-------
Ponding
Sludge disposal in a pond without providing environ-
mental protection (such as chemical fixation or impervious
liners) against seepage to water supplies constitutes a
potential water quality hazard. The degree of hazard depends
upon such site specific characteristics as topography,
weather, soil characteristics, and proximity of ground and
surface waters to the disposal site. In addition, there
exist a significant number of other disposal variables
(e.g., chemical constituents of the sludge and the condition
of sludge disposal) that may impact the potential hazard
posed by such a sludge pond.
Pond linings have been finding greater favor in recent
years. Lining is an effective method to prevent groundwater
contamination. On many areas, clay, concrete, wood or metal
have been used as liners. Synthetic materials are finding
increased use. These synthetic materials include polyvinyl
chloride, rubber, synthetic rubber, polyethylene, propylene,
and nylon. Since economics is a major factor, clay and
synthetics will be the primary materials used for sludge
liners. To be useful, liners must have long-life, endure
temperature variations, and remain flexible.. Several manu-
facturers offer acceptable liner materials.
4-28
-------
Landfilling
The second method for disposal of scrubber sludges is
use of either a dewatered or a stabilized ("fixed") sludge
for landfill. Sludges can be dewatered by vacuum filtration
or centrifugation to form a solid material that can be used
for landfill. Since these dewatered sludges can reabsorb
moisture and regain their original water content if un-
treated, chemical and physical stabilization or fixation
processes are increasingly being used.
Chemical fixation of scrubber sludge is currently
offered by several commercial groups including Dravo Corpora-
tion, I.U.C.S., Inc., Chicago Fly Ash, and The Chemfix
Corporation. These commercial systems use fly ash, lime,
silicates, and polyvalent metal ions (usually about 5 per-
cent of the amount of sludge on a dry weight basis) to form
a low-grade concrete. The product is a stable, inert mate-
rial that will not release toxic metal ions or soluble
species. It has sufficient strength to support buildings
and will support vegetation.
The following factors affect the capital and annualized
operating costs of sludge disposal:
1. Capital Cost
a. Pond location
b. Lining requirement
c. Leachate monitoring
4-29
-------
d. Overall size
e. Dewatering method
2. Annualized Operating Cost
a. Fixation chemicals
b. Utilities
c. Trucking
The split between capital and annual costs is not clearcut.
For example, several firms will operate sludge disposal
systems on a per ton basis. The utility will not be re-
quired to invest capital in the system. However, these
contracts normally have "take or pay" clauses to protect the
sludge disposal firm's capital investment. In essence, turn
key disposal merely shifts the fixed charges of sludge
disposal to direct operating expenses. In addition, pumping
sludge instead of trucking sludge increases capital but
reduces annual costs. Sluice lines and pumps are part of
the capital costs borne by utility, while trucks to haul
sludge are normally borne by trucking contreictors. Another
area which affects capital and annualized operating costs is
dewatering. Horsepower requirements are reduced if ponding
is used to dewater sludge instead of vacuum filtration or
centrifugation. Capital costs increase however, since the
pond must be larger and more complicated.
In this study, it was assumed that all sludge-gen-
erating FGD processes would dispose of the sludge in an on-
site pond, lined with clay with the sludge stabilized by
addition of fly ash and lime.
4-30
-------
Table 4-8 identifies the annualized cost impact of
various alternative subset conditions for sludge dipsosal
for a new 500 MW plant burning high sulfur coal.
4.6 COST COMPARISONS FOR FGD SYSTEMS
The FGD system costs developed by PEDCo in this study
were based on system parameters used at existing and planned
installations and from control system manufacturers. The
items of equipment required for each size and type of system
were specified and vendor quotes obtained for these items.
The quotes were obtained in mid-1976 and escalated using a
7-5 percent factor to future years.
In a report entitled "Detailed Costs Estimates for
Advanced Effluent Desulfurization Processes" (EPA-600/2-75-
006, Jan. 1975) costs for various FGD systems developed by
the Tennessee Valley Authority (TVA) are presented. The
costs presented in the document for a lime FGD system are
compared to the estimates developed in this study.
The TVA costs reflect August 1974 prices and are esca-
lated at 7.5 percent per year to 1980 to provide a common
year for comparison. Table 4-9 presents a breakdown of the
costs for a lime system on a 1000 MW boiler burning 3.5 per-
cent sulfur coal and designed for 90 percent SO_ removal.
As seen in the Table, the main areas of difference are
the costs for the absorbers, reheaters, fans, and the indi-
4-31
-------
Table 4-8. IMPACT OF VARIOUS SUBSET SLUDGE DISPOSAL
OPTIONS ON THE ANNUALIZED COST OF SLUDGE DISPOSAL3
Base Case
Synthetic Lining
Proprietary fixa-
ation
Trucking - 5 miles
Trucking -10 miles
Trucking -15 miles
Pumping - 5 miles
Pumping -10 miles
Pumping -15 miles
Mills/kWh
1.15
0.37
0.15
1.023
2.046
3.069
0.224
0.336
0.448
$/Dry Ton
18.73
6.03
2.44
16.67
33.33
50.00
3.65
5.47
7.30
$/Wet Ton
11.25
3.62
1.46
10.00
20.00
30.00
2.19
3.28
4.38
The various costs shown are additive to the "Base Case"
cost which is a clay lined pond with fixation by addition
of fly ash and lime.
4-32
-------
Table 4-9. COMPARISON OF COSTS FOR A LIME FGD SYSTEM ON A
1000 MW NEW, COAL-FIRED GENERATING UNIT, 3.5% S COAL,
AND 90% SO2 REMOVAL
(4)
TVA ($ million)
1974 1980
$ 1.228 $ 1.895
.586 0.904
10.638 16.417
PEDCo ($ million)
1980
$ 1.684
1.140
.955
1.161
5.018
1.474
1.792
7.744
45.444
6.212
3.604
4.626
2.046
5.021
7.749
5.489
Capital Investment
Cost item
Lime receiving & storage
Feed preparation
Particulate & SO2 scrubbers
SO2 absorbers (8)(1 redun.)
Stack gas reheat
Fans
Calcium solids disposal
Vacuum filters, fixation
chemical storage
Utilities, service facilities,
construction facilities &
field expense, & contractor
fee
Raw material inventory
Engineering design & supervision
Contingency
Start up
Interest during construction(8%)
Field overhead
Freight
Offsite expenses
Taxes
Spares
La,nd cost
Total capital investment
Detailed Cost Estimates for Advanced Effluent Desulfuriza-
tion Processes, prepared for Control System Laboratory,
Office of Research and Development, U.S. Environmental Pro-
tection Agency, under Interagency Agreement EPA IAG-134(d),
nS >ai LS-C'TMGGlame^4cet al" ^nnessee Valley Authority,
pp. 244, 245. January 1975.
1.
1.
2.
2.
$32.
712
926
260
260
765
2
2
3
3
$50
.642
.972
.488
.488
.565
6
18
3
6
6
1
$115
.433
.142
.296
.296
.476(9%)
.476
.768
.943
.921
.307
.219
.485
4-33
-------
Table 4-9 (continued).
Annual Operating Costs
Raw Materials
Lime
Fixation chemicals
Utilities
Steam
Process water
Electricity
Labor
Operating labor &
supervision
Maintenance
Labor & material
Supplies
Analyses
Overhead
Plant
Administrative
Sludge Handling
Average capital costs
Depreciation
Taxes
Insurance
Total Operating Costs
TVA ($ million)
1974 1980
$3.2185 $4.9671
0.5684
0.0374
1.2895
0.2381
0.8772
0.0577
1.9901
0.3675
1.4978 2.3116
0.0595 0.0918
0.7381 1.1391
0.0238 0.0367
4.8820 7.5344
$12.5531 $19.373
PEDCo ($ million)
1980
$ 6.223
1.020
1.020
.063
3.704
0.453
5.024
0.754
3.116
0.091
16.418
1.993
7.780
0.419
$49.098
4-34
-------
rect charges and contingency. The reasons for the differ-
entials are as follows:
1. TVA uses only 4 scrubbing trains to handle 1000 MW
(250 MW per train). PEDCo uses 8 scrubbing trains
(1 redundant module) to handle 1000 MW at 143 MW
per train. The largest operational modules at the
present time carry the equivalent of 150 to 160 MW
of gas flow.
2. The TVA document specifies the year that base
costs were obtained for absorbers, fans, and re-
heaters as 1971. These costs were then escalated
to reflect 1974 costs. PEDCo base costs were
obtained in 1976 and should therefore be more
accurate.
3. TVA costs reflect minimum in-process storage with
only pumps being spared. PEDCo costs include a
spare scrubbing module with associated equipment,
spare pumps, and excess inprocess storage capacity
to obtain optimum operation.
4. TVA costs reflect disposal of untreated sludge in
an on-site clay-lined pond. PEDCo*s costs reflect
the disposal of stabilized sludge in a clay-lined
pond.
5. TVA costs reflect the use of venturi absorbers
while PEDCo costs are for a Turbulent Contact
Absorber (TCA).
6. TVA costs reflect an annual capacity factor of 80
percent for the boiler while PEDCo uses a 65
percent capacity factor. Over the 20 year life of
an FGD, the 65 percent capacity factor would be
more realistic.
7. TVA uses a contingency of 9 percent of direct
costs while PEDCo uses 20 percent of direct and
indirect costs. For the level of accuracy of the
PEDCo estimates (+ 20%), a 20 percent contingency
adheres to standard estimating criteria.
The nature of other variations in the cost estimates
can not be determined based on available information. It
4-35
-------
should be noted that TVA is in the process of revising their
cost estimates and preliminary results are much higher than
in the 1975 document. Results were presented in a paper
entitled "Economic Evaluation Techniques, Results, and
Computer Modeling for Flue Gas Desulfurization," presented
at the FGD Symposium sponsored by EPA in November, 1977.
Comparative results for a limestone FGD on 3.5 percent
sulfur coal meeting a 1.2 Ib SO2/10 Btu regulation for a
500 MW plant are presented in Table 4-10.
4-36
-------
Table 4-10. COMPARISON OF COSTS FOR A LIMESTONE
FGD SYSTEM ON A 500 MW NEW, COAL-FIRED GENERATING UNIT,
3.5% S COAL, AND 1.2 LBS/MILLION BTU ALLOWABLE EMISSIONS
Capital Investment TVA ($ million) PEDCo ($ million)
Cost item 1979 1980
Limestone receiving & storage $ 1.76 $ 1 22
Feed preparation 1.74 i 88
S02 scrubbers (4) 8<92 19"84
Stack gas reheat 1.28 3 10
Fans & ductwork 4 ->? _ ,_
*•J^ J.33
Calcium solids disposal 6.81 9 04
Utilities, service facilities, 6 20 ^ 71
construction facilities & ".
field expense, & contractor
fee
Raw material inventory 0 15
Engineering design & supervision 1.21 3.08
Contingency 6>45 ^^
Start UP 3.35 1.93
Interest during construction 4.65 3 84
Field overhead _ n.
3.84
Freight Q>39
Offsite expenses
•L • JL 3
Taxes
0.46
Spares
0.15
Land cost i m « -, .
1.03 0.14
Total capital investment $47.71 $67 43
4-37
-------
Table 4-lQ (continued) .
Annual Operating Costs
Raw Materials
Limestone
Fixation chemicals
Utilities
Steam
Process water
Electricity
Labor
Operating labor &
Supervision
Maintenance
Labor & material
Supplies
Overhead
Plant
Administrative
Sludge Handling
Average Capital Costs
Depreciation
Taxes
Insurance
Total Operating Costs
TVA ($ million)
1979
$ 1.11
0.98
0.03
1.64
0.33
1.82
1.11
0.03
7.00
$14.11
PEDCo ($ million)
1980
$ 1.08
0.67
0.52
0.03
1.90
0.34
2.93
0.44
1.86
0.07
0.67
9.47
4.49
1.15
0.24
$25.86
4-38
-------
5.0 IMPACT OF EMISSION AVERAGING TIMES
ON THE COSTS OF FGD
The specific time period over which emission test
results are averaged to determine compliance has a signifi-
cant impact on the selection and design of the control
process. This is especially true in the case of SO2 emis-
sion limitations. Coal is inherently variable when looking
at the sulfur content. The sulfur occurs in veins as pyrites
thus producing a nonhomogeneous condition when sulfur con-
tent is considered. This variability in sulfur content is
very significant when looking at shorter averaging times
over which a regulation must be met. The effect of shorter
averaging times is an increase in the maximum sulfur content
for which an FGD system must be designed.
Table 5-1 presents the sulfur variability in various
coals over different averaging times for various size boilers.
As can be seen the maximum sulfur content varies more for
the smaller unit due to the smaller total amount of coal
based over the averaging period. These values reflect a
normal distribution of values as obtained by the sampling of
unit trains. The relative standard deviations (RDS) are
presented in Table 5-2.
5-1
-------
1
I!
H
H
H H
^ W
ri! W
H
a
D
en
co
m
w
a
I
O
O
rH
I
in
0)
rH
XI
HJ
O
2
H
i
CO
8
CO
J3
O
dP
co
cu (d
•P "CJ
0 -H
O
M CO
m id
rH 13
•w
13
ra o
CO
Q)
(tl rH
J-i (Tj
*"•*
c
e £
•H M
(d -P
a '
D>
G
*.
0)
N
•H
CO
| 1 •5*
G
(d
CU
£»J
1 1
,_ j
*d
O
u
ro ro o>
f~ CM rH
0*k CTk CA
VO 00 OO
co co r~-
O 00 00
p* o^ in
CM r~ r~
co r** r~
VO CO CM
CO CM CM
t-~ r^ r-
o o o
0 O O
r» r^ r^
m o o
CM O O
in o
rH
^
co KO
O 0 — .
GO XI
•rH O rH
§ ^VN-
3 oo 3
•P CM -P
•H CQ
pCj O
c; w o
M ft? O
Q)
•P dP CM
CO t* rH
(tJ r~) **~ **
w
VO rH CT\
oo vo in
<* T}< r}-
oo ^r cr*
VD •«* CO
«4< ^ ^
co CP> r^
rH 00 00
^" CO CO
OO CM rH
VO VO VO
co co co
O 0 O
in in in
CO CO CO
in o o
CM O O
in o
rH
tn
-V.
CO to
Jj
O o ~
C o Xl
•iH 0 rH
E? fcvv-
3 oo 3
•P CM -P
-H CQ
fQ ^
•^•3 C5
G co o
M
-------
Table 5-2. RELATIVE STANDARD DEVIATION OF
SULFUR CONTENT IN COAL
Averaging Time
3 hr
24 hr
30 day
1 year
long term
Boiler size
25 MW
0.237
0.205
0.110
0.031
0
500 MW
0.194
0.163
0.069
0.020
0
1000 MW
0.190
0.155
0.065
0.019
0
The values in Table 5-1 were obtained by assuming a
normal distribution of the values for the 7.0 and 3.5 per-
cent sulfur coals and a log normal distribution for the 0.8
percent sulfur coal for a 95 percent confidence level.
For purposes of evaluating the cost impacts of various
averaging times, a lime FGD system was costed for each of
the maximum sulfur contents in Table 5-1. The FGD was
designed for 90 percent SO* removal using design parameters
as presented in Tables 4-1 and 4-4.
The results of this cost analysis are presented in
Tables 5-3 through 5-6.
The results indicate that costs will increase as the
averaging time is shortened. The effect is also more sig-
nificant for smaller units due to the increased variability
of sulfur as the quantity used during the averaging time
5-3
-------
Q
W
O
H
CO
EH
CO
CO
D
CD
PM
H
PM
O
CO
EH
CO
O
O
ro
I
m
Q
O
H
O4
o
a
H
CD
rtJ
«
O
I
O
o
CO
EH
a
U
43 CM
(d
EH O
0)
N
•H
CO
4J
a
cd
H
CM
rH
0
4J
H C
n5 O
0 O
H
<*»
rH 0
CTi
.
g
O
O
o
H
fe
§
O
o
in
|
m
CN
rH
(d
o
o
•H
^4
rj
m
H
3
CO
rH 5
(fl r«
J3 "^s^
C CO
C rH
•H
e
rH
a)
•P S
•rH ,V*
(0 -W-
CJ
if
3 CO
C rH
S
•.
!— f
rd
-P S:
•iH ^*
fi'X,
n) to-
U
^1
td "^x
3 CO
C H
^
rH
td
•P s
_J J^ll
id v>
U
CNI ro en
CTl rH rO
. . .
01 'co vo
VD .rH J*.
in 'S* rH
• • •
VO rH f1-
rH i-H
oo ^ ro
^j< vo in
rH
ro r~ r^
co ^r <#> dP df> dP
vorocM oocNrH rfcoro
CO C^ C^ ^3 ^D ^>O 00 00 00
f^* r** t*** oo ro co CD CD CD
dP dP OP
o in co
r- ro o
5-4
-------
•"*•
I
in
(0
Q
O
O
H
O
P
O
m
W
O
a
o
o
CO
E-i
3
W
O
0 W
o
en
0)
N
•H
CO
4J
G
m
iH
(±4
rH
O
•P
CO G
>i O
tO CJ
Q
dP
O O
ro en
3
O
o
r-
s
s
0
o
in
|
in
rH
m
o
o
cj
•H
M
3
iw
rH
CO
rH §:
m >!
G W
C rH
rtl rH
•H
g
rH
m
•P 12
Hi>
»•**
Q^X^
(0 >
u
^* ^1
TO ^^x
d to
C rH
as
£
«.
iH
ftJ
4J gj
H .V*
iNsx
rO -w-
O
.,- 1 jy
3 CO
3 -H
? *"*
"e
^j
rn
id
4J &
H A;
JLlX|Sfc
(6 V>
U
o> t>. o
. *~l ^
o\ oo vo
.- t
•* r- oo
ro i* in
• • .
co CM r>
CM H -en
rH rH
en en in
in. vo in
• • •
H en r-
iH
^^ ^D 0^
m co vo
• « .
n »* in
in CO rH
iH rH rH
cn rH n
CO rH CO
CM (N rH
<*> CO \o
' • ,
r~- oo ^o
o r> «*
00 «N (S
dPdPdP dPdPdP dPdPdP
r*** c^ LO ro o\ r** ^o ^D o\
c^r^t^- I-HOOOO ^0*00
oo r** Is** "jj1 oo ro ^D CD CD
dP dP dP
o in oo
!*•• CO o
5-5
-------
Q
W
O
H
CO
W
Q
CO
X
CO
H
t-H-
EM
O
CO
co
O
o
in
I
in
0)
rH
•8
Q
O
M
(tt
04
O
S
H
o
Pi
D
O
1
••a*
CM
i
CM
O
CO
U
CM
O
CTv
Q)
N
•H
W
4J
c
(0
rH
eu
rH
O
5H
W -P
M £
3 O
O U
W
dP
^* O
CM cr>
•
g
o
o
o
r-H
g
JE*
O
O
in
|
OS
rH
(0
o
O
•H
}^
M-t
rH
|3
CO
-43
H tS
3\
3 w
C rH
-rfl t
R* i—l
•H
g
rH
fl
•P S=
H ^
B >
U
^i ^
to \
3 to
C rH
5 .^
e
<
•H
(d
-P !S
tpj L/
DJ\
U
t"~l *^*
(0 NS*V
0 (0
C rH
C rH
rf *rH
g
-
m
i ^
Qi^v.
(8 «>-
U
rH CM "5J1
• • •
O CO VD
i — 1
t£> CO rH
in vo in
rH -* 00*
H rH
CO rH VD
r- co m
• * •
rH CTl t-
t
r~(
in vo CM
O VD t~
• • •
t-. r- in
in co rH
rH rH rH
p- CM m
T* in m
• • •
^3< H CO
CM CM rH
CM VD *cj*
cn o co
CTN P"- O
rH co m
CO CM CM
dPdPdP
vo oo co oo *^ cr^ CM in co
cooor- von'M I-HOO
^*h ^W^ J^-» «^4 -,«. __(4 t ij ^1
O» OO OO ^r ^T " i~n ^^ ^^
<«> dP dP
o in oo
• • •
r- co o
5-6
-------
Q
W
H
W
W
Q
g
13
CO
Q
C5
O
U
VO
I
in
Q
O
H
«
W
CM
O
O
•s
D
O
W
I
co
O
1< J
s I
g
CM
O
CO
El
Q) W
o
(Ti
0)
N
•H
1
•P
C
(0
•H
A)
rH
O
.JJ
to -C
*-i o
3 U
0
£E dP
O
CO C^
g
jl
o
o
o
r-
fe
f.
O
O
in
1
in
CM
rH
m
o
o
-H
M
MH
rH
CO
rH §:
ffl X.
C CO
S3
•H
£
rH
(0
•P S:
•H X
(0 <«-
U
,i j i^
ia\
3 CO
C rH
f1 tnrl
>H r™i
^"E
•>
rH
(fl
HL/I
r^Cf
ftl^X
(0 <«-
o
A
* \
3 to
C rH
3 ""*
rH
C
x\
0 CM
CM 00 in
CO CM CM
dPdPdP dPtfPdP dPdPdP
CO CO CT* VO rH O^ GO f""i o^
I^-CMrH OO VO in rH t-H O
CJNO>CT> ^1^"«t . . j
dP dP dP
o in oo
r- co o
5-7
-------
decreases. For instance, reducing the averaging time for a
3.5 percent sulfur case from 1 year to 3 hours increases
capital costs by 4.5 percent for the 500 MW case com-
pared to 4.0 percent for the 1000 MW case. Also as the coal
sulfur content decreases, the cost impacts of shorter averaging
times increase. For the 0.8 percent sulfur case the differen-
tial capital costs between the 1 year and 3 hour averaging
times varies from 3.9 percent for the 500 MW case to 1.7 for
the 1000 MW case. Impacts on annual operating costs are not
significant as annual operating costs reflect the annual
average coal sulfur content.
5-8
-------
6.0 SINGLE PLANT APPLICATIONS OF COMBINED
PHYSICAL COAL CLEANING AND FLUE GAS DESULFURIZATION
Coal cleaning has the potential of being an economic
method of reducing sulfur in coal by significant amounts.
However the maximum removal obtainable with most coals with
physical cleaning is around 40 percent. To meet stringent
S02 emission levels on high sulfur coal would require addi-
tional S02 removal by an FGD system. In this analysis
several cases were examined in order to evaluate any possi-
ble economic benefits obtainable by the use of coal cleaning
in combination with FGD versus FGD alone. A single plant
scenario was examined in which a single boiler is served by
a coal cleaning plant and a lime or limestone FGD system is
installed to meet the regulation level. In the first case,
a 500 MW unit burning 3.5 percent sulfur coal and required
to meet the 1.2 Ib SO2/106 Btu regulation was considered.
Considered in the second case were boilers of 25, 200, and
500 MW burning 7.0 percent sulfur coal and required to meet
a 215 ng/J (0.5 lb/106 Btu) regulation level. Table 6-1
presents the washability data for the two coals. The washa-
bility data were selected from "Sulfur Reduction Potential
6-1
-------
I
vo
0)
rH
•9
EH
W dP
<
£
3
m «>
rH
0
w
0) ^
0 ft
rH rH
CO ^s.
>B
t7»PQ
C ^~^
•H
4J bi
(tf\
u) r>
W
0)
d dp
rH
a -
> >i
Heating
recovel
dP
-P t*
Weigt
recovei
Washing gravity
VO
CM
CN
co
rH
o
o
H
»#
rH
o
o
o%
CN
ro
co
vo
CN
cr»
rH
CM
co
•
rH
co
in
VO
vo
r-l
o
o
t-»
ro
rH
o
o
o
CM
ro
rH
co
t^
in
CM
vo
*#
•
rH
X
ro
•
rH
CM
CO
r~
CT>
rH
O
o
ro
ro
rH
o
o
o
rH
CO
**
ro
c*
**
CM
00
VO
•
rH
X
•<*
•
rH
CM
CT>
0\
O
CN
O
O
rH
CO
rH
O
O
VD
O
CO
CO
vo
in
00
a\
•
rH
X
vo
•
rH
O
«*
rH
00
«*
CO
O
O
O
CM
rH
O
O
O
CO
CN
O
O
O
H
O
O
o
rH
rH
n)
0
O
5
&
en
rH
co
rH
CM
O
O
O
•**
rH
O
O
r~-
CM
CO
00
a\
in
CM
CM
in
CO
•
rH
r-
CM
•*
in
CM
o
o
cy>
co
rH
o
o
^r
CM
co
rH
rH
00
•<*
"*
r~
•*
•
rH
X
CO
•
•-H
CM
•"31
O
cr^
CM
o
o
r~
co
rH
o
o
0
CM
co
rH
CO
CO
CO
oo
vo
•
rH
X
•<*
•
rH
o
"tf
rH
O
•<*
vo
o
0
o
CN
rH
0
O
0
00
CM
O
O
O
rH
0
O
O
rH
rH
nl
0
0
§
(X
6-2
-------
of U.S. Coals: A Revised Report of Investigations (EPA-
600/2-76-091)," pages 71 and 164 as examples to use in the
study cases.
Case 1 involves 40 percent removal of sulfur by coal
washing of a 3.5 percent sulfur coal. Conventional coal
preparation can be applied to many U.S. coals to achieve a
40 percent reduction in sulfur. In this situation, the
model coal selected was an Illinois coal with a raw coal
sulfur content of 3.48 percent. USBM washability data
indicate that cleaning at 1.8 specific gravity (s.g.) would
reduce the sulfur content by about 50 percent with a Btu
yield of 93.4 percent; the data also indicate a 45 percent
reduction in sulfur at 1.9 s.g. with a 96.3 percent Btu
yield. Assuming that the higher cleaning gravity can be
used, and that a grass roots cleaning plant is built, the
capital costs of cleaning should be in the range of $10,000
to $30,000/ton per hour of raw coal processed. For a state
of the art cleaning plant, operating 4000 hours/year and
processing approximately 1,600,000 tons per year of raw
coal, the capital investment is estimated to be approxi-
mately $3,500,000 to $8,300,000. Since the size of this
cleaning plant is small, the cost is estimated on the high
side of the range at $7,750,000 ($15.5/kW). Operating costs
are estimated to be 2.85 to 4.30 mills/kwh. Additional coal
6-3
-------
required, due to Btu losses in the refuse, are estimated to
be about 100,000 tons annually. At an assumed cost of
$1.20/10^ Btu, the additional costs for coal would be
$2,800,000 (0.98 mills/kWh).
Case 2 was evaluated in exactly the same manner as Case
1 using washability data for the 7.0 percent sulfur coal.
Costs do not differ appreciably from those obtained for Case
1.
For the 1.2 Ib SO2/10 Btu regulation case, combined
coal cleaning and lime or limestone FGD are more expensive
than either lime or limestone FGD alone. Capital costs are
about 1.5 percent higher, while annual costs are about 36
percent higher.
It appears that the only possible benefit from the use
of combined coal cleaning and FGD is in cases where FGD
alone cannot attain the level of control required.
6-4
-------
APPENDIX A
DETAILED COST BREAKDOWNS
FOR PARTICULATE CONTROL DEVICES
A-l
-------
The following sheets present detailed breakdowns for
the cost estimates for ESP's, fabric filters, and venturi
scrubbers. It should be noted however that the fixed costs
shown in the breakdowns were not used in the cost estimates.
Fixed costs in the estimates reflect 15.75 percent of the
total capital investment.
A-2
-------
10
o
oo
t-
o
t_>
.J
or
a.
i/>
ui
X
t-
a
o
u
o
a.
i- a
(/) ut
O CC
o a
o
£L
A-3
-------
o
o
i
o»
01
•o
01
01
O
01
o
in
-
u
to
ui
_l
CO
CO
O
O
i
0.
UI
19
Q
CO
U
UI
a.
o
(O
o
o
o
o
0.
U
o
o
_l
CO
a
o
UJ
o
u.
o
GO
o
U
U
UJ
ae
M
O
co
o
u
u
u
•x.
•-t
a
vt
in
CM
CO
O
o
o
u
IK
>-•
a
u.
o
«
10
CO
o
u
CO
o
o o
UJ UI
ae ae
t-
10
O
u
o
UI
ae
a.
o
CO
o
u
u
UJ
ae
H«
a
03
CO
UJ
(9
O
U
O
»-
U
ae
*-
o
u
UI
:
UI
a.
<
o
cc
UI
a.
ui
CO
UI
<
t-
•-«
a.
CO
o
u
u
UJ
a
z
z
o
Ht
§
o
u
a:
o
ui
UJ
X
UJ
o
ae
ui
«5
*•*
uJ
ac
ui
CO
u.
•a
>j
x
Jl
o
a
CO
ae
o
u
CO 4
UI X
ae o
< _i
a. -i
co
-------
01
IO
o
o
o
co
in
t-
w>
ui
u
z
4
Ul
UJ
-j
X
z
CM
3
O
o
in
o
oc
a.
CO
o
a.
M
Ul
co
o
u
O
a.
o
X
CO
_l
_l
in
(M
C9
•:
X
o
(M
•
O
oc
z
o
o
o
o
a
—
to
a.
u
M
in
ro
a
z
a:
o
3]
•X
o
m
ui
t-
z
a
•s
cc
o
oc
Ul
a.
o
u.
o
tr
o
31
o:
ul
Q.
O
a*
o
CM
co
Ul
u
cr
cc
ul
(C
o
03
u
Ul
X
o
z
r
o
CO
a.
CO
A-5
Ul
o
.2
a
JC
o
ID
a.
a.
a
-------
i
M
o
a
«• w^
•* -4
u.
A-6
-------
CAPITAL INVESTMENT FOR FABRIC FILTERS
Regulation 13.4 ng/J
Coal 0.8% S
Size 500 MW
Direct Costs
Fabric Filter 10,890,628
Ash handling 2,095,152
Ducting 651,738
Sub-total, Direct Costs 13,637,518
Indirect Costs
@ 33'75% 4,602,662
Contingency 20% of Direct & Indirect 3,648,036
Grand Total 21,889,216
$/KW 43.78
A-7
-------
ANNUAL OPERATING COSTS - FABRIC FILTERS
Utilities
Electricity 225,216
Water 16>617
Operating labor 616,455
maintenance and bags
Overhead and administration 122,713
Fixed Cost @ 15.58%of total 4,979,569
capital costs
Total Annual Costs
A-8
-------
•3
m
co
CD
00 O
at
ee.
•x. x
Ul Ul
CO
» «•
*
fQ t
I W
CO U.
O
N r-
•••
in
Ul
a.
u.
a
V)
M
(O
a.
K>
3
c
cc.
2
UJ
CO
O
O
in
CM
ce
_j
u
O
O
I
O
O
O
in
u.
X
Ul
£ *•
o
•4 O
I O
z:
ce i
i-
-i o
CO CO
U.
u
CO o
ce o
4 O
ui m
>-
Ul
U.
i i
JC b.
U. ui
U i
1 X
3) Ul
CO
X
<
uj
y-
m
UJ
U.
O M
O
O O
m o
to •
(O o
z
o
0)
»
O
<
CD
U. I
Ul
Q. I-
X O
UJ U.
co
j:
<
ui
i
Ul
z
ui
oe
o
(W
C\J
4
ft—
4
a
»-
o
o
in
10
HI
•
t-i
i
u.
o
CO
Ul
o
•
o
r4
M
1
1—
ce
-
O
5
•s.
01
I >H
a. i
ce
-I u
o
m
x
CO
ac
x
-I
•4
ID
ce u ce oe
ui u < <
J «: Q. o.
o
CO
i
p
u.
Jf
x:
in
-------
u.
o
»
o
HI
to
I
i
Ul
X
CO U.
r* If)
I I
O Ul
(O U.
o
eg
o
M
I
0.
x
ui
M
m
vB
I
U.
U
»
U.
Ul
a.
t
u.
u.
a
u.
u
«
UL
O
M
M
u.
u
c
u.
in
CO
o
U)
XL
U.
u
o
o
ui in
>- co
K>
in
o
o
O
C U. I
U. Lj
u a. t-
< X O
3) Ul U.
i
ui
s: u.
a. ui
u. u a.
"-« O M Z
CC O O
«t o o H-
ui in o
>-
-I CO Ul U.
cc
ffi
CO
W X
Ul £
y- ^*
m
i -J
a:
CO
JC
CO
ID
> o
o
X
Ul I
cc
oe o
< u
a. u.
in
eg
u
u
ui
a:
tr
a.
I
O
o
m
CC
Ul
o
CO
u
u
o
oe
cc
Q.
ce o
< u
a. u.
A-10
-------
o
_l
u.
M
< .
(9 M
Ul I-
X -I (AM
>- «* ZO
»- WO
U O U. ^
at- o u id
UJO
3 bu Ul U. Ul
-lui x o x >-H-
U. COI- 3 «X
oc a b.ae
K Ul O Ul OUI
• ui -i »- u a.
vi a a u o MO
ae. «sz < K i-
ui ui < u. a. M ui
•J x x ox
« z oe o>-
O Z O O Ul
cno >- *-< »- z
«: i- u> • >-<
ui c a « o ui
x o ui _i u.
>- o rsi <
o ui
_
o ui H- >-• _i
u. z ui < o
>-i a: z ui » z
a «t < z ->
3L Ul (/> • M 1/3 LJ
3 Z Z vfl 3 M CC
) >-> n r~ ff
) - • <
< i; a: r* u) O>H- ui >-
o i- i- z ae <
co o i- c/j aui - j
z:x-4 J «(» <(n
UI4CQ 3UI _JUI GOUI
H. CO «tX =>;> o_l
U1U13 »- oz a.«i
>- X OC M _!>-« (OX
M Ul O >-" Ul < i-l
-J M t- u _i a ^
U> »< M 4 <
ZOUI "-> Q Ul t— Ul
MIOX oo a. a: •-< ts ui
CD t- <3
Z U. < Z UIUI
o MO KM a>-< »-o
w Z3Z tO w UlrsJi-tO
»- OO>-« O X>-« M3
a. i: _i oa oc in •-. _i _i
X XU.OO Q. K> U. «t ZM
3 O 3 K> 3 O X
M OMQC Ul« UIZ X
W> - t— < Z4
Ul
t-
M
CO
A-11
-------
K>
to
I".
IO *
CO
CO
00
ce
u
CM
o
(O
CO
o
o
o
vO
ni
sO
O
CO
eo
en
ce.
u
ce
o.
I
_l
a.
u
o
o
in
to
ce
o
Q. Ui
a: ce
a o
o. v> - ce ID o
UI UI UI < »-»-
(A z < o
03 < UI O
4 U. X U)
a
-I
m
z
o
z
M
ce
o
o
M
a.
•3
a.
x
u
v>
UI
H-
<
ce
I
UI
ce
o
t—
O
£
a
z
10
Q.
a:
A-12
-------
eg
•H
10
o
o
to
o in
o r-
o
o
o
*
Ul
(9
Q
o
u
Q
u
at
o
Ul
>
o
Q.
ut
CD
O
« c
O t-
OJ
in
o
00
LJ
Q.
<
U
Ul »- >- CO
«o z « «r
< ui »- o
QC t « (-
O O. to O
10
o
Q.
10
kl
(9
a
3
w _j in 3
CE 1-1 a
u u. _i ui
*-* <
u. s; o ui
-<=>M_I
< U Ul CD
-I < X O
O > (J J-
o
z
a.
A-13
-------
CM
ro
Ch
vO
ro
M
in
10
o
o
o
o
10
*
o
o
o
z
a.
<
u
o
u
ae
z
o
w
w
o
u
o
UI
oc
o
u
i
a
to
UJ
a:
ui
ui
Of
u
a
UJ
10
H4
EC
UI
UI
»H
ta
»- UI
x t-
(9 «-•
M W
UI U.
cc u.
u. o
co
u
X
ui
o.
oo
z
M
oe
o
UI
u
o
A-14
-------
o
o
o
-
x
z
o
o
o
K)
ac
ui
JC
4
(X
-I
4
9C
Ul
X
u
z
o
4
X
QC
a; i-
Ul
ui
ul
eg
ce
o z
CO O
4 •-!
_l U)
o ce
UJ Ul
ce a.
CC w 3
O O CO
CD
4
ui
o
ce
ui
H-
4
z:
a
z
4
O
co
4
co
Ul
Q.
a.
O
4
X
ce
»- o
z cc
4 >-
_J 4
a. a.
o
z
4
UJ
o
a
A-15
-------
o*
CM
n
n
tn
o
L>
O O
CT> «
oi r-
* in
•4 in
to
u»
oe
a
ut
X
ae
ui
a.
z ut
< o
u
< in
i- z
o «->
ae
ui
a
m
o
u
to
o
u
19
UI
a.
o
UI
ID
U
u)
X
§
u
ui
ne
a.
ui
o
UI
u
in
o
ui
x
ae i-
a 11
i/i a.
ai
a:
a
ui
x
A-16
-------
APPENDIX B
COST IMPLICATIONS OF ADDING SPARE
MODULES TO FLUE GAS DESULFURIZATION SYSTEMS
B-l
-------
COST IMPLICATIONS OF ADDING SPARE
MODULES TO FLUE GAS DESULFURIZATION SYSTEMS
In reviewing air pollutant emission limitations, an
important consideration is the time period over which a cer-
tain limitation must be attained. This directly affects the
required operational availability of pollutant control sys-
tems. One system of major concern is flue gas desulfuriza-
tion (FGD). The basic approach to increasing the avail-
ability of FGD systems is to install a spare scrubbing
module, but this will have a definite cost impact on the
system.
The purpose of installing a spare module is to increase
the availability of the FGD system. The percent avail-
ability is a ratio of scrubber operating time divided by
boiler operating time. The availability for small boilers
with one original module and one spare module is 99%,
assuming an availability of 90% for each module. As boiler
, i1
size increases to a point where it is necessary to have two
or more original modules, availability decreases. This is
explained by the fact that there is only one spare module
that can operate while two or more original modules are out
B-2
-------
of operation. Table 1 presents the effect on availability
of adding a spare module to various size FGD systems based
on assumed availabilities of 0.90 for a single module and
100 percent availability of a boiler.
Table 1. PERCENT AVAILABILITY
Availability
Mw Limestone Wellman-Lord
25 0.99 0.99
50 0.99 0.99
100 0.99 0 99
200 0.97 0^97
350 0.95 0.95
500 0.92 0.92
750 0.89 0.89
1000 0.82 0.82
In order to determine the additional cost incurred by
adding a spare module to a new lime or Wellman-Lord FGD
system, PEDCo's cost estimating procedure was utilized.
First, capital and annual costs were estimated for both
FGD systems applied to seven predetermined boiler sizes.
Input for all the boilers was kept the same except for size-
related factors such as ACFM and fuel consumption. The
costs are based on burning a typical high sulfur coal (10%
ash, 3.5% S, and 11,000 Btu/lb). In each case, the allow-
able S02 emission level is 1.2 lb/106 Btu. All input data
and assumptions are listed in Table 2.
Costs were then estimated for each size boiler for each
type FGD system with one spare scrubbing module. All other
B-3
-------
Table 2. DATA AND ASSUMPTIONS
Rate data FGD chemical cost, dollars/ton
Escalation factor - 1.335a
Electricity, mills/kWh - 20.00
Water, dollars/1000 gal - 0.20
Labor, dollars/man-hr - 10.00
Capital charge, percent - 9.00
Land, dollars/acre - 2000.00
Lime - 40.00
Soda ash - 65.00
Salt cake - 30.00
Sulfur acid - 20.06
Boiler data
Life, years - 35
Duct factor - .17
Allowable SO2/ lb/10b Btu
- 1.2
Fuel analysis
Ash content of coal, % - 11.0
Coal sulfur content, % - 3.5
Coal heating value, lb/10^ Btu -
11,000
August 1980.
B-4
-------
factors were kept constant. It was assumed that the spare
module is of the same size as the required modules (i.e.,
for a 50 MW boiler with one FGD module the spare is sized to
handle 50 MW; for a 500 MW boiler with four FGD modules,
corresponding to 125 MW each, the spare is sized to handle
125 MW). Costs obtained for the system with a spare module
were then compared to the base case costs.
Table 3 presents the percent increase in capital cost
that can be expected when a spare module is installed.
Figures 1 through 4 graphically illustrate capital cost
trends with and without spare modules. Generally speaking,
the percent increase for a small boiler is high compared to
a larger one. This is because a small boiler only needs one
module to operate properly. By adding another module, the
capital cost will almost double, whereas a larger boiler
with more than one module to begin with would not experience
such a drastic increase. Table 4 presents the percent
increase in annual costs that results from installation of a
spare module. Figures 5 and 6 illustrate the added operat-
ing expense per kWh when a spare module is incorporated into
a Wellman-Lord process or a lime scrubbing FGD. Operating
costs per kWh is calculated by dividing the total annual
cost by kWh's of electricity generated per year. The annual
cost itself is the sum of fixed charges which are a certain
B-5
-------
Table 3. CAPITAL COST EFFECTS OF ADDING A REDUNDANT
ABSORBER TO A LIME AND WELLMAN-LORD FGD SYSTEM
Boiler capacity,
MW
25
50
100
200
350
500
750
Lime,
percent increase
56.3
60.9
65.3
36.4
25.7
19.6
16.1
Wei Ima n- Lo r d ,
percent increase
50.6
55.7
61.8
37.8
24.6
20.4
15.8
B-6
-------
O
in
o
o
o
o
CO
o
o
CO
o
o
o
o
10
CD
o
CD
O
O
o
o
<\J
CD
O
4J
4J
(TJ
O
•H
Ou
4J
CO
O
O
i/sci\moa
B-7
-------
o
o
00
o
o
O
O
O
O
in
r^
H
M
O
•4-J
in
CM
B-8
-------
o
to
s
CO
o
o
oo
o
o
o
o
10
o
o
LO
O
O
CO
o
o
CM
o
o
J-l
0)
04
CO
0)
0)
D
TD
O
e
o
o
,_(
IT)
.p
•rH
a
(0
o
c
•H
QJ
CO
(0
a)
^
0
c
•H
"0
Q)
4J
O
0)
C
(0
c
3
Q}
M
0)
C
O
O
C
O
•H
.jj
•H
•a
•a
0)
4J
tn
O
M
x:
-u
CO
CO
(U
o
o
a
t-i
o
i-J
I
C
0)
CM
C3
O
B-9
-------
o
o
CD
O
O
4J
4J
I
o
o
vo
o
o
tn
o
o
CD
O
CO
O
o
CM
0)
a
a)
en
m
OJ
o
c
•H
4J
0)
O
O
(0
•P
(0
O
3
•P
O
V
g
4J
C
n)
•O
C
3
•a
0)
c
o
•H
4J
•H
•O
(U
0)
4J
0)
W
CM
o
in
in
CM
B-10
-------
Table 4. ANNUAL COST EFFECTS OF ADDING A REDUNDANT MODULE
TO LIME AND WELLMAN-LORD FGD SYSTEMS
Boiler capacity, Lime, Wellman-kord,
MW % increase % increase
25 40.0 42.3
50 53.7 47.1
100 55.5 52.5
200 32,7 35.0
350 23.7 23.0
500 18.0 20.1
750 14.3 12.5
B-ll
-------
,g
8 S
* a
s
CD
x:
4J
tr>
o
X)
-p
o
rH
•H
M
-P
CO
o
o
id
c
a
CS
•H
cd
a)
n
o
c
•a
0)
o
0)
0)
«
tr>
•H
XI
!
o
CO
0)
e
•H
0)
tJ
g
4J
C!
•a
G
•a
0)
0)
o
G
o
•H
•a
fd
••H
B-12
-------
r- UJ
= o:
o
c
•r-1
Q)
-P
o
0)
Q)
0)
Oj
0)
O
2
3
o
x:
i
O
-H
-a
T3
tO
Q)
to -P
•H
.•3
o
B-13
-------
percentage of total capital cost, plus operation and main-
tenance cost. For the Wellman-Lord process another factor
considered in the operating cost per kWh is the by product
credit since substances are produced. Comparing effects of
spare modules on capital cost versus effects on annual
costs, it can be seen that there is less of an impact on
annual costs.
B-14
-------
APPENDIX C
DETAILED COST BREAKDOWNS FOR
FGD SYSTEMS
C-l
-------
The following sheets present example breakdowns of
costs for the FGD systems evaluated in this study. Samples
included are a lime FGD on a 500 MW boiler burning 3.5
percent sulfur coal and having 90 percent efficiency, a lime
FGD on a 500 MW boiler burning low sulfur (0.8%) coal and
having 90 percent efficiency, and a magnesium oxide FGD on a
500 MW boiler burning 3.5 percent sulfur coal and having 90
percent efficiency.
C-2
-------
m
c
(E
ae
in
•
ft
n
u.
X
Ul
u
in
\L
x
*
X
Ul
i to
V S
CD
m
in
o
at
i
a.
m
ca
in
in
«M
O
CO .
CO
z:
x.
O
T4
IO
I
a.
ui
m
o
o
O K>
I I
•t 0.
CM C'
O Ul
C/> I-
- X>
KJ
•<>
I
z:
vJ U.
u. o
Jl
r
.T
•O
O
o
o
f>
J
o o
o z
<
13
a >
j: x
X. U
il U
o <
^r j>
O
J
O
J
o
i
i
>
Y.
C-3
-------
I
00
3
m
CD
m
m
o
i
o
<-t
ro
Q.
e
ui
m •
in o
• 1-1
O K)
i i
« &
01 X
o ui
1^ M
in
vO
u.
a
s,
o
(J
V)
a:
N.
O
vO
m
U.
u
1
o
o
o
in
CO
10
o
U.
ol
LL
UI
u.
c
U.
u
o:
X
'
£
-J
ul
<£
I I
o
u
oc
Ul
o
JO
a:
«
a.
o
u
ce
UJ
o
O
I
Ul
oc o
« o
a. u.
C-4
-------
CO
13
'^J
»— t
l_
uJ O
UJO
•3 U. uJ
-1 J Z
U. Di-
ce uJ
CO 0 O
X «t Z
uJ uJ •«
J X X
M
0 .-2 0
.•a q i-
LiJ £ Q
X O uJ
1— O ISJ
hH
O
U. J? UJ
~i cc
o <
.j a
1C LJ W
5? 5 M
*O 3 4
< x a:
O H-
/i — tO
'./) •./) 3
>- Jl 3C
.0 U CJ
-J CO
D »-»
^ 0 oj
»-» O X
-2 h-
lf l*J
3 X •
JC I- W3
U Z
•1 i' >-i
J <
o r z
•J JL >-
u.
v.' o
^r )• ^
j j -<
: _i n
•* u. L!I
3 3.
o >/•• at
-T 'j
-: 'J /)
U.
O
O
»-
u
4
U.
o
H-t
4
^J
<
u
.0
4
•
*
o\ •
**4 '/}
H-
t- /)
V) 0
t)
3 ul
4 ***
>—
'/)
>-• l*J
^.
CO <
»H o
y? a.
4 ^
X
H- H-
CO
o a
O jj
rtl _J
'1
x yj
^ *~*
^
'£ ^)
« f'/
•o
uJ •
C -H
J—
U.
o
vj
X
a
u
o
a:
X
•x.
Ul
o
a.
j
^Z
tD
Z!
*-•
/)
3
>- •
.C >-
Z
J -J
ui i:
J -O
-J Ul
3 :>
_i -^
<
•a
•^ *_i
< X
/) O
uj
J Ul
j ^-
t_j \o
^
_» -«
-J tsi
< ^
•-• -1
u. •!
3
u.1 ^
•- »
•^ z
^ ^_
<
U.K
0 UJ
CO O
^
i/> uJ
O ^
Z
• *^
•jj
_i a
a ui
•a o
*^ _j
-
«« X
-<
vO £
hi
LI -I
ul
D h-
3 hi
-J 'O
s^ ^
;_^
-O .D
•^J UJ
•- J
-i O
.
2 IT
O V
o /?
C-5
-------
•o
10
CM
at
o
in
to
o
u
o e
o o
o o
in •*
a.
ui
in
o o o o o o
o o o o o o
o o o o o o
o e \a ^ r> CM
* o o» »« *» a
o ••« ~« *a o
CM H> <4 «•• >4 -
Z
|
2
>
Z
ft
_l
<
t—
«-4
X
4
O
Ul
ac
0
J)
j%
•J
O.
3
a.
(O
x
O
U9
O
•£ O
^ C
*~ °
ul <
a j>
x a.
a
•M
O
/)
t— ID i/) a o
3 J X £
s: < u/ c: >/>
W I ^ 3 X O
Z 3 (J O < 2 Z
uJ 2 X -I <
O V) >- >- ;» a G.
U) 2 < O _l _J *.
a > c x
C-6
-------
o
•
-
•-«
a.
-J
'/5
o
a.
>-<
3
UJ
3
-J
uJ
vD
•^ ^
2: t
LJ 0
*— '-
Ul U. _j
u. >z o
•-* .3 1-4
o: o i.
< LJ xl
-J T ^
-J ^> .J
1—
^*
Ul
JC
X
•*
C9
Ul
Ul
-J
13
3
i
U)
X
0
^—
•3
H-
3
t
p
"*
t/1
^;
^
r-
1/1
JC
O
o
«r
0
"*
•i
^
-D
C-7
-------
o
o
(M
m
o
o
10
IO
*
in
o
o>
IV
<0
<0
(O
O
o
CM
o
o
ni
n in
-« 10
•o
o
«
in
o
UJ
ae
at
UJ
>
s
a.
>•
(J
LI
ID
O
O
O
(A
O
o
a
a
u
uj
_l
o
2
U
£
UJ
3.
4
U
/>
*-
o
/)
z
o
o
-r a
j a:
h- >
/) O
uJ Z H- VI
2 O M M J
-*»<«/} «»l JC
.i -J Li. X. ^
-T r u. « s.
^J a. *J r— y>
O
a
UJ
4
U)
O
(J
-------
o
o
cr>
•n
o
o
o o
o a
o» r-
•*
S 1
o
o o
ni o
3
CD
in
CC
z
o
•
o
z
o
o
o
cc
Ul
CL
O
I
_l
a
u>
u.
UJ
V)
o
cc
Ul
o
10
Ul
a:
w
o
cr»
tit
a
o
o
in
a:
a
z
•x
ce
o
CO
O
CD
I g
X X
z z
o o
X.
1.
-------
8
u
Kl vO
IO M>
CM 0»
to
o
r*
vO
(9
oe
a
ui
x
§
i/j
I
u
V)
o
o
ft
JC
UJ
a.
o
•J) •->
u t-
£> <
a: "<
< ->
£ Ul
x
•-i
u.
'/>
^j
X
«t
CO
J)
o
Ul U
u
2 -I
<
-------
o
O
Ul
Q.
i-«
a
ui
O 0
a
0
10
O
a
CM
ae
a.
UJ
a
K)
in
•a
co
Q.
13
rj
»-*
X
D
Z3
o:
0
./)
?^i
t/>
a:
UJ
£
j:
1/1
n
**
h-
it
O
^
J
"•*
<
y)
, ,
. J>
_J
X
>
^
9
<
J
_J
o
r.
o
^.
^
*"-,
<
^j
0.
5
i_
C-ll
-------
to
9>
K>
o o o o o o
o o o o o
o o o o o
o « <\i r- 10
IO -1 * «> O
in cr
LJ
_D
a
jc.
o
—
f)
.J
r
Ul H' O
£ — H-
0.00
-i V>
"• -e.
-D i
o a
C-12
-------
0 O O 0 O O O O
o o o o o o o o
oooooooo
o
o
vO
in
*
•o
o
0
u
UI
<£
M
Q
z
w
J
H-
o
e
o
* .
01
.
>•
£
UI
(9
M
. h-
. z
o
u
0 -
o
*
CM
UI
UI
u.
J lAj U.
T C U.
C-13
-------
10
•o
ro
CO
o
u
o o
o o
in vo
«•« *
K)
O
(M
in
O
O
o
O
O
o
«M
in 10
o
o
(M »
•4 vO
Ul
.
o
o
>. h-
O O
O
• *
vO
^ .n
Ul
>
Z _l
»4
ui *
«i ui
*- i-
M «
CL X
(J O
i- ae
O O
s J
u.
M O
r
a
«t
ae
o
O3
«I
< <
oe at
ui ui
a. a.
o o
o
«t
a:
>-
N.
I
Z
O
o
o
o
•o
Ul
o
K
O
•a
oe
ui
<
a:
X t-
- ui x
•-• « -i J
-i x xj ae
o
ae
ui
a.
o
03
ae
ui
H-
<
t
a
ui z ui
o < ui
z «-•
« z -i
zoo.
UJ JO Qu
>- •*. 3
z J y>
o
4
X
>-
=t
a
<
UJ
J>
Jl
C-14
-------
m
in
•o
o
u
z
•X
K)
O 0" 0|
•4 tO
M
Ul
(9
X
U
O
ui
X
M4
U.
I
cc
4
r
J
X
:j
»-*
t—
<
o.
xJ
uj u
o
.2 _l
< «
V3 JC t-
uJ J -.
X ^ Q.
1 J
C-15
-------
u.
o
V
oe
is
o
ac
ui
o
u
H-
Ul
o>
II
u.
u
z
u
o
< u
en **
t- u.
z u.
UI UI
u
ui
o
UI
O II
s
u
u
o
u
4
UI
to
UI
It
ui
a:
">
Of
cc
to
o
O
a.
13
a
to
O
o
in
CU
U
CO
<
a.
U
UI
u.
II
o
o
CO
u
CO
a
*
V)
UI
u.
o
II
o
u
UI
a
ui
H4
U.
a:
ui
a.
CO
t-
Ul
(A
a
z
a:
UJ
CO
o
01
fO
o
u>
<*
U
in
*^
o
•
O
z
a
UI
u
z
o
CO
Lj
a.
o
a:
o
o
o
o
2
o
u.
CO
2
I
O
m
o
u
>r
o
o
<
a.
C-16
-------
a
Ul
CO
o
in
K>
O
o
u.
o
u.
z
o
H4
h-
<
u
•Jt
Ul
z
a
ID
a:
o
Ul
cc
a
u
u
o
o
u
a
ui
a.
ui
V)
3
Q
t-
4
a.
ta
ui
u.
o
oo
1C
o
K)
a
ui •
a t-
ui ui
ui o
Ul
3)
Z
O
a
uJ -3
a: 4
ui
i o
t/3
O
Q.
Z
X I-
w
»- o
V) O
o
U Ul
X
X. ^1
O (-
o.«
cc a
C. Q.
Ul
JH O
ul
(£
4 •
U} Z
ui ui
o s:
in i-«
z
O Ul
HI ec
t- ui
4 I
X Ul
u >
a >-•
ui
x _i
ui a.
z 4
>- o
I o
»- U)
a ui
•-> a:
3
G
o ul
t- ce
1.j co
o ui
G C
1/3
>-
01
C-17
-------
o
o»
in
to
o
o
0.
£
Ok
a
o
(M
(M
o o
o o
o o
<0 f-
0»
ul -<
x <
o >-
I M
JC 0.
3 <
«-• U
^3
9
O
3:
o
o
O
<
ac
ui
t/>
a:
O
>-
O
£.
c.
z
<
X
;/)
••v*
o
•/>
> i—
'i LJ
.U 3
IO CO -3
2 JC
I X .2 t
o o < ^
x _i <
ui co co »-
O
3
co
oc
o
>-
O
C
i.
D
J.
C-18
-------
o
01
o
KJ
o
o
o
O O O
Q> O» O
•4 • fQ 0»
«•• n
«-l >
ae
_J
I
o
(O
«l
W ffe
vo ^
* «
CM
19 t-
Z O)
>-• O
>- O
X
o o
UJ
Ul _l
3C -I
< 4
(J I-
V)
I Z
o
t—
'Z
Ul
CO
v>
o >-
t- o
*-
CO
(O
<
tr
o
t-
2
o
J>
•-«
t—
<
[X
UJ
r j
r- J
O
o
f.
'•i
^ z o
UJ U) I—
*: -c j
O. CL Ul
CO i-» »-< _J
X O 3 _J
UJ O O O
."» 'J U U
Tt < rj -3
J -J _> o
C-19
-------
o
o
o
o
o
o
o
o
o
0
CD
K>
o o o
000*
> K> »4
V0 CM K>
M
o
u
S
o
o
o
•a
M
s
Ut J
u. a.
ae
o
o
u
*>
w *
£ S
UJ &
5 5
S
< -1-
I* Ul
<( Z
U l-t
o
u
>
a.
<
o
.
O
o
o
o
l/i
/)
»—
y;
u
J
J
c
) r
UJ
1^ UJ Z
-H ^) Uj ^t O
1>J U. X -5 J
•r u. t i J
,». o i- ^j i
C-20
-------
10
o
u
Z
O
IO
CM
CO
O o
o o
O o
(T> vo
r- CM
in
fO
o
o
IO
CM
(M
m
CM
vO
W)
vO
in
* o
IO ^
(M
o
in
u
o
o
CD
m
CM
•i
o
o
U4
C
I
O
I—
X
(X
ui
a.
o
D
_J
in rt
(M
Ul
CD
4
CC
Ul
u>
Ul
o
1-1
X
o
I
U)
LJ
J>
4
SE
Ul
a:
OT
O
CJ
i-« - 4
4 _l
O
X h-
->
c a
o
o
o
CM
tn
u
a
4
U
4
t-
O
h-
Uu
O
M
IO
*
Z
»-l
4
O
4
o
m
4
cc
o
Q
4
O
31
4
O
Vt
o is
Z Z
4
a:
ui
a.
o
4
o:
ui
a.
o
X
Ul
o
in CM
O
i3
s:
Ul
D
4
Ul
•t 4 _l
-I * uJ
O
CO
4
CC
O
0)
4
O
Ul
CE
i-l
O
Z
O
X
jj
Q.
a:
ui
>—
4
C
O
Ul IT W)
U 4 Ul
4
r:
ui
4
a:
o
on
a »- o
< .r ic
Ul 4 >-
r _i a
X i. CL
4
I
C-21
-------
o
o
to
o
u
O
vo
o
o
•« in oj
o
o
o
- -JO
< o
« Z -J
u « <
UJ al £ t-
Z. uJ 3 >-•
n. j< t/i a.
j -r ? •«
C-22
J
i*J
X
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-450/3-78-007
4. TITLE AND SUBTITLE
Particulate and Sulfur Dioxide Emission Control Costs
for Large Coal-Fired Boilers
3. RECIPIENT'S ACCESSION-NO.
5. REPORT DATE
Issued 2/78 •_
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Larry L. Gibbs, Duane S. Forste,
Yatendra M. Shah
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
PEDCo Environmental
11499 Chester Road
Cincinnati, Ohio 45246
11. CONTRACT/GRANT NO.
68-02-2535
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final ___^__
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Cost cases developed include five processes, lime, limestone, mag-ox, double alkali,
and Wellman-Lord; five plant sizes from 25-1000 MW; three S02 control levels, current,
90% efficiency, 0.5 Ibs S02/mil.lion Btu; three particulate levels5current (43 ng/j),
22 ng/j, and 13 ng/j; and coals of varying sulfur, heating value, and ash content.
Averaging times, redundancy, sludge disposal, and energy penalties are also studied.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Air Pollution
Cost Comparison
Electric Utilities
Sulfur Oxides
Dust Control
b.lDENTIFIERS/OPEN ENDED TERMS
Air Pollution Control
Stationary Sources
Coal-fired Boilers
Emission Standards
c. COSATI I;ioltl/Group
13B
18. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
168
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
C-23
-------
-------