United States Officeof Air Oualtty KPA—450/4—90—007C
Environmental Ptarmlng and Standards JUNE 19B0
Protection Reeeerch Triangle Pmrtt, NC 27711
Agency
AIR
E PA USER'S GUIDE FOR THE
URBAN AIRSHED MODEL
Volume EI: User's Manual for the
Diagnostic Wind Model
-------
TECHNICAL REPORT DATA
. (Please read Instructions on the reverse before eompietitig)
1. REPORT NO. 2.
EPA-450/4-90-007C
3. RECIPIENT'S ACCESSION NO.
^WlAWSMW FOR THE URBAN AIRSHED M00EL
Volume III: Users Manual for Diagnostic Wind Model
S. REPORT OATE
June 1990
6. PERFORMING ORGANIZATION COOE
7.AUTHORSharon G Dougias> Robert C. Kessler, and
Ed. L. Carr
8. PERFORMING ORGANIZATION REPORT NO.
'• "ERF0RM,Ty^^,^N1^riW,Am6.ss
101 Lucas Valley Road
San Rafael, CA 94903
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
'a.wonsorijjo{ft5t(jnlWi£f,0Pf Stect ion Agency
Office of Air Quality Planning and Standards
Research Triangle Park, N. C. 277711
13. TYPE OF REPORT ANO PERIOO COVEREO
14. SPONSORING AGENCY COOE >
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This document serves as a manual for the Diagnostic Wind Model which
produces three-dimensional wind speed and direction components for the Urban
Airshed Model.
17. KEY WORDS AND DOCUMENT ANALYSIS
*. DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
C. COSATI FWd/Group
Ozone
Urban Airshed Model
Photochemistry
Diagnostic Hind Model
18. DISTRIBUTION STATEMENT
19. SECURITY CLASS (This Report)
21. NO. OF PAGES
20. SECURITY CLASS (This page)
22. PRICE
CPA Form 2220-1 (R«v. 4-77) previous coition is obsolete
*
-------
EPA-450/4-90—007C
USER'S GUIDE FOR THE
URBAN AIRSHED MODEL
Volume IE: User's Manual for the
Diagnostic Wind Model
By
Sharon G. Douglas
Robert C. Kessler
Ed L. Carr
Systems Applications, Inc.
101 Lucas Valley Road
San Rafael, CA 94903
EPA Project Officer:
Richard D. Scheffe
OFFICE OF AIR QUALITY PLANNING AND STANDARDS
U. S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NC 27711
JUNE 1990
4?
-------
Notice
This material has been funded wholly or in part by the United States Environmental
Protection Agency under contracts 68-02-4352 and 68D90066 to Systems Applica-
tions, Inc. It has been subject to the agency's review, and it has been approved for
publication as an EPA document. Mention of trade names or commercial products
does not constitute endorsement or recommendation for use.
9 0 0 0 3
14
i
-------
Intentionally Blank Page
if
-------
Preface
This user*s guide for the Urban Airshed Model (UAM) is divided into five volumes as
follows:
Volume I—User's Manual for UAM(CB-IV)
Volume II— User's Manual for the UAM(CB-IV) Modeling System (Preprocessors)
Volume III—User's Manual for the Diagnostic Wind Model
Volume IV—User's Manual for the Emissions Preprocessor System
Volume V—Description and Operation of the ROM-UAM Interface Program
System
Volume I provides historical background on the model and describes in general the
scientific basis for the model. It describes the structure of the required unformatted
(binary) files that are used directly as input to UAM. This volume also presents the
formats of the output files and information on how to run an actual UAM
simulation. For those user's that already possess a UAM modeling data base or have
prepared inputs without the use of the standard UAM preprocessors, this volume
should serve as a self-sufficient guide to running the model.
Volume II describes the file formats and software for each of the standard UAM
preprocessors that are part of the UAM modeling system. The preprocessor input
files are ASCII files that are generated from raw input data (meteorological, air
quality, emissions). The preprocessor input files are then read by individual
preprocessor programs to create the unformatted (binary) files that are read directly
by the UAM. Included in this volume is an example problem that illustrates how
inputs were created from measurement data for an application of the UAM in
Atlanta, The preprocessers available for generating wind fields and emission
inventories for the UAM are described separately in Volumes III and IV, respectively.
Volume III is the user's manual for the Diagnostic Wind Model (DWM). This model is
a stand-alone interpolative wind model that uses surface- and upper-level wind
observations at selected sites within the modeling domain of interest to provide
hourly, gridded, three-dimensional estimates of winds using objective techniques. It
provides one means of formulating wind field inputs to the UAM.
Volume IV describes in detail the Emission Preprocessor System (EPS). This software
package is used to process anthropogenic area and point source emissions for UAM
from countywide average total hydrocarbon, NOx, and carbon monoxide emissions
available from national emission inventories, such as the National Emissions Data
System or the National Acid Precipitation Assessment Program. An appendix to this
volume describes the Biogenic Emissions Inventory System (BEIS), which can be used
iii
90008 m
-------
to generate gridded, speciated biogenic emissions. Software for merging the
anthropogenic area, mobile, and biogenic emission files into UAM input format is
also described in this volume.
Volume V describes the ROM-UAM interface program system, a softare package that
can be used to generate UAM input files from inputs and outputs provided by the
EPA Regional Oxidant Model (ROM).
90008 1*
iv
-------
Acknowledgements
Since its initial conception in the early 1970s, many individuals have contributed to
the development of the Urban Airshed Model. This document reflects the latest
methodology and software development and provides a guide for new user's of the
model. Based on the past efforts of the orginal developers of the UAM and the
authors of the original 1978 user's manual, the first four volumes were written by the
following individuals from Systems Applications, Inc.:
Volume I Ralph E. Morris, Thomas C. Myers, Jay L. Haney
Ralph E. Morris, Thomas C. Myers, Edward L. Carr, Marianne C.
Causley, Sharon G. Douglas, Jay L. Haney
Sharon G. Douglas, Robert C. Kessler, Edward I— Carr
Marianne C. Causley, Julie L. Fieber, Michele Jimenez, LuAnn
Gardner
Volume V, containing the ROM-UAM Interface Program Guide, as well as Appendix D
in Volume IV (Biogenics Emission Inventory System) were written by the following
individuals of Computer Sciences Corporation and EPA's Atmospheric Science
Modeling Division:
Volume V Ruen-Tai Tang, Susan C. Gerry, Joseph S. Newsom, Allan R. Van
Meter, and Richard A. Wayland (CSC); James M. Godowitch and
Ken Schere (EPA)
Volume II
Volume III
Volume IV
The U.S. Environmental Protection Agency provided support for the preparation of
this document. We also acknowledge the support of the South Coast Air Quality
Management District for the initial documentation of the UAM (CB-IV). Richard D.
Scheffe, Ned Meyer, Dennis Doll, and Ellen Baldridge of the U.S. EPA's Office of Air
Quality Planning and Standards contributed to this document with their insightful
technical reviews. Henry Hogo and Tom Chico of the South Coast Air Quality
Management District also reviewed the documents and provided their comments.
Others at Systems Applications that have contributed to the continued development
of the UAM in the last few years include Dr. Gary Whitten and Mr. Gary Moore, The
technical editing of this manual was performed by Mr. Howard Beckman. We would
like to acknowledge him for his excellent work in reviewing, editing, and clarifying
the text of this manual for easier readability. Finally, we would like to acknowledge
Rita Beacock, Jo Ann Moennighoff, and Cristi-Ann Griggs for their work in producing
the document.
v
90008 1*
-------
Intentionally Blank Page
v'Y
-------
Contents
Preface
Acknowledgements
1 INTRODUCTION
2 THE DIAGNOSTIC WIND MODEL
2.1 Vertical Coordinates
2.2 Divergence-Minimization Procedure
2.3 Step 1 Formulation
2.3. L Kinematic Effects of Terrain
2*3.2 Slope Flows
2.3.3 Blocking Effects
2.4 Step 2 Formulation
2.4.1 Interpolation Scheme
2.4.2 Smoothing of the Interpolated Wind Field
2.4.3 Computation of the Vertical Velocity
2.4.4 Minimization of the Three-Dimensional Divergence
3 PREPROCESSING THE SURFACE AND UPPER-AIR DATA
3.1 Surface Data
3.2 Upper-Air Data
4 GENERATING WIND FIELDS WITH THE WIND MODEL
4.L Units, Coordinates and Time Conventions
4.2 Inputs
4.2.1 Simulation-Specific Data
4.2.2 Hourly Specific Data
4.3 File Structure
4.4 Data Specified within the Model
4.3 Output
4.6 Conversion of DWM Files to UAM Input Format
References
iii
v
1
3
3
3
4
4
5
6
7
7
S
S
9
11
11
IS
27
27
27
27
38
39
39
39
39
53
90008 Ik
vii
-------
Intentionally Blank Page
Vil»
-------
Tables
3-1 PRESFC input data 12
3-2 File structure for PRESFC 1*
3-3 PREUPR input data 19
3-4 File structure for PREUPR 21
4-1 Diagnostic Wind Model internal units 28
4-2 Diagnostic Wind Model input parameter control file 30
4-3 Input and output files for the Diagnostic Wind Model 40
4-4 Data specified within the DWM 41
Figures
1-1 Flow diagram for the Diagnostic Wind Model 2
4-1 Flow diagram for using the Diagnostic Wind Model 29
ix
90008
-------
Intentionally Blank Pag
X
-------
Exhibits
3-1 Sample input file for the surface data preprocessor (PRESFC) 13
3-2 Output from PRESFC used as surface data input file
for the Diagnostic Wind Model 15
3-3 Sample input file for the upper-air data preprocessor (PREUPR) 20
3-4 Output from PREUPR used as the upper-air data file
for the Diagnostic Wind Model 23
4-1 Parameter input file for the Diagnostic Wind Model 35
4-2 Sample printed output file from the Diagnostic Wind Model 42
xi
90008 IW
-------
Intentionally Blank Page
-------
1 INTRODUCTION
The Diagnostic Wind Model (DWM) is used to generate gridded fields of the hori-
zontal wind components, u and v, at several user-specified vertical levels at a
specified time. The model incorporates local surface and upper-air wind
observations, where available, while providing some information on terrain-induced
air flows in regions where local observations are absent.
The DWM requires gridded terrain heights, domain-mean wind data, and domain-scale
stability information (dT/dz). The model will also accept surface and upper-air wind
observations.
The generation of the wind field is a two-step procedure. Step 1 is based on the
approach taken in the Systems Applications, Inc. Complex-Terrain Wind Model, as
described by Liu and Yocke (1980). A domain-mean wind is adjusted for the kine-
matic effects of terrain (lifting and acceleration of the airflow over terrain
obstacles), thermodynamically generated slope flows, and blocking effects. Step 1
produces a spatially varying gridded field of u and v for each vertical layer within
the modeling domain.
Step 2 involves the addition of observational information to the Step 1 (u,v) field. An
objective analysis scheme is used to produce a new gridded (u,v) field. The scheme is
designed so that the observations are used to define the wind field within a user-
specified radius of influence while the step 1 (u,v) field is used in subregions in which
observations are unavailable. If local observations are unavailable, step 2 is omitted;
step 1 alone will produce a gridded wind field grossly representative of the mesoscale
perturbation of a mean flow by the aforementioned terrain effects. Conversely, if
observations are available throughout the domain, step 2 alone will produce a gridded
mass-consistent wind field reflecting the information contained in the observations.
Figure 1-1 shows the information flow diagram for the Diagnostic Wind Model.
The Diagnostic Wind Model is described in Section 2. The surface and upper-air data
preprocessors are described in Section 3. The generation of wind fields using the
wind model is outlined in Section 4. The input parameters are described and some
guidelines for the specification of these parameters are offered.
90006 is
1
-------
Diagnostic Wind Model
L
Domain-mean
wind
Surface and
upper-air daia
Step 1
Parameterization of
terrain effects
(kinematic effects,
blocking, slope flows)
Step 2
i
Objective analysis
(observational information
is added to the
Terrain-adjusted flow field
Minimization of
the divergence
Z Hourly, gridded j
wind fields /
FIGURE 1-1. Flow diagram for the Diagnostic Wind Model.
EEE9Q008
2
-------
2 THE DIAGNOSTIC WIND MODEL
2.1 VERTICAL COORDINATES
The Diagnostic Wind Model is formulated in terrain-parallel vertical coordinates.
This allows computation of the wind vectors at constant heights above ground, and
also allows variable vertical resolution. The horizontal position variables (x,y) and
velocity variables (u,v) are invariant upon transformation from Cartesian to terrain-
parallel coordinates. If h denotes terrain height, z denotes the Cartesian vertical
position variable, and Z represents the terrain-parallel position variable, then
Z = z - h(x,y). (2-1)
If w denotes Cartesian vertical velocity, and W denotes terrain-parallel vertical
velocity,
W = w -'u dh/dx - v dh/dy. (2-2)
In terrain-parallel coordinates, the incompressible conservation-of-mass equation
becomes
du/dx * dv/dy * dW/dZ = 0. (2-3)
2.2 DIVERGENCE-MINIMIZATION PROCEDURE
The divergence minimization procedure exercised in both step 1 and step 2 is nearly
identical to the procedure described by Goodin et al. (1980). The inputs to the pro-
cedure are a three-dimensional (u,v) field and a three-dimensional W field; the latter
is defined at points vertically staggered with the (u,v) levels. Assuming the W field
is invariant, the divergence-minimization procedure performs an iterative adjust-
ment of the (u,v) field until the centered-difference approximation of the inequality,
du/dx * dv/dy + dW/dZ < £ , (2-4)
is satisfied at all grid points, t is the maximum allowable three-dimensional diver-
gence specified by the user.
90000 1 S
3
-------
The iterative adjustment is carried out as follows. At each grid point (i,j,k) the
three-dimensional divergence D j, k) = u(i - 1, j, k) - uT
(2-6)
vKU j + 1, k) = v
-------
where N is the Brunt-Vaisala frequency and |V| is the magnitude of the mean wind.
N is defined as [(g/9)(d9/dz) ] where 6 is potential temperature. This formula
is only used under stable conditions where de/dz > 0.
In the current model the Cartesian w of Equation 2-8 is transformed to a terrain-
parallel W as in Equation 2-2 using the domain-mean wind. Thus dW/dZ = dw/dz.
Using the domain-mean wind as a first-guess gridded (u,v) field, the divergence-
minimization scheme is exercised to produce a gridded wind field, (ujv)^, that has
been adjusted for the kinematic effects of terrain.
2.3.2 Slope Flows
At each grid point in regions of complex terrain, the DWM computes a slope flow
vector (u,v)s. This vector is added to the gridded wind field (u,v)^ to obtain a new
field (utV^g.
The slope flow is calculated as follows. Let hx and hy denote ah/dx and
ah/dy, respectively. We define the slope angle, a,
The drainage direction s^, is computed as in Allwine and Whiteman (1985). An angle,
S1, is defined as
. -1ru2 .2 i
a = tan [h ~ h ]a
j
(2-10)
0' = tan_1(hy/hx) .
(2-11)
A second angle, 8", is defined as follows:
Condition h = 0
hx<°
hy = 0
hy<0
hy > 0
270
90
*
B" +180 B1 + 360
8' + 180 6 + 360
B1 +180 s1
* Terrain is flat, no drainage direction.
The final definition of 8^ (in degrees) is
Bd = 90 - b", 0 < 8" < 90
8d = 450 - 6", 90 < 8" < 360
(2-12)
90006 15
5
-------
The slope flow vector is oriented in the drainage direction. The speed of the slope
flow component is determined by the details of the parameterization; a positive
speed in this discussion denotes upslope flow.
Analytic solutions for downslope flows under highly idealized conditions have been
obtained by Prandtl (19 Frc, the flow is not adjusted. Thus a new gridded wind field (u,v)j is
obtained that reflects both the kinematic effects of terrain and thermodynamic
blocking effects.
90008 15
6
-------
We assume that
Ah(x,y,Z) = hmax(x,y) - z(x,y,Z) (2-15)
where Ah is the elevation (above MSL or some reference height) of the "obstacle
top"; z is the elevation of the grid point? and hmax(x,y) is the largest value of the
terrain height, h, within a specified radius of the given grid point. This radius should
be determined by the dominant horizontal scale of the terrain.
2A STEP 2 FORMULATION
~
Step 2 of the DWM combines the gridded wind field (u,v)j generated in step 1 with
available observational data to produce a final gridded wind field (u,v)2» This
involves four substeps: (1) interpolation, (2) smoothing of the analyzed field, (3)
computation of a vertical velocity field, and (4) minimization of the three-dimen-
sional divergence.
2A. 1 Interpolation Scheme
The procedure for interpolating both the surface and upper-air data is a modified
inverse-distance weighting scheme based on procedures utilized by Goodin and co-
workers (1980), Godden and Lurmann (1983), and Ross and Smith (1986). The interpo-
lation is carried out separately for each model level. Unless otherwise specified, all
surface wind observations are incorporated into the lowest model level. Upper-air
observations are first vertically and temporally interpolated to model levels and
desired simulation times.
For the purpose of discussion, (u^v^ denotes an observed wind at station k, and rk
denotes the horizontal distance from station k to a given grid point. At each grid
point the wind vector is thus updated as follows;
<».»>• =|p\n ki ~ <».">,|'(£-r ~ *?\ <2-">
This procedure weights the step 1 wind field, (u,v)^, heavily in regions far removed
from observations; the degree of influence exerted by (u,v)j is inversely related to
the value of the parameter, Rj. The exponent controls the relative influence of
observations distant from a given grid point. Goodin and co-workers suggest that
this exponent should be 2 for a relatively dense set of observations, and 1 for a rela-
tively sparse set of observations.
90008 IS
7
-------
Several constraints can be placed on the evaluation of Equation 2-16, A maximum
radius of influence Rmax is specified such that if r^ > Rmax? the observation at sta-
tion k is excluded from the interpolation. If observations are densely spaced and
representative of the spatial variability of the air flow, Rmax should be relatively
small; otherwise, evaluation of Equation 2-16 may result in unwanted smoothing
effects.
A parameter, Kmax, is also specified that limits the number of stations to be
included in the interpolation at a grid point. This allows the effective maximum
radius of influence to increase or decrease depending on local density of the monitor-
ing network.
Finally, the user may construct barriers by specifying end points of Mne segments in
(x,y) space; if a specified barrier lies between a station and a given grid point, that
station is not considered in the interpolation at that grid point. This technique can
be used to reduce or eliminate deleterious effects on the analysis of stations heavily
influenced by local terrain features (e.g., a canyon).
The parameters Rj, Rmax> and Kmax as just defined are specified separately for sur-
face and upper-air observations. Each barrier specification will include the maxi-
mum model vertical grid level at which the barrier is to be applied.
2A.2 Smoothing of the Interpolated Wind Field
A simple five-point smoother of the form
may be applied to the gridded wind field resulting from the objective analysis pro-
cedure. The number of smoothing passes (usually no more than four) is specified for
each vertical model level. Smoothing of the gridded wind field can reduce the dis-
continuities caused by the interpolation when adjacent grid points are influenced by
different observations. It can also speed up the divergence minimization procedure.
However, it should be noted that overuse of such smoothing can eliminate important
air flow features (e.g., a well-defined sea-breeze convergence zone).
2.4.3 Computation of the Vertical Velocity
An initial vertical velocity field in terrain-parallel coordinates, W1, is computed from
(u,v)*by integrating the incompressible conservation-of-mass equation (2-3). The
resulting three-dimensional velocity field is thus mass-consistent. However, Godden
and Lurmann (1983) note that vertical velocities obtained from objectively analyzed
Asm(i.j) =
0.5AU, j) + 0.125[A(i + L, j) + A(i - 1, j)
+ A(i» j - 1) + A(i, j + 1)]
(2-17)
90009 lb
8
-------
(u,v) fields may be unrealistically large near the top of the model domain. Godden
and Lurmann use a procedure suggested by O'Brien (1970) to modify W1:
W2(Z) = W-(Z) - (Z/Ztop)W (Ztop) (2-18)
Note that W2 is zero at the model top, and that W2 is not mass-consistent with
(u,v)'. There may be situations in which use of the O'Brien procedure may not be
desirable; for example, the model top may pass through a well-resolved sea-breeze
convergence zone within which a large W value is realistic. Thus, in this model, the
imposed vertical velocity profile of Equation 2-18 is optional. If the vertical-
velocity adjustment procedure is not invoked, the final product of the model, (u,v)2,
is equal to (u,v)\
2.4.4 Minimization of the Three-Dimensional Divergence
If the vertical velocity profile is adjusted to ensure that the vertical velocity at the
top of the model is zero, it is necessary to adjust the objective analysis product,
(u,v)', so that it is mass consistent with W2. The divergence minimization procedure
described earlier is exercised with (u,v)f as the input horizontal wind field and W2
(the adjusted vertical velocity) is held constant. The adjusted horizontal wind field,
(u,v)2, is the final product of the DWM.
90008 1 5
9
-------
Intentionally Blank Page
-------
3 PREPROCESSING THE SURFACE AND UPPER-AIR DATA
In the preprocessing step, wind observations are converted from wind speed and wind
direction to u and v wind components. The input observations are then interpolated
vertically to model layers and temporally to desired simulation times.
3.1 SURFACEDATA
The surface data are assumed to be valid at a constant height above ground
(generally 10 m), which is given by the diagnostic wind model input parameter
ZSWIND. While surface data are usually available at hourly intervals, some variation
in measurement time may occur. In this case temporal interpolation of the surface
data may be used.
The inputs for the surface data preprocessor (PRESFC) are described in Table 3-1. A
sample input file for the preprocessor is presented in Exhibit 3-1. The user must
specify: (1) the number of surface monitoring stations, (2) the beginning and ending
times of the period for which data are to be processed, (3) a temporal interpolation
range, and (*f) the date. The data are processed for each hour during the specified
period. Since surface wind patterns.can be quite variable, it is important that the
temporal interpolation period is not too large. Table 3-2 lists the logical units that
are assigned in the surface preprocessor code to the various input and output files.
The station identifiers and locations (in UTM coordinates) of each of the surface sta-
tions are specified next. The data are then input; each station requires two data
records. Both records contain the date, station identifier, variable name, and a unit
identifier. Variable names are 'WD1 for wind direction and 'WS' for wind speed. The
unit identifier for wind direction is 'DEG' (degrees), and for wind speed either 'MPS',
TCTS1, or 'MPHf (meters per second, knots or miles per hour, respectively). This is
followed by the hourly wind direction in the first record and the hourly wind speed in
the second record. Note that the hourly wind direction is given in whole degrees and
that the wind speed is given in meters per second times 10. Twenty-four values of
wind speed and wind direction represent the data for an entire day beginning at 0000
LST. Missing data are indicated by-1.
The resulting processed surface data are written to a file (see Exhibit 3-2 for an
example) that is later input to the diagnostic wind model in hourly increments. The
90008 1 5
11
-------
TABLE 3-1. PRESFC input data.
Parameter
Description
Fortran Format
NSTA
NSTRHR
NEHDHR
TDIF
KYEAR
KMONTH
KDAY
Number of surface
monitoring stations
Starting time for the data to
be processed
Ending time for the data
to be processed
Temporal influence range (hour)
Year
Month
Day
NAMSTfUTMXST,UTMYST Surface wind station identifiers
and UTM coordinates (easting and
northing, km). Specify all sur-
face stations.
LYEAR,LMONTH ,LDAY f
LSTAT,LV AR,LUNITS,
LDATA
Station data: Year, month, day,
• station identifier, variable,
unit identifier and hourly
surface data.
(10X,15)
(10X,15)
(10X.I5)
(10X.F5.1)
(1OX,15)
(10X,I5)
(10X,15)
(AU,3X,F6.1,
1X.F6.1)
(3I2,2X,A4,2X,
A2,2X,A3,2X,
2413)
90008 L 7
12
-------
nSTA:
4
NSTKHR:
0
NfN0HR:
23
TO 1T:
4
.0
fc Y E Aft:
84
(MONTH;
6
lOAV:
3
C6A
729.95
3 7 41)
. ?
PTA
749.72
3 7 62
. 3
000
729.59
3755
. 6
01 K
75?.78
3 7 3 1
.0
840603
C6A
WO
OCG
840603
CHA
MS
KTS
840603
PTA
MO
OCG
840603
PTA
taS
MS
840603
DOB
WD
OCG
840b03
DOB
US
UTS
640603
0EK
WO
Df G
840603
0EK
WS
MPH
Charlie Brown Airport, Atlanta, GA
Oek j 1 b-Peai'ht ree Airport, Atlanta, GA
Dobbins Air Force Base. GA
South Dekalb Jr. College 0.4 mi S of 1-285
240220 -1 - 1280290 -1 - 1 300360 10290330120260260310330320360 -1 -1 -1 -1
20 20 -1 -1 20 20 -I -1 40 50 25 40 40 40 40 40 25 30 25 20 -1 -1 - 1 -I
-1 -1 -1 -1 -1310330340340330350290310320300340290290310 -1 -1 -1 -1 -1
.\ -l .1 -1 -1 26 25 40 60 75 50 50 35 40 40 50 50 50 30 -1 -1 -1 -1 -1
300310310300310320320330330320300310330330310300 -1 -1 -1 -1 -1 -1 -1320
4U 30 3U SO 30 25 50 40 50 30 30 30 25 40 25 20 -I -1 -1 -1 -1 -1 -I 30
290270310300320330280270330330330320320320290300290290300300300290300310
20 30 10 20 10 10 20 40 70 40 90 60 60 50 60 50 50 50 40 30 10 04 04 04
EXHIBIT 3-1. Sairple input file for surface data preprocessor (PRESFC) .
-------
TABLE 3-2. File structure for PRESFC,
Logical
Unit File Contents Format
5 Surface data ASCII
6 Printed output file ASCII
7 Preprocessed surface ASCII
data
90008 17
14
-------
UlhO STATION
X
I i
CHA
? 30.
0 3740.7
W i Ml) STATION
*
& i
PTA
? 49.
i
W1 MO STAT 1 ON
X
4 i
DUB
?29.
6 37S5.S
WIND STAIION
X
l *
OIK
?S2.
« 3/iJ.O
SURFACE
WIND
0
CBA
1,0
0.9
0.5
SuRMU
W1 NO
0
pia
1.0990,0999.0
SURFACE
HlNO
0
ooa
1.0
1.3
-1.0
SURFACE
WIND
0
ot *
1.0
0,8
-0.3
SURFACE
W 1 NO
0
FAST
Sufif AC i
UNO
t
CBA
1.0
0. /
0.8
Surface
MIND
1
PTA
1.0
1.0
-0.8
surface
W 1 NO
1
00»
1.0
1.?
- i. 0
SURFACE
WIND
1
OEK
1.0
1.3
0.0
SUKfACt
WIND
1
LASI
SURFACE
w 1 NO
2
CBA
i .0
0.8
0.5
SURFACE
U 1 NO
2
PTA
1.0
t.O
-0.8
SURfACC
WIND
1
OOB
1.0
1.2
-1.0
SuRFACI
y [NO
2
fit K
1.0
0.3
-0.3
S.URf AC E
WIND
2
LASI
SURFACE
MIND
3
I'BA
1.0
0.9
0. t
SuRfAtE
UIKO
3
PTA
1.0
1.0
-0.8
SURFACE
WIND
5
0UB
1 .0
1.3
¦0.8
SURFACE
WIND
3
OE*
1.0
0.8
-0.4
SURFACE
WIHO
3
LAST
SURFACE
y t no
4
CBA
! .0
1.0
-0.2
SUR^ALt
WIND
4
PTA
1 .0
1.0
-0.8
SURFACE
WiNO
4
DOB
3 .0
1.2
- 1.0
SURI-At i
MINI)
4
ill R
1.0
0.3
-0.3
Surface
WiNO
4
LAST
Surface
WIND
*>
CBA
1 .0
1.0
• 0.4
surface
WiNO
5
PTA
1 .0
1 .0
-0.8
Surface
WI MO
b
008
1 .0
0.8
-1.0
surface
WI NO
5
OCR
1.0
0.2
-0.4
surface
WIND
S
t AS 1
SURFACE
U I NO
b
CBA
1.0
1.2
-0.6
surface
W [NO
6
PTA
i .o
0.&
-1.1
Surface
WIND
6
008
».0
1. ?
2.0
SURFACE
WINO
6
OF K
i.t)
0.9
-0.?
Surf Act
UlNO
*
I AST
surface
WIND
?
i HA
.0
! .S
-o.a
SURFACE
WINO
?
PTA
) .0
0. ?
-1 .9
SURFACE
W!NO
7
OilK
1 ,u
1.0
-1.8
SURFACE
W f NO
;
OCR
J 0
1.8
0.0
Surface
WINO
/
LAS 1
SURFACE
WINO
a
C &A
1.0
1,8
-1,0
SURFACE
W J NO
8
PTA
1.11
1. 1
-2.9
Surface
wiNO
8
008
1.0
1.3
-2.2
Surface
WiNO
8
OER
I .0
1 ,b
¦ i.i
Surface
WINO
8
LAST
SlIKI-ACE
WIND
9
CHA
1.0
0.0
¦ ? .6
Surface
Ml NO
9
PTA
1.0
1.9
- i- i
SURFACf
WINO
9
•HIH
1.0
1.0
SURFACE
W 1 NO
9
OCR
1 .0
0.9
-I.S
SURFACE
WINO
9
IASJ
surface
WlNOlO
C15 A
1.0
-0.?
-1.3
SuRf AC i
WIN010
PTA
1 .0
0. a
?.h
surface
WlNDlO
DOii
1.0
1.3
-0.8
EXHIBIT 3-2. Output from PRESFC used as surface data input file for the Diagnostic Wind Msdel.
-------
-------
surface wino?? cba
SURFACE U1 NO?? PTA
SURFACE WIND?? OOB
SURFACE WUD?? OU
SURFACE WIND?? LAST
SURFACE UIN023 CBA
SURFACE U I ND?i PTA
SURFACE U 1 NO?3 OOB
SURFACE U IN 02 3 OU
SURFACE U I NO? 3 LAST
1.0 0.0 1.0
1.0 1.? -1.0
I.0 1.0-1.?
1.0 0.? -0.1
1.0 0.0-1.0
1.0999.0999.0
1.0 1.0-1.?
1.0 0.1-0.1
EXHIBIT 3-2. Concluded.
-------
station identifiers and locations of all of the surface stations are also contained in
this file and are read in at the beginning of the simulation.
3*2 UPPER-AIR DATA
The upper-air data are interpolated both vertically and temporally to provide model
inputs for each model level at each hour of the simulation. Two methods of vertical
interpolation are available in the preprocessor (PREUPR). In the first method, the
data are averaged within each model layer. Here "layer" refers to the area bounded
by two vertical cell interfaces and "level" is the center of the layer or the cell-
center height. Extrapolation to levels below the lowest observation and above the
highest observation is not performed. In the second method the data are linearly
interpolated to the model levels (the heights of ceil centers). Data are extended to
levels below the lowest observation height and above the highest observation height
if an observation is within the layer half-width from the level to which it is extrapo-
lated. The vertically interpolated data are then interpolated linearly in time to pro-
vide a smoothly varying wind pattern from one observation time to the next.
The inputs for the upper-air data preprocessor are described in Table 3-3. A sample
input file for the preprocessor is given in Exhibit 3-3. The input file must contain:
(I) the number of upper-air stations, (2) the maximum number of observation levels
in a given sounding, (3) the beginning and ending times of the period for the data to
be processed, (4) the temporal interpolation range, (5) the number of vertical layers
to be used in the model, (6) the date, (7) the interpolation option, and (S) the heights
of the vertical layer interfaces in terrain-following coordinates beginning with 0 for
the surface. The vertical structure of the diagnostic wind model should be based on
the vertical resolution of the upper-air data. Table 3-4 lists the logical units that
are assigned in the upper-air preprocessor code to the various input and output files.
Upper-air radiosonde soundings of wind speed and wind direction are usually available
twice daily but this can vary, especially during intensive measurement periods.
Other types of upper-air data, such as pibal data and Doppler acoustic sounder data,
may be available at more frequent intervals. A range of 12 hours is recommended
for interpolation of twice-daily upper-air data.
The station identifiers, UTM coordinates, and elevations of the upper-air stations are
then specified. This is followed by the input data. Each upper-air sounding requires
three input records. Each record contains the date, station identifier, observation
time, and a unit identifier. The unit identifier for height is 'MET* (height in
meters). The first input record contains the observation heights, the second contains
the wind directions, and the third contains the wind speeds. Note that the wind
speeds are multiplied by 10. Missing data are indicated by -I. When this delimiter is
encountered, the remainder of the sounding is disregarded.
90008 is
-------
TABLE 3-3. PREUPR input data.
Parameter
Description
Fortran Format
NSTA Number of upper-air
monitoring stations
LEVELS Maximum number of levels
in a given sounding
NSTRHR Starting time for the data
to be processed
NENDHR Ending time for the data
to be processed
TDIF Temporal influence range
NCELL Number of vertical layers
CELLZB Heights of the vertical layer
interfaces in terrain-following
coordinates beginning with 0 for
the surface (m)
KYEAR Year
KMONTH Month
KDAY Day
IOPT Vertical interpolation option:
1 = for layer averaging.
2 = for linear interpolation
to cell-center heights.
NAMST,UTMXST,UTMYST, Upper-air wind station identifiers,
ELEV UTM coordinates (easting and
northing, km), and elevations.
List all upper-air stations.
(10X.I5)
(10X,15)
(10X,15)
(10X,I5)
(10X,F5.1)
(10X,I5)
(10X,10F6.0)
(10X,I5)
(10X,I5)
(10X,15)
(10X,15)
(A4,1X.3F7.D
LYEAR,LMONTH,LDAY
LSTAT,LHOUR,LUNITS f
LEVEL
Upper-air data: year, month, day,
station identifier, observation
time, units, upper-air data.
(3I2,A4,1X,I4,
1XfA3,50(I5))
19
-------
to
o
NS1A:
4
IfVCLS:
20
NSTRHR:
0
NfN0HR:
23
4
T0IF:
12.0
MCCLL
14
CUL26:
0.
1
5.
50.
100.
700.
900. 1100.
1300.
K t C AR
84
~•MONTH:
6
koav :
3
I0PT:
2
U? \
940.? 34b4. 1
4-1.
.0
1222
476.
5 3637.8
140.
.0
7231
840.
2 3760.3
246.
.0
723?
538.
6 4009.3
160.
0
84 6
37221
700
MET
44
129
303
84 6
37221
7U0
or ij
220
245
305
84 6
37221
700
HPS
30
50
no
84 6
37221
1900
Ml T
118
280
31 7
84 6
37221
1900
Of G
265
260
275
84 6
37221
1900
MPS
30
30
50
84 6
472?1
700
HI 1
4-1
1 ?9
305
84 6
47??1
700
DEG
0
255
295
84 6
47221
700
MPS
0
30
70
84 6
37222
700
MET
140
155
321
84 6
37222
700
DEC
40
35
320
84 6
3/222
700
MPS
20
20
70
64 6
37222
1900
MET
183
612
912
64 6
37222
1900
DEG
245
255
84 6
37222
1900
HPS
30
20
20
84 6
47222
700
MET
621
917
84 6
47???
700
DEG
?Ci»
220
230
84 6
47222
700
HPS
4.1
30
20
84 6
3/231
700
Ml T
?4»i
307
614
84 6
37231
700
0EG
290
315
64 6
37231
700
HPS
,
50
110
84 6
37?31
1000
Mf T
;> :
3?8
624
84 6
37231
1900
DEG
270
270
84 6
37231
1900
HPS
4.)
40
70
84 6
47231
700
MET
24.
307
616
84 6
47231
700
otr>
i
320
30
84 6
47231
700
MPS
:*;i
20
30
84 6
37232
700
me r
•;;
610
914
64 6
37232
700
DEL
l« 0
315
31b
84 6
37232
700
MPS
20
100
90
84 6
37232
1900
ML T
Ay/
610
914
64 6
3723?
1900
Of li
>10
315
305
84 6
37232
1900
MPS
•iO
40
30
64 6
47?3?
700
Mi T
*?\
610
914
64 6
47232
700
OEG
40
155
?25
84 6
47232
700
MPS
10
30
20
150.
1500.
200. 250. 300. 400. 500.
610
935
1226
1517
1524
1836
2142
2436
2748
3171
3653
4264
4882
5850
-1 -1
320
3?0
325
320
320
330
350
• 10
35
115
210
210
220
295
110
90
70
60
60
50
50
50
40
20
30
30
20
40
621
914
1223
1541
1837
2142
24 35
2747
3176
3661
4272
4891
S789
5850
275
270
275
290
300
280
280
290
260
245
255
235
230
225
50
60
50
30
30
30
30
30
20
20
30
50
60
70
615
914
1222
1520
1826
21 ?0
2423
2724
3150
3645
4241
4544
4857
5174
5840 -1
315
330
290
240
220
190
165
160
185
210
210
215
230
250
275 -1
CO
40
20
30
50
50
60
70
80
80
90
100
80
70
60 -1
618
913
1216
1550
1833
2136
2438
2748
3175
3656
4303
4595
4895
5794
5B40 -1
320
315
300
305
320
255
220
200
200
200
190
190
195
230
230 -1
70
60
50
30
10
20
50
90
100
90
70
70
60
60
60 -1
1219
1543
1837
2140
2443
2744
3172
3665
4273
4880
5850
-1
-1
-1
240
240
240
230
220
215
205
215
270
280
300
• 1
.1
-1
10
30
40
50
60
50
40
50
80
60
50
- 1
- 1
-1
1222
1534
1826
2140
2443
2744
3159
3728
4019
4305
4889
5186
5794
5840
235
230
22b
215
200
195
190
195
195
205
230
245
230
230
* 1 -1
20
30
60
60
70
70
80
60
60
70
80
80
60
60
-1 -1
913
1221
1524
1531
1839
2135
2440
2742
3172
3667
4264
4883
5789
5850
340
320
290
290
300
285
265
255
250
255
255
295
305
295
GO
30
60
60
60
40
50
70
80
110
110
70
80
90
917
1217
1525
1843
2139
244 3
2745
3162
3681
4267
4873
5183
5840
-1
270
270
275
285
290
285
285
285
275
270
255
275
265
-1
/0
60
60
/O
90
100
no
100
70
80
110
60
70
-1
915
1222
1528
1854
2149
2441
2742
3051
3156
3673
4269
4888
5184
5820
70
100
230
265
270
255
225
220
220
?30
240
250
260
255
20
20
10
40
50
40
50
70
60
1 10
120
90
90
90
-1 -1
1219
1533
1829
2134
2438
274 3
3155
3658
396?
4267
4572
4877
5486
S820
-1 -1
310
285
275
285
2/0
260
260
250
245
255
265
260
250
255
80
50
60
90
90
90
100
100
110
110
100
110
120
110
1219
1533
1829
2134
2438
2743
3154
3658
4267
4572
4877
5486
5630
. i
285
265
255
260
265
2b5
270
2/0
260
255
265
260
275
30
40
50
50
60
70
70
100
110
110
110
110
110
. i
1219
1528
1829
2134
24 38
2743
3142
3658
4267
4877
5810
-1
-1
245
240
225
240
255
245
235
220
225
245
255
-1
-I
_ ]
30
40
30
20
40
60
60
70
90
110
130
-1
-1
-1
. i - i
EXHIBIT 3-3. Saiiple input file for the upper-air data preprocessor (PREOPR) *
-------
TABLE 3-4. File structure for PREUPR.
Logical
Unit File Contents Format
5 Upper-air data ASCII
6 Printed output file ASCII
7 Preprocessed upper-air ASCII
data
9000ft 17
21
-------
The processed hourly upper-air data are output to a file that is read incrementally by
the wind model. The site identifiers and locations of the upper-air stations are also
transferred in this manner to the model. A sample output is given in Exhibit 3-*f»
~
90000 15
22
-------
WIND STAT!0H X ft Y
72?l
940.2 3464.1
W J NO STATION X ( Y
1222
479.5 3637.6
U1 NO STATION X & Y
7231
840.2 3760.3
U1 NO STATION X & Y
7232
538.6 4009.3
UPPER yI HO 0 7221
1.0 2
3 2.3 3
1 2.2
4.2 2.1
5.6 0.2
6.8 -2
2
8.1
-4
7
8.9 -6
4
8.4 -
.9 7
8 -7.6
6.9 -8
6.1 -7.3 5.1 -6.5
4.0 -5
7 3.9 -4
9
UPPLft U1 HO 0 7222
1.0 -I
2 -1.6 -0
4 -2. 1
0.9 -3.0
2.6 -4.1
4.3 -5
2
4.5
-5
4
4.5 -5
4
4.5 -
.4 4
5 -5.4
4.4 -4
4.3 -4.1 4.3 -2.9
3.6 -2
2 2.5-1
7
UPPER Ml NO 0 7231
1.0 3
3 -0.8 4
0-1.3
4.8 -2.0
5.3 -3.0
5.8 -4
0
6.3
-5
0
6.8 -5
9
7.6 -
.4 6
2 -7.2
3.3 -t
2.0 -4.2 2.2 -2.3
4.7 -2
1 5.5-2
4
UPPER W1 NO 0 7212
1.0999
0999.0999
0999.0999.0999.0999.0999.0999.0999
0
0.3
2
0
1.9 -0
1
4.4 -
.5 7
0 -7.0
6.7 -6
6.3 -6.1 6.2 -5.3
5.5 -3
2 5.0-1
2
UPPER WIN0 0 LAST
UPPER W1 NO 1 7221
1.0 2
3 2.3 3
1 2.2
4.2 2.1
5.6 0.2
6.8 -2
2
8.1
-4
1
8.9 -6
4
8.4 -
.9 7
8 -7.6
6.9 -8
6.1 -7.3 5.1 -6.5
4.0 -5
7 3.9 -4
9
UPPER UlNO 1 72??
1.0 -1
? -1.6 -0
4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5
2
4.5
-5
4
4.5 -5
4
4.5 -
.4 4
5 -5.4
4.4 -4
4.3 -4.1 4.3 -2.9
3.6 -2
2 2.5-1
7
UPPER UINO 1 7231
1.0 3
3 -0.8 4
0 -1.3
4.8 -2.0
5.3 -3.0
5.8 -4
0
6.3
-5
0
6.8 -5
9
7.6 -
.4 6
2 -7.2
3.3 -6
2.0 -4.2 2.2 -2.3
4.7 -2
1 5.5 -2
4
UPPER UINO 1 7232
1.0999
0999.0999
0999.0999.0999.0999.0999.0999.0999
0
0.3
2
0
1.9 -0
1
4.4 -
.5 7
0 -7.0
6.7 -6
6.3 -6.1 6.2 -5.3
5.5 -3
2 5.0-1
2
UPPER UINO 1 LAST
UPPER UINO 2 7221
1.0 2
3 2.3 3
1 2.2
4.2 2.1
5.6 0.2
6.0 -2
2
8.1
-4
7
8.9 -6
4
0.4 -
.9 7
8 -7.6
6.9 -8
6.1 -7.3 5.1 -6.5
4.0 -5
7 3.9-4
9
UPPER UINO 2 1222
1.0 -1
2 -1.6 -0
4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5
2
4.5
-5
4
4.6 -5
4
4.5 -
.4 4
5 -6.4
4.4 -4
4.3 -4.1 4.3 -2.9
3.6 -2
? 2.5-1
7
UPPER UINO 2 7231
1.0 3
3 -0.8 4
0 -1.3
4.8 -2.0
5.3 -3.0
5.0 -4
0
6.3
-5
0
6.8 -5
9
7.6 -
.4 6
2 -7.2
3.3 -6
?.0 -4.2 2.2 -2.3
4.7 -2
1 5.5-2
4
UPPER UINO 2 723?
1.0999
0999.0999
0999.0999.0999.0999.0999.0999.0999
0
0.3
2
0
1.9 -0
1
4.4 -
.5 7
0 -7.0
6.7 -6
6.3 -6.1 6.2 -5.3
5.5 -3
2 5.0 -1
2
UPPER UINO 2 LAST
UPPER UINO 3 7221
1.0 2
3 2.33
1 2.2
4.2 2.1
5.6 0.2
6.8 -2
2
a. i
-4
7
8.9 -6
4
8.4 -
.9 7
8 -7.6
6.9 -0
6.1 -7.3 5.1 -6.5
4.0 -5
7 3.9 -4
9
UPPER UINO 3 1222
1.0 -1
2 -1.6 -0
4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5
2
4.5
-5
4
4.5 -5
4
4.5 -
.4 4
5 -5.4
4.4 -4
4. j -4.1 4.3-2.9
3.6 -2
2 ?.5 -1
7
UPPER UINO 3 7231
1.0 3
3-0.8 4
0-1.3
4.8 -2.0
5.3 -3.0
5.8 -4
0
6.3
-5
0
6.8 -5
9
7.6 -
.4 6
2 -7.2
3.3 -6
2.0 -4.2 2.2 -2.3
4.7 -2
1 5.5-2
4
UPPER UINO 3 7232
1 .0999
0999.0999
0999.0999.0999.0999.0999.0999.0999
0
0.3
2
0
1.9 -0
1
4.4 -
.5 7
0 -7.0
6.7 -6
6.3 -6.1 6.2 -5.3
5.5 -3
2 5.0 -1
2
UPPER UINO 3 LAST
UPPER UINO 4 72?1
1.0 2
3 2.33
I 2.2
4.2 2.1
5.6 0.2
6.8 -2
2
8. 1
-4
7
8.9 -6
4
8.4 -
.9 7
8 -7.6
6.9 -8
6.1-7.3 5.1-6.5
4.0 -5
7 3.9-4
9
UPPER UlND 4 7222
1.0 -1
2 -1.6 -0
4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5
2
4.5
-5
4
4.5 -5
4
4.5 -
.4 4
5 -5.4
4.4 -4
4.3 -4.1 4.3 -?.9
3.6 -2
2 2.5-1
7
UPPER UINO 4 7231
1.0 3
3 -0.8 4
0-1.3
4.8 -2.0
5.3 -3.0
5.8 -4
0
6.3
-5
0
6.8 -5
9
7.6 -
.4 6
2 -7.2
3.3 -6
2.0 -4.? 2.2 -2.3
4.7 -2
1 5.5-2
4
UPPER UI NO 4 1?\?
1.0999
0999.0999
0999.0999.0999.0999.0999.0999.0999
0
0.3
2
0
1.9 -0
1
4.4 -
.5 7
0 -7.0
6.7 -6
6.3-6.1 6.2-5.3
5.5 -3
2 5.0-1
2
UPPER UINO 4 I AS F
UPPER UINO 5 7??1.
1.0 ?
3 2.3 3
1 2.2
4.2 2.1
5.6 0.2
6.8 -2
2
8. 1
-4
7
8.9 -6
4
8.4 -
.9 7
8 -7.6
6.9 -8
b . I -7.3 5.1 -6.S
4.0 -5
7 3.9 -4
9
UPPER UINO. 5 1122
1.0 -1
2 -1.6 -0
4-2.1
0.9 -3.0
2.6 -4.1
4.3 -5
2
4.5
-5
4
4.5 -5
4
4.5 -
.4 4
5 -5.4
4.4 -4
4.3 -4.1 4.3 -2.9
3.6 -?
2 2.5-1
7
UPPER UINO 5 7231 •
1.0 3
3-0.8 4
0 -1.3
4.8 -2.0
5.3 -3.0
5.8 -4
0
6.3
-5
0
6.8 -5
9
7.6 -
.4 6
2 -7.2
3.3 -6
2.0 -4.2 2.2 -2.3
4. 1 ?
1 5 .S -?
4
UPPER UINO 5 7?3?
1 .0999
0999.0999
0999.0999.0999.0999.0999.0999.0999
0
0.3
?
0
1.9 -0
I
4.4-
.5 7
0 -7.0
6.7 -6
6.3 6.1 6.2 ¦ 5. 3
5.5 3
2 5.0-1
2
EXHIBIT 3-4. Output from PREUPR used as the uppers-air data input file for the Diagnostic Wind fctodel.
-------
UPPER WIND S I AS!
upper uino 6 7221
1.0 2.3 2.3 3.1 2.2
4.2 ?.l
5.6 0.2
6.8 -2.2
6.1 -7.3 5.1 -6.5
4.0 -5.7 3.9 -4.9
UPPCR W1 NO 6 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5.2
4.3 -4.1 4.3 -2.9
3.6 -2.2 2.5 -1.7
UPPCR WIND 6 7231
1.0 3.3 -0.0 4.0 -1.3
4.0 -?.0
5.3 -3.0
5.8 -4.0
2.0 -4.2 2.2 -2.3
4.7 -2.1 5.5 -2.4
UPPER WIND 6 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
6.3 -6.1 6.2 -5.3
5.5 -3.2 5.0 -1.2
UPPCR U1 NO 6 LAST
UPPCR UINO 7 7221
1.0 2.3 2.3 3.1 2.2
4.2 2.1
5.6 0.2
6.8 -2.2
6.1 -7.3 5.1 -6.5
4.0 -5.7 3.9 -4.9
UPPER UINO 7 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5.2
4.3 -4.1 4.3 -2.9
3.6 -2.2 2.5 -1.7
UPPER UINO 7 7231
1.0 3.3 -0.8 4.0 -1.3
4.8 -2.0
5.3 -3.0
5.8 -4.0
2.0 -4.2 2.2 -2.3
4.7 -2.1 5.5 -2.4
UPPER UINO 7 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
6.3 -6.1 6.2 -5.3
5.5 -3.2 5.0 -1.2
UPPER UINO 7 LAST
UPPCR UINO 0 7221
1.0 2.3 2.3 3.1 2.2
4.1 2.0
5.3 0.2
6.5 -2.0
6.1 -6.7 5.2 -5.9
4.1 -5.2 3.9 -4.5
UPPCR UINO 0 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -6.2
4.0 -3.7 4-0 2.7
3.5 2.0 2.5 -1.5
UPPCR UINO 0 7231
1.0 3.4 -0.7 4.0 -1.1
4.8 -1.8
5.3 -2.7
5.8 -3.6
2.4 -3.8 2.b -2.1
4.8 -2.0 5.5 -2.3
UPPER UINO 8 -7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
6.0 -5.7 5.9 -4.9
5.3 -2.9 4.9 -1.0
UPPCR UINO 8 LAST
UPPER UINO 9 7221
1.0 2.3 2.3 3.1 2.2
4.0 1.8
5.1 0.2
6.2 -1.8
6.1 -6.1 5.2 -5.4
4.1 -4.8 3.8 -4.2
UPPER UINO 9 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5.2
3.8 -3.3 3.0 -2.4
3.3 -1.7 2.5 -1.2
UPPCR UINO 9 7231
1.0 3.4 -0.6 4.0 -1.0
4.7 -1.7
5.2 -2.5
5.7 -3.3
2.8 -3.5 2.9 -1 .9
4.9 -1.8 5.6 -2.2
UPPCR U1 NO 9 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
5.7 -5.3 5.6 -4.6
5.1 -2.7 4.9 -0.9
UPPFR UINO 9 LAST
UPPCR UlNOlO 7221
1.0 2.3 2.3 3.1 2.2
3.9 1.7
4.9 0.2
5.9 -1.6
6.0 -5.5 5.2 -4.9
4.2 -4.4 3.8 -3.9
UPPER UlNOlO 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5.2
3.6-2.9 3.5-2.1
3.1 -1.4 2.5 -0.9
UPPER UlNOlO 7231
1.0 3.5 -0.6 4.0 -0.9
4.6 -1.5
5.1 -2.2
5.6 -3.0
3.1 -3.1 3.2 -1.7
5.0 -1.7 5.7 -2.1
UPPER UlNOlO 723?
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
5.4 -5.0 5.3 -4.2
5.0 -2.4 4.8 -0.8
UPPER UlNOlO LAST
UPPER UlNOll 7221
1.0 2.3 2.3 3.1 2.2
3.8 1.5
4.7 0.2
5.6 -1.4
6.0 -4.9 5.3 -4.4
4.3 -3.9 3.8 -3.5
UPPER UI NO 1 1 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0
2.6 -4.1
4.3 -5.2
3.4 -2.6 3.3 -1.0
2.9 -1.2 2.5 -0.7
UPPER UlNOl1 7231
1.0 3.5 -0.5 4.0 -0.8
4.6 -1.3
5.0 -2.0
5.5 -2.6
3.5 -2.8 3.5 -1.5
5.1 -1.5 5.7 -1.9
UPPER WIND11 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
5.1 4.6 5.1 -3.0
4.8 -?.? 4.7 -0.6
UPPER WlNO 11 LAST
UPPER UIN012 72?1
1.0 2. 3 2.3 3.1 2.2
3.7 1.4
4.5 0.2
5.2 -1 .1
6.0 -4.3 5.3 -3.0
*4.4 -3.5 3.7 3.2
EXHIBIT 3-4. Continued.
8.1 -4.7
8.9 -6
4
8
4
-6.9
7.8 -7.6
6.9
-8.3
4.5 -5.4
4.5 -5
4
4
5
-5.4
4.5 -5.4
4.4
-4.9
6.3 -5.0
6.8 -5
9
7
6
-7.4
6.2 -7.2
3.3
-6.1
0.3 2.0
1.9 -0
1
4
4
-3.5
7.0 -7.0
6.7
-6.7
8.1 -4.7
8.9 -6
4
8
4
-6.9
7.8 -7.6
6.9
-8.3
4.5 -5.4
4.5 -5
4
4
5
-5.4
4.5 -5.4
4.4
-4.9
6.3 -5.0
6.8 -5
9
7
-7.4
6.2 -7.2
3.3
-6.1
0.3 2.0
1.9 -0
1
4
4
-3.5
7.0 -7.0
6.7
-6.7
7.7 -4.2
8.6 -5
9
8
-6.4
7.6 -7.0
6.8
-7.6
4.3 -4.8
4.3 -4
0
4
3
-4.8
4.3 -4.8
4.2
-4.4
6.3 -4.5
6.8 -5
4
7
5
-6.8
6.3 -6.6
3.6
-5.6
0.5 1.6
1.9 -0
2
4
2
-3.4
6.7 -6.7
6.3
•6.3
7.3 -3.8
8.3 -5
4
7
9
-5.9
7.3 -6.4
6.6
-7.0
4.1 -4.1
4.1 -4
2
4
-4.2
4.1 -4.3
4.0
• 4.0
6.2 -4.1
6.7 -4
9
7
5
-6.2
6.3 -6.0
3.9
-5.1
0.7 1.3
1.9 -0
4
4
-3.3
6.3 -6.3
6.0
-5.9
6.8 -3.4
7.9 -4
9
7
6
• 5.3
7.1 -5.8
6.5
-6.3
3.9 -3.5
3.9 -3
6
3
9
-3.7
3.8 -3.8
3.8
-3.5
6.1 -3.7
6.6 -4
5
7
4
-5.6
6.4 -5.4
4.3
-4.6
0.8 1.0
2.0 -0
6
3
9
-3.2
6.0 -6.0
5.7
-5.6
6.4 -2.9
7.6 -4
4
7
3
-4.8
6.9 -5.2
6.3
-5.6
3.8 -2.9
3.7 -3
0
3
7
-3.1
3.6 -3.3
3.6
-3.0
6.0 -3.3
6.5 -4
0
7
3
-4.9
6.5 -4.8
4.6
-4.1
1.0 0.7
2.0 -0
7
3
8
-3.1
5.6 -5.6
5.3
-5.2
6.0 -2.5
7.3 -3
9
7
0
-4.2
6.6 -4.6
6.2
¦
o
-------
NJ
in
UPPER HINDI? 1222
I.0 1.2 -1.6 -0.4 -2.1
0.9-3.0 2.6-4.1 4
3 -5.2
3.6
-2.3
3.6
-2.4
3.5 -2.5
3
4 -2.7
3
3 -2
3.2 -2.2 3.0 -1.5
2.8 -0.9 2.5 -0.4
UPPtR HINDI? 7231
1.0 3.6 -0.4 4.0 -0.7
4.5 -1.2 6.0 -1.7 5
5 -2.3
6.0
-2.9
6.5
-3.5
7.2 -4.3
6
5 -4.2
4
9 -3
3.9 -2.4 3.0 -1.3
5.2 -1.4 5.0 -1.8
UPPER HINDI? 1212
1.0999.0999.0999.0999.0999.0999.0999.0999.0999
0999.0
1.2
0.3
2.1
-0.9
3.6 -3.0
5
3 -5.2
5
0 -4
4.7 -4.2 4.8 -3.5
4.6 -1.9 4.6 -0.5
UPPER U1 NO 12 LAST
UPPER WlNOl3 122\
1.0 2.3 2.3 3.1 2.2
3.6 1.2 4.3 0.3 4
9 -0.9
5.5
-2.1
6.9
-3.4
6.7 -3.7
6
4 -4.0
6
0 -<
6.0 -3.7 5.3 -3.3
4.4 -3.1 3.7 -2.9
UPPER W1NOl3 7???
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0 2.6 -4.1 4
3 -5.2
3.4
-1.7
3.4
-1.8
3.3 -2.0
3
2 -2.2
3
1 -2
3.0 -1.8 2.7 -1.2
2.6 -0.7 2.5 -0.1
UPPER W1NOl3 7231
1.0 3.7 -0.4 4.0 -0.6
4.4 -1.0 4.9 -1.5 5
4 -2.0
5.9
-2.5
6.4
-3.0
7.2 -3.7
6
6 -3.6
5
2 -3
4.3 -2.1 4.1 -1.2
5.3-1.3 5.9 -1.7
UPPER H]NOl3 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999
0999.0
1.3
0.0
2.1
-1.1
3.5 -2.9
4
9 -4.9
4
6 -4
4.4 -3.0 4.5 -3.1
4.5 -1.7 4.6 -0.3
UPPER WlNOU LAST
UPPER UINUI4 7221
1.0 2.3 2.3 3.1 2.2
3.5 1.0 4.1 0.3 4
6 -0.7
5.1
-1.6
6.6
-2,9
6.4 -3.1
6
2 -3.4
5
8 -3
5.9 -3.1 5.4 -2.8
4.5 -2.6 3.7 -2.5
UPPER U1NOl4 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0 2.6 -4.1 4
3 -5.2
3.2
-1.1
3.2
-1.2
3.1 -1.4
3
0 -1.7
2
9 -1
2.0-1.4 2.5 -0.9
2.4 -0.4 2.6 0.1
UPPER U1 NO 14 7231
1.0 3.7 -0.3 4.0 -0.5
4.3 -0.0 4.8 -1.2 5
3 -1.7
5.8
-2.1
6.3
-2.5
7.1 -3.1
6
7 -3.0
5
5 -2
4.7-1.7 4.4-1.0
5.4 -1.1 5.9 -1.6
UPPER U1 NO 14 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999
0999.0
1.5
-0.3
2.2
-1.2
3.3 -2.9
4
6 -4.5
4
3 -4
4.1 -3.4 4.2 -2.7
4.3 -1.4 4.5 -0.2
UPPER H 1 NO 14 LAST
UPPER kl 1 NOl 5 7221
1.0 2.3 2.3 3.1 2.2
3.4 0.9 3.0 0.3 4
3 -0.5
4.7
-1.2
6.3
-2.4
6.1 -2.6
5
9 -2.0
5
7 -3
5.9 -2.5 5.4 -2.3
4.6 -2.2 3.6 -2.2
UPPER U 1 NOl5 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0 2.6 -4.1 4
3 -5.2
3.0
-0.5
3.0
• 0.6
2.9 -0.8
2
7 -1.2
2
7 -1
2.6 -1.0 2.2 -0.6
2.2 -0.2 2.6 0.4
UPPER U1NOl5 7231
1.0 3.8 -0.3 4.0 -0.4
4.3 -0.7 4.7 -1.0 5
2 -1.3
5.7
-1.7
6.3
-2,0
7.0 -2.5
6
7 -2.4
5
8 -2
5.0 -1.4 4.7 -0.8
5.5 -1.0 6.0 -1.5
UPPER U1NOl5 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999
0999.0
1.6
-0.6
2.2
-1.4
3.2 -2.8
4
2 -4.2
4
0 -3
3.0 -3.0 3.9 -2.4
4.1 -1.2 4.4 -0.1
UPPER U1N015 LAST
UPPER UIN016 7221
1.0 2.3 2.3 3.1 2.2
3.3 0.7 3.6 0.3 3
9 -0.2
4.3
-0.8
6.0
-1.9
5.8 -2.1
5
7 -2.2
5
5 -2
5.9 -1.9 5.5 -1.8
4.6 -1.8 3.6 -1.9
UPPER UIN016 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9-3.0 2.6-4.1 4
3 -5.2
2.8
0.1
2.8
0.0
2.7 -0.3
2
5 -0.6
2
5 -0
2.4 -0.6 1.9 -0.4
2.0 0.1 2.6 0.7
UPPER U1 NO 16 7231
1.0 3.0-0.2 4.0 -0.3
4.2 -0.5 4.7 -0.7 5
2 -1.0
5.7
-1.2
6.2
-1.5
6.9 -1.9
6
6 -1.8
6
1 -1
5.4 -1.0 5.1 -0.6
5.7 -0.8 6.1 -1.4
UPPER U 1 NOl6 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999
0999.0
1.8
-1.0
2.2
-1.6
3.0 -2.7
3
9 -3.8
3
6 -3
3.5 -2.7 3.7 -2.0
4.0 -0.9 4.3 0.1
UPPER U1 NO 16 LAST
UPPER U1NOl7 7221
1.0 2.3 2.3 3.1 2.2
3.2 0.6 3.4 0.3 3
6 0.0
3.8
-0.4
5.6
-1.4
5.6 -1.5
5
5 -1.6
5
4 -1
at
u-i
CO
lA
4.7 -1.3 3.5 -1.5
UPPER HINOl7 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0 2.6 -4.1 4
3 -5.2
2.7
0.7
2.6
0.6
2.5 0.3
2
3 -0.1
2
3 -0
2.2 -0.3 1.7 -0.1
1.9 0.4 2.6 1.0
UPPER U1 NO 1 7 7231
1.0 3.9-0.1 4.0-0.2
4.1-0.3 4.6-0.5 5
1 -0.7
5.6
-0.8
6.1
-1.0
6.9 -1.2
6
9 -1.2
6
4 -1
0
5.0 -0.7 5.4 -0.4
5.8 -0.7 6.1 -1.2
UPPER U1 NO 1 7 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999
0999.0
2.0
-1.3
2.3
-1.7
2.9 -2.6
3
5 -3.5
3
3 -3
0
3.2 -2.3 3.4 -1.6
3.0 -0.7 4.3 0.2
UPPER HiNOl7 LAST
UPPER HINDIS 122)
1.0 2.3 2.3 3.1 2.2
3.1 0.4 3.2 0.3 3
3 0.2
3.4
0.1
5.3
-0.9
5.3 -1.0
5
2 -1.0
5
2 -1
1
5.0 -0.7 5.5 -0.7
4.8 -0.9 3.5 -1.2
UPPER H1 NO 18 7222
1.0 -1.2 -1.6 -0.4 -2.1
0.9 -3.0 2.6 -4.1 4
3 -5.2
2.5
1.3
2.4
1.2
2.3 0.9
2
1 0.4
2
1 0
2
2.0 0.1 1.4 0.2
1.7 0.6 2.6 1.2
UPPER H1N018 7231
1.0 3.9 -0.1 4.0 -0.1
4.1 -0.2 4.5 -0.2 5
0 -0.3
5.6
-0.4
6.0
-0.5
6.B -0.6
6
9 -0.6
6
7 -0
5
EM1IBIT 3-4 ~ Continued,
-------
6.2 -0.3 5.7 -0.2
5.9 -0.5 b.2 -1.1
UPPER HINDIS 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
2.9 -1.9 3.1 -1.3
3.6 -0.4 4.2 0.4
UPPER W 1 NO 18 LAST
UPPER VIN019 7221
1.0 0.4 0.1 1.3 0.3 3.0 0.3 3.0 0.3 3.0 0.4
5.8 -0.1 5.6 -0.2
4.8 -0.5 3.5 -0.8
UPPER UIN019 7222
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
1.8 0.5 1.1 0.5
1.5 0.9 2.6 1.5
UPPER UIND19 7231
1.0 4.0 0.0 4.0 0.0 4.0 0.0 4.4 0.0 4.9 0.0
6.6 0.0 6.0 0.0
6.0 -0.4 6.3 -1.0
UPPER U1 NO 19 7232
1.0999.0999.0999 .0999.0999.0999.0999.0999.0999.0999.0
2.6 -1.5 2.8 -0.9
3.5 -0.2 4.1 0.5
UPPER U1 HOI9 LAST
UPPER W1ND20 7221
1.0 0.4 0.1 1.3 0.3 3.0 0.3 3.0 0.3 3.1 0.3
5.5 -0.4 5.3 -0.4
4.6-0.5 3.4-0.7
UPPER UIND20 7222
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
1.8 0.6 1.2 0.6
1.5 0.9 2.6 1.5
UPPER U1ND20 7231
1.0 3.8 -0.1 3.8 -0.1 3.8 -0.1 4.1 -0.1 4.6 -0.2
5.9 0.0 5.4 0.0
5.5 -0.3 5.9 -0.9
UPPER UIND20 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
2.5 -1.3 2.8 -0.7
3.4 0.0 4.0 0.6
UPPER U1ND20 LAST
UPPER U1 NO?1 7221
1.0 0.4 0.1 1.3 0.3 2.9 0.3 3.1 0.3 3.2 0.2
5.2 -0.7 5.0 -0.5
4.4 -0.5 3.3 -0.5
UPPER w1 MO?1 7222
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
1.8 0.6 1.2 0.6
1.6 1.0 2.5 1.6
UPPER W IN021 7231
1.0 3.6 -0.2 3.6 -0.2 3.5 -0.3 3.8 -0.3 4.2 -0.3
5.2 0.0 4.7 0.0
5.0 -0.2 5.6 0.8
UPPER W I NO?1 7232
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
2.4-1.0 2.8-0.5
3.4 0.1 4.0 0.8
UPPER W i H021 LAST
UPPER W1ND22 7221
1.0 0.4 0.1 1.3 0.3 2.9 0.4 3.2 0.2 3.4 0.0
4.9 1.0 4.7 -0.7
4.1 -0.5 3.2 -0.4
UPPER W1N022 7222
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
1.8 0.7 1.3 0.7
1.6 1.0 2.5 1.6
UPPER U1N022 7231
1.0 3.4 -0.3 3.4 -0.3 3.3 -0.4 3.5 -0.4 3.8 -0.5
4.4 -0.1 4.1 0.1
4.5 -0.? 5.2 -0.6
UPPER U1N022 7232
I.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
2.3 -0.8 2.8 -0.4
3.4 0.3 3.9 0.9
UPPER WIN022 LAST
UPPER WIN023 7221
1.0 0.4 0.1 1.3 0.3 2.8 0.4* 3.2 0.2 3.5 -0.1
4.7 -1.3 4.4 -0.9
3.9 -0.5 3.1-0.2
UPPER WIN023 7222
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
1.7 0.8 1.3 0.7
1.6 1.1 2.5 1.7
UPPER WIN023 7231
1.0 3.2 -0.4 3.? -0.4 3.1 -0.5 3.2 -0.6 3.4 -0.6
3.7-0.1 3.4 0.1
4.0 -0.1 4.8 -0.5
UPPER W1 NO? 3 723?
1.0999.0999.0999.0999.0999.0999.0999.0999.0999.0999.0
2.3 -0.6 2.7 -0.2
3.3 0.4 3.8 1.0
UPPER WIN023 LAS!
EXHIBIT 3-4. Concluded.
2.1 -1.6
3.0 0.5
2.3 1.9
5.4 0.0
2.3 -1.9
3.2 0.3
2.2 2.0
5.0 -0.2
2.1 -1.8
3.4 0.1
2.1 2.1
4.5 -0.3
1.8 -1.7
3.6 -0.2
2.0 2.2
4.0 -0.5
1.6 -1.6
3.9 -0.4
1.9 2.2
3.6 -0.7
1.3 -1.5
2.3 -1.9
5.0 -0.4
2.2 l.B
6.0 0.0
2.4 -2.1
5.1 -0.7
2.1 1.9
5.4 -0.2
2.1 -1.9
5.2
-0.9
2.1
1.9
4.9
-0.4
1.9
-1.7
5.3
-1.1
2.0
2.0
4.3
-0.6
1.6
-1.6
5.4
-1.3
1.9
2.1
3.8
-0.8
1.3
-1.4
2.7 -2.5
5.0 -0.4
2.1 1.4
6.7 0.0
2.6 -2.4
5.0 -0.7
2.0 1.5
6.0 -0.2
2.3 -2.1
5.1 -0.9
2.0 1.6
5.4 .0.4
2.0 -1.8
5.2 -1.2
1.9 1.7
4.7 -0.6
1.7 -1.5
5.2 -1.4
1.9 1.8
4.0 -0.8
1.4 -1.2
3.2 -3.1
5.0 -0.4
1.9 0.9
7.0 0.0
2.8 -2.8
5.0 -0.7
1.9 1.1
6.3 -0.2
2.5 -2.3
5.0 -1.0
1.9 1.2
5.6 -0.3
2.2 -1.9
5.0 -1.3
1.8 1.3
4.8 -0.5
1.8 -1.4
5.0 -1.5
1.8 1.4
4.1 -0.7
1.5 -1.0
3.0 -2.6
5.1 -0.4
1.9 0.7
7.0 0.0
2.6 -2.2
5.0 -0.7
1.9 0.8
6.3 -0.1
2.4 -1.9
4.9 -1.0
1.8 0.9
5.5 -0.2
2.2 -1.5
4.8 -1.3
1.8 1.0
4.8 -0.3
2.0 -1.2
4.7 -1.7
1.8 1.1
4.1 -0.4
1.8 -0.8
-------
* GENERATING WIND FIELDS WITH THE WIND MODEL
4.1 UNITS, COORDINATES AND TIME CONVENTIONS
All calculations are performed in the SI units given in Table 4-1. Terrain heights,
which are initially specified in non-SI units, are converted to meters. The Universal
Transverse Mercator (UTM) coordinate system is used to define the horizontal grid.
The vertical coordinate is terrain following. Time is specified according to the 0 -
2400 hour clock.
4.2 INPUTS
Five files supply the following inputs for the Diagnostic Wind Model: (1) parameters
that govern the simulation, (2) gridded terrain heights, (3) gridded surface-type indi-
cators, (4) hourly surface data, including station identifiers and locations from the
surface data preprocessor, PRESFC, and (5) hourly upper-air data, including station
identifiers and locations, from the upper-air data preprocessor, PREUPR. The flow
of information for executing the DWM is illustrated in Figure 4-1.
4.2.1 Simulation-Specific Data
The controlling parameters for the Diagnostic Wind Model are specified in the pri-
mary input file. These parameters are listed and described in Table 4-2 and an
example parameter input file is presented in Exhibit 4-1. Some guidelines for the
specification of the parameters are given here.
In the first record a descriptive identifier for the simulation (TITLE) is provided.
The next eight records supply information about the grid, including the grid dimen-
sions (NX, NY, NZ), the grid-cell size in km (DXK, DYK), the vertical-layer inter-
face heights in meters (CELLZB), and the grid origin in UTM coordinates (UTMXOR,
UTMYOR). The vertical-layer interface heights are given in terrain-following
coordinates beginning with 0 for the surface. Next the initial time (TSTART), the
final time (TEND), and the time increment (TINC) for the simulation are specified.
The next two records contain the total number of surface and upper-air stations
(NWIND) and the number of upper-air stations (NUPPER). ZSWIND is the estimated
height of the surface wind measurements.
90008 IS
27
-------
TABLE 4-1. Diagnostic Wind Model internal units.
Parameter
Height (vertical)
Distance (horizontal)
Time
Temperature
Units
Meters
Kilometers
Hours, minutes, seconds
Degrees Kelvin
90008 17
28
-------
7
/
7
?cal J
Surface
meteorological
data
Upper-air
meteorological
rtafa
t
PREUPR
Surface
meteorological
data
Upper-air
meteorological
Governing
input parameters
Gritted
terrain heights
Gndoed surface
feature types
Diagnostic
Wind Model
(Optional)
ZGridded, 3-D j J
wind file / /
(binary) / /
Diagnostic
messages
Intermediate
wind files
t
DIFFBREAK
(binary)
UAMWND
U AM WIND
file
(binary)
FIGURE 4-1. Flow diagram for using the Diagnostic Wind Model.
EEE/90C09
29
-------
TABLE 4-2. Diagnostic Wind Model input parameter control file-
Parameter
Description
Fortran Format
TITLE
Descriptive identifier
(A20)
NX
Number of grid points in
the x-direction
(10X,I5)
NY '
Number of grid points in
the y-direction
(10X,I5)
NZ
Number of vertical layers
(10X,15)
DXK
Grid cell size in the
x-direction (km)
(10X,F6.0)
DYK
Grid cell size in the
y-direction (km)
(10X,F6.0)
CELLZB
Heights of vertical layer
interfaces in terrain-following
coordinates beginning with 0 for
the surface (m)
(10Xf10F6.0)
UTMXOR
Easting UTM coordinate of origin
(southwest corner) of grid (km)
(10X,F6.0)
UTMYOR
Northing UTM coordinate of origin
of grid (km)
(10X,F6.0)
TSTART
Initial time (Specified as hour
on the 2400-hour clock)
(10X.F6-0)
TEND
Final time
(10X.F6.0)
TINC
Time increment
(10X,F6.0)
NWIND
Total number of wind stations
(10X, 15).
NUPPER
Number of upper-air wind stations
(10X,15)
ZSWIND
Height of surface wind
measurements (m)
(10X.F6.0)
continued
90008 17
30
-------
TABLE 4-2. continued
Parameter
Description
Fortran Format
RMIM
RMAX1
RMAX2
RMAX3
R1
R2
NINTRP
NZPRNT
I PRO
IPR1
IPR2
Minimum radius of influence used
in the interpolation (km)
Maximum radius of influence over
land in the surface layer (km)
Maximum radius of influence over
land aloft (km)
Maximum radius of influence over
water (km)
Weighting parameter for the
diagnostic wind field at the
surface (km)
Weighting parameter for the
diagnostic wind field aloft (km)
Maximum number of stations used in
the interpolation of data to a
grid point
Number of levels, starting at the
surface, used for printing
Flag for printing the interpolated
wind component fields (set >0)
Flag for printing the terrain-
adjusted surface-wind component
fields (used only with objective
analysis) (set >0)
Flag for printing the smoothed
wind component and initial
divergence fields (set >0)
(10X,F6.0)
(10X,F6.0)
(10X,F6.0)
(10X,F6.0)
(10X,F6.0)
(10X,F6.0)
(10X,1015)
(10X,15)
(10X,15)
(10X,15)
(1OX,15)
continued
90006 17
31
-------
TABLE 4-2. continued
Parameter
Description
Fortran Format
IPR3 Flag for printing the final (10X,I5)
wind speed and direction fields
(set >0)
IPR4 Flag for printing the final (10X,I5)
divergence field (set >0)
IPR5 Flag for printing the wind fields (10X,I5)
after the kinematic effects are
calculated (set >0)
IPR6 Flag for printing the wind fields (10X,I5)
after the slope flows are added
(set >0)
IPR7 Flag for printing the wind fields (1 OX,15)
after the Froude number adjustment
is complete (set >0)
ICALC Flag for calculating the wind fields. (10X,I5)
It cam be turned off (set <0) in a
preliminary run to ensure that the
data are being read correctly, then
turned on (set >0) in a subsequent run
to perform the calculations
I0UTD Flag for writing the computed wind (10X,I5)
fields to disk
HTFAC Multiplicative factor used to (1OX,F10.4)
convert terrain heights to meters
NITER Maximum number of iterations for the (10X,I5)
divergence minimization procedure
DIVLIM The convergence criteria for the (10X,E10.1)
divergence minimization procedure
(typical values are 1.E-7 to 1.E-5)
continued
90003 17
32
-------
TABLE 4-2. continued
Parameter
Description
Fortran Format
IOBR
NUMBAR
I3DCTW
NSMTH
IEXTRP
FEXTRP
Flag for using the O'Brien vertical-
velocity adjustment procedure
(set >0)
Number of barriers to interpolation
1 = run the diagnostic wind model
0 = run the objective analysis
Number of smoothing passes
Vertical extrapolation control
variable. When ABS(IEXTRP) = 1,
there is no extrapolation from the
surface wind data; when
ABS(IEXTRP) = 2, extrapolation
is done using a power law profile;
when ABS(IEXTRP) >3» the extra-
polation is done using the values
provided for FEXTRP. When IEXTRP <0,
the layer 1 data at the upper-air
stations is ignored
Extrapolation values for layers
2 through N2
(10X,15)
(10X,I5)
(10X,15)
(10X,15)
(10X,I5)
(10X,10F6.0)
The following nine parameters are necessary if only step 1 of the
Diagnostic Wind Model is being run (i.e., no observational data are
included). For an objective analysis (step 2), do not include
these inputs.
GAMMA Domain-averaged temperature lapse- (10X,8F5.1)
rate for each hour of the simulation
day, beginning at 0 and ending at
2300 (K/km)
CRITFN Critical Froude number (recommended (10X,F5.1)
value: 1.0)
TERRAD Radius of influence of terrain (10X,F5.1)
features (km)
continued
33
-------
TABLE 4-2. concluded
Parameter
Description
Fortran Format
TINF
IFRADJ
IKING
ALPHA
Estimated surface temperature
Flag for calculating Froude number
adjustment effects (set at 1)
(10X.F5.1)
(10XtI3)
UM
Flag for calculating kinematic effects (10X,I3)
(set at 1)
Empirical parameter that controls (10X,F5*O
the influence of the kinematic
effects (recommended values 0.1 -
0.3)
U-component of the domain-mean wind (10X,8F5.1)
for each hour of the simulation
day, beginning at 0 and ending at
2300 (m/s)
V-component of the domain-mean wind (10X,8F5.1)
for each hour of the simulation day,
beginning at 0 and ending at 2300
(m/s)
The following barrier endpoints need only be specified if NUMBAR > 0
VM
BARXY UTM coordinates of the barrier
segment endpoints. Specify east and
north coordinates of the first end
point followed by the east and north
coordinates of the -second end point.
Terrain heights are contained in a separate file.
HTOPO Gridded terrain heights
Surface type is contained in a separate file.
(30X,4F10.0)
LNDWTR
Gridded surface type; 0 = water,
1 = land.
(10F6.0)
(3012)
90008 17
34
-------
PJ9*
Ui
U1
ATLANTA
840603
NX:
40
nv :
40
Hi:
14
OX*:
4.
OVK:
4 .
CCtLiB:
0.
ZOO.
UTHXQR:
660.
UtMYOft:
3665.
TSTART:
0.
TCNO:
0.
TINC:
1.
HUlNfl:
8
NuPP[ft:
4
2SMINO:
10.
RN1N;
1 .
RMAXl:
40.
Rhax?:
200.
RMAX3:
200.
Rl:
20.
R?:
160.
NlNlftP;
4
2
N7PRNT:
1
I PRO:
-1
IPRI:
-1
1 PR2:
-1
1 PR 3:
• 1
I PR 4:
-1
IPR5:
-1
1PR6:
-1
1 PR?:
-1
1CALC:
1
lOuTD:
I
HIFAC:
1.
W 1 T f ft :
50
DIV L1M:
l.OC
IOBR:
0
NUH6AR;
0
1 JUL TU:
1
NSHTH:
4
11X TRP:
1
FUTRP:
0.
0.
GAMMA:
2.5
3.2
-10.0 -«
CRITfN;
1.0
HKRAO:
50.0
I Ihf :
300.0
IFRAOJ:
1
UlNf:
1
ALPHA:
0.1
UN:
2.6
2.6 ;
2.9 *;
VM;
-1.5
-1.4-
-0.4 -
25. SO. 100. ISO.
900. 1100. 1300. 1500.
200. 250. 300. 400. 500.
0.
0.
3.6 4.0
?. 6
2.7
?. 9
1 .f>
1 . 3
2.6
?. 7
3.0
¦1.5
1.1
0.1
0.
0.
5.0
•6.0
-9.3
2.6
2.7
3.0
-1.5
-1.0
0.0
6.0
7.6
8.6
-0.9
0.1
0.
$.0
-9.0
- /. 3
2.6
2.8
2.8
-1.5
-0.8
0.?
0.
4.0
-9. $
-b.O
3.7
9.8
0.5
2.6
2.0
2.6
-1.5
-0.6
0.3
2.6
2.9
2.5
• 1.5
-0.5
0.4
0.
EXHIBIT 4-1. Parameter input file for the Diagnostic Wind Model.
-------
The minimum radius of influence (RMIN) and maximum radii (RMAX) for the interpo-
lation are specified next. The minimum is assigned some small value (e.g. 1 km) to
ensure that there is no attempt to divide by zero in the inverse-distance-squared
weighting scheme. The maxima vary with height and with type of surface (land or
water). RMAX1 is the maximum radius of influence over land areas in the domain at
the surface. This value should reflect the limiting influence of terrain features on
the interpolation at this level. RMAX2 is the maximum over land and aloft; this
value is generally larger than RMAX1 because the terrain effects decrease with
height. RMAX3 is the maximum over water at all levels; it must be large enough so
that all grid points located over water are influenced by at least one observation.
For an objective analysis, only RMAX1 need be specified. In this case, the value of
RMAX1 must be large enough so that every grid point is influenced by at least one
observation. If this criterion is not met, the simulation is aborted.
The next parameters (R1 and R2) control the relative weighting of the wind field
produced in step 1 of the wind model (hereafter referred to as the first-guess field)
and the observations. R1 is applied at the surface and R2 is used aloft. The degree
of influence of the first-guess field is inversely related to the values of these para-
meters. When considering a single surface station in the interpolation at a grid
point, R1 is the distance from the station at which the observation and the first-
guess field are equally weighted.
The maximum number of stations to be used in the interpolation (NINTRP) is speci-
fied next. This allows only the NINTRP closest stations to be included in the inter-
polation at a grid point and can be more restrictive than the RMAX parameters. The
NINTRP closest stations are used in the interpolation only if they are located within
the maximum radius of influence of the grid point. This parameter is a function of
observation density. The effect of increasing NINTRP is similar to smoothing,
except that by increasing NINTRP the observations are represented more accurately
in the resulting wind field.
The next nine parameters control the formatted output from the DWM. The user
first specifies the number of levels for which output is to be printed (NZPRNT) and
then sets flags to generate output during various stages of the simulation. If the
IPRO option is invoked, the interpolated u and v wind component fields are printed
for each hour of the simulation. If the IPR1 option is invoked, the terrain-adjusted
surface wind component fields are printed (this procedure is used only with the
objective analysis). If the IPR2 option is invoked, the smoothed wind component
fields and the initial divergence fields are printed. If the IPR3 option is invoked, the
final wind speed and direction fields (calculated from the u- and v-component fields)
are printed. If the IPR4 option is invoked, the final divergence field is printed.
IPR5j IPR6, and IPR7 control the printing of the three-dimensional wind fields during
step 1 of the diagnostic wind model. Output can be generated after the kinematic
effects have been calculated, after the slope flows have been added, or after the
Froude number adjustment has been applied. These three flags also control the
90008 is
36
-------
generation of binary output files that can be used to examine each of these complex-
terrain effects. IPR8 controls the printing of the final three-dimensional wind field.
Two additional flags follow. ICALC determines whether the wind fields are to be
calculated. A preliminary run, in which the ICALC option is not invoked, can be used
to ensure that the data are being read properly. IOUTD controls whether the com-
puted wind fields are written to disk. The next parameter (HTFAC) is a multiplica-
tive factor for converting terrain heights to meters.
The maximum number of iterations to be performed in the divergence-minimization
procedure (NITER) is specified next. This value is normally set at 50. The maximum
acceptable divergence (DIVLIM) is also specified; a typical range for this parameter
is 1.0E-7 to 1.0E-5. If the IOBR option is invoked, the O'Brien adjustment procedure
is used to adjust the vertical velocity profile. The number of barriers to interpola-
tion (NUMBAR) is specified next. If the I3DCTW option is invoked, the full diag-
nostic wind model is exercised.
The number of smoothing passes (NSMTH) is then specified for each vertical layer.
Smoothing can reduce the discontinuities that result from the interpolation and can
also enhance the divergence-minimization procedure. It is important, however, not
to overuse smoothing since this reduces the accuracy with which the data are repre-
sented in the analyzed field. A maximum of two smoothing passes are applied to the
surface layer wind fields. More smoothing may be applied aloft, where less vari-
ability is expected.
This is followed by the vertical extrapolation parameters. IEXTRP is the control
parameter for the vertical extrapolation of surface winds to upper levels. The avail-
able options are summarized in Table k-2. If IEXTRP equals +3 (surface winds are
extrapolated), the surface wind is multiplied by the values of FEXTRP (one for each
level above level 1) to estimate the upper-level winds. This option may be used, for
example, when there are very few upper-air soundings available for an area and the
surface data are extrapolated in the vertical with a specified wind profile (e.g.,
logarithmic wind profile). Use of this option is not recommended if the wind fields
from DWM are to be post-processed and converted to UAM input format with the
UAMWIND conversion program (see Volume II, Section 6.5.2) because the vertical
interpolation is performed by UAMWND.
Certain parameters are specified only when step 1 of the DWM is exercised. For
an objective analysis only, these can be omitted. The domain-mean lapse rate
(GAMMA) is specified for 2k hours beginning at 0000 LST and ending at 2300 LST.
This parameter is an estimate of the lapse rate in that region of the domain where
the complex-terrain effects are expected to have the most influence. It is used in
the calculation of the Froude number and also controls the magnitude of the slope
flows.
90003 IS
37
-------
This Is followed by the critical Froude number (CRITFN), which is usually equal to
1. The distance over which terrain features (TERRAD) influence the air flow is
given next. This parameter should be governed by the dominant scale of the terrain
features. The surface temperature (TINF) is estimated next; it is not necessary to
specify this parameter accurately. If the IFRADJ option is invoked, the Froude
number adjustment is calculated.
If the IKINE option is invoked, the kinematic effects are calculated. ALPHA is an
empirical parameter that controls the magnitude of the kinematic effects. Recom-
mended values for this parameter range between 0.1 and 0.3.
The next two input records contain the u- and v-components (UM, VM) of the
domain-mean wind specified for the 24-hour period from 0000 LST to 2300 LST. The
domain-mean wind provides the basic flow that is adjusted for complex-terrain
effects in step I of the DWM. The domain-mean wind can be based upon observa-
tions in the region or it can be derived from the National Meteorological Center's
Limited-Area Fine-Mesh Model (LFM) boundary-layer winds. The influence of the
domain-mean wind is strongest in data-sparse areas oyer land.
If barriers are used, the UTM coordinates of the barrier endpoints (BARXY) are
specified.
The gridded terrain heights for the domain are contained in a separate file. The ter-
rain heights are defined at the grid cell centers.
Surface type is specified for each grid cell in a separate file. In this file '0' indicates
that the grid cell is located over water and "l* indicates that the grid cell is located
over land.
4.2.2 Hourly Specific Data
The surface data file (refer to Exhibit 3-2) is generated by the surface preprocessing
program (PRESFC). This file contains a list of the station identifiers and the UTM
coordinates for each surface station, followed by the surface data for each station
and for each time increment (usually hour) of the simulation given in terms of the u-
and v-components. Missing data are identified by 999. A station identifier, LAST,
indicates the end of the data for each hour.
The upper-air data file (refer to Exhibit 3-4) is generated by the upper-air prepro-
cessing program (PREUA). It contains a list of the upper-air station identifiers and
the locations of each of these stations. The u and v wind components for each model
level are given for each station and for each time increment (usually hour) of the
simulation. Missing data are identified by 999. A station identifier LAST indicates
the end of the data for each hour.
90008 IS
38
-------
4.3 FILE STRUCTURE
Table 4-3 lists the logical units that are assigned in the Diagnostic Wind Model code
to the various input and output files.
4.4 DATA SPECIFIED WITHIN THE MODEL
Upper limits for the grid dimensions, the number of stations, and the number of bar-
riers are specified in the model through the use of parameter statements. These
values are listed in Table 4-4.
4.5 OUTPUT
Three-dimensional hourly fields of the final u and v wind components are output by
the DWM. Two-dimensional hourly fields of the wind components during
intermediate steps are also output if requested by the user. This is primarily a
diagnostic tool with which to examine complex-terrain effects calculated in step 1 of
the DWM.
An additional output file contains the input parameters, the input data for each hour,
information on the divergence minimization procedure, and a listing of 'the final wind
fields. A sample printed output file is given in Exhibit 4-2. Various output options
may be specified to examine other aspects of the simulation.
4.6 Conversion of DWM Files to UAM Input Format
If desired, the program UAMWND may be used to convert the DWM winds to the
UAM-compatible input file format (Figure 4-1). Because the layers in the DWM are
fixed in time and space, and the layers in the UAM may change temporally and
spatially depending on the top of the region (REGIONTOP) and the mixing height
(DIFFBREAK), the winds must be converted from DWM layers to UAM layers. Sec-
tion 6.5.2 of Volume II provides the details regarding the UAMWND conversion pro-
gram.
9 0 0 0 8 15
39
-------
TABLE 4-3. Input and output files for
the Diagnostic Wind Model.
Logical
Unit File Contents Format
12 Input parameters ASCII
7 Surface data ASCII
8 Upper-air data ASCII
5 Gridded terrain ASCII
heights
4 Gridded surface-type ASCII
indicators
6 Printed output file ASCII
9 2-D final gridded Binary
wind components for
each layer
11 2-D wind components Binary
after kinematic
effects have been
calculated
14 2-D wind components Binary
after slope flows
have been added
13 2-D wind components Binary
after Froude-number
adjustment
90008 17
40
-------
TABLE 4-4. Data specified within the DWM.
Parameter Description Stored Value
NXMAX
Maximum number of grid points
in the x-direction
50
NYMAX
Maximum number of grid points
in the y-direction
50
NZMAX
Maximum number of vertical
layers
15
NWINDM
Maximum number of wind
stations
100
NUPPRM
Maximum number of upper-air
wind stations
50
MAXBAR
Maximum number of user-specified
barriers
20
90003 17
41
-------
AI L AN r A 840603
Gft ID DESCRIPTION
NX > 40 NY > 40 NZ - 14
DX > 4000.0 OY = 4000.0 0I < 25.0 25.0 50.0 50.0 50.0 50.0 50.0 100.0 100.0 200.0
OZ > 200.0 200.0 700.0 200.0
CELL CENTER HEIGHTS • 12.5 37.5 75.0 125.0 175.0
CELL CENTER HEIGHTS - 225.0 275.0 350.0 450.0 600.0
CELL CENTER HEIGHTS > 800.0 1000.0 1200.0 1400.0
S1MULATION OPT IONS
NOHRS - 1 NWINO > 8
HSuRf =• 4 HUPPER * 4
|PRO« -1 I PR 1¦ -1 IPR2- -I 1PR3 = -1 IPR4= -1
!Pfi5» -1 IP R 6 = -1 IPR7» -I IOUTD* 1 1CALC- 1
OIVCRGENCE MINIMIZATION CRITERIA
MAXIMUM NUMBER Of ITERATIONS = 50
AGCEPTABlf DIVERGENCE LIMIT > 0.100E-05
IOBR = 0 I30CTU = 1
INTERPOLATION CRITERIA
INFLUENCE RAOII OF STATION DATA: MINIMUM * 1.00
MAX I HUM SURFACE = 40.00 MAXIMUM UPPER • 200.00
MAXIMUM WATER - 200.00
NUMBER OF STATIONS USEO - 4 2 2 2 2
HUHBER Of STATIONS USED = 2 2 2 2 2
NUMBER OF STATIONS USfO ¦= 7 7 2 2
DIAGNOSTIC WIND MODEL PARAMETERS
R SURF • 20.00 R UPPER = 160.00
GAMMA > 0.003 0.004 0.004 0.005 O.OUb 0.00*> 0.004 0.004
0.00 3 0.001-0.003-0.006-0.008-0.009-0.010-0.010
-0.010-0.010-0.010-0.009-0.009-0.00?-0.005-0. 001
EXHIBIT 4-2. Sanple printed output file from the diagnostic wind model.
-------
TINF » 300.0
CR1TFN - 1.0 TEfiRAO = 50.0
BE TA2 » -1 .00- 1 .00-1.00- 1 .00-1 .00-1 .00- 1 .00-i.00
-1.00-1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IfftADJ
3
1
1KINC
=
1
ALPHA
UN *
2.6
2.6
2.9
2.6
2.7
2.9
2.6
2.7
3.0
2.6
2.7
3.0
2.6
2.8
2.9
2.6
2.8
2.8
2.6 2.6
2.8 2.9
2.6 2.5
VH •
-l.S
-1.4
-0.4
-1.5
-1.3
-0.3
-1.5
-1.1
-0.1
-1.5
-1.0
0.0
-1.5
-0.9
0.1
-1.5
-0.8
0.2
-1.5 -1.5
-0.6 -0.5
0.3 0.4
ATLANTA 840603
TERRAIN HfIGHTS (H)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
40
29
25
28
31
33
21
20
21
20
21
21
21
25
36
33
33
39
24
25
29
28
30
20
20
21
23
22
2\
77
25
30
37
34
38
26
26
25
21
25
19
21
20
24
23
21
24
22
28
37
36
37
24
27
21
2U
21
21
23
21
25
25
23
23
24
21
35
37
36
22
21
20
20
22
24
26
22
27
25
24
24
26
31
32
37
3b
24
22
19
19
22
71
71
24
27
29
21
25
26
29
36
37
34
24
19
19
20
26
27
28
25
28
28
27
27
31
37
47
33
33
20
19
20
24
25
24
24
27
27
25
26
27
35
37
39
31
32
25
21
20
21
22
21
22
24
24
25
25
28
32
30
32
30
31
23
21
23
23
21
23
21
23
24
24
23
29
29
28
31
28
30
23
23
24
24
24
25
23
21
23
23
23
27
28
27
28
27
29
28
27
25
25
25
25
23
21
21
21
21
25
27
28
27
29
28
28
29
27
26
25
22
22
21
21
24
26
24
25
27
28
32
27
26
27
27
26
24
25
26
?5
25
28
28
25
26
27
29
33
26
25
27
28
26
24
26
30
32
28
29
26
28
27
28
31
31
25
26
79
?1
26
?S
26
29
3?
77
?9
29
?9
30
28
32
32
24
27
28
27
27
29
31
35
33
29
27
29
32
32
31
30
31
23
30
32
36
3b
37
38
39
36
30
29
31
33
30
29
27
30
22
34
36
35
35
36
37
38
35
30
32
33
30
29
28
27
29
21
34
35
34
36
36
36
37
38
33
32
31
29
28
27
26
28
20
35
37
37
36
36
37
37
36
35
32
31
29
29
29
27
28
19
32
3b
40
37
38
38
36
35
33
30
30
30
32
31
27
28
18
35
35
38
39
.18
35
34
34
35
33
33
35
33
31
28
24
17
34
37
38
39
36
33
33
37
35
33
32
34
30
29
26
24
16
37
36
36
36
34
32
33
34
32
30
29
28
27
25
23
24
15
35
34
34
33
33
32
35
36
35
33
28
25
23
26
25
24
1 4
30
32
33
31
30
32
34
33
36
32
25
24
24
27
28
28
13
29
32
31
30
30
33
33
29
30
26
72
24
26
29
29
30
12
28
29
30
30
31
30
32
29
25
23
22
23
26
29
30
21
11
21
28
29
32
32
29
21
24
23
21
22
24
25
29
29
2)
10
31
31
32
34
29
28
22
22
23
23
25
26
28
29
28
21
9
33
30
30
32
28
23
23
24
23
23
25
27
27
28
27
26
EXHIBIT 4-2. Continued*
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
45
52
69
74
51
50
47
50
46
43
41
39
41
43
42
48
45
45
43
45
42
53
68
52
45
46
46
46
42
40
38
38
37
39
40
41
40
47
42
40
40
46
48
44
44
43
42
39
38
35
35
36
38
39
38
36
4b
38
37
37
39
43
41
40
38
40
37
35
33
35
35
38
37
36
35
40
37
34
35
36
39
38
36
36
35
35
35
33
35
36
33
34
34
34
38
36
32
32
32
35
33
35
36
37
38
37
35
34
33
34
36
33
30
38
35
30
29
32
31
31
33
36
36
39
40
37
33
34
36
37
33
28
35
32
29
34
33
34
34
35
37
38
38
37
35
33
36
37
35
33
28
27
30
33
34
35
36
35
35
40
36
35
33
33
33
37
35
33
30
27
33
33
31
32
32
34
34
34
36
36
33
33
33
35
36
34
31
31
28
33
31
29
31
32
32
34
34
37
35
33
33
36
37
32
29
30
28
26
29
29
30
30
30
32
33
34
35
31
32
34
35
36
30
28
27
27
27
29
29
30
32
33
34
32
34
33
30
31
31
33
36
33
29
27
25
25
30
34
32
33
33
32
32
32
30
29
30
30
33
35
32
30
29
29
25
32
33
31
29
29
32
31
28
29
31
32
30
33
34
32
30
32
29
27
33
31
31
28
30
28
28
29
30
30
30
30
33
32
31
30
28
28
27
32
30
29
30
32
30
29
30
29
28
29
29
31
30
28
29
28
27
26
31
29
28
30
29
30
29
30
28
27
27
29
31
31
29
26
26
26
25
31
29
27
28
29
28
29
32
30
29
27
30
30
30
30
26
25
26
27
27
25
26
28
27
28
30
32
30
28
26
28
28
29
28
27
27
25
26
25
24
27
26
28
29
30
29
30
27
25
25
27
27
26
27
25
24
24
26
27
28
29
30
30
30
28
28
27
25
25
28
25
24
26
24
23
23
25
28
30
30
29
29
27
26
26
26
26
24
25
24
22
24
23
23
23
28
28
30
28
26
25
24
24
24
25
27
26
24
21
21
23
23
22
22
27
28
30
29
27
25
25
24
22
23
24
25
25
22
20
22
23
21
24
29
30
30
28
28
26
26
25
24
23
23
23
24
24
20
21
22
21
23
29
28
29
27
27
?6
24
23
24
23
21
22
23
24
21
20
21
22
24
28
27
27
27
27
27
25
23
22
22
22
21
23
23
22
19
21
23
23
27
28
26
25
27
25
24
23
23
25
22
21
20
20
19
19
21
2D
20
26
27
27
25
27
27
26
26
25
23
22
21
21
20
19
18
19
19
20
28
?6
27
26
26
28
28
26
25
25
24
23
23
21
18
IB
IB
19
20
26
26
27
25
26
27
26
27
26
25
23
21
21
21
19
16
16
18
19
o
17
. ~
34
3/
39
47
41
34
34
34
28
29
2 9
29
29
30
30
34
33
3 2
29
2 8
30
26
2 4
26
25
27
29
29
27
28
28
26
-------
3 2
30
2 8
27
23
22
2 5
24
24
21
?8
27
27
28
26
25
25
26
1
30
26
28
24
22
24
24
23
23
25
26
27
26
27
27
25
24
25
I
31
26
24
23
21
23
?4
2J
22
25
27
27
26
27
28
28
25
24
I
27
23
22
21
22
23
22
21
23
23
26
27
26
25
26
27
25
24
1
25
24
23
22
20
21
?0
21
23
24
25
27
26
24
24
24
24
23
1
23
24
23
21
19
19
21
22
23
25
27
28
27
25
23
23
24
23
1
22
22
22
21
21
20
22
21
25
25
26
27
26
26
25
23
23
24
1
2\
22
??
20
19
20
21
22
23
25
27
25
23
23
24
24
23
24
37 38 39 40
40
38
40
41
44
39
37
38
41
35
38
35
39
35
25
37
38
35
29
25
36
35
30
28
24
35
30
26
24
24
34
26
25
23
22
33
25
25
25
26
32
25
27
26
25
31
24
24
27
26
30
24
24
26
26
29
26
24
23
24
28
24
23
22
25
27
24
23
22
23
26
26
23
24
24
25
26
26
26
2H
24
24
25
25
25
23
24
24
24
24
22
26
24
24
23
21
25
24
24
23
20
25
24
24
23
19
25
24
24
22
18
24
23
24
22
17
25
22
21
22
16
7.2
23
21
19
15
20
21
21
20
14
21
18
20
20
13
21
19
16
19
12
19
20
19
18
11
19
17
19
1 7
10
17
16
17
17
9
IB
16
IS
18
8
16
15
15
17
7
17
16
16
15
6
18
17
15
15
5
18
16
15
15
4
\
15
1 5
15
14
3
1
14
15
15
14
2
1
13
14
15
14
1
1
13
14
15
IS
ARRAt HAS 81CN SCAl£0 BY O.U'OO FOR PRINTING
HHAX ARRAT
24
24
26
25
?4
25
24
24
23
20
21
18
16
17 1
19
24
26
27
26
23
22
22
22
23
22
22
19
18
15 1
18
24
24
26
26
24
23
22
21
22
22
21
20
19
15 1
15
24
25
27
28
26
24
22
21
20
20
19
17
17
15 1
17
25
27
28
27
26
23
23
21
19
20
20
17
15
14 1
16
26
27
27
25
24
25
22
21
19
18
19
19
17
14 1
15
26
26
26
25
24
25
23
22
19
16
16
16
16
14 1
14
25
25
26
25
23
25
22
21
20
19
18
17
15
14 1
14
EXHIBIT 4-2. Continued c
-------
1
1 +
2
3
4
S
6
7
8
9
10
t 1
12
13
14
IS
16
11
40
I 33
36
37
37
47
4/
47
S2
69
74
74
74
74
74
74
74
74
39
1 33
36
37
47
47
47
47
52
69
74
74
74
74
74
74
74
74
38
1 33
36
37
47
47
47
47
5?
69
74
74
74
74
74
74
74
74
37
1 33
37
47
47
47
47
47
5?
69
74
74
74
74
74
74
74
74
36
1 35
37
47
47
47
47
47
47
53
69
74
74
74
74
74
74
74
35
1 36
37
47
47
47
47
47
4/
5?
69
74
74
74
74
74
74
74
34
I 38
39
47
47
47
47
47
47
47
53
69
74
74
74
74
74
74
33
1 39
39
47
47
47
47
47
47
47
5?
69
74
74
74
74
74
74
32
1 39
39
47
47
47
47
47
47
47
47
53
69
74
74
74
74
74
31
1 40
40
47
47
47
47
47
47
47
47
47
53
69
74
74
74
74
30
1 40
40
40
47
47
47
47
47
47
47
47
47
53
69
74
74
74
29
I 40
40
40
47
47
47
47
47
47
47
47
47
47
S3
68
69
74
28
1 40
40
40
40
47
47
47
47
47
47
47
47
47
47
47
53
68
27
I 40
40
40
40
47
47
47
47
47
47
47
47
47
47
47
47
47
26
I 40
40
40
40
40
47
47
47
47
47
47
47
47
47
47
47
47
25
1 40
40
40
40
40
40
47
47
47
47
47
47
47
47
47
47
47
24
! 40
40
40
40
40
40
40
47
47
47
47
47
47
47
47
47
47
23
1 40
40
40
40
40
40
40
40
40
47
47
47
47
47
47
47
47
??
1 40
40
40
40
40
40
40
40
40
40
40
47
47
47
47
47
47
21
1 40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
20
1 40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
19
I 40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
18
1 40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
17
1 40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
16
I 40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
15
I 40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
38
14
1 40
40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
38
13
I 40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
38
38
1?
I 40
40
40
40
40
40
40
40
40
40
40
40
40
39
39
38
37
11
1 40
40
40
40
40
40
40
40
40
40
40
40
39
39
38
37
37
10
1 40
40
40
40
40
40
40
40
40
40
40
39
39
39
37
37
37
9
I 40
40
40
40
40
40
40
40
40
40
39
39
39
37
37
37
37
8
1 40
40
40
40
40
40
40
40
39
39
39
39
37
37
37
37
36
7
1 40
40
40
40
40
40
39
39
39
39
39
3/
37
37
37
36
36
6
I 39
39
39
39
39
39
39
39
39
37
37
37
37
36
36
36
36
5
t 39
39
39
39
39
39
39
37
37
37
37
36
36
36
36
36
36
4
I 37
37
37
37
36
36
36
36
36
36
36
36
36
36
36
36
3 2
3
1 35
35
35
36
36
36
36
36
36
36
36
36
36
36
32
30
30
2
1 34
34
34
34
34
36
36
36
36
36
36
36
34
3?
30
30
30
1
I 34
34
34
34
34
34
34
34
34
34
34
34
3?
30
30
30
30
37
t X
38
39
40
40
1 ¦ • T
I 50
SO
48
48
39
1 50
SO
48
48
38
1 SO
50
48
48
37
1 50
50
48
48
36
1 SO
48
46
48
35
1 SO
48
48
48
34
1 48
48
46
48
33
1 48
48
48
48
32
I 46
48
48
48
31
1 46
48
48
48
30
I 48
48
48
48
29
1 48
48
48
45
19
20
21
22
2 3
24
25
2 6
27
28
29
30
31
32
33
34
35
36
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
52
50
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
52
50
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
52
50
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
52
50
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
68
52
50
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
52
SO
50
74
74
74
74
74
74
74
74
74
74
74
74
74
74
68
52
50
50
74
74
74
74
74
74
74
74
74
74
74
74
74
74
52
50
50
50
74
74
74
74
74
74
74
74
74
74
74
74
74
68
52
50
50
48
74
74
74
74
74
74
74
74
74
74
74
74
68
52
SO
50
48
48
74
74
74
74
74
74
74
74
74
74
74
68
52
50
50
48
48
48
74
74
74
74
74
74
74
74
74
68
68
52
50
48
48
48
48
48
74
74
74
74
74
74
74
68
68
52
50
48
48
48
48
48
48
48
68
68
68
68
68
68
68
52
48
48
46
46
43
42
41
41
41
41
47
48
48
48
48
48
48
48
44
44
43
42
40
40
40
40
40
40
47
47
47
47
47
43
43
43
41
40
40
40
40
40
40
40
40
40
47
47
47
47
40
40
40
40
40
40
40
40
40
40
40
40
40
40
47
47
40
40
40
40
40
40
40
40
40
40
40
40
40
40
38
37
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
37
37
37
39
38
40
40
40
40
40
40
40
40
40
40
40
37
37
37
37
37
39
38
37
•37
40
40
40
40
40
40
40
37
37
37
37
37
37
37
38
38
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
37
38
38
35
35
37
37
37
37
37
37
37
37
37
37
37
37
36
36
38
37
36
35
35
35
35
36
36
36
36
36
36
36
36
36
36
36
38
37
36
35
35
35
34
35
35
36
36
36
36
36
36
36
35
35
37
37
36
35
3S
35
33
34
34
35
35
35
35
35
35
35
34
34
37
37
36
35
35
34
33
33
33
34
34
34
34
34
34
34
33
32
37
36
36
35
35
33
32
32
33
33
33
33
33
33
33
32
31
31
37
36
36
35
34
32
32
32
32
32
32
32
32
32
32
31
31
31
36
36
36
35
33
32
32
32
32
32
32
32
32
32
31
31
30
30
36
36
35
34
32
32
32
32
32
32
32
32
30
30
30
30
30
29
36
36
34
3?
32
32
32
32
32
32
30
30
30
29
29
29
28
28
36
34
31
30
30
30
30
30
30
30
30
30
28
28
28
28
28
28
36
32
30
30
30
30
30
30
30
30
30
29
28
28
28
28
28
28
32
30
30
30
30
30
30
30
30
30
29
28
28
28
28
28
28
28
30
30
30
30
30
30
30
30
30
29
28
28
28
26
28
28
28
28
30
30
30
30
30
30
30
29
29
28
28
28
28
28
28
28
28
28
30
30
30
30
30
29
29
28
28
28
28
28
28
28
28
28
28
28
30
30
30
30
29
28
28
28
28
28
28
28
26
28
28
28
28
28
30
30
29
29
28
28
28
28
28
28
28
28
28
28
28
28
28
27
] 8
74
74
74
74
74
74
7 4
74
74
74
74
74
69
S3
47
47
47
47
47
39
39
39
39
38
38
38
38
37
37
37
37
36
36
36
36
3?
30
30
30
30
EXHIBIT 4-2. Continued.
-------
28
48
45
45
44
27
4 1
4]
4 1
4 1
26
40
40
39
39
25
40
38
38
36
24
37
37
37
37
23
37
37
3?
37
22
37
37
37
37
21
37
37
37
36
20
37
37
36
36
19
36
36
36
35
18
36
36
35
34
17
35
35
34
32
16
34
34
32
32
IS
33
32
32
31
14
32
31
31
30
13
31
31
30
30
12
30
30
30
26
11
30
29
28
27
10
28
28
27
27
9
28
27
26
26
8
27
26
25
25
7
27
26
25
25
6
27
26
25
25
5
26
2S
2S
25
4
26
25
24
24
3
26
25
24
24
2
26
25
24
23
1
26
25
23
22
ARRAY HAS BEEN SCALfO Br O.lEtOO FOR PRINTING
ATLANTA 840603
SURFACE '
rvpt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
1 - - ~ •
40
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
39
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
38
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
37
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
36
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
35
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
34
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
33
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
32
1 10
10
10
to
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
31
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
30
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
29
I 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
28
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
27
I 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
26
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
25
1 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
24
I 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
23
I 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
22
I 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
36
. ~
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
EXHIBIT 4-2. Continued.
-------
21
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
19
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
IB
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
17
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
16
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
15
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
14
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
13
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
12
I
10
10
10
10
10
10
10
10
to
10
10
10
10
10
10
10
10
11
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
|
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
9
I
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
B
I
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
7
|
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
6
|
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
5
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
4
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
3
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
2
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1
1
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1
37
3B
39
40
40
1 •
I
10
10
10
10
39
I
10
10
10
10
38
|
10
10
10
10
37
1
10
10
10
10
36
1
10
10
10
10
35
|
10
10
10
10
34
1
10
10
10
10
33
1
10
10
10
10
3?
|
10
10
10
10
31
!
10
10
10
10
30
|
10
10
10
10
29
1
10
10
10
10
26
1
10
10
10
10
27
i
10
10
10
10
26
i
10
10
10
10
25
i
10
10
10
10
24
i
10
10
10
10
23
i
10
10
10
10
22
i
10
10
10
10
21
i
10
10
10
10
20
i
10
10
10
10
19
i
10
10
10
10
16
i
10
10
10
10
17
i
10
10
10
10
16
I
10
10
10
10
IS
i
10
10
10
10
14
I
10
10
10
10
13
I
10
10
10
10
12
i
10
10
10
10
11
i
10
10
10
10
10
i
10
10
10
10
9
i
10
10
10
10
6
i
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10'
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
to
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
to
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
EXHIBIT 4-2. Continued.
-------
U)
I to 10 10 10
i 10 10 10 10
i 10 10 10 10
i to 10 10 10
1 10 10 10 10
I 10 10 10 10
I 10 10 10 10
ARRAY HAS BEEN SCALEO 6Y 0.|f»02 FOR PRINTING
GRIDDEO UI NO STATIONS COORDINATES
1.
IS
JS
NAME
1
18
19
CBA
2
23
72
PTA
3
18
23
DOB
4
24
17
DEK
5
71
-49
1221
6
-44
-S
1222
7
46
2 4
12 31
0
-29
87
1212
SUMMARY OF 0 I VERGE NCE MINIMIZATION
LEVEL
ITERATIONS
MAXIMUM DIVERGENCE
1
30
0.961E-06
2
26
0.979E-06
3
21
0.960E-06
4
13
0.986E-06
h
0.962E-06
6
5
0.952E-06
7
4
0.823E-06
B
2
0.788E-06
9
1
0.597E-06
10
1
0.230E-06
11
0
0.267E-06
12
0
0.694E-07
13
0
0.I80C-07
14
0
0.469E-08
ATLANTA 840603
INPUT DATA AT TIMC - 0. HOURS (SIMULATION HOUR NO. 1 )
SURFACE UI NO OATA
STATION U-CMPI , V-CMPT WEIGHTING
H/SEC M/SCC
EXHIBIT 4-2. Continued.
-------
C8A
PTA
008
OEK
0.9
999.0
1.6
0.6
o.s
999.0
-1.0
-0.3
1.00
1 .on
1.00
1.00
UPPER AIR UI NO DATA
STATION
7221
7222
7231
7232
•• LEVEL 1 ---
U-CHPT V-CMPT
M/S M/S
2.3 2.3
-1.2 -1.6
3.3 -0.8
999.0 999.0
UPPER AIR WINO OATA
--- LEVEL
6 ...
STATION
U-CMPT
V-CMPT
H/S
H/S
7221
8.1
-4.7
7222
4. 5
-5.4
7231
6.3
-5.0
7232
0.3
2.0
- LEVEL 2 - -
U-CHPT V-ChPT
M/S H/S
3.1 2.2
-0.4 -?.l
4.0 -1.3
999.0 999.0
- LEVEL 7 ---
U-CHPT V-CMPT
M/S M/S
6.9 -6.4
4.5 -6.4
6.8 -*.9
1.9 -0.1
- L t Vt L
3 ...
LEVEL
4
--- LEVEL
5 -- -
U-CMPT
V-CHPT
U-CHPT
V-CMPT
U-CHPT
V-CMPT
M/S
M/S
M/S
M/S
M/S
H/S
4.2
2.1
5 . 6
0.2
6.8
-2.2
0.9
-3.0
2.6
-4.1
4.3
-*.2
4.8
-2.0
5.3
-3.0
5. 8
-4.0
999.0
999.0
999.0
999.0
999.0
999.0
- LEVEl
6 ---
--- LEVEL
9 ---
--- LEVEL
10 ---
U-CHPT
V-CMPT
U-CHPT
V-CMPT
U-CHPT
V-CMPT
M/S
M/S
M/S
H/S
H/S
8.4
-6.9
7.8
-7.6
6.9
-8.3
4. 5
-5.4
4.5
-5.4
4.4
-4.9
7.6
-7.4
6.2
-7.2
3.3
-6.1
4.4
-3.5
7.0
-7.0
6.7
-6.7
UPPER AIR UIMD OATA
STATION
7221
7222
72 31
7232
ATLANTA 840603
U-CHPT
M/S
6.1
4.3
2.0
6.3
11 ---
LEVEL
12 ---
--- LEVEL
13 -. -
--- LEVEL
14 ...
V-CHPT
U-CHPT
V-CMPT
U-CMPT
V-CMPT
U-CHPT
V-CMPT
H/S
M/S
M/S
H/S
M/S
H/S
M/S
-7.3
5.1
-6.5
4.0
-5.7
3.9
-4.9
-4.1
4 . 3
-2.9
3.6 •
•2.2
2.5
-1.7
-4.2
2.2
-2.3
4 . 7
-2.1
5.5
-2.4
-6.1
6.2
-5.3
5.5
•3.2
5.0
-1 .2
LEVEL
U-CNPT V-CHPT
H/S H/S
FINAL WI NO FIELD AT TIME =
(S1MULATION HOUR NO. 1 )
X-COMPONENT OF WIND (U) AT LEVEL • 1 (M/SEC)
1
I - - ~ .
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
40 !
1 26
26
26
27
26
27
25
22
26
24
20
4
5
15
22
22
14
2
7
15
24
29
?9
26
24
26
27
26
26
24
22
23
21
25
26
27
39 1
[ 26
26
26
26
27
26
21
17
24
25
20
4
/
14
20
22
18
17
20
22
24
28
?9
27
25
26
27
27
26
25
24
23
23
25
26
26
38 1
1 26
26
26
25
25
25
22
14
21
24
23
13
9
8
12
17
1 7
23
26
26
26
26
27
27
26
26
26
26
26
24
21
19
21
25
26
26
37 1
1 26
26
26
23
22
24
25
) 8
19
24
21
11
9
3
6
6
11
24
27
27
26
26
26
21
26
25
25
26
25
21
13
16
22
25
26
26
36 1
1 26
25
22
13
10
21
25
22
18
24
24
13
4
0
4
8
18
25
27
26
26
26
26
26
24
22
22
25
26
24
18
21
24
26
26
26
35 1
1 26
25
19
9
9
19
25
21
12
23
24
20
14
11
17
20
22
25
?b
26
26
25
26
23
17
8
6
20
25
25
23
23
24
26
26
26
34 1
I 26
24
17 ,
. 8
9
21
25
22
14
22
16
8
10
10
22
23
18
24
26
25
24
24
24
18
9
2
1
13
23
24
21
19
21
25
27
27
EXHIBIT 4-2. Continued.
-------
33
1
26
21
9
9
17
23
24
22
21
23
17
4
9
32
1
26
26
20
16
23
26
25
23
23
21
14
6
17
31
I
27
28
26
25
27
28
26
22
22
21
15
11
21
30
1
28
28
28
27
27
28
26
24
24
23
17
17
22
29
1
26
27
27
27
25
26
26
26
26
24
20
19
20
28
|
26
26
26
26
25
25
26
27
25
24
24
20
16
27
j
26
26
26
26
25
22
23
26
25
24
24
22
16
26
1
26
26
26
26
22
10
10
22
24
23
22
22
18
25
1
26
26
26
26
25
19
17
23
23
21
20
21
20
24
1
25
26
26
26
26
25
24
25
23
19
14
19
19
23
1
25
25
26
26
26
26
26
25
23
21
18
19
19
72
1
26
26
26
26
26
27
27
25
23
21
20
19
18
21
I
26
26
26
26
26
27
27
26
23
21
20
19
18
20
|
26
26
26
26
27
27
26
25
22
21
20
19
18
19
I
26
26
26
27
27
27
26
25
22
21
20
19
18
18
I
26
26
27
27
27
26
26
25
23
21
20
19
18
17
1
26
27
27
27
27
26
26
26
23
21
20
20
18
16
1
27
27
27
27
26
26
26
26
24
22
21
20
19
15
1
27
27
27
27
26
26
27
26
25
23
22
20
19
14
1
27
27
27
27
26
26
27
27
26
24
22
19
19
13
1
27
27
27
27
27
27
27
27
26
25
20
15
19
12
1
27
27
27
27
27
27
27
27
26
24
18
14
20
11
1
27
27
27
27
27
27
27
26
23
23
21
19
22
10
I
27
27
77
27
27
27
26
22
15
19
23
24
25
9
1
27
27
27
27
27
26
26
26
18
12
22
25
26
8
1
21
27
27
27
24
20
24
26
24
20
25
26
26
7
1
27
27
27
26
20
11
22
25
26
25
26
26
26
6
1
?7
27
26
26
22
16
23
25
26
26
26
26
26
5
1
27
27
26
25
27
23
25
26
26
26
26
26
26
4
1
27
26
26
26
24
25
26
26
26
26
26
26
26
3
I
26
26
26
26
25
24
25
26
26
26
26
26
26
2
1
26
26
26
26
25
24
25
26
26
26
26
26
26
1
1
26
26
26
26
26
25
26
26
26
26
26
26
26
37
38
39
40
I
• - ~
40
1
26
26
26
25
39
1
26
26
26
? 6
38
|
26
26
27
26
37
1
26
27
26
25
36
I
26
26
25
25
35
1
26
26
2 5
25
34
1
26
25
25
25
33
1
26
26
26
26
32
1
25
25
24
26
31
1
24
22
20
26
30
I
24
23
23
26
29
1
26
26
26
26
28
1
27
27
26
24
27
1
27
27
28
21
26
1
27
27
28
29
25
1
27
? 7
28
29
24
1
27
27
28
28
23
1
?7
21
28
28
22
1
27
27
28
28
21
1
27
21
28
28
20
I
27
21
27
28
EXHIBIT 4-2• Continued.
25
25
21
23
23
24
23
26
27
23
17
13
10
19
24
20
10
16
22
26
27
26
25
24
21
19
16
20
21
21
25
23
17
20
21
24
25
16
4
10
22
25
26
26
23
20
15
20
20
22
22
22
23
21
17
20
24
24
22
22
18
20
25
26
26
25
20
18
14
20
22
21
21
21
IB
14
11
17
23
19
12
19
24
26
26
26
26
25
12
18
17
20
19
16
19
16
12
14
13
20
23
19
16
21
26
27
26
26
26
26
9
18
19
21
20
17
19
19
18
20
19
23
24
21
22
25
26
26
26
26
26
26
10
18
19
19
19
19
19
20
20
21
22
22
20
15
23
26
26
26
26
26
26
26
15
18
19
18
19
18
18
18
19
19
18
16
20
19
24
26
26
26
26
26
26
27
18
18
18
18
18
18
18
18
18
18
18
16
20
21
23
25
26
26
26
26
26
27
18
18
18
18
18
17
17
17
17
18
18
19
20
21
22
23
25
26
26
26
26
27
17
17
17
17
17
16
16
16
17
17
17
18
19
20
21
22
23
25
25
25
26
27
16
16
16
16
16
15
15
16
16
16
16
17
18
19
20
21
22
23
25
25
26
26
15
14
14
13
14
14
14
14
14
15
15
16
17
18
19
20
21
22
24
25
25
26
15
13
12
11
11
12
13
13
13
13
14
14
16
17
19
20
21
22
23
25
25
26
14
12
11
10
11
12
12
12
11
11
12
13
15
16
18
19
20
21
23
25
25
25
14
13
12
11
11
12
12
11
10
10
11
12
14
16
18
19
20
21
22
25
25
25
15
14
13
12
12
12
12
10
9
9
10
12
13
16
18
19
20
21
22
25
25
25
16
15
14
14
14
13
12
11
10
9
10
12
14
16
18
19
20
21
22
25
25
25
17
16
15
15
15
14
13
12
11
11
12
13
15
17
18
19
20
21
23
25
25
26
18
17
17
16
16
15
14
13
13
13
13
14
16
17
19
20
21
21
23
25
25
26
19
18'
17
17
16
16
15
15
15
15
15
16
17
18
19
20
21
22
24
25
26
26
21
19
18
18
17
17
17
16
16
16
17
18
19
19
20
21
22
23
25
25
26
26
22
20
20
19
19
18
18
18
18
IB
19
19
20
20
21
22
23
24
25
25
26
26
24
22
21
20
20
19
19
20
20
20
20
20
21
21
22
23
25
25
25
25
26
26
26
25
24
23
22
22
21
21
21
21
21
22
22
22
23
25
26
26
25
25
26
26
26
26
26
25
25
23
23
23
23
23
23
23
23
24
25
26
26
26
25
25
26
26
26
26
26
26
26
25
25
25
25
25
25
25
25
25
26
26
26
26
26
25
25
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
25
25
26
26
26
26
26
26
26
26
26
26
27
26
26
26
26
26
26
26
26
26
25
25
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
17
23
23
22
17
12
10
1?
17
18
16
17
17
16
16
16
16
17
IB
19
20
2)
23
25
26
26
26
26
26
26
26
26
26
-------
19
1
26
27
21
27
18
|
\*>
26
27
27
17
1
26
26
26
26
16
I
25
25
25
25
15
I
25
25
25
25
14
1
25
25
25
25
13
1
25
25
25
25
12
1
25
25
25
2b
11
I
25
25
25
25
10
I
25
25
25
25
9
1
25
25
25
25
8
I
25
25
25
25
7
1
25
25
25
25
6
I
26
25
25
25
5
1
26
26
25
25
4
1
26
26
26
26
3
I
26
26
26
26
2
1
26
26
26
26
1
1
26
26
26
26
ARRAY HAS BEEN SCALED BY 0.1E*02 FOR PRINTING
Y-COHPONENT OF WINO (V) AT LEVEL = 1 (H/SEC)
1 2 3 4 5 6 7 8 9 10
11
12 13
14
15
16
17
18
19
20 21 22
23
24
1-15-15-15-16-15-10 5 10 7 10
0-
20-24-
20
-7
11
12-
12-
22-
23- 19-18-
17-
18
1-15-15-16-16-15 -8 2-5 0 -2
-2-
17-22-
17
-1
8
15
3-
14-
19-20-19-
17-
17
1-15-15-16-16-14 -7 1-5 5 -4
1
-5-18-
22-
12
3
10
4-
12-
16-18-19-
17-
16
1-15-15-16-16-10 1 4 9 10 -7
-8
-6 -6-
21-
23-
18-
14-
11-
15-
16-16-17-
17-
17
1-15-15-16-18-10 3-1 8 7-7
-5
-2 -8-
18-
22-
23-
20-
17-
16-
15-15-16-
16-
16
1-15-14-12-12 1 5 -7 -5-10-11-
10
-1 4
1
-6-
17-
19-
18-
16-
13-10-11-
13-
12
1-14 -9 0 -4-10 -8-12-11-19-15-
17-
13 -2-
10-
12-
17-
21-
18-
14
-3
0
1-13-11-13-15-16-15-16-17-18-17-
20-
23-17-
18-
17-
16-
18-
16
10
3 7 3
2
6
1-13 -9-10-17-14-13-15-17-18-20-
22-
23-19-
17-
16-
14-
15-
15-
12
-1 -7 -9
-2
-9
1-10 -4 0 -8 -6 -6-10-18-18-19-
23-
22-17-
15-
14-
13-
13
-7-
12
-9-13-15-
11-
16
1-4-1 4 2 2 -6-11-15-15-14-
18-
19-16-
14-
10
-5-
1 3-
10-
12-
13-13-13-
16-
21
1-12-10 -6 2 4 -9-13-12 -8 -3
-4-
15-16-
15-
12
-1
.4
-8-
10
14-
19
1-15-15-14-10 -7-10-10 -4 3 3
-3-
12-14-
15-
13
-5
-5
-4
-3
-1 2 0-
11-
15
1-15-15-15-14-10 -4 -5-4 2 1
-6
-6 -6-
13-
13
-9
-7
-3
-3
- 5 - 6 - 7 -
10-
12
1-15-15-15-14-13-14-13-12-10 -8
-8
-3 -4-
10-
10
-9
-8
- 7
-7
-8 -9 -9
-9-
10
1-15-15-15-14-13-11 -5-12-13-11
-6
-3 -4
-5
-8
-9
-9
-9
-9
- 8 - 7 - 7
-8
-9
1-15-14-14-14-14-13-10-13-13-11-
10
-B -8
- 7
-8
-9
-9
-9
-9
-8
• 8
1-14-14-14-14-15-15-15-14-10 -6
-9
-9 -8
-8
•8
-9
-9
-9
-8
-7
-7
1-15-15-15-15-15-16-15-14-11 -8
-9
-9 -8
-7
.;
-7
. 7
-7
-6
-6
-7
1-15-15-15-16-16-16-16-14-11-10
-9
-8 -7
-6
. 5
-4
-2
6
1-15-15-15-16-16-16-16-14-11-10
-9
-8 -7
-5
. 3
-1
1
2
_ 5
-5
1-15-15-15-16-16-16-15-14-11-10
-9
•8 -6
-5
0
3
2
. 4
-4
1-15-15-16-16-16-16-15-14-11-10
-9
-8 -7
-5
. 3
-1
2
-1 - 3 - 3
. 4
-4
1-15-15-16-16-15 15-15-14-12-10
-9
-9 -7
-5
.4
-2
-1
- 2 - 3 - 3
. 3
-3
1-15-15-15-15-15-15-15-14-12-11-
10
-9 -7
•6
. 5
-4
- 3
- 3 - 4 - 4
_ 4
-4
1-15 15-15-15-15-15-15-15-14-11-
10
•8 -6
-6
-6
-5
. 5
-4
. 4
- 5 - 5 - 4
_ 4
-4
1-15-15-15-15-15-15-15-15-15-12-
10
7-1
-6
-7
-b
-6
-6
* 6
- 5 - 5 - 5
-5
1-15-15-15-15-15-15-I5-16-16-13-
10-
12 -7
-8
-8
- 7
- 7
-6
6
6 6 -6
6
-6
1-15-15 15-15-15-15-15-16 15 -8
-9 -9
-9
-9
-8
-8
- 7
. 7
-7 -7 -7
-7
-8
1-15-15-15,15-15-15-15-15-14 -6
7
1 -8-
10-
10
9
9
8
8
-8 8 8
9
-9
29 30 31 3? 33 34 35 36
20-W-
18-17-
17-17-
16-16-
16-17.
18-23.
15-22-
I -7-
14-14-
22-20
24-23-
21-19-
17-15-
14-14-
12-14-
-9 11
• 8 -9-
•8 -8
• 8
- 7
-6
-6
- 5
-5
-5
-6
-6 -7
¦ 7 -8
-9 -9-
10-10
17-17
16-16
16-16
16-15
16-14
22-16
25-21
21-19
17-16
17-15
18-18
18-21-
16-18
15-19
13-15
12-13
11-12-
10-11
-9-10-
-8-10
-6 -8
-6 -8
•9- 10
10-11
11-11
17-18-
16-16
16-16-
15-16
11 -0.
15-12
17-15
17-16
14-13
10 3
14 2
21-12
18-16-
16-15
15-15.
13-14
12-13-
12-12-
11-12-
11-11
10-11-
10-11-
.9-10-
-9-10-
-9-10-
10-11-
10-11-
11-11
11-12-
12-12-
21-19
18-18
19-2
22-2
19-16
14 -
-9
14
18-1
-3-1
-7-1
14-1
15-1
15-1
15-1
15-1
14-1
13-1
12-1
12-1
12-1
11-1
11-1
11-1
11-1
11-1
11-1
12-1
12-1
13-1
22-19-
20-18-
21-17-
18-16-
•12-1
0-1
7-10-
-5-1
15-1
15-1
15-1
15-1
15-1
15-1
15-1
15-1
15-1
15-1
14-1
14-1
13-1
13-1
13
EXHIBIT 4-2. Continued.
-------
10
1-15-15-
5-16 16-14-13 14 1
-4 -6 -8-12-1
-12-11-10-
0 -9 -9 -9-10-10-11-11-11-11-12-12-13-14-15-15-15-15-
9
1-15-15-
6.16.14 -9 -3 -6-1
-13-14-14-15-1
-14-14-13-
2-12-11-11-11-11-11-12-12-12-12-13-14-15-15-15-15-15-
8
1 -15-15-
5-15-11 3 -8-10-1
-15-15-15-15-1
-15-15-15-
4-14-13-12-12-12-12-12-12-13-13-14-15-15-15-15-15-15-
7
1-15-15-
5-15-16-14-14-14-1
-15-15-15-15-1
-15-15-15-
5-15 14-14-14-14-14-14-14-14-14-14-15-15-15-15-15-15-
6
1-15-15-
5 15-17-20-16-15-1
-15-15-15-15-1
-15-15-15-
5-15-14-14-14-14-14-14-15-15-15-15-15-15-15-15-15-15-
S
1-15-15-
5-16-18-17-15-15-1
-15-15-15-15-1
-15-15-15-
5-14-14-14-14-15-15-15-15-15-15-1 5-14-H-14-15-15-1 5-
4
1-15-15-
5-15-16-15-14-14-1
-15-15-15-15-1
-15-15-15-
4-14-14 -15-15-15-15-14-14-14-14-14-14-14-14-14-15-15-
3
1-15-15-
5-14-14-13-14-14-1
-15-15-15-15-1
-15-15-15-
4-14-15-15-15-15-14-14-14-14-14-14-14-14-14-14-14-14-
2
1-15-15-
5-14-10 -4-12-14-1
-15-15-15-15-1
-15-15-15-
4-15-15-15-15-14-14-14-14-14-14-14-14-14-14-14-14-14-
1
1-15-15-
37 38
I * *
9 40
40
1-16-16-
7-18
39
1-16-16-
7-18
30
1-16-16-
7-17
37
1-16-17-
6-16
36
1-17-16-
5-15
36
1-16-15-
4-14
34
1-15-14-
2- 10
33
1-14 -9
4 -1
32
1-15-14-
1 -9
31
1-16-17-
7-12
30
1-16-17-
6-13
29
1-14-15-
4-14
2 8
1-14-14-
4-16
21
1-13-12-
2-13
26
1-13-13-
1 -9
2 5
1-13-13-
2-11
2 4
1-13-13-
2-12
23
1-13-13-
2 12
22
1-13-13-
3-12
21
1-14-13-
3-13
20
1-14-13-
3-13
19
1-14-14-
3-13
10
1-15-14-
3-13
1?
1-15-14-
4-14
16
1-15-15-
5-15
15
1-15-15-
5 15
14
1-15-15-
5-15
13
1 - 15-15-
5- 15
12
1-15-15-
5-15
11
1-15- 15-
5)5
10
1-15-15-
5-15
9
1-15-15-
5-15
8
1-15-15-
5-15
7
1-15-15-
5-15
6
1-15-15-
5-15
5
1-15-15-
5-15
4
1-15-15-
5-15
-
3
1-15-15-
5-15
2
1-15-15-
5-15
1
1 -)5-15-
5-15
ARRAY
HAS* BLEU SCALED BY
0.1 £ « 02 FOR PRINTING
EXHIBIT 4-2. Concluded.
-------
References
Allwine, K. J., and C. D. Whiteman. 1985. "MELSAR: A Mesoscale Air Quality
Model for Complex Terrain: Volume I—Overview, Technical Description and
User's Guide." Pacific Northwest Laboratory, Richland, Washington (PNL-5460
Vol. 1, UC-11).
Fitzjarrald, D. R. 1984. Katabatic wind in opposing flow. J. Atmos. Sci., 41:1143-
1158.
Godden, D.t and F. Lurmann. 1983. "Development of the PLMSTAR Model and Its
Application to Ozone Episode Conditions in the South Coast Air Basin."
Environmental Research and Technology, Inc., Westlake Village, California
(ERT P-A702-200).
Goodin, W. R., G. J. McRae, and J. H. Seinfeld. 1980. An objective analysis tech-
nique for constructing three-dimensional urban scale wind fields. J. Appl.
Meteorol,, 19:98-108.
Liu, M. K., and M. A. Yocke. 1980. Siting of wind turbine generators in complex
terrain. J. Energy, 4:10-16.
Mahrt, L. 1982. Momentum balance of gravity flows. J. Atmos. Sci., 39:2701-2711.
O'Brien, J. J. 1970. Alternative solutions to the classical vertical velocity profile.
J. Applied Meteorol., 9:197-203.
Prandtl, L. 1942. Fuhrer durch die Strdmungslehre, Verlag Vieweh und Sohn,
Braunschweig, Germany.
Ross, D, G., and I. Smith. 1986. "Diagnostic Wind Field Modeling for Complex Ter-
rain—Testing and Evaluation." Centre for Applied Mathematical Modeling,
Chisolm Institute of Technology (CAMM Report No. 5/86).
90006 16
53
------- |