EPA-600/R-96-019 February 1996

Hazardous Air Pollutants from the Combustion of an Emulsified Heavy Fuel Oil in a Firetube Boiler

Prepared by:

C. Andrew Miller U.S. Environmental Protection Agency National Risk Management Research Laboratory Research Triangle Park, NC 27711

Prepared for:

U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460

TECHNICAL RE (Please read Instructions on the	PORT DATA reverse before compl III III IIIIIIIIIIIIIIIIIIIIIIIIIIIII	1980 1990 1991 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1
1. REPORT NO. EPA-600/R-96-019		6-168281
4. TITLE AND SUBTITLE	5. REPORT DATE	
Hazardous Air Pollutants from the Combust		
Emulsified Heavy Fuel Oil in a Firetube E	Soiler 6. PERFORMING	ORGANIZATION CODE
7. AUTHOR(S)	8. PERFORMING	ORGANIZATION REPORT NO.
C. Andrew Miller		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM EL	EMENT NO.
See Block 12	11. CONTRACT/C	
	NA (Inhou	se)*
12. SPONSORING AGENCY NAME AND ADDRESS		PORT AND PERIOD COVERED
EPA, Office of Research and Development	Final; 5-1	
Air Pollution Prevention and Control Divis	ion	
Research Triangle Park, NC 27711	EPA/600	•
15. SUPPLEMENTARY NOTES Author Miller's mail dr 2920. (*) Portions of this work conducted b	op is 65; his phone nun v Acurex Environment:	nber is 919/541- al Corp. under
EPA contracts 68-DO-0141 and 68-D4-0005.		-
16. ABSTRACT. The report gives results of measu	iring emissions of haza	ardous air pollu-
tants (HAPs) from the combustion flue gase	s of a No. 6 fuel oil, b	oth with and with-
out an emulsifying agent, in a 2.5 million H		
purpose of determining the impacts of the e	•	
flue gases were sampled and analyzed for b	oth metal and organic l	HAPs, and the ef-
fects of the emulsification on criteria emis	sions such as carbon di	ioxide (CC), nitro-
gen oxides (NCx), and particulate matter (H	PM) were also measure	d. Measured in
pounds per million British thermal units, t		
CO emission factor of 24% , a decrease of 3		
crease of 37% in the PM emission factor co		
from burning the base oil (i.e., the same o		
sions of sulfur dioxide (SO2) and metals we	•	
fied oil compared with the base oil. No poly	-	
inated dibenzofurans were detected in the f	-	
able shift in the particle size distribution to		-
sified oil compared to the base oil, althoug		
duction in total PM emissions also results	in a reduction of small	er particles.
17. KEY WORDS AND DO	·	
a. DESCRIPTORS	b.IDENTIFIERS/OPEN ENDED TERM	
Pollution	Pollution Control	13B
Fuel Oil	Stationary Sources	21D
Combustion	Hazardous Air Pollu-	21B
Emulsions	tants (HAPs)	07D
Fire Tube Boilers		13A
Toxicity		06T
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) Unclassified	21. NO. OF PAGES 102
Release to Public	20. SECURITY CLASS (This page) Unclassified	22. PRICE
EPA Form 2220-1 (9-73)		

٦

r

FOREWORD

The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory is the Agency's center for investigation of technological and management approaches for reducing risks from threats to human health and the environment. The focus of the Laboratory's research program is on methods for the prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites and groundwater; and prevention and control of indoor air pollution. The goal of this research effort is to catalyze development and implementation of innovative, cost-effective environmental technologies; develop scientific and engineering information needed by EPA to support regulatory and policy decisions; and provide technical support and information transfer to ensure effective implementation of environmental regulations and strategies.

This publication has been produced as part of the Laboratory's strategic longterm research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients.

> E. Timothy Oppelt, Director National Risk Management Research Laboratory

EPA REVIEW NOTICE

This report has been peer and administratively reviewed by the U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

ABSTRACT

Emissions of criteria and hazardous air pollutants (HAPs) were measured from the combustion flue gases of a #6 fuel oil, both with and without an emulsifying agent, in a 2.5x10⁶ Btu/hr firetube boiler, with the purpose of determining the impacts of the emulsifier on HAP emissions. The flue gases of the boiler were sampled and analyzed for both metal and organic HAPs, and the effects of the emulsification on criteria emissions such as carbon monoxide (CO), nitrogen oxides (NO_x), and particulate matter (PM) were also measured. Measured in pounds per million British thermal units (Btu), the emulsified oil showed a decrease in the CO emission factor of 24%, a decrease of 35% in the NO_x emission factor, and a decrease of 37% in the PM emission factor compared to emission factors measured from burning the base oil (i.e. the same #6 oil without the emulsifying agent). Emissions of sulfur dioxide (SO₂) and metals were essentially unchanged for the emulsified oil compared to the base oil. Emissions of volatile organic HAPs from the emulsified oil were 9% lower than for the base oil, and semivolatile emissions were 29% lower for the emulsified oil compared to the base oil. For both volatile and semivolatile organic compounds, the emission factors were on the order of 1 pound per trillion Btu. No polychlorinated dibenzodioxins or polychlorinated dibenzofurans were detected in the flue gases of either oil. There was a notable shift in the particle size distribution toward smaller size ranges for the emulsified oil compared to the base oil, although it is currently unclear whether the reduction in total particulate emissions results in an overall reduction in emissions of smaller (< $2.5 \,\mu$ m) particles. Additional work is planned to provide quantitative information on the differences in size distributions and the total mass emissions for the different particle size ranges.

PREFACE

The Control Technology Center (CTC) was established by EPA's Office of Research and Development (ORD) and Office of Air Quality Planning and Standards (OAQPS) to provide technical assistance to state and local air pollution control agencies. Three levels of assistance can be accessed through the CTC. First, a CTC HOTLINE has been established to provide telephone assistance on matters relating to air pollution control technology. Second, more in-depth engineering assistance can be provided when appropriate. Third, the CTC can provide technical guidance through publication of technical guidance documents, development of personal computer software, and presentation of workshops on control technology matters.

The technical guidance projects, such as this one, focus on topics of national or regional interest that are identified through contact with state and local agencies. In this case, the CTC became interested in examining the emissions of hazardous air pollutants (HAPs) from the combustion of a heavy fuel oil, both with and without an emulsifying agent, in a small industrial/commercial boiler, based on a request from a state agency.

In late 1994, the CTC received a request from the producer of a heavy oil/water emulsion to provide information regarding the potential for HAP emissions from the combustion of the emulsified oil. A state agency had requested the producer to provide such information, and the producer approached EPA regarding the possibility of testing the oil, both with and without the emulsifier, to provide the HAP emissions data requested by the state agency.

Related work to characterize HAP emissions from the combustion of #2, #5, and #6 fuel oils had been conducted earlier at EPA's National Risk Management Research Laboratory, Air Pollution Prevention and Control Division (APPCD), formerly the Air and Energy Engineering Research Laboratory. With this background, APPCD was asked by the CTC to conduct similar tests on the emulsified fuel oil and the base oil without the emulsifying agent. These tests were conducted in early 1995, and the results are the subject of this report.

ACKNOWLEDGMENTS

Portions of this work were conducted under EPA Contract 68-D4-0005 with Acurex Environmental Corporation. The author would like to acknowledge the following Acurex staff for their efforts: Jeff Ryan (now with EPA's Air Pollution Prevention and Control Division), responsible for the sampling and analytical portion of the project; and Tony Lombardo, who led the operation and maintenance of the North American boiler. The author also acknowledges the contributions of Charles Rogers of Industrial Fuel Company who provided the fuels and analyses of the fuels for these tests.

Pag	<u>e</u>
ABSTRACT	ij
PREFACE	iii
ACKNOWLEDGMENTS	iv
LIST OF FIGURES	
LIST OF TABLES	
1. INTRODUCTION 1.1 Hazardous Air Pollutants 1.2 HAPs from Combustion Sources 1.3 Emulsified Fuel Oils 1.4 Project Objective	1 1 2 3
 2. EXPERIMENTAL SETUP. 2.1 Equipment. 2.2 Test Matrix. 2.3 Sampling and Analysis. 2.4 Quality Assurance. 	.4 .5 .7
3. RESULTS 3.1 Criteria Pollutant Emissions 3.1.1 PM Size Distribution 3.2 Metal HAP Emissions 3.2.1 Metal Size Distribution 3.3 Organic HAP Emissions 3.3.1 Volatile Organic HAP Emissions 3.3.2 Semivolatile Organic HAP Emissions 3.3.3 Dioxin and Furan Emissions	.9 16 18 21 21 21 21
4. DISCUSSION 2 4.1 Operational Factors 2 4.2 Criteria Pollutant Emissions 2 4.3 Metal Emissions 2 4.4 Organic HAP Emissions 2	27 27 27 28 28
5. CONCLUSIONS	
6. REFERENCES	29
APPENDIX A. ENGLISH ENGINEERING TO METRIC CONVERSIONS	
B.1 CEM Data 3 B.2 Duplicate Samples 3 B.3 Duplicate Tests 3 B.3.1 Criteria Pollutants 3 B.3.2 Metals 3 B.3.3 Volatile Organic Compounds 3 B.3.4 Semivolatile Organic Compounds 3	32 33 33 33 33 33 33 34 35
B.3.5 PCDDs/PCDFs B.4 Blanks B.4.1 Volatile Organic Compounds B.4.2 Semivolatile Organic Compounds B.5 Matrix Spikes	35 35 36

TABLE OF CONTENTS

.

TABLE OF CONTENTS (CONT.)

-

-

	<u>Page</u>
B.5.1 Semivolatile Organic Compounds	
B.5.2 Metals Matrix Spikes	
B.6 Completeness	
APPENDIX C. DATA SHEETS	

LIST OF FIGURES

--

-

Figure No.	Page
2-1. Schematic of the North American package boiler	4
2-2. Location of CEM, temperature, and sampling probes on the North American package boiler	9
3-1. Average emissions of CO, NO _x , and SO ₂ for the base and emulsified fuel oils	
3-2. Average concentrations of PM and average smoke numbers and heat inputs for the base oil and the emulsified oil	12
3-3. Average heat input rate for 12 of the 13 runs	13
3-4. Average CO emissions for 12 of the 13 runs	13
3-5. Average NO _x emissions for 12 of the 13 runs	14
3-6. Average SO ₂ emissions for 12 of the 13 runs	14
3-7. PM emissions for runs 1, 3, 5, 8, and 11	15
3-8. Smoke numbers for 12 of the 13 runs	15
3-9. Average emission factors for CO, NO _x , SO ₂ , and PM for the base oil and the emulsified oil.	17
3-10. Average measured emission factors for 10 metals sampled for the base oil and the emulsified oil.	20
3-11. Average semivolatile emission factors for the base and emulsified oils	26

LIST OF TABLES

<u>Table No.</u>		Page
2-1.	Ultimate analyses results of the base #6 fuel oil and the emulsified oil used in the test program.	5
2-2.	Trace element content of the base #6 oil used in the test program, in $\mu g/g_{\dots}$	6
2-3.	Test matrix used for sampling HAPs	7
2-4.	Sampling and analytical methods used in the test program	8
3-1.	Average emissions of criteria pollutants, and average smoke number readings from the two oils tested	10
3-2.	Average emission factors for criteria pollutants from the two oils tested, in lb/10 ⁶ Btu	16
3-3.	Relative percent differences for the duplicate Method 29 samples for each of the 10 metals	
3-4.	Average measured emission factors for the 10 metals sampled, in lb/10 ¹² Btu	19
3-5.	Volatile organic compounds detected for each oil during combustion testing	22
3-6.	Ratio of mass of volatile organic compound detected in the field blanks to the average detected mass in the samples	23
3-7.	Relative percent differences between VOST tube measurements for three volatile organic compounds	23
3-8.	Emission factors of volatile organic compounds, in lb/10 ¹² Btu	24
3-9.	Semivolatile organic compounds detected for each oil during combustion testing	25
3-10.	Average semivolatile organic emission factors	26
B- 1.	Data quality indicator goals for the project	32
B-2.	Average metal emission factors for each run and the standard deviation between the runs	34
B-3.	Average volatile organic compound emission factors and the relative percent differences between the runs	34
B-4.	Average emission factors for semivolatile compounds and the standard deviations of the triplicate runs	35
B-5.	Volatile organic compounds detected in the field blanks	
B- 6.	Semivolatile organic compounds detected in the field blanks	36
B-7.	Spike recoveries and relative percent differences for the matrix spikes of PAHs	37
B-8.	Percent recoveries of metal matrix spikes	38
	· · · · · · · · · · · · · · · · · · ·	

1. INTRODUCTION

1.1 Hazardous Air Pollutants

The emissions of air toxics or hazardous air pollutants (HAPs) have been an issue of increasing concern over the last few years, particularly since the passage of the 1990 Clean Air Act Amendments (CAAAs)¹ which mandated regulation of HAPs under Title III from a wide range of sources. Title III of the CAAAs lists 189 compounds and compound classes as HAPs, and requires application of maximum achievable control technology (MACT) to a nonutility source that emits over 10 tons/year* of any one HAP, or 25 tons/year of any combination of HAPs. In addition to the requirements of the CAAAs at the Federal level, limits on emissions of HAPs have also been set by some states. States are also requesting increasing amounts of information regarding the potential for HAP emissions of HAPs have become a regulatory issue only recently, there is much less information available regarding the characterization of HAP emissions from stationary sources than is the case for the criteria pollutants such as carbon monoxide (CO), nitrogen oxides (NO_x), sulfur dioxide (SO₂), and particulate matter (PM).

A further complication in characterization of HAPs is the large number and variety of compounds that have been identified as HAPs under the CAAAs. Of the 189 compounds and compound classes listed as hazardous under Title III of the CAAAs, 11 are metals. Also included are radionuclides (composed of both gaseous and metal compounds; e.g., radon and uranium), asbestos, fine mineral fibers, and acids such as hydrochloric acid (HCl), hydrofluoric acid (HF), and hydrogen sulfide (HS). Most of the remainder of the 189 HAPs are organic. Many of these organic compounds are nitrogenated or chlorinated organics, and are often associated with the production of pesticides, herbicides, or chemical production byproducts.

In the case of many sources such as chemical production facilities, the characterization is relatively straightforward, since the emissions are primarily fugitive vapor emissions from the production of a limited number of chemical compounds. In such cases, the types of chemicals being released are usually known, and characterization is a matter of determining quantity and location of the emissions. In other cases, characterization is more difficult. For instance, hydrocarbon combustion processes will as a matter of course result in the emission of trace quantities of products of incomplete combustion (PICs) such as benzene, toluene, and polycyclic aromatic hydrocarbons (PAHs), even during efficient combustion. Because of the large volumes of flue gas produced during the combustion process, however, even HAP

^{*} See Appendix A for conversion factors to metric units.

concentrations in the parts per million (ppm) level can result in annual mass emissions that are greater than the 10 or 25 ton/year limits specified under Title III.

1.2 HAPs from Combustion Sources

Combustion sources can emit a wide range of HAPs during operation. The types and amounts of HAP emissions can vary widely, depending on the type of fuel used and the conditions under which the fuel is combusted. Many of the fuels in use in industry contain trace levels of metals, including metals that are listed as HAPs under Title III of the CAAAs. For example, coal naturally contains most of the listed metals in trace quantities less than 0.01% by weight. Fuel oils, and particularly heavy fuel oils such as #6 oil, also contain trace quantities of metals. During the combustion process, these metals are released from the fuel into the gases produced during combustion and, without adequate controls, can be released to the atmosphere from the combustor stack. Since the metal contents of the fuels are typically on the order of parts per million, the resulting concentrations of metals in the flue gases are very low. However, because of the large quantities of fuels combusted in many processes, the total mass of these metals can be on the order of tons per year. For instance, a fuel that contains 100 ppm of a metal can result in 10 tons/year of metal emissions into the atmosphere if the fuel were burned at an average rate of 22,830 lb/hr, and if 100% of the metal in the fuel exited the combustor via the stack. Although this level of fuel usage may seem very high, it is the required fuel flow for a typical stearn power plant rated at 41.7 MWe running at full load using a #6 fuel oil. Thus, the potential for combustion processes to exceed the regulatory level of HAP emissions can be high for even relatively small industrial sources.

In addition to the emissions of toxic metals from the fuels, organic compounds can also be emitted from fuel combustion processes. The high temperatures and high levels of chemical species found in a combustion system provide an ideal environment for chemical reactions. While the vast majority of reactions between oxygen (O_2) and the hydrocarbon fuel result in the formation of carbon dioxide (CO_2) and water (H_2O), some of the reactions that take place result in the formation of trace quantities of other species such as benzene, toluene, or formaldehyde, all of which are listed as HAPs under Title III. While the levels of these compounds that are produced during combustion are very low, the example given above illustrates that low levels of compounds can result in a relatively high total mass of emissions. In addition, the complex chemical and physical processes that occur in the combustion environment make it impossible to determine *a priori* the amounts or the species that will be emitted from a combustion process.

1.3 Emulsified Fuel Oils

Emulsions have been used for many years as a means of reducing the emissions of criteria pollutants from the combustion of fuel oils. A number of studies have shown the ability of emulsions of water suspended in oil to reduce the emissions from combustion sources²⁻⁴; however, the impacts of oil/water emulsions on particular pollutants vary. For heavy fuel oils, oil/water emulsions tend to reduce particulate, but in general have had a smaller effect on either CO or NO_x when operating conditions are kept constant.² With distillate oils, particulates and NO_x have been shown to be reduced when using an oil/water emulsion compared to using the same oil without emulsification.³ However, the use of an emulsifier results in improved secondary atomization of the fuels, often allowing operation at a reduced stoichiometric ratio, and also tends to reduce the peak combustion temperature. Both of these effects result in lower NO_x emissions, and the improved atomization can also result in lower CO emissions.

The key disadvantage to the use of emulsions in the past has been the ability of the water to remain in suspension during storage. One method of avoiding this problem has been to mix the oil and water immediately prior to feeding the mixture into the boiler. However, this requires additional fuel and water handling equipment, as well as a system to mix the two liquids. The additional expenses associated with this equipment have not usually been considered worth the resulting reductions in NO_x emissions. As an alternative to separate storage of the oil and water, emulsifying agents that result in a reduced rate of oil/water separation have been developed, allowing "premixed" emulsified oils to maintain their properties for extended periods of time when properly stored. This approach eliminates the need for additional handling and mixing equipment, and utilizes existing fuel handling systems, thereby reducing the cost of use. In the present tests, a "premixed" oil/water emulsion of a #6 fuel oil was used in comparison to the base, nonemulsified oil.

1.4 Project Objective

The objective of this project is to evaluate the emissions of HAPs from the combustion of an emulsified fuel oil and compare those emissions to the same oil without the emulsifying agent, both being burned in the same unit under similar conditions.^{*} This information will provide guidance regarding the potential for increase in HAP emissions due to the use of water/residual oil emulsions for reducing criteria pollutant emissions, and will also provide information in addition to previous tests of HAP emissions from the combustion of fuel oils conducted in the same unit.⁵ This will allow both fuel users and pollution control agency officials to make informed decisions regarding the impacts on air emissions from the combustion of water/residual oil emulsions.

^{*} The emulsified fuel was prepared and supplied by Industrial Fuel Company of Hickory, North Carolina.

The work described in this report was conducted by the Air Pollution Technology Branch (formerly the Combustion Research Branch) of EPA's Air Pollution Prevention and Control Division (APPCD) of the National Risk Management Research Laboratory (NRMRL) in Research Triangle Park, NC, and supported by EPA's Control Technology Center.

2. EXPERIMENTAL SETUP

2.1 Equipment

The tests were performed on APPCD's North American package boiler (NAPB) which is capable of firing natural gas or #2 through #6 fuel oils. The boiler is of a three-pass firetube "Scotch" marine-type design built in 1967, model 5-360H-D, and shown schematically in Figure 2-1. The burner is a North American model 6121-2.5H6-A65 rated at 2.5 x 10^6 Btu/hr, and has a ring-type natural gas burner and an air-atomizing center nozzle oil burner capable of firing #2 through #6 oils. The boiler has 300 ft² of heating surface and generates up to 2400 lb/hr of saturated steam at pressures up to 15 psig. Heat is extracted from the steam through a heat exchanger to an industrial cooling water system that simulates the

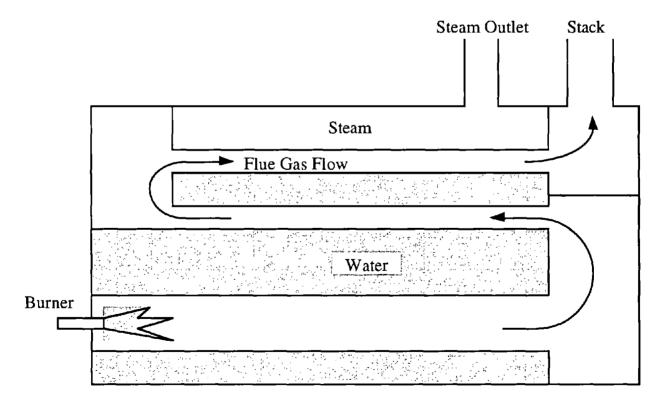


Figure 2-1. Schematic of the North American package boiler. The boiler is a three-pass firetube "Scotch" marine-type boiler capable of burning natural gas or fuel oils.

boiler load. Oil temperature can be adjusted using an electric heater to maintain proper oil viscosity, and both fuel and atomizing air pressures are variable to ensure adequate oil atomization. The NAPB is fully instrumented with continuous emission monitors (CEMs) for NO_x , CO, CO₂, O₂, and SO₂. A computerized data acquisition system was used to record CEM measurements as well as steam and flue gas temperatures.

The flue gases from the unit pass through a manifold to an air pollution control system (APCS) consisting of a natural-gas-fired secondary combustion chamber, an acid gas scrubber, and a fabric filter to ensure proper removal of pollutants generated during tests designed to mimic poor combustion conditions. During the tests reported here, the APCS was operated to provide a constant draft to the NAPB to minimize changes in the induced draft. Although this type of boiler normally operates under forced draft only, the imposition of an induced draft due to the APCS was not felt to introduce any significant effects on boiler emissions.

2.2 Test Matrix

The test matrix was chosen to evaluate the effects of using an emulsified fuel on HAP emissions. The same #6 fuel oil was used in both tests, one with the emulsifier and the other without. The ultimate analyses of the fuels are given in Table 2-1, and Table 2-2 presents the trace element concentrations of the

	#6 Fuel Oil (without emulsifier)	Emulsified #6 Fuel Oil
Water(1)	0.70	9.00
Carbon (2)	85.20	77.83
Hydrogen (2)	7.16	10.16
Nitrogen (2)	0.24	0.24
Sulfur (2)	2.13	1.70
Ash (2)	0.040	0.096
Oxygen (2,3)	5.23	10.07
Viscosity, cSt		
@100° F	1964	2281
@210° F	47.24	63.38 (4)
Heat of Combustion, Btu/lb (ref. to 77° F)	18,243	16,604

Table 2-1. Ultimate analyses of the base #6 fuel oil and the emulsified oil used in the test program. Elemental concentrations are given in dry percent by weight, and viscosity values are in centistokes (cSt).

(1) Karl Fischer water

(2) Values are on a dry basis. Water percentage is given for reference only.

(3) Oxygen values are calculated by difference

(4) Due to the water content of the emulsified oil, the viscosity at 210° F is approximate

Table 2-2. Trace element content of the base #6 fuel oil used in the test program, in $\mu g/g$. The emulsified oil was not analyzed for metals since no metals were in the emulsifying agent.

	#6 Fuel Oil (without emulsifier)
Antimony	< 1.2
Arsenic	< 0.6
Beryllium	< 0.002
Cadmium	< 0.03
Chromium	< 0.06
Lead	< 0.6
Mercury	< 0.05
Manganese	< 0.01
Nickel	65.0
Sodium (1)	51.6
Vanadium (1)	486

(1) Sodium and vanadium are not listed as HAPs under Title III

oil without emulsifier (referred to as the base oil). No trace element concentration analyses were conducted on the emulsified oil, since the producer of the emulsified oil verified that no metals were included in the emulsifier.

Table 2-1 shows that the fuels have relatively high sulfur contents, and very low ash contents. The addition of the water in the emulsified oil significantly impacts the heating value, reducing it by 9%, equal to the increase in water content of the emulsified oil compared to the base oil. A greater flow of emulsified oil is then required to maintain the same heating rate as for the base oil. In addition, the combustion air flow also changes between the two fuels, due to the change in input rate of combustible content of the emulsified oil and to changes in the level of excess air used with the emulsified oil (operating changes will be discussed below).

The amounts of metals in the base oil indicate very low levels of all metals except nickel, sodium, and vanadium. Of these three, only nickel is listed as a HAP under Title III. These results are not unexpected, given the very low ash levels of the two oils. The trace element concentrations of the emulsified oil will be even less, since the metals will be diluted by the presence of the water.

The tests were conducted following the instructions of the oil/water emulsion producer. The proper procedure for setting the combustion conditions was to begin with the base oil, set conditions to obtain the desired level of O_2 in the stack, and measure the smoke number. The fuel was then switched to the emulsified oil, and the excess air level was reduced until the same smoke number as was measured with

the base fuel was obtained. This resulted in a lower stoichiometric ratio for the emulsified oil than for the base oil. This condition represents the baseline condition for the emulsified oil. No other combustion conditions were tested. For the base oil, the baseline condition was a firing rate of 2×10^6 Btu/hr, a nominal excess air level of 20% (stoichiometric ratio of 1.2), 5 psig outlet steam pressure, 48 psig atomizing air pressure, and 74 psig oil pressure. The same firing rate, steam pressure, and atomizing air pressure were used for both oils. For the base oil, the oil feed temperature averaged 236 °F, and for the emulsified oil, the feed temperature averaged 253 °F.

Because of constraints on sampling locations, different sampling procedures were conducted during different test runs. Sampling was done for metals, organics, and polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Test runs were scheduled to minimize changes in test conditions, and duplicate test runs were also conducted to provide a measure of the repeatability of the test results. Table 2-3 shows the test matrix, including the sampling activities conducted during each test run.

Test Run	Date	Fuel	Metals	Volatile Organics	Semivolatile Organics	PCDDs/PCDFs
$\overline{1}$	3/7/95	Base	2			
2	3/8/95	Base		1		2
3	3/8/95	Base	2			
4	3/9/95	Base			1	1
5	3/9/95	Base	1	11		
6	3/10/95	Base			1	1
7	3/10/95	Base			1	1
8	3/14/95	Emulsified	2			
9	3/14/95	Emulsified				2
10	3/15/95	Emulsified		1	2	
11	3/15/95	Emulsified	2	1		
12	3/16/95	Emulsified			1	11
13	3/16/95	Emulsified			1	1

Table 2-3 Test matrix used for sampling HAPs. For each test run, the number of samples taken for that test run is given.

2.3 Sampling and Analysis

The current program used different methods to sample and analyze for four major categories of HAPs: volatile organics, semivolatile organics, PCDDs/PCDFs, and metals. Table 2-4 lists the sampling and analytical procedures used in the test program. Duplicate samples were collected during selected test runs to provide a measure of the sampling precision. Sample probes were collocated in the stack, using the

Compound Class	Sampling Method ⁽¹⁾	Analytical Method
Volatile Organics	SW-846 Method 0030 (VOST)	SW-846 Methods 5040 and 8240
Semivolatile Organics	SW-846 Method 0010 (Modified Method 5)	SW-846 Method 8270
Polychlorinated Dioxins and Furans	40 CFR Part 60 Method 23 ⁽²⁾	Modified SW-846 Method 8280
Metals and Particulate Matter	SW-846 Method 0060 ⁽³⁾	SW-846 Method 0060 ⁽³⁾

Table 2-4. Sampling and analytical methods used in the test program.

(1) SW-846 sampling and analytical methods for VOCs and semivolatile organics can be found in Reference 6.

(2) Method 23 is found in Reference 7.

(3) Method 0060 is an SW-846 method identical to the unpublished Method 29, Draft Multi-Metals Train, 40 CFR Part 60, and following conventional usage, is referred to as Method 29 in the text. Method 0060 is found in Reference 8.

same axial location, and with the radial location being determined by the point of average duct velocity. In addition, field blanks were collected for each type of emissions sample to permit evaluation of potential sampling contamination.

Extractive sampling locations and locations of the CEM probes on the NAPB are shown in the schematic in Figure 2-2. The CEM data collected were recorded using a computerized data acquisition system for later retrieval and analysis of the data.

2.4 Quality Assurance

The project was conducted according to an APPCD Level III Quality Assurance (QA) Project Plan, which was prepared to document the test objectives, procedures used, data quality objectives, and data quality indicator goals for the test program. A QA Level III plan is used for technology development, and is less rigorous than the QA procedures required for regulatory standard setting or enforcement. However, the sampling and analysis procedures used in these tests were exactly the same as those required under the more rigorous QA levels. In this series of tests, more samples were taken than Level III requires, providing for an increased level of QA. A discussion of QA-related measurements and calculations is given in Appendix B.

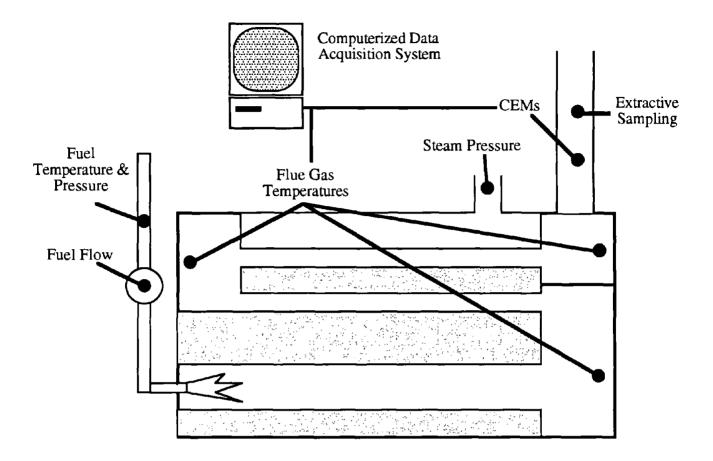


Figure 2-2. Location of CEM, temperature, and sampling probes on the North American package boiler. Flue gas temperatures and CEM measurements are automatically recorded on the computerized data acquisition system.

3. RESULTS

3.1 Criteria Pollutant Emissions

As noted in the Introduction, one of the primary reasons emulsified oils are used is to reduce emissions of criteria pollutants. Emissions of CO, NO_x, and SO₂ were measured during each of the test runs using CEM equipment, and the data from the CEMs were collected using a computerized data acquisition system. PM samples were collected during stack sampling for each of the test runs for which metals were sampled. In addition, smoke number readings were taken during each test to determine whether the recommendations of the emulsified oil supplier were being followed. The average smoke number reading when using the base #6 oil was 6.13, and the average was 5.95 when using the emulsified oil. Because the combustion air was reduced to bring the smoke numbers of the two fuels together, the average excess air levels (and hence the O₂ concentrations of the flue gases) for the emulsified oil were lower than for the base oil. The base oil stack gases had an average O₂ concentration of 4.5%, measured on a dry basis,

while the emulsified oil stack gases had an average O_2 concentration of 3.1%, again measured on a dry basis. These values correspond to average excess air levels of 24% for the base oil and 15% for the emulsified oil.

Table 3-1 and Figure 3-1 show the average measurements of CO, NO_x, and SO₂ for the base oil and for the emulsified oil for 12 of the 13 runs (CEM data for run 1 were lost due to damage to a data disk). Table 3-1 also includes the average PM and smoke number readings. The CO, NO_x, and SO₂ values are the averaged values of the individual run average CEM readings. NO_x data for runs 9 and 12, and SO₂ data for runs 12 and 13 were not included in the calculation of the averages due to CEM failures. Figure 3-2 presents the average PM and smoke number readings for the base and emulsified oils. As expected, the emulsified oil showed significant reductions in CO, NO_x, and PM, with SO₂ values remaining approximately the same. CO emissions from the emulsified oil were lower than the base oil by 22%, NO_x emissions were 35% lower for the emulsified fuel than for the base fuel, and PM emissions were 31% lower for the emulsified fuel than for the base fuel. Because the emulsification does not impact the amount of sulfur in the oil (except to add moisture and reduce O₂ in the flue gas), little change was expected. Although there was a slight decrease in the concentration of SO₂ in the measured flue gas of the emulsified oil, the amount of change was not considered to be significant, nor was it considered to be due to the use of the emulsified oil. Also shown in Figure 3-1 are the standard deviations measured from the individual runs.

	Base #6 Fuel Oil (without emulsifier)	Emulsified #6 Fuel Oil
CO	23	18
NOx	320	220
SO ₂	990	960
PM	0.23	0.16
Smoke No.	6.13	5,95

Table 3-1. Average emissions of criteria pollutants, and average smoke number readings from the two oils tested. CO, NO_x, and SO₂ values are in ppm corrected to 3% O₂, dry conditions. PM is in g/dry standard m³ (at 77° F, 1 atm).

Figures 3-3 through 3-8 present the values of heat input, CO, NO_x, SO₂, PM, and smoke number respectively, for 12 of the 13 runs. These plots indicate the variability in the data across the runs. Included in Figure 3-5 are the average NO_x CEM readings for runs 9 and 12, which were not included in the overall averages due to CEM problems. The CEM NO_x data showed an unacceptable drift in measurements during runs 9 and 12, and post-test calibrations of the NO_x analyzer failed. Figure 3-6 includes the average SO₂ CEM readings for runs 12 and 13, which were also excluded from the overall average due to CEM problems. In this case, no anomalies were noted in the CEM data, but post-test

calibration checks failed for these runs. In Figures 3-4 through 3-6, the error bars denote the standard deviations of the CEM measurements taken during the test runs. CEM data were logged every 30 seconds during the tests during runs 2 through 13.

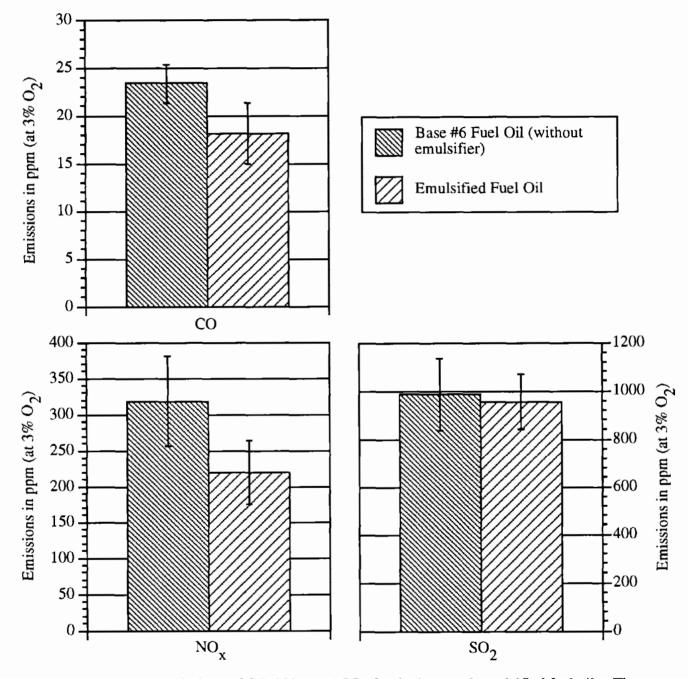


Figure 3-1. Average emissions of CO, NO_x, and SO₂ for the base and emulsified fuel oils. The presented values are the overall averages of the average run concentrations for each oil, and the error bars measure the standard deviations for each overall average.

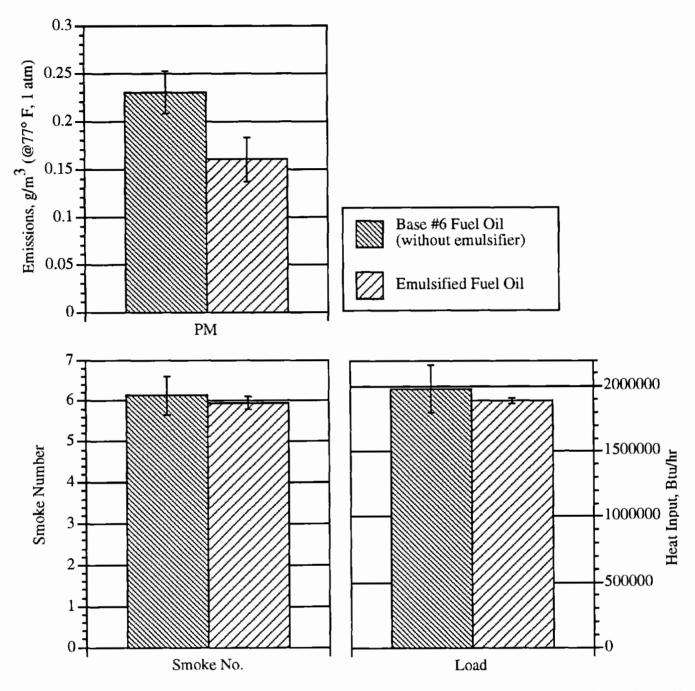


Figure 3-2 Average concentrations of PM and average smoke numbers and heat inputs for the base oil and emulsified oil. Error bars are the standard deviations for each average.

Figure 3-3. Average heat input rate for 12 of the 13 runs. Runs 2–7 were conducted using the base #6 oil, and runs 8–13 with the emulsified oil.

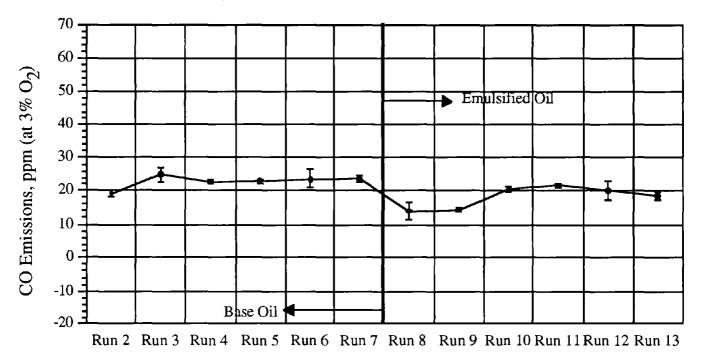


Figure 3-4. Average CO emissions for 12 of the 13 runs. Runs 2-7 were conducted using the base #6 oil, and runs 8-13 with the emulsified oil. The error bars show the standard deviation of the CEM measurements for each run.

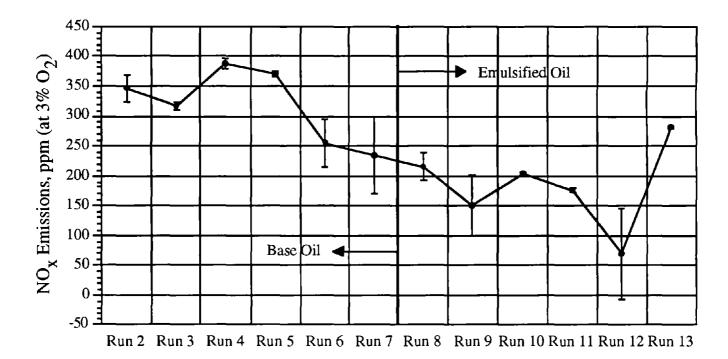


Figure 3-5. Average NO_x emissions for 12 of the 13 runs. Runs 2-7 were conducted using the base #6 oil, and runs 8-13 with the emulsified oil. The error bars show the standard deviation of the CEM measurements for each run.

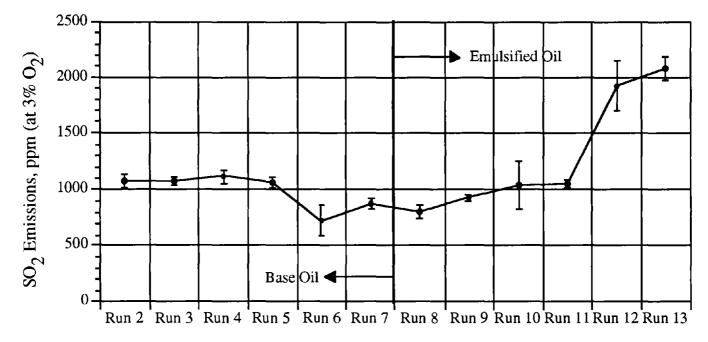


Figure 3-6. Average SO₂ emissions for 12 of the 13 runs. Runs 2-7 were conducted using the base #6 oil, and runs 8-13 with the emulsified oil. The error bars show the standard deviation of the CEM measurements for each run.

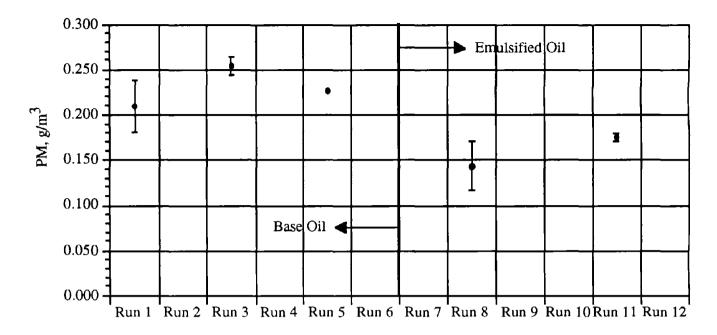


Figure 3-7. PM emissions for runs 1, 3, 5, 8, and 11. Runs 1, 3, and 5 were conducted using the base #6 oil, and runs 8 and 11 with the emulsified oil. The error bars show the standard deviation of the measurements for each run.

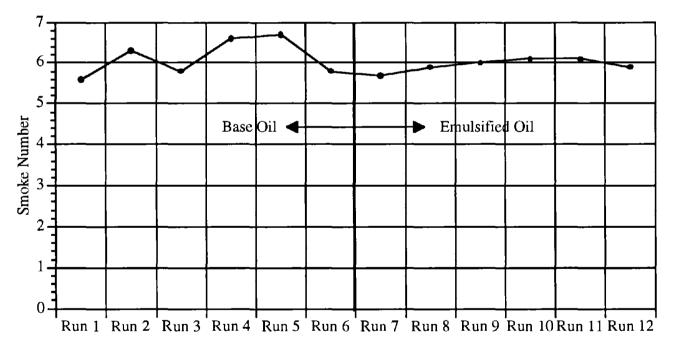


Figure 3-8. Smoke numbers for 12 of the 13 runs. Runs 1-6 were conducted using the base #6 oil, and runs 7-12 with the emulsified oil.

Table 3-2 and Figure 3-9 present the emission factors for the same four criteria pollutants in pounds per million British thermal units. The percent changes between the base and emulsified oil emission factors are somewhat different than the percent changes comparing the emissions based on concentrations. The differences are due to changes in the fuel and gas flow rates from the base to the emulsified fuel tests, and because the emission factor averages are taken from a smaller data set. As was the case for calculating the average concentration above, the average NO_x emission factor for the emulsified oil did not include runs 9 and 13, and the average SO₂ emission factor did not include runs 12 and 13 due to CEM problems. Emission factors for PM were calculated using only data from runs 1, 2, and 3 for the base oil and runs 7, 11, and 12 for the emulsified oil due to lack of sample volume data for the remaining runs.

	Base #6 Fuel Oil (without emulsifier)	Emulsified #6 Fuel Oil
CO	0.019	0.014
NOx	0.28	0.18
SO ₂	1.9	1.7
<u>PM</u>	0.18	0.11

Table 3-2. Average emission factors for criteria pollutants from the two fuels tested, in $1b/10^6$ Btu, at 3% O₂, dry conditions.

When comparing emission factors for these pollutants, the emulsified oil showed slightly greater, but consistent, reductions on a percentage basis than when comparing flue gas concentrations. The average CO emission factor was 24% lower for the emulsified oil compared with the base oil, the average NO_x emission factor was 35% lower for the emulsified oil compared to the base oil, and the average PM emission factor was 38% lower for the emulsified oil compared to the base oil. The average SO₂ emission factor was 9% lower for the emulsified oil compared to the base oil. As noted before, this difference is not attributed to the emulsified oil, but rather is due to changes in the sulfur content of the as fired fuel. As seen in Figure 3-6, there was relatively little variation in the average SO₂ value for each of the runs, with the exception of runs 11 and 12, indicating that the change in fuel did not have a significant impact on the SO₂ emissions.

3.1.1 PM Size Distribution

In addition to reducing the total mass of particulate, tests indicated that distribution of particle sizes also changed when firing the emulsified oil. This is due to the secondary atomization of the fuel by the water. The particle size distribution data were taken from a differential mobility particle sizer (DMPS) and from a cascade impactor that collects particulate in discrete size ranges. Total PM was also measured using the Method 29 filter. The total mass of PM captured in the Method 29 train did not correlate with the total

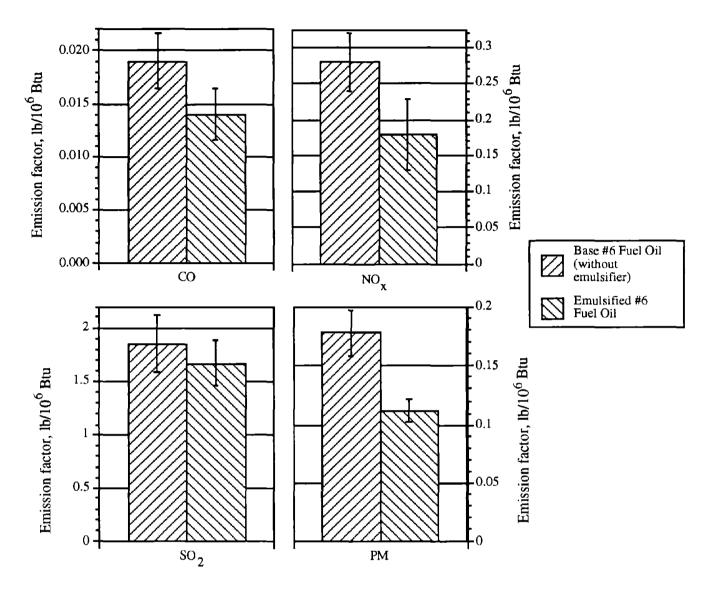


Figure 3-9. Average emission factors for CO, NO_x , SO₂, and PM for the base oil and the emulsified oil.

mass of the PM captured in the cascade impactor. Review of the data and collection procedures indicated that the total mass data from the Method 29 samples were good, while the mass values from the cascade impactor measurements were questionable. However, the trends in particle size distributions as a percentage of total mass measured by the cascade impactor were determined to be adequate, based on the data from the DMPS. In both cases, a shift was seen in the particle size distributions toward smaller sizes when using the emulsified oil as compared to the base oil. It is not clear, however, how the mass emissions of these smaller particles differed between the two oils. Additional study is required to quantify the actual mass emissions of the different particle size ranges for the two oils.

3.2 Metal HAP Emissions

Concentrations of 10 metal compounds were also sampled during the test program, using an EPA Method 29 sampling train. Concentrations of antimony, arsenic, beryllium, cadmium, chromium, lead, manganese, nickel, selenium, and vanadium were measured for both the base oil and the emulsified oil. Because the emulsifier did not contain any metals, the only source of metals in the stack gases was the oil itself, neglecting any erosion or residues from earlier testing. However, the previous operations of the NAPB were conducted using natural gas, which did not leave any metallic residues. Therefore, it is clear that the only source of metals in the present tests is from the fuels or from erosion of metal surfaces. However, there was no indication that such erosion was occurring during the testing. From Table 2-2, it is seen that the only metals of measurable quantity in the oil were nickel, sodium, and vanadium. Of these three, only nickel is listed as a HAP under Title III of the CAAAs.

Duplicate samples were taken during runs 1 and 3 using the base oil, and during runs 8 and 11 using the emulsified oil to allow an evaluation of the measurements' precision. A measure of the precision of the data is the relative percent difference (RPD), given by:

$$RPD = \frac{(C_1 - C_2)}{(C_1 + C_2)/2} \times 100\%$$
(Eq. 3-1)

where C_1 is the largest and C_2 is the smallest of the two values being compared. The RPD allows the precision of duplicate samples taken during a single test run to be quantified. Table 3-3 shows the RPDs for the duplicate Method 29 samples for each of the 10 metals sampled. In general, runs 3 and 11 had the best correlation between the duplicate samples, with RPD values below 10% for all metals except antimony and cadmium in the case of run 11, and for all metals except for antimony, arsenic, beryllium, and selenium in the case of run 3. All metals in run 1 had RPDs over 10%, except for chromium, and only chromium and selenium had RPDs less than 10% in run 8.

Table 3-3Relative percent differences for the duplicate Method 29 samples for each of the 10 metals.
The values are calculated from the measured concentrations in grams per cubic meter. Nickel
and vanadium concentrations from sample A of run 8 were not considered reliable, and were
not included in these or other calculations.

Run	Sb	As	Be	Cd	Cr	Pb	Ni	Mn	Se_	V
1	134	30.8	27.1	17.0	5.64	72.2	50.4	41.3	13.8	53.5
3	133	35.8	21.2	2.04	8.57	0.36	4.40	6.64	23.3	3.65
8	58.1	32.0	19.0	11.8	0.45	19.7	-	12.0	4.69	-
11	180	8.11	4.01	11.1	0.15	3.91	5.59	1.64	7.65	9.44

Because the RPD values for runs 1 and 11 are higher than the data quality indicator (DQI) goals (see Appendix B), it may be more reliable to compare the results from runs 3 and 11 only. Emission factors measured from runs 3 and 11 are presented in Table 3-4. These values generally show a slight increase in the metals emission factors for the emulsified oil compared to the base oil. However, except for antimony, the differences in emission factors between the base and emulsified oils were within $\pm 21\%$. This indicates that there were no significant differences in emissions between the two oils, given the fluctuations in metal content of the fuels and errors associated with measurement and analysis. Even when using data from all runs, the metals emission factors were nearly identical for the two oils. Except for antimony, the metals emission factor, to a 4.6% decrease in arsenic from the base oil emission factor to the emulsified oil emission factor. Since the data from runs 3 and 11 are more reliable, these are presented in Table 3-4 and Figure 3-10.

A further check on the data is to estimate the maximum emission factors using the as-received energy contents and contents of trace metals in the oils. Estimates of the maximum emission factor for metals can be calculated by assuming that the total mass of these metals entering the boiler in the fuel exits the boiler in the stack flue gases. In this study, only nickel and vanadium were found to be at levels above the detection limits in the as-fired base oil, so only for these metals can estimates be made of the maximum emission factors. Some differences are expected between the calculated emission factor based on the trace metal contents and the measured emission factor, due to the relatively low levels being measured, analytical accuracy, and the variability in the samples. In some systems, there is also retention of the metals in ash that is deposited within the boiler.

Table 3-4. Average measured emission factors for the 10 metals sampled, in lb/10¹² Btu. Only data from runs 3 and 11 for the base and emulsified oils, respectively, are presented. Note that lead and vanadium are not listed as HAPs under Title III of the CAAAs.

	Base Oil (data from run 3 only)	Emulsified Oil (data from run 11 only)
Antimony	77.5	156
Arsenic	5.07	4.51
Beryllium	0.174	0.187
Cadmium	4.07	4.24
Chromium	19.7	20.9
Lead	161	135
Manganese	20.0	24.1
Nickel	5190	5620
Selenium	15.5	16.4
Vanadium	25,300	27,600

For nickel, the maximum emission factor based on the nickel contents of the oils was found to be $3560 \text{ lb}/10^{12}$ Btu for the base oil and $3910 \text{ lb}/10^{12}$ Btu for the emulsified oil, and for vanadium the maximum possible emission factor was calculated to be $26,600 \text{ lb}/10^{12}$ Btu for the base oil and $29,300 \text{ lb}/10^{12}$ Btu for the emulsified oil. These values are quite close to the measured values given in Table 3-4, with the measured emission factors for nickel being 146% of the calculated emission factors for the base oil and 144% for the emulsified oil. For vanadium, the measured emission factor for the base oil was 95% of the calculated emission factor. The values of over 100% most likely indicate fluctuations in the nickel levels between the fuel tested and the fuel actually burned in the boiler. However, the fact that both the base and emulsified oils showed nearly identical percentages indicates that there are no significant differences in how these two metals behaved in the combustion environment when comparing the base and emulsified oils.

For the metal emission results in general, the results followed the expected pattern and showed no significant differences between the base oil and the emulsified oil, as seen in Figure 3-10. Although there was a relatively large difference in the antimony emission factors between the two fuels, the data for antimony showed a much larger scatter than was present in the other metals. Because there was no metal

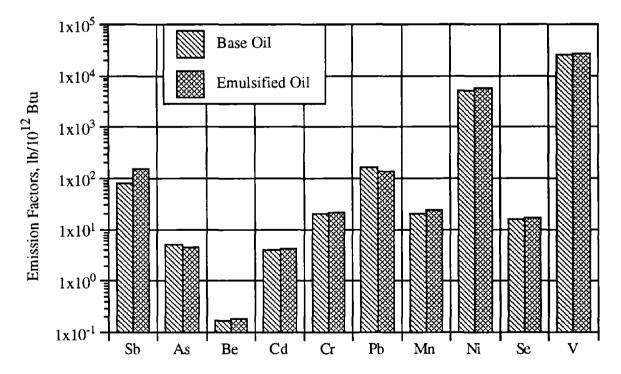


Figure 3-10. Average measured emission factors for 10 metals sampled for the base oil and the emulsified oil. Data from runs 3 and 11 only are used to calculate the averages.

added in the emulsifying agent, it was expected that the two fuels would show essentially the same total emissions of metals per unit of energy.

3.2.1 Metal Size Distribution

As was done for total PM emissions, some metal emissions were also sampled to determine the effects of the oil/water emulsion on size distribution. Each sample of particulate collected by size fraction was analyzed to determine the amount of chromium, nickel, and vanadium in the size fraction. As in the case with the total PM size distributions, the mass values measured for the total nickel and vanadium samples were not consistent with the total mass of nickel and vanadium measured in the size-segregated samples. While the trends indicated a shift toward smaller particles for the emulsified oil compared to the base oil, quantification of that shift remains to be determined.

3.3 Organic HAP Emissions

Emissions of organic compounds are usually less well defined as those of metal compounds. This is because the total mass of metals remains constant in the combustion process, and any metal entering the system via the fuel must exit either in the flue gas or in one of the ash streams such as bottom ash. While many toxic organic compounds are present in hydrocarbon fuels, they are also created and/or destroyed in the combustion process. The total emission of these compounds is often highly dependent on the combustion conditions and the mixing processes within the combustor. This can result in measurements of organic compounds that vary significantly between test runs.

3.3.1 Volatile Organic HAP Emissions

In the current set of tests, four sample tubes were collected for each oil type. Table 3-5 shows each volatile organic compound (VOC) detected during the testing and the number of times it was detected in the four sample tubes, as a function of the oil type. The samples were analyzed for a total of 45 VOCs, of which 24 were listed as HAPs under Title III of the CAAAs. As can be seen in Table 3-5, 17 compounds were detected, with all compounds but one being detected multiple times.

Because several of these compounds are present in laboratory and field environments, the sampled mass of each compound was compared to the amount of that compound measured in two field blanks. These blanks were prepared in the same way as a regular sample, but without having an actual flue gas sample drawn into them. For all but four compounds, the field blanks showed levels of volatile organic HAPs of the same order of magnitude or greater than one or more of the sample tubes. The field blanks showed no indication of 2-butanone, carbon disulfide, styrene, or 1,1,1-trichloroethane. However, because 1,1,1-trichloroethane was measured in only one sample tube and because of its highly chlorinated

Table 3-5. Volatile organic compounds detected for each oil during combustion testing, with the number of times the compound was detected (out of four sample tubes for each oil).

	Base Oil	Emulsified Oil
Acetone	1	4
Benzene	4	3
Bromodichloromethane	2	2
Bromomethane	2	2
2-Butanone	1	2
Carbon Disulfide	3	3
Chloroform	2	2
Chloromethane	2	1
Dichlorodifluoromethane	3	4
Ethylbenzene	2	2
Styrene	1	3
Toluene	4	4
1,1,1-Trichloroethane	1	0
Trichlorofluoromethane	3	2
Xylene (m,p)	2	2
o-xylene	2	2

nature, the measurement was not considered to be highly reliable. These results indicate that a number of the VOCs measured in the sample tubes may have been the result of sample contamination and not due to the presence of a particular compound. However, for benzene, ethyl benzene, toluene, and m,p xylenes, one or more samples showed levels of volatile organic HAPs significantly higher (a factor of 3 or more) than what was present in the field blanks. The detected levels of the remaining compounds were nearly all less than 2 times higher than the field blanks, with most of the samples being either at or below the levels seen in the field blanks. Table 3-6 presents the ratio of the field blanks to the average detected mass of each compound in the base oil and emulsified oil samples.

Of the remaining three compounds, 2-butanone and styrene were detected in only one of four VOST tubes for the base oil. 2-butanone was detected in two of four tubes for the emulsified oil, and carbon disulfide was detected in three of four tubes for both fuels. Styrene was detected in three of four tubes in the emulsified oil. Since each run produced a pair of tubes, RPD values can be calculated to evaluate the precision of the duplicates. Table 3-7 presents the RPD for benzene, 2-butanone, carbon disulfide, ethyl benzene, styrene, toluene, and m,p xylenes.

These results show that there is significant variability in the data, making the reliability of the quantitative emissions data questionable. On a qualitative basis, the two oils were very similar in the compounds detected and in the levels measured. Even given the variability in the data, if the assumption is

Table 3-6. Ratio of mass of volatile organic compound detected in the field blanks to the average detected mass in the samples, for the base and emulsified oils.

	Base Oil	Emulsified Oil
Acetone	18.4	8.40
Benzene	6.36	7.27
Bromodichloromethane	19.1	19.8
Bromomethane	7.53	3.79
2-Butanone	0.00	0.00
Carbon Disulfide	0.00	0.00
Chloroform	18.4	17.8
Chloromethane	66.5	1.08
Dichlorodifluoromethane	12.3	10.4
Ethylbenzene	6.23	3.11
Styrene	0.00	0.00
Toluene	19.4	8.50
1,1,1-Trichloroethane	0.00	0.00
Trichlorofluoromethane	14.1	21.2
Xylene (m,p)	1.93	3.10
o-xylene	6.42	5.92

 Table 3-7. Relative percent differences between VOST tube

 measurements for three volatile organic compounds.

	Run 1	Run 2	Run 3	Run 4
Benzene	5.23%	17.9%	3.76%	200.%
2-Butanone	NA	200.%	200.%	200.%
Carbon Disulfide	200.%	21.14%	30.2%	200.%
Ethyl Benzene	200.%	200.%	200.%	200.%
Styrene	200.%	NA	102.%	200.%
Toluene	141.7%	_24.8%	177.%	42.9%
Xylene (m,p)	200.%	200.%	200.%	200.%

*NA - Not applicable (all data for the run were below the detection limit)

made that all measurements were accurate, the total VOC emission factor was on the order of $5 \text{ lb}/10^{12}$ Btu for both oils, which is very small compared to the metals emission factors.

Table 3-8 presents the emission factors for the 7 VOCs listed above, both in terms of average detected emissions and incorporating the measurements which were less than the method detection limit. The measurements which incorporate samples that measured below the detection limit are typically less than the values reported for the average detected emissions, since the detected values are almost always higher than

Table 3-8. Emission factors of volatile organic compounds, in lb/10¹² Btu. The Average Detected Value figures do not include measurements below the method detection level. The Average (All Readings) figures include measurements below the method detection level. Averages for compounds that had measurements below the detection level are calculated using the method detection level, and are indicated as being "less than" the given value.

	Average Detected Value		Average (All Readings)	
	Base Oil	Emulsified Oil	Base Oil	Emulsified Oil
Benzene	0.971	0.684	0.958	< 0.582
2-Butanone	0.867	1.44	< 0.518	< 0.857
Carbon Disulfide	1.71	0.880	₹ 1.36	< 0.729
Ethyl Benzene	0.177	0.278	< 0.294	< 0.278
Styrene	0.354	0.368	< 0.390	< 0.345
Toluene	1.56	2.81	1.54	2.81
Xylene (m,p)	0.475	0.230	< 0.443	< 0.254

the listed method detection limit (although some samples had measureable concentration levels slightly below the listed method detection limit). The values calculated using measurements below the detection limit are all given as being "less than" the listed value.

Although the compounds listed in Table 3-8 are reported with lower than desireable reliability concerning the absolute quantities, it is likely that these volatile organic HAPs are present in the flue gases. For instance, both benzene and toluene were measured in the flue gases repeatedly and at consistent levels significantly greater than levels measured in the field blanks. Additionally, previous studies have indicated their presence in the flue gas of oil combustion systems,^{9,10} and it is likely that they are present in the flue gases of the two oils tested in this study. Even neglecting any contamination by the analysis procedures, however, neither of these compounds was present in levels exceeding 3 lb/10¹² Btu.

3.3.2 Semivolatile Organic HAP Emissions

Flue gas samples were also analyzed for semivolatile organic HAPs using a Modified Method 5 sampling train and standard EPA analysis methods. As was the case for the volatile organic HAPs, the measurements in some cases varied significantly between samples. Three samples were taken of base oil flue gases and four samples of emulsified oil flue gases, with two of those four being taken during a single test run. The flue gases were analyzed for 105 semivolatile compounds, of which 45 were listed as HAPs under Title III of the CAAAs. Included in the 105 compounds were 17 PAHs, which are listed as a single HAP under Title III. Of the 105 compounds, only 15 were detected at least once in the 7 samples. The semivolatile organic compounds detected and the number of times they were detected are presented in Table 3-9. Dibenzofuran was the only compound detected solely in the flue gases of the emulsified oil,

while 7 of the 15 compounds detected were found only in the flue gases of the base oil. Naphthalene and dibutyl phthalate were the only two compounds detected in every sample.

The emissions of semivolatile organic compounds were dominated by phthalates. However, the phthalates were also found in the field blanks in high concentrations, indicating that the majority of the phthalates measured in the samples were from contamination during analytical procedures rather than actual presence in the flue gases (phthalates are common laboratory contaminants). Of the remaining compounds, benzyl alcohol was the major semivolatile organic emission from the base oil, and phenol constituted almost the entire semivolatile emissions from the emulsified oil. Emission factors for the semivolatile compounds for the two oils are presented in Table 3-9 and Figure 3-11. Table 3-9 and Figure 3-11 present two sets of emission factors, the first calculated by assuming that compounds with concentrations below the detection limit are at zero concentration, and the second calculated by assuming

Table 3-9. Semivolatile organic compounds detected for each oil during combustion testing, with the number of times the compound was detected (out of three sample trains for the base oil and four sample trains for the emulsified oil).

	Base Oil	Emulsified Oil
Benzo(a)anthracene	2	0
Benzo(g,h,i)perylene	2	0
Benzyl alcohol	2	0
Benzyl butyl phthalate	1	1
Bis(2ethylhexyl)phthalate	2	2
Chrysene	2	0
Dibenz(a,h)anthracene	2	0
Dibenzofuran	0	4
Dibutyl phthalate	3	4
Diethyl phthalate	1	4
Di-N-octyl phthalate	2	3
3-methylcholanthrene	1	0
3&4-methyl phenol	1	0
Naphthalene	3	4
Phenol	1	2

Table 3-10. Average semivolatile organic emission factors in lb/10¹² Btu. In columns 2 and 3, emission factors were calculated using the detection levels for samples in which the concentration was below the detection value. In columns 4 and 5, emission factors were assumed to be zero if the concentration was below detection value. Some compounds in Table 3-8 are not shown here due to high field blank levels of those compounds.

	Calculated using detection level		Calculated using zero	
	Base Oil	Emulsified Oil	Base Oil	Emulsified Oil
Benzo(a)anthracene	0.16	0.16	0.10	0
Benzyl alcohol	7.58	13.5	2.47	0
Chrysene	0.14	0.15	0.08	0
Dibenz(a,h)anthracene	0.36	0.43	0.20	0.
Dibenzofuran	0.66	0.10	0	0.06
3-methylcholanthrene	0.03	0	0.03	0
3&4-methyl phenol	5.50	7.14	0.08	0
Phenol	5.58	5.56	0.47	2.37

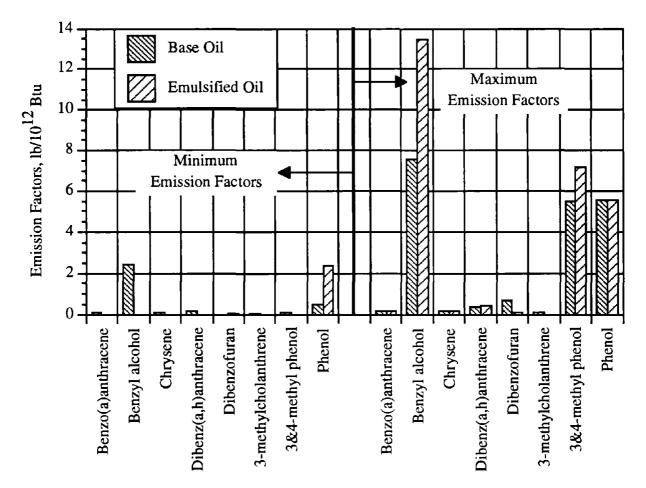


Figure 3-11. Average semivolatile emisson factors for the base and emulsified oils The bars on the left half of the figure assume compounds at concentrations below the detection limits are at zero concentration, and the bars on the right half of the figure assume compounds at concentrations below the detection limits are at zero is a concentration below the detection limits are at the detection limit concentration.

that compounds with concentrations below the detection limit are at the detection limit. In this way, Table 3-10 and Figure 3-11 present the bounds on the emission factors for these compounds, with the minimum being the zero concentration assumption and the maximum being the detection limit concentration assumption.

3.3.3 Dioxin and Furan Emissions

The final organic compounds for which the flue gases were analyzed were PCDDs and PCDFs. In all cases for both the base oil and emulsified oil, the levels of PCDDs and PCDFs were below the method detection levels.

4. DISCUSSION

Based on the knowledge of the emulsified oil, there were only three areas that were considered to have potential for significant changes when using the emulsified oil compared to the base oil. These areas were operational factors (e.g., boiler efficiency), emissions of criteria pollutants, and emissions of organic compounds. Because no metals were being introduced into the oil from the emulsifier, it was expected that there would be no change in metal emissions. However, because the emulsification process results in secondary atomization and the formation of finer fuel droplets, it was expected that particulate sizes could shift toward smaller particle size ranges which are more difficult to collect.

4.1 Operational Factors

Relatively little difference was noted between the base and the emulsified oils during operation. The major difference was the O_2 level to which the unit was controlled. However, once this was set, little or no further adjustment was necessary to operate the boiler. While the water content of the flue gases was higher when using the emulsified oil compared to the base oil, no adverse effects were noted during the operation of the unit. These comparisons were only made during short term operation of the boiler, and no information was collected on any long term operational effects of using the emulsified oil.

4.2 Criteria Pollutant Emissions

The emulsified oil showed reductions in the CO emission factor of 24% compared with the base oil, in the NO_x emission factor of 36% compared with the base oil, and in the PM emission factor of 37% when using the emulsified oil compared with the base oil. These reductions were consistent across the test runs, and are the result of the finer fuel droplets and secondary atomization characteristic of the emulsified oil, allowing improved vaporization and oxidation of the hydrocarbon fuels, and the lower excess air level

used during operation with the emulsified oil. Some reduction of NO_x may also be due to the presence of higher amounts of water in the flame zone, thereby reducing the peak flame temperature and the associated formation rate of NO_x . However, the major factor influencing NO_x levels was the lower amount of excess air used during combustion.

No long term reduction of SO_2 would be expected from using the emulsified oil, since the amount of sulfur being input to the boiler via the fuel would be essentially the same for a given total heat load. If any change is noticed in total SO_2 emissions, it would be expected that there may be a slight increase due to combustion efficiency losses caused by higher levels of water in the fuel. Such an increase is not expected to be significant, however. The major factor influencing SO_2 emissions will remain the fuel's as-fired concentration of sulfur per unit energy.

The distribution of particle sizes showed a discernable shift toward smaller sizes in the emulsified oil compared to the base oil. It is not known whether or not the total mass of the smaller particulate emissions increased. This may be an area for concern, based on recent studies that have indicated a link between adverse health effects and ambient levels of small (< $2.5 \mu m$) particulate.¹¹ Impacts of these studies and their implications for emissions controls are currently being evaluated.

4.3 Metal Emissions

As with SO₂, no significant change in total uncontrolled emissions of metals would be expected over long term operation using the emulsified oil. For sources with particulate control, the impact of using emulsified oil on metals emissions is not as clear. While the absolute mass of particulate emissions will be significantly reduced by the control device, the shift in particle sizes noted for the emulsified oil compared with the base oil may result in an increase in the fine particulate fraction, which is less efficiently controlled by standard particulate control systems. In instances where the metals are concentrated in the fine particulate fraction, the emissions of those metals may not significantly decrease when using the emulsified oil for the same controlled source. Additional work is required to allow a quantification of this effect. In addition, a slight increase in metal emissions may result due to a reduction in the thermal efficiency of the boiler due to the increased water in the flue gas during operation with the emulsified oil. The major factor influencing the total emissions of metals will be the oil's trace metal content per unit energy.

4.4 Organic HAP Emissions

Emissions of organic compounds were 9% higher when using the emulsified fuel oil compared with the base oil. The VOC emission factors from both oils were the same order of magnitude as the emission

factors for the sampled semivolatile organics, and one or more orders of magnitude lower than for the metals. Emission factors for semivolatile compounds were 29% lower for the emulsified oil than for the base oil. Emissions of chlorinated dioxins and furans did not change, with neither fuel having detectable quantities of PCDDs or PCDFs in the flue gases. The lower levels of organic compound emissions are likely due to the secondary atomization generated by the emulsification of the oil. For both oils, the level of total organic emissions is very low and, although the percentage change values may seem significant, the total mass of organic compounds emitted for both fuels remains very low. For both the base and emulsified oils, the organic emissions were dominated by the semivolatile organics, and were approximately four orders of magnitude less than the emissions of vanadium and three orders of magnitude lower than the emission rate of nickel.

5. CONCLUSIONS

The emulsified oil showed lower emissions of CO, NO_x , PM, and organic HAPs compared to the base #6 oil. No significant change was noted in emissions of SO₂ or total metals.

For the boiler tested, operating at its full load capacity of 2.5×10^6 Btu/hr for a full year, the total annual emissions of organic compounds would be 0.035 lb/year for the base oil and 0.025 lb/year for the emulsified oil. This compares with 308 lb/year of combined vanadium and nickel emissions for the base oil and 335 lb/year of combined vanadium and nickel emissions for the emulsified oil. For both oils, the emissions of HAPs are well below the 10 tons/year threshold defined by Title III of the CAAAs for a major source.

A potential drawback to the use of the emulsified oil is the indicated shift of the distribution of particulate sizes toward the smaller size ranges. Additional work remains to quantify this aspect of the emissions.

6. REFERENCES

- 1. Public Law 101-549, Clean Air Act Amendments of 1990, November 15, 1990.
- 2. Hall, R.E., "The Effect of Water/Residual Oil Emulsions on Air Pollutant Emissions and Efficiency of Commercial Boilers," Journal of Engineering for Power, pp. 425-434, October 1976.
- 3. Hall, R.E., "The Effect of Water/Distillate Oil Emulsions on Pollutants and Efficiency of Residential and Commercial Heating Systems," presented at the 68th Annual Meeting of the Air Pollution Control Association, Boston, MA, June 15-20, 1975, paper 75-09.4.

- 4. Adiga, K.C., "On the Vaporization Behavior of Water-in-Oil Microemulsions," Comb. Flame, Vol. 80, p. 214, 1990.
- 5. Miller, C.A., J.V. Ryan, and T. Lombardo, "Characterization of Air Toxics from an Oil-Fired Firetube Boiler," Journal of the Air & Waste Management Association, in press.
- Test Methods for Evaluating Solid Waste, Vol. II: Field Manual Physical/Chemical Methods, 3rd ed.; EPA-SW-846 (NTIS PB88-239223); U.S. Environmental Protection Agency, Washington, DC, September 1986.
- 7. "Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans," in Code of Federal Regulations 40 CFR Part 60 Appendix A, U.S. Government Printing Office, Washington, DC, July 1, 1994.
- 8. "Determination of Metals in Stack Emissions," in *Test Methods for Evaluating Solid Waste, Vol. II: Field Manual Physical/Chemical Methods*, 4th ed.; EPA-SW-846; U.S. Environmental Protection Agency, Washington, DC, January 1995.
- Brooks, G., "Estimating Air Toxics Emissions from Coal and Oil Combustion Sources," EPA-450/2-89-001 (NTIS PB89-194229), U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, April 1989.
- Hangebrauck, R.P, D.J. Von Lehmden, and J.E. Meeker, "Emissions of polynuclear hydrocarbons and other pollutants from heat-generation and incineration processes," J. Air Pollut. Control Assoc., Vol. 14, No. 7, pp. 267-278, July 1964.
- Dockery, D.W., et al., "An Association Between Air Pollution and Mortality in Six Cities," N.E.J. Med., Vol. 329, pp. 1753-1759, 1993.

APPENDIX A. ENGLISH ENGINEERING TO METRIC CONVERSIONS

$$kW = Btu/hr x 3413$$

°C = (°F - 32) + 1.8
m² = ft² + 10.764
cm = in. x 2.54
kg = lb + 2.2046
kPa = psi x 6.893
tonne = ton x 0.9072
µg/MJ = lb/10¹² Btu x 0.430

-

APPENDIX B. QUALITY EVALUATION REPORT

This project was conducted under an approved APPCD Level III Quality Assurance (QA) Project Plan. The plan set forth the operating, sampling, and analysis procedures to be used during the testing, as well as the data quality indicator (DQI) goals for the project. The DQI goals for the project are shown in Table B-1.

Measurement	Bias	Precision	Accuracy	Completeness
VOCs	50-150%	< 30%	NA	>70
Semivolatiles	18-120%	< 15%	NA	>70
Metals	75-125%	< 10%	NA	>70
PCDDs/PCDFs	25/40-130%	< 30%	NĀ	>70
02	NA	<15% RSD*	< ±3%	>90
CO ₂	NA	<15% RSD	< ±3%	>90
CO	NA	<15% RSD	<pre>< ±3%</pre>	>90
NOx	NA	<15% RSD	< ±3%	>90
THC	NA	<15% RSD	< ±3%	>90
SO ₂	NA	<15% RSD	< ±3%	>90
Fuel Flow	NA	± 10% RSD	$\pm 10\%$	>90
Temperature	NA	$\pm 10\%$ RSD	±10%	>90

Table B-1. Data quality indicator goals for the project.

*Relative standard deviation

B.1 CEM Data

The CEM data were for the most part of high quality and met the DQI goals. However, the SO₂ analyzer did not meet the post-test calibration goals of $\pm 3\%$ deviation from full scale for runs 7 through 13. Noticeable differences were noted for runs 12 and 13, and these data were not used in the calculations of the average SO₂ emissions. For runs 7 through 11, the CEM data appeared to be good for the majority of the test runs, but drifted lower toward the end of the runs. For these runs, only the data judged to be measured prior to the onset of analyzer drift were used in the calculations of the averages. The NO_x analyzer also displayed periodic problems, resulting in post-test calibrations of the high range calibration point did not show this drift. On average, the difference between the pre-test check and the post-test check of the midpoint calibration was 5.5% of full scale. During runs 8 and 11, the NO_x analyzer had periods of signal loss, resulting in negative concentration measurements. Data from these runs were not used in calculating the average emission factors. The CO analyzer showed differences within 3% of full scale for all tests.

B.2 Duplicate Samples

Duplicate sampling trains were used during several runs to help evaluate the precision of the results. One pair of duplicate samples were collected for the semivolatile organic compounds, two pairs for the dioxin and furans, and four pairs for the metals.

For the semivolatile organic compounds the only compound detected at levels above the field blank during the use of duplicate sampling trains was dibenzofuran. The measurements of dibenzofuran for the duplicate trains resulted in a relative percent difference of 53.6%. All PCDD/PCDF samples collected were below the method detection level. Therefore the RPD values were not calculated for these duplicates. For the metals, two pairs of duplicate measurements were made for the base oil and two for the emulsified oil. The calculated RPD values for each of these pairs of measurements are shown in Table 3-3, and a short discussion of the metals data quality is given in Section 3.

B.3 Duplicate Tests

Duplicate tests were conducted for all measurements. The test matrix in Table 2-3 shows the duplicate tests for metals, VOCs, semivolatile organic compounds, and PCDDs/PCDFs. Duplicate tests were conducted for VOCs from the base oil and the emulsified oil, and triplicate tests were conducted for the semivolatile organic compounds from the base oil and the emulsified oil. Four tests were conducted for the PCDDs/PCDFs for the base oil, and three tests were conducted for PCDDs/PCDFs for the emulsified oil.

B.3.1 Criteria Pollutants

Figures 3-1 and 3-2 present the averages and standard deviations for the CEM, PM, smoke number, and load measurements for the tests. Standard deviations for the individual runs for CO, NO_x , SO₂, and PM are given in Figures 3-4 through 3-8, respectively.

B.3.2 Metals

For the metals tests, runs 1, 3, and 5 provided triplicate tests of the base oil, and runs 8 and 11 were duplicates for the emulsified oil. Table B-2 present the averages and standard deviations for each metal for the base oil and the emulsified oil. This table presents the fluctuation between the different test runs as a measure of the test repeatability.

B.3.3 Volatile Organic Compounds

Runs 2 and 5 were duplicate tests of the base oil volatile organic compounds and runs 10 and 11 were duplicate tests of the emulsified oil volatile organic compounds emissions. Table B-3 shows the results from these tests as a measure of the experimental repeatability of the VOC measurements.

		Base	e Oil			Emulsified Oi	1
	Run 1	Run 3		Standard	Run 8	Run 11	Standard
[Average	Average	Run 5	Deviation	Average	Average	Deviation
Antimony	211	38.8	38.1	99.6	30.0	78.2	34.1
Arsenic	1.62	2.53	2.27	0.471	1.78	2.26	0.340
Beryllium	0.0741	0.0869	0.0884	0.00785	0.0790	0.0934	0.0102
Cadmium	1.96	2.04	2.19	0.117	1.79	2.12	0.235
Chromium	10.6	9.83	10.1	0.383	9.94	10.5	0.372
Lead	60.9	80.5	69.3	9.81	59.1	67.5	5.92
Nickel	2040	2590	2670	342	2200	2810	433
Manganese	8.14	10.0	10.6	1.28	10.7	12.1	0.986
Selenium	5.73	7.76	7.73	1.17	6.97	8.22	0.889
Vanadium	10,100	12,600	13,000	1560	10,600	13,800	2240

Table B-2. Average metal emission factors for each run and the standard deviation between the runs.

Table B-3.Average volatile organic compound emission factors in 1b/1012 Btu and the relative percent
differences between the runs. Measurements below the detection limit were assumed to be
zero.

		Base Oil			Emulsified Oil	
Averages	Run 2	Run 5	RPD	Run 10	Run 11	RPD
Dichlordifluoromethane	0.0392	0.0437	10.9%	0.0224	0.0328	37.9%
Chloromethane	0.0095	0.0302	104%	ND*	0.0057	200%
Bromomethane	ND	0.0122	200%	0.0374	0.0185	67.7%
Trichlorofluoromethane	0.0203	0.0098	69.6%	0.0060	0.0051	16.0%
Carbon disulfide	0.0947	0.0813	15.3%	0.0306	0.0597	64.4%
Acetone	ND	0.131	200%	0.185	0.238	24.9%
Methylene chloride	6.78	4.05	5.04%	6.26	4.65	29.6%
Chloroform	0.0786	0.0335	80.6%	0.0359	0.0396	9.9%
2-Butanone	ND	0.0434	200%	0.0700	0.0661	5.8%
1,1,1-Trichloroethane	0.0073	ND	200%	ND	ND	NA [†]
Benzene	0.0522	0.0449	15.0%	0.0322	0.0304	5.6%
Bromodichloromethane	0.0137	0.0068	66.7%	0.0062	0.0068	10.2%
Toluene	0.0942	0.0621	41.0%	0.0692	0.181	89.5%
Ethylbenzene	0.0112	0.0066	51.9%	0.0211	0.0062	110%
Xylene (m,p)	0.0421	0.0053	155%	0.0176	0.0051	111%
o-xylene	0.0123	0.0022	139%	0.0062	0.0055	11.3%
Styrene	0.0176	ND	200%	0.0194	0.0110	55.1%

*ND - Compound below detection limit

[†]NA - Not applicable

B.3.4 Semivolatile Organic Compounds

Runs 4, 6, and 7 were triplicate tests of the base oil semivolatile organic compounds and runs 10, 12, and 13 were triplicate tests of the emulsified oil semivolatile organic compounds emissions. Table B-4 shows the results of these measurements and the standard deviation of each compound's emission factor as a measure of the test repeatability.

ion
t

. 10 -

		Bas	æ Oil			Emuls	ified Oil	
				Standard	,			Standard
Compound	Run 4	Run 6	Run 7	Deviation	Run 10	Run 12	Run 13	Deviation
Phenol	643	0	0	371	0	3410	1570	1700
Benzyl alcohol	3020	337	0	1660	0	0	0	0
3&4-methyl phenol	112	0	0	64.5	0	0	0	0
Naphthalene	194	170	798	356	184	473	248	152
Dibenzofuran	0	0	0	0	23.9	78.4	22.5	31.9
Chrysene	51	60.6	0	32.6	0	0	0	0
Benzo(a)anthracene	74.2	55.9	0	38.7	0	0	0	0
3-methylcholanthrene	43.8	0	0	25.3	0	0	0	0
Dibenz(a,h)anthracene	212	58.3	0	110	0	0	0	0
Benzo(g,h,i)perylene	197	59.4	0	101	0	0	0	0

B.3.5 PCDDs/PCDFs

Duplicate tests were conducted for PCDDs/PCDFs during runs 2, 4, 6, and 7 for the base oil and during runs 9, 12, and 13 for the emulsified oil. All measurements were below the method detection limit.

B.4 Blanks

B.4.1 Volatile Organic Compounds

Of the 45 target VOCs, 13 were detected in the field blanks, and 9 on both field blanks. Table B-5 shows the detected amounts of the 13 compounds. As noted in Section 3, these high levels of blank contamination resulted in a significant loss of data quality for the VOC measurements. However, the levels of those compounds such as benzene and toluene that were detected in the samples were not high, even when disregarding the possibility of any sample contamination. Nevertheless, the values reported in Section 3 do not include any of the compounds listed in Table B-5.

	Detected Con	centration, ng
Compound	Blank 1	Blank 2
Acetone	86.6	35.8
Benzene	15.7	ND*
Bromodichloromethane	5.11	4.08
Bromomethane	2.77	4.16
Chloroform	26.0	22.3
Chloromethane	7.45	23.1
Dichlorodifluoromethane	15.5	4.24
Ethylbenzene	ND	2.74
Methylene chloride	3520	2700
Trichlorofluoromethane	4.26	3.94
Toluene	61.6	15.3
M,P-xylene	ND	2.26
o-xylene	ND	2.31

 Table B-5.
 Volatile organic compounds detected in the field blanks, in ng.

*ND - Not Detected

B.4.2 Semivolatile Organic Compounds

The MM5 field blanks showed the presence of 7 of the 105 target compounds, indicating that at least some of their presence was due to either previous contamination of the sampling train or contamination during the extraction and analysis procedures. The eight compounds detected in the field blank are shown in Table B-6. None of these compounds were reported as detected in Section 3.

Compound	Detected Concentration, µg/ml
Acetophenone	8.73
Benzyl butyl phthalate	2.23
Bis(2-ethylhexyl)phthalate	170
Dibutyl phthalate	34.0
Diethyl phthalate	17.9
Di-N-octyl phthalate	810
Naphthalene	2.72

Table B-6.Semivolatile organic compounds detected in the field
blanks.

B.5 Matrix Spikes

Matrix spikes were used to evaluate the ability of the analytical procedures to accurately measure known concentrations of materials. Matrix spikes were performed for the semivolatile compounds and for

the metals. No matrix spikes were performed for the VOCs or PCDDs/PCDFs. The percent recovery is calculated as:

$$Recovery = \frac{(Measured Concentration)}{(Known Concentration)} \times 100\%$$
(Eq. B-1)

B.5.1 Semivolatile Organic Compounds

Two matrix spikes were done for PAHs, and the recoveries of these spikes are shown in Table B-7. The recoveries ranged from 80% to 126%, and had relative percent differences (RPDs) from 0 to 14.9%. The RPD is a measure of the recovery precision, and in each case was well below the DQI goal of < 30%.

	First Spike	Second Spike	RPD
Target Compound	Recovery, %	Recovery, %	
Acenaphthene	104	101	2.12
Acenaphthylene	104	106	1.41
Anthracene	102	107	3.54
Benzo(a)anthracene	126	124	1.41
Benzo(b)fluoranthene	90	89	0.71
Benzo(k)fluoranthene	108	112	2.83
Benzo(ghi)perylene	98	107	6.36
Benzo(a)pyrene	93	93	0.00
Chrysene	92	101	5.66
Debenz(a,j)acridine	114	116	0.71
Dibenz(a,h)anthracene	80	. 91	7.78
Fluoranthene	122	124	1.41
Fluorene	115	109	4.24
Ideno(1,2,3-cd)pyrene	83	_ 80	2.12
Naphthalene	117	109	5.66
Phenanthrene	90	111	14.9
Pyrene	111	98	9.19

Table B-7. Spike recoveries and relative percent differences for the matrix spikes of PAHs.

B.5.2 Metals Matrix Spikes

For the metals, a National Institute of Standards and Technology (NIST) standard fly ash containing known concentrations of metals was used as the matrix spike. The standard used was NIST SRM 1633b fly ash. For the first spike, 1.05 g of the NIST sample was used, and 0.116 g of the NIST sample was used for the second spike. Because the concentrations of each metal were the same for both spikes, the total mass of each metal was approximately a factor of ten lower for the second spike than for the first. This resulted in measurements of antimony and cadmium being below the method detection level for the

second spike. In Table B-8, the percent recoveries of the spiked metals are presented as a percentage of the spike input concentration.

Metal	First Spike Recovery, %	Second Spike Recovery, %	Relative Percent Difference
Antimony	80.2	ND [†]	NA*
Arsenic	84.3	91.5	8.19
Beryllium	NA	NA	NA
Cadmium	125	ND	NA
Chromium	79.5	97.5	20.3
Lead	85.1	89.8	5.37
Manganese	73.4	125	52.2
Nickel	98.3	120	19.6
Selenium	108	241	76.2
Vanadium	83.1	109	26.9

Table B-8.	Percent recoveries of metal matrix spikes. The first sample
	was spiked with 1.05 g of NIST SRM 1633b sample, and
	the second with 0.116 g of the same sample.

*NA - Not applicable †ND - Not detected

B.6 Completeness

Completeness goals were met for all measurements except for the CEM data for run 1. In this case, the data were collected, but were lost when the disk containing the data was damaged prior to backup.

APPENDIX C. DATA SHEETS

	Alytical Tory report
From: Industrial Fuel Co. Wilmington, NC Sample Marked: Virgin No. 6 Oil	Analysis No. CS 3757 Date Sampled 11/4/ Date Received 11/9/ Date Completed 11/15/ Date Printed 11/15/
< FUEL OIL	ANALYSIS >>
<pre>% Ash- Calculated Pour Point (Deg. F) Viscosity at 122 Deg. F Specific Gravity (API at 60 F Sediment (%) Water (%) Asphaltenes by Hexane Extract BTU's per Pound (as received)</pre>	0.6 Trace < 0.05% ion (%) 13.
ICAP Analysi	
Sulfur (% S)	2.0
Vanadium (ppm V) Nickel (ppm Ni) Phosphorus (ppm P) Calcium (ppm Ca) Zinc (ppm Zn) Sodium (ppm Na) Iron (ppm Fe) Aluminum (ppm Al)	290 70 29 29 24 12 10 7
The following were < 5 ppm or not de Ag B Ba Cd Co Cr Mo Pb Sb Si Sn Sr	etected: Cu K Li Mg Mn Ti

NALCO CHEMICAL COMPANY DNE NALCO CENTER & NAPERVILLE, ILLINOIS 60563-1198

ſ

POST OFFICE BOX 67 D SUGAR LAND. TEXAS 77487-0087

إن Quali-Trak™

. .

	IALYTICAL XTORY REPORT
From: Industrial Fuel Co. Wilmington, NC	Analysis No. CS 377800 Date Sampled 12/ 1/93 Date Received 12/ 6/93 Date Completed 12/29/93
Sample Marked: Virgin No. 6 Oil	Date Printed 12/29/93
<< FUEL OIL	ANALYSIS >>
<pre>% Ash- Calculated Pour Point (Deg. F) Viscosity at 122 Deg. F Specific Gravity (API at 60 Sediment (%) Water (%) Asphaltenes by Hexane Extrac BTU's per Pound (as received)</pre>	0.6 Trace < 0.05% tion (%) 10.
ICAP Analys	is of Oil
Sulfur (% S)	2.0
Vanadium (ppm V) Nickel (ppm Ni) Sodium (ppm Na) Aluminum (ppm Al) Calcium (ppm Ca) Iron (ppm Fe)	250 59 26 9 8 7
The following were < 5 ppm or not d Ag B Ba Cd Co Cr Mo P Pb Sb Si Sn	

Analytical Laboratory Locations:

ç

NALCO CHEMICAL COMPANY ONE NALCO CENTER & NAPERVILLE, ILLINOIS 60563-1198 POST OFFICE BOX 87 & SUGAR LANG, TEXAS 77487-0087 **C** Quali-Trak™

From: Industrial Fu Wilmington, N		Date Samp. Date Rece	No. CS 388036 led 4/ 7/94 ived 4/11/94 leted 4/26/94
Sample Marked: Virgin #6 Oil	Tank	Date Prin	leted 4/26/94 ted 4/26/94
	<< FUEL OIL ANA	LYSIS >>	
Pour Poi Viscosit Specific Sediment Water (%		0.02 30 268 SSF 10.0 10. 1.0 18120	
	ICAP Analysis o	f Oil	
	Sulfur (% S)	2.0	
	Vanadium (ppm V) Nickel (ppm Ni) Barium (ppm Ba) Tin (ppm Sn) Aluminum (ppm Al) Sodium (ppm Na) Calcium (ppm Ca) Iron (ppm Fe)	390 69 46 17 8 7 6 5	
The following w Ag B Cd P Pb Sb		ted: Li Mg Mn	Mo

.

NALCO CHEMICAL COMPANY ONE NALCO CENTER & NAPERVILLE ILLINDIS 60563-1196 POST OFFICE BOX 87 & SUGAR LAND. TEXAS 77487-0087

ر

From: Industrial Fo Wilmington, 1 Sample Marked: Emulsified #0	NC	Date Sam Date Rec	NO. CS 3880 pled 4/ 7/ eived 4/11/ pleted 4/26/ .nted 4/26/
	<< FUEL OIL ANALYS	SIS >>	
Pour Po Viscosi Specific Sediment Water (S		0.02 30 334 SS 10.3 1.0 0.4 16630	SF
	ICAP Analysis of (Dil	
	Sulfur (% S)	1.8	
	Vanadium (ppm V) Nickel (ppm Ni) Tin (ppm Sn) Barium (ppm Ba) Aluminum (ppm Al) Calcium (ppm Ca)	320 66 45 8 6 5	
The following v Ag B Cd Mo Na P			1g Mn

Analytical Laboratory Locations: NALCO CHEMICAL COMPANY ONE NALCO CENTER IN NAPERVILLE, ILLINDIS 60563-1198

.

POST OFFICE BOX 87 D SUGAR LAND, TEXAS 77487-0087

From: Industrial Fuel Co Wilmington, NC Sample Marked: Virgin No. 6 Oil T		Date Sa Date Re Date Co	s No. CS 390949 mpled 5/6/94 ceived 5/11/94 mpleted 5/23/94 inted 5/23/94
	<< FUEL OIL ANA		
Specific Grav Sediment (%) Water (%)		0.02 30 318 S 10.2 0.4 Trace < 0 18230	SF
	ICAP Analysis o	f Oil	
Sul	fur (% S)	2.5	
Nic Sod Alu Irc Cal	adium (ppm V) kel (ppm Ni) lium (ppm Na) minum (ppm Al) on (ppm Fe) .cium (ppm Ca) ica (ppm Si)	350 77 20 8 6 5	
	5 ppm or not detec d Co Cr Cu o Sn Sr Ti	K Li	Mg Mn

Analytical Laboratory Locations: NALCO CHEMICAL COMPANY ONE NALCO CENTER 9 NAPERVILLE. ILLINOIS 60563-1198 POST OFFICE BOX 87 D SUGAR LAND. TEXAS 77487-0087

.

;

C Quali-Trak™

From: Industrial Fu Wilmington, No Sample Marked:		Analysis No. CS 39 Date Sampled 6/ Date Received 6/ Date Completed 6/1 Date Printed 6/1	2/94 6/94 3/94
Virgin #6 Oil	Tank 		
	<< FUEL OIL ANAL	YSIS >>	
Pour Poi: Viscosit Specific Sediment Water (%		0.4 Trace < 0.05%	
bio s pe	ICAP Analysis of		
	Sulfur (% S)	1.7	
	Vanadium (ppm V) Nickel (ppm Ni) Calcium (ppm Ca) Zinc (ppm Zn) Phosphorus (ppm P) Sodium (ppm Na) Iron (ppm Fe) Aluminum (ppm Al) Magnesium (ppm Mg) Silica (ppm Si)	340 75 31 26 25 20 11 9 8 7	
The following weather Ag B Ba	ere < 5 ppm or not detect Cd Co Cr Cu	ed: K Li Mn Mo	

Analytical Laboratory Locations:

NALCO CHEMICAL COMPANY ONE NALCO CENTER & NAPERVILLE, ILLINOIS 60563-1198 POST OFFICE EOX 87 II SUGAR LAND. TEXAS 77487-0087

Quali∙Trak™

From:	Analysis No. CS 393404
Industrial Fuel Co.	Date Sampled 6/ 2/94
Wilmington, NC	Date Received 6/ 6/94
Sample Marked:	Date Completed 6/13/94
Emulsified No. 6 Oil	Date Printed 6/13/94
<< FUEL OIL ANAL	YSIS >>
% Ash- Calculated	0.02
Pour Point (Deg. F)	30
Viscosity at 122 Deg. F	332 SSF
Specific Gravity (API at 60 F)	10.5
Sediment (%)	7.2
Water (%)	0.4
BTU's per Pound (as received)	16700
ICAP Analysis of	
Sulfur (% S)	1.6
Vanadium (ppm V)	320
Nickel (ppm Ni)	71
Phosphorus (ppm P)	24
Calcium (ppm Ca)	23
Zinc (ppm Zn)	20
Iron (ppm Fe)	8
Aluminum (ppm Al)	7
Sodium (ppm Na)	6
The following were < 5 ppm or not detect Ag B Ba Cd Co Cr Cu Mo Pb Sb Si Sn Sr Ti	

NALCO CHEMICAL COMPANY ONE NALCO CENTER & NAPERVILLE ILLINDIS 60563-1199 POST OFFICE BOX 87 D SUGAR LAND, TEXAS 77487-0087

From: Industrial Fu Wilmington, N Sample Marked: Industrial Fu EmucsiFieb	c el Co.				Date Date Date	Sample Receiv	red 5, sted 5,	/ 6/94 /11/94
	<<	FUEL OI	L ANAL	YSIS >	>			
Pour Poi Viscosit Specific Sediment Water (%		Deg. F API at 60)F)		25	2		
	IC	AP Analy	rsis of	Oil				
	Sulfur (%	S)			1.9			
	Vanadium Nickel (p Sodium (p Aluminum	opm Ni) opm Na)			330 72 9 7			
The following w Ag B Ba Mg Mn Mo	Ca Co	n or not i Co o Sb	Cr	Cu	Fe Sr		Li Zn	
2								

1/y (NALCO CHEMICAL COMPANY ONE NALCO CENTER © NAPERVILLE ILLINOIS 60583-1198 POST OFFICE BOX 87 © SUGAR LAND. TEXAS 77487-0087

	ytical Ry Report
From: Industrial Fuel Co. Wilmington, NC	Analysis No. CS 383060 Date Sampled 2/ 9/94 Date Received 2/15/94
Sample Marked: Emulsified No.6 Oil	Date Completed 3/ 9/94 Date Printed 3/ 9/94
<< FUEL OIL ANALYS	IS >>
<pre>% Ash- Calculated Pour Point (Deg. F) Viscosity at 122 Deg. F Specific Gravity (API at 60 F) Sediment (%) Water (%) BTU's per Pound (as received)</pre>	0.02 30 339 SSF 10.1 8.0 0.4 16540
ICAP Analysis of O	il
Sulfur (% S)	1.7
Vanadium (ppm V) Nickel (ppm Ni) Phosphorus (ppm P) Zinc (ppm Zn) Calcium (ppm Ca) Iron (ppm Fe) Aluminum (ppm Al) Lead (ppm Pb) Sodium (ppm Na) Tin (ppm Sn) Silica (ppm Si) Magnesium (ppm Mg) Potassium (ppm K) Chromium (ppm Cr) Copper (ppm Cu) Boron (ppm B) Molybdenum (ppm Mo) Antimony (ppm Sb)	290 74 14 10 10 7 6 3 3 2 2 1 1 1 1 1 1
Antimony (ppm SD) Cobalt (ppm Co) Titanium (ppm Ti) Silver (ppm Ag) Manganese (ppm Mn)	L O O O Form 738 (8-89

Analytical Laboratory Locations:

1

NALCO CHEMICAL COMPANY
DNE NALCO CENTER . NAPERVILLE, ILLINOIS 60563-1198
POST DEFICE BOX 87 D SUGAR LAND. TEXAS 77487-0087

7

From: Industrial F Wilmington, Sample Marked:	NC	Analysis No. CS 383060 Date Sampled 2/ 9/94 Date Received 2/15/94 Date Completed 3/ 9/94 Date Printed 3/ 9/94
Emulsified N	No.6 Oil	
	Cadmium (ppm Cd) Lithium (ppm Li) Strontium (ppm Sr) Barium (ppm Ba)	0 0 0 0
	 *	

ONE NALCO CENTER & NAPERVILLE, ILLINOIS 60563-1198 POST OFFICE 60X 87 & SUGAR LAND, TEXAS 77487-0087

.

à

From: Industrial Wilmington Sample Marke	, NC		Dat Dat Dat	e Sample e Receiv	ed 12/6 ted 12/29
Emulsified					
	<< FUEL	OIL ANAL	YSIS >>		
Pour Visco Speci Sedim Water Aspha	- Calculated Point (Deg. F) sity at 122 Deg. fic Gravity (API at ent (%) (%) ltenes by Hexane Ex per Pound (as rece	60 F) traction	3 34 1	0.02 0 9 SSF 0.7 9.2 0.4 2. 0	
	ICAP An	alysis of	Oil		
	Sulfur (% S)		1.6		
	Vanadium (ppm Nickel (ppm Ni Sodium (ppm Na Aluminum (ppm Calcium (ppm C Phosphorus (pp Iron (ppm Fe)) A) Al) (a)	240 57 18 7 6 6		
The followin Ag B Mo Pb		ot detect Cr Cu Gr Ti		. Mg	Мл

NALCO CHE MICAL COMPANY ONE NALCO CENTER & NAPERVILLE ILLINOIS 60563-1198 POST OFFICE BOX 87 & SUGAR LAND. TEXAS 27487-0087

•,

ANALY NALCO LABORATOR	
From: Industrial Fuel Co. Wilmington, NC Sample Marked: Emulsified No. 6 Oil	Analysis No. CS 375757 Date Sampled 11/ 4/93 Date Received 11/ 9/93 Date Completed 11/15/93 Date Printed 11/15/93
<< FUEL OIL ANALYSIS	>>
<pre>% Ash- Calculated Pour Point (Deg. F) Viscosity at 122 Deg. F Specific Gravity (API at 60 F) Sediment (%) Water (%) Asphaltenes by Hexane Extraction (%) BTU's per Pound (as received)</pre>	0.02 30 341 SSF 20.1 0.2 8.0 14. 16510
ICAP Analysis of Oil	
Sulfur (% S)	1.8
Vanadium (ppm V) Nickel (ppm Ni) Phosphorus (ppm P) Calcium (ppm Ca) Zinc (ppm Zn) Iron (ppm Fe) Sodium (ppm Na) Aluminum (ppm Al)	270 65 26 25 20 9 7 6
The following were < 5 ppm or not detected: Ag B Ba Cd Co Cr Cu K Mo Pb Sb Si Sn Sr Ti	Li Mg Mn
alytical Laboratory Locations:	Form 738 (

NALCO CHEMICAL COMPANY ONE NALCO CENTER © NAPERVILLE. ILLINOIS 60563-1198 POST OFFICE EOX B7 © SUGAR LAND. TEXAS 77487-0087

Uali-Trak™

TEST CONDITION SUMMARY

-

1

TEST RUN> TEST DATE>		M23-1 3-6-95	M29-1 3-7 - 95	M23-2 3 - 8-95	M29-2 3-8-95	MM5-1 3-9-95	M23-3 3-9-95	M29-3 3-9-95	M23-4 3-10-95
Target Test Conditions:				, ud 87.02 8 koud ₈ ,					
Fuel		High S #6	#6	#6	#6	#6	#6	#6	#6
Target FR	MBtu/hr	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Target SR		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Actual Test Conditions:									
Fuel Feed	GPH	13.92	12,08	1 1 .77	13.37	13.45	13.47	13,47	13.85
	Lb/hr	104.8	89.0	86.7	98.5	99.1	99.2	99.2	102.0
Firing Rate (FR)	MBtu/hr	1.982	1.635	1.593	1.810	1.820	1.822	1.822	1.874
Stoichiometric Ratio	(SR)	1.23	1,29	1.31	1.21	1.27	1.25	1.25	1,26
Exhaust Gas Compositon:									
Oxygen	Dry %	4.06	4.80	5.06	3.78	4,50	4.32	4.32	4.35
Carbon Dioxide	Dry %	15.02	14.89	14.95	15.04	15.02	15.02	15.02	14.65
Moisture	%	10.21	9.93	10.40	11.30	10.37	8.78	9.02	9.02
Dry Mol. Wt.		30.6	30.6	30.6	30.6	30.6	30.6	30.6	30,5
Exhaust Gas Flow:	SCFM	434.13	385.02	385.00	374.20	424.71	409.11	409.11	424.67
	DSCFM	416.76	369.61	346.50	336.78	382.24	368.20	368.20	382.20

.

.

,

TEST CONDITION SUMMARY

TEST RUN> TEST DATE>		MM5-2 3-10-95	M23-5 3-10-95	MM5-3 3-10-95	M29-4 3-14-95				
Target Test Conditions:									
Fuel		#6	#6	#6	Emulsified #6	Emulsified #6	Emulsified #6	Emulsified #6	Emulsified #6
Target FR	MBtu/hr	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Target SR		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Actual Test Conditions:									
Fuel Feed	GPH	13.85	13.41	13.41	14.05	13.96	14.21	14.63	14.62
	Lb/hr	102,0	98.8	98.8	103.5	102.8	104.7	107.8	107.7
Firing Rate (FR)	MBtu/hr	1.874	1,815	1.815	1.902	1.889	1.923	1.980	1.978
Stoichiometric Ratio	(SR)	1.26	1.21	1.21	1.21	1.23	1.20	1.14	1.24
Exhaust Gas Compositon	:								
Oxygen	Dry %	4.35	4.72	4.72	3.76	4.04	3.54	2.60	4.18
Carbon Dioxide	Dry %	14.65	14,80	14.80	14,96	15.04	15.10	15,16	14.64
Moisture	%	9,15	8,90	8,56	10.73	10.34	11.64	12.06	10.88
Dry Mol. Wt.		30.5	30.5	30.5	30.5	30.6	30.6	30.5	30.5
Exhaust Gas Flow:	SCFM DSCFM	424.67 382.20	410.84 369.75	410.84 369.75	382.36 344.12	387.96 349.17	365.68 329.12	361,97 325.77	398.83 358.94

•

TEST CONDITION SUMMARY

ł

-

.

TEST RUN> TEST DATE>		M23-7 3-16-95				
Target Test Conditions:						
Fuel		Emulsified #6	Emulsified #6	Emulsified #6	Emulsified #6	Emulsified #6
Target FR	MBtu/hr	2.0	2.0	2.0	2.0	2.0
Target SR		1.2	1. 2	1.2	1.0	1.2
Actual Test Conditions:						
Fuel Feed	GPH	14.62	14.76	14.76	NA	NA
	Lb/hr	107.7	108.7	108.7	NA	NA
Firing Rate (FR)		1,978	1,997	1,997	NA	NA
Stoichiometric Ratio		1.24	1.23	1.23	NA	NA
Exhaust Gas Compositon:						
Oxygen		4.18	4.06	4.06	NA	NA
Carbon Dioxide	Dry %	14.64				
Moisture	%	11.53			NA	
Dry Mol. Wt.	70	30.5				
Bry Mol. VVI.		00.0	00.0	00.0		117
Exhaust Gas Flow;	SCFM	398.83	410.72	410.72	NA	NA
	DSCFM	• •	369.64	369.64		NA

.

HAPTSH, XLS

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

NO			START TH	me. <u>14</u> ,	<u> </u>		END TIME					FUEL	2 4	2		ey		_
	FUEL	STEAM	PRESSU		MANIFOLD		-	TEMPER		STACK		[CE				
	DELIVERY	SIEAM		AIGHIZING	DRAFT	FUEL DELIVERY			HEAT			OPACITY	co	02	C02	NO	SO2	Remarks
4:15	75	45	0.4	45	1.7	250	180	90	175	441	6	-20	30	3.7	15.1	290	725	
Y:46	75	4.5	0.4	44	1.7	225	165	88	174	451	5	-20	27	4.7	14.9	283	625	
5:02	74	4.5	0.4	44	1.7	225	165	81	174	448	7	-2.0	26	5.3	14.9	282	612	
5:16	24	4.5	0.1	45	1.8	225	165	91	175	444	7	-1.8	25	5.1	14.9	281	NA	
5:36	74_	4.5	0.2	42	1.8	270	185	89	174	447	6	-2.0	26	5.1	14.9	266	N/A	
5.50		-			-	-				-	-		-	-	-	-	<u> </u>	HAPE WENT DOW
:54	24	4.5	0.2	42	1.8	215	158	88	183	425	7	-1.9	34	5.4	14.8	276	NA	<u> </u>
:07	74	4.5	0.2	42	1.8	220	180	86	175	441	8	-2.0	26	4.8	14.9	278	482	
6:20	74	4.5	1.2	42	1.8	225	180	89	175	442	6	-21	26	4.9	14.8	277	483	L
:33	24	4.5	0.2	42	1.8	225	180	88	175	445	5	-1.9	26	4.6	14.9	229	541	
6:43		4.5	0.2	42	1.8	275	185		175	445	5	-1.9	26	4.4	14.9	279	564	
0.01	24	4.5	0.2	42	1.8	250	180	85	176	44	6	- 1.9	24	6.0	14.8	3 98	404	
	570	9																
					-													<u> </u>
-																		
					1]	
									[

OIL METER START<u>55743.0</u>2 OIL METER END<u>55779.03</u> OIL METER TIME<u>25852</u>

Page 1

•

-

HAPTSHIXLS

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

	ı.		PRESS	URE		I		TEMPER	ATURES		1	1						
	FUEL	STEAM	STACK	ATOMIZING	MANIFOLD		FUEL	HEAT	HEAT	STACK					M's			_
	DELIVERY 76	4.5	O.Y	42 42	1.5		200	84	EXCHOR OUT	447	NO.	OPACITY	00	02		NO	\$02 96 a	Rem
9:26		45		43		275	<u> </u>	83			6	-2.1	18	4.2			990	
9:42	75		0.4		1.6	265	200		168_	449	6	-2.1	16	4.9			978	
9:52			0.3	43	1.6	220	1800		167	439		-2.2		5.6	r	294		
<u>10:03</u>		4.5		43	1.7	215	185	83	166	442		-2.3	15	4.6	150		973	
<u>10:18</u>	_	4.5		43	1.7	220	186	84	167	443		-2.1	17	4.4		321		
10:33	75	4.5	0.3	43	1.7	250	185	+ <i>/</i>	169	444	17	- 2.1	18	4.3	15.0	318	984	
10:49	75	4.5	0.3	43	1.7	225	185	84	169	445	6	-21	17	4.6	15.0	319	965	
11:07	75	4.5	0.2	43	1.6	210	180	85	170	445	7	-2.1	16	5.6	14.8	320	918	
11:26	24	4.5	0.2	43	1.7	210	185	85	171	43	76	-21	16	5.9	14.8	301	916	
	74	4.5	0.1	43	1.7	225	180	85	171	442	2	-22	16	6.3	147	315	876	
12:02	74	4.5	0.1	43	1.7	235	175	185	171	448	6	-22	17	49	14.9	308	979	
1284	74	4.5	0.1	43	1.7	210	175	85	170	446		-21	17	4.8		287		
12:37	_57	0P	1		1									1				
, <u>v</u>	//								·		<u> </u>	1		1				
		<u> </u>			<u> </u>	I	<u> </u>	1		1				+	<u> </u>	<u> </u>		
<u> </u>	<u> </u>		<u>├</u> ──			<u> </u>	(<u> </u>			<u> </u>		+		<u> </u>	├ <u></u>		<u> </u>	
		+	+				1		<u> </u>				i	┼				
			╆╌━━	<u> </u>			<u> </u>		<u> </u>		<u> </u>			<u> </u>			└── ┤	

OIL METER START: <u>56239.0</u> OIL METER END: <u>58275.75</u> OIL METER TIME: <u>307.76</u>

.

۰.

Page 1

•

1

-

HAPTSH.XLS

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

.

-

RUN NO			START TI	me <u> 13-</u> 1	-0		END TIME	·				FUEL		2		Ву		
	FUEL	STEAM	PRES.SL	JRE ATOMIZING	MANIFOLD	FUEL	FUEL	TEMPER HEAT	TURES	ISTACK	SHOKE			CE	M° 1			I
	DELIVERY			AIR			RETURN		EXCHOR OUT		NO.	OPACITY	0	02	CO2	HO	502	Remarks
3:28	74	45	1.4	45	0.4	200	15	87	169	484	5	-2.2	31	49	14.9	264	945	NOWDRU
3:55	74	4.5	1.5	.46_	0.45	225	180	87	170	490	6	-2.1	26	3.1	15.0	299	1048	
1:15	74	4.5	1.4	46	0.6	20	180	87	171	495	7	-2-2	24	4.1	15:0	303	1010	AJUST OIL
:40	74	4.5	1.4	46	0.6	230	180	87	170	495	6	-2.2	23	4.8	15.0	304	955	
4:50	74	4.5	1.4	46	0.6	225	180	86	170	491	6	-22	23	4.0	15.0	305	1002	_
5:21	74	45	1.4	46	0,6	220	180	92	171	499	6	-21	22	4.1			971	
5:30	74	4.7	1.4	46	0.6	220	185	86	171	502	26	-21	22	7.6	15.0	307	1001	
s.56	74	45	14	44	(9.7	230	185	86	171	499	9	-2.1	_					AJUST CIL
			<i>'''</i>			100-	10-			<u> </u>								
				-								1			ļ	<u> </u>	··	
					+	+				<u> ·</u>		1				<u> </u>	1	
				1				1		1		1				<u> </u>		
			}					+									<u>+</u>	
					· {	<u> </u>		1	<u> </u>			<u> </u>	1			<u> </u>		/
																<u> </u>		
		┝				<u> </u>						<u>↓</u>				—	-	-
		<u> </u>	<u> </u>			<u> </u>						<u> ·</u>				[
			h			<u> </u>	 		-	ļ								
		ļ				<u> </u>				1			L			<u> </u>		

DIL METER START: 5628.00

OIL METER END:_____

OIL METER TIME

.

.

Page 1

HAPTSH. KLS

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

								NORT	AMERICA	N BOILER HAP	OL TEST DATA	SREET								
DATE: RUN NO.,	<u>3/9/9</u>	<u> </u>	-		START TI	me_ <u>9</u> 22	:9		END TIME	12:4	/			FUEL #	64	.5		by E	ر <u>م</u> چتير	25,CE
	1 FL	IEL	1		PRESS	URE •••		1		TEMPER	ATURES		1							
			FUEL	STEAM	STACK		MANIFOLD		FUEL	REAT	HEAT	STACK ~		ļ			M's			_
TIME	TIME	[GAL]	CELIVERY		DRAFT	AIR	DRAFT		RETURN		EXCHOR OUT		NO.	OPACITY	CO	02	CO2	NO	\$02	Remarks
9:29	2'15	.5	74	0	0.3	44	1.5	240	180	59	113	487	6	-2.4	19	4.6	5.0	363	950	
9:50	2'10"	.5	74	45	0.3	43	1.5	275	185	60	157	495	6	-2-4	20	49	15.0	366	993	
p:20	2'16"	.5	74		D.Z	43	1.5	225	180	59	160	497	6	-2.5	21_	4.3_	150	354	1076	
10:46	Z'15'	.5	74	4.9	0.2	43	1.5	235	170	66	161	50Z	6	-2.4	22	4.3	15.0	354	1046	
11 <u>:15</u> 11 <u>:33</u>	2'16"	.5	74	4.9	0.2	43	1.5	230	170	60	160	501		-2.3						
11:33	V'11"	.5	74		D.Z	43	1.5	265	190	61	161	SOZ		-25	21	4.9	150	346	1027	
11:56	2'13'	.5	74		O.Z	43	1.5	250	180	65	161	504		-2.5		4.9				
12:09 12:41	2119	.5	74		p. Z	43	1.5	215	170	66		504		-2.5						
12:41	2'10"		74	4.9	p.Z	43	1.5	265	190	61	163	506	6	-2.6	21	14.3	15.1	335	982	
						<u> </u>	<u> </u>			<u> </u>		<u> </u>			-				_	
											<u> </u>	<u> </u>	┣───	<u> </u>			[
			i									<u> </u>	<u>}</u>							
										<u></u>		<u> </u>								
										<u>├</u> ────						<u>+</u>		┣──-		
	<u> </u>		<u> </u>						+	<u> </u>		<u> </u>				+				
	 									+							<u> </u>			
<u> </u>										-	<u> </u>		<u> </u>							
			┝						+	+										
	<u> </u>						<u> </u> -	┞	+	<u>}</u>			 	<u> </u>				<u> </u>		
	-	L		L	1		L	1	4	L	L,		L	L	<u>ا</u>		·	<u> </u>	1	<u> </u>

OIL METER START: <u>57479.//</u> OIL METER EAD: <u>57572.40</u> OIL METER TIME: <u>3°1318</u> ''

۰,

Page 1

•

-

HAPTSH ALS

NORTH AMERICAN BOILER HAP OL TEST DATA SHEET

											OL TEST DATA	ONCEI								
DATE:	<u> 5/9/9</u>	5			START T	IME <u>/3:1</u>	8							#	- 6 L	.5		Rv		
HOA 40.														, occ	<u> </u>			J		
	P.				PRESS			ļ		TEMPER		-							,	
TIME	TIME		FUEL	STEAM	STACK	ATOMIZING	MANIFOLD		FUEL	HEAT	HEAT	STACK	SMOKE NO.	OPACITY	CO	02	EM'8 CO2	NO	502	Remarke
		1000		40		43				+					· ·		1.	1		
<u>3:18</u>	2'16"	.5	74	\$,9	0.2		1.5	226	185	62	163	509	5.5	-2.4	22	4.4	15.1	293	955	
5:30	2'15"	.5	74	4.9	0.2	43	1.5	130	190	72	163	511	6.0	-25	22	4.3	15.1	255	1058	
	2'15"	.5	74	49	0.2	43	1C	225	180	71	163	510	7	-25	21	4.6			972	
	2'15"	~~~		4.9	0.2	43	1.5	260	195-	64							1			
03 :31		<u>. ></u>	• • •			72	1.5		-		165	573	6	-25	22	5.3	15.0		993	
- 57	2'10"	5_	74	4.9	0.Z	43	1.5	265	205	73	78.0	573	6	-2.6	21	45	15.1	293	778	
09	2'15"	.5	74	4.9	0.2	43	1.5	225	RO	71	164	515	6	-1.2	21	4.6	15:0	156	33	
45	215	5	74	4.9	0.7	43	1.5	240	175	71	166	520	8	-2.1	27.	4.1	1	105	377	
	2'12"	~	74	4.9	0.7.	43	1.5	265	200	71		518	8	-2.0	22	4.7	15:0	53	441	
				_	-	43								1						
:18	2'12'	.5	74	4.9	0.2	42	1.5	265	200	74	167	518	7	-20	Z2	4.7	15.0	0	4.76	
							1													
				1 -												1	1			
							1	†		t				<u> </u>	1		1	1		
			¥	¥								<u> </u>	-			+	+			
			[Ļ		<u> </u>						ļ	[
						1														
			1				1					I			1	1	1			
			1	1	1		1	· · · ·	†- -	1		1	+	<u> </u>	1		1	· · ·	<u>+ - +</u>	
	+ -		}			<u>+-</u>						<u>+</u>	+	<u> </u>	<u> </u>		-			
				ļ				+	<u> </u>			┥_╺	····-		┨		· · · ·		<u> </u>	
		1	i.									ł.		1						
			<u> </u>	1	1	<u> </u>	+						1	1		1	1	1	1	
			!	L		!			!	Nn a	nolyze:		1		L_		1	1	لمحيط	-

DIL METER START<u>575381</u> OL METER END<u>57579</u>21 OL METER TIME<u>503'11''</u>

.

NO, analyzer stoped working because of a clogged capallary tube.

:

Page 1

.

,

HAPTSH XLS

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

								NORTH	H AMERICA	N BOILER MAP	OIL TEST DATA	SHEET								
DATE:	3, 10 /	95	•			0														
RUN NO.	· /				START T	ne <u> 9.3</u>	2		END TIME						66	5		By		
) PV	ຄ.			PRESS			1		TEMPER			J	1						
	TIME		DELIVERY	STEAM	STACK ORAFT	ATOMUZING	DRAFT		RETURN	HEAT	HEAT	STACK	SMOKE NO.	OPACITY	co	CE	M's CO2	NO	\$02	Remute
TIME 9:32	÷	[GAL]	74	4.5	G.Z.	4Z	1.6	215	+			511	6	OPACITY						Rements
		.5	+ • / -		-	42									<u> </u>			263		·
10:00	211		74	4.5	0.2		1-6	2.20	175	65	160	515	6	<u> </u>	21	4.4	14.7	636	128	
10.29			74	4.9	a. z	42	1.6	220	18	59	157	576	9		23	56	14.9	242	674	REALEGALIN
10:57	+	.5		45	6.1	42	1.5	225	185		158	518	77	-2.2	23	3.2	14.8	642	136	······································
11:20	110"	-5	74	4.5	0.2	42	1.5	260	195		157	523	6	-2.1	22	4.7	14.8	240	71Z	
	z'n"	.5	74	4.5	0.2	42	1.5	230	185	63	156	527	6	-2.3	23	3.9	14.8	232	778	
	2'16"	.5	74	4.5	0.2	43	1.5	215	125		157	530	7	-2.4		4.5				
		_	ľ í	ľ		1.'	1 · · · -		1			1	1					1		
	<u> </u>					<u> </u>	+		1	1		+	1				1			
							+		+			+	† -				<u> </u>			
					+		ļ					+			-			+		
						<u> </u>	1		┥────				<u> </u>	┨────				<u> </u>	 	
<u> </u>				1		<u> </u>			<u> </u>			<u> </u>					}			
				ļ	<u> </u>				ļ				<u> </u>		ļ					·
			\	 			ļ	L .								[<u> </u>			
	L							ļ	ļ								ļ	<u> </u>		
							-									}				1
		-		<u> </u>		1	1			1						1				
			+				1				† 	1	+	1			-	1	1	
					+		┼───		+	+	<u>↓</u>	+		+	<u>+</u>			+		
	L		1		J		J				1	1		1		<u> </u>	1	1	l	L

OL METER START<u>\$87/0,30</u> OL METER END<u>\$8747.80</u> OL METER TIME<u>\$2942.5</u>0''

.

Page 1

•

HAPTSH XLS

÷.,,

ز بن

١,

.

NORTH AMERICAN BOILER HAP OIL TEST DATA BHEET

								ROAT		N BOILER NAP	OIC TEST DATA	SALET								
DATE:	10/9	5																		
RUN NO.		<u> </u>			BTART TI	ne <u> 13:0</u>	00		END TIME					FUEL	<u>6 </u>	5_		Ву		_
	i PU	EL.	1		PRESS	JRE		1		TEMPER	ATURES		1	ſ						
		VOL	FUEL	STEAM	STACK		MANIFOLD	FÜEL	FUEL	HEAT	HEAT	STACK				CE	MTe			
TIME	TIME	(GAL)	DELIVERY		DRAFT		OBAFT	DELIVERY	RETURN	EXCHOR IN	EXCHOR OUT	1	NO.	OPACITY	00	01	CO2	NO	\$02	Remarks
13:00	2'11"	.5	75	4.5	p. C.	43-	1.5	270	80	72	162	523	7	-27	25	47	148	123	855	
15:26	Z'11"	.5	74		0.2	43	1.5	260	175	66	159	531	6				14.8		836	
13:40	2'13"	.5		1112	22	43	1.5	240	165	27	161	53Z	6	-1.5			14.8			
15:52	21/2"	.5	74	4.5	0.2	43	1.5	250	170	65	155	533	6	-1.2	21		14.8			
14:02		.5			0.2	43	1.5	255	180	74	159	53/	5		Z/				255	
14-11	122"	.5	24	4.5	0.2	43	1.5	235	170	78_	161	531	5	-20	20	5.7	<u>#1</u>	Z#7	7.34	
			<u> </u>		<u> </u>	Ì		<u> </u>					ļ			<u> </u>		ļ		
			<u> </u>	<u> </u>			·		<u> </u>	<u> </u>		l	<u> </u>		L	<u> </u>		\ 		
					F					·			ļ				·	. —		
					ļ			Į		ļ	- <u></u>	<u> </u>	<u> </u>	· •						
				Š		A		<u> </u>	<u> </u>											
					<u> </u>	e .	<u> </u>	<u> </u>	┼───	<u> </u>							-	<u> -</u>		
										<u> </u>	<u> </u>								-	<u></u>
		· .			<u> </u>		Ę.					-	<u> </u>			<u> </u>		* .		
	<u> </u>																		<u> </u>	
										<u> </u>		<u> </u>					<u>├</u>		<u>├</u>	
					╂───							<u> </u>				<u> </u>	┠───		╂───┤	_
	()							<u> </u>	<u>}</u>			<u> </u>	 			<u> </u>		 		
					┼──			+		ł					<u> </u>	<u> </u> ·	<u> </u>			
	<u> </u>		1	<u> </u>		I	l	.l	<u> </u>		L	l	L		L	L	J	L		

OIL METER START: 5875570 OIL METER END: 58.772.40

OIL METER TIME: 1014'43"

2.5

Page 1

.

-

HAPTSH.XLS

1.6

4

ē

-

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

								HORIN	AMERICA	BOILER MAP	OIL TEST DATA	SHEET								
DATE:	<u> 14 4</u>	15												. بيلد			-			
RUN NO	1				START T	he <u>9:46</u>			END TIME	·			•	FUEL_6	ema	sified		8y		_
	FU		<u> </u>		PRESS					TEMPER			l	1						
TIME	TIME		FUEL	STEAM	STACK	ATOMUZING AIR	DRAFT	FUEL DELIVERY	FUEL	HEAT EXCHOR IN	HEAT	STACK	SMOKE	OPACITY	co	CE 02	CQ2	NO	502	Remarks
7:47		.5	74	7	.07	46	1.6	250		76	110	460	6	160	16	1.4	150	230	819	
10:21	2'15"	.5	74	9	.2	46	1.6	250		87	111	458	5	-175	15	1.74		218		
642	2'5"	.5	74	4	, 7	46	1,5	250	170	80	138	450	6		15	1.9				
10:55	2'4"	.5	74	4	.2	46	1.5	250	170	85	169	452	6	15	15	1.79	1512	246	877	
11:06	2'4"	.5	74	4.	\$ 2	46	115	265	165	78	172	453	5	168	15	1.75		246		
11:22	2'5"	15	74	4	9.2	46	1.5	265	165	80	171	454	6	-0.19	15	1.74	151	ZHZ.	850	
11:56	2' <i>u'</i>	.5	74 -		0.2	46	1.5	255			171	454		- 177	15	2,7	15.07	234	926	
										[{		1						•	
					150															
						l														
						<u> </u>				ļ			L							
										ļ]	L							
			 	1	<u> </u>		<u> </u>			í		Ĺ	_				· · ·			
												<u> </u>		 						
					ļ				<u> </u>			<u> </u>								
					<u> </u>		<u></u>	L				<u> </u>					Ļ			
	ļ		<u> </u>		<u> </u>		ļ					 	ļ							
					 		L	ļ	L	-		<u> </u>				ļ		l		
		L	I		1		I	l	Ĺ	l		1	[l	i	l		ll	

OIL METER START<u>: 64286.5</u>7 OIL METER END: <u>84301.64</u>

.

2 12 hrs

- -

Page 1

~

U7 4. -

.

HORTH AMERICAN BOLLER HAP OIL TEST DATA SHEET

1 1-						HORTH	AMERICA	N BOLLER HAP	OIL TEST DATA	SHEET								
DATE: 5/14/99	1											1						
RUN NO.	-		START T	_{ые (3,3} ,	0		END TIME					FUEL 6	ausi	sied		s <u>, Era</u>	<u> </u>	_
PVEL	1.		PRESS			1		TEMPER	ATURES		J	1						
TIME TIME (GAL)	FUEL	STEAM	STACK	ATOMIZHG	DRAFT		FUEL	REAT	HEAT	STACK	SMOKE	OPACITY	C 0	<u>CE</u>	M** CO2	NO	502	Remerie
1530 2'05 5	74	4	22	46	1.5	250	160	76	162	445	5	-174	177	226	15.08		++	
154/ 2'2" 5	74	1	AI	46	1.5		150	22	169	41/8	5	-165		258				
5:55 2'7" 5	70	4	A/	46	115	235	150	80		453	6	180	15		15.10			
4:05 2'3" . 5	123	4	7	46	1.4	265	160	82	172	162	-		15	203				
4.24 2'5" 5	72	4.5	~	46	1.4	255	155	88	174	761	5	-158	14	2 74	15.05	1a	971	
4.42 2142 .5	72	1.5		46	69	265	160	86	173	465	6	195	14		15.10		958	
15.00 24" 5	72	4,5	.3	46	1.4	265	155	84	175	463	6	-,209	15	2,56			449	
5.22 2'6" 5	72	VC	17	46	1.4	255	155	81	175	463	1 K	-215	14		15.08		987	
15.47 2711 5	172	40	1.5	46	1.2	760	155	_ بعد	175	1771	1Z	177	11	243				
	1100-	<u> </u>	<u> </u>			<u> </u>	12.0	1° '		<u> /</u>	↓				12.10	-10	122	
			†				1			1				<u> </u>			-	
			†				<u>├</u> ──	1	1	†		+						
			<u>† </u>	1				·	· · ·			1	<u> </u>		<u>+</u> -			
	-	<u> </u>	¦		t——		1	t								• :		
	1		†				†		<u> </u>		 	+						
		1				<u> </u>	<u> </u>	ł		1		+	<u> </u>					
	4			<u> </u>	+	<u>†</u>	┼	<u> </u>	1	<u>†</u>	1	+	<u> </u>	1		<u> </u>		
		-	1			+	<u>├</u> ──	<u> </u>		+	<u> </u>	1		+	1		····	<u> </u>
	+	<u> </u>	<u>† </u>	<u> </u>	<u> </u>	1		+	1	1		1	 	1	1		<u>†</u> †	
			<u> </u>		1	<u>+</u>	<u> </u>	+	1	†—–		1	t		t	<u>├</u> ───	<u>├ - </u>	
			d	4	<u> </u>	J	<u>ــــــــــــــــــــــــــــــــــــ</u>	م ه			<u>і</u> .	. <u>.</u>	<u>ا</u>		<u></u> _			
OIL METER START <u>:643</u> OIL METER END <u>:</u> 644	4.4							4	0, 0	KAIK	53	bec '	~e	- 44	Sec			
NI HETER END: 644	06.32												1					

OIL METER START: 6437.4 OL METER END: 64406.3 OL METER TIME: 2:30:08

Page 1

7

-

HAPTSH XLS

NORTH AMERICAN BOILER HAP OIL TEST DATA BHEET

								NORTH	AMERICA	N BOILER HAP	OIL TEST OATA	SHEET								
DATE: <u>3</u>	lich	<u> </u>																		
DATE: S	10/7	2												#.		<i>.</i>				
AUN NO.					START T	ine <u>9:40</u>	2		ENO TIME		· · · · ·			NE #	enus	<u>ای زک</u> ر		ву <u> 172</u>		_
•) · · PU	e.	1		PRESS	URE		1		TEMPER	ATURES		1	1						
			DELIVERY		DRAFT	ATOMIZING	DRAFT			REAT	HEAT EXCHOR OUT	STACK				CE	C02	NO		- <i>i</i>
TINE	тме 2'4"	(GAL)	77	4.5	ORAFT	41R 46	1.6	260	150			458	NG.	OPACITY		3.82			301	Rentarke
					<u></u>								6	-180						
	3'11"	.5	7.3	4.5	6	46	1.6_	205	140	81	173	461	6.	- ,169	19		15,13			
10.18		-5	24	4.5		46	1,6	255	155	78	1.71	462	15	178	19	362	15.15	199	1007	
10:40	217"	1.5	74	4.5	1.1	46	1.5	250	160	78	172	461	6	-171	20	3.24	15,13	Mg	865	
11:00	7'9"	.5	74	4.5	1.1	46	1.5	260			172	466	6	-126		3.40				
11.72	2'9"	5		4.5	1.T	46	1.5	260		81	171	466	10			3.39				
11:56	141	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	74	19.5	+	46	1.5	215			172	468	17	-,178		3.36				
11.36	<u>₩ '</u> -	4	174	1.5	1.1	16	1.5		1.4.7	18-2	112	1968	15	-,10	et 1	2.36	15.19	17.7	7-2/	
	ļ!			4	ļ	<u> </u>	<u> </u>	<u> </u>	┥	ļ	<u> </u>	<u> </u>	 	 	Ļ	<u> </u>	-		$ \downarrow $	<u> </u>
				1					<u> </u>		<u> </u>		·							
			1			1										I				
]							-							ļ			
		-										1	1			1	1			
	<u> </u>	<u> </u>	+	+	<u> </u>		+	<u>{</u>	f	<u> </u>		+	<u> </u>		+	 			<u>}</u> }	
				+			1			+		+	<u>+</u>	<u> </u>	÷	<u>+ </u>		L		
	<u> </u>			<u> </u>	╄──			+		<u> </u>		1	-		<u>+</u>	<u> </u>				
	L		1		<u> </u>		1	i			ļ	J	1	<u> </u>						
								1	I	1					1					
						1							1	1	[1				
		-	1	1	1			<u> </u>	1	1	1	1		+	1	1		i		
	<u> </u>		+	+	1		+	+	+		i		+	+ -	<u> </u>	<u> </u>	-			
	╆┄╼──			-{	┼──-	<u> </u>	-{	╅	+				+	╂-────	┼───	+	<u>↓ · -</u>			
	1	L	<u> </u>	J	1	1	J	L	1	J	L	<u> </u>	<u> </u>		<u> </u>		l			

OUL METER START 65573.83 OKL METER END: 65609,5

OIL METER TIME: 2: 30:38

Page 1

.

,

-

64

HAPTSH XLS

.

¥-

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

										OULER NO	OLIESTUAIA						7-			
DATE	3/15/	95					<i>_</i>							NB #		ć i				
RUN NO.					START TI	HE 12:3	<u>, , , , , , , , , , , , , , , , , , , </u>		END TIME					FUEL_6	emati	+120		8y		-
	1 R	nel.	1		PRESS			[TEMPER	ATURES		ł	1						
	TINE		PUEL	STEAN	STACK	ATCHIZING	DRAFT			HEAT	HEAT EXCHOR OUT	STACK	SMOKE	OPACITY	- co	CE	C02	NO	502	Келеке
TIME	2'4"		74	4.5		16	1.5	260	155	85	173	471	6	- 176		2.92				
			1.		+++		1	;		27	<u> </u>									·
	2'3"	15		4.5	!	46	1,5	255	165		171	470	6	-174		2.43		_		
13:25	24"	.5	74	45	./	46	1.5	250	175-	78	172	471	6	182					1044	
13:48	2'2"	.5	74	4.5	.1	46	1.5	260	170	82	172-	1773	Z	- 179	<u>22</u>	2.76	15,16	183	1056	
14:24	2'5"	.5	74	4.5	. /	46	1.5	270	160	54	173	473	6	-181	21	2.94	15,20	177	1110	
	2'5"	.5	74	4,5	.1	46	1.5	240	155	82	173	479	6	- 184	23	2.27				
1512	2'7"	.5	74	4.5	17	46	+	230	155	85	173	479	6	-203					1100	
	2'3"		74	4.5	1.7	46	1.5	270	165		173	482	17	-214						
13.21	1	<u> </u>		10	- <u>-</u> -	1/2	1.2		<u></u>	<u> </u>	115	102	0	100-1	<i>*</i> ~	<u>+</u> ./~	يرسرون ا		10//	
					├──	· ·				<u> </u>			<u> </u> -							
				<u> </u>			1		<u> </u>	<u> </u>	· · · · · ·		l			 			{	
		 			ļ						ļ	└──		<u> </u>		L	ļ	<u> </u>		
				<u> </u>	L			<u> </u>		<u> </u>		<u> </u>				<u> </u>				<u> </u>
	ļ							ļ	Į	1_	1	1				_				
			1				-		1					{						
			1			1		}								1				
~					<u> </u>	ł						<u> </u>	<u>+</u>							
	+				<u> </u>			+		<u> </u>							<u> </u>		<u> </u>	
	+	<u> </u>	-	+	<u> </u>	+		┨────		+		┼──	·	·		ł		┼───		
	<u> </u>	<u> </u>	ļ	1		ļ			 	<u> </u>	ļ		<u> </u>	<u> </u>	ļ			ļ		
			-	<u> </u>		ļ			<u> </u>	1					L					
-															1					

OIL METER START: 65619, 3) OIL METER END: 65659, 52 OIL METER TIME: 300:22

'n,

Page 1

HAPTSH ILS

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

date: <u>3</u> Run HQ_	116/9.	5																		
RUH NO					START TI	HE 8:2	7		END TIME	11:29				rue_ <u></u> 76	en.ils	fiel		or Eli	1	_
	L RJ		1		PRESS	IRE -		1		TEMPER	ATURES		1	i -						
TIME	TIME	(GAL)	FUEL DELIVERY	STÉAM		ATOMIZING AIR	DRAFT	DELIMERY	FUEL	HEAT OUT	HEAT IN	STACK	3MOKE	OPACITY	co	CE	MTe CO2	10	301	Remarks
	2'5'	.5		3,5	. 1	46	11.3	250	155	119	81	478	7	-182						1. S.
8:45	2'4"	. 5		4.0	1	46	1.3	250	155	164	86	481	6	-189						
9.10	J' 7 "	5	24	4.0	1	46	1.2	245	140	157	86	481	6	- 196	19		15.13	138	1481	
9:46	2'3"	.5	74	40	1.7	46	12	255	155	170	87	498	7	- 204	_ (/		15:15	126	194	NOx Box my went dead signed Ry-BASS went out
10:12	2.4"	.5		4.0	.2	46	1.3	255	160	170	88	191	6	216	19	1	15,12		1948	went dend 3
10:31	2'2"	15	74	4,0	.2	46	1.3	265	160	171	86	493	6	-,217	19	**	15.13		1871	Ry-BASS
(0:53	2'2"	.5	74	4.0	.2	46	1.3	265	160	171	86	493	6	- 212	19		15.12		175.8	went out
11:10	2'5"	.5	24	4.0	.2	76	1.3	255	160	170	83	496	6	221	18	3.89	15.06		1183	
_																				
							L			L										
			l																	
							<u> </u>			L								-		
			1				L													
					ļ					Ì						1				<u></u>
							L													
					\square															
							L	L								<u> </u>				·
			L				L			L							L			
					1		1	<u> </u>	<u> </u>	<u> </u>				1		1				[

OIL METER START: 66760.43 OIL METER END: 66804.53 OIL METER TIME: <u>3:01:00</u>

.

Page 1

.

HAPT SHULS

. ,

•

.

ų.

NORTH AMERICAN BOILER HAP OIL TEST DATA SHEET

DATE 3	/16/9:	5												-L.							
RUN NO					START T	ME 11:5	2			=				NE #6	enul	5.6-1		By Al		_	
	l Pu		1		PRESS			(TEMPER			1								
		VOL	FUEL	STEAM	STACK	ATOMIZING	MARIFOLD		FUEL	HEAT	HEAT	STACK				CE					
THE	TIME	<u> </u>		110	DRUART	<u>air</u> 46	DRAFT	DELIVERY	RETURN 140	83	172	498	HO	OPACITY	c0	02	CO1	NO	507	Remarks	
	2'10"	.5	74	4.0	14		<u> </u>	-	+		112	t	6	:209	18		15.08	-	1870		
63	2'2"	<u></u>	74	<u> </u>	<u>• 4</u>	46	1.3	260	140	83	1/1-	494	6	-,215	19	3.62			1854		
<u> </u>	2'0"	.5	74	40	12	46	1.3	265	150	82	121	500	6	-,219	21	2.54			J061		
	2'6"	,5	74	4.0	.2	46	1.3		145	82	172	500		- 210		3.64			2001		
13:20	J'4"	.5.	71	4.0	12.	46	1.3	275	110	81	171	503	6	12,9	18	3,21	15.11		2111		
13:35	2′3″	.5	74	4.0	.2	46	1.3	270	135	192	172	496	6	.259	17	4.28	15.02	270	2011	NOX BACK	•
13:55	2'5"	.5	74	4.0	1.2	46	1.3	260	150	85	172	498	6	-1.43	18	373	15:08	275	214 <u>2</u> 1	5 ON INS	e
14,20	2194	.5	74	17.0	,2	46	1.3	240	140	36	[73]	495	6	2057	16	4.65	1498	274	1903	and the second s	
14,42		.5	74	4.0	.2	46	1.3	240	130	\$6	173	494	6	-2,218	16	4.92	14.96	277	1815	NOX BACK	
																					. 3
													1							(Sures	-
-									1	1			<u> </u>								
			· · ·	-			1				,					1			-	v ₄	
	-						†			-										`	
							1					1	1	<u> </u>		1				· · · · · · · · · · · · · · · · · · ·	
										{	· ·		+							<u> </u>	
									 		-		}	1							
								 						<u> </u>				<u> </u>			
				<u> </u>	<u> </u>	₋	<u> </u>		ļ	<u> </u> -											
			 _			ļ	ļ	 	1	ļ	ļ	↓		+						<u> </u>	
	-					<u> </u>			1					L		L	L			<u> </u>	

OIL METER START: 66811,33 OIL METER END: 66855,1 OIL METER TIME: 3/01/11

Page 1

.

HAP-OIL METAL RESULTS

Date	Sample	Test	Tìi	ne	Particulate	Vol. Sampled	Percent	Sb	As	Be	Cd	Cr	Pb	Ní	Mn	Se	V
	ID	Condition	Start	Stop	w1 (g)	(dsef)	Isokinetic	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)	(µ <u>g)</u>	(µg)	(µg)	(µg)
3/07/95	M29-1A	#6 Oil	1415	1645	0.56768	105.93	87.9	252,	6.80	0.270	7.73	37.5	302	9320	35.8	22.3	468
3/07/95	M29-1B	#6 Oil	1415	1645	0.67114	103.06	95.5	1250	4.85	<.200	6.34	38.6	138	5420	22.9	18.9	263
3/08/95	M29-2A	#6 Oil	1328	1558	0.75899	102.72	103.7	49.2	11.30	0.294	7,79	38.8	304	9600	39.1	32.8	470
3/08/95	M29-2B	#6 Oil	1329	1559	0.66094	94.61	89.5	225	7.25	0.335	7.03	32.8	281	9240	33.7	23.9	449
3/09/95	M29-3B	#6 Oil	1319	1549_	0.70722	110.66	92.8	161	9.60	0.374	9.25	42.9	293	11300	44.8	32.7	549
3/14/95	M29-4A	#6 Oil Emulsified	940	1210	0.46402	101.04	100	84.2	8.15	0.342	7.49	39.4	285	11.2	44.7	28.2	54
3/14/95	M29-4B	#6 Oil Emulsified	940	1210	0.34192	97.629	93.2	148	5.70	0.273	6.43	37.9	226	8400	38.3	26	406
3/16/95	M29-5A	#6 Oil Emulsified	940	1211	0.48113	98.74	99.2	604	8.80	0.372	9.10	42.5	269	11100	49.4	34.7	534
3/16/95	M29-5B	#6 Oil Emulsified	940	1210	0.45262	90.01	90.6	29	8.70	0.353	7.42	38.8	255	10700	44.3	29.3	525
3/17/95	M29-FB-1	Field Blank	NA	NA	0.00411	NA	NA	43.7	2.75	< .200	< 1.00	3.85	3.21	4.66	1.29	1.24	6

Source Description:	North American Boil	er			Т	'est Dale:	3/8/95
Condition Location	No. 6 Oil Exhaust Duct			Operator Exhaust Duct Flow		DJ 346.5	DSCFM
Run Number Volume Collected Sample Tube IDs		VOST-1a 20.030 467 / 74	liters			VOST-1b 18.350 300 / 22	liters
Analyte	ng	µg/m³	µg/MBtu		ng	μg/m³	µg/MBtu
Dichlorodifluoromethane	<10	<0.50	<185		17.75	0.967	357.5
Chloromethane	4.65	0.232	85.8		<10	< 0.54	<200
Vinyl Chloride	<10	<0,50	<185		<10	<0.54	<200
Bromomethane	<10	<0.50	<185		<10	<0.54	<200
Chloroethane	<10	<0.50	<185		<10	<0.54	<200
Trichlorofluoromethane	<10	<0.50	<185		9.11	0.496	183.5
1,1-Dichloroethene	<10	<0.50	<185		<10	<0.54	<200
Iodomethane	<10	<0.50	<185		<10	<0.54	<200
Carbon Disulfide	<10	<0.50	<185		42.73	2.329	860.5
Acetone	<10	<0.50	<185		<10	<0.54	<200
Methylene Chloride	<10	<0.50	<185	3	3062.95	166.918	61684.0
1,2-Dichloroethene (total)	<10	<0.50	<185		<10	<0.54	<200
1,1-Dichloroethane	<10	<0.50	<185		<10	<0.54	<200
Chloroform	<10	<0.50	<185		35.53	1.936	715.5
1,2-Dichloroethane	<10	<0.50	<185		<10	<0.54	<200
1,4-Dioxanc	<10	<0.50	<185		<10	<0.54	<200
2-Butanone	<10	<0.50	<185		<10	<0.54	<200
1,1,1-Trichloroethane	<10	<0.50	<185		3.24	0.177	65.2
Carbon Tetrachloride	<10	<0.50	<185		<10	<0.54	<200
Benzene	25.05	1.251	462.2		24.18	1.318	487.0
Trichloroethene	<10	<0.50	<185		<10	<0.54	<200
1,2-Dichloropropane	<10	<0.50	<185		<10	<0.54	<200
Dibromomethane	<10	<0.50	<185		<10	<0.54	<200
Bromodichloromethane	<10	<0.50	<185		6.15	0.335	123.9
cis-1,3-Dichloropropene	<10	<0.50	<185		<10	<0.54	<200
2-Hexanone	<10	<0.50	<185		<10	<0.54	<200
trans-1,3-Dichloropropene	<10	<0.50	<185		<10	<0.54	<200
1,1,2-Trichloroethane	<10	<0.50	<185		<10	<0.54	<200
Dibromochloromethane	<10	<0.50	<185		<10	<0.54	<200
1,2-Dibromoethane	<10	<0.50	<185		<10	<0.54	<200
Bromoform	<10	<0.50	<185		<10	<0.54	<200
4-Methyl-2-Pentanone	<10	<0.50	<185		<10	<0.54	<200
Toluene	79.10	3.949	1459.4		12.50	0.681	251.7
Tetrachloroethene	<10	<0.50	<185		<10	<0.54	<200
Chlorobenzene	<10	<0.50	<185		<10	<0.54	<200
Ethylbenzene	5.49	0.274	101.3		<10	<0.54	<200
1,1,1,2-Tetrachloroethane	<10	<0:50	<185		<10	<0.54	<200
Xylene (M,P)	20.71	1.034	382.1		<10	<0.54	<200
0-Xylene	6.12	0.306	112.9		<10	< 0.54	<200
Styrene	8.70	0.434	160.5		<10	<0.54	<200
1,1,2,2-Tetrachloroethane	<10	< 0.50	<185		<10	< 0.54	<200
1,2,3-Trichloropropane	<10	<0.50	<185		<10	<0.54	<200
Trans-1,4-dichloro-2-butene	<10	<0.50	<185		<10	<0.54	<200
Pentachloroethane	<10	<0.50	<185		<10	<0.54	<200
1,2-Dibromo-3-chloropropane	<10	<0.50	<185		<10	<0.54	<200
······							

-

 \mathcal{C}

.

VOLATILE ORGANICS SAMPLING RESULTS SUMMARY

Source Description:	North American I	Boiler			-	Test Date:	3/9/95
Condition Location	#6 Oil Exhaust Duct			Operator Exhaust Duct Flow		DJ 382.2	DSCFM
Run Number Volume Collected Sample Tube IDs		VOST-2a 19.950 337 / 198	liters			VOST-2b 20.000 301 / 136	liters
Analyte	ng	µg/m³	µg/MBtu		ng	hð/w,	µg∕MBtu
Dichlorodifluoromethane	14.41	0.722	257.7		30.09	1.505	536.8
Chloromethane	<10	<0.50	<178		15.33	0.767	273.5
Vinyl Chloride	<10	<0.50	<178		<10	⊲0.50	<178
Bromomethane	9.18	0.460	164.2		3.26	0.163	58.2
Chloroethane	<10	<0.50	<178		<10	<0.50	<178
Trichlorofluoromethane	2.55	0.128	45.6		7.42	0.371	132.4
1,1-Dichloroethene	<10	⊲0.50	<178		<10	<0.50	<178
lodomethane	<10	⊲0.50	<178		<10	⊲0.50	<178
Carbon Disulfide	36.84	1.847	658.9		45.63	2.282	814,1
Acetone	66.51	3.334	1189.6		<10	<0.50	<178
Methylene Chloride	2072.73	103.896	37072.1	:	2038.69	101.935	36372.2
1,2-Dichloroethene (total)	<10	<0.50	<178		<10	⊲0.50	<178
1,1-Dichloroethane	<10	<0.50	<178		<10	<0.50	<178
Chloroform	16.96	0.850	303.3		<10	⊲0.50	<178
1,2-Dichloroethane	<10	<0.50	<178		<10	<0.50	<178
1,4-Dioxane	<10	<0.50	<178		<10	⊲0.50	<178
2-Butanone	22.00	1.103	393.5		<10	⊲0.50	<178
1,1,1-Trichloroethane	<10	<0.50	<178		<10	⊲0.50	<178
Carbon Tetrachloride	<10	<0.50	<178		<10	<0.50	<178
Benzene	24.79	1.243	443.4		20.76	1.038	370.4
Trichloroethene	<10	<0.50	<178		<10	<0.50	<178
1,2-Dichloropropane	<10	<0.50	<178		<10	⊲0.50	<178
Dibromomethane	<10	<0.50	<178		<10	⊲0.50	<178
Bromodichloromethane	3.41	0.171	61.0		<10	<0.50	<178
cis-1,3-Dichloropropene	<10	<0.50	<178		<10	<0.50	<178
2-Hexanone	<10	<0.50	<178		<10	<0.50	<178
trans-1,3-Dichloropropene	<10	<0.50	<178		<10	⊲0.50	<178
1,1,2-Trichloroethane	<10	<0.50	<178		<10	⊲0.50	<178
Dibromochloromethane	<10	<0.50	<178		<10	√ 0.50	<178
1,2-Dibromoethane	<10	<0.50	<178		<10	<0.50 ≤0.50	<178
Bromotorm A Mothyl 2 Reptanona	<10 <10	<0.50 <0.50	<178		<10 <10	<0.50 <0.50	<178
4-Methyl-2-Pentanone Toluene	27.55	⊲0.50 1.381	<178 492.8		35.43	<0.50 1.772	<178
Tetrachloroethene	<10	<0.50	492.0 <178		35.43 <10	<0.50	632.1 <178
Chiorobenzene	<10	<0.50 <0.50			<10		
Ethylbenzene	3.30	0.165	<178 59.0		<10 <10	⊲0.50 ⊲0.50	<178 <178
1,1,1,2-Tetrachloroethane	<10	<0.50	<178		<10	⊲0.50	<178
Xylene (M,P)	2.73	0.137	48.8		<10	<0.50 <0.50	<178
0-Xylene	1.06	0.053	40.0		<10	<0.50 <0.50	<178
Styrene	<10	<0.50	<178		<10	<0.50	<178
1,1,2,2-Tetrachloroethane	<10	<0.50	<178		<10	<0.50 <0.50	<178
1,2,3-Trichloropropane	<10	<0.50 <0.50	<178		<10	⊲.50	<178
Trans-1,4-dichloro-2-butene	<10	⊲.50 ⊲0.50	<178		<10	<0.50 <0.50	<178
Pentachloroethane	<10	<0.50 <0.50	<178		<10	<0.50 <0.50	<178
1,2-Dibromo-3-chloropropane	<10	<0.50 <0.50	<178		<10	<0.50 <0.50	<178
of a provine a prioroproparia		-0.00	-170		-14	-0.50	5110

#6 Emulsified Exhaust Duct			Operator Exhaust Duct Flow		DJ 329.1	DSCFM	
	VOST-3a 19.640 496 / 10	liters			VOST-36 22.920 359 / 348		
ng	µg/m²	µg/MBtu		ng	μg/m³	µg/МВ	
22.03	1.122	326.2		6.71	0.293	85	
553.24	28.169	8191.8		<10	<0.44	<12	
<10	<0.51	<148		<10	<0.44	<1	
22.49	1.145			<10	<0.44	<1	
<10	<0.51	<148		<10	<0.44	<1	
3.31	0,169	-		5.16	0.225	6:	
				<10	< 0.44	<]	
				<10	<0.44	<1	
					0.926		
					2.415		
						3626	
<10		<148		<10	<0.44	<1	
						<1	
-							
				<10	<0.44	<)	
				<10	<0.44	<1	
				<10		<1	
				<10	<0.44	<1	
						<1	
						<1	
				<10		<1	
-						<1	
						<1	
						<1	
						<1	
						<1	
=						<1	
						<1	
						<1	
						<	
						<1	
	ng 22.03 553.24 <10 22.49 <10 3.31 <10 <10 21.21 182.51 5438.65	VOST-3a 19.640 496/10 ng µg/m³ 22.03 1.122 553.24 28.169 <10	Exhaust Duct VOST-3a 19.640 496 / 10 liters 496 / 10 ng μg/m³ μg/MBha 22.03 1.122 326.2 553.24 28.169 8191.8 <10	Exhaust Duct Exhaust Duct Flow VOST-3a 19.640 liters 496/10 rg µg/m² µg/MBta 22.03 1.122 326.2 553.24 28.169 8191.8 2.49 1.145 333.0 2.49 1.145 333.0 0 0 0 0 0 2.49 1.145 333.0 0 0 0 0 0 0 0 0 0 1.148 2.148 2.148 2.148 2.148 2.148 2.148 2.148 2.148 2.148 2.148 2.148 2.148 2.148 <th co<="" td=""><td>Exhaust Duct VOST-3a 19.640 19.640 Exhaust Duct Flow ng µg/m³ µg/MBu ng 22.03 1.122 326.2 6.71 553.24 28.169 8191.8 <10</td> <10</th>	<td>Exhaust Duct VOST-3a 19.640 19.640 Exhaust Duct Flow ng µg/m³ µg/MBu ng 22.03 1.122 326.2 6.71 553.24 28.169 8191.8 <10</td> <10	Exhaust Duct VOST-3a 19.640 19.640 Exhaust Duct Flow ng µg/m³ µg/MBu ng 22.03 1.122 326.2 6.71 553.24 28.169 8191.8 <10	Exhaust Duct Exhaust Duct Flow 329.1 VOST 35 19:640 liters 496/10 VOST 35 22:920 3597/348 ng $\mu g/m^2$ $\mu g/m^2$ Ng $\mu g/m^2$ 22:03 1.122 326.2 6.71 0.293 533.24 28.169 8191.8 <10

Source Description:	North American E	3oiler				Test Date:	3/15/95
Condition Location	#6 Emulsified Exhaust Duct			Operator Exhaust Duct Flow		DJ 325.8	DSCFM
Run Number Volume Collected Sample Tube IDs		VOST-3c 22.660 341 / 180	liters			VOST-3d 22.200 383 / 4	liters
Analyte	ng	hð\w,	µg/M8tu		ng	µg/m³	µg∕MBtu
Dichlorodifluoromethane	14.75	0.651	181.9		38.40	1.730	483.4
Chloromethane	<10	<0.44	<123		4.62	0.208	58.2
Vinyl Chloride	<10	<0.44	<123		<10	<0.45	<126
Bromomethane	15.40	0.680	189.9		<10	⊲0.45	<126
Chloroethane	<10	<0.44	<123		<10	⊲0.45	<126
Trichlorofluoromethane	<10	⊲0.44	<123		4.00	0,180	50.4
1,1-Dichloroethene	<10	⊲0.44	<123		<10	<0.45	<126
lodomethane	<10	<0.44	<123		<10	⊲0.45	<126
Carbon Disulfide	49.85	2.200	614.8		<10	⊲0.45	<126
Acetone	290.00	12.798	3576.8		102.86	4.633	1294.9
Methylene Chloride	4221.81	186.311	52070.4		3387.16	152.575	
1,2-Dichloroethene (total)	<10	<0.44	<123		<10	<0.45	<126
1,1-Dichloroethane	<10	<0.44	<123		<10	<0.45	<126
Chloroform	<10	⊲0.44	<123		31.71	1.428	399.2
1,2-Dichloroethane	<10	<0.44	<123		<10	<0.45	<126
1,4-Dioxane	<10	<0.44	<123		<10	<0.45	<126
2-Butanone	55.03	2.429	678.7		<10	<0.45	<126
1,1,1-Trichloroethane Carbon Tetrachloride	<10 <10	≪0.44 ≪0.44	<123 <123		<10 <10	≪0.45 ≪0.45	<126 <126
Benzene	25.43	1.122	313.6		<10	<0.45	<126
Trichloroethene	23.43 <10	<0.44	<123		<10	<0.45 <0.45	<126
1,2-Dichloropropane	<10	<0.44 <0.44	<123		<10	<0.45 <0.45	<126
Dibromomethane	<10	√.11√0.44	<123		<10	<0.45	<126
Bromodichloromethane	<10	<0.44	<123		5.38	0.242	
cis-1,3-Dichloropropene	<10	<0.44	<123		<10	<0.45	<126
2-Hexanone	<10	⊲0.44	<123		<10	⊲0.45	<126
trans-1,3-Dichioropropene	<10	⊲0.44	<123		<10	⊲0.45	<126
1,1,2-Trichloroethane	<10	<0.44	<123		<10	<0.45	<126
Dibromochloromethane	<10	<0.44	<123		<10	⊲0.45	<126
1,2-Dibromoethane	<10	⊲0.44	<123		<10	<0.45	<126
Bromoform	<10	⊲0.44	<123		<10	<0.45	<126
4-Methyl-2-Pentanone	<10	⊲0.44	<123		<10	⊲0.45	<126
Toluene	117.26	5,175	1446.2		177.61	8.000	
Tetrachloroethene	<10	<0.44	<123		<10	<0.45	<126
Chlorobenzene	<10	<0.44	<123		<10	<0.45	<126
Ethylbenzene	5.10	0.225	62.9		<10	⊲0.45	
1,1,1,2-Tetrachloroethane	<10	<0.44	<123		<10	⊲0.45	<126
Xylene (M,P)	4.22	0.186	52.0		<10	<0.45	
0-Xylene	4.58	0.202	56.5		<10	<0.45	
Styrene	9.15	0.404	112.9		<10	<0.45 ∞0.45	
1,1,2,2-Tetrachloroethane	<10	⊲0.44	<123		<10 <10	<0.45	
1,2,3-Trichloropropane	<10	⊲0.44	<123		<10	<0.45	
Trans-1,4-dichloro-2-butene	<10	<0.44	<123		<10 <10	<0.45	
Pentachloroethane	<10	<0.44	<123			<0.45 <0.45	
1,2-Dibromo-3-chloropropane	<10	<0.44	<123		<10	<0.45	<126

٢

Source Description:	North American Bo	biler			T	est Date:	None
Condition	Field Blanks			Operator		DJ	
Run Number Volume Collected		VOST-fb1 <1	liters			VOST-fb2 <1	liters
Sample Tube IDs		250 / 58	110015			184/09	111013
Analyte	ng	µg/m³	µg/MBtu		ng	µg/m³	µg∕MBtu
Dichlorodifluoromethane	15.51				4.24		
Chloromethane	7.45				23.14		
Vinyl Chloride	ND				ND		
Bromomethane	2.77				4.16		
Chloroethane	ND				DИ		
Trichlorofluoromethane	4.26				3.94		
1,1-Dichloroethene	ND				ND		
lodomethane	ND				ND		
Carbon Disulfide	ND				ND		
Acetone	86.60				35.76		
Methylene Chloride	3524.98				2699.86		
1,2-Dichloroethene (total)	ND				ND		
1,1-Dichloroethane	ND				ND		
Chloroform	25.96				22.32		
1,2-Dichloroethane	ND				ND		
1,4-Dioxane	ND				ND		
2-Butanone	ND				ND		
1,1,1-Trichloroethane	ND				ND		
Carbon Tetrachloride	ND				ND		
Benzene	15.70				ND		
Trichloroethene	ND				ND		
1,2-Dichloropropane	ND				ND		
Dibromomethane	· ND				ND		
Bromodichloromethane	5.11				4.08		
cis-1,3-Dichloropropene	ND				ND		
2-Hexanone	ND				ND		
trans-1,3-Dichloropropene	ND				ND		
1,1,2-Trichloroethane	ND				ND		
Dibromochloromethane	ND				ND		
1,2-Dibromoethane	ND				ND		
Bromoform	ND				ND		
4-Methyl-2-Pentanone	ND				ND		
Toluene	61.58				15.29		
Tetrachloroethene	ND				ND		
Chlorobenzene	ND				ND		
Ethylbenzene	ND				2.74		
1,1,1,2-Tetrachloroethane	ND				NÐ		
Xylene (M,P)	ND				2.26		
0-Xylene	ND				2.31		
Styrene	ND				ND		
1,1,2,2-Tetrachloroethane	ND				ND		
1,2,3-Trichloropropane	ND				ND		
Trans-1,4-dichloro-2-butene	ND				ND		
Pentachloroethane	ND				ND		
1,2-Dibromo-3-chloropropane					ND		

Source Description:	North American B	oiler			Test Date: 2/9/95
Condition	No. 6 Oil			Operator	DJ, ES
ocation	Stack			Stack Flow	381.0 DSCFM
Start Time	930			Stop Time	1230
Run Number		MM5-1A			
/olume Collected		140.397 D	SCF		
sokinetic		101.7 %	5		
Analyte	hð	µg/m³	µg/M8tu		
Chlorobenzene	<1.2	<0.31	<437		
Styrene	<2.6	<0.65	<918		
Cumene	<1.0	<0.26	<363		
,1-Biphenyl	<1.2	<0.30	<430		
N-Nitrosodimethylamine					
N-methyl-N-nitroso-Ethanamine			<u> </u>		
-ethyl-N-nitroso-Ethanamine					
Bis(2-chloroethyl)ether	<10.0	<2.52	<3556		
Aniline					
Phenol	7.19	1.809	643.2		
2-Chlorophenol	<10.0	<2.52	<3556		
,3-Dichlorobenzene	<1.0	<0.24	<345		
,4-Dichlorobenzene	<1.0	<0.24	<345		
2-Dichlorobenzene	<1.0	<0.24	<345		
Benzyl Alcohol	33.79	8.499	3022.6		
Bis(2-chloroisopropyl)ether	<10.0	<2.52	<3556		
2-Methylphenol	<5.1	<1.29	<1828		
Acetophenone					
lexachloroethane	<10.0	<2.52	<3556		
Aethyl-Benzenamine					
3&4-methylphenol	1.25	0.314	111.8		
N-nitrosodipropylamine	<10.0	<2.52	<3556		
Nitrobenzene	<2.7	<0.68	<967		
-Nitrosopiperidine					
sophorone A Dimothylphanol	<10.0	<2.52	<3556		
2,4-Dimethylphenol Bis/2 chlorosthom/methana	<10.0 <10.0	<2.52	<3556		
Bis(2-chloroethoxy)methane 2,4-Dichlorophenol		<2.52 <2.52	<3556		
2,4-Dichlorophenol	<10.0 <1.2	<2.52 <0.29	<3556 <409		
1,2,4+ i noniorobenzene Naphthalene	≤1.∠ 2.17	<0.29 0.546	<409 194.1		
-Methoxybenzenamine	<10.0	<2.52	<3556		
2-Nitrophenol	<10.0	<2.52	<3556		
2,6-Dichlorophenol	~10.0	~2.52	<33306		
Hexachloropropene					
L'Chloroaniline	 < 20 .0	<5.03	<7113		
lexachlorobutadiene	<10.0	<2.52	<3556		
N-butyl-N-nitroso-butanamine		-2.92			
I-chloro-3-methyl-phenol	<20.0	<5.03	<7113		
2-methylnaphthalene	<10.0	<2.52	<3556		
-chloro-2-methylbenzenamine		-2.02			
,2,4,5-tetrachlorobenzene					
2,3,5-trichlorophenol	<4.7	<1.19	<1682		
Hexachlorocyclopentadiene	<10.0	<2.52	<3556		
2,4,6-trichlorophenol	<4.3	<1.09	<1536		
· · · · · · · · · · · · · · · · · · ·	·				

2,3,4-trichlorophenol	<4.7	<1.19	<1682
2-chioronaphthalene	<1.1	<0.28	<398
1-chloronaphthalene	<0.7	<0.19	<263
4-chloroquinoline	- <u></u>		
2-nitroaniline	<50.0	<12.58	<17781
3-nitroaniline	<50.0	<12.58	<17781
 Acenaphthylene 	<1.0	<0,25	<356
• Dimethylphathalate	<10.0	<2.52	<3556
2,6-dinitrotoluene	<2.4	<0.60	<846
Acenaphthene	<0.8	<0.20	<281
4-nitroaniline	<50.0	<12.58	<17781
2,4-dinitrophenol	<50.0	<12.58	<17781
 Dibenzofuran 	<0.9	<0.22	<306
Pentachlorobenzene	-0.0	-0.22	
• 2,4-dinitrotoluene	<2.4	<0.60	<846
5-nitroquinoline	~2.4	~0.00	
2,3,4,6-tetrachlorophenol			
2,3,5,6-tetrachlorophenol			
2,3,4,5-tetrachlorophenol			
•	<50.0	<12.58	<17781
• 4-nitrophenol	<0.8	<0.21	<295
-• Fluorene	<0.8 <10.0	<2.52	<3556
Diethyl phathalate			
4-Chlorophenyl phenyl ether	<10.0	< 2 .52	<3556
2-methyl-5-nitrobenzenamine			
N-nitrosodiphenylamine	<10.0	<2.52	<3556
2-methyl-4,6-dinitrophenol	<50.0	<12.58	<17781
Azobenzene			
Diphenylamine			
4-Bromophenyl phenyl ether	<10.0	<2.52	<3556
Phenacetin			
 Hexachlorobenzene 	<0.6	<0.16	<228
 Pentachlorophenol 	<4.2	<1.05	<1 490
 Pentachloronitrobenzene 			
 Phenanthrene 	<0.6	<0,14	<196
- • Anthracene	<0,6	<0.15	<210
Azoxybenzene			
Pentachloroaniline			
Dibutyl phthalate	8 5.32	21.461	7632.0
2-nitro-N-phenylbenzenamine		•	•
4-nitro-1-oxide-quinoline			
Methapyrilene			
- · Fluoranthene	<0.3	<0.08	<114
– • Pyrene	<0.3	<0.08	<117
N-methyl-4-(phenylazo)-benzene			
P-dimethylaminoazobenzene		<u> </u>	
Benzyl butyl phthalate	<10.0	<2.52	<3556
N-2-fluorenylacetamide			
- • Chrysene	0.57	0,143	51.0
 Benzo(a)anthracene 	0.83	0.209	74.2
 Bis(2-ethylhexyl)phthalate 	40.88	10.283	3656.8
Di-N-octyl phthalate	1072.00	269.643	95892.3
 Benzo(b)fluoranthene 	<0.5	<0.13	<185
- • 7,12-Dimethylbenz(a)anthracene			
- Benzo(k)fluoranthene	<0.7	<0.18	<249
~ / Benzo(a)pyrene	<0.3	<0.07	<100
3-methylcholanthrene	0.49	0.123	43.8
- • Dibenz(a,j)acridine			
 Indeno(1,2,3-cd)pyrene 	<0.6	 <0.16	<220
 Dibenz(a,h)anthracene 	2.37	0.596	212.0
 Benzo(g,h,i)perylene 	2.20	0.553	196.8
	2.2.7	0.000	

/

an as

RESULTS.WK4-

;

SEMIVOLATILE ORGANICS SAMPLING RESULTS SUMMARY

Source Description:	North American B	loiler			Test Date: 3/1	0/95
Condition	No. 6 Oil			Operator	DJ, ES	0.5.4
Location	Stack			Stack Flow	382.8 DS	SCEM
Start Time	947			Stop Time	1217	
Run Number		MM5-2A				
Volume Collected		105.168 D	SCF			
Isokinetic		92.4 %				
Analyte	рд	hð\w,	µg/MBtu			
Chlorobenzene	<1.2	<0.41	<427			
Styrene	<2.6	<0.87	<895			
Cumene	<1.0	< 0.34	<354			
1,1-Biphenyl	<1.2	<0.41	<420			
N-Nitrosodimethylamine						
N-methyl-N-nitroso-Ethanamine						
N-ethyl-N-nitroso-Ethanamine						
Bis(2-chloroethyl)ether	<10.0	< 3 .36	<3470			
Aniline			<u> </u>			
Phenol	<10.0	<3.36	<3470			
2-Chlorophenol	<10.0	<3.36	<3470			
1,3-Dichlorobenzene	<1.0	<0.33	<337			
1,4-Dichlorobenzene	<1.0	<0.33	<337			
1,2-Dichlorobenzene	<1.0	<0.33	<337			
Benzyi Alcohol	2.89	0.970	336.8			
Bis(2-chloroisopropyl)ether	<10.0	<3.36	<3470			
2-Methylphenol	<5.1	<1.73	<1784			
Acetophenone						
Hexachloroethane	<10.0	<3.36	<3470			
Methyl-Benzenamine						
3&4-methylphenol	<10.6	<3.57	<3686			
N-nitrosodipropylamine	<10.0	<3.36	<3470			
Nitrobenzene	< 2 .7	<0.91	<944			
1-Nitrosopiperidine						
Isophorone	<10.0	<3.36	<3470			
2,4-Dimethylphenol	<10.0	<3.36	<3470			
Bis(2-chloroethoxy)methane	<10.0	<3,36	<3470			
2,4-Dichlorophenol 1,2,4 Trichlorophenozopa	<10.0	<3.36	<3470			
1,2,4-Trichlorobenzene	<1.2 1,46	< 0.39	<399 170.1			
Naphthalene 4 Methox/banzenamina	1.46 <10.0	0.490	170.1 <3470			
4-Methoxybenzenamine 2-Nitrophenol		<3.36 <3.36				
2-Nitrophenol 2,6-Dichlorophenol	<10.0	<3.36	<3470			
Hexachloropropene						
4-Chloroaniline	<20.0	<6.72	<6941			
Hexachlorobutadiene	< <u>10</u> .0	<3.36	<3470			
N-butyl-N-nitroso-butanamine		-0.00				
4-chloro-3-methyl-phenol	<20.0	<6.72	<6941			
2-methylnaphthalene	<10.0	<3.36	<3470			
4-chloro-2-methylbenzenamine		<3.30 				
1,2,4,5-tetrachlorobenzene						
2,3,5-trichlorophenol	 <4.7	<1.59	<1642			
Hexachlorocyclopentadiene	<10.0	<3.36	<3470			
2,4,6-trichlorophenol	<4.3	<3.30 <1 45	<1499			
2,4,5-Trichlorophenol	<4.7	~140	<1642			

RESULTS WK4-1	юe	,
---------------	----	---

2.3.4 unchlorophenol <4.7 <1.59 <1642 2.chioronaphthalene <0.7 <0.25 <257 4.chioroquinoline				10.10
1-chloronaprithalene <0.7	2,3,4-trichlorophenol	<4.7	<1.59	<1642
4-chloroquinoline	-			
2-nitroaniline <50.0	•	<0.7	<0.25	<25/
3-nitraaniline <50.0				
Acenaphthylene <1.0				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
2.6-dinitrotoluene <2.4				
Acenaphthene <0.8 <0.27 <274 4-nitroaniline <50.0				
4-nitroaniline <50.0	•			
2.4-dinitrophenol <50.0	•			
Dibenzofuran <0.9 <0.29 <298 Pentachlorobenzene				-
Pentachlorobenzene 2,4-dinitrotoluene <2.4				
2.4-dinitrotoluene <2.4		<0.9	<0.29	<298
5-nitroquinoline			<u> </u>	
23.4 (6-tetrachlorophenol		<2.4	<0.80	<826
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
	•			
Fluorene <0.8 <0.28 <288 Diethyl phathalate <10.0	2,3,4,5-tetrachlorophenol			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4-nitrophenol		<16.79	
4-Chlorophenyl phenyl ether <10.0	Fluorene	<0.8	<0.28	<288
2-methyl-5-nitrobenzenamine	Diethyl phathalate	<10.0	<3.36	<3470
N-nitrosodiphenylamine <10.0	4-Chlorophenyl phenyl ether	<10.0	<3.36	<3470
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2-methyl-5-nitrobenzenamine			
Azobenzene	N-nitrosodiphenylamine	<10.0	<3.36	<3470
Diphenylamine	2-methyl-4,6-dinitrophenol	<50.0	<16.79	<17352
4-Bromophenyl phenyl ether <10.0	Azobenzene	-		<u></u>
Phenacetin	Diphenylamine			
Hexachlorobenzene <0.6 <0.21 <222 Pentachlorophenol <4.2	4-Bromophenyl phenyl ether	<10.0	<3.36	<3470
Pentachlorophenol <4.2 <1.41 <1454 Pentachloronitrobenzene	Phenacetin			
Pentachloronitrobenzene Phenanthrene <0.6	Hexachlorobenzene	<0.6	<0.21	<222
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pentachlorophenol	<4.2	<1 .41	<1454
Anthracene <0.6 <0.20 <205 Azoxybenzene	Pentachloronitrobenzene			
Azoxybenzene Pentachloroaniline Dibutyl phthalate 29.23 9.815 3406.3 2-nitro-N-phenylbenzenamine 4-nitro-1-oxide-quinoline Methapyrilene Fluoranthene <0.3	Phenanthrene	<0.6	<0.18	<191
Pentachloroaniline	Anthracene	<0.6	<0.20	<205
Dibutyl phthalate 29.23 9.815 3406.3 2-nitro-N-phenylbenzenamine	Azoxybenzene			
2-nitro-N-phenylbenzenamine	Pentachloroaniline			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibutyl phthalate	29.23	9.815	3406.3
Methapyrilene	2-nitro-N-phenylbenzenamine			
Fluoranthene <0.3 <0.11 <111 Pyrene <0.3	4-nitro-1-oxide-quinoline			
Pyrene <0.3 <0.11 <115 N-methyl-4-(phenylazo)-benzene	Methapyrilene			
N-methyl-4-(phenylazo)-benzene	Fluoranthene	<0.3	<0 11	<111
P-dimethylaminoazobenzene	Pyrene	<0.3	<0.11	<115
Benzyl butyl phthalate <10.0 <3.36 <3470 N-2-fluorenylacetamide Chrysene 0.52 0.175 60.6 Benzo(a)anthracene 0.48 0.161 55.9 Bis(2-ethylhexyl)phthalate 4461.00 1497.965 519854.2 Di-N-octyl phthalate <10.0	N-methyl-4-(phenylazo)-benzene	**		
N-2-fluorenylacetamide	P-dimethylaminoazobenzene	~		
Chrysene 0.52 0.175 60.6 Benzo(a)anthracene 0.48 0.161 55.9 Bis(2-ethylhexyl)phthalate 4461.00 1497.965 519854.2 Di-N-octyl phthalate <10.0	Benzyl butyl phthalate	<10.0	<3.36	<3470
Benzo(a)anthracene 0.48 0.161 55.9 Bis(2-ethylhexyl)phthalate 4461.00 1497.965 519854.2 Di-N-octyl phthalate <10.0	N-2-fluorenylacetamide			
Bis(2-ethylhexyl)phthalate 4461.00 1497.965 519854.2 Di-N-octyl phthalate <10.0	Chrysene	0.52	0.175	60 .6
Di-N-octyl phthalate <10.0 <3.36 <3470 Benzo(b)fluoranthene <0.5	Benzo(a)anthracene	0.48	0.161	55.9
Benzo(b)fluoranthene <0.5 <0.17 <180 7,12-Dimethylbenz(a)anthracene Benzo(k)fluoranthene <0.7	Bis(2-ethylhexyl)phthalate	4461.00	1497.965	519854.2
7,12-Dimethylbenz(a)anthracene		<10.0	<3.36	<3470
Benzo(k)fluoranthene <0.7 <0.24 <243 Benzo(a)pyrene <0.3	Benzo(b)fluoranthene	<0.5	<0.17	<180
Benzo(k)fluoranthene <0.7 <0.24 <243 Benzo(a)pyrene <0.3				
3-methylcholanthrene Dibenz(a,j)acridine Indeno(1,2,3-cd)pyrene <0.6		<0.7	<0.24	<243
3-methylcholanthrene Dibenz(a,j)acridine Indeno(1,2,3-cd)pyrene <0.6		<0,3	<0, 0 9	<97
Dibenz(a,j)acridine				
Indeno(1,2,3-cd)pyrene <0.6 <0.21 <215 Dibenz(a,h)anthracene 0.50 0.168 58.3				
Dibenz(a,h)anthracene 0.50 0.168 58.3	Indeno(1,2,3-cd)pyrene	<0.6	<0.21	<215
		0.50	0.168	58.3
· ·		0.51		59.4
	· · · · · · · · · · · · · · · · · · ·		····-	

Source Description:	North American B	loiler			Test Date: 3/10/95
Condition Location	No. 6 Oil Stack			Operator Stack Flow	DJ, ES 372.0 DSCFM
Start Time	1300			Stop Time	1410
Pup Number		MAR DA			
Run Number Volume Collected		MM5-3A 51.295 D	SCE		
Isokinetic		97.1 %			
		•			
Analyte	þð	µg/m³	µg/M Btu		
Chlorobenzene	<1.2	<0.85	<428		
Styrene	<2.6	<1.78	<898		
Cumene	<1.0	<0.70	<355		
1,1-Biphenyl	<1.2	<0.83	<421		
N-Nitrosodimethylamine					
N-methyl-N-nitroso-Ethanamine					
N-ethyl-N-nitroso-Ethanamine					
Bis(2-chloroethyl)ether	<10.0	<6.88	<3482		
Aniline		•			
Phenol	<10.0	<6.88	<3482		
2-Chlorophenol	<10.0	<6.88	<3482		
1,3-Dichlorobenzene	<1.0	<0.67	<338		
1,4-Dichlorobenzene	<1.0	<0.67	<338		
1,2-Dichlorobenzene	<1.0	<0.67	<338		
Benzyl Alcohol	<20.0	<13.77	<6965		
Bis(2-chloroisopropyl)ether	<10.0	<6.88	<3 482		
2-Methylphenol	<5.1	<3.54	<1790		
Acetophenone	— ——				
Hexachloroethane	<10.0	<6.88	<3482		
Methyl-Benzenamine					
3&4-methylphenol	<10.6	<7.31	<3698		
N-nitrosodipropylamine	<10.0	<6.88	<3482		
Nitrobenzene	< 2 .7	<1.87	<947		
1-Nitrosopiperidine					
Isopharone	<10.0	<6.88	<3482		
2,4-Dimethylphenol	<10.0	<6.88	<3482		
Bis(2-chloroethoxy)methane	<10.0	<6.88	<3482		
2,4-Dichlorophenol	<10.0	<6 88	<3482		
1,2,4-Trichlorobenzene	<1.2	<0.79	<400		
Naphthalene	3.33	2.293	798.4		
4-Methoxybenzenamine	<10.0	<6.68	<3482		
2-Nitrophenol	<10.0	<6.88	<3482		
2,6-Dichlorophenol					
Hexachloropropene					
4-Chloroaniline	<20.0	<13.77	<6965		
Hexachlorobutadiene	<10.0	<6.88	<3482		
N-butyl-N-nitroso-butanamine					
4-chioro-3-methyl-phenol	<20.0	<13.77	<6965		
2-methylnaphthalene	<10.0	<6.88	<3482		
4-chloro-2-methylbenzenamine					
1,2,4,5-tetrachlorobenzene					
2,3,5-trichlorophenol	<4.7	<3.26	<1647		
Hexachlorocyclopentadiene	<10.0	<6.88	<3482		
2,4,6-trichlorophenol	<4.3	<2.97	<1504		
2,4,5-Trichlorophenol	<4.7	<3.26	<1647		

.

2,3,4,1richlarophenol <4.7 <3,26 <1647 2,chloranphthalene <1.1 <0,77 <330 1chloronaphthalene <0,7 <0,51 <258 4.chloroquinoline				
1-chloronaphthalene <0.7	•			
4-chloroquinoline				
2-nitroaniline <50.0		<0.7	<0.51	<258
3-nitroaniline <50.0	•			
Acenaphthylene <1.0				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
2.6-dinitrotoluene <2.4	Acenaphthylene			
Acenaphthene <0.8 <0.54 <275 4-ntraaniline <50.0	Dimethylphathalate	<10.0	<6.88	<3482
4-nitroaniline < 50.0 < 34.42 < 17412 2.4-dinitrophenol < 50.0 < 34.42 < 17412 Dibenzofuran < 0.9 < 0.59 < 299 Pentachlorobenzene	2,6-dinitrotoluene	<2.4	<1.64	
2.4-dinitrophenol <50.0	Acenaphthene		<0.54	<275
Diberzofuran <0.9 <0.59 <299 Pentachlorobenzene	4-nitroaniline	<50.0	<34.42	
Pentachlorobenzene	2,4-dinitrophenol	<50.0	<34.42	<17412
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibenzofuran	<0.9	<0.59	<299
5-nitroquinoline	Pentachlorobenzene			
23.4.6-tetrachlorophenol	2,4-dinitrotoluene	<2.4	<1.64	<829
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5-nitroquinoline			·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2,3,4,6-tetrachlorophenol			
2,3,4,5-tetrachlorophenol 4-nitrophenol <50.0				
4-nitrophenol <50.0				
Fluorene <0.8 <0.57 <289 Diethyl phathalate 3.71 2.554 889.5 4-Chlorophenyl phenyl ether <10.0		<50.0	<34.42	<17412
Diethyl phathalate 3.71 2.554 889.5 4-Chlorophenyl phenyl ether <10.0	•			
4-Chlorophenyl phenyl ether <10.0				
2-methyl-5-nitrobenzenamine				
$\begin{array}{llllllllllllllllllllllllllllllllllll$			-0.00	-0-102
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<10.0	<6.88	<3/82
Azobenzene	. ,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			~04,42	
4-Bromophenyl phenyl ether <10.0				
Phenacetin		<10.0	~ 80	-2492
Hexachlorobenzene <0.6 <0.44 <223 Pentachlorophenol <4.2		<10.0		~340Z
Pentachlorophenol <4.2				
Pentachloronitrobenzene Phenanthrene <0.6				
Phenanthrene <0.6 <0.38 <192 Anthracene <0.6	-	<4.2	<2.68	
Anthracene <0.6 <0.41 <205 Azoxybenzene				
Azoxybenzene Pentachloroaniline Dibutyl phthalate 61.67 42.458 14785.3 2-nitro-N-phenylbenzenamine 4-nitro-1-oxide-quinoline Methapyrilene Fluoranthene <0.3			-	
Pentachloroaniline Dibutyl phthalate 61.67 42.458 14785.3 2-nitro-N-phenylbenzenamine 4-nitro-1-oxide-quinoline Methapyrilene Fluoranthene <0.3		<0.6		<205
Dibutyl phthalate 61.67 42.458 14785.3 2-nitro-N-phenylbenzenamine	-			
2-nitro-N-phenylbenzenamine4-nitro-1-oxide-quinolineMethapyrileneFluoranthene<0.3				
4-nitro-1-oxide-quinoline Methapyrilene Fluoranthene <0.3		61.67	42.458	14785.3
Methapyrilene Fluoranthene < 0.3 < 0.22 < 111 Pyrene < 0.3 < 0.23 < 115 N-methyl-4-(phenylazo)-benzene P-dimethylaminoazobenzene Benzyl butyl phthalate 2.55 1.756 611.4 N-2-fluorenylacetamide Chrysene < 0.2 < 0.16 < 80 Benzo(a)anthracene < 0.2 < 0.16 < 80 Benzo(a)anthracene < 0.2 < 0.17 < 84 Bis(2-ethylhexyl)phthalate < 10.0 < 6.88 < 3482 Di-N-octyl phthalate 130.40 89.776 31263.3 Benzo(b)fluoranthene < 0.5 < 0.36 < 181 7.12-Dimethylbenz(a)anthracene Benzo(k)fluoranthene < 0.7 < 0.48 < 244 Benzo(a)pyrene < 0.3 < 0.19 < 98 3-methylcholanthrene				
Fluoranthene <0.3				
Pyrene <0.3 <0.23 <115 N-methyl-4-(phenylazo)-benzene Benzyl butyl phthalate 2.55 1.756 611.4 N-2-fluorenylacetamide Chrysene <0.2				
N-methyl-4-(phenylazo)-benzene	Fluoranthene			
P-dimethylaminoazobenzene Benzyl butyl phthalate 2.55 1.756 611.4 N-2-fluorenylacetamide Chrysene <0.2	•	<0.3	<0.23	<115
Benzyl butyl phthalate 2.55 1.756 611.4 N-2-fluorenylacetamide	N-methyl-4-(phenylazo)-benzene			
N-2-fluorenylacetamide				
Chrysene <0.2 <0.16 <80 Benzo(a)anthracene <0.2	Benzyl butyl phthalate	2.55	1,756	611.4
Benzo(a)anthracene <0.2 <0.17 <84 Bis(2-ethylhexyl)phthalate <10.0	N-2-fluorenylacetamide			
Bis(2-ethylhexyl)phthalate <10.0 <6.88 <3482 Di-N-octyl phthalate 130.40 89.776 31263.3 Benzo(b)fluoranthene <0.5	Chrysene	<0.2	<0.16	<80
Di-N-octyl phthalate 130.40 89.776 31263.3 Benzo(b)fluoranthene <0.5	Benzo(a)anthracene	<0.2	<0.17	<84
Benzo(b)fluoranthene <0.5 <0.36 <181 7,12-Dimethylbenz(a)anthracene Benzo(k)fluoranthene <0.7	Bis(2-ethylhexyl)phthalate	<10.0	<6.88	<3482
7,12-Dimethylbenz(a)anthracene	Di-N-octyl phthalate	130.40	89,776	31263.3
Benzo(k)fluoranthene <0.7 <0.48 <244 Benzo(a)pyrene <0.3	Benzo(b)fluoranthene	<0.5	<0.36	<181
Benzo(a)pyrene <0.3 <0.19 <98 3-methylcholanthrene Dibenz(a,j)acridine Indeno(1,2,3-cd)pyrene <0.6	7,12-Dimethylbenz(a)anthracene			
Benzo(a)pyrene <0.3 <0.19 <98 3-methylcholanthrene Dibenz(a,j)acridine Indeno(1,2,3-cd)pyrene <0.6		<0.7	<0.48	<244
3-methylcholanthrene Dibenz(a,j)acridine Indeno(1,2,3-cd)pyrene <0.6		<0.3	<0.19	<98
Dibenz(a,j)acridine Indeno(1,2,3-cd)pyrene <0.6				
Indeno(1,2,3-cd)pyrene <0.6 <0.43 <216 Dibenz(a,h)anthracene <0.6				
Dibenz(a,h)anthracene <0.6 <0.44 <223		<0.6	<0.43	<216
	······			

2

79

Source Description:	North America	n Boiler			Tes	t Date:	2/15/95
Condition Location Start Time	No. 6 Oil Stack 1235	Envisified		Operator Stack Flow Stop Time		DJ, ES 326.5 1535	DSCFM
Run Number Volume Collected Isokinetic		MM5-4A 117,560 D3 100.6 %	SCF		MM	5-4B 101.901 86.5	
Analyte	hđ	µg/m²	µg/MBtu		μg	h∂\w₃	µg/M8tu
Chlorobenzene	<1.2	<0.37	<345		<1.2	<0.43	<345
Styrene	<2.6		<723		<2.6	<0.89	<723
Cumene	<1.0		<286		<1.0	<0.35	<286
1,1-Biphenyl	<1.2		<339		<1.2	< 0.42	<339
N-Nitrosodimethylamine							
N-methyl-N-nitroso-Ethanamine		<u> </u>					
N-ethyl-N-nitroso-Ethanamine		· 					
Bis(2-chloroethyl)ether	<10.0	<3.00	<2801		<10.0	<3.47	<2801
Aniline		-0.00	-2001				-2001
Phenol	<10.0	<3.00	<2801		<10.0	<3.47	<2801
2-Chlorophenol	<10.0		<2801		<10.0	<3.47	<2801
1,3-Dichlorobenzene	<1.0		<272		<1.0	< 0.34	<2001
1,4-Dichlorobenzene	<1.0		<272		<1.0	<0.34	<272
1,2-Dichlorobenzene	<1.0		<272		<1.0	< 0.34	<272
Benzyl Alcohol	<20.0		<5603		<20.0	<6.93	<5603
Bis(2-chloroisopropyl)ether	<10.0		<2801		<10.0	<3.47	<2801
2-Methylphenol	<5.1	<1.54	<1440		<5.1	<1.78	<1440
Acetophenone	-0.1	×1.04	1440		-0.1	<u>~1.7</u> ↓	~ (++0
Hexachloroethane	<10.0	<3.00	<2801		<10.0	<3.47	<2801
Methyl-Benzenamine	\$10.0		~2001				
3&4-methylphenol	<10.6		<2975		<10.6	<3.68	<2975
N-nitrosodipropylamine	<10.0		<2801		<10.0	<3.47	<2801
Nitrobenzene	<10.0		<762		<2.7	<0.94	<762
	~2.1		~/02		~2.7	~0.94	N02
1-Nitrosopiperidine Isophorone	<10.0	<3.00	<2801		<10.0	<3.47	<2801
2,4-Dimethylphenol	<10.0		<2801		<10.0	<3.47	<2801
			<2801		<10.0		<2801
Bis(2-chloroethoxy)methane 2,4-Dichlorophenol	<10.0 <10.0				<10.0	<3.47	
1,2,4-Dichlorophenol 1,2,4-Trichlorobenzene	<1.2		<2801 <322		<1.2	<3.47 <0.40	<2801 <322
	2.40		202.0		1.70		
Naphthalene 4-Methoxybenzenamine	<10.0		<2801		<10.0	0.589 <3.47	
2-Nitrophenol	<10.0				<10.0		<2801
2.6-Dichlorophenol	<10.0	<3.00	<2801		<10.0	<3.47	<2801
Hexachloropropene							
4-Chtoroaniline	<20.0	<6_01	<5603		<20.0	<6.93	<5603
Hexachlorobutadiene	<10.0		<2801		<10.0	<3.47	
N-butyl-N-nitroso-butanamine	\$10.0	<3.00	~2001		×10.0	\ \$.47	~2001
4-chloro-3-methyl-phenol	<20.0	<6.01	<5603		<20.0	<6.93	<5603
2-methylnaphthalene	<10.0		<2801		<20.0 <10.0	< 3.47	
4-chloro-2-methylbenzenamine	×10.0	N3.00	~2001		×10.0		N2001
1,2,4,5-tetrachlorobenzene							
2,3,5-trichlorophenol	<4.7	<1.42	~127E		 < A 7		
•	<10.0		<1325		<4.7	<1.64	
Hexachlorocyclopentadiene			<2801		<10.0	<3.47	
2,4,6-trichlorophenol 2,4,5-Trichlorophenol	<4.3 <4.7		<1210		<4.3	<1.50	
2,4,5- i noniorophenoi		<1.42	<1325		<4.7	<1.64	<1325

RESULTS.WK4-

2,3,4-trichlorophenol	<4 .7	<1.42	<1325	<4.7	<1.64	<1325
2-chloronaphthalene	<1.1	<0.34	<314	<1.1	<0.39	<314
1-chloronaphthalene	<0.7	<0.22	<207	<0.7	<0.26	<207
4-chloroquinoline					·	
2-nitroaniline	<50.0	<15.02	<14006	<50.0	<17.33	<14006
3-nitroaniline	<50.0	<15.02	<14006	<50.0	<17.33	<14006
Acenaphthylene	<1.0	<0.30	<280	< 1 .0	<0.35	<280
Dimethylphathalate	<10.0	<3.00	<2801	<10.0	<3.47	<2801
2,6-dinitrotoluene	<2.4	<0.71	<667	<2.4	<0.82	<667
Acenaphthene	<0.8	<0.24	<221	<0.8	<0.27	<221
4-nitroaniline	<50.0	<15.02	<14006	<50.0	<17.33	<14006
2,4-dinitrophenol	<50.0	<15.02	<14006	<50,0	<17.33	<14006
Dibenzofuran	0.36	0.108	30.3	0.18	0.062	17.5
Pentachlorobenzene	0.50					
2,4-dinitrotoluene	<2.4	<0.71	<667	<2.4	<0.82	<667
•	×2.4	-0.71	~001	-2.7	-0.02	-007
5-nitroquinoline						
2,3,4,6-tetrachlorophenol				- <u>-</u>		
2,3,5,6-tetrachlorophenol						
2,3,4,5-tetrachlorophenol						
4-nitrophenol	<50.0	<15.02	<14006	<50.0	<17.33	<14006
Fluorene	<0.8	<0.25	<233	<0.8	<0.29	<233
Diethyl phathalate	4.75	1.427	399,7	3.95	1.369	383.5
4-Chlorophenyl phenyl ether	<10.0	<3.00	<2801	<10.0	<3.47	<2801
2-methyl-5-nitrobenzenamine				•		<u></u>
N-nitrosodiphenylamine	<10.0	<3.00	<2801	<10.0	<3.47	<2801
2-methyl-4 6-dinitrophenol	<50.0	<15.02	<14006	<50.0	<17.33	<14006
Azobenzene						
Diphenylamine				*		
4-Bromophenyl phenyl ether	<10.0	<3.00	<2801	<10.0	<3.47	<2801
Phenacetin						
Hexachlorobenzene	<0.6	<0.19	<179	<0.6	<0.22	<179
Pentachlorophenol	<4.2	<1.26	<1174	<4.2	<1.45	<1174
Pentachloronítrobenzene	νη .Ζ	-1.20				
Phenanthrene	<0.6	<0.17	<154	<0.6	<0.19	<154
	<0.6	<0.17	<165	<0.6	<0.20	<165
Anthracene	×0.0	<u. 18<="" td=""><td><105</td><td><0.0</td><td><0.20</td><td><105</td></u.>	<105	<0.0	<0.20	<105
Azoxybenzene				Para Cristian		
Pentachloroaniline			7077.0			
Dibutyl phthalate	93.61	28.120	7877.2	30.82	10.681	2992.0
2-nitro-N-phenylbenzenamine						
4-ntro-1-oxide-quinoline						
Methapyrilene	<u></u>					
Fluoranthene	<0.3	<0.10	<90	<0.3	<0.11	<90
Pyrene	<0.3	<0.10	<92	<0.3	<0.11	<92
N-methyl-4-(phenylazo)-benzene	<u> </u>					
P-dimethylaminoazobenzene		<u> </u>				
Benzyl butyl phthalate	2.36	0.709	198 .6	<10.0	<3.47	<2801
N-2-fluorenylacetamide		<u>-</u> _				
Chrysene	<0.2	<0.07	<64	<0.2	<0.08	<64
Benzo(a)anthracene	<0.2	<0.07	<67	<0.2	<0.08	<67
Bis(2-ethylhexyl)phthalate	<10.0	<3.00	<2801	41.45	14.365	4024.0
Di-N-octyl phthalate	2644.00	794.243	222489.2	457.10	158.412	44375.5
Benzo(b)fluoranthene	<0.5	<0.16	<146	<0.5	<0.18	.<146
7,12-Dimethylbenz(a)anthracene						
Benzo(k)fluoranthene	<0.7	<0.21	<196	<0.7	<0.24	<196
Benzo(a)pyrene	<0.3	<0.08	<78	<0.3	<0.10	<78
3-methylcholanthrene	-0.0	-0.00				
Dibenz(a,j)acridine						
	<0.6	 <0.19	<174	<0.6	<0.21	<174
Indeno(1,2,3-cd)pyrene						
Dibenz(a,h)anthracene	<0.6	<0.19	<179	<0.6	<0.22	<179
Benzo(g,h,i)perylene	<0.5	<0.16	<146	<0.5	<0.18	<146

•

-

Source Description:	North American Bo	oiler			Test Date: 3/16/95
Condition Location Start Time	No. 6 Emulsified Stack 827			Operator Stack Flow Stop Time	DJ, ES 356.5 DSCFM 1127
Run Number Volume Collected Isokinetic		MM5-5A 114.504 D 89.6 %			
Analyte	hð	µg/m³	µg/MBtu		
Chlorobenzene	<1.2	< 0.38	<377		
Styrene	<2.6	<0.80	<790		
Cumene	<1.0	<0.31	<312		
1,1-Biphenyl	<1.2	< 0.37	<370		
N-Nitrosodimethylamine					
N-methyl-N-nitroso-Ethanamine					
N-ethyl-N-nitroso-Ethanamine					
Bis(2-chloroethyi)ether	<10.0	<3.08	<3061		
Aniline	×10.0	~3.00	~3001		
Phenot	36.08	11.128	3406.6		
2-Chlorophenol	<10.0				
1,3-Dichlorobenzene		<3.08	<3061		
1,4-Dichlorobenzene	<1.0	<0.30	<297		
1,2-Dichlorobenzene	<1.0	<0.30	<297		
•	<1.0	<0.30	<297		
Benzyl Alcohol Bia (2 phlassing security ather	<20.0	<6.17	<6123		
Bis(2-chloroisopropyl)ether	<10.0	<3.08	<3061		
2-Methylphenol	<5.1	<1.59	<1574		
Acetophenone					
Hexachloroethane	<10.0	<3.08	<3061		
Methyl-Benzenamine					
3&4-methylphenol	<10.6	<3.28	<3251		
N-nitrosodipropylamine	<10.0	<3.08	<3061		
Nitrobenzene	<2 .7	<0.84	<833		-
1-Nitrosopiperidine	·				
Isophorone	<10.0	<3.08	<3061		
2,4-Dimethylphenol	<10.0	<3.08	<3061		
Bis(2-chloroethoxy)methane	<10.0	<3.08	<3061		
2,4-Dichlorophenol	<10.0	<3.08	<3061		
1,2,4-Trichlorobenzene	<1.2	<0.35	<352		
Naphthalene	5.01	1.545	473.0		
4-Methoxybenzenamine	<10.0	<3.08	<3061		
2-Nitrophenol	<10.0	<3.08	<3061		
2,6-Dichlorophenol					
Hexachloropropene					
4-Chloroaniline	<20.0	<6.17	<6123		
Hexachlorobutadiene	<10.0	<3.08	<3061		
N-butyl-N-nitroso-butanamine					
4-chloro-3-methyl-phenol	<20.0	<6.17	<6123		
2-methylnaphthalene	<10.0	<3.08	<3061		
4-chloro-2-methylbenzenamine					
1,2,4,5-tetrachlorobenzene					
2,3,5-trichlorophenol	<4.7	<1.46	<1448		
Hexachlorocyclopentadiene	<10.0	<3.08	<3061		
2,4,6-trichlorophenol	<4.3	<1.33	<1323		
2,4,5-Trichlorophenol	<4.7	<1.46	<1448		
	<u>\4.</u> /	NI 440			

π.

2,3,4-trichlorophenol <4.7 <1.46 <144 2-chloronaphthalene <1.1 <0.35 <34 1-chloronaphthalene <0.7 <0.23 <22 4-chloroquinoline2-nitroaniline <50.0 <15.42 <1530 3-nitroaniline <50.0 <15.42 <1530 Acenaphthylene <1.0 <0.31 <300 Dimethylphathalate <10.0 <3.08 <300 2,6-dinitrotoluene <2.4 <0.73 <72 Acenaphthene <0.8 <0.24 <24 4-nitroaniline <50.0 <15.42 <1530 2,4-dinitrophenol <50.0 <15.42 <1530 Dibenzofuran 0.83 0.256 760 Pentachlorobenzene2,3,4,6-tetrachlorophenol2,3,4,5-tetrachlorophenol2,3,4,5-tetrachlorophenol2,3,4,5-tetrachlorophenol2,3,4,5-tetrachlorophenol2,3,4,5-tetrachlorophenol2,3,4,5-tetrachlorophenol	13 27
1-chloronaphthalene < 0.7 < 0.23 < 22 4-chloroquinoline	27 07 07 06 51 29 42 07
4-chkoroquinoline	-)7)7)6 51 29 42)7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07 07 06 06 01 29 42 07
3-nitroaniline <50.0	07 06 51 29 42 07
Acenaphthylene <1.0 <0.31 <30 Dimethylphathalate <10.0)6 51 29 42 07
Dimethylphathalate <10.0 <3.08 <300 2,6-dinitrotoluene <2.4	51 29 42 07
2,6-dinitrotoluene <2.4	29 42 07
Acenaphthene <0.8	1 2 07
4-nitroaniline <50.0	70
2,4-dinitrophenol <50.0	
Dibenzofuran 0.83 0.256 76 Pentachlorobenzene	
Pentachlorobenzene 2,4-dinitrotoluene <2.4	
2,4-dinitrotoluene <2.4	
5-nitroquinoline 2,3,4,6-tetrachlorophenol 2,3,5,6-tetrachlorophenol 2,3,4,5-tetrachlorophenol 4-nitrophenol <50.0	29
2,3,4,6-tetrachlorophenol 2,3,5,6-tetrachlorophenol 2,3,4,5-tetrachlorophenol 4-nitrophenol <50.0	
2,3,5,6-tetrachlorophenol 2,3,4,5-tetrachlorophenol 4-nitrophenol <50.0	_
2,3,4,5-tetrachlorophenol	
4-nitrophenol <50.0 <15.42 <1530 Fluorene <0.8 <0.26 <200	
Fluorene <0.8 <0.26 <2)7
	5.9
4-Chlorophenyl phenyl ether <10.0 <3.08 <30	51
2-methyl-5-nitrobenzenamine	•••
N-nitrosodiphenylamine <10.0 <3.08 <30	51
2-methyl-4,6-dinitrophenol <50.0 <15.42 <153	70
Azobenzene	
Diphenylamine	
4-Bromophenyl phenyl ether <10.0 <3.08 <30	51
Phenacetin	
Hexachlorobenzene <0.6 <0.20 <1	
Pentachlorophenol <4.2 <1.29 <12	
Pentachloronitrobenzene	
Phenanthrene <0.6 <0.17 <1	
Anthracene <0.6 <0.18 <1	
Azoxybenzene	
Pentachloroaniline Dibutyl phthalate 9,28 2,862 87	
Dibutyl phthalate 9.28 2.862 871 2-nitro-N-phenylbenzenamine	
4-nitro-1-oxide-quinoline	
Methapyrilene	
.,	98
Pyrene <0.3 <0.10 <1	
N-methyl-4-(phenylazo)-benzene	
P-dimethylaminoazobenzene	
Benzyl butyl phthalate <10.0 <3.08 <30	61
N-2-fluorenylacetamide	
•	70
	73
Bis(2-ethylhexyl)phthalate 88.10 27.171 831	
Di-N-octyl phthalate 2599.00 801.565 24539	
7,12-Dimethylbenz(a)anthracene	5.0 59
	59
	59 14
3-methylcholanthrene	59 14 86
Dibenz(a,j)acridine	59 14 86
	59 14 86
	59 14 86 90
Benzo(g,h,i)perylene <0.5 <0.16 <1	59 14 86 90 96

.

Source Description:	North American Bo	biler			Test Date: 3/16/95
Condition	No. 6 Emulsified			Operator	DJ, ES
Location	Stack			Stack Flow	365.1 DSCFM
Start Time	1158			Stop Time	1458
Run Number		MM5-6A			
Volume Collected		117.239 D	SCF		
Isokinetic		88.3 %			
Analyte	hð	µg/m³	µg/M8tu		
Chlorobenzene	<1.2	<0.37	<382		
Styrene	<2.6	<0.78	<801		
Cumene	<1.0	<0.31	<317		
1,1-Biphenyl	<1.2	<0.36	<376		
N-Nitrosodimethylamine					
N-methyl-N-nitroso-Ethanamine					
N-ethyl-N-nitroso-Ethanamine					
Bis(2-chloroethyl)ether	<10.0	<3.01	<3106		
Aniline		·			
Phenol	16.81	5.063	1572.5		
2-Chlorophenol	<10.0	<3.01	<3106		
1,3-Dichlorobenzene	<1.0	<0.29	<301		
1,4-Dichlorobenzene	<1.0	<0.29	<301		
1,2-Dichlorobenzene	<1.0	<0.29	<301		
Benzyl Alcohol	<20.0	<6.02	<6211		
Bis(2-chloroisopropyl)ether	<10.0	<3.01	<3106		
2-Methylphenol	<5.1	<1.55	<1596		
Acetophenone					
Hexachloroethane	<10.0	<3.01	<3106		
Methyl-Benzenamine	<10.6	<3.20	<3298		
3&4-methylphenol N-nitrosodipropylamine	<10.0	<3.20	<3290		
Nitrobenzene	<10.0	<0.82	<845		
1-Nitrosopiperidine	~2.1	~0.02			
Isophorone	<10.0	<3.01	<3106		
2,4-Dimethylphenol	<10.0	<3.01	<3106		
Bis(2-chloroethoxy)methane	<10.0	<3.01	<3100		
2,4-Dichlorophenol	<10.0	<3.01	<3106		
1,2,4-Trichlorobenzene	<1.2	<0.35	<357		
Naphthalene	2 65	0,798	247.9		
4-Methoxybenzenamine	<10.0	<3.01	<3106		
2-Nitrophenol	<10.0	<3.01	<3106		
2,6-Dichlorophenol					
Hexachloropropene					
4-Chloroaniline	<20.0	<6.02	<6211		
Hexachlorobutadiene	<10.0	<3 01	<3106		
N-butyl-N-nitroso-butanamine					
4-chloro-3-methyl-phenol	<20.0	<6.02	<6211		
2-methylnaphthalene	<10.0	<3.01	<3106		
4-chloro-2-methylbenzenamine			—		
1,2,4,5-tetrachlorobenzene					
2,3,5-trichlorophenol	<4.7	<1.42	<1469		
Hexachlorocyclopentadiene	<10.0	<3.01	<3106		
2,4,6-trichlorophenol	<4.3	<1.30	<1342		
2,4,5-Trichlorophenol	<4.7	<1.42	<1469		

-

2,3,4-trichlorophenol	<4.7	<1.42	<1469
2-chloronaphthalene	<1.1	<0.34	<348
1-chloronaphthalene	<0.7	<0.22	<230
4-chloroquinoline			
2-nitroaniline	<50.0	<15.06	<15528
3-nitroaniline	<50.0	<15.06	<15528
Acenaphthylene	<1.0	< 0.30	<311
Dimethylphathalate	<10.0	<3.01	<3106
2,6-dinitrotoluene	<2.4	<0.72	<739
Acenaphthene	<0 <u>.</u> 8 <50.0	<0.24	<245
4-nitroaniline	<50.0	<15.06 <15.06	<15528 <15528
2,4-dinitrophenol	0.24	0.072	22.5
Dibenzofuran Pentachlorobenzene	U.24	0.072	22.5
2,4-dinitrotoluene	<2.4	< 0.72	<739
5-nitroquinoline	~2.4	<0.7Z	
2,3,4,6-letrachlorophenol			
2,3,5,6-tetrachlorophenol			
2,3,4,5-tetrachlorophenol			
4-nitrophenol	<50.0	<15.06	<15528
Fluorene	<0.8	<0.25	<258
Diethyl phathalate	9.31	2.804	870.9
4-Chlorophenyl phenyl ether	<10.0	<3.01	<3106
2-methyl-5-nitrobenzenamine			
N-nitrosodiphenylamine	<10.0	<3.01	<3106
2-methyl-4,6-dinitrophenol	<50.0	<15.06	<15528
Azobenzene			
Diphenylamine			
4-Bromophenyl phenyl ether	<10.0	<3.01	<3106
Phenacetin			
Hexachlorobenzene	<0.6	<0 .19	<199
Pentachlorophenol	<4.2	<1.26	<1301
Pentachloronitrobenzene			
Phenanthrene	<0.6	<0.17	<171
Anthracene	<0.6	<0.18	<183
Azoxybenzene			
Pentachloroaniline			
Dibutyl phthalate	35.53	10 .702	3323.7
2-nitro-N-phenylbenzenamine			
4-nitro-1-oxide-quinoline			
Methapyrilene			
Fluoranthene	< 0.3	<0.10	<99
Pyrene	<0.3	<0.10	<102
N-methyl-4-(phenylazo)-benzene			
P-dimethylaminoazobenze∩e Reasyd bytyd obthalata	<10.0	<2.01	<3106
Benzyl butyl phthalate N-2-fluorenylacetamide	<10.0	<3.01	<3100
	<0.2	<0.07	<71
Chrysene Benzo(a)anthracene	<0.2	<0.07	<75
Bis(2-ethylhexyl)phthalate	<10.0	<3.01	<3106
Di-N-octyl phthalate	<10.0	<3.01	<3106
Benzo(b)fluoranthene	<0.5	<0.16	<161
7,12-Dimethylbenz(a)anthracene			
Benzo(k)fluoranthene	<0 .7	<0.21	<217
Benzo(a)pyrene	<0.3	<0.08	<87
3-methylcholanthrene			
Dibenz(a,j)acridine			
Indeno(1,2,3-cd)pyrene	<0.6	< 0 .19	<193
Dibenz(a,h)anthracene	<0.6	<0.19	<199
Benzo(g,h,i)perylene	<0.5	<0.16	< 1 61

. .

•

,

Source Description:	North American Boiler		Te	st Date: 3	8-6-95
Condition Location Start Time	No. 6 Oil Stack 1510	Operator Stack Flow Stop Time		DJ, ES 392.5 [1810	DSCFM
Run Number Volume Collected Isokinetic	M23-17 146.19 102.4	1 DSCF		3-1B 138.563 [90.7 9	
Analyte	ng ng/m	³ µg/MBtu	ng	ng/m³	µg/MBtu
1.) Monochlorodibenzodioxin	ND <2.416	õ <0.813	ND	<2.549	<0.858
2.) Dichlorodibenzodioxin	ND <2.416	6 <0.813	ND	<2.549	<0.858
3.) Trichlorodibenzodioxin	ND <2.416	õ <0.813	ND	<2.549	<0.85 8
4.) Tetrachlorodibenzodioxin	ND <2.416	õ <0.813	ND	<2.549	<0.858
5.) Pentachlorodibenzodioxin	ND <2.416	5 <0.813	ND	<2.549	<0.858
6.) Hexachlorodibenzodioxin	ND <2.416	õ <0.813	ND	<2.549	<0.858
7.) Heptachlorodibenzoioxin	ND <2.416	5 <0.813	ND	<2.549	<0.858
8.) Octachlorodibenzodioxin	ND <2.416	õ <0.813	ND	<2.549	<0.858
1.) Monochlorodibenzodioxin	ND <2.416	6 <0.813	ND	<2.549	<0.858
2.) Dichlorodibenzodioxin	ND <2.416		ND	<2.549	<0.858
3.) Trichlorodibenzodioxin	ND <2.416		ND	<2.549	<0.858
4.) Tetrachlorodibenzodioxin	ND <2.416		ND	<2.549	<0.858
5.) Pentachlorodibenzodioxin	ND <2.416		ND	<2.549	<0.858
6.) Hexachlorodibenzodioxin	ND <2.416		ND	<2.549	<0.858
7.) Heptachlorodibenzoioxin	ND <2.416		ND	<2.549	<0.858
8.) Octachlorodibenzodioxin	ND <2.416		ND	<2.549	<0.858
,				2.0.0	0.000

Source Description:	North American Boiler		Te	est Date: 3	8/8/95
Condition Location Start Time	No. 6 Stack 938	Operator Stack Flow Stop Time		DJ, ES 343.0 [1238	SCFM
Run Number Volume Collected Isokinetic		A 5 DSCF 5 %	M2	23-2B 123.012 [96.2 9	
Analyte	ng ng/m	h³ µg/MBtu	ng	ng/m³	µg/MBtu
1.) Monochlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
2.) Dichlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
3.) Trichlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
4.) Tetrachlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
5.) Pentachlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
6.) Hexachlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
7.) Heptachlorodibenzoioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
8.) Octachlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
1.) Monochlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
2.) Dichlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
3.) Trichlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
4.) Tetrachlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
5.) Pentachlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
6.) Hexachlorodibenzodioxin	ND <2.81		ND	<2.871	<0.966
7.) Heptachlorodibenzoioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966
8.) Octachlorodibenzodioxin	ND <2.81	0 <0.945	ND	<2.871	<0.966

•,

*****_+

DIOXIN SAMPLING RESULTS SUMMARY

Source Description:	North American E	Boiler		Test Date: 3/9/95
Condition Location Start Time	No. 6 Oil Stack 1318		Operator Stack Flow Stop Time	DJ, ES 372.3 DSCFM 1618
Run Number Volume Collected Isokinetic		//23-2A 34.510 DSCF 90.2 %		
Analyte	ng	ng/m³ µg/Mi	Btu	
1.) Monochlorodibenzodioxin	ND <	<2.625 <0.8	83	
2.) Dichlorodibenzodioxin	ND <	<2.625 <0.8	83	
3.) Trichlorodibenzodioxin	ND <	<2.625 <0.8	83	
4.) Tetrachlorodibenzodioxin	ND •	<2.625 <0.8	83	
5.) Pentachlorodibenzodioxin	ND <	<2.625 <0.8	83	
6.) Hexachlorodibenzodioxin	ND ·	<2.625 <0.8	83	
7.) Heptachlorodibenzoioxin	ND	<2.625 <0.8	83	
8.) Octachlorodibenzodioxin	ND	<2.625 <0.8	83	
d) Man and Incodite and attacks		-0 c0r -0 0		
1.) Monochlorodibenzodioxin		<2.625 <0.8		
2.) Dichlorodibenzodioxin		<2.625 <0.8		
3.) Trichlorodibenzodioxin	ND	<2.625 <0.8	83	
4.) Tetrachlorodibenzodioxin	ND ·	<2.625 <0.8	83	
5.) Pentachlorodibenzodioxin	ND ·	<2.625 <0.8	83	
6.) Hexachlorodibenzodioxin	ND ·	<2.625 <0.8	83	
7.) Heptachlorodibenzoioxin	ND	<2.625 <0.8	83	
8.) Octachlorodibenzodioxin	ND	<2.625 <0.8	83	

'>

.

DIOXIN SAMPLING RESULTS SUMMARY

Source Description:	North American Boiler		Test Date: 3/10/95
Condition Location Start Time	No. 6 Oil Stack 945	Operator Stack Flow Stop Time	DJ, ES 383.2 DSCFM 1215
Run Number Volume Collected Isokinetic	M23-4A 116.317 88.6	DSCF	
Analyte	ng ng/m ^a	^β μg/MBtu	
1.) Monochlorodibenzodioxin	ND <3.036	<1.021	
2.) Dichlorodibenzodioxin	ND <3.036	<1.021	
3.) Trichlorodibenzodioxin	ND <3.036	<1.021	
4.) Tetrachlorodibenzodioxin	ND <3.036	<1.021	
5.) Pentachlorodibenzodioxin	ND <3.036	<1.021	
6.) Hexachlorodibenzodioxin	ND <3.036	<1.021	
7.) Heptachlorodibenzoioxin	ND <3.036	<1.021	
8.) Octachlorodibenzodioxin	ND <3.036	<1.021	
1.) Monochlorodibenzodioxin	ND <3.036	<1.021	
2.) Dichlorodibenzodioxin	ND <3.036		
3.) Trichlorodibenzodioxin	ND <3.036	<1.021	
4.) Tetrachlorodibenzodioxin	ND <3.036	<1.021	:
5.) Pentachlorodibenzodioxin	ND <3.036	<1.021	
6.) Hexachlorodibenzodioxin	ND <3.036	<1.021	
7.) Heptachlorodibenzoioxin	ND <3.036	<1.021	
8.) Octachlorodibenzodioxin	ND <3.036	<1.021	

2

Source Description:	North American Boile	r	Test Date: 3/10/95
Condition Location Start Time	No. 6 Oil Stack 1307	Operator Stack Flow Stop Time	DJ, ES 370.9 DSCFM 1417
Run Number Volume Collected Isokinetic		5A 06 DSCF 3.6 %	
Analyte	ng ng/	m³ µg/MBtu	
1.) Monochlorodibenzodioxin	ND <7.1	19 <2.395	
2.) Dichlorodibenzodioxin	ND <7.1	19 <2.395	
3.) Trichlorodibenzodioxin	ND <7.1	19 <2.395	
4.) Tetrachlorodibenzodioxin	ND <7.1	19 <2.395	
5.) Pentachlorodibenzodioxin	ND <7.1	19 <2.395	
6.) Hexachlorodibenzodioxin	ND <7.1	19 <2.395	
7.) Heptachlorodibenzoioxin	ND <7.1	19 <2.395	
8.) Octachlorodibenzodioxin	ND <7.1	19 <2.395	
1.) Monochlorodibenzodioxin	ND <7.1	19 <2.395	
2.) Dichlorodibenzodioxin	ND <7.1		
3.) Trichlorodibenzodioxin	ND <7.1		
4.) Tetrachlorodibenzodioxin	ND <7.1		
5.) Pentachlorodibenzodioxin	ND <7.1	19 <2.395	
6.) Hexachlorodibenzodioxin	ND <7.1		
7.) Heptachlorodibenzoioxin	ND <7.1		
8.) Octachlorodibenzodioxin	ND <7.1	19 <2.395	

`,

Source Description:	North America	n Boiler			Te	st Date: 3	/14/95
Condition Location Start Time	No. 6 Emulsifie Stack 1330	ed		Operator Stack Flow Stop Time		DJ, ES 345.7 E 1600	SCFM
Run Number Volume Collected Isokinetic		M23-5A 96.318 [91.0 9			M2	23-6B 95.245 E 89.7 %	
Analyte	ng	ng/m³	µg/MBtu		ng	n g/m³	µg/MBtu
1.) Monochlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
2.) Dichlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
3.) Trichlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
4.) Tetrachlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
5.) Pentachlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
6.) Hexachlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
7.) Heptachlorodibenzoioxin	ND	<3.666	<1.233		NA	NA	NA
8.) Octachlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
1.) Monochlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
2.) Dichlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
3.) Trichlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
4.) Tetrachlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
5.) Pentachlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
6.) Hexachlorodibenzodioxin	ND	<3.666	<1.233		NA	NA	NA
7.) Heptachlorodibenzoioxin	ND	<3.666	<1.233		NA	NA	NA
8.) Octachlorodibenzodioxin	ND	<3.666	<1.233				
	ND	~3.000	NI.200		NA	NA	NA

`,

Source Description:	North American Boiler		Test Date: 3/16/95
Condition Location Start Time	No. 6 Emulsified Stack 828	Operator Stack Flow Stop Time	DJ, ES 354.4 DSCFM 1128
Run Number Volume Collected Isokinetic	MM5-5A 113.820 88.0		
Analyte	ng ng/m³	µg/MBtu	
1.) Monochlorodibenzodioxin	ND <3.103	<1.044	
2.) Dichlorodibenzodioxin	ND <3.103	<1.044	
3.) Trichlorodibenzodioxin	ND <3.103	<1.044	
4.) Tetrachlorodibenzodioxin	ND <3.103	<1.044	
5.) Pentachlorodibenzodioxin	ND <3.103	<1.044	
6.) Hexachlorodibenzodioxin	ND <3.103	<1.044	
7.) Heptachlorodibenzoioxin	ND <3.103	<1.044	
8.) Octachlorodibenzodioxin	ND <3.103	<1.044	
1) Monophlorodihanzadiovin	ND <3.103	<* 044	
1.) Monochlorodibenzodioxin		<1.044	
2.) Dichlorodibenzodioxin	ND <3.103	<1.044	
3.) Trichlorodibenzodioxin	ND <3.103	<1.044	
4.) Tetrachlorodibenzodioxin	ND <3.103	<1.044	
5.) Pentachlorodibenzodioxin	ND <3.103	<1.044	
6.) Hexachlorodibenzodioxin	ND <3.103	<1.0 4 4	
7.) Heptachlorodibenzoioxin	ND <3.103	<1.044	
8.) Octachlorodibenzodioxin	ND <3.103	<1.044	

,

-

1

DIOXIN SAMPLING RESULTS SUMMARY

Source Description:	North American Boiler		Test Date: 3/16/95
Condition Location Start Time	No. 6 Emulsified Stack 1157	Operator Stack Flow Stop Time	DJ, ES 367.8 DSCFM 1457
Run Number Volume Collected Isokinetic	M23-8A 134.062 100.0		
Analyte	ng ng/m³	µg/MBtu	
1.) Monochlorodibenzodioxin	ND <2.634	<0.886	
2.) Dichlorodibenzodioxin	ND <2.634	<0.886	
3.) Trichlorodibenzodioxin	ND <2.634	<0.886	
4.) Tetrachlorodibenzodioxin	ND <2.634	<0.886	
5.) Pentachlorodibenzodioxin	ND <2.634	<0.886	
6.) Hexachlorodibenzodioxin	ND <2.634	<0.886	
7.) Heptachlorodibenzoioxin	ND <2.634	<0.886	
8.) Octachlorodibenzodioxin	ND <2.634	<0.886	
1.) Monochlorodibenzodioxin	ND <2.634	<0.886	
2.) Dichlorodibenzodioxin	ND <2.634	<0.886	
3.) Trichlorodibenzodioxin	ND <2.634	<0.886	
4.) Tetrachlorodibenzodioxin	ND <2.634	<0.886	
5.) Pentachlorodibenzodioxin	ND <2.634	<0.886	
6.) Hexachlorodibenzodioxin	ND <2.634	<0.886	
7.) Heptachlorodibenzoioxin	ND <2.634	<0.886	
8.) Octachlorodibenzodioxin	ND <2.634	<0.886	

۰ ۲