-------
5-8
-------
6. CONTROL TECHNOLOGY
6.1 CURRENT CONTROL TECHNOLOGY
The control technology utilized by the perlite industry to reduce
particulate emissions from dryers is primarily fabric filters
(baghouses). While processing schemes vary from mill to mill, the larger
milling operations generally employ a separate baghouse to control
emissions from the dryers. Smaller operators may utilize a common
baghouse to collect particulates from screening, crushing, and ore
handling, as well as drying operations. There is no common design for
baghouses used at mills as they are frequently surplus equipment rather
than custom designed. The baghouses that are used employ air-to-cloth
ratios from 0.6:1 m/min (2.0:1 ft/min) to 1.4:1 m/min (4.5:1 ft/mln).18'21'22
Cleaning mechanisms vary from pulse jet every 12 seconds to mechanical
shaking keyed to pressure drop. Acrylic felt and nomex as well as cotton
are reportedly used as bag materials.
Fabric filters are also the primary type of control technology
utilized to control particulate emissions from expanding furnaces. While
cyclones are an integral part of the product collection and sizing system
attached to expansion furnaces, they do not provide the level of control
necessary to meet existing regulations. Approximately 90 percent of
domestic perlite expanding plants employ fabric filters for final
6-1
-------
participate control. Furnace manufacturers, such as The Perlite
Corporation, presently sell furnace-cyclone-baghouse units.
Fabric filters may be used to reduce particulate emissions from
material handling. In several of the larger plants, perlite dust from
loading and unloading, transfer and conveying, storage, and product
bagging is passed through a baghouse prior to release to the atmosphere.
In some instances, exhaust gases from the expanding furnace and fugitive
emissions from material handling are vented through the same baghouse.
Perlite drying and expanding processes require that operators with
baghouses pay attention to maintenance and baghouse temperature control.
Because perlite particles are abrasive, they cause equipment erosion and
reduced bag life. Unless proper inspection and maintenance procedures are
followed, the filtering efficiency can be significantly impaired.
Baghouse temperature control is needed to keep the temperature of the
gases entering the baghouse within a specific range of 394 to 450K (250
to 350°F)9 in order to prevent condensation and at the same time avoid
burning up the bags.
Since the majority of perlite milling operations are located in
regions with severe winters, ambient subzero temperatures are common for
several months each year. In the case of exhaust gases from rotary
dryers, it is often necessary during severe winter weather conditions to
raise the temperature of the gas stream with auxiliary heaters before it
enters the baghouse to prevent condensation.
Combustion gases from expansion plants present the opposite problem,
since they are at relatively high temperature. Often combustion gases
must be cooled several hundred degrees prior to entering the baghouse due
to the temperature limitations of the fabric material. Cooling is
6-2
-------
generally accomplished by some combination of heat-exchangers, cooling
within the Collection cyclones, and dilution with ambient air.
6.2 ALTERNATIVE CONTROL TECHNIQUES
Wet-scrubbers are used at both milling and expanding plants to
control particulate emissions. Only one small milling operation (less
than 1 percent of total crude production) currently uses a wet-scrubber
whereas five expanding plants, 154 Gg/yr (170,000 tons/year),3 use
scrubbers to control particulate emissions. Plant personnel estimate that
the scrubbers operate at 98 percent collection efficiency and are
o
sufficient to meet the applicable state regulations.
6.3 BEST SYSTEMS OF EMISSION REDUCTION
Based on available information, fabric filters represent the best
system of emission reduction for the perlite industry. The few scrubbers
utilized today are holdovers from older plants. All of the people
contacted felt that a new plant built anywhere in the country would
utilize a fabric filter to control particulates from drying, expanding,
and material handling operations.
6-3
-------
6-4
-------
7. EMISSIONS DATA
7.1 TEST DATA
Relatively few emission measurements are available for perlite drying
and expanding operations. Some stack testing has been done to establish
compliance status with respect to applicable control regulations, but in
most cases visible emission or opacity readings are the primary method
used to monitor compliance. This chapter summarizes the test methods
employed.
7.1.1 Dryers
Table 7-1 presents the results of emissions tests conducted at four
perlite dryers in New Mexico.7 Approximately 75 percent of the domestic
crude perlite production is dried at these four sites. The results for
company A include fugitive emissions, whereas the results for company D
indicate noncompliance with regulations. The average emissions 0.18 kg/Mg
(0.37 Ib/ton) for companies B and C is indicative of the emission rate for
a dryer operating in compliance with current SIP's.
7.1.2 Expanding Plants
Few documented particulate emission tests have been performed on
perlite expanding plants. In most cases, installation of a fabric filter
baghouse has been considered sufficient to meet state regulations. To
establish compliance, state regulatory personnel have frequently estimated
7-1
-------
to
UJ
tn
a:
UJ
o.
O
LJU
g
o
to
to
to
UJ
*
t-H
I
a>
03
c
o
JL
I o
o c
<_) oj
4-> (J
OJ 14-
ro QJ
a.
0.
0)
a ro
0) S-
s_
3 C
co o
IO !-
* y.
i
10
QJ
QJ 4->
r (O
XI S-
10
i g
o o
co
p-
QJ
ia
s-
CO
QJ
O
O
a.
x:
c
0
ja
^~
s.
-*^^
r
*
en
S-
j=
X)
.E
cn
^
tn
o
f
01
o -a
4-* O
CO X:
CU | *
"-I
+J
12
a. CL
'5 i
cr ui
LU
c
10
r^* 01 r^, ro
O^ CTl O^ Ol
r-. oo <& o
LO t-H LO CO
O O O t-H
m 01 *d- Ln
CSJ r-< CO
i 1 «3- tO WD
f 1 t-H
CM
CO CO t-H CO
CO CO CO -
to in *3r to
t-H t-H i 1 «-H
?^D LT) 1*^*
LO CM CVJ
o in co m
*3- ^- CM CM
i« to in in
a "o -a -a
o o o o
-E .c jr jz
Q. (U Q_ Q>
LUE UJE: LLJE UJE:
CU Q) ,», >, >,
= *£££
1-
c
o
f
U)
O -r-
t- S
X
OJ ^O
s S
o
S-
e£ o
<->
r- 1-
-t-> OJ C
O -C O
OJ -1-1 O
oo
O>4->
-CO
in-r- c
g>
3 in
O QJ O
0>r et
OJ IO Q.
CC O LU
IO XI O
7-2
-------
parti oil ate emissions for the appropriate process rate (10.5 kg/Mg, or
21 "Ib/ton from AP-42) and then assumed a reduction in these emissions
proportional to the collection efficiency of the baghouse (96 to 99
percent). Visible emissions or opacity readings are then performed
periodically to ensure that the baghouse is being properly maintained.
Table 7-2 summarizes the applicable compliance testing methods for
expansion plants reported to Acurex by individual states.
State agencies were unanimous in assuming that a well maintained
baghouse will allow perlite expanding plants to meet existing control
12
regulations. Because baghouses are considered to be adequate control
measures to meet existing regulations and because most perlite expanders
are small, there has been little or no impetus to test these facilities.
Table 7-3 summarizes emission test results obtained from the survey of
state regulatory agencies.
7.2 EMISSIONS TESTS
The emissions tests done by local and state agencies have been
performed according to standard EPA methods and guidelines. No problems
unique to the perlite industry have been encountered. If additional
testing were to be performed for the development of a standard, it is
anticipated that EPA methods can be used without any special requirements
other than the installation of sampling ports and platforms.
7-3
-------
Table 7-2. COMPLIANCE TESTING METHODS FOR PERLITE PLANTS
REPORTED BY INDIVIDUAL STATES12
State
Compliance test method
Arkansas
So. (San Diego)
California
Los Angeles,
California
Colorado
Florida
Georgia
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Mississippi
Missouri
Nevada
New Hampshire
New Jersey
New York
North Carolina
Ohio
Oregon
Pennsylvania
Tennessee
Texas
Utah
Virginia
W. Virginia
Wisconson
Wyomi ng
Unknown
VE
VE/stack test
VE
Unknown
Unknown
Stack sampling and data submitted by
plant
Check efficiency rate of baghouse and
accept data submitted by plant
VE
VE and stack testing
Unknown
Unknown
VE
Unknown
Unknown
Unknown
Stack test
Unknown
Unknown
Stack test
Stack test
Unknown
VE
Unknown
VE
Unknown
Data from source
VE/stack test/ambient monit.
VE/stack test
Unknown
Unknown
Unknown
Unknown
aVisible emissions
7-4
-------
CO
co
Q.
CO
o.
X
u_
co
o
«i
CO
CO
«=c
Z3
co
i
d)
S
fO
c
o
t
4->
S».o
o
o c
0 O)
4-> O
s
to
CO
in
in
»-4
o
|s^
CO
»-H
^
to
in
00
in
CO
*?
in
a
0
§1
fco,
^a t-
^i
$-
u a. u
t/) X
o
CO
o
z
in
o
o -.
.E
a. tu
LU s:
c
o
en
S^«u
g-i^
^ «J C
cno. s-
« X 3
en -
^-g
1_ ra Q)
O Q. O
tn x t-
3 0<«-
tj
CVl
in
CD
§2
"^
4-> <*-
§§
in f-
V)
o to
O f~
7-5
-------
7-6
-------
8. STATE AND LOCAL EMISSIONS REGULATIONS
The state and local emissions regulations that are appropriate for
perlite drying and expansion are those for visible emissions and
participates. Five of the six states in which perlite is dried use a
Process Weight Rate Table to determine an acceptable rate of particulate
emissions. The allowable emission rates for perlite drying processes are
shown in Table 8-1. The typical emission limit is 14.1 kg/h (31 Ib/hr)
for a process flow of 27.2 Mg/h (30 tons/hr). This limit, however, is a
plant-wide emission limit and includes all sources of particulate
emissions at the mill, crushing, screening, fugitive, as well as drying
emissions.
For expanding plants, as shown in Table 8-2, most states (22 of 33)
allow approximately 1.86 kg (4.1 pounds) of emissions per hour for 0.9 Mg
(1 ton) of processed material. Several states, however, require new
plants to meet a 1.63 kg/h (3.6 Ib/hr) limit while allowing existing
plants to meet a 1.86 kg/h (4.1 Ib/hr) rate. These emission limits apply
to the entire plant and include both furnace and fugitive emissions.
Visible emissions standards apply to the perlite expansion industry
in 32 of the 35 affected states (as shown in Tables 8-1 and 8-2).
Ringlemann Number 1 or 20 percent opacity, which is equivalent, is the
maximum allowable discharge for industrial processes in 18 of the
8-1
-------
to
Q.
C/O
3
LU
Vt
S-
O)
-J O
Q t/>
z: (U
«=C T3
si
00
(U
i
4-> vT
f +*
n3 E
CLT-
Or
&.
^
CO
4-> C
.£= o
cn co 4-*
qj *r- o
Mr
CO -C
(U cn
o res
Ou CM
f%^
CM
O
Cj_
o
"io
0
a
g
f
fO
1
cu
o:
Regulation
Z3 C
t o
0
1
IO x"lO
c: ( za
o ccr
N cu
r- ££
et Q- «X
O
CM
(J
CO
S- -^
cn
J3
r CO
o o
o~~"
«3-CO
-C ' «
"cnS
O
CM
CO =
r-H IO
en
o
a-
CO
CO
cu
o
o
Visible Emissions,
Particulates, and Pn
r-
CO
IO IO
r- CO
C
O IO
<«_ CU
"io
CO
O
CM
cn
c
'j3
CO
X
LU
f I
cr
o
|J3
cu
CO
n
rH
cn
0)
o:
Visible Emissions
o
o
IO
i.
o
o
CO
J-
^:
JD
<
U3
CM
^:
cn
^^
ro
T-H
cn
£T
'£
CO
X
LU
CM
C
O
4-"
U
CU
CO
^
r-l
cn
cu
C£
Particulates/Process
Weight Rate Table
o o
«3- CM
"^
.a
^~
o
0
-^
cn
CM
CO
i-H
cn cn
E= C
40 4J
CO CO
X CU X
LLl -3Z LU
CO
CM
ro
< 1
1
CM CO 1^
O O CM
CM CM CO
f-H < 1 t-H
1 1 1
i-H t-H f-H
Visible Emissions
Visible Emissions
j Particulates/Process
| Weight Rate Table
i
jQ
O
-C
lO
o
11
IT
JC
.Q
1
*
f-H
CM
^
cn
^»
cn
cn cn
^ -^
4J +J
t/) V)
X X
UJ UJ
a* r^
cu cu
13 "o
I 1
cu
§
r
1 Visible Emissions
| ' Particulates/Process
\ Process Weight Rate
i
IO
IO
cu
z
o
CM
IT
&
^~
o
i i
CO
Jb
-^.
rH
f-H
cn cn
d C
4-1 4->
CO CO
X X
LU LU
r-H ID
O O
^J- LO
CO
« CO
Scu
0
Visible Emissions
Particulates Pumi
Mica and Perl ite Pro
Equipment
0
o
X
0)
s-
cu
z
i C
i O
-
S- r
J3
4-) (O
QJ -M
o o:
{/I 0>
VI C -*J
cu c -c:
CJ ftf CD
O i *r-
S- Q. OJ
Q. 3
QJ
r i_ V)
to «3 yi
O QJ
r- irt O
£§2
40 .r- CL.
4-1
r- CO Q.
^23
s- cn
j= O) c
5^ =
o 4-> a>
4-> CO 4->
iI 3 en
8-2
-------
oo
O
I I
00
Q.
X
LU
D;
LU
cu
O
u_
oo
ar
o
LU
Q;
o
o
2:
OJ
I
CO
cu
r
JQ
+J co"
'o "£%«
18 £
0.-^
Or-
4-> x:
x: .
cn co c
I- 4J O
3 E
co^Cl.
CO
CU CO -E
o ^ ^^
o 18 cn
s- s- s
Q.
°i
o
(O
CO co cn
i CO E
>, 0.3 2
'c II +j if
0 1 0.3
18
f *"*
g S
o o-
r- CJ
r OO
(8
CJ
O
CM
cn
E
cn
'££
LU
rH
C.
O
1
o
CO
CO
1
rH
cn
CO
tis'
cn
O
CO
CO
e
LU
CO
XI
CO
O
o
18
S-
o
o
CJ
s.
^
^~
cr>
LO
CO
^^
cn
*£
CO
CO
^
cn
c
CO
X
LU
CM
g.
O
o
CO
OO
cn
CO
o:
cn
cn
CO
O r '
i- XI
O_ *8
' h-
co
CO CO
1e 10
CJ [ *
4^ cn
18 CO
0. 3
o
CM
S-
^
r^~
CT*
LO
CO
^^^
cn
^£
CO
ip
rH
cn
E
CO
X
CO
-a
E
18
CU
z
LO
0
CM
1
rH
cn
CO
o
o
* ^3 QJ
O 18 ,;
cn cn
co cu
E +J -t->
r O +J
r 4J O>
cn s- -r-
r- 18 CU
cn
CO CO
CO
CO
cu
cn o CO
E O r
O S- XI
r- a. ro
cn ~-^l
co cn
r- CU *->
UJ r8 f8
CO 3
r O JJ
XI f- -E
r- 4J cn
cn s- T-
i (8 CO
=> a. 3
181
H
crt
s-]
0
CO
0
o o
<3- CM
s-
^
X)
o
rH
^!
x:
CD
^ -
CO
OO
t 1
cn ch
E E
cn cn
X CO X
LU 2E LU
co
CM
CO
rH
CM CO t
O O CM
CM CM CO
rH rH rH
1 1 1
rH rH rH
" cn
cn
co
cn cn u CO
E E Oi
00 S- XI
i -i a.
ia
EL.cn
i cu 18 cn
18 E CU
o 33 co o
r- cn c o
p. re o s-
>) E-r- O.
+J to 4J
10 ^3°
VI -4-> O> Q.
r-^3
..18 cn
S- 3 CO E
-E 0-+J -r-
^^ 18 E
E S- +J CO
cn
CT> 3 tO
. O T3
O OO ii
18 XI U
8-3
-------
o
0)
3
C
r-
-P
O
o
CVJ
CO
4-1 t/)
r- 1 *
c:
'51°
I «-H
W ^^
in CD
o re *^.
01.0,
Q.
cn
o
<2<
s-
0
tl
o
"re
s»
o
c
g
5
rd
*3
cn
CU
Regulation
CU
+*
re
CO
o
ro
cn
in
X
LU
*^
CVJ
o
CM
Visible Emissions
in
o
^
r
» 1
S_ S-
^^ ^^
XI -Q
i F-
O O
CJ *f
* * *
SZ -C
cn O)
^g jSf
s §
» 1 t 4
cn
in
yr 1 1 1
^
re -O
ro ro
O 0
CM CM
Particulates/Process
Weight Rate Table
Particulates/Process
Weight Rate Table
O 0
3- ro
s-
^
J3
i~~
0
t-H
^f
"* "*
.C
cn
^^
CO
"*
cn
c
tn
X
LU
cn cn cn
C -C "= £
in in in
'x X CD X
UJ LU SE LU
--. - .
. . ro
ro ro in CM
ill i
r_j c_3 cj o
^C ^C "-C *-C
Visible Emissions
Visible Emissions
Particulates/Process
Weight Rate Table
Particulates
in in
ro re
CD CD
i. i.
re re
4-> ->->
c: c:
CD CU
E g
(O 4J +J
re c c
r- 0 0
O Z IZ
C
1 1
s-
_c
^.
_o
o
T-(
a-
* '
.c:
cn
^^
00
r-4
cn
s=
-u
in
X
LU
re
*~*
CM
CO
a-
Particulates/Process
Weight Rate Table
re
3
o
t t
0 0
^3- CM
S-
^
J3
'
O
^
-C
cn
^
ID
CO
i 1
cn cn
c c:
tn in
r *r 3
X X CD
LU LU z
a: CQ
o o o
CM LO in
1 1 1
CT> cn cn
i i i
CO CO CO
CM CM CM
Particulates/Process
Weight Rate Table
Visible Emissions
Visible Emissions
t/)
re
c/)
«
0 0
OJ "3"
j= i"
;£ ;£
cn o
in i-i
ro <3-
^ ^
cn cn
ro ID
IO CO
,-H ^H
cn
c:
4J
in
CO X
O O
r-< CM
O 0
in ID
os oi
«:
-------
cu
-P
C
O
CM
I
00
cu
to
4J to
r- +J
ra'i**
Oi^-
t.
en to c
i- +-> O
CO.g4->
to i
to
CO CO JZ
0 4->--»
O co en
ol *~-s-
cn
o
ca
cS
M-
o
"cO
*
O
C
C
o
CO
3
en
CO
C£
Regulation
CO
GO
o
CM
S-
c-
^
O
t 1
;£
JZ
en
IO
co
« i
i .=
4-* 4J
_LO to
LU UJ
CO cn
t-* T-t
Visible Emissions
Particulates/Process
Weight Rate Table
to
_ +->
to to
X X
CO CO
-a T3
CO co
2: z
CO CM
O> O
ID IO
Visible Emissions
Particulates/Process
Weight Rate Table
CO
c
r
CO
O
CM
i_
-Q
i '
f
t <
a-
f~
en
^
CO
CO
f 1
c c c: c: c c
** +^ +j Tj o3 oj
w) to to wi to to
XX X X X X
LU UJ LU lit ttl til
0 0
8 8
CO CO CM CO CM PO
O O O O O O
CM CM LO LO ^1" ^i-
O O O O O O
^*
CO CO CO CO CO CO
2* 2 52 <3 CD to
1li-t t t trH i 1 i 1
to
LO
CO
to u co to LO
C O I C CZ
o s-ja o o
- Q. CO -r- .1-
LO *| to to
LO to LO LO LO to
r- CU CO -i- CO -r- m
E 4J *> E 4-> E 4J
LU CO CO UJ CO UJ CO
CO 3 CO 3 CO *3
r u 4-> r CJ , cj
j2( .t JZ _Q «t J3 'r
r- 4J en .^- +J .r- 4J
LO S_ -r LO i. LO t_
f- CO CO -r- CO - CO
> 0.3 > Q. > Q.
CO C
4-> CO
a. "o
0 0.
i S
CO -t-J
E: co
c z
_ q co
T3 4-> S-
c cn o
r- -^ -P
>> jz co -^ cn
i-H C3 O
cn cn cn
c c c
^ »r- «i
to to at
x co 'x 'x
LU sy ! I i, i
O CD O
=> =T =5" - =5"
CM CM CM (O
O O O O
LO LO LO
LO LO LO
CO CO CU
O Q) CJ CO CJ CO LO
2^~ O ^~ O «~ 4-* 4-> 4-* 4J 4J £
CO CO CO CO CO CO 1 1 1
a; o; r a:
33 3 O *-» .
r- .C -i _C JZ i^
-M O) -fj O) 4^ O) *r
t- " S- '« S- *i t/1
03
W O)
4-> r5
OJ i
w as
ji .^
O 40
to *C
t/> O
«s
o
CXJ
S-
J=
.Q
n
0
f-4
^
JZ
"^
J^
S
i 4
cn cn
c c
r -r-
LO LO
X X
LU LU
ir\ IQ
ro ro
OO CO
C£ 0£
Visible Emissions
Particulates/Process
Weight Rate Table
c
CO
cn
u
IE
3-5
-------
T3
(LI
O
O
evj
CO
a>
4J c/r
'a i->e
id E
O.T-
s.
4-> J=
01 cn c
I-+J 0
CU * 4->
% E
( t l
cn i - -*
cn
CU CUf
cj 4-»--.
o id 01 ,
ct ^
cn
o
e,
c.
C|_
(_
o
Ol
c
4^
in
X
LU
CO
c=
o
r-
U
CU
cn
c:
0
T
cn
cn
I
CU
r-
cn
°S.
o.
cn
4J £
id id LU
CJ +J .
4J "oi -i-
5="- "
fO O «r-
a. 3 =>
S-
0
cn
cn
s.
**^
_
3-
CO
.c:
Ol
CO
"*
Ol Ol
c c
4J 4J
cn cn
X X
LU LU
*3* r^^
cu cu
CJ U
r »
S- S-
** *
cu
id
1
cn
cn cu
cu 4-1
cn u id
c Oce
0 S.
r- Q--M
cn *^-c
cn cn 01
'i 5'5
LU id3
cu 3 cn
i cj cn
^3 .r- CU
r- 4J O
1/1 fc P
i id &.
=> O-O.
id
a
id
>
cu
z
o
CM
Ol
£
cn
X
cu
a
c:
id
c?
z:
i i
i i
i i
CJ
(U
1/3
>
r~.
i i
B
Ol
cu
04
cn
c
0
cn
cn
I
cu
!a
cn
cu
S-
s:
cn
a
^n
=
S- S-
^ r
o in
i-H O
<3- in
-C -C
"cn ^i
-^
co cn
CO CM
i-I OJ
Ol
c
4J
cn
CU X
Z LU
» 4 I-H
0 0
c/> c/l
*\ n
r-^ i
r-> i-i
Ol Ol
cu cu
a: of
cn c/i
cn cn
cu cu
CJ CU CJ CU
O i O r
a. id a. id
t t
cn cn
cu cu cu cu
id id id id
i of i on
5^ 34^
(- J= -r- JZ
4J Ol 4J Ol
Id CU Id CU
0.3 0.3
o
S.
^~
o
~
O
OJ
Ol
§
Ol
cn
c
43
cn
X
cu
o
c:
H
z
CD
i.
cu
§
JC
CJ
C/l
CU
_Q
id
1
cn -o id
0 S ^
i- 4->
cn cn 01
i CU *-
E 4J 0)
LU id 3:
cu 3 in
i cj cn
43 - CU
cn s_ o
r Id &~
> O- Q.
>J
CU
in
S-
cu
z
Q
S-
*-»
^2
rH
Ol
CO
J=
Ol
co
-<
Ol
c
J3
c/l
X
CU
-a
c:
id
1
CM
r- 1
CM
C/)
cn
cu
u
g
o.
cn -o cu
i §S
cn «|
cn cn
r- CU CU
E 4-> *"*
LU id id
r Oi
CU 3
i CJ 4->
.a-f .c
r- 4J Ol
cn s_ !-
r- Id CU
5-0.3
S-
o
z
8-6
-------
CU
O
O
CM
CO
CU
.a
re
4-> VI
r 1 %
O *r ^^
re E
0."-
Oi
S-
4-> JZ
JZ VI ^.
1- !- O
CU E 4->
r i-H.
VI
VI CU
CU 4-> JZ
O ro ..
O i- CO
S- 5£
o.
en
o
(0,
S-
o
o
"TO
s»
o
c
E
O
r"
4->
3
CO
CU
C£.
o
1 * 1 *
to t/1 t/1
X XX
UJ UJ UJ
t-H t 1
r-t in CM
in I-H in
o in o
o o o
S- CU
t- 4->
<0 01
*-^CO t/1
CM CU CU
*S- O CU CO
O CO Or C
co co s- ja o
«^ Q_ IO !
CO 4-> t/1 t/1
CU JZ CU CU -r-
rO T t/1 ro (O UJ
i cu cu Q;
3 3 CO 3 CU
O 1 VI O 4-> t
i- 4-> cu - jz ja
4-1 -C O 4-> CO T-
i. CO O S- ! t/1
IO
c;
"o
i.
re
CJ
JZ
4->
i.
o
z
o
CM
S-
v^
ja
--» '
o
t-1
C"
^
CO
co
t-H
CO CO
c c
4J ["*
t/1 t/1
X X
UJ UJ
C3 t-l
1 1
1 1
in in
r-«. r^
CO
CO
in u cu
C Or
r- 0. <0
to ^1
t/1 VI
r- CU CU
E 4-1 4-1
UJ ro ro
CU "3
r O 4->
r- 4-> Ol
VI i- »i
r- ro CU
=> Q-3
O
r
0
O
S-
JZ
J3
r'~
o
a-
e^
CO
co
CO
t-l
01 CO
c c
4J 4J
CO VI
X X
UJ' UJ
in in
3 °
t-H r-H
Ul
to
CU
Ul (J CU
= Or-
O i. J3
i Q_ rO
IO -x^l
t/1 IO
i- 0) CU
E 4-> 4->
UJ
ja !- jz
r- 4-> CO
10 s- T-
r- rO Q)
=» Q.3:
11
1
O
CM
*"**
.C
1f^
I
--'
JZ
CO
01
CO CO
c c
*|"t *ri
tn vi
X X
UJ UJ
CO t-H
ro ro
CM CM
l/l
CO
cu
U CU VI
Or- C
4- J3 O
0- ro -r-
tn ui
CU CU -
rO ro UJ
O 4-> t
r- JZ J3
+J CO -r-
S-T- VI
(O CU >
Q-3 >
10
1
C .
c
cu
a.
o
CM
a1
c
*!"C
Ul
X
UJ
tn
i
CO
o
o
CM
10
C
o
t/1
Ul
ii
cu
JD
CO
CU
CU
VI
cu
c
c
cu
. . .
JZ JZ
-Q -Q
r
O Ol
I-H in
^- co
JZ JZ
CO CO
co ro
CO 10
t-H t-l
CO
c
'ft
to
x ai
UJ Z
i i
ro ro
i i
O O
O 0
CM CM
t/1 t/1
t/l to
cu cu
(J CU U CU
S-J2 2 jQ
Q- ro a. ro
CO CO
cu cu cu cu
4-> 4-> 4-> 4->
!* ««
CJ +J O 4-1
i- JZ t- JZ
4-> CO 4-> CO
J- T- i. -i-
Q-3 Q-3
O
ro
(
JZ
r-i
ro
in
^
CO
^f
CM
CO CO
C C
4J T^
t/i to
X X
UJ UJ
0 O
O (J
a> cu
co ro coin
o o
* MB
O 0
COi 1 OVH
cu ro euro
r>* t 1 Qi t-H
t/1
VI
CU
10 O CU
C Or
0 S- J3
to i/i
r- CU CU
e 4-> 4->
CU '3°*
^ U [ *
10 S--r-
r- ro CU
=> Q-3
t/l
1
8-7
-------
a
a>
-o
o
§
o
CM
CO
a>
if*
j_
j= -v.
cn tn c
i- -4-J O
03 *r~ [ *
in r v<*
»
CU CU .C
U 4_3 -»^
o re cn
o_
cn
0
s-
0
T3
re
o
r
re
3
cn
(U
Regulation
1
re
CO
o
cn
c
+J
10
m
cu
cn
o c
re 4^
tn
si x
3E LU
CM CO
CM CM
U CJ
O) CU
CO CO
t « HH
re re
o. in-
visible Emissions
Particulates
o
4->
CU
I
fO
JJ
re
c
-C O
J %
r>
0
CM
T T
_Q -Q
o **
t 1 f 1
^" ^^
^^ *- ^
.C J=
"oi "oi
^ jj^
CO CO
CO CO
v 1 t-H
01 cn o>
c c ^c:
*r^ 4j | .
tn tn t/>
*X X X
LU LU LU
<£. CO
CM O O
Cxi «3- ^*
tn tn
Visible Emissions
Pajrticulates/Procesi
Weight Rate Table
Particulates/Proces:
Weight Rate Table
cn
re o; to
r- cy i
c u I-H r-.
cr /v Q£
^ 1^ cj 0
> < < «
O
CM
en
c:
j *
cn
x
LU
CM
C
O
u
0)
cn
^
cn
cu
Visible Emissions
re
c
r
cr
i-
r-
in
CU
3
jr
.Q
3-
CM
^
cn
r-l
cn
-4->
to
X
LU
CO
|
'£
u
C/5
^
cn
cu
of
Particulates/Proces
Weight Rate Table
o
CM
£
J3
Cf>
LO
CO
* '
cn
^^
CO
to
f 4
cn cn
c c
4-* -4->
tn tn
X X
LU LU
ro to
14 T-i
2 2
LO UO
f 4 t 4
cn
Parti cul ates/Proces
Weight Rate Table
Visible Emissions
c
tn
o
u
in
r
3
0 O
«3- CM
t- S-
^3 JQ
o cn
i-4 LO
* CO
^^ *-^
cn cn
^£ 3£
CO CO
oo to
f 4 t 4
cn
4-1
»tn
x cu
LU Z
«3- *
t 4 t 4
1 1
U CJ
cu cu
in in
in tn
cu cu
CJ CJ
o o
i. i.
Visible Emissions,
Parti culates, and P
Weight Rate Table
Visible Emissions,
Particulates, and P
Weight Rate Table
CT)
§
>)
re
O)
c
4-> U-
CL
S S1'
O) >,
re .0
-
LU S-
J= O
8-8
-------
35 states, but 11 states allow a greater discharge level of Number 2 (or
40 percent opacity). Most state regulations provide for exceptions to the
limitations for short periods of time during startup or malfunction.
Because the perlite expansion industry is relatively small in most
states, stack tests to determine compliance are not generally used. A
visible emissions test of the source is the most common method of
compliance determination employed by state and local agencies.
8-9
-------
8-10
-------
REFERENCES
1.
2.
3.
4.
8.
9.
10.
11.
12.
13.
Meisinger, A. C. Perlite-Mineral Commodity Profile, August 1979.
U.S. Department of Interior, Bureau of Mines. Washington, D.C.
Meisinger, A. C. Perlite in 1978. Mineral Industry Surveys.
Division of Nonmetallic Minerals, U.S. Department of the Interior,
Bureau of Mines. Washington, D.C. August 24, 1979.
Telephone survey of crude and expanded perlite producers. Acurex
Corporation. Mountain View, California. November 1979.
Augenstein, David M. Air Pollutant Control Technique for Phosphate
Rock Processing Industry. U.S. Environmental Protection Agency.
Research Triangle Park, North Carolina. Publication No.
EPA-450/3-78-030. June 1978.
Compilation of Air Pollution Emission Factors Third Edition.
U.S. Environmental Protection Agency. Research Triangle Park, North
Carolina. Publication No. AP-42. August 1977.
Technical Guidance for Control of Industrial Process Fugitive
Particulate Emissions. U.S. Environmental Protection Agency.
Research Triangle Park, North Carolina. Publication No.
EPA-450/3-77-010. March 1977.
Letter and attachments from Duran, J. D., State of New Mexico,
Environmental Improvement Division to K. Sexton, Acurex Corporation,
Mountain View, California. November 9, 1979.
Telecon. Modetz, H., Acurex Corporation with Murdock, The Perlite
Corporation, December 10, 1979.
Telecon. Modetz, H., Acurex Corporation with G. A. Wavering,
Silbrico Corporation, December 10, 1979.
Monarch, M. R., et al. Priorities for New Source Performance
Standards Under the Clean Air Act Amendments of 1977. Environmental
Protection Agency. Research Triangle Park, North Carolina.
Publication No. EPA-450/3-78-019. April 1978.
Telecon. Modetz, H., Acurex Corporation with James Eddinger, U.S.
Environmental Protection Agency, December 6, 1979.
Telephone survey of state and local air pollution control agencies.
Acurex Corporation. Mountain View, California. October-November
1979.
Meisinger, A. C. Mineral Commodity Summaries 1979. An Up-to-Date
Summary of 90 Mineral Commodities. U.S. Department of the Interior,
Bureau of Mines.
R-l
-------
14. Personal communication. K. Sexton, Acurex Corporation with R.
Milanese, The Perlite Institute.
15. Telecon. Sexton, K., Acurex Corporation with A. C. Meisinger, U.S.
Bureau of Mines, October 18, 1979.
16. Murphy, 6. State Implementation Plan Audit Inspection of Silbrico
Corporation, No Agua, New Mexico. Acurex Corporation. Mountain
View, California. Report TR-79-174-32. August 1979.
17. Site Visit to Johns-Manville Mill at No Agua, New Mexico.
18. Sexton, K. and H. Modetz. Trip report of November 15, 1979 visit to
Silbrico Corporation, No Agua, New Mexico. January 17, 1980.
19. Cooper, W. C. Radiographic Survey of Perlite Worker. Journal of
Occupational Medicine. JJ:304-307. May 1975.
20 Cooper, W. C. Pulmonary Function in Perlite Workers. Journal of
Occupational Medicine. 18:723-729. November 1976.
21. Sexton, K. and H. Modetz. Trip Report of November 16, 1979 visit to
Johns-Manville Corporation, Antonito, Colorado. January 17, 1980.
22. Modetz, H. and K. Sexton. Trip Report of November 14, 1979 visit to
Persolite Products, Florence, Colorado. January 17, 1980.
23. Habegger, L. J., et al. Priorities and Procedures for Development of
Standards of Performance for New Stationary Sources of Atmospheric
Emissions. Environmental Protection Agency. Research Triangle Park,
North Carolina. Publication No. EPA-450/3-76-020. May 1976.
R-2
-------
APPENDIX A
To estimate the impact of an NSPS, the methodology referred to as
23
"Model IV" was utilized. The fundamental prioritization parameter
(T -T) was calculated.
Definitions:
T = total emissions under regulations existing in the baseline year
T = total emissions under an NSPS in the baseline year
(Ts-Tn) = K (B+C)(Es-En)
(1)
where
and
K = Fractional utilization of existing industry capacity
B = Production capacity from construction and modification to
replace obsolete facilities
C = Production capacity from construction and modification to
increase output above baseline year capacity
E = Allowable emissions under existing regulations
E_ = Allowable emissions under an NSPS
B = A i
C = A 1 P,
(2)
(3)
A-l
-------
where
= Baseline year production capacity
= Construction and modification rate to replace obsolete
facilities
= Construction and modification rate to increase industry
capacity
= Elapsed time in years
Table A-l. PRIORITIZATION PARAMETERS
Dryers
K 0.82
A 854,000 Mg
(939,000 tons)
B 173,000 Mg
(191,000 tons)
C 273,000 Mg
(261,000 tons)
EC 0.185 kg/Mg
(0.37 Ib/tons)
En 0.045 kg/Mg
(0.09 Ib/tons)
PB 2.9%
Pc 4.0%
i 7 years
Expanding
furnaces
0.82
503,000 Mg
(553,000 tons)
102,000 Mg
(112,000 tons)
208,000 Mg
(229,000 tons)
0.21 kg/Mg
(0.42 Ib/tons)
0.05 kg/Mg
(0.10 Ib/tons)
2.9%
5.9%
7 years
Fugitive
emissions
0.82
503,000 Mg
(553,000 tons)
102,000 Mg
(112,000 tons)
208,000 Mg
(229,000 tons)
0.02 kg/Mg
(0.04 Ib/tons)
0.005 kg/Mg
(0.01 Ib/tons)
2.9%
5.9%
7 years
A-2
-------
Substituting the appropriate values for 1985 into Equation 1:
Dryers:
Expanding
Furnaces:
Fugitive:
VTn = (°-82)(173>000 + 237,000)(0.185 - 0.045) = 47.1 Mg
Ts-Tn = (0.82)(102,000 + 208,000)(0.21 - 0.05) = 40.7 Mg
.82 (102,000 + 208,000)(0.02 - 0.005) = 3.8 Mg
91.6 Mg
Ts"Tn =
Therefore, 96.1 Mg (100 tons) is the calculated reduction in nationwide
particulate emissions from the perlite source category in 1985 if an NSPS
is promulgated.
While not part of the Model IV methodology, the impact (T -T )
for a typical affected facility -- i.e., a dryer or furnace -- can be
calculated by mutiplying the typical size of the affected facility by the
difference in emission rates or
- S
(4)
where S = typical size
The following results were obtained for a 27.2 Mg/hr (30 tons/hr)
dryer and 0.9 Mg/hr (1 ton/hr) expanding furnace operated 4160 hours per
year (16 hours/day, 5 days/week, 52 weeks/year).
« Dryer 15.9 Mg/yr (17.5 tons/yr)
0 Expanding furnace 0.6 Mg/yr (0.7 tons/yr)
t Fugitive emissions 0.1 Mg/yr ( 0.1 tons/yr)
A-3
-------
A-4
-------
APPENDIX B
PERSONS WITH EXPERTISE IN THE PERLITE INDUSTRY IDENTIFIED
. DURING SOURCE CATEGORY SURVEY
Name
Title
Affiliation
Telephone
Arthur C. Meisinger
Robert Milanese
Merlin D. Ambruster
R. J. McCarthy
Jim Siegfried
Howard J. Steiner
G. A. Wavering
Industrial
Economist
Managing
Director
Manager/
Environ-
mental &
Safety
President
Manager of
Commun ity
Environmental
Standards
Development
Plant
Manager
Chief
Engineer
Division of Nonmetallic
Minerals
U.S. Bureau of Mines
2401 E Street N.W.
Washington, DC 20241
The Per lite Institute, Inc.
45 West 45th Street
New York, NY 10036
Dicalite Division
Grefco, Inc.
P.O. Box 903
Lompoc, CA 93436
Redco, Inc.
11831 Vose Street
North Hollywood, CA
91605
Johns-Manville Sales Corp.
Ken-Caryl Ranch
Denver, CO 80217
Perso lite Products, Inc.
Florence, CO 81226
Silbrico Corp.
6300 River Road
Hodgkins, IL 60525
(202)
634-1203
(212)
265-2145
(805)
736-4581
(213)
875-0440
(303)
979-1000
(303)
572-3222
(312)
735-3322
B-l
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-450/3-80-005
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Source Category Survey:
Perlite Industry
5. REPORT DATE
May, 1980
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
Acurex Corporation
Route 1, Box 423
Morrisville, NC 27560
11. CONTRACT/GRANT NO.
68-02-3064
12. SPONSORING AGENCY NAME AND ADDRESS
DAA for Air Quality Planning and Standards
Office of Air, Noise, and Radiation
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/200/04
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Background information is presented on the perlite industry for the
purpose of determining the need for a new source performance standard
(NSPS). The industry is surveyed and categorized by plant, process, and
other factors. Information is -presented on processes, emissions and air
pollution control equipment. State and local regulations are summarized.
The impact of a' potential NSPS on particulate emissions is calculated.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Air pollution'
Pollution control
Stnadards of performance
Perlite plants
Particulate matter
Air Pollution Control
13 B
18. DISTRIBUTION STATEMENT
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
67
Unlimited
20. SECURITY CLASS (Thispage)
Unclassifed
22. PRICE
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION is OBSOLETE
-------
-------
-------