EPA/600/7-90/021b November 1990

RETROFIT COSTS FOR SO2 AND NOX CONTROL OPTIONS

AT 200 COAL-FIRED PLANTS

VOLUME II - SITE SPECIFIC STUDIES FOR Alabama, Delaware, Florida, Georgia, Illinois

by T. Emmel and M. Maibodi Radian Corporation Post Office Box 13000 Research Triangle Park, NC 27709

EPA Contract No. 68-02-4286 Work Assignment 116

Project Officer

Norman Kaplan U. S. Environmental Protection Agency Air and Energy Engineering Research Laboratory Research Triangle Park, North Carolina 27711

AIR AND ENERGY ENGINEERING RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY RESEARCH TRIANGLE PARK, NC 27711

· · · · · · · · · · · · · · · · · · ·			
TECHNICAL F (Please read Instructions on t	REPORT DATA		
1. REPORT NO.		33330	
EPA/600/7-90/021b			
4. TITLE AND SUBTITLE Retrofit Costs for SQ, and NO, Control On	tions at November 1		
Retrofit Costs for SO_2 and NO_x Control Op		IGANIZATION CODE	
200 Coal-fired Plants; Volume II - Site S Studies for AL, DE, FL, GA, IL	pecific		
7. AUTHOR(S)	8. PERFORMING OF	GANIZATION REPORT NO	
Thomas E. Emmel and Mehdi Maibodi			
9. PERFORMING ORGANIZATION NAME AND ADDRESS Radian Corporation	10. PROGRAM ELEN	MENT NO.	
P. O. Box 13000	11. CONTRACT/GR		
Research Triangle Park, North Carolina			
Kesearen irrangie Fark, North Caronna ,	00 02-4200,	LASK IIU	
12. SPONSORING AGENCY NAME AND ADDRESS		T AND PERIOD COVERED	
EPA, Office of Research and Development			
Air and Energy Engineering Research La	-	· · · · · · · · · · · · · · · · · · ·	
Research Triangle Park, North Carolina	27711 EPA/600/13		
15 SUPPLEMENTARY NOTES A FUDI project officer i	a Norman Kanlan Mail D	$non 62 0107541_{-}$	
2556. This is one of five volumes and three	e diskettes comprising thi	s report.	
		I I I KANG I LAN	
16 ABSTRACT The report gives results of a stud	ly, the objective of which	was to signifi-	
cantly improve engineering cost estimates			
nomic effects of applying SO2 and NOx controls at 200 large SO2-emitting coal-fired			
utility plants. To accomplish the objective,	=		
account for site-specific retrofit factors.			
from aerial photographs, generally availab	-	,	
panies. Cost estimates are presented for s			
flue gas desulfurization, lime spray drying	0		
duct sorbent injection, low NOx combustion		- 1	
lytic reduction. Although the cost estimate	_		
mation on retrofitting acid gas controls, th			
period and do not reflect future changes in			
capacity factors and fuel proces) or signifi			
formance.			
		· · · ·	
I7. KEY WORDS AND DO	CUMENT ANALYSIS		
a. DESCRIPTORS		c. COSATI Field/Group	
Pollution Electric Power Plants		13B 10B	
Silfur Dioxide	Stationary Sources	07B	
Nitrogen Oxides	Retrofits		
Cost Estimates	TICEL OTTOD	05A.14A	

 Combustion
 19. SECURITY CLASS (This Report)

 18. DISTRIBUTION STATEMENT
 19. SECURITY CLASS (This Report)

 Release to Public
 Unclassified

 20. SECURITY CLASS (This page)
 Unclassified

EPA Form 2220-1 (9-73)

Coal

i

21D

21B

22. PRICE

21. NO. OF PAGES 446

ABSTRACT

This report documents the results of a study conducted under the National Acid Precipitation Assessment Program by the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory. The objective of this research program was to significantly improve engineering cost estimates currently being used to evaluate the economic effects of applying sulfur dioxide and nitrogen oxides controls at 200 large sulfur dioxide emitting coal-fired utility plants. To accomplish the objective, procedures were developed and used that account for site-specific retrofit factors. The site-specific information was obtained from aerial photographs, generally available data bases, and input from utility companies. Cost estimates are presented for the following control technologies: lime/limestone flue gas desulfurization, lime spray drying, coal switching and cleaning, furnace and duct sorbent injection, low NO_{y} combustion or natural gas reburn, and selective catalytic reduction. Although the cost estimates provide useful site-specific cost information on retrofitting acid gas controls, the costs are estimated for a specific time period and do not reflect future changes in boiler and coal characteristics (e.g., capacity factors and fuel prices) or significant changes in control technology cost and performance.

NOTICE

This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

TABLE OF CONTENTS

VOLUME I - INTRODUCTION AND METHODOLOGY

VOLUME II - SITE SPECIFIC STUDIES FOR Alabama, Delaware, Florida, Georgia, Illinois

'.			
<u>SECTIO</u>	<u>N</u>	PAGE	-
ABSTRA		· · · · · · · · · · · · · · · · · · ·	
LIST O	F FIGUR	ESv	-
LIST O	F TABLE	Svi	
ABBREV	IATIONS	AND SYMBOLS	
ACKNOW	LEDGEMEI	NT	
METRIC	EQUIVA	LENTS	
3.0	ALABAM	Α	
	3.1	Alabama Power Company 3-1 3.1.1 Barry Steam Plant 3-1 3.1.2 Gadsden Steam Plant 3-14 3.1.3 Gaston Steam Plant 3-22 3.1.4 Gorgas Steam Plant 3-33 3.1.5 Greene County Steam Plant 3-41 3.1.6 Miller Steam Plant 3-50	
	3.2	Tennessee Valley Authority	
4.0	DELAWAR	RE	
· ·	4.1	Delmarva Power and Light Company	
5.0	FLORID	Α	
	5.1	Florida Power Corporation5-15.1.1Crystal River Steam Plant5.1.1	
	5.2	Gulf Power Company5-165.2.1Crist Electric Generating Plant5-165.2.2Lansing Smith Steam Plant5-26	
·	5.3	Seminole Electric Cooperative	

TADLE	^	CONTENTS	(Continued)
	- 13 E -	LUNTENTS	cioni imieu.
INDLL	U I	VOULTENIO	(00

<u>SECTION</u>	<u>v</u> .	,		· .		19 1					PAGE
	5.4	5.4.1	ectric Company Big Bend Steam F. J. Gannon St	Plant .	••• t••	 		• •	• •	• •	. 5-36
6.0	GEORGI	4		· • • • •	• •		••	• •	•••		6-1
	6.1	Georgia 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	Power Company . P. S. Arkwright Bowen Steam Pla Branch Steam Pl Hammond Steam F Jack McDonough Mitchell Steam Robert W. Scher	: Steam Pl ant Plant Steam Pla Plant .	lant 	· · ·		· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	6-1 6-12 6-21 6-32 6-41 6-52
		6.1.8 6.1.9	Wansley Steam F Yates Steam Pla	Plant	÷.					• •	. 6-66
7.0	ILLINO	IS	•••••	· · · · ·	°•.•		• •	, • • •	••	• •	. 7-1
, ,	7.1	Central 7.1.1	Illinois Light E. D. Edwards S	Company Steam Plar	 nt.		•••	••	•••	•••	. 7-1 . 7-1
	7.2	7.2.1 7.2.2 7.2.3	Illinois Public Coffeen Steam F Grand Tower Ste Hutsonville Ste Meredosia Steam Newton Steam Pl	Plant Bam Plant Bam Plant	•••	· · ·	· · ·	•••	•••	••	. 7-6 . 7-20 . 7-31
		Commonwe 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	ealth Edison Con Joliet 29 Stean Kincaid Steam F Powerton Steam Waukegan Steam Will County Ste	n Plant . Plant Plant . Plant .	••• •••	· · ·	· • •	•••	•••	•••	. 7-68 . 7-72 . 7-82 . 7-91
•	7.4		: Energy Incorpo Joppa Steam Pla					•••	•••	••	7-105 7-105
	7.5	7.5.1 7.5.2 7.5.3	Power Company Baldwin Steam F Hennepin Steam Vermilion Steam Wood River Stea	Plant Plant . n Plant .	• •				· · · · · · · · · · · · · · · · · · ·	· · ·	7-122 7-122 7-136 7-149 7-164
	7.6		Illinois Power Marion Steam Pl			••••	•••	•••	•••	• • • •	7-169 7-169
,	7.7		eld City of Wat Dallman Steam P					•' •	•••	• •	7-183 7-183

iv

TABLE OF CONTENTS (Continued)

VOLUME III - SITE SPECIFIC STUDIES FOR Indiana, Kentucky, Massachusetts, Maryland, Michigan, Minnesota

VOLUME IV - SITE SPECIFIC STUDIES FOR Missouri, Mississippi, North Carolina, New Hampshire, New Jersey, New York, Ohio

VOLUME V - SITE SPECIFIC STUDIES FOR Pennsylvania, South Carolina, Tennessee, Virginia, Wisconsin, West Virginia

LIST OF FIGURES

FIGURE

<u>PAGE</u>

VOLUME II - SITE SPECIFIC STUDIES FOR Alabama, Delaware, Florida, Georgia, Illinois

3.2.2-1	Widows Creek Plant Plot Plan	
7.2.1-1	Coffeen Plant Plot Plan	
7.2.2-1	Grand Tower Plant Plot Plan	
7.2.5-1	Newton Plant Plot Plan	
7.3.2-1	Kincaid Plant Plot Plan	
7.4.1-4	Joppa Plant Plot Plan	•
7.5.1-1	Baldwin Plant Plot Plan	
7.5.3-1	Vermilion Plant Plot Plan	
7.6.1-1	Marion Plant Plot Plan	
7.7.1-1	Dallman Plant Plot Plan	

v

LIST OF TABLES

· ·

<u>TABLE</u>

VOLUME II - SITE SPECIFIC METHODOLOGY FOR Alabama, Delaware, Florida, Georgia, Illinois

3.1.1-1 3.1.1-2 3.1.1-3 3.1.1-4 3.1.1-5	Barry Steam Plant Operational Data Summary of Retrofit Factor Data for Barry Units 1, 2, or 3 Summary of Retrofit Factor Data for Barry Unit 4 Summary of Retrofit Factor Data for Barry Unit 5 Summary of NO ₂ Retrofit Results for Barry	3-5 3-6 3-8
3.1.1-6	NO _x Control Côst Results for the Barry Plant (June 1988 Dollars)	3-9
3.1.1-7 3.1.1-8	Technologies for Barry Unit 4	3-11
3.1.1-9	Technologies for Barry Unit 5	3-12
	(June 1988 Dollars)	3-13
3.1.2-1 3.1.2-2 3.1.2-3	Gadsden Steam Plant Operational Data Summary of Retrofit Factor Data for Gadsden Units 1 or 2 . Summary of FGD Control Costs for the Gadsden Plant	3-14 3-15
	(June 1988 Dollars)	3-16
3.1.2-4 3.1.2-5 3.1.2-6	Gadsden Plant (June 1988 Dollars)	3-17 3-18
3.1.2-7	(June 1988 Dollars) Duct Spray Drying and Furnace Sorbent Injection Technologies for Gadsden Units 1 or 2	. 3-19
3.1.2-8	Summary of DSD/FSI Control Costs for the Gadsden Plant (June 1988 Dollars)	
3.1.3-1 3.1.3-2	Gaston Steam Plant Operational Data	
3.1.3-3 3.1.3-4	Units 1, 2, 3, or 4	3-20
3.1.3-5	(June 1988 Dollars) Summary of Coal Switching/Cleaning Costs for the Gaston Plant (June 1988 Dollars)	3-28
3.1.3-6 3.1.3-7	NO _x Control Costs Results for the Gaston Plant (June 1988 Dollars)	3-31
3.1.4-1 3.1.4.2	Gorgas Steam Plant Operational Data	3-33
3.1.4-3	Units 8, 9, and 10	
3.1.4-4	Summary of FGD Control Costs for the Gorgas Plant (June 1988 Dollars)	. 3-36

<u>PAGE</u>

- 1

,

TABLES		<u>PAGE</u>
3.1.4-5 3.1.4-6 3.1.4-7 3.1.4-8	Summary of Coal Switching/Cleaning Costs for the Gorgas Plant (June 1988 Dollars)	3-37 3-38 3-39
5.1.7-0		
3.1.5-1 3.1.5-2	Greene County Steam Plant Operational Data	3-42
3.1.5-3	Summary of Retrofit Factor Data for Greene County Unit 1 or 2	3-44
3.1.5-4	Summary of Coal Switching/Cleaning Costs for the Greene County Plant (June 1988 Dollars)	3-46
3.1.5-5 3.1.5-6	Summary of Coal Switching/Cleaning Costs for the Greene County Plant (June 1988 Dollars)	3-47 3-48
3.1.6-1	Miller Steam Plant Operational Data	
3.1.6-2 3.1.6-3 3.1.6-4	Summary of Retrofit Factor Data for Miller Unit 1 or 2 Summary of NO _x Retrofit Results for Miller	3-51
3.2.2-1 3.2.2-2	Widows Creek Steam Plant Operational Data	
3.2.2-3	Summary of Retrofit Factor Data for Widows Creek Units 4-6 Summary of FGD Control Costs for the Widows Creek Plant	3-58
3.2.2-4	Summary of FGD Control Costs for the Widows Creek Plant (June 1988 Dollars)	3-61
3.2.2-5	(June 1988 Dollars)	3-63
3.2.2-6	Summary of NU, Retrofit Results for Widows Creek	3-64
3.2.2-7	Summary of NU, Retrofit Results for Widows Creek Units 7-8	
3.2.2-8	NO _x Control Cost Results for the Widows Creek Plant (June 1988 Dollars)	3-66
3.2.2-9 3.2.2-10	Duct Spray Drying and Furnace Sorbent Injection Technologies for Widows Creek Units 1-6	
4.1.1-1	Indian River Steam Plant Operational Data	
4.1.1-2	Summary of Retrofit Factor Data for Indian	
4.1.1-3	River Units 1-3	4-5

4.1.1-4	Summary of FGD Control Costs for the Indian River Plant (June 1988 Dollars)
	River Plant (June 1988 Dollars)
4.1.1-5	the Indian River Plant (June 1988 Dollars)
4.1.1-6	Summary of NO _x Retrofit Results for Indian River
4.1.1-7	NO, Control Cost Results for the Indian River Plant
···· /	Plant (June 1988 Dollars)
4.1.1-8	Duct Spray Drying and Furnace Sorbent Injection
	Technologies for Indian River Units 1-3
4.1.1-9	Duct Spray Drying and Furnace Sorbent Injection
	Technologies for Indian River Unit 4
4.1.1-10	Summary of DSD/FSI Control Costs for the Indian River
	Plant (June 1988 Dollars)
5.1.1-1	Crystal River Steam Plant Operational Data
5.1.1-2	Summary of Retrofit Factor Data for Crystal River Unit 1 5-5
5.1.1-3	Summary of Retrofit Factor Data for Crystal River Unit 2 5-6
5.1.1-4	Summary of Retrofit Factor Data for Crystal
5.1.1-4	River Units 4 or 5
5.1.1-5	Summary of NO _x Retrofit Results for Crystal River
5.1.1-6	NO, Control Côst Results for the Crystal River
c 1 1 7	^A Plant (June 1988 Dollars)
5.1.1-7	Duct Spray Drying and Furnace Sorbent Injection Technologies for Crystal River Unit 1
5.1.1-8	Duct Spray Drying and Furnace Sorbent Injection
5.1.1-0	Technologies for Crystal River Unit 2
5.1.1-9	Duct Spray Drying and Furnace Sorbent Injection
J.I.I J	Technologies for Crystal River Unit 4 or 5
5.1.1-10	Summary of DSD/FSI Control Costs for the Crystal
	River Plant (June 1988 Dollars)
5.2.1-1	Crist Power Company Operational Data
5.2.1-2	Summary of Retrofit Factor Data for Crist Unit 4 or 5 5-19
5.2.1-3	Summary of Retrofit Factor Data for Crist Unit 6 or 7 5-20
5.2.1-4	Summary of FGD Control Costs for the Crist Plant
	(June 1988 Dollars)
5.2.1-5	Summary of Coal Switching/Cleaning Costs for the
	Crist Plant (June 1988 Dollars)
5.2.1-6	Summary of NU, Retrofit Results for Crist
5.2.1-7	NO _x Control Cost Results for the Crist Plant (June 1988 Dollars)
	(June 1900 Dullars)
5.2.2-1	Lansing Smith Steam Plant Operational Data
5.2.2-2	Summary of Retrofit Factor Data for Lansing Smith
	Units 1 or 2
5.2.2-3	Summary of FGD Control Costs for the Lansing Smith
	Plant (June 1988 Dollars)

<u>TABLES</u>

5.2.2-4	Summary of Coal Switching/Cleaning Costs for the
5.2.2-5	Lansing Smith Plant (June 1988 Dollars)
5.2.2-6	Summary of NO, Retrofit Results for Lansing Smith 5-30 NO _X Control Cost Results for the Lansing Smith Plant (June 1988 Dollars)
	^(June 1988 Dollars)
5.3.1-1	Seminole Steam Plant Operational Data
5.3.1-2	Summary of NO, Retrofit Results for Seminole
5.3.1-3	NO _x Control Cost Results for the Seminole Plant (June 1988 Dollars)
5.4.1-1	Big Bend Steam Plant Operational Data
5.4.1-2	Summary of Retrofit Factor Data for Big Bend
5.4.1-3	Units 1, 2 and 3
5.4.1-3	Summary of FGD Control Costs for the Big Bend Plant (June 1988 Dollars)
5.4.1-4	Summary of Coal Switching/Cleaning Costs for the Big
5.4.1-5	Bend Plant (June 1988 Dollars)
5.4.1-6	NO _x Control Cost Results for the Big Bend Plant (June 1988 Dollars)
F 4 4 1	
5.4.2-1 5.4.2-2	F. J. Gannon Steam Plant Operational Data 5-45 Summary of Retrofit Factor Data for F. J. Gannon
••••	Units 1 or 2
5.4.2-3	Summary of Retrofit Factor Data for F.J. Gannon
5.4.2-4	Units 3 or 4
5.4.2-5	Summary of Retrofit Factor Data for F. J. Gannon Unit 6 5-50
5.4.2-6	Summary of FGD Control Costs for the Gannon Plant (June 1988 Dollars)
5.4.2-7	Summary of Coal Switching/floaning Costs for the
	Gannon Plant (June 1988 Dollars)
5.4.2-8 5.4.2-9	Summary of NO, Retrofit Results for F. J. Gannon, Units 1-3 . 5-54 Summary of NO, Retrofit Results for F. J. Gannon, Units 4-6 5-55
5.4.2-10	NO., Control Côst Results for the Gannon Plant
	(June 1988 Vollars)
5.4.2-11	Duct Spray Drying and Furnace Sorbent Injection Technologies for F. J. Gannon Units 1 or 2
5.4.2-12	Duct Spray Drying and Furnace Sorbent Injection
E & 2 12	Technologies for F. J. Gannon Units 3, 4, 5, or 6 5-58 Summary of DSD/FSI Control Costs for the Gannon
5.4.2-13	Plant (June 1988 Dollars)
6.1.1-1	P. S. Arkwright Steam Plant Operational Data
6.1.1-2	Summary of Retrofit Factor Data for P. S.
6.1.1-3	Arkwright Units 1-4
0.1.1-3	Plant (June 1988 Dollars)

6.1.1-4	Summary of Coal Switching/Cleaning Costs for the
0.1.1-4	Arkwright Plant (June 1988 Dollars) \ldots \ldots $6-6$
6.1.1-5	Arkwright Plant (June 1988 Dollars)
6.1.1-6	NO Control Cost Desults for the Arkwright
•••••	$P[ant (June 1988 Dollars) \dots \dots$
6.1.1-7	Duct Spray Drying and Furnace Sorbent Injection
	Technologies for P. S. Arkwright Units 1-4 6-10
6.1.1-8	Summary of DSD/EST Control Costs for the
	Arkwright Plant (June 1988 Dollars) 6-11
6.1.2-1	Bowen Steam Plant Operational Data
6.1.2-2	Summary of Retrofit Factor Data for Bowen Unit 1 or 2 6-13
6.1.2-3	Summary of Retrofit Factor Data for Bowen Unit 3 or 4 6-14
6.1.2-4	Summary of FGD Control Costs for the Bowen
	Plant (June 1988 Dollars)
6.1.2-5	Summary of Coal Switching/Cleaning Costs for the
	Bowen Plant (June 1988 Dollars)
6.1.2-6	Bowen Plant (June 1988 Dollars)
<pre></pre>	
6.1.2-7	NO _x Control Cost Results for the Bowen Plant (June 1988 Dollars)
C 1 2 2	(JUNE 1988 Dollars)
6.1.2-8	Duct Spray Drying and Furnace Sorbent Injection Technologies for Bowen Unit 1 or 2
C 1 D D	reconclogies for bowen unit 1 or 2
6.1.2-9	Summary of DSD/FSI Control Costs for the Bowen
<pre>c 1 2 1</pre>	Plant (June 1988 Dollars)
6.1.3-1	Branch Steam Plant Operational Data
6.1.3-2	Summary of Retrofit Factor Data for Branch Units 1 and 2 6-22 Summary of Retrofit Factor Data for Branch Units 3 and 4 6-23
6.1.3-3	Summary of FGD Control Costs for the Branch Plant
6.1.3-4	(June 1988 Dollars)
6.1.3-5	Summary of Coal Switching/Cleaning Costs for
0.1.3-5	the Branch Plant (June 1988 Dollars)
6.1.3-6	Summary of NO Retrofit Results for Branch Units 1-2
6.1.3-7	Summary of NO, Retrofit Results for Branch Units 1-2 6-26 Summary of NO, Retrofit Results for Branch Units 3-4 6-27
6.1.3-8	NO _v Control Cost Results for the Branch Plant
0.1.5-0	(June 1988 Dollars)
6.1.3-9	Duct Spray Drying and Furnace Sorbent Injection
0.1.5-5	Technologies for Branch Units 1 and 2 6-29
6.1.3-10	Duct Spray Drying and Furnace Sorbent Injection
0.1.5-10	Technologies for Branch Units 3 and 4 6-30
6.1.3-11	Summary of DSD/FSI Control Costs for the
11	Branch Plant (June 1988 Dollars)
6.1.4-1	Hammond Steam Plant Operational Data
6.1.4-2	Summary of Retrofit Factor Data for Hammond Units 1-3 6-34
6.1.4-3	Summary of Retrofit Factor Data for Hammond Unit 4 6-35
6.1.4-4	Summary of FGD Control Costs for the Hammond Plant
	(June 1988 Dollars)

<u>PAGE</u>

6.1.4-5	Summary of Coal Switching/Cleaning Costs for the
6.1.4-6 6.1.4-7	Hammond Plant (June 1988 Dollars) Summary of NO, Retrofit Results for Hammond NO, Control Côst Results for the Hammond Plant
	^x (June 1988 Dollars)
6.1.5-1 6.1.5-2	Jack McDonough Steam Plant Operational Data 6-42 Summary of Retrofit Factor Data for Jack McDonough Unit 1 or 2
6.1.5-3	Summary of FGD Control Costs for the Jack McDonough
6.1.5-4	Plant (June 1988 Dollars)
6.1.5-5 6.1.5-6	Jack McDonough Plant (June 1988 Dollars) 6-46 Summary of NO, Retrofit Results for Jack McDonough 6-47 NO, Control Cost Results for the Jack McDonough Plant
6.1.5-7	(June 1988 Dollars)
6.1.5-8	Summary of DSD/FSI Control Costs for the Jack McDonough Plant (June 1988 Dollars)
6.1.6-1 6.1.6-2 6.1.6-3	Mitchell Steam Plant Operational Data
6.1.6-4	Plant (June 1988 Dollars)
6.1.6-5	Mitchell Plant (June 1988 Dollars)
6.1.6-6	NO Control Côst Results for the Mitchell Plant (June 1988 Dollars)
6.1.6-7	Duct Spray Drying and Furnace Sorbent Injection Technologies for Mitchell Unit 1 or 2
6.1.6-8	Summary of DSD/FSI Control costs for the Mitchell Plant (June 1988 Dollars)
6.1.7-1 6.1.7-2 6.1.7-3 6.1.7-4	Summary of Retrofit Factor Data for Scherer Unit 1 or 2 6-63 Summary of NO. Retrofit Results for Scherer 6-64
0.1.7 4	NO _x Control Cost Results for the Scherer Plant (June 1988 Dollars)
6.1.8-1 6.1.8-2 6.1.8-3	Wansley Steam Plant Operational Data
6.1.8-4	Plant (June 1988 Dollars)
6.1.8-5	Wansley Plant (June 1988 Dollars)

6.1.8-6	NO Control Cost Results for the Wansley Plant (June 1988 Dollars)
6.1.9-1 6.1.9-2	Yates Steam Plant Operational Data
6.1.9-3	Summary of Retrofit Factor Data for Yates Units 1-5 (Each)
6.1.9-4	Summary of FGD Control Costs for the Yates Plant (June 1988 Dollars) Summary of Coal Switching/Cleaning Costs for the Yates
6.1.9-5 6.1.9-6	Plant (June 1988 Dollars)
6.1.9-7 6.1.9-8	NO Control Cost Results for the Yates Plant (June 1988 Dollars)
	Technologies for Yates Unit 6-7 (Each) 6-86
6.1.9-9	Summary of DSD/FSI Control Costs for the Yates Plant (June 1988 Dollars)
7.1.1-1 7.1.1-2 7.1.1-3 7.1.1-4 7.1.1-5	E. D. Edwards Steam Plant Operational Data
7.2.1-1	X (June 1988 Dollars) 7-5 Coffeen Steam Plant Operational Data 7-8
7.2.1-2 7.2.1-3	Summary of Retrofit Factor Data for Coffeen Units 1-2 7-10 Summary of FGD Control Costs for the Coffeen Plant (June 1988 Dollars)
7.2.1-4 7.2.1-5	Summary of Coal Switching/Cleaning Costs for the Coffeen Plant (June 1988 Dollars)
7.2.1-6	NO Control Cost Results for the Loffeen Plant (June 1988 Dollars)
7.2.1-7	Duct Spray Drying and Furnace Sorbent Injection Technologies for Coffeen Unit 1
7.2.1-8	Duct Spray Drying and Furnace Sorbent Injection Technologies for Coffeen Unit 2
7.2.1-9	Summary of DSD/FSI Control costs for the Coffeen Plant (June 1988 Dollars)
7.2.2-1 7.2.2-2	Grand Tower Steam Plant Operational Data
7.2.2-3	Summary of FGD Control Costs for the Grand Tower Plant (June 1988 Dollars)

7.2.2-4	Summary of the Coal Switching/Cleaning Costs for
	the Grand Tower Plant (June 1988 Dollars)
7.2.2-5	Summary of NO, Retrofit Results for Grand Tower
7.2.2-6	NO _x Control Côst Results for the Grand Tower Plant (June 1988 Dollars)
1.2.2-0	
	(June 1988 Dollars)
7.2.2-7	Duct Spray Drying and Furnace Sorbent Injection
1.2.2 /	
	Technologies for Grand Tower Units 7-8
7.2.2-8	Duct Spray Drying and Furnace Sorbent Injection
	Technique four found Toyon Unit 0
	Technologies for Grand Tower Unit 9
7.2.2-9	Summary of DSD/FSI Control Costs for the Grand
	Tower Plant (June 1988 Dollars)
	Tower Plant (June 1980 Dorrars)
7.2.3-1	Hutsonville Steam Plant Operational Data
	Control of the start of the start of the start in the start is the start of the sta
7.2.3-2	Summary of Retrofit Factor Data for Hutsonville
	Unit 5 or 6
7 0 0 0	Summer of FCD Control Costs for the Hutconville
7.2.3-3	Summary of FGD Control Costs for the Hutsonville
	Plant (June 1988 Dollars)
7.2.3-4	Summary of Coal Switching/Cleaning Costs for the
1.2.3-4	
	Hutsonville Plant (June 1988 Dollars)
7.2.3-5	Summary of NO, Retrofit Results for Hutsonville
	No control Cont Deculta for the Hutconville Plant
7.2.3-6	NO _x Control Côst Results for the Hutsonville Plant (June 1988 Dollars)
	(June 1988 Dollars)
7.2.4-1	Meredosia Steam Plant Operational Data
7.2.4-2	Summary of Retrofit Factor Data for Meredosia
/.L.Y L	Unit 1, 2, 3 or 4
	Unit 1, 2, 3 or 4 \dots
7.2.4-3	Summary of Retrofit Factor Data for Meredosia Unit 5 7-47
	Summary of FGD Control Costs for Meredosia Plant
7.2.4-4	Summary of Fob Control Costs for heredosta france
	(June 1988 Dollars)
7.2.4-5	Summary of Coal Switching/Cleaning Costs for the
7.2.7-3	50,7,7,50
	Meredosia Plant (June 1988 Dollars)
7.2.4-6	Summary of NO Retrotit Results for Meredosia /-51
7.2.4-7	NG Control Cost Posults for the Meredosia
/.2.4-/	NO _x Control Cost Results for the Meredosia Plant (June 1988 Dollars)
	"Plant (June 1988 Dollars)
7.2.4-8	Duct Spray Drying and Furnace Sorbent Injection
7.2.4-0	Technologies for Meredosia Unit 1, 2, 3 or 4
	lechnologies for meredosia unit 1, 2, 5 or 4
7.2.4-9	Summary of DSD/FSI Control Costs for the Meredosia
,,,,,,,	Plant (June 1988 Dollars)
7.2.5-1	Newton Steam Plant Operational Data
	$\frac{1}{2}$
7.2.5-2	Newton Steam Plant Operational Data
7.2.5-3	Summary of FGD Control Costs for the Newton Plant
	() yes 1000 Dollars) 7-60
	(June 1988 Dollars)
7.2.5-4	Summary of NO, Retrofit Results for Newton
	NO Control Cost Results for the Newton Plant
7.2.5-5	
	NO _x Control Cost Results for the Newton Plant (June 1988 Dollars)
7.2.5-6	Duct Spray Drying and Furnace Sorbent Injection
1.2.3-0	Technologies for Newton Unit 2

TABLES

PAGE

7.2.5-7	Summary of DSD/FSI Control Costs for the Newton Plant (June 1988 Dollars)
7.3.1-1 7.3.1-2 7.3.1-3	Joliet 29 Steam Plant Operational Data
7.3.1-4	NO _x Control Cost Results for the Joliet Plant (June 1988 Dollars)
7.3.2-1 7.3.2-2	Kincaid Steam Plant Operational Data
7.3.2-3	Summary of FGD Control Costs for the Kincaid Plant (June 1988 Dollars)
7.3.2-4	Summary of the Coal Switching/Cleaning Costs for the Kincaid Plant (June 1988 Dollars)
7.3.2-5	Summary of NO_X Retrofit Results for Kincaid
7.3.2-6	NO _x Control Cost Results for the Kincaid Plant (June 1988 Dollars)
7.3.2-7	Duct Spray Drying and Eurnace Sorbent Injection
7.3.2-8	Technologies for Kincaid Units 1-2
7.3.3-1	Powerton Steam Plant Operational Data
7.3.3-2	Summary of Retrofit Factor Data for Powerton Boilers 51, 52, 61 or 62
7.3.3-3 7.3.3-4	NO. Control Cost Results for the Powerton Plant
7.3.3-5	(June 1988 Dollars)
7.3.3-6	Technologies for Powerton Boilers 51, 52, 61, 62 7-92 Summary of DSD/FSI Control Costs for the Powerton Plant (June 1988 Dollars)
7 7 4 1	
7.3.4-1 7.3.4-2	Waukegan Steam Plant Operational Data
7.3.4-3 7.3.4-4	Summary of NO., Retrofit Results for Waukegan
7.3.4-5	NO _x Control Cost Results for the Waukegan Plant (June 1988 Dollars) 7-98
7.3.5-1 7.3.5-2 7.3.5-3	Will County Steam Plant Operational Data
7.3.5-4 7.3.5-5	Unit 2 or 3

PAGE

7.3.5-6	NO _x Control Cost Results for the Will County Plant (June 1988 Dollars)	7-104
7.4.1-1 7.4.1-2	Joppa Steam Plant Operational Data	7-107
7.4.1-3	Units 1, 2, 5, 6	7-109 7-110
7.4.1-4	Summary of FGD Control Costs for the Joppa Plant (June 1988 Dollars)	7-112
	the Jonna Plant (June 1988 Dollars)	7-113 7-115
7.4.1-6 7.4.1-7 7.4.1-8	Summary of NO _x Retrofit Results for Joppa Units 1-3 Summary of NO _x Retrofit Results for Joppa Units 4-6 NO _x Control Cost Results for the Joppa Plant	7-116
7.4.1-9	(June 1988 Dollars)	7-117
7.4.1-10	Technologies for Joppa Units 1, 2, 5, 6	7-119
7.4.1-11	Technologies for Joppa Units 3-4	7-120
	Plant (June 1988 Dollars)	7-121
7.5.1-1 7.5.1-2	Baldwin Steam Plant Operational Data	7-124 7-126
7.5.1-3	Summary of Retrofit Factor Data for Baldwin Unit 2	7-127
7.5.1-4 7.5.1-5	Summary of Retrofit Factor Data for Baldwin Unit 3 Summary of FGD Control Costs for the Baldwin Plant (June 1988 Dollars)	7-128 7-130
7.5.1-6	Summary of the Coal Switching/Cleaning Costs for the Baldwin Plant (June 1988 Dollars)	7-131
7.5.1-7	Summary of NO, Retrofit Results for Baldwin	7-133
7.5.1-8 7.5.1-9	(June 1988 Dollars)	7-134
7.5.1-10	Technologies for Baldwin Unit 1	7-1 37
7.5.1-11	Technologies for Baldwin Unit 2	7-138
7.5.1-12	Technologies for Baldwin Unit 3	7-139
/.0.1 10	Plant (June 1988 Dollars)	7-140
7.5.2-1 7.5.2-2	Hennepin Steam Plant Operational Data	7-141 7-143
7.5.2-3	Summary of FGD Control Costs for the Hennepin Plant (June 1988 Dollars)	7-144
7.5.2-4	Summary of Coal Switching/Cleaning Costs for the Hennepin Plant (June 1988 Dollars)	7-145

<u>TABLES</u>		PAGE
7.5.2-5 7.5.2-6	Summary of NO _x Retrofit Results for Hennepin	7-146
	*(June 1988 Dollars)	7-147
7.5.3-1 7.5.3-2	Vermilion Steam Plant Operational Data	7-151
	Vermilion Units 1-2	7-153
7.5.3-3 7.5.3-4	Summary of FGD Control Costs for the Vermilion Plant (June 1988 Dollars) Summary of the Coal Switching/Cleaning Costs for the	7-154
7.5.3-5	Vermilion Plant (June 1988 Dollars) Summary of NO, Retrofit Results for Vermilion	7-156 7-157
7.5.3-6	NO _x Control Cost Results for the Vermilion Plant (June 1988 Dollars)	7-158
7.5.3-7	Duct Spray Drying and Furnace Sorbent Injection Technologies for Vermilion Unit 1	7-161
7.5.3-8	Duct Spray Drying and Furnace Sorbent Injection Technologies for Vermilion Unit 2	7-162
7.5.3-9	Summary of DSD/FSI Control Costs for the Vermilion Plant (June 1988 Dollars)	7-163
7.5.4-1 7.5.4-2 7.5.4-3 7.5.4-3	Wood River Stear Plant Operational Data	7 - 164 7 - 165 7 - 166 7 - 167
7.5.4-5	NO _x Control Cost Results for the Wood River Plant (June 1988 Dollars)	7-168
7.6.1-1 7.6.1-2 7.6.1-3	Marion Steam Plant Operational Data	7-171 7-173 7-174
7.6.1-4 7.6.1-5	Summary of FGD Control Costs for the Marion Plant (June 1988 Dollars) Summary of NO, Retrofit Results for Marion	7-175 7 - 177
7.6.1-6	NO Control Cost Results for the Marion Plant (June 1988 Dollars)	7-178
7.6.1-7	Duct Spray Drying and Furnace Sorbent Injection Technologies for Marion Units 1, 2 or 3	
7.6.1-8	Summary of DSD/FSI Control Costs for the Marion Plant (June 1988 Dollars)	7-182
7.7.1-1 7.7.1-2	Dallman Steam Plant Operational Data	7-185 7-187
7.7.1-3	Summary of FGD Control Costs' for the Dallman Plant (June 1988 Dollars) Summary of NO, Retrofit Results for Dallman	7-188 7-190
7.7.1-4 7.7.1-5	NO Control Cost Results for the Dallman Plant (June 1988 Dollars)	7-191
7.7.1-6	Duct Spray Drying and Furnace Sorbent Injection Technologies for Dallman Units 1-2	7-194
7.7.1-7	Summary of DSD/FSI Control Costs for the Dallman Plant (June 1988 Dollars)	7-195

ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

acfm	actual cubic feet per minute
AEERL	Air and Energy Engineering Research Laboratory
AEP	Associated Electric Cooperative
AFDC	allowance for funds during construction
AUSM	advanced utility simulation model
-C	constant dollars in cost tables
CG	coal gasfication
CG&E	Cincinnati Gas and Electric
CS	coal switching
CS/B	coal switching and blending
DOE	Department of Energy
DSD	duct spray drying
EIA-767	Energy Information Administration Form 767
EPA	Environmental Protection Agency
EPRI	Electric Power Research Institute
ESP	electrostatic precipitator
FBC	fluidized bed combustion
FF	fabric filter
FGD	flue gas desulfurization
FPD	fuel price differential
FSI	furnace sorbent injection
ft	feet
FWF	front, wall-fired
IAPCS	Integrated Air Pollution Control System

• •	ABBREVIATIONS AND SYMBOLS (Continued)
IRS	Internal Revenue Service
KU	Kentucky Utilities
kW	kilowatt
kWh -	killowatt hour
LC	low cost
LIMB	limestone injection multistage burner
L/LS	lime/limestone
LNB	low-NO _x burner
LNC	low-NO _x combustion
LSD	lime spray drying
m	meter
MM	millions
MW	megawatt
NAPAP	National Acid Precipitation Assessment Program
NGR	natural gas reburning
NRDC	Natural Resources Defense Council
NSPS	new source performance standard
NTIS	National Technical Information Service
OEUI	Ohio Electric Utilities
OFA	overfire air
OWF	opposed, wall-fired
O&M	operating and maintenance
PCC	physical coal cleaning
PM	particulate matter
psia	pounds per square inch absolute

xviii :

ABBREVIATIONS AND SYMBOLS (Continued)

SCA	specific collection area (ft ² /1000 acfm)
SCR	selective catalytic reduction
SCR-CS	selective catalytic reduction - cold side
SCR-HS	selective catalytic reduction - hot side
sec	second
SI	sorbent injection
sq ft	square feet
TAG	Technical Assessment Guideline
TVA	Tennessee Valley Authority
UARG	Utility Air Regulatory Group
USGS	U.S. Geological Survey
s/kW	dollars per kilowatt
SYMBOLS	
MgO	magnesium oxide
NH.	ammonia

NH3	ammonia	
NOX	nitrogen oxide	Ś
50 ₂	sulfur dioxide	ł
so,	sulfur trioxid	le

. xix

ACKNOWLEDGEMENT .

We would like to thank the following people at Radian Corporation who helped in the preparation of this report: Robert Page, Susan Squire, JoAnn Gilbert, Linda Cooper, Sarah Godfrey, Kelly Martin, Karen Oliver, and Janet Mangum.

METRIC EQUIVALENTS

Readers more familiar with the metric system may use the following factors to convert to that system.

<u>Non-metric</u>	<u>Times</u>	<u>Yields Metric</u>
acfm	0.028317	acms
acre	4046.9	m ²
Btu/lb	0.5556	kg-calories/kg
°F	5/9 (°F-32)	°C
ft	0.3048	m
ft ²	0.0929	m ²
ft ³	0.028317	m ³
gal.	3.78533	L
1b/MMBtu	1.8	kg/kg-calorie
psia	0.0703	g/cm ²
ton	0.9072	ton
and the second		1.1

SECTION 3.0 ALABAMA

3.1 ALABAMA POWER COMPANY

3.1.1 Barry Steam Plant

The Barry steam plant is located within Mobile County, Alabama, as part of the Alabama Power Company system. The plant is located adjacent to the Mobile River and contains five coal-fired boilers with a total gross generating capacity of 1,525 MW.

Table 3.1.1-1 presents operational data for the existing equipment at the Barry plant. The boilers burn low sulfur coal. Coal shipments are received by barge and unloaded through a water channel to a coal storage and handling area west of the plant and close to the river.

PM emissions for the boilers are controlled with retrofit ESPs located behind old ESPs. Units 1-3 have hot side ESPs. The plant has a wet fly ash handling system and ash is disposed of in an ash pond southeast of the plant. Units 1-3 are ducted to a common retrofit chimney and units 4 and 5 have separate chimneys. Two old chimneys behind units 1-3 are left intact along with the old ESPs. The following evaluation is based on a 1980 aerial photograph of the plant. Any additions to the plant layout since that time should be taken into consideration.

Lime/Limestone and Lime Spray Drying FGD Costs--

The five boilers are located beside each other adjacent to the river. The absorbers for units 1-3 would be located close to unit 1 between the common chimney and the coal pile and adjacent to the employee parking area. The absorbers for units 4 and 5 would be located on the other side of the plant (to the east) and adjacent to the unit 5 chimney. The limestone preparation, storage, and handling area would be located behind the unit 1-3 absorbers. A plant road and part of the employee parking area would have to be relocated for unit 1-3 absorbers; therefore, a factor of 10 percent was assigned to general facilities. For unit 4-5 absorbers, some storage buildings and oil tanks would have to be demolished and relocated; as such,

	· .		
TABLE 3.1.1-1.	BARRY STEAM PLAN	T OPERATIONAL DATA	

BOILER NUMBER GENERATING CAPACITY (MW.EACH)	1, 2 125	3 4 225 350	5 700
GENERATING CAPACITY (MW,EACH) CAPACITY FACTOR (PERCENT) INSTALLATION DATE	65,67 1954	74 57 1959 1969	76
FIRING TYPE	s .	TANGENTIAL	,
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION	93	147 NA NO	334
COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT)		0.8 12,000	
COAL ASH CONTENT (PERCENT)		13.0	-
FLY ASH SYSTEM ASH DISPOSAL METHOD		WET SLUICE PONDS/ON-SIT	E .
STACK NUMBER COAL DELIVERY METHODS	1	1 2 BARGE	3
	,	DANGE	
PARTICULATE CONTROL			1. j. j.
ТҮРЕ		ESP	
INSTALLATION DATE EMISSION (LB/MM BTU)	0.05	1976 0.04 0.01	NA
REPUTAL EFFICIENCE	NA	99.9 99.9	
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT)	0 7 to	5.0 0.5 t	0.3.0
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	183.6	316.6 451.2	635.0
SCA (SQ FT/1000 ACFM)	237	12/4 136/ 249 330	2427 262
OUTLET TEMPERATURE (*F)	655	721 269	

a factor of 10 percent was assigned to general facilities for these absorbers. A low site access/congestion factor was assigned to all of the FGD absorber locations reflecting the easy accessibility to the absorber locations and the low congestion.

For units 1-3 and 5, short duct runs would be required for L/LS-FGD cases (about 100 to 300 feet) and a low site access/congestion factor was also assigned to the flue gas handling system because of no major obstacles/obstructions in the surrounding areas. Absorbers for unit 4 would be placed beside unit 5 ESPs resulting in a duct length of 500 feet and a new chimney for this unit. A high site access/congestion factor was assigned to the unit 4 flue gas handling system because the unit 4 chimney and unit 5 ESP makes access difficult. The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Tables 3.1.1-2 through 3.1.1-4.

LSD with reuse of the existing ESPs was not considered for units 1-4. Units 1, 2, and 3 have hot side ESPs and for unit 4 reuse of the existing ESPs would be very difficult. Therefore, LSD with a new baghouse was considered for units 1-4. LSD with reuse of the existing ESPs was considered for unit 5. The absorbers and new baghouses for all units would be located in similar locations as the absorbers in the L/LS-FGD case. For all units, moderate flue gas handling duct lengths were required. For all units, the locations of the baghouses would be close to the absorbers and, as such, a low site access/congestion factor was assigned to these locations.

FGD cost estimates for the Barry plant are not presented because it is unlikely that the current low sulfur coal would be used if scrubbing were required. FGD cost estimates based on the current coal would result in low estimates of capital/operating costs and high cost effectiveness values.

Coal Switching and Physical Coal Cleaning Costs--

Because the Barry plant is already using low sulfur coal, CS and PCC were not considered in this study.

TABLE 3.1.1-2.SUMMARY OF RETROFIT FACTOR DATA FOR BARRY
UNITS 1, 2, OR 3

	FGD TECHNOLOGY			
		FORCED IDATION	LIME SPRAY DRYING	
SITE ACCESS/CONGESTION			· · ·	
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW LOW	NA NA	LOW	
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	LOW	
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	100-300 NA LOW	
SCOPE ADJUSTMENTS	· · · ·	· ·		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 1145,1940 NO 0 NO	NA NA NA O	NO NA NO O NO	
RETROFIT FACTORS				
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	1.27 NA NA	NA NA NA	NA 1.16 NA 1.16	
GENERAL FACILITIES (PERCEN	T) 10	0	10	

TABLE 3.1.1-3. SUMMARY OF RETROFIT FACTOR DATA FOR BARRY UNIT 4

	FGD TECHNOLOGY					
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING			
SITE ACCESS/CONGESTION						
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW HIGH	NA NA	LOW			
BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	300-600	NA	HIGH			
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA 300-600 NA LOW			
SCOPE ADJUSTMENTS			· ·			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 2882 YES 2450 NO	NA NA NA O	NO NA NO O NO			
RETROFIT FACTORS						
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.48	NA 🛸	NA 1.36			
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16			
GENERAL FACILITIES (PERCENT) 10	0	10			

 TABLE 3.1.1-4.
 SUMMARY OF RETROFIT FACTOR DATA FOR BARRY UNIT 5

	· · · ·		<u> </u>				
	FGD TECHNOLOGY						
	L/LS FGD (FORCED DXIDATION	LIME SPRAY_DRYING				
SITE ACCESS/CONGESTION		• • • •					
SO2 REMOVAL FLUE GAS HANDLING	LOW	NA NA	LOW				
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	100-300	NA	HIGH NA				
ESP REUSE BAGHOUSE	100-200		300-600 NA				
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	MEDIUM NA				
SCOPE ADJUSTMENTS							
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 5365 NO 0 NO	NA NA NA O	YES 5365 NO 0 NO				
RETROFIT FACTORS		н 1 - Ман	· · · ·				
FGD SYSTEM ESP REUSE CASE	1.27	NA	1.43 NA				
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.36 NA				
GENERAL FACILITIES (PERCEN	T) 10	0	10				

Low NO, Combustion--

Units 1-5 are dry bottom, tangential-fired boilers. The combustion modification technique applied to all boilers was OFA. Table 3.1.1-5 shows the OFA NO_X reduction performance for each unit. Table 3.1.1-6 presents the NO_x cost results of retrofitting OFA at the Barry plant.

Selective Catalytic Reduction--

Hot side SCR reactors for units 1-3 would be located beside unit 1 in a low site access/congestion area. The cold side SCR reactor for unit 4 would be placed behind unit 5 ESPs adjacent to unit 4 ESPs/chimney. A high site access/congestion factor would be assigned to this location due to the limited space available behind unit 5. The cold side SCR reactor for unit 5 would be located adjacent to unit 5 in a low site access/congestion area. For flue gas handling, a duct length of 250 feet would be required for all units. Because units 1-3 have high temperature ESPs, flue gas preheat for the SCR unit is not required. The ammonia storage system was placed close to the sorbent storage preparation area west of the plant. A factor of 20 percent was assigned to general facilities for all units due to the need to relocate plant roads and storage buildings.

Table 3.1.1-5 presents the SCR process area retrofit factors and scope adder costs. Table 3.1.1-6 presents the estimated cost of retrofitting SCR at the Barry boilers.

Duct Spray Drying and Furnace Sorbent Injection--

DSD and FSI with ESP reuse were not evaluated for units 1-3 because these units have hot side ESPs. For unit 4, it appears that sufficient duct residence time is available between the boilers and the retrofit ESPs or the old ESPs could be used for sorbent injection or humidification. By contrast, for unit 5, there does not appear to be sufficient duct residence time between the boiler and the ESPs. However, sorbent injection was evaluated because the first ESP section could be modified for sorbent injection or humidification and additional plate area could be added downstream of the ESPs. A high site access/congestion factor was assigned for upgrading the ESPs for unit 4 because of the access difficulty to the existing ESPs. A

	BC	<u>DÍLÈR N</u>	UMBER	·
COMBUSTION_MODIFICATION_RESULTS		•	1.5	
	1,2	3	4	5
FIRING TYPE	TANG	TANG	TANG	
TYPE OF NOX CONTROL	OFA	OFA	OFA	OFA
FURNACE VOLUME (1000 CU FT)	93	147	NA	334
BOILER INSTALLATION DATE	1954	1959	1969	197 1
SLAGGING PROBLEM	NO	NO	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	25	25	25	25
<u>CR RETROFIT RESULTS</u> SITE ACCESS AND CONGESTION FOR SCR REACTOR SCOPE ADDER PARAMETERS	LOW	ĻOW	HIGH	LOW
New Chimney (1000\$)	0	0	0	0
Ductwork Demolition (1000\$)	32	50	69	116
New Duct Length (Feet)	250	250	250	250
New Duct Costs (1000\$)	1411	1991	2578	3867
New Heat Exchanger (1000\$)	0	0	3952	5991
OTAL SCOPE ADDER COSTS (1000\$)	1443	2041	6599	9974
ETROFIT FACTOR FOR SCR	1.16	1.16	1.52	1.16
ENERAL FACILITIES (PERCENT)	20	20	20	20

TABLE 3.1.1-5. SUMMARY OF NOx RETROFIT RESULTS FOR BARRY

Table 3.1.1-6. NOx Control Cost Results for the Barry Plant (June 1988 Dollars)

	Boiler	Main	Boiler	Capacity	y Coal	Capital	Capital	Annual	Annual	NOX	NOx	NOX Cos	
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Renoved	Removed Removed	moved Effect	
		Difficulty	(MI)	(%)	Content	(\$MM)	(\$/k¥)	(\$H\$H)	(mills/kwh)	i (%) -	(tons/yr)	(\$/tor	
		Factor		s.	(%)						,		
••••••	·····		•••••	· · · · · · · · · · · · · · · · · · ·					··········				
LNC-OFA	1	1.00	125	65	0.8	0.7	5.4	. 0.1	0.2	25.0	552	259	
LNC-OFA	2	1.00	125	67	0.8	0.7	5.4	0.1	0.2	25.0	569	251	
LNC-OFA	3	1.00	225	.74	0.8	0. 9	3.8	0.2	0.1	25.0	1131	160	
LNC-OFA	4	1.00	350	57	0.8	1.0	2.9	0.2	0.1	25.0	1356	159.	
LNC-DFA	5	1.00	700	76	0.8	î1 .3		0.3	0.1	25.0	3615	78.	
LNC-OFA-C	1	1.00	125	65	0.8	0.7	5.4	0.1	0.1	25.0	552	154.	
LNC-OFA-C	ż	1.00	125	67	0.8	0.7		0.1	0.1	25.0	569	149.	
LNC-OFA-C	3	1.00	225	74	0.8	0.9	3.8	0.1	0.1	25.0	1131	95.	
LNC-OFA-C	4	1.00	350	57	0.8	1.0			0.1	25.0	1356	94	
LNC-DFA-C	5	1.00	700	76.	0.8	1.3	1.9	0.2	0.0	25.0	3615	46.	
SCR-3	1	1.16	125	65	0.8	20.9	167:5	7.1	9.9	80.0	1767	4002.	
SCR-3	2	1.16	125	67	0.8	20.9	167.6	7.1	9.7	80.0	1621	3891	
SCR-3	3	1.16	225	74	0.8	31.4	139.4	11.2	7.7	80.0	3621	3100	
SCR-3	4	1.52	350	57	0.8	56.4	161.1	18.6	10.7	80.0	4338	4295	
SCR-3	5	1.16	700	76	0.8	83.4	119.2	31.2	6.7	80.0	11568	2694	
SCR-3-C	[.] 1	1.16	125	65	0.8	20.9	167.5	4.1	5.8	80.0	1767	2346.	
SCR-3-C	2	1.16	125	67	0.8	20.9		4.2	5.7	80.0	1821	2281	
SCR-3-C	3	1.16	225	74	0.8	31.4	139.4	6.6	4.5	80.0	3621	1815.	
SCR-3-C	4	1.52	350	57		56.4	161.1	10.9	6.3	80.0	4338	2519.	
SCR-3-C	5	1,16	700	76	0.8	83.4	119.2	18.2	3.9	80.0	11568	1576	
SCR-7	1	1.16	125	65	0.8	20.9	167.5	6.0	8.5	80.0	1767	3421.	
SCR-7	2	1.16	125	67	0.8	20.9	167.6	-6.1	8.3	80.0	1821	3327	
SCR-7	3	1.16	225	74	0.8	31.4	139.4	9.4	6.4	80.0	3621	2589	
SCR-7	4	1.52	350	57	0.8	56.4	161.1		9.0	80.0	4338	3632.	
SCR-7	5	1.16	700	76	0.8	83.4		25.4	5.5	80.0	11568	2197.	
SCR-7-C	1	1.16	125	. 65	0.8	20.9	167.5	3.6	5.0	80.0	1767	2013.	
SCR-7-C	2	1.16	125	67	0.8	20.9	167.6	3.6	4.9	80.0	1821	/ 1957.	
SCR-7-C	3	1.16	225	74	0.8	31.4	139.4	5.5	3.8	80.0	3621	1522.	
SCR-7-C	4	1.52	350	57	0.8	56.4	161.1	9.3	5.3	80.0	4338	2139.	
SCR-7-C	5	1.16	700	76	0.8	83.4	119.2	14.9	3.2	80.0	11568	1291.	

3-9

moderate access/congestion difficulty factor was assigned for upgrading the unit 5 ESP.

Tables 3.1.1-7 and 3.1.1-8 present a summary of the site access/ congestion factors for FSI and DSD technologies at the Barry steam plant. Table 3.1.1-9 presents the costs estimated to retrofit sorbent injection technologies at the Barry boilers. Because the plant is burning low sulfur coal, the estimated unit costs are high.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Barry plant. Units 1-3 would be considered good candidates for repowering/retrofit because of their small boiler sizes. Units 4 and 5 would not be considered good candidates because they are more than 300 MW units. All units have high capacity factors making the cost of repowering less attractive due to downtime cost (replacement power).

TABLE 3.1.1-7. DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION TECHNOLOGIES FOR BARRY UNIT 4

· · · · · · · · · · · · · · · · · · ·	
<u>ITEM</u>	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	YES 2882 NA NA NA NA 50 77
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	2959 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

TABLE 3.1.1-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR BARRY UNIT 5

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW MEDIUM NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	YES 5365 NA NA NA 50 129
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	5494 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.36 NA

Table 3.1.1-9. Summary of DSD/FSI Control Costs for the Barry Plant (June 1988 Dollars)

Technology		Retrofit	Size		Sulfur	Capital Cost	Cost	Cost			502 Removed	SO2 Cos Effect	
	Difficu Facto		ficulty (MW) (%) Content actor (%)				(SHH) (\$/k\) (SHH) ((mills/kwh) (%) (tons/yr) (\$/ton	
	******									,			
SD+ESP	4	1.00	350	57	0.8	14.7	42.0	8.6	4.9	46.0	5234	1646.	
SD+ESP	5	1.00	7.00	76	0.8	26.3	37.6	16.3	3.5	46.0	13764	1183.	
SD+ESP-C	4	1.00	350	57	0.8	14.7	42.0	5.0	2.9	46.0	5234	955.	
SD+ESP-C	5 -	1.00	700	76	0.8	26.3	37.6	9.4	2.0	46.0	13764	686.	
SI+ESP-50	4	1.00	350	57	0.8	15.4	44.0	8.2	4.7	50.0	5640	1462.	
SI+ESP-50	5	1.00	700	76	0.8	29.7	42.4	17.8	3.8	50.0	15039	1183.	
SI+ESP-50-C	4	1.00	350	57	0.8	15.4	44.0	4.8	2.7	50.0	5640	849.	
S1+ESP-50-C	5	1.00	700	76	0.8	29.7	42.4	10.3	2.2	50.0	15039	686.	
S1+ESP-70	4	1.00	350	57	0.8	15.5	44.3	8.4	4.8	70.0	7895	1057.	
S1+ESP-70	5	1.00	700	76	0.8	29.9	42.7	18.1	3.9	70.0	21054	857.	
SI+ESP-70-C	4	1.00	350	57	0.8	15.5	44.3	4.9	2.8	70.0	7895	614.	
SI+ESP-70-C	5	1.00	700	76	0.8	29.9	42.7	10.5	2.2	70.0	21054	497.	

3.1.2 Gadsden Steam Plant

The Gadsden Steam Plant is located in Etowah County, Alabama, as part of the Alabama Power Company system. The plant contains two coal-fired boilers with a total gross generating capacity of 120 MW. Tables 3.1.2-1through 3.1.2-8 summarize the plant operational data and present the SO₂ and NO₂ control cost and performance estimates.

TABLE 3.1.2-1. GADSDEN STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1,2 60 48,75 1949 TANGENTIAL NA NO 1.5 12500 11.3 WET DISPOSAL POND/ON-SITE 1 TRUCK/RAILROAD
PARTICULATE CONTROL	
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) EXIT GAS FLOW RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP* 1975 0.05, 0.02 99.95 NA NA 300 NA 315

* An SCA size of 300 was assumed for both units.

TABLE 3.1.2-2. SUMMARY OF RETROFIT FACTOR DATA FOR GADSDEN UNITS 1 OR 2 *

: 	FGD TECHNOLOGY						
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING				
SITE ACCESS/CONGESTION			· ·				
SO2 REMOVAL FLUE GAS HANDLING	LOW	NA NA	HIGH				
ESP REUSE CASE BAGHOUSE CASE	100 200	NA	HIGH NA				
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	100-300	NA	100-300 NA				
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	MEDIUM				
SCOPE ADJUSTMENTS							
WET TO DRY ESTIMATED COST (1000\$)	YES 593	NA NA	YES 593				
NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO O NO	NA O	NO O NO				
RETROFIT FACTORS							
FGD SYSTEM ESP REUSE CASE	1.27	NA	1.61				
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.37 NA				
GENERAL FACILITIES (PERCEN	T) 8	.0	8				

* L/S-FGD absorbers for units 1 and 2 would be located south of the common chimney for units 1 and 2. LSD-FGD absorbers would be located beside the unit ESPs.

Technology	Boiler Number	Main Retrofit		Capacit [*] Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Cost		SO2 . Removed	\$02 Cost Effect
		Difficulty Factor	/ (HW)	(%)	Content (%)	(5MM)	(\$/k\)	(5MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
·		•	,		•							
L/S FGD	1	1.27	60	48	1.5	29.1	484.5		46.6	90.0	2622	4488.4
JS FGD	2	1.27	60	75	1.5	29.1	484.8		32.4	90.0	4097	3117.5
L/S FGD	1-2	1.27	120	62	1.5	41.0	341.5	17:5	26.9	90.0	6773	2588.2
./S FGD-C	1	1.27	60	48	1.5	29.1	484.5	6.9	27.2	90.0	2622	2621.3
/S FGD-C	2	1.27	60	75	1.5	29.1	484.8	7.4	18.9	90.0	4097	1818.0
/S FGD-C	1 -2	1.27	120	62	1.5	41.0	341.5	10.2	15.7	9 0 .0	6773	1510.0
.C FGD	1-2	1.27	120	62	1.5	28.6	238.1	13.8	21.1	90.0	6773	2032.6
LC FGD-C	1-2	··· 1 .27	120	62	1.5	28.6	238.1	8.0	12.3	90.0	6773	1183.9
LSD+ESP	. 1	1.61	60	48	1.5	13,:6	225.9	6.4	25.5	76.0	2223	2897.
SD+ESP	2	1.61	60	75	1.5	13.6	225.9	6.8	17.3	76.0	3473	1967.
SD+ESP-C	1 ·	1.61	60	48	1.5	13.6	225.9	3.8	.14.9	76.0	2223	1687.5
LSD+ESP-C	2	1.61	60	75	1.5	13.6	225.9	4.0	10.1	76.0	3473	1144.5

Table 3.1.2-3. Summary of FGD Control Costs for the Gadsden Plant, (June 1988 Dollars),

Technology		Main Retrofit Difficulty Factor	Size	Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Cost			SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
CS/8+\$15	1	1.00	60	48	1.5	2.8	46.5	4.2	16.5	37.0	1092	3812.1
S/8+\$15	2	1.00	60	75	1.5	2.8			15.6	37.0	1706	3594.7
CS/8+\$15-C	1	1.00	60	48	1.5	2.8	46.5	2.4	9.5	37.0	1092	2195.5
CS/8+\$15-C	2	1.00	60	, דז	1.5	2.8	46.5	3.5	8.9	37.0	1706	2066.9
CS/8+\$5	1	1.00	60	48	1.5	2.2	36.1	2.0	7.8	37.0	1092	1803.2
CS/8+\$5	· 2	1.00	60	75	1.5	2.2	36.1	2.8	7.0	37.0	1706	1621.9
CS/8+\$5-C	1	1.00	60	- 48	1.5	2.2	36.1	1.1	4.5	37.0	1092	1042.0
CS/8+\$5-C	2	1.00	60	75	1.5	2.2			4.0	37.0	1706	934.9

	BOILER NUMBER
COMBUSTION MODIFICATION RESULTS	
	1, 2
FIRING TYPE	TANG
TYPE OF NOX CONTROL	OFA
FURNACE VOLUME (1000 CU FT)	NA
BOILER INSTALLATION DATE	1949
SLAGGING PROBLEM	NO
ESTIMATED NOX REDUCTION (PERCENT)	25
SCR RETROFIT RESULTS *	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW
SCOPE ADDER PARAMETERS	
Building Demolition (1000\$)	0
Ductwork Demolition (1000\$)	18
New Duct Length (Feet)	200
New Duct Costs (1000\$)	735
New Heat Exchanger (1000\$)	1372
TOTAL SCOPE ADDER COSTS (1000\$) INDIVIDUAL CASE COMBINED CASE	2125 3213
RETROFIT FACTOR FOR SCR	1.16
GENERAL FACILITIES (PERCENT)	20

TABLE 3.1.2-5. SUMMARY OF NOx RETROFIT RESULTS FOR GADSDEN

* Cold side SCR reactors for units 1 and 2 would be located south of the common chimney for units 1 and 2.

echnology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)		Capital Cost (SMM)	Capital Cost (\$/kW)	Annual Cost (SHH)	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	NOX Cos Effect (\$/ton
									•••••••			•••••
NC-OFA	1	1.00	60	48	1.5	0.5	8.4	0.1	0.4	25.0	187	571.
NC-OFA	2	1.00	60	75	1.5	0.5	8.4	0.1		25.0	292	365.
NC-OFA-C	· 1	1.00	- 60	48	1.5	0.5	8.4	0.1	0.3	25.0	187	339.
NC-OFA-C	2	1.00	60	75	1.5	0.5	8.4	0.1	0.2	25.0	292	217.
CR-3	1	1.16	60	48	1.5	14.0	232.6	4.3	17.0	80.0	598	7163.
CR-3	2	1.16	60	75	1.5	14.0	232.6	4.4	11.1	80.0	934	4681.
CR-3	1-2	1.16	120	621	1.5	21.3	177.2	6.9	10.6	80.0	1544	4488.
CR-3-C	1	1.16	60	48	1.5	. 14.0	232.6	2.5	10.0	80.0	598	4208.
CR-3-C	2	1.16	60	75	1.5	14.0	232.6	2.6	6.5	80.0	934	2749.
CR-3-C	1-2	1.16	120	62	1.5	21.3	177.2	4.1	6.2	80.0	1544	2633.
CR-7	` 1	1.16	60	48	1 .5	14.0	232.6	3.8	15.0	80.0	598	6343.
CR-7	2	1.16	60	75 -	1.5	14.0	232.6	3.9	9.8	80.0	934	4156,
CR-7	1-2	1.16	120	62	1.5	21.3	177.2	6.0	9.2	80.0	1544	3879.
CR-7-C	1	1.16	60	48	1.5	14.0	232.6	2.2	8.9	80.0	598	3739.
CR-7-C 🗤	2	1.16	60	75	1.5	14.0	232.6	2.3	5.8	80.0	934	2448.
CR-7-C	1-2	1.16	120	62	1.5	21.3	177.2	3.5	5.4	80.0	1544	2284.

Table 3.1.2-6. NOx Control Cost Results for the Gadsden Plant (June 1988 Dollars)

TABLE 3.1.2-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR GADSDEN UNITS 1 OR 2

ITEM	
SITE ACCESS/CONGESTION	• .
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW MEDIUM NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	YES 593 NA NA NA 50 20
TOTAL COST (1000 \$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	613 NA
RETROFIT FACTORS	· ·
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.36 NA

Medium duct residence time exists between the boilers and their respective ESPs. A medium factor was assigned to ESP upgrade since there is some congestion among the ESPs.

Technology		Main Retrofit Difficulty	Size	Capacit Factor	y Coal Sulfur Content	Capital Cost . (\$MM)	Capital Cost (\$/kW)	Annual Cost (\$MM)			SO2 Removed (tons/yr)	SÚ2 Cos Effect (\$/ton
		Factor	; ; 		(%)							
SD+ESP	1	. 1.00	60	48	1 .5	5.3	88.4	4.0	16.0	49.0	1417	2852.
SD+ESP	2	1.00	60	75	1.5	5.3	88.4	4.4	11.1	49.0	2215	1984.
SD+ESP-C	1,	1.00	60	48	1.5	- 5.3	88.4	2.3	9.3	49.0	1417	1650.
SD+ESP-C	2	1.00	60	75	1.5	5. 3	88.4	2.5	6.4	49.0	2215	1147.
SI+ESP-50	1	1.00	60	48	1.5	5.9	98.2	3.4	13.4	50.0	1457	2313.
SI+ESP-50	2	1.00	60	75	1.5	5.9	98.2	. 3.9	9.9	50.0	2276	1710.
SI+ESP-50-C	1	1.00	60	48	1.5	5.9	98.2	2.0	7.8	50.0	1457	1343.
SI+ESP-50-C	2	1.00	60	75	1.5	5.9	98.2	2.3	5.7	50.0	2276	991.
SI+ESP-70	1	1.00	.60	48	1.5	5.9	99.0	3.4	13.5	70.0	2039	1667.
SI+ESP-70	. 2	1.00	60	75	1.5	5,9	99.0	3.9	10.0	70.0	3186	1235.
S1+ESP-70-C	1	1.00	60	48	1.5	5.9	99. 0	. 2.0	7.8	70.0	2039	968.
SI+ESP-70-C	2	1.00	60	75	1.5	5.9	99.0	2.3	5.8	70.0	3186	716.

Table 3.1.2-8. Summary of DSD/FSI Control Costs for the Gedsden Plant (June 1988 Dollars)

3.1:3 Gaston Steam Plant

The Gaston steam plant is located within Shelby County, Alabama, as part of the Alabama Power Company system. The plant is located on the west bank of the Goosa River and contains five coal-fired boilers with a total gross generating capacity of 1,880 MW.

Table 3.1.3-1 presents operational data for the existing equipment at the Gaston plant. The boilers burn medium sulfur coal. Coal shipments are received by railroad and transferred to a coal storage and handling area south of the plant and adjacent to the river.

PM emissions for all boilers are controlled with retrofit ESPs located behind each unit and close to the river. The plant has a dry fly ash handling system. Fly ash is disposed of in a landfill adjacent to the coal pile. Part of the fly ash is sold. Units 1 through 4 are served by a common chimney located adjacent to unit 1 north of the plant. Unit 5 has its own chimney south of the plant. Four old chimneys, which were serving units 1-4, are left intact behind the units. A coal conveyor stretches from the coal pile to unit 1 runs behind the old chimneys and retrofit ESPs to each unit. The following evaluation is based on a 1981 aerial photograph, and any alterations made to the plant layout since this time should be taken into consideration.

Lime/Limestone and Lime Spray Drying FGD Costs--

The five boilers are located beside each other and parallel to the river. The absorbers for units 1-4 would be located beside the unit 1-4 common chimney to the north of the plant. The absorbers for unit 5 would be located adjacent to its chimney south of the plant. The limestone preparation, storage, and handling area would be located west of the plant and close to the cooling towers. For unit 1-4 absorber locations, part of the employee parking area has to be relocated and, as such, a base factor of 8 percent was assigned to general facilities. For the unit 5 absorber location, some of the oil storage tanks have to be relocated resulting in a 10 percent general facilities.

TABLE 3.1.3-1. GASTON STEAM PLANT OPERATIONAL DATA

		· · · ·
BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL SULFUR CONTENT (PERCENT) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1,2,3,4 250 72,70,60,70 1960,60,61,62 OPPOSED WALL NA NO 1.4 12,300 12.0 DRY DISPOSAL ON-SITE/SELL 1 RAILROAD	
PARTICULATE CONTROL		
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY	ESP 1974-76 0.05-0.07 99.1-98.7	ESP 1974 0.12 98.4
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	NA 342,363,342,342 1250 274,290,274,274 650	NA 1175 4100 287 630

A medium site access/congestion factor was assigned to all of the FGD absorber locations. For units 1-4 absorbers, this was due to being located close to the water channel and water intake structure (underground obstructions). The medium site access/congestion factor for unit 5 absorber location is due to the coal conveyor and oil storage tanks.

For flue gas handling, short duct runs would be required for the L/LS-FGD cases (about 200 feet) because the absorbers are placed immediately behind the chimneys. Low site access/congestion factors were also assigned to the flue gas handling system because of the easy accessibility to the existing chimneys.

LSD with reuse of the existing ESPs was not considered for this plant because the ESPs operate at temperatures greater than $600^{\circ}F$. This eliminates the benefits of gas cooling/humidification on ESP performance. Additionally, access to the ESPs is extremely difficult and might result in a long boiler downtime. Therefore, LSD with a new baghouse was considered for the Gaston plant. LSD absorbers would be located close to the chimneys and the baghouses would be located adjacent to the absorbers. A medium site access/congestion factor was also assigned to the absorber/baghouse locations.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Tables 3.1.3-2 and 3.1.3-3. Table 3.1.3-4 presents the capital and operating costs for commercial FGD technologies. The low cost FGD option reduces costs for units 1-4 due to the elimination of spare absorber modules and economy of scale that occurs when combining process areas and maximizing absorber size. For unit 5, the low cost option reduces cost due to the elimination of the spare absorbers and increased absorber size.

Coal Switching and Physical Coal Cleaning Costs--

Table 3.1.3-5 presents the IAPCS cost results for CS at the Gaston plant. These costs do not include boiler and pulverizer operating cost changes or any system modifications that may be necessary to blend coal. Coal switching for a fuel price differential of \$15 per ton is higher than that of \$5 per ton because of inventory capital and preproduction costs,

TABLE 3.1.3-2.	SUMMARY OF	RETROFIT	FACTOR D	ATA FOR	GASTON UNITS	1,
	2, 3, OR 4		1. A.		and the second second	•

	. · ·	FGD TE	CHNOLOGY
	L/LS FGD (FORCED DXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	MEDIUM LOW	NA NA	MEDIUM NA
BAGHOUSE CASE	100-300	NA	ĽÔW
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA MEDIUM
SCOPE ADJUSTMENTS	· · ·		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA NO O NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS	· ·		
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	1.30 NA NA	NA NA NA	NA 1.40 NA 1.37
GENERAL FACILITIES (PERCENT) 8	0	8

	• •		
	· · · ·	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	L IME SPRAY DRYING
SITE ACCESS/CONGESTION	•		
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	MEDIUM Low	NA NA	MEDIUM NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	100-300	NA	LOW
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA MEDIUM
SCOPE ADJUSTMENTS	ч. 	, , , ,	
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA NO O NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS		· · ·	* .
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.30	NA	NA 1.40
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.37
GENERAL FACILITIES (PERCENT) 10	0	10

TABLE 3.1.3-3. SUMMARY OF RETROFIT FACTOR DATA FOR GASTON UNIT 5

Table 3.1.3-4. Summary of FGD Control Costs for the Gaston Plant (June 1988 Dollars)

rechnology		Retrofit	Size	Factor	Sulfur	Cost	Capital Cost	Cost	Cost		SO2 Removed	SO2 Cos Effect
		Difficulty Fector	(MW)	(%) .	Content (%)	(\$HM)	(\$/k¥)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$ /tor
		••••••										<u>;</u> -;
/S FGD	1	1.30	250	72	1.4	65.8	263.3	28.8	18.3	90.0	15578	1851.
/S FGD	· 2	1.30	250	70	1.4	65.8	263.3	28.6	18.7	90.0	15145	1889.
/S FGD	3	1.30	250	60	1.4	65.8	263.2	27.5	20.9	90.0	12982	2120.
/S FGD	4	1.30	250	70	1.4 -	65.8	263.3	28.6	18.7	90.0	15145	1889
/S FGD	5	1.30	880	68	1.4	150.3	170.8	69.5	13.2	,90.0.	51789	1341.
/S FGD-C	1	1.30	250	72	1.4	65.8	263.3	16.8	10.7	90.0	15578	1079
/S FGD-C	2	1.30	250	70	1.4	65.8	263.3	16.7	10.9	90.0	15145 -	1102
/S FGD-C	3,	1.30	250	60	1.4	65.8	263.2	16.1	12.2	90.0	12982	1237
/S FGD-C	4	1.30	250	70	1.4	65.8	263.3	16.7	10.9	90.0	15145	1102
/S FGD-C	5	1,30	. 880	68 、	1.4	150.3	170.8	40.5	7.7	90.0	51789	781
C FGD	1-4	1.30	1000	68	1.4	142.6	142.6	69.9	11.7	90.0	58851	1188
C FGD	5	1.30	880	. 68	1.4	125.7	142.9	62.1	11.8	90.0	51789	1198
C FGD-C	1-4	1.30	1000	68	1.4	142.6	142.6	40.7	6.8	90.0	58851	691.
C FGD-C	5	1.30	880	68	1.4	125.7	142.9	36.1	6.9	90.0	51789	697
SD+FF	1	1.40	250	72	1.4	74.1	296.4	26.8	17.0	87.0	14974	1791
SD+FF	2	1.40	250	70	1.4	74.1	296.4	26.7	17.4	87.0	14558	1831
SD+FF	3	1.40	250	60	1.4	74.1	296.4	25.8	19.6	87.0	12479	2068
SD+FF	4	1.40	250	70	1.4	74.1	296.4	26.7	17.4	87.0	14558	1831
SD+FF	5	1.40	880	68	1.4	237.1	269.4	81.7	15.6	87.0	49782	1641
SD+FF-C	- 1	1.40	250	72	1.4	74.1	296.4	15.7	10.0	87.0	14974	1048
SD+FF-C	2	1.40	250	70	1.4	74.1	296.4	15.6	10.2	87.0	14558	1071
SD+FF-C	3	1,40	250	60	1.4	74.1	296.4	15.1	11.5 📜	87.0	12479	1211
SD+FF-C	4	1.40	250	70	1.4	74.1	296.4	15.6	10.2	87.0	14558	1071
SD+FF-C	5	1,40	880	68	1.4	237.1	269.4	47.9	9.1	87.0	49782	961

Technology	Boiler			Capacit	-	Capital	Capital	Annual	Annual 🤅	S02	\$02 ·	SO2 Cos
	Number	Retrofit	Size	Factor	Sul fur	Cost	Cost	Cost	Cost	Removed	Removed	Effect
		Difficulty	<pre>/ (MWD -)</pre>	(%)	Content	(\$MM)	(\$/kW)	(SMM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
		Factor		•	(%)						·	
					••,	•						
CS/8+\$15	10	1.00	250	72	1.4	. 8.4	33.7	22.4	14.2	34.0	5926	3772.
CS/8+\$15	. 2	1.00	250	70	1.4	8.4	33.7	21.8	14.2	34.0	5761	3781.1
CS/B+\$15	3	1.00	250	60	1.4	8.4	33.7	18.9	14_4	34.0	4938	3834.9
CS/B+\$15	4	1,00	250	, 70	1.4	8.4	. 33.7	21.8	14.2	34.0	5761	3781.1
CS/8+\$15	5	1.00	880	68	1.4	26.2	29.7	72.7	13.9	34.0	1 97 01 ·	3691.
S/B+\$15-C	1	1.00	250	72	1.4	8.4	33.7	12.8	8.1	34.0	5926	2167.0
S/8+\$15-C	2.	1.00	[`] 250	70	1.4	8.4	33.7	12.5	8.2	34.0	5761	2172.9
S/8+\$15-C	3	1.00	250	60	1.4	8.4	33.7	10.9	8.3	34.0	4938	2204.8
CS/8+\$15-C	- 4	1.00	250	70	1.4	8.4	33.7	12.5	8.2	34.0	5761	2172.9
CS/8+\$15-C	5	1.00	880	68	1.4	26.2	. 29.7	41.8	8.0	34.0	19701	2120.
S/B+\$5	1	1.00	250	72	- 1.4	5.8	23.3	8.9	5.6	34.0	5926	1497.8
S/8+\$5	· 2	1.00	250	70	1.4	5.8	23.3	8.7	5.7	34.0	5761	1504.6
S/B+\$5	3	1.00	250	60	1.4	5.8	23.3	.7.6	5.8	34.0	4938	1545.2
S/B+\$5	4	1.00	250	70	1.4	5.8	23.3	8.7	5.7	34.0	5761	1504.6
CS/8+ \$ 5	5	1.00	880	- 68	1.4	17.1	19.4	. 27.8	5.3	34.0	19701	1412.2
S/B+\$5-C	1	1.00	250	72	1.4	5.8	23.3	5.1	3.2	34.0	5926	862.6
CS/B+\$5-C	2	1.00	250	70	1.4	5.8	23.3	5.0	3.3	34.0	5761	866.0
S/B+\$5-C	3	1.00	250	60	1.4	5.8	23.3	4.4	3.3	34.0	4938	890.6
CS/B+\$5-C	. 4.	1.00	250	70	.1.4	5.8	23.3	5.0	3.3	34.0	5761	866.0
S/B+\$5-C	5	1.00	880	68	1.4	17.1	19.4	16.0	3.1	34.0	19701	813.0

Table 3.1.3-5. Summary of Coal Switching/Cleaning Costs for the Gaston Plant (June 1988 Dollars)

which are a function of variable costs (e.g. fuel costs). PCC was not evaluated because this is not a mine mouth plant.

Low NO_x Combustion--

Units 1-4 are dry bottom, opposed wall-fired boilers rated at 250 MW each and unit 5 is a dry bottom, tangential-fired boiler rated at 880 MW. The combustion modification technique applied to boilers 1-4 was LNB and for unit 5 was OFA. Tables 3.1.3-6 and 3.1.3-7 present the NO_{χ} performance and cost results of retrofitting LNB and OFA at the Gaston plant. Although boiler volumetric data was not available for units 1-4, a moderate NO_{χ} reduction was assumed to be typical for these boilers.

Selective Catalytic Reduction--

Hot side SCR reactors for all units would be located immediately behind the chimneys in low site access/congestion areas. This is due to the smaller space needed for the SCR reactors compared to the FGD absorbers. A duct length of 250 feet was estimated for the flue gas handling system. The ammonia storage system was placed close to the sorbent storage area adjacent to the air cooling towers. Some plant roads have to be relocated; therefore, a factor of 15 percent was assigned to general facilities.

Table 3.1.3-6 presents the SCR process area retrofit factors and scope adder costs. Table 3.1.3-7 presents the estimated cost of retrofitting SCR at the Gaston boilers.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI and DSD technologies at the Gaston steam plant is not feasible. This is due to the inadequate duct residence time between the boilers and the retrofit ESPs for either humidification (for FSI application) or sorbent droplet evaporation (for DSD application). Also, because the ESP temperatures are high (>600°F), gas cooling/humidification would not significantly improve ESP performance and would hurt air heater heat recovery.

	BOILER NUMB	ER
COMBUSTION MODIFICATION RESULTS		
	1,2,3,4	5
FIRING TYPE	OWF	TANG
TYPE OF NOX CONTROL	LNB	OFA
FURNACE VOLUME (1000 CU FT)	NA	400
BOILER INSTALLATION DATE	1960	1974
SLAGGING PROBLEM	NO	NO
ESTIMATED NOx REDUCTION (PERCENT)	40	35
SCR RETROFIT RESULTS (EACH UNIT)		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	54	138
New Duct Length (Feet)	250	250
New Duct Costs (1000\$)	2117	4421
New Heat Exchanger (1000\$)	0	0
TOTAL SCOPE ADDER COSTS (1000\$)	2171	4559
RETROFIT FACTOR FOR SCR	1.16	1.16
GENERAL FACILITIES (PERCENT)	15	15

TABLE 3.1.3-6. SUMMARY OF NOX RETROFIT RESULTS FOR GASTON

Technology	Boiler Number	Main Retrofit Difficulty	Size	Capacit Factor (%)	y Coal Sulfur Content	Cost	Capital Cost (\$/kW)	Cost	Annual Cost (milis/kwh)		NOx . I Removed (tons/yr)	NOX Cost Effect. (\$/ton)
		Factor	•	· · · · .	(%)		-					
<i></i>		•••••		••••••								••••••
LNC-LNB	1	1.00	250	72	1.4	3.7	14.7	. 0.8	0.5	40.0	2663	292.2
LNC-LNB	2	1.00	250	70	1.4	3.7	14.7	•	0.5	40.0	2589	300.0
LNC-LNB	3	1.00	250	.60	1.4	3.7	14.7		0.6	40.0	2219	350.1
LNC-LN8	4	1.00	250	70	1.4	3.7	14.7		0.5	40.0	2589	300.0
CNC-LND	. ••••	1.00	230	, 10	1.4	5.1	14.7	. 0.0	0.5	40.0	2307	300.0
LNC-LNB-C	1	1.00	250	72	1.4	3.7	14.7	0.5	0.3	40.0	2663	173.6
LNC-LN8-C	2	1.00	250	70	1.4	3.7	14.7	0.5	0.3	40.0	2589	178.0
LNC-LNB-C	3	1.00	250	60	1.4	3.7	14.7	,	0.4	40.0	2219	208.3
LNC-LNB-C	4	1.00	250	70	1.4	3.7	14.7		0.3	40.0	2589	178.0
			· .				÷.,	• •	•		· · .	
LNC-OFA	5	1.00	880	68	1.4	· 1.5	1.7	0.3	0.1	35.0	5534	56.4
LNC-OFA-C	5	1.00	880	68	1.4	- 1.5	1.7	0.2	0.0	35.0	5534	33.
				•	.`	. 1	· · ·					•
SCR-3	1	1.16	250	72	1.4	33.3	133.1	12.2	7.7	80.0	5327	2289.
icr-3	2	1,16	250	70	1.4	33.3	133.1	12.2	7.9	80.0	5179	2348.
SCR-3	3	.1 . 16	250	. 60	1.4	33.3	133.1	12.0	9.1	80.0	4439	2703.
SCR-3	. 4	1.16	250	70	1.4	33.3	133.1	12.2	7.9	80.0	5179	2348.
SCR-3	5	1.16	880	68	1.4	99.1	112.6	.37.7	7.2	8010	12649	2977.0
SCR-3-C	1	1.16	250	72	1.4	33.3	133.1	7.1	4.5	80.0	5327	1339.8
CR-3-C	2	1,16	250	70	1.4	33.3	133.1	7.1	4.6	80.0	5179	1374.
CR-3-C	3	1.16	250	60	1.4	33.3	133.1	7.0	5.3	80.0	4439	1582.2
CR-3-C	4	1.16	250	70	1.4	33.3	133.1	7.1		80.0	5179	1374.3
SCR-3-C	5	1.16	880	68	1.4	99.1	112.6	22.0	4.2	80.0	12649	1740.
				•					· · · · ·			
SCR-7	1	1.16	250	72	. 1.4	33.3	133.1	10.1	6.4	80.0	5327	1905.3
5CR-7	2	1.16	250	70	1.4	33.3	133.1	10.1	6.6	80.0	5179	1953.2
SCR-7	_ ⁻ 3	1.16	250	60	1.4	33.3	133.1	10.0	7.6	80.0	4439	2241.9
SCR - 7	4	1.16	250	70	1.4	33.3	133.1	10.1	6.6	80.0	5179	1953.2
SCR-7	5	1.16	880	68	1.4	99. 1	112.6	30.5	5.8	80.0	12649	2407.4
	. 1	1.16	250	72	1.4	33.3	133.1	6.0	3.8	80.0	5327	1119.6
CR-7-C	z	1.16	250	70	1.4	33.3	133.1	5.9	3.9	80.0	5179	1147.9
CR-7-C	3	1.16	250	60	1.4	33.3	133.1	5.9	4.5	80.0	4439	1318.
CR-7-C	4	1.16	250	70	1.4	33.3	133.1	5.9	3.9	80.0	5179	1147.9
SCR-7-C	5	1.16	-880	68	1.4	99.1	112.6	17.9	3.4	80.0	12649	1414.4

Table 3.1.3-7. NOx Control Cost Results for the Gaston Plant (June 1988 Dollars)

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Gaston plant. Units 1-4 would be considered good candidates for repowering or retrofit because of their small boiler sizes. However, the long remaining boiler life and high capacity factors reduce the applicability of these technologies. Unit 5 is even less likely a candidate for repowering/retrofit because of the large boiler size, long remaining life, and high capacity factor. 3.1.4 <u>Gorgas Steam Plant</u>

Sorbent injection technologies (FSI and DSD) were not considered for the boilers at the Gorgas plant due to the short duct residence time between the boilers and the ESPs and the lack of ESP information.

TABLE 3.1.4-1. GORGAS STEAM PLANT OPERATIONAL DATA

BOILER NUMBER	5	6,7	8,9	10
GENERATING CAPACITY (MW)	60	100	156,16	5 700
CAPACITY FACTOR (PERCENT) INSTALLATION DATE	41 1944	42,48 1951,5	63,55 2 1956,58	79 81972
FIRING TYPE			ALL TANG	
FURNACE VOLUME (1000 CU FT)	NÁ		9 NA	334
LOW NOX COMBUSTION			0 .5	
COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB)	• •		500	
COAL ASH CONTENT (PERCENT)		1	1	- <u>.</u> .
FLY ASH SYSTEM			ISPOSAL	
ASH DISPOSAL METHOD STACK NUMBER	1		ON-SITE 2	2
COAL DELIVERY METHODS	•	RAILR	OAD/TRUCK	-
		. ,		
PARTICULATE CONTROL	. л	•		
ТҮРЕ	ESP	ESP	ESP	ESP
INSTALLATION DATE	NA .	NA	NA	1972
EMISSION (LB/MM BTU) REMOVAL EFFICIENCY	NA NA	NA NA	NA NA	0.06 99.4
DESIGN SPECIFICATION		nd -	114	33.4
SULFUR SPECIFICATION (PERCENT)	NA	NA	NA -	NA
SURFACE AREA (1000 SQ FT)	NA NA	NA	NA NA	NA 320
EXIT GAS FLOW RATE (1000 ACFM) SCA (SQ FT/1000 ACFM)	NA	NA NA		NA
OUTLET TEMPERATURE (F)	NA	NA	NA	NA

TABLE 3.1.4-2. SUMMARY OF RETROF1T FACTOR DATA FOR GORGAS UNITS 5, 6 AND 7 *

		FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			· · ·
SO2 REMOVAL FLUE GAS HANDLING	LOW	NA NA	LOW
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	NA LOW
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA LOW
SCOPE ADJUSTMENTS		•	,
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 593,938 NO 0 NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS		· *	
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.38	NA	NA 1.27
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16
GENERAL FACILITIES (PERCENT) 10	0	10

* L/S-FGD absorbers, LSD-FGD absorbers and new FFs for units 5, 6 and 7 would be located east of their common chimney.

TABLE 3.1.4-3.	SUMMARY OF	RETROFIT FACTOR DATA FOR GORGAS
	,	UNITS 8, 9 AND 10 *

	FGD TECHNOLOGY							
	L/LS FGD O	FORCED XIDATION	LIME SPRAY DRYING					
SITE ACCESS/CONGESTION	- 							
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	HIGH HIGH	NA NA	HIGH NA					
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	H I GH NA					
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA HIGH					
SCOPE ADJUSTMENTS			- -					
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 1397-5365 NO 0 NO	NA NA NA O	NO NA NO O NO					
RETROFIT FACTORS			` <u>;</u>					
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.68	NA .	NA 1.62					
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.58					
GENERAL FACILITIES (PERCEN	T) 15	0	15					

* L/S-FGD absorbers, LSD-FGD absorbers and new FFs for units 8,
 9 and 10 would be located north of their common chimney.

rechnology	Number	Retrofit	Size		Sulfur	Cost	Capital Cost	Cost	Annual Cost	SO2 Removed	SD2 Removed	SOZ Cos Effect
		Difficulty -	(H¥)	(%)	Content	(\$MH)	(\$/k¥)	(\$I#()	(mills/kwh)	(%)	(tons/yr)	(\$/ton
		Factor			(%)					۰.		
L/S FGD	5	1.38	60	41	1.5	31.8	529.3	12.3	57.3	90.0	2240	5510.
L/S FGD	6	1.38	100	42	1.5	40.6	405.7		42.9	90.0	3824	4132.
/S FGD	7	1.38	100	48	1.5	40,6	405.7	16.1	38.4	90.0	4370	3694.
/S FGD	8	1.68	156	63	1.5	62.5	400.6	25.2	29.3	90.0	8947	2818.
/S FGD	° 9.	1.68	165	. 55	1.5	64.7	392.3	25.5	32.0	90.0	8262	3081.
/S FGD	- 10	1.68	700	79 ·	1.5	155.2	221.7	72.2	14.9	90.0	50345	1434.
/S FGD	5-7	1.38	260	44	1.5	68.9	265.0	27.4	27.4	90.0	104 15	2632.
/S FGD	8-10	1,68	1021	66	1.5	221.2	216.7	96.8	16.4	90.0	61348	1578.4
/S FGD-C	5	1.38	60	41	1.5	31.8	529.3	7.2	33.5	90.0	2240	3220.
/S FGD-C	6	1.38	100	42	1.5	40.6	405.7	9.2	25.1	90.0	3824	2415.
/S FGD-C	7 ·	1.38	100	48	1.5	40.6	405.7	9.4	22.4	90.0	4370	2158.
/S FGD-C	8	1.68	156	63	1.5	62.5	400.6	14.7	17.1	90.0	8947	: 164 6 .
/S FGD-C	9.	1.68	165	55	1.5	64.7	392.3	<u> </u>	18.7	90.0	8262	1800.
/S FGD-C	10	1.68	700	79	1.5	155.2	221.7	42.1	8.7	90.0	50345	835.
/S FGD-C	5-7	1.38	260	44	1.5	68.9	265.0	16.0	16.0	90.0	10415	1537.
/S FGD-C	8-10	1.68	1021	66	1.5	221.2	216.7	56.5	9.6	90.0	61348	920 .
.C FGD	5-7	1,38	260	44	1.5	45.8	176.1	20.4	20.4	90.0	10415	1960.
C FGD	8-10	1.68	1021	66	1.5	172.6	169.1	82.1	13.9	90.0	61348	1337.4
C FGD-C	5-7	1.38	260	44	1.5	45.8	176.1	11.9	11.9	90.0	10415	1143.
C, FGD-C	8-10	1.68	1021	66	1.5	172.6	169.1	47.8	8.1	90.0	61348	778.9
SD+FF	5	1.27	60	41	1.5	16.6	277.3	7.1	33.1	87.0	2153	3318.
SD+FF	6	1.27	100	42	1.5	23.8	237.8	9.5	25.8	87.0	3675	2579.
SD+FF	7	1.27	100	48	1.5	23.8	237.8	9.7	23.0	87.0	4200	2298.
SD+FF	8	1.62	156	63	1.5	43.4	278.3	16.2	18.9	87.0	8599	1887.
SD+FF	9 -	1.62	165	55	1.5	45.3	274.2	16.5	20.7	87.0	7941	2074.
SD+FF	10	1.62	700	. 79	1.5	153.6	219-4	58.3	12.0	87.0	48387	1204.
SD+FF-C	. 5	1.27	60	41	1.5	16.6	277.3	· 4.2	19.3	87.0	2153	1936.
SD+FF-C	6	1.27	100	42	1.5	23.8	237.8	5.5	15.1	87.0	3675	1507.
SD+FF-C	7	1.27	100	48	1.5	23.8	237.8	5.6	13.4	87.0	4200	1342.
SD+FF-C	8	1.62	156	63	1.5	43.4	278.3	9.5	11.0	87.0	8599	1104.
SD+FF-C	9	1.62	165	55	1.5	45.3	274.2	9.6	12.1	87.0	7941	1214.
SD+FF-C	10	1.62	700	79	1.5	153.6	219.4	34.1	7.0	87.0	48387	704.4

Table 3.1.4-4. Summary of FGD Control Costs for the Gorgas Plant (June 1988 Dollars)

Technology	Boiler Number	Main Retrofit		Capacity Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Cost	SO2 Removed	SO2 Removed	SO2 Cos Effect
		Difficulty	7 (HW)	(%)	Content	(SHM)	(\$/k¥)	(\$MH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
•		Factor			(%)			· · ·				
		•••••		••••••						•••••		•••••
CS/B+\$15	5	1.00	. 60	41	1.5	2.8	46.8	3.7	17.0	37.0	932	3923.
CS/8+\$15	6	1.00	. 100	42	1.5	4.1	40.7	5.9	16.0	37.0	1592	3696.
CS/B+\$15	7	1.00	100	48	1.5	4.1	40.7	6.6	15.7	37.0	1819	3623.
CS/B+\$15	8	1.00	156	63	1.5 :	5.8	37.0	12.7	14.7	37.0	3725	3403.
CS/8+\$15	9	1.00	165	. 55	1.5	·6.0	36.6	11.8	14.9	37.0	3440	3442.
CS/B+\$15	10	1.00	700	79	1.5	21.4	30.6	67.0	13.8	37.0	20960	3198.
CS/B+\$15-C	5	1.00	60	41	1.5	2.8	46.8	2.1	9.8	37.0	932	2261.
CS/8+\$15-C	6	1.00	100	.42	1.5	4.1	- 40.7	3.4	9.2	37.0	1592	2129.
S/8+\$15-C	7	1.00	100	48	1.5	4.1	40.7	3.8	9.0	37.0	1819	2086.
CS/B+\$15-C	. 8	1.00	156	63	1.5	5.8	37.0	7.3	8.5	37.0	3725	1956.
CS/8+\$15-C	9	1.00	165	55	1.5	6.0	36.6	6.8	8.6	37.0	3440	1980.
CS/8+\$15-C	-10	1.00	700	79	1.5	21.4	30.6	38.5	7.9	37.0	20960	1837.
CS/8+\$5	. 5	1.00	60	41	1.5	. 2.2	36.4	1.8	8.2	37.0	932	1897.
CS/B+\$5	6	1.00	100	42	1.5	3.0		2.7		37.0	1592	1673.
CS/B+\$5	7	1.00	100	48	1.5	3.0				37.0	1819	1614.
CS/B+\$5	8	1.00	156	63	1.5	4.2		5.3	6.1	37.0		1418.
CS/B+\$5	9	1.00	165	55	1.5	4.3			6.3	37.0	3440	1446.
CS/B+\$5	10	1.00	700	79	1.5	14.1		25.8		37.0	20960	1228.
CS/B+\$5-C	5	1.00	60	41	1.5	2.2	36.4	1.0	4.7	37.0	932	1097.
CS/8+\$5-C	6	1.00	100	42	1.5	3.0		1.5	4.2	37.0	1592	967.
CS/B+\$5+C	7	1.00	100	48	1.5	3.0	-	1.7	4.0	37.0	1819	932.
CS/B+\$5-C	8	1.00	156	63	1.5	4.2		3.0	3.5	37.0	3725	817.
CS/8+\$5-C	9	1.00	165	55	1.5	4.3		2.9	3.6	37.0	3440	834.
CS/B+\$5-C	10	1.00	700	79	1.5	14.1	20.2	14.8	3.1	37.0	20960	707.

Table 3.1.4-5. Summary of Coal Switching/Cleaning Costs for the Gorgas Plant (June 1988 Dollars)

	BOI	LER NUMBER					
COMBUSTION MODIFICATION RESULTS			• • •				
	5	6, 7	5-7				
FIRING TYPE	TANG	FWF	NA				
TYPE OF NOX CONTROL	OFA	LNB	NA				
FURNACE VOLUME (1000 CU FT)	NĄ	NA, 58.9	NA				
BOILER INSTALLATION DATE	1944	1951, 52	NA				
SLAGGING PROBLEM	NO	NO	NA				
ESTIMATED NOX REDUCTION (PERCENT)	25	40	NA				

TABLE 3.1.4-6. SUMMARY OF NOX RETROFIT RESULTS FOR GORGAS UNITS 5-7

SCR RETROFIT RESULTS *

SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOŴ	LOW
SCOPE ADDER PARAMETERS		N	
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	18	27	55
New Duct Length (Feet)	200	200	200
New Duct Costs (1000\$)	735	991	1733
New Heat Exchanger (1000\$)	1372	1864	3307
TOTAL SCOPE ADDER COSTS (1000\$)	2125	2882	5095
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16
GENERAL FACILITIES (PERCENT)	20	20	20

* Cold side SCR reactors for units 5, 6 and 7 would be located east of their common chimney.

	BO	ILER NUMB	ER	· · ·
COMBUSTION MODIFICATION RESULTS	. •	· · ·	e de la	,
	8	9	10	8-10
FIRING TYPE	TANG	TANG	TANG	NA
TYPE OF NOX CONTROL	OFA	OFA	OFA	NA
FURNACE VOLUME (1000 CU FT)	NA	NA	334	NA
BOILER INSTALLATION DATE	1956	1958	1972	NA
SLAGGING PROBLEM	NO	NO	NO	NA
ESTIMATED NOX REDUCTION (PERCENT)	25	25	25	NA
SCR RETROFIT RESULTS *	· · · ·			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	HIGH	HIGH
SCOPE ADDER PARAMETERS	. .			
Building Demolition (1000\$)	0	0	0	0 -
Ductwork Demolition (1000\$)	38	39	116	154
New Duct Length (Feet)	300	300	300	300
New Duct Costs (1000\$)	1928	1992	4640	5787
New Heat Exchanger (1000\$)	2434	2517	5991	7513
TOTAL SCOPE ADDER COSTS (1000\$)	4400	4549	10747	13454
RETROFIT FACTOR FOR SCR	1.52	1.52	1.52	1.52
GENERAL FACILITIES (PERCENT)	38	38	38	38

TABLE 3.1.4-7. SUMMARY OF NOX RETROFIT RESULTS FOR GORGAS UNITS 8-10

* Cold side SCR reactors for units 8, 9 and 10 would be located north of their common chimney.

Table 3.1.4-8. NOx Control Cost Results for the Gorgas Plant (June 1988 Dollars)

echnology	Sailer	Main	Boiler	Capacit	y Coal	Capitel	Capital	Annual	Annual	NOx	NOx	NOX: Cos
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect
	Ċ	lifficulty	(MW)	(%)	Content	(\$MM)	(\$/kÿ)	(\$HH) ·	(mills/kwh) (%)	(tons/yr)	(\$/tor
: 1.		Factor			(%)						· ·	
								•••••		•••••••	•••••	
			·						-	- ,		
NC-LNB	6	1.00	100	42	1.5	2.6	25.5	0.5	1.5	40.0	610	884.
NC-LNB	7	ູ 1.00	100	48	1.5	2.6	25.5	0.5	1.3	40.0	697	773.
	_					·						
NC-LNB-C	· 6	1.00	100	42	1.5	2.6	25.5	0.3	0.9	40.0	610	525 .
NC-LNB-C	7	. 1.00	100	48	1.5	2.6	25.5	. 0.3	0.8	40.0	697	459.
						·						
NC-OFA	5	1.00	60	41	1.5	0.5	8.4	0.1	0.5	25.0	. 160	668.
NC-OFA	8	1.00	156	63	1.5	0.7	4.7	0.2	0.2	25.0	637	245.
NC-OFA	·	1.00	165	55	1.5	0.8	4.6	0.2	0.2	25.0	588	271.
NC-OFA	10	1.00	700	79	1.5	1.3	1.9	0.3	0.1	25:0	3586	. 79.
NC-OFA-C	5	1.00	60	. 41	1.5	0.5	8.4	0.1	0.3	25.0	160	397.
NC-OFA-C	5	1.00	00 156	63	1.5	0.7	8.4 4.7	0.1	0.3	25.0	637	145.
NC-OFA-C	9	1.00	150	55 S	1.5	0.7	4.6		0.1	25.0	588	161.
NC-OFA-C	10	1.00	700	רָכ 79	1.5	. 1.3		0.1			3586	47.
NUTURAL	10	1.00	700	19	1.2		1.9	0.2	0.0	25.0	3300	47.
CR-3	5	1.16	60	41	1.5	13.9	232.1	4.3	19.7	80.0	510	8331.
CR-3	6	1.16	100	42	1.5	18.8		6.0	16.3	80.0	1220	4905.
CR-3	7	1.16	100	48	1.5	18.8	187.9	6.0	14.3	80.0	1394	4317.
CR-3	.8	1.52	156	63	1.5	32.3	207.0	10.1		80.0	2039	4939.
CR-3	9	1.52	165	55	1.5	33.6	203.5	10.4		80.0	1883	· 5545.
CR-3	10	1.52	700	79	1.5	104.7	149.6	36.3	7.5	80.0	11475	3160,
CR-3 :	5-7	1.16	260	44	1.5	37.6	144.6	12.7	12.7	80.0	3323	3833.
CR-3	8-10	1.52	1021	66	1.5	146.6	143.6	50.8	8.6	80.0	13982	3634.
	010		1021			140.0	140.0	50.0	0.0	00.0		3034.
CR-3-C	5	1.16	60	41	¹ .5	13.9	232.1	2.5	11.6	80.0	510	4895.
CR-3-C	6	1.16	100	42	1.5	18.8	187.8	3.5	9.5	80.0	1220	2879.
CR-3-C	7	1.16	100	48	1.5	18.8	187.9	3.5	8.4	80.0	1394	2534.
CR-3-C	8	1.52	156	63	1.5	32.3	207.0	5.9	6.9	80.0	2039	2901.
CR-3-C	9	1.52	165	55	1.5	33.6	203.5		7.7	80.0	1883	3257.
CR-3-C	10	1.52	700	79	1.5	104.7	149.6	21.2	4.4	80.0	11475	1851.
CR-3-C	5-7	1.16	260	44	1.5	37.6	144.6	7.5	7.5	80.0	3323	2247.
CR-3-C	8-10	1.52	1021	66	1.5	146.6	143.6	29.8	5.0	80.0	13982	2129.
	5 10		1921		1.00		142.0	27.0				E127.
CR-7	5	1.16	.60	41	1.5	13.9	232.1	3.8	17.5	80.0	510	7371.
CR-7	6	1.16	100	42	1.5	18.8		5.2	14.0	80.0	1220	4235
CR-7	7 - 1	1.16	100	48	1.5	18.8	187.9	5.2		80.0	1394	3731.
CR-7	8	1.52	156	63	1.5	32.3				80.0	2039	4314.
CR-7	9	1.52	165	55	1.5			9.1	11.4	80.0	1883	4829.
CR-7	10	1.52	700	79	1.5	104.7		30.6	6.3	80.0	11475	2662.
CR-7	5-7		260	44	1.5	37.6	144.6			80.0	3323	3194.
CR-7	8-10	1.52	1021	66	1.5	146.6	143.6		7.2		13982	3037.
	• .		1									
CR-7-C	5	1.16	60	41	1.5	13.9	232.1	2.2	10.3	80.0	510	4345.
CR-7-C	6	1.16	100	42	1.5	18.8	187.8	3.0	8.3	80.0	1220	2495.
CR-7-C	7	1.16	100	48	1.5		187.9		7.3	80.0	1394	2198.
CR-7-C	8	1.52	156	63	1.5	32.3		5.2	6.0	80.0	2039	2543.
CR-7-C	9	1.52	165	55	1.5	33.6		5.4		80.0	1883	2847.
CR-7-C	10	1.52	700	79	1.5	104.7				80.0	11475	1566.
CR-7-C	5-7		260	44	1.5	37.6				80.0	3323	1881.
CR-7-C	8-10	1.52			1.5	146.6				80.0	13982	1787.

3.1.5 Greene County Steam Plant

The Greene County steam plant is located within Greene County, Alabama, and is part of the Alabama Power Company. The plant houses two coal-fired boilers with a gross generating capacity of 506 MW. The plant is adjacent to the Black Warrier River with a water channel extending from the south loop of the river to the east side of the coal pile.

Table 3.1.5-1 presents the operational data for the Greene County plant. Both boilers burn moderate sulfur coal. Coal shipments are received by barge or railroad and conveyed to a coal storage and handling area south of the plant. The coal is crushed and then conveyed to the boilers.

PM emissions for both boilers are controlled with retrofit hot side ESPs. The ESPs are located behind each boiler. The units are ducted to a common retrofit chimney built southwest of unit 2. The two original chimneys are left intact and are located directly behind the retrofit ESPs. Ash from the units is wet sluiced to ponds located to the south of the coal pile. The following evaluation is based on a 1981 aerial photograph, and any alterations made to the plant since that time should be taken into consideration.

Lime/Limestone and Lime Spray Drying FGD Costs--

For L/LS-FGD system, the absorbers would be placed in a low site access/ congestion area south of and close to the common chimney. A short duct run (100-300 feet) having a low access/congestion retrofit difficulty would be required. The lime/limestone preparation and waste handling area would be located close to the absorbers and north of the coal pile. A storage building would have to be relocated for the placement of the absorbers. Therefore, a factor of 8 percent was assigned to general facilities.

LSD with reuse of the existing ESPs was not considered for this plant because the ESPs are hot side and access to them is difficult. LSD with a new baghouse was considered with the baghouses being located adjacent to their respective absorbers which would be placed in a similar fashion as the L/LS-FGD absorbers. TABLE 3.1.5-1. GREENE COUNTY STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE	1 250 70 1965	2 256 59 1966
FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	OPPOSED W/ 124 NO 1.4 12,500 11.0 WET DISPOS PONDS/ON-S 1 BARGE/RAIL	124 NO 1.4 12,500 11.0 SAL SITE 1
PARTICULATE CONTROL		
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1975 0.06 99.7	ESP 1975 0.06 99.7
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	0.7 to 5 394.0 1400 281.4 715	5.0 394.0 1400 281.4 715

A moderate duct run (300-600 feet) would be required for the application of LSD technology. A low ductwork site access/congestion factor was assigned to both LSD and installation of ducting to the baghouse.

The major scope adjustment costs and estimated retrofit factors for the FGD technologies are presented in Table 3.1.5-2. Table 3.1.5-3 presents the process retrofit factors and capital and operating costs for commercial FGD technologies. The low cost FGD case shows the impact of eliminating spare absorbers and maximizing absorber size.

Coal Switching and Physical Coal Cleaning Costs--

Table 3.1.5-4 presents the IAPCS results for CS at the Greene County plant. These costs do not include changes in boiler and pulverizer operating costs. Coal switching for a fuel price differential of \$15 per ton is higher than that of \$5 per ton because of inventory capital and preproduction costs, which are a function of variable costs (e.g. fuel costs). PCC was not evaluated because the coal sulfur level is relatively low and this is not a mine mouth plant.

Low NO, Combustion--

Units 1 and 2 are opposed wall-fired boilers rated at 250 and 256 MW, respectively. The combustion modification technique applied to unit 2 was LNB. LNBs were not considered for unit 1 since unit 1 has all burners, and LNBs are not yet satisfactorily demonstrated nor commercially available for all burner units. As Table 3.1.5-5 shows, the LNB NO_x reduction performance for unit 2 was assessed based on volumetric heat release rate (MW per furnace volume). Table 3.1.5-6 presents the cost of retrofitting LNB at the Greene County plant.

Selective Catalytic Reduction--

Two SCR configurations are possible at the Greene County plant. Because the units have hot ESPs, the SCR reactors could be located adjacent to the old chimneys and would have a high access/congestion factor. Cold side SCR reactors for units 1 and 2 would be located south of the common chimney and would have a low access/congestion factor and the need for flue gas reheat. Both cases were evaluated. The ammonia storage is placed south of the TABLE 3.1.5-2. SUMMARY OF RETROFIT FACTOR DATA FOR GREENE COUNTY UNIT 1 OR 2

	· · ·		· ·	
en e		FGD_TE	CHNOLOGY	· . ·
	L/LS FGD	FORCED OXIDATION	LIME <u>SPRAY_DRY</u>	ING
SITE ACCESS/CONGESTION	·	• •		
SO2 REMOVAL FLUE GAS HANDLING	LOW LOW	NA NA	LOW	· ·
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	NA LOW	
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA LOW	•
SCOPE ADJUSTMENTS	· · · ·	а Р 		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 2132 NO 0 NO	NA NA NA O	NO NA NO O NO	
RETROFIT FACTORS	• •			••
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.27	NA	NA 1.27	
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16	•.
GENERAL FACILITIES (PERCEN	T) <u>8</u>	0	8	

Technology		Main Retrofit Difficulty Factor	Size (MW)	Capacity Factor (%)		Capital Cost (SMM)	Capital Cost (\$/kW)	Cost	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SOZ Cost Effect (\$/ton)
				•••••			• • • • • • • • • • • •				•••••	
./S FGD	· 1	1.27	250	76	1.4	64.6	258.3	28.8	17.3	90.0	16142	1781.5
/S FGD	2	1.27	256	.59	1.4	65.5	255.9	27.3	20.7	90.0	12832	2130.2
/S FGD	1-2	1.27	506	65	1.4	99.9	197.4	44.2	15.3	90.0	27942	1581.7
/S FGD-C	1	1.27	250	76	1.4	64.6	258.3	16.8	10.1	90.0	16142	1038.6
/S FGD-C	. 2	1.27	256	59	1.4	65.5	255.9	16.0	12.1	90.0	12832	1243.4
/S FGD-C	1-2	1.27	506	65	1.4	99.9	197.4	25.8	8.9	90.0	27942	922.2
C FGD	1-2	1.27	506	65	1.4	80.2	158.5	38.3	13,3	90.0	27942	1369.1
.C FGD-C	1-2	1.27	506	65	1.4	80.2	158.5	22.3	7.7	90.0	27942	797.3
SD+FF	1-2	1.27	506	65	1.4	132.3	261.4	46.2	16.0	87.0	26860	1721.4
SD+FF-C	1-2	1.27	506	65	1.4	132.3	261.4	. 27.1	9.4	87.0	26860	1008.3

Table 3.1.5-3. Summary of FGD Control Costs for the Greene County Plant (June 1988 Dollars)

echnology		•• Main • Retrofit Difficulty	Size	Capacity Factor (%)	y Coal Sulfur Content	Capital Cost (SMM)	Capital Cost (\$/k\)	Cost			SO2 Removed (tops/vr)	SD2 Cos Effect (\$/ton
		Factor			(%)				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·		
s/8+\$15	1	1.00	250	70	1.4	8.6	34.2	21.9	14.3	33.0	5453	4024.
S/B+\$15	2	1.00	256	59	1.4	8.7	34.1	19.2	14.5	33.0	4706	4085.
6/B+\$15-C	1	1.00	250	70	1.4	8.6	34.2	12.6	8.2	33.0	5453	2312
S/B+\$15-C	2	1.00	256	59	1.4	8.7	34.1	11.1	8.4	33.0	4706	2349.
/8+\$5	1	1.00	250	70	1.4	6.0	23.8	8.8	5.8	33.0	5453	1618.
/B+\$5	2	1,00	256	59	1.4	6.1	23.7	7.8	. 5.9	33.0	4706	1664.
/B+\$5-C	1	1.00	250	70 .	1.4	6.0	23.8	5.1	3,3	33.0	5453	932.
S/8+\$5-C	2 ·	1.00	256	59	1.4	6.1	23.7	4.5	3.4	33.0	4706	959

Table 3.1.5-4. Summary of Coal Switching/Cleaning Costs for the Greene County Plant (June 1988 Dollars)

	BOILER NUMBER	
COMBUSTION MODIFICATION RESULTS	· · · ·	
	1	2
FIRING TYPE	NA	OWF
TYPE OF NOX CONTROL	NA	LNB
FURNACE VOLUME (1000 CU FT)	NA	124
BOILER INSTALLATION DATE	NA	1965
SLAGGING PROBLEM	NA	NO
ESTIMATED NOX REDUCTION (PERCENT)	NA	34
SCR RETROFIT RESULTS	COLD SIDE	HOT SIDE
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	HIGH
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	54	200
New Duct Length (Feet)	200	200
New Duct Costs (1000\$)	2541	1694
New Heat Exchanger (1000\$)	4895	0
OTAL SCOPE ADDER COSTS (1000\$)	7527	1894
ETROFIT FACTOR FOR SCR	1.16	1.52
GENERAL FACILITIES (PERCENT)	13	13

TABLE 3.1.5-5. SUMMARY OF NOX RETROFIT RESULTS FOR GREENE COUNTY

Technology		Retrofit	Size	Capacity Factor (%)	Sulfur	Cost	Capital Cost	Cost			NOx Removed (toos (vc)	NOx Cos Effect (\$/ton
Difficulty (MW) Factor			(*)	(%) [,]		(\$/k\) (\$H)					(3)(0)	
												•••••
LNC-LNB	2	1.00	256	59	1.4	3.7	14.5	0.8	0.6	34.0	1865	421.
LNC-LNB-C	2	1.00	256	59	1.4	3.7	14.5	0.5	0.4	34.0	1865	250.
SCR-3 (CS)	. 1	1.16	250	70	1.4	38.7	154.7	13.1	8.5	80.0	5084	2574.0
SCR-3 (CS)	2	1.16	256	59	1.4	39.3	153.6	13.2	9.9	80.0	4388	2998.0
SCR-3 (HS)	1	1.52	250	70	1.4	39.1	156.2	13.5	8.8	80.0	5084	2664.
SCR-3 (HS)	2	1,52 .	256	65	1.4	39.8	155.5	13.7	9.4	80.0	4834	2843.
SCR-3-C (CS)	1	1.16	250	70	1.4	38.7	154.7	7.7	5.0	80.0	5084	1508.
SCR- 3-C (CS)	2	1.16	256	59	1.4	39.3	153.6	7.7	5.8	80.0	4388	1758.
SCR-3-C (HS)	1	1.52	250	70	1.4	39.1	156.2	7.9	5.2	80.0	5084	1561.3
SCR-3-C- (HS)	. 2	1.52	256	65	1.4	39.8	155.5	8.1	5.5	80.0	4834	1665.8
SCR-7 (CS)	1	1.16	250	70	1.4	38.7	154.7	11.0	7.2	80.0	5084	2172.4
SCR-7 (CS)	2	1.16	256	59	1.4	39.3	, 15 3.6	11.1	8.4	80.0	4388	2522.1
SCR-7 (HS)	1	1.52	250	65	1.4	39.1	156.2	11.4	8.0	80.0	4721	2419.9
SCR-7 (HS)	2	1.52	256	65	1.4	39.8	155.5	11.7	8.0	80.0	4834	2410.
SCR-7-C (CS)	1	1.16	250	70	1.4	38.7	154.7	6.5	4.2	80.0	5084	1278.
SCR-7-C (CS)	2	1.16	256	59	1.4	39.3	153.6	6.5	4.9	80.0	4388	1485.2
SCR-7-C (HS)	1.	1.52	250	65	1.4	39.1	156.2	6.7	4.7	80.0	4721	1423.
SCR-7-C (HS)	2	1.52	256	65 .	1.4	39.8	155.5	6.9	4.7	80.0	4834	1418.

Table 3.1.5-6. NOx Control Cost Results for the Greene County Plant (June 1988 Dollars)

reactors and is assigned a low access/congestion factor. For both cases, 200 feet of duct is required to span the distance between the reactors and the existing duct work; no major demolition/relocation is required and the base value of 13 percent was assigned to general facilities.

Table 3.1.5-5 presents the SCR process area retrofit factors and scope adder costs. Table 3.1.5-6 presents the estimated cost of retrofitting SCR at the Greene County plant.

Furnace Sorbent Injection and Duct Spray Drying--

Because of the short duct residence time between the boilers and the ESPs, the marginal size of the ESPs, the congestion around the ESPs area, and the hot side ESPs ($715^{\circ}F$), FSI and DSD were not considered here.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability --

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Greene County plant. Both units would be considered candidates for repowering or retrofit because they are less than 300 MW. However, the high capacity factors could result in high costs associated with downtime (replacement power costs) and the moderate unit age makes these units unlikely repowering candidates in the near future. Space availability adjacent to both units enhances the potential for equipment reuse and reduces construction costs and downtime.

3.1.6 Miller Steam Plant

Both units at the Miller plant are currently burning a low sulfur coal; therefore, FGD costs were not presented since the low sulfur coal would yield high unit costs and CS was not considered for the plant. The only technology considered for control of NO_x emissions was SCR since both units are equipped with LNBs. Sorbent injection technologies (FSI and DSD) were not evaluated for this plant because the boilers are equipped with hot side ESPs which can not be reused.

TABLE 3.1.6-1. MILLER STEAM PLANT OPERATIONAL DATA.

BOILER NUMBER GENERATING CAPACITY (MW)	1,2 660	3,4 660
CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	38,39 1978,85 OPPOSED WALL 526 YES 0.6 12500 11.2 WET DISPOSAL POND/ON-SITE 1 RAILROAD/TRUCK	1989,91 PLANNED FOR CONSTRUCTION
PARTICULATE CONTROL	· · · · · ·	
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1978,85 0.02,0.03 99.1	
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) EXIT GAS FLOW RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	0.5 1037 3888 267 679	

TABLE 3.1.6-2.SUMMARY OF RETROFIT FACTOR DATA FOR MILLER
UNIT 1 OR 2 *

		FGD TE	CHNOLOGY
	_/LS FGD OX	FORCED IDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		1	· ·
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	LOW LOW 100-300	NA NA NA	LOW NA LOW
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA LOW
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 5090,9475 NO 0 NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE ESP UPGRADE	1.27 NA	NA NA	NA 1.27 NA
NEW BAGHOUSE	NA	NA	1.16
GENERAL FACILITIES (PERCENT)	10	0	10

* Absorbers and new FFs for units 1 and 2 would be located behind the common chimney for units 1 and 2.

	BOILER NUMBER
COMBUSTION MODIFICATION RESULTS	
	1,2
FIRING TYPE	OWF
TYPE OF NOX CONTROL	EQUIPPED WITH LNBs
FURNACE VOLUME (1000 CU FT)	526,NA
BOILER INSTALLATION DATE	1978,85
SLAGGING PROBLEM	NA
ESTIMATED NOX REDUCTION (PERCENT)	NA
SCR RETROFIT RESULTS *	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW
SCOPE ADDER PARAMETERS	
Building Demolition (1000\$)	0
Ductwork Demolition (1000\$)	111
New Duct Length (Feet)	250
New Duct Costs (1000\$)	3736
New Heat Exchanger (1000\$)	0
TOTAL SCOPE ADDER COSTS (1000\$) INDIVIDUAL CASE COMBINED CASE	3847 5792
RETROFIT FACTOR FOR SCR	1.16
GENERAL FACILITIES (PERCENT)	20

TABLE 3.1.6-3. SUMMARY OF NOX RETROFIT RESULTS FOR MILLER

* Hot side SCR reactors for units 1 and 2 would be located behind the common chimney for units 1 and 2.

Technology		Main Retrofit Difficulty Factor	Size	(%)	y Coal Sulfur Content (%)	Capital Cost (SMM)	Capital Cost (\$/kW)	Annual Cost (SMM)			NOx Removed (tons/yr)	NOx Cost Effect. (\$/ton)
••••••								· · · · · · · · · · · · ·				
SCR-3	1.	1.16	660	38	0.6	77.9	118.0	28.3	12.9	80.0	7286	3886.5
SCR-3	2	1.16	660	39	0.6	77.9	118.0	28.4	12.6	80.0	7477	3791.9
SCR-3	.1-2	1.16	1320	39	0.6	147.9	112.0	54.7	12.1	80.0	14955	· 3660.9
SCR-3-C	1 ·	1.16	660	38	0.6	77.9	118.0	16.6	7.5	80.0	7286	2274.6
SCR-3-C	2	1.16	660	39	0.6	77.9	118.0	16.6	7.4	80.0	7477	2219.2
SCR-3-C	1-2	1.16	1320	. 39	0.6	147.9	112.0	32.0	7.1	80.0	14955	2141.8
SCR-7	1	1.16	660	38	0.6	77.9	118.0	22.9	10.4	80.0	7286	3146.6
SCR-7	2	-1.16	660	39	0.6	77.9	118.0	23.0	10.2	80.0	7477	3071.0
CR-7	1,-2	1.16	1320	39	0.6	147.9	112.0	44.0	9.7	80.0	14955	2940.0
SCR-7-C	1	1.16	660	- 38	0.6	77.9	118.0	13.5	6.1	80.0	7286	1850.7
CR-7-C	2	1.16	660	39	0.6	77.9	118.0	13.5	6.0	80.0	7477	1806.2
CR-7-C	1-2	1.16	1320	39	0.6	147.9	112.0	25.9	5.7	80.0	14955	1728.7

Table 3.1.6-4. NOx Control Cost Results for the Miller Plant (June 1988 Dollars)

.

. ≏

3.2 TENNESSEE VALLEY AUTHORITY

3.2.1 Colbert Steam Plant

Information for Colbert steam plant appears in U.S. EPA report number EPA-600/7-88/014 entitled "Ohio/Kentucky/TVA Coal-Fired Utility SO₂ and NO_x Retrofit Study" (NTIS PB88-244447/AS).

3.2.2 Widows Creek Steam Plant

The Widows Creek steam plant is located within Jackson County, Alabama, as part of the TVA system. The plant contains eight boilers with a total gross generating capacity of 1,965 MW. Figure 3.2.2-1 presents the plant plot plan showing the location of all boilers and major associated auxiliary equipment.

Table 3.2.2-1 presents operational data for the existing equipment at the Widows Creek steam plant. Boilers 1 to 6 burn low sulfur coal (0.8 percent sulfur). Half of the coal shipments are received by freight barge and the other half is received by rail and conveyed to a coal storage and handling area located west of the plant.

Particulate matter emissions for boilers 1-6 are controlled with retrofit ESPs located behind the old ESP boxes. Ash from all units is wet sluiced to ponds on the far side of the coal storage area northwest of the plant. On-site waste disposal is limited and TVA is considering two options: the purchase of more land adjacent to the plant or dry disposing the waste off-site.

Boilers 7 and 8 burn high sulfur coal (3.5 percent) and have limestone flue gas scrubbing units. As such, cost estimates for SO_2 controls for units 7 and 8 are not presented.

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 3.2.2-1 shows the general layout and location of the FGD control system. Absorbers for L/LS-FGD and LSD-FGD for units 1 to 6 would be located in a relatively small area southeast of unit 1. They were not located in the space available west of unit 6 due to the location of the preparation area for units 1 to 6. The preparation area is located to the

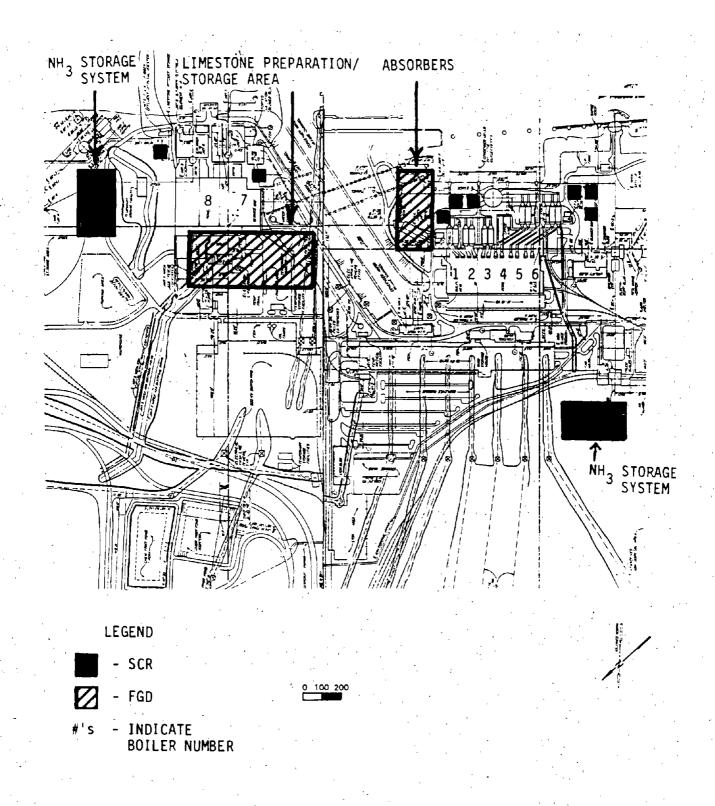


Figure 3.2.2-1. Widows Creek plant plot plan

TABLE 3.2.2-1. WIDOWS CREEK STEAM PLANT OPERATIONAL DATA

· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS FGD (TYPE)	FWF 0.8-1. 12000 10 1	575 9,35 24 4 1961 TANG 1 3.4	TANG 3.6 12000 11 3
PARTICULATE CONTROL			- ,
TYPE INSTALLATION DATE EMISION (LB/MM BTU) REMOVAL EFFICIENCY	ESP 1977 0.05 99.2	ESP 1981 0.06 99.2	ESP 1978 0.07 99.2
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCEN SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	NT) 0.7 322.6 575 561 310	4.0 217.7 1624 134 175	4.5 217.7 1473 134 175

3-56[.]

east of unit 1 on the other side of the water channel, which would make it difficult to reach the other side of unit 6 if the absorbers were located to the west. In addition, flue gas from units 4-6 are converged into a common duct. An easier approach, which would require a shorter breaching duct, would be the diversion of this flue gas to the southeast of unit 1 for the L/LS-FGD absorbers. The coal conveyor running to units 7 and 8 would be relocated to make more space available for the FGD equipment; therefore, a factor of 10 percent was assigned to general facilities for units 1-6. The limestone preparation/storage area for units 1 to 6 was placed by the corner (southwest) of the powerhouse and the waste handling area was placed adjacent to the limestone preparation and storage area for units 7 and 8 east of the plant.

Retrofit Difficulty and Scope Adder Costs--

Units 1-6 already have switched to low sulfur coal. It is unlikely that scrubbing would be needed. If this becomes needed, however, it is more cost effective to switch to a high sulfur coal taking into account the fuel cost differential for estimation of cost effectiveness. Costs presented in this section, it must be noted, are dependent upon acid rain legislation and the type of coal chosen for use.

The FGD scrubbing equipment for units 1 to 6 was assumed to be located in a high access/congestion area east of unit 1. This area is bounded by the cooling water intake channel to the east, the Tennessee River to the south, the coal conveyor to the north, and a powerhouse to the west. A high underground obstruction factor was assumed due to the underground discharge tunnels.

Boilers 1 to 3 and 4 to 6 presently converge into two separate duct runs before going to a common chimney. As a result, a modest duct run would be required for boilers 1 to 6.

For L/LS-FGD, a low ductwork access/congestion factor was assigned to units 1 to 3 because sufficient layout space was available. A medium ductwork access/congestion factor was assigned to units 4 to 6 because it would be necessary to route the ductwork around the existing chimney.

The major scope adjustment costs and estimated retrofit factors for the FGD control technologies are presented in Tables 3.2.2-2 and 3.2.2-3. The

TABLE 3.2.2-2. SUMMARY OF RETROFIT FACTOR DATA FOR WIDOWS CREEK UNITS 1-3

		FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION	· ,		· · ·
SO2 REMOVAL FLUE GAS HANDLING	HIGH LOW	HIGH LOW	HIGH
ESP REUSE CASE BAGHOUSE CASE	LUW	LOW	MEDIUM NA
DUCT WORK DISTANCE (FEET)	300-600	300-600	· · ·
ESP REUSE BAGHOUSE		· · · · ·	600-1000 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA	HIGH
SCOPE ADJUSTMENTS	-		
WET TO DRY	YES	NO	YES
ESTIMATED COST (1000\$)	1268	NA	1268
ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$)	1268 NO 0	NA NO O	1268 NO O
ESTIMATED COST (1000\$) NEW CHIMNEY	1268 NO	NA NO	1268 NO
ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$)	1268 NO 0	NA NO O	1268 NO O
ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER RETROFIT FACTORS FGD SYSTEM	1268 NO 0	NA NO O	1268 NO O NO
ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER RETROFIT FACTORS	1268 NO O NO	NA NO O NO	1268 NO O
ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER RETROFIT FACTORS FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE ESP UPGRADE	1268 NO O NO 1.59 NA	NA NO O NO 1.56 NA	1268 NO O NO 1.73 NA 1.58
ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER RETROFIT FACTORS FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1268 NO O NO 1.59	NA NO O NO 1.56	1268 NO O NO 1.73 NA

TABLE 3.2.2-3. SUMMARY OF RETROFIT FACTOR DATA FOR WIDOWS CREEK UNITS 4-6

· -	. •	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		. *	
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	HIGH MEDIUM	HIGH MEDIUM	HIGH HIGH
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	300-600	300-600	NA 1000 + NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	HIGH NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 1268 NO 0 NO	NO NA NO O NO	YES 1268 NO O NO
RETROFIT FACTORS	. · . ·		. ·
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.64	1.60	2.03 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT) 10	10	10

largest scope adder for Widows Creek would be the conversion of units 1 to 6 fly ash conveying/disposal system from wet to dry for conventional L/LS-FGD and LSD-FGD cases. It was assumed that dry fly ash would be necessary to stabilize L/LS-FGD scrubber sludge waste and to prevent plugging of sluice lines in LSD-FGD cases. However, this conversion would not be necessary for the forced oxidation case. The overall retrofit factors determined for the L/LS-FGD cases were moderate to high for units 1 to 6 (1.56 to 1.64).

The LSD with reused ESP was evaluated for units 1-6. For LSD-FGD, a medium ductwork access/congestion factor was assigned to units 1 to 3, while a high factor was assigned to units 4 to 6. The ESPs at units 1 to 6 have large SCAs (>500) and, as such, it is likely that little or no ESP plate area addition would be required for spray drying at these units. The process area retrofit difficulty factors ranged from moderate to extreme for units 1 to 6 (1.73 to 2.03). A separate retrofit factor (1.58) was developed for the upgrade of the ESPs for units 1 to 6 and was used in the IAPCS model to estimate the particulate control costs if additional plate area was required.

Table 3.2.2-4 presents the costs estimated for L/LS-FGD and LSD-FGD cases. The LSD-FGD costs include upgrading the ESPs and ash handling systems for boilers 1-6.

The low cost control case reduces capital and annual operating costs. The significant reduction in costs is primarily due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber module, and optimization of scrubber size.

Coal Switching Costs--

Because units 1-6 have already switched to low sulfur coal and units 7-8 have limestone FGD units, coal switching was not evaluated.

NO, Control Technology Costs--

This section presents the performance and various related costs estimated for NO_x controls at the Widows Creek steam plant. These controls include LNC modifications and SCR. The application of NO_x control technologies is determined by several site-specific factors which are

Technology	Boiler Number	Retrofit	Size		Sulfur	Cepital Cost	Cost	Cost			SO2 Removed	SO2 Cost Effect
·		Difficulty Factor	(MW)	(%)	Content (%)	(\$MM)	(\$/k¥)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
						• • • • • • • • •					•••••	
L/S FGD	1-3	1.59	421	31	0.8	102.6	243.7	37.5	32.8	90.0	6641	5644.
L/S FGD	4-6	1.64	421	33	1.1	106.6	253.2	39.4	32.4	90.0	9720	4054.
./S FGD-C	1-3	1.59	421	31	0.8	102.6	243.7	21.9	19.2	90.0	6641	3303.
./S FGD-C	4-6	1.64	421 ´	33	1.1	106.6	253.2	23.1	18.9	9 0.0	9720	2372.
LC FOD	1-3	1.59	421	31	0.8	76.8	182.5	29.7	26.0	90.0	6641	4468.
LC FGD	4-6	1.64	421	33	1.1	79.7	189.2	31.2	25.6	90.0	9637	3237.
.C FGD-C	1-3	1.59	421	31	0.8	76.8	182.5	17.3	15.2	90.0	6641	2612.
LC FGD-C	4-6	1.64	421	. 33	· 1.1 ·	79.7	189.2	18.2	15.0	90.0	9637	1892.
.SD+ESP	· 1	1.73	140	29	0.8	24.1	172.5	9.3	26.2	76.0	1751	5317.
SD+ESP	2	1.73	140	26	0.8	24.2	172.6	9.2		76.0	1570	5890.
LSD+ESP	3	1.73	140	37	0.8	24.2	172.7		21.0	76.0 ⁻	2235	4254.
SD+ESP	4	2.03	140	35	0.8	27.7	198.1	10.4	24.3	76.0	2114	4938.
LSD+ESP	5	2.03	140	29	0.9	28.1	200.7	10.5	29.4	76.0.	1970	5306.
SD+ESP	6 -	2.03	140	35	1.1	28.7	205.0	10.9	25.4	76.0	2906	3743.
SD+ESP-C	1	1.73	140	29	0.8	24.1	172.5	5.4	15.3	76.0	1751	3108.
LSD+ESP-C	2	1.73	140	26	0.8	24.2	172.6	5.4	17.0	76.0	1570	3444.
SD+ESP-C	3	1.73	140	37	0.8	24.2	172.7		12.2	76.0	2235	2486.
.SD+ESP-C	4	2.03	140	35	0.8	: 27.7		6.1	14.2	76.0	2114	2888.
SD+ESP-C	5	2.03	140	29	0.9	28.1	200.7	6.1	17.2	76.0	1970	3104.
SD+ESP+C	6	2.03	140	35	1_1	28.7	205.0	6.4	14.8	76.0	2906	2189.

Table 3.2.2-4. Summary of FGD Control Costs for the Widows Creek Plant (June 1988 Dollars)

discussed in Section 2. The NO_X technologies evaluated at the steam plant were: LNB - units 1 to 6, OFA - units 7 to 8, and SCR for all units.

Low NO, Combustion--

Units 1 to 6 are dry bottom, front wall-fired boilers rated at 140 MW each. Units 7 to 8 are dry bottom, tangential-fired boilers rated at 575 MW and 550 MW, respectively. Thus, the NO_x combustion control considered for units 1 to 6 was LNB and the NO_x combustion control considered for units 7 and 8 was OFA. Tables 3.2.2-5 through 3.2.2-7 present the NO_x reduction performance results for units 1 to 8. The NO_x reduction performance estimated for units 1 to 6 (equipped with LNBs) would be 30 percent while the NO_x reduction performance results for units 7 and 8 (equipped with OFA) would be 25 and 20 percent, respectively. The NO_x reduction performances were determined by examining the effects of heat release rates and furnace residence time on NO_x reduction through the use of the simplified procedure. Table 3.2.2-8 presents the estimated cost of retrofitting LNB and OFA ports on the Widows Creek boilers.

Selective Catalytic Reduction--

Tables 3.2.2-5 through 3.2.2-7 present the SCR retrofit results for each unit. The results include process area retrofit difficulty factors and scope adder costs. For scope adders, costs were estimated for ductwork demolition, new flue gas heat exchanger, and new duct runs to divert the flue gas from the ESP to the reactor and from the reactor to the chimney.

The SCR reactor for unit 1 was located east of the unit's ESPs, the reactors for units 2 and 3 were located behind their respective ESPs, and the reactors for units 4 to 6 were located west of the unit 6 ESPs. The reactor for unit 7 is located at the southwest corner of the boiler house in a highly congested area adjacent to the ESP while the reactors for unit 8 were located northeast of the boiler in an uncongested area.

Medium access/congestion factors were assigned to the reactors for units 1 to 6. These reactors were located in the relatively low access/ congestion areas but general access to these areas is poor. The reactor for unit 7 was given a high access/congestion factor because the reactor would be blocked by the service bay, the ESPs, and the electrical power yard. The

	BOI	LER <u>N</u> UMBER		
COMBUSTION MODIFICATION RESULTS	· · · ·			
	·	• •	•	
	1	2	3	
FIRING TYPE	FWF	FWF	FWF	
TYPE OF NOX CONTROL	LNB	LNB	LNB	•
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	21.5	21.5	21.5	
BOILER/WATERWALL SURFACE				
AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	64.2	64.2	64.2	
FURNACE RESIDENCE TIME (SECONDS)	1.73	1.73	1.73	
ESTIMATED NOX REDUCTION (PERCENT)	30	30	30	
SCR RETROFIT RESULTS	. ·	· · ·		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM	MEDIUM	MEDIUM	
SCOPE ADDER PARAMETERS				
Building Demolition (1000\$)	0	NA	NA	
Ductwork Demolition (1000\$)	35	35	35	
New Duct Length (Feet)	350	283	217	
New Duct Costs (1000\$)	2120	1714	1315	
New Heat Exchanger (1000 \$)	2291	2291	2291	
TOTAL SCOPE ADDER COSTS (1000\$)	4446	4040	3640	
RETROFIT FACTOR FOR SCR	1.34	1.34	1.34	
GENERAL FACILITIES (PERCENT)		13	13	

TABLE 3.2.2-5. SUMMARY OF NOX RETROFIT RESULTS FOR WIDOWS CREEK UNITS 1-3

TABLE 3.2.2-6. SUMMARY OF NOX RETROFIT RESULTS FOR WIDOWS CREEK UNITS 4-6

	• .		
	BOIL	ER NUMBER	
COMBUSTION MODIFICATION RESULTS			e y
	4	5	6
FIRING TYPE	FWF	FWF	FWF
TYPE OF NOX CONTROL	LNB	LNB	LNB
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	21.5	21.4	21.4
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	64.2	67.5	67.5
FURNACE RESIDENCE TIME (SECONDS)	1.73	1.66	1.66
ESTIMATED NOX REDUCTION (PERCENT)	30	30	30
SCR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM	MEDIUM	MEDIUM
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	NA	NA
Ductwork Demolition (1000\$)	35	35	35

SCOPE ADDER PARAMETERS			•
Building Demolition (1000\$)	0	NA	NA
Ductwork Demolition (1000\$)	35	35	35
New Duct Length (Feet)	650	650	684
New Duct Costs (1000\$)	3938	3938	4144
New Heat Exchanger (1000\$)	2291	2291	2291
TOTAL SCOPE ADDER COSTS (1000\$)	6263	6263	6469
RETROFIT FACTOR FOR SCR	1.34	1.34	1.34
GENERAL FACILITIES (PERCENT)		13	13

TABLE 3.2.2-7.	SUMMARY OF N	Ox RETROFIT RESULTS	FOR WIDOWS	CREEK UNITS 7-8

	, · ·		
	BOILER NU	MBER	.
COMBUSTION MODIFICATION RESULTS			
•	7	8	
FIRING TYPE	TANG	TANG	,
TYPE OF NOX CONTROL	OFA	OFA	
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	11.2	11.7	÷
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	88.7	103.1	
FURNACE RESIDENCE TIME (SECONDS)	3.84	2.83	
ESTIMATED NOX REDUCTION (PERCENT)	25	20	
SCR RETROFIT RESULTS	· · ·		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	LOW	
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	NA	
Ductwork Demolition (1000\$)	100	97	
New Duct Length (Feet)	367	333	
New Duct Costs (1000\$)	5060	4473	
New Heat Exchanger (1000\$)	5324	5184	-
TOTAL SCOPE ADDER COSTS (1000\$)	10484	9754	
RETROFIT FACTOR FOR SCR	1.52	1.16	
GENERAL FACILITIES (PERCENT)	13	13	

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (\$H91)	Annual Cost (mills/kwh)		NOX Removed (tons/yr)	NOX Cost Effect. (\$/ton)
•	· :			·							5	
LNC-LNB	1 -	1.00	140	29	8.0	2.9	20.9	0.6	1.7	30.0	464	1331.4
LNC-LNB	2	1.00	140	26	0.8	2.9		0.6	1.9	30.0	416	1485.4
LNC-LNB	3	1.00	140	37	8.0	2.9		0.6	1.4	30.0	591	1043.
LNC-LNB	4	1.00	140	35	0.8	2.9	20.9	0.6	1.4	30.0	559	1103.
LNC-LNB	5	1.00	140	29	0.9	2.9	20.9	0.6	1.7	30.0	464	1331.4
LNC-LNB	6	1.00	140	. 35	1.1	2.9	20.9	0.6	1.4	30.0	559	1103.
LNC-LNB-C	. 1	1.00	140	29	0.8	2.9	20.9	0.4	1.0	30. 0	464	791.
LNC-LNB-C	2	1.00	140	26	0.8	2.9	20.9	0.4	1.1	30.0	416	882.
NC-LNB-C	3	1.00	140	37	0.8	2.9	20.9	0.4	Ò.8	30.0	-591	619.
NC-LNB-C	4	1.00	140	35	0.8	2.9	20.9	0.4	0.9	30.0	559	655.
NC-LNB-C	5	1.00	140	29	0.9	2.9	20.9	0.4	1.0	30.0	464	791.
NC-LNB-C	6 .	1.00	140	35	1.1	2.9	20.9	0.4	0.9	30.0 ·	559	655.
NC-OFA	. 7	1.00	575	24	3.4	1.2	2.2	0.3	0.2	25.0	938	281.
NC-OFA	8	1.00	550	38	3.6	1.2			0.1	20.0	1136	227.
NC-OFA-C	7	1.00	5 75	24	3.4	1.2	2.2	0.2	0.1	25.0	938	167.
NC-OFA-C	. 8	1.00	550	38	3.6	1.2	2.2	0,2		20.0	1136	135.
CR-3	1	1.34	140	29	0.8	26.2	187.5	8.2	23.0	80.0	1236	6609.
CR-3	2 -	1.34	140	26	0.8	25.8	184.5	8.1	25.3	80.0	1108	7285.
CR-3	- 3 -	1.34	140	37	0.8	25.4	181.6	8.1	17.8	80.0	1577	5130.
CR-3	4	1.34	140	35	0.8	28.1	200.7	8.5	19.9	80.0	1492	5727.
CR-3	5	1.34	140	29	0.9	28.1	200.7	•	23.9	80.0	1236	6872.
CR-3	6	1.34	140	35	1.1	28.3		8.6	20.0	80.0	1492	5751.
CR-3	7	1.52	575	24	3.4	81.6		27.1	22.4	80.0	3001	9026:
CR-3	8	1.16	550	38	3.6	66.6	121.0	23.6	12.9	80.0	4545	5183.
CR-3-C	' 1 .	1.34	140	29		.26.2	187.5	4.8	13.5	80.0	1236	3882.
CR-3-C	2	1.34	140	26	0.8	25.8	184.5	4.7	14.9	80.0	1108	4278.
CR-3-C	3.	1.34	140	37	- 0.8	25.4	181.6	4.7	10.5	80.0	1577	3011.
SCR-3-C		1.34	140	35	0.8	28,1	200.7	5.0	11.7	80.0	1492	3365.

Table 3.2.2-8. NOx Control Cost Results for the Widows Creek Plant (June 1988 Dollars)

continued .

Technology		Main Retrofit Difficulty Factor	Size		y Coal Sulfur Content (%)	Capital Cost (SMM)	Capital Cost (\$/k₩)	Annual Cost (SHH)	Annual Cost (mills/kwh)		NOX Removed (tons/yr)	NOX Cos Effect (\$/ton
				·····	· · · · · · · · ·							
SCR-3-C	5	1.34	140	29	0.9	28.1	200.7		14.0	80.0	1236	4039.
SCR-3-C	- 6	1.34	140	35	1.1	28.3	202.2	5.0	11.7	80.0	1492	3380.9
SCR-3-C	7	1.52	575	24	3.4	81.6	141.8	15.9	13.1	80.0	3001	5293.4
SCR-3-C	. 8 .	1.16	550	38	3.6	66.6	121.0	13.8	7.5	80.0	4545	3035.9
SCR-7	1	1.34	140	29	0.8	26.2 [.]	187.5	7.0	19.7	80.0	1236	5678.
SCR-7	2	1.34	140	26	0.8	25.8	184.5	6.9	21.7	80.0	1108	6246.
SCR-7	3	1.34	140	37	0.8	25.4	181.6	. 6.9	15.3	80.0	1577	4401.0
SCR-7	4	1.34	140	35	0.8	28.1	200.7	7_4	17:2	8010	1492	4955.1
SCR-7	5	1.34	140	29	0.9	28.1	200.7	8.5	23.9	80.0	1236	6872.
SCR-7	6	1.34	140	35	1.1	28.3	202.2	7.4	17.3	80.0	1492	4980.
SCR-7	7	1.52	575	. 24	3.4	81.6	141.8	22.4	18.5	80.0	3001	7451.
SCR-7	8	1.16	550	38	3.6	66.6	121.1	19.0	10.4	80.0	4545	4190.
SCR-7-C	1	1.34	140	29	0.8	26.2	187.5	4.1	11.6	80.0	1236	3348.8
SCR-7-C	2	1.34	140	26	0.8	25.8	184.5	4.1	12.6	80.0	1108	3683.0
SCR-7-C	3	1.34	140	37	0.8	25.4	181.6	4.1	9.0	80.0	1577	2593.3
SCR-7-C	4	1.34	140	35	0.8	28.1	200.7	4.4	10.2	80.0	1492	2923.
SCR-7-C	5	1.34	140	29	0.9	28.1	200.7	5.0	14.0	80.0	1236	4039.4
SCR-7-C	6	1,34	140	35	1.1	28.3	202.2	4.4	10.2	80.0	1492	2938.
SCR-7-C	7	1.52	575	24	3.4	81.6	141.8	13.2	10.9	80.0	3001	4391.2
SCR-7-C	. 8	1.16	550	38	3.6	ં 66.6	121.1	11.2	6.1	80.0	4545	2466.

Table 3.2.2-8. NOx Control Cost Results for the Widows Creek Plant (June 1988 Dollars) continued .

reactor for unit 8 was assigned a low access/congestion factor due to its easy accessibility. All reactors were assumed to be in areas with high underground obstructions. Table 3.2.2-8 presents the estimated cost of retrofitting SCR at the Widows Creek boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection---

The sorbent receiving/storage/preparation areas for units 1 through 6 were located east of boiler 1. The retrofit of DSD and FSI technologies at the Widows Creek steam plant for units 1 to 6 would be relatively easy. This is due to the large ESPs (SCA >500) long flue gas duct runs and the subsequent long residence time between the boilers and the retrofit ESPs. If ESP upgrading was required, a high site access/congestion factor was assigned to the ESPs upgrade (1.55) because of the close proximity of the ESPs. The conversion of wet to dry fly ash handling system would also be required for reusing the ESPs. Table 3.2.2-9 presents a summary of site access/congestion factors, scope adders, and retrofit factors for DSD and FSI technologies at the Widows Creek steam plant. Table 3.2.2-10 presents the costs estimated for FSI and DSD retrofit at Widows Creek for boilers 1-6.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability --

Using the applicability criteria presented in Section 2 for AFBC retrofit and AFBC/CG/combined cycle repowering, boilers 1 to 6 at Widows Creek would be considered good candidates for AFBC retrofit and AFBC or CG/combined cycle repowering because of their small boiler sizes and low capacity factors. Boilers 7 and 8 would not be considered candidates for this retrofit technology because both boilers are equipped with retrofit FGD units.

TABLE 3.2.2-9.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR WIDOWS CREEK UNITS 1-6

· · · · · · · · · · · · · · · · · · ·	
ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	MEDIUM HIGH NA
SCOPE ADDERS	:
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	YES 1268 NA NA NA SO 38
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE RETROFIT FACTORS	1306 NA
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.25 1.55 NA

lechnol ogy 👘	Boiler			Capacit		Capital	Capital	Annual	Annual	SO2	S02	SO2 Cos
		- Retrofit		-,	Sulfur	Cost	Cost	Cost	Cost		Removed	
		Difficulty	(MW)	(%)	Content	(\$HM)	(\$/k\)	(SMH)	(mills/kwh)	(%)	(tons/yr)	(\$/ ton
	· .	Factor			(%)				1 .		4	4
		· · · · · · · · · · · · · · · · · · ·										
SD+ESP	1	1.00	140	29	0.8	7.9	56.4	4.6	13.0	49.0	1117	4142.
SD+ESP	2	1.00	140	26	0.8	7.9	56.5	4.6	14.3	49.0	1001	4566.
SD+ESP	3	1.00	140	37	0.8	7.9	56.6	4.8	10.6	49.0	1425	3366.
SD+ESP	4	1.00	140	35	0.8	7.9	56.3	4.7	11.0	49.0	1348	3517.
SD+ESP	5	1.00	140	29.	D.9	8.1	58.0	4.7	13.3	49.0	1256	3770.
SD+ESP	6	1.00	140	35	° 1.1	8.5	60.8	5.1	11 .8	49.0	1853	2743.
·				••			·					
SD+ESP-C	1	1.00	. 140	29	0.8	7.9	56.4	2.7	7.6	49.0	1117	2405
SD+ESP-C	2	1.00	140	26	0.8	7.9	56.5	2.7		49.0	1001	2651
SD+ESP-C	3	1.00	140	37	0.8	7.9	56.6	2.8	6.1	49.0	1425	1953
SD+ESP-C	4	1.00	140	35	0.8	7.9	56.3			49.0	1348	2041
SD+ESP-C	5	1.00	140	29	0.9	8.1		2.8	7.7	49.0	1256	2189
SD+ESP-C	6	1.00	140	- 35	1.1	.8.5	60.8	3.0	6.9	49.0	1853	1592
SI+ESP-50	1	1.00	140	29	0.8	. 8.1	58.0	3.7	10.4	50.0	1148	3221
SI+ESP-50	2	1.00	. 140	26	0.8	8.1	58.0	3.6	11.4	50.0	1029	3518
\$1+ESP-50	3	1.00	140	37	0.8	8.1	58.0	3.9	8.6	50.0	1464	2664
SI+ESP-50	4	1.00	140	35	0.8	8.1	58.0	3.9	9.0	50.0	1385	2779
SI+ESP-50	5	1.00	140	29	0.9	8.3	59.0	3.8	10.7	50.0	1291	2953
SI+ESP-50	6	1.00	140	35	<u>,</u> 1.1	, 8.5	60.8	4.3	9.9	50.0	1905	2231
SI+ESP-50-C	1	1.00	140	29	0.8	8.1	58.0	2.2	6.1	50.0	1148	1877.
S1+ESP-50-C	ż	1.00	140	26	0.8	8.1	58.0	2.1	6.6	50.0	1029	2051
SI+ESP-50-C	3	1.00	140	37	0.8	8.1	58.0	2.3	5.0	50.0	1464	1551
SI+ESP-50-C	4	1.00	140	35	0.8	8.1	58.0	2.2	5.2	50.0	1385	1618
SI+ESP-50-C	5	1.00	140	29	0.9	8.3	59.0		6.2	50.0	1291	1721.
51+ESP-50-C	6	1,00	140	35	1.1	8.5	60.8		5.8	50.0	1905	1298
· · · · · · · · · · · · · · · · · · ·												
SI+ESP-70	1	1.00	140	29	0.8	8.2	58.7	3.7	10.5	70.0	1607	2326
SI+ESP-70	2	1.00	140	26	0.8	8.2	58.7	3.7	11.5	70.0	1441	2540
51+ESP-70	3	1.00	140	37	0.8	8.2	58.7	3.9	8.7	.70.0	2050	1925
S1+ESP-70	4	1.00	140.	35	0.8	8.2	58.7	3.9		70.0	1939	2008.
SI+ESP-70	5	1.00	140	29	0.9	8.4	59.7	3.9	10.8	70.0	1808	2134
SI+ESP-70	6	1.00	140	35	- 1.1	8.6	61.6	4.3	10 .0	70.0	2666	1614.
SI+ESP-70-C	1	1.00	140	29	0.8	8.2	58.7	2.2	6.1	70.0	1607	1355
SI+ESP-70-C	2	1.00	140	26	0.8	8.2	58.7	2.1	6.7	70.0	1441	1481.
SI+ESP-70-C	3	1.00	, 140	-37	0.8	8.2	58.7	2.3	5.1	70.0	2050	1120
SI+ESP-70-C	4	1.00	140	35	0.8	8.2	58.7	2.3	5.3	70.0	1939	1169
SI+ESP-70-C	. 5	1.00	140	- 29	0.9	8.4	59.7	2.2	6.3	70.0	1808	1243.
SI+ESP-70-C	6	1.00	140	35	. 1.1	8.6	61.6	2.5	5.8	70.0	2666	939.

Table 3.2.2-10. Summary of DSD/FSI Control Costs for the Widows Creek Plant (June 1988 Dollars)

SECTION 4.0 DELAWARE

4.1 DELMARVA POWER AND LIGHT COMPANY

4.1.1 Indian River Steam Plant

The Indian River steam plant is located within Sussex County, Delaware, as part of the Delmarva Power and Light Company system. Adjacent to the Indian River, the plant contains four coal-fired boilers and has a total gross generating capacity of 780 MW.

Table 4.1.1-1 presents operational data for the existing equipment at the Indian River plant. Boilers 1-3 burn 1.4 percent sulfur coal and unit 4 burns 0.75 percent sulfur coal (1971 NSPS unit). Coal shipments are received by railroad and transferred to a coal storage and handling area east of the plant and beside the Indian River.

PM emissions for the boilers are controlled with ESPs located behind each unit. The plant has a dry fly ash handling system. Fly ash is disposed of in an ash pond east of the coal pile. Units 1 through 4 are served by their own chimneys located behind the ESPs.

Lime/Limestone and Lime Spray Drying FGD Costs--

The four boilers are located beside each other with boiler 1 being close to the Indian River and boiler 4 being away from the river. The absorbers for units 1 through 4 would be located behind the unit 4 chimney and close to the coal pile. Unit 4 is currently burning low sulfur coal and, as such, scrubbing would not be required. Although retrofit factors were developed for this unit, capital and operating costs were not. The limestone preparation, storage, and handling area would be located south and east of the coal pile. Some of the plant roads, coal storage area, and a coal conveyor would have to be relocated to make space available for the FGD absorbers. Therefore, a factor of 15 percent was assigned to general facilities.

The Indian River plant is surrounded by water and very limited space is available for locating FGD absorbers. FGD absorbers for units 1-3 were not

TABLE 4.1.1-1. INDIAN RIVER STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE	1,2 81 73 1957,59 FRONT	3 176 64 1970 FRONT	4 442 54 1980 OPPOSED
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM		NO 1.4 12700 10.5 HANDLING	WALL NA NO 0 .75 13200 7.5
ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS PARTICULATE CONTROL	1,2	N-SITE 3 ILROAD	4
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1977,78 0.18,0.11 99.5	1981 0.07	ESP 1980 0.04 99.5
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	1.8 99.4 298 333 270	1.8 207.4 525 395 285	0.9 1210 1956 618 300

located behind their respective chimneys due to major demolition/relocation that would be necessary. Therefore, the site behind unit 4 was selected for all units. This location has a high site access/congestion factor due to the access/congestion difficulties created by the coal pile and coal conveyors.

For flue gas handling, long duct runs (over 1000 feet) would be required for units 1-3 if chimneys are reused. Therefore, a new chimney was assumed to reduce the need for long return duct runs. Short duct runs were assigned to the unit 4 flue gas handling system because its absorbers can be placed immediately behind the unit 4 chimney. A high site access/congestion factor was assigned to the flue gas handling systems due to the access/ congestion difficulties of this location.

LSD with reuse of the existing ESPs was not considered for units 1-3. Even though the ESPs are large (SCA >300) and would probably handle the increased load from LSD application, access to the inlet of the ESPs is extremely difficult. This could result in long boiler downtimes for tie-in. LSD with a new baghouse was not considered for units 1-3 because of a limited space available to locate both the absorbers, baghouses, a new chimney, and the long duct run requirements. For unit 4, ESPs may be accessed from the north side and absorbers would be located behind the chimney. A high site access/congestion factor was assumed for the absorber locations and the flue gas handling system. No major ESP upgrade would be anticipated because the ESPs are large (SCA >600).

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 4.1.1-2 and 4.1.1-3. Table 4.1.1-4 presents the capital and operating costs for commercial FGD technologies. Costs for unit 4 are not presented because the unit is burning low sulfur coal. The low cost FGD system for units 1-3 reduces capital costs because of the economies of scale obtained by combining the FGD systems and using large absorber sizes and eliminating spare absorber modules.

Coal Switching and Physical Coal Cleaning Costs--

Table 4.1.1-5 presents the IAPCS cost results for CS at the Indian River boilers 1-3. These costs do not include boiler and pulverizer

TABLE 4.1.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR INDIAN RIVER UNITS 1-3 (EACH)

· · · · · ·		FGD TE	CHNOLOGY
	<u>L/LS FGD (</u>	FORCED DXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	HIGH HIGH	NA NA	NA
ESP REUSE CASE BAGHOUSE CASE	nton	NA .	NA NA
DUCT WORK DISTANCE (FEET) ESP REUSE	600-1000	NA	NA
BAGHOUSE ESP REUSE	ŇA	NA	NA NA
NEW BAGHOUSE	NA	NA	NA
SCOPE ADJUSTMENTS			·
WET TO DRY ESTIMATED COST (1000\$)	NO NA	NA NA	NA NA
NEW CHIMNEY	YES	NA	NA
ESTIMATED COST (1000\$) OTHER	567 NO	0 NO	0 NO
RETROFIT_FACTORS		<u>.</u>	
FGD SYSTEM ESP REUSE CASE	1.76	NA	NA
BAGHOUSE CASE		· · · ·	NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA NA
GENERAL FACILITIES (PERCENT) 15	0	0

TABLE 4.1.1-3. SUMMARY OF RETROFIT FACTOR DATA FOR INDIAN RIVER UNIT 4

- <u></u>		· · · · ·	
	· · · · ·	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			· · · ·
SO2 REMOVAL FLUE GAS HANDLING	HIGH HIGH	NA	HIGH
ESP REUSE CASE BAGHOUSE CASE	niun	NA .	HIGH NA
DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	600-1000
BAGHOUSE ESP REUSE	NA	NA	NA HIGH
NEW BAGHOUSE	NA	NA	NĂ
SCOPE ADJUSTMENTS	· · ·		• •
WET TO DRY	NO	NA	NO
ESTIMATED COST (1000\$) NEW CHIMNEY	NA NO	NA NA	NA NO
ESTIMATED COST (1000\$) OTHER	0 NO	O NO	0 NO
RETROFIT FACTORS			
FGD SYSTEM	1.53	NA	· · · ·
ESP REUSE CASE BAGHOUSE CASE	· .		1.76 NA
ESP UPGRADE	NA	NA	1.58
NEW BAGHOUSE	NA	. NA	NA
GENERAL FACILITIES (PERCENT) 15	0	8

Technology		• Main • Retrofit Difficulty Factor	Size	Factor		Cost	Cost	Cost			SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
, ,												
LC FGD	1-3	1.76	338	68	1.4	70.5	208.6	36.4	18.0	90.0	18753	1939.0
LC FGD-C	1-3	1.76	338	68	1.4	70.5	208.6	21.1	10.5	90.0	18753	1127.1
LFGD	1,2	1.76	81	73	1.4	44.3	546.8	20.1	38.7	90.0	4934	4066.1
LFGD	3	1.76	176	64	1.4	64.6	367.2	29.2	29.6	90.0	9398	3108.8
FGD-C	1,2	1.76	81	73	1.4	44.3	546.8	11.7	22.6	90.0	4934	2369.1
LFGD-C	3	1.76	176	64	1.4	64.6	367.2	17.0	17.3	90.0	9398	1811.9

Table 4.1.1-4. Summary of FGD Control Costs for the Indian River Plant (June 1988 Dollars)

.

Technology		Main Retrofit Difficulty Factor	Size	Capacit Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SHM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect (\$/ton)
				·	. ,							
CS/8+\$15	1, 2		81	73	1.4	3.5	43.5	7.9	15.3	32.0	1742	4556.3
CS/8+\$15	. 3	1.00	176	64	1.4	6.4	36.6	14.5	14.7	32.0	3318	4382.7
CS/8+\$15-C	1, 2	1.00	81	73	1.4	3.5	43.5	.4.6	8.8	32.0	1742	2619.
CS/B+\$15-C	3	1.00	176	64	1.4	6.4	36.6	8.4	8.5	32.0	3318	2519.3
CS/8+\$5	1, 2	1.00	81	73	1.4	2.7	33.1	3.5	6.8	32.0	1742	2015.
CS/8+\$5	3	1.00	176	64	1.4	4.6	26.2	6.1	6.2	32.0	3318	1829.9
CS/B+\$5-C	1, 2	1.00	81	73	1.4	2.7	33.1	2.0	3.9	32.0	1742	1161.0
CS/B+\$5-C	3 -	1.00	176	64	1.4	4.6	26.2	3.5	3.5	32:0	3318	1054.0

Table 4.1.1.5. Summary of Coal Switching/Cleaning Costs for the Indian River Plant (June 1988 Dollars)

operating cost changes or any system modifications that may be necessary to blend coal. PCC was not evaluated because this is not a mine mouth plant.

Low NO, Combustion

Units 1-3 are dry bottom, wall-fired boilers. The combustion modification technique applied to these boilers was LNB. Tables 4.1.1-6 and 4.1.1-7 present the performance and cost results of retrofitting LNB at the Indian River plant. Unit 4 was assumed to already have LNBs as an NSPS unit.

Selective Catalytic Reduction

Cold side SCR reactors for units 1-3 would be located in the small space available between the coal pile and units 1 and 2. The SCR reactor for unit 4 would be located immediately behind the unit 4 chimney. Reactors for units 1-3 are located in high site access/congestion areas. The space between units 1-2 and the coal pile is very congested because of the ash silos, coal conveyors, and ESPs. Two of the ash silos have to be relocated to open up more space for units 1-3 reactors; therefore, a factor of 35 percent was assigned to general facilities. Access to unit 4 reactor area is difficult because of the coal conveyor. However, sufficient space is available behind the chimney and a medium site access/congestion factor was assigned to the unit 4 reactor location. All reactors were assumed to be in areas with high underground obstructions. The ammonia storage system was placed close to the coal pile in a similar layout as the sorbent storage/ preparation area for the case of wet FGD. Duct lengths of 250 feet were estimated for the flue gas handling systems.

Table 4.1.1-6 presents the SCR process area retrofit factors and scope adder costs. Table 4.1.1-7 presents the estimated cost of retrofitting SCR at the Indian River boilers.

Duct Spray Drying and Furnace Sorbent Injection --

The retrofit of sorbent injection technologies at the Indian River steam plant for all units would be difficult because the short duct residence time between the boilers and the ESPs would not be sufficient for either humidification (FSI application) or sorbent evaporation (DSD

	В	OILER N	UMBER	
COMBUSTION MODIFICATION RESULTS	т. 	•		
	1,2	3	1-3	4
FIRING TYPE	FWF	FWF	NA	OWF
TYPE OF NOX CONTROL	LNB	LNB	NA	LNB
FURNACE VOLUME (1000 CU FT)	47.6	91.4	NA	NA
BOILER INSTALLATION DATE	1959	1970	NA	1980
SLAGGING PROBLEM	NO	NO	NA	NO
ESTIMATED NOx REDUCTION (PERCENT)	40	36	NA	NA
SCR RETROFIT RESULTS	· · · ·		· · ·	· · · ·
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	HIGH	MEDIUM
SCOPE ADDER PARAMETERS	· · ·			
Building Demolition (1000\$)	0	0	0	0
Ductwork Demolition (1000\$)	23	41	67	82
New Duct Length (Feet)	250	250	250	250
New Duct Costs (1000\$)	1095	1724	2526	2955
New Heat Exchanger (1000\$)	1642	2616	3870	4546
TOTAL SCOPE ADDER COSTS (1000\$)	2761	4382	6464	7584
RETROFIT FACTOR FOR SCR	1.52	1.52	1.52	1.34
GENERAL FACILITIES (PERCENT)	35	35	35	13

TABLE 4.1.1-6. SUMMARY OF NOX RETROFIT RESULTS FOR INDIAN RIVER

echnology	Boiler Number	Main Retrofit		Capacity Factor		Capital Cost	Capital Cost	Annual Cost		NOx Removed	NOX Removed	NOX Cos Effect
	•	Difficulty Factor	(HW)	(%)	Content (%)	(SMM)	(\$/k\)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$ /tor
NC-LNB	1, 2	1.00	81	73	1.4 🤉	- 2.3	29.0	0.5	1.0	40.0	843	610.
NC-LNB	3	1.00	176	64	-1.4	3.2	18.2	0.7	0.7	36.0	1446	485.
NC-LNB-C	1, 2	1.00	81.	73	1.4	2.3	29.0	0.3	0.6	40.0	843	362.
NC-LNB-C	3	1.00	176	64	1.4	3.2	18.2	0.4	0.4	36.0	1446	288.
CR-3	1, 2	1.52	81	73	1.4	20.8	256.4	6.6	12.8	80.0	1687	3924.
CR-3	3	1.52	176	64	1.4	34.5	196.1	11.4	11.6	80.0	3213	3555.
CR-3	4	1.34	442	54	0.8	59.9	135.6	21.5	10.3	80.0	6513	3295.
CR-3	1-3	. 1.52	338	68	1.4	57.3	169.5	19.7	9.8	80.0	6556	3000.
CR-3-C	1, 2	1.52	81	73	1.4	20.8	256.4	3.9	7.5	80.0	1687	2303.
CR-3-C.	3	1.52	176	64	1.4	34.5	196.1	6.7	6.8	80.0	3213	2085.
CR-3-C	4	1.34	442	- 54	0.8	59.9	135.6	12.6	6.0	80.0	6513	1929.
CR-3-C	1-3	1.52	338	68	- 1-4	57.3	169.5	11.5	5.7	80.0	6556	1758.
R-7	1, 2	1.52	81	73	1.4	20.8	256:4	6.0	11.5	80.0	1687	3533.
CR-7	3	1.52	176	64	1.4	34.5	196.1	10.0	10.1	80.0	3213	3109.
CR-7	. 4	1.34	442 [.]	54	0.8	59.9	135.6	17.9	8.6	80.0	6513	2745.
CR-7	1-3	1.52	338	68	1.4	. 57.3	169.5	16.9	8.4	80.0	6556	2580.
R-7-C	1, 2	1.52	81	73	1.4	20.8	256.4	3.5	6.8	80.0	1687	2079.
R-7-C	3	1.52	176	64	1.4	34.5	196.1	5.9	6.0	80.0	3213	1829.
R-7-C	· 4	1.34	442	54	0.8	59.9	135.6	10.5	5.0	80.0	6513	1614.
R-7-C	1-3	1.52	338	68	1.4	57.3	169.5	10.0	4.9	80.0	6556	1517.

Table 4.1.1-7. NOx Control Cost Results for the Indian River Plant (June 1988 Dollars)

..

application). However, both technologies were considered for this plant because the ESPs are large enough to modify the first ESP sections for humidification and sorbent injection. The sorbent receiving/storage/ preparation areas were located behind the unit 4 chimney.

Tables 4.1.1-8 and 4.1.1-9 present a summary of the site access/ congestion factors for sorbent injection technologies at the Indian River steam plant. Table 4.1.1-10 presents the costs estimated to retrofit FSI and DSD at the Indian River boilers.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability --

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Indian River plant. Units 1-2 would be considered good candidates for repowering or retrofit because of their small boiler sizes. Units 3-4 would not be considered because of their age and/or size.

TABLE 4.1.1-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR INDIAN RIVER UNITS 1-3 (EACH)

.

ITEM					-
SITE ACCESS/CONGESTION			,		
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE					MEDIUM HIGH NA
SCOPE ADDERS	· .		• •		
ADDITIONAL DUCT WORK NEW BAGHOUSE CASE ESTIMATED COST (1 ESP REUSE CASE	000\$) (FT) 000\$) 000\$) H (FT)	TO DRY	HANDL II	IG	NO NA NA NA NA 50 26
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CA	SE			- 	26 NA
RETROFIT FACTORS				,	
CONTROL SYSTEM (DSD S ESP UPGRADE NEW BAGHOUSE	YSTEM ONLY)			•	1.25 1.58 NA

TABLE 4.1.1-9.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR INDIAN RIVER UNIT 4

ż;

ITEM		· · ·
SITE ACCESS/CONGESTION		
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE		MEDIUM HIGH NA
SCOPE ADDERS		
CHANGE ESP ASH DISCHARGE S ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT DEMOLITION COST (1000\$		NO NA NA NA NA 50 91
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE		91 NA
RETROFIT FACTORS		· · · · · · · · · · · · · · · · · · ·
CONTROL SYSTEM (DSD SYSTEM ESP UPGRADE NEW BAGHOUSE	ONLY)	1.25 1.58 NA

Technology		Retrofit Difficulty	Size		Sulfur Content	Capital Cost (SMM)	Capital Cost (\$/kW)	Cost			SO2 Removed (tons/yr)	SD2 Cost Effect (\$/ton)
		factor			(X)				· · · · · · · · · · · · · · · · · · ·		· • • • • • • • • • • •	
DSD+ESP	1, 2	1.00	81	73	1.4	5.5	68.3	5.3	10.2	49.0	2667	1972.7
DSD+ESP	3	1.00	176	64	1.4	8.4	47.7	7.1	7.2	49.0	5080	1401.0
DSD+ESP	.4	1.00	442	54	0.8	11.4	25.7			49.0	5885	1460.3
DSD+ESP-C	1, 2	1.00	81	73	1.4	5.5	68.3	3.0	5.9	49.0	2667	1139.
DSD+ESP-C	3	1.00	176	64	· 1.4	8.4	47.7	4.1	4.2	49.0	5080	810.1
DSO+ESP-C	4	1.00	442	54	0.8	11.4	25.7	5.0	2.4	49.0	5885	845.
FSI+ESP-50	- 1, 2	1.00	81	73	1.4	5.9	73.3	4.6	8.8	50.0	2741	1661.
FSI+ESP-50	3	1.00	176	64	1.4	8.5	48.4	6.8	6.8	50.0	5221	1292.
F51+ESP-50	4	1.00	442	54	0.8	12.9	29.2	8.6	4.1	50.0	6048	1420.
FSI+ESP-50-C	1, 2	1.00	81	73	1.4	5.9	73.3	2.6	5.1	50.0	2741	961.
FSI+ESP-50-C	3	1.00	176	64	1.4	.8.5	48.4	3.9	4.0	50.0	5221	748.1
FSI+ESP-50-C	4	1.00	442	54	0.8	12.9	29.2	5.0	2.4	50.0	6048	823.3
FSI+ESP-70	1, 2	1.00	81	73	1.4	6.0	74.6	4.6	8.9	70.0	3837	1203.9
FSI+ESP-70	3.	1.00	176	64	1.4	8.6	49.1	6.9	.7.0	70.0	7310	938.
FSI+ESP-70	4	1.00	442	54	0.8	13.1	29.5	8.7	4.2	70.0	8467	1029.1
FSI+ESP-70-C	1, 2	1.00	81	73	1.4	6.0	74.6	2.7	5.2	70.0	3837	696.8
FSI+ESP-70-C	· 3	1.00	176	64	1.4	8.6	49.1	4.0	4.0	70.0	7310	543.2
FS1+E5P-70-C	4	1.00	442	54	0.8	13.1	29.5	5.1	2.4	70.0	6467	596.9

Table 4.1.1-10. Summary of DSD/FSI Control Costs for the Indian River Plant (June 1988 Dollars)

SECTION 5.0 FLORIDA

5.1 FLORIDA POWER CORPORATION

5.1.1 Crystal River Steam Plant

The Crystal River steam plant is located within Citrus County, Florida, as part of the Florida Power Corporation system. The plant is located near Crystal River City and adjacent to Crystal River Bay on the Gulf of Mexico. The plant contains four coal-fired and one nuclear boiler with a total gross generating capacity of 3,116 MW.

Table 5.1.1-1 presents operational data for the existing equipment at the Crystal River plant. The boilers burn low sulfur coal (0.7 to 1.0 percent). Coal shipments are received by barge/railroad and are transferred to the units 1-2 coal storage and handling area. Part of the coal is then transferred by a coal conveyor to a second coal pile east of units 4-5. Units 4-5 comply with the 1971 NSPS emission limit of <1.2 lbs SO₂ per MM Btu.

PM emissions for the boilers are controlled with new or retrofit ESPs located behind each unit. The plant has a dry fly ash handling system. Almost half of the fly ash is sold while the rest of it is disposed of on-site. In addition, the plant has the capability to sluice the fly ash in case of an emergency. All units have separate chimneys located behind each unit.

Lime/Limestone and Lime Spray Drying FGD Costs--

Units 1-2 are located beside each other and between the water channel and the water intake channel. Unit 3 (nuclear) is located east of unit 1. The absorbers for units 1-2 for both conventional and LSD-FGD cases would be located west of unit 2 in an open space between the unit 2 retrofit ESPs and the oil tanks. Space is also available east of unit 1. However, unit 1 is located very close to the nuclear unit and might cause some interferences. Therefore, this location was not considered in this study.

TABLE 5.1.1-1. CRYSTAL RIVER STEAM PLANT OPERATIONAL DATA .

.

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE	1 420 63 1966 TANGENT	2 476 63 1969 FIAL	4, 5 665 80 1982, 84 FRONT WALL	3 890 31 1977 NUCLEAR POWER
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	NO 1.0 12300 NA DRY ON-S 1		734 YES 0.7 12500 NA IG D 3-4	PUWLN
PARTICULATE CONTROL				
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1979 0.05 99.5	ESP 1979 0.02 99.5	1982, 84 0.02-0.01	
SULFUR SPECIFICATION (PERCENT)	432 -	1.3 1351 1930 700 300		

The absorbers for units 4-5 would be located behind the chimneys on either side of the coal conveyor for conventional FGD cases and on the side of each unit for the LSD case. No major demolition or relocation would be necessary for any of the units except units 4-5 in the LSD case. Because the absorbers for units 4-5 in the LSD-FGD case are located on the side of each unit, some of the storage areas and one of the ash silos would have to be relocated. Therefore, general facilities factors of 5 and 10 percent were assigned to the FGD costs accordingly. Sorbent storage and handling areas would be located south of the coal pile serving units 4-5 and close to the railroad tracks so that the existing tracks can be used for sorbent transfer.

A medium site access/congestion factor was assigned to the FGD absorber locations serving units 1-2 due to some access difficulties to this area created by the water channel, oil tanks, and units 1-2. For units 4-5, a low site access/congestion factor was assigned for the conventional FGD absorber locations. For flue gas handling, a long duct length with a high site access/congestion factor would be required for unit 1 because the chimney serving unit 1 is located away from the absorbers and access to this chimney is difficult. Because over 1,000 feet of duct would be needed to reuse the existing chimney, a new chimney would be located adjacent to the absorbers for unit 1. For units 2 and 4-5, a low site access/congestion factor was assigned due to relatively short duct runs and because of the open space available around the existing chimneys.

LSD with a new baghouse was considered for unit 1 because plant personnel indicated that on occasion SO_3 conditioning is necessary to meet the emission levels. Because of this problem and the location of the ESPs (away from the absorber location), the ESPs for unit 1 were not reused for the LSD-FGD case. A new baghouse and chimney were located close to the LSD absorbers which were located in a similar layout to the conventional wet FGD. A medium site access/congestion factor was also assigned to the new baghouse location. Reuse of the existing ESPs was considered for the other three units. For unit 2, a low site access/congestion factor was assigned to the flue gas handling system with a short to moderate duct run being required. For units 4-5, LSD absorbers would be located on either side of the units. However, access to the existing ESPs would be difficult due to

the limited space available between the ESPs and the boilers. A high site access/congestion factor was assigned to the flue gas handling system.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Tables 5.1.1-2 through 5.1.1-4. Because all boilers currently burn low sulfur coal, an FGD system would only be considered at the plant if SO_2 emission levels were very low (<1.2 lbs per MM Btu) or the price differential between low and high sulfur coal made scrubbing economical. As such, FGD cost estimates are not presented for the currently used coal.

Coal Switching and Physical Coal Cleaning Costs--

Because the Crystal River plant already burns a low sulfur coal, costs were not developed for CS or PCC.

Low NO, Combustion--

Units 1-2 are dry bottom, tangential-fired boilers rated at 420 and 476 MW, respectively. The combustion modification technique applied to these boilers was OFA. As Table 5.1.1-5 shows, the OFA NO_x reduction performance level was based on the low volumetric heat release rate. Units 4-5 are already equipped with LNB and are not considered as LNC candidates. Table 5.1.1-6 presents the cost of retrofitting OFA at the Crystal River plant.

Selective Catalytic Reduction--

Cold side SCR reactors for all units would be located behind the chimney or to the side of the unit. A low site access/congestion factor was assigned to all reactor locations. Approximately 200 feet of duct would be required for all units. No major demolition/relocation would be required for placement of the SCR reactors; therefore, a base factor of 13 percent was assigned to general facilities. The ammonia storage system was placed near the railroad tracks and close to the coal pile serving units 4-5.

Table 5.1.1-5 presents the SCR retrofit factors and scope adder costs. The scope adders include costs estimated for ductwork demolition, flue gas heat exchangers, and new duct runs to divert the flue gas from the ESPs to the reactor and from the reactor to the chimney. Table 5.1.1-6 presents the

TABLE 5.1.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR CRYSTAL RIVER UNIT 1

		FGD TE	CHNOLOGY
	_L/LS FGD C	FORCED XIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			· ·
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	MEDIUM HIGH	NA NA	MEDIUM NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	600-1000	NA	HIGH
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	600-1000 NA MEDIUM
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 2940 NO	NA NA NA O	NO NA YES 2940 NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.65	NA	NA 1.69
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.36
GENERAL FACILITIES (PERCEN	IT) 5	0	5

TABLE 5.1.1-3. SUMMARY OF RETROFIT FACTOR DATA FOR CRYSTAL RIVER UNIT 2

		FGD_TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION	· · ·	· · ·	
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	MEDIUM LOW	NA NA	MEDIUM
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	NA 300-600
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA MEDIUM NA
SCOPE ADJUSTMENTS	۰.		· · ·
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA NO O NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS		- - -	•
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.41	NA	1.40 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.36 NA
GENERAL FACILITIES (PERCENT)) 5	0	_5

TABLE 5.1.1-4. SUMMARY OF RETROFIT FACTOR DATA FOR CRYSTAL RIVER UNIT 4 OR 5

a da anti-	FGD TECHNOLOGY					
	L/LS_FGD_0	FORCED XIDATION	LIME SPRAY DRYING			
SITE ACCESS/CONGESTION		- 4 				
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	LOW LOW 100-300	NA NA NA	LOW HIGH NA			
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 LOW NA			
SCOPE ADJUSTMENTS	••••	· · ·				
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA NO O NO	NA NA NA O	NO NA NO O NO			
RETROFIT FACTORS	н — А. 1	۰.				
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.20	NA	1.36 NA			
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.16 NA			
GENERAL FACILITIES (PERCENT) 5	0	10			

	BOIL	ER NUMBER	· · · · -	
COMBUSTION MODIFICATION RESULTS				n in service National I
				· · ·
	1	2	4,5	٣
FIRING TYPE	TANG	TANG	FWF	
TYPE OF NOX CONTROL	OFA	OFA	LNB	
FURNACE VOLUME (1000 CU FT)	228.5	NA	734	
BOILER INSTALLATION DATE	1966	1969	1982	
SLAGGING PROBLEM	NO	NO	NO	_
ESTIMATED NOX REDUCTION (PERCENT)	25	25	NA	
SCR RETROFIT RESULTS				•
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW	· · ·
SCOPE ADDER PARAMETERS	• <u>•</u> ••		n an	1
New Chimney (1000\$)	0	0	Ŭ	
Ductwork Demolition (1000\$)	79	87	112	
New Duct Length (Feet)	200	200	200	,
New Duct Costs (1000\$)	2294	2469	3002	,
New Heat Exchanger (1000\$)	4409	4753	5809	<u>-</u> .
TOTAL SCOPE ADDER COSTS (1000\$)	6782	7309	8923	
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16	
GENERAL FACILITIES (PERCENT)	13	13	13	- -

TABLE 5.1.1-5. SUMMARY OF NOX RETROFIT RESULTS FOR CRYSTAL RIVER

echnology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cepital Cost (SHM)	•	Cost	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	NOX Cost Effect. (\$/ton)
									_		·	
NC-OFA	1	1.00	420	63	1.0	1.1	2.6	_		25.0	1748	133.2
NC-OFA	2	1.00	476	63	1.0	1.2	2.4	0.2	0.1	25.0	1981	123.5
NC-OFA-C	1.	1.00	420	63	1.0	1.1	2.6	0.1	0.1	25.0	1748	79.1
NC-OFA-C	2	1.00	476	63	1.0	1.2	2.4	0.1	0.1	25.0	1981	73.4
							· ·					
CR-3	1	1.16	420	63	1.0	52.1	124.1	18.8	8.1	80.0	5593	3364.6
CR-3	. 2	1.16	476	63	1_0	58.1	122.2		8.0	80.0	6339	3328.3
CR-3	4,5	1.16	665	80	0.7	77.5	116.6	29.8	6.4	80.0	15454	1929.5
CR-3-C	1	1.16	420	63	1.0	52.1	124.1	11.0	4.8	80.0 .	5593	1969.5
CR-3-C	2	1.16	476	63	1.0	58.1	122.2	12.3	4.7	80.0	6339	1948.0
CR-3-C	4,5	1.16	665	80	0.7	77.5	116.6	17.4	3.7	80.0	15454	1128.0
CR-7	1	1.16	420	63	1.0	52.1	124.1	15.4	6.6	80.0	5593	2749.8
CR-7	2	1.16	476	63	1.0	58.1	122.2	17.2	6.5	80.0	6339	2713.5
CR-7	· : . 4,5.	1.16	665	80	0.7	77.5	116.6	24.4	5.2	80.0	15454	1578.0
_				'		·			·			
	1	1.16	420	63	1.0	52.1	124.1	9.0		80.0	5593 6339	1617.2
CR-7-C CR-7-C	· 2 4,5	1.16	476 665	63 80	1.0 0.7	58.1	122.2	10.1	3.9 3.1	80.0 80.0	0339 15454	1595.8
UR-/-6	4,2		000	00	U . <i>1</i>		110-0	14.3	2.1	80.0	(3434	720.0

Table 5.1.1-6. NOX Control Cost Results for the Crystal River Plant (June 1988 Dollars)

ŀ

estimated cost of retrofitting SCR at the Crystal River boilers. Retrofit of hot side SCR system would result in a unit downtime penalty. The replacement cost could be significant for these large baseload units.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI and DSD technologies at the Crystal River steam plant would be difficult for unit 1 for two major reasons: 1) the retrofit ESPs might not be able to handle the increased PM and would require major ESP upgrades and additional plate area; and 2) the short duct residence time between the boilers and ESPs would not be sufficient for either humidification (FSI application) or for sorbent evaporation (DSD application). By contrast, retrofit of FSI and DSD technologies on unit 2 would be easy. This is due to the long duct run between the boiler and retrofit ESP and to the fact that this ESP is oversized for its current load. For these reasons, unit 2 is a good candidate for DSD or FSI technologies. For units 4-5, the application of these two technologies would also be difficult for the latter reason. However, FSI and DSD technology was considered for these units because the ESPs could be modified for humidification and additional plate area could be added downstream of the ESPs.

A high site access/congestion factor was assigned for upgrading the unit 1 ESP because of access difficulty and some congestion that is created by the office building, ash silos, and chimney. For units 4-5, a low site access/congestion factor was assigned for the ESP upgrades because of the space availability behind the ESPs. The sorbent receiving/storage/ preparation areas would be located west of unit 2 for units 1-2 and east of unit 4 for units 4-5.

Tables 5.1.1-7 through 5.1.1-9 present a summary of the site access/ congestion factors for FSI and DSD technologies at the Crystal River steam plant. Table 5.1.1-10 presents the costs estimated to retrofit FSI and DSD at the Crystal River boilers. The high unit costs are a result of units burning low sulfur coal.

TABLE 5.1.1-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR CRYSTAL RIVER UNIT 1

ITEM	· · · · · ·
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	MEDIUM HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO NA
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA NA NA 50 88
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	88 NA
RETROFIT FACTORS	· · ·
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.25 1.58 NA

TABLE 5.1.1-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR CRYSTAL RIVER UNIT 2

			<u>.</u>
ITEM			
SITE ACCESS/CONGESTION			
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE		MEDIUM LOW NA	•
SCOPE ADDERS			
CHANGE ESP ASH DISCHARGE SYS ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE	STEM TO DRY HANDLING	NO NA NA	
ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)		NA NA NA 50 96	•
TOTAL COST (1000 \$) ESP UPGRADE CASE A NEW BAGHOUSE CASE		96 NA	
RETROFIT FACTORS		•	•
CONTROL SYSTEM (DSD SYSTEM O ESP UPGRADE NEW BAGHOUSE	DNLY)	1.25 1.16 NA	
			•

TABLE 5.1.1-9.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR CRYSTAL RIVER UNITS 4 OR 5

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW LOW NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO NA
NEW BAGHOUSE CASE ESTIMATED COST (1000\$)	NA NA
ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT)	NA NA 50
DEMOLITION COST (1000\$)	124
TOTAL COST (1000 \$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	124 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.16 NA

•.		Main Retrofit Difficulty	Size	Capacity Factor (%)	y Coal Sulfur Content	Capital Cost (\$MM)	Capital Cost (\$/kW)	Annual Cost (\$MN)	Annual Cost (mills/kwh)		SO2 Removed (tops/vr)	SO2 Cost Effect.
	- Factor				(%)							
SD+ESP	1	1.00	420	63	1.0	13.2	31.5	9.8	4.2	49.0	8843	1107.9
SD+ESP	2	1.00	476	63	1.0	13.5	28.3	10.4	4.0	49.0	10022	1042.7
SD+ESP	4,5	1.00	665	80	0.7	15.4	23.1	12.8	2.8	49.0	12218	1051.5
SD+ESP-C	1	1.00	420	63	1.0	13.2	31.5	5.7	2.4	49.0	8843	641.5
SD+ESP-C	2	1.00	476	63	1.0	13.5	28.3	6.0	2.3	49.0	10022	603.4
SD+ESP-C	4,5	1.00	665	80	0.7	15.4	23.1	7.4	1.6	49.0	12218	608.1
SI+ESP-50	1	1.00	420	63	1.0	15.7	37.3	10.7	4.6	50.0	9089	1180.5
S1+ESP-50	2	1.00	476	63	1.0	13.7	28.8	11.0	4.2	50.0	10300	1063.9
SI+ESP-50	4,5	1.00	665	80	0.7	16.0	24.1	13.2	2.8	50.0	12557	1050.3
SI+ESP-50-C	1	1.00	420	63	1.0	15.7	37.3	6.2	2.7	50.0	9089	684.1
SI+ESP-50-C	2	1.00	476	63	1.0	13.7	28.8	6.3	2.4	50.0	10300	615.5
SI+ESP-50-C	4,5	1.00	665	80	0.7	16.0	24.1	7.6	1.6	50.0	12557	607.5
SI+ESP-70	1	1.00	420	63	1.0	15.8	37.6	10.9	4.7	70.0	12724	856.0
SI+ESP-70	2	1.00	476	63	1.0	13.9	29.1	11.1	4.2	70.0	14420	772.9
SI+ESP-70	4,5	1.00	665	80	0.7	16.3	24.5	13.4	2.9	70.0	17579	764.4
SI+ESP-70-C	1	1.00	420	. 63	1.0	15.8	37.6	6.3	2.7	70.0	12724	496.0
SI+ESP-70-C	2	1.00	476	63	1.0	13.9	29.1	6.4	2.5	70.0	14420	447.1
SI+ESP-70-C	4,5	1.00	665	80	0.7	16.3	24.5	7.8	1.7	70.0	17579	442.1

Table 5.1.1-10. Summary of DSD/FSI Control Costs for the Crystal River Plant (June 1988 Dollars)

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Crystal River plant. None of the boilers would be considered good candidates for repowering and retrofit because of their large size, short service life, and high capacity factor.

5.2 GULF POWER COMPANY

5.2.1 Crist Electric Generating Plant

The Crist Electric Generating Plant is located near the mouth of the Escambia River in Escambia County near Pensacola, Florida, and is owned and operated by the Gulf Power Company. The Crist plant contains four coal-fired and three oil and gas-fired boilers with a total gross generating capacity of 1107 MW. The generating capacity of the four coal-fired boilers is 1022 MW.

Table 5.2.1-1 presents operational data for the existing equipment at the Crist plant. Shipments of coal are received by barge and transferred to a coal storage and handling area adjacent to the plant. PM emissions from two of the coal-fired boilers (6 and 7) are controlled by ESPs installed at the time of construction. PM emissions from the other two coal-fired boilers are controlled by retrofit ESPs in series with original ESPs. ESPs for all four units are located behind the boilers. Flue gases from boilers 1-5 are ducted to one chimney while the flue gas from boilers 6-7 is ducted to another chimney. Flyash from the coal-fired generating units is collected, dried, and pneumatically conveyed to storage tanks on the west side of the property. This ash is sold, when possible, otherwise it is transported by truck to a state permitted landfill on the west edge of the property.

Lime/Limestone and Lime Spray Drying FGD Costs--

Because the coal pile is located directly behind units 4-7, the absorbers for units 4-5 would be located east of unit 1 after relocating demineralizer/condensate storage tanks and No. 2 oil storage tanks adjacent to unit 1. These tanks would be relocated to a new location further south. For units 6-7, absorbers would be located west of unit 5 adjacent to the cooling towers, west of the office and general repair building. Additional ductwork would be required to go around the existing dry ash handling bridge.

A high site access/congestion factor would be assigned to the FGD absorber locations because of the space limitation created by the proximity

TABLE 5.2.1-1. CRIST POWER COMPANY OPERATIONAL DATA

· · · · · · · · · · · · · · · · · · ·	·			
BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE	1-3 28, 28, 38 2,3 1945,52 GAS	4-5 88,89 46 1958,61 TANG	FRONT	7 519 27 1973 OPPOSED
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION	FIRED		WALL 158 0	WALL 282
COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM		1 9	.4 2100 .4 ET	
ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS		0N- 1	SITE/SOLD 2 ARGE	2
ARTICULATE CONTROL		. š	н	
TYPE		ESP	ESP	ESP
INSTALLATION DATE	(CULD & I	HOT SIDE) NA	NA	NA
EMISSION (LB/MM BTU) REMOVAL EFFICIENCY		0.02 99.0	0.04 98.5	0.08 98.5
DESIGN SPECIFICATION				
SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT)		184	0.6-3.5 69.1	1582
SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM)		515 357	505 137	2348 158
OUTLET TEMPERATURE (*F)		650	283	285

of the river, the channels, and auxiliary equipment. In the L/LS-FGD case, medium to long duct runs would be required. A high site access/congestion factor was assigned to the flue gas handling system because of the difficulties accessing the downstream of the ESPs. For units 6-7, a new chimney would need to be installed close to the absorbers to reduce the duct length and congestion. Plant personnel indicated that construction of a new chimney may be difficult due to the close proximity of the Municipal airport.

LSD with reuse of the existing ESPs was not considered for units 4-5 because the units are equipped with an arrangement of cold and hot side ESPs which are not easy to reuse. For units 6-7, the access to the ESPs is difficult; therefore, reuse of the existing ESPs was not considered. LSD with a new baghouse was not considered for units 6-7 because the boilers are burning medium to high sulfur coal. (Gulf Power, under contract to EPRI, has been operating a high sulfur coal baghouse test facility at its Scholz steam plant.)

Tables 5.2.1-2 and 5.2.1-3 give a summary of retrofit data for commercial FGD technologies. Table 5.2.1-4 presents the FGD capital and operating cost results. The low cost FGD cases show the benefits of combining FGD systems to obtain economy of scale, eliminating spare absorber modules, and maximizing absorber size. Limited space is available on site for waste disposal. Plant personnel indicated that the wet sludge has to be transported by truck to a disposal site approximately ten miles away (this value was used in this study).

Coal Switching and Physical Coal Cleaning Costs--

Table 5.2.1-5 presents the IAPCS cost results for CS at the Crist plant. These costs do not include boiler and pulverizer operating cost changes or any system modifications that may be necessary to blend coal. PCC was not evaluated because this is not a mine mouth plant.

Low NO, Combustion--

Boilers 4-7 at the Crist steam plant are rated at 88, 89, 327, and 519 MW, respectively. The combustion modification techniques applied to

TABLE 5.2.1-2.SUMMARY OF RETROFIT FACTOR DATA FOR CRIST
UNIT 4 OR 5

-		FGD TE	CHNOLOGY
·	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	HIGH HIGH	NA NA	NA
ESP REUSE CASE BAGHOUSE CASE			NA NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	300-600	NA	NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA NA
SCOPE ADJUSTMENTS			, · ·
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 887 NO 0 YES	NA NA NA O	NA NA NA O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.88	NA	NA NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA NA
GENERAL FACILITIES (PERCEN	T) 15	0	0

TABLE 5.2.1-3.SUMMARY OF RETROFIT FACTOR DATA FOR CRIST
UNIT 6 OR 7

_	FGD TECHNOLOGY				
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING		
SITE ACCESS/CONGESTION					
SO2 REMOVAL FLUE GAS HANDLING	HIGH HIGH	NA NA	NA		
ESP REUSE CASE BAGHOUSE CASE			NA NA		
DUCT WORK DISTANCE (FEET) ESP REUSE	600-1000	NA	NA		
BAGHOUSE ESP REUSE	NA	NA	NA NA		
NEW BAGHOUSE SCOPE ADJUSTMENTS	NA	NA	NA		
WET TO DRY	YES	NA	NA		
ESTIMATED COST (1000\$)	4519	NA	NA ·····		
NEW CHIMNEY	YES	NA	NA		
ESTIMATED COST (1000\$) OTHER	4046 YES	<u>0</u>	0 NO		
RETROFIT FACTORS					
FGD SYSTEM	2.00	NA	NA		
ESP REUSE CASE BAGHOUSE CASE			NA NA		
ESP UPGRADE	NA	NA	NA		
NEW BAGHOUSE	NA	NA	NA		
GENERAL FACILITIES (PERCENT) 15	0	0		

Technology	Boiler	Main	Boiler	Capacity	y Coal	Capital	Capital	Annual	Annual	SO2	\$02	SO2 Cos
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect
		Difficulty	(MV)	(%)	Content	(SMH)	(\$/k¥)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
		Factor			(%)							
L/S FGD	4,5	1.88	58	46	2.4	66.9	760.4	24.3	68.5	90.0	6120	3967.
L/S FGD	4-5	1.88	177	46	2.4	89.9	508.0	33.2	46.6	90.0	12309	2701.
L/S FGD	6	2.00	327	44	2.4	127.9	391.0	48.4	38.4	90.0	21755	2222.
L/S FGD	7	2.00	519	27	2.4	168.6	324.9	. 60.2	49.0	90.0	21188	2839.
L/S FGD	6-7	2.00	846	34	2.4	237.4	280.6	88.5	35.2	90.0	43492	2037.
/S FGD-C	4,5	1.88	88	46	2.4	66.9	760.4	14.2	40.1	90.0	6120	2322.
/S FGD-C	4-5	1.88	177	46	2.4	89.9	508.0	19.5	27.3	90.0	12309	1580.2
/S FGD-C	6	2.00	327	44	2.4	127.9	391.0	28.3	22.4	90.0	21755	1299.3
/S FGD-C	7	2.00	519	27	2.4	168.6	324.9	35.2	28.7	90.0	21188	1662.
/S FCD-C	6-7	2.00	846	34	.2.4	237.4	280.6	51.8	20.6	90.0	43492	1191.9
C FGD	4-5	1.88	177	46	2.4	64.4	363.7	25.4	35.7	90.0	12309	2066.
.C FGD	6-7	2.00	846	34	2.4	200.3	236.8	77.3	30.7	90.0	43492	1777.
C FGD-C	4-5	1.88	1 77	46	2.4	64.4	363.7	14.9	20.8	90.0	12309	1207.0
C FGD-C	6-7	2.00	846	34	2.4	200.3	236.8	45.2	17.9	90.0	43492	1038.

3253

Table 5.2.1-4. Summary of FGD Control Costs for the Crist Plant (June 1988 Dollars)

Technology	Boile Numbe		ain rofit		Capecit Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SO2 Cost Effect.
			iculty ctor	(HW)	(%)	Content (%)	(\$10)	(\$/k¥)	(\$99)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
C5/8+\$15	4,	5	1.00	88	46	2.4	3.8	42.9	5.7	16.1	62.0	4240	1349.5
CS/8+\$15	6		1.00	327	44	2.4	13.0	39.8	19.4	15.4	62.0	15071	1288.9
C5/8+\$15	7		1.00	519	27	2.4	18.9	36.3	20.1	16.4	62.0	14679	1369.5
CS/8+\$15-C	4,	5	1.00	88	46	2.4	3.8	42.9	3.3	9.3	62.0	4240	777.2
CS/8+\$15-C	6		1.00	327	44	2.4	13.0	39.8	11.2	8.9	62.0	15071	742.3
CS/8+\$15-C	7		1.00	519	. 27	2.4	18.9	36.3	11.6	9.5	62.0	14679	790.4
C5/B+ \$5	4,	5	1.00	88	46	2.4	2.9	32.5	2.6	7.4	62.0	4240	621.0
CS/8+\$5	6		1.00	327	. 44	2.4	9.6	29.4	8.4	6.7	62.0	15071	558.8
CS/B+\$5	7		1.00	519	27	2.4	13.5	26.0	9.0	7.3	62.0	14679	614.6
CS/B+\$5-C	4,	5	1.00	88	46	2.4	2.9	32.5	1.5	4.3	62.0	4240	358.8
CS/8+\$5-C	6		1.00	327	44	2.4	9.6	29.4	4.9	3.9	62.0	15071	. 323.0
CS/B+\$5-C	7		1.00	519	27	2.4	13.5	26.0	5.2	4.3	62.0	14679	356.2

33

Table 5.2.1-5. Summary of Coal Switching/Cleaning Costs for the Crist Plant (June 1988 Dollars)

· · · · · · · · · · · · · · · · · · ·	BOI	LER NUMBER	
COMBUSTION MODIFICATION RESULTS			
	4, 5	6	7
FIRING TYPE	TANG	FWF	OWF
TYPE OF NOX CONTROL	OFA	LNB	LNB
FURNACE VOLUME (1000 CU FT)	42.4	158	282
BOILER INSTALLATION DATE	1959	1970	1973
SLAGGING PROBLEM	NO	NO	NO
ESTIMATED NOx REDUCTION (PERCENT)	25	29	34
SCR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	HIGH
SCOPE ADDER PARAMETERS			•
Building Demolition (1000\$)	0	0	.0
Ductwork Demolition (1000\$)	26	72	101
New Duct Length (Feet)	500	250	250
New Duct Costs (1000\$)	2389	2663	3457
New Heat Exchanger (1000\$)	0	4086	5340
TOTAL SCOPE ADDER COSTS (1000\$) INDIVIDUAL CASE COMBINED CASE	2415 3628	6821 11950	8898
RETROFIT FACTOR FOR SCR	1.72	1.72	1.72
GENERAL FACILITIES (PERCENT)	38	38	38

TABLE 5.2.1-6. SUMMARY OF NOX RETROFIT RESULTS FOR CRIST

LNC-LNB LNC-LNB-C LNC-LNB-C LNC-LNB-C LNC-OFA LNC-OFA-C SCR-3 SCR-3			(Mu) 327 519 327 519 88	Factor (%) 44 27 44 27 46	Sul fur Content (%) 2.4 2.4 2.4 2.4 2.4	Cost (SHM) 4.1 4.9 4.1 4.9	12.5 9.5 12.5	0.9 1.0 0.5			1573 1796	552.0 581.0
LNC-LNB LNC-LNB-C LNC-LNB-C LNC-OFA LNC-OFA-C SCR-3	6 7 6 7 4, 5 4, 5	Factor 1.00 1.00 1.00 1.00 1.00	327 519 327 519 88	44 27 44 27	(%) 2.4 2.4 2.4	4.1 4.9 4.1	12.5 9.5 12.5	0.9 1.0 0.5	0.7 0.9	29.0 . 34.0	1573 1796	552.0 581.0
LNC-LNB LNC-LNB-C LNC-LNB-C LNC-OFA LNC-OFA-C SCR-3	7 6 7 4, 5 4, 5	1.00 1.00 1.00 1.00 1.00	327 519 327 519 88	27 44 27	2.4 2.4 2.4 2.4	4.9	9.5 12.5	1.0	0.9	34.0	1796	581.0
LNC-LNB LNC-LNB-C LNC-LNB-C LNC-OFA LNC-OFA-C SCR-3	7 6 7 4, 5 4, 5	1.00 1.00 1.00	519 327 519 88	27 44 27	2.4	4.9	9.5 12.5	1.0	0.9	34.0	1796	581.0
LNC-LNB-C LNC-LNB-C LNC-OFA LNC-OFA-C SCR-3	6 7 4,5 4,5	1.00 1.00 1.00	327 519 88	44 27	2.4	4.1	12.5	0.5				
LNC-LNB-C LNC-OFA LNC-OFA-C SCR-3	7 4, 5 4, 5	1.00 1.00	519 88	27					0.4	29.0		
NC-OFA NC-OFA-C SCR-3	4, 5 4, 5	1.00	88	_ ,	2.4	4.9	~ -				1573	328.0
INC-OFA-C	4, 5			46			9.5	0.6	0.5	34.0	1796	345.5
SCR-3	•	1.00		-	2.4	0.6	6.7	0.1	0.4	25.0	273	457.
	4 5		88	46	2.4	0.6	6.7	0.1	0.2	25.0 ·	273	271.0
iCR-3		1.72	88	46	2.4	24.2	275.4	7.2	20.2	80.0	872	8205.9
	4-5	· 1.72	177	46	2.4	38.7	218.9	11.9	16.6	80.0	1754	6763.
ICR-3	6	1.72	327	44	2.4	61.4	187.7	19.4	. 15.4	80.0	4339	4478.
iCR-3	7	1.72	519	27	2.4	87,4	168.5	28.1	22.9	80.0	4226	6651.3
SCR • 3	6-7	1.72	846	34	2.4	134.2	158.6	44.1	17.5	80.0	8674	5085.
SCR-3-C	4, 5		88	46	2.4	24.2	275.4	4.2		80.0	872	4826.1
SCR-3-C	4-5	1.72	177	46	2.4	38 -	218.9	7.0	9.8	80.0	1754	3974.2
ICR-3-C	6	1.72	327	44	2.4	61.4	187.7	11.4	9.1	80.0	4339	2629.2
CR-3-C	7	1.72	519	27	2.4	87,4	168.5	16.5	13.4	80.0	4226	3903.9
CR-3-C	6-7	1.72	846	. 34	2.4	134.2	158.6	25.9	10.3	80.0	8674	2982.0
CR-7	4, 5	-	- 88	46	2.4	24.2	275.4	6.4	18.1	80.0	872	7377.0
CR-7	6-5	1.72	177	46	2.4	38.7	218.9	10.4	14.6	80.0	1754	5935.1
CR-7	6	1.72	327	44	2.4	61.4	-	16.7	13.3	80.0	4339	3859.1
iCR-7	7	1.72	519	27	2.4	87.4	168.5	23.8	19.4	80.0	4226	5643.2
CR-7	6-7	1.72	846	34	2.4	134.2	158.6	37.2	14.7	60.0	8674	4284.0
CR-7-C	4, 5		88	46	2.4	24.2	275.4	3.8	10.7	80.0	872	4351.5
CR-7-C	4-5	1.72	177	46	2.4	38.7	218.9	6.1	8.6	80.0	1754	3499.4
CR-7-C	6	1.72	327	44	2.4	61.4	187.7	9.9	7.8	80.0	4339	2274.8
CR-7-C	7 6-7	1.72	519 846	27 34	214 214	87.4 134.2	168.5 158.6	14.1 21.9	11.4 8.7	80.0 80.0	4226 · 8674	3326.0 2524.2

Table 5.2.1-7. NOx Control Cost Results for the Crist Plant (June 1988 Doliars)

these boilers are OFA for units 4-5 and LNB for units 6-7. Tables 5.2.1-6 and 5.2.1-7 give a summary of NO_v retrofit performance and cost results.

Selective Catalytic Reduction--

Hot side SCR reactors for units 4 and 5 would be located east of unit 1. Cold side SCR reactors for units 6 and 7 would be located beside the common chimney for units 6 and 7. High general facility factors were assigned to both locations. High site access/congestion factors were assigned to both locations due to the limited space available. Tables 5.2.1-6 and 5.2.1-7 summarize the estimated retrofit factors and costs of retrofitting SCR at the Crist plant.

Furnace Sorbent Injection and Duct Spray Drying--

Sorbent injection technologies (FSI and DSD) were not evaluated for units 4-5 because the units are equipped with hot side ESPs which are not feasible to reuse. Units 6-7 have inadequate size ESPs and were not evaluated for the sorbent injection technologies.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Crist plant. Units 4-5 would be considered good candidates for repowering or retrofit because of their small boiler sizes and low capacity factors. Units 6-7 are large and have high capacity factors and would not be good candidates. 5.2.2 Lansing Smith Steam Plant

Both units are equipped with retrofit hot-side ESPs and were not considered for LSD or furnace sorbent injection technologies.

TABLE 5.2.2-1. LANSING SMITH STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE	1 150 73 1965 TANGEN	2 190 75 1967 TIAL
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	92 NO 1210 9.4 WET DI	NA NO O SPOSAL N-SITE 1
PARTICULATE CONTROL*	·	
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP NA 0.04 99	ESP NA 0.02 99
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) EXIT GAS FLOW RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (*F)	0.5-3.5 303.3 1313 231 260	0.6-3.5 379 1640 231 260

* Both units are retrofitted with hot side ESPs.

TABLE 5.2.2-2. SUMMARY OF RETROFIT FACTOR DATA FOR LANSING SMITH UNITS 1 OR 2*

		FGD TE	CHNOLOGY
· · · · · · · · · · · · · · · · · · ·	L/LS FGD OX	FORCED IDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL	LOW	NA	NA
FLUE GAS HANDLING ESP REUSE CASE	HIGH	NA	NA
BAGHOUSE CASE			NA
DUCT WORK DISTANCE (FEET)	300-600	NA	
ESP REUSE			NA
BAGHOUSE ESP REUSE	NA	NA.	NA NA
NEW BAGHOUSE	NA	NA	NA
SCOPE ADJUSTMENTS			· .
WET TO DRY	YES	NA	NA
ESTIMATED COST (1000\$)	1348,1667		NA ·
NEW CHIMNEY	YES	NA .	NA
ESTIMATED COST (1000\$) OTHER	1050,1330 NO	0.	NA NO
RETROFIT FACTORS			
FGD SYSTEM	1.48	NA	
ESP REUSE CASE			NA
BAGHOUSE CASE			NA
ESP UPGRADE New Baghouse	NA NA	NA NA	NA NA
NEW DAGRUUSE	NA	INA .	
GENERAL FACILITIES (PERCENT) 15	0	NA

* L/S-FGD and LSD-FGD absorbers for units 1 and 2 would be located east of the unit 2 retrofit ESPs.

Technology	Number	- Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/k¥)	Annual Cost (SHM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
L/S FGD	1	1.48	150	73	2.4	56.6	377.1	25.0	26.1	90.0	16557	1511.0
L/S FGD	2	1.48	190	75	2.4	63.9	336.2	28.9	23.2	90.0	21547	1342.1
L/S FGD	1-2	1.48	340	74	2.4	90.2	265.3	42.3	19.2	90.0	38043	1112.6
L/S FGD-C	1	1.48	150	73	2.4	56.6	377.1	14.6	15.2	90.0	16557	881.0
L/S FGD-C	2	1.48	190	75	2.4	63.9	336.2	16.9	13.5	90.0	21547	782.3
L/S FGD-C	1-2	1.48	340	74	2.4	90.2	265.3	24.7	11.2	90.0	38043	648.1
LC FGD	1-2	1.48	340	74	2.4	68.4	201.2	35.7	16.2	90.0	38043	937.9
LC FGD-C	1-2	1.48	340	74	2.4	68.4	201.2	20.7	9.4	90.0	38043	545.4

Table 5.2.2-3. Summary of FGD Control Costs for the Lansing Smith Plant (June 1988 Dollars)

Technology		• Main • Retrofit Difficulty Factor	Size	Capacity Factor (%)		Cost	Capital Cost (\$/kW)	Annual Cost (SMM)	Annual Cost (míľls/kwh)		SOZ Removed (tons/yr)	SOZ Cost Effect. (\$/ton)
CS/8+\$15	1	1.00	150	73	2.4	5.7	37.9	14.1	14.7	62,0	11470	1225.6
CS/B+\$15	2	1.00	190	75	2.4	6.9		18.0	14.5	62.0	14927	1209.1
CS/8+\$15-C	1	1.00	150	73	2.4	5.7	37.9	8.1	8.4	62.0	11470	704.4
CS/8+\$15-C	Z	1.00	190	75	2.4	6.9	36.3	10.4	8.3	62.0	14927	694.8
CS/8+\$5	1	1.00	150	73	2.4	4.1	27.6	5.9	6.1	62.0	11470	511.1
CS/B+\$5	2	1.00	190	75	2.4	4.9	25.9	7.4	5.9	62.0	14927	495.2
CS/8+\$5-C	1	1.00	150	73	2.4	4.1	27.6	3.4	3.5	62.0	11470	294.5
CS/8+\$5-C	2	1.00	190	75	2.4	4.9	25.9	4.3	3.4	62.0	14927	285.2

Table 5.2.2-4. Summary of Coal Switching/Cleaning Costs for the Lansing Smith Plant (June 1988 Dollars)

	BOILER	NUMBER
COMBUSTION MODIFICATION RESULTS	· .	
	1	2
FIRING TYPE	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA
FURNACE VOLUME (1000 CU FT)	92	NA
BOILER INSTALLATION DATE	1965	1967
SLAGGING PROBLEM	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	25	25
SCR RETROFIT RESULTS *	LOW	LOW
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	Ó	. 0
Ductwork Demolition (1000\$)	37	44
New Duct Length (Feet)	400	400
New Duct Costs (1000\$)	2513	2885
New Heat Exchanger (1000\$)	2377	2739
TOTAL SCOPE ADDER COSTS (1000\$)	4926	5668
RETROFIT FACTOR FOR SCR	1.16	1.16
GENERAL FACILITIES (PERCENT)	38	38

TABLE 5.2.2-5. SUMMARY OF NOX RETROFIT RESULTS FOR LANSING SMITH

* Cold side SCR reactors for units 1 and 2 would be located east of the unit 2 retrofit ESPs.

Technology	-	Main Retrofit Difficulty Factor	Size		y Coal Sulfur Content (%)	Capital Cost (SHM)	Capital Cost (\$/k\)	Annual Cost (SHH)	Annual Cost (mills/kwh)			NOx Cost Effect. (\$/ton)
LNC-OFA	1	1.00	150	73	2.4	0.7	4.9	0.2	0.2	25.0	737	209.1
LNC-OFA	2	1.00	190	75	2.4	0.8	4.2		0.1	25.0	959	176.6
LNC-OFA-C	1	1.00	150	73	2.4	0.7	4.9	0.1	0.1	25.0	737	124.1
LNC-OFA-C	2	1.00	190	75	2.4	0.8	4.2	0.1	0.1	25.0	959	105.0
SCR-3	1	1.16	150	73	2.4	27.2	181.3	8.8	9.2	80.0	2359	3747.9
SCR-3	2	1.16	190	75	2.4	32.2	169.2	10.7	8.5	80.0	3069	3470.3
SCR-3-C	1	1.16	150	73	2.4	27.2	181.3	5.2	5.4	80.0	2359	2199.0
SCR-3-C	2	1.16	190	75	2.4	32.2	169.2	6.2	5.0	80.0	3069	2035.2
SCR-7	1	1.16	150	73	2.4	27.2	181.3	7.6	7.9	80.0	2359	3225.9
SCR-7	2	1.16	190	75	2.4	32.2	169.2	9.1	7.3	80.0	3069	2962.3
SCR-7-C	1	1.16	150	73	2.4	27.2	181.3	4.5	4.7	80.0	2359	1899.9
SCR-7-C	2	1.16	190	. 75	2.4	32.2	169.2	5.4	4.3	80.0	3069	1744.2

Table 5.2.2-6. NOx Control Cost Results for the Lansing Smith Plant (June 1988 Dollars)

5.3 SEMINOLE ELECTRIC COOPERATIVE

5.3.1 <u>Seminole Steam Plant</u>

The Seminole steam plant is located within Putnam County, Florida, as part of the Seminole Electric Cooperative system. The plant is located west of the St. Johns River and contains two coal-fired boilers with a total gross generating capacity of 1,430 MW.

Table 5.3.1-1 presents the operational data for the existing equipment at the Seminole plant. The boilers burn 2.8 percent sulfur coal. Coal shipments are received by railroad and transferred to a coal storage and handling area west of the plant.

PM emissions for the boilers are controlled with ESPs located behind each unit. The plant has a dry fly ash handling system. Part of the fly ash and almost all the bottom ash are sold and the rest is disposed of on-site. Units 1 and 2 are served by separate flues within a common chimney.

Although both boilers are equipped with new FGD control systems, the Seminole plant is included in the Top 200 SO_2 emitting power plants; therefore, it was considered in this study. However, additional SO_2 controls were not considered. Because both units are equipped with LNB, only SCR was evaluated for this plant.

Selective Catalytic Reduction--

Cold side SCR reactors for both units would be located behind the common stack downstream of the existing FGD units. Both reactors would be located in a low site access/congestion area. For flue gas handling, duct lengths of 200 feet were estimated for units 1-2. The ammonia storage system would be placed beside the reactors. A storage building and a paved road would need to be relocated and a factor of 20 percent was assigned to general facilities. Table 5.3.1-2 presents the SCR retrofit results for all units. Table 5.3.1-3 presents the estimated cost of retrofitting SCR at the Seminole boilers.

TABLE 5.3.1-1. SEMINOLE STEAM PLANT OPERATIONAL DATA

BOILER NUMBER	1, 2
GENERATING CAPACITY (MW-each)	715
CAPACITY FACTOR (PERCENT)	60, 49
INSTALLATION DATE	1984-85
FIRING TYPE	OPPOSED WALL
FURNACE VOLUME (1000 CU FT)	513
LOW NOX COMBUSTION	NO
COAL SULFUR CONTENT (PERCENT)	2.8
COAL HEATING VALUE (BTU/LB)	12000
COAL ASH CONTENT (PERCENT)	8.7
FLY ASH SYSTEM	DRY HANDLING
ASH DISPOSAL METHOD	ON-SITE/SOLD
STACK NUMBER	1, 2 (INSIDE COMMON CHIMNEY)
COAL DELIVERY METHODS	RAILROAD
FGD SYSTEM	YES
FGD TYPE	SPRAY TOWER
FGD INSTALLATION DATE	1984, 85
PARTICULATE CONTROL TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP 1984, 85 0.02 99.8 3.0 462.0 2,132 217 300

	BOILER NUMBER
COMBUSTION MODIFICATION RESULTS	
· · · · · · · · · · · · · · · · · · ·	1,2
FIRING TYPE	NA
TYPE OF NOX CONTROL	NA
FURNACE VOLUME (1000 CU FT)	NA
BOILER INSTALLATION DATE	NA
SLAGGING PROBLEM	NA
ESTIMATED NOX REDUCTION (PERCENT)	NA
LITTICE NON REDUCTION (TERCENT)	
SCR RETROFIT RESULTS	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW
SCOPE ADDER PARAMETERS	•
Building Demolition (1000\$)	0
Ductwork Demolition (1000\$)	118
New Duct Length (Feet)	200
New Duct Costs (1000\$)	3132
New Heat Exchanger (1000\$)	6067
TOTAL SCOPE ADDER COSTS (1000\$)	9318
RETROFIT FACTOR FOR SCR	1.16
GENERAL FACILITIES (PERCENT)	20

TABLE 5.3.1-2. SUMMARY OF NOX RETROFIT RESULTS FOR SEMINOLE

Technology		Main Retrofit Difficulty Factor	Size	Factor	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SMN)			NOx Removed (tons/yr)	NOX Cost Effect. (\$/ton)
scr-3	1	1.16	715	60	2.8	84.7	118.4	31.6	8.4	80.0	13060	2416.4
SCR-3	2	1.16	715	49	2.8	84.6	118.4	25.2	8.2	80.0	10666	2361.2
SCR-3-C	1	1.16	715	60	2.8	84.7	118.4	18.5	4.9	80.0	13060	1413.5
SCR-3-C	2	1.16	715	49	2.8	84.6	118.4	14.8	4.8	80.0	10666	1388.4
SCR-7	1	1.16	715	60	2.8	84.7	118.4	25.7	6.8	80.0	13060	1966.6
SCR-7	2	1.16	715	49	2.8	84.6	118.4	25.2	8.2	80.0	10666	2361.2
SCR-7-C	′ 1	1.16	715	60	2.8	84.7	118.4	15.1	4.0	80.0.	13060	1155.8
SCR-7-C	2	1.16	715	49	2.8	84.6	118.4	÷ 14.8	4.8	80.0	10666	1388.4

Table 5.3.1-3. NOx Control Cost Results for the Seminole Plant (June 1988 Dollars)

5.4 TAMPA ELECTRIC COMPANY

5.4.1 Big Bend Steam Plant

The Big Bend steam plant is located at the eastern entrance of Hillsborough Bay in Hillsborough County, Florida, and is part of the Tampa Electric Company. It is bounded on the north and south by water channels. The Big Bend plant contains four coal-fired boilers with a total gross name plate generating capacity of 1,821 MW.

Table 5.4.1-1 presents operational data for the existing equipment at the Big Bend plant. Shipments of medium sulfur coal are received by barge and conveyed to a coal storage and handling area west of the plant. PM emissions from the boilers are controlled by ESPs installed at the time of construction and one additional ESP added to unit 1. All ESPs are located behind the boilers. Flue gas from boilers 1 and 2 is ducted to a common chimney while the flue gas from boilers 3 and 4 is ducted to a separate chimney for each boiler. Dry fly ash from the plant is sold. Unit 4 was built with a forced oxidation limestone FGD system designed to remove 90 percent of the sulfur dioxide compounds from the flue gas. In addition, unit 4 has LNC controls.

Lime/Limestone and Lime Spray Drying FGD Costs--

L/LS or LSD-FGD absorbers would be located behind the chimneys for units 1-3. Because units 1-2 share a chimney, a new chimney would be built to avoid a prolonged downtime for units 1-2. The silos located behind the chimneys would not be destroyed. The general facilities factor would be high (15 percent) due to the necessity for relocation of some storage buildings and roads. A high site access/congestion factor was assigned to the FGD absorber locations because of the proximity of the channel. In addition, there is considerable underground obstruction at the proposed FGD absorber location (two water discharge structures) and poor soil bearing capacity which affects the cost of earthwork, foundation design and construction. For the L/LS-FGD case, approximately 300 feet of ductwork would be required for units 1-2 and 500 feet for unit 3. A medium site

TABLE 5.4.1-1. BIG BEND STEAM PLANT OPERATIONAL DATA

BOILER NUMBER	1,2 445.5	3 445.5	4 486
GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT)	58,50	50	49
INSTALLATION DATE	1970,73		1985
FIRING TYPE	TURBO-FU	RNACE	TANGENTIA
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION	222	243	383
LOW NOX COMBUSTION	NO	YES	YES
COAL SULFUR CONTENT (PERCENT)	2.8 11400	2.0 11850	2.8 10850
COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT)	9.4	8.8	9.6
FLY ASH SYSTEM		YHANDLI	
ASH DISPOSAL METHOD	ÖN-SI	TE/SOLD	
STACK NUMBER	1	2	. 3
COAL DELIVERY METHODS		ARGE	VEC
FGD SYSTEM	NO	NO	YES LIMESTONE
FGD TYPE FGD INSTALLATION DATE			1985
THE INSTRUCTION DATE		•	1900
PARTICULATE CONTROL			
ТҮРЕ	ESP	ESP	ESP
INSTALLATION DATE	1970,73		1985
EMISSION (LB/MM BTU)	0.06	0.02	0.01
REMOVAL EFFICIENCY	99.8	99.8	99.8
DESIGN SPECIFICATION			~ ~
SULFUR SPECIFICATION (PERCENT)	3.8	3.8 458	3.2
CAS EXIT DATE (1000 SU FI)	498,467 1020,1408	400 1420	440/550 2200
SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM)	488,331	323	400/500*
OUTLET TEMPERATURE (°F)	298,301	351	340

access/ congestion factor was assigned to flue gas handling because of the congestion around the boilers.

LSD with reuse of the existing ESPs was not considered although the ESPs are large. This is a result of the plant personnel stating that the ESPs would not be able to handle any increased load. Additionally, access to the ESPs is difficult, making reuse of the ESPs costly because of replacement power costs. All units are burning medium sulfur coal; therefore, LSD with a new baghouse was not considered as an option.

Tables 5.4.1-2 and 5.4.1-3 give a summary of retrofit data and costs for L/LS-FGD technologies. Because unit 4 is already equipped with an FGD absorber (meeting 1979 NSPS), SO₂ control technologies were not considered for this unit.

Coal Switching and Physical Coal Cleaning Costs--

Table 5.4.1-4 presents the IAPCS cost results for CS at units 1-3. These costs do not include boiler or pulverizer operating cost changes or system modifications that may be necessary to blend coal. Because of the distance from the plant's coal sources, transportation costs might be \$20 per ton. Therefore, in addition to \$5 and \$15 per ton of fuel price differential, \$20 per ton was also considered. PCC was not evaluated because this is not a mine mouth plant.

Low NOx Combustion--

Units 1-3 are Riley Stoker turbo-fired wet bottom boilers. Presently, there is no commercial technology available for reducing NO_X through LNC technologies, however, NGR was considered perhaps applicable for these boilers. A natural gas pipeline is not available in the surrounding area; therefore, NGR is not feasible. Unit 4 is already meeting 1979 NSPS and would not be considered.

Selective Catalytic Reduction--

Cold side SCR reactors would be located behind the chimneys for all units. As in the FGD case, storage buildings and roads would have to be relocated to provide room for the reactors and a medium general facilities value of 20 percent would be assigned to the location. After demolition,

·····			
	FGD TECHNOLOGY		
	L/LS FGD	LIME SPRAY DRYING	
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	HIGH MEDIUM	NA NA NA	
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE ESP REUSE	300~600 NA	NA NA NA	
NEW BAGHOUSE SCOPE ADJUSTMENTS	NA	NA	
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY (1-2,3) ESTIMATED COST (1000\$) OTHER	NO NA YES, NO 6000, O NO	NA NA NA O	
RETROFIT FACTORS		· · · ·	
FGD SYSTEM (1-2,3) ESP REUSE CASE BAGHOUSE CASE	1.65, 1.6	NA NA	
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	
GENERAL FACILITIES (PERCENT)	15	0	

TABLE 5.4.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR BIG BEND UNITS 1,2,3

Technology		Main Retrofit Difficulty Factor	Size	Capacit Factor (%)	y Coal Sulfur Content (%)	Capital Cost (SHM)	Capital Cost (\$/k¥)	Annual Cost (SMM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
	•••••		• • • • • • •			•••••						
L/S FGD	1	1.65	445	58	2.8	126.1	283.3	55.5	24.5	90.0	48753	1138.3
L/S FGD	2	1.65	445	50	2.8	126.9	285.2	53.3	27.3	90.0	42028	1267.5
L/S FGD	3	1.60	445	50	2.0	120.6	270.9	49.6	25.5	90.0	30019	1653.1
L/S FGD	1-2	1.65	891	54	2.8	212.5	238.4	93.7	22.2	90.0	90880	1031.3
L/S FGD-C	1	1.65	445	58	2.8	126.1	283.3	32.4	14.3	90.0	48753	663.8
L/S FGD-C	2	1.65	445	50	2.8	126.9	285.2	31.1	16.0	90.0	42028	739.7
L/S FGD-C	3	1.60	445	50	2.0	120.6	270.9	29.0	14.9	90.0	30019	965.1
L/S FGD-C	1-2	1.65	891	54	2.8	212.5	238.4	54.6	13.0	90.0	90880	601.3
LC FGD	1-3	1.64	1336	53	2.5	250.8	187.7	116.3	18.7	90.0	119418	973.7
LC FGD-C	1-3	1.64	1336	53	2.5	250.8	187.7	67.7	10.9	90.0	119418	567.3

Table 5.4.1-3. Summary of FGD Control Costs for the Big Bend Plant (June 1988 Dollars)

Technology	Boiler Number	Main Retrofit		Capacity Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2	SO2 Removed	SO2 Cos Effect
		Difficulty (MW) Factor		(%) Content (%)		(SHH)	(\$/k¥)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
	•			r ô		•/ •	74 5	77.4	., .	70.0	770/1	
CS/8+\$15	1	1.00	445	58	2.8	- 14.0		32.1	14.2	70.0	37843	848.
CS/8+\$15	2	1.00	445	50	2.8	14.0	31.5	28.1	14.4	70.0	32624	861.
S/8+\$15	3	1.00	445	50	2.0	14.1	31.7	28.2	14.5	58.0	19282	1462.
S/B+\$15-C	. 1	1.00	445	58	2.8	14.0	31.5	18.5	8.2	70.0	37843	488.
S/B+\$15-C	· 2	1.00	445	50	2.8	14.0	31.5	16.2	8.3	70.0	32624	495.
S/8+\$15-C	. 3	1.00	445	50	2.0	14.1	31.7	16,2	8.3	58.0	19282	841.
S/B+\$20	1	1.00	445	58	2.8	16.3	. 36.7	41.9	18.5	70.0	37843	11 06 .
S/B+\$20	2	1.00	445	50	2.8	16.3	36.7	36.6	18.8	70.0	32624	1120.
S/B+\$20	3	1.00	445	50	2.0	16.4	36.9	36.7	18.8	58.0	19282	1901.
:S/B+\$20-C	1	1.00	445	58	2.8	16.3	36.7	24.1	10.6	70.0	37843	635.
S/B+\$20-C	2	1.00	445	50	2.8	16.3	36.7	21.0	10.8	70.0	32624	644.
S/B+\$20-C	3	1.00	445	50	2.0	16.4	36.9	21.1	10.8	58.0	19282	1093.
:5/8+ \$5	1	1.00	445	58	2.8	9.4	21.2	12.6	5.6	70.0	37843	334.
S/8+\$5	2	1.00	445	50	2.8	9.4	21.2	11.2	5.8	70.0	32624	343.0
S/8+\$5	3	1.00	445	50	2.0	9.5	21.3	11.3	5.8	58.0	19282	585.
S/B+\$5-C	1	1.00	445	58	2.8	9.4	21.2	7.3	3.2	70.0	37843	192.
S/B+\$5-C	2	1.00	445	50	2.8	9.4	21.2	6.5	3.3	70.0	32624	198.
S/B+\$5-C	3	1.00	445	50	2.0	9.5	21.3	6.5	3.3	58.0	19282	337.

Table 5.4.1-4. Summary of Coal Switching/Cleaning Costs for the Big Bend Plant (June 1988 Dollars)

the SCR reactors would be located in an area with significant underground obstructions and, as such, a medium site access/congestion factor was assigned to the SCR reactor locations. About 350 feet of ductwork would be required for units 1-2, 500 feet for unit 3, and 250 feet for unit 4. Tables 5.4.1-5 and 5.4.1-6 present the retrofit factor and cost estimates for retrofitting SCR at the Big Bend plant.

Furnace Sorbent Injection and Duct Spray Drying--

Sorbent injection technologies were not considered for the Big Bend plant because of the short duct residence time between the boilers and the ESPs.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability---

None of the boilers would be considered good candidates for repowering because of their large size and short service life.

5.4.2 F. J. Gannon Steam Plant

The F. J. Gannon steam plant is located on Hillsborough Bay in Hillsborough County, Florida, and is part of the Tampa Electric Company. The plant contains six coal-fired boilers with a total gross generating capacity of 1,271 MW.

Table 5.4.2-1 presents operational data for the existing equipment at the Gannon plant. Coal shipments are received by barge and rail and conveyed to a coal storage and handling area west of the plant. The south side of the Gannon plant abuts a county road alongside property belonging to a phosphate manufacturing plant. A railroad line runs on the property. PM emissions from the boilers are controlled by ESPs. Boilers 1-3 and 5-6 each have a separate stack. Boiler 4 has two chimneys. The ESPs were installed behind their respective stacks. The Gannon plant has a dry fly ash handling system.

Lime/Limestone and Lime Spray Drying FGD Costs--

L/LS or LSD-FGD absorbers for units 1 and 2 would be located behind the unit 1 and 2 ESPs and the unit 3-6 absorbers would be located at the east

-	BOIL	ER NUMBER	
COMBUSTION MODIFICATION RESULTS			
	1,2	3	4
FIRING TYPE	TURBO-FU	RNACE	TANG
TYPE OF NOX CONTROL	NA	NA	NA
FURNACE VOLUME (1000 CU FT)	222	243	383
BOILER INSTALLATION DATE	1970,73	1976	1985
SLAGGING PROBLEM	YES	YES	NA
ESTIMATED NOX REDUCTION (PERCENT)	NA	NA	NA
SCR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM	MEDIUM	MEDIUM
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	83	83	88
New Duct Length (Feet)	350	500	250
New Duct Costs (1000\$)	5250	7500	3124
New Heat Exchanger (1000\$)	4571	4571	4813
TOTAL SCOPE ADDER COSTS (1000\$)	9904	12154	8025
RETROFIT FACTOR FOR SCR	1.34	1.34	1.34
GENERAL FACILITIES (PERCENT)	20	20	20

TABLE 5.4.1-5. SUMMARY OF NOX RETROFIT RESULTS FOR BIG BEND

Technology	Boiler	Main	Boiler	Capacity	y Coal	Capital	Capital	Annual	Annual	NOX	NOX	NOx Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect
		Difficulty	Y (MW)	(%)	Content	(SHH)	(\$/k¥)	(SHPI)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor	·····		(%)							
SCR-3	1	1.34	445	58	2.8	64.0	143.9	22.7	10.0	80.0	13493	1683.2
SCR-3	2	1.34	445	50	2.8	64.5	145.0	22.5	11.5	80.0	11632	1934.7
SCR-3	3	1.34	445	50	2.0	66.8	150.0	22.2	11.4	80.0	5132	4321.3
SCR-3	4	1.34	486	49	2.8	67.2	138.2	23.9	11.5	80.0	12449	1920.9
SCR-3-C	1	1.34	445	58	2.8	64.0	143.9	13.3	5.9	80.0	1349 3	985.
SCR-3-C	2	1.34	445	. 50	2.8	64.5	145.0	13.2	6.8	80.0	11632	1133.3
SCR-3-C	3	1.34	445	50 ·	2.0	66.8	150.0	13.0	6.7	80.0	5132	2534.1
SCR-3-C	4	1.34	486	49	2.8	67.2	138.2	14.0	6.7	80.0	12449	1124.7
SCR-7	1	1.34	445	58	2.8	64.0	143.9	19.0	8.4	80.0	13493	1410.2
SCR-7	2	1.34	445	50	2.8	64.5	145.0	18.8	9.7	80.0	11632	1618.0
SCR-7	3	1.34	445	50	2.0	66.B	150.0	18.5	9.5	80.0	5132	3603.3
SCR-7	4	1.34	486	49	2.8	67.2	138.2	19.9	9.5	80.0	12449	1597.7
SCR-7-C	1	1.34	445	58	2.8	64.0	143.9	11.2	4.9	80.0	13493	829.2
SCR-7-C	- 2	1.34	445	50	2.8	64.5	145.0	11.1	5.7	80.0	11632	951.9
SCR-7-C	3	1.34	445	50	2.0	66.8	150.0	10.9	5.6	80.0	5132	2122.7
SCR-7-C	4	1.34	486	49	2.8	67.2	138.2	11.7	5.6	80.0	12449	939.5

Table 5.4.1-6. NOx Control Cost Results for the Big Bend Plant (June 1988 Dollars)

==

TABLE 5.4.2-1. F. J. GANNON STEAM PLANT OPERATIONAL DATA

.

7,35 4 957 1 YCLONE A 0 .1 2500 .3	80 1 960 5 80ILER 66.6 NO 1.1 12500 7.3 DRY HAN ON-SITE 3	NA NO 1.1 12500 7.3 NDLING	129.1 NO 1.1 12500 7.3	NO 1.1
A 0 .1 2500 .3	66.6 NO 1.1 12500 7.3 DRY HAN ON-SITE 3	NA NO 1.1 12500 7.3 NDLING E/SOLD 4	129.1 NO 1.1 12500 7.3	219.4 NO 1.1 12500 7.3
.1 2500 .3	1.1 12500 7.3 DRY HAN ON-SITE 3	1.1 12500 7.3 NDLING E/SOLD 4	1.1 12500 7.3 5	1.1 12500 7.3
	ON-SITE	E/SOLD 4		6
	BARG	GE/RAIL	_	
		•	-	
985 .04	ESP 1984 0.02 99.1	0.01	1973 0.05	ESP 1973 0.03 99.8
03 40 65	345	376	440 820 361	2.8 327 1350 442 290
9 .9 .04 6	85 04 .1 25 3 0 5	85 1984 04 0.02 .1 99.1 25 1.25 3 600 0 574	85 1984 1983 04 0.02 0.01 .1 99.1 99.1 25 1.25 1.25 3 600 596 0 574 631 5 345 376	85 1984 1983 1973 04 0.02 0.01 0.05 .1 99.1 99.1 99.8 25 1.25 1.25 2.8 3 600 596 440 0 574 631 820 5 345 376 361

end of unit 6. The general facilities factor is low (5 percent) for the unit 1 and 2 locations. However, the general facilities factor is very high (15 percent) for the units 3-6 absorber locations because of the necessity for relocating the water treatment facility. An additional 30 percent has been added to the retrofit factor for installation of FGD technologies to account for the extraordinary cost of relocating the water treatment facility. The site access/congestion factor is high for the units 1 and 2 FGD absorber locations because of the proximity of the railroad tracks, roadways, ash handling silos, wastewater facilities, and property line. The site access/congestion factor is high for the units 3-6 absorber locations because of the high congestion and underground obstructions beneath the water treatment facility site.

More than 300 feet of ductwork would be required for the installation of wet FGD absorbers for units 1 and 2. Approximately 300 feet of ductwork would be required for unit 6, 700 feet for unit 5, and greater than 1,000 feet for units 3 and 4. To reduce the duct lengths, a new chimney would be constructed behind the absorbers for units 3 and 4 and, as such, about 600 to 800 feet of duct length would be required. The flue gas handling site access/congestion factor is high for all of the units because of the close proximity of the ESPs and boilers to the chimneys and property line. It might not be possible to retrofit all the units with FGD systems because of this space limitation.

Because of the adequate sizes of the ESPs, LSD with reuse of the existing ESPs was considered for all of the units. The LSD absorbers would be located similarly to the wet FGD absorbers and were assigned the same general facilities percentages and site access/congestion factors. The ductwork for units 3,4,5, and 6 would be long in the LSD-FGD case.

Tables 5.4.2-2 through 5.4.2-5 give a summary of retrofit data for the FGD technologies. Table 5.4.2-6 presents the FGD costs.

Coal Switching and Physical Coal Cleaning Costs--

CS was not considered for units 1-4 because they are cyclone boilers requiring low sulfur bituminous coals having low ash fusion temperatures which are not readily available in the east. Plant personnel indicated that some degree of fuel switching is possible on these units with fluxing to

TABLE 5.4.2-2. SUMMARY OF RETROFIT FACTOR DATA FOR F. J. GANNON UNITS 1 OR 2 $\ensuremath{\mathsf{UNITS}}$

<u> </u>	FG	D TECHNOLOGY
	L/LS_FGD	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		
SO2 REMOVAL FLUE GAS HANDLING	HIGH HIGH	HIGH
ESP REUSE CASE BAGHOUSE CASE	11101	HIGH NA
DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	300-600
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA HIGH NA
SCOPE ADJUSTMENTS		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER RETROFIT FACTORS	NO NA YES 6000 YES	NO NA NO O YES
FGD SYSTEM ESP REUSE CASE	1.80	1.72 NA
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT)	5	5

TABLE 5.4.2-3. SUMMARY OF RETROFIT FACTOR DATA FOR F. J. GANNON UNITS 3 OR 4

<u> </u>		
· · · · · · · · · · · · · · · · · · ·	FGD	TECHNOLOGY
	L/LS FGD	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		· · · · ·
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	HIGH HIGH	HIGH HIGH
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	600-1000	NA 1000+ NA
ESP REUSE NEW BAGHOUSE	NA NA	HIGH NA
SCOPE ADJUSTMENTS		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 6000 YES	NO NA NO O YES
RETROFIT FACTORS		
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.91	2.26 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT)	15	15

TABLE 5.4.2-4. SUMMARY OF RETROFIT FACTOR DATA FOR F. J. GANNON UNIT 5

	FGE	TECHNOLOGY
· · · · · · · · · · · · · · · · · · ·	L/LS FGD	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		
SO2 REMOVAL FLUE GAS HANDLING	HIGH - HIGH	HIGH
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	600-1000	HIGH NA
ESP REUSE BAGHOUSE	000 1000	1000+ NA
ESP REUSE NEW BAGHOUSE	NA NA	HIGH NA
SCOPE ADJUSTMENTS		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 6000 YES	NO NA NO O YES
RETROFIT FACTORS		
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.91	2.06 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT)	. 15	15

TABLE 5.4.2-5. SUMMARY OF RETROFIT FACTOR DATA FOR F. J. GANNON UNIT 6

· · · · · · · · · · · · · · · · · · ·	FG	D TECHNOLOGY
· · ·	L/LS FGD	LIME SPRAY DRYING
SITE ACCESS/CONGESTION	,	
SO2 REMOVAL FLUE GAS HANDLING	HIGH HIGH	HIGH
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	300-600	HIGH NA
ESP REUSE BAGHOUSE		600-1000 NA
ESP REUSE NEW BAGHOUSE	NA NA	HIGH NA
SCOPE ADJUSTMENTS	·	· .
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY	NO NA YES	NO NA NO
ESTIMATED COST (1000\$) OTHER	6000 YES	0 YES
RETROFIT FACTORS		
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.80	1.86 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT)	15	15

Technol ogy		Main Retrofit Difficulty	Size	Capacity Factor (%)	y Coal Sulfur Content	Cost	Capital Cost (\$/k¥)	Annual Cost (SHM)	Annual Cost (mills/kwh)		SO2 Removed (tons/vr)	SO2 Cos Effect (\$/tor
		Factor		(%)								
./S FGD	1, 2	1.80	125	37	1.1	55.0	440.1	20.3	50.2	90.0	3088	6586.
/S FGD	3	1.91	180	44	1.1	76.4	424.5	28.4	40.9	90.0	5288	5364.
/S FGD	· 4	1.91	188	44	1.1	78.0	414.9	29.0	40.0	90.0	5523	5251
/S FGD	5	1.91	239	59	1.1	88.9	371.8	34.9	28.3	90.0	9414	3707.
L/S FGD	6	1.80	414	46	1.1	116.9	282.3	45.1	27.0	90.0	12714	3544.
/S FGD	1-2	1.80	250	36	1.1	83.8	335.2	30.9	39.1	90.0	6009	5134.
/S FGD	3-6	1.86	1021	48	1.1	240.0	235.1	94.1	21.9	90.0	32719	2877.
./S FGD-C	1, 2	1.80	125	37	1.1	55.0	440.1	11.9	29.4	90.0	3088	3853
/S FGD-C	3	1.91	180	44	1.1	76.4	424.5	16.6	23.9	90.0	5288	3138.
/S FGD-C	4	1.91	188	44	1.1	78.0	414.9	17.0	23.4	90.0	5523	3072.
/S FGD-C	5	1.91	239	59	1.1	88.9	371.8	20.4	16.5	90.0	9414	2166.
/S FGD·C	6	1.80	414	46	1.1	116.9	282.3	26.3	15.8	90.0	12714	2071.
/S FGD-C	1-2	1.80	250	36	1.1	83.8	335.2	18.1	22.9	90.0	6009	3004.
/S FGD-C	3-6	1.86	1021	48	1.1	240.0	235.1	55.0	12.8	90.0	32719	1681.
C FGD	1-6	1.85	1271	46	1.1	225.0	177.0	92.9	1 8.1	90.0	39034	2379.
.C. FGD-C	1-6	1.85	1271	46	1.1	225.0	177.0	54.2	10.6	90.0	39034	1388.
SD+ESP	1, 2	1.72	125	37	1.1	21.1	168.4	8.5	20.9	76.0	2618	3235.
SD+ESP	3	2.26	180	44	1.1	35.4	196.6	12.9	18.5	76.0	4483	2870.
SD+ESP	4	2.26	188	44	1.1	36.4	193.6	13.2	18.2	76.0	4682	2817.
SD+ESP	5	2.06	239	59	1.1	44.5	186.1	16.6	13.4	76.0	7981	2073.
SD+ESP	6	1.86	414	46	1.1	62.4	150.8	22.3	13.4	76.0	107 79	2067.
SD+ESP-C	1, 2		125	37	1.1	21.1	168.4	4.9	12.2	76.0	2618	1 889 .
.SD+ESP-C	3	2.26	180	- 44	1.1	35.4	196.6	7.5	10.9	7 6 .0	4483	1679.
SD+ESP-C	4	2.26	188	44	1.1	36.4	193.6	7.7	10.7	76.0	4682	1649.
.SD+ESP-C	5	2.06	239	59	1.1	44.5	186.1	9.7	7.8	76.0	7981	1213.
SD+ESP-C	6	1.86	414	46	1.1	62.4	150.8	13.1	7.8	76.0	10779	1210.

Table 5.4.2-6. Summary of FGD Control Costs for the Gannon Plant (June 1988 Dollars)

lower ash fusion temperatures. However, this was beyond the scope of this work and was not considered. Costs were developed for units 5 and 6 and are presented in Table 5.4.2-7. PCC was not evaluated because this is not a mine mouth plant.

Low NO, Combustion--

The combustion modification technique applicable to the boilers at the Gannon plant would be NGR; however, a natural gas pipeline is not available in the surrounding area; therefore, NGR application would not be feasible.

Selective Catalytic Reduction--

For units 1-5, cold side SCR reactors would be located south of the unit ESPs and for unit 6 east of its ESPs. The general facilities factor is low for this location. However, the site access/congestion factor is high because of the proximity of the railroad track and property boundary. About 250 feet of ductwork would be required for units 1 and 2, 300 feet for unit 3, 500 feet for unit 4, 600 feet for unit 5, and 700 feet for unit 6. Tables 5.4.2-8 through 5.4.2-10 present retrofit factor and cost estimates for retrofitting SCR at the Gannon plant.

Furnace Sorbent Injection and Duct Spray Drying--

Sorbent injection technologies (FSI and DSD) were considered for the Gannon plant because of the large size ESPs. The front section of the existing ESPs could be modified for sorbent injection or humidification. Tables 5.4.2-11 and 5.4.2-12 give a summary of retrofit factors for FSI and DSD technologies at the Gannon plant. Table 5.4.2-13 presents the costs for FSI and DSD.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

Units 1-5 would be considered good candidates for repowering or retrofit because of the small boiler size and likely short remaining life. However, the high capacity factors could result in high replacement power costs for extended downtime. Unit 6 is large and would not be considered for repowering.

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capitel Cost (\$/kW)	Annual Cost (SHM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
CS/B+\$15	5	1.00	239	59	1.1	8.4	35.1	18.1	14.7	15.0	1541	11749.9
CS/8+\$15	6	1.00	414	46	1.1	13.5	32.6	24.7	14.8	15.0	2081	11854.3
CS/8+\$15-C	5	1.00	239	59	1.1	8.4	35.1	10.4	8.4	15.0	1541	6756.4
CS/B+\$15-C	6	1.00	414	46	1.1	13.5	32.6	14.2	8.5	15.0	2081	6820.9
CS/B+\$5	5	1.00	239	59	· 1 . 1	5.9	24.7	7.5	6.0	15.0	1541	4846.9
CS/8+\$5	6	1.00	414	46	1.1	9.2	22.2	10.1	. ∕6.1	15.0	2081	4871.7
CS/B+\$5-C	5	.1.00	239	59	1.1	5.9	24.7	4.3	3.5	15.0	1541	2794.2
CS/B+\$5-C	6	1.00	414	46	1.1	9.2	22.2	5.8	3.5	15.0	2081	2811.1

Table 5.4.2-7. Summary of Coal Switching/Cleaning Costs for the Gannon Plant (June 1988 Dollars)

		·	-
	801		·
COMBUSTION MODIFICATION RESULTS		· · ·	
	1	2	3
FIRING TYPE	CYC	CYC	CYC
TYPE OF NOX CONTROL	NA	NA	NA
FURNACE VOLUME (1000 CU FT)	NA	NA	66.6
BOILER INSTALLATION DATE	1957	1958	1960
SLAGGING PROBLEM	NA	NA	NA
ESTIMATED NOX REDUCTION (PERCENT)	NA	NA	NĄ
SCR RETROFIT RESULTS	· · ·	•	. · ·
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	HIGH
SCOPE ADDER PARAMETERS			4
Building Demolition (1000\$)	0	0	Q
Ductwork Demolition (1000\$)	32	32	42
New Duct Length (Feet)	250	250	300
New Duct Costs (1000\$)	3750	3750	4500
New Heat Exchanger (1000\$)	2131	2131	2652
TOTAL SCOPE ADDER COSTS (1000\$)	5913	5913	7194
RETROFIT FACTOR FOR SCR	1.52	1.52	1.52
GENERAL FACILITIES (PERCENT)	13	13	13

TABLE 5.4.2-8. SUMMARY OF NOX RETROFIT RESULTS FOR F. J. GANNON UNITS 1-3

· _		BOILER N	UMBER
OMBUSTION MODIFICATION RESULTS			
	4	5	6
FIRING TYPE	CYC	TURBO-FU	RNACE
TYPE OF NOX CONTROL	NA	NA	NA
FURNACE VOLUME (1000 CU FT)	NA	129.1	219.4
BOILER INSTALLATION DATE	1963	1965	1967
SLAGGING PROBLEM	NA	YES	YES
ESTIMATED NOX REDUCTION (PERCENT)	NA	NA	NA
CR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	HIGH
SCOPE ADDER PARAMETERS	1		
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	43	52	78
New Duct Length (Feet)	500	600	700
New Duct Costs (1000\$)	7500	9000	10500
New Heat Exchanger (1000\$)	2722	3144	4371
OTAL SCOPE ADDER COSTS (1000\$)	10266	12196	14950
ETROFIT FACTOR FOR SCR	1.52	1.52	1.52
ENERAL FACILITIES (PERCENT)	13	13	13

TABLE 5.4.2-9. SUMMARY OF NOX RETROFIT RESULTS FOR F. J. GANNON UNITS 4-6

Table 5.4.2-10. NOx Control Cost Results for the Gannon Plant (June 1988 Dollars)

echnology	Boiler	Main	Boiler	Capacity	y Coal	Capital	Capital	Annual	Annual	NOX	NOX	NOX Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost -	Cost	Cost	Removed	Removed	Effect
		Difficulty	(HU)	(%)	Content	(\$HH)	(\$/kW)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
·		Factor		· · · · · · · · · · · · · · · · · · ·	(%)							
SCR-3	1, 2	1.52	125	37 .	1.1	27.9	223.3	8.4	20.8	80.0	2367	3561.4
SCR-3	3	1.52	180	44	1.1	35.8	198.8	11.2	16.1	80.0	4054	2759.8
SCR-3	4	1.52	188	44	1.1	40.0	212.7	12.1	16.7	80.0	4234	2862.1
SCR-3	5	1.52	239	-59	1.1	48.0	200.7	15.0	12.1	80.0	6632	2255.9
SCR-3	6	1.52	414	46	1.1	69.2	167.2	22.4	13.5	80.0	8957	2506.4
CR-3-C	1, 2	1.52	125	37	1.1	27.9	223.3	5.0	12.2	80.0	2367	2093.2
CR-3-C	3	1.52	180	44	1.1	35.8	· 198.8	6.6	9.5	80.0	4054	1620.7
CR-3-C	4	1.52	168	44	1.1	40.0	212.7	7.1	9.8	80.0	4234	1682.1
CR-3-C	5	1.52	239	59	1.1	48.0	200.7	8.8	7.1	80.0	6632	1324.9
CR-3-C	6	1.52	414	46	1.1	69.2	167.2	13.2	7.9	80.0	8957	1470.
CR-7	1, 2	1.52	125	37	1.1	27.9	223.3	7.4	18.3	80.0	2367	3129.9
CR-7	3	1.52	180	44	1.1	35.8	198.8	9.7	14.0	80.0	4054	2397.1
CR-7	4	1.52	188	44	1.1	40.0	212.7	10.6	14.6	80.0	4234	2499.4
CR-7	5	1.52	239	59	1.1	48.0	200.7	13.0	10.5	80.0	6632	1961.6
CR-7	6	1.52	414	46	1.1	69.2	167.2	19.1	11.4	80.0	8957	2128.9
CR-7-C	1, 2	1.52	125	37	1.1	27.9	223.3	4.4	10.8	80.0	2367	1846.1
CR-7-C	3	1.52	180	44	1.1	35.8	198.8	5.7	8.3	80.0	4054	1412.9
CR-7-C	4	1.52	188	- 44	1.1	40.0	212.7	6.2	8.6	80.0	4234	1474.3
CR-7-C	5	1.52	239	59	1.1	48.0	200.7	7.7	6.2	80.0	6632	1156.3
CR-7-C	6	1.52	414	46	1.1	69.2	167.2	11.2	6.7	80.0	8957	1254.4

TABLE 5.4.2-11.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR F. J. GANNON UNITS 1 OR 2

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO NA
NEW BAGHOUSE CASE ESTIMATED COST (1000\$)	NA NA
ESP REUSE CASE ESTIMATED COST (1000\$)	NA · NA
DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	50 35
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	35 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

TABLE 5.4.2-12.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR F. J. GANNON UNITS 3,4,5,0R 6

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLIN ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$) TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	NG NO NA NA NA SO 46, 46, 57, 87 46, 46, 57, 87 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

Technology	Boiler Number	• Main • Retrofit		Capacit Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SO2 Cos Effect
		Difficulty Factor	(MV)	(%)	Content (%)	(SHH)	(\$/k¥)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
							•••••					
DSD+ESP	- 1, 2	1.00	125	37	1.1	5.5	44.2	4.2	10.3	49.0	1669	2490.
DSD+ESP	3	1.00	180	44	1.1	6.3	35.1	4.8	6.9	49.0	2858	1674
DSD+ESP	4	1.00	188	44	1.1	6.5	34.3	4.9	6.7	49.0	2985	1630.
DSD+ESP	5	1.00	239	59	1.1	8.6	36.0	6.5	5.2	49.0	5089	1267.
DSD+ESP	6	1.00	414	46	1.1	11.9	28.7	8.0	4.8	49.0	6873	1171.
DSD+ESP-C	1, Z	1.00	125	37	1.1	5.5	44.2	2.4	5.9	49.0	1669	1441.0
SD+ESP-C	3	1.00	180	44	1.1	6.3	35.1	2.8	4.0	49.0	2858	969.
SD+ESP-C	4	1.00	188	44	1.1	6.5	34.3	2.8	3.9	49.0	2985	943.
SD+ESP-C	5	1.00	239	59	1.1	8.6	36.0	3.7	3.0	49.0	5089	733.4
SD+ESP-C	6	1.00	414	46	1.1	. 11.9	28.7	4.7	2.8	49.0	6873	678.
SI+ESP-50	1, 2	1.00	125	37	1.1	8.3	66.3	4.2	10.4	50.0	1715	2452.
SI+ESP-50	3	1.00	180	44	1.1	8.7	48.1	5.0	7.3	50.0	2938	1718.
SI+ESP-50	4	1.00	188	44	1.1	8.7	46.2	5.1	7.1	50.0	3068	1673.
SI+ESP-50	5	_1.00	239	59	1.1	9.8	40.8	6.8	5.5	50.0	5230	1291.
SI+ESP-50	6	1.00	414	46	1.1	13.4	32.3	8.8	5.3	50.0	7063	1244.3
SI+ESP-50-C	1, Z	1.00	125	37	1.1	8.3	66.3	2.4	6.0	50.0	1715	1426.4
SI+ESP-50-C	3	1.00	180	44	1.1	8.7	48.1	2.9	4.2	50.0	2938	997.0
SI+ESP-50-C	4	1.00	188	- 44	1.1	8.7	46.2	3.0	4.1	50.0	3068	971.
SI+ESP-50-C	5	1.00	239	59	1.1	9.8	40.8	3.9	3.2	50.0	5230	748.
SI+ESP-50-C	6	1.00	414	46	1.1	13.4	32.3	5.1	3.1	50.0	7063	721.
SI+ESP-70	1, 2	1.00	125	37	1.1	8.4	67.2	4.3	10.5	70.0	2402	1772.0
SI+ESP-70:	3	1.00	180	44	1.1	8.8	48.B	5.1	7.4	70.0	4113	1244.9
SI+ESP-70	4	1.00	188	44	1.1	8.8	47.0	5.2	7.2	70.0	4295	1214.0
SI+ESP-70	5	1.00	239	59	1.1	· 9.9	41.5	6.9	5.6	70.0	7322	937.0
SI+ESP-70	6	1.00	414	46	1.1	13.6	32.8	8.9	5.4	70.0	9889	904 .
SI+ESP-70-C	1, 2		125	37	1.1	8.4	67.2	2.5	6.1	70.0	2402	1031.4
SI+ESP-70-C	3	1.00	180	44	1.1	8.8	48.8	3.0	4.3	70.0	4113	722.8
SI+ESP-70-C	4	1.00	188	44	1.1	8.8	47.0	3.0	4.2	70.0	4295	704.1
SI+ESP-70-C	5	1.00	239	59	1.1	9.9		4.0	3.2	70.0	7322	543.
SI+ESP-70-C	6	1.00	414	46	-1.1	13.6	32.8	5.2	3,1	70.0	9889	524 .

Table 5.4.2-13. Summary of DSD/FSI Control Costs for the Gannon Plant (June 1988 Dollars)

SECTION 6.0 GEORGIA

6.1 GEORGIA POWER COMPANY

6.1.1 P. S. Arkwright Steam Plant

The P. S. Arkwright steam plant is located within Bibb County, Georgia, as part of the Georgia Power Company system. The plant is located just north of the city of Macon along the Ocmulgee River and contains four coal-fired boilers with a total gross generating capacity of 160 MW.

Table 6.1.1-1 presents operational data for the existing equipment at the Arkwright plant. The boilers burn medium sulfur coal. Coal shipments are received by railroad and transferred to the coal storage and handling area which is north of the boilers between the river and the railroad tracks.

PM emissions for the boilers are controlled with retrofit ESPs located behind each unit. The fly ash is wet sluiced to an on-site ash pond located one-half mile west of the plant. Units 1-4 are served by a common chimney located behind the retrofit ESPs and situated between units 2 and 3.

Lime/Limestone and Lime Spray Drying FGD Costs--

The four boilers are located beside each other, parallel to the river, with the switchyard being located between the boilers and the river. The absorbers for units 1-4 would be located in an open area directly behind the chimney which is between the ESPs and the railroad tracks with the coal pile lying to the north. The limestone preparation, storage and handling area would be south of the coal pile, adjacent to the water treatment area, and next to the railroad tracks so that the limestone can be unloaded into the area. No major demolition or relocation of equipment or buildings would be necessary; hence, a base factor of 5 percent was assigned to general facilities.

A low site access/congestion factor was assigned to the FGD absorber locations. For flue gas handling, short duct runs of less than 300 feet would be required for the L/LS-FGD case because the absorbers would be

TABLE 6.1.1-1. P.S. ARKWRIGHT STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT)	1, 2 40 53,70	3, 4 40 67,62
INSTALLATION DATE FIRING TYPE	1941, 1942 TANGÉNTIAL	1943, 1948 FRONT WALL
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION	NA NO	
COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT)	1.9 12,700	
FLY ASH SYSTEM	9.8 WET DISPOS	AL
ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS		,
COAL DELIVERT METHODS	RAILROAD	
PARTICULATE CONTROL		
TYPE INSTALLATION DATE	ESP 1978	
EMISSION (LB/MM BTU) REMOVAL EFFICIENCY	0.02 85.0	
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT)	2.0	·
SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM)	39.3 180	· · ·
SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	222 400	

placed immediately behind the chimney. The existing chimney can be accessed easily; therefore, a low site access/congestion factor was assigned to the flue gas handling system.

LSD with reuse of the existing ESPs was considered for all units at the Arkwright plant. The ESPs are small (SCA=222); however, sufficient room exists behind the units for upgrading with additional plate area. For the flue gas handling systems, a moderate duct length of 500 feet was required for these units. Although there is plenty of open area for the absorbers, access to the ESPs is difficult due to the close proximity of the ESPs to each other. For this reason, a medium site access/congestion factor was assigned to the flue gas handling system. A medium access/congestion factor was assigned for upgrades to the existing ESPs.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 6.1.1-2. Table 6.1.1-3 presents the capital and operating costs for commercial FGD technologies. The low cost option reduces costs due to economies of scale and elimination of a spare absorber modules.

Coal Switching and Physical Coal Cleaning Costs--

Table 6.1.1-4 presents the IAPCS results for CS at the Arkwright plant. These costs do not include boiler and pulverizer operating cost changes or any system modifications that may be necessary to blend coal. PCC was not evaluated because this is not a mine mouth plant.

Low NO_y Combustion--

Units 1-2 are tangential-fired boilers rated at 40 MW each, while units 3-4, also rated at 40 MW, are front wall-fired. The combustion modification technique applied to boilers 1 and 2 was OFA, and to units 3 and 4 was LNB.

Tables 6.1.1-5 and 6.1.1-6 present the NO_{χ} performance and cost results of retrofitting OFA and LNB at the Arkwright plant. Although furnace volumes were not available for any of the boilers, values were estimated based on boiler size and age.

TABLE 6.1.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR P.S. ARKWRIGHT UNITS 1-4 (EACH)

		FGD_TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	LOW Low	NA NA	LOW MEDIUM NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	100-300	NA	300-600 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	MEDIUM NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 412 NO O NO	NA NA NA O	YES 412 NO O NO
RETROFIT FACTORS	•		
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.27	NA	1.38 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.36 NA
GENERAL FACILITIES (PERCENT)	5	0	5

Technology	Boiler Number	Main Retrofit				•	Capital Cost	Annual Cost		SO2 Removed	SO2 Removed	SO2 Cost Effect.
		Difficulty Factor	(MW)	(%)	Content (%)	(SMH)	(\$/k\)	(SHM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
L/S FGD	1	1.27	40	53	1.9	24.3	607.1	10.1	54.4	90.0	2401	4210.7
L/S FGD	2	1.27	.40	70	1.9		607.4	10.6			_	
	3			-	-	24.3				90.0	3171	3344.1
L/S FGD	د 4	1.27	40	67	1.9	24.3	607.3	10.5	44.8	90.0	3035	3465.6
L/S FGD	•	1.27	40	62	1.9	24.3	607.2	10.4	47.7	90.0	2808	3693.7
L/S FGD	1-4	1.27	160	63	1.9	48.1	300.5	21.1	23.8	90.0	11414	1844.7
L/S FGD-C	1	1.27	40	53	1.9	24.3	607.1	5.9	31.8	90.0	2401	2457.8
L/S FGD-C	2	1.27	40	70	1.9	24.3	607.4	6.2	25.2	90.0	3171	1950.3
/S FGD-C	3	1.27	40	67	1.9	24.3	607.3	6.1	26.1	90.0	3035	2021.5
/S FGD-C	4	1.27	40	62	1.9	24.3	607.2	6.1	27.9	90.0	2808	2155.0
L/S FGD-C	1-4	1.27	160	63	1.9	48.1	300.5	12.3	13.9	90.0	11414	1075.8
LC FGD	1-4	1.27	160	,63	1.9	33.2	207.3	16.5	18.7	90.0	11414	1447.5
LC FGD-C	1-4	1.27	160	63	1.9	33.2	207.3	9.6	10.9	90.0	11414	842.4
LSD+ESP	1	1.38	40	53	1.9	10.1	252.9	5.4	29.2	76.0	2035	2662.9
.SD+ESP	. 5	1.38	40	70	1.9	10.1	252.9	5.6	22.9	76.0	2688	2087.4
LSD+ESP	3	1.38	40	67	1.9	10.1	252.9	5.6	23.8	76.0	2573	2167.6
SD+ESP	4	1.38	40	62	1.9	10.1	252.9	5.5	25.4	76.0	2381	2318.8
.SD+ESP-C	1	1.38	40	53	1.9	10.1	252.9	3.2	17.0	76:0	2035	1548.0
SD+ESP-C	2	1.38	40	70	1.9	10.1	252.9	3.3	13.3	76.0	2688	1212.8
.SD+ESP-C	3	1.38	40	67	1.9	10.1	252.9	3.2	13.8	76.0	2573	1259.5
SD+ESP-C	4	1.38	40	62	1.9	10.1	252.9	3.2	14.8	76.0	2381	1347.6

Table 6.1.1-3. Summary of FGD Control Costs for the Arkwright Plant (June 1988 Dollars)

lechnology	Boiler			Capacit		Capital	•		Annual	502	S02	SO2 Cos
		Retrofit Difficulty Factor	Size (MW)	Factor (%)	Sulfur Content .(%)	Cost (SMM)	Cost (\$/kW)	Cost (SHM)	Cost (mills/kwh)		Removed (tons/yr)	Effect (\$/ton)
•••••							•••••					•••••
S/B+\$15	1	1.00	- 40	53	1.9	2.4	59.5	3.3	17.7	50.0	1326	2478.3
S/B+\$15	2	1.00	40	70	1.9	2.4	59.5	4.2	16.9	50.0	1752	2371.
S/B+\$15	3	1.00	40	67	1.9	2.4	59.5	4.0	17.0	50.0	1677	2386.6
S/8+\$15	4	1.00	40	62	1.9	2.4	59.5	3.7	17.2	50.0	1552	2414.4
S/B+\$15-C	1	1.00	40	53	1.9	2.4	59.5	1.9	10.2	50.0	1326	1428.0
S/8+\$15-C	2,	1.00	40	70	1.9	2.4	59.5	2.4	9.7	50.0	1752	1364.9
S/B+\$15-C	3	1.00	40	67	1.9	2.4	59.5	. 2.3	9.8	50.0	1677	1373.8
S/B+\$15-C	4	1.00	40	62	1.9	2.4	59.5	2.2	9.9	50.0	1552	1 39 0, 3
S/B+ \$ 5	1	1.00	40	53	1.9	2.0	49.1	1.7	9.0	50.0	1326	1267.1
S/B+\$5	- 2	1,00	40	70	1.9	2.0	49.1	2.1	8.4	50.0	1752	1173.7
S/8+\$5	3	1.00	40	67	1.9	2.0	49.1	2.0	8.5	50.0	1677	1186.8
S/B+\$5	4	1.00	40	62	1.9	2.0	49.1	1.9	8.7	50.0	1552	1211.2
:S/B+\$5-C	1	1.00	40	53	1.9	2.0	49.1	1.0	5.2	50.0	1326	732.6
S/B+\$5-C	2	1.00	40	70	1.9	2.0	49.1	1.2	4.8	50.0	1752	677.5
S/8+\$5-C	3	1.00	40	67	1.9	2.0	49.1	1.1	4.9	50.0	1677	685.3
S/B+\$5-C	4	1.00	40	62	1.9	2.0	49.1	1.1	5.0	50.0	1552	699.6

Table 6.1.1-4. Summary of Coal Switching/Cleaning Costs for the Arkwright Plant (June 1988 Dollars)

۲

	BOILER	NUMBER	
COMBUSTION MODIFICATION RESULTS		н 1	
	1, 2	3, 4	1-4
FIRING TYPE	TANG	FWF	NA
TYPE OF NOX CONTROL	OFA	LNB	NA
FURNACE VOLUME (1000 CU FT)	NA	NA	NA
BOILER INSTALLATION DATE	1941,42	1943,48	NA
SLAGGING PROBLEM	NO	NO	NA
ESTIMATED NOX REDUCTION (PERCENT)	25	40	NA
SCR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS		•	
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	14	14	38
New Duct Length (Feet)	200	200	200
New Duct Costs (1000\$)	580	580	1305
New Heat Exchanger (1000\$)	1076	1076	2471
TOTAL SCOPE ADDER COSTS (1000\$)	1669	1669	3814
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16
GENERAL FACILITIES (PERCENT)	13	13	13

TABLE 6.1.1-5. SUMMARY OF NOX RETROFIT RESULTS FOR P.S. ARKWRIGHT

Technology		Main Retrofit Difficulty Factor	Size	Capacit Factor (%)	y Coal Sulfur Content (%)	Capital Cost (SMM)	Capitel Cost (\$/kW)	Cost	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	NOx Cost Effect. (\$/ton)
NC-LNB	3	1.00	40	67	1.9	1.8	44.2	0.4	1.6	40.0	382	980.3
NC-LN8	4	1.00	40	62	1.9	1.8	. 44.2	0.4	1.7	40.0	354	1059.3
LNC-LNB-C	3	1.00	40	67	1.9	1.8	44.2	0.2	0.9	40.0	382	582.4
NC-LNB-C	4	1.00	40	62	1.9	1.8	44.2	0.2	1.0	40.0	354	629.3
NC-OFA	1	1.00	40	53	1.9	0.4	10.7	0.1	0.5	25.0	135	674.1
NC-OFA	2	1.00	40	70	1.9	0.4	10.7	0.1	0.4	25.0	178	510.4
NC-OFA-C	1	1.00	40	53	1.9	0.4	10.7	0.71	0.3	25.0	135	400.0
NC-OFA-C	2 .	1.00	40	70	1.9	0.4	10.7	0.1	0.2	25.0	178	302.9
SCR-3	1	1.16	40	53	1.9	11.1	277.9	.3.4	18.1	80.0	432	7761.3
SCR-3	2	1.16	40	70	1.9	11.1	277.9	3.4	13.8	80.0	571	5942.8
SCR-3	3	1.16	40	67	1.9	11.1	278.1	3.4	14.5	80.0	765	4459.1
SCR-3	4	1.16	40	62	1.9	11.1	278.0	3.4	15.6	80.0	707	4800.2
SCR-3	1-4	1.16	- 40	67	1.9	13.3	332.8	3.8	16.2	80.0	765	4961.0
SCR-3-C	1 ·	1.16	40	53	1.9	11.1	277.9	2.0	10.6	80.0	432	4562.1
SCR-3-C	2	1.16	40	. 70	1.9	11.1	277.9	2.0	8.1	80.0	571	3492.2
SCR-3-C	3	1.16	. 40	67	1.9	11.1	278.1	2.0	8.5	80.0	765	2620.1
SCR-3-C	4	1.16	40	62	1.9	11.1	278.0	2.0	9.2	80.0	707	2820.7
SCR-3-C	1-4	1.16	40	67	1.9	13.3	332.8	2.2	9.5	80.0	765	2920.4
SCR-7	1	1.16	40	53	1.9	11.1	277.9	3.0	16.3	80.0	432	7007.0
SCR-7	2	1.16	-40	70	1.9	11.1	277.9	3.1	12.5	80.0	571	5371.3
SCR-7	3	1.16	40	.67	1.9	. 11.1	278.1	3.1	13.1	80.0	765	4033.0
SCR-7	4	1.16	40	62	1.9	11.1	278.0	3.1	14.1	80.0	707	4339.5
SCR-7	1-4	1.16	40	. 67	1.9	12.0	299.8	3.2	13.8	80.0	765	4232.7
SCR-7-C	1	1 .16	40	53	· 1.9	11.1	277.9	1.8	9.6	80.0	432	4129.8
CR-7-C	2	1.16	40	70	1.9	11.1	277.9	1.8	7.4	80.0	571	3164.9
CR-7-C	3	1.16	40	67	1.9	11.1	278.1	1.8	7.7	80.0	765	2375.9
ICR-7-C	4	1.16	40	62	1.9	11.1	278.0	1.8	8.3	80.0	707	2556.7
SCR-7-C	1-4	1.16	40	67	1.9	12.0	299.8	1.9	8.1	80.0	765	2495.4

Table 6.1.1-6. NOx Control Cost Results for the Arkwright Plant (June 1988 Dollars)

6-8

323

Selective Catalytic Reduction--

Cold side SCR reactors for all units would be located immediately behind the chimneys as were the FGD absorbers. All four reactors would be located in a low site/congestion area with 200 feet of ducting required. The ammonia storage system was placed close to the reactors, west of the plant. No major demolition/relocation would be necessary and, as such, a base factor of 13 percent was assigned to general facilities.

Table 6.1.1-5 presents the SCR process area retrofit factors and scope adder costs. Table 6.1.1-6 presents the estimated cost of retrofitting SCR at the Arkwright boilers.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI and DSD technologies at the Arkwright steam plant was considered for all units. Although the ESPs have marginal SCAs (222), there appears to be room available behind the ESPs for additional plate area and sufficient duct residence time is available between the boilers and the ESPs. A medium site access/congestion factor was assigned for upgrading the ESPs because of the space limitation around the ESPs. The sorbent receiving/ storage/preparation area was located in the same area as that described for L/LS-FGD.

Table 6.1.1-7 presents a summary of the site access/congestion factors for FSI and DSD technologies at the Arkwright steam plant. Table 6.1.1-8 presents the costs estimated to retrofit sorbent injection technologies at Arkwright.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

All units would be considered good candidates for repowering or retrofit because of the small boiler size and likely short remaining life. Although the capacity factors are high, the small unit sizes would minimize system impacts due to extended downtimes.

TABLE 6.1.1-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR P.S. ARKWRIGHT UNITS 1-4 (EACH)

<u>ITEM</u>	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW MEDIUM NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (ET)	YES 412
ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA NA NA 50 15
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	427 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.36 NA

lechnology	Boile Number		• Main • Retrofit Difficulty	Size	Capacity Factor (%)		Capital Cost (SMM)	Capital Cost (\$/kW)	Annual Cost (SMM)	Annual Cost (milis/kwh)		SO2 Removed (tons/yr)	SO2 Cos Effect (\$/ton
		Factor			(%)								
						·							
SD+ESP	1	1.00	40	53	1.9	4.8	120.3	3.9	20.8	49.0	1298	2979.	
DSD+ESP	2	1.00	40	70	1.9	4.8	120.3	4.0	16.5	49.0	1714	2358.	
DSD+ESP	3	1.00	40	67	1.9	4.8	120.3	4.0	17.1	49.0	1640	2445.	
SD+ESP	4	1.00	40	62	1.9	4.8	120.3	4.0	18.2	49.0	1518	2608.	
SD+ESP-C	1	1.00	· 40	53	1.9	4.8	120.3	2.2	12.0	49.0	1298	1724.	
SD+ESP-C	2	1.00	40	70	1.9	4.8	120.3	2.3	9.5	49.0	1714	1363.	
SD+ESP-C	3	1.00	40	67	1.9	4.8	120.3	2.3	9.9	49.0	1640	1414.	
SD+ESP-C	. 4	1.00	<u>,</u> 40	62	1.9	4.8	120.3	2.3	10.5	49.0	1518	1508.	
SI+ESP-50	1	1.00	40	53	1.9	5.3	131.7	3.2	17.1	50.0	1334	2375.	
SI+ESP-50	2	1.00	40	70	1.9	5.3	131.7	3.4	14.0	50.0	1761	1954.	
SI+ESP-50	3	1.00	40	67	1.9	5.3	131.7	3.4	14.5	50.0	1686	2012.	
SI+ESP-50	4	1.00	40	62	1.9	5.3	131.7	3.3	15.3	50.0	1560	2123.	
SI+ESP-50-C	1	1.00	40	53	1.9	5.3	131.7	1.8	9.9	50.0	1334	1378.	
SI+ESP-50-C	2	1.00	40	70	1.9	5.3	131.7	2.0	- 8.1	50.0	1761	1133.	
SI+ESP-50-C	3 '	1.00	40	67	1.9	5,3	131.7	2.0	8.4	50.0	1686	, 1167.	
SI+ESP-50-C	4	1.00	40	62	1.9	5.3	131.7	1.9	8.8	50.0	1560	1231.	
SI+ESP-70	1	1.00	40	53	1.9	5.3	133.5	3.2	17.3	70.0	1867	1716.	
SI+ESP-70	2	1.00	40	70	1.9	5.3	133.5	3.5	14.2	70.0	2466	1413.	
S1+ESP-70	3	1.00	40	67	1.9	5.3	133.5	3.4	14.6	70.0	2360	1455.	
SI+ESP-70	4	1.00	40	62	1.9	5.3	133.5	3.4	15.4	70.0	2184	1535.	
SI+ESP-70-C	1	1.00	40	53	1.9	5.3	133.5	1.9	10.0	70.0	1867	996.	
SI+ESP-70-C	2	1.00	40	70	1.9	5.3	133.5	2.0	8.2	70.0	2466	819.	
SI+ESP-70-C	3	1.00	40	67	1.9	5.3	133.5	2.0	8.5	70,0	2360	844.	
SI+ESP-70-C	4 .	1.00	40	62	1.9	5.3	133.5	1.9	9.0	70.0	2184	890.	

Table 6.1.1-8. Summary of DSD/FSI Control Costs for the Arkwright Plant (June 1988 Dollars)

6.1.2 Bowen Steam Plant

The ESPs for units 3 and 4 would be difficult to upgrade due to the configuration of the boilers and the ESPs; therefore, FSI and DSD were not evaluated for the Bowen Plant. In addition, the duct residence time between the boilers and the ESPs for these units is short.

TABLE 6.1.2-1. BOWEN STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE	1,2 700 70,74 1971,72 TANGE	3,4 880 77,83 1974,75 ENTIAL
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM	334 NO 1.8 12200 10.5 WET DI	607 NO SPOSAL
ASH DISPOSAL METHOD STACK NUMBER PARTICULATE CONTROL	ON-SIT 1	E/SOLD 2
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1981 0.02 NA	ESP 1981 0.02 NA
SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	2.0 476.6 2017.9 236 NA	2.0 622 2930 212 NA

TABLE 6.1.2-2.SUMMARY OF RETROFIT FACTOR DATA FOR BOWEN
UNIT 1 OR 2 *

	<u> </u>		. <i>*</i>
· · · · · · · · · · · · · · · · · · ·		FGD TE	CHNOLOGY_
·	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	HIGH HIGH	NA . NA	HIGH HIGH NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	300-600 NA NA	NA NA NA	300-600 NA HIGH NA
SCOPE_ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 5365 NO 0 NO	NA NA NA O	YES 5365 NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.68	NA ⁷	1.69 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT) 15	0	15

* L/LS-FGD and LSD-FGD absorbers for units 1 and 2 would be located behind the common chimney for units 1 and 2.

_		FGD TE	CHNOLOGY
	<u>L/LS FGD</u>	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	HIGH MEDIUM	NA NA	HIGH NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	LOW
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA HIGH
SCOPE ADJUSTMENTS		:	
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 6587 NO 0 NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.55	NA	NA 1.53
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.58
GENERAL FACILITIES (PERCENT) 15	0	15

TABLE 6.1.2-3.SUMMARY OF RETROFIT FACTOR DATA FOR BOWEN
UNIT 3 OR 4 *

* L/LS-FGD absorbers, LSD-FGD absorbers, and new FFs for units 3 and 4 would be located behind the common chimney for units 3 and 4.

Technology	Boiler			Capacity		-	Capital		Annual	SOZ	502	SO2 Cos
		Retrofit			Sulfur	Cost	Cost (\$/kW)	Cost	Cost		Removed	Effect (\$/ton
		Difficulty Factor	/ (MW)) (%)	Content (%)	(\$NH)		(SHH)	(milis/kwh)	(%)	(tons/yr)	
	• • • • • • • • • • •	••••••		•						•••••		
L/S FGD	٩	1-68	700	.70	1.8	160.2	228.9	73.0	17.0	90.0	55045	1326.
S FGD	2	1.68	700	74	1.8	160.2	228.9	74.4	16.4	90.0	58190	1278.
L/S FGD	3	1.55	880	77	1.8	181.1	205.8	87.9	14.8	90.0	76119	1154.
L/S FGD	4	1.55	880	83	1.8	181.1	205.8	90.4	14.1	90.0	82050	1101.
L/S FGD	1-2	1.68	1400	72	1.8	280.5	200.3	132.4	15.0	90.0	113235	1169.
L/S FGD	3-4	1.55	1760	80	1.8	307.6	174.8	158.2	12.8	90.0	158170	1000.
/S FGD-C	1	1.68	700	70	1.8	160.Z	228.9	42.6	9.9	90.0	55045	773.
L/S FGD-C	2	1.68	700	74	1.8	160.2	228.9	43.3	9.5	90.0	58190	744.
L/S FGD-C	3	1.55	880	77	1.8	181.1	205.8	51.2	8.6	90.0	76119	672.
L/S FGD-C	4	1.55	880	83	1.8.	181.1	205.8	52.6	8.2	90.0	82050	641.
/S FGD-C	1-2	1.68	1400	72	1.8	280.5	200.3	77.1	8.7	90.0	113235	680.
/S FGD-C	3-4	1.55	1760	80	1.8	307.6	174.8	92.0	7.5	90.0	158170	581.
C FGD	1-2	1.68	1400	72	1.8	241.1	172.2	120.4	13.6	90.0	113235	1063.
C FGD	3-4	1.55	1760	80	1.8	273.4	155.3	147.8	12.0	90.0	158170	934.
C FGD-C	1-2	1.68	1400	72	1.8	241.1	172.2	70.0	7.9	90.0	113235	618.
C FGD-C	3-4	1,55 -	1760	80	1.8	273.4	155.3	85.9	7.0	90.0	158170	543.
SD+ESP	1	1.69	700	70	1.8	104.7	149.6	43.8	10.2	76.0	46665	939.
SD+ESP	2	1.69	700	74	1.8	104.7	149.6	44.6	9.8	76.0	49332	904.
SD+ESP-C	t	1.69	700	70	1.8	104.7	149.6	25.6	6.0	76.0	46665	548.
SD+ESP-C	2	1.69	700	74	1.8	104.7	149.6	26.0	5.7	76.0	49332	527.
SD+FF	3	1.53	880	77	1.8	198.8	226.0	75.2	12.7	87.0	73158	1028.
SD+FF	4 .	1.53	880	83	1.8	198.9	226.0	77.0	12.0	87.0	78859	976.
SD+FF-C	3	1.53	880	77	1.8	198.8	226.0	44.0	7.4	87.0	73158	601.
SD+FF-C	4	1.53	880	83	1.8	198.9	226.0	45.0	7.0	87.0	78859	570.

Table 6.1.2-4. Summary of FGD Control Costs for the Bowen Plant (June 1988 Dollars)

Technology	Boiler	Main		Capacity		•	Capital		Annual	SOZ	S02	SO2 Cost
		Retrofit		Factor		Cost	Cost	Cost			Removed	Effect.
	. [ifficulty	(HW)	(%)	Content	(\$101)	(\$/k₩)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor			(%)		• • • • • • • • • •		•••••			
CS/8+\$15	1	1.00	700	70	1 .8 .	21.4	30.6	60.0	14.0	49.0	30167	1988.4
CS/8+\$15	2	1.00	700	74	1.8	21.4	30.6	63.2	13.9	49.0	31890	1980.4
CS/8+\$15	3	1.00	880	77	1.8	26.6	30.2	82.2	13.8	49.0	41716	1969.8
CS/8+\$15	4	1.00	880	83	1.8	26.6	30.2	88.1	13.8	49.0	44967	1960.2
CS/8+\$15-C	1	1.00	700	70	1.8	21.4	30.6	34.5	8.0	49.0	30167	1142.4
CS/8+\$15-C	2	1.00	700	74	1.8	21.4	30.6	36.3	8.0	49.0	31890	1137.6
CS/8+\$15-C	3	1.00	880	77	1.8	26.6	30.2	47.2	8.0	49.0	41716	1131.4
CS/8+\$15-C	4	1.00	880	83	1.8	26.6	30.2	50.6	7.9	49.0	44967	1125.7
CS/B+\$5	. 1	1.00	700	70	1.8	14.2	20.3	23.3	5.4	49.0	30167	· 771.0
CS/8+\$5	2	1.00	700	74	1.8	14.2	20.3	24.4	5.4	49.0	31890	765.2
CS/8+\$5	3	1.00	880	77	1.8	17.5	19.8	31.5	5.3	49.0	41716	756.3
CS/8+\$5	4	1.00	880	83	1.8	17.5	19.8	33.7	5.3	49.0	44967	749.5
CS/8+\$5-C	1	1.00	700	70	1.8	14.2	20.3	13.4	3.1	49.0	30167	443.9
CS/B+\$5-C	2	1.00	700	74	1.8	14.2	20.3	14.0	3.1	49.0	31890	440.4
C\$/8+\$5-C	3	1.00	880	77	1.8	17.5	19.8	18.2	3.1	49.0	41716	435.2
CS/8+\$5-C	4	1.00	880	- 83	1.8	17.5	19.8	19.4	3.0	49.0	44967	431.1

Table 6.1.2-5. Summary of Coal Switching/Cleaning Costs for the Bowen Plant (June 1988 Dollars)

	BOILER N	NUMBER
COMBUSTION MODIFICATION RESULTS		
	1, 2	3, 4
FIRING TYPE	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA
FURNACE VOLUME (1000 CU FT)	334	607
BOILER INSTALLATION DATE	1971, 1972	1974, 1975
SLAGGING PROBLEM	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	25	25
SCR RETROFIT RESULTS *	• • •	· · ·
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH
SCOPE ADDER PARAMETERS		:
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	116, 196	138, 232
New Duct Length (Feet)	500 ⁻	300
New Duct Costs (1000\$)	7734, 11601	5305, 7958
New Heat Exchanger (1000\$)	5991, 9080	6872, 10416
TOTAL SCOPE ADDER COSTS (1000\$) INDIVIDUAL CASE COMBINED CASE	13841 20877	12315 18606
RETROFIT FACTOR FOR SCR	1.52	1.52
GENERAL FACILITIES (PERCENT)	38	38

TABLE 6.1.2-6. SUMMARY OF NOX RETROFIT RESULTS FOR BOWEN

* Cold side SCR reactors for units 1-2 and 3-4 would be located north of the unit 1-2 chimney and north of the unit 3-4 chimney, respectively.

Technology		Hain Retrofit Difficulty Factor	Size	Capecity Factor (%)	/ Coei Sulfur Content (%)	Cepital Cost (SMM)	Capital Cost (\$/kW)	Annual Cost (SMN)	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	NOX Cost Effect (\$/ton)
	•••••						· • • • • • • •			·····	•••••	•••••
LNC-OFA	1	1 .0 0	700	, 70	1.8	1.3	1.9	0.3	0.1	25.0	3267	. 87.3
LNC-OFA	2	1.00	700	74	1.8	1.3	1.9	0.3	0.1	25.0	3454	82.0
LNC-OFA	3	1.00	880	77	1.8	1.5	1.7	0.3	0.1	25.0	4518	69.3
LNC-OFA	4	1.00	880	83	1.8	1.5	1.7	0.3	0.0	25.0	4870	64.3
LNC-OFA-C	1	1.00	700	70	1.8	1.3	1.9	0.2	0.0	25.0	3267	51.9
LNC-OFA-C	2 '	1.00	700	74	1.8	1.3	1.9	0.2	0.0	25.0	3454	49.
LNC-OFA-C	3	1.00	880	77	1.8	1.5	1.7	0.2	0.0	25.0	4518	41.
LNC-OFA-C	4	1.00	880	63	1.8	1.5	1.7	0.2	0.0	25 .0	4870	38.2
SCR-3	1	1.52	700	70	1.8	107.9	154.2	. 36.6	8.5	80.0	10455	3500.0
SCR-3	2	1.52	700	74	1.8	107.9	154.2	36.8	8.1	80.0	11052	3326.0
SCR-3	3	1.52	880	77	1.8	128.4	145.9	44.9		80.0	14457	3103.0
SCR-3	4	1.52	880	83	1.8	128.4	145.9	45.2	7.1	80.0	15584	2899.0
SCR-3	1.2	1.52	1400	72	1.8	200.7	143.4	70.0	7.9	80.0	21507	3253.8
SCR-3	3-4	1.52	1760	80	1.8	242.5	137.8	86.8	7.0	80.0	30041	2889.9
SCR-3-C	1	1.52	700	70	1.8	107.9	154.2	21.5	5.0	80.0	10455	2051.9
SCR-3-C	2	1.52	700	74	1.8	107.9	154.2	21.5	4.7	80.0	11052	1949.4
5CR-3-C	3	1.52	880	π	1.8	128.4	145.9	26.3	4.4	80.0	14457	1817.0
SCR-3-C	4	1.52	880	83	1.8	128.4	145.9	26.5	4.1	80.0	15584	1697.9
SCR-3-C	1-2	1.52	1400	72	1.8	200.7	143.4	41.0	4.6	80.0	21507	1906.0
SCR-3-C	3-4	1.52	1760	80	1.8	242.5	137.8	50.8	4.1	80.0	30041	1691.9
SCR-7	1	1.52	700	70	1.8	107.9	154.2	30.9	7.2	80.0	10455	2951.7
SCR-7	2	1.52	700	74	1.8	107.9	154.2	31.0	6.8	80.0	11052	2806.9
SCR-7	3	1.52	880	77	1.8	128.4	145.9	37.6	6.3	80.0	14457	2604.
CR-7	4	1.52	880	83	1.8	128.4	145.9	38.0	5.9	80.0	15584	2436.
SCR-7	1-2	1.52	1400	72	1.8	200.7	143.4	58.5	6.6	80.0	21507	2720.2
SCR-7	3-4	1.52	1760	80	1.8	242.5	137.8	72.4	5.9	80.0	30041	2409.
SCR-7-C	1	1.52	700	70	1.8	107.9	154.2	18.2	4.2	80.0	10455	1 737 .4
5CR-7-0	2	1.52	700	74	1.8	107.9	154.2	18.3	4.0	80.0	11052	1651.9
SCR-7-C	3	1.52	880	77	1.8	128.4	145.9	22.1	3.7	80.0	14457	1531.3
SCR-7-C	4	1.52	880	83	-1 .8	128.4	145.9	22.3	3.5	80.0	15584	1432.3
SCR-7-C	1-2	1.52	1400	72	1.8	200.7	143.4	34.4	3.9	80.0	21507	1600.3
5CR-7-C	3-4	1.52	1760	80	1.8	242.5	137.8	42.6	3.5	80.0	30041	1416.0

Table 6.1.2-7. NOx Control Cost Results for the Bowen Plant (June 1988 Dollars)

TABLE 6.1.2-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR BOWEN UNIT 1 OR 2

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 5365
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE	NA NA NA
ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA 50 129
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	5494 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

The duct residence time between units 1 and 2 and their respective ESPs is sufficient for FSI and DSD. A high factor was assigned to ESP upgrade.

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SHM)	Annuai Cost (milis/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
SD+ESP	1	1.00	700	70	1.8	35.9	51.3	23.2	. 5. 4 .	49.0	29754	781.0
DSD+ESP	z	1.00	700	74	1.8	35.9	51.3		5.3	49.0	31455	761.1
SD+ESP-C	1	1,00	700	70	1.8	35,9	51.3	13.5	3.1	49.0	29754	452.9
DSD+ESP+C	2	1.00	700	74	1.8	35.9	51.3	13.9	3.1	49.0	31455	441.2
FSI+ESP-50	1	1.00	700	70	1.8	38.7	55.2	29.2	6.8	50.0	30580	955.9
FSI+ESP-50	2	1,00	700	74	1.8	38.7	55.2	30.3	6.7	50.0	32328	938.2
FSI+ESP-50-C	1	1.00	700	70	1 .8	38.7	55.2	16.9	3.9	50.0	30580	553.3
FS1+ESP-50-C	2	1.00	700	74	1.8	38.7	55.2	17.6	3.9	50.0	32328	542.9
FSI+ESP-70	1	1.00	700	70	1.8	38.9	55.6	29.7	6.9	70.0	42812	694.8
FSI+ESP·70	2	1.00	700	74	1.8	38.9	55.6	30.9	6.8	70.0	45259	682.1
FSI+ESP-70-C	1	1.00	700	70	1.8	38.9	55.6	17.2	4.0	70.0	42812	402.1
FSI+ESP-70-C	2	1.00	700	74	1.8	38.9	55.6	17.9	3.9	70.0	45259	394.6

Table 6.1.2-9. Summary of DSD/FSI Control Costs for the Bowen Plant (June 1988 Dollars)

6.1.3 Branch Steam Plant

The Branch Steam Plant is located in Putnam County, Georgia, as part of the Georgia Power Company system. The plant contains four coal-fired boilers with a total gross generating capacity of 1,540 MW. Tables 6.1.3-1 through 6.1.3-11 summarize the plant operational data and present the SO₂ and NO_x control cost and performance estimates.

TABLE 6.1.3-1. BRANCH STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE	1 250 89 1965	2 319 77 1967 OPPOSED		4 490 65 1969
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT)	na No	162.2 NO 1.3 12400 10.6	NA NO	NA NO
FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHOD	5	WET DIS ONDS/ON 5 RAILRO	-SITE 5	5
PARTICULATE CONTROL				
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1978 0.08 98.0	1978 NA	1981	1982 0.02
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	1.0 335.2 1386 242 300	417.4 1679	0.6 999.0 1963.8 509 300	453.1

TABLE 6.1.3-2.	SUMMARY	OF	RETROFIT	FACTOR	DATA	FOR BRANCH	
			UNITS 1	AND 2	*		

	FGD TECHNOLOGY					
	L/LS_FGD_OX	FORCED IDATION				
SITE ACCESS/CONGESTION						
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	LOW LOW	NA NA	LOW NA LOW			
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	100-300	NA	NA 100-300			
ESP REUSE NEW BAGHOUSE	NA · · · · · · · · · · · · · · · · · · ·	NA NA	NA LOW			
SCOPE ADJUSTMENTS		,				
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 2132,2652 NO O NO	NA NA NA O	NO NA NO O NO			
RETROFIT FACTORS			Ŷ			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.27	NA	NA 1.16			
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16			
GENERAL FACILITIES (PERCENT) 10	0	10			

* L/S-FGD absorbers, LSD-FGD absorbers and new FFs for units 1 and 2 would be located southwest of the common chimney.

TABLE 6.1.3-3. SUMMARY OF RETROFIT FACTOR DATA FOR BRANCH UNITS 3 AND 4 *

· _		FGD TE	CHNOLOGY
	L/LS FGD OX	FORCED IDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW LOW	NA NA	LOW NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	LOW NA 100- 3 00
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA LOW
SCOPE ADJUSTMENTS	1		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 3833,3897 NO 0 NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS			, ,
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.27	NA	NA 1.16
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16
GENERAL FACILITIES (PERCEN	T) 10	0	10

* L/S-FGD and LSD-FGD absorbers for units 3 and 4 would be located southwest of the common chimney. ESP reuse was not considered due to the access/congestion problems near the ESPs.

Technology	Boiler			Capacity		•	Capital Cost	Annual Cost	Annual	SO2	SO2	SO2 Cos
		Retrofit		Factor (%)	Sulfur '	COST (SHM)			Cost (mills/kwh)		Removed	Effect
		Difficulty Factor	(MW)		(%)	(999)	(»/KW)	(9494)	(mills/kwn)	(4)	(tons/yr)	(\$/:01
									••••••			
C FGD	1-4	1.27	1540	73	1.3	190.5	123.7	104.2	10.6	90.0	89522	1163.
LC FGD-C	1-4	1.27	1540	73	1.3	190.5	123.7	60.5	6.1	90.0	89522	676.
LFGD	1	1.27	250	89	1.3	63.0	252.0	30.6	15.7	90.0	17718	1729.
FGD	2	1.27	319	77	1.3	71.2	223.1	34.1	15.9	90.0	19561	1745.
FGD	3	1.27	481	69	1.3	91.0	189.1	43.1	14.8	90.0	26429	1630.
LFGD	4	1.27	490	65	1.3	91.9	187.6	42.8	15.3	90.0	25363	1686.
FGD	1-4	1.27	1540	73	1.3	222.0	144.2	113.7	11.5	90.0	89522	1270.
FGD-C	1	1.27	250	89	1.3	63.0	252.0	17.8	9.2	90.0	17718	1007.
FGD-C	2	1.27	319	77	1.3	71.2	223.1	19.9	9.2	90.0	19561	1016.
LFGD-C	3	1.27	481	69	1.3	91.0	189.1	25.1	8.6	90.0	26429	949.
LFGD-C	4	1.27	490	65	1.3	91.9	187.6	24.9	8.9	90 .0	25363	982.
FGD-C	1-4	1.27	1540	73	1.3	222.0	144.2	66.2	6.7	90.0	89522	739.
.SD+FF	1	1.16	250	89	1 .3	49.9	1 99. 8	20.8	10.7	87.0	17029	1222.
LSD+FF	2	1.16	319	77	1.3	55.8	175.0	21.9	10.2	79.0 ·	17200	1275.
SD+FF	3	1.16	481	69	1.3	82.7	172.0	32.1	11.0	87.0	25401	1263.
LSD+FF	4	1.16	490	65	1.3	83.9	171.2	32.0	11.5	87.0	24376	1313.
.SD+FF	1-4	1.16	1540	73	1.3	246.6	160.1	94.9	9.6	87.0	86040	1103.
.SD+FF-C	1	1.16	250	89	1.3	49.9	1 99.8	12.2	6.2	87.0	17029	713.
.SD+FF-C	2	1.16	319	77	1.3	55.8	175.0	12.8	6.0	79.0	17200	745.
SD+FF-C	3	1.16	481	69 .	1.3	82.7	172.0	18.8	6.5	87.0	25401	738.
_SD+FF-C	4	1.16	490	65	1,.3	83.9	171.2	18.7	6.7	87.0	24376	768.
SD+FF-C	1-4	1.16	1540	73	1.3	246.6	160.1	55.5	5.6	87.0	86040	645.

Table 6.1.3-4. Summary of FGD Control Costs for the Branch Plant (June 1988 Dollars)

Technology	Boiler			Capacity	y Coal		Capital		Annual	\$02	SO2	SO2 Cost
		Retrofit			Sulfur	Cost	Cost	Cost	Cost		Removed	Effect.
		Difficulty	(MM)	(%)	Content	(\$10)	(\$/k¥)	(SHPI)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor			(%)							
CS/8+\$15	1	1.00	250	89	1.3	8.6	34.3	27.4	14.1	29.0	5613	4880.6
S/B+\$15	2	1.00	319	77	1.3	10.6	33.2	30.3	14.1	29.0	6196	4895.0
CS/8+\$15	3	1.00	481	69	1.3	15.2		40.9	14.1	29.0	8372	4890.6
CS/B+\$15	4	1.00	490	65	1.3	15.5	31.6	39.5	14.1	29.0	8035	4912.5
CS/8+\$15-C	1	1.00	250	89	1.3	8.6	34.3	15.7	8.1	29.0	5613	2803.1
S/8+\$15-C	2	1.00	319	77	1.3	10.6	33.2	17.4	8.1	29.0	6196	2812.2
S/8+\$15-C	3	1.00	481	69	1.3	15.2	31.7	23.5	8.1	29.0	8372	2810.2
CS/8+\$15-C	4	1.00	490	65	1.3	15.5	31.6	22.7	8.1	29.0	8035	2823.2
S/B+\$5	1	1.00	250	89	1.3	6.0	24.0	10.8	5.6	29.0	5613	1931.6
;S/8+\$5	2	1.00	319	77	1.3	7.3	22.8	12.0	5.6	29.0	61 96	1933.4
;S/8+\$5	3	1.00	481	69	1.3	10.3	21.3	16.1	5.5	29.0	8372	1918.2
S/8+\$5	4	1.00	490	65	1.3	10.4	21.3	15.5	5.6	29.0	8035	1933.7
:S/B+\$5-C	1	1.00	250	89	1.3	6.0	24.0	6.2	[°] 3.2	29.0	5613	1111.5
CS/8+\$5-C	2	1.00	· 319	77	1.3	7.3	22.8	6.9	3.2	29.0	6196	1113.0
CS/8+\$5-C	3	1.00	481	69	1.3	10.3	21.3	9.2	3.2	29.0	8372	1104.5
:S/B+\$5-C	4	1.00	490	65	1.3	10.4	21.3	8.9	3.2	29.0	8035	1113.7

====

Table 6.1.3-5. Summary of Coal Switching/Cleaning Costs for the Branch Plant (June 1988 Dollars)

	BOI	LER NUMBER	·
COMBUSTION MODIFICATION RESULTS			
	1.	2	3
FIRING TYPE	OWF	OWF	OWF
TYPE OF NOX CONTROL	NA	LNB	NA
FURNACE VOLUME (1000 CU FT)	NA	162.2	NA
BOILER INSTALLATION DATE	1965	1967	1968
SLAGGING PROBLEM	NO	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	NA	35	NA
CR RETROFIT RESULTS *			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	54	65	88
New Duct Length (Feet)	200	200	200
New Duct Costs (1000\$)	1694	1953	2484
New Heat Exchanger (1000 \$)	3230	3738	4783
OTAL SCOPE ADDER COSTS (1000\$)	4977	5756	7355
ETROFIT FACTOR FOR SCR	1.16	1.16	1.16
ENERAL FACILITIES (PERCENT)	20	. 20	20

TABLE 6.1.3-6. SUMMARY OF NOX RETROFIT RESULTS FOR BRANCH +

+ Units 1 and 3 have cell burners, therefore LNBs were not evaluated for these units.
* Cold side SCR reactors for all units would be located southwest of the common chimney.

	BOILER		
COMBUSTION MODIFICATION RESULTS	DUILLK		
	4	1-4	v
FIRING TYPE	OWF	NA	
TYPE OF NOX CONTROL	NA	NA	
FURNACE VOLUME (1000 CU FT)	NA	NA	
BOILER INSTALLATION DATE	1969	NA	
SLAGGING PROBLEM	<u>NO</u>	NA	
ESTIMATED NOX REDUCTION (PERCENT)	NA	NA	
SCR RETROFIT RESULTS *			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	-
Ductwork Demolition (1000\$)	89	210	
New Duct Length (Feet)	200	200	
New Duct Costs (1000\$)	2511	4907	
New Heat Exchanger (1000\$)	4836	9614	
TOTAL SCOPE ADDER COSTS (1000\$)	7436	14731	
RETROFIT FACTOR FOR SCR	1.16	1.16	
GENERAL FACILITIES (PERCENT)	20	20	

TABLE 6.1.3-7. SUMMARY OF NOX RETROFIT RESULTS FOR BRANCH +

+ Unit 4 has cell burners and was not evaluated for LNBs.
 * Cold side SCR reactors for all units would be located southwest of the common chimney.

Technology	Boiler			Capacity			Capital		Annual	NÓX	NOX	NOX Cos
	Number	 Retrofit Difficulty 		Factor	Content	Cost	Cost (\$/kW)	Cost		-	Removed	Effect
		Factor	(me)	(2)	(%)		(3/KW)	()	(mills/kwh)	(A)	(tons/yr)	(\$/100
	•••••			••••••			•••••				*******	•••••
NC-LNB	2	1.00	319	77	1.3	4.1	12.7	0.9	0.4	35.0	3151	272.
NC-LNB-C	2	1.00	319	77	1.3	4.1	12.7	0.5	0.2	35.0	3151	162.
iCR-3	1	1.16	250	89	1.3	36.4	145.5	13.1	6.7	80.0	6523	2002.
CR-3	Z	1.16	319	77	1.3	43.8	137.4	15.8	7.3	80.0	7202	2190.
CR-3	3	1.16	481	69	1.3	59.8	124.4	Z2.0	7.6	80.0	9731	ZZ64 .
CR-3	4.	1.16	490	65	1.3	60.9	124.3	22.3	8.0	80.0	93 38	2389.
CR-3	1-4	1.16	1540	្រាន	1.3	169.9	110.4	66.2	6.7	80.0	32960	2008.
CR-3-C	1	1.16	250	89	1.3	36.4	145.5	7.6	3.9	80.0	6523	1172.
CR-3-C	2	1.16	319	. 77	1.3	43.8	137.4	9.2	4.3	80.0	7202	1282.
CR-3-C	3	- 1.16	481	69	1.3	59.8	124.4	12.9	4.4	80.0	9731	1325.
CR-3-C	4	1.16	490	65	-1.3	60.9	124.3	13.1	4.7	80.0	9338	1398.
CR-3-C	1-4	1.16	1540	73	1 .3	169.9	110.4	38.7	3.9	80.0	32960	1173.
CR-7	1	1.16	250	89	1.3	36.4	145.5	11.0	5.7	80.0	6523	1689.
CR-7	2	1.16	319	77	1.3	43.8	137.4	13.2	6.1	80.0	7202	1828.
CR-7	3	1.16	481	69	1.3	59.8	124.4	18,1	6.2	80.0	9731	1860.
CR-7	4	1.16	490	65	1.3	60.9	124.3	18.3	6.6	80.0	9338	1960.
CR-7	1-4	1.16	1540	73	1,3	169.9	110.4	53.6	5.4	80.0	32960	1625.
CR-7-C	1	1.16	250	89	1.3	36.4	145.5	6.5	3.3	80.0	6523	992.
CR-7-C	2	1.16	319	77	1.3	43.8	137.4	7.7	3.6	80.0	7202	1074.
CR-7-C	3	1.16	481	69	1.3	59.8	124.4	10.6	3.7	80.0	9731	1093.
CR-7-C	4	1.16	490	65	1.3	60.9	126.3	10.8	3.9	80.0	9338	1152.
CR-7-C	1-4	1.16	1540	73	1.3	169.9	110.4	31.5	3.2	80.0	32960	954.

Table 6.1.3-8. WOx Control Cost Results for the Branch Plant (June 1988 Dollars)

TABLE 6.1.3-9.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR BRANCH UNITS 1 AND 2

ITEM	
SITE ACCESS/CONGESTION	ч. Т
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE_ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$)	YES 2132, 2652
ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA NA NA 50 59, 71
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	2191, 2723 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

Units 1 and 2 have a long duct residence time. A high factor was assigned to ESP upgrade because of the congestion around the ESPs for these units.

TABLE 6.1.3-10.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR BRANCH UNITS 3 AND 4

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW LOW NA
SCOPE_ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 3833,3897
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA NA NA 50 97,97
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	3930,3995 NA
RETROFIT FACTORS	•
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.16 NA

Units 3 and 4 have a long duct residence time. Room is available for ESP upgrade, hence a low factor was assigned.

Technology		Main Retrofit Difficulty Factor	Size	•	y Coal Sulfur Content (%).	Cost	Capital Cost (\$/kW)	Annual Cost (\$MPI)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
			• • • • • • •					•••••				
DSD+ESP	1	1.00	250	89	1.3	14.2	56.7	9.9	5.1	49.0	9578	1035.7
DSD+ESP	Z	1.00	319	77	1.3	15.4	48.2	9.8	4.5	42.0	9170	1066.8
DSD+ESP	3	1.00	481	69	1.3	19.6	40.6	13.3	4.6	49.0	14286	930.2
DSD+ESP	4	1.00	490	65	1.3	22.6	46.0	13.9	5.0	49.0	13710	1010.8
DSD+ESP-C	1	1.00	250	89	1.3	14.2	56.7	5.7	2.9	49.0	9578	600.0
DSD+ESP-C	2	1.00	319	77	1.3	15.4	48.2	5.7	2.6	42.0	9170	618.7
DSD+ESP-C	3	1.0 0	481	69	1.3	19.6	40,6	7.7	2.6	49.0	14286	539.1
DSD+ESP-C	4	1.00	490	65	1.3	22.6	46.0	8.0	2.9	49.0	13710	586.5
FSI+ESP-50	1	1.00	250	89	1.3	16.1	64.2	11.1	5.7	50.0	9843	1131.1
FSI+ESP-50	2	1.00	319	77	1.3	18.6	58.4	12.3	5.7	50.0	10867	1131.9
FSI+ESP-50	3	1.00	481	69	1.3	. 18.6	. 38.6	14.5	5.0	50.0	14683	987.6
FSI+ESP-50	4	1.00	490	65	1.3	24.2	49.4	15.7	5.6	50.0	14090	1113.9
FS1+ESP-50-C	1	1.00	250	89	1.3	16.1	64.2	6.5	3.3	50.0	9843	655.4
FS1+ESP-50-C	2	1.00	319	77	1.3	18.6	58.4	7.1	3.3	50.0	10867	656.2
FS1+ESP-50-C	Ś	1.00	481	69	1.3	18.6	38.6	8.4	2.9	50.0	14683	571.5
FS1+ESP-50-C	4	1.00	490	65	1.3	24.2	49.4	9.1	3.3	50.0	14090	645.9
FSI+ESP-70	1	1.00	250	89	1.3	16.2	64.9	11.3	5.8	70.0	13781	821.3
FSI+ESP-70	2	1.00	319	77	1.3	18.8	58.8	12.5	5.8	70.0	15213	821.2
FSI+ESP-70	3	1.00	481	69	1.3	18.7	39.0	14.8	5.1	70.0	20556	718.1
FSI+ESP-70	4	1.00	490	65	1.3	24.4	49.7	15.9	5.7	70.0	19726	808.4
FS1+ESP-70-C	1	1.00	250	89	1.3	16.2	64.9	6.6	3.4	70.0	13781	475.8
FSI+ESP-70-C	2	1.00	319	77	1.3	18.8	58.8	7.2	3.4	70.0	15213	476.0
FSI+ESP-70-C	3	1.00	481	69	1.3	18.7	39.0	8.5	2.9	70.0	20556	415.5
FS1+ESP-70-C	4	1.00	490	65	1.3	24.4	49.7	9.2	3.3	70.0	19726	468.7

Table 6.1.3-11. Summary of DSD/FSI Control Costs for the Branch Plant (June 1988 Dollars)

6.1.4 <u>Hammond Steam Plant</u>

The Hammond steam plant is located on the Coosa River in Floyd County, Georgia, and is part of the Georgia Power Company. The plant contains four coal-fired boilers with a total gross generating capacity of 800 MW.

Table 6.1.4-1 presents operational data for the existing equipment at the Hammond plant. Coal shipments are received by railroad and conveyed to a coal storage and handling area west of the plant and adjacent to the river. PM emissions from boilers 1-3 are controlled by retrofit ESPs. Emissions from boiler 4 are controlled by an ESP installed at the time of construction. All four ESPs are located behind the boilers and flue gas is directed to two flues inside a common chimney. Three old chimneys are retired and left intact behind the units. Ash from the units is disposed of in ash ponds to the east and west of the plant.

Lime/Limestone and Lime Spray Drying FGD Costs--

L/LS or LSD-FGD absorbers would be located behind the common chimney. The general facilities factor would be high (15 percent) because of the need to relocate storage buildings and roads. A low site access/congestion factor can then be assigned to the FGD absorber locations. Land across the road can be acquired for the storage and preparation areas. In the L/LS-FGD case, approximately 250 feet of ductwork would be required. For the LSD case, approximately 350 feet of ductwork would be required. In both FGD cases, a low site access/congestion factor would be assigned to flue gas handling because of the easy access to the common stack.

Because of the small size of the existing ESPs, LSD was only considered in conjunction with the use of new FFs. FFs would be located adjacent to the absorbers and similar site access/congestion factors would be assigned to their locations.

Tables 6.1.4-2 and 6.1.4-3 give a summary of retrofit data for commercial FGD technologies. Table 6.1.4-4 presents the process area retrofit factors and capital/operating costs for commercial FGD technologies. The low cost option reduces capital/operating costs due to economy of scale and elimination of a spare absorber module. TABLE 6.1.4-1. HAMMOND STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1, 2, 3 100 64,84,70 1954,54,55 FRONT WALL 47.5 NO 1.7 12500 9.7 WET DIS PONDS/01 1 RAILROAN	1970 OPPOSED WALL 276.6 NO 1.7 12500 9.7 POSAL N-SITE 2
PARTICULATE CONTROL		
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1971,69,69 NA 98	1970 NA 98.4
	0.7 69.1 420 165 320	0.7 129.6 803 161 320

TABLE 6.1.4-2.SUMMARY OF RETROFIT FACTOR DATA FOR HAMMOND
UNITS 1-3 (EACH)

.

. –		FGD TE	CHNOLOGY
	<u>L/LS FGD</u>	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		•	
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW LOW	NA . NA	LOW NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	LOW
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA LOW
SCOPE ADJUSTMENTS	ч., к		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 938 NO O NO	NA NA NA O NO	NO NA NO O NO
RETROFIT FACTORS		,	
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.27	NA	NA 1.27
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16
GENERAL FACILITIES (PERCENT) 15	0	15

TABLE 6.1.4-3. SUMMARY OF RETROFIT FACTOR DATA FOR HAMMOND UNIT 4

-	·.	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	LOW	NA NA	LOW
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	100-300	NA	NA LOW
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA LOW
SCOPE ADJUSTMENTS		• •	
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 3968 NO 0 NO	NA NA NA O	NO O NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE	1.27	NA	NA
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.27 NA 1.16
GENERAL FACILITIES (PERCENT) 15	0	15

Technology	Boiler Number	Main Retrofit		Capacit Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SO2 Cos Effect
		Difficulty Factor	(MW)			(\$HM)	(\$/kW)	(\$MM)	(mills/kwh)	(%)	(tons/yr)) (\$/ton)
									•••••••••••			·······
L/S FGD	1	1.27	100	64	1.7	39.2	392.3	16.8	30.0	90.0	6603	2544.
L/S FGD	2	1.27	100	84	1.7	39.2	392.5	17.9	24.4	90.0	8667	2069.
L/S FGD	3	1.27	100	70	1.7	39.2	392.4	17.1	28.0	90.0	7222	2373.
L/S FGD	4	1.27	500	70	1.7	100.2	200.5	47.8	15.6	90.0	36112	1322.
L/S FGD	1-3	1.27	300	73	¹ .7	72.4	241.2	33.7	17.6	90.0	22596	1492.
L/S FGD-C	1	1.27	100	64	1.7	39.2	392.3	9.8	17.5	90.0	6603	1484.
L/S FGD-C	2	1.27	100	84	1.7	39.2	392.5	10.5	14.2	90.0	8667	1205.
L/S FGD-C	. 3	1.27	100	. 70	1.7	39.2	392.4	10.0	16.3	90.0	7222	1384.
L/S FGD-C	4	1.27	500	70	1.7	100.2	200.5	27.8	9.1	90.0	36112	.770.
L/S FGD-C	1-3	1.27	300	73	1.7	72.4	241.2	19.6	10.2	90.0	22596	869
LC FGD	1-4	1.27	800	71	1.7	108.7	135.9	59.5	12.0	90.0	58605	1015.
LC FGD-C	1-4	1.27	800	71	1.7	10 8.7	135.9	34.6	7.0	90.0	58605	590.
LSD+FF	1	1.27	100	64	1.7	26.1	260.7	10.7	19.1	87.0	6347	1690.
_SD+FF	2	1.27	100	84	1.7	26.1	260.8	11.4	15.4	87.0	8330	1364.
LSD+FF	3	1.27	100	70	1.7	26.1	260.7	10.9	17.8	87.0	6942	1572.
_SD+FF	4	1.27	500	70	1.7	93.7	187.5	36.7	12.0	87.0	34708	1058.
_SD+FF	1-3	1.27	300	- 73	1.7	63.4	211.4	24.9	13.0	87.0	21717	1148.
LSD+FF-C	1	1.27	100	64	1.7	26.1	260.7	6.3	11.2	87.0	6347	987.
LSD+FF-C	2	1.27	100	84	1.7	26.1	260.8	6.6	9.0	87.0	8330	795.
LSD+FF-C	3	1.27	100	. 70	1.7	26.1	260.7	6.4	10.4	87.0	6942	918.
LSD+FF-C	4	1.27	500	70 [.]	1.7	93.7	187.5	21.5	7.0	87.0	34708	618.
SD+FF-C	1-3	1.27	300	73	1.7	63.4	211.4	14.6	7.6	87.0	21717	671.

Table 6.1.4-4. Summary of FGD Control Costs for the Hammond Plant (June 1988 Dollars)

Coal Switching and Physical Coal Cleaning Costs--

Table 6.1.4-5 presents the IAPCS cost results for CS at the Hammond plant. These costs do not include boiler and pulverizer operation cost changes or any system modifications that may be necessary to blend coal. PCC was not evaluated because this is not a mine mouth plant.

Low NO_x Combustion--

The four boilers at the Hammond steam plant are wall-fired boilers rated at 100, 100, 100, and 500 MW, respectively. The combustion modification technique applied to all four boilers was LNB. Tables 6.1.4-6 and 6.1.4-7 present the NO_x performance and cost results of retrofitting LNB at the Hammond plant.

Selective Catalytic Reduction--

Cold side SCR reactors would be located similarly behind the ESPs and chimneys. As in the FGD case, storage buildings and roads would have to be relocated to provide room for the reactors and a high general facilities value of 30 percent would be assigned to the location. However, after demolition, the SCR reactors would be located in an area with a low site access/congestion factor. About 250 feet of ductwork would be required. Tables 6.1.4-6 and 6.1.4-7 summarize the retrofit factors scope adders and estimated costs for retrofitting SCR at the Hammond plant.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI and DSD technologies at the Hammond plant was not considered for any of the units. All the units have small SCAs (<170) and would not be able to handle additional particulate loading.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability --

Units 1-3 would be considered good candidates for repowering or retrofit because of the small boiler size and likely short remaining life. However, the capacity factors are high which might result in high replacement power cost for an extended downtime. Unit 4 is not a good candidate for repowering because of its large boiler size, high capacity factor, and longer remaining life.

lechnology	Boiler			Capacity	-	Capital			Annual	S02	S02	SO2 Cost
		Retrofit		Factor		Cost	Cost	Cost			Removed	Effect.
	I	Difficulty	/ (MW)	(%)	Content	(\$MM)	(\$/k¥)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor		• • • • • • • • • •	(%)							
S/B+\$15	1	1.00 -	100	64	1.7	4.7	46.7	8.7	15.5	45.0	3289	2644.7
CS/B+\$15	2	1.00	100	84	1.7	4.7	46.7	11.1	15.1	45.0	4317	2566.5
CS/B+\$15	3	1.00	100	70	1.7	4.7	46.7	9.4	15.3	45.0	3597	2616.5
CS/8+\$15	4	1.00	500	70	1.7	18.7	37.4	44.1	14.4	45.0	17986	2454.1
S/8+\$15-C	1'	1.00	100	64	1.7	4.7	46.7	5.0	8.9	45.0	3289	1521.6
CS/B+\$15-C	2	1.00	100	84	1.7	4.7	46.7	6.4	8.7	45.0	4317	1475.3
S/8+\$15-C	- 3	1.00	100	70	1.7	4.7	46.7	5.4	8.8	45.0	3597	1504.9
S/8+\$15-C	4	1.00	500	70	1.7	18.7	37.4	25.4	8.3	45.0	17986	1410.7
CS/8+\$5	1	1.00	100	64	1.7	3.6	36.4	3.9	.6.9	45.0	3289	1181.5
CS/B+\$5	2	1.00	100	. 84	1.7	3.6	36.4	4.8	6.5	45.0	4317	1116.5
S/B+\$5	3	1.00	100	70	1.7	3.6	36.4	4.2	.6.8	45.0	3597	1158.1
5/8+\$5	4	1.00	500	70	1.7	13.5	27.0	17.9	5.8	45.0	17986	995.7
S/B+\$5-C	1	1.00	100	64	1.7	3.6	36.4	2.2	4.0	45.0	3289	681.9
:S/B+\$5-C	2	1.00	100	84	1.7	3.6	. 36.4	2.8	3.8	45.0	4317	643.4
S/8+\$5-C	3	1.00	100	70	1.7	3.6	36.4	2.4	3.9	45.0	3597	· 668.0
S/B+\$5-C	4	1.00	500 -	70	1.7	13.5	27.0	10.3	3.4	45.0	17986	573.8

Table 6.1.4-5. Summary of Coal Switching/Cleaning Costs for the Hammond Plant (June 1988 Dollars)

-	BOI	LER NUMBER	
COMBUSTION MODIFICATION RESULTS			
	1,2,3	4	1-3
FIRING TYPE	FWF	FWF	NA
TYPE OF NOX CONTROL	LNB	LNB	NA
FURNACE VOLUME (1000 CU FT)	47.5	276.6	NA
BOILER INSTALLATION DATE	1954	1970	NA
SLAGGING PROBLEM	NO	NO	NA
ESTIMATED NOx REDUCTION (PERCENT)	33	38	NA
SCR RETROFIT RESULTS		. ·	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	27	90	62
New Duct Length (Feet)	250	250	250
New Duct Costs (1000\$)	1239	3176	2356
New Heat Exchanger (1000\$)	1864	4895	3603
TOTAL SCOPE ADDER COSTS (1000\$)	3130	8161	6021
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16
GENERAL FACILITIES (PERCENT)	30	30	30

TABLE 6.1.4-6. SUMMARY OF NOX RETROFIT RESULTS FOR HAMMOND

Technology		Retrofit Difficulty	Size	Capacity Factor (%)	Sulfur Content	Cost	Capital Cost (\$/kW)	Cost	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	NOx Cost Effect. (\$/ton)
	••••••	Factor			(%)				••••••	••••		••••••
LNC-LNB	1	1.00	100	64	1.7	2.6	25.5	0.5	1.0	33.0	767	704.9
LNC-LNB	2	1.00	100	84	1.7	2.6	25.5	0.5	0.7	33.0	1007	537.1
LNC-LNB	3	1.00	100	70	1.7	2.6	25.5	0.5	0.9	33.0	839	644.5
LNC-LNB	4	1.00	500	70	` 1.7	4.9	9.7	1.0	0.3	38.0	4830	213.0
LNC-LNB-C	1	1.00	100	64	1.7	2.6	25.5	0.3	0.6	33.0	767	418.7
LNC-LNB-C	2	1.00	100	84	1.7	2.6	25.5	0.3	0.4	33.0	1007	319.0
LNC-LNB-C	3	1.00	100	70	1.7	2.6	25.5	0.3	0.5	33.0	839	382.8
LNC-LNB-C	4	1.00	500	70	1.7	4.9	9.7	0.6	0.2	38.0	. 4830	126.6
SCR-3	1	1.16	100	64	1.7	19.7	197.4	6.3	11.3	80.0	1859	3413.2
SCR-3	2	1.16	100	84	1.7	19.7	197.4	6.5	8.8	80.0	2440	2656.2
SCR-3	3	1.16	100	70	1.7	19.7	197.4	6.4	10.4	80.0	2034	3140.1
SCR-3	4	1.16	500	70	1.7	64.3	128.7	23.5	7.7	80.0	10167	2315.1
SCR-3	1-3	1.16	300	73	1.7	43.9	146.4	15.4	8.0	80.0	6362	2415.1
SCR-3-C	1	1.16	100	64	1.7	19.7	197.4	3.7	6.6	80.0	1859	2003.2
SCR-3-C	2	1.16	100	84	1.7	19.7	197.4	3.8	5.2	80.0	2440	1558.1
SCR-3-C	3	1.16	100	70	1.7	19.7	197.4	3.7	6.1	80.0	2034	1842.6
SCR-3-C	4	1.16	500	70	1.7	64.3	128.7	13.8	4.5	80.0	10167	1354.8
SCR-3-C	1-3	1.16	300	73	1.7	43.9	146.4	9.0	4.7	80.0	6362	1414.6
SCR-7	1	1.16	100	64	1.7	19.7	197.4	5.5	9.9	80.0	1859	2973.9
SCR-7	2	1.16	100	84	1.7	19.7	197.4	5.7	7.7	80.0	2440	2321.5
SCR-7	3	1.16	100	70	1.7	19.7	197.4	5.6	9.1	80.0	2034	2738.4
SCR-7	4	1,16	500	70	1.7	64.3	128.7	19.5	6.3	80.0	10167	1913.5
SCR-7	1-3	1.16	300	73	1.7	43.9	146.4	12.9	6.7	80.0	6362	2029.9
SCR-7-C	1	1.16	100	64	1.7	19.7	197.4	3.3	5.8	80.0	1859	1751.4
SCR-7-C	2	1.16	100	84	1.7	19.7	197.4	3.3	4.5	80.0	2440	1366.3
SCR-7-C	3	1.16	10 0	70	1.7	19.7	197.4	3.3	5.3	80.0	2034	1612.4
SCR-7-C	4	1.16	500	70	1.7	64.3	128.7	11.4	3.7	80.0	10167	1124.7
SCR-7-C	1-3	1.16	300	73	1.7	43.9	146.4	7.6	4.0	80.0	6362	1194.0

Table 6.1.4-7. NOx Control Cost Results for the Hammond Plant (June 1988 Dollars)

_

6.1.5 Jack McDonough Steam Plant

The Jack McDonough plant is located within Cobb County, Georgia, as part of the Georgia Power Company system. The plant, located directly south of the oil burning Atkinson power plant and west of the Chattahoochee River, contains two coal-fired boilers and has a total gross generating capacity of 490 MW.

Table 6.1.5-1 presents operational data for the existing equipment at the Jack McDonough plant. Both boilers burn medium sulfur coal which is received by railroad and transferred to a coal storage and handling area northeast of the plant away from the river.

PM emissions for the boilers are controlled with retrofit ESPs located behind each unit and stacked on top of each other. The plant has a wet fly ash handling system. Part of the fly ash is temporarily disposed of in an ash pond beside the coal pile while the rest is sold. Both units are served by a common chimney located behind the ESPs.

Lime/Limestone and Lime Spray Drying FGD Costs--

Absorbers for both units would be located east of the chimney beside the river. The limestone preparation, storage, and handling area would be located south of the coal pile and close to the railroad tracks. This would most likely enable the plant to receive the sorbent via existing railroad tracks. Some of the roads and a major part of the storage building beside the chimney would be relocated; therefore, a factor of 15 percent was assigned to general facilities. The temporary waste handling area would be located close to the ash pond site. However, because of the limited space available, waste generated by the FGD absorbers would have to be deposited off-site in the same manner as the fly ash.

The site beside the common chimney is surrounded by the river to the east, chimney to the west, storage building to the north, and office building and ESPs to the south. As such, a high site access/congestion factor was assigned to the FGD absorber locations. In addition to general facilities, 10 percent was added to the retrofit factor due to major demolitions and relocations which would be necessary. Short duct runs of

TABLE 6.1.5-1. JACK McDONOUGH STEAM PLANT OPERATIONAL DATA

BOILER NUMBER	1, 2
GENERATING CAPACITY (MW-each)	245
CAPACITY FACTOR (PERCENT)	71,77
INSTALLATION DATE	1963,64
FIRING TYPE	TANG
FURNACE VOLUME (1000 CU FT)	154.5
LOW NOX COMBUSTION	NO
COAL SULFUR CONTENT (PERCENT)	2.5
COAL HEATING VALUE (BTU/LB)	11800
COAL ASH CONTENT (PERCENT)	9.6
FLY ASH SYSTEM	WET DISPOSAL
ASH DISPOSAL METHOD	ON-SITE PONDS/SELL
STACK NUMBER	1
COAL DELIVERY METHODS	RAILROAD
PARTICULATE CONTROL	
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1972 0.04 99.0
SULFUR SPECIFICATION (PERCENT)	2.0
SURFACE AREA (1000 SQ FT)	209.3
GAS EXIT RATE (1000 ACFM)	1000
SCA (SQ FT/1000 ACFM)	209
OUTLET TEMPERATURE (°F)	300

150 feet would be required for L/LS-FGD cases because absorbers were placed immediately behind the chimneys.

LSD with reuse of the existing ESPs was not considered for this plant because the ESPs are small and are located in a very high site/access congestion area. The ESPs would probably require major upgrades and plate area additions to handle the increased PMs generated from the LSD application. LSD with a new baghouse was not considered because the boilers are not burning low sulfur coal.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 6.1.5-2. Table 6.1.5-3 presents the capital and operating cost estimates for commercial FGD technologies. The low cost FGD case shows the effect of a combined system (economy of scale), no spare absorber modules and large absorber modules.

Coal Switching and Physical Coal Cleaning Costs--

Table 6.1.5-4 presents the IAPCS cost results for CS at the Jack McDonough plant. These costs do not include boiler and pulverizer operating cost change or any system modifications that may be necessary to blend coal. PCC was not evaluated because this is not a mine mouth plant.

Low NO, Combustion--

Units 1 through 2 are dry bottom, tangential-fired boilers rated at 245 MW each. The combustion modification technique applied to both boilers was OFA. Tables 6.1.5-5 and 6.1.5-6 present the NO_x performance and cost results of retrofitting OFA at the Jack McDonough plant. A high NO_x reduction performance was estimated based on the relatively low volumetric heat release rate.

Selective Catalytic Reduction--

Cold side SCR reactors would be located immediately beside the common chimney in an area having high site congestion and high underground obstruction factors. The SCR reactors were located close to the chimney and, as such, a short duct run of 200 feet was required. Some of the plant roads and storage buildings would be relocated; therefore, a factor of 30 percent was assigned to general facilities.

TABLE 6.1.5-2. SUMMARY OF RETROFIT FACTOR DATA FOR JACK McDONOUGH UNIT 1 OR 2

· · · · <u>-</u>	FGD TECHNOLOGY					
	L/LS_FGD	FORCED OXIDATION	LIME SPRAY DRYING			
SITE ACCESS/CONGESTION						
SO2 REMOVAL FLUE GAS HANDLING	HIGH HIGH	NA NA	NA			
ESP REUSE CASE BAGHOUSE CASE	nton	NA	NA			
DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	NA			
BAGHOUSE ESP REUSE	NA	NA	NA NA			
NEW BAGHOUSE	NA	NA	NA			
SCOPE ADJUSTMENTS						
WET TO DRY	YES 2093	NA NA	NA NA			
ESTIMATED COST (1000\$) NEW CHIMNEY	NO	NA	NA NA			
ESTIMATED COST (1000\$) OTHER	0 YES	0	0			
RETROFIT FACTORS						
FGD SYSTEM	1.70	NA	NA			
ESP REUSE CASE BAGHOUSE CASE		κ.	NA NA			
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA NA			
GENERAL FACILITIES (PERCEN	T) 15	0	0			

Technology	Boiler Number	- Main Retrofit		Capacit [®] Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Remove	SO2 d Removed	SO2 Cost Effect.
		Difficulty Factor		(%)	Content (%)	(SMM)	(\$/kW)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
L/S FGD	1,2	1.70	245	74	2.5	86.5	. 353.2	38.4	24.2	90.0	29390	1306.0
L/S FGD	1-2	1.70	490	74	2.5	133.5	272.4	62.2	19.6	90.0	58780	1058.0
L/S FGD-C	1,2	1.70	245	74	2.5	86.5	353.2	22.4	14.1	90.0	29390	761.5
L/S FGD-C	1-2	1.70	490	74	2.5	133.5	272.4	36.2	11.4	90.0	58780	616.4
LC FGD	1-2	1.70	490	74	2.5	101.6	207 .3	52.5	16.5	90.0	58780	892.4
LC FGD-C	1-2	1.70	490	74	2.5	101.6	207.3	30.5	9.6	90.0	58780	519.0
	38388883										********	

Table 6.1.5-3. Summary of FGD Control Costs for the Jack McDonough Plant (June 1988 Dollars)

Technology	Boiler Number	· Main ·Retrofit	Boiler Size	Capacit Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost		SO2 Remove	SO2 d Removed	SO2 Cos ⁴ Effect
		Difficulty Factor	(MW)	(%)	Content (%)	(SMM)	(\$/kW)	(SHM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
CS/8+\$15	1	1.00	245	71	2.5	8.6	35.0	21.9	14,4	65.0	20329	1076.4
CS/8+\$15	2	1.00	245	77	2.5	8.6	35.0		14.3	65.0	22047	1069.2
CS/B+\$15-C	1	1.00	245	71	2.5	8.6	35.0	12.6	8.3	65.0	20329	618.6
CS/B+\$15-C	2	1.00	245	77	2.5	8.6	35.0	13.5	8.2	65.0	22047	614.4
CS/8+\$5	1	1.00	245	71	2.5	6.0	24.6	8.9	5.8	65.0	20329	435.4
CS/8+\$5	2	1.00	245	77	2.5	6.0	24.6	9.5	5.7	65.0	22047	429.9
CS/8+\$5-C	1	1.00	245	71	2.5	6.0	24.6	5.1	3.3	65'.0	20329	250.8
CS/B+\$5-C	2	t_00	245	77	2.5	6.0	24.6	5.5	3.3	65.0	22047	247.6

Table 6.1.5-4. Summary of Coal Switching/Cleaning Costs for the Jack McDonough Plant (June 1988 Dollars)

— — — — — — — — — — — — — — — — — — —	BOILER NUMBER
COMBUSTION MODIFICATION RESULTS	
	1, 2
FIRING TYPE	TANG
TYPE OF NOX CONTROL	OFA
FURNACE VOLUME (1000 CU FT)	154.5
BOILER INSTALLATION DATE	1963
SLAGGING PROBLEM	NO
ESTIMATED NOx REDUCTION (PERCENT)	25
SCR RETROFIT RESULTS	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH
SCOPE ADDER PARAMETERS	
Building Demolition (1000\$)	0
Ductwork Demolition (1000\$)	89
New Duct Length (Feet)	200
New Duct Costs (1000\$)	2511
New Heat Exchanger (1000\$)	4836
TOTAL SCOPE ADDER COSTS (1000\$) COMBINED INDIVIDUAL	7436 4918
RETROFIT FACTOR FOR SCR	1.52
GENERAL FACILITIES (PERCENT)	30

TABLE 6.1.5-5. SUMMARY OF NOx RETROFIT RESULTS FOR JACK McDONOUGH

Technology	Boiler	Main	Boiler	Capacit	y Coal	Capital	Capital	Annual	Annual	NOX	NOX	NOX Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
		Difficult	y (MW)	(%)	Content	(\$MM)	(\$/k\)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
	Factor			(%)								
LNC-OFA	1	1.00	245	71	2.5	0.9	3.6	0.2	0.1	25.0	1205	155.7
LNC-OFA	2	1.00	245	77	2.5	0.9	3.6		0.1	25.0	1307	143.5
LNC-OFA-C	1	1.00	245	71	2.5	0.9	3.6	0.1	0.1	25.0	1205	92.5
LNC-OFA-C	2	1.00	245	77	2.5	0.9	3.6	0.1	0.1	25.0	1307	85.3
SCR-3	1,2	1.52	245	.74	2.5	43.4	177.1	14.3	9.0	80.0	4019	3559.4
SCR-3	1-2	1.52	490	74	2.5	74.0	151.0	25.5	8.0	80.0	8038	3176.4
SCR-3-C	1,2	1.52	245	74	2.5	43.4	177.1	8.4	5.3	80.0	4019	2087.7
SCR-3-C	1-2	1.52	490	74	2.5	74.0	151.0	15.0	4.7	80.0	8038	1861.1
SCR-7	1,2	1.52	245	74	2.5	43.4	177.1	12.3	7.7	80.0	4019	3057.2
SCR-7	1-2	1.52	490	74	2.5	74.0	151.0	21.5	6.8	80.0	8038	2674.2
SCR-7-C	1,2	1.52	245	74 :	2.5	43.4	177.1	7.2	4.6	80.0	4019	1800.0
SCR·7-C	1-2	1.52	490	74	2.5	74.0	151.0	12.6	4.0	80.0	8038	1573.4

Table 6.1.5-6. NOx Control Cost Results for the Jack McDonough Plant (June 1988 Dollars)

Table 6.1.5-5 presents the SCR retrofit results which include process area retrofit factors and scope adder costs. Table 6.1.5-6 presents the estimated cost of retrofitting SCR at the Jack McDonough boilers.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI and DSD technologies at the Jack McDonough steam plant for both units would be difficult because ESPs have small SCAs (<210) and probably would not be able to handle the increased PM without a major ESP upgrade and/or plate area addition. However, long duct residence time between the boilers and ESPs would be sufficient for humidification (FSI application) or sorbent evaporation (DSD application). As a result, FSI and DSD technologies were considered for this plant. A high site access/ congestion factor was assigned for upgrading the ESPs and adding plate area due to space limitation around the ESPs.

Table 6.1.5-7 presents a summary of the site access/congestion factors for FSI and DSD technologies at the Jack McDonough steam plant. Table 6.1.5-8 presents the costs estimated to retrofit sorbent injection technologies at the Jack McDonough plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Jack McDonough plant. Both units would be considered good candidates for repowering or retrofit because of their small boiler sizes. However, the high unit capacity factors could result in significant replacement power costs.

TABLE 6.1.5-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR JACK MCDONOUGH UNIT 1 OR 2

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	MEDIUM HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$) TOTAL COST (1000\$)	YES 2093 NA NA NA 50 59
ESP UPGRADE CASE A NEW BAGHOUSE CASE	2152 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.25 1.58 NA

Technology		Retrofit Difficulty	Size	Capacity Factor (%)	Sul fur Content	Cost	Capital Cost (\$/kW)	Annual Cost (SMM)	Annuał Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect (\$/ton)
		Factor			(%)							
DSD+ESP	1	1.00	245	71	2.5	18.7	76.4	12.6	8.3	49.0	15243	825.1
DSD+ESP	2	1.00	245	77	2.5	18.7			7.9	49.0	16531	790.4
DSD+ESP-C	1	1.00	245	71	2.5	18.7	76.4	7.3	4.8	49.0	15243	478.2
DSD+ESP-C	2	1.00	245	77	2.5	18.7	76.4	7.6	4.6	49.0	16531	458.0
FSI+ESP-50	1	1.00	245	71	2.5	19.3	78.7	15.3	10.0	50.0	15666	974.3
FSI+ESP•50	2	1.00	245	77	2.5	19.3	78.7	16.1	9.7	50.0	16990	946.7
FSI+ESP-50-C	1	1.00	245	71	2.5	19.3	78.7	8.8	5.8	50.0	15666	563.7
FSI+ESP-50-C	2	1.00	245	, 77	2.5	19.3	78.7	9.3	5.6	50.0	16990	547.5
FS1+E SP-70	1	1.00	245	71	2.5	19.5	79.5	15.5	10.2	70.0	21 932	708.7
FSI+ESP-70	2	1.00	245	77	2.5	19.5	79.5	16.4	9.9	70.0	23785	688.8
FSI+ESP-70-C	1	1.00	245	71	2.5	19.5	79,5	9.0	5.9	70.0	21932	410.0
FSI+ESP-70-C	2	1.00	245	77	2.5	19.5	79.5	9.5	5.7	70.0	23785	398.3

....

Table 6.1.5-8. Summary of DSD/FSI Control Costs for the Jack McDonough Plant (June 1988 Dollars)

6.1.6 <u>Mitchell Steam Plant</u>

The Mitchell Steam Plant is located in Dougherty County, Georgia, as part of the Georgia Power Company system. The plant contains three coal-fired boilers with a total gross generating capacity of 202 MW. Tables 6.1.6-1 through 6.1.6-8 summarize the plant operational data and present the SO₂ and NO_x control cost and performance estimates.

TABLE 6.1.6-1. MITCHELL STEAM PLANT OPERATIONAL DATA *

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT)	1,2 23 20	3 156 68			
INSTALLATION DATE FIRING TYPE	1948,49 FRONT WALL	1964 TANGENTIAL			
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION	NA NO	91.8 NO			
COAL SULFUR CONTENT (PERCENT)	1.3 12300				
COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM	9.5 WET DIS	, ,			
ASH DISPOSAL METHOD STACK NUMBER	POND/ON 1				
COAL DELIVERY METHODS	RAILROAD				
PARTICULATE CONTROL					
	ESP	ESP			
INSTALLATION DATE EMISSION_(LB/MM_BTU)	1975 0.01	1964 0.01			
REMOVAL EFFICIENCY DESIGN SPECIFICATION	99.5	99.5			
SULFUR SPECIFICATION (PERCENT)	1.0 28.5	1.0 103.7			
SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM)	128.4	NA			
OUTLET TEMPERATURE (°F)	222 299	NA 299			

* Some information was obtained from plant personnel.

TABLE 6.1.6-2. SUMMARY OF RETROFIT FACTOR DATA FOR MITCHELL UNITS 1-3 \star

· · · · · ·	·	FGD TE	CHNOLOGY
· <u> </u>	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			:
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW LOW	NA NA	LOW NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	LOW
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	100-300 NA LOW
SCOPE ADJUSTMENTS	ч. [–]		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 1761 NO O NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE	1.27	NA	NA
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.16 NA 1.16
GENERAL FACILITIES (PERCEN	IT) 8	0	8

* Absorbers and new FFs for units 1-3 combined would be located east of the common chimney.

**********		222222222				********						
Technology		Main Retrofit Difficulty Factor	Size (MW)	(%)	Sulfur Content (%)	Cost (SMM)	Cost (\$/k¥)	Cost (SMM)	Cost		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
L/S FGD	1-3	1.27		57	1.3				23.1	90.0	9254	2521.4
L/S FGD-C	1-3	1.27	202	57	1.3	54.5	269.8	13.6	13.5	90.0	9254	1471.0
LC FGD	1-3	1.27	202	57	1.3	37.3	184.4	18.1	17.9	9 0.0	9254	1954.4
LC FGD-C	1-3	1.27	202	57	1.3	37.3	184.4	10.5	10.4	9 0.0	9254	1137.8
LSD+FF	1-3	1.16	202	57	1.3	41.8	207.1	15.7	15.6	87.0	8894	1770.2
LSD+FF-C	1-3	1.16	202	57	1.3	41.8	207.1	9.2	9.1	87.0	8894	1035.3
122222333333	== = =======	**********	*****				*******					

Table 6.1.6-3. Summary of FGD Control Costs for the Mitchell Plant (June 1988 Dollars)

Table 6.1.6-4. Summary of Coal Switching/Cleaning Costs for the Mitchell Plant (June 1988 Dollars)

Technology		Main Retrofit Difficulty Factor	Size		y Coal Sulfur Content (%)	Capital Cost (SMM)	Capital Cost (\$/kW)	Annúal Cost (\$MM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
											· · · · ·	 -
CS/8+\$15	1,2	1.00	23	20	1.3	1.6	68.8		25.7	29.0	120	8633.9
CS/8+\$15	3	1.00	156	68	1.3	6.1	38.8	13.7	14.8	29.0	2764	4971.3
C\$/8+\$15-C	1,2	1.00	23	20	1.3	1.6	68.8	0.6	14.9	29.0	120	5005.8
C\$/8+\$15-C	3	1.00	156	68	1.3	6.1	38.8	7.9	8.5	29.0	2764	2858.0
CS/8+\$5	1,2	1.00	23	20	1.3	1.3	58.4	0.7	16.4	29.0	120	5508.1
C\$/8+\$5	3	1.00	156	68	1.3	4.4	28.4	5.8	6.2	29.0	2764	2091.6
CS/B+\$5-C	1,2	1.00	23	20	1.3	1.3	58.4	0.4	9.5	29.0	120	3205.9
CS/8+\$5-C	3	1.00	156	68	1.3	4.4	28.4	3.3	3.6	29.0	2764	1205.5

	BOILER NUMB	ER
COMBUSTION MODIFICATION RESULTS		
	3	1-3
FIRING TYPE	TANG	ŅA
TYPE OF NOX CONTROL	OFA	NA
FURNACE VOLUME (1000 CU FT)	91.8	NA
BOILER INSTALLATION DATE	1964	NA
SLAGGING PROBLEM	NO	NA
ESTIMATED NOX REDUCTION (PERCENT)	25	NA
SCR_RETROFIT_RESULTS *	· .	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	NA	LOW
SCOPE ADDER PARAMETERS	-	
Building Demolition (1000\$)	NA	0
Ductwork Demolition (1000\$)	NA	46
New Duct Length (Feet)	NA	200
New Duct Costs (1000\$)	NA	1495
New Heat Exchanger (1000\$)	<u>NA</u>	2842
TOTAL SCOPE ADDER COSTS (1000\$)	NA	4383
RETROFIT FACTOR FOR SCR	NA	1.16
GENERAL_FACILITIES_(PERCENT)	NA	20

TABLE 6.1.6-5. SUMMARY OF NOX RETROFIT RESULTS FOR MITCHELL

a Units 1 and 2 were considered to be too small for LNBs.
* Cold side SCR reactors for units 1-3 combined would be located east of the common chimney.

Technology		Main Retrofit Difficulty Factor	Size		y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Cost	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	NOX Cost Effect. (\$/ton)
LNC-OFA	3	1.00	156	68	1.3	0.7	4.7	0.2	0.2	25.0	701	223.5
LNC-OFA-C	3	1.00	156	68	1.3	0.7	4.7	0.1	0.1	25.0	701	132.7
SCR-3	1-3	1.16	202	61	1.3	30.8	152.6	10.5	9.8	80.0	3646	2891.4
SCR-3-C	1 -3	1.16	202	61	1.3	30.8	152.6	6.2	5.7	80.0	3646	1694.5
SCR-7	1-3	1.16	202	61	1.3	30.8	152.6	8.9	8.2	80.0	3646	2437.8
SCR-7-C	1-3	1.16	202	61	1.3	30.8	152.6	5.2	4.8	80.0	3646	1434.6

Table 6.1.6-6. NOx Control Cost Results for the Mitchell Plant (June 1988 Dollars)

TABLE 6.1.6-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR MITCHELL UNIT 1 OR 2

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 251
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA NA NA 50 10
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	261 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

Long duct residence time exists between boilers I and 2 and their retrofit ESPs. A high factor was assigned to ESP upgrade. Unit 3 was not a candidate for FSI or DSD because of the inadequate size of the unit 3 ESPs.

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/k₩)	Annual Cost (SMM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
DSD+ESP	1,2	1.00	23	20	1.3	3.6	155.9	3.1	77.0	49.0	200	15521.7
DSD+ESP-C	1,2	1.00	23	20	1.3	3.6	155.9	1.8	44.5	49.0	200	8973.5
FSI+ESP-50	1,2	1.00	23	20	1.3	4.4	192.9	2.3	56.2	50.0	205	11026.2
FSI+ESP-50-C	1,2	1.00	23	2 0	1.3	4.4	192.9	1.3	32.7	50.0	205	6414.3
FSI+ESP-70	1,2	1.00	23	20	1.3	4.5	195.4	2.3	56.6	70.0	288	7935.3
FSI+ESP-70-C	1,2	1.00	23	20	1.3	4.5	195.4	1.3	32.9	70.0	288	4616.4

Table 6.1.6-8. Summary of DSD/FSI Control Costs for the Mitchell Plant (June 1988 Dollars)

6.1.7 Robert W. Scherer Steam Plant

The Robert W. Scherer steam plant is located on Lake Juliette in Monroe County, Georgia, and is operated by the Georgia Power Company. The Scherer plant has four coal-fired boilers with a gross generating capacity of 3,564 MW. Unit 3 is operating under test conditions and unit 4 is planned for start-up in 1989. A 1982 aerial photograph was used in evaluating this plant and units 3 and 4 were absent. However, in this report units 3 and 4 will be included under the assumption that the units are situated north of unit 2 in a similar layout as units 1 and 2.

Table 6.1.7-1 presents the operational data for the existing equipment at the Scherer plant. Coal shipments are received by railroad and transferred to a coal storage and handling area east of the plant. PM emissions from the boilers are controlled by ESPs installed at the time the boilers were constructed. Units 1 and 2 have hot side ESPs, while units 3 and 4 have cold side ESPs. The ESPs are located behind the boilers. Flue gases from units 1 and 2 are directed to separate stacks within a common chimney, located behind the ESPs for those units. Units 3 and 4 have their own chimney located behind their respective ESPs. Since units 3 and 4 are 1979 NSPS boilers, it was assumed that both boilers are equipped with FGD systems and are not considered for further SO₂ scrubbing.

Lime/Limestone and Lime Spray Drying FGD Costs--

L/LS-FGD absorbers for units 1 and 2 would be located behind their common chimney. The site access/congestion factor for both locations would be low. No major relocations/demolitions would be required for installation of the absorbers; therefore, all locations were assigned a low 5 percent to general facilities. Ductwork of 100 to 300 feet would be required for both units. The site access/congestion factor assigned to flue gas handling was low.

Since units 1 and 2 have hot side ESPs, LSD with reuse of the existing ESPs was not possible. Therefore, LSD with a new baghouse was considered for units 1 and 2. The LSD absorbers would have a similar location as the wet FGD absorbers, behind the common chimney, with a low site access/ congestion factor and a low general facility value of 5 percent. The new

SCHERER STEAM PLANT OPERATIONAL DATA TABLE 6.1.7-1.

1,2,3,4 BOILER NUMBER GENERATING CAPACITY (MW-each) **891** 24,35,65,65 * 1982,84,87,89 TANGENTIAL CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION NA NO COAL SULFUR CONTENT (PERCENT) 0.6 COAL HEATING VALUE (BTU/LB) 12700 COAL ASH CONTENT (PERCENT) 8.9 FLY ASH SYSTEM WET DISPOSAL ASH DISPOSAL METHOD PONDS/ON-SITE 1,2,3,4 (1,2 WITHIN ONE CHIMNEY) STACK NUMBER COAL DELIVERY METHODS RAILROAD PARTICULATE CONTROL ESP TYPE INSTALLATION DATE 1982,84,87,89 EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION 0.03,0.02,0.01,NA 99.6,99.6,99.9,NA SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM)

0.6 1804,1804,1361,1361 5924,5924,3253,3253 305,305,418,418 824,824,247,247

* Capacity factors for units 3 and 4 are assumed as 65 percent

OUTLET TEMPERATURE (*F)

FFs would be located adjacent to the LSD absorbers. A duct length of 100 to 300 feet would be required. A low site access/congestion factor was assigned to flue gas handling.

Tables 6.1.7-2 presents the retrofit factor input to the IAPCS model. However, the costs are not presented since the Scherer plant is burning a low sulfur compliance coal.

Coal Switching and Physical Coal Cleaning Costs--

The boilers at the Scherer plant are currently burning a low sulfur coal; therefore, CS and PCC were not considered for this plant.

NO, Control Technologies--

The boilers at the Scherer plant are already meeting 1979 NSPS NO_{χ} emissions and were not considered.

Selective Catalytic Reduction-

Hot side SCR reactors would be located behind the common chimney for units 1 and 2 and cold side reactors would be located behind the respective chimney for units 3 and 4. As in the FGD case, low site access/congestion factors and low general facility values (13 percent) were assigned to the reactor locations. For each unit, approximately 250 feet of duct would be required to span the distance between the SCR reactors and the chimney. The site access/congestion factor for flue gas handling was low for all units. Tables 6.1.7-3 and 6.1.7-4 present the NO_x performance and cost estimates for installation of SCR at the Scherer plant.

Furnace Sorbent Injection and Duct Spray Drying FGD Costs--

Sorbent injection technologies (FSI and DSD) were not considered for unit 1 and 2 since they are equipped with hot side ESPs.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

All boilers at the Scherer plant are too large and have a long remaining useful life; therefore, should not be considered for AFBC/CG technologies.

TABLE 6.1.7-2. SUMMARY OF RETROFIT FACTOR DATA FOR SCHERER UNIT 1 OR 2

		,	= = · · · · · · · ·
, · · · <u>-</u>		FGD TE	CHNOLOGY
	L/LS FGD 0	FORCED XIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW LOW	NA NA	LOW
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	LOW
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	100-300 NA LOW
SCOPE ADJUSTMENTS	·		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 6661 NO 0 NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.27	NA	NA 1.16
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16
GENERAL FACILITIES (PERCEN	T) 5	0	5

	BOILER NU	MBER
COMBUSTION MODIFICATION_RESULTS		· · · · · · · · · · · · · · · · · · ·
	1,2	3,4
FIRING TYPE	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA
FURNACE VOLUME (1000 CU FT)	NA	NA
BOILER INSTALLATION DATE	1982,84	1987,89
SLAGGING PROBLEM	NA	NA
ESTIMATED NOX REDUCTION (PERCENT)	ŅA	NA
SCR RETROFIT RESULTS		•
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	139	139
New Duct Length (Feet)	250	250
New Duct Costs (1000\$)	4453	4453
New Heat Exchanger (1000\$)	0	6924
TOTAL SCOPE ADDER COSTS (1000\$) INDIVIDUAL CASE COMBINED CASE	4592 6915	11516 17409
RETROFIT FACTOR FOR SCR	1.16	1.16
GENERAL_FACILITIES (PERCENT)	13	13

TABLE 6.1.7-3. SUMMARY OF NOX RETROFIT RESULTS FOR SCHERER

Technology	Boiler			Capacity		•	Capital		Annual	NOX	NOX	NOx Cost
		Retrofit Difficulty		Factor (%)	Sulfur Content	Cost	Cost (\$/kW)	Cost (SHM)	Cost (mills/kwh)		Removed	Effect.
		Factor		(#)	(%)	(4121)					((())))	
SCR-3	1	1.16	891	24	0.6	102.2	114.7	36.6	19.5	80.0	4357	8389.7
SCR-3	2	1.16	891	35	0.6	102.2	114.8		13.5	80.0	6354	5822.8
SCR-3	3	1.16	891	65	0.6	100.8	113.1	37.7	7.4	80.0	11800	3191.3
SCR-3	4	1.16	891	65	0.6		113.1	37.7	7.4	80.0	11800	3191.3
SCR-3	1-2	1.16	1782	30	0.6	196.6	110.3	71.6	15.3	80.0	10893	6577.7
SCR-3	3-4	1.16	1782	65	0.6	190.1	106.7	72.8	7.2	80.0	23601	3082.6
SCR-3-C	1	1.16	891	24	0.6	102.2	114.7	21.4	11.4	80.0	4357	4911.9
SCR-3-C	2	1.16	891	35	0.6	102.3	114.8	21.7	7.9	80.0	6354	3408.3
SCR-3-C	3	1.16	891	65	0.6	100.8	113.1	22.0	4.3	80.0	11800	1866.7
SCR-3-C	4	1.16	891	65	0.6	100.8	113.1	22.0	4.3	80.0	11800	1866.7
SCR-3-C	1-2	1.16	1782	30	0.6	196.6	110.3	41.9	9.0	80.0	10893	3849.5
SCR-3-C	3-4	1.16	1782	65	0.6	190,1	106.7	42.5	4.2	80.0	23601	1802.3
SCR-7	1	1.16	891	24	0.6	102.2	114.7	29.3	15.6	80.0	4357	6723.2
SCR-7	2	1.16	891	35	0.6	102.3	114.8	29.7	10.9	80.0	6354	4680.2
SCR-7	3	1.16	891	65	0.6	100.8	113.1	30.4	6.0	80.0	11800	2576.0
SCR-7	4	1.16	891	65	0.6	100.8	113.1	30.4	6.0	80.0	11800	2576.0
SCR-7	1-2	1.16	1782	30	0.6	196.6	110.3	57.1	12.2	80.0	10893	5244.6
SCR-7	3-4	1.16	1782	65	0.6	190.1	106.7	58.2	5.7	80.0	23601	2467.4
SCR-7-C	1	1.16	891	24	0.6	102.2	114.7	17.2	9.2	80.0	4357	3957.2
SCR-7-C	2	1.16	891	35	0.6	102.3	114.8	17.5	6.4	80.0	6354	2753.6
SCR-7-C	3	1.16	891	65	0.6	100.8	113.1	17.9	3.5	80.0	11800	1514.2
SCR-7-C	4	1.16	891	65	0.6	100.8	113.1	17.9	3.5	80.0	11800	1514.2
5CR-7-C	1-2	1.16	1782	30	0.6	196.6	110.3	33.6	7.2	80.0	10893	3085.7
SCR-7-C	3-4	1.16	1782	65	0.6	190.1	106.7	34.2	3.4	80.0	23601	1449.8

Table 6.1.7-4. NOx Control Cost Results for the Scherer Plant (June 1988 Dollars)

6.1.8 <u>Wansley Steam Plant</u>

The Wansley steam plant is located within Heard County, Georgia, and is a part of the Georgia Power Company system. Situated in the western central part of the state, approximately 40 miles to the southeast of Atlanta, the plant site is located alongside the Chattahoochie River. To the northwest of the plant site is a man-made lake. The plant contains two coal-fired boilers with a total gross generating capacity of 1,730 MW.

Table 6.1.8-1 presents the operational data for the existing equipment at the Wansley plant. The boilers burn a medium sulfur coal. Coal shipments are received by railroad and transferred to a coal storage and handling area located to the northwest of the plant site between the powerhouse and the man-made lake.

PM emissions for the boilers are controlled with ESPs located behind each unit. The plant has a wet fly ash handling system. Approximately one-third of the fly ash is removed from the plant site through paid disposal. The remaining fly ash is conveyed through sluice lines to a disposal site located beside the man-made lake to the northwest. Units 1 and 2 are served by separate flues within a common chimney. The following evaluation is based on a 1981 aerial photograph, and any alterations made to the plant layout since this time should be taken into consideration.

Lime/Limestone and Lime Spray Drying FGD Costs--

The two boilers are located beside each other with the chimney located midway between the units and behind the ESPs. Limited space exists between the two coal conveyors for placement of the FGD absorbers. The area to the east of the plant contains oil tanks, storage structures, and office buildings which also would not be a suitable location for the retrofit control equipment. The FGD system was assumed to be located on the southwestern side of the plant where ample open space exists for control equipment and absorber placement. Although this area would no longer be available for future units, locating the FGD absorber behind the units between the two coal conveyors would result in a high site access/ congestion factor. The L/LS preparation area would be located adjacent to the absorbers. No major

TABLE 6.1.8-1. WANSLEY STEAM PLANT OPERATIONAL DATA

BOILER NUMBER	1, 2
GENERATING CAPACITY (MW-each)	865
CAPACITY FACTOR (PERCENT)	79,68
INSTALLATION DATE	1976, 1978
FIRING TYPE	TANGENTIAL
FURNACE VOLUME (1000 CU FT)	603
LOW NOX COMBUSTION	NO
COAL SULFUR CONTENT (PERCENT)	2.5
COAL HEATING VALUE (BTU/LB)	11,400
COAL ASH CONTENT (PERCENT)	8.6
FLY ASH SYSTEM	WET SLUICE
ASH DISPOSAL METHOD	ON-SITE POND/PAID DISPOSAL
STACK NUMBER	1 - ENCLOSING 2 CHIMNEYS
COAL DELIVERY METHODS	RAILROAD
PARTICULATE CONTROL TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP 1976, 1978 0.06 98.6 2.5 656.6 3,070 214 268

demolition would be necessary and, for this reason, a factor of 5 percent was assigned to general facilities for absorber placement.

For the flue gas handling system, a duct run of approximately 700 feet per unit would be needed. Because ductwork passes beneath the existing coal conveyor, a medium site access/congestion factor was assigned to the flue gas handling system.

LSD with reuse of existing ESPs was not considered for this plant because the ESPs are small (SCA=214) and are located in a high site access/ congestion area with coal conveyors on either side and with the common chimney placed midway between the ESPs. The LSD with a new baghouse option was also not considered since the Wansley plant is burning a medium-to-high sulfur coal.

The major scope adjustment items and retrofit factor estimates for the FGD technologies are presented in Table 6.1.8-2. Table 6.1.8-3 presents the capital and operating cost estimates for commercial FGD technologies. The low cost FGD cases show the effect of no absorber sparing and large absorber sizes.

Coal Switching and Physical Coal Cleaning Costs--

Table 6.1.8-4 presents the IAPCS cost results for CS at the Wansley plant. These costs do not include boiler and pulverizer operating cost changes or any system modifications that may be necessary to blend coal. Coal switching for a fuel price differential of \$15 per ton is higher than that of \$5 per ton because of inventory capital and preproduction costs, which are a function of variable costs (e.g. fuel costs). PCC was not evaluated because this is not a mine mouth plant.

Low NO Combustion --

Both Wansley units are dry bottom, tangential-fired boilers rated at 865 MW each. The combustion modification technique applied to both boilers is OFA. Tables 6.1.8-5 and 6.1.8-6 present the performance and cost results of retrofitting OFA at the Wansley plant.

TABLE 6.1.8-2. SUMMARY OF RETROFIT FACTOR DATA FOR WANSLEY UNITS 1 OR 2

		<u>FGD TE</u>	CHNOLOGY	<u> </u>
	L/LS FGD 0	FORCED XIDATION	LIME SPRAY_DF	
SITE ACCESS/CONGESTION				
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	LOW MEDIUM 600-1000 NA NA	NA NA NA NA	NA NA NA NA NA NA	•
SCOPE ADJUSTMENTS WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER RETROFIT FACTORS	YES 6055 NO 0 NO	NA NA NA O	NA NA NA O	
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	1.49 NA NA	NA NA NA	NA NA NA NA	
GENERAL FACILITIES (PERCENT) 5	0	0	

Technol ogy		Main Retrofit Difficulty Factor	Size	•	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SMM)			SO2 Removed (tons/yr)	SOZ Cost Effect. (\$/ton)
L/S FGD	1	1.49	865	79	2.5	177.4		94.5	15.8	90.0	115250	819.9
L/S FGD	2	1.49	865	68	2.5	177.4	205.1	88.9	17.2	90. 0	99202	895.8
L/S FGD-C	1	1.49	865	79	2.5	177.4	205.1	54.9	9.2	90.0	115250	476.7
L/S FGD-C	2	1.49	865	68	2.5	177.4	205.1	51.7	10.0	90.0	9920 2	521.2
LC FGD	1	1.49	865	•79	2.5	149.6	172.9	86.1	14.4	90.0	115250	746.7
LC FGD	. 2	1,49	865	68	2.5	149.6	172.9	80.4	15.6	90.0	99202	810.7
LC FGD-C	1	1.49	865	79	2.5	149.6	172.9	50.0	8.3	90.0	115250	433.6
LC FGD-C	2	1.49	865	68	2.5	149.6	172.9	46.8	9.1	90.0	99202	471.3

Table 6.1.8-3. Summary of FGD Control Costs for the Wansley Plant (June 1988 Dollars)

۰.

Technology		• Main • Retrofit Difficulty Factor	Size	Capacit Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SMH)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
CS/B+\$15	1	1.00	865	79	2.5	26.3	30.5	83.3	13.9	66.0	84829	981.6
CS/B+\$15	2	1.00	865	68	2.5	26.3		72.4	14.1	66.0	73017	992.0
CS/B+\$15-C	1	1.00	865	79	2.5	26.3	30.5	47.8	8.0	66.0	84829	563.8
CS/8+\$15-C	2	1.00	865	68	2.5	26.3	30.5	41.6	8.1	66.0	73017	570.0
CS/B+\$5	1	1.00	865	79	2.5	17.4	20.1	32.3	5.4	66.0	8482 9	380.2
CS/8+\$5	2	1.00	865	68	2.5	17.4	20.1	28.3	5.5	66.0	73017	387.7
CS/8+\$5-C	1	1.00	865	79	2.5	17.4	20.1	18.6	3.1	66.0	8482 9	218.8
CS/8+\$5-C	2	1.00	865	68	2.5	17.4	20.1	16.3	3.2	66.0	73017	223.2

Table 6.1.8-4. Summary of Coal Switching/Cleaning Costs for the Wansley Plant (June 1988 Dollars)

· · · · ·	BOILER NU	JMBER
COMBUSTION MODIFICATION RESULTS		
	1	2
FIRING TYPE	TANG	
TYPE OF NOX CONTROL	OFA	OFA
FURNACE VOLUME (1000 CU FT)	603	603
BOILER INSTALLATION DATE	1976	1978
SLAGGING PROBLEM	<u>NO</u>	NO
ESTIMATED NOX REDUCTION (PERCENT)	35	35
SCR RETROFIT RESULTS		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM	MEDIUM
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	136	136
New Duct Length (Feet)	200	200
New Duct Costs (1000\$)	3501	3501
New Heat Exchanger (1000\$)	6802	6802
TOTAL SCOPE ADDER COSTS (1000\$)	10439	10439
RETROFIT FACTOR FOR SCR	1.34	1.34
GENERAL FACILITIES (PERCENT)	13	

TABLE 6.1.8-5. SUMMARY OF NOX RETROFIT RESULTS FOR WANSLEY

Technology	Boiler	Main		Capacit		Capital	•			NOX	NOx	NOX Cost
		Retrofit			Sulfur	Cost	Cost	Cost	Cost		Removed	Effect.
	Ľ	Factor	(MW)	(%)	Content (%)	(SHH)	(\$/k₩)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
			0./F									
NC-OFA	1	1.00	865	79	2.5	1.5	1.7		0.1	35.0	6895	45.1
NC-OFA	2	1.00	865	68	2.5	1.5	1.7	0.3	0.1	35.0	5935	52.4
NC-OFA-C	1	1.00	865	79	2.5	1.5	1.7	0.2	0.0	35.0	6895	26.8
NC-OFA-C	2	1.00	865	68	2.5	1.5	1.7	0.2	0.0	35.0	5935	31.1
CR-3	1	1.34	865	79	2.5	106.9	123.5	39.9	6.7	80.0	15760	2529.3
SCR-3	2	1.34	865	68	2.5	106.8	123.5	39.3	7.6	80.0	13566	2895.9
CR-3-C	1	1.34	865	79	2.5	106.9	123.5	23.3	3.9	80.0	15760	1479.5
CR-3-C	2	1.34	865	68	2.5	106.8	123.5	23.0	4.5	80.0	13566	1694.5
SCR-7	1.	1.34	865	· 79	2.5	106.9	123.5	32.7	5.5	80.0	15760	2074.9
CR-7	2	1.34	865	68	2.5	106.8	123.5	32.1	6.2	80.0	13566	2368.0
SCR-7-C	1	1.34	865	· 79	2.5	106.9	123.5	19.2	3.2	80.0	15760	1219.1
CR-7-C	2	1.34	865	68	2.5	106.8	123.5	18.9	3.7	80.0	13566	1392.0

Table 6.1.8-6. NOx Control Cost Results for the Wansley Plant (June 1988 Dollars)

Selective Catalytic Reduction--

Cold side SCR reactors can be located on the northern side of the plant in an open area adjacent to the chimney and ESPs between the two coal conveyors. Due to the congestion created by the coal conveyors and ESPs, a medium site access/congestion factor was assigned to the SCR reactor locations. Since the SCR reactors are located beside the chimney, a short duct length of less than 200 feet would be required. No major demolition/ relocation would be required and, as such, a low factor of 13 percent was assigned to general facilities.

Evaluation of SCR controls was done separately from FGD. Both technologies need to be considered if the SCR reactors could be located downstream from the FGD absorbers. For this scenario, site access/ congestion factors would be similar to those for the FGD absorber placement location which are low.

Table 6.1.8-5 presents the SCR retrofit results for both units. Table 6.1.8-6 presents the estimated cost of retrofitting SCR at the Wansley plant.

Duct Spray Drying and Furnace Sorbent Injection--

0

DSD and FSI were not considered at the Wansley Plant for the following reasons.

 Short duct residence time between the boilers and the ESPs is not sufficient for humidification (FSI) and sorbent injection (DSD) applications.

ESPs are small and the addition of plate area would be difficult because of the coal conveyors on either side of the ESPs and the chimney behind the ESPs.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The repowering applicability criteria presented in Section 2 was used to determine the applicability of these technologies at the Wansley plant. Neither of these units would be considered good candidates for repowering or retrofit because of their large boiler sizes, high capacity factors, and long remaining life.

6.1.9 Yates Steam Plant

The Yates steam plant is located within Coweta County, Georgia, as part of the Georgia Power Company system. The plant is located adjacent to the Chattahoochie River and contains seven coal-fired boilers with a total gross generating capacity of 1,465 MW.

Table 6.1.9-1 presents operational data for the existing equipment at the Yates plant. The boilers burn medium sulfur coal. Coal shipments are received by railroad and transferred to the coal storage and handling area north of units 1-5, east of units 6-7, and close to the Chattahoochie River.

PM emissions for boilers 1-5 are controlled with retrofit ESPs, while boilers 6-7 have original ESPs, which in each case are located behind the respective unit. The plant has a dry fly ash handling system. Part of the waste ash is disposed of in a landfill southwest of the plant while some is sold or paid disposed of off-site. Units 1-5 are served by a common chimney and units 6-7 are served also by a separate common chimney. Each chimney contains multiple flues. The following evaluation is based on a 1981 aerial photograph, and any alterations made to the plant layout since that time should be taken into consideration.

Lime/Limestone and Lime Spray Drying FGD Costs--

Units 1-5 are located beside each other in an area that is adjacent to the river and close to the coal pile. Unit 1 is closest to the river and units 6-7 are situated a few thousand feet east of the coal pile. The absorbers for units 1-5 would be located east of the boilers and south of the coal pile. The absorbers for units 5-6 would be located directly behind the chimney in an open area. The limestone preparation and storage/handling area would be located in an open area between the absorbers for units 6-7 and units 1-5. No major demolition or relocation would be necessary for any of the 7 absorber areas. Consequently, a base factor of 5 percent was assigned to general facilities.

A low site access/congestion factor was assigned to all of the FGD absorber locations. For units 1-5, a flue gas handling duct length of 400-500 feet would be required since the absorbers are located to the side of boiler 5. Units 6-7 would require less than 300 feet of ducting because

TABLE 6.1.9-1. YATES STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE	1, 2, 3 115 42,48,45 1950,50,52 TANGE	4, 5 156 47,48 1957,58 NTIAL	6, 7 404 51,54 1974
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM	74 NO 2. 11, 10. DR	94 NO 4 600 4	222 NO
ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS PARTICULATE CONTROL		LL/SELL 1	2
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1971,68,69 0.09 98.4,98.1,98.0	ESP 1970,68 0.09 98.5	ESP 1974 0.05,0.06 99.9
SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	103.3,75.6,75.6 490,420,420 211,180,180 300	0.7 103.3 685,550 151,188 310	NA NA 324 320

the absorbers are located directly behind the chimney. A low site access/ congestion factor was also assigned to the flue gas handling systems because the chimneys are relatively easy to access in all cases.

LSD with reuse of the existing ESPs was considered for units 6-7 but not for units 1-5. ESPs for units 6 and 7 have large SCAs (~630) and would be able to accommodate the extra particulate load from LSD. On the other hand, the SCAs for units 1-5 are inadequate, ranging from 151 to 211, and would not be able to handle the excess load. Installation of baghouses for these units was not considered because the boilers are not burning low sulfur coal. The absorbers for units 6-7 would be located in the same locations as in the L/LS-FGD case. Moderate duct lengths of less than 600 feet would be required for these units. A high site access/congestion factor was assigned to the flue gas handling system because it is difficult to access the flue gas ducting between the ESPs and boilers. A medium site access/congestion factor was assigned for ESP upgrades which would not likely be required.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Tables 6.1.9-2 and 6.1.9-3. Table 6.1.9-4 presents the capital and operating costs for commercial FGD technologies. The low cost FGD cases show the effect of combined FGD systems, no spare scrubber modules, and large absorber sizes.

Coal Switching and Physical Coal Cleaning Costs--

Table 6.1.9-5 presents the IAPCS results for CS at the Yates plant. These costs do not include boiler and pulverizer operating cost changes or system modifications that may be necessary to blend coal. Coal switching for a fuel price differential of \$15 per ton is higher than that of \$5 per ton because of the inventory capital and preproduction costs, which are a function of variable costs (e.g. fuel costs). PCC was not evaluated because this is not a mine mouth plant.

TABLE 6.1.9-2. SUMMARY OF RETROFIT FACTOR DATA FOR YATES UNITS 1-5 (EACH)

-		FGD TE	CHNOLOGY
	<u>L/LS FGD</u>	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	LOW LOW	NA NA	NA NA NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	300-600	NA	NA NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA NO O NO	NA NA NA O	NA NA NA O
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.31	NA	NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA NA
GENERAL FACILITIES (PERCEN	T) 5	0	0

TABLE 6.1.9-3. SUMMARY OF RETROFIT FACTOR DATA FOR YATES UNIT 6-7 (EACH)

· -	a 	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	LOW LOW	NA NA	LOW
ESP REUSE CASE BAGHOUSE CASE	LOW		HIGH NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	100-300	NA	300-600 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	MEDIUM
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA NO O NO	NA NA O	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.20	NA	1.36 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.36 NA
GENERAL FACILITIES (PERCEN	T) 5	0	5

Table 6.1.9-4. Summary of FGD Control Costs for the Yates Plant (June 1988 Dollars)

Technology	Boiler	Main	Boiler	Capacit	y Coal	Capital	Capital	Annual	Annual	SO2	SO2	SO2 Cost
		Retrofit			Sulfur ,		Cost	Cost			Removed	Effect.
		Difficulty	(HW)	(%)		(\$HH)	(\$/k¥)	(\$HH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor			(%)					•••••		
L/S FGD	1.2.	3, 1.31	115	45	2.4	43.8	381.1	17.9	39.5	90.0	8213	2178.6
L/S FGD	4.5	1.31	156	48	2.4	51.3	328.7		32.7	90.0	11884	1803.2
L/S FGD	1-3	1.31	345	45	2.4	81.1	235.0		25.4	90.0	24639	1403.7
L/S FGD	4-5	1.31	312	48	2.4	76.8	246.1	33.0	25.2	90.0	23768	1390.2
L/S FGD	6	1.20	404	51	2.4	82.9	205.2		20.9	90.0	32700	1154.9
L/S FGD	7	1.20	404	54	2.4	82.9	205.3	38.5	20.1	90.0	34623	1110.8
L/S FGD-C	1,2,	3 1 . 31	115	45	2.4	43.8	381.1	10.4	23.0	90.0	8213	1272.1
L/S FGD-C	4,5	1.31	156	48	2.4	51.3	328.7	12.5	19.1	90.0	11884	1052.4
L/S FGD-C	1-3	1.31	345	45	2.4	81.1	235.0	20.2	14.8	90.0	24639	819.0
L/S FGD-C	4-5	1.31	312	48	2.4	76.8	246.1	19.3	14.7	90.0	23768	811.0
L/S FGD-C	6	1.20	404	51	2.4	. 82.9	205.2	22.0	12.2	90.0	32700	673.0
L/S FGD-C	7	1.20	404	54	2.4	82.9	205.3	22.4	11.7	90.0	34623	647.2
LC FGD	1-5	1.31	657	46	2.4	103,3	157.3	49.1	18.4	90.0	48381	1014.3
LC FGD	6-7	1.20	808	53	2.4	116.6	144.3	59.2	15.9	90.0	67322	879.4
C FGD-C	1-5	1.31	657	46	2.4	103.3	157.3	28.6	10.7	90.0	48381	590.7
C FGD-C	6-7	1.20	808	53	2.4	116.6	144.3	34.4	9.3	90.0	67322	511.6
LSD+ESP	. 6	1.36	404	51	2.4	. 54.0	133.7	24.0	13.3	76.0	27722	867.3
SD+ESP	7	1.36	404	54	2.4	-54.0	133.7	24.5	12.8	76.0	29353	833.7
SD+ESP-C	6	1.36	404	51	2.4		133.7		7.8	76.0	27722	505.6
SD+ESP-C	7 -	1.36	404	54	2.4	54.0	133.7	14.3	7.5	76.0	29353	485.9

Technology	Boiler			Capacit			Capital		Annual	SO2	SO2	SO2 Cos
		Retrofit			Sulfur	Cost	Cost	Cost			Removed	Effect
	•	Difficulty	(MW)	(%)	Content	(\$191)	(\$/k¥)	(\$101)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
	•	Factor			(%)						••••••	
CS/8+\$15	1	1.00	115	42	2.4	4.5	39.4	6.7	15.8	64.0	5462	1223.3
CS/8+\$15	2	1.00	115	48	2.4	4.8	42.0	7.6	15.7	64.0	6242	1213.3
CS/B+\$15	3	1.00	115	45	2.4	4.8	42.0	7.2	15.8	64.0	5852	1225.0
S/B+\$15	4	1.00	156	47	2.4	6.6	42.2	10.0	15.6	64.0	8291	1206.0
S/B+\$15	5	1.00	156	48	2.4	6.1	39.0	10.0	15.3	64.0	8468	1185.8
CS/8+\$15	6	1.00	404	51	2.4	13.0	. 32.1	26.1	14.5	64.0	23300	1122.3
CS/8+\$15	7	1.00	404	54	2.4	13.0	32.1	27.5	14.4	64.0	24671	1115.3
CS/8+\$15-C	1	1.00	115	42	2.4	4.5	39.4	3.8	9.1	64.0	5462	704.0
CS/8+\$15-C	2	1.00	115	48	2.4	4.8	42.0	4.4	9.0	64.0	6242	698.0
S/B+\$15-C	3	1.00	115	45	2.4	4.8	42.0	4.1	9.1	64.0	5852	705.0
S/B+\$15-C	4	1.00	156	47	2.4	6.6	42.2	5.8	9.0	64.0	8291	694.
S/B+\$15-C	5	1.00	156	48	2.4	6.1	39.0	5.8	8.8	64.0	8468	682.0
S/8+\$15-C	6	1.00	404	51	2.4	13.0	32.1	15.0	8.3	64.0	23300	645.
:S/B+\$15-C	7	1.00	404	54	2.4	13.0	32.1	15.8	8.3	64.0	24671	641.0
:S/B+ \$ 5	- 1	1.00	115	42	2.4	3.3	29.0	3.0	7.0	64.0	5462	545.2
S/B+ \$ 5	2	1.00	115	48	2.4	3.6	31.7	3.4	7.0	64.0	6242	540.0
S/B+ \$ 5	3	1.00	115	45	2.4	3.6	31.7	3.2	7.1	64.0	5852	549.5
:S/8+ \$5	4	1.00	156	47	2.4	5.0	31.9	4.4	6.9	64.0	8291	532.0
S/B+\$5	5	1.00	156	48	2.4	4.5	28.6	4.3	6.6	64.0	8468	512.6
:S/8+\$5	6	1.00	404	51	2.4	8.8	21.7	10.5	5.8	64.0	23300	451.0
:S/B+ \$5	7	1.00	404	54	2.4	8.8	21.7	11.0	5.8	64.0	24671	446.2
S/B+\$5-C	1	1.00	115	42	2.4	3.3	29.0	1.7	4.1	64.0	5462	315.1
S/B+\$5-C	2	1.00	115	48	2.4	3.6	31.7	1.9	4.0	64.0	6242	312.0
S/B+\$5-C	3	1.00	115	45	2.4	3.6	31.7	1.9	4.1	64.0	5852	317.0
S/B+\$5-C	4 .	1.00	156	47	2.4	5.0	31.9	2.5	4.0	64.0	8291	307.
S/B+\$5-C	5	1.00	156	48	2.4	4.5	28.6	2.5	3.8	64.0	8468	296.0
S/B+\$5-C 🕔	6	1.00	404	51	2.4	8.8	21.7	6.1	3.4	64.0	23300	260.
S/B+\$5-C	7	1.00	404	54	2.4	8.8	21.7	6.3	3.3	64.0	24671	257.

Table 6.1.9-5. Summary of Coal Switching/Cleaning Costs for the Yates Plant (June 1988 Dollars)

Low NO, Combustion--

Units 1-7 are dry bottom, tangential-fired boilers. The combustion modification technique applied to all boilers was OFA. Tables 6.1.9-6 and 6.1.9-7 present the NO_X performance and cost results of retrofitting OFA at the Yates plant.

Selective Catalytic Reduction--

Cold side SCR reactors for units 1-3 would be located west of unit 1, close to the coal conveyor. For units 4-5, reactors would be located east of the common chimney. For units 6-7, reactors would be placed behind their common chimney. All seven reactors would be located in low site/congestion areas. The ammonia storage system was placed in an open area between the absorbers for units 1-5 and units 6-7. An additional 350-450 feet of ducting would be required for units 1-3 and 4-5, respectively, with 200 feet needed for units 6-7. More ducting would be needed for units 1-5 since the absorbers are placed at the side of the boilerhouse; whereas, unit 6-7 absorbers would be placed directly behind the chimneys.

Table 6.1.9-6 presents the SCR retrofit factors and scope adder costs. Table 6.1.9-7 presents the estimated cost of retrofitting SCR at the Yates boilers.

Duct Spray Drying and Furnace Sorbent Injection--

For units 6-7, it appears that sufficient duct residence time could be made available between the boilers and the ESPs by modifying the first ESP section for sorbent injection or humidification. For units 6-7, a medium site access/congestion factor would be assigned for upgrading or modifying the ESPs. By contrast, units 1-5 do not have sufficient duct residence time between the boiler and ESPs and the ESPs are too small to use the first part for sorbent injection or humidification. As such, the sorbent injection technologies were not evaluated for units 1-5. The sorbent receiving/ storage/preparation areas would be located between the two boilerhouse sites.

	BOIL	ER NUMBER	·
COMBUSTION MODIFICATION RESULTS			
	1, 2, 3	4, 5	6, 7
FIRING TYPE	TANG	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA	OFA
FURNACE VOLUME (1000 CU FT)	74	94	222
BOILER INSTALLATION DATE	1950-52	1957-58	1974
SLAGGING PROBLEM	NO	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	25	25	35
SCR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	68	63	77
New Duct Length (Feet)	350	300	200
New Duct Costs (1000\$)	3579	2892	2243
New Heat Exchanger (1000\$)	3918	3689	4308
TOTAL SCOPE ADDER COSTS (1000\$) COMBINED INDIVIDUAL	7566 3939	6645 3670	NA 6628
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16
GENERAL FACILITIES (PERCENT)	13	13	13

TABLE 6.1.9-6. SUMMARY OF NOX RETROFIT RESULTS FOR YATES

Technology	Boiler			Capecit	-	-	Capital		Annual	NOx	NÛX	NOX Cos
		Retrofit			Sulfur	Cost	Cost	Cost	Cost		Removed	Effect
		Difficulty Factor	(MU)	(%)	Content (%)	(SMN)	(\$/k\)	(SMN)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
	•••••							•••••	•••••		•••••	••••••
LNC-OFA	1	1.00	115	42	2.4	0.7	5.7		0.3	25.0	341	406.
LNC-OFA	2	1.00	115	48	2.4	0.7	5.7		0.3	25.0	390	355.
LNC-OFA	3	1.00	- 115	45	2.4	0.7	5.7		0.3	25.0	366	379.
LNC-OFA	4	1.00	156	47	2.4	0.7	4.7	0.2	0.2	25.0	518	302.
LNC-OFA	5	1.00	156	.48	2.4	0.7	4.7	0.2	0.2	25.0	529	296.
LNC-OFA	6	1.00	404	51	2.4	1.1	2.7	0.2	0.1	35.0	2038	112.
LNC-OFA	7	1.00	404	54	2.4	1.1	2.7	0.2	0.1	35.0	2158	106.
LNC-OFA-C	1.	1.00	115	42	2.4	0.7	5.7	0.1	0.2	25.0	341	241.
LNC-OFA-C	2	1.00	115	48	2.4	0.7	5.7	0.1	0.2	25.0	390	211.
LNC-OFA-C	3	1.00	115	45	2.4	0.7	5.7	0.1	0.2	25.Q	366	225 .
NC-OFA-C	4	1.00	156	47	2.4	0.7	4.7	0.1	0.1	25.0	518	179.
LNC-OFA-C	5	1.00	156	48	2.4	0.7	4.7	0.1	0.1	25.0	529	175.
LNC-OFA-C	. 6	1.00	404	51	2.4	1.1	2.7	0.1	0.1	.35.0	2038	66.
NC-OFA-C	7	1.00	404	54	2.4	1.1	2.7	0.1	0.1	35.0	2158	63.
SCR-3	1,2,3	3 1.16	115	45	2.4	21.0	183.0	6.7	14.8	80.0	1170	5716.
SCR-3	4,5	1.16	156	48	2.4	24.9	159_4	8.3	12.6 ·	80.0	1693	4875.
SCR-3	1-3	1.16	345	45	2.4	46.2	134.0	15.9	11.7	80.08	3510	4533.
SCR-3	4-5	1.16	312	. 48	2.4	43.8	140.5	14.9	11,4	80.0	3386	4411.
SCR-3	6	1:16	404	51	2.4	51.0	126.3	18.1	10.0	80.0	4658	3890.
SCR-3	7	1.16	404	54	2.4	51.0	126.3	18.2	9.5	80.0	4932	3687.
SCR-3-C	1,2,	3 1.16	115	45	2.4	21.0	183,0	3.9	8.7	80.0	1170	3355.
SCR-3-C	4,5	1.16	156	48	2.4	24.9	159.4	4.8	7.4	80.0	1693	2859.
SCR-3-C	1-3	1.16	345	45.	2.4	46.2	134.0	9.3	6.9	80.0	3510	2656.
CR-3-C	4-5	1.16	312	48	2.4	43.8	140.5	8.6	6.7	80.0	3386	2585.
SCR-3-C	6	1.16	404	51	2.4	51.0	126.3	10.6	5.9	80.0	4658	2278.
CR-3-C	7	1.16	404	54	2.4	51.0	126.3	10.6	5.6	80.0	4932	2159.
CR-7	1,2,3		115	45	2.4	21.0	183.0	5.7	12.7	80.0	1170	4904.
SCR-7	4,5	1.16	156	48	2.4	24.9	159.4	7.0	10.6	80.0	1693	4114.
CR-7	1-3	1.16	345	45	2.4	46.2	134.0	13.1	9.6	80.0	3510	3721.
SCR-7	4-5	1.16	312	48	2.4	43.8	140.5	12.4	9.4	80.0	3386	3650
SCR-7	6	1.16	404	51	2.4	51.0	126.3	14.8	8.2	80.0	4658	3174.
SCR-7	7	1.16	404	54	2.4	51.0	126.3	14.9	7.8	80.0	4932	3011.
CR-7-C	1,2,3		115	45	2.4	21.0		3.4	7.5	80.0	1170	2890.
SCR-7-C	4,5	1.16	156	48	2.4	24.9		4.1	6.3	80.0	1693	2423.
SCR-7-C	1-3	1.16	345	. 45	2.4	46.2	134.0	7.7	5.7	80.0	3510	2191.
SCR-7-C	4-5	1.16	312	48	2.4	43.8		7.3	5.5	80.0	3386	2149.
CR-7-C	6	1.16	404	51	2.4	51.0				80.0	4658	1867.
SCR-7-C	7	1 .16	404	. 54	2.4	51.0	126.3	8.7	4.6	80.0	4932	1771.

Table 6.1.9-7. NOx Control Cost Results for the Yates Plant (June 1988 Dollars)

Table 6.1.9-8 presents a summary of the site access/congestion factor for FSI and DSD technologies at the Yates steam plant. Table 6.1.9-9 presents the costs estimated to retrofit FSI and DSD at Yates.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 was used to determine the applicability of these technologies at the Yates plant. Units 1-5 would be considered good candidates for repowering and retrofit because of their small boiler sizes. However, units 6-7 would not be considered because they are more than 300 MW. All units have moderate to high capacity factors which could result in high replacement power cost for extensive downtimes. Units 2-4 would be difficult to access for rebuilds or reuse of the furnace, pulverizers, and heat recovery sections.

TABLE 6.1.9-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR YATES UNIT 6-7 (EACH)

ITEM	·
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW MEDIUM NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO NA
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$)	NA NA NA
DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	50 85
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	85 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.36 NA

Technology		Main Retrofit Difficulty	Size	Capacity Factor (%)	y Coal Sulfur Content	Capital Cost (SHM)	Capital Cost (\$/k¥)	Annual Cost (\$MM)			SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
		Factor		·	(%)							
DSD+ESP	6.	1.00	404	51	2.4	19.7	48.8	14.1	7.8	49.0	17676	798.2
DSD+ESP	7	1.00	404	54	2.4	19.7	48.8	14.5	7.6	49.0	18716	775.1
DSD+ESP-C	6	1.00	404	51	2.4	19.7	48.8	8.2	4.5	49.0	17676	462.3
DSD+ESP-C	7	1.00	404	54	2.4	19.7	48.8	8.4	4.4	49.0	18716	448.8
FS1.+ESP-50	6	1.00	404	51	2.4	17.6	43.5	16.4	9.1	50.0	18166	902.4
FSI+ESP-50	7	1.00	404	54	2.4	17.6	43.5	17.0	8.9	50.0	19235	886.3
FSI+ESP-50-C	6	1.00	404	51	2.4	17.6	43.5	9.5	5.2	50.0	18166	521.3
FSI+ESP-50-C	7.	1.00	404	54	2.4	17.6	43.5	9.8	5.2	50.0	19235	511.9
FSI+ESP-70	6	1.00	404	51	2.4	17.4	43.1	16.6	9.2	70.0	25433	653.4
FSI+ESP-70	7	1.00	404	54	2.4	17.4	43.1	· 17 .3	9.0	70.0	26929	642.0
FSI+ESP-70-C	6	1.00	404	51	2.4	17.4	43.1	9.6	5.3	70.0	25433	377.4
FSI+ESP-70-C	7	1.00	404	54	2.4	17.4	43.1	10.0	5.2	70.0	26929	370.7

Table 6.1.9-9. Summary of DSD/FSI Control Costs for the Yates Plant (June 1988 Dollars)

SECTION 7.0 ILLINOIS

7.1 CENTRAL ILLINOIS LIGHT COMPANY

7.1.1 E. D. Edwards Steam Plant

L/S-FGD and LSD-FGD retrofit factors were developed for the boilers at the Edwards plant; however, costs are not presented since the low sulfur coal being used by the plant would yield low capital/operating costs and high cost per ton of SO_2 removed. The boilers currently fire a low sulfur coal hence CS was not considered. Since 1984 CILCO has been implementing a coal blending program to comply with the 1.8 mmBTU standard. Sorbent injection technologies were not evaluated because of the inadequate size of the ESPs.

TABLE 7.1.1-1. E. D. EDWARDS STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	73.5 NO WET PON 1	2 272 39 1968 ONT WALL 155.6 NO 0.9 13000 6.0 DISPOSA D/ON-SIT 1 D/BARGE/	187.5 NO	
PARTICULATE CONTROL				
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY			1972 0.10	
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	NA 63.4 462 137 300	NA 138.2 815 170 300	1210	

TABLE 7.1.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR EDWARDS UNIT 1 OR 2 *

· · · · · · · · · · · · · · · · · · ·		FGD TE	CHNOLOGY
	L/LS_FGD_OX	FORCED IDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		-	
SO2 REMOVAL FLUE GAS HANDLING	HIGH MEDIUM	NA NA	HIGH
ESP REUSE CASE BAGHOUSE CASE			NA MEDIUM
DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	, -
BAGHOUSE ESP REUSE	NA	NA	300-600 NA
NEW BAGHOUSE	NA	NA	MEDIUM
SCOPE ADJUSTMENTS	•		
WET TO DRY ESTIMATED COST (1000\$)	YES 11 45, 22 99	NA NA	NO NA
NEW CHIMNEY ESTIMATED COST (1000\$)	NO O	NA ·	NO O
OTHER	ŇO	• •	NO
RETROFIT FACTORS			
FGD SYSTEM	1.64	NA	NA
ESP REUSE CASE BAGHOUSE CASE			NA 1.58
ESP UPGRADE NEW BAGHOUSE	NA NA	NA . NA	NA 1.36
GENERAL FACILITIES (PERCENT)) 15	0	15

* L/LS-FGD absorbers, LSD-FGD absorbers, and new FFs for units 1 and 2 would be located south of the common chimney for units 1 and 2.

7-2⁻

TABLE 7.1.1-3. SUMMARY OF RETROFIT FACTOR DATA FOR EDWARDS UNIT 3 *

	FGD TECHNOLOGY						
	L/LS FGD (FORCED DXIDATION	LIME SPRAY DRYING				
SITE ACCESS/CONGESTION		•					
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW	NA NA	LOW NA				
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	LÔW				
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA LOW				
SCOPE ADJUSTMENTS							
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 3073 NO 0 NO	NA NA NA O	NO NA NO O NO				
RETROFIT FACTORS							
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.38	NA	NA 1.27				
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16				
GENERAL FACILITIES (PERCEN	T) 8	0	8				

* L/S-FGD absorbers, LSD-FGD absorbers, and new FFs for unit 3 would be located north of the unit 3 chimney.

	BOI	LER_NUMB	<u>ER _</u>	
COMBUSTION MODIFICATION RESULTS			•	
	1	2	1-2	3
FIRING TYPE	FWF	FWF	NA	FWF
TYPE OF NOX CONTROL	LNB	LNB	NA	LNB
FURNACE VOLUME (1000 CU FT)	73.5	155.6	NA	187.5
BOILER INSTALLATION DATE	1960	. 1968	NA	1972
SLAGGING PROBLEM	NO	<u>NO</u>	NA	<u>NO</u>
ESTIMATED NOX REDUCTION (PERCENT)	40	39	NA	34
SCR RETROFIT RESULTS * SITE ACCESS AND CONGESTION FOR SCR REACTOR SCOPE ADDER PARAMETERS	HIGH	HIGH	HIGH	LOW
Building Demolition (1000\$)	0	0	0	0
Ductwork Demolition (1000\$)	32	57	76	73
New Duct Length (Feet)	400	400	400	400
New Duct Costs (1000\$)	2258	3559	4440	4301
New Heat Exchanger (1000\$)	2131	3397	4263	4126
TOTAL SCOPE ADDER COSTS (1000\$)	4421	7014	8779	8500
RETROFIT FACTOR FOR SCR	1.52	1.52	1.52	1.16
GENERAL FACILITIES (PERCENT)	38	38	38	20

TABLE 7.1.1-4. SUMMARY OF NOX RETROFIT RESULTS FOR EDWARDS

* Cold side SCR reactors for units 1 and 2 would be located south of the common chimney for units 1 and 2. Cold side SCR reactors for unit 3 would be located north of the unit 3 chimney.

Technology	Boiler			•			,		Annual	NOX	NOx	NOX Cos
		Retrofit			Sulfur	Cost	Cost	Cost			Removed	Effect
		Difficulty Factor	(((((((((((((((((((((%)	Content (%)	(SHH)	(\$/KW)	(SHM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
•••••••••••••	•••••					• • • • • • • • • •	•••••			•••••		• • • • • • • • • •
LNC-LNB	1	1.00	125	34	0.9	2.8	22.3	0.6	1.6	40.D	590	1034.2
LNC-LNB	2	1.00	272	39	0.9	3.8	14.0	0.8	0.9	39.0	1436	580.1
LNC-LNB	3	1.00	376	63	0.9	4.3	11.5	0.9	0.5	34.0	2796	339.1
LNC-LN8-C	1	1.00	125	34	0.9	2.8	22.3	0.4	1.0	40.0	590	613.8
LNC-ENB-C	2	1.00	272	39	0.9	3.8	14.0	0.5	0.5	39.0	14 36	344.2
LNC-LNB-C	- 3	1.00	376	63	0.9	4.3	11.5	0.6	0.3	34.0	2796	201.2
SCR-3	1	1.52	125	34	0.9	28.3	226.7	8.8	23.6	80.0	1180	7447.
SCR-3.	` 2	1.52	272	39	0.9	49.9	183.5	16.2	17.4	80.0	2946	5482.
SCR-3	3	1.16	376	63	0.9	50.7	134.9	18.3	8.8	80.0	6578	2774.
SCR-3	1-2	1.52	397	37 -	0.9	65.5	165.0	21.7	16.9	80.0	40 79	5323.9
SCR-3-C	1	1.52	125	34	0.9	28.3	226.7	5.2	13.9	80.0	11 8 0	4374.0
SCR-3-C	2	1.52	272	39	0.9	49.9	183.5	9.5	10.2	80.0	2946	3217.
SCR-3-C	3	1.16	376	63	0.9	50.7	134.9	10.7	5.1	80.0	65 78	1624.4
SCR-3-C	1-2	1.52	397	37	0.9	65.5	165.0	12.7	9.9	80.0	4079	3122.2
SCR-7	1	1.52	125	34	0.9	28.3	226.7	7.8	20.9	80.0	1180	6587.
SCR-7	2	1.52	272	39	0.9	49.9	183.5	13.9	15.0	80.0	2946	4732.8
SCR-7	3	1.16	376	63	0.9	50.7	134.9	15.2	7.3	80.0	6578	2310.8
SCR-7	1-2	1.52	397	37	0.9	65.5	165.0	18.5	14.4	80.0	4079	4533.0
SCR-7-C	1	1.52	125	34	0.9	28.3	226.7	4.6	12.3	80.0	1180	3881.9
SCR-7-C	- 2	1.52	272	39	. 0.9	49.9	183.5	8.2	8.8	80.0	2946	2787.9
SCR-7-C	3	1.16	376	63	0.9	50.7	134.9	8.9	4.3	80.0	6578	1358.1
SCR-7-C	1-2	1.52	397	37	0.9	65.5	165.0	10.9	8.5	80.0	4079	2669.4

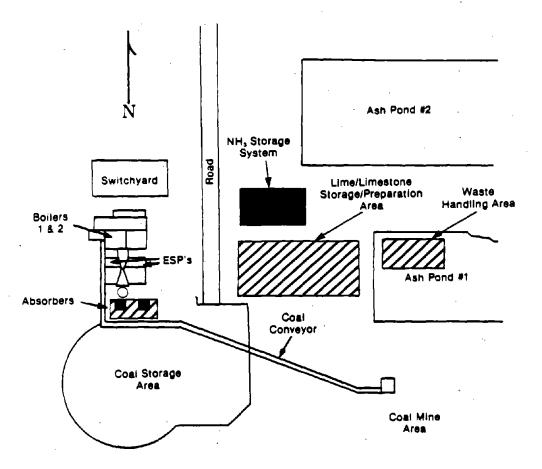
Table 7.1.1-5. NOx Control Cost Results for the Edwards Plant (June 1988 Dollars)

7.2 CENTRAL ILLINOIS PUBLIC SERVICE

7.2.1 Coffeen Steam Plant

The Coffeen steam plant is located within Montgomery County, Illinois, and is part of the Central Illinois Public Service Company system. The plant contains two coal-fired boilers with a total gross generating capacity of 1,006 MW. Figure 7.2.1-1 presents the plant plot plan showing the location of the boilers and major associated auxiliary equipment.

Table 7.2.1-1 presents operational data for the existing equipment at the Coffeen steam plant. Both boilers burn high sulfur coal (3.7 percent sulfur). The plant is located next to the Hillsboro coal mine and the coal is conveyed from the mine to a coal storage area located south of the plant.


Particulate matter emissions for both boilers are controlled with retrofit ESPs located behind each unit. Fly ash from all units is sold to the County Road Commission for their use. On-site landfills are available northeast of the plant for bottom ash from the boilers.

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 7.2.1-1 shows the general layout and location of the FGD control system. The absorbers for both units and all FGD technologies were located south of the boilers in a relatively small area. A storage area building and part of the plant road would be relocated to make more space available for the FGD absorbers. Therefore, a factor of 7 percent was assigned to general facilities. The limestone preparation/storage area was placed directly east of the absorbers with the waste handling area being located east of the preparation/storage area in the ash pond #I site.

Retrofit Difficulty and Scope Adder Costs--

The Coffeen plant is equipped with two boilers, one chimney, and two retrofit ESPs. The boilers sit east to west, side by side. The ESPs are located directly behind (south) the units with the chimney centered behind. The FGD absorbers were placed south of the chimney where they would be bounded on three sides. The absorbers would be bounded to the west by the coal conveyor, to the north by the chimney, and to the south by the coal

FGD Waste Handling/Absorber Area Lime/Limestone Storage/Preparation Area

NH, Storage System SCR Boxes

Not to scale

Figure 7.2.1-1. Coffeen plant plot plan

TABLE 7.2.1-1. COFFEEN STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1 389 29 1965 CYC 3.7 10400 10.0 DRY OFF-S 1 CONVEY COAL MIN TO THE	ITE OR E NEXT
PARTICULATE CONTROL	· · ·	
TYPE INSTALLATION DATE EMMISION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1973 0.05 98.5	ESP 1982 0.05 97.4
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS FLOW (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	4.5 308.9 1422.7 217 310	4.5 397.4 2217 179 310

storage/handling area. A high site access/congestion factor was assigned to the absorbers to reflect this congestion. No obstructions exist in the area where the tie-in ductwork would be located and short to medium duct runs for all units would be required since the absorbers are close to the chimney. As a result, a low site access/congestion factor was assigned to flue gas handling for all units and all FGD technologies.

The major scope adjustment costs and estimated retrofit factors for the FGD control technologies are presented in Table 7.2.1-2. There are no significant scope adders for the retrofit of FGD control technologies at the Coffeen steam plant. The overall retrofit factors estimated for the L/LS-FGD cases were moderate (1.44 to 1.48).

The only LSD-FGD case considered was LSD with a new baghouse. The existing ESPs are located in a high site access/congestion area and the SCAs are small (179-220). Also, it is likely that a considerable plate area increase would be required to upgrade the existing ESPs. The retrofit factor determined for the LSD technology was moderate (1.45) and did not include particulate control costs. A separate factor of 1.58 was estimated for new particulate controls. This high factor is a result of the high site access/congestion associated with the intended location of the absorbers and baghouses.

Table 7.2.1-3 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include installing new baghouses to handle the additional particulate loading for boilers 1 and 2.

The low cost control case reduces capital and annual operating costs. The significant reduction in costs is primarily due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber, and optimization of scrubber size.

Coal Switching and Physical Coal Cleaning Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, pulverizer capacity, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be determined. This is particularly true for cyclone boilers; therefore, coal switching was not evaluated for the Coffeen plant. TABLE 7.2.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR COFFEEN UNITS 1-2

·	FGD TECHNOLOGY					
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING			
SITE ACCESS/CONGESTION						
SO2 REMOVAL FLUE GAS HANDLING	HIGH LOW	HIGH LOW	HIGH			
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	100-300	100-300	NA LOW			
ESP REUSE BAGHOUSE			NA 100-300			
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA HIGH			
SCOPE ADJUSTMENTS	~					
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY	NO NA NO	NO NA NO	NO NA NO			
ESTIMATED COST (1000\$) OTHER	O NO	0 NO	O NO			
RETROFIT FACTORS						
FGD SYSTEM ESP REUSE CASE	1.44	1.48	NA			
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.45 NA 1.58			
GENERAL FACILITIES (PERCENT) 7	7	7			

echnology	Boiler Number	Main Retrofit	Boiler Síze	Capacity Factor		Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SO2 Cost Effect.
		Difficulty Factor			Content (%)	(SHM)	(\$/kW)		(mills/kwh)		(tons/yr)	
./S FGD	1	1.44	389	29	3.7	111.3	286.1	46.3	46.9	90.0	31287	1480.3
/S FGD	2	1.44	617	52	3.7	152.0			26.7	90.0	88983	843.8
/S FGD-C	1	1.44	389	. 29	3.7	111.3	286.1	27.0	27.4	90.0	31287	864.0
/S FGD-C	Z	1.44	617	52	3.7	152.0	246.3	43.7	15.5	90.0	88983	491.1
C FGD	1-2	1.44	1006	41	3.7	192.4	191.3	94.1	26.0	90.0	114393	822.6
C FGD-C	1-2	1_44	1006	41	3.7	192.4	191.3	54.8	15.2	90.0	114393	478.9
SD+FF	1	1.45	389	29	3.7	103.4	265.9	37.0	37.5	84.0	29063	1274.2
SD+FF	2	1.45	617	52	3.7	156.2	- 253.1	63.0	22.4	84.0	82657	761.6
SD+FF-C	1	1.45	389	29	3.7	103.4	265.9	21.7	21.9	84.0	29063	746.0
SD+FF-C	2	1.45	617	52	3.7	156.2	253.1	36.8	13.1	84,0	82657	444.8

Table 7.2.1-3. Summary of FGD Control Costs for the Coffeen Plant (June 1988 Dollars)

Table 7.2.1-4 presents the IAPCS results for physical coal cleaning at the Coffeen plant. These costs do not include reduced pulverizer operating costs or system modifications that may be necessary to handle deep cleaned coal.

NO_y Control Technology Costs--

This section presents the performance and various related costs estimated for NO_x controls at Coffeen. These controls include LNC and SCR. The application of NO_x control technologies is affected by several site-specific factors which are discussed in Section 2. The NO_x control technologies evaluated at Coffeen were: NGR and SCR.

Low NO_y Combustion--

Units 1 and 2 are wet bottom, cyclone-fired boilers rated at 389 and 617 MW, respectively. The combustion modification technique applied was NGR. The NO_x reduction performance estimated for both units was 60 percent. Table 7.2.1-5 presents the results for all boilers evaluated for NO_x control applicability at the Coffeen plant. Table 7.2.1-6 presents the cost of retrofitting NGR at the Coffeen plant.

Selective Catalytic Reduction--

Table 7.2.1-5 presents the SCR retrofit factors for each unit. The table includes process area retrofit difficulty factors and scope adder costs. The scope adders include costs estimated for ductwork demolition, new heat exchanger, and new duct runs to divert the flue gas from the ESP to the reactor and from the reactor to the chimney.

The reactors for units 1 and 2 were located south of the powerhouse, behind the ESPs, and north of the crusher house. The reactor for unit 1 would be bounded on three sides by the coal conveyor belt, the chimney, and the crusher house. Meanwhile, the reactor for unit 2 would be bounded on two sides by the chimney and the coal conveyor.

The reactors for units 1 and 2 were assigned medium site access/ congestion factors. The ammonia storage system, which would supply ammonia to both reactors, would be located in an open area. The reactors were placed in an area with high underground obstructions and the ammonia system was

Technology		Retrofit	Size	Capacit) Factor	Sulfur	Cost	Capital Cost	Cost	Cost		SO2 Removed	SO2 Cost Effect.
		Difficulty Factor	· (MW)	(%)	Content (%)	(\$HM)	(\$/k\)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
PCC	1	1.00	389	29	- 3.7	5.3	13.8	3.6	3.6	31.0	10766	334.2
PCC	. 2	1.00	617	52	3.7	10.3	16.7	8.9	3.2	31.0	30621	289.6
PCC-C	ľ	1.00	389	29	3.7	5.3	13.8	2.1	2.1	31.0	10766	193.7
PCC-C	2	1.00	617	52	3.7	10.3	16.7	5.1	1.8	31.0	30621	167.4

Table 7.2.1-4. Summary of Coal Switching/Cleaning Costs for the Coffeen Plant (June 1988 Dollars)

	BOILER	NUMBER
COMBUSTION MODIFICATION RESULTS		<u> </u>
	1	2
FIRINGTYPE	CY	CY
TYPE OF NOX CONTROL	NGR	NGR
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	NA	NA
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	NA	NA
FURNACE RESIDENCE TIME (SECONDS)	NA	NA
ESTIMATED NOX REDUCTION (PERCENT)	60	60
SCR RETROFIT RESULTS		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM	MEDIUM
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	75	106
New Duct Length (Feet)	150	150
New Duct Costs (1000\$)	1,503	1,968
New Heat Exchanger (1000\$)	4,198	5,554
TOTAL SCOPE ADDER COSTS (1000\$)	5,776	7,628
RETROFIT FACTOR FOR SCR	1.34	1.34
GENERAL FACILITIES (PERCENT)	13	13

TABLE 7.2.1-5. SUMMARY OF NOx RETROFIT RESULTS FOR COFFEEN

Technology	Boiler	Main	Boiler	Capacit	y Coal	Capital	Capital	Annual	Annual	NOX	NOX	NOx Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
		Difficulty	y (MW)	(%)	Content	(\$MM)	(\$/kW)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
	·····	Factor			(%)							
NGR	1.	1.00	389	29	3.7	6.1	15.7	5.9	6.0	60.0	4915	1203.7
NGR	2	1.00	617	52	3.7	8.7	14_1		5.5	60.0	13977	, 1114.1
NGR-C	1.	1.00	389	29	3.7	6.1	15.7	3.4	3.5	60.0	4915	695.2
NGR-C	2	1.00	617	52	3.7	8.7	14.1	9.0	3.2	60.0	13977	641.1
SCR-3	1	1.34	389	29	3.7	53.3	137.1	19.1	19.3	80.0	6553	2913.7
SCR-3	. 2	1.34	617	52	3.7	79.4	128.6	30.4	10.8	80.0	18637	1630.6
SCR-3-C	1	1.34	389	29	3.7	53.3	137.1	11.2	11.3	80.0	6553	1705.9
SCR-3-C	2	1.34	617	52	3.7	79.4	128.6	- 17.8	6.3	80.0	18637	953.3
SCR-7	1	1.34	389	29	3.7	53.3	137.1	15.8	16.0	80.0	6553	2415.5
SCR-7	2	1.34	617	52	3.7	79,4	128.6	25.2	9.0	80.0	18637	1352.8
SCR-7-C	1	1.34	389	29	3.7	53.3	137.1	9.3	9.4	80.0	6553	1420.4
SCR-7-C	2	1.34	617	52	3.7	79.4	128.6	14.8	5.3	80.0	18637	794.1

=======

Table 7.2.1-6. NOx Control Cost Results for the Coffeen Plant (June 1988 Dollars)

placed in an area with no significant underground obstructions. Table 7.2.1-6 presents the estimated cost of retrofitting SCR at the Coffeen boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas for both units would be located south of the plant in a relatively small area. The retrofit of DSD and FSI technologies at the Coffeen steam plant would be difficult because of the small SCA (<220), although there is more than 2 seconds of flue gas ducting residence time between the boilers and the ESPs. Significant particulate control upgrading would likely be needed to handle the increased solids loading resulting from the DSD and FSI retrofit. As a result, DSD followed by new fabric filters installed behind the chimney was evaluated. Tables 7.2.1-7 and 7.2.1-8 present a summary of site access/congestion factors, scope adders, and retrofit factors for DSD and FSI technologies at the Coffeen steam plant. Table 7.2.1-9 presents the costs estimated to retrofit DSD at the Coffeen plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Coffeen plant. The boilers at Coffeen would not be considered good candidates for AFBC retrofit and AFBC or CG/combined cycle repowering because of their large boiler sizes (>300 MW). However, the capacity factor on boiler 1 is low and NO_x/SO_2 emissions are high suggesting that this boiler may be a good candidate if size is not a technology limiting constraint.

TABLE 7.2.1-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR COFFEEN UNIT 1

	<u> </u>
ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	MEDIUM NA HIGH
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO NA
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE	300 3,051 NA
ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA 50 83
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	NA 3,134
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.25 NA 1.55

TABLE 7.2.1-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR COFFEEN UNIT 2

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION	HIGH
ESP UPGRADE NEW BAGHOUSE	NA HIGH
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING	NO
ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NA
NEW BAGHOUSE CASE	300
ESTIMATED COST (1000\$)	3,996
ESP REUSE CASE	NA -
ESTIMATED COST (1000\$)	NA 50
DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	117
TOTAL COST (1000\$)	
ESP UPGRADE CASE	NA
A NEW BAGHOUSE CASE	4,113
RETROFIT FACTORS	- ,
CONTROL SYSTEM (DSD SYSTEM ONLY)	1.25
ESP UPGRADE	ŇĂ
NEW BAGHOUSE	1.55

Technology	Boiler	• Main	Boiler	Capacity	/ Coal	Capital	Capital	Annual	Annual	S02	S02	SO2 Cost
	Number	Retrofit	Size .	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
		Difficulty	(NW)	(%)	Content	(\$MH)	(\$/kW)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor	• • • • • • • •		(%)		· `	••••••		•••••		
DSD+FF	1	1.00	389	29	3.7	66.6	171.2	25.7	26.0	69.0	24091	1066.8
DSD+FF	2	1.00	617	52	3.7	100.5	162.9	45.5	16.2	69.0	68518	664.1
DSD+FF-C	1	1.00	389	29	3.7	66.6	171.2	15.0	15.2	69.0	24091	623.6
DSD+FF-C	2	1.00	617	52	3.7	100.5	162.9	26.5	9.4	69.0	68518	387.1

Table 7.2.1-9. Summary of DSD/FSI Control Costs for the Coffeen Plant (June 1988 Dollars)

7.2.2 Grand Tower Steam Plant

The Grand Tower steam plant is located in Jackson County, Illinois, as part of the Central Illinois Public Service Company system. The plant contains three coal-fired boilers with a gross generating capacity of 286 MW. Figure 7.2.2-1 presents the plot plan showing the location of all boilers and major associated auxiliary equipment.

Table 7.2.2-1 presents operational data for the existing equipment for the boilers at Grand Tower. The boilers burn medium sulfur coal (2.7 percent sulfur). Coal is received by truck and taken to the coal storage/handling area located next to boilers/powerhouse (north).

Particulate emissions are controlled with retrofit ESPs located behind the units. The ash from all units is wet sluiced to the ash ponds which are located on the far side of the powerhouse (south).

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 7.2.2-1 shows the general layout and location of the FGD control system. The FGD absorbers for all FGD technologies were located in an open area south of the chimney in an uncongested area. The only demolition and relocation required for this placement of the FGD absorbers would be a plant road; therefore, a factor of 5 percent was assigned to general facilities. The lime and limestone preparation/storage area and waste handling area were located south of the absorbers in close proximity to the ash ponds in a low access/congestion area.

Retrofit Difficulty and Scope Adder Costs--

The Grand Tower plant has 3 units, numbered 7, 8, and 9. No information was available for units 1 to 6 in the EIA-767 forms or other data reviewed and, as a result, it was assumed that these units have been retired and are no longer in service. The plant is bounded on the west side by the Mississippi River and on the remaining sides by rolling hills. All boilers sit side by side, parallel to the river. The coal storage/handling area is located to the north of the powerhouse while the ash ponds are located to the south of the powerhouse. The L/LS and LSD-FGD absorbers were located between the powerhouse and the ash ponds. A low site access/congestion factor was

. 7-20

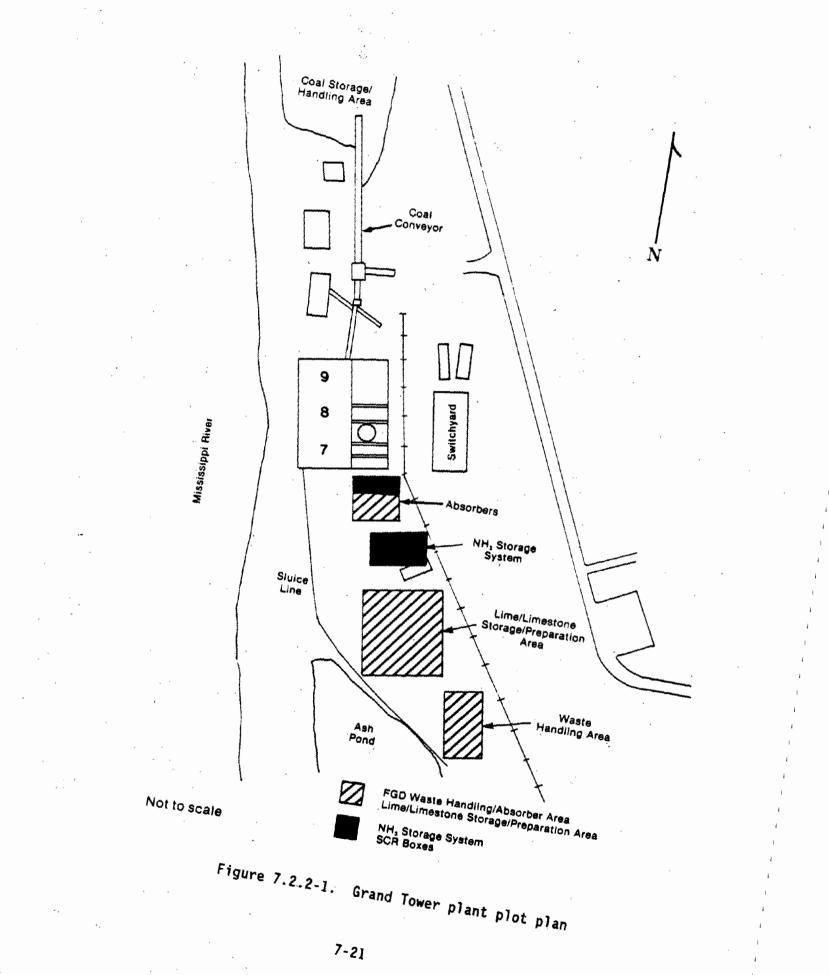


TABLE 7.2.2-1. GRAND TOWER STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each)	7,8 85,81	9 114			
CAPACITY FACTOR (PERCENT)	10	40			
INSTALLATION DATE FIRING TYPE	1951 FWF	1958 FWF			
COAL SULFUR CONTENT (PERCENT)	2.7	2.7			
COAL HEATING VALUE (BTU/LB)	11500	11500			
COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM	10.3 WET SL	10.7 UTCE			
ASH DISPOSAL METHOD	POND/ON				
STACK NUMBER					
COAL DELIVERY METHODS	TRUC	ĸ			
PARTICULATE CONTROL					
ΤΥΡΕ	ESP	ESP			
INSTALLATION DATE	1969	1970			
EMISSION (LB/MM BTU) REMOVAL EFFICIENCY	0.13 98.4	0.16 97.9			
DESIGN SPECIFICATION	30.4	57.5			
SULFUR SPECIFICATION (PERCENT)	2.1	2.1			
SURFACE AREA (1000 SQ FT) EXIT GAS FLOW RATE (1000 ACFM)	19.9	54			
SCA (SQ FT/1000 ACFM)	149.5 133	377 143			
OUTLET TEMPERATURE (F)	310	310			
·					

assigned to the location of the absorbers because there is no plant facility surrounding this location. The access/congestion factor assigned to the flue gas handling was medium as a result of the ductwork congestion created by the closeness of the chimneys to the boilers and the railroad track. Also, a long duct run would be required for all FGD retrofit cases at the Grand Tower plant.

The major scope adjustment costs and estimated retrofit factors for the FGD technologies are presented in Table 7.2.2-2. The largest scope adders for the Grand Tower plant would be construction of a new chimney and the conversion from wet to dry ash handling/disposal system for the L/LS-FGD cases evaluated. It was assumed that the dry fly ash would be necessary to stabilize the scrubber sludge waste for these cases. This conversion is not required for the application of forced oxidation FGD. Reuse of the existing chimney was difficult due to the location of the chimney between the existing ESPs. The cost of a new chimney was added to the scope adders. The overall retrofit factors determined for the L/LS-FGD cases were moderate (1.44 to 1.49).

The LSD-FGD case evaluated at Grand Tower was LSD with a new baghouse. This case was evaluated for the primary reason that the SCAs at these units are small (<145). The overall retrofit factor estimated for the LSD technology was moderate (1.45). A separate factor was developed for the new particulate controls and used by the IAPCS model to determine any additional cost which might be required. This factor was low (1.16) and is a result of the location chosen for the new particulate control on the side of the boiler between the powerhouse and the ash ponds.

Table 7.2.2-3 presents the process area retrofit factors and cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include installing new baghouses to handle the additional particulate loading for boilers 7-9.

Two combined FGD cases for units 7-9 were considered. The first case uses conventional forced oxidation technology for an NSPS type system and demonstrates the economies of scale. The second case represents the low cost control case. The additional reduction in costs is primarily due to the elimination of spare scrubber module, the optimization of scrubber module size, and the use of adipic acid. TABLE 7.2.2-2. SUMMARY OF RETROFIT FACTOR DATA FOR GRAND TOWER UNITS 7-9

		FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			· .
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	LOW MEDIUM	LOW MEDIUM	LOW NA MEDIUM
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	600-1000	600-1000	NA 600-1000
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA LOW
COPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 819 YES 2,075 NO	NO NA YES 2,075 NO	NO NA YES 2,075 NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.49	1.44	NA 1.45
ESP UPGRADE NEW, BAGHOUSE	NA NA	NA NA	NA 1.16
GENERAL FACILITIES (PERCEN	IT) 5	5	5

Technology	Boiler	Main	Boiler	Capacit	y Coal	Capital	Capital	Annual	Annual	SO2	S02	\$02 Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
		Difficulty	(HW)	(%)	Content	(SHM)	(\$/k¥)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor			(%)							
/S FGD	7	1.49	85	10	2.7	43.6	513.3	16.2	217.1	90.0	1533	10544.0
/S FGD	_	1.49	81	10	2.7	42.7	526.7	15.8		90.0	1461	10833.7
/S FGD	9	1.49	114	40	2.7	49.8	436.6	21.0	52.6	90.0	8223	2554:0
/S FGD-C	´ 7	1.49	85	10	2.7	43.6	513.3	9.5	127.0	90.0	1533	6168.7
/S FGD-C	8	1,49	81	10	2.7	42.7	526.7	9.3	130.5	90.0	1461	6338.0
/S FGD-C	9	1.49	114	40	2.7	49.8	436.6	12.3	30.7	90.0	8223	1490.4
C FGD	7-9	1.49	280	22	2.7	. 62.5	223.0	25.5	47.3	90.0	11108	2298.9
C FGD-C	7-9	1.49	280	22	2.7	62.5	2 23 .0	14.9	27.6	90.0	11108	1342.3
.SD+FF	7	1.45	85	10	2.7	25.8	303.6	10.0	134.0	87.0	1473	6773.3
.SD+FF	8	1.45	81	10	2.7	24.7	305.2	9.7	136.2	87. 0	1404	6882.4
.SD+FF	9	1.45	114	40	2.7	31.7	278.4	13.2	33.1	86.0	7869	1678.2
SD+FF-C	7	1.45	85	10	2.7	25.8	303.6	5.8	78.3	87.0	1473	3959.2
SD+FF-C	8	1.45	81	10	2.7	24.7	305.2	5.6	79.6	87.0	1404	4022.1
SD+FF-C	9	1.45	114	40	2.7	31.7	278.4	7.7	19.3	86.0	7869	979.6

Table 7.2.2-3. Summary of FGD Control Costs for the Grand Tower Plant (June 1988 Dollars)

•

Coal Switching Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, pulverizer capacity, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be determined.

The ESP performance impacts were evaluated using the IAPCS model to estimate the needed plate area. This plate area was compared to the existing area to determine whether SO_3 conditioning or additional plate area was needed. SO_3 conditioning was assumed to reduce the needed plate area up to 25 percent.

Costs were generated to show the impact of two different coal fuel cost differentials. The costs associated with each boiler for the range of fuel cost differential are shown in Table 7.2.2-4.

NO, Control Technology Costs

This section presents the performance and costs estimated for NO_x controls at the Grand Tower steam plant. These controls include LNC modification and SCR. The application of NO_x control technologies is determined by several site-specific factors which are discussed in Section 2. The NO_x technologies evaluated at the steam plant were: LNB and SCR.

Low NO, Combustion--

Units 7 to 9 are dry bottom, front wall-fired boilers rated at 85, 81, and 114 MW, respectively. The combustion modification technique applied for these boilers was LNB. As Table 7.2.2-5 shows, the LNB NO_X reduction performances for units 7 and 8 could not be estimated using the simplified procedures. No boiler information could be found for units 7 and 8 in POWER to assess their NO_X reduction performances. Since these boilers are relatively old, it is estimated that a NO_X reduction of 20 to 30 percent can be achieved by these boilers retrofitted with LNB. For unit 9, the LNB NO_X reduction performance was estimated at 50 percent using the simplified procedures. Table 7.2.2-6 presents the cost of retrofitting LNB at the Grand Tower boilers, assuming a NO_X reduction performance of 25 percent for units 7 and 8.

Technology Boiler Main Boiler Capacity Coal Capital Capital Annual Annual S02 -S02 SO2 Cost Number Retrofit Size Factor Sulfur Cost Cost Cost Cost Removed Removed Effect. Difficulty (MW) (%) Content (\$MM) (\$/kW) (\$MM) (mills/kwh) (%) (tons/yr) (\$/ton) Factor (%) . 10 2.7 49.2 2.0 27.3 68.0 1165 1746.3 CS/8+\$15 7 1.00 85 4.2 1.00 27.6 CS/8+\$15 8 81 10 2.7 4.0 49.7 2.0 68.0 1111 1761.1 2.7 6252 1052.2 CS/8+\$15 9 1.00 . 114 40 5.1 45.1 6.6 16.5 68.0 7 49.2 CS/8+\$15-C 1.00 85 10 2.7 4.2 1.2 15.9 68.0 1165 1016.6 1025.2 CS/8+\$15-C 8 1.00 81 10 2.7 4.0 49.7 1.1 16.0 68.0 1111 6252 CS/B+\$15-C 9 1.00 114 40 2.7 5.1 45.1 3.8 9.5 68.0 606.5 17.0 1086.1 CS/8+\$5 7 1.00 85 2.7 3.3 38.8 68.0 1165 10 1.3 CS/8+\$5 1.00 81 10 2.7 3.2 39.3 17.2 68.0 1111 1100.7 8 1.2 491.4 CS/8+\$5 1.00 114 40 2.7 4.0 34.8 7.7 68.0 6252 Q 3.1 CS/8+\$5-C 1.00 85 10 2.7 3.3 38.8 0.7 9.9 68.0 1165 635.0 7 CS/8+\$5-C 1.00 81 10 2.7 3.2 39.3 0.7 10.1 68.0 1111 643.5 8 6252 284.4 CS/8+\$5-C 9 1.00 114 40 2.7 4.0 34.8 1.8 4.5 68.0

Table 7.2.2-4. Summary of Coal Switching/Cleaning Costs for the Grand Tower Plant (June 1988 Dollars)

•	B	OILER NUMBE	<u> </u>
OMBUSTION MODIFICATION RESULTS			1
	7	8.	9
FIRING TYPE	FWF	FWF	FWF
TYPE OF NOX CONTROL	LNB	LNB	LNB
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	NA	NA	17.9
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	NA	NA	53.7
FURNACE RESIDENCE TIME (SECONDS) <u>NA</u>	NA	2.39
ESTIMATED NOX REDUCTION (PERCEN	T) 25	25	50
CR RETROFIT RESULTS SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS			
New Chimney (1000\$)	2,075	2,075	2,075
Ductwork Demolition (1000\$)	24	24	30
New Duct Length (Feet)	600	600	700
New Duct Costs (1000\$)	2,722	2,722	3,745
New Heat Exchanger (1000\$)	<u>1,703</u>	1,703	2,016
DTAL SCOPE ADDER COSTS (1000\$)	6,524	6,524	7,866
ETROFIT FACTOR FOR SCR	1.16	1.16	1.16
ENERAL FACILITIES (PERCENT)	13	13	13

TABLE 7.2.2-5 SUMMARY OF NOX RETROFIT RESULTS FOR GRAND TOWER

7-28

.,* •

Technology	Boiler	Main	Boiler	Capacity	y Coal	Capital	Capital	Annual	Annual	NOx	NOX	NOX Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
Difficulty (MW) Factor				(%)	Content (%)	(\$MM)	(\$/kW)	(\$MM)	(mills/kwh)	(%)	(toris/yr)	(\$/ton)
LNC-LNB	7	1.00	85	10	2.7	2.4	28.2	0.5	7.0	25.0	85	6160.6
LNC-LNB	8	1.00	81	10	2.7	2.3	29.0	0.5	7.2	25.0	81	6340.0
LNC-LNB	9	1.00	114	40	2.7	2.7	23.6	. 0.6	1.5	50.0	911	645.5
LNC-LNB-C	7	1.00	85	10	2.7	2.4	28.2	0.3	4.2	25.0	85	3656.8
LNC-LNB-C	8	1.00	81	10	2.7	2.3	29.0	0.3	4.3	25.0	81	3762.0
LNC-LNB-C	9	1.00	114	40	2.7	2.7	23.6	0.3	0.9	50.0	911	383.1
SCR-3	7	1.16	85	10	2.7	20.7	243.1	6.0	81.0	80.0	272	22186.8
SCR-3	8	1.16	81	10	2.7	20.2	ິ 249.1	5.9	82.5	80.0	259	22617.4
SCR-3	9	1.16	114	40	2.7	25.0	219.3	7.6	19.0	80.0	1458	5205.2
SCR-3-C	7	1.16	85	10	2.7	20.7	243.1	3.5	47.6	80.0	272	13052.6
SCR-3-C	8	1.16	81	10	2.7	20.2	249.1	3.4	48.6	80.0	259	13307.5
SCR-3-C	9	1.16	114	40	2.7	25.0	219.3	4.5	11.2	80.0	1458	3059.1
SCR-7	7	1.16	85	10	2.7	20.7	243.1	5.3	71.5	80.0	272	19599.6
SCR-7	8	1.16	81	10	2.7	20.2	249.1	5.2	73.1	80.0	259	20029.8
SCR-7	9	1.16	114	40	2.7	25.0	219.3	6.6	16.6	80.0	1458	4558.6
SCR-7-C	7	1.16	85	10	2.7	20.7	243.1	3.1	42.2	80.0	272	11570.2
SCR-7-C	8	1.16	81	10	2.7	20.2	249.1	3.1	43.2	80.0	259	11825.3
SCR-7-C	9	1.16	114	40	2.7	25.0	219.3	3.9	9.8	80.0	1458	2688.7

Table 7.2.2-6. NOx Control Cost Results for the Grand Tower Plant (June 1988 Dollars)

Selective Catalytic Reduction--

Table 7.2.2-5 presents the SCR retrofit results for each unit. The results include process area retrofit factors and scope adder costs. The scope adders include costs estimated for ductwork demolition, new flue gas heat exchanger, and new duct runs to divert the flue gas from the ESPs to the reactor and from the reactor to the chimney.

The SCR reactors for units 7 to 9 would be located side-by-side in a relatively open area close to the powerhouse between it and the ash ponds. Since the reactors were located in an open area having easy access with no major obstacles, the reactors for units 7 to 9 were assigned low access/ congestion factors. All reactors were assumed to be in areas with high underground obstructions. The ammonia storage system was placed in a remote area having a low access/congestion factor.

As discussed in Section 2, all NO_x control techniques were evaluated independently from those techniques evaluated for SO_2 control. Using this scheme, both the SCR reactors and the FGD absorbers were located in the same area. If both SO_2 and NO_x emissions were reduced at this plant, the SCR reactors would have to be located downstream of the FGD absorbers in a relatively open area further south from the SCR reactors' original locations. In this case, low access and congestion factors would be assigned to all SCR reactors. Table 7.2.2-6 presents the estimated cost of retrofitting SCR at the Grand Tower boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas for all units were placed in a layout similar to that for LSD-FGD. The retrofit of DSD and FSI would be difficult and costly because the SCAs are small (<150) and, for DSD retrofit, there is insufficient duct residence time (1 second). Therefore, a new particulate control (new baghouse) would be needed to handle the increased particulate load resulting from DSD or FSI application. For DSD with a new fabric filter, the baghouse would be located south of the plant between the powerhouse and ash ponds and the retrofit factors for the new controls would be low (1.13). It was assumed that the ESPs could not be upgraded for FSI due to a high access/congestion factor for modifying the existing ESPs. Additionally, the conversion of the wet to dry ash handling system would be required when reusing the ESPs for FSI. Tables 7.2.2-7 and 7.2.2-8 present a summary of the site access/congestion factors for DSD and FSI technologies at the Grand Tower plant. Table 7.2.2-9 presents the estimated cost to retrofit DSD with fabric filter at the Grand Tower plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC or CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Grand Tower plant. The boilers at the Grand Tower are small, they were built prior to 1960 and have low capacity factors. As such, they would be considered good candidates for retrofit/repowering using AFBC or CG. Additionally, application of coal switching and sorbent injection would be costly due to the need to add new particulate control devices.

7.2.3 <u>Hutsonville Steam Plant</u>

The Hutsonville steam plant is located within Crawford County, Illinois, as part of the Central Illinois Public Service Company system. The plant is located beside the Wabash River which separates Illinois and Indiana. The plant contains four retired oil burning boilers and two operating coal-fired boilers. Both coal burning boilers have a combined total gross generating capacity of 150 MW.

Table 7.2.3-1 presents operational data for the existing equipment at the Hutsonville plant. The boilers burn medium sulfur coal. Coal shipments are received by trucks and transferred to a coal storage and handling area south of the plant.

PM emissions for both boilers are controlled with retrofit ESPs located behind each unit. The plant has a wet fly ash handling system. Fly ash is

TABLE 7.2.2-7. DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION TECHNOLOGIES FOR GRAND TOWER UNITS 7-8

ITEM SITE ACCESS/CONGESTION LOW REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD) HIGH LOW SCOPE ADDERS CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING YES. ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) 819 **NEW BAGHOUSE CASE** 600 ESTIMATED COST (1000\$) 2523 ESP REUSE CASE NA ESTIMATED COST (1000\$) NA DUCT DEMOLITION LENGTH (FT) 50 DEMOLITION COST (1000\$) 27 _ _ . TOTAL COST (1000\$) ESP UPGRADE CÁSE (FSI) 846 A NEW BAGHOUSE CASE (DSD) 2550 RETROFIT FACTORS CONTROL SYSTEM (DSD SYSTEM ONLY) 1.13 ESP UPGRADE (FSÌ) NEW BAGHOUSE (DSD) 1.55 1.13

TABLE 7.2.2-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR GRAND TOWER UNIT 9

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	LOW HIGH LOW
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 1054
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	600 2976 NA NA 50 33
TOTAL COST (1000\$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	1087 3009
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.13 1.55 1.13

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SMM)	Annual Cost (mills/kwh)		SOZ Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
	-						207.0		07.0	74.0	4045	(053) (
DSD+FF	<u> </u>	1.00	85	10	2.7	17.7	207.8		97.9	71.0	1205	6052.6
DSD+FF	8	1.00	81	10	2.7	17.1	211.4	7.1	100.4	71.0	1148	6205.0
DSD+FF	9	1.00	114	40	2.7	21.7	190.2	9.8	24.6	71.0	6447 ·	1521.8
DSD+FF-C	7	1.00	85	10	2.7	17.7	207.8	4.3	57.2	71.0	1205	3533.5
DSD+FF-C	8	1.00	81	10	2.7	17.1	211.4	4.2	58.6	71.0	1148	3621.9
DSD+FF-C	9	1.00	114	40	2.7	21.7	190.2	5.7	14.3	71.0	6447	· 887.0

Table 7.2.2-9. Summary of DSD/FSI Control Costs for the Grand Tower Plant (June 1988 Dollars)

TABLE 7.2.3-1. HUTSONVILLE STEAM PLANT OPERATIONAL DATA

	·
BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	5, 6 75 78 1953-54 TANGENTIAL 49.2 NO 2.4 11000 9.5 WET SLUICE ON-SITE 1-2 TRUCK
PARTICULATE CONTROL	
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP 1971 0.13 97.9-99.4 2.0 47.9 300 159 300

disposed of in a new ash pond site (built in 1986) southwest of the coal pile. There are four roof mounted chimneys. The first two were used for the oil burning units and are retired while the other two serve units 5 and 6 (the coal burning units).

Lime/Limestone and Lime Spray Drying FGD Costs--

The six boilers are located beside each other with boiler 1 being the closest to the coal pile and boiler 6 the furthest. The retrofit ESPs for boilers 5 and 6 are located behind each unit between the boilers and the switchyard. The water intake and discharge structure is located on the other side of the boiler toward the river.

The absorbers for units 5 and 6 would be located beside the retrofit ESPs for unit 6 to the north of the plant. The sorbent preparation, storage, and handling area would be located behind the absorbers. There are no major obstacles/obstructions in the surrounding area and, as such, a base factor of 5 percent was assigned to general facilities. The existing ash pond site would be used for the FGD sludge disposal.

A low site access/congestion factor was assigned to the FGD absorber locations due to the easy accessibility and space availability north of unit 6. Because the chimneys are roof mounted and access to them is difficult, a new chimney would be constructed beside the absorbers. Over 300 feet of duct would be required to divert the flue gases from each of the units (5 and 6) to the absorbers and new chimney. A medium site access/ congestion factor was assigned to the flue gas handling system because of the access difficulties to the boilers created by the close proximity of the units to each other and their respective ESPs.

LSD with reuse of the existing ESPs was not considered for this plant because the ESPs are small (SCA =159) and would require major upgrading and additional plate area to handle the increased PM generated from the LSD application. LSD with a new baghouse was not considered because the boilers are not burning low sulfur coal.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 7.2.3-2. Table 7.2.3-3 presents the process area retrofit factors and capital/operating costs for commercial FGD technologies. The low cost FGD option reduces costs due to eliminating

TABLE 7.2.3-2. SUMMARY OF RETROFIT FACTOR DATA FOR HUTSONVILLE UNIT 5 OR 6

-	· ·	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY_DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	LOW MEDIUM	NA NA	NA
ESP REUSE CASE BAGHOUSE CASE	200 500	NA	NA NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	300-600	NA	NA NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA NA
SCOPE ADJUSTMENTS			,
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 724 YES 525 NO	NA NA NA O	NA NA NA O
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE	1.44	NA	NA
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA NA NA
GENERAL FACILITIES (PERCEN	T) 5	0	0

Technology		Main Retrofit Difficulty Factor	Size		y Coal Sulfur Content (%)	Capital Cost (SMM)	Capital Cost (\$/k₩)	Cost			SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
L/S FGD	5,6	1.44	75	78	2.4	. 40.7	543.1	19.4	37.8	90.0	9868	1962.4
L/S FGD-C	5, 6	1.44	75	78	2.4	40.7	543.1	. 11.3	22.0	90.0	9868	1142.8
LC FGD	5-6	1.44	150	78	2.4	39.0	260.2	22.2	21.7	90.0	19736	1125.5
LC FGD-C	5-6	1-44	150	78	2.4	39.0	260.2	12.9	12.6	90.0	19736	653.7

Table 7.2.3-3. Summary of FGD Control Costs for the Hutsonville Plant (June 1988 Dollars)

spare absorber modules and economies of scale associated with combining process areas.

Coal Switching and Physical Coal Cleaning--

Table 7.2.3-4 presents the IAPCS results for CS at the Hutsonville plant. These costs do not include cost impacts for changes in boiler and pulverizer operation. PCC was not evaluated because this is not a mine mouth plant.

Low NO_v Combustion--

Units 5 and 6 are dry bottom tangential-fired boilers rated at 75 MW each. The combustion modification technique applied to all boilers was OFA. Tables 7.2.3-5 and 7.2.1-6 present the performance and cost results of retrofitting OFA at Hutsonville. The high NO_x removal performance is based on the low volumetric heat release rate for these boilers.

Selective Catalytic Reduction--

Cold side SCR reactors for units 5 and 6 would be located beside the unit 5 and 6 ESP boxes. Both reactors are located in medium site access/ congestion areas. All reactors were assumed to be in areas with high underground obstructions. Duct length of 350 and 300 feet would be required for units 5 and 6, respectively. The ammonia storage system was placed close to the reactors north of the plant. No major demolition/relocation would be required for the SCR reactor location and, as such, a base factor of 13 percent was assigned to general facilities.

Table 7.2.3-5 presents the SCR process area retrofit factors and scope adder costs. Table 7.2.3-6 presents the estimated cost of retrofitting SCR at the Hutsonville plant.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI and DSD technologies at the Hutsonville steam plant for both units would be very difficult and were not considered for two major reasons: 1) the ESPs have small SCAs (<160); therefore, they would not be able to handle the increased PM and would require major upgrading and additional plate area; and 2) there is a short duct residence time between

Technology		 Main Retrofit Difficulty Factor 	Size		y Coal Sulfur Content (%)	Capital Cost (SMM)	Capital Cost (\$/kW)	Annual Cost (SMM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
	•••••							• • • • • • • • • • • • •		•••••		• • • • • • • • • •
S/B+\$15	5, 6	5 1.00	75	78	2.4	3.6	48.5	7.9	15.5	66.0	7264	1090.9
CS/B+\$15-C	5, 8	5 1.00	75	78	2.4	3.6	48.5	4.6	8.9	66.0	7264	627.3
CS/8+\$5	5, é	5 1.00	75	78	2.4	2.9	38.2	3.6	6.9	66.0	7264	489.5
: S/B+\$5-C	5, é	5 1.00	75	78	2.4	2.9	38.2	2.0	4.0	66.0	7264	282.2

Table 7.2.3-4. Summary of Coal Switching/Cleaning Costs for the Mutsonville Plant (June 1988 Dollars)

	BOILER NUM	1BER
COMBUSTION MODIFICATION RESULTS		······································
	5	6
FIRING TYPE	J TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA
FURNACE VOLUME (1000 CU FT)	49.2	49.2
BOILER INSTALLATION DATE	1953	1954
SLAGGING PROBLEM	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	25	25
SCR RETROFIT RESULTS		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM	MEDIUM
SCOPE ADDER PARAMETERS	· ,	
NEW CHIMNEY (1000\$)	0	0
DUCTWORK DEMOLITION (1000\$)	22	22
NEW DUCT LENGTH (Feet)	350	300
NEW DUCT COSTS (1000\$)	1466	1256
NEW HEAT EXCHANGER (1000\$)	1568	1568
TOTAL SCOPE ADDER COSTS (1000\$)	3056	2846
RETROFIT FACTOR FOR SCR	1.34	1.34
GENERAL FACILITIES (PERCENT)	13	13

TABLE 7.2.3-5. SUMMARY OF NOX RETROFIT RESULTS FOR HUTSONVILLE

Technology	Boiler Number	Main Retrofit	Boiler Size	Capacity Factor	y Coal Sulfur	Capitàl Cost	Capital Cost	Annual Cost	Annual Cost	NOx Removed	NOx Removed	NOx Cost Effect.
		Difficulty Factor	(MW)	(%)	Content (%)	(\$MM)	(\$/k\)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
LNC-OFA	5,6	1.00	75	78	2.4	0.6	7.4	0.1	0.2	25.0	439	274.8
LNC-OFA-C	5,6	1.00	75	78	2.4	0.6	7.4	0.1	0.1	25.0	439	163.0
SCR-3	5	1.34	75	78	2.4	17.6	235.0	5.7	11.1	80.0	1406	4043.5
SCR-3	6	1.34	75	78	2.4	17.4	232.2	5.6	11.0	80.0	1406	4016.7
SCR-3-C	5	1.34	75	78	2.4	17.6	235.0	3.3	6.5	80.0	1406	2372.8
SCR-3-C	6	1.34	75	78	2.4	- 17,4	232.2	3.3	6.5	80.0	1406	2356.8
scr-7	5	1.34	75	78	2.4	17.6	235.0	5.1	9.9	80.0	1406	3599.4
SCR-7	6	1.34	75	78	2.4	17.4	232.2	5.0	9.8	80.0	1406	3572.7
SCR-7-C	5	1.34	75	78	2.4	17.6	235.0	3.0	5.8	80.0	1406	2118.4
SCR-7-C	6	1.34	75	78	2.4	17.4	232.2	3.0	5.8	80.0	1406	2102.4

Table 7.2.3-6. NOx Control Cost Results for the Hutsonville Plant (June 1988 Dollars)

the boilers and ESPs making humidification (FSI application) and sorbent evaporation (DSD application) infeasible. In addition, ESPs are located close to the switchyard and in a highly congested area and adding plate area would be very difficult.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Hutsonville plant. Both units would be considered good candidates for retrofit/repowering because of their small boiler sizes.

7.2.4 <u>Meredosia Steam Plant</u>

The Meredosia steam plant is located in Morgan County, Illinois, as part of the Central Illinois Public Service Company system. The plant contains six boilers; five are coal-fired and one primarily fires oil. Units 1 to 5 have a net generating capacity of 354 MW. Unit 6 was not considered for FGD retrofit.

Table 7.2.4-1 presents operational data for the existing equipment at the Meredosia steam plant. Boilers 1-5 burn medium sulfur coal. Coal is delivered by truck from a local mine. Barge unloading facilities are also available on-site but no longer are used. The coal is stored in an area southeast of the plant.

PM emissions for units 1-5 are controlled with retrofit ESPs located behind each unit. Ash from the units is wet sluiced to ponds located south of the plant beside the coal pile. Units 1-4 are served by a common chimney located southeast of unit 1. Units 5 and 6 each have separate chimneys.

Lime/Limestone and Lime Spray Drying FGD Costs--

The switchyard is located behind the unit 1-4 ESPs making it impossible to place FGD absorbers behind these units. Therefore, the unit 1-4 absorbers were located south of the chimney, close to the coal pile. This location blocks the entrance to the plant; as such, a major plant road has to be relocated to make it possible to access the plant. Absorbers for

TABLE 7.2.4-1. MEREDOSIA STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW, COMBINED)	1-4 115	5 239	6 210
CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT)	18-10 1948 TANG NA	55 1960 TANG 128.5	1975
LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM	NO 2.6 11000 8.0 WET_SL	NO 2.6 11000 8.0 UICE_	OIL BURNING UNIT
ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	POND/ON 1 TRUC	2	3
PARTICULATE CONTROL		•	
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	ESP 1972 0.07 98.0	ESP 1970 0.11 97.0	NA
SULFUR SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	2.9 54.7 145 377 390	2.9 116.6 750 155 289	

unit 5 were placed behind the unit to the north of the switchyard and the storage building. The limestone preparation/storage area and waste handling area were placed in an area remote from the absorbers east of the plant. A 10 percent general facilities was assigned to units 1-4 because of the entrance road relocation and 8 percent was assigned to unit 5 for general facilities due to relocation of a plant road.

Absorbers for units 1-4 were located close to the units in a high access/congestion area surrounded by a chimney, the coal pile, the coal conveyor, and the switchyard. Unit 5 absorbers were located in an open space to the north side of the switchyard with few access/congestion problems.

Because the absorbers for units 1-4 are located close to the chimney, short duct lengths would be required (less than 300 feet). Absorbers for unit 5 were located away from the chimney and north of the switchyard. Because the chimney is between the boiler and the ESPs, a duct length of about 500 feet was required with a high site access/congestion factor.

The LSD-FGD technology considered was LSD with reuse of the existing ESPs for units 1-4. Because the unit 5 ESPs are small (SCA =155) reuse of the existing ESPs would not be possible. Unit 5 burns a high sulfur coal; as such, LSD with a new baghouse option was not considered. LSD absorbers for units 1-4 would be located in the same location as conventional FGD absorbers and would have similar site access/congestion factors. Less than 600 feet and about 700 feet of duct lengths would be required for units 1-2 and 3-4, respectively, to be able to reuse the ESPs. A high access/ congestion factor was assigned for ESP upgrades and for flue gas handling due to space limitation around the ESPs created by the chimney and switchyard.

The major scope adjustment costs and estimated retrofit factors for the FGD control technologies are presented in Tables 7.2.4-2 and 7.2.4-3. Table 7.2.4-4 presents the capital and operating costs for commercial FGD technologies. The low cost FGD option shows the reduced capital cost that occurs when eliminating spare absorbers and maximizing absorber size.

TABLE 7.2.4-2. SUMMARY OF RETROFIT FACTOR DATA FOR MEREDOSIA UNIT 1,2,3 OR 4

·		FGD_TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		•	
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	HIGH MEDIUM	NA NA	HIGH HIGH
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE (1-2) ESP REUSE (3-4)	100-300	NA	NA 300-600 600-1000
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	HIGH NA
SCOPE_ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 299 NO O NO	NA NA NA O	YES 299 NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE (1,2; 3,4) BAGHOUSE CASE	1.55	NA	1.69,1.83 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT)	10	0	10

TABLE 7.2.4-3. SUMMARY OF RETROFIT FACTOR DATA FOR MEREDOSIA UNIT 5

. .

.

			<u></u>
		FGD TE	CHNOLOGY
	L/LS_FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE_ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	LOW HIGH	NA NA	NA
ESP REUSE CASE BAGHOUSE CASE	11011	110	NA NA
DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	NA
BAGHOUSE ESP REUSE	NA	NA	NA NA
NEW BAGHOUSE	NA	NA	NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$)	YES 2047	NA NA	NA NA
NEW, CHIMNEY	NO	NA	ŇA
ESTIMATED COST (1000\$) OTHER	0 NO	0	0 NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE	1.46	NA	NA
BAGHOUSE CASE			NA
ESP UPGRADE	NA	NA	NA
NEW BAGHOUSE	NA	NA	NA
GENERAL FACILITIES (PERCENT) 8	0	0

Technology	Boiler Number	Main Retrofit		Capacit [*] Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SO2 Cost Effect.
	I	Difficulty Factor	(MW)	(%)	Content (%)	(\$MM)	(\$/kW)	(\$MM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		ractor			•••••	••••						
/S FGD	1-4	1.55	115	15	2.6	55.7	484.1	20.8	137.6	.90.0	3152	6598.2
/S FGD	5	1.46	239	55	2.6	76.0		35.1	30.5	90.0	24021	1461.4
/S FGD-C	1-4	1.55	115	15	2.6	55.7	484.1	12.2	80.5	90.0	3152	3859.5
/S FGD-C	5	1.46	239	55	2.6	76.0	317.8	20.5	17.8	90.0	24021	851.5
.C FGD	1-4	1.55	115	15	2.6	38.9	338.1	15.3	100.9	90.0	3152	4839.2
C FGD	5	1.46	239	55	2.6	59.0	247.0	29.6	25.7	90.0	24021	1230.2
C FGD-C	1-4	1.55	115	15	2.6	38.9	338.1	8.9	59.0	90.0	3152	2827.9
C FGD-C	5	1.46	239	55	2.6	59.0	247.0	17.2	14.9	90.0	24021	715.8
SD+ESP	1, 2	1.69	29	18	2.6	10.7	367.9	5.8	126.4	76.0	809	7149.0
SD+ESP	3,4	1.83	29	10	2.6	11.4	392.0	5.9	232.2	76.0	449	13128.9
SD+ESP-C	1, 2	1,69	29	18	2.6	10.7	367.9	3.4	73.5	76.0	809	4155.0
SD+ESP-C	3, 4	1.83	29	10	2.6	11.4	392.0	3.4	135.0	76.0	449	7635.5

Table 7.2.4-4. Summary of FGD Control Costs for the Meredosia Plant (June 1988 Dollars)

Coal Switching and Blending--

Table 7.2.4-5 presents the IAPCS results for CS at the Meredosia plant. These costs do not include reduced pulverizer operating costs or system modifications that may be necessary to handle deep cleaned coal. PCC was assumed to occur at the mine and was not evaluated here.

Low NO_x Combustion--

Units 1-5 are dry bottom, tangential-fired boilers. The combustion modification technique applied to boilers 1-5 was OFA. Tables 7.2.4-6 and 7.2.4-7 present the performance and cost results of retrofitting OFA at the Meredosia plant.

Selective Catalytic Reduction--

For units 1-4, the cold side reactors were located beside the chimney in an area of low access/congestion and 150 feet of duct length was estimated for the flue gas handling system. For unit 5, about 500 feet of duct length was required. All reactors were assumed to be in areas with high underground obstructions. Part of the parking area and a road beside the unit 1-4 chimney would be relocated for placement of the SCR reactors; as such, a factor of 20 percent was assigned to general facilities. For unit 5, a plant road must be relocated; therefore, 15 percent was assigned to general facilities. The ammonia storage system was placed northeast of the switchyard beside the sorbent preparation area.

Table 7.2.4-6 presents the SCR retrofit results for all units. Table 7.2.4-7 presents the cost results for retrofitting SCR at this plant.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of DSD and FSI technologies at Meredosia plant would be possible for units 1-4 if the first ESP section could be modified to provide sufficient duct residence time for humidification or sorbent injection. Retrofit of DSD and FSI with reuse of the existing ESPs would not be possible for unit 5 because of the small SCA (<200) and insufficient duct residence time.

Table 7.2.4-8 presents a summary of site access/congestion factors, scope adders, and plant retrofit factors for DSD and FSI technologies at the

Technology	Boiler	Main	8oiler	Capacit	y Coal	Capital	Capital	Annual	Annual	SO2	\$0Z	SOZ Cost
,	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
		Difficulty	(MW)	(%)	Content	(\$MM)	(\$/k¥)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
:		Factor			(%)							
CS/8+\$15	1, 2	1.00	29	- 18	2.6	1.8	62.9	1.2	25.7	69.0	730	1611.9
CS/8+\$15	3, 4		29	10	2.6	1.8	62.9	0.9	34.2	69.0	405	2141.4
CS/B+\$15	5	1.00	239	55	2.6	9.6	40.1	17.5	15.2	69.0	18375	949.8
CS/8+\$15-C	1, 2	1.00	29	18	2.6	1.8	62.9	0.7	14 . 9	69.0	730	934.6
CS/8+\$15-C	3,4	1.00	29	10	2.6	1.8	62.9	0.5	19.9	69.0	405	1247.0
CS/B+\$15-C	5	1.00	239	55	2.6	9.6	40.1	10.0	8.7	69.0	18375	546.5
CS/B+\$5	1, 2	1.00	29	18	2.6	1.5	52.5	0.7	16.3	69.0	730	1022.1
CS/8+ \$ 5	3,4	1.00	29	10	2.6	1.5	52.5	0.6	23.8	69.0	405	1493.6
CS/8+\$5	5	1.00	239	55	2.6	7.1	29.8	7.5	6.5	69.0	18375	408.6
CS/B+\$5-C	1, 2	1.00	29	18	2.6	1.5	52.5	0.4	9.5	69.0	730	594.9
CS/B+\$5-C	3,4	1.00	29	10	2.6	1.5	52.5	0.4	13.9	69.0	405	872.5
CS/8+\$5-C	5	1.00	239	55	2.6	7.1	29.8	4.3	3.8	69.0	18375	235.8

Table 7.2.4-5. Summary of Coal Switching/Cleaning Costs for the Meredosia Plant (June 1988 Dollars)

,		
· · ·	BOILER N	IUMBER
COMBUSTION MODIFICATION RESULTS		:
	1-4	5
FIRING TYPE	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA
FURNACE VOLUME (1000 CU FT)	NA	128.5
BOILER INSTALLATION DATE	1948	1960
SLAGGING PROBLEM	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	25	25
SCR RETROFIT RESULTS		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	30	52
New Duct Length (Feet)	150	500
New Duct Costs (1000\$)	807	4125
New Heat Exchanger (1000\$)	2027	3144
TOTAL SCOPE ADDER COSTS (1000\$)	2863	7320
RETROFIT FACTOR FOR SCR	1.16	1.16
GENERAL FACILITIES (PERCENT)	20	15

TABLE 7.2.4-6. SUMMARY OF NOX RETROFIT RESULTS FOR MEREDOSIA

'echnology		Retrofit	Size		Sulfur	Cost	Capital Cost	Cost			NOx Removed	NOx Cos Effect
		Difficulty Factor	Y (M¥)	(%)	Content (%)	(SHM) ,	(\$/k¥)	(SMM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
NC-OFA	1,2	1.00	29	18	2.6	0.4	13.0	0.1	1.8	25.0	39	2102.3
NC-OFA	3,4	1.00	29	10	2.6	0.4	13.0	0.1	3.2	25.0	22	3784.0
NC-OFA	5	1.00	239	55	2.6	0.9	3.7	0.2	0.2	25.0	987	194.3
NC-OFA-C	1,2	1.00	29	18	2.6	0.4	13.0	٥.٥	1.1	25.0	39	1247.
NC-OFA-C.	3,4	1.00	29	10	2.6	0.4	13.0	0.0	1.9	25.0	22	2245.
NC-OFA-C	5	1.00	239	55	2.6	0.9	3.7	0.1	0.1	25.0	987	115.
CR-3	1-4	1.16	115	15	2.6	20.7	180.0	;6.7	44.6	80.0	415	16250.
SCR-3	5	1.16	239	55	2.6	37.9	158.6	12.8	11.1	80.0	3159	4063.
CR-3-C	1-4	1.16	115	15	2.6	20.7	180.0	4.0	26.2	80.0	415	9534.
CR-3-C	5	1.16	239	55	2.6	37.9	158.6	7.5	6.5	80.0	3159	2382.
CR-7	1-4	1.16	115	15	2.6	20.7	180.0	5.8	38.2	80.0	415	13941.
CR-7	5	1.16	239	55	2.6	37.9	158.6	10.8	9.4	80.0	3159	3434.
CR-7-C	1-4	1.16	115	15	2.6	20.7	180.0	3.4	22.5	80.0	415	8211.
CR-7-C	5	1.16	239	55	2.6	37.9	158.6	6.4	5.5	80.0	3159	2021.

Table 7.2.4-7. NOx Control Cost Results for the Meredosia Plant (June 1988 Dollars)

TABLE 7.2.4-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR MEREDOSIA UNIT 1, 2, 3 OR 4

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 299
NEW BAGHOUSE CASE ESTIMATED COST (1000\$)	NA NA
ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT)	NA NA 50
DEMOLITION COST (1000\$)	12
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	311 NA
RETROFIT FACTORS	· ·
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

Meredosia steam plant. Table 7.2.4-9 presents the cost estimated to retrofit DSD and FSI at the Meredosia plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

Boilers 1-5 at Meredosia would be considered good candidates for repowering or retrofit because of their small sizes. However, the congestion at this site will increase the cost of any major construction effort.

7.2.5 <u>Newton Steam Plant</u>

The Newton steam plant is located within Jasper County, Illinois, as part of the Central Illinois Public Service Company system. The plant contains two coal-fired boilers with a total gross generating capacity of 1,165 MW. Figure 7.2.5-1 presents the plant plot plan showing the location of all boilers and major associated auxiliary equipment.

Table 7.2.5-1 presents operational data for the existing equipment at the Newton plant. Unit 1 is equipped with an FGD unit and unit 2 burns a low sulfur NSPS compliance coal. Coal shipments are received by railroad and conveyed to a coal storage and handling area located west of the plant.

Particulate matter emissions for the boilers are controlled with ESPs located behind each unit. The fly ash handling system is dry.

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 7.2.5-1 shows the general layout and location of the FGD control system. Unit 1 has an FGD system and the process is dual-alkali built by General Electric Environmental Services. The absorbers for L/LS-FGD and LSD-FGD for unit 2 would be located between the powerhouse and chimney in a large open area. No demolition/relocation would be required; therefore, a factor of 5 percent was assigned to general facilities. The existing limestone storage/handling area and waste handling area for unit 1 would be expanded and used for unit 2 also.

Technology	Boiler Number	Main Retrofit		Capacit Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SO2 Cost Effect.
	·	Difficulty Factor	(MW)	(%)	Content (%)	(SMH)	(\$MH) (\$/kW)		(SHM) (mills/kwh)		(%) (tons/yr)	
DSD+ESP	1, 2	1.00	29	18	2.6	4.3	148.7	3.9	85.0	49.0	516	7538.8
DSD+ESP	3, 4	1.00	29	10	2.6	4.6	158.8	3.9	151.7	49.0	287	13450.8
DSD+ESP+C	1, 2	1.00	29	18	2.6	4.3	148.7	2.2	49.1	49.0	516	4356.8
DSD+ESP-C	3,4	1.00	29	10	2.6	4.6	158.8	2.2	87.7	49.0	287	7778.8
FSI+ESP-50	1, 2	1.00	29	18	2.6	5.1	174.3	2.9	62.5	50.0	530	5394.1
FS[+ESP-50	3,4	1,00	29	10	2.6	5.1	174.3	2.7	106.8	50.0	294	9215.1
FSI+ESP-50-C	1, 2	1.00	29	18	2.6	5.1	174.3	1.7	36.3	50.0	530	3133.2
FSI+ESP-50-C	3,4	1.00	29	10	2.6	5.1	174.3	1.6	62.1	50.0	294	5356.5
FSI+ESP-70	1, 2	1.00	29	18	2.6	5.1	177.4	2.9	63.2	70.0	742	3894.0
FSI+ESP-70	3, 4	1.00	29	10	2.6	5.1	177.4	2.7	107.9	70.0	412	6647.5
FSI+ESP-70-C	1, 2	1.00	29	18	2.6	5.1	177.4	1.7	36.7	70.0	742	2262.1
FSI+ESP-70-C	3, 4	1.00	29	10	2.6	5.1	177.4	1.6	62.7	70.0	412	3864.6

Table 7.2.4-9. Summary of DSD/FS1 Control Costs for the Meredosia Plant (June 1988 Dollars)

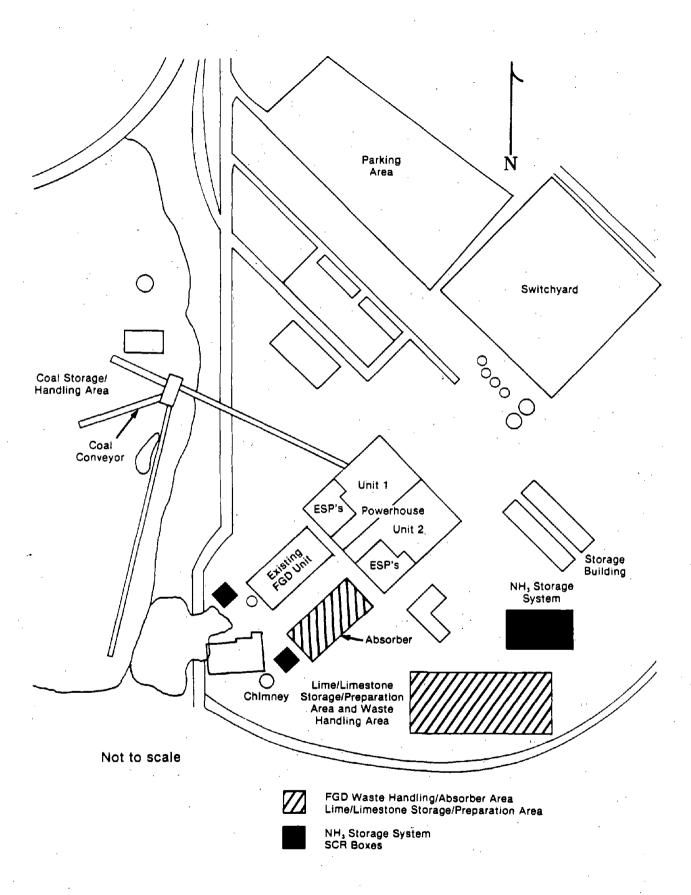


Figure 7.2.5-1. Newton plant plot plan

TABLE 7.2.5-1. NEWTON STEAM PLANT OPERATIONAL DATA

BOILER NUMBER	1	2
GENERATING CAPACITY (MW)	590	575
CAPACITY FACTOR (PERCENT) INSTALLATION DATE	50 1977	29 1982
FIRING TYPE	TANG	TANG
COAL SULFUR CONTENT (PERCENT)	2.4	0.6
COAL HEATING VALUE (BTU/LB)	11618	1130
COAL ASH CONTENT (PERCENT)	10.8	6.3
FLY ASH SYSTEM	DRY DISPOSA	L
ASH DISPOSAL METHOD	ON-SITE LANDF	
STACK NUMBER	-1	2
COAL DELIVERY METHODS	RAILROAD	NO
FGD SYSTEM INSTALLATION DATE	YES 1979	NO
FGD TYPE	DUAL ALKALI	- ·
PARTICULATE CONTROL		
PARTICULATE CONTROL		
TYPE	ESP	ESP
INSTALLATION DATE	1977	1982
EMMISION (LB/MM BTU)	0.05	0.07
REMOVAL EFFICIENCY	99.2	99.8
DESIGN SPECIFICATION	4.0	Å 0
SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT)	4.0 642.6	4.0
GAS FLOW (1000 ACFM)	2290	2771.4
SCA (SQ FT/1000 ACFM)	280	282
OUTLET TEMPERATURE (°F)	310	310

Retrofit Difficulty and Scope Adder Costs--

A low site access/congestion factor was assigned to the absorber locations due to the absorbers being located in an open area close to the chimney with no major obstacles or obstructions.

For flue gas handling, a short to moderate duct run for the unit would be required for L/LS-FGD cases to divert the flue gas from the boiler to the absorbers and back to the chimney. A low site access/congestion factor was assigned to the flue gas handling system due to no major obstacles or obstructions in the surrounding area.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 7.2.5-2. No large scope adder cost is required for the Newton plant. The overall retrofit factor determined for the L/LS-FGD cases was low (1.24).

The absorbers for LSD-FGD would be located in a similar location as in L/LS-FGD cases. The technology evaluated at Newton was LSD with ESP reuse. This technology was selected because of the moderate SCA size (>280). For flue gas handling for LSD cases, a moderate duct run would be required to divert flue gas from the upstream of the ESPs to the absorbers and back to the ESPs. A low site access/congestion factor was assigned to the LSD-FGD flue gas handling system. The retrofit factor determined for the LSD technology case was low (1.27) and did not include particulate control upgrading costs. A separate retrofit factor was developed for upgrading the ESPs and was low (1.16) due to the available space around the ESPs. This factor was used in the IAPCS model to estimate particulate control costs.

Table 7.2.5-3 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include upgrading the ESPs for boiler 2. The low cost control case reduces capital and annual operating costs. The significant reduction in costs is primarily due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber, and optimization of scrubber size.

It is unlikely that unit 2 would remain firing a low sulfur coal if retrofit of FGD was desired. If the unit was switched to burning the coal fired at unit 1, the annual cost would increase by 18 percent and the SO_2 cost effectiveness would decrease by 70 percent. TABLE 7.2.5-2. SUMMARY OF RETROFIT FACTOR DATA FOR NEWTON UNIT 2

-	· · · · · · · · · · · · · · · · · · ·	CHNOLOGY	
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			•
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW LOW	LOW LOW	LOW
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	100-300	100-300	NA 300-600 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	LOW NA
SCOPE ADJUSTMENTS	· .	•	
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA NO O NO	NO NA NO O NO	NO NA NO O NO
RETROFIT FACTORS			<i>i</i> .
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.24	1.24	1.27 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.16 NA
GENERAL FACILITIES (PERCEN	IT) 5	5	5

Technology	Boiler Number	• Main • Retrofit		Capacit; Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 IRemoved	SO2 Cost Effect.
		Difficulty Factor	· (MW)	(%)	Content (%)	(SMM)	(\$/kW)	(SMH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
L/S FGD	· 2	1.24	575	29	0.6	100.4	174.6	40.6	27.8	90.0	6604	6151.5
L/S FGD-C	2	1.24	575	29	0.6	100.4	174.6	23.7	16.2	90.0	6604	3592.6
LC FGD	2	1.24	575	29	0.6	79.7	138.7	33.9	23.2	90.0	6604	5133.3
LC FGD-C	2	1.24	. 575	29	0.6	, 79.7	138.7	19.8	13.5	90.0	6604	2995.2
LSD+ESP	Z	1.27	575	29	0.6	56.5	98.3	21.5	14.7	76.0	5599	3841.7
LSD+ESP-C	2	1.27	575	29	0.6	56.5	98.3	12.6	8.6	76.0	5599	2246.3

Table 7.2.5-3. Summary of FGD Control Costs for the Newton Plant (June 1988 Dollars)

Coal Switching Costs--

Newton plant unit 1 has an FGD system and unit 2 has already switched to a low sulfur coal and, as such, they would not be considered in this study.

NO, Control Technology Costs--

This section presents the performance and costs estimated for NO_X controls at the Newton steam plant. These controls include LNC modification and SCR. The application of NO_X control technologies is determined by several site-specific factors which are discussed in Section 2. The NO_Y technologies evaluated at the steam plant were: OFA and SCR.

Low NO_v Combustion--

Units 1 and 2 are dry bottom, tangential-fired boilers rated at 590 and 575 MW, respectively. The combustion modification technique applied for this evaluation was OFA. As Table 7.2.5-4 shows, the OFA NO_X reduction performance for each unit was estimated to be 25 percent. This reduction performance level was assessed by examining the effects of heat release rates ad furnace residence time on NO_X reduction through the use of the simplified NO_X procedures. Table 7.2.5-5 presents the cost of retrofitting OFA at the Newton boilers.

Selective Catalytic Reduction--

Table 7.2.5-4 presents the SCR retrofit results for each unit. The results include process area retrofit factors and scope adder costs. The scope adders include costs estimated for ductwork demolition, new flue gas heat exchanger, and new duct runs to divert the flue gas from the FGD absorbers for unit 1 and from the ESPs for unit 2 to each reactor and from each reactor to the chimney.

The SCR reactor for unit 1 would be located to the west of the FGD absorbers for unit 1 in an open area with no major obstacles; whereas, the SCR reactor for unit 2 would be located between the powerhouse and the chimney in a large open area. Because both reactors are in relatively open areas with no major obstructions, the reactors for units 1 and 2 were assigned low access/congestion factors. A general facility factor of 17 percent was assigned to the reactor for unit 1 because a road would need

7-6I

	BOILER	NUMBER
COMBUSTION MODIFICATION RESULTS		
	1	2
FIRING TYPE	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	10.7	10.7
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	72.8	72.8
FURNACE RESIDENCE TIME (SECONDS)	3.94	3.7
ESTIMATED NOX REDUCTION (PERCENT)	25	25
SCR RETROFIT RESULTS		•
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW
SCOPE ADDER PARAMETERS		-
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	102	100
New Duct Length (Feet)	300	300
New Duct Costs (1000\$)	4199	4136
New Heat Exchanger (1000\$)	5407	5324
TOTAL SCOPE ADDER COSTS (1000\$)	9708	9560
RETROFIT FACTOR FOR SCR	1.16	1.16
GENERAL FACILITIES (PERCENT)	17	13

TABLE 7.2.5-4. SUMMARY OF NOX RETROFIT RESULTS FOR NEWTON

Technology		Main Retrofit Difficulty Factor	Size		y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SMM)	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	
				•••••			•••••					
LNC-OFA	<u>_</u> 1	1.00	590	50	2.4	1.3	2.1	0.3	0.1	25.0	2080	132.2
LNC-OFA	, 2	1.00	575	29	0.6	1.2	2.2	0.3	0.2	25.0	1176	231.6
LNC-OFA-C	1	1.00	590	50	2.4	1.3	2.1	0.2	0.1	25.0	2080	78.5
LNC-OFA-C	2	. 1.00	575	29	0.6	1.2	2.2	0.2	0.1	25.0	1176	137.4
SCR-3	1	1.16	590	50	2.4	72.5	122.9	26.6	10.3	80.0	6657	4001.5
SCR-3	2	. 1.16	575	29	0.6	70.1	122.0	25.2	17.3	80.0	3763	6702.3
SCR-3-C	1	1.16	590	50	2.4	72.5	122.9	15.6	6.0	80.0	6657	2341.4
SCR-3-C	2	1.16	575	29	0.6	70.1	122.0	14.8	10.1	80.0	3763	3923.5
SCR-7	1	1.16	590	50	2.4	72.5	122.9	21.8	8.4	80.0	6657	3269.8
SCR-7	2	1.16	5 75	29	0.6	70.1	122.0	20.5	14.0	80.0	37 63	5440.7
SCR-7-C	1	1.16	590	50	2.4	72.5	122.9	12.8	5.0	80.0	6657	1922.2
SCR-7-C	2	1.16	575	29	0.6	70.1	122.0	12.0	8.2	80.0	3763	3200.7

Table 7.2.5-5. NOx Control Cost Results for the Newton Plant (June 1988 Dollars)

to be relocated. Both reactors were assumed to be in areas with high underground obstructions. The ammonia storage system was placed in a remote area having a low access/congestion factor.

As discussed in Section 2, all NO_x control techniques were evaluated independently from those evaluated for SO_2 control. For unit 1, the results for SCR presented in Table 7.2.5-4 would remain unchanged since NO_x is the only pollutant needed to be controlled. For unit 2, the FGD absorbers were located in the same area as the SCR reactors. If both SO_2 and NO_x emissions needed to be reduced for this unit, the SCR reactor would have to be located downstream of the FGD absorbers (i.e., south of the chimney for unit 2) in an area having little obstructions and easy access. A low access/congestion factor again would be assigned to this SCR reactor. Table 7.2.5-5 presents the estimated cost of retrofitting SCR at the Newton boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas were located in a similar fashion as LSD-FGD. The retrofit of FSI technology at the Newton steam plant for unit 2 would be easy. The ESPs are located in a low site access/congestion area and the upgraded ESPs could handle the increased load from FSI. A low retrofit factor (1.13) was assigned to the upgraded ESPs location for FSI. However, a combined particulate and SO₂ removal concept provides an alternative and low cost method to the new baghouse option. The ESPs can be used not only to collect particulate matter but to remove SO₂ as well (E-SO_x technology). Table 7.2.5-6 presents a summary of the site access/congestion factors for DSD and FSI technologies at the Newton steam plant. Table 7.2.5-7 presents the cost estimated to retrofit DSD and FSI at the Newton plant.

TABLE 7.2.5-6.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR NEWTON UNIT 2

SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW LOW NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO NA
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE	NA NA NA
ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA 50 111
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	111 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.13 NA

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SHM)			SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
DSD+ESP	2	1.00	575	29	0.6	14.5	25.2	8.8	6.0	49.0	3570	2467.4
DSD+ESP-C	2	1.00	575	29	0.6	14.5	25.2	5. 1	3.5	49.0	3570	1431.9
FSI+ESP-50	2	1.00	575	29	0.6	16.7	29.1	8.1	5.5	50.0	3669	2207.8
FSI+ESP-50-C	2	1.00	575	29	0.6	16.7	29.1	4.7	3.2	50.0	3669	1285.4
FSI+ESP-70	2	1.00	575	29	0.6	16.7	29.0	8.1	5.6	70.0	5137	1582.5
FSI+ESP-70-C	2	1.00	575	29	0.6	16.7	29.0	4.7	3.2	70.0	5137	921.2

Table 7.2.5-7. Summary of DSD/FSI Control Costs for the Newton Plant (June 1988 Dollars)

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Newton plant. The unit 2 boiler would not be considered a good candidate for AFBC retrofit because of its large size (575 MW).

7.3 COMMONWEALTH EDISON COMPANY

7.3.1 Joliet 29 Steam Plant

Although retrofit factors were developed for units 7 and 8 at the Joliet 29 plant, costs are not presented since the low sulfur coal being fired would result in low captial/operating costs and high cost per ton of SO_2 removed. CS was not evaluated because the plant is currently burning a low sulfur coal. Sorbent injection technologies (FSI and DSD) were not considered for any boilers at the Joliet 29 plant due to the short duct residence time between the boilers and their respective ESPs and the small sizes of the ESPs.

TABLE 7.3.1-1. JOLIET 29 STEAM PLANT OPERATIONAL DATA *

· · · · · · · · · · · · · · · · · · ·		
UNIT NUMBER BOILER NUMBER GENERATING CAPACITY (MW/UNIT) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	7 71,72 550 30 1965 TANGE 510 NO 0.44 9500 6.7 DRY DI PAID/O 1 TRA	510 NO 0.45 9500 6.7 SPOSAL FF-SITE 2
PARTICULATE CONTROL		
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) EXIT GAS FLOW RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP 1965 0.03 99.2 NA 139.4 856.3 163 287	ESP 1966 0.04 98.87 NA 139.4 856.3 163 287

* Some information was obtained from plant personnel.

TABLE 7.3.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR JOLIET 29 UNIT 7 OR 8 *

· · · · · · · · · · · · · · · · · · ·		FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	MEDIUM MEDIUM	NA NA	MEDIUM NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	MEDIUM
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA MEDIUM
SCOPE ADJUSTMENTS	·		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 3850 NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.48	NA	NA 1.44
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.36
GENERAL FACILITIES (PERCENT) 10	0	10

* L/S-FGD absorbers, LSD-FGD absorbers, and new FFs would be located northeast of the unit 7 chimney for unit 7 and southwest of the unit 8 chimney for unit 8.

	BOILER NUMBER
COMBUSTION MODIFICATION RESULTS	
	71,72,81,82
FIRING TYPE	TANG
TYPE OF NOX CONTROL	OFA
FURNACE VOLUME (1000 CU FT)	510
BOILER INSTALLATION DATE	1965
SLAGGING PROBLEM	NO
ESTIMATED NOX REDUCTION (PERCENT)	25
SCR_RETROFIT_RESULTS *	
UNIT NUMBER	7 OR 8
SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM
SCOPE ADDER PARAMETERS	
Building Demolition (1000\$)	0
Ductwork Demolition (1000\$)	97
New Duct Length (Feet)	200
New Duct Costs (1000\$)	2687
New Heat Exchanger (1000\$)	5184
TOTAL SCOPE ADDER COSTS (1000\$)	7967
RETROFIT FACTOR FOR SCR	1.34
GENERAL FACILITIES (PERCENT)	38

TABLE 7.3.1-3. SUMMARY OF NOX RETROFIT RESULTS FOR JOLIET 29

* Cold side SCR reactors for unit 7 would be located behind the unit 7 chimney, and the reactors for unit 8 would be located behind the unit 8 chimney.

Technology	Boiler	Main Retrofit		Capacit	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost		NOx Removed	NOx Removed	NOx Cost Effect.
	Number			Factor								
	Difficulty		/ (HW)	(%)	Content	(SHM)	(\$/k₩)	(SHM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
	Factor				(%)							
LNC-OFA	71,7	2 1.00	225	30	0.4	0.9	3.8	0.2	0.3	25.0	600	308.6
LNC-OFA	81,8		225	29	0.4	0.9	3.8	0.2	0.3	25.0	580	319.3
LNC-OFA-C	71,7	2 1.00	225	30	0.4	. 0.9	3.8	0.1	0.2	25.0	60 0	183.2
LNC-OFA-C	81,82	2 1.00	225	29	0.4	0.9	3.8	0.1	0.2	25.0	580	189.6
SCR-3	7	1.34	550	30	0.4	77.7	141.3	27.0	18.7	80.0	4692	5765.7
SCR-3	8	1.34	550	- 29	0.4	77.7	141.3	27.0	19. 3	80.0	4535	5957.8
SCR-3-C	7	1.34	550	30	0.4	77.7	141.3	15.8	11.0	80.0	4692	3377.6
SCR-3-C	8	1.34	550	29	0.4	77.7	141.3	15.8	11.3	80.0	4535	3490.2
SCR-7	7	1.34	550	30	0.4	77.7	141.3	22.4	15.5	80.0	4692	4768.5
SCR-7	. 8	1.34	550	29	0.4	, 77.7	141.3	22.3	16.0	80.0	4535	4926.2
SCR-7-C	7	1.34	550	. 30	0.4	77.7	141.3	13.2	9.1	80.0	4692	2806,3
SCR-7-C	8	1.34	550	29	0.4	77.7	141.3	13.1	9.4	80.0	4535	2899.2

Table 7.3.1-4. NOx Control Cost Results for the Joliet 29 Plant (June 1988 Dollars)

7.3.2 Kincaid Steam Plant

The Kincaid steam plant is located within Christian County, Illinois, as part of the Commonwealth Edison Company system. The plant contains two coal-fired boilers with a total gross generating capacity of 1,182 MW (originally designed for 1,320 MW). Figure 7.3.2-1 presents the plot plan used in the evaluation.

Table 7.3.2-1 presents operational data for the existing equipment at the plant. Both boilers burn high sulfur coal (3.3 percent sulfur). Coal is conveyed from a nearby mine to the storage/handling area located west of the plant.

Particulate matter emissions for the boilers at Kincaid are controlled with retrofit ESPs located behind (south) the old ESPs/chimneys. Fly ash from the boilers is handled dry and disposed of in an adjacent mine (coal source).

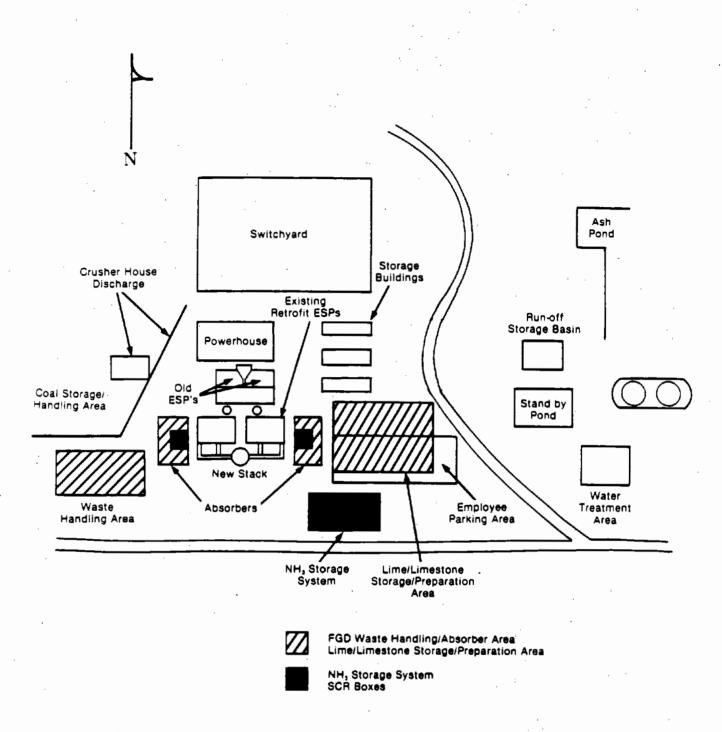

Lime/Limestone and Lime Spray Drying FGD Costs---

Figure 7.3.2-1 shows the general layout and location of the FGD control system. The absorbers for the boilers were located south of the powerhouse and adjacent to the existing retrofit ESPs for both L/LS and LSD-FGD technologies. The limestone preparation/storage area was placed to the east of the absorber for unit 2, west of the run-off storage basin and standby pond. The waste handling area was temporarily located to the west of the unit 1 absorber. Since the employee parking area would be relocated in order to make more space available for the location of the absorbers in the location discussed above, a factor of 10 percent was assigned to general facilities.

Retrofit Difficulty and Scope Adder Costs--

At the Kincaid plant the boilers are located west to east, side by side, and the retrofit ESPs sit directly behind (south) the old chimneys for each unit. A recently built chimney is shared by both units.

The absorbers were located in a general area south of the plant. They were located, more specifically, on both sides (west and east) of the retrofit ESPs. In addition, the absorber for unit 1 was located west of

Not to scale

Figure 7.3.2-1. Kincaid plant plot plan

TABLE 7.3.2-1. KINCAID STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL SULFUR CONTENT (PERCENT) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1,2 591 46, 39 1967,68 CYCLONE 436 NO 3.3 10300 9.9 PAID DRY DISPOSAL OFF-SITE 1 CONVEYOR NEARBY COAL MINE
PARTICULATE CONTROL	
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP 1967,1982 0.05 98.7 4.0 851.6 2400 355 310

7-74

the unit ESPs and the absorber for unit 2 was located to the east of its respective ESPs. Neither absorber would be congested by any major equipment, plant roads, etc.

Low site access/congestion factors were assigned to both absorber areas for all FGD technologies because no significant obstacles would surround the absorbers and no underground obstructions appear to exist in the designated location. Also, low site access/congestion factors were assigned to flue gas handling for both boilers for all FGD technologies because adequate space is available around the retrofit ESPs and chimney. A medium ductwork tie-in distance would be necessary for the retrofit of FGD technologies at the plant.

The major scope adjustment costs and estimated retrofit factors for the FGD control technologies are presented in Table 7.3.2-2. There are no significant scope adjustments and related costs required for the retrofit of FGD control technologies at Kincaid. The overall retrofit factors determined for the L/LS-FGD cases were low to moderate (1.31).

The LSD with ESP reuse was the only LSD-FGD case evaluated because the SCAs are large (468). The overall retrofit factor determined for the LSD-FGD cases was also low (1.27) excluding particulate control costs. The particulate control upgrade factor was low (1.16), reflecting the space available around the existing ESPs. This factor would be used in the IAPCS model if any additional plate area increase is required.

Table 7.3.2-3 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include upgrading the ESPs for boilers 1 and 2.

The low cost control case reduces capital and annual operating costs. The significant reduction in costs is primarily due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber, and optimization of scrubber size. However, there might be higher operating risks associated with this approach.

Coal Switching and Physical Coal Cleaning Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be

TABLE 7.3.2-2. SUMMARY OF RETROFIT FACTOR DATA FOR KINCAID UNITS 1-2

		FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	LOW	LOW LOW	LOW LOW NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE		300-600	300-600 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	LOW NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER (WASTE DISPOSAL)	NO NA NO O YES	NO NA NO O NO	NO NA NO O YES
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.41	1.31	1.37 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.16 NA
GENERAL FACILITIES (PERCENT) 10	10	10

Technology	Boiler			Capacit			Capitel		Annual	S02	SO2	SO2 Cost
		Retrofit			Sulfur	Cost	Cost	Cost			Removed	Effect.
		Difficulty Factor	/ (MW)	(%)	Content (%)	(\$NH)	(\$/k¥)	(\$144)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
L/S FGD	1	1.41	591	46	3.3	146.7	248.2	68.8	28.9	90.0	67 998	1012.3
L/S FGD	2	1.41	591	39	3.3	146.7	248.2	65.8	32.6	90.0	57650	1140.8
L/S FGD-C	1	1.41	591	46	3.3	146.7	248.2	40.1	16.8	90.0	67998	589.7
L/S FGD-C	2	1.41	591	39	3.3	146.7	248.2	38.3	19.0	90.0	57650	665.0
LC FGD	1-2	1.41	1182	43	3.3	220.6	186.7	108.4	24.4	90.0	127126	853.0
LC FGD-C	1-2	1.41	1182	43	3.3	220.6	186.7	63.1	14.2	90.0	127126	496.5
LSD+ESP	1	1.37	591	46	3.3	123.4	208.9	51.2	21.5	74.0	56134	912.8
LSD+ESP	2	1.37	591	39	3.3	123.4	208.9	49.1	24.3	74.0	47592	1030.7
LSD+ESP-C	1	1.37	591	46	3.3	123.4	208.9	29.9	12.6	74.0	56134	532.8
LSD+ESP-C	2	1.37	591	39	3.3	123.4	208.9	28.7	14.2	74.0	47592	602.2

.....

233

Table 7.3.2-3. Summary of FGD Control Costs for the Kincaid Plant (June 1988 Dollars)

determined. This is particularly true for cyclone boilers; therefore, coal switching was not evaluated for the Kincaid plant.

Table 7.3.2-4 presents the IAPCS results for physical coal cleaning at the Kincaid plant. These costs do no include reduced pulverizer operating costs or system modifications that may be necessary to handle deep cleaned coal.

NO_y Control Technology Costs--

This section presents the performance and various related costs estimated for NO_x controls at Kincaid. These controls include LNC and SCR. The application of NO_x control technologies is affected by several site-specific factors which are discussed in Section 2. The NO_x technologies evaluated for the Kincaid station were: NGR and SCR.

Low NO_v Combustion--

Units 1 and 2 are wet bottom, cyclone-fired boilers rated at 591 MW each. The combustion modification technique applied to these units was NGR. Neither OFA nor LNB are applicable as NO_{χ} combustion controls for cyclone boilers. As Table 7.3.2-5 shows, the NGR NO_{χ} reduction performance for each unit was assumed to be 60 percent. Table 7.3.2-6 presents the cost of retrofitting NGR at the Kincaid plant.

Selective Catalytic Reduction--

Table 7.3.2-5 presents the SCR retrofit results for each unit. The results include process area retrofit difficulty factors and scope adder costs. The data includes scope adder costs estimated for ductwork demolition, new heat exchanger, and new duct runs to divert the flue gas from the ESPs to the reactor and from the reactor to the chimney.

The reactors for units 1 and 2 were located south of the powerhouse behind the unit ESPs in a parking lot. This is a low access/congestion area with no significant underground obstructions. A general facilities factor of 25 percent was applied to both units, reflecting the need to replace part of the employee parking used to install the SCR reactors. The ammonia storage system, which would supply ammonia to the reactors to both units, was located southeast of the powerhouse in a relatively open area with no significant

Technology Boiler Main Boiler Capacity Coal Capital Capital Annual Annual SO2 SO2 SO2 Cost Number Retrofit Size Factor Sulfur Cost Cost Cost Cost Removed Removed Effect. Difficulty (NW) (%) Content (\$MM) (\$/kW) (\$MM) (mills/kwh) (%) (tons/yr) (\$/ton) Factor (%) ----. PCC _ 1,00 591 3.3 39.4 17.4 7,3 23.0 17723 984.3 1 46 66.6 PCC 2 1.00 591 39 3.3 39.4 66.6 16.3 8.1 23.0 15026 1086.1 1.00 591 39.4 66.6 10.2 23.0 17723 573.9 PCC-C 1 46 3.3 4.3 1.00 39.4 23.0 15026 PCC-C 2 -591 39 3.3 66.6 9.5 4.7 634.0

Table 7.3.2-4. Summary of Coal Switching/Cleaning Costs for the Kincaid Plant (June 1988 Dollars)

	BOILER NUMBER
COMBUSTION MODIFICATION RESULTS	
	1, 2
FIRING TYPE	CYCLONE
TYPE OF NOX CONTROL	NGR
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	NA
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	NA
FURNACE RESIDENCE TIME (SECONDS)	NA
ESTIMATED NOX REDUCTION (PERCENT)	60
SCR RETROFIT RESULTS	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW
SCOPE ADDER PARAMETERS	,
Building Demolition (1000\$)	0
Ductwork Demolition (1000\$)	102
New Duct Length (Feet)	450
New Duct Costs (1000\$)	6304
New Heat Exchanger (1000\$)	5412
TOTAL SCOPE ADDER COSTS (1000\$)	11819
RETROFIT FACTOR FOR SCR	1.16
GENERAL FACILITIES (PERCENT)	25

TABLE 7.3.2-5. SUMMARY OF NOX RETROFIT RESULTS FOR KINCAID

fechnology	Boiler	Main	Boiler	Capacit	y Coal	Capital	Capital	Annual	Annual	NDX	NOx	NOx Cos
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect
		Difficulty	(HN)	(%)	Content	(\$101)	(\$/k¥)	(SHH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
		Factor			(%)							
NGR	1	1.00	591	46	3.3	8.5	14.3	13.5	5.7	60.0	11976	11 3 0.
IGR	2	1.00	591	39	3.3	8.5	14.3		5.8	60.0	10153	1146.
IGR - C	1	1.00	591	46	3.3	8.5	14.3	7.8	3.3	60.0	11976	650.
IGR - C	2	1.00	591	39	3.3	8.5	14.3	6.7	3.3	60.0	10153	660.
SCR-3	1	1.16	591	46	3.3	77.0	130.4	28.7	12.1	80.0	15968	1800.
SCR-3	2	1.16	591	39	3.3	77.0	130.3	28.4	14.0	80.0	13538	2095.
CR-3-C	1	1.16	591	46	3.3	77.0	130.4	16.8	7.1	80.0	15968	10 53 .
SCR-3-C	2	1.16	591	39	3.3	77.0	130.3	16.6	8.2	80.0	13538	1225.8
CR-7	1	1.16	591	46	3.3	77.0	130.4	23.8	10.0	80.0	15968	1489.
SCR-7-	2	1.16	591	39	3.3	77.0	130.3	23.4	11.6	80.0	13538	1728.
SCR-7-C	1	1.16	591	46	3.3	77.0	130.4	14.0	5.9	80.0	15 968	874.3
SCR-7-C	2	1.16	591	39	3.3	77.0	130.3	13.7	6.8	80.0	13538	1015.

Table 7.3.2-6. NOx Control Cost Results for the Kincaid Plant (June 1988 Dollars)

12338638883588333

underground obstructions. Table 7.3.2-6 presents the estimated cost of retrofitting SCR at the Kincaid boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas for both units were located south of the plant in a relatively open area in a similar fashion as LSD-FGD. The retrofit of DSD and FSI technologies at the Kincaid steam plant would be relatively easy because the ESP SCAs are large (>400) and there is 400 feet of flue gas ducting between the boilers and the retrofit ESPs. Additionally, the old ESP boxes could be used for the humidification or sorbent injection. If ESP plate area was required, the ESP upgrade access/congestion factor would be low (1.13). Table 7.3.2-7 presents a summary of site access/congestion factors, scope adders, and retrofit factors for DSD and FSI technologies at the Kincaid steam plant. Table 7.3.2-8 presents the costs estimated to retrofit DSD and FSI at the Kincaid plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Kincaid plant. The boilers at the Kincaid plant would not be considered good candidates for AFBC retrofit and AFBC/CG/combined cycle repowering because of their large size (660 MW).

7.3.3 Powerton Steam Plant

The Powerton steam plant is located within Tazewell County, Illinois, as part of the Commonwealth Edison Company system. The plant is located

TABLE 7.3.2-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR KINCAID UNITS 1-2

<u>ITEM</u>	· · ·
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW LOW NA
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO NA
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NA NA NA 50 113
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	113 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.16 NA

Technology.	Boiler Number	Main Retrofit		Capacity Factor	r Coal . Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SOZ Removed	SO2	SOZ Cost Effect.
		Difficulty Factor	y (MW)	(%)	Content (%)	(SHH)	(\$/kW)	(\$##)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
				• • • • • • • • • •								
DSD+ESP	1	1.00	591	46	3.3	69.9	118.2	35.0	14.7	48.0	36000	971.1
DSD+ESP	2	1.00	591	39	3.3	69.9	118.2	32.9	16.3	48.0	30522	1077.4
DSD+ESP-C	1	1.00	591	46	3.3	69.9	118.2	20.3	8.5	48.0	36000	565.1
DSD+ESP-C	2	1.00	591	39	3.3	69.9	118.2	19.2	9.5	48.0	30522	627.6
FSI+ESP-50	1	1.00	591	46	3.3	53.2	90.1	39.5	16.6	50.0	37776	1044.9
FS1+ESP-50	2	1.00	591	39	3.3	53.2	90.1	35.7	17.7	50.0	320 28	1114.0
FSI+ESP-50-C	1	1.00	591	46	3.3	53.2	90.1	22.9	9.6	50.0	37776	605.0
FSI+ESP-50-C	2	1.00	591	39	3.3	53.2	90.1	20.7	10.2	50.0	32028	645.7
FSI+ESP-70	1	1.00	591	46	3.3	53.6	90.7	40.1	16.8	70.0	52887	758.4
FSI+ESP-70	2	1.00	591	39	3.3	53.6	90.7	36.2	17.9	70.0	44839	808.1
FSI+ESP-70-C	1	1.00	591	46	3.3	53.6	90.7	23.2	9.8	70.0	52887	439.1
FSI+ESP-70-C	2	1.00	591	39	3.3	53.6	90.7	21.0	10.4	70.0	44839	468.3

.

 \mathbb{R}^{n}

Table 7.3.2-8. Summary of DSD/FSI Control Costs for the Kincaid Plant (June 1988 Dollars)

.

adjacent to a pond beside the Illinois River and contains two steam turbine units (5,6) powered by four coal-fired boilers with a total gross generating capacity of 1,784 MW.

Table 7.3.3-1 presents operational data for the existing equipment at the Powerton plant. The boilers burn low sulfur coal received by railroad and transferred to a coal storage and handling area northwest of the units and adjacent to the pond.

PM emissions for the boilers are controlled with ESPs located behind each unit. The plant has a dry fly ash handling system. Fly ash is disposed of off-site. Flue gas from all boilers is ducted to a common chimney. A retrofit FGD scrubber unit with a new chimney for boiler 51 of unit 5 is no longer in operation.

Lime/Limestone and Lime Spray Drying FGD Costs--

The four boilers are located beside each other adjacent to the water channel. The absorbers for all boilers would be located behind and east of the chimney. The limestone preparation, storage, and handling area would be located behind the absorbers. Some of the roads have to be relocated; therefore, a factor of 10 percent was assigned to general facilities. A temporary waste handling area would be located approximately three quarters of a mile southwest of the plant. However, because of the limited space available, waste generated by the FGD absorbers must be transferred off-site in the same manner as the fly ash.

A low site access/congestion factor was assigned to the FGD absorber locations due to the accessibility and space availability behind the chimney. For flue gas handling, because absorbers are placed immediately behind the chimneys, short duct runs would be required for the L/LS-FGD case (less than 300 feet). A low site access/congestion factor was assigned to the flue gas handling system due to easy access to the existing chimney.

LSD with reuse of the existing ESPs was considered for this plant because the ESPs are adequate (SCA >207) and were assumed not to require major upgrading to handle the increased PM generated from the LSD application. The LSD absorbers would be located behind the common chimney. To route the flue gas from upstream of the existing ESPs to the absorbers and back to the ESPs, over 700 feet of duct length would be required. A

TABLE 7.3.3-1. POWERTON STEAM PLANT OPERATIONAL DATA

UNIT NUMBER BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM	5 51,52 446 37 1972 CYCLONE 285.4, 271 NO 0.6 9400 4.8 DRY HANDLII	NO 0.6 9400 4.8
ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS PARTICULATE CONTROL	OFF-SITE 1 RAILROAD	1
TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION	1972	ESP 1975 0.10 99.3
SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	0.7 332 1605 207 300	0.7 650 1639 397 300

high site access/congestion factor was assigned to the flue gas handling system in the case of LSD-FGD because of the congestion created by the ash silos, chimney, and close proximity of the ESPs to each other and to the boiler house.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 7.3.3-2. FGD cost estimates are not presented because it is unlikely that the current low sulfur coal would be used if scrubbing was required. FGD cost estimates based on the current coal would result in low estimates of capital/operating costs and high cost-effectiveness values. Additionally, it is unlikely that LSD-FGD with ESP reuse would be applied due to the very high access/congestion associated with the flue gas ducting and possible long boiler downtime.

Coal Switching and Physical Coal Cleaning Costs--

CS and PCC were not considered for this plant because the plant is already using a low sulfur coal.

Low NO_y Combustion--

All four boilers are cyclone-fired and are rated at 446 MW each. The combustion modification technique applied to all boilers was NGR. As Table 7.3.3-3 shows, the NGR NO_x reduction performance for each unit was assumed to be 60 percent. Table 7.3.3-4 presents the cost of retrofitting NGR at the Powerton plant.

Selective Catalytic Reduction--

Cold side SCR reactors for all boilers would be located immediately behind the chimney in low access/congestion areas. About 250 feet of duct length was estimated for the flue gas handling system. The ammonia storage system was placed close to the reactors east of the plant. No major equipment relocation would be needed and a base factor of 13 percent was assigned to general facilities.

Table 7.3.3-3 presents the SCR process area retrofit factors and scope adder costs. Table 7.3.3-4 presents the estimated cost of retrofitting SCR at the Powerton boilers.

TABLE 7.3.3-2.SUMMARY OF RETROFIT FACTOR DATA FOR POWERTON
BOILERS 51,52,61,0R 62

· · · · · · · · · · · · · · · · · · ·		FGD TECHNOLOGY			
L	<u>/LS FGD</u>	FORCED OXIDATION	LIME SPRAY DRYING		
SITE ACCESS/CONGESTION			- *		
SO2 REMOVAL	LOW	NA NA	LOW		
FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	LUW	NA .	HIGH NA		
DUCT WORK DISTANCE (FEET) ESP REUSE	100-300	NA	600-1000		
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA HIGH NA		
SCOPE ADJUSTMENTS	NA .				
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY * ESTIMATED COST (1000\$) OTHER (WASTE DISPOSAL)	NO NA NO O YES	NA NA NA O	NO NA NO O YES		
RETROFIT FACTORS			,		
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.30	NA	1.57 NA		
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.58 NA		
GENERAL FACILITIES (PERCENT)	10	0	8		

* Chimney liner cost is included in the FGD retrofit evaluation.

	BOILER_NUMBER
COMBUSTION MODIFICATION RESULTS	
	51,52,61,62
FIRING TYPE	CYC
TYPE OF NOX CONTROL	NGR
FURNACE VOLUME (1000 CU FT)	285.4,271,238,NA
BOILER INSTALLATION DATE	1972-1975
SLAGGING PROBLEM	NA
ESTIMATED NOX REDUCTION (PERCENT)	60
SCR RETROFIT RESULTS	
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW
SCOPE ADDER PARAMETERS	
Building Demolition (1000\$)	0
Ductwork Demolition (1000\$)	83
New Duct Length (Feet)	250
New Duct Costs (1000\$)	2971
New Heat Exchanger (1000\$)	4571
TOTAL SCOPE ADDER COSTS (1000\$)	7625
RETROFIT FACTOR FOR SCR	1.16
GENERAL FACILITIES (PERCENT)	13

TABLE 7.3.3-3. SUMMARY OF NOx RETROFIT RESULTS FOR POWERTON

Technology	Boiler Number	Main Retrofit		Capecit Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	NOx Removed	NOx Removed	NOx Cost Effect.
	I	Difficulty Factor	y (MW)	(%)	Content	(\$HH)	M) (\$/kW)	(\$HH)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
NGR	51,5		446	37	0.6	6.8	15.3	-	5.9	60.0	8074	1055.6
NGR	61,6	2 1.00	446	42	0.6	6.8	15.3	9.6	5.8	60.0	9165	1042.1
NGR-C	51,5	2 1.00	446	37	0.6	6.8	15.3	4.9	3.4	60.0	8074	608.6
NGR-C	61,6	2 1.00	446	42	0.6	6.8	15.3	5.5	3.4	60.0	9165	600.4
SCR-3	51,5	2 1.16	446	37	0.6	56.6	126.9	21.2	14.6	80.0	107 65	1965.3
SCR-3	61,6	2 1.16	44 6	42	0.6	56.6	126.9	21.4	13.0	80.0	12220	1749.5
SCR-3-C	51,5	2 1.16	446	37	0.6	56.6	126.9	12.4	8.6	80.0	10765	1149.5
SCR-3-C	61,6	2 1.16	446	42	0.6	56.6	126.9	12.5	7.6	80.0	12220	1023.1
SCR-7	51,5	2 1.16	446	37	0.6	56.6	126.9	17.4	12.0	80.0	10765	1612.3
SCR-7	61,6		446	42	0.6	56.6	126.9	17.6	10.7	80.0	12220	1438,5
SCR-7-C	51,5	2 1.16	446	37	0.6	56.6	126.9	10.2	7.1	80.0	10765	947.3
SCR-7-C	61,6	2 1.16	446	42	0.6	56.6	126.9	10.3	6.3	80.0	12220	844.9

======

Table 7.3.3-4. NOx Control Cost Results for the Powerton Plant (June 1988 Dollars)

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI and DSD technologies at the Powerton steam plant would be difficult. This is caused by inadequate duct residence time between the boilers and the retrofit ESPs for either humidification (FSI application) or sorbent droplet evaporation (DSD application). However, the ESPs may be large enough to modify the first ESP section to be used for humidification or sorbent injection. A high site access/congestion factor was assigned to the ESP locations if additional plate area or upgrading/ modification of the existing ESPs is required. The sorbent receiving/ storage/preparation area was located east of the plant.

Table 7.3.3-5 presents a summary of the site access/congestion factors for FSI and DSD technologies at the Powerton plant. Table 7.3.3-6 presents the costs estimated to retrofit FSI and DSD at the Powerton plant. The estimated unit costs for all boilers are high because of the low sulfur content of the coal.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Powerton plant. Neither of units would be considered good candidates for repowering/retrofit because of their large boiler sizes.

7.3.4 Waukegan_Steam Plant

L/S-FGD and LSD-FGD retrofit factors were evaluated for boilers 6, 7, and 8 at the Waukegan plant; however, costs are not presented because the low sulfur coal currently being fired would yield low capital/operating costs and high cost per ton of SO_2 removed. A new baghouse was used in conjunction with LSD instead of reusing the existing ESPs, since the ESPs for these boilers are congested and any upgrading would be difficult. CS was not evaluated because the plant is using a low sulfur coal. FSI and DSD were not considered for units 6 and 8 due to the short duct residence time between the boilers and their respective ESPs and due to the inadequate size of the ESPs. The unit 7 ESPs appear large enough for the application FSI and DSD, however, access to these are difficult and were not considered for sorbent injection technologies.

TABLE 7.3.3-5.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR POWERTON BOILERS 51,52,61,62

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE	LOW HIGH NA
SCOPE ADDERS	· · · ·
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	NO NA NA NA NA 50 92
TOTAL COST (1000\$) ESP UPGRADE CASE A NEW BAGHOUSE CASE	92 NA
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE NEW BAGHOUSE	1.13 1.58 NA

echnology	Boiler	Main	Boiler	Capacity	y Coal	Capital	Capital	Annual	Annual	S02	SO2	SO2 Cos
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect
	1	Difficulty	(MU)	(%)	Content	(SHH)	(\$/k¥)	(\$H\$I)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
		Factor			(%)							
SD+ESP	51,5	2 1.00	446	37	0.6	16.5	37.0	9.1	6.3	49.0	4506	2014.4
SD+ESP	61,6		446	42	0.6	11.3		7.9	4.8	49.0	5115	1547.9
SD+ESP-C	51,5	2 1.00	446	37	0.6	16.5	37.0	5.3	3.6	49.0	4506	1170.0
SD+ESP-C	61,6	2 1.00	4 46	42	0.6	11.3	25.3	4.6	2.8	49.0	5115	896.
SI+ESP-50	51,5	2 1.00	446	37	0.6	18.2	40.8	9.1	6.3	50.0	4631	1957.
SI+ESP-50	61,6	2 1.00	446	42	0.6	13.4	30.0	8.1	5.0	50.0	5256	1548.3
SI+ESP-50-C	51,5	2 1.00	446	37	0.6	18.2	40.8	5.3	3.6	50.0	4631	11 38.
SI+ESP-50-C	61,6	2 1.00	446	42	0.6	, 13.4	30.0	4.7	2.9	50.0	5256	898.
SI+ESP-70	51,5	2 1.00	446	37	0.6	18.0	40.4	9.1	6.3	70.0	6483	1400.
S1+ESP-70	61,6	2 1.00	446	42	0.6	13.5	30.4	8.3	5.0	70.0	7359	1122.0
SI+ESP-70-C	51,5	2 1.00	446	37	0.6	18.0	40.4	5.3	3.7	70.0	6483	814.;
SI+ESP-70-C	. 61, 6	2 1.00	446	42	0.6	13.5	30.4	4.8	2.9	70.0	7359	651.

==

Table 7.3.3-6. Summary of DSD/FSI Control Costs for the Powerton Plant (June 1988 Dollars)

TABLE 7.3.4-1. WAUKEGAN STEAM PLANT OPERATIONAL DATA *

BOILER NUMBER 1-5	6	7	8
GENERATING CAPACITY (MW) RETIRED			317
CAPACITY_FACTOR (PERCENT)	7	44	18
INSTALLATION DATE		1958	
FIRING TYPE	LYCLONE		
FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION	43 NO	510 NO	
COAL SULFUR CONTENT (PERCENT)	0.47		0.42
COAL HEATING VALUE (BTU/LB)		9500	
COAL ASH CONTENT (PERCENT)	5.04	7.4	7.4
FLY ASH SYSTEM		RYDISPOS	
ASH DISPOSAL METHOD		ID/OFF-SI	
STACK NUMBER	1	2	3
COAL DELIVERY METHODS	Í	RAILROAD	
			•
PARTICULATE CONTROL			•
ТҮРЕ	ESP	ESP	ESP
INSTALLATION DATE		1976	
EMISSION (LB/MM BTU)		0.024	
REMOVAL EFFICIENCY	96.88		
DESIGN SPECIFICATION			
SULFUR SPECIFICATION (PERCENT)	0.5		0.5
SURFACE AREA (1000 SQ FT)		512.3	151.1
EXIT GAS FLOW RATE (1000 ACFM)	430		1051
SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	136 295	439 700	134 284
OUTLET TEMPERATURE (F)	233	/00	204

* Some information was obtained from plant personnel.

TABLE 7.3.4-2. SUMMARY OF RETROFIT FACTOR DATA FOR WAUKEGAN UNIT 6 *

٠,

.

· · · · · · · · · · · · · · · · · · ·		FGD TECHNOLOGY			
	<u>L/LS_FGD</u>	FORCED OXIDATION	LIME SPRAY DRYING		
SITE ACCESS/CONGESTION					
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW HIGH	NA NA	LOW		
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	НІсн		
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA LOW		
SCOPE ADJUSTMENTS		•			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 784 NO	NA NA NA O	NO NA YES 784 NO		
RETROFIT FACTORS					
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.41	NA	NA 1.43		
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16		
GENERAL FACILITIES (PERCENT) 10	0	10		

* L/LS-FGD absorbers, LSD-FGD absorbers, and new FFs for unit 6 would be located east of the retired chimney for units 1-5.

TABLE 7.3.4-3. SUMMARY OF RETROFIT FACTOR DATA FOR WAUKEGAN UNIT 7 OR 8 *

_		_FGD_TE	CHNOLOGY
	L/LS FGD OX	FORCED IDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	LOW HIGH	NA NA	LOW
ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	600-1000	NA	NA HIGH
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	600-1000 NA LOW
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 2471,2219 NO	NA NA NA O	NO NA YES 2471,2219 NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.53	NA	NA 1.54
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16
GENERAL FACILITIES (PERCENT) 10	0	10

* L/S-FGD absorbers, LSD-FGD absorbers, and new FFs for units 7 and 8 would be located east of the retired chimney for units 1-5.

· · · · · · ·	BOIL	ER NUMBER	
COMBUSTION MODIFICATION RESULTS			
	6	7	8
FIRING TYPE	CYCLONE	TANG	TANG
TYPE OF NOX CONTROL	NGR	OFA	OFA
FURNACE VOLUME (1000 CU FT)	NA	252	254
BOILER INSTALLATION DATE	1952	1958	1962
SLAGGING PROBLEM	NO	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	60	25	25
SCR RETROFIT RESULTS *			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	HIGH
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	29	70	64
New Duct Length (Feet)	400	300	500
New Duct Costs (1000\$)	2118	3109	4866
New Heat Exchanger (1000\$)	1995	0	3724
TOTAL SCOPE ADDER COSTS (1000\$)	4142	3178	8654
RETROFIT FACTOR FOR SCR	1.52	1.52	1.52
GENERAL FACILITIES (PERCENT)	38	38	38

TABLE 7.3.4-4. SUMMARY OF NOX RETROFIT RESULTS FOR WAUKEGAN

* Cold side SCR reactors for unit 6 would be located behind the unit 6 chimney. Hot side SCR reactors for unit 7 and cold side SCR reactors for unit 8 would be located behind the unit 7 chimney.

fechnology	Boiler Number	Main Retrofit			y Coal Sulfur		Capital Cost	Annual Cost		NOx Removed	NOx Removed	NOX Cos Effect
	•	Difficulty	(MW)	(%)	Content	(\$MH)	(\$/k¥)	(SMM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
		Factor			(%)							
· • • • • • • • • • • • • • • •		•••••••									· · · · · · · · · · · · ·	• • • • • • • • •
NC'-OFA	7	1.00	353	44	0.4	1.0	2.9	0.2	0.2	25.0	1380	162.
NC-OFA	8	1.00	317	18	0.4	1.0	3.1	0.2	0.4	25.0	507	423.
NC-OFA-C	7	1.00	353	44	0.4	1.0	2.9	0.1	0.1	25.0	1380	96.
NC-OFA-C	8	1.00	317	18	0.4	1.0	3.1	0.1	0.3	25.0	507	251.
IGR .	6	1.00	112	7	0.5	2.4	21.8	0.8	10.9	60.0	423	.1 776 .
IGR-C	6	1.00	112	7	0.5	2.4	21.8	0.4	6.4	60.0	423	1043.
SCR-3	6	1.52	112	7	0.5	26.7	238.2	8.2	118.8	80.0	564	14477.
SCR-3	7	1.52	353	44	0.4	57.6	163.1	19.9	14.6	80.0	4416	4495.
CR-3	8	1.52	317	18	0.4	57.7	182.1	18.5	37.0	80.0	1622	11388.
CR-3-C	6	1.52	112	7	0.5	26.7	238.2	4.8	69.8	80.0	564	8506.
CR-3-1	7	1.52	353	44	0.4	57.6	163.1	11.6	8.5	80.0	4416	2634.
CR-3-C	8	1.52	317	18	0.4	57.7	'182.1	10.8	21.7	80.0	1622	6684.
CR-7	6	1.52	112	7	0.5	26.7	238.2	7.2	104.9	80.0	564	12781.
SCR-7	7	1.52	353	44	0.4	57.6	163.1	16.8	12.4	80.0	4416	3815.
CR-7	8	1.52	317	18	0.4	57.7	182.1	15.8	31.6	80.0	1622	9726.
CR - 7 - C	6	1.52	112	7	0.5	26.7	238.2	4.2	61.8	. 80. 0	564	7535.
SCR-7-C	7	1.52	353	44	0.4	57.6	163.1	9.9	7.3	80.0	4416	2244.
SCR-7-C	8	1.52	317	18	0.4	57.7	182.1	9.3	18.6	80.0	1622	5732.

Table 7.3.4-5. NOx Control Cost Results for the Waukegan Plant (June 1988 Dollars)

7.3.5 Will County Steam Plant

L/S-FGD and LSD-FGD retrofit factors were developed for the boilers at the Will County plant; however, costs are not presented since the low sulfur content of the coal being fired would result in low capital/operating costs and high cost per ton of SO₂ removed. The boilers already are firing a low sulfur coal hence CS was not considered. Sorbent injection technologies (FSI and DSD) were not evaluated due to the short duct residence time between the boilers and their respective ESPs and due to the difficulty involved in upgrading the existing ESPs.

TABLE 7.3.5-1. WILL COUNTY STEAM PLANT OPERATIONAL DATA

BOILER NUMBER	1	2	3	4
GENERATING CAPACITY (MW-each)	167	1 6 7	278	542
CAPACITY FACTOR (PERCENT)	9	13 [°]	18	34
INSTALLATION DATE	1955	1955	1957	1963
FIRING TYPE		LONE		
FURNACE VOLUME (1000 CU FT)	40.6	40.6		470
LOW NOX COMBUSTION	NO	NO	NO	NO
COAL SULFUR CONTENT (PERCENT)	0.46			
COAL HEATING VALUE (BTU/LB)	9300			
COAL ASH CONTENT (PERCENT)	5.2	5.1	7.8	7.8
FLY ASH SYSTEM		DRY DIS		
ASH DISPOSAL METHOD	_	PAID/OF		
STACK NUMBER	1	2	° 3 ∖.	4
COAL DELIVERY METHODS		BARGE		
PARTICULATE CONTROL				
ΤΥΡΕ	ESP	ESP	ESP	ESP
INSTALLATION DATE	1984		1973	
EMISSION (LB/MM BTU)	0.004			
REMOVAL EFFICIENCY	99.7	99.6	99.7	98.9
DESIGN SPECIFICATION		55.0		50.5
SULFUR SPECIFICATION (PERCENT)	0.5	0.5	0.5	0.5
SURFACE AREA (1000 SQ FT)	227.5	248 2	331.2	
GAS EXIT RATE (1000 ACFM)	650	770	1425	1533
SCA (SQ FT/1000 ACFM)	365	322	330	130
OUTLET TEMPERATURE (*F)	320	355	675	286

TABLE 7.3.5-2. SUMMARY OF RETROFIT FACTOR DATA FOR WILL COUNTY UNIT 1*

		FGD TE	CHNOLOGY
	L/LS_FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	MEDIUM HIGH	NA NA	MEDIUM
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	NA 300-600
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA HIGH NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 1169 NO	NA NA NA O	NO NA NO O NO
RETROFIT FACTORS	•		
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.52	NA	1.49 NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.58 NA
GENERAL FACILITIES (PERCENT	[) 15 .	0 [']	15

* L/S-FGD and LSD-FGD absorbers for unit 1 would be located north of unit 1.

TABLE 7.3.5-3.SUMMARY OF RETROFIT FACTOR DATA FOR WILL COUNTY
UNIT 2 OR 3*

_		FGD TE	CHNOLOGY
	L/LS FGD OX	FORCED IDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION		·	
SO2 REMOVAL FLUE GAS HANDLING	MEDIUM HIGH	NA NA	MEDIUM
ESP REUSE CASE (Unit 2) BAGHOUSE CASE (Unit 3)			HIGH HIGH
DUCT WORK DISTANCE (FEET)	300-600	NA	600-1000
ESP REUSE (Unit 2) BAGHOUSE (Unit 3) ESP REUSE (Unit 2) NEW BAGHOUSE (Unit 3)	NA NA	NA NA	300-600 HIGH MEDIUM
SCOPE ADJUSTMENTS			
WET TO DRY	NO	NA	NO
ESTIMATED COST (1000\$) NEW CHIMNEY	NA YES	NA NA	NA YES (Unit 3
ESTIMATED COST (1000\$) OTHER	1169,1946 NO	0	1946 NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE (Unit 2)	1.52	NA	1.62
BAGHOUSE CASE (Unit 3) ESP UPGRADE (Unit 2) NEW BAGHOUSE (Unit 3)	NA NA	NA NA	1.56 1.58 1.36
GENERAL FACILITIES (PERCENT		0	15

* L/S-FGD and LSD-FGD absorbers for unit 2 would be located north of unit 1 and the absorbers for unit 3 would be located south of unit 4.

TABLE 7.3.5-4. SUMMARY OF RETROFIT FACTOR DATA FOR WILL COUNTY UNIT 4*

		FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	MEDIUM MEDIUM	NA NA	MÉDIUM
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	MEDIÚM NA
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA MEDIUM
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	NO NA YES 3794 NO	NA NA NA O	NO NA YES 3794 NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.48	NA	NA 1.52
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.36
GENERAL FACILITIES (PERCEN	T) 15	0	15

* L/S-FGD absorbers, LSD-FGD absorbers, and new FFs for unit 4 would be located south of unit 4.

	BOI	LER NUM	BER	,
COMBUSTION MODIFICATION RESULTS				
	1	2	3	4
FIRING TYPE	CYC	CYC	TANG	TANG
TYPE OF NOX CONTROL	NGR	NGR	OFA	OFA
FURNACE VOLUME (1000 CU FT)	40.6	40.6	200	470
BOILER INSTALLATION DATE	1955	1955	1957	1963
SLAGGING PROBLEM	<u>NO</u>	NO	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	60	60	25	25
SCR RETROFIT RESULTS*				
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	HIGH	MEDIUM
SCOPE ADDER PARAMETERS			-	
Building Demolition (1000\$)	0	0	0	0
Ductwork Demolition (1000\$)	40	40	58	96
New Duct Length (Feet)	200	200	200	300
New Duct Costs (1000\$)	1338	1338	1802	3995
New Heat Exchanger (1000\$)	2535	2535	0	5138
TOTAL SCOPE ADDER COSTS (1000\$)	3913	3913	1861	9230
RETROFIT FACTOR FOR SCR	1.52	1.52	1.52	1.34
GENERAL FACILITIES (PERCENT)	38	38	38	38

TABLE 7.3.5-5. SUMMARY OF NOX RETROFIT RESULTS FOR WILL COUNTY

* Cold side SCR reactors for units 1 and 2 would be located behind their respective chimnies. Hot side SCR reactors for unit 3 would be located behind the unit 3 chimney. Cold side SCR reactors for unit 4 would be located south of unit 4.

Technology		Main Retrofit Difficulty Factor	Size (MW)	Capacity Factor (%)	Sulfur Content	Cost	Capital Cost (\$/kW)	Annual Cost (SMM)	Annual Cost (mills/kwh)		NOX Removed (tons/yr)	NOx Cost Effect. (\$/ton)
	• • • • • • • • •		••••		••••••••••••••••••••••••••••••••••••••		•••••			•••••	•••••	• • • • • • • • • • •
LNC-OFA	3	1.00	278	18	0.4	0.9	3.4	0.2	0.5	25.0	450	452.8
UNC-OFA	4	. 1.00	542	34	0.4	1.2	2.2	0.3	0.2	25.0	1657	160.6
LNC-OFA-C	3	1.00	278	18	0.4	0.9	3.4	0.1	0.3	25.0	450	268.6
LNC-OFA-C	4	1.00	542	34	0.4	1.2	2.2	0.2	0.1	. 25.0	1657	95.3
NGR	1	1.00	167	9	0.5	3.3	19.5	1.2	9.0	60.0	810	1468.5
NGR	2	1.00	167	13	0.5	3.3	19.5	1.5	7.9	60.0	. 1170	1280.2
NGR-C	1	1.00	167	9	0.5	3.3	19.5	0.7	5.3	60.0	810	859.5
NGR-C	2	1.00	167	13	0.5	3.3	19.5	0.9	4.6	50.0	1170	745.9
SCR - 3	1	1.52	167	9	0.5	33.8	202.2	10.7	81.6	80.0	1080	9940.8
SCR-3	2	1.52	167	13	0.5	34.0	203.8	10.9	57.1	80.0	1560	6963.7
SCR-3	3	1.52	278	18	0.4	46.3	166.5	15.6	35.6	80.0	1440	10822.7
SCR-3	4	, 1.34	542	34	0.4	78.0	143.9	27.3	16.9	80.0	5304	5148.4
SCR-3-C	1	1.52	167	9	0.5	33.8	202.2	6.3	47.9	80.0	1080	5835.5
SCR-3-C	2	1.52	167	13	· 0,5	34.0	203.8	6.4	33.5	80.0	1560	4087.5
ŚCR-3-C	3	1.52	278	18	0.4	46.3	166.5	9.1	20.8	80.0	1440	6344.8
SCR-3-C	4	1.34	542	34	0.4	78.0	143.9	16.0	9.9	80.0	5304	3015.6
SCR-7	1	1.52	167	9	0.5	33.8	202.2	9.3	70.7	80.0	1080	8621.3
SCR-7	. 2	1.52	167	13	0.5	34.0	203.8	9.4	49.6	80.0	1560	6050.1
SCR-7	3	1.52	278	18	0.4	46.3	166.5	13.2	30.2	80.0	1440	91 78.2
SCR-7	4	1.34	542	34	0.4	78.0	143.8	22.7	14.1	80.0	5304	4277.8
SCR•7•C	1	1.52	167	9	0.5	33.8	202.2	5.5	41.7	80.0	1080	5079.6
SCR-7-C	2	1.52	167	13	0.5	34.0	203.8	5.6	29.2	80.0	1560	3564.1
SCR-7-C	3	1.52	278	18	0.4	46.3	166.5	7.8	17.7	80.0	1440	5402.5
SCR-7-C	4	1.34	542	34	0.4	78.0	143.8	13.3	8.3	80.0	5304	2516.8

Table 7.3.5-6. NOx Control Cost Results for the Will County Plant (June 1988 Dollars)

7.4 ELECTRIC ENERGY INCORPORATION

7.4.1 Joppa Steam Plant

The Joppa steam plant is located within Massac County, Illinois, as part of the Electric Energy system. The plant contains six coal-fired boilers with a total gross generating capacity of 1,098 MW. Figure 7.4.1-1 presents the plant plot plan showing the location of the boilers and major associated auxiliary equipment. An aerial photograph was available for review in the evaluation.

Table 7.4.1-1 presents the operational data for the existing equipment at the Joppa plant. All boilers burn medium sulfur coal (2.0 percent sulfur). Coal shipments are received by freight barge and rail and then conveyed to a coal storage/handling area located east of the units.

Particulate matter emissions for all six boilers are controlled with ESPs located behind each unit. Ash from all units is wet sluiced to ponds on the far side (north) of the coal storage area. Small amounts of the fly ash go to a nearby cement plant for their use as a raw material. Limited space is available for future waste disposal; thus, future waste would be disposed off-site.

Lime/Limestone and Lime Spray Drying FGD Costs--

The Joppa plant includes three chimneys, each shared by two units located between the existing ESPs. The FGD absorbers were placed between the existing ESPs and chimneys and the coal storage/handling area. This location is presently occupied by warehouses. The relocation of the warehouses and plant roads would be required in order to place the absorbers in this location. The limestone preparation/storage area was located to the north of the powerhouses and the waste handling area was placed adjacent to the preparation/storage area.

Retrofit Difficulty and Scope Adder Costs--

The FGD absorbers for units 1, 2, 5 and 6 were assumed to be in areas of medium site access/congestion and units 3 and 4 were assumed to be in high site access/congestion areas. The medium site access/congestion factors

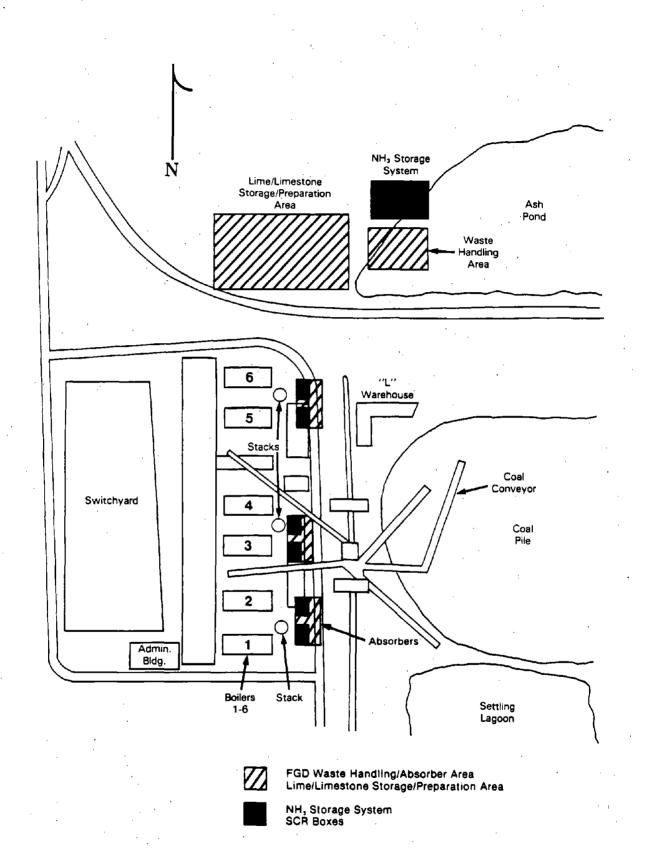


Figure 7.4.1-1. Joppa plant plot plan

TABLE 7.4.1-1. JOPPA STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) FIRING TYPE INSTALLATION DATE COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1-6 183 13, 15 TANG 1953-55 2.0 11700 9.0 WET SLUICE ON-SITE 1-3 BARGE
PARTICULATE CONTROL TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP 1971-72 0.08-0.09 98.8-98.6 2.0 121 673 180 310

reflect the access difficulty for units 1, 2, 5, and 6 because of the coal conveyor and the existing ESPs and chimneys. Units 3 and 4 are highly congested because the coal conveyors are both north and south and the existing ESPs and the chimney are to the west. A high underground obstruction factor was assigned to the placement of all absorbers because of the drain water switch lines and the ash disposal lines. The access/ congestion factor assigned to the flue gas handling was low for units 1, 2, 5, and 6 and all FGD technologies because of the location of the absorbers and their accessibility to the chimneys and the fact that no significant duct work would be required. By contrast, due to access difficulties created by the coal conveyors to the unit 3 and 4 chimneys, high access/congestion factors were assigned to the flue gas handling system. Short ductwork would be required for the retrofit of L/LS-FGD technology at the plant. Finally, a 10 percent general facilities factor was assigned for all units and all FGD technologies because of the demolition and relocation of the storage warehouses and plant road required for the placement of the absorbers discussed above.

The major scope adjustment costs and estimated retrofit factors for the FGD control technologies are presented in Tables 7.4.1-2 and 7.4.1-3. The largest scope adder for the Joppa plant would be the conversion of wet to dry ash handling system for all units considered for conventional L/LS-FGD retrofit. It was assumed that dry fly ash would be necessary to stabilize the L/LS-FGD scrubber sludge waste. Dry ash handling is not necessary for forced oxidation L/LS-FGD and was not considered a scope adder for these cases. The overall retrofit factors determined for the L/LS-FGD cases were moderate (1.36 to 1.60).

A considerable ESP plate area addition would be required to upgrade the ESPs because of the SCA size (<200) and the ESPs location (high site access/congestion). As a result, the LSD-FGD case evaluated was LSD with a new baghouse. A medium duct run would be necessary for the new baghouse in LSD-FGD cases to divert the flue gas from the absorbers to the new baghouses and back to the existing chimneys. The estimated retrofit factors for this case were moderate (1.40 to 1.62) and did not include particulate control costs. Separate factors were estimated for new particulate controls. The same site access/congestion factors used for the absorbers were also assumed

TABLE 7.4.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR JOPPA UNITS 1,2,5,6

. · <u> </u>		FGD TE	CHNOLOGY
· · · ·	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	MEDIUM LOW	MEDIUM LOW	MEDIUM
ESP REUSE CASE BAGHOUSE CASE			NA LOW
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	100-300	100-300	NA 300-600
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA MEDIUM
COPE ADJUSTMENTS		•	
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$)	YES 1612 NO 0	NO NA NO O	NO NA NO O
OTHER	NO	NO	NO
RETROFIT FACTORS			,
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.41	1.36	NA 1.40
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.36
GENERAL FACILITIES (PERCENT) 10	10	10

_		FGD TE	CHNOLOGY
·	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	HIGH HIGH	HIGH HIGH	HIGH NA HIGH
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	100-300 NA NA	100-300 NA NA	NA 300-600 NA HIGH
SCOPE ADJUSTMENTS	1		
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 1612 NO 0 NO	NO NA NO O NO	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.60	1.56	NA 1.62
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.58
GENERAL FACILITIES (PERCENT) 10	10	10

for ESP upgrade, resulting in overall moderate to high retrofit factors (1.36 to 1.58). The factors determined for new particulate controls were used in the IAPCS model to estimate the particulate control costs.

Table 7.4.1-4 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include upgrading the ESPs and ash handling systems for boilers 1-6.

The low cost control case reduces capital and annual operating costs. The significant reduction in costs is primarily due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber, and optimization of scrubber size.

Coal Switching Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, pulverizer capacity, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be determined.

The ESP performance impacts were evaluated using the IAPCS model to estimate the needed plate area. This plate area was compared to the existing area to determine whether SO_3 conditioning or additional plate area was needed. SO_3 conditioning was assumed to reduce the needed plate area up to 25 percent.

Costs were generated to show the impact of two different coal fuel cost differentials. The costs associated with each boiler for the range of fuel cost differential are shown in Table 7.4.1-5.

NO, Control Technology Costs--

This section presents the performance and various related costs estimated for NO_{χ} controls at the Joppa steam plant. These controls include LNC and selective catalytic reduction. The application of NO_{χ} control technologies is determined by several site-specific factors which are discussed in Section 2. The NO_{χ} technologies evaluated at the steam plant were: OFA and SCR.

Technology	Boiler	Main	Boiler	Capacit	y Coal	Capital	Capital	Annua l	Annual	\$02	\$02	SO2 Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
	1	Difficulty	/ (MW)	(%)	Content	(\$MM)	(\$/kW)	(\$HM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor			(%)							
			4.67	45		<i></i>			o. /	~ ~	7505	
L/S FGD	1, 5		183	15	2.0	60.7	331.4	22.7		90.0	3595	6325.3
L/S FGD	2,6	1.41	183	13	2.0	60.6	331.4	22.5	107.9	90.0	3116	7218.1
L/S FGD	3,4	1.60	183	15	2.0	68.0	371,4	25.2	104.8	90.0	3595	7011.2
L/S FGD-C	1, 5	1.41	183	15	2.0	60.7	331:4	13.3	55.3	90.0	3595	3699.6
L/S FGD-C	2,6	1.41	183	13	2.0	60.6	331.4	13.2	63.1	90.0	3116	4222.8
L/S FGD-C	3,4	1.60	183	15	2.0	68.0	371.4	14.7	61.3	90.0	3595	4101.7
LC FGD	1-6	1.50	1100	14	2.0	183.1	166_4	68 .2	50.6	90.0	20168	3382.6
LC FGD-C	1-6	1.50	1100	14	2.0	183.1	166.4	39.9	29.6	90.0	20168	1978.7
LSD+FF	1,5	1.40	183	15	2.0	45.9	250.8	15.9	66.3	87.0	3455	4612.1
LSD+FF	2,6	1.40	183	13	2.0	45.9	250.8	15.8	75.9	87.0	2994	5280.9
LSD+FF	3,4	1.62	183	15	2.0	52.8	288.7	17.9	74.2	87.0	3455	5167.3
LSD+FF-C	1,5	1.40	183	15	2.0	45.9	250.8	9.3	38.8	87.0	3455	2702.0
LSD+FF-C	2,6	1.40	183	13	2.0	45.9	250.8	9.3	44.5	87.0	2994	3094.3
LSD+FF-C	3,4	1.62	183	15	2.0	52.8	288.7	10.5	43.5	87.0	3455	3029.1

Table 7.4.1-4. Summary of FGD Control Costs for the Joppa Plant (June 1988 Dollars)

Table 7.4.1-5. Summary of Coal Switching/Cleaning Costs for the Joppa Plant (June 1988 Dollars)

Technology		Main Retrofit Difficulty Factor	Size		/ Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SMN)	Annual Cost (mills/kwh)		SO2 Removed (tans/yr)	SO2 Cost Effect. (\$/ton)
	•••••	•••••	••••••							••••••		
CS/B+\$15	1,3,	4 1.00	183	15	2.0	7.2	39.5	4.9	20.2	57.0	2258	2156.3
CS/B+\$15	2,6	1.00	183	13	2.0	7.2	39.5	4.4	21.3	57.0	1957	2270.5
C5/B+\$15-C	1,3,4	4 1.00	183	15	z.0	7,2	39.5	2.8	11.7	57.0	2258	1249.7
CS/8+\$15-C	2,6	1.00	183	13	2.0	7.2	39.5	2.6	12.4	57.0	1957	1317.4
CS/B+\$5	1,3,4	4 1.00	183	15	2.0	5.3	29.1	2.6	10.6	57.0	2258	1129.4
CS/B+\$5	2,6	1.00	183	13	2.0	5.3	29.1	2.4	11.5	57.0	1 957	1221.0
CS/B+\$5-C	1,3,4	4 1.00	183	15	2.0	5.3	29.1	1.5	6.2	57.0	2258	657.6
CS/8+\$5-C	2,6	1.00	183	13	2.0	5,3	29,1	1.4	.6.7	57.0	1957	711.8

Low NO_y Combustion--

Units 1 to 6 are dry bottom, tangential-fired boilers rated at 183 MW each. The combustion modification technique applied for this evaluation was OFA. As Tables 7.4.1-6 and 7.4.1-7 show, the OFA NO_{χ} reduction performance for units 1 to 6 was estimated to be 20 percent for all units. This reduction performance level was assessed by examining the effects of heat release rates and furnace residence time through the use of the simplified NO_{χ} procedures. Table 7.4.1-8 presents the cost of retrofitting OFA at the Joppa plant.

Selective Catalytic Reduction--

Tables 7.4.1-6 and 7.4.1-7 present the SCR retrofit results for each unit. The results include process area retrofit difficulty factors and scope adder costs. For scope adders, costs were estimated for building and ductwork demolition, new heat exchanger, and new duct runs to divert the flue gas from the ESPs to the SCR reactor and from the reactor to the chimney. The estimate of the reactor sizes was based on an examination of the aerial photograph of the plant.

It was assumed that the reactors for units 1 to 6 would be located behind or beside respective chimneys. Some demolition and relocation would be involved with the placement of the reactors for units 1 to 6. A 25 percent general facilities factor was assigned to units 1 to 6 to account for road and building relocations.

The reactors for units 1, 2, 5 and 6 were assigned a low access/ congestion factor and units 3 and 4 were assigned a high factor because the reactors for units 3 and 4 would be surrounded by the chimneys and the coal conveyors. The ammonia storage system was placed in a remote area near the inlet channel (low access/congestion). The reactors were assumed to be in areas with high underground obstructions while the ammonia system was not. Table 7.4.1-8 presents the estimated cost of retrofitting SCR at the Joppa boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on

· · · · · · ·	<u> </u>	OILER NUMB	<u>ER</u>
OMBUSTION MODIFICATION RESULTS			
	1	2	3
FIRING TYPE	TANG	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA	OFA
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	14.5	14.5	14.5
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	31.6	31.6	31.6
FURNACE RESIDENCE TIME (SECONDS)	3.06	3.06	3.06
ESTIMATED NOX REDUCTION (PERCENT)	20	20	20
CR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	HIGH
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	163	- 163
Ductwork Demolition (1000\$)	43	43	43
New Duct Length (Feet)	130	130	130
New Duct Costs (1000\$)	917	917	917
New Heat Exchanger (1000\$)	2,678	2,678	2,678
OTAL SCOPE ADDER COSTS (1000\$)	3,638	3,801	3,801
ETROFIT FACTOR FOR SCR	1.16	1.16	1.52
ENERAL FACILITIES (PERCENT)	25	25	25

TABLE 7.4.1-6. SUMMARY OF NOX RETROFIT RESULTS FOR JOPPA UNITS 1-3

· · · ·	B0	ILER NUMBE	R
OMBUSTION MODIFICATION RESULTS			
	4	5	6
FIRING TYPE	TANG	TANG	TANG
TYPE OF NOX CONTROL	OFA	OFA	OFA
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	14.5	14.5	14.5
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	31.6	31.6	31.6
FURNACE RESIDENCE TIME (SECONDS)	3.06	3.06	3.06
ESTIMATED NOX REDUCTION (PERCENT)	20	20	20
CR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	LOW	LOW
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	81	163	0
Ductwork Demolition (1000\$)	43	43	43
New Duct Length (Feet)	130	130	130
New Duct Costs (1000\$)	917	917	917
New Heat Exchanger (1000\$)	2,678	2,678	2,678
OTAL SCOPE ADDER COSTS (1000\$)	3,719	3,801	3,638
		1 10	1 16
ETROFIT FACTOR FOR SCR	1.52	1.16	1.16

TABLE 7.4.1-7. SUMMARY OF NOX RETROFIT RESULTS FOR JOPPA UNITS 4-6

Technology	•	Main Retrofit Difficulty Factor	Size	Capacit Factor (%)	Y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Cost	Annual Cost (mills/kwh)		NDx Removed (tons/yr)	NOx Cost Effect. (\$/ton)
							• • • • • • • • • •		· • • • • • • • • • • • • • • • • • • •			
LNC-OFA	1,3,4	1.00	183	15	2.0	0.8	4.3	0.2	0.7	20.0	154	1122.9
LNC-OFA	2,6	1.00	183	13	2.0	0.8	4.3	0.2	0.8	20.0	133	1295.6
LNC-DFA-C	1,3,4	1.00	183	15	2.0	0.8	4.3	0.1	0.4	20.0 .	154	666.6
LNC-DFA-C	2,6	1.00	183	13	2.0	0.8	4.3	0.1	0.5	20.0	133	769.1
SCR-3	1	1.16	183	15	2.0	28.7	156.9	9.6	39.8	80.0	615	15575.5
SCR-3	2	1.16	183	13	2.0	28.9	157.8	.9.6	46.0	80.0	533	17996.5
SCR-3	` 3	1.52	183	15	2.0	34.1	186.2	10.9	45.4	80.0	615	17766.9
SCR-3	4	1.52	183	15	2.0	34.0	185.8	10.9	45.3	80.0	615	17743.0
SCR-3	5	1.16	183 .	15	2.0	28.9	157.8	9.6	39.9	80.0	615	15622.8
SCR-3	6	1.16	183	13	2.0	28.7	156.9	9.6	45.8	80.0	533	17941.7
SCR-3-C	1	1.16	183	15	2.0	28.7	156.9	5.6	23.3	80.0	615	9133.2
SCR-3-C	2	1.16	183	13	2.0	28.9	157.8	5.6	27.0	80.0	533	10553.9
SCR-3-C	3	1.52	. 183	15	2.0	34.1	186.2	6.4	26.6	80.0	615	10427.8
SCR-3-C	4	1.52	183	15	2.0	34.0	185.8	6.4	26.6	80.0	615	10413.7
SCR-3-C	5	1.16	183	15	2.0	28.9	157.8	5.6	23.4	80.0	615	9161.6
SCR-3-C	6	1.16	183	13	2.0	28.7	156.9	5.6	26.9	80.0	533	10521.1
SCR-7	1	1.16	183	15	2.0	28.7	156.9	8.1	33.5	80.0	615	13119.3
SCR-7	2	1.16	183	13	Z.0	28.9	157.8	8.1	38.7	80.0	533	15162.5
SCR-7	3	1.52	183	15	2.0	34.1	186.2	9.4	39.1	80.0	615	15310.7
SCR-7	4	1.52	183	15	2.0	34.0	185.8	9.4	39.1	80.0	615	15286.8
SCR-7	5	1.16	183	15	2.0	28.9	157.8	8.1	33.6	80.0	615	13166.7
SCR-7	6	1.16	183	13	2.0	28.7	156.9	8.0	38.6	80.0	533	15107.6
SCR-7-C	1	1.16	183	15	2.0	28.7	156.9	4.7	19.7	80.0	615	7725.9
SCR-7-C	2	1.16	183	13	2.0	28.9	157.8	4.8	22.8	80.0	533	8930.1
SCR-7-C	. 3	1.52	183	15	2.0	34.1	186.2	5.5	23.1	80.0	615	9020.6
SCR-7-C	4	1.52	183	15	2.0	34.0	185 .8	5.5	23.0	80.0	615	9006.3
SCR-7-C	5	1.16	183	15	2.0	28.9	157.8	4.8	19.8	80.0	615	7754.4
SCR-7-C	6	1.16	183	13	2.0	28.7	156.9	4.7	22.7	80.0	533	8897.4

Table 7.4.1-8. NOx Control Cost Results for the Joppa Plant (June 1988 Dollars)

commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas for all units would be located between the powerhouse and the coal storage/handling area in a layout similar to that for LSD-FGD. The retrofit of DSD at Joppa would be difficult for several reasons. The ESP SCAs are small (121) and there is little duct residence time (<1 second) between the boilers and the ESPs. A new baghouse would be required for DSD retrofit and would be located in the congested area behind the ESPs, close to the chimneys. Finally, a 30 foot duct run would be required to reroute the flue gas from the existing ESPs to the new baghouse and then back to the chimney. It was assumed that the existing ESPs could not be cost effectively upgraded for FSI with additional plate area due to the high site access/congestion caused by the close proximity of the ESPs to each other and the chimneys. Table 7.4.1-9 and 7.4.1-10 present a summary of the site access/congestion factors, scope adders, and retrofit factors for DSD and FSI at the Joppa steam plant. Only costs for DSD with new fabric filters are presented in Table 7.4.1-11.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Joppa plant. The boilers at Joppa would be considered good candidates for AFBC retrofit and AFBC or CG/combined cycle repowering because of their small boiler sizes (<200) and their age (pre-1960 installation date). These boilers also have low capacity factors indicating that replacement power costs for extended boiler outage would be minimal. Additionally, the low capacity factor would indicate that these boilers have high heat rates and a significant improvement in unit heat rate could result from retrofit or repowering of these boilers.

TABLE 7.4.1-9.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR JOPPA UNITS 1,2,5,6

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	MEDIUM HIGH MEDIUM
SCOPE ADDERS	· ·
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$)	YES 1,612
ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT)	300 1,963 NA NA 50
DEMOLITION COST (1000\$)	47
TOTAL COST (1000\$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	1,659 2,010
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.25 1.55 1.34

TABLE 7.4.1-10.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR JOPPA UNITS 3-4

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	MEDIUM HIGH HIGH
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 1612
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	300 1,963 NA NA 50 47
TOTAL COST (1000\$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	1,659 2,010
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.25 1.55 1.55

Table 7.4.1-11. Summary of DSD/FSI Control Costs for the Joppa Plant (June 1988 Dollars)

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Capital Cost (\$MM)	Capital Cost (\$/k≌)	Annual Cost (\$MM)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
DSD+FF	1,5	1.00	183	15	2.0	29.9	163.3	11.0	45.8	71.0	2826	3895.9
DSD+FF	2,6	1.00	183	13	2.0	29.9	163.3	10.9	52.3	71.0	2449	4448.7
DSD+FF	3,4	1.00	183	15	2.0	33.2	181.5	11.9	49.4	71.0	2826	4201.0
DSD+FF-C	1,5	1.00	183	- 15	2.0	29.9	163.3	6.4	26.8	71.0	2826	2279.5
D\$D+FF-C	2,6	1.00	183	13	2.0	29.9	163.3	6.4	30.6	71.0	2449	2603.5
DSD+FF-C	3,4	1.00	183	15	2.0	33.2	181.5	7.0	28.9	71.0	2826	2459.5

7.5 ILLINOIS POWER COMPANY

7.5.1 Baldwin Steam Plant

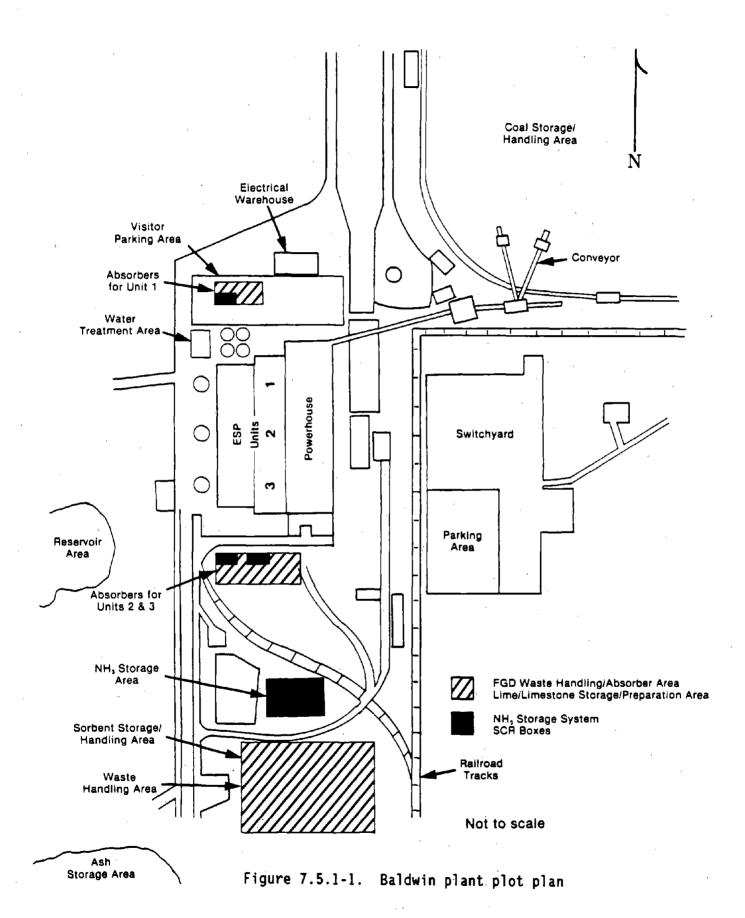

The Baldwin plant is located within Randolph County, Illinois, as part of the Illinois Power Company system. The plant contains three coal-fired boilers with a net generating capacity of 1,680 MW. Figure 7.5.1-1 presents the plant plot plan showing the location of all the boilers and major associated auxiliary equipment.

Table 7.5.1-1 presents operational data for the existing equipment at the Baldwin steam plant. All boilers burn high sulfur coal (2.8 percent sulfur). Coal shipments are received by rail and conveyed to a coal storage and handling area located northeast of unit 1.

Particulate matter emissions for all three boilers are controlled with ESPs located behind each unit. Ash from all units is wet sluiced to ponds located southwest of the plant. Limited space is available for waste disposal and excess furnace waste may need to be dry disposed of off-site.

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 7.5.1-1 shows the general layout and location of the FGD control system. The ESPs for each unit are directly behind the boilers, followed by the chimneys (one for each boiler), in front of the cooling water reservoir. The absorber for unit 1 was located north of the unit 1 chimney beside the water treatment area. There is limited space between units 2-3 and the cooling water reservoir to locate the absorbers for these units; therefore, the absorbers would be located in an area to the south of unit 3. Plant roads and an employee parking area would need to be relocated to accommodate the placement of the FGD absorbers. Finally, the limestone preparation/ storage and waste handling areas were placed directly south of the unit 2 and 3 absorbers. Because of the relocation of the employee parking area and plant roads for unit 1, a factor of 10 percent was assigned to general facilities. No major demolition/relocation would be required for units 2 and 3 FGD system and a factor of 5 percent was assigned to general facilities.

7-123

۰.

TABLE 7.5.1-1. BALDWIN STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	P0 1	2 560 63.7 1973 CYC 2.8 10700 10.5 T SLUICE ND/ON-SITE 2 ILROAD	3 560 68.3 1975 TANG 2.8 10700 10.5
PARTICULATE CONTROL		•	· ·
TYPE INSTALLATION DATE EMISSION LIMIT (LB/MM BTU) REMOVAL EFFICIENCY	ESP 1970 0.20 90.3	ESP 1973 0.20 94.7	ESP 1975 0.10 99.5
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	4.5 311 1730 180 310	4.5 311 1730 180 310	4.0 542 2190 247 310

Retrofit Difficulty and Scope Adder Costs---

The absorber locations for all units were assigned low site access/congestion factors. The absorbers for unit 1 would be located north of the respective unit in an area with no major obstacles/obstructions. The absorbers for units 2 and 3 were located in an area slightly remote from the chimneys south of unit 3. A medium flue gas handling factor was assigned to unit 1, due to the congestion created by the water treatment area. A high site access/congestion factor was assigned to unit 2 flue gas handling system because of the access difficulty caused by the unit 3 chimney/ESP. A moderate site congestion factor was assigned to unit 3 flue gas handling system because of the limited space availability around the chimney. A moderate duct length was required for unit 3, while long duct runs would be needed for units 1 and 2.

The major scope adjustment costs and estimated retrofit factors for the FGD control technologies are presented in Tables 7.5.1-2 through 7.5.1-4. The largest scope adder for the Baldwin plant would be the conversion of units 1 through 3 fly ash conveying/disposal system from wet to dry for conventional L/LS-FGD cases. It was assumed that dry fly ash would be used to stabilize part of the conventional L/LS-FGD scrubber sludge waste. The overall retrofit factors determined for the L/LS-FGD cases were moderate (1.35 to 1.53). The conversion of wet to dry ash handling is not required for L/LS forced oxidation application.

For the LSD-FGD reuse ESP case, a large plate area addition would be required to upgrade the ESPs for units 1 and 2 due to the small SCAs (<200). Because the existing ESPs are located in a highly congested area, LSD with a new baghouse was the only LSD-FGD case evaluated for units 1 and 2. However, unit 3 ESPs are moderate in size (>240) and LSD reuse ESP was the only case considered for unit 3. The retrofit factors determined for the LSD technology were moderate (1.38 to 1.43) and did not include particulate control costs. Separate retrofit factors were estimated for upgrading ESPs (1.58) and the new baghouses (1.16) to reflect the access/congestion associated with their locations. These factors were used in the IAPCS model to estimate the new particulate control costs. TABLE 7.5.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR BALDWIN UNIT 1

		FGD TE	CHNOLOGY
· · · ·	<u>L/LS FGD C</u>	FORCED XIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION	•		х.
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	LOW MEDIUM 600-1000 NA NA	LOW MEDIUM 600-1000 NA NA	LOW NA MEDIUM NA 600-1000 NA LOW
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 4393 NO O NO	NO NA NO O NO	NO NA NO O NO
RETROFIT FACTORS	·	·	
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	1.49 NA NA	1.42 NA NA	NA 1.38 NA 1.16
GENERAL FACILITIES (PERCENT) 10	10	10

TABLE 7.5.1-3. SUMMARY OF RETROFIT FACTOR DATA FOR BALDWIN UNIT 2

_		FGD TE	CHNOLOGY
·	L/LS_FGD_O	FORCED DXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			• •
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	LOW HIGH	LOW HIGH	LOW NA HIGH
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	600-1000	600-1000	NA 600-1000
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA LOW
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 4393 NO O NO	NO NA NO O NO	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.58	1.50	NA 1.47
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.16
GENERAL FACILITIES (PERCENT) 5	5	5

TABLE 7.5.1-4. SUMMARY OF RETROFIT FACTOR DATA FOR BALDWIN UNIT 3

_		FGD TE	CHNOLOGY
۰	L/LS FGD	FORCED DXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	LOW MEDIUM	LOW MEDIUM	LOW
ESP REUSE CASE BAGHOUSE CASE			MEDIUM NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	300-600	300-600	300-600 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	HIGH NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 4393 NO O NO	NO NA NO O NO	YES 4393 NO 0 NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE	1.42	1.35	1.38
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.58 NA
GENERAL FACILITIES (PERCEN	T) 5	5	- 5

FGD Retrofit Costs--

Table 7.5.1-5 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include installing new baghouses to handle the additional particulate loading for boilers 1 and 2 and upgrading the ESPs and ash handling systems for boiler 3.

The low cost control case was evaluated separately for unit 1 and combined for units 2 and 3. For unit 1, the significant reduction in costs is primarily due to the elimination of spare scrubber module and optimization of scrubber size. For units 2 and 3, an additional reduction in cost occurs due to the benefit of economies-of-scale when combining process areas.

Coal Switching Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, pulverizer capacity, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be determined. This is particularly true for cyclone boilers. As such, coal switching was not evaluated for units 1 and 2. The transportation cost differential might be substantial resulting in a higher fuel price differential as assumed in this report.

Unit 3 ESP performance impacts were evaluated using the IAPCS model to estimate the needed plate area. This plate area was compared to the existing area to determine whether SO_3 conditioning or additional plate area was needed. SO_3 conditioning was assumed to reduce the needed plate area up to 25 percent. Costs were generated to show the impact of two different coal fuel cost differentials. The costs associated with each boiler for the range of fuel cost differential are shown in Table 7.5.1-6.

NO, Control Technology Costs--

This section presents the performance and various related costs estimated for NO_{χ} controls at the Baldwin plant. These controls include LNC and SCR. The application of NO_{χ} control technologies is determined by several site-specific factors which are discussed in Section 2. The NO_{χ} technologies evaluated at the Baldwin plant were: NGR - units 1 and 2, OFA unit 3, and SCR - all units. Table 7.5.1-5. Summary of FGD Control Costs for the Baldwin Plant (June 1988 Dollars)

rechnology	Boiler			Capacity	•		Capital		Annual	502	\$02	SO2 Cos
		Retrofit			Sulfur	Cost	Cost	Cost			Removed	Effect
		Difficulty Factor	' (MW)	(%)	Content (%)	(SM M)	(\$/kW)	(SHM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton
· · · · · · · · · · · · · · · · · · ·					• • •		••••••					•••••
/S FGD	1	1.49	560	62	2.8	142.1	253.7	70.5	23.1	90.0	70872	995.
/S FGD	Z	1.58	560	64	2.8	145.3	259.5	72.1	23.1	90.0	72464	995.
/S FGD	3	1.42	560	68	2.8	132.5	236.5	69.5	20.7	90.0	77697	894.
./S FGD-C	1	1.49	560	62	2.8	142.1	253.7	41.0	13.4	90.0	70872	579.
/S FGD-C	2	1.58	560	64	2.8	t45.3	259.5	42.0	13.4	90.0	72464	579.
/S FGD-C	3	1.42	560	68	2.8	132.5	236.5	40.4	12.1	90.0	77697	520.
C FGD	1	1.49	560	62	2.8	115.4	206.1	61.8	20.2	90.0	70872	871.
C FGD	2-3	1.50	1120	66	2.8	1 98.2	176.9	112.2	17.3	90.0	150162	747,
C FGD-C	1	1.49	560	62	2.8	115.4	206.1	35.9	11.7	90.0	70872	506.
.C FGD-C	2-3	- 1,50	1120	66	2.8	198.2	176.9	65.2	10.1	90.0	150162	434.
SD+ESP	3	1.38	560	68	2.8	79.8	142.5	41.2	12.3	72.0	61973	664.
SD+ESP-C	3	1.38	560	68	2.8	79.8	142.5	23.9	. 7.1	72.0	61973	386.3
.SD+FF	1	1.38	560	62	2.8	115.4	206.0	48.5	15.9	87.0	68115	712.
.SD+FF	2	1.47	560	64	2.8	117.5	209.B	49.5	15.8	87.0	69646	710.
SD+FF-C	1	1.38	560	62	2.8	115.4	206.0	28.3	9.3	87.0	68115	415.
SD+FF-C	2	1.47	560	64	2.8	117.5	209.8	28.9	9.2	87.0	69646	414.

Table 7.5.1-6. Summary of Coal Switching/Cleaning Costs for the Baldwin Plant (June 1988 Dollars)

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)		Capital Cost (\$MM)	Cost	Annual Cost (SHH)			SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
CS/B+\$15	3	1.00	560	68	2.8	17.2	30.7	46.7	13.9	72.0	62137	752.1
CS/8+\$15-C	3	1.00	560	68	2.8	17.2	30.7	26.9	8.0	72.0	62137	432.1
CS/B+ \$ 5	3	1.00	560	68	2.8	11.4	20.3	18.0	5.4	72.0	62137	290,3
CS/8+\$5-C	3	1.00	560	68	2.8	11.4	20.3	10.4	3.1	72.0	62137	167.2

Low NO, Combustion--

Units 1 and 2 are wet bottom, cyclone-fired boilers rated at 560 MW each. The combustion modification technique applied to both boilers was NGR. Unit 3 is a dry bottom, tangential-fired boiler rated at 635 MW. The combustion modification technique applied for this unit was OFA. The NO_X reduction performance estimated for unit 3 was 25 percent. Table 7.5.1-7 presents the results for all boilers evaluated for NO_X control applicability at the Baldwin plant. Table 7.5.1-8 presents the cost of retrofitting NGR and OFA at the Baldwin plant. For this study it was assumed that the plant has access to a natural gas pipeline. However, plant personnel indicated that 18 miles of pipeline and interconnection is expected to add at least 10 million dollars to the capital cost.

Selective Catalytic Reduction--

Table 7.5.1-7 presents the SCR retrofit results for each unit. The results include process area retrofit difficulty factors and scope adder costs. The scope adders include costs estimated for ductwork demolition, new heat exchanger, and new duct runs to divert the flue gas from the ESPs to the reactor and from the reactor to the chimney. A 25 percent general facilities factor was assigned to unit 1. Part of the visitor parking area and the roadway would have to be relocated.

The reactor for unit 1 was located north of the unit 1 chimney beside the water treatment area. Because the location of the reactor is in an open area with no major obstructions, this reactor was assigned a low access/ congestion factor. The SCR reactors for units 2 and 3 would be located south of unit 3 in an open area with no major obstructions where the fourth unit would be built. Access to this area is relatively easy. For this reason, both reactors were assigned low access/congestion factors. All reactors were located in areas with high underground obstructions. Finally, the ammonia storage system, which would supply ammonia to the reactors for all three units, would be located southeast of the reactors for units 2 and 3 in an area with low access/congestion and no significant underground obstructions.

As discussed in Section 2, all NO_{χ} control techniques were evaluated independently from those techniques evaluated for SO₂ control. In this case,

· · · · ·	BO I	LER NUMBER	<u></u>
COMBUSTION MODIFICATION RESULTS			
	1	2	3
FIRING TYPE	CY	CY	TANG
TYPE OF NOX CONTROL	NGR	NGR	OFA
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	NA	NA	10.8
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	NA	NA	72.4
FURNACE RESIDENCE TIME (SECONDS) _	NA	NA	4.17
ESTIMATED NOX REDUCTION (PERCENT)	60	60	25
SCR RETROFIT RESULTS			
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	98	98	98
New Duct Length (Feet)	800	1000	650
New Duct Costs (1000\$)	10860	13575	8824
New Heat Exchanger (1000\$)	5240	5240	5240
TOTAL SCOPE ADDER COSTS (1000\$)	16198	18913	14162
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16
GENERAL FACILITIES (PERCENT)	25	13	13

TABLE 7.5.1-7. SUMMARY OF NOX RETROFIT RESULTS FOR BALDWIN

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Capital Cost (SMM)	Capital Cost (\$/k¥)	Annual Cost (SMM)	Annual Cost (mills/kwh)		NOx Removed (tons/yr)	NOx Cost Effect. (\$/ton)
LNC-OFA	3	1.00	560	68	2.8	1.2	2.2	0.3	0.1	25.0	2965	91.0
LNC-OFA-C	3	1.00	560	68	2.8	1.2	2.2	0.2	0.0	25.0	2965	54.0
NGR	1	1.00	560	62	2.8	8.1	14.4	16.7	5.5	60.0	16009	1043.6
NGR	2	1.00	560	64	2.8	8.1	14.4	17.1	5.5	60.0	16369	1042.2
NGR-C	1	1.00	560	62	2.8	8.1	14.4	9.6	3.1	60.0 [°]	16009	600.2
NGR-C	2	1.00	560	64	2.8	8.1	14.4	9.8	3.1	60.0	16369	599.3
SCR-3	1	1.16	560	62	2.8	78.3	139.9	29.1	9.5	80.0	21345	1364.7
SCR-3	2	1.16	560	64	2.8	78.8	140.8	29.1	9.3	80.0	21825	1333.6
SCR-3	3	1.16	560	68	2.8	73.7	131.6	26.9	8.0	80.0	9487	2835.0
SCR-3-C	1	1.16	560	62	2.8	78.3	139.9	17.0	5.6	80.0	21345	798.3
SCR-3-C	2	1.16	560	64	2.8	78.8	140.8	17.0	5.4	80.0	21825	780.2
SCR-3-C	- 3	1.16	560	68	2.8	73.7	131.6	15.7	4.7	80.0	9487	1659.1
SCR • 7	1	1.16	560	62	2.8	78.3	139.9	24.4	8.0	80.0	21345	1145.4
SCR-7	2	1.16	560	64	2.8	78.8	140.8	24.4	7.8	80.0	21825	1119.1
SCR-7	3	1.16	560	. 68 -	2.8	73.7	131.6	22.2	6.6	80.0	9487	2341.7
SCR-7-C	1	1.16	560	62	2.8	78.3	139.9	14.4	4.7	80.0	21345	672.7
SCR-7-C	2	1.16	560	64	2.8	78.8	140.8	14.3	4.6	80.0	21825	657.4
SCR-7-C	3	1.16	560	68	2.8	73.7	131.6	13.1	3.9	80.0	9487	1376.4

Table 7.5.1-8. NOx Control Cost Results for the Baldwin Plant (June 1988 Dollars)

.....

the three SCR reactors are located in the same areas as the FGD absorbers. If both SO_2 and NO_x emissions needed to be reduced at this plant, the SCR reactors would have to be located downstream of the FGD absorbers using this scheme. The SCR reactor for unit 1 would be located east of the FGD absorbers for unit 1; whereas, the SCR reactors for units 2 and 3 would be located immediately south of the FGD absorbers for units 2 and 3. The new locations of the reactors are generally in open areas having easy access. Therefore, low access/congestion factors again would be assigned to these reactors. Table 7.5.1-8 presents the estimated cost of retrofitting SCR at the Baldwin boilers. SCR application on cyclone boilers burning high sulfur coal would have a high degree of uncertainty because of the lack of commercial experience.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas for all units were located south of the plant. The layout and location would be similar to that for LSD-FGD. The retrofit of DSD at Baldwin would be difficult. The SCAs for units 1 and 2 are small (<200) for DSD application. Even though the SCA for unit 3 is moderate in size and might be sufficient to handle the increased particulate load resulting from sorbent injection application, there is short duct residence time between the boiler and the ESP in addition to the location of the ESP in a high access/congestion area. Therefore, it was assumed that new particulate controls would be needed for the DSD technology. Over 400 feet of duct runs would be required to divert the flue gas from the boilers to the baghouses and back to the existing chimneys. It was assumed that the ESPs could be upgraded for FSI for unit 3 but not for units 1 and 2 which would require additional plate area. As such, FSI costs for units 1 and 2 were not reported. The conversion of wet to dry ash handling system would be required for reusing the ESPs for FSI technology. Tables 7.5.1-9 through 7.5.1-11 present a summary of site access/congestion factors, scope adders, and retrofit factors for DSD and FSI technologies at the Baldwin steam plant. The costs are shown on a dollar (\$) per boiler basis. Table 7.5.1-12 presents the costs estimated to retrofit DSD with new fabric filter and FSI on unit 3 for the Baldwin plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Baldwin plant. The boilers at Baldwin would not be considered candidates for AFBC retrofit and AFBC/CG/combined cycle repowering because all boilers are large (MW >600) and were built after 1970.

7.5.2 <u>Hennepin Steam Plant</u>

The Hennepin steam plant is located within Putnam County, Illinois, as part of the Illinois Power Company system. The plant is located beside the Illinois River and contains two coal-fired boilers with a total gross generating capacity of 280 MW.

Table 7.5.2-1 presents operational data for the existing equipment at the Hennepin plant. The boilers burn high sulfur coal. Coal shipments are received by barge and transferred to a coal storage and handling area west of the plant and adjacent to the river.

PM emissions for the boilers are controlled with retrofit ESPs located behind each unit. The plant has a wet fly ash handling system. Fly ash is disposed of on-site in an ash pond located east of the plant. Both units are ducted to a common chimney located beside the river.

Lime/Limestone and Lime Spray Drying FGD Costs--

Boilers 1 and 2 are located beside each other, parallel to the river, with the water intake and discharge structure located directly behind the chimney. The FGD absorbers would be placed east of unit 2 which will require relocating some railroad tracks to make sufficient space available

TABLE 7.5.1-9.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR BALDWIN UNIT 1

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	LOW NA LOW
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$) TOTAL COST (1000\$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	NO 0 7551 NA 50 109 0
A NEW BAGHOUSE CASE (DSD) RETROFIT FACTORS	7660
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE_(FSI)	1.13
NEW BAGHOUSE (DSD)	NA 1.16

TABLE 7.5.1-10.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR BALDWIN UNIT 2

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	LOW NA LOW
SCOPE_ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	NO O
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE	900 11,325 NA NA
ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	50 109
TOTAL COST (1000\$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	0 11,435
RETROFIT FACTORS	,
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.13 NA 1.16

TABLE 7.5.1-11. DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION TECHNOLOGIES FOR BALDWIN UNIT 3

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	LOW HIGH LOW
SCOPE ADDERS	· .
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$) TOTAL COST (1000\$) ESP UPGRADE CASE (FSI)	YES 4,393 600 7,551 NA NA 50 109 4,502
A NEW BAGHOUSE CASE (DSD)	7,660
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.13 1.58 1.16

Table 7.5.1-12. Summary of DSD/FSI Control Costs for the Baldwin Plant (June 1988 Dollars)

rechnology		Main Retrofit Difficulty	Size	Capacity Factor (%)	y Coal Sulfur Content	Capital Cost (SHM)	Capital Cost (\$/kW)	Annual Cost (SHH)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
		Factor		· • • • • • • • • •	`(X)		·					
SD+FF	1	1.00	560	62	2.8	72.6	129.6	34.6	11.3	71.0	55713	621.4
SD+FF	2	1.00	560	64	2.8	76.5	136.7	35.6	11.4	71.0	56965	625.5
SD+FF	3	1.00	560	68	2.8	76.6	136.8	38.7	11.5	69.0	59968	644.6
SD+FF-C	1	1.00	560	62	2.8	72.6	129.6	20.2	6.6	71.0	55713	361.8
SD+FF-C	Z	1.00	560	64	2.8	76.5	136.7	20.8	6.6	71.0	56965	364.4
SD+FF-C	- 3	1.00	560	. 68	2.8	76.6	136.8	22.5	6.7	69.0	59968	375.1
SI+ESP-50	3	1.00	560	68	2.8	33.6	59.9	35.7	10.7	50.0	43165	827.2
SI+ESP-50-C	3	1.00	560	68	2.8	33.6	59.9	20.6	6.2	50.0	43165	477.4
SI+ESP-70	3	1.00	560	68	2.8	33.2	59.3	36.2	10.8	70.0	60431	599.7
SI+ESP-70-C	3	1.00	560	68	2.8	33.2	59.3	20.9	6.2	70.0	60431	346.0

333

TABLE 7.5.2-1. HENNEPIN STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1953 TANGENTIAL 49.8	2 210 64.6 1959 TANGENTIAL 128.5 NO 2.67 10800 10.5
PARTICULATE CONTROL		
EMISSION (LB/MM BTU) REMOVAL EFFICIENCY	1974	ESP 1972 0.12 97.5
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	2.8 64.8 290 223 305	2.8 147 750 196 335

for the absorbers. A low site access/congestion factor was assigned to the FGD absorber locations. The sorbent preparation, storage, and handling area would be located beside the absorbers. Because railroad tracks have to be relocated, a factor of 10 percent was assigned to general facilities. A temporary waste handling area would be located close to the storage area. However, because of the limited space available, waste generated by the FGD application has to be transferred off-site.

It was assumed that a new chimney would be constructed beside the absorbers to reduce the required flue gas duct length to approximately 500 feet of duct. A high site access/congestion factor was assigned to the flue gas handling system reflecting the congestion around the units.

LSD with reuse of the existing ESPs was not considered for this plant because the ESPs are small (SCAs <225) and would require major upgrading and additional plate area to handle the increased PM generated from the LSD application. In addition, access to the upstream of the ESPs is very difficult. LSD with a new baghouse was not considered because the boilers are not burning low sulfur coal.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 7.5.2-2. Table 7.5.2-3 presents the process area retrofit factors and capital/operating costs for commercial L/LS-FGD technologies. The low cost FGD case shows the reduction in cost associated with eliminating spare absorbers and maximizing absorber size.

Coal Switching and Physical Coal Cleaning Costs--

Table 7.5.2-4 presents the IAPCS results for CS at the Hennepin plant. These costs do not include impacts due to changes in boiler and pulverizer operating costs; however, does include ESP upgrade costs. PCC was not evaluated because this is not a mine mouth plant.

Low NO_y Combustion--

Units 1 and 2 are dry bottom tangential-fired boilers rated at 70 and 210 MW. The combustion modification technique applied to both boilers was OFA. Tables 7.5.2-5 and 7.5.2-6 present the NO_x reduction performance and cost results of retrofitting OFA at Hennepin. Although furnace volume data

TABLE 7.5.2-2. SUMMARY OF RETROFIT FACTOR DATA FOR HENNEPIN UNITS 1 OR 2

	· _	FGD TE	CHNOLOGY
· · · · · · · · · · · · · · · · · · ·	L/LS FGD OX	FORCED IDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE	LOW HIGH	NA NA	NA
BAGHOUSE CASE DUCT WORK DISTANCE (FEET) ESP REUSE	300-600	NA	NA NA
BAGHOUSE ESP REUSE NEW BAGHOUSE	NA	NA NA	NA NA NA
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 681, 1823 YES 490, 1470 NO	NA NA NA O	NA NA NA O
RETROFIT FACTORS			,
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE	1.48	NÄ	NA NA
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA NA NA
GENERAL FACILITIES (PERCENT	r) 10	0	0

Technology	Boiler Mein E Number Retrofit Difficulty		Size		y Coal Sulfur Content	Cost	Capital Cost (\$/k¥)	Annual Cost (SHMI)			SO2 Removed (tons/yr)	SO2 Cost Effect. (\$/ton)
	Factor				(%)							
L/S FGD	1	1.48	70	43	2.7	42.3	604.4	17.8	68.1	90.0	5779	3078.6
L/S FGD	2	1.48	210	65	2.7	72.4	344.7	34.4	29.0	90.0	26291	1309.3
L/S. FGD	1-2	1.48	280	59	2.7	87.7	313.1	41.1	28.3	90.0	32071	1281.1
L/S FGD-C	1	1.48	70	43	2.7	42.3	604.4	10.4	39.7	90.0	5779	1796.6
L/S FGD-C	2	1.48	210	65	2.7	72.4	344.7	20.0	16.9	90.0	26291	762.5
L/S FGD-C	1-2	1.48	280	59	2.7	87.7	313.1	23.9	16.5	90.0	32071	746.2
LC FGD	1-2	1.48	280	59	2.7	66.6	237.8	34.2	23.6	90.0	32071	1065.0
LC FGD-C	1-2	1.48	280	59	2.7	66.6	237.8	19.9	13.7	90.0	32071	.619.5

Table 7.5.2-3. Summary of FGD Control Costs for the Hennepin Plant (June 1988 Dollars)

	********	*=========	******		********	22222233	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	******	x=33 BX2=375;		**********	5223 3 5223
Technology	. Boiler Number	Main Retrofit			y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Remove	SO2 d Removed	SO2 Cost Effect.
	• • • • • • • • • •	Difficulty Factor	<u>(</u> ₩₩)	(%)	Content (%)	(\$NH)	(\$/k¥)	(SHH)	(mills/kwh)) (%)	(tons/yr)	(\$/ton)
CS/B+\$15	1	1.00	70	43	2.7	3.0	43.4	4.3	16.5	71.0	4535	950.9
CS/B+\$15	2	1.00	210	65	2.7	8.5	40.4	17.5	14.7	71,0	20632	848.8
CS/8+\$15-C	1	1.00	70	43	2.7	3.0	43.4	2.5	9.5	71.0	4535	547.8
CS/8+\$15-C	2	1.00	210	65	2.7	8.5	40.4	10.1	8.5	71.0	20632	488.1
CS/8+\$5	1	1.00	70	- 43	2.7	2.3	33.1	2.0	7.8	71.0	4535	447.1

Table 7.5.2-4. Summary of Coal Switching/Cleaning Costs for the Hennepin Plant (June 1988 Dollars)

6.3

2.3

6.3

30.0

33.1

30.0

7.3

1.2

4.2

6.2

4.5

3.6

71.0

71.0

71.0

20632

4535

20632

354.6

258.5

204.5

1.00

1.00

1.00

2

1

2

CS/B+\$5

CS/8+\$5-C

CS/B+\$5-C

210

70

210

65

43

65

2.7

2.7

2.7

	BOILER NU	MBER	
COMBUSTION MODIFICATION RESULTS			
	1	2	1-2
FIRING TYPE	TANG	TANG	NA
TYPE OF NOX CONTROL	OFA	OFA	NA
FURNACE VOLUME (1000 CU FT)	49.8	128.5	NA
BOILER INSTALLATION DATE	1953	1959	NA
SLAGGING PROBLEM	NO	NO	NA
ESTIMATED NOX REDUCTION (PERCENT)	25	25	NA
SCR RETROFIT RESULTS (COMBINED)	· ·	. ~	•
SITE ACCESS AND CONGESTION FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS			1
New Chimney (1000\$)	NO	NO	NO
Ductwork Demolition (1000\$)	⁻ 21	47	59
New Duct Length (Feet)	500	500	500
New Duct Costs (1000\$)	2011	3824	4525
New Heat Exchanger (1000\$)	1505	2909	3457
TOTAL SCOPE ADDER COSTS (1000\$)	3536	6780	. 8040
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16
GENERAL FACILITIES (PERCENT)	13	13	13

TABLE 7.5.2-5. SUMMARY OF NOx RETROFIT RESULTS FOR HENNEPIN

rechnology	Boiler Number	Main Retrofit		•	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	NOx Removed	NOx Removed	NOX Cost Effect.
		Difficulty Factor	(MW)	(X)	Content (%)	(\$44)	(\$/k\)	(\$14)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
NC-OFA	1	1.00	70	43	2.7	0.5	7.7	0.1	0.4	25.0	229	512.1
NC-OFA	2	1.00	210	65	2.7	0.8	4.0	0.2	0.2	25.0	1040	175.1
NC-OFA-C	1	1.00	70	43	2.7	0.5	7.7	0.1	0.3	25.0	229	303.9
NC-OFA-C	2	1.00	210	65	2.7	0.8	4.0	0.1	0.1	25.0	1040	103.9
SCR-3	1	1.16	70	43	2.7	16.2	231.8	5.1	19.4	80.0	732	6922.6
SCR-3	2	1.16	210	65	2.7	33.8	160.7	11.5	9.7	80.0	3329	3463.7
SCR-3	1-2	1.16	280	59	2.7	42.3	151.0	14.6	10.1	80.0	4061	3593.0
SCR-3-C	1	1.16	70	43	2.7	16.2	231.8	3.0	11.4	80.0	732	4065.6
SCR-3-C	2	1.16	210	65	2.7	33.8	160.7	6.8	5.7	80.0	3329	2029.9
CR-3-C	1-2	1.16	280	59	2.7	42.3	151.0	8.5	5.9	80.0	4061	2105.2
CR-7	1	1.16	70	43	2.7	16.2	231.8	4.5	17.2	80.0	732	. 6124.2
SCR-7	2	1.16	210	65	2.7	33.8	160.7	9.8	8.2	80.0	3329	2937.2
SCR-7	1-2	1.16	280	59	2.7	42.3	151.0	12.3	8.5	80.0	4061	3017.5
CR-7-C	1	1.16	70	43	2.7	16.2	231.8	2.6	10.1	80.0	732	3608.2
CR-7-C	2	1.16	210	65	2.7	33.8	160.7	5.8	4.8	80.0	3329	1728.3
CR-7-C	1-2	1.16	280	59	2.7	42.3	151.0	7.2	5.0	80.0	4061	1775.5

Table 7.5.2-6. NOx Control Cost Results for the Hennepin Plant (June 1988 Dollars)

was not available for unit 1, it was assumed to have a low volumetric heat release rate typical of the 1950's boiler design.

Selective Catalytic Reduction--

Cold side SCR reactors for both units would be located west of unit 1. Both reactors are located in a low access/congestion area requiring about 500 feet of flue gas ducting and flue gas reheater. A base factor of 13 percent was assigned to general facilities. The ammonia storage system was placed close to the reactors, east of the plant.

Table 7.5.2-5 presents the SCR factors and scope adder costs. Table 7.5.2-6 presents the estimated cost of retrofitting SCR at the Hennepin boilers.

Duct Spray Drying and Furnace Sorbent Injection--

The retrofit of FSI or DSD technologies at the Hennepin plant for both units would be very difficult for two major reasons: 1) the ESPs have small SCAs (<225); hence, they probably would not be able to handle the increased PM and would require major upgrading and additional plate area; 2) the short duct residence time between the boilers and ESPs would not be sufficient for humidification (FSI application) or sorbent evaporation (DSD application). In addition, the ESPs are located in a high congestion area making it difficult to add plate area. Therefore, sorbent injection technologies were not considered for this plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at Hennepin. Both units would be considered potential candidates for retrofit/repowering because of their small boiler sizes. However, the high capacity factors could result in significant replacement power cost.

7.5.3 Vermilion Steam Plant

The Vermilion steam plant is located within Vermilion County, Illinois, as part of the Illinois Power Company system. The plant contains two coal-fired boilers with a total gross generating capacity of 165 MW. Figure 7.5.3-1 presents the plant plot plan showing the location of all boilers and major associated auxiliary equipment.

Table 7.5.3-1 presents operational data for the existing equipment at the Vermilion plant. The boilers burn medium sulfur coal (2.4 percent sulfur). Coal shipments are received by truck and conveyed to a coal storage and handling area located east of the powerhouse.

Particulate matter emissions for the boilers are controlled with retrofit ESPs. Fly ash is wet sluiced to ponds located west of the plant.

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 7.5.3-1 shows the general layout and location of the FGD control system. The boilers share a common chimney. The absorbers for L/LS-FGD and LSD-FGD for both units would be located north of the chimney on the other side of the railroad track. No demolition/relocation would be required; therefore, a factor of 5 percent was assigned to general facilities. However, a small amount of demolition/

relocation would be needed for the fire pump house and well water storage tank. The limestone storage/handling area and waste handling area would be located to the north of the absorbers.

Retrofit Difficulty and Scope Adder Costs--

A low site access/congestion factor was assigned to the absorber locations. Because the absorbers would be located on the other side of the railroad, the railroad would not need to be relocated.

For flue gas handling, however, moderate duct runs for the units would be required for L/LS-FGD cases to divert the flue gas from the downstream of the ESP outlets to the absorbers and back to the chimney. A low site access/congestion factor was assigned to the flue gas handling system due to no major obstacles or obstructions in the surrounding area.

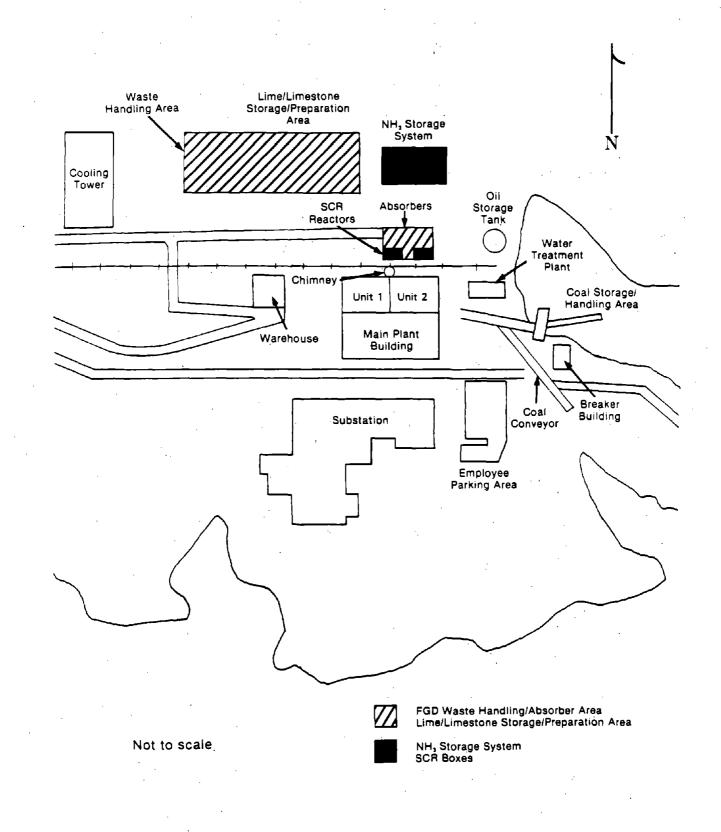


Figure 7.5.3-1. Vermilion plant plot plan

TABLE 7.5.3-1. VERMILION STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1 70 53.4 1955 TANG 2.4 10775 11.2 WET SL POND/ON 1 TRUC	I-SITE
PARTICULATE CONTROL TYPE INSTALLATION DATE EMISSION LIMIT (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) EXIT GAS FLOW RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESP 1973 0.118 99.0 2.8 55.1 254 217 310	ESP 1974 0.10 99.7 2.8 97.2 425 229 310

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 7.5.3-2. The largest scope adder for the Vermilion plant would be the conversion of units 1-2 fly ash conveying/disposal system from wet to dry for conventional L/LS-FGD cases. It was assumed that dry fly ash would be necessary to stabilize scrubber sludge waste. This conversion is not necessary for forced oxidation L/LS-FGD. The overall retrofit factors determined for the L/LS-FGD cases were low to medium (1.31 to 1.38).

The absorbers for LSD-FGD would be located in a similar location as in L/LS-FGD cases. Because the sizes are marginal and the ESPs are roof-mounted, upgrading would be difficult. The LSD-FGD technology with a new baghouse was the only case considered. For flue gas handling for LSD cases, moderate duct runs would be required the same as for L/LS-FGD cases. The retrofit factor determined for the LSD technology case was low (1.27) and did not include the new baghouse costs. A separate retrofit factor was developed for the new baghouses for the units. The baghouse locations would be adjacent to the absorbers with a low site access/congestion factor; therefore, a retrofit factor (1.16) was designated to the baghouse locationate control costs.

Table 7.5.3-3 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include installing new baghouses to handle the additional particulate loading for boilers 1 and 2. The low cost control case reduces capital and annual operating costs. The significant reduction in costs is primarily due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber module, optimization of scrubber module size, and use of organic acid additives.

Coal Switching Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, pulverizer capacity, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be determined. TABLE 7.5.3-2. SUMMARY OF RETROFIT FACTOR DATA FOR VERMILION UNITS 1 OR 2

·		FGD_TE	CHNOLOGY
<u></u>	<u>L/LS FGD</u>	FORCED OXIDATION	LIME SPRAY DRYING
SITE_ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	LOW LOW	LOW LOW	LOW
ESP REUSE CASE BAGHOUSE CASE			NA LOW
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	300-600	300-600	NA 300-600
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	NA LOW
SCOPE ADJUSTMENTS			
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 1300 NO 0 NO	NO NA NO O NO	NO NA NO O NO
RETROFIT FACTORS			
FGD SYSTEM ESP REUSE CASE	1.38	1.31	NA
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.27 NA 1.16
GENERAL FACILITIES (PERCENT) 5	5	5

Technology	Boiler Number	Main Retrofit		Capacit Factor	y Co a l Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SOZ Removed	SOZ Removed	SO2 Cost Effect
		Difficulty Factor	/ (MW)	(%)	Content (%)	(SHM)	(\$/k¥)	(\$##)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
L/S FGD	1	1.38	70	53	2.4	39.5	564.2	17.2	52.4	90.0	6457	2657.3
L/S FGD	2	1.38	95	66	2.4	45.9	482.7	20.9	38.1	90.0	10847	. 1931.0
L/S FGD	1-2	1.38	165	61	2.4	58.8	356.3	27.3	31.1	90.0	17300	1575.5
L/S FGD-C	1	1.38	70	53	2.4	39.5	564.2	10.0	30.6	90.0	6457	1549.9
L/S FGD-C	2	1.38	95	66	2.4	45.9	482.7	12.2	22.2	90.0	10847	1125.3
L/S FGD-C	1-2	1.38	165	61	2.4	58.8	356.3	15.9	18.1	90.0	, 17300	917.9
LC FGD	1-2	138	165	61	2.4	- 42.4	256.9	21.7	24.7	90.0	17300	1251.9
LC FGD-C	1-2	1.38	165	61	2.4	42.4	256.9	12.6	14.4	90.0	17300	728.2
LSD+FF	1	1.27	70	53	2.4	20.9	299.0	9.8	30.0	85.0	6085	1614.6
LSD+FF	2	1.27	95	66	2.4	26.2	275.7	12.3	22.4	85.0	10222	1207.0
LSD+FF-C	1	1.27	70	53	2.4	20.9	299.0	5.7	17.5	85.0	6085	940.
_SD+FF-C	2	1.27	95	66	2.4	26.2	275.7	7.2	13.1	85.0	10222	703.

Table 7.5.3-3. Summary of FGD Control Costs for the Vermilion Plant (June 1988 Dollars)

The ESP performance impacts were evaluated using the IAPCS model to estimate the needed plate area. This plate area was compared to the existing area to determine whether SO_3 conditioning or additional plate area was needed. SO_3 conditioning was assumed to reduce the needed plate area up to 25 percent.

Costs were generated to show the impact of two different coal fuel cost differentials. The costs associated with each boiler for the range of fuel cost differential are shown in Table 7.5.3-4.

Currently the plant receives coal by truck. To be able to switch to a low sulfur coal, the existing railroad facilities would have to be upgraded. This upgrading of the existing railroad track was added as a scope adder to the capital cost.

NO, Control Technology Costs--

This section presents the performance and costs estimated for NO_{χ} controls at the Vermilion plant. These controls include LNC modification and SCR. The application of NO_{χ} control technologies is determined by several site-specific factors which are discussed in Section 2. The NO_{χ} technologies evaluated at the steam plant were: OFA and SCR.

Low NO, Combustion--

Units 1 and 2 are dry bottom, tangential-fired boilers rated at 70 and 95 MW, respectively. The combustion modification technique applied for this evaluation was OFA. As Table 7.5.3-5 shows, the OFA NO_x reduction performances for units 1 and 2 were estimated to be 25 and 30 percent, respectively. Both reduction performance levels were assessed by examining the effects of heat release rates and furnace residence time on NO_x reduction through the use of the simplified NO_x procedures. Table 7.5.3-6 presents the cost of retrofitting OFA at the Vermilion boilers.

Selective Catalytic Reduction--

Table 7.5.3-5 presents the SCR retrofit results for each unit. The results include process area retrofit factors and scope adder costs. The scope adders include costs estimated for ductwork demolition, new flue gas

Table 7.5.3-4. Summary of Coal Switching/Cleaning Costs for the Vermilion Plant (June 1988 Dollars)

Technology		 Main Retrofit Difficulty Factor 	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/k¥)	Annual Cost (SHH)	Annual Cost (mills/kwh)		SO2 Removed (tons/yr)	SO2 Cost Effect: (\$/ton)
							•••••			•••••	•••••	
CS/8+\$15	1	1.00	70	53	2.4	6.0	86.3	5.7	17.5	67.0	4810	1189.2
CS/8+\$15	2	1.00	95	66	2.4	6.8	71.6	6.8	16.0	67.0	8080	1086.6
CS/8+\$15-C	1	1.00	70	53	2.4	6.0	86.3	3.3	10.1	67.0	4810	687.0
CS/B+\$15-C	2	1.00	95	66	2.4	6.8	71.6	5.1	9.2	67.0	8080	626.4
CS/8+ \$ 5	1	1.00	70	53	2.4	5.3	75.9	2.9	8.6	67.0	4810	600.5
CS/8+\$5	2	1.00	95	66	2.4	5.8	61.3	4.1	7.4	67.0	8080	502.9
CS/8+\$5-C	1	1.00	70	53	2.4	5.3	75.9	1.7	: 5.1	67.0	4810	349.0
CS/B+\$5-C	2	1.00	95	66	2.4	5.8	61.3	2.4	4.3	67.0	8080	291.4

· · · · · · · · · · · · · · · · · · ·	BOILER	NUMBER	
COMBUSTION MODIFICATION RESULTS			
	1	2	1-2
FIRING TYPE	TANG	TANG	NA
TYPE OF NOX CONTROL	OFA	OFA	NA
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	14.3	13.2	NA
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	21.6	44.9	NA
FURNACE RESIDENCE TIME (SECONDS)	3.44	3.23	NA
ESTIMATED NOX REDUCTION (PERCENT)	25	30	NA
SCR RETROFIT RESULTS			· .
FOR SCR REACTOR	LOW	LOW	LOW
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	21	26	39
New Duct Length (Feet)	300	- 300	300
New Duct Costs (1000\$)	1207	1443	1992
New Heat Exchanger (1000\$)	1505	1807	2517
TOTAL SCOPE ADDER COSTS (1000\$)	2732	3276	4549
RETROFIT FACTOR FOR SCR	1.16	1.16	1.16
GENERAL FACILITIES (PERCENT)	13	13	13

TABLE 7.5.3-5. SUMMARY OF NOX RETROFIT RESULTS FOR VERMILION

Technology	Boiler	Main	Boiler	Capacit	y Coal	Capital	Capital	Annual	Annual	NOX	NOX	NOx Cost
	Number	Retrofit	Size	Factor	Sulfur	Cost	Cost	Cost			Removed	Effect.
		Difficulty	(MW)	(%)	Content	(\$HM)	(\$/k¥)	(\$101)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor			(%)							
LNC-OFA	: 1	1.00	70	53	2.4	0.5	7.7	0.1	0.4	25.0	287	407.4
LNC-OFA	2	1.00	95	66	2.4	0.6	6.4	0.1	0.2	30.0	579	228.9
LNC-OFA-C	1	1.00	70	53	2.4	0.5	7.7	0.1	0.2	25.0	287	241.8
LNC-OFA-C	2	1.00	95	66	2.4	0.6	6.4	0.1	0.1	30.0	579	135.8
SCR-3	1	1.16	70	53	2.4	15.4	219.5	5.0	-15_1	80.0	920	5388.9
SCR-3	.2	1.16	95	66	2.4	18.5	194.2	6.1	11.2	80.0	1545	3975.0
SCR-3	1-2	1.16	165	61 -	2.4	26.9	162.9	9.2	10.5	80.0	2464	3743.6
SCR-3-C	` 1	1,16	70	53	2.4	15.4	219.5	2.9	8.9	80.0	920	3162.4
SCR-3-C	2	1.16	95	66	2.4	18.5	194.2	3.6	6.5	80.0	1545	2331.0
SCR-3-C	, 1 -2	1.16	165	61	2.4	26.9	162.9	5.4	6.2	80.0	2464	2193.7
SCR - 7	1	1.16	70	53	2.4	15.4	219.5	4.4	13.4	80.0	920	4753.5
SCR-7	2	1.16	95	66	2.4	18.5	194.2	5.3	9.7	80.0	1545	3461.7
SCR-7	1-2	1.16	165	61 -	2.4	26.9	162.9	7.8	8.9	80.0	2464	3184.6
SCR-7-C	Ť	1.16	70	53	2.4	15.4	219.5	2.6	7.9	80.0	920	2798.4
SCR-7-C	2	1.16	95	66	2.4	18.5	194.2	3.1	5.7	80.0	1545	2036.9
SCR-7-C	1-2	1.16	165	61	2.4	26.9	162.9	4.6	5.3	80.0	2464	1873.4

Table 7.5.3-6. NOx Control Cost Results for the Vermilion Plant (June 1988 Dollars)

heat exchanger, and new duct runs to divert the flue gas from the ESPs to the reactor and from the reactor to the chimney.

The SCR reactors for both units would be located north of the chimney on the other side of the railroad track in a relatively open area having easy access. For this reason, the reactors for units 1 and 2 were assigned low access/congestion factors. Both reactors were assumed to be in areas with high underground obstructions. The ammonia storage system was placed in a remote area having a low access/congestion factor.

As discussed in Section 2, all NO_{χ} control techniques were evaluated independently from those evaluated for SO_2 control. If both SO_2 and NO_{χ} emissions have to be reduced at this plant, the results presented for SCR in Table 7.5.3-5 would not change since the reactors would be located downstream of the FGD absorbers in same area as discussed before. Table 7.5.3-6 presents the estimated cost of retrofitting SCR at the Vermilion boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas were located north of the plant in a similar fashion as LSD-FGD. The retrofit of DSD and FSI technologies at the Vermilion steam plant for the units would be very difficult. The ESPs are marginal in size, resulting in insufficient duct residence time between the boilers and the ESPs for DSD application. Therefore, new baghouses were assumed for the DSD cases which would be located north of the plant in a similar fashion as LSD-FGD cases. The new baghouses would require 400 feet of duct run to divert the flue gas from the boilers to the baghouses and back to the chimney. For FSI, upgrading the ESPs or plate area addition would be very difficult because the ESPs are squeezed between the boiler building and the chimney. As such, the retrofit

factor estimated for upgrading the ESPs for FSI was high (1.58). Also, the conversion of wet to dry fly ash would be needed for reusing the ESPs to prevent plugging of sluice lines. Therefore, FSI costs were not developed for this plant. Tables 7.5.3-7 and 7.5.3-8 present a summary of the site access/congestion factors for DSD and FSI technologies at the Vermilion steam plant. Table 7.5.3-9 presents the costs estimated to retrofit DSD at the Vermilion plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Vermilion plant. Both boilers would be considered good candidates for AFBC retrofit because of their small sizes (<110 MW). However, the high capacity factors for these units could result in significant replacement power costs for extended downtime.

TABLE 7.5.3-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR VERMILION UNIT 1

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	LOW HIGH Low
SCOPE_ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 1300
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	400 1491 NA NA 50 23
TOTAL COST (1000\$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	1323 1514
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.13 1.58 1.16

7-161

...

TABLE 7.5.3-8.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR VERMILION UNIT 2

.,

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	LOW HIGH LOW
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (ET)	YES 1300
ADDITIONAL DUCT WORK (FT) NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$) DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	400 1783 NA NA 50 29
TOTAL COST (1000 \$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	1329 1812
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.13 1.58 1.16

Table 7.5.3-9. Summary of DSD/FSI Control Costs for the Vermilion Plant (June 1988 Dollars)

Technology	Boiler Number	Main Retrofit		Capacit Factor	y Coal Sulfur	Capital Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SOZ Cost Effect.
		Difficulty Factor	(MW)	(%)	Content (%)	(SMM)	(\$/kW)	(SMH)	(mills/kwh)	(%)	(tons/yr)	(\$ /ton)
DSD+FF	1	1.16	70	53	2.4	14.1	201.9	7.6	23.2	70.0	5015	1517.6
DSD+FF	2	1.16	95	66	2.4	17.5	184.3	9.5	17.3	70.0	8425	1127.6
DSD+FF-C	1	1.16	70	53	2.4	14.1	201.9	4.4	13.5	70.0	5015	882.1
DSD+FF-C	2	1.16	95	66	2.4	17.5	184.3	5.5	10.0	70.0	8425	655.3

==:

7.5.4 Wood River Steam Plant

Both coal burning boilers at the Wood River plant are firing a low sulfur coal; therefore, CS was not evaluated. In addition, FGD costs are not presented since the low sulfur coal would result in low capital/operating costs and high cost per ton of SO₂ removed. Sorbent injection technologies were not considered because of the short duct residence time between the boilers and ESPs, the small size of the ESPs, and the difficulty in accessing the ESPs.

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE FURNACE VOLUME (1000 CU FT) LOW NOX COMBUSTION COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS	1,2,3 46 2.2 1949,49,50 PETROLEUM BURNING	TANGENT NA NO 12100 5.0 WET DI POND/O 2	182.9 NO
PARTICULATE CONTROL TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY	ESP &	CYCLONE 1967 0.07 98.3	ESP 1970 0.06 97.2
DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE ("F)		4.1-0.0 NA 410.9 NA 335	4.1-0.0 200.3 1205 166 291

TABLE 7.5.4-1. WOOD RIVER STEAM PLANT OPERATIONAL DATA

TABLE 7.5.4-2. SUMMARY OF RETROFIT FACTOR DATA FOR WOOD RIVER UNIT 4 *

-		FGD TE	CHNOLOGY
	L/LS_FGD_(FORCED DXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	HIGH	NA NA	HIGH
ESP REUSE CASE BAGHOUSE CASE		NA .	NA HIGH
DUCT WORK DISTANCE (FEET) ESP REUSE	600-1000	NA	niun
BAGHOUSE ESP REUSE	NA	NA	600-1000 NA
NEW BAGHOUSE	NA	NA NA	HIGH
SCOPE ADJUSTMENTS			
WET TO DRY	YES	NA	NO
ESTIMATED COST (1000\$) NEW CHIMNEY	870 YES	NA NA	NA YES
ESTIMATED COST (1000\$) OTHER	64 4 NO	0	644 NO
RETROFIT FACTORS			2
FGD SYSTEM	1.84	NA	
ESP REUSE CASE BAGHOUSE CASE			NA 1.83
ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.58
GENERAL FACILITIES (PERCEN	() 15	0	15

* L/LS-FGD and LSD-FGD absorbers for unit 4 would be located east of unit 5.

TABLE 7.5.4-3. SUMMARY OF RETROFIT FACTOR DATA FOR WOOD RIVER UNIT 5 *

· · · · · · · · · · · · · · · · · · ·	·	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	L IME SPRAY DRY ING
SITE ACCESS/CONGESTION			. ·
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	HIGH HIGH 300-600	NA NA NA	HIGH NA HIGH
ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE	NA NA	NA NA	300-600 NA HIGH
SCOPE ADJUSTMENTS WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 2808 YES 2380 NO	NA NA NA O	NO NA YES 2380 NO
RETROFIT FACTORS	,	, ,	
FGD SYSTEM ESP REUSE CASE	1.70	NA	NA 1.69
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	1.69 NA 1.58
GENERAL FACILITIES (PERCEN	T) 15	0	15

* L/LS-FGD and LSD-FGD absorbers for unit 5 would be located east of unit 5.

	BOI	
COMBUSTION MODIFICATION RESULTS	-	
	4	5
FIRING TYPE	TANG	TANG/TWIN_FURNACE
TYPE OF NOX CONTROL	OFA	DESIGN
FURNACE VOLUME (1000 CU FT)	NA	182.9
BOILER INSTALLATION DATE	1954	1964
SLAGGING PROBLEM	NO	NO
ESTIMATED NOX REDUCTION (PERCENT)	25	NA
SCR RETROFIT RESULTS *		
SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH
SCOPE ADDER PARAMETERS		
Building Demolition (1000\$)	0	0
Ductwork Demolition (1000\$)	25	68
New Duct Length (Feet)	200	200
New Duct Costs (1000\$)	944	2028
New Heat Exchanger (1000\$)	1773	3884
TOTAL SCOPE ADDER COSTS (1000\$)	2742	5979
RETROFIT FACTOR FOR SCR	1.52	1.52
GENERAL FACILITIES (PERCENT)	38	38

TABLE 7.5.4-4. SUMMARY OF NOX RETROFIT RESULTS FOR WOOD RIVER

* Cold side SCR reactors for units 4 and 5 would be located behind their respective chimneys.

۰.

Technology		Main' Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SNH)	Annual Cost (mills/kwh)	-	NOx Removed (tons/yr)	NOx Cost Effect. (\$/ton)
LNC-OFA	4	1.00	92	25	1.0	0.6	6.5	0.1	0.6	25.0	155	844.9
NC-OFA-C	4	1.00	92	25	1.0	0.6	6.5	0.1	0.4	25.0	155	501.9
SCR-3	4	1.52	92	25	1.0	22.6	245.2	7.0	34.5	80.0	495	14030.8
SCR-3	5	1.52	340	42	1.0	57.7	169.6	19.2	15.3	80.0	3076	6229.6
SCR-3-C	4	1,52	92	25	1.0	22.6	245.2	4.1	20.3	80.0	495	8242.8
SCR-3-C	5	1.52	340	42	1.0	57.7	169.6	11.2	9.0	80. 0,	3076	3653.2
SCR - 7	4	1.52	92	25	1.0	22.6	245.2	6.2	30.8	80.0	495	12506.5
SCR-7	5	1.52	340	42	1.0	57.7	169.6	16.4	13.1	80.0	_30 76	5322.3
SCR-7-C	4	1.52	92	25	1.0	22.6	245.2	3.7	18.1	80.0	495	7369.6
SCR-7-C	5	1.52	340	42	1.0	57.7	169.6	9.6	7.7	80.0	3076	3133.4

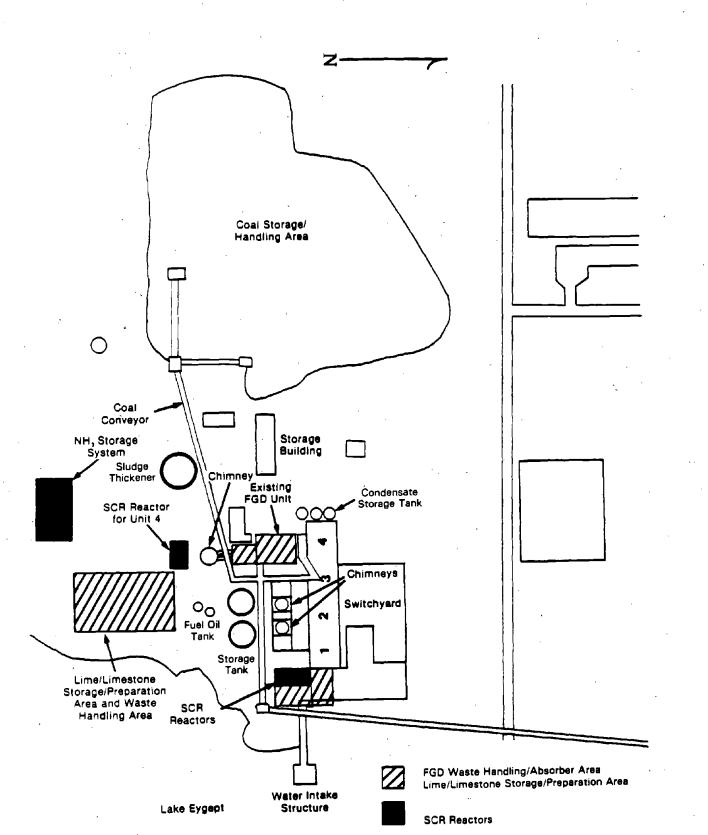
Table 7.5.4-5. NOx Control Cost Results for the Wood River Plant (June 1988 Dollars)

7.6 SOUTHERN ILLINOIS POWER COMPANY

7.6.1 Marion Steam Plant

The Marion steam plant is located within Williamson County, Illinois, as part of the Southern Illinois Power Cooperative system. The plant contains four coal-fired boilers with a total gross generating capacity of 272 MW. Figure 7.6.1-1 presents the plant plot plan showing the location of all boilers and major associated auxiliary equipment.

Table 7.6.1-1 presents operational data for the existing equipment at the Marion plant. The boilers burn high sulfur coal (3.0-4.0 percent sulfur). Coal shipments are received by truck and conveyed to a coal storage and handling area located west of the plant.


Particulate matter emissions for the boilers are controlled with retrofit ESPs located behind each unit. Fly ash for units 1-3 is wet sluiced to ponds located north of the plant.

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 7.6.1-1 shows the general layout and location of the FGD control system. The plant is located on a large site northwest of Lake Egypt. Units 1-2 share one chimney. Unit 4 has a new FGD system (Venturi scrubber) installed in 1978, using limestone as sorbent and built by Babcock and Wilcox. Therefore, unit 4 will not be considered in this study. The absorbers for L/LS-FGD and LSD-FGD for units 1-3 would be located east of the powerhouse and unit 1, toward Lake Egypt. Part of the parking area, a warehouse, and some auxiliary equipment close to the powerhouse would need to be demolished and relocated; therefore, a factor of 15 percent was assigned to general facilities. The limestone storage/handling area and waste handling area for unit 4 would be expanded and also used for units 1-3.

Retrofit Difficulty and Scope Adder Costs--

A high site congestion factor was assigned to the absorber locations because of congestion created by conveyors on two sides, the powerhouse, and an assumed high underground obstruction. This assumption is based on the absorber locations being close to a water intake structure.

Not to scale

Figure 7.6.1-1. Marion plant plot plan

TABLE 7.6.1-1. MARION STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW-each) CAPACITY FACTOR (PERCENT) INSTALLATION DATE FIRING TYPE COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT) FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS FGD UNIT INSTALLATION DATE FGD TYPE		4.0 0
PARTICULATE CONTROL TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) EXIT GAS FLOW RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (°F)	ESPESP197219780.20.199.2-99.099.44.04.034.6203.121.6605285337300-310300	· · · .

For flue gas handling, a short duct run for the unit 1 absorbers would be required for L/LS-FGD cases. A medium site access/congestion factor was assigned to the flue gas handling system for unit 1 due to the chimney location close to the powerhouse in a high site access/congestion area. Units 2-3 would require moderate duct runs because the absorbers are located away from the units. A high site access/congestion factor was assigned to the flue gas handling system for units 2-3 because the units are located in a congested area between units 1 and 4.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Tables 7.6.1-2 and 7.6.1-3. It was assumed that dry fly ash would be necessary to stabilize scrubber sludge waste and to prevent the plugging of sluice lines. This conversion is not necessary for forced oxidation L/LS-FGD. The overall retrofit factors determined for the L/LS-FGD cases were medium to high.

The absorbers for LSD-FGD would be located in a similar location as in L/LS-FGD cases. Reused ESPs was the only LSD-FGD technology case considered for the units because of their moderate size (SCA >200). For flue gas handling for LSD cases, a short duct run would be required for unit 1; a high site access/congestion factor was assigned due to the difficulty to tie into the upstream of the ESPs to divert flue gas from the boilers to the absorbers and back to the ESPs. Units 2-3 would require a medium duct run with a high site access/congestion factor for the same reasons as stated above for unit 1. The retrofit factors determined for the LSD technology case were moderate to high (1.61 to 1.69) and did not include particulate control upgrading costs. Separate retrofit factors were developed for the upgrading of ESPs. The ESPs units 1-3 were designated a high retrofit factor because of their close proximity to each other and the powerhouse/chimneys. These factors were used in the IAPCS model to estimate particulate control upgrading costs.

Table 7.6.1-4 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include upgrading the ESPs and ash handling systems for boilers 1-3. The low cost control case reduces capital and annual operating costs significantly due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber modules, and optimization of scrubber module size.

TABLE 7.6.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR MARION UNIT 1

_	_	FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL FLUE GAS HANDLING	HIGH MEDIUM	HIGH MEDIUM	HIGH
ESP REUSE CASE BAGHOUSE CASE	MEDION	MEDION	HIGH NA
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE	100-300	100-300	100-300 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	HIGH NA
SCOPE ADJUSTMENTS	•		
WET TO DRY ESTIMATED COST (1000\$)	NO O	NO NA	NO O
NEW CHIMNEY	NO	NO	NO
ESTIMATED COST (1000\$) OTHER	0 NO	0 ° NO	0 NO
RETROFIT FACTORS		•	
FGD SYSTEM ESP REUSE CASE	1.48	1.52	1.54
BAGHOUSE CASE ESP UPGRADE NEW BAGHOUSE	NA NA	NA NA	NA 1.58 NA
GENERAL FACILITIES (PERCENT	.) 15	15	15

TABLE 7.6.1-3. SUMMARY OF RETROFIT FACTOR DATA FOR MARION UNITS 2 OR 3

=		FGD TE	CHNOLOGY
	L/LS FGD	FORCED OXIDATION	LIME SPRAY DRYING
SITE ACCESS/CONGESTION			
SO2 REMOVAL	HIGH	HIGH	HIGH
FLUE GAS HANDLING ESP REUSE CASE	HIGH	HIGH	HIGH
BAGHOUSE CASE DUCT WORK DISTANCE (FEET)	300-600	300-600	NA
ESP REUSE BAGHOUSE			300-600 NA
ESP REUSE NEW BAGHOUSE	NA NA	NA NA	HIGH NA
SCOPE ADJUSTMENTS			
WET TO DRY	NÓ	NO	NO
ESTIMATED COST (1000\$)	0	NA	0
NEW CHIMNEY ESTIMATED COST (1000\$)	NO O	NO O	NO O
OTHER	ŇO	NO	ŇŎ
RETROFIT FACTORS	•		
FGD_SYSTEM_	1.61	1.64	
ESP REUSE CASE BAGHOUSE CASE			1.62 NA
ESP UPGRADE	NA	NA	1.58
NEW BAGHOUSE	NA	NA	NA
GENERAL FACILITIES (PERCENT) 15	15	15

Technology	Number	Main Retrofit Difficulty Factor	Size			Cost	Capital Cost (\$/kW)	Cost			SO2 Removed (tons/yr)	
L/S FGD	•••••	1.48	33	28	3.0	30.0	909.0	12.2	150.7	90.0	2122	5745.9
	2	1.40	33	28	3.0	32.5			161.0	90.0	2122	6141.2
L/S FGD	23		33	28 28			984.6	-	161.0	90.0	2122	6141.2
L/S FGD	2	1.61	22	28	3.0	32.5	704.0	13.0	181.0	90.0	2122	0141.2
L/S FGD-C	1	1.48	33	28	3.0	30.0	909.0	7.1	88.0	90.0	2122	3355.4
L/S FGD-C	2	1.61	33	28	3.0	32.5	984.6	7.6	94.1	90.0	2122	3587.2
L/S FGD-C	3 -	1.61	33	28	3.0	32.5	984.6	7.6	94.1	90.0	2122	3587.2
LC FGD	1-3	1.57	99	28	3.0	38.4	387.8	16.2	66.8	90.0	6367	2549.0
LC FGD-C	1-3	1.57	99	28	3.0	38.4	387.8	9.5	39.0	90.0	6367	1487.5
LSD+ESP	1	1.54	33	. 28	3.0	10.8	326.6	6.0	74.1	76.0	1 799	3333.1
LSD+ESP	2	1.62	33	28	3.0	11.3	341.5	6.1	75.9	76.0	1799	3414.7
LSD+ESP	3	1.62	33	28	3.0	11.3	341.5	6.1	75.9	76.0	1 799	3414.7
LSD+ESP-C	1	1.54	33	28	3.0	10.8	326.6	3.5	43.0	76.0	1799	1936.5
LSD+ESP-C	2	1.62	33	28	3.0	11.3	341.5	3.6	44.1	76.0	1799	1984.5
LSD+ESP-C	3	1.62	33	28	3.0	11.3	341.5	3.6	44.1	76.0	1799	1984.5

Table 7.6.1-4. Summary of FGD Control Costs for the Marion Plant (June 1988 Dollars)

Coal Switching Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, pulverizer capacity, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be determined. This is particularly true for cyclone boilers; as such, coal switching was not evaluated for the Marion plant.

NO, Control Technology Costs--

This section presents the performance and costs estimated for NO_{χ} controls at the Marion steam plant. These controls include LNC modification and SCR. The application of NO_{χ} control technologies is determined by several site-specific factors which are discussed in Section 2. The NO_{χ} technologies evaluated at the steam plant were: NGR and SCR.

Low NO, Combustion--

Units 1 to 4 are wet bottom, cyclone-fired boilers; units 1 to 3 are each rated at 33 MW and unit 4 is rated at 173 MW. The combustion modification technique applied to all boilers was NGR. As Table 7.6.1-5 shows, the NGR NO_x reduction performance for each unit was estimated to be 60 percent. Table 7.6.1-6 presents the cost of retrofitting NGR at the Marion plant.

Selective Catalytic Reduction--

Table 7.6.1-5 presents the SCR retrofit results for units 1 to 4. The results include process area retrofit factors and scope adder costs. The scope adders include costs estimated for ductwork demolition, new flue gas heat exchanger, and new duct runs to divert the flue gas from the ESPs to the reactor and from the reactor to the chimney.

The SCR reactors for units 1 to 3 would be located east of the powerhouse and unit 1, toward Lake Egypt in a relatively high congested area having easy access. Medium access/congestion factors were assigned to these reactors because of congestion created by the sludge conveyors and the powerhouse. A 25 percent general facility factor was also assigned to each reactor because part of a warehouse and some auxiliary equipment close to the

	BOI	LER NUMBER	
COMBUSTION MODIFICATION RESULTS			
	1	2, 3	4
FIRING TYPE	CY	CY	CY
TYPE OF NOX CONTROL	NGR	NGR	NGR
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	NA	NA .	NA
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	NA	NA	NA
FURNACE RESIDENCE TIME (SECONDS)	<u>NA</u>	<u>NA</u>	NA
ESTIMATED NOX REDUCTION (PERCENT)	60	60	60
SCR RETROFIT RESULTS SITE ACCESS AND CONGESTION FOR SCR REACTOR	MEDIUM	MEDIUM	LOW
SCOPE ADDER PARAMETERS			
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	12	12	41
New Duct Length (Feet)	250	450	170
New Duct Costs (1000\$)	648	1166	1195
New Heat Exchanger (1000\$)	958	958	2590
TOTAL SCOPE ADDER COSTS (1000\$)	1618	2136	3825
RETROFIT FACTOR FOR SCR	1.34	1.34	1.16
GENERAL FACILITIES (PERCENT)	25	25	13

TABLE 7.6.1-5. SUMMARY OF NOX RETROFIT RESULTS FOR MARION

Technology		Main Retrofit Difficulty Factor	Size	Capacit Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (SMM)	Annual Cost (mills/kwh)		NOX Removed (tons/yr)	NOx Cos Effect (\$/ton
					•••••••							· • • • • • • • • • • • • •
NGR	1	1.00	33	28	3.0	1.0	31.2	0.6	7.3	60.0	447	1327.
NGR	2 3	1.00	33	28	3.0	1.0	31.2	0.6	7.3	60.0	447	1327.
NGR	3	1.00	33	28	3.0	1.0	31.2	0.6	7.3	60.0	447	1327.
NGR	4	1.00	173	67	3.0	3.3	19.1	5.7	5.6	60.0	5613	100 8. :
NGR-C	1	1.00	33	28	3.0	1.0	31.2	0.3	4.3	60.0	447	771.
NGR-C	2	1.00	33	28	3.0	1.0	31.2	0.3	4.3	60.0	447	771.
NGR-C	3	1.00	33	28	3.0	1.0	31.2	0.3	4.3	60.0	447	771.
NGR-C	4	1.00	173	67	3.0	3.3	19.1	3.3	3,2	60.0	5613	580.
SCR-3	1	1.34	33	28	3.0	11.9	360.4	3.6	44.6	80.0	597	6054.
SCR-3	2	1.34	33	28	3.0	12.4	376.7	3.7	45.8	80.0	597	6214.
SCR-3	3	1.34	33	28	3.0	12.4	376.7	3.7	45.8	80.0	597	6214.
SCR-3	4	1.16	173	67	3.0.	27.1	156.7	10.1	9.9	80.0	7484	1344.
SCR-3-C	1	1.34	33	28	3.0	11.9	360.4	2.1	26.2	80.0	597	3558.3
SCR-3-C	2	1.34	33	28	3.0	12.4	376.7	2.2	26.9	80.0	597	3653.
SCR-3-C	3	1.34	33	28	3.0	12.4	376.7	2.2	26.9	80.0	597	3653.
SCR-3-C	4	1.16	173	67	3.0	27.1	156.7	5.9	5.8	80.0	7484	786.
SCR-7	1	1.34	33	28	3.0	11.9	360.4	3.3	41.2	80.0	597	5589.
SCR-7	2	1.34	33	28	3.0	12.4	376.7	3.4	42.4	80.0	597	5748.
SCR - 7	3	1.3 4	33	28	3.0	12.4	376.7	3.4	42.4	80.0	597	5748.
SCR-7	4	1.16	173	67	3.0	27.1	156.7	8.6	8.5	80.0	7484	1149.
SCR-7-C	1	1.34	33	-28	3.0	11.9	360.4	2.0	24.3	80.0	597	3291.
SCR-7-C	2	1.34	33	28	3.0	12.4	376.7	2.0	25.0	80.0	597	3387.
SCR-7-C	3	1.34	33	28	3.0	12.4	376.7	2.0	25.0	80.0	597	3387.
SCR-7-C	4	1.16	173	67	3.0	27.1	156.7	5.1	5.0	80.0	7484	674.

Table 7.6.1-6. NOx Control Cost Results for the Marion Plant (June 1988 Dollars)

powerhouse would have to be demolished or relocated. The SCR reactor for unit 4 would be located in a relatively open area south of both the existing FGD unit and chimney for unit 4. A low access/congestion factor was assigned to this reactor. All reactors were assumed to be in areas with high underground obstructions. The ammonia storage system was placed in a remote area having a low access/congestion factor.

As discussed in Section 2, all NO_x control techniques were evaluated independently from those evaluated for SO_2 control. If both SO_2 and NO_x emissions were needed to be reduced at this plant for units 1 to 3, the SCR reactors would have to be located downstream of the FGD absorbers (north) in relatively the same area as discussed above. Therefore, the results listed above for retrofitting SCR to this boiler would be applied in this case. For unit 4, NO_x is the only pollutant to be controlled since SO_2 emissions are already controlled by an FGD system. Therefore, the results in Table 7.6.1-5 would remain unchanged for this reactor. Table 7.6.1-6 presents the estimated cost of retrofitting SCR at the Marion boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas were located east of the plant in a similar fashion as LSD-FGD. Sufficient duct residence time could be made available for DSD if the old ESPs were used to provide duct residence time between the boilers and retrofit ESPs. It was assumed that the ESPs could be upgraded to handle the increased load from DSD and FSI. To upgrade the ESPs, a high site access/congestion factor was assigned to units 1-3. To reuse the ESPs, the conversion of wet to dry fly ash would be needed to prevent plugging of sluice lines. Table 7.6.1-7 presents a summary of the site access/congestion factors for DSD and FSI technologies at the

TABLE 7.6.1-7.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR MARION UNITS 1,2 OR 3

TEM	<u>.</u>	. <u> </u>
SITE ACCESS/CONGESTION		
REAGENT PREPARATION ESP UPGRADE NEW BAGHOUSE		MEDIUM HIGH NA
SCOPE ADDERS		
CHANGE ESP ASH DISCHARGE SY ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	STEM TO DRY HANDLING	NO O
NEW BAGHOUSE CASE ESTIMATED COST (1000\$)		NA NA
ESP REUSE CASE ESTIMATED COST (1000\$)		NA NA
DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)		50 13
TOTAL COST (1000\$) ESP UPGRADE CASE		13
A NEW BAGHOUSE CASE	· · · ·	NA
RETROFIT FACTORS		1
CONTROL SYSTEM (DSD SYSTEM ESP UPGRADE NEW BAGHOUSE	ONLY)	1.25 1.55 NA

Marion steam plant. Table 7.6.1-8 presents the costs estimated to retrofit DSD and FSI at the Marion plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability--

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Marion plant. Boilers 1 through 3 would be considered good candidates for AFBC retrofit because they are small, old, and have low capacity factors. However, boiler 4 would not be considered since it has an existing FGD unit.

Technology		Main Retrofit Difficulty Factor	Size	Capacity Factor (%)	y Coal Sulfur Content (%)	Cost	Capital Cost (\$/kW)	Annual Cost (\$MM)	Annual Cost (mills/kwh)		SOZ Removed (tons/yr)	SO2 Cos Effect (\$/ton)
	·····			,								
SD+ESP	1	1.00	33	28	3.0	4.6	138.8	4.2	51.3	49.0	1147	3622.1
SD+ESP	2	1.00	33	28	3.0	- 4.6	138.9	4.2	51.4	49.0	1147	3623.0
SD+ESP	3	1.00	33	28	3.0	4.6	138.9	4.2	51.4	49.0	1147	3623.0
SD+ESP-C	1	1.00	33	28	3.0	4.6	138.8	2.4	29.7	49.0	1147	2093.5
SD+ESP-C	2 🗸	1.00	33	28	3.0	4.6	138.9	2.4	29.7	49.0	1147	2094.
SD+ESP-C	3	1.00	33	- 28	3.0	4.6	138.9	2.4	29.7	49.0	1147	2094.0
SI+ESP-50	1	1.00	33	28	3.0	5.4	163.4	3.4	41.6	50.0	1179	2852.
SI+ESP-50	2	1.00	33	28	3.0	5.4	163.6	3.4	41.6	50.0	1179	2854.
S1+ESP-50	. 3	1.00	33	28	3.0	5.4	163.6	- 3.4	41.6	50.0	1179	2854.3
SI+ESP-50-C	1	1.00	33	28	3.0	5.4	163.4	2.0	24.1	50.0	1179	1655.
SI+ESP-50-C	2	1.00	33	28	3.0	5.4	163.6	2.0	24.1	50.0	1179	1655.8
SI+ESP-50-C	3	1.00	33	28	3.0	5.4	163.6	2.0	24.1	50.0	1179	1655.8
SI+ESP-70	1	1.00	33	28	3.0	5.5	166.3	3.4	42.1	70.0	1651	2062.9
SI+ESP-70	2	1.00	33	28	3.0	5.5	166.0	3.4	42.0	70.0	1651	2060.9
SI+ESP-70	3	1.00	33	28	3.0	5.5	1 66 .0	3.4	42.0	70.0	1651	2060.9
S1+ESP-70-C	1	1.00	33	28	3.0	5.5	166.3	2.0	. 24.4	70.0	1651	1196.8
SI+ESP-70-C	2	1.00	33	28	3.0	5.5	166.0	2.0	24.4	70.0	1651	1195.6
SI+ESP-70-C	3	1.00	33	28	3.0	5.5	166.0	2.0	24.4	70.0	1651	1195.0

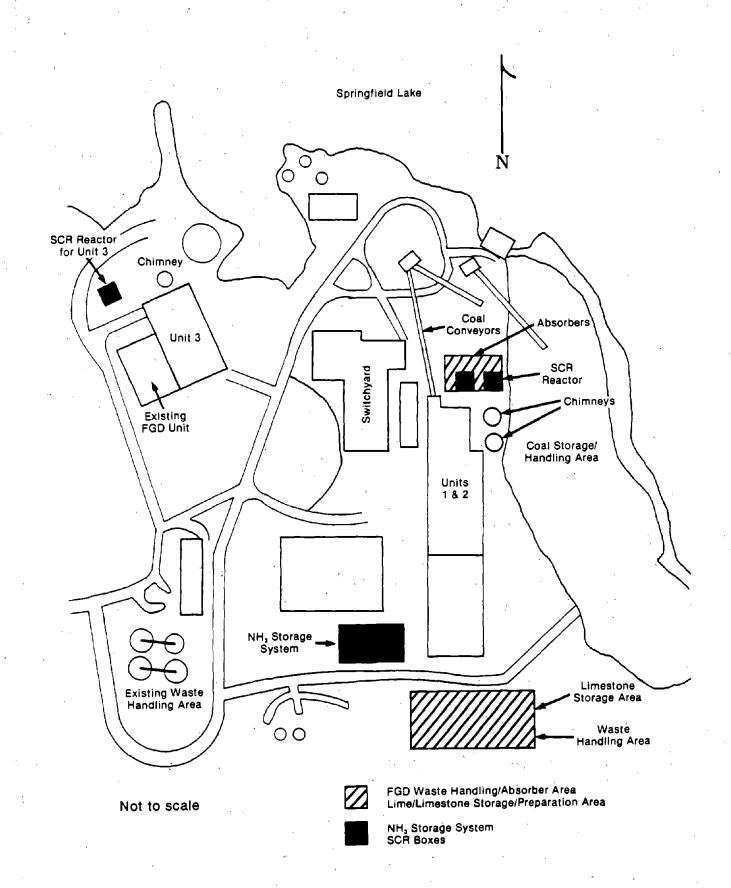
Table 7.6.1-8. Summary of DSD/FSI Control Costs for the Marion Plant (June 1988 Dollars)

7.7 SPRINGFIELD CITY OF WATER

7.7.1 <u>Dallman Steam Plant</u>

The Dallman steam plant is located within Sangamon County, Illinois, as part of the Springfield City Water, Light, and Power Company system. The plant contains three coal-fired boilers with a total gross generating capacity of 352 MW. Figure 7.7.1-1 presents the plant plot plan showing the location of all boilers and major associated auxiliary equipment.

Table 7.7.1-1 presents operational data for the existing equipment at the Dallman plant. The boilers burn medium to high sulfur coal (2.9 percent sulfur). Coal shipments are received by railroad and conveyed to a coal storage and handling area located east of the plant.


Particulate matter emissions for the boilers are controlled with ESPs located in front of each unit. Fly ash from all units is wet sluiced.

Lime/Limestone and Lime Spray Drying FGD Costs--

Figure 7.7.1-1 shows the general layout and location of the FGD control system. Although there are three coal-fired boilers at the Dallman plant, only units 1 and 2 were considered for FGD retrofit in this study. Unit 3 is equipped with recently installed (1980) scrubber modules that presently operate with a removal efficiency of 85 percent at full load. The absorbers for units 1 and 2 were located north of the respective units, west of the coal pile, and close to the coal conveyors. Some plant roads and auxiliary equipment would need to be demolished/relocated; therefore, a factor of 10 percent was assigned to general facilities. The limestone storage/ handling and waste handling areas would be located to the south of the units 1 and 2, close to the coal storage and handling area.

Retrofit Difficulty and Scope Adder Costs--

The plant is bounded by Springfield Lake on three sides and a major highway on the other. Units 1 and 2 are located close to each other on the edge of a small peninsula north of Springfield Lake.

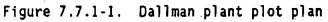


TABLE 7.7.1-1. DALLMAN STEAM PLANT OPERATIONAL DATA

BOILER NUMBER GENERATING CAPACITY (MW) CAPACITY FACTOR (PERCENT) FIRING TYPE INSTALLATION DATE COAL SULFUR CONTENT (PERCENT) COAL HEATING VALUE (BTU/LB) COAL ASH CONTENT (PERCENT)	1 80 23 CYC 1968 2.9 10351 9.2	2 80 25 CYC 1972 2.9 10351 9.2	3 192 54 TANG 1978 2.9 10351 9.2
FLY ASH SYSTEM ASH DISPOSAL METHOD STACK NUMBER COAL DELIVERY METHODS FGD SYSTEM INSTALLATION DATE FGD TYPE		WET SLUICE POND/ON-SITE 2 RAILROAD NO - -	3 YES 1980 LIMESTONE WET SCRUBBE
PARTICULATE CONTROL TYPE INSTALLATION DATE EMISSION (LB/MM BTU) REMOVAL EFFICIENCY DESIGN SPECIFICATION SULFUR SPECIFICATION (PERCENT) SURFACE AREA (1000 SQ FT) GAS EXIT RATE (1000 ACFM) SCA (SQ FT/1000 ACFM) OUTLET TEMPERATURE (*F)	ESP 1972 0.24 67.4 3.9 35.3 325 109 300	ESP 1972 60.7 3.9 39.5 325 118 200	ESP 1978 97.2 3.9 244 775 315 140

A high site access/congestion factor was assigned to the absorber locations because they are bounded by the coal conveyors on two sides, the coal storage/handling area, and the powerhouse.

For flue gas handling, moderate duct runs for the units would be required for L/LS-FGD cases to divert the flue gas from the absorbers to the chimneys. A medium site access/congestion factor was assigned to the flue gas handling system due to some major obstacles and obstructions in the surrounding area.

The major scope adjustment costs and retrofit factors estimated for the FGD technologies are presented in Table 7.7.1-2. The largest scope adder for the Dallman plant would be the conversion of units 1-2 fly ash conveying/ disposal system from wet to dry for conventional L/LS-FGD cases. It was assumed that dry fly ash would be necessary to stabilize scrubber sludge waste. This conversion is not necessary for forced oxidation L/LS-FGD. The overall retrofit factors determined for the L/LS-FGD cases were medium (1.60 to 1.64).

The absorbers for LSD-FGD would be located in a similar location as in L/LS-FGD cases. A considerable ESP plate area addition would be required to upgrade the ESPs on units 1-2 due to the small SCA size (<120). Therefore, LSD with new baghouses was the only LSD-FGD technology considered for the units. For flue gas handling for LSD cases, moderate duct runs would be required, the same as for L/LS-FGD cases. The retrofit factor determined for the LSD technology case was medium (1.58) and did not include the new baghouses for the units and was high (1.58). This reflects the congestion around the baghouses created by the coal conveyors, coal pile, chimneys, and powerhouse. This factor was used in the IAPCS model to estimate particulate control costs.

Table 7.7.1-3 presents the cost estimates for L/LS and LSD-FGD cases. The LSD-FGD costs include installing new baghouses to handle the additional particulate loading for boilers 1 and 2. The low cost control case reduces capital and annual operating costs due to the benefits of economies-of-scale when combining process areas, elimination of spare scrubber modules, and optimization of scrubber module size.

TABLE 7.7.1-2. SUMMARY OF RETROFIT FACTOR DATA FOR DALLMAN UNITS 1-2

-	FGD TECHNOLOGY						
	L/LS FGD	FORCED	LIME SPRAY DRYING				
SITE ACCESS/CONGESTION							
SO2 REMOVAL FLUE GAS HANDLING ESP REUSE CASE BAGHOUSE CASE	HIGH MEDIUM	HIGH MEDIUM	HIGH NA MEDIUM				
DUCT WORK DISTANCE (FEET) ESP REUSE BAGHOUSE ESP REUSE NEW BAGHOUSE SCOPE ADJUSTMENTS	300-600 NA NA	300-600 NA NA	NA 300-600 NA HIGH				
WET TO DRY ESTIMATED COST (1000\$) NEW CHIMNEY ESTIMATED COST (1000\$) OTHER	YES 768 NO 0 NO	NO NA NO O NO	NO NA NO O NO	· · ·			
RETROFIT FACTORS	2.5						
FGD SYSTEM ESP REUSE CASE BAGHOUSE CASE ESP UPGRADE	1.64 NA	1.60 NA	NA 1.58 NA				
NEW BAGHOUSE	NA	NA	1.58				

Technology	Boiler Number	Main Retrofit		•	y Coal Sulfur	Capitai Cost	Capital Cost	Annual Cost	Annual Cost	SO2 Removed	SO2 Removed	SO2 Cost Effect.
		Difficulty Factor	y (MW)	(%)	Conțent (%)	(\$MM)	(\$/k₩)	(SMM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
L/S FGD	1	1.64	80	23	2.9	51.5	643.6	19.9	123.4	90.0	4022	4944.0
/S FGD	2	1.64	80	25	2.9	50.9	636.7	19.9	113.6	90.0	4371	4553.1
L/S FGD-C	1	1.64	80	23	2.9	51.5	643.6	11.6	72.1	90.0	4022	2890.0
L/S FGD-C	2	1.64	80	25	2.9	50.9	636.7	11.6	66.4	90.0	4371	2660.9
LC FGD	1-2	1.64	160	24	2.9	48.9	305.9	20.3	60.5	90.0	8393	2423.2
LC FGD-C	1-2	1.64	160	24	2.9	48.9	305.9	11.9	35.3	. 90. 0	8393	1414.5
LSD+FF	1	1.58	80	23	2.9	30.5	381.6	11.8	72.9	87.0	3865	3041.4
LSD+FF	2	1.58	80	25	2.9	25.5	319.2	9.9	56.7	66. 0	3185	3120.9
LSD+FF-C	1	1.58	80	23	2.9	30.5	381.6	6.9	42.6	87.0	3865	1777.9
LSD+FF-C	2	1.58	80	- 25	2.9	25.5	319.2	5.8	33.2	66.0	3185	1824.0

Table 7.7.1-3. Summary of FGD Control Costs for the Daliman Plant (June 1988 Dollars)

Coal Switching Costs--

Coal switching can impact boiler performance in several ways. Key parameters of concern include boiler capacity, furnace slagging, pulverizer capacity, tube erosion, and coal rate. However, without an ash analysis for the existing and switch coals, boiler derate or capacity increase cannot be determined. This is particularly true with cyclone boilers and, as a result, coal switching was not evaluated for the Dallman power plant.

NO, Control Technology Costs--

This section presents the performance and costs estimated for NO_x controls at the Dallman steam plant. These controls include LNC modification and SCR. The application of NO_x control technologies is determined by several site-specific factors which are discussed in Section 2. The NO_x technologies evaluated at the steam plant were: NGR - units 1 and 2; OFA - unit 3; and SCR - all units. Unit 3 was considered in the study, even though it should meet the 1972 NSPS for NO_y emissions.

Low NO, Combustion--

Units 1 and 2 are wet bottom, cyclone-fired boilers each rated at 80 MW. The combustion modification technique applied to both boilers was NGR. Unit 3 is dry bottom, tangential wall-fired boiler rated at 192 MW. The combustion modification technique applied for this unit was OFA. As Table 7.7.1-4 shows, the NGR NO_x reduction performance for units 1 and 2 was estimated to be 60 percent. No boiler information was available in POWER to assess the OFA NO_x reduction performance for unit 3. However, since this boiler was recently installed (1978), it is estimated that a 20 to 30 percent NO_x reduction can be achieved for this boiler retrofitted with OFA. If unit 3 already uses OFA to meet the NSPS, further NO_x reductions may be possible but would likely be much less than 20 to 30 percent. Table 7.7.1-5 presents the cost of retrofitting NGR and OFA at the Dallman plant. A 25 percent NO_y reduction was assumed for unit 3 using OFA.

Selective Catalytic Reduction--

Table 7.7.1-4 presents the SCR retrofit results for units 1 to 3. The results include process area retrofit factors and scope adder costs. The

	BO	ILER NUMBER	·
COMBUSTION MODIFICATION RESULTS			
	1	2	3
FIRING TYPE	CY	CY	TANG
TYPE OF NOX CONTROL	NGR	NGR	OFA
VOLUMETRIC HEAT RELEASE RATE (1000 BTU/CU FT-HR)	NA	NA	NA
BOILER/WATERWALL SURFACE AREA HEAT RELEASE RATE (1000 BTU/SQ FT-HR)	NA	NA	NA.
FURNACE RESIDENCE TIME (SECONDS)	<u>NA</u>	NA	NA
ESTIMATED NOX REDUCTION (PERCENT)	60	60	25
SCR RETROFIT RESULTS SITE ACCESS AND CONGESTION FOR SCR REACTOR	HIGH	HIGH	LOW
SCOPE ADDER PARAMETERS	· .		
Building Demolition (1000\$)	0	0	0
Ductwork Demolition (1000\$)	23	23	44
New Duct Length (Feet)	300	500	200
New Duct Costs (1000\$)	1305	2174	1451
New Heat Exchanger (1000\$)	1630	1630	2757
OTAL SCOPE ADDER COSTS (1000\$)	2958	3827	4252
ETROFIT FACTOR FOR SCR	1.52	1.52	I.16
ENERAL FACILITIES (PERCENT)	25	25	20

TABLE 7.7.1-4. SUMMARY OF NOX RETROFIT RESULTS FOR DALLMAN

Technology		· Main ·Retrofit Difficulty	Size		y Coal Sulfur Content	Cost	Capital Cost (\$/kW)	Annual Cost (\$HM)	Annual Cost (mills/kwh)		NOx Removed	NOx Cost Effect.
•••••••••••		Factor			(%)	(əmr)	(#/ KN)	(ann)	(untis/kwn)		(cons/yr)	(Þ /ton)
LNC-OFA	3	1.00	192	54	2.9	0.8	4.2	0.2	0.2	25.0	835	210.5
LNC-OFA-C	3	1.00	192	54	2.9	0.8	4.2	0.1	0.1	25.0	835	124.9
NGR	1	1.00	80	23	2.9	1.9	23.9	1.1	7.1	60.0	806	1421.7
NGR	2	1.00	80	25	2.9	1.9	23.9	1.2	7.0	60.0	876	1390.6
NGR - C	1	1.00	80	23	2.9	1.9	.23.9	0.7	4.1	60.0	806	825.1
NGR - C	. 2	1.00	80	25	2.9	1.9	23.9	0.7	4.0	60.0	876	806.5
SER-3	1	1.52	80	23	2.9	20.3	253.9	6,3	39.0	80.0	1075	5854.7
SCR-3	2	1.52	80	25	2.9	21.1	264.0	6.4	36.8	80.0	. 1168	5516.3
SCR-3	3	1.16	192	54	2.9	29.2	152.0	10.6	11.7	80.0	6055	1749.9
SCR-3-C	1	1.52	80	23	2.9	20.3	253.9	3.7	22.9	80.0	1075	3439.1
SCR-3-C	2	1.52	80	25	2.9	21.1	264.0	3.8	21.6	80.0	1168	3241.6
SCR-3-C	3 .	1.16	192	54	2.9	29.2	152.0	6.2	6.8	80.0	6055	1024.2
SCR-7	1	1.52	80	23	2.9	20.3	253.9	5.6	34.9	80.0	1075	5229.4
SCR-7	2	1.52	80	25	2.9	21.1	264.0	5.8	32.9	80.0	1168	4941.0
SCR-7	3	1.16	192	54	· 2.9	29.2	152.0	9.0	9.9	80.0	6055	1483.6
SCR-7-C	1	1.52	80	23	2.9	20.3	253.9	3.3	20.5	80.0	1075	3080.8
SCR-7-C	2	1.52	60	25	2.9	21.1	264.0	3.4	19.4	80.0	1168	2911.9
SCR-7-C	3	1.16	192	54	2.9	29.2	152.0	5.3	5.8	80.0	6055	871.6

Table 7.7.1-5. NOx Control Cost Results for the Dallman Plant (June 1988 Dollars)

scope adders include costs estimated for ductwork demolition, new flue gas heat exchanger, new duct runs to divert the flue gas of units 1 and 2 from the ESPs to the reactors and from the reactors to their respective chimneys, and new duct runs to divert the flue gas of unit 3 from the FGD absorbers to the reactors and from the reactor to the chimney.

The SCR reactors for units 1 and 2 would be located north of the respective units, west of the coal pile, and close to the coal conveyors. Access to this area is difficult because of the proximity of the coal storage and handling area; therefore, high access/congestion factors were assigned to both reactors. A 25 percent general facility factor was assigned to each reactor because some plant roads and auxiliary equipment would have to be demolished or relocated. For unit 3, the SCR reactor would be located north of the chimney in an relatively open area. Therefore, a low access/ congestion factor was assigned to this reactor. A 20 percent general facilities factor was assigned to this reactor because a plant road would have to be relocated. All reactors were assumed to be in areas with high underground obstructions. The ammonia storage system was placed in a remote area having a low access/congestion factor.

As discussed in Section 2, all NO_x control techniques were evaluated independently from those evaluated for SO_2 control. However, if SO_2 and NO_x emissions both were to be controlled for units 1 and 2, the SCR reactors would have to be located downstream (north) of the FGD absorbers in a highly congested area between the coal conveyors. Therefore, high access/congestion factors would be assigned for both reactors in this case instead of assigning medium access/congestion factors. For unit 3, NO_x is the only pollutant to be controlled since this unit is equipped with an FGD system. Hence, the results in Table 7.7.1-4 would remain unchanged for this unit. Table 7.7.1-5 presents the estimated cost of retrofitting SCR at the Dallman boilers.

Sorbent Injection and Repowering--

This section presents the cost/performance estimates for SO₂ control technologies that are under development but have not been demonstrated on commercial utility boilers. These technologies are presented separately from the commercialized technologies because the cost/performance estimates have a high degree of uncertainty due to the lack of commercial scale data.

Duct Spray Drying and Furnace Sorbent Injection--

The sorbent receiving/storage/preparation areas were located north of the plant. The retrofit of DSD and FSI technologies at the Dallman steam plant for the units would be difficult. There is not sufficient duct residence time between the boilers and the ESPs, as well as the ESPs are very small (SCA <120). Therefore, only DSD with new fabric filters was considered with the baghouses being located north of units 1 and 2 in a similar fashion as LSD-FGD cases. The new baghouses would require 400 feet of duct run to divert the flue gas from the boilers to the baghouses and back to the chimneys. A high retrofit factor was designated for the baghouses for DSD for the same reasons as stated above in LSD-FGD cases. The FSI was assumed not to be applicable because the ESPs would not be good candidates for upgrade by adding plate area because the retrofit factor for upgrading the ESPs is high (1.55). Also, the conversion of wet to dry fly ash would be needed for reusing the ESPs to prevent plugging of sluice lines. Table 7.7.1-6 presents a summary of the site access/congestion factors for DSD and FSI technologies at the Dallman steam plant. Table 7.7.1-7 presents the costs estimated to retrofit DSD at the Dallman plant.

Atmospheric Fluidized Bed Combustion and Coal Gasification Applicability --

The AFBC retrofit and AFBC/CG repowering applicability criteria presented in Section 2 were used to determine the applicability of these technologies at the Dallman plant. Both boilers would be considered good candidates for AFBC retrofit because of their small sizes (<300 MW).

TABLE 7.7.1-6.DUCT SPRAY DRYING AND FURNACE SORBENT INJECTION
TECHNOLOGIES FOR DALLMAN UNITS 1-2

ITEM	
SITE ACCESS/CONGESTION	
REAGENT PREPARATION ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	MEDIUM HIGH HIGH
SCOPE ADDERS	
CHANGE ESP ASH DISCHARGE SYSTEM TO DRY HANDLING ESTIMATED COST (1000\$) ADDITIONAL DUCT WORK (FT)	YES 768
NEW BAGHOUSE CASE ESTIMATED COST (1000\$) ESP REUSE CASE ESTIMATED COST (1000\$)	400 1613 NA NA
DUCT DEMOLITION LENGTH (FT) DEMOLITION COST (1000\$)	50 25
TOTAL COST (1000\$) ESP UPGRADE CASE (FSI) A NEW BAGHOUSE CASE (DSD)	793 1638
RETROFIT FACTORS	
CONTROL SYSTEM (DSD SYSTEM ONLY) ESP UPGRADE (FSI) NEW BAGHOUSE (DSD)	1.25 1.55 1.55

12122222222	*********	*********	2222222	\$\$ 1 97122	32222223			2322223				
Technology	Bailer	Main	Boiler	Capacit	y Coal	Capital	Capital	Annual	Annual	SO2	SO2	SO2 Cost
	Number	Retrofit	Size	Factor	Sutfur	Cost	Cost	Cost	Cost	Removed	Removed	Effect.
		Difficulty	(MW)	(%)	Content	(\$MM)	(\$/k₩)	(SHM)	(mills/kwh)	(%)	(tons/yr)	(\$/ton)
		Factor			(%)						,	
								,				
DSD+FF	1	1.00	80	23	2.9	20.3	254.3	8.6	53.1	71.0	3161	2705.7
DSD+FF	2	1.00	80	25	2.9	16.9	210.9	7.2	41.0	60.0	2928	2454.3
DSD+FF-C	1	1.00	80	23	2.9	20.3	254.3	5.0	31.0	71.0	3161	1579.1
DSD+FF-C	2	1.00	80	25	2.9	16.9	210.9	4.2	23.9	60.0	2928	1432.0

Table 7.7.1-7. Summary of DSD/FS1 Control Costs for the Dailman Plant (June 1988 Dollars)