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Executive Summary 

A primary policy goal of the Renewable Fuel Standard (RFS) program is to reduce 
greenhouse gas (GHG) emissions by increasing the use of renewable fuels, such as ethanol and 
biodiesel. In the Energy Independence and Security Act (EISA), Congress required that biofuels 
used to meet the RFS obligations achieve certain lifecycle GHG reductions. To qualify as a 
renewable fuel under the RFS program, a fuel must, among other requirements, be produced 
from qualifying feedstocks and have lifecycle GHG emissions that are at least 20 percent less 
than the baseline petroleum-based gasoline and diesel fuels.1 To determine whether fuels meet 
the lifecycle GHG emissions threshold requirement, EPA developed a methodology to evaluate 
the lifecycle GHG emissions of renewable fuels. EISA also provided a definition of “lifecycle 
greenhouse gas emissions” to guide this methodology.2 

In the March 2010 RFS2 rule, EPA used lifecycle analysis (LCA) to estimate the GHG 
emissions associated with several biofuel production pathways, i.e., the emissions associated 
with the production and use of each biofuel, including significant indirect emissions, on a per-
unit energy basis. At the time of the analysis for the 2010 RFS2 rule, there were no models 
available “off the shelf” that could perform the type of lifecycle analysis required by EISA. 
Several supply chain LCA tools existed at the time, e.g., the Greenhouse Gases, Regulated 
Emissions, and Energy Use in Technologies Model (GREET). However, EPA determined in the 
final RFS2 rule that these tools, when used on their own, lacked the ability to consider significant 
indirect emissions, one of the core statutory requirements of the EISA definition of lifecycle 
greenhouse gas emissions. EPA thus developed a new modeling framework to perform the 
required analysis. The framework EPA developed and ultimately used in the 2010 RFS2 rule 
included multiple models and data sources, including the Forest and Agricultural Sector 
Optimization Model with Greenhouse Gases model (FASOM), the Food and Agricultural Policy 
Research Institute international model developed at the Center for Agriculture and Rural 
Development at Iowa State University (the FAPRI-CARD model, or, more simply, FAPRI), and 
the GREET model.3 

Since the development of EPA’s 2010 LCA methodology, multiple researchers and 
analytical teams have further studied and assessed the lifecycle GHG emissions associated with 
transportation fuels in general and crop-based biofuels in particular. New models have been 
developed to evaluate the GHG emissions associated with biofuel production and use, and more 
models developed for other purposes have been modified and expanded to evaluate biofuels as 
well. We now have over a decade of historic observations to compare with model results and 
parameters and to use in model calibration. There has also been rapid growth in available data on 
land use, farming practices, crude oil extraction and many other relevant factors. While the 

1 See 42 USC 7545(o)(1), (2)(A)(i). 
2 EISA defines lifecycle greenhouse gas emissions as “the aggregate quantity of greenhouse gas emissions 
(including direct emissions and significant indirect emissions such as significant emissions from land use changes), 
as determined by the Administrator, related to the full fuel lifecycle, including all stages of fuel and feedstock 
production and distribution, from feedstock generation or extraction through the distribution and delivery and use of 
the finished fuel to the ultimate consumer, where the mass values for all greenhouse gases are adjusted to account 
for their relative global warming potential.” CAA 211(o)(1)(H). 
3 EPA (2010). Renewable fuel standard program (RFS2) regulatory impact analysis. Washington, DC, US 
Environmental Protection Agency Office of Transportation Air Quality. EPA-420-R-10-006. Chapter 2.4. 
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results from our 2010 LCA methodology for the RFS program remain within the range of more 
recent estimates from the literature, we acknowledge that our previous framework is 
comparatively old, and that a better understanding of these newer models and data is needed. In 
consultation with our interagency partners at USDA and DOE, EPA hosted a virtual public 
workshop on biofuel GHG modeling on February 28 and March 1, 2022.4 At this workshop, 
speakers within and outside of the federal government presented on available data, models, 
methods, and uncertainties related to the assessment of GHG impacts of land-based biofuels. 

The workshop presentations and public input clarified that there continues to be 
substantial uncertainty and a wide range of estimates on the climate effects of biofuels, 
especially regarding biofuel-induced land use change emissions. Uncertainties in land use change 
emissions estimates stem from both economic modeling of market-mediated effects as well as 
biophysical modeling of soil carbon and other biological systems and processes. The workshop 
proceedings, including the workshop presentations and the comments submitted to the workshop 
docket, discussed a broad and complex set of topics. A general theme that emerged from this 
process is that, in support of a better understanding of the lifecycle GHG impacts of biofuels, it 
would be helpful to compare available models, identify how and why the model estimates differ, 
and evaluate which models and estimates align best with available science and data. Recognizing 
this need, we have conducted a model comparison exercise (MCE) to better understand these 
scientific questions. 

While we are presenting the results of this MCE along with the RFS “Set” final 
rulemaking, the MCE does not model or otherwise inform the GHG impacts of the Set final 
volumes. Although this MCE produced GHG emission and carbon intensity results5 from a range 
of models under different assumptions, we do not use these values in the context of RFS program 
implementation. For example, we do not use the MCE to determine whether or not fuel pathways 
meet the lifecycle GHG threshold requirements of the CAA. Rather, the MCE has three main 
goals: 

1. Advance the science in the area of analyzing the lifecycle greenhouse gas emissions 
impacts from increasing use of biofuels. 

2. Identify and understand differences in scope, coverage, and key assumptions in each 
model, and, to the extent possible, the impact that those differences have on the 
appropriateness of using a given model to evaluate the GHG impacts of biofuels. 

3. Understand how differences between models and data sources lead to varying results. 

We conducted this model comparison exercise with five models: the Greenhouse Gases, 
Regulated Emissions, and Energy Use in Technologies Model (GREET), Global Biosphere 
Management Model (GLOBIOM), Global Change Analysis Model (GCAM), Global Trade 

4 For more information see the Federal Register Notice, “Announcing Upcoming Virtual Meeting on Biofuel 
Greenhouse Gas Modeling.” 86 FR 73756. December 28, 2021. More information is also available on the workshop 
webpage: https://www.epa.gov/renewable-fuel-standard-program/workshop-biofuel-greenhouse-gas-modeling. 
5 In general, a carbon intensity, or CI, is a measure of greenhouse gas emissions per unit of fuel. Assumptions 
related to the estimation of emissions or changes in volumes of fuel may differ between studies which define CI with 
different scopes or for different purposes. 
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Project (GTAP) model, and Applied Dynamic Analysis of the Global Economy (ADAGE) 
model. To facilitate appropriate comparisons of these models, we ran common scenarios through 
each framework: a reference case, a corn ethanol scenario (also referred to as the “corn ethanol 
shock”), and a soybean oil biodiesel scenario (also referred to as the “soybean oil biodiesel 
shock”). 

Given the complex nature of these models, and the scope and scale of the analysis 
involved, drawing firm conclusions from a comparison of these models and their results — and 
presenting them for interested stakeholders — presents several challenges. We discuss these 
challenges in detail throughout this document. However, despite the challenges inherent in such 
a comparison, we have drawn several broad conclusions from this exercise, including the 
following: 

• Supply chain LCA6 models, such as GREET, produce a fundamentally different 
analysis than economic models, such as ADAGE, GCAM, GLOBIOM, and GTAP. 
Supply chain LCA models evaluate the GHG emissions emanating from a particular 
supply chain, whereas economic models evaluate the GHG impacts of a change in biofuel 
consumption.7 

• Estimates of land use change (LUC) vary significantly among the models used in 
this study. Drivers of variation in these estimates include differences in assumptions 
related to trade, the substitutability of food and feed products, and land conversion, as 
well as structural differences in how models represent land categories. The variability of 
LUC estimates significantly influences variability in overall biofuel GHG estimates. 

• Economic modeling of the energy sector may be required to avoid overestimating 
the emissions reduction from fossil fuel consumption. Economic models that include 
energy market impacts (ADAGE, GCAM, GTAP) estimate a global refined oil 
displacement that is less than the increase in biofuel consumption on an energy basis. 

• Model trade structure and assumed flexibility influence the modeled emissions 
results. There is general agreement among the economic models that these trade-driven 
impacts will occur to some degree. However, these models show different degrees of 
trade responsiveness, which impacts trade flows at differing magnitudes across model 
results. 

• Explicit modeling of the global livestock sector, and especially of the impact of biofuel 
feed coproducts on global feed markets, is an important capability for estimating the 
emissions associated with an increase in biofuel consumption. 

• The degree to which other vegetable oils replace soybean oil diverted to fuel 
production from other markets can impact GHG emissions associated with soybean 

6 Many terms are used in the LCA literature to describe this type of analysis, such as attributional LCA, lifecycle 
inventory analysis, or process-based LCA. We use the term “supply chain LCA” as we believe it is descriptive of 
what this type of modeling considers. 
7 As discussed more in Section 1, different types of LCA approaches are appropriate for different applications. In 
this exercise, we are not evaluating which approaches could be appropriate for RFS program implementation. 
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oil biodiesel. Results in this exercise from economic models (ADAGE, GCAM, 
GLOBIOM, and GTAP) align in estimating commodity substitution as a significant part 
of their scenario solutions. 

• The ability to endogenously consider tradeoffs between intensification and 
extensification is an important capability for estimating the emissions associated 
with an increase in biofuel consumption. Both intensification and extensification of 
corn and soybean feedstock production occur across economic model results (ADAGE, 
GCAM, GLOBIOM, and GTAP) in response to changing commodity prices.8 

• Models included in the MCE produced a wider range of LCA GHG estimates for 
soybean oil biodiesel than corn ethanol. The models show much greater diversity in 
feedstock sourcing strategies for soybean oil biodiesel than they do for corn ethanol, and 
this wider range of options contributes to greater variability in the GHG results. 

• Differences in model assumptions, parameters, and structure impact the results from each 
of the models. Sensitivity analysis, which considers uncertainty within a given model, 
can help identify which parameters influence model results. However, pinpointing the 
direct causes of why one estimate differs from another would require additional research. 

This document describes EPA’s biofuel lifecycle GHG emissions model comparison 
exercise in detail. In the first section, we describe our goals and scope for the exercise. Following 
this we describe the models included in the comparison and their key characteristics. We then 
describe the core scenarios evaluated for this project and the model estimates from those 
scenarios. After that, we describe alternative scenarios and sensitivity analyses we conducted to 
further improve understanding of these models. Finally, we summarize our findings and discuss 
areas of future research and next steps. 

EPA is interested to hear from stakeholders and researchers working in this field about 
the results of our MCE, and we intend to engage with stakeholders to discuss this analysis. As 
we describe throughout the document, this MCE has helped EPA to identify important 
characteristics of existing models, areas for future data collection, and areas for additional 
research. As we engage with stakeholders, EPA will be interested to hear perspectives on the 
state of science and models in light of the findings of this exercise. As we engage in these 
conversations, we will also seek areas to collaborate with stakeholders on the priority areas for 
further research identified below, such as collecting new data, leveraging existing data sets, 
conducting economic and statistical studies, and running additional model scenarios. Ultimately, 
EPA hopes that the examination of models and understanding that flow from the exercise will 
lend itself to informing the scientific discussion on which and to what extent biofuels contribute 
to reduced environmental harm in comparison to consuming petroleum-based fuels. 

8 We define intensification as an increase in the amount of crop production on a given area of land, and 
extensification as an increase in the total area used to grow the crop of interest. Where we use the term 
extensification, we are including both non-cropland that was converted to cropland and shifting of cropland from 
one type of crop to another. However, our discussion of the results shows cropland shifting and land conversion to 
cropland separately. 

4 



  
 

 
 

  

  

     
 

    
     

    
 

   
 

 
  

 

   

 

   
        

            
        

             
       

 
                

              
    

     
   

 
  

   

 
           

              
 

            
            

         
         

         
            

          
          

1 

Model Comparison Exercise Goals and Scope 

Goals of Model Comparison 

We conducted a model comparison exercise (MCE) with five models: the Greenhouse 
Gases, Regulated Emissions, and Energy Use in Technologies Model (GREET), Global 
Biosphere Management Model (GLOBIOM), Global Change Analysis Model (GCAM), Global 
Trade Project (GTAP) model, and Applied Dynamic Analysis of the Global Economy (ADAGE) 
model. As mentioned above, this MCE had three main goals: 

1) Advance the science in the area of analyzing the lifecycle greenhouse gas emissions 
impacts from increasing use of biofuel. 

2) Identify and understand differences in scope, coverage, and key assumptions in each 
model, and, to the extent possible, the impact that those differences have on the 
appropriateness of using a given model to evaluate the GHG impacts of biofuels. 

3) Understand how differences between models and data sources lead to varying results. 

This effort is consistent with some of the conclusions and recommendations in the 
National Academies of Sciences, Engineering, and Medicine (NASEM) report titled “Current 
Methods for Life Cycle Analyses of Low-Carbon Transportation Fuels in the United States.”9 

For example, NASEM recommended that “[c]urrent and future LCFS [low carbon fuel standard] 
policies should strive to reduce model uncertainties and compare results across multiple 
economic modeling approaches and transparently communicate uncertainties,” (recommendation 
4-2) and “LCA studies used to inform policy should explicitly consider parameter uncertainty, 
scenario uncertainty, and model uncertainty” (recommendation 4-3). 

LCA plays several diverse roles in the context of the RFS program. For example, LCA is 
used for rulemaking impact analysis as well as to determine whether an individual pathway 
meets the lifecycle GHG emissions reduction requirements. Different LCA tools may be 
appropriate for different purposes. The NASEM report concluded that, “[t]he approach to LCA 
needs to be guided on the basis of the question the analysis is trying to answer. Different types of 
LCA are better suited for answering different questions or achieving different objectives, from 
fine tuning a well-defined supply chain to reduce emissions, to understanding the global, 
economy-level effect of a technology or policy change” (conclusion 2-2).10 

9 National Academies of Sciences, Engineering, and Medicine (“NAS”) (2022). Current Methods for Life Cycle 
Analyses of Low-Carbon Transportation Fuels in the United States. Washington, DC: The National Academies 
Press. https://doi.org/10.17226/26402. 
10 The NASEM report provided the following recommendations related to LCA approaches: “When emissions are to 
be assigned to products or processes based on modeling choices including functional unit, method of allocating 
emissions among co-products, and system boundary, ALCA [attributional lifecycle analysis] is appropriate. 
Modelers should provide transparency, justification, and sensitivity or robustness analysis for modeling choices” 
(Recommendation 2-1). “When a decision-maker wishes to understand the consequences of a proposed decision or 
action on net GHG emissions, CLCA [consequential lifecycle analysis] is appropriate. Modelers should provide 
transparency, justification, and sensitivity or robustness analysis for modeling choices for the scenarios modeled 
with and without the proposed decision or action” (Recommendation 2-2). 
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2 

This document includes multiple sections: 

• Section 2 introduces and summarizes the models considered in this exercise. 
• Section 3 compares model characteristics, input parameters, and input data. 
• Section 4 describes the common scenarios that were run across all the models for 

purposes of this analysis. 
• Section 5 provides details on the reference case used. 
• Section 6 compares the results of the modeling work related to corn ethanol. 
• Section 7 compares the results of the modeling work related to soybean oil biodiesel. 
• Section 8 describes the scenarios run as part of our alternative volume sensitivity 

analysis. 
• Section 9 describes parameter sensitivity analyses. 
• Section 10 summarizes the findings of this exercise and discusses future research. 

Models Considered 

Numerous factors influence biofuel GHG estimates, including model framework choice, 
data inputs and assumptions, and other methodological decisions. In this section we discuss the 
models considered in this MCE: GREET, GLOBIOM, GCAM, GTAP,11 and ADAGE.12 This 
selection of models provides a broad cross-section of the most common types of modeling 
frameworks used to assess biofuels, as discussed in this section. We chose to use these models 
based on discussions with our partners at USDA and DOE and our experience reviewing 
scientific literature on the lifecycle GHG emissions of biofuels, including for our 2022 biofuel 
LCA workshop discussed above. In addition, our choice to use these particular models is also 
informed by the statutory definition of lifecycle greenhouse gas emissions in Section 
211(o)(1)(H) of the Clean Air Act, which includes significant indirect emissions, including 
indirect land use change emissions.13 Furthermore, in the 2010 RFS2 rule EPA interpreted this 

11 There are multiple GTAP models. The version used for this model comparison exercise is the GTAP-BIO model. 
For brevity we refer to it throughout this report as “GTAP” or the “GTAP model”, except for instances where we are 
describing the distinctions between GTAP-BIO and other GTAP models. 
12 The model runs for this exercise were conducted by members of the modeling teams at Argonne National 
Laboratory, IIASA, PNNL, Purdue University, and RTI International. The final contents of this document do not 
necessarily represent the views of the modeling teams involved or the organizations they represent. All statements in 
this document are ultimately those of EPA. 
13 The full text of CAA 211(o)(1)(H) is “The term "lifecycle greenhouse gas emissions" means the aggregate 
quantity of greenhouse gas emissions (including direct emissions and significant indirect emissions such as 
significant emissions from land use changes), as determined by the Administrator, related to the full fuel lifecycle, 
including all stages of fuel and feedstock production and distribution, from feedstock generation or extraction 
through the distribution and delivery and use of the finished fuel to the ultimate consumer, where the mass values 
for all greenhouse gases are adjusted to account for their relative global warming potential.” 
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definition as including significant indirect emissions14 occuring anywhere in the world (i.e., 
international impacts), as GHG emission impacts are global.15 

In this exercise, we did not include FASOM or the FAPRI-CARD model, which we used 
for the 2010 RFS2 rule. Given time and resource constraints, we chose to focus on models with 
global scope. FASOM is not a global model, and instead covers the continental USA. The 
FAPRI-CARD model is no longer maintained at the same level as it was in 2010; for example, 
most of its projections still end in the 2022/2023 marketing year. There is another FAPRI model 
maintained by the University of Missouri that projects further into the future, but this model 
covers only the USA in detail and does not include GHG emissions. This exercise was not meant 
to include every possible model that could be used to estimate biofuel GHG emissions, and 
omission of a model from this exercise does not preclude its use in the future. 

We provide a summary of each model included in this exercise, including its history, 
sectoral representation, spatial coverage and resolution, temporal representation, and GHG 
emissions representation. We then compare the characteristics of these models and describe 
previously published literature which may assist the reader in understanding which factors may 
contribute to variation in the biofuel GHG estimates these models produce. Our goal in this 
section is not to provide a comprehensive accounting of any one of these models. Rather, our 
objective is to summarize each model at a high level and highlight important similarities and 
differences between models that we explore further when discussing MCE modeling results in 
Sections 5-9. 

There are four types of models commonly used for biofuel GHG analysis: supply chain 
LCA models, partial equilibrium (PE) models, computable general equilibrium (CGE) models 
and integrated assessment models (IAM). Supply chain LCA models, also known as attributional 
LCA (ALCA) models, such as GREET, are designed to estimate the inputs and outputs of a 
particular product supply chain in detail, using rule-based methods (e.g., allocation or 
displacement) to account for coproducts.16 PE models, such as GLOBIOM,17 equate supply and 
demand in one or more selected markets such that prices stabilize at their equilibrium level. PE 
models focus on representing one or a few sectors of the economy, such as the agricultural 
sector, but lack linkages to other sectors of the economy. In contrast, CGE models, such as 
GTAP and ADAGE, are comprehensive in their representation of the economy, reflecting 
feedback effects among all economic sectors and factors of production, such as land, capital, 

14 When using the terms “direct” and “indirect” to refer to emissions, impacts or effects, NAS (2022) recommends 
carefully defining these terms, or avoiding their use altogether (Recommendation 4-1). Given that the CAA 
211(o)(1)(H) definition of lifecycle emissions uses the terms direct and indirect emissions, we believe it is 
appropriate to use the direct/indirect terminology in this document. As a general matter, when we use the term 
“direct emissions” in this document we are referring to emissions from the fuel supply chain itself, whereas “indirect 
emissions” refers to emissions that results from market-mediated impacts induced by a change in biofuel 
consumption. The same distinction holds for direct/indirect impacts or effects. 
15 EPA. 2010. RFS2 Final Rule, 75 FR 14670 (March 26, 2010), https://www.gpo.gov/fdsys/pkg/FR-2010-03-
26/pdf/2010-3851.pdf. See in particular Section V, pages 14764-14799. 
16 Supply chain LCA models such as GREET can also be supplemented with results from economic models to 
consider indirect effects such as land use changes; however, doing so “can complicate the interpretation” of the 
results (NAS 2022, p. 45). 
17 The FASOM and FAPRI models EPA used for the March 2010 RFS2 rule biofuel GHG analysis are also 
categorized as PE models. 
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labor and resources. IAMs, such as GCAM, integrate knowledge from several disciplines, for 
example, biogeochemistry, economics, engineering, and atmospheric science, to evaluate how 
changes in any of these areas affect the others. While it is hard to state the specific criteria for 
identifying an IAM, we might distinguish them from PE and CGE models by their deeper 
integration of human economic systems with Earth (biosphere and atmosphere) systems and 
GHG emissions into one modelling framework. 

PE, CGE and IAM models can all be called economic models since their model solutions 
include achievement of a partial or general economic equilibrium. Supply chain LCA models are 
categorically different from the other three model types as they do not simulate economic 
equilibria, behavior, or prices. Instead, supply chain LCA models inventory the emissions that 
occur along each stage of a supply chain and assign or attribute the emissions to a functional 
unit, such as a volume or energy unit of fuel.18 In contrast, the other types of models (PE, IAM, 
CGE) can be used for a consequential lifecycle analysis, which looks at how the emissions or 
impacts, including market-mediated impacts, will change in response to a decision or action, 
such as a change in the level of biofuel consumption.19 All of these models have strengths and 
weaknesses, as well as uncertainties and limitations. Thus, there are often tradeoffs to consider 
when selecting between models for a particular analysis. For example, there may be tradeoffs 
between sectoral and temporal scope on the one hand, versus supply chain and technological 
resolution on the other. The potential tradeoffs between scope and detail most relevant to this 
MCE are discussed in more detail in Section 3. As discussed above, when considering these 
tradeoffs, the NASEM report says that analysts need to be guided on the basis of the question 
their analysis is trying to answer.20 

2.1 The Greenhouse Gases, Regulated Emissions, and Energy Use in 
Technologies (GREET) Model 

The Greenhouse gases, Regulated Emissions, and Energy use in Technologies (GREET) 
Model is a lifecycle analysis model based on supply chains of technologies and products. It 
provides lifecycle energy, water, GHG, and other air emissions results intended to evaluate the 
impacts of various vehicle and fuel combinations, as well as chemicals, products, and materials 
that crosscut major economic sectors. The developer is Argonne National Laboratory (ANL), and 
the project is sponsored by the U.S. Department of Energy (DOE). Initially made available in 
1995, it was developed with the purpose of evaluating the energy and environmental (e.g., GHG 
emissions, criteria air pollutant emissions, and water consumption) impacts of new fuels and 
vehicles for use in the transportation sector.21 

18 NAS (2022) lists many definitions of an attributional lifecycle analysis without prescribing one particular 
definition. This sentence is adapted from the first sentence under the heading “Attributional Life-Cycle Assessment 
on page 22 of NAS (2022). 
19 NAS (2022) lists many definitions of a consequential lifecycle analysis without prescribing one particular 
definition. This sentence is adapted from the first sentence under the heading “Consequential Life-Cycle Assessment 
on page 26 of NAS (2022). 
20 NAS (2022), conclusion 2-2. 
21 Elgowainy, A. and Wang, M. (2019) ‘Overview of Life Cycle Analysis (LCA) with the GREET Model’, p. 21. 
https://greet.es.anl.gov/files/workshop_2019_overview. 
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GREET includes a suite of models and tools. For the transportation sector, it includes a 
fuel cycle model of vehicle technologies and transportation fuels (GREET1) and a vehicle 
manufacturing model of vehicle technologies (GREET2). Given that our focus is on renewable 
fuels, we are primarily concerned with GREET1. GREET is available in two platforms, a large 
Excel workbook and a “.net” version. The Excel version of GREET provides transparency while 
the .net version offers a modular user interface with a structured database. There are several 
derivates of the core GREET model, such as CA-GREET developed with the California Air 
Resources Board (CARB) and used in support of the California Low Carbon Fuels Standard 
(CA-LCFS), and ICAO-GREET developed with the International Civil Aviation Organization in 
support of the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). 
New versions of GREET are normally released in October of each year, with the latest version as 
of the time of this writing being GREET-2022. GREET includes more than 100 fuel production 
pathways including fuels used in road, air, rail, and marine transportation. It also examines more 
than 80 on-road vehicle/fuel systems for both light and heavy-duty vehicles. The model reports 
lifecycle energy use, air pollutants, GHGs and water consumption. It includes detailed 
representations of the petroleum, electric, natural gas, hydrogen, and renewable energy sectors. 

The GREET modeling framework is largely a process-based LCA approach (sometimes 
referred to as attributional LCA).22 GREET can be used to estimate the carbon intensity (CI)23 of 
individual supply chains and the benefits of specific supply chain adjustments, such as reducing 
fertilizer application rates or switching to more efficient fuel distribution modes. Fundamentally, 
GREET is most closely related to other supply chain LCA frameworks such as SimaPro, GaBi, 
and OpenLCA, though GREET differs in that it comes with predeveloped fuel pathways and pre-
populated data and assumptions developed by ANL. In general, GREET evaluates production of 
a fuel commodity by considering the activities from the associated supply chain. In the context of 
GREET, the data on the activities controlled within a fuel commodity supply chain are called the 
“foreground” data. GREET accounts for important biofuel coproducts such as distillers grains 
and soybean meal through allocation or displacement rules. Figure 2.1-1 provides a schematic 
overview of how the biofuel lifecycle is represented in GREET. GREET can be used to estimate 
the CI of individual supply chains and the benefits of specific supply chain adjustments, such as 
reducing fertilizer application rates or switching to more efficient fuel distribution modes. The 
model can also consider technology improvements at the process- or site-specific level for 
biofuels. 

22 Wang, M. (2022). “Biofuel Life-cycle Analysis with the GREET Model.” Presentation at the EPA Biofuel 
Modeling Workshop. Argonne National Laboratory. March 1, 2022. 
https://www.epa.gov/system/files/documents/2022-03/biofuel-ghg-model-workshop-biofuel-lifecycle-analysis-
greet-model-2022-03-01.pdf. Slide 5. 
23 Carbon intensity is a measure of greenhouse gas emissions per unit of fuel. 
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Figure 2.1-1: Schematic of Biofuel Supply Chain Representation in GREET24 

GREET primarily estimates default fuel CIs using data for average resource and energy 
production in the United States. In the context of GREET, these data on resource and energy 
production are referred to as the “background data.” For example, GREET by default models 
electricity based on data for average U.S. electricity generation. However, GREET includes 
some pathways representing foreign fuel production (e.g., Brazilian sugarcane ethanol) and in 
some cases users can choose to model some supply chains located in particular regions of the 
U.S. (e.g., states or electricity grid regions). A user with enough data on their supply chain could, 
in certain cases, customize the background data in GREET to estimate the CI of their fuel 
considering regional details and particular suppliers of energy and material inputs. 

GREET is not a dynamic model as it does not make projections whereby future time 
periods depend on the simulation of prior time periods. However, it does include projected 
background data, using projections from sources such as the U.S. Energy Information 
Administration (EIA). GREET users can select a target year, between 1990-2050, to estimate 
lifecycle emissions for their supply chain given background data assumptions for the selected 
year. Thus, it can be used to show how the estimated CI of a fuel changes over time based on 
changes in technological efficiency and other factors. For example, Lee et al. (2021) used data on 
U.S. ethanol production efficiencies and corn yields to estimate the CI of U.S. corn ethanol each 
year from 2005 to 2019.25 

Although GREET does not endogenously estimate indirect emissions such as those 
resulting from direct and indirect land use change, GREET incorporates a static module called 
the Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) to account for 

24 Copied from Wang (2022), slide 9. 
25 Lee, U., et al. (2021). “Retrospective analysis of the US corn ethanol industry for 2005–2019: implications for 
greenhouse gas emission reductions.” Biofuels, Bioproducts and Biorefining. 
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land use change emissions.26 CCLUB relies on a set of estimated induced land use changes for 
various biofuel pathways obtained from GTAP studies conducted between 2011–2018 (see Table 
2.1-1), combined with emissions factors estimated with a parametrized CENTURY model and 
derived from various data sources to estimate land use change GHG emissions per unit of biofuel 
production.27 Thus, the well-to-wheel emissions for crop-based pathways are estimated as the 
process-based emissions plus the induced land use change estimates from CCLUB. The data 
sources and calculations in CCLUB are summarized in Figure 2.1-2, reproduced from the 
CCLUB user manual. 

Figure 2.1-2: Schematic of Data Sources and Calculations in CCLUB28 

CCLUB includes land use change area estimates from nine different GTAP scenarios: 
four soybean oil biodiesel shocks, two corn ethanol shocks, and one shock each for ethanol from 
corn stover, miscanthus and switchgrass. The corn ethanol and soybean oil biodiesel scenarios 
included in CCLUB are described in Table 2.1-1. The two corn ethanol scenarios are similar 
except that the “Corn Ethanol 2013” estimate was produced with a version of GTAP with 
regionally differentiated land transformation elasticities and a modified land nesting structure 
that makes it more costly within the model to convert forest to cropland relative to converting 
pasture to cropland. 

26 Kwon, Hoyoung, et al. (2021). Carbon calculator for land use change from biofuels production (CCLUB) users’ 
manual and technical documentation, Argonne National Lab, Argonne, IL. https://greet.es.anl.gov/publication-
cclub-manual-r7-2021 
27 Hoyoung Kwon and Uisung Lee (2019) ‘Life Cycle Analysis (LCA) of Biofuels and Land Use Change with the 
GREET Model’. https://greet.es.anl.gov/files/workshop_2019_biofuel_luc. 
28 Kwon, Hoyoung, Liu, Xinyu, Dunn, Jennifer B., Mueller, Steffen, Wander, Michelle M., and Wang, Michael. 
(2020). Carbon Calculator for Land Use and Land Management Change from Biofuels Production (CCLUB). United 
States: N. p., 2020. Web. doi:10.2172/1670706. Copy of Figure 1. 
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Table 2.1-1: Corn Starch and Soybean Oil Based Biofuel Scenarios Available in CCLUB29 

Case Description 
Shock Size 

(Billion Gallons) Source 
“Corn Ethanol 2011.” An increase in corn ethanol 
production from its 2004 level (3.41 billion gallons 
[BG]) to 15 BG 

11.59 Taheripour et al. 
(2011)30 

“Corn Ethanol 2013.” An increase in corn ethanol 
production from its 2004 level (3.41 billion gallons 
[BG]) to 15 BG 

11.59 Taheripour and 
Tyner (2013)31 

Increase in soybean oil biodiesel production by 
0.812 BG (CARB case 8) 

0.812 Chen et al. 
(2018)32 

Increase in soybean oil biodiesel production by 
0.812 BG (CARB average proxy) 

0.812 Chen et al. (2018) 

Increase in soybean oil biodiesel production by 0.8 
BG (GTAP 2004) 

0.8 Taheripour et al. 
(2017)33 

Increase in soybean oil biodiesel production by 0.5 
BG (GTAP 2011) 

0.5 Taheripour et al. 
(2017) 

For each case, the estimates CCLUB uses from GTAP are the area of changes in 
cropland, forest, pasture in each agro-ecological zone (AEZ) and region, and cropland pasture in 
the U.S., Brazil, and Canada. Land use change GHG emissions are estimated based on these land 
conversion areas using data from a few different sources. Based upon user selections, CCLUB 
ultimately combines a given GTAP scenario’s estimated land use change impacts with sets of 
user-selected emission factor data34 to provide domestic and international land use change GHG 
emissions per functional unit of biofuel. By default, for corn ethanol and soybean oil biodiesel, 
among other crop-based fuels, GREET adds the LUC GHG estimates from CCLUB to the rest of 
the supply chain LCA estimates to produce a CI score for each fuel pathway. 

A module called the Feedstock Carbon Intensity Calculator (FD-CIC) was more recently 
added to GREET.35 FD-CIC is designed to examine CI variations of different corn, soybean, 
sorghum, and rice farming practices at the farm level. The FD-CIC uses county level data and 
allows users to input their own farm level data on energy and chemical farming inputs, tillage, 
cover cropping and other crop management practices. Based on these input data, the FD-CIC 

29 Adapted from Table 1 in Dunn, J. B., et al. (2017). Carbon calculator for land use change from biofuels 
production (CCLUB) users’ manual and technical documentation, Argonne National Lab. (ANL), Argonne, IL 
(United States). 
30 Taheripour, F., et al. (2011). Global land use change due to the U.S. cellulosic biofuels program simulated with 
the GTAP model, Argonne National Laboratory: 47. 
31 Taheripour, F. and W. E. Tyner (2013). “Biofuels and land use change: Applying recent evidence to model 
estimates.” Applied Sciences 3(1): 14-38. 
32 Chen, R., et al. (2018). “Life cycle energy and greenhouse gas emission effects of biodiesel in the United States 
with induced land use change impacts.” Bioresource Technology 251: 249-258. 
33 Taheripour, F., et al. (2017). “The impact of considering land intensification and updated data on biofuels land use 
change and emissions estimates.” Biotechnology for Biofuels 10(1): 191. 
34 For this model comparison exercise, we use the default emissions factor data used by GREET, which are from the 
parameterized CENTURY model and Winrock. See Kwon, Hoyoung, et al. (2021) for details. 
35 Liu, X., et al. (2020). “Shifting agricultural practices to produce sustainable, low carbon intensity feedstocks for 
biofuel production.” Environmental Research Letters 15(8): 084014. 
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2.2 

estimates the farm level emissions from energy, fertilizers, herbicide, and insecticide, as well as 
effects on soil organic carbon relative to the baseline assumptions in GREET. The FD-CIC may 
be useful to estimate the soil carbon benefits of reduced tillage and cover cropping, and to 
examine regional differences or farm-level differences in feedstock CI. 

While GREET accounts for indirect land use change emissions, it does not consider other 
indirect effects associated with a change in biofuel demand, such as through market-mediated 
impacts on the agriculture, livestock, or energy sectors. 

GREET is used by a variety of academic, commercial, and government entities. 
California’s Low Carbon Fuel Standard (LCFS) program relies in part on a customized version 
of GREET called CA-GREET to provide state-specific fuel pathways and CI values.36 Oregon 
uses a similar approach for their LCFS program.37 The International Civil Aviation Organization 
(ICAO) uses GREET among several models to provide carbon intensities for specific aviation 
fuel pathways.38 Most of these programs (with the exception of Oregon) use the non-land use 
change GHG estimates from GREET and add their own land use change estimates in specific 
market and policy contexts instead of those derived from CCLUB to calculate biofuel carbon 
intensities. Among other applications, EPA has used GREET since the inception of the RFS 
program to provide data for rulemakings and biofuel pathway support as part of our suite of tools 
in addition to FASOM and FAPRI. 

The Global Biosphere Management Model (GLOBIOM) 

The Global Biosphere Management Model (GLOBIOM) was developed and continues to 
be managed by the International Institute for Applied Systems Analysis (IIASA). The model was 
developed in the late 2000s originally to conduct impact assessments of climate change 
mitigation policies of biofuels and other land-based efforts.39 It was developed on the basis of the 
U.S. Forest and Agricultural Sector Optimization Model (FASOM model).40 There are several 
model versions of GLOBIOM available for different applications and contexts. A sample of 
GLOBIOM code is available to the public, and an open-source version is under development.41 

36 California Air Resources Board. LCFS Life Cycle Analysis Models and Documentation. 
https://ww2.arb.ca.gov/resources/documents/lcfs-life-cycle-analysis-models-and-documentation. 
37 Oregon Department of Environmental Quality. Carbon Intensity Values: Oregon Clean Fuels Program. 
https://www.oregon.gov/deq/ghgp/cfp/Pages/Clean-Fuel-Pathways.aspx. This version is based on a previous version 
of Argonne GREET. 
38 ICAO. Models and Databases. https://www.icao.int/environmental-protection/pages/modelling-and-
databases.aspx. 
39 International Institute for Applied Systems Analysis, “GLOBIOM,” https://iiasa.ac.at/models-tools-data/globiom. 
40 Frank, Stefan, et al. “The Global Biosphere Management Model,” 
https://www.epa.gov/system/files/documents/2022-03/biofuel-ghg-model-workshop-global-biosphere-mgmt-model-
2022-03-01.pdf. See also, Valin, Hugo et al. The Land Use Change Impact of Biofuels Consumed in the EU: 
Quantification of Area Greenhouse Gas Impacts. August 27, 2015, pg. 128. 
41 See, GLOBIOM, “Model Code,” https://iiasa.github.io/GLOBIOM/model_code.html. 
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Figure 2.2-1: GLOBIOM Regional Mapping42

GLOBIOM is a PE model that captures the agricultural, forest, and bioenergy sectors. 
The model solves recursively dynamic using an economic equilibrium modeling approach with 
detailed grid cell land representation.43 The model finds market equilibria that maximize the sum 
of producer and consumer surplus subject to resource, technological, demand and policy 
constraints at a country/regional level. Producer surplus is defined as the difference between 
market prices at a regional level and the product’s supply curve at the regional level. The supply 
curve accounts for labor, land, capital and other purchased input. Consumer surplus is based on 
the level of consumption of each market and is arrived at by integrating the difference between 
the demand function of a good and its market price. The model uses linear programming to 
solve, although it also contains some non-linear functions that have been linearized using 
stepwise approximation.44 GLOBIOM features global coverage with 37 regions (see Figure 2.2-
1) and simulates for the years 2000-2100 using ten-year time steps. As a PE model, GLOBIOM
does not have feedback from labor, capital, or other parts of the economy. However, the model
can be linked to other models, such as IIASA’s energy sector model MESSAGE.

42 IIASA. (2020). “GLOBIOM regional and country level modeling.” SUPREMA GLOBIOM-MAGNET Training. 
December 4, 2020. https://iiasa.github.io/GLOBIOM/training_material/GLOBIOM/GLOBIOM-
Topic_RegionalApplications_APalazzo_Nov2020.pdf. 
43 In models with recursive dynamic solution algorithms, the model solves at each time step before moving forward 
to the next time step. In contrast, forward looking optimization models solve for all time periods at once. 
44 IIASA, “GLOBIOM Documentation_20180604.pdf,” 
https://iiasa.github.io/GLOBIOM/GLOBIOM_Documentation_20180604.pdf. 
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Figure 2.2-2: Schematic Overview of GLOBIOM45

The detailed grid cell-level spatial coverage for GLOBIOM includes more than 10,000 
spatial units worldwide. The model represents 18 crops globally (and nine additional crops in 
Europe) using FAOSTAT as the primary database for crop statistics. Area of other crops that are 
not represented dynamically (e.g., fruits and vegetables) are kept constant. Crop modeling 
includes differentiation in management systems and multi-cropping. 

GLOBIOM also features highly detailed livestock representation, based on FAOSTAT 
data. The model includes 7 animal products, which can be produced in differentiated production 
systems. For ruminants there are 8 production system possibilities, including grazing systems in 
different climatic locations such as arid and humid, mixed crop-livestock systems, and others. 
Pigs and poultry are classified under either small holder or industrial systems. Based on the 
production system, animal species, and region, GLOBIOM differentiates diets, yields, and GHG 
emissions. For instance, dairy and meat herds are modeled separately, and their diets are 
differentiated. Poultry in industrial systems is split into laying hens and broilers, again with 
different dietary needs. 

45 IIASA. GLOBIOM Online Documentation. https://iiasa.github.io/GLOBIOM/introduction.html. 
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For ruminants, livestock production is modeled spatially in GLOBIOM’s gridded cell 
structure. At the cell level, animal yields for bovine and small ruminants are estimated using the 
GLOBIOM module, RUMINANT. RUMINANT calculates a production yield that matches 
plausible feed rations and checks this against regional-level data of livestock production. Feed 
for animals is also differentiated in the RUMINANT model and can be composed of feed crops, 
grass, stover, and other feed. Monogastric productivities are calculated based on FAOSTAT and 
assumptions of potential productivities of smallholder and industrial systems. Livestock 
production is allowed to intensify or extensify, thereby altering the amount of feed or grass 
consumed.46 Since for ruminants this is modeled spatially, any changes in grassland consumed 
due to changes in production systems, animal type, yield, and GHGs is captured in the spatially-
relevant areas. Each final livestock product is considered a homogenous good with its own 
specific market (apart from bovine and small ruminant milk). 

Forestry in GLOBIOM is captured through the G4M module47 and includes detailed 
representation of the sector and its supply chain and a differentiation between managed and 
unmanaged forest areas. GLOBIOM includes bilateral trade for agricultural and wood products. 
These products are assumed to be homogenous and traded based on least expensive production 
costs though transportation costs and tariffs are also included. 

The model also includes a bioenergy sector with first and second generation biofuels and 
biomass power plants. Perennial crops and short-rotation coppice are included as inputs to the 
bioenergy sector. GLOBIOM represents biofuel coproducts including distillers grains, oilseed 
meals, and sugar beet fibers. These coproducts can be traded either in their processed or whole 
forms. Coproducts that can be used for livestock feed are incorporated into the livestock 
RUMINANT module and can substitute other forms of feed depending on protein and 
metabolizable energy content.48 

There are nine land cover types in GLOBIOM, and 6 of these are modeled dynamically: 
cropland, grassland, short rotation plantations, managed forests, unmanaged forests, and other 
natural vegetation land. The other three land cover categories are represented in the model but 
kept constant, they include other agricultural land, wetlands, and not relevant (ice, water bodies 
etc.). Greenhouse gas emission coverage includes 12 sources of emissions that cover crop 
cultivation, livestock, above and below-ground biomass, soil-organic carbon, and peatland. 
Although GLOBIOM does not track terrestrial carbon stocks dynamically, carbon fluxes from 
land use change are calculated with equations, following IPCC guidelines, that estimate changes 
over time and allocate the average annual emissions to the time period in which the land use 
change occurs. 

46 Intensifying involves increasing livestock output without expanding the area of pasture land by grazing more 
livestock per area of land, increasing feed relative to grazing, or using feedlots. Extensifying is the opposite – it 
involves expanding pasture area in order to increase livestock production. 
47 International Institute for Applied Systems Analysis, “Global Forest Model (G4M)”, https://iiasa.ac.at/models-
and-data/global-forest-model. 
48 Valin, Hugo, et al., September 17, 2014, “Improvements to GLOBIOM for Modelling of Biofuels Indirect Land 
Use Change,” http://www.globiom-iluc.eu/wp-content/uploads/2014/12/GLOBIOM_All_improvements_Sept14.pdf, 
pg. 38. 
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2.3 

Land use in GLOBIOM allows for both intensification and extensification. When land is 
converted, this is endogenously determined in the model based on conversion costs, and the 
profitability of primary products, coproducts, and final products. Costs increase as the area 
converted expands. Additionally, there are biophysical land suitability and production potential 
restrictions. Land use change is determined at the grid cell level.49 There is a land transition 
matrix that sets the options for land conversion for each cell and is based on land conversion 
patterns specific to that region and conversion costs depending on the type of land converted.50 

In the USA and EU regions, GLOBIOM, by default, does not allow forest conversion and 
restricts natural land conversion though these assumptions can be changed. 

In policy settings, GLOBIOM is used for both modeling the European Union’s biofuel 
mandates and for estimating induced land use change impacts of biofuels for the International 
Civil Aviation Organization’s Carbon Offsetting and Reduction Scheme for Civil Aviation 
(CORSIA). In research contexts, the model has regularly participated in AgMIP, an agricultural 
model intercomparison and improvement project.51 One result of this project was an article on 
the key determinants of global land use projections.52 GCAM, discussed in Section 2.3, was also 
part of the AgMIP study. GLOBIOM has been used to assess other topics in the academic 
literature, publishing work on topics such as reducing greenhouse gas emissions from the 
agricultural sector, food security, and climate mitigation of livestock system transitions. 

The Global Change Analysis Model (GCAM) 

The Global Change Analysis Model (GCAM) is a partial equilibrium, integrated 
assessment modeling framework which explores human and earth dynamics. The model includes 
representation of energy, economy, land, water, and physical earth systems and interactions 
between these systems within a fully integrated computational system. The model includes all 
human systems and economic sectors which produce or consume energy, or which emit GHGs. 
GCAM operates as a recursive dynamic framework, generally in 5-year time steps. In practice, 
the model is often run from a base year in the recent past through the years 2050 or 2100. 
However, time step and scenario length are flexible input assumptions to GCAM, and the 
framework can support scenario analysis across a wide range of time scales. By default and for 
the purposes of this model comparison exercise, the model base year is currently 2015. But other 
historical base periods may be specified. For each modeled time period, GCAM iterates until it 
finds a vector of prices that clears all markets and satisfies all consistency conditions. The model 

49 GLOBIOM represents most land in the world using a 5 arcminutes by 5 arcminutes grid. At the equator, this is 
roughly 9km by 9km. 
50 IIASA, “Spatial Resolution and Land Use Representation,” 
https://iiasa.github.io/GLOBIOM/documentation.html#spatial-resolution-and-land-use-representation. 
51 Several studies have estimated water use and availability impacts associated with future scenarios of increased 
cellulosic biofuel production. These studies often project future land use/management for different scenarios of 
increased production of cellulosic crops, and then estimate impacts on water use and changes in streamflow for 
specific watersheds. See for example: Cibin, R., Trybula, E., Chaubey, I., Brouder, S. M., & Volenec, J. J. (2016). 
Watershed‐scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. Gcb 
Bioenergy, 8(4), 837-848 or Le, P. V., Kumar, P., & Drewry, D. T. (2011). Implications for the hydrologic cycle 
under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proceedings of the 
National Academy of Sciences, 108(37), 15085-15090. 
52 Stehfest, E., van Zeist, WJ., Valin, H. et al. Key determinants of global land-use projections. Nat Commun 10, 
2166 (2019). https://doi.org/10.1038/s41467-019-09945-w 
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is designed to explore different “what-if” scenarios, assessing the implications of different 
futures on a wide range of outcomes, such as energy supplies and demands, land allocation, or 
commodity prices. 

The core GCAM is developed and maintained at the Joint Global Change Research 
Institute, a partnership between Pacific Northwest National Lab (PNNL) and the University of 
Maryland (UMD) in College Park, Maryland. PNNL is the primary steward of the model, though 
members of a larger GCAM Community also contribute to development of the framework.53 

GCAM was originally developed in the early 1980s to assess the magnitude of GHG emissions 
from fossil fuel CO2 through the mid-21st Century. Over time, the model has expanded in scope 
to serve a wide set of scientific modeling applications. The model has now been in continuous 
development for over 40 years and has been applied in several studies and model inter-
comparison activities, including the IPCC’s Representative Concentration Pathways54 and 
Shared Socioeconomic Pathways.55 GCAM is an open-source community model that can be 
downloaded from a public repository.56 The model documentation is also publicly available57 

and includes a partial list of GCAM publications.58 

Economic systems in GCAM are divided into sectors and, within each sector, specific 
technologies. Figure 2.3-1 provides an overview of the sectors represented in GCAM, along with 
the inputs and outputs of the model. As shown in the figure, there are exogenous natural resource 
supply, land, economy, and demand inputs to the model. These exogenous inputs include global 
population and GDP. Each sector of GCAM is structured with a multi-level nesting approach 
that allows competition between different nodes at each level, and any number of levels. This 
nested competition follows a discrete logit59 or modified logit model60, depending on the object. 
The market share of each discrete technology is determined by a) a share-weight parameter that 
reflects the specific preferences for a particular choice, b) the cost, which includes fuel and non-
fuel costs, and c) an exogenous logit exponent that determines the price responsiveness of the 
competition. In most cases the share-weights are derived from base-year calibration when market 
shares are known. Technologies that are introduced in future time periods are assigned 
exogenous share-weights in each model time period. The market shares are therefore influenced 
by a number of endogenous and exogenous parameters, including fuel and non-fuel costs, 
efficiency or input-output coefficients, share-weights, and logit exponents. These parameters are 
documented and can be consulted in online repository.61 

53 For more information, see https://gcims.pnnl.gov/community. 
54 Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, et al. RCP4. 5: a pathway for stabilization of 
radiative forcing by 2100. Clim Change 2011;109:77. 
55 Calvin K, Bond-Lamberty B, Clarke L, Edmonds J, Eom J, Hartin C, et al. The SSP4: A world of deepening 
inequality. Glob Environ Change 2017;42:284–96. 
56 See https://github.com/JGCRI/gcam-core. 
57 See http://jgcri.github.io/gcam-doc/index.html. 
58 See more specifically http://jgcri.github.io/gcam-doc/references.html. 
59 McFadden D. Conditional logit analysis of qualitative choice behavior 1973. 
60 Clarke JF, Edmonds JA. Modelling energy technologies in a competitive market. Energy Econ 1993;15:123–9. 
61 See Calvin et al. 2019. GCAM v5.1: Representing the linkages between energy, water, land, climate, and 
economic systems. Geoscientific Model Development 12, 1–22. See also the online documentation 
(https://github.com/JGCRI/gcam-doc/blob/gh-pages/ssp.md) for the specific quantification of the inputs and 
parameters to the model. 
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International trade of commodities in GCAM is specified using one of two methods. 
Agricultural, livestock, and forestry primary goods are traded through regionally-differentiated 
markets following an Armington-style approach.62 In the version of GCAM used for this 
exercise, all other commodities are traded through homogenous global markets following the 
Heckscher-Ohlin theorem. 63 These approaches are described in detail in GCAM’s online 
documentation.64

Figure 2.3-1: GCAM diagram of model inputs, sectors, and outputs65

GCAM includes detailed representations of the energy sector, inclusive of liquid biofuels, 
and the agriculture and land sectors. The energy sector module in GCAM consists of depletable 
and renewable resources66, energy transformation and distribution sectors (electricity, refining, 

62 The Armington approach to modeling international trade is based on the premise that products traded 
internationally are differentiated by country of origin. This is in contrast to models that assume perfect substitution 
between products produced in different countries. Armington, P. S. (1969). A Theory of Demand for Products 
Distinguished by Place of Production. IMF Staff Papers, 1969 (001). 
63 Note that the most recent public version of GCAM trades all energy goods through the Armington-like approach, 
rather than through homogenous markets. This version of the model was not released in time for inclusion in this 
exercise. 
64 See http://jgcri.github.io/gcam-doc/details_trade.html 
65 See http://jgcri.github.io/gcam-doc/index.html. 
66 Depletable resources are based on graded supply curves for coal, oil, gas and uranium. Renewable resources 
include annual flows of wind, solar, geothermal, hydropower, and biomass. 
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gas processing, hydrogen production, and district services), and final energy demand sectors 
(buildings, industry, and transportation).67 For transportation biofuels specifically (referred to in 
the GCAM documentation as “biomass liquids”), by default the model includes a total of 11 
biofuel production technologies. These include four “first generation” technologies, representing 
ethanols and biodiesels produced from agricultural commodity crops, and seven “second 
generation” technologies representing fuels produced from a variety of feedstocks, including 
energy crops and residues. By default, the technology assumptions for second generation 
represent the inputs and outputs of cellulosic ethanol and Fischer-Tropsch fuels. However, the 
input assumptions for these technologies can be modified to represent other fuel production 
pathways. Secondary outputs such as dried distillers grains (DDG) and electricity produced from 
lignin can be considered, as can the potential for carbon capture and storage. Further description 
of these technological representations is available in the online GCAM documentation.68 

The agriculture and land use module differentiates 384 land use regions globally, 
generated as the intersection of 32 socioeconomic regions with 235 water basins (see Figure 2-
2). Within each land use region, up to 25 land use types compete for land share based on the 
relative profitability of each use, using a nested land allocator tree structure.69 The conversion of 
land from one type to another is determined in part by the logit structure of the model and the 
land nesting structure.70 GCAM land categories are structured in sub-nests, with easier 
conversion between land types within a sub-nest than across sub-nests. Land use types include 
exogenous land types (tundra, desert, urban), commercial and non-commercial pasture and forest 
lands, grasslands and shrublands, and a detailed set of agricultural crop commodities, including 
bioenergy crops, classified by irrigation type and fertilizer use.71 

Within this nesting structure, the allocations of land to each land use type are calibrated 
in the model base year, and in the future, changes from the base-year allocations are driven by 
changes in the relative profitability of each land use type, including both commercial and natural 
lands. Profitability of lands in agricultural and forestry production changes over time as a 
function of future commodity prices, yields, and costs of production (including endogenous costs 
of fertilizer, fuel, and irrigation water). The intrinsic profitability or value of natural lands is 
inferred from the base year profitability of proximate land used for agriculture and forestry in 
each region. The logit competition for land is non-linear and exhibits diminishing marginal 

67 More detailed information on the GCAM energy system can be found in online documentation, see 
http://jgcri.github.io/gcam-doc/index.html, and also in previous studies (see Clarke L, Eom J, Marten EH, Horowitz 
R, Kyle P, Link R, et al. Effects of long-term climate change on global building energy expenditures. Energy Econ 
2018;72:667–77; Muratori M, Ledna C, McJeon H, Kyle P, Patel P, Kim SH, et al. Cost of power or power of cost: 
A US modeling perspective. Renew Sustain Energy Rev 2017;77:861–74.) 
68 See http://jgcri.github.io/gcam-doc/supply_energy.html. 
69 See Wise M, Calvin K, Kyle P, Luckow P, Edmonds J. Economic and physical modeling of land use in GCAM 
3.0 and an application to agricultural productivity, land, and terrestrial carbon. Clim Change Econ 2014;5:1450003, 
and Zhao X, Calvin KV, Wise MA. The critical role of conversion cost and comparative advantage in modeling 
agricultural land use change. Clim Change Econ 2020;11. 
70 See http://jgcri.github.io/gcam-doc/details_land.html 
71 A complete description of the land use module can be found in the online documentation (see 
http://jgcri.github.io/gcam-doc/toc.html) and in Kyle GP, Luckow P, Calvin KV, Emanuel WR, Nathan M, Zhou Y. 
GCAM 3.0 agriculture and land use: data sources and methods. Pacific Northwest National Lab.(PNNL), Richland, 
WA (United States); 2011. 
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returns to expansion of each use as well as non-constant elasticities.72 This nonlinear nature 
allows the land shares to be solved based on equal value at the margin without need the explicit 
constraints used in linear models. 

GCAM also uses land suitability and land protection assumptions to determine what land 
is available for expansion. All versions of GCAM divide land into arable and non-arable 
categories and, by default, protect some portion of the arable land from conversion to agricultural 
or silvicultural use. In the version of GCAM used for this exercise, GCAM-T, other assumptions 
limit the suitability of arable lands for crop production based on biophysical limitations (e.g., 
slope, annual rainfall) and human-imposed limitations such as land protection policies. The latter 
are parameterized using the International Union for Conservation of Nature’s (IUCN) World 
Database of Protected Areas.73

Terrestrial carbon stocks and flows are modeled for each land type in each water basin.74

The agricultural sector of the model primarily relies on input data from the UN Food and 
Agriculture Organization (FAO) historical data sets, and includes all crops for which FAO 
reports area and production data for the model base year of 2015.75 Major global commodity 
crops, such as corn, rice, soybeans and wheat are modeled individually, while all other crops are 
modeled as a series of thematic aggregations. 

Figure 2.3-2: GCAM Regional Mapping76

In addition to the core GCAM described in this section, there exist several other 
subversions and downscaling tools which can be used to examine regions and systems at a finer 
grain of resolution. These include, among others, GCAM-USA77, which models each U.S. state 

72 See Wise et al (2020). 
73 For more information, see documentation provide at https://github.com/gcamt/gcam-core/tree/GCAM-T-2020. 
74 Input assumptions related to terrestrial carbon and land transitions are documented at http://jgcri.github.io/gcam-
doc/land.html. 
75 See http://jgcri.github.io/gcam-doc/inputs_land.html for further data on land inputs to the model. 
76 See http://jgcri.github.io/gcam-doc/overview.html. 
77 See http://jgcri.github.io/gcam-doc/gcam-usa.html. 
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2.4 

as an individual region, Tethys78, which allows for the downscaling of modeled GCAM water 
impacts, and Demeter79, which allows for the downscaling of modeled land allocation impacts. 
Numerous additional tools are in various stages of development at JGCRI and other research 
groups which participate in the GCAM Community.80 

One of these, GCAM-T, was used in a recent study of corn ethanol impacts by Plevin et 
al. The results of that study are discussed in greater detail later in this chapter.81 GCAM-T is also 
the version of the model used for the present model comparison exercise. This version of the 
model includes greater detail in several sectors relevant to the modeling of transportation energy 
technologies, including biofuels. The version of GCAM-T used for the Plevin et al paper, 
GCAM-T 2020.0, is publicly documented.82 Additional documentation for the version of 
GCAM-T used for this model comparison exercise, GCAM-T 2022.0, is included as a 
memorandum to the docket.83 GCAM-T 2022.0 is referred to simply as “GCAM” for the 
remainder of this RIA discussion and in the preamble of this final rulemaking. 

In addition to biofuel modeling,84 GCAM is used for diverse purposes across a wide 
range of stakeholders, including federal, state, and local U.S. government, foreign governments 
and international governance bodies, academia, private industry, and non-governmental 
organizations. As noted above, GCAM is used on an ongoing basis by the IPCC in the 
development of socioeconomic and climatic projections via the Representative Concentration 
Pathways85 and Shared Socioeconomic Pathways.86 Another notable recent application was the 
use of GCAM to produce scenario analysis for the Long-Terms Strategy of the United States, 
submitted to the United Nations under the Paris Agreement by the U.S. State Department and 
Executive Office of the President.87 Numerous other research papers associated with GCAM are 
accessible via PNNL’s publications page for the model.88 

The Global Trade Analysis Project (GTAP) Model 

The GTAP-BIO model is an extension of the standard Global Trade Analysis Project 
(GTAP) model which has been developed at the GTAP center of the Department of Agricultural 
Economics at Purdue University to study the economic and environmental impacts of biofuel 
production and policy. 

78 https://github.com/JGCRI/tethys. 
79 https://github.com/JGCRI/demeter. 
80 For more information, see https://gcims.pnnl.gov/community. 
81 Plevin, R. J., et al. (2022). “Choices in land representation materially affect modeled biofuel carbon intensity 
estimates.” Journal of Cleaner Production: 131477. 
82 See https://github.com/gcamt/gcam-core/tree/GCAM-T-2020 and https://zenodo.org/record/4705472. 
83 See “GCAM-T 2022.0 Documentation” in the docket. 
84 See for example, Mignone, B. K., Huster, J. E., Torkamani, S., O’Rourke, P., & Wise, M. (2022). Changes in 
Global Land Use and CO2 Emissions from US Bioethanol Production: What Drives Differences in Estimates 
between Corn and Cellulosic Ethanol?. Climate Change Economics, 13(04), 2250008. 
85 Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, et al. RCP4. 5: a pathway for stabilization of 
radiative forcing by 2100. Clim Change 2011;109:77. 
86 Calvin K, Bond-Lamberty B, Clarke L, Edmonds J, Eom J, Hartin C, et al. The SSP4: A world of deepening 
inequality. Glob Environ Change 2017;42:284–96. 
87 See https://unfccc.int/documents/308100 
88 See https://gcims.pnnl.gov/gcims-publications 
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The GTAP center is the focal point of a global network of more than 27 thousand 
researchers, scholars, academic institutions, and policy research entities that are conducting 
quantitative analysis of a wide range of policy issues related to trade, energy, agriculture, and 
climate change. The members of this network provide and share various databases, develop 
modeling ideas and codes, conduct research, and disseminate their research findings. The GTAP 
center facilitates these activities by providing various databases and modeling tools. In particular 
this center assembles databases that support modeling practices around the world for various 
modeling approaches. The standard GTAP database is centerpiece of these activities. The most 
recent versions of this database include Input-output (I-O) tables for 160 regions converting the 
whole world economic activities; bilateral trade data at global scale; production, consumption, 
and trade of energy products; data on various types of GHG and non-GHG emissions generated 
around the world; land use and land cover data; and several other items. The GTAP database is 
particularly supports CGE modeling activities. However, it has been used by many other 
modeling practices around the world. To various extents, several of the models participated in 
this modeling comparison exercise rely on the GTAP database. The latest available version of 
this standard database represents the global economy in 2017. 

In addition to providing data, the GTAP center develops standard modeling platforms as 
well. The standard GTAP model is the core of these platforms. This model has been originally 
developed in 1999 and documented in Hertel (1999).89 This model and its extensions have been 
used in many research activities and thousands of publications. Corong et al. (2017) has 
introduced the latest version of this standard model and its capabilities and extensions, with 
detailed discussion on the theory and derivation of the behavioral and equations in the model.90 

The standard GTAP is a global, comparative static, multi-commodity, and multi-regional 
Computable General Equilibrium model that traces production, consumption, and trade of all 
good and service produced across the world. This model assumes perfect competition in all 
markets with price adjustments to ensure that all markets are simultaneously in equilibrium. 
Some GTAP versions deviate from the perfect competition assumption. 

As shown in Figure 2.4-1, in each region of this model a regional household collects all 
the income in its region and spends it over three expenditure types: private household 
(representing all consumers), government, and savings, as governed by a utility function. A 
representative firm maximizes profits subject to a production function that combines primary 
factors of production including labor, land, capital, and resources and intermediate inputs to 
produce a final good or service. Firms pay wages/rental rates to the regional household in return 
for their uses of primary inputs. Firms also sell their output to other firms (as intermediate 
inputs), private households, government, and investment. Since this is a global model, firms also 
export the tradable commodities and import the intermediate inputs from other regions. These 
goods or services are assumed to be differentiated by region and thus the model is able to track 
bilateral trade flows. The model follows Armington assumptions for bilateral trade, to account 
for product heterogeneity among outputs produced in different regions. Taxes are paid to the 

89 Hertel, T.W., ed. 1997. Global Trade Analysis: Modeling and Applications. New York, 
NY: Cambridge University Press. 
90 Corong, E. L., Hertel, T. W., McDougall, R., Tsigas, M. E., & Van Der Mensbrugghe, D. (2017). The standard 
GTAP model, version 7. Journal of Global Economic Analysis, 2(1), 1-119. 

23 



  
 

 
 

     
    

     
 
 

    
  

       
  
 

   
   

  
  

 
   

 
 

 
   

   
    

 
  
             

       

regional household. The rest of the world receives revenues by exporting to the private 
household, firms, and government. These revenues are spent on export taxes and import tariffs, 
which eventually go to the regional household. The rest of world represents other regions of the 
model. 

As noted above, the standard GTAP model is a comparative static model. Hence, as noted 
by Corong et al. (2017) “a GTAP simulation presents not changes through time, but differences 
between possible states of the global economy – a base case and a policy case – at a fixed point 
in time, or with respect to two points in time (base period vs. a future projection period).”91 The 
version of GTAP used for this exercise is based on the 2014 database; thus, we can say that the 
biofuel simulations for this exercise with GTAP estimate changes in the 2014 economy due to a 
change in biofuel consumption. A typical comparative static simulation isolates the impacts of a 
phenomenon or changes in one or a set of variables that may affect the global economy from 
many other factors that vary over time. 

Figure 2.4-1: Standard GTAP Model Analytical Framework92

Our model comparison exercise includes the GTAP-BIO model. While this comparative 
static model is the most widely used GTAP model for biofuel analysis, we recognize there are 
other GTAP models available that could potentially be used for this purpose. For example, 
GDyn-BIO and GTAP-DEPS are recursive-dynamic versions of GTAP that have been used to 

91 Ibid. 
92 An updated version of the depiction first developed in Brockmeier M. (2011) “A graphical exposition of the 
GTAP Model”, GTAP Technical paper No. 08. 
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model U.S. corn ethanol impacts.93 ENVISAGE is another dynamic model complemented by an 
emissions and climate module that links changes in temperature to impacts on economic 
variables such as agricultural yields.94 While we did not have the ability to include more than 
one GTAP model in our current model comparison exercise, exploring and comparing the 
capabilities of other GTAP models for biofuel analysis is a potential area for future research. 
Such an exploration and comparison may consider multiple factors. For example, other GTAP 
models do not currently carry all the modifications incorporated in the GTAP-BIO model to 
show the role and importance of various factors that could affect the economic and 
environmental impacts of biofuel production and policy. Assessing induced land use changes due 
to biofuels has been the core of many of these GTAP-BIO modifications, and it has also been 
used to evaluate the consequences of climate change, water scarcity, and environmental 
policies.95 Another factor to consider are the trade-offs between using a historical comparative 
static framework like GTAP-BIO, versus using a model that projects into the future. Projecting 
changes in the global economy over time is helpful to answer certain analytical questions, and 
requires making projections on many factors with associated uncertainties. 

Over time, various modifications have been made in the standard GTAP databases to 
study the economic and environmental impacts of biofuel production and policy. The standard 
GTAP databases do not explicitly represent production, consumption, and trade of biofuels, their 
byproducts and coproducts. They also lack proper sectoral disaggregation to support biofuel 
studies. The GTAP-BIO databases have been generated to remove these barriers. These 
databases explicitly represent traditional biofuels (grain-based ethanol, ethanol produced from 
sugar crops and biodiesel produced from oilseeds) that are produced and consumed across the 
world. Some GTAP-BIO databases represent more advance biofuel technologies that produce 
road and aviation fuels from traditional feedstocks and lignocellulosic materials. These 
databases, depending on the application, provide more disaggregated crops, and further 
disaggregate some standard GTAP sectors to facilitate biofuel studies. For example, the 
substitution between biofuels and fossil fuels occurs in a newly introduced sector that blends 
fossil fuels and biofuels. 

For analyzing land use change, the GTAP-BIO databases follow the GTAP-AEZ land 
databases and divide the land rents and land areas of each country into 18 Agro-Ecological 

93 Golub, A. A., et al. (2017). Global Land Use Impacts of U.S. Ethanol: Revised Analysis Using GDyn-BIO 
Framework. Handbook of Bioenergy Economics and Policy: Volume II: Modeling Land Use and Greenhouse Gas 
Implications. M. Khanna and D. Zilberman. New York, NY, Springer New York: 183-212.; Oladosu, Gbadebo, and 
Keith Kline. “A dynamic simulation of the ILUC effects of biofuel use in the USA.” Energy policy 61 (2013): 1127-
1139. 
94 Van der Mensbrugghe, Dominique. “The environmental impact and sustainability applied general equilibrium 
(ENVISAGE) model.” The World Bank, January (2008): 334934-1193838209522. 
95 A few examples are: Taheripour F., Hertel, T. W., & Ramankutty, N. (2019). “Market-mediated responses 
confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia,” Proceedings of the 
National Academy of Sciences, 116 (38), 19193–19199; Peña-Lévano, L. M., Taheripour, F., and Tyner, W. E. 
(2019). “Climate change interactions with agriculture, forestry sequestration, and food security,” Environmental and 
Resource Economics, 74, 653–675; Yao G., Hertel T., and Taheripour F. (2018). “Economic drivers of telecoupling 
and terrestrial carbon fluxes in the global soybean complex,” Global Environmental Change, 5: 190–200; Liu J., 
Hertel T., Taheripour F., Zhu T., and Rigal C. (2014). “International trade buffers the impact of future irrigation 
shortfalls,” Global Environmental Change, Vol. 29, 22-31. 
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Zones.96 The AEZs represent 18 relativity homogeneous groups of lands based on length of 
growing days, moisture regions, and climate zones. The GTAP-BIO databases trace land cover 
items (forest, pasture and cropland), harvested areas, and crops produced at AEZ level. While the 
GTAP databases represent managed and unmanaged lands, in modeling induced land use 
changes due to biofuels only managed lands are represented in GTAP-BIO for various reasons.97 

Figure 2.4-2: Comparison of GTAP LULC v.6 and v.9 AEZs98 

The most recent version of GTAP-BIO available in time for our model comparison 
exercise uses GTAP-BIO database version 10, representing the global economy in 2014.99 The 
geographical aggregation of this this data is presented in Figure 2.4-3. Researchers at Purdue 
have the ability to project a database forward in time based on macro-economic projections in 

96 Hertel et al. (2009) described the original GTAP land use data. Baldos and Corong (2020) documented the recent 
GTAP land use databases up to 2014. Hertel, T.W., S. Rose, and R. Tol. 2009. “Land use in computable general 
equilibrium models: An overview.” In Economic Analysis of Land Use in Global Climate Change Policy. United 
Kingdom: Routledge, Routledge Explorations in Environmental Economics; Baldos U. and E. Corong (2020) 
Development of GTAP 10 Land Use and Land Cover Data Base for years 2004, 2007, 2011, 2014. GTAP Research 
Memorandum No. 36. 
97 Hertel, T.W., Golub, A.A., Jones, A.D., O'Hare, M., Plevin, R.J., Kammen, D.M., 2010. Effects of US maize 
ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60, 
223-231. See the supporting information which says on page 27, “The current version of GTAP does not estimate 
conversions from unmanaged land to cropland.” Also, footnote 6: “Forest land area used in this work is accessible 
forest land area and not managed forests. The forest accessibility is function of distance to infrastructure. Accessible 
forests area includes managed forests plus that part of unmanaged forests that is easily accessible.” 
98 Uris, B. L. (2017) Development of GTAP 9 Land Use and Land Cover Data Base for years 2004, 2007 and 2011. 
GTAP Research Memorandum No. 30 
99 Aguiar, A., Chepeliev, M., Corong, E., McDougall, R., & van der Mensbrugghe, D. (2019). The GTAP Data 
Base: Version 10. Journal of Global Economic Analysis, 4(1), 1-27. Retrieved from 
https://www.jgea.org/ojs/index.php/jgea/article/view/77 
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order to simulate future time periods.100 EPA and Purdue explored the possibility of creating a 
version of GTAP-BIO with a projected 2030 database to align better with the scenarios modeled 
with the dynamic models in our model comparison. Unfortunately, we were unable to complete 
this work in time for the model comparison exercise. 

Figure 2.4-3: Economic regions represented in GTAP 

GTAP-BIO has been updated multiple times to add features that are relevant for biofuel 
GHG modeling. Tyner et al. (2010) included marginal lands and productivity estimates for 
potential new cropland based on a biophysical model.101 Taheripour et al. (2012) used a 
biophysical model (TEM) and estimated a set of extensification parameters which represent 
productivity of new cropland versus the existing land by AEZ region.102 Taheripour and Tyner 
(2013) used a tuning process to differentiate land transformation elasticities by region based on 
FAO data.103 Taheripour and Tyner (2013) modified the land supply tree putting cropland 
pasture and dedicated energy crops (e.g., switchgrass) in one nest and all other crops in another 
nest, “to make greater use of cropland pasture (a representative for marginal land) to produce 
dedicated energy crops.”104 Taheripour et al. (2016) altered the land use module of GTAP-BIO 

100 Yao G., Hertel T., and Taheripour F. (2018). “Economic drivers of telecoupling and terrestrial carbon fluxes in 
the global soybean complex,” Global Environmental Change, 5: 190–200 
101 Tyner, W. E., Taheripour, F., Zhuang, Q., Birur, D., & Baldos, U. (2010). Land use changes and consequent CO2 
emissions due to US corn ethanol production: A comprehensive analysis. Department of Agricultural Economics, 
Purdue University, 1-90. 
102 Taheripour, F., et al. (2012). “Biofuels, cropland expansion, and the extensive margin.” Energy, Sustainability 
and Society 2(1): 25. 
103 Taheripour, F. and W. E. Tyner (2013). “Biofuels and land use change: Applying recent evidence to model 
estimates.” Applied Sciences 3(1): 14-38. 
104 Taheripour, F. and W. E. Tyner (2013). “Induced Land Use Emissions due to First and Second Generation 
Biofuels and Uncertainty in Land Use Emission Factors.” Economics Research International 2013: 12. 
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to include cropland intensification due to multiple cropping or returning idled cropland 
production, defined a new set of regional intensification parameters and determined, and defined 
regional yield responses to price based on analysis of regional changes in crop yields.105 

Taheripour et al. (2017) brought all of these modifications into one version of GTAP-BIO using 
the GTAP database representing 2011.106 The version of GTAP-BIO used in this exercise 
includes the above developments and adds cropland pasture as a land category in all regions 
using the FAO land use database, whereas the previous version included cropland pasture in only 
the United States, Brazil and Canada. 

GTAP estimates areas and types of land use change by region in response to a biofuel 
shock. Given that this model does not endogenously estimate land use change GHG emissions, 
land use change areas are translated to GHG emissions using either the AEZ-EF model107 or the 
CCLUB module of GREET, which produce significantly different estimates.108 These tools 
make assumptions about how land use changes will occur in the future. To calculate a land use 
change CI metric, the land use change emissions are annualized (e.g., over 20-30 years, 
depending on the policy context) and divided by the energy content of the simulated biofuel 
shock. For this model comparison exercise, land use change areas estimated with GTAP are 
converted to land use change GHG emissions with AEZ-EF, version 52, and annualized over 30 
years. 

In general, the GTAP-based models are able to evaluate changes in GHG emission due to 
changes in economic activities. While the GTAP-BIO model has been used mainly to assess 
induced land use change emissions, this model can also estimate changes in GHG and non-GHG 
emissions due to changes in economic activities. For this model comparison exercise, we are 
interested in broadly evaluating the capabilities of each model. Thus, we also consider GTAP 
estimates for all global economic sectors such as energy, livestock and forestry. These estimates 
include changes in CO2 and non-CO2 emissions due to biofuel induced changes.109 While, this 
report provides these results, the results could be further studied for potential improvements in 
model parameters that govern changes in these emissions. 

GTAP-BIO is used widely for biofuel land use change analysis. As discussed above, the 
GREET model incorporates land use change estimates from this model through the CCLUB 
module. The GTAP-BIO results are used to estimate induced land use change GHG emissions 
for the California, Oregon, and Washington low carbon fuel standard programs. GTAP-BIO is 
also one of two models, along with GLOBIOM, used to estimate induced land use change 
emissions for the International Civil Aviation Organization (ICAO) Carbon Offsetting and 
Reduction Scheme for International Aviation (CORSIA). Furthermore, GTAP-BIO has been 

105 Taheripour, F., et al. (2016). An Exploration of Agricultural Land Use Change at Intensive and Extensive 
Margins. Bioenergy and Land Use Change: 19-37. 
106 Taheripour, F., et al. (2017). “The impact of considering land intensification and updated data on biofuels land 
use change and emissions estimates.” Biotechnology for Biofuels 10(1): 191. 
107 Plevin, R., Gibbs, H., Duffy, J., Yui, S and Yeh, S. (2014). Agro-ecological Zone Emission Factor (AEZ-EF) 
Model (v52). 
108 Chen, R., et al. (2018). "Life cycle energy and greenhouse gas emission effects of biodiesel in the United States 
with induced land use change impacts." Bioresource Technology 251: 249-258. Figure 4. 
109 Chepeliev, M. (2020). Development of the Non-CO2 GHG Emissions Database for the GTAP Data Base Version 
10A (No. 5993). Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University 
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2.5 

used to estimate biofuel induced land use change emissions for numerous journal articles (see for 
example the articles cited above). 

The Applied Dynamic Analysis of the Global Economy (ADAGE) 
Model 

The Applied Dynamic Analysis of the Global Economy (ADAGE) model is a multi-
region, multi-sector computable general equilibrium (CGE) model developed and maintained by 
RTI International.110 The original ADAGE model was a forward-looking model.111 It was 
originally developed to examine impacts of climate change mitigation policies and was used, for 
example, to analyze economy-wide impacts of various legislative proposals, including the 
American Clean Energy and Security Act of 2009. More recently, the ADAGE model has been 
developed to have additional sectoral detail, particularly in agriculture, bioenergy, and 
transportation.112 This version of the ADAGE model (hereinafter referred to as “ADAGE” or 
“the ADAGE model”) is global, rather than national, and is recursive-dynamic, which means that 
decisions about production, consumption, savings, and investment are based on previous and 
current economic conditions. 

ADAGE represents the entire economy, including private and public consumption, 
production, trade, and investment, and follows the classical Arrow-Debreu general equilibrium 
framework.113 The model uses nested constant elasticity of substitution (CES) production 
functions. As illustrated in Figure 2.5-1, ADAGE includes representative households and firms, 
and economic flows among households, firms, and government are considered. Bilateral trade is 
represented using an Armington aggregation approach.114 Dynamics in ADAGE are represented 
by 1) growth in the available effective labor supply from population growth and changes in labor 
productivity; 2) capital accumulation through savings and investment; 3) changes in stocks of 
natural resources; and 4) technological change from improvements in manufacturing, energy 
efficiency and land productivity, and advanced technologies that become cost competitive over 
time. 

110 The ADAGE model is available at https://github.com/RTIInternational/ADAGE. 
111 Ross, M. 2009. Documentation of the Applied Dynamic Analysis of the Global Economy (ADAGE) Model. 
Working paper 09_01. Research Triangle Park, NC: RTI International. 
112 Cai Y., Beach R., Woollacott J., Daenzer K., 2023. Documentation of the Applied Dynamic Analysis of the 
Global Economy (ADAGE) model. Technical Report. Available at https://github.com/RTIInternational/ADAGE. 
113 Arrow, K.J., and G. Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22:265-
290. 
114 Armington, P. S. (1969). A Theory of Demand for Products Distinguished by Place of Production. Staff Papers -
International Monetary Fund, 16(1), 159–178. 
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Figure 2.5-1: Representation of Economic Flows in the ADAGE model115 

ADAGE includes additional detail for the energy, food, agriculture, and transportation 
sectors. It runs in 5-year intervals from 2010 through 2050, and includes 8 global regions 
(Africa, Brazil, China, EU 27, United States, Rest of Asia, Rest of South America, and Rest of 
World; Figure 2.5-2). ADAGE is built off the GTAP v7.1 database which represents the global 
economy in 2004,116 with additional data from other sources such as the International Energy 
Agency, U.S. Energy Information Administration, and United Nations Food and Agriculture 
Organization. These additional data help to extend the global economy from 2004 to 2010 
through balanced growth and add more sectoral details and physical accounts. ADAGE tracks 
inputs and outputs in monetary units, and also tracks commodities and resources in physical units 
(such as energy units of fuel consumption, area of land, and mass of emissions). 

115 Cai Y., Beach R., Woollacott J., Daenzer K., 2023. Documentation of the Applied Dynamic Analysis of the 
Global Economy (ADAGE) model. Technical Report. 
116 Narayanan, G. B., and T. L. Walmsley (Eds.). 2008. Global Trade, Assistance, and Production: The GTAP 7 
Data Base. West Lafayette, IN: Center for Global Trade Analysis, Purdue University. 
http://www.gtap.agecon.purdue.edu/databases/v7/v7_doco.asp. 
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Figure 2.5-2: ADAGE Regional Mapping 

ADAGE models the markets for several agricultural commodities: wheat, corn, soybean, 
sugarcane, sugar beet, rest of cereal grains, rest of oilseeds, and rest of crops, in addition to one 
livestock category and one forestry category. The agricultural sector in the underlying GTAP 
v7.1 database is more aggregated, so creating these commodities in ADAGE required 
disaggregation using information on trade shares, consumption shares, cost shares, and own use 
shares. 117 This disaggregation was done with software called SplitCom118 and data from the 
United Nations Food and Agricultural Organization FAOSTAT database and the United Nations 
Comtrade Database.119,120 The “cereal grains” sector in GTAP v7.1 was split into corn and rest of 
cereal grains, the oil seeds sector was split into soybean and rest of oilseeds, and the combined 
sugarcane and sugar beet sector was split into sugarcane and sugar beet. 

Agricultural sector details in ADAGE enable it to model several kinds of biofuels. 
ADAGE includes 8 types of first-generation biofuels (corn ethanol, wheat ethanol, sugarcane 
ethanol, sugar beet ethanol, soybean oil biodiesel, rape-mustard biodiesel, palm kernel biodiesel, 
and corn oil biodiesel) and 5 types of advanced biofuels (ethanol from switchgrass, miscanthus, 
agricultural residue, forest residue, and forest pulpwood). These biofuels are not included in the 
GTAP 7.1 database and were split from GTAP v7.1 sectors using the SplitCom software and 
secondary data from USDA’s Economic Research Service, DOE’s Energy Information 

117 Beach, R.H., D.K. Birur, L.M. Davis, and M.T. Ross. 2011. A dynamic general equilibrium analysis of U.S. 
biofuels production. AAEA & NAREA Joint Annual Meeting, Pittsburgh, PA. 
https://ageconsearch.umn.edu/bitstream/103965/2/ADAGE-Biofuels_AAEA_Conference_Paper.pdf. 
118 Horridge, M., J. Madden, and G. Wittwer. 2005. The impact of the 2002–2003 drought on Australia. Journal of 
Policy Modeling 27(3):285-308. 
119 Food and Agriculture Organization of the United Nations. 2012. FAOSTAT Database. Rome, Italy: FAO. 
http://www.fao.org/faostat/en/#data. 
120 United Nations. 2012. UN Comtrade Database. http://comtrade.un.org. 
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Administration, and the United Nations Comtrade database.121,122,123 Corn ethanol and wheat 
ethanol were split from the “food products sector” in GTAP v7.1, which receives inputs from 
corn and wheat. Sugarcane ethanol and sugar beet ethanol were split from the chemicals sector. 
Biodiesel from soybean, rapeseed, and palm oil were split from the vegetable oils and fats sector. 
Distillers grains with solubles (DGS) and corn oil biodiesel are coproducts of corn ethanol 
production. An oil meal coproduct was split from the vegetable oil sector in GTAP v7.1. Because 
ADAGE does not explicitly represent rapeseed and palm oil production, the input shares of “rest 
of oilseeds” is based on region-specific palm oil and rapeseed biodiesel yields (gallon of 
biodiesel per ton of feedstock). Advanced biofuels were not included in the 2010 base year in 
ADAGE but are allowed to enter the market in future years. 

The energy sectors of the ADAGE model include coal, natural gas, crude oil, and refined 
oil, and several categories of electricity generation technologies (conventional coal, conventional 
natural gas, conventional oil, combined-cycle natural gas, nuclear, hydropower, geothermal, 
wind, solar, and biomass). The supply of fossil fuels is limited by the availability of natural 
resources, which is represented as a fixed factor in the model. Crude oil is used as an input for 
refined oil and enters the production function in a fixed proportion. Electricity generation 
technologies are combined into a single electricity output. 

The transportation sector in ADAGE has been developed to include light duty vehicles, 
freight trucks, buses, marine, aviation, freight rail and passenger rail. Biofuels can be consumed 
in on-road transportation (light duty vehicles, buses, and trucks). Alternative fuel options 
(hybrid, battery electric, fuel cell, and natural gas) are available for on-road vehicles. The GTAP 
v7.1 database includes three types of transportation (air, water, and rest of transportation) and 
was disaggregated using data from several sources.124 

ADAGE includes six land types (cropland, pasture, managed forest, natural forest, 
natural grassland, and other land125). Land use change is represented by the combination of a 
given land type with materials, capital, and labor to produce a new land type. The amount of 
conversion in a period is limited by a fixed factor that is substitutable with other inputs. Each 
land type has its own endowment, land rent, and usage. The conversion cost between land types 
is equal to the differences in land rents, involving input cost from the labor, capital, and materials 
inputs for conversion activity. There are also constraints on the types of land that can be 
converted to other types. For example, only pasture and managed forest can be converted directly 
to cropland, but cropland can convert to any land type.126 A fixed factor elasticity is defined for 

121 USDA, Economic Research Service (ERS). 2012. U.S. Bioenergy statistics. Washington, DC: U.S. Department 
of Agriculture. https://www.ers.usda.gov/data-products/us-bioenergy-statistics. 
122 EIA. 2012. Petroleum & other liquids. Washington, DC: U.S. Department of Energy. 
https://www.eia.gov/dnav/pet/pet_move_impcus_a2_nus_epooxe_im0_mbbl_a.htm. 
123 United Nations. 2012. UN Comtrade Database. http://comtrade.un.org. 
124 Data sources include GCAM 4.2, the Bureau of Economic Analysis, the Bureau of Transportation Statistics, the 
International Energy Agency, and the Energy Information Administration. For more details, see Cai Y., Beach R., 
Woollacott J., Daenzer K., 2023. Documentation of the Applied Dynamic Analysis of the Global Economy (ADAGE) 
model. Technical Report. 
125 “Other land” includes bare ground, wetlands, mangroves, salt marsh, glaciers, and lakes, and is assumed to be 
constant over time. 
126 Unmanaged forest can only be converted to managed forest, and grassland can only be converted to pasture. 
Through these conversions, unmanaged forest and grassland could be converted to cropland over two time steps. 
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each starting land type/ending land type pair. Elasticities are generally the same in every region. 
However, the elasticities governing the conversion of natural forest to managed forest and 
grassland to pasture vary by region. ADAGE models land in physical as well as monetary 
quantities. Emissions from land use change are based on the differences in carbon stocks 
(vegetative and soil carbon) between the land types, and emission factors (one for vegetative 
carbon, and one for soil carbon) that represent the fraction of the change in carbon stock that 
would occur over 20 years after land conversion. Land use change emissions and sequestration 
are all reported in the model year in which the land use change occurs. Vegetative and soil 
carbon stocks are based on data from GCAM 3.2, which were aggregated to ADAGE regions 
using weighted land area. 

ADAGE includes six types of greenhouse gases: carbon dioxide (CO2), methane (CH4), 
nitrous oxide (N2O), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur 
hexafluoride (SF6). CO2 emissions from fossil fuel combustion are based on emissions factors 
(kgCO2/MMBTU) for coal, gas, and oil. The emission factors are differentiated by region and 
based on data from EIA’s International Energy Statistics. CO2 emission factors from sources 
other than fossil fuel combustion and land use change are based on data from the Emissions 
Database for Global Atmospheric Research (EDGAR) version 4.2.127 Non-CO2 emission factors 
are based on data from EPA.128 

CGE models often represent individual economic sectors at a higher level of commodity 
and technology aggregation than some PE models of those same economic sectors. However, 
because CGE models capture the entire economy, they can be useful for determining impacts of 
environmental policies across sectors and on GDP. In one study, the ADAGE model was used to 
analyze projected impacts of the RFS on land use, crop production, crop prices, fossil energy 
use, GHG emissions, and GDP.129 ADAGE has also been used to study the impact of oil prices 
on biofuel expansion.130 In model comparison studies, ADAGE was used to analyze the GHG 
abatement potential in Latin America,131 and the impacts of climate policy and agriculture, 
forestry, and land use emissions.132 

127 Joint Research Centre at European Commission. 2013. Emission Database for Global Atmospheric Research. 
http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010. 
128 U.S. Environmental Protection Agency (EPA). 2012. Global Non-CO2 GHG Emissions: 1990-2030. Washington, 
DC: EPA. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-ghg-emissions-1990-
2030. 
129 Cai, Y., D.K. Birur, R.H. Beach, and L.M. Davis. (2013, August). Tradeoff of the U.S. Renewable Fuel Standard, 
a General Equilibrium Analysis. Presented at 2013 AAEA & CAES Joint Annual Meeting, Washington, D.C. 
130 Cai, Y., R.H. Beach, and Y. Zhang. (2014, March). Exploring the Implications of Oil Prices for Global Biofuels, 
Food Security, and GHG Mitigation. Presented at 2014 AAEA Annual Meeting, Minneapolis, MN. 
131 Clarke L., McFarland J., Octaviano C., van Ruijven B., Beach R., Daenzer K., Herreras Martínez S., Lucena 
A.F.P., Kitous A., Labriet M., Loboguerrero Rodriguez A.M., Mundra A., van der Zwaan B., 2016. Long-term 
abatement potential and current policy trajectories in Latin American countries. Energy Econ. 56, 513-525. 
http://dx.doi.org/10.1016/j.eneco.2016.01.011. 
132 Calvin K.V., Beach R., Gurgel A., Labriet M., Loboguerrero Rodriguez A.M., 2016. Agriculture, forestry, and 
other land-use emissions in Latin America. Energy Econ. 56, 615-624. 
http://dx.doi.org/10.1016/j.eneco.2015.03.020. 
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3 Comparison of Model Characteristics, Input Parameters, and Input Data 

In this section we compare the characteristics of the five models described above in 
Section 2. We compare the models across several characteristics that are important for biofuel 
analysis. In later sections, we discuss how these model characteristics impact model results. 

3.1 Model Characteristics 

Table 3.1-1 summarizes some of the key characteristics of the five models featured in 
Section 2. Although there are many ways to compare these models, we chose six key 
characteristics based on their relevance to the definition of lifecycle greenhouse gas emissions in 
Section 211(o)(1)(H) of the Clean Air Act.133 Specifically, we consider model sectoral coverage, 
temporal resolution, regional coverage, GHG emissions coverage, land representation, and trade 
dynamics. Differences among modeling frameworks along these coverage, resolution, and 
dynamics characteristics may lead to significant differences in modeled perspectives on GHG 
emissions outcomes. These six characteristics therefore provide a good starting point for 
understanding the primary differences across these frameworks. We start our discussion based on 
these six characteristics before touching on other key aspects of these models for biofuel GHG 
analysis. 

While we are not ruling out consideration or future use of other models, based on the 
biofuel GHG modeling workshop and our review of the literature, we believe the models listed in 
the table are the most likely to meet our needs for evaluating lifecycle GHG emissions. In 
addition, the models selected provide a broad representation of the types of models that can be 
used for lifecycle analysis. 

133 Other important considerations are not included in this table, such as open access to the models. 
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Table 3.1-1 Comparison of Key Characteristics Across Models 
Characteristic ADAGE GCAM GLOBIOM GREET GTAP 
Type of Model Computable 

general 
equilibrium 
(CGE); 
consequential 
LCA 

Integrated 
assessment 
model (IAM); 
consequential 
LCA 

Partial 
equilibrium 
(PE); 
consequential 
LCA 

Supply chain 
LCA 

Computable 
general 
equilibrium 
(CGE); 
consequential 
LCA 

Sectoral Economy-wide Energy Agriculture, Fuel supply Economy-wide 
Coverage with 36 sectors (conventional 

and renewable), 
industry, 
buildings, 
transportation, 
agriculture, 
forestry, water 

forestry, and 
bioenergy 

chains 
including 
energy 
resource and 
material inputs 

aggregated into 
65 sectors 

Temporal Recursive Recursive Recursive Static (users Comparative 
Representation dynamic (5-

year time 
steps) 

dynamic (5-year 
time steps) 

dynamic (10-
year time steps) 

can select a 
target year 
from 1990-
2050) 

static 

Regional 8 economic 32 economic 37 economic Customizable 19 economic 
Coverage and spatial 

regions 
regions; 384 land 
regions (water 
basins, 
intersected with 
economic 
regions) 

regions; 10,000 
spatial units 
(grid cell) 

(typically U.S. 
average) 

regions; 18 
agro-ecological 
zones 

GHG Emissions Economy-wide Global GHGs Crop Direct supply- Economy-wide 
Coverage GHGs 

including land 
use change 

including land 
use change 

production, 
livestock, and 
land use change 

chain 
emissions + 
indirect land 
use change 
from CCLUB 
module 

GHGs, with 
land use change 
GHGs 
calculated with 
the AEZ-EF 
model 

Land 
Representation 
(Arable land 
categories 
considered in 
biofuel land use 
change analysis) 

Cropland, 
pasture, 
commercial 
forest, non-
commercial 
forest, natural 
grassland, 
other land 

Cropland, 
commercial 
pasture and 
forest, non-
commercial 
pasture and 
forest, shrubland, 
grassland, 
“protected” non-
commercial land 

Cropland, other 
agricultural 
land, grassland, 
commercial and 
non-commercial 
forest, 
wetlands, other 
natural land 

Exogenous 
(Land use 
change 
estimates from 
GTAP-BIO 
and CCLUB) 

Cropland 
(including 
cropland-
pasture and 
unused 
cropland), 
livestock 
pasture, 
“accessible” 
forestry land 

As observed above, modeling inherently involves trade-offs. For example, there may be 
trade-offs between scope and detail, or between capabilities to understand individual supply 
chains versus global impacts. Among the four model types considered in this exercise, the supply 
chain LCA models, like GREET, have the most detailed technological representations but the 
most limited scope. For example, the GREET model includes detailed representations of 
numerous biofuel and energy production processes but does not include price-induced 
interactions between supply chains or economic sectors or any other features which seek to 
balance economic equilibria within or across sectors. PE models used for biofuel analysis tend to 
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have a high level of detail in the agricultural sector, but limited interactions with other sectors. 
For example, GLOBIOM has a detailed representation of crop production, livestock, and land 
use, but does not include economic interactions between the agricultural and energy sectors (e.g., 
fuel prices are exogenous). CGE models are the broadest in economic scope, but they often 
represent the world using a smaller number of physical regions and fewer specific technological 
options within a given economic sector. IAMs focus on representing physical processes, but 
often lack certain sectoral details relative to PE models, and treat more economic factors (e.g., 
global GDP) as exogenous relative to CGE models. When considering tradeoffs between these 
methodological options, one must consider the goals of the analysis and whether cross-sectoral 
impacts are potentially influential on the overall results. In instances where such impacts are 
potentially influential, broader sectoral coverage is likely to be more critical. In instances where 
such impacts are limited, or where the goal of the analysis is to understand GHG emissions from 
a particular supply chain or sector, the narrower scope of a supply chain LCA or PE model may 
be an acceptable tradeoff. Model comparison exercises can assist with these types of 
assessments. We discuss below the extent to which cross-sectoral impacts appear relevant to 
biofuel LCA modeling. 

3.1.1 Sectoral Coverage 

The modeling frameworks differ substantially in the scope of economic interactions that 
they represent. Capturing a wide range of economic interactions is important for understanding 
the overall GHG impacts, including indirect impacts, of crop-based biofuel production. Based on 
economic theory, we expect increased consumption of crop-based biofuels to have complex 
ripple effects through the entire world economy. For example, as the demand for feedstocks 
increase, we expect the price of these commodities to increase, with consequences for 
agricultural markets not only in the U.S., but around the world. These interactions are 
complicated by the fact that the major crop-based biofuel feedstocks have coproducts (e.g., 
distiller grains, soybean meal) that are used as livestock feed. Given that producing biofuels 
requires material (e.g., fertilizer) and energy (e.g., natural gas), increased biofuel production may 
affect these input commodity markets as well. When biofuels displace gasoline or diesel in the 
U.S., this change may affect consumer fuel prices and crude oil prices, which may in turn affect 
other sectors of the economy. 

Supply chain LCA models such as GREET do not include most of these economic 
interactions. However, GREET includes agricultural sector interactions to a limited extent 
through the exogenous addition of land use change GHG estimates. GLOBIOM models 
economic interactions within and between the agricultural (including crops and livestock) and 
forestry sectors. GLOBIOM also includes a bioenergy sector with limited economic interactions 
other than through its consumption of feedstocks from the agricultural and forestry sectors. 
GCAM models economic interactions within and among the energy, agriculture, forestry, and 
water systems. The energy system in GCAM is highly developed, including energy production 
from a broad range of technologies and resources, and energy consumption in the industrial, 
commercial, residential, transportation, agriculture, and forestry sectors. As CGE models, GTAP 
and ADAGE model interactions across the entire economy. Thus, CGE models include economic 
interactions that the other modeling frameworks take as exogenous or do not include. As noted 
above, however, this creates computational tradeoffs which often require CGE models to 
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represent sectoral dynamics at a more highly aggregated level than other model types with 
narrower scope. 

The three models which represent energy market interactions (ADAGE, GCAM, and 
GTAP) also differ in which energy commodities are represented and how demand for energy 
commodities is linked to other model components. ADAGE represents production and bilateral 
trade of crude oil, refined oil134, natural gas, coal, electricity, biodiesel (soy, palm kernel, rape-
mustard, corn oil), and ethanol (corn, wheat, sugarcane, sugar beet). ADAGE dynamically 
represents the energy inputs required for extracting and refining petroleum and the inputs 
required for production of biofuels. GCAM represents crude oil, refined oil, natural gas, coal, 
electricity, biodiesel (soy, palm kernel, rapeseed, other oilseed-oil), and ethanol (corn, sugar 
crops, energy grasses, crop residues). GCAM dynamically represents both the energy inputs 
required for extracting and refining petroleum and the inputs required for growing and 
transporting crops and producing biofuels.135 GTAP represents coal, crude oil, refined 
petroleum, electricity, natural gas, corn ethanol, sugarcane ethanol, grain ethanol, soybean oil 
biodiesel, rapeseed oil biodiesel, palm oil biodiesel, and other biodiesel. GTAP represents 
production, consumption, and bilateral trade in these commodities. 

3.1.2 Temporal Representation 

Temporal representation, or the treatment of time dynamics, is another important 
characteristic that differentiates the modeling frameworks. The ability to endogenously represent 
temporal dynamics is an important model feature given that biofuel land use change emissions 
occur over time (e.g., soil carbon levels change over multiple decades following land conversion) 
and biofuel-induced effects are dependent on factors that change over time, such as crop yields 
and overall demands of the population on land to produce food, feed, and fiber. GREET is 
designed to simulate supply chains in a given year, and includes the flexibility for users to 
choose background data (e.g., grid electricity mix) for future years extending out to 2050.136 

GTAP is a comparative static model, meaning it simulates changes in the 2014 economy due to a 
change in biofuel production or consumption.137 GLOBIOM, GCAM and ADAGE are recursive 
dynamic models in which certain production, consumption, and investment decisions are made 
on the basis of market conditions in each period with dependence on previous model periods 
through capital and/or resource stocks. Conditions from previous periods are carried forward to 
influence the next modeled period. This differentiates dynamic recursive frameworks 
computationally from comparative static frameworks. 

ADAGE and GCAM use 5-year time steps, whereas GLOBIOM uses 10-year time steps. 
In ADAGE and GCAM, the time step represents a point in time (e.g., the 2020 time step 
represents the estimated state of the world in the year 2020). In GLOBIOM, the time step 

134 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel. 
135 Sampedro, J., Kyle, P., Ramig, C. W., Tanner, D., Huster, J. E., & Wise, M. A. (2021). Dynamic linking of 
upstream energy and freight demands for bio and fossil energy pathways in the Global Change Analysis Model. 
Applied Energy, 302, 117580. https://doi.org/10.1016/j.apenergy.2021.117580 
136 However, as discussed above, if provided with sufficient data, GREET can estimate supply chain emissions for 
different time periods 
137 GTAP can model different time periods if the GTAP database is first manually projected forward (or backward) 
based on assumptions. Due to time constraints, we were unable to perform such projections for this exercise. 
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represents a long-term trend of changes over the applicable 10-year period (e.g., the 2020 time 
step is a representative average of changes from 2011 to 2020). 

3.1.3 Regional Coverage 

Thorough understanding of the impacts of a change in biofuel consumption through LCA 
requires consideration of significant indirect emissions. Many studies have shown that biofuel 
consumption in the U.S. can have significant impacts in other regions of the world.138 

Consequently, models need to represent all relevant regions to consider the full indirect impacts 
of a change in biofuel consumption. Furthermore, regional representation is important due to 
geographic variations related to terrestrial carbon stocks, agricultural yields, energy resources 
and other factors. PE, CGE and IAM models often distinguish between economic regions and 
biophysical regions. These models use solution algorithms to find market clearing conditions in, 
and trade between, each of the economic regions. Biophysical regions are often defined based on 
physical geography and geology to allocate economic activities and biophysical processes to 
physical locations. GTAP models 19 economic regions and 18 non-contiguous AEZs (see 
Figures 2.4-2 and 2.4-3). GLOBIOM models 37 economic regions and uses a spatially explicit 
grid-cell approach to represent 10,000 spatial units worldwide. GCAM models 32 economic 
regions and 235 global water basins—the intersection of the economic regions and water basins 
produces 384 spatial subregions.139 ADAGE models 8 economic and geographic regions. In 
contrast, GREET is not a geographic or regional model, but it can be customized to represent 
biofuel production conditions for particular regions or supply chains. Data for GREET is 
primarily representative of the USA. GREET also has modules that are designed to estimate soil 
carbon and land use change emissions at a regional level. The FD-CIC module allows users to 
estimate feedstock production emissions at county level, and the CCLUB module estimates 
indirect land use change emissions based on the geographic regions represented by GTAP. 

For this exercise, based on a template we provided to the modelers, ADAGE, GCAM, 
and GLOBIOM reported results from eight mutually exclusive global regions: Africa, Brazil, 
China, EU, USA, Rest of Asia, Rest of Latin America, and Rest of World. GTAP reported results 
from 19 global regions. In this document, we generally present results from the USA region of 
each model and an aggregation of the non-USA regions of each model. 

3.1.4 GHG Emissions Coverage 

There are notable differences in coverage of GHG emissions sources across the models. 
These differences in which GHGs are included in each model lead to differences among biofuel 

138 See for example, ICAO (2021). CORSIA Eligible Fuels -- Lifecycle Assessment Methodology. CORSIA 
Supporting Document. Version 3: 155; Plevin, R. J., J. Jones, P. Kyle, A. W. Levy, M. J. Shell and D. J. Tanner 
(2022). "Choices in land representation materially affect modeled biofuel carbon intensity estimates." Journal of 
Cleaner Production: 131477; Taheripour, F., X. Zhao and W. E. Tyner (2017). "The impact of considering land 
intensification and updated data on biofuels land use change and emissions estimates." Biotechnology for Biofuels 
10(1): 191. 
139 Although we did not use it for this exercise, a spatial downscaling model called Demeter is able to present 
GCAM land use results at higher spatial resolution (0.05° × 0.05°), but this tool is not used for this model 
comparison. Chen, M., Vernon, C.R., Graham, N.T. et al. Global land use for 2015–2100 at 0.05° resolution under 
diverse socioeconomic and climate scenarios. Sci Data 7, 320 (2020). https://doi.org/10.1038/s41597-020-00669-x. 
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GHG emissions estimates produced from these models. As mentioned previously, GREET 
estimates direct GHG emissions from a biofuel production supply chain and generally does not 
include indirect market-mediated emissions from other sources and sectors. The exception is 
indirect land use change emissions, which can be added exogenously to GREET results through 
the CCLUB module. GLOBIOM endogenously calculates GHG emissions from agriculture, 
including crop and livestock production, forestry, and land use change. GTAP reports three 
overall categories of GHG emissions which collectively provide an estimate of global GHG 
impacts: 1) fossil fuel combustion CO2 emissions, 2) non-CO2 emissions including changes in 
these emissions for energy and energy activities,140 and 3) land use change emissions.141 

ADAGE endogenously calculates GHG emissions from the entire economy, including land use 
change. GCAM endogenously calculates all global GHG emissions sources, including those 
from the energy, agriculture, forestry and water systems, including from land use changes. Of the 
five highlighted models, ADAGE, GCAM, and GTAP are the only models that capture GHG 
emissions from market-mediated changes within the energy system. 

It is important to note that although all five models seem to overlap in their coverage of 
GHG emissions, they estimate GHG impacts using different methods. For example, GREET and 
GLOBIOM both estimate GHG emissions from crop production, but they do so in fundamentally 
different ways. GREET estimates the GHG emissions associated with producing the crops that 
are directly used in the biofuel supply chain under evaluation. In contrast, GLOBIOM estimates 
the GHG emissions associated with the market-mediated marginal changes in crop production 
stemming from a biofuel shock (i.e., the difference in crop production emissions from a scenario 
with a given amount of biofuel relative to a scenario absent that biofuel). ADAGE, GCAM and 
GTAP represent a further departure from the GREET approach as they include market-mediated 
GHG impacts from yet more economic sectors. A notable example is the inclusion of GHG 
emissions from transportation fuel market effects in ADAGE, GCAM and GTAP. When these 
models are shocked to consume more biofuels in a particular region, they estimate the effects of 
the shock on transportation fuel prices and consumption, both in the region where the shock 
occurs and all other global regions. Instead of assuming that biofuels displace gasoline or diesel 
on an energy-equivalent basis, these models estimate the global market-mediated changes in 
gasoline and diesel consumption associated with the biofuel shock and report the resulting GHG 
emissions changes. 

3.1.5 Land Representation 

Categorization or binning of land into types is an important, but often overlooked, 
consideration for land use change modeling. The ways in which land is categorized and the 
assumptions regarding how much of it is available or unavailable for commercial use vary 
widely across modeling frameworks. The GREET model does not explicitly represent land. But 
it is able to add induced land use change emissions through the CCLUB module, which uses 
GTAP. The other four models estimate interactions between cropland, pasture, forestry, and, in 
some of these models, other land types as well. For example, GLOBIOM, ADAGE and GCAM 

140 The non-CO2 emissions category includes “other CO2”, i.e., CO2 emissions from activities other than fossil fuel 
combustion, see Chepeliev (2020). These include CH4, N2O, and fluorinated gases (CF4, HFC134a, HFC23, SF6). 
141 Land use change GHG emissions are calculated based on land category area changes from GTAP and emissions 
factors from the AEZ-EF model. 
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also model the expansion of commercial cropland, pasture and forestry activities into grassland 
and forests that are not otherwise used for commercial production. By default, GLOBIOM and 
GCAM both place various exogenous limits on conversion of certain lands, to broadly represent 
land protection policies and regimes (e.g., protection of ecologically sensitive lands), though 
these assumptions may be modified. In contrast, as discussed in Section 2.4, while the GTAP 
databases represent managed and unmanaged lands, the GTAP-BIO model only allows managed 
lands to be used for productive uses, excluding the possibility for “unmanaged” land, such as 
rainforests or native grasslands, to be brought into agricultural or silvicultural production. As 
shown in Figure 5.2-1, this assumption applies to a relatively large share of arable land and 
means that GTAP employs a much different representation of commercially available land than 
the other models. Additionally, the share of non-commercial land assumed to be protected or 
unavailable for commercial use is also an important assumption across models. For example, to 
the extent modeling assumes that policies will be implemented and enforced to protect natural 
forests with high carbon stocks, this will likely reduce the land use change GHG estimates by a 
significant amount compared to a scenario which assumes laxer enforcement of land 
protections.142 Other differences in land representation, such as the representation of unused 
cropland and the treatment of multicropping, could also impact model results, and are discussed 
further in Sections 5.2 and 6.5, respectively. For land categories that are given the same name in 
different models (e.g., cropland, pasture), the underlying definitions and data may be different – 
investigating and potentially aligning these definitions and categorizations is a potential area for 
further research. 

3.1.6 Trade 

A significant source of theoretical and practical variation across the models considered in 
this comparison is their approach to representing commodity trade. ADAGE and GTAP 
represent trade bilaterally using an Armington approach (i.e., assuming imperfect substitution 
between the same product produced in different countries), however the degree of substitution 
varies across traded items. GLOBIOM models trade bilaterally based on the spatial equilibrium 
approach and assumes commodities to be homogenous and traded based on least expensive 
production costs, though transportation costs and tariffs are also included. GCAM represents 
trade in agricultural, livestock, forestry, and renewable fuel commodities through an Armington-
like approach and trade in all other commodities, including most energy commodities, through 
homogenous global markets.143 These methods have areas of overlap and similarity but lead to 
distinct structures of trade. These differences in structure have significance to the present model 
comparison exercise for multiple reasons. The ability of these models to deviate from the 
historical trade patterns to which they are calibrated varies. The willingness of simulated 
economic actors to substitute imported goods for domestically produced goods, and vice versa, 
also varies by model. 

142 Mignone, B. K., Huster, J. E., Torkamani, S., O’Rourke, P., & Wise, M. (2022). Changes in Global Land Use and 
CO2 Emissions from US Bioethanol Production: What Drives Differences in Estimates between Corn and Cellulosic 
Ethanol?. Climate Change Economics, 13(04), 2250008.; Plevin, R. J., et al. (2022). “Choices in land representation 
materially affect modeled biofuel carbon intensity estimates.” Journal of Cleaner Production: 131477. Figure S9. 
143 Note that the most recent public version of GCAM trades all energy goods through the Armington-like approach, 
rather than through homogenous markets. This version of the model was not released in time for inclusion in this 
exercise. 
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3.2 Input Parameters and Data 

In addition to the key model characteristics discussed above, it is also important to 
consider differences in data and parameter inputs used within models for biofuel GHG analysis. 
There have been very few published efforts to compare assumptions across these models or to 
evaluate which parameters are highly influential on model results. However, the previous work 
which has been done has suggested the parameter assumptions which are among the most 
influential in biofuel GHG analysis are related to: 

• Crop yields 
• Crop intensification 
• Land competition and land transitions 
• Carbon stocks of different land types 
• Trade 
• Peatland emissions 
• Substitutability in food and feed markets 

In this section, we review this previously published literature related to data and 
parameter inputs. We explore parameter sensitivity further through modeled scenarios in Section 
9. 

Assumptions related to crop yields and crop intensification are important for biofuel 
GHG modeling. Global crop yield data is readily available from FAO; however, this data is 
generally available at a country level and it is also crop-specific. Many models require data 
inputs for subnational physical regions and must also aggregate many of the dozens of FAO-
reported crops into groups for computational tractability. Modelers must determine for 
themselves how to downscale or aggregate data as needed. There may be differences in how the 
models map this historical data to the crop categories and physical regions they represent. 
Assumptions about how crop yields may change in the future are also influential and inherently 
uncertain. Perhaps even more important for biofuel modeling are assumptions about how crop 
yields may change in response to price changes. Plevin et al. (2015) performed a sensitivity 
analysis of biophysical and economic inputs to the GTAP+AEZ-EF modeling framework, and 
found the elasticity of crop yield with respect to price (YDEL) to be “by far” the most influential 
parameter in terms of its effect on the estimated ILUC emissions associated with corn ethanol, 
sugarcane ethanol and soybean oil biodiesel.144 In the GTAP model used in this model 
comparison, the YDEL parameter may have less influence on the results, as it now accounts for 
the ability of increased harvest frequency and use of “unused cropland” to increase crop 
production without extensification..145 However, a sensitivity analysis with GCAM did not 
identify crop yield assumptions to be among the most influential parameters determining corn 
ethanol land use change GHG emissions.146 This suggests that input parameters that are highly 

144 Plevin, R. J., et al. (2015). “Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-
Induced Land Use Change.” Environmental Science & Technology 49(5): 2656-2664. 
145 Taheripour, F., et al. (2017). “The impact of considering land intensification and updated data on biofuels land 
use change and emissions estimates.” Biotechnology for Biofuels 10(1): 191 
146 Plevin, R. J., et al. (2022). “Choices in land representation materially affect modeled biofuel carbon intensity 
estimates.” Journal of Cleaner Production: 131477. Figure 7. 

41 



  
 

 
 

  
  

 
     

  
  

 
   

  
  
 

 
    

   

    
 

 
   

    
  

 
 

  
 

     
   

   
  

  
  

 
           

            
 

                
     

           
            

 
            

   
                

    
                    

              

influential in one model might not highly influential in another model due to structural 
differences between frameworks. 

The parameters which control land competition and land transitions within models are 
also important. These parameters control the amount of substitution between land types that 
occurs based on changes in commodity prices and land rental rates. A sensitivity analysis of 
GCAM found the parameter controlling ease of transition between cropland, forest, and 
grassland to be an influential parameter. A sensitivity analysis of GTAP also found that the 
assumed elasticity of transformation between managed forest, cropland, and pasture is influential 
for corn ethanol LUC GHG estimates.147 

Sensitivity analysis using GCAM found other assumptions to be influential when 
estimating corn ethanol land use change GHG emissions, including the soil carbon density of 
cropland, ease of transition between crop types, the soil carbon density of grassland, and the soil 
carbon density of other arable land.148 Other influential assumptions identified through 
sensitivity analysis with GTAP include the relative productivity of newly converted cropland, 
trade elasticities (i.e., ease of substitution among products imported from other countries) and 
emissions from conversion of cropland pasture.149 

Sensitivity analyses have shown that other influential assumptions within GTAP include, 
but are not limited to, tropical peat soil oxidation and the share of palm oil expansion on peatland 
for vegetable oil based biofuel modeling, and the share of vegetable oil biofuel feedstock that is 
supplied through expanded vegetable oil production versus reduced demand and substitutions 
with other products.150 

Another influential assumption in biofuel GHG modeling is the choice of data sets for 
soil carbon and biomass carbon stocks, and how these data are mapped to land categories and 
regions to determine the GHG emissions from converting an acre of land from one use to 
another. The soil and biomass carbon data sources used in each model are discussed in the model 
descriptions above. Soil carbon data and analysis are active areas of research, and higher 
resolution datasets have recently been produced using statistical methods and remote sensing 
data.151 For example, the SoilGrids250m version 2.0 dataset provides soil carbon estimates for 
the globe with quantified spatial uncertainty,152 and Spawn et al. (2020) developed global maps 

147 Plevin, R. J., et al. (2015). “Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-
Induced Land Use Change.” Environmental Science & Technology 49(5): 2656-2664. Table S9 in the Supplemental 
Information. 
148 Plevin, R. J., et al. (2022). “Choices in land representation materially affect modeled biofuel carbon intensity 
estimates.” Journal of Cleaner Production: 131477. Figure 7. 
149 Plevin, R. J., et al. (2015). “Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-
Induced Land Use Change.” Environmental Science & Technology 49(5): 2656-2664. Table S9 in the Supplemental 
Information. 
150 ICAO (2021). CORSIA Eligible Fuels -- Lifecycle Assessment Methodology. CORSIA Supporting Document. 
Version 3: 155. Section 6.2 
151 Spawn-Lee, Seth. (2022). “Carbon: Where is it and how can we know?” Presentation for EPA Biofuel GHG 
Modeling Workshop. February 28, 2022. EPA-HQ-OAR-2021-0921-0022 
152 Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: 
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, 2021. 
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4 

of above and below ground biomass carbon density in the year 2010.153 With few exceptions,154 

these newer data sets have not yet been incorporated into published estimates of biofuel land use 
change. 

Model Comparison Core Scenarios 

Description of Core Modeled Scenarios 

To compare the five models described above, we ran two scenarios through each 
framework: 1) a reference case, 2) a corn ethanol scenario (also referred to as the “corn ethanol 
shock”), and 3) a soybean oil biodiesel scenario (also referred to as the “soybean oil biodiesel 
shock”). All of these scenarios are hypothetical and designed solely for the purpose of evaluating 
and comparing the models. The modeled scenarios do not represent our forecast of what is likely 
to occur in the future, nor should they be interpreted as reflecting EPA’s expectations about 
future biofuel policy decisions. 

For the three dynamic models (ADAGE, GLOBIOM, and GCAM), we defined a 
hypothetical reference case for modeling purposes with U.S. biofuel consumption volumes for 
each modeled fuel set to constant values from 2020-2050, based on the 2016-2019 average from 
EPA-Moderated Transaction System (EMTS) data (Table 4-1). We used the EMTS sum of 
biodiesel and renewable diesel for the biodiesel baseline. For GTAP, the reference case is the 
global economy as represented in the 2014 GTAP database. 

The core GREET model, excluding the ILUC module, does not include an explicit 
reference case for corn ethanol or soybean oil biodiesel. As discussed above, GREET does not 
model GHG impacts resulting from a change in biofuel production relative to a reference case. 
Instead, it estimates the GHG emissions associated with, or attributable to, each biofuel supply 
chain. Although it does not include scenarios, GREET considers background and foreground 
data. The foreground data represents the processes in the supply chain evaluated (e.g., corn 
farming, ethanol production). The background data represents processes that are outside of the 
supply chain, but that provide energy and material inputs to the supply chain (e.g., electricity 
grid, natural gas supply chain, fertilizer supply chain). While GREET is a static time step model, 
it provides default assumptions and estimates for individual years out to 2050. For the purposes 
of this model comparison, we use GREET with the analysis year set to 2030.155 

153 Spawn, S. A., et al. (2020). “Harmonized global maps of above and belowground biomass carbon density in the 
year 2010.” Scientific Data 7(1): 112. 
154 Lark, T. J., et al. (2022). “Environmental outcomes of the US Renewable Fuel Standard.” Proceedings of the 
National Academy of Sciences 119(9): e2101084119. 
155 Argonne National Lab updates GREET on an annual basis with modifications that impact results across many of 
the pathways. Results in this section are from GREET-2022. 
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Table 4-1: U.S. annual biofuel consumption volumes in the model reference case, for 2020-
2050156 

Billion Gallons Quad BTU 

Ethanol from Corn 14.82 1.126 
Biodiesel from Soybean Oil 1.19 0.14 
Biodiesel from Canola/Rapeseed 
Oil 0.26 0.03 

Biodiesel from Palm Oil 0.09 0.01 
Ethanol from Sugarcane 0.1 0.007 

In addition to the reference case, we ran a corn ethanol scenario and a soybean oil 
biodiesel scenario. The corn ethanol scenario is a consumption shock with an additional one 
billion gallons (0.076 QBTU) of U.S. corn ethanol consumption in each year, with all other U.S. 
biofuel consumption volumes set by assumption at the reference case levels. The soybean oil 
biodiesel scenario is a consumption shock with an additional one billion gallons (0.118 QBTU) 
of U.S. soybean oil biodiesel consumption in each year, with all other U.S. biofuel consumption 
volumes set by assumption at the reference case levels. We selected the one billion gallon shock 
size as a simple and reasonably sized shock that is large enough for the purposes of testing these 
models. For the large economic models considered in our model comparison, it is necessary to 
specify a change that is large enough to produce a tangible change in the model. We also did not 
want to specify a shock that would be unreasonably large given current biofuel production levels. 
As discussed above, these scenarios are hypothetical and designed solely for research purposes. 

For the dynamic models (ADAGE, GCAM, GLOBIOM), the shocks increase linearly 
from 2020 to 2030, such that that there is a 0.5 BG shock in 2025, and the full 1 BG shock is 
reached in 2030. In these models, volumes are held at the 2030 value for 2030 to 2050 (Table 4-
2). The results from this exercise may be sensitive to the shape of the implemented shock of 
time. We designed the scenarios with this ramp up to 2030 for a few reasons. First, these models 
are primarily designed for evaluating future scenarios. While it is possible to set up these models 
for retrospective analysis to simulate historical years (“hindcasting”), we did not have the time or 
resources to complete such an analysis as part of this model comparison exercise. Second, we 
designed the scenario with a linear ramp up to 2030 as that is the first future time period 
represented in GLOBIOM. 

For GTAP, these U.S. biofuel consumption volumes were added to the 2014 base year. 
Because GTAP is a comparative static model, there is no ramp up period for the biofuel 
consumption shocks in the modeled results for this framework. 

156 To convert between gallons and Quad BTU, we used a lower heating value for ethanol of 0.076 Quad 
BTU/Billion gallon, and a lower heating value for biodiesel of 0.118 Quad BTU/Billion gallon. For GTAP, the 
reference case is 2014, which includes the following U.S. biofuel volumes: 14.29 billion gallons (1.09 Quad BTU) 
of corn ethanol, 0.20 billion gallons (0.01 Quad BTU) of other ethanol, 0.68 billion gallons (0.08 Quad BTU) of 
soybean oil biodiesel, and 0.61 billion gallons (0.07 Quad BTU) of other biodiesel. 
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Table 4-2: U.S. corn ethanol and soybean oil biodiesel consumption volumes, in Quad BTU, 
for ADAGE, GCAM, and GLOBIOM 

2020 2025 2030 2035 2040 2045 2050 
Reference Case 
Ethanol from Corn 1.126 1.126 1.126 1.126 1.126 1.126 1.126 
Biodiesel from Soybean Oil 0.140 0.140 0.140 0.140 0.140 0.140 0.140 
1 BG Soybean Oil Biodiesel Case 
Ethanol from Corn 1.126 1.126 1.126 1.126 1.126 1.126 1.126 
Biodiesel from Soybean Oil 0.140 0.199 0.258 0.258 0.258 0.258 0.258 
1 BG Corn Ethanol Case 
Ethanol from Corn 1.126 1.164 1.202 1.202 1.202 1.202 1.202 
Biodiesel from Soybean Oil 0.140 0.140 0.140 0.140 0.140 0.140 0.140 

For these scenarios, we aligned the conversion factors for vegetable oil to biodiesel and 
corn to ethanol across ADAGE, GCAM, and GLOBIOM (Table 4-3). These factors were aligned 
to represent a standard dry mill process for production of corn ethanol, assuming natural gas use 
to dry 100 percent of the DDG coproduct produced, and a transesterification process for 
production of soybean oil biodiesel. The 2015 conversion factors are based on data received 
from petitions under the RFS. For corn ethanol, the yield increase over time assumes that the 
corn ethanol yield will approach the theoretical maximum efficiency of corn conversion to 
ethanol by 2050, based on the assumed quantity of convertible material in a given quantity of 
corn. Compared to our assumed 2020 yield, this is approximately a 10 percent increase in 
ethanol yield per unit of corn feedstock. For soybean oil biodiesel, the yield increase over time 
assumes that current state-of-the-art technology will become the nationwide industry average by 
2050. Compared to our assumed 2020 yield, this is approximately a 5 percent increase in 
biodiesel yield per unit of soybean oil feedstock. By default, the GTAP model uses conversion 
assumptions based on historical data from 2014. While it is possible to adjust the conversion 
yield in GTAP, we did not do so for his exercise in order to maintain the consistency of the 2014 
database. In GTAP, the conversion factor for corn to ethanol is 2.8 gal/bushel, and the 
conversion factor of soybean oil to biodiesel is 0.132 gal/lb oil. For the corn ethanol shock, 
GTAP models a natural gas-fired dry mill corn ethanol process with dry DGS coproduct and no 
corn oil coproduct. For the biodiesel shock, GTAP models a standard natural gas-fired 
transesterification biodiesel production process. The GREET analysis relies on the assumptions 
in GREET for 2030, which are a conversion factor for corn to ethanol of 2.92 gal/bushel, and a 
conversion factor for soybean oil to biodiesel of 0.136 gal/lb oil. For 2030, GREET assumes by 
default that 99.6 percent of the energy use in dry mill ethanol production will be from natural 
gas, with the remainder from coal. 
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Table 4-3: Conversion factors for vegetable oil to biodiesel and corn to ethanol, for 
ADAGE, GCAM, and GLOBIOM 

Corn conversion 
to ethanol 
gal/bushel 

Soybean oil 
conversion to 
biodiesel 
gal/lb oil 

2015 
2020 
2025 
2030 
2035 
2040 
2045 
2050 

2.75 
2.78 
2.80 
2.85 
2.91 
2.96 
3.02 
3.06 

0.130 
0.132 
0.133 
0.134 
0.135 
0.135 
0.136 
0.136 

Corn ethanol production creates DDG and corn oil coproducts. Table 4-4 shows the 
assumptions in the models related to these coproducts. We did not align these assumptions across 
the models. However, ADAGE, GCAM, and GLOBIOM already had similar DDG and corn oil 
production assumptions. In GREET, less DDG and more corn oil is produced than in the other 
models. In GTAP, more DDG is produced, and corn oil is not represented. ADAGE, GCAM, and 
GLOBIOM all produce less DDG coproduct over time as corn ethanol production becomes more 
efficient (i.e., more gallons per bushel) and a greater share of the initial feedstock mass is 
converted to fuel. Soybean oil biodiesel production creates a glycerin coproduct. ADAGE, 
GCAM, GLOBIOM and GTAP do not explicitly model this coproduct, while GREET does 
explicitly model the glycerin coproduct.157 

Table 4-4: Coproduct assumptions for corn ethanol 
DDG (lb/gal ethanol) Corn oil (lb/gal ethanol) 

ADAGE (2020) 5.9 0.2 
ADAGE (2050) 5.1 0.2 
GCAM (2020) 5.9 0.2 
GCAM (2050) 5.1 0.2 
GLOBIOM (2020) 5.9 0.2 
GLOBIOM (2050) 5.1 0.2 
GREET (2030) 4.2 0.4 
GTAP (2014) 6.1 --

Note: Model year shown in parentheses. 

A key assumption in soybean oil biodiesel production is the shares of soybean oil and 
soybean meal produced per unit of soybeans crushed. Table 4-5 shows the soybean crush yield 
share assumptions for each model. ADAGE, GCAM, and GLOBIOM all assume that 0.19 tons 
of soybean oil are produced per ton of soybean crushed. These values are not assumed to change 
over time in these models, and the assumptions are uniform across model regions. GREET and 

157 In GREET, roughly 0.1 lb of glycerin is produced per pound of soy oil input. 
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5 

GTAP assume higher oil yields and lower meal yields relative to ADAGE, GCAM, and 
GLOBIOM. In GTAP the amount of soybean oil produced from crushing varies by region. 

Table 4-5: Production assumptions for soybean oil biodiesel 
Soybean oil (tons oil/tons 
soybean) 

Soybean meal (tons oil/tons 
soybean) 

ADAGE (2020) 0.19 0.8 
ADAGE (2050) 0.19 0.8 
GCAM (2020) 0.19 0.8 
GCAM (2050) 0.19 0.8 
GLOBIOM (2020) 0.19 0.8 
GLOBIOM (2050) 0.19 0.8 
GREET (2030) 0.22 0.78 
GTAP (2014)158 0.2 0.8 

Note: Model year shown in parentheses. 

Comparison of Reference Case Estimates 

In this section we compare the estimates and assumptions from the reference case. We 
look, in turn, at the following elements from the reference case: 

• Crop production 
• Land use impacts 
• Crop yields 
• Energy consumption 
• GHG emissions 

The majority of these comparisons include ADAGE, GCAM, GLOBIOM, and GTAP. 
The comparison of energy consumption does not include GLOBIOM as this model does not 
endogenously consider energy markets. Only the comparisons of crop yield and GHG emissions 
includes GREET. GREET is a supply chain LCA model that does not represent changes in 
agricultural and economic markets between reference and modeled scenarios, as the other 
models in this comparison exercise are designed to estimate. 

5.1 Crop Production 

ADAGE, GCAM, GLOBIOM, and GTAP each include different crops, which we 
aggregated into common categories for reporting purposes to better enable comparison across the 
models. Table 5.1-1 shows the crops included in each model, and how they are reported here. Of 
the models, GLOBIOM includes the most disaggregated set of modeled crop categories. In 

158 Values are approximate for the USA region. GTAP crushing rates are based on the mean data provided by the 
World Oil data set. This data set shows the crushing rate for soybeans varies across countries, and is generally 18-
20 percent, with some rare cases of 17 percent (in Bangladesh and Thailand) and 21 percent (in Japan). The World 
Oil data shows a crushing rate of 19.75 percent for the U.S. in 2014, which is implemented in the GTAP database 
construction. 
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ADAGE, palm fruit and rapeseed are not explicitly represented, but are included under “rest of 
oilseeds.” 

Table 5.1-1: Crops represented in ADAGE, GCAM, GLOBIOM, and GTAP 
Model 
Comparison 
Category 

ADAGE GCAM GLOBIOM GTAP 

Corn Corn Corn Corn Corn 
Soybean Soybean Soybean Soybean Soybean 
Wheat Wheat Wheat Wheat, Durum 

wheat*, Soft 
wheat* 

Wheat 

Rice Not explicitly 
represented; 
aggregated with 
“other grains” 

Rice Rice Paddy rice 

Sugar crops Sugarcane, 
Sugar beet 

Sugar crops Sugar cane, 
Sugar beet* 

Sugar crops 

Palm fruit Not explicitly 
represented; 
aggregated with 
“rest of oilseeds” 

Oil palm and 
coconuts 

Palm fruit Palm fruit 

Rapeseed Not explicitly 
represented; 
aggregated with 
“rest of oilseeds” 

Rapeseed Rapeseed Rapeseed 

Other oil crops Rest of oilseeds Oil crops Groundnut, 
Sunflower 

Other oil seeds 

Other grains Rest of cereal 
grains 

Other grain Barley, Millet, 
Sorghum 

Other grain 

Energy crops None159 Herbaceous 
biomass crop; 
woody biomass 
crop 

Other crops Rest of crops Root/tuber; 
Fiber crop; 
Fodder herb, 
Fodder grass, 
Miscellaneous 
crops 

Cassava, 
Chickpeas, Dry 
beans, Potatoes, 
Sweet potatoes, 
Cotton, Peas*, 
Rye*, Oat*, 
Flax* 

Other crops 

*EU region only 

159 ADAGE has the ability to model switchgrass and miscanthus, but production of those crops were not included in 
these scenarios. 
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Figure 5.1-1 shows the reference case crop production in 2014 (GTAP) and 2020 and 
2050 (ADAGE, GCAM, and GLOBIOM). Total crop production in 2020 in the USA region is 
highest in the ADAGE results and lowest in the GLOBIOM results. In the non-USA regions, 
GCAM results have the highest 2020 crop production, and GLOBIOM results have the lowest 
production. In 2050, the total production is again the highest in ADAGE results in the USA 
region, and the highest in GCAM results in the non-USA region. The total crop production in the 
USA region has a similar percent increase between 2020 and 2050 in the ADAGE and GCAM 
results (30 percent and 27 percent, respectively). However, the ADAGE and GCAM results 
differ in the growth rate of the production of individual crops. GLOBIOM results have a lower 
percent increase in crop production (13 percent). In the non-USA regions, GCAM and 
GLOBIOM results have a similar percent increase in total crop production (47 percent and 50 
percent, respectively), whereas ADAGE results have a lower percent increase in total crop 
production (21 percent). 

Figure 5.1-1: Crop production (million metric tons) in the reference case160,161 

Table 5.1-2 compares these modeled values with crop production data from FAOSTAT. 
GTAP’s crop production, which is calibrated to 2014 data, aligns closely with the FAOSTAT 
2014 production data for corn and soybeans. 2020 crop production in ADAGE, GCAM and 
GLOBIOM differs from the 2020 FAO values, for a few reasons. First, these models project 
2020 production from a 2010, 2015, and 2000 model base year respectively. Long run economic 
modeling projections do not, as a general methodological practice, attempt to build in exogenous 
representation of short term historical economic shocks in modeled periods (i.e., times steps after 

160 Note that the USA and non-USA regions are shown on different scales to better show differences across the 
models. 
161 Reference case production values in the “Other Crops” category are mostly incomparable between models 
because the models differ in which crops are represented in this category (see Table 5.1-1). 
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the model base year), and these models should be expected to endogenously predict such shocks. 
This alone leads to some variation in modeled estimates from the historical record for years like 
2020, where a significant economic shock occurred in the form of the COVID-19 pandemic. 
Second, as described in Section 3.1.2, the 2020 time step in ADAGE and GCAM represents a 
slightly different time period than the 2020 time step in GLOBIOM. The ADAGE, GCAM, and 
GLOBIOM crop production in 2020 generally falls within the range of production over the years 
2015-2021, with a few exceptions. The ADAGE corn production results are higher than the FAO 
range in the USA region, but lower than the FAO range in the non-USA regions. ADAGE and 
GCAM soybean production results are both lower than the FAO range in the non-USA regions. 

Table 5.1-2: Corn and soybean production (million metric tons) from reference case and 
FAOSTAT data162 

Data source Corn, USA 
Region 

Soybean, USA 
Region 

Corn, Non-USA 
Region 

Soybean, Non-
USA Region 

GTAP, 2014 361 107 678 199 
FAOSTAT, 
2014 

361 107 680 199 

ADAGE, 2020 462 114 622 199 
GCAM, 2020 376 111 733 204 
GLOBIOM, 
2020 

368 99 742 219 

FAOSTAT, 
2020 

358 115 805 240 

FAOSTAT, 
2015-2021 range 

345-412 97-121 708-826 216-251 

5.2 Land Use 

ADAGE, GCAM, GLOBIOM, and GTAP each include different land types, and different 
assumptions about the reference area of each land type over time. For this exercise, for reporting 
purposes we mapped land types to common categories across the models, as shown in Table 5.2-
1. Areas of land types in the “other non-arable land” category are held constant over time and 
cannot convert to other land types. 

162 FAOSTAT data from: https://www.fao.org/faostat/en/#data. Non-USA values were calculated by subtracting the 
United States production from the World production. FAOSTAT 2015-2021 range shows the highest and lowest 
production from the years 2015 to 2021. These do not necessarily correspond to the 2015 and the 2021 values. 
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Table 5.2-1: Land representation in ADAGE, GCAM, GLOBIOM, and GTAP 
Model 
Comparison 
Category 

ADAGE GCAM163 GLOBIOM GTAP 

Cropland Cropland Cropland Cropland, short 
rotation 
plantation 

Cropland* 

Forest 
(managed) 

Managed forest Commercial 
forest 

Managed forest Forest164 

Forest 
(unmanaged) 

Natural forest Forest Unmanaged 
forest 

Grassland Natural grassland Grassland Grassland 
Other arable 
land 

Not included Other arable land Other agricultural 
land, other 
natural land 

Cropland 
pasture*, “unused 
land”* 

Other non-
arable land 

Other land: 
includes bare 
ground, wetlands, 
mangroves, salt 
marsh, glaciers, 
lakes 

Tundra, 
Rock/ice/desert, 
Urban 

Wetlands, “not 
relevant” (e.g. 
ice, water bodies) 

Pasture 
(managed) 

Pasture Intensively-
grazed pasture 

Pasture Pasture165 

Pasture 
(unmanaged) 

Not included Other pasture 

Shrubland Not included Shrubland 
* GTAP results report an aggregated “Cropland” category which is meant to represent fallow cropland in addition to 
actively cultivated cropland. For the scenario difference values, we are able to disaggregate those fallow land 
categories – “cropland pasture” and “unused land” – and assign them to the “Other arable land” model comparison 
category. For this model comparison exercise, GTAP assumes no change in U.S. Conservation Reserve Program 
area due to the biofuel shocks. 

Reference case land use for arable land is shown in Figure 5.2-1 for 2014 (GTAP) and 
2020 and 2050 (ADAGE, GLOBIOM, and GCAM).166 The GTAP reference case land areas 
differ most from the other models because GTAP does not include unmanaged land such as 
unmanaged forest, grassland or shrubland. 

163 In the version of GCAM used in this exercise, land types are further split by mineral soil and peat soil. 
164 In the GTAP database the managed forest area is the sum of managed/commercial forest and “accessible” forest, 
with accessibility determined based on an analysis of distance from roads. 
165 In the GTAP database pasture area includes areas of grassland. 
166 Land cover and land use changes in the model reference cases are based on the agricultural demand, differences 
in land rent among land types, ease of substitution among land, and relative changes in land productivity. 
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Figure 5.2-1: Arable land use (million metric hectares) in the reference case167,168 

For cropland, GLOBIOM shows lower area than other models in the non-USA regions. 
For forest, ADAGE and GLOBIOM have similar area in the non-USA regions, and GCAM has 
lower area. Because GTAP only represents managed forest, the total forest area is smaller than 
the other models. But the managed forest area is larger than the other models. Grassland is 
highest in ADAGE, followed by GCAM then GLOBIOM. For pasture, only GCAM 
differentiates between managed and unmanaged pasture. GCAM has very little managed pasture 
in the non-USA regions, but similar total pasture as GTAP. GTAP shows the largest area of 
managed pasture, as it represents pasture and grassland jointly. ADAGE and GLOBIOM have 
lower total pasture. 

ADAGE, GCAM, and GLOBIOM all project an increase in cropland area and a decrease 
in grassland area over time, both in the USA region and the non-USA regions. Each of these 
models also shows a decrease in non-USA total forest area over time, with an increase in 
managed forest and a decrease in unmanaged forest. In the USA region, GCAM and GLOBIOM 
both show an increase in total forest area over time, with an increase in managed forest and a 
decrease in unmanaged forest. In ADAGE, the USA region has a small decrease in managed 
forest and increase in unmanaged forest, with an overall decrease in total forest area. For pasture, 
ADAGE, GCAM, and GLOBIOM show different trends. In the non-USA regions, total pasture 
decreases over time in ADAGE and GCAM, but increases in GLOBIOM. In the USA region, 
total pasture increases over time in ADAGE, and decreases in GCAM and GLOBIOM. In 
GCAM, managed pasture area increases over time, and unmanaged pasture area decreases over 
time, in both the USA region and non-USA regions. 

167 Note that the USA region and the non-USA region have different scales. 
168 Cropland area in GTAP represents the sum of land cultivated for row crops, cropland pasture, and other unused 
land that GTAP classifies as cropland. This differs from the “Cropland” category of land presented in Figure 6.6-2 
and Figure 7.6-2 which illustrate changes in cropland compared to the reference case. In those figures, cropland 
pasture and other unused cropland are assigned to the “Other Arable Land” category. 
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The GLOBIOM and GCAM reference case results include reductions in “other arable” 
land over time from 2020 to 2050. For GCAM, the other arable land category includes fallow, 
unused, and unharvested cropland and also serves to represent differences in land area estimates 
between FAO and other data sources. None of the models explicitly represent Conservation 
Reserve Program (CRP) land in the USA as a unique land category. For agricultural land areas, 
GLOBIOM and GCAM rely on FAO data, which does not explicitly list CRP. CRP may be 
implicitly represented in the “other arable” category of GCAM and GLOBIOM, but without 
explicitly accounting for the particular incentives offered to farmers by the program. ADAGE 
does not include CRP and does not explicitly account for conservation management decisions. 
The GTAP database includes data on CRP area, but the GTAP model included in our comparison 
exercise assumes no change in CRP area due to the biofuel shocks, and this is the standard 
assumption used in the GTAP model. Given that other studies focusing on the U.S. suggest that 
biofuel consumption may have a significant effect on CRP area,169 this may be an area for future 
research and model development. 

5.3 Crop Yield 

ADAGE, GCAM, and GLOBIOM use different exogenous assumptions about crop yield 
growth over time. In GLOBIOM, exogenous yield improvements represent technological change 
and multi-cropping. Crop yield growth is based on an extrapolation of historic yield trends from 
FAO data. Exogenous assumptions on multi-cropping are based on a literature review and apply 
to areas such as Brazil. In GCAM, exogenous yield growth is based on FAO data. In ADAGE, 
land productivity by land type is from the linked EPPA-TEM model, and a 1 percent annual 
growth in crop yield is assumed. 

These models also have the ability to change crop yields endogenously, based on changes 
in prices or other factors, as does the GTAP model. In ADAGE and GTAP, a nested CES 
(constant elasticity of substitution) function governs the endogenous yield changes. Materials 
(e.g., fertilizer) or energy (e.g., for farm equipment) can be substituted for land to increase the 
yield. Additional capital or labor can also be invested to increase yields. GTAP imposes a 
restriction on substitution among labor, land, and a mix of capital-energy in crop sectors to reach 
a target for price-induced yield response. GCAM has four different technology options (rainfed 
vs. irrigated; low-yield vs. high-yield), each with different yields. A logit function determines the 
share of production in each of these technology options based on profit rates, and the prices of 
fertilizer and irrigation water also affect the competition of these technologies. Yields within any 
land use region, crop type, and irrigation level can increase or decrease by up to 20 percent based 
on the profitability. GLOBIOM also has four management options with different intensity levels 
(subsistence, low input, high input, irrigated high input). Crop production is represented at the 
grid level, and GLOBIOM can reallocate production from one cell to another based on the 
productivity and profitability. 

Reference case corn and soy annual yields for these models are shown in Figure 5.3-1. 
This figure also shows the 2014 yields in GTAP, and data and yield projections from USDA. 

169 See for example, Chen, X., & Khanna, M. (2018). Effect of corn ethanol production on Conservation Reserve 
Program acres in the US. Applied Energy, 225, 124-134. 
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Models show a range in the crop yield and the yield growth rate. For corn, ADAGE and GCAM 
have the highest yields in the USA region. For soybeans, GCAM has the highest yield and 
ADAGE has the lowest yield in the USA region. USDA data and projections are generally within 
the range of the modeled yields. In the USA region, the 2030 corn yield in GREET is 12.5 t/ha, 
and the soybean yield is 3.7 t/ha. The non-USA region yield is weighted by crop production for 
each individual region outside of the USA region. The corn and soybean yield in the non-USA 
region is similar across models, although there is more variation in the soybean yields over time. 

Figure 5.3-1: Corn and soybean yields (tons per hectare) in the reference case170 

5.4 Energy Consumption 

Each model was given specifications for biofuel consumption in the USA region to stay 
constant at specific levels in the reference case.171 However, constraints were not placed on 
biofuel consumption in non-USA regions. Figure 5.4-1 shows the biofuel consumption in 
ADAGE, GCAM, GLOBIOM, and GTAP. The models show very different reference case 
amounts of biofuel consumption in the non-USA regions in 2020, and different projections over 

170 Yields reported from ADAGE, GLOBIOM, GTAP, and in the USDA data and projections are calculated as crop 
production per harvested area (i.e., production per harvest). Yields reported from GCAM are calculated as crop 
production per cultivated area (i.e., production from all harvests per cultivated area, where cultivated area is equal to 
harvested area divided by harvest frequency). 
171 ADAGE does not include rapeseed oil consumption in the USA region, so that consumption volume is set at zero 
instead of the specified amount. 
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time through 2050. Since GLOBIOM does not endogenously represent energy markets, levels of 
consumption of biofuels are set exogenously for all regions. For this exercise, consumption 
levels of biofuels in the non-USA regions are held constant throughout the period of analysis. 
GCAM shows similar total biofuel consumption in the non-USA region as GLOBIOM in 2020, 
but the consumption more than doubles by 2050. ADAGE has much lower total biofuel 
consumption in non-USA regions in 2020 than the other models, with almost no consumption of 
soybean oil biodiesel.172 Biofuel consumption increases over time, with most of the increase in 
ethanol from sugar crops. In GTAP, the 2014 non-USA biofuel consumption is higher than the 
2020 consumption in ADAGE and lower than the 2020 consumption in GCAM and GLOBIOM. 
There are also differences in the fuel categories, with most of the ethanol in GTAP coming from 
an aggregated “other feedstocks” category rather than sugar crops, and most of the biodiesel 
coming from “other oil crop oil.” 

Figure 5.4-1: Biofuel consumption (Quad BTU) in the reference case 

ADAGE, GCAM, and GTAP show similar fossil fuel consumption in the reference case 
(Figure 5.4-2).173 Consumption of natural gas, coal, and refined oil is slightly higher in the USA 
region in 2020 in ADAGE than GCAM. In GTAP, the 2014 coal consumption in the USA is 
higher than the 2020 consumption in ADAGE and GCAM, but the 2014 natural gas and refined 
oil consumption is lower than the 2020 consumption in ADAGE and GCAM. In both ADAGE 

172 ADAGE includes conventional vehicles and alternative fuel vehicles in its transportation sector. In this reference 
run, ADAGE projects biofuel consumption in non-USA regions based on the relative competitiveness of 
conventional and alternative fuel vehicles in the model over time. As electric vehicles become more competitive, 
less biofuel is consumed. In the assumptions used by ADAGE in this run, soybean oil biodiesel is more costly to 
produce than other biofuels in non-USA regions, so it is not consumed in these regions in the reference. 
173 GLOBIOM does not model fossil energy consumption. 
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and GCAM, natural gas consumption in the USA region increases over time, and coal 
consumption decreases. In GCAM, refined oil consumption in the USA region decreases 
between 2020 and 2050, whereas in ADAGE refined oil consumption increases. In the non-USA 
regions in 2020, ADAGE has higher refined oil and natural gas consumption, but lower coal 
consumption than GCAM. Both models show increases in consumption of these fossil fuels over 
time in the non-USA regions, with ADAGE showing a larger increase. GTAP’s 2014 non-USA 
coal consumption is higher than the ADAGE and GCAM 2020 consumption, whereas the refined 
oil consumption is lower. Natural gas consumption in 2014 in the non-USA region of GTAP is 
slightly higher than GCAM’s 2020 consumption. The differences between GTAP and other 
models may reflect the difference in time periods represented. Differences across the models in 
the reference case fossil fuel and biofuel consumption over time could impact the results of the 
amount and type of fuel displaced in the biofuel volume shocks. Exploring the impact of these 
differences could be an area for future research. 

Figure 5.4-2: Fossil fuel consumption (Quad BTU) in the reference case 

5.5 GHG Emissions 

The models in this exercise include emissions from different sectors, with ADAGE and 
GCAM including emissions from the entire global economy, GTAP including emissions from 
land use change, the energy sector, and emissions from other sectors and activities, and 
GLOBIOM including emissions from crop production, livestock, and land use change (Table 3-
1). GREET reports emissions associated with the supply chain of biofuel production. GREET’s 
CCLUB module is able to add indirect land use change emissions as well. Each model also 
reports different greenhouse gases (Table 5.5-1). 
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Table 5.5-1: Greenhouse gases represented in each model 
ADAGE GCAM GLOBIOM GREET174 GTAP 
CO2, CH4, HFC, 
N2O, PFC, SF6 

CO2, CH4, 
HFC125, 
HFC134a, 
HFC152a, 
HFC227ea, 
HFC23, 
HFC236fa, 
HFC32, 
HFC365mfc, 
N2O, PFC, SF6 

CO2, CH4, N2O CO2, CH4, N2O CO2, CH4, N2O, 
Fluorinated gases 
(CF4, HFC134a, 
HFC23, SF6) 

Total GHG emissions in 2020 in the reference case are around 57 gigatons CO2 

equivalents (GtCO2eq) in ADAGE and 59 GtCO2eq in GCAM. For comparison, the IPCC Sixth 
Assessment Report estimates that global GHG emissions were 59±6.6 GtCO2eq in 2019.175 In 
both ADAGE and GCAM, CO2 is the largest contributor to the emissions, with methane the 
second largest contributor. The GCAM reference case has higher non-CO2 emissions in 2020 
than ADAGE and GLOBIOM. 

Figure 5.5-1 groups reference case emissions into a several broad categories. "Energy 
from Fossil Fuels" includes all GHG emissions from fossil fuel combustion. Consequently, fossil 
fuel emissions are not included in other categories. For example, emissions from diesel used to 
drive tractors for crop production are included under "Energy from Fossil Fuels" rather than 
"Crop Production." "Other (Industrial & Waste)" includes non-fossil fuel emissions from the 
industrial and waste management sectors, such as CO2 from cement manufacturing and CH4 

from landfills. "Livestock Production" includes emissions such as CH4 from enteric fermentation 
and N2O and CH4 from manure. "LUC" includes emissions from biomass and soil carbon 
associated with land use change. "Crop Production" includes emissions from crop inputs such as 
N2O from fertilizer use and from crop production processes such as CH4 from rice production. 

As shown in Figure 5.5-1, most emissions from ADAGE and GCAM come from CO2 

from the energy from fossil fuels category. “Other (Industrial & Waste)” emissions are similar in 
ADAGE and GCAM in 2020, but higher in GCAM than ADAGE by 2050. Emissions in this 
category come from a mix of greenhouse gases. Emissions in this sector are not reported in 
GLOBIOM. Emissions from livestock production are similar in ADAGE and GLOBIOM, and 
higher in GCAM, and come primarily from methane. Land use change emissions are 
significantly lower in ADAGE and GLOBIOM than GCAM. Crop production emissions are 
similar in ADAGE and GCAM in 2020, but are 50 percent lower in GLOBIOM. Crop 
production emissions increase over time in GCAM and GLOBIOM, but decrease over time in 
ADAGE. GTAP reports land use change emissions by comparing land use areas between two 
scenarios, but it does not track terrestrial carbon stocks or report total land use change emissions 

174 GREET includes the ability to represent GWPs of short-lived climate forcers (volatile organic compounds, 
carbon monoxide, NOx, and black carbon) but does not include them in results by default. 
175 IPCC, 2023: Summary for Policymakers. In: Synthesis Report of the IPCC Sixth Assessment Report (AR6). 
Available at: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf 
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in each scenario. GTAP does also report several other categories of emissions, including 
emissions from use of fossil fuels and total non-CO2 emissions from sources other than land use 
change. GREET is a supply chain LCA model that is designed to represent the emissions 
emanating from the fuel supply chain rather than estimate the global economic impacts of a 
change in biofuel consumption. GTAP and GREET are not included in Figure 5.5-1 because they 
do not represent scenario-based emissions over time. 

Figure 5.5-1: Global greenhouse gas emissions in ADAGE, GCAM, and GLOBIOM in the 
reference case176 

176 Note that the rows of this figure use different scales. GTAP is not included in this figure because it does not 
represent emissions over time, and due to time constraints, we do not have GTAP LUC emissions in the reference 
case, or GHG emissions by gas for the source categories used in this figure. For comparison, for GTAP, in the 
reference case (2014), fossil fuel combustion and industrial CO2 emissions = 30,048 Mt, and other GHGs emissions 
from all covered sources = 16,616 Mt CO2e, of which N2O = 2,891 Mt CO2e, CH4 = 8742 Mt CO2e, fluorinated 
gases = 986 Mt CO2e, and other CO2 = 3996 Mt CO2e. GREET is not included in this figure because it does not 
include an explicit reference case, and therefore does not provide reference case emissions. 
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6 

5.6 Summary of Reference Case Estimates 

The previous sections illustrate differences in the reference case in ADAGE, GCAM, 
GLOBIOM, GTAP and GREET. Notable differences are observed across the models in crop 
production, land use areas, biofuel and fossil fuel consumption in non-USA regions, and overall 
emissions. These include differences in the reference case for 2020, as the models are initialized 
with older data and define the 2020 time period in different ways. 

Some of these differences could impact the results of the corn ethanol and soybean oil 
biodiesel shocks from these models. For example, differences in the reference case crop yields 
among models would cause differences in the amount of land needed to produce additional 
crops. Differences in reference case biofuel and fossil fuel consumption among models could 
affect energy sector responses the biofuel shocks. Potential future research could focus on how 
the reference case influences the results of the biofuel shocks. 

Comparison of Corn Ethanol Estimates 

In this section, we present the results of the corn ethanol shock. The results in this section 
show the difference between the corn ethanol shock and the reference case. We consider the 
following elements in turn: 

• Sources of corn ethanol to meet the shock 
• Energy market impacts from the shock 
• Crop production and consumption 
• Trade impacts 
• Yield changes 
• Land use impacts 
• Emissions: the modeled results of energy consumption, crop production, and land use 

change described above come together in the modeled greenhouse gas emissions. 

The majority of these comparisons include ADAGE, GCAM, GLOBIOM, and GTAP. 
Only the comparison of GHG emissions includes GREET. GREET is a supply chain LCA model 
that does not represent changes in agricultural and economic markets between reference and 
modeled scenarios, as the other models in this comparison exercise are designed to estimate. 

6.1 Sourcing Overview 

The models included in this analysis have many options available for meeting the corn 
ethanol consumption shock. For example, the USA region could produce additional corn ethanol, 
import more corn ethanol, or export less corn ethanol. Additional imported corn ethanol supplies 
could come from reduced consumption of corn ethanol in non-USA regions, or increased 
production of corn ethanol. Increased domestic corn ethanol production could come from 
diversion of corn from other uses, or increased production of corn, through yield increases or 
increases in the area of corn cropland. This section will give an overview of the extent to which 
the models rely on each of the available options for meeting the corn ethanol consumption shock. 
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In the corn ethanol shock, most of the additional corn ethanol consumed in the USA 
region comes from increased corn ethanol production in the USA region (Figure 6.1-1). In 
ADAGE, GLOBIOM, and GTAP, the shock is met entirely by increased corn ethanol 
production, with no change in gross imports or exports of corn ethanol in the USA region. In 
GLOBIOM, because there is no energy sector, there cannot be a change in corn ethanol exports 
or imports, so the shock must be met by corn ethanol production in the USA region. 

In GCAM, up to 20 percent of the shock is met by changes in gross imports and exports 
of corn ethanol, with the change in exports contributing to a larger percentage of the shock over 
time. This change in exports is consistent with a reduction in the consumption of corn ethanol in 
non-USA regions (blue bars, Figure 6.1-2).177 These GCAM results illustrate the potential 
impact of dynamic energy sector modeling. Because some of the corn ethanol shock in GCAM is 
met through changes in the energy sector in the non-USA regions, less new corn ethanol needs to 
be produced, which reduces the impact on corn production and end uses. 

Figure 6.1-1: Sources of additional corn ethanol consumed in the corn ethanol shock 
relative to the reference case178 

ADAGE, GCAM, GLOBIOM, and GTAP meet the corn ethanol shock through different 
amounts of corn diversion from other uses, crop intensification, crop shifting to corn, and new 
cropland (Figure 6.1-2). Based on the assumed conversion factor of corn to corn ethanol (Section 
4), if all of the shock were met by new corn ethanol production, ADAGE, GCAM, and 
GLOBIOM would need 8.9 million metric tons of additional corn for ethanol in 2030 and 8.3 
million metric tons of additional corn for ethanol in 2050. GTAP would need 9.1 million metric 

177 As shown in Figure 6.2-1, sugarcane ethanol is substituting for corn ethanol in non-USA regions of GCAM. 
178 Red shows the contribution increased corn ethanol production in the USA region; orange shows the contribution 
from increased corn ethanol gross imports to the USA region; blue shows the contribution from reduced corn 
ethanol gross exports from the USA region. 
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tons of additional corn for ethanol in 2014. The bottom panel of Figure 6.1-2 shows the sourcing 
of corn for corn ethanol in units of million metric tons. In these results, GCAM needs less corn 
feedstock than ADAGE, GLOBIOM, and GTAP because some of the shock is met by a decrease 
in corn ethanol consumption in the non-USA region. 

In these results, commodity diversion (reduced crop use for other purposes) accounts for 
15-17 percent of the shock in ADAGE, 23-24 percent of the shock in GCAM, 26-40 percent of 
the shock in GLOBIOM, and 57 percent of the shock in GTAP. These results are described more 
in Section 6.3. Of the additional corn production, ADAGE, GCAM, GLOBIOM, and GTAP each 
use a different mix of crop intensification (increased corn yields), shifting of cropland from other 
crops to corn (“crop shifting” in Figure 6.1-2), and shifting land from other land types to 
cropland (“new cropland” in Figure 6.1-2). In the GCAM results, most of the new corn comes 
from new cropland. In the GLOBIOM and GTAP results, most of the new corn comes from 
shifting of cropland from other crops to corn. In the ADAGE results, there is a transition over 
time from more cropland shifting in 2030 to more new cropland in 2050. For GTAP, the primary 
strategy for meeting the corn ethanol shock is commodity diversion, highlighted by a 1 percent 
reduction in USA region feed consumption (DDG feed increases, corn feed decreases). However, 
this reduction in total feed use has a much smaller impact (0.002 percent reduction) on USA 
region meat and dairy production. Corn production and land use results are described in more 
detail in Sections 6.3 and 6.6. 
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Figure 6.1-2: Top panel: Percentage of the corn ethanol shock that is met by different 
categories in 2030 and 2050. Bottom panel: Million metric tons of additional corn 
production (red, orange, and yellow) and corn diverted to corn ethanol production from 
other uses (green)179 

6.2 Energy Market Impacts 

Corn ethanol has the potential to reduce GHGs and mitigate climate change if its use 
reduces consumption of sufficient quantities of other fuels derived from fossil sources (e.g., 
petroleum, natural gas). Thus, the effect of increased corn ethanol consumption on other energy 
markets is a critical component of the overall assessment of GHG impacts of corn ethanol use. 

While the market impacts of increasing the use of one category of fuel are complex and 
interrelated, we can consider several broad mechanisms that affect the use of other sources of 
energy. First, increasing the use of a liquid biofuel can directly replace the use of petroleum-
derived fuels, thereby decreasing the amount of petroleum-derived fuel consumed. Secondly, an 
increase in the production of additional biofuel requires additional energy inputs; increased corn 
ethanol production, for example, would result in increased demand for natural gas and any other 

179 A negative percent contribution means that there was decrease in corn production or an increase in non-fuel uses 
of corn. New cropland in GLOBIOM has a negative percent contribution in 2050 because the amount of corn 
cropland in non-USA regions is lower in the corn ethanol shock than in the reference case. In 2050, non-USA 
regions in GLOBIOM produce less corn and more of other types of crops to make up for lost production in the USA 
region. There are also shifts in the feed market from corn to DDG. These types of dynamics are discussed more in 
Sections 6.3. 
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energy inputs required to grow, transport, and process additional feedstock. Correspondingly, a 
reduction in the extraction and refining of petroleum would result in decreased demand for the 
energy sources required in those processes. Finally, all of the above effects on demand for 
energy sources will affect fuel prices, which, in turn, affect supply and demand for those fuels. 
We refer to these adjustments in supply and demand to price as market-mediated effects. 

Towards the end of this section, we present modeling results describing changes in liquid 
fuel consumption relative to the size of the cumulative corn ethanol shock.180 These metrics 
indicate whether one BTU of increased corn ethanol consumption in the USA region displaces 
more or less than one BTU of refined oil181 or biofuel consumption, when averaged across all 
years represented in the scenarios, and including the indirect effects discussed above. These 
effects vary depending on whether they are considered within the USA region or non-USA 
regions. As an illustration of the regional differentiation, we consider the expected effect of an 
increase in corn ethanol consumption in the USA region on consumption of refined oil in the 
non-USA regions. The primary theoretical mechanism for this effect is as follows: 1) biofuel 
consumption increases in the USA region, displacing some quantity of refined oil consumption 
in the USA region; 2) this reduces global demand for petroleum which puts downward pressure 
on the price of crude and refined oil in non-USA regions; 3) the effect on crude and refined oil 
prices leads to increasing demand for refined oil outside of the USA. The degree to which these 
effects are reflected in the model results is presented in Figure 6.2-3 and the accompanying 
discussion at the end of this section. 

As discussed in Section 3, the models considered in this section differ in their 
representations of energy markets. GREET is largely an attributional framework which includes 
detailed accounting of the energy inputs for production of feedstocks, biofuels, and fossil fuels 
but does not include a representation of markets for energy goods, the displacement effect of an 
increase of biofuel use, nor of any other market mediated effects. GLOBIOM does not represent 
energy commodities or markets, so it cannot be used to estimate the effects of a biofuel shock on 
these markets. ADAGE, GCAM, and GTAP each represent a selection of energy commodities, 
end use sectors, and market interactions. 

180 I.e., the cumulative changes in energy consumption expressed as a percentage of the cumulative change in US 
corn ethanol consumption over the duration of the modeled period. 
181 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel. 
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Figure 6.2-1: Difference in consumption of energy commodities (quadrillion BTUs) in the 
corn ethanol shock relative to the reference case in 2030 and 2050 (ADAGE, GCAM) and 
2014 (GTAP) 

ADAGE, GCAM, and GTAP results show differing estimated net impacts on biofuel 
consumption and fossil fuel consumption under a one billion-gallon corn ethanol shock scenario 
(Figure 6.2-1). As illustrated in Figure 6.1-1, a portion of the corn ethanol shock in GCAM is 
met through decreased U.S. net exports of corn ethanol, the majority of which (95 percent in 
2030) is a reduction in gross exports, as opposed to increased gross imports. This results in a 
decrease in corn ethanol consumption in the non-USA regions (roughly ten percent when 
compared to the total energy content of the corn ethanol shock in 2030) and an increase in 
consumption of ethanol produced from sugar crops in non-USA regions (two percent of the 
shock in 2030). While ADAGE and GTAP do represent trade in biofuel commodities (see Figure 
6.2-2 below), the corn ethanol shock has little effect on trade of ethanol, and, consequently, little 
effect on consumption of biofuels in non-USA regions, in the results from these models. 
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Figure 6.2-2: Difference in U.S. net exports of energy commodities (quadrillion BTUs) in 
the corn ethanol shock relative to the reference case in 2030 and 2050 (ADAGE, GCAM) 
and 2014 (GTAP) 

Results in all three models show increased consumption and decreased U.S. net exports 
of natural gas, largely due to increased production of corn ethanol and drying of DDGs, though 
the size of these impacts is notably smaller in GTAP results compared to in ADAGE and 
GCAM. Impacts on natural gas use in the non-USA regions differ. GCAM results show 
consistent and decreasing consumption of natural gas, corresponding with decreased demand for 
natural gas used in ethanol production in non-USA regions and with other market mediated 
effects. The lack of significant impacts on non-USA ethanol consumption in ADAGE and GTAP 
results in a smaller effect on non-USA natural gas consumption in results from those models. 

ADAGE, GCAM, and GTAP each model an aggregated refined oil commodity which 
represents a range of petroleum products including gasoline, distillate fuel, and other industrial 
chemicals and products. The primary displacement effect of increased corn ethanol consumption 
is seen in the consumption of this modeled refined oil commodity. Within the USA region, 
ADAGE, GCAM, and GTAP results show differing reductions in refined oil use; 0.068 and 
0.079 quads in ADAGE and GCAM respectively in 2030, and 0.048 quads in GTAP in 2014. 
The decrease in refined oil use in both ADAGE and GCAM is predominantly in the 
transportation end use sector – this is the primary displacement effect – with some relatively 
minor market mediated effects in other end use sectors. Results available from the GTAP model 
did not disaggregate refined oil use by end use. 
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The decrease in demand for crude and refined oil in the USA region observed in these 
model results corresponds with a decrease in the price of these commodities. However, the 
impact of the modeled shock on estimated prices of crude oil and refined oil is very small in 
absolute terms because the one billion gallon shock represents only around one tenth of one 
percent of global liquid fuel consumption. The result is a decrease in the estimated prices of 
crude and refined oil by between one and three hundredths of one percent in the USA and non-
USA regions in ADAGE and GCAM results. Since crude and refined oil are globally traded, the 
modeled price changes within and outside of the USA region are similar in direction and 
magnitude. Outside of the USA region, all three model results show increased refined oil 
consumption, largely driven by the downward price pressure on oil discussed above, though the 
magnitude varies among models and model years. 

Displacement and other net market impacts on refined oil consumption are often 
presented in metrics normalized to the biofuel shock volume. This representation facilitates 
comparisons of the effect across different studies and shock volumes. This indirect fuel use 
effect is sometimes described in the literature as “oil rebound,” though the scope of what is 
included within the definition of “rebound" varies. 

In the case of this model comparison exercise, we find it illustrative to consider the ratio 
of cumulative net impacts on refined oil and other biofuels to the cumulative impacts on 
consumption of corn ethanol in the USA region. These metrics indicate whether one BTU of 
corn ethanol displaces more or less than one BTU of refined oil or other biofuel consumption, 
when averaged across all years represented in the scenarios, and including the indirect effects 
discussed above. 
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Figure 6.2-3: Difference in liquid fuel consumption relative to the volume of the corn 
ethanol shock182 

Figure 6.2-3 illustrates these cumulative relative effects within the USA region and non-
USA regions for both biofuels and refined oil. The left pane depicts the effect of the corn ethanol 
shock on total biofuel consumption within the USA region (blue) and non-USA region (orange). 
As discussed in Section 4, in the corn ethanol shock scenario, U.S. consumption of corn ethanol 
is increased by one billion gallons, while U.S. consumption of all other biofuels is held constant 
at reference case levels. Thus the cumulative difference in biofuel consumption in the USA 
region between the corn ethanol scenario and the reference case is equivalent to the cumulative 
size of the corn ethanol shock, which is the denominator of all of these relative metrics. 
Therefore, by definition, the blue bar in the left pane is 100 percent, and represents the full 
cumulative corn ethanol shock. Note that the scenarios in this model comparison exercise did not 
place any additional constraints on consumption of biofuels in non-USA regions, so the 
cumulative difference in consumption of biofuels in non-USA regions, depicted in orange on the 
left pane of Figure 6.2-3, represents net impacts of the shock on consumption across all 
represented biofuels. As discussed above, in the GCAM results for the corn ethanol scenario, 
some of the required corn ethanol shock volume is met through adjustments in net trade of corn 
ethanol. In the ADAGE and GTAP results for this scenario, the shock is met almost entirely 
through increased corn ethanol production in the USA region. The cumulative effect of this 

182 Values in the figure represent the difference between the shock and reference case of the given fuel category 
(refined oil vs. liquid biofuels) and given region (USA region vs non-USA regions) divided by the difference in 
consumption of liquid biofuels in the USA region (i.e., the shock volume). For ADAGE and GCAM, this is 
calculated using cumulative volume differences between 2020 and 2050. For GTAP, which only estimates 
differences in a single time step, the calculation uses only the volume differences in 2014. 
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difference is seen in the orange bars; in GCAM, cumulative non-USA consumption of biofuels 
decreases by eight percent of the cumulative USA corn ethanol shock volume, whereas ADAGE 
and GTAP only show a one percent decrease in non-USA biofuel consumption. Thus, on net, the 
shock scenario in GCAM increases global biofuel consumption by 92 percent of the total 
specified cumulative shock, whereas the shock scenario in ADAGE and GTAP increases global 
biofuel consumption by 99 percent of the total specified cumulative shock. 

The righthand pane in Figure 6.2-3 illustrates the cumulative effects on refined oil 
consumption within and outside the USA region. Under the corn ethanol shock scenario, that 
additional volume is required to be consumed within the USA region, so the primary 
displacement of refined oil used for transportation is within the USA region. If one BTU of 
ethanol use displaced exactly one BTU of refined oil use in a given set of model results, and all 
of the other indirect effects within the USA region discussed above were negligible, the blue bars 
in this pane would show 100 percent. Thus, the size of the bar relative to 100 percent shows 
whether the cumulative net impacts within the USA region are more or less than perfect energy 
equivalent displacement. 

As seen in the figure, there is greater than perfect displacement of refined oil in the USA 
region in the GCAM results (107 percent). This displacement exceeds 100 percent primarily 
because GCAM projects that the corn ethanol shock will increase the average price of fuel in the 
USA region’s gasoline pool. This causes a small decrease in USA region demand for gasoline in 
addition to the energy equivalent displacement. In contrast, the ADAGE and GTAP results show 
less than perfect displacement of refined oil in the USA region (83 percent and 61 percent, 
respectively). In ADAGE, this difference is largely due to smaller reductions in refined oil 
consumption in 2040 and 2050. 

The effect on cumulative net non-USA oil consumption – a commonly used definition of 
“oil rebound” in the literature – shows how global oil consumption changes as a result of the 
shock. GCAM and GTAP results show larger increases in non-USA refined oil consumption (23 
percent and 22 percent of the cumulative shock, respectively) than ADAGE (15 percent). The 
global net effect of the shock on refined oil consumption is that, on average, 100 BTUs of corn 
ethanol required to be consumed in the USA displaces 68 BTUs of global refined oil 
consumption in ADAGE, 83 BTUs of global refined oil consumption in GCAM, and 40 BTUs of 
global refined oil consumption in GTAP. That the estimated net effect of a U.S. biofuel shock on 
global oil consumption amounts to less than one-for-one displacement makes intuitive sense; oil 
and refined oil products are globally traded commodities. Any reduction in consumption of 
refined oil in the USA makes available some additional supply to the rest of the world, which 
would be expected to reduce the price of crude and refined oil globally and result in adjustments 
to consumption patterns in all regions. We note, however, that the range of reductions in refined 
oil use varies widely across the three models with energy sector representation, directly resulting 
in the wide range of energy sector emissions savings estimated by these models. These emissions 
results are presented in Section 6.7 below. Future research could better define and understand the 
parameters and assumptions that lead to this range in reduction of refined oil consumption. 
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6.3 Crop Production and Consumption 

As shown in Section 6.1, ADAGE, GCAM, GLOBIOM, and GTAP results estimate 
about 40-85 percent of the corn ethanol shock would be sourced from new corn production. 
Estimated new corn production comes primarily from the USA region in these ADAGE, GCAM, 
GLOBIOM, and GTAP results, with some new corn also produced in the non-USA regions in 
the GCAM and GLOBIOM results (Figure 6.3-1). All four models estimate some reduction in 
production of other crops in the USA region, though the magnitude varies.183 Soybean 
production accounts for a large percentage of this decrease in all four models, but the 
displacement of other crops is more variable across the results. GLOBIOM estimates the largest 
decrease in non-corn USA crop production and GTAP the second largest, with GCAM and 
ADAGE showing similar, more modest decreases. 

Figure 6.3-1: Difference in commodity production (million metric tons) in the corn ethanol 
shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, 
GLOBIOM) 

Results from three of the four models – GCAM, GLOBIOM, and GTAP – also estimate a 
net increase in crop production in the non-USA region. These increases are multi-faceted, but 
generally the crops with greater non-USA production are those for which U.S. net exports are 
decreasing in the results for each respective model, i.e., some combination of corn, soybeans, 
and/or wheat. One notable outlier to this general trend is the increase in sugar crop production in 
GCAM. As shown in Section 6.2 and Figure 6.3-2, this additional sugar crop production is used 
for fuel production in the non-USA regions of GCAM, which contributes to an increase in the 

183 We also looked at forest product production for the models that are able to report it (ADAGE, GCAM, 
GLOBIOM), and the change relative to the reference case is negligible. 
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consumption of sugar crop ethanol. Conversely, in the ADAGE results, we observe a small net 
decrease in crop production in the non-USA regions. 

Globally, crop production increases in all four sets of model results. Most of the net 
increase globally is from new corn production to produce additional corn ethanol. One exception 
is the aforementioned increase in sugar crop production in GCAM; this is also occuring 
indirectly to allow for greater consumption of corn ethanol in the USA region. We observe 
substantial variation across the models regarding the magnitude of increased crop production, 
and the share occurring within the USA region versus the non-USA regions. This is an area of 
uncertainty across the models. 

As explained in Section 6.1, in the ADAGE, GCAM, GLOBIOM, and GTAP results, 
some of the corn ethanol shock is met by diversion of corn to fuel production from other end 
uses. All four of these models show a reduction in the amount of corn used for feed, but there is 
variation across the model results in how much the corn feed consumption is reduced (Figure 
6.3-2). Part of the feed market impact may be attributable to the increase in corn prices which 
follows from increased demand for corn in the shock case (changes in prices in the corn ethanol 
shock case are discussed further below in Section 6.5). But it is also in part attributable to greater 
production of corn DDG in the shock case. 

DDG is a coproduct of corn ethanol production used almost exclusively for animal feed. 
In these model results, the additional DDG produced from the additional corn ethanol production 
is used for feed to replace the corn (that is, the DDG “backfills” for the corn diverted from feed 
use to fuel use). Historically, USA-produced corn DDG is both consumed domestically and 
exported. The degree to which future additional DDG production might be consumed 
domestically versus exported is therefore a key uncertainty in forward-looking scenario analysis 
for corn ethanol consumption. In the GLOBIOM results shown in Figure 6.3-2 below, the DDG 
is consumed entirely within the USA region in 2030, displacing mostly corn in the feed market. 
In ADAGE, GCAM, and GTAP, some of the additional DDG is consumed domestically and 
some is exported for consumption in the non-USA regions (see also Figure 6.4-1). ADAGE 
shows the largest share of exported DDG. Within the USA region, mostly corn is displaced in the 
feed market. In non-USA regions, larger proportions of other crops are displaced, commensurate 
with the dominant feed products in the affected regions. The results across all four models agree 
however that, on a global basis, corn is the primary feed commodity displaced by additional 
DDG. There is also good agreement across these four sets of results about the magnitude of 
increased DDG production and consumption in response to the corn ethanol shock. 

We observe from these results that there is more consistency among the models we 
considered about the global magnitude of DDG consumption in response to a corn ethanol shock 
than there is about where in the world that additional DDG consumption will occur. From this 
we can conclude that exogenous assumptions about the location of DDG consumption carry 
uncertainty. A possible area for further sensitivity analysis is to explore the potential impacts on 
estimated GHG emissions should additional DDG be consumed primarily in the USA versus 
primarily outside the USA. 
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The ADAGE, GLOBIOM, and GTAP results estimate more additional corn for fuel 
production than do the GCAM results. This is because, as discussed above, GCAM is meeting 
some of the shock by reducing corn ethanol consumption in non-USA regions and reducing the 
U.S. net exports of corn ethanol. To make up for the loss of corn ethanol in the GCAM results, 
non-USA regions produce and consume some additional sugar crop-based ethanol. The question 
of whether non-USA biofuel production and consumption would be measurably affected by 
additional demand for corn ethanol in the USA therefore remains an uncertainty. However, it is 
clear that such potential impacts on the energy sector may meaningfully affect the results; these 
impacts cannot confidently be assumed to be zero. 

The scenario results from ADAGE, GCAM, GLOBIOM, and GTAP consistently show 
only minimal changes in the consumption of commodities for food, crushing, and other uses. 
These results also consistently show only minimal changes in the consumption of commodities 
and coproducts other than corn, DDG, and sugar crops. 

Figure 6.3-2: Difference in consumption by end use (million metric tons) in the corn 
ethanol shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, 
GLOBIOM)184 

6.4 Trade of Agricultural Commodities 

As discussed in Section 3.1.6, the structural representations of trade vary across the four 
economic models considered in this exercise (ADAGE, GCAM, GLOBIOM, GTAP). Because 
trade is more elastic by default in some model trade structures than others, one would expect the 

184 Results are shown in million metric tons of each feedstock. 
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impact of the corn ethanol shock on U.S. corn and other agricultural commodity exports to vary 
by model. One would also expect the shares of domestic versus international consumption of the 
DDG coproduct to vary by model, as imported DDG from the U.S. would be valued differently 
based on how simulated economic actors are calibrated to value imported versus domestically 
produced feed products. 

Consistent with this expectation, we do observe ADAGE, GCAM, GLOBIOM, and 
GTAP differ in their agricultural commodity trade responses to the corn ethanol shock. This is 
illustrated by differences between the shock scenario and reference case in U.S. net exports of 
crops and secondary agricultural commodities (see Figure 6.4-1). Results from all four models 
show relatively minor changes in gross imports relative to gross exports, so the data displayed in 
Figure 6.4-1 are roughly equivalent to differences in gross exports from the USA region. In 
general, these reductions appear largely commensurate with the declines in crop production from 
the USA region discussed in Section 6.3 above. 

Figure 6.4-1: Difference in U.S. net exports of crops and secondary agricultural products 
(million metric tons) in the corn ethanol shock relative to the reference case in 2030 and 
2050 (ADAGE, GCAM, GLOBIOM) and 2014 (GTAP) 

As discussed in Section 6.1, most of the corn ethanol shock in the ADAGE results is met 
through additional corn production in the USA region, rather than imported corn. This results in 
additional DDG production, roughly 41 percent of which is exported to the non-USA region. 
There is very little change in trade of corn in the ADAGE results. In the GCAM results, the USA 
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region reduces gross exports of corn to supply a portion of the additional demanded ethanol 
feedstock. Of the additional DDG production in the USA region, roughly 18 percent is exported. 
In these GCAM results, there are also decreases in U.S. net exports of other crops, most notably 
soy and wheat. This is due to competition for land leading to some crop switching from other 
crops to corn production in the USA region, resulting in less of these crops being available for 
export. The GTAP results show a similar pattern as the GCAM results, i.e., net exports of DDG 
increase while net exports of other commodities decrease relative to the reference case. Relative 
to the GCAM results, the GTAP results include a smaller increase in DDG net exports, a smaller 
decrease in corn net exports, but a larger decrease in net exports of other commodities such as 
soybeans. As discussed in Section 6.1, in these GLOBIOM results most of the additional corn 
used for ethanol feedstock in the corn ethanol shock scenario is produced in the USA region by 
switching cropland from other crops to corn production. This results in greater reductions in the 
production of other crops compared to what we observe in the ADAGE and GCAM results, most 
notably in production of soy, wheat, and other crops. This results in larger decreases in exports 
of those crops from the USA region in the GLOBIOM results. In these results, GLOBIOM 
chooses to consume most of the additional DDG production domestically in 2030 and 2050, 
which creates greater flexibility to divert corn used to meet the ethanol shock from the feed 
market. In 2050, however, GLOBIOM estimates additional crop switching from soy to corn, 
increasing the amount of corn which is used for animal feed and freeing up some DDG for 
export in that model period. 

6.5 Crop Yield 

As discussed in Section 5.3 above, the four economic models included in this comparison 
exercise all have the ability to increase crop yields in response to changes in crop price. The 
theoretical basis for yields responding to price is similar across models; to the extent producers 
see long-term revenue per ton of crop increasing, they may choose to invest in more expensive 
but higher yielding agricultural technologies (i.e., invest more revenue in capital and material 
inputs to production) and/or increase their personnel (i.e., invest more revenue in labor inputs to 
production). 

As discussed in Section 5.3 above, the endogenous mechanisms within each model which 
simulate these decisions vary in structure. GCAM and GLOBIOM each represent four distinct 
crop management options for each crop, though the characteristics of the four options in each 
model are not fully aligned with one another. In ADAGE and GTAP, inputs of labor, capital, and 
materials may be increased to generate higher yields through nested CES production functions. 
The main similarity across these four models when it comes to changes in crop yield is that an 
increase in crop price is the mechanism by which higher crop yields are induced. However, these 
differences in endogenous yield response mechanisms indicate that each model would be 
expected to simulate somewhat different patterns and magnitudes of crop yield response to a 
given change in price. 

Reference case yield trends are also an important factor in understanding differences 
across models. As shown in Figure 5.3-1, reference case corn crop yield trends across the four 
economic models are fairly similar in the historical periods of 2010 and 2015, though not 
identical. However, for the three dynamic models, ADAGE, GCAM, and GLOBIOM, the trends 
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in reference case corn yields diverge over time. Yields are calibrated to improve over time in all 
three models however, reflecting a shared assumption that agricultural technologies will continue 
to improve into the future. In reviewing the change in corn yields in our shock scenario relative 
to the reference case shown by these dynamic models, the reader should keep in mind that yields 
are improving over time in both the USA and non-USA regions in both scenarios, as they do in 
the reference case. 

As shown in Figure 6.1-2, crop intensification contributes to the sourcing of corn for the 
ethanol shock to varying degrees across the models. In the biofuel volume shock scenarios 
modeled for this exercise, we observe that the contributions from intensification are a minority of 
the feedstock sourcing solution, accounting 15 percent or less of the additional feedstock 
required. Intensification is a part of each model solution to at least some degree however, and we 
can make some useful observations about how this effect is similar and different across the 
models considered. 

Before discussing the modeled crop yield results from this exercise, it is important first to 
understand what is meant in this case by the term intensification. Increasing crop yield per 
harvested unit of land is only one method of intensifying crop production. In regions of the world 
where climatic conditions allow for it, multi-cropping (i.e., planting more than one crop per year) 
is another option. GLOBIOM and GTAP consider this option explicitly to some extent by 
distinguishing between the physical area on which crops are planted and the number of harvests 
achieved annually on that area. In ADAGE and GCAM, no such distinction is made, and multi-
cropping is represented implicitly, embedded in the average yield for a given crop in a given 
growing region. GTAP does not report total areas of multi-cropping in a given scenario, but it 
does calculate and report changes between scenarios in harvested cropland area, unused cropland 
and multi-cropping area. Thus, increasing the ratio of harvested to planted cropland area is a 
distinct intensification strategy for GTAP. 

Another intensification option is to shift production from less productive land or growing 
regions to more productive land or regions. More productive land is assumed in these models to 
garner a higher rental rate (i.e., the land is more expensive to purchase or use) because of the 
higher revenues it can generate. As crop prices rise however, crop producers can potentially 
afford more of this more expensive land. This intensification option is represented in all four 
models to varying degrees, as the spatial detail of growing regions and land cover varies across 
models. 

When models report average yield for a given crop across a broad geopolitical region, 
that output value mixes together some, but not necessarily all, of these effects. Depending on 
how the reported yield value is calculated, different information about intensification may be 
embedded. For the purposes of this section, yield output is calculated as regional production of a 
crop divided by reported regional cropland use for that crop (these outputs are discussed in 
greater detail in Section 6.6 below). Therefore, the reader should keep in mind that what is 
discussed in this section as modeled crop yield output represents intensification more broadly 
and is not only an improvement in the yield of a crop on specific acres of land through greater 
investment in crop production inputs on that land. 
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As shown in Figure 6.5-1 below, average USA region corn yields increase in all four 
models in response to the corn ethanol shock. One can compare these results with the reference 
case yields presented in Figure 5.3-1 and observe that these improvements are minor, less than a 
1 percent improvement in USA region average yield in all cases. While improvements may be 
larger in particular growing regions, the average yield across the USA region is instructive in 
understanding why intensification plays only a minor role in the sourcing of corn for the ethanol 
shock. As a collective, these four models estimate the corn ethanol shock modeled for this 
comparison would induce relatively minor improvements in corn yield. This small observed 
change in USA region corn yields is reasonable in light of the crop price changes. Figure 6.5-2 
below shows that the change in corn price is also small, less than 0.5 percent in 2030. As 
discussed above, crop price is the primary driver of increased crop yields and intensification in 
general, and a small price change would be expected to induce a small yield response as well. 

Looking at the non-USA results, there is even less effect on corn yield. This is not an 
unexpected result. Figure 6.3-1 above shows the increase in corn production in response to the 
shock is concentrated in the USA region. Figure 6.5-2 shows there is virtually zero change in 
corn prices in the non-USA regions in response to the shock as well. This lack of perturbation of 
the non-USA corn systems would not be expected to induce much change in corn yields. 

Figure 6.5-1: Difference in corn yield in the corn ethanol shock relative to the reference 
case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM, GTAP) 
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Figure 6.5-2: Percent difference in commodity prices in the corn ethanol shock relative to 
the reference case185 

In the dynamic models, it is also instructive to consider the trend in yield change over 
time, relative to the reference case. As shown in Figure 6.5-3 below, the pattern of this change 
over time varies across the three dynamic models. Looking first at the results for the USA region, 
in two of the three dynamic models, ADAGE and GCAM, the corn crop yield response to the 
corn ethanol shock is strongest in 2030, the time step in which the shock reaches its peak. The 
yield response diminishes thereafter over time, likely reflecting the fact that reference case yields 
continue to improve in both of these models beyond 2030. The GLOBIOM results show a 
different pattern. However, because all of these changes are fairly small compared to the 
reference case corn yield, it is difficult to read much into the trends over time. Outside of the 
USA region, none of the four models show a substantial change in corn yield. These responses 
are consistent with the changes in corn area in each of the three models, described in Figure 6.6-
2 further below. 

185 Average commodity prices for non-USA regions in GTAP results were not available for this exercise. 
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Figure 6.5-3: Difference in corn yield in the corn ethanol shock relative to the reference 
case in 2014 (GTAP) and over time from 2020 to 2050 (ADAGE, GCAM, GLOBIOM) 

While the corn crop yield change results may appear to be somewhat different across 
models based on Figure 6.5-3, when compared to reference case corn yields in each model they 
are all relatively small. In ADAGE, GCAM, and GLOBIOM the percent differences in corn 
yields in 2030 in the corn shock relative to the reference case are all less than one percent for the 
USA and non-USA regions. We can observe from these results that the four economic models 
generally agree that, in the specific scenarios modeled for this exercise, yields are not projected 
to improve substantially in response to the corn ethanol shock. However, it is also notable that 
even these small changes in corn yield are responsible for a small but notable percentage of the 
additional corn produced to meet the shock. 

From this exercise however, we cannot draw any firm conclusions from this yield 
comparison regarding whether one method is superior to the others. All four of the models seem 
to behave reasonably in these yield results. Sensitivity analysis may reveal the degree to which 
GHG emissions results change when the underlying assumptions about crop yield responsiveness 
to price are changed. This may indicate areas for further research. 

6.6 Land Use 

As described in Sections 6.1 and 6.3, in the ADAGE, GCAM, GLOBIOM, and GTAP 
results, some of the corn ethanol shock is met by increased corn production, which comes from a 
mix of cropland shifting from other crops to corn, land use change from other land types to 
cropland, and changes in corn yield. As shown in Figure 6.6-1, corn cropland in the USA region 
increases by 0.3 Mha in GTAP (2014) and 0.4-0.5 Mha in ADAGE, GCAM, and GLOBIOM 
(2030). All of these model results show some amount of shifting of other crops to corn, but the 
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amount of crop shifting varies. Model results also show differences in the impact on non-USA 
regions. 

In the GTAP and GLOBIOM results, most of the new corn cropland in the USA region 
comes from shifting of other crops. In these model results, the area of soybean and wheat 
increases in non-USA regions to make up for the loss of production of these crops in the USA 
region. In both the GTAP and GLOBIOM results, the total cropland increases more in non-USA 
regions than in the USA region, even though the corn for the corn ethanol shock is coming from 
the USA region. In the ADAGE results there is some cropland shifting in the USA region, but a 
larger net increase in cropland area in the USA region than seen in the GTAP or GLOBIOM 
results. ADAGE has small amounts of cropland shifting in non-USA regions, with minimal 
changes in total non-USA cropland. In the GCAM results, a much smaller fraction of the new 
corn cropland is coming from crop shifting, and the net increase in cropland in the USA region is 
higher than in the other models. The GCAM results also show an increase in corn cropland in 
non-USA regions, reflecting the increased corn production in non-USA regions to meet the 
shock. 

Figure 6.6-1: Difference in cropland area by crop type (million hectares) in the corn 
ethanol shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, 
GLOBIOM)186 

186 Horizontal lines show the net change in cropland. Cropland area shown represents land cultivated for row crops 
in ADAGE and GCAM and harvested area in GLOBIOM and GTAP. When a single unit of land is harvested 
multiple times in a single year, the area is counted multiple times as “harvested area” but only a single time as 
“cultivated area.” 
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Each model considered here categorizes land in somewhat different ways (summarized in 
Section 5.2), and each uses different methods for determining which land types, and how much 
of each, are converted in response to economic stimuli in scenario runs (summarized in Section 
2). In addition, the historical data sources on which the models rely to estimate reference case 
land cover and land use differ in some ways, with data primarily coming either from FAO or 
from the GTAP database. 

The four economic models all choose to expand cropland to some degree to meet 
growing crop demands in the corn ethanol shock, which subsequently causes changes in the area 
of other land types in each model (Figure 6.6-2). In the ADAGE results for the corn ethanol 
shock, most of the new cropland converted in the USA region comes from managed pasture. Due 
to the land rent and net primary production (NPP)187 assumptions in ADAGE, that is the most 
profitable conversion option. Very little land is converted outside the USA region in these 
ADAGE results. 

The GCAM results for the corn ethanol shock show decreasing cover for a mix of land 
types in both USA and non-USA regions, with the largest shift in land use estimated to come 
from unmanaged pasture. The change in USA land use is approximately three times greater than 
the non-USA change in use. In the GLOBIOM results, very little new cropland is created in the 
USA region; what change does occur comes largely from managed pasture. In the non-USA 
region, the area of other arable land and grassland decreases relative to the reference case. As 
explained in Section 2, in these model runs GLOBIOM does not allow forest conversion in the 
USA and EU regions and restricts natural land conversion. The restriction on natural land 
conversion may be a significant explanatory factor behind the observation in these GLOBIOM 
results that the new corn cropland is mostly coming from crop shifting, rather than from a net 
increase in cropland. 

In the GTAP results, most of the new cropland comes from other arable land, which 
includes the land types categorized in the GTAP results as “cropland pasture” and “unused 
cropland.” In the GTAP results, in the USA region, about 75 percent of the increase in harvested 
area is explained by a reduction in cropland pasture area (land that fluctuates between cropland 
and pasture and was unharvested in the reference case), 16 percent by a reduction in unused 
cropland, 7 percent by a decrease in pasture, and 4 percent by an increase in multi-cropping. In 
the GTAP results, in the non-USA regions, cropland pasture is once again the main source for 
new harvested area (54 percent), followed by pasture (21 percent), unused cropland (12 percent), 
forest (7 percent) and increased multi-cropping (6 percent). The GTAP results show no change in 
unmanaged forest, grassland or pasture as these are not land categories in the GTAP model. 

Each of the models has different assumptions about the carbon stock of different land 
types in different regions. As shown in more detail in Section 6.7, the type and amount of land 
converted and the carbon stock of the land types will factor in to the emissions from land use 
change. 

187 Net primary production is a measure of the rate of increase in plant biomass. 
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Figure 6.6-2: Difference in land use (million hectares) in the corn ethanol shock relative to 
the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM)188 

Following the trends observed in the crop production results, the models show variation 
in both the magnitude and location of land use change. As might be expected given their 
differences in land competition structure and land categorization, these four models also present 
diverse estimates regarding what types of land might be converted to cropland in response to 
greater demand for corn ethanol. The models show some consistency in that they all convert a 
significant share of the new cropland from pasture lands. Beyond this, some models convert 
some generally smaller amount of forest land while others convert some amount of natural 
grassland. Some of this uncertainty appears to be spatial in nature, that is, the models have 
different estimates regarding where in the world cropland will expand. However, a significant 
portion also appears attributable to differences in land conversion flexibility across the models. 
Both factors are areas ripe for sensitivity and uncertainty analysis. As discussed in detail in 
Sections 8 and 9, we have conducted some analyses of this sort for this exercise, but this remains 
an area of potential for future research. 

6.7 Emissions 

The modeled results of energy consumption, crop production, and land use change 
described above come together in the modeled greenhouse gas emissions. As shown in Figure 
6.7-1, the modeled GHG emissions over time vary by model. 

188 In Figure 6.6-2 and 7.6-2, “Cropland” area in GTAP represents land cultivated for row crops (calculated as the 
change in harvested area minus the change in multicropping), while cropland pasture, and other unused cropland 
have been reassigned to “Other Arable Land.” This differs from Figure 5.2-1, in which cropland pasture and other 
unused cropland are reported under the “Cropland” category. 
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Figure 6.7-1: Difference in global greenhouse gas emissions in the corn ethanol shock 
relative to the reference case189 

189 GTAP is not included in this figure because it does not represent emissions over time, and due to time 
constraints, we do not have GTAP GHG emissions by gas for the source categories used in this figure. For 
comparison, for GTAP, in the corn ethanol scenario relative to the reference case (2014), LUC emissions = 0.46 Mt 
CO2e, fossil fuel combustion and industrial CO2 emissions = -1.15 Mt, and other GHGs emissions from all covered 
sources = 0.085 Mt CO2e, of which N2O = 0.41 Mt CO2e, CH4 = -0.28 Mt CO2e, fluorinated gases = 0.001 Mt 
CO2e, and other CO2 = -0.045 Mt CO2e; net total GHG emissions = -0.61 Mt CO2e. GREET is not included in this 
figure because it does not represent scenario-based emissions over time. See Table 6.7-1 for carbon intensity values. 
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Emissions from land use change show different patterns in the GCAM, ADAGE, and 
GLOBIOM results due to the type of land use change occurring relative to the reference case and 
to the carbon stock assumptions in each model. In the ADAGE results, most of the land use 
change emissions that occur are attributable to the conversion of pasture to cropland. ADAGE 
assumes that the soil carbon stock of cropland in the USA region is higher on a per-hectare basis 
than the soil carbon stock of pasture.190 Therefore, the conversion of pasture to cropland causes 
net carbon sequestration, and the emissions over time are less than in the reference case, but 
close to zero. In GCAM, most of the cropland change is estimated to convert from land types 
with relatively low carbon stocks, such as pasture and grassland. However, some of the land use 
change is attributable to reduced future afforestation relative to what GCAM estimates would 
occur in the future in the reference case. Even though the amount of change in future forest land 
is small compared to the amount of change in other land types, the relatively higher carbon 
stocks of forest compared to other land types lead to higher overall land use change emissions in 
these GCAM results, relative to the other models. GLOBIOM shows conversion of cropland 
from grassland and the other arable land aggregate category, which results in estimated LUC 
emissions in between those of ADAGE and GCAM. The GCAM and GLOBIOM results show 
land use change emissions peaking in 2030. This is because land conversion to cropland happens 
primarily from 2020-2030 as more land is needed to increase corn production to meet the corn 
ethanol shock. 

“Energy from Fossil Fuels” (or “fossil fuel emissions”) includes emissions associated 
with producing biofuels (e.g., from consuming natural gas or electricity for process energy), 
direct emissions associated with on-farm energy use to produce feedstock, and transporting both 
biofuel feedstocks and finished fuels, as well as emissions from indirect impacts on the energy 
sector, including displaced gasoline use for transportation that is replaced by corn ethanol. Of the 
three models shown in Figure 6.7-1, these emissions are reported by ADAGE and GCAM. In the 
corn ethanol results from these models, emissions from fossil fuels are lower than in the 
reference case. Fossil fuel emissions reductions in the GCAM results become larger until 2030, 
and then stay relatively constant through 2050. In the ADAGE results, emissions reductions 
become larger until 2030 but then become smaller from 2030 to 2050 (while staying below the 
reference case emissions). As shown in Section 6.2, fossil fuel consumption decreases in the corn 
ethanol shock scenario relative to the reference case. GCAM results show the most reduction in 
fossil fuel consumption, leading to a greater emissions reduction in the GCAM results than in the 
ADAGE results. The drivers of these varying results in fossil fuel consumption are discussed in 
Section 6.2 above. 

Crop production emissions are higher than the reference case in the ADAGE, GCAM, 
and GLOBIOM results. Changes in crop production emissions relative to the reference case are 
due to changes in the types and quantities of crops grown in the models, and primarily come 
from changes in N2O emissions, driven by both increased fertilizer use and direct nitrogen 
fixation by soybeans. As shown in Section 6.3, ADAGE, GCAM, and GLOBIOM results all 
show increases in corn production, with smaller changes in the production of other crops. 
GLOBIOM results also show shifts in the location of soybean production. The increase in crop 
production emissions is small in all of these model results. In the GLOBIOM results, the crop 

190 These assumptions are based on an area-weighted average of carbon stocks from an earlier version of GCAM 
(GCAM 3.2). 
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production emissions increase over time. In the ADAGE and GCAM results, the crop production 
emissions peak in 2030, and then decrease slightly until 2050. The change in emissions relative 
to the reference case from the livestock sector and from industrial and waste management sectors 
is very small. 

The total change in GHG emissions across all sources over time varies across the models 
(Figure 6.7-1). The ADAGE results show a net decrease in emissions from 2020-2040, primarily 
driven by the decrease in CO2 emissions in the energy from fossil fuels category. From 2040-
2050, emissions are higher than in the reference case because the increase in N2O emissions from 
crop production becomes larger than the decrease in CO2 emissions from fossil fuels. In the 
GCAM results, net GHG emissions are greater than the reference case from 2020-2030 and less 
than the reference case from 2035-2050, because the CO2 emissions from land use change 
decline rapidly after 2030. In the GLOBIOM results, net emissions are greater than the reference 
case from 2020-2050, because the largest contributors to emissions (CO2 from land use change 
and N2O from crop production) are greater than the reference case over this time period. 

There are a few commonalities across the ADAGE, GCAM, and GLOBIOM results of 
emissions over time. All of these model results show small but positive emissions from crop 
production relative to the reference case. The model results also all show very small emissions 
from livestock production, waste management, and industry. There are also some key differences 
in the emissions. Although GCAM and ADAGE both consider indirect impacts on the energy 
sector, the emissions over time from the energy sector are very different. Future research could 
explore the factors that determine the extent of refined oil displacement in each model through 
sensitivity analysis. Additionally, there are large differences across the model results in the 
amount of land use change emissions, due to differences in both the types of land converted and 
the carbon stock assumptions. A sensitivity analysis of the carbon stock assumptions in GCAM 
is shown in Section 9.2 below, and a sensitivity analysis of the land conversion elasticities in 
ADAGE is shown in Section 9.3. Future research could focus on the impact of carbon stock 
assumptions in other models, or on other model parameters that determine the types of land 
converted. 

As a next step in considering the lifecycle greenhouse gas emissions associated with the 
corn ethanol shock in these model results, we calculated a carbon intensity (CI) for each category 
of emissions. A CI is an estimate of the emissions per unit of fuel, which we express here in 
kgCO2eq/MMBTU. The CI calculated from a model run depends on the particular scenario and 
model assumptions used. To calculate a CI for the ADAGE, GCAM, and GLOBIOM results, we 
summed the emissions relative to the reference case from 2020 to 2050 to get the difference in 
total cumulative emissions relative to the reference case. Then, we summed the difference in 
corn ethanol consumption in the USA region (i.e., the corn ethanol shock) over 2020 to 2050 to 
get the total cumulative biofuel consumption difference relative to the reference case. Finally, we 
divided the cumulative emissions difference by the cumulative biofuel consumption difference to 
estimate a CI. The calculated CI depends on the time horizon included in the calculation, because 
the annual emissions vary over time. For example, emissions in the corn ethanol scenario relative 
to the reference case may be higher from 2020-2030 than in later time steps, as is the case in 
these GCAM and GLOBIOM results (Figure 6.7-1), or lower in 2020-2030 than in later time 
steps, as is the case in these ADAGE results. Calculating a CI using only the results from 2020-
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2030 would result in a higher CI than considering emissions from 2020-2050 for GCAM and 
GLOBIOM in this case. The opposite would be true for ADAGE in this case. For GTAP results, 
we divided the emissions difference by the biofuel consumption difference in the USA region in 
the single 2014 time step. GTAP emissions are given for a single year, but these results are 
amortized over a 30 year time period. Results from GREET are already given as carbon 
intensities, i.e., this is the metric GREET is designed to estimate. 

When interpreting the ADAGE, GCAM, GLOBIOM, and GTAP CI results, a CI of zero 
means that global GHG emissions are equal in the shock case and the reference case, a positive 
CI means a greater quantity of GHGs are emitted globally relative to the reference case, and a 
negative CI means a smaller quantity of GHGs are emitted globally relative to the reference case. 
Importantly, a negative CI from one of these four models does not necessarily represent GHG 
sequestration, but rather is best interpreted as a lower rate of emissions. Conversely, because 
GREET is an attributional rather than consequential approach, a CI of zero means that the supply 
chain for the fuel is estimated to not produce any emissions, a positive CI means that the supply 
chain is estimated to release net GHG emissions, and a negative CI means that the supply chain 
is estimated to achieve net GHG sequestration.191 

Table 6.7-1 shows the CI of corn ethanol calculated using the emissions reported by each 
model. Models are divided between those frameworks with energy markets (in the left side 
columns) and models without energy markets (in the right side columns). This division is made 
to reflect important differences in the sectors represented and the difficulty of direct 
comparability between models on the left with models on the right. ADAGE, GCAM, and GTAP 
include global emissions from every economic sector, including indirect, market-mediated 
impacts. GREET includes detailed emissions estimates from fuel production, transport, and use, 
but, as it is not a consequential model, it does not estimate the net change in GHG emissions 
resulting from a change in biofuel consumption. Rather it estimates the emissions directly 
attributable to the biofuel supply chain. GLOBIOM does not include any energy sector 
emissions, but does include market impacts on crop production and the livestock sector. 

Because of the differences outlined above, it would be inappropriate to compare all of the 
emissions estimates across all of the models, but we can make several meaningful comparisons. 
Results from the three models with energy markets (ADAGE, GCAM, GTAP) can be directly 
compared, with the caveat that GTAP is representing 2014 while the other models are 
representing a 2020-2050 scenario. Furthermore, we can compare the land use change emissions 
estimates for all of the models, as GREET uses a consequential approach for this category of 
emissions, again with proper caveats about temporal differences. We can also compare crop 
production and livestock sector emissions estimates from ADAGE, GCAM and GLOBIOM.192 

In the table below, we report emissions from “Agriculture, forestry and land use” for all five 

191 This sentence about interpreting GREET CI estimates applies for biofuel pathways, such as corn ethanol and 
soybean oil biodiesel, produced from “primary” feedstocks, but not for all pathways made with waste, byproduct or 
residue feedstocks. For the waste, residue, and byproduct pathways, GREET sometimes considers emissions relative 
to a baseline/counterfactual scenario, in which case a negative CI cannot always be interpreted as a net GHG 
sequestration. 
192 GTAP can also report emissions disaggregated into these source categories, but due to time constraints we did 
not obtain such results from GTAP for this exercise. 
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models as the sum of emissions from these stages; however, the GREET estimate for this 
aggregate category is not directly comparable with the other models for reasons discussed below. 

Energy sector emissions have a large impact on the CI in the ADAGE, GCAM, and 
GTAP results. The energy sector CI is much lower (more negative) for the GCAM results than 
for ADAGE and GTAP results, which is consistent with the greater cumulative global reduction 
of refined oil use (shown in Figure 6.2-3) and lower emissions from fossil fuels over time 
(shown in Figure 6.7-1). GREET reports the CI from fuel production and transportation but does 
not consider indirect impacts on the energy sector, such as the energy rebound effects shown in 
Section 6.2. The fuel production and transportation CI in the GREET results is based on the 
amount of process energy needed for corn ethanol production as well as the amount of energy 
needed to transport the feedstock and the fuel. This is why we use the label “Energy Sector” for 
the first row in Table 6.7-1 for the three models with energy markets, but the label “Biofuel 
Production” for this row for GREET. 
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Table 6.7-1: Carbon intensity of corn ethanol (kgCO2eq/MMBTU) calculated using 
emissions reported by each model193 

Models with Energy Markets Models without Energy Markets 

ADAGE GCAM GTAP GLOBIOM GREET 

Sector/stage-
specific 

emissions 

Energy 
from Fossil 
Fuels 

-15 -65 -15 Biofuel Production x 29 

Crop 
Production 14 16 

1 

Crop Production 9 x 

Feedstock 
Production x 16 

Livestock 
Sector 0.1 0.3 Livestock Sector -1 x 

Other 1 -1 Fuel Use x 0.4 
Land Use 
Change -1 31 6 Land Use Change 13 8 

Totals 

Agriculture, 
forestry, 
and land 
use 

14 47 7 
Agriculture, 
forestry, and land 
use 

21 24 

Global 
GHG 
Impact 

-1 -19 -8 Global GHG Impact x x 

Supply 
Chain GHG 
Emissions 

x x x Supply Chain GHG 
Emissions x 53 

The ADAGE and GCAM results show a similar CI from crop production. The crop 
production CI from the GLOBIOM results is lower than these models, consistent with the lower 
emissions over time in GLOBIOM relative to ADAGE and GCAM. GREET’s feedstock 
production CI is based on the energy and chemical inputs required to produce the amount of corn 
needed for 1 MMBTU of ethanol. Unlike the other models, this value does not represent the 
change in crop production emissions associated with an increase in ethanol production; in other 
words, it does not include indirect impacts on the production of other types of crops. Livestock 
and other sectors (including waste management and other industrial sectors) have only minor 
impacts on the overall CI in ADAGE, GCAM, and GLOBIOM. 

For the GTAP results, as discussed in Section 3.1.4, we have estimates of non-CO2 

emissions by greenhouse gas, but we do not have these emissions disaggregated by sector or 

193 “X” means that the model does not report that category. For GTAP, emissions from crop production, the 
livestock sector, and “other” are reported as an aggregated value of non-LUC, non-fossil fuel emissions. Negative 
values for ADAGE, GCAM, GTAP, and GLOBIOM mean that emissions are lower than the reference case, whereas 
positive values mean the emissions are higher than the reference case. 
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lifecycle stage. GTAP can also report emissions disaggregated into these source categories, but 
due to time constraints we did not obtain such results from GTAP for this exercise. The largest 
changes, by gas, are an increase in N2O and a decrease in CH4. We believe the bulk of the 
changes in these emissions are associated with changes in fertilizer N2O and livestock CH4, but 
more work would be needed to confirm our intuition. For these reasons, in Table 6.7-1, we report 
the aggregated non-CO2 emissions estimate from GTAP across three rows combining Crop 
Production, Livestock Sector and Other. This aggregated emissions estimate from GTAP is 
lower than what the other models report for the sum of emissions from these three categories. 
We would need to do more research to disaggregate these emissions and understand why they 
are lower than estimates from the other models. 

Land use change emissions are reported in all the models, and the CI results have wide 
ranges across the models. As explained above, these differences are due to the type of land use 
change and the carbon stocks of each land type in the models. GREET’s LUC CI is based on 
Argonne’s CCLUB translation of a preestablished GTAP run using a different shock size (11.59 
billion gallons of corn ethanol) from a 2004 baseline. This earlier GTAP run estimated a global 
cropland area increase of 2.1 million hectares, with 47 percent of that additional land 
requirement coming from the USA region, and forest land making up about 11 percent of the 
land needed to convert to cropland.194 

We can compare “Agriculture, forestry and land use change emissions” across four of the 
models (ADAGE, GCAM, GLOBIOM, GTAP). For GTAP, we include the non-CO2 emissions 
in this category. For this category, the GCAM results include the highest emissions, driven by 
the land use change emissions. Although the ADAGE results include lower land use change 
emissions than the GTAP results, the aggregated agriculture and forest sector emissions are 
higher for the ADAGE results, due to the difference in crop production emissions. 

The total global CI can be compared across ADAGE, GCAM, and GTAP, because all of 
these models represent the same sectors and include market impacts. The results from these 
models show a range in corn ethanol CI, primarily due to differences in the energy sector CI and 
land use change CI. For GLOBIOM and GREET, a total global CI cannot be calculated from the 
model results because these models do not include all the relevant sectors and/or do not include 
all the relevant market impacts. For GREET, we calculate the total supply chain CI. This is a 
different metric than the other models’ CIs, since GREET primarily uses an attributional 
approach, coupled with consequential ILUC modeling from GTAP and CCLUB in lifecycle 
analysis rather than a consequential approach. This value does not include any displacement of 
fossil fuel consumption that would occur from the increased consumption of biofuels.195 

194 Taheripour, Farzad, Wallace Tyner, and Michael Wang. 2011. “Global Land Use Changes Due to the U.S. 
Cellulosic Biofuel Program Simulated with the GTAP Model.” Argonne National Laboratory and Purdue 
University. https://greet.es.anl.gov/publication-luc_ethanol. 
195 GREET’s ethanol CI estimates are often compared with GREET CI estimates for gasoline to derive a GHG 
percent reduction relative to gasoline. In our 2010 RFS analysis, we similarly compared ethanol CI estimates from 
models that do not include energy markets with a CI estimate for gasoline to calculate a percent reduction in 
emissions. 
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7 

6.8 Summary of Corn Ethanol Estimates 

Section 6 compares and contrasts the corn ethanol modeling estimates from ADAGE, 
GCAM, GLOBIOM, GREET, and GTAP produced for this exercise. These models source the 
corn ethanol required to meet the assumed shock in different ways in these results, but there are 
some commonalities. Across frameworks, the two primary model strategies are to source corn 
from new production and to divert corn from other uses. However, different models rely more on 
one of these sourcing strategies or the other. Because of these differences in sourcing strategy, 
the model results differ regarding the total additional corn production, crop trade, and land use 
change impacts of the shock. The model results also have some other notable similarities and 
differences. ADAGE, GCAM, GLOBIOM, and GTAP results all show a small amount of crop 
yield intensification. The results also show a displacement of corn for feed use with DDG, 
though there is disagreement regarding how much might be consumed in the USA region versus 
exported and consumed elsewhere in the world. The models which explicitly include the energy 
sector, ADAGE, GCAM, and GTAP, all show a decrease in refined oil consumption in the USA 
region in their results, and an increase in non-USA regions. But there are notable differences 
across these models in the total global displacement of refined oil. These factors all contribute to 
differences in the estimated GHG emissions and CI of corn ethanol across the models, with 
energy sector emissions and land use change emissions differing the most across the model 
results. 

The previous sections also highlight potential areas for future research. Sensitivity 
analysis could better define the GHG emissions implications of model decisions regarding the 
location of additional DDG consumption. Further research and sensitivity analysis could also 
seek to better understand the parameters that influence land conversion to cropland. Furthermore, 
research and sensitivity analysis could seek to better understand why model results show a range 
in the reduction of refined oil consumption. These are only a few examples of the many research 
topics that could help to explain what is driving differences in these model results. 

Comparison of Soybean Oil Biodiesel Estimates 

In this section, we present the results of the soybean oil biodiesel shock. The results in 
this section show the difference between the soybean oil biodiesel shock and the reference case. 
We consider the following elements in turn: 

• Sources of soybean oil biodiesel to meet the shock 
• Energy market impacts from the shock 
• Crop production and consumption 
• Trade impacts 
• Yield changes 
• Land use impacts 
• Emissions: the modeled results of energy consumption, crop production, and land use 

change described above come together in the modeled greenhouse gas emissions. 

The majority of these comparisons include ADAGE, GCAM, GLOBIOM, and GTAP. 
Only the comparison of GHG emissions includes GREET. GREET is a supply chain LCA model 
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that does not represent changes in agricultural and economic markets between reference and 
modeled scenarios, as the other models in this comparison exercise are designed to estimate. 

7.1 Sourcing Overview 

As in the corn ethanol runs, the models included in this analysis have many options 
available for meeting the soybean oil biodiesel consumption shock, including increased 
production of soybean oil biodiesel and changes in biodiesel imports and exports. Increased 
soybean oil biodiesel production could come from diversion of soybeans or soybean oil from 
other uses, increased crushing of existing soybean supplies, or increased production of soybeans. 
This section will give an overview of the extent to which the models rely on each of these 
options for meeting the soybean oil biodiesel consumption shock. 

In the soybean oil biodiesel shock, the models show a range of solutions for meeting the 
shock (Figure 7.1-1). In the ADAGE soybean oil biodiesel results, around half of the shock is 
met by increased biodiesel production in the USA region, and half is met by increased gross 
imports to the USA region. In the GCAM results, 77-79 percent of the shock is met by increased 
soybean oil biodiesel production in the USA region, and 21-23 percent is met by a combination 
of increased imports and reduced exports of soybean oil biodiesel. In GLOBIOM and GTAP, the 
shock is met entirely by increased soybean oil biodiesel production in the USA region. 
GLOBIOM does not have an energy market and therefore cannot trade biofuels, making 
domestic biodiesel production the only option in this model. 

Figure 7.1-1: Sources of additional soybean oil biodiesel consumed in the soybean oil 
biodiesel shock relative to the reference case196 

196 Red shows the contribution increased soybean oil biodiesel production in the USA region; orange shows the 
contribution from increased soybean oil biodiesel gross imports to the USA region; blue shows the contribution 
from reduced soybean oil biodiesel gross exports from the USA region. 
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Although the ADAGE and GCAM results both meet a large percentage of the shock 
through changes in soybean oil biodiesel imports, the impact on non-USA regions is very 
different. In the GCAM results, 43-52 percent of the shock is met by reduced soybean oil 
biodiesel consumption in non-USA regions (Figure 7.1-2). This latter share is larger than the 
share of biofuel trade noted in Figure 7.1-1 above. The estimate in Figure 7.1-2 also includes 
soybeans and soybean oil feedstock which are exported to the USA region rather than being 
processed into biodiesel in their region of origin and consumed domestically. In contrast, the 
ADAGE results do not show a reduction in soybean oil biodiesel consumption in other regions; 
instead the increased imports are sourced from increased soybean oil biodiesel production in 
non-USA regions. Energy market impacts are discussed further in Section 7.2. 

ADAGE, GCAM, GLOBIOM, and GTAP meet the soybean oil biodiesel shock through 
different amounts of soybean and soybean oil diversion from other uses, crop intensification, 
crop shifting to soybean, and new cropland (Figure 7.1-2). Based on the assumed conversion 
factor of soybean oil to soybean oil biodiesel (Section 4), if all of the shock were met by new 
soybean oil biodiesel production, ADAGE, GCAM, and GLOBIOM would need 3.4 million 
metric tons of additional soybean oil for biodiesel in 2030 and 3.3 million metric tons of 
additional soybean oil for biodiesel in 2050 (bottom panel of Figure 7.1-2). GTAP would need 
3.4 million metric tons of additional soybean oil for biodiesel in 2014. The GCAM results show 
much less additional soybean oil is needed for the soybean oil biodiesel shock than in the 
ADAGE, GLOBIOM, or GTAP results because soybean oil biodiesel consumption decreases in 
the non-USA region in GCAM. Because soybean crushing yields about 19 percent extractable 
soybean oil, if all of the additional soybean oil were coming from new soybean production, 
ADAGE, GCAM, and GLOBIOM would require additional production of 17.8 million metric 
tons of soybeans in 2030 and 17.6 million metric tons of soybeans in 2050. GTAP would require 
an additional 18.1 million metric tons of soybeans in 2014. 

In the ADAGE soybean oil biodiesel shock results, less than 5 percent of the shock is met 
by commodity diversion, with the majority of the shock met by new soybean production. In the 
GCAM results, because so much of the shock is met by reduction of soybean oil biodiesel 
consumption in non-USA regions, much less additional soybean oil feedstock is needed than in 
the other models. Of the additional soybean oil feedstock sourced in GCAM, around half comes 
from commodity diversion, and half comes from new soybean production (primarily from new 
cropland). In GLOBIOM and GTAP, the majority of the shock is met through commodity 
diversion (85-88 percent and 83 percent, respectively). GTAP meets a small percentage of the 
shock (2 percent) through a reduction of soybean oil biodiesel consumption in non-USA regions. 
Commodity diversion and soybean production results are described more in Section 7.3, and land 
use results are described in more detail in Section 7.6. 
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Figure 7.1-2: Top panel: Percentage of the soybean oil biodiesel shock that is met by 
different categories in 2030 and 2050. Bottom panel: Million metric tons of additional 
soybean oil from new soybean production (red, orange, and yellow) and diversion from 
other uses (green)197 

7.2 Energy Market Impacts 

The energy market mechanisms at play in the corn ethanol shock generally hold for 
soybean oil biodiesel as well, though the magnitude and some of the detailed effects differ. We 
refer to Section 6.2 above for a discussion of those principles. As noted in that section, of the 
models considered under this model comparison exercise, ADAGE, GCAM, and GTAP include 
explicit representations of energy commodities and energy commodity trade, end use sectors, and 
energy market interactions. 

The impacts of the soybean oil biodiesel shock on consumption of refined oil198 in the 
USA region in ADAGE, GCAM, and GTAP broadly mirror the impacts seen under the corn 
ethanol shock scenario; all three models show substantial displacement of refined oil use in the 
USA region, with displacement in GCAM being the highest, displacement in ADAGE starting 
somewhat less than in GCAM and declining over time, and GTAP having the smallest average 
displacement of refined oil consumption in the USA region. Displacement of consumption of 

197 A negative percent contribution means that there was decrease in soy production or an increase in non-fuel uses 
of soybean. ADAGE has a negative percent contribution from commodity diversion in 2050 because some 
additional soybeans were consumed for “other uses” – in this case, seed for additional soybean production. 
GLOBIOM has a negative percent contribution from new cropland because soy cropland area decreased in non-USA 
regions. 
198 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel. 
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refined oil in the USA region results in reduced net imports of crude and refined oil, amounting 
to 93 percent and 101 percent of the reduced USA consumption of refined oil in 2030 in 
ADAGE results and GCAM results respectively.199 

Figure 7.2-1: Difference in consumption of energy commodities (quadrillion BTUs) in the 
soybean oil biodiesel shock relative to the reference case in 2030 and 2050 (ADAGE, 
GCAM) and 2014 (GTAP) 

Trade in energy commodities plays a significant role in meeting the soybean oil biodiesel 
shock in results from several of the models considered (see Figures 7.1-1 and 7.2-1). In ADAGE 
and GCAM results, a substantial portion of the shock is met through greater net USA imports of 
soybean oil biodiesel (48 percent and 23 percent of the shock in 2030 in ADAGE and GCAM 
results respectively). In the ADAGE results, the increased net imports of soybean oil biodiesel in 
the USA region are constituted almost exclusively of an increase in gross exports from the Rest 
of Latin America region to the USA region. In the GCAM results, the increased net imports of 
soybean oil biodiesel in the USA region are constituted of changes in exports of biodiesel across 
multiple regions. It is notable that patterns of impacts of the soybean oil biodiesel shock on 
biofuel trade in ADAGE and GCAM reflect the theoretical representations of trade in the two 
models. In ADAGE, where trade is represented bilaterally and calibrated using historical trade 
data, impacts occur almost exclusively in a region with large historical exports of biodiesel to the 
USA. In GCAM, where commodities are exported to and imported from a global pool for each 
commodity, impacts are distributed across multiple regions with historical exports (regardless of 
destination) of biodiesel. 

199 Data on trade of crude oil in GTAP results were not available for this exercise. 
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We also note that GCAM’s estimated reduction in consumption of soybean oil biodiesel 
in the non-USA regions is greater in magnitude than the increased volume of biodiesel exported 
to the USA region. This is because increased demand for soybeans and soybean oil puts upward 
pressure on their prices and further reduces consumption for fuel, food, and other uses in the 
non-USA regions. 

Figure 7.2-2: Difference in U.S. net exports of energy commodities (quadrillion BTUs) in 
the soybean oil biodiesel shock relative to the reference case in 2030 and 2050 (ADAGE, 
GCAM) and 2014 (GTAP) 

Modeled changes in consumption of refined oil in non-USA regions are driven by two 
main mechanisms in the results from ADAGE, GCAM, and GTAP. First, increased use of 
soybean oil biodiesel in the USA region results in decreased consumption of refined oil in that 
region (i.e., “the displacement effect”). This puts downward pressure on the global prices of 
crude and refined oil, though the effect is small in absolute terms (between one and four 
hundredths of a percent) due to the relatively small size of the one billion gallon shock compared 
to global refined liquid fuel consumption. The result of this downward price pressure is some 
increased demand for refined oil in non-USA regions. This effect is present in, and a contributing 
factor to, the increased refined oil consumption seen in all three models in Figure 7.2-1. Second, 
if a portion of the soybean oil biodiesel shock in the USA region is met through increased net 
imports of soybean oil biodiesel, as is the case in ADAGE and GCAM, then the corresponding 
non-USA regions with increased exports of biofuels have to make up that deficit in their liquid 

93 



  
 

 
 

   
  

 
     

    
  

   
   

   
  

  
 

     
  

  
    

    
 

 
 

  
   

     
   

  
    

 
  

     
 

 
 

fuel markets by “backfilling” with either a) increased consumption of biofuels, likely coming 
from increased production within those regions, or b) increased consumption of refined oil. 

These two backfilling strategies are employed to different extents in ADAGE and GCAM 
results. In the GCAM results, multiple regions increase exports of soybean oil biodiesel to meet 
the increased demand in the USA region, but do not show commensurate increases in domestic 
biodiesel production. This results in reduced consumption of biodiesel in those regions which is 
backfilled with additional refined oil use. In contrast, in the ADAGE results, the increased 
exports of soybean oil biodiesel from the Latin America region are met with increased 
production, resulting in little impact on biofuel consumption in that region and obviating the 
refined oil backfill effect shown in the GCAM results. 

In summary, these dynamics explain the differences between the models in increasing 
consumption of refined oil in non-USA regions. In GCAM results, deficits in liquid fuels 
markets in non-USA regions are backfilled with refined oil, reducing the net global displacement 
effect of the shock on refined oil consumption. In ADAGE results, deficits in liquid fuels 
markets in non-USA regions are backfilled with increased biofuel production. In GTAP results, 
there is little change in trade of biofuels, so there are no significant deficits in liquid fuel markets 
in non-USA regions. 

Finally, ADAGE and GCAM show increased natural gas consumption in the USA region, 
albeit less than in the corn ethanol scenario, while GTAP shows little impact on natural gas 
consumption in any region. The smaller impact on natural gas in the soybean oil biodiesel 
scenario relative to the corn ethanol scenario is logical due to differences in the direct natural gas 
demands of their respective fuel production technologies. The corn ethanol dry mill process 
requires substantial natural gas for DDG drying, whereas the biodiesel transesterification 
production process requires relatively little natural gas. 

As discussed in Section 6.2, cumulative measures of the changes in refined oil and 
biofuel consumption, relative to the size of the shock, are common and useful measures for 
summarizing energy market impacts. These cumulative measures, illustrated in Figure 7.2-3 
reflect the story presented above on the impacts of the soybean oil biodiesel shock on 
consumption of other biofuels and refined oil globally. 
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Figure 7.2-3: Difference in liquid fuel consumption relative to the volume of the soybean oil 
biodiesel shock200 

In the lefthand pane of this figure, we see that the cumulative change in biofuel 
consumption in the non-USA region amounts to one percent of the cumulative soybean oil 
biodiesel shock in ADAGE, and 50 percent of the cumulative soybean oil biodiesel shock in 
GCAM (largely attributable to reductions in soybean oil biodiesel consumption across a number 
of non-USA regions), and six percent of the 2014 soybean oil biodiesel shock in GTAP. 

In the righthand pane, we see similar directional effects on refined oil consumption in the 
USA region as in the corn ethanol shock scenario discussed in Section 6.2; GCAM shows a 
greater reduction in USA consumption of refined oil than the cumulative energy content of the 
shocked biodiesel (119 percent), whereas ADAGE and GTAP show smaller reductions in USA 
consumption of refined oil than the energy content of the shock (91 and 86 percent, 
respectively). GCAM shows a much larger cumulative increase in non-USA refined oil 
consumption outside of the USA region, which is driven by backfill of reduced biodiesel 
consumption in the non-USA region. 

The effect on cumulative net non-USA refined oil consumption – a commonly used 
definition of “oil rebound” in the literature – shows how global oil consumption changes as a 

200 Values in the figure represent the difference between the shock and reference case of the given fuel category 
(refined oil vs. liquid biofuels) and given region (USA region vs non-USA regions) divided by the difference in 
consumption of liquid biofuels in the USA region (i.e., the shock volume). For ADAGE and GCAM, this is 
calculated using cumulative volume differences between 2020 and 2050. For GTAP, which only estimates 
differences in a single time step, the calculation uses only the volume differences in 2014. 
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result of the shock. GCAM results show the largest increase in non-USA refined oil consumption 
(67 percent of the cumulative shock) due to backfilling for traded biodiesel, as discussed above. 
GTAP and ADAGE show more modest increases in non-USA refined oil consumption (34 and 
24 percent respectively). The global net effect of the shock on refined oil consumption is that, on 
average, for every 100 BTUs of soybean oil biodiesel required to be consumed in the USA, 67 
BTUs of global refined oil consumption are displaced in ADAGE, 52 BTUs of global refined oil 
consumption are displaced in GCAM, and 51 BTUs of global refined oil consumption are 
displaced in GTAP. Future research could be done to better understand the parameters and 
assumptions that lead to the range in reduction of refined oil consumption. 

7.3 Crop Production and Consumption 

As shown in Section 7.1, the ADAGE, GCAM, GLOBIOM, and GTAP results differ 
notably in how much of the soybean oil biodiesel shock they each estimate would be sourced 
from new soybean production. This is reflected in the estimated changes in soybean production 
shown in Figure 7.3-1. The ADAGE results show the largest increase in global soybean 
production, followed by GCAM, then GLOBIOM, and then GTAP. ADAGE and GCAM results 
estimate the increase in soybean production would be split between the USA and non-USA 
regions. In the GTAP results, the increase in production is estimated to occur almost entirely in 
the USA region. In GLOBIOM, soybean production is estimated to increase in the USA region 
but decrease in aggregate across the non-USA regions. ADAGE, GCAM, and GLOBIOM results 
all show a decrease in corn production in the USA region as some of the new soybean area 
displaces corn area. 

In the non-USA region, the model results show an increase in the production of oil crops. 
The ADAGE results show an increase in “other oil crop” production.201 In the GTAP, GCAM, 
and GLOBIOM results, the increased oil crop production is primarily palm fruit. The GCAM 
results show decreased corn production in non-USA regions, whereas the GLOBIOM results 
show increased corn production in non-USA regions. 

Globally, crop production increases in all four sets of model results.202 However, there is 
much greater variation in the types and location of crop production across the models than there 
was in the corn ethanol results. All four sets of the model results show an increase in soybean 
production in the USA region, and a decrease in the production of other crops. There is 
substantial variation in the crop production in the non-USA regions, particularly for soybean 
production and palm fruit production. A comparison of Figures 6.1-2 and 7.1-2 lays plain one 
important first order reason for this greater variability. The models show much greater diversity 
in sourcing strategies for soybean oil biodiesel than they do for corn ethanol. This variation in 
sourcing for soybean oil biodiesel results in more complex economic and environmental 
outcomes than corn ethanol. Across the four economic models in this exercise, virtually all of the 
corn for ethanol is produced in the USA region. This is largely attributable to the monolithic role 
of the U.S. in historical global corn production and trade and to the fact that corn has no near-

201 As explained in Section 5.1, ADAGE does not explicitly represent oil crops other than soybeans. Therefore, for 
ADAGE, “other oil crops” includes palm fruit. 
202 We also looked at forest product production for the models that are able to report it (ADAGE, GCAM, 
GLOBIOM), and the change relative to the reference case is negligible. 
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perfect substitutes. By contrast, soybean oil does have near perfect substitutes for many end uses, 
in the form of other vegetable oils. Additionally, soybean oil production and exports, and 
vegetable oil production and exports more broadly, are historically distributed across more 
regions. Marginal global demands for vegetable oil may reasonably be supplied from North 
America, South America, or Asia. Thus, for soybean oil biodiesel, the models have a wider range 
of options for the location of additional vegetable oil production. Also, soybean oil biodiesel 
production has more complex impacts on the consumption and production of other crops than 
corn ethanol production because of the wider range of end uses for soybean oil and meal, as 
described below. The location of additional soybean production and the impact on the production 
of other crops is a potential area for future research and sensitivity analysis. 

Figure 7.3-1: Difference in commodity production (million metric tons) in the soybean oil 
biodiesel shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, 
GLOBIOM) 

ADAGE, GCAM, GLOBIOM, and GTAP have slightly different pathways for producing 
soybean oil biodiesel. In GCAM, GLOBIOM, and GTAP, soybean oil biodiesel is produced 
from soybean oil. In ADAGE, soybean oil is not explicitly represented, and instead soybean oil 
is part of an aggregated vegetable oil commodity. Soybean oil biodiesel in ADAGE can be 
produced from vegetable oil or directly from soybeans.203 Soybean oil biodiesel produced from 
soybeans produces oil crop meal (a generic vegetable meal commodity) as a coproduct. 

203 From a theoretical perspective, the latter strategy would represent a facility which co-locates crushing and 
biodiesel production plants. Such a facility inputs whole soybeans and outputs biodiesel and soybean meal. 

97 



  
 

 
 

 
    

 
     

   
     

   
 

  
 

   
 

  
     

   
 

  
     

 
     

    
     

 
 

 
 

    
 

  
   

 
      

     
 

  
     

    
 

   

 
              

          
                 
       

The end use impacts of the soybean oil biodiesel shock are more complex than the 
impacts in the corn ethanol shock because soybean oil biodiesel production can impact oilseed 
markets, vegetable oil markets, and oil meal markets (Figure 7.3-2). The ADAGE, GCAM, 
GLOBIOM, and GTAP results all show an increase in soybean crushing in the USA region. This 
produces soybean oil and soybean meal in GCAM, GLOBIOM, and GTAP, and vegetable oil 
and oil crop meal in ADAGE. In the GCAM, GLOBIOM, and GTAP results, additional soybean 
oil is used for fuel production in the USA region. In the ADAGE results, some additional 
vegetable oil is used for fuel production in the USA region, and additional soybean is also used 
directly for fuel production. In the GCAM results, the additional soybean meal produced in the 
USA region largely displaces corn for domestic feed use. We observe a similar trend in the 
ADAGE results, where oil crop meal displaces corn for feed use in the USA region. In GTAP, 
the additional soybean meal produced in the USA region displaces other oil crop meal for 
domestic feed use. By contrast, all of the additional soybean meal produced in the USA region in 
the GLOBIOM results is exported; this increase in USA soybean meal exports in turn depresses 
non-USA production of feed crops, including soybeans. However, USA exports of DDG 
decrease and more DDG is consumed in the USA region, displacing corn for feed use. In the 
USA region, ADAGE, GCAM, and GLOBIOM results show only minimal impacts on food end 
uses. In contrast, the GTAP results show a reduction in soybean oil for food use and no increases 
in other types of crops for food use, implying a net reduction in food consumption. GTAP results 
also show a reduction in soybean oil for “other uses,” which includes soybean oil that is 
industrially processed into other products.204 “Other uses” of soybeans increases in the ADAGE 
results; this represents additional soybean seeds needed to grow more soybeans. 

Non-USA regions show different impacts than the USA region. In the non-USA regions, 
the ADAGE results show an increase in soybean consumption for crushing, an increase in 
vegetable oil and soybean consumption for fuel production, an increase in soybean consumption 
for other uses (seed), and feed displacement of other crops with oil crop meal. In the GCAM, 
GLOBIOM, and GTAP results, there is an increase in oilseed crushing to make vegetable oil, 
including palm fruit (GCAM, GLOBIOM, and GTAP), rapeseed (GCAM and GLOBIOM), and 
other oil crops (GCAM and GTAP). ADAGE represents only two oil crop commodities, 
soybeans and “other oil crop.” The ADAGE results show an increase in the consumption of the 
aggregated other oil crop for crushing. In the GLOBIOM results, the increased palm fruit 
crushing helps backfill for reduced soybean crushing, which is due to decreased soybean 
production in non-USA regions. In the ADAGE, GCAM, and GTAP results, the increased palm 
fruit, rapeseed, and other oil crop crushing is in addition to increased soybean crushing. 

These results also show impacts on the food and feed markets in the non-USA region. In 
both the GCAM and GLOBIOM results, other vegetable oils replace soybean oil to at least some 
extent in the food market in non-USA regions.205 GLOBIOM results show an overall reduction 
in food consumption in the non-USA regions. GCAM results show a small reduction in food 
consumption, but the overall change is close to zero. These food market impacts are smaller than 

204 The “other uses” of soybean oil in GTAP can include processing for food products, such as margarine or salad 
dressing, whereas the food end use includes soybean oil used directly for food, such as cooking oil. 
205 In GLOBIOM results, palm fruit oil replaces soybean oil. In GCAM results, a mix of palm fruit oil, rapeseed oil, 
and other oil crop oil replaces soybean oil. 
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the feed market impacts. The GLOBIOM results also show displacement of soybean oil with 
palm fruit oil for other uses (e.g., industrial uses such as cosmetics production) and an overall 
increase in feed consumption, primarily from corn, soybean meal, and other crops. GCAM and 
GTAP results show displacement of crops with soybean meal and other oil crop meal in the feed 
market. The degree of substitution among feed commodities and food commodities, particularly 
in the non-USA regions, is an area of difference across the model results. 

Figure 7.3-2: Difference in consumption by end use (million metric tons) in the soybean oil 
biodiesel shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, 
GLOBIOM)206 

7.4 Trade of Agricultural Commodities 

As discussed in Section 3.1.6, ADAGE, GCAM, GLOBIOM, and GTAP all specify 
commodity trade in somewhat different ways. From a theoretical perspective, we would expect 
this to be relevant to a soybean oil biodiesel consumption shock scenario in several ways 
analogous to those observed for corn ethanol in Section 6.4. Model results related to trade in 
soybeans and other crops would be expected to vary by model. In addition, the assumed 
elasticity of competition and degree of assumed fungibility between vegetable oils varies across 
these modeling frameworks and would be expected to produce somewhat different results across 
the models. Another consideration unique to soybean oil biodiesel scenarios is the treatment of 
soybean meal trade. 

206 Results are shown in million metric tons of each feedstock. Because soybeans contain 19 percent oil, 10 million 
metric tons of soybeans is equivalent to 1.9 million metric tons of soybean oil. ADAGE does not explicitly track 
soybean oil or soybean meal, and those are included in “Other Oil Crops Oil” and “Other Oil Crops Meal,” 
respectively. 
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Figure 7.4-1: Difference in U.S. net exports of crops and secondary agricultural products 
(million metric tons) in the soybean oil biodiesel shock relative to the reference case in 2030 
and 2050 (ADAGE, GCAM, GLOBIOM) and 2014 (GTAP) 

In ADAGE, of the additional soybean oil biodiesel produced in the USA region, a 
sizeable portion is sourced from shifting cropland from corn production to soybean production. 
Reduced corn production coincides with reduced use of corn for livestock feed in the USA 
region, which is backfilled with the additional oilseed meal available in the soybean oil biodiesel 
shock scenario. This results in relatively little change in U.S. net exports of agricultural goods in 
ADAGE. 

In GCAM, the USA region increases gross imports of soybean oil and decreases gross 
exports of whole soybeans in order to meet the soybean oil biodiesel shock targets. There is a 
smaller (relative to ADAGE) effect on crop production for non-soybean crops in the USA 
region, so the additional soybean meal produced to meet the shock is not needed to backfill 
deficits in livestock feed demand. A relatively small portion of the shock in GCAM (compared to 
ADAGE) is met through crop shifting in the USA region, so livestock feed demand met by corn 
and other crops is less affected by the soybean oil biodiesel shock. This results in increased gross 
exports of soybean meal from the USA region in the soybean oil biodiesel shock in GCAM. 
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GLOBIOM does not represent energy commodities nor their trade, so all of the biodiesel 
needed to meet the soybean oil biodiesel shock must be produced in the USA region in 
GLOBIOM. Additionally, GLOBIOM restricts the amount of natural land that can be converted 
to crop production, so the majority of the additional feedstock needed to meet the soybean oil 
biodiesel shock is sourced from either switching cropland from production of other crops to 
soybean production, or from changes in net trade of soybeans and soybean oil in the USA region. 
This results in reduced gross exports of soybeans and soybean oil and increased gross imports 
soybean oil in the USA region. Crop switching reduces production of other crops in the USA 
region, most notably corn, which results in decreased gross exports of corn and DDG, and wheat, 
which results in increased gross imports of wheat to meet demands for food. 

The GTAP results include a reduction in soybean exports, but a larger increase in exports 
of soybean meal and other oilseed meals for livestock feed. Unlike the other models, the GTAP 
results include an overall increase in the mass of USA region net crop and secondary crop 
product exports. Relative to the other model results, the GTAP results include a smaller 
reduction in soybean oil and soybean exports. Instead of reduced exports, the GTAP results 
include reduced domestic consumption of soybeans and soybean oil for feed, food and other non-
biofuel purposes. 

7.5 Crop Yield 

As was observed in Section 6.5 above regarding corn crop yield modeling results, the 
four economic models included in this comparison exercise all have the ability to increase crop 
yields in response to changes in crop price. However, while these models share some similar 
theoretical underpinnings regarding the economic logic of crop yield response to price, their 
mechanisms for simulating this response vary in structure. Further, these models represent 
additional methods of crop intensification beyond the ability to invest resources to increase yield 
per acre on existing cropland. 

Reference case yield trends are also an important factor in understanding differences 
across models. As shown in Figure 5.3-1, reference case soybean crop yield trends across the 
four economic models are fairly similar in the historical periods of 2010 and 2015, though not 
identical. However, for the three dynamic models, ADAGE, GCAM, and GLOBIOM, the trends 
in reference case soybean yields diverge over time. Yields are calibrated to improve over time in 
all three models however, reflecting a shared assumption that agricultural technologies will 
continue to improve into the future. In reviewing the change in soybean yields in our shock 
scenario relative to the reference case shown by these dynamic models, the reader should keep in 
mind that yields are improving over time in both the USA and non-USA regions in both 
scenarios as they do in the reference case. 

As shown in Figure 7.1-2 above, crop intensification contributes to the sourcing of 
soybean oil for the biodiesel shock to varying degrees across the models. In both of the biofuel 
volume shock scenarios modeled for this exercise, we observe that the contributions from 
intensification are a minority of the feedstock sourcing solution, accounting for 17 percent or less 
of the feedstock required. Intensification is a part of each model solution to at least some degree 
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however, and we can make some useful observations about how this effect is similar and 
different across the models considered. 

As shown in Figure 7.5-1, average USA region soybean yields increase in all four models 
in response to the soybean oil biodiesel shock. One can compare these results with the reference 
case yields presented in Figure 5.3-1 and observe that these improvements are generally less than 
a 1 percent increase relative to reference case yields, though in the case of ADAGE, USA region 
average yield does increase by 1.3 percent in 2030. While improvements may be larger in 
particular growing regions, the average yield across the USA region is instructive in 
understanding why intensification plays only a minor role in the sourcing of soybean oil for the 
biodiesel shock. As a collective, these four models estimate the soybean oil biodiesel shock 
modeled for this comparison does not induce much improvement in soybean yield relative to 
reference case yields. This small observed change in USA region soybean yields is reasonable in 
light of the crop price changes observed in these results. Figure 7.5-2 shows that the change in 
soybean price is also small, less than 2 percent in 2030. As discussed above, crop price is the 
primary driver of increased crop yields and intensification in general, and a small price change 
would be expected to induce a small yield response as well. These changes in soybean price are 
largely a function of the changes in soybean oil and soybean meal prices, shown in Figure 7.5-3. 

Figure 7.5-1: Difference in soybean yield in the soybean oil biodiesel shock relative to the 
reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM, GTAP) 

Looking at the non-USA regions results, we see smaller average soybean yield responses 
from all four models. We observe more yield response in the ADAGE and GLOBIOM results 
than in the GCAM or GTAP results. ADAGE estimates the largest non-USA regional soybean 
production response of the four models, so it is perhaps unsurprising from that perspective that it 
also shows the strongest non-USA yield response. Soybean oil biodiesel produced in South 
America provides a substantial share of the shock in the ADAGE results. The increased demand 
of this new biodiesel production creates greater investment in soybean yields in this region. The 
GLOBIOM results tell a different story. In these results, soybean production declines outside the 
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USA region overall. As discussed in Section 7.3 above, the decline in non-USA soybean 
production is primarily a response to the influx of USA-produced soybean meal into global feed 
markets. However, it is notable that GLOBIOM appears to use intensification as a method for 
mitigating the reduction in soybean production, rather than a means of further boosting increased 
production, as is the case in the ADAGE results. Conversely, yields increase very little in GTAP 
and GCAM as these models appear to focus on other strategies for supplying the needed soybean 
oil. However, the responses from all four models are fairly small. These results, again, appear 
reasonable in light of the very small soybean price changes in the non-USA regions observed in 
Figure 7.5-2. 

Figure 7.5-2: Percent difference in commodity prices in the soybean oil biodiesel shock 
relative to the reference case207 

207 Average commodity prices for non-USA regions in GTAP results were not available for this exercise. 
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Figure 7.5-3: Percent difference in coproduct prices in the soybean oil biodiesel shock 
relative to the reference case208 

In the three dynamic models, ADAGE, GCAM, and GLOBIOM, we see somewhat 
similar patterns of yield change over time. Figure 7.5-4 shows that all four of the models 
estimate an increase in soybean yield in 2030 as the shock reaches its peak, both in the USA and 
non-USA regions though the magnitudes of these increases vary by region and model. By 2050, 
this increase tapers off in all models in both the USA and non-USA regions as well. The 
magnitude of this tapering varies as well and that magnitude appears to positively correlate to 
some degree with the magnitude of the 2030 increase in yield. In general, this tapering effect 
appears attributable to improving reference case soybean yields over time. 

208 Average commodity prices for non-USA regions in GTAP results were not available for this exercise. 
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Figure 7.5-4: Difference in soybean yield in the soybean oil biodiesel shock relative to the 
reference case in 2014 (GTAP) and over time from 2020 to 2050 (ADAGE, GCAM, 
GLOBIOM) 

While the soybean crop yield change results may appear to be somewhat different across 
models based on the figures presented, they are all relatively small increases when compared to 
reference case soybean yields in each model The largest increase in soybean yields in 2030 is 
seen in the ADAGE results in the USA region – about 1.3 percent – while soybean yield changes 
in the other models and regions are all less than one percent in 2030. We can observe from these 
results that the four economic models generally agree that, in the specific scenarios modeled for 
this exercise, yields are not projected to improve substantially in response to the soybean oil 
biodiesel shock. However, it is also notable that even these small changes in soybean yield are 
responsible for a small but notable percentage of the additional soybean oil produced to meet the 
shock. 

From this exercise however, we cannot draw any firm conclusions from this yield 
comparison regarding whether one method is better than the others. All four of the models seem 
to behave reasonably in these yield results. Sensitivity analysis may reveal the degree to which 
GHG emissions results change when the underlying assumptions about crop yield responsiveness 
to price are changed. This may indicate areas for further research. 

7.6 Land Use 

The increased soybean production comes from a mix of cropland shifting from other 
crops to soybeans, land use change from other land types to cropland, and changes in soybean 
yield. As shown in Figure 7.6-1, soybean cropland in the USA region increases by 0.3 Mha in 
GTAP (2014), 2.7 Mha in ADAGE (2030), 0.7 Mha in GCAM (2030), and 1.1 Mha in 
GLOBIOM (2030). In the non-USA regions, soybean cropland increases by 0.02 to 2.1 Mha in 
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GTAP, ADAGE, and GCAM, and decreases by 1.2 Mha in GLOBIOM. All of these models 
show some amount of shifting of other crops to soybeans, but the amount of crop shifting varies. 

In the GTAP and GLOBIOM results, most new soybean cropland in the USA region 
comes from shifting of other crops. In the GLOBIOM results, there is a shift in the non-USA 
region from soybean cropland to corn, wheat, other grains, and other crops, to make up for the 
lost production of these crops in the USA region. In both models, the total cropland increases 
more in non-USA regions than in the USA region. In the ADAGE results, there is some cropland 
shifting in the USA and non-USA regions, but a larger net increase in cropland area than in 
GTAP or GLOBIOM. In the GCAM results, even though there is much less new soybean 
cropland than in ADAGE, there is a similar net increase in total new cropland (horizontal line in 
Figure 7.6-1) because there is less cropland shifting than in ADAGE. 

Figure 7.6-1: Difference in cropland area by crop type (million hectares) in the soybean oil 
biodiesel shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, 
GLOBIOM)209 

The net increase in cropland causes changes in the area of other land types in each model 
(Figure 7.6-3). As described in Sections 2 and 6.6, the type of land use change in each model 
depends on the model structure and constraints. In ADAGE, most of the increase in cropland in 
the USA region is coming from managed pasture. In contrast, non-USA regions show large 

209 Horizontal lines show the net change in cropland. Cropland area shown represents land cultivated for row crops 
in ADAGE and GCAM and harvested area in GLOBIOM and GTAP. When a single unit of land is harvested 
multiple times in a single year, the area is counted multiple times as “harvested area” but only a single time as 
“cultivated area.” 
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decreases in managed and unmanaged forest. In the non-USA region, the soybean production 
and land use change are occurring the Rest of Latin America region. In the Rest of Latin 
America region in ADAGE, the model assumes that forest productivity decreases over time, 
which impacts land prices, and causes the reduction of forest area. GCAM results show a 
decrease in a mix of land types in both the USA and non-USA regions, with the largest impact 
on unmanaged pasture, similar to the corn shock. In the GLOBIOM results, the area of other 
arable land and managed forest decreases relative to the reference in non-USA regions. The 
restriction on natural land conversion in GLOBIOM could drive the result that the new soybean 
cropland in the USA region comes from crop shifting, rather than land use change. 

In the GTAP results, there is very little change in land use in the USA region, but in the 
non-USA regions, cropland increases and other arable land decreases. In GTAP, in the non-USA 
regions cropland pasture is the main source for new harvested area (53 percent), followed by 
pasture (30 percent), unharvested cropland (11 percent), increased multi-cropping (5 percent), 
and forest (1 percent). Because GTAP only represents managed land, the results show no 
conversion of unmanaged forest, grassland, or unmanaged pasture. 

Each of the models has different assumptions about the carbon stock of different land 
types in different regions. As shown in more detail in Section 7.7, the type and amount of land 
converted and the carbon stock of the land types will factor into the emissions from land use 
change. 
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Figure 7.6-2: Difference in land use (million hectares) in the soybean oil biodiesel shock 
relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM)210 

Following the trends observed in the crop production results, the models show variation 
in both the magnitude and location of land use change. As might be expected given their 
differences in land competition structure and land categorization, these four models also present 
diverse estimates regarding what types of land might be converted to cropland in response to 
greater demand for soybean oil biodiesel, in particular the extent of forest loss. Some of these 
differences appear to be related to where in the world the results show that cropland will expand. 
The differences also appear to be attributable to differences in land conversion flexibility across 
the models. These are areas for potential future sensitivity and uncertainty analysis. 

7.7 Emissions 

The modeled results of energy consumption, crop production, and land use change 
described above come together in the modeled greenhouse gas emissions. As shown in Figure 
7.7-1, the modeled GHG emissions over time vary by model. 

210 In Figure 6.6-2 and 7.6-2, “Cropland” area in GTAP represents land cultivated for row crops (calculated as the 
change in harvested area minus the change in multicropping), while cropland pasture, and other unused cropland 
have been reassigned to “Other Arable Land.” This differs from Figure 5.2-1, in which cropland pasture and other 
unused cropland are reported under the “Cropland” category. 
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Figure 7.7-1: Difference in global greenhouse gas emissions in the soybean oil biodiesel 
shock relative to the reference case211 

211 GTAP is not included in this figure because it does not represent emissions over time, and due to time 
constraints, we do not have GTAP GHG emissions by gas for the source categories used in this figure. For 
comparison, for GTAP, in the soybean oil biodiesel scenario relative to the reference case (2014), LUC emissions = 
1.1 Mt CO2e, fossil fuel combustion and industrial CO2 emissions = -5.5 Mt, and other GHGs emissions from all 
covered sources = -0.70 Mt CO2e, of which N2O = 0.13 Mt CO2e, CH4 = -0.72 Mt CO2e, fluorinated gases = 0.01 Mt 
CO2e, and other CO2 = -0.13 Mt CO2e; net total GHG emissions = -5.1 Mt CO2e. GREET is not included in this 
figure because it does not represent scenario-based emissions over time. See Table 7.7-1 for carbon intensity values. 
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Emissions from land use change show different trends in ADAGE, GCAM, and 
GLOBIOM results, due primarily to two factors: variation in the type(s) of land use change 
occurring relative to the reference case, and variation in the underlying carbon stock data sets 
and assumptions used in each model. In the ADAGE results, land use change emissions are the 
highest of the models shown here. These emissions peak in 2030 in ADAGE and are higher than 
the reference case throughout the entire model period. In the ADAGE results, the non-USA 
region has a large amount of forest converted to cropland. Because forests have a higher carbon 
stock than other land types, the ADAGE results show high land use change emissions. In 
addition, emissions continue after 2030 because the assumptions and structure in ADAGE make 
it cost effective to continue to convert land after 2030. 

In the GCAM and GLOBIOM results, land use change emissions estimates are higher 
than the reference case from 2020 to 2040, peaking in 2030. From 2040-2050, emissions are 
slightly lower than the reference case. Emissions in the GCAM results are higher than in the 
GLOBIOM results. In the GCAM results, most of the land use change is coming from lower 
carbon land types, such as pasture and grassland. However, some of the land use change is 
attributable to reduced amounts of estimated future afforestation relative to the reference case. 
Even though the amount of change in forest land is small compared to the amount of change in 
other land types, the high carbon stocks of forest land leads to higher land use change emissions. 
The GLOBIOM results have less forest conversion than ADAGE and GCAM, and therefore 
lower land use change emissions, especially earlier in the modeled period. 

The “Energy from Fossil Fuels” (or “fossil fuel emissions”) category includes emissions 
associated with producing biofuels (e.g., from consuming natural gas or electricity for process 
energy), direct emissions associated with on-farm energy use to produce feedstock, and 
transporting both biofuel feedstocks and finished fuels, as well as emissions from indirect 
impacts on the energy sector, including displaced diesel use for transportation that is replaced by 
soybean biodiesel. In the soybean oil biodiesel results, ADAGE and GCAM show lower fossil 
fuel emissions than in the reference case.212 In these results, the reduction in emissions from 
fossil fuels becomes larger until 2030. From 2030-2050, fossil fuel emissions in the GCAM 
results are relatively constant. In the ADAGE results, from 2030-2050 the reduction in emissions 
becomes smaller, but emissions stay lower than in the reference case. As shown in Section 7.2, 
refined oil consumption decreases in the soybean oil biodiesel shock scenario relative to the 
reference case. Globally, the refined oil consumption decreases more in the ADAGE results than 
the GCAM results. However, ADAGE results show a larger increase in global natural gas 
consumption than the GCAM results, and an increase in coal consumption, rather than the 
decrease seen in the GCAM results. The higher consumption of natural gas and coal in the 
ADAGE results leads to a lower reduction in fossil fuel emissions in the ADAGE results than the 
GCAM results. 

Crop production emissions are higher than the reference case in the ADAGE, GCAM, 
and GLOBIOM results, with GCAM results showing the largest increase. Changes in crop 
production emissions relative to the reference case are due to changes in the types and quantities 
of crops grown in the models, and primarily come from changes in N2O emissions, driven by 
both increased fertilizer use and direct nitrogen fixation by soybeans. As shown in Section 7.3, 

212 Emissions from “Energy from fossil fuels” are not reported by GLOBIOM. 
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the ADAGE, GCAM, and GLOBIOM results all show increases in soybean production. These 
results also show increased production of palm fruit and other oil crops. ADAGE and GCAM 
results show a decrease in corn production, whereas GLOBIOM results show a shift in corn 
production from the USA region to the non-USA regions. The crop production emissions are 
small in all of these model results. Emissions peak in 2030 in the GCAM and GLOBIOM results, 
and in 2040 in the ADAGE results, and then decrease until 2050. The change in emissions 
relative to the reference case from the livestock sector and from industrial and waste 
management sectors is very small. 

The total change in GHG emissions across all sources over time varies across the models 
(Figure 7.7-1). The ADAGE results show higher emissions than in the reference case from 2020-
2050, which is dominated by CO2 emissions from land use change. In the GCAM results, GHG 
emissions are higher than in the reference case from 2020-2030 and lower than the reference 
case from 2035-2050, because the CO2 emissions from land use change decline rapidly after 
2030. In the GLOBIOM results, emissions are higher than in the reference case from 2020-2050, 
and are dominated by CO2 emissions from land use change. 

There are a few commonalities across the ADAGE, GCAM, and GLOBIOM results of 
emissions over time. All of these model results show small but positive emissions from crop 
production relative to the reference case. The model results also all show very small changes in 
emissions from livestock production, waste management, and industry. The GCAM and ADAGE 
results both show lower emissions from fossil fuel than the reference case, but there are 
differences in the amount of fossil fuel emissions reduction. Future research could explore the 
factors that determine the extent of refined oil displacement in each model through sensitivity 
analysis. Additionally, there are large differences across the model results in the amount of land 
use change emissions, due to differences in both the types of land converted and the carbon stock 
assumptions. A sensitivity analysis of the carbon stock assumptions in GCAM is shown in 
Section 9.2 below, and a sensitivity analysis of the land conversion elasticities in ADAGE is 
shown in Section 9.3. Future research could focus on the impact of carbon stock assumptions in 
other models, or on other model parameters that determine the types of land converted. 

As explained in Section 6.7, we calculated a CI for each category of emissions, in 
kgCO2eq/MMBTU (Table 7.7-1). We also consider CI results from GREET. As explained in 
Section 6.7, the models report emissions from different sectors. Models are divided between 
those frameworks with energy markets (in the left side columns) and models without energy 
markets (in the right side columns). This division is made to reflect important differences in the 
sectors represented and the difficulty of direct comparability between models on the left with 
models on the right. ADAGE, GCAM, and GTAP include global emissions from every economic 
sector, including indirect, market-mediated impacts. GREET includes detailed emissions 
assumptions from fuel production, transport, and use, but, as it is not a consequential model, it 
does not estimate the net change in GHG emissions resulting from a change in biofuel 
consumption. Rather it estimates the emissions directly attributable to the biofuel supply chain. 
GLOBIOM does not include any energy sector emissions but does include market impacts on 
crop production and the livestock sector. 
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Because of the differences outlined above, it would be inappropriate to compare all of the 
emissions estimates across all of the models, but we can make several meaningful comparisons. 
Results from the three models with energy markets (ADAGE, GCAM, GTAP) can be directly 
compared, with the caveat that GTAP is representing 2014 while the other models are 
representing a 2020-2050 scenario. Furthermore, we can compare the land use change emissions 
estimates for all of the models, as GREET uses a consequential approach for this category of 
emissions, again with proper caveats about temporal differences. We can also compare crop 
production and livestock sector emissions estimates from ADAGE, GCAM and GLOBIOM. In 
the table below, we report emissions from “Agriculture, forestry and land use” for all five 
models as the sum of emissions from these stages; however, the GREET estimate for this 
aggregate category is not directly comparable with the other models for reasons discussed below. 

Like in the corn ethanol shocks, energy sector emissions have a large impact on the CI of 
soybean oil biodiesel in the ADAGE, GCAM, and GTAP results. The energy sector CI is higher 
(less negative) for the ADAGE results than for the GCAM and GTAP results, which is consistent 
with the smaller emissions reduction from fossil fuels over time shown in Figure 7.7-1, 
particularly in the later model years. GREET reports the CI from fuel production and 
transportation but does not consider indirect impacts on the energy sector, such as the energy 
rebound effects shown in Section 7.2. The fuel production and transportation CI in the GREET 
results is based on the amount of process energy needed for soybean oil biodiesel production as 
well as the amount of energy needed to transport the feedstock and the fuel. This is why we use 
the label “Energy Sector” for the first row in Table 7.7-1 for the three models with energy 
markets, but the label “Biofuel Production” for this row for GREET. 
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Table 7.7-1: Carbon intensity of soybean oil biodiesel (kgCO2eq/MMBTU) calculated using 
emissions reported by each model213 

Models with Energy Markets Models without Energy Markets 

ADAGE GCAM GTAP GLOBIOM GREET 

Sector/stage-
specific 

emissions 

Energy 
from Fossil 
Fuels 

-28 -40 -46 Biofuel Production x 13 

Crop 
Production 7 21 

-6 

Crop Production 11 x 

Feedstock 
Production x 9 

Livestock 
Sector 0.7 -1.3 Livestock Sector 3 x 

Other 1 0 Fuel Use x 0.4 
Land Use 
Change 295 62 10 Land Use Change 23 10 

Totals 

Agriculture, 
forestry, 
and land 
use 

303 82 4 
Agriculture, 
forestry, and land 
use 

38 19 

Global 
GHG 
Impact 

276 42 -42 Global GHG Impact x x 

Supply 
Chain GHG 
Emissions 

x x x Supply Chain GHG 
Emissions x 32 

The ADAGE, GCAM, and GLOBIOM results show a range of CI from crop production. 
The crop production CI from the GCAM results is higher than the other models, consistent with 
the higher emissions over time in the GCAM results relative to the ADAGE and GLOBIOM 
results. GREET’s feedstock production CI is based on the energy and chemical inputs required to 
produce the amount of soybean oil needed for 1 MMBTU of biodiesel. Unlike the other models, 
this value does not consider indirect impacts on the production of other types of crops. Livestock 
and other sectors (including waste management and other industrial sectors) have only minor 
impacts on the overall CI in ADAGE, GCAM, and GLOBIOM. 

For the GTAP results, we have estimates of non-CO2 emissions by greenhouse gas, but 
we do not have these emissions disaggregated by sector or lifecycle stage. The largest change, by 

213 “X” means that the model does not report that category. For GTAP, emissions from crop production, the 
livestock sector, and “other” are reported as an aggregated value of non-LUC, non-fossil fuel emissions. Negative 
values for ADAGE, GCAM, GTAP, and GLOBIOM mean that emissions are lower than the reference case, whereas 
positive values mean the emissions are higher than the reference case. For further discussion of how to interpret 
positive and negative values, see Section 6.7. 
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gas, is a decrease in CH4 emissions. We believe the bulk of the changes in these emissions are 
associated with changes livestock CH4, but more work would be needed to confirm our intuition. 
In Table 7.7-1, we report the aggregated non-CO2 emissions estimate from GTAP across three 
rows combining Crop Production, Livestock Sector and Other. GTAP shows a negative CI in this 
aggregated category. We would need to do more research to understand why these emissions are 
lower than estimates from the other models. 

Land use change emissions are reported across all the models, and the CI results show 
wide differences, consistent with the large differences in emissions shown in Figure 7.7-1. As 
explained in Section 7.6, ADAGE results show conversion of forest land to cropland to grow 
soybeans in non-USA regions, which results in a high estimated LUC CI. In contrast, GTAP 
results show very little land use change, and therefore this model estimates a low LUC CI. Here 
again, GREET’s LUC CI is based on a GTAP run214 using a different shock size (0.812 billion 
gallons of soybean oil biodiesel) using a 2004 baseline where around 13 percent of crop land 
cover demand comes from forest land, and the remainder comes from land previously having 
been pastureland.215 

We can compare “Agriculture, forestry and land use change emissions” across four of the 
models (ADAGE, GCAM, GLOBIOM, GTAP). For GTAP, we include the non-CO2 emissions 
in this category. For this category, the ADAGE results include the highest emissions, followed 
by GCAM. These differences are driven by the land use change emissions. 

The total global CI can be compared across ADAGE, GCAM, and GTAP, because all of 
these models represent the same sectors and include market impacts. The results from these 
models show a range in soybean oil biodiesel CI, primarily due to differences in the land use 
change CI. For GLOBIOM and GREET, a total global CI cannot be calculated from the model 
results because these models do not include all the relevant sectors and/or do not include all the 
relevant market impacts. For GREET, we calculate the total supply chain CI. This is a 
fundamentally different metric than the other models’ CIs, since GREET primarily uses an 
attributional approach to lifecycle analysis rather than a consequential approach. This value does 
not include any displacement of fossil fuel consumption that would occur from the increased 
consumption of biofuels.216 

7.8 Summary of Soybean Oil Biodiesel Estimates 

Section 7 compares and contrasts the soybean oil biodiesel modeling estimates from 
ADAGE, GCAM, GLOBIOM, GREET, and GTAP produced for this exercise. These models 
source the soybean oil biodiesel required to meet the assumed shock in different ways in these 

214 We present the default soybean oil biodiesel run from GREET’s LUC CCLUB tool here, referred to as “Soy 
Biodiesel CARB Case 8” 
215 Chen, Rui, Zhangcai Qin, Jeongwoo Han, Michael Wang, Farzad Taheripour, Wallace Tyner, Don O’Connor, 
and James Duffield. 2018. “Life Cycle Energy and Greenhouse Gas Emission Effects of Biodiesel in the United 
States with Induced Land Use Change Impacts.” Bioresource Technology 251 (March): 249–58. 
https://doi.org/10.1016/j.biortech.2017.12.031. 
216 GREET’s biodiesel CI estimates are often compared with GREET CI estimates for diesel to derive a GHG 
percent reduction relative to diesel. In our 2010 RFS analysis, we similarly compared biodiesel CI estimates from 
models that do not include energy markets with a CI estimate for diesel to calculate a percent reduction in emissions. 
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8 

results. Some models rely primarily on crushing of new soybean production to produce 
additional soybean oil feedstock. Other models rely primarily on diversion of soybean oil from 
other uses. Some models also show a contribution from reduced soybean oil biodiesel 
consumption in non-USA regions. In addition, the model results show differences in how much 
of the new soybean oil biodiesel is produced in the USA region versus the non-USA regions. 
Because of these differences in sourcing strategy, the model results differ regarding the amount 
and location of soybean oil production, vegetable oil and biodiesel trade, and land use change 
impacts of the shock. Notably, the amount and location of land use change, and the types of land 
converted to cropland, differ substantially across the range of model results. The model results 
also show differences in the impact on the food and feed markets, and different amounts of 
displacement of palm oil or other oils. The model results also have some notable similarities. 
ADAGE, GCAM, GLOBIOM, and GTAP results all show a small amount of crop yield 
intensification. The models which explicitly include the energy sector, ADAGE, GCAM, and 
GTAP, all show a decrease in refined oil consumption in the USA region in their results, and an 
increase in non-USA regions. But there are differences across these models in the total global 
displacement of refined oil. These factors all contribute to differences in the estimated GHG 
emissions and CI of soybean oil biodiesel across the models, with the differences in land use 
change emissions having the greatest impact on estimated CI. 

The previous sections also highlight potential areas for future research. Sensitivity 
analysis could test the impact of different degrees of substitution in feed and food markets. 
Further research and sensitivity analysis could also seek to better understand the parameters that 
influence land conversion to cropland. Furthermore, research and sensitivity analysis could seek 
to better understand why model results show a range in the reduction of refined oil consumption. 
These are only a few examples of the many research areas that could help us to understand what 
is driving the variation in estimates across models. 

Alternative Scenarios and Model Sensitivity Analysis 

Alternative Volume Scenarios 

To determine whether and how GHG emissions estimates from these models may vary 
based on the volume of biofuels assumed, we ran alternative volume scenarios through the 
models. The scenarios included half of the original soybean oil biodiesel shock (decreased to 500 
million gallons) and a combined scenario in which both soybean oil biodiesel and corn ethanol 
consumption are each increased by 1 billion gallons simultaneously. These new volume 
scenarios were performed in ADAGE, GCAM, GLOBIOM, and GTAP using the same methods 
for the core corn ethanol and soybean oil biodiesel scenarios. The alternative shock size was 
chosen to compare how each model functions, and they are not necessarily meant to represent 
realistic biofuel shock sizes. 

8.1 Soybean Oil Biodiesel 500 Million Gallons (MG) Scenario 

The 500 MG soybean oil biodiesel shock results generally indicate a linear relationship 
between shock size and most output parameters. ADAGE, GCAM, and GTAP show a high 
degree of linearity between volume shock assumptions and output values, with scenario changes 
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from the reference case for the 500 MG soybean oil biodiesel shock generally being half the size 
of those from the 1 BG shock. The GLOBIOM results show more nonlinear variability in output 
values, but these nonlinearities tend to be quantitatively minor. To examine these questions of 
model response linearity and for clarity of presentation, the 500 MG soybean oil biodiesel shock 
has been normalized to show impacts per 1 billion gallons of soybean oil biodiesel in the results 
presented in this section. 

8.1.1 Energy Market Impacts 

The models that include energy market impacts, ADAGE, GCAM, and GTAP, show a 
linear relationship between shock size and global energy consumption. The size of the energy 
sector impacts, expressed in quad BTUs per billion gallons (of shocked biodiesel), are generally 
equal across the 500 MG and 1 BG soybean oil biodiesel scenarios, as illustrated in Figure 8.1.1-
1. GLOBIOM does not represent the energy sector and as such was not included in this section 
of the analysis. 

Figure 8.1.1-1: Difference in global energy consumption (Quad BTUs per BG of shocked 
soybean oil biodiesel consumption) in the 500 MG and 1 BG soybean oil biodiesel shocks 
relative to the reference case in 2030 (ADAGE and GCAM) and 2014 (GTAP) 
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8.1.2 Crop production and consumption 

Similar to energy consumption, ADAGE and GCAM show a generally linear relationship 
between shock size and global commodity production impacts in the 500 MG soybean oil 
biodiesel shock. GTAP also shows a generally linear relationship between commodity 
production and shock size. GLOBIOM results have slight differences in production of corn and 
soy between the 500 MG and 1 BG soybean oil biodiesel shocks, but these differences are minor. 

Global commodity consumption by end use indicates a generally linear relationship with 
respect to shock size across ADAGE, GCAM, and GLOBIOM in the year 2030, and there are 
not any notable changes between the 500 MG and 1 BG soybean oil biodiesel scenarios. GTAP 
also shows a generally linear relationship between global commodity consumption and shock 
sizes in 2014. 

However, in the 2050 time step, GLOBIOM results show nonlinearities in the global 
crushing of palm fruit and the consumption of sugar crops and other crops for feed, with the 500 
MG shock showing higher consumption per billion gallons.217 The nonlinearity for palm fruit is 
attributable to the commodity substitution dynamics of GLOBIOM. As a commodity becomes 
scarcer on the global market (soybean oil in this case), the price of that commodity increases and 
there is increasing incentive to substitute less expensive alternatives (palm oil in this case). 
However, that substitution becomes more expensive, i.e., the price of the substitute good 
increases as greater quantities of the substituted product are demanded. In both the 500 MG and 
1 BG soybean oil biodiesel shocks, increasing U.S. demand for soybean oil to produce biodiesel 
leads to lower availability of soybean oil in other countries and higher prices for soybean oil and 
soybeans. This shortfall is partly addressed with increased palm oil supply from Southeast Asia. 
However, substitution of palm oil for soybean oil grows more costly per unit as demand rises. 
For this reason, this substitution effect is less pronounced in the 1 BG case than in the 500 MG 
case, where the total volume of additional palm oil demanded is smaller. 

Regarding feed crops, the economic dynamics at play are somewhat similar. The 500 MG 
soybean oil biodiesel shock generates less additional soybean meal than the 1 BG case, and U.S. 
soybean meal prices are depressed by a smaller amount. This smaller price depression leads to a 
less than proportional increase of the use of the meal as livestock feed abroad. The nonlinear 
change in consumption of other feed products in the 500 MG case is related to the fact that, 
unlike the other models considered in this exercise, GLOBIOM explicitly accounts for the need 
for animal feed diets to be balanced nutritionally. Increasing consumption of one feed product, in 
this case soybean meal, means that consumption of other complementary feed products must also 
increase to maintain nutritional balance for livestock. In the 500 MG soybean oil biodiesel case 
relative to the 1 BG case, the smaller increase in Non-USA consumption of soybean meal, 
relative to the size of the shock, means that increased consumption of these other feed products is 
also proportionally smaller. Figure 8.1.2-1 illustrates the differences in global commodity 

217 In the 500 MG scenario results from GLOBIOM, consumption of palm fruit for crushing was 6.8 Mt per BG, 
consumption of sugar crops for feed was 1.2 Mt per BG, and consumption of other crops for feed was 1.8 Mt per 
BG. In the 1 BG scenario, consumption of palm fruit for crushing was 5.3 Mt per BG, consumption of sugar crops 
for feed was 0.8 Mt per BG, and consumption of other crops for feed was 0.6 Mt per BG. 
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consumption by end use in the 2050 time step for ADAGE, GCAM, and GLOBIOM, as well as 
the 2014 time step for GTAP. 

Figure 8.1.2-1: Difference in global commodity consumption by end use (Mt per BG of 
shocked soybean oil biodiesel consumption) in the 500 MG and 1 BG soybean oil biodiesel 
scenarios relative to the reference case in 2050 (ADAGE, GCAM, and GLOBIOM) and 
2014 (GTAP) 

8.1.3 Land Use 

The global land use change by land cover type in the 500 MG soybean oil biodiesel shock 
has a relatively linear relationship in ADAGE, GCAM, and GTAP results, as seen in Figure 
8.1.3-1. However, GLOBIOM results show an increase in global land converting to pasture per 
billion gallons in the 500 MG shock (0.383 Mha per BG) relative to the 1 BG shock (0.233 Mha 
per BG). Soybean meal and pasture are both livestock inputs and they are in competition with 
each other to some extent to provide nutrition to livestock. When soybean meal prices fall as a 
result of a supply influx, as occurs in the soybean oil biodiesel shocks, this reduces the 
competitiveness of alternative forms of livestock nutrition, i.e., grazing on pasture land. In the 
smaller 500 MG shock, soybean meal prices decrease less, which improves the competitiveness 
of pasture relative to the larger 1 BG shock. As overall livestock demand rises in both of the 
soybean oil biodiesel scenarios, pasture therefore captures a larger share of the nutrition supply 
in the scenario where it is more competitive, i.e., the 500 MG shock. GLOBIOM results also 
show a larger decrease in other arable land per billion gallons in the 500 MG shock (-0.964 Mha 
per BG) compared to the 1 BG shock (-0.778 Mha per BG). 
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Figure 8.1.3-1: Difference in land use (Mha per BG of shocked soybean oil biodiesel 
consumption) for the 500 MG and 1 BG soybean oil biodiesel shocks relative to the 
reference case in 2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP) 

The GLOBIOM 500 MG results also show differences in where LUC occurs relative to 
the 1 BG results (Figure 8.1.3-2). In the USA region, GLOBIOM results show a larger increase 
in land conversion to pasture per billion gallon in the 500 MG scenario (0.325 Mha per BG) in 
comparison to the 1 BG scenario (0.110 Mha per BG) and a larger decrease in other arable land 
(-0.897 Mha per BG) compared to the 1 BG scenario (-0.666 Mha per BG). Forest has a smaller 
decrease in land conversion in the 500 MG scenario (-0.145 Mha per BG) compared to the 1 BG 
scenario (-0.21 Mha per BG) in GLOBIOM as well. In the non-USA regions, the 500 MG 
GLOBIOM results show a greater increase in pasture and a greater decrease in other arable land 
per billion gallons than the 1 BG results. 
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Figure 8.1.3-2: Difference in land use by region (Mha per BG of shocked soybean oil 
biodiesel consumption) for the 500 MG and 1 BG soybean oil biodiesel shocks relative to 
the reference case in 2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP) 

8.1.4 Emissions 

In the 500 MG scenarios, ADAGE, GCAM, and GTAP results indicate a relatively linear 
relationship between shock size and global GHG emissions. These models estimate a slight 
percentage decrease in total cumulative GHG emissions in the 500 MG scenarios relative to the 1 
BG scenarios, but these results are quantitatively minor (Table 8.1.4-1). In comparison to 
ADAGE, GCAM, and GTAP, GLOBIOM results estimate a larger percentage decrease in global 
cumulative emissions in the 500 MG soybean oil biodiesel scenario compared to the 1 BG 
soybean oil biodiesel scenario. 

Table 8.1.4-1: Percent difference in global accumulated GHG emissions per billion gallons 
of soybean oil biodiesel shock in the 500 MG shock scenario relative to the 1 BG shock 
scenario 

ADAGE GCAM GLOBIOM GTAP 
Percent Difference (TOTAL GHG) -2% -2% -24% -6% 
Percent Difference (LUC Only) 0% -2% -21% -1% 
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When examining global GHGs over time, in the 500 MG scenario, GLOBIOM results 
estimate an increase in N2O emissions in 2050 compared to the 1 BG scenario (Figure 8.1.4-1). 
While the accumulated GHGs in ADAGE remain relatively linear by the year 2050, when 
examining emissions over time, ADAGE has more variability in each time step. This includes a 
smaller increase in CO2 emissions in the year 2040 and conversely a larger increase in the year 
2045 for the 500 MG shock in comparison to the 1 BG shock. GCAM indicates a generally linear 
relationship between both the accumulated GHGs and the emissions over time. 

Figure 8.1.4-1: Difference in global GHG emissions (MtCO2eq per BG of shocked soybean 
oil biodiesel consumption) in the 500 MG and 1 BG soybean oil biodiesel shocks relative to 
the reference case from 2020 through 2050218 

Global GHG emissions by source also show a linear relationship over time. The patterns 
between the 500 MG and 1 BG shocks tend to mirror each other in each model. However, in the 
500 MG scenario, GLOBIOM shows a decrease in livestock production emissions in the year 
2050 compared to the slight increase in livestock emissions in the 1 BG scenario. 

8.1.5 Summary 

Overall, the soybean oil biodiesel 500 MG shock results indicate a linear effect between 
shock size and most output values for ADAGE, GCAM, and GTAP results. GLOBIOM results 
show somewhat more nonlinearity with shock size for certain output parameters, which leads to 
differences in the GHG emissions. But the nonlinearities observed in the GLOBIOM results tend 
to be minor. GLOBIOM's global commodity consumption by end use estimates an increase in 
palm fruit used for crushing per billion gallon, as well as an increase in sugar crops and other 

218 GTAP is not included in this figure as it doesn’t represent emissions over time. See Table for carbon intensity 
values. 
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crops used for feed in the 500 MG scenario relative to the 1 BG scenario. The most notable 
difference in land use change is the increase in pasture and decrease in other arable land in the 
non-USA region in the GLOBIOM 500 MG results relative to the 1 BG results. GLOBIOM also 
estimated a decrease in global CO2 emissions in the 500 MG soybean oil biodiesel shock, 
compared to the 1 BG shock. However, we can observe that, across ADAGE, GCAM, and 
GTAP, the size of the biofuel shock does not appear to cause significant changes in the modeled 
global GHG emissions results. 

8.2 Combined Shock Volumes 

In addition to the 500 MG soybean oil biodiesel scenario, a combined shock of 1 billion 
gallons each of soybean oil biodiesel and corn ethanol was also performed. In the core scenarios 
for corn ethanol and soybean oil biodiesel, presented in Section 6 and Section 7 respectively, 
some models estimated an inverse relationship between corn and soybean production. For 
instance, when we shocked the model with 1 BG of corn ethanol, soybean commodity production 
would go down, as seen in Figure 6.3-1. However, historically volumes of corn ethanol and 
soybean oil biodiesel consumption have grown alongside one another, though often at somewhat 
different annual rates. This has resulted historically in simultaneous increases in demand for corn 
starch and soybean oil from the biofuel sector. It is therefore worth considering whether modeled 
LUC and emissions impacts in particular might differ from our core scenario results if the 
models conduct a scenario where both corn ethanol and soybean oil biodiesel consumption in the 
USA are assumed to increase simultaneously. The combined scenario was performed to examine 
what would happen if both biofuels shocked the models. 

There are a few general hypotheses regarding what impact such a combined volume 
shock scenario might have relative to our core scenarios. One hypothesis is that the impacts will 
be “additive”, that is, the results will be approximately the sum of adding together impacts from 
the corn ethanol and soybean oil biodiesel core scenarios. Another hypothesis is that increasing 
demand for both fuels at the same time will create greater stress on the agricultural system than 
either core scenario in isolation, since it will not be possible to simply decrease USA soybean 
production in response to greater corn ethanol demand, or decrease USA corn production in 
response to soybean oil biodiesel demand, as is estimated to occur in most of the core scenario 
results. Such a result would be expected to create greater-than-additive modeled impacts on 
LUC, crop production, and the resulting GHG emissions. The third hypothesis is that there could 
be a counterbalance within variables with the combined shock, where the increase in one 
variable could decrease another. We find the land and emissions estimates in the combined 
scenario have a mostly additive effect in which modeling results in combined scenario are 
generally equal in magnitude to the sum of the individual corn ethanol (1 BG) and soybean oil 
biodiesel (1 BG) core scenarios. 

8.2.1 Land Use 

The combined scenario provides insight into how each of the models account for the 
impact on other crop commodities when both corn ethanol and soybean oil biodiesel 
consumption are increased simultaneously. Figures 8.2.1-1 and 8.2.1-2 illustrate the USA and 
non-USA regional land use change by crop commodity in the years 2030 (ADAGE, GCAM, and 
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GLOBIOM) and 2014 (GTAP). The 1 BG corn ethanol and 1 BG soybean oil biodiesel core 
scenarios are stacked together in the left-hand columns of each commodity type with a line 
indicating the sum of the two scenarios, and the combined scenario is on the right-hand side of 
the columns with the line indicating the total from this scenario. To the extent the results of the 
combined scenario are additive, we would expect the pair of lines for each crop commodity to be 
similar in magnitude. 

The figures below do in fact show each model estimates a generally additive relationship 
between the corn and soy shocks, meaning that the sum of the impact magnitudes from the core 
scenarios generally equals the total magnitude of the combined scenario. The most notable 
difference is that GLOBIOM has a slightly larger increase in USA regional soybean land cover 
as well as a slightly larger decrease in the non-USA regional soybean land cover in the combined 
shock.219 Interestingly, we do not observe any notable changes in land cover for any other crop 
commodities. 

Figure 8.2.1-1: Difference in cropland area by crop in the corn ethanol shock, soybean oil 
biodiesel shock, and combined shock relative to the reference case in the USA region in 
2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP) 

219 The detailed livestock feed market representation in GLOBIOM provides some explanation for this observation. 
In the corn shock scenario, GLOBIOM estimates greater DDG production would displace some soybean meal used 
for animal feed in the USA region, reducing the demand for soybeans and decreasing cropland used for soybeans. In 
the combined shock scenario, demand for soybeans is driven by the soybean oil biodiesel target, and the 
displacement effect of DDG in animal feed markets has less impact on cropland used for soybeans. This results in 
surplus soybean meal in the USA region in the combined shock scenario, which is exported and displaces some 
soybean production in non-USA regions. 
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Figure 8.2.1-2: Difference in cropland area by crop in the corn ethanol shock, soybean oil 
biodiesel shock, and combined shock relative to the reference case in non-USA regions in 
2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP) 

8.2.2 Emissions 

To compare how the combined shock affects GHG emissions results in each model, we 
analyzed the percent change from the combined shock relative to the sum of the core corn 
ethanol and soybean oil biodiesel scenarios. ADAGE, GCAM, and GTAP estimate that the 
combined scenario would results in relatively similar emissions to the sum of the individual 1 
BG corn ethanol and soybean oil biodiesel core scenarios (Table 8.2.2-1). Similar to the soybean 
oil biodiesel 500 MG scenario sensitivity, GLOBIOM estimates a larger percentage decrease 
than the other models in cumulative LUC and total GHG emissions in the combined scenario. 

Table 8.2.2-1: Percent difference in global accumulated emissions between the combined 
shock scenario and the sum of the corn ethanol shock and soybean oil biodiesel shock 

ADAGE GCAM GLOBIOM GTAP 
Percent Difference (TOTAL GHG) 0% 3% -27% 2% 
Percent Difference (LUC Only) 0% 1% -45% 5% 

8.2.3 Summary 

In this section we compared LUC and GHG emissions impacts from the combined 
scenario to the sum of the core corn ethanol and soybean oil biodiesel scenarios. Overall, across 
each of the models (ADAGE, GCAM, GLOBIOM, and GTAP), the results from the combined 
scenario show an additive effect in which the combined scenario generally equals the sum of the 
two core scenarios across many output values and parameters. GLOBIOM estimates slightly 
more variability or nonlinearity in output values than the other models. The most notable 
nonlinearity is the decrease in cumulative LUC emissions in the combined scenario. The results 
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9 

from these scenarios did not support the hypothesis that shocking the models with 1 BG corn 
ethanol and 1 BG soybean oil biodiesel simultaneously creates greater stress on the agriculture 
systems of these models. 

Parameter Sensitivities 

Sensitivity analysis assesses how uncertainty in the output of a model can be apportioned 
to different sources of uncertainty in the model input.220 The NASEM (2022) study on LCA 
Methods for transportation fuels recommends sensitivity analysis in several areas of the report. 
For example, the report says, “LCA studies used to inform transportation fuel policy should be 
explicit about the feedstock and regions to which the study applies and to the extent possible 
should explicitly report sensitivity of results to variation in these assumptions.”221 Following 
these recommendations, we have conducted multiple sensitivity analyses as part of our model 
comparison exercise. 

When we model the environmental and economic impacts of biofuel production, 
uncertainties arise in multiple forms. One type of uncertainty is model uncertainty, which is 
related to the structure of the model employed. Two models with different structures and/or 
solution techniques that otherwise are comparable in scope and use the same input data may 
produce different results. One motivation for this model comparison exercise is to study model 
uncertainty by comparing results of common scenarios from multiple models. The effect of 
different models on GHG estimates is discussed above. 

Another form of uncertainty is parameter or input uncertainty. Parameter uncertainty 
naturally results as inputs to a model are not exactly known and/or the values of these inputs 
cannot be exactly inferred.222 This section focuses on the effects of parameter uncertainty within 
a given model. We performed multiple sensitivity analyses to study the influence of parameter 
uncertainty on biofuel GHG emissions estimates. These sensitivity analyses are discussed in this 
section. First, we performed stochastic sensitivity analysis, where input parameters are assigned 
probability distributions, with GCAM, GLOBIOM and GREET. Second, we tested changes in 
the soil organic carbon input data in GCAM. Third, we tested changes in land conversion 
assumptions in ADAGE. 

220 Saltelli, A. (2002), Sensitivity Analysis for Importance Assessment. Risk Analysis, 22: 579-590. 
https://doi.org/10.1111/0272-4332.00040 
221 National Academies of Sciences, Engineering, and Medicine 2022. Current Methods for Life Cycle Analyses of 
Low-Carbon Transportation Fuels in the United States. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/26402. Recommendation 4-6. Other relevant recommendations include but are not limited 
to: 2-1, 2-2, 4-2, 4-4, 4-9, 4-10. 
222 Related to parametric uncertainty is the concept of parametric variability which relates to the fact that even if 
perfectly knowable, there is variability in values corresponding to parameter values in these systems. Models are 
simplifications of reality and do not capture all the variability naturally occurring over time, space, and changing 
conditions. 
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9.1 Stochastic Parametric Sensitivities 

9.1.1 GCAM 

We ran a Monte Carlo simulation (MCS) with GCAM to explore the influence of a range 
of parameters on the LCA estimates. The goals of the MCS are to test the behavior of the model, 
evaluate the overall sensitivity of the CI estimates to variations in the input parameters, and to 
test which parameters tend to have the largest influence on the results for this specific model. 

We conducted this analysis using methods and software consistent with the MCS 
described in Plevin et al. (2022).223 We ran the MCS by applying random values drawn from 
distributions across 50 parameters. In this case, we use the term parameter to refer to a set of 
related values in GCAM’s input files. For example, for this analysis we call biomass carbon 
density of grassland one parameter, even though GCAM uses independent grassland biomass 
carbon input values for each water basin region. For each of the three MCE scenarios (i.e., 
reference, corn ethanol shock, soybean oil biodiesel shock), we ran 1,000 trials (3,000 total 
model runs). The same set of randomly drawn parameter values were used for each of the three 
scenarios. We consulted with the GCAM developers to determine the likely range of legitimate 
values for each parameter and then set selected distributions for each parameter based on our 
own subjective judgements. In some cases we were able to leverage previous research to 
determine empirically based distribution shapes. Table 9.1.1-1 describes the parameters and 
distributions used in our MCS. 

Table 9.1.1-1: GCAM Monte Carlo Simulation Parameter Distributions224 

Name Distribution Description 
bd-biomassOil-
coef 

Triangle(0.95, 1, 1.05) The EJ of biomass oil required to produce an EJ of biodiesel. 

Corn-etoh-corn-
coef 

Triangle(0.98, 1, 1.02) The Tg of corn required to produce an EJ of corn ethanol. 

Crop-biomass-c Triangle(0.7, 1, 1.3) Biomass carbon density of cropland. 
Grass-biomass-c Triangle(0.7, 1, 1.3) Biomass carbon density of unmanaged grass land. 
Mgd-forest-
biomass-c 

Triangle(0.7, 1, 1.3) Biomass carbon density of managed forest land. 

Mgd-pasture-
biomass-c 

Triangle(0.7, 1, 1.3) Biomass carbon density of managed pasture. 

Other-arable-
biomass-c 

Triangle(0.7, 1, 1.3) Biomass carbon density of “other arable” land. 

Shrub-biomass-c Triangle(0.7, 1, 1.3) Biomass carbon density of shrubland. 
Unmgd-forest-
biomass-c 

Triangle(0.7, 1, 1.3) Biomass carbon density of unmanaged forest land. 

Unmgd-pasture-
biomass-c-linked 

Linked(grass-biomass-
c) 

Biomass carbon density of unmanaged pasture (linked with 
grass-biomass-c). 

223 Plevin, R. J., Jones, J., Kyle, P., Levy, A. W., Shell, M. J., & Tanner, D. J. (2022). Choices in land representation 
materially affect modeled biofuel carbon intensity estimates. Journal of cleaner production, 349, 131477. Section 2.5 
describes the MCS. 
224 Unless the parameter name includes an asterisk, the draws from the given distributions were multiplied by the 
GCAM default values to produce values for each trial. For parameter names with an asterisk, values from the 
distribution were used directly, replacing the default values. 
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crop-soil-c Triangle(0.7, 1, 1.3) Soil carbon density of cropland. 
Grass-soil-c Triangle(0.7, 1, 1.3) Soil carbon density of unmanaged grass land. 
Mgd-forest-soil-c Triangle(0.7, 1, 1.3) Soil carbon density of managed forest land. 
Mgd-pasture-soil-
c-linked 

Linked(grass-soil-c) Soil carbon density of managed pasture. 

Other-arable-soil-c Triangle(0.7, 1, 1.3) Soil carbon density of “other arable” land. 
Peat-CO2-
emissions 

Uniform(0.5, 2.0) CO2 emissions from peatland conversion. 

Peat-CO2-
emissions-linked 

Linked(peat-CO2-
emissions) 

CO2 emissions from peatland conversion on unmanaged land. 

Shrub-soil-c Triangle(0.7, 1, 1.3) Soil carbon density of shrubland. 
Unmgd-forest-soil-
c 

Triangle(0.7, 1, 1.3) Soil carbon density of unmanaged forest land. 

Unmgd-pasture-
soil-c-linked 

Linked(grass-soil-c) Soil carbon density of unmanaged pasture (linked with grass-
soil-c). 

N-fertilizer-rate Triangle(0.7, 1, 1.3) Quantity of N fertilizer required per mass of crop harvested. 
Ag-energy-coef Triangle(0.7, 1, 1.3) Energy consumption coefficient for crop production. 
Ag-energy-freight-
coef 

Triangle(0.5, 1.0, 3.0) Energy consumption coefficient for transport of ag and energy 
commodities. 

Crop-productivity Triangle(0.7, 1, 1.3) Annual change in agricultural productivity (yield). 
Irrig-rainfed-logit-
exp 

Triangle(0.333, 1, 3.0) Logit exponent controlling competition between irrigated and 
rainfed land. 

Mgmt-level-logit-
exp 

Triangle(0.333, 1, 3.0) Logit exponent controlling competition between high and low 
crop management levels. 

N2o-emissions Triangle(0.5, 1, 2.0) N2O emissions intensity of agricultural production. 
Veg-oil-demand-
logit-exp 

Triangle(0.333, 1, 3.0) Controls substitution among types of vegetable oil 

water-wd-price Triangle(0.333, 1, 3.0) The price of withdrawn water. 
Non-staples-
demand-share-
logit* 

Uniform(-5.0, 0.0) Logit exponent controlling shifting between non-staple foods. 
Standard value is 0 in all regions. 

Agro-forest-logit-
exp 

Triangle(0.333, 1, 3.0) Logit exponent controlling competition between forest-grass-
crop and pasture. 

Cow-sheepgoat-
feed-logit 

Triangle(0.5, 1, 2.0) Logit exponent controlling competition between Beef, Dairy, 
and SheepGoat, which determines the sharing between Mixed 
and Pastoral subsectors. 

Crop-logit-exp Triangle(0.333, 1, 3.0) Logit exponent controlling competition among crops. 
Forest-grass-crop-
logit-exp 

Triangle(0.1, 1.0, 3.0) Logit exponent controlling competition among forest, grassland, 
and cropland. 

Forest-logit-exp Triangle(0.333, 1, 3.0) Logit exponent controlling competition between managed and 
unmanaged forest. 

Pasture-logit-exp Triangle(0.333, 1, 3.0) Logit exponent controlling competition between managed and 
unmanaged pasture. 

Regional-crop-
logit-exp 

Triangle(0.333, 1, 3.0) Logit exponent controlling competition between imports and 
domestic ag products. 

Traded-
commodity-logit-
exp 

Triangle(0.333, 1, 3.0) Logit exponent controlling competition in traded ag 
commodities. 

Traded-
commodity-
subsector-logit-exp 

Triangle(0.333, 1, 3.0) Logit exponent controlling competition among exports in each 
traded commodity sector 
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ng-upstream-ch4 Uniform(0.9, 1.3) CH4 emissions upstream from natural gas production processes 
and transport. 

Population-factor* Triangle(0.0, 0.5, 1.0) Defines a path between the lower and higher bounds of the 
UNDP 95 percent confidence interval around population 
projections. 

Resource-energy-
coef 

Triangle(0.5, 1, 1.5) Energy consumption coefficient for producing energy 
commodities. 

Biodiesel-
competition-logit-
exp 

Triangle(0.5, 1, 2.0) Controls substitution among types of biodiesel 

pass-road-ldv-4W-
logit-exp 

Triangle(0.5, 1, 2.0) Logit exponent controlling substitution among Compact Car, 
Midsize Car, Large Car, Light Truck and SUV. 

Pass-road-ldv-4W-
vehicle-logit-exp 

Triangle(0.5, 1, 2.0) Logit exponent controlling substitution among 4WD vehicle 
fuel technology options include BEV, FCEV, Hybrid liquids, 
Liquids, and NG. 

pass-road-ldv-
logit-exp 

Triangle(0.5, 1, 2.0) Logit exponent controlling substitution between 2- and 4-wheel 
light-duty vehicles. 

Ref-fuel-enduse-
ex-US 

Triangle(0.333, 1, 3.0) Controls substitution in supplies of refined fuel for “end use” 
outside the USA. 

Staples-price-
elast* 

empirical Price elasticity of demand for staple foods 

non-staples-price-
elast* 

empirical Own price elasticity of non-staple food demand. 

Non-staples-
income-elast* 

empirical Income elasticity of non-staple food demand. 

In some cases, combinations of parameters push the model beyond its ability to match 
supply and demand in all markets simultaneously, in which case the model fails to solve. As 
shown in the table above, we primarily used triangular distributions to reduce the likelihood, 
relative to normal distributions, of outlier parameter draws, thus reducing the number of model 
failures. Nonetheless, some of the trials failed to solve; the actual number of reference 
case/shock pairs completed for each model version was 916 for corn ethanol (91.6 percent) and 
918 for soybean oil biodiesel (91.8 percent). We investigated the source of failures and found the 
parameter perturbations most likely causing the failures are some combination of: crop-logit-exp, 
staples-price-elast, agro-forest-logit-exp, veg-oil-competition-logit-exp and forest-grass-crop-
logit-exp. The purpose of the MCS is to understand the model’s response to parameter variation. 
We could reduce the failure rate by narrowing the distributions for these parameters, but this 
would come at the cost of gaining insights about how wider distributions influence the model. 
Furthermore, evaluating which parameters tend to cause model failures provides valuable 
information about the model. For these reasons, we did not to adjust our MCS setup to reduce the 
failure rate. 

The following figure presents the results of our MCS experiment with GCAM as 
distributions of CI estimates for corn ethanol and soybean oil biodiesel. Although the figure 
presents the MCS results in probabilistic terms, the actual probability of any given GHG 
emissions impact cannot be determined from this analysis. Our sensitivity analysis only reveals 
the likelihood of an outcome given all of the inputs into our analysis, such as the version of 
GCAM, the reference parameter values, the solution technique, the definitions chosen for the 
parameters evaluated, and the distributions for the parameters evaluated. Although the figure 
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does not tell us the actual probability of a given outcome, it provides information about the 
general tendency of the model and the variance of results due to parametric uncertainty. 

Figure 9.1.1-1: Distribution of GCAM (a) land use change carbon intensity and (b) overall 
carbon intensity estimates for corn ethanol and soybean oil biodiesel based on the MCS225 

In the above figure, we present the distribution of land use change CI separately from the 
distribution of overall CI. We extract the land use change CI to facilitate comparisons with other 
studies or models that only report land use change emissions. While we do this separation to 
facilitate comparison, we caution against considering the land use change estimates in isolation, 
without considering the influence of scenario design and other sectors on the land use change 
estimates. For example, in many of the soybean oil biodiesel trials, non-USA biodiesel 
consumption decreases relative to the reference case, which tends to decrease land use change 
emissions but tends to increase overall emissions because it is associated with greater use of 
refined oil. 

Based on the above figure, we observe that GCAM tends to estimate higher CI for 
soybean oil biodiesel than corn ethanol, for both land use change and overall. The majority of 
overall CI estimates for corn ethanol are less than zero, meaning that over the 2020-2050 period 
considered, the modeled corn ethanol shock tends to result in a decrease in global GHG 

225 Boxes indicate interquartile range; whiskers indicate 5th and 95th percentiles; vertical line indicates median 
value. For corn ethanol, the median land use change carbon intensity is 22 gCO2e/MJ with 95 percent interval from 
2 to 48 gCO2e/MJ. For corn ethanol, the median overall carbon intensity is -21 gCO2e/MJ with 95 percent interval 
from -48 to 8 gCO2e/MJ. For soybean oil biodiesel, the median land use change carbon intensity is 53 gCO2e/MJ 
with 95 percent interval from 9 to 106 gCO2e/MJ. For soybean oil biodiesel, the median overall carbon intensity is 
40 gCO2e/MJ with 95 percent interval from -5 to 93 gCO2e/MJ. 
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emissions, inclusive of reductions in refined oil consumption. Conversely, a large majority of the 
overall CI estimates for soybean oil biodiesel are greater than zero. The overall CI distributions 
for the two fuels overlap, but in every trial (i.e., each set of runs with identical parameter values) 
the overall CI of corn ethanol is at least 24 gCO2e MJ-1 smaller than that of soybean oil biodiesel. 
This is explained by the fact that that the most influential parameters have the same directional 
effect on the CI estimates for both corn ethanol and soybean oil biodiesel. Finally, the figure 
shows that the interval spanning the central 95 percent of CI estimates is about twice as wide for 
soybean oil biodiesel relative to corn ethanol, indicating a higher level of parameter uncertainty 
for soybean oil biodiesel. 

As part of the MCS experiment, we identified the parameters most strongly influencing 
the variance in GHG emissions results. We did this by computing the rank correlations between 
the values for each random variable and the resulting GHG emissions across all MCS trials. The 
rank correlations are squared and normalized to sum to one to produce an approximate 
“contribution to variance.” In the tornado charts below, the sign of the correlation is applied after 
normalization. These figures show the strength of the influence of the 15 most influential input 
parameters on the variance in the output (GHG emissions), in descending order, with the 
magnitude and direction corresponding to the strength and direction of the correlation 
respectively. A contribution to variance further from zero indicates that the parameter is more 
influential. A positive contribution to variance indicates that as the parameter value increases or 
decreases the CI estimates tend to move in the same direction. A negative contribution to 
variance indicates the opposite. Following the figures, we discuss our interpretation of the 
findings. 

130 



  
 

 
 

   
   

 

Figure 9.1.1-2: Tornado chart of most the influential parameters on corn ethanol land use 
change carbon intensity estimates with GCAM 
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Figure 9.1.1-3: Tornado chart of most the influential parameters on corn ethanol overall 
carbon intensity estimates with GCAM 
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Figure 9.1.1-4: Tornado chart of most the influential parameters on soybean oil biodiesel 
land use change carbon intensity estimates with GCAM 
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Figure 9.1.1-5: Tornado chart of most the influential parameters on soybean oil biodiesel 
overall carbon intensity estimates with GCAM 

For overall CI, the tornado charts show that, for this MCS experiment, about 6 
parameters have an outsized influence on the estimates. This does not mean the other parameters 
have no effect, but rather that their influence is overwhelmed by the 6 most influential 
parameters. The 6 most influential parameters for corn ethanol CI are also the 6 most influential 
parameters for soybean oil biodiesel, with minor differences in their rank order. All of the 6 most 
influential parameters for overall CI are directly related to emissions from land use and land use 
change. 

For both fuels, the most influential parameter is forest-grass-crop-logit-exp, the 
parameter controlling the flexibility of competition among forest, grassland, and cropland. 
Higher values for this parameter mean more flexibility for price-driven land use changes among 
these land categories. For example, given an increase in crop prices, higher values for this 
parameter will translate to larger increases in crop area at the expense of grassland and forest 
area. This finding helps to clarify that land conversion flexibility is not only a source of 
uncertainty for GHG emissions impacts of biofuels between models, as we observe in Sections 
6.6 and 7.6 above. It is also a source of uncertainty within models, at least for GCAM. 

The other most influential parameters for both fuels are: 1) crop-soil-c, the soil carbon 
density of cropland, 2) n2o-emissions, the N2O emissions intensity of agriculture, 3) crop-logit-
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exp, the flexibility of competition among crops, 4) agro-forest-logit-exp, the flexibility of 
competition between forest, grassland, cropland and pasture, and 5) unmgd-forest-soil-c, the soil 
carbon density of unmanaged forest land. 

When we look at the most influential parameters on the CI of land use change, we see 
almost the same group of influential parameters, but with two exceptions. First, the n2o-
emissions parameter is absent from the tornado charts for land use change CI. N2O emissions are 
an important component of crop production emissions in the GCAM results. This parameter is 
only absent because we define land use change CI as the projected global change in CO2 

emissions from LUC per unit of additional corn ethanol production, with both quantities summed 
annually from 2021 through 2050 (i.e., it excludes N2O emission). The second exception is that 
ref-fuel-enduse-ex-US parameter shows up as one of the most influential parameters for soybean 
oil biodiesel land use change CI. This parameter controls substitution in supplies of refined fuel 
outside the USA. For example, it controls substitution between biodiesel and petroleum diesel in 
non-USA regions. As discussed above, in GCAM the soybean oil biodiesel shock tends to reduce 
biodiesel consumption outside the USA, which increases petroleum diesel consumption and 
requires less land for biodiesel feedstocks. Thus, higher values for ref-fuel-enduse-ex-US tends to 
result in lower land use change emissions, but increases other emissions, resulting in a small net 
effect on overall CI. 

Overall, our MCS experiment with GCAM provides several insights. Parameter 
uncertainty is an important factor for CI estimates of corn ethanol and soybean oil biodiesel with 
GCAM. Based on this experiment, CI estimates for soybean oil biodiesel are more sensitive to 
parameter uncertainty than such estimates for corn ethanol. Parameters related to land use change 
have the most influence on CI estimates. In particular, parameters related to soil carbon densities 
and ease of substitution between land categories are highly influential, and thus warrant special 
attention. 

9.1.2 GLOBIOM 

We ran a Monte Carlo simulation (MCS) with GLOBIOM to explore the influence of a 
range of parameters on land use change carbon intensity (LUC CI) for soybean oil biodiesel.226 

The goals of the GLOBIOM MCS mirror those of the GCAM MCS discussed in Section 9.1.1; to 
test the behavior of the model and to evaluate the overall sensitivity of the CI estimates to 
variations in the input parameters. 

The approach used in the GLOBIOM MCS was similar to that used in the GCAM MCS 
described in Section 9.1.1. We ran the MCS by applying random values drawn from distributions 
defined for 11 parameters. For each of two cases (i.e., a reference case and a soybean oil 

226 The GLOBIOM MCS was conducted prior to the initiation of this MCE and, as such, differs somewhat in its 
scenario design and assumptions. Differences between the version of GLOBIOM used in the MCE include some 
minor updates of corn food consumption trends to better match historic development (2010, 2020) in a number of 
different regions represented in GLOBIOM. The changes shift upward the food demand projections in both the 
reference and shock scenarios. Additionally, the shock scenario in the MCS was specified as one billion gallons 
gasoline equivalent of soybean oil biodiesel above reference case levels, whereas the shock in the MCE was 
specified as one billion wet gallons of soybean oil biodiesel consumption above reference case levels. 
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biodiesel shock), we ran 1,000 trials (2,000 scenario runs total). The same set of randomly drawn 
parameter values were used for both of the two cases. 

The eleven identified parameters were chosen by GLOBIOM developers based on expert 
knowledge and previous research.227,228,229 These include seven economic parameters and four 
biophysical parameters. The parameters and distributions used in the GLOBIOM MCS are 
described below in Table 9.1.2-1. Each parameter distribution below represents a set of related 
input values in GLOBIOM which are adjusted simultaneously based on the drawn value of the 
parameter in a given trial. For example, a value drawn for the parameter labeled “Demand 
elasticity (vegetable oils)” in Table 9.1.2-1 below is a multiplicative scalar which simultaneously 
adjusts the demand elasticity for each vegetable oil and each region represented in GLOBIOM. 

Three of the parameters in Table 9.1.2-1 represent collections of inputs which each have 
independently drawn scalar values from the identical distribution. These parameter groups are 
indicated with bold names and described in the Description column. When accounting for these 
parameter groups, 72 separate values are drawn for each of 1,000 trials in the MCS. 

227 Valin, H., D. Peters, M. van den Berg, S. Frank, P. Havlik, N. Forsell & C. Hamelinck (2015) The land use 
change impact of biofuels consumed in the EU. Quantification of area and greenhouse gas impacts. Ecofys, Utrecht 
(the Netherlands). 
228 Nelson, G. C., H. Valin, R. D. Sands, P. Havlik, H. Ahammad, D. Deryng, J. Elliott, S. Fujimori, T. Hasegawa, 
E. Heyhoe, P. Kyle, M. Von Lampe, H. Lotze-Campen, D. Mason d'Croz, H. van Meijl, D. van der Mensbrugghe, C. 
Muller, A. Popp, R. Robertson, S. Robinson, E. Schmid, C. Schmitz, A. Tabeau & D. Willenbockel (2014) Climate 
change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci U S A, 111, 3274-9. 
https://doi.org/10.1073/pnas.1222465110 
229 Valin, H., R. D. Sands, D. van der Mensbrugghe, G. C. Nelson, H. Ahammad, E. Blanc, B. Bodirsky, S. 
Fujimori, T. Hasegawa, P. Havlik, E. Heyhoe, P. Kyle, D. Mason-D'Croz, S. Paltsev, S. Rolinski, A. Tabeau, H. van 
Meijl, M. von Lampe & D. Willenbockel (2014) The future of food demand: understanding differences in global 
economic models. Agricultural Economics, 45, 51-67. https://doi.org/10.1111/agec.12089 
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Table 9.1.2-1: GLOBIOM Monte Carlo simulation parameter distributions230,231 

Name Distribution Description 
Demand elasticity 
(vegetable oils) 

Log-uniform(0.5, 2) Own-price and cross-price elasticities of demand for 
vegetable oils. Determines adjustments in food uses of 
vegetable oils. 

Demand elasticity 
(animal products) 

Log-uniform(0.5, 2) Own-price and cross-price elasticities of demand for animal 
products (meat and dairy). Determines adjustments in food 
uses of animal products. 

Trade elasticity 
(vegetable oils) 

Log-uniform(0.75, 4) Response of bilaterally traded quantities of vegetable oils to 
changes in market prices. 
Separate scalar values are drawn from identical distributions 
for each of the four vegetable oils represented in 
GLOBIOM. 

Substitution 
elasticity 
(vegetable oils) 

Log-uniform(0.75, 4) Substitutability of vegetable oils for all uses, given a change 
in their market price. 
Separate scalar values are drawn from identical distributions 
for each of 58 different global regions represented in 
GLOBIOM. 

Cropland and 
pasture expansion 
into natural 
vegetation 

Log-uniform(0.5, 2) Extent to which cropland and grazing pasture can expand 
into natural land uses, represented by land transition costs. 
Separate scalar values are drawn from identical distributions 
for cropland and grazing pasture. 

Yield elasticity 
(corn and soybean) 

Log-uniform(0.9, 1.1) Changes in corn and soybean yields in response to changes 
in crop prices. 

Yield projection 
(corn and soy) 

Log-uniform distribution 
between SSP3 and SSP5 
assumptions. 

Exogenous yield change over time for corn in the USA 
region and soybeans in the USA, Brazil, and Argentina 
regions. 

Expansion response 
of palm into 
peatland 

Uniform(0.5, 1.5) Degree of expansion of palm plantation into peatland in 
Indonesia and Malaysia.232 

Peatland emission 
factor on 
undisturbed forest* 

Lognormal distribution on 
range of 49 to 8549 tCO2 
ha-1 yr-1 

Peatland emission intensity per unit of area converted in 
Indonesia and Malaysia. 

Emission factor for 
carbon sequestration 
in biomass on palm 
plantations 

Normal(0.59, 1, 1.41) Carbon sequestration (as CO2) in palm plantations in 
Indonesia and Malaysia per unit of area. Range based on 
(IPCC 2019).233 

Emission factors 
from forest biomass 
loss 

Normal(0.5, 1, 1.5) Emissions per unit of area due to forest clearing. 

230 Bold parameter names indicate related groups of parameters. Unless the parameter name includes an asterisk, 
the draws from the given distributions were multiplied by the GLOBIOM default values to produce values for each 
trial. For parameter names with an asterisk, values from the distribution were used directly, replacing the default 
values. 
231 Note that some of the scalar distributions in this MCS are not balanced around the central value (scalar of 1). For 
example, in the distribution for trade elasticity of vegetable oils (Log-uniform(0.75, 4)), roughly 17 percent of the 
draws would be expected to be below one, and thus decrease the value of the given vegetable oil trade elasticity, and 
roughly 83 percent of the draws would be expected to be above one, and thus increase that elasticity. 
232 In GLOBIOM, expansion of palm plantations is assumed to occur in peatland and non-peatland at a fixed ratio, 
which we adjust stochastically in this MCS analysis. 
233 IPCC. 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: 
Agriculture, Forestry and Other Land Use. Geneva (Switzerland): Intergovernmental Panel on Climate Change. 
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Figure 9.1.2-1 below presents distributions of carbon intensity factors for a number of 
different emissions categories, after excluding trials considered outliers.234 Although the figure 
presents the MCS results in probabilistic terms, the actual probability of any given GHG 
emissions impact cannot be determined from this analysis. Our sensitivity analysis only reveals 
the likelihood of an outcome given all of the inputs into our analysis, including the version of 
GLOBIOM, the reference parameter values, and the distributions for the parameters evaluated. 
Although the figure does not tell us the actual probability of a given outcome, it provides 
information about the general tendency of the model and the variance of results due to 
parametric uncertainty. 

Figure 9.1.2-1: Distributions of carbon intensities from different categories of emissions for 
soybean oil biodiesel based on the GLOBIOM MCS.235 

The MCS produced a range of LUC CI results (9.5, 40.6, and 73.5 gCO2e/MJ for the 10th 

percentile, mean, and 90th percentile respectively), with variation in emissions from biomass loss 
accounting for a substantial portion of the variability in total LUC emissions. Note that the mean 
value of total LUC CI for the GLOBIOM MCS is larger than the LUC CI estimate from the 

234 Outliers are identified in these results based on the so-called “1.5 rule”, assuming that the distribution of 
emissions factors follows a normal distribution. According to this rule, a data point is considered an outlier if it is 
less than (Q1 - 1.5*IQR) or greater than (Q3 + 1.5*IQR), where IQR is the interquartile range and Q1 and Q3 are 
the first and third quartiles of the distribution, respectively. Outlier trials were identified using this rule for each of 
three emissions categories – total land use change, crop production, and livestock production – after which all 
identified outlier trials were excluded from the following results analysis. In total, 42 outlier trials were excluded 
using this procedure. 
235 Vertical lines within distributions represent mean values. “LUC – Biomass” includes emissions changes from 
biomass loss from land use change, changes in agricultural biomass, natural reversion of land, and carbon 
sequestered in harvested wood products. “LUC – SOC” emissions are land use change emissions from soil organic 
carbon. “LUC – Peat” emissions are land use change emission from oxidation of peatlands. “LUC – Total” is the 
sum of the above land use change emissions categories. 
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soybean oil biodiesel shock scenario in the MCE. This difference arises for two reasons; 1) the 
version of GLOBIOM used in the MCE was a more recent version of the model, with several 
updated assumptions (see footnote above); and 2) some of the distributions of scalar values 
applied to the parameters are weighted towards increasing the value of the parameter, which may 
result in more trials showing CI values on one side of the central MCS scenario than the other. 
This difference illustrates the limitation discussed above, but worth reiterating; distributions of 
CI values produced through this MCS analysis are dependent on the inputs of the analysis and 
should not be interpreted as representative of the probability of a given GHG emissions impact. 

However, there are still meaningful observations we can make using these results. 
GLOBIOM’s estimates of GHG emissions from land use change, particularly emissions from 
biomass loss but also from other subcategories of estimated LUC emissions, appear to be more 
sensitive to parametric variations, at least for the parameters and distributions included in this 
study, than estimates of emissions from livestock production and from crop production. This 
observation reinforces the importance of continued study of model assumptions affecting LUC 
and LUC CI and of considering uncertainty in LUC CI estimates. 

In a process similar to that used in the GCAM MCS described in Section 9.1.1 above, we 
identified the parameters most strongly influencing the variance in LUC CI. We did this by 
computing the rank correlations between the values for each random variable and the resulting 
LUC CI estimate across all MCS trials. The rank correlations are squared and normalized to sum 
to one to produce an approximate “contribution to variance.” In Figure 9.1.2-2 below, the sign of 
the correlation is applied after normalization. This figure shows the strength of the influence of 
each input parameter on the variance in the output (LUC CI), in descending order, with the 
magnitude and direction corresponding to the strength and direction of the correlation 
respectively. A contribution to variance further from zero indicates that the parameter is more 
influential. A positive contribution to variance indicates that as the parameter value increases or 
decreases the CI estimates tend to move in the same direction. A negative contribution to 
variance indicates the opposite. 
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Figure 9.1.2-2: Tornado chart of most the influential parameters in GLOBIOM MCS on 
soybean oil biodiesel land use change carbon intensity.236 

The two parameters found to have the largest contribution to variance in LUC CI were 
the expansion response of palm into peatland and the emissions factor from forest biomass loss. 
The positive correlation of these parameters with LUC CI is logical; larger values of the first 
result in greater expansion of palm plantations into peatland in response to the increased demand 
for vegetable oils imposed under a soybean oil biodiesel shock. Larger values of the second 
increase the emissions associated with forest loss in response to the shock. The sensitivity of 
GHG emissions estimates to these parameters highlights the importance of further examination 
of all of the models’ parameterizations of land transitions, carbon fluxes, and representation of 
peat lands. 

The parameter with the third largest contribution to variance of LUC CI is the assumed 
yield growth of corn and soy throughout the duration of the GLOBIOM run, which is negatively 
correlated with LUC CI. Again, this relationship is logical; lower yield growth results in lower 
yields in the future, which means that producing feedstock (soybeans) to meet the shock requires 
additional cropland area and results in greater areas of land use change. The relative impact of 
this parameter highlights the importance of considering the impact of assumptions about baseline 
trends and how they continue into the future. 

Finally, we note the relative importance (4th in Figure 9.1.2-2) of the substitution 
elasticity of vegetable oils. Increasing the assumed substitutability of vegetable oils allows the 
model to backfill more easily for deficits in soybean oil use with other oilseed oils, including 

236 For parameters which represent groups of independently adjusted model inputs (indicated in bold), the 
contributions to variance across all inputs within a given parameter group are summed. For all three of the grouped 
parameters, this results in some cancellation because the signs of the calculated contributions to variance differ 
among the inputs within a group. An alternative MCS design which instead used a single value applied to all model 
inputs within these parameter groups may be expected to increase the relative contribution to variance of these 
parameters. 
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from palm and rapeseed. This results in increased diversion of soybean oil from food and other 
uses. The impacts of this substitution on land use change and emissions are not straightforward, 
vary by region and type of vegetable oil substitution, and interact with other parameters 
perturbed in this MCS.237 This complicating layer of market interaction contributes to the wider 
range of estimated GHG emissions impacts of soybean oil biodiesel relative to corn ethanol. 

9.1.3 GREET 

We worked with Argonne to develop the lifecycle GHG emissions analyses presented in 
Section 6.7 and Section 7.7. These analyses rely on many input values from many sources 
including government (e.g., USDA, EPA, DOE), academia, and industry. All these input values 
are subject to some level of variation and uncertainty. We worked with Argonne to conduct 
multiple sensitivity analyses with the GREET model238 to explore the influence of the inputs and 
assumptions in the model framework on the results. This exercise allowed us to observe some of 
the most influential and important factors to consider for further research to address uncertainty. 
We conducted three sensitivity analyses, where we varied one parameter or assumption at a time, 
and one stochastic sensitivity analysis (Section 9.1.3.4) where we varied all of the input 
parameters simultaneously based on random draws from statistical distributions. Each of these 
analyses are described in this section. 

9.1.3.1 Parameter Input Data 

To support our parametric sensitivity analyses we used data that Argonne has previously 
collected from various sources. These data provide information about the variation in some of 
the key input values to GREET. For farming input data, the main source of the variation is 
geographic, and the source of variation for ethanol production data is differences among 
individual corn ethanol facilities. The value and ranges for these parameters were used in both 
the sensitivity and stochastic (Section 9.1.3.4) analyses discussed below. The tables below list 
the parameter values and their ranges for corn ethanol and soybean oil biodiesel. The tables also 
indicate the shape of the distribution used for each parameter for the stochastic analysis. For 
parameters where Argonne had a relatively large data set on variation they used a normal 
distribution, whereas they used a triangular distribution for parameters informed with less data 
on variation. 

Most of the data used in support of corn ethanol sensitivities is documented in Lee et al. 
(2021).239 For corn farming, that includes data from USDA datasets (National Agricultural 
Statistics Service [NASS], the Economic Research Service [ERS], and the Office of the Chief 

237 For example, the effect on GHG emissions of greater substitution of palm oil for soybean oil used for food and 
fuel production in Southeast Asia is amplified or muted by the parameters governing the expansion response of palm 
plantations onto peatland, emissions factors associated with forest biomass loss, and the carbon in biomass on palm 
plantations. 
238 Sensitivity analyses presented in this section were run using GREET-2022 for the 2021 time step. This is the 
default time step for the model. We decided to conduct sensitivity analyses for the 2021 time step as the data used to 
inform the parameter ranges is more representative of 2021 than 2030. 
239 Lee, Uisung, Hoyoung Kwon, May Wu, and Michael Wang (2021). “Retrospective Analysis of the US Corn 
Ethanol Industry for 2005–2019: Implications for Greenhouse Gas Emission Reductions.” Biofuels, Bioproducts and 
Biorefining 15 (5): 1318–31. 
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Economist [OCE] reports). Ethanol production data relies heavily on a corn ethanol 
benchmarking and an agricultural consulting company that has conducted quarterly surveys of 65 
dry mill ethanol facilities between 2005 – 2019 and includes ethanol yields (with corn inputs and 
ethanol production), energy inputs by type (natural gas, coal, and electricity), chemical inputs, 
and the yields of coproducts. Argonne used the 10th percentile (P10) and the 90th percentile 
(P90) values as the high and low bounds of the ranges for ethanol production parameters in this 
exercise. The full set of input parameters and their ranges for corn ethanol are shown below in 
Table 9.1.3-1. 

Table 9.1.3-1: GREET Corn Ethanol Sensitivity and Stochastic Simulation Input 
Parameter Distributions for Model Year 2021 

Name Distribution240 Units 
Farming: Corn yield Normal (113, 178, 191) bushels/acre 
Farming: Corn yield (Nine states)241 Normal (153, 178, 191) bushels/acre 
Farming: N fertilizer Normal (72, 158, 187) lbs/acre 
Farming: P fertilizer Normal (33, 59, 89) lbs/acre 
Farming: K fertilizer Normal (16, 60, 130) lbs/acre 
Farming: N2O rate Normal (0.8, 1.26, 1.6) percent 
Farming: Herbicide Normal (0.0, 2.3, 3.2) lbs/acre 
Farming: Insecticide Normal (0.0, 0.0, 0.2) lbs/acre 
Farming: Diesel Normal (630,025; 927,625; 1,578,474) BTU/acre 
Farming: Gasoline Normal (115,686; 143,155; 201,905) BTU/acre 
Farming: Natural gas Normal (0; 85,504; 260,170) BTU/acre 
Farming: LPG Normal (57,257; 183,004; 290,957) BTU/acre 
Farming: Electricity Normal (72,741; 236,548; 950,459) BTU/acre 
Corn transportation distance Normal (32, 40, 48) miles 
Ethanol: Yield Triangular (2.7, 2.9, 3.0) gal/bu 
Ethanol: DGS yield Triangular (3.7, 4.6, 5.5) lbs/gal 
Ethanol: Natural gas Triangular (8,846; 22,386; 30,961) BTU/gal 
Ethanol: Electricity Triangular (600; 2,098; 3,646) BTU/gal 

For soybean farming, the data informing the sensitivity analysis was mostly documented 
in Xu et al. (2022)242 and primarily comes from USDA’s National Agricultural Statistics Service 
(NASS) Quick Stats database.243 Farm energy use data was obtained from USDA’s ERS based 
on the Agricultural Resource Management Survey. The farming data covers 19 major soybean-

240 In the parentheses, the first value is the P10 value, the middle value is the default assumption in GREET, and the 
third value is the P90 value. 
241 Corn is grown in many states in the United States but is primarily grown in the Midwest region across nine states. 
For this sensitivity analysis, we present both the fuller range of corn yields across the U.S., and this subset of nine 
primary corn growing states, which has a tighter range of corn yields. 
242 Xu, Hui, Longwen Ou, Yuan Li, Troy R. Hawkins, and Michael Wang. 2022. “Life Cycle Greenhouse Gas 
Emissions of Biodiesel and Renewable Diesel Production in the United States.” Environmental Science & 
Technology 56 (12): 7512–21. https://doi.org/10.1021/acs.est.2c00289. 
243 USDA National Agricultural Statistics Service Quick Stats Database. Available at: 
https://quickstats.nass.usda.gov/ 
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producing U.S. states. Parameter data on biodiesel production (e.g., chemical inputs, energy 
consumption, product yields) came from an Argonne-led industry survey conducted of biodiesel 
producers in 2021 with support from what was then known as the National Biodiesel Board 
(NBB) and is now known as Clean Fuels Alliance America as documented in Xu et al. The full 
set of input parameter values and their ranges for soybean oil biodiesel are shown below in Table 
9.1.3-2. 

Table 9.1.3-2: GREET Soybean Oil Biodiesel Sensitivity and Stochastic Simulation Input 
Parameter Distributions for Model year 2021 

Name Distribution244 Units 

Farming: Soybean yield Triangular (31.4, 50.6, 61.7) bushels/acre 

Farming: N fertilizer Triangular (1.3, 4.9, 15.6) lbs/acre 

Farming: P fertilizer Triangular (12.4, 23.2, 54.8) lbs/acre 

Farming: K fertilizer Triangular (2.9, 36.8, 92.6) lbs/acre 

Farming: Herbicide Triangular (1.5, 2.2, 3.8) lbs/acre 

Farming: Insecticide Triangular (0.002, 0.03, 0.40) lbs/acre 

Farming: Energy use Triangular (338,791; 694,421; 1,373,805) BTU/acre 

Biodiesel production: Methanol use Triangular (926, 945, 964) BTU/lb BD 

Biodiesel production: Energy use Triangular (437, 514, 592) BTU/lb BD 

Biodiesel production: Biodiesel yield Triangular (0.133, 0.136, 0.138) gal BD/lb oil 

Oil extraction: Oil yield 
Triangular (4.4, 4.6, 4.9) dry lbs 

soybean/ 
lb soybean oil 

Oil extraction: Energy use Triangular (2,765; 3,073; 3,380) BTU/lb oil 

Biodiesel production: Glycerin yield Triangular (0.09, 0.10, 0.11) lb/lb BD 

9.1.3.2 Parameter Sensitivity Scenario Analysis 

The first set of parametric sensitivities presented here was developed with Argonne and 
assessed the modeling framework by considering variations and ranges of the key parameters 
shown above and their individual impacts on the carbon intensities of corn ethanol and soybean 
oil biodiesel produced in the United States. We conducted these sensitivity analyses by varying 
each major input parameter shown in Table 9.1.3-1 for corn ethanol and Table 9.1.3-2 for 
soybean oil biodiesel across their full range of values, each one at a time while keeping all the 
other parameter values constant. By varying one parameter at a time, while holding others 
constant, we can see the relative impact of each parameter on the final estimated LCA results. 
This is also informative for identifying areas of uncertainty and necessary further research. 
However, this "one at a time approach” provides less information than a stochastic analysis about 
the potential range of results stemming from parameter uncertainty. This is because one at a time 
analysis does not consider the effect of multiple parameters simultaneously varying from their 
default input values. For example, if corn yield is higher than the default input value and 
simultaneously the farming nitrogen fertilizer rate is actually lower than the default input value, 
the actual carbon intensity may be lower than any of the results depicted in the Figure 9.1.3-1. 

244 In the parentheses, the first value is the P10 value, the middle value is the default assumption in GREET, and the 
third value is the P90 value. 
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We used the parameter values in Table 9.1.3-1 for corn ethanol in GREET-2022 
representing 2021 to conduct the sensitivity analysis of each individual parameter against a 
baseline CI value of 45.9 gCO2/MJ derived using GREET’s default assumptions (including 
coproduct allocation assumptions). This value excludes LUC impacts from GREET’s separate 
CCLUB module that are discussed further below. Figure 9.1.3-1 shows the results of the 
sensitivity analysis for corn ethanol minus GREET’s CCLUB derived LUC impacts. Parameters 
are ordered by their relative individual influence on the overall CI with the most impactful 
parameters at the top of the figure. 

Figure 9.1.3-1: Sensitivity analysis results of USA corn ethanol carbon intensity values 
ranked by relative influence of each parameter’s potential impact in GREET 

Based on the data provided, overall CI for corn ethanol saw the largest variation and 
influence in this exercise from the amount of natural gas used in processing and producing 
ethanol in facilities with a wide range of efficiencies representing a difference of roughly 20 
grams of CO2 per MJ of ethanol produced. Corn yields from farming corn was the next most 
important factor when considering the variation in growing corn across the country. A subset of 
these corn yields appears further down the list when considering only the nine states in the 
Midwest. These states represent the majority of corn production volume and have higher corn 
yields than most of the country. Corn farming and corn ethanol production do take place across 
many states outside the Midwest,245 and we present both variations of this parameter for context. 
Nitrogen fertilizer used to obtain higher crop yields was the third highest parameter of 
importance in this sensitivity analysis. 

We used the parameter values in Table 9.1-3 for soybean oil biodiesel in GREET-2022 
representing 2021 to conduct the sensitivity analysis of each individual parameter against a 
baseline CI value of 22.0 gCO2/MJ derived using GREET’s default assumptions (including 
coproduct allocation assumptions). This value also excludes LUC impacts from GREET’s 
separate CCLUB module that are discussed further below. Figure 9.1.3-2 shows the results of the 

245 Geographic Representation of Corn Ethanol Production Ethanol Facilities in The United States. EIA (2023). 
Available at: https://atlas.eia.gov/maps/3f984029aadc4647ac4025675799af90 
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sensitivity analysis for soybean oil biodiesel minus GREET’s CCLUB derived LUC impacts. 
Parameters are ordered by their relative individual influence on the overall CI with the most 
impactful parameters at the top of the figure. 

Figure 9.1.3-2: Sensitivity analysis results of USA soybean oil biodiesel carbon intensity 
values ranked by relative influence of each parameter’s potential impact in GREET 

Based on our input parameters and our GREET framework, the overall CI for soybean oil 
biodiesel saw the most influence from the soybean crop yields. Energy used in growing soybean 
on the field was the next most important factor. Nitrogen fertilizer used to obtain higher crop 
yields was again the third highest parameter of importance in this sensitivity analysis. There was 
not a wide variation of results in this exercise, and the greatest variation was in soybean farming 
rather than soybean oil biodiesel production but that is due in part to a limited amount of 
available data on variations in biodiesel production. The relatively small variation in estimates 
suggests that variation in the parameters tested is not a large source of uncertainty for supply 
chain LCA of soybean oil biodiesel. However, there are other assumptions that have a larger 
influence on soybean oil biodiesel LCA estimates, as discussed in the sections that follow. 

With some minor differences, we saw similarities between the most influential 
parameters across corn ethanol and soybean oil biodiesel in this exercise. Crop yields and 
nitrogen fertilizer as inputs were among the most influential factors in both scenarios and had 
some of the largest impacts on these results based on the data provided. However, while both 
sensitivities included farming practices, these did not include LUC parameters. 

9.1.3.3 Allocation Sensitivity Analysis 

Corn ethanol and soybean oil biodiesel production processes both yield biofuels as well 
as economically significant coproducts. Dry mill corn ethanol production for example produces 
distillers grains that are often used as livestock feed, and corn oil that is a vegetable oil that can 
be used for cooking. Both have the potential to be further processed for producing biodiesel. 
Similarly, soybean oil biodiesel transesterification results in coproducts such as soy meal which 
is high in fiber and can be used as cattle feed, and glycerin that has a range of applications across 
cosmetics and pharmaceuticals. 
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For supply chain LCA models such as GREET, these coproducts are relevant because the 
GHG impacts of the fuel of interest and its coproducts can be accounted for using various 
methods and therefore yield different GHG results depending on the allocation methods used. 
Allocation methods can use the economic values of the different product streams, the embedded 
energy content (where applicable), or physical properties such as mass. This allocation 
sensitivity analysis shows the variation in the CI values presented using the default input 
parameters and how the resulting GHG emissions can vary quite significantly depending on the 
LCA allocation methods selected. 

For corn ethanol in GREET, Argonne uses a default displacement allocation method 
whereby dried distillers grains are given a coproduct credit under the assumption they will be 
used in place of conventional animal feeds such as corn and soybean meal. This results in the 
estimated default CI value of 45.9 gCO2/MJ for corn ethanol shown in Figure 9.1.3-3, but this 
result can vary significantly if the allocation method used is instead based on the energy content 
of the ethanol and distillers grains or based on market value of the distillers grains versus the 
ethanol fuel (which in turn relies on constantly varying and geographically diverse market 
values). A hybrid method is also presented to allocate distillers grains, ethanol, and corn oil first 
based on the market value first, and then energy allocation is used to calculate emissions for 
ethanol and corn oil. The last results shown are a process-level allocation method that assigns 
emission burdens of individual process steps to the product that is responsible for each specific 
process. These last two allocation methods are further detailed in Wang et al. (2015).246 Based on 
allocation method alone in this scenario, we derived a range between 32.2 – 48.4 gCO2/MJ for 
corn ethanol (excluding LUC impacts). 

Figure 9.1.3-3: Variations in the Carbon Intensity of Corn Ethanol Based on Various LCA 
Allocation Methods 

For soybean oil biodiesel, Argonne presents further delineations of LCA allocation 
methods used either at the process level (assigning the GHG impacts based on the individual 
steps that are involved, in this case soybean oil and soybean meal at the crushing facilities and 
then between biodiesel and glycerin at the biodiesel plants) or the system level (in this instance 
assigning the GHG burden across biodiesel, soy meal, and glycerin as products rather than 

246 Wang, Zhichao, Jennifer B. Dunn, Jeongwoo Han, and Michael Q. Wang. 2015. “Influence of Corn Oil Recovery 
on Life-Cycle Greenhouse Gas Emissions of Corn Ethanol and Corn Oil Biodiesel.” Biotechnology for Biofuels 8 
(1): 178. https://doi.org/10.1186/s13068-015-0350-8. 
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individual steps). Within each of the process- and system-level allocation methods, there are the 
same three methods of allocation shown for corn ethanol: mass, market value, and energy 
allocation. Argonne by default uses a hybrid allocation method for soybean oil biodiesel in 
GREET whereby mass-based allocation is used to account for the soybean meal coproduct from 
soybean crushing and market-based allocation is used to account for the glycerine coproduct 
from biodiesel production. This results in the estimated default CI value of 22.0 gCO2/MJ for 
soybean oil biodiesel as shown in Figure 9.1.3-4. Based on different allocation methods alone in 
this scenario, we derived a range between 18.4 – 33.7 gCO2/MJ for soybean oil biodiesel 
(excluding LUC impacts), exemplifying how complicated it can be to perform LCA allocation 
for various biofuels. This results in the estimated default CI value of 22.0 gCO2/MJ for soybean 
oil biodiesel as shown in Figure 9.1.3-4. Based on different allocation methods alone in this 
scenario, we derived a range between 18.4 – 33.7 gCO2/MJ for soybean oil biodiesel (excluding 
LUC impacts). 

Figure 9.1.3-4: Variations in the Carbon Intensity of Soybean Oil Biodiesel Based on 
Various LCA Allocation Methods 

As illustrated by the figures above in this allocation sensitivity analysis section, 
coproduct allocation methods can have a significant impact on biofuel LCA estimates when 
using a supply chain LCA model such as GREET. As with the above sections, these results did 
not include GREET’s reported LUC GHG emissions that come from CCLUB and rely on GTAP 
data. 

9.1.3.4 Stochastic Parameter Analysis 

Relying on the same parameter inputs and distributions shown in Tables 9.1.3-1 and 
9.1.3-2, we also conducted a sensitivity analysis using the stochastic tool built into the GREET 
model. This tool allows for stochastic analyses of probable ranges of the different factors that 
result in the likelihood of multiple outcomes, to conduct parameter uncertainty. This stochastic 
tool also does not make changes to the land use change results that come from CCLUB 
translating GTAP data but focuses on agricultural practices, fuel production, and transportation. 
Therefore, the uncertainty present in LUC emissions estimates, discussed in other sections above 
and below, is not considered here. Because GREET operates as a static attributional LCA 
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framework, any uncertainties in market-mediated responses to biofuel consumption in the 
agricultural or energy sectors is also not considered, nor are any uncertainties regarding dynamic 
change over time. 

A probability density function (PDF) was developed for the corn ethanol pathway 
analyzed using the stochastic tool. GREET breaks down the corn ethanol pathway into the 
following steps: farming energy, farming chemicals, ethanol production, coproducts, and tailpipe 
fuel combustion (non-CO2 emissions). The base values are presented along with what are known 
as P10 and P90 values that make up the uncertainty bars. Ninety percent of the observations in 
the stochastic analysis are above the P10 value, while ninety percent of observations fall below 
the P90 value. Figure 9.1.3-5 below shows the stochastic analysis results for corn ethanol. This 
stochastic analysis for corn ethanol relying on the input data provided would imply an 80 percent 
probability that the GREET estimate for the fuel would be between 40.7 and 57.0 gCO2/MJ 
(before accounting for LUC). The greatest variation identified based on data provided came from 
farming chemicals used to support corn yields. 

Figure 9.1.3-5: Stochastic analysis results of USA corn ethanol by lifecycle stage in GREET 
(whiskers indicate P10 and P90 values) 

A stochastic analysis developed using GREET’s stochastic tool for the soybean oil 
biodiesel pathway is also presented below in Figure 9.1.3-6. Categories for this pathway are 
broken down using the following steps: soybean farming, soy oil extraction at the biodiesel 
production facility, soybean oil transesterification (the process of converting the soybean oil into 
biodiesel), and the combined fuel distribution and tailpipe fuel combustion (non-CO2 emissions). 
Again, the base values are presented along with the P10 and P90 values that make up the 
uncertainty bars. This stochastic analysis using the input data provided would imply an 80 
percent probability that soybean oil biodiesel would have a CI between 21.5 and 22.7 gCO2/MJ 
(before accounting for LUC). As with the sensitivity analysis above (Section 9.1.3.2), there was 
not a wide variation of results in this exercise due in part to the assumed triangular parameter 
values which were chosen based on the limited amount of data available to inform the 
distribution shapes. 

This should not provide the artificial inference that there is little variation in GHGs from 
soybean farming and soybean oil biodiesel production but instead is an indication of potential 
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results and an opportunity for further research. Soybean farming showed the greatest area of 
uncertainty, which would be likely to be even greater if the scope of these data were expanded 
beyond the United States. We also note that the estimates in Figure 9.1-3-6 are estimates of the 
average supply chain GHG emissions associated with average soybean oil biodiesel. GREET 
may estimate higher or lower LCA emissions for biodiesel produced from soybeans grown on a 
particular farm or produced at a particular biodiesel facility. 

Figure 9.1.3-6: Stochastic analysis results of USA soybean oil biodiesel by lifecycle stage in 
GREET (whiskers indicate P10 and P90 values) 

9.1.3.5 Land Use Change Sensitivity Analysis 

As GREET is an attributional (or “supply chain”) LCA model that does not endogenously 
estimate indirect emissions such as those resulting from indirect land use change, GREET 
incorporates a module called the Carbon Calculator for Land Use Change from Biofuels 
Production (CCLUB) to account for indirect land use change emissions.247 CCLUB relies on a 
selection of land use change estimates from GTAP studies conducted between 2011–2018, and 
includes two corn ethanol and four soybean oil biodiesel scenarios that are described in Table 1-
1 of this document. We describe the CCLUB module in greater detail in Section 2.1 of this 
document. 

As a final parameter sensitivity analysis for GREET, we show a range of results 
representing variations of soil organic carbon emission factors data sets and related assumptions 
as options in the CCLUB module. By default, CCLUB relies on soil organic carbon emission 
factors from the CENTURY model developed by Colorado State University for domestic land 
use change calculations, and a separate dataset by Winrock International for international land 
use change emission calculations.248 In our LUC sensitivity analysis, we present results using 
both emission factors datasets where applicable, as well as varying the soil depth considered and 

247 Kwon, Hoyoung, et al. (2021). Carbon calculator for land use change from biofuels production (CCLUB) users’ 
manual and technical documentation, Argonne National Lab, Argonne, IL. https://greet.es.anl.gov/publication-
cclub-manual-r7-2021 
248 Ibid. See details about how these emission factor datasets are developed and used in the CCLUB manual. 
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tillage practices. Similarly, we included results both based on assumptions about corn and 
soybean crop yields increasing over time or remaining static. 

CCLUB includes a forest prorating factor that is meant to adjust the forest land in GTAP 
results to better align with the amount of accessible forest land as reported by the Cropland Data 
Layer (CDL), a dataset developed by USDA’s National Agricultural Statistics Service.249 

Argonne accordingly applies this proration factor by region to the accessible forest land that 
GTAP predicts will be converted in order to satisfy land needed to meet a given biofuel shock 
based on a ratio of the differences between GTAP’s assumed forest landcover versus what was in 
USDA’s CDL. This results in different amounts of assumed forest land to cropland conversions 
and therefore LUC GHG emissions. We took the approach in this sensitivity analysis of 
presenting results both with and without CCLUB making this forest proration factor adjustment. 

GREET’s default LUC scenario for corn ethanol is referred to as “Corn Ethanol 2011” in 
CCLUB and is described in Taheripour et al. (2011).250 The scenario represents an increase in 
USA corn ethanol production from 2004 levels (3.41 billion gallons) to 15 billion gallons (a 
shock size of 11.59 billion gallons). Table 9.1.3-3 presents 20 different permutations and a range 
of different emissions based on changing the assumptions for how CCLUB interprets this single 
modeled GTAP scenario for land use change representing a corn shock. Argonne’s pre-selected 
options in CCLUB yield an estimate of 7.4 gCO2e/MJ of corn ethanol for induced land use 
change, while varying the assumptions in this sensitivity analysis yields a range between 6.5 
gCO2e/MJ to 9.7 gCO2e/MJ when relying on CENTURY emission factors for domestic LUC 
emissions, with the main differences coming from variations in the corn yield and tillage 
practices. That estimated range expands to a high value of 16.2 gCO2e/MJ if both the domestic 
and international LUC emissions are based on the 2009 Winrock emissions factor data. 

249 USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) is available online at: 
https://croplandcros.scinet.usda.gov/ 
250 Taheripour, F., et al. (2011). Global land use change due to the U.S. cellulosic biofuels program simulated with 
the GTAP model, Argonne National Laboratory: 47. 
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Table 9.1.3-3: CCLUB Sensitivity Results for “Corn Ethanol 2011” Scenario by Parameter 
Select 
Domestic 
Emissions 
Modeling 
Scenario 

Select 
International 
Emissions 
Modeling 
Scenario 

Domestic 
Emissions 
Modeling 
Scenario 

Soil depth 
considered in 
modeling 

Harvested 
Wood 
Product 
(HWP) 
Scenario 

Tillage 
Practice for 
Corn and 
Corn Stover 
Production 

Forest 
Prorating 
Factor 

Domestic 
(Data 
Cell) 

Foreign 
(Data 
Cell) 

gCO2e/MJ 

Century Winrock yield 
increase 

30 cm HEATH No Till Yes 109.6 432.7 6.7 

Century Winrock yield 
increase 

100 cm HEATH No Till Yes 91.5 432.7 6.5 

Century Winrock yield 
constant 

30 cm HEATH No Till Yes 235.6 432.7 8.3 

Century Winrock yield 
constant 

100 cm HEATH No Till Yes 245.7 432.7 8.4 

Century Winrock yield 
increase 

30 cm HEATH No Till No 146.3 432.7 7.2 

Century Winrock yield 
increase 

100 cm HEATH No Till No 130.9 432.7 7.0 

Century Winrock yield 
constant 

30 cm HEATH No Till No 274.2 432.7 8.8 

Century Winrock yield 
constant 

100 cm HEATH No Till No 287.4 432.7 8.9 

Century Winrock yield 
increase 

30 cm HEATH US 
Average 

Yes 157.7 432.7 7.3 

Century Winrock yield 
increase 

100 cm HEATH US 
Average 

Yes 162.4 432.7 7.4 

Century Winrock yield 
constant 

30 cm HEATH US 
Average 

Yes 276.7 432.7 8.8 

Century Winrock yield 
constant 

100 cm HEATH US 
Average 

Yes 307.9 432.7 9.2 

Century Winrock yield 
increase 

30 cm HEATH US 
Average 

No 195.3 432.7 7.8 

Century Winrock yield 
increase 

100 cm HEATH US 
Average 

No 203.5 432.7 7.9 

Century Winrock yield 
constant 

30 cm HEATH US 
Average 

No 316.1 432.7 9.3 

Century Winrock yield 
constant 

100 cm HEATH US 
Average 

No 351.2 432.7 9.7 

Winrock Winrock 871.1 432.7 16.2 

GREET’s default LUC scenario for soybean oil biodiesel is referred to as “Soy Biodiesel 
CARB case 8” in CCLUB and is described in Chen et al. (2018)251 and Taheripour et al. 
(2017)252. The scenario represents an increase in U.S. soybean oil biodiesel production by 0.812 
billion gallons. Table 9.1.3-4 presents eight different permutations and a range of different 
emissions based on changing the assumptions for how CCLUB interprets this modeled GTAP 
scenario for land use change representing a soybean shock. Argonne’s pre-selected options in 
CCLUB yield an estimate of 9.3 gCO2e/MJ of soybean oil biodiesel for induced land use change, 

251 Chen, R., Qin, Z., Han, J., Wang, M., Taheripour, F., Tyner, W., O’Connor, D., Duffield, J., 2018. Life cycle 
energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts. 
Bioresource Technology 251, 249–258. https://doi.org/10.1016/j.biortech.2017.12.031 
252 Taheripour, F., Zhao, X., Tyner, W.E., 2017. The impact of considering land intensification and updated data on 
biofuels land use change and emissions estimates. Biotechnol Biofuels 10, 191. https://doi.org/10.1186/s13068-017-
0877-y 
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while varying the assumptions in this sensitivity analysis yields a range between 9.0 gCO2e/MJ 
to 9.6 gCO2e/MJ when relying on CENTURY emission factors alone for domestic LUC 
emissions, with the variations primarily again coming from assumed soybean yield and tillage 
practices. That estimated range expands significantly to a high value of 21.5 gCO2e/MJ if both 
the domestic and international LUC emissions are based on the 2009 Winrock emissions factor 
data. 

Table 9.1.3-4: CCLUB Sensitivity Results for “Soy Biodiesel CARB case 8” Scenario by 
Parameter 

Domestic 
Emissions 
Modeling 
Scenario 

International 
Emissions 
Modeling 
Scenario 

Harvested 
Wood Product 
(HWP) 
Scenario 

Tillage Practice 
for Corn and 
Corn Stover 
Production 

Forest 
Prorating 
Factor 

Domestic 
Emissions 

Foreign 
Emissions 

gCO2e/MJ 

Century Winrock HEATH No Till Yes 24.4 1,105.7 9.0 
Century Winrock HEATH No Till No 53.8 1,105.7 9.2 
Century Winrock HEATH US Average Yes 68.2 1,105.7 9.3 
Century Winrock HEATH US Average No 98.6 1,105.7 9.5 
Winrock Winrock 1,613.7 1,105.7 21.5 

Both the corn ethanol and soybean oil biodiesel LUC sensitivity analysis results show 
that even relying on the same LUC results from GTAP can yield significantly different emission 
results based on assumption differences such as the emission factors used and other key data sets 
or data interpretations. 

We do not present results in this section with the intention of concluding what a range of 
potential emissions the GREET model can be for corn ethanol and soybean oil biodiesel, as that 
is outside the scope of this analysis. Instead, we mean to illustrate the variation in results that 
come from key assumptions and where the model framework demonstrates the most variation in 
its estimates based on those assumptions. 

Across the various sensitivities we performed for GREET, corn ethanol and soybean oil 
biodiesel each relied on a single LUC scenario provided by GTAP and interpreted by CCLUB. 
While other models showed a significant variation in LUC impacts based on differing sensitivity 
assumptions, the area of LUC was held constant for GREET. Instead, these sensitivities 
highlighted variability associated with other assumptions. Our parameter and stochastic 
sensitivities demonstrated the importance to emissions that corn and soybean yields have on 
results and how they vary considerably across the country (they also vary over time). Data based 
on industry surveys also suggested that there is still a significant range of efficiencies for energy 
inputs both on fields and in biofuel facilities. On LCA allocation methods, we demonstrated how 
impactful decisions are in emissions accounting for ethanol or biodiesel versus coproducts. 
Similar to what is shown in the next section (Section 9.2), the soil carbon assumptions illustrated 
in our GREET LUC sensitivity analysis had a relatively large impact based on the datasets used 
to represent LUC emissions from static GTAP scenarios. Finally, some of these same areas seem 
important for additional research. The uncertainty around farming chemical use for example was 
also seen with our GCAM sensitivities. 
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9.2 Soil Organic Carbon Sensitivities 

Land use change emissions estimation is an important component of crop-based biofuel 
lifecycle analysis, as demonstrated by the results we present in Sections 6.7 and 7.7. Estimates of 
LUC emissions from the conversion of other land types to cropland vary to some extent based on 
the type of land being converted. But beyond this another important area of variability is the 
assumed carbon density of lands and the quantity of carbon emitted or sequestered when land 
transitions from one state to another. The magnitude of this carbon exchange varies based on 
climate, soil type, vegetation type, soil microbial activity, and numerous other factors. At the 
time of the March 2010 RFS rule, most model soil carbon assumptions were based on field scale 
sampling of soils and other estimation techniques, which were then extrapolated and applied to 
much larger areas of land than their empirical samples covered. A small number of global 
satellite-based data sets, such as the MODIS-based Winrock data we used to estimate LUC 
emissions from the FAPRI model, also existed, but were relatively new. Over the last decade, 
empirical satellite-based datasets have become more numerous and sophisticated, necessitating 
revisitation of this area of science.253 

We observed in Section 9.1.1 above that the GCAM results produced for this exercise are 
sensitive to the assumed value of soil carbon density input parameters. For the analysis described 
in Section 9.1.1, we stochastically varied the soil carbon and vegetation densities assumed in 
GCAM, with independent distributions for each land category. The sensitivity analysis described 
in this section is different, as it tests the influence of using different soil carbon data sources, 
described below, to determine the baseline soil carbon densities. 

The soil carbon assumptions of GCAM rely on a simple carbon cycle model that tracks 
cohorts of soil and vegetation carbon over time, starting in 1750, the first spin-up year. In 
previous versions of GCAM, average terminal carbon stocks (above and below ground 
vegetative carbon and soil carbon) for each land use type were assumed exogenously based on 
aggregate data, not differentiated by GCAM land use region. More recently, carbon stock data 
acquisition and modeling capabilities have improved, and current vegetation and soil carbon 
stock maps can be generated using sophisticated mathematical and statistical techniques. In an 
additional set of runs, we tested the impacts of different soil carbon stocks on the land use 
change emissions in GCAM. 

The GCAM results presented in the core scenarios in Sections 5-7 use globally gridded soil 
carbon stock data from SoilGrids 2017254 (30 cm depth) and vegetative carbon stock data from 
Spawn et al. (2020).255 SoilGrids is based on soil profile observations from the WoSIS database 
that have been interpolated via random forest machine algorithms to 250 m grid cells. Because 
GCAM represents land at a water basin level, the model needs only one carbon stock input per 

253 For more information on carbon stock datasets see: Spawn-Lee, S., “Carbon: Where is it and how can we know?” 
EPA Workshop on Biofuel Greenhouse Gas Modeling, 2022. https://www.epa.gov/system/files/documents/2022-
03/biofuel-ghg-model-workshop-measure-map-soil-carbon-2022-02-28.pdf 
254 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., . & 
Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 
12(2), e0169748. 
255 Spawn, S.A., Sullivan, C.C., Lark, T.J. et al. Harmonized global maps of above and belowground biomass carbon 
density in the year 2010. Sci Data 7, 112 (2020). 
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land type, per water basin.256 Summary statistics (the third quartile) were calculated for every 
land use type in each basin to represent the steady state soil carbon stock at the beginning of 
environmental simulation in 1700.257 

To test the sensitivity of GCAM results to soil carbon stock assumptions, we tested 
GCAM using 3 additional soil C datasets, as shown in Table 9.2-1. The Harmonized World Soils 
Database (HWSD) uses a “paint by number” approach to categorize carbon stocks. The map was 
built on several different global and regional expert-informed soil databases (SOTER, ESD, Soil 
Map of China, WISE), built on a 30 arc-second resolution (approximately 1 km), and reprojected 
with a grid scale size of 250 m. Each grid cell has estimates informed from these databases, with 
areas lacking data filled in using machine learning estimates. In some countries, the soil 
boundaries are defined polygons, with the center value assumed to be the value for the entire 
polygon (hence the description as a “paint by number” approach). This type of map can result in 
distinct boundaries at political or geological boundaries. 

Table 9.2-1: Soil carbon stock datasets used for sensitivity analysis in GCAM 
Dataset Method Depth Resolution 
Harmonized World Soils 
Database (HWSD)258 

Professionally derived 
“Paint by Number” 

30 cm 30 arc-second 

Food and Agricultural 
Organization Global Soil 
Organic Carbon Map (FAO 
GLOSIS)259 

Combination raster of 
country driven soil 
maps 

30 cm 30 arc-second 

SoilGrids 2017260 Random forest 
machine learning 

30 cm 250 m 

SoilGrids 2020261 Random forest 
machine learning 

30 cm 250 m 

The FAO GLOSIS (Global Soil Information System) map is based on data collected and 
reported by national institutions. The countries, under the guidance of the Intergovernmental 
Technical Panel on Soils and the Global Soil Partnership Secretariat, used a uniform 
methodology with modern soil digital mapping tools to create national maps, which were then 
standardized to the global area. These maps were built on a 30 arc-second resolution 
(approximately 1 km), and reprojected with a grid scale size of 250 m. Over 63 percent of the 

256 Further description of the land allocation module in GCAM is available at: https://jgcri.github.io/gcam-
doc/land.html 
257 Since GCAM requires estimates of soil carbon from 1700, and the soil data we have represents modern day, the 
moirai framework utilized the Q3 (third quartile) SoilGrids data, to represent a historic baseline. 
258 Wieder, W.R., J. Boehnert, G.B. Bonan, and M. Langseth. 2014. Regridded Harmonized World Soil Database 
v1.2. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active 
Archive Center, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1247 
259 FAO and ITPS. 2018. Global Soil Organic Carbon Map (GSOCmap) Technical Report. Rome. 162 pp. 
https://www.fao.org/3/I8891EN/i8891en.pdf 
260 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., . & 
Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 
12(2), e0169748. 
261 Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: 
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, 2021. 
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world map is based on country submissions. Countries that did not participate were filled in 
using the SoilGrids 2017 map (1.9 percent of the world), and the remainder were calculated 
using the Global Soil Partnership Secretariat partnerships and gap filling. 

SoilGrids 2020 is an update of SoilGrids 2017. The SoilGrids 2020 estimate includes 
more soil observations and a different set of environmental covariates than SoilGrids 2017. This 
created a different interpolation of the data to a 250 m grid cell level. This method is more 
computationally intensive than the method used for SoilGrids 2017, so the carbon stock is only 
available for 0-30 cm depth. One benefit of SoilGrids 2020 over SoilGrids 2017 is that the 
methods used to interpolate the SoilGrids 2017 map created some overestimates of SOC, 
especially in the far northern latitudes (60-90°N).262 However, the soil carbon levels for the rest 
of the world tended to be lower than most other soil carbon mapping estimates, so both 2017 and 
2020 SoilGrids maps provide different information. We include SoilGrids 2017 in our analysis 
because it is currently the default soil carbon dataset in GCAM v6. 

In GCAM, land use change emissions are determined by the amount of land use change, 
the location of land use change, and the difference in carbon stock between the starting and 
ending land types. GCAM does not use soil carbon stock information to determine the types and 
locations of land that change. Therefore, the quantity and location of land use change did not 
vary across the runs, and differences in emissions are entirely based on differences in soil carbon 
stock assumptions. Figure 9.2-1 shows the global emissions from land use change in the 
reference case for each set of soil carbon stock assumptions. SoilGrids 2017 produces the highest 
emissions and SoilGrids 2020 produces the lowest emissions. 

Figure 9.2-1: Global emissions from land use change in the reference case using four soil 
carbon datasets 

262 Tifafi, M., Guenet, B., Hatté, C. (2018), Large differences in global and regional total soil carbon stock estimates 
based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, 
Wales, and France. Global Biogeochemical Cycles, 32, (1), 42-56 
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In Figure 9.2-2, we calculated the CI, as described in Sections 6.7 and 7.7. The CI is 
based on the difference between the corn ethanol or soybean oil biodiesel scenario and the 
reference case. The FAO GLOSIS dataset produces the lowest CI results, even though SoilGrids 
2020 had the lowest LUC emissions in the reference case. This is because the corn ethanol and 
soybean oil biodiesel scenarios had land use change in different locations than the reference case. 
The CI of land use change varies greatly across the runs, from 9-31 kgCO2e/MMBTU for corn 
ethanol and 36-63 kgCO2e/MMBTU for soybean oil biodiesel. For each of the soil carbon stock 
assumptions, the CI from land use change is around twice as high for soybean oil biodiesel as for 
corn ethanol. 

Figure 9.2-2: Carbon intensity from land use change emissions for the corn ethanol shock 
and the soybean oil biodiesel shock using a range of soil carbon datasets 

We draw no conclusions here about which soil carbon data set is most appropriate to use 
for biofuel lifecycle analysis in GCAM or any other modeling framework. While this is a valid 
scientific question, it was beyond the scope and resources of this exercise. Rather, our intention 
is to show that the choice of soil carbon stock assumption, among commonly used datasets, can 
have a large impact on the modeled CI of corn ethanol and soybean oil biodiesel within a given 
modeling framework. Further work will be needed to explore how different soil carbon datasets 
impact the results of other models, and to determine which soil carbon dataset is most 
appropriate to use in this context. 

9.3 Land Conversion Elasticity Sensitivities 

In the soybean oil biodiesel results presented in Section 7, one of the major differences 
between the ADAGE results and the results of the other models is the emissions from land use 
change. We ran a set of sensitivity scenarios to determine whether changing the model 
parameters changes the result that a large amount of forestland is converted to cropland. 
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As explained in Section 2.5, the direction and magnitude of land use change in ADAGE 
is determined by differences in prices between land types (which are in part driven by 
differences in net primary production [NPP]) and fixed factor elasticities between the land types. 
In the results presented above, the fixed factor elasticity from pasture to cropland is the same as 
that from managed forest to cropland (Table 9.3-1). This means if prices of pasture and forest are 
equal to each other, it is equally easy to convert forest to cropland and pasture to cropland. In 
contrast, the fixed factor elasticity from cropland to pasture is higher than the fixed factor 
elasticity from cropland to managed forest, meaning that given equal prices, more cropland 
would convert to pasture than to managed forest. In these scenarios, because of assumptions of 
NPP declining for forest and rising for pasture over time in key non-USA soybean-producing 
regions, the price of managed forest declines while the price of pasture rises. Since the fixed 
factor elasticity of converting these two land types to cropland is assumed to be equal, more of 
the lower cost land, i.e., managed forest is converted in non-USA regions in these results. 

Table 9.3-1: Fixed factor elasticity between land types in ADAGE core scenarios 

Land Conversion 
From 

Cropland Pastureland Managed 
Forestland 

Natural Grassland Forestland 
Cropland 0.26 0.26 
Pastureland 0.3 0.02-0.509 

To Managed Forestland 0.15 0.02-0.509 
Natural Forestland 

Grassland 
0.15 

0.15 0.15 

0.15 

0.15 
Note: Elasticity values for agricultural lands converting to other land types are assumed to be the same for all 
regions. Elasticities for natural land conversion to agricultural land vary by region and range from 0.02 to 0.509. 

We conducted a sensitivity analysis on the fixed factor elasticities between land types to 
assess the impact of making it more difficult to convert forest to cropland than pasture to 
cropland. The alternative elasticity values used in this sensitivity analysis are shown in Table 
9.3-2. In this sensitivity, the fixed factor elasticities from pasture/managed forest to cropland 
were swapped with the fixed factor elasticities from cropland to pasture/managed forest. In this 
scenario, the fixed factor elasticity from pasture to cropland is twice as large as the fixed factor 
elasticity from managed forest to cropland, making it easier to convert pasture than forest to 
cropland. 
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Table 9.3-2: Fixed factor elasticity between land types in ADAGE sensitivity runs 

Land Conversion 
From 

Cropland Pastureland Managed 
Forestland 

Natural Grassland Forestland 
Cropland 

Pastureland 0.26 

0.3 0.15 

0.02-0.509 
To Managed Forestland 0.26 0.02-0.509 

Natural Forestland 

Grassland 
0.15 

0.15 0.15 

0.15 

0.15 
Note: Elasticity values for agricultural lands converting to other land types are assumed to be the same for all 
regions. Elasticities for natural land conversion to agricultural land vary by region and range from 0.02 to 0.509. 

We focus on the results of the soybean oil biodiesel scenario. As shown in Figure 9.3-1, 
the new runs (“Sensitivity”) have more additional soybean cropland than the runs described in 
Section 7 (“Core”). In the sensitivity runs, the soybean yield does not increase as much as in the 
core runs, so more cropland is needed to produce soybeans for biodiesel. The sensitivity runs 
also show a greater increase in total cropland. There is less shifting of land from other crop types 
to soybean. 

Figure 9.3-1: Difference in cropland area by crop type (million hectares) in the soybean oil 
biodiesel shock relative to the reference case in 2030 for the original ADAGE runs (“Core”) 
and the fixed factor elasticity sensitivity runs (“Sensitivity”)263 

In the sensitivity runs, there is a large change in the type of land converted to cropland, 
relative to the core runs (Figure 9.3-2). In the USA region, managed pasture is still the primary 

263 Horizontal lines show the net change in cropland. 
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land type that is converted to cropland. However, in the non-USA regions, land is converted 
from pasture and grassland rather than forest. Even though prices and production of the land 
types did not change in this sensitivity, decreasing the land conversion elasticity of forest to 
cropland resulted in a large reduction in the amount of forest conversion. 

Figure 9.3-2: Difference in land use (million hectares) in the soybean oil biodiesel shock 
relative to the reference case in 2030 for the original ADAGE runs (“Core”) and the fixed 
factor elasticity sensitivity runs (“Sensitivity”) 

As a result of the change to the land conversion elasticity, the estimated CI from land use 
change decreased substantially, from 295 kgCO2eq/MMBTU to 33 kgCO2eq/MMBTU (Table 
9.3-3). In the sensitivity runs, there is more total land use change, but much less emissions from 
land use change. This emphasizes that the type of land converted and the carbon stock of the 
converted land plays a major role in the emissions from land use change. 
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9.4 

Table 9.3-1: Carbon intensity of soybean oil biodiesel and corn ethanol 
(kgCO2eq/MMBTU) calculated using emissions reported by each ADAGE run 

Soybean oil biodiesel Corn ethanol 
Core Sensitivity Core Sensitivity 

Sector -
specific 

emissions 

Energy Sector -28 -30 -15 -17 
Crop Production 7 8 14 14 
Livestock Sector 0.7 0.7 0.1 0.1 
Other 1 1 1 1 
Land Use Change 295 33 -1 -1 

Totals 
Agriculture, forestry, 
and land use 303 41 14 14 

Global GHG Impact 276 12 -1 -3 

The corn ethanol sensitivity scenario similarly shows less corn yield increase than the 
core corn ethanol scenario, and more additional cropland. However, the core corn ethanol 
scenario results in conversion of pasture to cropland, and this does not change in the sensitivity. 
The estimated CI for the corn ethanol scenarios are shown in Table 9.3-3. The land use change 
CI in the sensitivity is similar to the core run. 

These results illustrate the importance of considering land parameter assumptions in the 
models. We do not make conclusions here about which of these sets of results is more correct. 
Rather, these results show that if there are assumptions in a model that allow more forest to be 
converted in a biofuel scenario, then the emissions can be much higher. Future work could 
explore whether there are other similarly important parameters in the models. For cases where 
data are not available to set a parameter value (as is often the case for elasticity values), future 
work could involve developing methods to use historical data to inform the choice of parameter 
value. 

Summary of Parameter Sensitivities 

In this section we discussed the results of five sensitivity experiments testing the 
influence of parameter input values on biofuel GHG impact estimates, including stochastic 
analyses of GCAM, GLOBIOM, and the GREET model, a separate soil organic carbon 
sensitivity analysis of GCAM, and a land conversion elasticity sensitivity of the ADAGE model. 

Stochastic parameter experiments with GCAM indicate the assumptions relating to soil 
carbon stocks, the ease of substitution between land and crop types, and the N2O emissions 
intensity of agriculture are influential parameters for corn ethanol and soybean oil biodiesel 
GHG impact estimates. The parameter controlling substitution between the non-USA regions 
refined oil and biodiesel is also influential for the soybean oil biodiesel GHG estimates. 
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A similar stochastic experiment with GLOBIOM considering only soybean oil biodiesel 
GHG impact estimates finds that a different set of parameters are the most influential. For 
example, the GLOBIOM experiment finds biomass carbon stock assumptions to be influential, 
whereas these assumptions were not identified as influential by the stochastic GCAM 
experiment. Other parameters that registered as influential in the GLOBIOM stochastic 
experiment but not in the GCAM stochastic experiment include assumptions related to tropical 
peat soil, substitution between vegetable oils, and yield elasticities for corn and soybeans. 

The land conversion elasticity sensitivity experiment with the ADAGE model finds that 
land use change GHG estimates for soybean oil biodiesel are highly sensitive to the assumed 
fixed factor elasticities for forest and pasture to cropland. These results indicate that parameter 
influence on biofuel GHG impact estimates is model dependent, i.e., a set of parameters that is 
influential in one model may not be influential in another model. 

The stochastic analyses conducted with the GREET model, using a specific set of 
assumed parameter uncertainty distributions, suggest that supply chain LCA estimates for corn 
ethanol are more sensitive to parameter input values than such estimates for soybean oil 
biodiesel. Scenario sensitivity analyses with the GREET model indicate that corn ethanol and 
soybean oil biodiesel estimates are more sensitive to coproduct allocation choices and 
assumptions related to land conversion GHG emissions factors. 

A parameter sensitivity analysis with different soil carbon datasets in GCAM indicates 
that the initial steady state soil carbon conditions have a relatively large influence on land use 
change GHG estimates. This suggests that estimates from the same model are likely to change 
over time as science evolves and new data sets become available. 

10 Summary of Findings and Future Research 

Through this model comparison exercise, we aimed to move the science forward on 
analyzing the lifecycle GHG impacts of the increased use of biofuel, understand model 
differences, and examine how those differences impact model results. As described in Section 1, 
this effort is consistent with recommendations from the NASEM report, “Current Methods for 
Life Cycle Analyses of Low-Carbon Transportation Fuels in the United States,” which 
emphasizes the importance of comparing results across multiple economic models and 
considering uncertainty.264 The detailed results and insights from this model comparison exercise 
are explained in the sections above. This section summarizes our main findings, including areas 
of similarity and difference across the models considered in this exercise, and potential areas for 
future research. 

264 NASEM recommendation 4-2: “Current and future LCFS [low carbon fuel standard] policies should strive to 
reduce model uncertainties and compare results across multiple economic modeling approaches and transparently 
communicate uncertainties.” NASEM recommendation 4-3: “LCA studies used to inform policy should explicitly 
consider parameter uncertainty, scenario uncertainty, and model uncertainty.” National Academies of Sciences, 
Engineering, and Medicine 2022. Current Methods for Life Cycle Analyses of Low-Carbon Transportation Fuels in 
the United States. Washington, DC: The National Academies Press. https://doi.org/10.17226/26402. 
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Some of these observations and findings are relevant only to certain models, based on 
their characteristics and areas of coverage. As explained throughout this document, not every 
model considered in this study includes all sectors of the economy or all types of interactions 
discussed in this section. For example, we do not discuss GREET in any of our findings related 
to economic interactions, nor do we discuss GREET and GLOBIOM in any of our findings 
related to the energy sector. Models that are not listed in the findings of each subsection in this 
summary do not model the features described in that subsection. 

Framework Differences 

Supply chain LCA models produce a fundamentally different analysis than economic 
models. Supply chain LCA models generate detailed and transparent fuel production emissions 
estimates. However, they do not evaluate all the indirect emissions associated with a change in 
biofuel consumption. The economic models in our comparison are broad in scope, but they lack 
certain supply chain details and are associated with greater variability. Their complexity makes it 
difficult to identify the precise reasons that estimates vary across the models. 

The emissions impacts observed in this exercise do not remain static over time in 
frameworks with the ability to model dynamic change. The dynamic models considered in this 
exercise, ADAGE, GCAM, and GLOBIOM, all agree that land use, crop production, livestock 
markets, and energy markets would all be expected to adjust over time in response to a biofuel 
shock, with cascading impacts on GHG emissions. Dynamically modeling the impacts of 
biofuels over time results in different model solutions for GHG emissions than what would 
be predicted by more simply extrapolating results in a single time step forward through 
post hoc estimation. We make no conclusions about whether dynamic or static models are more 
appropriate for different applications, but it is important to address the fact that they arrive at 
different conclusions and to robustly consider the time period used for biofuel LCA modeling.265 

Land Use Change and Emissions 

Land use change and associated emissions magnitudes vary across the range of scenarios 
presented in this exercise. Results between models show differences in the types of land which 
transfer into cropland status between the reference and biofuel shock scenarios. Our Monte Carlo 
and land conversion elasticity parameter sensitivity analyses show that these estimates can also 
vary within individual models, depending on the parameter assumptions used. There are several 
important factors in explaining these differences in LUC estimates among and within models. 
Models use different economic equations, mathematical decision frameworks,266 and 
assumptions to estimate which types of land to convert, in what quantities, and in which regions. 
The quantities and location of LUC intersect with the global commodity market dynamics 
discussed above. Differences in mathematical representations of LUC may lead to model results 
which convert primarily one type of land or, conversely, results which spread the LUC impact 

265 It is also important to consider the model reference case assumptions, including model projections into the future. 
The parameter sensitivity analyses discussed in Section 9 suggest several concrete examples, such as the projection 
of future crop yields, which critically influence model results. 
266 For example, ADAGE and GTAP use a CES structure, GCAM uses logit nests, and GLOBIOM uses a global 
gridded system. 
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across multiple land types. Neither of these strategies necessarily leads to higher or lower LUC 
emissions relative to the other. For example, the ADAGE modeling results demonstrate that 
concentrating LUC to one type of conversion may lead to relatively larger LUC emissions 
estimates (as shown in the soybean oil biodiesel results) or relatively smaller LUC emissions 
estimates (as shown in the corn ethanol results). Within models, our sensitivity analyses 
demonstrate that input parameter assumptions, such as those described in Sections 9.1.1 and 9.3, 
may alter economic decisions and thus affect which land types are selected for conversion. This 
model comparison and the associated sensitivity analyses have indicated that assumptions about 
the ease of land substitution, especially from carbon-rich lands, remain a critical area of 
uncertainty in biofuel LCA modeling. Future modeling efforts should robustly quantify this 
uncertainty using either the types of methods described in this exercise or other rigorous 
methods. This exercise highlights that inclusion of land use change emissions is critical for 
biofuel lifecycle analysis and that frameworks must have the ability to robustly quantify 
uncertainty in land use change and LUC emissions. 

Further, spatial resolution in the land sector varies substantially across models and this 
affects the scale at which economic land conversion decisions are made. This major area of 
difference among models is critically tied to the scope of each model and the associated 
computational burdens of land use modeling. It is unlikely that the CGE models, which must 
necessarily resolve equations for more economic sectors, can achieve the spatial resolution 
present in PE models and IAMs. However, the uncertainties created by coarser spatial resolution 
may be quantifiable through targeted uncertainty analysis. Uncertainty also still exists at the 
resolution represented by PE models and IAMs given that these LUC results are necessarily 
estimates of the sum of economic decisions made by multiple actors. We conclude that there is 
no one correct level of spatial resolution for biofuel LCA modeling. Sensitivity and 
uncertainty analysis will be critical at all scales. 

The economic models included in this exercise also restrict land conversion to varying 
degrees, and the differences in assumptions across models are especially large for the most 
carbon-rich arable lands (i.e., natural forests and grasslands). However, these assumptions are 
also uniformly exogenous and previous literature has demonstrated that, to at least some extent, 
they can be aligned across modeling frameworks. Future research could explore this space and 
test whether LUC estimates across models become more similar when similar categories and 
quantities of lands are available for conversion to cropland. 

Additionally, the models use different assumptions about the carbon stocks of the 
different land types, resulting in different emissions from land use change. A sensitivity analysis 
using GCAM shows that when different soil carbon stock assumptions are used, there are large 
differences in the resulting land use change emissions, even though the type and amount of land 
converted is the same in each run. The stochastic parameter sensitivities conducted with GCAM, 
GLOBIOM, and GREET also demonstrate that assumptions about soil carbon exchange from 
LUC may substantially impact emissions results. Addressing variability and uncertainty in 
soil carbon content globally and regionally will be critical to future biofuel LCA efforts. A 
potential area for future research is to align carbon stock assumptions across multiple models to 
better understand the relative impacts of land use change amount/type and carbon stocks on land 
use change emissions. 
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Energy Market Impacts 

The models that include energy market impacts (ADAGE, GCAM, and GTAP) all 
estimate significant indirect effects on fossil and/or bio-based energy consumption in the USA 
and non-USA regions in both the corn ethanol and soybean oil biodiesel shocks. The results from 
these models are in broad agreement that global displacement of refined oil267 consumption due 
to the increase in biofuel consumption is estimated to generate net global energy emissions 
savings. However, the amount of refined oil displaced globally was not equal to the increase in 
biofuel consumption on an energy basis (i.e., a 1:1 displacement). This finding has broad 
relevance to biofuel LCA because modeling efforts using frameworks which do not include an 
energy sector generally assume 1:1 displacement by default. All three models in this study with 
energy sectors show smaller global refined oil savings than would be expected from a 1:1 
displacement. There are some directional differences regarding the impact in the USA region. 
The ADAGE and GTAP results show less domestic refined oil displacement than would be 
expected from a 1:1 displacement, while the GCAM results show more domestic refined oil 
displacement than would be expected from a 1:1 displacement. However, the larger driver of the 
global result is refined oil and biofuel consumption in the non-USA regions. Non-USA refined 
oil consumption increases in the results from each of these models as a result of the shock. In 
ADAGE and GCAM, there are significant changes in non-USA biofuel production and 
consumption as well. In the ADAGE soybean oil biodiesel scenario, the non-USA regions 
collectively produce more biodiesel and consume less of it, exporting that fuel to the USA region 
instead. This reduced biodiesel consumption increases demand for fossil fuels. The increased 
production is associated with agricultural sector emissions. The GCAM results show impacts on 
non-USA biofuel production and consumption as well, particularly sugar crop ethanol in the corn 
ethanol scenario, and soybean oil biodiesel in the soybean oil biodiesel scenario. These results 
also show substantial changes in biofuel trade to and from the USA region in response to the 
shocks. The results across all three models collectively indicate that the assumption of 1:1 
displacement of refined oil for biofuel may be insufficient to capture the energy sector 
impacts of biofuels; consequential modeling of the energy sector is an appropriate 
methodology for capturing these impacts. 

This insight illustrates the importance of including indirect energy market impacts in a 
modeling framework. The ADAGE, GCAM, and GTAP results consistently indicate that the 
assumption of a 1:1 refined oil displacement may be an overestimate of global fossil fuel 
emissions savings. This becomes a crucial issue for biofuel lifecycle analysis, firstly, because 
smaller fossil fuel emissions savings increase the estimated emissions intensity of the biofuel 
being modeled and, secondly, because increased non-USA production of biofuels is associated 
with emissions as well. However, further sensitivities would be needed to better understand the 
driving factors behind the differences in the fossil fuel displacement across the models. 

Global Trade 

Global trade plays an important role in modeled emissions results from both the land and 
energy sectors of these frameworks. Model results from the economic models considered in this 

267 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel. 
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exercise consistently demonstrate that biofuel shocks can impact agricultural commodity trade 
and energy trade in important ways. These include impacts on trade in refined oil and biofuels, 
soybean meal and DDG feed products, and vegetable oils, among others. These changes in terms 
of trade lead to differences in the energy emissions savings estimated by the models as well as 
differences in the quantity of non-USA land use change estimated by the models. There is 
general agreement among the economic models that these trade-driven impacts will occur to 
some degree. However, despite the uniform agreement on the importance of trade-driven impacts 
across the economic models included in this exercise, these models show different degrees of 
trade responsiveness, which leads to results of differing magnitudes. Model trade structure and 
assumed flexibility critically influence the modeled emissions results. 

Commodity Substitutability 

A second key factor, intertwined with trade, is commodity substitutability. Results in this 
exercise from ADAGE, GCAM, GLOBIOM, and GTAP align in estimating commodity 
substitution as a significant part of their scenario solution. As our sourcing analyses in Sections 
6.1 and 7.1 above demonstrate, the degree to which this substitution occurs varies across models. 
However, results from all of the models support two overarching findings: first, that estimates of 
indirect GHG impacts are sensitive to whether and how substitution interactions are considered 
and, second, that uncertainty in the ease of commodity substitution at different price points must 
be considered. Key interactions include the substitutability of: biofuels for fossil fuels, one 
biofuel for another, DDG and soybean meal for other feed products, and soybean oil for other 
vegetable oils. Our modeling exercise has demonstrated that these commodity substitutability 
relationships critically impact overall GHG emissions results from biofuel LCA modeling. 
We summarize these critical impacts further below. 

Crop and Coproduct Consumption by End Use 

The results of the corn ethanol and soybean oil biodiesel scenarios also show significant 
effects on end uses of biofuel feedstocks and coproducts across ADAGE, GCAM, GLOBIOM 
and GTAP, most notably effects on corn, DDG, and soybean meal animal feed use and soybean 
oil food use. In the corn ethanol scenario, the model results consistently show a decrease in corn 
consumption for feed use and an increase in DDG consumption. However, the model results 
differ crucially in their estimates regarding the location of DDG consumption (i.e., USA vs non-
USA regions) as well as the degree of displacement of other types of feed. Similarly, in the 
soybean oil biodiesel scenario, the model results show an increase in soybean meal268 production 
and use for feed. The models all estimate this influx of soybean meal will lead to a global 
increase in feed use on a mass basis. However, the models differ regarding the location of 
soybean meal production and the degree of displacement of other types of feed. Increased use of 
DDG or soybean meal for feed can result in lower land use change emissions if these coproducts 
displace crops for feed use. On the other hand, increased use of DDG or soybean meal for feed 
can result in higher livestock sector emissions if their use causes an increase in total feed use, 
rather than replacing other types of feed. Exploring the emissions impact of DDG and soybean 
meal consumption location on overall GHG results is a potential area of future research, and one 
which is closely related to further research into model commodity trade behavior more generally. 

268 In ADAGE, the soybean meal is included in the aggregated “other oil seed meal” category. 
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It is clear however that explicit modeling of the global livestock sector, including global feed 
markets, is an important capability for estimating the emissions associated with an increase 
in biofuel consumption. Modeling efforts which do not include these economic dynamics 
exclude both critical drivers of overall GHG emissions and critical sources of uncertainty in 
GHG modeling results. 

In the soybean oil biodiesel scenario, the models differ in the amount of food 
displacement. ADAGE results do not show any impact on food consumption. On the other hand, 
GCAM, GLOBIOM, and GTAP results all show a decrease in the amount of soybean oil used for 
food. In the GTAP results, a very small amount of the soybean oil is replaced by other oils; these 
results also show an overall reduction in crops consumed for food. GTAP results also show a 
decrease in soybean oil used for other uses (e.g., processing into other products) that is not 
replaced by other oils. In the GCAM and GLOBIOM results, there is also a decrease in soybean 
oil for food use. However, a major difference between these results and the GTAP results is that 
the GCAM and GLOBIOM results show much greater replacement of soybean oil in the food 
market with palm oil, rapeseed oil, and/or other crop oil, whereas the GTAP results show very 
little replacement of soybean oil with other oils. The degree of substitution varies between 
GCAM and GLOBIOM, with GLOBIOM results showing a net decrease in consumption of 
crops for food, and GCAM results showing a nearly net zero change in consumption of crops for 
food. Substitution of soybean oil with other oil types could result in a reduction of land use 
change emissions from soybean production because less new soybean oil production is needed 
for the biofuel shock. However, substitution of soybean oil with other vegetable oils could also 
result in increased emissions from land use change.269 The effect of the number of vegetable oil 
substitutes in a model on the lifecycle results, and the degree of substitution among feed 
commodities and food commodities, particularly in the non-USA regions, is a potential area for 
future study. Inclusion of explicit global vegetable oil competition is critical to biofuel 
lifecycle analysis results because this competition affects the quantity and location of 
estimated LUC emissions impacts. 

Feedstock Production 

Both intensification and extensification of corn and soybean feedstock production occur 
across ADAGE, GCAM, GLOBIOM, and GTAP results in response to changing commodity 
prices. In each of these models, extensification, including crop shifting, contributes to more of 
the biofuel sourcing than intensification. All four models estimate yield increases of corn in the 
corn ethanol scenario and soybeans in the soybean oil biodiesel scenario, but these increases are 
small relative to the reference case yields. One factor could be that our volume shocks are not 
large enough to induce much change in corn and soybean prices; indeed, the feedstock crop price 
changes in these scenario results appear fairly small across models. In our soybean oil biofuel 
volume sensitivity scenario, the models appear fairly stable in this area with respect to the size of 
the shock, suggesting that shock size might not have significant influence on model yield 
response. However, further research using a wider range of shock sizes and reference case 
assumptions could test this hypothesis more rigorously than we have been able to in this 
exercise. 

269 For example, land use change to produce palm oil could result in increased emissions, particularly if the land 
converted is peat land. 
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We can observe generally that the models considered in this exercise do not see yield 
improvements as a primary strategy for supplying additional biofuel feedstock, given our 
scenario assumptions. Rather, feedstock crop extensification, including crop shifting, appears to 
be relied upon more than intensification to increase the net supply of biofuel feedstock for 
biofuel production across the economic modeling results presented in this exercise. This finding 
appears to be robust across a wide range of uncertainty analyses. However, that is not to say crop 
yield assumptions do not affect the results. Indeed, our parametric sensitivities do suggest that 
crop productivity assumptions may be influential, though other parameters appear to be more 
influential. Further research could better define this influence. The ability to endogenously 
consider tradeoffs between intensification and extensification is an important capability for 
estimating the emissions associated with an increase in biofuel consumption. 

Soybean oil biodiesel and corn ethanol results vary 

The models included in this study show greater diversity in feedstock sourcing strategies 
for soybean oil biodiesel than they do for corn ethanol, and this wider range of options leads to 
greater variability in the GHG results. There are several important reasons for this greater 
diversity of strategies, which were explored throughout this document. For example, compared 
to the corn ethanol results, there is less agreement among the models about where in the world 
soybean oil biodiesel production would change in response to a change in USA region soybean 
oil biodiesel consumption. Because of these differences in sourcing strategy, the model results 
differ regarding the amount and location of soybean oil production, vegetable oil and biodiesel 
trade, and land use change impacts of the shock. 

Much of the new production of corn and corn ethanol in the corn ethanol shock results is 
estimated to occur in the USA region. Conversely, in at least some of the modeling results, much 
of the new production of soybeans, soybean oil and soybean oil biodiesel in the soybean oil 
biodiesel shock results is estimated to occur outside the USA region. Partly for this reason, the 
corn ethanol shock affects overall global trade, commodity production, and land use decisions to 
a lesser extent than the soybean oil biodiesel shock. Across the suite of results from the MCE, 
the USA imports more soybean oil biodiesel than corn ethanol. To the extent the increase in 
USA consumption of soybean oil biodiesel increases non-USA soybean oil biodiesel exports, 
some of the models choose to substitute this lost non-USA consumption of soybean oil biodiesel 
with greater use of palm oil biodiesel or fossil fuels. To the extent that new biofuel feedstock 
crops must be produced in these modeled scenarios to help satisfy demand for biofuels, each unit 
of soybean oil biodiesel feedstock supplied in this way requires more land than does an 
equivalent unit of corn ethanol feedstock supplied. This is because there is a lower yield per acre 
of soybeans, and, implicitly, of soybean oil, compared to corn. Along with land use, soybean oil 
biodiesel production also has much greater potential impacts on livestock production per unit of 
fuel produced than does corn ethanol production. Soybean meal produced per gallon of soybean 
oil biodiesel is greater than the amount of DDG produced per gallon of corn ethanol, which, all 
else equal, can lead to a greater expansion of livestock production in the soybean oil biodiesel 
scenario. These possibilities are realized to greater and lesser extents across the models and 
across sensitivity analyses. Models included in the MCE produced a wider range of LCA 
GHG estimates for soybean oil biodiesel than corn ethanol. This wider range of estimates is 
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related to the greater diversity of feedstock sourcing strategies and the greater sensitivity of the 
biodiesel estimates to the variability and uncertainty present in the parameter assumptions 
discussed above. 

Sensitivity Analysis 

Alternative volume scenarios examine whether and how the assumed magnitude of the 
volume shock of USA biofuel consumption impacts GHG emissions and other model output 
values. In one scenario, where the soybean oil biodiesel volume is reduced to 500 MG, the 
ADAGE, GCAM, and GTAP results do not differ substantially from the 1 BG scenario when 
they are considered on a per billion gallon basis. GLOBIOM results do show some differences, 
such as GHG emissions impacts per billion gallons, between the 1 BG and the 500 MG soybean 
oil biodiesel shocks. In a combined scenario, in which corn ethanol and soybean oil biodiesel 
were simultaneously increased by 1 BG each, the results generally equal the sum of impacts 
observed in the individual 1 BG corn ethanol and soybean oil biodiesel core scenarios for 
ADAGE, GCAM, and GTAP. GLOBIOM results for the combined scenarios show more 
differences in the estimated output values, including GHG emissions, compared to the sum of the 
individual scenarios. These results indicate that, within the range of volumes considered, shock 
size does not lead to substantially different impacts on the modeled agriculture system and 
estimated GHG emissions in most of the frameworks we have tested. 

Finally, stochastic sensitivity analysis identifies which parameter assumptions are 
particularly important for a particular model and scenario. Monte Carlo simulations with GCAM 
indicate that assumptions relating to soil carbon stocks and the ease of substitution among land 
types and crop types have a relatively large influence on the corn ethanol and soybean oil 
biodiesel results. The parameter controlling substitution between non-USA regions refined oil 
and biodiesel is also influential for the soybean oil biodiesel GHG estimates. A similar analysis 
with GLOBIOM finds that biophysical parameters, including those governing the expansion 
response of palm cultivation into peatland and governing the emissions associated with such 
expansion, are influential on soybean oil biodiesel GHG estimates. Stochastic analysis with 
GREET indicates that parameter assumptions have less influence on the supply chain LCA 
estimates for corn ethanol and soybean oil biodiesel when using an attributional LCA model. 
However, the sensitivity analysis with GREET shows more uncertainty associated with 
coproduct allocation choices and for assumptions related to induced land use change GHG 
emissions. Considered alongside the other results of this exercise, these parameter sensitivity 
analyses indicate that substantial uncertainty in the emissions associated with corn ethanol 
and soybean oil biodiesel remains, both within and across models, and that additional 
research on economic model parameters remains a high priority. These sensitivity analyses 
can help us allocate limited research resources by highlighting which types of parameters are 
most influential. Additional parametric sensitivity analysis could help us further pinpoint specific 
parameters for additional research and analysis. 

Conclusions 

In sum, we draw some important general conclusions from this model comparison 
exercise. First, ADAGE, GCAM, GLOBIOM and GTAP estimate that substantial indirect effects 
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would be induced by the corn ethanol and, especially, soybean oil biodiesel shocks that we ran 
for this exercise. These indirect effects are important drivers in the modeled emissions associated 
with these fuels, which highlights the importance of considering indirect effects in LCA.270 

Second, we find substantial uncertainty regarding the overall greenhouse gas intensity of 
the two biofuels examined in this exercise, corn ethanol and soybean oil biodiesel. Based on this 
model comparison exercise, it is evident that variation in estimates remains high across models, 
and within individual models when parameter uncertainty is considered. Although models have 
advanced and new data has become available since EPA modeled the lifecycle GHG emissions 
associated with corn ethanol and soybean oil biodiesel for the March 2010 RFS2 rule, there is 
still a large degree of variation and uncertainty in lifecycle GHG estimates that consider 
significant indirect emissions. The analyses we have conducted for this exercise highlight the 
value of sensitivity analysis as a way of understanding which parameters and assumptions 
influence the model results. Furthermore, given that uncertainty remains high for this type of 
analysis, it is critical to perform robust uncertainty analysis and provide information about the 
range of potential effects and risks of greater biofuel consumption. It is also important to 
compare model results and parameters to historic observation. 

To summarize, we find that the following model characteristics are critical for evaluating 
the GHG impacts, including direct and indirect emissions, associated with a change in biofuel 
consumption: 

1. Supply chain LCA models produce a fundamentally different analysis than 
economic models. Supply chain LCA models evaluate the GHG emissions emanating 
from a particular supply chain, whereas economic models evaluate the GHG impacts of a 
change in biofuel consumption. Supply chain LCA models generate detailed and 
transparent fuel production emissions estimates. However, they do not evaluate all of the 
indirect emissions associated with a change in biofuel consumption. The economic 
models in our comparison are broad in scope, but they lack certain supply chain details. 

2. Land use change emissions are a major contributor to the overall emissions. 
ADAGE, GCAM, GLOBIOM, and GTAP all include land use change and land use 
change emissions. GREET includes a static estimate of land use change emissions using 
previous GTAP results with a different shock size and a 2004 baseline. Estimates of land 
use change vary significantly. Drivers of variation in these estimates include differences 
in assumptions related to trade, the substitutability of food and feed products, and land 
conversion, as well as structural differences in how models represent land categories. 

3. This exercise showed that when impacts of biofuel consumption on global energy 
markets are considered, GHG emissions estimates are significantly altered. The 

270 This finding also supports NASEM recommendation 2-2: “When a decision-maker wishes to understand the 
consequences of a proposed decision or action on net GHG emissions, CLCA [consequential lifecycle analysis] is 
appropriate. Modelers should provide transparency, justification, and sensitivity/robustness analysis for modeling 
choices for the scenarios modeled with and without the proposed decision or action.” National Academies of 
Sciences, Engineering, and Medicine 2022. Current Methods for Life Cycle Analyses of Low-Carbon 
Transportation Fuels in the United States. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/26402. 

169 

https://doi.org/10.17226/26402


  
 

 
 

     
   

     
 

 

  
  

 
       

 

  
   

   
  

  

    
 

    
   
  

   
  

   
   

 
   

  
 

  
  

 

  
     

  
  

  

   
     

   
 

 
   

models that include energy sector results (ADAGE, GCAM, and GTAP) all estimate that 
displacement of refined oil for biofuel is less than 1:1, reducing the GHG emission 
reductions associated with the biofuels modeled. This indicates that economic modeling 
of the energy sector may be required to avoid overestimating the emissions reductions 
from fossil fuel consumption. 

4. Model trade structure and assumed flexibility influence the modeled emissions 
results. There is general agreement among the economic models that these trade-driven 
impacts will occur to some degree. However, these models show different degrees of 
trade responsiveness, which impacts trade flows at differing magnitudes across model 
results. 

5. Certain commodity consumption dynamics appear to substantially influence GHG 
emissions results. DDG and soybean meal’s impact on the livestock and feed sectors can 
affect the estimated GHG emissions associated with biofuels. Explicit modeling of the 
global livestock sector, including global feed markets, is an important capability for 
estimating the emissions associated with an increase in biofuel consumption. 

6. The degree to which other vegetable oils replace soybean oil diverted to fuel 
production from other markets can impact GHG emissions associated with soybean 
oil biodiesel. Results in this exercise from economic models (ADAGE, GCAM, 
GLOBIOM, and GTAP) align in estimating commodity substitution as a significant part 
of their scenario solution. Inclusion of explicit global vegetable oil competition is critical 
to biofuel lifecycle analysis results because this competition affects the quantity and 
location of estimated LUC emissions impacts. 

7. The ability to endogenously consider tradeoffs between intensification and 
extensification is an important capability for estimating the emissions associated 
with an increase in biofuel consumption. Both intensification and extensification of 
corn and soybean feedstock production occur across ADAGE, GCAM, GLOBIOM, and 
GTAP results in response to changing commodity prices. The degree of crop yield 
intensification influences the amount of extensification needed to produce new feedstock 
for biofuels. ADAGE, GCAM, GLOBIOM, and GTAP can all model increased crop 
yields in response to crop prices. GLOBIOM and GTAP also explicitly consider multi-
cropping. 

8. Models included in the MCE produced a wider range of LCA GHG estimates for 
soybean oil biodiesel than corn ethanol. The models show much greater diversity in 
feedstock sourcing strategies for soybean oil biodiesel than they do for corn ethanol, and 
this wider range of options contributes to greater variability in the GHG results. There are 
several important reasons for this greater diversity of strategies which were discussed 
throughout this document. 

9. This exercise demonstrated that a wide range of results can be obtained by varying 
parameter values, highlighting the importance of sensitivity and uncertainty 
analysis. Stochastic uncertainty analysis can currently be performed with GCAM, 
GLOBIOM, and GREET, and Monte Carlo analysis can be performed with GCAM and 
GLOBIOM. Other types of sensitivity analysis, such as varying individual parameters, 
can be performed with ADAGE and GTAP as well. Sensitivity analysis, which considers 
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uncertainty within a given model, can help identify which parameters influence model 
results. However, pinpointing the direct causes of why one estimate differs from another 
would require additional research. 

Next Steps 

A primary goal of this modeling exercise is to help advance the science related to 
understanding how different modeling tools can be used to assess the GHG impacts of biofuels. 
We understand that there is significant interest amongst stakeholders in a separate but related 
topic: namely, how to determine which models, methods, and data are best suited for evaluating 
the GHG impact of biofuels. Some stakeholders have suggested that EPA should include criteria 
for such evaluative purposes as part of this MCE. 

This MCE intentionally does not directly address that subject, nor does it include 
proposed criteria. We have in this document instead focused on improving our understanding of 
the current state of science for biofuel GHG modeling, including, but not limited to, how the 
different models vary, how those variations affect results, and which parameters are critical to 
model results. We have not developed a set of criteria against which different models can be 
assessed, though we recognize that the development and use of such criteria could be critical in 
helping to inform future policy decisions. EPA notes that the criteria used to assess different 
models could vary greatly depending on the context in which lifecycle GHG modeling is being 
used. For example, the criteria could differ if the context was a holistic program-wide regulatory 
analysis as opposed to an assessment of individual fuel pathways. Criteria might also differ 
based on the extent to which fuel volumes from a given individual biofuel pathway appear likely 
to have impacts on the broader energy or agricultural sectors. To the extent EPA goes on to 
develop criteria against which we evaluate different models, this model comparison exercise 
provides critical information which will help EPA’s work. 

The preceding sections of this document note areas for further research, and we are 
interested in hearing stakeholder input on those suggestions. EPA is also interested in feedback 
and evaluation from outside researchers and organizations on this model comparison exercise. 
We plan to directly engage with stakeholders to collect input, consider our outstanding research 
needs in this area, and identify those lines of inquiry most critical to future decisions. 
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