deterioration and catalyst poisoning) may be accounted for by over-aging the catalyst to account for these sources.

⁸Refer to the Agency's July 29, 1994 guidance letter "Alternative Durability Guidance for MY 94 through MY 98", reference number: CD-94-13.

of deterioration rates experienced by vehicles in actual use.⁹ The requirement that the procedure cover a significant majority of the deterioration experienced by vehicles in use, rather than the entire population, is not intended to relax the goal of the program but is to allow for the uncertainty inherent in any sampling plan.

D. Summary of RDP Programs Approved by EPA

The Agency has approved 17 RDP programs for 13 different manufacturers and is actively reviewing five additional programs. The RDP regulations became effective in the 1994 model year for Federal applications and in the 1993 model year for California applications.

The Agency has influenced manufacturers to make improvements to their aging procedures and identified and corrected some manufacturer mistakes. Table 1 contains a summary of the RDP plans which were influenced by Agency review. In eleven of the thirteen approved RDP process the Agency comments on the RDP or the in-use reality check program resulted in improvements to the manufacturers program. Based on this statistic, the Agency believes that the review process by the Agency has been important.

The Agency guidance¹⁰ for acceptance of RDP programs requires (among other requirements) that the manufacturer demonstrate that the RDP plan cover a "significant majority" of the in-use deterioration of their vehicles. Table 1 contains a summary of the manufacturers estimate of the percent of the inuse data covered by their RDP. This percent coverage ranges from 75% to 99.9% percent. Most manufacturers (7 of 10) indicated that their durability programs cover ninety percent of more of the distribution of deterioration rates experienced by drivers in

⁹Manufacturers have typically shown that their durability programs cover ninety percent or higher of the distribution of deterioration rates experienced by vehicles in actual use. See Table 1 in this report for further details.

¹⁰ Refer to the Agency's July 29, 1994 guidance letter "Alternative Durability Guidance for MY 94 through MY 98".

actual use.

The Agency guidance also requires that the manufacturer supply a comparison of catalyst temperatures and times at those temperatures measured during their RDP cycle and during the AMA cycle using identical vehicles. Using this time-at-temperature data the Agency has compared the two cycles prior to approval. The results of these comparisons are contained in Table 1. In all cases, the Agency concluded that the net thermal exposure that leads to catalyst deterioration was higher on the manufacturers' RDP cycle that the AMA cycle. Based on these data, the Agency believes that the approved RDP processes are more severe for emission deterioration than the AMA cycle.

The current truck deterioration programs require the manufacturer to develop its own deterioration program which is designed to represent in-use deterioration. Durability procedures used for trucks are often similar to those approved under the RDP program for light duty vehicles. In some cases, in-use data is collected and used for the truck deterioration program. Because of these similarities to the RDP's, the Agency believes that the truck deterioration programs are also more severe than the AMA in most circumstances.

For bench aging RDP programs, EPA asked several manufacturers to collect data on the engine-out deterioration characteristics of their vehicles. Stable engine-out emissions support the concept of bench-aging catalysts and oxygen sensors off the vehicle. However, proof of stable engine-out emission is not absolutely necessary for RDP approval since the catalyst may be over-aged to include other sources of deterioration. The Agency's requirement to match a significant majority of in-use deterioration rates is the pertinent data that supports the validity of the manufacture's RDP. Consequently, the Agency did not request supporting data from all manufacturers. The manufacturers with data showing essentially no engine-out deterioration are summarized in Table 1. Engine-out data for GM and Chrysler (which provided more complete data) are contained in Appendix I.

Table 2 contains a summary of reality check data which have completed Agency review. Four manufacturers are represented on the table. More manufacturers have promised to collect reality

8

check data which is pending or have submitted preliminary data which is undergoing Agency review. The collected data show that the vast majority of the time (125 of 131 tests) the test vehicles comply with the certification standards (which in most cases are more severe that the applicable in-use standards with which the manufacturers must comply during recall testing inuse). In the cases where an individual vehicle failed the in-use standards, additional data was usually provided by the manufacturer to explain the cause of the failure. The details of data summarized in the Table I are contained in Appendix III.

Based on the data provided by the manufacturers showing that their RDP covers typically ninety percent of the distribution of deterioration rates experienced by drivers in actual use, the Agency believes that these RDP cycles would be a good predictor of deterioration in actual use. When coupled with the in-use reality check, any significant shortfalls in the predictive ability of a manufacturer's RDP could be identified. The Agency requires that manufacturers agree to remedy any significant shortfall uncovered by the in-use reality check data by making corrections to their RDP for future model years. Also the Agency can use the reality check data to direct its recall investigations which could lead to more recalls. The identification and repair of failing vehicles in-use (through the recall process) would lead to lower in-use emissions under the RDP program than under AMA durability protocols which lack the in-use data. Ultimately, this will lead to a lower level of emission non-compliance in use. Because the CAP 2000 proposal is based on the RDP durability provisions coupled with other improvements discussed in the preamble, the Agency expects that under CAP 2000 the level of emission non-compliance will also be reduced in use.

III. Correlation Testing Between EPA and Manufacturer Labs

EPA's test laboratory in Ann Arbor has been confirming manufacturers' certification and fuel economy testing for over 20 years. The preponderance of data shows that EPA and manufacturers correlate very well. Because EPA has total control over the quality of its own test facility, including dynamometers, calibration gases, analyzers, and all the other aspects which are needed to perform a test in accordance with CFR requirements, it is assured of its level of accuracy. When a manufacturer's vehicle is tested at the EPA lab, the results are compared to the manufacturer's own test data (known as "paired data). EPA has a vast amount of paired data, which has shown overwhelmingly that manufacturers are indeed capable of running accurate tests. When a correlation problem is identified, EPA may require the manufacturer to take corrective action until the offset is eliminated. Ongoing correlation programs are also conducted by manufacturer assocications (such as AAMA and JAMA). The data from these programs are used by EPA and manufacturers to quantify individual laboratory offsets. All certification test data, both manufacturer and EPA-run, is published annually per the CAA requirement, and may be inspected at the EPA-OMS web site, given in the Preamble to the proposal.

IV. Information Used for Granting Certificate of Conformity.

EPA's experience over the past 20 years in certifying vehicles has been that it does not normally need such information as technical descriptions of emission control components, part numbers, and calibration specifications to make certification decisions. The emphasis at the time of certification is compliance with the emission standards: did the manufacturer demonstrate that the vehicles it plans to produce are capable of meeting the emission standards? The above-mentioned items, while important for making future in-use compliance/enforcement determinations, are not usually needed during the certification process to determine compliance with the emission standards. In the rare instance where such information may be needed, EPA has the authority to request it prior to certification.

V. Warm Weather less Harsh Durability Conditions than Cold Weather.

EPA believes that vehicles operated in colder climates may be subject to harsher durability conditions based on our engineering judgement of the impact of various conditions such vehicles are exposed to that are not present, or present to a lesser degree, in warmer areas. These factors include such things as increased corrosion due to road de-icing chemicals, increased exhaust condensation, longer operation in cold enrichment mode, and longer idle time(vehicle warm-up). We do not consider these factors to be atypical or improper use; however, they could contribute to deterioration patterns not observed in warmer climates. There have been several EPA-influenced emission recalls which included only vehicles located in colder areas.

VI. Engine Family to Durability Group Rationale.

EPA's decision to change from the "engine family" concept to the "durability group" concept is based upon its 20-year experience certifying vehicles. Two factors went into the decision to do so: first, as stated in the Preamble, the engine family criteria in the current regulations were focussed primarily on engine-design parameters. EPA believed that since the promulgation of those regulations, a combination of emission control technology advancements and engine design improvements made the "engine family" designated somewhat outdated. The "durability group" accounts for both important engine design features and adds more emphasis on the emission control elements which are subject to deterioration over time. The second factor which played into the decision was one of burden. Performing durability testing for each engine family is one of the highest costs to manufacturers in the certification process. The proposed durability group criteria coincidentally result in fewer durability demonstrations for the manufacturer.

Table 1 Approved Revised Durability Plans

Mfr	Yr of Approval	Type of RPD	Mfr Est of % of In- Use Dist Covered by RDP	More Cat Temp Exposure than AMA	RDP Improved in response to BPA review	Mfr data shows almost no Engine-out Deterioration
BMW	1993	Track - accel mi	"More than 75%" [75% +10 to 30% safety factor]	yes	yes, miles run incr.by 60%	N/A (not a bench cycle)
Chry	1996	Bench	75%	yes	Yes, safety factor added	Yes
Ford	1995	Bench & Track	95-98%	yes	yes, aging incr 20%	Oral Presentation
GM	1992-3	Bench	95-98%	yes	yes, reality check	yes
Honda	1996	Bench & Track	99.9%	yes	yes, reality check	not required
Mazda	1994	Track	99.9% in-use driving patterns	yes	yes, reality check	N/A Track proc
Daewoo	1998	Track	95%	yes	yes	N/A Track proc

Mfr	Yr of Approval	Type of RPD	Mfr Est of % of In- Use Dist Covered by RDP	More Cat Temp Exposure than AMA	RDP Improved in response to EPA review	Mfr data shows almost no Engine-out Deterioration
Nissan	1993 & 1996	Track & Bench	up to 94%	yes	yes	yes
Porsche	1997 uses VW RDP	Track	not avail	yes	No, uses VW	N/A Track proc
Saab	1998 uses GM RDP	Bench	GM 95-98%	yes	No, uses GM	Yes with GM
Suzuki	1996	Bench + Vehicle aging	Driving patterns exceed all 113 in- use vehicles surveyed	yes	Yes	Not provided, vehicle is aged in addition to bench aging
Toyota	1993 & 1995	Track & Bench	above 90%	уез	Yes, analytical errors corrected and bench aging time increased	No
VW	1996	Track, accel mi	In-Use data provided, but percent coverage not calculated	yes	yes	No data provided

		Test Program	No of vehicles	
Manufacturer	Program	Year of Service	passing/run	
GM	`93 - 1	3	5/5	
		4	5/5	
	`94 - 1	2	5/5	
		3	5/5	
		4	3/5	
	2	2	6/7	
		3	7/7	
		4	6/7	
	3	2	5/5	
		3	5/5	
		4	5/5	
	`95 - 1	2	5/5	
	······································	3	3/3	
	2	2	3/3	
		3	3/3	
	3	2	0/1, passed retest	
		3	1/1	
	`96 - 1	2	5/5	
Ford	`96 - 1	2	7/7	
	2	2	5/5	
Honda	·97 - 1	2	5/5	
	2	2	5/5	
Toyota	`95-1	2	7/7	
		3	5/5	
	<u>`95-2</u>	2	5/5	
		3	5/5	
	<u>،</u> 96-1	2	2/2	
l t	<u>`96-2</u>	2	2/2	

Table 2Summary of In-Use Reality Check Testing

Table 3

Revised Durability Plans Pending Approval

Mfr	Yr of Approval	Type of RPD	Mfr Est of % of In-Use Dist Covered by RDP	More catalyst temp exposure than AMA?	RDP Improved in response to EPA review	Mfr data shows almost no Engine-out Deterioration
Mercedes	Under develop	Track		yes	Yes - added cold starts	N/A
Hyundai	Under develop	Vehicle/ Bench combo	Target 90ዩ	TBD	EPA part of development	
KIA	Early develop	Bench & Track	Target 90%	TBD	EPA part of development	TBD
Subaru	Under develop	Bench				
Volvo	Under considera- tion	Bench/ Poison combo				yes

Appendix I

•

3

Mr. D. J. Good, Team Coordinator Certification Branch Certification Division Mobile Source Air Pollution Control U.S. Environmental Protection Agency 2565 Plymouth Rd. Ann Arbor, MI 48105 RECEIVED

AUG 1 4 1998

VPCD

ML-GM495

GM does not consider this letter & eng out date to be GM Confidential (as the pages were originally marked). J. Kourt to D. Good (\$141/98 phone convent

Dear Mr. Good:

Subject: Notification of Change to the GM Alternate Durability Process (ADP)

One of the original assumptions of the GM ADP is that engine-out emissions are stable over the useful life of the vehicle. In the original ADP agreement reached between GM and the CARB, GM agreed to conduct engine-out emission testing on the ADP durability data vehicle (DDV) and the reality check vehicles. The subsequent GM/EPA ADP agreement was not specific regarding engine-out emission testing; however, GM elected to follow the CARB-approved protocol for the EPA ADP.

Recently, GM requested and received the CARB approval to eliminate engine-out emission testing of ADP DDV's and reality check vehicles (reference attached GM letters ML-GM489 and ML-GM494 and CARB letter C-96-072).

Because engine-out emission testing of vehicles was not addressed in the GM/EPA ADP agreement and because the CARB has approved elimination of this requirement, GM is officially notifying the EPA of this change to the ADP. Effective with this letter, GM will eliminate engine-out emission testing on all subsequent ADP DDV's and reality check vehicles for both CARB and EPA certification programs.

GM is currently negotiating with the CARB to eliminate the requirement to remove and test oxygen sensors from fourth year of service reality check vehicles. Upon approval of this CARB ADP process change, GM will notify the EPA. However, it should be noted that it was not GM's intention to perform this oxygen sensor procedure on EPA-only ADP's.

Please call if you have any questions regarding this matter.

Sincerely. J. M. Kourt

Project Manager Powertrain Control Center

JMK/ks Attachments

Powertrain Control Center • M/C 483-331-500 • GM Proving Ground • Milford, Michigan 48380-3726

GOT

ATTACHMENTS TO GM LETTER ML-GM495:

GM LETTER ML-GM489 CARB LETTER C-96-072

GM LETTER ML-GM494

.1

10070.

September 30, 1996

ML-GM489

Mr. D. Nguyen Mobile Source Division Air Resources Board 9480 Telstar Avenue Suite #4 El Monte, CA 91731

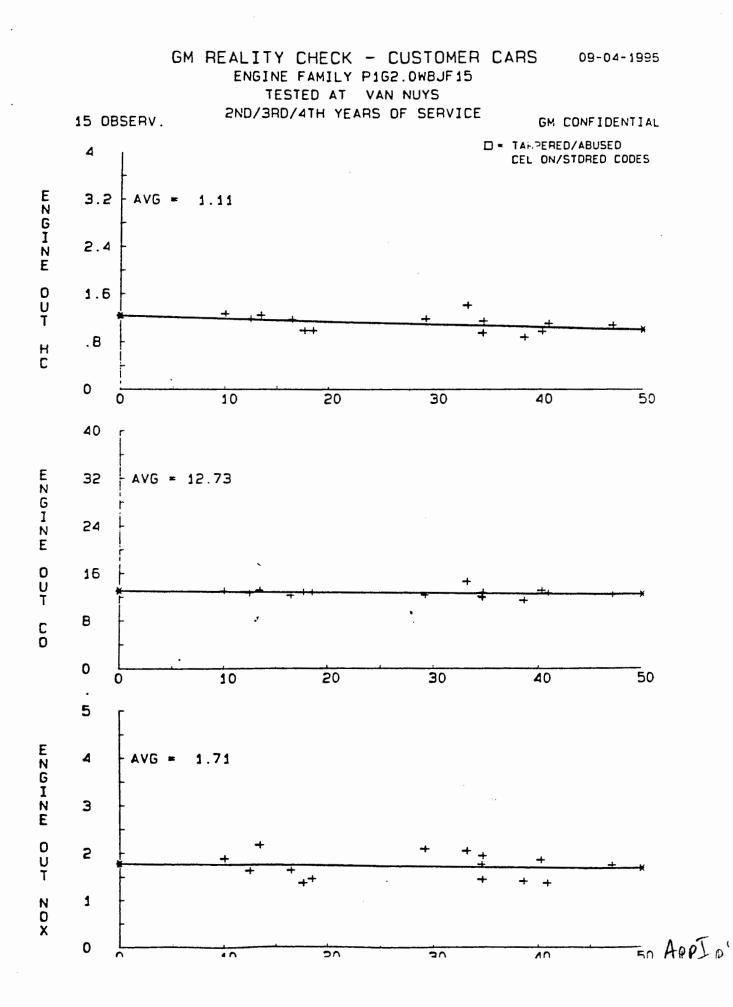
Dear Mr. Nguyen:

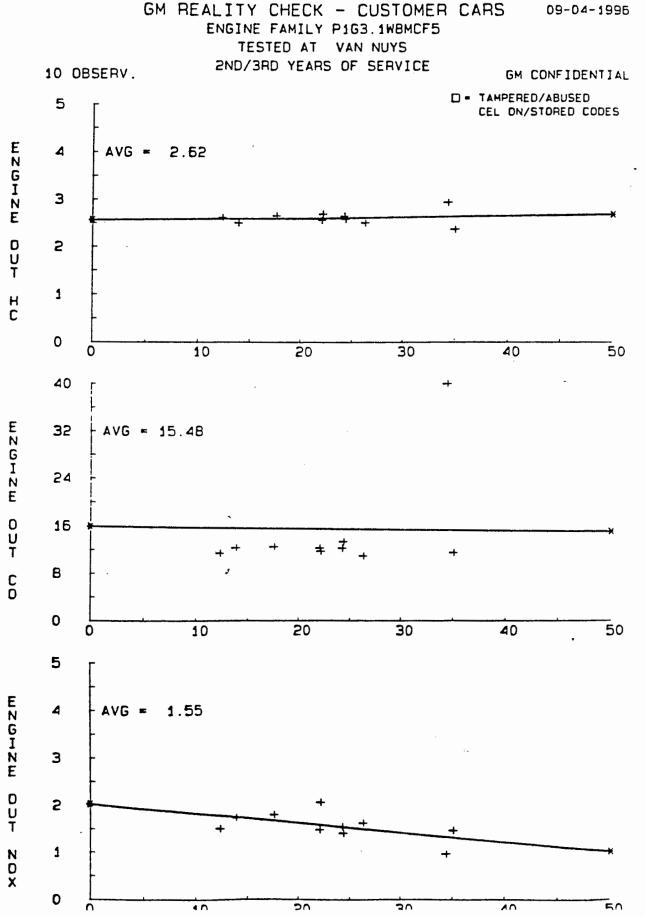
Subject: Reality Check Engine-Out Emission Testing

One of the original assumptions of the ADP program is engine-out emissions are stable over the useful life of the vehicle. General Motors agreed to conduct engine-out testing on ADP program customer vehicles to prove this assumption.

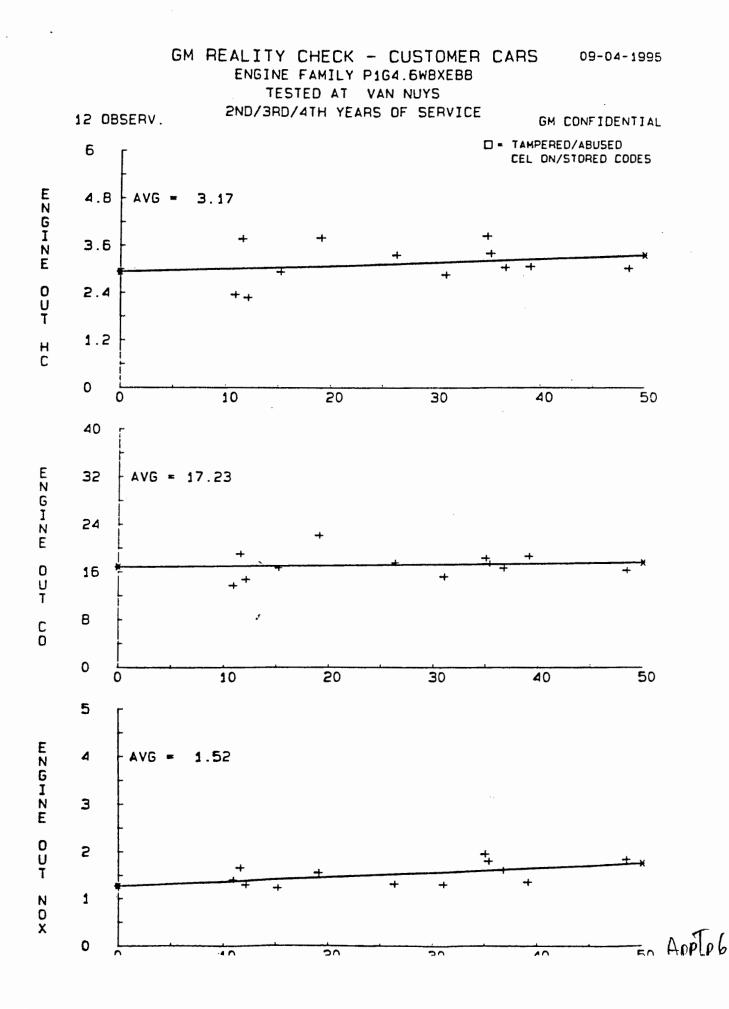
As part of our ADP reality check process agreement, GM has been conducting engine-out testing on our 1992-94 California certified engine families. Based on 1992-94 model year reality check data (attached), GM believes it is now appropriate to discontinue this engine-out testing requirement.

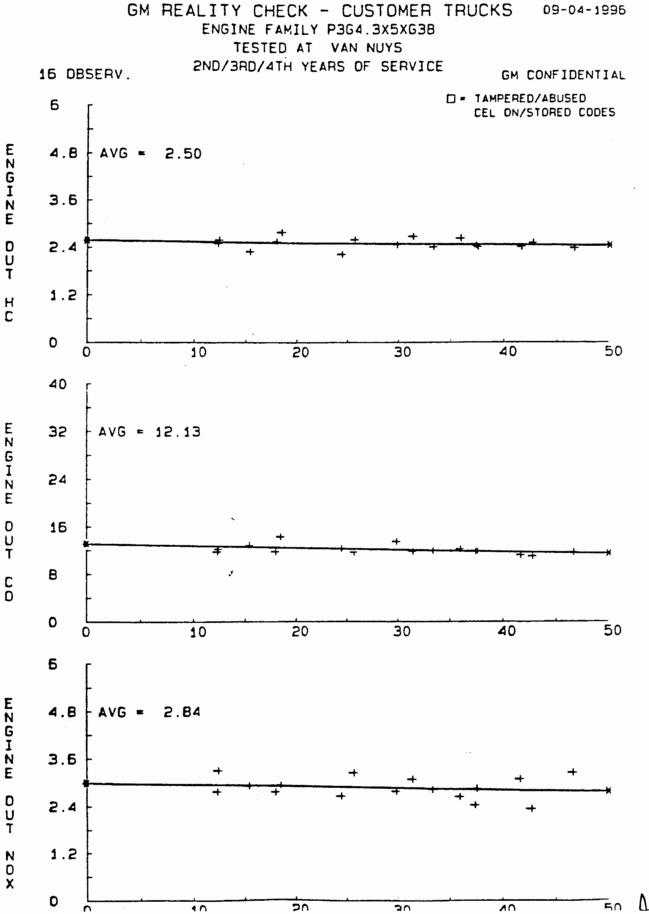
The elimination of engine-out testing would save us test time and allow for quicker turnaround of the customer vehicle.

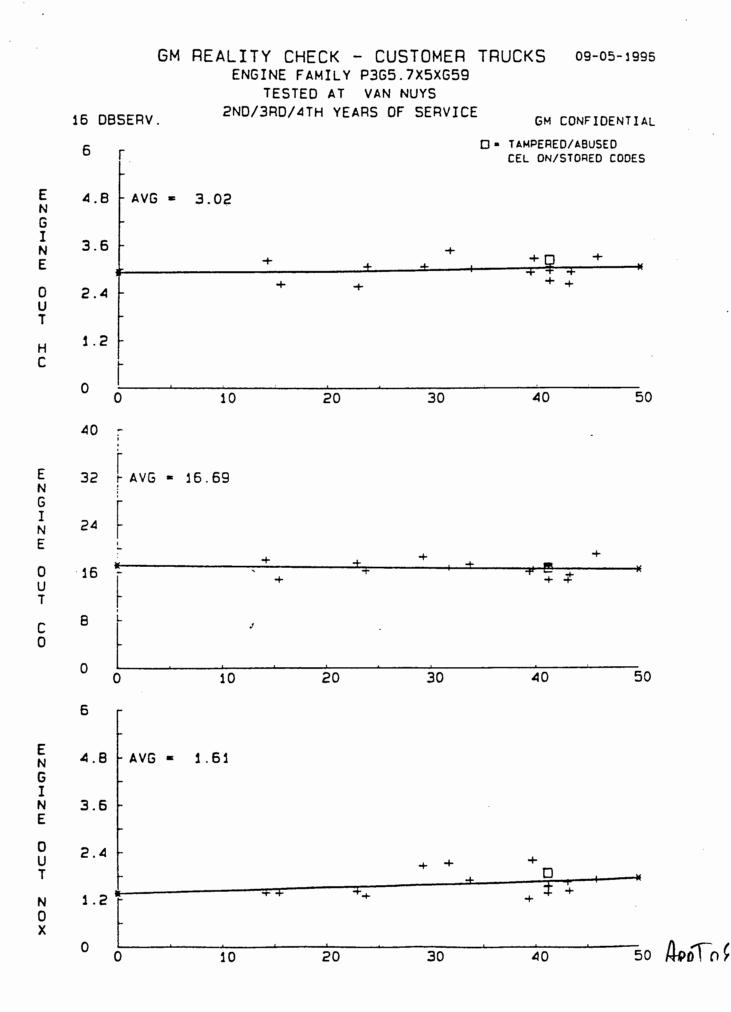

We request CARB to please respond with your approval for allowing us to discontinue the engine-out testing of reality check vehicles.

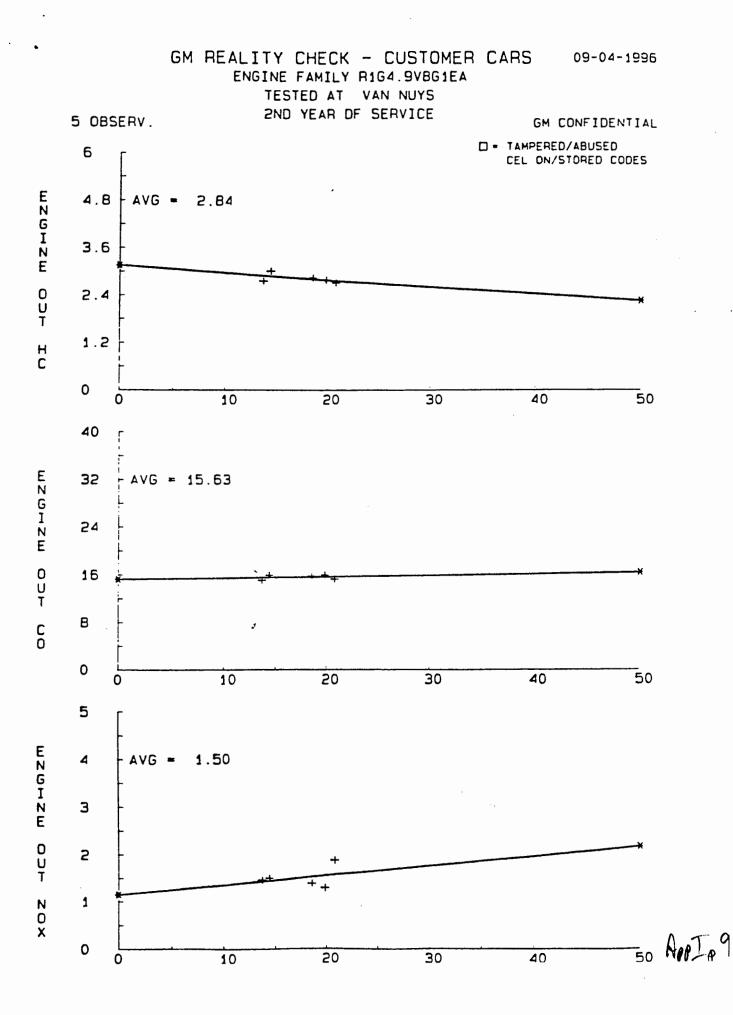

If you have any questions, please feel free to call me at your convenience on 810/685-6976.

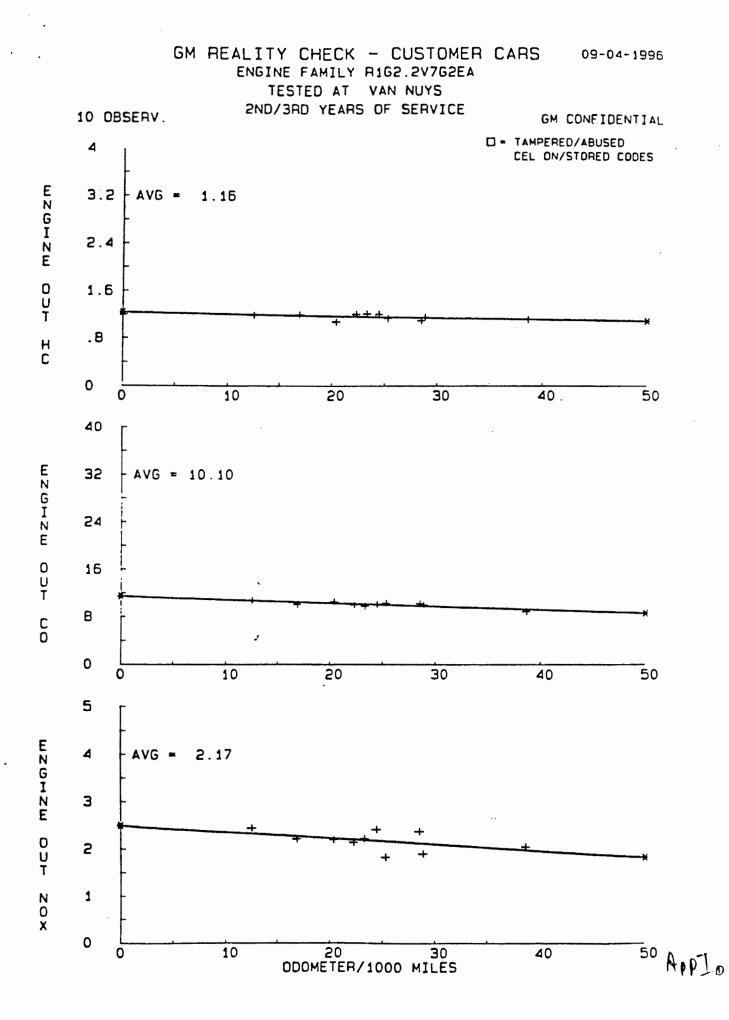
Sincerely,

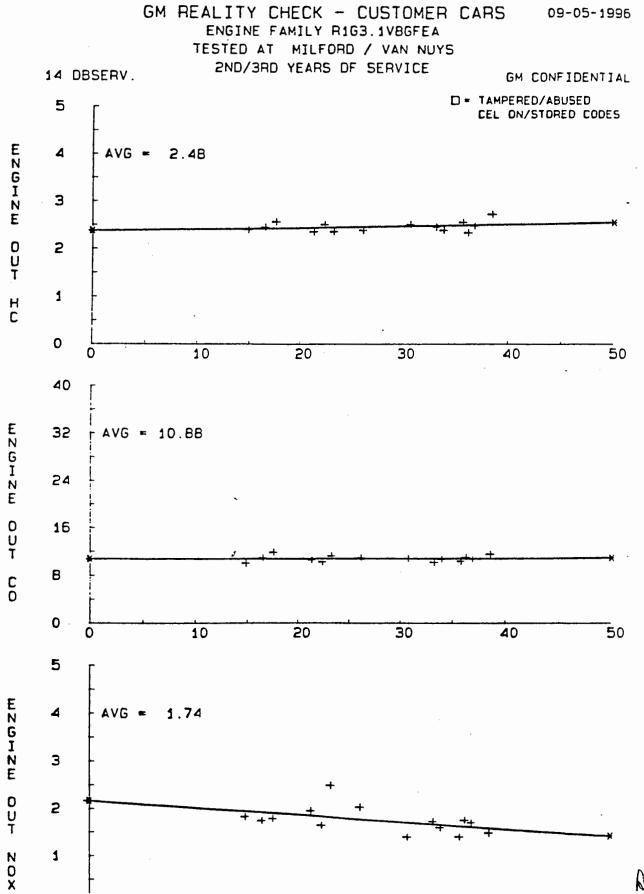

R. C. Harvey Project Manager Powertrain Control Center

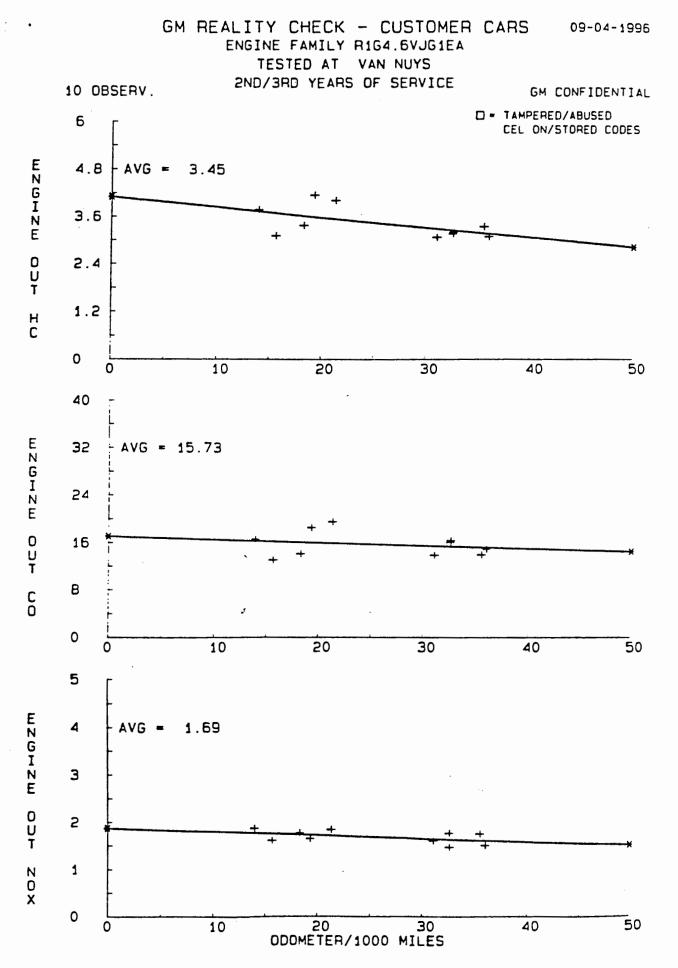

RCH/SAF/ks Attachments




ADT




50 Los To7



.

RODTAIL

Ano

Reference No. C-96-072

James M. Strock Secretary for Environmental Protection

California Environmental Protection Agency

OCT 1 7 1996

H A A G E N - S M I T LABORATORY P.O. Box 8001 9528 Telstar Avenue El Monte, CA 91734-8001 Mr. R. C. Harvey Project Manager Powertrain Control Center GM Proving Ground General Motors Corporation Milford, MI 48380-3726

Subject: Reality Check Engine-Out Emission Testing

Dear Mr. Harvey:

This is in response to your letter ML-GM489 to the Air Resources Board (ARB) requesting approval of General Motors' (GM's) plan to discontinue engine-out emission testing for the in-use reality check of GM's Alternative Durability Process.

Based on our review of your submitted engine-out emission data from 1992-94 model-year California-certified engine families, the ARB considers that overall the engine-out emissions are stable over the useful life of the vehicles. Thus, GM's request is hereby approved.

If you have any questions, please contact Mr. Duc Nguyen, Manager, or Mr. Shewen Chen, Certification Staff, Certification Section at (818) 575-6661.

Sincerely,

R. B Summerfield, Chief Mobile Source Operations Division

Steve Togle	From S. Cher
° GM	CO. CARB
ept.	Phone #
** 997-5551	Fax #

AnToi

r. 01/04

October 22, 1996

ML-GM494

Mr. R. B. Summerfield, Chief Mobile Source Operations Division Haagen-Smit Leboratory P.O. Box 8001 9528 Telstar Avenue El Monte, CA 91734-8001

Post-R" Fax Note 7671	10-22.96 as + 4
To Shewen Chen	From Jim Kourt)
Callopt CARB	Pre GM
Phone #	Phone 8
Fixe	Fax 6

Dear Mr. Summerfield:

Subject: Alternate Durability Process (ADP) Vehicle Engine-Out Emission Testing

One of the original assumptions of the GM ADP is that engine-out emissions are stable over the useful life of the vehicle. In the original ADP agreement reached between GM and CARB, GM agreed to conduct engine-out emission testing on the ADP durability data vehicle (DDV).

Recently, GM requested and received CARB approval to eliminate engine-out emission testing of reality check vehicles (reference stached GM latter ML-GM489 and CARB latter C-90-072).

On October 21, 1996, in a telephone conversation with Mr. Shewen Chen of your staff, I requested permission to eliminate engine-out emission testing on any current and future GM ADP DDV's. There should be no reason to continue this requirement since the reality check engine-out testing has been eliminated. Mr. Chen gave verbal approval to discontinue the engine-out emission testing on a 1998 model year 5.7L MDV ADP DDV that is currently at the low mileage test point. Mr. Chen further instructed me to send the CARB a letter formally requesting the elimination of ADP engine-out testing.

GM requests that the CARB approve this change to the GM ADP by approving the elimination of ADP DDV engine-out emission testing.

Please call if you have any questions regarding this request.

1

Sincerely, M. Kourt

7 J. M. Kourt Project Manager Powertrain Control Center

JMK/ks Attachments

APPROVED.

:

Powertrein Control Center + M/C 483-331-800 + GM Prc

Air Resources Board Mobile Source Division ATION STATION Ðν rigineering Assc. Date 10/22 Title AMPT 014

October 22, 1996

ML-GM494

Mr. R. B. Summerfield, Chief Mobile Source Operations Division Haagen-Smit Laboratory P.O. Box 8001 9528 Telstar Avenue El Monte, CA 91734-8001

Post-It" Fax Note 7671	Date 10 - 22.96 pages 4
To Shewen Chen	From Jim Kourt
CorDept. CARB	co. GM
Phone #	Phone #
Fax #	Fax #

Dear Mr. Summerfield:

Subject: Alternate Durability Process (ADP) Vehicle Engine-Out Emission Testing

One of the original assumptions of the GM ADP is that engine-out emissions are stable over the useful life of the vehicle. In the original ADP agreement reached between GM and CARB, GM agreed to conduct engine-out emission testing on the ADP durability data vehicle (DDV).

Recently, GM requested and received CARB approval to eliminate engine-out emission testing of reality check vehicles (reference attached GM letter ML-GM489 and CARB letter C-90-072).

On October 21, 1996, in a telephone conversation with Mr. Shewen Chen of your staff, I requested permission to eliminate engine-out emission testing on any current and future GM ADP DDV's. There should be no reason to continue this requirement since the reality check engine-out testing has been eliminated. Mr. Chen gave verbal approval to discontinue the engine-out emission testing on a 1998 model year 5.7L MDV ADP DDV that is currently at the low mileage test point. Mr. Chen further instructed me to send the CARB a letter formally requesting the elimination of ADP engine-out testing.

GM requests that the CARB approve this change to the GM ADP by approving the elimination of ADP DDV engine-out emission testing.

Please call if you have any questions regarding this request.

Sincerely. J. M. Kourt

7 J. M. Kourt Project Manager Powertrain Control Center

JMK/ks Attachments

ATTACHMENTS TO GM LETTER ML-GM494

GM LETTER ML-GM489

CARB LETTER C-96-072

Ano

.

,

September 30, 1996

ML-GM489

Mr. D. Nguyen Mobile Source Division Air Resources Board 9480 Telstar Avenue Suite #4 El Monte, CA 91731

Dear Mr. Nguyen:

Subject: Reality Check Engine-Out Emission Testing

One of the original assumptions of the ADP program is engine-out emissions are stable over the useful life of the vehicle. General Motors agreed to conduct engine-out testing on ADP program customer vehicles to prove this assumption.

As part of our ADP reality check process agreement, GM has been conducting engine-out testing on our 1992-94 California certified engine families. Based on 1992-94 model year reality check data (attached), GM believes it is now appropriate to discontinue this engine-out testing requirement.

The elimination of engine-out testing would save us test time and allow for quicker turnaround of the customer vehicle.

We request CARB to please respond with your approval for allowing us to discontinue the engine-out testing of reality check, vehicles.

If you have any questions, please feel free to call me at your convenience on 810/685-6976.

Sincerely,

-·· -

----- · --- · ·

ADDIPI

R. C. Harvey
 Project Manager
 Powertrain Control Center

RCH/SAF/ks Attachments

OCT-18-96 FRI 8:49 AM ARB/MSOD/CERT

Reference No. C-96-072

California Environmental Protection Leency

<u>Vir Resources Bonrd</u> 1 A A G E N - S M I T ABORATORY '.O. Box 8001 528 Telstar Aveaue J Moste, CA 1734-8001 Mr. R. C. Harvey Project Manager Powertrain Control Center GM Proving Ground General Motors Corporation Milford, MI 48380-3726

Subject: Reality Check Engine-Out Emission Testing

Dear Mr. Harvey:

OCT 1 7 1996

This is in response to your letter ML-GM489 to the Air Resources Board (ARB) requesting approval of General Motors' (GM's) plan to discontinue engine-out emission testing for the in-use reality check of GM's Alternative Durability Process.

Based on our review of your submitted engine-out emission data from 1992-94 model-year California-certified engine families, the ARB considers that overall the engine-out emissions are stable over the useful life of the vehicles. Thus; GM's request is hereby approved.

If you have any questions, please contact Mr. Duc Nguyen, Manager, or Mr., Shewen Chen, Certification Staff, Certification Section at (818) 575-6661.

Sincerely,

R. B. Summerfield, Chief Mobile Source Operations Division

Steve Zogle	From S. Chen		
CO GM	CO. CARB		
Dept.	Phone #		
141 997-5551	Fex e		

P. 1___

Pete Wilson Governor

James M. Strock Secretary for Environmental Protection

App Ip 18

R. . . . ED

Chrysler Corporation CIMS 482-00-81 Chrysler Technology Center CONCERS AS: 51

January 30, 1998

ų,

CONTRACT SECTION

Ms. Jane Armstrong, Director Certification Division U.S. Environmental Protection Agency 2565 Plymouth Road Ann Arbor, Michigan 48105

Dear Ms. Armstrong

Re: Change Chrysler's Alternative Durability Process to Eliminate Engine-Out Emissions Testing on Reality Check Vehicles

Chrysler Corporation's currently approved Alternative Durability Process (ADP) includes a requirement to measure engine out emissions during reality check testing. This emissions measurement was added at the request of the agency staff, and was consistent with the requirements for other manufacturers at the time that Chrysler's process was approved. Subsequently, it has been learned that both EPA and CARB have modified their position on the requirement for engine out emissions measurements on ADP reality check vehicles.

On August 28, 1997, Chrysler petitioned CARB to eliminate engine out emissions requirements from its reality check programs and received approval from CARB on September 23, 1997. At this time, Chrysler is petitioning EPA, with supporting data, for approval to eliminate engine out emissions for Chrysler's federal ADP reality check vehicles.

Chrysler's and most other ADP aging processes are based on the hypothesis that engine-out emissions remain stable throughout a vehicle's useful life. For this reason, the process concentrates on bench aging catalytic convertors and using these with aged O_2 sensors on stable vehicles to develop our deterioration factors. Other main stream engineering durability processes demonstrate the mechanical durability of components. The table below is a synopsis of some supporting data that supports our ADP hypothesis. These data are based on the attached summary of 34 in-use fleet vehicles (Tier 0 level through prototype LEV).

Average % Em	HC	<u>CO</u>	NOx	
Increase (4 (4	K - 50K) = K - 100K) =			-11.9% -8.6%

These data show that engine out HC and NOx, on average, are less at 100K than at 4K, and CO shows a very small increase (less than 1% at 100K). We believe that these data confirm that engine out emissions data is not needed on ADP reality check vehicles. There are also other reasons why Chrysler believes that engine out emissions should not be measured on customer owned ADP reality check vehicles. These follow:

Am I 19

January 30, 1998 Page 2

- Vehicle modifications are very difficult to make on many production vehicle configurations. This is especially true on packages that use close coupled catalytic converters.
- More extensive vehicle modification adds time to the process, and it is desirable to minimize the time that customer owned vehicles are involved in the reality check program.
- Modifications which involve installation of probes into the system increase the possibility of exhaust leaks.
- Collecting additional emissions data introduces complexity and increases the chances for testing error and subsequent retests.
- Test facility and engineering resources requirements are reduced.

Chrysler would appreciate prompt consideration of this request.

If you have any questions concerning this request please feel free to call me at (248) 576-7363.

Sincerely,

CHRYSLER CORPORATION

an

Edward J. Kanigowski Certification Planning Specialist Vehicle Certification Programs

REVIEWED AND ACCEPTE

PPS/EJK:sr Attachment

AnoIp20

EJK/adp

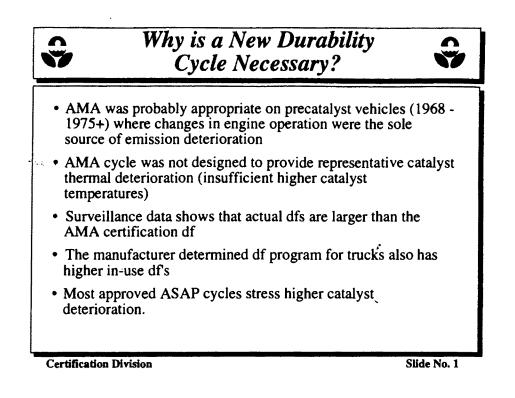
Tier 0 thru LEV Prototype Engine-Out (E.O.) Deterioration Comparison

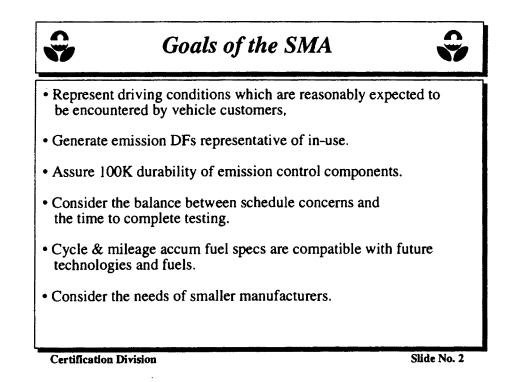
							Emission	E.O 4	VSK mile	es (gom)	E.O 45	-50K mi	les (ense	80 N	6 Increas						_		
MY	Marines	Engine	Evel Sys.	<u>Class</u>	Tress	# of yets	Level	HC	CO	NOI	HC	20	NOT	HC	<u>CO</u>	NOx	HC HC	100 K mili <u>CO</u>	K (gpm) NOx	E.O. %			
-						_												××		HC	<u>CO</u>	NOI	
185	Fed	2.2L	HTBI	PC		2	Tier 0	2.4	10.6	2.1	2.0	10.6	21	-14.0	0.0	0.0	1		ł	1			1
185		2.2L Turbo			м	7		3.3	10.2	2.2	3.6	12.3	2.5	10.1	20.6	13.4			1				
186	50-S Fed	2.2L	MPI	PC	M	Ŧ		3.0	14.8	23	28	14.8	24	-4.4	0.0	0.4				1			
16	Cal	2.21	tbi Tbi	PC	м	2		3.4	17.4	1.6	4.0	15.8	- 1.1	18.9	-9.2	-27.4	1						1
76	Fed	2.5L	181 TB1	PC PC	^	3		2.4	8.3	2.0	2.2	12.2	1.5	-5.9	47.0	-23.7							
	FGU	2.36	101	PC.	พิ	5		2.1	10.6	1.5	24	11.1	1.3	14.6	4.7	-15.1							
36	50-3	2.2L Turbo	MPI	PC	Å	3 C		3.0	14.6 13.0	1.8	29	16.3	1.7	-5.3	11.6	-3.9	1						Ι.
17	Fed	2.5L	TBI	PC	<u></u>	3		1.5	13.0	2.9	1.4	15.2	1.7	-10.0	16.9	-40.1	1			1			
					м	1		2.7	14.7	1.3	1.8	9.7	1.1	-6.3	-17.8	-17.6	1 I				•		
'87	50-S	2.21 Turbo	MPI	PC	Ă	3		1.4	11.6	2.7	2.6 1.3	13.8	1.5	-4.4	-6.1	7.2	1			1			
				•-	M	2		2.1	14.5	2.5	2.3	11.8 14.0	2.5	-6.4	1.7	-7.1	1						
187	Fed	3.0L MMC	MPI	LDT	Ä	5		2.7	9.2	2.8	23	12.2	21	11.0	-3.4	-40.7	1						
-88	Fed	2.2L	TBI	PC	A	2		2.3	9.3	1.9	1.9	11.4	22	-12.4	32.6	-23.8							
			•		м	2		3.1	12.7	1.6	2.3	13.9	1.6	-19.2	72.6	16.3	1						
'88	50-S	2.2L Turbo	MPI	PC		3		1.6	14.7	3.7	1.4	16.6	3.1	-26.0	9.4	-1.8	1						ł
41	Fed	2.5L	TBI	PC	A	4		4.8	9.9	2.3	1.6	6.6	26	-14.8	12.9	-15.8	1						
'88	Fed	3.0L MMC	MPI	PC		5		2.4	9.1	25	2.1	11.2	13	-14.5	-33.3 23.1	13.8	1						
'88	50-S	3.0L PRV	MPI	PC	A	3		3.1	11.9	2.8	2.8	11.0	1.1	-9.2	43.1 •7.6	-47.0	1						
	Fed	2.5L	TBI	LDT	A	4		20	10.4	24	1.7	12.8	1.5	-18,3	23.1	-60.4				1			
789	Cel	3.0L MMC	MPI	PC	A	3		23	10.7	2.5	2.0	12.8	22	-12.1	19.6	-38.9 -13.8	1			1			
39	50-S	2.5L Turbo	MPI	LDT	A	4		1.4	15.2	52	1.5	16.1	5.0	8.7	5.9	1	1						
	aoitsubo	3.0L MMC	MPI	PC	A	2	1	22	11.0	5.9	1.9	8.2	4.3	-15.8	-25.5	-4.8 -27.4							
-	oduction	3.0L MMC	MPI	PC	•	2		2.1	10.0	23	22	10.0	22	4.8	0.0	-21.4							
•	oduction	3.0L MMC	MPI	PC	•	2		2.0	9.0	20	21	10.0	1.1	5.0	11.1	-10.0	ł						
'92	Cal	2.5L	TBI	PC	•	5	1	1.8	9.2	27	1.9	8.4	24	5.6	-8.7	-11.1	1						
'92	Cel	3.3L	MPI	PC	•	4	V	3.1	10.0	2.2	2.8	10.0	1.8	-9.7	0.0	-18.2				1			1
Non or																	1			1			
- 190 190	oduction Cal	3.0L MMC 3.3L	MPI MPI	LOT	.	4	Tier 1	2.6	11.1	3.6	2.4	12.1	2.9	-7.6	9.7	-18.8	2.6	11.2	2.6	-2.7	1.5	-27.6	
95	Fed	3.5L 3.5L	MPI	PC	A .	5		2.5	11.0	2.1	2.6	11.0	2.0	4.0	0.0	-4.8	2.4	11.0	1.9	4.0	0.0	-17.0 -9.5	
-	oduction	3.3L FFV	MPI	PC PC	A	4	1 L	2.5	12.5	2.5	2.4	13.2	2.2	-4.9	5.6	-9.3	2.2	12.2	23	-11.7	-2.4	•9.5 •7.3	
1 Marta	vanuruil	3.36 FC V	MEL	n	A	,	▼	2.5	9.7	2.0	2.7	9.6	2.2	8.0	-1.0	10.0	27	30.1	2.2	8.0	4.1	10.0	1
Non-or	oduction	3.3L	MPI	LDT	•	5	LEV		•• •					[₩	10.0	
		2.4L DOHC	MPI	PC	Å	5	LEV	1.4	11.1	1.6	1.4	11.5	1.6	-0.7	3.6	3.2	1			1			1
-		2.0L SOHC	MPI	PC	Â	5	1	1.2 1.1	11.5	2.4	1.1	10.8	2.7	-10.6	-6.1	12.0							1
			··• •		^	,	▼	1 1.1	9.4	2.3	1.2	9.1	2.4	7.1	-3.2	3.4	1						1

HC	22	NOI
		-11.9
-2.6	8.8	-8.6
	-4.3	HC CO -4.3 4.7 -2.6 0.8

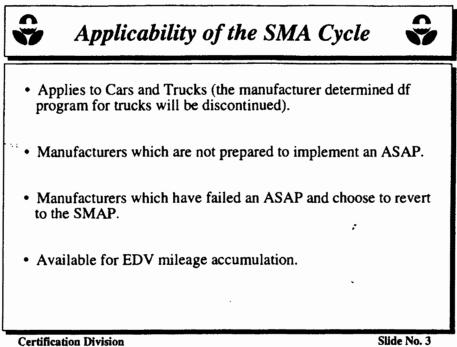
(*) = 75K miles only

DOOT

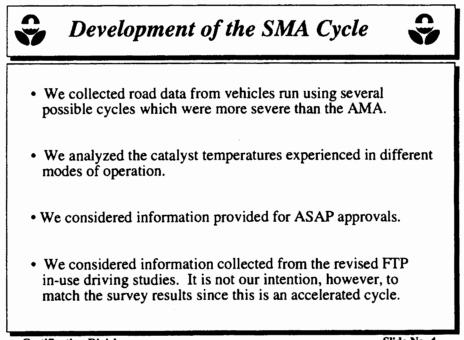

Ð


Appendix II

.


•

1



Certification Division

Results of Our On-Road Testing

ensurement Effect on Catalyst Temperature

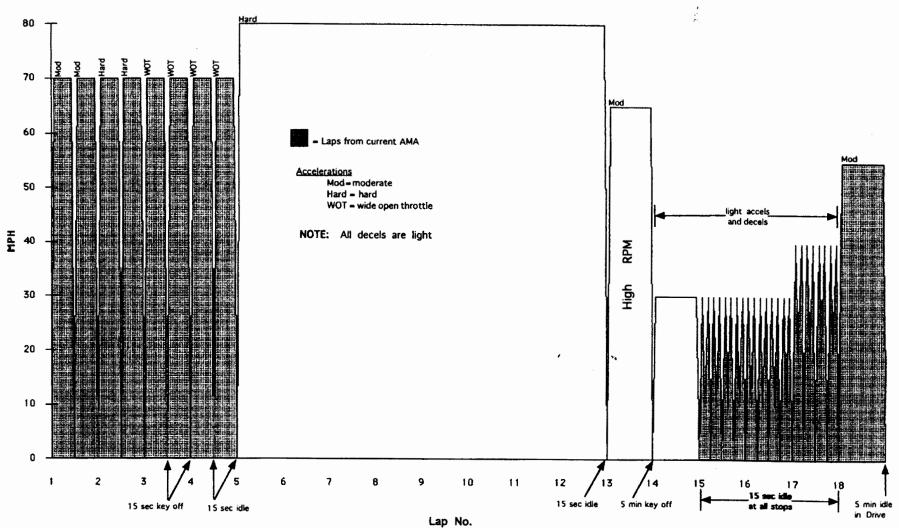
• Engine RPM	Major effect; high RPM promoted high catalyst temps
Downshifts	Major effect; (same as engine RPM)
• Vehicle speed	Major effect; high speeds promoted high catalyst temps
 Acceleration rate 	Major effect; high accels promoted high catalyst temps
• Idles	Major effect; usually promoted the lowest catalyst temps
Closed throttle decels	Variable; promoted higher catalyst temps on 2 vehicles
Vehicle test load	Moderate effect; high loads promoted high temps
Cold starts	Moderate effect; higher catalyst temps on warm-ups
Throttle fluctuations	Moderate effect
• Hot starts	Very little effect
Ambient Conditions	Very little effect
• Fuel	Very little effect
•• No operational or overh	neating problems were encountered with any of the vehicles.

Certification Division

n

V)

Slide No. 5

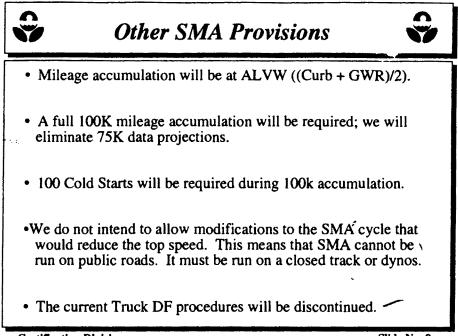

ÿ

\$		T	Ŷ			
	Base	No. of	Time/	Accel	Ave.	
Lap	Speed	Stops	Stop	Rate	Speed*	<u>Comments</u>
1	70	2	0 sec	Mod	55 mph	
2	70	2	0 sec	Hard	56 mph	
3	70	2 2 2	15 sec	WOT	48 mph	Key off for stops
4	70	2	15 sec	WOT	48 mph	
5	80	0	NA	Hard	74 mph	
6	80	0	NA	NA	80 mph	
7	80	0	NA	NA	80 mph	
8	80	0	NA	NA	80 mph	
9	80	0	NA	NA	80 mph	
10	80	0	NA	NA	80 mph	
11	80	0	NA	NA	80 mph	
12	80	1	15 sec	NA	66 mph	
13	65	1	5 min	Mod	58 mph	Key off 5 minutes
14	30	1	15 sec	Light	28 mph	·
15	30	4	15 sec	Light	21 mph	5 Decels to 10 mph
16	30	4	15 sec	Light	21 mph	5 Decels to 10 mph
17	40	4	15 sec	Light	25 mph	5 Decels to 20 mph
18	55	1	5 min	Mod	51 mph	Idle for 5 minutes
	ludes 15 :	sec stops bu	t not 5 min.	idle or 5 mi	n. key off.	·

Certification Division

Page 3 AppII p3

Description of Proposed Standard Mileage Accumulation Cycle



AppIP

Overview of the Proposed SMA Cycle

Types of Operation	<u>COMMENTS</u>
Vehicle Speed - 35% increase	Reduces time duration to complete 100K miles
in average speed	Higher power requirements and engine exhaust temperatures.
	Reduced AF control would contribute to richer mixtures and more catalyst activity.
Accelerations - number of higher rate accelerations	Fuel enrichment as a function of A/F control
increases significantly	Raise power requirements
	Engine wear
Decelerations - Closed throttle from higher speeds	Fuel shut off/lean operation - higher catalyst temperature.
	All deceleratons are light to prolong acceleration mode and reduce tire wear.
Engine RPM - downshift operation	Potential for increased oil consumption/contaminate catalyst (reduces catalyst efficiency)
	Lean operation
	Engine wear
Idles (Key on) and Stops (Key off)	Hot starts/vapor problems/fuel metering. Canister purging
	Exercise computer memory/time delays
City Driving concept retained from current (AMA approx. 50% of driving time)	Provides operation for many engine emission • components at an increased rate of frequency and low stress (low power requirements). An attempt to not put all our emphasis on just catalyst thermal deterioration.
Specific load requirements - ALVW	Increases power requirements ($F = mass X accel.$) at all rates of acceleration and speed.
	Increases engine exhaust temperatures.
Cold Soaks	Not included in current AMA. Proposed on the basis that higher emission levels during cold start operation will contribute to emission system deterioration.
Specify a quantitative measure for acceleration rates	Should contribute to improved test program repeatability.

.

Certification Division

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SMA	AMA
Average Speed (mph)	41.4	30.7
No. of 3.7 mile laps	18	11
Miles per cycle	66.6	40.7
Hours per cycle	1.61	1.33
No. of Cycles	1501 (100K)	1229 (50K)
Hours Required	2415 (100K)	1628 (50K)
Hours of Idle & Hot Soak	356 (100K)	184 (50K)
15 sec idle	106	184
5 min idle	125	0
5 min hot soak	125	0

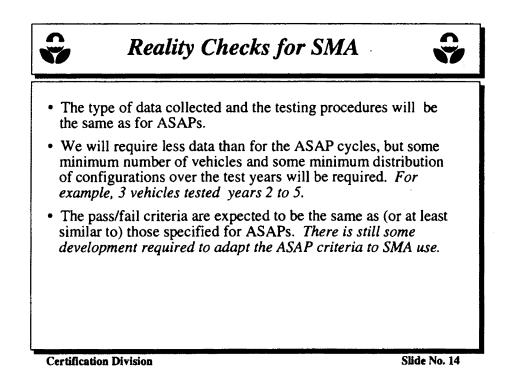
Page 5 AppIlpl

Acceleration	Mod. AMA (100K)	AMA(50K)	
Light:			
from stop	19,513	45,454	
from 10 mph	15,010	0	
from 20 mph	7,505	55,282	
Moderate:	6,004	0	
Hard	4,503	0	
WOT:	6.004	2,457	
Total	54,036	103,193	

Certification Division

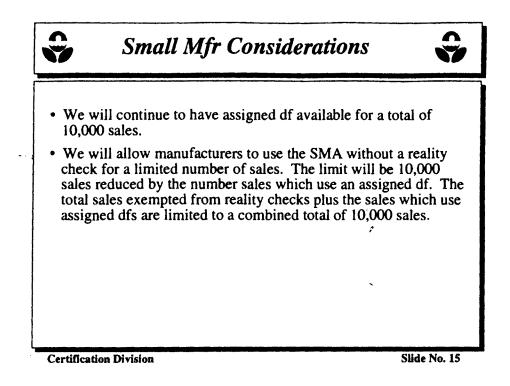
🗘 Cycle	Statisti	cs - Idles	& Stops	Ŷ
Event	Mod.	<u>AMA (100K)</u>	AMA(50K)	
Idles (Drive)	(15 sec)	25,517	44,244	
(5 min) Total		<u>1501</u> 27,018	<u>0</u> 44,244	
Event		<u>AMA (100K)</u>	<u>AMA(50K)</u>	
Key-Off:	(15 sec) (5 min)	3002 1501	0	
Total	(5 mm)	4503	0	
	-			
Certification Division	1			Slide No. 12

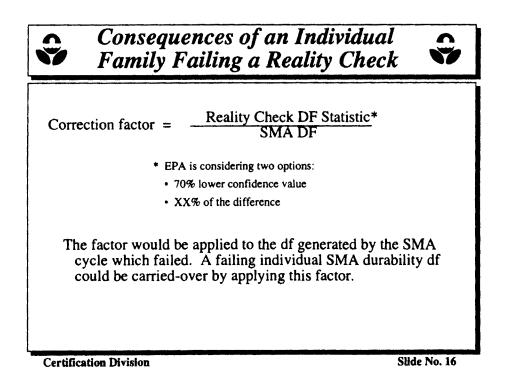
Cycle Statistics - Time for 100K

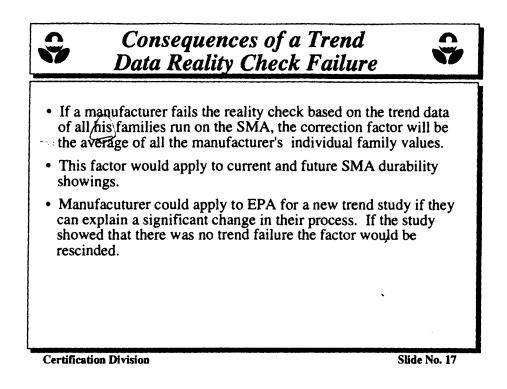

The average speed, number of cold starts, and time required to complete durability testing are shown below for the AMA schedule and the SMA schedule. Assumptions include a 24 hour-per-day work schedule, 6 days-per-week, 2 days per test (evaporative test not required), as follows:

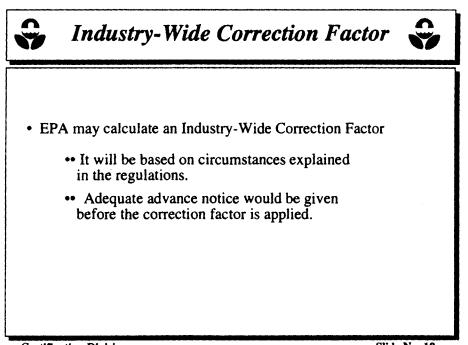
			Time Req	Time Required for 100K (months)				
	Average	Cold	6 Day	6 Day	Cold			
Schedule	Speed	Starts	Dyno	Road	Start			
AMA	30.7	NA	7.2	8.6	NA			
SMA	41.4	100	5.6	6.9	0.3*			
	Schedule AMA	Average Schedule Speed AMA 30.7	AverageColdScheduleSpeedStartsAMA30.7NA	Average Cold 6 Day Schedule Speed Starts Dyno AMA 30.7 NA 7.2	AverageCold6 Day6 DayScheduleSpeedStartsDynoRoadAMA30.7NA7.28.6			

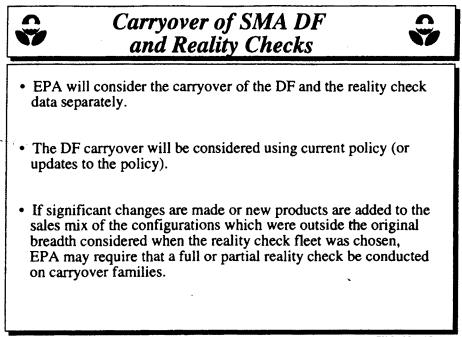
* Note: On a 6-day week, 1 test / 10K work effort, about 50 cold starts occur naturally


Certification Division


 ∇


Page 7


Apoll a



ADDI

Certification Division

Certification Division

APPIG

\$.

APPIP

Appendix III

Reliantifier En Call to D. Gord

RECEIVED

98 MAY 14 PM 2:54

EPA PURCHASING ANN ARBOR

ML-TG147A

May 12, 1998

cc!

Eab Pk

FYI

LH

(Andy 8)

Ms. Jane Armstrong, Director Vehicle Programs & Compliance Division Office of Mobile Sources U.S. Environmental Protection Agency 2565 Plymouth Rd. Ann Arbor, MI 48105

Dave Sor 5/28/98

Dear Ms. Armstrong:

Subject: 1996 Model Year Reality Check Emission Test Data

General Motors Corporation submits the attached completed in-use verification (reality check) emission test data for engine family TGM2.4VJGKEK.

This last test of engine family TGM2.4VJGKEK now completes all of the 1996 model year second year of service testing requirements (data previously reported in our letter ML-TG147).

Please call Steve Fogle of my staff on (248) 685-5145 if you have any questions regarding this information.

Sincerely. Scople for

R. C. Harvey Manager Compliance & Certification

RCH/SAF/ks Attachment c: D. J. Good

Compliance & Certification • M/C 483-331-500 • GM Proving Ground • Milford, Michigan 48380-3726

FEDERAL REALITY CHECK SUMMARY 1996 SECOND YEAR OF SERVICE GM CONFIDENTIAL

тсет		T.	AILPIPE	E
DATE	MILES	NMHC	со	NOx
	IU STD	0.25	3.4	0.4
11/25/1007	12 006	0.07	1.0	0.40
				0.18 0.18
	•			0.10
12/4/1997	20,436	0.12	2.4	0.33
4/28/1998	22,844			
4/29/1998	22,859	0.10	2.0	0.40
	11/25/1997 11/26/1997 12/4/1997 12/4/1997 4/28/1998	DATE MILES IU STD 11/25/1997 13,906 11/26/1997 14,319 12/4/1997 19,605 12/4/1997 20,436 4/28/1998 22,844	TEST DATE MILES NMHC IU STD 0.25 11/25/1997 13,906 0.07 11/26/1997 14,319 0.11 12/4/1997 19,605 0.12 12/4/1997 20,436 0.12 4/28/1998 22,844 1	DATE MILES NMHC CO IU STD 0.25 3.4 11/25/1997 13,906 0.07 1.0 11/26/1997 14,319 0.11 2.5 12/4/1997 19,605 0.12 2.0 12/4/1997 20,436 0.12 2.4 4/28/1998 22,844 2.4

- TEST ABORTED - FUEL CAP LEFT OFF DURING COLD SOAK

SAF/GMPT

.

· · ·

5/12/1998

AppITp2

Riensed For Stor Call To 12 by

FEDERAL REALITY CHECK SUMMARY CC: 1994 MODEL YEAR And B (Pote K) FOURTH YEAR OF SERVICE

Hondont at 12/1/97 GN/EPA Preview Miss

GM CONFIDENTIAL

FYI							
•		TEST		Т	AILPIPE		
Dave	ENG FAMILY	DATE	MILES	NMHC	CO	NOx	
12/19/97	R1G2.2V7GFEA R1G2.2V7GEEA - MAN TR	ANS (\$)					
	VIN		IU STD	0.32	3.4	0.4	
	1G1JC144XR7165954\$	5/14/1997	58,636	1.11	9.9	0.17	
	RETEST@	5/20/1997	58,662				
	RETEST#	5/20/1997	58,670				
	RETEST%	5/29/1997	58,696	0.82	7.4	0.15	
	RETEST&	6/5/1997	58,733	0.09	1.4	0.37	
	1G1JC1448R7194272*	5/15/1997	32,398	0.09	1.3	0.66	and a second
	RETEST(1)	5/16/1997	32,425	0.64	9.7	0.16	1
	RETEST(2)	5/22/1997	32,452	0.64	8.2	0.16	31
	RETEST(3)	5/29/1997	32,484	0.69	11.8	0.16	<i>)</i>
	RETEST(4)	6/4/1997	32,516	0.11	1.6	0.14	
	1G1LV1548RY303177	5/15/1997	36,725	0.11	2.1	0.25	
	1G1JC1443R7151149	5/15/1997	47,961	0.13	2.0	0.43	
	1G1JC5449R7198046	5/16/1997	39,637	0.07	1.6	0.36	

@ - TEST INVALID - HEAT BUILD TO TEST SITE EXCEEDED TIME - SITE ANALYZER PROBLEM # - TEST INVALID - BENCH OPERATOR ENTERED EPAII INSTEAD OF EPAIII

% - AFTER PERFORMING DIAGNOSTICS FOR MIS-FIRE AND INSTALLING NEW SPARK PLUGS & - AFTER REPLACING THE EGR VALVE

* - AS RECEIVED - CODE 32 STORED (SIGNAL HOSE DISCONNECTED AT VALVE) AND OIL CRANKCASE 2-2.5 QUARTS OVERFULL

(1) - RECONNECTED EGR HOSE

(2) - AFTER OIL AND FILTER CHANGE

(3) - AFTER PERFORMING DIAGNOSTICS FOR MIS-FIRE AND INSTALLING NEW SPARK PLUGS FOUND NO. 4 PLUG WET WITH OIL

(4) - AFTER REPLACING THE EGR VALVE

AppIllp 3

FEDERAL REALITY CHECK SUMMARY 1994 MODEL YEAR FOURTH YEAR OF SERVICE

GM CONFIDENTIAL

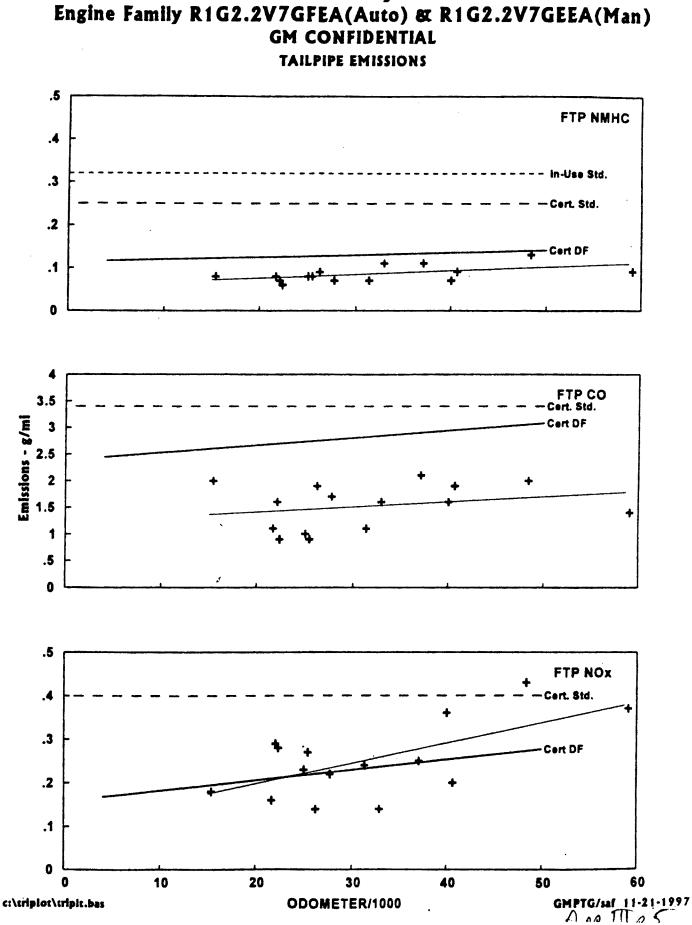
	TEST		Т	AILPIPE	
ENG FAMILY	DATE	MILES	NMHC	со	NOx
R1G3.1V8GFEA					
VIN		IU STD	0.32	3.4	0.4
1G3WH55M9RD420504	9/9/1997	30,645	0.18	2.7	0.27
1G3WH55M0RD404546	9/9/1997	31,035	0.26	4.2	0.30 -
RETEST(5)	9/18/1997	31,063	0.20	3.0	0.25
1G1LD55MXRY283976	9/10/1997	31,257	0.22	1.7	0.32
1G2WJ52M9RF257662	9/11/1997	32,296	0.17	2.6	0.32
1G1LD55M9RY120803(6)	9/12/1997	38,731	0.17	2.0	0.28
RETEST	9/16/1997	38,759	0.17	1.7	0.25
1G2NE55MXRC779004	9/25/1997	53,276	0.19	2.2	0.50
1G2WJ12M6RF344220	10/15/1997	37,616	0.19	2.4	0.36

(5) - WITH NEW SPARK PLUGS AND PCV VALVE

(6) - TEST INVALID - DIURNAL FUEL RISE OUT OF SPECIFICATION

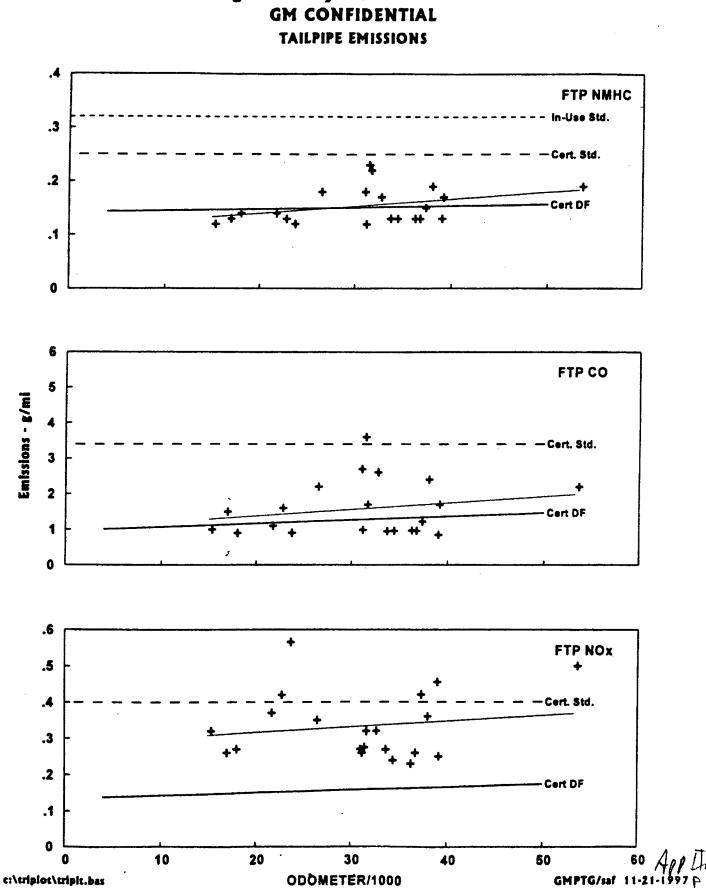
R1	G4.6	VJGA	AEA

	`			THC		
VIN			IU STD	0.41	3.4	1.0
1G6KS52YXRU828181#	•	5/15/1997	41,271			
RETEST		5/16/1997	41,285	0.34	1.8	0.40
1G6KS52YXRU803409#		5/15/1997	42,127			
RETEST		5/16/1997	42,143	0.30	2.3	0.29
1G6KF52YXRU313704#		5/16/1997	41,791			
RETEST		5/21/1997	41,806	0.24	1.8	0.28
1G6ET1298RU613717	•	5/16/1997	50,251	0.21	1.6	0.25
1G6KF52Y5RU288615		5/22/1997	47,144	0.27	1.6	0.43

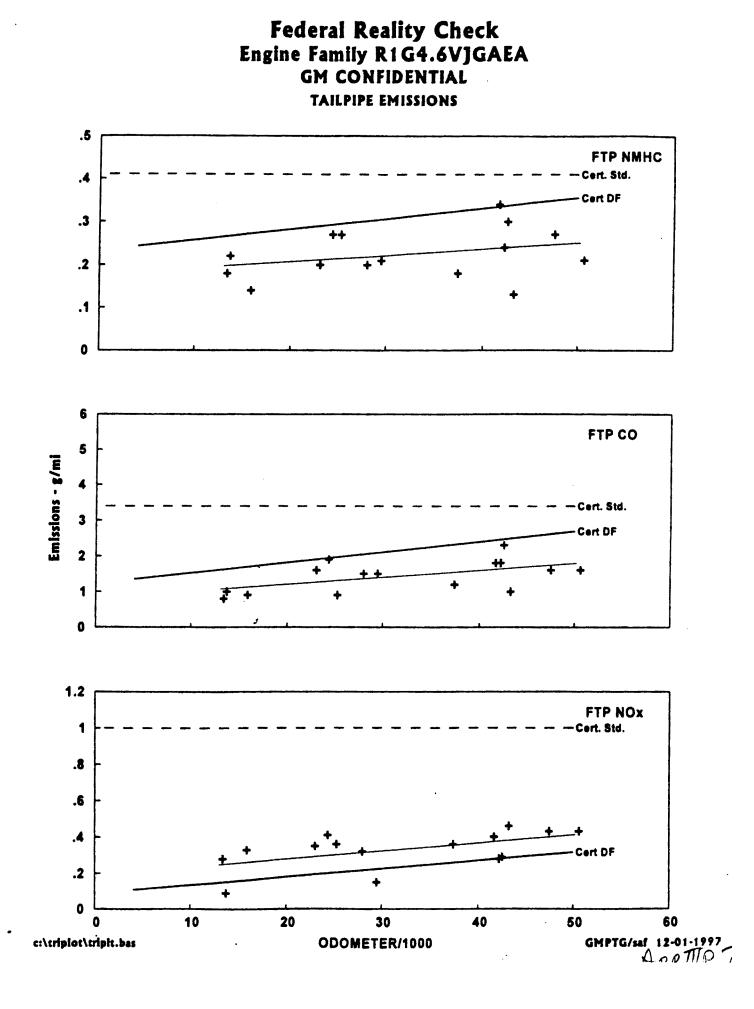

- TEST ABORTED - TRACTION CONTROL BECAME ACTIVE

AppIIPU

5/5


6/1

SAF/PCC REV 11-21-97



Federal Reality Check

California Reality Check Engine Family R1G3.1V8GFEA GM CONFIDENTIAL TAILPIPE EMISSIONS

FEDERAL REALITY CHECK SUMMARY

1995 MODEL YEAR

THIRD YEAR OF SERVICE

GM CONFIDENTIAL

			T	AILPI	PE
ENG FAMILY		MILES	NMHC	со	NOx
S1G2.2V7GFEA		IU STD	0.32	3.4	0.4
1G1JC1246S7146679	7/17/1997	41,730	0.07	1.2	0.37
1G1JC1243SM110465	7/22/1997	27,710	0.07	1.1	0.23
1G1LV154XSY300917	7/22/1997	37,432	0.09	1.9	0.32
S1G3.1V8GFEA			0.32	3.4	0.4
1G4AG55M0S6476298	7 <i>1</i> 22/1997	28,150	0.22	2.3	0.42
S1G4.6V7GFEA	TEST				
VIN	DATE		0.32	3.4	0.4

1G6KS52Y0SU835596@	7/29/1997	27,153			
RETEST	7/31/1997	27,176	0.15	2.0	0.41
1G3GR62C4S4135511*	7/21/1997	29,001	0.18	3.1	0.42
RETEST\$	7/23/1997	29,037	0.13	1.6	0.35
1G3GR62C7S4135597*	7/18/1997	30,219	0.13	1.6	0.32
RETEST\$	7/22/1997	30,246	0.19	2.2	0.32

@ - TEST ABORTED - DIURNAL FUEL TEMPERATURE OUT OF SPEC
 * = NORMAL TRANS MODE
 \$ = PERFORMANCE TRANS MODE

SAF/PCC REV 10-02-97

· ANDIPS

FEDERAL REALITY CHECK SUMMARY

1995 MODEL YEAR

SECOND YEAR OF SERVICE

GM CONFIDENTIAL

	TEST		1	AILPI	PE	EN		т
	DATE	MILES	NMHC	co	NOx	HC	co	NOx
ENG FAMILY								
S1G4.6V7GFEA								
VIN		IU STD	0.32	3.4	0.4			
1G6KS52Y6SU835117	6/6/1996	12,934	0.15	0.9	0.34	3.32	13.00	2.18
1G3GR62C6S4146509\$	6/10/1996	13,763	0.11	1.0	0.20	. 3.14	13.12	1.47
1G3GR62C6S4146509*	6/11/1996	13,789	0.13	1.2	0.22	3.16	13.47	1.59
1G3GR52C7S4100696\$	6/11/1996	10,885	0.22	2.6	0.11	3.74	18.41	1.52
1G3GR52C7S4100696*	6/12/1996	10,912	0.19	2.3	0.11	3.64	17.79	1.59
S1G2.2V7GFEA								
VIN		IU STD	0.32	3.4	0.4			
1G1JC124XS7120263#								.
RETEST	6/7/1996	17,241	0.08	1.7	0.19	1.68	8.81	2.46
1G1JC12R0S7148072&	6/10/1996	11,872	0.12	2.0	0.20	0.72	3.15	0.46
RETEST	6/11/1996	11,898	0.08	1.3	0.14	1.80	8.16	2.07
1G1LV1549SY222601@	6/11/1996	10,765	0.06	1.1	0.18	1.47	8.98	2.39
RETEST	6/14/1996	10,797	0.08	1.6	0.10	1.34	9.39	2.32
	•							
S1G3.1V8GFEA	3							
VIN		IU STD	0.32	3.4	0.4			
1G4AH55M356471979	6/11/1996	14,795	0.26	3.9	0.35	3.05	17.29	2.85
RETEST	6/14/1996	14,840	0.24	2.7	0.33	2.74	14.02	2.74

- INVALID PREP - NO TEST DATA

\$ = PERFORMANCE TRANS MODE

* = NORMAL TRANS MODE

& = INVALID - DILUTION AIR LINE DISCONNECTED

@ = CANISTER LINE WAS UNPLUGGED AT SOLENOID

SAF/PCC REV 03-06-97

App 10 9

CALIFORNIA REALITY CHECK SUMMARY

1994 J CARS

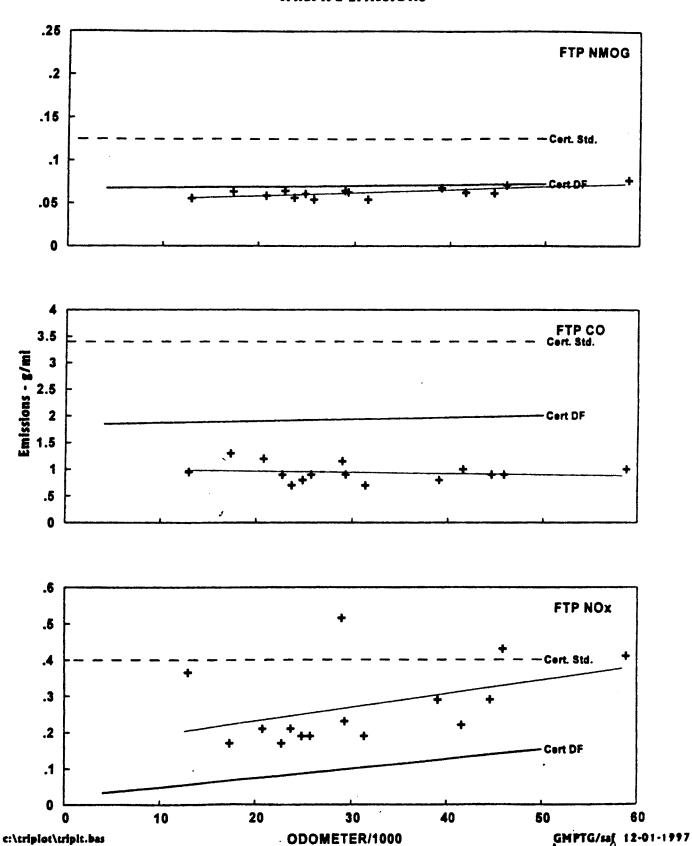
GM CONFIDENTIAL

		•	TAILPIP	Έ		BAG	E١	IGINE OU	т	5	SHED	
ENG FAMILY	MILES	NMOG	co	NOx	нсно	NMHC	HC	со	NOx	DIU	SOAK	Т
R1G2.2V7G2EA	IU STD	0. 188	3.4	0.4	0.023							2
			SEC	OND Y	EAR OF	SERVIC	E					
42RCC401* RETEST	12,554 12,581	0.056	0.9 1.0	0.34 0.39	0.002 NA	0.055 0.057	1.19 1.22	10.83 11.04	2.44 2.50	0.06 NA	0.11 NA	0
42RCC402*	20,420	0.059	1.2	0.33	0.001	0.059	1.08	10.55	2.19	0.11	0.13	0
42RCC403*&	16,915	0.065	1.1	0.18	0.002	0.065	1.20	10.12	2.21	2.17	1.08	3
RETEST	16,941	0.063	1.3	0.17	0.001	0.063	1.21	10.33	2.13	0.62	0.30	0
42RCC404*	23,338	0.056	0.7	0.21	0.002	0.055	1.22	9.83	2.21	0.08	0.10	0
42RCC405*	25,332	0.054	0.9	0.19	0.001	0.053	1.14	10.32	1.82	0.05	0. 0 9	0.

& - FOUND CANISTER PURGE HOSE OFF AT PURGE SOLENOID

THIRD YEAR OF SERVICE

43CRCC401*	22,369	0.065	0. 9	0.17	0.002	0.063	1.21	10.06	2.13	0.03	0.08	0.
43CRCC402*	38,672	0.068	0. 8	0.29	0.002	0.066	1.12	8.94	2.04	0.07	0.08	0.
43CRCC403*	24,474	0.061	0.8	0.19	0.002	0.059	1.21	10.09	2.40	0.05	0.08	0.
43CRCC404*	28,524	0.064	1.2	0.53	0.003	0.063	1.10	10.26	2.36	0.03	0.07	0.
RETEST	28,558	0.063	1.1	0.50	0.002	0.062	1.10	10.11	2.41	NA	NA	
43CRCC405*	28,878	0.063	0.9	0.23	0.002	0.065	1.16	10.04	1.89	0.04	0.08	0.


FOURTH YEAR OF SERVICE

44CRCC401*	41,186	0.062	1.0	0.22	0.002	0.060
44CRCC402*	45,488	0.070	0.9	0.43	0.002	0.069
44CRCC403*	44,171	0.061	0.9	0.29	0.002	0.059
44CRCC404*	58,482	0.076	1.0	0.41	0.003	0.072
44CRCC405*	30,929	0.054	0.7	0.19	0.002	0.052

PHASE 2 FUEL USED AND A RAF OF 0.98 • = SIMILAR TO ADP VEHICLE

SAF/PCC REV 05-27-97

ADD II PIO

California Reality Check Engine Family R1G2.2V7G2EA GM CONFIDENTIAL TAILPIPE EMISSIONS

A.TTAIL

1994 MODEL YEAR

CALIFORNIA ENHANCED QUALITY AUDIT

ENGINE FAMILY R1G3.1V8GFEA

					IN-US	E STD	0.32	5.2	0.4
			•				٦	ALPIPE	
VIN	BLD DATE	TEST DATE	ODO	TRANS	ETW	DHP	NMHC	co	NOx
1G3WH55M7RD384828	9404	9 61205	40378	A4	3 625	5.9	0.210	1.31	0.23
1G3AG55M5R6302726	9308	970108	41173	A4	3375	6.8	0.208	2.01	0.57
1G3WH55M1RD309591	9309	9 61206	365 65	A4	3 625	5.9	0.145	0.89	0.16
1G2WJ52M4RF258637	9402	961206	45865	A4	3750	5.9	0.130	0.99	0.16
1G2NE55M5RM591615	9405	9 61210	30023	A4	3 375	6.4	0.142	0.98	0.24
	`		38801	AVG			0.167	1.24	0.27
				STD DEV	/		0.039	0.461	0.171
	3			% OF ST			81.88	73.76	6 2.55
				% OF ST	D		51.38	23.54	60.44
				COVLIM	IT		0.992	3.406	0.686
				COVOF	SAMPLI	E	0.232	0.373	0.628

.

65,929 VEHICLES IN FAMILY 4,225 VEHICLES IN LA FOUR COUNTY AREA

SAF/PCC 1/8/1997

KADTIP 1-

*** GM CONFIDENTIAL ***

SUMMARY REPORT

Model Year	: 1994
Body Type	: A,L,N,W
Eng. Disp.	: 3.1
Converter	: TWC (MC)
Trans Type	: AUTO
A.I.R. Type	:NONE

EPA Class:	B166						
Class Type:	SURVEILLANCE						
Engine Family:	RIG3.1V8GFEA						
Compliance Engr. :	R.J.DELMOTTE						

APPLICABLE STANDARDS							
NMHC	HC	СО	NOX	EVAP			
0.32		3.40	0.40	2.00			

.

TEST DATA

				Eng			Grams]			
Veh #	Body	Mileage	Trans	Code		NMHC	HC	СО	NOX	EVAP	Avg?
0040	W	38,671	AUTO	1A	3625 / 5.40	0.175		1.306	0.267	0.160	Yes
0129	N	29,534	AUTO	4	3375 /4.60	0.138		1.078	0.329	0.310	Yes
0189	L	28,657	AUTO	4D	3250 / 6.30	0.128		1.207	0.293	0.170	Yes
0407	W	19,833	AUTO	1A	3625 / 5.90	0.125		1.315	0.238	0.180	Yes
VEHI	CLE NO. (407 TESTE	DAT THE	WRON	IG DYNO H.P.	0.123		1.148	0.254	0.160	No
0434	þ.	16,062	AUTO	4	3250 / 6.30	0.102		0.828	0.246	0.910	Yes
335	W	39,686	AUTO	1	3625 / 5.90	0.154		1.174	0.312	0.180	Yes

DATA SUMMARY

.

	NMHC	HC	СО	NOX	EVAP
Average	0.137		1.151	0.281	0.318
Standard	0.320		3.400	0.400	2.000
# Passing	6		6	6	6
# Tested	6		6	6	6
% Passing	100.0%		100.0%	100.0%	100.0%
Average as % of Standard	42.8%		33.9%	70.2%	15.9%

.

ADAJA 1:

01-22-1997

*** GM CONFIDENTIAL ***

SUMMARY REPORT

Model Year	: 1994
Body Type	: A,L,N,W
Eng. Disp.	: 3.1
Converter	: TWC (MC)
Trans Type	: AUTO
A.I.R. Type	:NONE

EPA Class:	B167
Class Type:	SURVEILLANCE
Engine Family:	RIG3.1V8GFEA
Compliance Engr. :	RJ.DELMOTTE
APPLICABLE	STANDARDS

СО

3.40

01-22-1997

NOX EVAP

2.00

0.40

TEST	CD.	A'I	A 1

				Eng	TEST WT.	Grams/Mile				Grams	1	
Veh #	Body	Mileage	Trans	Code	/ H.P.	NMHC	HC	СО	NOX	EVAP	Avg?	
0147	N	64,937	AUTO	4	3250 / 6.20	0.152		1.212	0.431	0.270	Yes	
0147	WITH /	A NEW TH	ERMOSTA	Т		0.143		1.252	0.433	0.440	No	
0168	N	50.252	AUTO	4A	3250 / 5.30	0.126		1.055	0.349	0.250	Yes	
0312	ØW	54,474	AUTO	1	3625 / 5.40	0.166		2.146	0.340	0.530	Yes	

NMHC

0.32

HC

DATA SUMMARY

	NMHC	НС	СО	NOX	EVAP
Average	0.148		1.471	0.373	0.350
Standard	0.320		3.400	0.400	2.000
# Passing	3		3	2	3
# Tested	3		3	3	3
% Passing	100.0%		100.0%	66.7%	100.0%
Average as % of Standard	46.3%		43.3%	93.3%	17.5%

AIR TTP!

FEDERAL REALITY CHECK SUMMARY 1994 - THIRD YEAR OF SERVICE

GM CONFIDENTIAL

			TAILPIPE			ENGINE OUT		
ENG FAMILY VIN	TEST DATE	MILES	NMHC	co	NOx	НС	со	NOx
R1G2.2V7GFEA R1G2.2V7GEEA - MAN TR	ANS(\$)	IU STD	0.32	3.4	0.4			
1G1JC1447R7337020	8/21/1996	22,020	0.06	0.9	0.28	1.02	9.91	2.02
1G1JC5448R7110278	8/21/1996	30,953	0.07	1.1	0.24	1.10	10.17	2.23
1G1JC1442R7366781	8/22/1996	25,082	0.08	0.9	0.27	1.05	9.52	2.62
1G1LV1545RY218779	8/22/1996	25,834	0.09	1.9	0.14	1.57	11.32	2.04
1G1JC144XR7231449\$	8/29/1996	40,262	0.09	1.9	0.20	1.67	10.17	1.84
R1G3.1V8GFEA		IU STD	0.32	3.4	0.4			
1G2NE55M8RC761486	8/7/1996	35818	0.13	1.0	0.23	2.57	10.46	1.39
1G2WJ52M0RF205949	8/8/1996	36298	0.13	1.0	0.26	2.35	11.12	1.74

1G2WJ52M0RF205949	8/8/1996	36298	0.13	1.0	0.26	2.35	11.12	1./4
1G1LD55M5RY289118	8/9/1996	30796	0.12	1.0	0.26	2.52	10.92	1.38
1G3WH55M2RD375003	8/14/1996	33976	0.13	1.0	0.24	2.40	10.79	1.58
1G1LD55MXRY164616	8/15/1996	36909	0.15	1.2	0.42	2.49	10.86	1.69
1G3WH55M5RD357840	8/16/1996	38596	0.13	0.9	0.46	2.74	11.64	1.46
RETEST	8/20/1996	38623	0.13	0.8	0.45	2.72	11.42	· 1.45
1G3WH55M9RD393823	8/16/1996	33270	0.13	1.0	0.27	2.47	10.25	1.71

			THC					
R1G4,6VJGAEA	3	IU STD	0.41	3.4	1.0			
1G6KS52Y4RU830718	8/23/1996	29,073	0.21	1.5	0.15	3.14	14.59	1.99
1G6ET1294RU611446#	12/11/1996	42,817						
RETEST@	12/12/1996	42,832	0.18	1.8	0.45	NA	NA	NA
RETEST	12/16/1996	42,85 9	0.13	1.0	0.46	NA	NA	NA
1G6KS52Y9RU845280	8/23/1996	27,585	0.20	1.5	0.32	2.73	13.97	2.24
1G6KF52Y4RU307266#	8/28/1996	22,610						
RETEST#	8/29/1996	22,633						
RETEST	8/30/1996	22,648	0.20	1.6	0.35	2.86	14.98	2.24
1G6KF52Y3RU285647	8/28/1996	37,045	0.18	1.2	0.36	2.80	14.01	2.31

= TEST ABORTED - TRACTION CONTROL LIGHT CAME ON @ = CANISTER PURGE HOSE WAS DISCONNECTED AT THE SOLENOID

SAF/PCC

. .

1993 J CARS

GM CONFIDENTIAL

	TEST	TAI	TAILPIPE			ENGINE OUT			
VIN	DATE	MILES	NMHC	co	NOx	HC	со	NOx	
ENG FAMILY P1G2.0W8JF15		IU STD	0.32	5.2	0.55				
		FOURTH YEAR OF SERVICE							
1G2JC54H6P7580482	3/22/1996	34,707	0.11	1.3	0.27	1.15	12.85	1.93	
1G2JC54H3P7589513	3/26/1996	40,278	0.11	2.0	0.31	0.98	13.14	1.84	
1G2JC14H9P7596846	3/29/1996	38,584	0.09	1.4	0.20	0.88	11.50	1.40	
1G2JC14H6P7501627	5/22/1996	33,201	0.13	2.0	0.13	1.42	14.68	2.03	
1G2JC54H8P7590270	6/20/1996	58,367	0.15	1.9	0.20	1.13	11.7 3	1.34	

•

.

SAF/PCC 3/3/1997

:

AnnTILA/5a

Relian Rer. Stor Call to D. Co.)

an i y **---** es

:L' 해가 1년 - 문화 · · **[ML-SG180** EAB March 13, 1997 LH 58 Contract Contract (Contract) LS Ms. Jane Armstrong, Director FYI Vehicle Programs & Compliance Division Office of Mobile Sources 5 13 97 **U.S. Environmental Protection Agency** æ 2565 Plymouth Rd. Jane Ann Arbor, MI 48105 Dear Ms. Armstrong: Subject: **Reality Check Emission Test Data** General Motors Corporation submits the attached in-use verification (reality check) emission æC

J

chim test data for three Federal 1995 model year engine families certified using the GM alternate durability process (ADP). The three 1995 Federal engine families are: (1) S1G2.2V7GFEA, 11/17/97 (2) S1G3.1V8GFEA and (3) S1G4.6V7GFEA.

> Reality check testing for the subject families for the second year of service was completed at our Milford Proving Ground vehicle emission laboratory.

No vehicles were rejected after initial procurement and no OBD or stored codes were observed. The test procedure used was the normal FTP with a double prep. For each engine family, both exhaust tail pipe and engine out emission data, if available, are provided as part of this submission.

Please call Steve Fogle of my staff on (810) 685-5145 if you have any questions regarding this information.

Sincerely,

R.C. Harve

R. C. Harvey Project Manager **Powertrain Control Center**

RCH/SAF/ks c: D. J. Good

Du~

Powertrain Control Center • M/C 483-331-500 • GM Proving Ground • Milford, Michigan 48380-3726 App IILolt

1995 MODEL YEAR

SECOND YEAR OF SERVICE

GM CONFIDENTIAL

	TEST		1	AILPI	PE	ENGINE OUT			
	DATE	MILES	NMHC	CO	NOx	HC	со	NOx	
ENG FAMILY									
S1G4.6V7GFEA									
.				• •	• •				
VIN		IU STD	0.32	3.4	0.4				
1G6KS52Y6SU835117	6/6/1996	12,934	0.15	0.9	0.34	3.32	13.00	2.18	
1G3GR62C6S4146509\$	6/10/1996	13,763	0.10	1.0	0.20	3.14	13.12	1.47	
1G3GR62C6S4146509*	6/11/1996	13,789	0.13	1.2	0.22	3.16	13.47	1.59	
1G3GR52C7S4100696\$	6/11/1996	10,885	0.22	2.6	0.11	3.74	18.41	1.52	
1G3GR52C7S4100696*	6/12/1996	10,912	0.19	2.3	0.11	3.64	17.79	1.59	
	0/12/1000	10,012		2.0	0.11	0.04			
S1G2.2V7GFEA									
VIN		IU STD	0.32	3.4	0.4				
1G1JC124XS7120263#									
RETEST	6/7/1996	17,241	0.08	1.7	0.19	1.68	8.81	2.46	
1G1JC12R0S7148072&	6/10/1996	11,872	0.12	2.0	0.20	0.72	3.15	0.46	
RETEST	6/11/1996	11,898	0.08	1.3	0.14	1.80	8.16	2.07	
1G1LV1549SY222601@	6/11/1996	10,765	0.06	1.1	0.18	1.47	8.98	2.39	
RETEST	6/14/1996	10,797	0.08	1.6	0.10	1.34	9.39	2.32	
S1G3.1V8GFEA	3								
VIN		IU STD	0.32	3.4	0.4				
1G4AH55M356471979	6/11/1996	14,795	0.26	3.9	0.35	3.05	17.29	2.85	
RETEST	6/14/1996	14,840	0.24	2.7	0.33	2.74	14.02	2.74	
				ðÍ					
# - INVALID PREP - NO TEST DATA \$ = PERFORMANCE TRANS MODE									

* = NORMAL TRANS MODE

& = INVALID - DILUTION AIR LINE DISCONNECTED

@ = CANISTER LINE WAS UNPLUGGED AT SOLENOID

SAF/PCC REV 03-06-97

· •

AppIIIp 17

Rebus Per Sto Conto D.Gul

ĆC: February 6, 1996 **ML-RG227** Jame TB Ms. Jane Armstrong, Director EAR Certification Division SB-LH LH BJ Mobile Source Air Pollution Control U.S. Environmental Protection Agency 2565 Plymouth Rd. Ann Arbor, MI 48105 Dear Ms. Armstrong: Dave Subject: Reality Check Emission Test Data 24/26 General Motors Corporation submits the attached in-use verification (reality check) emission test data for three Federal 1994 model year engine families and one California 1993 model year CC! carryover engine family certified using the GM alternate durability process (ADP). The three Pate K 1994 Federal engine families are: (1) R1G2.2V7GFEA/R1G2.2V7GEEA, (2) R1G3.1V8GFEA and (3) R1G4.6VJGAEA. The 1993 California family is P1G2.0W8JF15 (this 1993 reality check 3/21/96 data is being carried over to support 1994 engine family R1G2.0V7GFEA). Reality check testing for the subject families for the second year of service was completed at

Reality check testing for the subject families for the second year of service was completed at our Milford Proving Ground vehicle emission laboratory. The California family (third year of service) was tested at our Los Angeles vehicle emission laboratory. The test procedure used was the normal FTP with a double prep. For each engine family, both exhaust tail pipe and engine out emission data are provided as part of this submission.

No vehicles were rejected after initial procurement and no OBD or stored codes were observed. A tally of reasons that prospective vehicles were rejected from recruitment due to questionnaire topics has not yet been received from our contract vendor. Upon receipt, a copy will be forwarded to you.

In addition, per your request, we have also attached a copy of reality check emission data for other California families previously presented to CARB. The 1992 engine families have completed testing for the second, third and fourth years of service. The 1993 engine families have completed testing for the second and third year of testing. Finally, the 1994 engine families have completed their second year of service testing.

General Motors is willing to meet with you and your staff to review the operation of the reality check programs to facilitate further discussion of future certification streamlining. Please call me on (810) 685-6976 if you have any questions regarding this information.

Sincerely,

R.C. Haro

R. C. Harvey Project Manager Powertrain Control Center

RCH/SAF/ks c: D. J Good

Powertrain Control Center • M/C 483-331-500 • GM Proving and • Milford, Michigan 48380-3726

Anp II p 18

FEDERAL REALITY CHECK SUMMARY 1994 - SECOND YEAR OF SERVICE

GM CONFIDENTIAL

			TAILPIPE			ENGINE OUT		
ENG FAMILY VIN	TEST DATE	MILES	NMHC	co	NOx	HC	CO	NOx
R1G2.2V7GFEA		IU STD	0.32	3.4	0.4			
R1G2.2V7GEEA - MAN TRANS(\$)		Cent Stel	25	3.4	0,4			
1G1JC144XR7165954-\$	4/26/95	27,344	0.07	1.7	0.2	1.77	9.71	1.56
1G1JC1443R7225864	4/26/95	24,657	0.08	1.0	0.2	1.17	10.52	2.60
1G1LD5544RY279311	4/26/95	15,031	0.08	2.0	0.2	1.52	10.30	2.35
1G1JC5446R7225350	4/27/95	21,748	0.07	1.6	0.3	1.05	10.22	2.32
1G1JC1444R7252058	5/5/95	21,326	0.08	1.1	0.2	1.28	9.57	1.89
R1G3.1V8GFEA		IU STD	0.32	3.4	0.4			
1				••••	- · ·			
1G2WJ12M6RF216057	5/2/95	26,185	0.18	2.2	0.4	2.40	10.98	2.02
1G2WJ12M8RF337754@	4/28/95	16,512	0.14	1.3	0.2	2.47	11.34	1.72
RETEST&	5/4/95	16,538	••••					
RETEST	5/5/95	16,546	0.13	1.5	0.3	2.46	10.99	1.73
1G1LV15M3RY157139	5/2/95	22,436	0.13	1.6	0.4	2.52	10.30	1.62
1G2WJ52M1RF282720	5/3/95	17,596	0.14	0.9	0.3	2.58	11.93	1.77
1G1LD55M8RY125846	5/9/95	14,878	0.12	1.0	0.3	2.41	10.08	1.82
1G2NE55M6RC702064	5/4/95	23,335	0.13	1.0	0.6	2.37	11.30	2.47
RETEST@	5/10/95	23,364	0.11	0.8	0.5	2.32	10.08	1.85
RETEST@	5/11/95	23,384	0.11	0.7	0.5	2.26	10.04	1.91
RETEST	5/12/95	23,411	0.11	0.8	0.5	2.31	10.03	1.85
1G2WJ12M7RF203124	5/10/95	21,378	0.14	1.1	0.4	2.37	10.65	1.93
		٥						
Tierd			THC					
R1G4.6VJGAEA	<i>·</i> (*	IU STD	0.41	3.4	1.0			
1G6KS52Y4RU842254	5/9/95	13,318	0.22	1.0	0.1	3.56	15.66	1.91
1G6KS52YXRU821621	5/10/95	13,001	0.18	0.8	0.3	3.26	15.21	1.79
1G6KF52YXRU295527	5/10/95	24,865	0.27	0.9	0.4	3.06	12.96	2.42
1G6KF52Y7RU235334#	5/11/95	23,919	0.25	1.2	0.4	3.25	15.36	1.84
RETEST	5/12/95	23,945	0.29	2.4	0.5	3.50	16.83	2.17
RETEST	5/16/95	23,972	0.25	1.4	0.4	3.19	14.86	1.88
1G6ET1295RU619488	5/16/95	15,480	0.14	0.9	0.3	3.29	16.62	1.82
	0/10/00	10,700	J . 17	0.0	0.0	0.20		

@ = INVALID - TEST CREW DID NOT TIGHTEN GAS CAP & - INVALID - TEST CREW DID NOT TIGHTEN GAS CAP - TEST ABORTED # - INVALID - DIURNAL EQUIPMENT PROBLEM

SAF/PCC

10/4/95

ANPIIP 19

SAF/PCC

CALIFORNIA REALITY CHECK SUMMARY

11/8/95

1993 J CARS

GM CONFIDENTIAL

	TEST		TA	ALPIP	E	ENGINE OUT		
ENG FAMILY	DATE	MILES	NMHC	co	NOx	HC	со	NOx
P1G2.0W8JF15		IU STD	0.32	5.2	0.55			
		THIRD	YEAR	OF S	ERVICI	E		
1G2JC54H3P7589513	10/17/95	34,595	0.10	1.6	0.26	0.96	12.17	1.75
1G2JC54H6P7580482	10/18/95	29,224	0.11	1.5	0.23	1.19	12,39	2.07
1G2JC14H9P7596846	10/18/95	34,674	0.10	1.5	0.21	0.95	11.95	1.44
1G2JC54H8P7590270	10/20/95	40,893	0.13	2.3	0.15	1.11	12.73	1.36
1G2JC14H8P7580668	10/31/95	47,055	0.11	1.5	0.34	1.08	12.41	1.73
		21						

.

Cert , 25 3.4 0.4 Stag

App Mp21

CALIFORNIA REALITY CHECK SUMMARY

1992 J/L

GM CONFIDENTIAL

		TAILPIPE			ENGINE OUT			
ENG FAMILY	MILES	NMHC	со	NOx	HC	со	NOx	
N1G2.2W8JF58	IU STD	0.32	5.2	0.55				

SECOND YEAR OF SERVICE

2.2L - J	17,875	0.17	2.1	0.22	1.51	9.64	2.73
2.2L - J	15,070	0.22	3.4	0.19	1.49	10.89	2.44
2.2L - L*	10,298	0.17	2.7	0.15	1.37	10.62	1.85
2.2L - J	19,823	0.20	2.6	0.17	1.61	10.71	2.62
2.2L - J	16,929	0.13	2.5	0.19	1.32	10.78	2.40

THIRD YEAR OF SERVICE

2.2L - J	23,627	0.15	2.0	0.17	1.43	10.90	2.05
2.2L - L*	30,330	0.16	2.9	0.16	1.52	11.89	2.33
2.2L - J	28,763	0.21	4.1	0.17	1.51	11.50	2.31
2.2L - J	35,443	0.25	5.1	0.17	1.49	11.6 9	2.34
2.2L - J#	25,494	0.17	3.3	0.52	1.40	11.29	4.39
RETEST\$	25,513	0.24	4.9	0.11	1.47	11.75	1.91
RETEST	27,076	0.23	3.3	0.16	1.35	10.49	2.24
2.2L - L*	20,136	0.20	2.3	0.16	1.38	11.23	1.92

= VACUUM LINE TO EGR WAS OFF

1

\$ = IMPROPER PRECONDITIONING

FOURTH YEAR OF SERVICE

2.2L - J@	35,074	0.32	4.0	0.24	1.58	10.63	2.19
RETEST	35,100	0.29	3.4	0.24	1.58	9.84	2.23
2.2L - J	31,195	0.21	3.2	0.16	1.50	11.67	1.96
2.2L - L*	44,319	0.16	2.4	0.22	1.44	10.48	2.08
2.2L - L*	41,699	0.18	2.6	0.20	1.44	10.13	2.00
2.2L - L*	30,448	0.16	2.5	0.17	1.31	10.82	1.75

@= INVALID DIURNAL

* = SIMILAR TO ADP VEHICLE

SAF/PCC REV 08-09-95

CALIFORNIA REALITY CHECK SUMMARY

1992 APV's

GM CONFIDENTIAL

		TAILPIPE			E	NGINE C	DUT
ENG FAMILY	MILES	NMHC	со	NOx	HC	со	NOx
N3G3.1X5XA48	IU STD	0.41	6.7	1.00			

SECOND YEAR OF SERVICE

3.1L - UVAN*	19,582	0.13	3.6	0.42	1.82	13.07	2.04
3.1L - UVAN*	23,581	0.18	5.5	0.50	1.73	12.68	2.31
3.1L - UVAN*	18,924	0.18	5.7	0.21	2.14	13.48	1.73
3.1L - UVAN*	12,569	0.15	4.1	0.27	2.02	13.38	1.91
3.1L - UVAN*	20,667	0.21	6.0	0.26	2.11	14.57	2.19

THIRD YEAR OF SERVICE

3.1L - UVAN*	32,257	0.22	6.5	0.24	2.20	15.38	2.26
3.1L - UVAN*	30,318	0.21	5.1	0.11	2.25	14.14	1.97
3.1L - UVAN*	29,198	0.16	4.6	0.28	1.84	13.65	2.34
3.1L - UVAN*	31,289	0.19	5.6	0.27	1.98	15.31	2.54
3.1L - UVAN*	37,235	0.24	5.5	0.31	2.08	15.20	2.78

FOURTH YEAR OF SERVICE

3.1L - UVAN*	41,139	0.15	4.0	0.56	1.87	13.42	2.56
3.1L - UVAN*	53,312	0.18	5.3	0.46	1.92	14.17	2.59
3.1L - UVAN*	49,998	0.15	4.1	0.37	1.76	13.07	2.35
3.1L - UVAN*	40,561	0.18	4.6	0.22	2.16	13.62	1.98
3.1L - UVAN*	53,348	0.27	(7.1)	0.20	2.23	15.71	2.23

* = SIMILAR TO ADP VEHICLE

.

SAF/PCC REV 10-25-95

Ann IIp22

CALIFORNIA REALITY CHECK SUMMARY

1992 S/T UTILITIES

GM CONFIDENTIAL

		TAILPIPE			ENGINE OUT		
ENG FAMILY	MILES	NMHC	со	NOx	HC	со	NOx
N3G4.3XBXE31	IU STD	0.41	6.7	1.00			

SECOND YEAR OF SERVICE

4.3L - S UTIL	25,035	0.24	4.0	0.56	2.39	17.75	1.78
4.3L - S UTIL	10,497	0.22	3.1	0.58	2.56	15.00	1.78
4.3L - S UTIL	24,515	0.19	2.4	0.64	2.46	13.48	1.54
4.3L - T UTIL*	25,248	0.25	2.2	0.54	2.30	13.33	1.62
4.3L - T UTIL*	12,768	0.28	2.9	0.44	2.71	15.51	2.16
4.3L - T UTIL*	28,295	0.34	4.5	0.77	2.56	16 .01	2.02

THIRD YEAR OF SERVICE

4.3L - S UTIL	20,515	0.20	1.8	0.50	2.23	13.05	1.56
4.3L - T UTIL*	26,903	0.21	2.7	0.84	2.80	16.07	1.92
4.3L - S UTIL	37,354	0.24	3.7	0.59	2.34	15.77	1.78
4.3L - T UTIL*	30,741	0.32	5.5	0.64	2.64	21.22	1.92
4.3L - T UTIL*	22,279	0.23	2.9	0.56	2.97	19.36	1.86
4.3L - T UTIL*	46,705	0.23	3.1	0.50	2.63	16.45	1.77

FOURTH YEAR OF SERVICE

4.3L - T UTIL*	34,025	0.30	3.0	0.40	2.95	20.75	1.57
4.3L - S UTIL	37,151	0.31	5.5	0.44	2.35	18.56	1.41
4.3L - T UTIL*	40,398	0.28	3.2	0.90	2.78	14.71	1.78
4.3L - T UTIL*	30,875	0.27	3.0	0.60	2.91	17.94	1.90
4.3L - T UTIL*#	36,304	0.30	4.5	0.47	2.64	19.18	1.74
RETEST	36,369	0.31	4.6	0.50	2.59	19.20	1.65

- INVALID - DIURNAL FUEL TEMP OUT OF RANGE

* = SIMILAR TO ADP VEHICLE

SAF/PCC REV 08-24-95

11/8/95

1993 J CARS

GM CONFIDENTIAL

		TAILPIPE			ENGINE OUT		
ENG FAMILY	MILES	NMHC	со	NOx	HC	со	NOx
P1G2.0W8JF15	IU STD	0.32	5.2	0.55			

SECOND YEAR OF SERVICE

2.0L - J*	13,502	0.12	1.9	0.19	1.25	13.22	2.16
2.0L - J*	16,484	0.10	1.5	0.17	1.18	12.36	1.63
2.0L - J*	12,503	0.10	1.2	0.17	1.19	12.75	1.63
2.0L - J*	10,059	0.13	1.6	0.13	1.27	13.06	1.88
2.0L - J*@	17,7 0 0	0.08	1.5	0.12	1.00	12.89	1.36
RETEST	18,541	0.08	1.2	0.15	1.00	12.85	1.45

@ - DATA INVALID - VEHICLE TESTED AT WRONG WEIGHT

THIRD YEAR OF SERVICE

2.0L - J*		34,595	0.10	1.6	0.26	0.96	12.17	1.75
2.0L - J*		29,224	0.11	1.5	0.23	1.19	12.39	2.07
2.0L - J*		34,674	0.10	1.5	0.21	0.95	11.95	1.44
2.0L - J*		40,893	0.13	2.3	0.15	1.11	12.73	1.36
2.0L - J*	•	47,055	0.11	1.5	0.34	1.08	12.41	1.73

FOURTH YEAR OF SERVICE

* = SIMILAR TO ADP VEHICLE

.

11/8/95 **1993 W CARS**

GM CONFIDENTIAL

		TAILPIPE			ENGINE OUT		
ENG FAMILY	MILES	NMHC	co	NOx	HC	со	NOx
P1G3.1W8MCF5	IU STD	0.32	5.2	0.55			

SECOND YEAR OF SERVICE

3.1L - W*	12,392	0.16	1.9	0.12	2.62	11.44	1.50
3.1L - W*	17,637	0.13	2.1	0.17	2.67	12.52	1.78
3.1L - W*	13,934	0.15	2.1	0.11	2.51	12.37	1.73
3.1L - W*	24,420	0.15	3.0	0.14	2.60	13.34	1.40
3.1L - W*	22,145	0.14	2.5	0.15	2.58	12.31	1.47

THIRD YEAR OF SERVICE

3.1L - W *#	34,386	0.14	1.7	0.50	2.91	43.18	0.99
RETEST @	34,414	0.14	2.4	0.50	2.95	46.29	0.96
RETEST	34,440	0.15	1.3	0.13	2.76	11.17	1.18
3.1L - W*\$	35,075	0.14	2.1	0.14	NA	NA	NA
RETEST	35,101	0.13	1.7	0.16	2.38	11.52	1.46
3.1L - W*	24,325	0.14	2.0	0.11	2.66	12.26	1.54
3.1L - W*	26,358	0.13	1.7	0.16	2.52	10.98	1.61
3.1L - W*	22,232	0.20	2.1	0.38	2.71	11.76	2.05

FOURTH YEAR OF SERVICE

- INVALID - NO SIDE COOLING
 @ - VACUUM HOSE FROM MANIFOLD TO AIR MANAGEMENT VALVE WAS PINCHED
 \$ - INVALID - CE SAMPLE PUMP NOT WORKING PROPERLY

* = SIMILAR TO ADP VEHICLE

App TTO.

11/8/95

1993 M VANS

GM CONFIDENTIAL

,		T/	AILPIP	E	ENGINE OUT			
ENG FAMILY	MILES	NMHC	со	NOx	HC	со	NOx	
P3G4.3X5XG38	IU STD	0.41	6.7	1.0				

SECOND YEAR OF SERVICE

ł,

4.3L - M*	18,498	0.22	3.1	0.68	2.80	14.32	2.91
4.3L - M*	12,304	0.14	1.5	0.60	2.51	11.77	2.75
4.3L - M*	24,462	0.16	2.0	0.61	2.23	12.35	2.64
4.3L - M*	15,427	0.13	1.5	0.85	2.30	12.88	2.90
4.3L - M*	17,972	0.15	1.6	0.66	2.56	11.81	2.74
4.3L - M*	12,411	0.15	1.9	0.94	2.60	12.22	3.29

THIRD YEAR OF SERVICE

4.3L - M*		37,577	0.20	2.7	0.80	2.42	11.84	2.82
4.3L - M*	ì	37,417	0.18	2.6	0.72	2.46	11.83	2.41
4.3L - M*		29,865	0.17	2.4	0.48	2.48	13.51	2.75
4.3L - M*		33,395	0.18	1.9	0.70	2.42	11.93	2.80
4.3L - M*	3	25,720	0.15	2.0	0.83	2.61	11.69	3.22

FOURTH YEAR OF SERVICE

AppIllo 26

11/8/95 **1993 CADILLAC's**

GM CONFIDENTIAL

		TAILPIPE			ENGINE OUT		
ENG FAMILY	MILES	NMHC	со	NOx	HC	со	NOx
P1G4.6W8XEB8	IU STD	0.39	7.0	0.7	(TIEF	R 0)	

SECOND YEAR OF SERVICE

4.6L - E\$	12,194	0.14	1.5	0.07	2.29	14.90	1.29
RETEST	12,220	0.11	1.4	0.09	2.23	14.57	1.28
4.6L - E	19,135	0.17	1.9	0.08	3.83	22.18	1.55
4.6L - K*	11,654	0.14	1.7	0.16	3.79	19.03	1.65
4.6L - K*	15,266	0.14	1.6	0.18	2.96	16.73	1.22
4.6L - K*	10,970	0.10	1.1	0.14	2.36	13.74	1.40

THIRD YEAR OF SERVICE

4.6L - E	35,404	0.22	2.0	0.30	3.43	17.44	1.79
4.6L - E%	39,168	0.20	2.2	0.17	3.09	18.65	1.35
RETEST	39,194	0.23	2.2	0.13	3.02	18.48	1.29
4.6L - K*	26,412	0.15	1.3	0.26	3.39	17.56	1.31
4.6L - K*	48,475	0.27	3.1	0.33	3.04	16.27	1.82
4.6L - K*	31,102	0.16	1.6	0.18	2.88	15. 26	1.30

FOURTH YEAR OF SERVICE

* = SIMILAR TO ADP VEHICLE

3

\$ = NON OEM GAS CAP

% = FUEL LINE TO CANISTER WAS DISCONNECTED

AAP TIOZ

11/8/95

1993 C/K PICKUPS

GM CONFIDENTIAL

		T/	TAILPIPE ENGINE OUT							
ENG FAMILY	MILES	NMHC	со	NOx	HC	со	NOx			
P3G5.7X5XG59	IU STD	0.41	6.7	1.0						

SECOND YEAR OF SERVICE

5.7L - C	22,901	0.23	2.5	0.50	2.59	17.58	1.41
5.7L - C*	23,776	0.24	2.2	0.37	3.10	16.30	1.28
5.7L - C*	15,453	0.24	2.4	0.44	2.64	14.84	1.36
5.7L - C*	29,254	0.29	3.6	0.64	3.09	18.63	2.05
5.7L - C	14,192	0.24	2.0	0.31	3.24	18.07	1.37

THIRD YEAR OF SERVICE

5.7L - C*	41,199	0.30	3.1	0.47	3.07	17.16	1.36
5.7L - C*#	41,180	0.43	5.5	0.70	3.24	16.73	1.86
RETEST	41,207	0.33	4.9	0.60	2.97	16.93	1.53
5.7L - C*	31,740	0.31	2.8	0.48	3.50	16.77	2.12
5.7L - C*	,45,864	0.32	3.5	0.54	3.33	19.03	1.70
5.7L - C*	33,730	0.29	4.1	0.53	3.03	17.34	1.69

FOURTH YEAR OF SERVICE

= IGNITION TIMING NOT SET TO SPEC - RESET

KAPT102:

1994 - SECOND YEAR OF SERVICE

GM CONFIDENTIAL

		TAI	LPIPE			EN	IGINE OL	JT
ENG FAMILY	MILES	NMOG	со	NOx	нсно	HC	СО	NOx
R1G2.2V7G2EA	IU STD	0.188	3.4	0.4	0.023			
2.2L - J*	12,554	0.056	0.9	0.34	0.002	1.19	10.83	2.44
2.2L - J*	20,420	0.059	1.2	0.21	0.001	1.08	10.55	2.19
2.2L - J*&	16,915	0.065	1.1	0.18	0.001	1.20	10.12	2.21
RETEST	16,941	0.063	1.4	0.17	0.001	1.21	10.33	2.13
2.2L - J*	23,338	0.056	0.7	0.21	0.002	1.22	9 .83	2.21
2.2L - J*	25,332	0.054	0.9	0.19	0.001	1.14	10.32	1.82

& - FOUND CANISTER PURGE HOSE OFF AT PURGE SOLENOID PHASE 2 FUEL USED AND RAF OF 0.98

		ΤΑΙ	LPIPE		EN	GINE O	JT
ENG FAMILY	MILES	NMHC	СО	NOx	HC	со	NOx
R1G4.6VJG1EA	IU STD	0.32	5.2	0.55			
4.6L - K	18,325	0.17	1.4	0.06	3.40	14.15	1.77
4.6L - KSP*	21,368	0.12	1.1	0.13	4.04	19.55	1.84
4.6L - K@	15,639						
RETEST	15,663	0.13	0.8	0.28	3.13	13.11	1.61
4.6L - KSP*	19,357	0.12	1.3	0.25	4.17	18.56	1.65
4.6L - KSP*	14,017	0.14	1.2	0.52	3.79	16.62	1.87

@ - INVALID - TEST ABORTED PHASE 3 - TRACTION CONTROL LIGHT CAME ON

		TA	ILPIPE		EN	GINE OL	JT
ENG FAMILY	MILES	NMHC	CO	NOx	HC	со	NOx
R1G4.9V8G1EA	IU STD	0.32	5.2	0.55			
4.9L - K*	18,565	0.17	2.8	0.11	2.86	15.80	1.38
4.9L - K*	20,840	0.12	2.1	0.38	2.74	15.27	1.87
4.9L - K*	19,868	0.14	2.2	0.16	2.81	16.02	1.29
4.9L - K*	13,730	0.12	1.9	0.18	2.78	15.11	1.45
4.9L - K*	14,431	0.14	2.0	0.14	3.03	15.93	1.49

* = SIMILAR TO ADP VEHICLE

1994 - SECOND YEAR OF SERVICE

GM CONFIDENTIAL

		TAI	LPIPE		EN	GINE OL	JT
ENG FAMILY	MILES	NMHC	СО	NOx	HC	со	NOx
R3G3.125GFEA	IU STD	0.41	6.7	1.0			
3.1L - UVAN*	27,128	0.17	3.3	0.37	2.15	13.03	2.92
3.1L - UVAN*	16,743	0.17	3.0	0.23	2.09	12.13	3.08
3.1L - UVAN*&	12,778	0.14	2.3	0.14	2.27	11.40	4.22
RETEST	12,804	0.14	2.5	0.13	2.19	11.77	4.05
3.1L - UVAN*	12,940	0.13	2.3	0.25	2.28	11.15	3.41
3.1L - UVAN*	14,306	0.14	2.8	0.19	2.05	12.17	2.94

& - INVALID - SHED BROKE DURING DIURNAL

.

3

* = SIMILAR TO ADP VEHICLE

Relayed Par Sto Cont D. Cond

LC!

EAB	March 3, 1997	ML-RG234
SB LS FYI None 3/6/27 Sc Jane	Ms. Jane Armstrong, Director Vehicle Programs & Compliance Division Office of Mobile Sources U.S. Environmental Protection Agency 2565 Plymouth Rd. Ann Arbor, MI 48105	
Andy Brooks	Dear Ms. Armstrong:	
	Subject: Reality Check Emission Test Data	୦% ୯୩ ଅଟନ ସହ

General Motors Corporation submits the attached in-use verification (reality check) emission test data for three Federal 1994 model year engine families and one California 1993 model year carryover engine family certified using the GM alternate durability process (ADP). The three 1994 Federal engine families are: (1) R1G2.2V7GFEA/R1G2.2V7GEEA, (2) R1G3.1V8GFEA and (3) R1G4.6VJGAEA. The 1993 California family is P1G2.0W8JF15 (this 1993 reality check data is being carried over to support 1994 engine family R1G2.0V7GFEA).

Reality check testing for the subject families for the third year of service was completed at our Milford Proving Ground vehicle emission laboratory. The California family (fourth year of service) and family R1G3.1V8GFEA were tested at our Los Angeles vehicle emission laboratory.

No vehicles were rejected after initial procurement and no OBD or stored codes were observed. The test procedure used was the normal FTP with a double prep. For each engine family, both exhaust tail pipe and engine out emission data, if available, are provided as part of this submission. In response to our letter ML-GM495, approval was given to discontinue engine out emission testing on December 10, 1996.

Please call Steve Fogle of my staff on (810) 685-5145 if you have any questions regarding this information.

Sincerely,

R.C. Harof

R. C. Harvey Project Manager **Powertrain Control Center**

RCH/SAF/ks c: D. J. Good

AnoTTo 31

EAB LH PK (Andy Brooks) Orig - + FH

FYI - 1% passed

Dave 4/27/98

April 15, 1998

AHCERT-982500

Ree !! \$/2

۹ر

Director Certification Division (EPA-335) Mobile Source Air Pollution Control U.S. ENVIRONMENTAL PROTECTION AGENCY 2565 Plymouth Road Ann Arbor, MI 48105

ATTENTION: Mr. Dave Good

Dear Sir:

Enclosed is the report of the results of our first Reality Check test program conducted on 1997 model year Acura 3.0CL vehicles.

The exhaust emission test results are all satisfactory.

1

Yours truly,

AMERICAN HONDA MOTOR CO., INC.

Brian Gill Assistant Vice President Product Regulations Compliance, Certification

BG/llw

Enclosure(s)

Honda Motor Co., Ltd.

Annual Report on In-use Verification Program

Model Year : 1997 1st (10k to 30k-mile interval) Program Term : VHN3.0VJGKEK (49-State, Tier-1) Engine Family : Model : Acura 3.0CL (AT) American Honda Ann Arbor Laboratory (MI) #2 Cell Test Cell : Test Fuel :Indolene 6.8gal

V.ID.	VIN	Test No.	Test Date	ETW (lbs)	HPa (HP)	Odometer (miles)	NMHC (g/mile)	NMOG (g/mile)	CO (g/mile)	NOx (g/mile)	HCHO (g/mile)	Remarks
R97AZF1	19UYA225XVL011468	1	02/10/98	3625	7.0	11,414	0.088		0.49	0.14		
R97AZF2	19UYA2253VL010193	1	02/11/98	3625	7:0	13,874	0.082		0.55	0.15		Slave tires were used due to deformed wheel.
R97AZF3	19UYA2244VL007827	1	02/11/98	3625	7.0	15,461	0.091		0.52	0.19		
R97AZF4	190YA2256VL009295	1	02/17/98	3625	7.0	15,202	0.089		0.60	0.24		
R97AZF5	19UYA2254VL005178	1	02/17/98	3625	7.0	16,489	0.087		0.60	0.16		
Other speci	at procedures			50K 1	tier 1	Stds:	, 25		3.4	.4		

. ·

Other special procedures

Canister loading method : 2g breakthrough, off-vehicle

6-hour(min.) soak : omitted

Continuous analysis : diluted exhaust gas sample and compensation of CVS flow volume

Annillo3

Honda Motor Co., Ltd.

Annual Report on In-use Verification Program

Model Year : 1997 Program Term : 1st (10k to 30k-mile interval) Engine Family : VHN3.0VJG2EK (California, TLEV) Model : Acura 3.0CL (AT) Honda R&D of America (CA) #1 Cell Test Cell : Test Fuel : Phase2 6.8gal

V.ID.	VIN	Test No.	Test Date	ETW	HPa	Odometer	NMHC	NMOG *1	CO	NOx	HCHO *2	Remarks
1	1			(lbs)	(HP)	(miles)	(g/mile)	(g/mile)	(g/mile)	(g/mile)	(g/mile)	
R97AZL1	19UYA224XVL002129	1	03/03/98	3625	7.0	16,603	0.0651	0.0669	0.66	0.14	0.0018	
R97AZL2	19UYA2241VL002147	1	03/04/98	3625	7.0	11,241						Void *3
		2	03/05/98	3625	7.0	11,250	0.0790	0.0812	0.95	0.13	0.0022	
R97AZL3	19UYA2241VL012662	1	03/04/98	3625	7.0	14,377	0.0803	0.0825	0.82	0.12	0.0022	
R97AZL4	19UYA2241VL012628	1	03/10/98	3625	7.0	11,327	0.0712	0.0731	0.67	0.15	0.0019	
R97AZL5	19UYA224XVL005385	1	03/10/98	3625	7.0	15,630	0.0663	0.0681	0.50	0.15	0.0018	Slave tires were used due to nail-stuck.
*1. NMOG -	= NMHC x Rationnocanalic	(1 0482) v	RAE(0.98)	50K	TLE	v stós;		. 125	3.4	•4	, 015	

*1: NMOG = NMHC x Rationmog/NMHc[1.0482] x RAF[0.98]

*2: HCHO = NMHC x RatioHCHOMMHC[0.0273]

*3: The engine failed to start due to the ignition wire disconnected during the canister removal and installation.

Other special procedures

Ano DA.

Canister loading method : 2g breakthrough, off-vehicle 6-hour(minimum) soak : omitted Continuous analysis : direct exhaust gas sample and return to CVS

Annual Report on In-use Verification Program

Procurement Information

V.ID.	VIN	A/C	Trans.	City, State					An	swers	for que	stior	nair	e *1							Remarks	Result
					1	2	3	4-a)	4-b)	4-c)	4-d)	5	6	7	8	9	10	11	12	13		
R97AZF1	19UYA225XVL011468	Y	AT	Ann Arbor, MI	N	N	11,100	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZF2	19UYA2253VL010193	Y	AT	Ann Arbor, MI	N	N	15,000	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZF3	19UYA2244VL007827	Y	AT	Plymouth, MI	N	N	14,000	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZF4	19UYA2256VL009295	Y	AT	Ann Arbor, MI	N	N	15,030	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZF5	19UYA2254VL005178	Y	AT	Plymouth, MI	N	N	16,000	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZL1	19UYA224XVL002129	Y	АТ	Long Beach, CA	Ń	N	16,253	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZL2	19UYA2241VL002147	Y	AT	Whitter, CA	N	N	11,000	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZL3	19UYA2241VL012662	Y	AT	Diamond Bar, CA	N	N	13,500	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZL4	19UYA2241VL012628	Y	AT	LA Palma, CA	N	N	10,771	N	N	N	N	N	N	N	N	N	N	N	N	N		Accept
R97AZL5	19UYA224XVL005385	Y	AT	Los Angeles, CA	N	N	15,089	N	N	N	N	N	N	N	N	N	N	N	N	N	AT replaced	Accept

The vehicles were procured by Automotive Testing and Development Services Inc., (ATDS) in Michigan and California. The vehicles were randomly selected using state registration information from R.L.Polk.

No vehicles were rejected. No MIL illumination were found.

*1: Refer to attached format of Telephone Questionnaire.

Honda Motor Co., Ltd.

Annual Report on In-use Verification Program

Telephone Questionnaire

Date:	Air Conditioning:	DYES , DNO	Transmission:	□AUTO , □MANUAL
Vehicle:			Phone	(Home):
Owner:	······		Times	:
Address:	······)
City/State/Zip			Times	: <u></u>
VIN:		License	Plate	State

No.	Question	Answer	Reject Criteria
1	Has the speedometer/odometer ever failed to work?	□Yes □No	Yes
2	Has the speedometer been replaced?	DYes DNo	Yes
3	What is the odometer reading? 1/ 21st interval : 10,000 to 30,000 miles 2nd interval : 20,000 to 50,000 miles 3rd interval : 40,000 to 70,000 miles (Pre-selected by mfr.)	miles	Out of listed range <u>1</u> /
4	<pre>Have you used your vehicle for any of the following activities? a) As a taxi? b) As a commercial delivery vehicle? c) To race in competitive speed events? d) To plow snow?</pre>	QYes QNo QYes QNo QYes QNo QYes QNo	Yes
5	Do you often pull a trailer? If yes, what is the trailer weight?	Yes ONO	more than <u>1000</u> Lbs (Mfr. fills)
6	Have you ever operated your vehicle on leaded gasoline?	OYes ONo	Yes
7	Has your vehicle ever been involved in a significant accident or flood damage?	QYes ONO	Yes
8	Is any performance equipment installed? or, Have you ever installed? (e.g., power-improve devřce or lowered suspension)	OYes ONo	Yes
9	Is there any history of major engine repair such as piston, crankshaft, cylinder head or engine block replacement?	OYes ONo	Yes
10	Has the catalytic converter of your vehicle ever been replaced or missing?	QYes QNo	Yes
11	Are there any ominous noises or serious leaks of coolant, oil or fuel from engine or transmission?	QYes QNo	Yes
12	Are there any leaks from the exhaust system?	OYes ONo	Yes
13	Does the check engine indicator flash (not turn on) when you drive?	□Yes □No	Yes

HONDA 1997 3.0CL 1st Program

Ford Motor Company Environmental and Safety Engineering Vehicle Environmental Engineering The American Road Room 252 WHQ Dearborn, Mi 48121

October 22, 1997

Mr. Thomas M. Ball, Chief United States Environmental Protection Agency 2565 Plymouth Road Ann Arbor, MI 48105

Dear Mr. Ball:

١

Ford Motor Company (Ford) plans to begin testing Reality Check vehicles for the 1996 MY ADP family TFM4.6VJGFFL October 27, 1997. Attached, please find the list of the in-use vehicle configurations Ford plans to test.

Please contact Ms. Peg Gutmann at (313) 594-1035 if you have any questions.

1

Sincerely,

m aliana

D. W. Berens, Manager Surveillance and Compliance Department

Apo Ilo:

1996 FINAL REALITY CHECK VEHICLE SELECTION

FORD TFM4.6VJGFFL ENGINE FAMILY Carline: MARK VIII

<u>Configuration</u>	<u>Calibration</u>	Axie	<u>Transmission</u>	ETW	Sales	<u>% of Sales</u>	# of vehicles required	Actual # of vehicles <u>required</u>
1	6-38L	3.07	AUTO	4000	7357	76%	3.81	4
2	6-38K	3.27	AUTO	4000	2290	24%	1.19	1
			0	Total:	9647]		

EPA Criteria: -5 vehicles selected based on calibration, axle, ETW, transmission and sales weight.

Result:: - 5 vehicles from 2 configurations were selected.

400 IT038

70/22/97

1996 MY Reality Check TFM4.6V8GFEL - 4.6L Crown Vic/Grand Marq/Town Car Test Vehicle Configurations

Configuration	Model	Calibration	Âxie ,	Trans	ETW	Actual Sales	Percent of Sales	Vehicle Estimate	Number of Test Vehicles Required
1	Crown Victoria Grand Marquis	6-18F	2.73	Auto	4000	110,631	55.3%	2.8	3
2	Town Car	6-18J	3.08	Auto	4250	54,788	27.4%	1.4	1
3	Crown Victoria Police	6-181	2.73	Auto	4250	52,359	Not Eligible	Not Eligible	Not Eligible
4	Town Car	6-18E	2.73	Auto	4250	19,619	9.8%	0.5	1
5	Crown Vic. Grand Marq.	6-18H	2.73	Auto	4000	15,059	7.5%	0.4	0
			Total E	Engine Far	nily Sales:	252,456			· ·

Selection Criteria: Five vehicles are selected based on proportional sampling. Total sales for calculations is 200,097 Configuration #3 not eligible, fleet vehicles.

CC: Andy Brodes Safety Engineering Ford Motor Company (Pete K)

Trina

1

Room 252 WHQ The American Road Dearborn, Michigan 48121

December 8, 1997

(EAB, LH) Mr. Thomas M. Ball, Chief United States Environmental Protection Agency 2565 Plymouth Road Dave Bord Ann Arbor, MI 48105

12/8/97 Dear Mr. Ball:

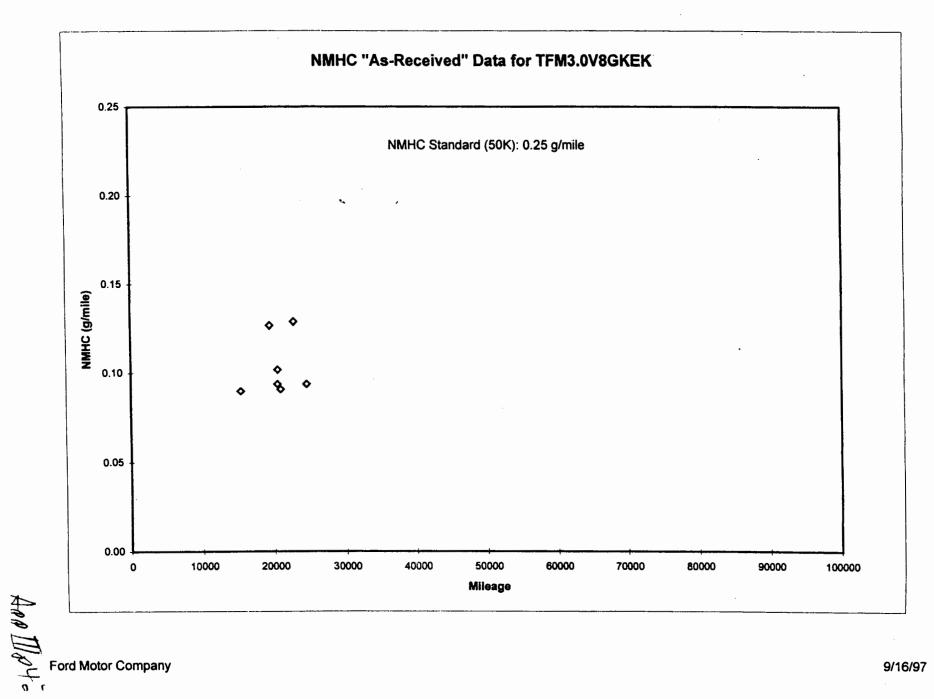
Attached are the Alternate Durability Program (ADP) Reality Check reports for the 1996 MY Engine Families TFM3.0V8GKEK and TFM4.6VJGFFL. The customer vehicles tested were in their second year of customer service with mileage between 10,000 and 30,000 miles. The report contains plots of the emission data, the logs of the vehicle emissions data and maintenance, the OBD diagnostic codes report, and the procurement summary. Performance of the statistical outlier analysis indicated no outlier data points for either engine family.

The report for the TFM3.0V8GKEK engine family includes data for seven vehicles in their second year of service. Also included are data for four vehicles which were void due to incorrect dynamometer horsepower. One vehicle was rejected due to the customer having possibly created a surge to the vehicles computer, by jumping the vehicle with the cables connected reversed.

The report for the 1996 MY engine family TFM4.6VJGFFL includes data for five vehicles in their second year of service. One vehicle was rejected due to low oil.

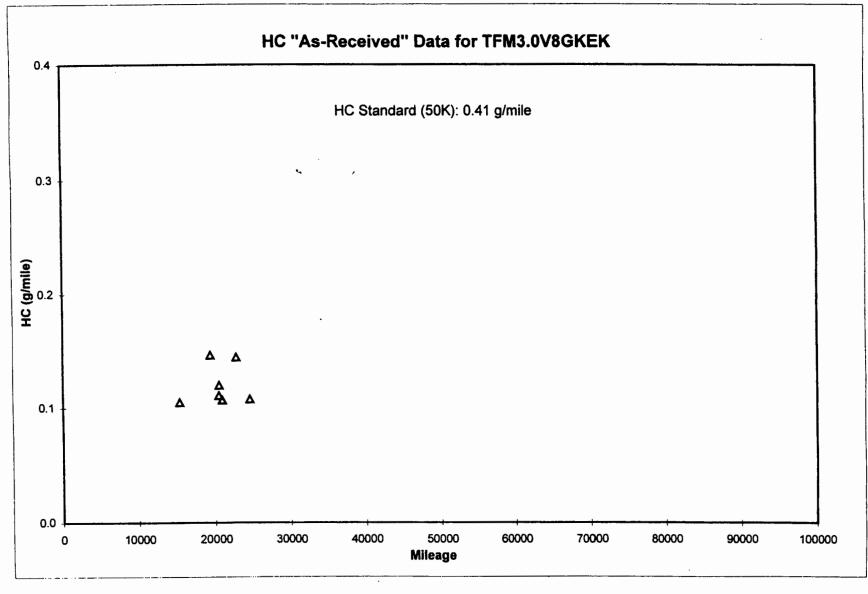
If you have any questions or comments concerning this information please contact me.

Sincerely,

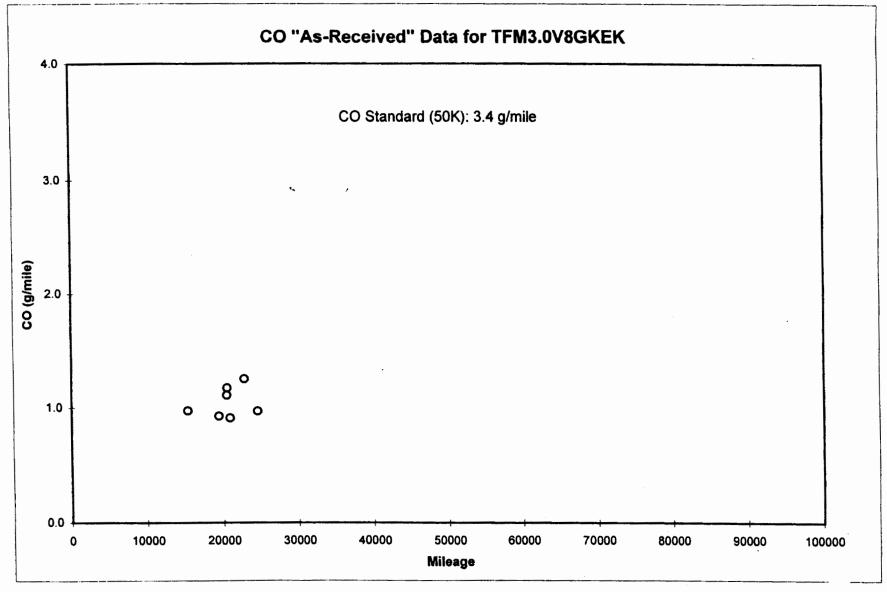

D. W. Berens, Manager Surveillance & Compliance

Anto

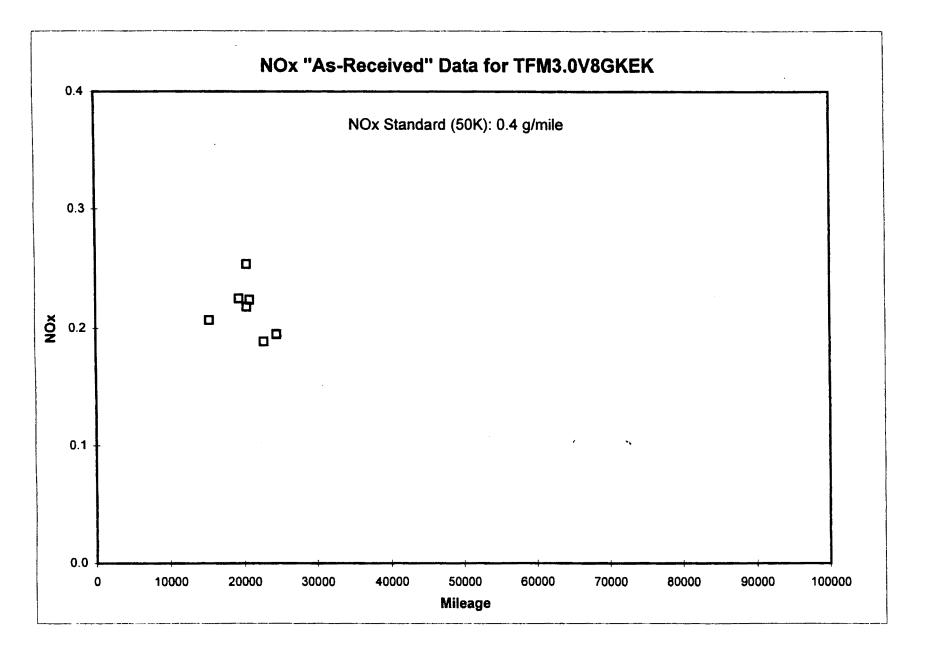
TFM3.0V8GKEK


AnnIL 4/

ATTACHMENT I


Ford Motor Company

ATTACHMENT II


AnD TTIN 4.

ATTACHMENT III

Ano May 3

ATTACHMENT IV

Ford Motor Company

9/16/97

ATTACHMENT V

Vehicle Emission Data and Maintenance Engine Family TFM3.0V8GKEK (First Year Report)

		Engine Family	In Service	Model Yr.	Test Loc.	1	Fest Condition	on			
		TFM3.0V8GKEK	2	1996	CTL	L	oaded Can	ister			
racking No.	Test No.	Test Date			Final Emissi	on Levels	(g/mile)				T T
Model	VIN	Actual HP									
Body Style	Calibration	ETW	NMHC	<u>†</u>	HC	C		<u> </u>	NOx	Test Type	Comments
ODO	Trans	Shift Sched.	Total	Total	Eng. Out	Total	Eng. Out	Total	Eng. Out		
VF0101	1	9-Jul-97	0.095	0.109		0.99		0.21		As Received	Tested at incorrect
AURUS GL	1FALP52U9TG284834	6.4									horsepower.
SEDAN	610BR11A	3625	•	,							
14753	Α	NA	•								
VF0101	2	11-Jul-97	0.093	0.107	2.063	0.78	10.66	0.21	2.26	Feedgas	Tested at incorrect
TAURUS GL	1FALP52U9TG284834	6.4									horsepower.
SEDAN	610BR11A	3625									
14772		NA NA									
VF0102	1	10-Jul-97	0.094	0.109		0.73		0.22		As Received	d. Tested at incorrect
AURUS GL	1FALP52U3TG292007	6.4									horsepower.
SEDAN	610BR11A	3625									
13662	Α	NA									
VF0102	2	# 15-Jul-97	0.087	0.103	1.782	0.69	10.34	0.23	2.29	Feedgas	Tested at incorrect
AURUS GL	1FALP52U3TG292007	6.4									horsepower.
SEDAN	610BR11A	3625									
13681	A	NA									
VF0103	1	17-Jul-97	0.110	0.125		0.81		0.24		As Received	Valu. Tested at incorrect
TAURUS GL	1FALP52U3TG281668	6.4									horsepower.
SEDAN	610BR11A	3625									
14169	A	NA									
VF0103	2	23-Jul-97	0.099	0.113	1.962	0.94	10.59	0.22	2.36	Feedgas	Tested at incorrect
TAURUS GL	1FALP52U3TG281668	6.4								_	horsepower.
SEDAN	610BR11A	3625									
14188	A	NA NA									
VF0104	1	19-Jul-97	0.102	0.129		1.42		0.27		As Received	wid. Tested at incorrect
TAURUS GL	1FALP52U9TG145187	6.4									horsepower.
SEDAN	610BR06A	3625									
20628	A	NA									
VF0105	1	25-Jul-97	0.128	0.145		1.25		0.19		As Received	
SABLE GS	1MELM50U1TG65594	3 6.4	1								
SEDAN	610AR11A	3625								1	
22795	A	NA	l								
		÷	.25	,41				.4			
SA Ford N	lotor Company	uker (1)		1	1 of 3	3.4	+	.4			9/16/97
		al and the second se									

ATTACHMENT V

Vehicle Emission Data and Maintenance Engine Family TFM3.0V8GKEK (First Year Report)

Tracking No.	Test No.	Test Date			Final Emissi	on Levels	(g/mile)				
Model	VIN	Actual HP				_	_				
Body Style	Calibration	ETW	NMHC	-	HC		<u>:0</u>	_		Test Type	Comments
ODO	Trans	Shift Sched.	Total	Total	Eng. Out	Total	Eng. Out	Total	Eng. Out		
VF0106	1	29-Jul-97	0.102	0.120		1.17		0.25		As Received	
SABLE GS	1MELM50UXTG663006	6.4									
SEDAN	610AR11A	3625									
20534	A	NA									
VF0107	1	31-Jul-97	0.094	0.110		1.11		0.22		As Received	
TAURUS GL	1FALP52U1TG250497	6.3									•
SEDAN	610BR11A	3625		,							
20495	A	NA									
VF0107	2	f 5-Aug-97	0.084	0.098	1.776	0.84	10.57	0.22	2.43	Feedgas	
TAURUS GL	1FALP52U1TG250497	6.3									
	610BR11A	3625									
20514	A	NA			·					Delivered	
VF0108	1									Rejected	Customer jumped vehicle
TAURUS GL	1FALP52U2TG251786						·				w/ cables reversed.
SEDAN	610BR11A										
				0.108		0.97		0.20		As Received	
VF0109	1 -	6-Aug-97	0.094	0.108		0.97		0.20		AS Received	
TAURUS GL	1FALP52U2TG179827	6.3									
SEDAN	610BR11A	3625									
24558	<u>A</u>	. NA	0.102	0.116	2.119	0.85	9.42	0.21	2.08	Feedgas	
VF0109	2	11-Aug-97 6.3	0.102	0.110	2.110	0.05	J.76	V.Z 1	2.00	recuyas	
TAURUS GL	1FALP52U2TG179827	3625									
SEDAN	610BR11A	NA									
24576	A	8-Aug-97	0.090	0.105		0.97		0.21		As Received	
VF0110	1FALP52U0TG274502	6.3	0.000	0.100		0.01		0.21			
TAURUS GL	610BR11A	3625									
SEDAN		NA NA									
15374	A	13-Aug-97	0.087	0.101	1.804	0.81	10.63	0.21	2.26	Feedgas	
VF0110	2 1FALP52U0TG274502	6.3	0.007	0.101	1.004	0.01			2.20	l	
TAURUS GL	610BR11A	3625	1								
SEDAN	1 4	NA									
15393 VF0111	A	12-Aug-97	0.091	0.107		0.91		0.22		As Received	
TAURUS GL	1FALP52U2TG125427			2							
SEDAN	610BR06A	3625								1	
20919	A	NA									
20313		1	.25	.41			3.0	.5			
1 D	Antor Company		• ب .		2 of 3	2	2 · · · ·				9/16/97
Ford N	Notor Company				2 01 3						3/10/3/

ATTAC	HMENT V		V	Engine Family	Data and Maintenance TFM3.0V8GKEK ear Report)			
Tracking No. Model Body Style ODO	Test No. VIN Calibration Trans	Test Date Actual HP ETW Shift Sched.	<u>NMHC</u> Total	Final Eng. (Total Eng. (mission Levels (g/mile) <u>CO</u> Dut Total Eng. Out	<u>NOx</u> Total Eng. Out	Test Type	Comments
VF0112 SABLE GS SEDAN 19428	1 1MELM50U6TG602140 610AR07A A	14-Aug-97 6.4 3625 NA	0.127	0.147	0.92	0.23	As Received	
	· <u>· · · · · · · · · · · · · · · · · · </u>		,25	. 4 (3,4	, 4		

ATTACHMENT VI

ì

Summary of DTC Codes Engine Family TFM3.0V8GKEK

Vehicle Number	Code(s)	Code Description	Action Taken
VF0101	111-111-111	SYSTEM PASS	NONE
VF0102	111-111-111	SYSTEM PASS	NONE
VF0103	111-111-111	SYSTEM PASS	NONE
VF0104	111-111-111	SYSTEM PASS	NONE
VF0105	111-111-111	SYSTEM PASS	NONE
VF0106	111-111-111	SYSTEM PASS	NONE
VF0107	111-111-111	SYSTEM PASS	NONE
	111-111-111	SYSTEM PASS	NONE
VF0109	111-111-111	SYSTEM PASS	NONE
VF0110	111-111-111	SYSTEM PASS	NONE
VF0111	111-111-111	SYSTEM PASS	NONE
VF0112	111-111-111	SYSTEM PASS	NONE

12

.

Note: A 111-111-111 code indicates system pass (I.e. no diagnostic trouble present).

~

3

.

Summary of Vehicle Procurement and Vehicle Rejections Engine Family TFM3.0V8GKEK, Year 2 of Customer Service

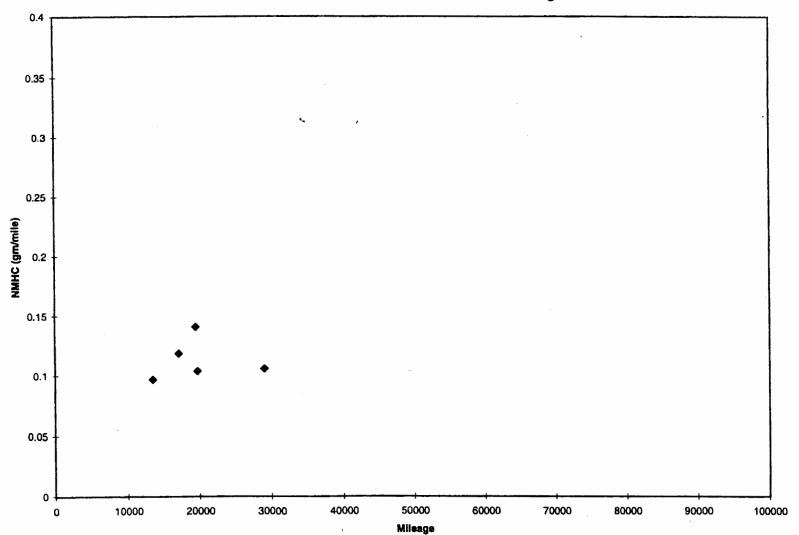
Results of Phone Survey	Number of Vehicles/Notes
Owners contacted	16
Vehicles acceptable	13
Vehicles eliminated	
- Ford Motor Employee	3
Result of Procurement	
Accepted	12
Rejected - Aftermarket Alarm	1
Vehicles Rejected at Laboratory	
Rejected at Laboratory	1
- Vehicle	Approved by LaVonne Skinner, John
jump by customer.	Beadmore contacted 7/29/97.
Outlier Vehicles	(Emission Constituent)
None	None

•

3

÷

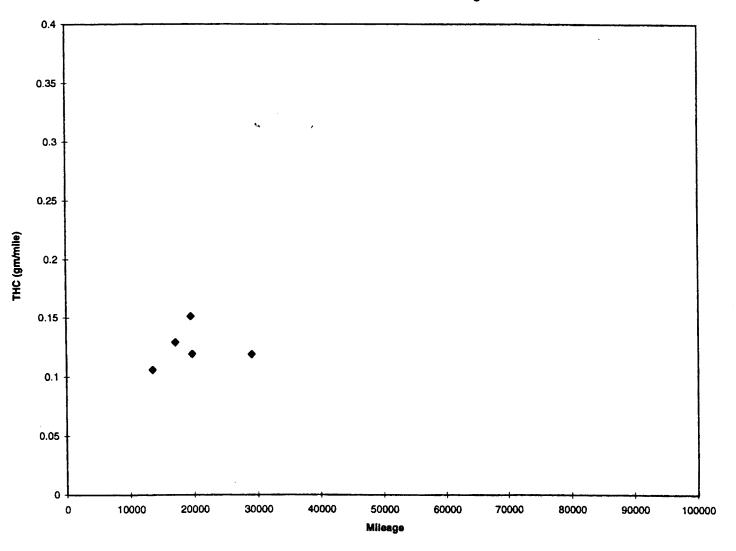
. .


.

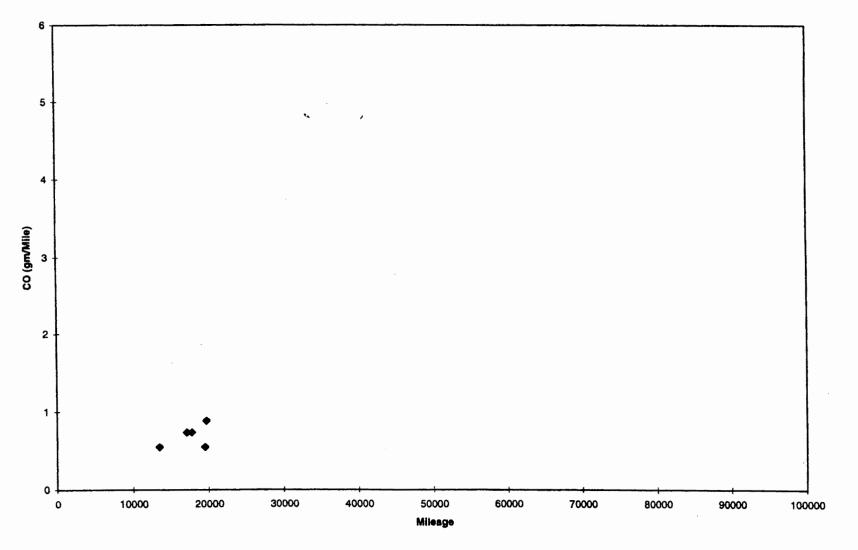
• · · ·

.

TFM4.6VJGFFL


.

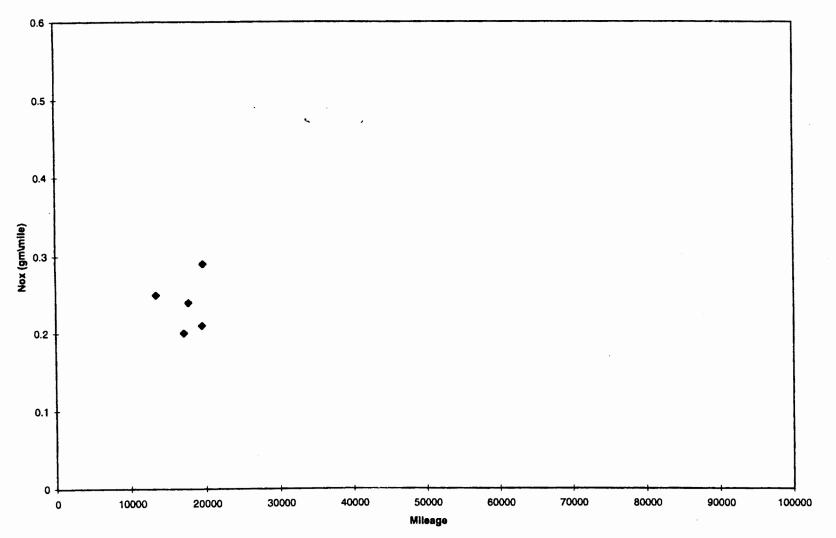
NMHC"As-Receive " Data for TFM4.6VJGFFL NMHC Interim In-use standard @ 50k = 0.32 g/mile


Antho

THC "As-Receive " Data for TFM4.6VJGFFL THC Certification Standard = 0.41 g/mile

A.o Mo52

CO "As-Receive" Data for TFM4.6VJGFFL CO Interim In use Standard @ 50K = 3.4 g/mile



.

Nox "As-Received" Data for TFM4.6VJGFFL Nox Interim In-use Standard @ 50k = 0.4 g/mile

AnoIP

Vehicle Emission Data and Maintenance Engine Family TFM4.6VJGFFL (Second Year Report)

-

Attachment V

Engine Family TFM4.6VJGFFL	Year In Service 2	Model Yr. 1996	Test Location Veh. Operat.	Test Condition				
Tracking No. Model	Test No. VIN	Test Date Actual HP	Final	Emission Level	s (am/mile	a)		
Body Style ODO	Calibration Trans	ETW Shift Sched.	,25 NMHC	بن (THC	ड.२ CO	. 4 NOX	Test Type	Comments
VF0201 Mark VIII Sedan 19566	1 1LNLM91V3TY698752 638LR10A AUTO	11/1/97 7.6 4000 ~ AUTO	0.141 ,	0.151	0.55	0.21	As Received	
VF0202 Mark VIII Sedan 13522	1 1LNLM91V8TY633895 638LR10A AUTO	10/31/97 7.6 4000 AUTO	0.097	0.106	0.55	0.25	As Received	
VF0203 Mark VIII Sedan 17150	1 1LNLM91V9TY724075 638LR10A AUTO	11/5/97 7.6 4000 AUTO	0.119	0.129	0.74	0.20	As Received	
VF0204 Mark VIII Sedan 19767	1 1LNLM91V6TY653241 638LR10A AUTO	11/5/97 7.6 4000 AUTO	0.104	0.119	0.89	0.29	As Received	
VF0205 Mark VIII Sedan	1LNLM91V1TY702796 638KR10A AUTO			· · · · ·			Vehicle Rejected	Oil 1.5 quarts low J. Beardmore contacted
VF0206 Mark VIII Sedan 17803	1 1LNLM91V5TY680091 638KR10A AUTO	11/11/97 7.6 4000 AUTO	0.106	0.119	0.74	0.24	As Received	

Anthos

Attachment VI

Summary of DTC Codes Engine Family TFM4.6VJGFFL

Vehicle Number	Code(s)	Code Description	Action Taken
VF0201	111-111-111	SYSTEM PASSED	NONE
VF0202	111-111-111	SYSTEM PASSED	NONE
VF0203	111-111-111	SYSTEM PASSED	NONE
VF0204	111-111-111	SYSTEM PASSED	NONE
VF0206	111-111-111	SYSTEM PASSED	NONE

Note: A 111-111-111 code indicates system pass (i.e. no diagnostic trouble present)

.

•

1

ì.

AnoTh 57

Summary of Vehicle Procurement and Vehicle Rejections Engine Family TFM4.6VJGFFL, Year 2 of Customer Service

Results of Phone Survey	Number of Vehicles/Notes
Owners contacted	6
Vehicles acceptable	6
Vehicles eliminated (list reasons)	None
Result of Procurement	
Accepted	6
Rejected (list reasons)	None
Vehicles Rejected at Laboratory	
Vehicles rejected at laboratory	1
Vehicle #VF0205 - Low Oil On Dipstick	Approved by Hikmet Alie, John
	Beadmore contacted 11/15/97.
Outlier Vehicles	(Emission Constituent)
None	None

.

1996 MY Reality Check TFM3.0V8FFEK - 3.0L Taurus FFV (Methanol) Test Vehicle Configurations

Configuration	Modei	Calibration	Axie	Trans	ETW	Actual Sales	Percent of Sales	Vehicle Estimate	Number of Test Vehicles Required
1	Taurus FFV	6-10G	3.77	Auto	3750	501	100.0%	5.0	5
			Total	Engine Far	nily Sales:	501			

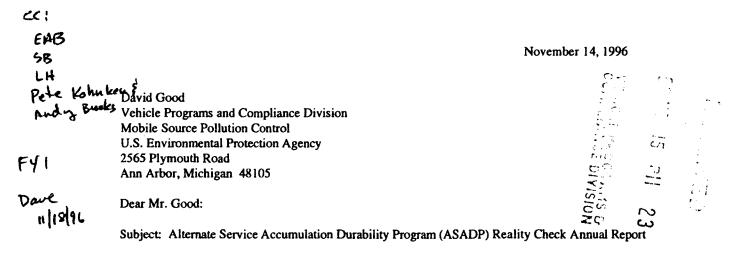
.

Selection Criteria: Five vehicles are selected based on proportional sampling.

1996 TY Reality Check TFM3.0V8NFGK - 3.0L Taurus FFV (Ethanol) Test Vehicle Configurations

Configuration	Model	Calibration	Axie	Trans	ETW	Actual Sales	Percent of Sales	Vehicle Estimate	Number of Test Vehicles Required
1	Taurus FFV	6-10C	3.77	Auto	3750	3,275	100.0%	5.0 [°]	5
			Total	Engine Far	nily Sales:	3,275			

Selection Criteria: Five vehicles are selected based on proportional sampling.


1996 MY Reality Check TFM4.6VJGFEK - 4.6L 4V Mustang Cobra Test Vehicle Configurations

Configuration	Model	Calibration	Axle	Trans	ETW	Actual Sales	Percent of Sales	Vehicle Estimate	Number of Test Vehicles Required
1	Coupe ZBJ	6-37M	3.27	M5	3750	7,139	74.6%	3.7	4
2	Convertible ZBH	6-37N	3.27	M5	3875	2,431	25.4%	1.3	1
			Total	Engine Far	nily Sales:	9,570			

Selection Criteria: Five vehicles are selected based on proportional sampling.

ADD MOL

Reference: Mr. Eldert A. Bontekoe's letter to E. Brune, General Manager, Powertrain Department AA-1 Toyota Technical Center (TTC), dated April 15, 1994 no subject.

In accordance with the guidelines of "Dear Manufacturer's Letter CD-94-13," and the referenced letter (Attached for your convenience), Toyota Technical Center herewith submits its first ASADP reality check report. This report includes data from vehicles in the 2nd year of service with mileage's in the 10 to 30 thousand mile range. This report covers the following engine families and models:

ENGINE FAMILY MODEL

1)	STY1.8VJGFFA	Corolla, Corolla Wagon
2)	STY4.0VJGFFK	1995 Lexus (LS400)

The following attachments are provided in accordance with the guidelines of "CD-94-13":

Attachment I	Vehicle Emission Test Data Summary
Attachment II	Vehicle Procurement And Rejection Summary
Attachment III	On Board Diagnostics (OBD) Summary & Service Codes
Attachment IV	Engineering Reports
Attachment V	Maintenance Summary

If you have any questions or need additional information please contact Shinichi Matsumoto (313) 995-3696 or Tom Beierschmitt (313)-995-3743.

Sincerely,

Naoki (Nick) Tsuji

Naoki (Nick) Isuji General Manager Powertrain Department AA-No. 1

Ano Ilo(0)

VEHICLE EMISSION TEST DATA SUMMARY

ENGINE FAMILY:	STY1.8VHGFFA

MODEL: COROLLA & COROLLA WAGON

MODEL YEAR: 1995

TEST SITE: TTC- A	NN ARBOR							TESTING YEAR: FIRST
VEH. I.D.	TEST NO.	TEST DATE						
MODEL	VIN	TEST(HP)	FTP	(WITH HI	EAT BUILD) TEST RESL	JLTS	
ODO (MILES)	MODEL CODE	ETW (LBS)		•	/MILE)		(MPG)	
			THC	NMHC	CO	NOX	FE	COMMENTS
96-AA-39	1	7/10/96						
COROLLA	2T1AE09B0SC105818	7.8	ŕ					A/C, P/S, A/T
17,809	AE102L-DEPNKA	2875	0.171	0.155	2.45	0.15	30.1	TEST WAS AS RECEIVED
96-AA-40	1	7/10/96						
COROLLA	2T1AE09BXSC098179	7.8						A/C, P/S, A/T
28,622	AE102L-DEPNKA	2875	0.178	0.162	2.67	0.21	29.9	TEST WAS AS RECEIVED
96-AA-41	1	7/11/96					1	
COROLLA	2T1AE09BXSC098814	7.8						A/C, P/S, A/T
13,869	AE102L-DEPNKA	2875	0.165	0.151	2.14	0.15	30.6	TEST WAS AS RECEIVED
96-AA-42	1	7/17/96						
COROLLA	1NXAE00B8SZ228410	7.8						A/C, P/S, A/T
22,336	AE102L-DEPNKA	2875	0.202	0.185	1.92	0.22	30.1	TEST WAS AS RECEIVED
96-AA-43	1	7/18/96						
COROLLA	2T1AE09B0SC126331	7.8						A/C, P/S, A/T
12,031	AE102L-DEPNKA	2875	0.135	0.125	2.25	0.09	30.4	TEST WAS AS RECEIVED
96-AA-61	1	8/1/96						TEST VOID - WRONG DYNO
COROLLA	1NXAE09BXSZ285632	7.8	1					SEE ENG. REPORT
20,290	AE102L-DEMNKA	2750	0.195	0.176	1.89	0.12	31.3	TEST WAS AS RECEIVED
96-AA-62	1	8/14/96					1	
COROLLA	1NXAE09BXSZ315891	7.8	ļ					A/C, PS, M/T
22,171	AE102L-DEMNKA	2750	0.179	0.161	2.12	0.19	32.8	TEST WAS AS RECEIVED

ATTACHMENT I (PAGE 2 OF 2)

VEHICLE EMISSION TEST DATA SUMMARY

ENGINE FAMILY: STY4.0VJGFFK

MODEL: LEXUS LS 400

MODEL YEAR: 1995

TESTING YEAR: FIRST

TEST SITE: TTC- ANN ARBOR

VEH. I.D.	TEST NO.	TEST DATE						
MODEL	VIN	TEST (HP)	FTP	FTP (WITH HEAT BUILD) TEST RESULTS				
ODO (MILES)	MODEL CODE	ETW (LBS)			/MILE)		(MPG)	
			THC	NMHC	<u> </u>	NOX	FE	COMMENTS
96-AA-44	1	8/14/96						
LS400	JT8UF22E2S0017520	7.7						A/C, P/S, A/T
22,048	UCF20L-AEPGKA	4000	0.137	0.129	0.68	0.15	21.3	TEST WAS AS RECEIVED
96-AA-45	1	8/20/96						
LS400	JT8UF22E7S0007842	7.7						A/C, P/S, A/T
24,792	UCF20L-AEPGKA	4000	0.139	0.129	0.78	0.18	20.7	TEST WAS AS RECEIVED
96-AA-46	1	10/9/96						
LS400	JT8UF22E6S0013759	7.7				-		A/C, P/S, A/T
20,219	UCF20L-AEPGKA	4000	0.137	0.126	0.78	0.17	20.6	TEST WAS AS RECEIVED
96-AA-47	1	10/23/96						
LS400	JT8UF22E3S0023892	7.7						A/C, P/S, A/T
10,571	UCF20L-AEPGKA	4000	0.141	0.131	0.71	0.13	20.4	TEST WAS AS RECEIVED
96-AA-48	1	10/30/96						
LS400	JT8UF22E4S0010228	7.7						A/C, P/S, A/T
19,303	UCF20L-AEPGKA	4000	0.147	0.137	0.72	0.18	20.6	TEST WAS AS RECEIVED
						1		· ·

Ann III n 63

•

SUMMARY OF VEHICLE PROCUREMENT AND VEHICLE REJECTIONS

ENGINE FAMILY:	STY1.8VJGFFA	STY4.0JGFFK
MODELS AFFECTED	COROLLA	LEXUS LS 400
NUMBER OF MAILINGS	1	2
RESULT OF MAILINGS:		
A. NEW LETTERS MAILED OUT	100	67
B. UNDELIVERABLE LETTERS	7	6
C. CUSTOMER RESPONSES	22	7
D. CUSTOMERS INTERESTED IN PROGRAM	22	· 7
RESULTS OF PHONE SURVEY:		
A . CUSTOMERS CONTACTED	7	7
B. VEHICLES ACCEPTED	7	5
C. VEHICLES REJECTED	0	2
VEHICLES REJECTED AT TTC:	NONE	NONE
RESULT OF PROCUREMENT:		
A. VEHICLES ACCEPTED	7	5
B. VEHICLES REJECTED (LIST REASONS)	0	2
HIGH MILEAGE LOW MILEAGE		1 1

ADD Doll

SUMMARY OF OBD DIAGNOSTICS AND SERVICE CODES

A. The a were no Diagnostic Trouble Codes present for any of the vehicles tested.

•

.1

B. The Malfunction Indication Light (MIL) was not illuminated on any vehicle as received.

A nottip 65

ENGINEERING REPORTS

Subject: Test Void for Vehicle 96-AA-61

Background Information:

- A. Subsequent to testing and the return of the vehicle to the customer, it was ascertained that Vehicle 96-AA-61 was tested on Chassis Dynamometer No. 1, "CH1".
- B. CH1 is not maintained in accordance with the requirements of 40CFR.

•

3

.

Conclusion:

TTC-AA judges the test on vehicle 96-AA-61 to be void.

MAINTENANCE SUMMARY

A. Toyota used slave tires for "Reality Check" testing on Lexus and Corolla vehicles.

- **B.** Only maintenance performed on vehicles prior to "As Received" testing was that involving addition of necessary fluids such as transmission fluid or engine oil to assure safe testing.
- C. No extraordinary maintenance operations were performed on any vehicles.

•

App II 067

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY ANN ARBOR MICHIGAN 48105

OFFICE OF AIR AND RADIATION

April 15, 1994

Ed Brune General Manager Powertrain Department AA-1 Toyota Technical Center, U.S.A , Inc. 1588 Woodridge, RR #7 Ann Arbor, MI 48105

Dear Mr. Brune:

This letter serves to document the verbal approval previously granted by EPA allowing Toyota to use an Alternative Service Accumulation Durability Program (ASADP) for 1995 engine families STY1.8VJGFFA, SNT1.8VJGFFA, and STY4.0VHGFFK. This approval is based on information submitted in a number of correspondences and in various meetings and telephone conversations.

The general elements of Toyota's ASADP program, as EPA understands them, are outlined below. If Toyota feels there are discrepancies in our understanding, these should be brought to EPA's attention as soon as possible. Otherwise, if there is agreement, Toyota should proceed with its plans. As required by 40 CFR 86.094-13(e)(8), the detailed elements of your approved ASADP should be consolidated into a written agreement documenting the details of your program for each engine family utilizing it. The agreement should contain the information required by 40 CFR 86.094-13(e)(1) through (8), including a detailed description of the in-use vehicle recruitment procedures, in-use vehicle screening procedures, and in-use vehicle testing procedures. A copy of the agreement must be included in the application for certification, as required by 40 CFR 86.094-13(e)(8).

1. Mileage Accumulation Schedule:

Toyota is using a schedule known as the Toyota 9-Lap for mileage accumulation. This whole-vehicle schedule contains higher speeds and acceleration rates than the AMA schedule, thus decreasing the number of hours for a vehicle to complete 100K durability mileage accumulation. EPA will approve the use of this mileage accumulation schedule for the above-named 1995 engine families. Future plans to utilize this schedule should be coordinated with EPA well in advance of certification. In any case, EPA is authorized to approve this schedule only through the 1996 model year. Further EPA guidance on durability requirements after that

E. Reporting

Any engineering reports, and test results from all testing performed will be submitted to EPA at the end of the test program. EPA will use the engineering reports to determine which test data it will use for determining in-use verification.

3. Carryover of Reality Check and Durability Data:

EPA will consider carryover/carryacross of the df data and the reality check data separately. Carryover of df data will be considered on a case-by-case basis using criteria similar to the policies in Advisory Circular 17F. However, there will likely be cases where EPA would allow a df carryover but still require a supplemental or a full in-use reality check. EPA is treating such carryover requests on a case-by-case basis. Toyota should notify EPA of its plans to utilize carryover/carryacross of any data generated from an ASADP program as soon as possible.

Please contact me or Linda Hormes of my staff if you have any questions.

Sincerely, Eldert A. Bontekoe

1

Eldert A. Bontekoe Senior Project Manager Certification Branch Certification Division

C:\..\toyotadu.rl

ApoTop 69

time will be issued separately. If Toyota desires to make any changes to the approved 9-lap cycle, EPA must be notified as soon as possible.

Toyota will perform emission tests at the intervals previously submitted to and approved by EPA (letters from Toyota dated May 20, 1993 and July 14, 1993). Deterioration factors will be calculated using the least-squares best-fit method using all data points for the 100K dfs and for the 50K dfs.

2. In-Use Verification procedures:

A. Vehicle configuration selection

For each engine family, Toyota has agreed to test a minimum of 5 vehicles selected in the 2nd, 3rd and 4th years of service. These vehicles are to be selected from the available configurations within the engine family and are chosen to be representative of the actual sales proportions of the configurations. Prior to certification, Toyota must submit a list of configurations comprising a proposed test fleet based on projected sales. As near to the end of the production year as possible, Toyota will submit to EPA a final selection based on actual sales. EPA reserves the right to specify one configuration to be sampled each year. Once the configuration fleet has been finalized, the same configurations will be tested each year.

The vehicles are to be selected with a minimum of screening. Toyota has developed a screening questionnaire which would eliminate vehicles for reasons of safety, obvious tampering and gross mis-use. EPA prefers (but will not require) that an independent contractor be used for vehicle procurement to minimize the risk of over-screening.

B. Testing

All vehicles accepted into the program will be tested in an "as-received" condition. If, after the initial test, maintenance is performed, Toyota will document what was done and why in engineering reports.

C. Rejection of Vehicles

If Toyota wishes to subsequently reject any vehicle which had been accepted into the program, advance EPA approval must be obtained. Vehicles rejected during the questionnaire screening process must be reported to EPA.

D. In-Use Verification Pass/Fail criteria

EPA is not at this time agreeing to a methodology for determining the acceptability of in-use verification data.

ANTED7

3-23-98 OK NL, 4-7-95

March 20,1998

CC:Mr. David GoodEABVehicle Programs and Compliance DivisionU. S. Environmental Protection AgencyLµ2565 Plymouth RoadRate KAnn Arbor, Michigan

(Andy Binks) Dear Mr. Good:

Subject: Alternate Service Accumulation Durability Program , (ASADP) Reality Check Annual Report

FVI - 25/25 passer In accordance with the guidelines of "Dear Manufacturer's Letter CD94-13" Toyota Technical Center herewith submits its annual "ASADP Reality Check

- Dave 3
 - 4/14/98

ENGINE FAMILY	MODEL	YEAR OF SERVICE	MILEAGE RANGE
1) STY1.8VJGFFA	Corolla, Corolla Wagon	Third	20-50K Miles
2) STY4.0VJGFFK	Lexus LS400	Third	20-50K Miles
3) TTY1.8VJGFFK	Corolla, Corolla Wagon Celica	Second	10-30K Miles
4) TTY4.0VJGKHK	Lexus LS400	Second	10-30K Miles

Report" for the 1997 calendar year (CY). This report includes data from vehicles in the 2nd year of service for new families and the 3rd year of service for models tested in previous years as shown in table below:

The following attachments are provided in accordance with the guidelines of "CD94-13."

Attachment	I	Vehicle Emission Test Data Summary
Attachment	II	Vehicle Procurement And Rejection Summary
Attachment	III	On Board Diagnostics (OBD) Summary & Service Codes
Attachment	IV	Engineering Report
Attachment	v	Maintenance Summary

If you have any questions or need additional information please contact Mr. Thomas A. Beierschmitt of my staff at (313)9953743.

Sincerely,

Fumiaki Ohya General Manager Powertrain Department AAI

App IP 871

1588 Woodridge, RR #7, Ann Arbor, Michigan 48105 Telephone: (313) 995-2600

VEHICLE EMISSION TEST DATA SUMMARY

ENGINE FAMILY: STY1.8VJGFFA

•

MODEL: COROLLA & COROLLA WAGON

MODEL YEAR: 1995

TEST SITE: TTC- A							TESTING YEAR: SECOND	
VEH. I.D. MODEL	TEST NÓ. VIN	TEST DATE TEST(HP)	FTP (WITH HEAT BUILD) TEST RESULTS					
ODO (MILES)	MODEL CODE	ETW (LBS)	(G/MILE) (MPG)					
			THC	NMHC	<u> </u>	NOX	FE	COMMENTS
97-AA-37	1	9/10/97						
COROLLA	1NXAE09B8SZ314576	7.8						A/C, P/S, A/T
31,657	AE102L-DEPNKA	2875	0.188	0.165	2.33	0.2	30.9	TEST WAS AS RECEIVED
97-AA-38	1	9/16/97						
COROLLA	1NXAE09B9SZ280616	7.8						A/C, P/S, A/T
26,213	AE102L-DEPNKA	2875	0.176	0.161	2.86	0.23	29.8	TEST WAS AS RECEIVED
97-AA-39	1	9/16/97					1	
COROLLA	1NXAE09B8SZ335461	7.8					1	A/C, P/S, A/T
25,581	AE102L-DEPNKA	2875	0.184	0.167	2.65	0.15	30.3	TEST WAS AS RECEIVED
97-AA-40	1	9/9/97						
COROLLA	1NXAE00B9SZ226958	7.8					1	A/C, P/S, M/T
39,590	AE102L-DEMNKA	2750	0.217	0.187	1.98	0.25	31.6	TEST WAS AS RECEIVED
97-AA-41	1	2/4/97						
COROLLA	1NXAE09B9SZ271012	7.8					1	A/C, P/S, A/T
33,309	AE102L-DEPNKA	2875	0.205	0.184	2.31	0.17	30.7	TEST WAS AS RECEIVED

In Use & 50K Stds = .41 ,25 3.4 .4

TTC- TOYOTA TECHNICAL CENTER

ATTACHMENT I (PAGE 2 OF 4)

VEHICLE EMISSION TEST DATA SUMMARY

ENGINE FAMILY: STY4.0VJGFFK

MODEL: LEXUS LS 400

MODEL YEAR: 1995

TESTING YEAR: SECOND

TEST SITE: TTC- ANN ARBOR

VEH. I.D.	TEST NO.	TEST DATE						
MODEL	VIN	TEST (HP)	FTP (WITH HEAT BUILD) TEST RESULTS					
ODO (MILES)		ETW (LBS)	тнс	(G/MILE) THC NMHC CO NOX		(MPG) FE	COMMENTS	
97-AA-42	1	8/21/97			CO		FE	COMMENTS
LS400	JT8UF22E1S0014785	7.7						A/C, P/S, A/T
32,140	UCF20L-AEPGKA	4000	0.137	0.122	0.59	0.25	20.9	TEST WAS AS RECEIVED
97-AA-43	1	8/27/97						
LS400	JT8UF22E0S0032274	7.7						A/C, P/S, A/T
23,021	UCF20L-AEPGKA	4000	0.160	0.145	0.91	0.21	20.4	TEST WAS AS RECEIVED
97-AA-44	1	8/28/97						
LS400	JT8UF22E0S0006080	7.7						A/C, P/S, A/T
33,688	UCF20L-AEPGKA	4000	0.168	0.143	1.12	0.25	20.8	TEST WAS AS RECEIVED
97-AA-45	1	8/13/97						
LS400	JT8UF22E4S0008575	7.7						A/C, P/S, A/T
29,307	UCF20L-AEPGKA	4000	0.193	0.169	0.93	0.28	20.3	TEST WAS AS RECEIVED
97-AA-46	1	9/3/97						
LS400	JT8UF22EXS0019564	7.7			i			A/C, P/S, A/T
24,442	UCF20L-AEPGKA	4000	0.141	0.124	0.84	0.20	20.5	TEST WAS AS RECEIVED

In use & Cert Stds , 41 , 25 3.4 .4

Ano TI o 73

VEH. I.D. ² MODEL	TEST NO. VIN	TEST DATE TEST(HP)	FTI) TEST RESI		
ODO (MILES)	MODEL CODE	ETW (LBS)	тнс	(G NMHC	/MILE) CO	NOX	(MPG) FE	COMMENTS
96-AA-39	1	7/10/96					+	
COROLLA	2T1AE09B0SC105818	7.8	I ,					A/C, P/S, A/T
17,809	AE102L-DEPNKA	2875	0.171	0.155	2.45	0.15	30.1	TEST WAS AS RECEIVED
96-AA-40	1	7/10/96						
COROLLA	2T1AE09BXSC098179	7.8	l					A/C, P/S, A/T
28,622	AE102L-DEPNKA	2875	0.178	0.162	2.67	0.21	29.9	TEST WAS AS RECEIVED
96-AA-41	1	7/11/96					-	
COROLLA	2T1AE098XSC098814	7.8						A/C, P/S, A/T
13,869	AE102L-DEPNKA	2875	0.165	0.151	2.14	0.15	30.6	TEST WAS AS RECEIVED
96-AA-42	1	7/17/96						
COROLLA	1NXAE00B8SZ228410	7.8	1	1			1	A/C, P/S, A/T
22,336	AE102L-DEPNKA	2875	0.202	0.185	1.92	0.22	30.1	TEST WAS AS RECEIVED
96-AA-43	1	7/18/96						
COROLLA	2T1AE09B0SC126331	7.8		1 1				A/C, P/S, A/T
12,031	AE102L-DEPNKA	2875	0.135	0.125	2.25	0.09	30.4	TEST WAS AS RECEIVED
96-AA-62	1	8/14/96						
COROLLA	1NXAE09BXSZ315891	7.8						A/C, PS, M/T
22,171	AE102L-DEMNKA	2750	0.179	0.161	2.12	0.19	32.8	TEST WAS AS RECEIVED
97-AA-47	1	9/9/97						
COROLLA 12,572	1NXBA0230TZ467345 AE101L-DEHDKA	7.8 2750	0.176	0.154	1.60	0.17	28.4	A/C, PS, AT TEST WAS AS RECEIVED
97-AA-48	1	9/23/97	0.170	0.104	1.00	0.17	20.4	TEST WAS AS RECEIVED
COROLLA	1NXBA02E0TZU77938	7.8						A/C, PS, M/T
12,513	AE101L-DEHDKA	2750	0.200	0.179	1.61	0.21	27.2	TEST WAS AS RECEIVED
¹ This fa	amily has (2) 96MY 1.6L (6 CY Toyota tested (5) A	Corollas and (5)	C/O 1.8L C	orollas from	m family ST	Y1.8VJGFFA		

Sok 10014

Cert & In-use Stas: ,41 .25

1.620

ATTACHMENT I (PAGE 4 OF 4)

VEHICLE EMISSION TEST DATA SUMMARY

ENGINE FAMILY: TTY4.0VJGKHK

MODEL: LEXUS LS 400

MODEL YEAR: 1996

TESTING YEAR: FIRST

TEST SITE: TTC- ANN ARBOR

VEH. I.D.	TEST NO.	TEST DATE							
MODEL	VIN	TEST (HP)	FTP (WITH HEAT BUILD ²) TEST RESULTS						
ODO (MILES)	MODEL CODE	ETW (LBS)		(G/MILE)		(MPG)			
			THC	NMHC	<u> </u>	NOX	FE	COMMENTS	
96-AA-44	1	8/1,4/96	,						
LS400	JT8UF22E2S0017520	7.7						A/C, P/S, A/T	
22,048	UCF20L-AEPGKA	4000	0.137	0.129	0.68	0.15	21.3	TEST WAS AS RECEIVED	
96-AA-45	1	8/20/96							
LS400	JT8UF22E7S0007842	7.7						A/C, P/S, A/T	
24,792	UCF20L-AEPGKA	4000	0.139	0.129	0.78	0.18	20.7	TEST WAS AS RECEIVED	
96-AA-46	1	10/9/96							
LS400	JT8UF22E6S0013759	7.7						A/C, P/S, A/T	
20,219	UCF20L-AEPGKA	4000	0.137	0.126	0.78	0.17	20.6	TEST WAS AS RECEIVED	
96-AA-47	1	10/23/96							
LS400	JT8UF22E3S0023892	7.7						A/C, P/S, A/T	
10,571	UCF20L-AEPGKA	4000	0.141	0.131	0.71	0.13	20.4	TEST WAS AS RECEIVED	
96-AA-48	1	10/30/96							
LS400	JT8UF22E4S0010228	7.7						A/C, P/S, A/T	
19,303	UCF20L-AEPGKA	4000	0.147	0.137	0.72	0.18	20.6	TEST WAS AS RECEIVED	
97-AA-56	1	9/23/97						VOID: CANISTER NOT LOADED	
LS400	JT8BH22F9T0067083	7.7						A/C, P/S, A/T	
10,928	UCF20L-AEPGKA	4000	0.154	0.136	0.86	0.17	20.3	TEST WAS AS RECEIVED	
97-AA-57	1	11/19/97						CAN.LOADED TO 2G Breakthrough	
LS400	JT8BH22F1T0056501	7.7						A/C, P/S, A/T	
10,119	UCF20L-AEPGKA	4000	0.136	0.122	1.13	0.16	20.5	TEST WAS AS RECEIVED	

¹ This engine family consists of (1) 96MY LS400 and (5) C/O 1995 LS400 from family STY4.0VJGFFK. Approved by EPA 7/25/97.

² Canister loaded to 2 gram breakthrough for 97-AA-57.

100K JOK

Cent Auruse Tier 1 & stors ! DFS NMHC 1.104 1.216 .41 .25 3.4 .4 60 1.053 1.110 NOx 1. 331 1.159

Andro 7:

ATTACHMENT II

ENGINE FAMILY:	STY1.8VJGFFA	STY4.0VJGFFK	TTY1.8VJGFFK	TTY4.0VJGKHK
MODELS AFFECTED:	1.8L Corolla 1.8L Corolla Wagon	Lexus LS400	1.8L Corolla 1.8L Corolla Wagon 1.8L Celica, 1.6L Corolla	Lexus LS400
RESULTS OF MAILINGS:				
NEW LETTERS MAILED OUT	600	98	300	100
UNDELIVERABLE LETTERS	62	3	0	1
CUSTOMER RESPONSES	ັ 95 ໌	95	17	2
CUSTOMERS INTERESTED IN PROGRAM	95	10	17	2
RESULTS OF PHONE SURVEY:				
CUSTOMERS CONTACTED	5	• 6	2	2
VEHICLES ACCEPTED	5	5	2	2
VEHICLES REJECTED	90	1	15	0
VEHICLES REJECTED AT TTC	NONE	NONE	NONE	NONE
RESULT OF PROCUREMENT:	0	0	0	0
VEHICLES ACCEPTED	5	5	2	2
VEHICLES REJECTED & REASONS				
HIGH MILEAGE	17	0	2	0
LOW MILEAGE	15	4	3	0
CUSTOMER CHANGED MIND	0	1	0	0
TESTING ALREADY COMPLETED	58	0	10	0

•

Ann III-

SUMMARY OF OBD DIAGNOSTICS AND SERVICE CODES

- A. There were no Diagnostic Trouble Codes present for any of the vehicles tested.
- B. The Malfunction Indicator Lamp (MIL) was not illuminated on any vehicle as received.

ENGINEERING REPORTS

Subject: Test Void for Vehicle 97-AA-56

Background Information:

- A. Subsequent to testing and the return of the vehicle to the customer, it was ascertained that Vehicle 97-AA-56 was tested by using heat build instead of canister loading as required by certification procedures.
- B. Paragraph 5.b. of "CD-94-13" clearly states that "Each tailpipe emission test must be conducted using EPA certification-quality test procedures, e.g. using pre-loaded canister test procedures if the engine family is certified using those test procedures."

Conclusion:

TTC-AA judges test on vehicle 97-AA-56 to be void since canister was not loaded.

AIDITA78

٧

MAINTENANCE SUMMARY

.

- A. Toyota uses slave tires for "Reality Check" testing on Lexus and Corolla vehicles.
- **B.** Only maintenance performed on vehicles prior to "As Received" tesing was that involving addition of necessary fluids such as transmission fluid or engine oil to assure safe testing.
- C. No extraordinary maintenance operations were performed on any vehicles.

~

App. App. 7

EPA-420-D-98-100