United States         Office of Radiation      402-R-00-004
           Environmental Protection  And Indoor Air        March 2000
           Agency	ORIA	


&EPA   UPDATED User's Guide

           For

           CAP88-PC



           Version 2.0

-------
                                      EPA 402-R-00-004
  CAP88-PC Version 2.0 UPDATED USER'S
                          GUIDE
Sanjib Chaki, P.E.
Environmental Engineer
U. S. Environmental Protection Agency
Office of Radiation and Indoor Air
Ariel Rios Building
1200 Pennsylvania Avenue, NW
Washington, DC 20460
Barry Parks
Health Physicist
U.S. Department of Energy
Energy Research (ER-83)
Laboratory Operations and ES&H
19901 Germantown Road
Germantown, Maryland 20874-1290
                           March 2000

-------
                              TABLE OF CONTENTS
LIST OF FIGURES 	v

CHAPTER 1        INTRODUCTION	Ch. 1 Pg. 1
       1.1    Background 	Ch. 1 Pg. 1
       1.2    Purpose	Ch. 1 Pg. 1
       1.3    Model Summary	Ch. 1 Pg. 2
       1.4    Verification 	Ch. 1 Pg. 3
       1.5    Limitations	Ch. 1 Pg. 3

CHAPTER 2        GETTING STARTED	Ch. 2 Pg. 1
       2.1    Installation	Ch. 2 Pg. 1
       2.2    Entering Data	Ch. 2 Pg. 1
       2.3    Windows 95 Issue 	Ch. 2 Pg. 2
       2.4    Tool Bar	Ch. 2 Pg. 3
       2.5    Uninstall CAP88 PC  	Ch. 2 Pg. 3

CHAPTER 3        FILE MENU	Ch. 3 Pg. 1
       3.1    New Dataset	Ch. 3 Pg. 1
       3.2    Open Dataset 	Ch. 3 Pg. 1
       3.3    Close Dataset	Ch. 3 Pg. 1
       3.4    Save Dataset	Ch. 3 Pg. 1
       3.5    Save Dataset As	Ch. 3 Pg. 1
       3.6    Print Setup	Ch. 3 Pg. 1
       3.7    Print Preview	Ch. 3 Pg. 2
       3.8    Maintenance	Ch. 3 Pg. 2
       3.9    File Maintenance	Ch. 3 Pg. 2
       3.10   List Maintenance  	Ch. 3 Pg. 2
       3.11   Convert SCRFile	Ch. 3 Pg. 2
       3.12   Create INPUT.DAT File  	Ch. 3 Pg. 3
       3.13   Exit	Ch. 3 Pg. 3

CHAPTER 4        RUN MENU  	Ch. 4 Pg. 1
       4.1    Execute	Ch. 4 Pg. 1
       4.2    Scan Population File Format	Ch. 4 Pg. 1
       4.3    Population File Editor  	Ch. 4 Pg. 2
       4.4    Population File Library  	Ch. 4 Pg. 2
       4.5    Scan Wind File Format  	Ch. 4 Pg. 2
       4.6    Wind File Library	Ch. 4 Pg. 3
       4.7    Stability Array/Wind File Generator	Ch. 4 Pg. 3
CHAPTERS.
NEW DATASET INFORMATION
Ch. 5 Pg. 1
                                        -11-

-------
CHAPTER 6       SELECT DATASET INFORMATION	Ch. 6 Pg. 1

CHAPTER 7       PRINT/PREVIEW	Ch. 7 Pg. 1

CHAPTER 8       MAINTENANCE OPERATION	Ch. 8 Pg. 1
      8.1    File Maintenance Operations Form	Ch. 8 Pg. 1
      8.2    Select File	Ch. 8 Pg. 2
      8.3    Save File As Form	Ch. 8 Pg. 3
      8.4    Change List Information Form	Ch. 8 Pg. 3

CHAPTER 9       DATASET DATA	Ch. 9 Pg. 1
      9.1    Facility Data	Ch. 9 Pg. 1
      9.2    Run Option	Ch. 9 Pg. 2
      9.3    Meteorological Data	Ch. 9 Pg. 4
      9.4    Source Data 	Ch. 9 Pg. 5
      9.5    Agricultural Data	Ch. 9 Pg. 6
      9.6    Nuclide Data 	Ch. 9 Pg. 7

CHAPTER 10      DEFAULT FILE CHANGES  	Ch. 10 Pg. 1
      10.1   Purpose of DefaultFile  	Ch. 10 Pg. 1
            10.1.1       User Changeable Defaults	Ch. 10 Pg. 1
            10.1.2       Permanent Defaults 	Ch. 10 Pg. 1
      10.2   Changeable Default	Ch. 10 Pg. 1
            10.2.1       Variable Names and Descriptions 	Ch. 10 Pg. 1
            10.2.2       Changing Default Values	Ch. 10 Pg. 4
            10.2.3       Restoring DEFAULT.DAT Values	Ch. 10 Pg. 6
            10.2.4       Alternative DEFAULT.DAT Files	Ch. 10 Pg. 6
      10.3   Permanent Defaults  	Ch. 10 Pg. 7

CHAPTER 11      CONVERTING WEATHER DATA WITH
                  THE GETWIND UTILITY	Ch. 11 Pg. 1
      11.1   Purpose	Ch. 11 Pg. 1
      11.2   Program Input  	Ch. 11 Pg. 1
      11.3   Program Output	Ch. 11 Pg. 1
      11.4   Running GETWIND  	Ch. 11 Pg. 1
      11.5   Error Messages	Ch. 11 Pg. 3

CHAPTER 12      MATHEMATICAL MODELS  	Ch. 12 Pg. 1
      12.1   Environmental Transport	Ch. 12 Pg. 1
            12.1.1 Plume Rise  	Ch. 12 Pg. 1
            12.1.2 Plume Dispersion	Ch. 12 Pg. 3
            12.1.3 Dry Deposition	Ch. 12 Pg. 5
            12.1.4 Precipitation Scavenging	Ch. 12 Pg. 6
                                      -in-

-------
            12.1.5 Plume Depletion	 Ch. 12 Pg. 6
            12.1.6 Dispersion Coefficient	 Ch. 12 Pg. 9
            12.1.7 Area Sources  	Ch. 12 Pg. 10
            12.1.8 Carbon-14 and Tritium  	Ch. 12 Pg. 11
            12.1.9 Rn-222 Working Levels	Ch. 12 Pg. 11
            12.1.10 Ground Surface Concentration	Ch. 12 Pg. 12
      12.2  Dose and Risk Estimates	Ch. 12 Pg. 12
            12.2.1 Air Immersion 	Ch. 12 Pg. 13
            12.2.2 Surface Exposure	Ch. 12 Pg. 13
            12.2.3 Ingestion and Inhalation	Ch. 12 Pg. 13
            12.2.4 Maximally Exposed Individual 	Ch. 12 Pg. 14
            12.2.5 Collective Population	Ch. 12 Pg. 14

CHAPTER 13      SAMPLE ASSESSMENT	Ch. 13 Pg. 1
      13.1  CAP88-PC Version 2.0 Sample Input Screens 	Ch. 13 Pg. 1
      13.2  CAP88-PC Sample Output  	Ch. 13 Pg. 7
            13.2.1 Synopsis Report	Ch. 13 Pg. 8
            13.2.2 General Data  	Ch. 13 Pg. 13
            13.2.3 Weather Data	Ch. 13 Pg. 22
            13.2.4 Dose and Risk Conversion Factors 	Ch. 13 Pg. 25
            13.2.5 Dose and Risk Equivalent Summary	Ch. 13 Pg. 31
            13.2.6 Concentration Tables	Ch. 13 Pg. 42
            13.2.7 Chi/Q Tables   	Ch. 13 Pg. 61

CHAPTER PREFERENCES  	Ch. 14 Pg. 1

Appendix A  VALID RADIONUCLIDES  	  A-l

Appendix B  STAR FILE FORMAT  	B-l

Appendix C  STATE AGRICULTURAL PRODUCTIVITY	C-l

Appendix D  WEATHER DATA LIBRARY	  D-l

Appendix E  DIFFERENCES WITH EARLIER VERSION OF
            AIRDOS-EPA/DARTAB  	E-l

Appendix F  POPULATION FILE FORMAT 	F-l
                                       -IV-

-------
                                 LIST OF FIGURES

Figure 10-1   Default WARNING Message  	Ch. 10 Pg. 6
Figure 10-2   Reset Of Permanent Defaults Message 	  Ch. 10 Pg. 7
Figure 13-1   Facility Information   	Ch. 13 Pg. 1
Figure 13-2   Source Data  	Ch. 13 Pg. 2
Figure 13-3   Nuclide Data  	Ch. 13 Pg. 3
Figure 13-4   Meteorological Data	Ch. 13 Pg. 4
Figure 13-5   Agricultural Data	Ch. 13 Pg. 5
Figure 13-6   Run Option	Ch. 13 Pg. 6
                                         -v-

-------
                                     CHAPTER 1

                                  INTRODUCTION

1.1    Background

On October 31, 1989 the Environmental Protection Agency (EPA) issued final rules for
radionuclide emissions to air under 40 CFR 61, National Emission Standards for Hazardous Air
Pollutants (NESHAPS).  Emission monitoring and compliance procedures for Department of
Energy (DOE) facilities (40 CFR 61.93 (a) ) require the use of CAP-88 or AIRDOS-PC computer
models, or other approved procedures, to calculate effective dose equivalents to members of the
public.

The CAP-88 (which stands for Clean Air Act Assessment Package-1988) computer model is a
set of computer programs, databases and associated utility programs for estimation of dose and
risk from radionuclide emissions to air. CAP-88 is composed of modified versions of AIRDOS-
EPA (Mo79) and DARTAB (ORNL5692). The original CAP-88 model is written in
FORTRAN?? and has been compiled and run on an IBM 3090 under OS/VS2, using the IBM
FORTRAN compiler, at the EPA National Computer Center in Research Triangle Park, NC.
CAP88 is distributed by the Oak Ridge National Laboratory Radiation Shielding Information
Center (RSIC).

1.2    Purpose

The CAP88-PC software package allows users to perform full-featured dose and risk assessments
in a DOS environment for the purpose of demonstrating compliance with 40 CFR 61.93 (a).
CAP88-PC provides the CAP-88 methodology for assessments of both collective populations
and maximally-exposed individuals. The complete set of dose and risk factors used in CAP88 is
provided  . CAP88 -PC differs from the dose assessment software AIRDOS-PC in that it
estimates risk as well as dose, it offers a wider selection of radionuclide and meteorological data,
it provides the capability for collective population assessments, and it allows users greater
freedom to alter values of environmental transport variables. CAP88-PC version 1.0 was
approved for demonstrating compliance with 40 CFR 61.93 (a) in February 1992.

CAP88-PC version 2.0 provides a framework for developing inputs to perform full-featured dose
and risk assessments in a Windows environment for the purpose of demonstrating compliance
with 40 CFR 61.93 (a). Version 2.0 includes some minor changes compared to the DOS version.
The changes are: i) addition of decay chains for six radionuclides (Strontium, Zirconium,
Ruthenium-103, Ruthenium-106, Cerium, and Plutonium), ii) correction of a minor error in the
Uranium  decay chain, and iii) correction of a typographical error in the concentration reports.
CAP88-PC version 2.0 has been approved for demonstrating compliance with 40 CFR 61.93 (a)
in October 1999.
                                     Ch. 1 Pg. 1

-------
1.3    Model Summary

CAP-88 PC uses a modified Gaussian plume equation to estimate the average dispersion of
radionuclides released from up to six emitting sources. The sources may be either elevated
stacks, such as a smokestack, or uniform area sources, such as a pile of uranium mill tailings.
Plume rise can be calculated assuming either a momentum or buoyant-driven plume.
Assessments are done for a circular grid of distances and directions for a radius of up to 80
kilometers (50 miles) around the facility. The Gaussian plume model produces results that agree
with experimental data as well as any model, is fairly easy to work with, and is consistent with
the random nature of turbulence.

There are a few differences between CAP88-PC and earlier versions of AIRDOS, PREPAR and
DARTAB.  CAP88-PC is optimized for doing population assessments. Population arrays must
always be supplied to the program as a file, using the same format as the mainframe version of
CAP88.  Sample population files are supplied with CAP88-PC, which the user may modify to
reflect their own population distributions.  Population files for the mainframe version of CAP88
may be downloaded in ASCII  format and used with CAP88-PC.  CAP88-PC is programmed to
use the distances in the population array to determine the distances used  to calculate
concentrations, to eliminate human error. CAP88-PC only uses circular grids; square grids are
not an option.

Direct user input of dose concentrations is also not an option.  Population distances are used for
calculating concentrations for  the midpoint of each sector.  Population distances are specified in
the Population File or, for an Individual  Assessment,  on the Run Options tab form.

CAP88-PC has the capability to vary equilibrium fractions; previously they were set to a constant
of 0.7. The new method varies the equilibrium fractions depending on the distance from the
source. Linear interpolation is used to determine the equilibrium fractions for distances that do
not match the set distances given.

Agricultural arrays of milk cattle, beef cattle and agricultural crop area are generated
automatically, requiring the user to supply only the State name or agricultural productivity
values. The arrays are generated to match the distances used in the population arrays supplied to
the code, and use State-specific or user-supplied agricultural productivity values. The state name
(standard two letter abbreviation) must be provided on the Facility Data  tab form.  Users are
given the option to override the default agricultural productivity  values by entering the data
directly on the Agricultural Data tab form. If Alaska, Hawaii,  or Washington, D.C. are selected,
agricultural productivity values are set to zero and must be provided by the user.

CAP88-PC is also modified to do either "Radon-only" or "Non-Radon"  runs, to conform with
the format of the 1988 Clean Air ActNESHAPS Rulemaking. "Radon-only" assessments, which
only have Rn-222 in the source term, automatically include working level calculations; any other
source term ignores working levels. Synopsis reports customized to both formats are
                                       Ch. 1 Pg. 2

-------
automatically generated. Assessments for Radon-222 now automatically include Working Level
calculations when only a single source term of Rn-222 may be used in this option. Input of any
additional radionuclides, even Rn-220, will cause CAP88-PC to omit working level calculations.

Organs and weighting factors are modified to follow the ICRP 26/30 Effective Dose Equivalent
calculations, which eliminates flexibility on specifying organs and weighting factors. The
calculation of deposition velocity and the default scavenging coefficient is also modified to
incorporate current EPA policy.  Deposition velocity is set to 3.5e-2 m/sec for Iodine, 1.8e-3
m/sec for Particulate, and 0.0 m/sec for Gas. The default scavenging coefficient is calculated as
a function of annual precipitation, which is input on the Meteorological Data tab form.

Only 7 organs are valid for the Effective Dose Equivalent. Changing the organs and weights will
invalidate the results. They are Gonads 25 percent, Breast 15 percent, R MAR 12 percent, Lungs
12 percent, Thyroid 3 percent, ENDOST 3 percent, and Remainder 30 percent.

1.4    Verification

The CAP88-PC programs represent one of the best available verified codes for the purpose of
making comprehensive dose and risk assessments. The Gaussian plume model used in CAP88-
PC to estimate dispersion of radionuclides in air is one of the most commonly used models in
Government guidebooks. It produces results that agree with experimental data as well as any
model, is fairly easy to work with, and is consistent with the random nature of turbulence.

The Office of Radiation and Indoor Air has made  comparisons between the predictions of
annual-average ground-level concentration to actual environmental measurements, and found
very good agreement.  In the paper "Comparison of AIRDOS-EPA Prediction of Ground-Level
Airborne Radionuclide Concentrations to Measured Values" (Be86), environmental monitoring
data at five Department of Energy (DOE) sites were compared to AIRDOS-EPA predictions.
EPA concluded that as often as not, AIRDOS-EPA predictions are within a factor of 2 of actual
concentrations.

1.5    Limitations

Like all models, there are some limitations in the CAP88-PC system.

While up to six stack or area sources can be modeled,  all the sources are modeled as if located at
the same point; that is, stacks cannot be located in different areas of a facility. The same plume
rise mechanism (buoyant or momentum) is used for each source. Also, area sources are treated
as uniform. Variation in radionuclide concentrations due to complex terrain cannot be modeled.

Errors arising from these assumptions will have a negligible effect for assessments where the
distance to exposed individuals is large compared to the stack height, area or facility size.
                                       Ch. 1 Pg. 3

-------
Dose and risk estimates from CAP88-PC are applicable only to low-level chronic exposures,
since the health effects and dosimetric data are based on low-level chronic intakes.  CAP88-PC
cannot be used for either short-term or high-level radionuclide intakes.
                                       Ch. 1 Pg. 4

-------
                                    CHAPTER 2

                                GETTING STARTED

2.1    Installation

The CAP88-PC Windows version can be downloaded either from EPA web site:
http://www.epa.gov/radiation/assessment/cap88.html or from DOE web site:
http://www.er.gov/production/er-80/cap88.

The CAP88-PC Version 2.0 installation program creates a program directory, with a default
name of CAP88PC2, with several default subdirectories: DATA, DATASETS, OUTPUT,
POPFILES, and WNDFILES. The CAP88-PC Version 2.0 installation program also writes the
CAP88PCW.INI, NEWPOP.INI, NEWDOE.INI, NEWSTAR.INI, and NEWLTPOP.INI files to
the Windows directory. The installation program does assume that the program directory and the
Windows directory are on the same drive.

2.2    Entering Data

The following is a procedure for entering appropriate data in CAP88-PC. Select New Dataset

-------
that the input data include the location and filename of a valid Population File (Run Options tab
form, for Run Type = Population) and a valid Wind File (Meteorological Data tab form).  At
least one nuclide must be entered (Nuclide Data tab form). The number of source tabs on the
Nuclide Data tab form is controlled by the number of Sources entered on the Source Data tab
form, so it is appropriate to enter and describe the emitting sources prior to entering nuclide data.

Sample Data: A sample Dataset (Reactive Metals), a sample Population File (RMIASHTA.POP)
and a sample Wind File (ERIEPA.WND) have been provided.  Do not select TESTDATA.POP
as a Population File, as it is created with no population data and an error will occur when
executing the CAP88 Model. Other sample Population Files and Wind Files may be extracted
from compressed files using the Population File Library and the Wind File Library, respectively.
These and other utility programs for modifying or creating Population Files  and Wind Files can
be found in the Execute Menu.

Many of the menu options appear on the floating/dockable Toolbar. Rest your cursor on the
Toolbar icon to see the label for that icon.  Use the mouse to select and drag the Toolbar to
convenient locations.

Many data options appear as buttons or in drop down lists to facilitate and control data entry.
Make appropriate selections to best describe the parameters of the scenario to be modeled. Most
of the inputs will appear in appropriate Output Reports, to be evaluated in the context of the
calculated data.

2.3     Windows 95 Issue

There is a known problem with running CAP88-PC Version 2.0 in a Windows 95 environment
that requires user intervention.  When a DOS program is executed (via a DOS 'shell'), the user
must maximize and close the DOS shell window. This problem occurs:

1. ...when executing CAP88... In the Run Menu, select Execute, or select the CAP88-PC
Molecule icon on the toolbar.  Select the dataset which will be used to execute CAP88, then
select the OK button. Input data will be checked for  completeness, then the program shells out to
DOS three times. Each time the user must maximize and close the DOS shell when the status
box at the bottom on the user's screen shows "Done".

CAP88 involves executing three FORTRAN programs in DOS: DEFAULT.EXE,
AIRDOS.EXE, and DARTAB.EXE. The DOS shell  to each of the three programs must be
closed at the end of execution.

There is a DOS shell status bar at the bottom of the Windows 95 screen. The DOS shell status
bar will  display the name of the FORTRAN program and the run status. When the first
FORTRAN program is completed, the DOS shell window will show the name DEFAULT (the


                                      Ch. 2 Pg.  2

-------
FORTRAN program name) and the job status: Done.  Click on the [up arrow] to maximize the
window and click on the [x] in the upper right corner to close the DOS shell.  This action must be
repeated for the AIRDOS program and the DARTAB  program, as their execution completes.

2. ...when executing the Stability Array/Wind File Generator program... When the user selects
the Process button and provides the input and output filenames and selects the Run button, the
DOS program STARDOE.EXE is executed. The DOS shell status bar will display the program
name and the run status. When the job status shows Done, the user must maximize the window
and close the DOS shell. Also, when the user selects the Create Wind File for CAP88-PC
button, the DOS program WINDGET.EXE is executed. The user must again maximize the
Status window and close the DOS shell.

2.4     Toolbar

CAP88-PC Version 2.0 is installed with a Floating and Dockable Toolbar.  To Dock a Floating
Toolbar, click and drag the toolbar to the top, bottom, left, or right sides of the screen. To Float a
Docked Toolbar, click and drag the toolbar away from the edge of the screen. Most forms will
appear below the toolbar, and the toolbar may need to be moved away from the form, or in most
cases the form may be moved by clicking and dragging the top of the form. Some forms, notably
the Common Dialog form which assists the user in locating a file or selecting a drive and
directory, will appear on top of the toolbar. This form may be moved away from the toolbar, if
necessary. The File, Run, and Help Menus will also appear over the toolbar.  This should not be
a problem.

The Help Menu has two toolbar-setting features.  Toolbar On/Off will be checked on the left if
the toolbar is on.  The toolbar may be set off indefinitely and the program will not be affected.
Use Reset Toolbar if the video resolution is changed such that a toolbar is no longer in the
display screen even the Toolbar On/Off is checked (on).

2.5     Uninstall CAP88-PC Version 2.0

The Uninstall icon will uninstall only those files that were installed with CAP88-PC Version 2.0.
Any extracted or created Population and Wind Files, as well as any Datasets and Output Files,
will not be deleted. If the Uninstall icon has been  removed, run the UNWISE.EXE program
located in the CAP88-PC install directory.
                                      Ch. 2 Pg. 3

-------
                                      CHAPTER 3

                                      FILE MENU

3.1    New Dataset

Open a New Dataset by providing descriptive information in the New Dataset Information form
and selecting OK. A set of six tabbed forms appears to assist in the preparation of an input file
(dataset) containing the data needed to execute CAP88-PC.

3.2    Open Dataset

An existing dataset is selected and opened for review and modification. If the dataset name does
not appear in the dataset list (down arrow), use the Maintenance option to locate and Restore an
existing dataset.

3.3    Close Dataset

Close the open dataset without making any changes.  Data revisions for a current session are
made to a copy of the dataset. If Close Dataset is selected, the dataset will not have been
updated, possibly resulting in a loss of data. If a New Dataset was opened, it will have been
created and added to the dataset list, but will not have any data revisions saved.

3.4    Save Dataset

Save all data and any changes made to the opened dataset, using the filename of the opened
dataset. The data entry tab forms are then closed. The user must save or close a dataset before
the dataset may be used to execute the CAP88 Model (see Run/Execute).

3.5    Save Dataset As

Save all data and any changes made to the opened dataset, using the filename provided by the
user. This operation creates a new dataset and a new file. The filename must be unique, or the
file with the same name may be overwritten, with user approval.

3.6    Print Setup

This is a standard Windows  form for reviewing and setting printer options. The Floating Toolbar
can not be selected or moved when this form is open.
                                       Ch. 3 Pg. 1

-------
3.7    Print Preview

Select Print Preview to display and print CAP88-PC output reports. The output reports have the
same filename as the dataset, but with CAP88-standard file extensions. Use the tabs on the Print
Preview form to move from one report to another. Use the scroll bar to scroll down or up to
view each report.  When the Print Current View option is selected, the entire report shown in the
tab window is printed. To print several reports at once, check the report boxes and choose the
Print button.

3.8    Maintenance

There are two maintenance options, File Maintenance and List Maintenance. These options
assist the user in archiving, deleting, restoring, and renaming Datasets, Population Files, and
Wind Files, as well as maintain the lists that describe the Population Files and Wind Files.

3.9    File Maintenance

This menu item assists the user in archiving, deleting, restoring, and renaming Datasets,
Population Files, and Wind Files. File Maintenance will perform the indicated operation and
also  maintain the file selection lists used in the data entry portion of the program. If the
Windows File Manager is used to perform these operations, files selected from drop down lists
may  not be found.

3.10    Li st Maintenance

This menu item assists the user in maintaining Location Descriptions and Census Dates or
Reference Dates, for Population Files and Wind Files,  respectively. Select each file name and
enter or revise descriptive information, then select OK to update the lists.  If Cancel is selected,
the lists will not be updated.

3.11    Convert SCR File

Use this option to locate, read, and reformat a dataset file (.SCR) that was created using the
CAP88-PC Version 1 (DOS) program. CAP88-PC Version 2.0 stores and reads dataset files in
the format of the INPUT.DAT file that is read by the FORTRAN programs comprising the
CAPS8 Model.
                                       Ch. 3 Pg. 2

-------
3.12   Create INPUT.DAT File


Some users will find difficulty executing the CAP88 FORTRAN programs from Windows (shell
to DOS) due to the computer's memory constraints.  The user may select this option to copy the
selected dataset to a file named INPUT.DAT in the CAP88-PC working directory. (The working
directory can be viewed in Windows by selecting the File/Properties menu item when the
CAP88-PC 2.0 icon is highlighted.) The user can then exit Windows and, from DOS, change
directory (CD) to the working directory and run the following programs to generate desired
output (this order is mandatory for proper results):
DEFAULT,
AIRDOS,
DARTAB

After successful completion of these three programs, return to CAP88-PC Version 2.0 to view
(Print Preview) the output files.

3.13   Exit

Close all files and exit the CAP88-PC Version 2.0 program.  Any open Dataset must be saved or
closed to exit the  program properly.
                                     Ch. 3 Pg. 3

-------
                                      CHAPTER 4

                                      RUN MENU

4.1   Execute

Run the CAP88 Model. Before actually executing the assessment, the program will check to
make sure that you have selected the following items in the dataset: a State, a Population File (if
the run is a population assessment), a Wind File, and at least one Radionuclide. If the preceding
items are present, the program will execute the selected dataset by shelling out to DOS to run the
FORTRAN programs DEFAULT, AIRDOS, and DARTAB. If one or more of the required data
items are missing, a message will be displayed so you will know to modify the dataset
accordingly. If, for some reason, a Population File or Wind File has been selected but no longer
exists, a message will be displayed and the programs will not be executed. (Some users may not
have the computer memory required to execute these DOS programs from Windows.  See Create
INPUT.DAT File for instructions.)

4.2    Scan Population File Format

This menu item reads the indicated Population File and determines if the data is in proper format.
No guarantees are made to the correctness of the data, though the  distance increments are
checked to be consecutively increasing.

The Population File Editor can be used to create or modify a Population File and maintain the
proper file format. The Population file format should be as follows:

Row 1 should have a dollar sign ($) in the first column. The location description, latitude, and
longitude on row 1 are for information only to verify that the file desired is the file the user has
selected.  The number of distances associated with the population file must be in columns 68 and
69. The number of distances may be any integer betwen 2 and 20; single digit distances (2-9)
should be in column 69.

Distances begin in row 2 and all numbers are right justified.  The number of distances found in
the file will be the number specified by NRAD.  The distances are edgepoints of each sector (the
midpoints used in the calculations will be calculated by the program) and are entered in the
population file in kilometers. The CAP88 programs will multiply each distance by 1000 before
calculating the midpoints and using them in the assessment. For example, the first distance in
the sample file, .62 kilometers, will become 620 meters and the midpoint calculated from that
will be 310 meters. There can be up to 20 distances, but the typical number of distances is 13.
Only distances up to 80 kilometers should be used. The assessment is not valid for distances
above 80 kilometers.
                                      Ch. 4 Pg. 1

-------
The population values are entered with distances across (columns) and directions down (rows);
however, each row will not be a new direction.  There will be 20 distances for each direction
(regardless of the number of distances specified in the population file). The extra distances
(usually 7) will simply contain zero. There will always be 8 population values per row with the
first value ending at column 10 and each subsequent value ending at multiples of 10 with the last
value per row ending in column 80. This means that for the direction N, the population values
will be contained on the first, second and part of the third row of the distance-direction
population values.  The first population value for the next direction, NNW, will be contained in
columns 41 through 50 of the third row and subsequent values for direction NNW will be
contained on the remaining part of the third row, the fourth, and part of the fifth row. There are
16 directions in counterclockwise order starting with North.

4.3    Population File Editor

This utility program assists the user in creating or displaying a Population File.  An 'empty'
Population File, TESTDATA.POP is provided as a template for building a properly formatted
Population File.  Any Population File intended for use with a CAP88-PC dataset should be able
to be read, displayed, or printed by this program.

4.4    Population File Library


This utility program provides Population Files that were distributed with CAP88-PC Version 1.
The files in the library are stored in a compressed format.  Choose a location from the grid by
clicking (highlighting) the grid row and download the Population File by selecting the Extract
button.  The Extracted Population File is in the proper format to be used by CAP88-PC.

4.5    Scan Wind File Format

This menu item reads the indicated Wind File and determines if the data is in the proper format.
No guarantees are made as to the correctness of the data, though the sum of frequencies is
checked. Frequencies should sum to 1.0000, within a tolerance of 0.0005 for rounding. The
format of a Wind File is as follows:

Record 1 - three hexidecimal file marks are written by the GETWIND program. This record is
ignored.
Record 2 - average wind speed  (not used). [0000.00000]
Record 3 - wind direction frequency totals for each of the 16 wind directions. [0.0000]  The
numbers on this record should sum to 1.0000 within a tolerance of .0005 for rounding.
Records 4 through 10 - each record has 16 reciprocal-averaged wind speeds, for each of the 7
stability categories. [0.000]
                                       Ch. 4 Pg. 2

-------
Records 11 through 17 - each record has 16 true-averaged wind speeds, for each of the 7 stability
categories.  [0.000]
Records 18 through 33 - each record has frequencies for the 7 stability categories, for each of the
16 wind directions. [00000.0000] The numbers on these 16 records should sum to 1.0000 within
a tolerance of .0005 for rounding.

4.6    Wind File Library


This utility program provides Wind File data for many National Weather Service (NWS) stations
in a compressed format.  The Wind File Library also contains the meteorological data issued with
CAP88-PC Version 1. Choose a weather station from the grid by clicking (highlighting) the grid
row and download the station file by selecting the Extract button.  The Extracted Wind File is in
the proper format to be used by CAP88-PC.

4.7    Stability Array/Wind File Generator

The STAR Distribution Program assists the user in extracting and processing National Climactic
Data Center (NCDC) or site-specific meteorological data based on several popular methods.
Each of the processing methods creates a Stability Array file (.STR) that is then used to create a
Wind File for input to CAP88-PC. If the user is not an experienced meteorologist-modeler, it is
strongly suggested that the user work with a meteorologist-modeler to prepare NCDC or on-site
meteorological data for input to CAP88-PC.

There are 96 records in the Stability Array file, one for each of the 16 wind directions  (N, NNE,
NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, and NNW) and Stability
Category (A-F) Sixteen records are entered for Stability Category A, then Stability Category B,
etc., through Stability Category F.  Stability Classes used for CAP88-PC are: A - extremely
unstable, B - unstable, C - slightly unstable, D - neutral, E - slightly stable, and F - stable.

All records are of the same format.  The total of all the frequencies entered on the 96 records
should add to 1.00000 within a tolerance of .05 percent. The format of a Stability Array (STAR)
record follows:

Column 1 is blank.
Columns 2-4 contain the wind direction, right justified (E would be in column 4, and NE would
be in columns 3 and 4). Column 5 is blank.
Column 6 contains the Stability Category, A through F.
Column 7 is blank.
Columns 8-14 contains the frequency for winds 1-3 knots (for example 0.00041).
Columns 15-21 contains the frequency for winds 4-6 knots.
Columns 22-28 contains the frequnency for winds 7-10 knots.

                                       Ch. 4 Pg. 3

-------
Columns 29-35 contains the frequency for winds 11-16 knots.
Columns 36-42 contains the frequency for winds 17-21 knots.
Columns 43-49 contains the frequency for winds greater than 21 knots.

Once a Stability Array file has been created, use the button Create Wind File for CAP88-PC to
run the program which converts the STAR file to a Wind File for input to CAP88-PC. A
common dialog box will appear for the user to identify the STAR file to be converted. The
Create Wind File options runs the program WINDGET.EXE. WINDGET.EXE is identical to the
GETWIND.EXE program used by CAP88-PC Version 1, but is now compatible with the
filenames and pathnames provided by the call from a Windows program.

For the format of a Wind File, see Scan Wind File Format.
                                     Ch. 4 Pg. 4

-------
                                      CHAPTER 5

                            NEW DATASET INFORMATION

5.1    New Dataset Information Form

Use this form to locate, name, and describe the Dataset to be created. A New Dataset is created,
even if the user later Closes a file without saving changes.

Drive, Dataset
Select a drive that the new dataset will be copied to. The current drive is suggested.  Choosing a
network drive or a floppy drive that will not always be available to the program will create an
error if the drive is not found when the dataset is selected again for modification or execution.

Directory, Dataset
Select a directory that the New Dataset will be copied to. The datasets subdirectory in the
program directory is suggested. Change the directory chosen by double-clicking on the main
directory and selecting the desired subdirectory.

Name,  Dataset
Enter a Dataset Name, up to 20 characters; do not use apostrophes or double quotes.  This name
will appear in the drop down list on the Select Dataset screen, and in the label of the data entry
tabbed forms.  The Dataset Name should be descriptive enough to allow accurate selection of a
Dataset.

Filename, Dataset
Enter a Dataset Filename, up to 8 characters. This filename must not contain any spaces, piping
(vertical dashes), or asterisks, as these are not valid for DOS naming conventions. This filename
must be unique in the directory in which it will be created.

Comment, Dataset
(Optional) Enter Comments, up to 50 characters. Do not use an apostrophe or double quotes, all
other characters and spaces are allowed. The Comments should accurately describe the
assessment scenario.

Comment Additional, Dataset
(Optional) Enter Comments, up to 50 additional characters. Do not use an apostrophe or double
quotes, all other characters and spaces are allowed.  The Comments  should accurately describe
the assessment scenario.

Cancel Button
Select the Cancel button to exit the New Dataset form without creating a new Dataset.
                                       Ch. 5 Pg. 1

-------
OK Button
Select the OK button to create the New Dataset with the parameters defined. The New Dataset
Information form will be closed and the CAP88-PC data input tab forms will appear.
                                     Ch. 5 Pg. 2

-------
                                     CHAPTER 6

                          SELECT DATASET INFORMATION

6.1     Select Dataset Form

Use this form to select a dataset for the desired operation. Except for the Dataset Name List, all
other fields on this form are read-only and will be filled with appropriate data when a dataset is
selected.

Name List, Dataset
Click on the down arrow to display the list of datasets recognized by CAP88-PC. Select a
dataset name from the list by clicking once on the name. To add a dataset to the Dataset Name
list, either Open a New Dataset or use the File Maintenance function to Restore an existing
Dataset.

Cancel Button, Select Dataset
Close the Select Dataset form, without performing the desired operation.

OK Button, Select Dataset
Use the selected dataset for the desired operation.  The Select Dataset form will be closed and the
CAP88-PC data input tab forms will appear.
                                       Ch. 6 Pg. 1

-------
                                      CHAPTER 7

                                      PRINT/VIEW

7.1    Print/View

Use this form to view CAP88-PC Output Reports and select which reports, if any, will be
printed.

Tabs, Output Report
Click on these tabs to change the CAP88-PC Output Report being displayed. If a tab is missing,
that report was not created, or was deleted from the directory.  Return to the Run Option tab of
the data entry form to view report selection information.  If necessary, select a new report option
(Yes/No), save the data, and re-execute CAP88-PC.

Print Check Boxes, Output Report
Select the boxes next to the report names for reports to be printed (in their entirety). An X will
appear in the selected box. Click again to remove the X and un-select a report. The selected
reports will not be sent to a printer until the Print button is selected.

Print Current  View Button
Print the entire CAP88-PC Output Report shown in the view window. Partial reports cannot be
printed with this viewer. If partial reports are desired, another text editor may be used to view
and print relevant portion of the report.

Cancel Button, Print Preview
Close the Print Preview form.

Print Button
Any Output Reports for the dataset that have an X in the check box will be printed (in their
entirety).
                                       Ch. 7 Pg. 1

-------
                                      CHAPTER 8

                              MAINTENANCE OPERATION

8.1    File Maintenance Operations Form

The File Maintenance Operations described below will perform the operation described - as well
as - maintain the lists supported by CAP88-PC Version 2.0. Warning: Using the Windows File
Manager to perform these operations will result in the program lists not being maintained. Files
deleted using the Windows File Manager will not be found when selected from the Dataset list,
the Population File list, or the Wind File list.  Files renamed or copied using the Windows File
Manager will not appear in the Dataset list, Population File list, or the Wind File list until
Restored using this option.

Archive, Delete, Restore, Rename
Select the operation to be performed. Archive will copy the selected file(s) to a location
(diskette, directory, etc.) indicated by the user and remove the filename from any lists maintained
by the CAP88-PC Version 2.0 program.  Archive does not compress the files (all  CAP88-PC
files, excluding Output Reports, are rather small text files). Delete will  erase file(s) from the
location selected and removes the filename(s) from the Dataset list, Population File list, or Wind
File list, as appropriate.  Restore copies file(s) from another location and adds the filename(s) to
the Dataset list, Population File list, or Wind File list, as appropriate.  Restore checks each
filename to be restored for uniqueness, and will ask before overwriting a file with the same
name.  Rename changes the name of the  file indicated by the user and revises the Dataset list,
Population File list,  or Wind File list, as  appropriate. For example, the user may wish to rename
Wind Files extracted from the Wind File Library to change the filename from the Station ID to a
city or location name that is more easily recognizable.

Select Type of File for File Maintenance Operation
Selection of the Dataset file type will allow the user to select an existing dataset from the Dataset
Name list.  Selection of the Dataset file type will also perform the identical operation on any
Output Report files that exist for the Dataset.   Selection of the Population File type will  remove
from, add to or revise the Population File list when files are deleted, restored, or renamed.
Selection of the Wind File type will remove from, add to or revise the Wind File list when files
are deleted, restored, or renamed. Use the List Maintenance option to revise file descriptions  and
date information for the Population Files or Wind Files.

Cancel Button, Select Maintenance Operation
Closes the Select Maintenance Operation form.

OK Button, Select Maintenance Operation
If both a File Maintenance Operation and a File Type have been selected, the OK  button will
submit the request and the appropriate form will appear for selecting the particular file to be
altered. If either the File Maintenance Option or the File Type has not been  selected, an error
message will appear.

                                        Ch. 8 Pg. 1

-------
8.2    Select File

Select a file from the current directory or Locate a file in another directory.

Population File Directory
Choose this option if the Population File appears in the Population File list in the current
directory. The current directory is a subdirectory named Popfiles that is subordinate to the
directory that CAP88-PC Version 2.0 was installed to.

Custom Population File
Choose this option to locate a Population File in a directory other than the Popfiles subdirectory.
The user is provided a  form to select a drive, directory, and filename for the desired file.

Population File List
If the Population File resides in the Population File Directory, a Population File list will be
displayed and a Population File may be chosen from that list. If the Population File is not in the
default directory, then  select the Locate button to choose the drive and directory of the desired
file.

Wind File Directory
Choose this option if the Wind File appears in the Wind File list in the current directory. The
current directory is a subdirectory named Wndfiles that is subordinate to the directory that
CAP88-PC Version 2.0 was installed to.

Custom Wind File
Choose this option to locate a Wind File in a directory other than the Wndfiles subdirectory.  The
user is provided a form to select a drive, directory,  and filename for the desired file.

Wind File List
If the Wind File resides in the Wndfiles subdirectory, a Wind File list will be displayed  and a
Wind File may be chosen from that list.  If the Wind File is not in the current directory,  then
select the Locate button to choose the drive and directory of the desired file.

Cancel Button
Close the Select File form.

OK Button
If a filename appears on this form, the next archive form will appear.  If no file has been selected,
an error message will appear.
                                        Ch. 8 Pg. 2

-------
8.3           Save File As Form

Change the name of the file if desired. The name of the selected file appears at the top of the
form.

Dataset Filename
Filenames are limited to 8 alphanumeric characters and exclude blanks, asterisks, and pipe
(vertical dishes) characters.

Population Filename
Filenames are limited to 8 alphanumeric characters and exclude blanks, asterisks, and pipe
(vertical dashes)  characters.

Wind Filename
Filenames are limited to 8 alphanumeric characters and exclude blanks, asterisks, and pipe
(vertical dashes)  characters.

Cancel Button
Close the Save File As form.

OK Button
Perform the desired operation.

8.4    Change List Information Form

Use this form to enter list information for both the Population File list and the Wind File list.
NO CHANGES ARE MADE UNTIL THE OK BUTTON IS SELECTED, at which time both
the Population File list and the Wind File list are updated. If changes are made and the Cancel
button is selected, THE LISTS WILL NOT BE UPDATED.

Population File Directory
Choose this option to change the list of Population File information (description and census date)
for files in the  Popfiles subdirectory.

Population File List
Select the down arrow to display and select the Population File description and census date to be
displayed and altered.

Population File Description
Enter a location description, limited to 36 characters, that will identify the Population File.
                                       Ch. 8 Pg. 3

-------
Population File Census Date
Enter the year that the population assessment was performed.

Wind File Directory
Choose this option to change the list of Wind File information (description and reference dates)
for files in the Wndfiles subdirectory.

Wind File List
Select the down arrow to display and select the Wind File description and reference dates to be
displayed and altered.

Wind File Description
Enter a weather station description, limited to 36 characters, that will identify the Wind File.

Wind File Period of Record
Enter the year(s) that meteorological data was collected for frequency distribution analysis.

Cancel Button
Close the Change List Information form, WITHOUT updating either the Population or Wind File
lists.

OK Button
Close the Change List Information form, after updating both the Population File list and the
Wind File list.
                                        Ch. 8 Pg. 4

-------
                                      CHAPTER 9

                                   DATASET DATA

9.1    Facility Data


The Facility Data tab form is used to describe the facility and time period to be modeled.  On the
Facility Data tab form, a State must be selected from the list provided. The State selected will
determine the agricultural values used on the Agricultural Data Tab Form.  After all known
Facility Information is entered, use the Page Down key to advance to the next tab form.

Facility Name (Optional)
The Facility Name is used for identification purposes only.  The Facility Name appears on each
Output Report.

Address Line 1 (Optional)
The Facility Address (line 1) appears on each Output Report

Address Line 2(Optional)
The Facility Address (line 2) appears on each Output Report

City (Optional)
The City that the Facility is located in or near appears on each Output Report.

State Name (Required)
The State name is required because  it is used by the program to establish values for agricultural
arrays of beef cattle, milk cattle, and crop production according to EPA-accepted state-wide
averages.  A state name must have been selected for an assessment to be executed. State  names
are chosen from a list box, which appears when you click on the down arrow when the state field
is selected. To use the list box search feature, press any letter key and the list box automatically
goes to the first state beginning with that letter.  Selection of Hawaii, Alaska, or the District of
Columbia will result in zeros being loaded on the Agricultural Data tab form.

Zip Code (Optional)
Enter the Zip Code and Zip Plus 4 Code, if known.

Emission Year (Optional)
Choose the year in which the radionuclide emissions occurred from the drop down list. If a year
is desired that is not in the drop down list, use a database file editor to add the year to the  file
YEAR.DBF.
                                       Ch. 9 Pg. 1

-------
Source Category (Optional)
The Source Category is for information only.  No particular category is enforced at this time.

Comments Line 1 (Optional)
Comments (line 1) are restricted to 50 characters and appear on the first page of each Output
Report.  Comments also appear on the Select Dataset form for additional identification of the
dataset.

Comments Line 2 (Optional)
Comments (line 2) are restricted to 50 characters and appear on the first page of each Output
Report.  Comments also appear on the Select Dataset form for additional identification of the
dataset.

9.2   Run Options

The Run Options tab form is used to describe the population to be assessed and select optional
output tables and reports.  CAP88-PC Version 2.0 uses population arrays in the same format as
the mainframe CAP88 program. A sample population assessment is provided with CAP88-PC
Version 2.0. Other population assessments may be downloaded from the Population File
Library.  Users are encouraged to create their own population arrays using the Population File
Editor supplied with the CAP88-PC Version 2.0 program.  Census data or population  survey data
should be obtained for the facility and area to  be modeled.

Assessment Run Type
The Assessment Run Type must be selected to determine the source of the population data. If an
Individual Assessment is chosen, the midpoint distances for the assessment areas must be
entered.  If a Population Assessment is chosen, the data will be read in from a Population File.
The Population File may be selected from the drop down list.

Population File Directory
A Population File is required for a Population Assessment Run Type.  The Population File Editor
in the Run Menu can be used to generate  a Population File in the proper format.  Also, a sample
population assessment may be downloaded from the Population File Library.  The distances
entered in the Population File are endpoint distances and are converted to midpoint distances by
CAP88-PC.  Population Files can be located and maintained in the Popfiles subdirectory, or can
be selected from another directory by choosing the Custom Population File option.

Custom Population File
If the Population File resides anywhere except in the Popfiles subdirectory, choose this option
and select the Locate button to locate and select the Population File for the assessment. To get a
Custom Population File into the Population File Directory, use the File Maintenance option to
Restore a Population File, then use the List Maintenance option to record the population
                                       Ch. 9 Pg. 2

-------
description or location and census date (year of population estimation, adjustment or
assessment).

Population File Location
Enter the drive, directory, and filename of the desired Population File or select the Locate button
to browse the drives and directories to locate the Population File to be used for the assessment.

Generate Genetic Effects?
If No is selected, genetic effects tables will be suppressed in the Synopsis (.SYN) Output Report.

Create Dose and Risk Factor File?
Select Yes to generate a Dose and Risk Factor Output Report file (.FAC) when this assessment is
used to execute CAP88-PC.  Dose and Risk are estimated by combining the inhalation and
ingestion intake rates, air and ground surface concentrations with the dose and risk conversion
factors used in CAP88-PC.  The effective dose equivalent is calculated using the weighting
factors in ICRP Publication 26.  Risks are based on lifetime risk from lifetime exposure, with a
nominal value of 4E-4 cancers/rem. Doses and risks can be tabulated as a function of
radionuclide, pathway, location and organ. CAP88-PC also tabulates the frequency distribution
of risk, showing the number of people at various levels of risk.  The risk levels are divided into
orders of magnitude, from one in ten to one in a million.   Dose and Risk estimates from CAP88-
PC are applicable only to low-level chronic exposures, since the health effects and dosimetric
data are based on low-level  chronic intakes.  CAP88-PC cannot be used for either short-term or
high-level radionuclide intakes.

Create Concentration Table File?
Select Yes to generate a Concentration Table Output Report file (.CON) when this assessment is
used to execute CAP88-PC.  The Concentration Table may be quite large if many radionuclides
are selected. Radionuclide concentrations in air, rates of deposition on ground surfaces,
concentrations in food and intake rates to people from ingestion of food produced in the
assessment area are calculated by the model. Estimates of the radionuclide concentrations in
food, leafy vegetables, milk and meat consumed by humans are made by coupling the output of
the atmospheric transport models with the US Nuclear Regulatory Commission Regulatory
Guide 1.109 terrestrial food chain models.

Create Chi/Q Table File?
Select Yes to generate a Chi/Q analysis (.CHI) of the scenario provided for execution of CAP88-
PC.  Chi/Q values are used to convert radionuclide release values to concentrations.

Midpoint Distances
Midpoint distances are required  for an Individual Assessment.  These distances are the distances
at which the doses and risks are  calculated, in meters.  The distances must be integers between 1
and 80000 meters (inclusive). A message will be displayed if you enter a distance outside this

                                       Ch. 9 Pg. 3

-------
range. At least one distance must be entered for the dataset to execute. If no distances are
entered, the AIRDOS program will abort. The distances entered in the cells must be contiguous
and ascending, that is, no cells can be skipped and the midpoint distances must increase from left
to right in each row.  Cells (at the end) may be left blank after the midpoint distances have been
entered.

Population File List
Select the down arrow to see the descriptive information and Population File names in the
Popfiles subdirectory.

Locate Button
Select this button to get a form to browse the drives and directories for a particular Population
File.


9.3    Meteorological  Data

The Meteorological Data Tab Form is used to supply site meteorological data for the dispersion
modeling.

Wind File Directory
A Wind File is required for CAP88 execution. The Wind File Library in the Run Menu can be
used to obtain a Wind File in the proper format.  These Wind Files were created from the
National Weather Service data which is available for many weather station sites. If the user has
on-site meteorological data, select the Stability Array Distribution program in the Run Menu to
process and convert on-site data to a properly formatted Wind File. Wind Files can be located
and maintained in the Wndfiles subdirectory, or  can be located by choosing the Custom Wind
File option.

Custom Wind File
If the Wind File resides anywhere except in the Wndfiles subdirectory, choose this option and
select the Locate button to locate and select the Wind File for the assessment. To get a Custom
Wind File into the Wind File Directory, use the File Maintenance option to Restore a Wind File,
then use the List Maintenance option to record the location and dates for which the
meteorological data was collected.

Wind File Location
Enter the drive, directory, and filename of the desired Wind File or select the Locate button to
browse the drives and directory to locate the Wind File to be used for the assessment.

Annual Precipitation
The average annual precipitation (in centimeters) at or near the site.
                                        Ch. 9 Pg. 4

-------
Annual Ambient Temperature
Average annual ambient temperature (in degrees Celsius) at or near the site. Temperatures above
200 degrees are assumed to be in degrees Kelvin and will be converted and shown as degrees
Celsius when the dataset is re-opened.

Height of Lid
The height of the tropospheric mixing layer (in meters) at or near the site.  This field must
contain a positive non-zero value. A zero value will cause the AIRDOS program to abort when
the dataset is executed.

Locate Button
Select this button to get a form to browse the drives and directories for a particular Wind File.

Wind File List
Select the down arrow to see the descriptive information and Wind File names in the Wndfiles
subdirectory.

9.4    Source Data

The Source Data Tab Form is used to identify the type of emitting source and the dimensions of
each emitting source being assessed. Stack and Area Sources cannot be mixed in a single
assessment. While up to six stack or area sources can be modeled, all the sources are modeled as
if located at the same point. The same plume rise mechanism (Buoyant, Momentum, Fixed, or
Zero) is used for each source.  Also, area sources are treated as uniform. Variation in
radionuclide concentrations due to complex terrain cannot be modeled. Errors arising from these
assumptions will have a negligible effect for assessments where the distance to exposed
individuals is large compared to  the stack height, area, or facility size.

Source Type
The emitting sources must be identified as stacks (point) or area sources. While up to six stack
or area sources can be modeled,  all the sources are modeled as if located at the same point. The
same plume rise mechanism (Buoyant, Momentum, Fixed, or Zero) is used for each source.
Also, area sources are treated as  uniform.

Number of Sources
Up to six (6) emitting sources (stacks or areas) may be modeled.  The fields for Height,
Diameter/Area, and Plume Rise Type (if Momentum or Buoyant) change as the number of
emitting sources change, so select the number of sources before entering any associated data.

Area Dimensions
Height (in meters) and Area (in square meters) of the Area Source.
                                       Ch. 9 Pg. 5

-------
Plume Rise Type
Select the Plume Rise Type for the dispersion modeling. The choices are Buoyant, Momentum,
Fixed, and Zero. The same plume rise mechanism is used for each source.

Plume Rise for Pasquill Categories
Plume Rise for each Pasquill Category for a Fixed Plume Rise Type. Enter the actual plume rise
(in meters) for each of the seven Pasquill Categories (A through G) if a Fixed Plume Rise Type is
selected. If  a Zero Plume Rise Type is selected, zero is entered for each of the seven Pasquill
Categories (A through G), and no further action is required.

Heat Release Rate or Exit Velocity
Enter the heat release rate (in calories per second) for a Buoyant Plume Rise Type or enter the
exit velocity (in meters per second) for a Momentum Plume Rise Type.

Stack Dimensions
Height (in meters) and Diameter (in meters) of each Stack or Point Source.

9.5    Agricultural Data

The Agricultural Data Tab Form is used to enter agricultural factors which will be applied to the
dispersion data to estimate uptake of emitted  radionuclides into the food chain.

EPA Food Source Scenarios
Selection of each EPA Food Source Scenario (Urban, Rural, Local, Regional, and Imported) will
result in different fractions appearing in the 9 cells which describe the fraction of Vegetable,
Milk, and Meat produced in the area, or imported to the area.  The fractions are not editable
unless the Entered scenario is selected, in which case fractions must be entered by the user.  The
Entered fractions must total to 1.0 for each column or the user will be asked to re-enter the
fractions or make another scenario selection.

EPA Food Source Scenarios - Fractions
Selection of each EPA Food Source Scenario will result in different fractions appearing in the 9
cells which describe the fraction of Vegetable, Milk, and Meat produced in the area or imported
to the area. These fractions are not editable unless the Entered scenario is selected, in which case
fractions must be entered by the user. The Entered fractions must total to 1.0 for each column,
otherwise, the user will be asked to re-enter the fractions or make another scenario selection.

Beef Cattle Density
Sample distributions  of beef cattle density are provided by EPA for the assessment area using
average agricultural productivity data for each of the fifty states.  Since data was not available for
Alaska, Hawaii, and the District of Columbia, the user must supply relevant agricultural data for
these areas.  Using zero in this field will result in an error when the program is executed.
                                       Ch. 9 Pg. 6

-------
Milk Cattle Density
Sample distributions of milk cattle density are provided by EPA for the assessment area using
average agricultural productivity data for each of the fifty states. Since data was not available for
Alaska, Hawaii, and the District of Columbia, the user must supply relevant agricultural data for
these areas.  Using zero in this field will result in an error when the program is executed.

Land Fraction Cultivated for Vegetable Crops
Sample distributions of crop productivity are provided by EPA for the assessment area using
average agricultural productivity data for each of the fifty states. Since data was not available for
Alaska, Hawaii, and the District of Columbia, the user must supply relevant agricultural data for
these areas.  Using zero in this field will result in an error when the program is executed.

9.6    Nuclide Data

The Nuclide Data Tab Form is used to select and describe characteristics of the radionuclides
emitted by each source. Two complex chains of nuclides may be selected:  U-238, Uranium;  and
Th-232, Thorium.  CAP88 accounts for the buildup of decay products in each of the complex
chains.  There are also ten simple chains which each have one decay element:  Cs-137, Cesium ;
Ba-140, Barium; Mo-99, Molybdenum; Pb-210, Lead; Pu-241, Plutonium; Sr-90,  Strontium; Zr-
95, Zirconium; Ru-103, Ruthenium 103; Ru-106, Ruthenium 106; and Ce-144, Cerium. When
one or more of these radionuclide chains are selected, a dialogue box will appear with the
information that the nuclide is the beginning of a chain, and asking if the chain should be added.
If Yes is selected, the entire chain will be added to the list.  If No is selected, only the individual
nuclide will be added to the list.

Nuclide List
At least one nuclide should be selected, otherwise the dataset will not be saved or  executed (the
dataset may, however, be closed).  Select a Nuclide from the drop down list by clicking on the
down arrow in the Nuclide field and entering the first letter of the Nuclide name.  The list will
jump to nuclides starting with the letter selected. Click on the nuclide name to be  added.
Nuclide names appear for each emitting source, but a release rate of zero will show that the
nuclide is not emitted from a particular source. If the nuclide selected is a member of a chain, a
message will appear to request if the nuclide will be treated as an individual or whether the chain
members should be entered. The program counts the nuclides entered and will impose a limit of
36 nuclides to remain compatible with CAP88.  After each nuclide is selected, the nuclide's size
and class information appears in the data grid. The nuclide size  and class data applies to the
nuclide emitted from every source. Use the drop down lists to choose other valid size and class
selections (if applicable) for each nuclide.

Nuclide Release Rate
There will be Source Tabs (from 1 to 6) above the data entry grid for entry of the Release Rate
for each nuclide from each source. If a source does not emit a nuclide in the list, the Release
Rate will be zero for that  source. The release rates can be entered in decimal or exponential
notation.
                                       Ch. 9 Pg. 7

-------
Particle Size
The default particle size will appear for the selected nuclide. Select the down arrow to change
the particle size, if necessary.  Select one of the allowed Activity Medium Aerodynamic
Diameter Micrometers (AMAD) for particulates.  Particle size (AMAD) in micrometers for
inhaled particles is 0.0, 0.3, 1.0, or 3.0. Some nuclides are restricted in their particle size
allowances, and gases get a particle size assignment of 0.

Nuclide Class
Select one  of the allowed lung clearance classes for inhaled particles. If a Class field contains
'None', then class is not applicable to that particular radionuclide. After each nuclide has been
selected, the default clearance class appears.  Some nuclides are restricted in their clearance class
allowances. Use the drop down list as a guide to the valid classes for each nuclide.
                                        Ch. 9 Pg. 8

-------
                                    CHAPTER 10

                             DEFAULT FILE CHANGES

10.1  Purpose of Default Value

The DEFAULT.DAT file contains various types of default data for CAP88-PC. The file is
divided into two segments. The first segment contains default values that can, with great caution,
be changed by the user. The second segment contains permanent defaults which are values that
must never be changed by the user since any changes would corrupt the assessments.

10.1.1 User Changeable Defaults

The defaults contained in the DEFAULT.DAT file for meteorological data, inhalation and
ingestion rates, water use and agricultural productivity are the values approved by EPA to
demonstrate compliance as required by 40 CFR 61.93(a).

      CAUTION:  Any modification to the DEFAULT.DAT file must be approved
      by  EPA if the modified parameters are used to demonstrate compliance per
      40  CFR 61.93(a).

There may be users who,  in rare instances, might need to change one or more of these values for
a specific purpose. The user,  however, should be fully aware that these values must only be
changed when and if the user fully understands the full impact that the change(s) will have upon
the assessments run with the  user specified values.

      CAUTION:  If any of these values are changed without full knowledge of the
      impact of the change(s), the resulting assessments could be invalid for the
      intended  purpose.

10.1.2 Permanent Defaults

The default values found  in the second segment of the file contains defaults that must not be
changed by the user.  These values are contained in the DEFAULT.DAT file so that if directed by
EPA, applicable defaults can be easily changed within this file and promptly disseminated to all
users. This will preclude the necessity of modifying program code and disseminating new
executable programs.

10.2  Changeable Defaults

10.2.1 Variable Names and Descriptions

The following is a list of variable names whose values can be changed by the user. Also included
are their units of measure, default values and a brief description. The variable names here will

                                     Ch. lOPg. 1

-------
match the names you will see in the DEFAULT.DAT file. They are grouped in categories such as
meteorological, agricultural, etc.
VARIABLE  UNITS
             DEFAULT
                   DESCRIPTION
                                Meteorological Defaults
TG
°K/m
BRTHRT
DD1
UF
UL
UM
UV
cm3/hr

kg/yr
kg/yr
liter/yr
kg/yr
DILFAC     cm
USEFAC
.0728
.1090
.1455
Vertical temperature gradient for
Pasquill categories E, F,
and G (three element array)
                                     Default Rates
                          9.167E+5

                          0.5


                          85.0

                          18.0

                          112.0

                          176.0
             1.0
             0.0
                                 Inhalation rate of man

                                 Fraction of radioactivity retained on leafy
                                 vegetables and produce after washing

                                 Ingestion rate of meat by man

                                 Ingestion rate of leafy vegetables by man

                                 Ingestion rate of milk by man

                                 Ingestion rate of produce by man
                                    Water Defaults
                   Depth of water for dilution for water
                   immersion doses

                   Fraction of time spent swimming
                                     Ch. lOPg. 2

-------
                                  Agricultural Defaults
FSUBG
              1.0
                    Fraction of produce ingested grown in
                    garden of interest
FSUBL
              1.0
                    Fraction of leafy vegetables grown in garden
                    of interest
FSUBP
FSUBS
LAMW hr4
MSUBB kg
P kg/m2
QSUBF kg/day
Rl
R2
TAUBEF
TSUBE1 hr
0.4
0.43
2.9E-3
200.0
215.0
15.6
0.57
0.2
3.81E-3
720.0
TSUBE2
TSUBF
hr
day
1440.0
2.0
Fraction of year animals graze on pasture

Fraction of daily feed that is pasture grass
when animal grazes on pasture

Removal rate constant for physical loss by
weathering

Muscle mass of animal at slaughter

Effective surface density of soil, dry weight
(assumes 15 cm plow layer)

Consumption rate of contaminated feed or
forage by an animal (dry weight)

Fallout interception fraction-pasture

Fallout interception fraction-vegetables

Fraction of animal herd slaughtered per day

Period of exposure  during growing season--
pasture grass

Period of exposure  during growing season--
crops or leafy vegetables

Transport time: animal feed-milk-man
TSUBH1
hr
0.0
Time delay—ingestion of pasture grass by
animals
TSUBH2
hr
2160.0
Time delay—ingestion of stored feed by
animals
                                      Ch. lOPg. 3

-------
TSUBH3


TSUBH4

TSUBS


VSUBM

YSUBV1


YSUBV2



TSUBB
ILOC
JLOC
PLOC
hr


hr

day


liter/day

kg/m2


kg/m2



yr
336.0


336.0

20.0


11.0

0.28


0.716



100.0
Time delay—ingestion of leafy vegetables by
man

Time delay—ingesti on of produce by man

Average time from slaughter of meat animal
to consumption

Milk production of cow

Agricultural productivity by unit area (grass-
cow-milk-man pathway)

Agricultural productivity by unit area
(produce or leafy vegetables ingested by
man)

Period of long-term buildup for activity in
soil
                              Miscellaneous Input Values
             100.0
GSCFAC
             0.5
                    Direction index of the single location used
                    for individual calculations

                    Distance index of the single location used
                    for individual calculations

                    The percentile of the total risk to use in
                    choosing the location for the exposure array
                    used for the individual tables. When ILOC
                    and JLOC are both 0, PLOC is used.

                    A scaling factor used to correct ground
                    surface dose factors for surface roughness
10.2.2  Changing Default Values

The DEFAULT.DAT file is located in the CAP88PC directory of the drive you have chosen to
load the system on. Go to this directory. Before you change anything in this file, you may want to
make a copy of the original DEFAULT.DAT file giving it a different extension or save it on a
floppy disk so that it can be easily retrieved.
                                     Ch. lOPg. 4

-------
Access DEFAULT.DAT (an ASCII file) using a word processor or a text editor. Find the variable
name whose value you want to change and simply replace the default value with the value you
want to use. The following are some conditions the user needs to be aware of.

       •     Additional digits can be included, exponential notation can be used
             in place of decimal numbers and decimal numbers can replace
             exponential notation. Integer values should remain integers.

       •     Do not delete any variables. The program will not abort but either zero or some
             unpredictable value will be used which will invalidate the assessment results.

       •     Do not move the variables around. They must remain in the
             original order and category. Each category begins with an
             Ampersand (&) followed by four or more descriptive characters.
             Each category ends with an &END. The &END must follow the
             last variable in the category or be on a line by itself immediately
             following the last variable.

       •     The beginning of a category must be at the beginning of a line and
             there must be one or more spaces separating it from the  first
             variable in the category.

       •     Do not change the order or delete any of the categories. If the order
             is changed or any category is eliminated the CAP88-PC system
             will abort and/or produce totally invalid assessment results.

       •     Additional lines can be added and variables moved from one line
             to another as long as the order of the variables does not change.

       •     There are no required number of spaces between variables but the
             variables must be separated by commas. A comma is not required
             between the last variable in a category and &END.

       •     Be sure not to eliminate the equal (=) sign between the variable and
             the value or values in the  case of an array. The variable TG is a
             three element array; therefore, TG is followed by a single = sign
             which is then followed by three values separated by commas.
             TG(1) will contain .0728, TG(2) and TG(3) will contain the next
             two values respectively. If any or all of these values should ever be
             changed, be sure the values are entered in the correct order.

       •     Change only the variables listed in 10.2.1 (Variable Names and
             Descriptions). Do not alter in any way the variables and values in
             the categories that follow the &INPUT category.
                                      Ch. lOPg. 5

-------
Save the user altered file into DEFAULT.DAT after making sure that you have saved the original
DEFAULT.DAT so that it will not be destroyed by your altered file. The new file is then ready to
be used with the CAP88-PC System.

10.2.3  Restoring DEFAULT.DAT Values

When an assessment is executed The DEFAULT.DAT file is checked for changes. If changes
have been made to defaults listed in Section 10.2.1, the changes will be printed to the screen
(Figure 10-1) including the description, the original default value and the user specified value.
After all changes have been printed to the screen, the user is given the opportunity to reset all
defaults back to their original values with a response of Y or N.  It is not possible to reset
individual values at this point. Individual changes can only be made directly accessing the
DEFAULT.DAT file using a text editor or word processor as described in Section 10.2.2.
                                  WARNING!

              The Following Default Values Have Been Changed,
              DO NOT USE these changes unless you fully understand
              the EFFECTS of these Changes:

             These changes CANNOT BE USED to demonstrate compliance
             per 40 CFR 61.93 unless specifically approved by EPA.

                      Inhalation Rate of Man
                      Changed From:   9.1670E+05
                                 To:  8.5300E+05
                Resetting of individual defaults cannot be done here.
                CHANGE ALL DEFAULTS Back to their Original Values?
                                        Y/N:
                        Figure 10-1. Default WARNING Message

If the user elects to have all defaults reset, all defaults will be overwritten with the original defaults.
The overwritten DEFAULT.DAT file will look a little different from the original file; however, the
only actual difference will be the spacing of the variables. The variable names and values will be
closer together using less lines.

10.2.4  Alternative DEFAULT.DAT Files

The user may want to create alternative default files with user specified values. Before initiating
the CAP88-PC system the user would copy the default file they need for a given run into
DEFAULT.DAT.
                                      Ch. lOPg. 6

-------
       WARNING: CAP88-PC must have a DEFAULT.DAT file available in order for it
       to run.

It is not possible to alter any of the specified default values once CAP88-PC has been initiated
except to reset all defaults to their original values. Therefore, when a user needs alternative
default values it is the user's responsibility to assure that the appropriate alternative
DEFAULT.DAT file is available when CAP88-PC is initiated.

When a DEFAULT.DAT file containing user altered default values is used, there will be a
CAUTION message on the beginning page of the SYNOPSIS Report stating that defaults have
been changed.  The specific changes will be listed on the following page including the default
description, the original default value, and the user specified value. This will alert the originators
and anyone using the outputs that defaults have been changed and what changes have been made.

10.3   PERMANENT DEFAULTS

The DEFAULT.DAT file contains defaults that must not be changed by the user. All defaults
beginning with &ORGAN through the end of the file must contain the original default values
which  can only be changed at the direction of EPA.
                    Permanent Defaults that MUST NOT BE ALTERED by the user
                    have been changed. They will be RESET to prevent CAP88-PC
                    from producing invalid results.
                     Figure 10-2. Reset of Permanent Defaults Message

If any of the permanent defaults are changed, except at the direction of EPA, the CAP88-PC system
will detect those changes and reset them to their original values. If this should happen a message will
be printed to the screen informing the user that these permanent defaults have been reset (Figure 10-
2). If the user has changed default values defined as changeable by the user, the system will not reset
those user changeable values except at the direction of the user.
                                      Ch. lOPg. 7

-------
                                    CHAPTER 11

           CONVERTING WEATHER DATA WITH THE GETWIND UTILITY

11.1  Purpose

GETWIND is a utility program that allows users to customize CAP88-PC by supplying their own
meteorological data, in stability array (STAR) format, to the selection of weather data files. A
listing of weather data provided with CAP88-PC is provided in Appendix D. Users are
encouraged to use site-specific weather data.

See Appendix B for an example of the STAR (Stability Array) format.  The file SAMPLE. STR,
which is included with CAP88-PC, also contains a copy of this STAR format file.  This file can
be used as a guide for creating meteorological files in STAR format.

11.2  Program Input

The user must supply the program with the name of the file that contains the STAR formatted
meteorological data and the name of the file that will contain the converted STAR data (the
CAP88-PC wind data file).

It is assumed that all the data files used by this program reside in the same directory as
GETWIND. For this reason space is provided for only 12 characters name with a three character
extension. Create or copy your file containing the STAR formatted meteorological data to your
directory which contains GETWIND and run the program.

All valid DOS file names are accepted by the program, subject to the length restriction.
However, file names must end with the extension ".WND", and be copied to the
CAP88PC\WNDFILES subdirectory on your hard disk, in order to be recognized by CAP88-PC.

11.3  Program Output

Converted STAR wind data is written to the file specified by the user. It is a valid CAP88-PC
wind file and can be chosen as a wind data file from the list box which is available in the
Meteorological Data screen, provided a copy of the file is made to the CAP88PC\WNDFILES
subdirectory on your hard disk.

11.4  Running GETWIND

Use DOS to get into the directory where the GETWIND.EXE program resides. Make  sure that a
copy of the file to be converted for use by CAP88-PC resides in this same directory.
                                     Ch. 11 Pg. 1

-------
To run the program, type:

      GETWIND 

The following message appears:

             THIS PROGRAM CONVERTS STAR FORMAT WIND DATA

                            TO AIRDOS-EPA FORMAT
          FILE WHICH CONTAINS THE WIND DATA TO BE CONVERTED:

                           BREAK  TO ABORT
Enter the name of the file and press .  If you have entered a valid DOS file name and the
file can be found in the current directory, the following message is then displayed:

      FILE TO CONTAIN THE AIRDOS FORMATTED WIND DATA
      MUST HAVE THE EXTENSION.WND

Enter the name of the file that will contain the converted meteorological data. This is the file that
you will be able to select in the list box located in the Meteorological Data input screen. If the
file name  already exists, the following message is displayed on the screen:

      WARNING OUTPUT FILE ALREADY EXISTS
      DO YOU WANT TO OVERWRITE IT?  (Y/N):

Enter  or  to overwrite the file. Press any other key to allow you to enter another file
name.

While the data is being read and converted, informative messages are displayed on the screen.
When the program is finished you will be returned to DOS.

Pressing   together at any time will cause the program to abort, and you will be
returned to DOS.
                                   Ch. 11 Pg. 2

-------
11.5  Error Messages

FILE NAME CANNOT BE GREATER THAN 12 CHARACTERS
PRESS ANY KEY TO CONTINUE

If you type in a file name that has more than 12 characters, the above message is displayed. A
DOS file name can only have eight characters followed by a '.' and a three character extension.
Think of a shorter file name and enter it again.

ERROR INPUT FILE DOES NOT EXIST...
PRESS ANY KEY TO CONTINUE

If the name of the input file which contains the meteorological data cannot be
found in the current directory, the above message is displayed. Make sure you have spelled the
name of the file correctly, and that it is located in the current directory.

FILE EXTENSION MUST BE .WND
PRESS ANY KEY TO CONTINUE

If the name of the file entered that is to contain the converted meteorological data does not end in
'.wnd', the above message is displayed.  All CAP88-PC ind data files must have the file
extension '.wnd'. These are the only files that will be displayed for selection in the list box in the
Meteorological Data input screen.  Retype the file name and make sure the file extension is
'.wnd'.
                                    Ch. 11 Pg. 3

-------
                                    CHAPTER 12

                             MATHEMATICAL MODELS

The purpose of this chapter is to present the mathematical models and equations used in CAP88-
PC for environmental transport and estimation of dose and risk. In order to facilitate comparison
of the programs with the theoretical model by interested users, the actual variable names used in
the CAP88-PC FORTRAN code have been included in brackets, where applicable, following the
explanation of the mathematical symbols used in the formulas.

12.1   Environmental  Transport

CAP88-PC incorporates a modified version of the AIRDOS-EPA (Mo79) program to calculate
environmental transport.  Relevant portions of this document are reproduced here, as referenced.

12.1.1 Plume Rise

CAP88-PC calculates plume rise in the subroutine CONCEN using either Rupp's equation
(Ru48) for momentum  dominated plume rise, or Briggs' equations (Br69) for hot buoyant plumes
(Mo79). CAP88-PC also accepts user-supplied values for plume rise for each Pasquill stability
class. The plume rise, Ah, is added to the actual physical stack height, h [PH], to determine the
effective stack height, H. The plume centerline is shifted from the physical height, h, to H as it
moves downwind. The plume centerline remains at H unless gravitational settling of particulates
produces a downward tilt, or until meteorological conditions change.

Rupp's equation for momentum dominated plumes is:

      Ah    =      1.5  vd
                     |i                              (Equation 1)
where:

      Ah    =     plume rise [PR]
      v     =     effluent stack gas velocity (m/sec) [VEL]
      d     =     inside stack diameter (m) [DIA]
      |i     =     wind velocity (m/sec) [U]

CAP88-PC models Briggs' buoyant plume rise for stability categories A, B, C, and D with:

      Ah    =      1.6F1/3x2/3
                        |i                             (Equation 2)
where:

      Ah    =     plume rise [PR]
      F     =     3.7xlO-5QH

                                     Ch. 12 Pg. 1

-------
       QH    =     heat emission from stack gases (cal/sec) [QH]
       x     =     downwind distance (m)
       |i     =     wind speed (m/sec)  [U]

This equation is valid until the downwind distance is approximately ten times the stack height,
lOh, where the plume levels off. For downwind distances greater than lOh, the equation used is:

       Ah    =     1.6F1/3O01f)2/3
                        |i                                    (Equation 3)

Equation (2) is also used to a distance of X = 2.4 |iS"'/2 for stable categories E, F, and G, beyond
which the plume is assumed to level off. For higher values of x, the stability parameter,  S, is
used in the equation:

       Ah    =     2.9(F/|iS)1/3                               (Equation 4)

in which:

       S     =     (g/Ta)(6Ta/6z+r)                          (Equations)
       g     =     gravitational acceleration  (m/sec2)
       Ta    =     air temperature (°K)  [TEMPERATURE]
       6Ta/6z=      vertical temperature gradient (°K/m) [TG]
       z     =     vertical distance above stack (m)
       F     =     adiabatic lapse rate of atmosphere (0.0098° K/m)

The value of the vertical temperature gradient, 6Ta/6z, is positive for stable categories. In
CAP88-PC, 6Ta/6z values are:

       7.280E-02 °K/m for Pasquill  category E
       1.090E-01 °K/m for Pasquill  category F
       1.455E-01 °K/m for Pasquill  category G

The true-average wind speed for each Pasquill stability category is used in CAP88-PC to estimate
plume rise, as it is greater than the reciprocal-averaged wind speed, and produces a smaller, more
conservative plume rise. This procedure does not risk underestimating the significant
contribution of relatively calm periods to downwind nuclide concentrations which could result
from direct use of a plume rise calculated for each separate wind-speed category. This procedure
avoids calculating an infinite plume rise when wind speed is zero (during calms), since both
momentum and buoyancy plume rise equations contain wind speed in the denominator (Mo79).

CAP88-PC also accepts user-supplied plume rise values, for situations where actual
measurements are available or the supplied equations are not appropriate.  For example,  plume
rises of zero may be used to model local turbulence created by building wakes.
                                      Ch. 12 Pg. 2

-------
12.1.2 Plume Dispersion

Plume dispersion is modeled in the subroutine CONCEN with the Gaussian plume equation of
Pasquill (Pa61, Mo79), as modified by Gifford:
               7i ay az |i
                                                             (Equation 6)
where:

       X      =      concentration in air (chi) at x meters downwind, y meters crosswind, and z
                     meters above ground (Ci/m3) [ACON]
       Q      =      Release rate from stack (Ci/sec)  [REL]
       |i      =      wind speed (m/sec) [U]
       ay      =      horizontal dispersion coefficient (m)
       az      =      vertical dispersion coefficient (m)
       H      =      effective stack height (m)
       y      =      crosswind distance (m)
       z      =      vertical distance (m)

The downwind distance x comes into Equation  (6) through ay and az, which are functions of x as
well as the Pasquill atmospheric stability category applicable during emission from the stack.
CAP88-PC converts %in Equation (6) and other plume dispersion equations from units of curies
per cubic meter to units of picocuries per cubic  centimeter.

Annual-average meteorological data sets usually include frequencies for several wind-speed
categories for each wind direction and Pasquill  atmospheric stability category. CAP88-PC uses
reciprocal-averaged wind speeds in the atmospheric dispersion equations, which permit a single
calculation for each wind-speed category. Equation (6) is applied to ground-level concentrations
in air at the plume centerline by setting y and z to zero, which results in:

       I      =      _ Q _ exp[-'/2(H/az)2]
                      7t ay az |i                               (Equation 7)

The average ground-level concentration in air over a sector of 22.5° can be approximated by the
expression:

       Xave    =      fX                                       (Equations)

where f is the integral of the exponential expression:

       exp[-'/2(y/ay)2]
                                       Ch. 12 Pg. 3

-------
in Equation (6) from a value of y equals zero to infinity divided by ys, the value of y at the edge
of the 22.5° sector, which is the value of the downwind distance, x, multiplied by the tangent of
half the sector angle. The expression is:
                     ,?expr-(0.5/q:.2yidy
                          ys
                                                              (Equation 9)

The definite integral in the numerator of Equation (9) is evaluated as

       
-------
where % is taken from Equation (6) and L is lid height. The value of H in Equation (6) may be set
at zero since Xave is not a function of the effective stack height.

The resulting simplified expression may be evaluated for constant x and y values (ay and az held
constant) by using a definite integral similar to that in Equation (10):

       Xave    =      f"	Q	exp(-z2/2az2)exp(-y2/2ay2) dz

                                  L
                                                              (Equation 14)

The result is:

       Xave    =          O        exp(-v2/2a.,2^)
                       2.5066 ayL|i
                                                              (Equation 15)

One obtains the sector-averaged concentration at ground level by replacing the exponential
expression containing y by fin Equation (11):

       y      =          0
       Aave          	V	
                      0.397825 xL|i
                                                             (Equation 16)
It should be noted at this point that for values of the downwind distance greater than 2xL
dispersion, as expressed in Equation (16), no longer can be said to be represented by the Pasquill
equation.  The model is simply a uniform distribution with a rectangle of dimensions LID and 2x
tan (11. 25°).

Gravitational settling is handled by tilting the plume downward after it has leveled off at height
H by subtracting Vgx/|i from H in the plume dispersion equations. For CAP88-PC Vg is set at
the default value of zero and cannot be changed by the user.

12.1.3  Dry Deposition

Dry deposition is modeled in the subroutine CONCEN as being proportional to the ground-level
concentration of the radionuclide (Mo79):
where:

       Rd     =      surface deposition rate (pCi/cm2 -sec)

                                       Ch. 12 Pg. 5

-------
       Vd     =      deposition velocity (cm/sec) [VD]
       1      =      ground-level concentration (chi) in air (pCi/cm3 )  [ACON]

Although Vd has units of velocity, it is only a proportionality constant and is usually higher than
the actual, measured velocity of radionuclides falling to the ground. The proportionality constant
must include deposition from fallout interception by foliage, which subsequently falls to the
ground and so adds to ground deposition. Defaults for deposition velocity used by CAP88-PC
are 3.5E-2 m/sec for Iodine,  1.8E-3 m/sec for particulates and zero for gases.

12.1.4 Precipitation Scavenging

The deposition rate from precipitation scavenging  (Mo79), which occurs when rain or snow
removes particles from the plume, is modeled in CONCEN with:
where:

       Rs     =      surface deposition rate (pCi/cm2 -sec)
            =      scavenging coefficient (sec"1 ) [SC]
       Xave    =      average concentration in plume up to lid height (pCi/cm3 )
                     [ACON]
       L      =      lid height (tropospheric mixing layer) (cm) [LID]

The scavenging coefficient,  (in sec"1 ), is calculated in CAP88-PC by multiplying the rainfall
rate, [RR] (in cm/yr), by 1E-7 yr/cm-sec.

12.1.5 Plume Depletion

Radionuclides are depleted from the plume by precipitation scavenging, dry deposition and
radioactive decay.  Depletion is accounted for by substituting a reduced release rate, Q1 , for the
original release rate Q for each downwind distance x (S168).  The ratio of the reduced release rate
to the original is the depletion fraction. The overall depletion fraction used in CAP88-PC is the
product of the depletion fractions for precipitation scavenging, dry deposition and radioactive
decay.

For precipitation scavenging the depletion fraction for each downwind distance (x) is:

       Oj_    =      e"*1
       Q

where:

       O     =      scavenging coefficient (sec"1 ) [SC]

                                       Ch. 12 Pg. 6

-------
       t      =      time (sec) required for the plume to reach the downwind distance x

The depletion fraction for dry deposition is derived by using Equation (6) with z set to zero for
ground-level concentrations, and subtracting the quantity (Vg x)/U from H for a tilted plume
(Va68, Mo79):

       Qi    =      exp{-(2/7i)'/2    V^    fx  expr-(H-Vsx/^2/2az21 dx}
       Q                           |i     J0            az

where:

       Vd     =      deposition velocity (m/sec)  [VD]
       |i      =      wind speed (m/sec) [U]
       az      =      vertical dispersion coefficient (m)
       Vg     =      gravitational velocity (m/sec) [VG]
       H      =      effective stack height (m)
       x      =      downwind distance (m)

The integral expression must be evaluated numerically.  Values for the vertical dispersion
coefficient az are expressed as functions of x in the form xD/F where D and F are constants with
different values for each Pasquill atmospheric stability category, to facilitate integrations over x.
Values for the depletion fraction for cases where Vg is zero are obtained from the subroutine QY
in CAP-88.  Subroutine QY obtains depletion fractions for the conditions Vd = 0.01 m/sec and |i
= 1 m/sec for each Pasquill stability category from the data file REFA.DAT.  This file contains
values for release heights (meters) of:

1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12.5, 15, 17.5, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120,  140,
160, 180, 200, 240, 260, 300 and 400.

and for downwind distances  (meters) of:

35, 65, 100, 150, 200, 300, 400, 500, 650, 800, 1,000, 1,500, 2,000, 4,000, 7,000,  10,000, 25,000,
60,000, 90,000, and 200,000.

The stored depletion fractions were calculated numerically with a Simpson's rule routine.  QY
uses a linear interpolation to produce a fraction for the required downwind value, release height
and Pasquill category for Vd  = 0.01 m/sec and |i =  1 m/sec. The value is then converted to the
appropriate value for the actual  deposition velocity and wind speed by use of the equation:

       f/~\\ tr\\        	     fr\^ ir\\ 100 vd/u
       lv i^ih       ~     Iv /vA

in which subscript 2 refers to the desired value and subscript 1 refers to the value for Vd = 0.01
m/sec and u = 1  m/sec.
                                       Ch. 12 Pg. 7

-------
For downwind distances greater than 2xL where Equation 15 applies to the ground-level
concentrations in air, the depletion is modeled with (Mo79):

       Oi    =     exp[-Vd(x-2xL)/L,i]
       Q1
which shows the reduced release rates at distances x and 2xL, respectively.

The depletion fraction for radioactive decay is:
                     4. t
       Qi     =     er
       Q

where:

   \   =      effective decay constant in plume  [ANLAM]
   t    =      time required for plume travel

The decay constant used is referred to as the "effective decay constant" since it is not the true
radiological decay  constant in all cases.  For example, if a radionuclide is a short-lived decay
product in equilibrium with a longer-lived parent, the effective decay constant would be equal to
the true radiological decay constant of the parent.

The atmospheric dispersion equations use the reciprocal-averaged wind speed,  but neither this
value nor the true average wind speed can adequately be used to calculate reduced release rates to
account for radiological decay and scavenging losses because averaging of exponential terms is
required. CAP88-PC uses an approximate calculational method for this purpose which
establishes three wind speeds (1 m/sec, the average wind speed,  and 6 m/sec) to simulate the
actual wind-speed spectrum for each specific wind direction and Pasquill category. The wind
speeds 1 and 6 m/sec were chosen because they approximate the upper and lower bounds in most
meteorological data sets.

If fj , f2 and f3 are designated as the time fractions for the three wind speeds, then:
and
              f3=l
where:

       |ia     =     Arithmetic-average wind speed [UDAV]

                                      Ch.  12 Pg. 8

-------
       |ir     =      Reciprocal-average wind speed [UDCAT]

Solving the three simultaneous equations yields:

       f      =      Iff
       ri             i  r2  rs

       f2      =      (7/6) - (^76)
                     (7/6) -
The depletion fraction to account for radioactive decay is then approximated by:

       fi exp(-?,rx) + f2 exp[->,r(x/|ia)] + f3 exp[-?,r(x/6)]

where:

       \      =      effective decay constant in plume (sec"1 ) [ANLAM]
       |ia     =      Arithmetic-average wind speed  [UDAV]
       x      =      downwind distance (m)

For precipitation scavenging losses, the depletion fraction is:

       fj exp(-Ox) + f2 exp[-O(x/|ia)] + f3 exp[-O(x/6)]

where  is the scavenging coefficient (sec"1 ).

The overall depletion fraction is calculated by multiplying the depletion fraction for dry
deposition by the fraction for radioactive decay and precipitation scavenging.

12.1.6 Dispersion Coefficients

Horizontal and vertical dispersion coefficients (ay and az) used for dispersion calculation in
CONCEN and for depletion fraction determination in QY are taken from recommendations by
G.A. Briggs of the Atmospheric Turbulence and Diffusion Laboratory at Oak Ridge, Tennessee
(Mo79, Gi76). The coefficients are different functions of the downwind distance x for each
Pasquill stability category for open-country conditions, as shown:

       Pasquill       ay                         az
       category       (m)                        (m)

       A             0.22x(l+0.0001x)"1/2        0.20 x


                                       Ch. 12 Pg. 9

-------
       B            0.16x(l+0.0001x)-'/2         0.12 x

       C            O.llx(l+0.0001x)-1/2         0.08 x (l+0.0002x)-'/2

       D            0.08x(l+0.0001x)-'/2         0.06x(l+0.0015x)-1/2

       E            0.06 x (l+0.0001x)-'/2         0.03 x (l+O.OOOSx)'1

       F            0.04x(l+0.0001x)-'/2         0.016 x (l+O.OOOSx)'1

       G            calculated by subtracting half the difference
                    between values for categories E and F from the
                    value for category F.
where:
       x      =     downwind distance


CAP88-PC uses the functions in the form of

       ay      =     xA/C
       az      =     x° /F

to facilitate integrations over x. Values for A, C, D, and F for each stability category and
downwind distance are stored in a data statement.

12.1.7 Area Sources

Uniform area sources are modeled in CAP88-PC using a method described by Mills and Reeves,
as modified by Christopher Nelson, EPA, and implemented by Culkowski and Patterson (Mo79).
The method transforms the original area source into an annular segment with the same area. The
transformation is dependent on the distance between the centroid of the area source and the
receptor. At large distances (where the distance/diameter ratio is 2.5), the area source is modeled
as a point source; at close distances it becomes a circular source centered at the receptor. A point
source model is also used if the area source is 10 meters in diameter or less.

The principle of reciprocity is used to calculate the effective chi/Q.  The problem is equivalent to
interchanging source and receptor and calculating the mean chi/Q from a point source to one or
more sector segments according to the angular width of the transformed source. The mean value
of chi/Q for each sector segment is estimated by calculating chi/Q at the distance which would
provide the exact value of the mean if the variation in chi/Q were proportional to r"15 for
distances from the point  source to location within the sector segment.  The chi/Q for the entire
transformed source is the sum of the chi/Q values for each sector weighted by the portion of the
total annular source contained in that sector.


                                      Ch. 12 Pg. 10

-------
12.1.8  Carbon-14 and Tritium

Special consideration is given to the radionuclides hydrogen-3 (tritium), carbon-14, and radon-
222. The specific activity of tritium in air is calculated for an absolute humidity of 8 g/m3. The
specific activity of atmospheric carbon-14 is calculated for a carbon dioxide concentration of 330
ppm by volume.  Concentrations of these nuclides in vegetation are calculated on the assumption
that the water and carbon content in vegetation are from the  atmosphere and have the same
specific activity as in the atmosphere. Drinking water is assumed to be one percent (1%)
tritiated.

12.1.9  Rn-222 Working Levels

The radon decay product concentration (in working level units) is estimated using an equilibrium
fraction that varies as a function of travel time, assuming a wind speed of 3.5 meters/second,
with a final equilibrium fraction of 0.7.

Equilibrium fractions for radon decay products are calculated as  a function of downwind
distance, starting at 0.267 at 150 meters and reaching a final equilibrium fraction of 0.698 at
19,551 meters. Equilibrium fractions for specific distances are calculated by linear interpolation,
using this table:

       Distance      Equilibrium
       (meters)      Fraction

        150         .267
        200         .273
        250         .276
        300         .278
        400         .284
        500         .289
        600         .293
        800         .302
        1000        .311
        1500        .331
       2000        .349
       2500        .366
       3000        .382
       4000        .414
       5000        .443
       6000        .471
       8000        .522
       10000        .566
       15000        .650
       19551        .698

                                      Ch. 12 Pg. 11

-------
12.1.10 Ground Surface Concentrations

Ground surface and soil concentrations are calculated for those nuclides subject to deposition due
to dry deposition and precipitation scavenging. The deposition accumulation time, [TSUBB], is
assumed to be 100 years.  This value corresponds to establishing a 100-year cutoff for the time
following a release when any significant intake or external exposure associated with deposition
on soil might take place.

Ingrowth from a parent radionuclide is calculated using a decay product ingrowth factor. The
ingrowth factor is the ratio of the decay product concentration resulting from a unit deposition
rate of the parent and the decay product respectively. The factors are for a 100 year accumulation
time and a removal rate from soil of 2 percent per year.

12.2   DOSE AND RISK ESTIMATES

CAP88-PC uses a modified version of DARTAB (ORNL5692) and a database of dose and risk
factors generated by RADRISK (ORNL7105, ORNL7745) for estimating dose and risk.
Relevant portions of these documents are reproduced here, as referenced.

Dose and risk conversion factors include the effective dose equivalent calculated with the
weighting factors in ICRP Publication Number 26 (ICRP26).  Risk factors are based on lifetime
risk from lifetime exposure with a nominal value of 4E-4 fatal cancers/rem (EPA89). Dose and
risk factors are provided for the pathways of ingestion and inhalation intake, ground level air
immersion and ground surface irradiation.  Factors are further broken down by particle size
[SIZE], clearance class [CLEARANCE_CLASS] and gut-to-blood [GIJNG and GIJNH]
transfer factors. These factors are stored in a database for use by the program.

For assessments where Rn-222 decay products are not considered, estimates of dose and risk are
made by combining the inhalation and ingestion intake rates, air and ground surface
concentrations with the appropriate dose and risk conversion factors. CAP88-PC lists the dose
and risk to the maximum individual and the collective population. CAP88-PC calculates dose to
the gonads, breast, red marrow, lungs, thyroid, and endosteum in addition to the 50 year effective
dose equivalent. Risks are estimated for these cancers: leukemia, bone, thyroid, breast, lung,
stomach, bowel, liver,  pancreas and urinary.  Doses and risks can be further tabulated as  a
function of radionuclide, pathway, location and organ.

For assessments of Rn-222 decay products, CAP88-PC calculates working levels, not
concentrations of specific radionuclides. A working level [WLEVEL]  is defined as any
combination of short-lived radon decay products in  1 liter of air that will result in the ultimate
emission of 1.3 x 10s MeV of alpha particle energy. CAP88-PC calculates risk, but not dose,
from the working level calculations. Risk to the maximum individual and the collective
population are tabulated.

For each assessment, CAP88-PC tabulates the frequency distribution of risk, that is, the number
of people at various levels of risk (lifetime risk).  The risk categories are divided into powers of

                                     Ch. 12 Pg. 12

-------
ten, from 1 in ten to one in a million.  The number of health effects are also tabulated for each
risk category.

12.2.1  Air Immersion

Individual dose is calculated for air immersion with the general equation:
                P(k)
where:
       E;j(k)         =      exposure rate, person-pCi/cm3  [EXPP]
                    =      Dose rate factor, mrem/nCi-yr/m3  [DOSE]
       P(k)          =      number of exposed people  [POP]
       Kj           =      0.001 nCi/pCi x 1,000,000 cm3/m3 (proportionality factor)  [FAC]

Risk is calculated similarly, by substituting the risk conversion factor, RISK, for DOSE. The risk
conversion factor is in units of risk/nCi-yr/m3 .
12.2.2 Surface Exposure

Individual dose is calculated for ground surface exposure with the general equation:
                P(k)
where:

       Ey(k)         =      exposure rate, person-pCi/cm2  [EXPP]
       DF;jl         =      Dose rate factor, mrem/nCi-yr/m2  [DOSE]
       P(k)         =      number of exposed people  [POP]
       Kj           =      0.001 nCi/pCi x 10,000 cm2/m2 (proportionality factor)  [FAC]

Risk is calculated by substituting the risk conversion factor, RF^ [RISK], for DF^ [DOSE]. The
risk conversion factor is in units of risk/nCi-yr/m2 .

12.2.3  Ingestion and Inhalation

Individual dose is calculated for the ingestion and inhalation exposure pathway with the general
equation:
                P(k)

                                      Ch. 12 Pg. 13

-------
where:

       Ey(k)         =      exposure rate, person-pCi/cm3  [EXPP]
       DF;jl         =      Dose rate factor, mrem/nCi-yr/m3  [DOSE]
       P(k)         =      number of exposed people  [POP]
       Kj           =      0.001 nCi/pCi x 1,000,000 cm3/m3 (proportionality factor)  [FAC]

Risk is calculated by substituting the risk conversion factor, RISK (risk/nCi), for DOSE.

12.2.4 Maximally-Exposed Individual

Doses for the maximally-exposed individual in population runs are estimated by CAP88-PC for
the location, or sector-segment in the radial assessment grid, of highest risk where at least one
individual actually resides. The effective dose equivalent for the maximally-exposed individual
is tabulated in mrem/yr for a 50 year exposure. Risk is estimated as total lifetime risk for a
lifetime exposure [AGEX] of 70.7565 years.

12.2.5 Collective Population

Collective population dose and risk are found by summing, for all sector segments, the intake and
exposure rates multiplied by the appropriate dose or risk conversion factors (ORNL5692).
Collective population dose is reported by person-Rem/yr (not millirem), and collective risk is
reported in deaths/yr. Note that collective risk is reported as annual risk, while maximally-
exposed individual risk is reported as lifetime risk.
                                      Ch. 12 Pg. 14

-------
                                       CHAPTER 13

                                  SAMPLE ASSESSMENT

13.1   CAP88-PC Version 2.0 Sample Input Screens

The following screens contain the data used to generate a sample assessment as an example for
the user, using  the CAP88-PC Windows version and the outputs are the outputs generated by
executing this assessment from CAP88-PC Windows version.
 A «P88-f>e¥«KiBl>U
 gie Run
                          Figure 13-1:  FACILITY INFORMATION
                        Facility Pala |  Run Option? ]  yet Data  J  Saurcft Data j  Agn.Dala ]
                          Facility Name pReaciive IMetals|
                                ( JAdd
                              C^ |Ashtab"la
                       * Zip Code
1986       Soarce C&t&g&ty DOE Facilities
                                                g&ty JD
                         Reactive Metals - - Population Run
                                        Ch. 13 Pg. 1

-------
                                                 Figure 13-2:  SOURCE DATA
  CAPBB-PC Version ZJ
file  Run  Help
                                     fadliwData    Run Options     Met. Data    poirce OitS     Agn. Data     Nuclide Data
                                        Source Type:  f Area  «. g,aek
                                                                                Number ef Sources:   B
II
                                                         f dimensiofts of
                                            Height (m)
                                            iametef (wi)
                                              Plume Rise:   O Buo^tnt    (*• Momentum    O Fixed    C Zero
                                        Eater ttia exit velocity (meters/see) for each source
                                            1231
                                                             Ch. 13 Pg. 2

-------
                                                    Figure 13-3: NUCLIDEDATA
.«, CAP8S-PC Version Z.D
 Fife  Run  Help
 B.
 tf
                                   Dolose! Name iBaacJlve Metals
                                     facility Data  I   Run Options  I   Met- Date   1   Source Date  J   Agri. Data   1 INucJtde Datal



                                            Number ol Rodionuclides. 4
1T2I3T4T5T6]

Rodionaclide Data For Source 1

»
#
Nuciide Release (Ci/y) Size (AM AD) Class
U-234 J2.38E-01 jl.O !Y !
i>235 	 iTTTai^ 	 fO 	 :Y 	 i
U-236 JO.E*OD il.O ;Y i
U-238 tjZ-38E-04 jl.O Y i


                                                                Ch. 13  Pg. 3

-------
                                          Figure 13-4: METEOROLOGICAL DATA
CAP88-PC Version 2.0
                                DnlaseJ Nome ;ReaeMv« MeJals
                                        Bla  I   Run Options j  !MeiL"Dntn!  [   Source Data  ]   Agri. Dgla   ]  NudidaDate
                                   Ef! Wind File Directory





                                   r- Custom Wind Rie
                                                      Annual Precipitation:





                                               Annual Arabian! Terapsrmture:





                                                           Height of Lid:
   1
                                                                                    (cm/ysar)
(Celsius)
                                                             Ch. 13 Pg. 4

-------
                                              Figure  13-5:  AGRICULTURAL DATA
CAP88-PC Version 2.0
                                 Dntasel Nome ;ReaeMv« Metals
                                   Facility Date  JP^un Options  j    M@t Date.   J   Source Data J  |^i. JDatey  J  Nuellid@ Dga



                                        EPA Food Source Scgnanos (Choose mm)

                                         (i Urban  C Rural    C Local   C Regional   C Imported   0 Entemd


                                                                  Vegetable         Milk           Meat
                                            Fraction home produced
                                       Fraction from assessment ores:
                                                        Milk cattle density:
                                                  Land fraction cultivated for
                                                         vegetable crops:
                                                               Ch.  13 Pg. 5

-------
                                                         Figure 13-6:  RUN OPTIONS
  CAP8I-PC Version 2.0
0te  Bun  Help
                                     Dates et Name : Re active Metals
                                        acility Date  |  jFUgji gijtiongj  |   Met Data   J  Source Data  j   Agri.
                            Nuclide Date
                                              Run Type:  e Individual     (8 Population
                                          (t Population Rle Directory




                                          T Cystom PopuloSon File
RMICOMPY
fl
                                                            Generate Genotic EfleOs?   « Ves    C No



                                                     Create Dose and Risk Factor File?   « Yes    C No



                                                      Create Concentration Table File?   (9 Yes    (~ No



                                                            Creole Chi/Q Table File?   ff Yes    f No
                                                                    Ch.  13 Pg. 6

-------
13.2   CAP88-PC Windows version 2.0 Sample Output

The following pages contain the output for a sampling assessment.  The following are a listing of
all the possible outputs generated by the program.

Synopsis Report:  The Synopsis Report contains a composite of the most generally used
information generated by the assessment.

General Data:  This file contains input data plus other general data.  Includes radionuclide-
dependent variables, radionuclide-independent variables, agricultural data, and Radon working
levels.

Weather Data: This file contains the wind speeds and stability classes.

Dose and Conversion Factors: This file contains: ingestion, inhalation, air immersion, and
ground surface dose conversion factors; absolute health risk,  years of life loss, and risk
equivalent factors for cancers due to ingestion, inhalation, air immersion, and ground surface
exposure; and  genetic  dose conversion factors for ingestion, inhalation, air immersion, and
ground surface exposures.

Dose and Equivalent Summary: This file contains the summaries of calculated exposures and
risks, broken down by organ, pathway, radionuclide,  and cancer.

Concentration Tables: This file contains the concentration tables generated by the AIRDOS code.

Chi/Q Table: A table of J/Q values for each radionuclide in the assessment.
                                       Ch. 13 Pg. 7

-------
13.2.1 Synopsis Report
                                CAP88-PC
                                 Version 2.00

                   Clean Air Act Assessment  Package  -  1988

                        SYNOPSIS   REPORT

                       Non-Radon Population  Assessment
                          March 19,  2000  05:10  pm

         Facility:   Reactive Metals
          Address:   Address
             City:   Ashtabula
            State:   OH          Zip:

         Source Category:   DOE Facilities
             Source Type:   Stack
           Emission Year:   1986

         Comments:   Reactive Metals - - Population Run
                     Effective Dose Equivalent
                            (mrem/year)
                              7 .48E-01
        At This Location:
            Dataset Name:
            Dataset Date:
               Wind File:
         Population File:
  310 Meters East Northeast
Reactive Metals
Mar  19, 2000  05:10 pm
C:\CAP88PC2\WNDFILES\ERIEPA.WND
C:\CAP88PC2\POPFILES\RMIASHTA.POP
                                  Ch. 13 Pg. 8

-------
Mar  19, 2000  05:10 pm
                              SYNOPSIS
                               Page  1
                  MAXIMALLY EXPOSED INDIVIDUAL
       Location Of The Individual:
       Lifetime Fatal Cancer Risk:
      310 Meters East Northeast
            l.OOE-05
                  ORGAN DOSE EQUIVALENT SUMMARY
              Organ
 Selected
Individual
 (mrem/y)
  Collective
  Population
(person-rem/y)
              GONADS
              BREAST
              R MAR
              LUNGS
              THYROID
              ENDOST
              RMNDR
 4.33E-04
 7.33E-04
 6.25E-03
 6.19E+00
 3.88E-04
 7.97E-02
 7.64E-03
   5.53E-03
   6.23E-03
   1.54E-01
   1.01E+01
   5.41E-03
   2.04E+00
   1.81E-01
              EFFEC
 7.48E-01
   1.35E+00
            FREQUENCY DISTRIBUTION OF LIFETIME FATAL CANCER RISKS

                           # of People    Deaths/Year  Deaths/Year
                    # of   in This Risk     in This    in This Risk
  Risk Range       People Range or Higher Risk Range  Range or Higher
1
1
1
1
1
1

.OE+00
.OE-
.OE-
.OE-
.OE-
.OE-
LESS
01
02
03
04
05
TO
TO
TO
TO
TO
TO
THAN
1.
1 .
1 .
1 .
1 .
1.
1.
.OE-01
.OE-02
.OE-03
. OE-04
.OE-05
.OE-06
.OE-06
0
0
0
0
1
1049
1399124
0
0
0
0
1
1050
1400174
0.
0.
0.
0.
1 .
3.
2.
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.42E-07
.66E-05
.05E-04
0
0
0
0
1
3
2
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.42E-07
.68E-05
.42E-04
                                 Ch. 13 Pg. 9

-------
Mar  19, 2000  05:10 pm
                      SYNOPSIS
                       Page  2
                RADIONUCLIDE EMISSIONS DURING THE YEAR 1986
Nuclide
U-234
U-235
U-236
U-238
Class
Y
Y
Y
Y
Size
1.
1.
1.
1.
.00
.00
.00
.00
Source
#1
Ci/y
2.4E-04
1.7E-06
O.OE+00
2 .4E-04
Source
#2
Ci/y
3.2E-04
2.3E-06
O.OE+00
3.2E-04
Source
#3
Ci/y
3.2E-09
8.0E-07
O.OE+00
4 . OE-04
Source
#4
Ci/y
9.6E-13
2.4E-09
O.OE+00
1 .2E-07
Source
#5
Ci/y
O.OE+00
5.5E-06
O.OE+00
7 .6E-04
Source
#6
Ci/y
2.7E-08
3.4E-05
1.8E-06
3.6E-03
5
4
1
5
TOTAL
Ci/y
.6E-04
.4E-05
.8E-06
.3E-03
                  SITE INFORMATION

                        Temperature:
                      Precipitation:
                      Mixing Height:
 10 degrees C
 89 cm/y
800 m
                                 Ch. 13 Pg. 10

-------
Mar  19, 2000  05:10 pm                                        SYNOPSIS
                                                               Page  3
   Source Number:
                  SOURCE INFORMATION
Stack Height (m):      15.     15.     15.     15.      8.     10.
    Diameter (m):       0.      0.      1.      0.      0.      0.

 Plume Rise
  Momentum  (m/s):      14.      9.     20.      4.      8.     15.
  (Exit Velocity)
                  AGRICULTURAL DATA

                                         Vegetable    Milk     Meat
               Fraction Home Produced:      0.076     0.000    0.008
        Fraction From Assessment Area:      0.924     1.000    0.992
                    Fraction Imported:      0.000     0.000    0.000
                       Beef Cattle Density:    2.03E-01
                       Milk Cattle Density:    4.56E-02
                Land Fraction Cultivated
                       for Vegetable Crops:    1.70E-02
                                 Ch. 13 Pg. 11

-------
Mar 19, 2000 05:

Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

310
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

15000
0
0
0
0
380
779
3376
3059
8224
984
1388
3161
265
14641
0
0
10 pm

810
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0

25000
0
0
0
0
0
15354
3448
3396
2252
1792
2021
827
1693
6332
0
0
POPULATION
Distance
1500
0
0
1987
0
0
421
0
0
0
101
0
0
0
0
0
0
Distance
35000
0
0
0
0
0
8786
7591
3128
2388
3659
3148
3252
5397
5986
0
0
DATA
(m)
2500
1043
113
0
2218
2435
810
0
4350
0
0
0
851
780
55
0
0
(m)
45000
0
0
0
0
0
48943
6999
6847
5752
3759
5123
3712
1338
13324
0
0
SYNOPSIS
Page 4

3500
0
0
0
0
3014
0
2435
407
2002
0
0
0
0
0
0
0

55000
0
0
0
0
0
63357
23331
8940
7858
7416
4351
25127
11236
45833
0
0

4500
0
0
0
0
288
293
0
4223
0
0
0
0
89
0
0
0

70000
0
0
0
0
0
319944
187240
27255
140074
80933
14935
15531
17820
150138
0
0

7500
0
0
0
0
183
1108
1688
3024
534
0
974
125
793
0
0
0


















Ch. 13 Pg. 12

-------
13.2.2 General Data
                                 CAP88-PC

                                  Version 2.00


                    Clean Air Act Assessment Package - 1988



                            GENERAL   DATA

                        Non-Radon Population Assessment
                             Mar  19, 2000  05:10 pm
          Facility:   Reactive Metals
           Address:   Address
              City:   Ashtabula
             State:   OH                     Zip:
          Source Category:  DOE Facilities
              Source Type:  Stack
            Emission Year:  1986
          Comments:   Reactive Metals - - Population Run
             Dataset Name:  Reactive Metals
             Dataset Date:  Mar  19, 2000  05:10 pm
                Wind File:  C:\CAP88PC2\WNDFILES\ERIEPA.WND
          Population File:  C:\CAP88PC2\POPFILES\RMIASHTA.POP
                                  Ch. 13 Pg. 13

-------
Mar  19, 2000  05:10 pm
                                               GENERAL
                                               Page  1
        VALUES FOR RADIONUCLIDE-DEPENDENT PARAMETERS
     Nuclide
Clearance
  Class
Particle
  Size
(microns)
 Scavenging
Coefficient
(per second)
    Dry
Deposition
 Velocity
  (m/s)
     U-234
     U-235
     U-236
     U-238
    Y
    Y
    Y
    Y
   1.0
   1.0
   1.0
   1.0
  8.90E-06
  8.90E-06
  8.90E-06
  8.90E-06
    1.80E-03
    1.80E-03
    1.80E-03
    1.80E-03
                                  Ch. 13 Pg. 14

-------
Mar  19, 2000  05:10 pm
                                                 GENERAL
                                                 Page  2
        VALUES FOR RADIONUCLIDE-DEPENDENT PARAMETERS
  Nuclide
                     DECAY CONSTANT  (PER DAY)
                                                  TRANSFER  COEFFICIENT
Radio-
active (1)     Surface
Water   Milk  (2)    Meat  (3)
U-234
U-235
U-236
U-238
O.OOE+00
O.OOE+00
O.OOE+00
O.OOE+00
5.48E-05
5.48E-05
5.48E-05
5.48E-05
O.OOE+00 6.00E-04
O.OOE+00 6.00E-04
O.OOE+00 6.00E-04
O.OOE+00 6.00E-04
2 . OOE-04
2 . OOE-04
2 . OOE-04
2 . OOE-04
  FOOTNOTES:   (1) Effective radioactive decay constant  in plume;
                  set to zero if less than l.OE-2

               (2) Fraction of animal's daily intake of  nuclide
                  which appears in each L of milk  (days/L)

               (3) Fraction of animal's daily intake of  nuclide
                  which appears in each kg of meat  (days/kg)
                                  Ch. 13 Pg. 15

-------
Mar  19, 2000  05:10 pm                                         GENERAL
                                                                Page  3
        VALUES FOR RADIONUCLIDE-DEPENDENT PARAMETERS
                        CONCENTRATION
                        UPTAKE FACTOR           GI UPTAKE FRACTION
   Nuclide        Forage  (1)     Edible  (2)   Inhalation     Ingestion
U-234
U-235
U-236
U-238
8.50E-03
8.50E-03
8.50E-03
8.50E-03
1 .71E-03
1 .71E-03
1 .71E-03
1 .71E-03
2.00E-03
2.00E-03
2.00E-03
2.00E-03
2.00E-01
2.00E-01
2.00E-01
2.00E-01
 FOOTNOTES:   (1) Concentration factor for uptake of nuclide
                 from soil for pasture and forage
                 (in pCi/kg dry weight per pCi/kg dry soil)

              (2) Concentration factor for uptake of nuclide
                 from soil by edible parts of crops
                 (in pCi/kg wet weight per pCi/kg dry soil)
                                  Ch. 13 Pg. 16

-------
Mar 19, 2000 05:10 pm
NUMBER OF BEEF CATTLE

Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

310
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

15000
1196
1196
1196
1196
1196
1196
1196
1196
1196
1196
1196
1196
1196
1196
1196
1196
Distance
810
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Distance
25000
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
1993
(meters)
1500
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
(meters)
35000
2790
2790
2790
2790
2790
2790
2790
2790
2790
2790
2790
2790
2790
2790
2790
2790

2500
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

45000
3587
3587
3587
3587
3587
3587
3587
3587
3587
3587
3587
3587
3587
3587
3587
3587

3500
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28

55000
4384
4384
4384
4384
4384
4384
4384
4384
4384
4384
4384
4384
4384
4384
4384
4384

4500
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36

70000
11161
11161
11161
11161
11161
11161
11161
11161
11161
11161
11161
11161
11161
11161
11161
11161
GENERAL
Page 4

7500
299
299
299
299
299
299
299
299
299
299
299
299
299
299
299
299


















Ch. 13 Pg. 17

-------
Mar 19, 2000 05:10 pm
NUMBER OF MILK CATTLE

Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

310
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

15000
269
269
269
269
269
269
269
269
269
269
269
269
269
269
269
269
Distance
810
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Distance
25000
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
(meters)
1500
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
(meters)
35000
627
627
627
627
627
627
627
627
627
627
627
627
627
627
627
627

2500
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

45000
806
806
806
806
806
806
806
806
806
806
806
806
806
806
806
806

3500
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

55000
985
985
985
985
985
985
985
985
985
985
985
985
985
985
985
985

4500
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

70000
2507
2507
2507
2507
2507
2507
2507
2507
2507
2507
2507
2507
2507
2507
2507
2507
GENERAL
Page 5

7500
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67


















Ch. 13 Pg. 18

-------
:ar 19, 2000 05:10 pm
AREA OF
VEGETABLE
Distance
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
310
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03
.3E+03

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
810
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03
.1E+03

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Distance
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
15000
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
25000
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CROP PRODUCTION
(M**2)
GENERAL
Page 6
(meters)
1500
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2500
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04
.7E+04

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
3500
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04
.3E+04

3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
4500
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
.OE+04
7500
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
2.5E+05
(meters)
35000
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06

3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
45000
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06
.OE+06

3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
55000
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06
.7E+06

9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
9.
70000
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06
.3E+06

















Ch. 13 Pg. 19

-------
Mar  19, 2000  05:10 pm                                         GENERAL
                                                                Page  7

        VALUES FOR RADIONUCLIDE-INDEPENDENT PARAMETERS
  HUMAN INHALATION RATE
       Cubic centimeters/hr                               9.17E+05

  SOIL PARAMETERS
       Effective surface density  (kg/sq m, dry weight)
       (Assumes 15 cm plow layer)                         2.15E+02
  BUILDUP TIMES
       For activity in soil  (years)                       l.OOE+02
       For radionuclides deposited on ground/water  (days) 3.65E+04

  DELAY TIMES
       Ingestion of pasture grass by animals  (hr)         O.OOE+00
       Ingestion of stored feed by animals  (hr)           2.16E+03
       Ingestion of leafy vegetables by man  (hr)          3.36E+02
       Ingestion of produce by man (hr)                   3.36E+02
       Transport time from animal feed-milk-man  (day)     2.00E+00
       Time from slaughter to consumption  (day)           2.00E+01

  WEATHERING
       Removal rate constant for physical  loss  (per hr)   2.90E-03

  CROP EXPOSURE DURATION
       Pasture grass  (hr)                                 7.20E+02
       Crops/leafy vegetables (hr)                        1.44E+03

  AGRICULTURAL PRODUCTIVITY
       Grass-cow-milk-man pathway  (kg/sq m)               2.80E-01
       Produce/leafy veg for human consumption  (kg/sq m)  7.16E-01

  FALLOUT INTERCEPTION FRACTIONS
       Vegetables                                         2.00E-01
       Pasture                                            5.70E-01

  GRAZING PARAMETERS
       Fraction of year animals graze on pasture          4.00E-01
       Fraction of daily feed that is pasture grass
       when animal grazes on pasture                      4.30E-01
                                  Ch. 13 Pg. 20

-------
Mar  19, 2000  05:10 pm
        VALUES FOR RADIONUCLIDE-INDEPENDENT PARAMETERS
      GENERAL
      Page  8
  ANIMAL FEED CONSUMPTION FACTORS
       Contaminated feed/forage  (kg/day, dry weight)
  DAIRY PRODUCTIVITY
       Milk production of cow  (L/day)

  MEAT ANIMAL SLAUGHTER PARAMETERS
       Muscle mass of animal at slaughter  (kg)
       Fraction of herd slaughtered  (per day)

  DECONTAMINATION
       Fraction of radioactivity retained after washing
       for leafy vegetables and produce

  FRACTIONS GROWN IN GARDEN OF INTEREST
       Produce ingested
       Leafy vegetables ingested

  INGESTION RATIOS:
       IMMEDIATE SURROUNDING AREA/TOTAL WITHIN AREA
            Vegetables
            Meat
            Milk
1.56E+01
1.10E+01
2.00E+02
3.81E-03
5.00E-01
l.OOE+00
l.OOE+00
7.60E-02
8.00E-03
O.OOE+00
  MINIMUM INGESTION FRACTIONS FROM OUTSIDE AREA
      (Actual fractions of food types from outside area can
       be greater than the minimum fractions listed below.)
            Vegetables
            Meat
            Milk
O.OOE+00
O.OOE+00
O.OOE+00
  HUMAN FOOD UTILIZATION FACTORS
       Produce ingestion (kg/y)
       Milk ingestion  (L/y)
       Meat ingestion  (kg/y)
       Leafy vegetable ingestion  (kg/y)

  SWIMMING PARAMETERS
       Fraction of time spent swimming
       Dilution factor for water  (cm)
1.76E+02
1.12E+02
8.50E+01
1.80E+01
O.OOE+00
l.OOE+00
                                  Ch. 13 Pg. 21

-------
13.2.3 Weather Data
                                 CAP88-PC

                                  Version 2.00


                    Clean Air Act Assessment  Package - 1988



                            WEATHER   DATA

                        Non-Radon Population  Assessment
                             Mar  19,  2000  05:10 pm
          Facility:   Reactive Metals
           Address:   Address
              City:   Ashtabula
             State:   OH                     Zip:
          Source Category:   DOE Facilities
              Source Type:   Stack
            Emission Year:   1986
          Comments:   Reactive Metals - - Population Run
             Dataset Name:   Reactive Metals
             Dataset Date:   Mar  19, 2000  05:10 pm
                Wind File:   C:\CAP88PC2\WNDFILES\ERIEPA.WND
          Population File:   C:\CAP88PC2\POPFILES\RMIASHTA.POP
                                 Ch. 13 Pg. 22

-------
Mar 19, 2000 05:10 pm
HARMONIC AVERAGE WIND SPEEDS (WIND TOWARDS)
WEATHER
Page 1
Pasquill Stability Class
Dir
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0
0
0
0
0
0
2
0
2
2
2
2
2
0
0
2
A
.000
.000
.000
.000
.000
.000
.572
.000
.277
.572
.572
.226
.572
.000
.000
.572

1
2
1
1
1
2
2
3
3
3
3
2
3
2
2
1
B
.604
.155
.419
.411
.947
.155
.270
.024
.077
.147
.172
.954
.009
.971
.552
.594

3
3
3
3
2
3
4
4
4
3
3
4
4
4
4
3
C
.331
.457
.287
.521
.876
.027
.147
.142
.005
.829
.644
.350
.745
.181
.025
.776

5
5
4
2
3
4
4
4
4
4
4
5
5
5
5
5
D
.143
.642
.170
.913
.063
.395
.744
.556
.249
.534
.878
.494
.729
.376
.045
.389

3
3
2
2
2
3
3
3
3
3
3
3
3
3
3
3
E
.476
.428
.960
.808
.945
.265
.252
.354
.360
.466
.132
.271
.578
.382
.368
.458

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
F
.682
.447
.379
.339
.497
.684
.729
.655
.443
.573
.376
.455
.697
.632
.584
.834

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
G
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
Wind
Freq
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.209
.062
.023
.017
.027
.040
.048
.030
.052
.042
.044
.068
.104
.072
.068
.094
Dir
      ARITHMETIC AVERAGE WIND SPEEDS  (WIND TOWARDS)




              Pasquill Stability Class
        A
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE
0
0
0
0
0
0
2
0
2
2
2
2
2
0
0
2
.000
.000
.000
.000
.000
.000
.572
.000
.472
.572
.572
.452
.572
.000
.000
.572
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
2
.657
.803
.029
.203
.912
.803
.009
.392
.618
.596
.642
.516
.732
.344
.138
.688
4
3
3
3
3
3
4
4
4
4
4
4
5
4
4
4
.044
.936
.920
.867
.519
.804
.935
.733
.428
.179
.056
.815
.230
.692
.688
.417
6
7
5
3
3
5
5
5
5
5
5
6
6
6
6
6
.318
.070
.893
.990
.980
.374
.907
.611
.250
.681
.992
.619
.747
.433
.231
.536
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
.709
.664
.145
.939
.126
.500
.486
.591
.598
.700
.354
.507
.801
.619
.605
.692
2
1
1
1
2
2
2
2
1
2
1
1
2
2
2
2
.164
.972
.904
.861
.018
.165
.196
.145
.969
.082
.901
.980
.175
.128
.090
.261
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
                                Ch. 13 Pg. 23

-------
ar 19, 2000 05:10 pm
FREQUENCIES OF STABILITY
Pasquill
Dir
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE
OTAL

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
A
.0000
.0000
.0000
.0000
.0000
.0000
.0006
.0000
.0034
.0007
.0016
.0022
.0003
.0000
.0000
.0003
.0005

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
B
.0071
.0063
.0228
.0226
.0199
.0098
.0138
.0333
.1078
.1436
.1095
.0526
.0199
.0127
.0103
.0083
.0298

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CLASSES
(WIND
TOWARDS)
WEATHER
Page 2
Stability Class
C
.0543
.0385
.0701
.0654
.0622
.0659
.1167
.1654
.2034
.1686
.1666
.1581
.1260
. 0724
.0585
.0537
.0944

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
D
.6142
.7396
.5830
.4320
.4993
.6985
.7377
.6880
.5935
.5927
.6510
.7362
.7958
.7863
.7746
.7261
.6871

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
E
.1552
.1142
.1338
.2044
.1925
.1422
.0944
.0675
.0565
.0617
.0465
.0274
.0423
.0823
.1024
.1064
.1003

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
F
.1693
.1014
.1902
.2756
.2262
.0835
.0369
.0458
.0354
.0327
.0249
.0234
.0156
.0463
.0542
.1051
.0878

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
G
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
         ADDITIONAL WEATHER INFORMATION
    Average Air Temperature:   10.0 degrees C
                             283.16 K
              Precipitation:
                 Lid Height:
   Surface Roughness Length:
Height Of Wind Measurements:
         Average Wind Speed:
 89.0 cm/y
  800 meters
0.010 meters
 10.0 meters
5.347 m/s
        Vertical Temperature Gradients:
           STABILITY E     0.073 k/m
           STABILITY F     0.109 k/m
           STABILITY G     0.146 k/m
                            Ch. 13 Pg. 24

-------
13.2.4 Dose and Risk Conversion Factors


                                 CAP88-PC

                                  Version 2.00


                    Clean Air Act Assessment Package - 1988



       DOSE   AND   RISK   CONVERSION   FACTORS

                        Non-Radon Population Assessment
                             Mar  19, 2000  05:10 pm
         Facility:  Reactive Metals
          Address:  Address
             City:  Ashtabula
            State:  OH          Zip:
         Source Category:  DOE Facilities
             Source Type:  Stack
           Emission Year:  1986
         Comments:  Reactive Metals - - Population Run
            Dataset Name:
            Dataset Date:
               Wind File:
         Population File:
Reactive Metals
Mar  19, 2000  05:10 pm
C:\CAP88PC2\WNDFILES\ERIEPA.WND
C:\CAP88PC2\POPFILES\RMIASHTA.POP
                                  Ch. 13 Pg. 25

-------
Mar  19, 2000  05:10 pm                                        FACTOR
                                                               Page  1
                  DOSE AND RISK FACTOR UNITS
   The units for each type of dose rate conversion factor are
   shown below, by pathway:

   Pathway     Units
   Ingestion   millirem/picoCurie

   Inhalation  millirem/picoCurie

   Immersion   millirem-cubic cm/microCurie-year

   Surface     millirem-square cm/microCurie-year
   Risks for internal exposures (inhalation and ingestion)
   are the lifetime risk of premature death in a birth cohort
   of 100,000 people for a 1 picoCurie/year intake rate,
   where the average lifetime is 70.7565 years.

   This is simplified to lifetime risk per 100,000 picoCuries.
   The units for each type of risk conversion factor are
   shown below, by pathway:

   Pathway     Units
   Ingestion   lifetime risk/100,000 picoCuries

   Inhalation  lifetime risk/100,000 picoCuries

   Immersion   lifetime risk-cubic cm/100,000 picoCurie-years

   Surface     lifetime risk-square cm/100,000 picoCurie-years
                                 Ch. 13 Pg. 26

-------
Mar  19, 2000
     Organ
     GONADS
     BREAST
     R MAR
     LUNGS
     THYROID
     ENDOST
     RMNDR
     EFFEC
     TESTES
     OVARIES
     AVERAGE
     Cancer
     LEUKEMIA
     BONE
     THYROID
     BREAST
     LUNG
     STOMACH
     BOWEL
     LIVER
     PANCREAS
     URINARY
     OTHER
     AVERAGE
10 pm
* NUCLIDE U-234
DOSE RATE CONVERSION FACTORS
Ingestion
3.
3.
1 .
3.
3.
1.
1.
1.
.851E-05
.851E-05
.031E-03
.851E-05
.851E-05
.625E-02
.396E-03
.051E-03
Inhalation
9
9
2
1
9
4
3
1
GENETIC EFFECT
1 .
1 .
1 .
.058E-03
.058E-03
.058E-03
2
2
2
RISK CONVERSION


Ingestion
1 .
8.
6.
5.
7.
5.
7 .
5.
3.
3.
4.
.006E-04
.532E-05
.663E-07
.605E-06
.126E-06
.173E-06
.559E-06
.015E-06
.500E-06
.044E-04
.280E-06

.854E-06
.987E-06
.576E-04
.099E+00
.852E-06
.059E-03
.763E-04
.321E-01
DOSE RATE
.278E-04
.280E-04
.279E-04
FACTORS

Inhalation
2
1
1
1
1
1
4
1
7
6
9
.329E-05
.952E-05
.543E-07
.274E-06
.761E-01
.344E-06
.292E-06
.123E-06
.735E-07
.699E-05
.461E-07
*
Air


Immersion
8.
2.
2.
4 .
6.
7.
3.
7.
.140E+05
.046E+06
.760E+05
. 107E+05
.068E+05
.104E+05
.777E+05
.456E+05
7
3
9
1
2
2
1
7
FACTOR
Page 2

Ground
Surface
.067E+02
.585E+03
. 139E+01
.735E+02
.305E+02
.949E+02
.251E+02
.996E+02
CONVERSION FACTORS
2.
9.
1 .


.442E+07
. 102E + 06
.676E+07

Air
2
3
1


Immersion
8.
1.
2.
8.
2.
1 .
5.
1 .
6.
4.
7.
.742E-02
.257E-02
.760E-02
.014E-01
.036E-01
.096E-01
. 172E-02
.212E-01
.471E-02
.689E-02
.915E-02
2
5
1
1
8
3
1
3
2
1
3
. 120E + 04
.408E+03
.230E+04

Ground
Surface
.895E-05
.219E-06
.048E-05
.404E-03
.603E-05
.621E-05
.577E-05
.269E-05
.715E-05
.258E-05
.321E-05
GENETIC EFFECT RISK CONVERSION FACTORS

3.657E-11     7.892E-12     4.358E+00
3.198E-03
                                 Ch. 13 Pg. 27

-------
Mar  19, 2000
     Organ
     GONADS
     BREAST
     R MAR
     LUNGS
     THYROID
     ENDOST
     RMNDR
     EFFEC
     TESTES
     OVARIES
     AVERAGE
     Cancer
     LEUKEMIA
     BONE
     THYROID
     BREAST
     LUNG
     STOMACH
     BOWEL
     LIVER
     PANCREAS
     URINARY
     OTHER
     AVERAGE
10 pm
* NUCLIDE U-235
DOSE RATE CONVERSION FACTORS
Ingestion
3.
3.
1 .
3.
3.
1.
1.
1.
.811E-05
.779E-05
.013E-03
.767E-05
.754E-05
.572E-02
.299E-03
.004E-03
Inhalation
1
2
2
1
1
3
4
1
GENETIC EFFECT
1 .
1 .
1 .
.021E-03
. 041E-03
.031E-03
2
2
2
RISK CONVERSION


Ingestion
1 .
8.
6.
5.
7.
5.
9.
4 .
3.
2.
4.
. 074E-04
.775E-05
.655E-07
.647E-06
.138E-06
.160E-06
. 027E-06
. 107E-06
.535E-06
.829E-04
.323E-06

.177E-05
.002E-05
.656E-04
. 017E+00
.549E-05
.938E-03
.131E-04
.223E-01
DOSE RATE
.227E-04
.773E-04
.500E-04
FACTORS

Inhalation
2
2
3
4
1
7
2
5
4
6
4
. 827E-05
.024E-05
.760E-07
.338E-06
.635E-01
.298E-06
.076E-05
.644E-06
.078E-06
.281E-05
.988E-06
*
Air


Immersion
8.
9.
6.
6.
8.
9.
6.
7.
.732E+08
.546E+08
.068E+08
.327E+08
.510E+08
.361E+08
.231E+08
.508E+08
1
2
1
1
1
2
1
1
FACTOR
Page 3

Ground
Surface
.939E+05
.198E+05
.336E+05
.391E+05
.876E+05
.068E+05
.372E+05
.672E+05
CONVERSION FACTORS
2.
1 .
2.


.620E+10
.510E+10
.065E+10

Air
5
3
4


Immersion
1 .
1.
3.
3.
3.
1 .
9.
2.
1 .
7.
1.
.920E+02
.656E+01
.869E+01
.730E+02
.129E+02
.852E+02
. 162E + 01
.022E+02
. 185E + 02
.427E+01
.450E+02
4
3
8
8
6
4
2
4
2
1
3
.816E+06
.330E+06
.573E+06

Ground
Surface
.231E-02
.661E-03
.533E-03
.609E-02
.897E-02
.090E-02
.018E-02
.462E-02
.625E-02
.639E-02
.210E-02
GENETIC EFFECT RISK CONVERSION FACTORS

4.125E-11     1.616E-11     5.369E+03
1.189E+00
                                 Ch. 13 Pg. 28

-------
Mar  19, 2000
     Organ
     GONADS
     BREAST
     R MAR
     LUNGS
     THYROID
     ENDOST
     RMNDR
     EFFEC
     TESTES
     OVARIES
     AVERAGE
     Cancer
     LEUKEMIA
     BONE
     THYROID
     BREAST
     LUNG
     STOMACH
     BOWEL
     LIVER
     PANCREAS
     URINARY
     OTHER
     AVERAGE
10 pm
* NUCLIDE U-236
DOSE RATE CONVERSION FACTORS
Ingestion
3.
3.
9.
3.
3.
1.
1.
9.
.641E-05
.641E-05
.731E-04
.641E-05
.641E-05
.536E-02
.324E-03
.948E-04
Inhalation
9
9
2
1
9
3
3
1
GENETIC EFFECT
1 .
1 .
1 .
.OOOE-03
.001E-03
.OOOE-03
2
2
2
RISK CONVERSION


Ingestion
9.
8.
6.
5.
6.
4 .
7 .
4 .
3.
2.
4.
.466E-05
.035E-05
.300E-07
.300E-06
.739E-06
.896E-06
.145E-06
.743E-06
.310E-06
.888E-04
.048E-06

.317E-06
.438E-06
.433E-04
. 040E+00
.314E-06
.837E-03
.570E-04
.250E-01
DOSE RATE
. 154E-04
.156E-04
.155E-04
FACTORS

Inhalation
2
1
1
1
1
1
4
1
7
6
8
.191E-05
.838E-05
.458E-07
.203E-06
.667E-01
.269E-06
.056E-06
.060E-06
.303E-07
.355E-05
.931E-07
*
Air


Immersion
6.
1 .
1 .
2.
4 .
5.
2.
5.
.290E+05
.772E+06
.720E+05
.990E+05
.477E+05
.402E+05
.688E+05
.899E+05
6
3
6
1
1
2
9
7
FACTOR
Page 4

Ground
Surface
.290E+02
.356E+03
.512E+01
.399E+02
.813E+02
.409E+02
.627E+01
.268E+02
CONVERSION FACTORS
1 .
6.
1 .


. 887E+07
.460E+06
.267E+07

Air
1
2
1


Immersion
5.
9.
2.
6.
1.
7 .
3.
8.
4 .
3.
5.
.449E-02
.561E-03
.036E-02
.942E-01
.482E-01
.759E-02
.574E-02
.691E-02
.389E-02
.277E-02
.369E-02
2
4
8
1
6
2
1
2
2
8
2
. 887E + 04
.642E+03
. 076E + 04

Ground
Surface
.063E-05
.263E-06
.246E-06
.314E-03
.934E-05
.731E-05
. 148E-05
.335E-05
.136E-05
.588E-06
.612E-05
GENETIC EFFECT RISK CONVERSION FACTORS

3.457E-11     7.460E-12     3.294E+00
2.798E-03
                                 Ch. 13 Pg. 29

-------
Mar  19, 2000
     Organ
     GONADS
     BREAST
     R MAR
     LUNGS
     THYROID
     ENDOST
     RMNDR
     EFFEC
     TESTES
     OVARIES
     AVERAGE
     Cancer
     LEUKEMIA
     BONE
     THYROID
     BREAST
     LUNG
     STOMACH
     BOWEL
     LIVER
     PANCREAS
     URINARY
     OTHER
     AVERAGE
10 pm
* NUCLIDE U-238
DOSE RATE CONVERSION FACTORS
Ingestion
3.
3.
1 .
3.
3.
1.
1.
9.
.464E-05
.467E-05
.087E-03
.464E-05
.461E-05
.408E-02
.248E-03
.465E-04
Inhalation
9
1
2
9
1
3
3
1
GENETIC EFFECT
9.
9.
9.
.502E-04
.509E-04
.506E-04
2
2
2
RISK CONVERSION


Ingestion
1 .
7.
6.
5.
6.
4 .
7 .
3.
3.
2.
3.
.364E-04
.601E-05
.076E-07
.123E-06
.509E-06
.656E-06
.207E-06
.860E-06
. 197E-06
.760E-04
.909E-06

.642E-06
. 122E-05
. 875E-04
.773E-01
.045E-05
.540E-03
.947E-04
.175E-01
DOSE RATE
. 139E-04
. 196E-04
. 169E-04
FACTORS

Inhalation
3
1
1
1
1
3
2
1
1
6
1
.538E-05
.771E-05
.892E-07
.657E-06
.577E-01
.089E-06
.055E-05
.884E-06
.139E-06
.084E-05
.393E-06
*
Air


Immersion
5.
1 .
1 .
2.
3.
4.
2.
5.
.365E+05
.550E+06
.413E+05
.505E+05
.774E+05
.514E+05
.247E+05
.060E+05
5
2
5
1
1
2
8
6
FACTOR
Page 5

Ground
Surface
.550E+02
.967E+03
.550E+01
.214E+02
.572E+02
.094E+02
.303E+01
.410E+02
CONVERSION FACTORS
1 .
5.
1 .


.609E+07
.395E+06
. 074E + 07

Air
1
2
9


Immersion
4 .
7.
1.
6.
1.
6.
2.
7 .
3.
2.
4.
.477E-02
.989E-03
.717E-02
.072E-01
.242E-01
.460E-02
.964E-02
.238E-02
.638E-02
.748E-02
.450E-02
1
3
7
1
6
2
9
1
1
7
2
.665E+04
.287E+03
.468E+03

Ground
Surface
.758E-05
.706E-06
.153E-06
.162E-03
.017E-05
.346E-05
.812E-06
.985E-05
.846E-05
.335E-06
.258E-05
GENETIC EFFECT RISK CONVERSION FACTORS

3.504E-11     1.052E-11     2.792E+00
2.462E-03
                                 Ch. 13 Pg. 30

-------
13.2.5 Dose and Risk Equivalent Summaries


                                 CAP88-PC

                                  Version 2.00


                    Clean Air Act Assessment Package - 1988



     DOSE   AND   RISK   EQUIVALENT   SUMMARIES

                        Non-Radon Population Assessment
                             Mar  19,  2000  05:10 pm
         Facility:   Reactive Metals
          Address:   Address
             City:   Ashtabula
            State:   OH          Zip:
         Source Category:  DOE Facilities
             Source Type:  Stack
           Emission Year:  1986
         Comments:   Reactive Metals - - Population Run
            Dataset Name:
            Dataset Date:
               Wind File:
         Population File:
Reactive Metals
Mar  19, 2000  05:10 pm
C:\CAP88PC2\WNDFILES\ERIEPA.WND
C:\CAP88PC2\POPFILES\RMIASHTA.POP
                                  Ch. 13 Pg. 31

-------
Mar  19, 2000  05:10 pm
                                SUMMARY
                                Page  1
                  ORGAN DOSE EQUIVALENT SUMMARY
           Organ
 Selected
Individual
 (mrem/y)
  Collective
  Population
(person-rem/y)
           GONADS
           BREAST
           R MAR
           LUNGS
           THYROID
           ENDOST
           RMNDR
 4 .33E-04
 7.33E-04
 6.25E-03
 6.19E+00
 3.88E-04
 7.97E-02
 7.64E-03
   5.53E-03
   6.23E-03
   1.54E-01
   1.01E+01
   5.41E-03
   2.04E+00
   1.81E-01
           EFFEC
 7 .48E-01
   1.35E+00
                  PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY
           Pathway
           INGESTION
           INHALATION
           AIR IMMERSION
           GROUND SURFACE
           INTERNAL
           EXTERNAL
 Selected
Individual
 (mrem/y)
 3.82E-03
 7.44E-01
 5.10E-09
 2.18E-04
 7.48E-01
 2.18E-04
  Collective
  Population
(person-rem/y)
1.
1.
7 .
4 .
1 .
4 .
.34E-01
.22E+00
.98E-09
. 98E-04
.35E+00
. 98E-04
           TOTAL
 7.48E-01
   1.35E+00
                                 Ch. 13 Pg. 32

-------
Mar  19, 2000  05:10 pm                                         SUMMARY
                                                                Page   2
                  NUCLIDE EFFECTIVE DOSE EQUIVALENT  SUMMARY
                                Selected             Collective
                               Individual            Population
           Nuclides              (mrem/y)           (person-rem/y)
           U-234                5.54E-02              1.38E-01
           U-235                6.32E-03              1.10E-02
           U-236                2.56E-04              4.39E-04
           U-238                6.87E-01              1.20E+00

           TOTAL                7.48E-01              1.35E+00
                                 Ch. 13 Pg. 33

-------
Mar  19, 2000  05:10 pm
                                     SUMMARY
                                     Page  3
                  CANCER RISK SUMMARY
            Cancer
Selected Individual
  Total Lifetime
 Fatal Cancer Risk
Total Collective
Population Fatal
  Cancer Risk
   (Deaths/y)
            LEUKEMIA
            BONE
            THYROID
            BREAST
            LUNG
            STOMACH
            BOWEL
            LIVER
            PANCREAS
            URINARY
            OTHER
      7.91E-09
      4.23E-09
      1.19E-10
      2.36E-09
      9.98E-06
      7.62E-10
      1.70E-09
      6.89E-10
      4.51E-10
      1.51E-08
      5.52E-10
    2.69E-06
    1.55E-06
    1.50E-08
    1.72E-07
    2.31E-04
    1.10E-07
    1.77E-07
    9.44E-08
    7.35E-08
    5.60E-06
    8.98E-08
            TOTAL
      l.OOE-05
    2.42E-04
                  PATHWAY RISK SUMMARY
            Pathway
Selected Individual
  Total Lifetime
 Fatal Cancer Risk
Total Collective
Population Fatal
  Cancer Risk
   (Deaths/y)
            INGESTION
            INHALATION
            AIR IMMERSION
            GROUND SURFACE
            INTERNAL
            EXTERNAL
      2.10E-08
      9.99E-06
      1.18E-13
      4.93E-09
      l.OOE-05
      4.93E-09
    1.04E-05
    2.31E-04
    2.61E-12
    1.59E-07
    2.42E-04
    1.59E-07
            TOTAL
      l.OOE-05
    2.42E-04
                                 Ch. 13 Pg. 34

-------
Mar  19, 2000  05:10 pm                                         SUMMARY
                                                                Page  4
                  PATHWAY GENETIC RISK SUMMARY
                     (Collective Population)
                                           Genetic  Risk
                   Pathway                 (person-rem/y)
                   INGESTION                 6.32E-04
                   INHALATION                1.36E-05
                   AIR IMMERSION             7.18E-09
                   GROUND SURFACE            3.83E-04
                   INTERNAL                  6.45E-04
                   EXTERNAL                  3.83E-04

                   TOTAL                     1.03E-03
                                 Ch. 13 Pg. 35

-------
Mar  19, 2000  05:10 pm                                        SUMMARY
                                                               Page  5
                  NUCLIDE RISK SUMMARY
                                                  Total Collective
                          Selected Individual     Population Fatal
                            Total Lifetime          Cancer Risk
            Nuclide        Fatal Cancer Risk          (Deaths/y)
            U-234               7.36E-07              2.44E-05
            U-235               8.58E-08              2.00E-06
            U-236               3.40E-09              7.77E-08
            U-238               9.19E-06              2.15E-04

            TOTAL               l.OOE-05              2.42E-04
                                 Ch. 13 Pg. 36

-------
Mar 19,
2000 05:10 pm
INDIVIDUAL EFFECTIVE DOSE EQUIVALENT RATE
(All Radionuclides and Pathways)
SUMMARY
Page 6
(mrem/y)
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7.
0.
0.
310
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.5E-01
.OE+00
.OE+00

0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
810
.OE+00
.2E-01
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0.
0.
5.
0.
0.
6.
0.
0.
0.
4.
0.
0.
0.
0.
0.
0.
1500
.OE+00
.OE+00
.4E-02
.OE+00
.OE+00
.3E-02
.OE+00
.OE+00
.OE+00
.7E-02
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

1
4
0
2
3
2
0
1
0
0
0
2
4
3
0
0
2500
.8E-01
.4E-02
.OE+00
.6E-02
.4E-02
.9E-02
.OE+00
.7E-02
.OE+00
.OE+00
.OE+00
.9E-02
.2E-02
.9E-02
.OE+00
.OE+00

0.
0.
0.
0.
2.
0.
1.
1.
1.
0.
0.
0.
0.
0.
0.
0.
3500
.OE+00
.OE+00
.OE+00
.OE+00
.OE-02
.OE+00
.6E-02
.OE-02
.6E-02
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0
0
0
0
1
1
0
6
0
0
0
0
1
0
0
0
4500
.OE+00
.OE+00
.OE+00
.OE+00
.4E-02
.2E-02
.OE+00
.9E-03
.OE+00
.OE+00
.OE+00
.OE+00
.7E-02
.OE+00
.OE+00
.OE+00

0.
0.
0.
0.
6.
5.
5.
3.
5.
0.
3.
5.
7.
0.
0.
0.
7500
.OE+00
.OE+00
.OE+00
.OE+00
.7E-03
.6E-03
.OE-03
.2E-03
.1E-03
.OE+00
.9E-03
.4E-03
.8E-03
.OE+00
.OE+00
.OE+00
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
2.
2.
1.
1.
1.
1.
1.
2.
2.
2.
0.
0.
15000
.OE+00
.OE+00
.OE+00
.OE+00
.5E-03
.1E-03
.9E-03
.2E-03
.9E-03
.4E-03
.4E-03
.OE-03
.8E-03
.7E-03
.OE+00
.OE+00

0
0
0
0
0
1
9
6
9
7
7
9
1
1
0
0
25000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE-03
.OE-04
.OE-04
.OE-04
.1E-04
.OE-04
.4E-04
.3E-03
.3E-03
.OE+00
.OE+00

0.
0.
0.
0.
0.
6.
5.
4.
5.
4.
4.
6.
8.
8.
0.
0.
35000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.6E-04
.9E-04
.OE-04
.9E-04
.7E-04
.7E-04
.1E-04
.6E-04
.3E-04
.OE+00
.OE+00

0
0
0
0
0
4
4
3
4
3
3
4
6
5
0
0
45000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.8E-04
.3E-04
.OE-04
.3E-04
.5E-04
.5E-04
.4E-04
.1E-04
.9E-04
.OE+00
.OE+00

0.
0.
0.
0.
0.
3.
3.
2.
3.
2.
2.
3.
4.
4.
0.
0.
55000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.7E-04
.4E-04
.4E-04
.4E-04
.8E-04
.8E-04
.4E-04
.7E-04
.5E-04
.OE+00
.OE+00

0
0
0
0
0
2
2
1
2
2
2
2
3
3
0
0
70000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.6E-04
.5E-04
.9E-04
.4E-04
.1E-04
.1E-04
.5E-04
.4E-04
.1E-04
.OE+00
.OE+00


































Ch. 13 Pg. 37

-------
Mar 19,
2000 05:10 pm SUMMARY
Page 7
COLLECTIVE EFFECTIVE DOSE EQUIVALENT (person rem/y)
(All Radionuclides and Pathways)
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7.
0.
0.
310
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.5E-04
.OE+00
.OE+00

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
810
.OE+00
.3E-03
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0.
0.
1.
0.
0.
2.
0.
0.
0.
4.
0.
0.
0.
0.
0.
0.
1500
.OE+00
.OE+00
.1E-01
.OE+00
.OE+00
.7E-02
.OE+00
.OE+00
.OE+00
.7E-03
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

1
5
0
5
8
2
0
7
0
0
0
2
3
2
0
0
2500
.9E-01
.OE-03
.OE+00
.7E-02
.2E-02
.3E-02
.OE+00
.3E-02
.OE+00
.OE+00
.OE+00
.5E-02
.3E-02
.1E-03
.OE+00
.OE+00

0.
0.
0.
0.
6.
0.
3.
4.
3.
0.
0.
0.
0.
0.
0.
0.
3500
.OE+00
.OE+00
.OE+00
.OE+00
.2E-02
.OE+00
.8E-02
.1E-03
.2E-02
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0
0
0
0
4
3
0
2
0
0
0
0
1
0
0
0
4500
.OE+00
.OE+00
.OE+00
.OE+00
.1E-03
.5E-03
.OE+00
.9E-02
.OE+00
.OE+00
.OE+00
.OE+00
.5E-03
.OE+00
.OE+00
.OE+00

0.
0.
0.
0.
1.
6.
8.
9.
2.
0.
3.
6.
6.
0.
0.
0.
7500
.OE+00
.OE+00
.OE+00
.OE+00
.2E-03
.2E-03
.5E-03
.7E-03
.7E-03
.OE+00
.8E-03
.7E-04
.2E-03
.OE+00
.OE+00
.OE+00
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
9.
1.
6.
3.
1.
1.
2.
6.
7.
4.
0.
0.
15000
.OE+00
.OE+00
.OE+00
.OE+00
.6E-04
.6E-03
.3E-03
.7E-03
.5E-02
.4E-03
.OE-03
.2E-03
.5E-04
.OE-02
.OE+00
.OE+00

0
0
0
0
0
1
3
2
2
1
1
7
2
8
0
0
25000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.6E-02
.1E-03
.OE-03
.OE-03
.3E-03
.4E-03
.7E-04
.3E-03
.2E-03
.OE+00
.OE+00

0.
0.
0.
0.
0.
5.
4.
1.
1.
1.
1.
2.
4.
5.
0.
0.
35000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.8E-03
.5E-03
.3E-03
.4E-03
.7E-03
.5E-03
.OE-03
.6E-03
.OE-03
.OE+00
.OE+00

0
0
0
0
0
2
3
2
2
1
1
1
8
7
0
0
45000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.4E-02
.OE-03
.1E-03
.5E-03
.3E-03
.8E-03
.6E-03
.2E-04
.9E-03
.OE+00
.OE+00

0.
0.
0.
0.
0.
2.
7.
2.
2.
2.
1.
8.
5.
2.
0.
0.
55000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.3E-02
.9E-03
.2E-03
.6E-03
.1E-03
.2E-03
.6E-03
.3E-03
.1E-02
.OE+00
.OE+00

0
0
0
0
0
8
4
5
3
1
3
3
6
4
0
0
70000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.2E-02
.6E-02
.OE-03
.4E-02
.7E-02
.1E-03
.9E-03
.OE-03
.7E-02
.OE+00
.OE+00


































Ch. 13 Pg. 38

-------
Mar 19,
2000 05:10 pm
AVERAGE COLLECTIVE GENETIC DOSE EQUIVALENT
(person rem)
(All Radionuclides and Pathways)
SUMMARY
Page 8
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1 .
0.
0.
310
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE-05
.OE+00
.OE+00

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
810
.OE+00
.9E-05
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0.
0.
1 .
0.
0.
4 .
0.
0.
0.
8.
0.
0.
0.
0.
0.
0.
1500
.OE+00
.OE+00
.7E-03
.OE+00
.OE+00
.2E-04
.OE+00
.OE+00
.OE+00
.IE-OS
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

2
8
0
1
1
4
0
1
0
0
0
4
5
3
0
0
2500
.9E-03
.4E-05
.OE+00
.OE-03
.4E-03
.3E-04
.OE+00
.5E-03
.OE+00
.OE+00
.OE+00
.7E-04
. 9E-04
.8E-05
.OE+00
.OE+00

0.
0.
0.
0.
1 .
0.
8.
1 .
7 .
0.
0.
0.
0.
0.
0.
0.
3500
.OE+00
.OE+00
.OE+00
.OE+00
.2E-03
.OE+00
.4E-04
. OE-04
.3E-04
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0
0
0
0
8
8
0
8
0
0
0
0
3
0
0
0
4500
.OE+00
.OE+00
.OE+00
.OE+00
.8E-05
.2E-05
.OE+00
.7E-04
.OE+00
.OE+00
.OE+00
.OE+00
.4E-05
.OE+00
.OE+00
.OE+00

0.
0.
0.
0.
3.
2.
3.
4 .
1 .
0.
1 .
2.
1 .
0.
0.
0.
7500
.OE+00
.OE+00
.OE+00
.OE+00
.6E-05
. OE-04
. OE-04
.5E-04
. OE-04
.OE+00
.6E-04
.4E-05
. 9E-04
.OE+00
.OE+00
.OE+00
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
5.
1 .
4 .
3.
1 .
1 .
1 .
4 .
4 .
2.
0.
0.
15000
.OE+00
.OE+00
.OE+00
.OE+00
.OE-05
. OE-04
.3E-04
.5E-04
.1E-03
.2E-04
.7E-04
.2E-04
.OE-05
.1E-03
.OE+00
.OE+00

0
0
0
0
0
1
3
3
2
1
2
9
2
7
0
0
25000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.7E-03
.7E-04
.4E-04
.5E-04
. 9E-04
. 1E-04
.2E-05
. OE-04
.3E-04
.OE+00
.OE+00

0.
0.
0.
0.
0.
9.
7 .
3.
2.
3.
3.
3.
5.
6.
0.
0.
35000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
. OE-04
.7E-04
. OE-04
.5E-04
.7E-04
. 1E-04
.4E-04
. 9E-04
.4E-04
.OE+00
.OE+00

0
0
0
0
0
4
6
6
5
3
5
3
1
1
0
0
45000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.8E-03
. 9E-04
.5E-04
.7E-04
.7E-04
. OE-04
.7E-04
.4E-04
.4E-03
.OE+00
.OE+00

0.
0.
0.
0.
0.
6.
2.
8.
7 .
7 .
4 .
2.
1 .
4 .
0.
0.
55000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.1E-03
.2E-03
.4E-04
.6E-04
. 1E-04
. 1E-04
.4E-03
.1E-03
.5E-03
.OE+00
.OE+00

0
0
0
0
0
3
1
2
1
7
1
1
1
1
0
0
70000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE-02
.8E-02
.5E-03
.3E-02
.6E-03
.4E-03
.5E-03
.7E-03
.4E-02
.OE+00
.OE+00


































Ch. 13 Pg. 39

-------
Mar 19,
2000 05:10 pm
INDIVIDUAL LIFETIME RISK (deaths)
(All Radionuclides and Pathways)
SUMMARY
Page 9
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1 .
0.
0.
310
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE-05
.OE+00
.OE+00

0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
810
.OE+00
.OE-06
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0.
0.
7 .
0.
0.
8.
0.
0.
0.
6.
0.
0.
0.
0.
0.
0.
1500
.OE+00
.OE+00
.2E-07
.OE+00
.OE+00
.5E-07
.OE+00
.OE+00
.OE+00
.2E-07
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

2
5
0
3
4
3
0
2
0
0
0
3
5
5
0
0
2500
.5E-06
. 9E-07
.OE+00
.5E-07
.5E-07
. 8E-07
.OE+00
.3E-07
.OE+00
.OE+00
.OE+00
. 9E-07
.6E-07
. 1E-07
.OE+00
.OE+00

0.
0.
0.
0.
2.
0.
2.
1 .
2.
0.
0.
0.
0.
0.
0.
0.
3500
.OE+00
.OE+00
.OE+00
.OE+00
.7E-07
.OE+00
. 1E-07
.3E-07
.2E-07
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0
0
0
0
1
1
0
9
0
0
0
0
2
0
0
0
4500
.OE+00
.OE+00
.OE+00
.OE+00
. 9E-07
.6E-07
.OE+00
.2E-08
.OE+00
.OE+00
.OE+00
.OE+00
.3E-07
.OE+00
.OE+00
.OE+00

0.
0.
0.
0.
8.
7 .
6.
4 .
6.
0.
5.
7 .
1 .
0.
0.
0.
7500
.OE+00
.OE+00
.OE+00
.OE+00
.9E-08
.4E-08
.6E-08
.2E-08
.7E-08
.OE+00
.IE-OS
.IE-OS
. OE-07
.OE+00
.OE+00
.OE+00
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
3.
2.
2.
1 .
2.
1 .
1 .
2.
3.
3.
0.
0.
15000
.OE+00
.OE+00
.OE+00
.OE+00
.3E-08
.8E-08
.4E-08
.6E-08
.4E-08
.8E-08
.8E-08
.5E-08
.7E-08
.6E-08
.OE+00
.OE+00

0
0
0
0
0
1
1
7
1
8
8
1
1
1
0
0
25000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.3E-08
.1E-08
.3E-09
.1E-08
.8E-09
.7E-09
.2E-08
.7E-08
.7E-08
.OE+00
.OE+00

0.
0.
0.
0.
0.
8.
7 .
4 .
7 .
5.
5.
7 .
1 .
1 .
0.
0.
35000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.1E-09
.2E-09
.7E-09
.2E-09
.6E-09
.5E-09
.4E-09
.IE-OS
.OE-08
.OE+00
.OE+00

0
0
0
0
0
5
5
3
5
4
3
5
7
7
0
0
45000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.7E-09
.1E-09
.4E-09
.1E-09
.OE-09
.9E-09
.2E-09
.5E-09
.2E-09
.OE+00
.OE+00

0.
0.
0.
0.
0.
4 .
3.
2.
3.
3.
3.
3.
5.
5.
0.
0.
55000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.2E-09
.8E-09
.5E-09
.8E-09
.OE-09
.OE-09
.9E-09
.5E-09
.3E-09
.OE+00
.OE+00

0
0
0
0
0
2
2
1
2
2
2
2
3
3
0
0
70000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.7E-09
.6E-09
.8E-09
.6E-09
.1E-09
.1E-09
.7E-09
.8E-09
.5E-09
.OE+00
.OE+00


































Ch. 13 Pg. 40

-------
Mar 19,
2000 05:10 pm
COLLECTIVE FATAL CANCER RATE (deaths/y)
(All Radionuclides and Pathways)
SUMMARY
Page 10
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1 .
0.
0.
310
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.4E-07
.OE+00
.OE+00

0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
810
.OE+00
.5E-07
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0.
0.
2.
0.
0.
5.
0.
0.
0.
8.
0.
0.
0.
0.
0.
0.
1500
.OE+00
.OE+00
.OE-05
.OE+00
.OE+00
.OE-06
.OE+00
.OE+00
.OE+00
.9E-07
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

3
9
0
1
1
4
0
1
0
0
0
4
6
4
0
0
2500
.6E-05
.5E-07
.OE+00
.IE-OS
.6E-05
.4E-06
.OE+00
.4E-05
.OE+00
.OE+00
.OE+00
.6E-06
.2E-06
. OE-07
.OE+00
.OE+00

0.
0.
0.
0.
1 .
0.
7.
7.
6.
0.
0.
0.
0.
0.
0.
0.
3500
.OE+00
.OE+00
.OE+00
.OE+00
.2E-05
.OE+00
.2E-06
.7E-07
.1E-06
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00

0
0
0
0
7
6
0
5
0
0
0
0
2
0
0
0
4500
.OE+00
.OE+00
.OE+00
.OE+00
.7E-07
.6E-07
.OE+00
.5E-06
.OE+00
.OE+00
.OE+00
.OE+00
. 8E-07
.OE+00
.OE+00
.OE+00

0.
0.
0.
0.
2.
1 .
1.
1.
5.
0.
7.
1.
1 .
0.
0.
0.
7500
.OE+00
.OE+00
.OE+00
.OE+00
.3E-07
.2E-06
.6E-06
.8E-06
.1E-07
.OE+00
.OE-07
.3E-07
.2E-06
.OE+00
.OE+00
.OE+00
Distance (m)
Direction
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

0.
0.
0.
0.
1.
3.
1.
6.
2.
2.
3.
1.
1.
7.
0.
0.
15000
.OE+00
.OE+00
.OE+00
.OE+00
.8E-07
.OE-07
.2E-06
.7E-07
.8E-06
.6E-07
.6E-07
.1E-06
.4E-07
.4E-06
.OE+00
.OE+00

0
0
0
0
0
2
5
3
3
2
2
1
4
1
0
0
25000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.8E-06
.5E-07
.5E-07
.6E-07
.2E-07
.5E-07
.4E-07
.1E-07
.5E-06
.OE+00
.OE+00

0.
0.
0.
0.
0.
1.
7.
2.
2.
2.
2.
3.
8.
8.
0.
0.
35000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE-06
.7E-07
.1E-07
.4E-07
.9E-07
.5E-07
.4E-07
.2E-07
.8E-07
.OE+00
.OE+00

0
0
0
0
0
4
5
3
4
2
2
2
1
1
0
0
45000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.OE-06
.OE-07
.3E-07
.1E-07
.1E-07
.8E-07
.7E-07
.4E-07
.4E-06
.OE+00
.OE+00

0.
0.
0.
0.
0.
3.
1.
3.
4.
3.
1.
1.
8.
3.
0.
0.
55000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.8E-06
.3E-06
.2E-07
.2E-07
.2E-07
.8E-07
.4E-06
.8E-07
.4E-06
.OE+00
.OE+00

0
0
0
0
0
1
6
6
5
2
4
5
9
7
0
0
70000
.OE+00
.OE+00
.OE+00
.OE+00
.OE+00
.2E-05
.8E-06
.8E-07
.1E-06
.4E-06
.4E-07
.8E-07
.6E-07
.4E-06
.OE+00
.OE+00


































Ch. 13 Pg. 41

-------
13.2.6 Concentration Tables
                                 CAP88-PC

                                  Version 2.00


                    Clean Air Act Assessment Package - 1988



                    CONCENTRATION   TABLES

                        Non-Radon Population Assessment
                             Mar  19, 2000  05:10 pm
          Facility:  Reactive Metals
           Address:  Address
              City:  Ashtabula
             State:  OH                     Zip:
          Source Category:  DOE Facilities
              Source Type:  Stack
            Emission Year:  1986
          Comments:  Reactive Metals - - Population Run
             Dataset Name:  Reactive Metals
             Dataset Date:  Mar  19, 2000  05:10 pm
                Wind File:  C:\CAP88PC2\WNDFILES\ERIEPA.WND
          Population File:  C:\CAP88PC2\POPFILES\RMIASHTA.POP
                                  Ch. 13 Pg. 42

-------
lar 19, 2000 05
Wind
Toward
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Distance
(meters)
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 1
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
(pCi/m3)
1.
1 .
7 .
2.
6.
7.
3.
8.
3.
3.
1 .
3.
1 .
1.
6.
1.
1.
8.
3.
1 .
7 .
6.
2.
7.
3.
2.
1 .
3.
1 .
1.
4.
1.
6.
4 .
1 .
5.
3.
3.
1.
3.
2.
2.
8.
2.
1 .
1.
5.
.4E-04
.8E-05
.2E-07
.1E-03
.7E-05
.4E-06
.OE-07
.6E-04
.4E-05
.2E-06
.3E-07
.7E-04
.7E-05
.5E-06
.OE-08
.7E-04
.IE-OS
. 9E-07
.6E-08
. OE-04
.5E-06
.2E-07
.5E-08
.3E-05
.6E-06
. 9E-07
.2E-08
.4E-05
.4E-06
.1E-07
.4E-09
.3E-05
.1E-07
.8E-08
.9E-09
.7E-06
. 8E-07
.OE-08
.2E-09
.6E-06
.6E-07
.IE-OS
.4E-10
.5E-06
. 9E-07
.5E-08
.9E-10
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
2
3
1
3
1
1
5
1
6
5
2
6
3
2
1
3
1
1
6
1
1
1
4
1
6
5
2
6
2
1
7
2
1
8
3
1
6
5
2
6
4
3
1
4
3
2
1
.5E-11
.3E-12
.3E-13
.8E-10
.2E-11
.3E-12
.4E-14
.5E-10
.2E-12
.7E-13
.3E-14
.7E-11
.1E-12
.7E-13
.1E-14
.1E-11
.9E-12
.6E-13
.5E-15
.9E-11
.3E-12
.1E-13
.5E-15
.3E-11
.4E-13
.2E-14
. 1E-15
.1E-12
.4E-13
.9E-14
.8E-16
.3E-12
.1E-13
.7E-15
.5E-16
. OE-12
. 9E-14
.4E-15
.2E-16
.5E-13
.8E-14
.7E-15
.5E-16
.4E-13
.4E-14
.6E-15
.1E-16
7.
6.
2.
7 .
2.
2.
9.
2.
1.
1 .
4 .
1 .
9.
7.
2.
8.
6.
5.
2.
6.
4 .
3.
1.
4.
2.
2.
9.
2.
1 .
1.
4.
1.
7.
5.
2.
6.
4 .
3.
1.
4.
3.
2.
1 .
3.
2.
2.
8.
.6E-12
.OE-13
.4E-14
.2E-11
.9E-12
.3E-13
.3E-15
.7E-11
.6E-12
.2E-13
.9E-15
.4E-11
.2E-13
.2E-14
.9E-15
.5E-12
.4E-13
. 1E-14
.OE-15
.OE-12
.9E-13
.9E-14
.6E-15
.6E-12
.9E-13
.2E-14
.OE-16
.7E-12
.3E-13
.1E-14
.2E-16
.2E-12
.2E-14
.6E-15
.3E-16
.7E-13
. 9E-14
.9E-15
.6E-16
.6E-13
.7E-14
.9E-15
.2E-16
.4E-13
. 8E-14
.2E-15
.9E-17
3
3
1
4
1
1
6
1
7
7
2
8
4
3
1
4
2
2
8
2
1
1
6
1
9
7
3
8
3
3
1
3
1
1
5
1
1
9
3
1
8
6
2
7
6
4
2
.2E-
.9E-
.5E-
.5E-
.5E-
.6E-
.3E-
.8E-
.7E-
.OE-
.8E-
.2E-
.OE-
.4E-
.4E-
.OE-
.6E-
.1E-
.5E-
.5E-
.8E-
.5E-
.1E-
.8E-
.3E-
.4E-
.OE-
.8E-
.8E-
.OE-
.2E-
.5E-
.8E-
.4E-
.8E-
.7E-
.2E-
.3E-
.8E-
.1E-
.4E-
.6E-
.7E-
.9E-
.2E-
.8E-
.OE-
11
12
13
10
11
12
14
10
12
13
14
11
12
13
14
11
12
13
15
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
16
12
13
15
16
12
14
15
16
13
14
15
16
Ch. 13 Pg. 43

-------
lar 19, 2000 05
Wind
Toward
N
N
N
N
N
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
Distance
(meters)
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 2
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
(pCi/m3)
1.
1 .
8.
3.
9.
4.
5.
2.
6.
1 .
1 .
7 .
2.
8.
7.
3.
9.
4 .
3.
1 .
4 .
2.
2.
8.
2.
1 .
1 .
5.
1 .
8.
6.
2.
8.
3.
2.
1 .
2.
1.
1.
4.
1.
8.
6.
2.
8.
5.
4.
.7E-06
. 1E-07
.2E-09
.3E-10
.7E-07
.IE-OS
.2E-06
.1E-07
.OE-04
.8E-05
.8E-06
.4E-08
. 1E-04
.5E-06
.7E-07
.IE-OS
.OE-05
.2E-06
.5E-07
.4E-08
.IE-OS
.5E-06
.1E-07
.6E-09
.5E-05
.8E-06
.5E-07
.9E-09
.7E-05
.4E-07
.8E-08
.7E-09
.OE-06
. 1E-07
.5E-08
.OE-09
.9E-06
.4E-07
.IE-OS
.4E-10
.3E-06
.6E-08
.7E-09
.7E-10
. OE-07
.9E-08
.6E-09
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
3
1
1
5
1
7
9
3
1
3
3
1
3
1
1
5
1
7
6
2
7
4
3
1
4
3
2
1
3
1
1
4
1
5
4
1
5
2
2
7
2
1
1
4
1
1
8
.1E-13
. 9E-14
.5E-15
. 9E-17
.8E-13
.3E-12
.3E-13
.7E-14
.1E-10
.2E-12
.3E-13
.3E-14
.8E-11
.5E-12
.4E-13
.6E-15
.6E-11
.5E-13
.3E-14
.6E-15
.5E-12
.6E-13
.8E-14
.5E-15
.5E-12
.2E-13
.6E-14
. 1E-15
.1E-12
.5E-13
.2E-14
.9E-16
.4E-12
.6E-14
.5E-15
.8E-16
.3E-13
.5E-14
.OE-15
.9E-17
.3E-13
.5E-14
.2E-15
. 9E-17
.4E-13
.1E-14
.3E-16
2.
1 .
1 .
6.
1 .
2.
1.
6.
1.
7 .
5.
2.
7 .
4.
3.
1.
3.
2.
1 .
7 .
2.
1.
1.
5.
1.
1 .
1 .
4 .
1 .
7.
5.
2.
6.
3.
2.
1 .
3.
1.
1.
6.
1.
1 .
1 .
4 .
1 .
9.
7.
.6E-13
. 9E-14
.5E-15
. 1E-17
.8E-13
.OE-12
.6E-13
.3E-15
.8E-11
.5E-13
. 9E-14
.4E-15
.OE-12
.OE-13
.1E-14
.3E-15
.7E-12
.4E-13
. 9E-14
.5E-16
.2E-12
.7E-13
.3E-14
.3E-16
.5E-12
.3E-13
. OE-14
.OE-16
.2E-12
.4E-14
.8E-15
.3E-16
.9E-13
.5E-14
.7E-15
.1E-16
.3E-13
.9E-14
.5E-15
.OE-17
.8E-13
.3E-14
.OE-15
. 1E-17
.2E-13
.8E-15
.7E-16
5
3
3
1
3
9
1
4
1
3
3
1
4
1
1
6
2
9
8
3
9
6
5
2
6
4
3
1
4
2
1
7
2
9
7
2
8
4
3
1
4
2
2
9
2
2
1
.7E-
.8E-
.OE-
.2E-
.6E-
.3E-
.1E-
.4E-
.3E-
.9E-
.9E-
.6E-
.5E-
.9E-
.7E-
.9E-
.OE-
.8E-
.2E-
.3E-
.7E-
.2E-
.1E-
.1E-
.OE-
.5E-
.6E-
.5E-
.3E-
.3E-
.8E-
.3E-
.1E-
.1E-
.2E-
.9E-
.5E-
.4E-
.4E-
.4E-
.1E-
.9E-
.2E-
.OE-
.7E-
.OE-
.6E-
13
14
15
16
13
12
12
14
10
12
13
14
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
15
12
13
14
16
12
14
15
16
13
14
15
16
13
14
15
17
13
14
15
Ch. 13 Pg. 44

-------
lar 19, 2000 05
Wind
Toward
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NNW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
Distance
(meters)
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 3
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
(pCi/m3)
1.
5.
4 .
3.
1 .
3.
2.
1.
7.
2.
1 .
2.
9.
2.
8.
9.
4.
1 .
4 .
4 .
1 .
5.
2.
2.
8.
2.
1 .
1 .
4 .
1.
1.
8.
3.
9.
4 .
3.
1 .
4.
1.
1.
5.
1 .
7 .
6.
2.
7.
4.
.9E-10
.5E-07
.IE-OS
.2E-09
.3E-10
.8E-07
.3E-08
.8E-09
.4E-11
.2E-07
.8E-05
.3E-06
.2E-08
.7E-04
.8E-06
.9E-07
.OE-08
. 1E-04
.7E-06
.4E-07
.8E-08
.IE-OS
.4E-06
.OE-07
.2E-09
.4E-05
.5E-06
.2E-07
.9E-09
.4E-05
.OE-06
.4E-08
.4E-09
.9E-06
. 8E-07
.9E-08
.6E-09
.6E-06
.8E-07
.4E-08
.8E-10
.7E-06
.8E-08
.1E-09
.5E-10
.2E-07
.8E-08
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
3
9
7
5
2
6
4
3
1
3
3
4
1
4
1
1
7
2
8
7
3
9
4
3
1
4
2
2
8
2
1
1
6
1
8
7
2
8
3
2
1
3
1
1
4
1
8
.3E-17
. 8E-14
.4E-15
.8E-16
.3E-17
.9E-14
.2E-15
.3E-16
.3E-17
. 9E-14
.2E-12
.2E-13
.7E-14
.9E-11
.6E-12
.8E-13
.2E-15
.1E-11
.4E-13
. 9E-14
.2E-15
.2E-12
.2E-13
.6E-14
.5E-15
.3E-12
.6E-13
.2E-14
.9E-16
.6E-12
.8E-13
.5E-14
.1E-16
. 8E-12
.7E-14
.OE-15
.8E-16
.3E-13
.2E-14
.6E-15
.OE-16
.OE-13
.4E-14
. 1E-15
.4E-17
.3E-13
.7E-15
3.
9.
7 .
5.
2.
7.
5.
4.
1.
5.
1 .
8.
3.
1.
4.
3.
1.
3.
2.
1 .
6.
2.
1.
9.
4.
1 .
8.
7 .
2.
8.
6.
5.
2.
6.
3.
3.
1 .
3.
1.
1.
5.
1 .
9.
7 .
3.
8.
6.
.1E-17
. 1E-14
.6E-15
.9E-16
.4E-17
.1E-14
.4E-15
.2E-16
.7E-17
. OE-14
.1E-12
.4E-14
.4E-15
.OE-11
.1E-13
.2E-14
.3E-15
.8E-12
.2E-13
.7E-14
.8E-16
.OE-12
.3E-13
.9E-15
.OE-16
.2E-12
. 9E-14
.OE-15
.8E-16
.3E-13
.8E-14
.3E-15
.1E-16
.3E-13
. 9E-14
.OE-15
.2E-16
.6E-13
.8E-14
.4E-15
.7E-17
.7E-13
.4E-15
.3E-16
. OE-17
.7E-14
.4E-15
6
1
1
1
4
1
9
7
3
8
4
5
2
5
2
2
8
2
1
9
3
1
5
4
1
5
3
2
1
3
2
2
8
2
1
1
4
1
5
4
1
4
2
1
7
2
1
.4E-
.9E-
.5E-
.2E-
.7E-
.4E-
.6E-
.5E-
.OE-
.9E-
.3E-
.1E-
.OE-
.9E-
.OE-
.1E-
.5E-
.4E-
.1E-
.6E-
.9E-
.1E-
.5E-
.6E-
.9E-
.5E-
.5E-
.9E-
.2E-
.4E-
.5E-
.OE-
.3E-
.4E-
.3E-
.OE-
.1E-
.2E-
.OE-
.OE-
.6E-
.7E-
.3E-
.8E-
.4E-
.2E-
.5E-
17
13
14
15
17
13
15
16
17
14
12
13
14
11
12
13
15
11
12
14
15
11
13
14
15
12
13
14
15
12
13
14
16
12
13
14
16
12
14
15
16
13
14
15
17
13
14
Ch. 13 Pg. 45

-------
lar 19, 2000 05
Wind
Toward
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
Distance
(meters)
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 4
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
(pCi/m3)
3.
1.
4.
3.
2.
1 .
3.
2.
1.
7.
2.
1 .
9.
3.
1 .
1.
2.
7.
2.
8.
9.
3.
1 .
4.
4.
1.
5.
2.
2.
8.
2.
1.
1.
5.
1.
1 .
8.
3.
1 .
4.
4.
1.
4.
1 .
1 .
5.
1 .
.8E-09
.5E-10
.5E-07
.3E-08
.5E-09
.OE-10
. OE-07
.2E-08
.7E-09
.OE-11
.1E-07
.2E-08
.2E-10
.7E-11
. 1E-07
.4E-05
.OE-06
.7E-08
.3E-04
.3E-06
.7E-07
.9E-08
. 1E-04
.6E-06
.4E-07
.8E-08
.IE-OS
.4E-06
. 1E-07
.4E-09
.4E-05
.5E-06
.2E-07
.1E-09
.5E-05
.OE-06
.6E-08
.5E-09
.OE-05
.9E-07
.OE-08
.6E-09
.7E-06
. 8E-07
.5E-08
.9E-10
.7E-06
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
6
2
8
5
4
1
5
4
3
1
3
2
1
6
2
2
3
1
4
1
1
7
2
8
8
3
9
4
3
1
4
2
2
9
2
1
1
6
1
8
7
2
8
3
2
1
3
.8E-16
.7E-17
.OE-14
.9E-15
.6E-16
. 8E-17
.4E-14
.OE-15
.1E-16
.3E-17
.7E-14
. 1E-15
.7E-16
.7E-18
. OE-14
.5E-12
.6E-13
.4E-14
.2E-11
.5E-12
.8E-13
. 1E-15
.OE-11
.3E-13
.OE-14
.2E-15
.3E-12
.3E-13
.7E-14
.5E-15
.4E-12
.7E-13
.2E-14
.1E-16
.6E-12
.9E-13
.6E-14
.3E-16
. 8E-12
.9E-14
.1E-15
.9E-16
.5E-13
.3E-14
.6E-15
.1E-16
.1E-13
5.
2.
5.
4 .
3.
1 .
4 .
3.
2.
1.
3.
2.
1 .
7 .
2.
1.
8.
3.
9.
3.
3.
1 .
3.
2.
1.
6.
1.
1 .
9.
3.
1 .
8.
6.
2.
7.
6.
5.
2.
5.
3.
2.
1.
3.
1 .
1 .
5.
1 .
.OE-16
.OE-17
.9E-14
.7E-15
.6E-16
.5E-17
.3E-14
.5E-15
.8E-16
.1E-17
.3E-14
.4E-15
.9E-16
.5E-18
.2E-14
.OE-12
.1E-14
.3E-15
.6E-12
.9E-13
. OE-14
.2E-15
.6E-12
.1E-13
.6E-14
.5E-16
.9E-12
.2E-13
.4E-15
.8E-16
.1E-12
.4E-14
.6E-15
.6E-16
.8E-13
.4E-14
.OE-15
.OE-16
.9E-13
.6E-14
.8E-15
.1E-16
.4E-13
.7E-14
.3E-15
.2E-17
.5E-13
1
4
1
1
8
3
9
7
5
2
7
4
3
1
4
3
4
1
5
1
2
8
2
1
9
3
1
5
4
1
5
3
2
1
3
2
2
8
2
1
1
4
1
5
3
1
4
.2E-
.7E-
.4E-
.1E-
.2E-
.3E-
.8E-
.6E-
.9E-
.4E-
.OE-
.5E-
.5E-
.4E-
.2E-
.6E-
.4E-
.7E-
.1E-
.9E-
.1E-
.3E-
.4E-
.OE-
.6E-
.9E-
.1E-
.5E-
.7E-
.9E-
.5E-
.5E-
.9E-
.2E-
.4E-
.5E-
.OE-
.3E-
.4E-
.3E-
.OE-
.OE-
.2E-
.OE-
.9E-
.6E-
.6E-
15
17
13
14
16
17
14
15
16
17
14
15
16
17
14
12
13
14
11
12
13
15
11
12
14
15
11
13
14
15
12
13
14
15
12
13
14
16
12
13
14
16
12
14
15
16
13
Ch. 13 Pg. 46

-------
lar 19, 2000 05
Wind
Toward
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
WNW
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
Distance
(meters)
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 5
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
(pCi/m3)
7.
6.
2.
7 .
4 .
3.
1.
4.
3.
2.
1 .
3.
2.
1 .
7.
2.
1.
8.
3.
1 .
2.
3.
1.
3.
1.
1.
5.
1 .
6.
5.
2.
6.
3.
2.
1 .
3.
1 .
1 .
6.
1.
1.
1.
4 .
1.
6.
5.
2.
.9E-08
.1E-09
.5E-10
.3E-07
.9E-08
.8E-09
.5E-10
.5E-07
.3E-08
.6E-09
.OE-10
. OE-07
.2E-08
.7E-09
.OE-11
.1E-07
.2E-08
.9E-10
.6E-11
. 1E-07
.3E-05
.1E-06
.2E-07
.6E-04
.2E-05
.3E-06
.4E-08
.5E-04
.3E-06
. 8E-07
.4E-08
.8E-05
.1E-06
.7E-07
.IE-OS
.2E-05
.9E-06
.6E-07
.6E-09
.9E-05
.4E-06
.1E-07
.5E-09
.3E-05
.5E-07
.2E-08
.1E-09
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
1
1
4
1
8
6
2
8
5
4
1
5
4
3
1
3
2
1
6
1
4
5
2
6
2
2
9
2
1
1
4
1
5
4
2
5
3
2
1
3
2
2
8
2
1
9
3
.4E-14
.1E-15
.5E-17
.3E-13
.8E-15
.9E-16
.8E-17
.1E-14
.9E-15
.6E-16
. 9E-17
.5E-14
.OE-15
.1E-16
.3E-17
.7E-14
.1E-15
.6E-16
.4E-18
. 9E-14
.1E-12
.6E-13
.2E-14
.5E-11
.2E-12
.4E-13
.7E-15
.8E-11
.1E-12
.OE-13
.3E-15
.2E-11
.7E-13
.9E-14
.OE-15
.7E-12
.5E-13
. 9E-14
.2E-15
.4E-12
.5E-13
.OE-14
.2E-16
.4E-12
.2E-13
.4E-15
.8E-16
8.
6.
2.
7 .
5.
4 .
1.
5.
4.
3.
1 .
3.
3.
2.
9.
2.
1.
1.
6.
1 .
1 .
1 .
4.
1.
5.
4.
1 .
5.
2.
2.
9.
2.
1.
1.
5.
1 .
1 .
9.
3.
1.
8.
7.
2.
8.
5.
4.
1.
.4E-15
.5E-16
.6E-17
.7E-14
.6E-15
.3E-16
.8E-17
.2E-14
.1E-15
.1E-16
.3E-17
.7E-14
.OE-15
.3E-16
.4E-18
.8E-14
.9E-15
.5E-16
.1E-18
. 8E-14
.4E-12
.1E-13
.5E-15
.3E-11
.3E-13
.2E-14
.7E-15
.OE-12
.8E-13
.2E-14
.OE-16
.6E-12
.7E-13
.3E-14
.3E-16
.6E-12
.2E-13
. 1E-15
.7E-16
.1E-12
.9E-14
.OE-15
.8E-16
.3E-13
.1E-14
.OE-15
.6E-16
2
1
7
2
1
1
4
1
1
7
3
9
7
5
2
6
4
3
1
3
5
6
2
7
2
2
1
3
1
1
5
1
7
6
2
7
4
3
1
4
3
2
1
3
1
1
5
.3E-
.8E-
.1E-
.1E-
.4E-
.1E-
.5E-
.3E-
.OE-
.8E-
.1E-
.2E-
.OE-
.5E-
.2E-
.5E-
.OE-
.1E-
.3E-
.7E-
.5E-
.7E-
.7E-
.8E-
.7E-
.8E-
.1E-
.3E-
.4E-
.3E-
.2E-
.5E-
.3E-
.2E-
.5E-
.3E-
.7E-
.8E-
.6E-
.5E-
.3E-
.7E-
.1E-
.2E-
.7E-
.3E-
.4E-
14
15
17
13
14
15
17
13
14
16
17
14
15
16
17
14
15
16
17
14
12
13
14
11
12
13
14
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
15
12
13
14
16
Ch. 13 Pg. 47

-------
lar 19, 2000 05
Wind
Toward
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
wsw
Distance
(meters)
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 6
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
(pCi/m3)
6.
2.
1 .
7 .
2.
1.
8.
3.
9.
6.
5.
2.
6.
4.
3.
1.
4 .
3.
2.
9.
2.
1.
1.
5.
1 .
3.
4 .
1 .
4.
1.
1.
5.
1 .
5.
5.
2.
6.
2.
2.
9.
2.
1 .
1 .
5.
1.
1.
9.
.1E-06
.4E-07
.9E-08
.8E-10
.3E-06
.1E-07
.3E-09
.4E-10
. 9E-07
.6E-08
.2E-09
.1E-10
.2E-07
.5E-08
.5E-09
.4E-10
.2E-07
.IE-OS
.4E-09
.9E-11
.9E-07
.7E-08
.3E-09
.3E-11
.6E-07
.2E-05
.1E-06
.6E-07
.7E-04
.3E-05
.3E-06
.IE-OS
.5E-04
.8E-06
. 1E-07
.IE-OS
.OE-05
.7E-06
.3E-07
.3E-09
.7E-05
.7E-06
.4E-07
.5E-09
.6E-05
.2E-06
.4E-08
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
1
4
3
1
4
1
1
6
1
1
9
3
1
8
6
2
7
5
4
1
5
3
2
9
2
5
7
3
8
2
2
9
2
1
9
3
1
4
4
1
4
3
2
9
2
2
1
.1E-12
.4E-14
.5E-15
.4E-16
.1E-13
.9E-14
.5E-15
.1E-17
.8E-13
.2E-14
.3E-16
. 8E-17
.1E-13
.1E-15
.4E-16
.6E-17
.5E-14
.6E-15
.4E-16
. 8E-17
.2E-14
.OE-15
.4E-16
.5E-18
. 8E-14
. 8E-12
.3E-13
. OE-14
.5E-11
.3E-12
.3E-13
.3E-15
.7E-11
. OE-12
.2E-14
.7E-15
.1E-11
.9E-13
.1E-14
.7E-15
. 8E-12
.OE-13
.4E-14
.9E-16
.9E-12
.1E-13
.7E-14
4 .
2.
1 .
7 .
2.
1.
9.
3.
1 .
8.
6.
2.
7.
6.
4.
1.
5.
4 .
3.
1 .
4.
3.
2.
9.
2.
1 .
1 .
4 .
1.
5.
4.
1.
5.
2.
2.
9.
2.
1.
1.
5.
1 .
1 .
9.
3.
1.
9.
7.
.7E-13
.4E-14
.8E-15
.4E-17
.2E-13
.2E-14
.6E-16
.9E-17
.1E-13
.4E-15
.5E-16
.6E-17
.7E-14
.1E-15
.8E-16
.9E-17
.7E-14
.6E-15
.6E-16
.4E-17
.3E-14
.1E-15
.4E-16
.6E-18
. 8E-14
.4E-12
.1E-13
.5E-15
.3E-11
.4E-13
.2E-14
.7E-15
.OE-12
.9E-13
.3E-14
.1E-16
.7E-12
.7E-13
.3E-14
.4E-16
.6E-12
.2E-13
.4E-15
.8E-16
.1E-12
.2E-14
.3E-15
1
6
5
2
6
3
2
1
2
2
1
6
1
1
1
4
1
1
8
3
9
6
4
1
5
7
8
3
9
2
2
1
3
1
1
4
1
6
5
2
6
4
3
1
4
3
2
.6E-
.7E-
.3E-
.1E-
.3E-
.2E-
.5E-
.OE-
.9E-
.OE-
.6E-
.4E-
.9E-
.4E-
.1E-
.5E-
.3E-
.OE-
.OE-
.2E-
.5E-
.1E-
.7E-
.9E-
.6E-
.2E-
.5E-
.4E-
.8E-
.9E-
.7E-
.1E-
.2E-
.3E-
.1E-
.6E-
.3E-
.6E-
.4E-
.2E-
.4E-
.2E-
.4E-
.4E-
.OE-
.OE-
.4E-
12
14
15
16
13
14
15
16
13
14
15
17
13
14
15
17
13
14
16
17
14
15
16
17
14
12
13
14
11
12
13
14
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
Ch. 13 Pg. 48

-------
lar 19, 2000 05
Wind
Toward
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
WSW
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
sw
Distance
(meters)
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 7
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
(pCi/m3)
3.
1.
5.
4 .
1 .
5.
2.
1.
6.
1.
9.
7 .
2.
8.
5.
4.
1.
5.
3.
3.
1 .
3.
2.
2.
8.
2.
1.
1 .
5.
1 .
3.
4.
1.
5.
1.
1 .
5.
1 .
5.
4.
1.
5.
2.
2.
8.
2.
1.
.8E-09
.IE-OS
.4E-07
.3E-08
.8E-09
.1E-06
. OE-07
.6E-08
.4E-10
.9E-06
.IE-OS
.2E-09
.9E-10
.6E-07
.7E-08
.5E-09
.8E-10
.3E-07
.9E-08
.1E-09
.2E-10
.6E-07
.8E-08
.2E-09
.8E-11
.6E-07
.7E-08
.3E-09
.3E-11
.6E-07
.9E-05
.6E-06
.9E-07
.4E-04
.3E-05
.2E-06
.OE-08
.5E-04
.5E-06
.7E-07
.9E-08
.6E-05
.5E-06
. 1E-07
.4E-09
.5E-05
.5E-06
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
6
2
9
7
3
9
3
2
1
3
1
1
5
1
1
8
3
9
7
5
2
6
5
3
1
4
3
2
9
2
7
8
3
9
2
2
9
2
1
8
3
1
4
3
1
4
2
.8E-16
.OE-12
.8E-14
.8E-15
.2E-16
.3E-13
.6E-14
.9E-15
.2E-16
.4E-13
.6E-14
.3E-15
.3E-17
.5E-13
. OE-14
.1E-16
.3E-17
.6E-14
.OE-15
.5E-16
.2E-17
.6E-14
.OE-15
.9E-16
.6E-17
.7E-14
.OE-15
.4E-16
.5E-18
. 8E-14
. OE-12
.4E-13
.4E-14
.7E-11
.4E-12
.2E-13
. 1E-15
.6E-11
. OE-12
.5E-14
.5E-15
.OE-11
.6E-13
.7E-14
.5E-15
.4E-12
.7E-13
2.
8.
5.
4 .
1 .
5.
2.
2.
8.
2.
1.
1 .
4 .
1 .
9.
7.
3.
9.
7.
5.
2.
6.
5.
4.
1.
5.
4.
3.
1 .
3.
1 .
1.
4.
1.
5.
4 .
1 .
5.
3.
2.
9.
2.
1.
1 .
5.
1.
1.
.9E-16
.6E-13
.4E-14
.2E-15
.7E-16
.OE-13
.6E-14
.OE-15
.2E-17
.4E-13
.4E-14
. 1E-15
.5E-17
.3E-13
.8E-15
.7E-16
.1E-17
.1E-14
.3E-15
.7E-16
.3E-17
. 8E-14
.7E-15
.5E-16
.8E-17
.3E-14
.1E-15
.2E-16
.3E-17
. 8E-14
.5E-12
.2E-13
.7E-15
.4E-11
.6E-13
.4E-14
.8E-15
.3E-12
.OE-13
.4E-14
.6E-16
.8E-12
.8E-13
.4E-14
.7E-16
.7E-12
.3E-13
9
2
1
1
4
1
6
4
2
5
3
2
9
2
2
1
6
1
1
1
4
1
1
8
3
1
7
5
2
6
8
9
3
1
3
2
1
3
1
1
4
1
6
5
2
6
4
.8E-
.9E-
.5E-
.2E-
.9E-
.4E-
.2E-
.9E-
.OE-
.8E-
.1E-
.4E-
.8E-
.9E-
.OE-
.6E-
.4E-
.9E-
.4E-
.1E-
.6E-
.3E-
.1E-
.4E-
.4E-
.OE-
.1E-
.5E-
.2E-
.6E-
.5E-
.5E-
.9E-
.1E-
.OE-
.7E-
.1E-
.1E-
.3E-
.1E-
.4E-
.3E-
.3E-
.2E-
.1E-
.1E-
.OE-
16
12
13
14
16
12
14
15
16
13
14
15
17
13
14
15
17
13
14
15
17
13
14
16
17
13
15
16
17
14
12
13
14
10
12
13
14
11
12
13
15
11
13
14
15
12
13
Ch. 13 Pg. 49

-------
lar 19, 2000 05
Wind
Toward
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
SW
ssw
ssw
ssw
ssw
ssw
ssw
ssw
ssw
ssw
ssw
ssw
ssw
Distance
(meters)
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 8
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
(pCi/m3)
1 .
5.
1 .
1 .
8.
3.
1.
4.
3.
1 .
4 .
1 .
1.
5.
1.
8.
6.
2.
7 .
5.
3.
1.
4.
3.
2.
1 .
3.
2.
1.
7.
2.
1.
1 .
4 .
1 .
2.
2.
1.
3.
8.
7 .
3.
9.
3.
3.
1.
3.
.2E-07
.OE-09
.5E-05
.OE-06
.4E-08
.4E-09
.OE-05
.8E-07
.9E-08
.6E-09
.6E-06
. 8E-07
.4E-08
.6E-10
.7E-06
.IE-OS
.4E-09
.6E-10
.6E-07
.OE-08
.9E-09
.6E-10
.7E-07
.4E-08
.7E-09
.1E-10
.2E-07
.5E-08
.9E-09
.8E-11
.3E-07
.6E-08
.2E-09
.9E-11
.4E-07
.5E-05
.9E-06
.2E-07
.4E-04
.4E-06
. 9E-07
.2E-08
.2E-05
.5E-06
.OE-07
.2E-08
.6E-05
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
2
8
2
1
1
6
1
8
7
2
8
3
2
1
3
1
1
4
1
9
7
2
8
6
4
2
5
4
3
1
4
2
2
8
2
4
5
2
6
1
1
5
1
6
5
2
6
.2E-14
.9E-16
.6E-12
.9E-13
.5E-14
.1E-16
.8E-12
.7E-14
.OE-15
.8E-16
.3E-13
.2E-14
.5E-15
.OE-16
.OE-13
.5E-14
. 1E-15
.6E-17
.4E-13
.OE-15
.1E-16
.9E-17
.4E-14
.1E-15
.8E-16
. OE-17
. 8E-14
.4E-15
.5E-16
.4E-17
.1E-14
.8E-15
.2E-16
.9E-18
.6E-14
.5E-12
.3E-13
.1E-14
.1E-11
.5E-12
.4E-13
.7E-15
.7E-11
.3E-13
.4E-14
.2E-15
.4E-12
1 .
4 .
1 .
9.
7.
3.
9.
5.
4 .
1 .
5.
2.
2.
8.
2.
1.
1 .
5.
1 .
1 .
8.
3.
1.
8.
6.
2.
7 .
6.
5.
2.
6.
4.
3.
1 .
4 .
9.
7.
3.
9.
3.
2.
1 .
3.
2.
1.
6.
1.
. OE-14
.OE-16
.2E-12
. 8E-14
.7E-15
.1E-16
.1E-13
.7E-14
.5E-15
.8E-16
.4E-13
. 8E-14
.2E-15
.8E-17
.6E-13
.6E-14
.2E-15
. OE-17
.5E-13
. 1E-14
.5E-16
.4E-17
.OE-13
.1E-15
.4E-16
.6E-17
.6E-14
.4E-15
.OE-16
.OE-17
.OE-14
.7E-15
.7E-16
.5E-17
.4E-14
.7E-13
.7E-14
.1E-15
.1E-12
.7E-13
. 9E-14
.2E-15
.5E-12
.OE-13
.6E-14
.3E-16
.9E-12
3
1
3
2
2
9
2
1
1
4
1
5
4
1
5
3
2
9
2
2
1
6
1
1
1
4
1
1
8
3
1
7
5
2
7
5
6
2
7
1
1
6
2
8
7
2
8
.2E-
.3E-
.8E-
.9E-
.3E-
.2E-
.7E-
.4E-
.1E-
.6E-
.4E-
.9E-
.7E-
.9E-
.6E-
.OE-
.4E-
.6E-
.8E-
.OE-
.6E-
.3E-
.9E-
.4E-
.1E-
.5E-
.3E-
.1E-
.5E-
.4E-
.OE-
.5E-
.9E-
.4E-
.OE-
.5E-
.OE-
.4E-
.OE-
.9E-
.7E-
.9E-
.OE-
.3E-
.OE-
.8E-
.3E-
14
15
12
13
14
16
12
13
14
16
12
14
15
16
13
14
15
17
13
14
15
17
13
14
15
17
13
14
16
17
13
15
16
17
14
12
13
14
11
12
13
15
11
13
14
15
12
Ch. 13 Pg. 50

-------
lar 19, 2000 05
Wind
Toward
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
SSW
s
s
s
s
s
s
s
Distance
(meters)
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 9
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
(pCi/m3)
1.
1.
5.
1.
9.
7 .
3.
9.
6.
5.
2.
6.
3.
2.
1 .
2.
1.
8.
3.
1.
5.
4 .
1 .
4 .
3.
2.
9.
2.
2.
1 .
6.
2.
1.
1.
4.
1.
9.
7 .
3.
8.
4.
5.
2.
6.
1 .
1 .
5.
.6E-06
.3E-07
.4E-09
.6E-05
.6E-07
.8E-08
.2E-09
.3E-06
.6E-07
.4E-08
.2E-09
.4E-06
. 1E-07
.5E-08
.OE-09
.9E-06
.1E-07
.8E-09
.6E-10
.OE-06
.IE-OS
.OE-09
.6E-10
.7E-07
.IE-OS
.5E-09
.9E-11
.9E-07
.IE-OS
.7E-09
.8E-11
. OE-07
.5E-08
.2E-09
.9E-11
.4E-07
.5E-09
.5E-10
.OE-11
.9E-08
.6E-05
.1E-06
.1E-07
.OE-04
.4E-05
.3E-06
.3E-08
(pCi/cm2/
2
2
9
2
1
1
5
1
1
9
3
1
5
4
1
5
2
1
6
1
9
7
2
8
5
4
1
5
3
3
1
3
2
2
8
2
1
1
5
1
8
9
3
1
2
2
9
.9E-13
.4E-14
.7E-16
.8E-12
.7E-13
.4E-14
.7E-16
.7E-12
.2E-13
.7E-15
.9E-16
.1E-12
.6E-14
.4E-15
.8E-16
.3E-13
.OE-14
.6E-15
.4E-17
.9E-13
. 1E-15
.2E-16
. 9E-17
.5E-14
.6E-15
.4E-16
.8E-17
.3E-14
.8E-15
.OE-16
.2E-17
.6E-14
.7E-15
.2E-16
.7E-18
.6E-14
.7E-15
.3E-16
.4E-18
.6E-14
.3E-12
.2E-13
.8E-14
.1E-10
.6E-12
.4E-13
.6E-15
s) (pCi/cm2/
1.
9.
3.
1.
8.
6.
2.
7 .
6.
5.
2.
6.
3.
3.
1 .
3.
1.
1.
5.
1.
1 .
8.
3.
9.
7.
5.
2.
6.
5.
4 .
1 .
5.
4.
3.
1.
3.
3.
2.
9.
2.
1.
1.
5.
1.
6.
5.
2.
.2E-13
.3E-15
.7E-16
.1E-12
.3E-14
.6E-15
.6E-16
.8E-13
.4E-14
.1E-15
.OE-16
.OE-13
. 8E-14
.OE-15
.2E-16
.5E-13
.8E-14
.4E-15
.8E-17
.7E-13
. OE-14
.1E-16
.3E-17
.6E-14
.1E-15
.6E-16
.3E-17
.6E-14
.3E-15
.2E-16
.7E-17
. OE-14
.2E-15
.3E-16
.3E-17
.9E-14
. 1E-15
.4E-16
.8E-18
. 9E-14
.8E-12
.4E-13
.7E-15
.7E-11
.8E-13
.4E-14
.2E-15
s) (pCi/cm2/s)
4
3
1
3
2
2
8
2
1
1
6
1
9
7
3
8
3
3
1
3
1
1
6
1
1
1
4
1
9
7
2
8
6
5
2
6
4
3
1
4
1
1
4
1
3
2
1
.1E-
.3E-
.3E-
.9E-
.6E-
.1E-
.4E-
.4E-
.8E-
.5E-
.OE-
.7E-
.3E-
.4E-
.OE-
.8E-
.8E-
.OE-
.2E-
.6E-
.9E-
.5E-
.2E-
.8E-
.3E-
.OE-
.OE-
.2E-
.2E-
.2E-
.9E-
.6E-
.9E-
.5E-
.2E-
.5E-
.8E-
.8E-
.5E-
.5E-
.OE-
.1E-
.3E-
.2E-
.2E-
.9E-
.2E-
13
14
15
12
13
14
16
12
13
14
16
12
14
15
16
13
14
15
16
13
14
15
17
13
14
15
17
13
15
16
17
14
15
16
17
14
15
16
17
14
11
12
14
10
12
13
14
Ch. 13 Pg. 51

-------
lar 19, 2000 05
Wind
Toward
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SSE
SSE
Distance
(meters)
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 10
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
(pCi/m3)
1.
5.
5.
2.
5.
2.
2.
8.
2.
1.
1.
5.
1 .
1 .
8.
3.
1.
4.
3.
1 .
4 .
1 .
1 .
5.
1.
8.
6.
2.
7 .
5.
3.
1.
4.
3.
2.
1 .
3.
2.
1 .
7.
2.
1.
1.
4 .
1 .
3.
3.
.5E-04
.8E-06
.OE-07
.OE-08
.8E-05
.6E-06
.2E-07
.8E-09
.6E-05
.6E-06
.3E-07
.1E-09
.5E-05
.1E-06
.6E-08
.5E-09
.OE-05
.9E-07
.9E-08
.6E-09
.7E-06
. 8E-07
.4E-08
.7E-10
.7E-06
.IE-OS
.4E-09
.6E-10
.6E-07
.OE-08
.9E-09
.6E-10
.6E-07
.4E-08
.7E-09
.1E-10
.2E-07
.4E-08
.9E-09
.8E-11
.3E-07
.5E-08
.2E-09
.9E-11
.4E-07
.6E-05
.9E-06
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
2
1
8
3
1
4
3
1
4
2
2
9
2
1
1
6
1
8
7
2
8
3
2
1
3
1
1
4
1
8
7
2
8
6
4
1
5
4
3
1
4
2
2
8
2
6
7
.8E-11
.OE-12
.9E-14
.6E-15
.1E-11
.7E-13
. 9E-14
.6E-15
.6E-12
.8E-13
.3E-14
.2E-16
.7E-12
.9E-13
.6E-14
.3E-16
.8E-12
.9E-14
.1E-15
.9E-16
.4E-13
.2E-14
.5E-15
.OE-16
.OE-13
.5E-14
.1E-15
.6E-17
.4E-13
.9E-15
.OE-16
.8E-17
.4E-14
.1E-15
.8E-16
. 9E-17
.7E-14
.4E-15
.5E-16
.4E-17
.1E-14
.8E-15
.2E-16
.8E-18
.6E-14
.4E-12
.1E-13
6.
3.
2.
1 .
3.
2.
1 .
6.
2.
1.
1.
4 .
1 .
1 .
9.
3.
1.
7.
5.
2.
6.
3.
2.
1.
3.
1.
1.
6.
1 .
1 .
1 .
4.
1.
9.
7.
3.
9.
7 .
6.
2.
7.
5.
4.
1 .
5.
1 .
1 .
.4E-12
.6E-13
.9E-14
.2E-15
.4E-12
.2E-13
.7E-14
.9E-16
.OE-12
.5E-13
.2E-14
.9E-16
.4E-12
.2E-13
.3E-15
.8E-16
.1E-12
.OE-14
.5E-15
.2E-16
.5E-13
.4E-14
.6E-15
.1E-16
.1E-13
.9E-14
.5E-15
. OE-17
.8E-13
.3E-14
.OE-15
.2E-17
.2E-13
.8E-15
.8E-16
. 1E-17
.2E-14
.7E-15
.1E-16
.5E-17
.2E-14
.7E-15
.5E-16
. 8E-17
.3E-14
.4E-12
.1E-13
3
1
1
4
1
6
5
2
6
4
3
1
4
3
2
1
2
1
1
5
1
6
5
2
6
3
2
1
3
2
1
7
2
1
1
5
1
1
9
3
1
8
6
2
7
7
8
.4E-
.4E-
.2E-
.8E-
.4E-
.9E-
.6E-
.3E-
.6E-
.3E-
.5E-
.4E-
.1E-
.1E-
.5E-
.OE-
.9E-
.6E-
.3E-
.1E-
.5E-
.5E-
.2E-
.1E-
.1E-
.3E-
.6E-
.1E-
.1E-
.2E-
.7E-
.OE-
.1E-
.6E-
.3E-
.1E-
.5E-
.2E-
.5E-
.9E-
.1E-
.4E-
.7E-
.7E-
.9E-
.8E-
.2E-
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
15
12
13
14
16
12
14
15
16
13
14
15
16
13
14
15
17
13
14
15
17
13
14
16
17
13
15
16
17
14
12
13
Ch. 13 Pg. 52

-------
lar 19, 2000 05
Wind
Toward
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
SSE
Distance
(meters)
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 11
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
(pCi/m3)
1.
4.
1 .
9.
4 .
1 .
4.
3.
1.
4.
2.
1 .
6.
1 .
1.
9.
3.
1.
8.
6.
2.
7 .
3.
2.
1.
3.
1 .
1 .
4 .
1 .
6.
4.
2.
5.
3.
3.
1 .
3.
2.
2.
8.
2.
1 .
1 .
6.
1 .
1.
.6E-07
.6E-04
.IE-OS
. 9E-07
.OE-08
.2E-04
.4E-06
.7E-07
.5E-08
.4E-05
.OE-06
.6E-07
.5E-09
.9E-05
.2E-06
.4E-08
.8E-09
.IE-OS
. OE-07
.4E-08
.6E-09
.6E-06
.7E-07
.9E-08
.2E-09
.5E-06
.3E-07
.IE-OS
.3E-10
.3E-06
.2E-08
.9E-09
.OE-10
.8E-07
.8E-08
.OE-09
.2E-10
.6E-07
.6E-08
.1E-09
.4E-11
.5E-07
.9E-08
.5E-09
.OE-11
. 8E-07
.2E-08
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
2
8
2
1
7
2
7
6
2
7
3
2
1
3
2
1
6
2
1
1
4
1
6
5
2
6
2
1
7
2
1
8
3
1
6
5
2
6
4
3
1
4
3
2
1
3
2
.9E-14
.2E-11
. OE-12
.8E-13
.2E-15
.1E-11
.8E-13
.7E-14
.7E-15
.9E-12
.5E-13
. 9E-14
.2E-15
.4E-12
.1E-13
.7E-14
.9E-16
.OE-12
.4E-13
.2E-14
.7E-16
.4E-12
.6E-14
.3E-15
.1E-16
.3E-13
.4E-14
.9E-15
.7E-17
.3E-13
.1E-14
.8E-16
.5E-17
.OE-13
.9E-15
.4E-16
.2E-17
.4E-14
.7E-15
.7E-16
.5E-17
.4E-14
.4E-15
.7E-16
. 1E-17
.2E-14
.2E-15
4.
1.
5.
4 .
1 .
4 .
2.
2.
8.
2.
1 .
1 .
5.
1 .
1.
9.
3.
1.
9.
7 .
2.
8.
5.
4.
1.
5.
2.
2.
8.
2.
1.
1.
4.
1.
1 .
8.
3.
9.
7.
6.
2.
7.
6.
4 .
1 .
5.
4.
.4E-15
.3E-11
.2E-13
. 1E-14
.7E-15
.9E-12
.8E-13
.2E-14
.9E-16
.6E-12
.7E-13
.3E-14
.3E-16
.6E-12
.2E-13
.3E-15
.8E-16
.1E-12
. 1E-14
.2E-15
.9E-16
.6E-13
.4E-14
.2E-15
.7E-16
.OE-13
.6E-14
.OE-15
.3E-17
.4E-13
.5E-14
.2E-15
.7E-17
.4E-13
. OE-14
.OE-16
.2E-17
.6E-14
.7E-15
.OE-16
.4E-17
.2E-14
.OE-15
.8E-16
. 9E-17
.6E-14
.4E-15
3
9
2
2
8
2
1
8
3
1
5
4
1
5
3
2
1
3
2
1
7
2
1
9
3
1
5
4
1
4
2
2
8
2
1
1
5
1
1
9
3
1
9
7
3
8
6
.3E-
.5E-
.5E-
.2E-
.9E-
.6E-
.1E-
.9E-
.6E-
.OE-
.2E-
.2E-
.7E-
.OE-
.3E-
.6E-
.1E-
.1E-
.3E-
.9E-
.6E-
.2E-
.2E-
.5E-
.9E-
.1E-
.OE-
.OE-
.6E-
.7E-
.6E-
.OE-
.2E-
.4E-
.7E-
.3E-
.4E-
.6E-
.2E-
.8E-
.9E-
.2E-
.4E-
.4E-
.OE-
.8E-
.6E-
14
11
12
13
15
11
12
14
15
11
13
14
15
12
13
14
15
12
13
14
16
12
13
15
16
12
14
15
16
13
14
15
17
13
14
15
17
13
14
16
17
13
15
16
17
14
15
Ch. 13 Pg. 53

-------
lar 19, 2000 05
Wind
Toward
SSE
SSE
SSE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
Distance
(meters)
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 12
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
(pCi/m3)
9.
3.
1 .
3.
4.
1.
4.
1.
1 .
4 .
1 .
4 .
3.
1.
4.
2.
1 .
6.
1 .
1 .
9.
3.
1.
8.
6.
2.
7 .
3.
3.
1.
3.
1.
1 .
4 .
1 .
6.
4.
1.
5.
3.
2.
1 .
3.
2.
2.
8.
2.
.5E-10
.8E-11
. 1E-07
.7E-05
.1E-06
.7E-07
.7E-04
.IE-OS
.OE-06
.IE-OS
.2E-04
.5E-06
.8E-07
.5E-08
.4E-05
.OE-06
.6E-07
.6E-09
.9E-05
.2E-06
.6E-08
.9E-09
.IE-OS
.1E-07
.5E-08
.6E-09
.7E-06
.7E-07
.OE-08
.2E-09
.5E-06
.3E-07
.IE-OS
.3E-10
.2E-06
.IE-OS
.8E-09
.9E-10
.7E-07
.7E-08
.9E-09
.2E-10
.5E-07
.6E-08
.OE-09
.1E-11
.4E-07
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
1
6
2
6
7
3
8
2
1
7
2
8
6
2
8
3
2
1
3
2
1
7
2
1
1
4
1
6
5
2
6
2
1
7
2
1
8
3
1
6
5
2
6
4
3
1
4
.7E-16
.9E-18
. OE-14
.6E-12
.4E-13
.OE-14
.5E-11
.OE-12
.8E-13
.4E-15
.1E-11
.OE-13
.8E-14
.8E-15
.OE-12
.6E-13
. 9E-14
.2E-15
.5E-12
.1E-13
.7E-14
.OE-16
.OE-12
.5E-13
.2E-14
.7E-16
.4E-12
.7E-14
.3E-15
.2E-16
.3E-13
.4E-14
.9E-15
.7E-17
.2E-13
. 1E-14
.6E-16
.5E-17
.OE-13
.7E-15
.3E-16
. 1E-17
.3E-14
.6E-15
.6E-16
.5E-17
.3E-14
3.
1 .
4 .
1 .
1.
4.
1.
5.
4 .
1 .
5.
2.
2.
9.
2.
1.
1 .
5.
1 .
1 .
9.
3.
1.
9.
7 .
2.
8.
5.
4.
1.
5.
2.
2.
8.
2.
1 .
1.
4.
1.
1.
8.
3.
9.
7 .
6.
2.
7.
.5E-16
.4E-17
.2E-14
.4E-12
.1E-13
.4E-15
.3E-11
.3E-13
.2E-14
.7E-15
.OE-12
.8E-13
.2E-14
.OE-16
.7E-12
.7E-13
.3E-14
.4E-16
.6E-12
.2E-13
.4E-15
.8E-16
.1E-12
.2E-14
.3E-15
.9E-16
.7E-13
.4E-14
.3E-15
.7E-16
.1E-13
.6E-14
. 1E-15
.4E-17
.5E-13
.5E-14
.2E-15
.8E-17
.4E-13
.OE-14
.2E-16
.3E-17
.7E-14
.8E-15
.2E-16
.5E-17
.3E-14
5
2
6
8
8
3
9
2
2
9
2
1
9
3
1
5
4
1
5
3
2
1
3
2
1
7
2
1
9
3
1
5
4
1
4
2
2
8
2
1
1
5
1
1
9
3
1
.2E-
.1E-
.2E-
.OE-
.5E-
.4E-
.8E-
.5E-
.2E-
.OE-
.6E-
.1E-
.OE-
.7E-
.1E-
.3E-
.3E-
.7E-
.1E-
.3E-
.7E-
.1E-
.2E-
.4E-
.9E-
.7E-
.3E-
.2E-
.6E-
.9E-
.1E-
.OE-
.OE-
.6E-
.7E-
.6E-
.OE-
.3E-
.4E-
.7E-
.3E-
.4E-
.6E-
.2E-
.8E-
.9E-
.2E-
16
17
14
12
13
14
11
12
13
15
11
12
14
15
11
13
14
15
12
13
14
15
12
13
14
16
12
13
15
16
12
14
15
16
13
14
15
17
13
14
15
17
13
14
16
17
13
Ch. 13 Pg. 54

-------
lar 19, 2000 05
Wind
Toward
SE
SE
SE
SE
SE
SE
SE
SE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
Distance
(meters)
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 13
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
(pCi/m3)
1.
1.
5.
1 .
1 .
9.
3.
1.
5.
5.
2.
6.
1 .
1 .
5.
1.
6.
5.
2.
6.
2.
2.
9.
2.
1.
1.
5.
1 .
1 .
9.
3.
1.
5.
4.
1 .
4 .
1 .
1 .
5.
1.
8.
6.
2.
7 .
5.
4 .
1.
.8E-08
.4E-09
.9E-11
.7E-07
.2E-08
.3E-10
.7E-11
.1E-07
.IE-OS
.7E-06
.3E-07
.6E-04
.5E-05
.4E-06
.7E-08
.6E-04
.2E-06
.2E-07
.IE-OS
.2E-05
.8E-06
.3E-07
.2E-09
.7E-05
.6E-06
.3E-07
.4E-09
.6E-05
.1E-06
.IE-OS
.7E-09
.IE-OS
.2E-07
.2E-08
.7E-09
.9E-06
. 8E-07
.5E-08
.9E-10
.7E-06
.4E-08
.6E-09
.7E-10
. 9E-07
.IE-OS
.OE-09
.6E-10
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
3
2
1
3
2
1
6
2
9
1
4
1
2
2
1
3
1
9
3
1
5
4
1
4
3
2
9
2
2
1
6
1
9
7
3
8
3
2
1
3
1
1
4
1
9
7
2
.3E-15
.6E-16
. 1E-17
. 1E-14
. 1E-15
.7E-16
.7E-18
.OE-14
.2E-12
.OE-12
. 1E-14
.2E-10
. 8E-12
.5E-13
.OE-14
.OE-11
.1E-12
.4E-14
.8E-15
.1E-11
.OE-13
. 1E-14
.7E-15
.9E-12
.OE-13
.4E-14
.7E-16
. 8E-12
.OE-13
.6E-14
.6E-16
.9E-12
.4E-14
.5E-15
.OE-16
.9E-13
.3E-14
.6E-15
.1E-16
.1E-13
.5E-14
.2E-15
. 8E-17
.4E-13
.2E-15
.3E-16
.9E-17
6.
4.
2.
5.
4 .
3.
1.
4.
1.
1.
5.
1 .
7 .
5.
2.
6.
3.
3.
1 .
3.
2.
1 .
7.
2.
1.
1.
5.
1 .
1 .
9.
3.
1.
7.
5.
2.
6.
3.
2.
1.
3.
2.
1.
6.
1 .
1 .
1 .
4.
.1E-15
.8E-16
. OE-17
. 8E-14
.6E-15
.6E-16
.5E-17
.3E-14
.8E-12
.5E-13
.9E-15
.7E-11
.OE-13
.5E-14
.2E-15
.6E-12
.8E-13
.OE-14
.2E-15
.5E-12
.2E-13
. 8E-14
.1E-16
.1E-12
.6E-13
.3E-14
.1E-16
.5E-12
.2E-13
.7E-15
.9E-16
.1E-12
.2E-14
.7E-15
.3E-16
.8E-13
.5E-14
.8E-15
.1E-16
.3E-13
.OE-14
.6E-15
.4E-17
.9E-13
.4E-14
. 1E-15
.5E-17
9
7
3
8
6
5
2
6
1
1
4
1
3
3
1
3
1
1
5
1
7
5
2
6
4
3
1
4
3
2
1
3
1
1
5
1
6
5
2
6
3
2
1
3
2
1
7
.5E-
.5E-
.OE-
.9E-
.7E-
.3E-
.1E-
.2E-
.1E-
.2E-
.7E-
.4E-
.5E-
.1E-
.2E-
.6E-
.5E-
.2E-
.OE-
.5E-
.2E-
.9E-
.4E-
.9E-
.6E-
.7E-
.5E-
.3E-
.3E-
.6E-
.1E-
.1E-
.7E-
.3E-
.3E-
.6E-
.8E-
.4E-
.2E-
.4E-
.5E-
.8E-
.1E-
.3E-
.3E-
.8E-
.4E-
15
16
17
14
15
16
17
14
11
12
14
10
12
13
14
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
15
12
13
14
16
12
14
15
16
13
14
15
16
13
14
15
17
Ch. 13 Pg. 55

-------
lar 19, 2000 05
Wind
Toward
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
ESE
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
Distance
(meters)
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 14
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
(pCi/m3)
4 .
3.
2.
1 .
3.
2.
2.
8.
2.
1 .
1 .
5.
1.
7.
8.
3.
9.
2.
2.
8.
2.
9.
7.
3.
9.
4 .
3.
1 .
3.
2.
1.
7.
2.
1 .
1 .
5.
1.
7.
6.
2.
7 .
2.
2.
8.
2.
1.
9.
. 8E-07
.5E-08
.8E-09
.1E-10
.3E-07
.5E-08
.OE-09
.OE-11
.4E-07
.6E-08
.3E-09
. 1E-11
.5E-07
.4E-05
.5E-06
.5E-07
. 8E-04
.3E-05
.1E-06
.4E-08
.4E-04
.2E-06
.6E-07
.IE-OS
.OE-05
.1E-06
.3E-07
.3E-08
.9E-05
.4E-06
.9E-07
.9E-09
.3E-05
.7E-06
.3E-07
.4E-09
.6E-05
.6E-07
.IE-OS
.5E-09
.2E-06
.7E-07
.IE-OS
.7E-10
.5E-06
.2E-07
.8E-09
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
8
6
5
2
5
4
3
1
4
2
2
9
2
1
1
6
1
4
3
1
4
1
1
5
1
7
6
2
7
4
3
1
4
3
2
9
2
1
1
4
1
4
3
1
4
2
1
.6E-14
.3E-15
.OE-16
. OE-17
.9E-14
.5E-15
.6E-16
.4E-17
.2E-14
.9E-15
.3E-16
.2E-18
.7E-14
.3E-11
.5E-12
.2E-14
.8E-10
.2E-12
.7E-13
.5E-14
.4E-11
.6E-12
.4E-13
.6E-15
.6E-11
.3E-13
. OE-14
.4E-15
.1E-12
.3E-13
.5E-14
.4E-15
.1E-12
.OE-13
.4E-14
.7E-16
.8E-12
.4E-13
.1E-14
.4E-16
.3E-12
. 9E-14
.9E-15
.6E-16
.6E-13
.2E-14
.8E-15
1 .
1 .
8.
3.
9.
8.
6.
2.
7 .
6.
4 .
2.
5.
2.
2.
8.
2.
9.
7 .
3.
9.
5.
4.
1.
4 .
3.
2.
1 .
2.
2.
1.
7.
2.
1 .
1 .
5.
1.
1.
8.
3.
9.
5.
3.
1 .
4.
2.
2.
.3E-13
. 1E-14
.3E-16
.4E-17
.9E-14
.4E-15
.6E-16
.7E-17
. 8E-14
.2E-15
.9E-16
. OE-17
.9E-14
.6E-12
.OE-13
.2E-15
.4E-11
.8E-13
. 8E-14
. 1E-15
.2E-12
.3E-13
.2E-14
.7E-15
.9E-12
.1E-13
.5E-14
.OE-15
.9E-12
.2E-13
.8E-14
.1E-16
.1E-12
.7E-13
.4E-14
.5E-16
.6E-12
.OE-13
.OE-15
.2E-16
.5E-13
. OE-14
.9E-15
.6E-16
.6E-13
.9E-14
.3E-15
2
1
1
5
1
1
1
4
1
9
7
2
8
1
1
7
2
5
4
1
5
2
1
7
2
1
8
3
1
6
5
2
6
4
3
1
4
2
1
7
2
9
7
3
9
5
4
.2E-
.7E-
.3E-
.4E-
.6E-
.3E-
.OE-
.1E-
.2E-
.1E-
.2E-
.9E-
.6E-
.6E-
.7E-
.1E-
.OE-
.2E-
.5E-
.8E-
.3E-
.2E-
.8E-
.3E-
.1E-
.OE-
.5E-
.4E-
.OE-
.6E-
.3E-
.1E-
.2E-
.7E-
.8E-
.5E-
.4E-
.4E-
.9E-
.7E-
.3E-
.8E-
.8E-
.1E-
.2E-
.1E-
. OE-
13
14
15
17
13
14
15
17
13
15
16
17
14
11
12
14
10
12
13
14
11
12
13
15
11
12
14
15
11
13
14
15
12
13
14
15
12
13
14
16
12
14
15
16
13
14
15
Ch. 13 Pg. 56

-------
lar 19, 2000 05
Wind
Toward
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
Distance
(meters)
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 15
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
(pCi/m3)
4.
1.
7 .
6.
2.
7 .
5.
4.
1.
4.
3.
3.
1 .
3.
2.
1.
7.
2.
5.
6.
2.
7 .
1.
1.
7.
2.
7 .
6.
2.
8.
3.
3.
1.
3.
2.
1 .
7 .
2.
1.
1.
5.
1.
7 .
5.
2.
6.
2.
.OE-10
.2E-06
.6E-08
.OE-09
.4E-10
. 1E-07
.2E-08
.1E-09
.7E-10
.9E-07
.8E-08
.OE-09
.2E-10
.5E-07
.5E-08
.9E-09
.8E-11
.3E-07
.2E-05
.3E-06
.5E-07
.2E-04
.9E-05
.8E-06
.IE-OS
.1E-04
.9E-06
. 9E-07
.8E-08
.IE-OS
.7E-06
.OE-07
.2E-08
.6E-05
.2E-06
. 8E-07
.3E-09
.IE-OS
.5E-06
.2E-07
.OE-09
.5E-05
.2E-07
.7E-08
.3E-09
.8E-06
.6E-07
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
7
2
1
1
4
1
9
7
3
8
6
5
2
6
4
3
1
4
9
1
4
1
3
3
1
3
1
1
5
1
6
5
2
6
4
3
1
3
2
2
9
2
1
1
4
1
4
.2E-17
.1E-13
.4E-14
. 1E-15
.4E-17
.3E-13
.3E-15
.4E-16
.OE-17
.7E-14
.8E-15
.3E-16
.2E-17
.3E-14
.4E-15
.5E-16
.4E-17
.1E-14
.3E-12
.1E-12
.6E-14
.3E-10
.4E-12
.2E-13
.3E-14
.7E-11
.4E-12
.2E-13
.OE-15
.5E-11
.6E-13
.5E-14
.2E-15
.5E-12
.OE-13
.3E-14
.3E-15
. 8E-12
.8E-13
.2E-14
.OE-16
.6E-12
.3E-13
. OE-14
.2E-16
.2E-12
.7E-14
9.
2.
2.
1 .
6.
1 .
1.
1.
4.
1.
1 .
9.
3.
1 .
9.
7.
2.
8.
2.
1 .
6.
1 .
7.
6.
2.
7.
4 .
3.
1 .
3.
2.
1.
7.
2.
1 .
1 .
5.
1 .
1.
1.
4.
1.
7 .
6.
2.
7 .
3.
.1E-17
.7E-13
. OE-14
.6E-15
.4E-17
.9E-13
.5E-14
.2E-15
.8E-17
.4E-13
.2E-14
.5E-16
. 8E-17
.1E-13
.OE-15
.1E-16
.9E-17
.5E-14
.OE-12
.6E-13
.5E-15
.9E-11
.7E-13
.1E-14
.5E-15
.2E-12
.1E-13
.2E-14
.3E-15
.9E-12
.4E-13
.9E-14
.8E-16
.3E-12
.7E-13
.4E-14
.5E-16
.6E-12
.3E-13
.1E-14
.3E-16
.3E-12
. 8E-14
.2E-15
.5E-16
.3E-13
.8E-14
1
4
3
2
1
3
2
1
7
2
1
1
6
1
1
1
4
1
1
1
5
1
4
3
1
4
1
1
6
1
9
7
3
8
5
4
1
5
4
3
1
3
2
1
6
2
8
.6E-
.8E-
.4E-
.7E-
.1E-
.2E-
.4E-
.9E-
.8E-
.3E-
.9E-
.5E-
.OE-
.8E-
.3E-
.1E-
.3E-
.3E-
.1E-
.3E-
.2E-
.5E-
.1E-
.8E-
.5E-
.4E-
.8E-
.6E-
.3E-
.8E-
.1E-
.4E-
.OE-
.8E-
.7E-
.6E-
.9E-
.5E-
.1E-
.3E-
.3E-
.9E-
.1E-
.7E-
.7E-
.OE-
.5E-
16
13
14
15
16
13
14
15
17
13
14
15
17
13
14
15
17
13
11
12
14
10
12
13
14
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
15
12
13
14
16
12
14
Ch. 13 Pg. 57

-------
lar 19, 2000 05
Wind
Toward
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
ENE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
Distance
(meters)
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
3500
4500
4500
4500
4500
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 16
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
(pCi/m3)
2.
8.
2.
1 .
9.
3.
1.
7.
5.
2.
6.
5.
4.
1.
4.
3.
2.
1 .
3.
2.
1.
7.
2.
5.
6.
2.
7 .
1 .
1.
7.
2.
8.
7 .
2.
8.
3.
3.
1.
3.
2.
1 .
7 .
2.
1 .
1.
5.
1.
.IE-OS
.4E-10
.5E-06
.2E-07
.4E-09
.8E-10
.1E-06
.3E-08
.8E-09
.3E-10
. 9E-07
.OE-08
.OE-09
.6E-10
.7E-07
.6E-08
.8E-09
.1E-10
.4E-07
.2E-08
.7E-09
.OE-11
.1E-07
.IE-OS
.3E-06
.5E-07
.3E-04
.9E-05
.8E-06
.4E-08
.1E-04
.3E-06
.2E-07
.9E-08
.5E-05
.9E-06
.2E-07
.3E-08
.8E-05
.3E-06
. 9E-07
.7E-09
.3E-05
.6E-06
.3E-07
.3E-09
.6E-05
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
3
1
4
2
1
6
2
1
1
4
1
9
7
2
8
6
5
2
6
4
3
1
3
9
1
4
1
3
3
1
3
1
1
5
1
7
5
2
6
4
3
1
4
2
2
9
2
.7E-15
.5E-16
.4E-13
. 1E-14
.7E-15
.8E-17
.OE-13
.3E-14
.OE-15
.2E-17
.2E-13
.OE-15
.1E-16
.9E-17
.5E-14
.5E-15
.1E-16
. 1E-17
. OE-14
.OE-15
.1E-16
.3E-17
.7E-14
.2E-12
.1E-12
.6E-14
.3E-10
.5E-12
.3E-13
.3E-14
.9E-11
.5E-12
.3E-13
.3E-15
.5E-11
.OE-13
.8E-14
.3E-15
.8E-12
.2E-13
.4E-14
.4E-15
.1E-12
.9E-13
.4E-14
.6E-16
.8E-12
3.
1 .
3.
2.
1.
6.
2.
1.
1 .
4 .
1 .
1 .
8.
3.
1.
8.
6.
2.
8.
6.
5.
2.
6.
2.
1 .
6.
1 .
7 .
6.
2.
7.
4.
3.
1 .
3.
2.
2.
7.
2.
1.
1 .
5.
1 .
1 .
1.
4.
1.
.OE-15
.2E-16
.5E-13
. 1E-14
.7E-15
.8E-17
.OE-13
.5E-14
.2E-15
.7E-17
.4E-13
. 1E-14
.8E-16
.6E-17
.OE-13
.8E-15
.9E-16
. 8E-17
.2E-14
.5E-15
.1E-16
.1E-17
.OE-14
.1E-12
.6E-13
.6E-15
.9E-11
.8E-13
.2E-14
.5E-15
.4E-12
.2E-13
.3E-14
.3E-15
.9E-12
.5E-13
.OE-14
.9E-16
.3E-12
.8E-13
.4E-14
.6E-16
.6E-12
.4E-13
.1E-14
.3E-16
.3E-12
6
2
8
4
3
1
4
2
2
8
2
2
1
6
1
1
1
4
1
1
8
3
9
1
1
5
1
4
3
1
4
1
1
6
1
9
7
3
9
6
4
2
5
4
3
1
4
.7E-
.7E-
.OE-
.3E-
.4E-
.4E-
.OE-
.8E-
.2E-
.9E-
.6E-
.OE-
.6E-
.4E-
.9E-
.5E-
.2E-
.9E-
.4E-
.OE-
.2E-
.3E-
.8E-
.1E-
.3E-
.2E-
.5E-
.2E-
.9E-
.6E-
.6E-
.9E-
.6E-
.6E-
.9E-
.5E-
.8E-
.1E-
.2E-
.OE-
.8E-
.OE-
.7E-
.3E-
.4E-
.4E-
.1E-
15
16
13
14
15
16
13
14
15
17
13
14
15
17
13
14
15
17
13
14
16
17
14
11
12
14
10
12
13
14
11
12
13
15
11
13
14
15
12
13
14
15
12
13
14
15
12
Ch. 13 Pg. 58

-------
lar 19, 2000 05
Wind
Toward
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
Distance
(meters)
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
310
310
310
310
810
810
810
810
1500
1500
1500
1500
2500
2500
2500
2500
3500
3500
3500
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 17
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
(pCi/m3)
7.
6.
2.
7 .
2.
2.
8.
2.
1.
1.
4 .
1 .
7 .
6.
2.
7.
5.
4.
1 .
5.
3.
3.
1.
3.
2.
1.
7 .
2.
6.
8.
3.
9.
2.
2.
1 .
3.
1 .
1 .
4.
1.
5.
5.
2.
5.
3.
3.
1.
.6E-07
.IE-OS
.5E-09
.2E-06
. 8E-07
.2E-08
.9E-10
.6E-06
.3E-07
.OE-08
.OE-10
.2E-06
.8E-08
.1E-09
.5E-10
.3E-07
.3E-08
.2E-09
.7E-10
. OE-07
.8E-08
.OE-09
.2E-10
.6E-07
.3E-08
.8E-09
.4E-11
.2E-07
.4E-05
.OE-06
.2E-07
.3E-04
.6E-05
.7E-06
. 1E-07
. 1E-04
.2E-05
.1E-06
.5E-08
.3E-04
.9E-06
.OE-07
.OE-08
.9E-05
.6E-06
. OE-07
.2E-08
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
1
1
4
1
5
4
1
4
2
1
7
2
1
1
4
1
9
7
3
9
6
5
2
6
4
3
1
3
1
1
5
1
4
4
2
5
2
2
8
2
1
9
3
1
6
5
2
.4E-13
.1E-14
.4E-16
.3E-12
. OE-14
.OE-15
.6E-16
.7E-13
.3E-14
.8E-15
.2E-17
.1E-13
.4E-14
. 1E-15
.5E-17
.3E-13
.6E-15
.6E-16
. 1E-17
. OE-14
.8E-15
.4E-16
.2E-17
.4E-14
.2E-15
.3E-16
.3E-17
. 9E-14
.2E-11
.4E-12
.8E-14
.7E-10
.7E-12
.8E-13
. OE-14
.6E-11
.2E-12
.OE-13
.OE-15
.3E-11
.1E-12
.OE-14
.6E-15
.1E-11
.5E-13
.4E-14
.2E-15
8.
6.
2.
7 .
3.
3.
1.
3.
2.
1.
6.
2.
1 .
1 .
4.
1.
1.
8.
3.
1 .
8.
6.
2.
8.
6.
5.
2.
6.
2.
2.
9.
2.
1.
8.
3.
1 .
5.
4 .
1.
5.
3.
2.
1 .
3.
2.
1 .
7.
.OE-14
.3E-15
.5E-16
.4E-13
. 8E-14
.OE-15
.2E-16
.6E-13
.1E-14
.7E-15
. 8E-17
.OE-13
.5E-14
.2E-15
.7E-17
.4E-13
.1E-14
.8E-16
.6E-17
.OE-13
.8E-15
.9E-16
.8E-17
.2E-14
.4E-15
.OE-16
. OE-17
. OE-14
.9E-12
.3E-13
.3E-15
.7E-11
.1E-12
.7E-14
.5E-15
.OE-11
.9E-13
.7E-14
.9E-15
.5E-12
.5E-13
.8E-14
. 1E-15
.3E-12
.5E-13
. 9E-14
.9E-16
2
1
7
2
8
7
2
8
4
3
1
4
2
2
9
2
2
1
6
1
1
1
5
1
1
8
3
9
1
1
6
1
5
5
2
6
2
2
9
2
1
1
4
1
9
7
3
.2E-
.7E-
.OE-
.OE-
.8E-
.OE-
.8E-
.3E-
.4E-
.5E-
.4E-
.1E-
.9E-
.3E-
.2E-
.7E-
.1E-
.6E-
.6E-
.9E-
.6E-
.2E-
.OE-
.5E-
.1E-
.3E-
.4E-
.9E-
.4E-
.7E-
.7E-
.9E-
.8E-
.7E-
.3E-
.6E-
.8E-
.4E-
.9E-
.9E-
.4E-
.2E-
.8E-
.4E-
.OE-
.3E-
. OE-
13
14
16
12
14
15
16
13
14
15
16
13
14
15
17
13
14
15
17
13
14
15
17
13
14
16
17
14
11
12
14
10
12
13
14
11
12
13
15
11
12
13
15
11
13
14
15
Ch. 13 Pg. 59

-------
lar 19, 2000 05
Wind
Toward
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
NNE
Distance
(meters)
3500
4500
4500
4500
4500
7500
7500
7500
7500
15000
15000
15000
15000
25000
25000
25000
25000
35000
35000
35000
35000
45000
45000
45000
45000
55000
55000
55000
55000
70000
70000
70000
70000
: 10 pm
ESTIMATED
AT VARIOUS
RADIONUCLIDE CONCENTRATIONS
LOCATIONS IN THE ENVIRONMENT
CONCEN
Page 18
Dry Wet Ground
Air Deposition Deposition Deposition
Concentration Rate Rate Rate
Nuclide
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
U-234
U-235
U-236
U-238
(pCi/m3)
3.
2.
2.
8.
2.
1 .
9.
3.
1.
4.
3.
1 .
4 .
2.
1.
6.
1.
1.
1 .
4 .
1 .
8.
7.
2.
8.
6.
5.
2.
5.
3.
2.
1.
3.
.5E-05
.5E-06
. 1E-07
.4E-09
.4E-05
.2E-06
.6E-08
.9E-09
.IE-OS
.5E-07
.6E-08
.4E-09
.2E-06
. OE-07
.6E-08
.5E-10
.9E-06
.3E-07
.OE-08
.1E-10
.2E-06
.8E-08
.OE-09
.8E-10
.3E-07
.3E-08
.OE-09
.OE-10
. 9E-07
.7E-08
.9E-09
.2E-10
.5E-07
(pCi/cm2/s) (pCi/cm2/s) (pCi/cm2/s)
6
4
3
1
4
2
1
7
2
8
6
2
7
3
2
1
3
2
1
7
2
1
1
5
1
1
8
3
1
6
5
2
6
.3E-12
.5E-13
.7E-14
.5E-15
.4E-12
.2E-13
.7E-14
.OE-16
.1E-12
.1E-14
.4E-15
.6E-16
.6E-13
.7E-14
.9E-15
.2E-16
.5E-13
.3E-14
.8E-15
.3E-17
.2E-13
.6E-14
.3E-15
.1E-17
.5E-13
.1E-14
.9E-16
.6E-17
.1E-13
.7E-15
.2E-16
.1E-17
.2E-14
2.
1.
1 .
6.
1 .
1 .
8.
3.
1.
5.
4 .
1 .
4 .
2.
2.
9.
2.
2.
1 .
6.
1 .
1 .
1.
4.
1.
1.
9.
3.
1 .
8.
6.
2.
7.
.3E-12
.9E-13
.5E-14
.OE-16
.8E-12
.1E-13
.7E-15
.5E-16
.OE-12
.3E-14
.2E-15
.7E-16
.9E-13
. 9E-14
.3E-15
.3E-17
.7E-13
.OE-14
.6E-15
.4E-17
.9E-13
.5E-14
.2E-15
.8E-17
.4E-13
.2E-14
.3E-16
. 8E-17
.1E-13
.5E-15
.7E-16
.7E-17
.9E-14
8
6
5
2
6
3
2
1
3
1
1
4
1
6
5
2
6
4
3
1
4
3
2
9
2
2
1
7
2
1
1
4
1
.6E-
.4E-
.2E-
.1E-
.2E-
.3E-
.6E-
.1E-
.1E-
.3E-
.1E-
.3E-
.3E-
.6E-
.2E-
.1E-
.2E-
.3E-
.4E-
.4E-
.1E-
.1E-
.4E-
.9E-
.9E-
.3E-
.8E-
.4E-
.2E-
.5E-
.2E-
.8E-
.4E-
12
13
14
15
12
13
14
15
12
13
14
16
12
14
15
16
13
14
15
16
13
14
15
17
13
14
15
17
13
14
15
17
13
Ch. 13 Pg. 60

-------
13.2.7   Chi/O Tables
                                 C A P 8 8 - PC

                                  Version 2.00


                    Clean Air Act Assessment Package  - 1988



                            CHI/Q   TABLES

                        Non-Radon Population Assessment
                             Mar 19, 2000 05:10 pm
          Facility:  Reactive Metals
           Address:  Address
              City:  Ashtabula
             State:  OH                      Zip:
          Source Category: DOE Facilities
              Source Type: Stack
            Emission Year: 1986
         Comments:    Reactive Metals - - Population Run
            Dataset Name: Reactive Metals
            Dataset Date: Mar 19, 2000 05:10 pm
               Wind File: C:\CAP88PC2\WNDFILES\ERIEPA.WND
        Population  File: C:\CAPBBPC2\POPFILES\RMIASHTA.POP
                                  Ch. 13 Pg. 61

-------
Mar 19, 2000 05:10 pm
GROUND-LEVEL CHI/Q VALUES
CHI/Q TOWARD INDICATED DIRECTION
Distance
Dir
N 7
NNW 2
NW 1
WNW 7
W 1
WSW 1
SW 2
SSW 1
S 2
SSE 2
SE 2
ESE 2
E 4
ENE 2
NE 2
NNE 3
310
.699E-
.293E-
.013E-
.953E-
.291E-
.829E-
.194E-
.421E-
.600E-
.004E-
.082E-
.868E-
. 197E-
. 927E-
.895E-
.605E-

06
06
06
07
06
06
06
06
06
06
06
06
06
06
06
06

3.
9.
4 .
4 .
6.
7.
7.
4.
8.
6.
6.
8.
1 .
1 .
1 .
1.
810
.790E-06
.905E-07
. 951E-07
.661E-07
.738E-07
.302E-07
.609E-07
.762E-07
.050E-07
.115E-07
.291E-07
.737E-07
.316E-06
.053E-06
.082E-06
.485E-06

1.
4 .
2.
2.
3.
3.
3.
1.
3.
2.
2.
3.
5.
4 .
4 .
6.
1500
.942E-06
.792E-07
.625E-07
.616E-07
.526E-07
.258E-07
.130E-07
.984E-07
.276E-07
.459E-07
.511E-07
.492E-07
. 162E-07
.480E-07
.676E-07
.917E-07

9.
2.
1.
1.
1.
1.
1.
9.
1.
1.
1.
1.
2.
2.
2.
3.
Distance
Dir
N 7
NNW 1
NW 1
WNW 1
W 1
WSW 1
SW 9
SSW 6
S 9
SSE 7
SE 7
ESE 1
E 1
ENE 1
NE 1
NNE 2
15000
.633E-
.762E-
. 014E-
. 041E-
.366E-
.130E-
.896E-
.266E-
.980E-
.518E-
.491E-
. 042E-
.526E-
.474E-
.566E-
.527E-

08
08
08
08
08
08
09
09
09
09
09
08
08
08
08
08

3.
7 .
4 .
4 .
5.
5.
4.
2.
4.
3.
3.
4 .
7 .
6.
7.
1.
25000
.445E-08
.808E-09
.374E-09
.439E-09
.998E-09
.161E-09
.557E-09
.858E-09
.550E-09
.475E-09
.427E-09
.735E-09
.015E-09
.715E-09
.119E-09
.156E-08

2.
4 .
2.
2.
3.
3.
2.
1.
2.
2.
2.
2.
4 .
4.
4.
7.
35000
.167E-08
.843E-09
.712E-09
.754E-09
.738E-09
.206E-09
.806E-09
.758E-09
.802E-09
.151E-09
.105E-09
.890E-09
.274E-09
.136E-09
.391E-09
.225E-09

1.
3.
1.
1.
2.
2.
1.
1.
1.
1.
1.
1.
2.
2.
3.
4.
FOR U-234
(SEC/CUBIC
CHIQ
Page
METER)
1
(meters)
2500
700E-
344E-
326E-
346E-
771E-
540E-
426E-
091E-
483E-
107E-
126E-
569E-
299E-
076E-
182E-
332E-

07
07
07
07
07
07
07
08
07
07
07
07
07
07
07
07
3500
5.999E-07
1 .438E-07
8.210E-08
8.374E-08
1.095E-07
9.334E-08
8.516E-08
5.434E-08
8.798E-08
6.552E-08
6.656E-08
9.298E-08
1.360E-07
1 .248E-07
1.316E-07
2.036E-07

4.
1 .
5.
5.
7 .
6.
5.
3.
6.
4.
4.
6.
9.
8.
9.
1.
4500
.219E-07
.006E-07
.760E-08
.890E-08
.690E-08
.496E-08
.877E-08
.746E-08
.030E-08
.487E-08
.552E-08
.373E-08
.332E-08
.651E-08
. 134E-08
.424E-07

2.
4 .
2.
2.
3.
3.
2.
1.
2.
2.
2.
2.
4 .
4 .
4 .
6.
7500
.012E-07
.748E-08
.721E-08
.785E-08
.643E-08
.056E-08
.735E-08
.739E-08
.783E-08
.078E-08
.098E-08
.939E-08
.310E-08
.048E-08
.282E-08
.751E-08
(meters)
45000
493E-
303E-
836E-
858E-
544E-
201E-
924E-
203E-
919E-
481E-
442E-
972E-
921E-
830E-
005E-
980E-

08
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
55000
1.052E-08
2.314E-09
1.261E-09
1.263E-09
1.760E-09
1.566E-09
1.383E-09
8.616E-10
1.377E-09
1 . 070E-09
1.038E-09
1 .419E-09
2.116E-09
2.024E-09
2.143E-09
3.548E-09

5.
1 .
6.
6.
9.
9.
8.
5.
8.
6.
6.
9.
1 .
1.
1.
2.
70000
.933E-09
.322E-09
.708E-10
.494E-10
.520E-10
.432E-10
.755E-10
.360E-10
.662E-10
.822E-10
.636E-10
.067E-10
.385E-09
.254E-09
.315E-09
.102E-09


































Ch. 13 Pg. 62

-------
Mar
19, 2000 05:10 pm
GROUND-LEVEL CHI/Q VALUES FOR U-235
CHI/Q TOWARD INDICATED DIRECTION (SEC/CUBIC
CHIQ
Page 2
METER)
Distance (meters)
Dir
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE

1
3
1
1
2
2
3
2
3
2
2
4
6
4
4
5
310
.296E-
.684E-
.665E-
.416E-
.225E-
.902E-
.301E-
.078E-
.653E-
.803E-
.906E-
.023E-
.041E-
.447E-
.476E-
.707E-

05
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
810
5.250E-06
1.305E-06
7.037E-07
6.933E-07
9.480E-07
9.027E-07
8.824E-07
5.590E-07
9.320E-07
7.027E-07
7.171E-07
9.941E-07
1.471E-06
1.253E-06
1.302E-06
1.903E-06
1500
2.271E-06
5.490E-07
3.107E-07
3.146E-07
4.147E-07
3.617E-07
3.363E-07
2.150E-07
3.530E-07
2.639E-07
2.682E-07
3.726E-07
5.440E-07
4.883E-07
5.126E-07
7.819E-07
2500
1.049E-06
2.509E-07
1.441E-07
1.471E-07
1.919E-07
1.624E-07
1.479E-07
9.473E-08
1.541E-07
1.147E-07
1.165E-07
1.622E-07
2.361E-07
2.169E-07
2.286E-07
3.547E-07

6
1
8
8
1
9
8
5
9
6
6
9
1
1
1
2
3500
.311E-07
.502E-07
.650E-08
.855E-08
.153E-07
.662E-08
.720E-08
.581E-08
.016E-08
.708E-08
.800E-08
.497E-08
.384E-07
.284E-07
.356E-07
.122E-07

4.
1.
5.
6.
7.
6.
5.
3.
6.
4.
4.
6.
9.
8.
9.
1.
4500
.380E-07 2.
.038E-07 4.
.979E-08 2.
.127E-08 2.
.978E-08 3.
.664E-08 3.
.981E-08 2.
.821E-08 1.
.137E-08 2.
.565E-08 2.
.623E-08 2.
.472E-08 2.
.449E-08 4.
.834E-08 4.
.338E-08 4.
.468E-07 6.
7500
.045E-07
.806E-08
.758E-08
.823E-08
.695E-08
.089E-08
.756E-08
.754E-08
.802E-08
.093E-08
.110E-08
.957E-08
.334E-08
.084E-08
.321E-03
.847E-08
Distance (meters)
Dir
N
NNW
NW
WNW
W
WSW
SW
SSW
S
SSE
SE
ESE
E
ENE
NE
NNE
15000
7
1
1
1
1
1
9
6
9
7
7
1
1
1
1
2
.662E-
.763E-
.013E-
.040E-
.368E-
.133E-
.911E-
.274E-
. 977E-
.522E-
.486E-
.042E-
.527E-
.476E-
.568E-
.538E-
08
08
08
08
08
08
09
09
09
09
09
08
08
08
08
08
25000
3.423E-08
7.740E-09
4.319E-09
4.374E-09
5.937E-09
5.137E-09
4 .544E-09
2.846E-09
4.525E-09
3.460E-09
3.409E-09
4.714E-09
7.000E-09
6.688E-09
7.086E-09
1.152E-08
35000
2.150E-08
4.792E-09
2.673E-09
2.708E-09
3.692E-09
3.188E-09
2.795E-09
1 .749E-09
2 .784E-09
2 . 140E-09
2.093E-09
2.874E-09
4.261E-09
4.114E-09
4.365E-09
7 . 188E-09
45000
1 .479E-08
3.265E-09
1.807E-09
1.825E-09
2.510E-09
2.186E-09
1.915E-09
1.196E-09
1.905E-09
1 .472E-09
1.432E-09
1.960E-09
2.911E-09
2.814E-09
2.985E-09
4 . 949E-09
55000
















1.041E-
2.287E-
1.240E-
1.240E-
1.735E-
1.555E-
1.376E-
8.560E-
1.367E-
1.063E-
1.031E-
1.410E-
2.108E-
2.011E-
2.128E-
3.523E-
08
09
09
09
09
09
09
10
09
09
09
09
09
09
09
09
70000
5.818E-09
1.298E-09
6.534E-10
6.302E-10
9.293E-10
9.312E-10
8.683E-10
5.306E-10
8.576E-10
6.763E-10
6.581E-10
8.993E-10
1.377E-09
1.241E-09
1.300E-09
2.073E-09

















Ch. 13 Pg. 63

-------
Mar 19, 2000 05:10 pm
GROUND-LEVEL CHI/Q VALUES FOR U-236
CHI/Q TOWARD INDICATED DIRECTION (SEC/CUBIC
CHIQ
Page
METER)
3
Distance (meters)
Dir
N 1
NNW 3
NW 1
WNW 1
W 2
WSW 2
SW 3
SSW 2
S 3
SSE 2
SE 2
ESE 4
E 6
ENE 4
NE 4
NNE 5
310
.269E-
.648E-
.621E-
.360E-
.167E-
.899E-
.324E-
.089E-
.673E-
.820E-
. 927E-
.057E-
.108E-
.468E-
.490E-
.674E-

05
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06

5.
1.
7.
6.
9.
9.
8.
5.
9.
7 .
7 .
9.
1.
1.
1.
1.
810
.274E-06
.309E-06
.053E-07
.943E-07
.513E-07
. 073E-07
.869E-07
.616E-07
.357E-07
. 057E-07
. 199E-07
. 981E-07
.478E-06
.259E-06
.309E-06
.912E-06
1500
2.288E-06
5.527E-07
3.132E-07
3.173E-07
4 . 180E-07
3.638E-07
3 .377E-07
2.160E-07
3.545E-07
2 .649E-07
2 .692E-07
3 .740E-07
5.457E-07
4.906E-07
5.152E-07
7.868E-07
2500
1.055E-06
2.521E-07
1.449E-07
1.481E-07
1.930E-07
1.630E-07
1 .483E-07
9.502E-08
1 .545E-07
1 . 151E-07
1 . 168E-07
1 .626E-07
2.366E-07
2.176E-07
2.294E-07
3.563E-07
3500
6
1
8
8
1
9
8
5
9
6
6
9
1
1
1
2
.338E-07
.507E-07
.691E-08
.900E-08
. 158E-07
.690E-08
.738E-08
.594E-08
.036E-08
.722E-08
. 814E-08
.515E-08
.386E-07
.288E-07
.360E-07
.129E-07
4500
4.
1.
6.
6.
8.
6.
5.
3.
6.
4 .
4 .
6.
9.
8.
9.
1.
.396E-07
.041E-07
.003E-08
.154E-08
.009E-08
.680E-08
.991E-08
.828E-08
. 149E-08
.573E-Oa
.631E-08
.482E-08
.461E-08
.852E-08
.358E-08
.472E-07
7500
2.050E-07
4.817E-08
2.766E-08
2.832E-08
3.704E-08
3.095E-08
2.759E-08
1.756E-08
2.805E-08
2.095E-08
2.112E-08
2.960E-08
4.337E-08
4.089E-08
4.327E-08
6.860E-08
Distance (meters)
Dir
N 7
NNW 1
NW 1
WNW 1
W 1
WSW 1
SW 9
SSW 6
S 9
SSE 7
SE 7
ESE 1
E 1
ENE 1
NE 1
NNE 2
15000
.675E-
.766E-
.015E-
. 042E-
.370E-
.134E-
.918E-
.280E-
.985E-
.528E-
.492E-
.043E-
.528E-
.477E-
.570E-
.541E-
08
08
08
08
08
08
09
09
09
09
09
08
08
08
08
08
3.
7.
4.
4 .
5.
5.
4 .
2.
4.
3.
3.
4 .
7 .
6.
7 .
1.
25000
.426E-08
.746E-09
.323E-09
.378E-09
.943E-09
. 141E-09
.546E-09
.847E-09
.527E-09
.462E-09
.411E-09
.715E-09
.002E-09
.692E-09
.090E-09
.153E-08
35000
2.151E-08
4.796E-09
2.675E-09
2.710E-09
3.695E-09
3.189E-09
2.796E-09
1.750E-09
2.785E-09
2.140E-09
2.093E-09
2.875E-09
4.262E-09
4 . 116E-09
4.368E-09
7.193E-09
45000
1.480E-08
3.267E-09
I-808E-09
1.826E-09
2 .512E-09
2 . 187E-09
1.916E-09
1.196E-09
1.906E-09
1.473E-09
1.433E-09
1.961E-09
2.911E-09
2.815E-09
2.986E-09
4.952E-09
55000
















1.041E-
2.288E-
1.241E-
1.241E-
1.736E-
1.555E-
1 .377E-
8.563E-
1.367E-
1.064E-
1.031E-
1 .410E-
2.108E-
2 . 012E-
2.128E-
3.525E-
08
09
09
09
09
09
09
10
09
09
09
09
09
09
09
09
70000
5.817E
1.298E
6.531E
6.299E
9.290E
9.311E
8.682E
5.305E
8.575E
6.762E
6.580E
8.992E
1 .377E
1.241E
1.300E
2.073E
-09
-09
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-09
-09
-09
-09
Ch. 13 Pg. 64

-------
Mar 19, 2000 05:10 pm
GROUND-LEVEL CHI/Q VALUES
CHI/Q TOWARD INDICATED DIRECTION
Distance
Dir
N 1
NNW 3
NW 1
WNW 1
W 2
WSW 2
SW 3
SSW 2
S 3
SSE 2
SE 2
ESE 3
E 5
ENE 4
NE 4
NNE 5
310
.266E-
.597E-
.629E-
.384E-
. 170E-
. 827E-
.218E-
.029E-
.572E-
.742E-
. 842E-
.935E-
.898E-
.337E-
.363E-
.571E-
05
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
5
1
6
6
9
8
8
5
9
6
7
9
1
1
1
1
810
. 126E-06
.278E-06
.860E-07
.738E-07
.242E-07
. 875E-07
.715E-07
.517E-07
.207E-07
. 947E-07
.093E-07
.836E-07
.457E-06
.235E-06
.283E-06
.867E-06
1500
2.234E-06
5 .411E-07
3.051E-07
3.083E-07
4 . 076E-07
3.578E-07
3.338E-07
2.132E-07
3.502E-07
2 .619E-07
2.663E-07
3 .701E-07
5 .412E-07
4.839E-07
5 . 077E-07
7 .721E-07
FOR U-238
(SEC/CUBIC
CHIQ
Page
METER)
4

(meters)
2500
1.
2.
1.
1.
1.
1.
1.
9.
1.
1.
1.
1.
2.
2.
2.
3.
Distance
Dir
N 7
NNW 1
NW 1
WNW 1
W 1
WSW 1
SW 9
SSW 6
S 9
SSE 7
SE 7
ESE 1
E 1
ENE 1
NE 1
NNE 2
15000
.652E-
.762E-
.012E-
.038E-
.366E-
.132E-
.905E-
.271E-
. 972E-
.518E-
.483E-
.042E-
.527E-
.475E-
.567E-
.535E-
08
08
08
08
08
08
09
09
09
09
09
08
08
08
08
08
3
7
4
4
5
5
4
2
4
3
3
4
7
6
7
1
25000
.423E-08
.743E-09
.321E-09
.377E-09
.939E-09
.138E-09
.544E-09
.846E-09
.526E-09
.461E-09
.410E-09
.714E-09
.OOOE-09
.689E-09
.087E-09
.152E-08
35000
2.150Z-08
4.795E-09
2.675E-09
2.711E-09
3.695E-09
3.188E-09
2.795E-09
1 .749E-09
2.785E-09
2 . 140E-09
2.093E-09
2.875E-09
4.262E-09
4.115E-09
4.367E-09
7 . 189E-09
039E-
487E-
425E-
454E-
899E-
614E-
473E-
426E-
533E-
142E-
160E-
616E-
354E-
157E-
273E-
521E-
06
07
07
07
07
07
07
08
07
07
07
07
07
07
07
07
3500
6.269E-07
1 .492E-07
8.584E-08
8 .782E-08
1 . 144E-07
9.618E-08
8.694E-08
5.562E-08
8.985E-08
6.687E-08
6.780E-08
9 .471E-08
1 .381E-07
1 .280E-07
1 .351E-07
2 . 110E-07

4
1
5
6
7
6
5
3
6
4
4
6
9
8
9
1
4500
.357E-
.033E-
. 944E-
.088E-
.934E-
.640E-
.967E-
.810E-
.121E-
.554E-
.613E-
.458E-
.434E-
.808E-
.309E-
.462E-

07
07
08
08
08
08
08
08
08
08
08
08
08
08
08
07

2.
4 .
2.
2.
3.
3.
2.
1 .
2.
2.
2.
2.
4 .
4 .
4 .
6.
7500
.039E-07
.795E-08
.750E-08
. 814E-08
.684E-08
.084E-08
.753E-08
.751E-08
.798E-08
.090E-08
. 107E-08
.954E-08
.330E-08
.078E-08
.314E-08
.831E-08
(meters)
45000
1.
3.
1.
1.
2.
2.
1.
1.
1.
1.
1.
1.
2.
2.
2.
4 .
479E-
268E-
809E-
827E-
512E-
187E-
915E-
196E-
906E-
473E-
433E-
961E-
911E-
814E-
986E-
950E-
08
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
55000
1 . 041E-08
2.289E-09
1.242E-09
1.241E-09
1.737E-09
1.555E-09
1 .377E-09
8.563E-10
1.367E-09
1.064E-09
1.032E-09
1.410E-09
2.108E-09
2.012E-09
2.129E-09
3.524E-09
70000
5
1
6
6
9
9
8
5
8
6
6
9
1
1
1
2
.830E-
.301E-
.553E-
.323E-
.317E-
.324E-
.689E-
.311E-
.585E-
.769E-
.586E-
.OOOE-
.378E-
.242E-
.302E-
.076E-
09
09
10
10
10
10
10
10
10
10
10
10
09
09
09
09
































Ch. 13 Pg. 65

-------
                                    CHAPTER 14

                                   REFERENCES
Be86         "Comparison of AIRDOS-EPA Predictions of Ground-Level Airborne
             Radionuclide Concentrations to Measured Values", S.K. Beal and S.C. Cohen, S.
             Cohen and Associates, 8200 Riding Ridge Place, McLean, VA  22102, HJ.
             Chmelynski, Jack Faucett Associates, Suite 200, 7300 Pearl St., Bethesda, MD
             20814, B.S. Parks and J. Hardin, U.S. Environmental Protection Agency,
             Washington, D.C. 20460, 1986.

Br69         Briggs, G.A., "Plume Rise, AEC Critical Review Series", TTD-25075, 1969.

EPA89       EPA 520/1-89-005 Risk Assessment Methodology: Draft Environmental Impact
             Statement for Proposed NESHAPS for Radionuclides, Volume 1, Background
             Information Document, United States Environmental Protection Agency, Office
             of Radiation Programs,  Washington, D.C.  20460, February 1989.

EPA92       EPA 402-B-92-001 User's Guide For CAP88-PC, Version 1.0, United States
             Environmental Protection Agency, Office of Radiation Programs, Las Vegas
             Facility, P.O. Box 98517, Las Vegas, NV 89193-8517, March 1992.

Gi76         Gifford, F.A., Jr., "Turbulent diffusion-typing schemes:  A review", Nuclear
             Safety 17(l):68-86, 1976.

ICRP26      International Commission on Radiological Protection, Recommendations of the
             International Commission on Radiological Protection, ICRP Publication 26, Ann.
             ICRP, 1, (1), Pergamon Press,  1977.

Mo79        Moore, R.E., Baes, C.F.HI,  McDowell-Boyer, L.M., Watson, A.P., Hoffman, F.O.,
             Pleasant, J.C., Miller, C.W., "AIRDOS-EPA: A Computerized Methodology for
             Estimating Environmental Concentrations and Dose to Man from Airborne
             Releases of Radionuclides", (Reprint of ORNL-5532), EPA 520/1-79-009, U.S.
             EPA Office of Radiation Programs, Washington, D.C., 20460.

ORNL5952   ORNL-5952: PREPAR: A User-Friendly Preprocessor to Create AIRDOS-EPA
             Input Data Sets, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

ORNL7745   ORNL-7745: Estimates of Health Risk From Exposure to Radioactive Pollutants,
             Oak Ridge National Laboratory, Oak Ridge, Tennessee.

ORNL7105   ORNL/TM-7105: A Combined Methodology for Estimating Dose Rates and
             Health Effects From Exposures to Radioactive Pollutants, Oak Ridge National
             Laboratory, Oak Ridge, Tennessee.

                                     Ch. 14 Pg. 1

-------
ORNL5692   ORNL-5692/DE81030434  DARTAB: A Program to Combine Airborne
             Radionuclide Environmental Exposure Data With Dosimetric Health Effect Data
             to Generate Tabulations of Predicted Health Impact, Oak Ridge National
             Laboratory, Oak Ridge, Tennessee, November 1981.

Pa61         Pasquill, F., "The Estimation of the Dispersion of Windborne Material",
             Meteorology Magazine, 90:33, 1961.

Pa97         Parks, Barry., " CAP88-PC Version 2.0 User's Guide", June 1997.

Ru48         Rupp, E.M., Beall, S.E., Bornwasser, L.P., Johnson, D.H., "Dilution of Stack
             Gases in Cross Winds", USAEC Report AECD-1811 (CE-1620), Clinton
             Laboratories, 1948.

S168         Slade, D.H. (ed.), "Meteorology and Atomic Energy - 1968", U.S. Atomic Energy
             Commission/Division of Technical Information, USAED TID-24190, 1968.

Tu69         Turner, D.B. "Workbook of Atmospheric Dispersion Estimates", Air Pollution
             Control Administration, Cincinnati, Ohio, 1969.

Va68         Van der Hoven, I, "Deposition of particles and gasses", pp. 202-208, In Slade, D.
             (ed.), Meteorology and Atomic Energy - 1968, U.S. Atomic Energy Commission,
             USAED TID-24190.
                                    Ch. 14 Pg. 2

-------
      Appendix A
VALID RADIONUCLIDES
AC-225
AC-227
AC-228
AG-109M
AG-110
AG-110M
AG-111
AM-241
AM-242
AM-242M
AM-243
AR-41
AS-76
AT-217
BA-133
BA-133M
BA-137M
BA-139
BA-140
BA-141
BA-142
BE- 10
BE-7
BI-210
BI-211
BI-212
BI-213
BI-214
BR-82
BR-83
BR-84
BR-85
C-ll
C-14
C-15
CA-41
CD-I 13
CD-113M
CE-141
CE-143
CE-144
CF-252
CM-242
CM-243
CM-244
CM-245
CM-246
CM-247
CM-248
CO-57
CO-58
CO-60
CR-51
CS-134
CS-134M
CS-135
CS-136
CS-137
CS-138
CS-139
CU-64
EU-152
EU-152M
EU-154
EU-155
EU-156
F-18
FE-55
FE-59
FR-221
FR-223
GA-67
GD-152
H-3
HF-181
HG-203
1-122
1-123
1-125
1-129
1-130
1-131
1-132
1-133
1-134
1-135
IN-113M
IN-115
IN-115M
IR-192
K-40
KR-83M
KR-85
KR-85M
KR-87
KR-88
KR-89
KR-90
LA- 140
LA-141
LA- 142
MN-54
MN-56
MO-93
MO-99
N-13
NA-22
NA-24
NB-93M
NB-94
NB-95
NB-95M
NB-97
NB-97M
NI-63
NI-65
NP-237
NP-238
NP-239
NP-240
NP-240M
O-15
P-32
PA-231
PA-233
PA-234
PA-234M
PB-209
PB-210
PB-211
PB-212
PB-214
PD-107
PD-109
PM-147
PM-148
PM-148M
PM-149
PM-151
PO-210
PO-211
PO-212
PO-213
PO-214
PO-215
PO-216
PO-218
PR- 143
PR- 144
PR-144M
PU-236
PU-238
PU-241
PU-242
PU-243
PU-244
RA-223
RA-224
RA-225
RA-226
RA-228
RB-86
RB-87
RB-88
RB-89
RB-90
RB-90M
RE- 187
RH-103M
RH-105
RH-105M
RH-106
RN-219
RN-220
RN-222
RU-97
RU-103
RU-105
RU-106
S-35
SB-124
SB-125
SB-126
SB-126M
SB-127
SC-46
SE-79
SM-147
SM-151
SM-153
SN-125
SN-126
SR-89
SR-90
SR-91
SR-92
TB-160
TC-97
TC-99
TC-99M
TC-101
TE-125M
TE-127
TE-127M
TE-129
TE-129M
TE-131
TE-131M
TE-132
TE-133
TE-133M
TE-134
TH-227
TH-228
TH-229
TH-230
TH-231
TH-232
TH-234
TL-207
TL-208
TL-209
U-232
U-233
U-234
U-235
U-236
U-237
         A-l

-------
CD-I 15    HO-166    ND-147     PU-239      SN-113      U-238
CD-115M  HO-166M  NI-59       PU-240      SN-123      U-240
W-181     XE-125    XE-133M    XE-138      Y-91M      ZN-69
W-185     XE-127    XE-135      Y-90        Y-92        ZN-69M
W-187     XE-131M  XE-135M    Y-90M      Y-93        ZR-93
XE-122    XE-133    XE-137      Y-91        ZN-65      ZR-95
XE-123
                                    A-2

-------
                                   Appendix B

                                STAR FILE FORMAT

This is a STability ARay (STAR) file. It shows the frequencies of occurrence that the wind is
blowing FROM a particular direction, at a particular stability, at a particular speed. GETWIND
converts the star array to a WIND file which shows wind blowing TOWARD (not FROM)
particular directions.  The frequencies are in x.xxxxx format, unspaced. The format is:
column    1   :  Blank
       2-4   :  Wind Direction
        5    :  Blank
        6    :  Stability Category
        7    :  Blank
        8    :  Start of the Wind Speed Categories (knots)
     8-14 :   Wind Speeds 1-3 (knots)
     15-21 :   Wind Speeds 4-6 (knots)
     22-28 :   Wind Speeds 7-10 (knots)
     29-35:   Wind Speeds 11 -16 (knots)
     36-42 :   Wind Speeds 17-21 (knots)
     43-49 :   Wind Speeds > 21 (knots)
  N    A 0.000080.000660.000000.000000.000000.00000
NNE  A 0.000160.000330.000000.000000.000000.00000
 NE   A 0.000160.000160.000000.000000.000000.00000
ENE  A 0.000080.000000.000000.000000.000000.00000
  E    A 0.000000.000000.000000.000000.000000.00000
ESE  A 0.000000.000000.000000.000000.000000.00000
 SE   A 0.000160.000160.000000.000000.000000.00000
SSE  A 0.000410.000490.000000.000000.000000.00000
  S    A 0.000160.000330.000000.000000.000000.00000
SSW  A 0.000330.000410.000000.000000.000000.00000
 SW  A 0.000740.000410.000000.000000.000000.00000
WSW A 0.000570.000410.000000.000000.000000.00000
  W   A 0.000570.001070.000000.000000.000000.00000
WNW A 0.000330.000330.000000.000000.000000.00000
 NW  A 0.000330.000570.000000.000000.000000.00000
NNW A 0.000160.000490.000000.000000.000000.00000
  N    B 0.001860.001390.000250.000000.000000.00000
NNE  B 0.001800.000820.000000.000000.000000.00000
 NE   B 0.002130.000660.000000.000000.000000.00000
ENE  B 0.000410.000160.000000.000000.000000.00000
  E    B 0.000410.000160.000000.000000.000000.00000
ESE  B 0.000330.000820.000080.000000.000000.00000
                                        B-l

-------
 SE    B 0.000740.001880.000000.000000.000000.00000
SSE   B 0.001480.002620.000250.000000.000000.00000
 S     B 0.001560.002460.000080.000000.000000.00000
SSW   B 0.001230.001720.000160.000000.000000.00000
 SW   B 0.001390.001800.000330.000000.000000.00000
WSW  B 0.002130.002130.000740.000000.000000.00000
 W    B 0.003120.002300.000160.000000.000000.00000
WNW  B 0.001880.002460.000330.000000.000000.00000
 NW   B 0.001310.003610.000250.000000.000000.00000
NNW  B 0.002050.003440.000080.000000.000000.00000
 N    C 0.003440.003280.000900.000080.000000.00000
NNE   C 0.002620.001480.000080.000000.000000.00000
 NE    C 0.003120.000820.000080.000000.000000.00000
ENE   C 0.001390.001070.000160.000000.000000.00000
 E     C 0.001070.001310.000250.000000.000000.00000
ESE   C 0.000570.000820.000900.000000.000000.00000
 SE    C 0.001390.002460.002790.000410.000000.00000
SSE   C 0.001970.005900.004260.000330.000000.00000
 S     C 0.001390.005740.001880.000330.000000.00000
SSW   C 0.001390.002790.001310.000080.000000.00000
 SW   C 0.001800.004430.003770.000490.000000.00000
WSW  C 0.002210.004020.004260.000820.000000.00000
 W    C 0.003940.006310.003360.000330.000000.00000
WNW  C 0.002700.004840.002380.000080.000000.00000
 NW   C 0.003030.005900.003120.000080.000000.00000
NNW  C 0.003610.006890.001720.000080.000000.00000
 N    D 0.010000.013360.007300.001070.000000.00000
NNE   D 0.005570.007300.002870.000250.000080.00000
 NE    D 0.004590.003200.000570.000160.000000.00000
ENE   D 0.002870.003770.001070.000160.000000.00000
 E     D 0.002210.004430.002460.000660.000000.00000
ESE   D 0.002790.003280.006560.002950.000570.00008
 SE    D 0.002620.007460.025170.015490.001230.00000
SSE   D 0.002300.013030.026310.010660.000490.00008
 S     D 0.002300.010580.011310.005490.000490.00016
SSW   D 0.004100.007130.005820.005250.001070.00016
 SW   D 0.005410.016070.016560.009840.000980.00016
WSW  D 0.003030.010250.018850.011390.000660.00000
 W    D 0.003850.011230.021310.014020.002210.00016
WNW  D 0.004100.008940.015830.011230.000740.00016
 NW   D 0.007460.013200.019590.011480.000330.00000
NNW  D 0.011070.013200.014510.003610.000080.00008
 N    E 0.007460.014180.001150.000000.000000.00000
NNE   E 0.006070.011480.000330.000000.000000.00000
                                       B-2

-------
 NE   E  0.003770.008120.000250.000000.000000.00000
ENE   E  0.003940.007210.000250.000000.000000.00000
 E    E  0.004670.012460.000330.000000.000000.00000
ESE   E  0.003770.007050.001880.000000.000000.00000
 SE    E  0.002380.011970.008120.000000.000000.00000
SSE   E  0.002620.009590.004510.000000.000000.00000
 S    E  0.002380.007130.002460.000000.000000.00000
SSW   E  0.002460.004260.000980.000000.000000.00000
 SW   E  0.002620.003940.002300.000000.000000.00000
WSW  E  0.001390.002790.001800.000000.000000.00000
 W    E  0.002790.009020.003610.000000.000000.00000
WNW E  0.003770.010410.002130.000000.000000.00000
 NW   E  0.006480.012620.003440.000000.000000.00000
NNW  E  0.010250.018120.003520.000000.000000.00000
 N    F  0.000410.001070.000000.000000.000000.00000
NNE   F  0.000570.001970.000000.000000.000000.00000
 NE   F  0.000980.000900.000000.000000.000000.00000
ENE   F  0.000330.002210.000000.000000.000000.00000
 E    F  0.001230.001800.000000.000000.000000.00000
ESE   F  0.000660.001480.000000.000000.000000.00000
 SE    F  0.000330.000820.000000.000000.000000.00000
SSE   F  0.000080.000490.000000.000000.000000.00000
 S    F  0.000160.000250.000000.000000.000000.00000
SSW   F  0.000160.000000.000000.000000.000000.00000
 SW   F  0.000000.000080.000000.000000.000000.00000
WSW  F  0.000160.000080.000000.000000.000000.00000
 W    F  0.000080.000490.000000.000000.000000.00000
WNW F  0.000740.001230.000000.000000.000000.00000
 NW   F  0.000410.001070.000000.000000.000000.00000
NNW  F  0.000250.001720.000000.000000.000000.00000
SAMPLE. STR is a sample file containing this data which can be found on the installation disk.
                                        B-3

-------
                                    Appendix C
                     STATE AGRICULTURAL PRODUCTIVITY
The following values are Beef Cattle Densities, Milk Cattle Densities, and Vegetable Crop Food
Fractions by state.
 State
Beef
Milk
Vegetable
Alabama
Alaska
Arkansas
Arizona
California
Colorado
Connecticut
Wash. D.C.
Delaware
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New
Hampshire
New Jersey
New Mexico
1.520E-01
O.OOOE+0
1.270E-01
3.730E-02
8.810E-02
1.130E-01
3.600E-02
O.OOOE+0
6.480E-02
1.280E-01
1.430E-01
O.OOOE+0
7.190E-02
3.330E-01
3.340E-01
7.400E-01
2.900E-01
2.650E-01
1.080E-01
7.650E-03
1.090E-01
2.900E-02
7.900E-02
1.850E+0
1.750E-01
3.430E-01
7.290E-02
3.500E-01
1.840E-02

1.400E-02
4.250E-02
4.130E-02
7.020E-03
O.OOOE+0
5.900E-03
2.800E-03
2.850E-02
3.500E-03
2.500E-03
O.OOOE+0
2.720E-02
1.370E-02
8.630E-03
O.OOOE+0
8.560E-03
2.160E-02
2.800E-02
3.140E-02
8.000E-03
2.570E-02
9.620E-03
8.070E-03
6.110E-02
3.130E-02
3.510E-02
4.880E-02
8.700E-03
1.890E-02
9.270E-04
8.780E-03
5.650E-04

1.580E-02
3.290E-02
1.140E-03
4.160E-03
O.OOOE+0
1.460E-03
2.900E-03
1.180E-02
1.390E-02
7.930E-03
O.OOOE+0
5.850E-02
6.920E-03
2.170E-03
O.OOOE+0
7.150E-02
2.800E-02
2.720E-02
2.430E-02
5.970E-02
3.980E-03
4.350E-02
5.970E-02
1.110E-02
4.960E-03
1.700E-02
3.050E-02
1.070E-03
8.140E-03
8.780E-03
2.390E-02
8.920E-03

6.690E-02
1.820E-02
1.380E-03
                                       C-l

-------
State
Beef
Milk
Vegetable
New York
North
Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South
Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
5.830E-02

1.020E-01
1.180E-01
2.030E-01
2.680E-01
4.560E-02
9.630E-02
2.500E-02

8.870E-02
2.320E-01
2.110E-01
1.900E-01
2.840E-02
4.710E-02
1.310E-01
5.620E-02
6.230E-02
1.810E-01
5.120E-02
8.560E-02

1.260E-02
6.250E-03
4.560E-02
7.130E-03
4.530E-03
6.460E-02
2.300E-02

7.020E-03
8.850E-03
2.000E-03
5.300E-03
4.460E-03
8.880E-02
1.840E-02
1.500E-02
6.000E-03
1.430E-01
5.790E-04
1.880E-02

6.320E-03
6.290E-02
1.700E-02
2.800E-02
1.590E-02
1.320E-02
4.540E-02

1.840E-03
1.200E-02
2.720E-03
5.770E-03
1.830E-03
1.080E-03
8.700E-03
5.200E-02
1.160E-03
1.789E-02
1.590E-03
                                          C-2

-------
ALABAMA
                                   Appendix D
                           WEATHER DATA LIBRARY
HSV0544    Huntsville, AL
                         60/1-64/12
ARIZONA:

INW0314    Winslow, AZ
PNX0309    Phoenix, AZ
ARKANSAS:

LIT0516
LIT0165

CALIFORNIA:
Little Rock, AR
Little Rock, AR
                         49/1-54/12
                         55/1-64/12
55/1-64/12
72/2-73/2
BUR1051
LAX0304
LGB1052
NZY0380
OAK0319
SAC0320
SBA0313
SNA1467
SUU0316
Burbank, CA
Los Angeles, CA
Long Beach, CA
San Diego, CA
Oakland, CA
Sacramento, CA
Santa Barbara, CA
Santa Ana, CA
Fairfield/Travis  CA
60/1-64/12
64/5-69/4
60/1-64/12
67/1-71/12
60/1-64/12
66/1-70/12
60/1-64/12
72/1-76/12
60/1-64/12
COLORADO:
DEN0618
DEN0952
EEE1420
GJT0476
PUB0564
Denver, CO
Denver, CO
Eagle Co., CO
Grand Junction, CO
Pueblo, CO
60/1-64/12
70/1-74/12
76/1-76/12
60/1-64/12
66/1-70/12
CONN:
BDL1262
BDR0558
NHZ0180
Hartford, CT
Bridgeport, CT
Brunswick, CT
55/1-64/12
65/1-69/12
60/1-69/12
 D-l

-------
DELAWARE
ILG1058     Wilmington, DE
DISTRICT OF COLUMBIA:
DCA1047    Washington, DC
                         60/1-64/12
FLORIDA:

MIA0979
PBI0054
TLH0663
TPA0662
TPA0915
MCO0838

GEORGIA:
Miami, FL
West Palm Beach, FL
Tallahassee, FL
Tampa, FL
Tampa, FL
Orlando, FL
                         68/1-73/12
70/1-74/12
70/1-70/12
60/1-64/12
60/1-64/12
69/1-73/12
74/1-74/12
AGS1018
AMB0771
CSG0767
Augusta, GA
Alma, GA
Columbus, GA
70/1-74/12
54/1-58/12
69/1-73/12
IDAHO:
BOI0653
MLP1448
PIH0359
Boise, ID
Mullan Pass, ID
Pocatello, ID
60/1-64/12
50/1-54/12
58/1-62/12
ILLINOIS:

MDW0675
MLI0269
ORD0452
PIA0716
RAN0234
SPI0415

INDIANA:
Chicago/Midway, IL        73/1-73/12
Moline/Quad City IL        67/1-71/12
Chicago/OHare, IL         65/1-69/12
Peoria, IL                 65/1-69/12
Rantoul/Chanute AFB IL    63/1-67/12
Springfield, IL             67/1-71/12
EVV0406
FWA1156
IND1080
Evansville, IN
Ft. Wayne, IN
Indianapolis, IN
60/1-64/12
60/1-64/12
55/1-74/12
 D-2

-------
SBN0257     South Bend, IN
                         67/1-71/12
IOWA:

ALO0729    Waterloo, IA
DSM0753    Des Moines, IA

KANSAS:

FLV0561    Ft Leavenworth, KS
MKC1323    Kansas City, KS
TOP0534    Topeka, KS

KENTUCKY:

CVG0403    Covington, KY
CVG1916    Covington, KY
PAH0479    Paducah, KY

LOUISIANA:
                         60/1-64/12
                         72/1-72/12
                         62/1-70/12
                         67/1-71/12
                         63/1-72/12
                         58/1-62/12
                         70/1-74/12
                         60/1-64/12
BTR0169
BTR0166
NBG1379
Baton Rouge, LA
Baton Rouge, LA
New Orleans, LA
72/1-72/12
55/1-64/12
67/1-71/12
MARYLAND:
BAL1059
FME1207
NHK1306
Baltimore, MD
Ft Meade, MD
Patuxent River, MD
69/1-73/12
60/1-64/12
75/1-75/12
MASS:

BED0181
BOS0211
CEF0182
NZW1144

MICHIGAN:
Bedford, MA
Boston/Logan, MA
Chicopee Falls MA
So. Weymouth, MA
63/1-67/12
67/1-71/12
60/1-64/12
70/1-74/12
BTL1460    Battle Creek, MI
TVC0844    Traverse City, MI
MKG0251   Muskegon County, MI
YIP 1061     Detroit, MI
                         50/1-54/12
                         74/1-74/12
                         67/1-71/12
                         63/10-68/9
                          D-3

-------
MINNESOTA
MSP0267    Minneapolis/St. PI, MN     67/1-71/12
MISSOURI:

COU0170     Columbia, MO
STL0603     St. Louis, MO

MISSISSIPPI:
                         64/1-68/12
                         60/1-64/12
BIX0538
CGM0670
SGF0178
JAM 169
Biloxi, MS
Columbus, MS
Springfield, MS
Jackson, MS
60/1-64/12
66/1-70/12
66/1-70/12
55/1-64/12
MONTANA:

BIL0331     Billings, MT
BTM0357   Butte, MT

NEBRASKA:
                         67/1-71/12
                         56/1-60/12
LNK1142
OMA0991

NEVADA:
Lincoln, NE
Omaha/Eppley, NB
59/1-63/12
55/1-64/12
UCC1026    Yucca Flats, NV
                         61/12-64/11
NEW JERSEY
NEL0505    Lakehurst, NJ
NEW MEXICO:
                         68/1-72/12
ABQ0282
CNM1741
FMN0285
GNT1246
SAF1184
Albuquerque, NM
Carlsbad, NM
Farmington, NM
Grants, NM
Santa Fe, NM
60/1-64/12
50/1-54/12
63/5-68/4
54/1-54/12
50/1-54/12
                                       D-4

-------
NEW YORK:

ALB0523
BUF0741
HPN0429
IAG0905
LEA0189
LEA0435
ROC0598
SWF0185
Albany, NY
Buffalo, NY
White Plain, NY
Niagra Falls, NY
New York/LaGuardia
NY/Ft Totte, NY
Rochester, NY
Newburgh, NY
60/1-64/12
73/1-73/12
49/1-53/12
55/1-59/12
65/1-70/12
65/1-69/12
55/1-64/12
65/1-69/12
NORTH CAROLINA:
CLT0682
FBG0075
HAT0392
INT0531
NKT0106
ILM0104
RDU0083
Charlotte, NC
Ft Bragg, NC
Cape Hatteras, NC
Winston Salem, NC
Cherry Pt, NC
Wilmington, NC
Raleigh, NC
NORTH DAKOTA:
DIK0509     Dickinson, ND
OHIO:

CLE1140
CMH0243
DAY0404
DAY1502
IBG0745
TOL0990

OREGON
Cleveland, OH
Columbus, OH
Dayton, OH
Dayton, OH
Perry, OH
Toledo, OH
69/1-73/12
66/1-70/12
66/1-70/12
60/1-64/12
67/1-71/12
66/1-70/12
66/1-70/12
                         60/1-64/12
70/1-74/12
60/1-64/12
65/1-69/12
76/1-76/12
49/1-49/12
60/1-64/12
PDX0364     Portland, OR
                         67/1-71/12
                                       D-5

-------
PENNSYLVANIA:
AVP0499
ERI0610
HAR0631
RDG0184
Wilkes-Barre, PA
Erie, PA
Harrisburg, PA
Reading, PA
RHODE ISLAND:
PVD0560    Providence, RI
SOUTH CAROLINA:
60/1-64/12
64/1-73/12
64/1-64/12
49/1-49/12
                         68/1-72/12
CAE1371
FLO0600
GSP0528
MYR1027
Columbia, SC
Florence/Gilbert SC
Greenville/Sparta SC
Myrtle Beach, SC
SOUTH DAKOTA:
RAP0336    Rapid City, SD
TENNESSEE:

BNA0149
CHA0711
MEMO 143
TRI1191
TYS1328

TEXAS:
Nashville, TN
Chattanooga, TN
Memphis, TN
Bristol, TN
Knoxville, TN
56/1-75/12
60/1-64/12
68/1-72/12
66/1-70/12
                         67/1-71/12
66/1-70/12
68/1-73/12
67/1-71/12
74/1-74/12
55/1-64/12
AMA0621
CRP1459
SAT0064
Amarillo, TX
Corpus Christi, TX
San Antonio, TX
55/1-64/12
73/7-77/6
60/1-64/12
UTAH:

HV40302
SLC1411
Hanksville, UT
Salt Lake City, UT
49/1-54/12
72/1-76/12
                                      D-6

-------
VIRGINIA:

IAD0398
GVE0824
ROA0526
Wash/Dulles, VA
Gordonsville, VA
Roanoke, VA
WASHINGTON:
66/1-70/12
56/1-60/12
68/1-72/12
GEG0360     Spokane, WA
MWH0486    Moses Lake, WA
YKM0484    Yakima, WA
WEST VIRGINIA:
                         67/1-71/12
                         61/1-65/12
                         50/1-54/12
CRW0655
HTS0019

WISCONSIN:

EAU0715
ERB0776

WYOMING:
Charleston, WV
Huntington, WV
Eau Claire, WI
Green Bay, WI
68/1-73/12
67/1-71/12
69/1-73/12
64/1-73/12
CPR0335
LND1100
RWL1261
RKS1588
Casper, WY
Lander, WY
Rawlins, WY
Rocky Springs, WY
67/1-71/12
70/1-74/12
55/1-64/12
71/1-75/12
                                       D-7

-------
                                     Appendix E

         DIFFERENCES WITH EARLIER VERSION OF AIRDOS-EPA/DARTAB
There are a few differences between CAP88-PC and earlier versions of AIRDOS, PREPAR and
DARTAB.  CAP88-PC is optimized for doing population assessments. Population arrays must
always be supplied to the program as a file, using the same format as the mainframe version of
CAP88. Sample population files are supplied with CAP88-PC, the user may modify the supplied
files to reflect their own population distributions. Population files for the mainframe version of
CAP88 may be downloaded in ASCII format and used with CAP88-PC. CAP88-PC is
programmed to use the distances in the population array to determine the distances used to
calculate concentrations, to eliminate human error.  CAP88-PC only uses circular grids; square
grids are not an option.  Direct user input of concentrations is also not an option. Agricultural
arrays are generated automatically, as a function of state-specific productivity data, requiring the
user to supply only the State abbreviation or agricultural productivity values.

CAP88-PC is also modified to do either "Radon-only" or "Non-Radon" runs, to conform with the
format of the 1988 Clean Air Act NESHAPS Rulemaking.  "Radon-only" assessments, which
only have Rn-222 in the source term, automatically include working level calculations; any other
source term ignores working levels. Synopsis reports customized to both formats are
automatically generated.

Organs and weighting factors  are modified to follow the ICRP 26/30 Effective Dose Equivalent
calculations, which eliminates flexibility on specifying organs and weighting factors.  The
calculation of deposition velocity and the default scavenging coefficient is also modified to
incorporate current EPA policy.

Organs and Weighting Factors

Only 7 organs are valid for the new Effective Dose Equivalent. They are:
             GONADS     0.25
             BREAST      0.15
             RMAR       0.12
             LUNGS       0.12
             THYROID    0.03
             ENDOST     0.03
             RMNDR      0.30
Only these 7 organs are valid. Changing the organs and weights will invalidate the results.

                                         E-l

-------
Population Arrays

Population arrays must now be entered only as a file.  In the 1985 CAAC version of AIRDOS-
EPA/DARTAB, population arrays could be entered as instream data in PREPAR.

Population files for the mainframe version of C AP88 may be downloaded in ASCII format and
used with CAP88-PC. Sample population files are supplied with CAP88-PC, the user may
modify the supplied files to reflect their own population distributions.

The distances at the top of the population file are used by CAP88-PC to determine the distances
used in the assessment. This was programmed to eliminate human error in mis-matching the
distances used to calculate concentrations with the distances used to generate the population
array. Distances used for calculating concentrations are now automatically set in CAP88-PC so
as to calculate concentrations for the midpoint of each sector.

Distances

In population assessments, distances for calculating concentrations (TDIST) are calculated
automatically as a function of the distances in the population array file.  CAP88-PC is written to
only allow user assignments of IDIST for individual assessments.

Agricultural Arrays

Arrays of milk cattle, beef cattle and agricultural crop area are automatically generated by the
CAP88-PC; the user is not required to supply the arrays.  The arrays are generated to match the
distances used in the population arrays supplied to the code, and use State-specific agricultural
productivity values.  The state name (standard two letter abbreviation) must be provided to the
variable STATE. Users are given the option to override the default agricultural productivity
values.

Radon-Only Runs

Assessments for Radon-222 now automatically include Working Level calculations.  CAP88-PC
does this automatically; only a single source term of RN-222 may be used in this option. Input of
any additional radionuclides, even Rn-220, will cause CAP88-PC to omit working level
calculations.
                                          E-2

-------
Square Grids

Option 2 in earlier versions of AIRDOS-EPA allowed users to choose either a square (0) or
circular grid (1).  Since CAP88-PC requires a circular grid for population assessments, this
option is not available.

Scavenging Coefficient

The subroutine SETSC (from PREPAR) is no longer used. The default scavenging coefficient
(SC) is now calculated as a function of rainfall rate (RR). The formula used is:  SC = RR * 1E-7

Users are given the option of overriding the default value.

Direct Input of Concentrations

In CAP88-PC, the user may not supply concentrations as input. The subroutine DIRECT has
been removed.
Deposition Velocity

The subroutine SETVD is no longer used to calculate deposition velocity (VD). VD is set as
follows:

                           VD
       Class               m/sec

       Iodine              3.5E-2
       Paniculate           1.8E-3
       Gas                0

Equilibrium Fractions

CAP88-PC has the capability to vary equilibrium fractions;  previously they were set to a
constant of 0.7.  The new method varies the equilibrium fractions depending on the distance from
the source. Linear interpolation is used to determine the equilibrium fractions for distances that
do not match the set distances given. The equation is as follows:

       EFY = EFX + ((EFZ - EFX) * ((Y - X) / (Z - X)))

Where you have  X	Y	Z
                                          E-3

-------
X and Z are the set distances given and Y is the user given distance (between X and Z). The new
method finds the equilibrium fraction for EFX, and EFZ is the SET_EQUIL_FRACTIONS
corresponding to the set distances.

DOSMIC Subroutine

DOSMIC was modified to print only Working Levels. Working Levels are only output for RN-
222. Checks are performed before DOSMIC is called to determine if Working Levels are needed.

Water Arrays

Arrays of water areas are not used in CAP88-PC.

NOMA fix

CAP88-PC uses a slightly different approach in calculating NOMA, following discovery of a
potential  error in the 1985 CAAC version of AIRDOS-EPA. In the earlier version, this error
caused multiple point sources to be treated as an area source if the nuclides emitted from each
stack had identical characteristics.  This may cause some differences with previous assessments.

Wind Frequencies

The GETWND routine has been modified to accept wind speeds greater than 10 m/sec.  Earlier
versions would only accept wind speeds less than 10 m/sec, and there was a problem with some
facilities, which had high wind speeds, generating overflow errors in the wind speed arrays.

In order to accommodate higher wind speeds, and remain compatible with existing wind data
sets, precision limits force the calculations to truncate the last digit in the wind speed data.  This
may cause a slight variation in the determination of PERD, the wind frequency for each direction,
due to roundup. This may cause a variation in concentrations as compared with earlier versions
of PREPAR and AIRDOS.
                                          E-4

-------
                                      Appendix F

                             POPULATION FILE FORMAT
Users are encouraged to use site-specific population arrays with CAP88-PC.  Users who have
been operating the CAP88 mainframe software may download their population files for use on
the CAP88-PC system.  In order for CAP88-PC to recognize the new population files, they must
be copied to the \CAP88PC\POPFILES subdirectory, and the filename must have the .POP
extension. They must be in the same format as the following file.

It is critical that all information be in the same exact locations with the "$" sign being in the first
column of the first row of the file.

The population file name, latitude, and longitude on row 1  are information only for the purpose
of verifying that the file desired is the file the user has selected.

NRADS is the number of distances within the population file. The value associated with
NRADS must be in columns 68 and 69 of row 1 of the population file and the last digit must
always found column 69 (right justified).

Distances begin in row 2 and all numbers are right justified. The number of distances found in
the file will be the number specified by NRAD.  The distances are edge points of each sector
(the midpoints used in the calculations will be calculated by the program) and are entered in the
population file in kilometers. The CAP88 programs will multiply each distance by 1000 before
calculating the midpoints and using them in the assessment. For example, the first distance in
the file, .62 kilometers, will become 620 meters and the midpoint calculated from that will be
310 meters. There can be up to 20 distances, but the typical number of distances is 13.

The population values are entered with distances across (columns) and directions down (rows);
however, each row will not be a new direction.  There will be 20 distances  for each direction
(regardless of the number of distances specified in the population file).  The extra distances
(usually 7) will simply contain zero. There will always be  8 population values per row with the
first value ending at column 10  and each subsequent value ending at multiples of 10 with the last
value per row ending in column 80.  This means that for the direction N, the population values
will be contained on the first, second and part of the third row of the distance-direction
population values. The first population value for the next direction, NNW, will be contained in
columns 41 through 50 of the third row and subsequent values for direction NNW will be
contained on the remaining part of the third row, the fourth and part of the fifth row.  There are
16 directions in counterclockwise order starting with North.
                                          F-l

-------
The following is the population file RMICOMPY.POP used in the sample assessment.
$ RMICOMPY
















3




.62
30.0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
19944.
0.
3448.
0.
407.
27255.




0.
2252.
0.
0.
80933.




0.
2021.
0.
0.
15531.




0.
1693.
0.
0.
150138.





0.
0.
0.
0.

1.0
40.0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
293.
0.
0.
7591
0.
4223.
0.
0.
2388
0.
0.
0.
0.
3148
0.
0.
0.
0.
5397
0.
0.
0.
0.
0.
0.
0.

LAT=41.8900LON=80
2.0 3.0
4.0

5.0
10
.7767 NSEC=16 NRADS=13
.0
20.0

50.0 60.0 80.0
0
0
0
0
0
. 1043.
0.
0.
0.
0.
1987. 0.
0
0
0
0
0
0
0
0.
0.
0.
0.
. 2435.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3014
0.
0.

0
6
0
0

0
0
0
0
0.




0.




0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0
0.



113.
0
0

0


0.





2218.
0
0
. 288. 183.
0
0
1108. 779. 15354

0
0. 0
0.
0.
2435.
. 6999. 23331.
0
0.
0.
3024. 3059.

0
0. 0.
0.
0.
2002.




0.
421.
. 8786.
0.
0.
187240
0

3396.


0.
0.
. 5752. 7858. 140074.
0
0

0
0.
. 984.
0. 0.
0.
0.
1792.
0.
0.
. 5123. 4351.
0
0.
125. 3161

0

0
0

0
0
0
0

0. 0.
. 780.
1338. 1
0.
. 14641.
0. 0
0.
0.
0.
0.

0.
0

0.
1688
0


380





810.
48943.


0.
0.
3128
0.
534.
0
101.
0.
3376.
0.
63357.


0.
4350.





3659. 3759

0
0.

14935.
0
827.
0.
0.
1236.
1.


0.
974.
0.
0.

6847.
0.
8224.
0.
0.
8940.


0.

. 7416.
0.

1388.

0.
0.
851.
3252. 3712. 25127.
0.
89.
17820.
0
6332.
0.
0.
0.
0.
0.


0
0
0
0


0.
793.
0
0.



0.
265.
0.


0.
55.
5986. 13324. 45833.
0.





0.
0.
0.
0.
0.
F-2

0
0
0
0

0.












-------
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
F-3

-------