EPA-600/8-90-071 September 1990

LITERATURE REVIEW OF GREENHOUSE GAS EMISSIONS FROM BIOGENIC SOURCES

by

Darcy Campbell Margie Stockton Susan Buchanan Joan McLean Rich Pandullo Rebecca Peer and Julie Anne Probert Radian Corporation Post Office Box 13000 Research Triangle Park, North Carolina 27709

> EPA Contract 68-02-4288 Work Assignment No. 2/39

> > EPA Project Officer

Julian W. Jones Air and Energy Engineering Research Laboratory U. S. Environmental Protection Agency Research Triangle Park, NC 27711

Prepared for

OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460

TECHNICAL REPORT DATA (Picasc read Instructions on the reverse before con	ıpleti
1. REPORT NO. EPA-600/8-90-071	³ PB90+274085
4. TITLE AND SUBTITLE Literature Review of Greenhouse Gas Emissions from	5. REPORT DATE September 1990
Biogenic Sources	6. PERFORMING ORGANIZATION CODE
J. AUTHOR(S) D. Campbell, M. Stockton, S. Buchanan, J. McLean, R. Pandullo, R. Peer, and J. A. Probert	8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS Radian Corporation	10. PROGRAM ELEMENT NO.
P.O. Box 13000	11. CONTRACT/GRANT NO.
Research Triangle Park, North Carolina 27709	68-02-4288, Task 2/39
12. SPONSORING AGENCY NAME AND ADDRESS EPA, Office of Research and Development Air and Energy Engineering Research Laboratory Research Triangle Park, North Carolina 27711	13. TYPE OF REPORT AND PERIOD COVERED Task Final; 1-7/90 14. Sponsoring agency code EPA/600/13

15. SUPPLEMENTARY NOTES AEERL project officer is Julian W. Jones, Mail Drop 62, 919/541-2489.

^{16. ABSTRACT} The report gives results of a literature review of estimates of biogenic emissions of five greenhouse gases: CC2, CII4, N2O, and NOx. Review results include data and information from about 170 sources published over the past 10 years. The report's two sections cover greenhouse gases containing (1) carbon and (2) nitrogen. Within each section, emissions estimates are grouped by type of source or sink in a series of tables. First, emission factors are given as a rate in units of mass per unit area per unit time (e.g., kg/ha/yr), except for NOx and N2O produced by lightning. Second, budget estimates are provided in units of mass per unit of time (e.g., g/yr). Finally, a few authors provided reservoir estimates in units of mass per land area (e.g., kg/sq m); these represent the potential amount of a greenhouse gas that is stored in a specific ecosystem or type of biota. Other data presented in the report are specific to the gas or source and are used to calculate a total budget estimate (e.g., land estimates for CH4 emitted from rice paddies).

17.	17. KEY WORDS AND DOCUMENT ANALYSIS						
a. D	ESCRIPTORS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COSATI Field/Group				
Pollution	Methane	Pollution Control	13B 07C				
Emission	Carbon Monoxide	Stationary Sources	14G ·				
Gases	Nitrogen Oxide (N ₂ O)	Biogenesis	07D				
Biology	Nitrogen Oxides		06				
Greenhouse Effec	et		04A				
Carbon Dioxide			07B				
18. DISTRIBUTION STATEM	ENT	19 SECURITY CLASS (This Report)	21 NO OF PAGES				
Release to Public		Unclassified	73				
		20. SECURITY CLASS (This page) Unclassified	22. PRICE				

EPA Form 2220-1 (9-73)

ABSTRACT

A literature review is presented of estimates of biogenic emissions of five greenhouse gases: CO_2 , CH_4 , CO_1 , N_2O_1 , and NO_2 . Results of the review include data and information from about 170 sources published over the past 10 years. The report's two sections cover greenhouse gases containing (1) carbon and (2) nitrogen. Within each section, emissions estimates are grouped by type of source or sink in a series of tables. First, <u>emission factors</u> are given as a rate in units of mass per unit area per unit time (e.g., kg ha⁻¹ yr⁻¹), except for NO₂ and N₂O produced by lightning. Second, <u>budget estimates</u> are provided in units of mass per unit of time (e.g., g yr⁻¹). Finally, a few authors provided <u>reservoir estimates</u> in units of mass per land area (e.g., kg m⁻²); these represent the potential amount of a greenhouse gas that is <u>stored</u> in a specific ecosystem or type of biota. Other data presented in the report are specific to the gas or source and are used to calculate a total budget estimate (e.g., land estimates for CH₄ emitted from rice paddies).

TABLE OF CONTENTS

<u>Section</u>	Pac	<u>je</u>
	ABSTRACT	ii
	LIST OF TABLES	iv
1	INTRODUCTION	1
2	SOURCES AND SINKS OF CARBON COMPOUNDS	3
	2.1 Carbon Dioxide	3
	2.2 Methane	3
	2.3 Carbon Monoxide	24
3	SOURCES OF NITROGEN COMPOUNDS	32
	3.1 Nitrous Oxide	32
	3.2 Nitrogen Oxides	32
	3.3 Nitrogen Oxides and Nitrous Oxide from Lightning and Oceans	41
4	REFERENCES	57

LIST OF TABLES

Table	Page
2-1	CO ₂ Emitted from Terrestrial Biota
2-2	The Ocean As a Sink for CO_2
2-3	Methane Emitted from Rice Paddies
2-4	Methane Emitted from Wetlands
2-5	Methane Emitted from Tundra
2-6	Methane Emitted from Animals (Ruminants)
2-7	Methane Emitted from Termites
2-8	Methane Emitted from Biomass Burning
2-9	CO Emitted from Biomass Burning
2-10	CO Emitted from Oceans
2-11	Soil As a Sink for CO
2-12	CO Emitted from the Tropics
2-13	CO Emitted from Rice Paddies
3-1	N ₂ O Emitted from Fertilizer Use
3-2	N ₂ O Emitted from Soils
3-3	N ₂ O Emitted from Aquifers
3-4	NO _x Emitted from Soils
3-5	NO _x Emitted from NH ₃ Oxidation
3-6	NO _x and N ₂ O Emitted from Biomass Burning
3-7	NO_{x} and $N_{2}O$ Emitted from Lightning
3-8	NO_x and N_2O Emitted from Oceans

SECTION 1 INTRODUCTION

This document provides an overview of the quantitative emission estimates for five greenhouse gases: carbon dioxide (CO_2) , methane (CH_4) , carbon monoxide (CO), nitrous oxide (N_2O) , and oxides of nitrogen (NO_x) . The information presented in this document was developed by surveying the literature, and through discussions with researchers who have published recently in this field. It must be emphasized that this report is not a summary of an exhaustive search of all research and studies conducted to date, but rather contains information obtained from readily available sources published over the past ten years. It is intended to provide background information on emission rates, total emissions, types of sources and sinks, and factors that may affect emissions and emission estimates of greenhouse gases. If more detailed information is required on a specific pollutant or source, the reader is encouraged to conduct a more in-depth literature search.

No judgments were made as to the quality or validity of the data presented in this report. The emission factors come from field measurements, laboratory measurements, mass balance calculations, and theoretical calculations. Although the "comments" column in each table provides some indication of the origins of the estimates, the reader is strongly advised to refer to the original reference before using any of the emission factors or budget estimates presented here.

In some cases, summary tables from review articles were used. These are clearly marked in the tables or text, and the primary author and date are stated. The original reference is not cited in the reference list; however, it can be found by referring to the review paper.

Journals published prior to February 1990 were included in the literature survey; most attention was given to major journals concerned with biogeochemical processes. These include <u>Global Biogeochemical Cycles</u>, the <u>Journal of Geophysical Research</u>, the <u>Journal of Atmospheric Chemistry</u>, and <u>Atmospheric Environment</u>.

Three different quantitative estimates are given in the tables. The <u>emission factor</u> is given as a rate, usually in units of mass per area per unit of time (e.g., kg ha⁻¹ yr⁻¹). The exception to this is in Table 3-7 which gives estimates of NO_x and N_2O produced by lightning. The emission factor

here is given in terms of mass per lightning stroke or mass per unit of energy (e.g., molecules per joule).

The second estimate used is a <u>budget estimate</u>. The units used are mass per unit time (e.g., $g yr^{-1}$). The budget estimate is the amount of the gas produced globally over a given span of time by a particular source. Unless otherwise stated, budget estimates should be assumed to be global. In some cases, regional budget estimates are given.

Finally, a few authors gave a <u>reservoir estimate</u>. The units are mass per land area (e.g., kg m⁻²). This reservoir estimate represents the potential amount of a greenhouse gas that is stored in a specific ecosystem or type of biota. For example, in Table 2-1, reservoir estimates of carbon stored in various ecosystems are cited. This represents the amount of carbon which would be released, primarily as CO_2 , if the biomass were burned.

Other numbers presented in these tables are specific to the gas or source and are used to calculate a total budget estimate. Examples are number of animals per unit area for methane emissions from ruminants and land area estimates for methane emitted from rice paddies. These are generally selfexplanatory, or are explained in the text for individual gases.

The remainder of this report is divided into two sections covering the major greenhouse gases. Within each section, the emissions estimates are grouped by source (or sink) type. Many sinks can also act as sources. For example, forests are a sink for carbon, but the carbon is released as CO_2 , CO, and CH_4 when the biomass is burned or otherwise decomposes. Most of the tables present emission estimates from sources. Those few that deal with sinks are clearly labeled.

SECTION 2

SOURCES AND SINKS OF CARBON COMPOUNDS

The following discussion is intended to provide background information on the sources of carbon compounds that are emitted from biogenic sources. For more detailed information on the studies reviewed, the reader is referred to the original citation and the "Comments/Assumptions/Geographic Area" column of each table.

2.1 CARBON DIOXIDE

Carbon dioxide (CO_2) is emitted from a variety of sources within the terrestrial biota (Table 2-1). Tropical and nontropical forest releases of CO_2 occur due to forest clearing and the resulting decrease in soil organic matter, burning, and decay of cleared vegetation (Detwiler and Hall, 1988). The large range in the budget estimates published vary by vegetation type, rate of land clearing, and localized fluxes. Models of the global carbon budget typically attempt to balance the oceanic uptake of CO_2 (Table 2-2) and terrestrial ecosystem CO_2 uptake with releases of CO_2 from natural and anthropogenic (i.e., fossil fuel combustion) sources (Detwiler and Hall, 1988). Terrestrial ecosystem uptake of CO_2 is also included in Table 2-1 as a reservoir estimate. Estimates of CO_2 emissions are typically expressed in terms of mass of carbon (C).

2.2 METHANE

Biogenic methane (CH_4) fluxes have been measured from rice paddies, wetlands, and tundra, as well as from animal (ruminants), termites, and biomass burning. Atmospheric methane plays an important role in the global radiative budget, but the contributions of individual sources to the total budget estimate are not well understood (Lerner et al., 1988). Methane is produced by microbial activities during the mineralization of organic carbon in anaerobic environments such as water logged soils and the intestines of ruminants (Bolle et al., 1986). Emission estimates from individual methane sources vary greatly due to the limited database from the individual

TABLE 2-1. CO, ENITTED FROM TERRESTRIAL BIOTA

Reference	Emission Factor	Reservoir Estimate	Budget Estimate	Comments/Assumptions/Geographic Area
Adams et al. (1977)			400 to 4000 Tg yr ⁻¹	Estimated from per capita wood consumption (globally).
Andreae et al. (1988)			Global estimate: 3100 Tg yr ⁻¹ (Range: 2000 to 4000 Tg yr ⁻¹)	Based on emission ratios calculated from measurements of biomass-burning plumes.
			South American Tropics: 527 Tg yr ^{:1}	
Bolin (1977)			400 to 1600 Tg yr ^{.1}	Global net transfer of carbon to the atmosphere.
Bolin et al. (1979)		Land biota: 5.9 to 9.8 x 10° Tg C		Chapter reviews previous research on carbon reservoirs and fluxes.
		Soil hummus:" 1.0 to 3.0 x 10° Tg C		
Bramryd (1979)		8.3 x 10 ⁵ Tg C [*]		Presents global estimate but also lists individual estimates for 14 continental and 5 marine ecosystem types. Good reference for estimated C removal in various countries around the world.
Brunig (1977)			6000 Tg yr ⁻¹	Tropical forest clearing only.
Buringh (1984)			Non-agricultural land use: 1167 Tg yr''	
			Land deterioration: 269 Tg yr ⁻¹	
			Fuel wood, fire: 680 Tg yr'	

'Denotes reservoir estimate, i.e., the amount of carbon stored.

Reference	Emission Factor	Reservoir Estimate	Budget Estimate	Comments/Assumptions/Geographic Area
Buringh (1984) (Continued)			Shifting cultivation: 1134 Tg yr ⁻¹	
			Conversion of forest: 922 Tg yr ⁻¹	
			Total for world: 4172 Tg yr ⁻¹	
Detwiler et al. (1985)	Primary closed forest: 1.5 to 1.8 x 10 ⁵ kg ha'yr	i	900 to 1200 Tg C yr' from tropical vegetation	Represents annual release of carbon from tropical vegetation. Study indicates that current models of the oceanic carbon cycle show it is a sink for 1.2 x 10 ¹⁵ g yr ⁻¹ .
	Primary open forest: 3.6 to 5.0 x 10 ^s kg ha ⁻¹ yr ⁻	ı	1200 to 1500 Tg C yr ' (including release from soils)	Thus, global carbon budget may be balanced if there is no significant release from nontropical ecosystems.
	Secondary closed forest: 5.7 to 6.8 x 10 ⁵ kg ha ⁻¹ yr	1		
	Secondary open forest: 1.7 to 2.3 x 10 ⁵ kg ha ⁻¹ yr ⁻	1		
	Logged closed: 1.0 to 1.3 x 10 ⁵ kg ha ⁻¹ yr ⁻	1		
Nampicke (1979)			1500 to 4500 Tg C yr ⁻¹ (range)	Global estimate. Author points out that available data are best-reasoned guesses
			Average: 2500 Tg yr ⁻¹	and their accuracy and reliability are low.
Hao et al. (1988)	3.0 x 10 ¹³ molecules cm ⁻² s ⁻¹		1.7 x 10 ⁴ Tg C of CO, (Tropical savannas during rainy season)	Measured arithmetic mean of N_2O , CH_4 , and CO, from undisturbed tropical savanna soils in Venezuela during the dry season. Area of tropical savannas assumed to be 1.5 x 10' km ² . Elevated CO, fluxes (ninefold increase) decreased with cessation of simulated rainfall.

TABLE 2-1. (Continued)

7

.

TABLE 2-1. (Continued)

Reference	Emission Factor	Reservoir Estimate	Budget Estimate	Comments	Assumption	s/Geogr	aphic A	rea
Houghton et al. (1983)		1.8 to 4.7 x 10 ¹⁵ g yr ⁻¹ of C 135 to 228 x 10 ¹⁵ g (between 1860 and 1980)	Same data as listed below, of C annually Range of est among various soil carbon, Low end of ra- middle based high end base provide ecosy conversion or or pasture, a Components or Burned Decay	Woodwell e Model ca by 69 reg imates refl sestimates and agricu ange based on populat ed on Myers ystem data f natural e and defores f net flux y Regrowth	t al. (lculate ional e ects di of for ltural on FAO ion (ra (1980) on rour cosyste tation in 1980	(1983) s as net r cosyste ifferenc rest bio clearin statist ate of g). Appe ndwood p ems to a rates.) (10 ¹⁵ g	tudy elease ms. es mass, g. ics; rowth); ndices roduction, griculture	
			Clearing for agric. Harvest/Regrowth Clearing for pasture TOTAI	$\begin{array}{c} 0.38 \\ 0.41 \\ 0.09 \\ \hline 0.89 \\ \hline 2.26 \\ \hline \end{array}$	0.0 -1.86 0.0 -1.86	0.54 0.29 0.04 	0.28 0.27 0.01	1.58 0.90 0.24
Houghton et al. (1985)	8.7 x 10 ¹³ to 2.2 x 10 ³⁴ g(10 ⁶ ha) ⁻¹ yr ⁻¹		0.5 to 4.2 x 10 ¹⁵ g yr ' of C	Applicable to to different rates. FAO provides cour estimates. independent i trial C relea	o tropical estimates assessment htry-by-cou the assessm penchmark f ases can be	forests of defo of trop ntry do ent car rom wh calcul	s. Rang prestati pical fo eforesta n serve ich terr lated.	e due on rests tion as an es-
Keller et al. (1986)	6.6 x 10 ²⁵ g cm ⁻² 1,040 g CO, m ⁻² yr ⁻¹			Emission fac soils. Repr measured fro Brazil, Ecua	tor is for esents aver n undisturb dor, and Pu	tropica age of ed for erto R	al fores fluxes est site ico.	t sin

TABLE 2-1. (Continued)

Reference	Emission Factor	Reservoir Estimate	Budget Estimate	Comments/Assumptions/Geographic Area
Moore et al. (1981)		1	900 to 4300 Tg yr ⁻¹	Describes procedure for estimating global CO ₂ based on localized fluxes. Indicates major causes of carbon release from natural ecosystems are harvesting of forests and and transformation to agriculture. Study focuses on 10 geographic regions with potentially 12 different ecosystems. Study lists other estimates of annual carbon release (listed also in Hampicke (1979) above).
Schlesinger (1977)	Tropical forest: 405 to 6100 g m ⁻² yr ⁻¹ Temperate forest: 171 to 1098 g m ⁻² yr ⁻¹	Tropical forest:' ~10 kg m² Temperate forest:' ~12 kg m'		Evaluated C content in soil profile and atmospheric release from soil occurring within nine ecosystem types. Numbers presented for emission factor are mean values.
	Boreal forest: 147 to 232 g m² yr¹	Boreal forest: ~15 kg m ⁻²		
	Shrubland: 399 to 653 g m ⁻² yr ⁻¹	Shrubland:' ~7 kg m²		
	Tropical savanna: 515 to 785 g m² yr¹	Tropical savanna: ~4 kg m²		
	Temperate grassland: 74 to 452 g m ⁻² yr ⁻¹	Temperate grassl and: ~20 kg m²		
	Tundra and Alpine: 37 to 210 g m² yr¹	Tundra and Alpine: ~22 kg m²		
	Desert scrub: 22 g m ⁻² yr ⁻¹	Desert scrub: ~6 kg m²		
	Swamp and marsh: 730 to 1350 g m ⁻² yr ⁻¹	Swamp and marsh: ~69 kg m ⁻²		

'Denotes reservoir estimate, i.e., the amount of carbon stored.

Reference	Emission Factor	Reservoir Estimate	Budget Estimate	Comments/Assumptions/Geographic Area
Schlesinger (1984)			799 Tg yr''	Conversion of forest in tropics. Based on estimates of deforestation for agri- culture made by Revelle and Munk (1977).
Stuiver (1978)			1300 Tg C yr ^{.1}	Global applicability. Estimate based on C ¹² tree ring measurements.
Wofsy et al. (1988)	Mean daytime: -2.8 kg C ha ⁻¹ hr ⁻¹ (uptake by forest soils and canopy)			CO, emissions and uptake from soils studied in the Amazon Basin. Forest is a net source of CO ₂ at night and a sink during the day. Cycle is weaker over wetlands.
	1.8 kg C ha ⁻¹ hr ⁻¹ (mean emission from forest soils)			
	-1.6 kg C ha ⁻¹ hr ⁻¹ (mean daytime uptake over wetlands)			
Woodwell et al. (1978)			0.2 to 1.8 x 10 ⁴ Tg yr ¹	Net transfer of carbon to the atmosphere.
Woodwell and Houghton ((1977)		0.25 to 10 x 10 ⁴ Tg yr ⁻¹	Net transfer of carbon to the atmosphere.
Woodwell et al. (1983)			1800 to 4700 Tg C yr '	Applicable to entire globe. Summarizes effects of terrestrial biota on the amount of carbon dioxide released. Emission factor represents release in 1980 due to deforestation, particularly in tropics. Study indicates that the increased CO_2 (atmospheric) is <u>not</u> increasing the storage of carbon in earth's forests to offset the release from deforestation.
Wong (1978)			1900 Tg yr-'	Net transfer of carbon to the atmosphere.
Yavitt et al. (1988)	1.0 to 2.6 kg m² yr '			Measurements of poatlands in the Appalachian Mountains. Wide range due to temperature variations and chemistry of the peat substrate.

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Anderson et al. (1990)	Released (new production) from over continental shelves: 45 ± 20 g cm ⁻² yr ⁻¹	Total for Arctic Ocean: 210 Tg C yr ⁻¹ Fixed in Arctic river drainage basins: 40 ± 20 Tg C yr ⁻¹ Fixed over Arctic Continental shelves: 129 ± 65 Tg C yr ⁻¹	Assesses transport of CO ₂ into Arctic Ocean. Upper layer is an active sink for CO ₂ , no flux detected in deep water. Five percent of total carbon sequestered by terrestrial ecosystems is estimated to be transported to the Arctic Ocean.
Baes et al. (1985)	0.063 mol m ⁻² µatm ⁻¹ yr ⁻¹	9.3 x 10' Tg yr''	This chapter discusses the uptake of CO_2 by the oceans. The global average exchange rate for CO_2 between the atmosphere and ocean surface is estimated using ocean models. Exchange rate is dependent on atmospheric pCO_2 .
Chen and Millero (1979)			Paper discusses the probable increase in oceanic CO_2 as concentrations of CO_2 in the atmosphere increase. Provides physical and chemical computations which indicate oceanic CO_2 has increased by as much as 40 μ mol/kg.
Smith (1981)		1800 Tg yr ⁻¹	Author estimates approximately 5 x 10° tons of carbon are released to atmos- phere annually as CO ₂ from burning fossil fuel. Of that, approximately 40 percent diffuses across air-sea interface into dissolved CO ₂ pool of surface ocean water. Author suggests that marine biota (macrophytes) may act as additional sink for carbon.

--

TABLE 2-2. THE OCEAN AS A SINK FOR CO2

TABLE 2-2.	(Continued)
------------	-------------

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Stuiver (1978)		820 Tg yr''	Author estimates that approximately half of the CO ₂ introduced to the atmosphere is transferred to the oceans. Estimate is based on assuming approximately 1.6 x 10 ⁵ Tg CO ₂ was released to atmosphere between 1850 and 1950.

ecosystems, and insufficient size or area estimates for the sources (Bolle et al., 1986) (Tables 2-3 through 2-8).

Rice paddies are a major source of CH_4 , with emissions depending on agricultural practices, temperatures, fertilization regimes, time of season, irrigation, soil properties, rice cultivar, and amount of residue left following harvest. Variations in flux estimates are due to ebullition (bubble transport), transport through the plants, and rapid variations in methane emission routes (Cicerone and Oremland, 1988). Methane emissions have increased as the land area available for rice growing increased. Population growth coincided with the introduction of multiple cropping (with irrigation) and with cultivation of new land (Cicerone and Oremland, 1988). In addition, some researchers hypothesize that biological sinks of CH_4 , including microorganisms in aerobic soils, may be adversely affected by elevated soil moisture and nitrogen additions, thus reducing the amount of CH_4 taken up (Steudler et al., 1989).

Methane emissions from wetlands vary greatly because of temperatures, soil water levels, and seasonal variations in CH_4 escape routes (Cicerone and Oremland, 1988). Budget estimates for CH_4 from wetlands vary because of land area estimates, with some estimates double those of others (Cicerone and Oremland, 1988).

Tundra methane emissions may be included as unforested bog emissions (Matthews and Fung, 1987), but are provided separately here. Methane production in tundra occurs during summer permafrost thaw periods, and estimates vary due to land area estimates and percent of tundra assumed to be waterlogged (Ehhalt and Schmidt, 1978).

Methane is emitted from ruminants due to intestinal anaerobic digestion of organic carbon. Budget estimates of CH_4 flux vary due to variations in estimates of animal populations, estimates of methane emissions by individual animal species, and emissions due to differing feeds. Table 2-6 also contains some emission factors for CH_4 from human sewage.

Methane emitted from termites has been measured in laboratory and field experiments. The wide range in budget estimates for this source are due to extrapolation disagreements (Cicerone and Oremland, 1988). Termite populations, amount of material consumed by termites, and species variations all must be more closely examined (Cicerone and Oremland, 1988). The last source of CH_A covered in this document is biomass burning. A wide range

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Baker-Blocker et al. (1977)	260 g m ⁻² yr ⁻¹	1.35 × 10 ⁶ km ²	350 Tg yr ⁻¹	This estimate may be high because paddy fields are usually drained for part of each year.
Cicerone and Shetter (1981)	42 g m ⁻² yr ⁻¹	1.40 x 10 ⁶ km²	59 Tg yr''	Emission factor based on field plot studies in California — took into account fertilizer use. Extrapolated across globe using U.N. rice cultivation data and assuming 4-month growing season.
Ehhalt and Schmidt (1978)	206 g m ⁻² yr ⁻¹	1.35 x 10 ⁶ km ²	280 Tg yr''	Extrapolated across globe using U.S. rice cultivation data and assuming 4-month growing season. Based on laboratory studies growing rice plants.
Holzapfel-Pschorn and Seiler (1986)	79 g m ⁻² yr ⁻¹	1.45 x 10 ⁶ km ²	120 Tg yr ⁻ '	Average of range given in paper: 70 - 170 Tg yr ⁻¹ based on 1979 land use data. Based on field plot studies. Good discussion on the variation in emissions from different studies. Suggests that different fertilizer use may contribute different amounts of CH ₄ .
Khalil and Rasmussen (1983)			95 Tg yr-1	Apportioned to 4 geographic regions of the globe based on information on land-use in <u>Time Atlas of the World</u> .
Koyama (1963)		9.2 x 10 ^s km²	190 Tg yr-'	Flux varied by temperature and water depth.
Schutz et al. (1989)	Unfertilized: 0.28 g m ⁻² d ⁻¹ (33 g m ⁻² yr ⁻¹)	1.5 x 10° km²	Average: 100 Tg yr ⁻¹	Measurements from Italian rice paddies without and with organic and inorganic fertilizers. Range due to seasonal variation and mode of fertilizer
	Organic fertilizer: 0.58 g m ⁻² d ⁻¹ (68.4 g m ⁻² yr ⁻¹)		Range: 50 to 150 Tg yr ^{.1}	application. Inorganic fertilizer (urea or ammonium sulfate) applied at rates of 50 to 200 kg N ha ⁻¹ .
	Inorganic fertilizer: 0.16 g m ⁻² d ⁻¹ (19 g m ⁻² yr ⁻¹)			

TABLE 2-3. METHANE EMITTED FROM RICE PADDIES

TABLE 2-3. (Continued)

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Schutz et al. (1989) (Continued)	Organic and inorganic fertilizers: 0.28 to 0.60 g m ⁻² d ⁻¹ (33 to 68 g m ⁻² yr ⁻¹)			
Seiler and Conrad (1987)			120 Tg yr''	Uncertainty associated with this estimate is ±40%. The tropics (30°S - 30°N) account for 95% of the rice paddy land area. Estimates are based on 1980 land estimates.
Wang et al. (1988)	3.1 to 2,889 mg m² d'			Rice paddies in Sichuan, China. Measured CH, fluxes are largest during seedling stage and just before harvest. Air bubbles were found to transport CH, and contributed greatly to total emissions.

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Baker-Blocker et al. (1977)	260 g m ⁻² yr ⁻ '		150 Tg yr ⁻¹	Based on extrapolating methane flux from a Michigan wetland to the 4 largest wetland areas in the world, using equations based on temperature functions, and then adding some to get world wide estimate (is ~22 - 30% of the CH ₄ in the atmosphere).
Barber et al. (1988)	Mangrove open water: 29.9 ± 10 g m ⁻² yr ⁻¹			Diffusive flux estimated by dissolved methane concentrations and wind speed data in wetlands in Florida.
	Urbanized subtropical estuary: 0.96 ± 0.8 g m ⁻² yr ⁻¹			
	Densely vegetated sawgrass marsh: 2.9 ± 3.3 g m² yr¹			
	Sparsely vegetated sawgrass marsh: 32 ± 19 g m² yr-1			
	Organic-rich forested swamp: 41 ± 30 g m² yr ⁻¹			
	Freshwater lakes: 12 ± 11 g m ⁻² yr ⁻¹			
Bartlett et al. (1985)	0.89 g m ⁻² yr ⁻¹	3.8 x 10 ⁵ km²	0.34 Tg yr '	Includes coastal salt marshes only. Based on field sampling conducted in Virginia.
Bartlett et al. (1988)	Open water lakes: 27 ± 4.7 mg m² d⁻¹ (0.03 to 0.6 Tg yr⁻¹)			Amazonia flood plain environments measured. Transport processes were ebullition from sediment, diffusion from sediment to water and air, and transport through roots and stems of aquatic plants. Ebullition accounts
	Flooded forests: 192 ± 26.8 mg m ⁻² d ⁻¹ (1.7 to 12 Tg yr ⁻¹)			54 percent from flooded forests, and 64 percent from floating mats. Estimated that entire Amazonia flood- plain may supply 12 percent of global CH.

TABLE 2-4. METHANE EMITTED FROM WETLANDS

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Bartlett et al. (1988) (Continued)	Floating grass mats: 230 ± 72.2 mg m ² d ⁻¹ (1.3 to 8.7 Tg yr ⁻¹)			
		3.9 x 10 ⁵ km ²	Total: 17 Tg yr ⁻¹	
Blake (1984)		2.6 x 10° km²	120 Tg yr ⁻¹	
Burke et al. (1988)	0.001 to 2.6 g m ⁻² d ⁻¹		0.5 Tg yr ⁻¹	Measurements taken from four locations in the Florida Everglades. Concludes that Everglades are weak source of CH4. Range due to size and spacing of emerging aquatic vegetation.
Chanton and Martens (1988)	19.2 to 20.8 g m ⁻² yr ⁻¹			North Carolina, USA. Tidally induced bubble ebullition transports CH, to atmosphere.
Chanton et al. (1988)	Marl sawgrass prairie: 5 to 6 mg m ⁻² d ⁻¹			Measurements taken in the Florida Everglades. Very little ebullition — CH, emitted from plant advection and molecular diffusion from the water column.
Crill et al. (1988a)	27 g m ⁻² d ⁻¹			Methane flux measured from an open lake in the Amazon. Ebullition contributed 70 percent to total flux.
Crill et al. (1988b)	11 to 866 mg m ⁻² d ⁻¹	3.56 x 10 ¹² m ²	70 to 90 Tg yr-"	Neasurements taken from a variety of Minnesota (northern) peatlands during summer months. Methane flux increased with increasing soil temperatures. Estimate of land area taken from Gorham (1988).
Devol et al. (1988)	Total average rate: 390 mg m ⁻² d ⁻¹		Entire Amazon floodplain: 10 Tg yr '	Measured CH, flux in the Amazon floodplain in July and August, 1985. Ebullition accounted for 85 percent of total emissions.
	Surfaces covered with aquatic macrophytes: 590 mg m ⁻² d ⁻¹			

TABLE 2-4. (Continued)

-

'For all peatlands north of 40°.

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Devol et al. (1988) (Continued)	Flooded forests: 110 mg m ⁻² d ⁻¹		·	
	Open lakes: 120 mg m² d⁻¹			
Ehhalt and Schmidt (1978)	400 g m ' yr '	2.6 x 10° km²	190 to 300 Tg yr'	
Hao et al. (1988)	1.6 ± 1.2 x 10 ¹⁰ molecules CH ₄ cm ⁻² s ⁻¹			Measured arithmetic mean of N,O, CH., and CO, fluxes from undisturbed and disturbed tropical savanna soils in Venezuela during the dry season. Large variation in CH. fluxes may have been due to CH. escape after insertion of metal frame for measurement. CH. fluxes following surface burning and simulated rainfall were within the range of uncertainty. No consumption of CH. was noted.
Harriss et al. (1988)	Wet prairies and sawgrass marsh: 61 ± 7 mg m² d′			Measurements of methane flux for wetland ecosystems in South Florida. Variations in regional water budget are important in determining CM flux - Concluded that these courses posult in
	Wetland forests: 59 ± 17 mg m ⁻² d ⁻¹			a 26 percent enhancement of CH, flux for the region.
	Saltwater mangroves: 4 ± 0.4 mg m ⁻² d ⁻¹			
	Impoundments and disturbed wetlands: 74 ± 10 mg m ⁻² d ⁻¹			
Khalil and Rasmussen (1983)			150 Tg yr ⁻¹	Apportioned between 4 geographic regions of the globe based on land use information in <u>Time Atlas of the</u> <u>World</u> .
Levine et al.	5 to 6 g m ⁻² d ⁻¹			Southern Florida juncus marsh following burn.
(1990)	34.5 g m ⁻² d ⁻¹			Southern Florida spartina marsh following burn.

TABLE 2-4. (Continued)

.

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Lilley and Baross (1988)	Moderately impacted lakes: 1.1 to 2.9 mmol m ⁻² d ⁻	1		CH ₄ flux from lakes near Mount St. Helens, first summer after eruption.
	Keavily impacted lake 17.4 to 25.3 mmol m ⁻²	es: d ⁻¹		
Matthews and Fung (1987)	Forested and non-forested bogs: 0.2 g m ⁻² d ⁻¹	5.3 x 10° km²	110 Tg yr ⁻¹	Wetland sites are divided into 5 major wetland groups. Tropical swamps are estimated to account for ~25% of the wetland emissions, while northern peat-rich bogs are
	Forested swamps: 0.07 g m ⁻² d ⁻¹			estimated to account for over 60% of the wettand emissions.
	Non-forested swamps: 0.12 g m² d¹'			
	Alluvial formations: 0.03 g m² d''			
Miller and Oremland (1988)	Mean total flux: 416 ± 833 μmol m ⁻² h ⁻¹			Searsville Lake, CA. Freshwater lake; ebullition dominates efflux.
	Mean flux: 27 ± 45.2 μmol m ⁻² h ^{-ι}			Three alkaline, saline lakes (Mono Lake, CA; Soap Lake, WA; and Big Soda Lake, NV). Little ebullition.
Seiler and Conrad (1987)		2.6 x 10° km²	47 Tg yr ^{-t}	Uncertainty associated with this estimate is ± 47%. The tropics (30°S - 30°N) account for 80% of the emissions from wetlands. Estimates are based on 1980 land estimates.
Sheppard et al. (1982)			39 Tg yr ⁻¹	

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Steudler et al. (1989)	- 3.17 mg m ⁻² d ⁻¹ (Temaperate and boreal forest soils)	Temperate forests: 9.3 x 10 ¹² m ²	Temperate and boreal forest soils: -9.3 Tg yr ⁻¹	Measured CH, consumption by temperate and boreal forest soils. Tropical forest CH, consumption estimated from Keller et al. (1986).
		Boreal forests: 11.6 x 10 ¹² m ²	Tropical forest soils: -2.5 Tg yr ⁻¹	
		Tropical forests: 18.5 x 1012 m²		
Yavitt et al. (1988)	43.2 to 280 g m ² yr ⁻¹			Measurements in peatlands of the Appalachian mountains. Wide range due to temperature variations and chemistry.

TABLE 2-4. (Continued)

Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
		1.7 Gg trapped below 50 cm depth	Measurements taken in an ombrotrophic bog (no groundwater input, only rainfall, very low mineral content) in Canada. Bog acted as a CH, <u>reservoir</u> . Conclude that Northern peatlands (>40°N) act as CH, reservoirs, and some of the CH, will only be released if the peat is disturbed.
30 ± 14 mg m ⁻² d ⁻¹ (mean flux)			CH, flux measured in Alaskan tundra. Field and laboratory measurements are in agreement. Two sites had CH, consumption rates of 1.2 and 0.6 mg CH, m^{-2} d ⁻¹ .
Moist tundra: $0.005 \text{ g m}^2 \text{ d}^{-1}$ Waterlogged tundra: $0.12 \text{ g m}^2 \text{ d}^{-1}$ Wet meadow: $0.04 \text{ g m}^2 \text{ d}^{-1}$ Alpine fen: $0.29 \text{ g m}^2 \text{ d}^{-1}$ Boreal marsh: $0.106 \text{ g m}^2 \text{ d}^{-1}$ Average annual flux: $11.2 \text{ g m}^2 \text{ d}^{-1}$	4 to 9.5 x 10° km²	45 to 106 Tg yr [.]	Study includes arctic and boreal wetlands only. Based on field studies conducted in Alaska (70°N latitude). Emissions are well correlated with water level, and depth of permafrost. The methane flux was found to be poorly correlated with soil temperature. The average annual flux estimate was calculated assuming an average of 100 days/yr of active CH, emissions for these northern wetlands.
Wet meadow tundra: 4.05 g m ⁻⁷ yr ⁻¹ Tussock and low scrub tundra: 2.45 g m ⁻² yr ⁻¹	Wet meadow tundra: 0.88 x 10^{12} m ² Tussock and low scrub tundra: 6.5 x 10^{12} m ² Total tundra: 7.7(= 10^{12} = 2	Wet meadow tundra: 3.54 to 4.1 Tg yr ⁻¹ Tussock and low scrub tundra: 15.8 to 28.8 Tg yr Total:	Measurements taken in Alaskan tundra. Wet meadow tundra is all nonforested land north of 50°N.
	Emission Factor $30 \pm 14 \text{ mg m}^2 \text{ d}^{-1}$ (mean flux) Moist tundra: $0.005 \text{ g m}^2 \text{ d}^{-1}$ Waterlogged tundra: $0.12 \text{ g m}^2 \text{ d}^{-1}$ Wet meadow: $0.04 \text{ g m}^2 \text{ d}^{-1}$ Alpine fen: $0.29 \text{ g m}^2 \text{ d}^{-1}$ Boreal marsh: $0.106 \text{ g m}^{-2} \text{ d}^{-1}$ Average annual flux: $11.2 \text{ g m}^2 \text{ d}^{-1}$ Wet meadow tundra: $4.05 \text{ g m}^{-2} \text{ yr}^{-1}$ Tussock and low scrub tundra: $2.45 \text{ g m}^{-2} \text{ yr}^{-1}$	Emission FactorEstimate of Land Area $30 \pm 14 \text{ mg m}^2 \text{ d}^{-1}$ (mean flux) $4 \text{ to } 9.5 \text{ x}$ 10^6 km^2 Moist tundra: 0.005 g m² d'1 $4 \text{ to } 9.5 \text{ x}$ 10^6 km^2 Waterlogged tundra: 0.12 g m² d'1 10^6 km^2 Waterlogged tundra: 0.12 g m² d'1 $4 \text{ to } 9.5 \text{ x}$ 10^6 km^2 Wet meadow: 0.04 g m² d'1 $4 \text{ to } 9.5 \text{ x}$ 10^6 km^2 Wet meadow: 0.04 g m² d'1 $4 \text{ to } 9.5 \text{ x}$ 10^6 km^2 Boreal marsh: 0.106 g m² d'1 $4 \text{ to } 9.5 \text{ g} \text{ m}^2 \text{ d}^1$ Wet meadow tundra g m² d'1Wet meadow tundra: $0.88 \text{ x } 10^{12} \text{ m}^2$ Wet meadow tundra: $2.45 \text{ g m}^2 \text{ yr}^{-1}$ Wet meadow tundra: $6.5 \text{ x } 10^{12} \text{ m}^2$ Tussock and low scrub tundra: $2.45 \text{ g m}^2 \text{ yr}^{-1}$ Tussock and low scrub tundra: $6.5 \text{ x } 10^{12} \text{ m}^2$	Enission FactorEstimate of Land AreaBudget Estimate $30 \pm 14 \text{ mg m}^2 d^{-1}$ (mean flux) 1.7 Gg trapped below 50 cm depth $30 \pm 14 \text{ mg m}^2 d^{-1}$ (mean flux) $4 \text{ to } 9.5 \text{ x}$ 10^6 km^2 $45 \text{ to } 106 \text{ Tg yr}^{-1}$ Moist tundra: $0.005 \text{ g m}^2 d^{-1}$ $0.005 \text{ g m}^2 d^{-1}$ $45 \text{ to } 106 \text{ Tg yr}^{-1}$ Waterlogged tundra: $0.12 \text{ g m}^2 d^{-1}$ $45 \text{ to } 106 \text{ Tg yr}^{-1}$ Wet meadow: $0.04 \text{ g m}^2 d^{-1}$ $45 \text{ to } 106 \text{ Tg yr}^{-1}$ Wet meadow: $0.06 \text{ g m}^2 d^{-1}$ $45 \text{ to } 106 \text{ Tg yr}^{-1}$ Noise tundra: $0.29 \text{ g m}^2 d^{-1}$ $45 \text{ to } 106 \text{ Tg yr}^{-1}$ Wet meadow: $0.06 \text{ g m}^2 d^{-1}$ $45 \text{ to } 106 \text{ Tg yr}^{-1}$ Wet meadow: tundra fen: $0.29 \text{ g m}^2 d^{-1}$ Wet meadow tundra: $0.08 \times 10^{12} \text{ m}^{-1}$ Wet meadow tundra: $4.05 \text{ g m}^2 \text{ yr}^{-1}$ Wet meadow tundra: $0.88 \times 10^{12} \text{ m}^{-1}$ Tussock and low scrub tundra: $2.45 \text{ g m}^2 \text{ yr}^{-1}$ Tussock and low scrub tundra: $5.5 \times 10^{12} \text{ m}^{-1}$ Total tundra: $7.34 \times 10^{12} \text{ m}^{-1}$ Total: $19 \text{ to } 33 \text{ Tg yr}^{-1}$

TABLE 2-5. METHANE EMITTED FROM TUNDRA

Reference	Emission Factor	Estimate of Number of Animals	Budget Estimate	Comments/Assumptions/Geographic Area
Crutzen et al. (1986)	In developed countries: 55 kg CH, yr'' animal''	Cattle: 1.2 x 10° Buffalo: 1.24 x 10° Sheep: 1.1 x 10°	7.4 x 10 ¹³ g yr ⁻¹	Includes cattle, wild ruminants and humans. Cattle make up 74% of the emissions. Gives population estimates for various
	In developing countries: 35 kg CH, yr' animal'	Goats: 4.7 x 10"		animals, and emission rates/animal species.
Ehhalt (1974)			1.0 to 2.2 x 10^{14} g yr ⁻¹	Multiplied methane release rate per ruminant by estimated animal population.
Khalil and Rasmussen (1983)			1.2 x 10 ¹⁴ g yr ⁻¹	(Cattle only) Apportioned among 4 regions of the globe based on land-use data from <u>Time</u> <u>Atlas of the World</u> .
Lerner et al. (1988)	In developing countries: Sheep: 5 kg yr ⁻¹ animal ⁻¹ Cattle: 35 kg yr ⁻¹ animal ⁻¹ Pigs: 1 kg yr ⁻¹ animal ⁻¹	Sheep: 7.4 x 10° Cattle: 8.3 x 10° Pigs: 5.9 x 10° Camels: 1.1 x 10' Water Buffalo: 1.0 x 10° Goats: 2.9 x 10° Horses: 4.5 x 10'	Sheep: 6.8 Tg yr ⁻¹ Cattle: 57 Tg yr ⁻¹ Pigs: 1 Tg yr ⁻¹ Camels: 1 Tg yr ⁻¹	Population statistics from 1984 <u>FAO Production</u> <u>Yearbook</u> , United Nations (1985). Emission factors based on estimates of Crutzen (1983), land use data provided by Matthews (1983).
	In developed countries: Sheep: 8 kg yr ⁻¹ animal ⁻¹ Cattle: 55 kg yr ⁻¹ animal ⁻¹ Pige: 15 kg yr ⁻¹ animal ⁻¹		Water Buffalo: 6.3 Tgyr ⁻¹ Goats: 2.3 Tgyr ⁻¹ Horses: 1 Tgyr ⁻¹	Budget estimates also presented by country. Estimate of number of animals includes only countries with the highest populations for each type.
	Pigs: 1.5 kg yr anninat		Total: 75.8 Tg yr	
	Camels: 58 kg yr ⁻¹ animal ⁻¹ Water buffalo: 50 kg yr ⁻¹ animal ⁻¹ Goats: 5 kg yr ⁻¹ animal ⁻¹ Caribou: 15 kg yr ⁻¹ animal ⁻¹			
Rust (1981)			78 ± 12 Tg yr ⁻¹	
Seiler et al. (1984)			7 to 10 x 10^{13} g yr ⁻¹	

-

TABLE 2-6. (Continued)

Reference	Emission Factor	Estimate of Number of Animals	Budget Estimate	Comments/Assumptions/Geographic Area
Seiler and Conrad (1987)			86 Tg yr ⁻¹	Uncertainty associated with this estimate is ±15%. The tropics (30°S - 30°N) account for 40% of the emissions from ruminants. Estimates are based on 1983 animal population.
Sheppard et al. (1982)			90 Tg yr ⁻ '	Animals and humans (human sewage).

•

Reference	Emission Factor	Estimate of Population	Budget Estimate	Comments/Assumptions/Geographic Area
Fraser et al. (1986)	1.0 to 8.0 mg kg ' (termite) hr ' (depending on ecological region)		14 Tg yr ' (Range: 6 to 42 Tg yr ')	Concluded that termites account for less than 15% of global CH4. Based on lab experiments in Australia and Oregon.
Rasmussen and Khalil (1983)	0.9 μg termite ^{-t} d ⁻¹	2.4 x 10 ¹⁷ individuals	50 Tg yr ⁻¹ (Range: 10 to 100 Tg yr ⁻¹)	Studies on termites conducted in glass jars. Estimated this represents less than 15% of total global CH ₄ es of uncertainty in values of production CH ₄ /termit. Give ranges of uncertainty in values of production CH ₄ ,termite/yr and in estimation of global population of termites.
Seiler et al. (1984)			3.5 ⊺g yr''	Measurements from S. Africa. Constructed large chambers over entire termite nests in the field.
Zimmerman et al. (1982)	0.24 to 0.59 µg termite" d" (depending on termite species)	2.4 x 10" individuals	150 Tg yr ⁻¹	Based on lab measurements from termite nests in Guatemala. Author suggests that termites may represent up to 40% of total global CH Suggests that emissions from termites are increasing due to human activities (clearing tropical forests, grazing and agriculture land) which provide increased habitat for termites.

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Cofer et al. (1988)	0.0041 ± 0.0009 ΔCH ₄ /ΔCO ₂ (vol/vol)		Los Angeles, CA. Plume samples from intense flaming and mixed fire. CO, higher with full flames.
Cofer et al. (1989)	Flaming: 0.36 to 0.76 ΔCH4/ΔCO2 (vol/vol)		Samples collected by helicopter from burning chaparral in S. California and over a boreal forest fire in Ontario, Canada.
	Mixed: 0.43 to 0.61 ΔCH4/ΔCO2 (vol/vol)		
	Smoldering: 0.87 ± 0.23 ΔCH4/ΔCO2 (vol/vol)		
Stevens and Engelkemeir (1988)		45 ± 14 Tg yr ⁻¹	Global anthropogenic biomass burning.

TABLE 2-8. METHANE EMITTED FROM BIOMASS BURNING

exists in the budget estimate and emission factors from this source due to the type of burning, moisture content of the vegetation, and amount of biomass burned each year (Cicerone and Oremland, 1988). The carbon reservoir of the vegetation will be released as CO_2 , CH_4 , or carbon monoxide (CO), and each compound must be measured.

2.3 CARBON MONOXIDE

Carbon monoxide budget estimates are not well understood, but CO is known to be emitted from biomass burning, oceans, tropical habitats (through biomass burning, vegetation, oxidation of nonmethane hydrocarbons, and soils), and CH_4 oxidation is a major source. Recent experiments show CO is emitted from rice paddies along with CH_4 (Tables 2-9 through 2-13). In addition, soil has been found to act as a sink for CO under some conditions.

Carbon monoxide is produced from biomass burning by releasing stored carbon reservoirs from plant material. While most of the trace gas emissions from biomass burning have focused on the tropics, recent research has attempted to assess the potential impacts of mid-latitude biomass burning (Cofer et al., 1989).

Carbon monoxide is emitted from the oceans through photooxidative processes. Budget estimates vary because of differing surface-sea water supersaturation factors.

Soils can either emit CO or act as sinks, depending primarily on their aeration and moisture content. In soils that are well aerated, CO is oxidized to CO_2 by bacteria (Seiler and Conrad, 1987). Flux estimates for this sink vary due to soil parameters, soil moisture, and temperatures (Seiler and Conrad, 1987). The emission of CO from flooded soils will be discussed in relation to rice paddy CO fluxes.

The tropics are presented separately here as a source of CO because of the large contribution from both terrestrial and aquatic tropical ecosystems. As discussed above, CO is destroyed at the soil surface by microorganisms, and is emitted by plants and photooxidative processes in freshwater and oceans (Seiler and Conrad, 1987). In addition, CO is formed through hydrocarbon oxidation in plants. Crutzen (1983) concludes that the tropics account for two thirds of the global CO budget estimate from these sources.

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Andreae et al. (1988)		Global estimate: 264 Tg yr ¹ (Range: 120 to 640 Tg yr ⁻¹)	Based on emission ratios calculated from measure- ments of biomass-burning plumes.
		South American Tropics: 45 Tg yr ^{.1}	
Cofer et al. (1988)	0.56 ± 0.024 ΔCO/ΔCO, (vol/vol)		Los Angeles, CA. Plume samples from intense and mixed fire. $\rm CO_2$ higher with full flames.
Cofer et al. (1989)	Flaming: 5.1 to 6.9 ∆CO/∆CO, (vol/vol)		Samples collected by helicopter from burning chaparral in S. California and over a boreal forest fire in Ontario, Canada.
	Mixed: 6.0 to 6.9 ΔCO/ΔCO, (vol/vol)		
	Smoldering: 8.2 ± 1.4 ΔCO/ΔCO2 (vol/vol)		
Crutzen et al. (1979) (1979)		240 to 1660 Tg yr''	Based on measurements of forest fires in Colorado. Author estimates that CO from biomass burning produces as much CO as that from fossil fuel combustion.
Greenberg et al. (1984)		800 Tg yr''	Based on measurements taken from tropical biomass burning in Brazil. Fire emissions were sampled from aircraft flying through the plume. Assume that as much as 70% of all biomass burned is in tropical and subtropical areas.
Jaffe (1973)		36 Tg yr''	Includes agricultural burning only.
Logan et al. (1981)		30 to 140 Tg yr ^{.1}	Includes woodburning, forest clearing, and savanna burning. Does not include burning of agricultural wastes.

TABLE 2-9. CO EMITTED FROM BIOMASS BURNING

TABLE 2-9. (Continued)

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Seiler (1974)		64 Tg yr ⁻¹ N. Hemisphere: 40 Tg yr ⁻¹ S. Hemisphere: 20 Tg yr ⁻¹	Includes forest fires, bush fires and open burning of agricultural waste. Scaled up to globe based on estimates for the U.S. Assumes U.S. is 25% of global CO emissions from fires.
Volz et al. (1981)		550 Tg yr ⁻¹	Calculated from ¹⁴ CO analysis.

TABLE 2-10. CO EMITTED FROM OCEANS

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
reyer (1979)		35 Tg yr ⁻¹	
innebom et al. (1973)		22 Tg yr' N. Hemisphere: 9 Tg yr'' S. Hemisphere: 13 Tg yr''	Assumes the surface sea-water is supersaturated by an average factor of 28.2.
iss and Slater (1974)		43 Tg γr ⁻¹	Modeling approach. Assumes the surface sea-water is supersaturated by a factor of 23.
Geiler (1974)		100 Tg yr ⁻¹ N. Hemisphere: 40 Tg yr ⁻¹ S. Hemisphere: 60 Tg yr ⁻¹	
Seiler and Conrad (1987)		100 + 90 Tg yr ⁻¹	

TABLE 2-11. SOIL AS A SINK FOR CO

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area Based on measurements from 20 different soil types. World land surface areas and average factors for CO uptake are given for each soil type.	
Bartholomew and Alexander (1981)	-1.04 x 10 ⁻¹¹ g cm ⁻² s ⁻¹ (averaged over 12 soil types)	-410 Tg yr ^{.1}		
Ingersoll et al. (1974)	-6 to -73 x 10 ⁻¹¹ g cm ⁻² s ⁻¹	-1400 Tg yr '	Derived from field studies conducted at 59 sites in N. America and extrapolated to a global estimate.	
Seiler (1974)	-1.5 x 10 ⁻¹¹ g cm ⁻² s ⁻¹ (averaged over all soil types)	-450 Tg yr'' N. Hemisphere: -300 Tg yr ' S. Hemisphere: -150 Tg yr''	Large variation in CO uptake depending on soil temperature and organic content of the soil. Based on field and laboratory estimates in U.S. and Europe.	
Seiler and Conrad (1987)		-390 Tg yr ⁻¹	CO is oxidized to CO_2 by bacteria in the soil.	

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Seiler and Conrad (1987)		Sources	Overview and summary of current research. Global and tropical budgets are presented in the report.
		1000 Tg yr ⁻¹ (\pm 600) 75 Tg yr ⁻¹ (\pm 25) 100 Tg yr ⁻¹ (\pm 90) 600 Tg yr ⁻¹ (\pm 300) 900 Tg yr ⁻¹ (\pm 500) 17 Tg yr ⁻¹ (\pm 15)	Biomass burning (800 Tg yr ⁻¹ tropics) Vegetation (60 Tg yr ⁻¹ tropics) Ocean (50 Tg yr ⁻¹ tropics) CH, oxidation (400 Tg yr ⁻¹ tropics) Oxidation nommethane HC (600 Tg yr ⁻¹ tropics) Soil production (10 Tg yr ⁻¹ tropics)
		<u>Sinks</u>	
		2000 Tg yr ⁻¹ (±600) 390 Tg yr ⁻¹ (±140) 110 Tg yr ⁻¹ (±30)	Oxidation by OH (1200 Tg yr ⁻¹ tropics) Soil uptake (105 Tg yr ¹ tropics) Flux into stratosphere (80 Tg yr ⁻¹ tropics)

TABLE 2-12. CO EMITTED FROM THE TROPICS

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Conrad et al. (1988)			0.1 to 0.5 Tg yr ⁻¹	Italian rice paddies studied. CO produced in submerged anoxic soils is released by diffusion through the plants. Based on a calculated CO/CH, ratio.
In rice paddies, CO is produced in the anoxic soil and released through the plants and ebullition (Conrad et al., 1988). Carbon monoxide is also produced in the rice plant leaves (Conrad et al., 1988). A budget estimate for CO flux from rice paddies is based on an observed CO/CH₄ ratio. Thus, the wide range in the estimate (0.003 - 0.24 Tg yr⁻¹) is a function of the CH₄ range (Conrad et al. 1988).

SECTION 3 SOURCES OF NITROGEN COMPOUNDS

The discussion below is a summary of the biogenic sources of nitrous oxide (N_2O) and nitrogen oxides (NO_X) . For more detailed information on these sources, the reader is encouraged to review the "Comments/Assumptions/ Geographic Area" column on each table and refer to the original study.

3.1 NITROUS OXIDE

Nitrous oxide (N_20) is emitted following the use of agricultural fertilizers, from soils, and from contaminated aquifers (Tables 3-1 through 3-3).

Nitrous oxide is produced in soils through microbial denitrification and nitrification, and the addition of mineral nitrogen fertilizers causes even higher N_2O releases from soils (Seiler and Conrad, 1981). Nitrous oxide is an intermediate product that is reduced to N_2 in the atmosphere (Seiler and Conrad, 1981). The range of N_2O flux measurements from soils with and without fertilization can be due to denitrification and nitrification rates, soil properties, temperature, type and amount of fertilizer applied, the N_2O/N_2 ratio in soil air, and the exchange rate at the soil-air interface (Seiler and Conrad, 1981). Nitrous oxide flux measured in forest soils was found to vary with soil acidity, season, and biomass burning (Anderson et al., 1988).

The ocean's role in aquatic N_20 cycle is not well documented; recently it has been proposed that the ocean is neither a sink nor a source of N_20 (Ronen et al., 1988). The contamination of ground water aquifers with nitrogen, however, is a potential source of N_20 (Ronen et al., 1988). More research is needed before this source can be accurately quantified as a source of atmospheric N_20 .

3.2 NITROGEN OXIDES

Nitrogen oxides (NO_x) are emitted from soils and through ammonia (NH_3) oxidation. Ammonia may be a significant source of nitrogen oxides in the

32

-

_

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Anderson and Levine (1987)	0.61 to 2.08 kg N ha ⁻¹ yr ⁻¹ (0.79% fertilizer N lost as NO, 1.2% fertilizer N lost as N ₂ O)		Jamestown, VA. Year-long study, moderately fertilized land. Limited data, therefore % fertilizer lost as NO and N,O is very uncertain.
Brams et al. (1990)	0.30 kg N ha ⁻¹ d ⁻¹ 0.70 kg N ha ⁻¹ d ⁻¹ 0.08 kg N ha ⁻¹ d ⁻¹ 0.24 kg N ha ⁻¹ d ⁻¹ 0.20 kg N ha ⁻¹ d ⁻¹ 0.56 kg N ha ⁻¹ d ⁻¹ 0.10 kg N ha ⁻¹ d ⁻¹ 0.13 kg N ha ⁻¹ d ⁻¹ 0.23 kg N ha ⁻¹ d ⁻¹		Late summer, minimum cultivation. Fall, minimum cultivation. Winter, minimum cultivation. Spring, minimum cultivation Early summer, minimum cultivation. Late summer, maximum cultivation. Fall, maximum cultivation. Winter, maximum cultivation. Spring, maximum cultivation. Early summer, maximum cultivation.
Breitenbeck et al. (1980)	(NH4), SO4: 0.11 to 0.18% of N added CaNO4: 0.01 to 0.04% of N added Urea: 0.12 to 0.14% of N added.		Addresses nitrification. Field study of soil in Iowa. Correlates well with lab studies. Study was 96 days; most of N ₂ O evolved in first 2-3 weeks. Conclude nitrification is primary mechanism of N ₂ O production. Data possibly applicable to two Canadian soils – Essex Co., S.W. Ontario.
Breitenbeck and Bremner (1986)	90 g N,O-N ha ⁻¹ d ⁻¹ (1.2% of N applied)		Mean rate for 3 soil types following application of anhydrous ammonia (180 kg ha¹ fertilizer N). Lower rates were reported for other forms of N fertilizer.

TABLE 3-1. (Continued)

_

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Mosier et al. (1982)	3.4 g N ha ⁻¹ d ⁻¹ 5.9 g N ha ⁻¹ d ⁻¹ 6.7 g N ha ⁻¹ d ⁻¹ 9.2 g N ha ⁻¹ d ⁻¹ 5.3 g N ha ⁻¹ d ⁻¹ 7.0 g N ha ⁻¹ d ⁻¹ 27.0 g N ha ⁻¹ d ⁻¹		No fertilizer. 56 kg N ha' applied. 112 kg N ha' applied. 224 kg N ha' applied. No fertilizer. 16.7 metric tons of sewage sludge/ha applied. 83.5 metric tons of sewage sludge/ha applied.
Seiler and Conrad (1981)	NaNO ₃ : 0.01% Eolian sand 0.05% Loess Loam 0.01% Loam NH ₄ Cl: 0.09% Eolian sand 0.07% Loess Loam 0.03% Loess		Rhein/Main — field study.
Slemr et al. (1984)	Unfertilized grass lawn: 1 μg N m ⁻² hr ⁻¹ Unfertilized cultivated land: 15 μg N m ⁻² hr ⁻¹ NH ₄ NO, fertilized grass lawn: 850 μg N m ⁻² hr ⁻¹ (0.075% of N added) Urea fertilized cultivated land: 200 μg N m ⁻² hr ⁻¹ (0.18% of N added) NH ₄ NO, fertilized cultivated land: 0.04% of N added	From fertilizer use: 0.015 to 2.2 Tg yr ⁻¹ Total fertilized and unfertilized: 4.5 to 7.7 Tg yr ⁻¹	Andalusia, Spain. Propose that 0.01 to 2% fertilizer N is lost as N,O globally. Higher results may be due to high soil temperatures or soybean residue. Differences between vegetation in loss rate.

TABLE 3-2. N₂O EMITTED FROM SOILS

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Anderson et al. (1988)	Dry and wetted, unburned: NA		Measured N ₂ O flux following surface burning. The elevated fluxes lasted 6 months post burn. Vegetation burned was typical of a Mediterranean chaparral ecosystem.
	Dry, burned: <4.8 ng N m² s¹		
Breitenbeck et al. (1980)	8.6 x 10^9 molecules N ₂ O cm ² s ⁻¹		Iowa, farmland, fallow, June.
Breitenbeck and Bremner (1989)	43.5 to 104.9 µg N g ⁻¹ soil (24 hr) ⁻¹		Inoculated michwestern soil samples with <u>B. japonicum</u> , strain USDA122, an efficient N ₂ - fixing rhizobia. In one soil, the amount of N ₂ O-N evolved in 24 hours was 140% higher than the amount evolved in uninoculated soils.
	105.9 to 119.2 µg N g ⁻¹ soil (72 hr) ⁻¹		Inoculated midwestern soil samples with <u>B. japonicum</u> , strain USDA122, an efficient N,- fixing rhizobia. The amounts of N ₂ O-N shown evolved after 72 hours.
Bremner et al. (1980)	8.2 x 10 ⁹ molecules N ₂ 0 cm ⁻² s ⁻¹		Iowa, soybean field, 1 year.
Duxbury et al. (1982)	6.1 x 10 ⁹ molecules N₂0 cm ⁻² s ⁻¹		New York State. Northern hardwood forest, mineral soil over 1 year.
	6.8 x 10 ⁹ molecules N ₂ 0 cm ⁻² s ⁻¹		Florida Everglades, organic soil over 1 year.
	1.9 x 10 ¹⁰ molecules N ₂ 0 cm ⁻² s ⁻¹		New York State, alfalfa, fertilized cornfields, mineral soils over 1 year.
Freney et al. (1979)	3.6 x 10 ⁹ molecules N₂0 cm ⁻² s ⁻¹		Canberra, Australia, clovergrass, 5 months.
Goreau and DeMello (1985)	3.2 x 10 ¹¹ molecules N ₂ 0 cm ⁻² s ⁻¹		Clear cut forest.

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Hao et al. (1988)	2.5 x 10 ⁹ molecules N ₂ O cm ⁻² s ⁻¹ (Undisturbed savannah soils)	1.9 x 10 ¹¹ g yr ⁻¹	Measured arithmetic mean of N_2O , CH_4 , and CO_2 fluxes in undisturbed and disturbed tropical savanna soils in Venezuela during the dry season. No change was observed following surface burning. Budget estimate assumes a 4 month dry season for tropical savannas.
	1.0 x 10 ¹⁰ molecules N ₂ O cm ⁻² s ⁻¹ (Following 4 days of simulated rainfall)		
Hutchinson and Mosier (1979)	< 4 kg ha ⁻¹ yr ⁻¹	6 x 10° kg N yr ⁻¹	Harvested cropland.
Keller et al. (1983)	Brazil: 2.6 x 10¹º molecules №20 cm² s⁻¹		Annual means. Tropical and northern hardwood forests.
	New Hampshire: 1.0 x 10° molecules N ₂ 0 cm ⁻² s ⁻¹		
Keller et al. (1986)	1.7 x 10^{10} molecules N_20 cm ⁻² s ⁻¹		75 km NE of Manaus, Brazil. Tropical moist forest.
	2.5 x 10^{10} molecules N ₂ O cm ⁻² s ⁻¹		Puerto Rico, dry season, subtropical moist forest.
Keller et al. (1988)	Control site: 1.4 x 10 ¹⁰ molecules N₂0 cm ⁻² s ⁻⁴		Measurements from undisturbed Amazon tropical forests soils. Application of ammonium, nitrate, and phosphate fertilizers resulted in increased emissions within 1 day of application. Microbial reduction of NO^- shown to be a large source of NO
	With NO ₅ ': 4.5 x 10 ¹¹ molecules N ₂ 0 cm ² s ¹		in the Amazon. No change in CO ₂ flux was found in response to fertilizer.
	With NH ₄ ": 7.0 x 10 ¹⁰ molecules N ₂ 0 cm ⁻² s ⁻¹		
	With PO4 ³⁻ : 2.1 x 10 ¹⁰ molecules N ₂ O cm ⁻² s ⁻¹		

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Levine et al. (1988)	<2 ng N m ⁻² s ⁻¹ (pre-burn)	5477 Marine Anno 24	Measurements taken in a chaparral ecosystem, heavily burned and wetted to simulate rainfall. Pre- and post-burn measure-
	9 to 22 ng N m ⁻² s ⁻¹ (post-burn)		<pre>ments of soil ammonium and nitrate indicate that soil ammonium (the substrate for nitrification) increased after burning and soil nitrate (the substrate for denitrification) decreased after burning.</pre>
Lipschultz et al. (1981)		10 Tg N yr ^{-'}	Lab experiment of NO:N2O ratio from nitrifying bacteria on a liquid medium. Assume N2O flux ~ calculated photochemical destruction rate.
Livingston et al. (1988)	Mean: 1.3 ng N cm² h¹¹		Measurements taken in three types of Amazonian forest ecosystems.
Luizao et al. (1989)	Cleared-and-burned and forested sites: 1.9 kg N ha ⁻¹ yr ⁻¹	0.8 to 1.3 Tg yr '	N ₂ O flux compared in tropical forest, cleared-and-burned land and pasture land. Estimate of tropical pasture land area is 2 million km².
	Pasture sites: 5.7 kg N ha' yr'		
McKenney et al. (1978)	2.9 x 10° molecules N₂O cm ^{°2} s ^{°1}		California, cornfield, June 1977.
	7.1 x 10° molecules N,O cm ⁻² s ⁻¹		California, cornfield, fertilized, June 1977.
	1.12 x 10 ¹⁰ molecules N₂0 cm ⁻² s ⁻¹		Californía, tobacco field, June 1977.
	5.1 x 10^{10} molecules N ₂ O cm ⁻² s ⁻¹		California, tobacco field, fertilized, June 1977.
Mosier et al. (1981)	5.7 x 10° molecules N ₂ O cm ² s ⁴		Colorado, natural shortgrass prairie, 62 days through June.

TABLE 3-2. (Continued)

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Mosier and Hutchinson (1981)	3.8 g N ha ⁻¹ d ⁻¹ 520.0 g N ha ⁻¹ d ⁻¹ 550.0 g N ha ⁻¹ d ⁻¹ 1.3 g N ha ⁻¹ d ⁻¹ 30.0 g N ha ⁻¹ d ⁻¹ 0.30 g N ha ⁻¹ d ⁻¹ 6.5 g N ha ⁻¹ d ⁻¹ 8.2 g N ha ⁻¹ d ⁻¹ 0.60 g N ha ⁻¹ d ⁻¹		Cornfield, before irrigation. Cornfield, 1 day after irrigation. Cornfield, 2 days after irrigation. Cornfield, 12 days after irrigation. Cornfield, 1 day after second irrigation. Sugarbeet field, before irrigation. Sugarbeet field, 1 day after irrigation. Sugarbeet field, 2 days after irrigation. Sugarbeet field, 12 days after irrigation. Sugarbeet field, 12 days after irrigation.
Robertson and Tiedje (1988)	Mid-successional forest: <0.034 ng N m ⁻² month ⁻¹		Measured denitrification ($N_2 + N_2O$) in rainforest soils of Costa Rica.
	Primary-forest site: 0.11 ng N m ⁻² month ⁻¹ Early-successional site: 0.16 g N m ⁻¹ month ⁻¹		In the primary forest soils denitrifiers did not respond to nitrate fertilization.
Ryden (1981)	-2.7 x 10 ⁹ molecules N ₂ O cm ⁻² s ⁻¹		U.K., field fertilizers, perennial ryegrass, Aug - Oct.
Seiler and Conrad	0.5 to 2.5 µg m ⁻² hr⁻¹		Mainz, Germany — field study. Loess loam, unfertilized.
(1981)	1 to 3 μ g m ⁻² hr ³		Loess, unfertilized.
	2 to 13 μg m ⁻⁷ hr ⁻¹		Eolian soils, unfertilized.
Smith et al. (1983)	3. 0 x 10 ⁹ molecules N ₂ 0 cm ⁻² s ⁻¹		Louisiana, salt brackish a nd fresh marshes over 2 years.

_

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Terry et al. (1981)	Dry periods: 4 g N ha' d'		Florida Everglades, cultivated organic soils. N ₂ O emissions increased with increased soil moisture.
	Following rain: 4500 g N ha ⁻¹ d ⁻¹		
	Total Everglades region: 50 to 150 kg ha'' yr''		
Schmaidt et al. (1988)	4 to 8 μg N m ⁻² h ⁻¹	0.7 to 1.5 Tg N yr''	Temperate forest soils measured throughout central European forests.
		1.5 to 3.0 Tg N yr ^{-1**}	

'Land area for temperate forest soils: 21 x 10⁶ km².

"For a total temperate land area of 41 x 10⁶ km² (includes grassland and shrubland).

TABLE 3-3. N20 EMITTED FROM AQUIFERS

Reference	Emission Factor	Estimate of Land Area	Budget Estimate	Comments/Assumptions/Geographic Area
Ronen et al. (1988)	3.4 to 7.8 kg N ha ⁻¹ y ⁻¹	130 x 10 ⁶ km²	7.2 x 10° to 1.5 x 10° kg yr ⁻¹	Israel. Aquifers contaminated by human and animal wastes, cultivation, and fertilization. Have high N ₂ O concentrations. Global estimate assumes that1 percent of world's aquifers are contaminated.

atmosphere as it is oxidized by OH to form NO_x (Levine et al., 1984) (Tables 3-4 and 3-5).

Nitrogen oxides, typically nitric oxide (NO), are emitted from nitrification, denitrification, and nitrate respiration by fermenters (Anderson and Levine, 1986). Oxidation of N_2O in the stratosphere is also a source of NO. Biomass burning has a two-fold effect on NO (and N_2O) fluxes because not only does the burning process produce these compounds, but their emission from soils is enhanced for up to six months post-burn (Anderson et al., 1988) (Table 3-6). Anderson et al. (1988) found that aerobic soils produce NO and anaerobic soils produce N_2O , and the soil oxygen content is controlled by soil moisture. Like N_2O , NO_x emissions thus vary because of biomass burning, soil moisture content, use of fertilizers, season, and soil type.

3.3 NITROGEN OXIDES AND NITROUS OXIDE FROM LIGHTNING AND OCEANS

Atmospheric measurements, laboratory experiments, and theoretical calculations are used to estimate the NO_x and N_2O emissions from lightning (Table 3-7). The production of these compounds and the prediction of a budget estimate are dependent on assumptions concerning energy per discharge, number of flashes per second (or number of flashes annually per area), and seasonal and hemispheric variations. Brandvold and Martinez (1988) found that the N_2O/NO_x ratio was not constant in relation to energy, but instead was dependent on discharge conditions. In general, NO is assumed to be produced in greater amounts than NO_2 , and NO_x production is greater than N_2O production, but great uncertainty exists in the estimate of total NO_x and N_2O produced from lightning.

The role of the ocean in the nitrogen cycle is also not well understood (Table 3-8). Oxidation of organic matter is a source of aquatic N_2O , but there is no evidence that the ocean acts as a sink (Elkins et al., 1978). The kinetics of the reactions of NO in water are also not well understood (Logan, 1983).

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Anderson and Levine (1987)	0.53 kg N ha ⁻¹ yr' ¹		NO. Jamestown, VA. Year-long study.
Anderson et al. (1988)	Dry, unburned: 9.7 ng N m ⁻² s ⁻¹		Measured NO flux following surface burning. The elevated fluxes lasted six months post burn. Vegetation was typical
	Wetted (1 day), unburned: 21.4 ng N m ⁻² s ⁻¹		of a mediteranean chaparral ecosystem.
	Wetted (7-11 days), unburned: NA		
	Wetted (180 days), unburned: 1.1 ng N m ⁻² s ⁻¹		
	Dry, burned: 13.3 ng N m² s¹		
	Burned and wetted (1 day): 60.7 ng N m ⁻² s ⁻¹		
	Burned and wetted (7-11 days): 23.7 ng N m² s¹		
	Burned and wetted (180 days): 22.3 ng N m² s¹		
Baulch et al. (1982)		0 to 15 Tg N yr ⁻¹	

'NA = Not measured.

=

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Delany et al. (1985)	Daily average: 7 x 10 ⁻¹² kg N m ⁻² s ⁻¹		Crested wheat grass.
	Range: -9.3 to 28.0 x 10 ⁻¹² kg N m ⁻² s ⁻¹		
Ehhalt and Drummond (1982)		5.5 Tg N yr ⁻¹ (1 to 10 Tg N yr ⁻¹)	
Galbally and Roy (1978)	0.5 to 1.1 kg N ha'' yr''	10 Tg N yr ⁻¹	12 flux measurements, no correction for seasonal or diurnal variability. Ungrazed and grazed grasslands.
Galbally and Roy (1981)	Grazed pasture (range): 1 to 50 x 10 ⁻¹² kg N m ⁻² s ⁻¹		
	Grazed pasture (average): 3.5 x 10 ⁻¹² kg N m ⁻² s ⁻¹		
	Ungrazed pasture (average): 1.6 x 10 ⁻¹² kg N m ⁻² s ⁻¹		
Galbally et al. (1987)	0.2 to 1.0 ng N m ⁻² s ⁻¹		Fertilized rice field.
Johansson (1984)	Median: 0.3 x 10'' kg N m ⁻² s''		Unfertilized forest soil.
	Range: 0.1 - 0.8 x 10 ⁻¹² kg N m ⁻² s ⁻¹		
Galbally and Johansson (1989)	3 to 11 x 10 ⁻⁹ g N m ⁻² s	-1	NO. Model calculation prepared for comparison with NO flux presented by Johansson and Granat (1984) (2 to 17×10^{-9} g N m ⁻² s ⁻¹).

TABLE 3-4. (Continued)

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Johansson and Granat (1984)	Fertilized grass: 0.6 kg N ha ⁻¹ yr ⁻¹		NO. Sweden: April-July, September.
	Unfertilized barley: 0.2 kg N ha ⁻¹ yr ⁻¹		
Johansson and Sanhueza (1988)	7 month rainy season: 0.2 to 1.2 g N m ⁻²		NO. Measurements taken from a woodland savanna of Venezuela. Annual estimate obtained by combining rainy season estimate with dry season measurement in Johansson et al. (1988). Savanna, Ecuador.
Johansson et al. (1988)	Dry season, undisturbed: 8 ng N m ⁻² s ⁻¹		NO. Measured in the Venezuelan savannah and cloud forest during the dry season and with simulated rainfall and
	Dry season, burned: 25 ng N m ⁻² s ⁻¹		to the cloudforest soil. An additional 100 mg N m ² yr ⁴ are emitted with the fire plume for biomass burning in the total savanah emission estimate
	Dry season, total (5 mo.): 100 mg N m ⁻² yr ⁻¹		the total savannan emission estimate.
	Simulated rain (wet season, 7 mo.): 200 mg N m² yr' ¹		
	Wet and dry savannah total: 0.4 to 0.5 g N m ⁻² yr ⁻¹		
	Cloud forest, undisturbed: < 0.2 to 2 ng N m ⁻² s ⁻¹		
Kaplan et al. (1988)	9.2 x 10 ⁻¹² to 16 x 10 ⁻¹² kg N m ⁻² s ⁻¹		NO. Measured emission rates and O, deposition in the Amazon Region.

TABLE 3-4. (Continued)

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Levine et al. (1984)		10 Tg N yr ⁻¹	NO. Assume soil nitrification is at least 5 x 10 ¹² g(N) yr ⁻¹ of N,O and using measured NO:N,O ratio = 2 in media at low oxygen. Also assume all produced is released to atmosphere.
Levine et al. (1988)	> 40 ng N m ⁻ 's ⁻ '		NO. Measurements taken in a chaparral ecosystem, heavily burned and wetted to simulate rainfall. Increase of 2 to 3 over preburn wetted measurements.
Levine et al. (1990)	0.34 ± 0.14 ng N m ⁻² s ⁻¹ 0.22 ± 0.11 ng N m ⁻² s ⁻¹ 1.80 ± 0.68 ng N m ⁻² s ⁻¹ 0.68 ± 0.29 ng N m ⁻² s ⁻¹ 0.43 ± 0.00 ng N m ⁻² s ⁻¹ 0.04 ± 0.01 ng N m ⁻² s ⁻¹		Southern Florida; brackish marsh following burn.
	0.14 ± 0.038 ng N m ² s ⁻¹ 0.13 ± 0.04 ng N m ² s ⁻¹ 0.10 ± 0.01 ng N m ² s ⁻¹ 0.90 ± 0.035 ng N m ⁻² s ⁻¹		Southern Florida; brackish marsh before burn.
	1.290 \pm 0.5 ng N m ² s ⁻¹ 0.800 \pm 0.04 ng N m ² s ⁻¹ 0.387 \pm 0.01 ng N m ² s ⁻¹ 0.530 \pm 0.02 ng N m ⁻² s ⁻¹ 0.380 \pm 0.01 ng N m ² s ⁻¹ 0.370 \pm 0.01 ng N m ² s ⁻¹ 0.392 \pm 0.01 ng N m ⁻² s ⁻¹		Southern Florida; following burn.
	$\begin{array}{l} 0.858 \pm 0.04 \text{ ng N m}^2 \text{ s}^1 \\ 0.262 \pm 0.005 \text{ ng N m}^2 \text{ s}^{-1} \\ 0.115 \pm 0.001 \text{ ng N m}^2 \text{ s}^{-1} \\ 0.254 \pm 0.005 \text{ ng N m}^2 \text{ s}^{-1} \\ 0.230 \pm 0.005 \text{ ng N m}^2 \text{ s}^{-1} \\ 0.249 \pm 0.005 \text{ ng N m}^2 \text{ s}^{-1} \end{array}$		Southern Florida; following flooding and burn.
	$0.058 \pm 0.001 \text{ ng N m}^2 \text{ s}^{-1}$		Southern Florida; unburned.
Lipschultz et al. (1981)		14 Tg N yr ⁻¹	Lab experiments of NO:N $_2$ O ratio from nitrifying bacteria on a liquid medium.

TABLE	3-4	(Continued)
INDLC	3-41	(Continueu)

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area	
Logan (1983)		8 Tg N yr ⁻¹	Observation by one group in Australian growing season. Primarily NO.	
		10 Tg N yr ⁻¹	Assuming NO and N ₂ O production by nitrifying bacteria are equal and using N ₂ O number.	
lational Academy of Sciences (1984)		1 to 10 Tg N yr '	NO.	
Clemr and Seiler (1984)	Average: 2.2 x 10 ⁻¹² kg N m ⁻² s ⁻¹		Bare, unfertilized soil, Finthen.	
	Range: -5.8 to 14.2 x 10 ¹² kg N m ⁻² s ⁻¹			
Stedman and Shetter (1983)	(5	10 Tg N yr ⁻¹ 6 to 20 Tg yr ⁻¹)	NO.	
Vesley et al. (1989)	Moist unsaturated soils: 1.4 to 4.2 ng m²s'		NO. NE Illinois, measured 8 meters above lush grass.	
Villiams et al. (1987)	3 ng N m ⁻² s ⁻¹		Ungrazed grassland.	
Villiams et al. (1988)	Cleared forest, NO average 1.20 ng N m² s'	:	Measurements taken in central Pennsylvania. Strong correlation found between temperature and NO emissio	
	Cleared forest, NO ₂ 0.077 ng N m ⁻² s ⁻¹		pesticides also have potential influence.	
	Wheat field, NO average: 1.2 ng N m² s¹			
	Wheat field, NO ₂ average: 0.0071 ng N m ⁻² s ¹			
	Corn field, NO average: 94 ng N m ⁻² s ⁻¹			

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area	
Williams et al. (1988) (Continued)	Corn field, NO ₂ average: 3.8 ng N m ⁻² s ⁻¹			
Wofsy et al. (1988)	1 ng N m ⁻² s ⁻¹		Amazon Forest, wet season.	

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Ehhalt and Drummond (1982)	3 (.1 Tg N yr ⁻¹ 1.2 to 4.9 Tg yr ⁻¹)	NO.
Levine et al. (1984)	1	5 Tg N yr [.] '	Estimate of upper limit source strength based on NH, lifetime against OH destruction (40 d.) and rainout (10 d.) ~ 20% will react with OH. Assume all NH, oxidized by OH> NOx and 80 x 10 ¹² g(N) yr ⁻¹ NH, production in N. Hemisphere.
Logan (1983)	1	to 10 Tg N yr ⁻¹	Mechanism unclear, one product (NH,) may be a sink. Based on rate of reaction NH, with OH, [NH,] distribution and [OH] distribution in the troposphere.
National Academy of Sciences (1984)	<u> </u>	5 Tg N yr ⁻¹	NO.
Stedman and Shetter (1983)	1	Tg N yr ⁻¹ 0.5 to 2 Tg yr ⁻¹)	NO.

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Andreae et al. (1988)		Global estimate: 7.6 Tg N yr^{-1} (Range: 1.5 to 16.3 Tg N yr^{-1})	Based on emission ratios calculated from measurements of biomass-burning plumes.
		South American Tropics: 1.3 Tg N yr ⁻¹	
Baulch et al. (1982)		10 to 40 Tg N yr ⁻¹	
Cofer et al. (1988)	0.0018 ± 0.00010 ΔN2O/ΔCO2		Los Angeles, CA. Plume samples collected from intense flaming and mixed fire. CO ₂ higher with full flames (vol/vol).
Cofer et al. (1989)	Flaming: 0.014 to 0.019 ΔN20/ΔCO2		Samples collected by helicopter from burning chaparral in S. California and over a boreal forest fire in Ontario, Canada (vol/vol).
	Mixed: 0.019 to 0.021 ΔΝ20/ΔCO2		
	Smoldering: 0.039 ± 0.008 ΔN20/ΔCO2		
Crutzen et al. (1979)		50 Tg N yr ⁻¹ (20 to 100 Tg range)	Upper limit NO _x , based on N content, average maximum global N/C ratio = 1.5 - 2.5%.
		14 Tg N yr ⁻¹ as NO _x	Based on the measured ratios of the trace gas to CO_2 under various conditions. $NO_x/CO_2 = 0.47\%$ average ratio.
		200 Tg N ₂ 0 yr ⁻¹	Based on the N ₂ O/CO ₂ = 0.22% average ratio.
		~13 Tg N ₂ 0 yr ⁻¹	Based on maximum observed $N_2O/CO_2 = 0.4\%$, average global.

TABLE 3-6. NO, and N₂O EMITTED FROM BIOMASS BURNING

TABLE 3-6. (Conti	nued)
-------------------	-------

Reference	Emission Factor Budget Estimate	Budget Estimate	Budget Estimate Comme			nts/Assumptions/Geographic Area		
Crutzen et al. (1979) (Continued)		Total Biomass Burned and/or cleared cleared area (100 Tg dry (<u>10° hectare) matter)</u>		Annually burned biomass (100 Tg dry <u>matter)</u>				
			21 - 62	31 - 92	9 - 25	-Burning due to shifting agriculture		
			8.8 - 15.1	20 - 33	5.5 - 8.8	-Deforestation due to population increase and colonization		
			600	12.2 - 23.8	4.8 - 19	-Burning of savanna and bushland		
			3.0 - 5.0	10.5 - 17.5	1.5 - 2.6	-Wild fires in temperate forests		
			2.0 - 3.0	1.2 - 1.8	0.1 - 0.2	-Prescribed fires in temperate forests		
			1.0 - 1.5	2.5 - 3.8	0.4 - 0.6	-Wild fires in boreal forests		
			17 - 21			-Burning of agriculture wastes		

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Ehhalt and Drummond (1982)		11.2 Tg N yr ⁻¹ (5.6 to 16.4 Tg N yr ⁻¹)	NC.
Logan (1983)		12.5 Tg N yr ⁻¹	Based on estimate of 25% of global NO, results
		(0.25 to 18.75 Tg yr ⁻¹ range)	from this source.
National Academy of Sciences (1984)		1 to 10 Tg ₦ yr ⁻¹	NO.
Stedman and Shetter (1983)		5 Tg N yr ⁻ '	NO.

Reference	Emission Factor	Budget Estimate	Flash Density/ Flash Frequency/ Energy Deposited	Comments/Assumptions/Geographic Area
Baulch et al. (1982)		3 to 4 Tg N yr ⁻¹		NO.
Brandvold and Martinez (1988)	1.0 ± 0.2 x 10 ⁻⁷ moles NO _x joule ⁻¹			NO_x (NO + NO ₂). Between 0.005 and 0.1 joules, NO, production was linear with electrical discharge energy. N ₂ 0/NO _x ratio not constant in relation to energy, depends instead on the discharge conditions.
Chameides et al. (1977)	3 to 7 x 10 ¹⁶ molecules NO _x joule ⁻¹	30 to 40 Tg N yr''	1.6 x 10 ⁻⁷ joules cm ⁻² s ⁻¹	Theoretical calculations; global production range using lab experiments corresponds.
Chameides (1979)	8 to 17 x 10 ¹⁶ molecules NO _x joule ⁻¹	35 to 90 Tg N yr ⁻¹	1.6 x 10 ^{.7} joules cm ⁻² s ⁻¹	Theoretical calculations.
Dawson (1980)		3 Tg N yr-1		Theoretically calculated, used revised parameters for lightning.
Donohue et al. (1977)		1.4 x 10 ⁶ kg N ₂ O yr ⁻¹		
Drapcho et al. (1983)	40 x 10 ²⁵ molecules NO _x stroke ⁻¹	30 Tg N yr ⁻¹	100 flashes s ⁻¹	Atmospheric measurements.
Ehhalt and Drummond (1982)		5 Tg N yr ⁻¹ (2 to 8 Tg N yr ⁻¹)		NO.
Franzblau and Popp (1989)	3 x 10²' molecules NO, flash ⁻¹	100 Tg N yr ⁻¹	100 flashes s''	NO_x . Atmospheric measurements.

'Average value of 5 strokes flash' often assumed (Logan, 1983).

TABLE 3-7. (Continued)

Reference	Emission Factor	Budget Estimate	Flash Density/ Flash Frequency/ Energy Deposited	Comments/Assumptions/Geographic Area
Golde (1977)			Germany: 4.0×10^{-6} flashes min ⁻¹ km ⁻² UK: $0.5 - 11.5 \times 10^{6}$ flashes min ⁻¹ km ⁻² USSR: 14.0×10^{-6} flashes min ⁻¹ km ⁻² Australia: 6.0×10^{6} flashes min ⁻¹ km ⁻² Switzerland: 20.0×10^{-6} flashes min ⁻¹ km ⁻² Singapore: 60.0×10^{-6} flashes min ⁻¹ km ⁻² Sweden: 4.5×10^{-6} flashes min ⁻¹ km ⁻² Thailand: 44.7×10^{-6}	
Hill et øl. (1980)		4.4 Tg N yr-'		Theoretically calculated, used revised parameters for lightning.
Hill et al. (1984)	1 x 10 ²⁴ molecules N ₂ O yr ⁻¹	2.0 x 10° kg №0 yr ⁻¹		Independent of any assumptions of typical dissipation energy/stroke, assume 3 strokes/flash, 300 flashes/ second.
	5×10^{29} to 1×10^{21} molecules N,0 yr ⁻¹	3.6 x 10 ⁴ to 7.2 x 10 ⁵ kg N₂0 yr ⁻¹		Assumes power dissipation of typical corona = 5.56 x 10 ⁶ W, total number storms = 2400, total energy = 1.75 x 10 ¹⁴ joules yr ⁻¹ .

'Average value of 5 strokes flash⁻¹ often assumed (Logan, 1983).

Reference	Emission Factor	Budget Estimate	Flash Density/ Flash Frequency/ Energy Deposited	Comments/Assumptions/Geographic Area
Levine et al. (1979)	4 x 10'' molecules N₂O joule⁻'		1.5 x 10 ⁻⁷ joules cm ⁻² s ⁻¹	N ₂ O. Lab experiment: 10 ⁵ - 10 ⁶ joules/m. Extrapolated to global contribution,
	Global production rat 6 x 10 ⁵ molecules N ₂ 0 cm ⁻⁷ s ⁻¹ (3.5 x 10° g N yr ⁻¹	e:		but based on average grobat dissipation.
Levine et al. (1981)	5 <u>+</u> 2 x 10 ¹⁶ molecules NO joule ⁻¹	1.8 ± 0.7 Tg N yr ^{.1}	1 x 10 ⁻⁹ joules cm ⁻² s ⁻¹	NO. Lab experiment used revised parameters for lightning that result in a lower global dissipation energy. Lightning frequency ~70% greater in N. Hemisphere than S. Hemisphere.
Livingston and Krider (1978)			Florida: 365.0 x 10 ⁻⁶ flashes min ⁻¹ km ⁻²	Numbers are total flash densities.
			S. Africa: 38.6 x 10 ⁻⁶ flashes min ⁻¹ km ⁻²	
Logan (1983)		8 Tg N yr ⁻¹ (2 to 20 Tg range)		NO _x . Uses empirical to modify other published values. Range should accommodate uncertainties in both production rate per flash and the global frequency of lightning.
Martinez and Ohline (1988)	2.4 x 10 ^{.9} moles NO, discharge ^{.1} (0.02 joules discharg	ye-')		
	3.4 x 10 ⁻⁹ moles NO _x discharge ⁻¹ (0.03 joules discharg	le⁻')		

'Average value of 5 strokes flash' often assumed (Logan, 1983).

_

Reference	Emission Factor	Budget Estimate	Flash Density/ Flash Frequency/ Energy Deposited	Comments/Assumptions/Geographic Area
Martinez and Ohline (1988) (Continued)	4.7 x 10°° moles NO, discharge ⁻¹ (0.04 joules discharge	• ')		
	9 x 10 ⁻⁹ moles NO, discharge ⁻¹ (0.08 joules discharge	·')		
National Academy of Sciences (1984)		2 to 20 Tg N yr ⁻¹		
Noxon (1976)	10 to 20 x 10 ²⁵ molecules NO _x stroke ⁻¹	7 Tg N yr''		Atmospheric measurements. 100 flashes/ sec used by Dawson (1980) to calculate global production.
Peyrous and Lapeyre (1982)	1.6 to 2.6 x 10 ¹⁶ molecules joule ⁻¹	9.25 to 15.5 Tg N yr '	1.57 x 10^{-7} joules cm ² s ¹	Laboratory experiments. Original paper reported annual production in grams of NO_x and grams NO; converted to annual fixation rate.
Stedman and Shetter (1983)		3 Tg N yr ⁻¹ (1.5 to 6 Tg N yr ⁻¹)		NO.
Tuck (1976)	1.1 x 10 ²⁵ molecules NO _x stroke ⁻¹	4 Tg N yr ⁻¹	6 x 10 ° joules cm² s¹; 500 strokes s¹	Theoretical calculations. Global estimate calculated by Levine et al.
Turman and Edgar (1982)			40 to 120 flashes s ⁻¹ Seasonal variation ~10%	Uses Defense Meteorol. Satellite Program data. More detailed information on a bimonthly basis, August - June. Limitations of data are imposed by the sensor design.

"Average value of 5 strokes flash" often assumed (Logan, 1983).

TABLE 3-0. NU. and NU EMITTED FRUM ULEA	TABLE	3-8.	NO.	and N ₂ C	EMITTED	FROM	OCEANS
---	-------	------	-----	----------------------	---------	------	--------

Reference	Emission Factor	Budget Estimate	Comments/Assumptions/Geographic Area
Cohen and Gordon (1979)		4 to 10 Tg N yr ⁻¹ (6 to 10 Tg N₂O yr ⁻¹)	N ₂ O. Used a marine N cycle from a global model to estimate N ₂ O; Compared estimates to measured N ₂ O at sea surface. Assumed a mineralization rate of 2000 Tg N yr ⁻¹ as an estimate of oxidative production of nitrate in the ocean, and an average value of 0.2% for the N ₂ O/NO, ratio. Data lacking for southern oceans.
Logan (1983)		0.5 Tg N yr ¹	NO _x . Author states that kinetics of reactions of NO in water not well understood. Number based on one group's flux estimate.
McElroy et al. (1976)		0.09 Tg N yr ⁻¹ max. from marine sources	N20. Central Pacific, Peru, Chesapeake Bay and various ponds and rivers. Assume C:N = 6.6 for marine biosphere.

SECTION 4

REFERENCES

Adams, J.A.S., M.S.M. Mantovani, and L.L. Lundell. Wood Versus Fossil Fuel As a Source of Excess Carbon Dioxide in the Atmosphere: A Preliminary Report. Science 196:54-56. 1977.

Anderson, I.C., and J.S. Levine. Relative Rates of Nitric Oxide and Nitrous Oxide Production by Nitrifiers, Denitrifiers, and Nitrate Respirers. Appl. Environ. Microbio. 51(5):938-945. 1986.

Anderson, I.C., and J.S. Levine. Simultaneous Field Measurements of Biogenic Emissions of Nitric Oxide and Nitrous Oxide. J. Geophys. Res. 92(D1):965-976. 1987.

Anderson, I.C., J.S. Levine, M.A. Poth, and P.J. Riggan. Enhanced Biogenic Emissions of Nitric Oxide and Nitrous Oxide Following Surface Biomass Burning. J. Geophys. Res. 93(D4):3893-3898. 1988.

Anderson, L.G., D. Dryssen, and E.P. Jones. An Assessment of the Transport of Atmospheric CO_2 into the Arctic Ocean. J. Geophys. Res. 95(C2):1703-1711. 1990.

Andreae, M.O., E.V. Browell, M. Garstang, G.L. Gregory, R.C. Harriss, G.F. Hill, D.J. Jacob, M.C. Pereira, G.W. Sachse, A.W. Setzer, P.L. Silva Dias, R.W. Talbot, A.L. Torres, and S.C. Wofsy. Biomass-Burning Emissions and Associated Haze Layers over Amazonia. J. Geophys. Res. 93(D2):1509-1527. 1988.

Baes, C.F., Jr., A. Bjoerkstroem, and P.J. Mulholland. Uptake of Carbon Dioxide by the Oceans. In: Trabalka, J.R., ed. Atmospheric Carbon Dioxide and the Global Carbon Dioxide. U.S. Department of Energy. DOE/ER-2039. pp. 81-111. 1985.

Baker-Blocker, A., T.M. Donahue, and K.H. Mancy. Methane Flux from Wetlands Areas. Tellus 29:245-250. 1977.

Barber, T.R., R.A. Burke, and W.M. Sackett. Diffusive Flux of Methane from Warm Wetlands. Global Biogeochem. Cycles 2(4):411-425. 1988.

Bartholomew, G.W., and M. Alexander. Soil As a Sink for Atmospheric Carbon Monoxide. Science 212:1389-1391. 1981.

Bartlett, K.B., R.C. Harriss, and D.I. Sebacher. Methane Flux from Coastal Salt Marshes. J. Geophys. Res. 90(D3):5710-5720. 1985.

Bartlett, K.B., P.M. Crill, D.I. Sebacher, R.C. Harris, J.O. Wilson, and J.M. Melack. Methane Flux from the Central Amazonian Floodplain. J. Geophys. Res. 93(D2):1571-1582. 1988.

Baulch, D.L., R.A. Cox, P.J. Crutzen, R.F. Hampson, J.A. Kerr, J. Troe, and R.T. Watson. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement I. CODATA Task Group on Chemical Kinetics. J. Phys. Chem. Ref. Data. 11:327-496. 1982.

Blake, D.R. Increasing Concentrations of Atmospheric Methane, 1979-1980. Ph.D. Thesis, University of California at Irvine, Irvine, CA. 1984.

Bolin, B. Changes of Land Biota and Their Importance for the Carbon Cycle. Science 196:613-615. 1977.

Bolin, B., E.T. Degens, P. Duvigneaud, and S. Kempe. The Global Biogeochemical Carbon Cycle. In: B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, eds. SCOPE 13: The Global Carbon Cycle. John Wiley & Sons, Chichester, UK. pp. 1-54. 1979.

Bolle, H.-J., W. Seiler, and B. Bolin. Other Greenhouse Gases and Aerosols. Assessing Their Role for Atmospheric Radiative Transfer. In: Bolle, B., B.R. Doos, J. Jaeger, and R.A. Warrick, eds. SCOPE 29: The Greenhouse Effect, Climate Change, and Ecosystems. John Wiley & Sons, Chichester, United Kingdom. pp. 157-203. 1986.

Bramryd, T. The Effects of Man on the Biogeochemical Cycle of Carbon in Terrestrial Ecosystems. In: B. Bolin, E.T. Degens, S. Kempe, and P. Ketner, eds. SCOPE 13: The Global Carbon Cycle. John Wiley & Sons, Chichester, UK. pp. 183-218. 1979.

Brams, E., G.L. Hutchinson, W. Anthony, and G.P. Livingston. Seasonal Nitrous Oxide Emissions from an Intensively-Managed, Humid, Subtropical Grass Pasture. In: A.F. Bowman, ed. Soils and the Greenhouse Effect. John Wiley & Sons, Chichester, England. In press. 1990.

Brandvold, D.K., and P. Martinez. The NO_x/N_2O Fixation Ratio from Electrical Discharges. Atmos. Environ. 22(11):2477-2480. 1988.

Breitenbeck, G.A., and J.M. Bremner. Effects of Various Nitrogen Fertilizers on Emission of Nitrous Oxide from Soils. Biol. Fert. Soils. 2:195-199. 1986.

Breitenbeck, G.A., and J.M. Bremner. Ability of the Living Cells of <u>Bradyrhizobium japonicum</u> to Denitrify in Soils. Biol. Fert. Soils. 7:219-224. 1989.

Breitenbeck, G.A., A.M. Blackmer, and J.M. Bremner. Effects of Different Nitrogen Fertilizers on Emission of Nitrous Oxide from Soil. Geophys. Res. Ltrs. 7(1):85-88. 1980.

Bremner, J.M., S.G. Robbins, and A.M. Blackmer. Seasonal Variability in Emissions of Nitrous Oxide in Soil. Geophys. Res. Ltrs. 7:611-643. 1980.

Brown, A., S.P. Mathur, and D.J. Kushner. An Ombrotrophic Bog As A Methane Reservoir. Global Biogeochem. Cycles 3(3):205-215. 1989. Brunig, E.F. The Typical Rain Forest - A Wasted Asset or An Essential Biospheric Resource? Ambio 6:187-191. 1977.

Buringh, P. Organic Carbon in Soils of the World. In: G.M. Woodwell, ed. SCOPE 23: The Role of Terrestrial Vegetation in the Global Carbon Cycle. John Wiley & Sons, New York. pp. 91-110. 1984.

Burke, R.A., T.R. Barber, and W.M. Sackett. Methane Flux and Stable Hydrogen and Carbon Isotope Composition of Sedimentary Methane from the Florida Everglades. Global Biogeochem. Cycles 2(4):329-340. 1988.

Chameides, W.L. Effect of Variable Energy Input on Nitrogen Fixation in Instantaneous Linear Discharges. Nature, London. 277:123-125, 1979.

Chameides, W.L., D.H. Stedman, R.R. Dickerson, D.W. Rusch, and R.J. Cicerone. NO, Production in Lightning. J. Atmos. Sci. 34:143-149. 1977.

Chanton, J.P., and C.S. Martens. Seasonal Variations in Ebullitive Flux and Carbon Isotopic Composition of Methane in a Tidal Freshwater Estuary. Global Biogeochem. Cycles 2(3):289-298. 1988.

Chanton, J.P., G.P. Pauley, C.S. Martens, N.E. Blair, and J.W.H. Dacey. Carbon Isotopic Composition of Methane in Florida Everglades Soils and Fractionation During its Transport to the Troposphere. Global Biogeochem. Cycles 2(3):245-252. 1988.

Chen, G.T., and F.J. Millero. Gradual Increase of Oceanic CO₂. Nature 277:205-206. 1979.

Cicerone, R.J., and R.S. Oremland. Biogeochemical Aspects of Atmospheric Methane. Global Biogeochem. Cycles 2(4):299-329. 1988.

Cicerone, R.J., and J.D. Shetter. Sources of Atmospheric Methane: Measurements in Rice Paddies and a Discussion. J. Geophys. Res. 86(C8):7203-7209. 1981.

Cofer, W.R., III, J.S. Levine, P.J. Riggan, D.I. Sebacher, E.L. Winstead, E.F. Shaw, Jr., J.A. Brass, and V.G. Ambrosia. Trace Gas Emissions from a Mid-Latitude Prescribed Chaparral Fire. J. Geophys. Res. 93:1653-1658. 1988.

Cofer, W.R., III, J.S. Levine, D.J. Sebacher, E.L. Winstead, P.J. Riggan, B.J. Stocks, J.A. Brass, V.G. Ambrosia, and P.J. Boston. Trace Gas Emissions from Chaparral and Boreal Forest Fires. J. Geophys. Res. 94(D2):2255-2259. 1989.

Cohen, Y., and L.I. Gordon. Nitrous Oxide Production in the Ocean. J. Geophys. Res. 84(C1):347-353. 1979.

Conrad, R., H. Schutz, and W. Seiler. Emission of Carbon Monoxide from Submerged Rice Fields Into the Atmosphere. Atmos. Environ. 22(4):821-823. 1988. Crill, P.M., K.B. Bartlett, J.O. Wilson, D.I. Sebacher, R.C. Harris, J.M. Melack, S. MacIntyre, L. Lesack, and L. Smith-Morrill. Tropospheric Methane from an Amazonian Floodplain Lake. J. Geophys. Res. 93(D2):1564-1570. 1988a.

Crill, P.M., K.B. Bartlett, R.C. Harris, E. Gorham, G.S. Verry, D.I. Sebacher, L. Madzai, and W. Sanner. Methane Flux from Minnesota Peatlands. Global Biogeochem. Cycles 2(4):371-384. 1988b.

Crutzen, P. Atmospheric Interaction: Homogenous Gas Reactions of C, N, and S Containing Compounds. In: Bolin, B., and R.D. Cook, eds. SCOPE 21: The Major Biogeochemical Cycles and Their Interactions. John Wiley & Sons, Chichester, United Kingdom. 1983.

Crutzen, P.J., L.E. Heidt, J.P. Krasnec, W.H. Pollock, and W. Seiler. Biomass Burning as a Source of Atmospheric Gases CO, H₂, N₂O, NO, CH₃Cl, and COS. Nature 282:253-256. 1979.

Crutzen, P.J., I. Aselmann, and W. Seiler. Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans. Tellus 38(B):271-284. 1986.

Dawson, G.A. Nitrogen Fixation by Lightning. J. Atmos. Sci. 37:174-178. 1980.

Delany, A.C., P.J. Crutzen, P. Haagersen, S. Walters, and A.F. Wartburg. Photochemically Produced Ozone in the Emission From Large-scale Tropical Vegetation Fires. J. Geophys. Res. 90:2425-2429. 1985.

Detwiler, R.P., and C.A.S. Hall. Tropical Forests and the Global Carbon Cycle. Science 239:42-47. 1988.

Detwiler, R.P., C.A.S. Hall, and P. Bogdonoff. Land Use Change and Carbon Exchange in the Tropics: II. Estimates for the Entire Region. Environ. Manage. 9(4):335-344. 1985.

Devol, A.H., J.E. Richey, W.A. Clark, S.L. King, and L.A. Martinelli. Methane Emissions to the Troposphere from the Amazon Floodplain. J. Geophys. Res. 93(D2):1583-1592. 1988.

Donohue, K.G., F.H. Shair, and D.R. Wulf. Production of O_3 , NO and N_2O In a Pulsed Discharge at 1 atm. Ind. Eng. Chem. Fundam. 16:208-215. 1977.

Drapcho, D.L., D. Sisterson, and R. Kuman. Nitrogen Fixation by Lightning Activity in a Thunderstorm. Atmos. Environ. 17:729-734. 1983.

Duxbury, J.M., D.R. Bouldin, R.E. Terry, and R.L. Tate, III. Emissions of Nitrous Oxide from Soils. Nature Vol. 298. 1982.

Ehhalt, D.H. The Atmospheric Cycle of Methane. Tellus 26:58-70. 1974.

Ehhalt, D.H., and J.W. Drummond. The Tropospheric Cycle of NO_x. In: H.W. Georgii and W. Jaeschke, eds. Chemistry of the Unpolluted and Polluted Troposphere. D. Reidel Publishing, Hingham, MA. pp. 219-251. 1982. Ehhalt, D.H., and U. Schmidt. Sources and Sinks of Atmospheric Methane. Pure Appl. Geophys. 116:452-464. 1978.

Elkins, J.W., S.C. Wofsy, M.B. McElroy, C.E. Kolb, and W.A. Kaplan. Aquatic Sources and Sinks for Nitrous Oxide. Nature 275:602-606. 1978.

Franzblau, E., and C.J. Popp. Nitrogen Oxides Produced from Lightning. J. Geophys. Res. 94(D8):11089-11104. 1989.

Fraser, P.J., R.A. Rasmussen, J.W. Creffield, J.R. French, and M.A.K. Khalil. Termites and Global Methane – Another Assessment. J. Atmos. Chem. 4:295-310. 1986.

Freney, J.R., O.T. Demmeed, and J.R. Simpson. Nitrous Oxide Emissions from Soils at Low Moisture Contents. Soil Biol. Biochem. 11:167-173. 1979.

Freyer, H.-D. Atmospheric Cycles of Trace Gases Containing Carbon. In: Bolin, B., E.T. Degens, S. Kempe, and P. Ketner, eds. SCOPE 13: The Global Carbon Cycle. John Wiley & Sons, Chichester, United Kingdom. pp. 101-128. 1979.

Galbally, I.E., and C.R. Roy. Loss of Fixed Nitrogen from Soils by Nitric Oxide Exhalation. Nature 274:734-735. 1978.

Galbally, I.E., and C.R. Roy. Ozone and Nitrogen Oxides in the Southern Hemisphere Troposphere. In: Linden, J., ed. Proceedings of the Quadrennial International Ozone Symposium. Vol. 1, IAMAP, NCAR, Boulder, CO. pp. 431-438. 1981.

Galbally, I.E., and C. Johansson. A Model Relating Laboratory Measurements of Rates of Nitric Oxide Production and Field Measurements of Nitric Oxide Emission from Soils. J. Geophys. Res. 94(D5):6473-8480. 1989.

Galbally, I.E., J.R. Freney, W.A. Muirhead, J.R. Simpson, A.C.F. Trevitt, and P.M. Chalk. Emission of Nitrogen-Oxides (NO₂) from a Flooded Soil Fertilized with Urea - Relation to Other Nitrogen Loss Processes. J. Atmos. Chem. 5(3):343-365. 1987.

Golde, R.H., ed. Lightning. Vol. 1. Academic Press, New York. 1977.

Goreau, T.J., and W.Z. DeMello. Effects of Deforestation on Sources and Sinks of Atmospheric Carbon Dioxide, Nitrous Oxide, and Methane from Some Amazonian Biota and Soils. 1985.

Gorham, E. Biotic Impoverishment in Northern Peatlands. In: Woodwell, G.M., ed. Proceedings of the Conference on Biotic Impoverishment, Woods Hole Research Center. Cambridge University Press, New York. 1988.

Greenberg, J.P., P.R. Zimmerman, L. Heidt, and W. Pollock. Hydrocarbon and Carbon Monoxide Emissions from Biomass Burning in Brazil. J. Geophys. Res. 89(D1):1350-1354. 1984.

Hampicke, U. Net Transfer of Carbon Between the Land Biota and the Atmosphere, Induced by Man. In: Bolin, B., E.T. Degens, S. Kempe, and P. Ketner, eds. SCOPE 13: The Global Carbon Cycle. John Wiley & Sons, Chichister, United Kingdom. pp. 219-236. 1979.

Hao, W.M., D. Scharffe, P.J. Crutzen, and E. Sanhueza. Production of N_2O , CH_4 , and CO_2 from Soils in the Tropical Savanna During the Dry Season. J. Atmos. Chem. 7:93-105. 1988.

Harriss, R.C., D.I. Sebacher, K.B. Bartlett, D.S. Bartlett, and P.M. Crill. Sources of Atmospheric Methane in the South Florida Environment. Global Biogeochem. Cycles 2(3):231-243. 1988.

Hill, R.D., R.G. Rinker, and A. Coucouvinos. Nitrous Oxide Production By Lightning. University of California, Santa Barbara. J. Geophys. Res. 89(D1):1411-1421. 1984.

Hill, R.D., R.G. Rinker, and N.D. Wilson. Atmospheric Nitrogen Fixation by Lightning. J. Atmos. Sci. 37:179-192. 1980.

Holzapfel-Pschorn, A., and W. Seiler. Methane Emissions During a Cultivation Period from an Italian Rice Paddy. J. Geophys. Res. 91(D11):11803-11814. 1986.

Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver, and G.M. Woodwell. Changes in the Carbon Content of Terrestrial Biota and Soils Between 1860 and 1980: A Net Release of CO_2 to the Atmosphere. Ecological Monographs 53(3):235-262. 1983.

Houghton, R.A., R.D. Boone, J.M. Melillo, C.A. Palm, G.M. Woodwell, N. Myers, B. Moore, III, and D.L. Skole. Net Flux of Carbon Dioxide from Tropical Forests in 1980. Nature 316:617-620. 1985.

Hutchinson, G.L., and A.R. Mosier. Nitrous Oxide Emissions from an Irrigated Cornfield. Science 205:1125-1127. 1979.

Ingersoll, R.B., R.E. Inman, and W.R. Fisher. Soil's Potential As a Sink for Atmospheric Carbon Monoxide. Tellus 26:157-159. 1974.

Jaffe, L.S. Carbon Monoxide in the Biosphere: Sources, Distribution, and Concentrations. J. Geophys. Res. 78(24):5293-5305. 1973.

Johansson, C. Field Measurements of Nitric Oxide from Fertilized and Unfertilized Forest Soils in Sweden. J. Atmos. Chem. 1:429-442. 1984.

Johansson, C., and I.E. Galbally. Production of Nitric-Oxide in Loam Under Aerobic and Anaerobic Conditions. Appl. Environ. Microbiol. 47(6):1284-1289. 1984.

Johansson, C., and L. Granat. Emission of Nitric Oxide from Arable Land. Tellus 36B:25-37. 1984.

Johansson, C., and E. Sanhueza. Emission of NO from Savanna Soils During Rainy Season. J. Geophys. Res. 93(D11):14193-14198. 1988. Johansson, C., H. Rodhe, and E. Sanhueza. Emission of NO in a Tropical Savanna and A Cloud Forest During the Dry Season. J. Geophys. Res. 93(D6):7180-7192. 1988.

Kaplan, W.A., S.C. Wofsy, M. Keller, and J.M. DaCosta. Emission of NO and Deposition of O₃ In a Tropical Forest System. J. Geophys. Res. 93(D2):1389-1395. 1988.

Keller, M., W.A. Kaplan, and S.C. Wofsy. Emissions of N₂O, CH₄, and CO₂ from Tropical Forest Soils. J. Geophys. Res. 91(D11):11791-11802. 1986.

Keller, M., W.A. Kaplan, S.C. Wofsy, and J.M. DaCosta. Emjssions of N₂O from Tropical Forest Soils: Response to Fertilization with NH_4^+ , NO_3^- , and PO_4^- . J. Geophys. Res. 93(D2):1600-1605. 1988.

Keller, M., T.J. Goreau, S.C. Wofsy, W.A. Kaplan, and M.B. McElroy. Production of Nitrous Oxide and Consumption of Methane by Forest Soils. Geophys. Res. Ltrs. 10(12):1156-1159. 1983.

Khalil, M.A.K., and R.A. Rasmussen. Sources, Sinks, and Seasonal Cycles of Atmospheric Methane. J. Geophys. Res. 88(C9):5131-5144. 1983.

King, S.L., P.D. Quay, and J.M. Lansdown. The ${}^{13}C/{}^{12}C$ Kinetic Isotope Effect for Soil Oxidation of Methane at Ambient Atmospheric Conditions. J. Geophys. Res. 94(D15):18273-18277. 1989.

Koyama, T. Gaseous Metabolism in Lake Sediments and Paddy Soils and the Production of Atmospheric Methane and Hydrogen. J. Geophys. Res. 68:3971-3973. 1963.

Lerner, J., E. Matthews, and I. Fung. Methane Emissions from Animals: A Global High-Resolution Data Base. Global Biogeochem. Cycles 2(2):139-156. 1988.

Levine, J.S., R.E. Hughes, W.L. Chameides, and W.E. Howell. N₂O and CO Production by Electric Discharge: Atmospheric Implications. Geophys. Res. Ltrs. 6(7):557-559. 1979.

Levine, J.S., R.S. Rogowski, G.L. Gregory, W.E. Howell, and J. Fishman. Simultaneous Measurements of NO₂, NO, and O₃ Production in a Laboratory Discharge: Atmospheric Implications. Geophys. Res. Ltrs. 8(4):357-360. 1981.

Levine, J.S., T.R. Augustsson, I.C. Anderson, J.M. Hoell, Jr., and D.A. Brewer. Tropospheric Sources of NO_X: Lightning and Biology. Atmos. Environ. 18(9):1797-1804. 1984.

Levine, J.S., W.R. Cofer, III, D.I. Sebacher, E.L. Winstead, S. Sebacher, and P.J. Boston. The Effects of Fire on Biogenic Soil Emissions of Nitric Oxide and Nitrous Oxide. Global Biogeochem. Cycles 2(4):445-449. 1988.

Levine, J.S., W.R. Cofer, III, D.I. Sebacher, R.P. Rhinehart, E.L. Winstead, S. Sebacher, C.R. Hinkle, P.A. Schmalzer, and A.M. Koller, Jr. The Effects of Fire on Biogenic Emissions of Methane and Nitric Oxide from Wetlands. J. Geophys. Res. 95(D2):1853-1864. 1990.

Lilley, M.D., and J.A. Baross. Methane Production and Oxidation in Lakes Impacted by the May 18, 1980 Eruption of Mount St. Helens. Global Biogeochem. Cycles 2(4):357-370. 1988.

Linnebom, V.J.J., W. Swinnerton, and R.A. Lamontagne. The Ocean as a Source of Atmosphere CO. J. Geophys. Res. 78:5833-5840. 1973.

Lipschultz, F., O.C. Zafiriou, S.C. Wofsy, M.B. McElroy, F.W. Valois, and S.W. Watson. Production of NO and N_2O by Soil Nitrifying Bacteria: A Source of Atmospheric Nitrogen Oxides. Nature 294:641-643. 1981.

Liss, P.S., and P.G. Slater. Flux of Gases Across the Air-Sea Interface. Nature 247:181-184. 1974.

Livingston, G.P., P.M. Vitousek, and P.A. Matson. Nitrous Oxide Flux and Nitrogen Transformations Across a Landscape Gradient in Amazonia. J. Geophys. Res. 93(D2):1593-1599. 1988.

Livingston, J.M., and E.P. Krider. Electric Fields Produced by Florida Thunderstorms. J. Geophys. Res. 83:385. 1978.

Logan, J.A. Nitrogen Oxides in the Troposphere: Global and Regional Budgets. J. Geophys. Res. 88:10785-10807. 1983.

Logan, J.A., M.J. Prather, S.C. Wofsy, and M.B. McElroy. Tropospheric Chemistry: A Global Perspective. J. Geophys. Res. 86(C8):7210-7253. 1981.

Luizao, F., P. Matson, G. Livingston, R. Luizao, and P. Vitousek. Nitrous Oxide Flux Following Tropical Land Clearing. Global Biogeochem. Cycles 3(3):281-285. 1989.

Martinez, P., and R.W. Ohline. Investigations into Chemical Forms of Electrically Fixed Nitrogen. Atmos. Environ. 22(1):175-176. 1988.

Matthews, E. Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteorol. 22:474-487. 1983.

Matthews, E., and I. Fung. Methane Emissions from Natural Wetlands: Global Distribution, Area, and Environmental Characteristics of Sources. Global Biogeochem. Cycles 1(1):61-86. 1987.

McElroy, M.B., J.W. Elkins, S.C. Wofsy, and Y.L. Yung. Sources and Sinks for Atmospheric N_2O . Rev. Geophys. Space Phys. 14(2):143-150. 1976.

McKenney, D.J., D.L. Wade, and W.I. Findlay. Rates of N₂O Evolution from N-Fertilized Soil. Geophys. Res. Ltrs. 5(9):777-780. 1978.

Miller, L.G., and R.S. Oremland. Methane Efflux from the Pelagic Regions of Four Lakes. Global Biogeochem. Cycles 2(3):269-277. 1988.

Moore, B., R.D. Boone, J.E. Hobbie, R.A. Houghton, J.M. Melillo, B.J. Peterson, G.R. Shaver, C.J. Vorosmarty, and G.M. Woodwell. SCOPE 16: A Simple Model for Analysis of the Role of Terrestrial Ecosystems in the Global Carbon Budget. In: B. Bolin, ed. Carbon Cycling Modelling. John Wiley & Sons, Chichester, UK. pp. 365-385. 1981.

Mosier, A.R., and G.L. Hutchinson. Nitrous Oxide Emissions from Cropped Fields. J. Environ. Qual. 10(2):169-173. 1981.

Mosier, A.R., G.L. Hutchinson, B.R. Sabey, and J. Baxter. Nitrous Oxide Emissions from Barley Plots Treated with Ammonium Nitrate or Sewage Sludge. J. Environ. Qual. 11(1):78-81. 1982.

Mosier, A.R., M. Stillwell, W.J. Pouton, and R.G. Woodmansee. Nitrous Oxide Emissions from a Native Shortgrass Prairie. Soil Sci. Am. J. 45:617-619. 1981.

Myers, N. The Present and Future Prospects of Tropical Moist Forests. Environ. Conserv. 7:101-114. 1980.

National Academy of Sciences. Global Troposphere Chemistry: A Plan for Action. National Academy Press, Washington, DC. 194 pp. 1984.

Noxon, J.F. Atmospheric Nitrogen Fixation by Lightning. Geophys. Res. Ltrs. 3:463-465. 1976.

Peyrous, R., and R.M. Lapeyre. Gaseous Products Created by Electrical Discharges in the Atmosphere and Condensation Nuclei Resulting from Gas Phase Reactions. Atmos. Environ. 16:959-968. 1982.

Rasmussen, R.A., and M.A.K. Khalil. Global Production of Methane by Termites. Nature 301:700-702. 1983.

Revelle, R., and W. Munk. The Carbon Dioxide Cycle and the Biosphere. In: Energy and Climate, Study Geophys., Washington, DC. National Academy of Sciences. pp. 140-158. 1977.

Robertson, G.P., and J.M. Tiedje. Deforestation Alters Denitrification In a Lowland Tropical Rain Forest. Nature 336:756-759. 1988.

Ronen, D., W. Magaritz, and E. Almon. Contaminated Aquifers Are a Forgotten Component of the Global N_2O Budget. Nature 335:57-59. 1988.

Rust, F.E. δ (¹³C/¹²C) of Ruminant Methane and its Relationship to Atmospheric Methane. Science 211:1044-1046. 1981.

Ryden, J.C. N₂O Exchange between a Grassland Soil and the Atmosphere. Nature 292:235-237. 1981.

Schlesinger, W.H. Carbon Balance in Terrestrial Detritus. Annual Rev. Ecol. Syst. 8:51-81. 1977. Schlesinger, W.H. Soil Organic Matter: A Source of Atmospheric CO₂. In: G.M. Woodwell, ed. SCOPE 23: The Role of Terrestrial Vegetation in the Global Carbon Cycle. John Wiley & Sons, New York. pp. 111-130. 1984.

Schmidt, J., W. Seiler, and R. Conrad. Emission of Nitrous Oxide from Temperate Forest Soils into the Atmosphere. J. Atmos. Chem. 6:9515. 1988.

Schutz, H., A. Holzapfel-Pschorn, R. Conrad, H. Renhenberg, and W. Seiler. A 3-year Continuous Record on the Influence of Daytime, Season, and Fertilizer Treatment on Methane Emission Rates from an Italian Rice Paddy. J. Geophys. Res. 94(D13):16405-16416. 1989.

Sebacher, D.I., R.C. Harris, K.B. Bartlett, S.M. Sebacher, and S.S. Grice. Atmospheric Sources of Methane: Alaskan Tundra Bogs, an Alpine Fen, and a Subarctic Boreal Marsh. Tellus 38:1-10. 1986.

Seiler, W. The Cycle of Atmospheric CO. Tellus 26:116-135. 1974.

Seiler, W., and R. Conrad. Field Measurements of Natural and Fertilizer-Induced N_2O Release Rates from Soils. J. Air Pollut. Control Assoc. 31(7):767-772. 1981.

Seiler, W., and R. Conrad. Contributions of Tropical Ecosystems to the Global Budgets of Trace Gases, Especially CH_4 , H_2 , CO and N_2O . In: R. Dickinson, ed. Geophysiology of Amazonia: Vegetation and Climate Interactions. pp. 133-162. John Wiley & Sons, New York. 1987.

Seiler, W., R. Conrad, and D. Scharffe. Field Studies of Methane Emissions from Termite Nests into the Atmosphere and Measurements of Methane Uptake by Tropical Soils. J. Atmos. Chem. 1:171-186. 1984.

Sheppard, J.C., H. Westberg, J.F. Hopper, and K. Ganesan. Inventory of Global Methane Sources and Their Production Rates. J. Geophys. Res. 87(C2):1305-1312. 1982.

Slemr, F., and W. Seiler. Field Measurements of NO and NO₂ Emissions from Fertilized and Unfertilized Soils. J. Atmos. Chem. 2:1-24. 1984.

Slemr, F., R. Conrad, and W. Seiler. Nitrous Oxide Emissions from Fertilized and Unfertilized Soils in a Subtropical Region (Andalusia, Spain). J. Atmos. Chem. 1:159-169. 1984.

Smith, C.J., R.D. DeLaune, and W.H. Patrick, Jr. Nitrous Oxide Emissions from Gulf Coast Wetlands. Geochimica et Cosmochimica Acta. 47:1805-1814. 1983.

Smith, S.V. Marine Macrophytes as a Global Carbon Sink. Science 211:838-840. 1981.

Stedman, D.H., and R.E. Shetter. The Global Budget of Atmospheric Nitrogen Species. In: Schwartz, S.E., ed. Trace Atmospheric Constituents. John Wiley & Sons, New York. pp. 411-454. 1983.
Steudler, P.A., R.D. Bowden, J.M. Melillo, and J.D. Aber. Influence of Nitrogen Fertilization on Methane Uptake in Temperate Forest Soils. Nature 341:314-316. 1989.

Stevens, C.M., and A. Engelkemeir. Stable Carbon Isotopic Composition of Methane from Some Natural and Anthropogenic Sources. J. Geophys. Res. 93(D1):725-733. 1988.

Stuiver, M. Atmospheric Carbon Dioxide and Carbon Reservoir Changes. Science 199(4326):253-258. 1978.

Terry, R.E., R.L. Tate, III, and J.M. Duxbury. Nitrous Oxide Emissions from Drained, Cultivated Organic Soils of South Florida. J. Air Pollut. Control Assoc. 31(11):1173-1176. 1981.

Tuck, A.F. Production of Nitrogen Oxides by Lightning Discharges. Q. J1. R. Met. Soc. 102:749-755. 1976.

Turman, B.N., and B.C. Edgar. Global Lightning Distributions at Dawn and Dusk. J. Geophys. Res. 87(C2). 1982.

United Nations, Food and Agriculture Organization. 1984 FAO Production Yearbook, Vol. 38. Rome, Italy. 1985.

Volz, A., D.H. Ehhalt, and R.G. Derwent. Seasonal and Latitudinal Variation of 14 CO and the Tropospheric Concentration of OH Radicals. J. Geophys. Res. 86(C6):5163-5172. 1981.

Wang, M., M.A.K. Khalil, and R.A. Rasmussen. CH_4 Flux from Biogas Generators and Rice Paddies as Measured in Sichuan, China: Preliminary Findings. In: Proceedings from the Second Science Team Meeting of the United States of America Department of Energy and the People's Republic of China, Academia Sinica, Joint Research Program on CO₂-Induced Climate Change, August 26-29, 1988, Harper's Ferry, West Virginia. DOE Report No. CONF-8708252. 1988.

Wesley, M.L., D.L. Sisterson, R.L. Hart, D.L. Drapcho, and I.Y. Lee. Observations of Nitric Oxide Fluxes Over Grass. J. Atmos. Chem. 9:447-463. 1989.

Whalen, S.C., and W.S. Reeburgh. A Methane Flux Time Series for Tundra Environments. Global Biogeochem. Cycles 2(4):399-409. 1988.

Williams, E.J., D.D. Parish, and F.C. Fehsenfeld. Determination of Nitrogen Oxide Emissions from Soils: Results From a Grassland Site in Colorado, United States. J. Geophys. Res. 92:2173-2179. 1987.

Williams, E.J., D.D. Parrish, M.P. Buhr, and F.C. Fehsenfeld. Measurement of Soil NO, Emissions in Central Pennsylvania. J. Geophys. Res. 93(D8):9539-9546. 1988.

Wofsy, S.C., R.C. Harriss, and W.A. Kaplan. Carbon Dioxide in the Atmosphere Over the Amazon Basin. J. Geophys. Res. 93(D2):1377-1387. 1988. Wong, C.S. Atmospheric Input of Carbon Dioxide from Burning Wood. Science 200:197-200. 1978.

.

Woodwell, G.M., and R.A. Houghton. Biotic Influences on the World Carbon Budget. In: Stumm, W., ed. Global Chemical Cycles and Their Alterations by Man. Dahlem Konferenzen, Berlin, Germany. 1977.

Woodwell, G.M., R.H. Whittaker, W.A. Reiners, G.E. Likens, C.C. Delwiche, and D.B. Botkin. The Biota and the World Carbon Budget. Science 199:141-146. 1978.

Woodwell, G.M., J.E. Hobbie, R.A. Houghton, J.M. Melillo, B. Moore, III, A.B. Park, B.J. Peterson, G.R. Shaver, and T.A. Stone. Global Deforestation: Contribution to Atmospheric Carbon Dioxide. Science 222(4628):1081-1086. 1983.

Yavitt, J.B., G.E. Lang, and D.M. Downey. Potential Methane Production and Methane Oxidation Rates in Wetland Ecosystems of the Appalachian Mountains, United States. Global Biogeochem. Cycles 2(3):253-268. 1988.

Zimmerman, P.R., J.P. Greenberg, S.O. Wandiga, and P.J. Crutzen. Termites: A Potentially Large Source of Atmospheric Methane, Carbon Dioxide, and Molecular Hydrogen. Science 218:563-565. 1982.