EPA-450/4-90-016
         EMISSION FACTOR
       DOCUMENTATION FOR
       AP-42 SECTION 2. l.i,
MUNICIPAL WASTE COMBUSTION
                •   By

             Midwest Research Institute

               •Cary.NC 27511
            EPA Contract No. 68-02-3891

         EPA Project Officer: David C. Misenheimer
        Office Of Air Quality Planning And Standards
            Office Of Air And Radiation
         U. S. Environmental Protection Agency
           Research Triangle Park, NC 27711

               August 1990

-------

-------
   S£? A        ^TJ^ by ** Offlce Of ^ Quality Planning And Standards, U. S. Environmental
      S^ffS7' ""I,  been aPP™*f°r Plication » receiv^ to» the contractor
n?tS5       C°ntentS- f^^y reflect *e views and policies of the Agency, neithe
of trade names or commercial products constitute endorsement or recommendation for use
                                     EPA-450/4-90-016
                                          u

-------

-------
                             TABLE OF CONTENTS


                                                                       Page

 LIST OF TABLES	

 CHAPTER 1.  "INTRODUCTION	     1_1

 CHAPTER 2.   INDUSTRY DESCRIPTION	                              ? ,
             2.1  CHARACTERIZATION OF THE  INDUSTRY!!	     ?"f
             2.2  PROCESS DESCRIPTIONS.	!!!!!!!!!!!!!     2-1
                 2.2.1  Mass-Burn Incinerators	....!!!!!!!!!'     2-1
                 2.2.2  Starved-Air Incinerators	.!!!!****     2-5
                 2.2.3  Refuse-Derived-Fuel Incinerators.!.!!!!.*!"     2-6
             2.3  SUMMARY OF REPORTED EMISSIONS FROM MUNICIPAL
                   WASTE COMBUSTORS	                       o  7
             2.4  CONTROL TECHNOLOGY.	!!!!!!!!!!!!!!!!!     2-7

CHAPTER 3.  GENERAL EMISSION DATA REVIEW AND ANALYSIS PROCEDURES        3  1
            3.1  LITERATURE SCREENING	        "*"...     J-i
            3.2  EMISSION DATA QUALITY RATING SYSTEM.!!!	"*     3?
            3.3  PARTICLE SIZE DETERMINATION.,	 	     3~\
            3.4  PARTICLE SIZE DATA ANALYSIS METHODOLOGY..!!!	     34
            3.5-  EMISSION FACTOR QUALITY RATING SYSTEM	!!!!!     3.5

CHAPTER 4.  POLLUTANT EMISSION FACTOR DEVELOPMENT..                     4-1"
            4.1  PROCESS DESCRIPTIONS,: TEST PROTOCOL SUMMARIES	
                   AND  REVIEW OF DATA	            4 x
                 4.1.1    Baltimore,  1985 Tests (Mass Burn!	
                           Waterwal 1)	.'	            4 ±
                 4.1.2    Braintree,  1978 Test  (Mass  Burn,
                           WaterwalT).	    4_2
                 4.1.3    Chicago Northwest,  1980 Tests (Mass'surii!*
                           Waterwall)	            4 3
                 4.1.4.   Hampton, 1981,  1982,  1983,  1984 Tests
                           (Mass Burn, Waterwall)	        4.4
                 4.1.5   Tulsa,  1986 Test  (Mass Burn,
                           Waterwall)	•	     '        4 6
                 4.1.6   Peekskill, 1985  (Mass Burn; Waterwal 1*)!!!!     4-7
                 4.1.7   Gallatin, 1983 Tests  (Mass Burn,
                          Waterwall)	            4 9
                 4.1.8   Kure, Japan, 1981 Test (Mass Burn,
                          Waterwall)	           4 g
                 4.1.9   Munich, 1984 Tests (Mass Burn,
                          Waterwall)	;	            4  10
                 4.1.10  Quebec, 1985-86 Pilot Scale Tests (Mass***
                          Burn, Waterwall)	           4  i2
                 4.1.11  Malmo, 1983 Report (Mass Burn and
                          RDF-Fired Waterwall)	       4_14
                                   ii

-------
       TABLE OF CONTENTS (continued)
 4.1.12  Wurzburg, West Germany,  1985 Tests
           (Mass-Burn, Waterwal1)	
 4.1.13  Marion County, 1986 Test  (Mass Burn,
           Waterwal1)	
 4.1.14  McKay Bay, 1986 Tests (Mass Burn,
           Waterwal1)	
 4.1.15  North Andover, 1986 Test  (Mass Burn,
         •  Waterwal1)	
 4.1.16  Saugus, 1975 Test (Mass Burn,
           Waterwal1)	
 4.1.17  Umea, 1984 Test (Mass Burn, Waterwall)	
 4.1.18  Philadelphia, Northwest,  1985 Tests
           (Mass Burn, Refractory)	,
 4.1.19  Washington, D.C. 1976 Test (Mass Burn,
           Refractory)	,
 4.1.20  Mayport, 1980 Tests (Mass Burn,
           Refractory)	,.	
 4.1.21  Alexandria, 1976 Test (Mass Burn,
           Refractory)	
 4.1.22  Nicosia, East Chicago, 1976.Tests (Mass
           Burn, Refractory)	
.4.1.23  Tsushima,  Japan, 1983 Test (Mass Burn,
           Refractory)	'.	
 4.1.24  Pittsfield, 1985-Test-Phase I (Mass Burn,
           Refractory)	
 4.1.25  Cattaraugus County,  1984 Test (Starved
           Air	
 4.1.26  Dyersburg, 1982 Tests (Starved Air)	
 4.1.27  North Little Rock,  1980  Tests (Starved
           Air)	
 4.1.28  Prince  Edward  Island,  1985 Test (Starved
           Air)	
 4.1.29  Tuscaloosa,  1985 Test (Starved Air).	
 4.1.-30  Barren  County,  -1985 Test  (Starved Air)	
 4.1.31  Red  Wing,  1986  Test  (Starved  Air)	
 4.1.32  Akron,  1981  Test (RDF Fired)...	
 4.1.33  Albany,  1984 Test  (RDF Fired)..	
 4.1.34  Hamilton-Wentworth, Ontario,  1984 Tests
           (RDF  Fired)	
-4.1.35  Niagara, 1985 test  (RDF Fired).	,.
 4.1.36  Wright  Patterson Air  Force Base,  1980  and
           1982  Tests  (RDF Fired)	„	
 4.1.37  Supplementary Data	
 4-15

 4-16

 4-17

 4-17

 4-18
 4-19

 4-19

 4-21

 4-21

 4-22

 4-23

 4-23

 4-25

 4-26
 4-27

 4-28

 4-28
 4-30
 4-31
 4-31
 4-32
 4-32

4-34
4-35

4-36
4-37
                   iii

-------
                        TABLE OF CONTENTS (continued)

                                                                       Page

             4.2  RESULTS OF DATA ANALYSIS	'	    4_38
                  4.2.1   Total Particulate Emissions Data.*!."!	   4 38
                  4.2.2   Particle Size Data....	"*"   4.33
                  4.2.3   Other Criteria Pollutant Emissions Data!!!   4-38
                          4.2.3.1  Volatile Organice Compounds	   4-38
                          4.2.3.2  Lead	  .4_3g
                          4.2.3.3  Sulfur Dioxide, Oxides of
                  , „ A   „          Nitrogen and  Carbon Monoxide...   4-39
                  4.2.4   Noncriteria Pollutant Emissions Data	..   4.39
                          4.2.4.1  Acid Gases	   4.39
                          4.2.4.2  Toxic Organics	!!!!!   4.40
                         •4.2.4.3-  Noncriteria Metals	    **   4.45
             4.3  PROTOCOL FOR  DATA BASE..	!!!!!!!   4-41
                  4.3.1   Engineering Methodology	!!!!!!!!!   4-41
                  4.3.2   Computer  Programming Methodology	!!!!   4.47

 CHAPTER 5.   SAMPLING AND  ANALYSIS  PROTOCOL	    5_!

 CHAPTERS.   AP-42  SECTION  2.1:   REFUSE  INCINERATION	    6_1

 CHAPTER 7    DATA BASE	                                 7 1
             7.1  DISCUSSION OF PROCESs'AND'cONTROL'DEvicrfABLEs!!!    7~-l
                 7.1.1   Discussion of Process Design and
                           Operation Tables	    7_1
                 7.1.2   Discussion of Control Device Design and*"*
                           Operating Condition Tables	        7_1
            7.2  DISCUSSION OF EMISSION TABLES	!!    7.2

SUPPLEMENT A.    SUMMARY OF SYMBOLS,  ACRONYMS, ABBREVIATIONS, AND

SUPPLEMENT B.    DATA TRANSFER * LOG" FORMS!."!!!!!!."!.".'!!!!!!;-
                                   iv

-------

-------
                                LIST OF TABLES
                                                                        Page

 TABLE 2-1.    DISTRIBUTION OF MUNICIPAL WASTE COMBUSTION
                 FACILITIES BY STATE AND TYPE ........... .                ?  <>
 TABLE 2-2.    MATRIX SHOWING THE EFFECTIVENESS OF CONTROL ...........
                 TECHNOLOGIES ON VARIOUS POLLUTANTS. .....                2  Q
 TABLE 4-1.    LIST OF CONVERSION FACTORS ............       ..........   &£
 TAmP M'    n«SA!^ °ATA USED T° CALCULATE EMISSION*FACTORS*:::   4^45
 lAdLt M~ o.    DA I A r ILES. ................                              A /\Q
 TABLE 4-4.    SUMMARY OF PROGRAMS ........ '..'.'.'.'.          •"" .........   4~4Q
 TABLE 5-1.    SAMPLING AND ANALYSIS METHODOLOGY SUMMARY—CRITERIA "*
                 POLLUTANTS, ACID GASES, AND ORGAN I CS ...............    5.5
 JADLr S'?-    SAMPLING AND ANALYSIS METHODOLOGY SUMMARY-METALS....    5-8
 TABLE 7-la..   MASS-BURN FACILITY STRUCTURAL DESIGN DATA....            7  5
 TABLE 7-lb.   MASS-BURN FACILITY AIRFLOW DESIGN DATA...      .......   7  I
 TABLE 7-2.    MASS-BURN OPERATING DATA FOR MUNICIPAL WASTE ..........
                 COMBUSTOR FACILITIES ............                        7  7
 TABLE 7-3a.   STARVED-AIR FACILITY STRUCTURAL  DESIGN *DATA." .*.*!! ......   7-8
 TABLE 7-3b.__. STARVED-AIR FACILITY AIRFLOW DESIGN DATA...       .....   70
 TABLE 7-4.    STARVED-AIR OPERATING DATA FOR MUNICIPAL WASTE ...... **
                 COMBUSTOR FACILITIES.... ...........                    7 1n
-TABLE 7-5a.   REFUSE DERIVED  FUEL-FIRED FACILITY  STRUCTURAL** .......
                 DESIGN  DATA ....................                        7 n
 TABLE 7-5b.   REFUSE DERIVED  FUEL-FIRED • FACILITY* AIRFLOw'DEsiGN .....
                 DATA ................ .....                              71?"
 TABLE 7-6.    RD.F-FIRED  OPERATING  DATA FOR  MUNIcipAL*WASTE .......... -
                 COMBUSTOR FACILITIES.... .............                  7 n
 JAS,LE- 7"7*    ELECTROSTATIC PRECIPITATOR DESIGN SPECIFICATIONS '.'.""  7-15
 TAD,L1 ?"S-    ELECTROSTATIC PRECIPITATOR OPERATING CONDITIONS ..... .*!  7-16
 TABLE 7-9,    DRY SCRUBBER/FABRIC. FILTER SYSTEM DESIGN
                 SPECIFICATIONS ...................                      7 17
 TABLE 7-10.    DRY SCRUBBER/FABRIC FILTER SYSTEM OPERATING ...........
                 CONDITIONS ................. .-.                          7 1R
       ?'}J-    K5RIC FILTER OR SCRUBBER DESIGN SPEC I FI CATIONS .'.":.*:::  7-19
       l~l2'    FABRIC FILTER OR SCRUBBER OPERATING CONDITIONS ......     7-20
Tpr  ?•}!•    iSAR.Y °F ARTICULATE EMISSIONS FROM MWC FACILITIES..   7-22
TABLE  7-13a.   PARTICLE SIZE DISTRIBUTION DATA FROM MUNICIPAL             •
                WASTE COMBUSTION FACILITIES ..........        '        7 ?4
TABLE 7-135.   SUMMARY OF EMISSION FACTORS FOR VOLATILE ORGANIC ......
                COMPOUNDS FROM MUNICIPAL WASTE  COMBUSTION ..........    7-26
TABLE 7-14.   SUMMARY OF CARBON MONOXIDE EMISSIONS FROM MWC

TABLP7-15.   SUMMARY OF SULFUR'DIOXIDE'EMISSIONs'FROM'MWc"" ........  ?'2?
                FACILITIES ..........................................  7_28

-------
                         LIST OF TABLES (continued)
 TABLE 7-16.

 TABLE 7-16a.

 TABLE 7-17.
 TABLE 7-18.
 TABLE 7-19.
 TABLE 7-20.

 TABLE 7-21.
 TABLE 7-22.
 TABLE 7-23.
 TABLE 7-23a.

.TABLE 7-24.

 TABLE 7-25.

 TABLE 7-26.

 TABLE ,7-26a.

 TABLE 7-27.

 TABLE 7-28.

 TABLE 7-29.

 TABLE 7-30.

 TABLE 7-31.

 TABLE 7-32.

TABLE  7-33.

TABLE  7-34.

TABLE .7-34a..

TABLE 7-35.

TABLE 7-36.

TABLE 7-37.
 SUMMARY OF OXIDES OF NITROGEN EMISSIONS FROM MWC
   FACILITIES	
 SUMMARY OF CRITERIA POLLUTANT EMISSION FACTORS
   FOR MUNICIPAL WASTE COMBUSTION	
 SUMMARY OF ARSENIC EMISSIONS FROM MWC FACILITIES	
 SUMMARY OF BERYLLIUM EMISSIONS FROM MWC FACILITIES...,
 SUMMARY OF CADMIUM EMISSIONS FROM MWC FACILITIES	
 SUMMARY OF TOTAL CHROMIUM EMISSIONS FROM MWC
   FACILITIES	
 SUMMARY OF LEAD EMISSIONS FROM MWC FACILITIES	'.
 SUMMARY OF MERCURY EMISSIONS FROM MWC FACILITIES	
 SUMMARY.OF NICKEL EMISSIONS FROM MWC FACILITIES	
 SUMMARY OF METALS EMISSION FACTORS FOR MUNICIPAL
   WASTE COMBUSTION		
 SUMMARY OF HYDROGEN CHLORIDE EMISSIONS FROM MWC
   FACILITIES	
 SUMMARY OF HYDROGEN FLUORIDE EMISSIONS FROM MWC
   FACILITIES	
 SUMMARY OF SULFUR TRIOXIDE EMISSIONS FROM MWC
   FACILITIES	
 SUMMARY OF ACID GASES EMISSION  FACTORS FOR
   MUNICIPAL WASTE COMBUSTION	'
 SUMMARY OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN
   EMISSIONS FROM MWC FACILITIES			.'
 SUMMARY OF TOTAL TETRACHLORODIBENZO-P-DIOXIN
   EMISSIONS FROM MWC FACILITIES	
 SUMMARY OF TOTAL PENTACHLORODIBENZO-P-DIOXIN
   EMISSIONS. FROM MWC FACILITIES	
 SUMMARY OF TOTAL HEXACHLORODIBENZO-P-DIOXIN
   EMISSIONS FROM MWC FACILITIES	
 SUMMARY OF TOTAL HEPTACHLORODIBENZO-P-DIOXIN
   EMISSIONS FROM MWC FACILITIES	
 SUMMARY OF TOTAL OCTACHLORODIBENZO-P-DIOXIN EMISSIONS
   FROM  MWC FACILITIES	
 SUMMARY OF TETRA- THROUGH OCTACHLORODIBENZO-P-DIOXIN
   EMISSIONS  FROM MWC FACILITIES	
 SUMMARY OF  TOTAL MEASURED CHLORODIBENZO-P-DIOXIN
   EMISSIONS  FROM MWC FACILITIES	
SUMMARY OF  DIOXIN EMISSION FACTORS FOR MUNICIPAL
  WASTE COMBUSTION	...	
SUMMARY OF 2,3,7,8-SUBSTITUTED AND- TOTAL TETRACHLORO-
  DIBENZO-P-DIOXIN EMISSIONS FROM MWC FACILITIES	
SUMMARY OF 2,3,7,8-SUBSTITUTED AND TOTAL PENTACHLORO-
  DIBENZO-P-DIOXIN EMISSIONS FROM MWC FACILITIES	
SUMMARY OF 2,3,7,8-SUBSTITUTED AND TOTAL HEXACHLORO-
  DIBENZO-P-DIOXIN EMISSIONS FROM MWC FACILITIES	
 Page


 7-29

 7-30
 7-33
 7-34
 7-35

 7-37
 7-39
 7-41
 7-42

 7-43

 7-46

 7-47

 7-48

 7-49

 7-51

 7-52

 7-54

 7-56

 7-58

 7-60

 7-62

 7-64

 7-66

7-68

7-70

7-71
                                    vi

-------
                          LIST OF TABLES (cbntinued)
 TABLE 7-38.

 TABLE 7-39.

 TABLE 7-40.

 TABLE 7-41.

 TABLE 7-42.

 TABLE 7-43.

 TABLE 7-44.

 TABLE 7-45.

 TABLE 7-46..

 TABLE 7-46a.

 TABLE 7-47.

 TABLE 7-48.

 TABLE 7-49.

 TABLE -7-50.

 TABLE 7-51.

 TABLE 7-52.

 TABLE 7-53.

 TABLE 7-54.

 TABLE 7-55.

 TABLE 7-55a.

 TABLE 7-56.

TABLE 7-57.

TABLE 7-58.
                                                          Page

 SUMMARY OF 2,3,7,8-SUBSTITUTED AND  TOTAL  HEPTACHLORO-
   DIBENZO-P-DIOXIN EMISSIONS  FROM WMC  FACILITIES..       7-72
 SUMMARY OF 2,3,7,8-TETRACHLORODIBENZOFURAN  EMISSIONS* *'
   FROM MWC FACILITIES	                   7  74
 SUMMARY OF TOTAL TETRACHLORODIBENZOFURAN  EMissioNS*'**
   FROM MWC FACILITIES	                     7  75
 SUMMARY OF TOTAL PENTACHLORODIBENZOFURAN'EMISSIONS" "
   FROM MWC FACILITIES	                    7  77
 SUMMARY OF TOTAL HEXACHLORODIBENZOFURAN EMISSIONS	
   FROM MWC FACILITIES	                  7  7q
 SUMMARY OF TOTAL HEPTACHLORODIBENZOFURAN  EMissioNs"**
   FROM MWC FACILITIES	                   ,   7  81
 SUMMARY OF TOTAL OCTACHLORODIBENZOFURAN EMISSIONS
   FROM MWC FACILITIES	               •       7  83
 SUMMARY OF TETRA- THROUGH OCTACHLORODIBENZOFURAN
   EMISSIONS FROM MWC FACILITIES	                    7  85
 SUMMARY OF TOTAL MEASURED CHLORODIBENZOFURAN	
   EMISSIONS FROM MWC FACILITIES	                    7 87
 SUMMARY OF FURAN EMISSION FACTORS FOR MUNICIPAL	
   WASTE COMBUSTION	                      7 89
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND  TOTAL TETRACHLORO-'
   DIBENZOFURAN EMISSIONS FROM  MWC FACILITIES.            7 91
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND  TOTAL PENTACHLORO"
   DIBENZOFURAN EMISSIONS FROM  MWC FACILITIES..           7 92
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND  TOTAL HEXACHLORO-"
   DIBENZOFURAN EMISSIONS FROM  MWC FACILITIES....  .       7-93
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND TOTAL HEPTACHLORO-*
   DIBENZOFURAN EMISSIONS FROM  WMC FACILITIES...          7-94
 SUMMARY  OF POLYCHLORINATED  BIPHENYLS EMISSIONS  FROM*"
   MWC  FACILITIES	                       7 qfi
 SUMMARY OF FORMALDEHYDE  EMISSIONS FROM'MWC	
   FACILITIES	                       7 07
 SUMMARY OF BENZO-A-PYRENE EMISSIONS  FROM*MWC	
   FACILITIES	                      7 98
 SUMMARY OF TOTAL MEASURED CHLORINATED' BENZENE	
   EMISSIONS FROM MWC FACILITIES.......                   7-99
 SUMMARY OF TOTAL MEASURED'CHLORINATED PHENOL	
   EMISSIONS FROM MWC FACILITIES	            7  inn
 SUMMARY'OF OTHER ORGANIC POLLUTANTS  FOR MUNICIPAL	
  WASTE COMBUSTION.......	 '-                  7  101
 SUMMARY OF SUPPLEMENTARY CHLORODIBENZO-plDIOXlfi"'	
  EMISSIONS FROM MWC FACILITIES	           7  in3
SUMMARY OF SUPPLEMENTARY CHLORODIBENZOFURAN EMISSIONS*
  FROM MWC FACILITIES	                 7  i04
SUMMARY OF SUPPLEMENTARY METALS EMISSIONS*FR6M*MWc"**
  FACILITIES	,	 7-105
                                   vii

-------
                         LIST OF TABLES  (continued)'
                                                                       Page
 TABLE 7-59a.  MASS-BURN FACILITY STRUCTURAL DESIGN DATA	 7-107
 TABLE 7-59b.  MASS-BURN FACILITY AIRFLOW DESIGN DATA		 7-108
 TABLE 7-60.   MASS-BURN OPERATING DATA FOR MUNICIPAL WASTE
                 COMBUSTOR FACILITIES	 7-109
 TABLE 7-61a.  STARVED-AIR FACILITY STRUCTURAL DESIGN DATA	 7-110
 TABLE 7-61b.  STARVED-AIR FACILITY AIRFLOW DESIGN DATA	 7-111
 TABLE 7-62.   STARVED-AIR OPERATING DATA FOR MWC FACILITIES	 7-112
 TABLE 7-63a.  REFUSE DERIVED FUEL-FIRED FACILITY STRUCTURAL
                 DESIGN DATA	;	     7.113
 TABLE 7-63b.  REFUSE DERIVED FUEL-FIRED FACILITY AIRFLOW DESIGN
                 DATA	 7-114
 TABLE 7-64.   RDF-FIRED OPERATING DATA FOR MWC FACILITIES	 7-115
 TABLE 7-65.   ELECTROSTATIC PRECIPITATOR DESIGN SPECIFICATIONS	7-117
 TABLE 7-66.   ELECTROSTATIC PRECIPITATOR OPERATING CONDITIONS.	7-118
 TABLE 7-67.   DRY SCRUBBER/FABRIC FILTER SYSTEM DESIGN
                 SPECIFICATIONS	*	 7_ng
 TABLE 7-68.   DRY SCRUBBER/FABRIC FILTER SYSTEM OPERATING
                 CONDITIONS	'	  7_120
 TABLE 7-69.   FABRIC FILTER OR SCRUBBER DESIGN SPECIFICATIONS	 7-121
 TABLE 7-70.   FABRIC FILTER OR SCRUBBER OPERATING CONDITIONS	 7-122
 TABLE 7-71.   SUMMARY OF PARTICULATE EMISSIONS FROM MWC  FACILITIES.. 7-124
 TABLE 7-71a.  PARTICLE SIZE DISTRIBUTION DATA FROM MUNICIPAL
                 WASTE COMBUSTION FACILITIES	 7-126
 TABLE 7-71b.  SUMMARY OF EMISSION FACTORS FOR VOLATILE ORGANIC
                 COMPOUNDS FROM MUNICIPAL WASTE COMBUSTION	 7-128
 TABLE 7^72.   SUMMARY OF CARBON MONOXIDE EMISSIONS FROM MWC
                 FACILITIES	 7_129
 TABLE 7-73.   SUMMARY OF SULFUR DIOXIDE EMISSIONS FROM MWC
                 FACILITIES	    7-130
 TABLE 7-74.   SUMMARY OF OXIDES OF  NITROGEN EMISSIONS  FROM
                 MWC  FACILITIES	.-	   7.131
 TABLE 7-74a.  SUMMARY OF CRITERIA POLLUTANT EMISSION FACTORS
                 FOR  MUNICIPAL  WASTE COMBUSTION	 7-132
'TABLE 7-75.   SUMMARY OF ARSENIC EMISSIONS  FROM MWC  FACILITIES	7-135
 TABLE 7-76.   SUMMARY OF BERYLLIUM  EMISSIONS  FROM MWC  FACILITIES.... 7-137
 TABLE 7-77.   SUMMARY OF CADMIUM EMISSIONS  FROM MWC  FACILITIES	7-138
 TABLE 7-78.   SUMMARY OF TOTAL CHROMIUM EMISSIONS  FROM MWC
                 FACILITIES	 7-140
 TABLE 7-79.    SUMMARY OF LEAD  EMISSIONS FROM MWC FACILITIES	'	7-142
 TABLE 7-80.    SUMMARY OF MERCURY EMISSIONS  FROM .MWC FACILITIES	7-144
 TABLE 7-81.    SUMMARY OF NICKEL EMISSIONS FROM MWC FACILITIES........  7-145
 TABLE 7-81a.   SUMMARY OF METALS EMISSION  FACTORS FOR MUNICIPAL
                 WASTE  COMBUSTION	  7-146
 TABLE 7-82.    SUMMARY  OF HYDROGEN CHLORIDE  EMISSIONS FROM MWC
                 FACILITIES		     7-149
                                   viil

-------
                          LIST OF TABLES (continued)
 TABLE 7-83.

 TABLE 7-84.

 TABLE 7-84a.

 TABLE 7-85.

 TABLE 7-86.

 TABLE 7-87.

 TABLE 7-88.

 TABLE 7-89.

 TABLE 7-90.

 TABLE 7-91.

 TABLE 7-92.

 TABLE 7-92a.

 TABLE 7-93.

 TABLE 7-94.

 TABLE 7-95.

 TABLE 7-96.

 TABLE 7-97.

 TABLE 7-98.

 TABLE 7-99.

 TABLE 7-100.

TABLE 7-101.

TABLE 7-102.

TABLE 7-103.
  SUMMARY  OF  HYDROGEN  FLUORIDE EMISSIONS FROM MWC

  SUMMARY  OF  SULFUR'fRioxiDE'EMissioNs'FROM'MWC	7"15°
    FACILITIES	                        7 ,-,
  SUMMARY  OF  ACID GASES  EMISSION  FACTORS*FOR	
    MUNICIPAL WASTE COMBUSTION	                      7 i
  SUMMARY  OF  2,3,7,8-TETRACHLORODIBENZO-P-DioXIN	
    EMISSIONS FROM MWC FACILITIES	                   7 i
  SUMMARY  OF  TOTAL TETRACHLORODIBENZO-P-DIOXIN	
    EMISSIONS FROM MWC FACILITIES	                 7 i«
  SUMMARY  OF  TOTAL PENTACHLORODIBENZO-P-DIOXIN	
    EMISSIONS FROM MWC FACILITIES	                7 ic7
  SUMMARY  OF  TOTAL HEXACHLORODIBENZO-P-DIOXIN	
    EMISSIONS FROM MWC FACILITIES	                   7 ICQ
  SUMMARY  OF  TOTAL HEPTACHLORODIBENZO-P-DIOXIN	
    EMISSIONS FROM MWC FACILITIES	                 7  ifii
 SUMMARY OF TOTAL OCTACHLORODIBENZO-P-DIOXIN	
   EMISSIONS FROM MWC FACILITIES.	                7  i63
 SUMMARY OF TETRA- THROUGH OCTACHLORODIBENZO-P-DtOJaN**
 -  EMISSIONS FROM MWC FACILITIES	                   7  i«
 SUMMARY OF TOTAL MEASURED CHLORODIBENZO-P-DIOXIN	
   EMISSIONS FROM MWC FACILITIES	                7  1fi7
 SUMMARY OF DIOXIN EMISSION FACTORS FOR MUNICIPAL	
   WASTE COMBUSTION	                       7  I6q
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND TOTAL'TETRACHLORO-*
  . DIBENZO-P-DIOXIN  EMISSIONS FROM  MWC FACILITIES.       7-171
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND TOTAL PENTACHLORo"
   DIBENZO-P-DIOXIN  EMISSIONS- FROM  MWC FACILITIES       7-172
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND TOTAL HEXACHLORO-"
   DIBENZO-P-DIOXIN  EMISSIONS FROM  MWC FACILITIES       7-173
 SUMMARY OF 2,3,7,8-SUBSTITUTED AND TOTAL HEPTACHLORO-*
   DIBENZO-P-DIOXIN EMISSIONS FROM  WMC FACILITIES...     7-174
 SUMMARY OF 2,3,7,8-TETRACHLORODIBENZOFURAN  EMISSIONS  *
   FROM  MWC FACILITIES	                 7 17fi
   uiLjf i\ n\/ f\ F* T*rtT ft i  ^^»™^»* •MIII^_^__	 _    ***•*•*•••••••• /^i/D

                                                    ... 7-177


 SUMMARY OF TOTAL HEXACHLORODiBENZOFURANlMISsioNS	?"179
   FROM MWC FACILITIES...	      .-            -7181
SUMMARY OF TOTAL HEPTACHLORODIBENZOFURAN'EMissioNS****
   FROM MWC FACILITIES	                  7  100
SUMMARY OF TOTAL OCTACHLORODIBENZOFURAN"EMISSIONS*""
   FROM MWC FACILITIES	                      7  18c
SUMMARY OF TETRA- THROUGH OCTACHLORODIBENZOFURAN*"	
  EMISSIONS FROM MWC FACILITIES	                7  187
                                    IX

-------
                         LIST OF TABLES (continued)
TABLE 7-104.

TABLE 7-104a.

TABLE 7-105.

TABLE 7-106.

TABLE 7-107.

TABLE 7-108.

TABLE 7-109.

TABLE 7-110.

TABLE 7-111.

TABLE 7-112.

TABLE 7-113.

TABLE 7-113a.

TABLE 7-114.

TABLE 7-115.

TABLE 7-116.
                                                        Page

 SUMMARY  OF TOTAL  MEASURED  CHLORODIBENZOFURAN
   EMISSIONS  FROM  MWC  FACILITIES...	  7-189
 SUMMARY  OF FURAN  .EMISSION  FACTORS  FOR  MUNICIPAL
   WASTE  COMBUSTION	  7.191
 SUMMARY  OF 2,3,7,8-SUBSTITUTED AND  TOTAL  TETRACHLORO-
   DIBENZOFURAN  EMISSIONS FROM MWC  FACILITIES	  7-193
 SUMMARY  OF 2,3,7,8-SUBSTITUTED AND  TOTAL  PEMTACHLORO-
   DIBENZOFURAN  EMISSIONS FROM MWC  FACILITIES	  7-194
 SUMMARY  OF 2,3,7,8-SUBSTITUTED AND  TOTAL  HEXACHLORO-
   DIBENZOFURAN  EMISSIONS FROM MWC  FACILITIES	  7-195
 SUMMARY  OF 2,3,7,8-SUBSTITUTED AND  TOTAL  HEPTACHLORO-
   DIBENZOFURAN  EMISSIONS FROM MWC  FACILITIES		  7-196
 SUMMARY  OF POLYCHLORINATED BIPHENYLS EMISSIONS  FROM
   MWC FACILITIES	  7.193
 SUMMARY  OF FORMALDEHYDE EMISSIONS FROM MWC
   FACILITIES.	  7-199
 SUMMARY  OF BENZO-A-PYRENE EMISSIONS FROM  MWC
   FACILITIES	  7-200
•SUMMARY  OF TOTAL  MEASURED' CHLORINATED BENZENE
   EMISSIONS  FROM  MWC  FACILITIES	  7-201
 SUMMARY  OF TOTAL  MEASURED CHLORINATED PHENOL
   EMISSIONS  FROM  MWC  FACILITIES		  7-202
 SUMMARY  OF OTHER  ORGANIC POLLUTANTS FOR MUNICIPAL
  WASTE  COMBUSTION	  7-203
 SUMMARY  OF SUPPLEMENTARY CHLORODIBENZO-P-DIOXIN
   EMISSIONS  FROM  MWC  FACILITIES	  7-205
 SUMMARY  OF SUPPLEMENTARY CHLORODIBENZOFURAN
  EMISSIONS  FROM  MWC  FACILITIES	  7-206
 SUMMARY  OF SUPPLEMENTARY METALS EMISSIONS FROM
  MWC FACILITIES	 7-207

-------
                               1.   INTRODUCTION

      The document  "Compilation of Air  Pollutant  Emission  Factors"  (AP-42)
 has been published by the U. S. Environmental  Protection  Agency  (EPA)
 since 1972.  Supplements to AP-42 have been routinely published  to  add  new
 emission source categories and to update existing emission factors  for
 criteria pollutants.  AP-42 is routinely updated by EPA to respond  to new
 emission factor needs of EPA, State, and local air pollution control
 programs and industry.
      An emission factor relates the quantity (weight) of pollutants
 emitted to a unit of activity of the source.   The uses for the emission
 factors reported in AP-42 include:       .      .                        "
      1.   Estimates of area-wide emissions;
      2.   Emission estimates  for a  specific  facility;  and
      3.   Evaluation of emissions relative to  ambient  air quality.
      The purpose of this report is  to provide  background information from
 over  50  .test-reports-to  support revision of criteria  pollutant  emission
 factors  for  municipal  incinerators,  and to  develop emissions  factors for
 noncriteria  pollutants from municipal incinerators.
      Including the  introduction-(chapter 1) this  report  contains  seven
 chapters.  Chapter  2 gives a description of the municipal  waste combustion
 industry.  It includes a characterization of the  industry, an"overview of
 the different process types, a description of emissions, and a description
 of the technology used to control emissions resulting from municipal waste
 incineration".  Chapter 3 is a review of emission data collection and
 analysis procedures.  It describes  the screening of emission data reports
 and the quality rating system for both emission data and emission
factors.  It also describes particle size  determination and particle size
data analysis methodology..  Chapter 4 details  pollutant emission factor
                                    1-1

-------
development.  It includes the process descriptions, test protocol
summaries, and review of specific data sets, the results of data analysis,
and the data base protocol.  Chapter 5 describes the sampling and analysis
protocol used to gather the data.  Chapter 6 presents the AP-42 Section
2.1.  Chapter 7 presents the emission data base.  Each section of the data'
base is summarized by presenting the number of data points, the data
ratings, the range and average of emission factors, the emission factor
rating, and the reference number of the report which contained the
emission data.  Supplement A contains a summary of symbols, acronyms,
abbreviations, and units.  Supplement-B is an example of a data transfer
log form.
                                   1-2

-------
                         2.   INDUSTRY DESCRIPTION

      Incineration is. a means of disposing municipal  solid waste
 discarded from residential, commercial and industrial establishments.
 Incineration has the advantages of lowering disposal costs by reducing
 solid mass approximately 90 percent and the potential for recovering
 energy through combustion of waste products.  Disadvantages include the
 problems of disposal of the remaining, but reduced, waste and the
 potential for air pollution.
 2.1  CHARACTERIZATION OF THE INDUSTRY     '
      There are about 120 municipal waste incinerators currently-
 operating in 34 States.   The three major, types of municipal  waste
 incinerators are mass-burn,  refuse-derived fuel, and starved-air, which
 account for approximately 70,  20,  and 10 percent of all  municipal
 incinerators,  respectively.   The majority of  these facilities  are
 located on the  East  Coast  and  in the  Midwest.   New York  has  13 municipal
 waste  incineration facilities,  the most  of any State.  New Hampshire  has
 the second highest total with  12,  followed by  Virginia with 8  and
 Arkansas  with 7  facilities.  Table 2-1 shows the distribution  of
 municipal  waste  incineration facility types by State.
     Approximately 15Q mi lion tons  of municipal  waste are generated in
 U.S. each year.   It  is estimated that 5 to 10  percent of this municipal.
 waste is  incinerated.
 2.2  PROCESS DESCRIPTIONS          .'
 2.2.1  Mass-Burn  Incinerators
     Mass-burn excess-air combustion is the predominant method of
burning municipal solid waste (MSW).  The term mass burn means that the
MSW is combusted without any preprocessing other than the removal  of
bulky items (stoves,  refrigerators, etc.).

                                    2-1

-------
TABLE 2-1.  DISTRIBUTION OF MUNICIPAL WASTE COMBUSTION FACILITIES
                        BY  STATE  AND  TYPE
Location
Sitka, Alaska
Tuscaloosa, Ala.
Hope, Ark.
Batesville, Ark.
Blytheville, Ark.
Osceola, Ark.
North Little Rock, Ark.
Stuttgart, Ark.
Hot Springs, Ark.
New Canaan, Conn.
Stamford 1 , Conn .
Stamford 1 1 , Conn.
Windham, Conn.
Dade Co., Fla.
Pinel las Co. , Fla.
Pinellas Co. (Expansion), Fla.
Tampa (McKay Bay), Fla.
Mayport Naval Station, Fla.
Lakeland, Fla.
Honol ul u, Hawai i
Ames, Iowa
•Cassia County (Bur ley), Idaho
Chicago (NW) , III.
East Chicago, Ind.
Lou i sv i 1 1 e , Ky .
Simpson Co. (Franklin), Ky.
Shreveport, La.
Haverhi 1 I/Lawrence, Mass.
Fal 1 River, Mass.
Framingham, Mass.
North Andover, Mass.
Saugus, Mass.
Pittsfield, Mass.
Baltimore (Pulaski), Md.
Baltimore (RESCO) , Md.
Harpswel 1 , Maine
Auburn, Maine
Clinton (Grosse Pointe), Mich.
S.E. Oakland Co., Mich.
Duluth, Minn.'
Savage, Minn.
Purham, Minn.
Red Wing, Minn.
Collegeville (St. Johns), Minn.
St. Louis (1 and 2), Mo.
Fort Leonard Wood, Mo.
Pascagoula, Miss.
Livingston, Mont.
Wilmington, N.C.
Wrightsville, N.C.
Lltchfield, N.H. :
Durham, N.H.
Wilton, N.H.
Auburn, N.H.
Pittsfield, N.H.
Meredith, N.H.
Combustor
type3
MI/SA
MI/SA
MI/SA .
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MB/OF
MB/OF
MB/OF
MI/SA
RDF
MB/OF
MB/OF
MB/OF
MB/OF
RDF/C
MB/OF
RDF/C
MI/SA
MB/OF
MB/OF
' MB/OF
MI/SA
MB/OF
RDF
MB/OF
MB/OF
MB/OF
MB/OF
MB/OF
MB/OF
MB/OF
MI/SA
MI/SA
MB/OF
MB/OF
RDF-
MI/SA
MI/SA -
MI/SA
MI/SA
MB/OF
MI/SA
MI/SA ,
MI/SA
MB/OF
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
Heat
recovery
Yes
Yes
No
Yes
No
Yes
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
No
No
Yes
No
Yes
No
No
Yes
Yes
No
No
Yes
No
Yes
No
No
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
No
Yes
No
No
No
No
No. of
combustors
2
4
3
1
2
2
4
3
8
1
1
1
3
4
2
i
4
1
3
1
2
2
4
2
4
2
. 1 •
3
2
2
2
2
3
4
3
1
4
2
2
2
1
2
2
1
4
3
2
2
2
2
.1
3
1 '
• 1
r
2
Total
plant
capacity,
tons/d
25
36'0
38
50
70
50
100
65
100
108
200
360
108
3,000
2,000
1,150
1,000
50
300
600
200
50
1,600
450
1,000
77
200
1,300
600
500
1,500
1,500
240
1,200
2,250
14
200
600
600
400
60
80
72
50
800
75
150
75
200
50
22
108
30
5
48
31
Type of
control (s)D
ESP
ESP
None
None
None
None
None
None
None
VWS
ESP
ESP
FF
ESP
ESP
ESP
ESP
C
ESP
ESP
ESP
None
ESP
VWS
WS
None
VWS
ESP
WS
DS/FF
ESP
ESP
EGB •
ESP
ESP
None
FF
ESP
WS
VWS
ESP
ESP
ESP
WS
WS
None
ESP
None
ESP
None
None
C
None
None
None
None
                              2-2

-------
TABLE 2-1.   (continued)

Location
Groveton, N.H.
Portsmouth, N.H.
Nottingham, N.H.
Candia, N.H.
Wolfeboro, N.H.
Canterbury, N.H.
Albany, N.Y.
Niagara Fal ls> N.Y.
Brooklyn (SWK N.Y.
Glen Cove, N;Y.
Westchester Co. (Peekski II),
N.Y.
Brooklyn (N. Henry St.), N.Y.
Huntington, N.Y.
i New York (Betts Avenue), N.Y.
- Dutchess County, N.Y.
Skaneateless, N.Y.
Oneida Co. (Rome), N.Y.
Cattaraugus Co. (Cuba), N.Y.
Oswego County l(Volney) , N.Y.
Akron, Ohio1 |
Columbus, Ohi'o
Wright Patterson AFB, Ohio
N.- Dayton, Ohio
S. Dayton, Ohi:o'
Eucl id, Ohio
Tulsa, Ok la.
Miami, Okla.
Marion .County, Oreg.
Philadelphia (Northwest Unit)
Pa.
Phi ladelphia (E. Central
Unit), Fa.
Harrisburgj Pa.
Johnsonvi lie, S.C.
Hampton, S.C.
Nashvi lie, Tenn.
Nashville (Expansion), Tenn.
Ga Matin, Tenn.
DyersburgJ Tenn.
Lewisburgj Tenn.
Cleburne,) Tex.
Carthage City, Tex.
Gatesvi 1 le, TexJ . '
Center, Tex.
Palestine, Tex. .
Waxahachie, Tex. i
Ogden, Utah
Alexandria, Va.
Portsmouth, Va.
Norfolk (Navy Station), Va.
Hampton, 'Va. '
Harrisonburg, Va.
Gal ax, Va.
Salem, Va.
Newport News (Ft. Eustis), Va.
Bel 1 ingham, Wash.

Combustor
type3
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
RDF
RDF
MB/OF
MB/OF
MB/OF
MB/OF
MB/OF
MB/OF
MB/RC
MI/SA
MI/SA
MI/SA
MI/SA
RDF
RDF
RDF
MB/OF ,
MB/OF '
MB/OF
MB/OF
MI/SA .
MB/OF
. MB/OF
MB/OF
MB/OF
MI/SA,
MI/SA
MB/OF
MB/OF
MB/RC
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA
MI/SA-
MB/OF
MB/OF
MB/OF
MB/OF
MB/OF
MB/OF
MI/SA
MI/SA
MI/EA

Heat
recovery
Yes
Yes
No
. No
No
No
Yes
Yes
No
Yes
Yes
No
No
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes
Yes
Yes
No
No'
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes .
Yes
Yes •
Yes
Yes
No
Yes
Yes
Jes
Yes
Yes
Yes
Yes
Yes

No. of
combustors
1
4
1
1
2
1
2
2
3
2
3
1
3
4
1
1
4
3
4
3
6
1
2
2
NA
2
3
2
2
2
2
1
3
2
1
2
1
1
3
1
1 •
1
2
3
2
2
2
' 2
2
1
4
1
1
Bl' _-— — •— .— .-—
Total
plant
capacity
tons/d
24
200
8
15
16
10
600
1,200
750
250
2,250
1,000
450
1,000
400
13
200
120
200
1,000
2,000
200
600
600
200
750
108.
550
750
750
720
50
270
720
400
200
100
60
115
36
20
36
28
50
450
300
160
360
250
100 -
56
100
35
100

, Type of
control (s)D
None
FF
None
None
• None
None
ESP
ESP
ESP
ESP
ESP .
ESP
WS
ESP
FF .
None
None
None
ESP
ESP
ESP
ESP
ESP
ESP
ESP
ESP
None
DS/FF
ESP
ESP
ESP
None
ESP
ESP
ESP
C/FF
None
WS
ESP
None
None
None
WS
WS
ESP
WS
ESP
ESP
ESP
ESP
FF
None
None
None
                                         (continued)
         2-3

-------
                               TABLE  2-1.   (continued)


Location
Bel I ingham, Wash.
Sheboygan, Wis.
Waukesha, Wis.
Barren County, Wis.
Madison, Wis.


Combustor
type3
MI/SA
MB/OF
. MB/OF
MI/SA
ROF/C


Heat
recovery
Yes
No
Yes
No
Yes


No. of
combustors
2
2
2
2
2
Total
plant
capacity,
tons/d
100
240
175
100
400


Type
control
None
WS
ESP
ESP
ESP/C


of
(s)b





   MI/SA = modular combustor  with  starved  air
   MI/EA = modular combustor  with  excess air (vicon)
     RDF = refuse derivedifuel  fired  in dedicated boiler
   RDF/C = refuse derived'fuel/coal coficing
   MB/OF = mass burn  with overfeed stoker
.   MB/RC = mass burn  in  rotary  combustor.
 Types of controls:
     C = cyclone
   ESP = electrostatic precipitator
    WS = wet scrubber
    DS = dry scrubber
   VMS = venturi  wet  scrubber
    FF = fabric f.i Iter     |
   EGB = .electrostatic gravel] bed
    NA = Not avaliable.   ,
                      I I
                                           2-4

-------
       In  a  typical  mass-burn combustor,  an overhead crane mixes the MSW
  in  the storage  pit and  then transfers the MSW into the feed chute.  A
  hydraulic  ram system  located under  the  feed  chute  charges the waste onto
•  the grate  system.   As the waste  is  moved  through the  combustion chamber
  by  the grate system,  it passes through .the following  zones:   (a)  a dry-
  out zone where  the moisture in the  waste  is  evaporated;  (b)  a combustion
  zone; and  (c) a burn-out zone where final  combustion  occurs.   The
  resulting  ash falls into the flooded ash  pit  and is removed  and  sent  to
  a landfill.  In some cases,  ferrous metals are removed from  the  ash by
 magnetic separation.  The capacity  of individual combustors  can  range
 from 50 to 1,000 tons of waste per  day,  and usually 2 or  3 units are  at
 a site.                                                                  .
      Several types of grate systems are  used with mass-burn
 combustors.  All of these grate designs  are similar in that they are
 designed  to move the waste through the combustor and promote complete
 combustion.  The grates  are either traveling, rocking, reciprocating,
 roller, or  rotary designs.   Air for the  combustion  process is supplied
 by underfire air,  which  is  introduced  into one or more compartments, or
 plenums,  under the stoker  grates  and by  overfire air,  which is.
 introduced  by nozzles  or openings located  above the grates.
     All  new mass-burn combustors are  expected to have a  waterwall
furnace to  recover energy  in the  form  of steam.  Many  older facilities
have refractory-lined  walls  rather than  waterwalls  and do  not recover
any.usable  energy.   Large mass-burn  units  are  usually  field erected.
     The  air  pollution control systems for these combustors are
electrostatic precipitators  (ESP's), dry fabric filters, dry  scrubbing
systems (with either ESP's or fabric filters), and wet scrubbers.
Although most existing facilities  are .controlled by ESP's,  all  new
facilities  are expected to be controlled by acid gas scrubbers  and  a
high efficiency pariticulate matter collector.
2.2.2  Starved-Air  Incinerators
     A typical starved-air combustor is designed for two-stage
combustion with separate primary and secondary chambers.  The'primary
chamber.is fed MSW by a hopper and ram-feed system.   Air is supplied to
the primary chamber at substoichiometric  levels (thus the name starved-
                                    2-5

-------
 air).  This practice results  in a  lower air velocity  and  temperature
 (500°C to 700°C) in the primary combustion chamber than in the secondary
 chamber.  The lower velocities minimize entrainment of fuel particles
 and ash in the exhaust gas stream.  Rams in the primary chamber are used
 to push residue and break up  clinker.  Exhaust gases  including the
 incomplete combustion products, which are primarily carbon monoxide and
 low-molecular-weight hydrocarbons, pass into the secondary combustion
 chamber.                      "   -
      In the secondary combustion chamber, more air is added, and
 combustion is completed.  The resulting hot gases (1000°C to 1200°C) can
 be passed through a heat recovery boiler for energy recovery.  Although
 several existing starved-air combustors do not have energy recovery
 systems, all new starved-air combustors are expected to have energy
 recovery systems.'  Ashes are quenched and removed for disposal.   Most
 existing starved-air municipal waste combustors operate without  add-on
 emission control systems although some combustors do have ESP's  or
 fabric filters for particulate matter control..  Starved-air combustors
 generally are marketed as packaged units that can be installed
 relatively quickly.
 2.2.3  Refuse-Derived-Fuel  Incinerators
      One'alternative to direct combustion  of  MSW is  to process the waste
 to produce refuse-derived fuel (RDF).   The purpose  of  processing  the
 municipal  solid  waste is to  remove the uncombustifales, recover recylable.
 materials, and produce a more homogeneous  fuel.   The four  main types of
 RDF are fluff, densified,  powdered, and wet-pulped.  Fluff RDF fs
 prepared by mechanical  shredding  of MSW followed  by  air classification,
 magnetic separation,  or trommel ing to  reduce  the  noncombustible content
 of the waste'stream.   If multiple  shredding stages are used, fine  RDF  is
 produced.   Densified  RDF is  produced by extruding fine RDF in  a pellet
.mill.   The production  of powdered  RDF  requires mechanical,  thermal,  and
 chemical processing of  shredded MSW that has undergone screening and
 magnetic separation.   In the.wet pulping process, the  pulper is fed  MSW
 that  has been  sluiced with water.   Noncombustibles are removed in  a
 liquid  cyclone.  The wet-pulped RDF is  then mechanically dewatered to a
 moisture content of 50  percent.
                                    2-6

-------
       The designs of dedicated combustors used to burn RDF are similar to
  those used for coal combustion.   Refuse-derived fuel  units have their
  own  fuel  handling,  combustion air supply,  and grate designs.   Typical
  configurations include  suspension,  stoker,  and fluidized-bed  designs.
  These boilers  may use up  to  1,000 tons  of  RDF per day.   The ash is
  quenched  and removed to a landfill.  Although most existing RDF units
  use  ESP's  for  particulate matter  control,  all  new RDF units are expected
  to be controlled  by acid'gas  scrubbers  and  a  high .efficiency  particulate
  matter collector.                                     |
  2.3   SUMMARY OF REPORTED  EMISSIONS FROM MUNICIPAL WASTE  COMBUSTORS
       Municipal waste combustors have the potential to emit  significant
  quantities of  pollutants  to the atmosphere.' One  of these pollutants -is
  particulate matter, which  is emitted because of the turbulent movement
  and entrapment of the combustion gases.  Particulate patter is also
  Pr.oduced when metals that are volatilized in the combustion zone
  condense in the exhaust-gas stream.  The particle size .distribution and
 concentration of the particulate emissions leaving the1 incinerator vary
 widely, depending on the composition of the refuse being burned and the
 type  and operation of the  incineration  process. (
      Incomplete combustion of refuse resulting from improper incinerator
 design or operating  conditions can result in emissipns of intermediate
 products  (e.g., volatile organic  compounds  and carbon  monoxide).  Other
 emissions include sulfur dioxide,  nitrogen  oxides, metals,  acid  gases,
 and organic compounds.      '                  i
      A data base  (Chapter  7)  has been developed on,t,he emissions of
 criteria  pollutants, acid  gases, metals,  and organic compounds from1
 MWC's.         .                                      '
 2.4   CONTROL TECHNOLOGY                           : '     !    .
     A wide variety  of control technologies  is  used to control refuse
 incinerator emissions.   Currently, the most widely, used are
 electrostatic precipitators, fabric filters, wet scrubbers, and dry  -
 scrubbers.  Many control systems use a combination of these four types
 of control technologies.
     Electrostatic precipitators are used on 75 percent of existing
municipal waste incinerators to control  particulate matter emissions.
                                   2-7

-------
 The efficiency of a typical  electrostatic precipitator can range from 90
 to  99  percent depending on particle size distribution, gas flow rate,
 collection plate area,  applied voltage and current levels and
 resistivity.
     Fabric filters (FF)  have not generally been applied in the past on
 existing  units.   However,  FF's are expected to be commonly used behind
 acid gas  scrubbers as sorbent collectors and secondary reactors for dry
 and semi-dry  scrubbers.   With upstream scrubbing of acid gases and
 sorbent accumulation on fabric materials,  fabric filters becomeja viable
 choice for fine  particulate  control  as well  as for control  of other
 pollutants.
     Many types  of wet  scrubbers  are used  for removing acid gases—spray
 towers, centrifugal- scrubbers,  and venturi  scrubbers.   Packed-bed and
 tray scrubbers are less  commonly  used.   In  wet scrubbers,  the exhaust
 gas  enters  the absorber where it  is  contacted with an  alkaline l  ''
 solution.   The alkaline  solution  reacts  with the acid  gases to form
 salts, which  are  generally insoluble and may be  removed  by  sequential
 clarifying, thickening, and  vacuum filtering.  The  dewatered  salts or
 sludges are then  landfilled.                                i
     Dry  scrubbing .involves  the injection of a slurry  or water and a
 solid  powder  such  as lime-or  sodium  bicarbonate  into the flue  gas  where
 acid gas  removal  occurs in the duct  and  continues  in the dust  collector
 as  sorbent  and ash particles  and  condensed volatile matter  are
 captured.   In a semi-dry process,  also known  as  spray  drying 

-------
     TABLE  2-2.   MATRIX  SHOWING  THE  EFFECTIVENESS OF CONTROL TECHNOLOGIES
                            ON VARIOUS  POLLUTANTS
 Pollutant
ESP
Dry scrub-
 ber/ESP
 ESP/wet
scrubber
Dry scrubber/
fabric filter
 Criteria pollutant

   Particulate matter
   Nitrogen oxides
   Sulfur dioxide
   •Carbon'monoxide

 Acid gases

   Hydrogen chloride
   Hydorgen fluoride
   Sulfates

 Metals
                i
   Arsenic
   Beryllium
   Cadmium
   Chromium
   Lead
   Mercury
   Nickel

 Organics .

   Polychlorinated
     dibenzo-p.-dioxins
•   Polychlorinated
     dibenzofurans1 i
   Polychlorinated
     biphenyls

   Formaldehyde
   Chlorinated benzenes
   Chlorinated phenols
   Benzo-a-pyrene.
x
x
x
x
x
           x

           x
           x
           x
           x
    x
    x
    x
    x
    x
          x

          x

          x
          x
          X
          X
          X
                 X


                 X
                 X

                 X

                 X
   X

   X

   X

   X

   X
                   X


                   X
                   X
                   X
     x.
     X
     X
     X
     X
                                 X


                                 X


                                 X
                                X
                                X
                                X
                                X
                                   2-9

-------

-------
2.5  REFERENCES FOR CHAPTER 2

 1.  Draft Sampling and Analytical Protocols for PCDO's and PCDF's in
     Stack Emissions.  American Society of Mechanical Engineers
     December 1984.

 2.  Biosjoly, Lucie.  Measurement of Emissions of Polychlorinated
     Dibenzo-p-Dioxin (PCDD)  and of Polychlorinated Dibenzofuran (PCDF)
     from the Des Carriers Incinerator in Montreal.  Environment Canada
     Report EPS 5/UP/RQ1.   December 1984.

 3.  Benfenati, R., et al. Studies on the Tetrachlorodibenzo-p-Dioxins
     (TCDD)  and Tetrachlorodibenzofurans (TCDF) Emitted  From an Urban
     Incinerator.   Chemosphere.   Volume 15,  No. 5.   1986.   pp.  557-561.
 4.
 5.
 6.
7.
8'
9.
     Radian  Corporation.   Appendix  A:   Characterization  of the Municipal
     Waste Combustion  Industry.   Prepared  for  the  U.  S.  Environmental
     Protection  Agency, Research  Triangle  Park,  North Carolina.   1986.
     64  pp.

     Air Pollutant  Emission Factors.   Final  Report.   Research
    •Incorporated,  Reston, Virginia.   Prepared for National Air
     Pollution Control Administration,  Durham, North  Carolina, under
     contract No. CPA-22-69-119.        .                .

    Midwest Research Institute.  Municipal Waste  Combustion Study-
    Emission Data  Base for Municipal Waste Combustors, EPA/53-
    SW-87-0216.
    U.  S. Environmental Protection Agency, Research Triangle Park.
    North. Carolina..  June 1987.

    C.  B. Sedman and T. G. Brna, Municipal Waste Combustion Study-
    Flue Gas Cleaning Technology, EPA/530-SW-87-021d.  U. S.
    Environmental Protection Agency, Research Triangle Park,  North
    Carolina.   June 1987.

    Air Pollution Engineering Manual.   U.S. 'DHEW,  PHS, National  Center
    for Air Pollution Control, Cincinnati, Ohio.  Publication
    No.  999-AP-40,.  1967.   p.  413-503.

    Unpublished  data on incinerator testing.   U.S. DHEW,  PHS   EHS
    National Air Pollution. Control  Administration, Durham, North '
    Carolina.   1970.
                                  2-10

-------

-------
               3.  GENERAL DATA  REVIEW AND ANALYSIS  PROCEDURES

  3.1  LITERATURE SCREENING
       To reduce  the  large amount of literature collected to a final  group
  of  references pertinent to  this report,  the following  general  criteria
  were  used:
       1.   Emissions  data must  be from a primary reference:
       a.   Source testing must  be from a referenced study that does not
  reiterate information from  previous studies.            '                 •
       b.  The document must  constitute the original  source  of test data.
  For example, a  technical paper  was not" included if  the  original  study  was
  contained in the previous document.  If'the exact source of  the  data could
-  not be determined, the document was eliminated.
       2.  The referenced study must contain test results based on more  than
 one test run.
       3.  The report must contain sufficient data to evaluate the testing
 procedures and source.operating conditions (e.g.,  one-page reports were
 generally rejected).                                        , ,
      A final set of reference materials was  compiled after a thorough  •
 review of the pertinent  reports, documents,  and information according to
 these-criteria.
 3.2   EMISSION DATA QUALITY RATING SYSTEM
      As part of  MRI's analysis of the emission data, the quantity and
 quality of the information contained in the  final set of reference
 documents were evaluated.  The following  data  were always excluded from
 consideration.    "                   •       ,
      1.   Test series averages  reported in units  that cannot be converted
 to the selected  reporting units;
                                    3-1

-------
      2.   Test  series representing incompatible test methods (i.e.,
 comparison of  -EPA Method  5 front-half with  EPA Method 5 front- and  back-
 half);
      3.   Test  series of controlled  emissions  for which the control  device
 is  not specified;
      4.   Test  series in which  the source  process is not clearly identified
 and described;  and
      5.   Test  series in which  it  is  not clear whether the  emissions were
 measured  before or after  the control  device.
      Data sets  that'were  not excluded were  assigned a quality  rating.   The
 rating system  used was that specified by  the  OAQPS  for the preparation  of
 AP-42 sections.  The data were rated  as follows:                 -  •
      A—Multiple tests performed  .on  the same  source using  sound
 methodology and reported  in enough detail for adequate validation.   These
 tests do  not necessarily  conform  to  the methodology specified  in either
 the inhalable particulate (IP) protocol documents or  the EPA reference
 test  methods, although these documents and methods  were certainly used  as
 a guide for the methodology actually  used.
      B—Tests that were performed by  a generally sound methodology  but
 lack  enough detail for adequate validation.
      C~Tests that were based on  an untested or new methodology or  that
 lacked a  significant amount of background data.
      D—Tests that were based on  a generally unacceptable method but may
provide an order-of-magnitude value for the source.                    ' i ••
     The following criteria were used to evaluate source test reports for
sound methodology and adequate detail:
      1.   Source operation.  The manner in which the source-was operated is
well documented in the report.   The source was operating within typical
parameters during the test.
     2.   Sampling procedures.   Jhe sampling procedures conformed to a
generally acceptable methodology.   If actual procedures deviated from
accepted  methods,  the deviations are well  documented.  When this occurred,
an evaluation was  made of  the  extent such  alternative procedures could
influence the test results.
                                   3-2

-------
       3.  Sampling and process data.  Adequate sampling and process data
  are documented in the report.  Many variations can occur unnoticed and
  without warning during testing.  Such variations can induce wide
  deviations in sampling results.  If a large spread between test results
  cannot be explained by information contained in the test report, the data
  are suspect and were given a lower rating.
       4-  Analysis and calculations.  The test reports contain original raw
  data sheets.   The nomenclature and equations used were compared to those
  (if any)  specified by EPA to establish equivalency.   The depth of review
  of the calculations  was  dictated  by the reviewer's confidence in the
  ability and conscientiousness of  the tester, which in.turn  was based on
  factors such  as  consistency  of results and completeness  of  other areas of
  the test  report.
  3.3  PARTICLE S'IZE DETERMINATION
       There  is no  one  method  which  is universally  accepted for  the
  determination of  particle  size.  A  number  of different techniques  can  be
  used  which  measure the size  of particles according to their basic  physical
  properties.   Since there is  no "standard"  method, for.particle  size
  analysis,.a certain degree of subjective evaluation was used to  determine
  if  a  test series was  performed using a sound methodology for particle
  sizing.
      for pollution studies, the most common types of particle sizing
  instruments are cyclones and cascade impactors.  Traditionally,' cyclones
  have been used as a preseparator ahead "of a cascade impactor to remove'the
  larger particles.  These cyclones  are of the standard reverse-flow design
 whereby the flue gas enters the cyclone through a  tangential  inlet and
 forms a vortex flow pattern.   Particles move outward  toward  the cyclone
 wall with a velocity that is  determined by  the geometry and  flow rate in
 the cyclone and by their  size.  Large particles reach  the  wall  and  are
.collected.   A  series  of. cyclones with progressively decreasing  cut-.points
 can be used  to obtain  particle size  distributions.                      "
      Cascade impactors used for the  determination  of particle size  in
 process  streams consist of  a  series  of  plates or stages containing  either
 small  holes  or slits with the  size of the openings  decreasing from  one
 plate  to the next.  In each stage of  an  impactor, the gas stream  passes
                                    3-3

-------
  through  the  orifice  or  slit  to  form a jet that  is  directed  toward  an
  impaction  plate.   For each stage,  there  is a characteristic particle
  diameter that  has  a  50  percent  probability of impaction.  This
  characteristic diameter is called  the cut-point (D50)  of  the stage.
  Typically, commercial instruments  have six to eight  impaction stages with
  a backup filter to collect those particles which are either too  small to
  be collected by the  last  stage  or  which  are reetrained off  the various
  impaction  surfaces by the moving gas  stream.
  3.4  PARTICIPATE SIZE'DATA ANALYSIS METHODOLOGY
      The particulate emission information  contained in the  various
  reference  documents was reduced to a  common  format using  a  family of
  computer programs developed especially for  this purpose.  These  programs
  use the  so-called "spline" fits.  Spline fits result in cumulative mass
  size distributions very similar to those which would be'drawn using a
  French curve and fully  logarithmic graph paper.   In effect, the  logarithm
  of cumulative mass is plotted as a function of the.logarithm of the
  particle size,  and a 'smooth curve with a continuous, nonnegative
  derivative is drawn.                   .
      The process by which this smooth cumulative distribution is
 constructed involves  passing  an interpolation parabola through three
 measured data points  at  a time.   The parabola is then used to interpolate
 additional  points  between measured  values.  When the set of  interpolated
 points are  added to the  original set of data, a  more satisfactory fit  is •
.obtained than would be the case  using only the measured data. The  size-
 specific emission  factors are determined  once the size  distribution is
 obtained by a spline  fit.
 3.5   EMISSION FACTOR  QUALITY  RATING SYSTEM
      The quality of the  emission factors  developed  from analysis  of the
 test'data was rated utilizing the following general  criteria:
      A—Excellent:  Developed only,  from A-rated  test data  taken from many
 randomly  chosen facilities  in the industry population.  .The  source
 category  is specific  enough so that variability  within  the source category
 population  may  be minimized.
      B—Above average:   Developed only from A-rated test data  from a
 reasonable  number of  facilities.  Although  no  specific  bias  is evident,  it
                                    3-4

-------
 is not clear if the facilities tested represent a random sample of the
 industries.  As in the A-rating, the source category is specific enough  so
 that variability within the source category population may be minimized.
      C—Average;  Developed only from A- and B-rated test data -from a
 reasonable number of facilities.  Although no specific bias is evident,  it
 is not clear if the facilities tested represent a random sample of the
 industry.  As in the A-rating, the source category is specific enough so
 that variability within the source category population may be minimized.
      D—Below average:   The emission factor was developed only from- A- and
.B-rated test data from  a small number of facilities-,  and there is reason
 to suspect that these facilities do not  represent  a  random sample of  the
 industry. . There also may be evidence of variability  within the source
 category population.  Limitations on the use  of the emission factor are
 noted in the emission factor table.
      E—Poor;   The  emission factor  was developed -from C-  and  D-rated  test
 data,  and there is  reason  to suspect  that the facilities  tested do not
 represent a random  sample  of the  industry.  There also may  be  evidence of
 variability within  the  source  category .population.  Limitations on .the use
 of these  factors.are-always  noted.
     The  use of  these criteria is somewhat subjective and depends to an
 extent on the individual reviewer.  Details of the rating of each
 candidate emission factor  are provided in Chapter 4 of this report.
 3.6  REFERENCES  FOR CHAPTER 3
 1.  Technical Procedures for Developing AP-42 Emission Factors and
    Preparing AP-42 Sections, Office of Air Quality Planning and
    Standards, U. S. Environmental Protection Agency,  Research Triangle
    Park, North Carolina.  April  1980.
2.  Interim Report to State/Local APC Agencies of Particle Size
    Distributions and Emission Factors (Including PM10),  Office of Air
    Quality Planning and Standards,  U. S. Environmental  Protection Aqency
    Research Triangle Park, North Carolina.   July 1986.
3.   Lime and Cement  Industry-Source Category  Report.  Volume II-Cement
    Industry, EPA Contract No.  68-02-3891, Midwest  Research  Institute
    Kansas City, Missouri.   August 1986.,
                                   3-5

-------

-------
                  4.  POLLUTANT .EMISSION FACTOR DEVELOPMENT

 4.1  PROCESS DESCRIPTIONS, TEST  PROTOCOL  SUMMARIES,  AND  DATA  REVIEWS
      Process descriptions, test  protocol  summaries,  and  data  reviews  are
 presented below by combustor type "in the  following order:  mass-burn,
 excess-air MWC's; modular, starved-air MWC's; and RDF-fired MWC's.  Each
 summary contains a brief description of the combustor, the air pollution
 control system, the sampling and analysis protocol employed at the test
 site, and the data rating.
 4.1.1  Baltimore. 1985 Tests (Mass Burn, Waterwal1)1»2
      The Baltimore facility consists of three, identical', 686-Mg/d
 (750-ton/d),  mass-burn, waterwall combustor units, which were installed in
 1984.  Each combustor has its own 91,400-kg/h, (200,000-lb/h)  steam heat
 recovery boiler.   A portion of the steam drives a 60-MW turbine
 generator.   Nonprocessed waste is transferred by overhead cranes from the
 contained  pit to  the  feed hopper where  ram feeders charge the waste onto
 Von Roll  reciprocating  grates.   Overfire and  underfire  air is drawn from
 the pit area  to fuel  the combustion process.   Furnace temperatures are
 between 1200°  and  1370°C (2200°  and 2500°F).   Bottom  ash  and  ESP  ash  are
 combined onto  a semidry,  vibrating-pan  conveyor  and processed  through  a
 screen  and magnetic separator  prior to  disposal.
      Particulate emissions  are controlled  by  three, conventional,
 wire/plate ESP's, each  designed by  Wheelabrator  Frye  with  four fields.
 The three ESP exhaust streams are separately ducted and routed through  an
 induced-draft (ID) fan  into a common stack..
      Compliance testing was performed in January.1985 on Unit  1 under
 normal operating conditions.  Emission measurements included:  (1) PM by
M5; (2) S02 by a modified M8 train with analysis  by M8;  (3) NO  by EPA
Method 7 (M7); and (4) CO by EPA Method 10 (M10) with sample analysis by
flame ionization detection with gas chromatography (FID/GC).

                                  4-1

-------
      Tests were conducted on Unit 2 while it was operating normally at
 approximately 85 percent of capacity during May 1985.  These tests were
 conducted by EPA's Emission Measurement Branch (EMB) to measure chromium
 emissions.  Uncontrolled and controlled emission testing included PM by
 EPA M5; inorganic As by EPA M108; Cr"1"6 by digesting M5 filters in an
 alkaline solution with analysis by the diphenylcarbazide colorimetric
 method; total Cr by neutron activation analysis (NAA); and particle sizing
 with an Andersen Mark' III impactor and an Andersen heavy grain loading
 impactor/cyclone.  Metal analyses included filter and impinger solutions
 for As and filter only for total  Cr and Cr"1"6.
      A rating of A was assigned to-data from'both the January and May 1985
 tests.
 4.1.2  Braintree, 1978 Test (Mass Burn, Waterwall)3
      the Braintree municipal  incineration facility comprised  two,
 identical, mass-burn,  waterwall  incinerators.  The facility is no longer
 in  operation.   Each incinerator was designed to handle 109  Mg/day
 (120 tons/day)  at a charge rate of-1,090 kg/charge (2,400  Ib/charge).   The
 refuse was charged by  gravity onto an  inclined  grate,  where drying
 occurred,  and  then onto a Riley-Stoker horizontal  traveling grate,  where
 combustion occurred.   The burn grate was designed  for  a-heat  release  rate
 of  3,240 MJ/m2h  (285,000 Btu/h-ft2).   The grate was supplied  with
 underfire  air  from a forced-draft (FD)  fan;  typically,  no overfire  air  was
 used.   The hot gases passed to the Riley Stoker boiler  that 'had 83  m2
        2
 (890 ft-)  of waterwall  heating surface  and boiler  tubes with  a heating
 surface of 224 m2  (2,410 ft2).  The  boiler had  a capacity of  13,600 kg/h
 (30,000 Ib/h) of  1,720  kPa (250 psig)  steam.
      The exhaust  gases  from each  incinerator  were  directed  to ESP's.  A
 bypass  duct that  connected the  inlets of  the  two ESP's allowed the exhaust
 from  an  incinerator to  be  directed to either  or both ESP's.  The  ESP's
were  identical,, single-field wheelabrator-Frye  units..  Each had a specific
 collection area (SCA) of 413 m2/l,000 m3/min  (126 ft2/!,000 acfm) and a
design  collection  efficiency for  PM of 93 percent.  No data.were presented
on ESP operating conditions during the test.
     The metals testing  at Braintree was conducted as a part of a
comprehensive environmental assessment of the facility.  Key elements of
                                  4-2

-------
  the program included quantitation and  characterization  of  the  refuse  feed,
  bottom ash, and ESP outlet PM and gases.  The ESP inlet PM also was
  measured.  Three tests, all at normal  operating conditions, were
  conducted.
       At the inlet to the ESP, PM concentrations were determined using M5,
 . and particle size measurements were made with a Brink impactor.  The
  particulate filters from the M5 tests were analyzed for As, Hg, Pb, and Cd
  using spark source mass spectroscopy (SSMS) and AA.   At the outlet of the
  ESP, PM concentrationsiwere determined using M5, and particle size
  distributions  were determined by an Andersen cascade impactor.  The M5  '
  filters were analyzed for metals using SSMS and AA.   In addition,  an
  impinger train that contained potassium hydroxide (KOH)  in the first
  impinger and KMnOH in the second and third impingers was used to sample
  for vaporous Hg at the ESP outlet.   The KOH impinger also was analyzed for
 .concentrations of  chloride and  fluoride.   A SASS train-was  used during one
  test at the ESP outlet.  The  impinger solutions  from the SASS train were
  analyzed  for volatile  As  and  Hg.  Mercury concentrations in the impinger
  train  and  SASS train were  determined by cold  vapor.generation AA,  and  As
  concentrations were determined by a  hydride generation AA technique.-
       Continuous analyzers  were used  to  measure stack concentrations of CO
  by  nondispersive infrared  spectrophotometry  (NDIR),  total hydrocarbons
  (THC)  by. FID,  S02  by NDIR, NOX by chemiluminescence,  and 02  by
•  polarographic  cell.  .
      The data  in this report were assigned a rating  of A.
 4-l-3  Chicago  Northwest.  1980 Tests  (Mass Burn. WaterwalT)1*
      The Chicago Northwest incineration plant consists of four, mass-burn,
 waterwall incinerators, each with a nominal burning capacity of 363 Mg/day
 (400 ton/day).   To charge the furnace, waste feed is transferred by crane
 to the charging chute, fed by gravity onto three stoker feeders, and
 push'ed onto the stoker by the reciprocating action of the stoker
 feeders.  In the combustion chamber,  the waste is moved through the system
 by a series of  Martin/inclined,  reverse-action reciprocating grates.  The
 stokers are designed to use 1,900 Nm3/nrin  (67,200 scfm)  of primary
 underfire air at 4.5 kPa (18 in.  w.c.) and 476 Nm3/min (16,800 scfm) of
 overfire air at 3.7 kPa (15 in.  w.c.).  Underfire air is  introduced into
                                   4-3

-------
 multiple  compartments  under the stoker grates;  distribution is manually
 controlled.   Overfire  air is supplied through the front and rear walls.
 The  system  is designed to produce 49,900 kg/h (110,000 Ib/h)  of steam at
 1,720  kPa (250 psig) and  has an average stoker  heat  release rate of
 3,770  MJ/h-m2 (325,000 Btu/irft2).   The boiler  is a  convection,  water-wall,
 natural-circulation type  with economizer that has 1,840 m2  (19,800 ft2) of
 heating surface.
     . The  air  pollution control  device for Unit  2  is  a  p.late-type ESP.   It
 is designed for a  collection efficiency of 97 percent  at an inlet grain
 loading of  3,600 mg/Nm3,(1.6 gr/scf).   The design inlet temperature  is
 260°C  (500°F),  and the superficial  gas  velocity is 0.9  m/s  (3  ft/s).
      The  testing at Chicago  included  outlet sampling for organic
 pollutants  and  Cd on Unit  2.   Organic sampling  was conducted using the  EPA
 MM5  sampTing  train, and Cd  samples  were collected  in an M5  sampling
 train.  Stack  gases also were  monitored continuously for 02, C02r CO, and
 THC  (Ci through -C6 hydrocarbons).   The  M5  filter was digested, and Cd
 analyses  were  conducted with  flame  AA using  an  air-acetylene flame.
      The  data  in this  report were assigned  a  rating of  A.
 4.1.4  Hampton, 1981,  1982,'  1983, 1984  Tests  (Mass Burn.  Waterwall)5"8
      The  Hampton facility consists  of two, mass-burn, waterwall
 incinerator-boilers.   Each unit is  designed to  handle approximately
• 114 Mg/day  (125 tons/day), producing  steam  at 15,000 kg/h (32,000 Ib/h).
 Refuse is moved from a storage pit  to the feed  hopper by  an overhead crane
 and transferred through the furnace by  a series of three, inclined
 reciprocating grates.   The furnace  is designed to burn refuse without
 auxiliary fuel.  Unburned residue is discharged into a waterfilled quench
 pit.   Particulate matter removed from the flue gas also is conveyed to the
 quench pit.   The pit is continuously dredged into a truck for landfill
 disposal.   During stable operation, the firebox temperature is near 1260°C
 (2300°F),  and the furnace wall temperature ranges from 790° to 840°C
 (1450°  to  1550°F).
      The  facility is equipped with an ESP.  Hot furnace flue gas, after
 traveling  through economizers, goes to the ESP where  PM is removed.   A
 conveyor  discards ESP  ash to an ash pit, and the gas  from the  ESP is
 routed  to  an ID fan and out the stack.
                                   4-4

-------
       Tests were conducted in September 1981 to evaluate measurement
  methods for sampling chlorinated hydrocarbons, gaseous HC1, and
  particulate chloride.6  The feed rate was 112 Mg/day. (123 tons/day) during
  the  test period.   Process conditions were not reported.  Organic compounds
  were sampled using a MM5 train with glass beads in the first two impingers
  and  an  XAD-2 sorbent resin cartridge located between the third and fourth'
  impingers.   Organic compound  analysis was performed.with high resolution
  gas  chromatography/high  resolution  mass  spectroscopy (HRGC/HRMS)  to
  measure  (1)  tetra-  through octa-CDO and  CDF  homologs;  (2)  di- through
  hexa-ClB  homologs;  (3) tri- through penta-ClP homologs;  and  (4)  tri-
  through  hexa-homologs  of  PCB.  An EPA M6  train  with  sodium hydroxide
  (NaOH) in all four  impingers was used to  measure HC1.   Analysis  for HC1
 was performed by the mercuric  nitrate method  modified by treating  the
 sample with  hydrogen peroxide  H202."
      Testing was performed in April,1982  to characterize stack emissions
 during normal operation at an estimated feed  rate of 114 Mg/day
 (125 tons/day).7  Detailed data on process operation were not available.   '
 Comprehensive, emission measurements included:   (1)  PM by M5;  (2) particle
 size with an Andersen impactor; (3)  particle-phase  metals from  '
 cyclone/filter catch from a SASS train by XRF .(As,  Cd, Cr,  Hg, Pb, and Ni)
 and SSMS (Be only); (4) volatile'metals (As,  Hg, Pb,  et al.) from SASS
 impingers with H202 followed by.ammonium  persulfate/si Tver nitrate
 solutions by AA analysis;  (5)  HC1  and HF  by an M6 train with NaOH solution
 in  first  two impingers by ion  chromatography  (1C);  (6)  polyaromatic
 hydrocarbons (BaP,  et al..), 2,3,7,8  TCDD/TCDF and total  TCDD/TCDF with
 SASS  cyclone, filter,  and.XAD-2 resin catch by HRGC/MS;  (7)  anions  in
 flyash (sulfate, nitrate,  chloride,  bromide,  flouride,  and  phosphate) with
 SASS  impingers with  distilled water  by 1C; (8)  aldehydes  (formaldehyde,
 et  al.) with  an M6 train with HC1, 2,4-dinitrophenyl-hydrazine, and
 isooctane  in  first two  impingers by  reverse-phase high-performance  liquid
 chromatography (HPLC);  and  (9)  volatile hydrocarbons  (benzene, et al.) and
 chlorinated organic compounds (chlorobenzene isomers/homologs, et al.)
using EPA Method- 25  (M25) equipment quantitated  by FID and electron
capture detection (ECD), respectively.  Organic  screening analysis to
estimate concentrations of various compounds was performed by HRGC/MS from
                                  4-5

-------
 aliquots of the sample extracts, but the reported estimates were not
 included in the EPA data base.
      Testing was performed in 1983 as part of a nationwide survey to
 determine organic emissions from major stationary combustion sources.4
 The  unit was tested under normal conditions with variations in steam flow
 from 13,600 to  15,400 kg/h (30,000 to 34,000 Ib/h) and furnace temperature
 from 700° to 930°C (1300° to 1700°F).  Process and ESP operating
 conditions were monitored and reported,  and continuous emission monitoring
 for  02,  C02, CO,  and THC was conducted.   Sampling was  performed with a MM5
 train with a condenser and an XAD-2 resin cartridge located between  the
 filter box and  first impinger.   Quality  assurance and  quality control
 (QA/QC),  included  surrogate spiking, surrogate recovery,  blank samples,  and
 analyte  breakthrough tests..  Analyses were by HRGC/MS,  high resolution gas
 chromography/mass  spectroscopy-selected  ion monitoring (HRGC/MS-SIM),  and
 HRGC/HRMS-SIM.   Emission,results were reported for mono-  through  tetra-CDD
 and  CDF  homologs  and 2,3,7,8-TCDD,  BaP,  and mono- through deca- homologs
 of PCB.
  .    Testing was  also performed  in  October 1984 to determine  any  changes
 in emission  characteristics  since the installation of  an  air  preheater  and
 a CO  continuous monitor.6  The incinerator was  tested  during  normal
 operation  with  a  steam flow  of 12,500 kg/h (27,500 Ib/h)  and  furnace
 temperature  near 820°C (1500°F).  The process  operation was.monitored  and
 process  data were  reported in the appendix to  the  test report,  but these
 data  have  not yet  been included  in  the EPA data  base.  Emission results
were  reported for  the  tetra- through  octa-CDD  and  CDF homologs,. di-
through  hexa-ClB homologs, and tri- through  penta-ClP's.  Sampling was
performed with an  MM5  train with  glass beads  in  the first two impingers
 and an XAD-2 resin cartridge located  between the third and fourth
 impingers.  All analyses were by  HRGC/HRMS.
     Because they  lacked raw data sheets and information on process
conditions, the 1981 and 1982 test data were assigned a rating of B.   The
1983 and 1984 test data were assigned a rating of A.
4.1.5- Tulsa, 1986 Test (Mass Burn, Waterwall)9
     The Tulsa facility currently consists of two, identical, 343-Mg/d
 (375-ton/d), mass-burn, waterwall combustor units, which were installed in
                                  4-6

-------
 1986.  Each combustor  has  its  own  steam  heat  recovery boiler,  portions  of
 which drive a turb.ine  generator.   Nonprocessed waste  is  transferred  by
 overhead cranes into the feed  hopper where the waste  is  charged onto
 Martin GmbH, inclined, reverse-reciprocating  grates.
      Particulate matter emissions  are controlled by two  ESP's.  The  two
 ESP exhaust streams are routed into a common  stack.
      Compliance tests were conducted on  Units 1 and 2 during normal
 operation to determine controlled  emission levels for:   (1) PM by EPA M5;
 (2) Pb, Be, and Hg by EPA Methods  12 (M12), 104, and  101A (M101A),
 respectively; (3)  Nox and CO by EPA Method 7E (M7E) and M10, respectively;
 (4) H2SO^, S02, HF, and HC1 by EPA MS and Method ISA  (M13A); (5) volatile
 organic compounds  (VOC) by California Air Resources Board Method 100;  •
 (6) opacity by EPA Method 9 (M9); and "(7) trace chlorinated organic
 compounds by an MM5 train as specified by the ASME draft protocol.
 Separate  emission  measurements were made for each pollutant on Units 1 and
 2,  with the exception that  measurements  for Hg, .trace  chlorinated  organic
 compounds,  and  opacity were made  at the  stack  common for both  units.
 Front-  and  back-half M5 determinations were made  to measure  the amount of
 particulate and  condensible matter, respectively.   The M5 impinger Liquid
 was analyzed  to  determine the  amount of  ammonium  sulfates,  inorganic
 chlorides,  and  fluorides.   The  M5 filter  and  impinger  liquid were  both
 analyzed  to determine  HF  and HC-1  levels.   Emissions  of Pb and  Be were
 measured  by modifying  EPA M12 by  charging the  first  impinger with
 distilled water  and  the second  impinger with dilute  aqua  regia. •
     The  data in this report were assigned  a rating of A.
 4-l-6  Peekskill,  1985  (Mass Burn,  Waterwalll10
     The Westchester facility in  Peekskill, New York,,  consists of three,
 identical boilers, each of which has a design  capacity of 76,000 kg
 (167,700  Ibs) of steam per hour at  440°C  and 6,200 kPa (830°F and
900 psig)  from the combustion of 682 Mg.(750 tons) of refuse per day.  The
Von Roll reciprocating-grate mass burners are fed uniformly by a ram
system,  which is in turn fed at random by grapplers.  Primary air is
introduced from beneath the grates while secondary air  is introduced
through  nozzles located above the grates.   The refuse is combusted  on
licensed Von Roll grates in the furnace,  which operates at temperatures
                                  4-7

-------
 exceeding 980°C (1800°F).  Odor from the refuse pit area is controlled by

 drawing combustion air from the pit area to maintain negative pressure

 over the pit.  Electricity is produced by a turbine generator that is

 driven by superheated steam from a waterwall boiler above the grate
 area. '                   .

      Each boiler is serviced by a three-field ESP designed to keep

 particulate emissions below 68 mg/Nm3 (0.03 gr/dscf) at 12 percent C02.

 From the ID fans,  the gases are fed into three separate flues within the
 single stack.

      Sampling at the plant was conducted on Unit 1 during April  1985 in

 the ductwork between the ESP's and ID fans.   Throughout testing, the unit

 operated at 95 to  112 percent of design capacity.   Concentrations of the

 following compounds were measured during the normal  operation of the
 plant:
      PM    '
      2,3,7,8-TCDD
      2,3,7,8-TCDF
      PCDD  (tetra-octa)
      PCDF  (tetra-octa)
      Chrysene    •  '
      PCB
      BaP
      Formaldehyde
      HC1
      As
      Be
 Hg
 Cd
 Cr
 Pb
• Manganese
 Ni
 Vanadium
 Zinc
 SO 2
 NOY
 cox
 CO 2
Measurements for criteria and other pollutants were performed using

applicable EPA reference methods.  Measurements for PCDD/PCDF were made

using the ASME draft protocol.  The organics train consisted of a glass-

lined probe, a heated glass-fiber filter, a cooling condenser, a water-

cooled glass cartridge containing 40 g of XAD-2 resin, and several glass

impingers.  All sections of the train were glass and were connected by

Teflon™ unions except the 316 stainless steel nozzle.  The resin was
spiked before sampling with -a known quantity of isotopically tagged

1,2,3,4-TCDD to determine retention efficiency.

     Because this report lacks the process data necessary to calculate an
emission factor these data were assigned a rating of C.
                                  4-8

-------
  4-1-7  Gallatin.  1983 Tests (Mass Burn. Waterwall)11
       The Gallatin facility fires unprocessed municipal waste to two,
  91-Mg/day (100-ton/day),  O'Connor, water-cooled rotary combustors.  Waste
  received at  the facility  1s -transferred to the feed hoppers by overhead
  cranes  and then fed  to the combustor by a ram-feed system.   The inclined
  combustor rotates between 10  and 20 revolutions per hour (rph)  to process
  the refuse through the combustion zone.   Combustion air is  preheated to
  230°C (450°F)  and is  fed  as both underfire and overfire air in  the rotary
 .combustor and  as  overfire air to the boiler zone.   The rotary combustor is
  mated to  a Keel.er-waterwall boiler for  radiative and convective heat
  transfer.  The  boiler  is  designed  to produce  12,000 kg/h  (27,000 Ib/h)  of
  steam at  2,930  kPa (425 psig).
      At the time  of the test, the  emissions from the Gallatin facility
 were controlled by a cyclone and an  electrostatically  assisted  FF.   The  FF
 was an innovative- technology that was eventually replaced with  an  ESP due
 to several problems associated with  the unit.  No other design  information
 on the control system was provided in the report.
      Particle size distribution and  heavy metals emission rates were
 determined at .the  outlet'from the combustor using a Flow Sensor, five-
 stage, multiclone  sampling system.  A total of four runs, each about 1.5
 hours  in duration, were made.   After the cyclone catch  from  each stage was
 weighed  for particulate loadings, metals analyses were  conducted using
 AA.  Those metals  analyzed were  As, Be,  Cd, Cr, Ni, and Pb.   Four separate
 tests  at the  combustor outlet  measured Hg using M101 with analyses by
 AA.  In  addition to particulate  and metals measurements, emission rates  of
 S02 and  S03 were determined using EPA MS.   The HC1  and  HF rates  were
 measured  with  an M6-type train.   A continuous  emission  monitoring system
 was used  to measure stack  gas concentrations of 02  (paramagnetic),  CO and
 C02 (NDIR), NOX  (chemiluminescence),  S02  (ultraviolet),  and  total
 nohmethane hydrocarbons  (GC/FID).
     The data  in this report were assigned  an  A rating.
 4-1-8"  Km-e, japan, 1981 Test (Mass Burn. Waterwall)12
     The Kure facility consists of two, 75-Mg/day (165-ton/day), mass-
 burn,  O'Connor, water-cooled rotary combustors equipped with separate
waterwall boilers.   The facility began commercial operation in
                                  4-9

-------
 November 1980.  Two cranes mix the solid waste and deposit the loads into
 the feed chutes for each of the combustors.  The ram behind the entrance
 to the rotary combustor pushes the solid waste from the bottom of the feed
 chute into the rotary combustor on a scheduled cycle that sets the
 volumetric feed rate.  As the solid wastes are combusted, they are mixed
 by the rotation of the combustor barrel (10 to 20 rph) and moved the
 length of the rotary combustor.  The bottom ashes pass through the base of
 the boiler on a small traveling grate into a quench tank, then along a
 conveyor into the ash pit.  A crushing plant recovers recyclable materials
 after crushing and shearing the bulky waste and delivers the remaining
 waste material by conveyor to the solid waste receiving pit for combustion
 in the rotary combustors.   Combustion gas passes through the boiler, FD
 fan,  and combustion air preheater.
      The air pollution control  system consists of an ESP followed  by a wet
 scrubber.   The ESP was manufactured by Ishipawajima-Harima Heavy
 Industries  Company, Ltd.   The wet scrubber has a turbulent contacting
 absorber design'.
      Testing was  performed on Unit  1  and consisted  of a comprehensive
 evaluation  of waste feed combustor  process parameters along  with uncon-
 trolled  and controlled emission measurements.   Emission .measurements
 included:   PM by  M5;  S02 and.SO3  by M6 and M8;  NO,  NOX,  02,  and S02  by
 continuous  emission monitors  (CEM's);  hydrocarbons  by 6C/FID after
 collection  in charcoal  tubes  and  metal  bombs;  and particle sizing with an
 Andersen impactor.   Heavy  metals  were  analyzed  for  the  different particle
 size  ranges by emission spectrophotometry  and  from  M5 filters by NAA.  The
 data  in  this  report were assigned an A  rating.
 4.1.9  Munich,  1984 Tests  (Mass Burn, Waterwall)13
     The Munich North  III  MWC facility'consists of  two, mass-burn
 incinerator-boiler  units,  each  designed  to burn 480 Mg/day (530 tons/day)
of municipal  waste  and 260 Mg/day (290  tons/day) of clarified sludge to  ..
produce  50,000 kg/h  (110,000  Ib/h) of steam.  A hydraulic ram located
under the feed chute charges the waste onto reciprocating grates.
Combustion  airflow  is controlled by an  inlet damper on the primary air
fan.  The firing rate is controlled by 02 and temperature monitors in the
first boiler  pass, which regulate the refuse feed rate and combustion
                                 4-10

-------
 airflow.  The refuse "feed  rate  is  determined  by  the  stoke  rate  of a
 hydraulic feeder under the feed  chute.  -Air flow is  controlled  by an  inlet
 damper on the primary air  fan.   The bottom ash falls off. the  end  of the
 grate into a water quench  ash extractor.  A bar  grizzly  at the  extractor
 discharge separates oversize materials  (mostly metal) from the  ash, which
 is transported by belt conveyor  to the  ash bunker.   The  oversize  material
"is. manually removed to a dumpster.
      The emission control  system consists of a DBA SD reactor followed by
 a DBA ESP.  Flue gas from  the boiler enters the SD at about 260°C
 (500°F).  The lower inlet  section of the SD is a cyclonic preseparator
 where approximately 70 percent of the fly ash is removed from the flue gas
 and pneumatically transported to the ash bunker.   From the preseparator
 section, the flue gas flows upward through a distribution grid and into
 10 flow tubes arranged annularly on the reactor perimeter.   Each tube
 contains a dual-fluid nozzle  used for spraying the lime slurry into the
 gas  stream.   The atomized lime slurry,  which  is a composite of concen-
 trated  lime  slurry  and dilution  water,  is prepared from calcium  oxide
 (CaO)  in a slaker.   The  acid  gases  are  removed from the flue  gas by an
 absorption-reaction  process while the water component of  the  droplet is
 evaporated.   The  result  is  a  dry particulate which includes calcium salts
 and  excess lime.  The  evaporation process lowers  the  temperature of the
 flue gas  to approximately 150°C  (300°F).   The  solid reaction  products  from
 the  SD reactor, together  with  the dust  that-has passed through the
 cyclone,  are  carried over into a  two-field ESP and removed from  the  flue
gas.  The collected material  is mechanically and  pneumatically transported
to the ash bunker.  The ESP exhaust is routed through an  ID fan  and  a
concrete  stack.        .                                   -
     The  intent of the test program was to establish the  ability of the
control system to maintain  air pollutant emissions at levels acceptable in
the U.S.  Test conditions were selected to optimize the .emission control
system performance over a range of SD operating conditions but were
limited during testing by certain plant operating requirements.  During
these tests,  only MSW was fired.   Uncontrolled and controlled  emission
testing was performed for PM,  particle size distribution,  HC1, and SOX.
Controlled emission  tests were conducted for several  selected  metals,
                                 4-11

-------
 including As, Be, Cd, Cr, Pb, arid Ni.  The sampling and analysis methods
 used in the test were:  (1-) M5 for PM; (2) M8 for S02 and S03; (3) M6 for
 HC1, modified by using distilled water in the impingers; (4) particle
 sizing with an Andersen cascade impactor and three-stage Flow Sensor
 multiclone; and (5)  heavy metals with Flow Sensor multiclone sampling"and
 AA analysis.
      The data in this report.were assigned a rating"of B because the
 report lacked raw data sheets and some process data.
 4.1.10  Quebec, 1985-86 Pilot-Scale Tests (Mass Burn,  Waterwall)11*
      The Quebec incinerator is a mass-burn design developed  in the early
 1970's to burn as-received refuse in a waterwall  furnace.  There are four
 incinerators, each rated at 227 Mg/day (250 tons/day)  with a common refuse
 storage pit and stack.   Each incinerator consists' of  a vibrating feeder-
 hopper;  feed  chute;  drying/burning/burn-out grates (Von Roll  design);
 refractory-lined burning zone;  waterwalled,  partially  lined  upper burning
 zone;  waste heat recovery boiler with superheater and  economizer (Dominion
 Bridge);  two-field ESP;  an ID fan;  and  wet ash quench/removal  system.  The
 incinerator receives  municipal,  commercial,  and suitable  industrial  solid
 waste.'  Each,of the  four units  is capable  of independent operation  and is"
 rated  to  produce 37,000  kg/h  (81,500  Ib/h)  of  steam when burning
 227  Mg/day  of refuse  with  a  heating  value  of 13,950 kj/kg
 (6,000  Btu/lb).  •       "                 .
     Environment Canada  in cooperation  with  Flakt  Canada, Ltd.,
 established an  extensive test program to evaluate  the capability of two
 pilot-scale scrubber  and FF control systems  to remove PM, acid gases,
 heavy metals,  PCDD, PCDF, and other organic  compounds.  Evaluation of
 operating conditions  to  minimize these  contaminants also were of
 interest.   Flakt  constructed a large-scale pilot facility at the Quebec.
 plant equipped with:
     1.  A flue.gas slipstream from.the ESP  inlet of Unit 3 to deliver
 58 Nm3/min  (2,000 ft3/min) at 260°C (500°F) to the pilot facility;
     2. -An SD—Flakt's  DRYPAC design (also used as a gas cooler) with
 slurry spray nozzle and  bottom screw conveyor;
     3.  A WSH/DI—Flakt's DAS design, with a single,  dry hydrated lime
 injection nozzle and  an  internal cyclone integral  with the scrubber at the
entrance; and

                                 4-12

-------
       4.  A pulse-jet FF-Flatk's OPTIPULSE design, using high-temperature
  Teflon™'bags as the filtering media with, an air-to-cloth ratio of 4.4
  to 1.
       Testing and process monitoring were conducted during normal operation
  of the full-scale incinerator producing 31,000 to 34,000 kg/h (68,000 to
  75,000 Ib/h) of steam.   Key operating parameters of the pilot system were
  controlled and monitored at the selected test conditions.  Note that these
  controlled conditions,  particularly the constant flow rate of the
  slipstream,  obtained during the pilot-scale testing may not be
  representative of the fluctuations  typically experienced by full-scale
  operations.   Uncontrolled  and controlled emission measurements were
  performed  for PCDD,  PCDF,  HC1,  S02,  metals  (As,  Cd,  Cr.-Hg,  Pb,  Ni,
  et al.), PCB,  C1B,  PAH's,  and C1P.
       Samples were taken  at three locations:  before the  scrubber,  between
  the scrubber and  the  FF, and  at the  stack of  the FF.  Four  sampling  trains
  were.operated  simultaneously  during  the  testing.   In  the  PM/metals/HCl
  train, which is based on the  M5 train, gaseous HCl  and  metals  were
  scrubbed'by  a  series of water-  and aqua  regia-filled  impingers.   In  the
  dedicated"  HC1  train, two water-filled midget  impingers  were employed.
  Chlorides  were analyzed by  1C.   In the Hg train, Hg was scrubbed  by  two
  impingers  containing KMnO^.  Metals were analyzed using DCPES. with these
  exceptions:  Hg was determined  by measuring the Hg vapor concentration by
  fTameless  atomic absorption (FAA), and As was determined by the formation
 of  its hydride and analysis by  FAA.   In the organics train, gaseous
 organics were trapped in an XAD-2 resin tube and an ethylene glycol-filled
  impinger;  analysis was by GC/MS.
      Continuous gas monitoring was performed at the inlet for S02 (by
 nondispersive ultraviolet spectrophotometry [NDUV])^ HC1 (gas filter   '
 correlation), and THC (by FID).   At  the midpoint, HC1  and S02 were
.continuously ana-lyzed, and  at the. outlet, all  of  the above and CO (by. '
 NDIR) were  continuously  monitored.
      Because none of the  data in this report represent normal  operating
 conditions, the data were rejected.
                                  4-13

-------
 4.1.11  Malmo. 1983 Report (Mass Burn and RDF-Fired Waterwall)15
      The Malmo plant has two MWC units capable of burning as-received and
 RDF municipal  waste at a rate of 10 tons/h.  Each unit is designed with
 Martin,  reverse-acting, traveling grates-'and Wagner-Biro two-stage
 boilers.  The  RDF processing includes a ballistic separator, a magnetic
 separator, and sorting and shredding equipment to produce 3,200 kcal/kg
 (5,200 Btu/lb) fuel.  Fuel is charged through a hopper and onto an
 inclined grate.   The refuse is dried, ignited, and combusted on the grate
 during transport through the furnace.  Primary air is-distributed through
 fine areas in  the grate while secondary air is introduced through nozzles
 located  on front and rear walls at the boiler entrance.   Both primary and
 secondary air  flow rates are manually adjusted for different operating
 conditions.  Each furnace is equipped with  a two-stage waste heat boiler
 having a nominal  capacity of 32 MW.   In the boilers,  the  flue gas is
 cooled from  1000° to 1100°C (1800°  to 2000°F)  to  approximately 290°C   •
 (550°F)  by circulating  540,000 kg/h  (1,200,000 Ib/h)  of hot  water which is
 heated from  110°  to  160°C (230° to  320°F).   The flue  gas  Is  further cooled
 in  two additional  boilers to  improve  the  gas cleaning process and to
 increase  energy  efficiency.
    "The  emission control  system includes cyclones, a DI,  an ESP,  and  an
 FF  designed  to treat 1,300 m3/min at  220°C  (46,000  acfm at 430°F).   The
 flue gas  is  first directed to  the cyclones,  which remove  approximately 60
 to  70  percent  of  the PM.   The  gas then  enters  the reactors where  lime  is
 mixed  with the flue  gas.   The  top of  the reactor is designed  as an  axial'
 cyclone in which  coarse  lime particles  are collected  and then returned to
 the point of injection.  An ESP  followed by  an FF collects the entrained
 DI particles and  incinerator fly ash.
     The test program was  conducted to measure and compare emission
 control system performance during as-received waste and RDF
 incineration.  Thirty process and control parameters were monitored by a
data logger.  Sampling was performed upstream and downstream of the
control system for PM, HC1, CO, gas- and solid-phase metals (i.e., Cd, Hg,
Pb, and Zn), medium-weight hydrocarbons (C6-C18).,  and polycyclic and
chlorinated compounds.
                                 4-14

-------
       Measurements for PM were performed with isokinetic extraction and
  collection  on  quartz filter fabric at 160°C (320T).   The "sample gas was
  cooled,  dried,  and measured with  a flowmeter and volume meter.   Sampling
  for  HC1  was performed using NaOH  in two impingers in  series,  and HC1
  analysis was performed by filtration with  silver nitrate using  an ion-
  selective electrode.   Sampling for Hg was  performed using three, impingers
  with  separate solutions .of  soda and KMnO^  with  sulfuric acid, followed by
  AA analysis.  Sampling for  Cd, Pb,  and  Zn  was conducted using two
  impingers with HN03,  and  analysis  was by AA.  Sampling  for medium-weight
  hydrocarbons (C6-C18)  was performed  by  absorption tubes  with Tenax™  GC
 with analysis by 6C/FID and capillary column.   Polycyclic and chlorinated
 hydrocarbon  sampling was performed  by isokinetic sampling in an  all-glass
 train equipped a heated filter, water-cooled condenser, condensate trap,
 and XAD-2 resin trap.  Concentrations of PCDD and PCDF were determined for
 three sampling train components (filter catch, XAD-2 catch, and .
 condensate)  by GC/MS using Swedish reference methods.
      Because the report lacked raw data sheets,  the data were given a B
 rating.
 4'1-12  Nurzburq.  yjgst Germany.  1985 Tests  (Mass Burn,  Waterwain16
      The facility  tested at Wurzburg is  a new, Martin  GmBH,  reverse-
 reciprocating-grate, waterwall  furnace.   During  the  test period, refuse
 flow  to  the  incinerator ranged  from 260  to  280 Mg'/day  (290 to
 310 tons/day),  and steam production was  about 27,000 kg/h at 4,200 kPa
 (59,000  Ib/h at  610 psig).   No  additional information on the process  was
 presented in the preliminary letter report.
      Emissions are  controlled with  a WSH/DI/FF system. , No description  of
 the air pollution  control  system was  presented in the preliminary letter
 report.
     Particle size  distribution at  the outlet of the control system was
 determined during one run by Using  a  Flow Sensor multiclone sampling
 system.  The  PM catches from the five cyclones were combined and  analyzed
for As, Cd,  Cr, Ni, and Pb.
     Because the process and control systems were not well described in '
the report,  the data were assigned a rating of B.
                                 4-15

-------
                                                         17
 4.1.13  Marion County, 1986 Test  (Mass Burn. waterwall)
      The Marion County facility in Brooks, Oregon,, consists of two,
 250-Mg/d (275-ton/d), mass-burn, waterwall combustor units.  Sol id.waste
 is fed to the Martin GmbH reverse-reciprocating grates by a hydraulically
 operated ram feeder.  The refuse is neither shredded nor sorted  prior to
 incineration.  Generally, auxiliary fuel is not fire.d during normal
 operation.  However, natural gas burners ignite automatically when the
 flue gas temperature falls below 980°C (1800°F).  (This condition may
 occur during those tests that require the incinerator to operate at
 reduced waste loads.)  Heat is recovered using waterwalls in the furnace
 and a specially designed boiler system.  The steam generated in the boiler
 is directed to a 13.1-MW turbine-generator to produce electricity.  Bottom
 ash from the combustion grates is quenched before it is combined with the
 fabric filter ash, dry scrubber cyclone ash,  and boiler fly ash.   The
 combined ash is stored in an enclosed residue storage area for final
 disposal at a landfill.
      i
      The air pollution control  systems are identical  for each  of  the  two
 units.   Each unit  is equipped  with a  Teller-design SD and FF to control
 acid gas and PM emissions,  respectively.   The flue gases  leave the boiler
 economizer and enter the  bottom of the SD through  a cyclonic inlet that
 removes  large particles.   Slaked pebble lime  is  used  as  a reagent;  the
 lime is  mixed with water  and  injected "into  the SO  through an array 'of two-
 fluid nozzles.   The stoichiometric ratio  of lime to  HC1  is approximately
 2.5.  A  dry venturi is  located  immediately  before  the FF  inlet  gas
 plenum.  Tesisorb™ material  is  injected  into  the dry  venturi to enhance
(collection  performance and  reduce  pressure drop  across the FF.  The FF has
 a  reverse-air design for  cleaning,  the  bags and consists of six
 compartments.  The bag cleaning  cycle  for each compartment is typically  60
 to 75 minutes.  After exiting the  FF,  the combustion gases are discharged
 through  a 78.6-meter- (258-foot-)  high stack.
      Compliance tests were conducted from September 22, 1986, to
 October  8,  1986, by Ogden Projects, Inc.  The tests were conducted on
 Units 1  and 2 during  normal operation to determine controlled emission
 levels for:   (1) PM by Oregon Department of Environmental Quality
 Method 5; (2) Pb (Boiler 1 only), Be,  and Hg by EPA M12, M104,  and M101A,
                                  4-16

-------
18_20
  respectively; (3) NOX and CO by EPA M7E and M10, respectively; (4) S02 and
  HC1  by EPA M6C and MS, respectively; (5) PCDD and PCDF (-Boiler 1 only) by
  EPA  MM5; (6) chlorides (Boiler 1 only)  and fluorides (Boiler 1 only) by
  EPA  M13B;  (7) VOC by California Air Resources Board Method 100; and
  (8)  opacity by EPA M9.
       Because this report lacked raw data sheets and some process
  information the data were assigned a rating of B.
  4.1.14  McKay Bay.  1986 Tests (Mass Burn.  Naterwall)
       The McKay Bay  Refuse to Energy Project consists of four boilers, each
  controlled  by an ESP.   Units 1  and 2 are vented through the west  stack and
  Units 3  and 4 through  the east  stack.   Information  concerning the
  operating conditions of the  boilers and ESP's  is considered confidential
  by plant personnel.
       Tests  were  conducted in August 1986 using  M104  for both  sampling and
  analysis of Be.   Emission tests for PM  were  conducted in September  1986
  using  M5.
       Because  this report  lacks the  process data  necessary to  calculate an
 -emission factor, these  data  were assigned a  rating of C.
 4.1.15   North Andover,  1986  Test (Mass  Burn, Waterwall)21.*22
      The North Andover  facility, which  began operation  in 1985, consists
 of two,  identical, mass-burn, waterwall   incinerators.   Each unit is
 designed to burn 680 Mg/d  (750 tons/d) of municipal  waste and produce
 90,000 kg/h (198,000 Ib/h) of steam at 4,140 kPa  (600. psig) and 400°C
 (750°F).   Steam from both boilers drives a 40-MW turbine-generator.
 Nonprocessed waste is transferred by overhead cranes from a contained pit
 to gravity-feed hoppers.  Hydraulic rams, located at the bottom of the
 feed  hoppers, charge the waste onto Martin  reciprocating grates.
 Underfire and overfire air is 'drawn from the pit area to fuel  the
 combustion  process,  which is  designed to achieve temperatures  in excess of
 1370°C (2500°F).   Underfire air  is  supplied  through .the  grates,  and
•overfire  air is distributed through nozzles  located  on the  front and rear
 walls above  the flame zone.  Each furnace has a  volume of 820  m3
 (29,000 ft3),  and each  furnace/boiler has 4,900  m2 (53,000 ft2)  of heat
 transfer  area.   Bottom  ash is quenched before being combined with the
 boiler fly ash and ESP  ash.   The facility is  equipped with two CEM systems
 for CO, C02,  02,  NOX, S02,  and opacity.

                                  4-17

-------
      The air pollution control system consists of two, identical ESP's
 designed to reduce the particulate matter to a level of 115 mg/Nm3
 (0.05 gr/dscf)  at 12 percent C02, which corresponds to about a 98 percent
 collection efficiency.  Design data for the ESP's are considered
 confidential  by -the ESP manufacturer.
    '  The emission-measurement program at the North Andover facility was
 conducted from  July 8 to July 16, 1986.  Particulate loading was measured
.according to  EPA M5 at the ESP outlet for Runs 1 through 6.  During
 Runs  2,  3, 4, 5, and 6, sampling for PCDD/PCDF at the ESP inlet and outlet
 was conducted according to the December 1984 draft-of the ASME protocol.
 The PCDD/PCDF sampling was conducted simultaneously at the ESP inlet and
 ESP outlet.  The PCDD/PCDF samples were analyzed by HRGC/HRMS.
      As  part of an  EPA in-house study,  trace metals (As,  Cd,  Cr,  and Ni)
 testing  was conducted simultaneously at the ESP inlet and ESP outlet
 dur.ing Runs 7,  8, and 9.   Sampling followed EPA Alternative Method  12,
 which also allows for the  concurrent determination of PM  emissions.   The
 EPA M12  train has been demonstrated  specifically for lead and cadmium
 only.  However,  for the purposes  of  the in-house study, the method, was
 used  as  a  screening-analysis  for  the other  metals  of interest.  The  method
 was also modified by  using  NAA  as  the analysis  method  rather  than atomic
 absorption.  The results for  arsenic, cadmium,  total  chromium and nickel
were  included in the  test  report.
      Continuous  emission monitoring  for 02  and  C02 was also conducted
during Runs 7, 8, and  9.
      Because this report lacks the process  data  necessary to  calculate an
emission factor, these  data were assigned a rating of C.
4.1.16  Saugus,   1975 Test  (Mass Burn, Waterwall)23
     The Saugus facility is a mass-burn, -waterwall combustor that began
commercial operation in 1975.  Two parallel process  lines each process up
to 680 Mg  (750 tons) of municipal solid waste per day.  The. refuse is-
transferred from the receiving pit to the furnace feed hoppers by overhead
cranes.  The refuse is neither shredde'd nor sorted prior to incineration,
and auxiliary.fuel is not used during normal operation.  Heat is recovered
using waterwalls in the furnace and an external convection boiler
section.   Each boiler produces 72,600 kg (160,000 Ib) of steam per hour at
                                 4-18

-------
  4,600  kPa and  450°C (650 psig and 850°F).   Each process line includes a
  two-field ESP  for the control of participate emissions.
      Sampling  and analysis  for PCDD and PCDF were conducted as specified
  by the ASME  draft protocol.   The protocol  was modified to include the use
  of a horizontal  condenser and the use  of methylene chloride for final
  recovery  of  PCDD/PCDF.   The  samples were analyzed by  GC/HRMS.   Oxygen,  CO,
  and C02 were measured  by a CEM system  at the stack.
      Because this  report lacks the  process  data necessary to calculate  an
  emission  factor  tnis data was  assigned  a rating of C.
  4-. 1.17  Umea,  1984  Test  (Mass  Burn,  Waterwall)2"
      The  Umea  incinerator is  a mass-burn, waterwall design  equipped with  a
  boiler.'   The incinerator  is of the  cross-grate  type and was  built  in
  1970.  Raw refuse is charged at a rate of 6  Mg/h  (6.6  tons/h).  The air
 pollution control device  is an ESP.
    1  Tests were,conducted during the fall of 1984  and  the spring of 1985
 to assess PCDD and PCDF emissions.  Measurements .were made during both
 normal  and low temperature operations'in the fall and during normal
.operation in the spring.   Particulate,'condensate, and XAD-2 absorbent
 tube  samples! were collected.   Analysis  was  by HR6C/MS.  The'isomer-
 specific  analysis did not allow the separation of 1,2,3,7,8-PeCDF from
 1,2,3,4,8 PeCDF^or 1,2,3,4,7,8-HxCDF from  1,2,3,4,7,9-HxCDF.
      The  data in  this report  were assigned  a rating of C because the  "
 report  lacked raw data sheets, example  calculations,  and significant
 process data,   i
 4-1-18  Philadelphia,  Northwest,  1985 Tests  (Mass Burn. Refractory")25
     The  incinerator, plant comprises two refuse  furnaces,  each  of  which  is
 designed  to process  up  to 340  Mg  (375 tons)  of trash per day.   The  units
 are designed  to achieve a 90 percent volume  reduction  in refuse with a
 maximum temperature  of  1150°C  (2100°F).   Each furnace  consists  of a  single
 (primary), excess.-air combustion chamber  with air-cooled.,  refractory-lined
 walls.  An elevated  crane  with  a-clamshell bucket  lifts  the refuse from
 the storage bin ,into a charging hopper and water-cooled gravity  chute.
 Refuse  drops from the chute onto the  inclined traveling grate, which
 continuously feeds the refuse onto a  horizontal traveling grate.  Each
 grate is driven by independent, variable-speed motors.  The total
                                 4-19

-------
 effective grate area provided by the two grates is 45 m2 (480 ft2) per
 furnace.  Combustion air drawn from outside the building is provided-to
 each furnace by an FD fan.  The underfire/overfire air ratio is adjusted
 by dampers in the FD ductwork.  Incinerator residues drop off the edge of
 the horizontal grate and fall through a series of residue quenching sprays
 and onto a submerged residue conveyor.
      The air pollution control system consists of two, two-field ESP's.
 Furnace flue gases exit through spray chambers where air-atomized water
 cools the gases to the ESP design operating temperature of between 288°
 and 316°C (550° and 600°F). '' The gas streams in the two evaporation towers
 are subjected to cyclonic flow to remove the largest particles from the
 flue gases prior to the ESP.  Flue gases leave the towers and travel
 through the precipitator breeching where turning vanes and  baffle plates
 ensure even gas distribution throughout the device.   Treated flue gases
 are drawn from1 each precipiitatbr by a variable-speed  ID fan and  exit  the
 plant through a single stack.   The ESP fly  ash is  discharged onto the
 submerged residue  conveyor.   >
    .  Testing  was conducted  in 1985 to determine incinerator emissions
                     i                            .
 during normal  operationi (i.e.,  furnace temperature between  760°  and 980°C
.[1400° and 1800°F]  and  indicated  inclined grate speed  of  70 ft/h).  The
 test  protocol  included  sampling  and  analyses of ESP fly ash and
 incinerator bottom  ash  for  PCDD  and  PCDF; continuous monitoring  of stack
 gas emissions  for CO,  C02,  02, THC,  NOX, and S02;  and  recording  of
 incinerator and  ESP operating parameters.   In  addition, MM5  was  used  to
 determine  the  PCDD, PCDF.^M, 'and  HC1  stack emissions  from  Unit  1 and
 Unit  2.  One MM5 sample trairji w,ith a condenser  and XAD  resin trap was
 analyzed for PCDD and PCDF by HRGC/HRMS; the other train was analyzed for
 PM and HC1.  Precision and accuracy for the MM5 analysis were assessed by
 analyzing  spiked blanks, determining surrogate  recovery results, using
 National Bureau of Standards. (NBS) control samples, and second laboratory
 analysis.                                   _                             -
     Because this report lacks the process data necessary to calculate an
emission factor, these data were assigned a rating of C.
                                 4-20

-------
                            26S27
 .4.1.19  Washington. D.C.. 1976 Test (Mass Burn, Refractory)1
      -The Washington Solid Waste Reduction Center No. 1  (SWRC No.  1)
  incineration facility comprised six, two-chamber, mass-burn, excess-air
  units.  The facility is no longer in operation and has been demolished.
  The facility had a total capacity of 1,360 Mg/day (1,500 tons/day) and was
  not equipped with energy recovery equipment.  Waste was fed to each
  furnace by a gravity-feed system.  Solid material  was moved through the
  primary chamber on a stoker-grate feed system consisting of four
  individual  sections of continuous-feed grate.  Both underfire and overfire
  air were fed to the primary  chamber.   Combustion gases  left the primary
  chamber through a cross-over flue and  were passed  to the secondary
  chamber.
       Emissions  from SWRC No,  1  were  controlled  by  a multiple-cyclone
  collector  in series with an  ESP.   The  ESP  was a two-field  unit  with a
  design efficiency of 95  percent.
       Particulate  matter  samples were collected  isokinetically at  the
  scrubber outlet using  a  modified  form  of an  M5  sampling  train.  The
 primary modification was use of an in-stack  filter or impactor  system..
 Typical collection"time  was 30 min.  Analyses for most metals were
 conducted using instrumental NAA.  However,  some samples were analyzed for
 Pb and Ni using AA.
      Because this report  lacks the process data necessary to calculate an
 emission factor, these data were assigned a rating of C.
 4.1.20  Mayport, 1980 Tests (Mass Burn, Refractory)28'29
   •   The Mayport Naval  Station facility has one, 45-Mg/day (50-ton/day),
 mass-burn, refractory combustor with a 6,400-kg/h (14,000-lb/h)  steam
 boiler.  It is designed to burn municipal  refuse and waste oil.   The
 manufacturers ,of the combustor and boiler are Detroit Stoker Company and •
 Eclipse, respectively.   The combustor is "designed with primary and  '
..secondary chambers, with  a bridge  wall  and  air-cooled refractory baffle
 between the chambers.  The primary chamber  is equipped with an automatic
 ram  feeder-hopper, an inclined  refractory hearth, a  water-cooled throat,
 an oil-fired burner, a  stoker grate,  and an ash  quench tank.  Another  oil
 burner is  located  in the  bridge wall-baffle passage.   The secondary
 chamber has  refractory  lining and  enough volume  for a  3-s residence
4-21

-------
 time.   A steam heat boiler with a surface area of 411 m2 (4,430 ft2) is
 designed to cool  the 110-Nm3/niin (4,000-scfm) gas stream from 870° to
 260°C  (1600°F to  500°F).
     The emission control  system consists of a 40-tube9 multiple-cyclone
 dust collector.
     Tests were conducted  in December 1980 to "determine PCDD- and PCDF
 emissions while the-combustor was burning as-received municipal refuse and
 waste  oil (primarily fuel  oil  containing unknown contaminants).  The unit
 was  operated at a nominal  50 percent capacity level  for the 3-day"test
 period.   Fuel  and ash characteristics and feed rates were determined, and
 process  conditions were monitored.-  Emission measurements downstream of
 the  cyclone were  made for:   (1)  PM by M5; (2)  metals (Cd, Cr,  Pb,  Ni,
 et al.)  by digesting M5 filter in HN03  and analysis  by inductively coupled
 plasma techniques;  (3) particle  size using a seven-stage MRI  Cascade
 Impactor in-situ;  (4)  chlorides  using H202 solution  in the  first impinger
 of the M5 train;  and (5) SOX and  CO  with CEM's.28  Emissions  of TCDD and
 TCDF were determined by MM5  and  reported in  Reference  28.   Sampling was
 accomplished with  a heated filter, cooled XAD-2  sorbent resin  trap,  and
 glass-distilled,  HPLC-grade  water in an  impinger.  Analyses were performed
 for 2,3,7,8 TCDD  and TCDF isomers and total  TCDD and TCDF by 6C/HRMS.
 Packed-column chromatogrophy was  used for analysis,  identifying  TCDD's  and
 TCDF's as  either preelutors  or coeluters  of  the  2,3,7,8 isomers.   Reported
 results  are presented as "maximum 2,3,7,8" TCDD  and TCDF  concentrations
 because  of the inclusion of  coeluting isomers.
     The  data- in this report were  rejected because the  facility  is  cpfired
 with waste oil.
 4.1.21  Alexandria,  1976 Test  (Mass  Burn,  Refractory)26'27
     The Alexandria Municipal  Incinerator  consists of two, mass-burn,
 excess-air units with a combined  capacity of 270 Mg/day (300 tons/day).
The system-has a primary and a secondary combustion chamber but does not
 have energy recovery equipment.'  Waste is gravity fed to the primary
chamber through a charging chute.  Solid materials are moved through the
chamber by a series of three, inclined, rocking grates. .Underfire
combustion air is  supplied to the primary chamber.   Combustion gases from
the chamber pass through a flue, where overfire combustion air is added,
                                 4-22

-------
  and into a secondary chamber, where complete combustion is achieved.  No
  data on the distribution of underfire and overfire air are available.
       Emissions from the incinerator are controlled by a spray-baffle
  scrubber.  No data on scrubber pressure drop or flows are available.
       Particulate matter samples were collected isokinetically at the
  scrubber outlet using a modified form of an M5 sampling train.  The
  primary modification was use of an in-stack filter or impactor system.
  Typical collection time was 30 min.   Analyses for most metals were
  conducted using instrumental  NAA.   However, some samples werje analyzed for
  Pb and  Ni using AA.    '                                     !
       Because  this  report lacks the process  data necessary to  calculate an
  emission factor, these data were assigned a rating of C.
  4.1.22   Nicosia, East Chicago,  1976  Tests (Mass Burn,  Refractory")27'30
       The Nicosia municipal  incinerator  operated by-the City of East
  Chicago,  Indiana,  consists  of. two,  identical, mass-burn,  excess-air
  units.   Each  unit  is  capable  of  firing  200  Mg/day  (225 tons/day)  of
  unprocessed municipal  waste.   The  system is  not equipped with1 energy
'  recovery  equipment.  .Waste  is  fed  by .ram to  the combustion chamber  and
  moved through the  system on a  series of inclined gratesl  No  data are
  available on combustion airflow .to the  system.
      Atmospheric emissions from  each furnace are controlled by a spray
  chamber followed by a three-stage, horizontal-plate-type scrubbing
  tower.  The liquid/gas ratio of  the scrubber is 0.34
  (2.5 gal/1,000 acf)                                 ,
      Particulate matter sampling was conducted at the out/ejt to the
  scrubber by an M5 train modified to include  1 M HN03 in the first two
  impingers.  The filters were analyzed for most metals using instrumental
 NAA.  Analyses for Pb and Ni were performed  by AA of the material leached
 from the filters with HN03.
      Because this report lacks the process data necessary to calculate an
 emission factor, these data  were assigned  a  rating of C.
 4.1.23  Tsushima,  Japan, 1983 Test (Mass Burn,  Refractory)3.1
      The Tsushima facility consists of two,  identical,  mass-burn,  excess-
;air incinerators with no energy recovery.  Each  incinerator  has a capacity
 of .150 Mg/day  (165  tons/day).   Waste  is  fed  to the  system by a ram
                                  4-23

-------
 charging system.  A clamshell transfers the waste from the storage pit to
 the waste charging chute where it is gravity fed to the ram-feed system.
 A ram feeder pushes the waste onto the furnace grates in a batch
 process.  The waste is transported through the furnace section by
 inclined, Martin,  reverse-reciprocating grates.  The combustion air is
 taken from the waste storage area, preheated,  and fired to the furnace as
 underfire air at a constant rate by an FD fan.  No overfire air is used.
 Combustion gas leaves the chamber at 900°C (1650°F)  and is cooled to 450°C
 (840°F).  It then  passes through the combustion air  preheater where it'Is
 cooled to 360°C (680°F)  and on to the air pollution  control  system.
      The air pollution control  system is  a Teller Environmental  Systems,
 Inc.,  dry scrubbing system.   It comprises a cyclone  separator,  a quench
 reactor, a dry venturi,  and  an  FF.   The combustion gases  pass through  a
 cyclone separator  and upward  through the  quench reactor.   Nozzles atomize
 the  lime slurry and inject  it upwards  into the reactor.  The  lime slurry1
 is 1.5 to 2  percent calcium  hydroxide  (Ca(OH)2)  and  is  prepared  onsite
 from hydrated  lime.   The  gases  pass  from  the quench  reactor to the  inlet'
 of the dry venturi  where -particles  (Tesisorb™). are injected with  air to
 reduce bag pressure drop  and  improve collection  and  bag pressure  drop
 performance.   The  exhaust from  the venturi.is  ducted to a  reverse-air  FF
 that contains  fiberglass  bags with silicon-graphite/Teflon™ coating.   The
 FF inlet temperature  is about 230°C  (440°F), and the air-to-cloth ratio  is
 0.58 m/min (1.9 ft/min).
     The metals testing at Tsushima was conducted as a part of ia  •
 comprehensive test program to characterize PM,  metals, acid gases, and   '
 organic emissions from the facility.  Metals emission rates were measured,
 at the  inlet to the dry venturi on two runs and at the FF inlet on three
 runs.  The samples were collected using a Flow Sensor multiclone          !
 apparatus.  Metals concentrations were determined for each stage by AA.
 In addition to the metals tests, PM emissions were determined at the dry
venturi inlet, the FF inlet, and the FF outlet  using  M5.  Measurements for
Hg emissions were made for two runs each at the quench reactor inlet and
FF outlet using M101.  Analyses for Hg also were performed by AA.
     The data in this report were assigned a rating of B.
                                 4-24

-------
  4-1.24  Pittsfield, 1985 Test-Phase I (Mass Burn, Refractory)32
       The Pittsfield facility .consists of three, 110-Mg/day (120-ton/day),
  two-stage,  refractory-lined incinerators with.two waste heat boilers, each
  with a dedicated EGB precipitator and stack.  The facility is designed to
  operate two units at a time.   An overhead crane transfers the waste onto a
  charging floor from which a front-end loader fills the charging hoppers of
  the  incinerators.   Each incinerator has  one feed ram and four stoking/ash
  rams located at various levels along the grates in the primary chamber.
  Each incinerator has a primary chamber where the refuse is burned,  with
  the  hot effluent gases passing into a secondary combustion chamber.
  Effluent from the  secondary chambers passes into a common collection  duct
  that splits  off to  two waste  heat  boilers.
       Gases from each  waste  heat  boiler pass through  an  ID fan,  into an  EGB
  particulate  control  device, and  to  the atmosphere  via  a stack.
       The  1985  tests  at  Pittsfield consisted of  two phases:  Phase I to
  obtain  basic  information about plant operations  and  combustion  quality
  over  a wide range of  test conditions,  and Phase  II to establish facility
  parametric relationships among incinerator  combustion and operating
  variables, refuse quality, suspected precursors, and concentrations of   "
  various trace compounds including PCDD and  PCDF.  Only the Phase I results
 were completed prior to publication of this volume.  Comprehensive process
 monitoring and continuous emission monitoring were performed and recorded
 on a data logger for subsequent analyses.  Three CEM systems were used to
.measure 02,  C02, CO, THC, and  NOX simultaneously at the secondary chamber
'outlet and at the boiler inlet and outlet locations.   Two CEM systems  also
 were  equipped to measure. S02 and H20.  Sampling  by MM5 to measure PCDD,
 PCDF, and their alleged precursors was conducted simultaneously .at the
 boiler inlet,and outlet during two of the test conditions.  The two
 conditions selected  were polyvinyl  chloride-free material  burned at  1010°C
 (1850°F)  and  normal  refuse  burned at 680°C.-(1250°F)  to  represent minimum
 and maximum  PCDD/PCDF concentrations,  respectively.   Chloride  analysis was
 conducted on  samples  collected  at these two  test conditions  and  at two
 additional conditions.   Modified  Method 5  sampling  and  analysis  were
 performed in  accordance  with the  ASME/EPA  protocol  using  an  XAD-2 resin
 cartridge and  a condenser.   Blank trains,  surrogate spiking, and recovery
 were  employed  for quality control and quality assurance.

                                  4-25

-------
      This report lacks original data sheets and process data; therefore,
 the data were given a rating of C.
 4.1.25  Cattaraugus County, 1984 Test (Starved Air)33
      The Cattaraugus County Energy Facility, located near the village of
 Cuba, New York,  consists of a tipping floor and three, identical, two-
 stage, refractory-lined incinerators followed by fire-tube waste heat
 boilers.  Each unit has a maximum capacity of 40 tons of refuse per day.
 The system has no air pollution control  devices.  The waste is moved by a
 skid loader from the tipping floor to the incinerator feed hopper.   The
 refuse is fed by hydraulic ram to the incinerator.   The combustion  gases
 discharge through the fire-tube steam boilers to individual 63-foot-high
 stacks.
      The tests were conducted from September 24 to  October 26, 1984, by
 the New  York State Region 9 source testing team. The incinerator operated
 at  an average of 94 percent of maximum capacity during the sampling.
 Concentrations of the following compounds  were  measured during the  normal
 operation of the plant:
      Particulate
      2,3,7,8-TCDD
      2,3,7,8-TCDF
      PCDO  (tetra-octa)
      PCDF  (tetra-octa)
      Chrysene
      PCB
      BaP
      Formaldehyde
      HC1   •
      Pb
      Hg
      Manganese
Zinc
Be   •
Cr
Cd
Ni
Vanadium
As
SO 2
NOY
CO
CO z
02
     Sampling was carried out with EPA-approved or adaptions of EPA-
approved methods.  In addition, the PCDD/PCDF sampling train was designed
by the New York State Department of Environmental Conservation Source
Testing Section and is an adaptation of the train proposed by ASME.  This -
MM5 sampling train consisted of a glass-lined probe, a heated glass "
filter, a cooling condenser, a water-cooled glass cartridge containing .
40 grams of XAD-2 resin, and several glass impingers.  All sections of the
train were glass, connected by Teflon™ unions.   The resin was spiked
                                 4-26

-------
 before sampling with a known quality of  isotopically  labeled  1,2,3,4-TCDD
 to assess loss or breakthrough of PCDD/PCDF from the  resin  during
 sampling.  The CDD/PCDF train also was used to sample for the  other
 organics, except formaldehyde.  All sampling was carried out at  sampling
 ports on the south stack (Unit No. 1).
      Because this report lacks the process data needed to calculate an
 emission factor, these data were assigned a rating of C.
 4.1.26  Dyersburg, 1982 Tests (Starved Air)6
      The Dyersburg facility consists of a modular, starved-air incinerator
 designed to burn 90 Mg/day (100 tons/day) of refuse.  The unit was
 manufactured by Consumat and began operation in 1980.   There is no add-on
 emission control  system.
      Testing was  performed  in June 1982 to characterize air emissions
 during normal  operation at  an estimated feed.rate  of 45 Mg/day
 (50  tons/day)  burning  approximately  30  percent  industrial  and  70 percent
 municipal waste.   Detailed  data on process operation were  not  available.
 Comprehensive  emission  measurements  included:   (1)  PM  by M5; (2)  particle
 size  with-an Andersen  impactor; (3) particle-phase  metals-from
 cyclone/filter  catch from SASS by  XRF (As,  Cd,  Cr,  Hg,  Pb, and  Ni)  and
 SSMS  (Be only); (4) volatile metals (As,  Hg, Pb, et  a!) from SASS
 impingers with  H262 followed by ammonium  persulfate/si Tver nitrate
 solutions by AA; (5) HC1 and HF by M6 train with NaOH  solution  in first
 two impingers by 1C; (6) polyaromatic hydrocarbons  (BaP, et  a!.),
 2,3',7,8-TCDD/TCDF, total' TCDD/TCDF, and PCDD/PCDF with SASS  cyclone,
 filter, and XAD-2 resin catch by HRGC/MS;  (7) anions in flyash  (sulfate,
 nitrate, chloride, .bromide, fluoride, and phosphate) with SASS  impingers
with distilled water by 1C; and (8) aldehydes (formaldehyde, et al.) with  '
an M6 train with HC1,  2,4-dinitrophenyl-hydrazine,  and isooctane in the
first two impingers by reverse-phase  HPLC.  Organic screening analysis to
estimate concentrations of various  compounds was performed  by HRGC/MS from
aliquots pf  the sample  extracts, but  the reported  estimates were not
included in  the EPA data base.
     The data in this report were assigned a rating  of  B.
                                 4-27

-------
                   ,28,35
 4.1.27  North Little Rock, 1980 Tests (Starved Air)
      The North Little Rock facility consists of four, Consumat Model
 CS-1200, 23-Mg/day (25-ton/day), modular, starved-air incinerators with
 heat recovery.  The facility is contracted to produce an average of
 6,800 kg/h (15,000 Ib/h) of steam at 150 psi to be delivered 24 hours per
 day, 5 days per week.  Refuse is combusted in two chambers:  the primary
 chamber is designed for 690°C (1200°F) operation for substoichiometric
 conditions; the secondary chamber is designed for 1000°C (1825°F)
 operation through control of primary and secondary air.   Two rams in the
 primary chamber hearth are cycled'to push residue and break up clinker
 formations.  A drag chain removes the wetted ash for disposal'.  Combustion
 gas is cooled to 380°C (600°F)  after it  passes through the boiler,  which
 is equipped with five banks of  vertical  water tubes,   there is no add-on
 emission control  system.
      The tests were conducted  in  March,  May,  and October 1978.
 Particulate matter and heavy metals  in particulate form  were captured by
 the filter  of an  EPA  MM5  train.   Heavy metal  vapors  and  other gases  were
 captured by the  impingers in an .EPA  M5,  M7,  or'MS  train.   Particulate
 matter was  captured for  size distribution analysis by a  seven-stage,
 vertical  cascade  impactor.  The concentrations of  02,  CO,  C02,  NOX,  and
 sulfur oxides  were  monitored continuously.
      This report  lacked raw data  sheets  and process information;
 therefore,  the data were  assigned a  rating of C.
 4.1.28   Prince' Edward  Island, 1985 Test  (Starved Air)31*
      The Prince Edward Island facility uses two-stage, starved-air
 combustion  of municipal solid waste  in combination with waste heat
 recovery.  The plant comprises three, two-stage, Consumat CS 1600 modular
 incinerators, each  rated at 33 Mg/d  (36 tons/d), with a common exhaust
manifold leading to a single waste heat boiler and economizer and an
exhaust fan and stacks. .Waste is fed to the primary chamber in a batch
mode and 'is moved through the primary chamber by a sequence of water-
cooled hydraulic rams.  Low-velocity combustion air enters the lower
portion of the bed in the primary chamber.  Combustion gases leave the
primary chamber through a short breeching at the front end of the
secondary chamber.  In the secondary chamber,  these gases are mixed  with
4-28

-------
  preheated  secondary combustion  air,  and  combustion is completed.   The
  combustion gases  leave  the  secondary chamber through  the waste heat boiler
  and economizer.   During the testing,  only  the gases from incinerator unit
  No. 1 were passed through the waste  heat boiler.   The facility has no
  add-on air pollution control system.
      The metals testing at  Prince Edward Island was.conducted  during the
  second phase of the test program—the performance, test phase.   During the
  performance tests, three replicate runs were  conducted at each  of  four
  test conditions—normal operation, long feed  cycle, high secondary'chamber
  temperature, and  low secondary chamber temperature.  The selection of test
  conditions was based on the results of 22 characterization tests conducted
  during the first phase.  These results indicated that the major variables
  that affected operations were secondary chamber temperature, primary  '
 chamber airflow rate, and refuse loading rate..  The normal operation test
 Was selected as a baseline for comparison.   During the long cycle tests,
 the number of feed cycles was reduced from  8 per hour  to 6 per hour with
 an increase in mass  fired per charge  to  maintain a constant mass feed
 rate.   This condition was expected  to improve combustion and reduce
 demands on  the loader operator.   The  high and low secondary temperature
 conditions  were achieved by  increasing the  secondary chamber temperature
 set point  by 135°C (240°F) and decreasing it by 100°C  (180°F)  from  normal
 condition,  respectively. The high and low  temperature conditions were
 selected because the  secondary chamber temperatures .appeared  to have  a
 significant impact on organic emissions.
     The measurement scheme  for each test was  complex  with a wide variety
 of  waste, process, and flue  gas parameters monitored during each run.  The
 waste feeds were monitored for metals, .and stack gases were monitored  for
 both PM and gas-phase metals.  A sampling train similar to an M5 with  five
 impingers was used.  The first two impingers contained 5 percent aqua
 regia, and the third impinger contained 2 percent KMnO^ in 10 percent
 H2.S04 for metal's collection.   Metals analyses generally were conducted
with a direct-coupled plasma analyzer.  Mercury was analyzed by AA.
     Organic pollutants  measured  at Prince Edward Island included homolog-
specific analyses of PCDD and PCDF,  PCB,  total polycyclic aromatic
hydrocarbons, chlorophenol,  and  chlorobenzene.  The organic sampling train
                                 4-29

-------
  was" an MM5 train modified as  specified by the ASME draft protocol  for
  PCDD/PCDF.   Quantisation  of all  organics was by gas chromatography/mass
  spectroscopy-multiple  ion detection (GC/MS-MID).
       Acid  gas  emissions were  measured  by using a glass-lined probe and a
  series of  impingers  containing caustic solutions.   Single-point sampling
  was  used.   Impinger  solutions were  analyzed  by 1C.   Pollutants that were
  measured were  HC1, HF, and  S03.
       A continuous emission  monitoring  train  was  used to  measure.stack gas
  concentrations of CO,  C02,  S02,  NOX, and THC.
       These  data  were assigned an A  rating.
  4.1.29 Tuscaloosa.  1985  Test (Starved  Air)37
       The Tuscaloosa Energy  Recovery incinerator  facility consists  of four,
  modular, starved-air municipal refuse  incinerators  manufactured  by
  Consumat Systems and installed in 1984.   Each  incinerator has  a  rated
  capacity of 80"Mg/d  (90 tons/d) and typically  operates 24 hours  per day,
  5 days per week.  Exhaust from the  four  incinerators  is  fed  through two
  heat  recovery boilers to produce 24,900  kg (55,000  Ib) of steam  per
  hour.  Approximately 99 percent of  the refuse  incinerated is from  residen-
  tial  sources, and the remaining 1 percent consists'of scrap  tires.
 Temperature in the primary chamber of each incinerator is maintained
  between 540° and 760°C (1000°  and 1400°F).  Secondary chamber temperatures
 typically are 1150°C (2100°-F).
       Particulate matter emissions are controlled by an ESP manufactured by
 Precipitair Pollution Control.  Exhaust from the four incinerators  is
 routed through the ESP prior to exiting through a single stack.  An ID fan
 is located after the ESP  and before the stack.
      All tests were conducted  while the four incinerator modules were
 operating normally at approximately 90  percent of capacity.   Lower and
 upper chamber temperatures were monitored and controlled to  operate in the
 typical ranges of 530°  to  650°C  (980° to 1200°F)  and 1130° to 1160°C
 (2080° to 212p°F),  respectively.   Controlled  emission results were'not
'considered  representative  because (1) ESP power levels were  not steady and
 were substantially less than the  design level and (2) excessive air
 inleakage at the  ID  fan flange occurred throughout most of the test
 period.  Uncontrolled and  controlled emission testing included PM by M5,
                                  4-30

-------
  NO,
by M7, inorganic As by M108, Cr+s by digesting M5 filters in an
  alkaline solution with analysis by the diphenylcarbazide colorimetric
  method,  and particle sizing with an Andersen Mark III impactor and an
  Andersen heavy grain loading impactor/cyclone.
       These  data were assigned an A rating.
  4.1.30   Barron County,  1985 Test (Starved Air)38
       The Barron County  waste-to-energy facility consists of two Consumat
  Model No. CS-1600 incinerators.   Each  incinerator has a rated capacity of
  45 Mg/d  (50 tons/d)  and is  equipped  with  a  heat recovery boiler featuring
  an economizer.   The  boilers  have a nominal  steam  output of  4,500 kg/h
  (10,000  Ib/h)  at  4,100  kPa  (600  pst) each.   Secondary chamber temperatures
  are maintained  above  820°C  (1500°F).
       Emissions  are controlled by  a two-chamber, two-stage ESP.
      During the test, the incinerators were  firing about 79 Mg/d
  (87 tons/d), the  boilers were producing about 7,700 kg/h (17,000  Ib/h) of
  steam at 3,400 kPa (500 psi), and  the ESP's  first and  second  stages were'
 energized at 38 .kV and  28 kV, respectively.   Controlled emission  testing
. was by EPA.M5 for PM.  The M5 filters and probe washes were analyzed by AA
 for Pb,  Cr,  Ni, As,.and Cd.   The impinger portion of the M5 train was
 analyzed for HC1 with a specific ion probe.
      These data were assigned a B rating.
 4.1i31  Red  Wing. 1986 Test  (Starved Air)
      The-Red Wing MSW incinerator is  a  twin-unit facility manufactured by
 Consumat Systems.  The total  capacity of 65  Mg/d (72  tons/d) from the two
 incinerators produces an average solid  waste heating  value of 10,500 kj/kg
 (4,500 Btu/lb).   The  combined incinerator  flue gases  heat one steam boiler
 that  has  a nominal steam output  of 8,000 kg/h (17,700  Ib/h)  at 1,100 kPa
 (150  psig).   The bottom  ash  and  ESP ash  are  combined  in the  conveyor and
 transported  to  a landfill.
      Particulate  matter  emissions  are controlled by an ESP.   Exhaust from
 the two'incinerators  is  routed through the ESP prior to exiting  through a
 single stack.  No  ESP  design .data were provided  in the test  report.
     Controlled emission testing  included PM  and trace  metals  by EPA M5;
 PCDD and  PCDF by MM5;  HC1 by caustic impinger; Hg by kMnO^ impingers and
gold amalgamation; and CO, C02', 02, S02, and  NOX by CEM.  Analysis
                                   , 39_t2
                                 4-31

-------
  included  PM by  EPA  M5,  trace  metals  by ICAPS,  PCDD and PCDF by GCIMS,  HC1
  by EPA  325.2, Hg by cold  vapor  AAS,  CO and  C02 by NDIR,  02  by paramagnetic
  analyzer,  S02 by pulse .fluorescence,  and  NOX by chemilumiscence.
      Because this report  lacks  the process  data necessary to calculate an
  emission  factor, these  data were  assigned a rating of  C.
  4.1.32  Akron,  1981  Test  (RDF Fired)8   "
      The  Akron  facility is designed  to burn 910 Mg/day (1,000 tons/day)  of
  RDF in  a  semisuspension,  stoker-grate  combustor.   Processing of RDF
  includes  shredding,  air classification, and magnetic separation.   Emission
  control is  provided  by  an ESP.  No other  information on the  process or the
  control system was  included in  the report.
      Testing was performed in May 1981  to characterize MWC  stack emissions
  during  normal operation at an estimated feed rate  of 550  Mg/day
  (600 tons/day).  Comprehensive  emission measurements included:  (1) PM  by
 M5; (2) particle size with an Andersen  impactor;  (3) particle-phase metals
 from cyclone/filter catch from  SASS by XRF  (As, Cd, Cr9 Hg,  Pb, and Ni)
 and SSMS  (Be only);  (4) volatile metals (As, Hg, Pb, et al.) from SASS
 impingers with H202.followed by ammonium persulfate/silver nitrate •
 solutions by AA; (5) HC1 and HF by M6 train with NaOH solution in first
 two impingers by 1C;. (6) polyaromatic hydrocarbons (BaP, et al.),
 2,3,7,8-TCDD/TCDF,  total TCDD/TCDF,  and PCDD/PCDF with SASS cyclone,
 filter, and XAD-2 resin catch by HRGC/MS;  (7)  anions in flyash (sulfate,
 nitrate, chloride,  bromide,  flouride, and  phosphate) with SASS impingers
 with  distilled  water by 1C;  and  (8)  aldehydes  (formaldehyde, et al.)  with
 M6 train with HC1,  2,4-dinitrophenyl-hydrazine, and isooctane in first two
 impingers by reverse-phase HPLC.  Organic  screening analysis to estimate
 concentrations  of various  compounds was performed by HRGC/MS from  aliquots
 of the  sample extracts,  but  the  reported estimates were not  included  in
•the EPA data base.
     The data in this report  were  assigned a rating of  B.
 4.1.33   Albany,  1984 Test  (RDF Fired)"3
     The Albany  facility consists  of  two,  identical,  276-Mg/day
 (300-ton/day) combustors and  45,000-kg/h (100,000-lb/h)  steam
 generators.   The RDF feed  to  the plant  has been mechanically processed
 offsite.  Waste  processing includes air and  magnetic  separation of
                                  4-32

-------
  noncombustible material  followed  by shredding to facilitate combustion.
  The  RDF feed  is moved  to the  incinerator by screw conveyors and fed to the
  combustion chambers by two  air-blast distributors.   The  incinerator is a
  single-chamber, waterwall unit with a traveling  grate  stoker for ash
  agitation and movement.   The  heat recovery  system includes  superheater
  tubes, a convection bank, an  economizer,  and  a combustion air preheater.
      Particulate matter  emissions from the  combustion  chambers are
  controlled by two, identical  ESP's.   Each ESP has a  conventional  wire-to-
  plate design with three  separately  energized fields  in the  direction of
  gas flow.  Both precipitators discharge  into a single  stack.   Difficulties
 with the plate rapping systems were experienced during the  test period.
      The metals testing .at Albany was conducted as a part of  extensive
 testing of air emissions from the facility.  Three replicate  runs were
 conducted at each of two replicate test conditions—one with  RDF and
 natural gas  and one with RDF only as fuel. ' Particulate matter sampling
 was conducted at  the ESP inlet on Unit 8 and at the stack (the combined
 exhaust from Units  7 and 8).  The inlet sampling was conducted with an M5
 tra-in.   The  train  at the.stack was modified by adding 100 ml of 3 M HN03
 in the  first  two  impingers for collection of Cd,  Cr,  Pb,,  and Ni.  Sampling
 at the  stack  was also  conducted  for  Hg using EPA  Method 101A, for As using
 M108, and  for Be using  EPA M104.   Analyses for the metals in the M5 train
 were  conducted  by- AA.   Other analyses were:   Hg—AA,  As—cold vapor AA,
 and Be—AA.
      Organic  pollutants measured at  the Albany,RDF plant ,were PCDD and
 PCDF  (including the 2,3,7,8-tetra  isomers),  BaP, chrysene, PCB,  and
 formaldehyde.  Sampling for  PCDD and PCDF was conducted using an ,MM5 train
 similar to the train specified in the  ASME draft protocol.   Teflon™     '
 connectors were used to eliminate grease  problems.  Analyses  were
 conducted by GC/MS using  the New York  Department of Health Protocol.  The
 same type of train was used for sampling BaP, chrysene, and.  PCB.  Sampling
 for formaldehyde was performed with an M6 train modified by using sodium
 bisulfite in the midget impingers.  Analysis was by colorimetry.
     Hydrochloric acid was collected  by placing 100 ml of 0.1 N NaOH in
each of the first  two impingers of the particulate train.   The chloride
concentration in the impinger catch was determined by specific ion
electrode (SIE).

                                 4-33

-------
      A continuous emission monitoring system was used to determine stack
 gas concentrations of 02 (electrochemical cell) and CO and C02  (NDIR).
 Limited continuous monitor data also were presented for NOX  (M7) and S02
 (methodology was not described).
      These data were assigned an A rating.
 4.1.34  Hamilton-Wentworth. Ontario, 1984 Tests (RDF Fired)*"*'115
      The Hamilton-Wentworth facility consists of two, identical,
 272-Mg/day (299-ton/day) combustors and 48,200-kg/h (106,000-lb/h) steam
 generators.  Municipal  waste is mechanically processed onsite and fed into
 two Babcock and Wilcox  Canada Limited .spreader-stoker boilers.  Waste
 processing includes shredding, magnetic separation, and transport on
 conveyors before the waste is pneumatically spread into the boiler-through
 the overfire air ports.   Overfire air is supplied through nozzles located
 along the upper and lower rear walls, along the front wall  below the feed
 chutes,- and through slots in the feed chutes.   Underfire "air is-supplied
 separately through "holes in the traveling grates.   Bottom ash is
 discharged by the grates into a water quench hopper and trucked  to a
 landfill.   Combustion gas is cooled  by the steam boiler and combustion  air
 preheater to  about  310°C (590°F).
      The  PM emissions from  each  unit are controlled by  a  two-field
 Wheelabrator  Frye ESP.   Both precipitators discharge  emissions through
 separate  ID fans  and  oval flues  contained  in one circular stack.
      The  purpose  of testing  was  to examine the  effect of MWC  operational
 variables  on  PCDD/PCDF emissions.  The test  program was divided  intp four
 field tasks:   a pretest  program, a cold  flow study, combustion runs, and
 diagnostic  tests.  The pretest program and cold  flow study were
 preliminary in nature.   The  combustion runs-were made to measure boiler
 parameters  and PCDD/PCDF emissions under different  operating  conditions in
 order to select conditions for the diagnostic tests.  These tests were
 conducted with various combinations of overfire air ports.  Two tests were
 run without overfire  air port use for each load condition (F/None and
 H/None).  One test was conducted'under full  load with the lower back
 overfire air port in use (F/Low back) while two tests were conducted under
 half-load conditions  (H/Low back).  Under full  load, four tests were
conducted with both  back air ports in use (F/Back), and two tests were
                                 4-34

-------
  conducted with both back and lower front overfire air ports in use
  (F/Back, low front).  These tests were not repeated under half-load
  conditions.   Each diagnostic test has been averaged separately and
  included in  the EPA data base.   All  the'diagnostic tests were conducted on
•  Unit 1.
       The methodology for trace  organic emission sampling included an MM5
  train equipped with two  adsorbent traps containing Florisil  located
  between  the  third and  fourth  impingers, nickel-plated  nozzles,  glass
  probes,  and  Teflon" seals throughout  the  train.   Sample
  recovery/extraction procedures  included sample  probe,  nozzle, and all
  glassware rinses  with  pentane followed  by  rinses  with  methylene
  chloride.  Analyses  for  PCDD/PCDF were  performed  using data  from  HRGC/MS
  analyses.  Analysis  for  ClB's,  CIP's, and  PCB was  by GC  using dual
-  capillary column  separation with dual ECD.  Continuous emission monitors
 were used to. measure CO, C02, 02, S02,  N0y, and THC.
                                          A
      The data in this report were rejected because it could not be
 determined if"the facility was operating at normal conditions. •
 4.1.35  Niagara, 1985 Test (RDF Fired)*6           -            •         .
      The RDF  facility located in Niagara Falls,  New York, is operated by
 the Occidental  Chemical Corporation and has two  combustors rated at a
 total of 1,100  Mg/day (1,200 tons/day).  The plant consists of a tipping
 floor, bulk storage building,  shredders, metal separators, two identical
 furnaces  with 25-MW steam turbine generators,  and ESP's.-   The refuse is
 moved from the  storage  building  to the shredders by hydraulic rams and a
 conveyor.  The  shredded refuse  is conveyed  to  the ferrous metals
•separation operation by conveyor.  After the ferrous metals are  removed,
the  RDF is fed  to  the furnaces through  surge bins.  The fuel  is  introduced
to the  furnaces  using air-swept  distributors in  front'of  each  furnace.
      Particulate matter emissions  at the facility  are controlled by  ESP's.
      Sampling at the  plant was conducted during May and June  1985  while
Unit  1  operated normally  at 75'to 90 percent'of the maximum, steam  load.
No process or ESP operating parameters were included in the preliminary
test report.   Concentrations of the following compounds'were measured
during the tests:
                                 4-35

-------
      PM
      PCDD
      PCDF
      Chrysene
      PCB
      BaP
      Formaldehyde
      HC1
      Pb
      Hg
      Manganese
      Zinc
Be
Cr
Cd
Ni
Vanadium
As
S02
NOY
cox
CO 2
02
      Sampling,was  carried out with EPA-approved or adaptions of EPA/ASME-
 approved  methods.   The PCDD/PCDF sampling train consisted of a glass-lined
 probe,  a  heated  glass-fiber filter,  a cooling condenser,  a water-cooled
 glass cartridge  containing 40 g  of XAD-2 resin, and several glass
 impingers.  All  sections  of the  train were glass and were connected by
 Teflon™ unions.  The  resin was spiked before  sampling with a known
 quantity  of isotopically  labeled 1,2,3,4-TCDO to determine sample
 retention efficiency.   The same  train was also use'd to sample for the
 other organics.        •                              .
      Because this  report  lacks the information needed to  calculate an
 emission  factor  directly,  the data were  assigned a C rating.
 4.1.36  Wright Patterson  Air  Force Base,  1980 and  1982 Tests
        (RDF Fired)7'28
      The  Wright  Patterson  facility has an 11,000-MJ/h (100xl06-Btu/h),
 spreader-stoker, waterwall  boiler  (Detroit  Rptograte Stoker Boiler), which
 is designed to burn coal  for  steam production and  plant heating.   Fuel  is
 gravity fed through a  bin  and  chute and mechanically spread into  the
 combustion chamber.  Combustion  air is preheated by  the exhaust gas
 through a heat -exchanger.   The facility operators  were  investigating the
 possibility of switching from  coal to RDF for  fuel.
     The emission control  system consists of  a multiclone cyclone  followed
 by an ESP.        •                       •              -     '
     Tests were conducted  in April 1980 to assess  PCDD and  PCDF emissions
from refuse burning resource recovery facilities.28  The unit was operated
at a 2.1-Mg/h  (2.3-ton/h) feed rate (nominal 30 percent capacity level)
burning densified RDF for 1 day.   Fuel and ash characteristics and feed
                                 4-36

-------
 rates were  determined,  and  process  conditions  were monitored.   Controlled
 PM and organic  emissions were  determined  by  MM5.   Sampling  was
 accomplished with a  heated  filter,  cooled XAD-2  sorbent  resin trap,  and
 glass-distilled, HPLC-grade water in  an impinger.   Analyses were for
 2,3,7,8 isomers and  total TCDD and  TCDF by HRMS/6C.   Packed-column
 chromotography was used for analysis,  identifying  TCDD's and TCDF's  as
 either preelutors or coeluters of the  2,3,7,8  isomers.  Reported results
 are presented as "maximum 2,3,7,8" TCDD and TCDF concentrations because of
 the inclusion of coeluting  isomers.  •
      Tests-were also conducted in June 1982 to evaluate measurement
 methods for sampling chlorinated hydrocarbons, gaseous HC1, and
 particulate chloride.7  The unit was operated at a feed rate of 8.5 Mg/h
 (9.4 tons/h) and burned RDF during the test period.  During the night, the
 unit was  cofired with coal  to conserve the RDF.  Process conditions were
 not reported.   Organic compounds were sampled using an MM5 train with
 glass beads  in  the  first two impingers and an XAD-2 sorbent resin (60 g)
 cartridge  located between the third  and fourth  impingers.   Organic
 compound analysis was performed with HRGC/HRM.S  to measure (1) tetra-
 through octa-PCDD and PCDF  homologs;. (2) di-  through hexa-ClB homologs;
 (3)  tri- through penta-ClP  homologs;  and  (4)  tri- through  hexa-PCB.
 Measurements for HC1  were by an M6 train with NaOH  in all four impingers
 and  also, by  an M5 train  with NaOH in  the first  two  impingers.  Analysis
 for HC1 was  by the mercuric  nitrate method modified by treating  the sample
 with  H202.
     This report lacked  raw  data sheets and significant process
 information; therefore,  the  data were assigned  a C  rating.
 4.1.37  Supplementary Data       -
     The supplementary data  listed in SI units  in Tables 7-56 through 7-58°
 and in English units in Tables 7-114 through 7-116  lack documentation of
 incinerator operations and/or test methodologies. .These data were rated
either C or D.   The  data from Beveren, Milan I,  Milan II, Issy~Les-
Moulineaux, and  Saint-Ouen were rejected because they represent  emissions
after a control  device where the type of control device is not
specified.
                                 4-37

-------
 4.2  RESULTS OF DATA ANALYSIS
 4.2.1  Total Particulate Matter Emissions Data
      Both uncontrolled and controlled partleulate matter emission factors
 were determined from the data contained in the reports described above.
 In the case of uncontrolled emissions, the reports from Baltimore
 (May 1985), Braintree, Gallatin, Kure, Munich, Malmo, Tsushima, Dyersburg,
 Prince Edward Island, TuscaToosa, and Albany contained data that were
 rated either A or B.  For controlled processes, reports from Baltimore
 (January 1985 and May 1985)-, Braintree, Hampton (1981 and 1982), Tulsa,
 Gallatin, Kure, Munich, Malmo, Wurzburg, Marion County, Tsushima, Barren
 County,  Tuscaloosa,  Akron, and Albany contained data that were rated
 either A or B.   The  emission factors derived from these reports are
 prsented in SI  units in Table 7-13 and in English units in Tables 7-71.
 Summaries of these emission factors are presented in SI units in
 Table 7-16a and in English units in Table 7-74a.  •
 4'.2.2  Particle Size Data
      Both uncontrolled and controlled particle  size  data were contained in
 the  reports described above.   The reports  from  Baltimore (May 1985),
 Braintree,  Gallatin, "Kure,. Munich,  Tsushima,  Dyersburg,  Prince Edward
 Island,  and Tuscaloosa present uncontrolled  particle  size  data.   The
 reports  from Baltimore (May 1985),  Braintree, Hampton (1982),  Gallatin,
 Munich,  Tsushima,  Tuscaloosa  and  Akron present  controlled  particle  size
 data.  The  emission  factors derived  from these  reports  are presented in SI
 units  in Table  7-13a  and  in English  units  in Table 7-71a.
 4.2.3  Other Criteria  Pollutant  Emissions  Data
     4.2.3.1 Volatile  Organic Compounds.  Controlled VOC emission factors
 were determined using, the data in the  reports from Tulsa, Marion County,
 Gallatin, and Kure.  No data were available to develop emission factors
 for uncontrolled VOC's.  The emission  factors derived from these reports
 are presented in SI units in Table 7-13b and in English units  ip
Table 7-71b.  Summaries of  the emission factors in SI units are presented
 in Table 7-16a and in English units  in Table 7-74a.
     4.2.3.2  Lead.  Controlled Pb emission factors were determined from
the data, contained in the reports from Braintree, Hampton (1982), TuTsa,
Munich, Malmo, Wurzburg, Marion County, Tsushima, Barren County, Akron,
                                 4-38

-------
  and  Albany.   Uncontrolled  Pb  emission  factors  were  determined  from the
  data contained  in  the  reports from  Braintree,  Gallatin,  Kure,  Malmo,
  Tsushima, Prince Edward  Island,  and Dyersburg.  The emission factors
  derived from  these reports  are presented  in SI units  in  Table  7-21  and  in
  English units in Table 7-79.   Summaries of the emission  factors  in  SI
  units are presented in Table  7-23a  and in English units  in Table 7-81a.
       4-2'3-3  Sulfur Dioxide,  Oxides of Nitrogen, and Carbon Monoxide.
  Data  for determining uncontrolled emission factors  for S02 were taken from
  the reports for Gallatin, Kure, Munich, Tsushima, and Prince Edward
  Island.  Uncontrolled emissions data for NOX were taken from the reports
  for Gallatin, Kure, and Prince Edward Island; and for CO from reports for
  Chicago NW,  Kure, and Prince Edward Island.   Controlled emissions data
 used to determine emission factors were provided in the following
 reports:
      S02:   Baltimore (January 1985), Braintree, Tulsa, Gallatin,  Kure,
 Wurzburg,  Marion County,  Tsushima, and  Albany;
      NOX:  Baltimore (January 1985), Braintree, Tulsa, Wurzburg,  Maripn
 County,  Tsushima, Tuscaloosa,  and Albany;  and
      CO:   Baltimore (January 1985),  Braintree,  Chicago NW,  Tulsa,
 Gallatin,  Malmo, Wurzburg,  Marion County,  Barren  County,  and and  Albany.
 Tables 7-14  through 7-16  present  the emission factors  in  SI units for the
 pollutants listed above.  Tables  7-72 through 7-74 present  the  emission '
 factors  in English  units  for the  pollutants listed'above.   Summaries of
 the emission factors for  CO, S02,  and NOX  can be found  in SI units  in
 Table  7-16a  and  in  English  units  in  Table  7-74a.
 4«2.4  Noncriteria  Pollutant Emissions Data
      4.2.4.1   Acid  Gases.  Reports for Gallatin, Kure, and Munich
 contained data for  uncontrolled and  controlled' H2SO* data.  Reports from
 Tulsa, Hampton (1982), Kure, Tsushima, and Akron contain controlled  data
 for HF while reports from Gallatin,  Kure, Tsushima, Dyersburg,  and Prince
 Edward Island contain uncontrolled data for HF.   Controlled HC1  data were
 taken from reports for Hampton  (1981 and .1982),  Tulsa, Kure, Munich,
 Malmo, Wruzburg,  Marion County, Tsushima, Barren County, Akron,  and
Albany.  Uncontrolled HC1  data were taken from reports for Gallatin, Kure,
Munich, Malmo,  Tsushima, Dyersburg, and  Prince Edward Island.  Tables 7-24
                                 4-39

-------
  through 7-26 present emission factors SI units for the acid gases listed
  above.   Tables 7-82 through 7-84 present emission factors in English units
  for the acid gases listed above.  Summaries of the emission factors for
  HC1, HF, and HaSO^ can be'found in SI units in Table 7-26a and in English
  units in Table 7-84a.
       4.2.4.2  Toxic Organics.   Emission factors for various furan and dioxin
 •isomers were calculated from data, in the reports for Chicago NW,  Hampton
  (1981,  1982, 1983, and 1984),  Tulsa, Wurzburg,  Marion County,  Dyersburg,
  Prince  Edward Island,  Akron, and Albany.   The  emission factors for dioxins
.  are presented in  SI units in Tables.7-27  through 7-34 and in English  units
  in  Tables  7-85 through 7-92.  Summaries of these emission factors are
  presented  in SI units  in  Tables  7-39 through 7-46-and in  English  units  in
  Tables  7-97  through 7-104.   Summaries of  these  emission factors are
  presented  in SI units  in  Tables  7-46a and  in English  units  in
  Table 7-104..
      4.2.4.3  Noncriteria Metals.   Emission factors for noncriteria metals
  (As, Be, Cd,  Cr,  Hg, and  Ni) were developed.  Controlled  emission  factors
  for  all  six  noncriteria metals were-developed from the following
•reports:  Hampton  (1982), Braintree  (except Ni), Munich (except Hg),
  Tsushina, Wurzburg  (except Be and Hg), Albany, Akron  (except Be),  and
  Barren County  (except  Be, Hg, and Ni).  Controlled emission factors were
  also in the  reports from  Baltimore May 1985 (As and Cr), Chicago NW (Cd),
 Tulsa (Be and Hg), Malmo  (Cd and Hg), Marion County (Be and Hg), and
 Tuscaloosa (As and Cr).  Uncontrolled emission factors for all six
 noncriteria metals were developed from the following reports:  Braintree
  (except Ni), Gallatin,  Kure  (except Be), Tsushima,- Dyersburg, and Prince
 Edward Island (except Be).  Uncontrolled emission factors  were also in the
 reports for Baltimore May 1985 (As and Cr), Malmo (Cd and  Hg), and
 Tuscaloosa (As and Cr).  The emission factors for those noncriteria metals
 are  presented in SI units in Tables 7-17 through 7-20, 7-22, and 7-23 and
 in English units in Tables 7-75 through 7-78,  7-80, and 7-81.  Summaries
 of these emission  factors are presented in SI  units.in Table 7-23a and in
 English  units in Table  7-81a.
                                  4-40

-------
  4.3  PROTOCOL FOR DATA BASE
  4.3.1  Engineering Methodology
       A thorough review of 36 test reports from U.S. and foreign MWC's was
  performed to establish a data base for four classes of pollutants:
  criteria pollutants, acid gases, metals,- and organic compounds.  Data log
  forms were created to document and facilitate transfer of reported
  emission and process information to pollutant-specific data base files
  created using dBase III®, a data base management software package, on an
  IBM-compatible personal  computer (PC).  A PC program was written to
  perform most of the calculations-and present the results in a consistent
  and comparable format.   Pollutant-specific tables were generated by the
  computer to  (1)  list results  for uncontrolled and controlled emission
  levels  and collection efficiency,  (2)  present emission results in a
  concentration format (pollutant  mass per unit volume)  and  as an emission
  factor  (EF)  in pollutant  mass  per  mass of waste  feed,  (3)  identify the
 •treated  facility by  name  and type,  and (4)  present  separate  tables for
  standard  international (SI) and  English  units.   The sections below briefly
  describe  the  methodology  and rationale used  to develop  the data base  files
  and programs.
      The  emission data documented on the  data log forms  (example forms are
  included  as Supplement B) were averaged as the arithmetic mean  of  different
  sampling  runs prior to inclusion in the PC data base.  Test  programs  at
 most facilities,consisted of three to  six sampling  runs conducted during
 distinct operating conditions; groups  of runs at the distinct conditions
 were treated as separate tests.  Separate results from multiple test
 programs or test conditions were reported for the following facilities:
 Hamilton-Wentworth, Hampton, Malmo, McKay Bay, Philadelphia, Prince Edward -
'Island,  Quebec, Umea, and WPAFB.   Tests at the Hamilton-Wentworth MWC were
 performed and reported for six different operating conditions based on
 load and air  distributions.   Tests conducted four different times in as
 many years were reported  individually for the Hampton MWC.   Distinct tests
 at  Malmo were performed while  firing normal  refuse and  RDF  and reported
 separately.  At McKay Bay, tests  were conducted and  results  reported on
 Unit 1,  Unit  2,  Unit  3, and  Unit  4.   Tests were conducted and results
 reported  on Unit  1  and Unit  2  at  the  Philadelphia Northwest MWC.   The
                                  4-41

-------
 comprehensive tests at Prince Edward Island were conducted during four
 distinct and controlled operating conditions:  normal operation, long feed
 cycle operation, high secondary chamber temperature, and low secondary
 chamber temperature.  Tests at the Quebec MWC were performed and reported
 for four different conditions using a slipstream controlled by a pilot-
 scale WSH/DI/FF and two different conditions using a slipstream controlled
 by pilot-scale SD/FF.  Tests conducted during the fall  of 1984 and spring
 of 1985 at the Umea MWC were reported individually.   At WPAFB, tests were
 conducted on two occasions and reported separately.
      Due to the variety of formats used to report units of measure at
 different MWC facilities,  the emission data required some preprocessing to
 standardize the units of measure prior to computer calculation of emission
 concentration levels and EF's.  Particulate and  metals  data reported in
 10 different units were manually converted to mg/dscm or gr/dscf and
 corrected to 12 percent C02.   The results were used  to  calculate EF's in
 units of pg/Mg and Ib/ton  and emissions of metals as particulate fractions
 in units of pollutant mass per particulate mass.   Computerized preprocess-
 ing was  possible with the  data bases  for acid gases,  criteria  pollutants,
 and organic compounds because the variety of  measurement  units was
 limited.   The list of conversion factors used in  the data base preprocess-
 ing is  included  as Table 4-1.
      In  the acid gases  and criteria pollutants data  bases,  some  pre-
 processing  required  simple calculations  in addition  to  unit conversions.
 If  the"pollutants-specific  data,  Dl, were reported  in  ng/dscm corrected to
 12  percent  C02  in  the test report, the  following  calculation
                  DI=Dlx(percent concentration of C02)/12
was performed  in the preprocessing portion  of the  PC program ACALC to
present  the  "uncorrected"  value  in the resulting table.   When the data,
Dl, were reported  in ng/dscf  in  the test  report,  the conversion
                                Dl=Dlx35.31
was required to  present Dl as ng/dscm.  Acid gas  and criteria pollutant
data were presented in ppmdv corrected to  12 percent C02.  In order to
                                 4-42

-------
            TABLE 4-1.  LIST OF CONVERSION FACTORS
Multiply
mg/Nm3a
2
It)
m /min
m/s
kg/h
kPa
1pm
kg/Mg
By
4.37x10-"
10.764
35.31
3.281
2.205
4.0
0.264
2.0
To obtain
gr/dscfb
ft2
ft /min
ft/s •
Ib/h
in. of H20
gal /min
Ib/ton
              Temperature conversion  equations
                        °F=(9/5)*°C+32
                       °C=(5/9)*(°F-32)
Normal conditions on a dry basis are 1 atm and 20°C,
Dry standard conditions are 1 atm and 68°F.
                            4-43

-------
 convert data, Dl, from mg/dscm corrected to 12 percent C02 to ppmdv at
 12 percent C02, the relation
            Dl=Dlx(1000x0.02404)/(molecular weight of pollutant)
 was employed.
      Calculation of'EF's was performed using conversion factors (CF's) to
 relate process'conditions to emission concentration levels.  The CF's were
 calculated manually for each facility that provided percent concentration
'of C02, process feed rate,  and stack gas flow measurements.  The EF's in
 10"   Ib/ton were, calculated using the "corrected"  concentration data in
                       .-10
 English units, El in 10'
gr/dscf, and the following equation
      EF=CFxEl
 where
  CF =
       (Percent concentration of C02)(stack gas  flow in dscfm)(7.14xlO
                             Process rate in ton/h
 The EF's  in yg/Mg were then calculated  using
                                        -10
                   EF in yg/Mg=(EF in 10~   Ib/ton)x0.05

 In  order  to  calculate EF's  from  data presented  in ppmdv at 12 percent C02,
 a second  conversion  factor,  CCF, was needed.  CCF was defined as
            CCF = (molecular weight of pol1utantUl.3xlO"8UCF)
                                   (7.14x10'*)
An EF value may be calculated from
           EF  in Ib/ton  feed=(Dl  in ppmdv @  12 percent C02)(CCF).
Because test periods were nonsimultaneous, CF values for some facilities
were different for the various pollutants.  Table 4-2 presents the values
for CF, C02, stack gas flow rate, and process feed rate that were used in
the data base for emission calculations. Determinations of EF's  were made
only when process feed rates were documented or derivable from plant
records of refuse process rates and steam flow rates.  Discrepancies (±15
percent) in ,EF calculations can result from interpretation of process
conditions during sampling periods and data averaging techniques.   To
reduce these potential discrepencies, EF values  were taken directly from
the test report whenever possible.

                                  4-44

-------
 oo
 oi
 o
 »—I
 00
 UJ
 c_>
 o
 LU
 oo
 o

 o;
00


esj
CQ
*C
    £
    n
                      >o   —
                        ""
                                    010   vo   vo   ts,
                                          «
                                                                   ° °
                §000   o o
                o o o   o o
              <3O<  vo  0  >0   CM   CS SJ 
                                                            OO
                                                            KI in

                                                            oo i»
                   §§!i§g§§
                          g-i
(0
E
l_
ID


I
                                                                          ID ID
                                                                          E e
                                                                              in
                                                                          —   ID
                                                                          10   a:
                                                                           c/5


                                                                            I
        ID
        C
        U
        ID
        U.







C
1_
3
A
in
in
ID
Z







ID
L.CL
a> en
ID ^
2





0
O
E

•4-
ID
m







Hi
(O
t.
+•
c
ID
l_
CQ








O
Ol
ID
U
O






00
^
c:
0
•H
Q.
X






co oo
^^ ^^
c: c
0 0
+• +•
o. a.
E E
ID ID
II




^.00

CO T
*" —

O *
+• in
O.H.
E 0)
ID CU
10-







c
3


ID
in
3
t-





cs
-1-
c
^


10
CO
3







C

-t-
ID
U. —
U. —
X ID
O<0
>-•
o
—









tfl
I

LU








                                                                 vl) CD   O)  -t-
                                                                 •O -O  i c   1_
                                                                 ID ID Q. ~   O
                                                                 	CO .C   O.
                                                                 — •— LU CO   >.
                                                                 ~ ~ X ID   ID
                                                                     O 3 OS
                                               4-45

-------
LL.
CJ


"1
IO „
4™ ^
"5
n. E
u. u
o in
.u.
-E"
— 01
*
rf*
r
n^


"S f
i I
1 *z
CJ *o
U E.
• 10 l/>
CM D1T3
«4" O *
LU 00
•t
p

1
4-
4- -0
S'§
1- 0








(D
'1
c
4-
^
"3
to
LL,
VO
CS

S 2
vo r^



§
CO
£

o
CM
VO

VO
CM


-3- O
CM —
. vo r^


1
r-.

0
vo
ID '
C
a>
E
• ID ID ID- u.
Eg E S.
££ £ £






10 X)
u, (DO
"0 10 E ~
C — — •*.
10 in x: in L.
x o in 4- —
0) O Lu 3 4- ID
— — LU in —

u,
IO
4-
c/5
^Minf-tn in
Ch O\ CO O* O VO
— — — — CM .-
eo vo vo r«- r~
O f^> f^ CO vo VO
CM.-! — -1 ~ M
*—


O O O O O O
•— O\ P^ VO 00 O\
oo in in «a- vo T

O O O O O
O O O — O O
r^ co oo ~- r*» T^«

T >f\ in i»- in in
o\ o> oo o> o vo
—•,— .— .— CM —

co in vo i» oo
O r- r- co vo vo
CM — — — — IO


O O O O O O
VO vo •— •<3- VO O
— Oi P~ VO 00 O>
oo in in "3- 10 T

MOO O O
o o o — o o
r- oo oo — r- i^



(D (0 (D (O
E E S Ol-C E
u, u. u. c O) X u.
oooo~_o_ o
•a -o x> 13
c c c c
>* CD (D (O (O
c tft o> tn tn
J«_ •_ ^_ _

•a -D -a -a
L. 1_ U. t_
in to ID ID to
3 X X X X ID
O) OJT3 -o -a TO in
3 L. LU LU LU LU O
ID D O
i. j3 a) a> . L. L. U. L. 3 .—
C OQO. Q.Q. 0.0. 1- M-
O CO
Z LU Lu
Q

M CM M r»
• • • «
— CM 00 O
CM CM M
CO
O VO MM in
inM — & o
CMCM «S- —


8 | g

^"* ^ (^

.000 o
in i^ «»• vo in
• • • • •
O\ O» vo r» —

M VO M P-.
•-CM 00 O
— CM CM M

OO
O vo Mm
in M o\ o
CMCM —


o o o- o o
o o o o o
o* in o co M
CO CO M CO O\
T r- «»• ^r M
o o o o o
— in r»- «a- vo in
oo o* o* vo r^ ^~

•o LU
O Q£
I § EM. E 1 S
U.U.L. — L. U.C LU
OOOlOO OO Q
zzzxz ZQ tr


-C x:
L, L.
o o mm
XX- LU Lu
4-4- «
c c
o 0 . . u_
S 3E 4- 4- Lu
II ID ID \
c = a. o. o.
O O 10 co
>-4- +- L. 4- 4- LU
c c 	 ioo..e.c\o
O ID ~ — D)CO O) O) — S
(-.a E E n LU • 	 a —
l-^^IC^ZOSSOS
W >- . >•
LU U O


4-46

-------
      Quality control and quality assurance procedures'were used to assure
 that the data base accurately reflected the reported test data.  Each data
.log form was checked by a second person to assure documentation of
 reported emission and process data prior to development of the computer
 data base.   The data log forms provided the structure for the PC data base
 files and quality check.  After emission tables were generated, a final
 comparison  was made between randomly selected test reports,  their
 associated  data log form,  and the produced emission table to assure the
 quality  of" the data acquisition and the associated calculations.
 4.3.2 Computer Programming Methodology
      The dBase III® programs initially  were modified and  titled in  a
 pollutant-specific fashion; these gradually were developed into a more
 generalized  format to allow for improved quality control  and consistant
 data manipulation.   The  programs  were written in a modular fashion  with a
main procedure,  MAINRPT, calling  several  subroutines. These  subroutines
were designed  to (1)  conduct the  preprocessing,  correction "to  12.percent
 C02,  emission  percentage,  and  EF  calculations;  (2)  print  the table  heading
and  column  identifications;  (3) print the  facility  type,  name,  control
device type, and  test  condition;  and (4) print the  emission data  and
calculation  results.
     The data  base  files remained pollutant-specific to check test reports
known to have  measured these pollutants. These files are presented in
Table 4-3.  These data files were used  in  their  associated computer
programs to generate the pollutant-specific tables as shown in
Table 4-4.  These .programs required simple modifications prior to
producing desired tables.  These modifications included selecting desired
table number, desired data type, and altering the field name  used in the
program to reflect this data type.
                                 4-47

-------
                           TABLE 4-3.   DATA FILES
 Name
                     Contents
 DATAEMIS

 DATACID

 COS02

 NEWORG




 DATAORG


 ORGSITE


TOTFAC


COTAB

ESP

DSFF
 Particulate  and  metals  emissions

 Acid  gas  data

 Criteria  pollutant data         '               •

 Organic data: total measured penta's,  hexa's  hepta's,
 octa's, benzene, benzo-a-pyrene, chlorinated  phenols,
 and chlorinated  benzenes

 Organic data: 2,3,7,8-tetra's, total tetra's, and .
 tetra- through octa's

 Facility  type, name, control device, test condition,
 and reference number

 Percent C02 concentration, stack gas flow, process
 rate, and CF

 Collection efficiency, temperatures, and flow rates

 ESP design and operating conditions data

DS and FF design and operating conditions data
                                   4-48

-------

Name
PARTI C
METALS .
ACID
ACID
ORGNEW
OR6
TOTALD
TOTALF
BEN
CONTAB
CONTAB1
CONTAB2
CONTAB3
CONTAB4
CONTAB 5
TABLE 4-4.
. Input data file
DATAEMIS
DATAEMIS
DATACID
COS02
NEWORG
DATAORG
NEWORG
NEWORG
NEWORG
ESP
DSFF
DSFF
ESP
DSFF
DSFF
SUMMARY OF PROGRAMS
Tables produced
Part icu late
Metals
Acid gases
Criteria pollutants
Total penta's, hexa's, hepta's,
octa's
2,3,7, 8-tetra's, total tetra's,
tetra-through octa's
Total measured PCDD
Total measured PCDF






and
and


Benzo-a-pyrene, total chlorinated
benzene and phenol , and benzene
ESP design specifications
DS/FF design specifications


FF or scrubber design specifications
ESP operating conditions
DS/FF operating conditions
FF or scrubber ooeratina conditii


ons
4-49

-------

-------
4.4  REFERENCES FOR CHAPTER 4
   1.
5.
     PEI Associates, Inc.  Emission Test Report - Baltimore RESCO
     Incinerator, Baltimore, Maryland.  Prepared for U.S. Environmental
     Protection Agency, Emissions Measurements Branch, Research Triangle
     Park, N.C.  July 1985.  (Draft—Pending Determination and Final
     Metals Analyses).

     Entropy Environmentalists, Inc.  Stationary Source Sampling Report
     (Baltimore Resco Company L. P., Southwest Resource Recovery facility
     Baltimore, Maryland).  Performed for RUST International  Corp.
     January 1985.
      II
     Midwest Research Institute.  Environmental  Assessment of a
     Waste-to-Energy Process -  Braintree Municipal  Incinerator.  Prepared
     for U.S.  Environmental Protection Agency,  Industrial  Environmental
     Research  Laboratory,  Cincinnati,  Ohio.   April  1979.

     Haile,  C.  L.,  et al.   Comprehensive Assessment  of  the Specific
     Compounds  Present  in  Combustion Processes,  Volume  I— Pilot Study  of
     Combustion Emissions  Variability  (Chicago,  Illinois MWC) .   Prepared
    £°,r, U.  S.  Environmental  Protection Agency Office of Toxic  Substances
     rL  ™st Research  Institute.  Washington, D.  C.  Publication No.
     EPA| 560/5-83-004.  June  1983.
      Haile, C. L., et al.  Assessment of Emissions of Specific Compounds
,      From a Resource Recovery Municipal Refuse Incinerator (Hampton,
   I   Virginia).  EPA-560/5-84-002.  June 1984.              .

  6.  Scott Environmental Services.  Sampling and Analysis of Chlorinated
      ,0rgamc Emissions From the Hampton Waste-to-Energy System.  Prepared
      for The Bionetics Corporation.  May 1985.

  7.  Nunn, A.  B., III.  Evaluation of HC1  and Chlorinated Organic Compound
      Emissions From Refuse Fired Waste-to-Energy Systems (Hampton,
      Virginia; and Wright-Patterson Air Force Base, Ohio).   Prepared for-
     j U.S. EPA/HWERL by Scott Environmental  Services.   1983.

  8.  Howes,  J. E., etal.   Characterization of Stack  Emissions  From
      Municipal Refuse-to-Energy Systems (Hampton,  Virginia;  Dyersburq,
    :  Tennessee; and Akron,  Ohio).   Prepared by Battelle  Columbus
      Laboratories for U.  S.  Environmental 'Protection  Agency/Environmental
      Sciences  Research Labortory.   1982.

  9.'  SeeTinger, R.,  et al.   Environmental Test Report (Walter B.  Hall
      Resource  Recovery-Facility, Tulsa, Oklahoma).  'Prepared by Ogden
      Projects,  Inc.,  for Tulsa  City County  Health  Department.
      October 1986.

10.   New  York  State  Department  of  Environmental Conservation.   Emission
      Source Test  Report - Preliminary Test'Report  on  Westchester  RESCO.
      January 8,  1986.
                                4-50

-------
 11.  Hahn, J. L.  Air Emissions Tests of Solid Waste Combustion in a
      Rotary Combustion/Boiler System at Gallatin, Tennessee.  Cooper
      Engineers.  July 1984.

 12.  Cooper and Clark Consulting Engineers.  Air Emissions Tests of Solid
      Waste Combustion in a Rotary Combustor/Boiler System at Kure,
      Japan.  Prepared for West County Agency of Contra Costa County.
      California.  June 1981.

 13.  Hahn, J. L., et al.  Air Emissions Tests of a Deutsche Babcock
      Anlagen Dry Scrubber System at the Munich North Refuse-Fired Power
      Plant.  Presented at the 78th Annual  Meeting of the Air Pollution
      Control Association.  June 1985.
                  i
 14.  Flakt Canada,  Ltd., and Environment Canada.   The National  Incinerator
      Testing and 'Evaluation Program:   Air Pollution Control  Technology.
      Report EPS 3/UP/2.   September 1986.

 15.  Swedish Environmental  Protection Agency.   Operational  Studies at the
      SYSAV Energy From Waste Plant in Malmo,  Sweden.   Publication No.
      SNV'PM 1807. iJune  1983.
    '.            I'   '
 16. -Matin,  J.  L.  'Preliminary Report—Air  Emission Testing  at the Martin
      GMBH  Waste-to-Energy Facility in ;Wurzburg, West  Germany.   Prepared by
      Cooper Engineers  for Martin  GMBH.   January 1986.

 17.   Zurlinden,  Ronald A.,  et  al.   Environmental  Test Report  (Marion
      County, (Oregon, Solid  Waste-to-Energy).   Prepared  by Ogden  Projects,
      Inc.   November  1986.

 18.   Clean  Air  Engineering,  Inc.   Report on the Precipitator  Performance
      Testing  (McKay  Bay  Refuse to  Energy Project).  Conducted for
      F. L.  Smidth and  Company.  October  7, 1985.

 19.   Clean  Air  Engineering,  Inc.   Summary on NOX Testing Conducted for:
      Waste  Management, Inc.  February  6, 1986.

 20.   Environmental Engineering Consultants, Inc.  Emissions Test Report
     McKay  Bay Refuse to Energy Plant.  August 1986.  Prepared for Tampa
     Waste  Management Energy Systems.  October 20, 1986.
               •      i
 21.  Radian Corporation.  Final Emissions Test Report, Dioxins/Furans and
     Total  Organic Chlorides Emissions Testing.  North Andover Resource
     Recovery Facility, North Andover, Massachusetts.  November 14, 1986.

22.  Jamgochian, C. L., et al.  Municipal Waste Combustion Multipollutant
     Study Emission Test Report, Volume 1—Summary of Results,
     Volume 2—Appendices A-D, Volume 3~Appendices E-L (North Andover,
     Massachusetts, MWC).  Prepared for U.  S.  Environmental  Protection
     Agency,, Emissions Measurement Branch of the Emissions Standards and
     Engineering Division by Radian Corp.  Research Triangle Park, North
     Carolina.  EMB Report No. 86-MIN-02.  April  1987.
                                 4-51

-------
 23.  Radian Corporation.  Final Emissions Test Report, Dioxins/Furans  and
      Total Organic Chlorides Emissions Testing.  Saugus Resource Recovery
      Facility, Saugus, Massachusetts.  October 2, 1986.

 24.  Marklund, S., et al.  Determination of PCDD's and PCDF's in
      Incineration Samples and Pyrolytic Products.  Presented at ALS
      National Meeting, Miami, Florida.  April 1987.

 25.  Neulicht, R.  Emission Test Report:  City of Philadelphia Northwest
      and East Central Municipal Incinerators.  Prepared for U. S.
      Environmental Protection Agency/Region III by Midwest Research
      Institute.  October 1985.
 26.
 27.
 28.
 29.
30.
31
32.
33.
 Greenberg, R. R., et al.  Composition and Size Distributions of
 Particles Released"in Refuse Incineration (Alexandria, Virginia, and
 Washington, D.C., MWC units).  Environmental Science and Technology.
 1978.  p. 566.

 Greenberg, R. R.  A Study of Trace Elements On Particles From
 Municipal Incinerators (Alexandria, Virginia; Washington, D. C.; and
 East Chicago, Indiana).   University of Maryland, Doctoral Thesis,
 X*7 / 0 »        ,

 Higgins,  G. M.  An Evaluation of Trace Organic Emissions From Refuse
 Thermal  Processing Facilities (North Little Rock,  Arkansas;  Mayport
 Naval Station, Florida;  and  Wright Patterson Air Force Base, Ohio)  -
 Prepared  for U.S.  Environmental  Protection Agency/Office of  Solid
 Waste by  Systech Corporation. July 1982.

 Systech Corporation.   Test and Evaluation  of the Heat Recovery
 Incinerator System at Naval  Station,  Mayport,  Florida.   Prepared for
 Civil  Engineering  Laboratory, Naval  Construction Battalion Center
 Port Hueneme,  California.  Report  CR.012.   May 1981.

 Jacko, R.  B.,  and  D.  W.  Neuendof.   Trace Metal  Particulate Emission
 Test Results  From  a Number of Industrial and Municipal  Point Sources
 (for East  Chicago,  Indiana MWC unit).  APCA  Journal.  Volume 27
 No.  10.  October 1977.   p. 989.

 Hahn, J. L.  Air Emissions and Performance Testing of a Dry  Scrubber
 (Quench Reactor) Dry  Venturi  and Fabric Filter  System Operating  on
 Flue Gas From  Combustion of Municipal Solid  Waste in  (Tsushima)
 Japan.  Prepared for  California Air Resources Board by Cooper
 Engineers.  July 1985.

 Visalli, J. R,, et al.  Pittsfield Incinerator Research Project-
 Status and Summary of Phase I Report.  Presented at 12th Biennial
 National Waste Processing Conference, Denver, Colorado.  June 1986.

 New York Department of Environmental Conservation.   Emission Source
Test Report—Preliminary Report on Cattaraugus County ERF.  August  -
 1986.
                                 4-52

-------
  34.   Systems Technology Corp.   Small  Modular Incinerator Systems with Heat
       Recovery,  A Technical,  Environmental, and Economic Evaluation.
       Prepared for U.  S. Environmental Protection Agency/Office of Solid
       Waste.   Report SW177c.   November 1979.

  35.   Environment Canada.   The  National  Incinerator Testing and Evaluation
       Program:   Two Stage  Combustion (Prince Edward Island).  Report
       EPS  3/UP/l.   September  1985.

  36.   PEI  Associates,  Inc.  Emission Test  Report - Tuscaloosa Energy
       Recovery,  Tuscaloosa, Alabama.   Prepared  for U.  S.  Environmental
       Protection Agency/Emissions Measurements  Branch,  Research Triangle
       Park, North  Carolina.   July 1985.

  37.   PEI  Associates,  Inc.  Chromium Screening  Study Test Report.
       Municipal  Incinerator,  Tuscaloosa, Alabama.   Prepared for U.  S.
       Environmental  Protection  Agency/Emission  Measurement Branch,  Research
       Triangle Park, North Carolina.   EMB  Report 85-CHM-9.   January 1986.

  38.   Perez,  J.  Review  of Stack Test  Performed  at  Barron County
       Incinerator.   State of  Wisconsin Correspondence/Memorandum.
       February 1987.

 '39.   Cal  Recovery Systems, Inc.  Final Report,  Evaluation  of Municipal
       Solid Waste  Incineration  (Red Wing, Minnesota, facility).  Submitted
       to Minnesota Pollution  Control Agency.  Report No.  1130-87-1.
       January 1987.    .                            .

 40.   Bordson, D.  Report on  the Completion of the Red Wing Municipal Solid
      Waste (MSW) Incineration Evaluation Study.  March 12, 1987.

•41.  Kalitowski, T. J.  Status Report on Solid Waste Incineration in
      Minnesota.   Office Memorandum.  March 18, 1987.

 42.  Kalitowski, T. J.  Addendum to March 18, 1987, Status Report on Solid
      Waste Incineration in Minnesota Memorandum.  Office Memorandum.
      March 30, 1987.           .

 43.  Kerr, R., et al.   Emission Source Test Report—Sheridan Avenue RDF
      Plant,  Answers (Albany,  New York).   Division of Air Resources, New
      York  State  Department of Environmental Conservation.  August 1985.

 44.  Ozvacic, V., et al.  Determination  of Chlorinated Dibenzo-p-Dioxins,
      Dibenzofurans, Chlorinated Biphenyls, Chlorobenzenes, and
      Chlorophenols in  Air Emissions and  Other Process  Streams at SWARU in
      Hamilton.   Prepared for  Ministry  of Environment by Ontario .Research
      Foundation.  December 1983.

 45.  Complin, P. G.  Report on  the  Combustion Testing  Program at the SWARU
      Plant, Hamilton-Wentworth.   Prepared  for Ministry of the Environment
      by Envirocon Limited.  January 1984.                 '
                                  4-53

-------
46.  New York State Department of Environmental  Conservation.   Emission
     Source Test Report—Preliminary Report on Occidental  Chemical
     Corporation EFW.   January 16,  1986.
                               4-54

-------

-------
                      5.  SAMPLING AND  ANALYSIS  PROTOCOL

      The purpose of this chapter is to provide a brief description of the
 sampling and analysis (S&A) methodologies that were used to generate the
 emission data presented in Chapter 7.  Because S&A methods were not the
 same for all tests, a direct comparison of the data from different tests
 is difficult.  This chapter is designed to illustrate the variety of S&A
 methods associated with the emission test data and to facilitate an
 evaluation of the comparative quality and accuracy of those data.   The S&A
 methodologies for each test are -identified and described in Tables 5-1 and
 5-2.   Table 5-1 summarizes the S&A  methodologies for the criteria1
 pollutants, acid gases,' and organics.   Table 5-2 summarizes the
 methodologies for the metals.   Acronyms and  abbreviations are listed  in
 Supplement A.  Additional  information  on  recommended S&A methodologies  is
 contained  in another  report entitled Municipal  Waste Combustion Study:
 Sampling and Analysis of Municipal  Waste  Combustors  (EPA/530-SW-87-021F).
      The S&A methodo-logies  used  in  the tests  to measure  the Criteria
 pollutants  are  more uniform than those used  for other  categories because
 EPA reference methods  for criteria  pollutants are well defined,, and those
 methods generally were used for'the reported test programs.  The detailed
 test  procedures  for EPA  reference methods  are found  in 40 CFR,  Part 60,
 Appendix A.   Only two  facilities of those  listed in Table 5-1 used a non-
 EPA test method  for determining PM emissions.  The test conducted at Malmo
 utilized a quartz FF,  and the test conducted at Hamilton-Wentworth
 utilized an  isojet  sampler with a tared filter'bag for the collection of
the PM.  The other  facilities were tested using the standard EPA M5,
 sometimes with minor modifications as indicated.  Tests were conducted at
22 facilities using M5, at 4 facilities using M5 in combination with MS,
and at 1 facility using M5, M8, and  M17.
                                    5-1

-------
      At most test sites, CO levels were monitored continuously, in most
 cases using NDIR.  The actual method was unspecified at several sites.
 The testing methodology for S02 levels reported at 19 sites -included EPA
 Method 5, 6, 8, or 13, and combinations of these, as noted in Table 5-1.
 Four sites also reported continuous monitoring of S02 using ultraviolet
 detection methods.  The test report for Kure also indicated that S02 was
 verified by the Chronoamperometric Detection Method, and the report for
 Mayport indicated that S02 and NOX were measured by electrochemical
 detection methods.  In six tests,  NOX levels were measured continuously
 using the chemilumenescence method, and in two tests, M7E was utilized.
 Method 7 was used at the Tuscaloosa and Albany tests.'  Nitrogen oxide
 levels were measured continuously  at three other sites for which the
 reports did not describe the test  methods.
      Test methods for THC were more varied.   Four'tests  used  6C/FID for
 continuous monitoring,  while three tests utilized FID.   At three other
 test sites, California Air Resources Board Method 100, charcoal  tubes and
 metal  gas bombs,  and absorption tubes containing Tenax™  GC were  used.   In
 the  last two cases,  analysis was by GC/FID.   At  four  test  sites,  the
 testing methodology  was not described.                                  .
      Acid gases  (HC1,  HF,  and  H2SO^)  were  all  tested  by  a  variety of S&A
 methods.   For several  tests,  EPA Method  5, 6,  8,  ISA, or 17 and
 combinations of these were  used.   The S&A  methodologies  and modifications
 used  are described in Table 5-1.
      The same general S&A procedures  were  used for the organics tests.
 Sampling  was isokine.tic; a  filter  was  used to  capture particle-phase
 organics,  and  some type of  resin was  used  to absorb the  gas-phase
 organics.   The ASME  draft protocol  for dioxins or some other modification
 of the  EPA  M5 train  typically was  used, and analysis was performed by
 GC/MS.    The S&A methodology for testing organics is evolving.  In the  .
 past, Florisil and Tenax™ had been  used as the sorbents for collecting
 semivolatile and nonvolatile organics.  The ASME draft protocol for
 semivolatile and nonvolatile organics established in December 1984
standardized both S&A procedures using an MM5 train and XAD-2 resin as the
sorbent.  The actual  test reports should be consulted for information
about specific differences in the S&A protocols at different sites.
                                    5-2

-------
       In general, the same S&A protocol was used to test for all the metals
  at a given site.  However, in some tests a different S&A methodology was
  used for some of the metals, especially for those metals for which EPA
  test methods are specified.   At the Tulsa test, M12 and M104, modified by
  combining the probe rinse and impinger liquid,  were used to test for Be
  and Pb,  and M101A was used to test for Hg.  The test at Albany also used
  M108 to  test for As;  M101 or M101A was used to  test for Hg at the Gallatin
  and Tsushima facilities.
       Several  facilities  also were  tested using  identical  S&A protocols.
  The metals  tests at Gallatin,  Munich,  Wurzburg,  and Tsushima were all
  performed using  a Flow Sensor sampling system with  analysis  by AA,  except
  where different  methods  for  Hg are noted.   The  tests  at Washington,  D.C.;
  Alexandria;  and  Nicosia  also followed  the  same  S&A  methodology (MM5  train
'  with analysis  by instrumental  neutron  activation  [INA]).   The  tests  at
  Hampton  (1982),  Dyersburg, and  Akron were  all performed by analyzing the
  SASS train particulate and volatile metals  catch by XRF and  SSMS.
      In  14 of  the tests,  an  M5'or  MM5  sampling train was used.
  Modifications  of the M5 train  included using an in-stack filter
  (Washington, D.C.; Alexandria;  and Nicosia), using aqua regia  in the first
 two impingers  and KMnO., in HaSCU in .the third impinger  (Prince Edward
  Island)', and using nitric acid  in the first two impingers (Albany).  The
 test at Braintree used both M5 and SASS trains.   Four tests (three
 performed by Copper Engineering, Inc.)  used Flow Sensor multiclone
 sampling systems, and two facilities (Tulsa and  Malmo).used other
 methodologies as noted in Table 5-2.
      In addition to the variations  in S&A methodologies among the tests,
 different metal phases also were measured.   The  majority of the metals
 tests analyzed the particle phase (i.e.,  that captured on a filter).  Five
 facilities (Braintree, Prince Edward Island, Dyersburg,  Akron,  and
 Hampton,  1982)  were tested for metals in  both the  particle  phase and  the
 condensible  phase (i.e.,  absorbed in resin  traps or  impingers).   The  test
 report for Malmo  indicates that.only the  condensible metals were  tested.
 In  addition,  some tests also  specifically sampled for  Hg  in the vapor
 phase.
                                    5-3

-------
     Analysis techniques for the various metals also varied widely.  Most
analyses were performed using AA, although other methods included SSMS,
INA, direct coupled plasma, and XRF0  Table 5-2 provides details on the
various S&A methodologies.
                                   5-4

-------
  oo
  CD
  a:
  o
8
C
ra

S
                            SO  CO *>'>*>
CD
                                              4-1  -W  4-» 4->
                                                                                                 £  22 8      1

                                                                                                 S  « £ £ -  «  ra

                                                                                                 8  S 8 8 4!  2 -S

                                                                                                 O  O O O 15  3 'S
                                                                                                                                  i~ A)


                                                                                                                                  != "=
                                                                                                                                  O •—«
                 *N. **V CTl ^ ^H
                               e\j n ^s-

                               o^ c^ CTI
                        .
                   i E 4->  0> O
                    •»- C  ID 4-1

                   ' £ TS £  i-

                    5 co 6 £
                                S C.

                             *3-
                             «j  c ^~
                             O3 «S -i-
S  m
cn  wi
                                                                            av    *3
                                                         CO <
                                                   tO    *-4 >-.
                                                                    •-<'—' ai ,    -X
                                                                                    .
                                                                                      . 5 z 5 ==  >2 ST
                                                                                                                    fe  £

                                                                                                                    -a  o
                                                                                                              S-8
                                      i- .a 4^  m  £••-'—•'-
                                      fl3int-uo3ron.

                                      Sfe-'.Sfc-oSJ.

                                      oa'ziSiS^g
                                                                  5-5

-------











.

















^^
•o
O)
13
E
•r-
"^
O
0
*****


^
If)
1 1 i
_J
?


























W1
a
re
0
•a
*L
**"



















ts
c
4J
* ^
*o
a
ra

i.
u











it






i

.
L
J3
*C
S
6

o





Sfe





_
^
>





z




gx






CM
O




o
<_)


£






I
a.
i
CO
?


y
n
a
>,
j
S
TJ
U

o

* ii













a.
= x






t.




1







o



a:
o
s


•£*§

.





o o o o
0
o» -—* •-**
*-« O CM
— ' CO CO
(7» O)


5> ea ea
5 i/T «fe Sal
3 § . .
L ^^ 2
I £ 4-> *>

1


II


-







1
.

a
1 •*•
•1
"o
1 *^
§


1  s -e
S S S 'So S
S uS ra 5 g
IT'S 3 ^ % "*"
5|u OE ^ = 1 "*«
^- u ^ • z: . g "5 '^
T3>zS13JiZc:c>>Ec:
(OUI'OQ' o"1 c g'*"*"^""*^
"=SttO.Ubo-0 = 3S>=S
™ =^|^2^^ ™ 1 1 i 1 1
E ^ 3 Z Z ^ Z *^ '"" ™ •*-> *^ '*-
E-— 'u«<<<«.C.^'c'=*c'c'c
OCEQ_a_C.UQ.C O O O O O
b.i->i-MUJUJujuj>-><.JU£O<_j
w» o
*J O *fc«
*> *C?. T?
SIS
3 *" *O
li-i
S " 5
(O
o ,^
8 *° S
o"S3
•O fl;
1= i^1



^•5; 3
c
• a> •*-
^. 2 w
<1 4_»
t5 •»— CM
S..H5
Ci!,) 3 C
K u ra
>» e "c
*° a» ^
o5 t!
*= >i a>
@»"° -S
*s- (/> a. '
O *^ E
ifl
I5^
O . (-
^1 «
11=
C -W T3
sf f
°" S S
ilr
«> = 5
5&.S
a.^2
Q Ii *"
c§2i
J°|-si
^n H- a >*.
ol J= °O CD
>!<*•>> ,= a|


•S.^^! ?
Jl "o. « ^— '
1/1 1 2*1
g « 0 J
C H 4) » (/»
O .fi **"
U crt >>
^•r- r~ •
2 S, C
*"^<
S5c

01 "g
"c "o re
o c "a.
°".2

o2r
1S|
0 . C
^5 s
ilts
i'pl
5^i! S
§ " § S
^.i^a
•£ -o I! —
g- j; 5 'g
. "~ 3I3 °
S S 4! *• 4J
•ot-'l I fc
s'^s&l
U- C 4.J O
•*• *n c u
^ C WJ **" H» .
o t/i ~a z
•O •!— "g§-


Q.S £ IS ™
•;- c fO «
w's -"lozli/j
in*J]S'3:5io
E Z *^- *i" S ^.

l (J

c "*~
g u
..-
S 2 0
X "O
^ 1/1 *
^5. OJ OJ
g 5 c
UJ >•- "S c/i
•X o c z
•at?0 ^
dt ra * n**
Jt a* w ' ™~
§**" i- 5*
•*—
* It .|
£ ll I
1 g-fe *
1 ^"S .5
s .if I
-1&* i
1 1 « 2 I
«^ ? "~ "1
= 1 * .5 1
<*- a, yj m in
a.  -o
•^ Q. £ £j C 0
am- c "* vi
•a1 ° "" ^ ro a7
t c £ o* i—
8 « 3 S .5 e
= ttS & d 3 2
•*• fO 4* ID O . M-
tn "O -O (O ^-i -w i/>
silt ,!"t^
f^ <:
&£<32aa£:3£;t^4!S;
-• =i > i x>.iMrtsjau-oa>t*-






























iS
.— -v^
.-C5
U O*
-0 -^
o a
o

J-> (A
jj
i— • "(Q
. °5
13
f «
IJ
I £
5^
P
•0 "*
S i —
.III
i. a. wi
4» w> E C
5 S g •§
£ " *• K
= « "O t_ L.
"- >> O> fO 0» "O
S ja i— a. > c



i i £— V >,
'I- •!— iC ^ -2 "°
g g? = uiu
1 1 S'i l¥
c c to o c TO
c "c <  I—
5-6

-------
                 I"
                 o
                             5L V
                              U» W»  *>
       ^~~ a.     3
                   P



                        .^ .p.
        H II!
1 =


          u a,


          I"

         i'sl
         S-SJ5
          O O
         g-s2
         •*- (O W»
                  s-

                                      lii

P.  :-
§13  -

                          a
                          15
                          g


 •°   ^ ~
 C   CJ p—
 -it

 o   Z S
 CO   ^
.i   -eg
J X     O IO  •••• -^- *J m
                              §:, lakT-'a^'Sfcs-ai
                              !f i o^s ! gists'" ^E°~'-
                                         l^PPllli


                                    5-7

-------
CO
_l
1 —
LU
«c

2:

co
o
o
1
r™ —
LU
to
to

c
I
CO

*— 0
to
•o
•M
t/I
*-
"o
(D
U.
1c
CO
CO
5
S
1
o •*••*
S£



CO
Is



QJ
2.


•o
"°co S
O "^
^-4 {n



*» 4J
Of 01
55
0 0

ID re
Jill

S"
2
a j->
a i— t in *-i *j
— (O QJ Q) 32
sllIJ1
ESS mo:
                      *«   •"«
                     >Z >   Z >
**^      ^       rf  *            rf
 to     Si       S  •*—!          S
 to,     o       o   o          o
 «.     —       _i   ^     HI 01  —-
 to     z       z   z >»   ra 0)  z
                                       0

                                       z
 a    s
                                        in   in m
                     x     -a
                                        m  in in

                                        I  !!
                                       -   -
                                        in   in u>
                                        z   z z
                                       • z   z z >
                     o   o o

                     1   11
                                      o

                                      1
                                      ID ^-
                                      C •*-»
                -
                  -sags-g
-   g  -sag
                                                 *  g          *-i a-
                                                (OS   E  CO     CO CO
                                                to   ,uxr co     cxj o
                                                 ui --i     < ^H
                                                to    zzzz     toz
  555
  "> > ">
  •S -o -S


  S22
                                                                    *J
                                                                     3

                                                                     0
                                              « S S 8^^-S

                                              O O O O 3 3 *C
                                                                          "3 "3 o "a o o
                                                                          O O ZO =: =
                                     CO     —-
                                     (tj   Q3 •— 'f-» o> *— '
                                          ..
                                               .

                                          . X O W> 4J   i-
                                                           r^       s
w •^.cc ra c   *^    ^5 § en  .  .

cncna»-So   S  ^SS^""^"
3 S- ••" uj u cn o  ai r-t v.--
p 3 4-   " c §  "C.
                              5-8

-------



























,-.
OJ
3
E
•r—
C
O
u

CM
in


LLJ
	 i
en
i
r—

















j=?
£ i
e IA
_ J "O I_
< ceo
S ic *^- o»
S ..£ £
>i >»--» a.
-O 1_ E
-a to .?
T? (O
w vi <. O
.£ §<-> 3
1 s-! en
•*•* CFI £
•S -5z i
s- § e —
CJ .t- o O
£. i.

ro .tj a>
o = 3 £
l— 0 .c
1*. U C
ai it:
•§ 5 ° o"
«•• 5 . ..2 ^
X 15 o^2 <
S.. - = 3 «
(J QJ Z V 4J
"° Z^ ^ "~ « •
•"" ** S. O f_ *—
o *- J3 N U
HI L. >i C -a
ra •— vi 0 c
Sun ^ -i— m
 V» i- 01 E O»U_
(/) O.  ^ •>— >C
^ ^^J •- CT> «*. 5.**
"a ^ -Dt. o^-a*
e a> M- u o c
TO JC >r- Q. (U 4J (/)
« *j 4J > >, J_ ^
W* >> *O 4_> •*- >s
C ^1^ -o -0 O) <*- -—
* uiu ro*o Joa*c
B «*-•»- u i .e *o
*• Bfe • li i^
.^" « CL- *  i (_)
- si -£2 I"65"
-e ^t^ "°cco « 5 °°
** " e "°°iP nro
a> EO IS-MCO i-4_>u>
i- (os. >»3 *j 5J
«£ ' c **" ''ra'o"0 ^^^
f^ 2! .fs= iff
euro 5e z'rai££ 'G-^i>
S r— (O t_ •« 4_> in
5o £S 5»*>t. -ac
Q-J-> •o*»Q.'i5 'c'S-S
Q.in me CO^rQ^-1 iDCT4->
j> £ z.2 '°^>i(u 5 -o oj 01 ro-ot- >
Q* **- TJ t. « 4-» 3S- +J&.C! e
wrtj w*ocoa»cooo -r-nj a:
W1«U ul COIC/)(D>5'O4J'"0" "S

£ *•* E ^3 * *** *° "« •Oi/>Cw> CJ
fO  §" CT> E .~* t_

§ ¥ » e(n~aot..c>»c
?§"-1=>— in co
oca.»(ooocc:
^J-L"J z =» z z z co Q JQ* to 5 > 5 S
uo ^ (j'oaju-oi.e "-"^^s«— s c

























_






¥
^

c
j:
s
+J

.T3
"o
U

ID
3
C
1 *•"*
in
•w
Q_
UJ
c e
at )
fY
V

I
t_

.c
r—

es-
a» tf
CTZ
c
•— >.
a. .a
s

££.•5
£ "I
4->
M t.
1. .  c
•M t. t
o 5 *S c
t. e

1 — "O .— i
Oj 3E >

— ~ i"S
? *>
| * • i
| • 5 fc
0 = g
•g. - en c
2 fc 4= 5
g - S 1
«" ' *" "io S»
, s € •«
? •= E
^ *J r5
m en ^>" i-i
."> = o 2
*e **"* CO O
g Z ~ en
a* *»
>, g « °
•° E c en
•o ^~ «r iu c

N ^? . t. *«
>> a a. =
"5 ' o -o1 o 'S
ra 03 m • ^
« S « •£ i » •
S- i^1 , S ¥
S .|| iu _ 2 ra o
N *• • *> « *•
30 g § "g
s ii i & 1
— IK 0 o "=
S £ ° CM C 0
z |« £ ~
fe 11 11
1 S Vj 5 .r .g

1 ?l ! § ill
1 §: 1 I II*
» • <4-.O ID «^ — a!) Jvj
> ™— o. o ra
5 - 11 5 - >§l
S 5 JTO -p ^tS
m S— £ i S*^5
>> — So £ J£ ^§-E>."- 3 *• «> > S >»
w rat -°^ ff " " - — -o"a. "°
f^ *aLL. t3 ^ •'OCO'D ^— «i— ~O
! . a| if i .i Sgi|. 1
a; £" ="ra 3 ">, £ a! ra .S g1^ „, ^
« y ^ f~ *J w) — !1 •(- L
^S5? "•., f CC >, Q. 5 Ul S
«- = fs r g i - 8 -5 .1 ^ i g- '
si it !1 I :l 5j;l 1
§-.e jz>» .  5= £1 ?"*"«_ OO t. ^ ^
S C^f ? = S£° ^'B 5'^S -I
t-jr!«oh S!OS25 raai oiTo -at.
>» ^S"e-I^Mi« >"-z^5< -4_»cn *>z3c -2 a.
.^ S *"* ° ** * ^ £ J$£ e*a. -^=caJlo ra7
•S fljji15 ^I.s.sjs 3- |- o-S^ ill
£ «_§ ai ai'ni ,js . < c S t! o5
>>§ < c S '55S"ii3o ••"1/J £ GJ T»
& j, >• .c ^•^*J-w*J(U)C>*-SJ4J o^

ai ^* jj *^ c**a. o •^l^"^f-^-''5''5'ro'ttJo5aI's>,*f"'l^.£8-

o c *S.t- oi. *^oto'ororo'a-^i_*^oo ^"S1"0"

'^ •X'c *oi?"S -S3 J > I I 1^5 5f ^ ^ cn»,>.Sj >z£1
CTicico °* , ^ 0.0 £'32*"(a ""iij £5o xS >»>,>,!ZtZ^I'Q'w^ if^JJ*1" 2 0*0 c
.s.^s.ss-s^^ CT5o5'H.« „ 0..---1 o'StSrizr's.-^fd^^ = « «« en-
Ifilllliill • = {i5lPilH 52i
^A^W^A^»A«Vl-M^-¥WMSJJ
5-9

-------

-------
 5.1  REFERENCES FOR CHAPTER 5

  1.  PEI Associates, Inc.  Emission Test Report—Baltimore  RESCO
      Incinerator, Baltimore, Maryland.  Prepared for U. S.  Environmental
      Protection Agency, Emissions Measurements Branch, Research Trianole
      Park, North Carolina.  July 1985.  (Draft-Pending Determination and
      Final Metals Analyses).

  2.  Greenberg, R. R., et al.  Composition and Size Distributions of
      Particles Released in Refuse Incineration (Alexandria, Virginia, and
      Washington, D.C., MWC units).  Environmental Science and Technology.
      1978.  p. 566.
 3.
4.
5.
6.
7.
      Haile, C. L., et al.  Assessment of Emissions of Specific Compounds
      From a Resource Recovery Municipal Refuse Incinerator (Hampton.
      Virginia).  EPA-560/5-84-002.  June 1984.

      Scott ^ Environmental  Services.  Sampling and Analysis of Chlorinated
      Organic Emissions From the Hampton Waste-to-Energy System.  Preoared
      for The Bionetics Corporation.   May 1985.

      New York State Department of Environmental  Conservation.   Emission
      Source Test  Report - Preliminary Test  Report on Westchester RESCO
      January 8, 1986.
                                                      i
      Midwest Research  Institute.   Environmental  Assessment of  a
      Waste-to-Energy Process  - Braintree Municipal  Incinerator. ' Prepared
      for U.S.  Environmental Protection Agency, .Industrial  Environmental
      Research  Laboratory,  Cincinnati,  Ohio.  April  1979.

      Haile,  C.  L.,  et  al.  Comprehensive Assessment  of  the Specific
      Compounds  Present  in  Combustion  Processes,  Volume  I— Pilot Study  of
      Combustion Emissions  Variability  (Chicago,  Illinois MWC).  Prepared
      for  U.  S.  Environmental  Protection  Agency Office of Toxic Substances
 8.  California Air Resources Board.  Air Pollution Control at Resource
     Recovery Facilities.  May 24, 1984.
    Greenberg,  R.  R.  A Study of Trace Elements On  Particles  From
    Municipal  Incinerators  (Alexandria, Virginia; Washington,  D. C.:  and
        Chicago,  Indiana).  University of Maryland, Doctoral  Thesis,
 9.
10.  Jacko, R. B. and D. W. Neuendof.   Trace Metal  Particulate Emission
     Test Results From a Number of Industrial and Municipal  Point Sources
     (for East Chicago, Indiana MWC unit).   APCA Journal.   Volume 27,
     No. 10.   October 1977.  p. 989.

11.  Hahn,  J.  L.   Air Emissions Tests  of Solid Waste Combustion in a
     Rotary Combustion/Boiler System at Gallatin, Tennessee.   Cooper
     Engineers.   July 1984.                                      p
                                   5-10

-------
14.
15.
 12.  Neullcht, R.  Emission Test Report:  City of Philadelphia Northwest
      and East Central Municipal Incinerators.  Prepared for U. S.
      Environmental Protection Agency/Region III by Midwest Research
      Institute.  October 1985.

 13.  Hahn, J. L.  Air Emissions and Performance Testing of a Dry Scrubber
      (Quench Reactor) Dry Venturi and Fabric Filter System Operating on
      Flue Gas From Combustion of Municipal Solid Waste in (Tsushima)  -
      Japan.  Prepared for California Air Resources Board by Cooper
      Engineers.  July 1985.

      Nunn, A. B.s III.  Evaluation of HC1 and Chlorinated Organic Compound
      Emissions From Refuse Fired Waste-to-Energy Systems (Hampton,
      Virginia; and Wright-Patterson Air Force Base,  Ohio).  Prepared for
      U.S. EPA/HWERL by Scott Environmental Services.   1983.

      Howes, J. E., et al.   Characterization of Stack  Emissions From
      Municipal Refuse-to- Energy Systems (Hampton,  Virginia;  Dyersburg,
      Tennessee; and Akron,  Ohio).   Prepared by Battelle Columbus
      Laboratories for U. S. Environmental Protection  Agency/Environmental
      Sciences Research Labortory.   1982.

      PEI  Associates,  Inc..   Emission Test  Report -  Tuscaloosa Energy
      Recovery, Tuscaloosa,  Alabama.   Prepared  for  U.  S.  Environmental
      Protection Agency/Emissions Measurements  Branch,  Research  Triangle
      Park,  North Carolina.   July  1985.

      Environment Canada.  The  National  Incinerator Testing and  Evaluation
      Program:   Two Stage Combustion  (Prince  Edward Island).   Report
      EPS  3/UP/l.   September 1985.                             '

      Higgins,  6.  M.  An Evaluation of Trace  Organic Emissions From  Refuse
      Thermal  Processing Facilities  (North  Little Rock, Arkansas; Mayport
      Naval  Station,. Florida; and Wright Patterson Air  Force Base, Ohio).
      Prepared  for U.S. Environmental Protection Agency /Off ice of Solid
      Waste  by  Systech  Corporation.  July  1982.

18a.  Systech Corporation.  Test and Evaluation of the Heat Recovery
      Incinerator  System at Naval Station, Mayport, Florida.  Prepared for
      Civil  Engineering Laboratory, Naval Construction Battalion Center,
      Port Hueneme, California.  July 1982.

19.   Kerr, R., et al.  Emission Source Test Report— Sheridan Avenue RDF
      Plant, Answers (Albany, New York).   Division of Air Resources, New
     York State Department of Environmental Conservation.  August 1985.

20.  Ozvacic, V.s et al.  Determination  of Chlorinated Dibenzo-p-Dioxins
     Dibenzofurans, Chlorinated Biphenyls, Chlorobenzenes, and
     Chlorophenols in Air Emissions and  Other Process  Streams at SWARU in
     Hamilton.  Prepared for Ministry of Environment  by Ontario Research
     Foundation.  December  1983.
16.
17.
18.
                                  5-11

-------
 21.  Complin, P. G.  Report on the Combustion Testing  Program  at the SWARU
      Plant, Hamilton-Wentworth.  Prepared for Ministry of the  Environment
      by Envirocon Limited.  January 1984.

 22.  New York State Department of Environmental Conservation.  Emission
      Source Test Report—Preliminary Report on Occidental Chemical
      Corporation EFW.  January 16, 1986.

 23.  Cooper and Clark Consulting Engineers.  Air Emissions Tests of Solid
      Waste Combustion in a Rotary Combustor/Boiler System at Kure
      Japan.  Prepared for West County Agency of Contra Costa County
      California.  June 1981.

 24.  Rising, B.  W.  and J. W. Allen.   Emissions Assessment For Refuse-
      Derived Fuel  Combustion.   Prepared for U. S.  Environmental Protection
      Agency, Hazardous Waste Engineering Research  Laboratory, Cincinnati
     .Ohio,  by Battelle Columbus Laboratories.   September 1985.
 25
 28.
29,
      Hall,  F.  D.,  et  al.   Evaluation  of  Pilot-Scale  Air Pollution Control
      Devices on  a  Municipal Waterwall  Incinerator  (Braintree,
      Massachusetts).   Prepared by  Pedco  Environmental,  Inc., for  U.  S
      Environmental Protection Agency,  Hazardous Waste Engineering Research
      Laboratory, Cincinnati, Ohio.  October  1985.
     r™5 Env1ronmental Protection Agency.  Operational Studies at the
     SYSAV Energy From Waste Plant in Malmo, Sweden.  Publication No.
     SNV PM 1807.  June 1983.     •
 26.
     ™£2',,  * \ Preliminary Report-Air Emission Testing at the Martin
     GMBH Waste-to-Energy Facility in Wurzburg, West Germany.  Prepared bv
     Coopers Engineers for Martin GMBH.  January 1986.

     Flakt Canada, Ltd. and Environment Canada.  The National Incinerator
     Testing and Evaluation Program:  Air Pollution Control Technology.
     Report EPS 3/UP/2.  September 1986.                            *

     Hahn, J. L., et al.  Air Emissions Tests of a Deutsche Babcock
     Anlagen Dry Scrubber System at the Munich North Refuse-Fired Power
     Plant.  Presented at the 78th Annual  Meeting of the Air Pollution
     Control Association.  June 1985.

30.  Visalli, J.  R.,  et al.   Pittsfield Incinerator Research Project—
  •   Status and Summary of Phase I Report.   Presented at 12th Biennial
     National Waste  Processing Conference,  Denver,  Colorado.   June 1986
31.  Ozvacic, V., et al.  Emissions of Chlorinated Organics From Two
     Municipal Incinerators in Ontario.  Journal  of the Air Pollution
     Control Association.  Volume 35,  No. 8.   August 1985.

32.  Signal Research Center,  Inc.  Summary and Review of PCDD/PCDF
     Emissions from Mass Burn, Waste to Energy Plants.   January 1986.
                                   5-12

-------
 33.  Nottrodt, A. et al.  Emissions of Polychlorinated Dibenzodioxins and
      Polychlorinated Dibenzofurans from Solid Waste incinerators.
      Translation from German.  November 1984.

 34.  Kurt Carlsson,  Flakt Industries AB.  Emission of Heavy Metals From
      "Energy from Waste"-Plant-Comparison of Different Gas Cleaning
      Systems.  Presented at  the ISWA Specialized Seminar-Incinerator
      Emissions of Heavy Metals and Particulates.  Copenhagen.
      September 1985.

 35.  New York Department of  Environmental  Conservation.  Emission Source
      Test Report—Preliminary Report on Cattaraugus County ERF.
      August 1986.

 36.  Goumon,  J.,  Milhau, A.   Analysis of Inorganic Pollutants  Emitted by
      the City of  Paris  Garbage Incineration Plants.

 37.  Mclnnis,  R^  G.  and G. T.  Hunt.   Critical  Criteria in The  Development
      of  a Toxic Air  Emissions  Inventory "for Municipal  Solid  Waste
      Incinerators.   April  1986.

 38.  Seelinger, R. et al.  Environmental Test  Report  (Walter B.  Hall
      Resource Recovery  Facility, Tulsa,  Oklahoma).   Prepared by  Ogden
      Projects,  Inc., for Tulsa City  County  Health  Department.
      September 9,  1986.

 39.   Benfenati, R.,  et  al.  Studies  on  the  Tetrachlorodibenzo-p-Dioxins
      (TCDD) and Tetrachlorodibenzofurans (TCDF)  Emitted From an  Urban
      Incinerator.  Chemosphere.  Volume  15,  No.  5.  1986.  pp. 557-561.

 40.   Zurlinden, Ronald A., et  al.  Environmental Test  Report (Marion
      County,  Oregon  Solid Waste-to-Energy).  Prepared  by  Ogden Projects,
      Inc.  November  1986.

 41. '  Boisjoly,  Lucie.  Measurement of Emissions of  Polychlorinated
      Dibenzo-p-Dioxin (PCDD) and of  Polychlorinated Dibenzofuran  (PCDF)
      from the Des Carriers Incinerator in Montreal.  Environmental Canada
      Report EPS 5/UP/RQ1.  December  1982.

 42.   Perez, Joseph.  Review of Stack Test Performed at Barron County
      Incinerator.  State of Wisconsin:  Correspondence/Memorandum.
      February 1987.

 43.   Entropy Environmentalists, Inc.  Stationary Source Sampling Report.
      EEI Reference-No. 2740A, B, C.  (Baltimore Rises Company L. P.*
     Southwest Resource Recovery Facility,  Baltimore, Maryland).
     Performed for RUST International Corp.   January 1985.

44.  Radian Corporation.  Final Emissions Test Report, Dioxins/Furans and
     Total Organic Chlorides Emissions Testing.  North Andover  Resource
     Recovery Facility,  North Andover, Massachusetts.   November 14, 1986.
                                   5-13

-------
 45
      Jamgochian, C. L., et al.  Municipal Waste Combustion Multipollutant
      Study Emission Test Report, Volume 1-^-Summary of Results, Volume 2—
      Appendices A-D, Volume 3—Appendices E-L (N. Andover, Massachusettes
      MWC).  Prepared for U. S. Environmental Protection Agency Emissions
      Measurement Branch of the Emissions Standards and Engineering
      Division by Radian Corporation.  Research Triangle Park, N.C
      Publication No. EMB Report No. 86-MIN-02.  April 1987.

      Radian Corporation.  Final Emissions Test Report, Dioxins/Furans and
      Total Organic Chlorides Emissions Testing.   Saugus Resource Recovery
      Facility,  Saugus,  Massachusetts.   October 2,  1986.

      Clean Air  Engineering, Inc.   Report on the  Compliance Testing
      Conducted  for Waste Management, Inc.,  at the  McKay Bay Refuse-to-
      Energy Project Located in Tampa,  Florida.   October 29, 1985.

      Marklund,  S.,  et al.   Determination of PCDD's and PCDF's in
      Incineration  Samples  and  Pyrolytic Products.   Presented  at  ALS
      National Meeting,  Miami,  Florida,  April  1985.

      Krall,  M.,  et  al.   Draft  Final  Report,  Characterization  of  Emissions
      From  the Red Wing  Municipal Solid  Waste  Incinerator.   Submitted  to
      Cal Recovery Systems,  Inc., by  Radian  Corp.

      Cal Recovery Systems,  Inc.  Final  Report, Evaluation  of  Municipal
      Solid Waste Incineration.  (Red Wing, Minnesota  facility)  Submitted
      to Minnesota Pollution Control Agency Report  No.  1130-87-1.   January
      1987.

      Bordson, David.  Report on the Completion of  the  Red  Wing Municipal
      Solid Waste (MSW)  Incineration Evaluation Study.  March  12,  1987.

      Kalitowski, T. J.  Status Report on Solid Waste  Incineration  in
      Minnesota.   Office Memorandum.  March 18, 1987.

      Kalitowski, T. J.  Addendum to March 18, 1987, Status Report on Solid
      Waste Incineration in Minnesota Memorandum.   Office Memorandum.
     March 30, 1987.

     PEI Associates, Inc.  Chromium Screening Study Test Report.
     Municipal Incinerator, Tuscaloosa, Alabama.   Prepared for U. S.
     Environmental  Protection Agency/Emission Measurement Branch, Research
     Triangle Park, North Carolina.  EMB Report 85-CHM-9.  January 1986.

55.  Roy F. Weston,  Inc.  Source Emissions Test Report.  Performed for
     Vicon  Recovery Systems, Inc.   (Pittsfield, Massachusetts  facility.)
     November 20, 1985.                                                 '
 46.
 47.
 48.
49.
50.
51.
52.
53.
54.
                                   5-14

-------
56.  Systems Technology Corporation.  Small Modular Incinerator Systems
     with Heat Recovery, A Technical, Environmental, and Economic
     Evaluation.  Prepared for U. S. Environmental Protection
     Agency/Office of Solid Waste.  Report SW177c.  November 1979.

57.  Draft Sampling and Analytical Protocols for PCDD's and PCDF's in
     Stack Emissions.
     December 1984.
American Society of Mechanical Engineers.
                                  5-15

-------
                6.  AP-42 SECTION 2.1:  REFUSE COMBUSTION

     The revision to Section 2.1 of AP-42 is presented in the following
pages as it would appear in the document.
                                  6-1

-------

-------
 2.1  REFUSE COMBUSTION

      Refuse combustion^generally refers to the burning of garbage or other
 wastes that are predominantly non-hazardous.  Types of combustion devices
 used to^burn refuse include single chamber units, multiple chamber units,
 trench incinerators, controlled air incinerators, and pathological
 incinerators.  These devices are used to burn municipal, commercial,
 industrial, pathological, and domestic refuse.  The refuse combustion
 section of AP-42 will be reformatted.  In the interim, Section 2.1.1
 presents emission factors for municipal waste combustors, and Section 2.1.2
 presents emission factors for other types of refuse incinerators.  Emission
 factors for hazardous waste incinerators are not included in AP-42 at this
 time but will be added at a later date.

 2.1.1  Municipal Waste Combustion1

      Mass-burn excess-air combustion is the predominant  method of burning
 municipal solid waste (MSW).  Approximately 70 percent of the MSW burned is
 burned in mass-burn units.   The term mass burn means  that the MSW is
 combusted without any preprocessing other than the  removal  of bulky items
 (stoves,  telephone poles, etc.) to produce a more homogeneous fuel.   Mass-
 burn units are preferred for disposal  of large amounts (up  to 3,000  tons per
 day) of MSW.   Some mass-burn units coincinerate MSW and  sewage sludge.   A
 second type of municipal waste combustor is  the starved-air or modular
 combustor.  Starved-air combustors are the most-common type of"comfaustor•
 because they handle smaller amounts  (up to 5QO tons per  day)  of MSW.
 Another type of municipal waste combustor  is  the refuse-derived-fuel  (RDF)
 combustor.  Refuse-derived-fuel combustors burn MSW from which metals and
 other noncombustible materials  have  been removed to increase  the  heating
 value -of  the  MSW.   Because  of  the  processing  costs associated with producing
 RDF,  these units  are not  as  popular  as  mass-burn or starved units.   Some RDF
 is  coincinerated  with coal  or  sewage sludge.
2.1.1.1  Process Description
                             1-3
     Mass-burn Combustors—In a typical mass-burn combustor, an overhead
crane mixes MSW in a storage pit and then transfers the MSW into a feed
chute.  A hydraulic ram system under the feed chute charges the waste onto a
grate system.  As the waste is moved through the combustion chamber by the
grate system, it passes through the following zones:  (a) a dry-out zone
where the moisture in the waste is evaporated; (b) a combustion zone; 'and
(c) a burn-out zone where final combustion occurs.  The resulting ash falls
into the flooded ash pit and is removed and sent to a landfill.  In some
cases, ferrous metals are removed from the ash by magnetic separation.  The
capacity of individual combustors can range from 50 to 1,000 tons of waste
per day, and usually 2 or 3 units are at a site.

     Several types of grate systems are used with mass-burn combustors.  All
of these grate designs are similar in that they are designed to move the
waste through the combustor and promote complete combustion.  The grates are
either traveling,  rocking, reciprocating,  roller, or rotary designs.   Air
for the combustion process is supplied by underfire air,  which is introduced
into multiple compartments, or plenums, under the.stoker  grates and by
                             Solid Waste Disposal
2.1-1

-------
 overfire air,  which is introduced by nozzles or openings located above the
 grates.

      All new mass-burn combustors are expected to have a waterwall furnace
 to recover energy in the form of steam.   Many older facilities have
 refractory-lined walls rather than waterwalls.  Large mass-burn units are
 usually  field  erected.

      The air pollution control systems for these combustors are
 electrostatic  precipitators  (ESP's),  dry fabric filters, dry scrubbing
 systems  (with  either ESP's  or fabric  filters), and wet scrubbers.

      Starved-Air Combustors—A typical starved-air combustor consists of
 separate primary and secondary chambers.  The primary chamber is fed MSW by
 a hopper and ram-feed system.  Air is supplied to the primary chamber at
 substoichiometric levels.   Rams in the primary chamber are used to push
 residue  and break up clinker.  Exhaust gases, including the incomplete
 combustion products, (mostly carbon monoxide and hydrocarbons of low
 molecular weight) pass into  the secondary combustion chamber.

      In  the secondary combustion chamber,  more air is added,  and combustion
 is completed.   The resulting hot gases (1000°C to 1200°C)  can be passed
 through  a heat  recovery boiler for energy recovery.   Although several
 existing starved-air combustors do not have  energy recovery systems,  all new
 starved-air combustors are  expected to have  energy recovery systems.   Ashes
 are quenched and removed for disposal.  Most existing starved-air  municipal
'waste combustors operate without emission control systems  although some
 combusto'rs  do have ESP's or'fabric filters for particulate matter  control.
 Starved-air combustors generally are  marketed as  off-the-shelf units  that
 can be installed relatively  quickly.

     •Refuse-Derived-Fuel Combustors—One alternative  to  direct combustion of
 MSW is to process the waste  to produce refuse-derived fuel  (RDF).   The four
 main types  of RDF are fluff,  densified,  powdered,  and wet  pulped.   Fluff RDF
 is prepared by  mechanical shredding of MSW followed by air  classification,
 magnetic separation,  or  trommeling to reduce the  noncombustible content  of
 the waste stream.   If multiple shredding stages are used,  fine RDF  is
 produced.   Densified RDF is  produced  by  extruding  fine RDF  in a pellet
 mill.  The  production of powdered  RDF requires mechanical,  thermal, and
 chemical  processing  of shredded MSW that has  undergone  screening and
 magnetic  separation.   In the  wet pulping process,  the  pulper  is  fed MSW  that
 has been sluiced with water.   Noncombustibles  are  removed  in  a liquid
 cyclone.  The RDF is  then mechanically dewatered  to a moisture content of
 50 percent.           • •  .

      The  designs  of  dedicated  boilers  used to  combust RDF are  basically  the
 same  as  those of  boilers used  for  coal combustion.  Typical configurations
 include  suspension,  stoker, and  fluidized-bed designs.  These  boilers may
 burn  up  to  1,000  tons  of RDF  per day.  The ash is quenched and removed to a
 landfill.  Most RDF units use  ESP's for particulate matter control.
   2.1-2
EMISSION FACTORS

-------
 2.1.1.2  Emissions and Controls »**

      Refuse incinerators have the potential to emit significant quantities .
 of pollutants .to the atmosphere.  One of these pollutants is particulate
 matter,^which is emitted because of the turbulent movement of the combustion
 gases with respect to the burning sludge and resultant ash.  Particulate
 matter is also produced when metals that are volatilized in the combustion
 zone condense in the exhaust gas stream.  The particle size' distribution and
 concentration of the particulate emissions leaving the incinerator vary
 widely, depending on the composition of the refuse being burned and the type
 and operation of the incineration process.

      Incomplete combustion of refuse resulting from improper incinerator
 design or operating conditions can result in emissions of intermediate
 products (e.g., volatile organic compounds and carbon monoxide).  Other
 potential emissions include sulfur dioxide, nitrogen oxides,  metals,  acid
 gases, and toxic organic compounds.

      A wide variety of control technologies is used to control  refuse
 incinerator emissions.  Currently,  the  most widely used are ESP's,  fabric
 filters,^wet scrubbers,  and dry scrubbers.   Many control systems use  a
 combination of these four types of  control  technologies.

      Electrostatic precipitators are used on 75  percent of  existing
 municipal  waste incinerators  to control  particulate matter  emissions.   The
 efficiency^of  atypical  ESP can range from 90  to  99 percent depending  on
 particle size  distribution,  gas flow rate,  and particulate  resistivity;  '

      Fabric filters generally have not  been applied directly  to  flue gases
 from municipal incinerators  but rather  are  used as  sorbent  collectors  and
 secondary  reactors  for dry and semi-dry  scrubbers.   With upstream scrubbing
 of  acid  gases  and  sorbent  accumulation  on fabric  materials, fabric filters
 become a viable choice for fine particulate  control  as  well as for control
 of  other pollutants.        ,              '                   •

      Many  types  of  wet scrubbers are  used for  removing  acid gases—spray
 towers, centrifugal  scrubbers,  and venturi  scrubbers.   Scrubbers with
 internals,  such as  packed-beds  and trays, are  less commonly used.  In wet
 scrubbers,  the exhaust gas enters the absorber where it  is contacted with
 enough alkaline  solution to saturate  the gas stream.  The alkaline solution
 reacts with  the  acid gases to  form salts, which are generally insoluble  and
 may be removed  by sequential clarifying^ thickening, and vacuum filtering.
 The dewatered  salts or sludges are then landfilled.

     The two types of dry  scrubbing are dry injection and semi-dry
 scrubbing.   In both^cases, the material collected in the particle collector
 is dry.  Dry injection involves the.injection of a solid powder such as lime
 or sodium bicarbonate into the flue gas (with a separate water injection)
 where acid gas removal occurs in the duct and continues"in the dust
 collector as sorbent and ash particles and condensed volatile matter are
 captured.  In a  semi-dry process, also known as spray drying or wet/dry
 scrubbing, the sorbent enters the flue gas as a liquid spray with sufficient
moisture to promote rapid absorption of acid gases, but, because the
                             Solid Waste Disposal
2.1-3

-------
moisture evaporates, only dry solid particles enter the particle
collector.

 •  ;  Emission factors for municipal waste incinerators are shown in
Table 2.1.1-1.  Table 2.1.1-2 shows the cumulative particle size
distribution and size-specific emission factors for municipal waste
cdmbustors.  Figures 2.1.1-1, 2.1.1-2, and 2.1.1-3 show .the cumulative
particle size distribution and size-specific emission factors for mass-burn,
starved-air and RDF combustors,  respectively.
 2.1-4
EMISSION FACTORS

-------









cti
JS
O

EH
OT
3
03
§


U)
H
w
53
&4
HH
0
M
s«
s

OS
p
Cu
CO
es
fe
§
M
cn
M
§


•—I
^_f

CM
'w
03

pj
















*••
01
3

I
T
^
i
«-
41
a:











i.
(O


2
tfl












£
J3
1


















e
8t!l
•552
w
41
u
«t— •
> u» *-«
U °* c at c
•"_"j;^j;
< £425"-°
.w B —
g "
0
•o
01 »
Z S •£•
2 -2 1 J

SB C.
5"


S..O.
1n5 —
trt O 4^

iS "^ ^*

s

•£ *^- ? **

<||J'*
8

"S .
^ tn ^-s
2 ° "1

f-i^c.
5*
e
s^s
•S£2
UJ

U
Sui *-«
c _. c
•* r— "irt ^ il.

|S -
u

4) *
I— W* — •»
|i^|
SI! —






** -2 S
5s P
B O
42 'S
^o



w
C
1
I



«*._*--.'*-«.
23^35^25
SS2-S2.2.
°. d d d d e
o

"Sr^S^v
O  O fVJ rr (O
— * — * CM (M CM CM
O O O O O O
O O O O O O

o in O«-H CM *n
SSSooo
o o • * • •


S °. "1 "I T ".
o o in o in
O LO (0 to rx. r< -
^ooooo

«


Ji-**-*^-.^**^,^^
^2iC22^
2, °*S°- 2, °
in m in o o o
ssssst
00000°


•V 0 CM OJ ^"S*
*"*o o o






too u> o o o*
o <-* CM u> o in





0
a ra o o o


o u at o J3
SCO -H O tO
CM . . .
-.— d "^ ' *"* *"^
^ *— in in «
o s -. M- ^:
o -o
0*

O CO »** O S"
CO -4 ...
^** • »^ in ft
*r to to CD
in co • .
§ o- '« -
0



o a a a Q




**> o • • ,
o o — *r m
o d *"" *""* ***
*—•*-* in cj r*»
s I ° ~ •='
o d


°: 2 ^ " *>•
— d s i d.
in *"" in CM r^
oj g co .p. —
° d ° °"

u u o o a


.0 x» a* u o)
™ S I! ^ ^
*— d *"* *"^ "^

•-< J4 . ^4 ^
d


aj eo i-* to* CM*
tn f* • • .
— ' • *^ P^ ^
2 « S « 1
o ^ *M «^
* o
o








"fO T) Wl 4» 4^
^ 4> Of ^ C
3 -o -e -^ S
f 1 8 | f
S. * S " 4!
^ g1 § 5
3 "S S: £ € '.2
O Of 3 •*• IB O
i- ±! c^ z c3 5




S3




«r a











§s






33


-

00


.0 ^
S*2^
°.2-
o
go
O
d

1°
0 O,
o
 (A
•• - (A —
ft JSi
ui • e uj
a- S
5 e t! 3
l"sl
8 «Z S
U U IQ U
»llll
S^ i— ' a> ^
o o en o
mil
Solid Waste Disposal
2.1-5

-------
  §
  l-l
  CO
  V3
  O
  M
  Es.
  CJ
  Ed
  CO
  M co
  cn en
    H
  M  U
  H  <
 CM

  I
 Ed
            0
                 U
                  «c
                  CO
                 LL.

                 §
3  .1
4- O  L.
t- N  O
(O «~ •—
CL U)  E

CD
!«.
0
R
o
S
o
Kl
O
0
8'
o
o
*
o
CO
•>
o

o
o>
o
o
C3
d
K1
o
in

s
s
«!•
K>
in
CM
fl
in
00
o
*™

00
o
o>
o
o

8
o
3
8
8
8
3
5

                                                          e ID o
                                                          t,   TJ
                                                          3-0 I
                                                        • ^ 4) (0
                                                        t I  > in
                                                          « i_ a
                                                         n -4-
                                                        > (04- 4>
                                                        : 6 u> i_

                                                        ' II  II H

                                                            < u.
2.1-6
                             EMISSION FACTORS

-------
  o
  CO
 o
 •H
 03 x-s
 CO  00
 T-H

 O
 O
 O
 O
 c8
 53
• O
 •H
 03 x^s
 03 00
 0) 00
 13
 0)
 g
 CJ
           12
           10
    4



    2
                         Controlled
                                               Uncontrolled
                   _J	I  I  I 1 I I ! I
              0.1
                      1.0                10
                         Particle dUmeter (urn)
 0.12





 0.10





 0.08





 0.06




 0.04





 0.02
                                                                100
        Figure 2.1.1-1.   Cumulative particle size distribution

                   and  size-specific emission factors

                        for mass-burn  combustors.
1.20




1.00




0^80




0.60




0.40




0.20


   0
                            Controlled
                                                   Uncontrolled
                   i    i  i i  i i i 11
0.0150




0.0125




0.0100




0.0075




0.0050



0.0025



0   -
                                                                    o
                                                                    4-1
                                                                    a
                                                                    C
                                                                    O
                                                                    •H s-^
                                                                    03 00
 cu
rH
T-H
 O
                                                                    c
                                                                    o
                                                                    o
 M
 o
 4J
 o
 cfl
 c
 o
•H /-N
 ca  oo
 co a
•r) -~^
 &  00
 cu jd
  ^-^
T3
 0)
I-l
 -



I
             O.l
                      i.o               10
                         Partlcli dUmeter (u«)
                                                                100
         Figure 2.1.1-2.   Cumulative particle size distribution

                    and  size-specific emission factors

                        for  starved-air  combustors.
                             Solid Waste Disposal
                                                                   2.1-7

-------
     to
     n
     o
     4J
     u
     ca
     H-l
     CO /-s
     CO  (30
     •a
     a)
     t-i
     H
     O
     J-i
     4J
     a
     o
     o
     d
30



25




20




15




10



 5



 0
                          Uncontrolled
                                                  Controlled
                                      '   '—I  I I IH I
               0.1
170"               10
   Particle ditmeter
                                                                     0.60
                                     0.50
                                                                     0.40
                                                                     0.30
                                     0.20
                                     0.10
ca
!-l
O
4J
U
                                            o
                                            •H X-N
                                            CO 60
                                            to 2
                                            •H ^«*.
                                            e 60
                                            a) .a
                                              N«^

                                            •d
                                            0)
                                                                            o
                                                                 100
           Figure  2.1.1-3.   Cumulative particle size  distribution

                    and size-specific emission factors for

                        refuse-derived-fuel combustors.
2.1-8
                                EMISSION FACTORS

-------
References for Section  2.1.1
1.
3.
4.
Radian  Corporation, Appendix A;   Characterization of the Municipal Waste
Combustion  Industry. Prepared  for the  U.  S.  Environment-a 1
Agency, Research Triangle Park, NC.- October 1986.
2.  Air Pollutant Emission. Factors.  Final Report, Resources Research,
    Incorporated^ Res ton, Virginia, Prepared for National Air  Pollution
    Control Administration, Durham, NC, under contract No. CPA-2269-119
    April 1970.                                                        '
Draft.report*  Emission Factor Documentation for AP-42  Section  2.1.1—
Municipal Waste~Coinbustion. Monitoring and Data Analysis n-i^i ci nn t "—
Office of Air Quality Planning and Standards, U. S. Environmental
Protection Agency, Research Triangle Park, NC, September 1987.

C. B. Sedman and T. G. Brna, Municipal Waste Combustion Study;  Flue Gas
Cleaning Technology, EPA/530-SW-87-021d, U. S. Environmental  Protection
Agency, Research Triangle Park, NC, June 1987.
                            Solid Waste Disposal
                                                                   2.1-9

-------

-------
 2.1.2  Other Types of Combustors

      The most common types of combustors consist of a refractory-lined
 chamber with a grate upon which refuse is burned.  In some newer
 incinerators water-walled furnaces are used.   Combustion products are formed
 by heating and burning of refuse on the grate.  In most cases, since
 insufficient underfire (undergrate) air is provided to enable complete
 combustion,  additional over-fire air is admitted above the burning waste to
 promote complete gas-phase combustion.  In multiple-chamber incinerators,
 gases from the primary chamber flow to a small secondary-mixing chamber
'where more air is admitted,  and more complete oxidation occurs.  As much as
 300 percent  excess air may be supplied in order to promote oxidation of
 combustibles.   Auxilliary burners are sometimes installed in the mixing
 chamber to increase the combustion temperature.  Many small-size incin-
 erators are  single-chamber units in which gases are vented from the primary
 combustion chamber directly into the exhaust  stack.  Single-chamber
 incinerators of this type do not meet modern  air pollution codes.
 2.1.2.1   Process  Description
                             1-1+
     -Industrial/Commercial  Combustors—The capacities  of  these  units  cover a
wide  range, generally between 50 and 4,000 pounds  (22.7 and  1,800  kilograms)
per hour.  Of either single- or multiple-chamber .design,  these  units'are
often manually charged and  intermittently operated.  Some industrial
combustors are similar to municipal combustors  in  size and design.  Better
designed emission control systems include gas-fired afterburners,,  scrubbers,
or both.

      Trench Combustors—A trench combustor is designed for the  combustion  of
wastes haying relatively high heat .content and  low ash content.  The  design
of the unit is simple:  a U-shaped combustion chamber is  formed by the  sides
and bottom of the pit, and air is supplied from nozzles (or  fans) along the
top of the pit.  The nozzles are directed at an angle below  the horizontal
to provide a curtain of air across the top of the  pit and  to provide air for
combustion in the pit. ,Low construction ,and operating costs have resulted
in^the^use of this combustor to dispose of materials other than those for
which it was originally designed.  Emission factors for trench combustors
used to burn three such materials are included  in Table 2.1.2-1.

     Domestic Combustors—This category includes' combustors marketed for
residential use.   Fairly simple in design,  they may have single or multiple
chambers and usually are  equipped with an auxiliary burner to aid
combustion.

     Flue-Fed Combustors1--Thes'e units,  commonly found in large apartment
houses,  are characterized by the charging method of dropping refuse down the
combustor flue and into the combustion  chamber.   Modified  flue-fed
incinerators utilize afterburners and draft  controls to improve combustion
efficiency and reduce emissions.

    ^Pathological Combustors—These  are combustors  used to dispose of  animal
remains  and other organic material of high moisture content.   Generally,
these units are in a size range  of 50 to  100  pounds (22.7  to  45.4  kilograms)
  1/82
Solid Waste Disposal
                                                                      2.1-11

-------

(9
CO
0
e
55
O
H
O
S
H
w
3

•td
CO
1
0
3
s
H
*5
H ^
BJ ..
° H
CO **•
OS
OMBUSTO
FACTOR
"a
CO 2
E> CO
Cd g

&3
erf
O
fa
CO
BJ
O
e
fa
^
O
CO
CO
s
W


•
»H
e>f
• ,
Ed
1

"°$
T:
g
£
Ol
C
1
2




i
•e
re
u
2
"§
31
(1>
i
g
§
•e
s


.0
6)
1





,£
«2
3
u
a.














.
J
!
^
«
i
<
1
i

s

^™


H.
^
51


S


h-
Oi
•**

g

J3

—
W
•**
g


u_
^
S



g
M















S.
J
j
1
j
!
!
-•"" ~ •» " «» «« Srt!j


 *P^ -^ in in o »-i .
X



n in *^9 -^^ -^ tn n c? csi .
I
u,0 ^,^^010 ,_,.
" K Z


Og -o-->»^go S'
" z S


CMSV- OCMCgCNJ fSJfNJ 01
— ' ** «3-*OO OOZ
"r-1^.. -- "T»- mm mm.
mm ~*m.. ..o»
• • • *oo ooa*
~ eg o tM a D «



mm maiu>mr>) mm^
fn rC to a> rC tn
~* ' *-t


f**J£J £2c3$cn'£3 *° E cnf^ °°
•^
•










^ "v.

2 *a> ' Si IS "Z-. S S S
S «e«_ £ •« "S 'S >, 3
e 104 k ^t*.^. 8>«
!-s| ^Ifltli1^
•• ** Ol C O 3 3 •*• »fc. j|* 2 _e H
* *— £ «3KX i t M S3 S o
s *B " III55|

























-.

j.
4-»
s
4-»
^j
3
wt
^, >
,*•*
C
y • •
C > : 1/1
fe • 1
tt> 3
1 •' i
"S "c
X 8
a * e tn
£ « I 22
uj -o 55
o 
e 5 ITS"*" •a"*" ^ .""s2! I
O «>t- • «J Of * U «
UfOtQie 3 tnraja 03 rC
iiiillllllffffil
jj'jjjjijjjjlljjj
2.1-12
EMISSION FACTORS
                                                                      1/82

-------
 per hour.   Wastes  are burned  on  a hearth in  the  combustion chamber.   The
 units  are  equipped with  combustion  controls  and  afterburners to ensure good
 combustion and minimal emissions.

 2.1.2.2  Emissions and Controls

     Operating conditions, refuse composition, and basic  combustor design
 have a pronounced  effect on emissions.   The  manner in which air is supplied
 t'o  the combustion  chamber or  chambers has a  significant effect  on the
 quantity of particulate emissions.  Air  may  be introduced from  beneath the
 chamber, from the  side, or from  the top  of the combustion chamber.  As
 underfire  air is increased, an increase  in fly-ash emissions  occurs.
 Erratic refuse charging causes a disruption  of the combustion bed and a
 subsequent release of large quantities of particulates.   Large  quantities of
 uncombusted particulate matter and carbon monoxide are also  emitted for  an
 extended period after charging of batch-fed  units because of  interruptions
 in^the combustion  process.  In continuously  fed units, furnace  particulate
 emissions are strongly dependent upon grate  type.  The use of a rotary kiln
 and  reciprocating grates results in higher particulate emissions than the
 use  of a rocking or. traveling grate.   Emissions of oxides of sulfur  are
 dependent on the sulfur content of the refuse.  Carbon monoxide and unburned
 hydrocarbon emissions may be significant and are caused by poor combustion
 resulting from improper combustor design or operating conditions.  Nitrogen
 oxide emissions  increase with'an increase in the temperature of the
 combustion zone,  an increase in the residence time in the combustion  zone
before quenching, and an increase in the. excess air rates to the point where
dilution cooling overcomes the effect  of increased oxygen concentration.
  1/82
Solid Waste Disposal
                                                                      2.1-13

-------

-------
 References for Section 2.1.2

  1.  Air Pollutant Emission Factors, Final Report, Resources Research,
      Incorporated, Reston, VA, prepared for National Air Pollution Control
      Administration, Durham, NC, under Contract Number CPA-2269-119
      April 1970.

  2«  Control Techniques for Carbon Monoxide Emissions from Stationary
      Sources. U.S. DHEW, PHS, EHS, National Air Pollution Control
      Administration, Washington, DC, Publication Number AP-65, March 1970.

  3-  Air Pollution Engineering Manual.  U.S. DHEW, PHS,  National Center for
      Air Pollution Control, Cincinnati, OH, Publication Number 999-AP-40
      1967, p. 413-503.                                                   '

  4.  J.  DeMarco.  et al., Incinerator Guidelines 1969. U.S.  DHEW,  Public
      Health Service, 'Cincinnati, OH, SW.   13TS, 1969, p.  176.

  5.  J.  0. Brukle,  J. A. Dorsey, and B.' T.  Riley, The Effects  of  Operating
      Variables  and Refuse Types  on Emissions  from a  Pilot-Scale Trench
      Incinerator,  Proceedings of the 1968  Incinerator Conference.  American
      Society of Mechanical  Engineers, New  York,  NY,  May 1968,  p.  34-41.

  6.  Walter R.  Nessen,  Systems Study of Air Pollution from  Municipal
      Incineration.  Arthur D.  Little,- Inc.   Cambridge, MA, prepared for
      National Air  Pollution Control  Administration,  Durham, NC, under
      Contract Number CPA-22-69-23, March 1970.

  7.   C.  V.  Kanter,  R. G.  Lunche,  and A. P.  Fururich,  Techniques for Testing
      Air Contaminants from  Combustion Sources,  J. Air Pol.  Control Assoc
      6(4):  191-199,  February  1957.             	"	'

  8.   J.  L.  Stear, Municipal Incineration;  A Review of Literature. U.  S.
      Environmental Protection Agency, Office of Air Programs, Research
      Triangle Park, NC, OAP Publication Number AP-79, Ju^ne  1971.   ,  '

  9.   E.  R. Kaiser, Refuse Reduction Processes in Proceedings of Surgeon
      General's Conference on Solid Waste Management. Public Health Service
      Washington, DC, PHS Report Number 1729, July 10-20, 1967.

10.   Unpublished source test data on incinerators, Resources Research,
      Incorporated, Reston, VA, 1966-1969.

11.  E. R. Kaiser, et al., Modifications to Reduce Emissions from a Flue-Fed
     Incinerator. New York University, College of, Engineering,  Report
     Number 552.2, June 1959, p.  40 and 49.

12.  Communication between Resources Research,  Incorporated, Reston, VA, and
     Maryland State Department of Health, Division of Air Quality  Control.
     Baltimore,  MD, 1969.
  2.1-14
                               EMISSION FACTORS
1/82

-------
13.  Unpublished data on incinerator testing.  U.S. DHEW, PHS, EHS, National
     Air Pollution Control Administration, Durham, NC, 1970.
 1/82
Solid Waste Disposal
                                                                     2.1-15

-------
                                7.   DATA  BASE

 7.1.   DISCUSSION OF PROCESS AND CONTROL  DEVICE TABLES
 7.1.1  Discussion of Process Design and  Operation Tables
      Design and operating' information for the process equipment in use at
 the 36 test sites is presented  in  tabular format in this section.
 Specific  design factors  anticipated to have causal  relationships with
 combustion  efficiency and/or pollutant emission levels have been
 identified  in  the combustor design tables.  A paucity of performance-
 related design information  is available  in  the emission test reports  •
 identified  in-Supplement  A.  Tables 7-la and  7-lb present the available
 structural  and airflow design specifications,  respectively,  for the mass-
 burn  facilities  in  SI  units.  Process  operating conditions  are presented
 in  Table  7-2 for  the mass-burn  facilities in  SI  units.   Comparable design
 data  for  the starved-air  facilities  and  RDF facilities  are  presented
 similarly in. Tables  7-3a, 7-3b, 7-5a,  and 7-5b.   Process  operating
 conditions  are presented  for starved-air and  RDF-fired  facilities  in  SI
 units  in  Tables 7-4 and 7-6, respectively.  The  same  table  sequence is
 followed  for process design and operating conditions  in English  units for
 Tables 7-59 though 7-64.
 7.1.2  Discussion of Control Device Design and Operating  Condition Tables
     Control device design and operating characteristics  are presented in
Tables 7-7 through 7-12 in SI units, and Tables 7-65 through 7-70 in
English-units.  Tables 7-7 and 7-65 present ESP desi-gn data in SI and
English units, respectively.  Comparable design data-for the OS systems
are presented  in Tables 7-8 and  7-66.  Tables  7-9 and 7-67 present  design
data for WS and FF systems in SI and English .units,  respectively.
Operating conditions are  presented  for the different types of control
equipment in the same "sequence in Tables  7-8,  7-10,  and 7-12 in SI  units,
and in Tables 7-68 through 7-70  in  English units.

                                    7-1

-------
-7.2.  DISCUSSION OF EMISSION TABLES
      The emission test data for the 36 test sites examined during this
 study are presented for 48 specific pollutants or related pollutants in
 Tables 7-13 through 7-58 and Tables 7-71 through 7-116.  Each table
 presents emission data for one pollutant/related pollutants either in SI
 units or in English units.  Data are presented in SI units in Tables 7-13
 through 7-58 and in English units in Tables 7-71 through 7-116.   For each
•test site,  the tables present the type of facility,  facility name, type of
 control device, test condition,  and three columns of emission values for
 uncontrolled and controlled emission levels upstream from and downstream
 from the contro.l device.   For most tables,  emission  values are presented
 in units of mass/stack gas volume in dry standard conditions (DSC) of 20°C
 and 760 mm  Hg (68°F and. 29.92 in. Hg),  in DSC  converted to 12 percent C02,
 and mass of pollutant per  mass of feed  input.
      For the metals tables,  emission values are  presented in units of mass
of metal  emissions/mass of PM emissions  in  lieu  of mass/stack gas  volume
at DSC.   The four classes  of pollutants  are presented  in  the following
sequence of tables:   (1) the four criteria  pollutants  are presented  in
Tables  7-13 through  7-16 in  SI units and  Tables  7-71 through 7-74  in
English  units;  (2)  the 7 metals  are  presented  in  Tables 7-17 through  7-23
in SI units and  in  Tables  7-75 through 7-81  in English  units;  (3)  the
3  acid  gases ,are presented  in Tables  7-24 through  7-26  in  SI  units and
Tables  7-82 through  7-84 in  English  units;  and (4) the  21  organic  ,
pollutants  or related  pollutants  are  presented in  Tables  7-27 through 7-55
in SI units  and  Tables 7-85  through  7-113 in English units.
     The  supplementary emission data  from 27 test  sites for  PCDD,  PCDF,
and metals  are presented in Tables 7-56 through 7-58, respectively, in SI
units and-Tables 7-114 through 7-116  in English units.
     It should be noted that the  "emissions upstream from control device"
and "emissions downstream from control device"  designations on the tables
in this chapter are indicative only of the location at which the
measurements were made.  These designations were selected to present the
emission data in a consistent format that permits comparison.  Control
efficiencies are presented  for those control devices  known to demonstrate
control over, a specific pollutant.  In some cases, these designations
                                    7-2

-------
could result in negative control efficiencies for some gas-phase
pollutants like S02, NOX, and CO.  However, the lack of control of such
pollutants is not a reflection of the efficiency of the PM control
device.  Rather, variations in the measured values of such pollutants
upstream and downstream of the PM control device typically are a product
of the normal variation expected with any test method (and are suitably
footnoted as they occur in the tables).
                                   7-3

-------

-------
-Facility type/structural  and airflow design data/operating conditions 1n
 SI units
 7-la    Mass-Burn Facility Structural Design Data
 7-lb    Mass-Burn Facility Airflow Design Data
 7-2     Mass-Burn Operating Data for MWC_Facilities
 7-3a    Starved-Air Facility Structural  Design Data
 7-35  Starved-Air Facility Airflow Design Data
 7-4     Starved-A1r Operating Data for MWC Facilities
 7-5a  .  RDF-Fired Facility Structural Design Data
 7-5b    RDF-Fired Facility Airflow Design Data
 7-6     RDF-Fired Operating Data for MWC Facilities
                                     7-4

-------

-------












a:
1—
to

1 —
I-H

1— 1
O
LL_
0£
CO
|

t/0

3E



•
10
1
^
LU
CQ
^f
•—














ID
^.
ID
•o

re
O







ID
O
ID

ID
in
'c
ID
£

ID
(D
Z








C
O

^_
ID
CT

1
U
L.

ID
5







U
o
ID

U
>.
u
ID
XI
c
O
o

1_
ID
^

Ch
"o
ID
3
in •
in a.

i. i.
Qu XI
(A
- §
O —
• o
fe
L.
1 3
C O
ID ID

E
«

ID
"o
'


fN
i g
u

5."
Ito
o s


O

^v
u 

O O
O U

i
3*1
o E
>

J
^v
O ID
— L.
(_ 3
•H O)
4) O
CD G



"o
ID
U.
a
f\



XI













































Hampton













4)













































a
3
a
,
-
Z
3
5
3



























































ID
J
5
S
























































rt3
•—•
L
9
7
9









•


























*

O)
U
3
in
XI
• »
u •*-
O —
in ID
3 —
•O U
0 "S
U X.'
IDO,
o
l~ ^3
XI •+- OX
7-5

-------









s
o
C£J
^_4
LU
O
a:
<
I—
I-H
O
if
g
CQ
1
00
00
zi

JQ
i— <
LiJ
93
•a:










t
N
£



ei
a

&
"
c
o
5
iZ *D
§
JJ =
S


c
c
£
<
I
.£
u
-a
2



|
CD
|
.g

-------
 o
 
                           r*. to
                                                                                           S
                                                                                                      ~-
                                                                                                      Cl 1C     -00

                                                                                                      ^ CM        to
                                                                                                      rw c\j        eg
                            > **• Q     O  O   22



                            • cd(OCMQJ4CO?i^Ooic7)
                           —* ^ in t*.   a» ^  to
                                                            O   (O  f.
                         S en S m us S m
                         — i to ^r in oo cy c\j
                          •

S   S   S?
 •
S3   ft   S
-^p    csj   in
                        cococomo— *
                                                                        0
                                                                        a
                                     S3
                              Sm     «O  csj
                              O)     CO  ^^
                                                                                                           S
                        s                s"       ^ *
                        •». •   s'sr^y  s^'  s~srs5
                        m     0=0300 ca   ^           m
                                         *'
                                    ^^ og


                              °=     §.§.

                                    «J IQ
                                                                     u.     omoo     coo     2- —
                                                                     •t     ^^^^S     S^r^'     -^-S      •     ^

                                                                     ft   u.  ."11 .?  "H^   I"^  .M   8   5




                                                                     a?;   S3            °        i*t/t     >ia:o'>"SQ"
                                                                     *j   2            vi       «^. uj     o  55   2
                                                              7-7

-------

















§
CD
I/?
LU
a
i
I
i—
o
i—
fr—4
_J
t— 1
£
OS
t— 1

^
0
LU

1
S









i

jr
u
ID
•o
C
O
u
0)


f






U

L
O




L.
ffi
X)
a

?
II



•




>»
-

"o"
L
a
u
if>





















•























.


>•

S
5
-
5
m

Kl














































0
a
in

0
5
•
0

o>

















































3)
5
3
n
5
O
Kl
CM













































-

e.

\
m
-1
z

m















































3
9

9
LU
O 13
j e
: 10
I in
*\
















































1

71
e

I
7-8

-------
 §
UJ
a
3
U.
<
03

-------




C/i
LU
t— l
I—
_J
h-l
O
^^


g
00
=3
H
LU
U.
l
3J
_j
O_
fc*H
O
|
S
0
Lu

S
a
ii
P
LU
O_
O
C£
2
LU
>
?C
£""

•
1
LU
£



































g
t.
3
4-*
to
I;
1

















a.
i
- S
|s

*•*
£ M
«=~
n
a
J£
U >«
re
CO CM
S


*
CM
O
si

tz

y
u
4-*
trt

CJ
u
V •
11
g
_ CJ
Secondary
chanber . *
S>
_3 b
a. id
u
«t
u -21
fj 5*
a/ TI
Li* X

-


I
c
>,
if
•*-
£
in m i- i-
O 0 
g _o 2 5
1 I'l 1 1
S i j« "* *" "" *"
s « i fe 1 1 1
' Is- ••****
*|*UUA*«VVV>>>
fe x W ° * S













S


"

S
CM
















o
Ot




«
VI
I

u
1


7-10

-------






?
o
•z.
1-^
t/1
LU
0
_l
CK:
.^j
o
C£
tO

^i
I—
*-H
1— <
O
1 1
U*m
O
Uul
C£.

U_
— 1
LU
u_
• a
'LU
)— 1
as:
LU
0 •
LU
to
ZD
Li_
LU
C£
03
1
LU
	 1
03
j*
















2
a
t




















0,8
- el
a» 
s

el
Ml *
*. 2
'
VI
V §
O —
08

b.
Q)
fc.
2
*J
U
I
i
(O »—
1 s~E
t, *""
£. '
1 ,~.
- 8 -
** > 01







§
1
|
fe
-s
ra
5



i.
_2
S
•5
t.

i
<
e
aT
§
*o

0
5 c to
Sou
J U 3


CU
•i
1
L.
g;
a.
i
m«
1
1
u
I i a'
liS
y s %



' £
i—

S.





0
01










































c
>
( "





CM
CM










































•*
3
3





CM






































:
I
"t
\
.

i





0










































O
•
i






































.






3
^
3
i
ft
E





§
—








































i
||


































.
I
s
o
"S
4-*
•fH
2
I
i
e
s
e
t
VI
•8
>t
ffl
e


III
7-11

-------
 CO
 o
 _J
 U_
 a
 LU
 a:
 i—i
 u.
  i
Oi.
LU
a
LO


fv.


LU
        I
          •s
        % s

        41
                                                7-12

-------
         a

         a
 o:
 o

 g

 03

 s
 O

 LU


 §
ss
co a!
 <
 Q.
o
u_

<
     I
0.

O


a
UJ
a:
      1
10
LU


03

-------

-------
Control device design and operating characteristics 1n SI units-
7-7     Electrostatic Precipltator Design Specifications
7-8     Electrostatic Precipitator Operating Conditions
7-9     Dry Scrubber/Fabric Filter System Design Specifications
7-10    Dry Scrubber/Fabric Filter System Operating Conditions
7-11    Fabric Filter-or Scrubber Design Specifications
 i
7-12    Fabric Filter or Scrubber Operating Conditions
                                    7-14

-------

-------



00
o
HH
J—
O
Lu
O
LU
O.
to
00
LU
O
o
1—4
Q-
o
LU
on
a.
H~
S
o
O£.
LU
	 1
LU
LU



g "
« c
SI
*ll
^!"B
4«t • "^ 4J

^£ £ S **

sS
i. -
"5 *
V f
UJ O.
1 ~B
5 afe
•s «
5 C
_« t «r ^
•
!**
•2 *e °
4-1 UJ
a
0)
2 c **
Of
e
£
*O
£




















i 1
4>»
J1
S      §8
                                   S
                     .s

      tn u>
      i*«. f**
      »e to

      0 0
     co oo
                    -    2   -23-
                               £8
 7-15

-------











C/1
z:
c:
;
_
0
O
CD
z:
OS
UJ
0
nr
O

I— i
O_
0
UJ
a:
Q.
o
h—
£
O
cm
CJ
UJ
UJ
CO
1
r-.
UJ
CD
<

*





CJ
9
_
1
3

I.
1
S
§
.
S
i
u
m
u
u


1
u.
I









u
w
ji c
g.2
V S .
IQ B
•— UJ
t

.
r
r
<

4
'






^> W
i C

•o --
31
to ^


1 1
u. **-
Sc

'
II


c?
LJ. 

«t
^ ^
SI
o
evj

M ^
M «*
0

5 ,;
Ss
r ti
s|
|
*>
j -5
c §



i
i
"o
£
-
s
CSI

 O4 ^



O o
. o in . o
3 3 a 5 S
"~~ o
CO
(NJ

0 00
~ • s" a '


0 00
~ S m

* -o IOJ»IB ^ raw ^ mio
ooocov o go o oo
SSS '^ o5»5 o raco
"* *« W) esj -w cw


. 2 ?3 S Rj S K StS n SS2




»n



«9»*» ,p«j -"—
Sg'g'^ S S . a, jo
« v dd-ci- Jfe. -s -s .
s Illiiil |ol ?2 . i ,, **£
|lg.il53lll|l|l|asf ^ |'| |allll
.- il **• ~ » * ^« ^ *^ & *t ^? 2 fi ^? 5
-2 t vi ws 3" 5.
5 ^ *o uj uu uj o C
c '  2
||








































*> •
S 5
4» 4*
U U
s.i
•o -o
s|
7-16

-------
01
-
i

I u J





00
3E
O
1—4
I—
1—4
Lu
I-H

LU


00
z:
0
00
LU
UUJ
0
y
LU

00
00
C£
1—
t— <
Lu
0£
CQ
Lu
££"
1 1 i
CQ
co
eg
O'
oo
a

• "
i
LU
CQ
*






ST a
0 •
J?^ «
U^
10
"(I
0)
«j

en
CO
o
o
.
4-1

Ol 4J
c £
•AT.
J *
« « ?
+* e
g UJ
•w **
(O ^
55s
fe * u
<2 C r
a?



I
£
11
&. L
•g -S "* *
•^9 **Tv V 4f
VOL U
'a "3 S 3
a. a. a: at
m !Z
- 0

 P*. •
—^ * *"*


"^ i— I
a s"
o




-
>,
| J fc









































2«
s*s
It
u u
W1
cis
§10.
o1
"(O f
£ °
il
** IO

" «0
i|i u
7-17

-------
 o
 z:
 o


 CD
 LU
 Q.
 O
>-


ct
O



CO
LU
CO
CO

01
CJ
to
       g1 £  -
       S"s
         I o
 I
r*..
LU
       Vt  CM

       SS"

       "w X ?
         g .
         z; 5
         g g
         — 'o
           §

        ** *o
        8  5
                                 s
                     O*  -P- O
                  85   u.. 21
                                      85 •
                                    III
                                            i2£
                                            — *»*•
                                              § S
                                               /-is

-------
        I
          £ £
 oo

 O
 o
 UJ
 o_
 01
 O
 CO
 CD

 C£

 CO

>Q£
 O

 C£L
 UJ
 o
 CO
 
-------
        is
        42 °
co

O
S

-------
Criteria pollutants 1n SI units
7-13    Summary of Particulate Emissions From MWC Facilities
7-13a   Particle Size Distribution Data From MWC Facilities
7-13b   Summary of Emission Factors for Volatile Organic Compounds from
        Municipal Waste Combustion
7-14    Summary of Carbon Monoxide Emissions From MWC Facilities
7-15    Summary of Sulfur Dioxide Emissions From MWC Facilities
7-16    Summary of Oxides of Nitrogen Emissions From MWC Facilities
7-16a   Summary of Criteria Pollutant Emission Factors for Municipal Waste
        Combustion
                                    7-21

-------

-------
TABLE 7-13.  SUMMARY OF PARUCULATE EMISSIONS  FROM MWC  FACILITIES
Fact 1 ity name
Mass burn
Waterwa 1 1
ESP
Baltimore, 1/85
Baltimore, 5/85
Braintree
Hampton (1981)
Hampton (1982)
Hampton (1984)
McKay Bay (Unit 1)?
McKay Bay (Unit 2)P
McKay Bay (Unit 3)£
McKay Bay (Unit 4)D
N. Andover
Peekskill (4/85)
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
SO/ESP
Munich
CYC/DI/ESP/FF
Mai mo
WSH/DI/FF
. Quebec
Quebec
Quebec
Quebec
Wurzburg
SD/FF
Marion County
Quebec
Quebec
Refractory
ESP
Philadelphia (NW1)
Philadelphia (NW2)
CYC
Mayport
SD/FF
Tsushima
Starved air
No control device
Dyersburg
N. Little Rock. 3/78!:
N. Little RockJ 5/78=
N. Little Rock, 10/78C
Prince Edward Island
Prince Edward Island
Prince Edward Island
Prince Edward Island
Barren County
Red Wing A
Tuscaloosa
RDF fired
ESP
Akron
Albany
Hami Iton-Wentworthf
Hami 1 ton-Wentworthe
Hami Iton-Wentworth,
Hami 1 ton -Wentworth8
Ham i 1 ton-Wentworth"
Hamilton-Wentwortn8
Niagara
Test
condition



Normal
Norma 1
Norma 1
Norma 1
Normal
h Norma 1
0 Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Normal
Norma 1
Norma 1
Norma 1
Normal
MSW only
Normal
- 110
125
140
200
Norma.l
Normal
140
140 4 R.

Normal
Normal
MSW/waste oi 1
Normal


Normal
Normal
Norma 1
Normal
Normal
Long
Higfi
Low
Normal
Normal
Normal


Normal
Normal
F/None
F/Low back
F/Back
F/Back. low
f PftrtT
r i wii i
H/None
H/Low back
Normal
. Emissions
upstream from
control device
mg/Nm3 at kg/Mg
•T2| C02 feed



4,690 23.2
2,240 6.50
1
4,490
4,980 '
3,690
3,850
2^140

6,690 21.3
4,300. 18.2
6,610 ' 24.9 | '
4,450 25.4 '
8 460
7,910
6,650
SOfifl
, 7OU
1
5 790
7^650

I

4,460 12.4
, i

303 1 .30
327 | i
436 ' '
297 1.52 .
214 0.840 I1
234 0.870
255 1.0
173 ' 0.680
197 .0.727


10,600 51.7

Emissions
downstream from
control device
mg/Nm3 at kg/Mg
T2* C02 fee
-------
                               TABLE 7-13.   (continued)
Faci 1 ity name
CYC/DI/ESP/FF
Mai mo
Test
condition
RDF
Emissions
upstream from
control device
mg/Nm at kg/Mg
\2% CO- feecf
4,330 29.1
Emissions
downstream from
control device
mg/Nm' at kg/Mg
12% C02 feecf
. .—
Control
effi-
ciency, %

jrAverage of  two test  runs.
cControl  efficiency not calculated because inlet and outlet test runs were not simultaneous.
JjNot corrected to dry standard conditions.
.Control  efficiency is not typical of most properly maintained ESP's
 One test run  only.      .                                                  11
                                           7-23

-------
TABLE 7-13a.   PARTICLE SIZE DISTRIBUTION DATA FROM MWC  FACILITIES
Facility
Mass bum
Water-wall
ESP
Baltimore, 5/85 -

Braintree

Hampton





CYC/FF
Galjatin



ESP/WS
Kure





SD/ESP
Munich
Mass burn
Refractory
SD/FF
Tsushima
Starved air
No control device
Oyersburg





Cut
diameter
• nicrons



• 0.625
1.0
2.5
5.0
10.0
15.0
0.625
1.0
2.5
5.0
10.0
15.0
0. 625
1.0
2.5
5.0
10.0
15.0

0.625
1.0
2.5
5.0
10.0
15.0'

0.625
1.0
2.5
5.0
10.0
15.0

0.625
1.0
2.5
5.0
10.0
15.0
•


0.625
1.0
2.5
5.0
10.0
1S.O


0.-625
1.0
2.5
5.0
10.0
15.0
Upstream from
Cun. % < cut



11.4
13.1
17.3 .
21.4
26.4
29. 8
23.0
37.0
50.0
70.0
75.0







6.97
8.04
' 10.6
13.1
16.1
• 18.3

16.2 '
19.0
26.5
34.4
45.1
53.2

7.0:
13.0
16.0
21.0
27.0
35.0 '
.


10.3
12.3
17.4
22.7
29.6
34.6


44
70 .
91
92
96
97
control device
: Emission
factor,
kg/Mg feed



2.88
3.32
4.38
5.40
6.65
7.55
1.50
2.40
3.25
4.55
4.88







5.95
6.85
9.00
U.I
13.7
15.5

2.95
3.46
4.82
6.25
8.20
9.70

1.82
3.37
4.15
5.45
7.00
9.05



1.27
1.52
2.15
2.31
3.16
4.28


0.294
0.466
0.605
0.615
0.640
0.645
Downstream from
Cunt. % < cut



33.3
37.6
47.6
57.1
68.5
76.3
25.7
31.0
44.7
' 59.0
77.9
91.6
1.2
5.2
9.9
23.0
44.0
61.0

0.94
.1.07
1.37
1.66
2.01
2.24








17.0
30.0
48.0
62.0
66.0



3.76
6.34
17.6
38.0
82.2
100.0








control device
Emission
factor,
kg/Mg feed



0.01
0.01
0.015
0.02
0.02
0.025
0.388
0.418
0.675
0.890
1.18
1.39
0.0235
0.102
0.194
0.451
0.865
1.195

0.015
0.015
0.02
0.025
0.03
0.03








0.0155
' 0.0275
0.0440
0.0570
0.0605



0.00285 .
0.0480
0.0133
0.0287
0.0620
0.0751








Control
efficiency, X



99.7
99.7
99.7
99.6
99.7
99.7
74.0
80.5 '
79.2
80.4
75.6







99.7
99.8
99.8
99.8
99.8
99.8








99.1
99.2
98.2
99.0
99.1



99.8
99.7
99.4
99.0
98.3
98.2








                                                                 (continued)
                              7-24

-------
                                  TABLE  7-13a.    (continued)
Facility
Horth Little Rock





Prince Edward Island

•



ESP
Tuscaloosa





Cut
diameter
nlcrons
0.625
1.0
2.5
5.0
10.0
• 15.0
0.625
1.0,
2.5
5.0
10.0
15.0

0.625
1.0
2.5
5.0
10. b
15.0
Upstream from
Cum. 2 < cut
76.0
81.0
89.0
95.0
97.0
— .
42.5
49.9
68.4
84.8
93.4
99.3

86.4
87.6
90.0
91.8
93.7
94.8
control device
Emission
factor,
kg/Mg feed
3.38
3.60
3.96
4.22
4.32

0.36
0.42
0.58
0.72
0.79
0.84

0.60
0.61
0.62
0.63
' 0.65
0.66
Downstream from
Cum. X < cut













31.9
83.0
85.4
87.2
89.1
90.2
control device
Emission
factor,
kg/Mg feed













0.49
O.SO
0.51
0.52
0.54
0.55
Control
efficiency, %













17.5
18.0
17.6
17.3
17.7
16.8
RDF-fired
  ESP
   Akron
                           0.625
                           1.0
                           2.5
                           5.0
                           10.0
                           15.0
11.0
25.0
39.0
50.0
53.0
61.0
0.14
0.32
0,50
0.63
0.67
0.77
                                              7-25

-------
  TABLE  7-13b.
SUMMARY  OF  EMISSION  FACTORS  FOR VOLATILE  ORGANIC COMPOUNDS
         FROM MUNICIPAL  WASTE COMBUSTION
Facility name
         Test
         condition
  Emissions upstream
from control device. kg/Ho.
Methane        Nonraethane
   Enissions downstream
from control device. kg/Ma
Methane        Nonraethane
Mass burn
  Waterwall
   ESP
     McKay Bay
     N. Andover
     Tulsa

   CYC/FF
     Gal latin

   EPS/WS
     Kure

   SD/FF
     Marion County
        Normal
        Normal
        Normal
        Normal
        Normal
                             Normal
                               0.0032
                                              0.011
                                              0.029
                                                                          0.116
                                                                          0.046
                                                                                              0.0074
                                                7-26

-------
    TABLE 7-14.   SUMMARY OF CARBON MONOXIDE-EMISSIONS  FROM MWC FACILITIES
Faci 1 ity name
Mass burn
Waterwal 1
ESP
Baltimore, 1/85
Braintree
Chicago
Hampton (1983)
Hampton (1984) ,
McKay Bay (unit 1)|
McKay Bay (unit 2),
McKay -Bay (unit 3),
McKay Bay (unit 4)a
N. Andover
Saugus
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
CYC/DI/ESP/FF
Mai mo
WSH/DI/FF
Quebec
Quebec
Quebec
Quebec
Wurzburg
SD/FF
Marion County
Quebec
Quebec
Refractory
ESP
Philadelphia (NW1)
Philadelphia (NW2)
CYC
Mayport
Starved air
No control device u
N. Little Rock 10/78°
Prince Edward Island
Prince Edward Island
Prince Edward Island
Prince Edward Island
ESP
Barren County
Red Wing
RDF fired
ESP
Albany _
Hamilton-WentworthS
Hamilton-Wentworth11
Hami Iton-Wentworth-
Hami Iton-Wentworthc

Hamilton-Wentworthj:
Ham I Iton-Wentwprthc
CYC/DI/ESP/FF
Malmo • .
Test
condition



Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Normal
Norma 1
Normal
Normal
Norma 1
Norma 1
Normal

Norma 1
Norma 1
110
125
140
200
Norma I

Norma I
140
140 & R.

Norma 1
Norma 1
MSW/waste oi 1

Normal
Norma 1 •
• *-ong
Low •
Normal
Normal


Norma I
F/None
' F/Low back
F/Back
F/Back. low
•f r*onT
1 1 Wll I
H/None
H/Low back ,
RDF
Emissions Emissions
_ upstream from downstream from
control device control device Control
ppmdv at kg/Mg ppmdv at kg/Mg effi-
12$ C02 feed 12$ C02 feed cieney, %



19.6 0.106
1 350 4 36
189 0.842 '197 o!§48
1 050
- '242
30
35
31.7
31 .7
42.4
36.3
20 . 1 0 049
23.8 0.059
516 2.25

630 2.54
158 1.05
151
189
21 1

41 0.127

18.5 0.098
133
174

515
464
48.3 0.276

84.9 0.5
67.0 0.318
40.0 0.177
33.0 0.146
52.0 0.253
3.24 0.015
<2.11 <0.0106


.346 1.96-
w^W
501
«/V 1
430
411

2,090
1^210
217 1.70
..,„.  corrected to 12 percent CO,
°Not  corrected to dry standard conditions.
^Average of two test runs.
°0ne  test run only.
                                         7-27

-------
           TABLE 7-15.  SUMMARY OF SULFUR DIOXIDE EMISSIONS FROM MWC FACILITIES
i I
Emissions


Fact 1 ity name
Mass burn
Waterwall
ESP
Baltimore, 1/85
Braintree
McKay Bay (Unit 1)
McKay Bay (Unit 3)
McKay Bay (Unit 4)a
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
SD/ESP
Munich0
WSH/DI/FF
Quebec •
Quebec
Quebec
Quebec
Wurzburg
SD/FF . (
Mar-ion County
Quebec
Quebec
Refractory
ESP
Philadelphia (NW1)
Philadelphia (NW2)
SD/FF
Tsushima
Starved air
No control .device
N. Little Rock, 10/78C
Prince Edward Island
Prince Edward Island
Prince Edward Island
Prince Edward island
ESP
Red Wing ,
RDF fired
ESP
Albany
Ham i 1 ton-Wen twortha
Ham i 1 ton-Wen tworth
Hami Iton-Wentwortha

Hami 1 ton-Wentwortha
Hamilton-Wentworth3
Niagara
^Average of two test runs.
JJ— , » ~ ,
Not corrected to dry standa


Test
condition



Normal
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1

Norma I
• Norma 1
MSW only
110
125
140
200 	
Norma 1

Norma 1
140
140 i R.

Normal
Norma 1

Norma 1


Norma 1
Normal
Long
High
Low
Normal


Normal
F/None
F/Back
F/Back, low
front
H/Norie
H/Low back
Normal

rded Sd?tl"d SC
upstream
control
ppmdv at
12* C02










141
89.6
92.0
128
127
129
118


108
111




12.7


<29.3
61.0
83.0
75.0
. 87.0






.


>3 value becai
from
dev i ce
kg/Mg
feed










1.19
1,01
1.16










0.090


<0.39
0.662
0.840
0.759
0.966









ise separa
Emissions
downstream from
control device Control
ppmdv at kg/Mg effi-
12* C02 feed ciency, *



114 1 ^7
II" 1 • J t
136 1.00
98.6
1 1 1
177
94.9 0.995
80.9 0.917

141 1.75
13.5 0.098 87.1
21.7 . 0.281 76.4
4.86 96.2
10.8 91 5
28.2 78J
90 3 ?"*, 5
^w • -* £. J . J
209 1 .63

41.5 0.517
35.8 67.0
44.8 . 59.*6

401
375

0.040 0.0004 99.7







124 1.42


188 2.50
58.9
54.7
57.3

49.3
67.3
1.41

ite .values were' not reported.
                                           7-28

-------
  TABLE 7-16.  SUMMARY  OF OXIDES  OF NITROGEN  EMISSIONS FROM MWC FACILITIES
FacI 1 !ty name
Mass burn
Water wal 1
ESP
Baltimore, 1/85
Braintree
McKay Bay (Unit 1)
' McKay Bay (Unit 2)
McKay Bay (Unit 3)
McKay Bay (Unit 4)
Tu'lsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
WSH/DI/FF
Wurzburg-
SD/FF,
Marjon County
Refractory
ESP i
Philadelphia (NW1)
Philadelphia (NW2)
SD/FF •
Tsushima
Test
condition



Normal
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1 .
Normal
Norma 1

Norma 1

Norma 1

Normal

Norma 1


Norma 1
Norma 1

Normal
Emissions . Emissions
upstream from downstream from
control device control device Control
ppmdv at kg/Mg ppmdv at kg/Mg effi-
12$ C02 feed 12* O>2 feed ciency, %



196 V.69
153 0.812
103
39
100
106
358 2.86
376 3.08

140 1.10

159 1.25 ' •

294 1.59

294 2.63


195
215

168 0.895
Starved air
 •No control device
    N.  Little Rock, 10/783   Normal
    Prince Edward Island    Normal
    Prince Edward Island    Long
    Prince Edward Island    High
    Prince Edward Island    Low
  ESP
    Red Wing                Normal
    TuscaIoosa              NormaI
240
309
271
258
292
1.84
2.41
1.97
1.88
2.33
                   255
                   278
                  2.10
                  1.92
RDF f II red
ESP i
Albany
Niagara

. ,
Normal
Normal

f
263 2.45
1.96
"Not corrected to dry standard conditions
                                          7-29

-------



• jf
0
1— 1
£o
g
S
bJ
1—
_,

A3
»— \
1
UJ
_l •
CD
JS







' i
.
1
o t- o>
— OC
«H —
in o+-
— ID ID
LU
1 >»
.1 o
*- 5
LU™
°


« 5 •
o\2-«- 01
«~t>^>
<§•£•*
c
u»-i-'cnl=
in oc 5,
142 2-*
UJ


in
•i-i
Q1o
u


•*• in
,*-~
***
•



O
2
Pol lutant/soi
IO
^
to *~
*f m
R 1 .
CM CO
to* **!
CM cn •
to -. t
— * ^ § 25
— — — CMCMCMfM— — —



O OQQQQQQ OO



O\AAAO\ Si





OO -fOCMO — Of>- •?>
do'ddd® °o"
o
«>• • r> I i i i i r-. 010
• T i i i i t r- IOCM
in • o »m
CM to . — .
II O 1 O
in in T r« i
• CN O o i~- r-o\
O • d •
0 0


•A ^} jQ jQ
fO (O (U IDJ^jQjOjQ (Q 
> N» UJ
~ 0) C/)li_ O
: "•§ ""^ "^
" O— LUCftO. 	 — "5 —
) o cujOLuviosin > 8"c








82
OMA



OO









'.5

•in
1 T
C3N •



J3^S
ID ID





CM CM


£
CO
1 1 1
x>=i
«T, -g
RDF
Uncontrol
Control le
Carbon- monoxi


to

to§
r-*c7
' >O
CM  100 •
"~O* dd ""
"srvo || i (o
inio ii i 01
i i T
coo ^
do* "~


^ ^
ID ID lOjO 1 10*





CMO> >— — 1 CM
SID 0}
_ 00

0 « '• 0
w ^ TJ

T3 O ^ O "O O
OL. dtt. 101.
— •*- -~-H — -f- O
o o — "o o Bo —
CUO IDUO CO X
ace. -oct. cu —
AO4>  0+- 0-J--
(/) CH- L. c«*» CH- (-
(A

A
CM*
^
in
+-
c
CSI OO
IO* *"•
CM^ r»
fO C^ *
* * ^~
— CM — CMo coo— co CM in
CO OtncOCM ^O •
• OCMCM • \O CM
O • • •»- •'
ooo o
o\ 1 1~- i in i i
— i — i i- i i
• in •
T d T
o i r«-
o o 5>
. o •
O O 'O
d
*
•0 JO
•^ !*k
ID IDJ3J3 ID ID ID

"



^ — CM —  a. o— o o
C U — 2LUV) 0 10 L. 0
&-+• O^sLUUJ +•
3 C UQ-\\ L.1^ C U
A O-t-COOO « 0) O 0)
O CLU (/> u 4-
V> C Q M- U C x-
z 
-------















»— X
•a
O)
3

•r—
C
O
o
ed
I
r-.
UJ
CD
^



•



















.
i
•
" "S
01
O <- O)
~ 0 e
in 4-—-
in 04-
— ro 10
HI
i >•
_ o

H> Q *
iu~ c3 5^

0 m 0 0)
> c «3.*
«§«-


Jfc.-y
1'li^
Ul


in
10 £
2
«- in
rfl








o
u
^
i
e
IO

3
"o
a.
§'
in
4-
C
13
CO
c»
10 ^"^
{^10*0*
•^"^>"T r» 10 o»
_« — — —
-


a a o o o





«>•*•. — CN in
— Ov •«• O> T
• • • • *
— — CM — CM
1

in OD II i
(NO II 1
T i
O  ID e
U O O 3
°> "> °> a.

X) -o -a o
u
•o "o ' -o "o O o
in IB i_ 01. u —
O — 4- —4-4. c
"O — C C_ — C C IO
— 'OO —OO O Ol
XCI.U IDL.O U U
O t-4- 14- O
3 c L. •act. t_
e Q O  U 4- 4- —

.S3* j2=><^< -jj
4- s:  2 —
•— o
z • >
•


o
•k
CM
OO ~
ro —



Q Q





CM 10
ro in
§.°.


IS
*
o
!^
8
o

^
IO ID

<- 10


rii
U

0)
•o

o o
4- 10
8C c f
10 <1)
3 L.4^ 1
DODO
in •«-
in 
-------
Metals 1n SI units
7-17    Summary of Arsenic Emissions From MWC Facilities
7-18    Summary of Beryllium Emissions From MWC Facilities
7-19    Summary of Cadmium Emissions From MWC Facilities
7-20    Summary of Total Chromium Emissions From MWC Facilities
7-21    Summary of Lead Emissions'From MWC Facilities
                                    !l
7-22    Summary of Mercury Emissions1From MWC Facilities
7-23    Summary of Nickel Emissions From MWC Facilities
7-2-3a   Summary of Metals Emission Factors for Municipal Waste Combustion
                                 i  i
                                    7-32

-------
I  I

-------









oo
LU

t—
t— 1
^
U_

C_)
s:
|
u_
o
£o
I— I
UJ
o
l*-l
*2-
cxi
0.
"^
u_
0
Qi


s:
_D
oo
•
r-.
T-4
^

CO














4)
U
4)
•o
"o
^.
in c
I8
In E
in o
in

ID
4)
-t-
ift
c
1



4)
U
4)
•o
0
l_
in e
C 0
o o
in E
in o
ID
4)
I.
•1-
in
a.
3














v~.
ll
"«
•o
4)
4)
»*•
3?
O)
S


1
^t»
f?^



•*-
10 CN
"|E
uG

1
O)
\
i1



i
^ +-15
3£ =



(0 CM
Kl S
fe
3.

c
O

+••0
in c
4)O
1-0







c
°o
2.

 0»0»«« 0>»
i--eo oo otoiotot o>o>
otto o> da>o>o otot
A A A A A




TK\r»* CMfN
CN »fn • in cs*r*j*r»»o 'Vto
^irjcsio ^r ooooo oo
O OOOOO OO

„
Otr* o O
o*^- o* o
i^\^ in in
~- — T fs^





CM 00 \O O\ O OCM— <- Csir>-
^™f^ *^ CM ^^ 01*3"^* f^ O*^*
m^o r*1* \o *^^~tN»— I—-*—




S« 2C IS 2 —CMOCM —m
^r*sr r*t CO1 co ^3***^ ^* * ^— FO
CM— d T CM :=_;:.o ^;_!
00


>.
	 	 _ - ' _ oc _
IDIDIDIDIOIDO ID *d ID
EEEEEE E E
1 1 <- 1- «- t- S OinOO i- OO l-
O O O O O O to «-CNTO O w O
zz^si z z z —— — CMZ — — z



in . tj
op i™*1 * •
^* CM ^™\
tn oo - UJ
O O'*' <]> -O O
§t_ e o — u. u o
— — "c-2"c "m ^u-oooos o o >-. c
^~ +~*^ CL^CLl«aH*^0 4) ^L *^ ^~ JD JD ^3 ,0 N J3J3 OV}*C
:a —IDE UL — S t_V> CQ 4) 4> 4) O (.!_. 4) O-t-LU UJ
-O4><2 O UJ ^ Z ^ ^^ "
1 O "S 3
!

in rri
ot ro
O> to




O Kt^f^r tooo
oo ^»— rofOto
-^ C3\O^
O




OO Ot OOtoO O^
— p • mino o •
tMo




CM "i"1^ §~
tO OtCOfO — O*
o' -^^


O P*OOOO  • • • • *T
CMfOf^fO





co (NiniocMfi in
• OD • • • • O




in lOOKM'J'CO O>
— — -or-" • —
to 10— —co




IDIOIO IDITJ IDIDID IDIDIO
E E E E E Die E € E E E E
u^ C ^uc_0)X l-Ul_ EE£
.

C C C C
(D ID ID ID
in in in in
8 ----
•— JO O ID (O rt) (O C  (O
S"X *Z « — t-UJUJUJUJ O 0)6 >-U
 OQ.o_a.a_a.cS<:e(->t-uj
-5 CO
IDZ UJ LL.
co ' 52
I































.
ID

ID
•o
•a
4)
+•
L.
O
4)
0)
U
3
in
10
0)
•o
D
in
3
g
3
4-' •
O —
C O
<5
v> e
(_ 3
ID (.
O4-
— in
4) 4)
Q.C
COO
DJ_
7-33

-------










CO
LU
l—*
1—
1— l
^J
1— <
O
£
LL.
O
^p

§

CO
«z
o
t— 1
CO
oo
I-H
^
1 t 1


jij
>-l
wj
1

^^
UJ
ca

LL.
o

^^
c£

$
^?

CO



CO
1^
1-

LU
co
p±














4)
U
4>
X)

"o
c §
O o
—
V) E=
|8
a •*-
LU
i
4>
L.
V)
C
1






O
u
•~

4>
x>
"o
i_
U) C
C 0
O u
In e
in o
H-
E
ID
4)

4-
in
Q.




















•^
iir

S—
"~
»*•
o
1


x^
Ol
E

1

Ife-
0. 3


* CM
"jj
°G
3-



CD
4)





O)



1

O) ^ *°
*£3




ID CM
to S

X**
0t-«
3.

C
O
*7"
(AC*





.

09
i
c
£•
u
u.

"




. '»- CM CM
^f Ol •-"
CMO O
• • a
00 0




*o r* O
2S 2
oo o




in o  C CO CO CD CD ^^
+• O
~- ••• CL ID (O W ID U> U.
e a aE^^i^^e: — u.
L. I (.IDUOUUSV.
A o«n >
4* LU O
s*
(D
M
Ol
Ol



oo o o »-
~ o - • •
o • o o
o

•

— Ol J \Q
§0000000 to 01
o • o
« • o •
o o o




O O I"- CO
• in CM •
*y ^" *^ »—

o





o in to CM
— • (O —
— * 0 10 •
— . ^ ^J —





in OOOO OO Ol O fl-
to .... .. . — to
• OOOO OO VO —to
r*» .3- . .
oo



>- ' •
- <*•
^» C ^™ ^~ ••• "• ^~
(DO  — cN^fO 5^^" 5 oo o

^3
00
X
o .
>.  O
O 
— LI_Q .a .a .a ^ ^> E 01 a>
+- fU-UOUU C O O >. — — L. — Ol
•H>(/>CQ4>4)4>4>U.L.4}4>4~LU3IO'H(n*— 2T3
IDLU3V.3333U.IO33ULL,in C L. _ J 4>
Q O>*« u).^
t/j s 10  a z CL. ce •*• a.
Q£ (O 2^ ipj \»_ ^j
V) §






0 CO

o




CO
VO




>o
0
CM
































11
ii






ID
>• L.
C ID
ID Ol
JO ID
< Z




U)
in
f

4) 4)
J= « O
•I- in 4)
4) 1.
•3
t- cr-H '

> c >•

JO4-
4) O
•1- c
®.2±
u in E
*T ^*~
4) ID
•o c c
ID O
QTO .4—
L. C O
-1- ID «)
§.^
O14)
U CXI

4) — *.
x: Q.O
^ g
ID in
in in 41
in 3
l_j= ID •
0+- > in
ID — C
•c o
•0+--I- ~
u's'i —
L. — -0
U 4) O
"•):=. o
O ID O
C O-H t.
OO U ID
— in 4> x>
•t- in-i- c
ID ID 4) ID
L. X* ^"
4- c in
®— o >•
C~ 4) -XI
8UJ3 >•
4) — O
L. in C-H
e ex a O
— e+- x>
~ ID C 4>
4) U 34-
tf) 4>— L. U
5£c4-£
DC 4>O
C — O4- O
~J= «
4-O 4(4-
c— c b
JD O"O
7-34

-------














00
UJ

H-
_J
O
*c

o
s
s
a:
u"
o
1—4
00
oo
2:

:> •
2
^

i

LU
CD
JS


















0
u
1

<•••
o
4-
(ft C
88
'(ft E
V) O
LU
fS
ID
V
4-
in
c
X
o
•o




O
u
• 0)
•a

~O
in c
o o
in E
in o
— u
EH-
LU
S
4-
a.
3














a^
Oy"
||
QQ
•*•
*"
4)
•o
V

•*-
€
O)
E



1
Sfef
a.3


'* CM
^gS
<3J
a

"O
0)
O!
X.
O)
E


1
in
Q.

+»
CMKI in in o
• « • m tr\ fM






O OO O CO O
f> cow 10 \o in
CO — O> rO CM t»-
.



infOOi'O p^ c«j fOOOiOvO OO
*^ — in K\
— CM




fi co ^ o» in inTCM^o oo
in CM in CM ~~ ^^~CM^ CM*~



o >o o «• o> oooo oo
*o <• CM oo • co o\m— in r^-CM
CM T IO O^ to CO^nO^^ CMCM


_>• •
— ^ — — — • — C .— . — . .
1111 Hi I §i"




1
» ~* > C Q. ^O)
t-OcO — to Lu ID J. TO ID
— "c ^4? "eUJ "-00003 OO>-
r ID IO«— E U» — X (_(/> CO — O OOO O L.U. O O4-L
4-LU O LU €/) O 2 W »^t
f ' *
*

VO
•
S







C3 CiCM
S S5






§§§ - 2°,
. "i"! ** ^'o,
— — — _



ro O>K,
— O'CM
"* CM
<
1

o oooooo
if\ c^ K^ o^ ro vo r*»
M ocnr^o— in
— — flf<1f<-iCM




O> TOOOOO
• - CO— OCMOlO
-•o-rotor^


— CMKioieoeoto



_ __ _ 	 	 __
IDIDIDID IDIDID IDID
E E E 6 E E E OVC E E
tj t-V- «- UL.L.C O)X E £
u
CO
X c c c c
•' O <0 IO ID O
• . Ifl Ifl IA W
O'- O ^— " -- — .
. i •*
c^ >OUL.l.L.4*
p— JD O-CCIDIDIDID C"
4-U ffl -O XXXX3
w> ^ ID E O)O^^9^^ O
C C«» » — U — LULU LULU OCA
.— (0 0) JT u O 3-t- C
5-C XO IA — l_^l+- (B 4) ® O c —
J (ft O UU. 3 ID4- v>— OOOO OX
S ID — — U. Ifl CU.JCCCC L.
99 «CZ\(— TO O O — — — — l_T3
• «> o o o >~ • u i_ c. i_ ID a>
> 3: «o > OZO,Q-Q.Q.Q_CQee
|i JS

-------
      o u
      in i
      in i
•0
 CU
 G
 o
 o
 I
!-..
UJ
      '-§
        8
       C+-
                                    OO
                                    ^   w
                                    «3CO
                                    O 34-
                                   — UO
                                   ^3
                                   ~ 0)L.
                                      €)O
                                   O-I-O


                                   O«+-
                                    .00
                                                           7-36

-------








l/>
w
J^
_J
O
u_
3
iSU
s
O
u_
0
N— t
>— 1
s:

s
1— 1

§
n:
o

_j
S
i —


LL.
0
>-
Q£
TE.
00
o
CM
r-.
UJ
CQ

^
















0)
u
(U
.^
o
u> c
I8
"en £
in o
•~ t_
E •*-
10 E
ID
CO
V)
X
O
X)



O>
OtCO 00 CiOOITl
A A A A




SS° ° "
*"™CN4fO <^ •




^•-soin § r^
* * » \Q
S 5



•OCO\O CN COCOO^*-"
- oo oo


COCO Ov O
- o— • f^ in






tr»o o o in . o»mr*"no
*°S S *° ^ O^^OCMCM
c^




Of^* O O O^ OOOO
ooc^ oo ^5 t^ cooomtn *
— 10 c>j cs in 1^0— o>
CM •» - KltNM-
>.
MB<^^— ~K _^ ^^ « ^^^
ID (D (D ID (O (D O ID
h h o u ^ u * omoo L.
^Siz $ £ •£ -J22Si



^\
CO •-«

in co
o>
• — L.
S- V > C - O)
. - o t_ e o «• u. u
64- OTJ 4- ^U. U O U U 3
: ID —IDE U.— X l-W> CQ 4) fll ® O l_U.
5^OTS"3DIZg0fe^Z50000'*^
F
7-
O>Ot 00
OtOl Ol
OtOt Ot
A A




o
2




O Oin in
P» oo o>
oo «r»- •-




g? S
oo *"


g
o
*






o— in'
>OK) O
CMCM 2





oo o
inr- t~
CM
.
^^ ™» ^— — i- w
«<3 ' (D to (D (D
oo E EE g
22 § g$ a



•
O-
•
Q

^
C ID
O — £>
4-1. ID
O> "O C E
0 o >- e c— —
V O4-U1 U) V UU. 3
^g*^*2!1"
,-^-
-37
00
in
/ • ^




coir\t
lf\w—\Q
— 0>




to— —
in CM co
— OO\^^ ^O
*~
^™



^fOtomr*^^ m
ro -mto — in \o



ll|oxcs HI
O O ^3 O *^ O .O _O ,O

u
CO
\cccc
O to (o  O U L. L. l_ 4-
4> O1IDIDIDIO CT7
•o x x x x 3 e
— u— tu ai iS iS Orao
t- O 34- c O
•— w^4- o fl) fl) o e— —
<04- «n— OOOO O2 
-------
•o
 QJ


 g
o
CM
LU
           -
            5"
       *

       I
     si
in c
c O
O O

in E
in o

li
             •o
             0)
             0)
           10  CM
           in c

           .28
            0>
            E
            ID
                     OOfN
                     MOi
                    in
                    
                             fe    .*
                             S-    Q-
                             «    co
                             t-    LU
                             §    ±r
                             .
                                £i
                                in
                        o '-o >.

                        ^^oS

                        ss4-^
                        «c*.S
                        > 3 4- H-
                             : in L.—
                              (BOO
                             JD U T3
                                               7-38

-------













to
LU
I—I
t—
t— H
1— I
>J
^C
u_

o

s
• s:
0
oi
to
2:
o
1— I
00
1— 1
s:
LU
a
LU
_J
LL.
0
*^
"™
S
y
""•>
to
t_l

1
LU
CD














0
C
a
•o
_
o
L.
V) C
c O
O O
~ai E
in O
'i i
g
ID
O
L.
•4-
c
S
T3






O
0
>
TO
"5
in c
8.8
(ft e
ui O
LU

to
i.
4-
Q.











B^
O ^^
t_ c
= *
*3 ^
•~
.p
o
1
t
i1




1
^£•{5
'3"fp"3
^



^—
10 CM
^gS
z^^
of^
3-

•o
V
a>

2
0)


i
|f|
Q.


4-
ID CN
"i!
Ol—
3.

O
•(-•5
tn c
.28



i
to
C
+-
"o
Lu

1^ »^ Qirt^rtirt* fl. JT.
• • • • • • • »
t^ O> O^O^OtO^ OtOt
A A A A A A
-



11 1 S * * *
lOO 1 OV tf\ if\ ' ^ ^
^^


.


SO OO*OO 1A ^ ^- OO^*T
CT\ v^ CD OO CO •"• • fO - KlCOOttA * *f>J^
^TOOCO— ^ . co *— • • • »tf\ te\ • •
*fj* * * * 00 ^ f^ ^3- \& ^— pg ^ \o
^ "" •"




Soo o
o o o
* * •. ^
S 5 S 5



Boo o oooo oo ;
-, «3 CM — CM^-fniO .0»—
*N CM — CM Kl— rro Tf~-
» *• . « « » » .»





§ .-11 § S8S8 88
O O\ eo fO OT — — mo
• « • •»««. , «

'^ ^^ *~ ^f^f^\i^\ tofo

- K
W O (D
h k k t b t t t *- * t. omoo t- t-OO E
iiiiiii i i s i =2zsi i^s .i
i5v*
CM C C C ="" >. Q
»B3B3j2 ' • u. "c •
SC^^^^ t a 2 5
O ID ID IO3 C t O) O -2
^ CCDCDCDffi^^ *^  |« *
I

^^
fO
Ol
Ot





•
o
in






ii Sc
r^ToT
o^^o





00
Q
cs





o oo.oooo
o oooooo
in OCMOOOOOCM
10 SSSKS?;



— oooooo
fO ^3^3CJ^3^?^D
\O O*-fOCN(COIA
O(Nr*« \ooo\
IA "*
ii i iii555
O O ID ID (O
ID .___J2
U JC
— 10 a> KIDIDIDID
(- (O "O X X X X
•DO E WOTJ-O-D-O
S« Suo^^1"1"
88u.S«*«±8888
*sl|2?§l"J.zzzz
cr> >"Q2(fc(fc(XQ:Q.
£ u









ino
So
«
2





oo
oo
01*1

2S





r>-o
K^O^
CSJK^
«











""









Norma 1
Normal


^
c
Z9
OO)
§1
i_-o


•o
o
3
c
c
o
u

















































7-39

-------
-o
 0)
 3
Csj
 I
CD
     88

     U) S
     in o

     S w-
     LU

        i
        o
in

§8

«) e

51
              _M
              i"
            10 CM
             §
           -f-T»
           U1C
           (DO
           h-0
             O

             |
                       §00
                       roin
                          -

                       o>
                            S
                            CM

                            CM"
                            S
                            to
                            oT
                 (D ID ID
                 EEE
                 U (. L.
                     0.
                    ID to
                     c CWV.Q
                     O — 6
                                   V)


                                   O
                                   •o
                                   e
                                   ID
                                   L.
                                  > -O



                                f*
                                   •o
                                   o
                                    .
                                 28
                                                  7-40

-------
      in c
      c o
      in
      V)
        >
      LU
 O

 s:
 o
 i—i
 oo
                 !>
 <->
 ee:
     §8

     in E
     in o


     ^E
        S
       -i-
        m
oo
CM
CM
LU


03
                O)
             in

             ,28
               o
               10
                                                       —  O«9-00
                                                                         tOVO
                                                       S  51
                                                                                 o
                                                                                 o
                            2g         §

                              o*        ~
                                         0
                             •CN         S
                              tN         K>
                               •          »
                              ie\         o\
                            OOr—fO —OCJ\

                             »CMV

                              CM
                                                                                 o
                                                                                 in
         o
         1C
                                                        O     moo
                                                        
                                                                                                                         L.
                                                                                                                         V

                                                                                                                         §
                                                                                                                        0)
                                                                                                                        o
                                                                                                                         CO
                                                                           o
                                                                           u

                                                                           5
                                                                           in
                                                                           in

                                                                           8
                                                                           u
                                                                           IO

                                                                          •o
                                                                           0)
                                                                                                                         _
                                                                                                                        3
                                                                                                                        u

                                                               7-41

-------










C/5
UJ
1— 1
H—
HH

(—1
O
u_

O
slj
.g.

r>^
U_
CD
t— I
(/}
t/5
_
UJ
_J
UJ
C_J
H-l
z:
u_
o

Q:
«=C
§
"^


CO
CM
i
r-
UJ

















.
o
u
01
•M
0
t_
4-
in c
c o
5 °

in E
in o
li
^ r-
I
O
-1—
in
|
W




o
u
"J
*-
LU
i
^
in
O.
•3




















v^
g'fr
=!
(S^J
«*•
ca
•o
Q)
0)
en
O)
E



1
a) ^ ID

— * (o*!^


j^
ID ^v
*^8

r^jCN
3-"
^
O
O
a?

i1


|

I|-
Q. =


ID CM
r^S

Di— •
3.


O
4^
4- -5
to c
i2-8








C
4-
75
ID
U*
Oh * O^ChOtOO COOt O
OtO^O^Ot O^O^ P*
OtOkOtOl O^Ot 09
A



O o in o
S 5 .S R
* * *
»- _ o





mo o cs o oo o

* * ro r^ *
3-8 . 2




r— r»  — CMCM— —ft in
^ CO




ro co p» ooor-» o»o o
CM O co f^rofno rocjv • ot
in in m oo^r^oa r»o CM

— — CM CM



>. • •
^— .^ ^ °c — °^ — — — —
(D (D (O (O O ID *e IDIDIOID
U | E g o^jogg.oo e EE g




ti
*™/
^•n . o
CM Q
8U -
^O «J O — ID
> S O) 4- L. ID
CO— U. L. O) T3 ID E
O"O 4- J=U. O O O O 3 U O >- C C— —
— • 4- C IO O\ O CD O O-O OOL.Q.*— (D tn JC
— CKLL. — V> OCL — — J3J3ilJ3 N J3J3 OCOJZ XO in
= ID E ^U.— 2 C(»CQ O O O OL.LU O O4-LUU) O OLL. 3
3 OX/5 >- M Q V> O L.>- (A O
4-LU O LU «rt X CO «-U X CO
A 10 Q) i
ns a:
0
E






•CM —or*
-co «
v v r*
**

t


*~rO OO

V— »
V —




(OCM COO
f^Ov CMO*
• • —in
CM— •
v v r O L. t. L. I. 4-
O CX ID ID ID ID C
T3 X X X X 3
— L.— LULULUUI OO)
L.O34- C ID
— U.O4- O O O O =— >-l-
IO4- 10— U U U U OXT3 C C (O
1 "dz^icfctEoLcSiio.^^
1- O V> ""(/>
CO S









































«
in
o
— •
4-
c
8
ID
•o
c
ID
4*

-------









^3^
O
i— i
CO

o

LU

*
Q.

o
>— 1
s-
0£.
0
00
o:
o
^~
O
Lu
O
t— 4
lit
LpLJ
£
1 —
LU
"*•
u_
o
s
OO
CO
PO
CM
1
!•%,
LU
_1
g







o


*
1

c
.2 fee?
in 4- —
in o 4-
— IO ID
E «- U,
LU
lo
g
**I c>
"•''u
fill
"*• 
4- £
ID T
Q (5
L.
*• in
s'il






•
Pol 1 utant/source
O>
o >
«• r«. o»
• (N CN
JO •** fNo" K>t-T
« •_•• -CN CNCN
^-J^ O\ fl ft ft -ft
— «, *\ CNin tf\in
^ •— tnin KI • " "ft*~ft H^

^> "~. S^ * *^"* "^~ f- «* "-•- l° "^ •• * in o> « • inCN • >oin • » in\o irT
^CNCN^ »~^ •" *O*0 ^ ^ IO^"M^CN^ ^ ^ i— ^
.



. O . O.OQO OO O OO O O OO OQ OO OO OO O

•

CO Ot K)
o» o* \o
§' ^§S§ as R -a R;' § -g2 2°i g? 2S S- 2 •
^ -Jdo- ^- N So' ^ - ^ »4S ^ ».* SK ».
^

,

8 | ! ! ! &S g . g§ ! ! ' 8S § ! ! S 8S S*. 8
• « __» ii i 'To "V^ "*« * ?ft°» "^ "^
_ T . SS S TM- IQ7 T S -T ToS> P!
1 *• ' °5 ° • s - is 'RK? i
N s .0 U5S 5 s- — ..a
— —




•O^ ^ ^Jt^ JS^ -°^' ^^ -° -O -Q-D .O.O £
ID. IO^^^ IDIDID IDIDAID IOID IO^ ^10 ID ID ID ID ID*

•
in KI— — — ~-»CN CN io» — — ini*. CN— — CN into MCN CN





S ' S S S S 888
*** O O 0) O Q) ID Q) O
Q- T? "C "O X3 TJ *O ,"O ^
» u. ?tt "§2 "S 8 "SS ^2 "S2 "SE ?8 8
3^ *t: «.=? ? rtc.- t -t«.=t =t rtft-r^ t
lliSifeTli i L=!8?l 8 £I8«|8 |8 =88»|8 8
»£§!&S&!§£ t IF 111 I 1 Hflllll II IP III 11 1
~ " =,Q t£,9 ,9 — wcx-uc *• a in =•*- u c*- ci- — in cZ C cZ 3. •
• S^O (COOU-O — «=>< ID=)U-< — wr>< ID3«CLu3< E 5)5< S5 2 u E w 2 •§ E 55 2 " E tfi S.
; 0) ID t-
< mo o
o
0)
2

-
8








































7-43

-------
















•o
O)
tjmm
C
Q
U

rO
00
CSJ
1
r^

UJ
— *
CO
t—

















4
^2
&
e
O I- O)
— O C
in -4- —
in o 4-
— 10 (0
s x- i_
LU
1 >-
J. o
O1.2 I- cn
10 7n ° z
I- Ift ^"" *S^
01 .52 O 0)
5 ^ ro E
< §•«-


L-
^f_ D)
If
l&
in J£
1 i-
u


in
m c"
ro """H
£
»- in
*it




0)
u
L.
0
1
1
£
01
CM
CM CM
» *
CM CM
toino
^^-Kl "^. ~*
wV 2$ 8£



OO OQ OO




§O Oin oo
O O— in 10—


OO O 1 1 O
OO O 1 1 O
OJ=>^ 0^ r»
r^^" in Ki
K^^T \D ' CM
— 1 1 1
1 O O O
O • O Kl
OO oo r-
^l^ ^ ^
oo in





XIXI XI X>
torn roxi xi. 10

moo CM— —CM
' S 0
d> _ —
0 > >
•^ O 0)
I'll
•o O -o O
T) O — +- — 4-
4) t. — c — C
— 4- OO OO
	 C <- t_ O (. O-^
OO —4- 4- O.
C t. O L1J
3 C t_ T3 O+- U4-v
Xk O Q> 0) Cx. CM*
U4- >r3«C 3<
in ex. u
•ins< a u.
•gB S 9
§f W §.
o
a
CM*
rovo'
CM CM
22
-*2* ~L ^L
« » in >oin
1OW — CM —
"


00 Q QQ


.

oo o oo
O\f*\ o ^"O
r^-in \o — to
— CM — — -^
'

OO O 1 O
OO in I *r
•VOO CM CM
1 — 1 1
r<1 1 O> in
03 O in in
— in *r







XIXI* XI XI
(0  -~>
•S •§
•oU -o -o"©
d) L. H t>-t- > U U4-
t_ in ex. i_ c ex. —
" i S § "u
S Z



"R

CM CM
2!2 ^ 2^
•— K> in in



QQ Q -O




OOS IO O
CM— — —
in co


ooo o> in
• » c «
o— o r-
Tin -o- T
tors . 10
(OOO —
. — . fO







XIXI XI XI
•k 3- CM CM

a> ' o
o o
— • —
O C"
•o -o
•"3 O "0 "o
O t. Q) ^
C l_ O «J !_ U
t-4- 4-
3CI--D C C.
04- > O •(-
in ex- u c x.
<0 4- Q
E tf5 2
7-44

-------
Add gases 1n SI units
7-24    Summary of Hydrogen Chloride Emissions  From MWC  Facilities
7-25    Summary of Hydrogen Fluoride Emissions  From MWC  Facilities
7-26    Summary of Sulfur Trioxide Emissions  From MWC Facilities
7-26a   Summary of Add Gases  Emission  Factors  for Municipal Waste
        Combustion
                                   7-45

-------

-------
TABLE 7-24.  SUMMARY OF HYDROGEN CHLORIDE EMISSIONS FROM MWC FACILITIES
Faci 1 ity name
Mass burn
Waterwa 1 1
ESP
Hampton (1981)
Hampton (1982)
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
SO/ESP
Munich
CYC/DI/ESP/FF
Ma 1 mo
WSH/DI/FF
Quebec
Quebec
Quebec
Quebec
Wurzburg
SD/FF
Marion County .
Quebec
Quebec
Refractory
ESP
Philadelphia (NW1)
Philadelphia (NW2)
' CYC
Mayport
SD/FF
Tsushima
Starved air
None
Dyersburg
Prince Edward Island
Prince Edward Island
Prince Edward Island
Prince Edward Island
ESP
Barren County
Red Wing
RDF fired
ESP
Akron
Albany
Niagara
CYC/ESP
Wright Pat. AFB
CYC/DI/ESP/FF
Mai mo
Test
condition



Norma 1
Norma 1
Normal
Norma 1
Norma 1

Norma 1
MSW only
Norma 1
110
125
140
200
Norma 1
'Normal
140
140 i R.

Normal
• Normal

MSW/waste oi 1

, Norma 1


Norma 1
Norma 1
Long
High
Low

Normal
Normal


Normal
Normal
Normal

Dense RDF

RDF
Emissions
upstream from
control device
ppmdv at kg/Mg
12J C02 feed





477 2.64

1,010 6.28
546 3.12
742 6.45
482
498
422
429
414
•476






313 1.32 .


159 1.04
716 4.42
706 4.07
768 4.43
627 3.97








95.9

776 7.90
Emissions
downstream from
-control device Control
ppmdv at
12? C02



179
268
421
402


211
•27.0
211
3.99
10.1
28.6
104
52.0
12.0
36.5
41.8

140
64.8

308

7.50








457
1,270


447
348





kg/Mg effi-
feed ciency, |



1.10
1 89
I • O7
2.51
,2.60


0.947 79.1
0.159 95.1
1.83 71.6
99.2
98.0
92.5
76.9
0.232
'0.0794
91.2
91.2




2.79

0.031 .97.6








2' 84
fc • W"*
8.27


1 .68
2 57
fc « ^ *
o 54
«•• ./•*



                                 7-46

-------
  TABLE 7-25.   SUMMARY OF HYDROGEN  FLUORIDE EMISSIONS  FROM MWC FACILITIES
Emissions
upstream from


Foci 1 Ity name
Mass burn
Waterwa 1 1
ESP
Hampton (1982)
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
Refractory
SD/FF
Tsushima

Test
condition



Norma 1
Norma 1
Norma 1

Norma 1

Norma 1


Norma 1
contro 1
ppmdv at
12$ C02







5.18

2.96


1.20
dev i ce
kg/Mg
feed







' 0.016

0.009


0.003
Emissions
downstream from
control
ppmdv at
12Z C02



1.30
7.21
6.27
"


0.935


0.620
device Control
kg/Mg effi-
feed ciency, %



0.005
0.024
0.022



0.003 68.4


0.003 48.3
Starved  air
  None
    Dyersburg               NormaI
    Prince Edward Island     Normal
    Prince Edward Island     Long
    Prince Edward Island     High
    Prince Edward Island     Low

RDF fired
  ESP
    Akron       .   •         Normal
1.10
12.0
10.8
15.6
12.0
0.004
0.041
0.034
0.049
0.042
                                                              2.12
                          0.004
                                          7-47

-------
   TABLE 7-26.   SUMMARY  OF SULFUR TRIOXIDE  EMISSIONS FROM MWC FACILITIES



Faci 1 ity name
Mass burn
Waterwal 1
ESP
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
SD/ESP
Munich9



Test
condition



Norma 1
Norma 1
Normal
Norma 1
MSW only
Emissions
upstream from
control device
ppmdv at kg/Mg
12*.C02 feed





85.3 1.04
5.58 0.074
92.0 1.16
Emissions
downstream from
control device
ppmdv at kg/Mg
12$ C02 feed



10.1 0.084
9.76 0.086
44.5 • 0.830
3.96 0.058
21.7 0.281


Control
.effi-
ciency, %





47.8
29.0
76.4
3This data represents a combined S02 and SOj value because separate values  were not reported.
                                       7-43

-------




g
f— 1
CO
o

UJ
CO
;|
g
o
t— «
a:
o
u_
CO
a:
o
'O
u_
o
•— 1
CO
1— <
^>
UJ
CO
LU
CO

"in U5
«uw
E°-*
UJ Q
to




w
ID I?
•H,_
•sc

««- in
.2 c
o-g°O







0
{f
1
4-
C
to
4-
3

••»
O
0.









































9
5
3
3
?

i

:
as
c O
"" O ""








£> £* £>
(D 1O (C .A


o
in — CM —

£
LU

O 0
— .0.
"> ^
Q> 0>
•o -o
•o "5 -o 3
0) L. O L.
"o o — "o o
CUO ?j.«
D C L. T3 C L.
"° 0-? > 8-?
we**- t_ c *^

E ^0 ff







o>

*.
— ffl
11 r
11 1
4- H-
e t-
8«> c
4- .
OO
88
oo







J3 A
ID (D



ro in




o
u
^
•o
O (.
^ 4.
= 11 TS
L. 4- .1
act- x>
in c •«- i_
in 3 < ID
10 4-


-





P.
in in


O O





CM «T
CM O
00
O C5


— 1
T 1
o
d
i
d







^
ID A



CM —




s
"T
•S
0) t 0)
11 1
C U (.
O O 4-
U 4-
C •*- t_

^ ^
3
CO


^
00 «3
R.R!±
fOM-l "c
CM CM^3


OO





oo eo
in 10
r^ CM
do


too
• eo
T.d
•»• i
i»- eo
Oin
°d







• A A
ID ID



toin




S
—
TB
•o "5
•t
0 0
C (- O
L. 4-
S|fe
 «C
ID



7-49

-------
PCDD  1n SI units
7-27    Summary of 2,3,7,8-Tetrachlorod1benzo-p-dioxin  Emissions  From MWC
        Facilities
7-28    Summary of Total Tetrachlorod1benzo-p-diox1n Emissions From MWC
        Facilities
7-29    Summary of Total Pentachlorodibenzo-p-dioxin Emissions From MWC
        Facilities
7-30    Summary of Total Hexachlorodibenzo-p-dioxin Emissions From-MWC
        Facilities
7-31    Summary of Total Heptachlorodibenzo-p-d1oxin Emissions From MWC
        Facilities
7-32    Summary of Total Octachlorod1benzo-p-d1oxin Emissions From MWC
        Facilities
7-33    Summary of Tetra- Through Octachlorodibenzo-p-dioxin Emissions
        From MWC Facilities
7-34  ..  Summary of Total Measured Chlorodibenzo-p-dioxin Emissions
        From MWC Facilities
7-34a   Summary of Dioxin Emission Factors for Municipal Waste Combustion
                                    7-50

-------

-------



UJ
fr—l
I—I
E
u.

o

z

u_
GO
o
t/0
1— 1
LU
t— 1 •
X
o
Q
1
0.
1
o
F*N|

LU
CD
1—4
o
0
a;
o
— 1
z
u

o
13

in o'
C L.
O 4-
in o
in u

J §
L.

E
0)
• 4-
V)
ex
3


















jifr
C x- §
0*0
^

O)
O



4-
O
V CN
C

"E
o>
c
•o
O
V

f
0)
3.




^~
ID CN
« 8
E
^E CN
<3> —
. C




Kl
^
\
O>
C



c
O
4.
4- "O
 in o r^ r» — «-
• CO ^ 00 — o* — r**
CM CN •— • KI in ro
• •"• • o •
0 °. 0
o





^ • * * \& •O*^'M- — co
incNOin • -*• — o • • o o
* ^3 ^i fO ^3 * O ^3 • •
0 0 00



1 OOOtOfN rOfN (N
•—•••Ptvao —
T M CN O> in ' • O O
o "~ d "~ o" o "













CM







to

—
.



—
E
I I

^^
CN
: _
C
v^ IO
in
^^•*^ co •—
co co ao *r in o> 4-
wl O\ OlIO ^^ 4— C C
O e "c "c o— ^55°" w ^
o)OOOT7^«
— RJ4-4-4-CU>3IO •» «X A O U
CO — E E E "« §"— SSSQUU-Z-S
.X flDIDlD •0)(D3EEE\3U.IDU
jia0111"1""3^*^'!!



i
i
IO
d
CN






f- Kl O
. . \o
ro CN •
— — CM



m KI «~
O CO 10
O CN
t" • PX
CN •
8S .
Is
cnoi
— 3 L. O)
U O ID 3 C
— 1. U A ~ >.
ID4-IDU> X ^ CC
c 4- U o O ID
?815S. -S ± 11
> ooa.* ^a.^<
ID Z LU U- UJ
crt §




fe
HI
15
^
>^
u
c
*v
u
"3
"o
L.
4-
o •
u in
,0.2
4-
C —
— 3
10 U
•§-
O-D
Ol
Ifl —
3 a.

U ID
L. in
o
* O
4-
in
"<3 3
10 -
•o
" SL
•«
ro 10
in ID
34-
Li
4-
VI 4)
4)U
4- m
^_ *
OCN
oi-o
•O)C
ID 10
L.
V—
>
ID ti)
C
4- 0)
C —
0) C
in —
O
u
CL •
i_ e
f L.
U
"Outlet values wh
simultaneous tes
7-51

-------




C/1
LLJ
P
i
i— i
o

i— i
^-
LU
X
0
o
1
a.
i
0
lit
IAJ
m
0
o
3
3=
0
^5 °
P:
I-LJ
*~
_j
§
ii
0

>—
gg
.
CO
CM
I

LU
s







0)
u
~
o
•a
^
O
4-
w e
e: O
O U
""> 5
in o
1-t
LU
i
o
4-
in
X
•8




o
u
^
o
•0
in o
_O4-
m O
in u

,ij

i
o
L.
a.
=














!i£

|«|


0)
„ **-


o>


*•
o
M 8
O)*~
C


*^*
2
O)
c

"D
0)
 e
.28





c
4-
 CM O
•CMroirm . KI «r o> • if
^•O*~OO* *• », • co m oo
K>»— CM "~ O ** -T





^h^^PO^T^503 ^h^~^OCOCV * ^~ trt C^ COtf\ ^^ f^
fO^3^ ^~^D^O *^O • •*•* ^h O* fO f^*\O lf> *
^jo oor> —OOOO
- K^S?! '5?fS oj^m-r^

.



Ot
CM tO^CM.— fOin • —CMC* — COIO
» «J- CMOO OO— — f^O—
~o
- 0)
0. . 4^
E tn a>
(O L. t- U t.
•-"-'^^'-'O^ C^— L. O O.O. O U) ID ID ID ID
>— 310100. en o — — •os xx xx
oeeceo— <— •*.<•- OLLQJ3J3J3 i. jo oo 4- cnoro-o-o-o
DlOOOO'O^in U.OUUU3 C O O >- -OT3 U — 3 l_ LULU LULU O)
— ID4-4-4-4- C U) 3 (D • • »X. O O O O.O OOOL. R>>ID4- ID U) U U U U XT9
<>X ^n(D(D(O *Q>XOOOO-3:XZOO-- O U ID >.U L. C L. O—
4-LU 3: CO N-LU O > .OQQ.a.Q.Q.Q.Q:«-Q-
<2 « s> t, o co co
inz K IDZ LU * f * "
3 • • £ §






o—
ro •
to oo
o»





COOiOOO
ITl »O**Of^
~





— in§S?
*—





















Jt
ID
..-o
(D ID C X U
E E O O ID
L. L.2_IOD

tj=i:i
4-4-4-

o o o
XXX
c e c
Iff
>-?£5
OID — — —
L.J3EEE
.£— (O ID CO
«xxx

•o
o
3
c
t-
I














































_




7-52

-------
1 —
* >*
tr =













o
o
•*—
>
O
•o
15
<;
u> c
c o
II 0 0
[I •— u









f ^
•^
Ol

•^
0
Q


CO
*J*
1-
LU
CO

L_
1

























LU
E
10
O
4-
V)
(^
1

•o
tt
a

ra
£

c
3"

4-
^8^
XCN
0)—
c


to
O)
c

TJ



fl)
U
1

WO
O4-
in o
in u
E 5
LU O
10
0
U
4-
tn
a.



a>
o
*^
O)
CD


ID 'C>
K,e8
^~ 2J .
c



f\
1
O)
c



O
MB
4--0
in =











o
E
ID
C

£•
••

8
1 u.














o oo
o oo
0 «
K> —




O O»tN
Kl MO
«
tM







-












y.
o a
— u
ID
•4- A
J£ C 0)
J O c X
3 t- O O

u II




U U

• 4-4-
> O O
c XX

c c c
) OO
*T
1 II

I




in

V-.
CM





^
K)





O
CN
CN








•
















~-
Q)

4- O
0 =
•0 34-
s'i
.0 —
•C- N
in•
f in 4-—
x o in c
4-OOO
in 4- x
oin (04- e
S 3 O 3
— O— *• t.
 = C 4-
(O— o in
4-4- O>O
O— O 
-------




to
LU
t-™<
t— I
i«(
O
^t
U.
t_>

^--
1
u_
to
o
1—4
to
to
t-H
LU
X
o
a
i
Q.

O
r-j
I t I
ULJ
CO
1— I
Q
O
en
3
3C
|
LU
a.
_i
2
o
II
o
1
5|
to

CM
LU

CO
•









V
u
fl)
"O
__
2
4-
e§
_0 0
7i> s
in O
Ii
LU
«
£
Iff
c
X
o
•o


o
u
^
o
•o
	
(ft O
o-t
in O
V) U

E g
i
• s
(A
a
3

















Ii|
J"£ *
75


^>
O)
s
o>
3.


4-
^^
O)—
c


'^e
O)
C
0)
*•
t
O)
3.



ID" CM


^ fcfc

C


"s
CD
C


|
si
H 8





a>
s
ID
4-

P
l2
»0
0




OOO r*» t** »— K»
^^to • • cs «v
CO«fl"CO *— •— o f>j
Ktlrt^O O






^5^5^5tf\ *^O*vOvOCO *ff fO ^5O
O*C^ w • *Ov *Ov • IA IT\ \O^
O— r-»— m *ro eo • o oo
» * ^- mcgio in CN • » »
—'-CM o , — —



ooo»^ co^- ooooco oo or^
incgin *o^» OOOO* OO ^•^>
- -O» OJCN —





_.
t
'



f^ . O^
O* *CM«TCN «CN
04 o^tntno Ov^
irv,— — ^- Ov^-



CM ^^J®^ ' — ;
v inromCM o\o\
C^t ~ t^\ O^OiiO -*OCO

a. •
S- *
(OfO(D(D(D— r>C(OQ. C3)  O A O Q> fl> U ID <0
CO EEE O 3—  Q u«>
.+-LU * «J «4-LU
r) 1O Q)
B* - ' *
r






8 CO
CM
in eo
*
_





CM* -^-*



t— .— K>*oinr^ in\o


• 5SRP!




.


fTim
fVK>*— ^—

-in^co



wSSco?
Or^o^inv
***
X
^ O ^:
0 — 0
SID
*4- JS
to to to IDC'XOOOCX
E E dc E EOO(D.R> ID ID ID JU=JTJ= f f
cinu> UL.L.L. L.L.
— O'a^'O'O 4-4-4-4- 4-4-
> t- <_ L. t_ ccce cc'
•0 3 X XXX 3:X3:X ' XX
— 3 LULU LULU O) CCCC CC
•^Suoooo — oooo oo
l>8ti'~ZZZ "a _£ £||'E| EE
> _oo-Q.a.o_Q-Q: ^o. V)
ID 21 LU L^LU

-------

in

05
       in i
       in i
 (L)


 C
 C
 O
 u
Ov


 I



LU


CO
      in O

      O4-
       n o
      in o
        in
        a.
                o

            Kl  0
               en
            in c

           £8
                      to
               ea
               in
               o


                »

               O
                             ) in
                              v
                            c —

                            reo
                            o-o >
                    •o c o

                    in— i_


                    fl> ID Q>
                    L. in >-.
                    c
                             0)
                           •O 34-
                           c-o—
                     •— o
                    (O ID—
                      C4-
                    in ID u

                    §4-4*
                    i- o o

                    4-"
                    in o«-

                    •KO°
                      3cu>
                    H—   fll

                    Oc >
                    ID (D —
                    U.
                    O—4-
                           d)   —
                           0>  4-  •
                           L.   o en
                           a.  ••o c
                           o in   3


                          JC L.	1-
                           U   0> U)
                          — 4-J3 0> :
                          j= in  4--
                           x o> in   i
                            4- a> ox
                           in
                          -o-*c;
                          to S-o o  -
                          >ce  4-
                             «3_ o (o
                         ID0
                                                           7-55

-------





00
UJ
K— 1
H-
1— 1
_l
1— 1
O
2

o
^f
s:
fy*
u.

00
0
00
00
UJ
5
X
0
o
a.
i
o
M
21
UJ
CO
h— 4

1
3
or

ff
s^
UJ
3:
5!
I—
u_
o


gj
1
00

o
CO

^^
UJ

CO
*""













a>
0
CD
0
u
4—
in c
e O
O 0
In E
in o
E **—
111 E
ID
CO
4-
in
c
1




0
_ o
CD

in "3
e i_

•_ C
in o
in o
UJ O
«*-
E
ID
(0
U
4-
in
a.
























2— **
IF® —



^
o
CD
OJ



"m C\
•%8
Ol^™
C


M
D)
C

•o
»
Q>
""
O>
D)
3.



4-
ID CM
Kl S

te





•%
O)
c


c
O

4--0
in c
o o
h- o









c
^^
4-

•~>
^
u.
^
VO





TOOO «
•tr>CNO> —
tMO^KIp
e°^cJeo'




pssg
•^ PO




I2isio*











"

5






1^
.s





E E ES E6
linn


.
_ .
in

cococo ^
ototon «-»
— — — u
v"^>'>~
O c c c O—
oiOOO-oji
— 04-4-4- e «n
— 0 O.Q.«a. o
• CM





^f *COCO
r^iftro^h





— -»-•<- »
O)W ID ID ID—
J^H
5




°i o
Ov O\
O^ Ot
A




S





s 5.2.
C3 PMfO

O



o °— cv
0












in— to in
— VK1CN






o>
OvCMCN —





"to
omoo i-
— CM'TO O








O)
O U O O 3
.Q .O.a.0 N
O O fl) O ^ Lt.

oooo-s^




Ol
3
A




in
<3




^5 ^D
cs o




Oin
Og
O












coc\







coin
— CN




a:
ID «3
Eoo






X
e
3

c o o >>
(O 3 3 O
SCK>2fe

ID
01














OOt
to—
r>-O>
CM




OO
CMVO




COOCOOi








«3O<3O
OCMO«O
CM CM— -






•Q- CO CO CM tO
---°°*





ID ID ID ID
E E E E O1C
II Ills!


-^—. "Cl'O'O'O
—PM e e 'c c
xs >-ro ID ID ID
ZZ 4- — — — —
—"^ c m v>  L. t. L. I-
Q.O, O M ID ID ID ID
	 -0 3 X XXX
^3^3 •• 3llJLUUJ^U
ID ID L. O ID
	 U 1_ O —CM
fo — CITTVOOJ tor*






















X
J£ O -*
0 — 0

J3 M- J3
— — O ££££ C 0}
ID IDCXOOOCX
E E O O ID ID L. O O
Z ZU.U.U.U. XX



o-o o oo
.C.C.C.C f £

tv (w lv t_ t t
mi u
c c c c c c

TTT* T^
a> c c e c s c
c ^ Q O O O O O

•OU J3 E E E E E E

CO
LULU
2
o
3
+-
§'

O
**


























































7-56

-------




















*•*•"'»

OJ
£
o
o


0
00
1

LU
—J
CO
^
*"~




























2- s1
"=•<- §
 O
•— L.
*E
(O
4r
v)
c
z
•8




V
O'
0)
•o
(ft O
C 1_
O4-
u> O
u> u
*^ _
uj 5
L.
*•
S

4-
m
f^
3




•o
(U
ffi
*•
O)
3.




^8
^ CN
en—
c


Kl
E
"Z.
O)
c

*D
OJ
(I)
01
^
Ol


• (0 CM
0
?**
>S
'C






g
2

O)
c



C
O


«»
4- -O
o> c
(28







(0
JJ

4.
"™"
o
ID
• U.




^




in
a
K





o
in































(0
E

^





m
(O
Q_
^_

J —

5


o

%
5
>^
U
C

o
4)
o
4-
c
O •
U (ft
V
(O —
4-
C —
(D U
O^?'
OTJ >

TOO
•ceo
(ft— 1.
3 CL
E4-
fl) (D 0)
i_ en >.

(O E
^•^
«• N
— O
ro»—
(ft ID U
•c a>
u O o
c-o
Ift Q)u-
» L. O
4- 0)
X U)

"OCX 3
o-alo
OTC >
5 — 4-

(DUJ E

03 —

I c
:«|
D~4- •
O (ft
005 §
- C * U.
3 O
3 "5 u) •
— 4-.O O >.
^iP
o in 04- e
3 3 0^ 3
• C C 4-
4-4- O>«
»— O (04-
^3 • L.
>"
-------




UJ

r-
i
1—4
O
•a:
u_
o
•^**
^L!
i
a:
u.


22;
o
CO
CO
1—4

UJ
z=
X
0
a
1
o.
1
o
UJ
CO
1—4
o
o

3
3C


£
a.
1 1 1
n;
_j
^£
H™
o
U-

>•
1
CO
.
en
i
s!











i
i

u
~
•8

8
4-
U) C
c O
0 U
U) E
in®
LU
E
n>
a>
4-
U)
C
1






"°
C L.
O4-
10 'O
in o
E g
• u

E

4-
Ifl
a.





















01 *
•fe*I °
|«J

•o
o
o
DI
?
3.


*J*" »
^S
.0 8
2**.
C


10
1
O)
c

"O
w
07



O
?•


tD CM
,068
X.CM
C






to
^
O)
C-


§
*r*
4- -5
in c
|28





a
E
— s'3^ Q. o>
0)OOO*OJ£W U. O O O 0 3
— 104-4-4- c in 3 ID • • «>x ffi a> a> o^
— o CLO.Q.<:J«; roin ID ID ID— AAAA N
_X JTIDCOIO .Q>I03EE E\ 3333 31^

3 OCO CO Q
4~LU ^C {^
"S
a
S
•
O«
3
A


"CM
«d-
CO
O





O O




o-2
"

o










«rto
rOT








t^CN
r»io
CMCM



•
QZ'
Lo




>• •
4-
c
go o >>
VOL.
— JDXJO
^ fl) Q) '(•'
*D 3 3 O

(-(/>
»*-UJ
^
















li




8r~
in
"~




CM tor- CM
CMOlOT
r—^ r—




. • . •

to CM— to







.....
CMOr— IACO
— CM— — —




(0 ID ID (D
EE E-EDLC

^— •0'0'OXI
•—CM C C C C
zz "cTnlnTnliJ

1_ t_ U L, O.Q. 4) V) ID ID ID ID f3 SfffX 0)4) oro-o-o-o ^3^3 « 31 1 It « 1 1 1 ll 1 1 ID 101- OlO 1. 1. o a> o 0 •C^Z C+« C C C C O O (0 t— L. l_ l_ > O CM O *f co -K4-4--K 4--H J E E E S mm «^ S *ff ^^T™ ) «0 U.UI 2 •a o 3 C I ^ 7-58


-------
LU


CO
          li
          H»
          o   7;
              D)
   O


 in c
 = O
 O o

'in i
 in i
        u>


        I
       •o
w o


It
in o
in u
             0

          4- -O
           v> e

          £8
             U
             ID
            LL.
                  m
                  U 10


                  (D —


                  C —

                  — 3
                  (DO
                       •O C O
                       Q>*>- fl)
                       in— i_
                       3 Q.
                         E4-
                       Q) ID ID
                       U U) >.
                         4-O
                         a>
                       •a =4-
                       %,*
                 KlIO —


                    ID U


                  -g|
                  U O O
                       o i. o
                       •  «
                         z in

                       OCM 3

                       c-olo
                       cnc >
                       ID ID1—

                       5—4-

                       ID in E
                       «  4- •
                          o in
                 o <»
                 U C X l_
                   3O

                 u  (Din
                 —4-^ o>:
                 JZ (ft  4»
                 * ffi (ft   I
                      ID in  O   3
                      4-4-   O>»
                                                     7-59

-------








CO
LU
1— 4
i— i
_J
H-4
C_>
Lu.
O

1
u_
CO
0
»— 1
CO
CO
k— 1

LU
z:
H-l
X
0
(—1
a
i
a.
o
z
'LU
ca
CD
§
3
g

I-,-
%
— J
^c
0
Lu
O

^
gj
^-
§
CO
OJ
CO
1
1 • 1

•H*
CD


01 £
I.*** O
*=£ c
•" Tj~ QJ
Q *~
*• O


•a
o
a) «
o
x; en
1 5
^ D)
1
me .
I8 °g~
"* S ''s
LU"" g*""
£
4"
10 *»
c g
1 1


(D
0)
**"
A) O
_o a:

> 0)
•8 *

in o
It! 15 CM
88">E8
,S§ ^?J
i e~
e
ID
CO
u
4-
(0
d t^\
3 2
O)
c



Q
—
_
4- "O
U) C
£8


. ,



i
 o>
Oi Oi





GOC^U)^^* ^* O^ O^
CMthSeo^ m
"~— * ^




too~roCM
•in cor-
to to




toooom
inco «— •
• CM — ^T^
CM «T —











a





^

co eo
— . 'CM




^* *^TtOfO ^h *O
K^*^^"»""\O O ^«^B
o



— • inooto «
toto o «r~
• O
0






-


co in to to
T~OVCMOO
•—to to CM





into<«r'w
— CMCM —




0.
i

iiili =sfil
^
^
c
n
in o>
4- C

>— OIDID o. o
O c c c o— «~M-»- WLU Aja (.
cnO o OTIJ£ in u. u u u u 3
— IO4-4-4- C in 3  O UU.
L.X £ID9ID •<])
E
ID 3 E E E\ 3333 3U.
co a
X CO











r«
-• O 3^^ — •—
4- ID ID OO

3 . !c!E > L.Z^'S
5A& 0} in ID (0 ID ID
— — "D 3 X X X X
^^ C> 4) U}O^T>19
C U U >• ^^O — » 3LUUJLULU
•— ^jQ O — «»*— L. L. 0} O O  ^OQ.Q.CLCLQ-
fl) t. o in
OZ IOZ LU
4-










I §

CM
^~



o »^to*— ^ ot^
to — — CMto«T *rr»
CM




— tows-— o cor-
— r«-lOCMCMCM — f




















J
Jt O *
o — o
ID ID
A M- £>
a IDCXUUOCX
E E o DID 10^ OO
o oxxxx^'x.x
Z ZU.U.U.U. XX


OT3 U O U
tttt tt-

c c c c c c
f f f ^ II
f Jin ii
•OS. J3 E E S E EE
Q}MK ^H (D (D CD (D (D (O
cc«*-a.
-------





























.^
-a


c
•r—
O
O

esj
PO
i

UJ
en

u
!
•o
O


in c
= O
0 0

(ft E
in o
~ L.
E«-
UJ
E
ID
L.
•4-
V)
s
o
•o






—
C




E
2
X.
O)
c




c
O

+-

•t- -5
in c
•28











g:
C

•i—

U
ID
LL.






_
o








•c-

to





„.

o































ID
E
U
2






m
U.

^
ID
a.


n en
tj1^
3






IB
^

0)
3
s
J^
u
c

(>M
u


«
_
o

«!•
C
Sin
ID**

C —

ID U
oil
4— ~
Old)
•DC O
0— 0
S|£
Q> (D C>
l_ tfl >.
0)
+• O
Ift C
0
•O 3H-
c-o—
ID E
JJJ™
T N
• — O
c^P
in ID o
t: «•
3-1- -1-
= •0
in a>*-
a> u o
•K V
'x in

"OCN 3
n>-ci 10
ID ID<—
c
o— t-

IO U>1

O 3 —
J= L.

•(-«-
•
x o in c
Still c

3 3 O 3
— 0~ e e 4-
4- *~ §>$
o— o c+-
— 3 • U
j-EO « O
P^J^P
7-61


-------









1


1









,A
fl\
E
•r- *
c'
o
- u

t
ro
CO
^

LU
i — i
CD

(—





i

1


il










1








"0,1 .£
4-M- g
c>*- 5
o "3
0>
u
•^
T3
L.
4-
v> c
I8
in g
u> O
•— f
E«-
i
o>
u
4™
in
c

o
•o




u
u
0)
tn"o
||
in o
in u
m s=
m t.
,**•
E
ro
' O
L.
4-
in
a.
3



•o
o
0)
**"
0)
I



4^
K^S
.5 ^^
^F 3^
TO—
e


e
•z

TO
C

•o
IV
•^
t
TO

4-
•
c
o
u
^^
o

"o
^

in
to-—
4.
c—

(O U
O-D >
TOO
•o c o
d>H> R)
in— u
3 a.-
E4- i
tt) ro a>
i_ in >-
*O4- -
4- O
ID C
o
C"O»—
"•8=
•0- N
•— O
KlID—
C4>
U) ID U
C 0)
34-4-1
t.O«>
c-o
4-
in (»•*•
a>t.O
4- O
xin
O-0 ID
ID «
e «i/> "c
BU1ID4- C
J 3 O 3
5 S^o'o ^
> C C 4-

5--O W4-
— 3 • t.
4-Eooa
3— > C
o'SfvSP
7-63

-------






ex*
LLJ
>-M
* _ _"~
—i
o
<
Lu
|p
1
I_I_
-_!_•
CO
•v
-*-m.
O
CO
CO
t— 1

LU
==
X
0
0
o.

o
__!
LU
CO
a
g
o
0--J
a:
C_3
a
LU
— »
CO
LU
*•
_J
O

Lu
0
£
g
CO


*3-
CO
1
LU
i











8
>
•o
u
•»-
§0
_ 0
"in s
in o
_ u
LU
a>
4_
in
|
o
•o





•o

tn'o
It
in o
in o
•"•
iS Fs
LU O
M-
E
(O
L.
in
a.
3
















»*
2-ir
"££ c

-H ••
<-> o


•o
o
a>
t
o>

toV
^~ CM
c


WE
z

O)
c


•a
0>
**.
o>
^
O)



15 'CM
K, 8
_z %%.
V.CM
a>—
c
1

K,
J
P)
=

' 1
|

•(-•D
in c
»28






a>
i
c
•t-
"o
a
u.

__ _j.

— Ot O> Ol
-r o> o> o>
A A




cooooo ID in r-.r-.
lOOIOOO «O « . —
'•-•>_ r» \o in
CM CM

; ^~m~ gjg-g g r. 5 8
«C - - -O» "~— "~ "• . >OCM — ^
in — o o o



t*-oinooo* tom • "roomin oo^

CMCMCM'— O>CO —in OiOO 'in OCN
to » * *r*. — o to— •
to CMin • o
o

'l



i " • 1
\


•
Ov «OOOO OO
•""• . ^jirtf^iO •™fO
* * * * *
w--^^ «-_•*—•


1

'•— \OODOO , OO
— POO>CO£ r^co

1

i a. •
t E ^
- O—*^-' O — C— _ - (_ **-M« jO O-
— rxowo. co o
occcco-o -"*-•>. m ua> a> »« (. mo
O>OOOO~7_£U) U.OOUU3 CUU>>
— ID4-4--(-^- C in 3 OJD O O O L.
— u n.a.a.n.<__ o>u> ID ID  o
era — EEEE  o oo o o> o o L.U. t. o> 04-
-. X J= (O (0 (U 0-S\_EOO-(OQ.
_. o a (._•
ID ID
JZJZ
0.0.
— — O
d> «> -f-
•O-O L.
(0(0 O
— — a.
£""-= (0
0.03:0
S £











0
»
«.

0
^^
—



VO

o\




— cooosin
COCMOCM —
-r-s-CMin




— ovo»— in
'OO 'CM

^ *o





.10 «rCMco(M«r*
to co^ovco^^


ID
+•
C
E
L. . ID (D ID ID
0 E E EOU= E
a. L. u i. c o>x u.
01 ZZZ—IX— 1 Z

'*T3T3T3^
JO C C C C
>. (O (O (O (O
4_ 	
e in in in in
•o ^1 -o^^
•0 > L. (_ L. U.
— O U> (D ID ID ID
— cnc*)'U'~l~2'O _-t
V- — 3 i- LULU LULU O>
W t- O(D 3 c
+~ t. _.jp O O ® « —
+- ID4- ID W U U U U jfO
— C+- L. C C C C O
1Q.-0 g-Jjj «>_— ~ — — f^
i_o Q-Q_a.a.Q:>*-
az uj u_










VOO
«fo


ggog
^«t i
—CM



T — fMO

— tOC^-J^
— CM























"o
J3
___ U)
ID ID C X
!!.._>

ou:
n f\
+-•(-
_, _,
ii
-i-+-
c e
4)0)
c e
-too
u .>•*-+-
§c— —
ID —
C.-.EE
_<— (0 (0
M
UJ
7-64

-------

























*-— *
w
OJ
C
•f—
J_J
C -

o
^M"*

.
CO

^v
^^

UJ
CD
I—
















.














-
**
8— >»
T* *+•* j—
s"* -

o
u
"~
4!
"

^
0
L,
4-
m c
c O
O 0
in E
. in o
"i «*-
E
ID
4-
in
c
X
O
•p



8
^
4>
•o

in O
S h
O 4-
m o
in u
§"~


u
*^

E
ID
4>

a.





o
4)

O)
5
U)
3.



,
^~ -.
K, 8

^ ^ft
\ CN
O) *"""
C


to
O5
C

(D
O)
*^
t
O)
3.



• .
1C CM
K,ES
2 *HJL
r5i ^>
^





fO

^E

D>
C






"g
•w
4- -O
V) C
4> 0
1— O








E
ID
e

>•
4-

U
(0
u.




0
O>
tO








OO OO r-
Tin CMO ••
GOOD OOIO rO
» * • - in
CMW W



OO OO 0
Oro oom •
r^o — \o o
CSHO CMOI





























X
O X.
— u
ID
«4— ^3
^A£ c fl) —
u u o c x ID
ID ID U O O E
U-U- XX Z


O) O)O)
E^ ^
DO OO"%
XX XX U.

= c c c
Jj 4J 4} O •
T? ff 15
= c c c a.
^4? 4?4? 4.
•-••^ ^•••QJ -^
•^•— »^*^(/}^)
11 ilvi~

U




1.
O
«*-

4)
.s
5
^
^
u
c
4)

U

14_
41
o

' § .
\j *
u in
4-
C —
ID U
O-5 >
O) O
•o c o
4)*^ Q)
m^ u
3 O>
E 4-
4) ID 4^
!. in >-
0)
X O 4-
4- O
in c '

"O 3 4-
ID ID E
°i~ ^3 •—
4) T N
Q. >. C
•— O
4- f<-l ID —
3 C «4-
O V> ID4- U
J= C t_ 4)
4- 34- O4-
— t- OQ.4)
X C 4>T>
•4-1.
c e in o -*-
	 O 1-4- O
XX 4- 4> U>
O O . x 4> in
— ~ -4- 4-4)

1 1 C —

1 1 D)C >
O O ID ID Co'
N N U —
C C 4>>- X4-
 o—
JDX5 ID V>— E
^*O • 0) 3 1 —
OO >-c i~ a.
OOc4"4-O O

OO C O)"c 4) O
wro— in— ^s «
4-4- X 4) —4- •
u u o u -o 4) in
f f 1 b. C.Q X U
cncna. -3— o
33 1 J= L.f — 4-
OO O o U4)in>
t- L. N— 4- XO 4) >•
j=j= cf in— • 4-—
K4- 4) X 4)O in C
U^O33(DO 3
^4- l.^ O •^^* Lf
ID 4) O *O 4)^7^3 O
4-4-— > C4> C 4-
.= (D4-— 4) «
v-»- (J4-4- C O>4>
OO (DO— 4>O ID4-
1-— 3 U) • L.
= E4-4- E 4).O-4>"4>
3 3 4) 3— t- > C
^ O^ 4)^- OU-
7-65

-------
-






§
t—i
h-
O3
S
o
f_^
LU
I—
_l
D_

O
t-H
1
0
LL.
oo
s

SJ>f
o
t— 1
to
00
t—l
£
UJ
X
o
o
u_
o
1'
00



•CO
*ilf
CO
1
r*.
UJ

^












£
.
i

O t- °*

in *- 7"
II £
LU
1 S"
x. fl>

' LU U
I-1-""
fe "IS »
> "J| *-.
J> 0)
S '^
." O)
§ .
£ 0
in g>
in 5

iS

in
"1
ID jT

L.
x- «
o"" "I
2 ^ &






«— •

*
o
u
u
i
4-
C
a
4-
3
•"•
O
Q.



































C
"x
£

TS
1
Q.


N
C
O

o
o
c
u
ID
L.
O
4-
00
10
*
CM

O

03

CM
in
r^ 01
IO* — —




u o o




— — to
• in •
in • Ov
r- to —


e» i vo
CO 1 ^O
CM ' 1
I ' r»
•— in
in CM
O

O




J3 jQ
ID JO ID


r* — CM
c


5
•o

n.
U UN

> > O
O. O -JO
•o
"o -o "o 8
U 0 U O
4- — 4- ^
C U— C J=
O— O O U
C U ID U U 8 •? -2
10 H- U C x-
i in § •?

t—
0
R i
• o •>
t>. »T 00
CM Kl
'CO *
in fi r»
s 5 -!
""i Ht 2 "i ' '"v
*min *p^o^ »(>





§ S
A . *
00 . OO
fl to

<5 -o
O *o vo 03 ro h* cv^io in •— •—
— CM CM

O O tO Oil O 1
CM CM K\ VO 1 1 O> 1
• «• 1 « . «
>f\ — — VO 00
1 » 1 1
K1 03 w, «•
O\ O> V O
03 CM in
ooo




JO JO JO JO JO
ID ID ID ID ID* ID (0 1C


OOCMCM tO — — f- —
C

"x • —
O x
•o •—
I -o
a i
i a.
O OOO O l O
U U N U O • O U

0 Oj§S''-000
_ _ o — _ -S —
O*OOL. O 13 O O O TJ
UOUO UO'UL. UO
4- — 4- — 4- — 4- O4- —
cu— c JE cu— c — c u—
O— O O U O— O O J= O— O
CUIDU U (O C O ID L. U UCUIDL.
UI4- 4-U 4- IOL.I4-
3 L.T3 C L. C 3 L.-O C L. X 3 l_T> C
4->U 4- CL 4- > O 4- J= 4- > O
ox- L. cr x- inx- L. e x> inx- L. e
ID 4^ t2 ID ID 4™ ^D -^'10 ID 4*
Z V> 2 . 4- Z  2 "' 4- £ tV>

f— 1—
CM

I Oil Oil
1 CM 1 1 10 1 1
to o^

f-» —
1 1
CM f-
00 CM
O




JO^ J0_
ID ID ID ID ID ID ID


^ „ ^ r- - -
c
— c

5 g
T3 —
i -o
Q. 1
I a.
OOO O 1 O O
U N U U O U, U

> o "> "> c "> ">•
XI ~ T3 -O JD XI -T3
•o —
2~«-'oio"oo^'oo
O L.OL.U UOU
+-—+- — +-O+- — 4-
c jc c u— c — cu— e
O U O— O O J= O— O O
-u IDCUIDL. u ueuau u
4- U 4- ID U 4-
L. a. 3 t-X) e u 4- 3 L.-O c u
O OOOOO O QjOOOO O
4- JC 4- > U 4- 6 4- > U 4-
x- U)x- L. C x- U)x- t. c x-
3 IDIO4-Q Ofl34*Q
X 4-£S 4- Z V) 2
O O
•H I2 .
7-66

-------
Isomer-specific PCDD 1n SI units

7-35    Summary of 2,3,7,8-Substituted and Total Tetrachlorodibenzo-p-
        dloxln Emissions from MWC Facilities

7-36    Summary of 2,3,7,8-Substituted and Total Pentachlorodibenzo-p-
        dioxin Emissions from MWC Facilities

7-37    Summary of 2,3,7,8-Substituted and Total Hexachlorodibenzo-p-
        dioxin Emissions from MWC Facilities

7-38    Summary of 2,3,7,8-Substituted and Total Heptachlorodibenzo-p-
        dioxin Emissions from MWC Facilities
                                    7-67

-------

-------

J£
§
u.
LS\
ZZ
O
t— t
00

t—H
UJ
1— 1
X
o
1— <
0
Q_
O
z:
UJ
CD
h— 4
0 •
O
C£
O
_l
T^
«L.
|
UJ
I— oo
UJ
_l t— 1
«=C H-
0 3
1— "-I
o ec
z: u_
0
13 ^
h-

h-
i — i
&5
03
1
CO
•s
^**

CO
CM
U.
o
00


ir>
CO
r-..
LU
CQ

8>
C
i

"o
L.
(ft c
S °
O u
IA S
(A O
fi*
i
0)
downstr




o
u
>
01
"°
"o
8

L.
E
ID
L.
4-
IA
3
e
^
IA
U)
E
UJ













.8
Q CM
— a
10

o s
vi
D>
C


o8"
5 **
S CM
1
CO 4-
• ID
 +- 1010
OhOhOh 4- C c ._._
«TTT^ Sw'wa. TO 5 — —
O C C C O ^^ •*- «*• (A ' t ^ 0> Q>
C7) O O O T3 U) U.3 C >. T3 T3
— ID4-4-4-C3RJ •» »>v J3 O t. ID ID
— O Q. Q. 0.< O) IA ID ID (D — N — O — —
C (D — g g E 3— OOQQt.U.L.4- — —
.K JZIDIDIO •fD3££EX.3LUIDU £f
2 isS;O3:3::c2w»(-3=)3X3:>z 100.0.0.0
jz  v> a i.v> >-
4- LU X C/> •*- LU , O
j* *


s
in










o
VO




















	



—
"o
0)
4-
(ft
ID
1





o
Q.
ID


K1










CO
«N
O
V








• •
03 O\

,





• U CO >* Q)
^ * ^ ^3 ^L Q£
L. O V)
ID Z LU
4-
V
C
1















































7-68

-------

















•





^o"
0)
33
• E

. t
E
O
U
ir>
CO
r-i
UJ
m












.


U


•g

8
4-
U> C
c O
O U
1ft E
V) O
iS ""


V)
c
§
T3


0)
U
d>
^

£
1
U
_
X
U
**"
CO
0
in
o.
=>
in
c
in
in
1
UJ
CM
O CM
C£ ••

t"
— (O
CD
4-Kl
12 1
O)
•—


f^
a-2
O CM
1
CO 4-
• .co
•to
^* 5
CM ^x
D>
C
.8"
g **
O *"~
1- ^_
— CO









>OCM
»r in
"~C3

_


















CO CO

II







•o c e?
° £ jo
U Ul




































.'


f
5
j
5
3
0
j>
»
5
f
7-69

-------
I
s:
§
u_

3Z
o
1— 1
oo
oo
H^
s
UJ
HH
X
o
o
1
Q_
o
z:
UJ
CD
H^
a
0
o
_j

-HT

£
UJ
Q. OO
UJ
o H!
i_j .i
I— • »— «
CJ
o <:
sc lo-

ci 3
H^
t—
1—
oo
CQ
00 .
CO
•1
•1
oo
•t
u_
0
Q£

^
.
to
00
1 1 t
1

CQ
^C
*~

0)
c
1

0
j:
in c
= O
O 0
In §
1 «t
UJ
ID
O
L.
+-

O

.r
fj thA
o 2
"2 4-
W^
£ ^
H- s^
O)
C


§*sT
«»
^ *^
OS ^_

"» •§
^1^
"™ (^


T^
"" c





O
4-
4- -5
in c
fl) O
H- 0




E
ID
C

4_

*0
ID
U_


Ifl ^ O\ *t \O O\ *f 1f\ OO
• •o\«oo»m in in \o TT
•— in • • o o o
— KlfM CO • - •
O — —








to •— ... c\ o" oo 5\
— • 'O O •
o








-O>
Cs(




-



*""








a.
E
— — — ^ dj — ™ , _ «^
lifigl i .§ ||

^^
CN
C
>• z z
u> . a> +- «^^»
4- C C
»C— — Z 0 ~ —
> => (D ID Q. D)O £f
•gin^-1" ^ c **
C S3 tO * * »U. JD 'O ^ -o-o
J*X t» t. L'  C/5 Q C. t/>
) (O fli
1* • 5 .


S









CO





























_
ID
E
t.
i




O)
c. c
"5 x

•o •«

feffi0'
4-
7-70

-------



^^
cc
u_

o
1— I
CO
to
1—4
UJ

>— 4
X
0
t— 4
a
D.
i
o
Nl
2E
UJ
m
»— i
o:
o
1
X
UJ
="= to
_J (UM1<
2 H-
o *""*
l"l — J
*^ H"4
o^
"^o
UJ S
t—

H^
CO
CO
co
CO
•t
****•
PO
CM
U.
O
,,_
f*s
=5
.
CO *
***
UJ
g








8
•S
]
8
e

i
••§
1
*vl
•S
&








S
*>
e
^_
c
^
£
e
i
4J
wi
w
g
in
J


















•
° CM
- Sen g
5 £
^. *&CM
- C«
o ^J
m CM
*£§€«
*^d£ i1^
CM *J
^^

1
Cs7 *J
• re
~*

l
°» 0*^
- o e
"^ S 5L ?5
CM* JJ
• n
.
§ o^
««, 0
= 5.5
*« £
^ 1o

O> CM
CO*' *fO (_>
c§ j*.

* X C


CO CM
*°Is €«
• to
•*4

m N
"I o"e "
'.S^S
*^ JS g*1^
~.~ *



5
' Ji
£ 8
-


I
C
+?
"u
£

(OtOOCOCOlg 00 O O O*
££rf ri ^ ^.s
O CM


CT> O O *O VD ^- CM CO



CM*** 0^ 7" 0
O



•

^--*^^"«3CM ° S RS
- o o o.


?






CM




CO





•-«





g-

|||Ig| t I is
CM
- , P
VI g* 4^ • (Q
1 I^IL 1 11
- |s7^V.|| g g ii

| 2g.3-<3i2ji 55|f:tjt£ ^g;fs
S3 *° S1"
c

K




a
S



CM
CO*





^




























f—

-------

35 U »
O | o
at. I r
u_
00

0

£^
i/>
1— 1
UJ

X
0
H— 1
Q
1
Q.
1
0
3g
UJ
CO
H~f
' Q
0
a:
3
••••i
i
r~
Q.
LtJ
3: 
Lul
<^^i t ___[
-<
5 'J~
<_)
C3 2
uj z:
H- .
1—
i— i
1—
m
=>
CO
*
•i
ro
*
04 1
LL.
O
=3
oo -
CO
1
LU
CO


£
•a

8

gl
in o
in o
a> u

1
•o
"o
4-
c
.8
g
L.
ID
2
(0
Q.
in
g^
O
'in
to
E
.8
o ^
Q. ""
_ ID
I'i
h- ^
0)
C

Q CM
I.!-
00 (N
(vT "™
w 15
*TB
^^ ^
OJ O)
* c
UJ


O
4^
4- -0
U) C
a O
1- 0
fc



c

4-
O
ID
u_


to o ^* ip ^
^f fO CO O O
* * ^~ O* *t
0








O O 05 CO —
-cv ex m in o
CM CN •
O


























^ •— .^ _
IO ID ID 1C IQ
E 5 E Eg
i i i 00
"~ • >. . *"'..'"*
W 4- ID ID
^~ 5 "» "••
•™ 3 ^ X?
*-*Lu U 4) 4)
LU 3 C >- T3 13
— ID \ ^ o i_ to  CS U«/>
4- UJ X V) X- LU
j* *


^
^
^T









IA
«\
CN













i

-











_ -
ID
i



0)
L. C
*a X
^ "O

C. (/)
ID UJ
V)
7-72

-------
(I     '

-------
PCDF  1n SI units
7-39    Summary of 2,3,7,8-Tetrachlorodibenzofuran Emissions From MWC
        Facilities
7-40    Summary of Total Tetrachlorodibenzofuran Emissions From MWC
        Facilities
7-41    Summary of Total Pentachlorodibenzofuran Emissions From MWC
        Facilities
7-42    Summary of Total Hexachlorodibenzofuran Emissions From MWC
        Facilities
7-43    Summary of Total Heptachlorodibenzofuran Emissions From MWC
        Facilities
7-44    Summary of Total Octachlorodibenzofuran Emissions From MWC
        Facilities
7-45    Summary of Tetra- Through Octachlorodibenzofuran Emissions
        From MWC Facilities
7-46    Summary of Total Measured Chlorodibenzofuran Emissions From MWC
        Facilities
7-46a   Summary of Furan Emission Factors for Municipal Waste Combustion
                                    7-73

-------

-------






(/)
LU
»— 4
|_
1— 1
_J
O
1 1

o
_3I
S
o
Q£
U.

01
0
HH
1— 1
S

z:
S
U.
O
IV!
•y
LU
CD

O
0
o;
0
z
£j2 -
C£
|^™
LU
|_

CO

r^
CO
•1
*C\J

u.
o
c*
i
CO


•
(V)
1

LU
m


° ' >t
£~ 0
Jo «
0



0)
u
>
•g

2

in c
c O
O 0
in g
in o
1-t
UJ

O)
3.


4-
<"*^
*I~
X. Ol
c


%
O)
• c



a>
^
^

^

« "5
O "4""
W O

ii §

0>
^
O)
3.



• 15 «N
PI O
2-»*
'\ fM
0> —





PI

z
0)

»


|
4- -5
in c
1— o








E
ID
C
4-
"o
(0
u.




..


mo in w O O> r~ o PI
12— °i " *~  o\
r^ — 0
t>- — —CM ^ eg— — ro CM

i
; . ' i


1 , ,
1 1
1


1
. 1
—



i

. *


— °
• ' "**
* | CM

( ' • ,
II 0
	 E || 1 "to
EllEEEEgEEE III EE E
Z2ZZZZZ— JZ Z'Z ZZ ?£ Z Z .Z


CN
C ^— €^

IA. * • " ' z z 4^"
Sg0 $ « 0) 4^ ^^ - g 1
ccTfelT 'szzz i LI. "*
CCO*— ^^**-H-U)Ll.U 0)0) 4- CD
oo*o^u> u.3 c>> -O.-D L — 3 o>
*" 4-4— C U) 3 (D ** *\ A O^ in ID to .
Cg S S 03— a>0«Q(.Ll.(.4- — — >. W4-ID * -0 c
-XIDID>«IO3ESEX.3U.IDU i£ ID C4- S ID
^Iffi l^^^iS0"0"^ l8^! ~ -
J5 .8 t_o«/»"*"«/>
'3 Q; IQZLUU.U
- 4- Q
x v> 2

c
•o
•
10
u
•5
o ^
10
4) ID
ID 4)
> U)
(D
U L.
C U
01 c
•^ *^
u
— tf)
a> 4-
2 »
U H*
4-
§ .g
o
O)X
•0 c O
in—
so.—
E a>
a> ID o
a> >
ZOO
4- ^
in
•o 0:~ '
c-o i-
 O'lD
0) L.
"l"x"S
•*- t-
OC U
CO (O O
>"" O
IDU> —
a> 3 ID
- 4-
4- C
=— O
OC C
in— o
1> 0
3. >C
1) 0>-^
3 O
5 ID
—4- « •
j= in <_ in
»(0 04-
4™ C C
in — o
D in a.
3 34- O
— oet.
iod) a>
> C U4-
ID ID in
-4- SLID
> 
-------





OO
UJ

l__
t— 1
_J
u
gc
LL.
O
sr

f>^
u_

00

0
1— 1
OO
OO
s
UJ

21
p:

u.
o
r*^j
pp^
UJ
CQ
»— i
a
§
S
O
g.
LU
|_
_J

H—
O
l_

fe
>;
^
=>
O
1
ls*
UJ
CQ











ffi
U
•J
01
^*
73
L.
•
in c
c o
0 U
in E
v> o
li
LU
i
fu
o
(_

(0
1





a>
u
^
a>
•o

in o
c t_

-c
(ft O
in u
1 e
LU 5
H-
i
0)
L.
0.
9


















81 £
J«|


•o
S
Q/

ai
•x
O)
•3p


K?8N
0»~
C




fO
1
O)
c

•o
0)
0)


^
O)
^1




ID CM

C


to-
ll

O)
c


O

U) C
o o
h- O






ID
i
e
4-
^™
1
t^
°i
Ol
A




K1OOOO <• !*• CM
lf\ O t"^ Oi CM ^W • ' *
TCM^*^^^* ^— CO 1^
r*»*-^rco
^™



OOCMOOCV CN» — m^-CO — O
CM^OeDCMnriO COfOOO • CvilO
— tnroo^r '— .X^-CM in •
^ ^TK? ^ ^ ^^
jo





•^COO— s'n'na. o>
O C C C C O— — <4-<*- (ffUU U U L.
O>OOOO*0^ 1> 0> OJ3
— 0 Q.Q.CLCL<^D)iniO ID (0— J3JQJ3AN
CIO — EEEE O 3— fl> O ffiO S> O  O <-U_
UX j: ID ID ID ID « ID a S E E E*V 3 3 3 3 3U.
S fe85oxzx:i:2Q-v''-=s:%<>0003:£
4-UI X U)
n 10
?*

0>
S
A
••



1*^ •— o
•cr • • \o o

""" • ^
—



i
CM 00 OK^ CO If!
CM |CM o\^3- • 1?
K1 i»- Of^- CM K\
• i • * r^
o lo —


i



Ooo K>>- o • r»
Or- «3-CM — CM
O CM
o'

1
'. ' 1
1

(NO CO "5- in
ir\
' 1
,




com * CM • • • •
*~ /""CMCM — —


i
.
-co oinofoom
f>m c\ * • * **—•
*— *" — CMinmo •


i
4?
iF ' OT
(D *<3 fD (D 3K (D tO (D (D
E^^ E E X E E E OVC E
UOO U. L. S L. L. 1. C O1X L.

^CM c e c c
XX >- ID R> ID ID

+- «3IO OO ~~~"~
3 ^j= ~> ^'Z'S
O CLQ. 0) U) ID ID ID Q
O «« +- OOJO-C-OT3
C (J O >. T3-0 U ' — 3 I-UJUJUJUJ O)
O « O t, 10 <0 O I- O ID 3 C
^•JSJS O ^^ A *— !• U..O O 4) 4> O •—
t. 0) 0>4- —— >. 074- ID U) O U U U X
&§£ga.&£o£ ^|tfe^£££ .„
*+»m ^3 > f ^ f^ ff Q ft Q fl /y
& |£ Q
CO
0)
3
C
O
u

























































7-75

-------






















r-""-*
"O
0)
=3
£Z
0
o


0




jj 1
m
<

































0
u
o
XI
"o
L*
+»
10 C
c O
O 0
(ft E
in o
1*.
L1J
ID
O
in
c
O
XI






0
u
1
(ft O
C !_
O4-
(ft O
in u

e e
uj O
t_
*"
s
ID
«
L.

0.
3

























£z g
C«4- «
O O
O "Jj


^
S
**-

€
O)
3.


^_
KS~
\ CNJ
C


K%
O)
C



JP

*^
Ol
^
O)

4_
(D CVI
O

\ c\

c




p^

^
o
c


•1

i
4- *O
U) C
.28










ID
c
1
o
1O

"



o«—  —



.

CO — OOOO OO —
IA •IT)*— — CO tO— •








•
















.


* § *
0—0
ID ID
.0 -4- .0
^— o ^^ CO ~-
IDIDCXOOOCX ID
E E O O ID ID C> Q Q £
oo'xxsx™'^?^ J5
ZZU.Ll.Ll.Lu XX Z




T-, U, Ty ^^
J=f f £ J=J=
tttt tt -
OOOO O O CD
XIX* .XX LL.
4-4-4-4- 4-4- <
C C C C C C
TTff ff i
. c c c c c c a.


U L.J3 6 E E E E ELU—
•— Ji— ID 8} ID ID ID IDX C,
H-Q.«XXXX XXOS

I
1C
•Xi
O

ID
U
•5
o —
w
o ro
5 S
ID
>•. O
O L.
C O
0 C
— (ft
^- £
O 4-
— t.

4.
O * O
O Ift (ft
O ID
ID»— O
4- U,
C —
'Jo 3 ®
O^ L." X
	 OJ O
OXI > >
4. 0) —
DJX 0
xi e o o
1 "S^ *
1 3 CL •»
E 0 4-
0) ID O O
U (ft— >.
O >
X O O 4-
1f\ C
o~-
"c-o ° *"
(04-1
xi c —
••oo —
T N O
>• • C
•— O O
C4- 4^
(ft ID O
c m o
34- (ft 4-
u. O O O •
(U (^ TJJ
4- O
U> O ID •*-
Ou O
X O U)
«*- L, O
OfML. 3
OXi O ID
ID IDO ~—
to in— 1
O 3 ID —
f t. (.
4-~OO —
C— O 4-
O C C O
in— o o
O U 4- •
L. o in
o. >e xi c
o in— s
u e XL.
3 O O
o •
.C Ift L. « 4~
x 004- in c
O (ft O.ID4- e
3 34- O U 3
— O = l_ — -4- U
ID OO XI O
> C L.4- C 4-
10 10 in— oin
4-4- CLO O)O
O— Q.4-O 104-
— 3 CO •(.
4- E OO OO
3*— CJ= > CZ
o tn«C4-<:<:o
O A OXi O
7-76

-------




CO
LU
|—
t— l
_J
O
Lu
O

1
f ,
LL»

2£
O
>— 4
t/>
*^_*
2:
LU
•5
C£

|j_
0
NJ
LU
CO

a
0
Pi,
o

•—
••&••
*C
•™^
1 t 1
Q_

_J

0
Lu
0


P^
j*
=3
CO
T-t
1
J"^

LU

I—




"i~*ti *~

o


0)
U
a>
•o
|
U) C
|8
to €
(A O
us""
i
V
U
4-
in
c
1

a
0)
£
O)
^

:°s"
Z+*.
X» CN
CD—



Kl
|
C





o
u
"J
•8
__
IA O
C U
04-
U) O
V) U
•^
Eg
UJ O
U
E
10
CO
4-
in
a.


•o
0)
o



O)
A



1C CN
K> S
Hi <_/
-S ^^
^~ 5J
rrt«>
c"~





Kl
2
CD
C



O
—
4- -5
v> c
o o
1- 0






c
i

o
£





ooo oin

KICNCN
O>



,



in - CNTCN
•s2-



Q.
€
<0 IO (O ./-> eo <*•
5 CO CO T U> O)
OlOtOID «— 4- C

*"^*^>— IS'ID'O a.
c e c o— <->•»-<•- J£ V) U. O O O
— 4-4-4- C W 3 IO • • »\ 0)0)0)
C 10 SEE ID 3— O 0> 05 0>'
LX 09 ID K) • ID 3 E E SX 3 3 3

« S
a
Oi 0,
O* " Ot
A


M. o
o T eo
CNCN T T
oa\ ^ "~
o °' °*

•


r*.*O o»—
oo o

O C5












^3 (rtfw
CN r^CN
CN — CN








«. CNOS
^- *-f—



•
Q£
§~ "ro «3
E
£> u UOO
CN£ i^2




>.
4-
c
3
? 5o
O 3 C O O >-
0)J3 O ffi OU
O N — J3J3 O
tt)t_LL. t- o> a>+-
3 3U. ID 3 3 U
CO »-U
(§











2S
OIO
— —




si





mr*»— oo
«r in co co
^^






\Of**^" ^f
* • • •
VOK*)f>v^
f^l*3" CNCN







*-intACgO
KSK2-





(O A3 (O ID
gg ggcfrox
ii ii355

— CN C C C C
3:2 >-(DIT5 10 <0

—r-' ctnvxnin
8=____
O
~_ — O-OT3T3-0
J=J= > U U U U
Q.O. 0) U) ID OQ-Q-D-Q.Q
fei 2






1 £
CD



^ ^f^5^5^3^5 (^CD
f COITvO\OO\ Ot^O
CNCN^r^ CslCN




CV TOOOO OO
~— rocNjf^ .







,

»

















* S *
0 — O
10 ID

— — 0) 3£ J£ C O
ID IDCXOUOCX
E E O O 10 10 1-0 O
U UZ— ICDffl^-Z«J
z iuTtiu:^ xx

^ O "O *O"O


o|o| o|
^-4-4-4- 4.4.
C C C C C C
O O O 0) O O
*"?¥'? **
D) c c c e e e
£ 0000 00


i v>
1 U.LU

|
C
c
8



























































7r77

-------
























1



**"^
•o
CD
•3
. %
C
O
^\
—

1— 1
xf

^
uu
—1
QQ

I—

































°JL >>
Q?®
O O



o
u
HI
XI
^_
0

4-
-in c
0 0
in E
in o
E*-
IO
4-
»
c
X
o
•o


XI
O
0
^™
O)
D)
^L



^.
^s"
2 W.
cn—
c

tO
E
Z

O)
c





0
u
>
•0
•o

••—
in o
C L.
O4-
in o
in u
1 e
ui O
L.
E
ID
0
I.
^_
10
a.
3



^3
0)
0
«^v
OJ
O)
-1



ID CM
JfO t)
*J

c "~






E

0)
C





C
O

4>-
»
4- XI
in c
0 O
H- 0






E
ID
C
4-

•—

ID
U.






»

5





o
—





f^

*
^3 »


































•M
ID
E

Q
^





CD
Ife
• «o
a.
4-
>> O)

-
U


c
XI
0

10
u
•5
o -
in
i0 ID
3 X
ID ' 0
ID
>• 0
U L.
C U
0 C
o
«- Ic
"*"

o b
O «O
u  > >
4- 0 —
O1X 0
XI C O O
0~ J= 0
3"o... *"
E 0 4-

0 ~> "*"
X O 0 4-
4- XI O
ir\ c
X) 3~O 4-
10 4- 1
^0 O —

'•^"0 O
C4- 4-
in 10 u
C U) 0
34- in +•
^ c 8 xi
4- U
in 0 ID >*-
0u O
4- 0X1
X 0 U)
x- L. 0
O(N U 3
0X1 U 10
CDC U >
ID ID O -*
L.
0— C 4-
> O —
ID in— m
C4- • —
0 3 10 —
.C 1- L.
K 4- C
4-C 0
4-00 —
C— 0 4-
0C C U
u>— O 0
0 O 4- •
U 010
a. • c xi c
o in— 3
J 10 "010 .
—4-0 • J3 0 >.
£  C 1-4- c 4-
10 10 in— oin
4-4-O.O D>0
0— n.4-O W4-
— 3 ID • t.
- e 00 0 0
3— C-C > C
O«X4-<«CO
JB UXl 0
7-78

-------



UJ
H-4
f—
h-H
— 1
l«l
o

« ,£
o
**. ^
1 1
JJ,
o
•f-
in c .
£° tj CN
O O 0
•— *i

C E
•§ O)


•o
0)
u>
g f
> O)
•o
__ •
in o
= i- j_
°t « ^
m ° m S
tn o g °
"^ § ^«5
«t =
E
ID
£
CL tO
3 €
CO
C




O
"
4-^S
CO C
,28




i
ID
c
i

o
ID
L.



IOOOO O> IO
— K>COO • .—
KlCvj— .^ ^ .
* » » f»» (^» .
eoroo






OiO— O^r lT\fM\OO(N O» «O\ —
co »  a
in
COCOCO 9 (A O
oxoxon ** •(- c

Ox OX
Ox ox

— in
• o>
r»- in
O






in • o —
•to • *
O O O




OOOr^MI o —
OT . O
O O










.in"?— >o£) 	 wo>
r-TIfDi^o^ IZI2
ro — 3 ID ID O. O) O
O c c e o— •>^M-M. inuu o o u u
cno o O"o^: u> U.UUUO3 c o o >-
— IO4--l--t- C U> 3 C » » *X, O 0> ID 0>^> O O H> (-
— o n.o.a.<:.3: com  3-* 0) O 4>Q CD IJ> Q> 4) UU. L. O O4-
• X £ IOIOIO .
V) —LU















5r>-
oT




OC1





inoxjoco
— — — —



.
co co in in
.••.••
5??!S




r-.i-._r-«3-
oeo— oin
IN CM »O CM —






ID ID ID ID
EE E E OU=
C. I- U. c C9X

— "~ -wo-a-o
—CN . c c c e
3Z >.ID ID ID ID
ID ID O C3 ~"~
Q.Q. a>  CD O
~ — «0+- IO O O O O
,C^Z C^~ c c c c
r^ ?s *i n^_
t- O CA
fl?Z til




S "^
CN O
8 '






co inoooo oo
r^ cwoooo oo
^ •PS*\O OO





— rooxooo invo
o incMr**-»\o o>fO
f^» .CO^PO*— coox
\o * * *
*"~*~




,
















X
J£ O J£
0 — 0
ID ID
m-°~~Tt: «-°
^— •_ Q) ^£.2d C O
ID IOCXUUOCX
Z ZU.U.U.U. XX


•CO "13 ^T3
21" ooo i5o
XXX XX
C C C C C C
o) c c c e c e
j= >JO OOO OO

•OU J3E E EE EE
CD*— •- ID ID ID ID ID ID
cei-Q-^xxxx xx


g
7-79

-------






























,— X
<5
3
C
•r*
_[-.\
0
o


esj
^
.^^
~
UJ
CD
1—






























»*
2-2T
="5 «
0


o
o

>
•a
_
0
t_
4-
in c
c O
0 0
in E
in o
'ix-
LU
ID
O
4-
in
c
X
•a


^
a
0
**~

2
^
^





^8
2**
cn—
c


K)

2
• O)
C





0
u
•—
>
•o
in o
C L.
_O4-
in o
in u
1 e
LU O
X-
g
ID
O
I.
4-
in
a.
3



_^
,a
>»-
0)
2:
^fc
O)
5L


CO (N
roE8
\CN

C


fo
g
Z
^v
cn
c




c

4_
4- "5
in c
£8



-





o
c
4-


75
ID
U.







•—









O
CO





^
»••
._































ID
i







m

4-
4-
sf


1

c
TS
a
0
•5
o ^
(A
O ID
3 X
(0 0)
(0
>•» 
— 3 O
03 0 C -
£-: . ^
O*** u. ^
^—fl) ,o
O>2 0)
"O C O O
in— L.
3 Q.".
EH) 4-
O ID O O
u. in— >.
X O 0) 4-
4-'O O
IA C
"O 3^ 4-
C-O L. —
"-ot ^

^ NO
— 0 O
ro 10^ —
in ID u
c in o
34-OT 4-
t. o o o
C L. T3
4- O .
in o s> x-
OU O
4- WO
x o in *
OC\ U 3
3 —

coco >
 O —
"S+t J
o = « -
t-sl 1
o c e u
in— o o
o w 4- •
(. oin
a. »c ts c
£.
^ in L. «n 4-—
X OU4-W C
4- C U OOO
in — 04- x
O in Q.ID4- C
3 34- OO 3
— QC t_ — x-l_
•BOO "OO
 c
n o «<4-<:
-------



CO
LU
P
t— I
_J
O
u.
o
1
cc
u.

CO
0
1—4
1— 1
UJ



Q)
•a
0
u
O U
Ing
in o
— i_
LU
|
10
O
t_

U)
c
X
O
•o




o
u
^


u> O
OH-
in o
m u

t_
E
ID
ID
H-
in
a.
















li£
|»|

a>
Q)


O)
11

n cs
||
e



1
o>
c

o
Q)

t
O)



*
a CM


'o>2



"l
. en
c

c
—
•(-•5
Ifl C
£ R
f— U





i
c
•H
fO
u.




 • • •» Oi
00 10




OiOtooin CMins
OMOOOtO • •**)
•— — tno\ to *c
O» » ««n MCM<:
CM CM




r-OQOCM incM
••— CM«T»- O •











O


.


R
CO



E E E i ! 1 i E E
L.U(.UUL.L.(.L.
_O O Q O Q O O O G
zzz zzz
- . c7
•o
c
*-• 10
tn
030000 *^ in
OtOvOlO ^— ' H—

>— 3"3
O C C C O— *-"+•
coo o oxij^ in
— IOH-H-+- c in 3  •
— o o.n.o.
•f-LU
» ID
D
•x.











5«rco
• • •
»oco
room















.







. .


n.
X L.
O o




o>

n a.
x- IAU.
.""
ID ID —
O 0>Q
C/9

•O •

in r~-



ooo,
S""S*



ID
E
^"•^(^"^3 O
— CMZ





U L.
O O O 0 3
ID o v a> uu.
a<5d^i|
•
1- 0) OH-
lo^So.
t- 
«4-LLJ
£












KltO




KIT
CMO






















'io'io
gE
o_o


s^

zz>
ID(0
f £
a. a.
ii
ID ID I.

O.O.-Q
00


"


















fir-ooo
K>CMO>—
^— ^— •!•





to to *r in

K,K>fMCM



O.n.oo«r
T— — Oin
CM CM CM-



ID ID
JB O1C
i- c O>X
o o*~ o
Z-IX-J

c e c c
>-ID ID ID ID
c in in -o
> u. c. u (.

-------
































^**
^

3
tji
^.
o
o.


•
o*^
^^.
1


LU
«J
CQ

Q>
10
in o
c i_
04-
V) O
in u
•~»
E E
LU O

H-
E
ID
O
4-
in
a.
3




^J
<1>
Q)

O)
0)
a.



4-
ID CM
._ ^n
m tJ
^? tip
\CM






ff\
£
J2
^^
O)
c




C
£
i
4- X)
in c
o o
1- 0










c
4-

O
ID
LL.
1 1
i 4-



<0
O









03
in
to








f*^
J



































ID
E
1







m
u.
*
4-
sl
V. l_
J3C
5

ID
O
•o
(^ c

in
o> to
3 X
ID 0)
> in
ID
>- o
U L.
c u
0) C

u
— in
**— ^f
(D 4-

o £

4-
c c
O -O
O in in
0> ID
IO~ 0)
4- I.
C —
(O o c
O»- t- X)
•"• 0) O
OX1 > >
4- O —
o>x o>
x> c o o
a>.-.c a)
E flT 4-
fl) ID W 0)
u in— >.
o> >
*£-§ 1

x> slo 4-
CXI t. —
ID 4- E
jo c —
•C- N O
>- C
— « O
KI IDJT —
C4- 4-
m ID u
c in «
34- « 4-
L. O O 0)
C L. X>
4- O
in o> ID , »-
O u o
4- »X(
. x o in
•»- k. a> •
OCN t_ 3
•3 —
0>X> 0 ID
roc u >
ID ID'O **
0>— C 4-
win° ~
C4- —
4) 3 ID —
f (. L.
4- 4- C
4- C O
4- 0) O —
C— O 4-
oe c o
in— o o>
0) O 4- •
u o in
a. >e xi c
« in— 3
l_ e . * t_
3* 0
u .
j= in t_  4> x> o
> CL.4-C 4-
(D ID in— 4> in
'4-4- O.4) O>4>
4>— 0.4- O W4-
— 3 ID • 1_
4- E (DO 4> 4>
3— CJ= > C
O in<4-«o
D A UX> 4)
7-82

-------








LU
1— 4
t— I
1—4
O
£
c_>

o
C£
Lu
c/>
z:
o

c/>
*"
ai!

•a:
c£
ZD
it
O
z:
Hi
CD

O •
O
rV
O
«^J

0
0

_J
^^
U*?

t— ^
H~

O
>-
C£
5*
1

•sr
i


LU
CD


















C
in
u>

LLI

















in
e
^5 i *
t_M» ^*
^«-^» v
J®|




o
o

o
•o
"o
4-
o
g
u

(O
o
in
c
*
o
•o

•o
0>
o

i
s

^s1

p,-


m
E
2£

cn
c




0)
u

">
~°

0
t-
-c
in
in
1
XI



























0
u
e
L.
l*»
o
t-
L.
«
a.
3




v
0>
—
O)
^c

D>
3.




ID CM
Kl U

?cJ
O)—
c



fo
^
z

O)
c



O
*~
4- -5
S S
J- 0







1
^
"o
ID
U.




„











Kxoino vo oo
Ofo »o • r*
«inxiin —
M — 3 ID 10 O. TO
O c e e o— ^V-M- I/JLLO o u o L.
cno O O'ojf in u. o o o o 3
— *J4-4-4- CW3(D «»»X.«>a)(D O.O
— O Q-Q.Q. 3— 0) 4>  y> a
4-LU
8s
E



z v>










in
^_.
*
O


S
o

o




OO

OO













m->
—CM

zz
(0«3
JB !c





























































C
">
tS J?J£- •§
o o o> a
c o o >• "o-o —
OO4>(- «3(Dt- O
~XlX» O — — ~ I.
t. 0) O4- — ~ «J4-
ID 3 3 O J=J= C
zoo-iDQ.o.a.'o a
(- O 0
«^LU
a:

>
4?


Z









0
5\i
f\


f^\ 'fO^^CVCV C^ C5






f\ KM'O^VD r-*GO

co in— min o—
*~

••


j^s.--. f.. j
f^lfSg wB/\







OOmc\

ovoror^






O'^C^^-vO

o * • * •

o

^ S *
0 — 0
K> ID

^^ •• • ID J£2£ C Q)
IDIO ID CXOOOCX
E E OVC E 0 O ID (D «_ O O
ZZ-JX-1 2 U.U.U.U. XX

•o-o -0-O
cccc -o (D -o -oxi
>>IO (0 IO ID .C.C.C.G JCJC
'clh'in'in'in ttllll til
(S-OXIXIT3 ' -J-f -f-f 5-f
t-ui-L. ccce cc
intOfDID-Q Q)Q)Q}O A)O
3XXXX 3Z23 X2
OTOT3T3-CP 1 1 1 1- II
gujmmu, a ccgc cc
feSSSS 5^. ^-t^-P •*-"

4™ — — — t>U S E E E EE
~ ID (O (O (O 18 ID
OCLO.b.Q.Q.CC*^Q.XXXX XX
UJ L^UJ
2
TS
0)
3
C
I-
o
o
"




























































7-83

-------
































•o
O)
o
,V,

^•^ •.
'^i
-^i
i
***
LU
en

^^
































S-5-
c* j=
a0-*




0
c
a
"°
0
L.
^_
V) C
c o
O 0
in E
in o
•— L.
LU


0
L,
4-
in
c
x
O
^J




o
a
o
in o
It
"35 o
in U
•™
E E
LU O
i
i
o
L.
4-
OT

3



•o
01
IE

O)
a
*



xTs

^ 1A
^ CS
cn—
^





E
Z
"^
CT
C

^
0)
t
O)

4-
10 CN
^^— ^^
^? Yilt
^~ 2J
n>^—
C





E
2
O>



C
H—
4-
••—
4- "O
0 O
t- 0









0
E
C

4-

"o
ID
U.






H"l
c
CM
in





co

•
CO








f«»
fO
*
, tn

























•••
ID
E

2







m
U-

4-
ID
a.
4-

j"

3


c
•o
4?
ID
0
-5
L. C
*2 *~
to
0 *
5 S
ID
>> 0
U C
0 C

u
— in

*^ ^
0 4-
_ ,
0 0
L. **-
4-
e c
O -O
o in in
0 10
ID— 0
4- U
C —
— 3 O
ID 0 C
4-— •
O»- L. TJ
O-o > >
4- ID —
D)X 0
-o c o o
0"~ JC Q}
U>— L.
E 0 4-
0 ID U 0
L. U)~ >.
0 >
X O 4) 4-
4-*O O
m c
?ll ±
ID 4- E
•DC —
«0 O —
«r N o
>> c
^— 0 O
Kl to^ —
C4- 4-
in ID o
c in 0
34- U) 4-
L. OO 0
C t- -0
4- O
in 0 ID •*-
0 (- O
x 0 in
OCN L. 3
0"O U ID
o>c o >
p ID O —'
5— C 4-
> o —
ID in— E
C4- —
U 3 10 —

4- C O
4-00 —
C— O 4-
I>C C U
n— o 0
0 0 4- •
- 0lfl
Din— 3
30 O
JC L. in — 4-
u n 0 u> •
—4- 0 •& 0 >.
j: in t.  C L.4- C 4-
ID ID in— 0 V)
4-4-0.0 010
0— Q.4-OID4-
— s a • t-
- E 0O 0 0.
3— CJ= >C
Oin<4-«c«co
•O UT9 0
7-84

-------



LU
HH
t— 1

O
trf
LU
O
E

.§

•ss.
o
00
h— 1
LU
z
ce:
Lu
O

LU
CO
HH
O
o
t~**
3
M»J
0
•a:
H-
0
o
33
CD
0

JS
1
LU
I—
LU
0
g
g
=3

•
IO
1
LU









ID
u
~
o

"o
4-
in c=
c o
o o
in E
in o
1 •*-
g
u
tl
1
•o




0)
J?
O
•o
__
in o

tn o
in o
E E
LU O
H-
i
>w
o
4.
10
a.
3









-






81 ^

*cr ȣ c
So .2
0

•o
s
V
ai
3£
O)
^

^»
tO°8
Z *«.
O> —
c

|
c

•a
Q)

O)
O)
=L



4-
^8W
X. CM

C



ro
i
c

1

4- -5
U) C
(2 8





C
4-

U
O
u.





8^3^^ ^*
oo •—
« «t •»
^t^*p*»
«OTO?O



en o co CM ^
Or*T
^ ^

gOO 





• --OCM T -OCM •



^CM »OIOP^-Oi
"~ - "~ ooT










rrooeo
. rooom
» ^
*™"^*





r-.ininr»
238$

ex
S-
ID IQ4- ID (O
i. u x L. oinoo u
Z2-.2 -2'°^
c7
•o
s
a
^
(0 O)
c— — u
=> 10 05 a. ra
»•»»*-•*- inu. o u
U.O O O O 3
a • * »NV g> o> o o>ja
tf> ID ID ID — J2J3J3J3 N
— 0 o a>a v o v o uu.
3 E E E\ 3333 3Lu
s in




o>
g


Ol






10 r^ '
CM T
«r Oi
0 0


OCM
•Ol
oin
o










OirO
COO
-
o a> u
— J3A O
(_ o 0)4-
10 3 3 U
S00^

fy













ss
coco
in CM


88
«o—
CM*-*























ID ID
EE
U L.
2&

— c7

5S
ID a
iladelphi
Iladelphi
0.0.
























_
minrorr





— — \oto
OlOl






OfO«3-inin
^5 • • 0 e
CM CM OlOl fO



rolo
ii-S-SS

c c c c
>-ID IO ID ID
c in in in «n
u o
> (. U U U
O l/> ID ID ID ID
°° s.s * * *
— 3LUUJLUUJ
t- O ID
— L. L. 0 O « 0)
ID4- ID U U U U
C4- C C CC
•0 O-l 	
fl> t> ID C. U U U
> _OQ.Q-O-0-Q-
i_ O V3
IDZ LU






O
o

_
f-



O OOOO OO
r- \OT-O O —
r** totn^^o rooi
^— r^COOlCM Ol^3
•^

O OOOO OO
— — cocoto r*-^
— O cocoes — vo
— incoiooi ^CM




















^ 0 ^
o — u
(D ID
JQ -4- .O
ID CXUUOCX
E OOIDIDUOO
Z U.U.U.U. XX
«
•00 -0 TIT3
•CiC
U-LU
§
o
V
e
c
8

















































7-85

-------































- ^^-«*
•o
QJ
3
C
I m
C
o
o


to
r-.
LU
CQ

























(













"o i ji
PI




V
o
•w

®
•o


o
1_
4-
U) C
c O
O 0
in {=
in o
E x-
E
ID
U
4-
V)
C
X
o






o
0
>
0>
•D

•K

c

•o
0)
(U
D)
^
'TO
-1



.
ID CM
V. CM
CD —
C




Kl
E ,
2
O)
c





C
O

4-

4- -O
w o
1- 0












i
c
>.
4-

•—
O
ID
U.






O

^5

,••







in

—





VO
in
CO






























«•
ID
E
i








m
u.
«c
4-
(O
0.
4-
) O)
s"^

-
u


c
T5
ID
U
«. i
o ~
H*
tn
O (D
3 X

to o>
> 0>
(0
>^ - Q)
o <_
c o

o ~
•- in

*- .c

~O 0

4-
§C
•O
o 10 in
o 
T> C O U
in— L.
E ® 4-
O> ID O 0)
o >
X O O ^~
•^ ^o o
in c
T3 3 O 4-
10 4- 1
•a- NO
>- 'C
*" ™ O O
C4- 4-
V>ID U
C U) 0>
34- « 4-
t-oo o •
C U "O
in o (D •*-
4) t- O
XV U)
M- U Q>
OfN L. 3
3 —
OJ-O O ID
o>c o >
0 ID O *-*
5— C 4-
> O —
row— E
C4- —
0) 3 ID —
= (.(.'
- 4- C
4- C O
4- « « —
= — O 4-
l> C C O
n— o «
l> U 4- •
u cm
o. »c "o e
l> in— 3
(- c xi_
^.30 jD
3 ID ^ in •
— 4- (D «J3 « >.
j= in i. in 4-—
x  O T3 O
* C l_ 4* C 4—
10 ID »•— o> in
4-4- Q.O O)fl)
«— Q.4-O ID4-
— 3 ID «L.
• S (DO O O

) W^C4~^C^C^3
^ O^3 
-------




00
LU
h**H
H^

I-H
o
^c
lj—
(J


s:
o
C£
U_

3S
o
i— «
CO
CO
t— 1
UJ
e:
u_
o
2:
UJ
CD
O
o

1
o

o
UJ
1
UJ
_]
1
U_
O
>~
Op

E
CO
,
(O
*T
LU
1










B>
u
—
t-
UJ
ID
V
£
in
' |


0)
u
>
•g
in"o
c L.

~e
in o
in u
"E E
.LI O
«#•
to
V
Q.

















2-1 fr
Pi



•o
1
01
s
O)
=-



*r~ *NJ
K^S
^>—
C



to
O5
c

d>
H-
t
Cl
31

^_
ID CM

2**
cn—
c

to
D>

S
™
—

ti |





ID
C
•—
---
g
U.
to ^^co
O^ ^hOk
O^ O^Ok




OtOOOO f«- •— CM
— Or--OO •— \O •
coc^^toin to ov
•— '•— r-f>T ^"
^ toto

.



wOCMOOto — incvwsr o> to«oo\
•— OOO«3-OC\ •— •— OCN •» OCN •
CMO>to«oooto •rmtO'8'CM • • -r«
o t^^r "~ ——CM
"~ "~

_


g§S2§£ Jg*-: ^^S10.
m eoeo oo"~


r




CM TOOCO
r>- fOror»co
— toooin
•. •.
^**~-


to r>ininto'
•— — vovoo

a
E
IDIDIDIDIDIOIDIDID (D4~ ID ID

^^J^Jiii^JJi Z2§H
^ _, ^
CM
jD e

COOOOOCO ^ I/} O)
OlO^OtOU *-* 4aDjD C
<^%^>^<_>g>— c— — t. O) JO
"o = cec o^a S^£ »u»-x-M-N^ O O O OjQ
— u o.o.o.a.<:^: raina IOID— jQjDjax> N
e ID — HEEE « 3— o « OQ o d> 
g.




»
•
*"*






to . r-
CM T
'T 0>
O O





Oin
O



•



o>co
coo




oeo
Tin

•
0^
ID «3
E
L.OO
O^f ^f

. J


D
C
fc
c o o >.
.o a) Ov



r«. ointo^-inin
— CMfMCMO\OvfO
"5 ID
o> c '
1 ^
IDIDXI.  t- t_ I- U
Q.O. — O in ID ID ID ID
— — o a •& au i x xxx
TJ-O u «*- — 3 (.UJUJUJLU O)
• •(- 104- ID in o o o u x
f i£osm5I c4" *" c c c c
>• CD ^u*u U L. o>
O LU > OQ QLQ.a.O.tt.OC
4-
Cfl
3
C
t-
§
U


















































7-87

-------
























<~.
TJ
(U

£-
£
O
u

^
f



1 f 1
LU
mJ

u
'>
0)
T3
in 15
, O4-
tf) O
in u
'I e

W
*^

E
(U
O
L.
+•
(f>

3






















I?!


•o
o
o

^
D)
P.


4— ^
8'
.
;!**•
"o>--
c
to
1
o>
c


_
4>

**"


O)


4-
ID CM
"if

O>~-









5

O)





c
O
4-
4- -5
Iff C
o o
t— O





I
C
^^
4-

*0
ID
U.





Of O
)Q^f C
^ _






O»CMOOOO OO in
 —
r-cooiCN otto


«r>JOOOO OO *
rrvOOOOCOCM •— 4-z_j i_
22U-U-U-U- XX Z


^^.Q A ^^3
(.(.!.(. -t- t- n
O OOO OO ffl
X X X X XX U.
4-4-4-4- 4-4- <
C C C C C C
1 1 1 1 II ID
c c c c ceo.
f O OOO OO
O SM-4-4-4- 4-4- 4-

L. L.J3EEEE EEUJ—
•"- ^6^ ID ID ID ID ID IO\ ^

ULU O
'
C
I
IS
u
•a
(• C
£ ~
a> ID
3 X
ID  in
ID
U L.
C U
Q) C

"o "^
— in
• H- j:
Q> 4-
"o o
4- "*"
§•§
in in
a> ID
ID"^ 0}
C —
— 3 O
ID U C
X)»- « ^
O«- 1- "O
OXJ^ > -

01X 0)
"°.C^ °
in— t_
s «T 4-
D (D O «
L. in— >.
0) >
X O 0) 4-
•*-"o o
in c
4) —
?-§2 ±
ID 4- e
•DC —
..JJO —
• «3- KJ O
ic >• e
4- • — 0) O
C KMO.C —
I> C4- 4-
Q. , U) 10 u
CM 0)
4- 34- in 4-
3 t- O O • 4)
O C L. 4-*D
j: 4- o t.
4- W 4> ID O>*-
- 4) U O.O
X 4- tt)-O 4>
X 4> t_ lit
c c **-• u 4}
ID IO OCS L. 4-3
t- L. 3 (ft —
33 4)T3 O 4> IO
•*••*- D)C O 4- >
O O ID ID O — •
N N L. C C
C C 4>— c —4- ID
4) 4> > O — 1-
iJX> ID 10— C E 3
— — C4- ID — «*-
•O-D a> 3 ID (.— o
OO -C (- L. 3 N
- u 4- 4- «»- e c
OO 4- C OO 4)
— — «4- 4) 4> N— A
•C.C >>C— O- C4-—
U U— VCC 4> Ot3
ID ID C U)— O J3 4) O
-4-O 4) 0 — +-L. •
JO t. -0 4) O U)
OOc a. • c o-o— c
ID 4> (ff— 1- JC 3
-C-Cl-l-C O X O L.
7>O13 30). — O ID
D O O o ID o^ n.in •
. t- N — 4- 4) • >sQ 4> O >•
:4- 0) X 4> O4-"3 «'= "c
J2 4- C U 0.4>f O O
I | — in — O 4- O)X
(0 (OTJ a> in a. O & 4> 4> • 'O'U.C O
-4-^ > C ^4- 4) C4- 4-
f ID ID U>4-»^ 4) Irt
*-•«- O4-4- 0.4) C 1 O)4)
O O ID 4>— 0.4- 4IO (O (O4-
U— 3 ID in • l_ U
:E4-4-E 4)4)04-0)4)
; 3 4) 3— C.C l_ 4» C
^ U*Q 4) »^- OIUZ"- — ?
7-88

-------









u,-
0
1—4
CD
CJ
UJ
CO
_J
 "c ID ~
< §«-



t-
Oo,
O <^
CO t ,.
*• 3.
I «

"u> g>
« ID
H *-
LU

U>
ID °>

tJ (Q


o'|j o





O
Pol lutant/sour




o

*
CO
r-
CM

in
T" 2

U O







o\ •
CM 10




—
O 1
ro 1
•T

O






JO
ID 10


in t—
5
5 ID
<- t-
3 3
M **-
C 4> 0 O
D O O N
j3 _ ._ c
> > 4>
1 2 2 §
J 4- 4- —
0 C C JC
O O O
-co o to
U U !_
- 3 «- L. 4-
C0°4? 42 $
• (/)«- H-
r- ir><:u-< —
* ID Q (D
(0 Z 2 4-
*r £
o
«tr
ccT
fO

CM^

in

-^
^^ ^^ o\
*r "~. "1
• in in

U O O







o o* \o
in o in
"»•*




. O 'in o
O CM CO
CM in vo
T —

tr CM






JO^ JO^ £>^
ID ID 10


CO CM CM

C
ID
L.
3
X-
O 4> O O
O (JON
| ||l
•o
"o ••o'o "o £
t. 4)U I- 0
4- —4- 4- —
c (-— c c JT
O— OO O 0
c o  04- 4- 0.
04- Q "a
, « 2 4,


0
o *^>
«T CO
* ro
co •

• CM^
^ ~*
~~ ~ r**
•a-" V
« - 2 ^ ^ 2

O Q O O Q Q







O in • os O in r-
O «r CO CM t^.
co^ — — --^ — o
i^. tj v




8 ! ! 8 ! !
7* f
•— in
O Os
CM in
• O
0 .
O



ja ja
ID ID ID ID ID ID


« - . 	

C
c to
- «J (I
t- 3
3 s-
o o ^~ o o o
O O O1 O ON
'> . > C > •"> 4)
4> 4> 0) O 4> J3
•a -o ja tj -o ~
- =5 - - 'S
OT3OO O-OOt-
L.4)t-C- U4>UO
4-^4- O 4- — 4- —
c t.— c — c u— c jc
O— O O J= O— O O o
COIOL. O OCO8IL.O ID
I- 4- ID L. 1 4- 4-
3 I-'O C t. X 3 L.T3 C L. CL
O4)4>O 4) OAQ>4)O 4> 
4->0 4- JB 4->0 4- JC
WM- U C x- U>H- t. c •»-
U>«C ID3U.< — (A< (D3U. "> C >
4) 4> 4) 4)
•O "a JD -0
O °O O O O' ^
L. 4) L, L. 1-4)
4- — 4- O 4- —
O~ O O JB O— O
COIDL. O U C U  C
A4)4>O -V OO4)4>O
4->O 4- O 4->O
(OH- L. C. M- (fl»- (. C
V>< ID3U-< — <0< IDS
ID 4- Q ID ID 4-
£ CO £ . 4- £ C/>
isr
7-89

-------
Isomer-speciflc PCDF 1n SI units
7-47    Summary of 2,3,7,8-Substituted and Total Tetrachlorodlbenzofuran
        Emissions from MWC Facilities
7-48    Summary of 2,3,7,8-Substituted and Total Pentachlorodibenzofuran
        Emissions from MWC Facilities
7-49    Summary of 2,3,7,8-Substituted and Total Hexachlorodibenzofuran
        Emissions from MWC Facilities
7-50    Summary of 2,3,7,8-Substituted and Total Heptachlorodibenzofuran
        Emissions from MWC Facilities
                                    7-90

-------

-------



s
S
L^
t/>
«JP
o
CO
co
S
LU
•y
a:
LL.
0
NJ
|^~
LU
CO
a
o
a:
o
o
S
LU


— 1 CO

(— 3
=3 2
t— i
(—
03
CO
1
' A
CO
•t
u_
o
o:

3
CO

.
^
1
LU
_J



0)
u
?.
•S
"o
L.
(ft C
§O
U
"*? _
l/> S
ii *~
ID
0
L.
4-
 o
- 0









E
10
c
4-
13
10
U.



CM O CM CM •— ro V OS O CM OKI CO m Oi
co«r(Ooorooo«ScM e>» * • . ^ .
*f"*CMO^*' »K1 ^>





•



v oo KJ to — »o CM \o in co to f. o in ov
CM«T\O»O'«..— f-^K^tO CO *
r»— CMCNIOOO- into— in CM




/


* CN










_
CM





"o
fi. 4-
E (ft
tOIDIDIDIOro4~(0 10 ID IDIO 2 ID ID ID
EEEEESEEE E E < EE E
Z Z Z Z Z Z^IZZZ ZZS ZZ Z


^
CN
-o ^.^
S 52
Z Z 4-
— '-. — _ - • S-CJ e
CM «» >. " • •« 3
88^- 42 . «? ' ' t J2» »S .
^•'S S«15k a 1 f* |§
CeO »">•- X-OTU.L. W4)4- O)
OO-oifl u-ses^-a-OL. — 3 o> >.
^ 4-4- C 3 ID • • «XJ3 O L. IDIO O (- O  OQ.K U.LU
n nj Q) t. O 4/5 Q
gx K «2 .LU 2
E C/)















































8
4-
C
4)
U
0)
a.
2_
o
4-
U
D
i
\

7-91

-------

 CO


 o
 I—I
 CO
 CO
 UJ
 O
 tvl
 UJ
 m
 o
 a:

 3

 c_>
 UJ
 a.

 —i to
 <: uj
   o
 a
 UJ O
 to
 m


 ?
 CO
CO


CM
u_
o
CO
CO
IT
UJ
sS
            S
                                      .
                                     o    «•* »^
                                           .
                                     O    -
-------




y
o
LU
OO
z
o

to
00
•— 1
LU

z
^^
_^
Lu
o
z
LU
CD
O
0
CJ£
o
:c
o

o £?

_J

*
K ^c —
•^
CD
^ , (O esj

« f "* S
-• ^s
s
*» -5
s §
h- U


a*'
i
s

-' " "o
Q
U.
^ U1) <\J to O tO ^ ft O Ol
• • CO • 5 • O "i^ «^ a
CSJ «5 c— ' ?J S 10 ® * ""
O CM


CM P^ <-( CM CM IO
• <*5 IO Ul . S
o d - .





o o — 4 o ^ co eo to
ooo**~*** o .




^oaj^-^otft o» •«• o,p»,
^.^^^^u, o. ^



re « (o ro
rnejrgc^cvi^- ^, g „ ^
S 2 o " ° " ^ § ~ -"




-









0
o






^^





tf

Q.
mlii | | ||

• .- sr ':
- » H
i. £ — — J: § * TT
w c ^- •— u a o.^.
-§ sc^&u.e " ft
- 1 1 5 «r «• «• ^ | | £ Js
5 ? ** • W J3 _B g S ^w 3 LL, *O O J5 fg
3 •• ^ 3C M ^ 3 3 3 3f j «*^ 3^ ig q g2 flu
"°*»LU * *fi Q'UM
«rt 
           > a. oe
                   •s
7-93

-------
I


s:
§
it

CO
m-yr
tffm
O
H— 1
CO
CO
t— «
as
LU
z:
C£
=>
LU
o
tvl ,
LU
en
i— i
o
0
C£
3
re
CJ
ex.
LU
rc
—1 CO

""LjE
LU O
E~ S
i
p^
>— i
I
CO
§
to
1
CO
PO
CM
LU
O
>_
es;
j
^•^
c/^

* ••
o
i .
N.
LU
1
1—






S
*>
a
e
E
§
|
t
5
e
AJ
-a
«n
g
s






•S
1:

*'5*»
°l
c

, 8~
03* __><

^(V |Q
"^n
-' I
c

4 S~
SuT^
^S **
*«P*
»^n
**i ae
"* ^
c




«
I
"c
1
8
2
S
I_
|
S
a
1
*e
LU


^.s
s~
.— 13
•S^B
"1

i 8~
^u.-S
HfS-g
^ " •«
P^ ?
c
OJ
i s
sT >*
^ *s
'I'in
l3^
S"


g

1
U
*;
t£



o
IS
c
^
t—
*u

vn co co ^4 e o 2>a>
csl O *-• n3 **
OO°
O





Si ~ S SS

O
























•

W « IO IB (O
c e e EE
£ £ £ ££
CVJ
! . , II

i . i II
— -U. t V Of

C^5 ^S£JLL.*C 5 ^C^
§5^.5 *do.££
a ^ vt
l/l «• UJ
p ,--
-------
Other organic pollutants 1n SI units

7-51    Summary of Polychlorinated Blphenyls Emissions From MWC Facilities

        Summary of Formaldehyde Emissions From MWC Facilities

        Summary of Behzo-a-pyrene Emissions From MWC Facilities
7-52

7-53

7-54
7-55
Summary of Total Measured Chlorinated Benzene Emissions From MWC
Facilities

Summary of Total Measured Chlorinated Phenol Emissions From MWC
Facilities
7-55a   Summary of Other Organic Pollutants From Municipal Waste
        Combustion
                                    7-95

-------

-------



co
UJ
t—l
1—
fcwl
_J
o
u_
2

O
p£

CO
z:
0
t—4
CO
co
*— i

,.LU

>!
Z
UJ
-c
Q.
. *— i
CO
o
UJ

^fc
^i-
HH
a;
0
-T—
CJ
>-
0
o.
u_
0
,.^
o;
*^

g^
JS.
CO
*
UD
1
UJ
CQ









a)
u
a
"°
o
4-
in c
I8
in o
E **-
UJ
E
ID
a>
L.
4—
in
O





a>
0
>
0>
•o
_
in o

in o
in u

ul §
L.


H
ID
4.
a.




















2- £
*r JJ; c
•o
^
^
o>


^8*
X. CM

C

«1
s
D)
C



•a
0)
o
O)
^
O)
3.



4»
RJ CM
Z *»
N. CM
D> ^
C




tO
|
O)
c



^

*j^
*|~
4- -O
« 0
h- U




i
ID
C
4-

U
ID
U.

CM Ov K>
r-oi in

CMO O
.CMO^O^
*f fo



CM O fO to *- to
•O CM tOCM O
• . to K> 10 ...
in • o\ to o>




Or^o CMKIO— OO
• — r- f-co«in ..
CMf^tO *.o« OO
f info in




O m «r
^- CM in
fT






1 ^- •— O to r>-w inoeo
**— ». •• ,_,f^
inr^-POOA COCM COOA«—
<*^ in •— — CM in







r»£OtOCM » O> CM O> Kl
* Ki • i«" • • fsj e •
O«rp CM K> intoot
CM CM — — ((-no





.
— . _ _ °^
. . m TO g - «: "RJ
E E E E O)
u L. L. o in o o o o ^ c x
5£O »-CM«3-O *r»S- OOO
tM Z _J _)


•o -o -c
c c c
«D ID . -  ID ID .ID
T3 XXX
OCCU. O 03 (D -8 -5 -3
rooou-oooo o o — uj uu ui
^ U O. CL— ' J3J3J3J3 JDJD •— L. ID O O
IfeSi555!^®'5-®-^^^ "slzzz

<" * <5 =*
ID *.
z 3>



o
*



CM O O O O
r«* o o o o
CM 0 OO 0
CM O V r<"i
to in •— o\
r- — t>- CM


in o O O O
— O O O O
CM O O O O
^ in *~ r*^
CM in o —
in ^- to CM






~

















x
^: o
o —
ID

— O It J£ C
ID C X ,O O O
•Z u. u. u. u.


JS_0 J3 J
4-4-4-4-
• o-b-b-o-
44^4^
C C C C
Iff!
o o o o
t- J3 E E E E
*™ ^~ (D (D (D (O

[^^ L^ '

§








88
to «*•
to in
to to


OO
O 0
O 0

o\ o
CM ^~











.-













^
u
ID

a>
C X
1^
Z X


a &
j= j=
4- 4-
II
Iton-Wen-
Iton-Wenl
ID ID
Z I



|















^*,
•o

O
u
4)
*•
4-
0>
*•
4-
O
C
4-
1
_

C
O
4-
O
4-
0)
•a
"o
in
3
ID
._.

4-

1
O

U
O)
•o c
xu
o in «
J3 O) >.
in ^
11 =
U 3
— *• U
_ O) m
cno
OID4-
. i_
O 4>4>
^> =
DJ3 U
7-96

-------












{/}
LU
i— <
I—
1—4
_i
t— 4
C_>
£

0
§F

§
u.
z:
0
00
1—4
LU
'LU
0
LU
a
«j
jg
p
LU

LL.
O

C£
<3^
1
CM
LO
LU'
CO








w*.
~E— >^
+. *. O
iS *-2
u


03
u
01
•o


O
u
£§
£ °
In H
v> o

B «-
U
i
0)
4.
in
c
o
XI


o
u
•o
_
Isstons
contro
E S
LU O
U
E
(O
0
u
•f-
in
0.



•a
o
a>


01
E


4>
ID (M
K^S

c"~
t

Kl
^
O)
C
0)
0)
f
i1

•i-
ID CM
^8
^ *j
O)—
c





">
2
O)
c
e
4.
4- -5
to c
£8






o
1
^
"o
u.






§0000
(N Ot
^





O t'l (N

*\ "~ "~


§~
»
O r-Too"

-------
 CO
 LU
 O
 CJ
 tO


 O
 CO
 CO
 LU
C£


Q_
  I



O
LU
CD
u_
o
CO
CO
LO
 I
03
             -
             *-
   2

in _
c o
O U

in 6
in O


LU
   E
   ID
   O
in o

f ^

in o
in u
  in
  a.

      4- -O
       in c
       O O
      I— o
               O
               TO
                           oo
                           oS
                           10^ «3^

                           — T
                           •3- in
                           o o
                           vo o
                           Ol PM
                          00

                          S8

                          » CN
                                      to
                                O
                                O
                                in
                     —    n. o.
                   en    E E   -o
                   .x    
-------



UJ
t— 1
t—
•— 1
f ^

«:
UJ
j*
LL.
O


|
CO


*—
*-J
UO'
1
r-l

UJ
CQ
IS







0>
u
o
x>
_ ^
8
4-
o S
U) E
in o

UJ "~

"°
in o
— c
in o
in u
1 E
LU O
t


6
«
u
4™
in
=






.












SI ^
•fcz °

C M-
•a
«
en
O)



^8~
O) ^™
c



K^
0)
- c

^
0)
t
O)
3.


^8N
? CM
O> ^
c




|
c

O
•™"
4-
4- -5
in c
o o
H- 0






•


e
c
^^
4-
IO
U.
CM ' — (O— •» CM CO
* • e e • « e
O If\ CO OO CN Ov GO

Ilii 1
•S88 "
1*^ w
^^


O O O O •— mvDOO f% «—
r^-ooo r^Ofn^-'^ *o\
mtoO«— • ^OfOCMO»CN v •—
NVsV ^
to




^5 ^5 ^5 C3 CO ^^ ^* ^^ ^O f"O ^*
r** o o o ov co "sr *~ o» » CN
•> •. ^ *k * ifi

** f%v


8
o^



O OQO 0 O O
f O O O CO O O
10 co i
CM ro oo CM r» —in
^ ^— •— «•» *»





§o o o o o o
o* o »— o in •—
^ K"J CO CO *O ^
CM to — r- «r • r» o>

.
(£.

ID to a 10 ID «3
L.L.L.L. OinOQL. OO
OOOO — CMTCOO ^-T






*"K *"^ *••%. •
CO COCO

0 = c^u. ?
CTOOOU-OOOO3 UU
— O 0. P-O.— J3 J3 J3 JO N .Q .O
~ X *~ n § n ^^ 32333 ft 3 3
M a ° z z x 1 0">0">3: 1 ^^
E






















COCN



OO
MCN
«3-"r^






CO O
CM CM




ID
E 17
L. C
55


•o -o
c c
.ID ID

IA U)
a> — —
u

> <_ t_
O (0 '10
•o x x
•o •o
-tutu
ot'SS
c c c
^8r7:
> .0.0.
feS






















OO
28
k •, »
(OCM
^_ cw



^5 Oi
TT*«-"






Kl >O
rooT




ll
'

TJ T3
e c
ID ID

 ^ ^ *"
C X U U O
O O ID ID L.
Z _ 1 CO CO •*-
U- U. U. U.



ID A a
-C .C .C .C

" L. L. L. L.

4- 4- 4- 4-
c c c'c
ffff
c c c c
O O O O

i ilil
*• a. ii i-i
CO










88
— CO
J»JO





11
«• CM
CM CM
















AC
O
ID
, JO
O
||



ID ,10
f f
4~ 4--
L. L.

4. 4.
C C

E EU
C.




g
oo"




o
CM
— "





i






















1
i







CQ
U.

4^
CO
a.
4-
. 










































in
c
3
U

^.
in

|
o

V
ID
(.
«
>
















































•
>•

i
s
3
l_
t>
in
4-

-------






LU
f"^
t— 1
_J
O

L_

CJ
^
1
Lu

OO
o
1— 1
s
LU

— 1
O

LU
T-
Q.

Q
LU
^^
^-
f_,
Q;
O
:r
^•^
r-i
LU
1
	 1
 •
*•* >K
u
1

t
O)




"if

c


"l
O)
c


w
0)
(U

r*
O)




4_
ID CM
tos8
\ c5
Ol ^
c

to
o>





S
w
*™
4- -5
in c
£8




-


o
1
X.
4-
o
ID
LU


CM Ot COtO O> O
t-- co co in co o
" O^ Ov Ov to O^ O^

888
ooo
co*oT— *
— K% f>.
CO Ol





III IS II cfS
"W CM tO CO
CM CO
CM tO



OOO ino>coo -co
' i-»OO tovo — Oi .r-«j-
in o o in •— CM CM —CM
to CM ^* -in
CM —





8
'X.
*3" ;
^~




O ' OO O O O O
in o o o o o o
co CM \o — in t— o
fO .0>«) O ID Lu 0} Q>

• IS s 5 5 1 ^^^^l **
?x
:


























80 o o
ooo
^* O CO O
co in o o>
— — — CM




OO OC>
in p« — 01
to r^ ^« in
T IO CM >O



OO OO
o* to to r^
t- 10 CM in
CM CM CM to








e o>j=
u, c D)X

•0 t3 -D -O
c c c c
ID ID ID ID
in in in u>
•o -o -b -o
L. L. L. L,
ID ID ID ID
X X X X
•o -o -o -o
LU LU LU LU
to o o o o
c c c c
.Q « _ « «
ssti&i
^S
S














§000
OOO
in >o o
CO V 03 —
— IO T CM



8888
— vO CTi >O
— in o in
co to «r •—

















. 	






X
_vf O
0 —
ID
J3 -4-
Q> ^ ^ C
c S o o O
O O ID ID u>
LU LU LU LU


ja o ja j
j= j: j= f
4- +-+-+-•
L. L. L. L.
SO O O
XXX
+-+-+- 4-
c c c c
2 2 z 2
e c e c

ln.1111
to
U. UJ
§














o o
0 0
O CO
to co



o o
00
f*- —
CM 
2x
II.


Q A

(. L.
II
C C
o o
II
S;
E EUJ
ID ID X.
Z I O
>-
CJ







o
o
s





0
o
to
2



o
8
oT




























Norma 1




m
Lu

L.
U
c
(ft
.c
u,
o
**~
1
ID
O
L.
0)
L.
ID
O.
o.
ID
C
^
L.
0)
a>
*
5
u '

o>
•o
o
1
0)
•*-
(0
(A
o
L.
O
ID

O
i_
occur
S
L,

E
OX
J
5
4.

a.
n L.
D
D 4~
_ 

p
4-
*ta>
O

(D
i1
c.
>
3 <






















































•
C

u
•H
1
«
j
7-100

-------

o
(—

1
r--.
LLJ
_J
CO
^





.
»•—
~
•™ c
»- o

u o
M*£
J5 in ^ o>



0 0,
o \
£ 0)

Jo
in 5?
in S
(0
t! u


u>
•*- —
Q "in
L.

«*-  1 1 110 O 1
^A ^5 ^*
* «« . •»
* . 00 T
CN * V
CN ' §
^? ^o
00 5
CM
^r


JO £l &
* * *
(D  ' > • ">.^
— \O O Ox g) O Q)
ax? ^o ^. TJ "o ^ o
*~" v C
_p^p P "5 ° OON
^^^24= i:^4:o4:4:§
1S 0^0 0 O 4- "O 4->O 4- IO 4- 4- c
j=inM-i_e "- ^ in H- i_ c s- > a> i- *- — 10
j in «c 10 su. «c a« «c u- <: t- in
•^"i S> § ui 3; § ci § — z
> o o ^
a. u. m u
in
2* S
» «
» r» • t*.


O U Q O Q Q





§g S §§8
*- O O I1*- O **r
O r^ co *v o« QD



'1 i ''| i
o • • ^
5 ?
T 8
8 8.
t^ oo
Kl "7 	


•°. J3
ID 0 C O4->0
^ tf ID 13 t. U) 3 ^ O 3
 — E 00
sr
7-101

-------
. Supplementary tables in SI

 7-56    Summary of Supplementary Chlorod1benzo-p-d1ox1n Emissions From MWC
         Facilities

 7-57    Summary of Supplementary Chlorodibenzofuran Emissions From MWC
         Facilities                       .

 7-58    Summary of .Supplementary Metals Emissions From MWC Facilities
                                    7-102

-------

-------


LU
I— 1
_J
*-H
2
S
0
oo
o
»— t
oo
HH
z:
LU
f-H
X
o
o
Q.
O
z!
LU
03
a
o
o
•*!•
«L>
a:
21
LU
LU
O-
i.
Ua
0
••-^
00
*
to
to
1
LU
an
,
1^
1i
I
e
«S
0
"e
C
*
X

-c
re
x
t*>
c
z
c
a*
%
*
2
•v
en
c
00
CM
S
v* c
t— u



01
i
1

ig JO JO ^ JS ^ J3
SPO ui .-i co m n
^^ ^r . u> eg  4^ .O a)uC
•°S^j£o-555S
! s

UUU T3 U ^ A^OVJO^ .OQIO .a OIOI ii_
S5?S R S S !?2!5gS 5 = 2 •% ««
-<^ -s •"* ° r>° »^w» MCO** ^ OJPM X
^ • *o • JS

=-s" » J S= 5S Si= a 5


Jf* ^^ °;5 u» esj ^
*A CM CO V ^

(O O U) OD Q O O
f- • co • * » g5
: irt *"* 12 *^ ' *** " ^^

£ ~ 0* jr- u, •' »
0 1^ n CM <0 ^
-

• O l/J O O . Ch f1*. ^7 tjft O V CO *^ 	 j
*


- ~ ^B
— ojr^ o 0 00,01- 0 m
OOO O O ft o G5 O cw o
1
III 111 11111 111 & K! s

|| |J2 sa
IBII ^11 a |
l-sloilslsalis-lllec "5 " oo -o o
Isf ^Hr2l^g: = 5l2>z= -Sola^^ •* ^
I
















V)
I
.Is,; r
i/t in o c *e
|='il g
S X C TJ
IHlfl
Q. C O 1 trt *^
1 0) N O C T3
S t) 0 "5 OT3
o o *j w •»- e
u en § a i
|^||l&
1 I 4>* t «f- 1*
i- u i j_ o (-
^_» jj H» ^» C, ^
« 01 k 0> O 0)
'o'o'o o g "o
7-103

-------



CO
U.
H

—
CJ
n' S S? ^
OO mCMiX>^rnir> en *CM ov
do "" — ">

-
SS^.SSS " n S iSS^RiK = «•»
o-j« - -CM^-CM s R ffi-
O O
•
.



cvcxicnotiocnv ^.mr^ e\i ^- o to us LTJ tn -* o to rx.ua f^.
^gj^^co^^cv POIO t. t/t fl*£^~Is5>*I^E >fl;7'Blll>feIBe»a fc i
c'io'S w £ S»*"*>"°'5>fi)IQOI>lBOkL.ID *^ 4J to C» O) f« •*• at ft ID " ' U U tM
** *** 3C X Cr ^ 3 r*J 4pJ 3^ X Z *•* Z ** *C *^ ^ >^ CD f *>J c/) r>>l UB ffi Jc z ^ C «} ^^M (/} ^ UJ
i • * " y, z""


































i«
§
!_.»
g M J S
tf» flf **- 1.
^§11=;^
Silli5
"5 o 3 S §•—
• 1*3*1 1
IsJIgg
2gT|||
s3ii5 .2 o °
•.iTfers-i
0 0 O O JJ «
yjjjr
7-1 04

-------
            "m M

            •* ^
             _  O!
            •y  <=
 00
 UJ
O



O
 oo

 o

 00
CO
a:
-
00


s


LU
CO
            £
            >•  O)
               C
          £
           V)
           t-
           (ft  C
           a>  o
           I-  U
              u
              n
                                 irt
                                 >a-CN
                                ??   ^
                         	j coin   •- ..
                         CM o — o o   o in
                         o cJoocJ   oo
                          in co
                          fN CMO —  •
                            O   CM O
                         ro CN              -
                         O O O CN O   O
                                 — o   o —
                          4- I) 4- d)    4) (j,
                        4- _« — ^ —	

                        — +- 3 C 3    33
                        C 3 O~ O    O O
                        — O
                        •f- 4- ID ID (15   ID ID
                        O  0 E E E   E E
                        -- U L. t-   L. l_
                        — — O O O   O O
                        O.Q.22Z   22
                             ft)
                             •o
                              o
                             £
                                       X
                                       3
                                       ID
                                       O
                                       C
                                                ON
                                                          7-105

-------

-------
 Facility type/structural and airflow design data 1n English units
 7-59a  Mass-Burn Facility Structural Design Data
 7-595  Mass-Burn Facility Airflow Design Data
 7-60   Mass-Burn Operating Data for MWC Facilities
 7-61a  Starved-Air Facility Structural Design Data
7-61b  Starved-Air Facility Airflow Design Data
 7-62   Starved-A1r Operating Data for MWC Facilities
 7-63a  RDF-Fired Facility Structural Design Data
 7-63b  RDF-Fired Facility Airflow Design Data
 7-64   RDF-Fired Operating Data for MWC Facilities
                                   7-106

-------

-------
7-107

-------
 §
 a

 e?
 UJ
 a
3

on
CD
 I
CO
cr>
in
 i
UJ
  I
  *J

si!
        £ 13
        U. IB
      •s e -
       . * 8
      £ 8C
        fi'-S.
                                              7-108

-------
 ss>
  C
 o
 o
 UJ
 I—
 e/0
 O-


 o
 or
 o
CD
 Q_

 O




•on


 CO
?
t».
UJ



CQ

                               in'
                              o tc r^   to
                              tn en •    .
                                                                            2
                     !•- «r CO VO tsj P.J <0 01 r- O 0> en        O  ui   ^  _J  rC i>; ^ r^ rJ
                                                                                      ir.   S
i --  •«•   to
                                                                                     O> CO   CO  CM  f>*
                     S88SSSSS  SSS
                     O Ol CO O3 CD l-»- ^i O\  CO C\J n
                                                      "V   (NJ  *"-  f\J fa CSJ CVJ O  ^4^IfJ
                            88   g  |  |SSg|  ||2    ||   |  S


                            S  a   £  S  ~~~~s  jo~~    £5   *  S
                      CO C> f^> CO O O t
                        s    sg
                     §g§
                                                                        S  g
                    s     §
                                                                                          S?
                                          if
                                         rsl
                                         .  .  .?
                                                     >,  '    ^
                                          oir>oo    =00    —5

                                          -ass.  S=s    ff
                                         .  ••««£     * «    a* a>
                                         * k> kJ M kl 5  S V It* **  "S *S
                                                                                              g  4!
                                                                                    JS JT   n> u. tn
                                                                                   . Q. a. o ac *^.»— c
                                                                                I
                                                   7-109

-------











<
0
CD
CO
LU
0
2
=3
O
co •
^.
1—

— '
o-
u_

a:
h—4
«-i£
i
a
LU
1
id
10
i
**•
LU
CD
t—















ID
ID
•a
V
ID
0




U
O
1
^
U
ID
ID
U


0)
i_
O
ID
C
ID


U)
ccv
ID 4-
l_ <•-
(0
0]
z













1
fO
3
O
1
o
c.
to

1
s









L.
a>
-i
ID
U
u
ID
•o
o
u
o





,_
o
§
JC
u
c.
^
L.
a.












u

4-
C9
ID
a>
ID

^
§*

_
o


c
O
~

!0
u
3
O)
k*
L>
Kl


^
ID
E
3.



0
>

O
ol"
—
L. :
3

5
+- TO
o O
[

•i




•*


s
u.

o
in













,





























£•
5
S
5

3

O






























i












8
01
3
3)
3
3
3

S

8













































31
9
%
1

)
r

CN











































C

)
I
_J
*

Kl











































3
3
B
•a
LU
J C
: a
. in

S













































3>
|

!

§












































5
i
>
u
>
7-110

-------
CO
LU

Q
         |
      S
      &

-------







u.

»
r—
1—4
_ .
1—4
O

I.
w
i
S
u
L.
•
t-
Ol
i
2
U
C
71
S
y
A







I
»t
^
J
9


in in r** f»»
o o o o

o o o o
f? in rC cd
^ CM CM CM











S SS- S S
• • * • . •
^«» -CO CO <** »> r*
O
co CM u» ^- in ro
CNJ  CT» «3 to to co

«
in


o o o o o
CM «3 en r* «r
•** «> «5 Ot T

t



00000
 -8 -8 -S -1 S
t- »~ UJ UJ UJ UJ O
C IO«A— UUVU ^O
J"° •• ^ • > > > > =
U 0 Z O. I—
tu
*J
10
7-112

-------
  |


  o







  LU



  _J


  cc





 oi


 oo
 £
 o
 LU
 a:
 LU
 C£

 LU

 O



 LU

 00
LU
          ill
          u. u e
            £>
                S
    *.§
          a  .
§
.e
U


U
(O

1.
     fc



LU II S

CO
             S
                 el!   i  I
                                  £
                            S
                            VI
                           -s


                           s


                       i 111
                                      7-113

-------
 CD
 t—t
 (S)
 UJ
 o
 a:
 >—I
 
-------
          i

-------

-------
Control device design and operating  characteristics  1n English units
7-65   Electrostatic Predpltator Design Specifications
7-66   Electrostatic Predpltator Operating Conditions
7-67   Dry Scrubber/Fabric Filter System Design Specifications
7-68   Dry Scrubber/Fabric Filter System Operating Conditions
7-69   Fabric Filter or Scrubber  Design Specifications
7-70   Fabric Filter or Scrubber  Operating Conditions
                                       7-116

-------

-------




i/o
z:
O
S
HH
1 i
1— 1
O
UJ
o.
t>0
CD
i— (
UJ
O
a:
o
fr-^
0.
' »— 1
a:
Q.
CJ
t— i
H-
1
CJ
UJ
UJ
in
to
UJ
CD

-
i i?
•• if
3%
eu ci.
c|
jj 2 f
]= ^

J-> * "^- 4J
' w o £ S
a ? g *£
^ b ^ JZ
Electrical
power, kVA
J *i>
Z "o. a
P
- . -s «

£ i 5 1
Hi's

"> ^
fc "» , C
5 'e en
* -
(O ^
ill
10 "~ *y

I
s-

*-< e
T °
8 1
888
9) O O
5 "" 2




§*"


m
o

S S3
o do

0 0
"' •>-"
~ — -« S"

      o o
      u? in
s
                  s
      8

                 8
                 to

                 o
     CJCNJ  CM
                 o


                 o
     e>5 aj   «
     a> o>   at
    II   u

    77   =

    II   g
                         ft

                        ti
                       - 9
                    S
7-117

-------












to
o
I 	
p™
s
o
0

o
1
UJ
D_
o

a:
o
I—
H>*4
Q_
C_J
UJ
C£
O
>— 4
«SC
OO
o
1—
UJ
1
UJ

(O
vo
1
^
UJ
g
*^










CJ
^
S
fc
3
>,
n
•i
• s
w
g
.X
g
§

1
I


o
£
d









fc
S S
S5
ra "i
-— ut
3
£
















^? T*
|5C

S ^
$ c
VI *"


? ?
IZ **-
•o ^
Jr *S
^ «^

1 ^


jj -O
£5


« 5
S ~


U.
(O .
0 1
•"


X
^ *

o

3 u-
$ «
jj ai
re

^
IS
« 1

tS U;
V
e
^
f*





i
^
1

CM


2 8 S S
OJ n) U) O) N


O . O
. o in . o
CO f*) P«* rt ffi
o
CO

0 00
CM M CM

O O O
CV , •» -H*
CM esj fn .
1
,1 1 § i 1 § II 1 II.
IDO^CO— O OO <«r *r -T
n0-*rc\joj. ^r 2^ "^ ^S^



FeF§? "S as 1i 1 *a
-
_


«



S"S5 5?20SSS SS
OCM — o m o — ' •? -. o
oo oooo oo . ,o o




01 r«. ^ u> o U)
sis" g si s a



•_ __.__!
niDisraranm n to  *O - U_
- Illllll |gl " u J -^ f2|
||g.ilillll|l|||af £ 111 I|il|l
jS"1 " |a" iS*1^ a5















































•
^ v
Ii
v «*
11
"o ^3
jj
7-118

-------
 CD
 t—i
 t/1
 to
 o:
 LU
LU

O
I—I

CD
LU
CO
CO

|

to
Of.
o
CD
         s-s
      g   "g
      C« -p .C
      TO w *J
ty name
                          VV   S
                          0 CU   U
                          Irt Vt   O>
                          = =   s
                                 s
                     £    g
                          5
                          lo*
                          U
                     s
                     o
                     o
                                                  8
                                                       Jf
                                                       
-------
         A w

         I-
 CO
 8

 CD

 t-H


 C£
 UJ

 o

 s:
 UJ

 CO

 CO

 0£.
 UJ
         ei
         Oi *
    o

  I!
u_

Q£
UJ
CD
QQ
^
CO
vo
UJ
»*. *-> u
»> ™ *

                       SS
                       in v
                      ? S
             O

             o

             o
                             §i
                              si
                        C S u.
                                   8s
               as  a
                                 .
                                 §
                                    £e> ~
                                    •— **
                                  w _= g

                                  S « u


                                  all
                                         7-120

-------
        I  u!
        M • J
 LlJ

 O
 CO
 m
 a:
 o
O
I—I


m
en
to
 i
ca
•- E
                                        7-121

-------
       i T;
       12
       * •

       "1

        u
       £ *'
o
u
CD
Q.
O
CO
CQ
   "ia
                 C  £   E
                 £  S   £
                                     i
                     8s  u.
            u.^, «a.
           -sfc^S £8i-SS3S-8Su. S  -o  o
           irm^pii^  in
           3              S    u. S
             '                  §
                               7-122

-------
Criteria pollutants In English units
7-71   Summary of Part1culate Emissions From MWC Facilities
7-71a  Particle Size Distribution Data from MWC Facilities
7-71b  Summary of Emission Factors for Volatile Organic Compounds from
       Municipal Waste Combustion
7-72   Summary of Carbon Monoxide Emissions From MWC Facilities
7-73   Summary of Sulfur Dioxide Emissions From MWC Facilities
7-74   Summary of Oxides of Nitrogen Emissions From MWC Facilities
7-74a  Summary of Criteria Pollutant Emission Factors for Municipal  Waste
       Combustion
                                   7-123

-------

-------
TABLE 7-71.  SUMMARY OF PARTICULATE EMISSIONS FROM MWC FACILITIES
Emissions Emissions
upstream from downstream from
control device control device
Faci 1 ity name

Waterwal 1
ESP
Baltimore, 1/85
Baltimore, 5/85
Braintree
Hampton (1981)
Hampton (1982)
Hampton (1984)
McKay Bay (Unit 1)2
McKay Bay (Unit 2)£
McKay Ba'y (Unit 3)?
McKay Bay (Unit 4)°
N. Andover
Peekskill (4/85)
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Ga 1 1 at i n
ESP/WS
Kure
SD/ESP
Munich
CYC/DI/ESP/FF
Mai mo
WSH/DI/FF
Quebec
Quebec
Quebec
Quebec
SDWupburg
Marion County
Quebec
. Quebec
Refractory
ESP
Philadelphia (NW1)
_ 'Philadelphia (NW2)
CYC
Mayport
SD/FF
Tsushima
Starved air
No control device
Dyersburg
N.- Little Rock, 3/78=
N. Little Rock, 5/78c,.
N. Little Rock! 10/78C
Prince Edward Island
Prince Edward Island
Prince Edward Island
Prince Edward Island
ESP
Barren County
Red Wing A
Tuscaloosa
RDF fired •
ESP
Akron
Albany
Hamilton-Wentworth?
Hamilton-Wentworth6
Hami 1 ton-Wentworth,
Hami Iton-Wentwortha
Hami 1 ton-WentworthlJ
Hami 1 ton-Wentwortha
Niagara
Test
condition



Norma 1
Normal
Norma 1
Norma 1
Norma 1
b Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
•MSW only .
Norma 1
110
125
140
200
Norma 1
Norma 1
140
140 i R.


Normal
Normal
MSW/waste oi 1
Norma 1


Norma 1
Norma 1
Norma I
Normal
Norma 1
Long
High
Low
Norma 1
Normal
Normal


Norma I
Norma 1
F/None
F/Low back
F/Back
F/Back. low
front
r i ui 1 1
H/None
H/Low back
Normal
gr/usct
at
121 CO,



2.05
0.979
" 1.96
2.18
1.61
1.68
0.935
2.92
1 .88
2.89
1.95
3.70
3.46
2.91
2.61

2 53
£• *'J J
3.35




1.95


0.132
0.143
0.191
0.13
0.093
0.103
0.111
0.075
0.086


4.65
.
gr/osct
Ib/ton at
feed 121 CO,



0.002
. 46.5 0.003
13.0 0.239
0.401
0.185
0.071
0.013
0.012
0.003
0.008
0.005
0.043
0.009
0.005
42.'5 0.032
36.4 0.030
49.9 0.010
50.8 0.010




0.004
0.007 .



0.110
0.580
0.669
24.7 - 0.012


2.60
3.03
1.68
1.74
2.0
1.36
0.01
0.049
1 .45 0.062


0.233
103 0.139
0.312
0.0387
0.226
0.0926
0.101
0.0533
0.096
.. ,. Control
Ib/ton effi-
feed ciency, %



0.05
0.059 99.9
3.02 75.6
3.92
99.5
0/177
0.094
0.685 98.9
0.408 98.4 '
0.185 ;99..6
.0.264 99.5




0.055
0 . 1 54




13.0
0.151 99.4




0.196
0.939
1.04 27.9


2.63
3.09 97.0

                             7-124

-------
                               TABLE 7-71.   (continued)
Emissions Emissions
upstream from downstream from
control device control device
Facl 1 ity name
CYC/DI/ESP/FF
Ma Into
Test
condition
RDF
gr/osCT
at
12? CO,
1.89
QP/QSCT
Ib/ton at
feed 121 CO,
58.2
Control
Ib/ton effi-
feed ciency, %

uAverage of  two test runs.
 Control  efficiency not calculated because inlet  and outlet test runs were  not simultaneous.
jNot corrected  to  dry standard conditions.
 Control  efficiency is not typical of most properly maintained ESP's.
 One test run only.
                                          7-125

-------
      TABLE  7-71a.   PARTICLE SIZE  DISTRIBUTION DATA  FROM MWC  FACILITIES
Facility
         Upstream fron control device    Downstream from control device
  Cut                     Emission                   Emission
diameter                   factor.                    factor.         Control
microns   Cum. X < cut     Ib/ton feed    CUB. X < cut    Ib/ton feed     efficiency, I
Mass burn
Water-wall
ESP
Baltimore, 5/85





Braintree


*

Hampton (1982)





CYC/FF
Gal latin




ESP/WS
Kure





SD/ESP
Munich




Mass bum
Refractory
SD/FF
Tsushima




Starved air
No control device
Dyers burg







0.625
1.0
2.5
5.0
10.0
15.0
0.625
1.0
2.5
5.0
10.0
15.0
0.625
1.0
2.5
5.0
"10.0
15.0

0.625
1.0
2.5
5.0
10.0
15.0

0.625
1.0
2.5
5.0
10.0
15.0

0.625
1.0
2.5
5.0
10.0
15.0



0.625
1.0'
2.5
5.0
10.0
15.0


0.625
1.0
'. 2.5
5.0
10.0
15.0


11.4
13.1
17.3
21.4
26.4
29.8
23.0
37.0
50.0
70.0
75.0
I







6.97
8.04
10.6
13.1
16.1
18.3

16.2
19.0
26.5
•34.4
45.1
53:2

7.0
13.0
16.0
21.0
27.0
35.0



10.3
12.3
17.4
22.7
29.6
34.6


44
70
91
92
96
97


5.76
6.64
8.76
10.8
13.3
15.1
2.99
4.81
6.50
9.10
9.75
—







11.9
13.7
18.0
22.2
27.4
31.0

5.90
6.92
9.65
12.5
16.4
19.4

'3.63
6.74
8.29
10.9
14.0
18.1



2.54
3.04
4.30
5.61
7.31
8.55


0.587
0.933
1.1211
1.23
1.28"
1.29


33.3
37.6
47.6
57.1
68.5
76.3
25.7
31.0
44.7
59.0
77.9
91.6
1.2
5.2
9.9
23.0
44.0
61.0

0.94
1.07
1.37
1.66
2.01
2.24

.






17.0
30.0
48.0
62.0
66.0
—



3.76
6.34
17.6 .
38.0
82.2
100.0

-








0.02
0.02
0.03
0.04
0.04
0.05
0.776
0.936
1.35
1.78
2.35
2.77
0.047
0.204
0.388
0.902
1.73
2.39

0.03
0.03
0.04
0.05
0.06
0.06








0.031
0.055
0.088
0.114
0.121




0.0057
0.0096
0.0266
0.0574
0.124
0.151










99.7
99.7
99.7
99.6
99.7
99.7
i
74.0
80.5
79.2
80.4
75.6








99.7
99.8
99.8
99.8
99.8
99.8








99.1
99.2
98.2
99.0
99. 1




99.8
99.7
99.4
99.0
98.3
98.2


.





                                                                                         (continued)
                                             7-126

-------
TABLE 7-71a.  (continued)
Facility
. Horth Little Rock





Prince Edward Island



,

ESP
Tuscaloosa





RDF-f1red
ESF
Akron





Cut
dlaaeter
aicrons
0.625
1.0
2.5
5.0
10.0 '
15.0
6.625
1.0
2.5
5.0
• 10.0
15.0

0.625
1.0
2.5
5.0
10.0
15.0


0.625
1.0
2.5
5.0
10.0
15.0
Upstream from
Cum. t < cut
76.0
. 81.0
89.0
95.0
97.0
—
42.5
49.9
68.4
84.8
• 93.4
99.3

86.4
87.6
90.0
' 91.8
93.7
94.8








control device
Emission
factor,
kb/Mg feed
6.76
7.20
7.92
8.45
8.63

0.72
0.84
1.16
1.43
1.58
1.68

1.20
1.22
1.25 |
1.27
1.30
1.31








Downstream from
Cure. X < cut













81.9 .
83.0
85.4
87.2
89.1
90.2


11.0
23.0
39.0-
50.0
53.0
61.0
control device
Emission
factor, Control
kg/Mg feed efficiency, t













0.99 17.5
1.00 18.0
1.03 17.6
1.05 17.3
1.07 17.7
1.09 16.8


0.28
0.63
0.99
1.27
1.34
1.55
         7-127

-------
TABLE 7-715.  SUMMARY OF EMISSION FACTORS FOR VOLATILE ORGANIC COMPOUNDS
                     FROM MUNICIPAL WASTE COMBUSTION
Emissions upstream from Emissions downstream from
. Test control device, Ib/ton control device. Ib/ton
haciiity name condition Methane Nonmethane Methane Nonmethane
Mass burn
Waterwa ! 1
ESP
McKay Bay Normal
N. Andover Normal
Tu 1 sa . Norma 1
CYC/FF
Ga 1 1 at i n Norma 1
EPS/WS • !
Kure Normal i i
SD/FF
Marion County Normal '


0.0064
0.022
0.058

0.232

0.092

0.0148
                                 7-128

-------
    TABLE 7-72.   SUMMARY  OF CARBON MONOXIDE EMISSIONS FROM  MWC FACILITIES
Fac? 1 Ity name
Mass burn
Water wall
ESP
Baltimore, 1/85
Bralntree
Chicago
Hampton (1983)
Hampton (1984) ,
McKay Bay (unit 1)^
McKay Bay (unit 2)^
McKay Bay (unit 3)*
McKay Bay (unit 4)a
N. Andover
Saugus
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
CYC/DI/ESP/FF
Mai mo
WSH/DI/FF
Quebec
Quebec
Quebec
Quebec
Wurzburg
SD/FF
Marion County
Quebec
Quebec
Refractory
ESP
Philadelphia (NW1)
Philadelphia (NW2)
CYC
Mayport
Starved air
No control device K
N. Little Rock. 10/78b
Prince Edward Island
Prince Edward Island
Prince Edward Island
Prince Edward Island
ESP
Barren County
Red Wing
RDF fired
ESP
Albany _
Ham! 1 ton-WentworthS
Ham II ton-Wentworth°
Hami Iton-Wentworth-
Ham { 1 ton-Wentworthc
Hamllton-Wentworth?
Hami Iton-Wentworthc
CYC/DI/ESP/FF
Malmo-
Emissions
upstream from
control device
Test ppmdv at Ib/ton
condition 12? C02 feed
Norma 1
Norma 1
Normal 189 1.68
Norma 1
Norma 1
Norma 1
Normal '
Norma 1 i
Normal ' '
Norma 1
Norma 1
Norma 1
Norma 1
Norma 1
Normal 630 5.08
Norma 1
110 . ' ' 1
125 . ,
140
200
Norma 1 1
i
Norma 1
140
140 4 R.
I
1
Norma 1
•Normal
MSW/wasteoil 48.3 0.551
i
Normal 84.9 1.0
Normal 67.0 0.636
Long 40.0 0.354
High 33,0 0.292
Low •; 52JO 0.505
Normal '
Norma 1 > \
il '
Norma 1
F/None
F/Low back
F/Back
F/Back. low
front
H/None
H/Low back
RDF
Emissions
downstream from
control device Control
ppmdv at Ib/ton effi-
12$ C02 feed ciency, %
19.6 0.212
1,350 8.72
197 1.70
1,050
242
30 •
35
31.7
31.7
42.4
36.3
20.1 0.098
23.8 0.119
- 516 4.50
158 2.10
151
189
211
166
41 OJ254
18.5 0.1.96
133
174
515
464
\
3.24 0.0317
<2.11 <0.0211
I
m 3*93
501
430
411
2,090
1^210
217 _ 3.41
"Not corrected to 12 percent CO-.
°Not corrected to dry standard conditions.
^Average of two test runs.
 One test run only.
                                        7-129

-------
     TABLE 7-73.   SUMMARY OF  SULFUR DIOXIDE  EMISSIONS  FROM MWC FACILITIES
Faci 1 ity name
Mass burn
Waterwal 1
ESP
Baltimore, 1/85
Braintree
McKay Bay (Unit 1)
McKay Bay (Unit 3)
McKay Bay (Unit 4)a
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
SD/ESP
Munich15
WSH/DI/FF
Quebec
Quebec
Quebec
Quebec
Wurzburg
SD/FF
Marion County
Quebec
Quebec
Refractory
ESP
Philadelphia (NW1)
Philadelphia (NW2)
SD/FF
Tsushima
Test
condition



Norma 1
Norma 1
Normal
Norma 1
Norma 1
Norma 1
Norma 1

Norma 1
Norma 1
MSW on I y
-no
125
140
200 •
Norma 1

Norma 1
140
•140 4 R.


Normal
Normal

Norma 1
Emissions Emissions
upstream from ' downstream from
control device control device Control
ppmdv at
12? C02











141
89.6
92.0
128
127
129
118



• 108
111





12.7
1 b/ton ppmdv at
feed 121 C02



114
136
98.6
11 1
177
94.9
80.9

2.38 141
2.02 13.5
2.31 21.7
4.86
10.8
28.2
90.3
209

41.5
35.8
44.8


401
375

0.180 0.040
1 b/ton effi-
feed ciency, %



2 "16.
• / f
2.01



1.99
1 85
• * O J
3.50
0.195 87.1
0.562 76.4
Ofi ">
y\j . ^
01 e
If 1 ft mf
78.1
?"*> "5
£-J • J
3.27

i 03
t • \JJ
' 67 0
W * • V
5O fi
Jy * D




0.0009 99.7
Starved air
  No control  device
    N. Little Rock,  10/78°
    Prince Edward  Island
    Prince Edward  Island
    Prince Edward  Island
    Prince Edward  Island
  ESP
    Red Wing
Normal
Normal
Long
High
Low

Normal
<29.3
 61.0
 83.0
 75.0
 87.0
<0.78
 1.32
 1.68
 1.52
 1.93
                                                                 124
                                             2.84
RDF fired
•ESP
Albany
Hami Iton-Wentwortha
Ham i 1 ton-Wentworth
Hami Iton-Wentwortha

Hami 1 ton-Wentworth a
Hami Iton-Wentwortha
Niagara


Norma 1
F/None
F/Back
F/Back, low
front
H/None
H/Low back
Normal


188
58.9
54.7
57.3

49.3 "
67.3



5.0



2.82
rrhis data  represents a combined SO- and SO, value because separate  values were not reported.
 Not corrected to dry standard conditions.
                                          7-130

-------
  TABLE  7-74.  SUMMARY OF  OXIDES OF NITROGEN EMISSIONS FROM MWC FACILITIES
 Fact IIty  name
Test
condition
                                                 Emissions
                                               upstream from
                                               control  device
ppmdv at
 12* CO,
Ib/ton
 feed
    Emissions
 downstream from
  control  device
ppmdv at   I b/tori
                                    12*  CO,
                                                                                    Control
                                                                                     effi-
                                                                            feed    ciency, %
 Mass  burn
   Waterwa11
    ESP
       Baltimore,  1/85        Normal
       Bra i ntree              NormaI
       McKay Bay  (Unit 1)     Normal
       McKay Bay  (Unit 2)     Normal
       McKay Bay  (Unit 3)     Normal
   •   McKay Bay  (Unit 4)     Normal
       Tulsa (Unit 1)         Normal'
       Tulsa (Unit 2)         'Normal
    CYC/FF
       Gal latin               Normal
    ESP/WS
       Kure                   NormaI
    WSH/DI/FF
       Wurzburg               Normal
    SD/FF
       Marion County          Normal
  Refractory
    ESP
     '  Philadelphia (NW1)     Normal
       Philadelphia (NW2)     Normal
    SD/FF
       Tsushima               Normal

Starved air
  No control  device
    N. Little Rock,  10/783   Normal
    Prince Edward Island     Normal
    Prince .Edward Island     Long
    Prince Edward Island     High
    Prince Edward Island     Low
  ESP
    Red Wing                  Normal
    Tuscaloosa               Normal

RDF fired
  ESP
    Albany  -                 Normal
    Niagara                  Normal
                  140

                  159
           2.20

           2.50
                  240
                  309
                  271 -
                  258
                  292
           3.68
           4.82
           3.94
           3.75
           4.66
                                      196
                                      153
                                      103
                                       39
                                      100
                                      106
                                      358
                                      376
                                      294

                                      294
                                      195
                                      215

                                      168
                                     255
                                     278
                                     263
                              3.38
                              1.62
                              5.71
                              6.15
                              3.18

                              5.26
                              1.79
                              4.19
                              3.85
                             4.91
                             3.91
 Not corrected to dry  standard conditions.
                                           7-131

-------

*

O
P
00
En
o
S
LU
u—
00
3

:>

0

00
o;
o
o
' LU
2=
O
H^
»— "1
LU
POLLUTANT
_
2?
§
fQ
r-j.
1^^
LU
CQ









-?
S
.
"S
o:



O U O)
— O c
in 4-—
in i>4-
— ID (O
E— L.
LU

I >•
_L 0
^ a>


c
a <"ti^
< §•£-

Su .=
— o ® o
W4- OH-
w o c^
— ID IO.O
E*- t- —

in
ID £?
ID IT
=>»
L. '


w- in
•P'c
* (O*™~




o
u
t_
I
e
ID
4-
a
£












































t
5
0
5
U
0
3
D




«»•
O*
CM
•h
<^
K»
CM
wC
fi
*_
•.






• u









 i i i i i in
10 ~
in CM
O in
°' ' a'



(C tO to ^D Jll JD ^







LL.
^^
(/> U-
LU Lu
u. tn a. 	 —
O.OQ.V.OZX-O
UJOLUOXU) >
L.
ID
4-









f^
*~
>O CM
in 10






f3 -0



•





CM CM
,— o

o va
?!
in to



to to





fO ^1

fe
LU
o
Uncontrol
Control le
RDF











CM —
O> in






•o -o









CO
CO oo .
O CM
CO

— 1
1 «J-
CM1O
• *
OO CM
in



ID ID




.
CM CM

£
LU
0> O
— -o -o
Uncontrol
Control le
Carbon monoxl

c?
2
in
°c
^
S
l^r
CM
(fl1
CM
*fO
fo"".0
CM i~- «a-
r-  O
in c H- u c
in r> < iD3
ID 4-
Z (A











to
CM
* CM I O*
- T 1 —






> n i -o





i
i



o
N-l (O
O (O
• 1 •
O. 1 IO

1 1 CM
1 1 O>
to
o
IO



1 «
.O 1 10





So
__ 0
> >
4> -S
^K «•
0 XI 0
4- — 4-
After con
RDF
Uncontrol
After con


5
fN
•e

4-
c
CM^ eo
to" 'T.
CM P»
** CM
to c^ *
t— ^- ,—
•— 10 ro d ••*
— CM — CM 
-------











1

•1
c
o
o
10
•5T
t-.
I
1
^^

UJ
m
^C
"~

•
















i
•
i
c
O I- O)
Tn-2—
ino?
— ID O
.l-"-
0)0 Uc

•>""* lo1^
< 1*-"


O I. -c
— o a> o
U>+- OH-
IO o cx
— IO IO.O
UJ



in
|f
Q1o
L.
»»- • o »o eo CM «r o
CM • to eo oo eo ot
to i^ • • • • •
* Csi ro ^r m <«•
w—


• •
SI
CM CM
CM"?



.0
10 IO ID ID ID IO ID

CM^ 	 _
in
 C
_O O o o 3
"> "> "> > Q.
X> ^ . TO ^ O
^3 O "O O ^3 O O O
o +- o u+->u+- +• —
5r>u.< o in =><: ra => < a. < +t
- O U ID 4- fD • ID
CO 2 4- Z CO S —
— o
z >



o
CM
eo -^


•o ~o


T'CM
>o —
o —
o •
0°


1 CM
CM
o
eo
f^
o
o

_o
ID ID

-.0

o
10
>
•g
<_ c
4- IO
O = 4-
E °5 i
3 U 4- C
in <
n
Z


7-133

-------
Metals 1n English units
7-75   Summary of
7-76   Summary of
7-77   Summary of
7-78   Summary of
7-79   Summary of
7-80   Summary of
7-81   Summary of
7-8la  Summary of
Arsenic Emissions From MWC Facilities
Beryllium Emissions'From MWC Facilities
Cadmium Emissions From MWC Facilities
Total Chromium Emissions From MWC Facilities
Lead Emissions From MWC Facilities
Mercury Emissions From MWC Facilities  .
Nickel Emissions From MWC Facilities
Metals Emission Factors for Municipal Waste Combustion
                                   7-134

-------

-------









II
p
1— 1
_J
1— 1

Lu
o
•^
§
.of
Ll-
C.O
O
h— «
LU
- 0
z
LU
ce:
u_
o

>-
a:
sJ
2:
to

LO
r-.

LU
CD







m.
88
4- 0)
«*.
•o
® to ,£
o to «•-
I x °

_ Jo
o —
l_
go £
.2 = J3 o q>
"» ^ to t —
•°S *" 1 ID 3
,5 E 00.
5 x
4- 4-
2 "CM
* ¥ -8
•§ o 55°
T" ^ fj
L. *~
cn
T3
®
ID
o 0 ^
•§ J3
O
£ J=>
u) c r~ .
|S ^j>$
J2 P * fe "5
^ i o o.
LU "3
e x
ID
* * 
• in — — o •
O_> f» tf\ CMCM —
o *~


.
CO OiOtcOCNrO COT K1
Ot O— — tOO — — T
*"• «^«^^ • • • *n
O OOOOO OO O


o - o
8 1
in
"


O OCM— T CNr» CO
IO — — CM— — — —




to CMO\K>— «cr— ON
— oco— in ooo> to
r^TtOfn «a-in (\

>.
_ — cc.
CO O (0 «d ID ID ID
L. x oinoo t- oo E E E

•
*
.Q •
* i s. *
O> 4- U 10
U. L. O) "U ID E
J=LL. OOUU3 O 0 >. C C— —
O^v O O Q) O .O Q) Q) L^^»— • (Q y) ^3
 • "T • OS
O»CNCM — IO CD
mr*» to



CMtntocMK^ m
CO • • • • O
CM^T^ST




totoinovf1^ C3
O ••'••, {^
inCM'cr^.fO . m



ID to • ID ID ro
E E Die SES
L. L. C O)X L. 1_ l_
O O O— O OOO
22-IX-J Z2Z
c c c c
CO CD ID CO
in in v> in
.« 	
u
> L. L. (- U 4-
O
1. O 3 CO
— L. J3 O (DO O C —
ID 4- in u o u u O3: co
ez L. c c c c L. u
ca u >•(. L.*U u <3 CBS
> ^00.0.0.0.0.05011-
t- O «/)
102 UJ
7-135

-------
•o
 O)
in
r--.
§
      in o
      c u

               eg
     in 5
     in 5
     _ t_
            .O O O


            ~£ ID
           10  I. —
            I   ID 3
            00.
           10 „. o
            '0 oO
            ° m^^


               L. "~
               O)
                 TD



             (O  *J
            JO O «
              4- a
                 _™
              in
              o o
              t- o
                g
                u.
                         — .
                                  o—
                                  0)
                                  in c
                                  u a
        04-


        £J
        u
                                                    7-136

-------













^o
UJ
I-H
H-
^1
^^
2
O
1

0
O£.
U.
^y1
O
*•"•*
^O

HH
s:
UJ

Z3
_J
_l
o:
LU
QO
U_
O
*>-
^3
2s
2
oo


*o
f"^L
1
r*>
UJ
•^





















4!
4>
XI
ft
l_
c
u> O
c o
o
V) O
in t.
15 i
o
i-
 e
W O
!£
U
i
4>
1
•^
CL




















^*.
*
si"
4- 0)

O O

«4-
^»
0)
XI
0)
4)
10 «-

^j
—

£>
^""
.O o 4)
_ _ +_
4- ID
(O U —
1 ID 3
00.

» CM
* »- Q
i o"
o |j|
O)

XI
4)
41
. <0 «*•
I
*~* O
x x
£
i
X. 1
.Q o 0
4- ID
(0 I. —
1 ID 3
OH.
X
4-
IO f%j
f *8
2 <"»^
•x™— .
en


o
4-
4- -0
V) .C
.28








i
ID
C
±
o
ID
U.

Kl

Ol
Ol

r




coeo CM r^ "- *o CM o\o
''— O ro CM • co fNO\
• • • • O *— • *^iwi
00 00 . o 0
O


..

!!Si g r; . » « »
-S 2 S J g »
• • • • — . »?»
oo oo d



prgjQ.«• "««.
CO23Z3I3in +- O ^£
ID — ~'~'^'v_ - g ~ 0
4>*-^ ^>-X5»*C O O 4) Of.
4) <0 ID ID 103 C O IO XI
, i-cmmmm— ' — UOJOJOA jan e o>o
4- O 4- -CU- OOOO C O O >- — — u— O)
' ^^- LJJ^^^^ -J- .^- -J- t™» £-^ t 'H X^ ^F *T* f%^"W"V<^»^ ^*<^^^» IK^.^^— ^5 Q ^J ^J ^ ^^ «
S O^^ ^- ^3 WJ Cl ^^3 4> O >* • 4)«» «_•«•
i2 ^J ^ O ^O ' V5
? s w S"1


in


in
4)
3
>
4-

4-
o
XI
ID
4-
— .
C
"~
4>
4-
4)
0)
O
C
4>
4) •
•D >
4) 41
-C • O
4- in 4)
.4) I-

l_ 0"4-
> C >•

I O-t-
O 4) O
J=4- C
OWE
xi c e
ID O
•K ID 4)
O O)V
O CXI
g. "^
.C Q.O
ID V)
u> in 4>
U) 3
O 4> —
l-f 10 •
O4- > ,«
ID "^ c
J= O
XJ-f-4- —
S-»B ±
L — XI
O 4) O
8*l ^
C O4- L.
O O O (0
— in 4) xi
4- 104- C
ID IO 4) ID
- XI 4-
S— o >>

5 0.0 >-
O 4> — O
t- in c4-
C CL4> O
— 04- XI
— IOC 4)
4> 034-
U> 4)— t_ O
BJ=X> 4)
. —int.
1 e 4JO
4-O 4)4-
= *
-------











C/)
UJ
1— <
n""
H-l
t— 1
O
u_
~£
s:
§
u_
to
0
l_l
I/O
C/}
>— 1
2:
UJ
*P"
— ^
t— «
E
Q
.O

a.
o
a:
§j
§

#
r-x
1

UJ
CO

















o
u
>
•a
__
O
c
in o
e u
- E
in o
in t_
S
t-
•fr™
U)
1





0)
u
0)
X)
'
8
4-
in c
o u

in E
in o

""I
0
4-
in
a.
















«^
o o
1- g

S°"
"S
•o
0>
o
f *
2 o
X 4-
JS

A
^. I
J3 O «'
4- ID
IO I. —
X

•" CM
Tss'5
X^CM
0)
•c
ffi
IB
?2g
x \
_


— (
J3 O O
^™ (0

OO.
X
4-
^ 08
X ? CM
t_ ""
O)


4- -5
 in

S



OOO
IOTVO •
CMCMV




CO — O

1

co co o> in
ocM—r~ .
CM— CM «
»
i

*

2 §
Kl to
R

i
1

K1 CO —
to o «•
in CM in



— in o
in 01 co-
in—in
1 _*


i

ID ID ID ID to



f*.
CM
CO
• £«.
ID > e
(. Oc O —
— C ID4- C ID
— — UQ.-  to
• e • • •
g^hOt O^ ^p
o^o^ ot ^h
A A A


O Ov O* O 1OO
* * • *™ i5^f
ooo — —S
r~ P» «r »

,
1 1
f '
. I O CO O O OO CM K1O
' 10 to in o oo — — KI
fo CM r— CT> ^m ^ OHCO



in CM CMOOcoin oo «r . i^r-
•• • CMCMOCM • OO • ~co
K1 CM ^.^ r^*"* **" OHO3
' ' 1
1


O | O | O OOOOOO
0 ' 10 0 ^XOCOUDC^O
O^ 1 O^ p^ OCOlAOfO —
•— f* • CNfOr-.\O*O^
lo




Ot \f\ lrt^"CN^3 ^O^^ O^ ^^^i^t^^^x^
CN( . \f\ VDCO^T* ^* ^~ V0 * CO|™"^5CN O*O*
CM ^ •— ^CS*™ CN^~ VD ^fS W *~ VO
1 ^~^f f^fof^
'

O • — ^toCMCo infi in *3*r— ^-OMno\
M • o O""»otn into ' oin— vmr-
«T to totor»«j- min CM — — «S-KIKICM
in
s
i
1
— \ <&
ID O ID (O «3 ID ID (D ID ID (D ID  ,Q ^— CNTO O ^^ O O O O OOO O*~ O O O
Z S Z — — 012 — Z ZZ Z ZZZZX-J ZZ
u
CO
• O ID ID ID a
• .. • in «n in in
a v • 	
u. - ° ^
U- C ID > O U t,,l_ L. 4-
> A O — X) 0) (T ID ID (D ID C
D- D) 4-U (D XI X X X X 3
t - C C— — — t.— UUJUIUJ O O)
O^* Q^fc O Q) O 4)^3 O O ^Q. •*• ID Ift ^Z 1* O 34™ C
> mo.—— £— .0.0.0.0 M .Q.OOW.C xo in — t-jo-f- a> o ID n> c—
: u«/) CQ— Q o a>«> u i-u. « «4-Lu in o ou_ 3 104- in— uouu ox
.3UJ 3>jO\3333 3U. 3 30V»ID 	 U. UJ C L._l C C C C t.
.g «-O W)
QL IDZ UJ
4-
O
3
e

§
8
















































7-138

-------
        in o
        in t_
                  O u
                 £§
             •o
             o
             o
         (O  *-

          O C
        •O O Q>

          £ ID
       IO .(. —

        'of3
             ?  *8
 0)
 0
 0
 i


LU
          0)
          U
         «
 « _
 c O
_o o

 in
 v)
                .L.
                 O)
                   •o
                   (U
                   V

               T  *
I
u o
         ID
           .a

                                     in
                                        w—O

                                        o o
                                        4-  -O
                                        IDC O
                                        U 34-
                                        — U O
                                        ~   ffl
                                       — in t-

                                          *5
                                       O«4-
                                                      7-139

-------









CO
1— 1
t— 4
_1
o


0
IP
SET

SI
§
U.
CO
2:
o
t— 1
CO
CO
^~*
UJ
s:
»— 4

§
3=
^— *
§
U_
0

Wj

g
=3 '
CO
CO
1
UJ
CD
£

















0)
u
o
XI
"o
in o
1°
"w o
in u
E
LU E
ID
0>
4-
C
|





O
U
>
*-
E
ID
0
L.
4-
U>
Q.
3














»*.

o o
•H O
C —
«*•
"5
o
o
vo •£
*X 4-
.O,

*. 1
J3 (J v(V
o>"~
1
4- -5
in c
o o
1— 0



•



e
i
•"
a
u.



OS~. ~~.
OttO (M
otao co



CMIOO
OOOCM
csiinvo
CM"



o«a-coo
« •»
Kl CO
VO




tf\ 'CMKl





§O ' O
«• VO
CM1*"1 **"




mo o o
VOOO Q CO
CM"





K1W "O IO
o>cs oo in
«


ID ID R) a ID
EEES E


c^
?0 J^
in oo.
« £t-
L. O > C
B4- OXI ?
— 4~ QCDai^=: 5^^*85
4-LU O UJ
n ID
D



OtOtOtOt OvCh
OtO^OvOt O^Ch
A A A A A A



O CO
s «
OS



O in o
» • !o °°

*




vo CMOinr»in ovo
^ ^^VDN^h* OCN
•B- CMCMTCMCM — Kl
OOOOO OO




1 '
*"




ifv O*K*r*^»O O^
m Ol\OCMCM »Of^
*•" POCNfOf^ CN^M





ro O — cor^ com
in r*>*-foir» mr-»
CN ^TO^O^CO (OF^*
•k

- K.
ID O ID «3 (0
u 3 omoo L. oo L.
O w — csi«roo «r»r 5
Z 2 •~^**— CMZ ^*^~ Z

•
.
Q

*» I

jru. o o o o 3 o o >. c
OQ.— — .O.O.O'.Q'N 55 oSsic
L. to CO O fl> « V L.U. ID (D4-LU U>
3LU 3\ 33333U.3OUXIO
i£ xz 3: oooos x oo- 10 o s
V) X V> x-O 3
4)




CO
8



o
CM



om in
O^^d Ol
^•— —






*
CM




O Ovovoooo^r
O rn«3-ro— COCM
VO K1




So »o— in^*
roocM— •»—





O CM— OVOO —
oo r**» ^f • • • *
• "~^^nsz


ID 10 ID ID ID ID

O
00
v. c e c c
O ID «J IOIO
in mm in
u x.
•«• ^ IDQIIOIOIDIO
L. ID XI X X X X
xi a m woxixi-oxi
S« S ,,^-CUtULUUJ
x o in — L.X)+- o o a> o
«> ULL, 3 ID4-«>— OOUO
— — u. in ci — icecc
 "o'zoIcu'QlQll
•2 L



CO
CM



*2S}
CM *~



VO—
in CM co
— CN —






in • •
•O—





CM
CM
-




VO
CO





0
VO



ID ID ID
E EE





tx-
3 a
Sin
TOO
1*3
ux) in .
9
U
•a

-------





















13J
0)
E
*^™
C
0
u



m
CO

1
LU
CQ































w%
"5 S"
i. c
Is *
«fe
M\



d>
u
ca
•a
4-
u> o
in o
in t_
"-1 ro
V
4-
in
c
3t
O
-0







ID
U

>
a>
•o
"o
L.
4-
• in c
c O
_O 0
in g
in o
1 «•-
LU
E
ID
<0
L.
4~
in
0.
3




w
•o
0)
V
*OC
!l
X 1
ft t \ tp
4- ID
1 ID "3
O 0.
"x

« CM
i "*** S

^3 tO
"™ ^1 SJ
x \ ^
L. "*
O)

"O
 c
4~ H^
~ t
"S ""
« e
C >„
.
> «3 4-
§C 4-
ID O
§.!»
Iff
f. . L. ~
O «T3 >.
>> U
K— O C
— T3 *O
(O C  D 4- •*-
O L. O •*-

B4- 2 *
.c in L. —
4-4? 8 2
D 4-
: c o O
— 02<3
J3 O -O
7-141

-------









*

CO
LU

1—
•vj
»— 1
o
£

c_>
JjT
O
u_
z
o
CO
3? •
LU
§
LU
_l
U_
O
^
g;
2u
§
CO

*


1
f"^
LU
QQ
*"~





*











fl>
u
>
•§

"o
t_
c
to o
c u
- E
tn 5
to t»

10 a
o
L.
4-
10
C
1



V
u
>
•g
o

to c
c O
O U
10 6
10 O
1 •*•
LU
ID
£
in
a.
3















•" •




W^.
20
C
4- w
el-
's
•c
0)
to •*•
1
o c
2 o
V '
^
—


^

xs o o
4- m
ift t
to L. •—
1 ID 3
oa.
*x

to "o^
U"S"
2 «>»«.
X^CM
D)
0)
1
*t-
i

.0
J2 O ID
~+- <0
,01.—
1 ID 3
oa.
"x

•t~
ID jvj
? ^8
— ^ ^<
X v^ CM
t. ™"
ai

c
—
•»- -5
to c
^8







' §
CO
c
£
"o
CD
U.

r** «— o^o\o^o% ovo* K>
*^ O* Ot^hO^dv O^O^ Ot
U% Ot O^O^O^O^ OtO^ O^
A A A A A A

OQ O • O O CO CW O OO
GO O* i O Oi • O\ O rOO
^O^ t*^ r- •*• —  T o ' f^ r- OTOtoO*co
•"" CM CM ^~ ^"^
1
1

§00 o oooo oo — oooooo
IO CM — CM — flfl Ol— f> OOOOOO
CM CN *— . CM tO — TO Tp«- to O — rOCMCOtn
in to *— to intotnto toT ocMf^'VOOOv



0 000 gggg 00 0 OOOOOO •
O> ro •— CM tOCMOSOO TOO CM t~ T CM r- r»- IP
«r co CM — .intn totn •— tointototorn


1

:^ a: |i '
IOCDIQ(D(D(D(0 CD (O O (D (D (0 *<9 (OfOfDtD (0(0(0 (D (C
essesEesE- E E E e E E E E E e cnc E E
L.L.L.L.L.1.I- U U X t- OinOQ t. t-OO t- t- t- U (.t.l.CO)X 1- t-
iiiiiii i i i i -S^csi i22 i ii i iii353 ii !
~~-*~~,-o ' ^°
^CN «? e: >v c c c c
ID • O IDID ID a

«-»————»- . • . in to in «>
CMCCCC • >• a o •____
coooootft •*- o je
'— •— U. 3 C<0 > O I- (- I- I- 4-
O^'>->.>->-C X, ID Q O — ID 0) CC «3  XXXX, 3
I.CffiCaffiffi-' — 0) U. l_ O) 13 «3 E OXD-OT3T3-0 O
4- O 4- J=LU U. U U U O 3 C O O >. C C— — — <_— LULULLJUJ O O)
— — Q.ID ID -C XO l»— L. A4- O O 4> 4> C —
C ID O £i£^£2£:£— U.— S t-« CO — Q V 0) O 0) L.U. 1. «J O4-LU tl> - v) Q >• v> a !_>- (/> o o o >- -ZZZ'tl SB'S
4-ui o m co o x cn x-u x (o > azo-Q.Q.a.a.coQ:
too q) t-O v>
IOS Qi IDZ LU
ID 4-
x • tn
1
—
c
o
u




















































7-142

-------
-o
 
 I
r-.
        0

        
-------












00
LU
j
(—4
1— 1
^
U.

0
1
on
L^
00
o
1—4
oo
00
1—4
UJ
^»
C£

ej
o:
=e
U-

>-
2?
§
oo

*
§
*w
r-.

UJ
CD
i*






















8
0

s

UJ O
!§
~.h<
LU C

2
"S
1
T3





o
ID
•o

'o
t.
»t
C O
O O-
In s
m a

g
ro
O
!J
0.


















•^
"o o"
u c
+- o
n "u
O •—
HI-
'S

^y
o
V -
2g
1


O
O U O
) 1. —
ID 3
00,
X

, * «
~-S*j
^^ ^B
O)
-jj
ID
O

I • t- 4- 4"
CM C C C C
003333 M
o a ID io IDS
u cmmmm^
4- O
Is L.IDUUUO 3V

13
3
— •










-
















o
t*.
—





o>
to




2





ID
1







C
4^
—  u.
til U.
25 §5
*l«





<3«roo w«
^•f^fO ^^*
OtOiOt ChOk





g
00^
CM








OOOOH CMintO
• «c\ir» (Nino
S^O^CM — _^.^












-r~0«r tooo
inioinr- IOT




IOOOOOT or»
— CM^TO • "O
CMCM — CM T —
oo


•
a:
ID -3
Oinoo t-OO
-2Z1 i2S






>>
4-
ID
O O O O C 0 O >.
OOOO-X. Z OO- ID v
a uc

s 	
— -0-O-OT3
a •§ S x§ S tt
•— — L.UJUIUJUJ O) Q.
-c c o 3 e ID
• m ci-ccce o OID o>— M
.t--oo« 	 -o u t:.n!oQ—

l-O CO CO >-
IOZ UJ L1.UJ O
co 2
e

•o
y
ID
O
•5
c
•*
Iff
a
f
ID
2
u
c
in
2
4-
|

§'
U)
ID
0)
L.
o
L.
0) .
1
^


-Z
Q.C —
4- 4> 3 W>
C (. 1. 3
9
-4-4--0
ID in in 4>
0.4) (U U
14-4- 3
3 (/}
o ®  .
:j= c V
A u
7-144

-------








CO
t ( t
1— 1
1—
»— 1
^
u.
o
g
o
'a£--!.

CO
0
co
CO
UJ
1
Ul
CJ
>— *
•z.
u.
o
>-
<
^
=3
CO
•

00
UJ
CO
IS









«^
"5 0*
u e
4- O
«*»
"5

V
fl]
•o
o
4-
w o
0 °
in o
in u
1*
LU E
ID
4>
4-
Ul
c
§
•o

•o
s
O'C
*X 4-
—

£
V I
.OOO

'ts Jl '
—
X
" *"
2 «».
"^




u
^
2 *»
t. "~
ai
e
4-
4" -O
s§
1— O






4)
4-
"o
ID

Ol CVOO103
gagg


-S ° "^
CM I*C "~



mo o CM
S>0 0^ 0
CM* O* *°



— oo eo r»o— oo—
•O O CM — KIOvCM
•ooooo




CM Q
KI g
8



c^ tn o* ^-CNJCSI'-
*** eo



O» CN O* f*-^(NjCO
CN CN \o ^o^oor^
CN CN ' *- ^rcotnro



— ^, — • — c —
tO tO (0 tQ Q to
E E E E E
u i_ i_ (.2 omoo i.



f
s
CO
~*> = "co
CO— Lu L.
OT3 4- JCLu U U U O 3

coo
go*
o\







o
—




OKI
o









CO—
CM in



IOO
CMr-
•~


K
-3 (O
00 E



.
a

*
1
O o >. e?
^— CL^CLu^^CO OO.*^ — J3^^ J3 ^3 (M  O L.LU 0> O4-LU U>
- X ID «V. 10-X 3LU 3^ 3333 3U. 3 3 O>s ID
3 t.a.ZZOCOQ.^^ZIOOOOSV.oO'ioOX
X} 4) >• (/> Q V) O . O- (/)
)
u» 2
£


o
OO


8
in



00 0
^3 • ^3
CMOt OO
^ 2*



o
fl




1
T



CM
in



1




to CMOOOO
KHOCMOTOO
O> OiOKlCD




— VOOOO
"~ — — CMCM


•ino— 5 —
f>- •— — CMCM




IDIOIO (DID (DIDID
E E E CTLC E E E E E
i- <- L. C O1X 1. L. U £ £

^
OO
O ID ID ID IO
in in  O t. t- t- C, •?"
O Q£ (D (O ID ID C
tJ ^ X X 2 3
ID4- in— O O O O OS "O C C ID
•a o aj""1— ccc *- * Oiocn
>_ QZa.a.a.Q.a.aQQ: >*-Q.«Z
1-3 10 
-------









CD
=)
O
O
LU


CO
_,
**r
r\
t—4
O
1— <
§
O
U_
to
o
£
•>•
o
t— 1
to
to
LU
1
s
LL,
O
a:
^
=
to
CO
i
f**
LU
1










5
21
9
**•
c
O «- O)
•
J. <*

iu"3
o
^"w o £
51 Sf
< 1^0
x
--=11

in .^
•S|'o
H-
u»
•f- —
• Q •*:
L.

— U>
° ID *•







O
U
L.
1
'I
£
3
I





10
K^
*""^ ^
— in »
*— ^ *^ ' *^ M
• «O> r» KI in to


0 0 0 0 0 •' O 0






oo Oi ro
O) Ot IO

O *T O ^* O ^r OO
^r CM to O to *r ^T
T CO — -• • VO CN
* i*"i o •—
Tf

O Oil! TtO
S to 1 1 1 O> CM
•— O^ IO
• • II
'in CM CM to
T oo "2
1 8

•°. -^ -0.-0.
(0 tD ^3 ^^ .O (O (O



in fi — — — rocM





£
-0 TJ^
O U. ID
U4-O Ul><,Ll.-l4-'o
3C t.Q.X3:V.T) C i.
A O4-Cr>OSV>>UC
;!«> CO i- C O
5JS= _io=>Ou
cl









Ol
in


o








o

CN
in
1

CO

JD
10



CM






I
Control



_
q^
«
s
«
R
mm

^ *
S'lo* 2 2
VO 1Q *— »—

oo a o








CM T «r o
• «r in o
to * co CM
= ° o -

O O 1 1
O to 1 1
1 —
00 1
TTCN
•CM
OO
O

£>A
ID ID jQ ID



m to — —



O 0)
O U
I .1
•0 ~O -O "3
£> £t J3
ID ID IO £} ^ ID



in P» CN — •- CN



o a> «
^U -W 0
O 0) 4)
•0-0 TJ
TJ "3 T3 ^ T3 "3
O L. <0 l~ O
3 C L. X) C L. C U
jjoomoiu o«
e u +- > o +- U4-
3<- c H-
~|U>.3 < ID 3 < LU 3 <
•ate *" ' S
"'



o\

10 r»*
IoV
*"™ ^~
VP" IO
1— «—
to to


00








OCM
CM O\
05 —
in —

oo
85
O CO
1 03
O to
tOfO

J3J3
ID ID



m to



4>
V
1
«I
ol
£J:0
HL§§^
3 04-
— U) C •*•
gui rs <
ID
U £
of

~
ID
3
c

e
8



.





•
•



,























-------







-•








•o
0)
+J
c
o
u
*
oo



UJ
CD
^_






•
£
.
1
in o +-
— (O (0
E H- S_
LU
1 **
_ o
~ C

O
life
<£ ^'l
o+- •?
32om
— V CM—
OO OQ







OO OO
— *~ CNCN



8! !§
°» "*.
to «•
T o
s . ^
>o »

8


.0 *
(Q& & to


fN— *-CM
CO 
O ® O 41LLJ
O-(- O-l--^
3< 3<
,t
§
O
 —
*v s"
00 O


•

•


OO 0
coto o
ino CM
roin to



OO O
§O o
to lO
CMO in
— 
•o
•o'o -o

0)
•o
•OO
^^.






r» o\
in in
0 0







CN O
'tO CVJ
«• co
'•> *



CM O
CN 0
O^ O
•— in
0 ?
T CN
o\ to





J3 A
IO 10


CM CM

8
'i
•o
•0 "3
« J:
00-0 0
C I- O IO L. U
3 C t--0 C L.
^ O « a>o o
. O-l- > O -1-
— V> c-*- 1_
UE V)
e •*•
=r
7-147

-------

-------
Add gases 1n English units
7-82   Summary of Hydrogen Chloride Emissions From MWC Facilities
7-83   Summary of Hydrogen Fluoride Emissions From MWC Facilities
7-84   Summary of Sulfur Trioxlde Emissions  From  MWC  Facilities
7-84a  Summary of Acid Gas Emission Factors  for Municipal Waste Combustion
                                   7-148

-------

-------
TABLE 7-82.  SUMMARY OF HYDROGEN CHLORIDE EMISSIONS FROM MWC FACILITIES
Facil ity name
Mass burn
Waterwal 1
ESP
Hampton (1981)
Hampton (1982)
•Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
SD/ESP
Mun i ch
CYC/DI/ESP/FF
Ma 1 mo
1 'WSH/DI/FF
• Quebec
Quebec
Quebec
Quebec
Wurzburg
SD/FF
Marion County
Quebec
•Quebec
Refractory -
ESP
Philadelphia (NW1)
Philadelphia (NW2)
CYC
Mayport
SD/FF
Tsushima
Starved air
No control device
Dyersburg
Prince Edward Island
Prince Edward l.sland
Prince Edward Island
Prince Edward Island
ESP
Barren County
Red Wing
RDF ffred
ESP
Akron
Albany
Niagara
CYC/ESP
Wright Pat. AFB-
CYC/DI/ESP/FF
Mai mo
Test
, condition

-

Normal
Normal
' Norma 1
Normal

Normal

Norma 1

MSW only

Norma 1

110
125
140
200
Normal

Norma 1
140
140 & R.


Normal
• Norma 1

MSW/waste oi 1

Normal


Normal
Norma 1
Long
High
Low

Normal
Norma 1


Normal
Normal
Norma 1

Dense RDF

RDF
Emissions
upstream from
control device
ppmdv at Ib/ton
12* C02 feed


'





477 5.27

1,010 12.6

546 6.25

742 12.9

482
498
422
429



414
476







313 2.63

"
159: 2.08
716 8.85
706 8.26
768 8.96
627 7.86









95.9

776 15.8
Emissions
downstream from
control device Control
ppmdv at
12* C02



179
268
421
402


,
211

27.0

211

..3.99
10.1
28.6
104
52.0

12.0
36.5
41.8


140
64.8

308

. 7.50








457
1,270


447
348





Ib/ton^ effi-
feed ciency, %


•
2.20
3.78
5.03
5.19

.

1.89 79.1

0.319 95.1

3.66 71.6

99.2
98.0
92.5
• 76 . 9
0.464

0.159
91 2
7 I •£
91 .2





5.57

0.062 97.6








5.67
16.6


3.35
5.13
5.08




                                 7-149

-------
   TABLE  7-83.   SUMMARY OF  HYDROGEN FLUORIDE  EMISSIONS FROM MWC  FACILITIES



Fac! 1 Ity name '
Mass burn
Waterwal 1
ESP'
Hampton (1982)
Tulsa (Unit 1)
Tulsa (Unit 2)
CYC/FF
Gal latin
ESP/WS
Kure
Refractory
SD/FF
Tsushima



Test
condition


•
Norma 1
Normal
Norma 1

Norma 1

Normal

Norma 1
Emissions
upstream from
control device
ppmdv at Ib/ton
12* C02 feed







5.18 0.031

2.96 0.018

1 .20 0.005
Emissions
downstream from
control
ppmdv at
122 C02



1.30
7.21
6.27



0.935

0.620
device Control
Ib/ton effi-
feed ciency, %



0.010
0.047
0.044



0.006 68.4.

0.003 48.3
Starved air
  No control device
    Dyersburg               NormaI
    Prince'Edward Island     'Normal
    Prince Edward Island     'Long
    Prince Edward Island     High
    Prince Edward Island     Low

RDF fired
  ESP
    Akron                   Norma I
1.10
12.0
10.8
15.6
12.0
0.008
0.081
0.068
0.099
0.083
                                                              2.12
                           0.009
                                         7-150

-------
TABLE 7-84.  SUMMARY OF SULFUR TRIOXIDE EMISSIONS FROM MWC FACILITIES
Emissions
Emissions
upstream from downstream from

Faci 1 ity name
Mas's burn
Waterwa 1 1
ESP
Tulsa (Unit 1)
Tulsa (Unit 2)
. CYC/FF
. Gal latin
ESP/WS
Kure
SD/ESP
Munich3
aThis data represents

Test
condition


:
Norma 1
Normal

Normal

Normal

MSW only
a combined S02 and
control
ppmdv at
12* C02






85.3

5.58

. 92.0
dev i ce
control
1 b/ton ppmdv at
feed 12? C02






2.07

0.148

2.31
SO, value because separate


,
10.1
9.76

44.5 .

3.96

21.7
values
dev ! ce
1 b/ton
feed



0.167
0.173

1.66

0.116

0.562
were not
Control
effi-
ciency, %






47.8

29.0

76.4 •''
reported.
                               7-151

-------





g
H-
00
Ea
o

UJ
i
-J
a.

o
as
on
o
u.
00
u.
z:
o
1—4
OO
oo
1— 1
UJ
00
LU
CD
Q
i— i
<
LU
O
tti
•tf
§[
00
>

"i1
4-.f
10 •£


**-  o o>
Ji«) e£ tt °i

-ID 4- C
>_z co 2
:






2
 W>
CM CM 4-
KI in c r»
— tf\ . in in



00 00




CO CM »S- CO
o o o o
OO OC5
CM CO CM 1
00 0 '
fl • •
o o o
• 1 1 1
o o o
o o o
o'o o'

"


JO JD jQ
ID IIJ (O jO



(O in CM —




O O
 O
— O I-  04-
cn u) c •<- t_ c >4- t_

U ID 4-' -2
^Z «, _
Zl M



CM
00 XJ
OtOl IO
CM CM 4-
 C »*•

I3*

7-152

-------
PCDD 1n English units

7-85   Summary of 2,3,7,8-Tetrachlorodibenzo-p-d1oxin Emissions From MWC
       Facilities

7-86   Summary of Total Tetrachlorod1benzo-p-d1oxin Emissions From MWC
       Facilities :           ...

7-87   Summary of Total Pentachlorod1benzo-p-dioxin Emissions From MWC
       Facilities

7-88   Summary of Total Hexachlorodibenzo-p-dioxin Emissions From MWC
       Facilities

7-89   Summary of Total Heptachlorodibenzo-p-dioxin Emissions From MWC
    .   Facilities

7-90   Summary of Total Octachlorodibenzo-p-dioxin Emissions From MWC
       Facilities

7-91   Summary of Tetra- Through Octachlorod1benzo-p-diox1n Emissions
       From MWC-Facilities

7-92   Summary of Total Measured Chlorodibenzo-p-dioxin Emissions From MWC
       Facilities

7-92a  Summary of Dioxin Emission Factors for Municipal Waste Combustion
                                   7-153

-------

-------



UJ

t— 1
1— 1
o
u_
o

•"I*
-^-

2E
o:
u.
o
t— 1
CO

*"*
UJ

^•~^
X
o
o
i
i
a.
|
1
UJ
QQ
M- *
a
o

-— j
— I
Z3Z
o

Q£

iii


00

p^
«
oo
CM


u_
o

^^
IP
§
CO

.
ID
00
1
UJ
03

^^
L. C
4- O
E
"5


O C
o T £1!
— 2X,2
o "x — *"


••»
o

C 4-
V) O ra 
ox a>
> X —
o
TJJ

"o
t.
U) 4- 4-
J5 o o^o^

«) To0
u> 5 O 
2^
o>



e
.2
^_
4- -5
u) c
fl) O
1- 0





o
E
ID
C
U.
in
•
S





O O.O O T m oj o-g ' o •" • • ^
tft oi >~~ ^






OKtOrOfO »O »— (N O ^ O* ^ GOOl ^
.CM^S. ^5^^S O - R OVfO ^
CM N r-p.OICM^ Q. Q. „>« -

• t


1
omor^fNvoo (N »»• — a\
t^ ^* ^^ • ^o C^ \O irt * • r\j
•PM — in . .KI o us— .
— COCMIO. . » v»>-»
2 2 2-, "*" "* w *• "° «
Ct en CWD *^ 4- c e «...
— ~^t. ~_^._ 3 _£ j£
~^^o_ J5'5'5^ g, 2 — —
Occco— •>-'<4-«-«)ii.t. «ai 4-
0)OpOT3jd« u. 3 e >. -S-S r
= s.tt^SwSB.-.ifl °fe jsjs a
= <0 — E E E Z
- X .C ss3UL,fl3O fJC (D
5!sS50:i::i:z:ZQ-O CO
V* . «<^




1 ,
in o —
vo •<»
- r^ -PQ €
O *""
V




O
ro





f*"
^0






1


ro SI
* 1
eg *"\







TJ .
iD4-ioin s -o cc
e 4- u a> o - 0) — ^_
>-OQO.Q£ x-Q.«
<- O «> «>
ID Z LU U. UJ
a §
1




I
o

ID
^.
U
C
o

u
JJ;
o
"o
c
u in
4)
(0 ••"
c —
ID U
^3 *^
O **"
O -5
0)
•o c
0} ..
in —
3 0.
E
d) (Q
u ut
ID
t O

in
"O 3
C T3
ra •
•o
- IB
•» N

««.
tO ID
C
U) (D
C
3 4-
<- O
<=
4-
v> a>
a> L.
X '•
"OCN
Q) "O
01 c
ID ID
l_
0) —
ID in
c
jr <_
4- .
4- a>
c —
0) C
 «>
u c
utlet values which
imultaneous test n
Oifl
7-154

-------


CO
LU
1— i
H-
t— 4
1—4
U
«a:
o ,
g

o
u.

z
o
1— 1
CO
CO
y
LU
t— 1
X
O
1— 1
a
i
EL
1
0
1X1

LU
OQ
0
o
0£
|
tJ
«J
CCm
LU
i^^
r~
_J
O
\—
O
>_
I-V*
CO
vo
CO
1
r-.
LU

OQ






0
o
1
~O
• u
in o
e u

in 5
in u
1"~
"•" |
KJ
fll
2

1
"°





o
u

o
"°
"3

01 4-
c c
58
U)
in 6
S u
LU f

i_
in
a.












•^
J|
H-

O «=
— a-a
1 4- O
OX 0
— .£>.•»-
X —


10 pg


2-3»*
t_ —
O)


2 o

"* 0)



O c^

T -H "§
ox^
X —




4-
Q CM
O W ^»
"J^CM
(_ "~
O)
2 o
i W>
2^
x o>

1

•(- -a
in c
£8





c
•H
"o
IO
U.
!»• OV
s. g


•
CMOOOO IO Is* ' Q3 Ok
inoooo -m CM o •
g'cMOoo* "~
CM CM in



•ovo»nin • mocMoo • in in r»

m * * *in ^* in oo * •
KC- in v >o o

; •

..
1 - ' ' . ' ' 1 ,
c «CMr-— CMCM — t— ... .03 >r».
r-oooeo <— • OOOO • o—
CM«»»» -in in «
———CM O





•






-«2^jn go
^ .^"in*r^~ CMin
f""

'

CM oC— CM— —CM
\O to


a. .
_ _§_ K
ID IO ID IO IO IO.IO IO IO IO^- IO IO ID «d
ZZZZZZZZ2IZ— J Z •— ~*-*-*CMZ Z^"—
•o
e
*^ a
,-.^,__ S ^
C0090OOO ^ l/> O) ^
OvOlO^OW •^ 4- C C

'"•'""""'""'>— =ioioa a> O
OlOOOOTIJ^IA U.UUUU3 CUU>>
— ra-t-+--t--i- c v> 3 10 • • >x a)  ^L^C ^£ O) in (O -IO IO ~~ lO ^3 ^^ ^3 ^f *^ ^3 ^2 O
C (O •— E E E E 4} 3—* O Q> OQ OOOO ' '' 1. O O4*
t- 3: J= IO IP IO IP »O - 0510 (0 (0

e to v> in in
O 3 — — . — —
—  U U U t_
O IO IO ID IO IO
"& 3 2 X X X
4- O'IU/U'O'9'O
L. — 3 ULULULUUI O>
O (. OlO 3 C
CL— U t-JD O fl> O O —
>>IO4- ID U) U U U U S"O
)3;-O O4- .(_ U U U O>—
> > _OQQ-a.Q.Q.Q-ceN-a.
1- O WJ V>
ooo
• GOtO ^3
^^CMCM*1





















u
ID

ID IO C X U
E S O O ID
"Z-JCQ
O OXXX
ZZU.U.LU

jc^cj:

U C. I-
III
c c c
ff?
e c c
c c— — —
O 10 	 ~
(-J3E E E
^f— 10 IO ID
«xxx
7-155

-------
                    M




                  O O
         |

       v> o

      1°
      15i 5
       in i_

      UJ S


         I
         in

         I
             O  c
             —  o -a
              I  4- d>
               OX «
               •— .o >*-
               X —
             .0 «,„

                             §OO  CN
                             f
                                         •o c o

                                         in— t_
                                         3 Q.
                                           E4-

                                         c. in >.
                                        in^c

                                        •O 34-

                                         10   'I
                                        (O ID—
                                         I/) (O O
                                         C   ID
                                         1- O »
                                            *
                                         in 
                                         ID ID—-


                                         $-±
                                         ID in E
                                        a> c o
                                        in—  in   3
                                        J=£I-4-
                                        u   ou> •
                                        — 4-J3 O >.
                                  _ in
                                  * O in   c
                                    4- o OO
                                  in   4- *
                                  C_C  4-
                                                       7-1 56

-------




LU
I—I
h-
i— «
_J
i— i
O
U.
o
'l
LU

CO
g
CO
CO
LU
t— 4
X
o
t—t
o
i
a.
i


r^j
2Z
LU
03..
a '
^5
Q
_j
t-J

I—
2:
LU
0.
_J
<£
o
LU
O

Oi

1

*
^^*
OO

1*^

LU
i

*


w*.
~O 3"
^ m
C iW
el-
's
o e
a>
o
^
•§
e
U) O
|"
m o

UJ E
IO
o
u
4-
in
1
"°
— O"O
1 4- 0)
OX ID
— .OH-
X —
4-
7 08^
O in
— *o **
t. *~
en


2 «
1 O
2^






ID
u

^
ID
•a
"o
in 4-
0§
«°
•21
S t-
lS *•
C
i
4-
(0
a.
3
2 c-o

T 4- 03

— n •*•
X —



4-

T TjS
O in ^^ •

t_ •"
O)

o ^
T *"


_
i
4- -a
in c










ID
c
g~
U-
•
o
IO



§00 V
OO M
COOO CN
' A » •»
SSR

OOOM
mcoo •
TTCOCOO

^••v—



oooo\
inTO •
TTCMVOO1
CMinio














1—
CM






2









a



















5



in— eoor- —





Of-
— o

























































a.
E
A3 (D (0 CO (O (O (0 <04~ (D
EG E E E



^^
in


oococb^ *ET
^— ^"*— (B
*^^^^^J) —
e e e o—
— 4-4-4- C Ifl
elo §'e'i'<:'c>
128,5*5.*
4-LU
(AID
(03:
£
III
CM
•o
e
ID

^B

in
4-
*^«B
C —
in
3 IO •
o>m IE
ID 3'E

||







O)
e

— u
ID O.
3J/IO/HSH
s_ieaiun
1 'eauin






OOOOCO
... »r—
OOOO •
r—














OCM — T
mor-tr
CMiOOT





mo— r—


•
la
omoo u
— CM«TO O
• 	 






£
•
^f


r»l


•
cr
IO «3
L.OO
•z.——






•>.
4-
e
3
8
3J3J3J3 U .O.O
0 0 O 0 3 = 0 O >•
0)0)0) 0)J3 O O O U
« 0) O 4> UU. 1- 0) 0)4-
33333U.IO33U
OOOO-3! "N. Z OO- ID Q.
^^^ Q ^^U<0
V) «-UJ

&










OO
voin

*"*



OO
in co
or-
CM—

























(O (0
II

--*--»
—CM

zz


10 10
£ £
0.0.























OOOO

00 ^™ *T *O
»
^




O»r*— to
• * * *
covo— in





tntor-iocM



ID ID
E E OU=
i- t. e ox
SS3i3

^^^"O
c c c c
>-(TJ ID ID ID

c i/> u> in u>
4) 3____
"3^^^
> t. L. L. (.
4> UI (O ID ID ID
tJ 3 X X * X
d) O UJU'VO'O
•OXI — 3UJLUUJUJ
ID(0(-O«3 .
— u l_ O 4>4> 4>
— — «J4- 10O O O O
JZfi C4- e c c c
> "ooZoZoIifca.

t-O CO
IDZ UI






|
*
CM

§

•~



CM
in
r~




















.





ID
E •
i










O)
u
CTH-Q.
CO
U.UI






1
*
—

•o-oooooo
K1 T ^~ CO O O*F—
(— .- 1— 00«Too*o%r»
in«rcOTvo
-------
."
E


















'





^
•^3



O
U

•
CO
•^
Lul .
«LJ
OQ
{_






























0 0
t. c
<§!
**



4)
U

>
01
0
e
V) O
c tj


in t-
u! e
' ID

i.
in
e
•o
O e

T 4- O
OX 0)
— .Os-
X —

w
8^^ "

• ^
2-3**
u •"
O)



2 y

* 0)




, u
">
0
"o
u
in 4-
II
in
in E
'i <_
1 1 1 *4_

ID
0)
4-
m
Q.
3


O C
— O -a
1 4- ID
OX ID
— a ^
X —


•t-
2 ^g^
° *"»*
t. ""
O)


2 "o
1 o
"O
•X 0);

C
0

^

4- "O
in e
fll O
i- o











c
>*

"3
10
u.









A
CM
f.



in
m

CM





CM
— -












i










•IB
1C
E

5'




03
Li*


^
(Q
^^
4-
i TO
."Z
r




t.
o
H-
§ ,

(O


^^
u
u
"S


o
*
u in
.
* O4-
*°(DC
^ 3-^™
<0 *S
•o—
•^ N
^J
^^.
in 10 u
C ID
34- 4-
«- O «.
. ^~
in a>«-
a> L. o
•4- * w
OCV 3
D)C >
L. '
>"~»
a in E
c—
a 3—

.^ ^

C— 4-
»
f in -t-—
x ioin e
4-4>O O
U) 4- X
O UXD4- C
3 3 O 3
— O— »• fc.
to STJO
> CC 4i
10— a> in
4-4- O)«
4>— OKJ4-
•H^EOIDO
o in«c
-------





LU
P
1— -<

O
*c

o
§
jr

u.
OO
0

OO
c/>
)— I
SE
UJ
1— 1
X
o
a
o

1
O
NJ

'iii
CO
Q
o
Q£
o

^£
X
LU
3Z
i
|*
£

O

»?
^^
00
•
CO
CO
1
l*1^
LU
i
ca


















V)
c
°ui
Ul
i
















^
11
4- 4>
J..
»
"*•
"o


o
">
•§

1
4-
C
O
u
L.
**—
E
ID
O
4-
tn


O -e
— O-o
1 4- 0
2^ £
X —


4-
IO ^
o y-T^
7 "5"
O in ^*

t_*~
O)



O ^Jj
7 <"
2'
X 0)





u

a>
10
"o
L.
tf> -t-

Q
tn
1
LLI





















u
g
t*-
IO
u
4-
m
=

O c
— OTJ
1 4- O
OV.^
X —



4-

0 a <3*
~0 S
^J^CM
D>


° tj
2^
X 0)


O
*T^
4- "5
(ft C
£8




o
s
a
e
^^
4-
—
"o
a
u.

$




. ' '
_
0000 O —
inooo CM o
*oo^^ to ^
"~*uSS
— ^-



moooKi ' ^toeooco
IftOkOO*'— .— CM*— ^"CM
O\ * * * CM






•inmeo • CM •
— COCMf-— —CO
ioCMr~










.


CM
CT>




•• s




a.<
E
IDIDIOIOIDIOIDIO (O4- ID
illlllllill
•a
c
". a
•— »^» »•— » co ^~
co co co *T in c1)

Ot O
Ot O>
Ok Ot
A





CO
^"





CO 













0000
.^ir imm JIB



otoo-o-
T — O— => 10 ID a. en o
O c: C C O— ^'x-x-MLu -QJ3 (- Ji
o)OOOX>^fin a. o o o o 3 c o o >.
— W4-4-4- C in 3 IO • • -V. 4) O 4) 4) .O O O 0> t.
— o a.a.a.<.a: ou>  4>Q  OT
r
13 3 3 3 3LL
^OOO-ZX
C
ir

10 5 5 o
.zoo-~ t. L I. C
Q.Q. 4) U) ID ID IO ID
	 -0 3 X X X X
4) O U) U "O T3 "^
"OTJ — 3LUUJUJUJ
W ID C. OlO
— — L. 1. 4> O« «
««>^ (QJ— «n ft ft ri 4t

-Q-f -0
J >
^
C^" C C C C

"cjioIifcQla
i 2





..


8 |

O T
^ •••



O CMOOOO
o IOCMO-CTCO
CM CNCNKII-





O CMOOOO
*- oeoocom
«- — CMCMITl










•










X
* O
o —
ID
A -















OO
CM CO
— «T
CO CM
CMK\






















^
u
ID
4- -Q
™" — — • 4) ££ ^£ c QJ
ID . IDCXUUOCX
z ziiiu!rur xx

OT3 O
1- L. t. t_
Illl
e c c e
• *w
D> c e c e
_c OOO O
^"^s S
•Ot. A E E E E
CJ*^ ™* (O (O 
-------
               o u
 0)
-M

 O
 U
CO
CO

r-.
CD
      in o

      1°
      in o
      in i_

      11
        ID

        £
            2  §
        o
        T
                       3.
   2
 in 4-
 c c
 o o
— o
 U)

I!
LLJ M.
      O  c
      —  O -o
       I  4- ID
                       O

                       1.
                       u in
                              o
  <3)O
•o c o

in— t_
3 CL

4> ID O
!_(/>>•

x O4-
  4- O
me

•oil-
             O
             T
                u
                O)
                           in ID u
                           c
              s§
             I- O
               0
               ID
                   85^,
                   UJ-
                   03:
                           t. O ID
                             CT3
                      „_ * W

                      "OCN 3


                      D)C >
                      1

                      « 3 —
                      4- «—
                      C—4-
                      a> c u
                      in—  U) ID4- C
                      ^ 3Ji  3
                      (D $T3 O
                      > CC  4i
                       «>~ O in
                          — 3 •«
                          4- SO i
                          O 
-------



LU
1—4
H-
1-4
H-4
O
£

o
ii
§
c£
u.

oo
o
1—4
00
00
£»
LU
t— i
X
o
1— 1
a
i
a.
t
o
z
LU
ca
o
o


g
.—i
3=
o
^
i—
a.
LU
3C
__1

H~
H-
U.
°
^M
az
oo

•
00
1
LU
i
CO



w^
slf
J*""3
;
"S
« 2 §„
U 1 4- ID
— OX W
O U — *"
•a
"o
J 15.
§0 O (f
*~ *• Q
— S L. U
i/) O ^3 W %*«

1"" x"u —
LU | 0)
*o
u
In o "5
f p^ U
J T2^
x ^,



O c
— OTJ
ID 14-0)
U O X O
°> "x —
.£
^
"5

tn 4- 4-
C C ID ^,

•^ o *•— **• SK
in I o w
m E o 
^
a>
•H o •;;
£ T |
3 O ^
^e i-
X CD

C
O

4- -5
in cr
.28

•




e
4-
 Ok
• • •
A


inooo o oo T ao
 ' — K1VM1T IOCO •» F~>
•(Nino— m • >cooi • • o v
^»TVO«^— — Ovg"CNCN ^2 * *""
OO «M *" """ O O





'^-OCftO^ Ooo OOOr^fN Or*
•POO**T • ^— • • • "^3 • *^O
KiiOiOO^- —in OOO "to O^
ir1 r* "~ "" o













p* O\^5^3^5 ^3^?
in rsicointo inro
^— ^ft*— *^^io r** co
*\T * * ft * -
>
000303 T in oi 4-
O1O>O«J — ' 4- C C

'^<^>'>— =Toloa. o> cS
O c c c o~ »—•<-•<- i/)unj3J3 c A
O)OOOT3J£U> U.OOOO3 C O O >.
— RJ4-4-4- C in 3 ID ft ft «X O V 0> O.Q O O 0) «-
— O Q.Q.D.(/> CO O t-C/
4-LU '2- (/) «ft
in 3: eg

^ _... --^~"









go
O^P»
fO*-^




-.
Oin
in oo
_*





oooo
^•Oj^cO^
CNCM— (N





r^O^CN
I^CN *m
^— ^— ^3* ^—
oo






— ootoin
moomot—
in ooi^ 10 oo




(D (Q flJ (O
S E E E OU=
t- L. 1- U C OIX
££ ii3'x3

^-,x-> T3T3T3T3
—CM c c e e
313! ^*>IO (0 IO IO
^£ ^£ 4— ^— ••— -1— ~ •
^^-"^ c in in in in
ID  « « a>
•«• <•. (O^» A3 O O O O
.SfT,gt^«
5 4)UIOt_t.(.L.
J > _OQ.CLQ.Q.Q
fei .2


(T3 (OC3EOUOCX
E EOO
-------


























^^.
•o
OJ

c
-M
O
U




*
CT>
CO
i
r-.

LU
«J
CD

1—




































**
"o 5"
4- O


o
u

>
a

o
4-
in a
§°

in o
in L.
le
ID
!
*"" f"
X 0)




o
u
•—

o
• -o

"o
in -t-
c e
0 0
•— o
in
in g
"i t.
UJ M-
S
(O
O
+-
in
a.
3



O c
— O •a
I -t- o
OX ffl
— JS *-
x —





O /?i
*"" ^" O
° ""•**
"xX^
^ ^™
OJ


2-u
T ^
2 NN-
'-'*• ai
OT


C
O


—
in c
.23










ID

ID
e

+-
^B
' F "





Q


4k
ro



CO
CM









CN
^
05































ID







CD
' f


+;
IO
a.

+•

25*
13 3

O CJ
10
u. t


-
0
^
IO


J^
o
«
u
*.
"S

u
+-
o •
u in

ID —


*— 3
ID O
•*-— •
O *^ ^3
— ,J)
•K •—
O>H>
13 C 0
tn— u
ffl (O 4) '
i_ tn >.
x O-t-
4- O
in c

CT3

in 4>H-
10 t- o
•i- «
x u>
O
ID IO— '
ffl— (-

W 05 "i
C —
ID 3 —

4- O
•(- ID—
C— •(-
o c u
o +- •
t- o in
Q. '-O C
o> tn 3
t. C X (.
.= 3 °
u 4> tn •
— -i-ja » >.
j: tn 4- —
x iDtn - c
•*- 0) O O
in +- x
o in io+- c
3 a u 3
— O— x- t.
ID OT3 O
> c e 4-
ID— 4) U)
-K-l- O)0)

-------





LU
1— l
1— 1
1— l
0-

Lu

O
o
s
Lu

v> *
o
t— 4
/y\
00
1— 1
LU

X
o
t— <
Q. '
0
*^*
LU
QQ
a
0
QC
O
—I
"T~
«L*
.
II

Q —
«*•
 "x —




o
4--0
U) C
(2 8







(D
J^
£

U
(Q
Lu

"1 o> «o
^f ^h O^
CM Ot Ol



inooo » oo • eo 01
inocNO K» r* " p^ •
csnor-«T P» KI in KI
•» » in



•o • • •!>• KI in • in
— «"~ ^S ""fMSP*^ *^» ^5 cJ
CM • m o





— CN— r»«o —r^ ^cso1*-— ' OO
— — "~ o










r~ COOOO OO
— r»r»TCCM r^-fl-

"""




-
^ IO4-+-4- C U) 3 IO • « «>» O 0) H) 4> A O O O L.
— O CLQ.Q.<^ TOU) CO ID CO— J3JDJ2JD N — jQjQO
— (O ••• E E E 0} 3^ O (D 4)O O 0} (D <]> « " L. o (l)^

^ffi01112^''"'333!0'5^'*!5^'!!

/}^B Q^
z






0
S
*
in


§S CN
inr» KI
— • -T





OCO IO




T^roeo
^» •, a»^^
KICN*— in




^o^to^o
O>«3— r-

. • 	




ot





fO CO CO CO CO
ES EEc"§,s E
55 5535=3 i

^.<~. ^'O'O'O
— CN c c e c
^E ^C ^^(O IO to CO
"Z^Z *^— — — —

CO (O O O

.= -!= > L. L. L. L.
O.Q. O U) CO CO IO CO
— — •og,; SS*
T713 — 3 LULU LULU TO
IO COL. O CO C
. 	 — L. L. CD 4) ffl 4) —
MB"*^ CO^1* CO O U U C) ^C*O

5 a> o co i_ u*u*C aj~
4 > ^oa.Q.a.Q.0.0:*-!!.
L. O 
coz in i> in
S §






6
in • —

*

— — — — K>





inrooooo coo
•x «^ £; fl)
(DCJOOOCS
E O O CO (O L. Q O
t-Z— ICDCD-t-Z^J
ZU.LUU.U. sz:


OT3 U U U
4- 55 f f f
U L, t_ L. L. L. .
O O O O O O
2 X X X 2 X

c c c e c c
1x3:3:3: 3:2
i i i l II
O OO O OO
s
J3 E E E E E E
^~ Id (Q (D (O (D (O




-------



























•—»
01

c
•r—
0
O



,
0
Oi
1
p^n

LU
-•J
CQ

1—






























I
0 5"
L. C
"c —
H-
"S



- 4)
• U

1

0
L.
C
in o
|"

(A O
V> L.
1 *"
UJ E
ID
4>
4-
in
X
o
•o

O c
— 0-0
1 4- IB
2 ^.S
*X —



o «0~

® w *<

L. "~
O)


<=> 0
T ^

— ^
0>



IB
U
•—
>

•o
—
o
L.
in 4-
C =
0 O
— o
jfg
E (_
LU M-
i
to

a.
3


O C
— O -0
1 4- 0)
OX ID

X —




4-

O o^

O en
"xx^J

TO

2 «
1 ^
2x
„ t.
* O)


e
_O
4-

4- -0
in c
IB O
(- 0











c

^te
4-
°o
ID
U.








o '
to
0
oT-



00

1^






^
\f\
*¥ -





























__
(O

i





03


.
ID
O.
4-
. jC
} O

5 3:
5




u
o
o
3
ID'


U
C
o
u
^B
**-
•o
"o

4-
c
O •
u in
o>

— 3
ID U
4-» •

O-^"O
O"5 >
o>'5
"O C O
o— o
u in >.
I O-l-
4-O
lf\ c

C"O —

* fl\
*7 IS


fO ra~
in ID u
C Q)
34-4-
1- O 
ID IO*«^
« — 4-

K3 in"e
~
c — t-
>
j= in 4-—
x 0) in c
4- ®OO
in 4- x
IB  e c 4-
io~ « in
4-4— O)4>
O— O 
-------


CO
LU
i^
f~
t— 4
_J
O
£

CO
§
s
o
£
CO
o
CO
CO
2£
LU
3=
)_4

O
1
a.
o
z
LU
CD

0
O
a:
g
••w
_t_
c_>
^
O
^"^



i
o
a:
h-
i
Lu
t—
u_
o
a:

u
•5
o
13

O
in +-
y— ^
O O
— u
k
o o
4- 0
<§-
*»-
"S


O .c
£• O TJ
1 4- 0
^~ J3 »+»
X —


4-
2 .. Q
1 M O
xf 2
O)

o "£
T ">
2'
x ^.



0 5
T ° 7
1 4- U
2^.2
X —




4-
O Q^
T t5 °
O in^^


L. "~
O)


2 «
i -g


C
~
4- -5
in c
£8







o
§
c
^
4-
O
U.

"• O> *
O Ot Ov
r» CM • •
tncoV . * -- o'



Soor^- »o\o voooo^co
mocNj CN • cs • • • •
* •» «k Ift »^*^^'^_-_ Lf^
^ * ^t* " ^"»o
T ^












P oooo
^o r** r"* oo \o
» » » »
CMIOin'T





f OOOO
in to — toco


a.

JOOOOOOOOO ^^ CM^T^J O
ZZZ2ZZZ— IZ — — — CMZ
c
— — 3 *--<- mu. J3^3 i_
OOOXi^in u. o o o o 3
— 4-4-4-'C in 3 CO • • «\ (U O CU <1>JD
— a.o.o. to




o'5-
""













OO
r*»o

^ ^
*?*o





00
m*o
«rr»-
-» •>


a
I <
If!




>.
4-
e
3
cS^
§o o >.
o >
 u'2^^
0.0. a) in  00-0.0.0.0.
«- O CO
Jf*t









S 8
0^  ZU.U.U.LI.
OT3 U


L. L. L. L.
X X X X
• c c c c

a> e c c c
_c OOOO

•0 L. .0 E E E E
os=g5<5S55
U-LU
g














88
CM CM



OO
K1O
into
O»^
•—
























U
10
IT- O
tr o
800
XX
u u

4.4-

X X
4.+-
c c
o o
e e
£?

CO CO
XX


-------
























"O
O)


£v
0
(J




1_^


I
^
UJ
_J


r^*
































B^
"o o*
t- c
"£•2
*^
H-

8
•—
a:
p
u
c
in o
c u
O

U) O
v> u
_ .4.
UJ E

o
L.
^~
in
1
•u

O c
— O -0
1 4- 0
ox,2
"x —


j_
fg
^3 .— .
^— ^B ^*9
t o

^"™ ^3 5^
u "~
OJ



o -5
lo-S
x w




O
u


o
•o

"o
t.
U> 4-
c c
58
in
in e
"~ O
& L.
UJ *«-

S
(O
o
4-
U)
Q.
' 3

O c
— O -0
1 4- <0
— J3 •£
X —





4-
1O pg

O in „
^™ ^3 yvT


O)



2 ""
i -S

* 01



§
4.

4- -0
u> c
0) O
!— u









2
€
ID
e
>.
^
u
ID
U.





o
°1.
r-




in
to
CM








00
































_
ID
g

^Z






ta
U.
^c
a
a.
4-
? o>
si
5




o
«*-
§
to

U
c
*3

^
4)

n-.
0

.^
§ •
U (ft

"O C O

u>— u
3 a.
I"*"
U tf) >.
X O4-

U"\ C
O
•0 3-<-
C "O"-
•o—

^" N
^|
C4-
tf> ID O
C ffl
34-4-
L. O «

4-
in «»-
(U U O
4-0)
7 IA

'S-0(0 '
to >*'
L.
fl> — 4-
10 ml
O 3-—

+~4- O
• (D*^
C— 4-
O C  u> •
— 4-JS  >«
j= in 4- —
z 0 in c
4-  C C 4~

4-4-™ O)«
«— OHJ4-
— 3 «t-

^^OT?
7-166

-------





UJ
p
1— (
o
^£
u_
o


§
u.
oo
o
t— 1
to
CO
J™^
s»
LU
2j
»— 4
X
o
a
a.
i
l-J
UJ
m
a
0
a:
o

5
O
Ljj
^fm
Z3
OO
iS
^
^•C
o
u_
o

1
oo

e\I
en
pi

UJ
CD


•^
— -^

4- JO
O O
«*•
"S

O e
O — 0 -0
1 *-*"

~o
e 4-
in O 
ffl
L.
In 0*5
£ T a>
1 2^
X CO



o 7 1?
O O1^.  "x — **"
•8

"o
L.
in 4- 4-
o o o ra ,-T1
— 0 — H-g
in i o °
in g o w^
1 u "xx.2
UJ M. (_ —
o
E
1 0 *
| 7o|
— • ^
X 0)'
§
™
4- -O
V) C
a o
I- 0






c

4"
"o
a
u.

— o ov «r o>

^ . » O* O\ Ok
— A A




OOQOO 0 r» 0 to
inoooo o ~ • in o '
lOOmOO IO CM CM —
tOCMCM^T^3 O^ ^"*
v —in "~


S||||5 g*2§S g ".5 « S





fiOOOOm ro ^oooOMn O^
*->^-OrOO^ VO ^OO^OCO O *
2*"°*S o "~ ~











o> oooo oo
KI oo^r^r^ ^**O
* *. » «. » *,
CN»Ol»i~ ^*O




2 — oooo oo
\O £ VO^~*JOGO ^T*-
L_ * * » » « «t
O ^-^rroosi r^ro
.2
a. •
1 a
fD(O(O<0(D(OfO(U IO4^ to to (0 «d
JE E E S E E E g ^ E E €
^S^^^ll III z5f U l§§
A
CM
A C
A OAJ9 in
— c7Sl? X *~ J3 "°>.
COCOO30O ^* tn CD 4.

"o'e'c^'c o5s ^^25" "^^ '°c' ^"
oo o o o~o A; in u. o o o o s b u u >•
™ fl3 «^ E S E E Q) 3~« Q) d> OO 4> O O 0) ^U. t. 4> 4)4~

^ •MU.O.Ci^^ZQ_C/)(~I33^!IIOlO'O'O'3C V.ZOO'fDG
.a  c/> d^^^t.8
3
^









i , • i
«k
°



»ncs CMO>
CM CMffltOCMCMCM
'^

«
in i 10
IO 10 X— t. C IO ID 10 IO
p io £1 ggE^x E
33 S 5 3333=3 i
J3J3
^•CM J3 C C 1Z C
Z2 >. IO IO ID (O
"-"- ' ' s ujlnlnln
(O IO u O
JS-C "O > t_ (_ £_ U
a. a. —  ro (O ro ro
— — o «> -a =ux xxx
•0-0 {.• •*- — 3 I.UJUJLUUJ O>
IOIOO U)UOlO3 C
— — 0. 4- — L. I.J3 ID  ® ~
~~ >• 4- IO4-UOUU 3S
JTJ= ID — e4- L. c e e c
.Q.Q.OZ ma. -oo4- 	 -o
1 >- (0 ID U IO >-U I- U, L. 0)
J O UJ > 000.0.0.0.0.0:

3

-
c
8


















































7-167

-------




















^
"O

1
LlJ
CQ

4-
in
c






• 4)
U

^
0)
V*

"o
tn 4-
e c
o o
— o
« §
I 2
UJ **-

i
o
t.
4-
tn
CL


















0^
"5 5"
c e
4- 0

O V. 4)
— .O X-
. X —


1o
° "-8*
'__ fjj
XX^
L. "^


o o
T ">
'o^
*fe




O c
— O "0
1 4- 4)
O 'X 0)

X —




4-

.O in^
"JJ ^ CM
i. *~
OJ


2 u
i "
s?

X _>


§
4- -5
in c
o O
l— o






i
ID
C
4-

"o
ID
U.







8§ g
r*vo o^
cgr- |C
'-f


oooooo og m
i*i^f**ooo oo f*^
^-^•-^-^^p* ^-^- {V|
•-CNCOOCJOO — O


.
OOOOOO -OO 00
lor-ino — o roo r-
""*"— S *—





-



















* 0 ^
o — o
10 10
-O *4- A
	 O J^^ C 4) —
IOIDCXOOOCX 10
E E Q O IO ID ^ O O E
Z2U-U.U.Q. II 2


O1C O) O)O)
SO O O • O O " CQ
XXX XX U.
4-4-4-4- 4-4- <
C C C C C C
axaa 33S 4^
1 1 1 1 II «3
c e c c c c o.
J3OOOO OO
U . >4-4-4-4- 4-4- 4-
U t-AEEEE EELU—
•— JS£— IDIOIOIO (OIO\t_

jLU 0




b
ID
3 _
^O

o
c
o
4)

0
L.
4-

o in
ID-
C-
ID U
4-— •
.DM- ~.
~ ^
4- *—
O) 4>
•o c o
in— t.
3 Q.
4) IO 4)
u in >-
X O 4-
4- O
iri c
4)
•03 4-
. c-o —
ro o E
4- -O —
0) -•«• N
Q. >. c
*— o
4- ir\ 10 —
3 C -4-"
O in 104- o
<~ C L. 4)
4- 34- O4-
— U O Q.4>
X c 1UT3
C C U) 4) x-
— - 4) C.4- O
xx 4- 4> in
O O x o in
•0 -0 "SfN 3
1 1 C —

1 i 0>C~>
O O ID ID C«-
N N L. ~
C C »— X4-
4) 4> > O—
•5-5 .4>§T—
O O >«e c a
L. c. — -t- i e
O O c 4- O O
— — O4- 4) N —
O O C 4> C 4) O
4-4* X 4> —4- •
u o o u -a 4> in
O O— Q. 'OT3 e
•o n> in i_ 3
J=j: i (- c o x u
ocna. 3— o
O O O o U4>m •
-C-ccj=in— 4-—
4-4- O X 4) O U> C
to ITJ-O o in in 104- e
l-t.O33 4) O ID 4)13 13 O
4-4-— > C 4) C 4-
JC ID-I 	 Oin
X-M- O4-4- C 0)4)
O O ID 4>— OO ID-H
U— 3 in • L.
E E4-4- E OO O O
3 3 O 3— t. > C

-------







§
1— <
CO
o

Ijj

CO
_J
Q.
G
l— l
Z
!?
O
u_
CO
oi
0
g
SE
O
H- 1
CO
CO
1— 1

LU
3=
X
O
a
u_
0
c5
E
CO


 O 4- 4-
^l^^ 5
CMl )2
O
S

S
in

2"
H! C: 2
• in in
«

000







o o o
CN T T
V IO IO
cs1 i>r
CN



80 o
0 CM
S* O CN*
oo —
1 CN 1
 > S
ID <» r%
•o -o —
•a
O T3 O 2
U ID I- 0
4- — 4- —
C 1_— C JC
O— O O O
C O  U 4- 0.
«•*- U C M-
ID 4- Q ID
Z <0 2 4-
•2


O

R

**!
2
^ r~ O»
1 ra •- *—

o a a







§o o
^r 10
03 co in
IO (O*
in —



§i i
i i
CM
r-
IO

i

CO




JD
ID ID ID



« - ^
C

X
O
•a
i
ex
u O O
— — N
> > C
to a> 0 4- J=
W>«- U C •*•
«) > ID
ID CD -O
•o -o ~
•o
o -a o 2
(- 
4-> 0 4- J=
OTH- u c •<-
ID 4- Q ID
Z 01 2 4-
.2

o
A
CO
IO

CM
^
r».
"^ P. ON
IO — —

O O O







goo
^* CM* CM*



81 1
1 1
T .
•V .

1
CO (

O



«
ID ID ID



r> - -
•

X
O
•o
1
CXI
4) 4) 1
U U O
•— *— N
> > C
O 4) O
m ^ J3
o is T5 o
(. 4> 1- C
4» — 4- O
ct_- c -
8— O O J=
ID U U O
1-4- ID
3 !_-O C l_ 4-
J3  O
4->0 4- 0
(»>ta 1- C >*.
rrr |

0
ft
(0
p^
CM
2?
*
* f^ ^h
10 — —

o o o







to «r 10
in «t «—
— IO CM



| l !
co
ro
i

in





JS
«
«9 ID ID



p. .- —






3 8
1 1
"o -o o
L. 4) (-
4- — 4-
§i_— e
— o o
= O ID (. U
5 i_-o c L.
n aj (DO 4)
4- >0 4-
/>». l_ C •*•
D 4" P •
z oo 2
7-169

-------
Isomer-specific PCDD 1n English units
7-93   Summary of 2,3,7,8-Substituted and Total Tetrachlorodibenzo-p-
       dioxin Emissions from MWC Facilities
7-94   Summary of 2,3,7,8-Substituted and Total Pentachlorodibenzo-p-
       dloxin Emissions from MWC Facilities
7-95   Summary of 2,3,7,8-Substltuted and Total Hexachlorodibenzo-p-dioxin
       Emissions from MWC Facilities
7-96   Summary of 2,3,7,8^Subst1tuted and Total Heptachlorod1benzo-p-
       dioxin Emissions from MWC Facilities
                                   7-170

-------

-------
n
§
ll

z
1*^
1— 1
00
00 .
as
UJ


X
o
1— 1
a
g
UJ
OQ
»-H
0
o
OM
o
_1
3C
|
LU
t— OO
UJ
t— H- 1
0-J

<_J
a <
2: u.

a 3
LU s:
J-
- - j
l—
1—4
I—
00
CO
00
1
CO
•t
r^
«i
(



- O
Q  4- (D ID O O
O>O>O> 4- c c — — —O
C^^^/n — — — •— 3 ^-j; >
> 3 «5 ID Q. O) O — — "S 3
O)O O O*O (0 LU 3 C >» T3^ " L. — 3 l_ Hi
-~ IO4-4-4- C 3 ID • • «Vv^ OL. IOIO O t- O S 5 =
_— OQ.Q.O..
•™ ^mm^ 3— ID O OQ ULL. 1.4- — — >» ID 4- ID in 3 -a c e:

* «*" 5 a i!85a'0">2z ^ 8l5 >. ^ — i£












































CM
8
4-
C
ID
U
k
CM
o
4-
rected
u
8
I*1" « «. |uj _ o y«Qfe« *gj« L
irt K ilro
7-171

-------

3,

OH
Lt_
CO
2C
O
CO
v>
E
LU

)_4
X
0
HH
a
i
a.
i
O
M
LU
CO

0
0
a£
3

re
^J
t£
LU
a. co
LU
«X I—
i !,
[^ i .
• O
§ 2
•* 0
<=> s
LU S
u-


l™4

CO'
CO
1
00
•t


CO
_
evi
Lu
O
>-
§=
s
^^
=>
CO

f

o>
1


LU
QQ
?




S

>
•a
_
O
4;
§O
_ 0
.In s
in O
e u_
5
s
s
in
c
X
o


« o
g in CM
£ ™X

•2*7 •)-
poo
"~ X



^
•
O O
O U) CM
<£ \ O
« CM
*»-•
IO 1 4-
• O IO
« "x




ID
O
">
ID
•a

__
O
"c
8

§
^
E
ia
u
4-
="
in
O
in
in

1

» o
O in CM

 =9 10 10 a, oi O
o ~— •*- H- m L.
•o in 3 c
C 3 (0 • » ati r% 0
— 3 — (1) ID 5pXU.Z £
u x x a. o
3 ua_ i *x SB
&  to a t. (i
4-UJ • 3 or) •*- L
in 10 • to
ins a:
£

00 s

V V —










03 OO O>
in o> •
K> f» in
tn







1











I









| '




•

•B ^_ .^
IO IO IO
E € E
US- L.





^^ ^^
zS
z z

IO ID

a, a.
— — O)


-------
II •
If
0 Jj
u.
CO
0
HH
CO
CO
1— 1
UJ

o
h— 1
a
a.
o
z
UJ
CQ

a
o
0£
O
•HBJ
ac
C_)
*c
X
UJ
-*S

i— *~~
O j
°y
< u-
LU S
I— *•

j~|


CO
CQ '
CO
1
CO

•
oo
*
CSI
u_
o
^_
cc
i
CO
uri
r*.
UJ
1
1—



4

ron contra


e
W1
^*
I
(/I
I/I
5




^ Jft «VJ
il!
.— o ^
Ts*
X
, "S
, O
* a u
to o ot |«
«^g -
CM i **
* O tJ
x

CO S 'CM
* -o o
""• cs "u* *"*
n'^o'S
**• 'o 1o
X


O
.•^
K- 3




I
C
£
"u
«
u_
SS"SSi8 « S S«
-2gj«v^ „• ? . «s
o 2.c


•-* o o en ** u) v in
- 5°"e-2s2 s s
OU5CNJ— . ^j ^


CSJ O  c>



to o 
-------


o
Q£
U^B

00

o
1— 1
UJ

zs
1— 1
X
o
*^"*
O
1
U_
ci
M
•as.
CQ
CD
§
3

zc
ej-

Q_
LLJ
3= 00
LU
_J H-4
1— t-H
£n 3
O 
1
CO
•t
A
CO
Csl
U_
o
1
1^
00
«0
en
i

a
s.




• o
g in CM
a.'c
® £ O)»<
U CM
"> Io2 ^
a> 4- i 4-
-o O O as
r™ ^™
— X
. s
• c
1 8
in L. S H.
— x- a. u
|5 H X •§ Cf
ro CO X O
0) > U
4* * Q4

f"T"
•O «J
T9 K> i—
• X
CM
^T

4) x-
U » O
— O m CM
> S -D o
- Q> O \ U
•a a. i_
zn o>*<
"o — o — •
^ IO*1"
4- 4-.I 4-
C O O <0
O (— —
U X
1
1 0 *.
IB — O
L. -j- U) CM
in "^ x 8
o. ^ t_

c: ^-S ~
J "-"L +•
in •*! —
in p^ x
"B *
UJ




O
4.
4- -5
in e
fli o
1- u








• • \Q f^l CO

O CM




.



























^ ^ ~K _ _
ID ID - XI T3
— IOV.J3 O <- IOIO
— in— N — O — —
CIO — O l-li. L. 4- 	
-I 3X3U.ID U JCJ=
5fe8;l-S3:c7:z 285°-°-
4-Ul 2 CO t- UJ

» * oz
D

o
«
^








K>
O^


































M
(D
1






O)
t. e
*a X
•o -o
V V
>Q-£K
(. M
ID UJ
4^.


7-174

-------
PCDF  1n English units

7-97   Summary of 2,3,7,8-Tetrachlorodibenzbfuran Emissions From MWC
       Facilities

7-98   Summary of Total Tetrachlorodlbenzofuran Emissions From MWC
       Facilities           .             .                              .

7-99   Summary of Total Pentachlorodibenzofuran Emissions From MWC
       Facilities
i       ',
7-100  Summary of Total Hexachlorodibenzofuran Emissions From MWC
   ,,   Facilities

7-101 i Summary of Total Heptachlorodibenzofuran Emissions From MWC
       Facilities
           I                               !
7-102  Summary of Total Octachlorodibenzofuran Emissions From MWC
       Facilities

7-103'  Summary of Tetra- Through Octachlorodibenzofuran Emissions From MWC
       Facilities

7-104  Summary of Total Measured Chlorodibenzofuran Emissions From MWC
       Facilities

7-104a Summary of Furan Emission Factors for Municipal Waste Combustion
                                   7-175

-------

-------




CO
LU
1— 1
1—
1—4
jj
1— 1
u_

3
2:
^p^
ajS»
Ll_
CO
0
1— 1
CO
CO

s

•z.
o2
Lu
o
1 f*sj
LU
CO
>— I

0
f^L
0
™~
^c

 1 4- 4>
0 0X4)
— — .n H-
^ x — ••

. -o

"o
in ^, j_
e ^Z "t

—• o 2 H- *5
U) IO ^^
« g .0 in^
s E "xx^
jj ^. ^ ^^

s CT
(O
(jj
t
•fe ° "
1 "u€
2 x

x O)


o


4- -5
II







i
ID
C
4-
13
ID
U.









O O Ot Ot . CM ^ O
— O r- CM • . Sr
r» 10 •— CM «» in in
CM , *^





>O O CM CM r» •— VO O» O> «t •— p» O<
— 10 • o • • • •— O K% inv •
9^\ O^ ^ ••- CM fO IO • • r<» CM ^ O\
"" O


•


o* o in r^'^ f*« ^ ^» o^
•— o» • • • oo — • •
ro o .
coco^rin o> 4- IOID
^ — U ~ — — — 3 .c!c
^^"4>— C — — L. O Q. Q.
>— zjioioa oi a 	
ceo— >-"4->»-inu.i_ 4>4> 4-
OO°OJ£in U.3 C >• T3 13 L.
— 4-4-CU>3ID«« «XA O t. IO ID O
— • o. o.< ,a£U)in'ioioacu.U4- — — >.
U X IOID •4>=>=3X2xz >*
wIS^ * " ^ «
in 2 of
o "•








•
.O in.
C3^ CM






IO OO
in •





vo . rO'
Ok





















00
*—







(Q tQ (Q
u t. E
33- 3




4-
c
4) 3

">
4> in
•a 3
— 3 ' OJ
I- O ID C
IO 4- IO 2 "O C
C 4- 4) ID
«- O t/) *" «J
 10
3 X
IO 4>
•> in
ID
>• 4)
u u
c u
4) C

u
— in
*^ »~
*^ £
O 4-
I *
C C
o -o
u in in
4> ID
ID— 4)
4- t-
C —
ID U C
*S*^ -^ •
o~«
cnx
•o c o
in—
3 Q, »^
4) 10 o
t. in—
4) >
X O4>
4- -a
in
•a 3^
ID 4-
•o c
-<0 O
«T N O
>.
^— 4)
IO ID.C
C4-
in ID
c in
34- in
u O O
c L. .
4- o
in 4> 10
4>c
4- 4)"0
3 
z t. in
. 5 ^
: in t. in
X O U4-
— Oct.
0 4) 4)
> C U4-
10 10 in
4-4- 0,4)
«— 0.4-
— 3 IO
tJcJ
> in<4-
7-176

-------







LU
»— i
•^^
1"™
>— I
*— 1
2:
o
1
u_
C/)
2:
0
)•_(
oo
to
LU
|
=>
Lu
O
Z
LU
03
**«4
a
o
ry
o

o
l__
Lu
i—

i
•H-J
I—
0

O
^_
a:

2g
s
t/7

CO
1
'*"•
LU















O
1
g
in o
I5
v> o
in i_
"i ""
LU E
Q>
4-
m
c
1

(D
U


•28
E t_
jj »^

a
10
a>
4-
in
O.
=



















*«.
— >.
0 U
u c
cS^
«^
"o

O c
— o "a
1 4- 
O C
— OT3
1 4- ID
— ^.•2





4-
2 "g1
O in ^^
^^2
u>



Q >*•
T ""
2 *>•»
x o»



—
4--O
U) C
Tino»«j- cs ' ^ in* oT KV^

^"OOOO— T"O*^-IO*O OOOk ^ O OO K1 O OinQ
rsior~t«-or^ o» -inin • CM • v S coir W — Soo
inoO OKI • — CN .— O\ O — r>
— — ^"CO O O O4— CM O
ooooo
mcor»co—
o— - — *
,





CO t Ol^D^^^T f~>Cd ^^Ktl^'fOCO !
co • i ^rc3^r^3 c^^^ ^r^^^3 • •
_^ • "~"~min






"! invo inKMniofi—
—
"5
Q>
Q. . £
•§__«{§ •
22S2'°1O'O(O(O (D^" ** «jio«o (Dtox (o to «j ID  o o o o*~ o _o o o\

fj
= • — «N c e c c -D
J* "0 S3 >. (O  to -* 4- c e — — -co Ta^Ta-a •£
^•— — L. ____ 3 .e.e > ,_ j_ j_ u ^
»-"-~'~-03— c— — u q Q.Q. g> in ID 10 to a «
>^ 15 (O (O O. O) O — — *O 3 X X X X 3=
occceo— >-»«•-••. inujo o o t. o o « 4- o)or5-a-S-o ' i
OO O O OT3 J£ in IJLUOUU3 CUO>» T3*O U ^3 ULUUJUJUJ O) C
^~ IO 4" 4~ 4™ 4™ C in 3 (O * * *"^ 0) QJ fl> 'O .Q OQ)4)tv IOIOO^OlO3 c O
"~ O CXCX£XQ.^^£ O)CO (O IO (O— >J3.OjQ^ N *— A^ O ^"~ CX>-> ^ t i^ d) d> d> ID •— -t,i
pa — SEEE 0] 3— ID OIUQ IB « 0) 4) UU. L. « »4- — >.IO4-  O IO*"
•Ojotg «J^(^^^^ZOO'£S5a"a'>2Z«S1o>.'tIZuZ «— i^l
S-2 & U5 <" ^f)**63"
**^t QI (O2> llJ ^uLU
z £ §
•o
o
3
e
1
u


















































7-177

-------


















-










•o
(U

c
o
•o




CO

t
I"-.
LU
CO

1—































1










4-
in
J




ID
U

0



O
L.
in -t—
c e
O O
«°
•28
E L.
LU »•

1
o
L.
4-.
in
Q.
3

























**
2 e
c ••
5Z
"o




O e
- OTJ
1 4- O
ox o
— .0 »•-
X —




0
2 „_ o^
1 O
— °O pj
X X^
L.
O>


2 0
1 W
"O
"* O)



O c
— O -0
1 4- O
OX. 0

X —





o'° ^
° ">«.
X X
u, "~
en


o -5

' *o


X «&




c
J3
4-
4- -5
in c
O O •
t- 0







0
S
c

4-
*o
(0
LU










O
S

t^\





ooo oo o*
OOO OO t*\
rOtfMO ^*— ^~
inrom ooo
^~^~^^ ^— ^~




Soo oo eo
OO IO *- Ic
— L.
8 2
L. <4-
4-
e c
o in in
O (O
IO— O
^^ i
.2 = o
IO U C
— o o
4- O —
O1X O
TJ C O O
O— .= O
in— t_
E O 4-
O IO O O
L, in— >.
o >

in-*""0 i
o—
•0 3 O 4-
c~o u —
10 4- E
•o c —
*co o —
T N 0
X C
•— o o
K1IO.C —
C4- 4-
m 10 o
c in o
34- in 4-
u. O O O
c c •o
4— O
in o ID «-
O L. O
4- 0-0
x o in

OfN L. 3
3 —
O"o u 10
cnc u >
ID IO O "—
L.


ID in— E
C4— <—
'O 3 IO —
x: i_ L.
4- 4- C
4- C O
4- .
j: in L. in +-—
x o 04- in c
4- C I_ CO O O
S— O4- X
in 0.104- e
3 34- O U 3

> c (-4- e 4-
10 to m*~ o in
4-4- Q.O O»O
O— Q.4-O 104-
— 3 IO • L.
4- E OO O O
3— CJ= > c
O w<4-«o
o .a 013 o
7-178

-------




CO
UJ
t— 1
H-


55
o
^c?
s
a:
u_

2:
0
S
cy?
t— <
s:
z
OS
U.
0

• Ijpl
UJ
OQ
t— <
0
o
a:
o
t
5
I—

UJ
a.

•
«J

^
o

I .
LL«
o
«
3«
*e£
S
vj

oi
i
^^
1 1 1

CD
<
P


«
"5 o
£•§
5 "7%
£
0.

s


*
"o
u
•f"
in o
1> O
1
n i g
ID

•S
^
o

in 4-
§§
•3°
in e
1 u
UJ •*-

E
IO
0
t.
4-
in
Q.
3


0 =
^ o ^
1 4- 0)
O V.^
"x —




4-
T "5"
^ >A
"J^CN
U "~
D)




2 ^

"o"S
•^ t.
* en
e
O

lz
4- TJ
in c
0 0
t- 0







ID
e
4-
P
u.
c^ o^
• •
88.-
A



ooo in  ooooor- ot~ OO
•~OO~- 01 • • • »fO • »O IOIO
^— m<— KI— ' 000—03 OT ior~
Tf^— . O O CM—

§OOO

r-"lO?*
« - * »
CNfO^"^





* ^3^?^3Q3 vO^O ^OO^^3 '
oo •«•— CMC* r-o» . — — — ro
f- . • • . o>
*™^~






.
tO *-"*^CM^3 Kt^T *-• CM Ot F*" IO
• ^rp»inO roo vo— • •
in CM-ID ID ID (O
— P?Si >5 "™ •^— • e in u) in in
CO COCO •"T «> OJ 4- IO IO -OO ~~

*~^— *~ t- *~ ^^.» 3 ^^ ^ 1« C. t« t
§— 3 ID ID Q. O) O — — T} 3 X Z 3 X
— ^"«-v«- mmo o o to o  U.OOOO3 C O O >. T3X) — DUJLULUUJ
— 4-4-4- C V> 3 IO » « «\ d> 0)  U IO to I- O  «Q O ID ID fl) UU, t- O 0)4- — IO4- IO O O O O
UX (D(d(O3E€= €\ 3333 3U. ID 3 3 O JCh-=> =33X00003: V.Z 00 IOQ.Q.Q.-0 §£•-•=— —
^2  »4-LU > f ^fi n n n n
0) 






8 S

•i *
^^ to
"»



o cooooo
in 1OOOOO
— OCMf~ —





O IOOOOO
CN — K>«NOO>O
^jo-in




-




















1 -
JD •-
^ ^ O J£Jd
S EOOrom^
O O\\\^*"
z 2u.ij^u_u-

•o « -o
j=^:j=f
u i- i_ i_
Illl

e e c c
.•iiii
O) c e c c
_c OO OO

' ""«J
J U.LU
§













og
oo
CM —





oo
inio

























o
1- J3
§ ^
- § O
^^
XX

T3T3

4-4-
l_ I_
II

C C
II
II
e s
55


C

c
8


























































7-179

-------




























^^
•o
(U


TT
o
u



*
Q^
o>
1
r-x
LU
_j
CD

1*


































•^
"5 U
L, C
4- «
O U
H-
"S



o
u

>
ID
^3

|
c
in o
IB

u> 8
in u
IE
IO
£
"in
c
1

O e
»™ O ^
14-0
o x o
— ja«-
X —



4-

S~
• w

"~ x 
^J

w
o
in +-
C f=
.28
in
in E

e t.
LU «*-

E
IO
ID
l»
4-
in
Q.
3



O C
— O -o
o x «

X —




-I-
2 ™



._.
2 "
^Q-S

"x ^




_
4-

4- T>
in c
*
4-

73
IO
u_








-
§

»
^«





^
CO
•»





in
"0
































_
ID
S
1






co
u.
**•
1
4-

•> o>


5


e
.^
•o
4*
10
0
•o
o -
in
ID IO
^ *
5 -8
(D
>•• O *
U 1.
c u
» c
o
~ in
«^ !c
4) 4-

~O O
(•> *^
4-
§c
•O
in in
ID IO
+- u.

10 U C
Q*- t_ TJ
.— -Q3 
+- ID —
"O c O U
o>— f a>
in— u
3 O. •*
SO 4-
v 10 u a
X O ID 4-

m c
•0 s'o ' 4-
c-o i_ —
10 -1- S
•Q c ~
T N O
>• C
*— o o
C4- 4^
in 10 o
c in ID
34- in +•
u O O ID
c i_ -o .
4- O
m o 10 •*-
U L. O
x o -in
•*- l_ ID
OIN4- 3
UJ"O O IO
O)C U >
10 IOO >^
L.
flj^™ C 4"
> o —
ID in— E
0} 3 IO ~-
J= t. U
K 4- C
^_4-C O
= — 0 4-
H> C C U
in— o a>
ID O 4- •
L. ID in
a •= x> c
r u in — 4-
u 10 o> in •
— +• U «JO 4) >•
j= in t_ u> 4- —
x ID O4- in e
D in a.104- e
3 34- O U 3
— O C i»»^*^ L*
0 C3 ID ^3 O

10 10 in— 4) in
4-4- O.V O) c

A 0*0 4)
                           I I
7-180

-------






LU
P-
us
N™«
CJ
if
o
S
1
u_
CO
JS5
0

CO
CO
t-H
LuJ
ec
=3
U_
O
z
III
111
.CD
h— I
o
o
fp^
o
1
o
LU
31*

_i
2
o
H-
u_
o
>-
•0£.

•L"1
«^
CO
o
o
i~H
1
^^

, I
_J
CO
ff
p






-




0
u


•§
"5
Ift O
1"
If) O
in u
~s **"
LLJ E
ia

u

0
•o
^
o

in •»-
II
in
1 u
UJ »*•

i
4>
4-
in
Q.
3


'




















**
«
"3 o"
tl
S*^
»*•
2 §,
1 4- r»io
— —





•— inoooCN O\O\
• tooaino 030




Q. •
E Q£
IO(OfO(O(O(OIO(O 10^* (O (O IO *0
SEEEEEEEE E E E
l_l_L.!_t_ul-(-U3:i- OmOO i- t-OO
OOOOOOOOOOO — v**'>— s'toloo. oj -
— IO4-4-4- C in 3 IO • • «%. 4> 4> 4> O 4) 4) 4) 4) t_Lu ^ 4) 4)4*
1- X J= (O ID (O • (U (O 3 S E E\ 3333 3LU ID 3 3 U
A 4> CO Q I.CO
in 
CNlrO CM ' m*3*T**lO OOIO
"" 1 1

1

1

OO O inmoOO OO
rop* cs •^•"•CMf^ —~o\
f1^\ t*\ COOD^f^O O\O
ir^»— — tniAiri m«sr
i
OOOO
oco
EE E E O1C E E O O ID (O l_ O O
ii mi1! i i^^ng


^•^^^ 13^^^
—.CD-IOIOIO J=J=J=J= fj=

"^ '^^ cinirtinin ^vt~ivi* t ^
4)3—— — ^ OOOO OO
10 10 UO X X X X XX

£f > I- U l_ l_ CCCC CC
Q.Q. 4>mrOlOIO4> 4)4)
	 -0 3 X X X X S3 XZ 3X
4> 4> oro-aT3t3 i i i i ii
13 T3 — 3UILUIULU O) CCCC CC
cOco&»Oco C OOOO OO
	 UUOOO4) — >M-4-4-4- 4-4-
Q-Q.TJOH 	 — -0 L. J3 E S E E EE
 S.
_
4>
3
5
I
U


























































7-181

-------


















*










f
3
c
•r-
o
u

o
o
r— <

1^
1^^

LiJ

CD
^C
(_



































T^,
%
O O
+• o
a "o
**
«*-
<5




0
u
•™

O
•o
"o
J-
U) O
c u
•"in 8
in u
._ ^.
ID
fl>
U
4—
in
c

-§

O c
— - 0-0
1 4- IB
2^.2

"x —



15 "
O Q^
O in ^-
*" ^ CN?
t. •"
O)


o -5
^™ m
1 "S
"C L.
x o»



' IB
U
"°
a
in 4-
c c
0 0
•— o
in
OT S
— o
E t.
LU M-

S
ID
<0
^
4-
in
a.
3



O C
— 0*0
1 -4- O
O\ Q)
X —


^_

O o^
^™ *^ ^^

;O tf) ^*

X^"~
O



u—
2 o
o'S

*"~ I—
x 01



C
_O
4-

4- -O
in c
IB O
•H- o











a
i

^«
4-
•—

U
ID
U.


























































































o

cs

C*4




in
00






f*»
•
o>





























_
ID
E
1







m
• u.
«c

S.
_ 4-

0 O)
Jtl—
•>^l-

3

c
^
4-
ID
u
•5
in

3 3^

IO ffi
> in
ID
>• IB
U U
C 0
u
~ in
O 4-

^5 o
i- • •*-

c c
O »O
u in in
4> ID
(O«— 0)
4- ^
— 3 O
ID U C

O»- U ^
OT3 > >
4- IB —
O)'2 IB
•o_c o o

in— t_
3 CL •*
E IB 4-
0) to O .
IB >
f O<8 4-
4-T3 O
ift .e
•0 3 O 4-
c-a u —
ID 4— E
«4) Q 	
^ M U
>• C
— IB O

C4- 4-
m ID u
c in IB
34- U) 4-
t- O O 
OCN t- 3
3 —
0>"O O to
O)C U >
ID 10 O «-•
L.
IB— C 4-
> O —
10 in— E
ffl 3 ID —
J= (. L.
4- 4- C
4- c o
4- •
^ tn i. in H —
x « o-t- in e
B U) O.ID4- C
3 34- O U 3
— Oc (.—-<- u
ID S o •a-O
> C U4- C 4-
10 w tn— « in
4-4- CLO OIO
O— Q.4-O ID4-
— 3 IO -L.
•5^=5° §2
O in<4-«o
JD O~O 4)
7-182

-------







CO
LU
1— I
H- 1
_J
1— 1
C_J
LL.
y
.g.
LL.
CO
o
t— t
CO
CO
h-H
LU

z
U_
o
M
•y*
LU
CQ
0
0
O
•_J
g
.
<£
Si
CO
T-t
o
t-l
1
LU

W^


• *• J™
c •»
5Z
^B



"x — "^

•jj
.'§!»
D>


° "o
T <»
2'

x D)



U
•;
•§

s
 "cT4
T "5 "


X X
L. •"
0)

o "5
"io-s
"x ^*


§
4-
ti
4] O
t- 0



C
4"
1
U.


• • • •
in GICO Ok
Ok OkOk Ok




IOOOQ •<• in 00  — O




CMCMOOCMCN — • -O • • • 'O •
m • • OO \O CSKNUO —
in to


•






t- inoeot- tot
_ ^ (O^OChf^ fOCN
^r




-.
• to«OKio r*in
'


0. •
€ ^~
11 ill 111 I"1" E 1 1 "*
t-L.L.L.L.l.S-Ul_I!_ OinOO L. S-OO
OOOOOOOOOOO — CMTO O OT^T
ZZZZZZZZZ-IZ — — — CNZ Z — —
£
•o
c
-^ IO
in
ooeooo «T " u> 13) 4.
OlOkOW -» 4- C C
^"""'>— 3(O(OO, O) O
Oceco— x—«t->4- wu. o L. o
cnooo'Dj^in U.UOOU3 c o o >.
— (O4-4-4- C U) 3 (O • • *Xa>O4>OA O 0>  3— 01 0) 0>O O O O O L.U. L. 0) 0>4-
J3OV5 SU'
gS ' <§









§
in
• in


SS 5
*V"^ °°
Ki— -^

t


^5fO ^3
.— in «o
A «,
~


OOOO
lOTO^O
vomoof)
**»•»»
O1O«O




(D (O (O (O (0
E E E E OVC E
L. L. I. L. C O)X I.

*—~ • -o-o-o-o
•— fs c c c c
33 >.(O IO (D ID
ZZ 4- — — — —
•~-~' c  41 O —
— ~ (O O (O U O U U ST3









S '

 OOQ.Q.Q.Q. £L£K>i-Q.<
t- U V) 
IO LU U.LU
4- O Q
(rtZ 2
TJ
0)
3
gj

^
0
u












































7-183

-------







*~
























f
G •
•1—
-p
o
o




t
0
t-H
1

*""*
UJ
1
CO
^^
•^

































o^
"5*^
t- e
s***
»*•
<*.




8

>
4>
*^

o
in o
£ °
o

in o
in t.
E "*"
LU 6
ID
4)
£


"x —



0
O fS*

1 O w
o w^.
•"* "^ j^
u'*~
OJ



2 «
1 ^2

"x ^~



«
u

4)
T3

—
8
in 4-
c s
O O
in
in g

E t.
LU «-
g
ID
4J
4-
n.
3



o <=
V 5"S
1 4- 4)
2^0 £
X —





4-

8«^ VN
.
® *" Tl«

t. ~
O)


o "5
"^•o

*x ^.
wl


e
O
+T

4- -a
in c
4) O
h- O









4>
E
ID
e

>»

—

• •—»
u
ID
U.










8

«
CO




CO
co

'






 in
ID
>- 4>
U L.
e u
4) C
u ,~
H- £

— t.
o o
u -*-
4-
o' »o
(ji m in

raj** 4>
1 ^ '
— 3 O
ID U C


Q~- U -0
4- 4) —
, O1X 4)
13 CO 0
in— s *

E JT 4-
41 ID U 4)
i. in— >.
X O 41 4-
4-TJ O
in cl
41 —
•0 3 O 4-
•CT31. —


•T N O
>• C
•—4) O
fi IO.C •—

tn 
C &•» "O
4- U
in UJ ID •*-
O u O
4- 41-0
x 4> in
<*• U 4)
OCV L. 3
VO U ro
O)C O >
10 IO O >•*
S<— e 4-
> o —
ID«- J
4> 3 ID —
-C L. U
4- 4- C
4- C O
4- 41 ffl —
C— O •*-
0) C C U
in— o 4)
4) 0 4- •
4) in
a. -c -a c
l> in— 3
^ L. in — +•
U ID 4> in •
— 4- 4) '.Q 4) >•
^ in i. in 4-—
x 4> 04- in c
4- C t- 4> O O
in — O4- x
g in 0.104- e
3 34- 4) U 3
— O C U— •*• U
0 4J 4) ^7 O
> C L.4- C 4-
ID ID in— 4> in
4-4- Q.O O)— 0.4- O n3-i-
— 3 ID • (_
4- E 4>O 4) 4>
3— CJ= >C
O in<4-«O
JZ OT3 4)
7-184

-------


UJ
p
1— 1

o
£
o
s
§
OS
I 1
u*
C/)
2?
o
1— <
{/)
^•^
UJ
3=
1
z
UJ
CO
1—4
o
0
OS
o
re

o
_J
2
p


uU.
o
j£
d^
*j^
n
t/>
CVJ
o
1*


UJ
<
1—



w*.
~o o
u c
1 **
O C
o
u
o
•o
"o
c
in o

to S
V) L.
— >4-
UJ •
1
in
c
s
•o
T -SIS
O"V O
"x —

"6
2 H-g"
O o> ^»
*" ^ 


03
V
>
o
•o

Q
U
in -t-
*in
«g
E^
LU^
ffi
in
o.
3

O =
— OTJ
1 4- O
o x. — 3 ID IOO.




O
•
S


oo
l*\

.


C3OOOO
csooo1^
CM











SCN — —



•ino •
— — — tn
in 09





ID
Oinoo L.
— CMTO O
— — — .
4-
3
5








OKI





OOOO
— Kl
O\U1























ID ID
E E
1. L.
O O


— c7

zz
10 ID
-C-C
CLQ.




S
•t
«


si
to



•
o
CM

Sooo
(O«9"CM
VTCM1O








88'S "



• ^D * * * •

• w«_ f~ r~.
O




«"iS • 15
E Ecnc E
111!7! i


c c e c

4~^^^«
O 3 — — — —
O O
> L. L. U L.
•S 3 2 X X X
o c c c o— ~>4.M- MLLO o o o t. oo oo enxi-o-o'o
enOOOT^jfin u. 00003 c o o x. •o-o — SLULULULU en
— IO4-4-4- C U) 3 ID • • »X OOOOA OOUL. O ID L. O «3 C
^ o o.a.o. CO Q L.C/> O O ID L. L. L. L. O—
Ins
i


• ,g

l_
J)
O to o
Z LU LuU









oSeOCM SS
— r»— CM K>OO




O«Oor-— — — ^>

-------





























-a
0)
~t
c
•r-
4-»
C
o
0
"^•^



CM
Oi
'

^^

UJ
i
CO
1 —










*






















w^
o o"
• (. e
4- a
c —
5Z
"S




0
u

o
•a

O

in o
1°
in 8
UJ U
= *"
UJ E
ID
in
c
|


O C .
I 4- ID
O-s »
"x — "*"




ID
1 O O

*~ vj 

1 4- It)
O V 11)
X —





1o
^J -^*
^~ ^~ r\

O in,..

01



o *.
T |

."x *-



^O
IP

4- -a
in c
u o
1- 0













. c
4-

U
ID
U.











s
c^
^r





pj






in
K1
CM

































.^
10












03
^£
4-
ID
a.
a.£
n o>
u—

j
c
"~
^^
^*

ID
U
•5
o •=
in
O ID
3 X

ID Q)
> in
ID
U (.
e u
O c
"o ~
— m
s- "JC
O 0
I_ H-
4-
c c
o «o
o u) in
4) ID
4- C
— "3 O
ID U C
H 	
°~ 0) ^
OT3 > >
cnx ID
•o c O o

in— . u
3 Q. •*
0) ID U 0)
L. m— >.
ID >
4-T3 O
in c
i»—
•O 3 O 4- .
c-a u —
- C '
• — » O
Kl ID.C •—
C4- 4-
in 10 u
c in 
c u -o
4- 0
in 4> ID H-
•« u 0
4- O^
10) in
"ocg t. 3
Q)"O U ^IO
cnc u >
o 10 O «~
ID— = 4-
> o —
10 in— E
4) 3 ID —
^ L. I.
4- 4- C
4- C O
4- O 4) — •
c— o +-
(Dec u
in— o 4)
4) O 4— •
L. 4> in
d. -C T3 C
4) in— 3
u c x t-
34) O
.e t- u> — 4-
O ID 4) U) •
— 4- 4) -J3 4) >•
j= u) i_ in 4 —
X 4) O4- in C
4— C Lv U) O O
in — 04- x
4> in 0.104- e
3 34- 4) O 3
— Q c t — •*• u
ID 4>« T3 O
> e (-4- e 4-
10 ID in— o in
4-4-0.4) O>4>
4>— Q.4-O <04-
— 3 ID • L.
4- E 4>O 4) 4)
3— C.C > C
O «)<4-«O
ID a UTS 4)
7-186

-------

UJ
I—I
1— 1
1
t— 1
0
*•£
U.
f ^

^*
*
g
Oi

CO
t— 1
CO
£2
jjT
UJ

1
u_
o
txl
UJ
CO
>— 1
a
o
OS
3
o
U«>
o
0

§
-3
CD
0£.
:c
h-

J;
o:
UJ
J—
u_
0
1
CO

«
oo
o
1

UJ
1









•o
u


o
•o
"5
L.
4-
-
X O)


c
4- -O
Ul C
H 8






c
^^
4-
o
10
u.
K> O>09 O>
• « • * •> •
Oi OO O
• Ot O"*O* O



)
8QQ O O Or*.
oo *j— CMCSI


a. •
IO IO IO to IO IO IO (04- IO IO IO «fl IO (O
EEEEESEE E E E BE
U(_ut_l_l_l_l_3:l_ OinOO l_ l-OO 1- C
OOOOOOOOOO — CN*TO O Ofr OO
zzzzzzzz-iz 	 CMZ z— — zz
c7
•o ~~
~ s —^

s z:z
oococo ^r in o) 4- 10 10
o\a\o«) «- 4- c e — —

^"^>— sioioa. o>O ——
c c e o— «^»-<4- inu. u t. u oo
OOO~o^in u.ouuo3 = o o >- -o-o
— 4-4-4- C V> 3  «*-UJ
nz a
E









O\
»



R
•^




1
•1-*


oooo
OOOOJ
» •»•» »
^-v->t0og
*** ^~


R*^-








SoR^to
COT^TKICN




ID IO IO
E E O1C E
(. (- C O)X (_
S S o— o O

^^^^
c e c c
>»<0 10 IO (0
+.____
c in in  t- l_ (- L.
o in 10 ID 10 ID
TJ 3 X XXX
OJ"O T3T3 "O
— 3UJLUUJUJ 01
t- O ID c
— (-L.OOOO —
(O^— IO O O O U 3!
S4^ C C CZ C
H 	 -o
OUIOUL.UI. O
> oo.a.a.a.a-cE
«i uj
^
(A














ss§§
CM to 00 —
c^r-oin




oooo
oooo
— oooo






-















J£ O
o —
10
O J£^£ C
§X 0 0 O
O ID ID ^
U.U.U.U.



f I™ r- <•
i_ (- U 1_
oooo
X X X X
c c c c
flfl
§e c c
OOO

5 111!
x-O-XZII
U.UI
§














oo
oo
ss




§8
00 —






















J^
1
o
Is
^1


3TD

•I--*-
li
+-4-
c c
ff
II

E E
10 10


•o
§
e
0
u























































7-187

-------































^••^
•o
OJ
c


c
o
0
~

t
„-
o

1

***
UJ
CQ
£E




































•»
O 0
4- J
s5
«*•
"X
HI




4>
u
•"
>
.*

o
L.
4-
in o
c u
0
in o
in L.
e *"
UJ E
IO
4>
L.
4-
V)
C
X
o
"O

O 'C
T 4- "S
OX 4)

x —



15

•*— «4_ Q
® "»*

XX2
O


o •£
T ^

*— ^
^ r^\







u
>
4]

™»
O
!_
in 4-
c c
O O
in
in e
'I L.
LU M-
S
IO
4)
U
4-
in
Q.
3




T 1?

O X 4)
•X —
•



4-


T ti ®
O in ^^
xx2
0)


2 "S
1 -o

"~ t_





_o
4-
•—•
4- TJ
8'S

}~ o











i
IO
c

^1*
4-

o
IO
L.











8
CM
«h
S





O*
. Ift






jj
fO


































_
to
E
^3
^j







m
Li,,


*
15
o.

4-

| ^J)
LI—
X U


I =
—
•o
IO
o
~o
u c

in
4> IO
^ *
> to
IO
>» 4)
o 2!
e u
4> C
O ~
— in
4) 4—

— t_
O ^
4-
o * o
u in in
4>IO
IO— 4)
4- l_

"woe
£) **- * ^^
O«- t- -0
— 4) Q)
O"O > >
4- 4) »^
cnx 4>
-o c o o
4> — J= 4)
in— u
3 & ••
S 4) 4-
4> 10 U 4)
L. in— x
4> >
a O 4> 4-
4-T3 O
in c
•0 3 O 4-
c-o (_ —
10 4- S
•o c —
«4)O —
T N 0
>. ' e
I'To « o
• C4- £
in 10 o
c in o>
34-  10 H-
4)L. O
4- OTS
•x 4) in
•4- |_ 4>
OWU 3
3 —
4)"O O IO
O)C U >
10 10 o •**
4>— e 4-
> o —
to  3 10 —
f L. L.
4- 4- e
4- C O
4- 4) O —
C— 0 4- •
UCC O
in— o ID
4) U 4- •
t- 4) in
4) in— 3
t- e XL.
34) O
.cum — 4-
u 10 4> in •
— 4- 4) '.O 4) >•
-c in u in 4- —
X 4> U4- » C
4- C U  in a. ID 4- e
3 34-4)0 3
— O C C*— X- L.
IO ID 4) ^7 O

10 10 in— 4) in
4-4- CL ID O)4>
4>— 0.4- O 104-
— 3  c
O in«c4-«o
a J3 OT3 4>
7-188

-------



to
LU
l— l
1— 1
g

c_>
36
-£
nf -
LU
_5
O
to
to
t— I
-£
LU
_s
|
LL.
O .
LU
CO
a
o
Q.
0
_J
z
CJ

0
LU
a:
3
2
LU


^™*
^C
E
^^
u_
o
a:
to
-a-


^™H
|
(ON,


LU
__1
*~













in
c
in
in
Ti
LU















«^
"o o"
tl
J_§
•*•
g)

U
O
•o

|
g
i
8

i
0
l_
in
c
O

7 1^
*™ _O *^
X —



•g
2 ^
S-S10*
L, *~
D)


o "J;

o ^
* 0>




&






















C
0
u


u.
»*-
i
0
t.
4-
m
Q.
3

o <=
— O -0
Ui- «
O ^* Q>
"x —



4-

2 ^-8
O w ».-
*"* ^^ j^j
x.x_
O)


o "{;

2^
x o>

O
4- T)
in e:
,28










E
ID
C
"o
ID
LU






O
<\
~™



OOOOO O GO
ooooo -»• •
TOTOO IO l»»
wrinioo to
~ —CMtO^Tin
oo rS»r*


TOOOO'O
KtOP*«OO^
. OilOWTlO'T.
r*— m^—





§§§8§S
\OCM—
*w




f"\ *ior**^**
coinior~o>
_"*"_*,_*





O
in
—


















_
E
1

Q.
1
ID 104- ID
E g*g
o o o o
•z z-iz
J3
•o
e
ID

*•••


+0.0 c

=>lo"cD a.
Kl OICO
5 8*8*




O
co
in
__*




O> O>— CM
o ^ •—
^. ^* in






inocM»or»
•O • -in












0000
lO^h^^ ^*
"T^lC^U1^
*-»> ^f ^r CN




CMOOO
SCO — 
Ov
, 8




r»
•
S
fl




T -»•
CO —
• •
»™ ^*





OOO •
•in
0 •
CN











OO
A *
mm




oo
g?
CM CM

•
ID «3
UOO
o«r«r
J



a
>.
4-
e
3
5="












§8
coin
in CM





OO
-TOO
^


















"




la "to
E E
U t_
O O
ZZ
2.O
^CM
3:3:
ZZ


(O 10








o._
CM^
in




9






Ot
*
«—





















____
"o
-K
ID
i







«4

0.0.
	 o
oeeceo«-a — H-M- •-•*- L. •*->*- a> ID
c»o O O O"O js in u.ouoo:> e o o >• -a -a
— OQ.Q.Q.Q.<^ rain aioio— jajajsA N —&^o 	
e ID —mm em  a>Q a>  oj4- — —
L. X j: IO ID 10 ID • O IO 3 S E SV. 3 3 3 3 3U. IO 3 3 O £f
3 _,o.ozixxza.coh-_3=)=)a:oooosv,zoo IOQ.Q.CLO
A -
4-LU 3 CO x-LU U
ss
5




<§









1' ||
t^ ^OO^
in i*^



s ss
o* o»^r
P^ CM


* '

'
CD ^^r^
C^ C3t^
c. CV"1
in CM


OOOOO
OOOOCM
in T in co CM
O— — 1OCO
_ _ _





^P^cMm '
iniO'CT'S'





> ID ID ID IO
+. ____
c in in in in
O 3 ____
U Q

"O > L. L. C. L.
— a> .
>• 4- IO4- ID V) U U U U 3*O C C
ID"— C4--.CCCC U O.t- L. L, U O— J^ —
LU > _ OQQ.Q.a.Q.CL,tt: *-CL«


L. Q CO CO
102 LU LULU
4— t^
co S
a
3
~
§
S























































7-189

-------



























-a
0)
"^
C
•r"
•i-*
c
O

•a

~o
j:
in o
c u
— s
in t-
•— »*-
S
LLJ E
ID

•§

Q
U
tn 4-
55
— o
tn
tn s
•— O
s
«3
O
^~
W
O.
2






















w^
"o o
t- e
•»- O
c —
O O
»*•
o



2 g,
1 4- 0
OX O
^— ^3 «^
X —



13
2 *_ ff*
O u)

X \

O)



2 o
2^
X 01




O c
"ut 1
ox o
•— £> *•
X —




4-
^^ ^^
"™ *^ tj

® *" fc*
*"- ^^ SJ
O)


° "o
*~ in
o "^

*""" (_
OJ



e

t
4- ^3
tf) C
K O
.






i
ID
C
£
"o
ID
LL.

















§888
cgtooo —
(Nr^oxm
KVfOKMf





OOOO
oooa
— 03OO





























^ 5
0 —

0) ^£ ^£
c x u u

y — innm<
U.U.LULU

B^JOA
^ ^ f- f—
p~*^^~ 4~
U U C. U
OOOO
X X X X
4-4-4-4-
c c c c
O 0} O 
in







Pi

































ID

^
^




^CD
LL.
<
•
4-
IO
0.
4-
. ^T
I O)
is
)

c
•o
4-
10
U
•5
5 ~
in
O ID
3 2
(O 03
> in
ID •
>- O
U C
c u
o c
u
— in
'*• -C
_
0 0
•H **"
C C
O • O
u in in
O ID
(O*~ O
4- U
— 3 O
ID U C
-1 	 •
— a) q>
O"O > >
cnx "o
TJ C O 0
ID— J= 0
tn— u
3 ^L •*
O ID U O
i_ m— >.
X O O 4-
4-"O O
in c
•<0 3 O 4-
ID 4- S
•DC —

ID >• C
4- — O O

O C4- 4^
a.- in ID u
cm o
4- 34- in 4-
§<- O O • O
C L. 4--O
f 4- O U
4- in O ID O —
— . O L. CLO
I 4- OT3 O
• x o t. in
C C •»- L. ID
ID ID OCN L. 4-3
t- L. 3 V> —
3 3 O-O U O ID
•*->»- cnc o 4- >
O O ID ID O — •
N N L. C C
C C O— C —4- 00
O O > O — t-
.0.0 ID in— c E 3
— — C4- ID— »-
'O'O ID 3 ID t_— O
O O f L. t- 3 N
L. I- 4- 4- »- C C
O O 4- C O O O
— ^ »4- O O N»— J3
.C-C >-C— O c-l — —
o o— o c c o o-o
(D to c in— o ^ o O
4-4- O O U —4- U •
o u i. -a o O in
O O c a. -c O"O— c
ID O in— L. J= 3
.Cf t- t- C O X U L.
O1O13 3 O — O ID
O O O U ID O O 0.1ft •
t- L. N — 4- O • >vQ 1) D >-
H4- o x o O4-"o in"11 ~c
^ 4- C t_ Q.OJ= O O
I -i — tn — o 4- oix
IDIDT3Oin Q.U1(D34-C
t. L. O 3 34- O«5 O O 3
-4-U— OCU — L.4-L.
0 O O ID O O T3-O^ O
j= to ID in 4-— o in
x-s.u4-4-a.oe i o>o
O O ID 4>— O.4- OO ID IO4-
i— 3 ID in «i_ u
S E4-+- E O OO4- O O
3 3 O 3— C.C L. O>C
«/>(— O m«C4-Q.«CI— «CO
ja 0*0 o *^ QIC*— **n
7-190

-------





§
p
^-\

o
CJ

UJ
K—
CO
i

IX
o
2:
a:
o
LL_

CO
O£.
0
CJ

U-'
O
1—4
to
CO
III
LU
i
u_
U_
o
on
ii
CO
 "B ^^


X


«T S
_ O)4-
|S£
in t- ™"
2. <-0
i§ -*-i
S2
x. X

in
4- .5
S£

x. in
g|f





S
1
4-
1
i
R" ? §
. o . • •
ft* T 00 00
O  —
c
IO
L. e c . c
3 <0 ID c ID
x- U t. 10 t.
O 3 3 <_ 3
NX- x- 3 x.
COOO4) 4>OO4> 4>x-4) OO4>
OUUNO. UUNU OOO O N O
— > > 4) > ">">4>'> °>c^ ">§'>
O'O'W— "O "O tJ — •O "O^-O •O-—-O
O— — O— —.••Q-. ..-Q.. —.OM.
— O O L. O "O O Ol- O T3 O O O "O O u O-O
.C L. L. O L. 4) L, L.O L.4>L.L. I_4>(.O L.4>
O 4- 4- — 4- ^4- 4-— 4- — 4-O4- — 4-— 4- —
«J c c .e c u— c e j= c <_— c — ci_— c j= c t_—
t- O O 0 O— OO O U O— O O .c O— O O u O— O
4-CU U (0 C 0 0 t- 0 U IDCUIDt. U O C O (D l_ U IDCUIOU
4>L. L.UI4- 4-L. 4- IDL.I4- 4-L.I4-
4- 3 t. L. 4-3t--OCL. t_ C 3 U-<3 c L. X 3 U"O C L, Q.31.-OC
O4) Q> 4)O4)4)O4) Q) 4}.£)4)4}O 4) 4>A4)4>O 4} 4)O4>IUO
00 4-4-4- 4- > O4- 4- O. 4->O 4- j: 4->O 4- .C 4-->O
• inx- x- inx- L> ex- x- u>x- L, c x- inx- u c x- u>x- u c
r^> m
O U •
> C >
4) 4) 4)
•O J3 -O
"o "o "5 •«
L. L. L. 4)
4- O 4- —
C — C U —
u u e U*ID u
IO L. 4-
!- 4- 3 C'-O C
« W 0 4) fflO
4- O 4- > O
x- inx- «_ c
LU< — m«c 103
3 ID ID 4-
§ £p »
7-191

-------
Isomer-spec1f1c PCDF 1n English units

7-105  Summary of 2,3,7,8-Substltuted and Total Tetrachlorodlbenzofuran
       Emissions from MWC Facilities

7-106  Summary of 2,3,7,8-Substltuted and Total Pentachlorodlbenzofuran
       Emissions from MWC Facilities

7-107  Summary of 2,3,7,8-Substltuted and Total Hexachlorodibenzofuran
       Emissions from MWC Facilities

7-108  Summary of 2,3,7,8-Substltuted and Total Heptachlorodibenzofuran
       Emissions from MWC Facilities
                                  7-192

-------

-------

s:
o
Ctf
• U.

OO
O
I—I
a
i— i
?y
LU



1— Z
j"^
£r
CD

1
CO
f-.
PO

og
0
|
to
LO
O
1
LU
CO




3
>
0
•o
"c

v> c
§8
"in 6
in o
E M-
LU
E
ID
O
L.
•)-
in
^

1





o
u

>
Ml
-S
1
o
U
U
*w
e
ID
(U
L.
in
a.
3
in
c
O
in
U)
1
LU
















fe -00
R xo
± L.
JH«
2'olS
"x



.^
J. U
5 [ft CN

ob ob^

XT +-
•O (O
N >—
X




»t.
, o
u/  — ioiO
^- IA
•"•








tOOfMCMr- — >OO»
1^ O> •- — CM M IO ••'












•s









*~"
00








a

llllllf 1
IIIIIIII

c7
c
ID
CM V "~
co oo in o>
O> O> 4- c
•*»«-• w c 	 t.
> 3 ID ID O.
ceo *-"»- M- inu.
O O "^ tft u.
— a. o.< o) in ID  CM •—
"^ * *O ^
0



.






CM
in









°°. '
*""


.
.




*
in
11 li I 1 1 1
£ £ 22 £ §. £ %
•
•
II \

•*- ID ID 8 O
3 J3 .c >
Q a. a. , « in
O) O — — *a 2
u a> o -f- 5)
! g £ S* & «_o3 ? T, =-
£.i_i_t_ £ rrnr ^*zJ~s= IT ® *>
• 7^ jS ^^ ^^ ^^ ^^ *w *t™ «D ^C tj J3
^J LB CO >~ 4) U 
















































8^
•*-
c
CD
0.
CM
o
:orrected ti

i
9
7-193

-------
o
Lt_
co
z
0
CO
CO
l_l

SI
III
LU
^yp
^
o;
u_
o
y
LU
CQ
H*4
a
S
3
3C
|
LU
a.
_j ^

1* LU
o JU
l"~ t"H
f^ «J
32 G
•^ <;<
a>j-
LUO
=3 ?


1—4
g
^s
*JK
*
CO
r»T
CO
«
CM
U.
CD
|
CO

(O
o
1
I**
lit
UJ
CO
^



s
i
7
4J
1
'2


i
2

i
•S
1
S
5






a

s
73
*0
t_
c
o
u
I
"•
i
t.


a
z
5
trt
1/1
"e
Ul




1— ^*
X


U. W *
Vs *O Q
a. <. O
i t-

r-To 2i
«r i •»-»
* O «J
esT ^*

LU •*-
25 u
".•™a
r-0 —>
";'s ™
*"
t
.53"
^0°*S
^7 *,
o ra
X

^
Lu «*-
S u

a. >. u
r{o 2
^r i *j
* O «J
0? —
• X
CM

uT «*.
o o
*3J ^ a*^
^* ^ "
* CM
N"^ *
• "x
t— *

e
o
irt C
4) O
1— U





i
$
"o
£

























*



























-
n
«/» *5
(rt 3B
£
     U)c*)tootr*»ui   ^r   tsi      o o
     3 S ,• 8 S> S   o   3      S ?
            I
      .  . en  . °i .   S   'IS     S3
     ou co tn ~* r«* —i
                    ».   5
n)ia««04-»fa   to   15
EEEEsE   E   E
                              CO IO
                              CS
                              ££
           E
           £
 •  'I  slll
-   ? s «  .  .  -
'    <'
n a
II
*S "a*
                   8
            u. ?   °

            S2u.T5   55   "5  5
                                             S

                                             i
                                             •S
                             7-194

-------
 §
 c/)
 z
 o
 LU
 00
§

3

C_J

X
LU
 a —i

 .
LU


CO
          2 ca T
         *• S 2
          * £ x
          '• 8'e
          tt X "^
          * X  x
           • u o

          1 5 x
         V "•"?  ^
                °* JJ
                     • g en f^. to CM    *   tn

                    en   rC         CM    .
                                   U* P«* f*.   ^4   CM

                                   <•) 
-------



f8*8!
rv*
L*-
CO
0
1— 1
CO
CO
1—4
•E
UJ
Z
i
0



1 1 1
en
a
o
C£.
O
as
CJ
t—
a.
UJ
-•yo
•pi-B
"Zi C/>
^^ ^^1
°*~
_J

§ *-*
^c
a1-1-
=3 ^

I""1
CO
en
to

CO
M
CO
c\r
u_
o
e£
s
2
CO
§*
1
r-.
LiJ


CD
JS






s

1
|
c
8
|

i
e
i/i
1
§


VI

5



• U
U. vt CM
-o"S
5 *7* *j
jO 0 0
X


CTt U
• IA C\
"- . ^ &
f*« U» *-
^ t_> CNJ
* O.O >i
"1 =7 -
CM Cp 1o ^
•-» X

1
•5
§
U
1
.





-I
c
2-
I


". S S SS
S a! °. -.1
O M »^





53? S ""
m CM o —* eo
odd ""







OJ ^ -.
09 5 n -» *^ *"*
wi 4^ m to
*» e -^ •*•

•— ' u. t *« 'a*
tg2^^u.« Sa_ff
.a «, (/) to o" s. co
X


?
CO
*^




,
o
s








eg
-<












*














*«
^






u S1
B 5
I 0. I
J- C/}
Rf Ul
7-196

-------
Other organic pollutants 1n English units
7-109  Summary of Polychlorinated Blphenyls Emissions From MWC Facilities
                                               /
7-110  Summary of Formaldehyde Emissions From MWC Facilities
7-111  Summary of Benzo-a-pyrene Emissions From MWC Facilities
7-112  Summary of Total Measured Chlorinated Benzene Emissions From MWC
       Facilities
7-113  Summary of Total Measured Chlorinated Phenol Emissions From MWC
       Facilities
7-113a Summary of Other Organic Pollutants from Municipal Waste Combustion
                                   7-197

-------

-------




10
UJ
1*^
1— 1
_l
o
U_
**
i

OS
U_
co
•yr
O
t— 1
to
1— 1
UJ
v/
_J
^
UJ
0.
HH
CD

0
£
<
s i
3
5
_j
o
a.
u_
o

^•-
a:
|

CO

o
f-H
1


UJ
_J
oa
H—











S
a
•o
"o
L.
ml
|°
°in o
in u
•— H-
<§
n>
u
l/>
c
x
0
•o




.
O u
II
«

O e
— O TJ
O X ffl
*x — "*"


«'
Is8*"
xx£
• a>


Q **•
"i" -3

^ o>



O c
O \ S
x^z
X —


_,_
^1 fct_ ^?
i^ Tr f ^
*12


7 8
*— ^
x o>

c
o

!JZ
+- -5
in c
<1) o
1- 0







0
i
c
~
"o
ID
LL,


<^ ^- !•••
CM Ol K(
r~ o> m



ooo
TOO •
TT O>O*
Otto


•
tO O O CM CM 
* * T CM fO
IACM




•* o o in oo o *- oo
•™ ^~ Ot to ^^ *sf <^ ^J
K1CN



§OO
O O
ro o> in
00 T —
•• vo —



SS?10. ".^ SKS
-^•"S 5S; "x^10
K1


r**ocMin Tot O^CM
• ^- • • • • 03*00
O&OT too CM — M
o\ "'C* in in to *
— C U) U) 
l§ lii^
-"^ S « fe «o
*o x x x
O e e u. ID ID ID 13 T3 -o
D1OOU.OOOO UU — LU UJ UJ
— OQ.O.— JDJ3JDJ3 .a J-J — S«4>a>
.a • — EEOOVVVLLIDO ID4-UUU
3|&«=*g****§** |§|||
1 ^_ ^^








8 .
03
CM



SO O O O
o o o o
— O IOOO
K1 in CM 00
in to •— CM
fO f\ —


• =oooo
T o o o o
O* O O O O
O r-- o co
a* r~ KI T
CM to VO Ol
* ^















is I
ID
JD -+-
10 c x o o o




•O O J3 J

o o o o
^^^4
c c e c
o o o o
t- .0 <= E E E
•— ^ ID ID ID ID
LL. UJ
§












O 0
o o
oS
oo
Ol 03
CM* CM"


o o
o o
O 0
11
^ *






-











o o
= z




.C f
11
1 ton-Wen
1 ton-Wen
E S
ID ID
X X


I
1

















*
V
u
o
0
•4-
•
in c
«oo
ID-I- e
U 3
• ^
> C
DJ3 U
7-198

-------






to
LU
HH
I—
i— i
o
••^
LU
0

•r

2£
O
o:
u_
to

o
CO
CO
s:
LU

LU
0
Z
LU
a
B«J
<:


o
Lu

Lu.
0
^™
Q—
=|
=3
to
O
f— 1
1
f"^
LU
CQ
IS








V^
"o 5"
£§
53
o
o



..
vo u
i in
O -o
X L.
D>
O
i
+- t3
in =
o o
1- 0






i
c
"o
a
u.




§m' ^5
co to
in" —
"™*



in r* oo
r~ in o
i~ ^





CM ' •- O
in • •
r- — to
in in





in
CN



ON

2





S
co

— — — —
E e . e e
U U I. l_
i 2 ii


w o
co u
o» —
3 <0
C O)
O — t.
— , 4- 1. O 3
— . a. — L. ^ >.
cio 6 O>« ~ ^! —
4-uj > a M-a.«c<
in a (.0 v>
M3 10 Z U. UJ
5 .ft §
7-199

-------
             L. e
             +- «
 LU

 O
 t/O

 C/1
 LU


 LU
 

~ §
E L.
LU M-
          l_

          O)
     2  o-o
     T  •(- 
-------



LU
i— <
I—
t— 4
>— 1

T' ^
U~
{_J
y-

o
o;
Lu
O
H- 4


CO
1—4
LU
LU
LU
3;
LU
m
a
LU
i—

z:
1—4
0
_j
g
a
LU

^~
oo
s
•^
J2
tr
o
i—

o

^^
^y^

^^
1

e>j
T— 1
I-H
1
LU
ca










O
u

a>
•o

~Q
L.
C
in o
<= u
•2 E
in t-


a
0
L.
in
c





o

•5
•g
_
o
l/> 4-
II
(0
in E

1 t.
UJ *»-
f
o
4-
Ifl
a.




















•^
o£
.L! S
§0
£
o
2 c-o

"1 4-4)
°'v<£
"x — "*~



4-
Q CM
x^5

CJ



2 "«

x fe,



O e
— o-o
1 4- O
O X 4>
"x —



+-
7 ^3^
O in ^^

L. *~
O)

2 «
7 »
oc
— >
X
o>


c
£


•^
S o
1- u




e
^^
4-
"i
u.
eg
•
o



-
o oo o
So5 o
o oo o
co co o O
r« o in
— CM — in





.
o oo o
R888
P» — O CO
CO CM Oi
•— to ~—
^.

o
o
o

CM
O
CM



8
in

: ^
*~


O


CO






ID ID ID ID
Illl



coco co
O e e e
a) o O O
—  X
4-UI X
in ID o Ch «•
•- r— to

1









§g oo
ooo
T O r» in

OO TT
to co in to


0000


in eh T —
PO T IO CM





1
O m o o u
— CM T O O




O)
U O U U 3
0> 4) O 0} J3
f\ JQ r\ f\ isj
O 4) ID U «- U.
3 3 3 3 3 U.
O-O-O-OS^


CM CO
• •
at co
OtOt











CO IO
^o to
to eo







•» in
in CM
CM in












O O
OO

eo 01



oo
oo
in to

to to
tO «3-


•
m

«3
oo"



4)
U
4>
•a
u "o
^O _O <~
3 3 4) U
oo- >
u o
•2
V)



.























8888
o o o o

StOCMO
in CM T
fO CM to ^r



CM O IO l«-

o> •» r» —
• 	 —CM


§000
in o o
to r— in r~

CM CO t —






ID
E Of
1113

T3 -0 -O -0
C C C C
ID ID ID ID
0) UJ W tft
"O TJ "O ^
S_ L, t_ U
(O (O (O tO
LUUJ LU UJ
O O O U
c c c c










§'

ft
to
<—•



§^3 ^3 ^3 ^3 C5 (O
OOO O O CN
OOO O O 
-------


CO
LU
I-H
H-
1—4
g

e_>
2
2!
«™
O
Q£
U.
CO
O
I— «
to
CO
t»4

z.
LU
_J
.3:
1 1 1

0.
a
LU
Z
1— 1
Of
0
T-


a
LU
=3
oo
«^

LU
s

1

o
u_
o

°^
to


•
CO
T*^
1— 1
1

LU
i
CD






-
C
>
ID
•a

"o
u
4-
c:
in a
m t.
°g
LU E
IO
O
4-
m
c
x
o
•o




V
o
1

"o


in
in e
"i <-
LU *-

E
ID
ID
i.
4-
in
a.
3


















w*
olf
U C
H-
"S

O c
T 4- O
ox W
— .a •*-
x —



4-
0 %"
^ w «.

o>



o *S
T ">
-?
* O)



O e
— O T3
1 4- IB
OX IB
xf"



4-

O in ^

O)




o *£
T2^
X »

c
o
4_
4- -0
U) C
H- U











c
4-
"o
ID
U.





88§
OOO
OOO
(OOO
fl 00 T

>OO


o g o
o o g
Ok O-O
OOO
Oi *O^
^,_



§00
o o
(OOO
in M in



o
o
o
a




§
oo
2 .







o
o
CN



ill






~.~.
m 03
Ol Ox

10 *"^
O c c u.
O) O O LL.
— u Q. a —
£S SSSS
5fe85oz:cS
4- LU 3
in 10
r
CM o»oa * oo
Ot O^ Ot tA Ot O^










^3 ^3 ^3 C5 ^3 C5
trt O PO O O\ fO
o* CN in o o r^
« 	 00 	





^r f*i in o ^ o\
CN* wT -^
CN




•




o o o o o o
O OO fl O 00
— oo r- in — wi
T O CN 00 O T







o o o o o o
o o o o o o
i^. p^ in o oo in
1*1 10 01 CN o\ r—
co 10 ^* in 10 CN

„
CE
«9
O in O O O O
— CN «T O ^T rr











o o u o u u
O Q) ID CD OH)
JD .O .O .O J3 J3
CD O U) 0} LU 0} CD
O-0-O-O-^.O-O-
Q
























§OOO
OOO
^O O O
oo o 10 o
K^ JO CN in




o o o o
o o o o
K1 OO O IO
— — — CN







800 o
O CN O
CN ro r— 10
CN o o in



E OTJ=
<- c o) x



•O -O TS -O
c e c e
ID ID ID IO.
in in in u>
© — «•_.•_
u
~ 'O "O "O -O
> (- L. L. t.
fl) (O (O (O  .0)
•S--
in
^ 1i5
c >.
4- —
C ID
O C
U ID

•

G O O O
in 4- c
«"o s- 2
IO IB O
CD t. 4-
L. Q. CD «
U E U)CD
<=~ 104-
CD V O
C .C > c
<4-<0
I A U
7-202

-------



^^
^1
1—4
=3
J§
O

UJ
_J
0.
^•^
0
=3
1
U.

(2
1
_J
O
Q_
,
CJ
*~*
1
O
a:
UJ
3=
1—
0
u_
0
cc
§
§
00
n3
CO
T-4
r-..

UJ
CD
jS







£

»
»*-
o?
e
in 4- —
in o 4-
— (O IO
a*- L.
LU
_L o
* J
Ul „
e
O
IT" jj-
o **" o

X
•> c:
0 O
§C X.
_ (0 .0
V) — "™
£ t-o
^ ^*"
"ll
.

tO
.
e
o
ex
2
•o
o
(O
e
1
f

O
a.

^

^
t* _
« r» o»


a a a





888
CO CM CO
«r eo 10
in vo CM



§i i
I i
CM^
O .
T
'I
^





^
IO 10 IO



10 — —




8 8
"> >
d) flj
•o -o
^* * ~m
2~a o
0 U
4- — 4-
c u— c
8— o o o
10 t. (J T3
(-14- >•
3 (-•a c i_ j=
4-> O 4- T3
in««- 1- c -^ —
IO 4- Q €
E e/> 2 i-

u.


Ot

A
in in in


a a a





o o o
O O O
°* °* °*
o o o
O «ff vo
O !*• CM
co" CM" 
•a -o
_ _
o -o o
t- O L.
4- — 4- O
o—'o o o
e o 10 t- u t-
U 1 4- X
3 t-T3 C U A
n o o o o i
4-' > 0 4- 10
u.< o


CD



in

"^ en


o a





8-8
o o
o* o*
s s
CM


8 !
o
CO • •
co
l_
1
o
«
co




JO
ID ID



CM —




8 -8
^ ^
o O
CMin to
vo"


1 o t
§
f^
CM
1

f-




^
IO IO IO



^in '—




8
^
o
•o
— ^5
•o O •« c
« u a> o
•^4- — J=
— c i.— a.
O O~ O .
c t- o 10 t. -a
1.4- | 4- aj
3 c (.-a c 4-
J=O O O O 10
O4- > O C
in c*- L. e ~
ino< 103 t-
10 4- O

f-
0

^

a
|^
r-v -


o o o





o o o
88 8
•» «l *
•a- O eo
Cn CO VO
CM — r«1
CM*


i| :
1
en
i
o
o
o^
o
 O 0 0 O
O 4- > O
in c -4- u c
in 3 «c 10 3
IO 4-
Z CO


7-203

-------
Supplementary tables in English units
7-114  Summary of Supplementary Ch1orod1benzo-p-d1ox1n Emissions From MWC
       Facilities
7-115  Summary of Supplementary Chiorodlbenzofuran Emissions From MWC
       Facilities                 ...
7-116  Summary of Supplementary Metals Emissions From MWC Facilities
                                  7-204

-------

-------


to
u.
h«t
H-
C
. U.
CJ
3
32
C
Q£
u_
00
0
^™"<
to
00
UJ
=
^™(
X
o
o
1
d.

o
UJ
en
HH
O
o
0
C_3

a:
£
UJ
UJ
.«]
0.
Q_
uo

1 1
o

0£
 r^. ot co 3 o> p? <\j ^ oj^oicxigR
• **> ^4 •> « «v4 •


O?oc35^cnin •^°0*0 -o» O aim eoo
O ** P-4





ss"-o-s5 ° SI §~
des""^ 5 "S



'
^ 2 '*v S 2 ® o CNJ eo co ^
--o^.'s'^-r-* ^ m o •* eg

do J1 ^T





'**• ^^ "CO OJ ^ •^ vn -r*^ ot O oi O
^ — • .n^ , uo • co S? en ^S
• ° ~ 2 Si * m'^MfN» — i o
do o ^ ^





•~? ^ <*? O^ co r^ exi csj en O ui ^v ^ t/> ^ p*. 0 o

•"•^5^— •»— ~ CO ^ T OJ-.CO

-

— t^nr^^-^.,^ _
§ 23S 5So o o .-?32£
0 pgo-o 00 m o o <-i^o —






Illllll III III IlIU


s .^ ' -
S-Q *n a. a.
*— W» t V? 
t V (O (11 UJ Vt UJ
JT"^ •** «*- &. wx. 5 *!<
^Is-^SSf^f "> if^o^ll^fe-s?
S 5Z i:£^ « w^SjaTTl B*.|^§^^ "^ §'51tI5
3«M§O?_eE3 £ "M § > t5*~ °*'° *Sa <9 jo at « <«.
g o to Q at r*. ^r
^^i^ co ep • . cy


Hi s
• . to "r*.





si S
. s —




s s
-* -7






". S
CO CM





l~ 0. •=• »f ^

•"^  js ,2 -g je S; S S .S ^
c2i z z > c ^ ^l
-------



CO
LU
HH
_J
§
u_
O
|
O£.
"~
CO
•z.
o
CO
CO
1— <
LU

^
^
O
NJ
LU
'CO
1— <
O
O
oc
o
•=
o:
J<-»
i
LU
Q_
Q.
|^3
CO

It
o

^


^^
35
co

in
»-i
i

LU
1

!"3
«A ^
•o
•g ^

U
«
C?
°2
'o
X
U
* ««^
19 l~
*•• cn
^ I
0
X

u
•A
s-l
-2
Q
X
«M
• "**
ID t-
*i °*
Is
1
o
X


u
S «
,22
'o
*x

.1

• t-
f»» Ol

Cg i
2
X





§

tr- U



I
£
1

SSSSSSS S32 S g S SSS55S





co o <^J 03 • ^ . i*^ . r^» * ^H in cr> en * en
*-* o CM • ft ** en . en . •* CM co co f> CM
do'^" " co-a> _• • ~


t^. tn r-. en » CM CM oo *^- o
OCMU>SCM-H en S5 COCM
do" *° -J-.T "^



•

8J2S5S*: S S SSS-.2
• - co - K •
O O f* CM



fi ^ in CM co ft • f*> CM ^^ • en 2h
o *o *•* v ^* *•* rn f^. co en *•* to ^^
do — *" ^.T


.,



• gCOOJJ*«O lOCOtA CM CM IO Lf» O - ^T O
CO - • CO CO •-» "^
o o




.

CO
— • CM *r en cu
en en <•*• cv *-^ to —» o vo to
o om '"SS ^ CM ^ 2








SS3S3 33 3S S 3 S 3 i 311
Illllll III. 1 1 1 1 III

u.
fn "«i ar *^
r3 2 I/i (_ 5l Ql 8}
u at to or tu IA ui
•« °"
X

^ 0*0* J3 U* <*• jQ
SSS So0? S
-~ - s *;




^- w^^* • • •<*»
CM* ^ ***


CO CM «M
O CO CM






S3 S
« ^- CM
— —



52 en
— * en CM




-

en to ^> co o
• tf> O • <*)
3 •" ~8 '.



"












1
"S (A
u> a>
ill i »i
as as a: ac a. 3 ce



|
;=-.s w "i
Sf- u
 e o f
of tetra- and octi
of tetra- thorugh
of trl- through 01
of tetra-kpenta- i
ichlorofuran eaiss
rachlorofuran eais;
S 1 § i tJ «
"tfff-ffffjr
7-206

-------
     B   Jo  ^
         r2   o
         •5T   <"
         So?
 oo
 o



 <_>
 §
 u.

 00

 o

 oo
                             r» r-
                             Ov oo
                              ft  •

                         '    7?
                       KlfN «• OOl
                       eo fN CM tn •—
                                    in j
                                    O
              (_
              o>
         §2  o
        -T  .S
        (O X
        o
        io  r,
                       OOQOO -  O CO


                      O O O ift O   O «r
UJ


Q.
Q_
o

>-
00




(O
»-l
^<


p*.


UJ


CO
                         •   —   — —
          in e
          0) O
          I- o
                      — 4-
                      C 3

                      — O
                                   3 3

                                   O O
                      oo
                               i
 •  »  u  a>
«T;    H
fO (Q  11  t.
Eg  18.

ii   -
                         to
                          •o
                          4)
                          N
                         00
                     c c
                     0) O  *
                     T3 -o 0)

                   V» X X C.C.C
                   u o>  
-------

-------
7.3.  REFERENCES FOR CHAPTER 7
 1.
 2.
 3.
4.
5.
 8.


 9.




10.




11.
  PEI Associates, Inc.  Emission Test Report - Baltimore RESCO
  Incinerator, Baltimore, Maryland.  Prepared for U.S. Environmental
  Protection Agency,  Emissions Measurements Branch, Research Trianqle
  Park,  N.C.  July 1985.  (Draft-Pending Determination and Final
  Metals Analyses).

  Greenberg, R.  R., et al.   Composition and Size Distributions of
  Particles  Released  in Refuse Incineration (Alexandria,  Virginia,  and
  Washington,  D.C., MWC units).   Environmental  Science and Technology.
  iy/o.   p. .566.

  Haile,  C.  L.,  et al.   Assessment  of Emissions of Specific Compounds
  From a Resource Recovery Municipal  Refuse Incinerator (Hampton.
  Virginia).   EPA-560/5-84-002.   June 1984.           •

  Scott_Environmental  Services.   Sampling  and Analysis of  Chlorinated
  Organic Emissions From the Hampton  Waste-to-Energy System.   Prepared
  for The Bionetics Corporation.  May 1985.

  New York State  Department of Environmental Conservation.   Emission'
  Source Test  Report -  Preliminary Test Report  on  Westchester  RESCO.
  January 8, 1986.

•.Midwest Research Institute.  Environmental Assessment of  a
•Waste-to-Energy Process'- Braintree Municipal  Incinerator. 'Prepared
 for .U.S. Environmental  Protection Agency, Industrial Environmental'
 Research Laboratory, Cincinnati, Ohio.  April  1979.

 Haile,  C.  L., et al.  Comprehensive Assessment of the Specific
 Compounds  Present in Combustion Processes', Volume I—Pilot Study of
 Combustion Emissions Variability (Chicago, Illinois MWC).' Prepared
 for U.  S.  Environmental Protection Agency Office of Toxic Substances
 FDA J2n/ito5enn!!rch  Institute-   Washington, D. C.  Publication No.
 EPA 560/5-83-004.   June 1983;.

 California Air Resources Board.  Air Pollution Control at Resource
 Recovery Facilities.   May 24, 1984.

 Greenberg,  R. R. A  Study of  Trace Elements  On Particles  From
 Municipal  Incinerators (Alexandria,  Virginia;  Washington,  D.  C.;  and
 East Chicago, Indiana).  University  of Maryland,  Doctoral  Thesis,
 i-7 / O •

 Jacko,  R. B.  and D. W.  Neuendof.   Trace Metal  Particulate  Emission
 Test Results^From a Number of Industrial  and Municipal Point  Sources
    Hahn, J.  L.  Air Emissions Tests of Solid Waste Combustion  in a
    Rotary Combustion/Boiler System at Gallatin, Tennessee.  Cooper
    Engineers.  July 1984.                                      F
                                 7-208

-------
 12.    Neulicht,  R.   Emission Test Report:   City of Philadelphia Northwest
       and  East Central  Municipal  Incinerators.   Prepared for U. S.
       Environmental  Protection Agency/Region III by. Midwest Research
       Institute.  October 1985.

 13.    Hahn,  J. L.  Air  Emissions  and Performance Testing of a Dry Scrubber
       (Quench  Reactor)  Dry Venturi  and  Fabric Filter System Operating  on
       Flue Gas From  Combustion of Municipal  Solid Waste  in (Tsushima)
    •   Japan.  'Prepared  for California Air  Resources Board by Cooper
       Engineers.  July  1985.

 14.    Nunn,  A. B., III.   Evaluation of  HC1  and  Chlorinated Organic
     '  Compound Emissions  From Refuse Fired  Waste-to-Energy Systems
       (Hampton, Virginia;  and Wright-Patterson  Air Force Base,  Ohio).
       Prepared for U.S. EPA/HWERL by Scott  Environmental  Services.
       1983.

 15.    Howes, J. E.,  et  al.   Characterization of Stack  Emissions From
       Municipal Refuse-to-Energy  Systems (Hampton,  Virginia;  Dyersburg,
       Tennessee; and Akron,  Ohio).   Prepared by Battelle Columbus
      .Laboratories for  U.  S.  Environmental  Protection  Agency/Environmental
       Sciences Research Labortory.   1982.

 16.    PEI  Associates, Inc.   Emission Test Report -  Tuscaloosa Energy
       Recovery, Tuscaloosa,  Alabama.  Prepared  for  U.  S.  Environmental
       Protection Agency/Emissions Measurements  Branch,. Research Triangle
       Park,  North Carolina.   July  1985. '

 17.    Environment Canada.  The  National Incinerator Testing  and Evaluation
       Program: ' Two  Stage  Combustion (Prince Edward Island).   Report
       EPS  3/UP/l.  September  1985.

 18.    Higgins, G. M.  An  Evaluation  of Trace Organic Emissions  From  Refuse
      Thermal Processing  Facilities  (North Little Rock, Arkansas; Mayport
       Naval Station, Florida; and Wright Patterson  Air Force  Base,
      Ohio).  Prepared for U.S. Environmental Protection Agency/Office of
      Solid Waste by Systech  Corporation.  July  1982.

 18a.  Systech Corporation.  Test and  Evaluation  of  the Heat Recovery
       Incinerator System at Naval Station, Mayport, Florida.  Prepared for
      Civil Engineering Laboratory,  Naval Construction Battalion Center,
       Port Hueneme,  California.  July 1982.

 19.   Kerr, R., et al.  Emission Source Test  Report—Sheridan Avenue RDF
      Plant, Answers (Albany, New York).  Division  of Air Resources, New.
      York State Department of  Environmental  Conservation.  August 1985.

20.   Ozvacic, V., et al.   Determination of  Chlorinated Dibenzo-p-Dioxins,
      Dibenzofurans,  Chlorinated Biphenyls,  Chlorobenzenes, and
      Chlorophenols  in Air Emissions and Other Process Streams at SWARU in
      Hamilton.  Prepared  for Ministry of Environment by Ontario Research
      Foundation.  December 1983.
                                   7-209

-------
 21.
 22.
 23.
 24.
 25.
 26.
 27,
 28.
29.
30.
31.
32.
  Complin,  P.  G.   Report  on  the  Combustion  Testing  Program at the
  SWARU  Plant,  Hamilton-Wentworth.   Prepared  for Ministry of the
  Environment  by  Envirocon Limited.   January  1984.

  New York  State  Department  of Environmental  Conservation.   Emission
  Source Test  Report—Preliminary Report on Occidental Chemical
  Corporation  EFW.  January  16,  1986.               .   .

  Cooper and Clark Consulting Engineers. ' Air Emissions Tests  of  Solid
  Waste Combustion" in a Rotary Combustor/Boiler  System at (Cure
  Japan.  Prepared for West  County Agency of Contra Costa County,
  California.  June 1981.

  Rising, B. W. and J. W. Allen.  Emissions Assessment For Refuse-
  Derived Fuel Combustion..   Prepared for U. S. Environmental
  Protection Agency, Hazardous. Waste. Engineering Research Laboratory
  Cincinnati, Ohio, by Battelle Columbus Laboratories.  September
  1985.                        '   .          '  • '     •   i i

 Hall,  F.  D., et aT.   Evaluation of Pilot-Scale Air Pollution Control
 Devices on a Municipal  Waterwall  Incinerator (Braintree,
 Massachusetts).   Prepared  by Pedco Environmental,  Inc.,  for U. S.
 Environmental Protection Agency,  Hazardous Waste Engineering
 Research  Laboratory, Cincinnati,  Ohio.  October 1985.
  v,r Env1ronmental  Protection Agency.   Operational  Studies at the
 SYSAV Energy From Waste Plant in Malmo,  Sweden.   Publication No.
 SNV PM 1807.  June 1983.                                 '        '
    n   J*  L*   Prel1nn'nary  Report—Air Emission  Testing  at  the  Martin
 GMBH  Waste-to-Energy Facility  in  Wurzburg,  West  Germany.   Prepared
 by  Coopers  Engineers for  Martin GMBH.   January 1986.-    '   •

 Flakt Canada,  Ltd.  and  Environment  Canada.  The  National  Incinerator
 Testing and  Evaluation  Program:   Air Pollution Control  Technology
 Report EPS  3/UP/2.   September  1986.       -

 Hahn,  J.  L., et al.  Air  Emissions Tests of a Deutsche  Babcock
 Anlagen Dry  Scrubber System at the Munich North  Refuse-Fired  Power
 Plant.  Presented at the  78th Annual Meeting of  the Air Pollution
 Control Association.  June 1985.

 Visalli,  J.  R., et al.  Pittsfield Incinerator Research Project-
 Status and Summary of Phase I Report.  Presented at 12th Biennial
 National Waste Processing Conference, Denver, Colorado.  June 1986.  '

Ozvacic, V., et al.  Emissions of Chlorinated Organics From Two
Municipal  Incinerators in Ontario.  Journal  of the Air Pollution
Control Association.  Volume 35, 'No. 8.  August 1985.

Signal Research Center,  Inc.   Summary and Review  of PCDD/PCDF
Emissions  from Mass Burn,  Waste to Energy Plants.  January 1986.
                                   7-210

-------
 33.    Nottrodt,  A.  et al.   Emissions of Polychlorinated Dibenzodioxins and
       Polychlorinated Dibenzofurans from Solid Waste Incinerators.
       Translation from German.   November 1984.

 34.    Kurt  Carlsson,  Flakt Industries AB.   Emission of Heavy Metals From
      '"Energy from  Waste"-PlantrComparison of Different Gas Cleaning
       Systems.   Presented  at the ISWA Specialized Seminar-Incinerator
       Emissions  of  Heavy Metals  and Particulates.   Copenhagen.
     " September  1985. •

 35.    New York Department  of Environmental  Conservation.   Emission Source
       Test  Report—Preliminary Report on Cattaraugus County ERF.
       August. 1986.             •'•-..

 36..   Goumon,  J., Mi.lhau,  .A. Analysis of  Inorganic Pollutants  Emitted by
       the City of Paris.Garbage  Incineration Plants.

 37.    Mclnnis, R. Gi  and G.  T. Hunt. ' Critical  Criteria in The  Development
       of a  Toxic Air  Emissions Inventory for Municipal  Solid Waste
       Incinerators.   April  1986.

 38.    Seelinger,  R. et al.   Environmental  Test Report  (Walter B.  Hall
       Resource Recovery Facility, Tulsa, Oklahoma).   Prepared by  Ogden
       Projects,  Inc.,  for  Tulsa  City  County Health  Department.
       September  9,  1986.

 39.    Benfenati,  R.,  et al.   Studies  on  the Tetrachlorodibenzo-p-Dioxins
       (TCDD)  and  Tetrachlorodibenzofurans  (TCDF) Emitted  From an  Urban
       Incinerator.  Chemosphere.  Volume 15,  No. 5.   1986.   pp. 557-561.

 40.    Zurlinden,  Ronald A.,  et al."  Environmental Test  Report .(Marion
       County, Oregon  Solid Waste-to-Energy).   Prepared  by  Ogden Projects,
       Inc.   November  1986.

 41.    Boisjoly,  Lucie.   Measurement of Emissions of  Polychlorinated
       Dibenzo-p-Dioxin  (PCDD) and of  Polychlorinated Dibenzofuran  (PCDF)
       from  the Des  Carriers  Incinerator  in  Montreal.  Environmental  Canada
       Report  EPS 5/UP/RQ1.   December  1982.

 42.    Perez, Joseph.  Review of Stack Test  Performed at Barren County
       Incinerator.  State of Wisconsin:  Correspondence/Memorandum.
       February 1987.

43.    Entropy Environmentalists, Inc.  Stationary Source Sampling
       Report.  EEI  Reference No. 2740A, B,  C.   (Baltimore Rises Company
       L. P., Southwest  Resource Recovery Facility, Baltimore, Maryland).
       Performed for RUST International Corp.  January 1985.

44.    Radian Corporation.-  Final Emissions Test Report, Dioxins/Furans and
      Total  Organic Chlorides Emissions Testing.  North Andover Resource
       Recovery Facility, North Andover, Massachusetts.  November 14, 1986.
                                   7-211

-------
 45.   Jamgochian, C. L., et al.  Municipal Waste Combustion Multipollutant
       Study Emission Test Report, Volume I—Summary of Results, Volume 2—
       Appendices A-D, Volume 3—Appendices E-L (N. Andover, Massachusettes
       MWC).  Prepared for U; S. Environmental Protection Agency Emissions
       Measurement Branch of the Emissions Standards and Engineering
       Division by Radian Corporation.  Research Triangle Park, N.C.
       Publication No. EMB Report No. 86-MIN-OZ.  April 1987.

 46.   Radian Corporation..  Final Emissions Test Report, Dioxins/Furans and
       Total Organic Chlorides Emissions Testing.   Saugus Resource Recovery
      • Facility, Saugus, Massachusetts.  October 2, 1986.

 47.   Clean Air Engineering, Inc.   Report on the  Compliance Testing
       Conducted for Waste Management, Inc.,  at the McKay Bay Refuse-to-
       Energy Project Located in Tampa, Florida.  October 29, 1985.

 48.   Marklund, S.,  et  al.   Determination of PCDD's and PCDF's in
       Incineration Samples  and  Pyrolytic Products.   Presented  at ALS
       National  Meeting, Miami,  Florida,  April  1985.

 49.   Krall,  M.,  et  al.  Draft  Final  Report,  Characterization  of Emissions
       From  the  Red Wing Municipal  Solid  Waste  Incinerator.   Submitted  to
       Cal Recovery Systems,  Inc.,  by  Radian  Corp.

 50.   Cal Recovery Systems,  Inc.   Final  Report, Evaluation  of  Municipal
       Solid Waste Incineration,   (Red Wing, Minnesota  facility)   Submitted
       to Minnesota Pollution Control  Agency Report  No.  1130-87-1.   January
       1987.

 51.    Bordson,  David.   Report on the  Completion of  the  Red  Wing  Municipal
       Solid Waste (MSW)  Incineration  Evaluation Study.  March  12, 1987.

 52.    Kalitowski,  T.  J.   Status Report on Solid Waste  Incineration  in
       Minnesota.   Office  Memorandum.  March 18, 1987.

 53.    Kalitowski,  T.  J.   Addendum to March 18, 1987, Status Report on
       Solid Waste  Incineration in Minnesota Memorandum.  Office
       Memorandum.  March  30, 1987.

 54.    PEI Associates, Inc.  Chromium Screening Study Test Report.
       Municipal Incinerator, Tuscaloosa, Alabama.   Prepared for U. S.
       Environmental Protection Agency/Emission Measurement Branch,
       Research Triangle Park, North Carolina.  EMB Report 85-CHM-9.
      January 1986.
55.   Roy F. Weston,  Inc.  Source Emis-sions Test Report.  Performed  for
      Vicon Recovery Systems, Inc.  (Pittsfield, Massachusetts
      facility.)  November 20, 1985.

56.   Systems Technology Corporation." Small" Modular Incinerator Systems
      with  Heat Recovery, A Technical, Environmental,  and Economic
      Evaluation.   Prepared  for  U.  S».,Environmental  Protection-
      Agency/Office of Solid Waste.   Report SW177c.   November 1979
                                  7-212

-------
57.   Draft Sampling and Analytical Protocols for PCDO's and PCDF's in
      Stack Emissions.  American Society of Mechanical Engineers.
      "December 1984.
                                  7-213

-------
                     SUPPLEMENT A



SUMMARY OF SYMBOLS, ACRONYMS, ABBREVIATIONS, .AND UNITS

-------

-------
            Summary of Symbols,  Acronyms,  Abbreviations, and Units

                        Chemical Symbols and Acronyms
 Symbol
 Meaning
 AgN03
 As
 BaP
 Be
 CaO
 Ca(OH)2

 Cd .
 C1B
 C1P
 CO .
 CO 2
 Cr

 H202
 HzSO,,
 HC1
 HF
 Hg
 HN03

 HpCDD
 HpCDF
 HxCDD
 HxCDF
KOH

NaOH
NI-
NO,
02
OCDD
OCDF

Pb
PCB
PCDO
PCDF
PeCDD
PeCDF
 Silver nitrate
 Arsenic     '       :
 Benzo-a-pyrene
 Beryllium
 Calcium oxide
 Calcium hydroxide

 Cadmium
 Chlorinated benzenes
 Chlorinated phenols
 Carbon monoxide .
 Carbon dioxide
 Chromium

 Hydrogen peroxide
 Sulfuric acid
 Hydrogen chloride
 Hydrogen fluoride
 Mercury
 Nitric acid

 Heptachlorodibenzo-p-d i oxi n
 Heptachlorodibenzofuran
 Hexachlorodibenzo-p-dioxin
 Hexach1orodibenzofuran
 Potassium permanganate
 Potassium hydroxide

 Sodium hydroxide
 Nickel
 Nitrogen oxides
 Oxygen
 Octach1orod i benzo-p-d i oxi n
 Octachlorodibenzofuran

 Lead
 Polychlorinated biphenyls
 Polychlorinated dibenzo-p-dioxins
 Polychlorinated dibenzofurans
Pentachlorodibenzo-p-dioxin
Pentach1orodibenzofuran
                                                               (continued)
                                   A-l

-------
                 Chemical  Symbols  and Acronyms  (continued)
 Symbol
Meaning
 S02
 S03
 TCDD
.TCDF
 Zn
Sulfur dioxides
Sulfate ion
Tetrachlorod i benzo-p-d i oxi n
Tetrach1orodibenzofurah
Zinc
                                    A-2

-------
                                Other Symbols
  Symbol
  Meaning
 AA
 'ASME
 CEM
 CF
 CFR

 CYC
 DBA
 DCPES
 DI
 DS

 DSC
 ECD
 EGB
 EF
 ESP

 FAA
 FD
 FF
 FID
 GC/ECO

 GC/IR
 GC
 GC/MS
 HPLC
 HRGC

 HRMS
 ICAPS
 1C
TD'
 INA

1REL
M5
MM5
M6
M6C

M7
M7E
  Atomic absorption spectrophotometry
  American Society of Mechanical Engineers
  Continuous emission monitors
  Conversion factor
  Code of Federal Regulation

  Cyclone
  Deutsfie Babcock Anlagen
 •Direct current plasma emission spectrometry
  Dry injection
  Dry scrubber

  Dry standard conditions
  Electron  capture detection
  Electrostatic granular bed
  Emission  factor
 .Electrostatic precipitator

  Flameless  atomic absorption
  Forced  draft
  Fabric  filter
  Flame  ionization  detector
  Gas chromatography/electron capture detection

  Gas chromatography/infrared
•  Gas chromatography
  Gas chromatography/mass spectrdscopy
  Hi.gh performance  liquid chromatography
  High resolution gas chromatography

 High resolution mass spectroscopy
  Inductively coupled argon plasma spectrophotometry
  Ion chromatography
 Induced draft
 Instrumental  neutron activation

 Lowest reported emission level
 EPA Reference Method 5 for particulate matter
 Modified Method 5
 EPA Reference Method 6 for acid gases
 EPA Reference Method 6C for sulfur dioxide

 EPA Reference Method 7 for nitrogen oxides
 EPA Reference Method 7E for nitrogen oxides
                                                               (continued)
                                   A-3

-------
                          Other -Symbols (continued)
 Symbol
 Meaning
 M8

• M9  -
 M10
 M12
 M13

 M13A
 M13B
 M17
 M25
 M101

 M101A
 M104
 M108
 M245.1
 M325.3

 MID
 MS
 MSW
 MWC
 NAA

 NBS
 NDIR
 NDUV
 PC
 PM

 QA
 QC
 RDF
 S&A
 SASS

 SCA
 SO
 SIE
 SIM
 SSMS

 SWRC
 EPA Reference Method 8 for sulfur dioxide and
 sulfates     .                             .
"EPA Reference Method 9 for opacity
 EPA Reference Method 10 for carbon monoxide
 EPA Reference Method 12 for lead
.EPA Reference Method 13 for fluoride emissions

 EPA Reference Method 13A for fluoride emissions
 EPA Reference Method 13B for fluoride
 EPA Reference Method 17 for particulate emissions
 EPA,Reference Method 25 for total  organics
 EPA Reference Method 101 for mercury

 EPA Reference Method 101A for mercury
 EPA Reference Method 104 for beryllium
 EPA Reference Method 108 for arsenic
 EPA Reference Method 245.1 for mercury
 EPA Reference Method 325.3 for hydrogen chloride

 Multiple ion  detection
 Mass spectroscopy
 Municipal  solid  waste
 Municipal  waste  combustor
 Neutron  activation  analysis

 National  Bureau  of  Standards
 Nondispersive infrared spectrophotometry
 Nondispersive ultraviolet spectrophotometry
 Personal  computer
 Particulate matter

 Quality  assurance
 Quality  control
 Refuse-derived fuel
 Sampling  and  analysis
 Source assessment sampling  system

 Specific collection  area
 Spray dryer
 Specific  ion  electrode
 Selected  ion  monitoring
 Spark source  mass spectroscopy

 Solid waste reduction  center
                                                                (continued)
                                    A-4

-------
                         Other Symbols (continued)
Symbol
Meaning
THC
UV
VOC
WPAFB
WS

WSH
XRF
Total hydrocarbons
Ultraviolet
Volatile organic compounds
Wright-Patterson Air Force Base
Wet scrubber

Water spray humidifier
X-ray fluorescence   .
                                  A-5

-------
                                   Units
 Symbol

 acf
 acfjin
 am
 atm
 Btu
 °C
 d .
 dscf
 op
 ft
 g
 gal
 g**
 h
 in.
 kcal
 kg
 kJ
 kPa
 a.
 Ib
 fcpm
 m
 M
 mg
 Mg  .
 min
 MJ
 ma.
 MW
 ng3
 Nm
 ppm
 ppmdv
 psig
 rph
 rpm
 s
 scfm
w.c.
Meaning	

Actual cubic  feet
Actual cubic  feet  per  minute
Actual cubic  meters
atmoshere
British  thermal" unit
Degrees  Celsius
Day
Dry  standard  cubic feet
Degrees  fahrenheit
Feet     ' ,-
Grams    .      .        •
Gallons
Grains
Hour  '  '
inches
Kilocalorie
Kilograms
Kilojoules
Kilopascal
Liter
Pounds
Liters per minute
Meter
Molar
Milligrams
Megagrams
Minute
Megajoules
Milliliter
Megawatt
Nanograms
Normal cubic meter
Parts per million
Parts per million dry volume
Pounds per square  inch gauge
Revolutions per hour
Revolutions per minute
Second
Standard cubic feet per minute
Water column
Micrograms
                                    A-6

-------
      SUPPLEMENT B



DATA TRANSFER LOG FORMS

-------

-------
 ID
 Incinerator Type/Mfg
                               Ref#
By
                                                                       r******
Control  Device Type/Mfg
Comments:
Participate Sizing on Pages
TOXIC METALS EMISSIONS DATA
Process Measurements
           Page Table Location Units   1
                  1   '     •   i ,
Feed Rate	._	
Flow Rate
                      Runs
                        2
 2
co2..
Emissions
Inlet
Outlet
As
Be
Cd
Cr
Pb
Hg
Ni
As
Be
Cd
Cr
Pb
Hg
Ni
                                     B-l

-------
ACID GAS EMISSIONS DATA
Process Measurements
           Page Table Location Units    1
                                            Ru"s
                                              Z
Feed Rate
Fl ow Rate

co2
Emissions
Inlet
 Outlet
                      HC1
                      HF
                       H
                       HC1
                       HF
CRITERIA POLLUTANTS  EMISSIONS  DATA
Process Measurements
            Page  Table  Location  Units   1
                                            Runs
                                              2
 Feed  Rate
 Flow  Rate

 C00
   2
 Emissions
 Inlet
                       P.M
                       NO
 Outlet
                       CO
                       PM
                       NO
                       CO

-------
TOXIC ORGANICS EMISSIONS DATA
Process Measurements
           Page Table Location Units
 Feed Rate
 Flow Rate
 °2
 CO,
Emissions (Units:
           Page Table
  Inlet
1      2
                    ave
2378 TCDD
2378 TCDF
Tot TCDD
Tot TCDF
Tot PCDD
Tot PCDF
Tot HxCDD
Tot HxCDF
Tot HpCDD
Tot HpCDF
Tot OcCDD
Tot OcCDF
Tet-OctCDD _
Tet-OctCDF _
Tot PCB
Formaldehyd_
Tot] CIS
Tot C1P
BaP
Benzene
Page Table
   Outlet
1      2
                                      B-3

-------

-------
  1. REPORT NO
    EPA-450/4-90-016
        TECHNICAL REPORT DATA
,rieasc read Instructions on the reverse before completing)
 Tz!   ~         "	
    Emission Factor Documentation  for AP-42  Section  2.1 1
    Municipal  Waste Combustion
  7. AUTHOR(S)
  9- PERFORMING ORGANIZATION NAME AND ADDRESS"

    Midwest  Research  Institute
  12. SPONSORING AGENCY NAME AND ADDRESS
    Emission  Inventory Branch
    Technical  Support  Division
    Office of Air Quality Planning and  Standards
    Research  Triangle  Park, NC   27711
  15. SUPPLEMENTARY NOTES          •
                                  3. RECIPIENT'S ACCESSION NO.
                                  5. REPORT DATE
                                    August  1990
                                 6. PERFORMING ORGANIZATION CODE
                                                                 8. PERFORMING ORGANIZATION REPORT No!'
                                 10. PROGRAM ELEMENT NO.
                                                                 11. CONTRACT/GRANT NO.
                                                                   68023891
                                 13. TYPE OF REPORT AND PERIOD COVERED
 16. ABSTRACT

   This
   "Muni
   Factors,"
   Protectio
   poll
   waste
                                 14. SPONSORING AGENCY CODE

                                            eraission
17.
                                  KEY WORDS AND DOCUMENT ANALYSIS
                    DESCRIPTORS
                                                  b.lDENTIFIERS/OPEN ENDED TERMS
                                                                              c. COSATI Field/Gr
  Emission Factor, Municipal Waste
  Combustion, AP-42
                                                  19. SECURITY CLASS {TliisRepqrt)
                                               21. NO. OF PAGES
                                                    336
                                                 20. SECURITY CLASS (This page)
                                              22. PRICE
EPA Form 2220-1 (R.v. 4-77)   PREVIOUS EDITION is OBSOUETE

-------
                                                       INSTRUCTIONS

 1.   REPORT NUMBER
      Insert the UFA report number as it appears on the cover of the publication.

 2.   LEAVE BLANK

 3.   RECIPIENTS ACCESSION NUMBER
      Reserved for use by each report recipient.


      Title should indicate  clearly and briefly the subject coverage of the report, and be displayed prominently.  Set subtitle, if used, in smaller
      type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume
      number and include subtitle for the specific title.

 K   REPORT DATE
      Each report shall carry a date indicating at least month and year.  Indicate the basis on which it was selected (C.K.. date of issue, date of
      approval, date of preparation, etc.).

 6.   PERFORMING ORGANIZATION CODE
      Leave blank.


 7'   Give name(s) in conventional order (John R. Doe. J. Robert Doc. etc.). List author's affiliation if if differs from the performing organi-
      zation.

 8.   PERFORMING ORGANIZATION REPORT NUMBER
      Insert if performing organization wishes to assign this number.

 9.   PERFORMING ORGANIZATION NAME AND ADDRESS                      ......
      Give name, street, city, state, and ZIP code. List no more than two levels of an organr/jilional hirearchy .

  10. PROGRAM  ELEMENT NUMBER                                                ,       ..,..-       .1
      Use the program element number under which the report was prepared. Subordinate numbers may be .included m parentheses.

  11. CONTRACT/GRANT NUMBER
      Insert contract or grant number under which report was prepared.

  12. SPONSORING AGENCY NAME AND ADDRESS                            .
      Include ZIP  code.                                                .

  13. TYPE OF REPORT  AND PERIOD COVERED
      Indicate interim final, etc., and if applicable, dates w>vered.

  14. SPONSORING AGKNCY CODE
      Insert appropriate code.
  1S' Itatet MSuSn no"t Deluded elsewhere but useful, such as:  Prepared in cooperation with. Translation of. Presented at c«mleremv of.
      To be published in, Supersedes, Supplements, etc.


  16* hicfude a brief (200 words or /«s/ factual summary of the most significant information contained in ilic report. II the report contains a
      significant bibliography or literature survey, mention it here.                             .                 •   •
     "  (a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authori/ed terms that identity the major
       concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.

       fl>) IDENTIFIERS AND OPEN-ENDED TERMS -Use identifiers for project names, code names, equipment designators, etc.  Use open-
       ended terms written in descriptor form for those subjects for which no descriptor exists..

       (e) COSATI FIELD GROUP - Held and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the ma-
       jority o-documenuaie multidisciplinary in nature! the Primary field/Group assignment^ will  be.spec, ,c discipline, area of «
       endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Held/Group assignments that will folio*
       the primary posting(s).                                                   ,         .
                            puWic or limitation for reasons other than security for example "Release Unlimited." file any avaiU,hili.y l
    the public, with address and price.

19. & 20. SECURITY CLASSIFICATION
    DO NOT submit classified reports to the National Technical Information service.


21*
       KBthe to^Sr of pages, including this one and unnumbered pages, but exclude distribution list, if any.


   22" fnserMhe price set by the National Technical Information Service or the Government Printing Office, if known.
EPA Form 2220-1 (Rev. 4-77) (Reverie)

-------
-------


c/>
Lul
1—
I-H

o
u_

^
=£
g
o£
Z
O
t_4

s
UJ
X
o.


a.
o
^^
UJ
en
o
o
CE:
3
3=
C_3
^
g
,_

CD

O
a:
a:
t—
i
s
h-
H-
u_
o
1
E
^
CO
1
r-.
UJ



"5 1 ;£
•*->*- JJ
Qa.*
o 13


o
u
01
"°
g
4-
in c
c O
ou
In e
in o
'*S

|

13
0
a>
^
TO

4-
"I8
o»—
c

Kl
c»
c


•o


111
u
^

in o

O4—
"in o
in u

JS
£
to
a>
u

U)
a.



0)
•2!
t
C7)
3-


J,,
0' CM
K, ,8
w ^K
\ CM
C





ro
2
•v.
O)
c



|
4- -5
Ift C
£8



ffl
E
ID
C
4-
^

g
L.

— O. T O>
• a • o
^^ Ok Ok Ot
"T Ok Ov Ov
A A


S8S 81 ": t
.*-P*»— O» ^ Csl o
C*JO*f*^
CS CSI


; oooco 0*0*0^00 tr\ in^ KI •— OO
"• *^ *Ok ^~ • VOCS *•• * * *
in— o o o incM


OOOvO K>in rrOOinin oeo OO
CM-^O^ '-in doo -in OCM »o—

t^










IA iOOOO OO
»— *OU^K^O ^fO
* * *• * *







Q\ 1OOOOO COO '
CS r**^-^'ir» covo






CM K>
in CM
«Tin CMO
-— •— CMCMCO «T^


10 — CMOOO OO
r» eoor-OfO coin
O^ fOCM^CMO •— to
— CMCM«O CMCM




COO CO IA
CMOCM —
*f ^CMin





»»-in.
— — ro—
>o







S-COCMOM*-
» • • • •
«— rookco^o . r»co GOO*®'— r*
lf\ irt irt 1^ trt



a. . •


^ S ^
0 - 0
ID ID
(0 (0 ID ID to (0 (O (O4- ID (0(0*0 (DID IDIO ID IDCXUOOCX
EEEEEEEEE S E EE E E die E E O O ID (0 t. O O

W
_^ e - "~^
£2— IX— 1 Z 2U.U.U.U, XX
,
^ccce U^cs^!t2 °jcjz
'-'OT \ >* 0} 3^— ••«•» O O O O O O
rococo «r in oi 4- 0>010 ^ 4- C C 	 — O-OT3-OTJ 4444 44
— — — «- •—-.—•— 3 JEJ: >
>-~»«-»O— C— — L. O Cltt — 310100. o> c3 — — -o :
C C C O*— '•«'*- 1»« OTLL A^ U ^ O 0) C
O O O-a.* w U.UUUU3 c o o >. -o-o — :
— 4-4-4- e in 3 (O « » «\   a>.o ocuoii- iciouoa
^— ^L Q. O.^C J£ O U) (O (O ID ^~ jO ^3 ^3 ^D ^1 *^ JD JQ O ^— ^— *^ (• (
ca SEE fl) 3— 41 4) OO flXB U 4- —(04-11
t_ X (O ID (0 «O 10 3 E E EV. 3 3 3 3 3U. ID 3 3 U J=J= C +
= UQ.XXX20-CO(-=3=)XOOOOSXZOO'(OQ-Q.CL-0 O +
A 0>C/> Vt O UCO O O (
4~UJ 3 V) «^UJ > C

B K _(0
i.ut.1. cccc ce
>IOfO(D(O (DIDOQ) 0>"OT3'O 1 1 1 1 II
iLULuujULi cn . c c e e c c
3O _C OOOO OO

IQ»CLQ_CLCLC1C%*~CL^XXXX XX
V> 
UJ U.UJ
§
5
S
c
c
8
















































7-62