EPA-600/R-94-060 April 1994

Application of Pulse Combustion to Incineration of Liquid Hazardous Waste

By:

Carin DeBenedictis U. S. Environmental Protection Agency Air and Energy Engineering Research Laboratory Research Triangle Park, NC 27711

Prepared for:

U.S. Environmental Protection Agency Office of Research and Development Washington, D.C. 20460

	(Please read Instructions on the reverse before completing)					
,	EPA-600/R-94-060	3.	PB	94-164415		
1	TITLE AND SUBTITLE Application of Pulse Combustion to Inciner		REPORT DATE			
	Liquid Hazardous Waste	auton 01	·	GANIZATION CODE		
	AUTHOR(S) Carin DeBenedictis	PERFORMING OR	GANIZATION REPORT NO.			
9.	PERFORMING ORGANIZATION NAME AND ADDRESS	10	PROGRAM ELEN	IENT NO.		
	See Block 12	11	CONTRACT/GRA	ANT NO.		
			NA (Inhouse)			
	2. SPONSORING AGENCY NAME AND ADDRESS	13. TYPE OF REPORT AND PERIOD COVERED Final; 9/91 - 8/93				
]	EPA, Office of Research and Development		SPONSORING A			
]	Air and Energy Engineering Research Labe Research Triangle Park, NC 27711	EPA/600/13				
1)] {	15. SUPPLEMENTARY NOTES Project officer DeBenedictis is no longer with AEERL; she was c loan from EPA Region 4. For details, contact William P. Linak, Mail Drop 65, 919 541-5792.					
6	^{5. ABSTRACT} The report gives results of a stud	ly to determine	e the effect	of acoustic pul-		
5	sations on the steady-state operation of a p	oulse combuste	r burning l	iquid hazardous		
	waste. A horizontal tunnel furnace was ret					
	oustor that burned No. 2 fuel oil. The fuel					
	ganic hazardous constituents (POHCs) The					
	and chlorobenzene. Baseline conditions we					
	well as hazardous waste operations."For e ated in both a pulsing and nonpulsing mode.			· · · · · · · · · · · · · · · · · · ·		
	generated by adjusting the burner frequency					
	combustion chamber. The combustion gase					
	particulate emissions. The results showed	-	-			
	values that were greater than six nines (99					
	operations. The pulse combustor for this s	tudy was equip	ped with a	fuel vaporization		
	unit which may have enhanced the destructi	-				
	nown if operating without a vaporizer or u	nder non-idea	l combustic	on conditions		
	vould degrade burner performance.					
17	. KEY WORDS AND DO	CUMENT ANALYSIS				
а.	DESCRIPTORS	b.IDENTIFIERS/OPEN	ENDED TERMS	c. COSATI Field/Group		
		Pollution Cont		13B 07C		
	Vastes Particles	Stationary Sou		1 4 G		
-		Liquid Hazard				
	Pulsation	Pulse combust	lon -	067		
	Toxicity Liquids	Particulates 06T 07D		06T 07D		
18	DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report)	21. NO. OF PAGES		
	Release to Public	Unclassified 20. SECURITY CLASS (Unclassified	This page)	102 22. PRICE		
		0				

EPA Form 2220-1 (9-73)

NOTICE

This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

ABSTRACT

The purpose of this study was to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor. The pulse combustor burned No. 2 fuel oil that was doped with principal organic hazardous constituents (POHCs). The POHCs that were used were carbon tetrachloride and chlorobenzene.

Baseline conditions were tested when only fuel oil was burned as well as hazardous waste operations. For each test condition, the burner was operated in a both a pulsing and nonpulsing mode. Large amplitude acoustic pulsations were generated by adjusting the burner frequency to match the natural frequency of the combustion chamber. Sampling of the combustion gases was done to quantify organic and particulate emissions.

The results showed Destruction and Removal Efficiency (DRE) values that were greater than six-nines (99.9999 percent) for both pulsing and nonpulsing operations. The pulse combustor for this study was equipped with a fuel vaporization unit which may have enhanced the destruction capabilities of the burner. It is not known if experiments without a vaporizer or operating the pulse combustor under non-ideal combustion conditions would help determine if acoustic pulsations can improve burner performance compared to the nonpulsed operation.

iïi

CONTENTS

ABSTRACT		iii
LIST OF FIG	URES	vii
LIST OF TA	BLES	vii
1.	INTRODUCTION	1
	1.1 Scope and Application	1
	1.2 Hazardous Waste Incineration	3
	1.3 Pulse Combustion	5
2.	EXPERIMENTAL	8
	2.1 Description of Equipment	8
	2.1.1 Research Furnace	8
	2.1.2 Pulse Combustor	10
	2.2 Surrogate POHC Selection	13
	2.3 Tests and Measurements	15
	2.3.1 Test Design	15
	2.3.2 Determination of Volatile Organic Emissions	17
	2.3.3 Determination of Semivolatile Organic Emissions	20
	2.3.4 Determination of Particulate Emissions	22
3.	RESULTS	23
	3.1 Burner Operation	23
	3.2 Volatile Organic Emissions	24
	3.3 DRE Results	30
	DRE Results30Semivolatile Organic Emissions32	
	3.5 Particulate Emissions	32
	3.6 Quality Assurance Measurements	33
4.	CONCLUSIONS	38
REFERENCE	S	40

APPENDICES

Appendix A - Volatile Organic Screening Results	A-1
Appendix B - DRE Calculations	B-1
Appendix C - Semivolatile Organic Screening Results	C-1
Appendix D - Particulate Loading Results	D-1
Appendix E - Particle Size Distribution Results	E -1

LIST OF FIGURES

<u>Numl</u>	ber	
1	Horizontal Tunnel Furnace	9
2	Liquid Injection Pulse Combustor	11
3	Volatile Organic Sampling Train (VOST)	19
4	Semivolatile Organic Sampling Train (semi-VOST)	21
5 a	Volatile Screening Results - Baseline Tests	25
5 b	Volatile Screening Results - Baseline Tests (continued)	26
ба	Volatile Screening Results - POHC Tests	27
6 b	Volatile Screening Results - POHC Tests (continued)	28
7 a	Particulate Loading Concentration - Baseline Tests	35
7 b	Particulate Size Concentration - Baseline Tests	35
8 a	Particulate Loading Concentration - POHC Tests	36
8 b	Particulate Size Concentration - POHC Tests	36
9a	Particulate Loading Concentration - Low Oxygen Tests	37
9Ъ	Particulate Size Concentration - Low Oxygen Tests	37

LIST OF TABLES

Number

1	Test Matrix	16
2	DRE Results	31
3	Particulate Emission Results	34

vii

SECTION 1

INTRODUCTION

1.1 SCOPE AND APPLICATION

Incineration is often utilized for the effective disposal of hazardous wastes. The performance of an incinerator is measured by how completely the principal organic hazardous compounds (POHCs) are destroyed, and also by how completely the intermediate degradation products are oxidized. For the ideal case of 100 percent combustion efficiency, air emissions from the burning of pure hydrocarbons would consist only of carbon dioxide and water. However, complete combustion is only a theoretical concept. Therefore, depending on the waste being treated, Agency regulations require 99.99% or 99.9999% destruction of the POHCs. Due to the growing public concern about incineration, and in particular hazardous waste incineration, research is continuing to look at ways of improving combustion efficiencies, thereby minimizing the emissions of potentially toxic compounds.

The purpose of this research was to determine if a pulse combustor could improve the organic destruction capabilities of a pilot-scale research furnace. This report discusses the results of experiments conducted on a horizontal tunnel furnace that was retrofitted with a tunable pulse combustor. The combustor was designed to burn No. 2 fuel oil which was

doped with surrogate liquid wastes. The exhaust combustion gases were sampled and analyzed to determine what effect large amplitude resonant pulsations have on hazardous waste incineration performance parameters.

Previous work on the application of pulse combustion to hazardous waste incineration (Stewart et al., 1991) has shown that the excitation of pulsations inside a Rotary Kiln Incinerator Simulator reduced soot emissions during incineration of tolucne and polyethylene by 50 to 75 Also, the carbon monoxide (CO) and total hydrocarbon (THC) percent. levels were reduced during polyethylene incineration. The conclusions from this previous study were that the introduction of acoustic pulsations has a strong tendency to reduce the amount of unburned material exiting the combustion chamber. However, no detailed chemical analyses of the Therefore, the quantity and composition of stack gas were undertaken. products of incomplete combustion (PICs) were not determined. The pulse combustor for this previous work utilized natural gas as the primary fuel, and surrogate hazardous wastes were introduced in a batch mode.

For the experimental research in this study, a liquid injection pulse combustor was tested during the steady-state burning of a surrogate liquid waste stream. Continuous emission monitoring of combustion gases was done as well as volatile and semivolatile organic analyses. The results were utilized to determine the effect of resonant pulsations on the thermal destruction of selected organic compounds. In addition, a detailed chemical screening procedure was done to characterize and quantify the PICs for both the pulsating and nonpulsating modes of operation.

1.2 HAZARDOUS WASTE INCINERATION

The United States Environmental Protection Agency (EPA) conducted a National Hazardous Waste Survey in 1986. According to the survey (Behmanesh et al., 1992), approximately 4 million tons per year of hazardous waste is sent to various thermal treatment facilities. The thermal technologies include direct incineration, fuel blending, and reuse as a fuel. The survey also concluded that, of the 260 operating incinerators within the United States, 129 were liquid injection units. The study showed that most of the liquid hazardous waste is generated from the chemical manufacturing industry.

The Resource Conservation and Recovery Act (RCRA) mandates that the EPA set standards for hazardous waste incineration. The operational standards include continuous on-line monitoring of process parameters such as temperature and carbon monoxide emissions. The major performance parameter is the destruction and removal of toxic organic compounds which are contained in the waste stream. Specifically, RCRA regulations state that hazardous waste incinerators must demonstrate a destruction and removal efficiency (DRE) of four-nines (99.99 percent) or higher. This type of demonstration is done through a trial burn which is the primary step in the RCRA incinerator permitting process.

DRE is defined in the Code of Federal Regulations (CFR) by the following equation:

DRE =
$$[(W_{in} - W_{out})/W_{in}] \times 100$$
 (percent)

where V

 $W_{in} = mass$ feed rate of the POHC in the waste stream fed to the incinerator

 W_{out} = mass emission rate of the POHC in the stack gas

Most well operated incinerators, including liquid injection systems, are capable of achieving the 99.99 percent DRE standard. Trial burn performance data (Oppelt, 1987) has shown that well-designed thermal destruction units should be able to demonstrate high DRE if sufficient temperature, oxygen, and feed controls are maintained. However, even in steady-state operations, conditions can exist within the combustion chamber which prevent organic destruction from occurring. One such condition that can have a negative effect on incinerator efficiency is inadequate mixing of combustion gases, fuel, and waste. Research has shown (Lee, 1988) that, at temperatures above 871°C (1600°F), combustion reactions may not be limited by the chemical oxidation kinetics, but rather by the mixing of oxygen with the organic fuel. Poor mixing within the combustion chamber can lower the overall efficiency due to oxygendeficient pockets being formed within the flame zone.

To enhance the destruction performance of hazardous waste incinerators, most facilities operate under excess air conditions. However,

even with an excess oxygen supply, the formation of potentially toxic PICs has been identified as a consequence of inadequate mixing between the combustibles and oxidant (EPA Science Advisory Board, 1989). The focus of this research was to determine if large amplitude acoustic pulsations could improve air/fuel mixing in the combustion chamber, and therefore improve the organic destruction capabilities of a liquid injection incineration system.

1.3 PULSE COMBUSTION

Pulse combustion refers to a combustion process that varies in a periodic manner. Pulse combustion is a relatively old technology. One of the first applications of a pulse combustor was for the engine that propelled the World War II "buzz bomb" (Reader, 1977). Today, a significant market for pulse combustors is in the area of space and water heaters. The Lennox[®] pulse furnace is an example of pulse combustion technology being utilized in home heating applications.

Pulsating combustion occurs when the heat released by a combustion process spontaneously excites a pressure wave within the combustion chamber. When this pressure wave is in phase with periodic heat release, pressure and gas velocity oscillations occur. In order to excite large amplitude pulsations within a pulse combustor, the frequency at which it operates must equal one of the natural acoustic modes of the combustion chamber. When these frequencies are matched, resonant

pulsations are excited in the combustion section as well as the tailpipe portion of the pulse burner.

Studies on various pulse combustor designs (Zinn, 1985) have shown that combustion intensity, convective heat transfer, and mass transfer rates can be increased. Pulse combustors have also been shown to have decreased levels of nitrogen oxides (NO_x) emissions (Bartok et al., 1988). Due to their increased combustion efficiencies, pulse combustors result in fuel savings and provide for lower operating costs.

One of the important benefits of a pulse combustor for hazardous waste incineration is the improved mixing of combustion gases. The resonant pulsations cause significant gas turbulence within the combustion zone. The effect has also been noted downstream of the primary chamber in the tail pipe section of a pulse burner (Dec and Keller, 1986). This improved mixing should minimize the formation of any cold spots or oxygen deficient areas within the combustion chamber.

Based on these findings, it appears that pulse combustion should improve the performance of a hazardous waste incinerator. The thermal destruction of hazardous waste should be enhanced due to the improvements in mass and heat transfer, as well as improved mixing between the combustion air and the waste. The following investigation was done to determine if such improvements would aid in the thermal destruction of a liquid hazardous waste stream.

As stated previously, in order to excite large amplitude pulsations within a combustion chamber, the operating frequency of the pulse combustor must equal a frequency equal to one of the natural acoustic modes of the chamber. When this is achieved, resonance occurs within the system. The amplitude of the pulsations is maximized at the point of resonance.

Sonotech Inc. (Atlanta, Georgia) has developed a tunable pulse combustor which is capable of operating over a fairly wide frequency range. A tunable pulse combustor is not limited to one specific frequency value, and therefore can be utilized with various combustion chamber configurations. The tuning capability allows the burner to operate at a specific frequency that produces resonant pulsations in the chamber.

SECTION 2

EXPERIMENTAL

2.1 DESCRIPTION OF EQUIPMENT

2.1.1 <u>Research Furnace</u>

¢

The experiments in this study were conducted using an 82 kW (280,000 Btu/hr) horizontal tunnel furnace. This unit (see Figure 1) consists of seven horizontal refractory-lined sections. The internal diameter of the furnace is 52.1 cm (20.5 inches) at the end near the flame and tapers to 26.7 cm (10.5 inches) midway through the horizontal chamber. The total length of the furnace is 3.96 m (13 feet). The unit is a versatile furnace in that it is equipped with numerous sampling ports. These ports are utilized for extractive sampling of combustion gases as well as pressure, temperature, and particulate measurements. Two quartz windows are available for flame visualization. The furnace is considered a pilot-scale model. However, critical parameters such as gas-phase residence time and temperature profiles are comparable to full-scale incineration facilities.

The exhaust gases from the furnace are first sent through a singlepass counter-flow heat exchanger. The heat exchanger cools the gases from approximately 648 to 371°C (1200 to 700°F). All continuous emission

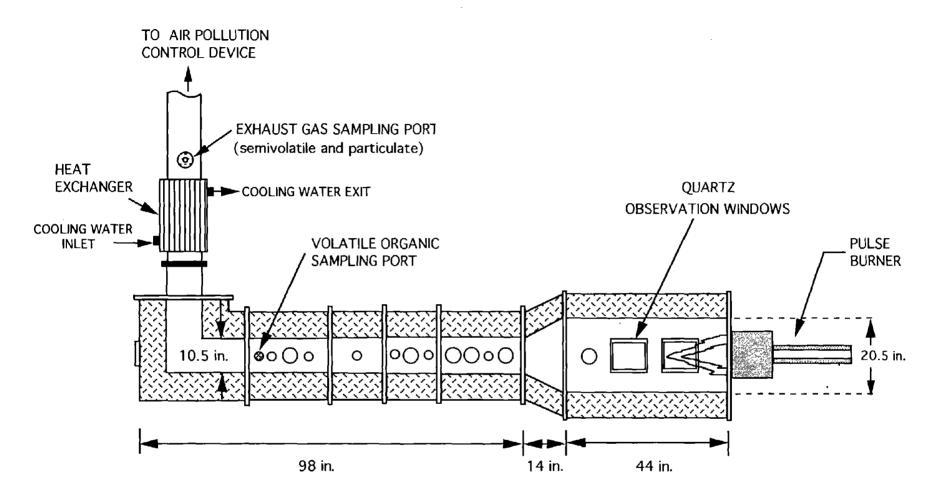


Figure 1: Horizontal Tunnel Furnace

monitoring is done immediately downstream of the heat exchanger. The monitoring consists of the on-line measurement of O_2 (Beckman model 755 paramagnetic), CO, CO₂ (Beckman model 864 infrared), and NO_x (Thermoelectron Series 10 Chemiluminescent). Following the heat exchanger and sampling ports, all combustion gases are sent to an air pollution control system (APCS). The APCS consists of an 879 kW (3 × 10⁶ Btu/hr) boiler which functions as a secondary combustion device. Following this boiler, the gases are quenched and scrubbed of acid and particulate before being discharged into the environment. The APCS is oversized since it must handle effluents from other pilot-scale combustors in the laboratory.

2.1.2 Pulse Combustor

A pulse combustor was designed by Sonotech to operate at a maximum fuel input rate of 73 kW (250,000 Btu/hr). This is the maximum heat capacity of the EPA research furnace. The pulse combustor was welded in place at the large cylindrical end of the horizontal furnace (see Figure 2).

The fuel for the pulse burner was No. 2 fuel oil. The design of this pulse combustor features a natural-gas-fired fuel preheater unit. The purpose of this preheater unit is to vaporize the fuel oil prior to introduction into the main flame of the pulse burner. The fuel oil is pumped into the preheater unit through a spray nozzle. This causes the

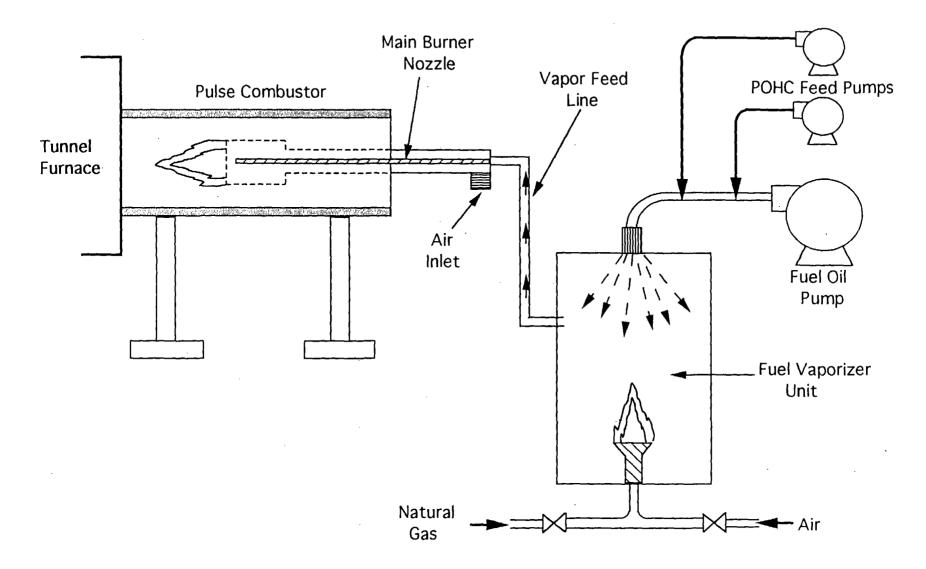


Figure 2: Liquid Injection Pulse Combustor

fuel oil flow to be atomized into tiny droplets and creates a conical spray zone above the natural gas flame. As this stream is heated, vaporization occurs and the gas stream continues to flow out of preheater unit and on through the primary combustion chamber of the pulse burner.

As stated previously, the goal of this study was to determine whether large amplitude pulsations would improve the thermal destruction capabilities of a furnace burning liquid hazardous waste. Therefore, in order to generate a liquid hazardous waste stream, surrogate waste compounds were added to the fuel oil feed stream. The surrogate wastes that were chosen for these experiments were two chlorinated solvents which were pumped directly into the fuel oil line upstream of the spray nozzle and preheater unit. The solvent streams were introduced far enough upstream of the preheater to allow for adequate mixing of the oil and solvents. High accuracy piston pumps were utilized for solvent pumping to provide precise mass flow rate measurements.

The remaining parts of the pulse burner are an air inlet port, a flame holder, and a refractory-lined combustion section. The vaporized fuel is sent to the main flame through another nozzle configuration which is located inside of this combustion section. The frequency of the pulse combustor is varied by changing the overall length of the combustion zone. This is accomplished by moving the location of the primary flame holder. The ability to change the combustor length provides for the unique tuning capabilities of the Sonotech pulse combustion system.

To find a point of resonance within the furnace, the output from a pressure transducer was monitored during the tuning process. This pressure transducer continuously monitors the pressure within the furnace. During tuning, the entire frequency range of the pulse burner is scanned. The location which yields the maximum output from the pressure transducer (measured in volts) represents a point of resonance. The nonpulsing mode of operation is set by tuning the pulse combustor to a point where the pulsation amplitude, as measured by the pressure transducer output, is at a minimum level.

In this investigation, the Sonotech pulse combustor was capable of operating over a frequency range of 50-500 cycles per second (Hz) within the furnace. The combustor produced acoustic pulsations with amplitudes as high as 160 decibels (dB) within this frequency range.

2.2 SURROGATE POHC SELECTION

To demonstrate compliance with the DRE standard, EPA regulations stipulate that incinerators must show adequate destruction of several selected organic compounds. The designated compounds are referred to as POHCs. These compounds are selected from a listing provided in the RCRA regulations (EPA, 1981).

Ideally, the chosen POHCs should have the overall highest resistance to incineration. If this is the case, a successful trial burn would demonstrate a thorough destruction of the most "difficult to burn"

compounds. However, several properties of thermal behavior should be considered when defining any relative factor that deals with incineration categories. Thus, different ranking schemes have been developed which list POHCs in order of incinerability.

The heat of combustion ranking system has been widely used in the past. This listing has been popular due to the fact that heat of combustion values can be readily obtained for a majority of POHCs. However, a newly developed ranking system based on a compound''s thermal stability at oxygen-starved conditions has been put together by the University of Dayton Research Institute. This ranking system was developed after it was demonstrated that listing compounds by the criteria of stability at starved-oxygen conditions correlated well with actual DRE performance data (Dellinger, et al., 1986).

The current incinerator permit guidance (EPA, 1989) suggests that POHCs should be chosen which rank high in thermal stability on both the heat of combustion and low oxygen stability listings. In adherence to this guidance, the two POHCs that were utilized for this pulse combustion study were carbon tetrachloride and chlorobenzene. Carbon tetrachloride is listed as the fourth highest thermally stable compound based on the heat of combustion ranking, while chlorobenzene is in the highest difficulty class based on the starved-oxygen stability criterion. These two compounds were also preferred as POHCs since they do not posses characteristics, such as reactivity or water solubility, which would cause difficulties in sampling and analysis.

2.3 TESTS AND MEASUREMENTS

2.3.1 Test Design

Table 1 provides the experimental testing matrix that was utilized for this study. It is important to note that two separate runs were completed for each test condition. Two runs were required to directly compare the burner performance during pulsing and nonpulsing operations. Within each test condition, the only difference between pulsing and nonpulsing modes was in the tuning position of the primary flame. All other operational parameters, such as feed rates of air and fuel, remained constant. The firing rate of the pulse combustor was set at 58.6 kW (200,000 Btu/hr) for the entire study.

Three separate test conditions are shown in Table 1. Condition 1 represents the baseline condition in which pure fuel oil was fed to the combustor. No surrogate waste compounds were introduced for this baseline testing. The purpose of doing this series was to determine the tuning position that would produce large amplitude acoustic pulsations (resonance point), as well as to define the flame location that would generate pulsations at minimum amplitude. For baseline testing, the fullscale organic analysis (volatile and semivolatile) was done as well as particulate analysis. The organic analysis was done to determine the contribution that fuel oil would have on PIC formation. Particulate analysis was done to establish baseline particle emissions. No DRE

Table 1

EXPERIMENTAL TEST MATRIX

Stack Gas Analyses

	Volatile Analysis	Semivolatile Analysis	Particulate Analysis	DRE Computation
Condition 1 Baseline (pulsing)	х	x	x	
Condition 1 Baseline (nonpulsing)	x	х	X	
Condition 2 POHC in Feed (pulsing)	х	X	x	x
Condition 2 POHC in Feed (nonpulsing)	x	x	x	x
Condition 3 Low Oxygen (pulsing)			X	
Condition 3 Low Oxygen (nonpulsing)			x	

Operating Parameters for all Tests:

- Pulse combustor firing rate = 200,000 Btu/hr
- Rainbow Tunnel Furnace Temperature = 1800 °F
- POHCs = Carbon tetrachloride and chlorobenzene

computations were performed at Condition 1 since no POHCs were fed into the pulse combustor during this test series.

Test Condition 2 represents the two runs that were performed when burning fuel oil containing the two chlorinated POHCs at a concentration of 8.2 percent. As stated previously, the two chosen POHCs were carbon tetrachloride and chlorobenzene. By measuring the emissions of these compounds, DRE calculations were reported utilizing Condition 2 data.

For Conditions 1 and 2, the stoichiometric oxygen/fuel ratio (SR) was set at a value of 1.2. Thus, a 20 percent excess oxygen level was introduced The last experimental runs were performed at for these conditions. The major difference between Condition 3 and the other Condition 3. previous test runs was that oxygen levels were decreased significantly. The SR value for Condition 3 tests was set at approximately 1.03, which corresponds to an excess air level of only 3 percent. The purpose of running at the lower oxygen level was to determine if resonant pulsations could improve incineration performance under non-ideal combustion conditions. Due to operational problems of the burner, however, no volatile or semivolatile analyses were undertaken at Condition 3. The testing at this condition consisted only of particulate sizing analysis.

2.3.2 Determination of Volatile Organic Emissions

The method that was utilized for collection and analysis of volatile organic emissions in the stack gas was the Volatile Organic Sampling Train

(VOST). This method is applicable to compounds with boiling points between 30 and 100°C (86 and 212°F). Since this technique is applicable for both of the POHCs in this study, the VOST data was utilized to calculate all DRE results. In addition, a chemical screening process was utilized to identify and quantify volatile PICs that were found by the VOST method.

Figure 3 provides a schematic of the components that make up the VOST. A glass-lined heated probe is utilized to withdraw the exhaust combustion gases from the pilot-scale furnace. The gas sample is then drawn through a chilled water condenser and then onto a sorbent cartridge. The sorbent, in this case, is Tenax® (Rohm and Haas) resin. The gas then flows through a condensate knockout flask and on through another condenser and Tenax®/carbon cartridge. A drying tube containing silica gel is the final in-line unit for water vapor entrapment. The VOST method specifies a gas sampling rate of 1 liter per minute and a total sampling time of 20 minutes. As shown in Figure 3, a dry gas meter is located in-line to ensure that adequate gas flow rates are maintained.

The volatile organic compounds that are collected on the sorbent tubes were analyzed using a purge-trap-desorb (P-T-D) method. Chemical analysis is done with a gas chromatograph/mass spectrometer (GC/MS). In this technique the sorbent traps are first thermally desorbed with nitrogen at elevated temperatures. The nitrogen purge gas is then sent through an analytical sorbent trap which contains resin, methyl silicone packing, silica gel, and charcoal sections in series. The analytical sorbent

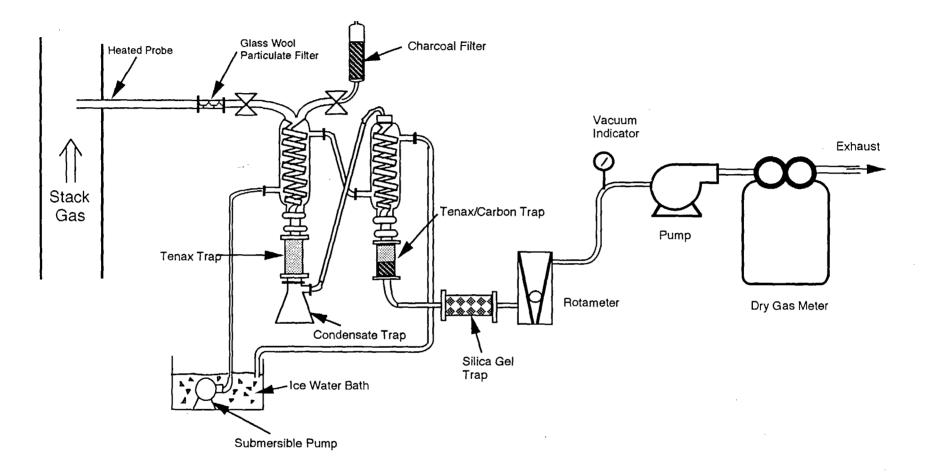


Figure 3: Volatile Organic Sampling Train (VOST)

19

.

trap is heated and purged with helium carrier gas which is immediately sent through the GC/MS for volatile organic compound identification.

2.3.3 Determination of Semivolatile Organic Emissions

The method that was utilized for collection and analysis of semivolatile organic emissions was the semi-VOST. This procedure is applicable for organic compounds with boiling points above 100°C (212°F). The moisture content of the stack gas was also determined with this testing method.

A schematic of the semi-VOST train is shown in Figure 4. Exhaust gases from the combustion process are withdrawn at an isokinetic sampling rate. The gas sample is first drawn through a heated sampling line and onto a filter. After filtering and passage through a condenser, the gas then flows through a cartridge that is filled with absorbent resin. The resin, in this case, is a porous polymeric material (Rohm and Haas XAD-2 or equivalent), which must be cooled to approximately 15°C (60°F) during sampling. The final component of the semi-VOST is a series of impingers which collect condensed moisture from the stack gas. As with the VOST, the semi-VOST is also equipped with a dry gas metering system. Semivolatile organic compounds are analyzed and quantified by first extracting the XAD-2 resin with methylene chloride. In this case, the Soxhlet extraction process is utilized. The methylene chloride extract is then concentrated and analyzed by GC/MS using a fused silica capillary GC column.

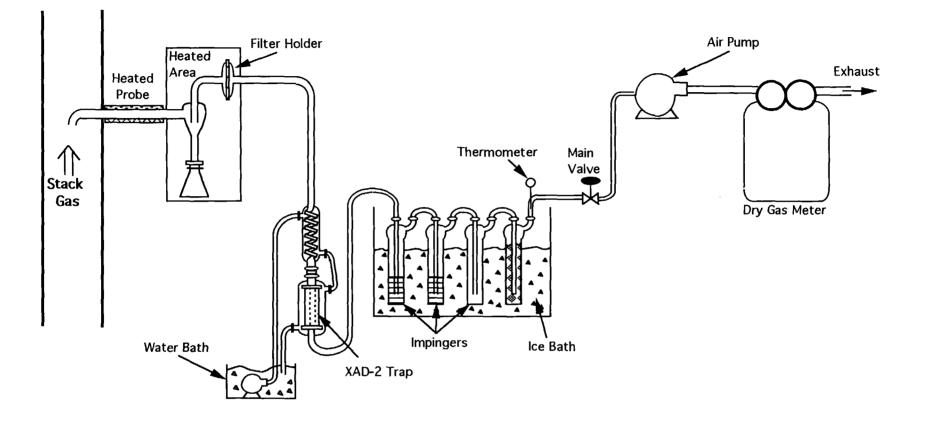


Figure 4: Semivolatile Organic Sampling Train (semi-VOST)

2.3.4 Determination of Particulate Emissions

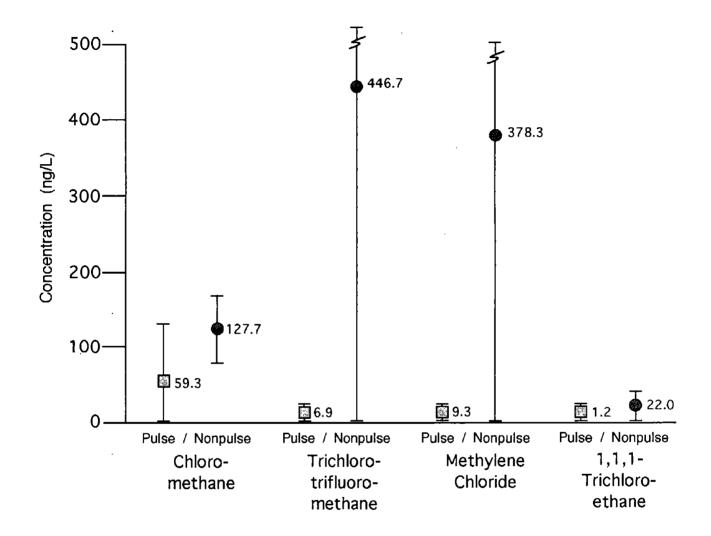
Particulate matter in the stack gas was measured using two different sampling systems. The first system measures particulate emissions gravimetrically and yields a mass concentration value for particles greater than 1 μ m in diameter. The filter in the semi-VOST (see Figure 4) was utilized for this method. The gas sample is drawn isokinetically and sent through a cyclone unit followed by a high efficiency fiber filter. The final particulate concentration value is determined by weighing the filter before and after testing as well as collecting and weighing the entrapped particles in the cyclone.

The second measurement system yields both а number concentration value and an overall size distribution for particulate matter in the stack gas. However, this method measures particles only less than 1 μm in diameter. The system consists of a Differential Mobility Particle Sizer (DMPS) in conjunction with a Condensation Particle Counter. For this analysis, the particles in the stack gas sample are charged and sent through a series of electric fields. The sizes of the particles are classified according to their ability to traverse through each field. As with the previous method, a gas sample is drawn from the exhaust stack at an isokinetic sampling rate.

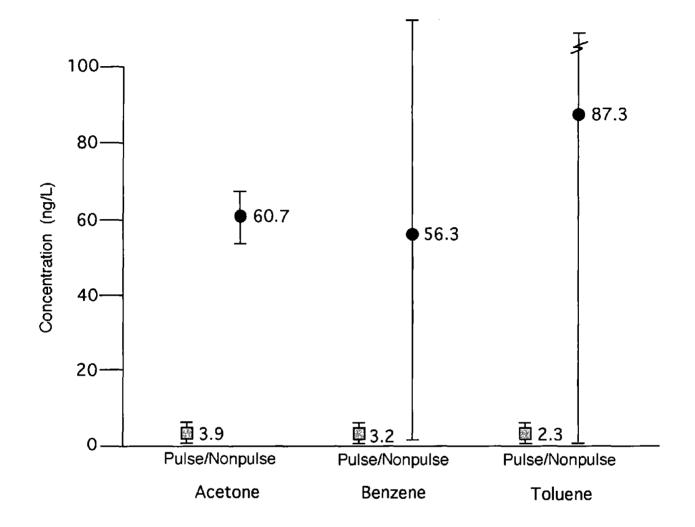
SECTION 3

RESULTS

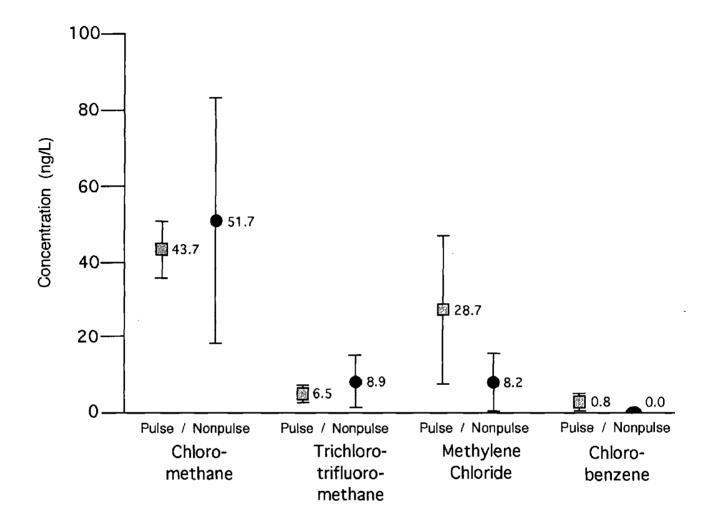
3.1 BURNER OPERATION


Before any experimental runs were undertaken, scoping exercises were completed while running the pulse combustor on pure fuel oil. During the scoping period, the pulse combustor was operated in a steadystate mode and the burner was fine tuned. No major operational upsets were encountered during this scoping period.

After the chlorinated POHCs were spiked into the fuel oil stream (Conditions 2 and 3), however, problems occurred with the vapor feed system. On several occasions runs had to be aborted due to clogging problems in the main nozzle of the pulse combustor. The clogging was due to soot being formed within the vaporizer and subsequently depositing on the walls of the nozzle. The soot was formed as a result of the fuel oil being subjected to the open flame in the vaporizer unit. The nozzle was taken out and cleaned as well as possible between tests. However, after each cleaning attempt, reattachment of the nozzle required a welding operation. The cleaning and welding operations eventually destroyed the integrity of the nozzle port. Thus, due to these operational problems, a limited number of experimental runs were able to be completed.


3.2 VOLATILE ORGANIC EMISSIONS

The results of the volatile compound screening procedure are summarized in Figures 5 and 6. Note that the GC/MS analytical procedure consisted of screening for 32 volatile compounds. The actual GC/MS output is found in Appendix A. The volatile compounds that are identified in Figures 5 and 6 are a small subset from the overall screening list which were present at levels above the Practical Quantitation Limit (PQL). In this case, the PQL for all volatile compounds is 1 ng/L. The quantities depicted in Figures 5 and 6 were determined by taking the mean value of three replicate runs from the VOST. Error bars are also provided to show one standard deviation.


For baseline testing when only fuel oil was burned, the first result to be noted is that several chlorinated compounds were detected in the exhaust gas stream. This result is not expected since No. 2 fuel oil should not contain any chlorine compounds. It is possible that small amounts of chlorinated contaminants were present in the fuel oil feed. However, the same chlorinated compounds that are shown in Figure 5a were also found on the field blanks from the VOST sampling (see Appendix A). In many cases, volatile concentrations from field blank analyses were of the same magnitude as the levels reported in the stack gas of the research furnace. This leads to the conclusion that chlorine was not a contaminant in the fuel. Instead, it is highly probable that airborne contamination in the area around the research furnace contributed to the occurrence of chlorinated compounds in the baseline results. Such outside

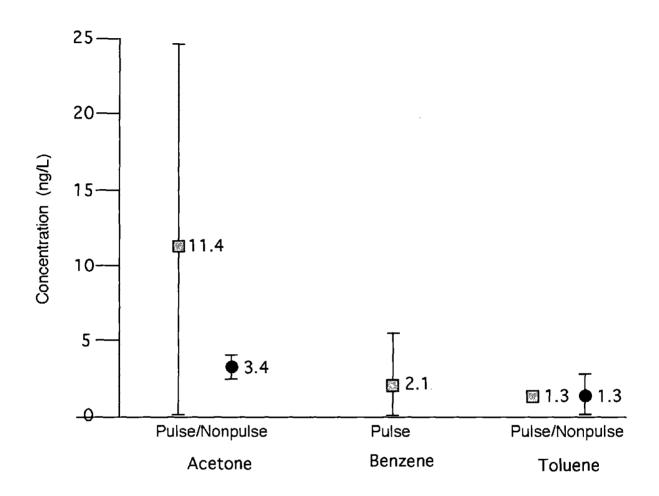

Figure 5a: Volatile Screening Results Baseline Tests

Figure 5b: Volatile Screening Results Baseline Tests (continued)

Figure 6a: Volatile Screening Results POHC Tests

Figure 6b: Volatile Screening Results POHC Tests (continued)

contamination could also account for the large error bars noted in Figure 5a. Because the furnace was run at steady-state conditions, it is expected that variances between replicate runs should be reasonably small.

Detectable emissions not containing chlorine and fluorine are shown in Figure 5b. Of the compounds (acetone, benzene, and toluene) shown in Figure 5b, acetone and toluene were once again found in the field blanks. Therefore it cannot be stated with total certainty that these two compounds represent true PICs. While acetone and toluene may have been present in the stack gas, their reported low concentrations indicate that outside contamination factors must also be considered.

In summary, the volatile screening results from baseline testing do not provide substantial emission data to form conclusions on the effects of acoustic pulsations. In most cases, the noted concentration levels were quite small for both pulsing and nonpulsing conditions. Also, no consistent trends were seen between volatile concentration levels and the operational mode of the burner. Additionally, outside contamination may have had a significant impact on the these baseline screening analyses.

Figures 6a and 6b provide the volatile screening results for test runs where POHCs were added to the fuel oil feed stream (Condition 2). As with the baseline results, several of the compounds detected in Figure 6A were also present in the VOST field blanks and, therefore, outside contamination factors cannot be ignored. The volatile screening results from Condition 2 show that, in most cases, reported concentrations of volatile compounds

were small. In fact, many of the concentration values are relatively close to the detection limits of the GC/MS. Making a comparison between such low numbers does not form a good basis for conclusions on whether acoustic pulsations were having a significant effect on combustion emissions.

3.3 DRE RESULTS

Table 2 summarizes the results of DRE analysis. For carbon tetrachloride, no measurable emissions were found in any of the test series. Therefore, the minimum DRE value for this POHC is calculated by using the PQL of 1 ng/L as the stack gas concentration value. Substituting the appropriate feed and emission rates in the DRE equation yields a minimum DRE of 99.999967 percent (see Appendix B for all DRE calculations). An even greater destruction of carbon tetrachloride may have been achieved. However, the sensitivity of the testing method allows only for calculation of this minimum DRE level.

For chlorobenzene, the concentration in the stack gas was found to be below the PQL during a pulsing operation. Thus for the pulsing situation, DRE values are identical to the destruction levels reported for carbon tetrachloride. In the nonpulsing mode of operation, detectable levels of chlorobenzene were found. In this case, the highest detected concentration yields a DRE value of 99.999954 percent.

Table 2

DRE Results

Principal Organic Hazardous Constituent (POHC)

		Chlorobenzene	Carbon tetrachloride
Operational	Pulse	> 99.999967 %	> 99.999967 %
Mode	Nonpulse	99.999954 %	> 99.999967 %

Note: Minimum DRE values are calculated from the practical quantitation limit of the analysis method.

It is important to realize that, for all of the tests in this study, the VOST analysis shows a very high destruction of volatile organic compounds. All of the results show a destruction exceeding 99.9999 percent, which is two orders of magnitude greater than the 99.99 percent level mandated for hazardous waste incinerator permitting. When comparing the pulsing and nonpulsing operational modes of the pulse combustor, the results show that the volatile organic destruction was more than adequate in both cases.

3.4 SEMIVOLATILE ORGANIC EMISSIONS

The results from the semivolatile screening analysis are found in Appendix C. These results indicate that, for both the pulsing and nonpulsing modes of operation, semivolatile emissions were low. Note that field and method blanks were analyzed as part of the semivolatile analysis procedure. The phthalate compounds that were detected on the stack gas samples were also found to be present on the field blanks. As with the volatile analysis, the semivolatile screening results indicate that emissions were essentially below the sensitivity limit of the testing method.

3.5 PARTICULATE EMISSIONS

The results of the in-line filter particulate measurements are shown in Table 3. Actual measurements are found in Appendix D. The reported values for particulate emissions are in milligrams per dry standard cubic meter (mg/dscm). All of these results indicate that particulate emissions

were well below the EPA hazardous waste incinerator standard of 180 mg/dscm. It is important to realize that particle emissions are related to the type of feed that is introduced into the incinerator. The feed streams that were utilized in this study did not contain significant quantities of ash, nor did they contain appreciable amounts of soot producing compounds. Therefore, low particulate emissions would be expected during these testing periods. Measurements were still undertaken, however, to determine if acoustic pulsations would have a significant impact on the level of particulate emissions during steady-state operations.

The particulate size distribution results are shown in Figures 7 through 9. These results were obtained from the DMPS and apply for particle diameters smaller than 1 μ m. Particulate loading and size concentration curves are provided for each test condition. The actual output from the DMPS equipment is provided in Appendix E. In these figures, the general shape of the particulate distribution curves did not change significantly when acoustic pulsations were introduced.

3.6 QUALITY ASSURANCE MEASUREMENTS

Data quality objectives set by the quality assurance project plan (QAP_jP) to meet EPA Category IV requirements were achieved. In this case the data were primarily qualitative, with the goal of showing relative differences between the fundamental parameters that were investigated. The data were more than adequate considering the scope and data requirements of this study.

Table 3

Particulate Emission Results

Mass Concentration of Collected Particulate (mg/dscm)

		Baseline Tests	POHC Tests
rational Mode	Pulse	23.89	49.17
Operati Mod	Nonpulse	2.04	45.05

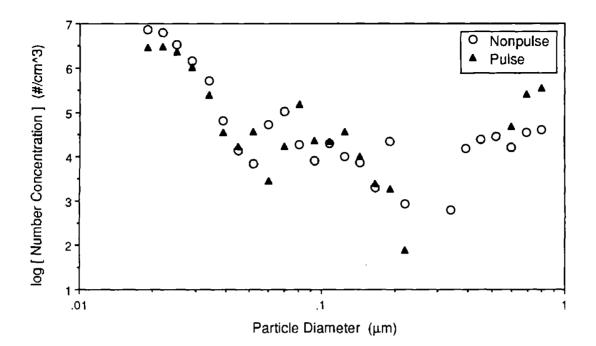


Figure 7a: Particulate Loading Concentration Baseline Tests

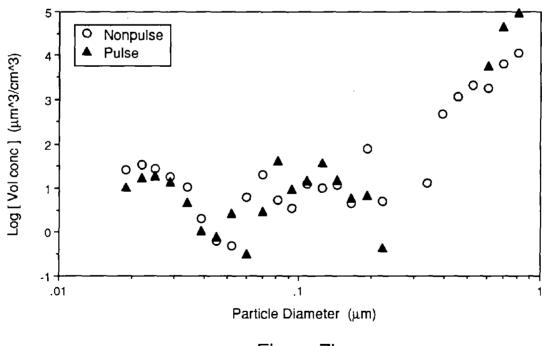


Figure 7b: Particulate Size Concentration Baseline Tests

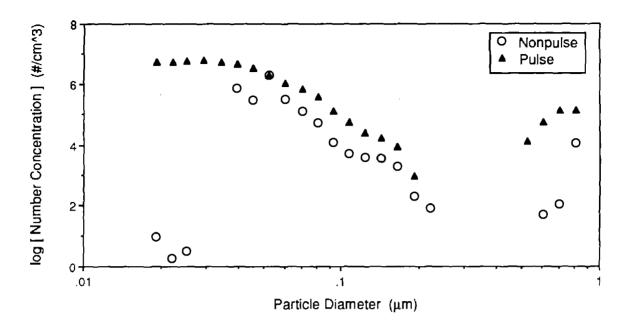


Figure 8a: Particulate Loading Concentration POHC Tests

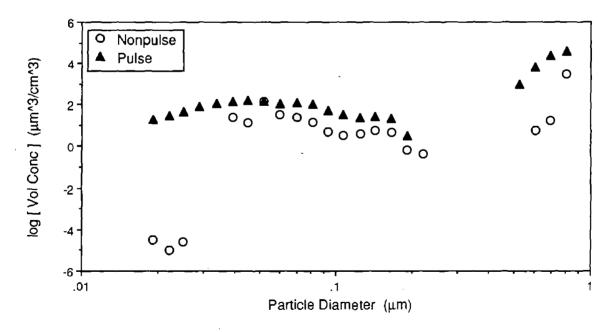


Figure 8b: Particulate Size Concentration POHC Tests

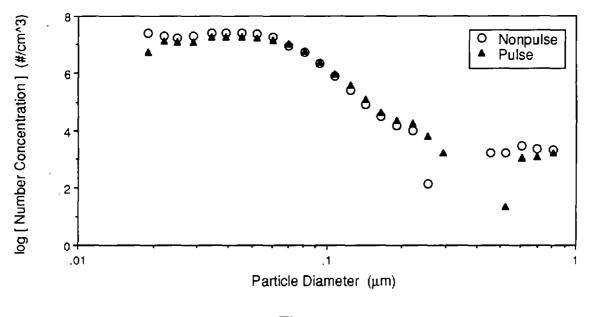


Figure 9a: Particulate Loading Concentration Low Oxygen Tests

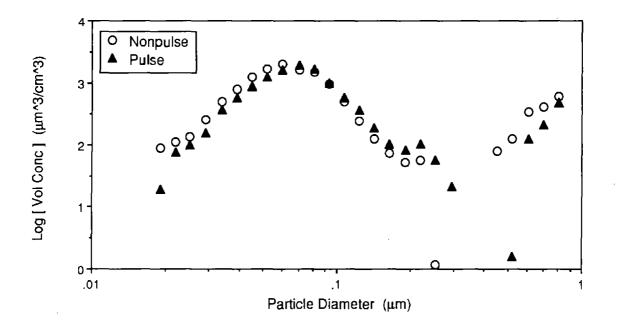


Figure 9b: Particulate Size Concentration Low Oxygen Tests

SECTION 4

CONCLUSIONS

For this study, steady-state operation of the pulse combustor was not successful in isolating the effect of acoustic pulsations on combustion Under the steady-state conditions tested, the introduction of emissions. acoustic pulsations in the research furnace did not appear to affect The volatile screening results show that emissions were very emissions. low for all tests. At these low levels, outside contamination factors could The semivolatile and particulate results also indicate not be discounted. that acoustic pulsations did not impact these emissions. The DRE results for the two chlorinated POHCs show that this pulse combustor achieved greater than six-nines (99.9999 percent) destruction and removal. However, this same level of destruction was achieved during pulsing as well as nonpulsing operations.

A possible reason for the occurrence of low organic and particulate emissions at all test conditions may have been due to the utilization of a vaporized feed stream. For most liquid injection burners the liquid wastes are injected into the main burner, atomized into fine droplets, and burned in a suspension (Oppelt, 1987). This atomization is a critical parameter in achieving high destruction efficiency. Good atomization will produce tiny fuel droplets, thereby maximizing the available surface area for combustion.

For the pulse combustor in this study, the liquid fuel was atomized through a nozzle configuration. However, the atomization and subsequent vaporization of the droplets took place in a separate unit prior to introduction into the research furnace. Therefore, the effect of acoustic pulsations on the atomization of liquid feed could not be studied. It is highly probable that the fuel burned efficiently because critical elements, such as sizing of fuel droplets and fuel/droplet mixing, did not take place within the main flame of the burner.

REFERENCES

Bartok, W., Lyon, R.K., McIntyre, A.D., Ruth, L.A., and Sommerlad, R.E., (1988) "Combustors: Applications and Design Considerations," *Chemical Engineering Progress*, Vol. 84/No. 3: 54 - 71.

Behmanesh, N., Allen, D.T., and Warren, L., (1992) "Flow Rates and Compositions of Incinerated Waste Streams in the United States," J. Air Waste Manage. Assoc., 42: 437 - 442:

Dec, J.E., and Keller, J.O., (1986) "The Effect of Fuel Burn Rate on Pulse Combustor Tailpipe Velocities," *Proceedings: International Gas Research Conference*, Vol 1: 498 - 507.

Dellinger, B., Graham, M., and Tirey, D., (1986) "Incinerability of Hazardous Waste," Hazardous Waste and Hazardous Materials, Vol. 3, No.2: 139 -150.

Environmental Protection Agency, (1981) "Incinerator Standards for Owners and Operators of Hazardous Waste Management Facilities," Federal Register, 46: 264.

Environmental Protection Agency, (1989) "Guidance on Setting Permit Conditions and Reporting Trial Burn Results," Incineration Guidance Series, Vol. 2: 22 - 23.

EPA Science Advisory Board, (1989) "Review of the Office of Solid Waste Proposed Controls for Hazardous Waste Incinerators: Products of Incomplete Combustion," Report of the Products of Incomplete Combustion Subcommittee, Oct: 7 - 13.

Lee, K., (1988) "Research Areas for Improved Incineration System Performance," J. of the Air Pollution Control Assoc., 38: 1542 - 1550.

Oppelt, E.T., (1987) " Incineration of Hazardous Waste - A Critical Review," J. of the Air Pollution Control Assoc., 37: 558 - 582.

Reader, G.T., (1977) "The Pulse Jet 1906 - 1966," J. of Naval Science, 3: 226-232.

Stewart, C. R., Lemieux, P. M., and Zinn, B. T., (1991) "Application of Pulse Combustion to Solid and Hazardous Waste Incineration," *Proc. Int. Symp. on Pulsating Combustion*, Sponsored by Sandia National Laboratories and the Gas Research Institute, Monterey, California, Aug: 6-8.

Zinn, B.T., (1985) "Pulsating Combustion," Mechanical Engineering, Aug: 36-41.

Appendix A

Volatile Organic Screening Results

.

Vost Results

Volatile Compound	Mean Conc. (ng/l)	Standard Deviation	Measured (Concentrati	ons (ng/l)
Baseline Tests					
Chloromethane - Pulse	59.3	78.55	12	150	16
Chloromethane - NonPulse	127.7	39.07	93	170	120
Bromomethane - Pulse	3.4	1.25	3.8	4.4	2
Trichlorofluoromethane - Pulse	6.9	2.19	9.4	6.2	5.2
Trichlorofluoromethane - NonPulse	446.7	570.12	190	50	1100
Acetone - Pulse	3.9	0.67	3.1	4.3	4.2
Acetone - NonPulse	60.7	7.23	56	57	69
Methylene Chloride - Pulse	9.3	2.19	11	10	6.8
Methylene Chloride - NonPulse	378.3	379.29	270	65	800
1,1,1 Trichloroethane - Pulse	1.2	2.02	3.5	0	0
1,1,1 Trichloroethane - NonPulse	22.0	20.30	0	26	40
Benzene - Pulse	3.2	2.65	6.2	2.4	1.1
Benzene - NonPulse	56.3	55.05	0	[°] 1 1 0	59
Toluene - Pulse	2.3	0.32	2.7	2.1	2.2
Toluene - NonPulse	87.3	89.37	45	27	190
POHC Tests					
Chloromethane - NonPulse	43.7	7.51	36	44	51
Chloromethane - Pulse	51.7	32.08	85	21	49
Bromomethane - Pulse	1.3	2.19	3.8	0	0
Trichlorotrifluoromethane -NonPulse	6.5	1.25	7.9	5.6	5.9
Trichlorotrifluoromethane -Pulse	8.9	5.78	14	10	2.6
Aceton e - N onPulse	11.4	13.50	2.9	4.4	27
Acetone - Pulse	3.4	0.67	4.1	3.2	2.8
Methylene Chloride - NonPulse	28.7	20.21	52	17	17
Methylene Chloride - Pulse	8.2	9.38	19	2.1	3.5
1,1,1 Trichloroethane - Pulse	1.2	2.02	3.5	0	0
Toluene - NonPulse	1.3	0.10	1.2	1.3	1.4
Toluene -Pulse	1.3	1.42	2.8	0	1
Benzene - Pulse	2.1	3.58	6.2	0	0
Chlorobenzene - NoriPulse	0.8	0.74	1.1	1.4	0
Chlorobenzene - Pulse	0.0	0.00	0	0	. 0
Field Blank Results			Measured (Concentrati	ons (ng/l)
Field - Chloromethane			26	5.9	
Field - Trichlorofluoromethane			43	28	
Field - Acetone			48	4.5	
Field - Methylene Chloride			130	100	
Field - 111 Trichloromethane			73		
Field - Toluene			32	2.6	

Pulsed Combustor VOST Volumes

1 1

Sample ID	Volume Me Sampled	et Temp C	Corr Volume		·
142/05	20.003	35	19.029	* Broken	
90/06	20.000	35	19.026		
531/32	20.010	36	18.974		•
07/08	19.992	36	18.957		
13/14	19.994	28	19.463		
270/16	19.998	33	19.148		
490/15	20.002	33	19.152		
10/11	20.000	31	19.276	•	
523/56	20.000	35	19.026		
532/42	20.017	37	18.919		· · ·
50/226	19.983	36	18.948		
497/767	20.000	39	18.782		
352/AP22	19.999	43	18.543	. .	•

A-3

PULSED COMBUSTOR Acurex-RTP Laboratory Results EPA Method 5040/8240 Compound Hewlett Packard 5890 GC / 597 Tekmar LSC-2000 w/Carbotrap/C PQL = Practical Quantitation N/D = Not Detected J = Detected @< PQL N/A = Not Applicable	s 1 MSD; 30m x arbosieve SI: Limit;		4 fused sili	ca capillar	y;	
	VOST	VOST	VOST	VOST		
Sample Type Master Index	NA	NA	NA	NA		
Sample ID	10,11	523,56	532,42	142		
Sample Collected (Liters)	19.276	19.026	18,919	19.029		
Collection Date	07/15/92	07/15/92		07/13/92	PQL	
Analysis Date	8/10/92	8/10/92	8/11/92	8/11/92	ng/xL	
marjore bace	ng/L	ng/L	ng/L	ng/L		
Chloromethane	85	21	49	ND	20	
Vinyl chloride	ND	ND -	ND ·	, ND	20	
Bromomethane	3.8	ND	ND	ND	20	
Chloroethane	ND	ND	ND	ND	20	
Trichlorofluoromethane	14	10	2.6	ND	- 20	
1,1-Dichloroethene	CI/4	ND	ND	ND	20	
Acetone	4.1	3.2	2.8	2.5	20	
Methylene chloride	19	2.1	3.5	ND	20	
Trans 1,2-dichloroethene	ND	ND	ND	ND	20	
1,1-Dichloroethane	ND	ND	ND	ND	20	
Chloroform	ND	DN	ND	ND	20	
1,1,1-Trichloroethane	3.5	ND	ND	ND	20	
Carbon tetrachloride	DN	ND	ND	ND	20	
1,2-Dichloroethane	ND	ND	ND	ND	20	
Benzene	6.2	ND	ND	ND	20	-
Trichloroethene	ND	ND	ND	ND	20	
1,2-Dichloropropane	ND	ND	ND	ND	20	
Bromodichloromethane	ND	ND	ND	ND	20	
cis-1,3·Dichloropropene	ND	ND	DN	ND	20	
Toluene	2.8	ND	1.0	1.3	20	
trans-1,3-Dichloropropene	ND	ND	ND	ND	20	
1,1,2-Trichloroethane	ND	ND	· ND	ND	20	
Tetrachloroethene	ND	ND	ND	ND	20	
Dibromochloromethane	ND	ND	ND	ND	20	
Chlorobenzene	ПD	ND	DND	ND	20	
Ethyl benzene	1.2	ND	ND	ND	20	•
Total Xylenes	014 CIA	ND ·	ND	ND	20	
Bromoform	ND (141)	ND	ND	20	
1,1,2,2-Tetrachloroethane	CI4	110	D11	ND	20	
1,3-Dichlorobenzene	11 D	ИD	CI1	ND	20	
1,4-Dichlorobenzene	C114	Dt1	ND	ND	20	
1,2-Dichlorobenzene	ND	ND	ND	ND	20	

~

.

A-4

Şample ID Number	10,11	523,56	532,42	142	
Surrogate Compounds Recovery	8	। रेर्डि	٤.	8	
d6 - Benzene	92	86	100	63	
1,2-Dichloroethane d-4	125	105	125	104	
Toluene d-8	125	103	120	102	والمعرب ومعر
Bromofluorobenzene	99	79	. 88	72`	ه میشد. به ۲۹ از مسیر ا

Analyst <u>Mill Mound</u> Laboratory Manager <u>Marton Systes</u> Date 10-13-92 Lotus 1.2-3 File Name: pulsed2

ļ

PULSED COMBUSTOR Acurex RTP Laboratory Results EPA Method 5040/8240 Compounds Hewlett Packard 5890 GC / 5971 MSD; 30m x 0.53u DB-624 fused silica capillary; Tekmar LSC-2000 w/Carbotrap/Carbosieve SIJI. PQL = Practical Quantitation Limit; N/D = Not Detected J = Detected @< PQL</pre>

. -

N/A = Not Applicable

Sample TypeVOSTVOSTVOSTVOSTMaster IndexNANANANASample ID201/1213,14207,16490,15Sample Collected (Liters)019,46319,14819.152	QL
Sample ID 201/12 13,14 207,16 490,15	
Sample Collected (Liters) 0 19.463 19.148 19.152	
Sample Collected (Liters) 0 19.463 19.148 19.152	
Analysis Date 8/10/92 8/10/92 8/10/92 8/10/92 ng/x	XL
ng ng/L ng/L ng/L	
· · · · · · · · · · · · · · · · · · ·	
Chloromethane 26 4.8 8.7 6.4 20	
Vinyl chloride ND ND ND ND 20	
Bromomethane ND ND ND ND 20	
Chloroethane ND ND ND ND 20	
Trichlorofluoromethane 43 10 2.6 58 20	
1,1-Dichloroethene ND ND ND ND 20	
Acetone 48 2.9 3.0 3.6 20	
Methylene chloride 130 14 3.4 42 20	
Trans-1,2-dichloroethene ND ND ND ND 20	
1,1-Dichloroethane ND ND ND ND 20	
Chloroform ND ND ND ND 20	
1,1,1 Trichloroethane 73 ND 1.4 2.1 20	
Carbon tetrachloride ND ND ND ND 20	
1,2-Dichloroethane ND ND ND ND 20	
Benzene ND ND 5.6 3.1 20	0
Trichloroethene ND ND ND ND 20	0
1,2-Dichloropropane ND ND ND ND 20	0
Bromodichloromethane ND ND ND ND 20	0
cis-1,3-Dichloropropene ND ND ND ND 20	0
Tçluene 32 2.3 1.4 10 20	0
trans-1,3-Dichloropropene ND ND ND ND 20	0
1,1,2-Trichloroethane ND ND ND ND 20	0
Tetrachloroethene ND ND ND ND 20	0
Dibromochloromethane ND ND ND ND 20	0
Chlorobenzene ND ND ND ND 20	0
Ethyl benzene ND ND ND ND ND 20	0
Total Xylenes ND ND ND 20	0
Bromoform ND ND ND 20	0
1,1,2,2-Tetrachloroethane ND ND ND ND 20	0
1,3-Dichlorobenzene ND ND ND ND 20	0
1,4-Dichlorobenzene ND ND ND ND 20	0
1,2-Dichlorobenzene ND ND ND ND 20	0

A-6

- -

.

					• •
Sample ID Number	201/12	13,14	270,16	490,15	
Surrogate Compounds Recovery	£	- B	ß	8	
d6-Benzene	98	89	102	108	
1,2.Dichloroethane d-4	121	97	119	129	
Toluene d·8	115	93	120	127	
Bromofluorobenzene	99	80	.98	102	·

Analyst Mathem Manager Maton Laboratory Manager Maton Lykes Date 10-14-92 Lotus 1.2.3 File Name: pulsed1

A-7

,

PULSED COMBUSTOR Acuiex-RTP Laboratory Result EPA Method 5040/8240 Compoun	ds					
Hewlett Packard 5890 GC / 59			4 IUSED SII:	ica capillar	y;	
Tekmar LSC-2000 w/Carbotrap/		Τ[.				
PQL = Practical Quantitation N/D = Not Detected	Limit;					
J = Detected @< PQL						
N/A = Not Applicable			,		-	
	.					
Sample Type	VOST	VOST	VOST	VOST		
Master Index	NA	NA .	NA	NA		
Sample ID	90,06	531,32	07,08	50,226		
Sample Collected	19.026	18.974	18.957		•.	
Collection Date	07/13/92	07/13/92	07/13/92	07/22/92	PQL	
Analysis Date	8/11/92	8/11/92	8/11/92	8/11/92	ng/xL	
	ng/L	ng/L	ng/L	ng/L	_	
•••••						
Chloromethane	12	150	16	, 51	20	
Vinyl chloride	Ct1	ND	ND	- ND	20	
Bromomethane	3.8	4.4	2.0	ND	20	
Chloroethane	ND	ND	ND	ND	. 20	
Trichlorofluoromethane	9.4	6.2	5.2	5.9	20	
1,1-Dichloroethene	ND	DM	ND	ND	20	
Acetone	3.1	4.3	4.2	27	20	
Methylene chloride	11	10	6. 8	17	20	
Trans-1,2-dichloroethene	ND	- ND	ND	NĎ	20	
1,1-Dichloroethane	011	t/D	ND	ND	20	
Chloroform	C111	ND	ND	ND	20	
1,1,1 [.] Trichloroethane	3.5	ND	ND	ND	20	
Carbon tetrachloride	14D	ND	ND	· ND	20	
1,2-Dichloroethane	ND	ND	ND	ND	20	
Benzene	6.2	2.4	1.1	ND	20	
Trichloroethene	ND	ИD	ND	ND	20	
1,2-Dichloropropane	ND	ND	ND	ND	20	
Bromodichloromethane	11D	ND	ND	ND	20	
•cis-1,3-Dichloropropene	ND	ND	ND	ND	20	
Toluene	2.7	2.1	2.2	1.4	20	
trans 1,3-Dichloropropene	ND	ND	ND	ND	20	
1,1,2 Trichloroethane	ND	ND	ND	ND	20	
Tetrachloroethene	ND -	ND	ND	ND	20	
Dibromochloromethane	ND	ND	ND	ND	20	
Chlorobenzene	DU ND	ND	ND	ND	20	
Ethyl benzene	ND	ND	ND	ND	20	
Total Xylenes Bromoform	תוא תוא	ND D	NÐ ND	ND ND	20	
	ND	ND		ND ND	20 20	
1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene	CIFI CIFI	CIVI CIVI	ND ND	ND	20	
1,3-Dichlorobenzene	(11)	11) D/1	UN D	ND	20	
1,4-Dichlorobenzene	ND	ND	ND	ND	20	
1,2 DICHIOLOBENZENE	-	1417			20	

Sample ID Number	90,0 <u>6</u>	531,32	07,08	50,226	
Surrogate Compounds Recovery	8	. ~ <i>8</i>	θ	8	
d6 - Benzene	96	92	105	101	
1,2-Dichloroethane d-4	125	107	127	126	
Toluene d-8	121	103	127	123	
Bromofluorobenzene	88	75	91	86	

Analyst Mithell Mulhaboratory Manager Alston Sufets Date 10-13.92 Lotus 1-2-3 File Name: pulsed3

~----,

.

- '

.---,

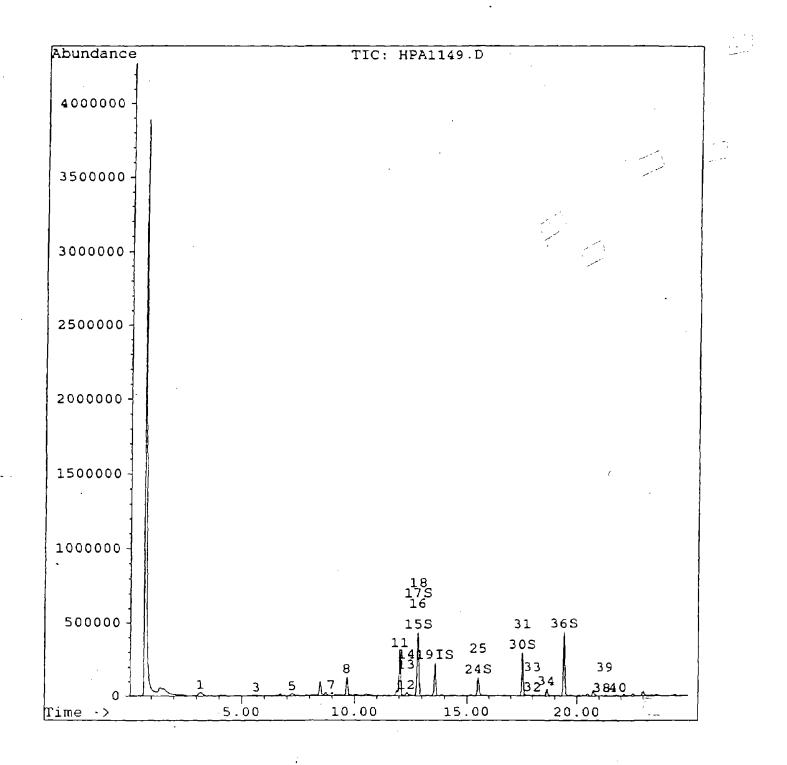
(____) ___)

A-9

,

•

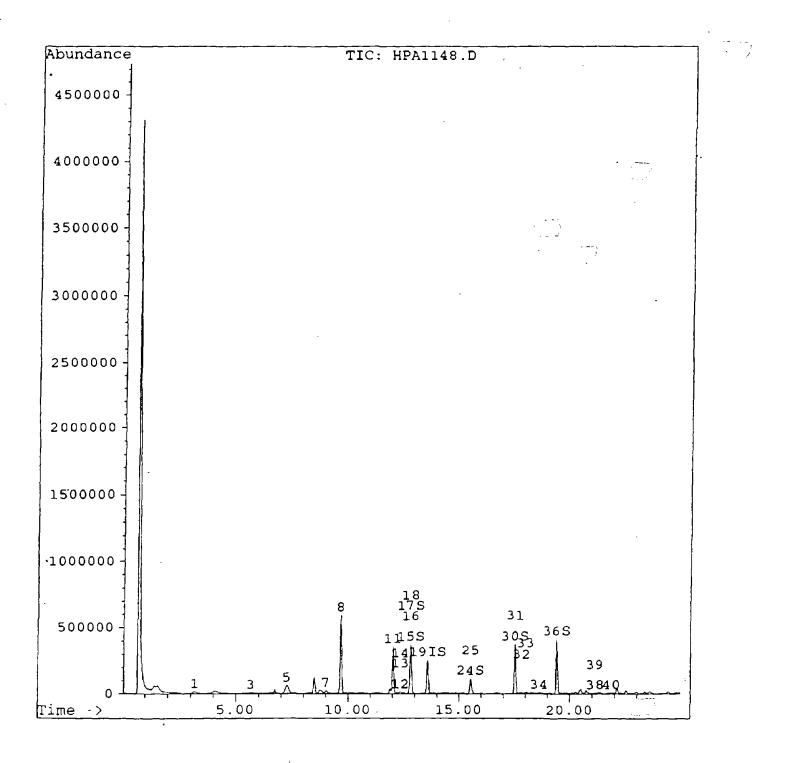
-


PULSED COMBUSTOR Acurex-RTP Laboratory Result ÉPA Method 5040/8240 Compound Hewlett Packard 5890 GC / 59 Tekmar LSC-2000 w/Carbotrap/0 PQL = Practical Quantitation N/D = Not Detected J = Detected @< PQL N/A = Not Applicable	ds 71 MSD; 30m x Carbosieve SI Limit;		4 fused silica d	apillary;
Sample Type	VOST	VOST	VOST	•••••
Master Index	NA	NA	NA	
Sample ID	352, AP22	497,767	463,64	
Sample Collected (Liters)	18.543	18.782	0	
Collection Date	07/22/92	07/22/92	07/22/92	PQL.
Analysis Date		8/16/92	8/16/92	ng/xL
	ng/L	ng/L	ng/L	
	· · · · · · · · · · · · · · ·			
Chloromethane	36	44	5.9 /	20
Vinyl chloride	ND	ND	ND	20
Bromomethane	ND	ND	ND	20
Chloroethane	ND	ND	ND	20
Trichlorofluoromethane	7.9	5.6	28	20
1,1-Dichloroethene	11D	11D	ND	20
Acetone	2.9	4.4	4.5	20
Methylene chloride	52 -	17	100	20
Trans-1,2-dichloroethene	- ND	ИИ	ND	20
1,1.Dichloroethane	ND	ND	ND	20
Chloroform	ND	ND	ND	20
1,1,1 Trichloroethane	1412	11D	11D	20
Carbon tetrachloride	11D	ND	DND	20
1,2·Dichloroethane	ND	ND	ND	20
Benzene	ND	ND ND	ND	20
Trichloroethene	ND	ND	ND	20
1,2-Dichloropropane	ИD	ND	ND	20
Bromodichloromethane	DИ	ND	ND	20
cis-1,3-Dichloropropene	ND	ND	ND	20
Toluene	1.2	1.3	2.6	20
trans-1,3-Dichloropropene	ND	ND	ND	20
1,1,2-Trichloroethane	ND .	ND	ND	20
Tetrachloroethene	ND	ND	ND	20
Dibromochloromethane	ND	ND	ND	20
Chlorobenzene	1.1	1.4	ΝD .	20
Ethyl benzene	D11	CIV	· ND	20
Total Xylenes	ND	ND	ND	20
Bromoform	[1]) [1]	ND	011 CI11	20
1,1,2,2.Tetrachloroethane	110	DU	ND	20
1,3-Dichlorobenzene	ND	D D	ND	20
1,4 Dichlorobenzene	, ND	DU	D11	20
1,2-Dichlorobenzene	ND	11D	ND	20

~

•••••••••••••••••••••••••••••••••••••••	• • • • •	· · · · · · · ·	• • • • • • • • • • • • • • • •	
Sample ID Number	352,AP22	497,767	463,64	
Surrogate Compounds Recovery	8	- 8	8	
d6·Benzene	102	107	99	
,2-Dichloroethane d-4	130	130	110	
Foluene d-8	124	121	105	
Bromofluorobenzene	86	88	76	

Analyst Mathem Bapel Laboratory Manager Alston Lyker Date 10-13-92 Lotus 1.263 File Name: pulsed4


QUANT REPORT Operator ID: M HOWELL Date Acquired: 10 Aug 92 10:03 pm Data File: C:\CHEMPC\DATA\HPA1149.D Name: VOST, #270, #16, PULSED COMBUSTER, L, AIR, EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

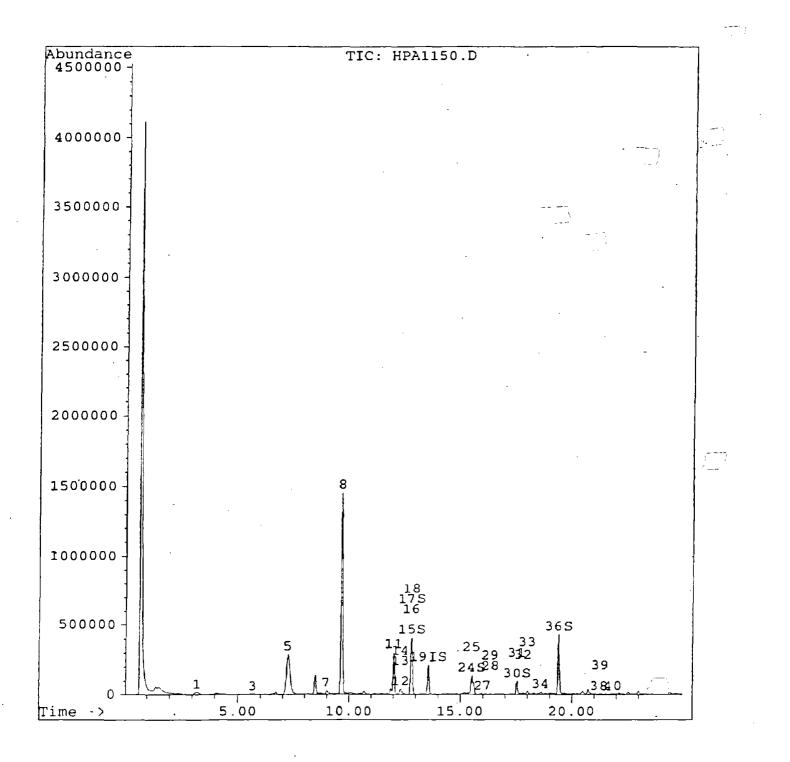
C:\CHEMPC\DATA\HPA1149.D

Wed Aug 19 15:34:06 1992

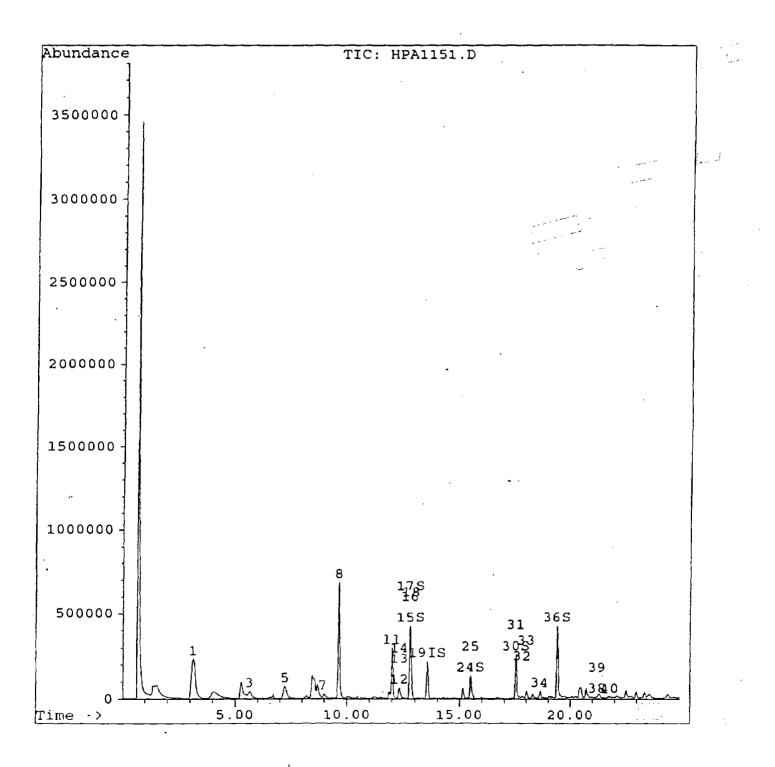
QUANT REPORT Operator ID: M HOWELL Date Acquired: 10 Aug 92 9:21 pm Data File: C:\CHEMPC\DATA\HPA1148.D Name: VOST, #13, #14, PULSED COMBUSTER, L, AIR, EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

C:\CHEMPC\DATA\HPA1148.D

Mon Aug 17 23:02:29 1992

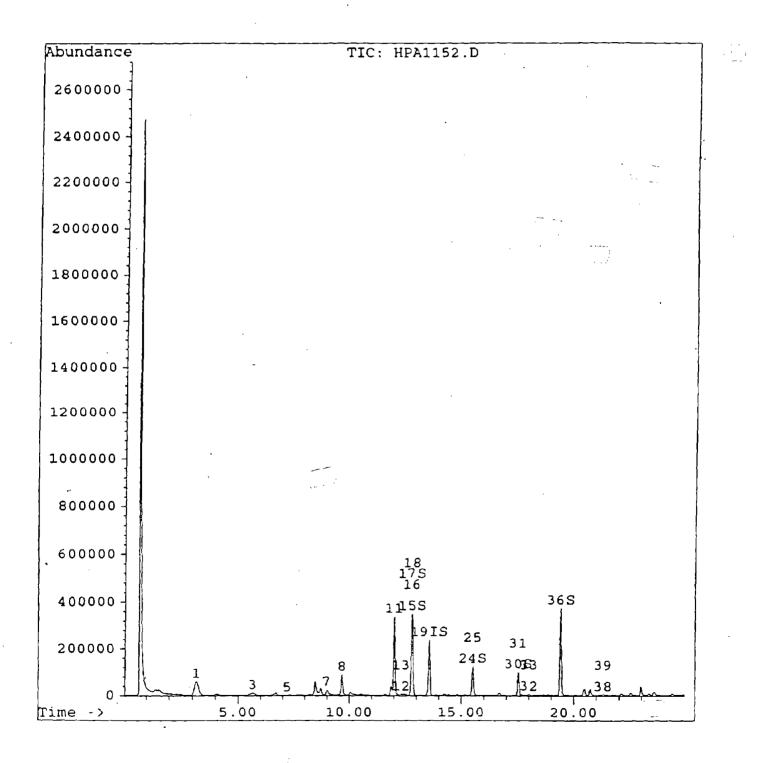

QUANT REPORT Operator ID: M HOWELL Date Acquired: 10 Aug 92 7:44 pm Data File: C:\CHEMPC\DATA\HPA1147.D Name: VOST,#201,#12,FIELD BLANK,L,AIR,EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

C:\CHEMPC\DATA\HPA1147.D


Mon Aug 17 22:34:23 1992

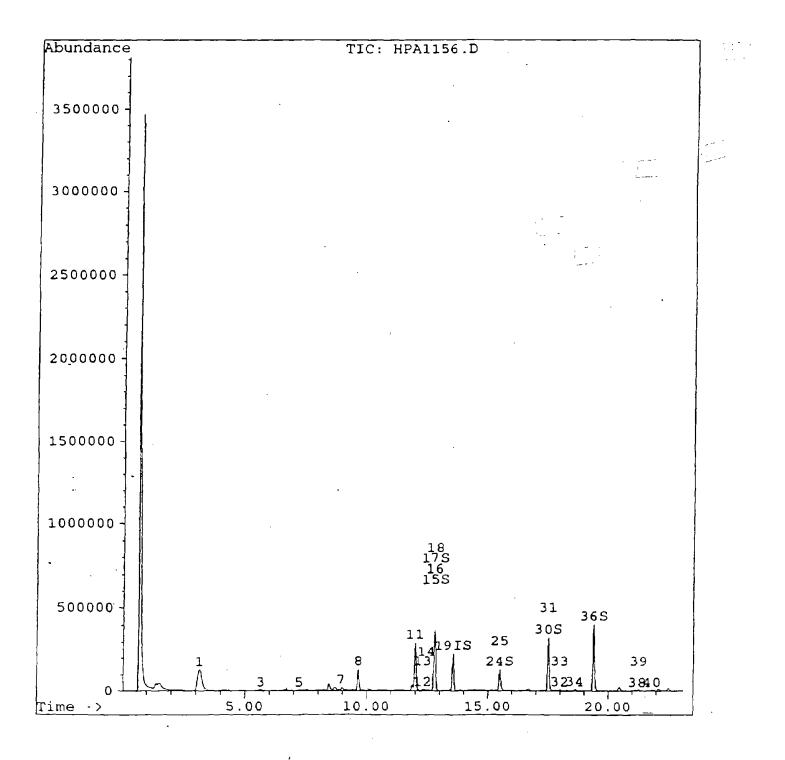
QUANT REPORT Operator ID: M HOWELL Date Acquired: 10 Aug 92 10:45 pm Data File: C:\CHEMPC\DATA\HPA1150.D Name: VOST,#490,#15,PULSED COMBUSTER,L,AIR,,BFB, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

Wed Aug 19 15:48:53 1992 A-15


QUANT REPORT Operator ID: M HOWELL Date Acquired: 10 Aug 92 11:42 pm Data File: C:\CHEMPC\DATA\HPA1151.D Name: VOST, #10, #11, PULSED COMBUSTER, L, AIR, , BFB, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

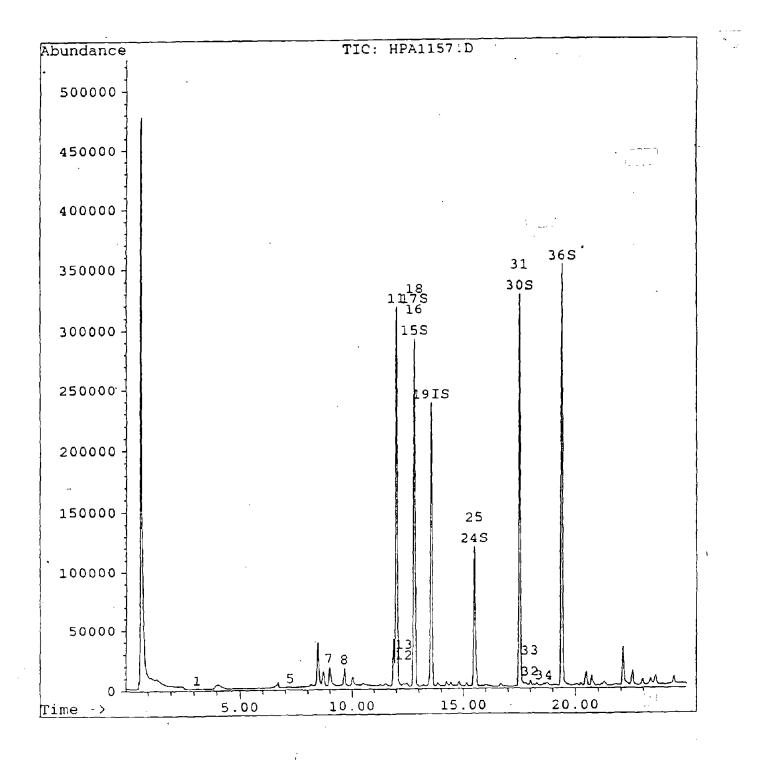
C:\CHEMPC\DATA\HPA1151.D

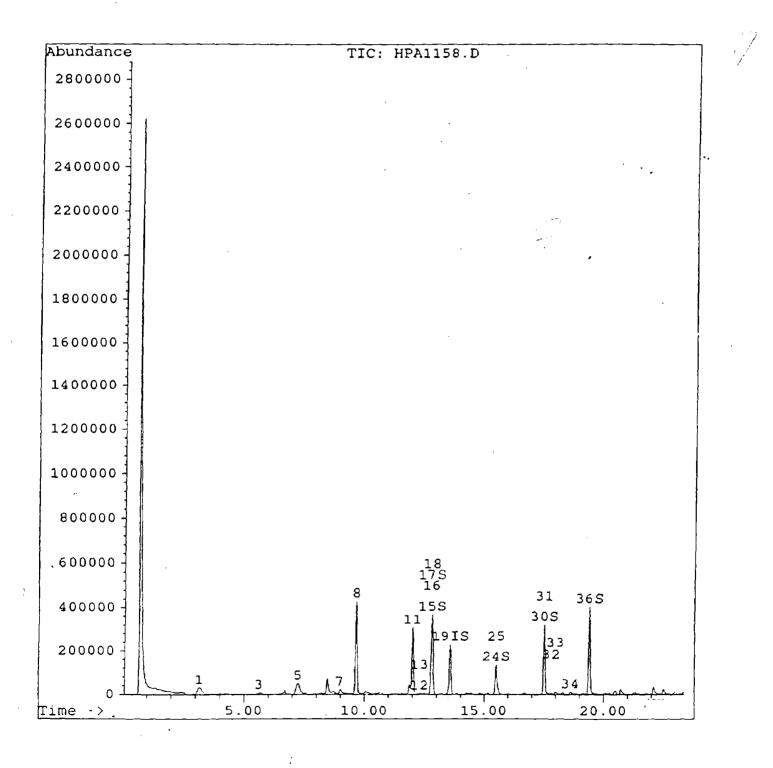
Wed Aug 19 16:08:51 1992


QUANT REPORT Operator ID: M HOWELL Date Acquired: 11 Aug 92 0:19 am Data File: C:\CHEMPC\DATA\HPA1152.D Name: VOST,#523,#56,PULSED COMBUSTER,L,AIR,,BFB, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

C:\CHEMPC\DATA\HPA1152.D

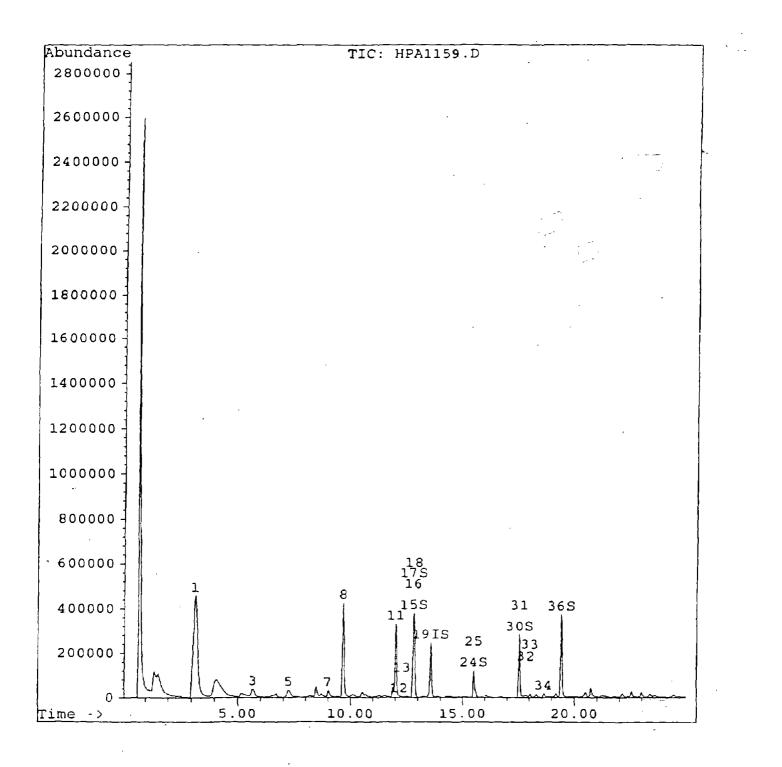
Wed Aug 19 16:24:54 1992


QUANT REPORT Operator ID: M HOWELL Date Acquired: 11 Aug 92 7:01 pm Data File: C:\CHEMPC\DATA\HPA1156.D Name: VOST,#532,#42,PULSED COMBUSTER,L,EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992


C:\CHEMPC\DATA\HPA1156.D

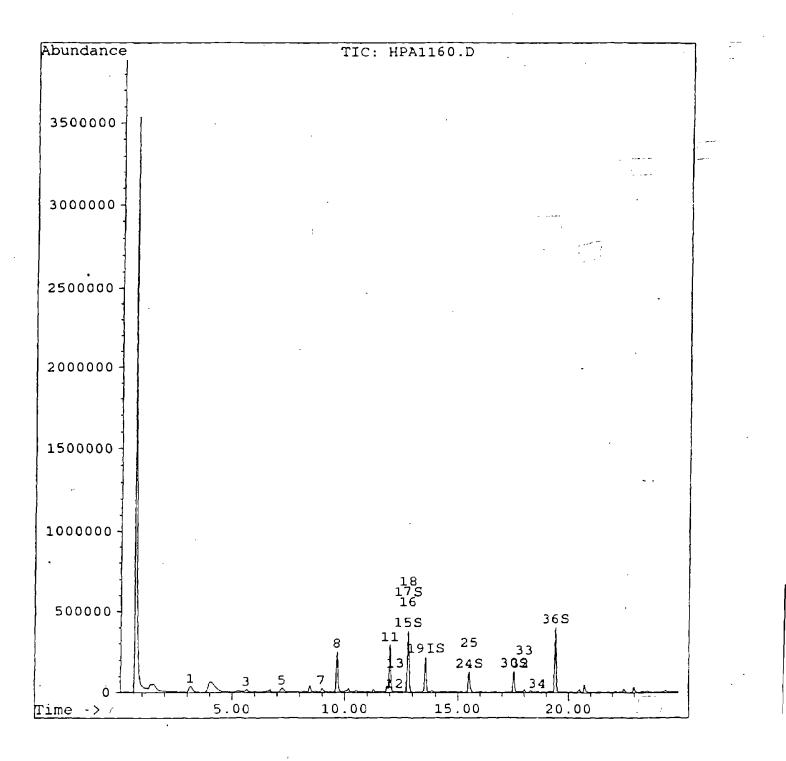
Wed Aug 19 16:45:59 1992

QUANT REPORT Operator ID: M HOWELL Date Acquired: 11 Aug 92 7:38 pm Data File: C:\CHEMPC\DATA\HPA1157.D Name: VOST, #142, PULSED COMBUSTER, L, EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992


QUANT REPORT Operator ID: M HOWELL Date Acquired: 11 Aug 92 8:34 pm Data File: C:\CHEMPC\DATA\HPA1158.D Name: VOST, #90, #06, PULSED COMBUSTER, L, EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

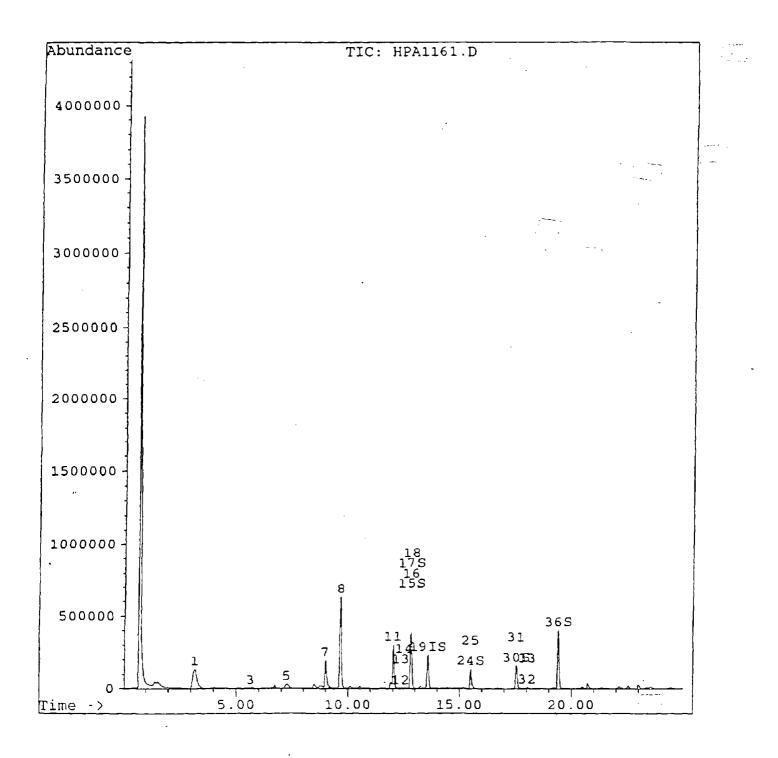
C:\CHEMPC\DATA\HPA1158.D

Wed Aug 19 17:30:15 1992


QUANT REPORT Operator ID: M HOWELL Date Acquired: 11 Aug 92 9:11 pm Data File: C:\CHEMPC\DATA\HPA1159.D Name: VOST,#531,#32,PULSED COMBUSTER,L,EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

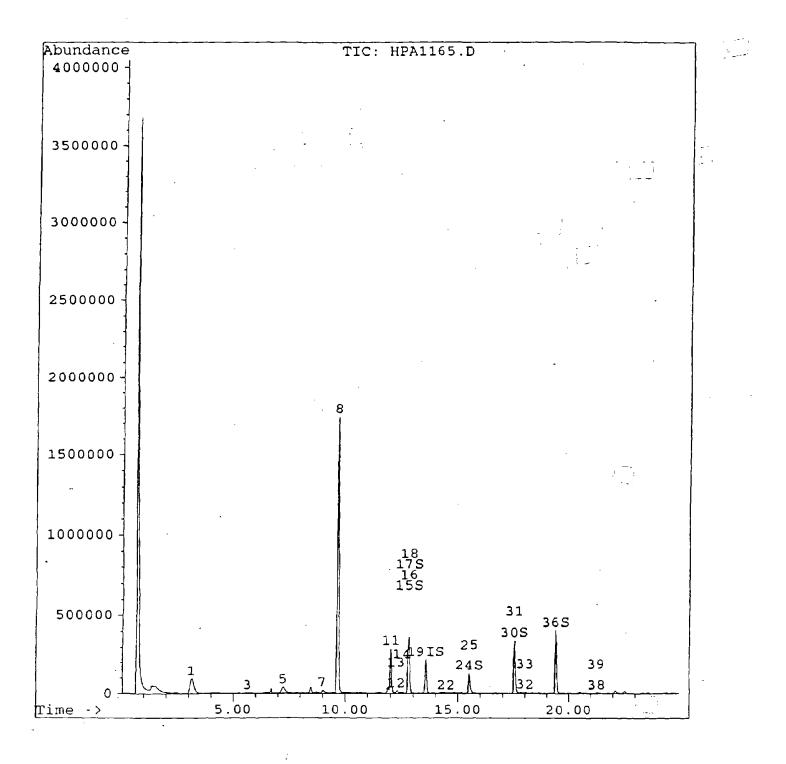
C:\CHEMPC\DATA\HPA1159.D

Wed Aug 19 17:35:51 1992


QUANT REPORT Operator ID: M HOWELL Date Acquired: 11 Aug 92 9:49 pm Data File: C:\CHEMPC\DATA\HPA1160.D Name: VOST, #07, #08, PULSED COMBUSTER, L, EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

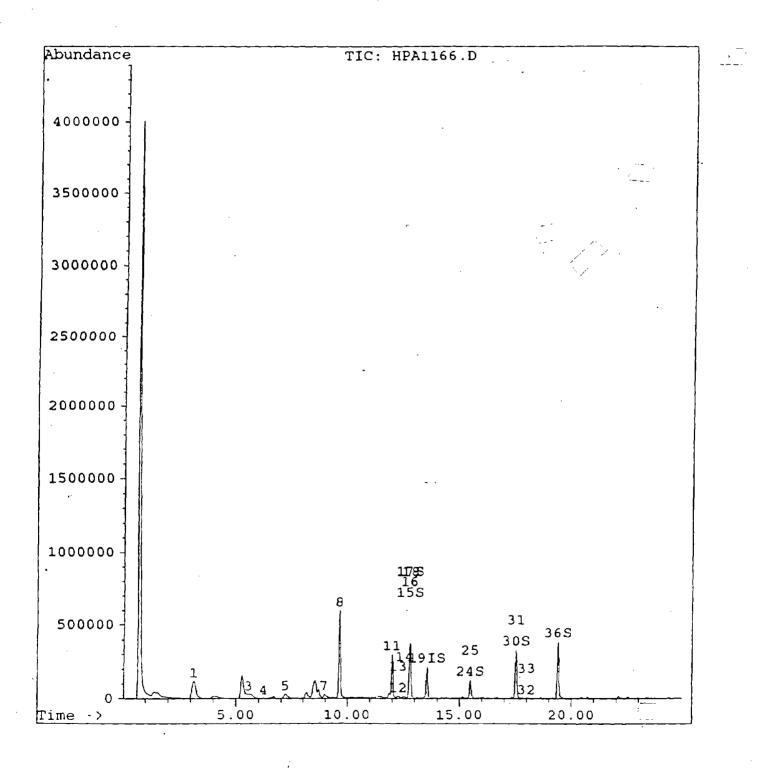
C:\CHEMPC\DATA\HPA1160.D

Wed Aug 19 18:04:19 1992


QUANT REPORT Operator ID: M HOWELL Date Acquired: 11 Aug 92 10:27 pm Data File: C:\CHEMPC\DATA\HPA1161.D Name: VOST, #50, #226, PULSED COMBUSTER, L, EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

C:\CHEMPC\DATA\HPA1161.D

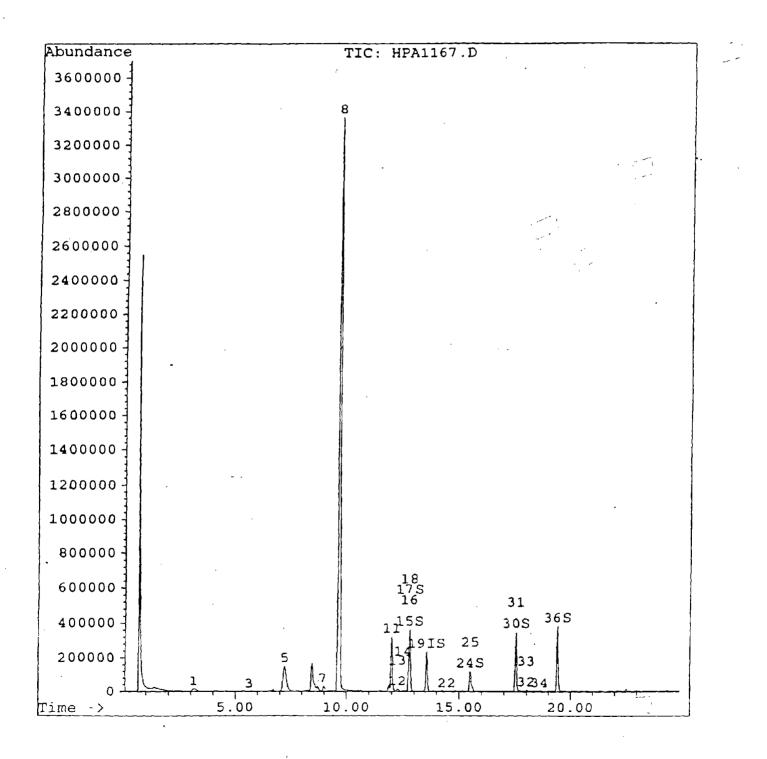
Wed Aug 19 18:48:55 1992


QUANT REPORT Operator ID: M HOWELL Date Acquired: 16 Aug 92 9:13 pm Data File: C:\CHEMPC\DATA\HPA1165.D Name: VOST,#352,#AP22,PULSED COMBUSTER,L,AIR,EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

C:\CHEMPC\DATA\HPA1165.D

Wed Aug 19 19:05:19 1992

QUANT REPORT Operator ID: M HOWELL Date Acquired: 16 Aug 92 9:57 pm Data File: C:\CHEMPC\DATA\HPA1166.D Name: VOST,#497,#767,PULSED COMBUSTER,L,AIR,EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992



C:\CHEMPC\DATA\HPA1166.D

Fri Aug 21 10:14:25 1992

Page 3

QUANT REPORT Operator ID: M HOWELL Date Acquired: 16 Aug 92 11:02 pm Data File: C:\CHEMPC\DATA\HPA1167.D Name: VOST,#463,#64 PULSED COMBUSTER,L,AIR,EPA, Misc: QUANTS @ 250NG Method: VOST.M Title: 8240 Last Calibration: Mon Aug 17 22:02:16 1992

C:\CHEMPC\DATA\HPA1167.D

Page 3

A-26

	LIBRATION CHECK	REPORT	
HPA1145.D			
08/10/92	Total ng	% Recovery	
chloromethane(spcc)	258	103	
vinyl chloride(ccc)	279	112	•
bromomethane	270	108	
chloroethane	283	113	
trichlorofluoromethane	274	110	
1,1-dichloroethene(ccc)	364	145	
Acetone	149	60	
methylene chloride	277	111	
trans-1,2-dichloroethene	292	117	
1,1-dichloroethane(spcc)	263	105	
bromochloromethane (IS)	250	100	
chloroform(ccc)	266	106	
1,1,1-trichloroethane	273	109	
carbon tetrachloride	265	106	
d6-Benzene	518	104	-
benzene	278	111	
d4-1,2-dichloroethane (surr)	268	107	
1,2-dichloroethane	256	102	
1,4-difluorobenzene (is)	250	100	
trichloroethene	262	105	
1,2-dichloropropane(ccc)	264	106	
bromodichloromethane	270	108	
cis-1,3-dichloropropene	272	109	
d8-toluene (surr)	261	105	
toluene(ccc)	276	110	
trans-1,3-dichloropropene	272	109	
1,1,2-trichloroethane	273	109	
tetrachloroethene	274	110	
dibromochloromethane	272	109	
d5-chlorobenzene (surr)	239	96	
chlorobenzene(spcc)	563	113	
ethyl benzene(ccc)	296	118	
m,p-xylene	198	40	
o-xylene	289	116	
promoform(spcc)	251	101	
4-bromofluorobenzene (surr)	255	102	
1,1,2,2-tetrachloroethane(spcc)		99	
1,2-Dichlorobenzene	557	111	
I,4-Dichlorobenzene	575	115	
.3-Dichlorobenzene	568	114	

	LIBRATION CHECK	REPORT	
HPA1154.D			
08/11/92	Total ng	% Recovery	
chloromethane(spcc)	247	99	
vinyl chloride(ccc)	202	81	
bromomethane	178	71	
chloroethane	220	88	
trichlorofluoromethane	250	100	
1,1-dichloroethene(ccc)	195	78	
Acetone	294	118	
methylene chloride	310	124	
trans-1,2-dichloroethene	253	101	
1,1-dichloroethane(spcc)	252	101	
bromochloromethane (IS)	250	100	
chloroform(ccc)	244	98	
1,1,1-trichloroethane	233	93	
carbon tetrachloride	232	93	
d6-Benzene	460	92	
benzene	294	118	
d4-1,2-dichloroethane (surr)	275	110	
1,2-dichloroethane	264	106	
1,4-difluorobenzene (is)	250	100	
trichloroethene	226	90	
1,2-dichloropropane(ccc)	235	94	
bromodichloromethane	249	100	-
cis-1,3-dichloropropene	252	101	
d8-toluene (surr)	251	100	
toluene(ccc)	340	136	
trans-1,3-dichloropropene	257	103	
1,1,2-trichloroethane	258	103	
tetrachloroethene	256	102	
dibromochloromethane	265	106	
d5-chlorobenzene (surr)	235	94	
chlorobenzene(spcc)	510	102	
ethyl benzene(ccc)	294	118	{
m,p-xylene	207	41	
p-xylene	288	115	
promoform(spcc)	288	115	{
4-bromofluorobenzene (surr)	212	85	
1,1,2,2-tetrachloroethane(spcc)		81	
1,2-Dichlorobenzene	639	128	
I,4-Dichlorobenzene	457	91	
I,3-Dichlorobenzene	510	102	

· ·

A-28

•

	BRATION CHECK	REPORT
HPA1163.D		
08/16/92	Total ng	% Recovery
chloromethane(spcc)	245	98
vinyl chloride(ccc)	235	94
bromomethane	218	87
chloroethane	250	100
trichlorofluoromethane	288	115
1,1-dichloroethene(ccc)	229	92
Acetone	330	132
methylene chloride	351	141
trans-1,2-dichlorcethene	289	116
1,1-dichloroethane(spcc)	280	112
bromochloromethane (IS)	250	100
chloroform(ccc)	280	112
1,1,1-trichloroethane	266	106
carbon tetrachloride	267	107
d6-Benzene	471	94
benzene	268	107
d4-1,2-dichloroethane (surr)	313	125
1,2-dichloroethane	299	120
1,4-difluorobenzene (is)	250	100
trichloroethene	257	103
1,2-dichloropropane(ccc)	272	109
bromodichloromethane	295	118
cis-1,3-dichloropropene	298	119
d8-toluene (surr)	289	116
toluene(ccc)	330	132
trans-1,3-dichloropropene	302	121
1,1,2-trichloroethane	296	119
tetrachloroethene	296	118
dibromochloromethane	313	125
d5-chlorobenzene (surr)	234	93
chlorobenzene(spcc)	523	105
ethyl benzene(ccc)	265	106
m,p-xylene	519	104
o-xylene	255	102
bromoform(spcc)	309	124
4-bromofluorobenzene (surr)	228	91
1.1,2,2-tetrachloroethane(spcc)	208	83
1,2-Dichlorobenzene	632	126
1,4-Dichlorobenzene	507	101
1,3-Dichlorobenzene	503	101

•. •.

-- 1

.

•

A-29

Appendix B

1

DRE Calculations

. 1 -

DRE Calculations for Principal Organic Hazardous Constituents (POHCs)

Pulsing Mode

<u>Results:</u> Stack Emissions of carbon tetrachloride and chlorobenzene were below detection limits in all cases.

Practical Quantitation Limit (for volatile organics) = 1 ng/L

Given a stack flow rate = 40.57 scfm = 1148.8 L/min and a POHC input = 3.48 g/min, the following minimum DRE value is calculated:

 $(1ng/L)(1148.8 L/min)(1\mu g/1000 ng) = 1.1488 \mu g/min$

DRE = (Input - Output) / Input

DRE = $3.48 \text{ g/min-} (1.1488 \mu \text{g/min})(1 \text{g}/10 \theta \mu \text{g})$ 3.48g/min

DRE (minimum) = 99.999967

Non-Pulsing Mode

<u>Results:</u>

- (1) For carbon tetrachloride, the exit concentrations were less than the detection limit, so DRE numbers will be the same as the pulsing mode.
- (2) For chlorobenzene, two of the three replicate VOST runs had detectable concentrations in the stack gas. These two exit concentrations equate to the following DRE results:

<u>Exit Concentration</u> = 1.4 ng/L

 $(1.4 \text{-ng/L})(1148.8 \text{ L/min})(1\mu g/1000 \text{ng}) = 1.6083 \mu g/\text{min}$

DRE = $[3.48 \text{ g/min} - (1.6083 \mu \text{g/min})(1\text{g}/10^6 \mu \text{g})]/ 3.48\text{g/min}$

DRE = 99.999954

<u>Exit Concentration = 1.1 ng/L</u>

 $(1.1 \text{ ng/L})(1148.8 \text{ L/min})(1\mu g/1000 \text{ ng}) = 1.2637 \mu g/\text{min}$

DRE = $[3.48 \text{ g/min} - (1.2637 \ \mu\text{g/min})(1\text{g}/10^6 \ \mu\text{g})]/ 3.48\text{g/min}$

DRE = 99.999964

Appendix C

Semivolatile Organic Screening Results

•

GeoChem, Incorporated

Environmental Laboratories

Geochem(NC #336/SC #99008)

LAB ID. 0092 0093 0094 DATE ANALYZED 01/20/93 01/20/93 01/20/93 PIELD ID. PC92-07-13-01 PC92-07-15-01 PC92-07-16-01 NTTROD ng/ul ng/ul ng/ul 8270 Base/Neutrals ng/ul ng/ul ng/ul 8270 Base/Neutrals N-Nitrosodimethylamine 5 8120 Loroethyl Ether 5 1/4-Dichlorobenzene 1/4-Dichlorobenzene 1/4-Dichlorobenzene 1/4-Dichlorobenzene 1/4-Dichlorobenzene 1/4-Dichlorobenzene 1/2-DichlorosenpropylEthr 1/2-Dichlorobenzene 1/2-Dichlorobenzene 1/2-Dichlorobenzene 1/2-Dichlorobenzene 1/2-Dichlorobenzene </th <th>Project#9301-028</th> <th>1</th> <th>Site Name Pulsed</th> <th>Combuster</th>	Project#9301-028	1	Site Name Pulsed	Combuster
NNALYTE ng/ul ng/ul ng/ul 8270 Base/Neutrals N-Nitrosodimethylamine 5 < 5 < 5 Sill Chioroethyl Ether 5 < 5 < 5 Ja-Dichlorobenzene < 5 < 5 < 5 J.2-Dichlorobenzene < 5 < 5 < 5 J.2-Dichlorobenzene < 5 < 5 < 5 Bis2ChloroicopopyIEthr < 5 < 5 < 5 Bis2Chloroethane < 5 < 5 < 5 Nitrobenzene < 5 < 5 < 5 Bis2Chloroethane < 5 < 5 < 5 Nitrobenzene < 5 < 5 < 5 Bis2ChloroethoxyMethane < 5 < 5 < 5 Isophorone 38 360 15 Benzoic Acid < 25 < 260 < 5 4-Chloroniline < 5 < 5 < 5 Hexachlorobutadiene < 5 < 5 < 5 2-MitrosoliphyIphthalate < 5 < 5 < 5	DATE ANALYZED	01/20/93	01/20/93	01/20/93
N-Nitrosodimethylamine 5 5 Aniline 5 5 Aniline 5 5 Big2Chloroethyl Ether 5 5 1,3-Dichlorobenzene 5 5 1,2-Dichlorobenzene 5 5 Benzyl Alcohol 10 10 Big2ChlorostopropylEthr 5 5 Bexachlorosthane 5 5 Nitrobenzene 5 5 Isophorone 38 360 15 Big2ChlorosthoxyMethane 5 5 1,2,4-Trichlorobenzene 5 5 Senzoic Acid 25 260 260 4-Chloroantline 5 5 2-Methylnaphthalene 5 5 2-Methylnaphthalene 5 5 2-Methylnaphthalene </td <td></td> <td>ng/ul</td> <td>· ng/ul</td> <td>ng/ul</td>		ng/ul	· ng/ul	ng/ul
Aniline < 5	8270 Base/Neutrals			
Bis2Chloroethyl Ether < 5	N-Nitrosodimethylamine	< 5	< 5	< 5
1,3-Dichlorobenzene < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <		< 5	< 5	< 5
1,3-Dichlorobenzene < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	Bis2Chloroethyl Ether	< 5	< 5	< 5
1,4-Dichlorobenzene < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	1,3-Dichlorobenzene	< 5		< 5
1,2-Dichlorobenzene < 5	1,4-Dichlorobenzene	< 5	< 5	< 5
Benzyl Alcohol < 10	1,2-Dichlorobenzene	< 5	< 5	<'5
Bis2ChloroisopropylEthr < 5				
Hexachloroethane < 5				_
N-Nitrosodipropylamine < 5	Hexachloroethane			-
Nitrobenzene < 5				
Isophorone 38 360 15 Bis2ChloroethoxyMethane < 5				
Bis2ChloroethoxyMethane < 5		-	-	-
1,2,4-Trichlorobenzene < 5				
Naphthalene 3.4J 2.9J 2.8J Benzoic Acid < 25				
Benzoic Acid < 25				
4-Chloroaniline < 5				
Hexachlorobutadiene < 5				
2-Methylnaphthalene < 5				
Hexachlorcyclopentadien < 5				
2-Chloronaphthalene < 5				
2-Nitroaniline < 25	Hexachlorcyclopentadien			
Acenaphthylene < 5		-		
Dimethylphthalate < 5				
2,6-Dinitrotoluene < 5				
Acenaphthene < 5				
3-Nitroaniline < 25				
Dibenzofuran < 5	Acenaphthene			
2,4,Dinitrotoluene < 5	3-Nitroaniline	< 25	< 25	< 25
Fluorene < 5	Dibenzofuran	< 5	< 5	< 5
4ChlorophenylPhenylEthe < 5	2,4,Dinitrotoluene	< 5	< 5	< 5
4ChlorophenylPhenylEthe < 5	Fluorene	< 5	< 5	< 5
Diethylphthalate 4.1J 3.8J 3.8J 4-Nitroaniline < 25		< 5	< 5	< 5
4-Nitroaniline < 25				
N-Nitrosodiphenylamine < 5				
Azobenzene < 25 < 25 < 25 4-Bromophenyl PhenylEth < 5				
4-Bromophenyl PhenylEth < 5 < 5 < 5				

<u>soil</u> water parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit. J = estimated concentration.

GeoChem, Incorporated

Environmental Laboratories

2

Geochem(NC #336/SC #99008) Project#9301-028

Site Name Pulsed Combuster

[____

LAB ID. DATE ANALYZED FIELD ID.	0092 01/20/93 PC92-07-13-01	0093 01/20/93 PC92-07-15-01	0094 01/20/93 PC92-07-16-01
NETHOD ANALYTE	ng/ul	ng/ul	ng/ul
8270 Base/Neutrals cont.		<u></u>	
Anthracene	< 5	< 5	< 5
Phenanthrene	6.8	12	.4.5J
Di-N-Butylphthalate	46	51	71
Fluoranthene	< 5	< 5	< 5
Pyrene	< 5	< 5	< 5
Benzidine	< 25	220	< 25
Indeno(1,2,3-cd)Pyrene	< 5	< 5	< 5
Butyl Benzyl Phthalate	< 10	< 10	< 10
Chrysene	< 5	< 5	< 5
Benzo(a)Anthracene	< 5	< 5	< 5
3,3'-Dichlorobenzidine	< 10	< 10	< 10
Bis2EthylhexylPhthalate		21	920
Di-N-Octylphthalate	< 5	< 5	< 5
Benzo(B)Fluoranthene	< 5	< 5	< 5
Benzo(k)Fluoranthene	< 5	< 5	< 5
Benzo(a)Pyrene	< 5	< 5	< 5
Dibenz(a,h)Anthracene	< 5	< 5	< 5
Benzo(g,h,i)Perylene	< 5	< 5	< 5
8270 Acid Extractables			
2-Chlorophenol	< 5	< 5	< 5
Phenol	< 5	< 5	< 5
2-Nitrophenol	< 5	< 5	< 5
2-Methylphenol	< 5	< 5	< 5
4-Methylphenol	< 5	< 5	, < 5
2,4-Dimethylphenol	< 5	< 5	< 5
2,4-Dichlorophenol	< 5	< 5	< 5
4-Chloro-3-Methylphenol		< 10	< 10
2,4,5-Trichlorophenol	< 5	< 5	< 5
2,4,6-Trichlorophenol	< 5	< 5	< 5
2,4-Dinitrophenol	< 5	< 5	< 5
-Nitrophenol	< 25	< 25	< 25
4,6-Dinitro-2Methylphen		< 5	< 5
Pentachlorophenol	< 5	< 5	< 5

parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit. J = estimated concentration. GeoChem, Incorporated Ξ

Environmental Laboratories

Geochem(NC #336/SC #99008)

Project#9301-028 3 Site Name Pulsed Combuster LAB ID. 0095 0096 0097 DATE ANALYZED 01/20/93 01/20/93 01/20/93 PC92-07-30-01 FIELD ID. PC92-07-22-01 GV892-10-14-01 **METHOD** ANALYTE <u>nq/ul</u> <u>nq/ul</u> <u>nq/ul</u> 8270 Base/Neutrals N-Nitrosodimethylamine < 5 < 5 < 5 Aniline < 5 < 5 < 5 < 5 < 5 Bis2Chloroethyl Ether < 5 1,3-Dichlorobenzene < 5 < 5 < 5 1,4-Dichlorobenzene < 5 < 5 < 5 < 5 < 5 1,2-Dichlorobenzene <15 < 10 < 10 < 10 Benzyl Alcohol Bis2ChloroisopropylEthr < 5 < 5 < 5 Hexachloroethane < 5 < 5 < 5 < 5 N-Nitrosodipropylamine < 5 < 5 < 5 Nitrobenzene < 5 < 5 Isophorone < 5 < 5 < 5 Bis2ChloroethoxyMethane < 5 < 5 < 5 1,2,4-Trichlorobenzene < 5 < 5 < 5 < 5 Naphthalene < 5 < 5 Benzoic Acid < 5 < 5 170 4-Chloroaniline < 5 < 5 < 5 < 5 Hexachlorobutadiene < 5 < .5 2-Methylnaphthalene < 5 < 5 < 5 Hexachlorcyclopentadien < 5 < 5 < 5 < 5 < 5 5 2-Chloronaphthalene < 2-Nitroaniline < 25 < 25 < 25 Acenaphthylene < 5 < 5 < 5 9.0 < 5 Dimethylphthalate < 5 2,6-Dinitrotoluene < 5 < 5 < 5 < 5 < 5 Acenaphthene < 5 3-Nitroaniline < 25 < 25 < 25 Dibenzofuran < 5 < 5 < 5 2,4,Dinitrotoluene < 5 < 5 < 5 5 Fluorene 5 < 5 < < 4ChlorophenylPhenylEthe < 5 < 5 5 < Diethylphthalate 2.8J 2.2J < 5 4-Nitroaniline < 25 < 25 < 25 N-Nitrosodiphenylamine < 5 < 5 < 5 Azobenzene < 25 < 25 < 25 4-Bromophenyl PhenylEth < 5 < 5 < 5 Hexachlorobenzene < 5 < 5 < 5

20

soil water parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit. J = estimated concentration.

GeoChem, Incorporated

Environmental Laboratories

. .

	0095	0096	0007
LAB ID.		01/20/93	0097
DATE ANALYZED FIELD ID.	01/20/93 PC92-07-22-01	PC92-07-30-01	01/20/93 GWB92-10-14-01
OPETED	, 		
ANALYTE	ng/ul	ng/ul	ng/ul
8270 Base/Neutrals cont	inued		•-
Anthracene	< 5	< 5	< 5
Phenanthrene	< 5	< 5	< 5
Di-N-Butylphthalate	57	43	74
Fluoranthene	< 5	< 5	< 5
Pyrene	< 5	< 5 ~	< 5
Benzidine	< 25	< 5	< 25
Indeno(1,2,3-cd)Pyrene	< 5	< 5	´< 5
Butyl Benzyl Phthalate	< 10	< 10	< 10
Chrysene	< 5	< 5	< 5
Benzo(a)Anthracene	< 5	< 5	< ·5
3,3'-Dichlorobenzidine	< 10	< 10	< 10
Bis2EthylhexylPhthalate	110	260	< 5
Di-N-Octylphthalate	< 5	< 5	< 5
Benzo(B)Fluoranthene	< 5	< 5	< 5
Benzo(k)Fluoranthene	< 5	< 5	< 5
Benzo(a)Pyrene	< 5	< 5	< 5
Dibenz(a,h)Anthracene	< 5	< 5	< 5
Benzo(g,h,i)Perylene	< 5	< 5	< 5
B270 Acid Extractables			
2-Chlorophenol	< 5	< 5	< 5
Phenol	< 5	< 5	< 5
2-Nitrophenol	< 5	< 5	< 5
2-Methylpheno1	< 5	< 5	< 5
-Methylphenol	< 5	< 5	< 5
2,4-Dimethylphenol	< 5	< 5	< 5
2,4-Dichlorophenol	< 5	< 5	< 5
-Chloro-3-Methylphenol	< 10	< 10	< 10
2,4,5-Trichlorophenol	< 5	< 5	< 5
2,4,6-Trichlorophenol	< 5	< 5	< 5
2,4-Dinitrophenol	< 5	< 5	< 5
-Nitrophenol	< 25	< 25	< 25
4,6-Dinitro-2Methylphen	< 5	< 5	< 5
Pentachlorophenol	< 5	< 5	< 5

<u>soil</u> water parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pgl = practical quantitation limit due to matrix effects. bdl = below method detection limit. bgl = below quantitation limit. J = estimated concentration.

C-5

Tentatively Identified Compounds (TIC'S) For Pulsed Combuster Sample's.

Sample ID: Test 1 (7/13/92) Oil only - High Noise

Lab ID: PC92-07-13-01

GC/MS ID: 9301-028-0092

CAS NUMBER	COMPOUND NAME	RT SAMPI	LE MASS(ug/ml);
	Trimethylbenzene isomer	{11.1{	16.69 {
791-28-6	Phosphine oxide,triphenyl	35.2	67.49 {
54340-86-2	{Benzene,4(2-butenyl)-1,2-dimeth	yl{17.8;	8.29

Sample ID: Test 2 (7/15/92) Oil only - Low Noise

Lab ID: PC92-07-15-92

GC/MS ID: 9301-028-0093

CAS NUMBER	COMPOUND NAME	_ RT SAN	IPLE MASS (ug	g/ml)¦
	{ Trimethylbenzene isomer	{11.1{	63.1	1
2084-69-7	Naphthalene,tetrahydro	23.9	19.93	!
54340-86-2	{Benzene,4(2-butenyl)-1,2-dimet}	hy1{17.8{	25.7	

Sample ID: Test 3 (7/16/92) Chlorobenzene and Carbontetrachloride - High Noise

Lab ID: PC92-07-16-01

GC/MS ID:9301-028-0094

No Tic's qualified for the positive identification threshold.

Sample ID: Test 4 (7/22/92) Chlorobenzene and Carbontetrachloride - Low Noise

Lab ID: PC92-07-22-01

GC/MS ID: 9301-028-0095

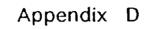
No Tic's qualified for the positive identification threshold.

Sample ID: TEST 5 (7/30/92) Trip Blank

Lab ID: PC92-07-30-01

GC/MS ID: 9301-028-0096

No Tic's qualified for the positive identification threshold.


Sample ID: Test 6 Laboratory Blank.

LAB ID: GWB92-10-14-01

GC/MS ID: 9301-028-0097

No Tic's qualified for the positive identification threshold.

Note: Posivive identification threshold means that any unknown peak search against a reference library of known spectra must agree at 80% or better with the fragmentation pattern of the unknown and the mass intensities(m/e) of each fragment ion against the reference spectra. Also the chemist's judgement is considered.

. ...

Particulate Loading Results

.

- -

₹⁴

· .

- -- . - .

D-1

Modified Method 5 Volume and Moisture Calculation Worksheet

PROJECT: TEST:	Pulse combustion CCI4 and Chlorobenzene feed	DATE: 7/16/92	
LOCATION:	Rainbow furnace	TEST : 3	
TEST PARAMET	ERS: Pulse on	Bar Pressure:	29.92

Amb temp	80	80	80	80	82	84	64	82		81.00
Volume			- 							1
cuft [202.90	209.2	217.7	232.4	248.4 	287	298.9	303.47		100.57
Last Imping							1			0.00
Meter In	90	112	117	117	117	114	116	117		112.50
Meter Out	82	90	92	102	104	100	101	102		96.63
Flow DH	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54		0.54
XAD Temp	32	32	32	32	32	32	32	32		32.00
Stack Tin	829	· 662	667	674	673	711	719	733		708.50
Stack Tout			·					·····	•••••••	0.00
Pump vac	5.2	5.2	5.2	5.2	5.2	5.6	5.6	5.6	,,	5.35
 Uncorrected volum					Average st					
-belymas asg to		100.56	cubic feet		temp-	1168.5	deg R			·
Meter Inlet		572.5	deg R		Sampling					
Meter Outlet		556.62	deg R		duration=		221	minutes		
Meter Average		564.56	deg R							
	9 01		vered in impi							
	38 939		acted in SiO2 water volume							
	939 705	initial wate								
	234	total cond								
	11.014	volume of	water as gas	at sto in d	cubic feet					
	-92.520	volume of	dry gas (from	n meter) a	t stp in cubic	faat				
	103.53	total mas v	olume at stp	بالملطوية ما						

avg or net

-

10.638 percent moisture in gas sampled

correction factor of dry gas meter used =

.

•

ISOKINETICITY AND PARTICULATE LOADING SUMMARY

•

.

PROJECT: TEST: LOCATION:	Pulse combustion CCI4 and Chlorobenzene feed w/pulse on Rainbow furnace	TEST #: RUN PARAMETERS: DATE: 16 Jul 92	3 putse on; FR ≈ 200000 8TU/hr
	Stack diameter (inches)		8.00
	Pitot corr factor S type= 0.85cp		0.85
	Strai ght type= 0.99c;		<i></i>
	Stack temp (deg R)		1168.00
	Molecular weight of gas (g/mol)		29.00
	Charles and surfacely (Mile) (a	at stack conditions}	1.07 4.27
	Stack gas velocity (ft/s) (a Gas volume exiting stack (ACFM)	it statick conditions;	89.41
	Gas volume exiting stack (ACFM)		40,57
	Ges volume exting stack (SCMH)		63.94
	Cars toronto anterig partic (control)		~~
CALCULATE	D ISOKINETIC VARIATION		
	Total volume of water condensed (ml)		234.00
	Uncorrected gas volume from meter (cubic fe	oti	100.50
	Average motor tomp (deg R)	- 1	564.50
	Onlice delta H (Inches H2Q)		not measured
	Sampling duration (minutes)		221.00
	Sample nozzle diameter (Inches)		0.84
	Nozzie face area (square feet)		0.0039
	Barometric Pressure (inches Hg)		29.92
	Stack pressure (in Hg)		29.92
	Stack pressure corrected for delta H (in Hg)		29.92
	Sample was collected at	103.81 percent of Isokinatic	
SAMPLE GA	S VOLUME AND PARTICULATE DATA	,	
	Corrected dry volume from meter (cubic feet a	ut meter temp)	98.49
	Dry volume corrected to stp (cubic feet)		82.47
	Dry volume corrected to stp (cubic meters)	41- 8	2.62
	Volume of condensed water as gas at stp (cut		11.01
	Total wet volume of gas at stp (cubic feet)		103.48
	Percent moisture of gas sampled		10.64
	Mass of particulate captured (grams)		0.1288
	Particulate loading:		
•.	(mg solids/cu ft wet gas)		1.2442
	(mg solids/cu mt wet gas)		43,9384
	(mg solids/cu ft dry gas)		1.3923
	(mg solids/cu mt dry gas)		49.1699

أستر

`*

Modified Method 5 Volume and Moisture Calculation Worksheet

PROJECT: TEST:	Pulse combustion CCI4 and Chlorobenzene	DATE: 7/22/92
LOCATION:	Rainbow furnace	TEST #: 4
TEST PARAMET	ERS: Oil feed, low noise	Bar Pressure: 29.92

Amb temp	83	(8 5	86	85	85	86	84	83	85	85.00
Volume cu ft	303.67	306.7	318.8	331	350.1		386.4	400.7	413.52 [109,85 1
Last Imping						[[0.00
Meter In	88	100	110	115	118	118	118	118	118	111.44
Meter Out	84	 84	86	94	104	104	108	108	109	97.89
Flow DH	0.54	0.53	0.54	0.47	0.465	0.46	0.45	0.45		0.43
XAD Temp	32	32	32	32	32	32	32	32	32	32.00
Stack T in	917	815	823	826	825	821	817	817	816	830.78
Stack T out				(1	[· · · · · · · · · · · · · · · · · · ·	0.00
Pump vac	5.2	5.8	6.0	6.2	6.2	6.2	6.4	6.4	6.4	6.1
 Uncorrected volur	TH9	100.04	cubic feet		Average sta		dog D			
of gas sampled-		109.04			temp=	1290.7	uagin			
Meter Inlet Meter Outlet Meter Average		571.44 557.88 564.66	deg R deg R deg R		Sampling duration=		251	minutes		
	806 29 835 577 258	water colle		юдегя						
۰,	12.144 101.03 113.18	volume of volume of	water as gas : dry gas (from olume at stp i	meter) at	stp in cubic	teet				

avg or net

10.729 percent moisture in gas sampled

correction factor of dry gas meter used =

.

.

ISOKINETICITY AND PARTICULATE LOADING SUMMARY

.

PROJECT: TEST: LOCATION:	Putse combustion CCI4 and Chlorobenzene w/putse off Rainbow furnace	TEST #: 4 RUN PARAMETERS: DATE: 22 Jul 82	Oil feed; low nolse; Firing rate ≈ 200000 BTU/hr
	Stack diameter (inches) Pitot corr factor S type= 0.85cp Strai ght type= 0.99cp	$\sum_{i=1}^{N}$	8.00 0.85
	Stack temp (deg R)		1290.00
	Molecular weight of gas (g/mol)		29.00
		1.26	1.12
	Stack gas velocity (ft/s) (at stack condition	13)	4.71
	Gas volume exiting stack (ACFM) Gas volume exiting stack (SCFM)		²⁷ 98.75 40.57
	Gas volume exiting stack (SCMH)		68.94
CALCULATE	D ISOKINETIC VARIATION		
	Total volume of water condensed (ml)		258.00
	Uncorrected gas volume from meter (cubic feet)		109.80
	Average meter temp (deg R)		564.60
	Ortfice delta H (Inches H2O)		not measured
	Sampling duration (minutes)		251.00
	Sample nozzie diameter (inches)		0.84
	Nozzie face area (square feet)		0.0039
	Barometric Pressure (inches Hg) Stack pressure (in Hg)		29.92
	Stack pressure corrected for delta H (in Hg)		29.82
	Sample was collected at 99.94 percen	nt of isoldnetic	-
SAMPLE GAS	S VOLUME AND PARTICULATE DATA		
	Corrected dry volume from meter (cubic feet at meter temp)		107.60
	Dry volume corrected to stp (cubic feet)	·	101.01
	Dry volume corrected to stp (cubic meters)		2.86
	Volume of condensed water as gas at stp (cubic feet)		12.14
	Total wet volume of gas at stp (cubic feet)		113.15
	Percent moisture of gas sampled		10.73
	Mass of particulate captured (grams)		0.1289
. · · · ·	Particulate loading:		
	(mg solids/cu ft wet gas)		1.1389
	(mg solids/cu mtr wet gas)		40.2212
	(mg solids/cu ft dry gas)		1.2758
, 	(mg solids/cu mtr dry gas)	•	45.0552
<u> </u>			
· •			

• •

> ر میرد. امیریز

.

.

D-5

-

-

Modified Method 5 Volume and Moisture Calculation Worksheet

PROJECT:	Pulse combustion	DATE: 7/13/92	
TEST: LOCATION:	Oil baseline Rainbow furnace	TEST # 1	
TEST PARAMET		Bar Pressure:	29.92

Amb temp		[]		1				1	1	0.00	1
Volume											1 1
cu ft	92.078	96.5	101.2	110.1 	139.6	156.5	170.1	181_9	215.24	123.17	
Last Imping			i i		į				· · · · ·	0.00	
Meter In	84	102	108	114	117	117	117	117	117	110.33	
Meter Out	60	82	84	98	102	102	100	102	102	94.67	
Flow DH			·		······				,	0.00	
XAD Temp	32	32	32	32	32	32	32	32	32	32.00	
Stack T In	742	740	·	754	[.	778	779	789	789	767.29	
Stack T out				[[[.			[· · · · ·	0.00	1
Pump vac	5.5	5.7	5.7	5.7	6	6.2	6.2	6.2	6.2	5.93	[[
Uncorrected volum of gas sampled-	TH9	123.16	cubic feet		Average sta temp=	ick 1227.2	deg R				•
Meter Inlet Meter Outlet Meter Average		570.33 554.66 562.5	deg R deg R deg R		Sampling duration=		246	minutes			
	926 34		wered in impi								
	960		vater volume								
	712 248	initial wate total conde									
	11.673		water as gas	et etc la a	untic facet						
	113.73		water its gas dry gas (from			feet					
•	125.40		olume at stp								
			oisture in gas								

avg or net

correction factor of dry gas meter used =

ISOKINETICITY AND PARTICULATE LOADING SUMMARY

•

.

PROJECT:	Pulse combustion		TEST #:	1	
TEST:	Oil baseline - Pulse on		RUN PARAMETERS:	 Oil feed; pulse on; 	
LOCATION:	Rainbow furnace			Firing rate = 200000 BTU/hr	
			DATE: 13 Jul 92		
			• .		
	Stack diameter (inches)			6.00	
	Pitot corr factor S type= 0.85cp			0.85	
	Stral ght type= 0.99c	P			
	Stack temp (deg R)			1227.00	
	Molecular weight of gas (g/mol)			29.00	
			1.20	1.10	
	Stack gas velocity (fl/s) (#	et stack conditions)		4.48	
	Gas volume exiting stack (ACFM)			93.92 ·	
and a	Gas volume exiting stack (SCFM)			40.57	
، مرا	Gas volume exiting stack (SCMH)			68.94	
CALCULATE	D ISOKINETIC VARIATION				
-					
	Total volume of water condensed (ml)			248.00	
	Uncorrected gas volume from meter (cubic fe	μų		123.10	
	Average meter temp (deg R)			562.50	-
	Orifice delta H (Inches H2O)			not measured	•
	Sampling duration (minutes)			246.00	
	Sample nozzle diameter (inches)			0.84	
	Nozzle face area (square feet)			0.0039	
	Berometric Pressure (inches Hg)			29.82	
				29.92	
	Stack pressure (in Hg)				
	Stack pressure corrected for delta H (in Hg)				
	Sample was collected at	112.95 percent of Isol	dnetic	· · · · · · · · · · · · · · · · · · ·	
SAMPLE GA	S VOLUME AND PARTICULATE DATA				
	Corrected dry volume from meter (cubic feet a	ar meter temp)		120.64	
	Dry volume corrected to stp (cubic feet)			113.67	
	Dry volume corrected to stp (cubic meters)			3.22	
	Volume of condensed water as gas at stp (cu	ibic feet)	,	11.67	
	Total wet volume of gas at stp (cubic feet)		-	125.34	
	Percent moisture of gas sampled			9.31	
	Mass of particulate captured (grams)			0.0769	
	Particulate loading:		· • · · · ·	•	
	(mg solids/cu ft wet gas)			0.6136	
•	(mg solids/cu mtr wet gas)			21.6699	
	(mg solids/cu ft dry ges)			0.6766	
•	(mg solids/cu mtr dry gas)			23.6947	
	find considering and Appl			20.00 11	
•					

Modified Method 5 Volume and Moisture Calculation Worksheet

PROJECT: TEST:	Pulse combustion Oil baseline	DATE: 7/15/92
LOCATION:	Rainbow furnace	TEST #: 2
TEST PARAME	TERS: Oil feed, no pulse	Bar Pressure: 29.92
		avg or net

Amb temp	!	[1		1 1			1	0.0	00
Volume cu ft	6.754	12.7	22.2	39.4	52	63.2	90	100.68	94,1	 13
Last Imping							1	 	.0	00
Meter In	84	98	110	117	114	112	112	112	107.3	38 1
Meter Out	78	80	90	100	102	104	104	104	95.2	25
Flow DH			-							1 1 00
XAD Temp	32	32	32	32	32	32	32	32	32.0	 00
Stack T in	669	690	692	702	710	718	727	730	704.7	ן 75 [
Stack Tout			-						0.0	00
Pump vac	 5.8	5.5	- 5.8	5.8	[5.8	 5.8	6	,- 6	, 5.6	 81
Uncorrected volu of gas sampled=	me	94.128	cubic feet		Average st temp=	ack 1164.7	deg R		······	
Meter Inlet Meter Outlet Meter Average		567.37 555.25 561.31	deg R deg R deg R		Sampling duration=		206	minutes		•
	796 31		overed in impli acted in SiO2	aregri						
	827 609 218	total final Initial wate total cond								
	10 .261 87.099		water as gas			fant				

87.099 volume of dry gas (from meter) at stp in cubic feet .

97.360 total gas volume at stp in cubic feet

10,539 percent moisture in gas sampled

correction factor of dry gas meter used =

.

0.98

. -

ISOKINETICITY AND PARTICULATE LOADING SUMMARY

PROJECT: TEST: LOCATION:	Pulse combustion Oil baseline - Pulse off Rainbow fumace	TEST #: 2 RUN PARAMETERS: DATE: 15 Jul 92	Oil feed, no puise Fi ring rate = 200000 BTU/hr
	Stack diameter (inches)		6.00
	Pitot corr factor S type= 0.85cp		0.85
	Strai ght type= 0.99cp		
	Stack temp (deg R)		1164.00
	Molecular weight of gas (g/mol)		29.00
	Stack gas velocity (fl/s) (at stack c	1.14	1.07 4.25
	Stack gas velocity (fl/s) (at stack c Gas volume exiting stack (ACFM)		69.10
	Gas volume exiting stack (SCFM)		40.57
	Gas volume exiting stack (SCMH)		68.94
CALCULATE	D ISOKINETIC VARIATION		
	Total volume of water condensed (ml)		218.00
	Uncorrected gas volume from meter (cubic feet)		94 .12 -
	Average meter temp (deg R)		561.30
	Orifice delta H (Inches H2O)		not measured
	Sampling duration (minutes)		206.00
	Sample nozzle diameter (inches) Nozzle face area (square feet)		0.84 0.0039
	Barometric Pressure (inches Hg)		29.92
	Stack pressure (in Hg)		29.92
	Stack pressure corrected for delta H (in Hg)		29.82
	Sample was collected at 104.77	percent of Isokinetic	
SAMPLE GAS	S VOLUME AND PARTICULATE DATA		· .
		>	22.2 4
	Corrected dry volume from meter (cubic feet at meter to	mp)	92.24 87.09
	Dry volume corrected to stp (cubic feet) Dry volume corrected to stp (cubic meters)		2.47
-	Volume of condensed water as gas at stp (cubic feet)		10.26
	Total wet volume of gas at stp (cubic feet)		97.35
	Percent moisture of gas sampled		10.54
	Mass of particulate captured (grams)		0.0050
	Particulate loading:		
• .	(mg solids/cu ft wet gas)		0.0516
	(mg solids/cu mt wet gas)		1.8210
	(mg solids/cu ft dry gas)	,	0.0576
	(mg solids/cu mtr dry gas)		2.0355
()			

$\underline{\boldsymbol{\xi}}$

THIS SPREADSHEET BEGUN 8/4/92 BY CCL TO SUMMARIZE PULSED COMBUSTOR FILTER WEIGHTS ONIGONAL DATA ON P100 OF RTS SAMPLING NOTEBOOK AND ON P82 OF CCLS GENERAL VOL II NOTEBOOK

MITER #	PRESAMPLING	DHTE SAMPLED		POSTSAHPLING HEIGHT (g)	NET WEIGHT GAIN (g)	FILTER COLOR HETER SAMPLING
IILICK #	HEIGHT (g)			HEIOHI (g)		
F:F'1	0.59037	7713792	OIL - HIGH NOISE	0.67520	0.07691	VERY VERY LIGHT UP:
8P2	0.59768	7/15/9/2	OIL - LOH NOISE	0.6027	0.00502	VERY LIGHT THE
FF 4	0.59504	7716792	CHLOROBENZENE AND CC14-HIGH NOISE	0.72379	0.12075	LIGHT LAN
RPS	0.59934	7/22/92	CHLOROBENZENE AND CC14-LOH NOISE	0.72021	0.12097	LIGHT THE HITH BLACE CARE
KF10	0.59368	на	TRIP BLANK	0.59417	0.00049	HHI LE

From Acurer NB #1403 PP 86-87

D-10

Appendix E

Particle Size Distribution Results

.

PERCENTAGE

. . .

TSI DIFFERENTIAL MOBILITY PORTICLE SIZER NON-PULSE BACKGROUND 2/15/92

总备用户侧底 卷二1。

GEO. MEAN: 2.32E-2

SPREAD FACTOR: 11.449

AEROSOL FLOW RATE: .3 LPM MEAS, MODE: EVERY CHNL MAXIMUM DIA. MEASURED: .886 UM START: 14:52:25 DATE: 07-15-1992 MINIMUM DIA. MEASURED: .017 UM END: 15:08:59

CONCENTRATION

DIA	DIAMETER						
CH#	MIDPOINT	NUMBER	SURFACE	VOLUME	NUMBER	SURFACE	VOLUME
	(UP1)	(#ZCC)	(UMA2ZCC)	(UMASZCC)	CUMUL	ATIVE PERCE	NTAGE
1	. 01	0	0	0	0	0 · · .	o
2	-012	0	Ö	0	0	0 1	0
	.014	0	0	0	0	0	0
4	.017	Ö	0	0	0	°,	0
5	.019	1.87E 5	215.261	- 686	37.392 4.	3.4	.111
ó	.022	1.628 5	248.015	.912	69.699	7.316	. 26
7	1025	8.86E 4	180.865	.768	87.366	10.173	.385
8	.029	3.70E 4	100-818	. 494	94.751	11.765	.465
9	.034	1.33E 4	48.512	-275	97.416	12.531	.51
10	.039	1690.329	8.178	5.34E-2	97.753	12.66	. 518
1.1	-045	331.779	2.269	1.71E-2	97.823	12.696	.521
2	.052	177.604	1.528	1.33E-2	97.858	12.72	. 523
2.3	.06	1420.249	16.293	-164	98.1 42	12.977	.55
14	.07	2827.174	43.252	. 503	98.705	13.661	.632 -
1.5	- 083	494.643	10.091	-136	98.803	13.82	. 654
10	.093	209.788	5.207	8.855-2	98.84 5	13.91	- 668
1.7	.107	502.293	18.222	.326	98.945	14.198	.721
18	.124	261.533	12.653	.262	98.998	14.398	.764
1.9	143	194.788	12.366		99.036	14.598	.813
20	-165	50.521	4,346	. 1.2	<u>99.046</u>	14.865	.832
21	.191	563.673	64.666	2.06	99.159	15.686	1.167
22	221	22.776	3.484	-128	99-160	15.741	1.188
23	.255	0	O.	0	99.163	15.741	1.188
24	-294	0	O	0	99.163	15.741	1.188
25	.34	16.625	6.VS	.343	99.167	15.837	1.243
26		388.865	188.126	12.504	99 . 244	18,808	3,244
2:7	L 4 5.3	642.319	414.51	31.306	99.372	25.354	8.333
28	. 923	727.348	625.732	54.575	99.517	35_236	17.205
22	. 604	414.564	475.599	47.9	99 . 6	42.747	24.992
30	- 328	926.32	1417.133	164.82	99.784	65.127	51.787
31	.806	1082.374	2208.14	296.569	100	100	100
32	. 931	Ő.	O.	0	0	0	Q
"(' <i>1</i> ")"(*	L C -	C	6332.021	615.123)			
- TOTA - ******		SLOIE S) D him ON LY		(010-140)		· · · · ·	. •
<u> ሐ</u> ም ሀ	ev la norte das desertas	Z RAHAMANDINA	L 45-48				`.

- 378

1.392

ilon

.415

TSI DIFFERENTIAL ROBILITY FARTICLE SIZER FULSED CONBUSTION BLANK 7/15/92

CONCENTRATION

SAMPLE # 1 AEROSOL FLOW RATE: .3 LPM MEAS. MODE: EVERY CHNL MAXIMUM DIA. MEASURED: .886 UM START: 14:29:53 DATE: 07-15-1992 MINIMUM DIA. MEASURED: .017 UM END: 14:47:24

.

FERCENTAGE

ΰ.LA	DIAMETER						
CH#	FEDFOINT		SURFACE	VOLUME	NUMBER	SURFACE	VOLUME
	(UM)	(#ZCC)	(UMA2/00)	(UM^3/CC)	CUMULA	ATIVE PERCI	ENTAGE.
.1 .	. O 1.	0	0	0	0	0	Ö
2	.012	Ο.	0	Õ	0	0	0
3	.014	0	0	0	0	0	O
44	017	0	0	0	0,	0	<u></u>
1.3 N	.019	6.34E 4	22.841	. 232	27.093 -	- 28	7 . 18E-3
ć.	.022	6.80E 4	104.158	.383	56.145	68	1.90E-2
2	.025	5.18E 4	105.833	_449	78.281	1.087	3.298-2
8	029	2.33E 4	63.587	-312	88.254	1.331	4.26E-2
9	.034	5258.24	19.076	.103	90.498	1.404	.4.59E-2
1. O	.039	761.265	3.683	2.40E-2	90.823	1.419	4.67E-2
1.1	.045	369.244	2.382	1.79E-2	90.98	1.428	4.72E-2
<u></u>	.052	809.915	6.968	6.07E-2	91.326	1.454	4.916-2
	-06	o3.194	.725	7.30E-3	91.353	1.457	4.93E-2
14	102	371.67	5-686	6.61E-2	91.511	1.479	5.14E-2
1.5	.081	3394.973	69.26i	.93	92.96	1.745	8.02E-2
1.6	-093	503.056	13.686	.212	93.175	1.798	8.67E-2
1.2	.102	489.206	17.748	-318	93.383	1.866	9.668-2
1.8	-124	831.688	40.236	.832	93.738	2:4021	.122
1.9	.143	215.97	13.933	a state	93,831	2.074	.133
$\sim O$.165	64.653	4.702	4 I. U	93.854	2.092	.137
21	-191	41.333	4.742	.151	93-871	2.11	-141
6. A.	. 221	1.897	.26	9.54E-3	93.872	2.111	1.42
23	1285	0	0	0	93.872	2.111	- 142
\gtrsim 4	.294	0	0	0	93.872	2.111	. 142
25	.34	0	0	0	93.872	2.111	.142
28	392	0	0	0	93.872	2.111	. 142
2.2	.453	Ó	Q	O.	93.872	2.111	.142
28	- 523	0	0	Ó	93.872	2.111	.142
	604	1090.086	1250.575	125.953	94.337	8.916	4.04
~~O	698	5580.21	8537.664	992.974	96.719	39.221	34.228
	-80a	7689,941	1.56E 4	2107.031	100	100	100
.323	. 931	0	0	Q	۰. ۱	Ó	O ,
TOTA		2.34E 5)	2.508 4	(\$230.934)			
2%F ()	ณ คมเกรมณะไ	D-DATA UNC	人来来			- 	
660.	MEAN:	2 - 94F2	2 21 1	.76			

 GEO. MEAN:
 R.94E-2
 .711
 .76

 SPREAD FACTOR:
 2.385
 1.566
 1.134

E-3

YSI DIFFERENTIAL MOBILITY PARTICLE SIZER NONPULSE 4/22/92 CCL48MCE

.

•

.

. .

SAMPLE # 1 AEROSOL FLOW RATE: .3 LPM MEAS. MODE: EVERY CHNL MAXIMUM DIA. MEASURED: .886 UM START: 09:22:39

DATE: 07-22-1992 MINIMUM DIA, MEASURED: _017.UM END: 09:47:58 >

	No. 11. A statement comment.	CONCENTRATION			PERCENTAGE		
DIA CHĦ	DIAMETER HIDPOINT (UM)	NUMBER	SURFACE (UM^2ZCC)	VOLUME (HMC3ZCC)		SURFACE ATIVE PERCE	VOLUME
1.	.01		0	0	0	0	0
	.012	い 0	ŏ	Ö	ŏ	ŏ	ŏ
3	.014	ŏ	ŏ	0	0 . ·		ŏ
44 44	.017	õ	ŏ	ŏ	0	Ű.	Ğ
G	.019	.39		1.428-6			1.00E~a
ć.	.022	7.886-2		4.438-7	1.77E-4	1.736-5	1.318-6
2	.025	.13		1.128-6	2.268-4	2.83E-5	2.11E-6
8	.029	0	0	0	2.26E-4	2.835-5	2.116-6
9	.034	Ŏ	ŏ	ŏ	2.266-4		2.11E-6
1.0	.039	3.1.SE 4	151.629	.992	11_875	5.155	_7
11	.045	1.2582 5	810.523	6.122	59.474	32.708	5.02
à.	.052	8.46E 4	728.453	6.353	91,554	57.471	9 . 504
13	.06	1.306 4	149.602	1.507	96.494	62.557	10.568
14	.07	\$563.923	85.12	.99	98.402	65.45	11.266
15	.081	2111.31	43.073	. 578	99.402	66.915	11.675
16	(1923) 1	50a 05	13.713	.213	99.593	67.381	11.825
1.7	.107	216.156	7.842	.1.4	99.675	67.647	11.924
18	.124	164.515	7.959	165	99.737		12.04
3.9	- 3. 4413	145.482	9.386	- 224	99.792	68.237	12.198
20	.165	81.273	6.992	.193	99.823	68.475	12.334
22.3.	. 1.90.	7.393		2.888-2	99 - 826	68.505	1.212.0355
	. 221	3.26	.499	1.838-2	99.827	68.522	12.368
23	200	0	0	0	99.827	681522	121368
24	.294	0	0	()	99.827	68.522	12.369
23	34	0	\mathbf{O}	(\cdot)	99.827	68.522	121368
26	1392	0	O	0	99.827	68.522	12.338
27	-453	0	O	0	99.827	68,522	12,568
233	. 523	0	Q	0 ¹	??.8 27	48.522	12.338
29	. 604	0,092	22 . 44	. 242	99.828	68.604	12.338
30 	-698	41255	6.509		99 . 83	68.825	131073
.31	.906	449.517	917.054	123.187	00 t	100	1.00
32	.931	$\langle \rangle$	0	0	$Q_{ij} = \frac{1}{2}$	Ô.	0
)())合しらま 本来FCR 「四日合合しい日本)			のしょ15名1。 (本本)	141.589			1
		41848-2	.121				
			3.643	2.45			

IST DIFFERENCIAL HORLITY PARTICLE SIZER "H" 7716792 PULSING

somple # 1

AEROSOL FLOW RATE: .S LPM MEAS. MODE: EVENC CHAL MAXIMUM DIA. MEASURED: .886 UM START: 09:08:00 DATE: 07-16-1992 MINIMUM DIA. MEASURED: .017 HM END: 59:56:36 🥍

15 J. A.	and the second second second second	CONCENTRATION			PERCENCAGE		
616 01時	DIAMETER MIDPOINT (UM)	NUMBER (#ZCC)	SURFACE (UM125100)	VOLUME (UMABZCC)	HUMBER	SURFACE	VOLUME ENTAGET
	.01	0	Ú Ú	0	Ö	0	0
.4. 	.012	0	ŏ	ŏ	Ŏ	54 ()	Ó.
• • •	.014	()	0	ě	0x	Ö	ŏ
i	.017	Ö	õ	, ()	o Sirik	Č į	ŏ
	1019	1.638 5	187.986	. 599	1.3.1.2.	.869	2-32E-2
Č.	- 02.2	1.60E 5	245.01	.≓O±	25.943	<i>.</i> .001	7.19E-2
2	.025	1.808 5	368.698	1.366	40.413	3.206	. 147
·.•	.029	1.V1E S	520.063	2.554	55.232	6.112	.27
2	.034	1.07E 5	608.762	3,448	69,173	8.926	.435
1 O	-039	1.416 5	685.930	4,488	80.325	12.097	.65
n (1	.045	1.018 5	657.634	4,967	88.687	15.136	-888
2	.052	6.008 3	516-343	4.503	93.493	17.523	1.104
1	. 06	3.18E 4	365.348	3.68	96.043	19.212	1.281
14	02	2 - 1 26 - 4	325.048	3.78	97.744	20.714	1.462
1.5	.081	1.098.4	223.044	2.996	98.619	21.745	1.606
1.05	_ 093	3926.863	106.831	1.652	28.934	2212229	1.685
: Z	. 102	1023.818	58.91	1.055	99.064	22.511	1.736
	a di 1874	748.234	36.201		99.123	22.679	1.1772
t 'v	. 1.4 S	492.803	32.113	.267	99.164	22.827	1.809
20	.165	.65-044		. 622	99.185	82.932	1.839
# 1 .	- 1.9 L	25.981	2.981	Չ₊4Չ <u>⊜</u> <u>?</u> :	99.187	22.946	1844
22	. 221	0	0	Ú	99.187	22.946	1_944
		0	0	Ó	99 .18 2	22.946	1.844
. !	1 (1994) 1	0	О.	Ű.	29.187	22.946	1.844
	<u>, 134</u>	0	Q	Ô	99.187	22.946	1.844
ē. 6	1325	0	0	0	99.197	22.946	1.844
	.453	Q.	\mathcal{O}	0 I	99.18 2	MZ.946	1.844
 		397.19	391.200	<u>29.802</u>	99.219	24.526	مېرىيە بېرى ئىر خىنچى بەركىي
	6 04	1719.268	1972.39	198.651	29 . 358	33.842	12,202
0.0	. 698	4007.126	988° (314)	Z12.225	29.677	611979	47.004
. I	-800	40.32.062	8225.778	1104.28	100	100	100
e Mala	- 9434.	0	()	()	0	0	-Q
			0084.639		-		
) DATA ONLA		. 205			-
		5.1.78+2	- 588 T - 1979 - 1				
-181	AU FACIUR:	: 1.568	3.395	1			~

ISI DIFFERENTIAL MOBILITY PARTICLE SIZER 7729792 MON-FULSE COL4 LOW SR SAMMLE # 1 AEROSOL FLOW RATE: .3 LPM MEAS. MODE: EVERY CHNL

• •

5

! مرجع

MAXIMUM DIA. MEASURED: .986 UM START: 09:12:08 DATE: 07-29-1992 MINIMUM DIA. MEASURED: .017 UM END: 09:34:03

• -

		CONCENTRATION			PERCENTAGE		
DIA	OJAMETER SIDPOINT	······································	01005ACE	(17) (190**			
CH#	CUM)	(HUMBER (H/CC)	SURFACE (UMA2/CC)	VOLUME (UMABZCC)	NUMBER	SURFACĘ ATIVE PERCE	VOĽUME
1,	.01	0	0	0	Ö CUMUL	0 0	<u>зюнте</u> т. О
يال ب بنگ	.012	0	ŏ	ŏ	0	0 ·	0
3 23	.014	0	ŏ	0	0	0	0
् य	.017 .017	0	0	0	0	ŏ	0
	.01%	2.878 5	329.595	1.05	11.621	·2.219	-675
	.012 .022	2.27E 5	348.402	1.291	20.833	4.564	1.499
- 6 - 7	- 025	1.93E 5	394.727	1.876	28.66	7.221	2.578
é	- 029	2.32E 5	632.355	3.101	38.062	11.477	4.573
o o	.034	2.83E 5	1027_757	5.821	49.522	18.395	4.373 8.317
	-039 -039	2.88E 5	1396.949	9.136	47.342	27.798	
10 :1	-037 -045	2.93E 5	1892.027	14.29	73.064	40.533	14.193 23.385
12		21938 0 2159E 5	2229.128	19.442	83.546	55,538	201080 35189
1.3	1002 106	2105E 5	2354.087	23.709	91.946	71_384	51.14
14	.00 .02	1.018 5	1546.053	17.981	951934	91.791	52.706
1.64 1.15	-07 -081	6108E 4	1242.286	16.685	98.397	90.153	73.438
1.0 1.0	.083	2.60E 4	708.271	10.985	99.45	94.92	80.504
10 12	.107	2480E 4 9051.16	328.363	5.881	99.816	97.131	84.282
1.2 1.8	- 1.07 - 1.233	2833.064	137.088	2.835	77.810 99.931	98.053	86.11
10 19	-140	241.203	60.72	1.45	99.969	98.462	87.043
20 20	a da desar Angelaria Angelaria	357.842	30.725	. 849	77-787 79.983	78.462 98.669	871389
20 21	.191	166.753	19.13	- 509	77.780 99.99	99.798	97.981
22	- 1 7 1. . 221	115.415	17.657	.649	99.995	98.917	88.399
23 23	•∠24 ₂265	1.544	.315	1.336-2	99 . 995	98.919	88.407
24	-294	j	0	0 0	99 1 995	98.919	88.407
23	- 34	ò	ŏ	0	99.995	98.919	88.462
12.5 12.5	= 50179 - 70000 - 5000	ŏ	0	0	99.995	98.919	88.400
102 102	- 455 - 455	18,257	12.101	.914	99 . 996	99.001	881995
28	- 523	19.194	16.513	1.44	99,996	99.112	891922
209 209	, ७० <i>५</i>	34.153	39.181	31948	99 . 998	99_37S	22146
30	. 698	261858	41.089	4_779	99,999	99 . 852	95.534
30 341	-806 ·	2842	51.7	6.944	100	100	100
sa Parla Ngang Ngang	-931	ಸು ಬೆಂಕ ಸುಗ್ರೀಮ ()	0	0	0	0	e e
	લ કડતના (×.	¥	N 2		
10(ALS:		3147E 6	1.48E 4	155.468			
	E PULABURL) PIEGN:	• DATA ONLY 31648-2	** 5.318-2	8.04E-2			
	AD FACION:		1.622	8.04m-2 2.369			

E-6

TSI DIFFERENTIAL MOBILITY PARTICLE SIZER 7/29/92 PULSING CCL4 LOW ER

1944 - Art

1 .

SAMFLE # 1 AEROSOL FLOW RATE: .3 LPM MEAS. MODE: EVERY CHNL MAXIMUM DIA. MEASURED: .886 UM START: 08:45:56 DATE: 07-29-1992 .MINIMUM DIA. MEASURED: .017 UM END: 09:07:59 FILE NAME : P7-29-92 RECORD: # 1

CONCENTRATION

۰.

---1

PERCENTAGE

DIA	DIAMETER							
CH#	MIDFOINT	NUMBER	SURFACE	VOLUME	NUMBER	SURFACE	VOLUME	
. 61.14		(#/CC)		(UM~3/CC)		ATIVE PERCE		
1	-01	0	0		0	0	0	
ź	.012	ŏ	õ	ŏ	ŏ	. ŏ	ŏ	
ŝ	.014	õ	õ	õ	õ	ŏ	ŏ '	
4	.017	ŏ	ŏ	ŏ	õ	ŏ	õ	
5	.019	9.19E 4	105.491	.334	3.636	. 573	.166	
6	.022	2.28E 5	349.033	1.284	12.657	2.469	.803	
7	.025	2.02E 5	412.022	1.75	20.642	4.707	1.67	
8	.029	2.07E 5	564.63	2.769	28.849	7.774	3.042	
5	.034	3.02E 5	1097.927	6.218	40.814	13.730	6.122	
10	.039	3.17E 5	1536.716	10.051	53.374	22.086	11.102	
11	.045	3.13E 5	2024.131	15.288	65.78	33.081	18.676	
12	.032	2.838 5	2439.694	21.278	76.993	46.334	29.219	
13	-06	2.35E 5	2705.727	27.251	86.318	61.032	42.721	
14	.07	1.82E 5	2764.822	32.389	93.516	76.16	38.769	
15	.081	7.90E 4	2020.011	27.13	97.431	87.133	72.211	
16	-093	3.96E 4	1078.069	16.72	78.798	92.989	80,495	
17	-107	1.53E 4	596.688	9.97	99.604	96.013	85.435	
18	.124	6295.882	304.583	6.299	99-853	97.668	88.556	
19	.143	2088.986	134.768	3.219	99,936	78 4	90.151	
20	.165	728.651	62.686	1.729	77.965	78.74	91.008	
21	.191	379.21	43.504	1.386	97.78	78.977	91.694	
22	.221	305.415	46.724	1.718	79.992	99.23	92.546	
23	.255	110.516	22.546	.958	99.996	99.353	93.02	
24	.294	27.571	7.501	.368	99.997	99.394	93.202	
25	.34	0	O .	0	99.9 97	99.394	93.202	
26	.392	ō	Ō	0	99. 997	99.394	93.202	
27	.453	0	0	0	99.997	77.3 74	93.202	
28	.523	.354	-304	2.65E-Z	9 9.997	99.395	93,216	
29	.604	18.418	21.129	2.128	99.9 98	99.51	94.27	
30	.698	19.896	30,438	3.54	99.999	99.675	96.024	
31	.806	29 200	59-751	8.025	100	100	100	
32	.931	0	0	o	0	0	0	
TOTA	LS:	2.52E 6	1.84E 4	201.63				
		DATA OHLY						
	MEAN:	4.04E-2	5.76E-2	7.90E-Z				
	AD FACTOR		1.571	2.967				