EPA-520/1-88-020
September 1988
Radiation
Limiting Values of
Radionuclide Intake
And Air Concentration
and
Dose Conversion Factors
For Inhalation, Submersion,
And Ingestion
Federal Guidance Report No.11
-------
This report was preoarec as an account of worx scorisoreo sy an agency oi the
United States Government Neither iheUntteQSiatesGsvefnmentpgr any agency
mei-sot nor any oi !hec oomiors o' author* expressed nerem co not
necessaniv state or reiiscr fese p» trie-united States Government or any aaency
Ifierea'.
This report was prepared by ibe
OFFICE OF RADIATION PROGRAMS
U.S. ENVIRONMENTAL PROTECTION AGENCY
Washington, DC 20460
and by the
OAK RIDGE NATIONAL LABORATORY
Oalr Ridge, Tennessee 3783J
operated by
MARTIN MARIETTA ENERGY SYSTEMS. INC,
for the
U.S. DEPARTMENT OF ENERGY
Contract No. DE-AC05-840R2I400
-------
FEDERAL GUIDANCE REPORT NO. II
LIMITING VALUES OF RADIONUCLIDE
INTAKE AND AIR CONCENTRATION
AND
DOSE CONVERSION FACTORS FOR INHALATION,
SUBMERSION, AND INGESTION
Derived Guides for Control of Occupational Exposure and
Exposure-to-Dose Conversion Factors for General Application,
Based on the 1987 Federal Radiation Protection Guidance
Keith F. Eckerman, Anthony B. Wolbarst, and Allan C.B. Richardson
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
Office of Radiation Programs
U.S. Environmental Protection Agency
Washington, DC 20460
1988
-------
CONTENTS
PREFACE v
I. INTRODUCTION 1
II. THE RADIATION PROTECTION GUIDES 5
Primary Guides 5
Derived Guides 9
III. CHANGES IN THE MODELS FOR DERIVED GUIDES 13
Transfer of Inhaled Material from the Lung 13
Dosimetry of Bone-Seeking Radionuclides 16
Submersion in Air 18
IV. MAGNITUDES AND SOURCES OF CHANGES IN THE
DERIVED GUIDES 21
Inhalation 21
Ingestion 27
Submersion 29
Summary 29
TABLES
I. Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC)
for Occupational Exposure 31
2.1 Exposure-to-Dose Conversion Factors for Inhalation 121
2.2 Exposure-to-Dose Conversion Factors for Ingestion 155
2.3 Exposure-to-Dose Conversion Factors for Submersion 181
3. Gastrointestinal Absorption Fractions (fj) and Lung
Clearance Classes for Chemical Compounds 183
APPENDICES
A. Radiation Protection Guidance for Occupational Exposure (1987) 193
B. Radiation Protection Guidance (1960) 209
C. Background Material 213
SYMBOLS AND UNITS 217
GLOSSARY 219
REFERENCES 223
iii
-------
PREFACE
The Federal Radiation Council (FRC) was formed in 1959 to provide recommendations to the
President for Federal policy on radiation matters affecting health. The first Federal radiation
protection guidance was promulgated shortly thereafter, on May 13, I960, and set forth basic
principles for protection of both workers and members of the general population. Over the ensuing
decade the FRC issued additional guidance on a number of radiation protection matters, but the
general guidance issued in 1960 remained essentially unchanged.
The Council was abolished in 1970 and its functions transfered to the Administrator of the
newly formed Environmental Protection Agency (EPA). In 1974 EPA initiated a review of the part
of Federal guidance that then applied to occupational exposure. Two early components of this
review were a re-evaluation by the National Academy of Sciences of risks from low levels of
radiation (NAS 1980) and an analysis by EPA of the occupational exposures of U.S. workers (EPA
1980). These were completed and published in July and November of 1980, respectively.
In January of 1981 EPA published proposed recommendations for new Federal guidance for
occupational exposure. Federal Guidance Report No. 10, issued in 1984, continued the process by
presenting new numerical values for derived quantities (i.e., concentrations of radioactivity in air
and water) that were obtained employing contemporary metabolic and dosimetric models, but which
corresponded to the limiting annual doses recommended for workers in I960. The values given in
Report No. 10 were not implemented by Federal agencies, however, because of the anticipated
adoption of new Federal guidance.
On January 20, 1987, the President approved recommendations by the Administrator of EPA
for the new "Radiation Protection Guidance to Federal Agencies for Occupational Exposure." This
guidance, which is consistent with (but in several ways is an extension of) current recommendations
of the International Commission on Radiological Protection (ICRP), constituted a major revision of
those parts of the 1960 guidance that pertained to the protection of workers.
This Federal Guidance Report No. 11, which supercedes Report No. 10, presents values for
derived guides that make use of contemporary metabolic modeling and dosimetric methods and that
are based upon the limits on committed dose equivalent stipulated in Recommendation 4 of the
1987 guidance. The Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs)
tabulated herein are numerically identical, in most cases, to those recommended by the ICRP in
v
-------
VI
their Publication 30. Exceptions include values for plutonium and related elements, which are
based upon information presented in ICRP Publication 48, and a few radionuclides not considered
in Publication 30, for which nuclear decay data were presented in ICRP Publication 38. We plan
to publish future editions of this Report on a regular basis to reflect improved information, as it
becomes available and is accepted by the radiation protection community.
These new derived guides will be implemented by the various Federal agencies having
regulatory responsibilities for workers in the public sector, such as the Nuclear Regulatory
Commission and the Occupational Safety and Health Administration, and by Federal agencies with
responsibilities for their own workers, such as the Department of Energy and the Department of
Defense. Federal agencies are encouraged to reference the tables in this and future editions of this
Federal Guidance Report in their regulations so as to assure a uniform and continuing application
of the 1987 Federal guidance.
Recommendation 4 of the 1987 guidance is concerned not only with prospective control of the
workplace through limitation of committed dose, but also with circumstances in which the
conditions for control of intake have not been met for an individual worker. The present document
addresses only the first of these issues; the difficult and controversial problem of future
management of the over-exposed worker is not considered here. That remains primarily the
responsibility of the on-site health physicist, who must account for the physical characteristics of
the over-exposed individual and the unique conditions at the site.
Also tabulated in this Report are coefficients for conversion of exposure to committed effective
dose equivalent, and to committed dose equivalent for individual organs. These are intended for
general use in assessing average individual committed doses in any population that can be
characterized adequately by Reference Man (ICRP 1975).
We gratefully acknowledge the thoughtful comments of Marvin Goldman, Roscoe M. Hall, Jr.,
Ronald L. Kathren, DeVaughn R. Nelson, John W. Poston, Sr., Jerome S. Puskin, Kenneth W.
Skrable, J. Newell Stannard, Roy C. Thompson, Carl G. Welty, Jr., and Edward J. Vallario. Parts
of Report No. II have been clarified and strengthened through their efforts. Its final form,
however, is the sole responsibility of the Office of Radiation Programs. We would appreciate
being informed of any remaining errors, so that they can be corrected in future editions.
Comments should be addressed to Allan C.B. Richardson, Chief, Guides and Criteria Branch,
ANR-460, U.S. Environmental Protection Agency, Washington, DC 20460.
Richard J. Guimond, Director
Office of Radiation Programs (ANR-458)
-------
I. INTRODUCTION
Radiation protection programs for workers are based, in the United States, on a hierarchy of
limitations stemming from Federal guidance approved by the President. This guidance, which
consists of principles, policies, and numerical primary guides, is used by Federal agencies as the
basis for developing and implementing their own regulatory standards.
The primary guides are usually expressed in terms of limiting doses to workers. The protection
of workers against taking radioactive materials into the body, however, is accomplished largely
through the use of regulations based on derived guides expressed in terms of quantities or
concentrations of radionuclides. The values of these derived guides are chosen so as to assure that
workers in work environments that conform to them are unlikely to receive radiation doses that
exceed the primary guides.
The purpose of the present Report is to set forth derived guides that are consistent with current
Federal radiation protection guidance. They are intended to serve as the basis for regulations
setting upper bounds on the inhalation and ingestion of, and submersion in, radioactive materials in
the workplace. The Report also includes tables of exposure-to-dose conversion factors, for general
use in assessing average individual committed doses in any population that is adequately
characterized by Reference Man (ICRP 1975).
Previous Guidance and Derived Guides
In I960 President Eisenhower, acting on recommendations of the former Federal Radiation
Council (FRC), established the first Federal radiation protection guidance for the United States
(FRC 1960). That guidance was strongly influenced by and generally consistent with
contemporary recommendations of the International Commission on Radiological Protection
(ICRP) and the U.S. National Council on Radiation Protection and Measurements (NCRP). The
primary guides included limits of 3 rem per quarter (and 5(N-18) rem cumulative, where N is the
age of the worker) to the whole body, active blood-forming organs, and gonads; annual limits of
30 rem to thyroid and 15 rem to other organs; and a limiting body burden of 0.1 microgram of
radium-226 or its equivalent for bone seeking radionuclides.
Although the FRC recognized the importance of protection against taking radioactive
materials into the body, it did not publish numerical values for derived guides as part of its
guidance. Rather, it endorsed the values in use by government agencies at that time. Those values
were contained in National Bureau of Standards Handbook No.69 (NBS 1959) (later re-issued as
NCRP Report No. 22 (NCRP 1959)), which was an abridgment of Publication 2* of the ICRP
•Revised and additional values appeared in ICRP Publication 6 (ICRP 1964).
1
-------
2
(ICRP 1959). These reports also formed the basis for the well-known tables issued by the Atomic
Energy Commission (Appendix B of 10 CFR 20), which still constitute a basic element of the
regulations of its successor, the Nuclear Regulatory Commission.
Over the intervening years, substantial advances have been made in the dosimetric and
metabolic models employed to calculate derived guides. Federal Guidance Report No. 10 (EPA
1984a) presented revised values for derived guides that were based on the 1960 primary guides for
workers (FRC 1960) but that were obtained employing up-to-date dosimetric and metabolic models.
These new models yielded a number of values significantly different from those in ICRP
Publications 2 and 6. The values in Federal Guidance Report No. 10 were not implemented by
Federal agencies, however, due to the expectation of imminent approval of new Federal guidance.
Current Guidance and Derived Guides
The FRC was abolished in 1970, through Reorganization Plan No. 3, and its functions
transferred to the Administrator of the newly formed Environmental Protection Agency (EPA).
The Federal guidance for occupational radiation protection now in effect in the United States
consists of recommendations by the Administrator of EPA approved by the President on January
20, 1987 (EPA 1987). This new guidance sets forth general principles for the radiation protection
of workers and specifies the numerical primary guides for limiting occupational exposure. It is
consistent with, but an extension of, recent recommendations of the ICRP (ICRP 1977)." It applies
to all workers who are exposed to radiation in the course of their work, either as employees of
institutions and companies subject to Federal regulation or as Federal employees. It is estimated
that, in 1985, there were 1.6 million such workers (EPA 1984b).
The complete texts of the guidance issued in 1987 and in 1960 are reproduced in Appendices
A and B of this Report. Major changes introduced in 1987 were:
• The ALARA principle, which requires that doses be maintained 'as low as reasonably
achievable,' was elevated to the level of a fundamental requirement, and it now forms
an integral part of the basic protection framework.
• Protection against stochastic effects on health is based upon limitation of the weighted
sum of dose equivalents to all irradiated tissues (the effective dose equivalent*), rather
than upon the "critical organ" approach of the 1960 guidance, which limited dose to
each organ or tissue separately. Additional organ-specific limits are provided to protect
against non-stochastic effects.
• The maximum occupational radiation dose normally allowed a worker was reduced from
the previously permitted 3 rem per quarter (dose equivalent to the whole body) to 5 rem
in a year (effective dose equivalent). The 5(N-18) limitation on cumulative dose
equivalent has been deleted.
"Recommendations of the NCRP in their Report No. 91 (NCRP 1987b), in turn, are
consistent with the Federal guidance.
^Effective dose equivalent, stochastic health effects, and other such entities are defined and
discussed in Chapter II, Appendix C, and the Glossary.
-------
3
• Maximum work-related dose equivalent to the unborn is limited to 0.5 rem during the
gestation period. It is also recommended that exposure rates be maintained below the
uniform monthly rate that would satisfy this limiting value.
• The establishment of administrative control levels below the limiting values is
encouraged. Since such administrative control levels often involve ALARA
considerations, they may be developed for specific categories of workers or work
situations. Agencies should also encourage establishment of measures for assessing the
effectiveness of, and for supervising, ALARA efforts.
• Recordkeeping, including cumulative (lifetime) doses, and education of workers on'
radiation risks and protection principles are specifically recommended for the first time.
• Control of internal exposure to radionuclides is based upon limitation of the sum of
current and future doses from annual intake (i.e., the committed effective dose
equivalent) rather than of annual dose. If it is found that limits on committed dose
have been exceeded for an individual worker, then corrective action is required to re-
establish control of the workplace and to manage future exposure of the worker. With
respect to the latter requirement, provision should be made to monitor the annual dose
received from radionuclides in the body as long as it remains significant.
This Report is concerned, in particular, with two types of derived guides that may be employed
in the control of internal exposure to radionuclides in the workplace: the Annual Limit on Intake
(AL1) and the Derived Air Concentration (DAC). An ALL is that annual intake of a radionuclide
which would result in a radiation dose to Reference Man (ICRP 1975) equal to the relevant
primary guide (i.e., to the limiting value of committed dose). A DAC is that concentration of a
radionuclide in air which, if breathed for a work-year, would result in an intake corresponding to its
ALI (or, in the case of submersion, to an external exposure corresponding to the primary guide for
limiting annual dose). DACs are thus used for limiting radionuclide intake through breathing of,
or submersion in, contaminated air. ALIs are used primarily for assessing doses due to accidental
ingestion of radionuclides. Values of ALIs for ingestion and inhalation and of DACs are presented
in Table 1 for radionuclides of interest in radiation protection.
These ALIs and DACs are based upon calculations originally carried out for the ICRP. In its
Publication 30 (ICRP 1979a, 1979b, 1980, 1981a, 1981c, 1982a, 1982b), the ICRP issued revised
derived limits which conform to its recommendations in Publication 26 (ICRP 1977). The derived
limits in Publication 30 (which superseded those presented in ICRP Publications 2 and 6)
incorporate the considerable advances in the state of knowledge of radionuclide dosimetry and
biological transport in humans achieved in the past few decades. They also reflect the transition
from limitation of dose to the critical organ to limitation of the weighted sum of doses to all organs.
The relationship of the new to earlier derived guides is summarized in Fig. 1.
The ALI and DAC values tabulated in this first edition of Federal Guidance Report No. 11
are identical to those of ICRP 30, except for the isotopes of Np, Pu, Am, Cm, Bk, Cf, Es, Fm, and
Md. For these, new values have been computed using the more recent metabolic information in
-------
4
Federal Guidance
FRC (1960) EPA (1987)
y ICRP2
f (1959)
©
2 ICRP 30
(1979-81)
NBS 69/NCRP 22
not applicable
Federal Guidance
Report No. 10
Federal Guidance
Report No. 11
Fig. I. The relationship of various tabulations of derived guides to the applicable Federal
guidance and to the dosimetric and metabolic models used in their derivation. For example, the
tables in Report No. 10 make use of contemporary metabolic modeling, as described in ICRP
Publication 30, but conform to the limits specified in the 1960 Federal guidance.
ICRP Publication 48 (ICRP 1986). We have, in addition, provided guides for a few radionuclides
(Sr-82, Tc-95, Tc-95m, Sb-116, Pu-246, and Cm-250) not considered in ICRP Publication 30, but
for which nuclear decay data were presented in ICRP Publication 38 (ICRP 1983).
-------
II. THE RADIATION PROTECTION GUIDES
Federal radiation protection guidance sets forth a dose limitation system which is based on
three principles. These are:
Justification - There should not be any occupational exposure of workers to ionizing
radiation without the expectation of an overall benefit from the activity causing the
exposure;
Optimization - A sustained effort should be made to ensure that collective doses, as well
as annual, committed, and cumulative lifetime individual doses, are maintained as low as
reasonably achievable (ALARA), economic and social factors being taken into account;
and
Limitation - Radiation doses received as a result of occupational exposure should not
exceed specified limiting values.
Although they have been expressed in a variety of ways, these principles have guided the
radiation protection activities of Federal agencies since I960. This Report does not address the first
two of them—it is concerned with the third, the limiting values for occupational exposure, which
are specified by the primary guides. We shall discuss first the primary guides for limiting doses to
workers and then the derived guides (in terms of quantities and concentrations) for control of
exposure to radionuclides in the workplace.
PRIMARY GUIDES
For the purpose of specifying primary guides for radiation protection, health effects are
separated into two categories—stochastic and non-stochastic.
Cancer and genetic disorders are classified as stochastic health effects. It is assumed that they
are initiated by random ionization events and that the risk of incurring either is proportional,
without threshold, to the dose in the relevant tissue. It is also assumed that the severity of any
stochastic health effect is independent of the dose.
For a non-stochastic effect, by comparison, there appears to be an effective threshold below
which clinically observable effects do not occur, and the degree of damage observed usually depends
on the magnitude of the dose in excess of this effective threshold. Examples of non-stochastic
effects include acute radiation syndrome, opacification of the lens of the eye, erythema of the skin,
and temporary impairment of fertility. (All of these effects are observed at doses much higher than
those incurred normally in the workplace).
5
-------
6
Primary Guides for Assessed Dose to Individual Workers
The objective of the dose limitation system is both to minimize the risk of stochastic effects
and to prevent the occurrence of non-stochastic effects. The primary guides are boundary
conditions for this system. The principles of justification and optimization serve to ensure that
unnecessary doses are avoided and that doses to most workers remain significantly below the
limiting values specified by the primary guides.
With respect to stochastic effects, the dose limitation system has been designed with the intent
that the level of risk associated with the limit be independent of whether irradiation of the body is
uniform or non-uniform. The critical-organ approach of previous guidance (FRC I960) is replaced
with the method introduced by the ICRP (ICRP 1977), which utilizes a weighted sum of doses to
all irradiated organs and tissues. This sum, called the "effective dose equivalent" and designated
He, is defined as
He = 2 wt H-r , (1)
T
where wT is a weighting factor and Hx is the mean dose equivalent to organ or tissue T. The factor
wT, normalized so that 2 WT = '• corresponds to the fractional contribution of organ or tissue T
T
to the total risk of stochastic effects when the entire body is uniformly irradiated.* HE thus reflects
both the distribution of dose among the various organs and tissues of the body and their assumed
relative sensitivities to stochastic effects. The primary guide for assessed dose to individual adult
workers, for the purpose of protection against stochastic effects, is 5 rem (50 mSv) effective dose
equivalent in a year (Recommendation 3, Appendix A).
Weighting Factors
Organ/tissue
WT
Gonads
0.25
Breast
0.15
Red Marrow
0.12
Lungs
0.12
Thyroid
0.03
Bone Surface
0.03
Remainder*
0.30
Additional primary guides for assessed dose to individual adult workers have been established
for the purpose of protection against non-stochastic effects. These guides, chosen below the
assumed threshold levels for such effects, are 15 rem (150 mSv) dose equivalent in a year to the
lens of the eye and 50 rem (500 mSv) to any other organ, tissue (including skin), or extremity of
the body.
'For the hypothetical case of uniform irradiation, HE is commonly referred to as the 'whole
body dose'.
'A value of wT = 0.06 is applicable to each of the five remaining organs or tissues (such as
liver, kidneys, spleen, brain, small intestine, upper large intestine, lower large intestine, etc., but
excluding skin, lens of the eye, and the extremities) receiving the highest doses.
-------
7
The primary guides for annual assessed dose may be summarized as:
He ^ 5 rem (50 mSv)
(2a)
for stochastic effects;
H*r^50rem (500 mSv)
(2b)
for all organs and tissues, except the lens of the eye; and
H-r < 15 rem (150 mSv)
(2c)
for the lens of the eye.
Primary Guides for Control of Intake of Radionucludes in the Workplace
Radionuclides enter the body through inhalation and, normally to a lesser extent, through
ingestion. The principal method of controlling internal exposure to radionuclides is to contain
radioactive materials so as to avoid any such intake. For situations where this is not achievable, the
guidance (Recommendation 4, Appendix A) specifies primary guides for control of the workplace.
The intake of certain long-lived radionuclides may result in the continuous deposition of dose
in tissues far into the future. The primary guides for control of the workplace are therefore
expressed in terms of the sum of all doses projected to be received in the future from an intake in
the current year. This sum, by convention taken over the 50-year period following intake,* is
known as the "committed" dose. The committed effective dose equivalent, H^o, is defined by
analogy to equation (1) as
The committed dose equivalent to tissue or organ T, denoted HT50, is the total dose equivalent
deposited in T over the 50-year period following intake of the radionuclide. For radionuclides that
are present in the body for weeks or less, because of either short physical half-life or rapid
biological elimination, the committed dose equivalent may be regarded as a single contribution to
the annual dose equivalent. For very long-lived radionuclides that remain within the body
indefinitely, the dose equivalent may accumulate at a nearly constant rate over the entire balance of
a worker's lifetime.
To limit the risk of stochastic effects, the primary guides for control of the workplace specify
that the committed effective dose equivalents from the intake of all radionuclides in a given year,
He,so> plus the effective dose equivalent from any external exposure in that year, HEiC,t, should not
exceed 5 rem (50 mSv), i.e.:
He,50 — 2 WT Ht,50 -
(3)
T
He,so +- He,mi ^ 5 rem .
(4a)
*50 years reflects the arbitrarily-assumed remaining lifetime of a worker, rather than the
maximum span of employment.
-------
8
And to prevent the occurance of non-stochastic effects, the committed dose equivalent, H7 50, to any
organ or tissue T from the intake of radionuclides in a given year plus the dose equivalent, Hxen,
from external exposure in that year should not exceed 50 rem, i.e.:
HT 50 + HtiW[ < 50 rem . (4b)
The non-stochastic limit permits a much higher committed dose in most individual organs than
does the stochastic limit, under normal conditions of irradiation, but it is nonetheless the factor that
determines the annual limit on intake for a number of radionuclides. This is the case typically for
radionuclides that seek organs or tissues of relatively low sensitivity to stochastic effects. The
actinides go to bone and irradiate bone marrow and surface endosteal cells, for example, and iodine
concentrates in the thyroid. For such radionuclides the limitation system reduces to the formerly
used critical organ approach, but with a 50 rem committed organ dose limit.
The primary guides for committed effective dose equivalent (and committed dose equivalents to
individual organs and tissues) provide the basis for limitation of internal exposure to radioactive
materials in the workplace.* They will normally be implemented through the design, operation, and
monitoring of the workplace. When the primary guides for control of intake of radioactive
materials have been satisfied, moreover, it is not necessary to assess contributions from such intakes
to annual doses in future years. That is, for the purpose of determining compliance with the
primary guide for assessed dose to individuals (Recommendation 3), the guidance provides that
such doses may be assigned to the year of intake.
Recommendation 4 of the guidance also addresses the situation in which determination of the
actual intake for an individual worker shows that the primary guides for control of intake have not
been met. In that case, appropriate corrective action should be taken to assure that control is
reestablished, and that future exposure of the worker is appropriately managed. In particular,
provision should be made to assess annual effective dose equivalent (and dose equivalents to organs)
due to radionuclides retained in the body from this intake (NCRP 1987a; NRC 1987), and to
manage exposure of the worker so as to insure conformance in future years with the primary guides
for assessed dose. The present Report is concerned with the prevention of such circumstances
through the use of derived guides, however, and the difficult and controversial problem of the over-
exposed worker will not be considered further here. But it is important to note the distinction made
between the roles played by the effective dose equivalent committed in a year and by the annual
effective dose equivalent.
•The use of committed (effective) dose equivalent in determining the derived guides for
workers represents a significant philosophical (but not numerical) change. Previous guidance for
protection from inhalation or ingestion of radionuclides was expressed in terms of the 'limiting
annual intake'-the amount which, if taken in annually for 50 years, would result in a dose rate in
the 50th year equal to the primary guide. Committed dose, by contrast, makes no assumption
about future intake, but does account for the dose in the future arising from intake in the current
year.
Conversion from limitation of 'limiting annual intake' to limitation of committed dose
equivalent has no effect on the numerical values of the derived guides. It can be shown that the
committed dose to an organ over the 50-year period following a single intake of a radionuclide is
numerically equal to the annual dose rate attained after 50 years of intake of that same activity
each year.
-------
9
Radon and its Decay Products
The primary guides are usually specified in terms of dose. In the case of exposure to the decay
products of radon and thoron, however, dose is particularly difficult to calculate. For this reason, in
1967 the FRC recommended a separate guide for radon, expressed in terms of exposure to its decay
products rather than dose (FRC 1967). This guide, which was developed for use in regulating the
exposure of underground uranium miners, has gradually gained application to other workers as well.
It has been reviewed periodically by the FRC and EPA (FRC 1969, 1970; EPA 1971a, 1971b). In
1969, the previous 12 Working Level Month (WLM) guide for the annual exposure to the short-
lived decay products of 222Rn was reduced, for a trial period, to 4 WLM. In 1971, EPA found that
there was no adequate basis for less stringent protection, and recommended that the 4 WLM guide
be retained.
The ICRP recently reviewed the epidemiological and dosimetric data for the two radon
isotopes of concern in uranium mining. It recommended exposure guidance for 222Rn that is
comparable to the 4 WLM primary guide used in the United States. It also concluded that the risk
from inhalation of the short-lived decay products of 220Rn is about one-third that associated with
222Rn decay products (ICRP 1981b). Although specific Federal guidance does not exist for the
decay products of 220Rn, the ICRP recommendation provides a basis for establishing, through
comparison with the primary guide for 222Rn, a guide of 12 WLM for 220Rn.
The primary guides for radon isotopes and their short-lived decay products used in this report
are given in the table below. There are no derived guides for radon.
Primary Guides for Radon and its Decay Products
Radon Isotope Exposure (WLM)
Rn-222 4
Rn-220 12
DERIVED GUIDES
An Annual Limit on Intake (ALI) is defined as that activity of a radionuclide which, if
inhaled or ingested by Reference Man (ICRP 1975), will result in a dose equal to the most limiting
primary guide for committed dose.* The ALI for a particular radionuclide is, therefore, the largest
value of annual intake, I, that satisfies the following constraints:
I hE.5c ^ 5 rem , (5a)
I hT 50 $ 50 rem, for all T , (5b)
"For some nuclides of very low specific activity, the mass associated with an ALI is large. For
example, the ALI for inhalation of ll5In in class D chemical form is 5 x 104 Bq (1 jiCi),
corresponding to a mass of 650 kg. In such cases, an intake in excess of the ALI clearly is not
possible.
-------
10
where the tissue dose equivalent conversion factor, h-p^o is the committed dose equivalent to organ
or tissue T per unit of activity of the radionuclide taken in by the specified route, and the effective
dose equivalent conversion factor, h^jo, is the committed effective dose equivalent per unit of
activity.
A Derived Air Concentration (DAC) is defined as that concentration of radionuclide in air
which, if breathed by Reference Man (1CRP 1975) for a work-year, would result in the intake of
v one ALL That is, the concentration of a radionuclide in air is limited by
J C(t) Bdt AL1 , (6)
where C(t) is the concentration of the radionuclide in air at time t, B is the volume of air breathed
by a worker per unit time, and the integration is carried out over a 2000 hour work-year. For the
special case of constant air concentration, the DAC is related to the AL1 through
DAC (Bq/m3) = ALl(Bq)/2.4 x 103(m3) , (7)
based on a normal breathing rate B of 0.020 m3/min. There are no derived guides for
instantaneous or short-term values of C(t).
Some airborne radionuclides, in particular the noble gases, are not metabolized to an
appreciable extent by the body. The methodology for calculating derived guides for these materials
is based on consideration of the external dose, including dose to the lung, due to submersion in air
containing the radionuclide. Submersion dose can also be the only significant exposure pathway for
other airborne radionuclides of short half-life (i.e., a day or less) (1CRP 1984). For such situations,
the DAC may be derived directly from the primary guides. Let fluent denote the hourly dose
equivalent rate from external exposure per unit concentration of airborne radionuclide. The annual
average airborne concentration C must satisfy the constraints:
2000liE.„,C=S5rem, (8a)
2000 1ie«i C 50 rem , except lens, and (8b)
2000 lif^, C 15 rem, lens, (8c)
where = 2 WT ^T.ut- There are 2000 hours in a work-year, and the subscripts E and T are
T
used as before. When air concentration is limited by submersion dose, the DAC is the maximum
value of C that satisfies the above inequalities.
If a worker is exposed to external sources and to more than one radionuclide, or to intake of a
radionuclide by more than one route, the allowed exposure to each must be scaled appropriately to
ensure that the primary guides are not exceeded:
He.cx,+ 2£Ijkh£0<5rem.
j k
and
(9a)
-------
n
HT^+SS^fto^Orem. (9b)
i k
Ijj. refers to the annual intake of the j-th radionuclide by the k-th route (ingestion or inhalation).
Numerical values of the derived guides
Numerical values of the derived guides for ingestion (ALIs) and for inhalation (ALIs ajid
DACs) are given in Table 1, both in SI units (MBq and MBq/m3, respectively) and in conventional
units (tiCi and uCi/cmJ). ALIs and DACs for the same radionuclide and chemical form are
presented in the two sets of units in separate sub-tables oil facing pages. Table i.a, on the even
numbered pages to the reader's left, contains the derived guides in SI units; Table l.b, to the right,
contains Che ALIs and DACs for the same nuclides, expressed in conventional units.
Brief descriptions of the general features of the metabolic and dosimetric models employed are
given in Chapter [II and Appendix C. The values of the derived guides depend, in part, upon the
chemical form of the radionuclide. Information on the classification of chemical compounds for
lung clearance and on fractional absorption from the gastrointestinal tract is presented in Table 3.
Many factors afreet the actual doses to individual workers, as opposed to those calculated here
for Reference Man. Age, sex, physiology, and behavior all may influence the uptake and retention
of radionuclides. The application of the numbers in Tables 1 and 2 to situations other than normal
occupational exposure (e.g., accidental over-exposure, or exposure of the general public) requires
careful consideration of the possible effects of these factors.
The derived guides in this Report relate solely to radiation doses and do not rellect chemical
toxicity. The chemical effects of some materials, such as certain compounds of uranium or
beryllium, may present risks significantly greater than those from irradiation. The chemical
toxicity of radioactive contaminants in the workplace should therefore be examined also as part of a
broad industrial radiation protection program. The recommendations of the American Conference
of Governmental Industrial Hygienists (ACGIH) should be consulted for additional guidance in
limiting the airborne concentration of chemical substances in the workplace (ACGIH, 1986).
Minors and the Unborn
The occupational exposure of individuals under the age of eighteen is limited by
Recommendation 5 of the 1987 Federal guidance to one tenth of the values specified in
Recommendations 3 and 4 for adult workers. The ALIs and DACs for these individuals are
therefore one tenth the corresponding values for adults. While this course of actioji will not
necessarily reduce the dose to workers under the age of eighteen by exactly a factor of ten, because
of age dependent factors, it should suffice for regulatory purposes until more precise metabolic and
dosimetric modeling is available.
The situation for pregnant workers is even less straightforward. Under Recommendation 6, the
dose equivalent to an unborn as a result of occupational exposure of a woman who has declared
that she is pregnant should not exceed 0.5 rem during the entire gestation period. While it is
possible to estimate external dose to the fetus, including gamma irradiation due to submersion, the
-------
12
state of knowledge of the transfer of radionuclides from the mother to the unborn is incomplete. It
is therefore advised that the prudent course of action laid out in the preamble of the guidance (page
2828) be followed—i.e., institute measures to avoid such intakes by pregnant women—until such
information becomes available.
Tissue and Effective Dose Equivalent Conversion Factors
As indicated in equations 5, 8, and 9, the ALIs and DACs for any radionuclide and route of
intake are determined by the limitation of non-stochastic and stochastic effects imposed by the
primary guides. In many situations it is useful to know the committed dose equivalent to an organ
or tissue per unit intake (independent of the occupational dose limitations), or the committed
effective dose equivalent per unit intake. For each radionuclide, values for the organ dose
equivalent conversion factors, ht,50i and the effective dose equivalent conversion factor, h^o (based
on the weighting factors set forth by the ICRP (1977) and in the 1987 Federal guidance), are listed
in Table 2.1 for inhalation, and in Table 2.2 for ingestion. The values for he.«xi and f°r
submersion are presented in Table 2.3. The conversion factor upon which the ALI or DAC
depends is indicated by bold-faced type. Note that when the ALI is based on the nonstochistic
limit for an organ or tissue, the conversion factor for that organ will be at least ten times greater
than hEi50 (or Iie.so)- These dose conversion factors may be used to calculate committed doses in any
population that is characterized adequately by Reference Man (ICRP 1975).
-------
III. CHANGES IN THE MODELS FOR DERIVED GUIDES
Significant improvements have been made in metabolic modeling and physiological data since
the issuance of ICRP Publications 2 and 6. The most important of these have been in the model
for translocation of inhaled materials from the lung and in the dosimetric model for tissues of the
skeleton. The nature of these changes and their effects on the derived guides are briefly reviewed
below and in Appendix C. Full details of the computational models, procedures, and data used to
calculate the relationship between quantity or concentration of radionuclides and dose are presented
in ICRP Publication 30, parts of which are reprinted in NCRP Report No. 84 (NCRP 1985).
TRANSFER OF INHALED MATERIAL FROM THE LUNG
The Respiratory Tract Model of ICRP 2
A simple model of the lung was used in ICRP Publication 2 to describe the translocation and
retention of material by the body after inhalation. It was assumed that 25% of inhaled activity was
exhaled and that 25% was deposited in the lower respiratory tract. The remaining 50% was
deposited in the upper respiratory tract, subsequently cleared by means of the mucociliary
mechanism, and swallowed. What happened then depended on whether the inhaled material was
classified as soluble or insoluble.
Any soluble material deposited in the lower respiratory tract was assumed to be transferred
directly to blood. Of the activity cleared from the upper respiratory tract and swallowed, a fraction
f! entered the blood-stream via the gastro-intestinal (GI) tract. Thus (0.25 + 0.50 f() of the
inhaled radionuclide was transferred to blood. A fraction ii' of the activity in the blood passed to
the critical organ, yielding a final fraction
fu = (0.25+0.5f,)f2r (10)
of the inhaled material that was transferred to the critical organ. Dose to the lung was ignored for
soluble radionuclides.
It was assumed that radionuclides entering blood were delivered instantaneously to organs and
that retention in an organ could be characterized by a single biological half-life. Although this
approximation was known to represent the behavior of many radionuclides poorly, it was adopted
for calculational convenience. To provide an element of conservatism, the longest half-life of any
observed multi-exponential retention was used in the calculations.
13
-------
14
The transfer of insoluble materials to blood was considered to be negligible, and the guides for
these substances were based on direct irradiation of the lungs or of some segment of the GI tract.
Half the activity deposited in the lower respiratory tract was assumed to be quickly cleared and
swallowed, and the other half eliminated from it exponentially over time; an elimination biological
half-life of 120 days was assigned to all insoluble compounds except those of plutonium and
thorium, for which the values 1 and 4 years, respectively, were used.
The GI tract was represented as a series of four segments: the stomach, the small intestine, the
upper large intestine, and the lower large intestine. The material reaching the stomach (after
ingestion or after inhalation and clearance from the respiratory system) was assumed to reside there
for 1 hour, after which it moved on to the small and large intestine. The dose to the wall of each
intestine segment was calculated at the entrance to the segment.
The Respiratory Tract Mode) or ICRP 30
The dosimetric analysis of Publication 30 employs a more refined model of the deposition in
and clearance from the respiratory tract of inhaled aerosols (ICRP 1966). Deposition of an
airborne particulate form of radionuclide in the naso-pharyngeal, tracheo-bronchial, and pulmonary
regions of the respiratory system is treated as a function of the AMAD* of the aerosol. Tabulated
values of the derived guides are based on the assumption that the diameters of aerosol particles are
distributed log-normally, with an AMAD of 1 #im. (Derived guides for other AMAD values can be
computed from information in ICRP Publication 30.) Transfer of the deposited activity to the GI
tract, lymphatic system, and blood is described by a set of coupled linear differential equations.
Material deposited in any organ, including the lung, is assumed to be eliminated without
redeposition in others. Clearance from the lung directly to blood or to the GI tract depends on the
chemical form of the radionuclide (see Table 3), and is classified as D, W, and Y, respectively, for
clearance times on the order of days, weeks, and years. The absorption of material from the GI
tract into the body fluids, generally taken to occur within the small intestine, is parameterized by
f.-
The clearance kinetics of the Publication 30 model account for loss of material through
radioactive decay. For radionuclides that form radioactive decay products, it is assumed that only
the parent nuclide was inhaled. The calculated committed dose equivalent, however, does include
the contribution from ingrowth of decay products over the period following intake. For simplicity,
these decay products are assumed all to exhibit the same chemical characteristics as their parent
nuclides.
Transit times through the segments of the GI tract and the masses of their walls and contents
are as described in ICRP Publication 23 (ICRP 1975). The transport of material through the GI
tract assumes exponential clearance from the segments. The dose to each segment of the tract is
computed as an average over the mass of the wall of that segment.
The reader is referred to the report of the Task Group on Lung Dynamics (ICRP 1966) and
subsequent ICRP publications (ICRP 1972, 1979a) for further details.
•The Activity Median Aerodynamic Diameter (AMAD) is the diameter of a unit density
sphere with the same terminal settling velocity in air as that of an aerosol particle whose activity is
the median for the entire aerosol.
-------
15
Comparison of Respiratory Tract Models
For the purpose of comparison, the fractional transfer of inhaled long-lived radionuclides to
blood in the model of Publication 30 can be expressed in a manner analogous to that of
Publication 2:
Fractional transfer of inhaled activity to blood
for long-lived radionuclides
Publication 2
Publication 30
Class Fraction
Class
Fraction
Soluble 0.25 + 0.50 f,
D
0.48 + 0.15 f.
Insoluble not considered
W
0.12 + 0.51 f,
Y
0.05 + 0.58 f,
For soluble compounds with small f| values, the new model results in a higher transfer of activity to
blood for class D compounds (0.48 vs 0.25), and a lower transfer for class W compounds. If f( lies
near I, the two approaches predict comparable transfers for class D and class W materials.
For insoluble materials, a useful measure of the committed dose equivalent to the lung itself is
the time integral of the retained inhaled activity, normalized relative to the initial intake:
— [^Ad) dt . (1')
A0 Jo
A(t) is the activity in the lungs at time t, and the activity is inhaled at t = 0. In Publication 2
it was assumed that half of any insoluble radionuclide initially retained in the lower respiratory
tract, i.e., 1/8 of the inhaled activity, was eliminated from it exponentially with a half-life of 120
days for all nuclides except plutonium (I year) and thorium (4 years). The treatment of lung
clearance in the new model is more complex, but the value of the integral in equation (11) depends
only on the clearance class (ignoring physical decay). For a long-lived radionuclide, the time
integrals of the normalized retention for the two models can be compared as:
Time integral of retention in lung for long-lived
radionuclides in insoluble compounds
Publication 2
Publication 30
Material
Integral
Class
Integral
(days*)
(days*)
Thorium
263
D
0.22
Plutonium
66
W
12
Other
22
Y
230
•Units: fiCi-days per j
-------
16
For long-lived isotopes of plutonium in class Y compounds, the committed dose equivalent to
the lungs [proportional to the integral in Eq. (11)] is about 4 times greater under the current model
than under the old model (230 vs 66). For long-lived class Y radionuclides other than thorium or
plutonium, the difference is even larger, a factor of 10. For compounds now in clearance class W,
assignment to the insoluble form in the old model resulted in overestimations by factors of about
20, 5, and 2 for thorium, plutonium, and other radionuclides, respectively. Again, the loss of
activity by radioactive decay has not been considered here.
In summary, the revised modeling of the clearance of material from the lung influenced the
derived guides primarily through changes in the transfer of activity to blood and in the retention of
activity in the lungs. For inhalation of soluble class D compounds with fj less than 10-2, the
current modeling indicates a transfer to blood twice that of Publications 2 and 6. For insoluble
forms, the dose equivalent to the lung may have been over-estimated in Publication 2 by a factor of
from 2 to 20 for class W compounds, and under-estimated by factors of from 4 to 10 for class Y
compounds.
DOSIMETRY OF BONE-SEEKING RADIONUCLIDES
The dosimetric model for bone-seeking radionuclides has also been modified substantially. In
the following comparison of the old and current models, the total activity present in the skeleton is
assumed to be the same.
Hie Bone Dosimetry of Publication 2
The bone dosimetry model of Publication 2 compared the effective energy absorbed in the
skeleton from a bone-seeking radionuclide with that for a body burden of 0.1 /iCi of 226Ra. It
considered the dose to the 7 kg of marrow-free skeletal bone delivered by the radioactive material
resident within the bone, but included only indirectly the effects on endosteal tissue of radionuclides
that accumulate on bone surface.
The specific effective energy SEE(T *— S) is defined as the energy (in MeV), suitably modified
with a radiation quality factor (Q), absorbed per gram of target tissue (T), per nuclear
transformation occuring in the source tissue (S). Although the term 'SEE' was not used in
Publication 2, an expression appropriate for that model would be of the form
SEE = n Q E / m , (12)
where the energy E emitted per disintegration was deposited entirely within the bone, of total mass
m (7 kg). The quality factor Q was taken to be 1 for gamma-rays, X-rays, and beta particles; and
10 for alpha particles. The value of the 'relative damage factor,' n, was 1 for isotopes of radium
and for pure gamma emitters, and 5 for other radionuclides that emit alpha or beta radiation; n
was, in essence, a factor to account for additional damage that could be caused by radionuclides
that, unlike radium, might be surface-seeking.
-------
17
The Bone Dosimetry of Publication 30
In contrast to the old model, in which dose is averaged over the bone, the current model
contains separate calculations of the dose equivalent to the active haematopoietic tissue within the
cavities of trabecular bone, and to osteogenic cells, in particular those on the endosteal surfaces of
bone.
Developing blood cells are found in various stages of maturation within the red marrow, which
is therefore of concern with respect to the radiation induction of leukemia. The need to limit the
dose to this tissue was recognised in Publication 2, but was not explicitly addressed in developing
the recommendations for bone-seeking radionuclides.
The osteogenic cells are the precursors of cells involved in the formation of new bone
(osteoblasts) and in the resorption of bone (osteoclasts), and are of concern with respect to
carcinogenisis in bone. The location of the osteogenic cells in the skeleton is not well defined; for
the purpose of calculating the derived guides, the average dose equivalent is determined over a
10 jim thick layer of soft tissue adjacent to the surface of the bone. The following discussion is
limited to the example of particulate (alpha and beta) irradiation of endosteal tissues.
Energy deposition in endosteal tissues is averaged over a layer of cells near the bone surfaces,
the mass m of which is taken to be 120 g. We distinguish between radionuclides that reside on
bone surfaces and those that are distributed throughout the bone volume. The specific effective
energy for endosteal tissue from a radionuclide distributed uniformly on bone surface may be
expressed as
SEEs(BS"-Bone) = [FS(CB) AFs(BS"*-CB) + FS(TB) AFS(BS—TB) ]QE/m , (13)
where
E is the energy emitted per disintegration;
F®(CB) and FS(TB) denote the fractions of activity in the skeleton residing on the surfaces
(s) of cortical bone (CB) and trabecular bone (TB), and FS(CB) + FS(TB) = I.
Cortical and trabecular bone are defined as bone with a surface/volume ratio less than
and greater than 60 cm2 cm-3, respectively.
AFs(BS ¦*- CB) and AFs(BS TB) are the fractions of the energy emitted from the
surfaces of cortical and trabecular bone that are absorbed by the endosteal tissue at the
bone surface (BS). AFs(BS ¦*— CB) is normally smaller than AFs(BS *— TB) because of
the greater absorption of radiation by the bone itself.
A corresponding equation can be written for SEEV(BS «— Bone) for radionuclides that deposit
within bone volume (v); FV(CB) would then be the fraction of activity that is dispersed evenly
throughout cortical bone, and so on.
Values of parameters for the above formulation are contained in ICRP 30 (see Chapter 5 of
ICRP 1979a). The quality factor Q for alpha radiation is taken to be 20, rather than 10 as in
ICRP 2, and the 'relative damage factor' n is no longer used.
-------
18
The two dosimetric models are compared in the table below. Since SEE is proportional to E in
both, it is convenient to make the comparison in terms of the specific effective energy normalized
with respect to energy, SEE/E. This is the fraction of emitted energy that is deposited in the
target tissue, modified to account for radiation quality and for the spatial distribution of the
radionuclide in the source tissue; as such, it is a measure of the relative degree of harm inflicted by
a radionuclide upon the target tissues.
Effective energy deposited by bone-seeking radionuclides
Publication 2 Publication 30
Radiation/Nuclide SEE/E(gm ') Radiation/Nuclide SEE/E(gm ')
Alpha
Alpha
10"3
Radium
1.4
X
10~3
Volume emitters
2.2
X
Other radionuclides
7.1
X
10~3
Surface emitters
8.3
X
10"2
Beta
Beta
Radium
1.4
X
10-4
Volume emitters
1.4
X
10"4
Other radionuclides
7.1
X
I0-4
Surface emitters
E < 0.2 MeV
4.2
X
10"3
E 2s 0.2 MeV
3.3
X
10"4
For radium-226, which is a volume seeker, the normalized specific effective energy (and thus
the dose equivalent) to endosteal tissue under the new model is 1.6 (2.2 x 10_3/1.4 * 10-3) times
greater than was the SEE/E to bone under the old; that is, the 0.1 ^g 226Ra skeletal burden
considered in Publication 2 to result in a dose rate to bone of 30 rem/yr (0.3 Sv/yr) would, under
the current model, deliver 50 rem/yr (0.5 Sv/yr) to endosteal tissue. For volume-distributed alpha
emitters other than radium-226,* the dose equivalent to endosteal tissue under the new model is
three times lower than that to bone as determined before. For surface-seeking alpha emitters, the
corresponding ratio of calculated dose equivalents is 12.
The use of the new bone dosimetry model thus has a potentially major impact on the derived
guides for alpha and low-energy beta emitters, particularly those that are surface-seekers.
SUBMERSION IN AIR
The old model considered the dose from an airborne concentration of inert radioactive
materials (such as noble gas radioisotopes). Body shielding and attenuation in air were taken into
account by assuming that only photon radiation and beta particles of energy greater than 0.1 MeV
contribute to the whole body dose. For low energy beta emitters, only dose to skin was considered.
The new model considers the shielding of organs by overlying tissues and the degradation of
the photon spectrum through scatter and attenuation by air. The dose from beta particles is
•Because of its short half-life (3.66 d), 224Ra has little time to diffuse into bone volume, and
such a comparison would be misleading.
-------
19
evaluated at a depth of 0.07 mm for skin, and at a depth of 3 mm for the lens of the eye. The
worker is assumed to be immersed in pure parent radionuclide, and no radiation from airborne
progeny is considered. In most cases, the concentration limit for submersion in a radioactive semi-
infinite cloud is based on external irradiation of the body; it does not take into account either
absorbed gas within the body or the inhalation of radioactive decay products. Exceptions are
elemental tritium and 37Ar, for which direct exposure of the lungs by inhaled activity limits
(stochastically) concentration in air.
-------
Intentionally Blank Page
4
-------
IV. MAGNITUDES AND SOURCES OF CHANGES
IN THE DERIVED GUIDES
Comparison of the derived guides in this Report (Table I) with those in ICRP Publications 2
and 6 reveals some substantial changes. Systematic comparisons are not made easily, however,
because the chemical forms of inhaled materials are now characterized in a manner (by clearance
class) different from that used previously (soluble vs. insoluble). The identification of specific
causes of changes is further complicated by the large number of factors used in the calculations.
Nonetheless, an attempt has been made to characterize the overall magnitudes and sources of
changes, to identify those radionuclides for which the numerical derived guides are altered most
significantly, and to determine the factors most responsible.
The following conventions were adopted for making these comparisons:
The derived guides of Publications 2 and 6 were tabulated as Maximum Permissible
Concentrations (MPC) in air and water. The current derived guides are presented in terms of
ALIs for inhalation or ingestion, and DACs for inhalation (or submersion). For a radionuclide
whose derived guide does not change, the DAC is numerically equal to the old MPC in air.
For inhalation exposure: (a) The MPCs in air for soluble forms were compared with the DACs
for compounds of lung clearance class D. In the cases where no DAC is calculated for class D
compounds of a radionuclide, then the comparison was made with the DAC for class W
compounds. It was considered inappropriate to compare soluble and class Y compounds, (b) The
MPCs for the insoluble forms were compared with the DACs for class Y compounds. If no DAC is
calculated for class Y compounds, then the comparison was made with the DAC for class W
compounds, unless a class W compound had already been compared to the soluble compound.
For ingestion exposure: It is assumed that a worker ingests l.l liters of contaminated water
each day, resulting in an intake of (50 wk/yr * 5 d/wk x 1100 cm3/d x MPC jiCi/cm3) jiCi/yr.
(a) If a radionuclide is assigned a single f| value, then the ALI was compared to the MPC in water
for soluble compounds; (b) If compounds of the radionuclide are assigned two f] values, then the
ALI for the higher value of f| was compared with the MPC for soluble compounds, and the low-f|
ALI was compared with the MPC for the insoluble form.
Cases in which specific chemical forms (rather than lung class) are listed in Table 1, such as
certain compounds of hydrogen, carbon, and nitrogen, were omitted from the comparison.
INHALATION
A comparison was made of the DACs and MPCs in air for all the radionuclides considered in
this study, and the results appear in Fig. 2. The solid histogram shows the relative numbers of
21
-------
22
obnl-owG eau-i2S9in
INHALATION EXPOSURE
„ DACsLESS J_ DACsMORE _
RESTRICTIVE | RESTRICTIVE ¦"
SO
50
> 4°
o
| 30
O
lu
£ 20
10
0
Fig. 2. Comparison of the old and new derived guides for inhalation. The solid histogram
indicates the fraction of radionuclides for which the DAC listed in this report differs from the
former MPC by a factor of between 1 and 2, 2 and 4, 4 and 8, etc. The hatched histogram shows
the fraction of radionuclides for which the DAC changed by various factors solely as a consequence
of new metabolic modeling and physiologic data, but with the old (1960) Federal guidance.
cases in which the value of the DAC is different from that of the MPC by a factor of between 1
and 2, 2 and 4, 4 and 8, add so on. (Note the logarithmic scale on the abscissa.) In about 65% of
the cases, the values differ by less than a factor of four, and in one third, by less than a factor of
two.
The hatched histogram of Fig. 2 (reproduced from Federal Guidance Report No. 10) shows
the relative number of cases in which DACs changed solely because of revision of the metabolic
modeling and physiologic data. The closeness of the two curves in Fig. 2 suggests that the
differences between the current and the previous derived guides are attributable primarily to
improved metabolic modeling and physiologic data, and only secondarily to the adoption of new
values for the primary guides.
Each radionuclide for which the DAC is at least a factor of 16 different from its corresponding
MPC is listed below. The MPCs that are based on the limits of FRC 1 (and the models of ICRP
2), and the relevant critical organs, comprise the first column. The middle column presents the
derived guides, taken from Federal Guidance Report No. 10, that would be obtained with
contemporary metabolic modeling and physiological data, but using the 1960 primary guides. The
current DAC appears in the third column of numbers, and if the value of this DAC is determined
by the non-stochastic 50 rem limit for any organ, then that organ is also noted. The changes for
these radionuclides support the above observation that the revisions in the derived guides are due
principally to improved modeling and data, rather than to the adoption of new primary guides.
VA REPORT 10
REPORT 11
32 6
-------
23
Substantially changed derived guides for inhalation
MPC* DAC' DAC'
Nuclide ICRP 2 Report 10 Report 11
(tiCi/cm3) (fCi/cm3) (tiCi/cm3)
Revised guide more restrictive by factor >16:
Zr-93
1
X
10"'(S)
Bone
3
X
10"'
B. surface
3
X
10-'(D)
B. surface
3
X
10"' [[}
Lung
2
X
10"'
B. surface
2
X
10"8 (Y)
B. surface
ln-i15
2
X
lO-'(S)
Kidney
2
X
10-ia
R. marrow
6
X
10"'° (D)
3
X
10"8 (I)
Lung
6
X
10-10
R. marrow
2
X
10"'(W)
Ac-227
3
X
10"" (l)
Lung
1
X
10"'2
Lung
2
X
10-12 (Y)
Ac-228
8
X
o
1
Liver
4
X
10"'
B. surface
4
X
10"' (D)
B. surface
Pa-231
1
X
10"10 (I)
Lung
2
X
10"'2
B. surface
2
X
o
1
<
B. surface
Pu-24l
4
X
I0~8 (I)
Lung
3
X
o
1
o
B. surface
3
X
©
1
5
<
B. surface
Am-244
4
X
10-6 (S)
Bone
7
X
10~*
B. surface
8
X
10"8(W)
B. surface
Cf-249
1
X
10-10 (I)
Lung
5
X
10-'2
Lung
4
X
I0-'2 (Y)
B. surface
vised guide less restrictive by factor >16:
C-14*
4
X
10"6
Fat
9
X
10"!
Gonad
9
X
10"5
S-35
3
X
10"'(S)
Testis
8
X
10-6
Lung
7
X
10"6(D)
Mn-56
5
X
10"' (I)
LLI
3
X
10-6
Lung
9
X
I0"6(W)
Ni-65
5
X
10"' [I)
UL1
4
X
10-6
Lung
1
X
10"' (W)
1-134
5
X
o
1
>4
Thyroid
1
X
10"5
Thyroid
2
X
10-5 (D)
Re-187
5
X
10"'(1)
Lung
2
X
10"5
Lung
4
X
10~5 (W)
Bi-210
6
X
o
1
Kidney
3
X
10~*
Kidney
1
X
10"' (D)
Kidney
'The chemical form is denoted S or I for soluble and insoluble, respectively; the organ listed is the
critical organ.
'The lung clearance class is denoted D, W, or Y. If no organ is listed, the DAC is limited by the
primary guide for stochastic effects; if an organ is listed, the DAC is based on limiting non-stochastic
effects in the listed organ.
'in the form of COj.
With the exceptions of "5ln and JJ7Ac, all cases in which the current DACs are more
restrictive than the MPCs (i.e., where the DACs are numerically smaller than the MPCs) involve
the primary guide for non-stochastic effects at bone surfaces. AH of these radionuclides, except
ll5In, deposit on the surface of mineral bone (indium is taken up by the active marrow), but this is
only part of the reason the revised values are more restrictive.
The DAC for 93Zr is more restrictive primarily because of a change in the metabolic model:
retention in bone is found to be eight times greater than was assumed earlier, and there is an
increase in the transfer to the skeleton (due to increased clearance of class D compounds to blood,
and consequent increased deposition in the skeleton). Other radiosotopes of zirconium are
sufficiently short-lived that the greater skeletal retention does not substantially change their DACs.
The old metabolic model assumed that 4% of "5In entering blood was translocated to the
kidney (the critical organ), where it was retained with a biological half-time of 60 days. The
current model assumes that 30% of indium entering the body fluids goes to the red marrow, where
it is bound permanently. The DAC for "5In (half-life of 5.1 * 1015 years) is of academic interest
-------
24
only, since its specific activity is so low that a concentration corresponding to the DAC could not be
airborne. The other radioisotopes of indium are sufficiently short-lived that the new assumption of
permanent retention in red marrow has no bearing on their DACs.
The more restrictive DAC for class Y compounds of 227Ac results both from increased
retention under the current lung model and from the increased quality factor Q (20 vs. 10) for
alpha radiation. Members of the 227Ac decay chain are sufficiently short-lived, relative to their
parent, that the committed dose equivalent is proportional to the residence time in lung of the
parent nuclide.
This, however, is not the case for the 228Ac chain, where the first daughter, 228Th, is long-lived
relative to the parent. The source of the 20-fold more restrictive value is complex. In the old
model, the ratio of activity of the first daughter to that of the parent in the critical organ (liver)
was about 1, while the current model yields a ratio of 3 in the limiting organ (bone surface). The
SEE for endosteal tissue at bone surface is about 14 times that for the liver, and the current lung
model results in an increased transfer to blood (0.45 vs. 0.25). Finally, the current primary guide
for bone surface (50 rem or 0.5 Sv) is about three times higher than the previous primary guide for
liver (15 rem).
For 23lPa, 241Pu, and 249Cf, clearance of insoluble material from the lung to the various organs
was not considered previously. The current model, however, includes the transfer and uptake of
activity for class Y compounds; this results in DACs limited by the dose equivalent to bone
surfaces.
The DAC for 3MAm is more restrictive partly because of an error in the original MPC (ICRP
1964). The lowest lying nuclear state, with a half-life of 10.1 hours, was inadvertently assigned the
26 minute half-life of the metastable state. (244mAm itself was not included in the tabulation of
MPCs). The error was significant, since it is the physical half-life of 244Am, and not its rate of
biological clearance, that governs its retention in the body.
The DAC for l4C02 is 23 times less restrictive than the corresponding MPC mainly because
retention decreased by a factor of 10. Also, in the current model the committed effective dose
equivalent is determined over the total body mass, and subject to a 5 rem primary guide, rather
than over the 10 kg of body fat, which had been the critical tissue with a 15 rem primary guide.
Current models project a much more rapid loss of 35S from the body than was previously
assumed. In the older model, 0.13% of the sulfur entering blood was transferred to the testes, the
critical organ, where it was retained with a half-time of 623 days. The current model indicates that
80% of the sulfur introduced into body fluids is excreted promptly, 15% is retained with a biological
half-time of 20 days, and the remaining 5% has a half-time of 2000 days.
The DACs for class W compounds of 56Mn and 65Ni are based primarily on dose to the lung,
rather than to the GI tract as in the previous analysis. This, together with the change in the
primary guides, results in the new values being less restrictive.
The old model assumed that a fraction of the inhaled activity of soluble radionuclides is
transferred instantaneously to systemic organs, and considered neither radioactive decay nor the
kinetics of clearance from the lung and uptake by the organs. The current model accounts for
radiological decay during the finite time needed for lung clearance and transfer. This is of
-------
25
relevance for iodine which, after entering the transfer compartment (the body fluid), is translocated
from it with a half-time of 6 hours. The physical half-life of l34l (52.6 minutes), by comparison, is
short; the 8-fold lower uptake by the thyroid, together with radiological decay during clearance
from the lung, result in a DAC 40 times less restrictive than before.
The radionuclide l87Re, like "sln, is a low-specific activity radionuclide, with a half-life of 5 x
10'° years. The lung retains about the same amounts (to within a factor of 2) of inhaled class W
and insoluble compounds, but the effective beta energy per disintegration is now evaluated as 6.6 x
10-4 MeV, rather than 0.012 MeV. This new decay energy evaluation for l87Re is the main source
of the factor of 40 increase in its DAC.
The DAC for 2l0Bi is less restrictive because revised metabolic modeling of daughter
radionuclides results in a factor of 10 lower residence time for the daughter 2l()Po, the alpha
emissions of which dominate the calculation of dose equivalent. In addition, the DAC is now based
on application of the non-stochastic guide of 50 rem to the kidney, as opposed to the previous 15
rem guide for the same (critical) organ. The change in quality factor (20 vs. 10) for the 2lttPo
alpha emissions acts in the opposite direction.
Changes in Derived Guides for Some Important Radionuclides
In the table on the following page, we compare derived air concentrations for some of the most
commonly encountered radionuclides. The first three columns of numbers list the MPCs derived
for conformance to the 1960 primary guides, the derived guides from Federal Guidance Report No.
10, and the current DACs, respectively. The fourth column shows, for each radionuclide and lung
clearance class, the factor qm by which the 1960 derived guide must be multiplied to obtain that of
Report No. 10. Because both of these correspond to the 1960 primary guide, qm is a measure of
the change brought about solely by improvements in the metabolic modeling and physiological data.
Similarly, the fifth column presents the factors, qg) needed to convert the derived guides of Report
No. 10 into those consistent with the 1987 guidance; these factors reflect solely the effect of
changes in the primary guides. Finally, to provide a measure of the relative significance of the two
events (new modeling vs. new primary guides), the sixth column lists for each case the ratio of the
magnitudes* of the shifts brought about by the two changes.
There is no simple way of comparing the overall impact of improved modeling with that of new
primary guides. Some sense of the general trends can be obtained, however, from various averages
of the qm and qg factors. The geometric and arithmetic means of the magnitudes of the factors qm
due to improved modeling are 2.8 and 4.1, respectively; and 1.9 and 2.1 for the factors qg arises
from the adoption of the new primary guides. This is suggestive that the changes brought about by
improved modeling average a factor of about 2 times greater than those attributable to adoption of
new primary guides, and is consistent with the histograms of Fig. 2.
•The 'magnitude in the shift' due to new modeling is defined to be a number greater than or
equal to one (i.e., the 'magnitude of qm' is qm if qm > 1, and l/qm if qm < 1). So also for qg.
'ratio' = (magnitude of qm)/(magnitude of qg).
-------
26
Changes in derived guides for inhalation for some important radionuclides
MPC DAC (#
-------
27
INGESTION
For exposure by ingestion, a comparison of the MPCs for water with the ALIs for ingestion is
shown as the solid histogram of Fig. 3. The values differ by less than a factor of four in about 80%
of the cases, and by less than a factor of two for 30%. Comparison with the hatched histogram
indicates that, as with inhalation, changes in the derived guides arise mainly because of updated
metabolic modeling and physiologic data, and only secondarily because of the new primary guides.
The nuclides whose guides are substantially changed are tabulated on the next page. As with
inhalation, the radionuclides whose revised values for ingestion have become more restrictive are
primarily those for which bone surface (endosteal tissue) is the (non-stochastically) limiting organ.
Here, too, all except "5In deposit on bone.
Revision of the metabolic model has generally yielded greater uptake of these radionuclides
from the gastrointestinal tract to blood (i.e., a larger ft parameter), and this has tended to be the
dominant factor governing the changes in the ALIs. Other changes in the metabolic models,
involving an increased fraction deposited in bone but lower skeletal retention, have had less effect.
Adoption of the new dosimetric model, separating bone-seekers into surface- and volume-seekers,
has contributed significantly to the changes.
For "5In, in particular, the change in the retention within the body, discussed previously, is
partly responsible for its revised value being more restrictive.
oRHL'DwoseuiKmn
INGESTION EXPOSURE
£
>-
O
z
ID
3
s
tr
ALI LESS
RESTRICTIVE
ALI MORE
RESTRICTIVE
REPORT 10
REPORT 11
IxMPC
IxMPC
Fig. 3. Comparison of the old and new derived guides for ingestion. The solid and hatched
histograms describe the same quantities as in Fig. 2. T refers to intake for a work-year (I.I l/d x
250 d/yr).
-------
28
Substantially changed derived guides for ingestion
from MPC* ALI
Nuclide ICRP 2 Report No. 11
ifd) o«ci)
Revised guide more
restictive by factor >16
In-115
800
LLI
40
Sm-147
500
Bone
20
B. surface
Ac-227
20
Bone
0.2
B. surface
Pa-23l
8
Bone
0.2
B. surface
Np-237
20
Bone
0.5
B. surface
Cf-250
100
Bone
1
B. surface
Revised guide less restictive by factor >16
S-35
500
Testis
1 X
10*
Ca-45
80
Bone
2 x
10J
Ni-63
200
Bone
9 x
103
Ge-7l
1 x 104
LLI
5 x
105
1-134
1 x 103
Thyroid
2 x
104
Thyroid
Re-187
2 x 104
LLI
6 x
10s
Ra-226
0.1
Bone
2
B. surface
'Quantity ingested in a year at the MPC. For all the
MPCs, the soluble form is involved. The listed organ is
the critical organ.
The derived standards for 45Ca, 63Ni, and 226Ra are less restrictive. With the old metabolic
model, half the 63Ni that reached blood was transferred to bone, where it was retained with an 800
day half-time. With the current model, 68% of the nickel entering the transfer compartment is
excreted, and 30% is distributed throughout the total body and retained with a 1,200 day biological
half-life; the remaining 2% is transferred to the kidney, where it resides with a half-time of 0.2
days. With the lower uptake from the gastrointestinal tract (seethe f| values listed in Table 3), the
ALI is now limited by the 5 rem stochastic constraint on committed effective dose equivalent.
The old model took the biological half-life for 45Ca in the skeleton to be 162 days, and
1.6 x 104 days for 226Ra. Assuming that 90% of the calcium activity entering the blood is
transferred to the skeleton, and 10% of the radium, then the time integrals of the skeletal retention
of these radionuclides (as in equation 11) would be 210 and 1.3 x 103 days, respectively. Under
the alkaline earth model of ICRP Publication 20 (ICRP 1973a), however, both integrals are
approximately 100 days. This decreased retention of 4SCa and 226Ra in the skeleton is largely
responsible for their higher (less restrictive) ALIs. Changes in the bone dosimetry (226Ra is an
alpha emitter, and 45Ca is a low energy beta emitter; both are volume seekers), and the slightly
reduced absorption from the gastrointestinal tract, also contribute to the changes.
-------
29
SUBMERSION
Only a limited number of comparisons are possible for submersion, as this mode of exposure is
of concern principally for noble gas radionuclides. Those that can be made are shown below:
Substantially changed derived guides for submersion
MPC DAC
Nuclide ICRP 2 Report No. 11
(/iCi/cm3) (/iCi/cm3)
H-3*
2
X
10~3
Skin
5
X
10_1
Ar-37
6
X
10"3
Skin
1
Ar-41
2
X
10~6
W. body
3
X
10"6
Kr-85m
6
X
10"6
W. body
2
X
10"5
Kr-85
1
X
10"5
W. body
1
X
10-4
Skin
Kr-87
1
X
10~6
W. body
5
X
10"6
Xe-131m
2
X
1CTS
W. body
4
X
10-4
Skin
Xe-133
1
X
10"5
W. body
1
X
10~4
Xe-135
4
X
10-6
W.body
1
X
10"5
•elemental
For the most part, these DACs are less restrictive than the previous MPCs because the
dosimetric model now takes into account the shielding of body organs by overlying tissues. Both 3H
and 37 Ar emit radiations that are too weak to penetrate the outer skin layer, and (stochastic)
limitation is based on radionuclide content in the lungs. The DAC for 85Kr also has been relaxed
considerably since its beta emission only irradiates the skin. The DAC is based on limitation of
non-stochastic effects in the skin; the MPC was derived assuming that beta particles of energy
greater than 0.1 MeV contributed to the whole body dose.
SUMMARY
This Report presents new tables of derived guides for protection against the intake of
radionuclides in the workplace. This revision has been necessitated both by improvements over the
past several decades in the metabolic modeling of radionuclides and by the issuance of new Federal
radiation protection guidance in 1987.
Comparison of the new derived guides with those that have been in use for nearly three
decades indicates that, for about 70% of all radionuclides, the differences are not substantial, i.e.,
are less than a factor of four.
-------
30
The use of revised metabolic and dosimetric models does, however, cause major alteration in
the derived guides of some radionuclides. Of particular importance have been improvements in the
lung and bone dosimetry models. New estimates of nuclear decay characteristics, uptake of body
fluids, retention in lung and body tissues, and energy deposition have also been of significance.
Changes in these parameters and models have been discussed in this Report for specific
radionuclides only when they led to sizable revisions in the guides themselves; it should therefore
not be concluded that the components of a radionuclide's dosimetric analysis have remained the
same simply because the value of the guide has.
The tables of derived guides presented in Federal Guidance Report No. 10 and the present
Report were obtained using, in most cases, the same metabolic models and physiological data, but
different limiting values for dose. Comparisons between these, and with the tables of ICRP
Publications 2 and 6, indicate that conversion to the 1987 Federal guidance has had an overall
effect on the numerical values of the guides about half as great as that due to improvements in the
metabolic modeling and physiological data.
-------
TABLE 1
Annual Limits on Intake (ALI) and Derived Air
Concentrations (DAC) for Occupational Exposure
Explanation of Entries
Units for ALIs and DACs:
ALIs and DACs for the various radionuclides and their chemical forms are expressed in
Table ! both in SI units (MBq and MBq/m3, respectively) and in conventional units (jiCi
and |iCi/cm3). Table l.a, on the even numbered pages to the reader's left, contains ALIs
and DACs in SI units; Table l.b, on the facing pages, contains the derived guides for the
same nuclides, but expressed in conventional units.
Radionuclide/Half-life:
For each element, radionuclides of significance for radiation protection and their half-lives
are listed in the first column. The symbols m, h, d, and y refer to minutes, hours, days,
and years, respectively. The radionuclide designation follows conventional practice, with
the symbol m denoting a metastable state. In some instances, such as with l82Re, it is
necessary to refer to the half-life to identify the radionuclide unambiguously.
Lung class, f|, and Compounds:
These data characterize the chemical form assumed in the calculations. In the case of
inhalation, the lung clearance class [D (days), W (weeks), or Y (years)] and the fractional
uptake from the small intestine to blood (f|) are shown, as well as the identification of
assigned compounds. In the case of ingestion, only f( is shown. Table 3 provides
information on the assignment of chemical compounds to clearance classes and fj values.
'Sub' denotes situations in which exposure is submersion-limited. Elements in 'Vapor' form
deposited in lung are assumed to be totally taken up by blood.
31
-------
32
Table l.a. Annual Limits on Intake (ALI) and Derived Air
Concentrations (DAC) for Occupational Exposure
Inhalation
Ingestion
ALI
DAC
ALI
Nuclide
Class/f|
MBq
MBq/m3
u
MBq
Hydrogen*
H-3
12.35 y
Water,
Vapor
Elemental,
Sub
3000
0.8
2 104
1
3000
Beryllium
Be-7
53.3 d
W 0.005
Y 0.005
800
700
0.3
0.3
0.005
2000
Be-10
1.6 106 y
W 0.005
Y 0.005
6
0.5
0.002
2 10"4
0.005
40
Carbon
C-U
20.38 m
cmpds*
CO
co2
2 104
4 104
2 \Q*
6
20
10
1
2 104
C-14
5730 y
cmpds*
CO
co2
90
6 104
8000
0.04
30
3
]
90
Fluorine
F-18
109.77 m
D 1
W 1
Y I
3000
3000
3000'
1
1
1
1
2000
Sodium
Na-22
2.602 y
D 1
20
0.01
1
20
Na-24
15.00 h
D 1
200
0.08
1
100
Magnesium
Mg-28
20.91 h
D 0.5
W 0.5
60
50
0.03
0.02
0.5
20
Aluminum
Al-26
7.16 105 y
D 0.01
W 0.01
2
3
0.001
0.001
0.01
10
Silicon
Si-31
157.3 m
D 0.01
W 0.01
Y 0.01
900
1000
1000
0.4
0.5
0.4
0.01
300
Si-32
450 y
D 0.01
W 0.01
Y 0.01
9
4
0.2
0.004
0.002
8 10'5
0.01
80
Phosphorus
P-32
14.29 d
D 0.8
W 0.8
30
10
0.01
0.006
0.8
20
•Labelled organic compounds.
'ALIs and DACs are not available for other tritiated compounds. Under
normal environmental conditions, hydrogen gas may rapidly convert to the
water vapor form.
-------
33
Table l.b. Annual Limits on Intake (ALI) and Derived Air
Concentrations (DAC) for Occupational Exposure
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
eCi
fiCi/cm3
eCi
Hydrogen'
H-3
12.35 y
Water,
Vapor
Elemental,
Sub
8 I04
2 lO"5
0.5
1
8 104
Beryllium
Be-7
53.3 d
W 0.005
Y 0.005
2 104
2 104
9 lO"6
8 10"6
0.005
4 I04
Be-10
1.6 I06 y
W 0.005
Y 0.005
200
10
6 I0"8
6 I0"9
0.005
1000
Carbon
C-ll
20.38 m
cmpds*
CO
co2
4 I05
1 I06
6 105
2 10"4
5 lO"4
3 lO"4
I
4 I05
C-14
5730 y
cmpds*
CO
co2
2000
2 106
2 I05
1 lO'6
7 I0"4
9 I0 5
1
2000
Fluorine
F-18
109.77 m
D 1
W 1
Y 1
7 I04
9 I04
8 I04
3 10"5
4 I0"5
3 lO"5
1
5 I04
Sodium
Na-22
2.602 y
D 1
600
3 10-7
1
400
Na-24
15.00 h
D 1
5000
2 I0"6
1
4000
Magnesium
Mg-28
20.91 h
D 0.5
W 0.5
2000
1000
7 10"'
5 10"'
0.5
700
Aluminum
Al-26
7.16 105 y
D 0.01
W 0.01
60
90
3 10"*
4 I0"8
0.01
400
Silicon
Si-31
157.3 m
D 0.01
W 0.01
Y 0.01
3 I04
3 104
3 104
1 I05
1 lO"5
1 I0'5
0.01
9000
Si-32
450 y
D 0.01
W 0.01
Y 0.01
200
100
5
1 10-'
5 10"*
2 I0-'
0.01
2000
Phosphorus
P-32
14.29 d
D 0.8
W 0.8
900
400
4 I0"7
2 107
0.8
600
•Labelled organic compounds.
*ALIs and DACs are not available for other tritiated compounds.
Under normal environmental conditions, hydrogen gas may rapidly con-
vert to the water vapor form.
-------
34
Table l.a, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f j
ALI
DAC
ALI
MBq
MBq/m3
f, MBq
P-33
D 0.8
300
0.1
0.8 200
25.4 d
W 0.8
100
0.04
Sulphur
S-35
D 0.8
600
0.3
0.8 400
87.44 d
W 0.8
80
0.03
0.1 200
Vapor
500
0.2
Chlorine
Cl-36
D
90
0.04
1 60
3.01 105 y
W 1
9
0.004
Cl-38
D
2000
0.6
1 600
37.21 m
W 1
2000
0.7
Cl-39
D
2000
0.8
1 800
55.6 m
W 1
2000
0.9
Argon
Ar-37
Sub
5 104
35.02 d
Ar-39
Sub
7
269 y
Ar-41
Sub
0.1
1.827 h
Potassium
K-40
D
10
0.006
i 10
1.28 10® y
K-42
D 1
200
0.07
1 200
12.36 h
K-43
D 1
300
0.1
1 200
22.6 h
K-44
D 1
2000
1
1 800
22.13 m
K-45
D 1
4000
2
1 1000
20 m
Calcium
Ca-41
W 0.3
100
0.06
O
o
O
1.4 105 y
Ca-45
W 0.3
30
0.01
0.3 60
163 d
Ca-47
W 0.3
30
0.01
0.3 30
4.53 d
Scandium
Sc-43
Y 1 10^
800
0.4
1 lO"4 300
3.891 h
-------
35
Table l.b, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f|
fCi
yCi/cm3
fi
fCi
P-33
25.4 d
D 0.8
W 0.8
8000
3000
4 IO"6
1 IO"6
0.8
6000
Sulphur
S-35
87.44 d
Chlorine
Cl-36
3.01 10s y
D 0.8
W 0.8
Vapor
D 1
W [
2 104
2000
1 iO4
2000
200
7 IO"6
9 IO"7
6 IO'6
1 IO'6
1 IO'1
0.8
O.l
I
I IO4
6000
2000
Cl-38
37.21 m
D 1
W 1
4 IO4
5 IO4
2 IO"5
2 IO'5
I
2 iO4
Cl-39
55.6 m
D 1
W 1
5 104
6 104
2 IO'5
2 IO'5
I
2 iO4
Argon
Ar-37
35.02 d
Sub
l
Ar-39
269 y
Ar-4l
1.827 h
Sub
Sub
2 IO¦*
3 IO"6
Potassium
K-40
1.28 10® y
D 1
400
2 IO"7
I
300
K-42
12.36 h
D 1
5000
2 IO'6
l
5000
K-43
22.6 h
D 1
9000
4 IO"6
l
6000
K-44
22.13 m
D 1
7 IO4
3 IO'5
I
2 iO4
K-45
20 m
D 1
i iO5
5 IO"5
I
3 IO4
Calcium
Ca-4l
1.4 105 y
W 0.3
4000
2 IO'6
0.3
3000
Ca-45
163 d
W 0.3
800
4 IO"7
0.3
2000
Ca-47
4.53 d
W 0.3
900
4 IO'7
0.3
800
Scandium
Sc-43
3.891 h
Y 1 10^
2 iO4
9 IO"6
I io-4
7000
-------
36
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Clas s/f |
ALI
DAC
U
ALI
MBq
MBq/m3
MBq
Sc-44
Y i 10"
400
0.2
i 10"
100
3.927 h
Sc-44m
Y 1 10"
30
0.01
1 10"
20
58.6 h
Sc-46
Y 1 10"
9
0.004
1 10"
30
83.83 d
Sc-47
Y i 10"
100
0.05
i 10"
80
3.351 d
Sc-48
Y 1 10"
50
0.02
i 10"
30
43.7 h
Sc-49
Y i 10"
2000
0.8
1 10"
800
57.4 m
Titanium
Ti-44
D 0.01
0.4
2 10"
0.01
10
47.3 y
W 0.01
1
4 10"
Y 0.01
0.2
9 lO"5
Ti-45
D 0.01
900
0.4
0.01
300
3.08 h
W 0.01
1000
0.5
Y 0.01
1000
0.4
Vanadium
V-47
D 0.01
3000
1
0.01
1000
32.6 m
W 0.01
4000
2
V-48
D 0.01
40
0.02
0.01
20
16.238 d
W 0.01
20
0.009
V-49
D 0.01
1000
0.5
o.ot
3000
330 d
W 0.01
700
0.3
Chromium
Cr-48
D 0.1
400
0.2
0.1
200
22.96 h
W 0.1
300
0.1
0.01
200
Y 0.1
300
0.1
Cr-49
D 0.1
3000
i
0.1
1000
42.09 m
W 0.1
4000
2
0.01
1000
Y 0.1
3000
1
Cr-51
D 0.1
2000
0.7
0.1
1000
27.704 d
W O.i
900
0.4
0.01
1000
Y 0.1
700
0.3
Manganese
Mn-51
D 0.1
2000
0.8
0.1
700
46.2 m
W 0.1
2000
0.9
Mn-52
D 0.1
40
0.02
0.1
30
5.591 d
W 0.1
30
0.01
-------
37
Table Lb, Cont'd.
Inhalation Ingestion
Nuclide
Class/fi
ALI
DAC
fi
ALI
fCi
jiCi/cm3
«Ci
Sc-44
Y 1 I0'4
1 104
5 10"6
1 I0"4
4000
3.927 h
Sc-44m
Y 1 lO"4
700
3 I0"7
1 10"4
500
58.6 h
Sc-46
Y 1 lO"4
200
1 10"7
1 lO"4
900
83.83 d
Sc-47
Y 1 I0'4
3000
1 10"6
1 104
2000
3.351 d
Sc-48
Y 1 I0-4
1000
6 10°
1 10"4
800
43.7 h
Sc-49
Y 1 lO4
5 104
2 lO"5
1 I0'4
2 I04
57.4 m
Titanium
Ti-44
D 0.01
10
5 10"9
0.01
300
47.3 y
WO.OI
30
1 10"B
Y 0.01
6
2 10"9
Ti-45
D 0.01
3 104
1 10"5
0.01
9000
3.08 h
WO.OI
4 104
1 10"s
Y 0.01
3 104
1 10"5
Vanadium
V-47
D 0.01
8 104
3 I0"5
0.01
3 104
32.6 m
W 0.01
1 105
4 I0"5
V-48
D 0.01
1000
5 lO"7
0.01
600
16.238 d
WO.OI
600
3 I0"7
V-49
D 0.01
3 I04
1 10"5
0.01
7 104
330 d
WO.OI
2 I04
8 I0'6
Chromium
Cr-48
D 0.1
1 104
5 10"6
0.1
6000
22.96 h
W 0.1
7000
3 10*
0.01
6000
Y 0.1
7000
3 10"6
Cr-49
D 0.1
8 104
4 I0'5
0.1
3 I04
42.09 m
W 0.1
1 105
4 I0"5
0.01
3 104
Y 0.1
9 104
4 10'5
Cr-51
D 0.1
5 I04
2 lO"5
O.I
4 I04
27.704 d
W 0.1
2 104
1 I0"5
0.01
4 104
Y 0.1
2 lO4
8 10"6
Manganese
2 10"5
Mn-51
D 0.1
5 I04
0.1
2 I04
46.2 m
W 0.1
6 I04
3 10"5
Mn-52
D 0.1
1000
5 10"1
0.1
700
5.591 d
W 0.1
900
4 10"1
-------
38
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
f,
ALI
MBq
MBq/m3
MBq
Mn-52m
D 0.1
3000
1
0.1
1000
21.1 m
W 0.1
4000
2
Mn-53
D 0.1
500
0.2
0.1
2000
3.7 10s y
W 0.1
400
0.2
Mn-54
D 0.1
30
0.01
0.1
70
312.5 d
W 0.1
30
0.01
Mn-56
D 0.1
600
0.2
0.1
200
2.5785 h
W 0.1
800
0.3
Iron
Fe-52
D 0.1
100
0.05
0.1
30
8.275 h
W 0.1
90
0.04
Fe-55
D 0.1
70
0.03
0.1
300
2-7 y
W 0.1
200
0.06
Fe-59
D 0.1
10
0.005
0.1
30
44.529 d
W 0.1
20
0.008
Fe-60
D 0.1
0.2
I 10"4
0.1
1
I 105 y
W 0.1
0.7
3 10"4
Cobalt
Co-55
W 0.05
100
0.04
0.05
40
17.54 h
Y 0.05
100
0.04
0.3
60
Co-56
W 0.05
10
0.005
0.05
20
78.76 d
Y 0.05
7
0.003
0.3
20
Co-57
W 0.05
100
0.04
0.05
300
270.9 d
Y 0.05
20
0.01
0.3
200
Co-58
W 0.05
40
0.02
0.05
60
70.80 d
Y 0.05
30
0.01
0.3
50
Co-58m
W 0.05
3000
1
0.05
2000
9.15 h
Y 0.05
2000
1
0.3
2000
Co-60
W 0.05
6
0.003
0.05
20
5.271 y
Y 0.05
I
5 10"4
0.3
7
Co-60m
W 0.05
I 105
60
0.05
4 104
10.47 m
Y 0.05
I 105
40
0.3
4 10"
Co-61
W 0.05
2000
I
0.05
700
1.65 h
Y 0.05
2000
0.9
0.3
800
Co-62m
W 0.05
6000
3
0.05
1000
13.91 m
Y 0.05
6000
2
0.3
1000
Nickel
Ni-56
D 0.05
70
0.03
0.05
50
6.10 d
W 0.05
50
0.02
Vapor
40
0.02
-------
39
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
A LI
DAC
fi
A LI
fCi
^Ci/cm3
fCi
Mn-52m
D 0.1
9 104
4 lO"5
0.1
3 104
21.1 m
W 0.1
1 105
4 lO"5
Mn-53
D 0.1
1 104
5 106
0.1
5 104
3.7 106 y
W 0.1
1 104
5 lO'6
Mn-54
D 0.1
900
4 10'7
0.1
2000
312.5 d
W 0.1
800
3 lO"'
Mn-56
D 0.1
2 104
6 10"6
0.1
5000
2.5785 h
W 0.1
2 104
9 10"6
Iron
Fe-52
D 0.1
3000
1 10"6
0.1
900
8.275 h
W 0.1
2000
1 10"6
Fe-55
D 0.1
2000
8 10"7
0.1
9000
2.7 y
W 0.1
4000
2 10"6
Fe-59
D 0.1
300
1 lO"7
0.1
800
44.529 d
W 0.1
500
2 10"7
Fe-60
D 0.1
6
3 lO"9
0.1
30
1 105 y
W 0.1
20
8 lO"9
Cobalt
Co-55
W 0.05
3000
1 lO-6
0.05
1000
17.54 h
Y 0.05
3000
1 10"6
0.3
2000
Co-5 6
W 0.05
300
1 lO"7
0.05
500
78.76 d
Y 0.05
200
8 lO"8
0.3
400
Co-57
W 0.05
3000
1 10'6
0.05
8000
270.9 d
Y 0.05
700
3 10'7
0.3
4000
Co-58
W 0.05
1000
5 lO"7
0.05
2000
70.80 d
Y 0.05
700
3 10'7
0.3
1000
Co-58m
W 0.05
9 104
4 10'5
0.05
6 104
9.15 h
Y 0.05
6 104
3 10'5
0.3
7 104
Co-60
W 0.05
200
7 10'8
0.05
500
5.271 y
Y 0.05
30
1 10'8
0.3
200
Co-60m
W 0.05
4 [06
0.002
0.05
1 106
10.47 m
Y 0.05
3 106
0.001
0.3
1 106
Co-61
W 0.05
6 104
3 10'5
0.05
2 104
1.65 h
Y 0.05
6 104
2 10'5
0.3
2 104
Co-62m
W 0.05
2 105
7 lO'5
0.05
4 104
13.91 m
Y 0.05
2 105
6 10"5
0.3
4 104
Nickel
Ni-56
D 0.05
2000
8 10"7
0.05
1000
6.10 d
W 0.05
1000
5 10-7
Vapor
1000
5 10"7
-------
40
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
r,
ALI
MBq
MBq/m3
MBq
Ni-57
D 0.05
200
0.07
0.05
60
36.08 h
W 0.05
100
0.05
Vapor
200
0.1
Ni-59
D 0.05
100
0.06
0.05
900
7.5 104 y
W 0.05
300
0.1
Vapor
70
0.03
Ni-63
D 0.05
60
0.02
0.05
300
96 y
W 0.05
100
0.04
Vapor
30
0.01
Ni-65
D 0.05
900
0.4
0.05
300
2.520 h
W 0.05
1000
0.5
Vapor
600
0.3
Ni-66
D 0.05
60
0.02
0.05
10
54.6 h
W 0.05
20
0.01
Vapor
100
0.05
Copper
Cu-60
D 0.5
3000
1
0.5
1000
23.2 m
W 0.5
4000
2
Y 0.5
4000
2
Cy-61
D 0.5
1000
0.5
0.5
500
3.408 h
W 0.5
2000
0.6
Y 0.5
1000
0.5
Cu-64
D 0.5
1000
0.5
0.5
400
12.701 h
W 0.5
900
0.4
Y 0.5
800
0.3
Cu-67
D 0.5
300
0.1
0.5
200
61.86 h
W 0.5
200
0.08
Y 0.5
200
0.07
Zinc
Zn-62
Y 0.5
100
0.04
0.5
50
9.26 h
Zn-63
Y 0.5
3000
1
0.5
900
38.1 m
Zn-65
Y 0.5
10
0.004
0.5
10
243.9 d
Zn-69
Y 0.5
5000
2
0.5
2000
57 m
Zn-69m
Y 0.5
300
0.1
0.5
200
13.76 h
Zn-71m
Y 0.5
600
0.3
0.5
200
3.92 h
-------
41
Table i.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/ft
ALI
DAC
f.
ALI
fiCi
fiCi /cm3
MCi
Ni-57
D 0.05
5000
2 10"6
0.05
2000
36.08 h
W 0.05
3000
1 10"6
Vapor
6000
3 I0"6
Ni-59
D 0.05
4000
2 10"6
0.05
2 I04
7.5 104 y
W 0.05
7000
3 10"6
Vapor
2000
8 10"'
Ni-63
D 0.05
2000
7 lO"7
0.05
9000
96 y
W 0.05
3000
1 10"6
Vapor
800
3 10"'
Ni-65
D 0.05
2 I04
1 lO-5
0.05
8000
2.520 h
W 0.05
3 I04
1 I0"5
Vapor
2 104
7 I0"6
Ni-66
D 0.05
2000
7 I0"7
0.05
400
54.6 h
W 0.05
600
3 10°
Vapor
3000
1 10"6
Copper
Cu-60
D 0.5
9 104
4 10'5
0.5
3 104
23.2 m
W 0.5
1 105
5 10"5
Y 0.5
1 I05
4 I0"5
Cu-61
D 0.5
3 I04
1 I0"5
0.5
1 I04
3.408 h
W 0.5
4 104
2 10"5
Y 0.5
4 I04
1 I0"5
Cu-64
D 0.5
3 I04
1 I0"5
0.5
1 I04
12.701 h
W 0.5
2 104
1 10"5
Y 0.5
2 104
9 I0"6
Cu-67
D 0.5
8000
3 I0"6
0.5
5000
61.86 h
W 0.5
5000
2 I0"6
Y 0.5
5000
2 I0"6
Zinc
Zn-62
Y 0.5
3000
1 I0"6
0.5
1000
9.26 h
Zn-63
Y 0.5
7 104
3 I0"5
0.5
2 I04
38.1 m
Zn-65
Y 0.5
300
1 I0"7
0.5
400
243.9 d
Zn-69
Y 0.5
1 105
6 I0"5
0.5
6 I04
57 m
Zn-69m
Y 0.5
7000
3 I0"6
0.5
4000
13.76 h
Zn-7 Im
Y 0.5
2 104
7 10"6
0.5
6000
3.92 h
-------
42
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f (
ALI
DAC
fi
ALI
MBq
MBq/m3
MBq
Zn-72
Y 0.5
40
0.02
0.5
40
46.5 h
Gallium
Ga-65
D 0.001
6000
3
0.001
2000
15.2 m
W 0.001
7000
3
Ga-66
D 0.001
100
0.05
0.001
40
9.40 h
W 0.001
100
0.04
Ga-67
D 0.001
500
0.2
0.001
300
78.26 h
W 0.001
400
0.2
Ga-68
D 0.001
2000
0.6
0.001
600
68.0 m
W 0.001
2000
0.8
Ga-70
D 0.001
6000
3
0.001
2000
21.15 m
W 0.001
7000
3
Ga-72
D 0.001
100
0.05
0.001
40
14.1 h
W 0.001
100
0.05
Ga-73
D 0.001
600
0.2
0.001
200
4.91 h
W 0.001
600
0.2
Germanium
Ge-66
D 1
1000
0.4
1
900
2.27 h
W 1
700
0.3
Ge-67
D 1
3000
1
1
1000
18.7 m
W 1
4000
2
Ge-68
D 1
100
0.06
1
200
288 d
W 1
4
0.002
Ge-69
D 1
600
0.2
1
500
39.05 h
W 1
300
0.1
Ge-71
D 1
2 104
7
1
2 104
11.8 d
W 1
2000
0.7
Ge-75
D 1
3000
1
1
2000
82,78 m
W 1
3000
1
Ge-77
D 1
400
0.2
t
300
11.30 h
W 1
200
0.09
Ge-78
D 1
800
0.3
1
800
87 m
W 1
800
0.3
Arsenic
As-69
W 0.5
4000
2
0.5
1000
15.2 m
As-70
W 0.5
2000
0.8
0.5
500
52.6 m
As-71
W 0.5
200
0.07
0.5
100
64.8 h
-------
43
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
fi
ALI
fiCi
nCi/cm3
fiCi
Zn-72
Y 0.5
1000
5 lO'7
0.5
1000
46.5 h
Gallium
Ga-65
D 0.001
2 105
7 10"5
0.001
5 104
15.2 m
w 0.001
2 105
8 10"5
Ga-66
D 0.001
4000
1 10'6
0.001
1000
9.40 h
w 0.001
3000
1 10'6
Ga-67
D 0.001
1 104
6 10'6
0.001
7000
78.26 h
w 0.001
1 104
4 10"6
Ga-68
D 0.001
4 104
2 10"5
0.001
2 104
68.0 m
w 0.001
5 104
2 10"5
Ga-70
D 0.001
2 105
7 10'5
0.001
5 104
21.15 m
w 0.001
2 105
8 lO'5
Ga-72
D 0.001
4000
1 10'6
0.001
1000
14.1 h
w 0.001
3000
1 10"6
Ga-73
D 0.001
2 104
6 10'6
0.001
5000
4.91 h
w 0.001
2 104
6 10'6
Germanium
Ge-66
D 1
3 104
1 lO'5
1
2 104
2.27 h
W 1
2 104
8 10'6
Ge-67
D
9 104
4 10"5
1
3 104
18.7 m
W 1
1 105
4 10"5
Ge-68
D 1
4000
2 104
1
5000
288 d
W 1
100
4 lO'8
Ge-69
D 1
2 104
6 lO'6
1
1 104
39.05 h
W 1
8000
3 lO'6
Ge-71
D
4 105
2 10-1
1
5 105
11.8 d
W 1
4 104
2 10'5
Ge-75
D 1
8 104
3 10"5
1
4 104
82.78 m
W 1
8 104
4 10'5
Ge-77
D
1 104
4 lO'6
1
9000
11.30 h
W 1
6000
2 10"6
Ge-78
D
2 104
9 10"6
1
2 104
87 m
W 1
2 104
9 10"6
Arsenic
As-69
W 0.5
1 105
5 10"5
0.5
3 104
15.2 m
As-70
W 0.5
5 104
2 lO'5
0.5
1 104
52.6 m
As-71
W 0.5
5000
2 10"6
0.5
4000
64.8 h
-------
44
Table l.a. Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
r,
ALI
MBq
MBq/m3
MBq
As-72
W 0.5
50
0.02
0.5
30
26.0 h
As-73
W 0.5
60
0.03
0.5
300
80.30 d
As-74
W 0.5
30
0.01
0.5
60
17.76 d
As-76
W 0.5
50
0.02
0.5
40
26.32 h
As-77
W 0.5
200
0.08
0.5
200
38.8 h
As-78
W 0.5
800
0.3
0.5
300
90.7 m
Selenium
Se-70
D 0.8
1000
0.6
0.8
600
41.0 m
W 0.8
2000
0.7
0.05
400
Se-73
D 0.8
500
0.2
0.8
300
7.15 h
W 0.8
600
0.2
0.05
100
Se-73m
D 0.8
6000
2
0.8
2000
39 m
W 0.8
5000
2
0.05
1000
Se-75
D 0.8
30
0.01
0.8
20
119.8 d
W 0.8
20
0.009
0.05
100
Se-79
D 0.8
30
0.01
0.8
20
65000 y
W 0.8
20
0.009
0.05
200
Se-81
D 0.8
8000
3
0.8
2000
18.5 m
W 0.8
9000
4
0.05
2000
Se-81 m
D 0.8
3000
1
0.8
1000
57.25 m
W 0.8
3000
1
0.05
900
Se-83
D 0.8
4000
2
0.8
2000
22.5 m
W 0.8
5000
2
0.05
1000
Bromine
Br-74
D
3000
1
1
800
25.3 m
W 1
3000
1
Br-74m
D
1000
0.6
1
500
41.5 m
W 1
2000
0.6
Br-75
D
2000
0.7
I
1000
98 m
W 1
2000
0.8
Br-76
D
200
0.07
1
100
16.2 h
W !
200
0.07
Br-77
D
900
0.4
1
600
56 h
W !
700
0.3
-------
45
Table I .b, Cont'd.
Inhalation Ingestion
Nuclide
CI ass/f i
ALI
DAC
(y
ALI
#iCi
fxCi/cm3
fxCi
As-72
W 0.5
1000
6 10"7
0.5
900
26.0 h
As-73
W 0.5
2000
7 I0"7
0.5
8000
80.30 d
As-74
W 0.5
800
3 10"7
0.5
1000
17.76 d
As-76
W 0.5
1000
6 10"7
0.5
1000
26.32 h
As-77
W 0.5
5000
2 10"6
0.5
4000
38.8 h
As-78
W 0.5
2 104
9 10"6
0.5
8000
90.7 m
Selenium
Se-70
D 0.8
4 104
2 I0'5
0.8
2 I04
41.0 m
W 0.8
4 104
2 I0"5
0.05
1 I04
Se-73
D 0.8
1 104
5 I0"6
0.8
7000
7.15 h
W 0.8
2 I04
7 I0"6
0.05
3000
Se-73m
D 0.8
2 105
6 I0"5
0.8
6 I04
39 m
W 0.8
1 I05
6 I0"5
0.05
3 I04
Se-75
D 0.8
700
3 I0"7
0.8
500
119.8 d
W 0.8
600
3 I0"7
0.05
3000
Se-79
D 0.8
800
3 I0"7
0.8
600
65000 y
W 0.8
600
2 lO"7
0.05
5000
Se-81
D 0.8
2 I05
9 10"5
0.8
6 I04
18.5 m
W 0.8
2 I05
1 10"4
0.05
6 I04
Se-8 lm
D 0.8
7 I04
3 10"5
0.8
4 I04
57.25 m
W 0.8
7 104
3 10"5
0.05
2 I04
Se-8 3
D 0.8
1 105
5 I0"5
0.8
4 I04
22.5 m
W 0.8
! 105
5 I0"5
0.05
3 I04
Bromine
Br-74
D 1
7 I04
3 10"5
1
2 104
25.3 m
W 1
8 I04
4 10"5
Br-74m
D 1
4 I04
2 I0"5
1
1 I04
41.5 m
W 1
4 I04
2 10"5
Br-75
D 1
5 I04
2 I0"5
1
3 I04
98 m
W 1
5 104
2 I0"5
Br-76
D 1
5000
2 10"6
1
4000
16.2 h
W 1
4000
2 10"6
Br-77
D !
2 I04
1 I0"5
1
2 I04
56 h
W 1
2 I04
8 I0"6
-------
46
Table I.a. Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
MBq
MBq/m3
fi
MBq
Br-80
17.4 m
D
W !
7000
8000
3
3
i
2000
Br-80m
4.42 h
D
W !
600
500
0.3
0.2
1
800
Br-82
35.30 h
D
W !
200
100
0.06
0.06
1
100
Br-83
2.39 h
D
W 1
2000
2000
1
1
1
2000
Br-84
31.80 m
D 1
W 1
2000
2000
0.9
1
i
700
Krypton
Kr-74
11.50 m
Sub
0.1
Kr-76
14.8 h
Sub
0.3
Kr-77
74.7 m
Sub
0.1
Kr-79
35.04 h
Sub
0.6
Kr-81
2.1 105 y
Sub
20
Kr-83m
1.83 h
Sub
400
Kr-85m
4.48 h
Sub
0.8
Kr-85
10.72 y
Sub
5
Kr-87
76.3 m
Sub
0.2
Kr-88
2.84 h
Sub
0.07
Rubidium
Rb-79
22.9 m
D I
4000
2
1
1000
Rb-81
4.58 h
D I
2000
0.8
1
1000
Rb-8 Im
32 m
D I
1 104
5
1
9000
Rb-82m
6.2 h
D I
700
0.3
1
400
-------
47
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f [
AL1
DAC
ALI
ftCi
fiCi/cm3
f, ftCi
Br-80
D 1
2 105
8 !0'5
1 5 104
17.4 m
W I
2 I05
9 10'5
Br-80m
D 1
2 104
7 10'6
I 2 104
4.42 h
W I
1 104
6 I0'6
Br-82
D 1
4000
2 10'6
I 3000
35.30 h
W I
4000
2 10'6
Br-83
D 1
6 104
3 10"5
I 5 104
2.39 h
W I
6 104
3 10"5
Br-84
D 1
6 104
2 10'5
1 2 104
31.80 m
W I
6 104
3 10'5
Krypton
Kr-74
Sub
3 10'6
11.50 m
Kr-76
Sub
9 10"6
14.8 h
Kr-77
Sub
4 10"6
74.7 m
Kr-79
Sub
2 10-5
35.04 h
Kr-81
Sub
7 10"4
2.1 10s y
Kr-83m
Sub
0.01
1.83 h
Kr-85m
Sub
2 Iff5
4.48 h
Kr-85
Sub
1 lO"4
10.72 y
Kr-87
Sub
5 10'6
76.3 m
Kr-88
Sub
2 10'6
2.84 h
Rubidium
Rb-79
D 1
1 105
5 Iff5
1 4 104
22.9 m
Rb-81
D 1
5 104
2 10'5
1 4 104
4.58 h
Rb-81 m
D 1
3 105
1 10"4
1 2 105
32 m
Rb-82m
D 1
2 104
7 Iff6
1 1 104
6.2 h
-------
48
Table La, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f|
ALI
DAC
ALI
MBq
MBq/m3
f.
MBq
Rb-83
D
40
0.02
i
20
86.2 d
Rb-84
D
30
0.01
1
20
32.77 d
Rb-86
D
30
0.01
1
20
18.66 d
Rb-87
D 1
60
0.02
1
40
4.7 10'° y
Rb-88
D
2000
I
1
700
17.8 m
Rb-89
D 1
5000
2
1
1000
15.2 m
Strontium
Sr-80
D 0.3
400
0.2
0.3
200
100 m
Y 0.01
500
0.2
0.01
200
Sr-81
D 0.3
3000
1
0.3
900
25.5 m
Y 0.01
3000
1
0.01
900
Sr-8 2
D 0.3
10
0.006
0.3
10
25 d
Y 0.01
3
0.001
0.01
7
Sr-8 3
D 0.3
300
0.1
0.3
100
32.4 h
Y 0.01
100
0.05
0.01
80
Sr-85
D 0.3
100
0.04
0.3
90
64.84 d
Y 0.01
60
0.02
0.01
100
Sr-85m
D 0.3
2 104
9
0.3
8000
69.5 m
Y 0.01
3 104
10
0.01
8000
Sr-87m
D 0.3
5000
2
0.3
2000
2.805 h
Y 0.01
6000
2
0.01
1000
Sr-89
D 0.3
30
0.01
0.3
20
50.5 d
Y 0.01
5
0.002
0.01
20
Sr-90
D 0.3
0.7
3 10"4
0.3
1
29.12 y
Y 0.01
0.1
6 10"5
0.01
20
Sr-91
D 0.3
200
0.09
0.3
80
9.5 h
Y 0.01
100
0.05
0.01
60
Sr-92
D 0.3
300
0.1
0.3
100
2.71 h
Y 0.01
200
0.1
0.01
100
Yttrium
Y-86
W 1 10"4
100
0.05
1 10"4
50
14.74 h
Y I 10 ¦*
100
0.05
Y-86m
W 1 10"4
2000
0.9
I lO"1
800
48 m
Y 1 10"4
2000
0.8
-------
49
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
r,
ALI
^Ci
nCi /cm3
JiCi
Rb-83
D 1
1000
4 10'7
l
600
86.2 d
Rb-84
D 1
800
3 10"7
i
500
32.77 d
Rb-86
D 1
800
3 10"7
i
500
18.66 d
Rb-87
D 1
2000
6 10"7
i
1000
4.7 1010 y
Rb-88
D 1
6 104
3 10"5
i
2 104
17.8 m
Rb-89
D 1
1 105
6 10"5
i
4 104
15.2 m
Strontium
Sr-80
D 0.3
1 104
5 10"6
0.3
4000
100 m
Y 0.01
1 104
5 10"6
0.01
4000
Sr-81
D 0.3
8 104
3 10"5
0.3
3 104
25.5 m
Y 0.01
8 104
3 10"5
0.01
2 104
Sr-82
D 0.3
400
2 10"7
0.3
300
25 d
Y 0.01
90
4 10"8
0.01
200
Sr-83
D 0.3
7000
3 lO"6
0.3
3000
32.4 h
Y 0.01
4000
1 10"6
0.01
2000
Sr-85
D 0.3
3000
1 10"6
0.3
3000
64.84 d
Y 0.01
2000
6 I0"7
0.01
4000
Sr-85m
D 0.3
6 I05
3 10"*
0.3
2 I05
69.5 m
Y 0.01
8 105
4 10"4
0.01
2 105
Sr-87m
D 0.3
1 105
5 10"5
0.3
5 104
2.805 h
Y 0.01
2 105
6 10'5
0.01
4 104
Sr-89
D 0.3
800
4 10"7
0.3
600
50.5 d
Y 0.01
100
6 10"8
0.01
500
Sr-90
D 0.3
20
8 10"9
0.3
30
29.12 y
Y 0.01
4
2 10"9
0.01
400
Sr-91
D 0.3
6000
2 10"6
0.3
2000
9.5 h
Y 0.01
4000
1 10"6
0.01
2000
Sr-92
D 0.3
9000
4 10"6
0.3
3000
2.71 h
Y 0.01
7000
3 10"6
0.01
3000
Yttrium
Y-86
W 1 10"4
3000
1 10'6
1 10"*
1000
14.74 h
Y 1 10"4
3000
1 10"6
Y-86m
W 1 10"1
6 104
2 10"5
1 10"*
2 104
48 m
Y 1 10"4
5 104
2 \0'5
-------
50
Table I.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
fi
ALI
MBq
MBq/m3
MBq
Y-87
w i io-4
100
0.05
1 10"4
80
80.3 h
Y 1 IO'4
100
0.05
Y-88
W 1 10'4
9
0.004
1 !0'4
40
106.64 d
Y 1 10'4
9
0.004
Y-90
W 1 lO'4
30
0.01
1 10-4
20
64.0 h
Y 1 lO'4
20
0.009
Y-90m
W 1 lO'4
500
0.2
1 10'4
300
3.19 h
Y I 10J
400
0.2
Y-91
W 1 IO'4
6
0.003
I 10"4
20
58.51 d
Y 1 lO'4
4
0.002
Y-9 Im
W I lO'4
9000
4
1 10'4
5000
49.71 m
Y 1 10"4
6000
2
Y-92
W 1 IO'4
300
0.1
1 IO"4
100
3.54 h
Y 1 lO'4
300
0.1
Y-93
W 1 10'4
100
0.04
1 10"
40
10.1 h
Y 1 lO'4
90
0.04
Y-94
W 1 10'4
3000
I
1 I0-4
800
19.1 m
Y 1 lO'4
3000
I
Y-95
W 1 10"4
6000
2
1 I0-4
1000
10.7 m
Y 1 IO'4
5000
2
Zirconium
Zr-86
D 0.002
100
0.06
0.002
50
16.5 h
W 0.002
100
0.04
Y 0.002
90
0.04
Zr-88
D 0.002
8
0.003
0.002
100
83.4 d
W 0.002
20
0.007
Y 0.002
10
0.005
Zr-89
D 0.002
100
0.05
0.002
60
78.43 h
W 0.002
90
0.04
Y 0.002
90
0.04
Zr-93
D 0.002
0.2
1 lO'4
0.002
50
1.53 106 y
W 0.002
0.9
4 10"4
Y 0.002
2
9 lO-*
Zr-95
D 0.002
5
0.002
0.002
50
63.98 d
W 0.002
10
0.006
Y 0.002
10
0.004
Zr-97
D 0.002
70
0.03
0.002
20
16.90 h
W 0.002
50
0.02
Y 0.002
50
0.02
Niobium
Nb-88
W 0.01
8000
4
0.01
2000
14.3 m
Y 0.01
8000
3
-------
51
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f]
ALI
DAC
fi
ALI
eCi
jiCi/cm3
^Ci
Y-87
W 1 10"4
3000
1 10"6
1 10"4
2000
80.3 h
Y 1 10"4
3000
1 10"6
Y-88
W 1 lO"4
300
1 10"7
1 10-4
1000
106.64 d
Y 1 10"4
200
1 10"7
Y-90
W 1 10"4
700
3 10"7
1 10"4
400
64.0 h
Y 1 10"4
600
3 10"7
Y-90m
W 1 lO"4
1 104
5 10"6
1 10"4
8000
3.19 h
Y 1 lO"4
1 104
5 10"6
Y-91
W 1 lO"4
200
7 10"8
1 10-4
500
58.51 d
Y 1 lO"4
100
5 10-8
Y-91m
W 1 10"4
2 105
1 10"4
1 10"4
1 105
49.71 m
Y 1 10"4
2 105
7 10-5
Y-92
W 1 10"4
9000
4 10"6
1 10-4
3000
3.54 h
Y 1 lO"4
8000
3 10"6
Y-93
W 1 lO"4
3000
1 10"6
1 10"4
1000
10.1 h
Y 1 lO"4
2000
1 10"6
Y-94
W 1 lO"4
8 104
3 10"5
1 10-4
2 104
19.1 m
Y 1 10"4
8 104
3 lO"5
Y-95
W 1 10"4
2 105
6 10"5
1 10-4
4 104
10.7 m
Y 1 lO"4
1 105
6 10"5
Zirconium
Zr-86
D 0.002
4000
2 10"6
0.002
1000
16.5 h
W 0.002
3000
1 io-6
Y 0.002
2000
1 10"6
Zr-88
D 0.002
200
9 10"8
0.002
4000
83.4 d
W 0.002
500
2 10"7
Y 0.002
300
1 lO"7
Zr-89
D 0.002
4000
1 10"6
0.002
2000
78.43 h
W 0.002
2000
1 10"6
Y 0.002
2000
1 10"6
Zr-93
D 0.002
6
3 lO"®
0.002
1000
1.53 106 y
W 0.002
20
1 10"8
Y 0.002
60
2 10"8
Zr-95
D 0.002
100
5 10"8
0.002
1000
63.98 d
W 0.002
400
2 lO"7
Y 0.002
300
1 10°
Zr-97
D 0.002
2000
8 10'7
0.002
600
16.90 h
W 0.002
1000
6 lO"7
Y 0.002
1000
5 lO"7
Niobium
Nb-88
W 0.01
2 105
9 10"5
0.01
5 104
14.3 m
Y 0.01
2 105
9 10"5
-------
52
Table l.a. Cont'd.
Inhalation Ingestion
Nuclide
Class/ft
ALI
DAC
u
ALI
MBq
MBq/m3
MBq
Nb-89
W 0.01
700
0.3
0.01
200
122 m
Y 0.01
600
0.2
Nb-89
W 0.01
2000
0.6
0.01
400
66 m
Y 0.01
1000
0.6
Nb-90
W 0.01
too
0.04
o.ot
40
14.60 h
Y 0.01
90
0.04
Nb-93m
W 0.01
70
0.03
0.01
300
13.6 y
Y 0.01
6
0.003
Nb-94
W 0.01
7
0.003
o.ot
40
2.03 I04 y
Y 0.01
0.6
2 tO-4
Nb-95
W 0.01
50
0.02
o.ot
80
35.15 d
Y 0.01
40
0.02
Nb-95m
W 0.01
too
0.04
o.ot
80
86.6 h
Y 0.01
80
0.03
Nb-96
W 0.01
too
0.04
o.ot
40
23.35 h
Y 0.01
90
0.04
Nb-97
W 0.01
3000
1
o.ot
800
72.1 m
Y 0.01
3000
1
Nb-98
W 0.01
2000
0.8
o.ot
500
51.5 m
Y 0.01
2000
0.8
Molybdenum
Mo-90
D 0.8
300
O.t
0.8
200
5.67 h
Y 0.05
200
0.07
0.05
70
Mo-93
D 0.8
200
0.08
0.8
too
3.5 t03 y
Y 0.05
7
0.003
0.05
900
Mo-93m
D 0.8
700
0.3
0.8
300
6.85 h
Y 0.05
500
0.2
0.05
200
Mo-99
D 0.8
too
0.04
0.8
60
66.0 h
Y 0.05
50
0.02
0.05
40
Mo-101
D 0.8
5000
2
0.8
2000
14.62 m
Y 0.05
6000
2
0.05
2000
Technetium
Tc-93
D 0.8
3000
1
0.8
1000
2.75 h
W 0.8
4000
2
Tc-93m
D 0.8
6000
2
0.8
3000
43.5 m
W 0.8
1 to4
5
Tc-94
D 0.8
700
0.3
0.8
300
293 m
W 0.8
900
0.4
Tc-94m
D 0.8
2000
0.7
0.8
700
52 m
W 0.8
2000
0.9
-------
53
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f)
A LI
DAC
f,
ALI
,iCi
fiCi/cm3
,iCi
Nb-89
W 0.01
2 104
8 10"6
0.01
5000
122 m
Y 0.01
2 104
6 10"6
Nb-89
W 0.01
4 104
2 10"5
0.01
I 104
66 m
Y 0.01
4 104
2 10"5
Nb-90
W 0.01
3000
1 10"6
0.01
1000
14.60 h
Y 0.01
2000
1 10"6
Nb-93m
W 0.01
2000
8 10"7
0.01
9000
13.6 y
Y 0.01
200
7 10"8
Nb-94
W 0.01
200
8 10"8
0.01
900
2.03 104 y
Y 0.01
20
6 lO"'
Nb-95
W 0.01
1000
5 lO"7
0.01
2000
35.15 d
Y 0.01
1000
5 10"7
Nb-95m
W 0.01
3000
1 10"6
0.01
2000
86.6 h
Y 0.01
2000
9 10"7
Nb-96
W 0.01
3000
1 10"6
0.01
1000
23.35 h
Y 0.01
2000
I 10"6
Nb-97
W 0.01
8 104
3 10"5
0.01
2 104
72.1 m
Y 0.01
7 104
3 10'5
Nb-98
W 0.01
5 104
2 10'5
0.01
1 104
51.5 m
Y 0.01
5 104
2 10"5
Molybdenum
Mo-90
D 0.8
7000
3 10"6
0.8
4000
5.67 h
Y 0.05
5000
2 10"6
0.05
2000
Mo-93
D 0.8
5000
2 10"6
0.8
4000
3.5 103 y
Y 0.05
200
8 10"8
0.05
2 104
Mo-93m
D 0.8
2 104
7 10"6
0.8
9000
6.85 h
Y 0.05
1 104
6 10"6
0.05
4000
Mo-99
D 0.8
3000
I 10"6
0.8
2000
66.0 h
Y 0.05
1000
6 10'7
0.05
1000
Mo-101
D 0.8
1 105
6 10"5
0.8
4 104
14.62 m
Y 0.05
1 105
6 10"5
0.05
4 104
Technetium
Tc-93
D 0.8
7 104
3 10J
0.8
3 104
2.75 h
W 0.8
1 105
4 10"5
Tc-93m
D 0.8
2 105
6 10"5
0.8
7 104
43.5 m
W 0.8
3 105
1 lO"4
Tc-94
D 0.8
2 104
8 10"6
0.8
9000
293 m
W 0.8
2 104
I 10"5
Tc-94m
D 0.8
4 104
2 10"5
0.8
2 104
52 m
W 0.8
6 104
2 10"5
-------
54
Table La, Cont'd.
Inhalation Ingestion
Nuclide
Class/f(
ALI
DAC
fi
ALI
MBq
MBq/m3
MBq
Tc-95
D 0.8
800
0.3
0.8
400
20 h
W 0.8
700
0.3
Tc-95m
D 0.8
200
0.08
0.8
100
61 d
W 0.8
70
0.03
Tc-96
D 0.8
100
0.05
0.8
70
4.28 d
W 0.8
80
0.03
Tc-96m
D 0.8
1 104
4
0.8
6000
51.5 m
W 0.8
9000
4
Tc-97
D 0.8
2000
0.8
0.8
1000
2.6 106 y
W 0.8
200
0.09
Tc-97m
D 0.8
200
0.1
0.8
200
87 d
W 0.8
40
0.02
Tc-98
D 0.8
60
0.02
0.8
40
4.2 106 y
W 0.8
10
0.005
Tc-99
D 0.8
200
0.08
0.8
100
2.13 105 y
W 0.8
20
0.01
Tc-99m
D 0.8
6000
2
0.8
3000
6.02 h
W 0.8
9000
4
Tc-101
D 0.8
1 104
5
0.8
3000
14.2 m
W 0.8
I 104
6
Tc-104
D 0.8
3000
1
0.8
800
18.2 m
W 0.8
3000
1
Ruthenium
Ru-94
D 0.05
2000
0.7
0.05
600
51.8 m
W 0.05
2000
1
Y 0.05
2000
0.9
Ru-97
D 0.05
700
0.3
0.05
300
2.9 d
W 0.05
500
0.2
Y 0.05
400
0.2
Ru-103
D 0.05
60
0.03
0.05
70
39.28 d
W 0.05
40
0.02
Y 0.05
20
0.01
Ru-105
D 0.05
500
0.2
0.05
200
4.44 h
W 0.05
500
0.2
Y 0.05
400
0.2
Ru-106
D 0.05
3
0.001
0.05
7
368.2 d
W 0.05
2
8 10'4
Y 0.05
0.4
2 10"4
Rhodium
Rh-99
D 0.05
100
0.05
0.05
90
16 d
W 0.05
80
0.03
Y 0.05
70
0.03
-------
55
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f[
ALI
DAC
U
ALI
,cC i
fiC i/cm3
fCi
Tc-95
D 0.8
2 104
9 10"6
0.8
1 104
20 h
W 0.8
2 104
8 10"6
Tc-95m
D 0.8
5000
2 10"6
0.8
4000
61 d
W 0.8
2000
8 10"7
Tc-96
D 0.8
3000
1 10"6
0.8
2000
4.28 d
W 0.8
2000
9 lO"7
Tc-96m
D 0.8
3 105
1 lO-*
0.8
2 105
51.5 m
W 0.8
2 105
1 10"4
Tc-97
D 0.8
5 104
2 lO"5
0.8
4 104
2.6 106 y
W 0.8
6000
2 10"6
Tc-97m
D 0.8
7000
3 10"6
0.8
5000
87 d
W 0.8
1000
5 10"7
Tc-98
D 0.8
2000
7 10"7
0.8
1000
4.2 106 y
W 0.8
300
1 lO"7
Tc-99
D 0.8
5000
2 10"6
0.8
4000
2.13 105 y
W 0.8
700
3 10"7
Tc-99m
D 0.8
2 105
6 10"5
0.8
8 104
6.02 h
W 0.8
2 105
1 10"4
Tc-101
D 0.8
3 10s
1 10'4
0.8
9 104
14.2 m
W 0.8
4 105
2 lO"4
Tc-104
D 0.8
7 104
3 10"5
CO
O
2 104
18.2 m
W 0.8
9 104
4 10"5
Ruthenium
Ru-94
D 0.05
4 104
2 10"5
0.05
2 104
51.8 m
W 0.05
6 104
3 lO"5
Y 0.05
6 104
2 10"5
Ru-97
D 0.05
2 104
8 10"6
0.05
8000
2.9 d
W 0.05
1 104
5 10"6
Y 0.05
1 104
5 10"6
Ru-103
D 0.05
2000
7 lO"7
0.05
2000
39.28 d
W 0.05
1000
4 10"7
Y 0.05
600
3 lO"7
Ru-105
D 0.05
1 104
6 10"6
0.05
5000
4.44 h
W 0.05
1 104
6 10"6
Y 0.05
1 104
5 10"6
Ru-106
D 0.05
90
4 10"8
0.05
200
368.2 d
W 0.05
50
2 10"8
Y 0.05
10
5 10"9
Rhodium
Rh-99
D 0.05
3000
1 10"6
0.05
2000
16 d
W 0.05
2000
9 10"7
Y 0.05
2000
8 10"7
-------
56
Table I.a, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f|
ALI
DAC
ALI
MBq
MBq/m5
fi
MBq
Rh-99m
D 0.05
2000
0.9
0.05
700
4.7 h
W 0.05
3000
1
Y 0.05
2000
1
Rh-100
D 0.05
200
0.08
0.05
60
20.8 h
W 0.05
100
0.06
Y 0.05
100
0.06
Rh-101
D 0.05
20
0.008
0.05
80
3-2 y
W 0.05
30
0.01
Y 0.05
6
0.002
Rh-lOIm
D 0.05
400
0.2
0.05
200
4.34 d
W 0.05
300
0.1
Y 0.05
300
0.1
Rh-102
D 0.05
3
0.001
0.05
20
2.9 y
W 0.05
7
0.003
Y 0.05
2
9 10"4
Rh-I02m
D 0.05
20
0.008
0.05
50
207 d
W 0.05
10
0.006
Y 0.05
4
0.002
Rh-103m
D 0.05
4 104
20
0.05
2 104
56.12 m
W 0.05
5 104
20
Y 0.05
4 104
20
Rh-105
D 0.05
400
0.2
0.05
100
35.36 h
W 0.05
200
0.1
Y 0.05
200
0.09
Rh-106m
D 0.05
900
0.4
0.05
300
132 m
W 0.05
1000
0.6
Y 0.05
1000
0.5
Rh-107
D 0.05
9000
4
0.05
3000
21.7 m
W 0.05
1 104
4
Y 0.05
9000
4
Palladium
Pd-100
D 0.005
50
0.02
0.005
50
3.63 d
W 0.005
50
0.02
Y 0.005
50
0.02
Pd-101
D 0.005
1000
0.5
0.005
500
8.27 h
W 0.005
1000
0.5
Y 0.005
1000
0.5
Pd-103
D 0.005
200
0.1
0.005
200
16.96 d
W 0.005
200
0.07
Y 0.005
100
0.05
-------
57
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f[
ALI
DAC
ALI
fCi
nCi/cm3
fCi
Rh-99m
D 0.05
6 104
2 10"5
0.05
2 104
4.7 h
W 0.05
8 104
3 10'5
Y 0.05
7 104
3 10"5
Rh-100
D 0.05
5000
2 10"6
0.05
2000
20.8 h
W 0.05
4000
2 10"6
Y 0.05
4000
2 10"6
Rh-101
D 0.05
500
2 10°
0.05
2000
3.2 y
W 0.05
800
3 10'7
Y 0.05
200
6 10"8
Rh-101 m
D 0.05
1 104
5 10"6
0.05
6000
4.34 d
W 0.05
8000
4 10"6
Y 0.05
8000
3 10"6
Rh-102
D 0.05
90
4 10"8
0.05
600
2.9 y
W 0.05
200
7 I0"8
Y 0.05
60
2 10"8
Rh-102m
D 0.05
500
2 10°
0.05
1000
207 d
W 0.05
400
2 10"'
Y 0.05
100
5 10"8
Rh-103m
D 0.05
1 106
5 10^
0.05
4 105
56.12 m
W 0.05
1 106
5 10"4
Y 0.05
1 106
5 10'4
Rh-105
D 0.05
1 104
5 10"6
0.05
4000
35.36 h
W 0.05
6000
3 10"6
Y 0.05
6000
2 10"6
Rh-106m
D 0.05
3 104
1 io-5
0.05
8000
132 m
W 0.05
4 104
2 IO"5
Y 0.05
4 104
1 JO'5
Rh-107
D 0.05
2 !05
1 IO"4
0.05
7 104
21.7 m
W 0.05
3 105
i io-*
Y 0.05
3 105
1 10"4
Palladium
Pd-100
D 0.005
1000
6 IO"'
0.005
1000
3.63 d
W 0.005
1000
5 10"'
Y 0.005
1000
6 IO"'
Pd-lOi
D 0.005
3 JO4
1 IO"5
0.005
] JO4
8.27 h
W 0.005
3 104
1 IO"5
Y 0.005
3 104
1 IO"5
Pd-103
D 0.005
6000
3 10"6
0.005
6000
16.96 d
W 0.005
4000
2 10"6
Y 0.005
4000
1 IO'6
-------
58
Table I.a. Cont'd.
Nuclide
Inhalation
Ingestion
Class/f|
ALI
DAC
ALI
MBq
MBq/m3
fi
MBq
Pd-107
D 0.005
800
0.3
0.005
1000
6.5 106 y
W 0.005
300
0.1
Y 0.005
10
0.006
Pd-109
D 0.005
200
0.1
0.005
90
13.427 h
W 0.005
200
0.09
Y 0.005
200
0.07
Silver
Ag-102
D 0.05
7000
3
0.05
2000
12.9 m
W 0.05
8000
3
Y 0.05
7000
3
Ag-103
D 0.05
4000
2
0.05
1000
65.7 m
W 0.05
5000
2
Y 0.05
4000
2
Ag-104
D 0.05
3000
1
0.05
800
69.2 m
W 0.05
5000
2
Y 0.05
6000
2
Ag-I04m
D 0.05
4000
1
0.05
1000
33.5 m
W 0.05
5000
2
Y 0.05
4000
2
Ag-105
D 0.05
40
0.02
0.05
100
41.0 d
W 0.05
60
0.03
Y 0.05
60
0.03
Ag-106
D 0.05
7000
3
0.05
2000
23.96 m
W 0.05
8000
3
Y 0.05
7000
3
Ag-I06m
D 0.05
30
0.01
0.05
30
8.41 d
W 0.05
30
0.01
Y 0.05
30
0.01
Ag-I08m
D 0.05
7
0.003
0.05
20
127 y
W 0.05
9
0.004
Y 0.05
0.9
4 10A
Ag-110m
D 0.05
5
0.002
0.05
20
249.9 d
W 0.05
7
0.003
Y 0.05
3
0.001
Ag-111
D 0.05
60
0.02
0.05
30
7.45 d
W 0.05
30
0.01
Y 0.05
30
0.01
Ag-112
D 0.05
300
0.1
0.05
100
3.12 h
W 0.05
400
0.2
Y 0.05
300
0.1
-------
59
Table l.b. Cont'd.
Inhalation Ingestion
Nuclide
Class/f |
ALI
DAC
ALI
?Ci
nCi/cm3
^Ci
Pd-107
D 0.005
2 104
9 10"6
0.005
3 104
6.5 106 y
W 0.005
7000
3 10"6
Y 0.005
400
2 lO"'
Pd-109
D 0.005
6000
3 10"6
0.005
2000
13.427 h
W 0.005
5000
2 10-6
Y 0.005
5000
2 10"6
Silver
Ag-102
D 0.05
2 105
8 I0"5
0.05
5 104
12.9 m
W 0.05
2 105
9 10"5
Y 0.05
2 105
8 10"5
Ag-103
D 0.05
1 105
4 10"5
0.05
4 104
65.7 m
W 0.05
I 105
5 10"5
Y 0.05
1 105
5 10'5
Ag-104
D 0.05
7 104
3 10"5
0.05
2 104
69.2 m
W 0.05
1 105
6 10"5
Y 0.05
1 105
6 10"5
Ag-104m
D 0.05
9 104
4 10"5
0.05
3 104
33.5 m
W 0.05
1 105
5 10"5
Y 0.05
1 105
5 10"5
Ag-105
D 0.05
1000
4 I0"7
0.05
3000
41.0 d
W 0.05
2000
7 10°
Y 0.05
2000
7 10-7
Ag-106
D 0.05
2 105
8 10"5
0.05
6 104
23.96 m
W 0.05
2 105
9 10"5
Y 0.05
2 I05
8 10"5
Ag-106m
D 0.05
700
3 10"7
0.05
800
8.41 d
W 0.05
900
4 10"7
Y 0.05
900
4 10-7
Ag-108m
D 0.05
200
8 10-8
0.05
600
127 y
W 0.05
300
1 10°
Y 0.05
20
1 I0"8
Ag-110m
D 0.05
100
5 10-8
0.05
500
249.9 d
W 0.05
200
8 10"8
Y 0.05
90
4 10"8
Ag-111
D 0.05
2000
6 lO"7
0.05
900
7.4 5 d
W 0.05
900
4 10°
Y 0.05
900
4 10"7
Ag-112
D 0.05
8000
3 10-6
0.05
3000
3.12 h
W 0.05
1 104
4 10"6
Y 0.05
9000
4 10"6
-------
60
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
fi
ALI
MBq
MBq/m3
MBq
Ag-115
D 0.05
3000
1
0.05
1000
20.0 m
W 0.05
3000
1
Y 0.05
3000
1
Cadmium
Cd-104
D 0.05
2000
1
0.05
800
57.7 m
W 0.05
4000
2
Y 0.05
4000
2
Cd-107
D 0.05
2000
0.8
0.05
800
6.49 h
W 0.05
2000
0.9
Y 0.05
2000
0.8
Cd-109
D 0.05
1
5 lO"4
0.05
10
464 d
W 0.05
4
0.002
Y 0.05
4
0.002
Cd-113
D 0.05
0.08
3 10"5
0.05
0.8
9.3 I015 y
W 0.05
0.3
1 lO'4
Y 0.05
0.5
2 I0"4
Cd-l 13m
D 0.05
0.09
4 lO'5
0.05
0-9
13.6 y
W 0.05
0.3
1 10"4
Y 0.05
0.5
2 lO"4
Cd-l15
D 0.05
50
0.02
0.05
30
53.46 h
W 0.05
50
0.02
Y 0.05
50
0.02
Cd-l 15m
D 0.05
2
8 I0"4
0.05
10
44.6 d
W 0.05
5
0.002
Y 0.05
5
0.002
Cd-l 17
D 0.05
400
0.2
0.05
200
2.49 h
W 0.05
600
0.3
Y 0.05
500
0.2
Cd-l 17m
D 0.05
500
0.2
0.05
200
3.36 h
W 0.05
600
0.3
Y 0.05
500
0.2
Indium
In-109
D 0.02
2000
0.7
0.02
700
4.2 h
W 0.02
2000
1
In-110
D 0.02
600
0.3
0.02
200
4.9 h
W 0.02
700
0.3
In-110
D 0.02
2000
0.7
0.02
600
69.1 m
W 0.02
2000
0.9
In-111
D 0.02
200
0.1
0.02
200
2.83 d
W 0.02
200
0.1
-------
61
Table Lb, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
f,
ALI
fCi
nCi/cm3
KCi
Ag-115
D 0.05
9 104
4 lO"5
0.05
3 104
20.0 m
W 0.05
9 104
4 10"5
Y 0.05
8 104
3 lO-5
Cadmium
Cd-104
D 0.05
7 104
3 10'5
0.05
2 104
57.7m
W 0.05
1 105
5 10'5
Y 0.05
1 105
5 10-5
Cd-107
D 0.05
5 104
2 10'5
0.05
2 104
6.49 h
W 0.05
6 104
2 10"5
Y 0.05
5 104
2 10'5
Cd-109
D 0.05
40
1 10'8
0.05
300
464 d
W 0.05
100
5 10"8
Y 0.05
100
5 10'8
Cd-113
D 0.05
2
9 JO"10
0.05
20
9.3 1015 y
W 0.05
8
3 lO"'
Y 0.05
10
6 lO"'
Cd-113m
D 0.05
2
1 10"'
0.05
20
13.6 y
W 0.05
8
4 lO"'
Y 0.05
10
5 10*9
Cd-115
D 0.05
1000
6 I0"7
0.05
900
53.46 h
W 0.05
1000
5 10'7
Y 0.05
1000
6 10"7
Cd-115m
D 0.05
50
2 lO"8
0.05
300
44.6 d
W 0.05
100
5 10"8
Y 0.05
100
6 10"8
Cd-117
D 0.05
1 104
5 lO"6
0.05
5000
2.49 h
W 0.05
2 104
7 10"6
Y 0.05
1 104
6 10"6
Cd-117m
D 0.05
1 104
5 10'6
0.05
5000
3.36 h
W 0.05
2 104
7 10"6
Y 0.05
1 104
6 10'6
Indium
In-109
D 0.02
4 104
2 10"s
0.02
2 104
4.2 h
W 0.02
6 104
3 10"5
In-110
D 0.02
2 104
7 10'6
0.02
5000
4.9 h
W 0.02
2 104
8 10"6
In-110
D 0.02
4 104
2 10-5
0.02
2 104
69.1 m
W 0.02
6 104
2 lO"5
In-111
D 0.02
6000
3 lO"6
0.02
4000
2.83 d
W 0.02
6000
3 10"6
-------
62
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
I".
ALI
MBq
MBq/m3
MBq
In-112
D 0.02
2 104
10
0.02
6000
14.4 m
W 0.02
3 104
10
In-113m
D 0.02
5000
2
0.02
2000
1.658 h
W 0.02
7000
3
In-114m
D 0.02
2
0.001
0.02
10
49.51 d
W 0.02
4
0.002
In-115
D 0.02
0.05
2 10"5
0.02
1
5.1 1015 y
W 0.02
0.2
8 10"5
In-115m
D 0.02
2000
0.7
0.02
500
4.486 h
W 0.02
2000
0.7
In-116m
D 0.02
3000
1
0.02
900
54.15 m
W 0.02
4000
2
In-117
D 0.02
6000
3
0.02
2000
43.8 m
W 0.02
8000
3
In-117m
D 0.02
1000
0.5
0.02
400
116.5 m
W 0.02
2000
0.7
In-119m
D 0.02
5000
2
0.02
1000
18.0 m
W 0.02
5000
2
Tin
Sn-110
D 0.02
400
0.2
0.02
100
4.0 h
W 0.02
400
0.2
Sn-111
D 0.02
8000
3
0.02
3000
35.3 m
W 0.02
1 104
4
Sn-113
D 0.02
50
0.02
0.02
60
115.1 d
W 0.02
20
0.009
Sn-117m
D 0.02
50
0.02
0.02
60
13.61 d
W 0.02
50
0.02
Sn-119m
D 0.02
90
0.04
0.02
100
293.0 d
W 0.02
40
0.02
Sn-121
D 0.02
600
0.2
0.02
200
27.06 h
W 0.02
400
0.2
Sn-121m
D 0.02
30
0.01
0.02
100
55 y
W 0.02
20
0.008
Sn-123
D 0.02
20
0.01
0.02
20
129.2 d
W 0.02
6
0.003
Sn-123m
D 0.02
4000
2
0.02
2000
40.08 m
W 0.02
5000
2
Sn-125
D 0.02
30
0.01
0.02
10
9.64 d
W 0.02
10
0.005
Sn-126
D 0.02
2
9 10-*
0.02
10
1.0 105 y
W 0.02
2
0.001
-------
63
Table Lb, Cont'd.
Inhalation Ingestion
Nuclide
Class/ft
ALI
DAC
fi
ALI
nCi
jiCi/cm3
nCi
In-112
D 0.02
6 I05
3 I0-4
0.02
2 IO5
14.4 m
W 0.02
7 105
3 I0-4
In-113m
D 0.02
1 I05
6 lO"5
0.02
5 IO4
1.658 h
W 0.02
2 105
8 IO"5
In-114m
D 0.02
60
3 IO"8
0.02
300
49.51 d
W 0.02
100
4 IO"8
In-115
D 0.02
1
6 10*'°
0.02
40
5.1 IOl5y
W 0.02
5
2 IO"9
In-115m
D 0.02
4 IO4
2 IO"5
0.02
1 104
4.486 h
W 0.02
5 104
2 IO"5
In-116m
D 0.02
8 104
3 IO-5
0.02
2 IO4
54.15 m
W 0.02
1 I05
5 IO"5
In-117
D 0.02
2 I05
7 I0"s
0.02
6 IO4
43.8 m
W 0.02
2 I05
9 IO"5
In-117m
D 0.02
3 I04
1 io-5
0.02
1 IO4
116.5 m
W 0.02
4 104
2 IO"5
In-119m
D 0.02
1 105
5 IO"5
0.02
4 104
18.0 m
W 0.02
1 I05
6 IO"5
Tin
Sn-110
D 0.02
1 I04
5 10'6
0.02
4000
4.0 h
W 0.02
1 I04
5 IO"6
Sn-111
D 0.02
2 10s
9 IO"5
0.02
7 IO4
35.3 m
W 0.02
3 105
1 IO"4
Sn-113
D 0.02
1000
5 10"'
0.02
2000
115.1 d
W 0.02
500
2 IO"'
Sn-117m
D 0.02
1000
5 10"'
0.02
2000
13.61 d
W 0.02
1000
6 IO*'
Sn-119m
D 0.02
2000
1 10'6
0.02
3000
293.0 d
W 0.02
1000
4 IO*'
Sn-121
D 0.02
2 I04
6 IO"6
0.02
6000
27.06 h
W 0.02
1 I04
5 IO"6
Sn-I21m
D 0.02
900
4 IO"'
0.02
3000
55 y
W 0.02
500
2 IO"1
Sn-123
D 0.02
600
3 IO*'
0.02
500
129.2 d
W 0.02
200
7 IO"8
Sn-123m
D 0.02
1 105
5 IO"5
0.02
5 104
40.08 m
W 0.02
1 105
6 IO"5
Sn-125
D 0.02
900
4 IO"7
0.02
400
9.64 d
W 0.02
400
1 10°
Sn-126
D 0.02
60
2 IO"8
0.02
300
1.0 I05 y
W 0.02
70
3 IO"8
-------
64
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
f.
ALI
MBq
MBq/m3
MBq
Sn-127
D 0.02
700
0.3
0.02
300
2.10 h
W 0.02
700
0.3
Sn-128
D 0.02
1000
0.4
0.02
400
59.1 m
W 0.02
1000
0.6
Antimony
Sb-115
D 0.1
9000
4
0.1
3000
31.8 m
W 0.01
1 104
5
0.01
3000
Sb-116
D 0.1
1 104
4
0.1
3000
15.8 m
W 0.01
1 104
5
0.01
3000
Sb-116m
D 0.1
3000
1
0.1
800
60.3 m
W 0.01
5000
2
0.01
800
Sb-117
D 0.1
8000
3
0.1
3000
2.80 h
W 0.01
1 104
4
0.01
3000
Sb-118m
D 0.1
700
0.3
0.1
200
5.00 h
W 0.01
800
0.3
0.01
200
Sb-119
D 0.1
2000
0.7
0.1
600
38.1 h
W 0.01
1000
0.4
0.01
500
Sb-120
D 0.1
2 104
7
0.1
4000
15.89 m
W 0.01
2 104
8
0.01
4000
Sb-120
D 0.1
80
0.03
0.1
40
5.76 d
W 0.01
50
0.02
0.01
30
Sb-122
D 0.1
90
0.04
0.1
30
2.70 d
W 0.01
40
0.02
0.01
30
Sb-124
D 0.1
30
0.01
0.1
20
60.20 d
W 0.01
9
0.004
0.01
20
Sb-124m
D 0.1
3 104
10
0.1
9000
93 s
W0.01
2 104
9
0.01
9000
Sb-125
D 0.1
90
0.04
0.1
80
2.77 y
W 0.01
20
0.008
0.01
70
Sb-126
D 0.1
40
0.02
0.1
20
12.4 d
W0.01
20
0.008
0.01
20
Sb-126m
D 0.1
7000
3
0.1
2000
19.0 m
W 0.01
7000
3
0.01
2000
Sb-127
D 0.1
80
0.03
0.1
30
3.85 d
W 0.01
30
0.01
0.01
30
Sb-128
D 0.1
1 104
6
0.1
3000
10.4 m
W 0.01
2 104
7
0.01
3000
Sb-128
D 0.1
200
0.07
0.1
50
9.01 h
W 0.01
100
0.05
0.01
40
Sb-129
D 0.1
300
0.1
0.1
100
4.32 h
W 0.01
300
0.1
0.01
100
-------
65
Table I .b, Cont'd.
Inhalation Ingestion
Nuclide
Class/ft
ALI
DAC
fy
ALI
fCi
jiCi/cm3
fCi
Sn-127
D 0.02
2 104
8 10"6
0.02
7000
2.10 h
W 0.02
2 104
8 10"6
Sn-128
D 0.02
3 104
I 10"s
0.02
9000
59.1 m
W 0.02
4 104
1 10"s
Antimony
Sb-115
DO. I
2 I05
I 10"4
0.1
8 I04
31.8 m
W 0.01
3 I05
I 10"4
0.01
8 I04
Sb-116
D 0.1
3 I05
I lO"4
0.1
7 I04
15.8 m
W 0.01
3 105
I lO"4
0.01
7 104
Sb-116m
D 0.1
7 104
3 I0"5
0.1
2 I04
60.3 m
W 0.01
I 105
6 I0"5
0.01
2 104
Sb-117
D 0.1
2 10s
9 10'5
0.1
7 I04
2.80 h
W 0.01
3 10s
1 lO"*
0.01
7 104
Sb-118m
D 0.1
2 I04
8 10"6
0.1
6000
5.00 h
W 0.01
2 I04
9 10"6
0.01
5000
Sb-119
D 0.1
5 104
2 10"5
0.1
2 104
38.1 h
W 0.01
3 104
1 10 s
0.01
I 104
Sb-120
D 0.1
4 105
2 lO"4
0.1
I I05
15.89 m
W 0.01
5 105
2 I0"4
0.01
1 10s
Sb-120
D 0.1
2000
9 10"7
0.1
1000
5.76 d
W 0.01
1000
5 10"7
0.01
900
Sb-122
D 0.1
2000
1 10"6
0.1
800
2.70 d
W 0.01
1000
4 10"7
0.01
700
Sb-124
D 0.1
900
4 I0'7
0.1
600
60.20 d
W 0.01
200
I I0"7
0.01
500
Sb-124m
D 0.1
8 105
4 10^
0.1
3 I05
93 s
W 0.01
6 10s
2 lO"4
0.01
2 I05
Sb-125
D 0.1
2000
I I0"6
0.1
2000
2.77 y
W 0.01
500
2 10'7
0.01
2000
Sb-126
D 0.1
1000
5 I0"7
0.1
600
12.4 d
W 0.01
500
2 10"7
0.01
500
Sb-126m
D 0.1
2 105
8 I0'5
0.1
5 I04
19.0 m
W 0.01
2 105
8 I0'5
0.01
5 I04
Sb-127
D 0.1
2000
9 I0"7
0.1
800
3.85 d
W 0.01
900
4 10'7
0.01
700
Sb-128
D 0.1
4 10s
2 10^
0.1
8 I04
10.4 m
W 0.01
4 10s
2 10"4
0.01
8 I04
Sb-128
D 0.1
4000
2 10"6
0.1
1000
9.01 h
W 0.01
3000
1 10'6
0.01
1000
Sb-129
D 0.1
9000
4 10'6
0.1
3000
4.32 h
W 0.01
9000
4 10"6
0.01
3000
-------
66
Table I .a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
fi
ALI
MBq
MBq/m3
MBq
Sb-130
D 0.1
2000
1
0.1
700
40 m
W 0.01
3000
1
0.01
700
Sb-131
D 0.1
900
0.4
0.1
600
23 m
W 0.01
900
0.4
0.01
600
Tellurium
Te-116
D 0.2
800
0.3
0.2
300
2.49 h
W 0.2
1000
0.5
Te-121
D 0.2
200
0.06
0.2
100
17 d
W 0.2
100
0.05
Te-121m
D 0.2
7
0.003
0.2
20
154 d
W 0.2
20
0.006
Te-123
D 0.2
7
0.003
0.2
20
1 1013 y
W 0.2
20
0.007
Te-123m
D 0.2
8
0.003
0.2
20
119.7 d
W 0.2
20
0.008
Te-125m
D 0.2
20
0.006
0.2
40
58 d
W 0.2
30
0.01
Te-127
D 0.2
800
0.3
0.2
300
9.35 h
W 0.2
600
0.3
Te-127m
D 0.2
10
0.004
0.2
20
109 d
W 0.2
9
0.004
Te-129
D 0.2
2000
1
0.2
1000
69.6 m
W 0.2
3000
1
Te-129m
D 0.2
20
0.01
0.2
20
33.6 d
W 0.2
9
0.004
Te-131
D 0.2
200
0.08
0.2
100
25.0 m
W 0.2
200
0.08
Te-131m
D 0.2
20
0.006
0.2
10
30 h
W 0.2
10
0.006
Te-132
D 0.2
9
0.004
0.2
8
78.2 h
W 0.2
8
0.003
Te-133
D 0.2
800
0.4
0.2
500
12.45 m
W 0.2
800
0.4
Te-13 3m
D 0.2
200
0.08
0.2
100
55.4 m
W 0.2
200
0.08
Te-134
D 0.2
900
0.4
0.2
600
41.8 m
W 0.2
900
0.4
Iodine
1-120
D 1
300
0.1
1
100
81.0 m
-------
67
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
f,
ALI
^Ci
fiCi/cm3
^Ci
Sb-130
D 0.1
6 104
3 10"5
0.1
2 I04
40 m
W 0.01
8 104
3 10"5
0.01
2 104
Sb-131
D 0.1
2 104
1 10"5
0.1
1 I04
23 m
W 0.01
2 I04
1 10"5
0.01
1 104
Tellurium
Te-116
D 0.2
2 104
9 I0"6
0.2
8000
2.49 h
W 0.2
3 104
1 10"5
Te-121
D 0.2
4000
2 10"6
0.2
3000
17 d
W 0.2
3000
1 10"6
Te-121m
D 0.2
200
8 10"8
0.2
500
154 d
W 0.2
400
2 10"7
Te-123
D 0.2
200
8 lO"8
0.2
500
1 I0'3 y
W 0.2
400
2 10"7
Te-123m
D 0.2
200
9 10"8
0.2
600
119.7 d
W 0.2
500
2 10"7
Te-125m
D 0.2
400
2 lO'7
0.2
1000
58 d
W 0.2
700
3 lO"7
Te-127
D 0.2
2 104
9 10"6
0.2
7000
9.35 h
W 0.2
2 104
7 10"6
Te-127m
D 0.2
300
1 10"7
0.2
600
109 d
W 0.2
300
1 10"7
Te-129
D 0.2
6 104
3 10"5
0.2
3 104
69.6 m
W 0.2
7 104
3 10"5
Te-129m
D 0.2
600
3 lO"7
0.2
500
33.6 d
W 0.2
200
1 I0"7
Te-131
D 0.2
5000
2 I0"6
0.2
3000
25.0 m
W 0.2
5000
2 10"6
Te-13 lm
D 0.2
400
2 lO"7
0.2
300
30 h
W 0.2
400
2 10"7
Te-132
D 0.2
200
9 10"8
0.2
200
78.2 h
W 0.2
200
9 10"8
Te-133
D 0.2
2 104
9 10'6
0.2
1 104
12.45 m
W 0.2
2 104
9 I0"6
Te-13 3m
D 0.2
5000
2 10"6
0.2
3000
55.4 m
W 0.2
5000
2 10"6
Te-134
D 0.2
2 I04
1 I0"5
0.2
2 104
41.8 m
W 0.2
2 104
1 I0"5
Iodine
I-120
D 1
9000
4 10"6
1
4000
81.0 m
-------
68
Table 1 .a, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
MBq
MBq/m3
f,
MBq
1-120m
53 m
D 1
800
0.3
1
400
1-121
2.12 h
D 1
700
0.3
1
400
1-123
13.2 h
D 1
200
0.09
1
100
1-124
4.18 d
D 1
3
0.001
1
2
1-125
60.14 d
D 1
2
0.001
1
1
1-126
13.02 d
D 1
1
5 10'4
1
0.8
1-128
24.99 m
D 1
4000
2
1
2000
1-129
1.57 107 y
D 1
0.3
1 10"4
1
0.2
1-130
12.36 h
D 1
30
0.01
!
10
1-131
8.04 d
D 1
2
7 I0"4
1
1
1-132
2.30 h
D 1
300
0.1
1
100
[-132m
83.6 m
D 1
300
0.1
1
100
1-133
20.8 h
D 1
10
0.004
1
5
1-134
52.6 m
D 1
2000
0.7
1
800
1-135
6.61 h
D 1
60
0.02
1
30
Xenon
Xe-120
40 m
Sub
0.4
Xe-121
40.1 m
Sub
0.08
Xe-122
20.1 h
Sub
3
Xe-123
2.08 h
Sub
0.2
Xe-125
17.0 h
Sub
0.6
-------
69
Table l.b, Cont'd.
Inhalation
Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
,iCi
fiCi/cm3
f,
^Ci
I-120m
53 m
D 1
2 104
9 10"6
1
1 104
1-121
2.12 h
D 1
2 104
8 10"6
1
1 104
1-123
13.2 h
D 1
6000
3 10"6
1
3000
1-124
4.18 d
D 1
80
3 10-B
1
50
1-125
60.14 d
D 1
60
3 10"B
1
40
1-126
13.02 d
D 1
40
1 io-B
1
20
[-128
24.99 m
D 1
1 105
5 10-5
1
4 104
1-129
1.57 107 y
D 1
9
4 10"9
1
5
1-130
12.36 h
D 1
700
3 10"7
1
400
1-131
8.04 d
D 1
50
2 10B
I
30
1-132
2.30 h
D 1
8000
3 10"6
1
4000
l-132m
83.6 m
D 1
8000
4 10"6
1
4000
1-133
20.8 h
D 1
300
1 10'7
1
100
1-134
52.6 m
D 1
5 104
2 10"5
1
2 104
1-135
6.61 h
D 1
2000
7 10"7
1
800
Xenon
Xe-120
40 m
Sub
1 10"5
Xe-121
40.1 m
Sub
2 10"6
Xe-122
20.1 h
Sub
7 10"5
Xe-123
2.08 h
Sub
6 10"6
Xe-125
17.0 h
Sub
2 10"5
-------
70
Table I.a. Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f|
MBq
MBq/m3
U
MBq
Xe-127
36.41 d
Sub
0.5
Xe-129m
8.0 d
Sub
7
Xe-131m
11.9 d
Sub
10
Xe-133m
2.188 d
Sub
5
Xe-133
5.245 d
Sub
4
Xe-135m
15.29 m
Sub
0.3
Xe-135
9.09 h
Sub
0.5
Xe-138
14.17 m
Sub
0.1
Cesium
Cs-125
45 m
D 1
5000
2
1
2000
Cs-127
6.25 h
D 1
4000
1
1
2000
Cs-129
32.06 h
D I
1000
0.5
1
900
Cs-130
29.9 m
D 1
7000
3
1
2000
Cs-131
9.69 d
D 1
1000
0.5
1
800
Cs-132
6.475 d
D
100
0.06
t
100
Cs-134
2.062 y
D
4
0.002
1
3
Cs-134m
2.90 h
D
5000
2
1
4000
Cs-135
2.3 10s y
D
40
0.02
1
30
Cs-135m
53 m
D
7000
3
1
4000
Cs-136
13.1 d
D
20
0.01
1
20
Cs-137
30.0 y
D
6
0.002
]
4
-------
71
Table l.b. Cont'd.
Inhalation
Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
fCi
jiCi/cm3
fi #*Ci
Xe-127
36.41 d
Sub
1 lO'5
Xe-129m
8.0 d
Sub
2 lO'4
Xe-131m
11.9 d
Sub
4 I0"4
Xe-133m
2.188 d
Sub
1 lO'4
Xe-133
5.245 d
Sub
1 10"
Xe-135m
15.29 m
Sub
9 lO'6
Xe-135
9.09 h
Sub
1 I0'5
Xe-138
14.17 m
Sub
4 I0'6
Cesium
Cs-125
45 m
D 1
1 I05
6 I0'5
1 5 104
Cs-127
6.25 h
D 1
9 104
4 10"5
1 6 104
Cs-129
32.06 h
D 1
3 104
1 lO'5
1 2 104
Cs-130
29.9 m
D 1
2 I05
8 I0'5
] 6 104
Cs-131
9.69 d
D 1
3 I04
1 10"5
1 2 104
Cs-132
6.475 d
D 1
4000
2 I0"6
1 3000
Cs-134
2.062 y
D 1
100
4 10"8
1 70
Cs-I34m
2.90 h
D 1
1 I05
6 lO'5
1 1 105
Cs-135
2.3 106 y
D 1
1000
5 10"7
1 700
Cs-I35m
53 m
D 1
2 105
8 10-5
1 1 105
Cs-136
13.1 d
D 1
700
3 10"1
1 400
Cs-137
30.0 y
D 1
200
6 10"8
1 100
-------
72
Table l.a, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
MBq
MBq/m3
F|
MBq
Cs-138
32.2 m
D 1
2000
0.9
1
700
Barium
Ba-126
96.5 m
D 0.1
600
0.2
0.1
200
Ba-128
2.43 d
D 0.1
70
0.03
0.1
20
Ba-131
11.8 d
D 0.1
300
0.1
0.1
100
Ba-131m
14.6 m
D 0.1
5 104
20
0.1
1 104
Ba-133
10.74 y
D 0.1
30
0.01
0.1
60
Ba-133m
38.9 h
D 0.1
300
0.1
0.1
90
Ba-135m
28.7 h
D 0.1
400
0.2
0.1
100
Ba-139
82.7 m
D 0.1
1000
0.5
0.1
500
Ba-140
12.74 d
D 0.1
50
0.02
0.1
20
Ba-141
18.27 m
D 0.1
3000
1
0.1
900
Ba-142
10.6 m
D 0.1
5000
2
0.1
2000
Lanthanum
La -131
59 m
D 0.001
W 0.001
4000
6000
2
3
0.001
2000
La-132
4.8 h
D 0.001
W 0.001
400
400
0.2
0.2
0.001
100
La-135
19.5 h
D 0.001
W 0.001
4000
4000
2
1
0.001
1000
La-137
6 104 y
D 0.001
W 0.001
2
10
0.001
0.004
0.001
400
La-138
1.35 10" y
D 0.001
W 0.001
0.1
0.5
5 10"5
2 10^
0.001
30
La-140
40.272 h
D 0.001
W 0.001
50
40
0.02
0.02
0.001
20
La -141
3.93 h
D 0.001
W 0.001
300
400
0.1
0.2
0.001
100
-------
73
Table Lb, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f|
eCi
jiCi/cm3
r,
eCi
Cs-138
32.2 m
D 1
6 104
2 I0"5
t
2 I04
Barium
Ba-126
96.5 m
D 0.1
2 104
6 10"6
0.1
6000
Ba-128
2.43 d
D 0.1
2000
7 10"7
0.1
500
Ba-131
11.8 d
D 0.1
8000
3 10"6
0.1
3000
Ba-131m
14.6 m
D 0.1
1 I06
6 10"4
0.1
4 105
Ba-133
10.74 y
D 0.1
700
3 10-7
0.1
2000
Ba-133m
38.9 h
D 0.1
9000
4 10'6
0.1
2000
Ba-135m
28.7 h
D 0.1
1 I04
5 10"6
0.1
3000
Ba-139
82.7 m
D 0.1
3 104
1 10"5
0.1
I 104
Ba-140
12.74 d
D 0.1
1000
6 10'7
0.1
500
Ba-141
18.27 m
D 0.1
7 104
3 lO'5
0.1
2 104
Ba-142
10.6 m
D 0.1
1 105
6 10"5
0.1
5 104
Lanthanum
La-131
59 m
D 0.001
W 0.001
1 105
2 105
o o
L/> UI
0.001
5 104
La-132
4.8 h
D 0.001
W 0.001
1 104
1 104
4 10"6
5 10'6
0.001
3000
La-135
19.5 h
D 0.001
W 0.001
—
o o
O O
0.001
4 I04
La-137
6 I04 y
D 0.001
W 0.001
60
300
3 10-8
1 10"7
0.001
1 104
La-138
1.35 1011 y
D 0.001
W 0.001
4
10
1 lO'9
6 I0"9
0.001
900
La-140
40.272 h
D 0.001
W 0.001
1000
1000
p p
0.001
600
La-141
3.93 h
D 0.001
W 0.001
9000
I 104
O O
0.001
4000
-------
74
Table l.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f t
ALI
DAC
f,
ALI
MBq
MBq/m3
MBq
La-142
D 0.001
800
0.3
0.00!
300
92.5 m
W 0.001
1000
0.5
La-143
D 0.001
4000
2
0.00!
1000
14.23 m
W 0.001
3000
]
Cerium
Ce-134
W 3 10"4
30
0.01
3 10"4
20
72.0 h
Y 3 10"4
20
0.01
Ce-135
W 3 !0'4
100
0.06
3 10'4
60
17.6 h
Y 3 10"4
100
0.05
Ce-137
W 3 10"4
5000
2
3 !0'4
2000
9.0 h
Y 3 10"4
5000
2
Ce-!37m
W 3 10-4
200
0.07
3 lO"4
90
34.4 h
Y 3 10"4
100
0.06
Ce-139
W 3 !0"4
30
0.0!
3 I0-1
200
137.66 d
Y 3 10-4
20
0.0!
Ce-141
W 3 10"4
30
0.0!
3 !0'4
60
32.50! d
Y 3 10"4
20
0.009
Ce-!43
W 3 10"4
70
0.03
3 10"
40
33.0 h
Y 3 !0"4
60
0.02
Ce-144
W 3 lO"4
0.9
4 lO"4
3 10"4
8
284.3 d
Y 3 !0"4
0.5
2 10"4
Praseodymium
Pr-136
W 3 10'4
9000
4
3 10"
2000
13.1 m
Y 3 !0"4
8000
3
Pr-137
W 3 10-4
6000
2
3 lO"4
1000
76.6 m
Y 3 lO"4
5000
2
Pr-I38m
W 3 !0"4
2000
0.8
3 10'4
400
2.1 h
Y 3 !0"4
2000
0.7
Pr-139
W 3 lO'4
4000
2
3 10"4
1000
4.51 h
Y 3 !0"4
4000
2
Pr-142
W 3 !0-4
80
0.03
3 lO"4
40
19.13 h
Y 3 lO'4
70
0.03
Pr-142m
W 3 lO'4
6000
3
3 104
3000
14.6 m
Y 3 10"4
5000
2
Pr-143
W 3 10-4
30
0.01
3 I0"4
30
13.56 d
Y 3 lO-4
20
0.0!
Pr-144
W 3 ICT4
5000
2
3 I0"4
1000
17.28 m
Y 3 10'4
4000
2
Pr-145
W 3 I0"4
300
0.1
3 lO"4
100
5.98 h
Y 3 10'4
300
0.1
-------
75
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
h
ALI
fiCi
nCi/cm3
fiCi
La-142
D 0.001
2 104
9 10"6
0.001
8000
92.5 m
W 0.001
3 104
1 lO'5
La-143
D 0.001
1 105
4 lO"5
0.001
4 104
14.23 m
W 0.001
9 104
4 lO'5
Cerium
Ce-134
W 3 10"4
700
3 lO"1
3 lO"4
500
72.0 h
Y 3 10"4
700
3 10"7
Ce-l 35
W 3 10"4
4000
2 lO"6
3 lO'4
2000
17.6 h
Y 3 10"4
4000
1 10'6
Ce-137
W 3 10"4
1 105
6 10"5
3 lO'4
5 10"
9.0 h
Y 3 10"4
1 105
5 lO'5
Ce-137m
W 3 lO"4
4000
2 10'6
3 10'4
2000
34.4 h
Y 3 10"4
4000
2 lO"6
Ce-l 39
W 3 lO'4
800
3 lO'1
3 lO"4
5000
137.66 d
Y 3 10'4
700
3 lO"1
Ce-l 41
W 3 lO"4
700
3 lO"1
3 lO"4
2000
32.501 d
Y 3 10"4
600
2 10"7
Ce-14 3
W 3 10"4
2000
8 10'7
3 lO"4
1000
33.0 h
Y 3 10"4
2000
7 lO'7
Ce-l 44
W 3 10"4
30
1 10"8
3 lO"4
200
284.3 d
Y 3 10"4
10
6 10'9
Praseodymium
Pr-l 36
W 3 10"4
2 lO5
1 lO"4
3 10"4
5 104
13.1 m
Y 3 lO"4
2 lO5
9 lO"5
Pr-l 37
W 3 10"4
2 lO5
6 lO"5
3 10"4
4 104
76.6 m
Y 3 lO4
I 105
6 10"5
Pr-l 38m
W 3 lO"4
5 104
2 10"5
3 10'4
1 104
2.1 h
Y 3 104
4 104
2 lO'5
Pr-139
W 3 lO"4
1 I05
5 lO'5
3 lO"4
4 104
4.51 h
Y 3 lO'4
1 lO5
5 lO'5
Pr-142
W 3 lO"4
2000
9 lO"1
3 lO"4
1000
19.13 h
Y 3 lO"4
2000
8 lO'1
Pr-l 42m
W 3 lO"4
2 105
7 10"5
3 10'4
8 104
14.6 m
Y 3 lO"4
1 105
6 lO"5
P r-14 3
W 3 lO'4
800
3 lO"7
3 10"4
900
13.56 d
Y 3 lO"4
700
3 lO"1
Pr-144
W 3 lO'4
1 105
5 lO'5
3 lO"4
3 104
17.28 m
Y 3 10"4
1 105
5 lO"5
Pr-l 45
W 3 10"4
9000
4 lO'6
3 10"4
3000
5.98 h
Y 3 lO"4
8000
3 lO'6
-------
76
Table La, Cont'd.
Inhalation Ingestion
Nuclide
Class/f]
ALI
DAC
f,
ALI
MBq
MBq/m3
MBq
Pr-147
W 3 10"4
7000
3
3 I0"4
2000
13.6 m
Y 3 10"4
7000
3
Neodymium
Nd-136
W 3 10"4
2000
0.9
3 10"4
600
50.65 m
Y 3 lO"4
2000
0.8
Nd-138
W 3 lO"4
200
0.1
3 10"4
70
5.04 h
Y 3 lO"4
200
0.08
Nd-139
W 3 10"4
I I04
5
3 10"4
3000
29.7 m
Y 3 I0"4
I 104
5
Nd-139m
W 3 lO"4
600
0.3
3 10"4
200
5.5 h
Y 3 I0"4
500
0.2
Nd-141
W 3 10"4
3 104
10
3 10"4
6000
2.49 h
Y 3 10"4
2 I04
9
Nd-147
W 3 10"4
30
0.01
3 10"4
40
10.98 d
Y 3 10"4
30
0.01
Nd-149
W 3 10"4
1000
0.4
3 10"4
400
1.73 h
Y 3 lO'4
900
0.4
Nd-151
W 3 10'4
7000
3
3 10"4
3000
12.44 m
Y 3 10"4
7000
3
Promethium
Pm-141
W 3 10"4
7000
3
3 10"4
2000
20.90 m
Y 3 lO"4
6000
3
Pm-143
W 3 10"4
20
0.009
T
O
200
265 d
Y 3 10"4
30
0.01
Pm-144
W 3 I0"4
4
0.002
3 10"4
50
363 d
Y 3 10"4
4
0.002
Pm-145
W 3 10"4
7
0.003
T
O
400
17.7 y
Y 3 10"4
7
0.003
Pm-146
W 3 I0"4
2
8 lO"4
3 lO"4
60
2020 d
Y 3 10"4
2
7 10"
Pm-147
W 3 10"4
5
0.002
3 I0"4
200
2.6234 y
Y 3 10"4
5
0.002
Pm-I48
W 3 I0"4
20
0.008
3 lO"4
20
5.37 d
Y 3 I0"4
20
0.008
Pm-148m
W 3 10"4
10
0.004
3 10"4
30
41.3 d
Y 3 1CT4
10
0.005
Pm-149
W 3 10"4
70
0.03
3 10"4
40
53.08 h
Y 3 10"4
70
0.03
Pm-150
W 3 10"4
700
0.3
T
O
200
2.68 h
Y 3 10"4
600
0.3
-------
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
r,
ALI
fCi
ttCi/cm3
yCi
Pr-147
W 3 10"4
2 105
8 10'5
3 10'4
5 104
13.6 m
Y 3 10"4
2 105
8 lO"5
Neodymium
Nd-136
W 3 10-4
6 104
2 10"5
3 10"4
1 104
50.65 m
Y 3 10"4
5 104
2 10"5
Nd-138
W 3 10"4
6000
3 lO'6
3 10"4
2000
5.04 h
Y 3 10"4
5000
2 10-6
Nd-139
W 3 lO"4
3 105
1 10'4
3 10"4
9 104
29.7 m
Y 3 lO"4
3 105
1 10'4
Nd-139m
W 3 lO"4
2 104
7 10"6
3 10'4
5000
5.5 h
Y 3 10"4
1 104
6 10'6
Nd-141
W 3 10'4
7 105
3 10-4
3 10"4
2 105
2.49 h
Y 3 I0"4
6 105
3 10"4
Nd-147
W 3 10'4
900
4 10"7
3 10"4
1000
10.98 d
Y 3 10"4
800
4 10"7
Nd-149
W 3 lO"4
3 104
1 lO'5
3 10"4
1 104
1.73 h
Y 3 10'4
2 104
1 10"5
Nd-151
W 3 10"4
2 105
8 I0"5
3 10"4
7 104
12.44 m
Y 3 lO"4
2 105
8 10"5
Promethium
Pm-141
W 3 10"4
2 105
8 10"5
3 10'4
5 104
20.90 m
Y 3 10-4
2 105
7 10"5
Pm-143
W 3 10"4
600
2 !0"7
3 lO"4
5000
265 d
Y 3 10"4
700
3 10"7
Pm-144
W 3 lO"4
100
5 10"8
3 10"4
1000
363 d
Y 3 lO"4
100
5 10"8
Pm-145
W 3 10-4
200
7 10'8
3 10"4
1 104
17.7 y
Y 3 10'4
200
8 10'8
Pm-146
W 3 10'4
50
2 10"8
3 10"4
2000
2020 d
Y 3 lO"4
40
2 10'8
Pm-147
W 3 10'4
100
5 10"8
3 lO"4
4000
2.6234 y
Y 3 lO"4
100
6 10"8
Pm-148
W 3 10-4
500
2 10"7
3 I0"4
400
5.37 d
Y 3 lO"4
500
2 10-7
Pm-148m
W 3 10"4
300
1 10"7
3 10"4
700
41.3 d
Y 3 10"4
300
1 10"7
Pm-149
W 3 10'4
2000
8 10"7
3 10'4
1000
53.08 h
Y 3 10'4
2000
8 10"7
Pm-150
W 3 10"4
2 104
8 10"6
3 lO"4
5000
2.68 h
Y 3 1 0"4
2 104
7 10"6
-------
78
Table l.a, Cont'd.
Inhalation
Ingestion
ALI
DAC
ALI
Nuclide
Class/fj
MBq
MBq/m3
fi
MBq
Pm-15I
28.40 h
W 3 IO4
Y 3 IO"4
100
100
0.06
0.05
3 10'4
70
Samarium
Sm-14I
10.2 m
W 3 IO"4
7000
3
3 IO'4
2000
Sm-141m
22.6 m
W 3 IO"4
4000
2
3 104
1000
Sm-142
72.49 m
W 3 IO"4
1000
0.4
3 IO"4
300
Sm-I45
340 d
W 3 IO"4
20
0.008
3 IO"4
200
Sm-146
1.03 10B y
W 3 IO"4
0.001
6 IO"7
3 IO"4
0.5
Sm-147
1.06 I011 y
W 3 IO"4
0.001
6 IO"7
3 IO"4
0.6
Sm-151
90 y
W 3 IO"4
4
0.002
3 IO"4
500
Sm-I53
46.7 h
W 3 IO"4
100
0.04
3 IO"4
60
Sm-155
22.1 m
W 3 IO'4
8000
3
3 IO"4
2000
Sm-156
9.4 h
W 3 IO'4
300
0.1
3 IO"4
200
Europium
Eu-I45
5.94 d
W 0.001
70
0.03
0.001
60
Eu-I46
4.61 d
W 0.001
50
0.02
0.001
40
Eu-147
24 d
W 0.001
60
0.03
0.001
100
Eu-I48
54.5 d
W 0.001
10
0.005
0.001
40
Eu-149
93.1 d
W 0.001
100
0.05
0.001
400
Eu-150
12.62 h
W 0.001
300
0.1
0.001
100
Eu-150
34.2 y
W 0.001
0.7
3 IO"4
0.001
30
Eu-I52
13.33 y
W 0.001
0.9
4 IO"4
0.001
30
-------
79
Table 1 .b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
f,
ALI
nC i
*iCi/cm3
*tCi
Pm-151
W 3 10"4
4000
1 10"6
3 lO"4
2000
28.40 h
Y 3 10"4
3000
1 I0"6
Samarium
Sm-141
W 3 lO"4
2 105
8 10"5
3 lO"4
5 lO4
10.2 m
Sm-I41m
W 3 10"4
1 105
4 10"5
3 lO'4
3 lO4
22.6 m
Sm-142
W 3 10"4
3 104
1 10"5
3 lO"4
8000
72.49 m
Sm-145
W 3 \0A
500
2 10°
3 10"4
6000
340 d
Sm-146
W 3 10"4
0.04
1 10'"
3 lO"4
10
1.03 108 y
Sm-147
W 3 10"4
0.04
2 10"11
3 lO"4
20
1.06 10" y
Sm-151
W 3 10"4
100
4 10"8
3 lO"4
I lO4
90 y
Sm-153
W 3 10"4
3000
1 10"6
3 lO"4
2000
46.7 h
Sm-155
W 3 lO"4
2 105
9 10"5
3 lO"4
6 lO4
22.1 m
Sm-156
W 3 10-4
9000
4 10"6
3 lO"4
5000
9.4 h
Europium
8 10"7
Eu-145
W 0.001
2000
0.001
2000
5.94 d
Eu-146
W 0.001
1000
5 10"1
0.001
1000
4.61 d
Eu-147
W 0.001
2000
7 lO"7
O.OOl
3000
24 d
Eu-148
W 0.001
400
I lO"7
0.001
1000
54.5 d
Eu-14y
W 0.001
3000
I lO"6
O.OOl
I lO4
93.1 d
Eu-150
W 0.001
8000
4 lO"6
O.OOl
3000
12.62 h
Eu-150
W 0.001
20
8 lO'9
O.OOl
800
34.2 y
Eu-152
W 0.001
20
I lO'8
O.OOl
800
13.33 y
-------
80
Table La, Cont'd.
Inhalation Ingestion
AL1
DAC
AL1
Nuclide
Class/f(
MBq
MBq/m3
h
MBq
Hu.-152m
9.32 h
W 0.001
200
0.1
0.001
100
Eu-154
8.8 y
W 0.001
0.7
3 10"4
0.001
20
Eu-155
4.96 y
W 0.001
3
0.001
0.001
100
Eu-156
15.19 d
W 0.001
20
0.007
0.001
20
Eu-157
15.15 h
W 0.001
200
0.08
0,001
80
Eu-158
45.9 m
W 0.001
2000
0.9
0.001
700
Gadolinium
Gd-145
22.9 m
D 3 10"4
W 3 10"4
6000
6000
2
3
3 It)-4
MOO
Gd-146
48.3 d
D 3 10"4
W 3 10 4
5
10
0.002
0.004
3 1Q-4
50
Qd-14?
38.1 h
D 3 JO"4
W 3 10"4
200
100
0.06
0.05
3 10-4
70
Gd-148
93 y
D 3 I0-4
W 3 JO"4
3 10"4
0.001
1 10 '
5 IO"7
3 IO"4
0.4
Gd-149
9.4 d
D 3 JO"4
w 3 io-4
80
90
0.03
0.04
3 10"4
100
Gd-151
120 d
D 3 10"4
W 3 I0J
10
40
0.006
0.02
3 IO"4
200
Gd-152
1.08 !Q14 y
D 3 10-4
W 3 10"4
4 IO"4
0.002
2 10"'
6 lO"3
3 10"4
0.6
Gd-153
242 d
D 3 W4
W 3 10"4
5
20
0.002
0.009
3 \Q*
200
Gd-159
18.56 h
D 3 IO"4
W 3 iO"4
300
200
0.1
0.09
3 10"*
100
Terbium
Tb-147
1.65 h
W 3 10"4
1000
0.5
3 10"4
300
Tb-149
4.15 b
W 3 10"4
30
0.01
3 10*
200
Th-150
3.27 h
W 3 1Q-4
800
0.3
3 icr4
200
Tb-ISi
17.6 b
W 3 IO'4
300
0.1
3 IO"4
100
-------
81
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f (
ALI
DAC
f|
ALI
f»Ci
jiCi/cm3
^Ci
Eu-152m
W 0.001
6000
3 10*
0.001
3000
9.32 h
Eu-154
W 0.001
20
O
O
CO
0.001
500
8.8 y
Eu-155
W 0.001
90
4 I0"8
0.001
4000
4.96 y
Eu-156
W 0.001
500
2 10"7
0.001
600
15.19 d
Eu-157
W 0.001
5000
2 10"
0.001
2000
15.15 h
Eu-158
W 0.001
6 I04
2 lO-5
0.001
2 104
45.9 m
Gadolinium
Gd-145
D 3 10"4
2 105
6 I0"5
3 I04
5 I04
22.9 m
W 3 10"4
2 105
7 I0"5
Gd-146
D 3 10"4
100
5 I0"8
3 10-4
1000
48.3 d
W 3 I0"4
300
1 I0"7
Gd-147
D 3 I04
4000
2 10"6
3 I0"4
2000
38.1 h
W 3 lO'4
4000
1 I0"6
Gd-148
D 3 lO4
0.008
3 I012
3 10^
10
93 y
W 3 10"4
0.03
1 10"
Gd-149
D 3 I04
2000
9 I0"7
3 I0"4
3000
9.4 d
W 3 10"4
2000
1 I0"6
Gd-151
D 3 lO"4
400
2 10°
3 I0"4
6000
120 d
W 3 10J
1000
5 10"7
Gd-152
D 3 I04
0.01
4 I012
3 10-4
20
>>,
©
CO
©
W 3 lO"4
0.04
2 lO41
Gd-153
D 3 I04
100
6 10"8
3 I04
5000
242 d
W 3 10"4
600
2 lO"7
Gd-159
D 3 10-4
8000
3 10*
3 lO"4
3000
18.56 h
W 3 10-4
6000
2 10"6
Terbium
Tb-147
W 3 10"4
3 104
1 10 s
3 10"4
9000
1.65 h
Tb-149
W 3 10"4
700
3 I0"7
3 10"4
5000
4.15 h
Tb-150
W 3 10"4
2 104
9 I0'6
3 I0'4
5000
3.27 h
Tb-151
W 3 10"4
9000
4 I0"6
3 I0"4
4000
17.6 h
-------
82
Table l.a. Cont'd.
Inhalation
Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
MBq
MBq/m3
fi
MBq
Tb-153
2.34 d
W 3 I0-4
300
0.1
3 lO"4
200
Tb-154
21.4 h
W 3 10-*
200
0.07
3 lO-4
60
Tb-155
5.32 d
W 3 10"4
300
0.1
3 10"4
200
Tb-156
5.34 d
W 3 10"4
50
0.02
3 10"4
40
Tb-156m
24.4 h
W 3 104
300
0.1
3 10"4
300
Tb-156m
5.0 h
W 3 10"4
1000
0.4
3 lO"4
600
Tb-157
150 y
Tb-158
150 y
Tb-160
72.3 d
W 3 10-4
W 3 10"4
W 3 10"4
10
0.7
8
0.005
3 I a4
0.004
3 I0"4
3 10"4
3 10"4
2000
50
30
Tb-161
6.91 d
W 3 10"*
60
0.02
3 I0"4
60
Dysprosium
Dy-155
10.0 h
W 3 10"4
900
0.4
3 10"4
300
Dy-157
8.1 h
W 3 10"4
2000
1
3 10"4
700
Dy-159
144.4 d
W 3 10"4
90
0.04
3 lO"4
500
Dy-165
2.334 h
W 3 lO"4
2000
0.7
3 10"*
500
Dy-166
81.6 h
W 3 10"
30
0.01
3 10"4
20
Holmium
Ho-155
48 m
W 3 10"4
6000
2
3 10"4
2000
Ho-157
12.6 m
W 3 104
5 104
20
3 10"4
1 104
Ho-159
33 m
W 3 10"4
4 104
20
3 lO"4
8000
Ho-161
2.5 h
W 3 10'4
2 104
6
3 10"4
4000
-------
83
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
f.
ALI
^Ci
jiCi/cm3
^Ci
Tb-153
W 3 10"
7000
3 I0"6
3 10'4
5000
2.34 d
Tb-154
W 3 10"
4000
2 I06
3 10"
2000
21.4 h
Tb-155
W 3 lO"4
8000
3 10"6
3 10"
6000
5.32 d
Tb-156
W 3 10"4
1000
6 10*'
3 10"
1000
5.34 d
Tb-156m
W 3 10"
8000
3 lO"6
3 10"
7000
24.4 h
Tb-156m
W 3 10"
3 104
1 I0"5
3 10"
2 104
5.0 h
Tb-157
W 3 10"
300
1 10"7
3 10"
5 104
150 y
Tb-158
W 3 10"
20
8 10"'
3 10"
1000
150 y
Tb-160
W 3 10"
200
9 lO"8
3 10"
800
72.3 d
Tb-161
W 3 10"
2000
7 I0'7
3 10"
2000
6.91 d
Dysprosium
Dy-155
W 3 10"
3 104
1 10"5
3 10"
9000
10.0 h
Dy-157
W 3 10"
6 104
3 10 5
3 10"
2 104
8.1 h
Dy-159
W 3 104
2000
1 lO"6
3 10"
1 I04
144.4 d
Dy-165
W 3 10"
5 I04
2 lO"5
3 10"
1 104
2.334 h
Dy-166
W 3 10"
700
3 I0"'
3 10"
600
81.6 h
Holmium
Ho-155
W 3 10"
2 I05
6 I0'5
3 10"
4 I04
48 m
Ho-157
W 3 10"
1 I06
6 10"
3 10"
3 I05
12.6 m
Ho-159
W 3 10"
1 I06
4 10"
3 10"
2 I05
33 m
Ho-161
W 3 10"
4 105
2 10"
3 10"
1 I05
2.5 h
-------
84
Table I .a. Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
C!ass/f]
MBq
MBq/m3
fi
MBq
Ho-162
15 m
W 3 10"4
9 I04
40
3 10"4
2 I04
Ho-162m
68 m
W 3 10"4
1 I04
4
3 I0'4
2000
Ho-164
29 m
W 3 I0"4
2 104
10
3 104
7000
Ho-164m
37.5 m
W 3 lO"4
1 I04
5
3 I0'4
4000
Ho-166
26.80 h
W 3 10"4
70
0.03
3 icr4
30
Ho-l66m
1.20 I03 y
W 3 lO"4
0.3
1 I04
3 lO"4
20
Ho-167
3.1 h
W 3 10'4
2000
0.9
3 I0"4
600
Erbium
Er-161
3.24 h
W 3 10"4
2000
1
3 10"4
600
Er-165
10.36 h
W 3 I0'4
7000
3
3 lO"4
2000
Er-169
9.3 d
W 3 10"4
90
0.04
3 10"4
100
Er-171
7.52 h
W 3 10'4
400
0.2
3 lO"4
100
Er-172
49.3 h
W 3 I0"4
50
0.02
3 I0"4
40
Thulium
Tm-162
21.7 m
W 3 10"4
1 I04
4
3 I0"4
2000
Tm-166
7.70 h
W 3 lO"4
500
0.2
3 10"4
200
Tm-167
9.24 d
W 3 I0-4
70
0.03
3 lO"4
80
Tm-170
128.6 d
W 3 lO"4
8
0.003
3 lO"4
30
Tm-171
1.92 y
W 3 I0-4
10
0.004
3 10"4
400
Tm-172
63.6 h
W 3 I0"4
40
0.02
3 10"4
30
Tm-173
8.24 h
W 3 lO"4
400
0.2
3 I04
200
-------
85
Table l.b, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
^Ci
jiCi/cm3
f,
^Ci
Ho-162
15 m
W 3 10'4
2 10s
0.001
3 10"*
5 10s
Ho-162m
68 m
W 3 IO'4
3 I05
1 10-4
3 IO'4
5 104
Ho-164
29 m
W 3 IO'4
6 I05
3 10"*
3 10"*
2 10s
Ho-164m
37.5 m
W 3 IO'4
3 I05
] IO"4
3 10"*
1 IO5
Ho-166
26.80 h
W 3 10"*
2000
7 I0"7
3 IO"4
900
Ho-166m
1.20 I03 y
W 3 10'4
7
3 IO'9
3 IO"4
600
Ho-167
3.1 h
W 3 10'4
6 104
2 IO'5
3 IO"4
2 104
Erbium
Er-161
3.24 h
W 3 IO"4
6 I04
3 10'5
3 IO"4
2 IO4
Er-165
10.36 h
W 3 10'4
2 I05
8 IO'5
3 IO"4
6 IO4
Er-169
9.3 d
W 3 10"*
3000
1 I0's
3 IO"4
3000
Er-171
7.52 h
W 3 IO'4
1 I04
4 10'6
3 IO"4
4000
Er-172
49.3 h
W 3 IO'4
1000
6 IO"7
3 IO"4
1000
Thulium
Tm-162
21.7 m
W 3 IO"4
3 10s
1 IO"*
3 IO"4
7 104
Tm-166
7.70 h
W 3 10"*
1 104
6 IO"6
3 10"*
4000
Tm-167
9.24 d
W 3 IO'4
2000
8 IO'7
3 10"*
2000
Tm-170
128.6 d
W 3 IO'4
200
9 IO'8
3 10"*
800
Tm-171
1.92 y
Tm-172
63.6 h
W 3 IO"4
W 3 10'4
300
1000
1 IO'1
5 IO"7
3 10"*
3 IO'4
1 104
700
Tm-173
8.24 h
W 3 10'4
1 I04
5 IO'6
3 IO'4
4000
-------
86
Table 1 .a, Cont'd.
Inhalation Ingestion
Nuclide
Class/ft
ALI
DAC
fi
ALI
MBq
MBq/m3
MBq
Tm-175
W 3 lO"4
I 104
4
3 lO"4
2000
15.2 m
Ytterbium
Yb-162
W 3 lO"4
1 104
5
3 10-4
3000
18.9 m
Y 3 10"4
1 104
4
Yb-166
W 3 lO"4
70
0.03
3 lO'4
50
56.7 h
Y 3 10"4
70
0.03
Yb-167
W 3 10"4
3 104
10
3 10"4
1 104
17.5 m
Y 3 lO"4
3 104
10
Yb-169
W 3 lO"4
30
0.01
3 10"4
70
32.01 d
Y 3 10¦*
30
0.01
Yb-175
W 3 10"4
100
0.05
3 10"4
100
4.19 d
Y 3 10"4
100
0.05
Yb-177
W 3 10"4
2000
0.8
3 10"4
600
1.9 h
Y 3 lO"4
2000
0.7
Yb-178
W 3 lO"4
1000
0.6
3 lO'4
500
74 m
Y 3 10"1
1000
0.6
Lutetium
Lu-169
W 3 lO'4
200
0.07
3 lO'4
90
34.06 h
Y 3 10"1
200
0.06
Lu-170
W 3 10"4
80
0.03
3 10'4
40
2.00 d
Y 3 lO'4
70
0.03
Lu-171
W 3 10"4
70
0.03
3 10"4
70
8.22 d
Y 3 10"4
70
0.03
Lu-172
W 3 lO"4
40
0.02
3 lO"4
40
6.70 d
Y 3 10"1
40
0.02
Lu-173
W 3 10"1
10
0.004
3 10"4
200
1.37 y
Y 3 10-4
10
0.004
Lu-174
W 3 lO"4
4
0.002
3 10"4
200
3.31 y
Y 3 10"4
6
0.002
Lu-174m
W 3 10"1
9
0.004
3 10-4
80
142 d
Y 3 lO"4
8
0.003
Lu-176
W 3 10"1
0.2
7 10'5
3 10"1
30
3.60 10'° y
Y 3 10"1
0.3
1 10"4
Lu-176m
W 3 10"4
900
0.4
3 lO-'
300
3.68 h
Y 3 10"4
800
0.4
Lu-177
W 3 10"1
80
0.03
3 10"4
80
6.71 d
Y 3 10"1
80
0.03
Lu-177m
W 3 10-4
4
0.002
3 104
30
160.9 d
Y 3 10"1
3
0.001
-------
87
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
A LI
DAC
f,
ALI
fCi
jiCi/cm3
fCi
Tm-175
W 3 10"4
3 105
1 lO"4
3 lO"4
7 104
15.2 m
Ytterbium
Yb-162
W 3 10"4
3 105
1 10"4
3 10"4
7 104
18.9 m
Y 3 10"4
3 105
1 10"4
Yb-166
W 3 10"4
2000
8 10'7
3 10'4
1000
56.7 h
Y 3 10"4
2000
8 10'7
Yb-167
W 3 10"4
8 105
3 10-4
3 10"1
3 105
17.5 m
Y 3 10"4
7 105
3 10"4
Yb-169
W 3 10'4
800
4 lO"7
3 10"4
2000
32.01 d
Y 3 10"4
700
3 lO"7
Yb-175
W 3 lO"4
4000
1 10"6
3 10"4
3000
4.19 d
Y 3 10"4
3000
1 10"6
Yb-177
W 3 lO"4
5 104
2 10"5
3 lO"4
2 104
1.9 h
Y 3 10"4
5 104
2 10'5
Yb-178
W 3 10"4
4 104
2 10"5
3 10"4
1 104
74 m
Y 3 10"4
4 104
2 10"5
Lutetium
Lu-169
W 3 10"4
4000
2 lO"6
3 10"4
3000
34.06 h
Y 3 lO'4
4000
2 10"6
Lu-170
W 3 10"4
2000
9 10"7
3 lO"4
1000
2.00 d
Y 3 10"4
2000
8 10'7
Lu-171
W 3 10"4
2000
8 lO"7
3 10"4
2000
8.22 d
Y 3 10"4
2000
8 lO"7
Lu-172
W 3 10"4
1000
5 lO"7
3 lO-4
1000
6.70 d
Y 3 10"4
1000
5 lO"7
Lu-173
W 3 10"4
300
1 10"7
3 10"4
5000
1.37 y
Y 3 lO"4
300
1 10"'
Lu-174
W 3 10"4
100
5 10"8
3 10"4
5000
3.31 y
Y 3 10"4
200
6 10"8
Lu-174m
W 3 10"4
200
1 lO"'
3 10-4
2000
142 d
Y 3 I0"4
200
9 10"8
Lu-176
W 3 10"4
5
2 10"9
3 10"4
700
3.60 10'° y
Y 3 10"4
8
3 lO"*
Lu-176m
W 3 10"4
3 104
1 10"5
3 lO"4
8000
3.68 h
Y 3 10'4
2 104
9 10"6
Lu-177
W 3 10-4
2000
9 lO"7
3 10"4
2000
6.71 d
Y 3 10"4
2000
9 10'7
Lu-177m
W 3 lO"4
100
5 10"8
3 lO"4
700
160.9 d
Y 3 lO"4
80
3 10"8
-------
88
Table I.a, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f|
ALI
DAC
ALI
MBq
MBq/m3
fi
MBq
Lu-178
W 3 10'4
5000
2
3 10'4
1000
28.4 m
Y 3 lO"4
4000
2
Lu-178m
W 3 10"4
7000
3
3 10J
2000
22.7 m
Y 3 10'4
6000
3
Lu-179
W 3 10J
700
0.3
3 lO"4
200
4.59 h
Y 3 10'4
600
0.2
Hafnium
Hf-170
D 0.002
200
0.09
0.002
100
16.01 h
W 0.002
200
0.07
Hf-172
D 0.002
0.3
1 lO"*
0.002
50
1.87 y
W 0.002
1
6 10'4
Hf-173
D 0.002
500
0.2
0.002
200
24.0 h
W 0.002
400
0.2
Hf-175
D 0.002
40
0.01
0.002
100
70 d
W 0.002
40
0.02
Hf-I77m
D 0.002
2000
0.9
0.002
700
51.4 m
W 0.002
3000
1
Hf- 178m
D 0.002
0.05
2 10"5
0.002
9
31 y
W 0.002
0.2
8 10"5
Hf-179m
D 0.002
10
0.005
0.002
40
25.1 d
W 0.002
20
0.009
Hf-180m
D 0.002
800
0.3
0.002
300
5.5 h
W 0.002
900
0.4
Hf-181
D 0.002
6
0.003
0.002
40
42.4 d
W 0.002
20
0.007
Hf-182
D 0.002
0.03
1 10"5
0.002
7
9 106 y
W 0.002
0.1
5 10"5
Hf-182m
D 0.002
3000
1
0.002
1000
61.5 m
W 0.002
5000
2
Hf-183
D 0.002
2000
0.7
0.002
800
64 m
W 0.002
2000
0.9
Hf-184
D 0.002
300
0.1
0.002
90
4.12 h
W 0.002
200
0.1
Tantalum
Ta-172
W 0.001
5000
2
0.001
1000
36.8 m
Y 0.001
4000
2
Ta-173
W 0.001
700
0.3
0.001
200
3.65 h
Y 0.001
600
0.3
Ta-174
W 0.001
4000
2
0.001
1000
1.2 h
Y 0.001
3000
1
-------
89
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f |
AL1
DAC
u
ALI
fiCi
fiCi/cm3
^Ci
Lu-178
W 3 IO'4
1 I05
5 IO"5
3 IO"4
4 IO4
28.4 m
Y 3 IO"4
1 I05
5 IO"5
Lu-178m
W 3 IO"4
2 I05
8 IO"5
3 IO'4
5 104
22.7 m
Y 3 IO"4
2 !05
7 IO"5
Lu-179
W 3 10""
2 I04
8 IO"6
3 10-"
6000
4.59 h
Y 3 IO"4
2 104
6 IO"6
Hafnium
Hf-170
D 0.002
6000
2 IO"6
0.002
3000
16.01 h
W 0.002
5000
2 IO"6
Hf-172
D 0.002
9
4 IO"9
0.002
1000
1.87 y
W 0.002
40
2 IO"8
Hf-173
D 0.002
1 104
5 IO"6
0.002
5000
24.0 h
W 0.002
1 104
5 10"6
Hf-175
D 0.002
900
4 IO"7
0.002
3000
70 d
W 0.002
1000
5 IO"7
Hf-177m
D 0.002
6 104
2 IO"5
0.002
2 IO4
51.4 m
W 0.002
9 104
4 IO"5
Hf-178m
D 0.002
1
5 IO"10
0.002
300
31 y
W 0.002
5
2 IO"9
Hf-179m
D 0.002
300
1 IO"'
0.002
1000
25.1 d
W 0.002
600
3 IO"'
Hf-180m
D 0.002
2 I04
9 IO"6
0.002
7000
5.5 h
W 0.002
3 104
1 IO"5
Hf-181
D 0.002
200
7 IO'8
0.002
1000
42.4 d
W 0.002
400
2 IO"'
Hf-182
D 0.002
0.8
3 IO10
0.002
200
9 106 y
W 0.002
3
1 IO"9
Hf-182m
D 0.002
9 104
4 IO"5
0.002
4 104
61.5 m
W 0.002
1 105
6 IO"5
Hf-18 3
D 0.002
5 104
2 IO"5
0.002
2 IO4
64 m
W 0.002
6 I04
2 IO"5
Hf-184
D 0.002
8000
3 IO"6
0.002
2000
4.12 h
W 0.002
6000
3 IO"6
Tantalum
Ta-172
W 0.001
1 I05
5 IO"5
0.001
4 104
36.8 m
Y 0.001
1 I05
4 IO"3
Ta-173
W 0.001
2 104
8 IO"6
0.001
7000
3.65 h
Y 0.001
2 104
7 IO"6
Ta-174
W 0.001
1 105
4 IO"5
0.001
3 104
1.2 h
Y 0.001
9 104
4 IO'5
-------
90
Table t.a, Cont'd.
Inhalation Ingestion
Nuclide
Class/r,
ALI
DAC
U
ALI
MBq
MBq/m3
MBq
Ta-175
W 0.001
600
0.2
0.001
200
10.5 h
Y 0.001
500
0.2
Ta-176
W 0.001
500
0.2
0.001
100
8.08 h
Y 0.001
400
0.2
Ta-177
W 0.001
700
0.3
0.001
400
56.6 h
Y 0.001
700
0.3
Ta-178
W 0.001
3000
1
0.001
600
2.2 h
Y 0.001
3000
1
Ta-179
W 0.001
200
0.08
0.001
800
664.9 d
Y 0.001
30
0.01
Ta-180
W 0.001
20
0.007
0.001
60
1.0 1013 y
Y 0.001
0.9
4 10-"
Ta-180m
W 0.001
2000
1
0.001
900
8.1 h
Y 0.001
2000
0.9
Ta-182
W 0.001
10
0.005
0.001
30
115.0 d
Y 0.001
5
0.002
Ta-182m
W 0.001
2 10"
8
0.001
6000
15.84 m
Y 0.001
2 104
6
Ta-183
W 0.001
40
0.02
0.001
30
5.1 d
Y 0.001
40
0.02
Ta-184
W 0.001
200
0.08
0.001
70
8.7 h
Y 0.001
200
0.07
Ta-185
W 0.001
3000
1
0.001
1000
49 m
Y 0.001
2000
1
Ta-186
W 0.001
9000
4
0.001
2000
10.5 m
Y 0.001
8000
3
Tungsten
W-176
D 0.3
2000
0.8
0.01
400
2.3 h
0.3
500
W-177
D 0.3
3000
1
0.01
800
135 m
0.3
900
W-178
D 0.3
700
0.3
0.01
200
21.7 d
0.3
300
W-179
D 0.3
6 104
30
0.01
2 104
37.5 m
0.3
2 10"
W-181
D 0.3
1000
0.5
0.01
600
121.2 d
0.3
700
W-185
D 0.3
200
0.1
0.01
80
75.1 d
0.3
100
W-187
D 0.3
300
0.1
0.01
70
23.9 h
0.3
100
-------
91
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
U
ALI
„Ci
f«Ci /cm3
„Ci
Ta-175
W 0.001
2 104
7 10"*
0.001
6000
10.5 h
Y 0.001
1 104
6 10"6
Ta-176
W 0.001
1 104
5 10"6
0.001
4000
8.08 h
Y 0.001
1 104
5 10"*
Ta-177
W 0.001
2 104
8 10"6
0.001
1 104
56.6 h
Y 0.001
2 104
7 10"*
Ta-178
W 0.001
9 104
4 10-5
0.001
2 ltf
2.2 h
Y 0.001
7 104
3 10"5
Ta-179
W 0.001
5000
2 10"6
0.001
2 104
664.9 d
Y 0.001
900
4 lO-7
Ta-180
W 0.001
400
2 10'7
0.001
1000
1.0 1013 y
Y 0.001
20
1 10'8
Ta-180m
W 0.001
7 104
3 lO"5
0.001
2 104
8.1 h
Y 0.001
6 104
2 10"5
Ta-182
W 0.001
300
1 10"7
0.001
800
115.0 d
Y 0.001
100
6 10"8
Ta-182m
W 0.001
5 105
2 lO"4
0.001
2 105
15.84 m
Y 0.001
4 105
2 104
Ta-183
W 0.001
1000
5 lO'7
0.001
900
5.1 d
Y 0.001
1000
4 I0'7
Ta-184
W 0.001
5000
2 10"6
0.001
2000
8.7 h
Y 0.001
5000
2 10"6
Ta-185
W 0.001
7 104
3 10"5
0.001
3 104
49 m
Y 0.001
6 104
3 10"5
Ta-186
W 0.001
2 I05
1 104
0.001
5 104
10.5 m
Y 0.001
2 105
9 10"5
Tungsten
W-176
D 0.3
5 104
2 10"5
0.01
1 104
2.3 h
0.3
1 104
W-177
D 0.3
9 104
4 lO"5
0.01
2 104
135 m
0.3
2 104
W-178
D 0.3
2 104
8 10'6
0.01
5000
21.7 d
0.3
8000
W-179
D 0.3
2 106
7 10"4
0.01
5 105
37.5 m
0.3
6 105
W-181
D 0.3
3 104
1 10'5
0.01
2 104
121.2 d
0.3
2 104
W-185
D 0.3
7000
3 10"6
0.01
2000
75.1 d
0.3
3000
W-187
D 0.3
9000
4 10"6
0.01
2000
23.9 h
0.3
3000
-------
92
Table I.a, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f|
ALI
DAC
ALI
MBq
MBq/m3
f,
MBq
W-188
D 0.3
50
0.02
0.01
10
69.4 d
0.3
20
Rhenium
Re-177
D 0.8
I 104
4
0.8
4000
14.0 m
W 0.8
1 104
5
Re-178
D 0.8
1 104
4
0.8
3000
13.2 m
W 0.8
1 104
5-
Re-181
D 0.8
300
0.1
0.8
200
20 h
W 0.8
300
0.1
Re-182
D 0.8
500
0.2
0.8
300
12.7 h
W 0.8
600
0.2
Re-182
D 0.8
90
0.04
0.8
50
64.0 h
W 0.8
80
0.03
Re-184
D 0.8
100
0.05
0.8
90
38.0 d
W 0.8
50
0.02
Re-184m
D 0.8
100
0.05
0.8
80
165 d
W 0.8
20
0.007
Re-186
D 0.8
100
0.04
0.8
70
90.64 h
W 0.8
60
0.03
Re-186m
D 0.8
60
0.03
0.8
50
2.0 105 y
W 0.8
6
0.002
Re-187
D 0.8
3 104
10
0.8
2 104
5 iOJ0 y
W 0.8
4000
2
Re-188
D 0.8
100
0.04
0.8
60
16.98 h
W 0.8
100
0.04
Re-188m
D 0.8
5000
2
0.8
3000
18.6 m
W 0.8
5000
2
Re-189
D 0.8
200
0.08
0.8
100
24.3 h
W 0.8
200
0.07
Osmium
Os-180
D 0.01
I 104
6
0.01
4000
22 m
W 0.01
2 104
7
Y 0.01
2 104
7
Os-181
D 0.01
2000
0.7
0.01
500
105 m
W 0.01
2000
0.7
Y 0.01
2000
0.7
Os-182
D 0.01
200
0.09
0.01
80
22 h
W 0.01
200
0.07
Y 0.01
100
0.06
Os-185
D 0.01
20
0.008
0.01
90
94 d
W 0.01
30
0.01
Y 0.01
30
0.01
-------
93
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
f.
ALI
^Ci
fiCi/cm3
fCi
W-188
D 0.3
1000
5 10"7
0.01
400
69.4 d
0.3
600
Rhenium
Re-177
D 0.8
3 105
1 I0"4
0.8
9 I04
14.0 m
W 0.8
4 105
1 lO"4
Re-178
D 0.8
3 105
1 I04
0.8
7 I04
13.2 m
W 0.8
3 105
1 I0"4
Re-181
D 0.8
9000
4 I0"6
0.8
5000
20 h
W 0.8
9000
4 10"6
Re-182
D 0.8
1 I04
5 I0"6
0.8
7000
12.7 h
W 0.8
2 104
6 I0"6
Re-182
D 0.8
2000
1 I0"6
0.8
1000
64.0 h
W 0.8
2000
9 lO'7
Re-184
D 0.8
4000
1 I0"6
0.8
2000
38.0 d
W 0.8
1000
6 I0"7
Re-184m
D 0.8
3000
1 10"6
0.8
2000
165 d
W 0.8
400
2 I0"1
Re-186
D 0.8
3000
1 10"6
0.8
2000
90.64 h
W 0.8
2000
7 10"7
Re- 186m
D 0.8
2000
7 I0"7
0.8
1000
2.0 I05 y
W 0.8
200
6 10"8
Re-187
D 0.8
8 I05
4 I0"4
0.8
6 I05
5 10'° y
W 0.8
1 I05
4 lO'5
Re-188
D 0.8
3000
1 I0"6
0.8
2000
16.98 h
W 0.8
3000
1 I0"6
Re-188m
D 0.8
1 I05
6 lO'5
0.8
8 I04
18.6 m
W 0.8
1 I05
6 lO'5
Re-189
D 0.8
5000
2 10"6
0.8
3000
24.3 h
W 0.8
4000
2 I0'6
Osmium
Os-180
D 0.01
4 105
2 10"4
0.01
1 I05
22 m
W 0.01
5 I05
2 10"4
Y 0.01
5 105
2 lO"4
Os-181
D 0.01
4 I04
2 I0"5
0.01
1 104
105 m
W 0.01
5 I04
2 10"5
Y 0.01
4 104
2 I0"5
Os-182
D 0.01
6000
2 10^
0.01
2000
22 h
W 0.01
4000
2 10^
Y 0.01
4000
2 10"s
Os-185
D 0.01
500
2 I0"1
0.01
2000
94 d
W 0.01
800
3 I0°
Y 0.01
800
3 10"7
-------
94
Table l.a, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f|
ALI
DAC
ALI
MBq
MBq/m3
r, MBq
Os-189m
D 0.01
9000
4
0.01 3000
6.0 h
W 0.01
8000
3
Y 0.01
6000
3
Os-191
D 0.01
80
0.03
0.01 80
15.4 d
W 0.01
60
0.02
Y 0.01
50
0.02
Os-19 lm
D 0.01
1000
0.4
0.01 500
13.03 h
W 0.01
800
0.3
Y 0.01
700
0.3
Os-193
D 0.01
200
0.07
0.01 60
30.0 h
W 0.01
100
0.05
Y 0.01
100
0.04
Os-194
D 0.01
2
6 10"4
0.01 20
6.0 y
W 0.01
2
9 10'4
Y 0.01
0.3
1 10'4
Iridium
Ir-182
D 0.01
5000
2
0.01 2000
15 m
W 0.01
6000
2
Y 0.01
5000
2
Ir-184
D 0.01
900
0.4
0.01 300
3.02 h
W 0.01
1000
0.5
Y 0.01
1000
0.4
Ir-185
D 0.01
500
0.2
0.01 200
14.0 h
W 0.01
400
0.2
Y 0.01
400
0.2
Ir-186
D 0.01
300
0.1
0.01 90
15.8 h
W 0.01
200
0.1
Y 0.01
200
0.09
Ir-187
D 0.01
1000
0.5
0.01 400
10.5 h
W 0.01
1000
0.5
Y 0.01
1000
0.4
Ir-188
D 0.01
200
0.07
0.01 70
41.5 h
W 0.01
100
0.05
Y 0.01
100
0.05
Ir-189
D 0.01
200
0.07
0.01 200
13.3 d
W 0.01
100
0.06
Y 0.01
100
0.06
Ir-190
D 0.01
30
0.01
0.01 40
12.1 d
W 0.01
40
0.02
Y 0.01
30
0.01
-------
95
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f t
ALI
DAC
f,
ALI
/iCi
wCi/cm3
MCi
Os-189m
D 0.01
2 10s
1 10"4
0.01
8 104
6.0 h
W 0.01
2 10s
9 10'5
Y 0.01
2 10s
7 10's
Os-191
D 0.01
2000
9 10"'
0.01
2000
15.4 d
W 0.01
2000
7 10"'
Y 0.01
1000
6 10"7
Os-191m
D 0.01
3 104
1 10"5
0.01
1 104
13.03 h
W 0.01
2 104
8 10"6
Y 0.01
2 104
7 10"6
Os-193
D 0.01
5000
2 10"6
0.01
2000
30.0 h
W 0.01
3000
1 10"6
Y 0.01
3000
1 10"6
Os-194
D 0.01
40
2 10'8
0.01
400
6.0 y
W 0.01
60
2 10"8
Y 0.01
8
3 10"'
Iridium
Ir-182
D 0.01
1 10s
6 10"s
0.01
4 104
15 m
W 0.01
2 10s
6 10"5
Y 0.01
1 10s
5 lO'5
Ir-184
D 0.01
2 104
1 10"s
0.01
8000
3.02 h
W 0.01
3 104
1 10'5
Y 0.01
3 104
1 10"s
Ir-185
D 0.01
1 104
5 10"6
0.01
5000
14.0 h
W 0.01
1 104
5 10"6
Y 0.01
1 104
4 10"6
Ir-186
D 0.01
8000
3 lO"6
0.01
2000
15.8 h
W 0.01
6000
3 lO"4
Y 0.01
6000
2 10"6
Ir-187
D 0.01
3 104
1 10"5
0.01
1 104
10.5 h
W 0.01
3 104
1 10"5
Y 0.01
3 104
1 10"s
Ir-188
D 0.01
5000
2 10'6
0.01
2000
41.5 h
W 0.01
4000
1 10"6
Y 0.01
3000
1 10"6
Ir-189
D 0.01
5000
2 10"6
0.01
5000
13.3 d
W 0.01
4000
2 10"6
Y 0.01
4000
1 10"6
Ir-190
D 0.01
900
4 10"7
0.01
1000
12.1 d
W 0.01
1000
4 10'7
Y 0.01
900
4 lO"7
-------
96
Table La, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f |
MBq
MBq/m3
r,
MBq
Ir-190m
1.2 h
D 0.01
W 0.01
Y 0.01
7000
8000
7000
3
3
3
0.01
6000
Ir-192
74.02 d
D 0.01
W 0.01
Y 0.01
10
10
8
0.004
0.006
0.003
0.01
40
lr-192m
241 y
D 0.01
W 0.01
Y 0.01
3
8
0.6
0.001
0.003
2 10^
0.01
100
Ir-194
19.15 h
D 0.01
W 0.01
Y 0.01
100
80
70
0.05
0.03
0.03
0.01
40
Ir-194m
171 d
D 0.01
W 0.01
Y 0.01
3
6
4
0.001
0.003
0.002
0.01
20
I r-195
2.5 h
D 0.01
W 0.01
Y 0.01
2000
2000
2000
0.6
0.8
0.7
0.01
600
Ir-I95m
3.8 h
D 0.01
W 0.01
Y 0.01
900
1000
800
0.4
0.4
0.3
0.01
300
Platinum
Pt-186
2.0 h
D 0.01
1000
0.6
0.01
500
Pt-188
10.2 d
D 0.01
60
0.03
0.01
60
Pt-189
10.87 h
D 0.01
1000
0.4
0.01
400
Pt-191
2.8 d
D 0.01
300
0.1
0.01
100
Pt-193
50 y
D 0.01
900
0.4
0.01
1000
Pt-I93m
4.33 d
D 0.01
200
0.09
0.01
90
Pt-195m
4.02 d
D 0.01
200
0.07
0.01
70
Pt-197
18.3 h
D 0.01
400
0.1
0.01
100
Pt-197m
94.4 m
D 0.01
2000
0.7
0.01
600
-------
97
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
fi
ALI
„Ci
/iCi/cm3
„Ci
Ir-I90m
D 0.01
2 10s
8 10"5
0.01
2 !05
1.2 h
W 0.01
2 I05
9 10"5
Y 0.01
2 105
8 10"5
Ir-192
D 0.01
300
1 10"'
0.01
900
74.02 d
W 0.01
400
2 lO"7
Y 0.01
200
9 10"8
Ir-192m
D 0.01
90
4 10"8
0.01
3000
241 y
W 0.01
200
9 10*
Y 0.01
20
6 lO"9
Ir-194
D 0.01
3000
1 10"6
0.01
1000
19.15 h
W 0.01
2000
9 10"7
Y 0.01
2000
8 10"'
Ir-194m
D 0.01
90
4 10"8
0.01
600
171 d
W 0.01
200
7 10"8
Y 0.01
100
4 10"8
Ir-195
D 0.01
4 104
2 lO"5
0.01
1 104
2.5 h
W 0.01
5 104
2 10"5
Y 0.01
4 104
2 10"5
Ir-l95m
D 0.01
2 104
1 !0"5
0.01
8000
3.8 h
W 0.01
3 104
1 10"5
Y 0.01
2 104
9 10"6
Platinum
Pt-l 86
D 0.01
4 104
2 10"s
0.01
1 104
2.0 h
Pt-l 88
D 0.01
2000
7 10"7
0.01
2000
10.2 d
Pt-189
D 0.01
3 104
1 10"5
0.01
1 I04
10.87 h
Pi-191
D 0.01
8000
4 lO"6
0.01
4000
2.8 d
Pt-193
D 0.01
2 104
1 10"5
0.01
4 104
50 y
Pt-193m
D 0.01
6000
3 10"6
0.01
3000
4.33 d
Pt-195m
D 0.01
4000
2 10"6
0.01
2000
4.02 d
Pt-197
D 0.01
1 104
4 10"6
0.01
3000
18.3 h
Pt-l 97m
D 0.01
4 !04
2 10"5
0.01
2 104
94.4 m
-------
98
Table l.a, Cont'd.
Inhalation In^stion
Nuclide
Class/f (
ALI
DAC
fi
ALI
MBq
MBq/m3
MBq
Pt-199
D 0.01
5000
2
0.01
2000
30.8 m
Pt-200
D 0.01
100
0.05
0.01
40
12.5 h
Gold
Au-193
D 0.1
1000
0.4
0.1
300
17.65 h
W 0.1
800
0.3
Y 0.1
700
0.3
Au-194
D 0.1
300
0.1
0.1
100
39.5 h
W 0.1
200
0.08
Y 0.1
200
0.08
Au-I95
D 0.1
400
0.2
0.1
200
183 d
W 0.1
SO
0.02
Y 0.1
20
0.007
Au-198
D 0.1
100
0.06
0.1
50
2.696 d
W 0.1
70
0.03
Y 0.1
60
0.03
Au-198m
D 0.1
100
0.04
0.1
40
2.30 d
W 0.1
40
0.02
Y 0.1
40
0.02
Au-199
D 0.1
300
0.1
0.1
100
3.139 d
W 0.1
100
0.06
Y 0.1
100
0.06
Au-200
D 0.1
2000
1
0.1
1000
48.4 m
W 0.)
3000
]
Y 0.1
3000
1
Au-200m
D 0.1
100
0.05
0.1
40
18.7 h
W 0.1
100
0.04
Y 0.1
90
0.04
Au-201
D 0.1
8000
3
0.1
3000
26.4 m
W 0.1
9000
4
Y 0.1
8000
3
Mercury
Hg-193
D 0.02
2000
0.7
0.02
600
3.5 h
W 0.02
2000
0.6
organic
D 1
2000
1
1
2000
0.4
700
vapor
1000
0.5
Hg-193m
D 0.02
300
0.1
0.02
100
11.1 h
W 0.02
300
0.1
organic
D 1
500
0.2
1
300
0.4
200
vapor
300
0.1
-------
99
Table l.b. Cont'd.
Inhalation Ingestion
Nuclide
Class/f|
ALI
DAC
f,
ALI
fCi
fiCi/cm3
fCi
Pt-199
D 0.01
1 105
6 I0"s
0.01
5 104
30.8 m
Pt-200
D 0.01
3000
I 10"6
0.01
1000
12.5 h
Gold
Au-193
D 0.1
3 104
I 10"5
0.1
9000
17.65 h
W 0.1
2 104
9 10"6
Y 0.1
2 104
8 10"6
Au-194
D 0.1
8000
3 10"6
0.1
3000
39.5 h
W 0.1
5000
2 10 s
Y 0.1
5000
2 10'6
Au-195
D 0.1
I 104
5 10"6
0.1
5000
183 d
W 0.1
1000
6 lO'7
Y 0.1
400
2 lO"7
Au-198
D 0.1
4000
2 10"6
0.1
1000
2.696 d
W 0.1
2000
o
00
Y 0.1
2000
7 10-7
Au-198m
D 0.1
3000
I 10"6
0.1
1000
2.30 d
W 0.1
1000
5 lO'7
Y 0.1
1000
5 10°
Au-199
D 0.1
9000
4 10"6
0.1
3000
3.139 d
W 0.1
4000
2 lO-6
Y 0.1
4000
2 10"6
Au-200
D 0.1
6 104
3 10"S
0.1
3 104
48.4 m
W 0.1
8 104
3 10"s
Y 0.1
7 104
3 lO"5
Au-200m
D 0.1
4000
I 10"6
0.1
1000
18.7 h
W 0.1
3000
I lO"6
Y 0.1
2000
I 10"6
Au-201
D 0.1
2 105
9 lO-5
0.1
7 104
26.4 m
W 0.1
2 10s
I 104
Y 0.1
2 10s
9 lO"5
Mercury
Hg-193
D 0.02
4 104
2 10"5
0.02
2 104
3.5 h
W 0.02
4 104
2 10"5
organic
D 1
6 104
3 10"s
1
5 104
0.4
2 104
vapor
3 104
I lO-5
Hg-193m
D 0.02
9000
4 10"6
0.02
3000
11.1 h
W 0.02
8000
3 lO-6
organic
D I
I 104
5 10"6
I
9000
0.4
4000
vapor
8000
4 10"6
-------
100
Table I .a. Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f|
MBq
MBq/m3
f[
MBq
Hg-194
D 0.02
2
7 lO"4
0.02
30
260 y
W 0.02
4
0.002
organic
D 1
1
4 lO'4
1
0.4
0.6
2
vapor
1
5 10"4
Hg-195
D 0.02
1000
0.5
0.02
500
9.9 h
W 0.02
1000
0.5
organic
D 1
2000
0.7
1
0.4
1000
600
vapor
1000
0.5
Hg-195m
D 0.02
200
0.08
0.02
90
41.6 h
W 0.02
100
0.06
organic
D 1
200
0.09
1
0.4
200
100
vapor
100
0.06
Hg-197
D 0.02
400
0.2
0.02
200
64.1 h
W 0.02
300
0.1
organic
D 1
500
0.2
1
0.4
400
300
vapor
300
0.1
Hg-] 97m
D 0.02
300
0.]
0.02
100
23.8 h
W 0.02
200
0.08
organic
D 1
300
0.1
1
0.4
300
100
va por
200
0.08
Hg-199m
D 0.02
5000
2
0.02
2000
42.6 m
W 0.02
7000
3
organic
D 1
6000
2
1
0.4
2000
2000
vapor
3000
1
Hg-203
D 0.02
50
0.02
0.02
90
46.60 d
W 0.02
40
0.02
organic
D 1
30
0.01
1
0.4
20
30
vapor
30
0.01
Thallium
Tl-194
D 1
2 104
9
1
9000
33 m
Tl-194m
D 1
6000
2
1
2000
32.8 m
-------
101
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
f,
ALI
jxCi
nCi/cm3
jxCi
Hg-194
D 0.02
40
2 10"8
0.02
800
260 y
W 0.02
100
5 10"8
organic
D 1
30
1 !0'8
1
20
0.4
40
vapor
30
1 10"8
Hg-195
D 0.02
4 104
1 10"5
0.02
1 104
9.9 h
W 0.02
3 104
1 10-5
organic
D 1
5 104
2 10"5
1
4 104
0.4
2 104
vapor
3 104
1 10"5
Hg- 195 m
D 0.02
5000
2 10"6
0.02
2000
41.6 h
W 0.02
4000
2 10"6
organic
D 1
6000
3 10"6
1
5000
0.4
3000
vapor
4000
2 10"6
Hg-197
D 0.02
1 104
5 10"6
0.02
6000
64.1 h
W 0.02
9000
4 10"6
organic
D 1
1 !04
6 10"6
1
9000
0.4
7000
vapor
8000
4 10"6
Hg-197m
D 0.02
7000
3 10"6
0.02
3000
23.8 h
W 0.02
5000
2 10"6
organic
D 1
9000
4 10"6
1
7000
0.4
4000
vapor
5000
2 10"6
Hg-199m
D 0.02
1 105
6 10"5
0.02
6 104
42.6 m
W 0.02
2 105
7 10"5
organic
D 1
2 105
7 10"5
1
6 104
0.4
6 104
vapor
8 104
3 10"5
Hg-203
D 0.02
1000
5 10"7
0.02
2000
46.60 d
W 0.02
1000
5 lO"7
organic
D 1
800
3 10"7
1
500
0.4
900
vapor
800
4 10"7
Thallium
Tl-194
D 1
6 105
2 lO"4
1
3 !05
33 m
Tl-194m
D 1
2 105
6 10"5
1
5 104
32.8 m
-------
102
Table l.a. Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
Fl
ALI
MBq
MBq/m3
MBq
Tl-195
D 1
5000
2
1
2000
1.16 h
Tl-197
D 1
4000
2
1
3000
2.84 h
Tl-198
D 1
1000
0.5
1
700
5.3 h
Tl-198m
D 1
2000
0.8
1
1000
1.87 h
Tl-199
D 1
3000
1
1
2000
7.42 h
Tl-200
D 1
400
0.2
1
300
26.1 h
Tl-201
D 1
800
0.3
1
600
3.044 d
Tl-202
D 1
200
0.08
1
100
12.23 d
Tl-204
D 1
80
0.03
I
60
3.779 y
Lead
Pb-195m
D 0.2
7000
3
0.2
2000
15.8 m
Pb-198
D 0.2
2000
1
0.2
1000
2.4 h
Pb-199
D 0.2
3000
1
0.2
800
90 m
Pb-200
D 0.2
200
0.1
0.2
100
21.5 h
Pb-201
D 0.2
700
0.3
0.2
300
9.4 h
Pb-202
D 0.2
2
8 ict4
0.2
5
3 105 y
Pb-202m
D 0.2
1000
0.4
0.2
300
3.62 h
Pb-203
D 0.2
400
0.1
0.2
200
52.05 h
Pb-205
D 0.2
50
0.02
0.2
100
1.43 107 y
Pb-209
D 0.2
2000
0.9
0.2
900
3.253 h
Pb-210
D 0.2
0.009
4 10'6
0.2
0.02
22.3 y
-------
103
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/fi
ALI
DAC
f.
ALI
nCi
ftCi/cm3
nCi
Tl-195
D 1
1 105
5 lO"5
1
6 lO4
1.16 h
Tl-197
D 1
1 105
5 10'5
1
7 lO4
2.84 h
Tl-198
D 1
3 104
1 10"5
1
2 lO4
5.3 h
Tl-I98m
D 1
5 104
2 10"5
1
3 lO4
1.87 h
Tl-199
D 1
8 104
4 10"5
1
6 lO4
7.42 h
Tl-200
D 1
1 104
5 lO"6
1
8000
26.1 h
Tl-201
D 1
2 104
9 10"6
1
2 lO4
3.044 d
Tl-202
D 1
5000
2 10'6
1
4000
12.23 d
Tl-204
D 1
2000
9 lO"7
1
2000
3.779 y
Lead
Pb-I95m
D 0.2
2 105
8 10"5
0.2
6 lO4
15.8 m
Pb-198
D 0.2
6 I04
3 10"5
0.2
3 lO4
2.4 h
Pb-199
D 0.2
7 104
3 10"5
0.2
2 lO4
90 m
Pb-200
D 0.2
6000
3 10"6
0.2
3000
21.5 h
Pb-20l
D 0.2
2 104
8 10"6
0.2
7000
9.4 h
Pb-202
D 0.2
50
2 10'8
0.2
100
3 105 y
Pb-202m
D 0.2
3 104
1 lO"5
0.2
9000
3.62 h
Pb-203
D 0.2
9000
4 10"6
0.2
5000
52.05 h
Pb-205
D 0.2
1000
6 10"7
0.2
4000
1.43 107 y
Pb-209
D 0.2
6 104
2 10"5
0.2
2 lO4
3.253 h
Pb-210
D 0.2
0.2
1 lO"10
0.2
0.6
22.3 y
-------
104
Table 1 .a, Cont'd.
Inhalation Ingestion
Nuclide
Class/f,
ALI
DAC
r,
ALI
MBq
MBq/m3
MBq
Pb-211
D 0.2
20
0.01
0.2
400
36.1 m
Pb-212
D 0.2
1
5 10"4
0.2
3
10.64 h
Pb-214
D 0.2
30
0.01
0.2
300
26.8 m
Bismuth
Bi-200
D 0.05
3000
1
0.05
1000
36.4 m
W 0.05
4000
2
Bi-201
D 0.05
1000
0.4
0.05
400
108 m
W 0.05
1000
0.6
Bi-202
D 0.05
1000
0.6
0.05
500
1.67 h
W 0.05
3000
1
Bi-203
D 0.05
200
0.1
0.05
90
11.76 h
W 0.05
200
0.09
Bi-205
D 0.05
90
0.04
0.05
50
15.31 d
W 0.05
50
0.02
Bi-206
D 0.05
50
0.02
0.05
20
6.243 d
W 0.05
30
0.01
Bi-207
D 0.05
60
0.03
0.05
40
38 y
W 0.05
10
0.005
Bi-210
D 0.05
9
0.004
0.05
30
5.012 d
W 0.05
1
4 10^
Bi-210m
D 0.05
0.2
7 10"5
0.05
2
3.0 106 y
W 0.05
0.03
1 10"5
Bi-212
D 0.05
9
0.004
0.05
200
60.55 m
W 0.05
10
0.004
Bi-213
D 0.C5
10
0.005
0.05
300
45.65 m
W 0.05
10
0.005
Bi-214
D 0.05
30
0.01
0.05
600
19.9 m
W 0.05
30
0.01
Polonium
Po-203
D 0.1
2000
1
0.1
900
36.7 m
W 0.1
3000
1
Po-205
D 0.1
1000
0.6
0.1
800
1.80 h
W 0.1
3000
1
Po-207
D 0.1
900
0.4
0.1
300
350 m
W 0.1
1000
0.4
Po-210
D 0.1
0.02
1 10"5
0.1
0.1
138.38 d
W 0.1
0.02
1 lO'5
-------
105
Table I .b, Cont'd
Inhalation Ingestion
Nuclide
Class/fl
ALi
DAC
ALI
fCi
fiCi/cm3
fCi
Pb-211
DO.2
600
3 10°
0.2
1 I04
36.1 m
Pb-212
D 0.2
30
I 10"8
0.2
80
10.64 h
Pb-214
D 0.2
800
3 10'1
0.2
9000
26.8 m
Bismuth
Bi-200
D 0.05
8 I04
4 10'5
0.05
3 I04
36.4 m
W 0.05
1 105
4 10"5
Bi-201
D 0.05
3 I04
I 10"5
0.05
I I04
108 m
W 0.05
4 I04
2 I0"5
Bi-202
D 0.05
4 104
2 10"5
0.05
1 104
1.67 h
W 0.05
8 104
3 10'5
Bi-203
D 0.05
7000
3 10'6
0.05
2000
11.76 h
W 0.05
6000
3 10"6
Bi-205
D 0.05
3000
I lO"6
0.05
1000
15.31 d
W 0.05
1000
5 IO"7
Bi-206
D 0.05
1000
6 lO'7
0.05
600
6.243 d
W 0.05
900
4 IO"7
Bi-207
D 0.05
2000
7 IO"7
0.05
1000
00
W 0.05
400
I lO'7
Bi-210
D 0.05
200
I lO'7
0.05
800
5.012 d
W 0.05
30
I IO"8
Bi-210m
D 0.05
5
2 IO"9
0.05
40
>>
O
O
W 0.05
0.7
3 IO10
Bi-212
D 0.05
200
I 10°
0.05
5000
60.55 m
W 0.05
300
I IO"7
Bi-213
D 0.05
300
I IO"7
0.05
7000
45.65 m
W 0.05
400
I IO"7
Bi-214
D 0.05
800
3 10'7
0.05
2 I04
19.9 m
W 0.05
900
4 IO"7
Polonium
Po-203
D 0.1
6 104
3 IO"5
0.1
3 104
36.7 m
W 0.1
9 104
4 IO"5
Po-205
D 0.1
4 I04
2 IO"5
0.1
2 I04
1.80 h
W 0.1
7 I04
3 I0'5
Po- 207
D 0.1
3 104
I IO"5
0.1
8000
350 m
W 0.1
3 104
1 IO"5
Po-210
D 0.1
0.6
3 IO10
0.1
3
138.38 d
W 0.1
0.6
3 IO40
-------
106
Table l.a, Cont'd.
Inhalation
Ingestion
A LI
DAC
ALI
Nuclide
Class/f,
MBq
MBq/m3
fi
MBq
Astatine
At-207
1.80 h
D 1
W 1
100
80
0.04
0.03
1
200
At-211
7.214 h
D 1
W 1
3
2
0.001
8 10-4
1
5
Radon
Rn-220
55.6 s
decay
products
12 WLM*
Rn-222
3.8235 d
decay
products
4 WLM*
Franc ium
Fr-222
14.4 m
D 1
20
0.007
1
80
Fr-223
21.8 m
D 1
30
0.01
1
20
Radium
Ra-223
11.434 d
W 0.2
0.03
1 10'5
0.2
0.2
Ra-224
3.66 d
W 0.2
0.06
3 10'5
0.2
0.3
Ra-225
14.8 d
W 0.2
0.02
1 10"5
0.2
0.3
Ra-226
1600 y
W 0.2
0.02
1 10"5
0.2
0.07
Ra-227
42.2 m
W 0.2
500
0.2
0.2
600
Ra-228
5.75 y
W 0.2
0.04
2 10"5
0.2
0.09
Actinium
Ac-224
2.9 h
D 0.001
W 0.001
Y 0.001
1
2
2
4 10"4
8 10-4
7 10-4
0.001
70
Ac-225
10.0 d
D 0.001
W 0.001
Y 0.001
0.01
0.02
0.02
4 lO'6
1 10'5
1 10"5
0.001
2
Ac-226
29 h
D 0.001
W 0.001
Y 0.001
0.1
0.2
0.2
5 10'5
8 lO'5
7 10"5
0.001
5
Ac-227
21.773 y
D 0.001
W 0.001
Y 0.001
2 10"5
6 10'5
1 10"4
6 10"»
3 10'8
6 10'8
0.001
0.007
•Primary guide.
-------
107
Table l.b, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
nCi
^Ci/cm3
f.
nCi
Astatine
At-207
1.80 h
D 1
W I
3000
2000
1 lO'6
9 10'7
1
6000
At-211
7.214 h
D 1
W I
80
50
3 10"8
2 10'8
1
100
Radon
Rn-220
55.6 s
decay
products
12 WLM*
Rn-222
3.8235 d
decay
products
4 WLM*
Francium
Fr-222
14.4 m
D 1
500
2 lO"7
1
2000
Fr-223
21.8 m
D 1
800
3 lO"7
1
600
Radium
Ra-223
11.434 d
W 0.2
0.7
3 lO'10
0.2
5
Ra-224
3.66 d
W 0.2
2
7 lO'10
0.2
8
Ra-225
14.8 d
W 0.2
0.7
3 lO"10
0.2
8
Ra-226
1600 y
W 0.2
0.6
3 lO'10
0.2
2
Ra-227
42.2 m
W 0.2
1 104
6 10"6
0.2
2 104
Ra-228
5.75 y
W 0.2
1
5 lO'10
0.2
2
Actinium
Ac-2 24
2.9 h
D 0.001
W 0.001
Y 0.001
30
50
50
1 10'8
2 10'8
2 10"8
0.001
2000
Ac-225
10.0 d
D 0.001
W 0.001
Y 0.001
0.3
0.6
0.6
1 lO'10
3 lO"10
3 lO'10
0.001
50
Ac-226
29 h
D 0.001
W 0.001
Y 0.001
3
5
5
1 10"'
2 lO"'
2 lO"'
0.001
100
Ac-2 27
21.773 y
D 0.001
W 0.001
Y 0.001
4 lO"4
0.002
0.004
2 lO'13
7 10"13
2 10"12
0.001
0.2
'Primary guide.
-------
108
Table l.a, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f,
ALI
DAC
ALI
MBq
MBq/m3
r,
MBq
Ac-228
D 0.001
0.4
1 10"
0.001
90
6.13 h
W 0.001
1
6 lO"4
Y 0.001
2
7 lO"4
Thorium
Th-226
W 2 I0'4
6
0.002
2 lO"4
200
30.9 m
Y 2 10"4
5
0.002
Th-227
W 2 I0'4
0.01
5 10"6
2 I0'4
5
18.718 d
Y 2 lO"4
0.01
5 I0"6
Th-228
W 2 I0"4
4 lO"4
2 10"7
2 I0"4
0.2
1.9131 y
Y 2 10"
6 10"
3 10"7
Th-229
W 2 10"
3 I0"5
1 10"8
2 10"
0.02
7340 y
Y 2 10"
9 I0"5
4 10"8
Th-230
W 2 10"
2 10"
1 10"7
2 10"
0.1
7.7 I04 y
Y 2 10"4
6 10"
2 I0"7
Th-231
W 2 10"
200
0.1
2 10"
100
25.52 h
Y 2 lO"4
200
0.1
Th-232
W 2 10"4
4 I0"5
2 10"8
2 10"
0.03
1.405 10'°y
Y 2 10"
1 I0"4
4 10"8
Th-234
W 2 10"
7
0.003
2 10"
10
24.10 d
Y 2 10"
6
0.002
Protactinium
Pa-227
W 0.001
4
0.002
0.001
100
38.3 m
Y 0.001
4
0.002
Pa-228
W 0.001
0.5
2 10"
0.001
50
22 h
Y 0.001
0.4
2 10"
Pa-230
W 0.001
0.2
7 10"5
0.001
20
17.4 d
Y 0.001
0.1
5 I0"5
Pa- 231
W 0.001
6 10"5
2 10"8
0.001
0.007
3.276 104 y
Y 0.001
1 10"
6 10"8
Pa-232
W 0.001
0.8
3 10"
0.001
50
1.31 d
Y 0.001
2
9 10'4
Pa-233
W 0.001
30
0.01
0.001
50
27.0 d
Y 0.001
20
0.009
Pa-234
W 0.001
300
0.1
0.001
90
6.70 h
Y 0.001
200
0.1
Uranium
U-230
D 0.05
0.02
6 I0"6
0.05
0.1
20.8 d
W 0.05
0.01
5 10"6
0.002
2
Y 0.002
0.01
4 10"6
U-231
D 0.05
300
0.1
0.05
200
4.2 d
W 0.05
200
0.09
0.002
200
Y 0.002
200
0.07
-------
109
Table I b. Cont'd.
Inhalation Ingestion
Nuclide
Class/f |
ALl
DAC
fi
ALI
fCi
jtCi/cm3
fCi
Ac-228
D 0.001
9
4 10"9
0.001
2000
6.13 h
W 0.001
40
2 10"8
Y 0.001
40
2 I0"8
Thorium
Th-226
W 2 10"4
200
6 10"8
2 10"4
5000
30.9 m
Y 2 10-4
100
6 I0'8
Th-227
W 2 I0"4
0.3
1 lO'10
2 10"4
100
18.718 d
Y 2 10"4
0.3
1 lO"10
Th-228
W 2 I0"4
0.01
4 I0"'2
2 10"4
6
1.9131 y
Y 2 lO"4
0.02
7 10"'2
Th-229
W 2 I0"4
9 10"4
4 10"'3
2 lO"4
0.6
7340 y
Y 2 10"4
0.002
1 lO"12
Th-230
W 2 I0"4
0.006
3 10-'2
2 lO"4
4
7.7 104 y
Y 2 10"4
0.02
6 lO"12
Th-231
W 2 lO"4
6000
3 10"6
2 10"4
4000
25.52 h
Y 2 lO"4
6000
3 10"6
Th-232
W 2 lO"4
0.001
5 10"13
2 I0-4
0.7
1.405 10'° y
Y 2 10"*
0.003
1 lO'12
Th-234
W 2 10"4
200
8 I0R
2 10"4
300
24.10 d
Y 2 10"*
200
6 10"8
Protactinium
Pa-227
W 0.001
100
5 10"8
0.001
4000
38.3 m
Y 0.001
100
4 lO"8
Pa-228
W 0.001
10
5 10"9
0.001
1000
22 h
Y 0.001
10
5 10"9
Pa-230
W 0.001
5
2 I0"9
0.001
600
17.4 d
Y 0.001
4
1 10"9
Pa-231
W 0.001
0.002
6 10'13
0.001
0.2
3.276 104 y
Y 0.001
0.004
2 10'12
Pa-232
W 0.001
20
9 10"9
0.001
1000
1.31 d
Y 0.001
60
2 I0"8
Pa-233
W 0.001
700
3 lO"7
0.001
1000
27.0 d
Y 0.001
600
2 lO"7
Pa-234
W 0.001
8000
3 lO"6
0.001
2000
6.70 h
Y 0.001
7000
3 10"6
Uranium
U-230
D 0.05
0.4
2 IO"10
0.05
4
20.8 d
W 0.05
0.4
1 lO'10
0.002
40
Y 0.002
0.3
1 10'°
U-231
D 0.05
8000
3 I0"6
0.05
5000
4.2 d
W 0.05
6000
2 10"6
0.002
4000
Y 0.002
5000
2 I0"6
-------
110
Table l.a. Cont'd.
Nuclide
Inhalation
Ingestion
Class/f,
A LI
DAC
A LI
MBq
MBq/m3
U
MBq
U-232
D 0.05
0.008
3 10 s
0.05
0.08
72 y
W 0.05
0.01
6 lO-6
0.002
2
Y 0.002
3 10"4
1 lO"7
U-233
D 0.05
0.04
2 10'5
0.05
0.4
1.585 105 y
W 0.05
0.03
1 lO-5
0.002
7
Y 0.002
0.001
6 lO"7
U-234
D 0.05
0.05
2 10"5
0.05
0.4
2.445 1 05 y
W 0.05
0.03
1 10"5
0.002
7
Y 0.002
0.001
6 10"7
U-235
D 0.05
0.05
2 lO'5
0.05
0.5
703.8 106 y
W 0.05
0.03
1 lO'5
0.002
7
Y 0.002
0.002
6 lO'7
U-236
D 0.05
0.05
2 lO-5
0.05
0.5
2.3415 107 y
W 0.05
0.03
1 10"5
0.002
8
Y 0.002
0.001
6 10'7
U-237
D 0.05
100
0.04
0.05
60
6.75 d
W 0.05
60
0.03
0.002
60
Y 0.002
60
0.02
U-238
D 0.05
0.05
2 10'5
0.05
0.5
4.468 10® y
W 0.05
0.03
1 lO'5
0.002
8
Y 0.002
0.002
7 lO"7
U-239
D 0.05
7000
3
0.05
2000
23.54 m
W 0.05
6000
3
0.002
2000
Y 0.002
6000
2
U-240
D 0.05
100
0.06
0.05
50
14.1 h
W 0.05
100
0.04
0.002
50
Y 0.002
90
0.04
Neptunium
Np-232
W 0.001
70
0.03
0.001
5000
14.7 m
Np-233
W 0.001
1 I05
50
0.001
3 104
36.2 m
Np-234
W 0.001
100
0.04
0.001
80
4.4 d
Np-235
W 0.001
30
0.01
0.001
800
396.1 d
Np-236
W 0.001
8 104
3 10"7
0.001
0.09
115 103 y
Np-236
W 0.001
1
4 10•*
0.001
100
22.5 h
-------
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f(
ALI
DAC
f|
ALI
^Ci
fiCi/cm3
^Ci
U-232
D 0.05
0.2
9 10"
0.05
2
72 y
W 0.05
0.4
2 1010
0.002
50
Y 0.002
0.008
3 1012
U-233
D 0.05
I
5 10"10
0.05
10
1.585 105 y
W 0.05
0.7
3 10"10
0.002
200
Y 0.002
0.04
2 lO'"
U-234
D 0.05
I
5 10'°
0.05
10
2.445 105 y
W 0.05
0.7
3 1010
0.002
200
Y 0.002
0.04
2 lO'"
U-235
D 0.05
I
6 lO10
0.05
10
703.8 106 y
W 0.05
0.8
3 lO"10
0.002
200
Y 0.002
0.04
2 lO"11
U-236
D 0.05
I
5 lO10
0.05
10
2.3415 10' y
W 0.05
0.8
3 lO"10
0.002
200
Y 0.002
0.04
2 lO'"
U-237
D 0.05
3000
I 10"6
0.05
2000
6.75 d
W 0.05
2000
7 10"7
0.002
2000
Y 0.002
2000
6 10"7
U-238
D 0.05
I
6 lO-10
0.05
10
4.468 10® y
W 0.05
0.8
3 lO-10
0.002
200
Y 0.002
0.04
2 lO"1'
U-239
D 0.05
2 105
8 lO'5
0.05
7 104
23.54 m
W 0.05
2 105
7 lO"5
0.002
7 lO4
Y 0.002
2 105
6 lO"5
U-240
D 0.05
4000
2 10"6
0.05
1000
14.1 h
W 0.05
3000
1 10"6
0.002
1000
Y 0.002
2000
i 10"6
Neptunium
Np-232
W 0.001
2000
7 10"7
0.001
1 !05
14.7 m
Np-233
W 0.001
3 106
0.001
0.001
8 105
36.2 m
Np-234
W 0.001
3000
1 10'6
0.001
2000
4.4 d
Np-235
W 0.001
800
3 lO"7
0.001
2 104
396.1 d
Np-236
W 0.001
0.02
9 lO12
0.001
3
115 I03 y
Np-236
W 0.001
30
1 10*s
0.001
3000
22.5 h
-------
112
Table l.a, Cont'd.
Nuclide
Inhalation
Ingestion
Class/f|
ALI
DAC
ALI
MBq
MBq/m3
fi
MBq
Np-237
W 0.001
2 I0"4
6 I0"B
0.001
0.02
2.14 I06 y
Np-238
W 0.001
2
0.001
0.001
50
2.117 d
Np-239
W 0.001
80
0.03
0.001
60
2.355 d
Np-240
W 0.001
3000
1
0.001
800
65 m
Plutonium
Pu-234
W 0.001
8
0.003
0.001
300
8.8 h
Y 1 I0"5
7
0.003
1 I0"4
300
1 I0"5
300
Pu-235
W 0.001
I I05
50
0.001
3 I04
25.3 m
Y I I0"5
9 I04
40
1 I0-4
3 I04
1 I0"5
3 I04
Pu-236
W 0.001
7 I0"4
3 I0-7
0.001
0.09
2.851 y
Y 1 I0"5
0.002
7 I0"7
1 10'4
0.9
1 I0"5
7
Pu-237
W 0.001
100
0.05
0.001
500
45.3 d
Y I I0"5
100
0.05
1 I0"4
500
I I0"5
500
Pu-238
W 0.001
3 10'4
I I0'7
0.001
0.03
87.74 y
Y 1 I0"5
7 I0"4
3 I0"7
1 10'4
0.3
1 I0"5
3
Pu-239
W 0.001
2 I0"4
1 I0"7
0.001
0.03
24065 y
Y 1 I0"5
6 I0"4
3 10'7
1 I0"4
0.3
1 10"5
3
Pu-240
W 0.001
2 I0"4
1 lO"7
0.001
0.03
6537 y
Y 1 I0"5
6 10'4
3 10"7
1 I0-*
0.3
I I0"5
3
Pu-241
W 0.001
0.01
5 I0'6
0.001
1
14.4 y
Y 1 I0"5
0.03
1 10'5
1 I0"4
10
1 I0"5
100
Pu-242
W 0.001
2 I0'4
I I0"7
0.001
0.03
3.763 I05 y
Y 1 I0"5
6 I0"4
3 I0"7
1 10'4
0.3
1 I0"5
3
Pu-243
W 0.001
1000
0.6
0.001
600
4.956 h
Y 1 I0"5
1000
0.6
1 I0"4
600
1 I0"5
600
Pu-244
W 0.001
3 I0"4
1 I0"7
0.001
0.03
8.26 I07 y
Y 1 I0"5
7 I0"4
3 I0"1
1 I0-4
0.3
1 I0"5
3
-------
113
Table l.b, Cont'd.
Inhalation Ingestion
Nuclide
Class/f j
ALI
DAC
f|
ALI
wCi
nCi/cm3
wCi
Np-237
W 0.001
0.004
2 IO"12
0.001
0.5
2.14 106 y
Np-238
W 0.001
60
3 IO"8
0.001
1000
2.117 d
Np-239
W 0.001
2000
9'I0"7
0.001
2000
2.355 d
Np-240
W 0.001
8 104
3 IO"5
0.001
2 IO4
65 m
Plutonium
Pu-234
W 0.001
200
9 IO"8
0.001
8000
8.8 h
Y 1 I0"5
200
8 IO"8
1 IO"4
9000
1 IO"5
9000
Pu-235
W 0.001
3 106
0.001
0.001
9 IO5
25.3 m
Y 1 I0"5
3 I06
0.001
1 IO"4
9 IO5
1 IO"5
9 IO5
Pu-236
W 0.001
0.02
8 IO"12
0.001
2
2.851 y
Y 1 IO"5
0.04
2 IO"11
1 IO"4
20
1 IO-5
200
Pu-237
W 0.001
3000
1 IO"6
0.001
1 104
45.3 d
Y 1 IO"5
3000
1 IO"6
1 IO"4
1 IO4
1 IO"5
1 104
Pu-238
W 0.001
0.007
3 I0'2
0.001
0.9
87.74 y
Y 1 IO"5
0.02
8 IO"12
1 IO"4
9
1 IO"5
90
Pu-239
W 0.001
0.006
3 IO"12
0.001
0.8
24065 y
Y 1 IO"5
0.02
7 lO"12
1 IO"4
8
1 IO"5
80
Pu-240
W 0.001
0.006
3 I0'2
0.001
0.8
6537 y
Y 1 IO"5
0.02
7 lO"12
1 IO"4
8
1 IO"5
80
Pu-241
W 0.001
0.3
1 IO"10
0.001
40
14.4 y
Y 1 IO"5
0.8
3 IO"'0
1 IO"4
400
1 IO'5
4000
Pu-242
W 0.001
0.007
3 IO"12
0.001
0.8
3.763 |05 y
Y 1 IO"5
0.02
7 IO"12
1 IO"4
8
1 IO"5
80
Pu-243
W 0.001
4 104
2 IO"5
0.001
2 104
4.956 h
Y 1 IO"5
4 I04
2 IO"5
1 IO"4
2 IO4
1 IO"5
2 104
Pu-244
W 0.001
0.007
3 IO''2
0.001
0.8
8.26 I07 y
Y 1 lO"5
0.02
7 IO"12
1 IO"4
8
1 IO"5
80
-------
114
Table l.a. Cont'd.
Nuclide
Inhalation
Ingestion
Class/f,
ALI
DAC
ALI
MBq
MBq/m3
fi
MBq
Pu-245
W 0.001
200
0.07
0.001
80
10.5 h
Y 1 10"5
200
0.06
i icr4
80
1 10'5
80
Pu-246
W 0.001
9
0.004
0.001
10
10.85 d
1 10"4
10
0.004
1 10"
10
1 10"5
10
Americium
Am-237
W 0.001
I 104
4
1 10"4
3000
73.0 m
Am-238
W 0.001
100
0.05
1 10"
1000
98 m
Am-239
W 0.001
500
0.2
l 10"
200
11.9 h
Am-240
W 0.001
100
0.04
1 10"4
80
50.8 h
Am-24l
W 0.001
2 10"
1 10°
1 10"
0.03
432.2 y
Am-242
W 0.001
3
0.001
1 10"
100
16.02 h
Am-242m
W 0.001
2 10"
i io-'
1 10"
0.03
152 y
Am-243
W 0.001
2 10"4
1 10°
1 10"
0.03
7380 y
Am-244
W 0.001
7
0.003
1 10"
100
10.1 h
Am-244m
W 0.001
200
0.07
l 10"
2000
26 m
Am-245
W 0.001
3000
1
1 10"
1000
2.05 h
Am-246
W 0.001
4000
2
1 10"
1000
39 m
Am-246m
W 0.001
7000
3
1 10"
2000
25.0 m
Curium
Cm-238
W 0.001
40
0.02
0.001
600
2.4 h
Cm-240
W 0.001
0.02
9 10"6
0.001
2
27 d
Cm-24l
W 0.001
I
4 10"
0.001
40
32.8 d
-------
115
Table l.b, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f|
fjCi
wCi/cm3
f.
fjCi
Pu-245
W 0.001
5000
2 10"6
0.001
2000
10.5 h
Y 1 10 s
4000
2 IO"6
1 IO"4
1 Iff5
2000
2000
Pu-246
W 0.001
300
1 IO'7
0.001
400
10.85 d
1 10"
300
i io-7
1 IO"1
1 IO"5
400
400
Americium
Am-237
W 0.001
3 105
1 IO"4
1 IO"4
8 104
73.0 m
Am-238
W 0.001
3000
1 10 6
1 IO"4
4 104
98 m
Am-239
W 0.001
1 104
5 IO"6
1 IO"4
5000
11.9 h
Am-240
W 0.001
3000
1 10"6
1 10"4
2000
50.8 h
Am-241
W 0.001
0.006
3 IO'12
1 IO-4
0.8
432.2 y
Am-242
W 0.001
80
4 IO"8
1 IO"4
4000
16.02 h
Am-242m
W 0.001
0.006
3 IO12
1 IO-4
0.8
152 y
Am-243
W 0.001
0.006
3 IO"12
1 IO"4
0.8
7380 y
Am-244
W 0.001
200
8 IO"8
1 IO"4
3000
10.1 h
Am-244m
W 0.001
4000
2 IO"6
1 IO-4
6 104
26 m
Am-245
W 0.001
8 104
3 10 s
1 IO-4
3 104
2.05 h
Am-246
W 0.001
1 105
4 IO"5
1 IO"4
3 104
39 m
Am-246m
W 0.001
2 105
8 IO"5
1 IO"4
5 IO4
25.0 m
Curium
Cm-238
W 0.001
1000
5 IO"7
0.001
2 104
2.4 h
Cm-240
W 0.001
0.6
2 IO10
0.001
60
27 d
Cm-241
W 0.001
30
1 IO"8
0.001
1000
32.8 d
-------
116
Table I.a, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
MBq
MBq/m3
f,
MBq
Cm-242
162.8 d
W 0.001
0.01
4 10"6
0.001
1
Cm-243
28.5 y
W 0.001
3 10"4
1 I0"7
0.001
0.04
Cm-244
18.11 y
W 0.001
4 10"4
2 I0"7
0.001
0.05
Cm-245
8500 y
W 0.001
2 I0"4
9 lO"8
0.001
0.03
Cm-246
4730 y
W 0.001
2 I0"4
9 10"8
0.001
0.03
Cm-247
1.56 107 y
W 0.001
2 10"*
1 10"7
0.001
0.03
Cm-248
3.39 10s y
W 0.001
6 I0"5
3 10"a
0.001
0.007
Cm-249
64.15 m
W 0.001
600
0.3
0.001
2000
Cm-250
6900 y
W 0.001
1 I0"5
5 10"'
0.001
0.001
Berkelium
Bk-245
4.94 d
W 0.001
50
0.02
0.001
80
Bk-246
1.83 d
W 0.001.
100
0.05
0.001
100
Bk-247
1380 y
W 0.001
2 lO"4
6 I0"8
0.001
0.02
Bk-249
320 d
W 0.001
0.06
3 I0"5
0.001
7
Bk-250
3.222 h
W 0.001
10
0.005
0.001
300
Californium
Cf-244
19.4 m
W 0.001
Y 0.001
20
20
0.009
0.009
0.001
900
Cf-246
35.7 h
W 0.001
Y 0.001
tj- m
O O
1 10-4
1 I0"4
0.001
10
Cf-248
333.5 d
W 0.001
Y 0.001
0.002
0.004
1 I0"6
2 I0"6
0.001
0.3
Cf-249
350.6 y
W 0.001
Y 0.001
2 lO"4
4 10"*
6 I0"8
2 !0'7
0.001
0.02
Cf-250
13.08 y
W 0.001
Y 0.001
3 I0"4
0.001
1 I0"7
4 lO"7
0.001
0.04
-------
117
Table l.b, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
*Ci
nCi/cm3
f,
fCi
Cm-242
W 0.001
0.3
1 IO'10
0.001
30
162.8 d
Cm-243
W 0.001
0.009
4 10"'2
0.001
1
28.5 y
Cm-244
W 0.001
0.01
5 IO12
0.001
1
18.11 y
Cm-245
W 0.001
0.006
3 IO'12
0.001
0.7
8500 y
Cm-246
W 0.001
0.006
3 IO"11
0.001
0.7
4730 y
Cm-247
W 0.001
0.006
3 IO"12
0.001
0.8
1.56 1 07 y
Cm-248
W 0.001
0.002
7 IO"13
0.001
0.2
3.39 105 y
Cm-249
W 0.001
2 104
7 IO"6
0.001
5 IO4
64.15 m
Cm-250
W 0.001
3 \04
i io-'3
0.001
0.04
6900 y
Berkelium
Bk-245
W 0.001
1000
5 IO"7
0.001
2000
4.94 d
Bk-246
W 0.001
3000
I IO"6
0.001
3000
1.83 d
Bk-247
W 0.001
0.004
2 IO"12
0.001
0.5
1380 y
Bk-249
W 0.001
2
7 IO'10
0.001
200
320 d
Bk-250
W 0.001
300
I IO"7
0.001
9000
3.222 h
Californium
Cf-244
W 0.001
600
2 IO"7
0.001
3 IO4
19.4 m
Y 0.001
600
2 IO"7
Cf-246
W 0.001
9
4 IO'9
0.001
400
35.7 h
Y 0.001
9
4 IO"9
Cf-248
W 0.001
0.06
3 IO"11
0.001
8
333.5 d
Y 0.001
0.1
4 IO"11
Cf-249
W 0.001
0.004
2 IO"12
0.001
0.5
350.6 y
Y 0.001
0.01
4 IO"12
Cf-250
W 0.001
0.009
4 IO"12
0.001
1
13.08 y
Y 0.001
0.03
I IO01
-------
118
Table l.a, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f,
MBq
MBq/m3
f.
MBq
Cf-251
898 y
W 0.001
Y 0.001
1 10"4
4 lO"4
6 10"8
2 I0"7
0.001
0.02
Cf-252
2.638 y
W 0.001
Y 0.001
7 10"4
0.001
3 lO"7
5 10"'
0.001
0.09
Cf-253
17.81 d
W 0.001
Y 0.001
0.07
0.06
3 10"5
3 10"5
0.001
7
Cf-254
60.5 d
W 0.001
Y 0.001
8 lO'4
6 10"4
3 10'7
3 10"7
0.001
0.08
Einsteinium
Es-250
2.1 h
W 0.001
20
0.008
0.001
2000
Es-251
33 h
W 0.001
30
0.01
0.001
300
Es-253
20.47 d
W 0.001
0.05
2 10"5
0.001
6
Es-254
275.7 d
W 0.001
0.003
1 10"6
0.001
0.3
Es-254m
39.3 h
W 0.001
0.4
2 10"4
0.001
10
Fermium
Fm-252
22.7 h
W 0.001
0.5
2 10"4
0.001
20
Fm-253
3.00 d
W 0.001
0.4
1 10"4
0.001
40
Fm-254
3.240 h
W 0.001
3
0.001
0.001
100
Fm-255
20.07 h
W 0.001
0.8
3 10"4
0.001
20
Fm-257
100.5 d
W 0.001
0.007
3 10"6
0.001
0.7
Mendel evium
Md-257
5.2 h
W 0.001
3
0.001
0.001
300
Md-258
W 0.001
0.009
4 10"6
0.001
0.9
55 d
-------
119
Table l.b, Cont'd.
Inhalation Ingestion
ALI
DAC
ALI
Nuclide
Class/f |
**Ci
jiCi/cm3
fi
**Ci
Cf-251
898 y
W 0.001
Y 0.001
0.004
0.01
2 10-'2
4 10'12
0.001
0.5
Cf-252
2.638 y
W 0.001
Y 0.001
0.02
0.03
8 lO"12
1 lO"11
0.001
2
Cf-2S3
17.81 d
W 0.001
Y 0.001
2
2
8 10"10
7 lO"10
0.001
200
Cf-254
60.5 d
W 0.001
Y 0.001
0.02
0.02
9 10'12
7 10"'2
0.001
2
Einsteinium
Es-2S0
2.1 h
W 0.001
500
2 lO"7
0.001
4 104
Es-2S1
33 h
W 0.001
900
4 lO'7
0.001
7000
Es-253
20.47 d
W 0.001
i
6 lO'10
0.001
200
Es-2S4
275.7 d
W 0.001
0.07
3 10""
0.001
8
Es-2S4m
39.3 h
W 0.001
10
4 lO'9
0.001
300
Fermium
Fm-252
22.7 h
W 0.001
10
5 10"9
0.001
500
Fm-2S3
3.00 d
W 0.001
10
4 lO'9
0.001
1000
Fm-2S4
3.240 h
W 0.001
90
4 10"8
0.001
3000
Fm-255
20.07 h
W 0.001
20
9 10"9
0.001
500
Fm-2S7
100.5 d
W 0.001
0.2
7 10"11
0.001
20
Mendel evium
Md-2S7
5.2 h
W 0.001
80
4 10'8
0.001
7000
Md-258
55 d
W 0.001
0.2
[ io-'°
0.001
30
-------
Intentionally Blank Page
-------
TABLE 2.1
Exposure-to-Dose Conversion Factors for Inhalation
Explanation of Entries
For each radionuclide, values in SI units for the organ dose equivalent conversion factors,
h"r,5o< and the effective dose equivalent conversion factor, hEi50, based upon the weighting
factors set forth on page 6, are listed in Table 2.1 for inhalation. The limiting coefficient,
with respect to determining the ALI and DAC, is indicated by bold-faced type.
class/fi: The lung clearance class (D, W, or Y) and the fractional uptake from the small intestine
to blood (f|) for common chemical forms of the radionuclide are shown. The vapor form is
noted as "V."
hr^o: The tissue dose equivalent conversion factor for organ or tissue T (expressed in Sv/Bq),
i.e., the committed dose equivalent per unit intake of radionuclide.
b^: The effective dose equivalent conversion factor (expressed in Sv/Bq), i.e., the committed
effective dose equivalent per unit intake of radionuclide:
h£,50 = 2 wt hr.so •
T
To convert to conventional units (mrem/yCi), multiply table entries by 3.7 x 10®.
As an example, consider the factor for lung for inhalation of a class W form of Be-7:
x 3.7 x 10® = 0.80 mrem/yCi.
hiung.50 = 2.15 x 10"'° Sv/Bq
121
-------
122
Table 2.1. Exposure-to-Dose Conversion Factors for Inhalation
Committed Dose Equivalent per Unit intake (Sv/Bq)
Nuclide
Class/f|
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Hydrogen
1.73 tO "
H-3
V* t.o
1.73 10'"
1.73 10"
1.73 10"
1.73 10 "
t.73 tO'"
t .73
Iff"
1.73 10-"
Beryllium
w s icr'
Be-7
3.72 10'"
3.12 10"
2.15 Iff10
4.58 tO "
4.09 tO "
2.60 to "
5.46
10 11
6.37 IO""
Y 5 10°
3.17 Iff"
3.82 tO 11
3.73 tO10
3.99 lO'"
2.98 tO "
3.10 10'"
7.23
10 "
8.67 10""
Be-10
W 5 10'
5.94 10 10
5.94 10-10
4.22 tO8
1.77 tO's
5.26 tO"'
5.94 Iff10
2.44
10"'
9.75 10'*
Y 5 I0'3
2.56 10 10
2.56 tO'10
7.78 Iff'
7.65 tO'
2.27 tO 8
2.56 Iff10
2.35
10-'
9.58 IO4
Carbon
C-ll
l.0T
3.41 icr12
2.98 tO 12
3.09 IO12
3.18 10 12
3.03 lO"12
2.97 Iff12
3.54
1012
3.29 lO"11
t.O*
1.24 10 12
1.08 tO 12
t.12 Iff'2
t.16 Iff12
t.tO Iff12
t.08 tO'12
t .29
10"'2
1.20 lO"'1
t.o*
2.22 tO'15
1.94 tO12
2.01 Iff12
2.07 tO12
1.97 Iff12
t.93 tO12
2.30
to-12
2.14 Iff"
C-14
t.o*
5.64 10-'°
5.64 Iff10
5.64 tO'10
5.64 tO10
5.64 tO'10
5.64 tO'10
5.64
,0-io
5.64 IO-"1
t.o'
7.83 tO"11
7.83 tO11
7.83 tO "
7.83 Iff"
7.83 tO "
7.83 10'"
7.83
to-13
7.83 Iff13
t.o*
6.36 tO"12
6.36 tO 12
6.36 Iff12
6.36 tO'12
6.36 tO'12
6.36 tO'12
6.36
io-12
6.36 Iff'2
Fluorine
F-18
D 1.0
2.17 tO12
3.88 Iff12
t.09 tO'10
2.76 tO'"
2.79 10"
3.47 10"'2
t .37
to-"
2.26 IO"11
W 1.0
8.70 10"
2.74 10 12
t .29 Iff10
t.02 tO'11
9.96 tO 12
2.44 tO12
8.08
to-12
2.01 Iff"
Y 1.0
6.25 !0'"
2.66 tO'12
t. 40 10"'°
6.57 Iff12
6.21 Iff12
2.32 tO 12
9.15
to12
2.11 Iff"
Sodium
Na-22
D t.O
t.77 tO''
t.65 tO''
2.47 10"'
2.73 tO"'
3.51 tO''
t.60 tO''
2.00
to-'
2.07 10"'
Na-24
D t.O
t.78 lO'10
1.61 Iff10
1.25 tO"'
2.13 tO10
2.58 tO"10
t.53 tO10
2.35
Iff10
3.27 Iff'®
Magnesium
2.91 IO10
2.07 tO10
2.96 tO"'
Mg-28
D 5 tO'1
7.96 tO10
1.42 10"'
t .78 Iff10
1.04
to'
9.16 Iff10
W 5 10'
2.59 tO10
1.46 10'10
5.92 tO '
403 tO'10
6.40 Iff10
1.07 tO10
t .55
Iff'
1.33 IO'*
Aluminum
AI-26
D 1 I0':
1.87 10 s
1.56 Iff®
t.67 tO8
3.98 tO8
3.79 10 s
t.44 tO'
2.04
to-"
2.15 10""
w to2
5.39 tO''
6.04 tO'
9.66 tO8
t.24 IO4
1.14 tO"*
5.24 10*'
1.14
to1
1.95 10J
Sili con
Si-31
D 1 I0"2
4.54 tO'12
4.53 IO12
2.92 IO10
4.53 Iff12
4.53 tO'12
4.53 Iff12
7.20
to"
5.93 Iff"
w to-2
t.20 lO'12
t.20 Iff12
3.59 tO 10
1.20 10"12
t. 19 10 12
1.19 Iff12
3.79
10-"
5.52 Iff"
Y 1 tO"2
7.56 10"
7.45 10"
3.86 tO 10
7.46 tO14
7.34 10 14
7.34 tO14
4.63
to-"
6.03 10""
Si-32
D 1 tO"2
5.59 tO '
5.59 lO''
5.87 tO'
5.59 IO-'
5.59 tO'
5.59 IO*
5.83
Iff'
5.70 10"'
w icr2
t.53 10'
t.53 Iff'
t.02 tO"'
t.53 tO'
t.53 lO"9
t.53 tO'
3.21
to-'
1.41 IO"*
Y 1 I0'2
7.3t tO10
7.31 Iff10
2.27 tO"6
7.31 lO"10
7.31 lO'10
7.31 lO'10
2.70
IO*
2.74 IO'7
Phosphorus
P-32
D 8 ICT1
4.83 10'°
4.83 tO'10
2.50 tO"'
5.97 tO'
5.81 tO'
4.83 tO10
7.94
,0 10
1.64 Iff'
W 8 10'
3.37 10'°
3.37 tO 10
2.56 10 s
4.17 tO'
4.05 tO''
3.37 tO10
t.ts
to'
4.19 10"'
P-33
D 8 tO1
6.96 10"
6.96 tO "
2.96 tO10
3.71 tO10
9.84 Iff'0
6.96 tO"11
t .05
,0-10
1.71 10""
W 8 10 1
5.06 Iff"
5.06 tO "
4.22 tO"'
2.69 Iff10
7.15 tO'10
5.06 tO "
t .50
to10
6.27 IO-"
Sulphur
D 8 tO"1
S-35
5.70 tO'"
5.70 Iff"
2.04 tO 10
5.70 Iff"
5.70 tO'11
5.70 10"
7.99
Iff"
8.15 IO"11
W 8 tO1
4.54 tO'"
4.54 Iff"
5.07 tO''
4.54 tO'"
4.54 tO "
4.54 10"
t. 15
to-10
6.69 Iff"1
Gases
9.55 10"
9.55 tO "
9.55 Iff"
9.55 10'"
9.55 tO "
9.55 10"
2.25
Iff10
1.21 Iff'®
"V denotes water vapor.
'Labelled organic compounds.
'Carbon monoxide.
'Carbon dioxide.
-------
123
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Chlorine
Cl-36
D 1.0
5.04 1010
5.04 Iff10
1.33 Iff'
5.04 Iff10
5.04 1010
5.04 Iff10
5.14 Iff10
6.06 10-w
W 1.0
5.04 Iff10
5.04 Iff10
4.56 Iff8
5.04 Iff10
5.04 Iff10
5.04 10"'°
5.36 Iff10
5.93 10"'
Cl-38
D 1.0
3.85 lO12
4.21 10IJ
2.20 10"'°
4.18 Iff12
3.91 Iff12
3.85 Iff12
2.49 Iff"
3.62 10"u
W 1.0
1.13 Iff12
1.78 Iff12
2.43 Iff10
1.75 Iff12
1.55 Iff12
1.54 1012
6.53 Iff12
3.20 Iff"
Cl-39
D 1.0
4.46 Iff12
5.12 Iff12
1.77 Iff10
5.09 Iff12
4.65 Iff12
4.60 1012
2.21 Iff"
3.06 10"u
W 1.0
1.38 Iff12
2.44 Iff12
2.00 Iff10
2.36 Iff12
2.04 10'12
2.08 1012
7.80 1012
2.75 10"11
Potassium
K-40
D 1.0
3.19 10-'
3.08 10-'
4.66 Iff'
3.10 10'
3.07 10"'
3.06 1ff'
3.21 Iff'
3.34 10"'
K-42
D 1.0
1.08 Iff10
1.06 Iff10
2.15 10'
1.06 Iff10
1.06 Iff10
1.05 Iff10
1.57 Iff10
3.67 JO-"1
K-43
D 1.0
9.69 10"
9.60 10"
7.58 10 10
1.03 10'°
9.65 Iff"
9.45 Iff"
1.31 Iff10
1.87 Iff"
K-44
D 1.0
2.08 Iff12
2.57 Iff12
1.36 Iff10
2.52 Iff12
2.28 Iff12
2.38 Iff12
1.59 Iff"
2.24 lO"11
K-45
D 1.0
1.35 Iff12
1.72 Iff12
8.35 Iff11
1.71 Iff12
1.51 Iff12
1.44 Iff12
1.01 Iff"
1.39 10"u
Calcium
Ca-41
W 3 10-'
2.43 Iff12
2.98 Iff12
4.53 Iff10
1.62 Iff'
3-65 10*
2.57 Iff12
1.53 Iff"
3.64 Iff10
Ca-45
W 3 Iff1
4.49 Iff"
4.49 Iff"
9.67 10"9
2.92 10"'
4.39 10'
4.49 Iff"
4.27 Iff10
1.79 10'*
Ca-47
W 3 10*'
3.31 Iff10
1.94 Iff10
7.89 Iff'
9.86 Iff10
2.71 I0"9
1.47 1010
1.69 10'
1.77 10"'
Scandiim
Sc-43
Y 10'4
1.55 Iff"
7.10 Iff12
3.43 Iff10
8.22 Iff12
4.98 Iff12
4.28 Iff12
7.56 Iff"
7.00 10"u
Sc-44
Y Iff4
2.69 Iff"
1.34 Iff"
6.56 Iff10
1.48 Iff11
9.05 Iff12
8.57 Iff12
1.45 Iff10
1.33 10-,c
Sc-44m
Y !0'4
7.39 Iff10
1.86 Iff10
6.58 10-'
2.48 Iff10
1.31 Iff10
8.96 Iff"
3.36 10'
2.05 10"*
Sc-46
Y 1 Iff4
1.30 10-'
2.15 Iff'
4.62 I0 8
2.21 10-'
1.68 10-'
2.02 10"'
4.79 Iff'
8.01 10"'
Sc-47
Y 1 10J
4.70 Iff"
1.15 Iff"
2.03 10"9
2.46 Iff"
1.39 Iff"
4.64 Iff12
7.92 Iff10
4.98 lO'10
Sc-48
Y 1 101
7.77 Iff10
2.07 Iff10
2.77 10"'
2.60 Iff10
1.34 1010
1.05 Iff10
1.72 10"'
1.11 10'*
Sc-49
Y 1 10"4
2.60 Iff14
2.66 1011
2.06 Iff10
4.60 Iff14
4.54 Iff14
2.61 Iff14
9.30 Iff12
2.75 10""
Titanium
Ti-44
D 1 lO"2
1.22 Iff'
1.09 I07
1.12 Iff7
1.22 lO"7
1.15 I0"7
1.10 10'7
1.34 10"7
1.22 lO"'
W 1 Iff2
3.20 10-8
3.04 Iff8
1.47 I0"7
3.39 104
3.14 104
3.03 10"8
4.11 10'8
4.84 10"*
Y Iff2
1.76 lO"8
3.99 Iff8
1.97 10"4
4.17 10"8
3.49 10"®
3.70 10"8
6.91 10"'
2.75 Iff7
Ti-45
D Iff2
1.66 Iff"
1.01 Iff"
2.36 Iff10
1.10 Iff"
8.80 Iff12
8.30 Iff12
7.47 Iff"
5.82 10"11
W 1 Iff2
7.92 Iff12
5.39 Iff12
2.93 1010
5.75 Iff12
4.22 Iff12
4.18 Iff12
4.42 Iff"
5.21 10'"
Y 10"*
7.80 Iff12
4.34 Iff12
3.14 Iff10
4.69 Iff12
2.96 Iff12
2.87 Iff12
5.28 Iff"
5.69 10"u
Vanadium
V-47
D 10'2
1.97 Iff12
1.93 Iff12
1.05 1010
2 19 Iff12
1.89 Iff12
1.65 Iff12
1.74 Iff"
1.90 lO"11
W 1 10"2
5.49 Iff13
9.92 10IJ
1.15 Iff10
1.04 1012
8.81 Iff13
8.92 Iff13
3.93 Iff12
1.54 JO"11
V-48
D 1 I0"2
9.40 10"10
6.43 Iff10
1.34 10'
2.27 10'
2.43 10-9
4.82 Iff10
1.37 10*'
1.26 lO-*
W 1 10"2
1.30 10"'
7.42 10 10
1.14 101
1 08 10'
8.69 Iff10
5.51 Iff10
2.60 10'
2.76 10*
V-49
D 1 I0"2
1.09 Iff"
1.08 Iff"
2.39 Iff"
1.65 Iff10
4.19 JO-1"
1.11 Iff"
1.88 Iff11
4.56 Iff"
W 1 10"2
2.80 )0'12
2.87 I012
6.30 Iff10
4.04 Iff"
1.03 Iff10
2.71 Iff12
2.86 Iff"
9.33 10al
Chromium
Cr-48
D 1 Iff1
1.22 Iff10
7.56 Iff"
1.43 Iff10
1.05 Iff10
8.92 Iff"
6.80 Iff"
1.52 Iff10
1.22 lO-1"
W 1 Iff1
1.31 Iff10
6.55 Iff"
7.79 Iff10
8.31 Iff"
5.70 Iff"
4.88 Iff11
2.07 Iff10
2.11 lO-'"
Y 1 Iff1
1.36 Iff10
6.55 Iff"
9.50 Iff10
8.10 Iff"
5.20 Iff"
4.68 Iff"
2.22 Iff10
2.37 lO"10
Cr-49
D 1 10"'
2.84 Iff12
2.54 Iff12
1.02 Iff10
2.82 Iff12
2.36 Iff12
2.10 Iff12
1.93 Iff"
1.96 10""
W Iff1
7.99 Iff13
1.34 Iff12
1.13 Iff10
1.42 !0'12
1.18 Iff12
1.16 Iff12
5.13 Iff12
1.57 lO-"
Y 1 Iff1
4.61 Iff13
1.04 Iff12
1.22 Iff10
1.09 Iff12
8.28 Iff13
8-32 10"
5.79 Iff12
1.68 lO"11
-------
124
Table 2.1. Cont'd.
Committed Dose Equivalent per Unil Intake (Sv/Bq)
Nuclide
Class/f|
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Errective
Cr-51
D 1 10"'
2.71 10""
1.94 10 11
3.81 10"
2.68 10"
2.74 10""
1.82 10'"
3.55 10 11
2.95 10'"
W 10"'
2.21 10""
1.50 10'"
3.77 10'°
1.87 10"
1.50 10""
1.10 10'"
4.93 10'"
7.08 10"
Y 1 10'1
2.03 10"
1.58 10'"
5.34 10'10
1.87 10"11
1.39 W'"
1.08 10'"
5 26 10'"
9.03 10"
Manganese
3.57 10'12
3.22 10'12
1.66 lO"10
4.13 lO'12
4.07 10"12
2.79 10 12
Mn-51
D 1 10'1
3.01 10"
3.10 10'"
W 10"'
1.04 10"12
1.56 10'12
1.86 1010
1.78 10'12
1.64 10"12
1.39 10'12
7.83 10"12
2.55 10'"
Mn-52
D 1 10'1
9.63 lO'10
6.61 10 10
1.31 1C9
1.20 10'9
1.20 10"9
4.89 10'°
1.80 10'9
1.23 10"*
W 10'1
1.17 10'9
5.21 lO'10
4.24 10-9
6.99 10"'°
5.30 lO"10
3.41 lO'10
1.84 10'9
1.54 10''
Mn-52m
D 1 10'1
2.07 tO'12
2.27 10'12
1.03 lO-10
2.43 10'12
2.06 10"l!
1.82 1012
1.57 10'"
1.83 10'"
W 10"'
6.34 10'"
1.31 10'12
1.11 10'°
1.31 10'12
1.08 10'12
1.08 10"12
3.71 10"12
1.50 lO'"
Mn-53
D 1 10'1
7.81 10"12
7.64 10'12
2.34 10"11
1.07 lO"10
i.ii itr*
7.98 10"12
5.18 10""
6.78 10'"
W 10"'
2.95 10 12
3.14 10"'2
8.70 lO'10
3.72 10"11
3.85 lO'10
2.78 10"12
4.27 10""
1.35 lO"
Mn-54
D 1 10'1
8.85 lO"10
9.13 lO'10
1.18 10'9
1.66 10"9
2.56 10"9
6.52 lO"10
2.09 10"9
1.42 10'*
W 10"'
7.09 10 10
8.59 lO10
6.66 10-9
1.10 10"9
1.25 10'9
7.40 lO10
1.72 Iff9
1.81 10'*
Mn-56
d i ic1
2.19 10'"
1.47 10'"
4.40 lO-10
2.36 10"11
2.05 10""
1.20 10""
1.25 lO"10
1.02 I0'"1
W 10'1
9.46 10'12
7.79 10'12
5.37 lO10
1.02 10""
8.23 10'12
6.18 10'12
6.50 10'"
8.91 10"
Iron
Fe-52
D 1 10"'
1.78 lO10
1.04 lO'10
1.70 10-9
1.15 lO"10
9.43 10"
8.59 10"
7.67 lO'10
5.13 lO"10
W I0'1
1.29 lO'10
5.83 10"
2.53 109
6.66 10""
4.50 10""
3.82 10"
7.89 lO'10
5.92 10J«
Fe-55
D 1 10'1
5.23 lO'10
5.09 10 10
5.19 10"10
5.17 lO"10
5.14 10"'°
5.42 lO"10
1.21 10'»
7.26 10"lD
W 10"'
1.79 lO"10
1.74 10 10
1.06 ICT9
1.76 lO"10
1.75 lO10
1.85 lO"10
4.37 lO"10
3.61 10"'8
Fe-59
D 1 10'1
3.32 10'9
3.01 10"9
3.50 10"9
3.18 10"9
2.91 109
2.95 109
5.81 10"9
4.00 10''
W 10'1
1.39 )0'9
1.26 109
1.38 10"®
1.31 lO"9
1.11 10"9
1.17 10'9
2.96 Iff9
3.30 10"*
Fe-60
D 1 10"'
1.73 I0'7
1.55 10"'
1.55 Iff'
1.62 Iff'
1.50 10"'
1.50 10''
2.93 Iff'
2.02 ltrT
W 10 1
6.06 10*'
5.43 10!
7.31 10'®
5.69 10®
5.28 10'8
5.27 10®
1.03 Iff'
7.29 10J
Cobalt
Co-55
W 5 10'2
2.00 10"'°
6.56 10"
1.71 10-9
7.84 10""
4.65 10""
3.96 10 "
7.78 lO'10
5.10 10Jfl
Y 5 10'2
2.26 lO'10
6.19 10'"
1.78 10"9
7.68 10'"
4.03 10 "
3.12 10'"
9.14 lO"10
5.65 lO10
Co-56
W 5 10'2
2.34 109
2.15 10'9
2.79 10'®
2.21 Iff9
1.68 Iff9
1.82 10'9
4.72 10"9
6.04 lO'*
Y 5 10'2
2.16 Iff9
3.42 10'9
5.93 10'®
3.36 Iff9
2.53 10"'
2.91 10"9
6.70 Iff9
1.07 10"*
Co-57
W 5 10'2
1.63 lO'10
1.56 10*10
4.05 lO"9
2.54 lO"10
1.97 lO"10
1.13 10"'°
4.05 lO"10
7.12 lO"10
Y 5 10'2
1.24 10'10
3.75 lO"10
1.69 10"®
5.88 10"'°
4.52 lO"10
2.71 10 10
8.22 lO"10
2.45 10'*
Co-58
W 5 10"2
6.52 lO'10
6.11 lO"10
7.94 109
6.33 lO"10
4.78 10"'°
5.52 lO"10
1.35 Iff9
1.72 10''
Y 5 10'2
6.17 10 10
9.37 lO10
1.60 10"®
9.23 10"'°
6.93 lO10
8.72 10'°
1.89 10"9
2.94 10''
Co-58m
W 5 10"2
3.49 lO'12
3.38 10"12
8.82 10"
3.48 10"12
2.68 10"12
3.09 10'12
1.90 10""
1.82 10"
Y 5 10'2
3.14 10'12
5.03 10"12
1.34 lO"10
4.92 10 12
3.72 10 12
4.69 10 12
2.32 10"
2.54 10-"
Co-60
W 5 10'2
4.05 Iff9
4.16 Iff9
3.57 10"®
4.25 109
3.54 I0"9
3.72 10"9
7.65 Iff9
8.94 10'*
Y 5 10'2
4.76 10'9
1.84 10!
3.45 Iff'
1.72 10®
!.35 10"®
1.62 10"®
3.60 10®
5.91 lO"*
Co-60m
W 5 10'2
1.92 10"
2.08 10,M
2.86 1012
2.12 10"M
1.83 10'u
1.85 10"M
5.16 10'M
3.70 lO43
Y 5 10'2
1.83 10 M
7.12 10,M
4.16 10'12
6.67 10'M
5.25 10"u
6.20 10'M
1.60 10'13
5.74 10J3
Co-61
W 5 10"2
8.03 10'13
8.00 10"13
1.83 10"'»
1.04 10"12
8.99 10"15
6.87 10"13
1.26 10"
2.62 10'n
Y 5 10'2
3.30 10'13
3.01 1013
1.98 10'l#
5.24 10"13
3.72 10"13
1.71 10"13
1.54 10""
2.8610'"
Co-62m
W 5 10'2
3.26 10'IJ
8.54 10"15
6.78 10"
8.16 10"13
6.69 10 13
7.79 10"'3
2.12 10"12
9.12 lO"11
Y 5 10"2
1.64 10"
7.31 10-13
7.14 10"11
6.84 10'13
5.33 10'"
6.45 10"13
2.21 lO'12
9.50 10"11
Nickel
Ni-56
D 5 10'2
7.76 lO'10
4.96 10"10
6.99 lO"10
5.67 lO10
4.86 lO"10
4.79 lO'10
8.73 lO10
7.11 101"
W 5 !0'2
7.87 lO'10
4.21 lO"10
3.68 Iff9
4.81 lO'10
3.35 lO'10
3.27 lO"10
1.04 10'9
1.09 10"'
Vapor
1.11 Iff9
9.46 lO'10
1.09 10'9
1.05 10s
9.57 lO10
9.73 lO10
1.28 10"9
1.12 10"'
-------
125
Table 2.1, Conl'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/ T,
Gonad
Breast
Lung
R Marro*
B Surface
Thyroid
Remainder
Effective
Ni-57
D 5 IO"2
2-30 10'°
9.51 IO41
5.61 IO40
1.12 IO10
8 20 IO"'1
6.92 10"
4.33 IO40
2.87 IO-"1
W 5 IO-2
3.33 10'°
1.02 IO"10
1.41 10"'
1.24 10'°
7.04 10"
5.16 10"
7.48 10"'°
5.11 IO-"1
Vapor
1.64 IO10
1.44 IO40
5.55 IO"10
1.57 IO40
1.42 IO40
1.36 IO"10
1.99 IO40
2.16 10-,#
Ni-59
D 5 10"J
3.59 IO40
3.46 IO"10
3.59 IO10
3 54 IO"10
351 IO40
3.77 IO"10
3.63 IO40
3.58 i
-------
126
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class /f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Ga-72
D 1 I0'J
2.00 10'10
9.75 10'"
9.93 IO'10
1.77 IO'10
1.52 IO10
7.53 10'"
5.92 10"'°
3.89 IO'10
w i icrJ
2.05 IO'10
6.86 10'"
1.67 IO"5
9.44 tO11
6.23 IO'11
3.99 10'"
7.53 IO'10
S.02 10"14
Ga-73
D i icr'
1.55 10'"
1.05 Ifr"
4.14 IO10
2.33 IO'11
3.50 10'"
9.15 IO12
1.39 IO'10
1.01 io-"
W 1 I0'J
7.82 IO'12
4.37 IO'12
5.54 IO'10
7.97 IO12
9.85 IO'12
3.16 IO'12
1.09 IO'10
1.03 IO"14
Germanium
Ge-66
D 1.0
1.85 Ifr"
1.95 10'"
3.45 IO'10
2.05 10"
1.87 10"
1.92 10'"
4.22 10'"
6.S2 10'"
W 1.0
1.05 10'"
1.45 10'"
5.57 IO'10
1.48 10'"
1.30 10'"
1.37 10'"
3.79 IO1"
8.S6 10'"
Ge-67
D 1.0
1.22 IO'12
1.63 Ifr12
1.01 IO'10
1.66 IO'12
1.49 IO12
1.47 IO'12
1.16 10'"
1.64 IO'"
W 1.0
3.90 10'"
8.51 10"
1.10 IO'10
8.68 10'"
7.39 10'"
7.63 IO'"
2.61 IO'12
1.44 10'"
Ge-68
D 1.0
1.54 10'10
1.54 IO'10
2.36 10*
1.59 IO'10
1.52 IO'10
1.52 IO10
2.54 IO'10
4.49 IO'10
w l.o
2.16 IO'10
7.50 IO'10
1.11 10''
7.17 IO'10
5.94 IO'10
6.90 IO'10
1.43 10*
1.40 IO"1
Ge-69
D 1.0
4.23 10'"
4.59 10'"
5.33 IO'10
4.81 10'"
4.36 icr"
4.53 10"
8.28 10"
1.15 IO'10
W 1.0
3.00 10'"
5.02 10'"
1.44 IO"5
5.03 10'"
4.35 IO"11
4.82 10"
1.02 IO'10
2.27 IO"10
Ge-7I
D 1.0
1.20 IO'12
1.16 IO'12
2.53 IO"11
1.17 IO'12
1.15 IO"12
1.30 IO'12
2.08 IO'12
4.35 IO""
W 1.0
9.45 10'IJ
1.36 IO'12
2.66 IO'10
9.22 10'"
9.09 10'"
1.02 IO12
2.06 IO12
3.31 10'"
Ge-75
D 1.0
1.93 IO-12
1.96 IO'12
1.19 IO'10
1.98 IO'12
1.96 Ifr12
1.94 Ifr12
1.27 10'"
1.92 10""
W 1.0
5.78 10"
6.22 10"
1.39 Ifr10
6.31 10'"
6.15 10'"
6.03 10'"
4.20 IO"12
1.83 10'u
Ge-77
D 1.0
4.42 IO"11
4.75 10'"
1.07 10*
5.00 10'"
4.66 10"
4.56 IO"11
1.12 IO"10
1.89 IO"14
W 1,0
2.59 10'"
3.43 10"
1.98 IO"5
3.56 10"
3.21 IO"11
3.18 10'"
9.77 10-"
2.85 IO"10
Ge-78
D 1.0
1.25 10'"
1.34 ia"
4.44 IO"10
1.38 10'"
1.30 10'"
1.29 10'"
4.74 10'"
7.51 10""
W 1.0
4.59 IO'12
6.33 IO'12
5.51 IO'10
6.36 IO"12
5.74 IO'12
5.85 IO"12
2.74 10'"
7.75 IO""
Arsenic
As-69
W 5 10"'
9.99 10'"
8.74 10'"
9.52 tO "
9.08 10"
7.18 IO1"
7.47 10'"
4.03 Ifr12
1.32 IO""
As-70
W 5 10-'
3.18 IO12
5.36 IO'12
2.25 IO'10
5.26 IO'12
4.20 IO"12
4.70 IO'12
1.55 IO"11
3.42 Iff"
As-71
W 5 10'1
1.16 IO"10
6.00 10"
1.53 IO"5
7.32 IO'11
5.26 Ifr"
4.44 10'"
3.68 IO"10
3.44 IO"10
As-72
W 5 10'1
2.01 IO'10
1.09 IO'10
5.11 10*
1.20 IO'10
9.13 10'"
8.85 Ifr"
1.34 10*
1.10 10-'
As-73
W 5 Ifr1
3.01 10'"
3.30 IO"11
6.94 IO*
3.60 10"
3.31 Ifr"
2.74 icr"
2.76 IO'10
9.34 IO"10
As-74
W 5 10-'
3.17 IO"10
2.91 IO'10
1.32 IO'1
3.04 IO'10
2.44 IO'10
2.55 IO'10
1.29 10*
2.15 IO'5
As-76
W 5 10'1
7.54 10'"
5.33 10'"
5.02 10*
5.59 10'"
4.90 10'"
4.80 Ifr"
1.24 IO"5
1.01 10"'
As-77
W 5 10"'
1.21 10'"
1.13 Ifr"
1.46 10*
1.15 10"u
1.12 10'"
1.11 10'"
3.43 IO'10
2.85 IO"10
As-78
W 5 10-'
3.55 IO'12
4.18 IO'12
5.07 IO'10
4.18 IO'12
3.54 IO'12
3.70 IO'12
3.04 10'"
7.22 10"
Selenium
Se-70
D 8 10'1
1.16 10'"
1.08 10'"
2.28 IO'10
1.12 tO'u
9.43 Ifr12
9.36 IO'12
4.56 10"
4.75 10'"
W 8 10'1
3.80 IO'12
5.84 Ifr12
2.61 IO'10
5.84 IO'12
4.74 IO12
5.10 Ifr12
1.82 10"
3.96 10'"
Se-73
D 8 I0'1
3.70 10'"
3.24 10'"
4.83 IO'10
3.69 10'"
3.21 IO'"
2.90 IO"11
1.18 IO'10
1.14 IO'10
W 8 10'
2.24 IO"11
2.08 IO"11
7.05 IO'10
2.34 IO'11
1.93 10'"
1.75 10'"
8.92 Ifr"
1.24 IO*10
Se-73m
D 8 10"'
3.16 IO'12
2.85 IO12
5.82 lfr"
3.17 Ifr12
2.78 IO"12
2.56 IO'12
1.17 10'"
1.22 10-"
W 8 10"'
1.78 IO'12
1.75 IO'12
7.74 IO'11
1.94 IO'12
1.60 IO'12
1.50 IO"12
7.33 IO'12
1.25 10"
Se-75
D 8 10'1
1.29 IO5
1.08 IO*
1.36 10*
1.54 10*
1.27 10*
8.52 IO'10
3.50 10*
1.95 10"»
W 8 Ifr1
1.10 10*
1.09 IO"5
5.44 IO'5
1.50 icr5
1.23 10*
8.39 IO10
3.18 10'
2.29 IO"*
Se-79
D 8 I0'1
6.79 IO'10
6.79 IO10
8.47 IO'10
6.79 IO'10
6.79 IO'10
6.79 IO'10
4.24 10'
1.77 10"*
W 8 Ifr1
5.98 IO'10
5.98 IO'10
9.81 10*
5.98 IO'10
5.98 IO'10
5.98 IO'10
3.77 10*
2.66 IO"*
Se-8I
D 8 10"'
3.13 IO1"
3.15 IO"1'
4.45 10'"
3.15 icr"
3.14 10'"
3.14 10'"
4.82 IO'12
6.97 IO'11
W 8 10'1
9.05 IO'1'
9.32 IO'14
4.79 10'"
9.34 IO14
9.25 IO'14
9.26 10'14
6.81 10'"
6.01 IO'11
Se-8!m
D 8 10'1
2.14 IO"12
2.13 IO'12
1.37 IO'10
2.16 IO'12
2.13 IO'12
2.11 !fr12
2.06 10'"
2.39 10""
W 8 10"'
6.02 10'"
6.21 10"
1.59 IO"10
6.33 IO1"
6.21 IO"1'
6.08 10'"
6.35 IO'12
2.13 10-"
-------
127
Tabic 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Se-83
D 8 lO"1
2.27 1012
2.60 IO12
7.91 IO"11
2.62 IO12
2.23 IO12
2.23 IO"13
1.29 IO'"
1.48 10-"
W 8 lO"1
6.79 !013
1.45 IO"12
8.94 10""
1.43 lO12
1.19 lO"12
1.29 IO"12
4.48 lO"12
1.27 10'"
Bromine
Br-74
D 1.0
3.34 10"12
4.37 IO"12
1.27 IO"10
4.31 IO"12
3.74 IO"12
3.95 lO12
1.93 10""
2.33 I0-"
W i.O
1.07 10"
2.52 IO"12
1.38 IO"10
2.45 IO"12
2.03 IO12
2.25 IO"12
6.27 10"
1.95 10"
Br-74m
D 1.0
6.62 10""
8.30 IO12
2.45 IO"10
8.27 IO"12
7.36 IO12
7.64 10"'J
3.53 IO'"
4.43 IO""
W 1.0
2.07 O12
4.38 lO"12
2.71 iO"10
4.26 IO'12
3.60 IO"'2
3.98 IO"12
1.21 IO'"
3.81 10-"
Br-75
D 1.0
6.75 lO"12
8.01 IO"12
1.96 IO"10
8.43 IO"12
7.64 IO"12
7.42 IO12
2.50 10"
3.54 10-"
W 1.0
2.40 lO"12
4.30 IO'12
2.30 10-'°
4.44 IO42
3.82 lO"12
3.83 10"
1.23 10-"
3.33 IO""
Br-76
D 1.0
1.66 lO10
1.58 IO"10
1.45 IO"9
1.65 lO10
1.54 IO'10
1.57 IO"10
2.26 IO"10
3.36 IO"1
W 1.0
1.01 lO-10
1.16 IO10
2.55 10"'
1.19 IO10
1.08 10'°
1.12 IO"10
2.07 IO"10
4.32 tO-'0
Br-77
D 1.0
4.65 IO"11
4.28 10"
1.12 IO"10
4.97 10"
4.47 10-"
4.20 10""
5.82 IO"11
5.75 IO""
W 1.0
3.38 10-"
4.02 10""
2.80 Iff10
4.48 10"
3.92 10"u
3.79 10"
6.29 10"
7.46 10-"
Br-80
D 1.0
4.02 10"
4.25 IO"13
5.01 10""
4.24 IO"13
4.16 10"
4.19 10""
4.56 lO12
7.62 IO"11
W 1.0
1.11 10"
1.34 IO"13
5.37 10"
1.33 lO13
1.27 10"
1.32 10"
6.71 IO"13
6.72 tO-"
Br-8 Or
D 1.0
1.80 10"
1.82 10""
5.84 IO"10
1.86 10""
1.84 IO"11
1.81 10""
3.87 10"
9.22 tO"1'
W 1.0
7.53 IO"12
7.94 IO12
7.77 1010
8.08 IO"12
7.92 IO"12
7.75 IO"12
2.68 10-"
1.06 I0'l#
Br-82
D 1.0
2.52 IO"10
2.37 IO"10
7.82 IO"10
2.54 IO10
2.31 IO"10
2.38 IO"10
3.15 10 10
3.31 tO-10
W 1.0
1.69 IO'10
2.10 IO"10
1.68 10"'
2.18 IO"10
1.92 IO10
2.06 IO'10
3.31 IO-10
4.13 tO"10
Br-83
D 1.0
3.28 I0"'J
3.29 10"12
1.50 IO"10
3.30 10""
3.29 10-"
3.29 10"
1.13 IO'11
2.33 10'"
W 1.0
1.13 IO"12
1.14 10'"
1.82 IO'10
1.14 Iff'2
1.14 IO"12
1.14 IO"12
5.31 IO12
2.41 10'"
Br-84
D 1.0
2.84 IO12
3.31 IO12
1.56 IO'10
3.27 IO"12
2.99 IO12
3.12 10""
1.87 10"
2.61 10"
W i.O
8.51 IO"11
1.55 IO12
1.71 IO'10
1.51 IO"12
1.31 IO"12
1.43 IO12
4.98 10"
2.27 10'"
Rubidium
Rb-79
D 1.0
1.21 IO"12
1.70 IO"12
7.94 10"
1.76 IO12
1.62 10"
1.53 10"
9.83 IO12
1.33 10'"
Rb-81
D 1.0
9.79 IO"12
1.09 10"
1.83 IO"10
1.35 10"
1.50 10"
1.03 10""
2.22 10"
3.51 10""
Rb-8lm
D 1.0
1.31 IO"12
1.43 IO12
2.99 10"
1.77 IO"12
1.98 IO"12
1.35 IO"12
3.28 IO12
5.43 tO"'1
Rb-82m
D 1.0
3.80 10""
4.53 10"
2.53 IO"10
5.22 10"
4.94 10"
4.37 10"
7.54 10""
7.83 tO'"
Rb-83
D 1.0
1.25 IO-'
1.10 10"'
1.35 IO"'
1.64 10"'
1.90 10"'
1.10 10"'
1.36 IO"'
1.33 10"*
Rb-84
D 1.0
1.58 IO-'
1.44 10"'
2.03 10'
2.15 10'
2.77 IO"9
1.44 10"'
1.75 10"*
1.76 10-'
Rb-86
D i.0
1.34 10"'
1.33 10"5
3.30 10'
2.32 10"'
4.27 10"'
1.33 10"'
1.38 IO"9
1.79 10'*
Rb-87
D 1.0
7.16 IO"10
7.16 iO"10
1.05 10"'
1.27 10*
2.40 IO"9
7.16 IO10
7.20 IO"10
8.74 10-"
Rb-88
D 1.0
1.31 IO"12
1.43 IO12
1.47 IO"10
1.45 IO12
1.47 IO"12
1.37 IO12
1.38 IO"11
2.26 10'"
Rb-89
D 1.0
1.34 IO12
1.73 IO"12
6.80 10"
2.02 IO12
2.54 10-"
1.61 10"
8.14 IO"12
!.t6 10"
Slronlium
Sr-80
D 3 lO-1
1.68 10"
1.42 10""
6.99 IO"10
1.53 10"
1.04 10"
1.30 10"
1.43 lO10
1.36 IO'1*
Y !0"2
3.35 IO12
3.21 IO"12
8.87 iO"10
3.26 IO12
2.23 IO'12
2.42 IO"'2
7.31 10-"
1.30 tO"10
Sr-81
D 3 10"'
3.53 IO12
2.94 IO"12
1.21 10 10
3.16 10"|J
2.33 IO12
2.48 10",J
2.14 10"
2.28 10'"
Y IO'2
1.43 IO12
1.26 IO12
1.45 lO"10
1.35 IO12
9.28 10"
9.15 lO"13
9.61 10"
2.10 IO'"
Sr-82
D 3 10'
1.37 109
1.23 10 s
5.54 IO"'
8.22 10"'
1.15 10"'
1.21 10"*
3.53 10"'
3.62 l(T*
Y 1 IO"2
6.26 IO10
4.65 IO'10
1.10 10"'
6.08 1010
5.19 IO"10
3.64 IO"10
1.01 10'*
1.66 tO4
Sr-83
D 3 10'
l.iO IO"10
6.60 10"
4.69 IO10
1.49 IO40
3.67 IO"10
5.80 10"
2.56 IO10
2.01 tO"10
Y IO"2
1.75 IO"10
5.07 10""
1.36 Iff'
6.35 IO'"
3.95 10'"
2.71 IO"11
6.23 IO"10
4.11 l0-'«
Sr-85
D 3 I0'1
4.44 1010
3.72 IO10
4.66 IO'10
9.20 IO"10
1.02 10"'
3.63 IO"10
4.76 IO'10
5.18 IO'1"
Y 1 IO'2
3.34 10'°
4.65 IO10
7.15 IO"9
4.65 IO10
3.50 IO'10
3.85 10'°
9.05 lO"10
1.36 tO"*
Sr-85m
D 3 10'
1.26 IO"12
8.92 IO"13
6.41 IO12
1.50 IO"12
1.94 IO"12
6.62 IO"13
2.58 IO"12
2.25 IO11
Y IO"2
5.11 IO'13
6.79 IO13
1.20 10"
7.53 IO13
5.56 IO13
4.64 IO"'3
1.69 10"
2.30 IO'11
-------
128
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/ fj
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Sr-87m
D 3 10'1
4-54 IO42
2.74 lO"12
4.47
10"
3.29 IO"12
2.33 IO02
2.11 IO"12
1.38 10"
1.16 10"
Y 1
10'2
2-48
lO"12
1.43 IO'12
5.81
10"
1.66 IO42
1.04 lO"12
8.54 10'13
1.03 IO'11
1.12 IO '1
Sr-89
D 3 10°
4.16 IO'10
4.16
,0-io
2.16
10*
5.63 10"'
8.37 10-'
4.16 IO"10
1.32 10*
1.76 IO"'
Y 1
lO'2
7.95 10 12
7.96 IO42
8.35
104
1.07 IO'10
1.59 10"'®
7.96 IO12
3.97 IO"'
1.12 IO4
Sr-90
D 3 10'1
2.64
10*
2.64 10*
3.73
10"'
3.36 10"'
7.27 IO"'
2.64 10*'
3.36 10''
6.47 lO4
Y 1
IO'2
2.69
,0-io
2.69 lO10
2.86
10'
3.28 IO4
7.09 10"®
2.69 IO-10
5.73 10"'
3.51 JO"7
Sr-91
D 3
IO1
6.41
10"
4.45 lO41
9.21
lO"
1.23 IO40
1.14 IO"10
4.08 IO"11
3.33 IO"10
2.52 104n
Y 1
icr2
5.65
10'"
1.74 10'"
2.13
10"'
2.23 10"
1.27 10"
9.64 lO'12
5.78 IO'10
4.49 IO10
Sr-92
D 3
IO'1
3.03
10"
2.44 10"
7.12
,0-io
3.68 10"
2.56 10"
2.19 10'"
2.25 IO'10
1.70 IO'10
Y 1
lO-2
1.02
10"
6.49 lO'12
1.05
lO-9
6.98 IO'12
4.36 10'12
3.92 10'12
2.90 IO40
2.18 IO'"
Yttrium
Y-86
W 1
lO"4
2.86
,0-ic
9.16 10"
1.12
10*
1.27 IO'10
8.39 10"
4.97 10'"
6.06 IO40
4.21 IO10
Y 1
lO"*
3.30
IO49
9.05 10"
1.16
10*
1.12 IO'10
5.87 10'"
4.32 10"
7.10 IO'10
4.65 IO"10
Y-86m
W ]
lO"1
1.63
10"
5.26
IO'2
6.66
lO-"
7.33 IO"12
4.93 lO'12
2.82 10'12
3.47 IO'11
2.44 10'"
Y 1
icr1
1.88
10"
5.19 lO'12
6.91
10'u
6.49 IO'12
3.40 IO"12
2.44 10'12
4.06 IO'"
2.69 10"
Y-87
W ]
IO"*
2.71
10 10
8.24 10'"
1.36
10*
1.45 IO'10
1.32 IO"10
4.54 IO"11
6.08 IO'10
4.48 IO10
Y 1
lO4
3.01
10'°
7.75 10"
1.42
10-'
1.03 IO'10
5.70 10"
3.73 10"
6.73 IO40
4.74 IO10
Y-88
W 1
IO"4
2.81
10*
2.94
lO-9
i .58
10"®
4.76 IO"'
5.66 IO-'
1.83 IO*'
5.72 10'
5.55 10'
Y 1
10"*
1.79
10-'
3.29 10"'
3.53
10"1
3.32 10*
2.64 10-'
2.62 IO*'
6.20 10"'
7.59 10'
Y-90
W 1
IO"4
9.52
IO"'2
9.52 10'12
8.89
10-'
2.79 IO"10
2.78 lO40
9.52 lO'12
3.40 10*
2.13 10"'
Y 1
IO'4
5.17
IO'13
5.17 10'13
9.31
IO*
1.52 IO"11
1.51 10"
5.17 IO03
3.87 10'
2.28 10J
Y-90m
W ]
10"*
6.01
IO42
3.81
lO"'2
4.85
10-'°
1.85 IO41
1.75 IO"11
2.64 IO"12
1.85 IO'10
1.19 IO10
Y 1
10"*
6.27 IO"12
3.26 10'12
5.09
10'°
4.61 IO"12
3.14 IO"12
1.91 IO42
2.12 IO'10
1.27 IO"10
Y-91
W ]
lO4
1.11
lO-10
1.11
IO'10
5.25
10"s
5.55 10"'
5.54 10*
1.10 IO"10
5.12 10"'
8.72 10"'
Y 1
10"*
8.20 IO'12
8.92 lO'12
9.87
|0-»
3.19 IO"10
3.18 IO-10
8.50 IO'12
4.20 10*
1.32 IO4
Y-91m
W ]
icr*
4.33 10"
7.13 10'"
4.19
10'"
3.94 IO"12
3.79 IO"12
6.23 10'"
4.15 IO"12
7.09 10"
Y 1
IO'4
3.21
10'"
6.08 IO'13
7.00
10"
7.74 IO"13
6.21 lO'13
5.02 IO03
3.74 IO42
9.82 10"
Y-92
W ]
IO4
4.86 lO42
4.07
IO''2
1.16
10-'
1.28 IO-"
1.23 10"
3.69 10'12
1.67 IO'10
1.93 IO'10
Y 1
IO4
2.61
10-'2
1.50 IO'12
1.24
lO*
2.07 IO"12
1.51 IO"12
1.05 IO"12
2.03 lO40
2.11 IO10
Y-93
W ]
io4
8.65 lO'12
5.79 IO'12
2.40
10*
4.14 10'"
4.04 lO'11
5.06 IO"12
7.74 IO"10
5.29 10 10
Y 1
lO"*
5.31
IO'2
1.74
IO'2
2.52
10*
4.04 IO"12
3.14 IO"12
9.26 10'13
9.25 IO'10
5.82 IO'10
Y-94
W 1
lO"*
3.90
IO'13
6.90
10'"
1.39
IO40
7.46 IO"13
6.58 10'"
6.68 10'"
2.80 10'12
1.78 10-"
Y 1
IO4
1.23
10"
4.40
10"
1.48
10-10
4.18 IO"13
3.28 10"
4.12 IO"13
3.08 IO"12
1.89 10-"
Y-95
W 1
IO4
2.61
10'"
3.99
10"
7.44
10"
6.75 IO43
2.76 IO"12
3.46 IO"13
1.20 IO42
9.59 10""
Y 1
IO4
1.07
10'"
3.17
10'"
8.04
10"
3.20 IO"13
3.79 IO13
2.79 IO"13
1.25 IO'12
1.02 10-"
Zirconium
Zr-86
D 2 IO'3
2.84
10-'°
1.34
10''°
5.01
,0-10
3.16 10 10
3.77 IO"10
1.00 lO"10
4.71 lO40
3.45 IO"10
W 2 10°
4.19
10-'°
1.11
IO40
1.24
10*
1.69 IO"10
1.24 IO"10
5.60 IO"11
8.39 IO"10
5.48 IO10
Y 2
IO'3
4.72
,0-10
1.05
10-io
1.26
10*
1.40 IO"10
7.02 10"
4.34 10'"
9.64 IO'10
5.94 IO"10
Zr-88
D 2 10°
3.75
IO*
4.33
io*
4.02
10-'
1.34 10*
2.29 10*
2.32 10''
4.34 10"'
5.73 10''
W 2 ICT5
1.24
10*
1.60
10*
9.38
10*
3.68 10*
5.67 IO"'
9.95 IO'10
2.07 10*
2.94 IO*
Y 2 IO'3
7.05
,0-10
2.64
10*
3.39
10-*
2.70 10*'
2.33 IO*®
2.15 IO*®
4.94 lO"'
6.58 10"'
Zr-89
D 2 ICT3
2.77
io4B
1.69
lO-io
5.47 IO'10
5.07 10'°
5.94 IO"10
1.36 IO"'0
4.84 lO40
3.88 IO"10
W 2 IO'3
3.62
,0-10
1.22
,0-io
1.83 10"'
1.98 lO40
1.61 IO"10
7.94 10'"
8.21 IO40
6.06 IO'"
Y 2 IO'3
3.94
,0-10
1.10
10.io
1.91
10-'
1.38 IO"10
7.70 10'"
6.37 10'"
9.19 IO-10
6.41 IO'10
-------
129
Tabic 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Zr-93
D 2 IO'3
2.18 10"
4.68 10"
8.68 10"
1.77 IO''
2.181
1.98 IO12
7.27 IO"11
Nb-89
W 1 IO'2
1.55 10"
8.64 IO12
6.08 IO40
1.47 10"
1.27 10"
6.44 1042
7.42 10"
1.03 10'°
122 m
1 io2
1.53 10"
6.88 1042
6.55 IO40
8.04 IO42
5.14 1042
4.42 IO42
8.76 10"
1.11 IO'10
Nb-89
W 1 IO2
7.83 IO"12
5.41 10IJ
2.75 IO"10
7.53 1042
6.34 1042
4.27 104J
2.72 10"
4.52 10'"
66 in
Y 1 IO'2
7.66 1042
4.57 1042
2.96 IO10
5.02 IO42
3.36 1012
3.30 1042
3.12 10"
4.83 IO'"
Nb-90
W 1 IO'2
3.23 IO40
1 05 IO40
1.65 10'
1.63 IO40
1.50 IO40
5.49 10"
8.18 IO40
5.66 10'°
Y 1 IO-2
3.68 IO40
1.00 IO10
1.71 10''
1.28 IO40
7.18 10'"
4.54 10"u
9.60 IO40
6.19 10'"
Nb-9 3m
W 1 IO'2
4.16 IO"10
3.32 10"
4.86 10'
2.85 IO40
7.43 IO10
3.04 IO41
3.95 IO40
8.68 10'"
Y 1 10°
1.55 IO40
4.36 10"
6.45 10s
1.14 IO40
2.84 IO40
1.14 10"
3.04 IO40
7.90 IO"®
Nb-94
W 1 IO'2
4.76 10''
3.08 IO"'
4.18 IO4
6.37 10"'
9.10 10'
2.63 10-'
6.58 IO"'
9.76 IO"®
Y 1 IO'2
4.42 10'
2.24 IO4
7.48 10"'
2.26 IO"8
1.97 IO4
2.22 IO4
4.45 10'!
1.12 10'7
Nb-95
W 1 lO"2
4.84 IO40
3.77 IO40
5.49 10'
6.72 IO40
2.42 10"'
3.14 IO40
9.86 IO40
1.29 1(T*
Y 1 IO'2
4.32 IO10
4.07 IO40
8.32 10-'
4.42 10'10
5.13 IO'10
3.58 IO40
1.07 10"'
1.57 10'®
Nb-95m
w i io2
6.72 10"
4.49 IO41
2.63 10'
1.59 IO40
3.52 IO40
3.68 10'"
7.69 IO40
6.01 104#
Y 1 IO'2
4.96 10"
4.53 10"
3.07 10"'
5.87 10"
6.61 10'"
3.86 10"
8.69 10"10
6.59 IO'10
Nb-96
W 1 IO"2
3.38 IO40
1.03 IO10
1.56 10'
1.67 IO40
1.18 IO40
5.89 10"
8.49 IO10
5.67 IO'10
Y 1 IO'2
3.83 IO40
982 10"
1.61 IO'9
1.28 IO10
6.70 10"
4.81 10'"
9.90 IO10
6.19 IO'1®
Nb-97
W 1 IO'2
1.21 104J
1.50 1042
1.44 IO"10
2.07 1042
1.79 1042
1.34 1042
8.89 IO42
2.08 10'"
Y I IO"2
8.65 10"
1.12 1042
156 IO40
1.14 IO42
8 26 IO"13
9.20 IO'13
1.05 10""
2.24 IO41
Nb-98
W 1 lO"2
2.16 1042
3.36 IO42
2.13 IO40
3.88 IO'13
3.23 IO42
2.97 1042
1.24 10"
3.10 10'"
Y 1 lO'2
1.54 1042
2.76 10 '2
2.30 IO40
2.70 IO"12
2.00 1042
2.30 IO42
1.42 10""
3.31 IO""
Molybdenum
Mo-90
D 8 IO4
8.77 IO41
7.23 10"
5.36 IO40
1.06 IO40
1.18 IO40
5.79 IO41
252 IO40
1.91 IO"10
Y 5 IO"2
1.91 IO40
4.90 10"
9 36 IO40
6.42 10"
3.44 IO41
2.14 IO41
5.24 IO"10
3.34 IO'10
Mo-93
D 8 IO4
9.27 10"
7.48 IO41
1.15 IO40
2.11 IO10
8.59 IO'10
7.06 10"
5.70 IO"10
2.72 104#
Y 5 IO'2
2.45 10"
2.82 IO40
6.29 10 s
1.06 IO"10
2.35 IO40
1.17 10"
2.10 IO40
7.68 IO'®
Mo-93m
D 8 10"'
4.42 IO41
3.67 10"
2.28 IO10
4.32 10'"
3.64 10"
2.83 10'"
9.25 10'"
7.88 10'"
Y 5 lO'2
6.36 IO41
2 54 10"
3.11 IO40
2.93 10"
1.65 10"
123 10'"
1.41 IO"10
1.04 IO'10
Mo-99
D 8 lO4
1.32 IO40
1.29 IO40
1.17 10'9
3.71 IO10
5.40 IO40
1.17 IO40
9.49 IO40
5.42 IO"10
Y 5 IO"2
9.51 IO41
2.75 IO41
4.29 10'
5.24 IO41
4.13 10'"
1.52 10"
1.74 IO9
1.07 10"*
Mo-101
D 8 IO4
1.03 IO42
1.22 lO12
6.53 IO"11
1.28 1042
1.11 104J
1.04 IO"12
9.15 IO42
1.12 10-"
Y 5 lO'2
1.23 1043
514 1043
7.52 10'"
5.00 1045
3.89 1043
4.22 10'"
2.20 IO"12
9.87 IO'11
Technetium
Tc-93
D 8 lO4
9.76 IO12
8.68 1042
4.32 10"
8.64 IO42
6.90 10'2
6.10 10"
2.41 10""
1.92 10"
W 8 lO1
4.42 1042
5.87 1042
4.94 10"
5.64 IO42
4.36 IO42
2.23 10"
1.42 10"
1.36 10"
-------
130
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
8 Surface
Thyroid
Remainder
Effective
Tc-93m
D 8 IO4
3.42 1042
3.05
)012
2.70 10'"
3.10 IO12
2.49 IO"12
3.03 )0'"
1.05 10'"
9.06 IO"12
W 8 IO"1
1.46 10'12
2.0)
)012
3.03 lO"11
1.97 IO"12
1.53 )012
1.01 10"
5.17 )042
6.44 IO '2
Tc-94
D 8 IO4
3.22 10"
3.06
)0'n
) .63 10"'°
3.17 IO"11
2.56 )O n
2.93 )0'10
9.05 IO'11
7.27 10"
W 8 IO4
1.97 10'"
2.2)
10-"
2.0) )0"10
2.22 )0'"
] .72 )0'n
1.22 IO40
5.86 IO41
5.68 IO41
Tc-94m
D 8 10"1
4.85 1042
5.00
)012
].59 )0'°
5.04 )0"12
4.26 )012
).60 IO'10
3.86 10'"
3.81 10"
W 8 IO4
1.47 IO'12
2.67
10-12
) .78 10'°
2.60 IO"12
2.14 )0'12
4.63 )0"
1.17 1041
2.74 IO"11
Tc-95
D 8 10J
3.44 IO41
3.08
)0'n
).)4 lO"10
3.26 )O n
2.70 IO"11
2.44 )040
8.70 10""
6.50 10"
W 8 IO4
3.36 10"
2.83
)On
].99 lO"'0
2.94 IO"11
2.27 ID"11
1.41 IO10
7.54 IO"11
6.76 IO"11
Tc-95m
D 8 IO4
1.44 IO40
1.27
)0-'°
2.86 )010
).42 )010
1.22 IO10
6.03 )0'10
4.16 IO40
2.53 IO4'
W 8 IO'1
1.98 IO'10
3.84
10-1°
5.07 )0"9
3.86 )010
3.08 IO10
7.19 )010
8.51 IO40
1.05 10"®
Tc-96
D 8 10"'
2.54 10 10
2.36
)0|0
5.6) 10'°
2.51 )010
2.)2 )0"10
).)4 )0"'
6.40 10 10
4.29 IO4"
W 8 10 1
3.02 IO40
3.05
)0|o
2.00 )0"'
3.)3 IO"10
2.46 )010
8.70 IO"10
7.00 IO10
6.42 IO-"
Tc-96m
D 8 10-'
2.22 IO'12
2.07
)0'2
] .05 )0"M
2.19 )012
).86 IO12
1.53 )0 M
6.46 IO12
4-84 IO42
W 8 10"'
2.52 IO42
00
)0-12
2.3) )On
2.64 )015
2.08 )012
8.86 IO"12
6.08 IO12
6.26 IO12
Tc-97
D 8 10-'
9.85 1042
7.75
)0-'2
4.35 )0 M
9.24 )0'12
8.78 )0'12
1.32 )0'10
6.27 10"
3.30 10"
W 8 IO4
1.04 IO'11
2.22
)041
].97 lO-'
1.3) 10'"
1.2) IO11
1.17 )0'10
6.90 10"
2.68 10'°
Tc-97m
D 8 10"'
4.04 10'"
3.92
)0-n
3.) 5 )010
4.05 )O n
4.0) 10'"
1.08 10"'
4.75 IO40
2.35 IO"10
2.01 10"'
ST wall
W 8 10"'
3.37 10'"
3.94
)0-"
9.46 )0"'
3.56 )0"M
3.48 )On
8.58 IO'10
4.76 IO40
1.32 10 *
Tc-98
D 8 10'
3.6) IO40
3.4)
10-10
).02 lO-9
3.6) IO10
3.2) IO"10
2.67 IO"'
1.61 10"'
8.81 IO10
W 8 IO4
5.60 IO'10
1.35
I0-9
3.78 10 s
1.3) )0"9
1.06 IO"9
3.36 10 *
3.38 10"'
6.18 10"'
Tc-99
D 8 IO'1
4.52 IO41
4.52 1011
3.5) )010
4.52 )0'n
4.52 10"
1.21 10"'
5.78 IO40
2.77 IO"10
2.47 IO-'
ST wall
W 8 IO4
3.99 lO41
3.99 )O n
1.67 !04
3.99 IO"11
3.99 )0 M
1.07 )0'9
6.26 IO40
2.25 10"'
Tc-99m
D 8 IO4
2.77 1042
2.15 )012
2.28 10"
3.36 )0"12
2.62 )012
5.0) IO41
1.02 10"
8.80 IO'12
W 8 IO4
1.70 1042
1.52 )012
3.07 1011
2.39 )0"12
].78 IO12
2.09 )041
6.34 IO42
7.21 IO'12
Tc-101
D 8 )04
2.50 lO"13
3.03 !0->}
2.83 )0 M
3.19 )013
2.80 )0'13
7.72 )0"12
3.52 IO12
4.84 ltr11
W 8 lO"1
7.3) 10"M
].52 )043
3.01 10"
) .60 )013
1.36 IO"13
2.3) )042
6.60 IO13
3.94 IO42
Tc-)04
D 8 10'
1.56 10'2
1.82 1012
1.2) )0"10
1.8) )012
].58 )0"12
4.50 )041
1.80 IO"11
2.22 10"
W 8 IO1
4.59 lO"13
9.59 )013
].30 )0"10
9.4) )0"13
7.93 IO13
1.34 IO11
3.85 1042
1.76 10"
Ruthenium
Ru-94
D 5 lO2
9.8) IO42
6.66
)0'12
1.5) IO"10
7.18 )0"12
5.66 )012
5.49 )0'12
4.34 IO41
3.58 10'"
W 5 lO2
3.24 )0'12
3.58 10 12
].79 IO'10
3.64 IO112
2.84 IO'12
3.04 1042
1.75 IO41
2.87 10"
Y 5 IO'2
2.76 IO42
2.93 )012
1.94 10'10
2.95 IO"12
2.06 )0'12
2.24 IO42
2.04 IO41
3.10 IO'11
Ru-97
D 5 IO2
7.2) IO'11
3.45 10"
].09 )010
4.70 )0'"
3.77 IO11
2.86 )0'M
9.65 IO"11
7.29 IO41
W 5 IO'2
9.0) IO4'
2.56 1011
3.28 IO10
3.65 IO"11
2.17 IO"11
1.27 )041
1.47 IO10
1.15 IO""1
Y 5 IO'2
9.78 IO41
2.33 lO"11
3.40 10"10
3.44 )0'n
1.82 IO"11
9.15 )042
1.62 IO40
1.22 IO'"
Ru-103
D 5 IO'2
7,3) IO40
6.07 10'°
] .02 10"'
6.66 )010
6 )8 )010
5.97 IO'10
1.04 10''
8.24 IO00
W 5 IO'2
3.94 )010
3.18 )010
9.86 IO"'
3.39 )010
2.7) )010
2.75 )040
1.20 IO"9
1.75 IO"'
Y 5 IO'2
3.07 )010
3.))
)010
) .56 )04
3.) 9 )010
2.37 IO10
2.57 IO40
1.25 IO"9
2.42 IO"'
Ru-105
D 5 IO'2
2.70 lO"11
1.72 10"11
3.66 IO10
1.88 IO111
1.57 IO11
1.50 IO"11
1.40 IO40
9.84 10-u
W 5 IO'2
] .57 1011
8.48 1012
5.42 )0"10
9.50 IO"12
6.79 )0'12
6.46 )012
1.36 IO40
1.13 IO-"
Y 5 IO"2
] .59 )0-n
6.6) lO"12
5.73 )010
7.70 )012
4.62 IO"12
4.15 1042
1.61 IO'10
1.23 IO-'4
Ru-106
D 5 IO'2
) .38 )0"8
] .37
10'8
1.80 10*
].37 IO"'
1.37 10"*
1.37 IO8
1.69 IO"8
1.52 10"*
W 5 IO'2
4.03 10"9
4.03 I0'»
2.1) IO"7
4.06 IO"9
4.00 10"'
4.0) 10"'
1.39 IO"8
3.18 10"*
Y 5 IO'2
1.30 lO"9
] .78 )0'9
].04 IO"4
1.76 IO"9
1.6) IO"'
1.72 10"'
1.20 IO"8
1.29 IO"1
-------
131
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/ f.
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Rema inder
Effective
Rhodium
Rh-99
D 5 IO"2
4.49
|0'°
3.16 Iff10
5.45 Iff10
3.98 IO40
3.49 IO40
2.99 IO40
5.79 IO40
4.66 IO"10
\V 5 Iff2
3.61
,0-10
2.07 Iff10
3.20 IO4
2.54 IO40
1.83 IO40
1.54 IO40
6.90 IO40
7.53 IO10
Y 5 Iff2
3.39 10'°
1.93 Iff10
3.93 10"'
2.32 IO40
1.56 Iff10
1.32 IO40
7.12 IO40
8.36 IO'1®
Rh-99m
D 5 IO"2
1.67 10"
8.15 Iff12
5.87 Iff"
9.68 IO42
6.94 IO42
5.99 Iff12
3.13 10"
2.34 IO"11
W 5 Iff2
1.1 1
10"
5.67 Iff12
7.44 Iff"
6.50 IO42
4.25 Iff12
3.71 IO42
2.35 Iff"
2.06 IO41
Y 5 Iff2
1.24
1041
5.37 Iff12
7.87 Iff"
6.24 IO42
3.67 IO42
3.03 Iff12
2.73 Iff"
2.25 IO'"
Rh-100
D 5 IO'2
2.68 10'°
1.18 Iff10
4.29 lO40
1.36 IO40
1.03 IO40
9.34 Iff"
3.66 IO40
2-68 IO4®
W 5 IO"2
3.09
,0-io
9.66 Iff"
7.57 lO40
1.16 IO40
6.80 Iff"
5.29 10"
4.80 IO40
3.44 IO-14
Y 5 IO"2
3.47 10'°
9.29 Iff"
7.76 Iff10
1.15 IO40
6.04 Iff"
4.18 IO41
5.49 IO40
3.75 10-'°
Rh-101
D 5 IO'2
2.82 10"'
2.21 10"'
2.47 10"'
3.09 10"'
2.76 10''
2.02 IO''
3.02 IO"5
2.75 10"'
W 5 IO"2
1.02 10'
8.76 lO40
8.98 10''
1.20 IO"5
1.02 Iff'
7.26 IO40
1.47 10s
2.10 10"*
Y 5 IO"2
6.41
lO40
2.07 10"'
7.20 10"'
2.51 IO-'
2.00 IO"9
1.35 10"'
3.91 IO"5
1.07 IO4
Rh-IOlm
D 5 IO"2
1.14 lO10
6.21 Iff"
1.66 Iff10
8.08 Iff"
6.70 IO41
5.44 Iff"
1.55 Iff10
1.18 IO-'"
W 5 IO"2
1.33 IO40
4.37 10"
5.97 10'°
5.84 Iff"
3.66 Iff"
2.50 Iff"
2.31 IO40
1.90 IO-'"
Y 5 IO"2
1.41
10'°
3.95 Iff"
6.47 IO40
5.41 Iff"
3.04 Iff"
1.87 Iff"
2.52 IO40
2.02 IO"14
Rh-102
D 5 10'2
1.47 10*
1.20 10*
1.26 10*
1.35 10*
1.23 IO1
1.24 IO4
1.67 IO'1
1.43 IO4
W 5 IO'2
5.07
IO4
5.15 10"'
2.24 10 s
5.59 10''
4.79 10"'
5.06 IO"5
7.52 10"'
7.95 IO*
Y 5 10J
4.09
10"'
1.40 Iff*
1.58 lO-'
1.34 IO"8
1.07 IO4
1.32 10*
2.66 IO4
3.24 IO4
Rh-102m
D 5 IO'2
2.55 10'9
2.27 IO-9
2.91 10'
2.46 10''
2.32 IO"5
2.27 IO"5
3.12 IO"9
2.70 IO*
W 5 Iff2
9.67 10'°
9.51 1010
2.64 10*
1.00 IO"5
8.77 IO40
8.87 IO40
2.39 10"'
4.44 IO'*
Y 5 Iff2
5.82 10'°
1.37 10"'
9.53 IO4
1.33 10"'
1.06 10"'
1.20 10"'
3.10 10"'
1.29 10'*
Rh-103m
D 5 IO"2
8.91
IO14
8.80 10"
7.75 iO42
8.84 Iff"
8.73 IO44
8.49 IO44
1.34 IO42
1.38 IO"11
W 5 IO"2
2.54
10'4
2.78 IO44
8.81 IO42
2.66 Iff14
2.62 IO44
2.43 IO44
3.49 10'3
1.18 10",J
Y 5 Iff2
2.91
IO15
5.51 Iff'5
9.53 IO12
3.62 Iff15
3.21 Iff15
1.48 104S
4.19 IO43
1.27 IO"11
Rh-105
D 5 IO"2
3.49
I041
2.70 Iff"
3.67 IO40
2.90 10"
2.71 10"
2.57 Iff"
2.20 IO40
1.28 10-1#
W 5 IO"2
2.23
10"
9.19 IO42
9.26 IO40
1.12 Iff"
8.25 !042
6.77 1042
3.89 IO40
2J7 10-'°
Y 5 IO-2
2.11
Iff"
5.61 I0'2
9.58 IO40
7.77 IO42
4.46 IO42
2.88 IO42
4.53 IO40
2.58 lO"1*
Rh-106m
D 5 10"2
2.69
Iff"
1.65 Iff"
1.97 IO40
1.80 Iff"
1.34 10"
1.28 10"
7.31 Iff"
5.77 IO'11
W 5 IO"2
1.16
Iff"
1.02 Iff"
2.32 10 10
1.06 10"
7.71 IO42
8.07 IO42
3.69 Iff"
4.51 10-"
Y 5 IO-2
1.18
Iff"
9.29 1042
2.49 IO40
9.61 IO42
6.39 IO42
6.65 1042
4.22 IO41
4.84 IO'"
Rh-107
D 5 10'2
4.75
Iff"
4.97 Iff"
3.89 Iff"
5.29 I04J
4.63 Iff"
4.25 104J
5.25 IO42
6.53 IO"11
\V 5 IO"2
1.33
Iff'3
2.36 Iff"
4.21 Iff"
2.49 Iff'3
2.13 10"
1.98 Iff13
9 52 Iff"
5.45 IO"11
Y 5 IO"2
4.05
Iff"
1.53 Iff'3
4.49 Iff"
1.62 IO43
1.25 Iff13
1.12 104J
1.05 Iff12
5.76 IO"11
Palladium
Pd-100
D 5 10°
3.82
lO-'O
2.48 Iff10
6.92 IO40
3.76 IO40
4.13 10'°
7.39 10"
2.21 10'
9.40 IO"14
W 5 10"J
7.18
10 10
2.48 Iff10
2.97 10''
3.24 IO40
2.16 IO10
1.20 IO40
1.43 Iff'
1.05 IO"*
Y 5 10°
7.86
Iff10
2.36 Iff10
3.12 IO"5
3.05 IO40
1.71 IO40
1.19 IO'10
1.36 10"'
1.06 10"*
Pd-101
D 5 10J
2.03
Iff"
9.53 Iff12
8.71 Iff"
1.39 Iff"
1.68 Iff"
4.81 IO42
8.08 Iff"
4.35 IO'"
W 5 Iff3
2.45
Iff"
8.20 10'2
1.58 IO40
1.06 Iff"
7.55 IO42
3.92 IO42
6.13 Iff"
4.63 IO"11
Y 5 IO"3
2.80 10"
7.99 1042
1.68 10'°
1.03 10"
5.58 IO42
3.52 1042
6.80 Iff"
5.03 10""
Pd-103
D 5 10"J
1.04 10"
7.92 Iff12
1.52 IO40
2.46 Iff"
4.38 10"
4.09 IO42
6.93 IO40
2.34 IO4*
W 5 Iff3
1.81
10"
8.14 Iff12
2.11 IO"5
9.76 IO42
1.09 Iff"
7.78 1043
3.86 IO40
3.76 IO-'"
Y 5 Iff3
1.92 10"
8.69 Iff'2
2.67 IO''
7.04 IO'2
4.67 Iff12
1.42 IO43
3.21 Iff10
4.24 10-1#
-------
132
Table 2.1. Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Pd-107
D 5 IO'3
9.45 IO13
9.45 lO-"
2 89 IO"11
5.11 IO"12
1.36 IO-"
9.45 IO'13
2.15 IO-10
6.94 IO"11
6.40 IO "
Kidneys
W 5 10"3
2.43 IO"13
2 43 IO"13
1 53 10-'
1.31 IO"12
3.50 IO"12
2.43 IO"13
1.17 IO-10
2.19 IO "
Y 5 IO"3
1 05 IO-13
1.05 10"IJ
2.85 lO"®
5.68 IO-13
1 51 IO"12
1.05 IO13
971 IO'11
3.45 10"'
Pd-109
D 5 103
9.26 10"'2
8 36 lO"12
6.62 IO"10
2.16 10'11
4.64 lO"11
8 09 10"IJ
4.51 IO-10
2.23 IO "
W 5 10"J
3.33 10"IJ
2.03 IO"12
1.15 10"®
4 94 IO12
9.75 IO"12
I 69 10"IJ
441 IO"10
2.72 10 10
V 5 10"J
2.13 10-|J
5.11 IO"13
1.20 lO*®
9 82 1 013
9.58 IO"13
1.55 IO13
5 04 IO10
2.96 IO"14
Silver
Ag-102
D 5 10"J
1.07 IO"12
1.47 IO'12
5.12 10"11
1.45 IO'12
1.17 IO"12
1.20 10"IJ
7.44 10'IJ
9.11 10"
W 5 10"J
3 23 IO"13
9.74 IO"13
5.40 10"
9.33 IO"13
7.57 10'13
8 54 10'13
2.25 10"IJ
7.54 10IJ
V 5 10"J
1.71 10"
8.74 IO-13
5.68 lO-"
8.19 IO"13
6.41 IO"13
7.43 IO"13
2.30 10'IJ
7.82 10'IJ
Ag-I03
D 5 IO"2
3.33 IO"12
2.J7 IO12
7.04 10'11
2.83 lO"12
221 IO"12
198 10IJ
1.87 IO"11
1.58 10"
W 5 10-2
1.07 IO'12
1 44 IO"12
8.52 IO-"
1.49 IO"12
117 IO"12
1.15 10-IJ
6.48 10"IJ
1.29 10"
Y 5 10'2
8.63 IO"13
1 20 IO"12
9.31 10"
1.24 IO'12
8.90 IO"13
8.88 IO"13
6 94 10"IJ
1.39 10"
Ag-104
D 5 10"J
9.75 IO"12
7.06 IO"12
568 10 "
7 47 IO"12
5 44 >0"12
5.25 IO"12
2 55 IO"11
1.92 10 "
W 5 10"J
3.19 IO12
4.49 IO12
6.24 10"
4.45 IO-12
3.37 IO"12
3.77 IO"12
1.06 IO"11
1.29 Ifr"
Y 5 10"J
3.02 IO"12
4.19 IO"12
6.70 lO"11
4.09 IO-12
2.94 IO"12
3.36 10'IJ
115 IO-11
1.36 10"
Ag-104m
D 5 10'J
3.93 IO"12
3 06 IO"12
7.98 10'11
3.21 IO"12
2.48 IO"12
2 38 lO"12
1.79 IO-11
1.69 10"
W 5 10"J
1.25 IO"12
1.78 IO12
8.80 10""
1.77 lO'12
1.39 IO"12
1.50 10IJ
5.37 10"IJ
1.31 10"
Y 5 10"J
1.02 IO"12
1.54 IO12
9.46 10"11
1.50 IO"12
109 IO"12
1.21 IO"12
5.93 IO"12
1.39 10"
Ag-105
D 5 10"J
3 53 IO"10
4.57 IO"10
9 87 IO"10
5.09 IO"10
3.81 IO"10
1.87 IO10
3.03 IO"®
1.26 IO*
W 5 10J
3 55 IO"10
3.13 lO"10
3.99 10"'
3.49 IO"10
2.47 IO-10
1.83 IO-10
118 10"®
1.02 10"»
Y 5 10"J
3.40 10"10
3 53 IO"10
6 23 10*'
3.82 IO-10
2 74 IO"10
2.39 IO-10
8.92 IO10
1.21 10-'
Ag-106
D 5 10"J
8.50 IO"13
9.25 IO"13
5.06 10"
9.37 IO"13
7.93 IO"13
7.83 IO"13
7.79 10"IJ
8.92 10IJ
W 5 10-J
2 37 IO-13
4.99 IO"13
548 lO-"
4.86 IO"13
4.07 10'13
4.45 IO"13
1.67 ]0"IJ
7.30 10"
Y 5 10"J
1.03 10"15
3.84 IO-13
5.86 10"
363 IO"13
2.82 ICT13
3.25 IO"13
1.78 10"IJ
7.71 10'IJ
Ag-106m
D 5 IO"2
8 85 IO-10
7.91 IO"10
1.73 lO"'
8.10 IO-10
5.87 IO"10
3.30 IO-10
4.20 10®
1.93 10"*
W 5 I0"J
1.15 10"'
5.68 IO-10
3.94 IO"'
6 26 IO"10
3.99 IO-10
3.35 IO"10
2.01 10*
1.55 10"'
Y 5 10"J
1.21 10-'
5.18 IO"10
4.23 lO"®
5.85 IO"10
3.58 IO"10
3.27 IO10
1.71 IO"'
1.49 10"*
Ag-108m
D 5 10°
1 87 10-'
305 10*
5.99 10*
3 09 lO"'
2.33 10®
1.24 IO"®
2.01 IO4
8.14 10"'
W 5 10J
1.52 10"®
2.23 10"'
2.73 I0"«
2 25 10"®
1.67 10"®
1.49 10-®
8.29 IO"'
6.84 10"'
Y 5 10"J
3.79 IO"®
2 24 10's
4 56 10"'
2.14 104
1.68 10"*
2.01 IO*
4.63 IO4
7.66 IO4
Ag-110m
D 5 1CT2
3 26 10*
4.14 10"®
8.11 10''
4.03 10"'
3.05 IO*
1.70 10"'
2 55 IO4
1.07 IO"*
W 5 IO-2
2.33 10"'
293 10"'
315 104
2.88 10*®
2.13 10-'
2.01 IO*
1 02 10"*
8.34 10"*
Y 5 10"J
2 43 10"'
7.10 10"'
120 IO"1
6.74 lO"®
5.19 10'
6.39 IO"®
1.51 IO4
2.17 i
-------
133
Table 2.1, Cont'd,
Cnmmicicd Boss E'-fuwaJa-.i per Unit Intake (Sr/Be)
M'jdiJg
Class/ft
Ocrad
Brtsi!
Lmg
R Mn.-^e*
B Sa'faoa
Thytoii
rUma*mf«?
cd-im
D 5 Iff2
3.36 !D':J
2.25 ID"5
9.54 -Sffu
Z6& Iff12
2.30 1D',J
t.85 IO''2
<95 !0*n
l.n !Oai
W 5 ID'*
(.94 i0':i
9.52 iff5
1.J5 iff:s
1.13 10'"
8.27 Iff11
i-W Iff"
5.52 >3'"
2.76 16"
y 5 io-J
!-«S" 10'IJ
412 iD"'3
1.43 Iff'5
?64 Iff'1
4.32 Si?"-2
!.2J IO"11
>M iD,n
2.94 IO'11
Cd-fOS
D 5 Iff*
J.?] io-'
29? iff"
3.34 Iff*
3.45 IO*
3-!4 itr*
26« ID"*
9.59 Iff*
3.95 ID"'
3.09
K^F.cyj
w 5 IO"1
SJ1 lff:5
8 90 Iff"3
1.46 10*
1.02 Iff*
9.26 IO-10
1.66 Iff12
2.81 10"*
1.34 !0'f
i.c? io8
Kictpeys
Y 5 iff*
2*« ID"'"
4 54 J0"!a
t.ll 10*
4.45 Iff11
3.94 vr-i
2.4S ID"15
s.ao id4
3.22 IC*
C4-1 tt
D S iff*
3.C3 Iff*
3-63 3CT*
3.66 6
3.63 iff*
3.63 10"*
3.63 IC4
2.42 iff*
5.96 W*
4.5:
KidRsys
W 5 IP®
j .09 ;cr*
1.09 Iff*
2.63 iff'
1,09 iff*
1,09 SO*
i w io4
4.27 ;o-'
1.79 Iff*
1 38 itr
Ki6r&ft
Y 5 IO"1
SIJIO*
5.73 KT®
2-93 «»'"
5,?3 10*
5.73 10*
5.73- JO"*
2.25 10'*
iM iff1
ca-n>iw
D 5 fQ'2
3.32 Iff4
3.32 IC"
3,ii 10*
3.32 ia'
3.32 S0J
3.32 IO"4
1.38 IO4
!(?*
4.: 3 iff'
KaJnc.W
\V 5 IO'2
9-95 10'*
9.95 \'C"
4.02 !0*
>.95 JO*
9,95 IS?*
9.95 iff*
i39 10?
1-63 «r*
1.27 Iff1
Kidceyi
Y 5 Iff1
i n iV
4-72 i'f
4.IS JO"'
4,72 10*
4,72 JO"8
4.'p? 10"'
l.M iff5
1JJ8 Iff1
Cd-lli
DS Iff1
1.43 Iff'5
1.06 ?0'fl
1.19 Iff4
1 23 I(?:3
i.o
1.5? li?s
3.3J W
K5i IP'
3.57 if
i.$5 iO"'
«.06 Iff*
2-49 10"!
1.95 13*
Kidtreys
W 5 Iff2
5-0CI IP,n
j.?5 ir/-,s
4.66 I04
3.-31
3.74 1C!0
3.7J 1(TS0
1.76 JO*
s.n ib4
Y 5 )0'2
1.36 !0'14
1.05 Iff14
7.78 Iff"
1.08 I0-H
1.03 SO"10
105 ie-:c
M) Iff'
j.ii IC*
CcM^
C5 S lffJ
231 Iff'1
1.49 10"
4.57 iff10
1-68
1.32 IO""
1.16 I0'H
1.88 Iff11'
1.22 50'"
W S ID'1
1.08 Iff"
^,63 Iff"
5.85 IT'5
SM IC"
6.12 IO"'4
5.43 iO'11
J.05 ICT®
1.07 IB"'*
Y s :o J
I.D4 Iff"
5.96 10-12
427 IT-
b.n io-:s
4-24 10"'*
3-61 IO"'1
I,i4 10''5
1.14 10-"
GM>?m
OS iQ'J
4.50 JC'l!
2.50 10""
3.7B iff'*
28S 10";t
2.06 irT->
(.'7 Iff11
1.80 10-"^
1.X® }B'U
W 5 Iff1
24} iff5*
i.54 iff"
4^9 1010
1.71 I0"!!
3.1? IO'15
1.07 10'"
!,B2 lO*'s
9.81 irJI
Y 5 Iff1
261 Iff1'
1.39 IC"
5.01 Iff"
1-55 IO"'5
9-iO IO*15
8.5? Iff15
1.13 Iff11
l-OS iff'*
Irafium
lu-i05
D2 50 1
1.6.1 !0'1
8.52 Iff'*
6.52 Jff:>
4.45 Iff"
2.4! lir"
6.0? 10""
4.22 Iff15
3.21 IO-1'
W 2 IE?"2
9.62 Iff'1
5,30 IC-"4*
8.S7 !0'"
I.JI 10'"
S.42 Iff'5
3.41 Iff12
2.41 10,!
22S" Iff11
ic-no
D 2 13^
7.38 Iff"
3-5? |0'u
l.« !Cf'-
S->2 ]D"':
3-17 Iff51
2.M itr:i
1-13 !0'"!
SJ2 IO*"
69J m
W2«crj
S.IO iff"
257 Iff"
1.50 10^°
3,09 IO'"
1.90 10*''
1 S3 MT"
8.3! IO"1
6.75 Iff"
D2 Iff2
7.S0 !0"i!
5.61 JO"1"
1.7) IO-'®
)-51 IO'11
6.75 ir;t
4 56 icr!1
3,95 Iff"
3.66 Iff"
<9 t»
W 2 SO-'3
231 I0'i:
iOS iffa
1,95 iff"*
4.23 Iff'3
2.99 Itr5
2.59 S0""n
1.34 10*"
2.92 !ffrl
!f>! }\
D 2 Iff*
(.32 jff:a
6-42 !-»
9 Miff'
5.14 IC'
3.16 Iff*
4.04 Iff'
2.76 Iff'
-------
134
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Clais/f|
Gonad
Breast
Lung
R Marrow B Surface Thyroid Remainder Effective
ln-1 15m
In-1 16m
In-] 17
ln-]17m
ln-1 ]9m
Tin
Sn-] ]0
Sn-lll
Sn-113
Sn-117m
Sn-119m
Sn-121
Sn-121m
Sn-123
Sn-123m
Sn-125
Sn-126
Sn-127
Sn-128
Antimony
Sb-115
Sb-116
Sb-116m
Sb 117
D 2 I0"2
W 2 I0'2
D 2 10'2
W 2 |0'2
D 2 icr2
W 2 10'2
D 2 10'2
W 2 lO'2
D 2 10'2
W 2 I0'2
D 2 lO'2
W 2 lO"2
D 2 I0'2
W 2 |0'2
D 2 I0'2
W 2 10'2
D 2 I0"2
W 2 10'2
D 2 |0'2
W 2 lO'2
D 2 IO'2
W 2 IO'2
D 2 IO'2
W 2 IO'2
D 2 |0'2
W 2 IO'2
D 2 IO'2
W 2 IO'2
D 2 IO'2
W 2 lO"2
D 2 lO"2
W 2 lO"2
D 2 IO'2
W 2 |0'2
D 2 IO'2
W 2 IO'2
6.19 10
3.29 10
6.66 10
2.02 10
! .79 10
5.02 10
6.82 10
2.57 10
4.95 10
1.47 10
4.47 10
2.90 10
1.69 10
1.56 10
5.83 10
3.16 10
1.08 10
1.07 10
2.25 10
7.14 10
4.39 10
8.47 10
6.97 10
1.96 10
7.52 10
1.81 10
8.85 10
2.49 10
2.60 10
1.59 10
1.43 10
4.95 10
2.11 10
1.26 10
1.14 10
3.43 10
D 1 10"' 1.29 10
W I IO'2 3.53 10
D 1 10"' 9.32 10
W 1 IO'2 2.71 10
D 1 lO'1 9.46 10
W 1 IO'2 2.97 10
D 1 I0J 3.00 10
W 1 IO-2 1.51 10
3.76 lO'12
1.80 IO'12
5.21 10-12
3.14 10-12
1.52 10-12
8.49 lO-13
4.66 lO"12
2.06 ]0"12
4.97 10"
1.54 lO15
2.15 10'"
1.39 lO'"
1.17 IO'12
8.23 10"IJ
5.28 10-'°
2.99 IO'10
7.93 lO'"
5.14 10"
2.17 IO10
7.05 10-"
4.39 1012
8.47 10'n
6.90 IO'10
1.96 lO'10
7.52 IO-10
1.82 IO'10
8.20 10'n
3.16 IO'"
2.28 lO'10
9.37 lO'"
1.41 IO'8
5.39 lO'*
1.34 10"
8.28 IO'12
8.61 IO'12
4.62 IO'12
1.27 lO'12
7.59 lO'13
1.17 IO'12
7.61 10"IJ
7.17 IO'12
4.53 10'2
1.57 IO"12
1.00 IO'12
1.38 IO'10
1.81 IO"10
8.33 10"
9.27 10-"
4.88 10"
5.42 10'M
2.18 lO'10
2.63 IO'10
7.54 IO'"
8.11 10"
4.69 IO"10
6.39 IO'10
3.45 10-"
4.17 10'M
9.52 lO'10
1.84 108
5.80 IO"10
6.12 IO*
4.67 lO'10
1.15 10'»
2.33 lO'10
5.38 lO'10
8.97 IO-10
2.04 IO"8
2.32 10-'
6.11 10'1
7.12 10"
7.94 lO'"
2.57 lO''
2.24 IO4
1.61 IO'8
1.51 10-'
2.78 IO10
4.56 lO'10
2.73 IO'10
3.14 |040
3.47 10-"
3.79 10-"
3.33 lO'"
3.53 lO'"
6.81 10"
7.51 10-"
2.37 10""
2.88 lO'"
1.96 10
5.91 10
6.78 10
3.48 10
2.38 10
MO 10
1.64 10
5.33 10
8.22 10
2.50 10
4.33 10
2.04 10
2.05 10
1.15 10
2.49 10
7.71 10
1.06 IO*
2.55 10-'°
1.76 IO4
4.62 10-'°
4.90 10'"
9.47 lO'12
5.46 10*
1.49 IO*
5.73 10"'
1.36 10"'
1.21 lO'12
4.55 lO"15
3.62 10-'
7.26 lO'10
5.62 lO'1
1.69 IO4
3.93 lO'"
1.37 10
1.14 10
5.33 10
1.37 10
7.60 10
1.16 10
7.32 10
7.88 10
4.60 10
2.63 10
1.51 10
1.11 10
3.39 10
4.76 10
2.59 10
1.67 10
8.23 10
9.91 10
3.31 10
6.56 10
2.00 10
3.93 10
1.56 10
4.23 10
1.27 10
5.05 10
1.32 10
1.09 lO"*
2.06 IO*
4.32 10"'
1.10 10"'
5.51 lO10
1.06 ]0JO
1.46 10"8
3.98 10-'
1.58 lO'1
3.75 10-'
1.24 10"'2
4.44 lO'"
5.19 lO"'
1.07 10"'
1.18 I0'7
3.33 I04
4.95 lO'"
1.40 10-"
1.06 lO-"
4.70 lO'12
1.11 lO"12
6.19 lO'"
9.40 10-"
5.93 |0'IJ
6.31 lO"12
3.66 lO-12
3.34 lO'12
1.41 lO'12
3.02 10
1.19 10
3.97 10
2.61 10
1.20 10
7.16 10
3.94 10
1.62 10
4.94 10
1.53 10
1.63 10
9.15 10
9.16 10
5.55 10
5.07 10
2.27 10
6.92 10
2.93 10
2.13 10
5.45 10
4.39 10
8.47 10
6.86 10
1.87 10
7.49 10
1.81 10
7.31 10
2.68 10
2.10 10
7.62 10
1.31 10*
4.90 10
1.08 10
6.41 10
7.02 10
3.94 10
1.01 10
6.54 10
9.41 10
6.63 10
5.51 10
3.84 10
9.84 10
5.48 10
4.83 10-"
3.44 10-"
2.36 10"
8.51 1012
1.02 10""
2.88 10-12
5.63 10-"
2.54 10""
8.61 lO'12
1.20 lO'12
1.89 lO'10
1.54 IOJO
7.34 lO-12
3.90 10"12
9.21 lO'10
1.38 I04
4.39 lO-10
1.01 10-'
3.96 lO"10
6.28 lO"10
1.27 lO'10
2.28 lO'10
8.71 lO'10
9.22 lO"10
1.88 10-'
3.70 10''
1.14 10-"
2.51 1012
1.87 10"'
4.38 10-'
1.76 10"8
1.20 10-'
9.49 lO-"
8.70 10-"
6.50 10-"
2.10 10-"
7.12 lO'12
1.99 lO"12
5.56 10-12
1.74 10-12
2.59 lO'"
1.06 10-"
8.34 lO'12
4.85 ]0'12
3.59 10""
3.40 10"U
2.06 10""
1.52 lO""
9.95 10"
7.80 lO"'1
4.78 lO"11
4.09 10""
1.20 lO""
1.02 10-"
1.34 10-">
1.36 10-'"
7.34 lO"'1
6.88 10-IS
1.08 10'*
2.88 10"*
6.96 10-'°
1.17 10"'
6.11 lO"'0
1.69 lO"*
9.05 lO'"
1.38 lO'10
1.76 lO"*
3.11 lO'*
2.33 10"*
8.79 lO"'
1.25 lO'"
1.05 10-"
1.56 lO4
4.18 10"*
2.36 10""
2.69 10"*
7.56 lO""
8.75 10""
5.83 lO""
4.64 10"u
7.04 10"IJ
5.48 lO"11
6.27 10-1J
5.07 10*11
2.07 lO-"
1.44 lO"11
6.78 10"IJ
5.68 10"u
-------
135
Table 2.1, Cont'd.
Commuted Dose Equivalent per Unit Intake CSv/Bq)
Nuclide
Class/T|
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Sb-118m
D 10"'
5.61 10-"
2.93 10"
1.50 lO10
3.58 10"
3.00 10"
2.16 10"
9.54 lO"11
7.09 10"
W 1 10"2
4.14 10 "
2.16 lO'"
1.89 lO"10
2.47 10"
1.70 10"
1.45 10"
7.76 10"
6.35 10"
Sb-119
D 10"1
9.90 1012
5.12 10'12
7.97 10"
1.68 10"
8.47 10"
4.35 lO12
4.79 10"
3.19 10"
W 1 10"2
1.25 10""
2.77 1012
2.11 lO10
6.54 lO12
1.64 10'"
8.23 lO13
8.91 10"
5.69 10"
Sb-120
D 10*'
2.82 10"13
3.52 1013
2.12 10"
3.66 lO13
3.1 3 1013
2.97 10-13
2.72 lO12
3.54 10'11
15.89 m
W 1 !02
8.16 1014
2.02 lO'13
2.26 10"
2.00 I013
1.68 I013
1.78 1013
5.54 1013
2.96 10"11
Sb-120
D 10"'
5.60 lO10
3.24 lO"10
7.33 10'°
4.88 10'°
7.51 10'°
2.63 lO10
8.27 lO10
6.14 10"
5.76 d
W 1 10"2
8.99 lO10
3.37 lO10
3.01 10'*
4.30 10 10
3.25 lO10
2.23 lO'10
1.31 10'
1.10 lO"*
Sb-122
D 10'
1.61 lO10
1.20 lO10
1.57 10-*
3.86 lO'10
3.54 lO"10
1.12 lO'10
1.07 lO"*
6.28 10-"
W 1 102
1.44 lO10
5.27 10"
5.65 10*
1.05 lO10
8.12 10"
3.63 10"
2.18 10'
1.39 10-*
Sb-124
D 10'
9.15 lO10
6.51 lO10
2.03 10*
1.53 10'*
3.41 lO'*
5.68 lO"10
2.10 10'
1.50 10'*
W 1 !02
1.04 10*
8.94 lO"10
4.14 10 s
1.09 I0-*
1.24 10*
6.74 lO10
4.18 lO"'
6.80 10"'
Sb-124m
D 10-'
4.42 lO13
4.31 lO13
1.08 10"
6.07 1013
9.18 lO13
3.62 10'13
2.10 lO12
2.21 10,J
W 1 10"2
2.68 1013
3.52 1013
1.89 10 11
3.85 lO"13
3.86 1013
2.93 lO13
1.16 I012
2.80 10""
Sb-125
D 10*'
3.19 lO10
2.51 lO10
6.38 10 10
6.49 lO10
2.73 10'
2.28 10"10
7.16 lO10
5.75 10l#
W 1 10"!
3.60 10"10
4.16 lO'10
2.17 10"'
5.35 lO"10
9.78 lO"10
3.24 lO"10
1.45 lO"*
3.30 10*
Sb-126
D 1 10"'
9.11 lO10
5.89 10'°
1.77 lO"'
1.09 10'
1.71 10"»
5.08 lO10
1.81 lO*
1.27 10"'
W 1 10"2
1.32 10"'
6.44 lO10
1.38 10 s
7.97 10 10
6.75 lO'10
4.80 10'°
3.19 10"'
3.17 10"'
Sb-I26m
D I0'1
1.19 lO12
1.33 lO12
5.04 lO11
1.46 1012
1.32 10"12
1.13 10"12
7.92 lO12
9.17 10IJ
W 1 10-2
4.91 10'13
8.45 10"
5.57 10"
8.63 lO13
7.12 10"13
7.63 1013
2.12 lO"12
7.72 1011
Sb-127
D lO"1
2.34 10'°
1.65 lO10
1.36 10*
4.94 10'10
5.45 lO10
1.50 lO"10
1.09 10"*
6.55 10'">
W I lO"2
2.52 lO10
9.12 10 "
6.94 10"'
1.61 10-10
1.34 lO'10
6.15 10"
2.33 10*
1.63 lO"*
Sb-128
D 1 lO1
6.32 10-13
1.02 1012
2.53 10"
1.01 1012
8.11 10"
8.74 10"
4.11 10"
4.75 10'11
10.4 m
W 10"2
1.94 1013
7.25 1013
2.64 10"
7.01 10"13
5.65 lO"13
6.82 10"IJ
1.57 10"12
3.92 10'11
Sb-128
D 1 10"'
1.10 10'°
6.22 10"
1.27 10"'
1.11 lO'10
9.46 10"
5.20 10""
5.51 lO"10
3.72 10-"
9.01 h
W lO'2
9.47 10"
3.72 10"
1.91 10'*
5.25 10"
3.61 10"
2.49 lO"11
6.31 lO10
4.56 10-"
Sb-129
D 1 10"'
3.79 10"
2.44 10"
6.37 lO10
3.97 10"
4.21 10"
2.07 10"11
2.26 lO"10
1.64 10"1
W 1 10"2
2.15 10"
1.28 10"
8.98 lO"10
1.70 10"
1.46 10"
9.72 lO12
1.87 lO"10
1.74 lO-"
Sb-130
D 1 10 1
6.27 1012
5.53 1012
1.31 lO10
6.07 lO12
4.88 lO'12
4.53 lO12
2.96 lO"11
2.80 lO"11
W 1 lO2
1.76 1012
3.27 1012
1.44 lO"10
3.34 10 12
2.70 I0-12
2.94 lO12
8.97 I0"12
2.15 lO"11
Sb-131
D 1 1O*1
2.93 1012
2.90 10 12
1.12 lO10
3.27 10IJ
3.23 1012
5.78 10-w
2.11 10"
3.88 lO""
W 1 10"2
1.12 10IJ
1.64 10l:
1.26 lO"10
1.71 10l:
1.49 lO12
5.84 lO'"
6.19 1012
3.53 10"
Tellurium
Te-116
D 2 lO"1
2.59 10"
1.61 10"
2.74 lO10
1.94 lO"
1.68 10"
1.27 10"
8.93 10-"
7.18 10"
W 2 10 1
1.17 I0-"
9.50 10l:
3.36 lO10
1.04 10"
8.22 10'l:
7.12 I012
4.90 lO"11
6.11 10"
Te-121
D 2 10 1
2.73 lO10
1.97 lO10
3.08 lO"10
4.87 lO10
1.00 10"'
1.82 lO"10
3.08 lO10
3.21 lO-"
W 2 lO'1
2.96 1010
1.98 lO"10
1.88 10"'
3.04 lO10
4.26 lO10
1.56 lO'10
4.38 lO10
5.15 10-1*
Te-I2!m
D 2 lO'1
1.18 10'
1.23 lO'9
1.41 10'
9.42 10'
6.94 ICT4
1.12 10"»
1.38 10"»
4.31 10"'
W 2 lO*1
6.70 lO'10
8.70 10'°
1.56 lO"8
4.18 10'
2.81 10"*
7.30 lO10
1.50 10"'
3.99 10"»
Te-123
D 2 10 1
7.21 I012
6.92 lO'12
1.61 10"
5.86 10-*
7.13 10J
5.03 1012
1.15 10"
2.85 10-'
W 2 10 1
3.31 10IJ
3.28 1012
5.19 lO"10
2.57 10"'
3.12 10"4
2.22 lO12
2.03 10"
1.31 10"'
Te-123m
D 2 10 1
2.77 lO"10
2.80 lO10
6.05 lO10
5.79 lO'*
6.09 lO"*
2.40 lO10
4.75 lO10
2.86 lO"'
W 2 10"'
1.88 lO10
2.04 lO10
1.27 10 s
2.41 lO"9
2.40 I0J
1.46 lO"10
8.06 IO"10
2.86 10*
Te-125m
D 2 10'1
1.24 lO10
1.07 lO10
4.66 lO'10
3.01 10'*
3.21 10"*
9.93 10"
3.14 lO"10
1.52 lO'*
W 2 10'1
7.93 lO-"
7.08 10"
1.04 10"®
1.15 10'
1.18 10 s
3.87 lO"11
6.75 10'°
1.97 lO"*
-------
136
Table 2.1, Cont'd.
Committed Due Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gtnad
Breast
Long
R Marrow
B Surface
Thyroid
Remainder
Effective
Te-127
D 2 10-'
6.63 IO'12
6.49 10'12
2.77 IO'10
1.43 10'"
1.44 10'"
6.46 IO'12
9.74 IO'11
6.74 10'"
w 2 icr1
2.02 IO'12
1.88 IO'12
4.27 IO'10
4.09 IO'12
4.09 IO'12
1.84 IO'12
1.11
IO'10
8.60 IO'"
Te-I27m
D 2 10-'
2.49 IO'10
2.43 IO"10
8.91 IO'10
1.37 IO'1
5.24 IO4
2.39 IO10
6.90
IO'10
3.64 10*
W 2 10-'
1.10 io-10
1.10 IO'10
3.34 IO-"
5.36 10*
2.04 IO'1
9.66 10'"
1.66 10*
5.81 10*
Te-129
D 2 I0'1
1.75 IO'12
1.68 IO'12
1.33 IO10
1.97 IO"12
2.03 IO'12
1.63 IO'12
2.40 IO'11
2.42 10'"
W 2 IO'1
5.05 IO'13
5.39 IO13
1.53 IO'10
6.19 IO'13
6.22 IO'13
5.09 IO'13
7.28 IO'12
2.09 10'"
Te-I29m
D 2 10"'
4.12 IO'10
4.00 IO"10
2.16 IO*
8.77 10*
2.01 IO"1
3.95 IO10
1.47 10*
2.53 10*
W 2 10"'
1.78 IO'10
1.69 IO10
4.03 IO"8
3.10 10*
7.05 10*
1.56 IO'10
3.27
10*
6.47 10*
Te-131
D 2 I0'1
6.14 IO'12
5.53 IO'12
2.54 IO"10
6.64 IO"12
6.21 IO'12
2.63 10*
5.42 IO'11
1.29 IO"10
W 2 10"'
2.17 IO"12
2.67 IO'12
2.99 IO'10
2.94 lO"12
2.61 IO'12
2.66 10*
2.21
10'"
1.24 IO'10
Te-I31m
D 2 10"'
1.93 IO'10
1.15 IO'10
9.43 IO'10
2.39 IO'10
6.37 IO"10
3.28 IO"*
5.63 IO'10
1.38 10*
W 2 10"'
2.34 IO10
9.25 IO11
2.23 IO*
1.41 iO'10
2.27 IO'10
3.61 IO"1
9.46
IO'10
1.73 10*
Tc-I J2
D 2 JO"1
3.77 JO'10
3.52 IO'10
6.50 JO'10
4.95 )0"'°
1.53 10*
5.87 IO"*
5.65
IO'10
2.26 10*
W 2 I0'1
4.15 IO'10
3.63 IO"10
1.67 10*
4.27 IO'10
7.12 IO'10
6.28 IO4
7.89
IO'10
2.55 10*
Te-13 3
D 2 10-'
6.70 IO'13
8.48 IO'13
4.39 10""
8.39 IO'13
7.49 IO'13
5.91 IO"10
5.02
IO'12
2.49 IO'"
W 2 I0'1
3.59 IO'13
6.05 IO'13
4.64 IO'11
5.83 IO'13
5.21 IO'13
5.91 IO'10
1.18
IO'12
2.39 10'"
Te-I33m
D 2 lO'1
8.97 IO'12
7.82 IO'12
1.82 IO"10
8.32 IO'12
6.94 IO'12
2.61 10*
4.14
10'"
1.17 IO'10
W 2 IO'1
3.39 IO"12
4.91 IO'12
2.06 IO'10
4.89 IO'12
4.13 IO'12
2.63 10*
1.43
IO'11
1.10 icr10
Te-134
D 2 10'1
9.00 IO12
8.72 IO'12
6.02 IO"11
9.30 IO'12
8.58 IO'12
5.54 10-'°
1.88
IO'11
3.44 10'"
W 2 10*'
7.90 IO'12
7.96 IO'12
6.60 IO'11
8.38 IO'12
7.78 IO'12
5.56 10 10
1.09
IO'11
3.23 IO'11
Iodine
I-120
D 1.0
1.07 IO*"
1.28 tO-"
4.33 tO '0
1.28 10'"
U7 10'"
J.55 10*
5.02
!0'"
1.20 IO"10
l-I20m
D 1.0
9.01 IO'12
i.23 IO'11
2.87 IO'10
1.22 IO'11
1.07 IO"11
5.84 IO'10
4.55
IO'11
7.15 IO'"
[•121
D 1.0
1.96 IO'12
3.53 IO'12
4.69 10"
3.44 IO'12
3.02 IO'12
7.54 IO'10
7.65
IO"12
3.21 icr"
[•123
D 1.0
2.89 IO'12
4.87 IO'12
6.57 IO'11
5.97 IO'12
V*
00
©
2.25 10*
7.89
IO'12
8.01 10'"
1-124
D 1.0
3.49 IO11
1.15 IO"10
7.45 IO'10
8.63 10"
7.78 10'"
1.69 IO"7
1.22
IO'10
5.23 10*
I-125
D 1.0
1.84 IO"11
9.25 IO11
1.19 IO'10
4.41 IO'11
4.27 10'"
2.16 IO'1
3.33 10'"
6.53 10*
1-126
D 1.0
3.48 IO'11
1.37 IO"10
6.34 IO10
9.84 10"
9.02 IO'11
3.94 10"'
1.21
IO'10
1.20 I0's
I-I28
D 1.0
6.80 IO'13
7.15 IO'13
7.22 IO"11
7.17 IO'13
7.03 IO'13
5.34 10"
7.02 IO'12
1.28 IO'"
[-129
D 1.0
8.69 IO'"
2.09 IO'10
3.14 IO'10
1.40 IO'10
1.38 IO'10
1.56 IO"4
1.18 IO'10
4.69 IO"8
[-130
D 1.0
2.81 IO'"
4.87 IO'11
6.03 IO10
4.55 IO'11
4.03 10'"
1.99 IO"*
8.02 10'"
7.14 IO'10
l-131
D 1.0
2.53 10""
7.88 IO'11
6.57 )0'10
6.26 10"
5.73 IO'11
2.92 10"'
8.03 10'"
8.89 10*
[•132
D 1.0
9.95 IO'12
1.41 IO"11
2.71 IO'10
1.40 IO'"
1.24 10'"
1.74 10*
3.78 10'"
1.03 IO'10
1*132m
D 1.0
6.48 IO'12
8.88 IO"12
1.77 IO"10
8.86 IO'12
7.95 IO'12
1.65 10*
2.01 10'"
8.10 10'"
[•133
D 1.0
1.95 IO'11
2.94 10"
8.20 IO'10
2.72 IO'"
2.52 10'"
4.86 IO"1
5.00 10'"
1.58 10*
I-134
D 1.0
4.25 IO'12
6.17 IO'12
1.43 IO'10
6.08 IO'12
5.31 IO'12
2.88 IO'10
2.27 10'"
3.55 icr11
[•135
D 1.0
1.70 IO'11
2.34 10'"
4.41 IO'10
2.24 10'"
2.01 IO'"
8.46 10"'
4.70
10'"
3.32 IO'10
Cesium
Cs-125
D 1.0
1.46 IO'12
1.89 IO'12
6.36 10""
1.95 IO'12
1.76 IO"12
1.71 IO"12
8.46 IO'12
1.12 IO'11
Cs-127
D 1.0
7.12 IO'12
7.92 IO'12
5.98 10'"
9.54 IO'12
8.40 IO'12
7.08 IO"12
1.38 10'"
1.59 IO'11
Cs-129
D 1.0
3.04 IO'11
2.83 10'"
1.08 IO'10
3.80 10'"
3.40 IO'11
2.60 IO'11
3.93 IO'11
4.29 10'"
Cs-130
D 1.0
7.83 IO'13
1.02 IO'12
4.82 IO"11
1.04 IO'12
9.41 IO'13
9.28 IO'13
5.84 IO'12
8.07 icr"
Cs-131
D 1.0
3.77 IO'11
3.30 IO'11
7.29 10'"
6.21 10'"
5.58 10'"
3.00 IO'11
3.95 10'"
4.50 icr"
Cs-132
D 1.0
3.20 IO'10
2.69 IO'10
4.20 IO'10
3.17 IO'10
2.87 IO'10
2.73 IO'10
3.54 IO'10
3.32 IO""1
Cs-134
D 1.0
1.30 10®
1.08 IO'1
1.18 IO'1
1.18 I0's
1.10 IO"®
1.11 io-1
1.39 10^
1.25 IO"*
Cs-134m
D 1.0
3.61 IO'12
3.39 IO12
6.40 IO"11
3.76 IO'12
3.55 IO'12
3.34 IO'12
6.90 IO'12
1.18 10'"
-------
137
Table 2.1. Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Cs-135
D 1.0
1.20 IO"9
1 2010'
1.41 10-'
1.20 10"'
1.20 10'
1.20 I0-'
1.20 10'
1.23 10*
Cs-l 35m
D 1 0
1.96 IO12
3.15 lO"12
2.28 10"
3.15 IO12
2 66 I012
3.00 lO42
8.13 lO42
6.68 lO'"
Cs-l 36
D 1.0
1 88 10"'
1.67 10"'
2.32 10'
1.86 10'
1.70 10"9
1.73 10'
2.19 10'
1.98 lO"'
Cs-l 37
D 1.0
8.76 10"'
7.84 10-'
8.82 10"'
8.30 10'
7.94 10'
7.93 10"9
9.12 I0"5
8.63 10*
Cs-l 38
D 1.0
3.28 IO42
4.02 IO12
1 59 lO10
3.95 10'12
3.55 lO12
3 57 1012
2.06 10"
2.74 lO""
Barium
Ba-126
D 1 10'
1.20 10"
8 98 IO42
4.98 10'10
1.17 10"
8.50 I012
7.59 1042
1.11 lO10
9.92 lO"11
Ba-128
D 1 10"'
2 02 IO40
1.05 IO10
2.29 10'
3.47 lO"10
3.43 lO10
8.95 10""
1.41 10"'
8.20 lO"10
Ba-131
D 1 10"'
1 28 IO"10
5.84 10"
2.62 lO"10
1.70 lO"18
7.05 10 10
4.62 lO41
2.19 lO10
1.81 lO"10
Ba-I31m
D 1 101
1.76 10"
1.29 10"13
7.04 lO'12
2.70 1013
6.19 1013
9.71 |0U
9 53 1013
1.25 lO"11
Ba-133
D 1 10"'
1.07 10*'
1.10 10'
1 29 10"'
6.56 10'
9.51 I0-'
9 99 10'°
1.41 10'
2.11 10"'
Ba-133m
D 1 10"'
2 30 10 "
1.48 10"
5.20 lO"10
5.79 10"
1 05 lO"10
1.33 1041
2.90 10'°
1.68 104#
Ba-135m
D 1 10"'
1-77 10"11
1.12 10"
4.45 |0">
3.82 10"u
406 lO"11
9.93 I042
2.34 lO40
13« lO"'®
Ba-139
D 1 10"'
2.56 IO42
2.46 lO42
2 53 lO10
3.41 IO12
2.49 1012
2.40 10"12
4.82 10"
4.64 10""
Ba-140
D 1 lO4
4.30 lO40
2.87 IO10
1.66 10'
1.29 10'
2.41 10'
2.56 lO10
1.41 10'
1.01 10"'
Ba-141
D 1 10"'
1.41 IO12
I 47 lO'12
1.16 lO"10
2.49 IO12
4.73 1042
1.33 lO12
2.27 I0"u
2.18 lO'"
Ba-142
D 1 10"'
216 lO12
1.60 10"12
548 lO41
1.93 IO"12
1.42 1012
1.27 1012
1.14 10"
1.11 10""
Lanthanum
La-131
D 1 IO"3
3.4 3 lO42
2 87 lO42
5.42 10"M
4.60 1012
1.02 10"
1 94 1012
1.78 10""
1.40 lO"11
W 1 IO"3
1.70 IO12
1.62 1012
6.81 10"
2.10 IO12
2.72 1012
1.14 1042
6 43 1012
1.11 io-"
La-132
D 1 10°
5.10 10"
2.71 10"
4.97 IO10
3.97 10"u
3.25 10"u
1.91 1041
2.17 lO"10
M8 10"1#
W 1 10°
3.33 10'"
1.71 10"
6.52 IO10
2.13 10"
1.51 1041
1.1! 1041
1.56 10'°
1.39 10"'°
La-135
D 1 10°
6.39 IO42
2.44 IO42
2.57 10"u
6.81 1012
1.65 10"
1.11 1012
2.14 lO"11
1.28 IO"11
W 1 10°
8.72 lO42
2.00 lO"12
4.75 10"u
4.66 1012
4.71 1042
4.37 1013
2.37 1041
1.60 IO""
La-137
D 1 IO"3
3.45 10'
5.31 10"'
1.07 IO"8
2 31 10"!
9.96 10"8
2 49 10'
4.97 lO"'
2.05 lO"1
2.37 IO"8
Liver
W 1 IO"3
9.06 lO40
1.38 10'
4.69 lO"9
5.91 10'
2.53 I0'8
6 34 lO"10
1.26 10"8
5.20 10"'
6.27 10'
Liver
La-138
D 1 10°
1.49 10"'
1.56 lO"'
2.53 lO"1
241 lO"7
6 24 10''
8.35 I0"8
7.61 10"1
3.70 IO"7
W 1 10"3
3.85 10"8
4.04 IO"8
7.97 10"*
6.19 108
1.59 10"7
2 18 10"8
1.94 I0'T
9.63 10J
La-140
D 1 IO"3
3.62 IO40
2.05 IO40
1.66 10'
4.56 lO10
4.03 lO40
1.22 !010
1.81 10®
9.33 10""
W 1 10°
4.54 IO10
1.45 IO10
4.21 10'
2.14 lO10
1.41 |010
6.87 Iff"
2.12 10'
1.31 10"*
La-141
D 1 10°
i.Ol 10"
9.84 IO12
6.46 IO10
2 93 10"
1.20 lO"10
9.40 I0"12
2.28 10'°
1.57 IO10
W 1 10°
2.89 IO42
2.68 lO12
8.88 lO40
7.06 1012
2.36 10"u
245 1012
1.43 lO40
1.52 IO"10
La-142
D 1 10°
1.66 10"
1.13 10"
3.01 IO10
1.36 lO"11
1.11 I0"u
8.74 1012
8.07 1 041
6.84 IO'"
W 1 10°
5 91 IO12
6.28 IO12
3.50 IO40
6.83 1012
5.39 1012
4.91 10"12
3.14 lO"11
5.50 10""
La-143
D 1 IO"5
1.02 IO12
8 61 lO"13
8.32 10"
2.86 I012
3.32 1012
7.81 10"13
16410"
1.58 IO'"
W 1 10°
6.53 1043
3 20 IO13
1.06 IO10
7 30 |013
7.29 lO13
2.44 1043
1.05 1041
1.62 10'"
Cerium
Ce-134
W 3 IO"4
2.55 10"'°
8-66 lO'11
8 27 10"'
2 1 1 lO10
1.80 10'°
4.79 1041
3.44 10"'
2.13 10"'
Y 3 10"*
2.74 lO10
7.02 10""
8.67 10'
1.01 10'°
5.59 10"u
3.32 10'"
3.57 10®
2.21 10"*
Ce-135
W 3 IO"4
2.11 10"'°
6.18 10""
1.15 10'
8.73 lO41
7.66 10"
3.10 10"
6.09 IO"10
3.96 IO'"1
Y 3 IO"*
2.44 10'°
5.90 10"
1 19 10'
7 94 1041
4 12 10"
2.62 10"
6.83 lO40
4.29 IO'10
Ce-137
W 3 10J
3.17 IO12
9.78 lO43
4.09 10"u
2.11 1012
3.02 1042
2.52 10!3
1.41 lO41
1.04 10""
Y 3 IO"4
3.68 IO42
9.00 10'13
4.29 10"
1.87 I042
1.03 I012
1 32 10"
1.62 lO"11
1.13 10-"
Ce-137m
W 3 10"4
3 42 10'"
8.69 lO12
1.32 10'
2.99 10"
3.63 1041
3.36 lO"12
6.18 lO"10
3.58 10"w
Y 3 10"*
3.74 lO"11
6.66 lO12
1.37 IO"9
1.61 10""
8.30 1012
1.29 1012
6 83 10'°
3.82 IO'10
-------
138
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bqj
Nuclide
Class / f |
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Re mainder
Effective
Ce-139
W 3 10"*
2.75 Iff10
3.33
iff10
6.14 10'
9.29 Iff10
4.36 10"'
1.53 IO"10
2.84 10"'
1.95 10"*
Y 3 10-"
1.56 IO10
3.31
,0-10
1.67 IO"8
4.96 Iff10
6.42 Iff10
1.66 IO10
9.05 Iff10
2.45 IO*
Ce-141
W 3 10-*
8.44 Iff"
7.12
10"
1.12
108
4.19 IO10
3.79 10"'
4.61 Iff11
2.36 10"'
2.25 ltr9
Y 3 IO"4
554
Iff11
4.46
IO'"
1.67
io-s
8.96 Iff"
2.54 IO10
2.55 Iff"
1.26 10*'
2.42 10"'
Ce-143
W 3 lO"4
7.06 10"
2.22
Iff11
3.54
10'
7.77 Iff"
7.90 Iff11
1.21 10"
1.36 10"'
8 66 10"1#
Y 3 10"*
7.53 10"
1.66
10'"
3.88
10"'
2.96 Iff"
1.64 Iff"
6.23 IO12
1.42 IO''
9.16 10l#
Ce-144
W 3 10"*
1.93
10"'
1.97
10''
1.83
10 1
2.67 10*
4.54 10"S
1.88 10"'
1.03 10"'
5.84 IO"*
Y 3 IO"4
2.39 IO10
348
Iff10
7.91
IO"7
2.88 10'
4.72 10'
2.92 IO10
1.91 IO"8
1.01 10"'
Praseodymium
Pr-136
W 3 10"*
9.56 10"
5.39
10 13
4.73
Iff"
5.44 Iff13
4.62 Iff13
4.64 Iff13
1.47 Iff12
6.32 IO"11
Y 3 IO"*
1.03 IO13
5.66
IO"13
4.99
Iff"
5.37 Iff13
4.23 IO13
4.86 Iff13
1.62 Iff12
6.68 IO-11
Pr-137
W 3 IO-4
1.10 IO12
9.87
Iff11
7.47
Iff"
136 IO12
1.54 Iff12
6.42 IO13
7.11 Iff12
1.17 IO11
Y 3 10"*
1.33 Iff12
1.06
Iff12
8.09
Iff11
1.25 IO12
8.59 IO13
6.83 Iff13
8.50 Iff12
1.29 itr11
Pr-138m
W 3 I0J
7.99 Iff12
7.05
IO42
1.69
Iff10
7.92 Iff12
5.89 Iff12
5.34 IO12
2.75 Iff"
3.29 10"
Y 3 10-"
9.72 IO12
7.56
IO"12
1.83
Iff10
8.00 Iff12
5.33 Iff12
5.68 Iff12
3.23 Iff"
3.65 IO""
Pr-139
W 3 10-"
238
Iff12
136 10'12
6.35
Iff"
2.96 IO12
9.27 Iff12
5.79 IO13
1.45 Iff"
1.34 10"
Y 3 10-"
2 79 IO12
1.51
IO12
818
Iff11
2.16 IO12
1.89 IO"12
6.74 Iff13
1.50 10"
1.56 10"
Pr-142
W 3 IO"4
5.29 Iff12
1.75
IO42
2.85 Iff'
3.16 Iff11
3.48 Iff"
6.71 IO13
1.22 10"'
7.14 IO"'0
Y 3 10"*
6.13 IO12
1.78
IO-12
2.97 IO-'
3.78 Iff12
2.95 Iff12
6.38 Iff13
1.40 10"'
7.79 lO"10
Pr-I42m
W 3 10"*
6.81
IO14
2.23
IO14
3 63 iff11
4.06 Iff13
4.51 Iff13
8.51 IO15
1.57 Iff"
9.14 IO""
Y 3 IO"4
7.90 Iff14
227
10-14
3.78 Iff"
4.85 Iff14
3.81 Iff14
8.08 IO'15
1.80 Iff11
9.98 10"
Pr-143
W 3 IO"4
4.25 Iff18
2.45
IO11
1.10 10"*
2.73 Iff10
2.74 Iff10
1.58 IO18
2.25 10"'
2.04 10-*
Y 3 IO"4
4.37 101S
2.22
Iff"
1.33 IO"8
1.48 10'"
1.49 IO11
1.68 IO11
1.97 10"'
2.19 10'
Pr-144
W 3 10"*
2.20 IO15
9.91
Iff15
8.85 Iff11
8.08 Iff14
1.35 Iff13
8.01 IO1'
1.19 1042
1.10 IO11
Y 3 10-"
2.41
IO'15
1.05
Iff14
9.40 10u
1.38 Iff14
1.47 Iff14
8.47 Iff15
1.40 Iff12
1.17 IO'"
Pr-145
W 3 10-"
2.93
Iff13
1.27
IO13
8.69 Iff10
5.42 Iff12
6.02 IO12
7.71 IO14
1.99 Iff10
1.65 IO'10
Y 3 IO"4
3.53
10'"
134
Iff13
9.24 Iff10
4.49 Iff13
4.14 IO"13
7.96 Iff14
2 36 Iff10
1.82 IO"'0
Pr-147
W 3 10"*
1.09
IO13
2.72
IO13
5.68 10"
5.40 Iff13
1.43 Iff12
2.08 IO13
2.40 Iff12
7.72 IO"12
Y 3 10"*
1.17
1043
2.81
Iff13
6.15 Iff"
3.24 IO13
3.76 IO13
2.17 Iff13
2.39 IO42
8.22 10"
Neodymium
Nd-136
W 3 10"*
1.43
Iff12
2.54
Iff12
1.93 Iff10
3.20 Iff12
3.33 Iff12
1.92 Iff12
1.26 Iff"
2.82 IO'"
Y 3 lO""
1.72
IO12
2.75
Iff12
2.11
10-ic.
2.85 IO12
2.12 Iff12
2.06 Iff12
1.53 Iff11
3.12 10"
Nd-138
W 3 10-"
1.62
Iff"
7.15
Iff12
1.33 10"'
2.10 Iff11
2.00 Iff"
4.09 IO12
2.78 Iff10
2.51 IO"'0
Y 3 IO"*
197
IO11
7.58
Iff12
1.42 Iff'
986 IO12
6.07 IO12
4.13 Iff12
3.33 Iff10
2.78 10"
Nd-139
W 3 IO"*
3.63
10-'3
4.10 10"13
3.44 Iff"
7.35 Iff13
2.01 Iff12
2.69 Iff13
2.50 Iff12
5.19 IO "
Y 3 10"*
4.22
Iff13
4.44 Iff13
3.85 Iff11
5.30 IO13
4.77 IO"13
2.88 Iff13
2.85 IO12
5.73 IO "
Nd-I39m
W 3 10"*
3.73
10-"
1.60 lO"11
3.31
Iff10
2.49 Iff11
4.09 Iff"
9 33 IO12
1.14 Iff10
9.01 IO-"
Y 3 10"*
4.48
IO"11
1.70 Iff"
3.67 IO10
2.16 10-"
1.39 Iff"
9.58 Iff12
1.32 Iff10
1.01 IO1®
Nd-I4l
W 3 10-"
4.48
IO13
3.41 1013
1.38 10"
5 64 Iff13
7.59 Iff13
1.37 Iff13
1.98 Iff12
2.51 10"
Y 3 10"*
5.51
Iff'3
3.67 IO13
1.49 Iff11
5.20 IO13
3.61 IO13
1.43 IO13
2.39 Iff12
2.78 10'"
Nd-147
W 3 10"*
7.94
10"
3.76 10"
8.42 IO*
4.98 IO-1"
2.33 10*
1.94 10"
1.86 10*'
1.72 10-*
Y 3 10"*
8.41
10"
345
Iff11
1.06 IO"8
919 Iff"
3.26 IO10
1.82 IO11
1.76 10''
1.85 IO"'
Nd-149
W 3 10u
1.04 1012
9.61
Iff13
3.10 Iff10
4.75 Iff12
5.75 Iff12
5.96 Iff13
581 Iff11
5.58 lO "
Y 3 10"*
1.27 IO12
1.03 IO12
3.32 IO10
1.47 Iff12
1.12 IO"12
6.24 Iff13
666 Iff11
6.05 lO'"
Nd-151
W 3 IO"*
4.92 IO13
3.41 1013
4.85 Iff11
6 86 Iff13
9.66 Iff13
2.42 Iff13
5.95 Iff12
7.90 IO-11
Y 3 10"*
5.70 10'°
3.53 IO13
509
10"
4.43 Iff13
3.29 Iff13
2.48 Iff13
6.85 Iff12
8.43 IO "
-------
139
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f|
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Promelhium
Pm-14]
W 3 104
1.41 IO'13
3.64 10°3
6.08 10"
4.59 10"'3
4.71 IO'3
2.80 IO''3
1.64 10'"
7.96 IO'11
Y 3 IO'4
1.66 IO"'3
3.88 IO'3
6.50 10"
4.03 !0'13
3.09 IO"'3
2.96 IO'3
1.97 10'"
8.56 IO"12
Pm-143
W 3 IO'4
5.92 IO40
8.19 IO10
4.74 10*®
2.01 IO'9
5.37 IO'9
4.35 10'°
3.19 10*
2.21 10"'
Y 3 10"*
3.26 10'°
9.63 IO'10
1.61 IO4
1.12 IO"9
1.25 IO'9
7.74 10'°
1.96 10'9
2.94 10"'
Pm-144
W 3 IO-4
3.47 10*®
5.09 IO"'
2.01 I0J
9.91 IO"9
1.44 IO'8
2.95 IO'9
1.90 !04
1.14 IO4
Y 3 10"*
1.80 IO'9
5.74 10*®
7.09 IO4
6.17 IO"9
5.58 IO'9
4.98 10'9
1.21 IO4
1.45 IO4
Pm-145
W 3 I0'4
3.60 IO10
6.94 10"*°
4.64 10"®
1.02 IO4
7.58 IO4
1.87 10''°
8.67 IO"9
6.85 IO"9
Y 3 IO'4
1.67 IO10
8.43 IO'"
4.61 IO4
4.54 IO"9
2.77 IO4
1.72 10'°
3.83 IO'9
8.23 10"'
Pm-146
W 3 104
5.38 IO"9
8.42 IO"9
3.39 IO4
3.84 IO'8
5.29 IO'1
4.39 !0'9
4.87 IO4
2.76 IO4
Y 3 IO"4
2.47 IO"9
8.04 10®
2.33 IO'7
1.60 IO4
1.88 IO4
6.33 IO'9
2.38 IO4
3.96 IO4
Pm-147
W 3 104
1.88 IO"'4
3.15 IO"'4
9.69 10"®
8.16 IO"9
1.02 IO'1
1.32 IO'4
5.89 IO'9
6.97 IO"9
Y 3 IO'4
8.25 10'"
3.60 10"
7.74 IO4
1.61 IO"9
2.01 IO4
1.98 IO"'4
1.56 IO'9
1.06 IO4
Pm-148
W 3 104
1.96 10'°
7.85 10"
1.26 IO4
5.11 IO10
4.80 10'°
4.27 10"
3.88 !0'9
2.81 IO"9
Y 3 10"*
2.12 IO40
7.19 10"
1.37 IO4
1.07 IO40
7.08 10"
3.82 10'"
4.10 IO"9
2.95 10"*
Pm-148m
W 3 10"*
1.38 IO-'
1.28 IO"®
2.25 IO"8
2.88 IO"9
9.05 IO'9
8.79 IO'10
5.27 IO"9
5.46 10"'
Y 3 10"*
1.19 10"'
1.24 IO'9
3.59 IO'8
1.36 IO'9
1.36 IO'9
1.05 IO'9
3.58 IO'9
6.10 10'*
Pm-149
W 3 IO4
3.16 10'"
8.44 IO'3
2.99 IO"9
7.94 10"
8.04 10'"
3.69 IO'3
1.24 IO'9
1.44 IO"1*
Y 3 IO'4
3.61 10"
8.20 IO'3
3.12 IO9
5.53 10"
5.01 10"
3.31 IO43
1.39 IO'9
7.93 10J#
Pm-150
W 3 IO"4
6.82 10"
5.15 10"
5.36 10 ,0
8.76 10""
7.61 10'"
3.38 IO1"
6.78 10"
8.85 IO'11
Y 3 IO'4
8.26 10"
5.52 I0'IJ
5.78 IO10
6.11 10"
4.00 10"
3.54 10"
8.22 10'"
9.79 10"
Pm-151
W 3 IO"4
6.16 10"
1.59 10'"
1.58 IO*®
5.79 10"
9.73 10'"
6.69 10'"
7.36 10'°
4.38 IO'1*
Y 3 10"*
7.17 10"
1.59 10"
1.64 IO"9
2.72 IO-"
1.86 10"
6.18 10'"
8.39 IO'10
4.73 IO''"
Samarium
Sm-141
W 3 10'4
1.26 IO '3
4.63 IO '3
6.31 10"
5.37 !043
5.09 IO43
3.69 IO'3
1.74 I0',J
8.29 IO02
Sm-141m
W 3 IO4
4.40 IO '3
1.29 10'"
1.14 10'°
1.52 10"
1.47 10'"
1.03 10"
5.04 10,J
1.58 10 "
Sm-142
W 3 IO"4
1.05 10'"
I.SS IO"
4.19 IO10
3.03 10"
3.11 10'"
1.15 10"
2.32 10"
5.82 10"
Sm-145
W 3 IO"4
1.84 10'°
2.90 IO-*0
6.58 IO'9
3.46 IO'9
2.58 !04
7.46 IO'"
3.04 IO'9
2.98 10'*
Sm-146
W 3 icr4
0.00 10"°
0.00 10"°
8.40 10&
3.03 IO"5
3.79 IO-4
0.00 io-°
2.08 10'5
2.23 IO'5
Sm-147
W 3 IO"4
0.00 10"°
0.00 10"°
7.62 IO4
2.75 IO"5
3.44 IO"4
0.00 io-°
1.89 IO'5
2.02 IO'5
Sm-151
W 3 IO4
4.03 IO-'4
1.49 IO13
3.26 IO'9
1.10 IO4
1.38 IO'1
1.32 IO'4
7.51 !0'9
8.10 IO'9
Sm-153
W 3 IO4
2.36 10"
5.67 10'"
2.05 IO'9
6.66 10"
1.57 IO''0
1.51 10"
8.84 IO"'0
5.31 10",#
Sm-155
W 3 IO4
1.35 Iff'4
5.72 IO'4
5.32 10"
2.85 IO'3
1.65 10'"
3.70 IO '4
1.03 10'"
6.79 IO'12
Sm-156
W 3 IO4
2.21 10"
1.15 10'"
8.74 IO40
4.10 10"
1.18 10'°
6.33 10'"
2.26 IO'10
1.89 10,#
Europium
Eu-145
W i 10°
5.42 10,0
2.18 IO10
1.96 IO"9
3.58 IO"'0
6.73 IO '0
1.19 IO40
9.03 IO''0
7.41 IO'10
Eu-146
W i 10°
8.75 10'°
3.15 10'°
2.62 IO"9
4.41 10'°
3.31 10'°
1.76 10'°
1.35 IO'9
1.05 10J
Eu-147
W i 10°
3.05 IO"'0
2.13 IO"10
3.90 IO'9
4.56 IO40
1.62 IO'9
1.28 IO"'0
9.07 IO'10
9.55 IO'"1
Eu-148
W i 10°
1.61 IO'9
1.61 IO'9
1.20 IO4
2.43 IO"9
2.76 IO"9
1.07 IO"9
4.60 IO'9
3.87 10"*
Eu-149
W i 10°
7.78 10'"
8.56 IO-"
2.02 IO'9
3.86 10''®
1.70 IO'9
3.23 10'"
4.58 10'°
5.10 IO-1"
Eu-150
12.62 h
W i 10°
3.69 10'"
1.08 10"
7.79 IO40
1.22 10'"
1.23 10'"
4.67 IO"'3
2.85 10'°
1.82 IO-"1
Eu-150
34.2 y
Eu-152
W i 10°
W i 10°
1.95 IO4
1.31 IO"1
3.06 IO"1
1.74 IO4
6.55 IO4
5.76 10"8
7.95 IO"8
7.91 IO'8
1.20 10"'
2.40 Iff7
1.63 IO'1
8.25 IO'9
1.38 Iff7
9.99 IO4
7.25 IO4
5.97 IO4
Eu-152m
W i IO'3
1.33 10"
4.69 10"
9.94 IO10
1.77 icr"
1.94 10"
2.60 10'"
3.17 10'°
2.21 IO"1*
Eu-154
W i 10°
1.17 IO4
1.55 10*'
7.92 IO4
1.06 Iff7
5.23 IO'7
7.14 IO'9
1.13 IO"1
7.73 IO4
-------
MO
Tabic 2 U Cont'd.
Committed Sasc Etfttivaltm per Unit Intake (Sv/Bg?
Nuclide Class/f, Gonad Bicast Lung R Marrc** B Surface Thyroid Remainder Effect***
W i iCJ
3.56 HO"16
6.14 itr"
i. 19 ID*4
1.43 10*
1,52 IO*7
240 IO"10
I.I 1 to*1
! 12 10-"
6b-I56
W 1 1ST'
6.12 iO"'°
3.64 10'16
i 84 ia4
1.14 10*
2 76 10'
2.16 I0"'B
3,91 10'*
U2 10*
6u»I57
W i >Q-J
284 iO"1'
7 69 10'"
1.19 10s
3.06 iff"
3.9G Iff"
3.04 IC'12
4.82 !C*"»
34)1 IO-11
F^«l5e
W 1 10*
4.4? 10""
9.57 10*H
J.89 10"'e
1.35 1G,!
1.59 10'11
S.4C ID*'3
7S4 10
1-54 IO*11
CadslBium
Gd-i45
d j ia*
1.88 1G'I!
I.B7 itr18
5 88 10*"
3 71 iff"
8.96 Iff11
1.00 1Q*'J
1,22 Iff"
1.22 IO*11
w 3 io*
1,69 10*"
1.52 |0-«
6,74 10'"
1,97 IC"U
2.8C IC"'2
i .05 1C-"
4.4C IO*12
i.04 10*!l
Gd-i46
D 3 10*
2.65 iO9
3.51 10"*
5.48 10*'
1.42 iff®
6.73 iff*
1.76 iO*
1.57 Iff1
1-03 10*
W 3 iO"1
2,19 10'*
1.65 IC8
2.50 IC*
3.84 10*
1.38 10*
1.13 ifi*
S-22 Iff*
(.02 Iff*
G
3.30 IO*
4.28 10"*
8,48 IO"10
1.38 IC18
i 33 10*
1.08 Iff*
"n>i56/ft
24.4 h
W 3 10*
I 04 iO10
4 32 IO*1'
6 93 iff10
8.10 :c*"
1.96 IC*10
2.48 IC"11
2.48 iO*10
2.06 IO*'1
Tb«156m
5.C h
W31C*
2.62 10*"
9.66 10*'8
2.18 IC"10
1.77 10'"
4.65 10*"
5.29 10*"
6.91 10*"
5.86 10"
Tb-157
W 3 10*
4.14 IO'"
6.60 10""
1.18 10*
4.18 10"'
4.42 10*
2 67 Iff"
1.66 iQ*
2.49 icr*
TV! 58
W 3 10*
1.38 icr'
1.78 tO*"
4.91 10*
1.18 IO'7
623 IO*7
7,74 10*
8.0i 10*
6.91 10*
Tb l&G
W 3 iC*
9.36 IO"'0
9-63 IO*16
3 02 10"'
4.43 10*
2.47 iO4
6 54 iff®
4.84 id"
6,75 10*
Tb-I6i
W 3 10*
2.58 IC"
8.J8 I0"IJ
4.19 10*
1.90 10*°
2.07 10*
1,93 10*IJ
1.08 10*
9.20 10*™
Dysprosium
Qy-iS<
W 3 iC*
3.71 IO""
1-19 10*"
1.79 IO*10
2.35 10*"
4.62 10*"
S.32 ia":
7.70 Iff"
6.00 10*"
Dy-157
W 3 10*
1.64 !0-"
5.23 10"
5-93 IC*1'
9 04 IO"11
9.10 10 15
2.24 IO*"
2.73 10""
2.16 10*"
Oy-i59
W 3 10*
7.60 10-"
7.99 iff"
2.37 I0*
8.21 10*'»
5,09 10'*
312 iff"
2.94 iC'10
6.56 Iff"
OH 65
W 3 10*
1.24 Iff"
9.4! 10""
2.42 IC-*
1-59 Iff"
2.47 Iff18
MS IO*"
2 27 1 0-"
3.62 iff"
py-166
W i 10*
2.86 IC "
8.09 Iff12
9.10 IC*'
4.37 m*">
1.44 IC*
2.68 IC*"
2-75 10*
2.0210*
-------
141
Table 2.1, Cont'd
Commuted Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/I",
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Holmium
Ho-155
W 3 10"1
3.34 IO'12
1.40 IO'12
6.56 10'"
2.40 I0-12
3.61 10"12
7.08 IO13
9.26 IO'12
1.21 IO'"
Ho-157
W 3 10"*
4.54 IO'13
2.75 IO'13
7.54 10"12
4.02 10"13
3.78 10"13
1.52 IO'13
9.41 IO'13
1.41 10-'2
Ho-159
W 3 10"'
9.82 IO"14
2.98 IO'13
1.08 10'"
5.25 IO'13
1.08 IO'12
1.73 IO'13
9.64 IO'13
1.76 10-"
Ho-161
W 3 10"'
4.69 IO'13
3.33 IO'13
2.45 lO-"
8.01 IO'13
2.02 IO'12
7.45 IO'14
3.13 IO'12
4.20 10-"
Ho-162
W 3 10J
9.03 I0'l}
5.76 IO'14
4.69 IO'12
8.02 1014
1.16 IO'13
3.56 10'14
1.60 10IJ
6.36 10",}
Ho-162m
W 3 IO"1
6.77 IO'13
1.02 IO'12
4.19 10"11
1.36 10"12
2.40 10"12
6.92 IO'13
3.98 IO12
6.80 10'"
Ho-164
W 3 10J
6.13 Iff15
2.72 itr14
1.83 10'"
7.88 10'"
1.61 !0'13
7.88 IO'15
4.38 IO'13
2.35 IO*'1
Ho-164m
W 3 10''
3.90 10"14
9.24 10"IJ
3.79 10"11
2.76 I0'IJ
9.23 10"13
2.46 10'14
1.68 IO'12
5.14 IO'"
Ho-166
W 3 10'4
5.02 IO'12
1.38 1012
3.25 10'5
6.31 10M
9.35 10"
4.66 IO'13
1.49 10'
8.48 10"l#
Ho-166m
W 3 10'
3.05 IO"8
4.84 10"8
1.08 IO'1
1.61 IO"1
8.87 IO"1
2.14 10'*
4.50 IO'1
109 IO"'
Ho-167
W 3 10'
2.89 IO'12
1.72 IO'12
1.68 IO10
3.21 IO'12
9.10 IO'12
9.54 IO'13
2.52 10-"
2.94 10"
Erbium
Er-161
W 3 10J
8.98 10"12
5.45 IO'12
1.02 10'°
8.00 10 12
1.12 10'"
3.70 IO'12
2.59 10'"
245 IO'11
Er-165
W 3 10-*
3.75 IO12
1.08 IO'12
2.70 10"11
3.51 10"12
5.62 10"12
2.94 IO'13
1.05 10'"
8.08 10'"
Er-169
W 3 IO"4
2.81 IO'12
2.81 10'12
2.72 lO-5
1.45 IO'10
1.76 I0"5
2.81 IO'12
5.53 IO'10
5.64 10-1#
Er-171
W 3 IO"4
1.69 10'"
6.70 10"12
7.00 IO'10
2.16 IO'"
5.22 10'"
3.96 IO'12
1.95 IO'10
1.52 10-'#
Er-172
W 3 10"'
2.01 lO"10
6.56 10'"
4.60 10"'
2.87 10"'°
8.10 10"'°
3.76 10'"
1.45 IO*
1.11 IO'5
Thulium
Tm-162
W 3 10'
3.62 IO'13
8.65 IO'13
4.11 10'"
9.12 10"13
7.88 10'13
7.28 IO'13
2.08 IO'12
5.93 IO'"
Tm-166
W 3 IO"4
6.19 10""
2.45 lO-"
3.10 IO'10
3.47 10""
4.48 10'"
1.39 10'"
1.31 IO'10
1.02 10-|#
Tm-167
W 3 10J
9.39 10'"
3.88 lO"11
3.64 10"'
2.80 IO'10
2.09 10*
1.96 10'"
7.80 IO'10
7.97 IO'1®
Tm-170
W 3 lO"*
1.45 ICT10
1.45 IO'10
3.90 10'®
9.32 tO'5
1.39 104
1.42 IO'10
2.78 10*
7.11 10-'
Tm-171
W 3 10''
5.81 lO""
5.85 10"
3.99 IO*
3.81 10*
4.63 IC'
5.75 10'"
3.88 IO10
2.47 IO'5
Tm-172
W 3 10'
1.24 IO'10
4.45 IO-"
5.23 10"'
2.58 10"'°
5.06 10"'°
2.53 10'"
2.04 10*
1.32 10-'
Tm-173
W 3 10J
1.83 10"M
6.95 IO'12
5.80 IO'10
1.85 10'"
1.68 10'"
4.25 10'"
1.74 IO'10
1.30 10-1#
Tm-175
W 3 10J
2.03 10"13
4.28 IO'13
4.39 10'"
6.53 IO'13
2.89 10'12
3.94 IO'13
2.33 IO'12
6.26 IO"12
Ytterbium
Yb-162
W 3 10J
2.52 10"13
6.90 IO'13
3.76 10'"
8.27 10"13
8.98 IO'13
5.15 IO'13
2.23 IO'12
5.49 IO'11
Y 3 IO""
2.95 lO13
7.48 IO'3
4.11 10'"
8.04 IO'13
6.23 IO'13
5.55 IO'3
2.63 IO'12
6.04 IO'"
Yb-166
W 3 10J
5.09 IO'10
1.40 IO'10
2.00 10"5
2.64 IO'10
5.24 IO'10
6.39 10'"
1.05 IO'5
7.52 IO-1"
Y 3 10J
5.76 IO'10
1.40 IO'10
2.07 10"'
2.12 IO'10
1.28 lO-10
6.04 10'"
1.20 10*
8.04 10"l#
Yb-167
W 3 104
1.33 IO'13
1.58 IO'13
1.32 lO"11
5.06 10"13
2.48 10'12
8.01 10'14
1.24 IO12
2.15 IO'"
Y 3 10J
1.46 IO'15
1.65 10'13
1.44 lO-"
3.08 10"13
3.39 10'13
8.14 10'14
1.41 IO'12
2.26 IO'"
Yb-169
W 3 IO"4
2.42 IO'10
1.63 IO'10
9.33 10"'
1.01 10*
7.35 10*
8.25 10'"
1.13 10"9
1.89 10"'
Y 3 IO4
2.37 IO'10
1.85 IO'10
1.39 10's
3.82 lO10
6.29 10-10
8.57 10'"
1.18 10*
2.18 IO"'
Yb-175
W 3 10J
1.59 10'"
4.74 IO'12
1.82 IO*
7.05 10-"
7.82 IO'10
2.38 IO'12
5.79 IO'10
4.29 10-'°
Y 3 10J
1.78 10'"
4.71 IO'12
1.94 10"'
1.08 10'"
4.68 10'"
2.12 IO'12
6.57 IO'10
4.38 10-'#
Yb-177
W 3 10J
6.94 1013
5.36 10"'3
2.30 lO"10
3.12 IO'12
1.99 10'"
3.76 IO'13
2.44 10'"
3.61 IO'"
Y 3 10J
8.24 10"13
5.76 IO'13
2.50 10"10
8.57 IO'13
1.53 IO'12
3.94 IO'13
2.94 10'"
3.93 IO"11
Yb-178
W 3 10J
2.25 IO'13
2.71 I0'|J
2.80 IO'10
1.65 IO12
5.58 IO'12
1.79 IO'13
1.87 10"
3.97 IO'"
Y 3 10J
2.74 10'IJ
2.96 IO'13
3.06 IO'10
3.99 10"
5.14 IO'13
1.89 IO'13
2.35 IO11
4.39 10-"
Lutetium
Lu-169
W 3 10J
1.99 IO'10
6.09 10'"
1.00 10"5
1.45 IO'10
5.34 IO'10
2.87 10'"
3.90 10'10
3.30 IO'10
Y 3 IO"4
2.28 10"'°
6.30 10"
1.23 10'
9.86 10"
7.70 10'"
2.69 10'"
4.48 IO'10
3.64 Iff1®
Lu-170
W 3 10J
5.17 IO'10
1.52 lO'10
1.53 10*
2.40 IO'10
3.07 IO'10
7.00 10'"
8.87 IO'10
642 IO-"
Y 3 10J
5.90 IO'10
1.53 10"10
1.58 10*
2.04 lO'10
1.15 10'°
6.67 IO'"
1.02 IO*
6.96 10-,#
-------
142
Tabic 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/ft
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Lu-171
W 3 IO'4
3.18 IO'10
1.32 IO"10
2.99 10"'
3.30 IO'10
1.41 10''
8.30 IO-"
8.12 10-'°
7.86 10'°
y 3 io-4
3.41 IO"10
1.28 IO"10
3.35 IO"'
1.88 IO"10
1.76 10"'°
7.85 IO'11
9.02 IO'10
8.07 IO"10
Lu-172
w 3 icr"
7.31 IO"10
2.92 !0'10
4.30 10*
5.53 IO'10
1.56 10"'
1.84 IO'10
1.46 10*
1.30 10*
Y 3 10-4
7.03 lO"10
2.81 IO"10
4.70 IO''
3.67 10"'0
2.78 IO'10
1.76 Iff10
1.62 10*
1.35 10"®
Lu-173
W 3 IO"4
3.49 IO"10
4.24 IO"10
7.42 IO"'
5.94 10''
4.70 IO"8
2.92 IO'10
8.98 10'1°
3.44 10*
v i io-4
U2 10"'°
7.19 IO'10
4.20 IO'8
).97 10"'
7.41 10*
3.56 10-
1.44 10*
6.09 10*
Lu-174
W 3 IO'4
5.82 IO"10
7.10 IO"10
8.73 10''
1.23 IO'8
1.14 IO"7
4.98 ICT10
1.44 10''
6.64 10"'
Y 3 10J
2.75 IO'10
1.04 IO''
7.13 10"8
4.03 10"'
2.62 IO'8
6.51 IO'10
1.98 10*
1.07 IO"*
Lu-174m
W 3 iO'4
1.45 IO"10
1.65 IO"10
1.53 IO"8
5.18 10 •»
5.47 IO4
9.92 10"n
1.11 10*
4.49 10'
Y 3 IO"4
8.56 IO'"
2.54 I0l°
5.11 IO"8
1.02 10'
6.52 10*
1.26 IO10
1.16 10*
6.86 10*
Lu-176
W 3 IO'4
7.15 IO"'
9.74 10"'
6.24 10"8
2.73 IO'7
2.88 IO"4
8.47 10*
1.97 10"8
1.36 10'7
Y 3 10"*
3.86 10"'
1.10 IO'8
9.99 IO'7
1.21 10"'
1.19 10"6
8.24 10*
2.10 IO-8
1.79 IO'7
Lu-176m
W 3 IO4
1.98 IO"13
9.81 IO"14
3.94 10"'°
4.17 IO'12
8.48 10"12
3.65 IO"14
5.68 IO"11
6.51 10"
Y 3 IO"4
2.43 IO"13
1.07 IO"13
4.23 10"'°
4.61 10"IJ
5.99 IO"13
3.71 IO"'4
7.06 IO"11
7.21 10"
Lu-177
W 3 IO'4
1.75 IO"11
5.94 IO42
3.02 IO*
1.54 IO'10
1.79 10"'
2.85 10'12
7.44 IO"10
6.63 IO'10
Y 3 IO-4
1.93 IO"11
5.79 IO'12
3.33 10*
1.82 IO'11
1.03 10"l°
2.47 IO'12
8.42 IO"10
6.63 10'°
Lu-177m
W 3 IO"4
1.29 10"'
1.43 10*
4.49 IO"8
1.35 IO'8
1.16 IO"7
1.09 10*
4.12 IO"'
1.23 10"*
Y 3 IO"4
8.89 IO"10
2.03 IO''
1.41 IO'7
3.46 10*
1.07 IO"8
1.37 10*
5.15 IO*
1.98 Iff*
Lu-178
W 3 IO"4
2.23 IO"14
7.56 IO14
9.19 10""
2.45 IO'13
4.08 10"13
5.58 IO'14
1.93 IO'12
1.17 10"
Y 3 iO"4
2.55 IO"14
8.08 IO"14
9.88 10"
9.21 IO14
8.20 IO"14
5.92 IO'14
2.42 IO'12
1.26 10"
Lu-178m
W 3 IO"4
1.19 IO"13
5.30 10'13
6.19 IO"11
7.06 IO13
8.87 IO"13
3.75 IO'13
1.90 IO12
8.23 IO'11
Y 3 IO"4
1.36 IO'13
5.65 IO'13
6.62 10 11
6.56 IO"13
5.22 IO13
3.96 10'"
2.23 IO"12
8.84 IO11
Lu-179
W 3 10"4
5.22 IO"13
2.25 IO"13
4.69 10"'°
5.76 10"IS
6.30 10"12
1.08 10'13
8.30 10'"
8.22 10"
Y 3 IO"4
6.37 IO"13
2.43 IO"13
5.02 IO'10
6.46 10"13
5.31 IO'15
1.08 10'13
1.03 IO'10
9.13 10"
Hafnium
Hf-170
D 2 IO"3
1.70 IO-10
8.83 IO"11
3.41 IO"10
2.27 IO'10
7.36 IO10
6.51 10"
2.75 10"'°
2.31 IO10
W 2 icr3
2.28 IO'10
6.79 IO"11
8.41 IO'10
1.14 IO'10
1.70 IO"10
3.51 10""
4.49 IO"10
3.23 IO"10
Hf-172
D 2 IO'3
1.91 IO'8
2.22 IO"8
2.07 IO'8
1.93 icr'
1.45 IO"6
1.44 IO8
2.76 IO'8
8.60 IO'8
W 2 IO'3
5.28 IO"'
6.75 10"'
5.36 IO'8
4.88 10*
3.58 IO"7
4.65 10*
9.12 10*
2.82 IO"8
Hf-173
D 2 IO"3
6.05 ICT"
2.74 10""
1.68 IO10
1.24 IO40
6.79 IO'10
1.97 10'"
1.18 10"'°
1.11 10'°
W 2 10"3
7.55 IO'11
2.06 10'"
3.46 IO"10
5.61 10'"
1.61 IO40
9.36 IO42
1.78 IO"10
1.29 IO'10
Hf-175
D 2 IO'3
5.51 IO"10
5.53 IO'10
7.23 10"'°
4.41 10*
1.42 IO"1
5.06 IO'10
7.71 10"'°
1.51 10"'
W 2 10°
3.42 IO'10
3.05 IO"10
6.48 10"'
1.16 IO"'
3.09 10*
2.21 IO'10
7.87 IO'10
1.38 10*
Hf-177m
D 2 IO'3
7.10 IO"12
5.35 IO'12
1.17 |0">
7.64 IO"12
9.71 10'12
3.76 10"12
2.91 10'"
2.67 10'"
W 2 IO'5
2.02 10'12
3.15 10"12
1-30 IO10
4.04 IO'12
4.28 10'12
2.27 10"12
9.52 10"IJ
2.01 Iff"
Hf-I78m
D 2 10'3
1.63 IO'7
1.86 10"7
1.70 10"7
1.61 10*
1.04 IO4
1.75 10"7
2.17 10'7
6.65 IO7
W 2 IO"3
4.29 IO'8
4.90 IO"8
1.12 IO'7
4.10 IO 7
2.63 Iff*
4.57 IO'8
5.89 IO"8
1.79 IO"7
Hf-I79m
D 2 ICT3
7.48 IO"10
6.11 10"'°
1.29 10*
5.12 10'
4.03 10*
5.77 I0"m
1.22 IO-9
2.67 10*
W 2 10°
6.14 Iff10
3.94 IO'10
1.30 IO'8
1.34 10''
7.51 ICT'
2.75 IO'10
1.89 10*
2.73 10*
Hf-I80m
D 2 IO'3
3.47 IO"11
1.57 10""
1.75 IO10
3.06 10'"
7.72 10""
1.10 10"M
8.21 10""
6.30 Iff"
W 2 IO"3
2.50 IO'11
1-07 10"n
2.32 10"'°
1.68 10""
2.39 10'"
6.20 10"12
6.83 10""
5.91 Iff"
Hf-181
D 2 IO'3
6.85 1010
6.16 IO"10
1.26 10"'
8.21 10''
7.99 ICT"
5.85 10"'°
1.19 10*
4.17 10*
W 2 IO'3
4.29 IO"10
3.41 IO"10
1.73 IO'8
1.85 IO"9
1.55 IO"8
2.72 10"'°
1.84 10*
3.48 10"*
Hf-182
D 2 IO"3
1.35 IO'7
1.66 IO"7
1.50 IO'7
2.00 IO"4
1.72 10"J
1.19 IO'7
2.06 10"7
8.98 10"7
W 2 10'3
3.47 Iff8
4.29 ICT9
6.84 IO'8
5.09 IO7
4.37 IO"4
3.07 IO"8
5.35 IO'8
2.32 10"7
-------
143
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breasl
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Hf-I82m
D 2 10°
4.24 IO"12
3.32 IO"12
6.32 10"
9.36 IO12
5.42 IO4'
2.51 IO42
1.62 IO4'
1.68 IO"11
W 2 10°
1.37 IO'12
1.85 IO'12
7.70 IO41
3.33 IO"12
1.30 IO41
1.48 IO"12
5.83 |042
1.24 IO'"
Hf-183
D 2 10°
5.21 IO"'2
4.06 IO12
1.20 IO"10
1.72 10"
1.30 IO40
3.51 IO12
3.06 IO41
3.16 Iff"
W 2 IO'3
2.47 IO42
1.99 IO02
1.77 IO10
4.61 IO12
2.28 IO41
1.60 IO"12
2.24 IO""
3.02 IO"11
Hf-184
D 2 IO"3
5.60 10"
2.91 10"
6.29 IO10
9.30 IO41
2.27 IO10
2.37 IO41
2.80 IO"10
1.97 IO"19
W 2 10°
S.22 IO11
1.74 W"
9.52 IO10
3.% IO41
S.S4 Iff"
1.03 IO"
3.15 IO40
2.31 10"w
Tantalum
Ta-172
W I
10°
8.73 IO03
1.58 IO42
9.02 I0-"
1.85 IO02
2.48 1012
1.34 IO42
4.59 IO42
1.30 IO"11
Y I
io-3
5.75 IO '3
1.60 IO12
1.08 IO40
1.70 IO12
1.45 IO'12
1.30 IO"12
5.44 IO12
1.53 10-"
Ta-|73
W 1
10°
2.00 10"
7.77 1012
3.72 IO40
1.43 10"
1.81 10"
4.65 IO42
8.33 IO"11
7.82 10""
Y 1
10°
2.16 10"
6.71 IO42
4.07 |0"10
1.15 10"
6.76 IO"12
3.08 IO42
9.83 IO41
8.64 IO'"
Ta-|74
W 1
IO'3
1.17 IO'12
1.44 IO02
1.16 IO10
1.86 IO"12
1.95 IO42
1.13 IO'12
7.56 IO"12
1.70 10-"
Y I
10°
8.63 IO'3
1.10 IO'12
1.25 IO40
1.32 IO42
9.67 IO"13
7.52 IO"13
8.79 |042
1.82 IO""
Ta-175
W 1
10°
5.41 10"
2.02 IO"11
2.78 IO40
3.20 10"
3.3! 10"
1.09 IO41
1.17 IO"10
9.02 10""
Y 1
IO"3
6.04 10-"
1.98 IO41
3.29 IO40
2.88 |041
1.65 IO4'
8.91 IO'12
1.36 IO40
1.03 104
-------
144
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f |
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
W. 187
D 3 10
2.99 10 11
8.79 10'12
6.05 10 10
2.32 10'"
9.85 10'"
4.37 10'12
2.66 lO'10
1.67 lO"10
W-188
D 3 10
7.97 Iff12
4.88 10'12
1.36 lO''
5.54 Iff10
1.65 Iff'
2.72 lO'12
2.75 lC
1.11 10"'
Rhenium
Re-177
D 8 10
9.99 10'"
1.02 Iff12
2.90 10'"
1.28 lO'12
1.04 Iff12
1.95 10'"
6.00 10'12
6.45 Iff1*
W 8 10
4.13 10"
6.43 10"
3.24 10'"
8.04 10"
6.39 10'13
6.60 10'12
2.18 lO'12
5.06 10''1
Re-178
D 8
4.90 lO-13
6.43 10LJ
3.41 10'"
6.86 10'"
5.74 10'"
8.77 1012
4.72 Iff12
6.09 lO"'1
W 8 10
1.60 lO-13
4.08 Iff13
3.71 10"
4.41 10"
3.63 Iff13
2.86 10'12
1.23 Iff12
5.07 Iff'1
Rc-181
D 8 10
4.65 10 11
3.96 10"
3.53 lO'10
4.81 lO'"
4.08 Iff"
9.95 lO'10
2.19 lO10
1.62 lO'10
W 8 10
4.10 Iff"
3.34 10'11
6.86 lO'10
4.11 10"
3.23 10'"
5.45 lO'10
1.80 Iff10
1.74 Iff10
Re-182
D 8 10
3.93 10'"
3.46 10'"
2.38 lO'10
4.07 10'"
3.37 Iff"
5.89 lO'10
1.38 lO'10
1.09 lO'10
W 8
3.20 lO-"
2.82 Iff"
3.79 10 10
3.31 10"
2.55 Iff"
2.99 10'10
1.06 lO'10
1.03 Iff10
Rc-182
D8 JO
2.12 W'°
1.77 !0'10
9.25 JO'10
2.J3 JO 10
1.82 JO'10
2.65 10'
8.42 JO'10
5.54 10 10
W 8
2.18 10"'°
1.88 10 10
3.04 10''
2.26 10 10
1.78 Iff10
1.71 10''
8.02 lO'10
7,72 10JO
Rc-184
D 8 10
1.72 10"10
1.65 lO'10
4.62 10'10
1.93 lO10
1.67 Iff10
1.15 Iff'
6.56 lO'10
3.83 lO"10
W 8 10
2.25 10 10
4.05 lO'10
7.24 10''
4.44 10 10
3.56 Iff10
1.12 10-'
1.01 10"'
1.39 10'*
Re-184m
D 8 10
1.66 Iff10
1.55 Iff10
6.54 lO'10
1.88 lO'10
1.69 Iff10
1.96 Iff'
1.06 Iff'
5.47 10'"
W 8
2.39 10'°
5.88 lO'10
2.62 10 »
6.79 10 10
5.52 lO'10
2.10 10"'
1.77 lO''
3.98 10"*
Re-186
D 8 10
6.87 lO-"
6.79 10'"
9.77 lO'10
6.99 10'"
6.91 Iff"
3.41 10''
9.03 Iff10
5.28 Iff"
W 8
4.53 10'"
4.48 10"
4.42 lO*
4.72 10"
4.59 10"
2.19 10'
8.10 Iff10
8.64 10'10
Re-186m
D 8 10
1.55 lO'i°
1.52 lO10
6.85 lO10
1.60 lO10
1.58 lO'10
2.28 10''
1.82 Iff*
8.01 10"*
7.83 lO'10
ST wall
W 8 10
1.58 10'10
1.86 10 10
7.44 10*'
2.16 lO'10
2.02 10 10
2.85 10-'
2.16 Iff'
9.76 10'*
Re-187
D 8 10
2.95 10 15
2.95 10'"
2.29 10'12
2.95 Iff"
2.95 10'"
7.90 10'12
3.77 10'12
1.61 10"
1.80 10'12
ST wall
W 8 10
2.60 10"
2.60 10'"
1.09 10 10
2.60 10'"
2.60 Iff"
6.96 Iff12
4.09 10 12
1.47 Iff"
Re-188
D 8 10
4.97 10 11
4.92 10'"
1.35 10''
4.99 10"
4.93 10'"
4.18 lO4
7.01 Iff10
5.25 10'10
W 8
2.70 lO"11
2.65 10'"
2.52 10''
2.71 10'"
2.65 10'"
2.19 10'
5.39 lO'10
5.44 Iff10
Re-188m
D 8 10
1.01 10''2
1.02 10'12
3.19 10'"
1.09 lO12
1.05 Iff12
8.02 10'"
1.40 Iff"
1.10 10"
W 8
5.25 10-"
5.48 10 15
5.41 10'"
6.01 10'"
5.73 Iff"
4.15 10'"
1.02 10'"
1.11 10"
Re-189
D 8 10
3.30 10-"
3.18 10"
7.03 lO'10
3.32 10'"
3.23 10'"
2.27 1C'
4.22 lO'10
2.97 lO'10
W 8
2.03 10 "
1.90 10"
1.53 10'
2.04 10'"
1.92 10'"
1.27 10"'
3.45 lO'10
3.36 Iff"
Osmium
Os-180
D 1
1.02 10'12
1.08 10'12
2.17 10'"
1.22 1012
9.55 lO'13
8.89 10'"
4.97 lO12
4.71 Iff"
W 1
2.62 10'"
6.74 10'"
2.33 10'"
7.39 Iff13
5.95 10"
6.21 10'"
1.58 Iff12
3.56 10'"
Y I
1.74 10"
6.06 Iff"
2.50 10'"
6.52 Iff"
5.06 10'13
5.39 10'"
1.63 10'12
3.73 10'"
Os-181
D I
1.64 10 "
8.95 Iff"
8.91 10'"
1.15 Iff"
8.34 Iff12
6.53 10'13
4.46 10'"
3.13 lO"1'
W I
1.31 Iff"
6.08 10 12
1.28 10"'°
8.02 Iff12
5.11 10'12
3.92 10'12
4.08 10'"
3.30 Iff"
Y 1
1.44 10'"
5.66 10'12
1.37 Iff10
7.68 Iff12
4.44 Iff12
3.18 10"12
4.71 10'"
3.62 10'"
Os-182
D I
1.61 lO'10
7.60 10 "
3.61 10'°
1.03 lO'10
7.47 10'"
5.43 10'"
4.01 lO'10
2.32 Iff10
W I
2.34 10 10
6.33 10'"
8.52 10'10
9.55 10 "
5.12 Iff"
3.09 Iff"
5.27 Iff10
3.42 10'"
Y 1
2.63 10 10
6.01 10"
8.70 lO'10
9.50 10'"
4.55 10 11
2.43 10'"
6.01 lO'10
3.73 Iff"
Os-185
D 1
1.47 10"'
1.47 10''
1.97 lO''
1.78 Iff'
1.48 10''
1.18 10"'
5.62 10'
2.80 10'*
W 1
7.16 10 10
7.13 lO'10
6.45 10'
8.31 Iff10
6.37 lO'10
5.78 10 10
1.88 10''
1.76 Iff*
Y 1
5.20 lO'10
9.11 lO'10
1.43 10"®
9.85 lO'10
7.45 lO'10
7.86 Iff10
1.79 Iff'
2.68 10*
Os- !89m
D 1
5.22 10'"
5.0J JO'13
2.82 10'"
4.97 10"
4.96 10"
5.04 10'"
9.85 JO'12
6.63 10'"
W 1
1.39 10"
1.25 10'"
3.92 10'"
1.18 10'13
1.17 lff,J
1.18 10'"
8.53 Iff12
7.34 10'"
Y 1
3.50 10JJ
1.76 lO'14
4.16 10'"
9.07 Iff15
8.38 10 15
8.15 10'15
1.02 10'"
8.07 lO"12
-------
145
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Os-191
D 1
lO'2
1.92 lO10
1.73 10'°
6.04 10'°
2.26 tO10
2.04 IO10
1.59 lO"10
1.59 10"'
6.60 10-'°
W 1
IO'2
7.97 IO'11
5.22 lO'11
5.55 lO-9
8.68 10"
6.50 IO"11
3.75 10'"
1.00 10-'
1.01 lO"*
Y I
10'2
5.71 10"
2.96 10"
6.85 10'9
6.10 10"
3.93 10"
1.43 10"
9.19 lO'10
1.13 10"'
Os-191m
D 1
IO"2
9.75 101J
8.77 1012
1.16 10'°
1.10 10'"
1.00 10'"
8.21 IO'12
1.04 10'°
5.09 lO-"
W 1
10-2
3.90 IO'12
2.52 lO12
3.64 IO'10
4.01 lO"12
3.05 10'2
1.88 IO'12
9.14 lO"11
7.31 10""
Y 1
IO"2
2.73 lO'12
1.26 10'12
4.18 10'°
2.64 tO12
1.65 IO'12
5.84 10'"
1.02 IO'10
8.20 lO-"
Os-W
D 1
IO'2
4.32 10"
3.68 10'11
8.15 10'°
3.97 10"
3.73 lO"11
3.51 10"
6.29 lO"10
3.10 lO "
W 1
lO-2
2.14 10"
1.00 10"
1.94 10"'
1.31 10"
9.73 lO'12
7.78 tO12
8.49 lO10
4.96 IO'10
Y 1
IO'2
1.81 10"M
4.51 IO'12
2.00 10'
7.70 10'2
4.00 IO'12
2.04 IO'12
9.82 10"10
5.41 IO"10
Os-194
D 1
to2
1.00 104
9.99 10-*
1.13 IO'1
1.01 IO4
9.99 10"'
9.88 lO-9
9.02 IO4
3.42 IO4
W l
IO'2
2.65 10"*
2.66 10"®
1.37 10"'
2.69 IO"*
2.65 10"*
2.61 10'*
2.79 tO4
2.64 IO4
Y 1
IO'2
9.36 IO'10
1.53 10'®
1.47 lO"6
1.56 10"'
1.39 10"*
1.37 10"'
1.30 10''
1.81 IO"7
Iridium
Ir-182
D 1
lO"2
2.62
1012
1.83 IO'12
6.53 10"
2.19 IO12
1.71 IO"12
1.43 10J2
1.13 10"
1.25 10"
W 1
IO'2
2.89 lO12
1.27 10'2
7.49 IO""
1.66 IO"12
1.06 lO12
8.37 10IJ
7.22 IO"12
1.23 10""
Y 1
lO'2
3.10 IO'12
1.12 IO'12
7.87 10""
1.53 IO'12
8.71 IO"13
6.43 IO13
8.16 tO12
1.31 10"
Ir-184
D 1
10'2
2.75
10"
1.53 10"
2.13 IO10
1.83 10""
1.33 IO"11
1.12 10'"
8.15 10-"
6.21 10""
W 1
to2
1.41
10'"
9.66 IO'12
2.61 tO10
1.12 10""
7.74 IO"12
6.84 lO12
4.78 tO "
5.24 10-"
Y 1
10-2
1.50 10"
8.80 lO12
2.80 IO10
1.03 10-"
6.48 lO12
5.51 IO"12
5.61 10"
5.71 10"
lr-185
D 1
IO'2
5.65 10"
3.10 10'"
2.53 IO10
4.12 10"
3.09 10"
2.24 10"
t.78 IO'10
1.09 IO'"
W 1
IO'2
5.30 10"
2.02 10"
4.45 IO10
2.88 10"
1.75 10-"
l.ll io-"
1.87 IO'10
1.30 IO"1*
Y 1
to'2
5.77 10-"
2.04 10"
5.10 IO"10
2.93 10"
1.63 10'"
1.03 10"
2.15 10 10
1.48 IO"1*
Ir-186
D 1
to2
1.34 IO'10
5.86 10"
3.54 IO10
7.54 IO""
5.27 lO""
4.02 10'"
2.77 lO'10
1.80 IO1*
W 1
IO'2
1.55
lO-io
4.76 tO "
5.94 IO10
6.45 10"
3.62 10"
2.47 10"
3.22 tO10
2.23 10,#
Y I
to2
1.77
Iff10
4.59 10'"
6.13 IO10
6.45 10"
3.26 10'"
2.00 10"
3.73 IO'10
2.46 10''*
Ir-187
D I
to2
2.33 10"
1.07 10""
1.16 IO'10
t .56 10"
1.09 10'"
7.74 IO12
6.67 10'"
4.38 10'"
W 1
IO"2
2.29
10"11
7.82 IO'12
1.78 IO"10
1.21 10""
6.97 IO12
4.35 IO12
7.16 10'"
5.15 10-"
Y 1
IO'2
2.62
to"
7.36 tO12
1.85 IO"10
1.19 10""
6.10 IO12
3.37 IO12
8.37 10'"
5.67 IO"11
Ir-188
D 1
10-2
2.50
10-'°
1.18 IO"10
3.95 IO10
1.47 IO"10
1.07 IO10
8.23 10"
4.70 IO"10
2.92 IO"111
W 1
IO'2
3.32
to-10
9.78 10"
8.92 IO10
t.30 tO10
7.34 10"
4.92 10'"
5.46 10'°
3.88 10-"
Y 1
10'2
3.70
10-'°
9.26 10"
9.13 IO"10
1.28 10'19
6.52 10"
3.95 10"
6.10 IO"10
4.17 IO'1®
Ir-189
D 1
IO'2
1.03
lO10
8.48 10"
2.70 tO"10
1.34 IO10
1.14 IO"10
7.42 10"
6.48 IO'10
2.87 IO-'"
W 1
to2
6.64
to"
3.56 10"
2.10 10"'
6.87 10-"
4.74 10"
2.07 10-"
4.14 IO'10
4.08 IO'1®
Y 1
IO'2
5.89
10"
2.66 10'"
2.52 10'*
5.68 10"u
3.53 10"
1.06 10""
3.91 IO'10
4.46 IO14
Ir-190
D 1
IO"2
8.73
IO'10
6.71 10'°
1.34 IO-9
8.60 10'°
6.94 IO10
5.18 10'°
2.91 10"*
1.49 10'*
W 1
to2
8.07
IO'10
4.08 tO10
6.46 tO"*
5.32 IO10
3.57 1010
2.74 10'°
1.76 10"'
1.65 10'*
Y 1
10-2
7.92
IO10
3.61 IO10
7.53 10'
4.72 IO"10
2.95 IO10
2.30 10'°
1.69 tO"'
1.73 IO"'
Ir-190m
D 1
to2
3.67
to12
2.84 tO12
1.18 10""
3.62 IO12
2.94 IO12
2.21 IO"12
1.25 IO'11
7.09 10'"
W I
IO"2
3.36
1012
1.70 tO"12
3.40 10"
2.21 IO"12
1.49 Iff12
t.15 IO"12
7.50 IO'12
7.77 IO'11
Y t
10-2
3.28
10-12
1.49 tO12
3.90 tO "
1.95 IO12
1.22 IO"12
9.46 IO'"
7.40 10!2
8.24 IO "
Ir-192
D 1
IO"2
2.22
10"*
2.07 10"*
3.17 10"'
2.39 IO''
2.07 10'
1.72 10"'
1.15 I0'e
5.10 10'*
W 1
IO"2
9.42
IO'10
8.51 IO10
2.55 IO'1
9.72 10"10
7.66 IO10
6.59 10"'°
4.33 10"*
4.88 10'*
Y I
IO"2
6.08
IO'10
8.63 IO10
5.24 IO"1
9.38 10'°
7.00 lO"10
6.51 10'°
2.94 10"'
7.61 10*
lr-192m
D 1
to-2
6.51
10'
6.27 10*
7.50 IO''
7.66 10"*
6.56 10"*
5.05 tO"*
3.34 IO"1
1.48 IO4
W 1
10-2
1.99
10"*
2.14 10"*
2.11 10 s
2.60 10''
2.17 tO"*
1.70 10"'
9.95 10"'
6.76 10"*
Y 1
IO'2
2.48
10-'
1.38 IO1
7.49 10"'
1.51 IO'1
1.20 IO"1
1.08 IO'1
3.04 IO'8
1.04 nr7
-------
146
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f|
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
lr-194
D i
10'2
5.30 10"
4.78 10"
1.47 IO'5
4.88 IO'"
4.74 10-"
4.66 10""
9.07 IO10
4.78 IO'10
W i
Iff2
1.98 IO""
1.18 IO'"
2.88 IO"*
1.29 IO'"
1.10 10'"
1.02 10'"
1.20 IO*
7.14 10"10
Y 1
io-2
1.35 IO"11
3.84 IO12
2.99 105
5.04 IO'12
2.89 IO'12
2.04 IO12
1.40 10®
7.84 IO"10
lr-194m
D i
lO"2
7.40 IO"5
7.25 IO"5
9.63 10"®
8.34 IO"*
6.99 IO'5
5.76 IO4
3.07 10"'
1.47 IO"1
W i
lO'2
3.09 IO"5
3.17 10'®
3.66 10"!
3.51 IO"5
2.75 IO5
2.53 10"®
9.89 10"®
9.19 10-*
Y i
IO'2
2.04 IO'5
4.77 IO'5
1.13 10"'
4.82 10"'
3.70 10''
4.04 IO"5
9.68 10'®
1.8S IO"1
[r-195
D 1
io-2
3.28 IO12
2.81 10'"
1.82 IO'10
3.34 IO"12
3.02 IO"12
2.62 IO'12
4.59 10'"
3.74 10'"
W i
IO'2
1.05 IO12
9.22 IO"13
2.23 IO10
1.24 IO'12
1.04 IO'12
7.69 10"
2.32 10-"
3.43 IO'"
Y i
IO'2
5.02 IO'11
3.17 IO'11
2.40 IO'10
6.18 10"
4.05 10"
1.45 10'"
2.80 10'"
3.7S 10'"
lr-195m
D i
IO'2
1.25 10'"
7.70 10"'2
2.66 10 10
9.69 IO'12
7.70 IO'12
6.24 IO"12
8.63 10'"
6.37 10-"
W i
IO'2
6.31 IO'12
3.78 IO"12
3.43 IO10
4.99 lO'12
3.55 IO12
2.62 IO42
5.81 10'"
6.IS IO'"
Y i
IO'2
6.16 IO"12
2.82 IO'12
3.66 IO10
4.05 IO'12
2.42 10'IJ
1.50 IO"12
6.98 10'"
6.74 10-"
Platinum
Pt-186
D i
IO"2
1.75 10""
9.35 IO'12
1.10 IO'10
1.17 10'"
8.29 IO'12
6.95 10"
4.99 10'"
3.S8 10'"
Pt-188
D 1
IO-2
4.95 IO'10
3.36 10'°
6.97 IO10
4.46 IO"10
3.50 IO'10
2.69 IO'10
1.73 IO*
8.48 IO"10
Pt-189
D i
IO"2
2.50 10"
1.17 10'"
1.13 IO"10
1.91 10-"
1.34 10'"
8.42 10'"
7.95 10'"
4.84 IO"11
Pt-191
D i
IO-2
8.62 10'"
4.51 IO41
2.56 IO10
7.65 10""
5.58 10"
3.41 IO'"
3.19 IO"10
1.66 IO"10
Pt-193
D i
IO"2
1.43 10-"
1.33 I0-"
3.86 10'"
1.36 10""
1.35 10""
1.42 10""
1.62 IO10
6.14 10-"
Pt-193m
D i
IO'2
3.78 10"
3.55 IO'"
4.09 IO10
3.86 10'"
3.70 10"
3.50 10'"
5.55 IO"10
2.37 IO'10
Pt-19Sm
D i
IO'2
6.80 10"
5.42 10""
5.65 IO"10
7.24 IO'"
6.29 10'"
5.04 10'"
7.48 IO"10
3.29 IO10
Pt- 97
D 1
IO'2
1.64 IO-"
1.45 IO"11
4.55 IO10
1.59 10'"
1.50 IO"11
1.41 10""
2.97 10"10
1.S3 IO"10
Pt-197m
D i
lO"2
3.24 IO'12
2.80 IO'12
1.40 IO'10
3.18 IO'12
2.92 IO12
2.62 IO"12
4.83 10'"
3.31 IO"11
Pt-199
D i
IO'2
1.09 IO"12
9.87 10""
6.61 10'"
1.07 IO'12
9.66 10"
9.03 10'"
1.26 10""
1.23 IO"11
Pt-200
D i
IO'2
5.75 IO-"
4.45 10'"
1.41 IO"*
4.82 lO"11
4.39 IO'"
4.14 10""
8.38 IO'10
4.50 IO-"
Cold
Au-193
D i
IO4
2.32 10'"
1.12 10""
1.39 IO10
1.94 10""
1.45 10'"
8.81 IO'12
7.86 10""
5.08 itr"
W i
IO'1
2.36 10'"
7.30 IO"12
2.56 IO10
i.50 IO'"
8.66 IO'12
3.61 IO12
1.05 IO'10
7.13 10'"
Y i
IO"1
2.61 10"
6.52 IO'12
2.66 IO10
1.46 10""
7.41 IO"12
2.37 IO'12
1.23 10-w
7.82 10-"
Au-194
D i
IO-1
1.66 IO'10
7.36 10'"
2.62 IO10
9.38 10'"
7.10 10""
5.70 10'"
2.43 10'°
1.72 10-'°
W i
IO"1
2.14 IO"10
6.58 10"
6.19 IO"10
8.90 10'"
5.19 10"
3.50 10"
3.48 IO'10
2.55 IO"10
Y i
10'
2.37 IO"10
6.36 10"
6.37 IO10
8.88 10'"
4.73 10"
2.88 10'"
3.94 IO10
2.76 IO"10
Au-195
D i
10-'
6.27 10'"
4.04 10"
2.23 IO"10
6.89 10'"
5.73 10"
3.71 10'"
1.92 IO"10
1.17 IO'10
W i
10"'
7.71 10'"
8.21 10""
7.81 IO"'
1.62 IO'10
1.20 IO"10
4.20 IO""
4.54 IO"10
1.13 10'*
Y i
IO'1
7.67 10""
2.29 10'°
2.65 IO"8
4.35 IO"10
3.39 lO"10
1.08 IO'10
6.63 IO'10
3.50 10"»
Au-198
D i
IO'1
1.43 IO40
9.52 10"
9.52 IO'10
1.05 10 10
9.36 10'"
8.71 10'"
6.83 lO"10
3.87 IO"10
W i
IO-1
1.35 IO"10
5.07 10"
3.36 IO'5
6.20 10'"
4.22 10-"
3.46 10-"
1.22 10'®
8.20 IO'10
Y i
10'
1.40 IO'10
4.16 10-"
3.51 IO"9
5.40 IO'"
3.19 10-"
2.37 10""
1.39 10"®
8.87 IO'10
Au-198m
D i
10-'
2.42 1010
1.48 IO10
1.09 IO'5
1.88 IO'10
1.60 IO'10
1.30 IO'10
8.74 IO"10
5.07 10"'°
W i
IO"1
2.55 IO'10
9.01 10-"
5.19 10"'
1.36 IO10
8.66 IO""
5.53 10'"
1.64 IO*
1.21 10"'
Y i
IO4
2.68 IO10
7.79 10'"
5.49 IO'5
1.26 IO'10
7.14 10'"
3.99 10'"
1.84 IO*
1.31 10"*
Au-199
D i
10"'
5.06 10"
3.71 10'"
4.15 IO'10
4.45 10-"
3.99 10'"
3.42 10'"
2.96 IO'10
1.64 IO-'"
W i
10"'
3.90 IO-"
1.60 10'"
1.63 IO"*
2.45 10"
1.68 10"
1.10 10'"
5.45 IO10
3.75 IO-'"
Y i
IO-1
3.84 10"
1.19 10'"
1.71 IO"*
2.07 10'"
1.22 10'"
6.47 IO'12
6.18 IO'10
4.05 IO'10
Au-200
D i
IO'1
1.92 IO-"
1.79 IO'12
1.32 IO'10
1.82 IO"12
1.69 IO"12
1.66 10'"
2.36 10"
2.40 10""
W i
IO-1
5.56 10'"
6.81 10'"
1.48 IO10
6.81 IO"11
6.12 10"
6.24 10'"
5.78 IO'12
1.99 lO'11
Y i
IO'1
1.68 10'"
3.06 10""
1.60 IO'10
3.01 IO'11
2.28 10'"
2.42 10'"
6.46 IO'12
2.13 IO'"
-------
147
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/ft
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Au-200m
D 1 10"'
2.28 10-'°
1.1 I 10"'°
9.34 lO"10
1.32 10-'°
1.02 10"'°
9.04 10"11
6.04 10-'°
3.89 lO"10
W 1 10"1
2.49 10-'°
803 10"
1.75 10*
1.02 1010
6.17 10""
4.86 10""
8.06 10"'°
5.42 10-,°
Y 1 10"'
2.78 1010
7.46 10-"
1.80 10'5
991 lO'11
5 29 10"11
3.76 10""
9 39 10"'°
5.93 icr10
Au-201
D 10"1
3 97 10 "
3 98 10"13
4.30 10"
4.04 10"
3.88 10"
3.83 10"
6.12 10"12
7.23 10',J
W 1 10"'
1.15 10"
1.40 10""
4.70 10'"
1.41 10'"
1.33 10"
1.34 10"
1.08 1012
6.04 10*'1
Y 10*'
1.64 10""
4.35 10u
5.03 10"
4.40 10'u
3.51 1014
3.69 10"
1.15 10"12
6.40 10,J
Mercury
5.82 1012
1.12 10"'°
9.63 1012
7.20 10"12
4.53 1012
4.88 10""
3.32 10"
Hg-193
D 2 10'2
1.09 10"
W 2 10"2
8.50 1012
3.21 10"12
1.61 lO10
6.11 I012
3.74 10"12
1.72 10'12
4.36 10"
3.59 10"u
D 1.0
6.02 1012
6.28 !0"12
1.13 10'°
9.94 1012
8.72 10"12
5.86 10'12
2.46 10"
2.50 10'"
Vapor
2.19 1012
4.93 10'2
3.70 lO10
7.52 I012
6.26 I012
3.50 1012
1.06 10"
5.01 lO"11
Hg-l93m
D 2 10"2
8.76 10-"
4.27 10""
351 10'10
5.92 10"
4.38 10"
3.31 10'"
2.49 lO"10
1.54 10-'°
W 2 10'2
8.60 10""
2.83 10"
6 07 lO10
4.25 lO""
2.46 lO"11
1.54 lO"11
2.84 10"10
1.90 10'°
D 1.0
4.12 10""
4.30 10"
3.57 10"10
6.05 10"
5.25 10"
4.32 10""
1.46 lO"10
1.14 lO"'0
Vapor
2.03 10"
4.26 10"
1.34 10"®
5.12 10'"
4.25 10'"
3.57 10"
8.96 10"
2.08 10-1®
Hg-194
D 2 10"2
2.55 10®
2.05 10-*
1.99 104
2 56 10"8
2.19 10"8
188 lO"8
5.30 lO"8
3.20 10*
W 2 lO"2
7.37 10"®
6.33 10"®
2.18 I0"1
7.78 10"'
6.58 10"'
5.67 10"'
1.55 lO*
1.14 10*
D 1.0
2.98 10'
2.49 I0'8
2.39 10 s
3.81 10 s
3 25 I0's
2.85 10"s
9.51 I0"s
4.90 icr8
Vapor
3.72 104
3.00 10"8
3.03 10 s
3-75 10'1
3.21 10J
2.75 10*
7.75 10J
4.70 10-«
Hg-195
D 2 10-2
1.60 10"
874 10"12
1.08 10"'°
1.33 10"
1.01 10'"
7.19 1012
6.19 10"
3.89 lO'"
W 2 10"2
1.30 10"
5.04 1012
1.81 lO"10
8.38 1012
5.19 I0'12
3.02 1012
6.01 10'"
4.50 10"
D 10
9.19 10'12
974 10"12
1.10 10"'°
1.51 10""
1.33 10"
9.75 I0'12
3.93 10"
3.12 lO'"
Vapor
4.51 10'"
8.43 10"13
3.80 10'°
1.16 lO"11
9.79 10"12
7.20 10"12
197 10"
5.58 10'"
Hg-195m
D 2 10"2
1.05 10"'°
7.03 10""
5.03 10'°
9.36 10"
7.90 10-"
6.40 10"
4.95 10"'°
2.61 lO'10
W 2 102
9 46 10 "
3.16 10""
1.47 10"'
505 10 "
3.15 10"
1.94 10"
6.45 lO"10
4.06 lO10
D 1.0
8.08 10"
7.83 10""
514 10"'°
1.13 10'°
1.01 10"'°
8.09 10"
4.27 10"10
2.41 lO"'0
Vapor
6.49 10-"
7.62 10"
2.50 10"'
9.69 10"
8.56 10-"
6.97 10"
2.34 lO10
4.14 10-'°
Hg-197
D 2 10'2
4.40 10-"
3.12 10"
2.17 10"'°
4.98 10"
4.15 10'"
2.88 10"
2.25 Iff10
1.17 lO'10
W 2 10"2
3.38 10""
1.20 10"
7.21 1010
2.65 lO"11
1.62 10"
6.98 1012
2 84 10"10
1.86 10'1®
D 1.0
3.58 10"
3.41 10-"
221 10"'°
5.80 10"
5.15 10"
3.39 10"
2.06 10'10
1.12 10-"1
Vapor
3.15 10-"
3.47 10""
1.12 10"'
5.34 10""
4.70 10""
309 10'"
1.18 lO"10
1.92 10-"
Hg-l97m
D 2 102
4.97 JO"11
3.80 10'"
4.86 10"'°
5.04 10"
4.41 10"11
3.55 10'"
3.80 10"10
1.99 lO'10
W 2 I0'2
3.15 10-"
1.26 10"
1.17 10*
2 25 10'"
1.48 10"
8.43 10'12
4.94 10"'°
3.02 lO'10
D 1.0
4.39 10'"
4.26 10"
4.92 lO10
5.81 10""
5.35 !0 "
4.21 10"
2.58 lO10
1.64 lO'10
Vapor
3.14 10"
347 10""
2.22 10"'
4.65 10"
4.19 10"
3.17 10'"
1.19 10'10
3.23 lO-"
Hg-l99m
D 2 10-2
9.54 10"
8.49 10"
5.71 10"
1.05 10"12
9.03 10'"
7.22 10""
9.69 1012
1.03 10'"
W 2 102
2.65 10""
3.62 10"
6.37 10"
4.68 10"
3.95 lO"1'
2.88 10'"
2.28 1012
8.52 10'11
D 1.0
886 10"
997 10"
5.73 10'"
1.17 1012
1.08 1012
9.05 10'"
6.47 10"12
9.39 10',J
Vapor
7.29 10"u
4.22 10""
1.48 lO10
S.89 10"
4.76 10"
2.89 10"
8.43 10"
1.82 10'"
Hg-203
D 2 10-2
6.55 10"'°
5.47 10"'°
8.76 10'10
6 59 10'10
5.89 10'10
5.06 10"'°
2.13 10"'
1.10 10''
W 2 10-2
2.74 10"10
214 10-'°
878 10*'
2 63 10"10
2.09 lO"10
1.66 10"'°
1.19 10"'
1.55 10-'
D 1.0
8.57 10-'°
7.76 lO"10
1.11 10"'
1.06 10"'
9.47 10'10
8.09 10"'°
4.45 10"'
1.98 10'*
Vapor
8.65 !0-'°
7.90 10"'°
3.32 10®
9.45 10'10
8.49 lO'10
7.32 10"'°
2.77 10"®
1.73 10"*
THalli urn
Tl-194
D 1.0
5.75 10-"
9.66 10"
940 10'IJ
1.09 1012
8.95 10"
7.98 10"
2.97 1012
2.49 10'"
Tl-l94m
D 1.0
2.00 1012
3.16 !0'12
5.81 lO"11
3.33 10"12
2.81 10"12
2.75 10'12
1.20 10"
U1 10-"
-------
148
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/r,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
TI-195
D 1.0
3.77 I0",J
4.61 10"IJ
5.26
io-"
5.26
io-,J
4.54 10"IJ
4.09 I0"IJ
1.23 10"
1.25 10"
Tl-197
D 1.0
4.66
io-,J
5.11 10"IJ
5.51
10"
6.77
I0"IJ
5.96 10-"
4.64 !0"IJ
1.23 10"
1.34 10"
Tl-198
D 1.0
2.35 lO01
2.50 IO"11
1.30
,0-io
2.77
10""
2.38 10"
2.24 10""
4.83 IO"'1
4.44 IO01
Tl-198m
D 1.0
9.52 10"IJ
1.10 10"
1.22
10'°
1.23
10"
1.07 IO""
1.00 10"
2.70 IO""
2.89 10"
TI-199
D 1.0
6.45 10IJ
6.90 I0",J
8.27
IO""
9.57
io-,J
8.37 10"IJ
6.24 10"IJ
1.54
10""
1.88 IO""
TI-200
D 1.0
8.53 lO01
8.32 10"
2.78
,0-io
9.78
io-"
8.57 10-"
7.90 IO""
1.42
IO"10
1.27 IO""1
TI-201
D 1.0
3.66 10"
3.32 10"
1.69
10"'°
5.37
10-"
4.77 10"
3.14 10"
6.71
10""
6.34 IO""
TI-202
D 1.0
2.19 10JO
1.90 IO"10
3.40
,0-io
2.55
,0-10
2.24 IO"10
1.81
,0-io
3.29
io-'°
2.66 IO40
TI-204
D 1.0
4.14 IO10
4.14 IO"10
1.13
io-'
4.15
,0-io
4.15 IO00
4.14 IO"10
9.14
10"'°
6.50 10"'°
L«ad
Pb-195m
D 2 10"'
2.26 10IJ
1.90 IO11
3.61
io-"
2.95
10"IJ
8.31 10OJ
1.45 10IJ
8.47
10"IJ
8.37 IO01
Pb-198
D 2 10"'
9.99 10°J
7.36 10"IJ
5.57
to-"
1.66
10"
2.79 IO1"
4.81
10"IJ
2.52
10"
2.08 10""
Pb-199
D 2 10"'
9.89 I0",J
6.21 10"IJ
5.79
10-"
9.99
10-n
1.97 IO01
4.35 10,J
2.47
10-"
1.97 10""
Pb-200
D 2 10"'
1.08 IO"10
6.39 10"
3.40
10-'°
2.02
io-10
7.66 IO00
4.28 IO-"
2.95
10-'°
2.14 IO"10
Pb-201
D 2 10"1
3.85 10"
1.96 IO01
1.46
IO"10
5.63
io-"
2.10 IO"10
1.33 IO-"
9.11
10""
7.09 10""
Pb-202
D 2 10"1
1.45
LO*
1.63 IO4
1.62
IO8
6.66 IO4
9.46 IO4
1.49 10"'
2.42
IO"8
2.65 10"*
Pb-202m
D 2 10"'
3.17 10JI
1.80 IO""
1.20
IO-'0
2.51 10"
3.52 10""
1.35 IO-"
6.26
10"
4.83 IO'"
Pb-203
D 2 IO"1
6.01
lO"1'
3.44 IO01
2.06
IO-'0
1.54
IO10
7.54 IO"10
2.34 IO-"
1.86
IO"10
1.43 IO"10
Pb-205
D 2 IO"1
5.25
10-"
5.87 10"
7.76
10-"
4.37
10'
9.58 10'
5.51
IO""
7.30
IO"10
1.06 10*
Pb-209
D 2 10°
1.48 I0"IJ
1.48 10IJ
1.15
IO-'0
6.03 I0IJ
5.75 IO01
1.48
I0",J
2.92
10"
2.56 IO"11
Pb-210
D 2 10"'
3.18 I0J
3.18 IO"7
3.18
IO-7
3.75 IO'4
5.47 10"'
3.18 IO"7
4.69
IO'4
3.67 IO4
Pb-211
D 2 10"'
1.63 IO"10
1.63 IO"10
1.78
IO4
2.64 IO"'0
1.39 10"'
1.63 IO10
2.51
IO"'0
2.35 IO*
Pb-212
D 2 LO"'
3.47
IO*
3.43 Iff'
1.97
IO"7
3.34 1 cr*
3.71 IO"7
3.42 10'
1.78
IO4
4.56 IO""
Pb-214
D 2 10"'
1.63
IO"'0
1.62 IO"10
1.49
IO"8
4.63 10'°
3.88 IO"9
1.62 IO"10
2.62
,0-«o
2.11 10"'
Bis mulh
Bi-200
D 5 I0"J
5.94
10-,J
3.91 I0"IJ
5.11
10"
5.02 10IJ
3.14 10"IJ
2.44 10",J
2.96
io-"
1.78 IO01
W 5 I0"J
6.04
iO'IJ
3.32 10 11
6.90 10-"
4.18
I0-,J
2.63 10"IJ
2.27 10"IJ
1.77
10-"
1.62 10""
Bi-201
D 5 10"J
1.64
10"11
8.12 10",J
1.45
IO10
1.11
10-"
6.56 10IJ
4.68 10"IJ
9.11
10-"
5.17 10""
W 5 10"5
1.28
10-"
6.38 10"
1.92
,0-10
8.39 10"l!
5.06 10IJ
4.04 10"l!
4.76
10-"
4.28 10"
Bi-20 2
D 5 10"J
1.55
10"
9.39 10"IJ
8.40 IO01
1.15
10"
6.97 10OJ
5.69 10"IJ
5.70 10""
3.42 10"
W 5 10"J
6.13
I0",J
6.50 10IJ
9.67
IO'"
7.11
I0",J
4.88 I0"IJ
4.99 10"IJ
2.24
10""
2.20 IO""
Bi-203
D 5 10J
1.24
10-'°
4.94 IO01
3.07 IO"10
6.84 10-"
3.74 IO""
2.35
I0-"
3.94 IO"10
2.03 IO"1*
W 5 I0J
1.53
IO10
5.07 10"
5.75
10-10
6.67
10-"
3.60 10"
2.46
10"
3.30 IO"10
2.24 IO"10
Bi-205
D 5 10"J
3.40
,0-10
1.48 IO10
4.11
IO"10
2.14
10-1°
1.17 IO"10
6.69
10-"
1.19 10"'
5.44 IO"10
W 5 10J
6.91
10-'°
3.70 IO10
4.31
10'
4.31
,0-io
2.74 IO00
2.41
IO"'0
1.20 10"'
1.17 10"'
Bi-206
D 5 10'1
5.99
10"'°
2.46 IO"10
9.47
10-'°
3.55
IO-'0
1.93 IO'10
1.17
10-'0
2.28 10"'
l.W 10-'
W 5 10"5
1.16
10"'
4.38 IO00
5.62
10-'
5.41
10-'°
3.14 IO"'0
00
N©
IO"'0
2.20 10'
1.77 10"'
Bi-207
D 5 I0"J
3.74
10-'°
1.79 10'°
6.95
IO-'0
2.61
IO-'0
1.46 IO"10
9.02
io-"
2.10 10*
8.73 10"l#
W 5 10"J
9.71
10-'°
1.25 10'
3.17 IO"8
1.32
10-'
9.58 IO"10
1.08
10-'
3.19 IO"9
5.41 10*
Bi-210
D 5 10"J
1.96
IO"10
1.96 IO00
2.47
IO-5
1.96
10-10
1.96 IO00
1.96
10"'°
1.26 10"'
5.85 IO-4
4.18 10"'
Kidneys
W 5 IO"5
6.47
10"
6.47 10"
4.26 IO"7
6.47
I0-"
6.47 10"
6.47
10-"
5.66 10'
5.29 10"*
Bi-210m
D 5 10J
1.01
LO*
1.00 10"'
3.15
IO"7
1.01
IO4
1.00 IO4
1.00
10"*
6.03 IO"7
2.25 IO"7
W 5 10^
io-'
2.96 IO"4
Kidneys
3.20
3.23 IO*
1.66 ICf5
3.28
IO*
3.20 10'
3.16
10'
1.92 10"7
2.05 IO"4
Bi-212
D 5 I0"J
1.66
l»10
1.65 IO"'0
3.39 IO4
1.65
[Q-10
1.64 IO'*
1.64
,0-10
5.56 10'
5.83 10"'
W 5 10^
4.74
10-"
4.80 10"
3.89 IO"8
4.80 IO""
4.75 IO01
4.75
io-"
1.59 10'
5.17 IO4
-------
149
Table 2.1, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nucl idc
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Bi-213
D 5 IO"2
1.31 lO"10
1.31 lO"10
2.81 IO"1
1.31
IO"10
1.31 IO"10
1.31 IO"10
3.95 10"'
4.63 10"'
w s icr2
3.80 10""
3.80 10-"
3.16 10"'
3.81 IO"11
3.80 10""
3.80 10""
1.14 10"'
4.16 10"'
Bi-214
D 5 IO"2
5.08 10"
5.10 IO"11
1.22 IO"1
5.10 10"
5.08 IO"11
5.07 IO"11
9.43 IO"10
1.78 10"'
W 5 lO"2
1.51 lO"11
1.55 lO"11
1.32 IO"1
1.55
10"
1.54 10""
1.54 10"
2.77 10"10
1.68 10"'
Polonium
Po-203
D i icr1
1.08 lO"11
6.43 IO"12
6.78 10"
7.57
IO"12
5.59 IO"12
4.77 IO"12
2.81 10"
2.14 10-"
W 1 10'1
9.12 IO"12
4.46 lO"12
8.56 IO"11
5.33
IO12
3.47 IO'12
2.97 IO"12
1.96 IO"11
1.99 10-"
Po-205
D 1 10"'
1.72 lO"11
1.21 lO"11
I.I 1 IO"10
1.39
10"
1.06 IO"11
9.39 IO"12
4.94 IO"11
3.65 10-"
W 1 IO"1
8.74 IO"12
7.30 IO"12
1.44 IO"10
8.05
IO"12
5.88 IO"12
5.71 IO"12
2.03 IO"11
2.80 10""
Po-207
D 1 10-'
3.72 10""
1.96 10-"
1 17 IO10
2.37
10"
1.67 10"
1.48 IO"11
8.14 10"
5.45 Iff"
W 1 10-'
2.81 10"
1.39 10"
1.52 IO"10
1.65
10"
1.06 10"
9.82 IO"12
5.91 10"
4.77 IO'"
Po-210
D 1 IO"1
4.04 IO"1
4.04 IO"1
7.29 IO'7
4.04
IO"1
4.04 I0 T
4.04 IO"1
7.40 IO"4
2.54 IO"4
W 1 10"'
1.26 IO"1
1.26 icr'
1.30 10"!
1.26
IO-1
1.26 IO'1
1.26 IO"1
2.30 IO"4
2.32 IO-4
Astatine
At-207
D 1.0
9.87 lO""
I.00 lO"10
4.32 10"'
1.03
Iff10
1.00 IO"10
I.00 I0"'°
1.16 IO"10
6.11 IO-'®
W 1.0
3.56 lO""
4.07 10""
5.14 10"'
4.18
10"
3.96 IO'"
4.02 I0"n
5.38 IO"11
6.55 Iff14
At-21 1
D 1.0
5.08 IO"'
5.08 10"'
1.48 10"'
5.08
10"'
5.08 10"'
5.08 IO"'
5.12 10"'
2.22 IO"'
W 1.0
2.43 IO"'
2.43 10"'
2.12 10"'
2.43
I0-'
2.43 10"'
2.43 IO"'
2.47 10"'
2.76 IO"*
Krancium
Fr-222
D 1.0
3.29 IO"10
3.29 IO"10
2.52 10"'
3.29
IO10
3.29 IO10
3.29 IO"10
3.52 IO"10
3.32 10"'
Fl-223
D 1.0
1.44 lO"'
1.44 10"'
3.44 IO''
1.44
10"'
1.44 iO"'
1.44 10"'
1.44 10"'
1.68 10"'
Radium
Ra-223
W 2 IO"1
3.38 10s
3.38 10"'
1.66 IO'5
2.24
10-'
2.34 IO"4
3.38 IO"1
6.14 10"'
2.12 IO"4
Ra-224
W 2 10"'
1.56 lO"1
1.54 IO'8
6.56 10^
1.13
IO7
1.17 IO"4
1.53 IO"1
3.55 IO"1
8.53 Iff7
Ra-225
W 2 10-'
3.07 IO"1
3.07 10 s
1.67 IO"5
1.58
10-'
1.68 IO"4
3.07 IO"8
3.63 10 s
2.10 IO"4
Ra-226
W 2 lO"1
1.02 10"'
1.02 IO"1
1.61 10 s
6.64
IO"1
7.59 IO"4
1.02 IO"1
1.07 10"'
2.32 IO"4
Ra-227
W 2 I0'1
2.27 IO"12
2-36 IO12
3.32 IO'10
4.81
IO""
9.59 IO"10
2.30 IO"12
4.60 IO"12
7.68 10""
Ra-228
W 2 10"'
1.83 10"7
1.84 10''
7.22 IO"4
7.38
Iff'
6.51 IO"4
1.83 IO"7
1.87 IO"1
1.29 IO"4
Actinium
Ac-224
D 1 IO'3
5.87 lO-'
6.95 IO"12
5.95 IO4
3.84
IO-1
4.83 IO"7
2.49 IO"12
2.64 IO"1
3.56 IO"1
W 1 Iff3
1.01 10"'
5.66 IO"12
2.28 I0 T
6.38
10-'
8.04 10 s
2.78 IO"12
5.12 10"'
3.23 IO"'
Y 1 IO"3
7.48 10""
5.38 IO"12
2.43 IO'1
3.82
IO10
4.73 10"'
2.68 IO"12
1.18 10"'
2.97 IO"*
Ac-225
D 1 10"3
5.22 10''
7.63 10""
1.57 IO'4
3.72
IO"4
4.65 10"'
4.03 10""
2.53 IO4
2.92 IO"4
W 1 Iff3
8.70 I0"!
5.16 10"
1.55 I0"s
6.19
IO"1
7.75 10"*
2.89 IO"11
4.53 10"'
2.32 IO"4
Y 1 10°
5.20 10"'
4.66 IO'11
1.79 IO'5
3.63
I0!
4.53 10"'
2.64 IO"11
6.14 10"'
2.19 IO"4
Ac-226
D 1 10°
5.60 10 s
7.29 IO"12
9.15 IO"'
3.30
IO"'
4.19 IO"4
3.07 IO"12
2-24 IO"1
3.56 10"'
W 1 IO"3
1.07 lO"1
7.43 IO12
2.30 IO"4
6.35
IO'1
8.04 IO"1
2.71 IO"12
5.22 IO"1
3.26 10"'
Y 1 IO"3
1.30 10"'
7.45 IO"12
2.42 10 s
7.89
10"'
9.89 IO"1
2.45 IO"12
1.73 I0"!
3.00 Iff'
Ac-227
D 1 10°
3.96 IO"4
6.66 IO'1
1.23 IO"1
2-57
IO'3
3.21 Iff2
3.59 IO"1
1.47 IO"3
1.81 IO"3
W 1 IO'3
9.98 IO"5
1.70 IO"1
6.80 IO'5
6.49
IO"4
8.10 IO"3
9.22 10"'
3.70 IO 4
4.65 IO*
Y 1 10°
3.56 I0"s
1.06 IO'1
1.54 IO'3
2.33
IO"4
2.91 IO"3
6.47 10"'
1.34 IO'1
3.49 10"*
Ac-228
D 1 I0"3
1.58 IO"1
2.11 IO"11
6.4I IO10
1.14
IO"1
1.43 IO"4
8.81 IO"12
7.56 10"'
8.33 IO'1
W 1 Iff3
3.90 10"'
1.24 10"
3.47 IO'1
2.80
IO"1
3.49 10"'
6.77 IO12
1.87 I0'!
2.46 IO"1
Y 1 IO"3
6.84 lO"10
1.28 IO'11
2.53 IO"1
4.76
10"'
5.93 IO"1
7.79 IO12
3.36 10"'
3.39 IO"'
Thorium
Th-226
W 2 10"*
1.62 IO"10
1.62 IO-14
7.2I IO"1
5.14
IO"10
4.53 10"*
1.62 IO"10
1.81 IO"10
8.97 10-»
Y 2 IO"4
9.17 IO"12
9.18 IO'12
7.82 IO"1
1.22
IO-10
1.42 10"'
9.18 IO12
2.94 I0"M
9.45 10-'
-------
150
Table 2.1, Cont'd.
Commitled Dose Equivalent pet Unit Intake ISv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Th-227
W 2 IO"4
5.36 IO4
5.36 IO'8
2.40 IO'5
2.43 IO"6
2.94 I0's
5.35 IO'8
1.47 IO"7
4.12 10¦*
Y 2 IO"4
2.96 IO'9
2.98 IO'9
3.58 IO'5
1.30 IO'7
1.58 10*
2.94 IO'9
2.06 IO'8
4.37 IO*
Th-228
W 2 IO"4
1.35 IO"6
1.35 IO"6
9.48 IO'5
1.12 IO'4
1.37 10°
1.34 IO"6
3.44 IO"6
6.75 10 s
Y 2 IO"4
2.26 10"'
2.32 ia7
6.91 IO-4
1.87 IO"5
2.29 IO-4
2.30 IO"7
6.05 IO'7
9.23 IO"5
Th-229
W 2 IO"*
2.76 IO"4
2.76 IO"6
7.95 IO'5
1.15 IO"3
1.43 10J
2.76 IO"6
7.05 IO"6
5.80 IO"4
Y 2 IO"4
1.18 IO"6
1.18 IO"6
1.99 IO"3
4.60 IO"4
5.73 ICT5
I -18 10"6
3.02 IO"6
4.67 IO"4
Th-230
W 2 IO"4
4.08 10"'
4.08 IO"'
1.61 IO"5
1.73 IO"4
2.16 10J
4.08 IO4
1.05 IO"6
8.80 IO"5
Y 2 IO"4
1.72 IO"7
1.72 IO"7
3.00 IO"4
6.99 I0J
8.71 IO"4
1.72 IO4
4.48 10"'
7.07 IO"5
Th-231
W 2 IO"4
7.62 IO'12
3.00 IO12
7.81 IO40
7.88 IO41
9.22 IO40
1.97 IO'12
3.32 IO"10
2.33 IO4"
Y 2 IO"4
6.95 IO"12
1.42 IO12
8.75 IO40
2.78 10'"
3.15 IO'10
3.09 IO43
3.91 IO40
2.37 10'">
Th-232
W 2 IO"4
7.62 IO"7
7.72 IO"'
1.44 10 s
8.93 IO"4
1.11 10J
7.44 IO"'
1.87 IO"6
4.43 IO4
Y 2 IO"4
5.98 IO"7
6.14 IO'7
9.40 IO"4
4.01 IO"4
4.99 10°
5.99 IO"7
1.51 IO'6
3.11 IO"4
Th-234
W 2 IO-4
1.13 IO'10
1.08 IO"10
4.66 IO"8
4.18 IO"9
7.83 IO'9
1.03 IO"10
5.54 IO'9
8.04 IO"9
Y 2 IO"4
2.11 IO41
1.66 iO'"
6.39 10 s
2.56 IO40
6.29 IO'10
1.27 IO41
5.80 IO"9
9.47 IO"9
Protactinium
Pa-227
W I IO'3
4.60 IO"14
8.34 IO04
9.95 IO4
4.76 IO'10
7.30 IO"9
5.20 IO44
2.26 IO40
1.23 10"*
Y ! IO"3
4.82 IO04
9.11 IO"14
1.10 IO'7
2.70 IO41
4.09 IO40
5.63 IO44
4.67 IO"11
1.32 IO4
Pa-228
W I I0'3
1.55 IO40
4.78 IO'11
1.59 IO'7
8.86 IO"8
1.11 10"*
2.35 IO'11
2.81 IO"9
6.39 10'*
Y I IO"5
1.79 ia'°
5.34 IO41
9.31 IO"'
1.50 IO4
1.86 IO'7
2.74 IO41
1.00 IO'9
1.19 IO"1
Pa-230
W I IO'3
3.27 IO00
1.90 IO10
1.87 IO"4
1.53 IO'7
1.91 IO"6
1.37 IO'10
2.40 IO"8
3.07 IO'7
Y I 10°
3.34 IO'10
1.96 IO"10
3.25 IO'6
1.51 IO'8
1.86 IO"7
1.53 IO40
2.49 IO"9
3.98 IO'7
Pa-231
W I 10°
6.90 IO"9
8.79 IO"9
1.72 IO"5
6.97 IO"4
8.70 10J
7.64 10*
2.87 IO"7
3.47 ICT*
Y I IO"3
3.06 IO"9
5.65 IO"9
7.47 IO"4
2.88 IO"4
3.60 I0J
4.45 IO"9
2.12 IO'7
2.32 IO"*
Pa-232
W I 10°
1.66 IO00
4.77 IO'11
2.40 IO"9
4.89 IO'8
6.10 IO"1
2.51 IO'11
6.13 IO00
2.47 IO'8
Y I IO"3
1.92 IO'10
4.86 IO11
7.47 IO"8
1.94 IO4
2.41 IO'1
2.44 IO41
7.12 IO40
1.88 IO4
Pa-233
W I io-3
1.29 IO10
8.32 10'"
1.19 IO4
8.21 IO40
7.37 IO'9
5.17 IO'11
1.47 IO"9
2.24 10'*
Y I IO'3
1.29 IO'10
9.20 IO41
1.70 IO8
1.86 IO40
8.28 IO40
5.62 10'"
1.48 IO'9
2.58 10"'
Pa-234
W I I0J
5.08 10'"
2.03 10"
8.46 IO40
3.31 IO41
8.24 IO41
1.20 IO"11
2.46 IO40
1.98 IO-10
Y I 10°
6.13 IO01
2.19 10'"
8.97 10"10
2.74 IO'11
2.06 IO"11
1.23 IO41
2.98 IO40
2.20 IO4"
Uranium
U-230
D 5 IO'2
7.90 IO1
7.90 IO"*
2.02 IO"6
2.73 IO"4
3.29 IO"5
7.90 IO"8
2.44 IO"6
2.32 IO"6
W 5 IO'2
1.71 IO"8
1.71 IO"8
3.25 IO"5
5.95 IO"'
7.17 10*
1.71 IO4
5.63 IO"'
4.36 10"*
Y 2 IO"3
8.87 IO"10
8.82 IO'10
4.35 10 s
3.28 IO4
3.96 IO'7
8.78 IO40
7.03 IO4
5.26 IO"4
U-231
D 5 I0"J
2.50 10"
1.30 IO'11
2.36 IO10
1.34 IO"10
1.23 IO'9
9.17 IO"12
2.98 IO"10
1.79 IO-'"
W 5 I0J
3.65 IO'11
1.16 IO41
1.18 IO"9
4.69 IO41
2.80 IO40
4.98 IO02
3.72 IO40
2.78 IO'10
Y 2 IO"3
4.15 IO'11
1.07 IO41
1.51 IO'9
2.56 IO41
5.03 IO41
3.58 I0"IJ
4.14 IO40
3.22 IO'18
U-2 32
D 5 IO"2
8.00 IO*
8.06 IO4
4.07 IO"7
4.06 IO"6
6.42 IO4
7.85 IO4
3.11 IO"6
3.43 10"6
W 5 IO"2
2.51 IO"8
2.53 IO4
2.49 IO'5
1.23 10*
1.94 I0's
2.47 IO4
9.76 IO"7
4.02 IO-4
Y 2 IO"3
1.69 IO'1
2.66 IO4
1.48 10°
4.68 IO'7
7.14 10*
2.43 IO4
5.86 10'7
1.78 IO"4
U-233
D 5 IO"2
2.54 IO'1
2.54 10"'
3.22 IO'7
7.12 ICr'
1.12 10"'
2.54 IO"8
9.40 IO4
7.53 IO'7
W 5 IO"2
7.63 IO'9
7.63 IO'9
1.62 IO'5
2.14 IO'7
3.36 IO"6
7.63 IO''
2.89 IO"7
2.16 10"*
Y 2 10°
2.69 IO'9
2.73 IO"9
3.04 IO"*
7.39 IO4
1.16 10*
2.70 IO"9
1.08 IO4
3.66 10"'
U-234
D 5 IO'2
2.50 ICH
2.50 IO'1
3.18 IO'7
6.98 IO"'
1.09 IO"5
2.50 IO4
9.26 IO'7
7.37 IO"7
W 5 IO"2
7.52 10"'
7.52 IO'9
1.60 IO'5
2.10 ICr'
3.29 IO"6
7.52 IO"9
2.85 IO"'
2.13 10"*
Y 2 10°
2.65 10"'
2.68 IO"9
2.98 IO"4
7.22 IO4
1.13 IO"6
2.65 IO"9
1.06 10"'
3.58 ICT5
-------
151
Table 2.1, Cont'd
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
U-235
D 5 !0"2
2.37 104
2.38 10'8
2.95 10'1
6.58 10"'
1.01 10"'
2.37 104
8.59 Iff1
6.85 10"'
W 5 10"2
7.24 10"'
7.33 10"'
1.48 10"5
1.98 I0'1
3.05 I04
7.22 10"*
2.65 10°
1.97 10"4
Y 2 I0"3
2.84 10"'
5.37 lO*
2.76 I0"4
7.15 10"®
1.05 10"4
4.11 10"*
1.02 10°
3.32 10"'
U-236
D 5
10"2
2.37 10"®
2.37 10"*
3.01 10''
6.60 10"'
1.04 10*
2.37 104
8.77 lO"1
7.01 lO"1
W 5 10"2
7.12 10"'
7.12 10"'
1.51 10's
1.99 lO'1
3.12 10*
7.12 10"'
2.70 tO*7
2.01 10"4
Y 2 JO"3
2.51 10''
2.54 lO*
2.82 10-4
6.83 104
1.07 10"*
2.51 10"*
1.00 io-7
3.39 10-'
U-237
D 5 TO"2
5.55 10"
3.39 10-"
6.13 10"10
4.12 lO40
4.02 10"'
2.62 10"
8.94 lO"10
5.32 lO""
W 5
!0'2
7.39 10"
2.78 10"
4.26 10'
1.23 lO"10
8.35 10"10
1.39 10"
1.10 10"'
9.03 Iff"1
Y 2
10°
8.15 10"
2.51 10"
4.70 10"5
5.23 lO"11
6.82 10"
1.00 to-"
1.19 10"'
9.54 lO"1®
U-238
D 5 10"2
2.23 10"'
2.23 lO"*
2.80 10"'
6.58 10"'
9.78 10"4
2.22 I04
8.22 10"7
6.62 10"'
W 5
10'2
6.71 10"'
6.74 10''
1.42 10'5
1.98 10"'
2.94 104
6.71 lO*
2.54 10"'
1.90 10"4
Y 2 10"J
2.42 10'
2.91 tO"5
2.66 10"4
6.88 104
1.01 10"*
2.73 10"'
9.61 104
3.20 10"*
U-239
D 5
10"2
6.28 1013
4.92 10"13
4.25 10'"
1.84 10"12
1.27 10"11
4.32 1013
9.89 10"12
8.91 10"11
W 5 10"2
4.86 1013
2.33 1013
5.75 10"
6.00 1013
2.75 10"12
1.59 1013
7.46 10"12
9.45 10-"
Y 2 10°
4.60 1013
1.40 1013
6.16 lO-"
2.70 1013
3.11 10IJ
5.92 10"14
8.50 10"12
1.01 10"n
U-240
D 5 10"2
4.08 10"11
2.69 10"11
1.27 10"'
1.19 lO'10
3.70 10"10
2.37 10""
7.60 10"10
4.21 lO*"'
W 5 TO"2
3.16 10"
1.26 lO"11
2.26 lO*
3.47 10'11
9.06 lO"11
8.52 lO"12
8.66 lO"10
5.48 lO "
Y 2 10°
3.35 10-"
8.98 10"12
2.43 lO*
1.26 10-"
1.49 10"
4.15 lO"12
1.03 10*
6.13 104#
Neptunium
I0J
Np-232
W 1
6.85 I0"11
4.32 1013
2.06 lO"11
6.12 10"10
7.63 10"'
3.81 10"
5.60 10"
3.39 10"10
Np-233
W 1
!0'3
5.85 lO-14
9.08 1014
3.39 10"12
2.61 1013
1.57 10"12
6.10 10"14
2.38 10"13
5.87 lO"11
Np-234
W 1
10°
3.48 10'10
1.30 lO10
1.59 10"'
2.44 10"10
5.85 lO"10
6.85 10"
6.74 lO"10
S.49 10,#
Np-235
W 1
lO'3
1.49 lO10
1.71 10"
2.30 10"'
1.68 10''
1.67 104
3.13 10"IJ
3.46 lO"10
1.12 lO*
Np-236
W 1
to-3
6.29 10'4
9.83 10*
1.32 I0"1
5.12 10"5
6.39 I0"4
6.29 10"'
3.99 10"*
2.81 10"5
1.15 10'y
Np-236
W 1
10"3
4.05 I0-'
3.93 1012
8.14 10'*
3.87 10"*
4.83 lO"7
2.00 1012
4.04 10"'
2.23 104
22.5 h
Np-237
W 1
10'3
2.96 10"5
1.69 104
1.61 10'5
2.62 lO"*
3.27 10"3
1.34 104
2.34 I0"5
1.46 10"4
Np-238
W 1
10"3
1.99 10"'
4.18 10"11
3.47 10*
1.69 10"*
2.10 10'7
2.45 10""
2.55 10''
1.00 10"s
Np-239
W 1
10°
7.45 10-"
1.63 10"
2.36 10"'
2.08 10"10
2.03 10"'
7.62 lO"12
9.59 lO"10
6.78 10-,e
Np-240
W 1
10°
2.28 10 12
2.26 1012
1.26 lO"10
8.15 1012
6.99 10"11
1.98 10"12
9.30 10"12
2.20 10"11
Plutonium
Pu-234
W 1 10°
3.68 10"10
3.49 lO"11
4.75 10"1
2.28 lO*
2.80 10"'
2.92 lO-"
1.64 10"'
7.40 10"'
Y 1
10"s
6.37 10"11
1.13 10"
6.00 I04
2.13 10"10
2.48 10"'
5.81 10"12
2.75 lO"10
7.40 10"*
Pu-235
W 1
10"3
3.47 1014
6.83 10"14
3.7S 1012
1.47 lO"13
5.47 10"13
4.63 lO"14
2.01 10"IJ
5.68 1041
Y 1
10"5
1.58 10"14
6.10 10"14
4.46 10"12
9.29 1014
1.21 lO"13
3.79 lO"14
1.77 10'IJ
6.17 10"IS
Pu-236
W 1
10°
9.35 10"*
3.31 I0*
1.84 I0"5
5.36 10"5
6.70 lO"4
1.86 10"'
2.68 10"5
3.91 Iff5
Y 1
10"5
3.16 10-4
1.53 W'
1.88 10"4
1.81 10 s
2.26 lO4
8.38 lO"10
8.91 I04
3.50 10-'
Pu-237
W 1 10°
6.5! 10-"
3.89 lO"11
2.20 lO*
2.46 lO"10
1.83 10"5
1.82 lO""
3.23 lO10
4.68 10-1"
Y 1
10'5
3.86 10"
4.07 10-"
3.70 10"'
7.68 lO-"
1.80 lO"10
2.18 10""
1.95 10"10
5.33 10-"
Pu-238
W 1
10"3
2.80 10'5
1.00 10"5
1.84 lO'5
1.52 10J
1.90 10°
9.62 lO"10
7.02 10"5
1.06 104
Y 1
10"5
1.04 10"5
4.40 lO"10
3.20 I0"4
5.80 I0"5
7.25 I0"4
3.86 lO"10
2.74 I0'5
7.79 lO"®
Pu-239
W 1 10°
3.18 10"5
9.22 lO"10
1.73 lO"'
1.69 10"*
2.11 10"3
9.03 10'°
7.56 10"5
1.16 10"*
Y 1
10-5
1.20 ICT5
3.99 10'°
3.23 10"4
6.57 10'5
8.21 lO"4
3.75 lO"10
3.02 10"5
8.33 10'5
Pu-240
W 1
I0'3
3.18 10-5
9.51 10'°
1.73 10"5
1.69 lO"*
2.11 10J
9.05 lO"10
7.56 10"s
1.18 10"*
Y 1
10-'
1.20 10"5
4.33 10'°
3.23 10"*
6.57 I05
8.21 lO-4
3.76 lO"10
3.02 10J
8.33 lO"5
CO - <«
<-f '*r-
T.
-------
152
Table 2.1, Cont'd.
Committed Dote Equivalent per Unit Intake (Sv/Bq)
Nuclide
Class/ f|
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Pu-241
W 1
10-'
6.82 10"'
3.06 Iff"
7.42 Iff'
3.36 IO"4
4.20 lCT*
1.24 IO"11
1.31 IO"4
2.23 IO"4
Y 1
10"5
2.76 IO"7
2.14 Iff"
3.18 IO"4
1.43 IO"4
1.78 1CT5
9.15 Iff"
6.02 10"'
1.34 IO"4
Pu-242
W 1
10J
3.02 10"!
9.45 Iff10
1.64 Iff5
1.61 IO"4
2.01 IO"1
8.79 IO"10
7.18 10"5
1.11 IO"4
Y 1
Iff5
1.14 IO"5
4.35 Iff10
3.07 10J
6.25 Iff5
7.81 IO"4
3.71 IO"10
2.86 Iff5
7.92 IO"5
Pu-243
W I
Iff5
3.68 Iff12
6.32 Iff13
1.91 10"'°
1.58 Iff"
1.86 10"'°
4.82 10""
4.33 Iff"
4.44 IO'"
Y 1
Iff5
1.67 Iff12
2.75 IO"15
2.27 10"'°
5.77 Iff12
6.53 Iff"
1.13 IO"15
4.69 IO"11
4.44 10"
Pu-244
W ]
10J
2.99 10"5
3.33 IO"8
1.63 10"5
1.59 IO"4
1.98 1CT5
1.82 IO'8
7.13 Iff5
1.09 IO"4
Y 1
10"5
1.13 Iff5
2.07 IO"8
3.03 10"*
6.19 Iff5
7.69 10"4
1.27 IO"8
2.84 10"5
7.82 IO"5
Pu-245
W ]
105
3.33 Iff"
9.77 Iff12
1.29 10"'
5.60 Iff"
3.68 Iff10
6.05 IO12
4.96 Iff10
3.31 10,#
Y 1
10"5
3.06 10""
8.09 Iff12
1.40 10*'
2.16 Iff"
1.28 10'°
3.98 Iff"
5.71 IO"10
3.55 IO-'4
Pu-246
W ]
Iff5
7.74 Iff10
2.11 IO"10
2.48 10"8
2.40 10"'
2.08 Iff8
1.23 10"'°
6.01 10'
5.92 IO"'
Y 1
Iff5
5.34 10"'°
1.87 10"'°
3.09 10"8
7.28 Iff10
5.92 10"'
1.13 10"'°
5.50 IO"9
5.79 10-»
Americium
Am-237
W ]
10"5
7.07 Iff13
8.15 Iff13
4.16 Iff"
1.33 Iff"
3.74 10",:
5.77 10"
2.97 Iff"
6.47 IO"'1
Am-238
W ]
10°
6.15 Iff"
2.20 Iff"
7.80 Iff"
3.26 Iff10
4.05 10"'
1.80 10,:
1.55 Iff10
2.32 IO"10
Am-239
W ]
10°
2.26 Iff"
6.22 Iff"
4.75 Iff10
2.74 Iff"
1.90 IO"10
2.87 10,:
1.72 IO"10
1.24 10"'»
Am-240
W ]
Iff5
2.80 Iff10
7.67 Iff"
1.06 10"'
2.71 10"1Q
2.10 10'
4.24 10""
6.34 IO"10
4.96 IO'10
Am-241
W ]
Iff5
3.25 IO"5
2.67 10"'
1.84 10"5
1.74 10"*
2.17 1CTJ
1.60 10"'
7.82 10"5
1.20 IO"4
Am- 24 2m
W ]
10'3
3.21 10"!
1.38 10"'
4.20 IO"4
1.69 IO"4
2.12 10J
5.64 10"1Q
7.48 Iff5
1.15 IO"4
Am-242
W ]
10°
1.94 lO-9
2.94 Iff"
5.20 10"8
1.32 IO4
1.65 10"7
2.52 Iff"
8.54 10"'
1.58 IO"8
Am-243
W ]
10"!
3.26 Iff'
1.52 IO"8
1.78 10"5
1.73 IO"4
2.17 10"J
8.29 IO"'
7.74 IO"5
1.19 Iff4
Am-244m
W ]
10°
4.36 lO01
1.15 Iff"
1.08 10"1Q
2.56 10"1Q
3J0 10"9
1.13 10""
1.31 IO"'0
1.90 Iff10
Am-244
W ]
10°
1.06 10"'
1.60 Iff"
2.01 Iff'
6.00 10"'
7.47 Iff*
9.67 Iff"
3.34 Iff'
4.47 10"'
Am-245
W ]
IO"5
1.31 Iff12
3.04 Iff13
1.25 10"'°
5.66 Iff"
6.22 Iff"
3.01 Iff"
1.28 10""
2.18 10""
Am-246m
W ]
10"5
6.52 Iff15
6.63 Iff15
5.78 Iff"
2.43 Iff"
2.24 Iff"
6.38 10""
2.80 10""
9.02 10""
Am-246
W ]
10"5
1.09 Iff"
8.93 10""
1.12 10"'°
3.83 Iff"
3.63 10""
7.75 10"
5.45 10""
1.71 10""
Curium
Cm-238
W ]
10-'
1.17 Iff10
2.16 Iff"
8.73 lO"'
5.48 10"'°
6.59 10"'
2.03 Iff"
3.07 IO"10
1.44 10"'
Cm-240
W ]
10°
3.01 IO'7
8.32 10"1Q
7.51 IO"4
1.82 IO"4
2.27 10"s
7.93 Iff10
9.92 IO"7
2.17 IO"4
Cm-241
W ]
Iff5
7.79 10"'
2.88 10"'°
9.01 IO"8
4.17 IO4
S.13 IO"7
1.84 10"'°
2.15 IO4
3.97 Iff8
Cm-242
W ]
IO"5
5.70 IO"7
9.44 10"'°
1.55 10"5
3.90 IO"4
4.87 IO"5
9.41 10"'°
2.45 IO"4
4.67 IO"4
Cm-243
W ]
10°
2.07 Iff5
6.29 10"'
1.94 10"5
1.18 10"*
1.47 IO"1
3.83 10"'
5.76 IO"5
8.30 IO"5
Cm-244
W ]
10°
1.59 10"5
1.04 10"'
1.93 IO"5
9.38 10"5
1.17 10"J
1.01 10"'
4.78 IO"5
6.70 10"5
Cm-245
W 1
10°
3.37 IO"5
6.69 10"'
1.80 10"5
1.79 IO"4
2.24 1CTJ
3.68 10"'
7.96 10"5
1.23 IO"4
Cm-246
W ]
10°
3.34 10"5
4.00 10"'
1.82 10"5
1.78 IO"4
2.22 10°
2.26 10"'
7.94 Iff5
1.22 IO"4
Cm-247
W ]
10°
3.07 10"!
2.23 10"8
1.67 10"5
1.63 I0"4
2.04 IO"5
1.45 IO"8
7.30 Iff5
1.12 Iff4
Cm-248
W ]
10'5
1.21 IO"4
1.07 10"4
6.65 IO"5
6.52 IO"4
8.12 10J
4.71 LCT7
2.89 IO"4
4.47 IO"4
Cm-249
W ]
IO'5
1.19 Iff"
2.12 10""
7.51 Iff11
6.26 Iff"
7.78 IO"10
2.05 10""
3.11 10""
5.22 Iff11
Cm-250
W 1
10°
6.90 10J
8.49 IO"4
3.80 10u
3.71 Iff3
4.61 IO"1
3.71 10"6
1.65 Iff5
2.54 10°
Berkelium
Bk- 245
W ]
10°
1.81 Iff10
3.58 Iff"
4.76 10"'
7.05 10"1Q
7.60 10"'
1.75 Iff11
8.63 Iff10
1.19 IO"9
Bk-246
W ]
IO"5
2.55 Iff10
6.44 Iff"
7.74 Iff10
3.79 10"'°
3.60 10'
3.47 10"
4.73 Iff10
4.63 IO'10
Bk-247
W ]
IO"5
3.43 IO"5
6.28 Iff'
1.88 10"5
2.64 Iff4
3.30 10"J
4.60 10"'
4.54 IO"5
1.55 IO"4
Bk-249
W ]
IO"5
8.42 IO"8
5.27 Iff"
1.19 Iff8
6.46 I0"7
8.07 10"*
4.18 10"
1.10 10"7
3.75 10"'
Bk-250
W ]
10°
3.83 Iff10
5.12 Iff"
8.18 Iff10
3.30 lO"'
4.11 IO""
4.17 IO"12
7.08 IO"10
2.04 Iff'
-------
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10
I 10
I 10
1 10
1 10
1 10
1 10
1 10
1 10
1 10'
1 10
1 10'
1 10
1 10'
1 10'
153
Table 2.1, Cont'd.
Committed Dose l£
-------
Intentionally Blank Page
-------
TABLE 2.2
Exposure-to-Dose Conversion Factors for Ingestion
Explanation of Entries
For each radionuclide, values in SI units for the organ dose equivalent conversion factors,
h-j^jo, and the effective dose equivalent conversion factor, h^, based upon the weighting
factors set forth on page 6, are listed in Table 2.2 for ingestion. The limiting coefficient,
with respect to determining the ALI, is indicated by bold-faced type.
fj: The fractional uptake from the small intestine to blood (f|) for common chemical forms of
the radionuclide are shown.
hT,5o: The tissue dose equivalent conversion factor for organ or tissue T (expressed in Sv/Bq),
i.e., the committed dose equivalent per unit intake of radionuclide.
The effective dose equivalent conversion factor (expressed in Sv/Bq), i.e., the committed
effective dose equivalent per unit intake of radionuclide:
hE,M = 2 wt ^T.so •
T
To convert to conventional units (mrem/nCi), multiply table entries by 3.7 x 10®.
As an example, consider the factor for breast for ingestion of C-l 1:
>W.sa = 2.98 x 10'12 Sv/Bq
x 3.7 x 10' = 1.1 x 10 2 mrem//iCi.
155
-------
i 56
Table 2.2. Exposure-to-Dose Conversion Factors for Ingestion
Committed Dose Equivalent per Unit Intake^(Sv/Bq)
Nuclide
fi
Gonad
Breasi
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Hydrogen
1.73 10""
1.73 10-"
H-3
1.0
1.73 I041
1.73 IO""
1.73 IO""
1.73 IO"11
1.73 IO41
1.73 IO41
Beryllium
6.97 IO'12
1.41 IO42
5.03 IO"12
Be-7
5 10°
5.67 10-"
1.23 JO41
6.08 IO"13
5.83 IO"11
3.45 10"
Be-10
5 10°
2.42 I041
2.42 IO'"
2.42 IO"11
7.23 IO"10
2.15 IO"9
2.42 IO"11
3.66 10-'
1.29 IO"*
i.26 IO'9
Utl wall
Carbon
C-U
1.0
3.41 I042
2.98 IO42
3.09 IO"12
3.18 IO12
3.03 IO"12
2.97 IO42
3.54 |043
3.29 IO-12
C-14
1.0
5.64 IO40
5.64 IO"10
5.64 IO"10
5.64 IO"10
5.64 IO"10
5.64 IO"10
5.64 IO'10
5.64 IO"10
Fluorine
F-18
1.0
4.97 IO42
6.36 IO"12
6.54 IO"12
5.94 10 "
6.02 10"
4.52 IO'12
7.03 IO41
2.87 IO10
3.31 IO41
ST wall
Sodium
Na-22
1.0
2.81 10-'
2.58 10"'
2.51 JO"'
4.29 JO"'
5.54 JO9
2.50 IO*
3.18 10"'
3.10 10-'
Na-24
1.0
3.43 IO40
2.71 |0"'°
2.60 IO'10
3.74 IO'10
4.68 IO'10
2.60 IO"10
5.31 IO40
3.84 IO10
Magnesium
2.72 IO"10
1.49 10"'
2.18 10"'
Mg- 28
5 10-'
8.68 IO40
1.96 IO40
9.24 IO'10
1.68 IO"10
5.78 IO*
Aluminum
AI-26
1 I0"2
3.01 10-'
6.45 lO"10
3.76 IO10
1.35 IO*
9.71 IO'10
3.12 IO40
9.47 IO"'
3.94 IO"9
Silicon
Si-31
1 102
1.14 IO43
8 05 lO11
7.55 IO41
8.33 IO"11
7.58 IO41
7.20 IO41
4.86 IO"10
1.46 IO*10
Si-32
1 lO"2
1.17 lO"10
1.17 lO"10
1.17 IO'10
1.17 IO"10
1.17 IO'10
1.17 IO"10
1.69 10"'
6.21 IO"'
5.90 IO'10
LLI wall
Phosphorus
8 lO'1
6.55 IO40
6.55 |0"10
6.55 IO"10
8.09 JO"'
7.87 10'
6.55 IO"10
2J7 IO"'
P-32
2.67 10"
P-33
8 JO'1
9.37 IO'11
9.37 |041
9.37 IO41
4.99 IO'10
1.32 10'
9.37 IO41
3.22 IO"10
2.48 IO40
Sulphur
1.21 IO-10
S-35
8 lO"1
7.63 IO'11
7.63 IO"11
7.63 IO'"
7.63 IO41
7.63 IO41
7.63 IO"11
2.25 IO"10
1 I04
9.53 IO"12
9.53 IO'12
9.53 IO"12
9.53 IO'12
9.53 IO"12
9.53 IO42
6.39 IO40
2.23 IO"'
1.98 IO40
LUI wall
Chlorine
Cl-36
1.0
7.99 IO'10
7.99 IO10
7.99 IO"10
7.99 IO'10
7.99 IO"10
7.99 IO40
8.61 IO40
8.18 IO40
CI-38
1.0
8.75 IO12
8.52 IO"12
8.76 IO'12
8.12 IO"12
7.54 IO"12
7.06 IO"12
1.92 IO'10
8.96 IO10
6.36 IO41
ST wall
C!-39
1.0
1.06 IO"11
1.02 lO"11
1.05 IO"11
9.78 IO12
8.93 IO"12
8.21 IO42
1.42 IO40
6.23 IO'10
4.96 IO41
ST wall
Potassium
K-40
1.0
5.07 IO"'
4.89 lO*
4.85 IO-9
4.91 JO"'
4.88 10"'
4.85 IO"
5.18 10"'
5.02 IO1*
K-42
1.0
2.13 IO"10
2.08 |040
2.07 IO10
2.08 )040
2.07 IO'10
2.06 IO"10
5.30 IO40
3.06 IO"'0
K-43
1.0
1.80 IO"10
1.65 |0'°
1.70 IO"'0
1.78 IO"'0
1.68 10"10
1.62 IO"10
2.89 IO"10
2.08 IO"10
K-44
1.0
5.19 IO"12
5.17 |042
5.55 JO"'2
4.69 IO"12
4.08 IO'12
3.65 IO"12
1.44 IO"10
6.65 10 10
4.67 IO41
ST wall
K-4S
1.0
3.33 IO'12
3.48 IO"12
3.77 IO"12
3.13 IO12
2.65 IO"12
2.16 IO"12
9.26 IO41
4.21 IO4®
3.01 tO41
ST wall
Calcium
Ca-41
3 10'1
2.71 IO"12
3.19 lO42
2.84 IO"12
1.78 10"'
4.01 NT*
2.84 IO42
2.74 IO"11
3.44 IO'10
Ca-45
3 I0"1
5.36 IO"11
5.36 10"
5.36 IO41
3.47 IO"9
5.23 10"'
5.36 |041
8.40 IO'10
8.55 IO"10
Ca-47
3 10"'
7.46 IO'10
2.26 IO"10
1.54 IO"10
1.49 IO"'
4.07 IO"9
1.38 IO"10
4.06 10"'
1.76 10"'
Scandium
Sc-43
I I0H
1.17 IO"10
1.81 IO'"
6.38 IO'12
2.73 IO41
9.36 IO"12
6.44 IO43
5.67 IO'10
2.06 IO "
Sc-44
1 10"*
2.00 IO'10
3.40 lO41
1.26 IO"11
4.81 IO41
1.68 IO41
1.51 IO"12
1.08 IO-9
3.87 10""
-------
157
Table 2.2, Cont'd.
Commilted Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
r,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Sc-44m
1 10J
1.70 IO''
2.01 IO10
3.15 10"
3.38 IO10
1.14 IO'10
4.60 IO12
7.64 IO''
2.79 IO"'
Sc-46
1 IO"4
2.01 10''
2.51 IO'10
4.86 10"
4.03 IO-10
1.39 IO"10
7.69 iCr11
3.78 10-'
1.73 10"*
Sc-47
1 IO'4
1.12 IO'10
1.21 10'"
1.62 IO12
3.13 10'"
1.01 10'"
1.19 IO13
1.90 10'
6.04 IO'10
6.14 10''
LLI wall
Sc-48
i icr1
2.04 10"'
2.74 IO10
5.98 IO'11
4.26 IO10
1.46 IO'10
8.91 10'12
4.47 IO''
1.96 10'*
Sc-49
1 10'
1.25 IO'14
3.80 10"
2.50 10ls
4.45 10'"
1.92 10I!
4.38 10"
2.27 1CT10
6-80 l
-------
158
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
f.
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Rema inder
Effective
Co- 60m
5 IO'2
1.93 IO'14
7.75
10-15
7.05 10"
9.17 IO'15
5.62 I0'IS
3.32 IO"15
3.21 IO42
9.70 IO'13
3 I0'1
3.50 IO44
2.33
IO'14
2.30 IO"14
2.54 IO44
2.08 IO44
1.86 IO44
3.21 IO42
9.82 IO43
1.36 ItT"
ST wall
Co-61
5 IO'2
4.36 IO'12
8.72
IO43
4.76 IO43
2.02 IO42
7.49 IO43
1.41 IO43
2.32 IO40
7.11 10"
3 IO4
4.64 IO'12
1.57
IO'12
1.24 I0',J
2.65 IO42
1.50 IO42
9.03 IO43
2.14 IO'10
6.60 10"
Co-62m
5 IO'2
5.16 IO"12
2.34
IO-12
2.28 IO42
2.12 IO42
1.03 IO42
2.61 IO43
9.61 10'"
3.10 10'"
3 I0'1
5.10 IO'12
2.36
IO'12
2.31 IO42
2.13 IO42
1.05 IO"12
2.97 IO43
9.56 IO41
3.09 10'"
3.S6 10'"
ST wall
Nickel
Ni-56
5 I0-2
1.63 10'
2.36
lO-io
7.86 10'"
3.81 IO"10
1.58 IO40
5.24 10'"
1.83 IO"9
1.05 10'*
Ni-57
5 lO"2
1.03 10 9
1.44
IO40
3.68 10"
2.22 IO'10
8.05 IO41
1.07 IO41
2.34 IO'9
1.02 10'*
Ni-59
5 IO'2
3.83 IO"11
3.58
10'"
3.50 10"
3.66 IO41
3.62 I0-"
3.90 10'"
1.03 IO'10
5.67 10'"
Ni-63
5 I0'2
8.50 10'"
8.50
10'"
8.50 10'"
8.50 IO41
8.50 10'"
8.50 10""
3.20 IO40
1.56 10'®
Ni-65
5 I0'2
2.43 10'"
5.63
IO42
2.75 IO'12
7.26 IO42
2.89 IO'12
6.79 IO43
5.32 IO'10
1.68 IO'10
Ni-66
5 I0'2
6.79 10"
2.03
10'"
1.46 10""
2.44 IO41
1.69 10'"
1.34 IO'"
1.07 10"*
3.24 IO9
3.44 IO"8
LLI wall
Copper
5.32 IO42
5.81 IO42
2.84 IO'12
Cu-60
5 I0'1
1.36 10'"
5.85 IO"12
9.20 IO"13
1.55 IO'10
5.21 10'"
4.99 10"'*
ST wall
Cu-61
5 IO4
5.46 10"
1.52
10"
1.09 10'"
1.92 10"
1.12 10'"
7.25 IO'12
3.28 IO40
1.18 10""
Cu-64
5 I0-1
4.78 10'"
1.59
10'"
1.28 10'"
1.94 10'"
1.39 10'"
1.13 10'"
3.57 IO'10
1.26 10"
Cu-67
5 10'
1.18 IO40
6.29
IO41
5.94 IO41
8.13 IO41
6.76 10'"
5.52 10'"
9.84 IO40
3.55 IO'1*
Zinc
Zn-62
5 10 1
3.00 IO40
1.07
10-10
8.70 10'"
2.04 IO"10
1.65 IO40
7.76 10'"
2.84 IO"9
9.85 IO"'®
Zn-63
5 IO4
8.96 IO'12
3.41
10'12
2.92 IO42
3.87 IO'12
2.07 IO42
9.23 IO43
1.85 IO40
5.92 IO41
S.63 10'®
ST wall
Zn-65
5 IO4
3.56 !0'5
3.28
IO*
3.08 IO"5
4.50 IO"'
4.50 IO'5
3.21 IO'9
4.59 IO"'
3.90 10'*
Zn-69
5 IO4
4.17 IO'13
4.17
IO43
4.17 IO43
5.36 IO43
5.18 IO'13
4.17 IO'13
7.91 10'"
2,40 10"
Zn-69m
5 I04
1.23 10''°
4.42
10'"
3.63 IO'11
9.15 10'"
7.27 10'"
3.28 IO41
9.99 IO"10
3.55 10'"»
Zn-7lm
5 I04
1.19 IO40
3.26
10'"
2.30 10'"
4.86 10'"
3.09 10'"
1.59 10'"
6.62 IO40
2.43 10"
Zn-72
5 IO"1
[.08 IO'5
4.46
,0-w
3.74 IO'10
8.89 IO40
1.19 iCf5
3.64 IO40
3.20 IO'5
1.49 10"*
Gallium
Ga-65
1 IO'3
2.52 IO42
1.23
IO42
1.23 IO42
1.30 IO42
5.88 IO13
1.02 IO43
7.70 10'"
2.42 IO'"
2.89 10'"
ST wall
Ga-66
1 IO'3
5.29 IO'10
7.65
IO41
2.27 10'"
1.13 IO"10
3.99 10'"
3.64 IO'12
3.80 IO5
1.30 10"*
Ga-67
1 IO"3
1.58 IO40
1.70
10-"
2.38 IO'12
4.14 IO""
1.40 10'"
2.43 IO"13
5.49 IO40
2.12 10""
Ga-68
1 io-3
1.95 10'"
4.56
IO42
2.79 IO'12
5.81 IO'12
2.18 IO42
2.61 IO43
2.86 IO40
9.24 IO-"
Ga-70
1 IO'3
3.13 IO44
1.06
IO44
9.40 IO45
1.09 IO"14
4.93 IO"15
1.07 IO45
6.75 10'"
2.03 10'"
2.SO IO"10
ST wall
Ga-72
I IO"3
8.52 IO'10
1.19
10-10
3.18 IO41
1.79 IO40
6.23 IO41
4.95 IO42
3.31 IO'9
1.25 IO*
Ga-73
I IO'3
4.62 IO41
6.51
IO'12
1.93 IO'12
1.17 IO41
3.94 IO'12
1.93 IO43
8.81 IO40
2.79 IO"
Germanium
Ge-66
1.0
3.69 10'"
3.31
10'"
3.36 10'"
3.51 IO41
3.25 10'"
3.23 10'"
1.08 IO'10
5.68 10""
Gc-67
1.0
2.71 IO42
3.25
10-12
3.64 IO42
3.09 IO"12
2.63 IO42
2.17 IO42
1.10 IO40
3.52 10'"
5.09 IO'1®
ST wall
Gc-68
1.0
2.42 IO40
2.23 IO40
2.28 IO40
2.33 IO40
2.25 IO40
2.22 ICf10
4.22 IO'10
2.89 10""
Gc-69
1.0
7.44 10'"
6.75 10'"
6.86 IO'"
7.20 10'"
6.65 10'"
6.59 10"
1.72 IO'10
1.01 IO"
Ge-71
1.0
1.94 IO42
1.81
IO42
1.75 IO'12
1.88 IO'12
1.86 IO42
2.10 IO42
4.31 IO42
2.60 IO"11
-------
159
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
fi
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Ge-75
1.0
4.30 10'12
4.31 10'12
4.33 10'12
4.34 IO'12
4.29 10'12
4.24 IO'12
7.46 10'"
3.29 IO""1
2.54 10'"
ST wall
Gc-77
1.0
8.62 10'"
8.21 10 11
8.30 10'"
8.68 10'"
8.21 10'"
7.87 10'"
3.21 IO'10
1.55 IO-10
Ge-7%
1.0
2.%2 10-"
2.74 10-"
2.76 10'"
2.81 10'"
2.69 10-"
2.62 IO""
1.75 IO'10
5.89 IO"10
7.19 10'"
ST wall
Arsenic
As-69
5 10'1
4.26 IO12
1.71 10'12
1.56 10'12
1.86 |012
1.03 10'12
5.22 10"IJ
1.15 IO"10
4.24 IO"10
3.62 10"
ST wall
As-70
5 10'1
4.68 10'"
1.50 10 11
1.15 10'"
1.68 10'"
8.19 10'12
3.37 10'12
3.19 IO'10
1.13 IO'10
As-71
5 10'1
3.06 IO'10
7.91 10'"
5.84 10'"
1.12 IO10
7.03 10'"
4.70 10'"
9.82 IO'10
4.07 IO'10
As-72
5 IO'1
6.40 lO'10
1.94 10'10
1.48 lO'10
2.38 IO'10
1.63 lO'10
1.28 IO'10
4.66 10-'
1.64 10'
As-73
5 10'1
4.78 10"
3.78 10-"
3.74 10'"
4.29 10'"
4.02 10'"
3.92 10'"
5.38 IO'10
1.91 IO"10
As-74
5 10'1
6.25 10'°
2.58 IO10
2.31 Iff10
3.04 10'10
2.36 IO10
2.03 IO10
2.65 10''
1.07 10'*
As-76
5 10'1
2.16 lO'10
1.09 lO'10
9.83 10'"
1.20 lO'10
1.02 lO'10
9.35 10"
4.35 10-'
1.41 10*
As-77
5 10'1
2.73 10'11
2.42 10"
2.39 lO'"
2.46 10'"
2.41 10'"
2.38 10'"
1.09 10"'
118 10"'
3.44 IO"10
LL1 wall
As-78
5 10'1
3.07 10"
1.13 10'"
8.92 10'12
1.27 10'"
8.05 IO'12
5.60 IO'12
5.63 IO'10
1.81 IO"10
Selenium
Sc-70
8 10'1
4.00 10"
1.78 10'"
1.56 10'"
1.99 10'"
1.35 10'"
1.02 10'"
2.64 IO'10
9.67 10'"
5 10'2
6.54 lO-11
1.42 10 "
7.46 IO'12
1.88 10'"
7.04 10'12
1.07 10'12
3.90 IO'10
1.39 IO-10
Sc-73
8 10'1
1.07 IO10
5.33 10'"
5.07 10'"
6-46 10'"
5.08 lO'"
4.16 IO"11
4.83 IO'10
1.96 IO'10
5 10'2
2.27 IO'10
3.28 10'"
1.07 10'"
5.55 10'"
1.98 10'"
2.91 10'12
1.21 10''
4.34 ICT10
Sc-73m
% IO'1
9.04 IO'12
4.59 10'12
4.39 1012
5.44 ltr12
4.22 IO'11
3.43 IO"11
6.20 10'"
2.30 10'"
5 10'2
1.81 10'"
2.85 10'12
1.13 10'12
4.55 10'12
1.66 10'12
2.53 I0"IJ
1.21 IO'10
4.19 IO'11
Sc-75
8 10'1
1.80 10'
1.45 10''
1.66 IO*
2-07 ia'
1.70 10''
1.13 10"»
4.68 10''
2.60 10*
5 10'2
5.92 10'10
1.41 lO'10
1.10 IO'10
2.43 lO'10
1.43 IO'10
7.14 lO'"
8.47 IO'10
4.72 IO'10
Sc-79
8 IO"1
9.06 lO'10
9.06 IO10
9.06 IO"10
9.06 lO'10
9.06 lO'10
9.06 IO10
5.73 10''
2.35 10*
5 IO"2
5.66 lO"11
5.66 10"
5.66 10'"
5-66 10'"
5.66 10'"
5.66 10'"
1.04 10*
3.51 10J
-------
160
Tabic 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake CSv/Bq)
Nuclide
fi
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remain der
Effect ive
Br-82
1.0
4.48 IO"10
3.81 IO10
3.84 IO10
4.14 IO"10
3.80 IO10
3.83 IO10
5.80 IO10
4.62 IO"'®
Br-83
1.0
7.35 IO"12
7.34 10 12
7.35 10'12
7.35 IO"12
7.33 10'12
7.33 IO"12
6.54 10""
2.97 IO"10
2.47 10"
ST wall
Br-84
1.0
6.75 IO"12
6.62 1012
6.99 IO12
6.21 IO"12
5.56 IO"12
5.20 IO12
1.48 IO'10
6.82 10'w
4.91 10'"
ST wall
Rubidium
Rb -79
1.0
2.74 IO"12
3.40 IO12
3.86 IO"12
3.29 IO"12
2.87 IO"12
2.20 IO"12
8.58 10"
3.88 IO'10
2.79 10""
ST wall
Rb-81
1.0
2.12 10"
2.01 10"
2.11 10""
2.56 IO""
2.93 10 "
1.85 10"
7.92 10"
3.91 IO'"
Rb-81m
1.0
2.82 1012
2.63 1012
2.72 IO"12
3.38 IO"12
3.92 IO"12
2.51 IO"12
1.44 lCf"
5.79 IO'"
6.35 IO'12
ST wall
Rb-82m
1.0
8.05 IO41
7.58 10'"
7.74 10""
9.07 10-"
8.84 IO""
6.99 10'"
1.86 lCf10
1.12 IO"'®
Rb-83
1.0
1.98 10*
1.73 10"'
1.79 10''
2.61 10"'
3.02 10"'
1.74 10''
2.17 10''
2.08 10-*
Rb-84
1.0
2.52 10*
2.29 10"'
2.29 10"*
3.43 10'
4.41 10'
2.29 10"*
2.79 10"'
2.70 10'*
Rb-86
1.0
2.15 10"'
2.14 10"'
2.14 10"'
3.72 10"'
6.86 10"'
2.14 10"'
2.33 10"'
2.53 10"'
Rb-87
1.0
1.14 10"'
1.14 10-'
1.14 10''
2.02 10"'
3.80 10'
1.14 10"'
1.17 10"'
1.33 10-'
Rb-88
1.0
2.78 IO"12
2.82 1012
2.91 IO"12
2.76 IO"12
2.75 IO"12
2.43 IO"12
1.50 IO"10
7.32 IO"10
4.71 10""
ST wall
Rb-89
1.0
3.32 IO"12
3.38 IO"12
3.68 IO"12
3.53 IO"12
4.19 10'12
2.21 IO"12
8.04 10"
3.63 IO"10
2.65 10""
ST wall
Strontium
Sr-80
3 10-'
4.30 10"
1.26 10""
9.14 IO"12
1.55 IO"11
7.35 IO"12
5.09 IO12
9.87 IO"10
3.12 10'">
1 IO"2
4.41 IO"11
8.94 IO"12
4.71 IO"12
1.20 10"
4.37 IO'12
5.65 IO'13
1.08 10s
3.38 10'w
Sr-81
3 10"'
1.32 10"
3.82 IO"12
2.92 IO"12
4.85 IO"12
2.25 IO'12
7.34 IO"13
1.79 10 10
5.85 IO'"
1 10'2
1.46 IO-"
3.57 IO12
2.44 IO"12
4.66 IO12
1.81 IO12
2.27 10"IJ
1.88 IO'10
6.14 10'"
Sr-82
3 10"'
1.56 10-'
7.95 IO"10
7.09 IO"10
4.90 10"'
6.69 10-'
6.95 IO10
1.55 IO4
6.04 IO"9
1 IO"2
1.22 10''
1.62 IO10
4.45 10"
3.92 IO"10
2.99 IO"10
2.59 IO""
2.07 IO4
7.10 iOJ
6.61 10'
LLI wall
Sr-83
3 10"'
3.87 IO"10
7.65 10"
4.15 10'"
1.53 IO"10
2.40 IO'10
3.30 10""
1.31 10"'
5.33 10-'°
1 IO"2
4.88 10 10
6.15 10'"
1.31 IO'"
1.01 IO'10
4.04 10"
2.63 IO"1-2
1.75 10"'
6.70 IO*10
Sr-85
3 10"'
6.25 IO"10
2.53 IO"10
2.06 IO10
5.97 IO"10
6.06 IO10
2.05 IO"10
7.31 IO"10
5.34 10"W
1 10"2
5.82 IO"10
7.34 10""
1.67 10""
1.30 IO10
5.69 10!l
8.14 IO12
7.56 10 10
4.03 IO"10
Sr-85m
3 10*'
5.22 IO"12
1.29 10'12
8.21 10'l}
2.23 IO"12
1.55 IO"12
2.72 I0'l}
1.44 10'"
6.23 10"IJ
1 10'2
5.63 10'12
1.16 IO'12
6.11 IO"15
1.92 IO"12
7.13 10-|}
5.37 IO"14
1.52 10""
6.46 IO"11
Sr-87m
3 lO"1
2.04 10'"
4.13 IO"12
2.25 IO"12
6.12 IO'12
2.58 IO12
9.20 icrl}
8.30 10"
3.17 10-"
1 io-2
2.34 IO-"
3.87 IO"12
1.53 IO"12
6.10 IO"12
2.11 1012
1.62 IO"15
9.47 10""
3.58 IO'"
Sr-89
3 10"'
2.40 IO"10
2.40 IO"10
2.40 10 10
3.23 10''
4.81 10"'
2.40 IO"10
6.11 10''
2.50 10"*
1 10"2
8.05 10 12
7.98 IO12
7.97 1CT12
1.08 10 10
1.61 IO"10
7.97 IO"12
8.25 10"'
2.89 IO"*
2.50 10"'
LLI wall
Sr-90
3 IO4
1.51 10*
1.51 10"'
1.51 10''
1.94 10-'
4.19 IO"7
1.51 10"'
6.14 10"'
3.85 10 s
I IO"2
5.04 IO-"
5.04 10""
5.04 10"
6.45 10''
1.39 IO"8
5.04 IO"11
6.70 10''
3.23 10''
Sr-91
3 IO-1
2.10 IO"10
4.98 10"
3.05 lCf"
1.08 IO"10
7.90 10'"
2.41 1CT"
1.98 10"'
6.74 10'w
1 10'2
2.48 IO"10
3.57 Iff"
9.81 IO"12
5.53 10""
2.02 IO"11
1.90 10'12
2.54 IO"'
8.39 icr'0
Sr-92
3 IO"1
8.01 IO""
2.69 10""
1.89 IO'"
3.87 10""
2.13 10""
1.35 IO"11
1.37 10"'
4.43 IO'1®
1 10'2
8.18 10""
1.70 10-"
7.22 10'12
2.29 IO'"
8.49 IO12
1.30 10'12
1.72 10"'
5.43 IO"'®
Yttrium
Y-86
1 IO"1
1.21 10''
1.68 IO'10
4.27 10"
2.56 IO"10
8.81 10'"
6.08 IO12
2.56 10"*
1.14 IO"*
Y-8 6m
1 IO"4
6.94 10"
9.68 10 12
2.47 10'12
1.50 IO"11
5.15 IO"12
3.35 10'l}
1.50 IO"10
6.61 icr"
-------
161
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
r,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Y-87
1 IO'4
6.97 IO10
7.84 I0'u
1.15 10"
1.38 IO'10
4.60 IO41
1.44 IO'12
1.51 10"*
6.58 IO'10
Y-88
1 IO'4
2.56 10''
3.18 IO10
6.74 10"
5.05 IO'10
1.78 IO10
1.14 10'"
2.85 IO''
1.62 IO"9
Y-90
1 IO'4
1.43 IO14
1.27 IO'14
1.26 IO'14
3.70 IO'13
3.67 IO'13
1.26 IO44
9.68 IO'9
2.91 IO9
3.16 IO"*
LLI wall
Y-90m
1 io-4
5.41 10"
8.62 IO'12
3.19 IO'12
1.37 10'"
4.70 IO'12
3.00 IO"13
5.81 IO40
1.91 IO"10
Y-91
1 10"
3.54 IO'12
5.54 IO13
2.02 IO13
6.59 IO'12
6.13 IO42
1.29 IO'13
8.57 lO'9
2.57 IO'9
3.02 IO"8
LLI wall
Y-9lm
1 10"
6.94 IO'12
1.84 IO'12
1.28 IO'12
2.24 IO'12
8.71 IO'13
1.17 IO'13
2.92 10"
1.12 10'"
Y-92
1 IO'4
1.96 10'"
3.55 IO12
1.39 IO'12
4.91 IO12
1.75 IO'12
1.77 IO13
1.70 10''
5.15 IO"10
Y-93
! IO"4
2.20 IO "
3.13 IO'12
8.67 IO'13
4.93 IO'12
1.73 IO'12
1.26 IO'13
4.09 IO'9
1.23 10'*
Y-94
1 IO"4
3.61 IO12
1.37 IO'12
1.25 IO'12
1.33 IO'12
6.07 IO'13
1.34 IO'13
1.73 IO'10
5.33 10'"
6.41 IO'10
ST wall
Y-95
1 IO-4
1.12 IO12
5.55 IO'13
5.55 IO13
4.97 IO'13
2.52 IO13
6.80 IO44
8.98 IO41
2.75 I0'u
3.75 IO'10
ST wall
Zirconium
Zr-86
2 IO'3
1.16 IO"9
1.37 IO'10
2.36 10'"
2.30 IO40
7.89 10"
3.90 IO12
2.31 10*
1.04 IO'9
Zr-88
2 IO"3
5.28 IO'10
7.36 10"
2.41 10"
1.58 IO40
1.30 IO'10
1.06 10"
7.80 IO'10
4.03 IO'10
Zr-89
2 IO'3
9.34 IO40
1.17 IO10
2.27 10'"
1.89 IO'10
6.57 10'"
3.62 IO12
2.15 10''
9.25 IO'10
Zr-93
2 IO'3
9.23 IO'14
1.97 IO'13
1.15 IO'13
7.42 IO10
9.14 10''
7.31 IO'14
2.83 IO10
4.48 IO'10
Zr-95
2 IO'3
8.16 IO'10
1.05 IO'10
2.34 IO"11
2.14 IO"10
4.86 IO'10
8.27 IO'12
2.53 IO"9
1.02 10''
Zr-97
2 IO'3
6.22 IO40
8.12 10"
1.76 IO""
1.30 IO'10
4.55 10'"
2.66 IO'12
6.98 10"®
2.28 1CT9
Niobrum
Nb-88
1 IO"2
3.55 IO'12
2.13 IO'12
2.34 IO'12
1.86 IO42
9.47 IO43
2.22 IO'13
7.41 10"
2.40 10"
2.90 IO'10
ST wall
Nb-89
1 IO'2
8.06 10"
1.42 IO'11
6.04 IO42
2.01 10'"
7.65 IO'12
8.56 IO'13
8.38 IO'10
2.77 IO'10
Nb-89
1 IO"5
5.09 !0"
1.06 10'"
5.90 lO42
1.41 IO41
5.39 IO42
6.19 IO'13
3.81 IO'10
1.31 IO'10
Nb-90
1 IO'2
1.35 IO''
1.87 IO'10
5.12 10'"
2.91 IO"10
1.09 IO'10
9,11 IO42
3.50 IO''
1.46 IO"*
Nb-93m
1 IO"2
3.34 IO41
2.57 IO'12
2.45 IO12
2.32 10'"
5.98 10"
2.44 IO'12
4.25 IO'10
1.41 IO'10
1.47 IO-'
LLI wall
Nb-94
1 IO'2
1.80 IO'9
3.47 IO'10
1.72 IO'10
7.39 IO-10
7.65 IO'10
1.23 IO40
4.30 IO4
1.93 10"'
Nb-95
1 IO'2
8.05 10"'°
1.07 IO'10
2.74 10'"
1.99 IO40
2.94 IO'10
1.18 10'"
1.47 IO*
6.95 IO'10
Nb-95m
1 IO'2
9.30 10'"
1.06 10'"
2.82 IO'12
3.33 10'"
4.31 10'"
1.63 IO42
1.97 IO"9
6.22 IO'10
6.47 IO"*
LLI wall
Nb-96
1 10J
1.19 10'
1.59 IO10
3.65 IO'11
2.54 IO10
9.13 10'"
6.37 IO'12
3.05 109
1.27 IO'9
Nb-97
1 IO'2
1.45 10"
3.30 IO'12
1.98 IO'12
4.20 IO12
1.60 IO'12
2.11 IO'13
1.94 IO'10
6.30 10'"
Nb-98
1 IO'2
3.19 10"
8.45 IO'12
5.73 IO'12
9.97 IO42
3.96 IO'12
6.38 IO'13
3.02 IO'10
1.02 IO'10
Molybdenum
Mo-90
8 IO'1
2.42 IO'10
1.12 IO'10
1.12 IO'10
1.75 IO'10
1.84 IO'10
7.82 10'"
6.90 IO40
3.27 IO'10
5 IO'2
6.21 IO'10
8.39 10'"
2.37 10"
1.37 IO40
5.37 10'"
7.04 IO'12
1.77 10*
7.19 IO'10
Mo-93
8 IO'1
1.27 IO'10
9.96 10'"
1.06 IO'10
2.82 IO10
1.15 IO'9
9.42 10'"
7.79 IO40
3.64 IO'10
5 IO2
2.54 10'"
6.78 IO'12
6.63 IO'12
1.97 10"
7.22 10"
5.89 IO'12
1.74 IO40
6.52 10""
Mo-93m
8 IO'1
1.42 IO'10
6.03 10"
5.48 10"
7.68 IO41
5.70 10"
3.64 10'"
3.09 IO40
1.56 IO'10
5 IO"2
3.35 I0'l°
5.78 10"
1.98 10'"
8.40 10'"
3.08 10"
4.12 IO42
7.22 IO10
3.22 10'"
Mo-99
8 IO'1
2.21 IO'10
1.83 IO'10
1.93 IO'10
5.33 I0'w
7.69 IO40
1.64 IO'10
2.08 IO*
8.22 IO'10
5 10'2
2.18 IO'10
3.43 10'"
1.51 10'"
8.32 IO41
6.32 10"
1.03 IO41
4.28 109
1.36 IO*
1.37 10"*
LLI wall
Mo-101
8 IO1
3.46 IO'12
1.92 IO'12
1.91 IO'12
1.92 IO'12
1.15 IO'12
5.86 IO'13
8.70 10'"
2.78 10'"
3.24 IO'10
ST wall
5 IO'2
3.84 IO'12
1.63 IO'12
1.51 IO'12
1.67 iO12
7.61 IO'13
1.59 IO'13
9.35 10'"
2.97 10'"
3.24 IO'10
ST wall
-------
162
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide f] Gonad Breast Lung R Marrow B Surface Thyroid Remainder Effective
Technetium
Tc-93
8 10"'
3.46 10-"
1.48 10""
1.21 10"
1.60 10'"
1.04 10""
9.78 Iff"
8.74 iff"
4.37 10'"
Tc-93m
8 10'1
1.23 Iff"
5.21 lO'12
4.34 Iff12
5.70 IO12
3.66 Iff12
4.24 Iff"
4.53 Iff"
2.00 10'"
Tc-94
8 Iff'
1.25 IO10
5.08 Iff"
4.34 10""
5.77 10'"
3.89 lO"11
4.84 Iff10
2.98 Iff10
1.56 IO'10
Tc-94m
8 10"'
1.74 10'"
8.24 IO12
7.61 lO12
8.63 Iff12
5.65 Iff"
1.94 Iff10
2.07 iff10
7.57 10'"
Tc-95
8 10"'
1.14 lffM
4.73 10'"
4.12 10"
5.51 10"
3.97 Iff"
3.71 Iff10
2.21 Iff"5
1.26 IO''"
Tc-95m
8 Iff1
3.17 IO10
1.73 lO'10
1.67 IO'10
2.03 10"10
1.63 IO'10
7.96 Iff10
7.15 IO'10
3.93 IO-"
Tc-96
8 10"'
6.99 lO'10
3.35 IO'10
3.04 lO"10
3.84 lO"10
2.91 Iff10
1.55 IO''
1.27 10''
745 IO'10
Tc-96m
8 10"'
6.11 IO12
2.94 10"'2
2.67 Iff12
3.35 Iff12
2.54 Iff12
1.99 10'"
1.75 Iff"
8.61 10',J
Tc-97
8 10'1
1.68 10"
1.01 Iff"
1.02 lO'"
1.27 10""
1.17 Iff"
1.77 IO"10
1.07 IO10
4.63 10'"
Tc-97m
8 10"'
5.75 10""
5.22 Iff"
5.24 10'M
5.46 lO'"
5.37 Iff"
1.44 10"'
8.54 Iff10
3.36 IO'10
Tc-98
8 Iff1
7.26 lO'10
4.61 IO10
4.54 Iff10
5.08 lO"10
4.26 lO10
3.54 10"'
2.78 10"'
1.32 10''
Tc-99
8 10"'
6.04 Iff"
6.04 Iff"
6.04 lO'"
6.04 Iff"
6.04 Iff"
1.62 10"'
1.02 10''
3-95 IO'10
Tc-99m
8 10"'
9.75 Iff12
3.57 iff12
3.14 IO12
6.29 Iff12
4.06 Iff12
8.46 Iff11
3.34 Iff"
1.68 10'"
Tc-101
8 lO"1
6.29 10"
4.06 10'15
4.13 IO13
4.36 lO13
2.55 Iff"
3.89 Iff12
3.66 Iff"
J .50 IO'10
1.14 iff"
ST wall
Tc-104
8 I0"1
4.73 Iff12
2.72 lO'12
2.70 Iff12
2.62 lO12
1.59 101J
2.79 Iff"
1.60 Iff10
6.26 IO10
5.11 10'"
ST wall
Ruthenium
Ru-94
5 10'J
4.25 lO"11
8.57 lO'12
4.24 Iff12
1.15 10"
4.29 Iff12
6.66 Iff13
2.66 Iff10
9.37 10'"
Ru-97
5 10-i
2.38 Iff10
2.63 10""
6.43 Iff12
5.25 10"
1.93 10'"
3.22 Iff12
3.89 Iff10
1.88 IO'10
Ru-103
5 Iff2
5.72 IO10
1.20 iff10
7.31 10'"
1.66 Iff10
9.63 Iff"
6.25 10'"
2.10 10"'
8.24 IO'10
Ru-|05
5 Iff2
9.67 lO'11
1.59 lO"11
6.21 10'1J
2.35 10""
8.89 lff1J
1.82 10IJ
8.54 IO''0
2.87 IO'10
Ru-l06
5 Iff2
1.64 10"'
1.44 10"'
1.42 10"'
1.46 10"'
1.43 10"'
1.41 10"'
2.11 10®
7.09 10"»
7.40 10"'
LL1 wall
Rhodium
Rh-99
5 Iff2
6.93 Iff10
1.04 IO10
4.37 Iff"
1.82 Iff10
8.17 iff"
3.19 Iff"
1.29 10''
6.08 IO'10
RK-99m
5 Iff2
8.22 10"
1.31 10"
4.64 10"'*
2.01 10""
7.13 lffIJ
8.73 Iff13
1.73 Iff10
7.77 IO'11
RK-100
5 IO"2
1.11 10"'
1.56 lO"10
4.48 lO-"
2.37 lO'10
8.73 Iff"
1.43 Iff"
1.73 Iff'
8.56 IO'10
RK-IOI
5 10"*
6.47 Iff10
2.62 IO10
2.43 lO'10
4.04 IO10
3.12 IO10
2.09 Iff10
1.11 Iff'
6.26 IO'10
RK-IOlm
5 Iff2
3.24 Iff10
3.81 10""
1.06 lO'"
7.17 10""
2.75 10"
6.01 Iff12
5.64 Iff10
2.67 IO'10
RK-102
5 10"*
3.54 10"'
1.50 10"'
1.31 10"'
1.83 10"'
1.41 Iff'
1.28 10''
4.19 iff'
2.82 10"'
Rh-l02m
5 IO'2
7.84 Iff10
2.94 Iff10
2.49 IO10
3.57 lO"10
2.74 Iff10
2.35 Iff10
3.14 iff'
9.69 10"'
1.27 10-'
LLI wall
RK-103m
5 Iff2
4.02 IO14
8.65 10'"
4.93 10IS
1.01 Iff14
5.29 10ls
3.27 Iff15
1.04 Iff"
3.14 IO'11
RK-105
5 IO"2
5.80 Iff"
8.97 lO12
3.86 lO'12
1.47 10'"
6.75 lff1J
2.91 Iff12
*
o o
r-
n rs
— r*i
3.99 Iff10
LLI wall
Rh-l06m
5 Iff2
1.30 IO'10
2.62 lO"11
1.26 10-"
3.50 lO'n
1.30 Iff"
1.94 Iff12
4.38 Iff10
1.74 IO'10
Rh-107
5 10"*
1.24 Iff12
4.80 iff"
4.16 Iff13
5.85 lO'13
2.51 Iff13
3.76 Iff"
5.25 Iff"
1.87 IO"10
1.63 Iff"
ST wall
Palladium
Pd-100
5 10°
1.43 lO"*
1.60 lO10
2.77 10""
3.00 Iff10
1.03 IO10
4.59 10'IJ
2.44 10''
1.16 10''
Pd-IOI
5 I0'5
1.04 Iff10
1.27 lO'"
3.01 IO"12
2.19 lO'"
7.31 lO'IJ
3.71 Iff13
2.68 Iff10
1.12 IO'10
Pd-103
5 IO"3
4.13 Iff"
1.58 Iff12
1.28 10"13
6.58 lO12
2.00 Iff13
4.40 Iff14
6.72 iff10
2.32 10"'
2.13 Iff10
LLI wall
Pd-|07
5 10°
9.91 Iff'5
9.91 Iff15
9.91 IO15
5.36 10'u
1.43 IO"13
9.91 IO15
1.35 Iff10
4.72 IO'10
4.04 10'"
LLI wall
Pd-109
5 10°
7.90 lO''2
6.27 lO"13
1.49 IO'13
2.04 iO-'2
1.02 lO-)i
9.48 Iff14
1.95 10"'
5.87 I0-"
-------
163
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remai nd er
Effective
Silver
Ag-102
5
10"2
5.28 IO"12
2.78 IO"12
2.82 10"12
2.57 1012
1.24 1012
2.86 lO"13
8.36 10"
2.75 10"
3.00 lO"'0
ST wall
Ag-103
5
10"2
1.48 10'"
3.52 IO"12
2.18 lO'12
4.72 1012
1.81 10"12
2.61 1013
1.17 lO"10
4.02 10"
Ag-104
5
10"2
5.27 10""
1.25 10""
7.68 IO"12
1.55 lO"11
5.98 10"12
9.26 10"13
1.47 lO"10
6.22 10"
Ag-104m
5
10*
1.83 10"
4.63 lO12
2.99 IO"12
5.65 1012
2.21 1012
3.58 10"IJ
1.30 lO"10
4.55 10""
Ag-105
5
io-2
6.43 10 10
1.11 IO"10
9.56 10"
1.77 lO10
7.95 10"
2.00 1011
1.13 10"'
5.52 IO"10
Ag-106
5
10*
3.01 IO"12
1.18 IO"12
1.06 104J
1.27 1012
5.46 1013
9.84 10"
7.20 10"
2.28 10"
2.42 10"'°
ST wall
Ag-106m
5
io-2
2.59 10"'
3.84 IO"10
1.92 IO"10
5.83 10"10
2.29 lO"10
3.92 10"
3.15 10"'
1.75 10"'
Ag-108m
5
IO"2
1.93 10"*
5.14 lO'10
6.03 10'10
6.63 lO"10
3.55 lO"10
1.30 lO"10
4.44 10"'
2.06 ICr'
Ag-110m
5
10"!
2.99 10"'
7.51 10"10
8.30 IO"10
9.42 10"10
4.93 lO"10
1.81 lO"10
6.08 10"'
2.92 10"'
Ag-111
5
10*
3.58 10'"
1.09 10"
8.84 IO"12
1.38 10"
9.67 10"12
7.48 10"12
4.51 10"'
1.37 10"'
1.48 10'*
LLI wall
Ag-112
5
10--
4.44 10"
8.89 lO12
4.30 1012
1.19 10"
4.86 10 12
1.37 10'12
1.42 10"'
4.41 IO"10
Ag-115
5
IO"2
3.93 IO"12
1.13 IO"12
8.88 10-13
1.34 10"12
5.83 1013
1.29 10"13
1.39 lO"10
4.31 10""
4.13 10"'°
ST wall
Cadmium
Cd-104
5
IO"2
6.25 10"
1.17 10""
4.91 1012
1.64 10"
5.88 10"12
7.37 10"13
1.43 lO"10
6.30 10"
Cd-107
5
IO"2
1.05 10"
1.01 IO"12
3.28 10"
2.42 10"12
8.11 10"|J
2.00 10"13
2.15 lO"10
6.76 10"
Cd-109
5
IO"2
3.46 10"10
3.10 IO"10
3.17 lO10
3.70 lO"10
3.28 lO10
2.75 lO"10
1.10 104
3.55 10"'
4.08 I04
Kidneys
Cd-113
5
IO"2
3.75 IO"9
3.75 lO"'
3.75 10"'
3.75 10"9
3.75 10"'
3.75 10"'
1.48 10"'
4.70 10"®
6.16 10 7
Kidneys
Cd-113m
5
IO"2
3.44 10'
3.44 10"'
3.44 109
3.44 10"'
3.44 lO"9
3.44 10"'
1.37 lO"'
4.35 IO4
5.64 lO"7
Kidneys
Cd-115
5
IO"2
3.17 IO"10
4.44 lO-11
1.65 10"
7.40 10""
3.06 10"
9.49 lO'12
4.81 10"'
1.54 10"'
1.50 I04
LLI wall
Cd-115m
5
10'2
1.84 1CT10
1.66 IO"10
1.64 lO10
1.68 lO"10
1.64 10"'°
1.61 lO"10
1.42 104
4.37 10"'
Cd-117
5
IO"2
8.74 1 cr"
1.60 10"
6.68 1012
2.37 10"
8.83 10"12
1.56 10"12
9.17 lO"10
3.03 IO"10
Cd-117m
5
IO"2
2.08 IO"10
3.63 10"
1.44 10"
5.24 10"
1.91 10""
2.83 10"12
8.51 lO"10
3.21 IO"10
Indium
ln-109
2
IO"2
7.34 10"
1.16 10"
4.10 1012
1.98 10"
7.06 10"IJ
6.00 10"13
1.77 lO"10
7.64 IO""
ln-110
XQ 1 m
2
10"2
3.72 IO"10
6.00 10"
2.10 10"
8.69 10"
3.05 10""
3.06 10"'2
5.67 lO"10
2.86 IO"10
07« 1 111
ln-110
2
10"2
3.15 10"
7.35 IO"12
4.49 10-12
9.33 10'12
3.57 10"12
5.06 10"
2.77 lO"10
9.39 10"
4.9 h
ln-111
2
IO"2
4.15 IO"10
4.37 10"
8.35 1012
1.08 lO"10
3.73 10"
2.10 1012
7.80 lO"10
3.59 IO10
ln-112
2
lO'2
5.08 IO"13
2.65 10"
2.66 1013
2.58 lO'13
1.19 10"13
2.28 10"
2.07 10""
6.46 IO"12
7.98 10"
ST wall
ln-113m
2
IO"2
9.58 10'12
1.86 10"'2
9.25 1013
2.82 10"12
1.02 10"12
9.97 10""
8.37 10""
2.83 IO""
ln-114m
2
IO"2
2.49 IO"10
1.32 lO"10
1.23 lO-10
3.51 10"'
1.81 10"'
1.17 lO"10
1.34 10"9
4.61 10"'
4.36 I04
LLI wall
ln-115
2
IO"2
4.86 10"'
4.86 10'
4.86 10'
1.53 10"'
7.91 104
4.86 10"'
6.41 104
4.26 IO4
ln-11 5m
2
10-2
2 20 lO"11
3.16 IO"12
1.03 10-12
6.11 lO"12
2.19 1012
1.86 1013
2.88 IO"10
9.33 IO""
ln-116m
2
IO"2
3.19 10""
8.64 1012
5.73 1012
1.01 10""
4.04 1012
7.07 1013
1.60 IO"10
5.93 10"
ln-117
2 10"2
7.82 lO"12
2.15 IO"12
1.54 1012
2.88 10"IJ
1.12 10"12
1.38 10"13
7.68 IO"11
2.59 IO*"
ln-117m
2 lO"2
2.19 lO"11
3.60 1012
1.34 1012
6.31 10"12
2.23 10"12
2.12 10"13
3.61 IO"10
1.15 IO"10
ln-119m
2 10"2
8.74 10'14
3.42 10"
3.11 10"
3.70 10'"
1.77 10"14
4.99 10"
9.58 10""
2.88 10""
3.70 IO"10
ST wall
-------
164
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide f| Gonad Breast Lung R Marrow B Surface Thyroid Remainder Effective
Tin
Sn-110
2 IO'2
2.13 IO'10
3.06 10"
8.68
IO'12
4.86 icr"
1.72 IO"11
1.50 IO12
1.16 10'®
4.13 IO'10
Sn-111
2 ICT2
7.42 1012
1.58 IO'12
9.98
1013
2.23 IO"12
9.70 IO'13
1.06 1013
5.66 IO'"
1.95 IO'11
Sn-113
2 IO'2
3.88 1010
5.68 10"
2.54
IO11
1.78 lO"10
2.34 ICT10
2.16 10"
2.32 IO"®
8.33 IO10
7.91 IO"*
LLI wall
Sn-l 17m
2 I0'2
2.23 10''°
2.39 10'"
5.50
10'12
1.03 IO'10
4.78 IO'10
3.03 IO''2
2.37 10'®
7.97 10''°
7.94 10'*
LLI wall
Sn-l 19m
2 IO'2
4.11 10'"
1.05 lO'11
9.20
IO'12
8.07 IO'11
1.82 IO10
8.89 10'12
1.16 IO"®
3.76 IO'10
4.04 10-'
LLI wall
Sn-121
2 10'2
2.00 IO'13
2.00 IO13
2.00
IO13
2.23 IO'12
2.51 ICT11
2.00 IO''3
8.09 10''°
2.44 10 10
2.36 IO'9
LLI wall
Sn-12lm
2 IO'2
4.31 IO11
2.95 10"
2.90
10'"
2.32 IO-10
6.12 IO'10
2.86 lO"11
1.18 10®
4.19 IO'10
4.47 IO"'
LLI wall
Sn-123
2 I0"2
3.80 lO'11
3.22 10"
3.15
10-"
2.41 IO'10
6.62 IO'10
3.13 IO'11
7.35 10®
2.27 10'®
2.59 IO"*
LLI wall
Sn-123m
2 IO"2
1.62 IO12
4.25 10'13
2.90
IO'13
7.72 IO"13
2.98 IO-13
2.38 IO'14
9.57 10'"
2.93 10'"
Sn-125
2 IO'2
2.88 lO'10
4.41 10"
1.60
10'"
2.08 IO'10
2.38 IO'10
9.78 IO'12
1.07 IO-8
3.33 IO'9
3.67 IO"*
LLI wall
Sn-126
2 IO"2
2.41 10'»
7.96 lO'10
5.99
10 1°
2.72 10'®
5.06 10'®
5.51 10 10
1.33 10 *
5.27 10'*
Sn-127
2 ICT2
9.21 10"
1.75 10'"
7.98
IO12
2.48 IO'11
1.03 10'"
1.20 IO"12
6.01 IO'10
2.10 10'n
Sn-128
2 IO'2
5.00 10"
1.10 IO'"
6.34
IO-12
1.49 10"
5.57 IO''2
6.83 10'13
4.39 IO'10
1.49 IO'10
Antimony
5.96 IO'12
Sb-l 15
1 10'1
2.02 10'12
1.66
IO''2
2.28 IO'12
9.55 IO''3
1.68 IO''3
5.72 10'"
1.95 10'"
1 IO'2
6.02 10'12
2.01 1012
1.64
IO-12
2.28 10 12
9.36 IO13
1.45 10'13
5.75 IO"11
1.96 10"11
Sb-116
1 IO'1
4.76 ICT12
2.18 IO'12
2.10
10'12
2.05 IO'12
9.67 IO13
2.29 IO*13
5.64 10'"
1.90 10'"
1.91 IO"10
ST wall
1 IO'2
4.78 IO'12
2.18 10*12
2.09
IO'12
2.04 IO''2
9.62 IO'13
2.21 10'13
5.65 IO""
1.90 10'"
1.91 IO"10
ST wall
Sb-l 16m
1 10 1
5.02 10-"
1.27 lO"11
8.22
10-12
1.56 IO"11
6.25 IO'12
1.10 1012
1.62 10''°
6.62 IO'"
1 IO'2
5.12 10"
1.27 10"
8.05
10 12
1.57 IO'"
6.09 IO12
8.94 10'13
1.64 IO'10
6.70 10'"
Sb-l 17
1 101
1.49 10-"
2.36 IO'12
9.26
10-13
5.03 IO'12
2.00 10 12
1.65 IO'13
5.09 10'"
2.01 IO"11
I IO'2
1.55 lO'11
2.34 I0'12
8.14
10-13
5.04 IO'12
1.67 IO''2
6.35 IO'14
5.28 10'"
2.08 IO'"
Sb-l 18m
1 101
2.85 lO10
5.04 10"
1.93
10"
7.36 IO11
2.84 IO'"
4.81 IO'12
5.11 IO"10
2.44 IO'10
I 10J
3.00 lO10
5.06 I0-11
1.75
10'"
7.47 10'"
2.62 10'"
2.48 IO12
5.37 IO10
2.56 10'Ifl
Sb-l 19
I 10'1
3.57 10'"
2.80 1012
1.14
IO-12
1.13 IO'11
2.04 10"
9.51 IO'13
2.61 IO'10
8.97 10'"
I 102
3.81 lO'11
2.11 10'12
1.84
lO'13
9.06 10'12
4.01 IO'12
9.45 10'u
2.84 IO'10
9.62 10'"
Sb-l 20
I IO"1
1.00 1012
4.97 IO'13
4.91
IO13
4.93 IO'13
2.26 IO'13
4.48 IO'14
3.01 10'"
9.49 ICT12
15.89 m
1.12 IO10
ST wall
1 IO'2
1.01 IO'12
4.95 10'13
4.88
IO'13
4.91 IO'13
2.23 IO"13
4.13 IO'14
3.02 10'"
9.51 IO'12
1.12 IO10
ST wall
Sb-l 20
1 101
2.03 10'»
2.98 IO"10
1.04
10-'°
5.04 IO'10
2.89 IO10
5.57 10'"
2.76 IO"®
1.46 10'®
5.76 d
1.12 IO-1"
ST wall
I IO"2
2.18 10"®
2.73 IO'10
5.66
10"
4.70 IO'10
1.69 IO'10
1.22 10'"
2.96 10®
1.54 IO"*
1.12 10'w
ST wall
Sb-l 22
I 10''
3.49 IO'10
6.29 10'"
3.12 IO"11
1.45 10 10
9.62 IO'"
2.40 10'"
5.69 10'®
1.83 10'*
1.80 IO"*
LLI wall
I 102
3.59 ICT10
4.54 10'"
9.93
IO-12
7.90 10"
3.13 10'"
3.27 10'12
6.20 IO'9
1.97 10"®
1.97 IO"*
LLI wall
Sb-l 24
I 101
1.74 10'®
3.21 lO10
1.65 IO10
6.16 IO10
7.99 IO'10
1.18 IO'10
6.81 IO'9
2.65 IO"'
1 I0'2
1.78 I0"9
2.30 IO'10
5.40 IO"11
3.81 IO'10
1.89 IO'10
1.76 10'"
7.34 10'®
2.74 IO*
-------
165
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
f.
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Sb-124m
1 10"'
1.58 10"12
5.55
IO"13
4.79 IO"13
6.35
IO"13
3.77 IO"13
6.51 10"N
1.75 lO"11
5.37 10"
5.88 lO"12
ST wall
1 10"2
1.60 IO12
5.37
io-13
4.55 10 13
5.90
10-13
2.60 icr13
4.29 IO"14
1.77 lO""
5.91 IO'12
Sb-125
1 10"'
5.24 lO"10
1.00
IO-io
6.03 IO11
2.26
10 '0
5.86 IO"10
4.62 10"
1.86 10"'
7.59 IO'"*
1 10"2
5.27 lO'10
6.22
IO"11
1.36 IO"11
1.21
IO-io
9.05 IO"11
5.58 IO"12
1.99 10*
7.57 IO-"*
Sb-126
1 10"'
2.73 10-'
4.17
lO-'O
1.66 IO10
7.23
IO-io
5.17 IO"10
1.05 10'°
6.29 10"*
2.76 10-'
1 10"2
2.89 10"'
3.53
10"10
6.85 IO11
5.93
IO-io
2.27 10'°
1.74 IO"11
6.77 IO"'
2.89 10*
Sb-l26m
1 10"'
5.24 IO"12
2.07
io-12
1.91 IO'12
2.18
io-12
1.01 IO"12
1.99 lO"13
7.72 10-"
2.64 IO-"*
2.53 10"
ST wall
I IO"2
5.29 1012
2.06
IO"12
1.88 IO'12
2.16
io-12
9.53 IO13
1.73 IO"13
7.74 10""
2.64 IO-"*
2.54 10"
ST wall
Sb-i27
1 10 1
5.88 lO'10
9.76
10""
4.38 10"
2.11
IO-io
1.50 IO"10
3.16 10""
5.39 10"*
1.79 IO"8
1.81 10"'
LLI wall
1 10'2
6.14 lO"10
7.60
10-"
1.57 IO""
1.33
IO-io
5.24 10""
4.64 IO"12
5.87 10*
1.96 IO"*
1.95 10*
LLI wall
Sb-128
1 10"'
3.92 IO"12
2.15
10-'2
2.27 IO"12
1.97 IO"12
9.59 IO"13
2.12 IO"13
4.70 10""
1.59 IO"11
10.4 m
1.63 IO'1"
ST wall
I IO"2
3.93 lO"12
2.15
10-12
2.27 IO"12
1.97
IO"12
9.57 IO"13
2.09 IO'13
4.70 10'"
1.63 IO*1®
1.59 IO"11
ST wall
Sb-128
1 10"'
4.53 lO"10
7.22
10-"
2.70 lO"11
1.17
IO10
5.14 IO"11
1.14 IO"11
3.27 10*
i.i3 ia»
9.01 h
1.63 10'"'
ST wall
1 10-2
4.78 10 10
6.81
io-11
1.91 10""
1.06
IO-io
3.73 10"
3.10 IO"12
3.49 10*
1.63 10-"
1.19 10"'
ST wall
Sb-129
1 10"'
1.46 lO"10
2.74
10-"
1.22 IO"11
4.04
io-"
1.95 10"
4.45 IO"12
1.38 10"'
4.61 IO-"*
1 10-2
1.51 lO"10
2.56
10""
9.39 IO"12
3.67
10'"
1.34 10""
1.47 IO"12
1.45 10*
4.84 10">
Sb-130
1 10-'
3.10 10""
8.87
10-12
6.60 IO"12
1.04
io-"
4.30 IO"12
7.94 IO"13
2.22 IO"10
7.77 10""
1 IO"2
3.14 10'"
8.82
10-12
6.49 IO"12
1.04
10-"
4.20 IO"12
6.66 IO"13
2.23 IO10
7.83 10'"
Sb-131
1 10 1
1.12 10-"
3.79
10-12
3.07 IO"12
4.18
IO-12
2.01 IO"12
9JD8 IO'10
1.67 IO"10
8.18 lO"11
1 10"2
1.13 10'"
3.73 10"12
3.00 10'2
4.11
io-12
1.84 IO"12
9.07 IO"1*
1.69 IO"10
8.21 10""
Tellurium
Te-116
2 10"'
1.12 lO"10
2.31
10-"
1.11 10"
3.22
10-"
1.41 10""
4.05 IO12
5.28 IO"10
1.96 IO'14
Te-121
2 10"'
6.00 lO"10
1.31
lO-'O
8.03 10'"
2.91
IO-io
4.29 IO"10
7.11 10""
7.50 IO"10
4.54 Iff14
Te-l21m
2 10"'
7.23 lO"10
5.07
lO-'O
4.48 IO"10
3.77
10"'
2.74 itr8
4.40 IO"10
1.62 10*
2.08 10*
Te-123
2 10*'
3.16 IO"12
2.74
10-12
2.63 IO"12
2.31
10-'
2.81 IO"*
1.99 IO"12
3.70 10'"
1.13 10*
Te-l23m
2 10"'
2.75 lO"10
1.26
10-10
1.10 IO'10
2.33
10"'
2.41 10"*
9.44 10-"
1.42 IO"'
1.53 10*
Te-125m
2 10"'
1.27 IO10
4.64
10-"
4.36 IO"11
1.21
10-'
1.27 IO""
3.93 IO"11
1.40 10*
9.92 IO"10
Te-127
2 10"'
4.02 lO"12
3.00
10-12
2.89 IO"12
6.57
IO"12
6.46 lO"12
2.86 IO"12
6.13 IO"10
1.87 IO-"*
Tc-l27m
2 10"'
1.25 lO"10
9.74
10-"
9.62 10'"
5.43
10"*
2.07 10<
9.43 IO"11
2.98 10*
2.23 10''
Te-129
2 10"'
1.59 lO"12
6.05
10-13
4.91 IO'13
7.64
IO-13
5.40 IO"13
3.36 IO'13
1.79 IO"10
5.45 IO""
Te-129m
2 10"'
2.41 IO"10
1.66
10-!0
1.59 IO"10
3.50
10"'
7.99 10"'
1.57 IO"10
7.08 10"'
2.89 10"'
Te-131
2 10"'
1.57 10""
4.96
10-12
3.39 IO"12
6.60
IO"12
3.69 IO"12
4.21 10''
3.73 IO"10
2.44 IO"10
Te-131m
2 10 1
7.38 lO"10
1.35
IO-io
6.26 10""
2.42
10-10
3.24 IO10
4.29 IO*
3.07 10"'
2.46 10»
Te-132
2 10"'
5.41 IO"10
3.50
lO-'O
3.30 IO"10
4.44
lO-'O
8.30 IO"10
5.95 IO*
1.49 IO"'
2.54 10»
Te-133
2 10-1
1.85 lO"12
1.23
io-12
1.22 IO'12
1.18
IO-12
7.73 IO"13
9.39 IO'"*
6.05 IO"11
4.73 IO"11
Te-13 3m
2 10"'
3.68 10""
1.14
io-"
8.33 IO"12
1.31
10-"
6.61 IO"12
4.17 IO"*
2.89 IO"10
2.26 IO"10
Te-134
2 10"'
2.03 10-"
1.37
IO"11
1.29 IO""
1.49
10-"
1.23 10""
8.82 IO-"*
9.65 IO'"
6.63 10"
Iodine
1-120
1.0
2.46 10-"
2.49
io-"
2.61 IO"11
2.42
10-"
2.21 IO"11
3.45 10"'
2.92 IO"10
2.08 IO"10
1-I20m
1.0
2.20 10""
2.33
10-"
2.53 10""
2.19
10-"
1.87 10""
1.26 10"'
2.69 IO"10
1.34 IO"10
-------
166
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
(i
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
1-121
1.0
4.32 10 12
5.99 lO12
5.91 IO12
5.83 10 12
5.12 lO12
1.37 10"'
3.10 10 11
5.39 10"
[-123
1.0
5.61 10'12
7.23 IO'12
6.66 lO'12
8.68 lO'12
7.65 IO'12
4.42 10*
2.01 10'"
1.43 IO'10
1-124
1.0
5.67 10"
1.72 lO"10
1.44 lO'10
1.25 IO'10
1.14 IO10
2.82 IO"'
2.20 lO'10
8.60 10'
[-125
1.0
2.93 10"
1.45 10 10
4.08 lO'u
6.82 10'"
6.63 10""
3.44 IO"7
5.80 10"
1.04 IO8
1-126
1.0
5.55 10"
2.12 IO'10
1.72 IO'10
1.50 IO40
1.38 IO"10
6.36 IO"1
2.15 10 10
1.92 IO'8
1-128
1.0
1.39 10 12
1.44 IO'12
1.47 IO'12
1.43 IO'12
1.39 IO42
1.08 IO'10
6.71 10'"
2.43 10"
3.28 IO"10
ST wall
[-129
1.0
1.38 10 10
3.31 10 10
1.65 IO'10
2.21 IO'10
2.17 lO'10
2.48 IF*
1.99 10 10
7.46 IO8
1-130
1.0
5.52 10'"
7.32 10'"
7.18 10'"
6.74 10"
6.12 10 11
3.94 10"*
1.97 IO'19
1.28 IO''
1-131
1.0
4.07 10'"
1.21 lO'10
1.02 lO10
9.44 10'"
8.72 10"
4.76 IO''
1.57 IO10
1.44 IO8
1-132
1.0
2.33 10"
2.52 10"
2.64 10'"
2.46 10'"
2.19 10"
3.87 10"'
1.65 IO'10
1.82 tO10
1-I32m
1.0
1.45 10"
1.54 10"
1.57 10"
1.54 10'"
1.42 10"
3.69 IO"'
7.13 10'"
1.42 ICf10
1-133
1.0
3.63 10"
4.68 10"
4.53 10'"
4.30 IO'11
4.07 10"
9.10 itr8
1.55 IO'10
2.80 10'
1-134
1.0
1.10 10"
1.17 10"
1.26 10"
1.09 lO'u
9.32 IO'12
6.21 IO'10
1.34 IO'10
6.66 10 "
[-135
1.0
3.61 10"
3.85 10"
3.75 10"
3.65 10'"
3.36 10"
1.79 IO"8
1.54 IO'10
6.08 lO10
Cesium
Cs-125
1.0
3.30 IO'12
3.70 10'12
4.08 IO12
3.67 IO12
3.24 IO'12
2.80 IO'12
5.69 10"
1.96 10"
2.49 IO"10
ST wall
Cs-127
1.0
1.50 10"
1.34 10 11
1.46 10"
1.66 10""
1.48 10'"
1.20 10"
3.64 10 11
2.12 10"
Cs-129
1.0
5.42 10"
4.58 10 "
5.00 10"
6.29 10"
5.65 10"
4.32 10'"
7.30 10"
5.89 10'"
Cs-130
1.0
1.73 1012
2.02 IO12
2.24 IO12
1.95 IO"12
1.72 IO'12
1.49 IO'12
4.71 10"
1.55 10"
2.15 IO"10
ST wall
Cs-131
1.0
6.12 IJJ "
5.26 10'"
6.22 10"
9.96 10"
8.96 10'"
4.86 10'"
6.64 10"
6.67 IO'"
Cs-132
1.0
5.24 lO'°
4.27 IO'10
4.49 IO10
5.06 IO10
4.60 lO'10
4.33 IO'10
5.84 10 10
5.12 IO'10
Cs-134
1.0
2.06 ICf8
1.72 IO"8
1.76 10 *
1.87 IO"8
1.74 lO8
1.76 IO 8
2.21 IO8
1.98 IO"8
Cs-I34m
1.0
6.72 iCf'2
6.28 lO'12
6.42 lO12
6.91 IO'12
6.57 lO'12
6.22 IO'12
2.89 10'"
1.33 10"
1.15 IO"10
ST wall
Cs-135
1.0
1.91 10'
1.91 10''
1.91 10'
1.91 IC9
1.91 IO*
1.91 !C
1.93 10''
i.9i ia'
Cs-I35m
1.0
5.30 lO'12
5.76 10 12
6.45 lO12
5.42 lO12
4.39 lO12
3.84 IO42
3.73 10"
1.50 10-"
Cs-136
1.0
3.04 10'
2.65 10'
2.62 10'
2.95 10'
2.71 10''
2.74 10'
3.52 lO"'
3.04 10*
Cs-137
1.0
1.39 10®
1.24 IO'8
1.27 IO8
1.32 ICT®
1.26 IO'8
1.26 lO 8
1.45 lO"8
1.35 IO4
Cs-138
1.0
8.00 1012
8.00 IO12
8.53 10 12
7.37 IO12
6.47 10'12
5.73 IO'12
1.57 10'10
5.25 10'"
7.01 IO"10
ST wall
Barium
Ba-126
1 IO1
4.31 10-U
9.15 IO12
5.08 IO12
1.28 10"
5.01 IO'12
1.13 IO'12
7.70 10'10
2.46 IO'10
Ba-128
1 IO'1
7.78 lO10
1.04 IO'10
3.19 10"
2.25 10 10
1.22 10 10
1.90 10'"
8.66 10'
2.84 10"'
Ba-131
1 lO1
5.23 lO'10
6.30 10"
1.69 10'"
1.47 lO10
1.80 IO'10
9.37 IO12
1.11 10'
4.98 IO"10
Ba-I3lm
1 IO1
6.55 !013
1.45 IO13
9.87 IO'14
2.77 IO13
2.19 IO'13
1.15 IO14
1.01 10"
3.28 lO'12
3.61 10'"
ST wall
Ba-133
1 lO1
7.33 IO10
2.73 IO10
2.19 10 10
1.46 10'
1.97 10''
2.03 lO10
1.43 10'
9.19 10'1°
Ba-I33m
1 IO1
6.55 10"
8.54 IO12
3.61 IO'12
2.79 10 11
2.70 10'"
2.88 IO12
1.81 10'
5.66 10'10
5.47 icr'
HI wall
Ba-I35m
1 10'
5.24 10 11
6.74 10 12
2.79 10 12
2.10 10 "
1.25 10'"
2.19 lO'12
1.47 tO*'
4.60 IO-10
Ba-139
I 10'
1.56 lO12
5.17 10°
3.89 IO'13
8.59 lO'13
4.38 lO13
2.66 IO'13
3.57 IO'10
1.08 IO"10
Ba-140
1 IO1
9.96 10 10
1.59 lO10
6.63 10'"
4.39 10 10
5.53 IO'10
5.25 10'"
7.37 IO"9
2.56 10"'
2.64 1CT*
HI wall
Ba-141
1 IO1
2.86 lO'12
1.22 10'2
1.10 lO'12
1.47 10 12
1.27 lO12
2.25 IO13
1.84 10'10
S.65 10""
Ba-142
! 10 1
9.88 10 12
2.52 10 12
1.67 IO'12
3.00 IO'12
1.24 lO12
2.71 IO'13
8.89 10"
3.01 10""
-------
167
Table 2.2, Cont'd.
Commillcd Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
f.
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Rem aindcr
Effective
Lanthanum
La-131
1
10J
1.39 10'"
3.05 Iff12
1.81 IO"12
4.43 IO12
1.63 Iff12
1.55 10'13
9.15 Iff"
3.22 IO'"
La-132
1
10J
2.40 Iff10
3.77 Iff"
1.30 10'"
5.56 10""
1.93 10"
1.67 Iff12
1.19 10"'
4.30 IO10
La-135
1
io-3
3.38 Iff"
2.71 IO12
2.73 IO'13
9.96 Iff12
2.68 IO"12
1.79 Iff14
8.81 10'"
3.66 IO"11
La-137
1
IO"3
7.82 Iff"
1.55 IO"11
2.25 IO41
7.05 Iff"
2.15 Iff10
5.23 Iff12
2.76 Iff10
1.23 IO"10
La-138
1
I0}
1.50 10"'
4.79 IO"10
5.61 Iff10
7.53 IO"10
1.39 IO''
1.80 IO"10
3.14 IO''
1.59 Iff*
La-140
1
IO-3
1.34 10-'
1.80 10°°
4.01 10'"
2.81 Iff10
9.77 Iff"
6.40 IO12
6.26 10"'
2.28 10"»
La-141
1
IO"3
3.77 IO"12
7.07 Iff13
2.72 IO"13
1.07 IO"12
6.06 IO"13
5.29 IO"14
1.24 10"'
3.74 IO'10
La-142
1
IO-3
6.99 Iff"
1.54 10""
8.40 Iff12
1.93 10""
7.40 10'12
1.16 IO'12
5.20 IO"10
1.79 IO10
La-143
1
IO-3
1.70 Iff12
2.49 IO"13
1.07 Iff13
4.44 Iff13
1.56 IO"13
1.26 Iff14
1.24 IO'10
3.77 10'"
3.94 IO'10
ST wall
Cerium
Cc-134
3
IO"4
6.61 IO10
7.48 10""
1.18 10"
1.40 Iff10
4.55 10"
1.56 Iff12
8.70 10"'
2.81 10"'
2.78 IO"1
LLI wall
Cc-135
3
IO"4
8.23 Iff10
1.02 IO"10
2.15 10""
1.72 Iff10
5.74 Iff"
2.56 Iff12
2.30 10"'
9.37 IO"10
Cc-137
3
IO"1
1.71 IO""
1.56 10 12
2.12 IO"13
5.28 Iff12
1.43 IO"12
8.87 Iff15
7.55 Iff"
2.79 10-"
Cc-137m
3
IO'4
9.59 Iff"
7.61 10"12
6.85 IO"13
2.76 Iff"
7.66 Iff12
6.33 IO14
1.88 Iff'
5.94 IO"10
5.70 IO*
LLI wall
Cc-139
3
IO"4
2.57 Iff10
2.42 10"
3.56 Iff12
7.43 10-"
3.37 10'"
4.49 Iff13
7.69 IO"10
3.09 IO"10
Ce-141
3
IO"4
1.08 Iff10
l.ll Iff"
1.43 Iff12
3.39 Iff"
2.30 Iff"
1.80 1013
2.50 10''
7.83 Iff10
8.64 10*
LLI wall
Cc-143
3
IO"4
2.12 IO"10
2.32 10"
3.82 IO"12
5.07 10""
1.61 10-"
4.35 Iff13
3.89 10"'
1.23 Iff'
1.17 IO"*
LLI wall
Cc-144
3
IO"4
6.98 10"
1.22 10""
6.52 IO"12
8.92 10-"
1.28 IO"10
5.15 Iff12
1.88 IO4
5.68 10"*
6.64 IO"*
LLI wall
Praseodymium
3.43 Iff12
Pr-136
3
IO'4
1.81 IO"12
1.84 Iff12
1.70 IO12
8.08 IO"13
1.74 Iff13
6.91 10""
2.23 10"
2.55 IO"10
ST wall
Pr-137
3
IO"4
1.50 Iff"
2.95 Iff12
1.58 Iff12
4.49 IO"12
1.56 Iff12
1.45 Iff13
1.12 IO"10
3.85 10-"
Pr-138m
3
Iff4
1.13 IO10
2.15 10""
1.00 10"
2.97 Iff"
1.06 10"
l.ll 10'12
3.40 IO"10
1.39 IO"10
Pr-139
3
IO-4
1.82 10""
2.49 Iff12
7.37 IO"13
4.92 IO"12
1.56 Iff12
6.87 Iff14
9.85 10'"
3.52 Iff"
Pr-142
3
IO-4
2.02 10'"
3.08 Iff12
7.97 Iff13
4.67 IO"12
1.72 Iff12
1.28 Iff13
4.71 10''
1.42 10"*
Pr-142m
3
lO"4
2.59 IO"13
3.90 IO"14
9.61 IO"15
5.96 Iff14
2.19 lffM
1.58 !0 ,s
6.02 10"
1.81 10"
Pr-143
3
IO"4
8.99 10""
1.09 Iff"
1.91 10"
1.03 IO12
1.03 Iff12
2.66 IO10
4.22 10"'
1.27 10"*
1.47 10""
LLI wall
Pr-144
3
IO"4
7.38 IO"14
3.38 IO"14
3.15 Iff14
3.22 IO"14
1.52 IO"14
3.59 10'15
1.05 IO"10
3.15 10"
4.09 icr10
ST wall
Pr-145
3
10"*
2.03 IO"12
3.13 IO'13
9.86 IO'14
4.98 IO"13
1.80 IO"13
1.21 IO"14
1.39 10"*
4.18 Iff10
Pr-147
3
10J
1.79 IO"12
8.15 IO"13
7.94 IO"13
8.60 IO13
3.97 IO"13
6.96 IO'14
6.74 Iff"
2.10 10""
2.52 Iff"
ST wall
Neodymium
8.36 IO"12
Nd-136
3
IO'4
3.63 10"
4.86 IO"12
1.12 10-"
4.14 10'12
4.86 IO'13
2.79 Iff10
9.62 10-"
Nd-138
3
IO"4
1.26 IO"10
1.82 10'"
5.65 IO12
2.93 10-"
9.78 IO"12
5.88 IO'13
2.17 IO*
6.89 IO'10
Nd-139
3
Iff4
4.69 IO"12
1.12 IO'12
7.59 IO"13
1.55 IO"12
5.83 IO '5
6.57 IO"14
4.88 IO"11
1.63 10"
Nd-139m
3
IO-4
2.58 IO'10
3.85 10""
1.18 10'"
6.26 IO"11
2.10 10""
1.43 Iff12
7.14 IO"10
2.94 IO'10
Nd-141
3
10-4
5.83 1012
9.01 1013
3.29 IO"13
1.87 IO"12
5.83 Iff13
2.40 IO'14
2.44 10-"
9.18 10'1J
Nd-147
3
IO"1
1.79 IO10
1.87 10'"
2.44 IO"12
5.05 IO"11
2.22 10-"
2.64 10'13
3.76 10"'
1.18 IO''
1.28 Iff*
LLI wall
Nd-149
3
IO"4
1.60 Iff"
2.96 IO"12
1.38 IO"12
5.01 IO"12
1.74 IO"12
1.14 10'13
4.03 IO'10
1.26 IO"10
Nd-151
3
Iff4
3.13 IO"12
9.38 Iff13
7.93 IO"13
1.14 Iff12
4.85 Iff13
7.32 IO'14
6.70 10-"
2.13 10-"
-------
168
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
f.
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effect ive
Promethium
Pm-141
3 lO"4
3.45 10"12
1.19 10"12
1.01
10'12
1.39 lO"12
5.71 10"IJ
9.05 lO14
7.97 10""
2.73 lO"'0
2.53 10"
ST wall
Pm-143
3 10'4
3.87 10"'°
4.40 10"
9.01
10 12
9.23 10"
4.16 10"
1.56 10"12
5.39 10"'°
2.79 10-'°
Pm-144
3 10""
1.79 10"'
2.17 lO-10
4.85
10-"
3.86 10"'°
1.56 lO"10
9.65 10"12
2.13 10"'
1.17 10"*
Pm-145
3 10"*
8.06 10"
7.25 lO"12
3.81
10-12
5.30 10"
1.97 10"'°
4.52 10l}
3.12 10 10
1.28 lO"'0
Pm-146
3 10"*
8.86 lO'10
1.20 lO'10
4.60
10"
2.76 10"'°
1.92 lO'10
1.19 10""
2.35 10"'
9.91 lO"10
Pm-147
3 10 4
6.86 lO"15
7.45 lO'"1
1.96
10-16
2.09 10"
2.61 10 10
3.12 10"11
9.08 lO10
3.17 10"*
2.83 lO'10
LLI wall
Pm-148
3 10"4
4.72 10'°
6.11 10"
1.19
10-"
9.85 10'"
3.49 10"
1.85 lO"12
9.32 10"'
3.10 lO-1
2.94 lO"'
LLI wall
Pm-148m
3 10'4
2.18 10"'
2.59 lO'10
4.44
10"
4.41 10"'°
1.74 lO'10
6.47 10"12
4.75 10"'
2.07 10"'
Pm-149
3 10"
9.19 10'12
1.02 10'2
1.62
10-|}
2.27 10'12
9.59 10'IJ
1.78 10"'4
3.56 lO"9
1.14 10"1
1.07 10"'
LLI wall
Pm-150
3 lO'4
7.97 10""
1.52 10""
6.54
10"12
2.13 10'"
7.63 10"12
8.07 10"IJ
8.14 lO'10
2.70 lO00
Pm-151
3 10'4
2.11 10"14
2.42 10""
4.23
10-12
4.94 10"
1.62 10""
4.55 10"IJ
2.49 10"'
8.09 lO-10
Samarium
Sm-141
3 lO"4
3.64 10"12
1.53 10"12
1.43
10-12
1.63 10"12
7.17 10,|J
1.31 10"IJ
8.49 10"
2.95 i
-------
169
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
r.
Gonad
Breast
Lung
R Mar/ow
B Surface
Thyroid
Remainder
Effective
Gadolinium
Gd-145
1 IO"1
l.U IO"11
1.64 10IJ
289 10"IJ
3.99 IO"12
1.-31 10"li
1.29 10"u
9.76 IO"11
3.36 10'"
3.00 10"10
ST wall
Gd-146
3 10"
8-88 IO"10
9.31 10""
1.31 IO"11
2 44 IO"10
1.15 IO"10
2.29 10"1J
2.84 10"'
1.12 IO*
Od-147
3 I0-*
9-26 IO10
1.12 IO"10
211 10""
2 02 IO"10
6.72 10'"
2 74 I01J
1.55 10*
7.42 !0-'°
Cd-148
3 I0"1
0.00 io-°
0.00 10"°
0.00 10"°
8 90 IO"8
I II 10*
0.00 10"°
4.98 IO4
5.89 1O'8
Cd-149
3 IO"1
5 08 IO10
5.38 IO"11
7.51 10"1J
1.27 IO"10
4.24 10'"
8.50 IO"13
1.29 10"'
5.41 IO'"
Gd-151
3 10'
1.22 IO10
1.04 IO"11
1.06 IO"12
4.30 10"
3.39 10"
1.03 IO13
6.15 IO10
2.23 IO'"
Gd-152
3 I0-1
0.00 10"°
0.00 10"°
0.00 10"°
6.57 IO4
8.21 IO'7
0.00 10°
3.62 IO"8
4.34 IO"1
Gd-153
3 IO"4
1.97 Iff10
1.80 10""
2.19 10IJ
8.07 10"
7.92 10"
2.18 IO'13
8-44 IO"10
3.17 10-"
Gd-159
3 icr*
2.86 10"
3 18 I0IJ
5.38 IO"13
7.92 10"1J
2.55 10"IJ
4.85 IO"14
1.76 10"'
5.35 IO-10
Terbium
Tb-147
3 IO"1
9.15 10""
154 IO-"
6.36 10"IJ
2.32 10"
8.16 10",J
7.08 IO'13
4 39 IO10
1.61 IO-1"
Tb-149
3 I0J
1.71 10'10
280 10"
9.76 10"IJ
4 33 10""
1.92 10"
1.23 I0"IJ
7.39 IO-10
2.76 IO"10
Tb-150
3 IO"1
1.29 IO10
2.23 IO"11
8.81 I0IJ
321 10""
1.12 IO"11
103 I0"IJ
7.78 IO"10
2.74 IO"10
Tb-151
3 10J
4 20 IO"10
5.13 10'"
104 10"
1.00 10"10
3.27 IO"11
1.17 10"1J
9.19 IO"10
4.03 IO"'0
Tb-153
3 I0-1
2 35 IO"10
2.41 10"
3 24 10"IJ
6.83 10'"
218 IO"11
2.94 IO13
7.35 IO'10
2.92 IO"'0
Tb-154
3 IO"1
9-89 IO10
1.32 IO-10
3 28 IO"11
2.14 IO"10
7.36 IO"11
5.23 101J
1.66 Iff'
7.96 IO"10
Tb-155
3 icr1
196 IO-10
1.89 IO-11
1.94 I01J
6.70 10"
2.06 JO*'
1.12 IO13
612 IO"10
244 IO"10
Tb-156
3 IO"1
164 IO"5
2.00 IO"10
3 66 10""
3.57 IO"10
1.21 IO"10
5.32 |0IJ
3.03 10*
1.40 IO*
Tb-156m
3 IO"1
1-95 IO"10
213 IO'11
2 77 10"1J
4.64 IO"11
1.54 IO"11
4.12 IO"13
4.80 IO"10
2.04 IO"'0
24.4 h
Tb-156m
3 icr*
5-85 IO41
6.73 10"12
1.02 I0IJ
! 26 IO"11
4 26 I0IJ
1.55 IO"13
2.46 IO"10
9.12 IO'"
5 0 h
Tb-157
3 iO-1
6.45 IO12
6 27 1 0IJ
3.07 IO"13
127 IO"11
1 11 IO10
6.50 IO"14
8.97 IO"11
3.35 10'"
2.96 10-"
LLI wall
Tb-158
3 IO"1
9.15 IO10
147 10"10
7.57 10"
4.90 IO10
1.62 10"'
2.04 IO"11
2.73 IO*
1.19 10"'
Tb-160
3 IO"1
1.17 10"'
1.43 IO"10
2.72 10""
2.54 IO"10
1.57 IO"10
4 29 10"IJ
4.90 10*
1.82 10"'
Tb-161
3 IO"4
6-40 IO"11
5.27 I0"1J
3.77 IO13
247 10 "
1.47 10"
7.70 IO"15
2.56 10'
7.89 IO-10
8.70 10"'
LLI wall
Dysprosium
1.76 IO"10
Dy-155
3 IO"1
2.31 10""
5 46 10"IJ
4.61 IO"11
1.50 10"
6.34 IO13
3.40 IO'10
1.56 10"'°
Dy-157
3 IO"1
9.63 10"
1.20 10"
2.78 I0IJ
2.54 10"
8.08 I0IJ
2.45 IO"13
1.55 IO10
7.60 IO'"
Dy-159
3 IO'4
9 96 IO"11
8.30 I0"IJ
6.34 IO"13
4.20 10"
2.53 10"
6.22 IO"14
2.93 IO10
1.20 IO"10
Dy-165
3 IO"1
1.67 I01J
2.81 IO13
1.15 IO13
5.84 IO"13
1.94 IO"13
8.60 IO"15
3.25 IO"10
9.81 10"
Dy-166
ilO"1
7.14 10"
6 91 10 12
6.48 IO13
2.91 10"
1.16 10"u
4.09 ICr14
5.88 IO*
1.79 10*
2.24 IO*"
LLI wall
Holmium
Ho-155
3 icr4
1 98 10"
3.19 I0"IJ
1.28 I0IJ
570 10"IJ
1.94 10"1J
1.17 IO"13
9.55 10"
3.50 IO-"
Ho-157
3 iO"*
3.46 10IJ
7.65 10"13
5.17 IO13
1.20 I0IJ
4.59 IO"13
3.70 IO14
1.41 10"
S.42 10"12
Ho-159
3 IO"1
3.38 10"IJ
9.40 IO"13
7.01 IO"13
1.64 I0IJ
6.33 IO13
3.89 10'14
1.88 IO"11
6.92 IO"1'
Ho-161
3 icr*
6.28 I0',J
8.60 IO"13
2.70 IO13
2.70 I0"1J
8.09 IO13
2 67 IO"15
3.82 10"
1.35 10""
Ho-162
3 10J
4.22 IO '3
1.88 IO13
1.82 I0J3
2.40 IO13
1.08 IO13
1.18 IO"14
6.94 I0IJ
2.27 I0"IJ
2.46 Ifr"
ST wall
Ho-162m
3 10"*
1.49 10"
3.27 IO'11
1.85 10"a
516 10"a
1.86 IO05
1.76 IO"'3
7.01 10"
2.61 IO""
Ho-164
3 IO"4
3.11 IO'11
8.34 IO"14
6.42 IO"14
1.84 IO"13
6.98 !0"14
4.99 10"
2.20 IO"11
6.73 10"IJ
7.27 IO'11
ST wall
Ho-164m
3 IO"1
1.38 10"IJ
2.76 IO"13
1.63 IO"13
7.20 10"13
2.45 10"13
1.10 IO'15
4.64 10"
1.44 IO'"
-------
170
Table 2.2. Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
f,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Ho-166
3 lO'4
1.75 10'"
2.14 10'12
3.93 lO13
5.97 lO"12
2.11 10"12
4.77 10"14
5.01 10-'
1.46 104
1.51 lO"9
LLI wall
Ho-166m
3 10-*
2.05 10"'
3.48 lO'10
2.16 lO10
8.12 lO'10
2.35 10"'
5.53 10"
4.74 10*
2.18 lO"9
Ho-167
3 10'4
3.16 10-"
4.96 1012
1.79 lO12
8.75 10'12
2.95 lO'13
1.55 I0'13
2.63 10'10
8.90 10'"
Erbium
Er-161
3 10"1
8.15 10-"
1.34 lO"11
4.90 1012
2.33 10-"
7.75 lO'12
5.45 lO'13
2.22 lO"10
9.26 lO"11
Er-165
3 10"4
1.91 lO'"
2.01 lO"12
2.81 10'13
8.31 lO'12
2.36 lO'12
2.30 10'IS
5.38 10"
2.23 lO""
Er-169
3 10-"
1.62 10l4
1.09 lO'14
1.09 lO14
5.61 lO'13
6.83 lO'12
1.09 10'14
1.35 lO"'
4.68 10"9
4.06 lO'10
LLI wall
Er-171
3 10"*
9.26 10'"
1.20 10"
2.90 lO"12
2.52 10"
8.25 lO'12
2.54 10'3
1.21 10"'
3.91 lO-'"
Er-172
3 10'4
5.08 1010
5.95 10"
9.86 lO'12
1 11 lO10
3.94 10"
1.30 10"12
3.29 10"'
1.13 104
1.14 lO"9
LLI wall
Thulium
Tm-162
3 10*
6.24 10"12
2.43 10'12
2.16 10"12
2.56 10'12
1.15 lO'12
2.32 1013
6.43 10"
1.03 lO"10
2.18 10""
ST wall
Tm-166
3 10"*
3.54 lO'10
5.29 lO'"
1.59 10"
8.44 10'"
2.89 10"
2.21 10'12
7.48 lO"10
3.34 10-,#
Tm-167
3 10-"
2.08 lO10
2.03 10'"
2.20 lO'12
6.56 10"
2.73 10-"
1.88 10"13
1.87 10"'
6.20 10'9
6.26 lO'10
LLI wall
Tm-170
3 10'4
9.56 10'12
1.30 1012
4.86 lO'13
3.08 lO"11
4.14 10'"
4.07 1013
4.76 lO'9
1.68 I04
1.43 10'9
LLI wall
Tm-171
3 10"4
1.38 lO'12
2.65 10"
1.60 10"
1.04 10"
1.20 lO"10
1.48 lO'13
3.71 lO'10
1.31 lO"9
1.16 lO"10
LLI wall
Tm-172
3 10"4
3.21 lO10
4.32 10"
9.16 lO'12
7.17 10""
2.61 10""
1.47 10'12
5.85 lO"9
1.86 104
1.85 lO'9
LLI wall
Tm-173
3 10"4
9.72 10'"
1.28 10'"
3.22 10'13
2.22 10-"
7.39 10"13
3.32 lO"13
1.02 10"9
3.37 10-'°
Tm-175
3 lO"*
2.50 lO'12
1.09 1012
1.06 1012
1.08 lO"12
5.06 10'13
9.82 1014
5.73 10'"
2.00 lO10
1.83 10'"
ST wall
Yllerbium
Yb-162
3 10-*
8.47 lO"12
2.36 1012
1.65 lO'12
3.05 1012
1.22 10"12
1.73 10'13
5.80 10"
2.05 lO"11
Yb-166
3 10"*
1.24 10"'
1.42 lO"10
2.25 10"
2.85 lO'10
9.42 10"
3.50 lO'12
2.56 lO'9
1.14 10"9
Yb-167
3 10"1
1.30 10'12
4.13 10'13
3.60 1013
7.87 10'13
3.30 lO'13
1.19 10'14
1.49 10"
5.01 lO"11
Yb-169
3 10J
4.76 lO10
4.74 10'"
4.87 lO'12
1.66 lO"10
7.33 10"
3.68 1013
2.21 lO'9
8.12 10-,#
Yb-175
3 10""
4.13 10""
4.53 lO"12
6.47 lO'13
9.99 lO12
6.23 lO'12
6.85 lO"14
1.55 10'9
5.14 lO"9
4.76 lO"10
LLI wall
Yb-177
3 10*
7.91 10'12
1.53 1012
7.12 10"13
2.46 10'12
9.35 lO'13
7.58 10'14
2.81 lO"10
8.68 lO41
Yb-178
3 10-"
4.08 10'12
8.76 lO'13
4.07 1013
1.31 lO'12
4.69 lO'13
4.68 10'14
3.52 ia10
1.07 10'1#
Lutetium
Lu-169
3 10"4
6.27 lO'10
8.06 10"
1.66 10'"
1.53 lO"10
5.19 10-"
2.35 10"12
1.19 lO"9
5.49 10-,#
Lu-170
3 10'4
1.52 10'9
1.98 lO10
4.50 10"
3.26 lO10
1.12 lO'10
7.41 10'12
2.59 lO"9
1.23 lO"9
Lu-171
3 10"4
7.36 10-'°
8.51 lO"11
1.36 10'"
1.80 lO"1®
6.23 10"
1.78 10'12
1.88 lO'9
7.85 10-,#
Lu-172
3 10"4
1.73 10''
2.13 lO'10
3.95 10'"
3.81 lO'10
1.31 JO"
5.72 10'13
3.37 lO"9
1.53 lO"9
Lu-173
3 10"*
2.15 lO'10
2.17 10'"
2.83 10'12
9.40 10'"
1.46 lO'10
7.32 10"13
7.41 lO"10
2.95 10-l#
Lu-174
3 10"4
1.68 lO1®
1.97 lO"11
4.02 lO"12
8.72 10'"
3.08 lO"10
1.40 10"12
7.85 lO10
3.01 10-,#
Lu-174m
3 10"4
1.11 lO10
1.07 10'"
1.17 lO"12
5.91 10""
1.64 lO'10
2.41 lO'13
1.78 lO"9
6.15 lO"9
5.77 lO"10
LLI wall
Lu-176
3 10""
6.80 1010
9.14 10"
3.15 10-"
8.31 lO'10
7.23 10''
2.13 10"
4.91 10"9
1.98 10"»
Lu-176m
3 10"4
1.96 lO"12
2.69 lO'13
7.58 lO'14
8.97 1013
2.88 1013
1.73 10"IS
5.75 lO'10
1.73 10-,#
Lu-177
3 lO"1
4.29 10"
4.43 IO"'2
5.50 10"
1.21 10'"
1.07 10'"
4.45 lO-"
1.89 lC9
6.43 10"*
5.81 IO-"
LLI wall
-------
171
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
f.
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Lu-177m
3 10'4
1.35 10"'
1.43 IO10
1.98 IO'11
3.68 IO'10
4.30 IO'10
3.56 IO'12
5.23 10''
1.99 10'*
Lu-17%
J IO'4
7.33 IO"13
2.59 IO'13
2.12 IO'13
2.96 IO"13
1.27 IO"13
2.24 10U
1.10 IO'10
3.32 10"
3.67 IO'10
ST wall
Lu-178m
3 10'4
4.88 10'12
1.81 lO'12
1.55 lO12
2.41 IO"12
1.00 lO12
1.13 IO"13
8.53 10"
2.76 10'"
2.84 |0'10
ST wall
Lu-179
3 lO'4
4.36 10'12
6.14 IO'13
1.78 IO13
1.20 IO"12
4.06 IO'13
1.51 IO"14
7.19 IO'10
2.17 IO10
Hafnium
Hf-170
2 10°
6.03 IO10
7.21 10"
1.34 |0"
1.42 IO10
4.94 10"
2.10 IO"12
1.30 lO4
5.73 IO'®
Hf-172
2 10°
5.56 lO10
1.41 IO10
9.01 10'"
9.49 10 10
6.14 10"'
6.11 10'"
2.46 10"'
1.21 10'*
Hf-173
2 10°
2.63 lO10
3.01 10"
4.89 lO'12
8.02 IO'"
2.78 IO-"
4.56 IO13
6.34 IO'10
2.71 IO10
Hf-175
2 10°
4.95 IO10
5.39 10"
8.67 10"'2
1.43 IO10
9.88 10""
2.77 10'12
1.13 10"'
4.92 IO'"
Hf-177m
2 10°
3.50 lO"11
8.46 lO'12
5.38 1012
1.33 10'"
4.96 10'12
4.07 IO13
2.06 10-10
7.43 10'"
Hf-178m
2 10°
3.59 10"'
1.10 10"'
7.55 IO'10
7.39 10''
4.37 10"!
7.38 IO"10
7.69 10''
5.68 IO"*
Hf-179m
2 10°
1.13 10''
1.24 IO"10
1.85 10"
2.93 IO"10
2.57 10'10
4.06 IO'12
3.71 IO''
1.46 10"*
Hf-180m
2 lO'3
1.72 IO'10
2.37 IO'"
6.74 lO12
4.47 10 11
1.49 10'"
6.41 IO'13
4.81 IO'10
1.98 IO"10
Hf-18l
2 10°
6.62 lO'10
7.70 10""
1.29 10"
1.85 IO10
3.86 IO"10
3.65 IO'12
3.53 IO'9
1.27 IO''
Hf-182
2 10°
9.01 lO10
7.33 IO'10
6.35 IO10
8.47 IO-'
7.22 IO"8
5.00 lO"10
2.26 IO'9
4.29 IO-*
Hf-182m
2 10°
1.83 10"
4.15 IO"12
2.52 1012
6.23 IO'12
2.49 10'12
2.20 IO13
1.10 IO"10
3.93 |0'"
Hf-183
2 10'3
1.76 lO'"
3.68 lO'12
2.12 IO'12
5.53 10*'2
2.54 lO12
2.09 10'13
2.09 IO'10
6.87 10'"
Hf-184
2 10°
2.25 lO10
2.83 10"
5.66 IO'12
5.22 10'"
1.80 10"
7.37 IO'13
1.71 10''
5.82 IO'10
Tanlalum
Ta-172
1 10°
1.30 10"
3.86 lO12
2.91 IO'12
4.71 1012
1.92 IO'12
2.88 IO13
1.27 IO"10
4.30 10'"
Ta-173
1 10'3
9.63 10"
1.33 IO""
3.75 10'12
2.83 10'"
9.22 10'12
3.79 IO'13
6.05 IO'10
2.12 IO'"
Ta-174
1 10°
1.48 IO'"
3.25 IO12
1.86 lO'12
5.09 lO'12
1.84 IO'12
1.62 IO'13
1.59 lO10
5.29 I0-"
Ta-175
1 10°
2.52 IO10
3.57 IO11
9.17 IO'12
6.69 10"
2.22 10"
1.22 1012
5.57 IO'10
2.45 IO'10
Ta-176
1 10°
3.92 IO"10
6.16 IO'11
1.88 10"
9.55 10'"
3.31 10'"
2.79 IO12
8.39 IO10
3.74 IO''0
Ta-177
1 lO'3
7.90 \0'"
%.0S 10-u
8.56 10ls
3.25 IO""
9.92 10-1J
5.63 lO14
3.23 IO'10
1.22 IO'10
Ta-178
1 10°
5.93 lO'"
1.01 io-M
4.22 lO'12
1.91 10'"
6.42 10 12
3.28 IO13
2-00 IO'10
7.93 10'"
Ta-179
1 10"3
6.06 10"
5.94 1012
7.23 IO13
2.75 10"
9.00 IO12
2.74 IO"13
1.81 IO"10
7.39 10'"
Ta-180
i 10"3
7.69 lO'10
8.34 IO'11
1.44 10""
1.98 lO'10
7.74 10""
5.19 IO"12
2.50 10''
9.82 IO"10
Ta-180m
1 10°
1.74 10"M
2.03 IO12
3.57 IO13
7.85 IO'12
2-33 IO"12
9.41 10'"
1.78 lO10
5.90 10'"
Ta-182
1 10°
1.32 10"'
1.68 10'10
3.47 IO"11
3.05 IO10
1.15 IO'10
9.08 1012
4.54 10''
1.76 10'*
Ta-182m
1 10°
8.54 lO'13
3.21 IO'13
2.86 lO13
5.14 IO'13
2-31 IO13
1.45 lO"14
2-38 10'"
7.50 10'12
8.83 10'"
ST wall
Ta-l%3
1 10'3
3.49 lO10
3.64 10'"
4.%1 IO"12
1.02 IO10
4.73 IO'11
6.91 IO13
4.50 10"'
1.46 10"'
U8 IO4
LL1 wall
Ta-184
1 10°
3.90 IO10
5.40 IO'"
1.43 10"
9.12 10"
3.08 10"
1.69 IO12
2.13 10"'
7.60 IO10
Ta-18S
1 10°
3.12 lO'12
7.30 IO'13
4.68 IO13
1.39 IO'12
5.35 IO13
2.81 lO"14
1.79 IO10
549 10'"
Ta-186
1 10°
1.97 lO12
1.12 IO'12
1.17 IO"12
1.12 lO12
5-35 IO'13
9.87 IO'14
6-61 10"
2.08 10'"
2.63 IO'10
ST wall
Tungsten
1.32 IO10
W-176
1 10"2
1.90 10"
4.73 IO'12
3.38 10'"
1.14 10""
6.54 IO'13
3.09 IO10
1.34 IO10
3 lO-1
9.95 10M
1.46 10""
4.10 IO'12
2.67 10'"
1.44 IO'"
6.17 tO"13
2.40 IO"10
1.03 IO'10
W-177
1 10'J
5.23 10'"
9.11 10'n
3.85 IO12
1.70 10"
5.80 IO12
3.55 IO'13
1.66 IO10
6.71 10'"
3 10"'
4.39 IO'"
8.03 lO'12
3.74 IO'12
1.48 IO""
8.17 IO"12
3.67 IO'13
1.45 IO'10
5.82 10'"
W-178
1 IO'2
1.68 IO"10
1.76 10 11
2-09 IO'12
6.25 10"
1.90 10'"
2.35 IO13
7.39 IO10
2.75 IO'10
3 lO"1
1.20 IO10
1.45 lO"11
3.89 IO'12
5.89 10"
381 10"
1.13 IO'12
5.40 IO'10
2.03 IO-10
-------
172
Tabic 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
r,
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
W-179
1 10'2
9.00 IO13
2.12 lO13
1.45 lO13
4.90 IO'15
1.80 IO13
1.33 10"
7.99 IO12
2.74 IO'11
3 10'1
8.37 IO13
2.05 IO13
1.45 IO13
4.73 IO13
2.73 IO13
1.65 10 "
7.74 10 12
2.64 10-"
W-181
1 10'2
7.33 10"
7.01 lO12
6.23 IO"13
3.26 IO""
1.03 10"
5.41 10'M
2.31 10°°
9.31 IO-"
3 lO"1
5.36 10"
7.46 IO"12
3.52 10 12
4,86 10 11
4.58 10"
1.39 IO'12
1.84 IO"10
7.74 IO"11
W-18S
1 10'2
8.74 IO14
8.98 10"
9.45 10'16
1.64 IO12
4.90 10'12
7.64 IO'17
1.79 10'
5.38 ro10
6.32 IO"'
LL1 wall
3 10"'
6.35 10"
8.78 10"
3.54 10"
4.83 10'"
1.47 IO10
1.36 10'"
1.39 10''
4.28 lO10
447 IO*
LL1 wall
W-187
1 10'2
2.59 IO10
3.22 10"
6.39 10 12
5.89 10"
2.12 10"
7.70 10 13
2.22 10"'
746 10-"
3 lO'1
1.90 IO"10
2.44 IO'"
5.80 IO12
5.09 IO11
7.38 10"
9.00 IO13
1.64 ro '
S.S3 10-"
W-188
1 lO"2
4.55 10"
4.84 IO12
S.80 IO13
2.17 10'"
3.53 10"
1.07 IO13
8.41 10'
2.54 10'
3.34 IO""
LL1 wall
3 10"'
3.31 10-"
5.57 IO12
2.76 IO12
3.25 IO'10
9.52 IO10
1.42 iO12
6.78 10'
2.11 10'9
2.33 1CT*
LL1 wall
Rhenium
Re-177
8 IO'1
3.76 IO02
1.72 IO12
1.61 IO12
2.26 IO12
1.39 IO12
2.48 10"
4.04 10"
1.46 10"
1.42 10 10
ST wall
Rc-178
8 IO'1
1.92 IO12
1.12 IO"12
1.17 IO12
1.14 IO12
6.34 lO13
4.35 IO12
4.85 10"
1.56 IO"11
1.91 IO""1
ST wall
Rc-181
8 lO'1
1.38 IO'10
6.12 10"
5.57 10"
8.11 10'"
6.06 10"
1.55 10"'
5.76 IO"10
2.81 10'1"
Rc-182
8 10 1
1.27 10°°
5.49 10"
4.71 IO'11
7.08 10"
5.07 10"
9.47 10 10
3.89 IO10
2.01 IO-'"
12.7 h
Rc-182
8 IO'1
5.43 IO'10
2.56 lO10
2.32 IO10
3.33 IO10
2.54 10 10
3.77 10'
1.85 IO"9
9.18 IO'1"
64.0 h
Rc-184
8 10'1
3.83 10"10
2.26 10°°
2.16 10-10
2.79 10o#
2.23 IO10
1.53 10'
1.16 10'
5.91 IO"10
Re-184m
8 10"'
3.00 10'10
2.09 IO10
2.08 IO10
2.62 IO10
2.24 IO"10
2.61 10'
1.83 lO'9
7.97 IO"10
Rc-186
8 10'1
1.00 10'10
9.54 10"
9.53 10"
9.89 IO11
9.69 10"
4.79 10'
1.95 10'
7.95 10-"»
Rc-186m
8 IO'1
2.08 IO10
1.99 IO10
2.00 IO10
2.11 IO"10
2.06 IO'10
2.81 IO''
2.85 10'
1.08 10'
1.06 IO1*
ST wall
Rc-187
8 10'1
3.94 10'13
3.94 IO13
3.94 IO13
3.94 10"
3.94 10'13
1.05 LO"11
6.64 10'12
2.57 10'IJ
Rc-188
8 10'1
8.32 10"
7.79 10-"
7.75 10"
7.95 10 "
7.80 10"
6.62 IO''
1.93 10"'
8.31 IO-'"
Rc- 188m
8 10'1
1.86 10'12
1.60 IO12
1.60 IO12
1.74 IO"12
1.59 IO12
1.25 IO"10
4.46 10"
1.83 IO""
Rc-189
8 10'1
5.81 10"
4.87 10"
4.81 10"
5.18 10"
4.92 10"
3.48 10"'
1.09 10"'
4.67 IO'1"
Osmium
Os-180
1 10'2
5.92 IO12
1.90 IO12
1.61 IO"12
2.27 lO12
9.61 IO13
1.45 IO'13
3.98 10 11
1.42 IO"11
Os-181
1 10'2
7.80 10"
1.29 10"
5.13 IO12
2.18 10"
7.52 IO12
6.21 IO"13
2.46 10 10
9.86 IO"11
Os-182
1 102
6.75 IO10
8.09 10"
1.47 10"
1.65 IO'10
5.40 10"
2.82 IO12
1.52 10'
6.59 IO"1"
Os-185
1 102
8.35 IO10
1.25 IO10
5.24 IO11
2.16 lO10
8.91 10"
2.65 10"
1.16 10"'
6.11 10"
Os-189m
1 102
1.69 lO13
1.29 10'"*
1.06 10"
1.57 |0>M
1.18 10"M
1.07 10'M
6.02 10"
1.81 10"
Os-191
1 IO"2
1.18 IO'10
1.51 IO"11
5.06 IO12
4.82 10"
1.72 10"
3.40 IO02
1.95 10'
6.23 lO10
6.61 10*
LL1 wall
Os-19lm
1 IO'2
6.70 IO'12
8.26 lO13
2.68 IO13
2.77 IO12
9.52 IO13
1.79 IO03
3.38 IO10
1.04 10 l#
Os-193
I IO 2
5.16 IO'11
6.62 IO "
1.76 IO12
1.46 10"
5.14 10 12
8.76 iO13
2.87 10'
8.77 IO'10
8.47 10"'
LL1 wall
Os-194
1 lO2
2.75 10 10
2.16 10°°
2.12 IO10
2.25 IO"10
2.14 IO10
2.07 iO10
9.24 ro-'
2.94 10'
3.06 W*
LL1 wall
Iridium
lr-182
1 IO'2
1.06 lO""
2.29 lO12
1.51 IO12
3.34 IO12
1.28 lO12
1.49 IO13
1.03 i O'10
3.45 10 11
3.30 IO10
ST wall
-------
173
Table 2.2, Cont'd.
Commuted Dose Equivalent per Una Intake (Sv/Bq)
Nuclide
f.
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
lr-184
i io-2
1.33 lO-10
2.36 IO-"
9.53 IO12
3.65 10-"
1.27 IO""
1.20 IO"12
4.86 IO"10
1.88 IO10
Ir-185
1 io-2
2.08 lO10
2.83 IO'"
7.26 IO'12
5-64 IO""
1.87 lO""
1.36 IO12
7.85 IO10
3.00 IO10
Ir-186
! IO"2
6.28 lO"10
8.34 10'"
2.00 10"
1.47 IO"10
4.96 10'"
3.19 IO'12
1.31 10''
5.86 IO*10
lr-187
1 10'2
1.12 lO'10
1.48 IO '1
3.60 IO12
3-12 10"
1.00 10"
4.96 IO"13
3.57 IO"10
1.42 IO10
Ir-188
1 IO'2
9.83 IO10
1.25 IO"10
2.91 10'"
2-17 IO10
7.45 10-"
5.69 IO"12
1.59 IO'5
7.73 IO"10
I r-189
1 IO"2
1.24 lO"10
1.36 IO""
3.17 IO'12
4.82 IO'"
1.56 10"
1.61 IO12
8.16 IO10
2.84 10 10
2.67 10"'
LLI wall
Ir-190
1 10'2
1.66 10"9
1.99 IO10
4.37 IO""
3 92 IO"10
1.36 IO10
1.39 10'"
3.24 IO'5
1.47 10"'
Ir-190m
1 IO"2
6.74 IO12
7.94 IO'13
1.64 IO13
1.58 IO'12
5.46 IO'13
5.68 10"
2.17 10'"
8.54 IO'"
Ir-192
1 IO"2
1.03 IO*
1.51 IO"10
6.54 10"
2.54 IO10
1.11 io-'°
3.78 10"
4.08 IO"'
1.55 10"'
lr-192m
1 IO'2
3.63 lO"10
1.55 IO'10
1.59 IO'10
2.21 IO"10
1.57 \0"10
1.06 lO10
8.53 10"10
4.23 IO1'
fr-194
1 lO"2
4.33 10"
6.33 10|J
2.17 IO12
1.03 10"
4.15 icr12
1.19 IO"12
4.72 10"'
1.43 10"'
Ir-194m
1 IO"2
2.83 lO"'
4.58 IO10
2.31 IO10
7.16 IO"10
3.27 IO'10
1.26 IO"10
5.18 IO"9
2.46 10"'
Ir-195
1 IO"2
4.96 IO12
7.76 IO'13
2.99 IO'13
2-27 10'12
7.35 IO"13
4.60 10"
3.03 IO10
9.25 10"
Ir-195m
1 IO"2
4.70 10'"
7.11 10IJ
2.42 IO12
1.40 10"
4.63 IO"12
2.94 IO13
5.38 IO10
1.76 10 10
Platinum
Pt-186
i icr1
8.70 IO'11
1.45 10"
5.34 101J
2 35 10'"
7.99 IO'12
6.43 lO13
2.76 IO10
1.10 IO"10
Pl-188
l IO"2
8.38 lO10
9.60 10'"
1.93 10"
2.06 IO'10
7.07 10'"
7.29 IO"12
2.14 IO"'
8.96 IO"10
Pt-189
1 10'2
1.12 IO10
1.43 IO"11
3.22 IO"12
3-46 10"
1.09 10"
4.38 IO13
3.59 IO10
1.43 IO"10
Pt-191
! IO"2
3.08 lO"10
3.41 10"
5.33 IO"12
9 57 10'"
2.98 10'"
1.08 IO12
9.97 IO"10
3.94 10'°
Pt-193
1 IO"2
2.02 IO'12
2.95 IO13
2.73 IO'13
3.35 lO13
2.94 lO13
2.97 lO"13
1.05 IO'10
3.21 10""
3.60 10'°
LLI wall
Pt-193m
1 io-2
1.69 10"
2.25 IO12
9.02 lO"13
7.13 IO"12
2.62 lO'12
7.60 Ifr13
1.62 IO"9
4.90 10"10
5.40 IO'*
LLf wall
P(-195m
1 10 2
9.76 10"
1.06 IO"11
2.09 lO12
399 10'"
1.25 lO'"
1.1 1 IO'12
2.20 10"'
6.91 IO"10
7.22 10"'
LLI wall
Pi-197
1 IO"2
1.49 10'"
1.90 IO"12
5.58 IO'13
5-58 IO12
1.91 lO'12
3.32 IO13
1.44 icr'
4.35 IO10
P(-197m
1 10"2
4.67 IO12
7.76 IO"13
3.44 IO13
1.85 IO'12
6.28 10 13
5.97 IO"14
2.77 10"10
8.46 10"
Pt-199
1 lO'2
1.97 IO12
5.07 IO"13
3.66 IO13
7.09 IO"13
2.78 IO13
3.80 IO14
9.51 10"
2.92 10"
Pt-200
I !0'2
1.08 IO10
1.52 IO"11
3.98 IO'12
2.80 10"
9.80 IO"12
1.33 10IJ
4.23 10"'
1.30 10"'
Gold
Au-193
1 10*'
8.97 10"
1.17 10"
3.53 IO'12
3.35 10"
1.18 10'"
1.89 IO'12
4.22 IO10
1.56 IO10
Au-194
1 10"'
6.37 IO'10
8.90 10"
2.69 10"
1.55 IO"10
5.92 10"
1.30 10"
1.04 IO"5
5.08 IO10
Au-195
! 10"'
1.33 IO10
1.98 10'"
9.07 IO12
6 29 10'"
2.56 10"
7.43 IO"12
8.05 IO'10
2.87 1010
Au-198
1 lO"1
3.43 IO"10
5.51 10'"
2.44 10"
8.57 I0-"
4.06 IO"11
1.85 10""
3.44 10"'
1.14 IO"'
Au-198m
I 10"'
6.21 IO'10
9.00 10"
3.61 10-"
1.86 IO"10
7.93 10"
2.69 10"
4.14 10''
1.44 10"*
Au-199
1 10"'
9.21 10"
1.63 10-"
8.62 IO'12
3-27 10-"
1.57 10""
7.23 IO"12
1.50 10'
4.82 IO'10
4.80 10"'
LLI wall
Au-200
I IO"1
3.22 lO12
9.67 lO13
6.98 IO'13
1.14 IO12
5.16 IO'13
1.67 IO13
1.78 IO"10
5.46 IO""
Au-200jn
1 10"'
9.29 IO10
1.32 IO10
4.19 IO'11
2.15 IO'10
8.34 10'"
1.99 IO"11
3.11 IO"'
1.22 10*
Au-201
1 10-'
3.41 IO'13
1.31 IO"13
1.14 IO"13
1.51 JO"'3
7.09 I0"M
2.19 10N
5.56 IO'"
1.68 10"
1.92 10'"°
ST wail
Mercury
2 IO"2
5.41 IO12
Hg-193
4.19 10"
1.40 IO'12
1.52 10"
4.81 IO12
2.35 lO'13
2.63 IO"10
9;23 10"
1.0
1.23 10'"
1.14 10"
1.20 Iff"
1.78 10"
1.58 10 "
1.10 10'"
6.98 IO"1'
3.01 10"
4 10"'
3.25 IO"11
7.23 IO"12
4.66 10'l!
1.60 10"
8.22 IO"11
3.53 10"u
1.99 IO'10
7.18 IO"11
-------
174
Table 2.2, Cont'd
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
f|
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Hg-193m
2 10'2
3.61 lO"10
4.83 10'"
1.20 10'"
9.51
10'"
3.18 10"
2.53 10'12
1.18 10''
4.65 IO"1"
1.0
7.98 10'11
7.21 10'"
7.31 10'"
1.04 IO'10
9.09 10'"
7.39 10'"
3.10 IO'10
1.50 IO'1"
4 10'1
2.64 IO'10
5.66 10'"
3.32 10'"
9.82
10'"
5.25 10'"
2.73 10'"
8.36 IO'10
3.43 IO10
Hg-194
2 10'2
1.51 10''
9.01 IO10
8.31 lO'10
1.16 10''
9.46 IO'10
7.85 IO10
2.87 10«
1.66 10''
1.0
4.73 IO'1
3.95 lO*
3.78 10'®
6;04 IO"8
5.15 IO"8
4.52 10*
1.51 lO'7
7.78 10"*
4 10"'
1.92 10'*
1.58 10"8
1.51 10 s
2.42
10!
2.06 10 s
1.81 lO"4
6.04 1CT*
3.12 IO4
Hg-195
2 10'2
6.10 lO-"
8.18 10'12
2.11 10'12
1.92
10'"
6.22 IO'12
4.55 10'13
3.01 IO'10
1.09 IO10
1.0
1.78 10'"
1.68 10'"
1.74 10'"
2.62
10'"
2.31 10'"
1.71 10'"
8.65 10"
3.94 10-"
4 10'
4.68 10"
1.12 10'"
7.34 10 12
2.18
10'"
1.21 10"
6.14 IO'12
2.22 IO'10
8.39 IO'11
Hg-195m
2 10'2
2.41 lO'10
2.86 10'"
6.56 10'12
6.65
10'"
2.29 10'"
3.14 IO'12
1.82 10'
6.21 IO-1"
1.0
1.39 IO'10
1.30 IO'10
1.32 lO'10
1.87
IO'10
1.68 IO'10
1.36 IO'10
7.63 IO'10
3.30 10-w
4 10-1
2.01 IO'10
6.66 10'"
5.36 10'"
1.12
IO'"5
7.78 10'"
5.30 10'"
1.37 10''
4.96 IO'10
Hg-197
2 10'2
8.26 10'"
9.43 10'12
2.15 10'12
3.53
10'"
1.14 10'"
1.27 IO'12
7.72 IO'10
2.59 IO10
1.0
6.10 10'"
5.66 10'"
5.88 10'"
9.59
10'"
8.54 10'"
5.69 10"
3.63 IO'10
1.S6 IO"1"
4 10'1
7.43 10'"
2.71 10'"
2.34 10'"
5.81
10'"
3.93 10'"
2.22 10'"
5.96 IO'10
2.13 IO'10
Hg-197m
2 10'2
7.89 10'"
9.84 10'12
2.71 10'12
2.94
10'"
1.01 10'"
1.62 IO'12
1.63 IO"'
5.14 IO10
1.0
7.81 10'"
7.43 10'"
7.55 10'"
1.00
IO-10
9.25 10'"
7.39 10'"
4.96 IO'10
2.05 IO'10
4 10-1
7.83 10'"
3.34 10'"
2.94 10'"
5.54
10'"
4.05 10'"
2.82 10'"
1.16 10"'
3.86 IO'10
Hg-199m
2 lO'2
2.43 IO'12
6.11 IO'13
4.17 10'13
1.16
IO'12
4.35 IO'13
2.92 IO'14
7.83 10'"
2.44 10'"
1.0
1.94 10'12
2.04 10'12
2.14 IO'12
2.29
IO'12
2.09 IO'12
1.74 IO'12
4.73 10"
2.18 lO'10
1.56 10'"
ST wall
4 10'1
2.37 lO'12
7.76 lO'13
6.17 lO'13
1.29
IO'12
6.27 lO'13
2.28 lO'13
7.46 10'"
2.17 IO"10
2.33 10'"
ST wall
Hg-203
2 10"2
3.30 lO10
5.41 10'"
2.69 10"
9.38
10'"
4.61 10'"
2.15 10'"
1.71 10'
6.21 IO10
1.0
1.37 lO"*
1.23 10''
1.23 10''
1.69
10-'
1.51 10''
1.29 10''
7.10 10''
3.09 10'*
4 10'1
7.32 lO'10
5.12 lO'10
4.95 lO'10
7.15
IO10
6.15 IO'10
5.14 IO'10
3.74 IO4
1.56 10"'
Thallium
Tl-194
1.0
1.46 lO'12
1.85 10'12
2.17 10'12
1.90
IO'12
1.44 lO'12
9.50 IO'13
1.65 10'"
5.29 1(T"
6.15 lO'12
ST wall
Tl-194m
1.0
5.01 I0'12
6.10 1012
7.03 10'12
5.96
IO'12
4.70 lO'12
3.52 IO'12
7.50 10'"
2.83 IO'10
2.65 10'"
ST wall
Tl-195
1.0
8.74 I0'12
8.33 10'12
8.84 lO'12
9.19
IO'12
7.85 IO'12
6.43 lO'12
5.04 10'"
2.11 10"
Tl-197
1.0
9.61 lO'12
8.93 lO'12
9.46 10'12
1.17
10'"
1.03 10""
7.88 IO'12
3.80 10'"
1.82 10'"
Tl-198
1.0
5.07 10"
4.18 10'"
4.18 10'"
4.69
10'"
4.08 10'"
3.65 10"
1.22 lO'10
6.86 IO41
Tl-198m
1.0
2.09 lO-"
1.93 10'"
2.02 10'"
2.17
10"
1.89 10'"
1.65 10'"
9.58 10'"
4,30 IO""
Tl-199
1.0
1.34 lO-"
1.22 10'"
1.29 10'"
1.69
10'"
1.49 10'"
1.12 10'"
4.20 10'"
2.21 IO'11
Tl-200
1.0
1.55 10"'°
1.34 lO'10
1.34 lO'10
1.60
IO'10
1.41 IO'10
1.27 IO'10
2.65 IO'10
1.82 IO'10
Tl-201
1.0
6.19 10'"
5.41 10'"
5.78 10'"
8.71
10'"
7.76 10'"
5.19 10"
1.21 IO'10
8.11 10'"
TI-202
1.0
3.53 lO10
2.98 lO'10
3.18 IO'10
4.01
,0-10
3.53 IO'10
2.85 IO'10
5.33 lO'10
J.98 10'"
Tl-204
1.0
6.57 IO'10
6.57 lO'10
6.57 IO10
6.59
10-10
6.59 IO'10
6.57 IO'10
1.49 10'
9.08 10-'»
Lead
Pb-195m
2 Iff1
1.12 10'"
3.29 I0'12
2.49 lO'12
4.50
IO'12
4.43 IO'12
3.64 lO'13
6.73 10'"
2.45 10-"
Pb-198
2 lO'1
3.39 10'"
7.21 10'12
4.38 IO'12
1.49
10'"
1.30 10'"
1.65 IO12
1.07 IO'10
4.43 10'"
Pb-199
2 I0'1
4.93 10'"
1.06 10'"
5.78 IO'12
1.69
10'"
1.23 10'"
1.29 IO'12
1.43 IO'10
6.01 10""
Pb-200
2 10"'
4.14 lO'10
6.62 10'"
3.23 10'"
1.74
lO-10
3.60 IO'10
1.70 10'"
1.06 10'
4.67 IO'10
Pb-201
2 IO'1
1.84 lO'10
2.93 10'"
1.21 10'"
6.55
10'"
1.01 IO'10
4.89 IO'12
4.32 IO'10
1.92 IO'10
Pb-202
2 I0'1
5.76 lO''
6.45 10'
6.39 10"'
2.63
IO"8
3.73 IO*
5.88 IO4
9.63 10''
1.05 10"®
Pb-202m
2 I0'1
1.63 lO'10
3.04 10"
1.42 10'"
4.45
10'"
2.47 10'"
4.15 lO'12
3.32 IO'10
1.53 IO"10
-------
175
Table 2.2, Cont'd
ComirJljcd p^ ^uivalem per Uniljnukc (Sy/Bql
Nyciidi
r.
Gonad
8--MS1
Lung
ft Ms/ro*
0 Surface
Thyroid
Pcrr.,lindcr
Effective
Pfc-203
2 10-*
2.44 1(T:0
3.65 iff"
1.77 :0'"
1.2] Iff'5
3.34 10':3
9.52
Iff"
6.66 Iff10
2.93 10"*
Pb-iC5
2 Iff1
2.21 iff"
2.32 Iff11
2.04 IO"11
1.72 iff'
3.78 10®
2,1?
ur:i
3,64 lC~°
4.41 10*'*
Pfe.2G9
2 Iff*
5.3? Iff"
5 37 IO'"
5,37 10"'
249 iff:2
2.09 10""
$.37
>04*
1.83 Iff10
S.tS IO'"
?h-2\Q
2 10-'
i 25 10'
;.2S 1Q-'
1.25 10"'
1.48 :c-s
2,16 IO'5
:-25
10"'
1.85 IC'6
:.45 iff'
Pb-2li
2 :o:
; 9? io'i!
1.91 10"
190 IC':I
3.07 10'"
;.6C la"
US
Iff"
4.10 lffiS
IAZ Iff14
P*-212
2 Iff'
:.96 iff'
1.67 |0?
1.63 IC"9
1.5: iO's
1.66 SO'1
1 62
Iff'
1.5: iff*
1.23 !0S
Pb-2J4
2 !«-'
3.19 1C'U
2.42 Iff"
2.32 10'"
i*
1.52 Iff'"
; :c iff*
2.14
lffu
3 58 lff!:
1-69 10'*
BJsrnirttf
Bt-2GC
5 Iff'
3.40 :g"!S
7.J1 Iff'2
4 80 IO"'2
i.06:0'!J
4.C3 Iff13
4.99
IO-11
1.25 !0'';
4.92 I0'::
8i»20i
5 iir5
9.03 10-"
1.52 Iff11
6.'.2 iff"
2.41 IO"
8.60 10'1?
SG*
10 »
3.26 Iff*
1.2? IO1"
Bi-2C2
S Iff2
8.99 iff'1
i.86 lO'11
9 68 Iff'2
2.55 Iff"
9,37 IQ-"
*.J4
; o,z
2.24 :o-'D
fc71 IO""
8i*2C3
5 ;c2
6.69 JO'"0
9.74 :o-"
2.7j Iff"
I.58 IC'0
547 lff:!
4,85
iff12
:.2$ iff*
S.80 Iff19
Bi-20*
5 iff2
\.n iO-'
1.97 IC"10
4.48 10""
3.33 Iff16
1.17 IO'10
:.o?
iff"
2.09 SO'*
3,08 Iff*
Bi-206
*:o:
2.86 IO-'
3,64 10,se
7,76 10"
6.18 IO'16
2.14 Iff16
1.15
ioJ''
4 69 Iff*
2.27 10"*
dl-207
s :cr-
1.5? IO"'
2.01 IQ',e
4.43 10 11
3.4? Iff'0
1.21 iff16
1,20
10'"
3.35 Iff*
1.41 IO"'
BWHO
5 iO'3
:.9? IC'"
1.97 IO"11
197IC"
1.9? 10"
:,97 nr"
1.97
Iff"
5.72 10'
5.73 Iff'
0c-2lOm
i iff2
1.36 SO'9
1.07 10"
1.04 Iff*
1.11 Iff*
1.06 Iff'
1.04
10-'
8.38 Iff8
3.06 Iff'
2,59 Iff'
Kidneys
8i-2J2
5 10"'
2.76 '.C::
1.18 IO4'
9.86 10'"
1.29 IO'"
9.14 IO'12
7.11
1C':2
9.16 IO"18
2^7 10-,s
B i-213
5 fO-
6.17 iO'lJ
4.73 10':J
4.56 iff11
4.89 >0""
4,45 Iff"
4.20
10'"
6 38 iff10
1.95 IO'"
fli-214
5 iff2
51? |0«
2.J5 Iff"
2.38 lff:3
2.5: Iff52
1,5: Iff55
8,5 5
Iff"
2.47 I0'»
8.6S IO"11
7,64 1C"1!
ST wall
Pokm«m
Pq-203
1 IC'!
4 82 Iff"
9.29 :o"J
4.19 I0'u
1.32 iff"
5,17 Iff'1
1,111
I0"J
:.28 :ff'°
5.4110'"
Pcr205
i ;o':
6.26 :o-"
1.34 10""
7.29 lff:1
1.85 :0'H
748 l
fl
s.76 :ff':
5.76 Iff10
5.76 IO"'0
5.76 IO""
5.76 10'•"
5.76
Iff'0
S.69 iff'0
6,64 SO""
Fr-223
1.0
2.32 :o*
2.32 IO"'
2 32 IC'5
2 32 Iff*
2.32 Iff*
2.32
w*
2.3$ 10"'
2.33 10"
Radium
Ra-223
2 iC
4.26 IC"8
4.23 iff*
4.23 iO4
2.80 10'!
2.93 10*
4.23
Iff6
i.-O 'iff"
i.?8 ;ff!
Ra-224
2 10"'
2,12 iff®
2 C6 t0"s
2.05 10®
1.52 10''
1.59 Iff*
2.05
:oJ
' ^ Sff4
9,19 I0J
R*2Jb
2 1C°
3.37 10"*
3.37 IO4
3 n SO4
1 68 IO"7
1.78 Iff*
3.37
iff8
^.09 SOs
; C4 iff'
Ra-226
2 IO*'
9.16 iOJ
9.17 Iff4
9.'.6 Iff*
5.98 '.O'7
6.(13 Iff*
9.15
10"*
1.03 Iff1
3,58 iff1
fca-227
2 Iff1
3.65 :ou
231 itr'2
2.16 ;o'2
4.30 10"
8,54 Iff"
1.84
IO'12
9.56 iff11
6.10 Iff"
Ra»228
2 i(r!
1.58 IO'1
1.57 I0"!
1.57 Iff'
6.53 10"
5.82 itr*
1 57
10"!
1.63 Iff'
3. SB 10"'
Actifiiui*
Ao-224
i 10"'
6.36 Iff"
6.32 10"iJ
iff"
9.65 IO"11
1 05 ID-*
2,04
10'"
2.48 10*
7.16 IO"*
8 C3 Iff50
LU wall
Ac-225
i iOJ
1.36 1 o9
2 73 Iff"
3.98 lO"'2
7 99 iff4
994 SO4
5 49
IO-'1
8.57 Iff4
2.82 IO'1
3,00 10**
LU waii
Ac-226
i :o'3
2.30 iff10
1.12 IC"
1.73 icl>
7.70 iff10
9.4fi 10"'
1.44
10'IJ
3.68 IO-1
1.10 Iff'
;.15 ic-9
Ltl »*M
-------
176
Table 2.2, Cont'd.
Committed Dose Equivalent per Unit Intake (Sv/Bq)
Nuclide
fi
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Re mainder
Effective
Ac-227
1 10°
8.31 IO"7
1.41 IO10
2.20 IO-10
5.40 10*6
6.73 10'®
7.55 Iff"
3.08 IO"4
3.80 10'6
Ac-228
1 10°
1.79 IO-10
2.31 IO-"
7.34 IO"12
2.75 lO"10
3.01 10''
9.39 10"
1.38 10"'
5.85 lO"10
Thorium
Th-226
2 10"'
] .83 10"
8.74 IO"14
7.74 10"14
6.07 10"IJ
6.25 IO12
4.88 IO14
8.32 IO'10
2.50 10"'°
2.70 10"'
ST wall
Th-227
2 IO"4
2.95 IO-10
1.40 IO-10
1.25 IO-10
5.69 10"'
6.84 IO4
1.23 10'10
2.47 10"8
1.03 104
Th-228
2 IO"4
2.53 lO"'
2.33 10"'
2.31 10"'
1.93 10"'
2.37 IO"4
2.30 10''
3.86 IO"8
1.07 lO"7
Th-229
2 10"'
4.69 10"'
4.57 10"'
4.56 10"'
1.91 IO"4
2.38 10 s
4.55 10''
2.80 IO"8
9.54 I0"'
Th-230
2 IO"4
6.82 10'°
6.80 IO-10
6.80 itr18
2.89 10"'
3.60 IO"4
6.80 IO-10
1.54 IO"8
1.48 10-'
Th-231
2 IO"4
2.08 10"
1.44 IO"12
1.43 10"
5.30 IO"12
3.17 IO12
8.80 10'"
1.19 10"'
3.65 10,0
Th-232
2 IO""
1.25 10"'
1.26 IO*
1.25 10"'
1.48 IO"4
1.85 10J
1.21 lO4
1.47 IO'8
7.38 10"'
Th-234
2 10"*
3.12 lO"11
3.57 IO"12
7.05 10""
1.84 lO"11
2.08 IO-"
2.88 10""
1.23 IO"8
3.69 10"'
4.30 104
LL1 wall
Protactinium
Pa-227
1 IO'5
8.23 10'"
2.01 10"
1.34 10"l!
4.09 IO"12
4.92 10"
8.11 IO"15
1.18 10"'
3.55 10'1(>
Pa-228
i io°
5.56 lO"10
7.22 Iff"
1.58 Iff"
8.92 IO-10
9.59 IO"9
2.08 IO'12
1.96 10"'
1.13 lO'*
Pa-230
1 10°
6.75 lO"10
8.06 lO-"
1.42 lO-"
1.78 10"'
2.05 104
2.06 IO12
2.23 10"'
1.68 lO-'
Pa-23]
1 10°
1.21 IO"10
7.81 lO-"
6.80 10"
5.78 10-t
7.22 IO*
6.33 10""
1.71 IO4
2.86 10"6
Pa-232
1 10°
5.44 IO10
6.95 10'"
1.46 10"
5.19 IO-10
5.1 1 10''
1.97 IO'12
2.00 10"'
9.65 lO1®
Pa-233
1 10°
2.58 IO-10
2.71 lO"11
3.70 IO"12
6.89 10"
1.02 IO-10
4.81 10'"
3.00 10"'
9.81 iO'10
1.02 104
LL1 wall
Pa-234
1 10J
3.30 IO-10
4.99 10"
1.51 Iff"
7.86 10"
2.74 10"
1.86 IO'12
1.61 10"'
5.84 10"1(>
Uranium
U-230
5 IO"2
8.30 10"'
8.28 IO'9
8.27 10"'
2.85 10"'
3.43 IO"4
8.27 lO"'
3.40 10"7
2.44 10"7
2 10"J
3.58 IO-10
3.34 IO-10
3.31 lO"10
1.14 IO4
1.37 10"'
3.31 lO"10
1.02 lO"'
3.62 104
U-231
5 IO"2
9.35 10"
9.69 IO12
2.03 IO"12
4.30 10"
1.39 10'°
9.54 10"
9.36 IO'10
3.15 IO-10
2.96 10*
LLI wall
2 10J
9.69 10""
9.03 IO"12
1.02 IO"12
3.13 10"
1.45 10"
7.73 10"
9.68 IO'10
3.20 IO10
3.10 10'*
LLI wall
U-232
5 IO"2
8.27 10"'
8.33 10"'
8.29 10"'
4.19 10"'
6.63 10*
8.11 10''
3.35 10"'
3.54 10"'
2 10°
3.34 IO"10
3.33 IO10
3.32 IO-10
1.68 10"®
2.65 IO"7
3.25 IO'10
2.83 IO4
1.87 IO4
U-233
5 IO"2
2.62 10"'
2.62 IO"'
2.62 10"'
7.36 10"8
1.16 IO"4
2.62 IO*
1.10 10"'
7.81 10 4
2 10°
1.07 IO"10
1.05 IO-10
1.05 IO"10
2.95 10"'
4.62 IO4
1.05 IO"10
1.78 IO4
7.15 10"'
U-234
5 10"2
2.59 lO-'
2.58 10"'
2.58 10"'
7.21 IO4
1.13 IO"4
2.58 10''
1.09 10''
7.66 10's
2 10°
1.06 IO10
1.03 10'°
1.03 IO10
2.88 lO"'
4.52 IO4
1.03 IO'10
1.77 IO4
7.06 IO"'
U-23S
5 IO"2
2.67 IO"'
2.49 10"'
2.46 lO-'
6.81 10"*
1.05 104
2.45 10"'
1.03 10-'
7.19 IO4
2 10°
3.34 IO-10
1.21 lO"10
1.01 10"'°
2.78 10"'
4.20 IO4
9.82 10"
1.84 IO"8
7.22 10"'
U-236
5 IO"2
2.45 10"'
2.45 10"'
2.45 10"'
6.83 IO4
1.07 IO"4
2.45 10''
1.03 10"'
7.26 »4
2 10°
1.00 10'°
9.79 10"
9.79 10"
2.73 10"'
4.28 10"'
9.79 10"
1.67 IO4
6.68 IO"*
U-237
5 IO"2
1.75 10'°
2.02 10"
4.98 10'12
9.50 lO-"
4.41 IO"18
2.77 IO'12
2.59 lO-'
8.48 IO"10
8.47 10"'
LLI wall
2 10°
1.81 10'°
1.81 10"
2.17 IO"12
5.69 10"
3.39 10"
2.31 10"
2.67 10"'
8.57 IO-10
8.89 lO"'
LLI wall
U-238
5 IO"2
2.31 10"'
2.31 10"'
2.30 10"'
6.80 10"*
1.01 10"4
2.30 10-'
9.69 104
6.88 IO'8
2 10°
1.02 IO-10
9.33 Iff"
9.22 1&"
2.72 lO"*
4.04 10''
9.20 10"
1.61 IO4
6.42 10''
U-239
5 IO"2
1.42 IO"12
2.35 lO""
1.21 10"
6.48 10"
1.52 IO"12
2.23 10"14
6.72 10"
2.07 IO'"
2 10°
1.45 IO"12
2.21 10-"
1.03 10"
5.13 10"IJ
2.31 10""
4.60 10"
6.80 lO-"
2.09 10"
U-240
5 IO"2
1.22 lO"10
1.79 lO"11
6.01 IO12
3.76 Iff"
4.96 10"
2.93 lO-"
3.75 lO4
1.16 10''
2 10°
1.24 IO-10
1.60 Iff"
3.69 IO"12
2.62 lO-"
1.02 10""
5.59 IO"15
3.88 lO"'
1.20 JO"'
-------
177
Tabic 2.2, Cont'd.
Committed Dose Equivalent per Unil Intake (Sv/Bq)
Nuclide
fi
Gonad
Brtisv
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Neptunium
Np-232
1 IO"3
3.33
IO12
1.19
IO12
1.15 Iff'2
6.25 Iff'2
6.30 Iff"
1.04 Iff13
2.11 10"
1.01 10'"
Np-233
1 IO"3
9.36
IO'3
2.45
io-'3
1.75 Iff13
5.16 Iff13
2.05 Iff'3
7.31 Iff15
5.45 Iff'2
1.99 IO'11
Np-234
1 IO"3
8.42
IO'0
l.l I
10'°
2.28 Iff"
1.86 Iff'0
6.89 Iff"
3.79 Iff'2
1.63 Iff®
7.43 IO'10
Np-235
1 I0J
1.30
Iff"
5.36
|0'3
1.05 Iff13
1.64 Iff"
1.47 10'la
2.41 Iff14
1.86 1010
6.32 10'°
6.56 Iff11
LLI wall
Np-236
1.15 10s y
i iff3
5.24
IO"8
9.88
10"
9.29 Iff"
4.24 IO'7
5.29 IO4
5.18 Iff"
3.63 Iff8
2.34 IO"7
Np-236
22.5 h
1 lO"3
6.44
Iff"
3.47
10 12
5.66 IO'3
3.34 IO '0
4.05 10"'
4.41 IO14
6.38 IO*10
3.70 Iff10
Np-237
1 Iff3
2.46
IO"7
1.45
Iff'0
1.53 Iff'0
2.18 IO"6
2.72 10's
1.10 Iff'0
2.10 !07
1.20 IO"4
Np-238
1 Iff3
3.89
,0'0
4.81
Iff"
1.02 10""
2.17 Iff10
1.77 Iff'
1.50 IO '2
2.97 Iff'
1.08 10"*
Np-239
1 IO"3
1.62
iff10
1.72
Iff"
2.40 IO '2
4.66 Iff"
3.S9 10"
2.07 IO13
2.77 10'
8.72 IO"*
ft.ft2 10"10
LLI wall
Np-240
i icr3
2.50
iff"
5.72
IO'2
3.49 IO12
7.74 Iff12
3.44 Iff'2
3.46 IO '3
1.85 Iff'0
6.40 10'"
Plutonium
Pu-234
1 IO"3
7.82
Iff"
9.27 Iff'2
1.85 Iff'2
4.47 Iff"
3.28 Iff'0
4.69 Iff13
4.73 IO'0
1.78 IO"10
1 lO""
7.48
Iff"
9.02 Iff'2
1.59 Iff12
2.13 Iff"
3.83 Iff"
2.27 Iff13
4.61 IO10
1.62 IO'10
i iff5
7.45
10'"
9.00 Iff'2
1.57 Iff'2
1.89 10"
9.35 Iff'2
2.03 lO'3
4.61 Iff'0
1.61 10'°
Pu-235
1 tO3
S.S9 )011
1.74 lCfu
1.40 )ffa
3.32 10°
1.36 lffu
6.03 Iff55
4.98 I0U
1.72 IO01
1 10J
5.59
IO13
1.74
IO"'3
1.40 Iff'3
3.32 Iff'3
1.32 IO"'3
6.02 Iff15
4.98 IO"'2
1.72 10'|J
I Iff5
5.59
10-'3
1.74 IO13
1.40 Iff13
3.32 Iff'3
1.32 Iff13
6.02 IO'5
4.98 Iff12
1.72 IO'11
Pu-236
1 I0J
7.82
Iff8
2.77 IO'1
3.47 Iff"
4.49 10''
5.61 IO"4
1.56 Iff"
2.43 10''
3.15 IO'7
1 lO""
7.82
10 9
2.87 Iff'2
3.48 Iff'2
4.49 Iff8
5.61 IO'7
1.56 Iff'2
3.93 IO"8
3.60 IO"8
1 IO'5
7.85
Iff'0
3.90 IO13
3.49 Iff'3
4.49 IO"®
5.61 Iff*
1.56 Iff13
1.90 IO"8
8.12 Iff®
Pu-237
1 IO'3
7.24
Iff11
7.17 Iff'2
1.02 Iff'2
2.S7 Iff"
2.66 10""
9.23 IO'4
3.23 Iff'0
\.10 \o-'°
1 I0J
7.22
Iff"
7.03 Iff'2
7.79 IO '3
2.37 Iff"
9.15 Iff'2
3.82 lO'4
3.23 Iff'0
1.19 10'°
1 IO'5
7.22
10-"
7.02 Iff'2
7.54 Iff'3
2.35 Iff"
7.40 Iff'2
3.28 Iff'4
3.23 Iff'0
1.19 10'°
Pu-238
1 io-3
2.33
IO-7
8.41
IO-12
8.49 IO'2
1.27 IO"6
1.58 IO'5
7.99 Iff'2
6.00 IO"7
8.65 Iff7
1 IO"4
2.33
Iff1
9.28 IO13
8.50 Iff'3
1.27 Iff7
1.58 icr4
7.99 Iff'3
7.44 Iff8
9.08 Iff8
i iff5
2.33
IO-5
1.80 Iff'3
8.64 Iff"
1.27 IO"8
1.58 IO"7
7.99 Iff'4
2.18 IO"8
1.34 Iff8
Pu-239
1 IO"3
2.64
10-'
7.69 Iff12
7.74 Iff'2
1.41 IO"6
1.76 IO"5
7.49 IO12
6.43 IO'7
9.56 IO"7
1 IO"1
2.64
IO"8
8.09 Iff'3
7.75 Iff'3
1.41 IO"1
1.76 Iff*
7.49 Iff'3
7.77 IO"8
9.96 IO"8
1 IO'5
2.64
IO*
1.21
Iff13
7.89 Iff'4
1.41 IO"8
1.76 IO'7
7.50 Iff'4
2.12 IO"8
1.40 10"*
Pu-240
1 IO"3
2.64
IO"7
7.97 Iff'2
8.07 IO"'2
1.41 IO4
1.76 10"'
7.51 Iff'2
6.43 IO"'
9.56 IO'7
i iou
2.64
Iff®
8.82 IO"'3
8.08 Iff13
1.41 Iff'
1.76 IO4
7.51 Iff13
7.78 IO"8
9.97 IO4
i iff5
2.64
Iff®
1.73 Iff'3
8.22 Iff'4
1.41 IO4
1.76 IO"'
7.51 IO"'4
2.13 IO"8
1.40 Iff8
Pu-241
i ioJ
5.66 IO"9
2.52 ICr'3
4.45 IO'3
2.78 Iff8
3.48 IO"7
1.01 Iff13
1.10 IO'8
1.85 IO4
i ioa
5.66 10'°
2.54 Iff'4
4.45 Iff14
2.78 10*
3.48 10"*
1.01 Iff'4
1.16 10*
1.87 Iff9
! Iff5
5.66 Iff"
2.79 IO'5
4.48 Iff'5
2.78 Iff'0
3.48 IO*
1.01 IO15
1.85 Iff'0
2.07 Iff'0
Pu-242
1 IO3
2.51
Iff7
8.00 Iff'2
7.88 Iff'2
1.34 IO"6
1.67 10's
7.29 IO'2
6.10 IO7
9.08 1 ff7
1 Iff*
2.51
Iff1
9.58 Iff'3
8.00 IO13
1.34 IO'7
1.67 IO"6
7.30 Iff13
7.38 Iff8
9.46 Iff8
1 Iff5
2.51
Iff®
2.54 Iff'3
9.18 IO"'4
1.34 IO4
1.67 IO"7
7.38 Iff14
2.02 IO'8
1.33 IO4
Pu-243
1 Iff3
4.58 Iff12
5.96
Iff'3
1.51 Iff'3
1.95 IO '2
2.08 lb"'2
8.79 IO15
2.96 Iff"5
9.02 10'"
1 IO"1
4.S6 l
-------
I?8
Tabic 2.2, Cont'd.
Committed Dose Eguivatest far; Un; Intake (Sv/Bq)
Nuclide
fi
Gonad
Breast
Lung
£ Ma crow
B Surfatc
Tbyfffld
Rcmai-.ckj
Effcciwc
Pu-244
i in3
249 t0*?
3.>4 Iff"
3.23 i IT13
1.32 IO"4
1.64 10-*
1.50 Iff10
6.13 IO"'
8.97 UT'
1 10*
2.53 :o*
7.82 \0-"
3.78 10"
1.33 iO"'
1.64 iff6
1.56 IO11
8.15 IO4
9.59 iO"8
! lffs
2.94 i0'?
5.36 Iff"
9.29 !ff!*
1.33 SO"®
US Iff'
2.22 IN2
284 tO*
1,58 IQ-"
P«-245
1 Iff'
1.22 10''*
••63 10"
4,01 iff12
2.87 10""
1.23 10"
4.78 iff'1
2.32 10s
7.34 «r®
iff'
"..22 Iff1"
1.62 10"'
3.98 10'"
2 S3 10 "
9.74 ID'12
4.53 IO'"
2 32 Iff*
7.34 ltt-B
1 10'*
1,22 10'"
1.62 iff"
3.98 10:2
2.83 10:i
9.46 iO"IJ
450 10"
2.32 Iff'
7,34 Iff"
Pu-246
i :o5
9.« ID'"3
:.o2 :oJS
1.51 10"
2 30 ID"10
2.69 Iff18
2.06 10'"
u2 iff'
3.81 104
3.66 : D'?
LLI wall
i :o*
9.40 Iff15
1.01 10'*
1.42 10""
2-!G !0'in
8.72 10'"
1.75 IO"15
1.13 10s
3.82 10*
3.66 10'
LLI wall
i IO"5
9.40 Iff"
1.01 10IS
:,4i io-"
2.0& 1010
6.9D ID11
1.71 Iff"
1.13 ID4
3.66 10-*
Amwiclum
Am-25?
• I0-3
9.46 Iff"
S.96 iO"
1.07 Iff12
3.42 lffi3
121 10 "
7.97 10"'*
4.84 10"
1.78 19-"
Am *238
I 10-'
191 :o-;l
5.93 I0-'2
3.07 lO""
I.U :o-"
3.66 Iff""
3.33 -Or*3
8,19 Iff"
3.56 IO'11
Am-239
i «I'J
9.16 Id'11
! 07 10"
2.05 10 12
2.83 10"
1.06 10""
1.37 IO'"
7.94 IO'6
X67 IO-10
Arn-240
1 I0]
7.16 ID15
9-06 10"
}M 10"
1.55 iff15
6.9S 10'"
2.S9 IO-1*
1,56 IO"*
6.83 Iff"
Am*24!
! :o-3
2 70 SO"'
2.62 10"'1
3.36 iff':
1 45 10*
Ui id '
1.32 10'n
6.66 SO7
««4 Iff'
Am-242tTi
1 1DJ
2.66 10®"
i 22 10'"
1.65 10"
1.4! :tr6
1,76 IO"5
3.77 :o12
6.20 10"'
9.50 iO'7
Am-24 2
I Iff3
2.74 Iff"
9.38 I0'ls
1.58 iff15
1.24 iO"111
1.52 10"*
2.6: is"
1.05 Iff'
3.81 Iff"®
Arn-243
: ioJ
XT. :o'
1.41 IO"16
1.9$ IO"55
1.44 IO"4
1.80 10"s
6-fSO 10-"
6.61 ur
9,79 Iff7
Am-244m
i !cr3
3.7\ 1011
1.89 iff15
109 Iff1*
2.14 10"
2.67 '.0"
130 Iff"
6.61 Iff"
126 10-'»
2.10 10'"
STwafl
Am-2 44
t :o'
224 Iff10
2.97 10""
7.8| Iff11
9.72 Iff"
6.38 10'1B
9.83 iff15
1.49 10'*
5,38 IO"1®
Am-243
i itr1
1 16 10'"
1.93 10 14
8.81 :o"
8-21 10"u
5.23 10"l!
1.96 10 15
i.6.3 lO'"
4.88 IO"1'
Ani-246m
1 so'
5.; 3 Iff"
1 68 !iTu
1.43 Iff"
1.75 I0"i!
9.38 tO1'
1.50 Iff"
7.83 IO""
2.55 IO"10
2.54 10""
ST ml
Am-246
1 10 s
6.77 10!1
1.87 ID'"2
1.J7 1012
2.39 Iff11
I 22 IO'13
i.23 IO"11
1.43 tO"10
4M Iff"
Curium
Cm-238
1 103
5.81 :o'"
9.02 Iff'3
2.69 10 iJ
1.99 iff"
6 08 SO "
4.S3 IO-»
2.3g :0'r)
9.20 10-11
Cm-240
t !cr*
2.7! 10'*
9.58 10"
9,62 Iff12
•;,66 104
2.07 lfl"?
9.11 IO'"
2,67 Iff*
1.69 iff8
Cm<241
i :o-J
6.61 10 10
6.68 SO11
l.'.O Iff51
4.98 IQ"10
4 31 10''
1.73 10"i2
28! 10"'
1,21 Iff*
Cm-2<2
1 toJ
5.20 ID''
$-95 IO'12
8.84 Iff"1'
3.S7 10-*
4,46 »¦'
8.62 Iff12
4.02 Iff*
3.10 10*
Cm-24>
i Iff4
j.?i iff7
6.96 KJ-"
7,73 iff"
9.81 IO"1
1.23 104
1-15 )0";i
4.97 tO"'
6.79 IO"'
Cm-244
i >oJ
i.33 10"
5.82 1012
8.81 10""
7.82 I0':
9.77 Iff*
8.44 Iff"
4.15 IO4
5.45 IO'7
Cm-245
! 10*
2.80 Iff7
6.80 iff1'
8.34 Iff"
1.49 10s
1.86 IO4
3.02 10"
6.79 Iff'
1,01 ;o4
Cm-246
i :o-3
2.77 I0"?
3.91 10"
2.67 10"
1.48 so*
1.85 IsT5
1.81 ;o-"
6.76 10'
1«1 Iff*
Cm-24?
i iff3
2.56 10'*
2.29 iff"3
3.66 Iff'0
1.36 10*
1.70 I0-'
1.20 tO"'0
6.23 Iff'
9.24 10"'
Cm-248
l Id''
i .02: ae
1.10 lO"*
6.52 10"'
5.42 Iff®
6.75 icr3
3.87 tO'*
2.49 Iff4
3.6S IO14
Cm-249
i io4
4.65 10"
8.68 I0U
5.41 Iff1'
6.20 10i4
6.3? Iff13
$-53 IO"
8M Iff"
1,70 IO"11
Cm*2S0
i iff*
S.85 iff *
8.66 10"*
5 17 1Q'S
3.09 Iff*
3.83 IO"*
3.05 I0's
:,42 to3
2. iff ;ffs
Befferiiaoi
Bk-245
i m1
U4 10-'°
2.76 1011
3.62 I0"!J
8.16 10"
9 79 10 "
3.07 Iff'3
1,90 iff*
6.52 10*®
Bfc-246
1 ID5
6.47 SO"'5
8.08 ;q-"
\M :o"
1.43 10-'
7.7; Iff"
2.I9 10IJ
1.24 iff9
5-68 IS"18
Bfc-2 *7
l io1
US 10-*
6.28 10"
6 42 Iff"
2.19 IO4
2-74 1CT!
3-80 iO "
3.95 10'"
i if ;d'4
Bk-249
i itrJ
6.99 Iff16
4,35 10'a
5,10 I0",J
5.36 10'
669 Iff8
3.45 10;5
1.39 Iff'
3.24 10*
Bfe-250
i i0}
6.64 ID""
I.I 4 10""
4,64 10'"
4.30 !0'!l
3.48 SO16
3Sft JO"13
4.08 Iff"3
1.57 Iff19
-------
179
Table 2.2, Cont'd.
Committed Dose Equivalent per Unil Intake ISv/Bq)
Nucl ide
U
Gonad
Breast
Lung
R Marrow
B Surface
Thy roid
Remainder
Effective
Californium
Cf-244
I to5
t .37 10"12
243 10u
2.33 tO"u
1.18 10"
1.48 lO40
2.23 10'"
1.51 IO'10
5.31 IO10
5.15 IO41
ST wall
Cf-246
I 10'
8.86 10"
7.72 tO12
7.64 IO42
8.18 IO10
1.01 10®
7.63 IO12
1.15 IO'8
3.86 10"'
Cf-248
I 10'
1.51 I0*s
1.0010"
9.26 1Q"12
1.44 10"7
1,80 IO-4
9.13 IO12
5.U tO '
9.04 IO"'
Cf-249
1 10''
2.86 10'
2.33 tO10
2.26 10'°
2.21 IO"6
2.76 10's
1.51 IO"10
4.00 10"'
1.28 IO"6
Cf-250
1 103
1.12 IO"7
7.44 I0'11
4.10 10"
9.77 tO'7
1.22 IO"5
3.12 IO41
2.17 107
5.76 IO"7
Cf-251
1 10"
2 92 10"'
9.36 10"
9 56 10"
2.25 IO"6
2,81 10"s
5.25 10"
4.05 IO"7
1.31 10'®
Cf-252
1 Iff'
5.39 10'
1.49 10'
4.67 1010
4.69 tO7
5.84 IO"4
2.68 IO'10
1.58 10'
2.93 IO7
Cf-253
1 10'
5.16 IO40
2.21 10l!
2.15 10"
5.37 10*'
6.72 10 J
2.04 10"
3.31 10'
3.78 IO"'
Cf-254
1 10'3
312 IO"7
3.45 10'*
4.95 10''
5.45 10'7
6.14 10*
1.09 10'
1.07 IO"6
6.55 10''
Einsteinium
Es-250
1 10'
2.06 10u
3.46 tO"12
1.58 IO12
2.35 1041
2.25 IO'10
1.65 IO1"
5.53 tO41
3.20 IO0'
Es-251
1 10'5
7.90 10"
8.17 1041
1.18 IO12
3.54 tO11
1.45 IO40
1.03 10"
5.69 1010
2.00 IO"'0
Es-253
1 10'
5.96 tO10
9.55 tO12
9.46 1012
6.10 10'
7.61 IO"4
9.44 IO42
1.98 10''
9.10 10"'
Es-254m
1 10"'
4.07 IO40
4.64 10"
1.46 10"
8.29 IO10
9.48 10*'
8.16 IO12
1.45 10'
4.75 lC
4.83 10'
LL1 wall
Es-254
1 10°
1.45 10-'
1.29 IO'10
4.72 10-"
1.31 !07
1.63 IO"4
1.93 IO41
5.47 10«
8.47 10*
Fcrmium
Km-252
1 to5
6.94 10'"
7.02 1042
6.98 IO42
6.12 lO'10
7.52 10'
6.97 IO'2
9.27 10'
3.10 10"'
Fm-253
1 10'
1.75 !0'l°
t.01 10"
2.34 IO42
9.26 lO40
1.12 108
1.27 IO'12
2.93 10'
1.37 10"'
Fm-254
1 10'
5.54 10'"
t.63 1012
1.62 10'12
3.57 10"
4.28 1010
1.62 IO'12
1.50 10'
4.69 IO"'0
Fm-255
1 10'
3 22 lO01
7.14 1012
6.68 IO42
1.74 10 10
2.08 IO"9
6.65 IO12
9.02 10'
2.80 10"'
Fm-257
1 10'
5.72 10'
2.53 10"
t .23 10"
5.82 10'
7.27 IO'7
1.00 IO41
3.53 10'
4.08 IO"4
Mcndelevium
Md-257
1 10'
2.97 10"
2.65 1012
9.16 10"
1.27 IO'10
1.52 10*'
3.35 IO1"
4.00 IO10
1.89 10-,B
Md-258
1 10''
4.35 109
1.53 10"
t .48 10"
4.31 10"'
5.38 IO"7
1.19 IO41
3.16 108
3.19 IO"'
-------
Intentionally Blank Page
-------
TABLE 2.3
Exposure-to-Dose Conversion Factors for Submersion
Explanation of Entries
For each radionuclide, values in SI units for the organ dose equivalent rate conversion
factor, fiT.enn and the effective dose equivalent rate conversion factor, based upon
the weighting factors set forth on page 6, are listed in Table 2.3 for submersion. The
limiting coefficient, with respect to determining the DAC, is indicated by bold-faced type.
The tissue dose equivalent conversion factor for organ or tissue T (expressed in Sv/hr per
Bq/m3), i.e., the dose equivalent rate per unit air concentration of radionuclide.
The effective dose equivalent conversion factor (expressed in Sv/hr per Bq/m3), i.e., the
effective dose equivalent rate per unit air concentration of radionuclide:
frfcexl = 2 WT ^T.exi -
T
Values of liT.extfor s'c'n an<^ 'ens eye arc on'y when they are limiting.
To convert to conventional units (mrem/hr per yCi/cm3), multiply table entries by
3.7 x 1015.
As an example, consider the factor for lung for submersion in Ar-37:
hiiing,e*t = 3.80 x 10"IJ Sv/hr per Bq/m3
x 3.7 x 1015 = 14 mrem/hr per yCi/cm3.
note: Since lung is the only exposed organ, fiE,e*t equals 0.12 h|ung.«*r
181
-------
182
Table 2.3. Exposure-to-Dose Conversion Factors for Submersion
Dose Equivalent Rale per Unil Air Concentration (Sv/hr per ESq/m1)
Nuclide
Gonad
Breast
Lung
R Marrow
B Surface
Thyroid
Remainder
Effective
Hydrogen*
H-3
9.90 IO15
1.19 IO"15
Argon
Ar-37
3.80 10'l!
4.56 10'14
Ar-39
6.08 10"
5.10 IO14
4.53 IO14
9.10
IO"14
9.84 IO"14
5.94 IO'14
3.83 IO14
3.75 IO""
5.54 IO'14
Skin
Ar-4I
1.90 IO'10
2.32 10"10
2.20 lO"10
2.28 IO'10
2.47 IO"10
2.07 1010
2.24 10''°
2.17 IO"10
Krypton
Kr-74
2.31 IO'10
2.00 IO10
1.93 IO'10
2.52 1CT10
2.69 IO10
1.12 IO'10
1.87 10"10
2.09 IO"10
Kr-76
9. CO 10""
7.22 10'"
6.95 IO11
9.85
IO'11
1.05 IO'10
5.43 10"
6.44 10-"
7.76 10-"
Kr-77
1.99 10'10
1.74 10 10
1.68 IO'10
2.24
lO-'O
2.39 IO10
1.03 IO'10
1.62 10"10
1.82 IO"10
Kr-79
5.02 10'"
4.31 10"
4.15 IO'11
5.36
IO"11
5.74 IO'"
2.68 10'"
4.00 10'"
4.49 10""
Kr-81
1.26 IO"12
9.53 1013
9.08 IO15
1.37
IO12
1.47 IO12
8.28 10 13
8.19 IO"1'
1.05 IO'12
Kr- 83m
5.95 I0'l!
8.01 I0I!
1.10 IO15
5.51
lO'5
6.32 IO13
1.39 IO'15
1.28 IO"'5
1.69 IO""
4.10 10'1!
Lens
Kr-85
5.18 10"
4.52 10'3
4.31 10"
5.75
lO13
6.15 10"
2.50 IOIJ
4.20 IO03
4.66 IO""
4.70 IO""
Skin
Kr-85m
3.35 I0-"
2.66 10'"
2.57 10"
4.43
lfr"
4.72 10""
2.95 10'"
2.25 10"
2.98 IO"11
Kr-87
1.26 1010
1.48 lO10
1.41 IO10
1.52
,Q.|0
1.67 IO'10
1.42 IO"10
1.46 IO10
1.42 IO"10
Kr-88
3.48 10'ICI
3.65 10'10
3.49 IO'10
3.48
IO10
3.85 IO"10
3.74 IO10
3.72 IO'10
3.60 IO"10
Xenon
Xe-120
7.58 10'"
6.91 IO'"
6.51 IO"11
8.41
IO"11
9.05 10"
4.64 10""
6.32 10""
7.D3 10""
Xe-121
2.72 10-10
3.27 IO'10
3.12 IO10
3.45
l&io
3.76 IO10
2.86 IO'10
3.08 IO10
3.08 IO"10
Xc-122
1.13 10-"
8.79 IO12
7.98 IO'12
1.25
IO'"
1.35 10"
7.30 IO'12
7.22 10'12
9.40 IO"12
Xe-123
1.08 IO'10
1.08 IO'10
1.03 IO"10
1.29
IO10
1.39 IO10
8.28 10'"
9.78 10-"
1.07 IO"®
Xe-125
5.43 10"
4.23 10"
4.01 IO'11
6.13
io-"
6.57 10"
3.92 10 "
3.62 10-"
4.61 10-"
Xe-127
5.94 lO'"
4.41 IO'"
4.21 10'"
6.70
10"
7.17 IO'"
4.28 IO'"
3.76 10'"
4.93 IO""
Xe-129m
5.53 10-"
3.86 IO'12
2.80 IO'12
5.96
IO'12
6.55 1012
4.24 IO'12
2.42 IO'12
4.06 IO'"
Xe-131m
2.00 10'12
1.42 10-12
1.01 IO'12
2.25
IO12
2.47 IO'12
1.63 IO12
8.58 10'"
1.71 IO"11
1.48 10 12
Skin
Xe-133
6.30 10-'*
5.62 IO12
4.84 IO'12
1.08
10"
1.18 IO'11
7.12 IO"12
4.03 IO12
6.D7 IO"12
Xe- 133m
6.80 1012
4.88 IO12
4.33 10 12
7.37
10-12
7.95 1012
4.89 IO"12
3.84 10'12
5.38 IO"'1
Xc-135
5.63 lO"11
4.21 IO'11
4.07 10'"
6.16
10-"
6.59 10"
3.80 10"
3.67 IO""
4.68 IO"11
Xe-135m
8.27 10"
7.32 10'"
7.04 l(T"
8.62
10"
9.21 10'"
3.32 IO""
7.04 10'"
7.53 IO"11
Xe-138
1.65 10 10
2.06 10 10
1.98 IO'10
2.11
,0-10
2.31 10-10
1.91 10'°
1.95 IO'®
1.92 10J«
•elemental
-------
TABLE 3
Gastrointestinal Absorption Fractions (fj) and
Lung Clearance Classes for Chemical Compounds
Explanation of Entries
By elements, the assignment of chemical compounds of the radionuclide among the
clearance classes of the lung model and the applicable fractional absorption from the
gastrointestinal tract are listed in Table 3.
f,/class: The fractional uptake from the small intestine to blood (f() and the lung clearance class
(D, W, or Y). In a few instances the use of "special models" is noted, e.g., for
consideration of vapors.
183
-------
184
Table 3. Gastrointestinal Absorption Fractions (fj) and
Lung Clearance Classes for Chemical Compounds
Inhalation Ingestion
Element
Compound fj / Class Compound
Actinium
Oxides & hydroxides
1 10~3
Y
All forms
1 10"3
(Ac)
Halides & nitrates
i io-3
W
All others
1 10~3
D
Aluminum
Oxides, hydroxides,
0.01
W
All forms
0.01
(Al)
carbides, halides,
nitrates & elemental
All others
0.01
D
Americium
All forms
1 10"3
W
All forms
1 10"3
(Am)
Antimony
Oxides, hydroxides,
0.1
W
Tartar emetic
0.1
(Sb)
halides, sulfides,
All others
0.01
sulfates & nitrates
All others
0.01
D
Arsenic
All forms
0.5
W
All forms
0.5
(As)
Astatine
See halide assignment
1
D
All forms
1
(At)
of associated element
1
W
Barium
All forms
0.1
D
All forms
0.1
(Ba)
Berkelium
All forms
1 10"3
W
All forms
1 10~3
(Bk)
Beryllium
Oxides, halides &
5 10"3
Y
All forms
5 10"3
(Be)
nitrates
All others
5 10~3
W
Bismuth
Nitrates
0.05
D
All forms
0.05
(Bi)
All others
0.05
W
Bromine
See bromide assignment
1
D
All forms
1.0
(Br)
of associated element
1
W
Cadmium
Oxides & hydroxides
0.05
Y
All inorganic forms
0.05
(Cd)
Sulfates, halides &
nitrates
0.05
W
All others
0.05
D
Calcium
All forms
0.3
W
All forms
0.03
(Ca)
-------
I 10
1
3 10
I
1
0.01
0.1
0.05
0.3
0.5
1 10
3 10
I 10'
3 10'
1 10'
185
Table 3, Cont'd.
Inhalation
Ingestion
Compound
fi/Class
Compound
Oxides, hydroxides
All others
Monoxides
Dioxide
Organic forms
Oxides, hydroxides &
fluorides
All others
All forms
1 10~3
I 10~3
Special
models
Y
W
3 10-4
3 10~4
1
W
D
All forms
Organic forms
All forms
All forms
See assignment of
associated element
Oxides & hydroxides
Halides & nitrates
All others
Oxides, hydroxides,
halides & nitrates
All others
Oxides & hydroxides
Sulfites, halides &
nitrates
All others
All forms
All forms
All forms
All forms
All forms
I
1
0.1
0.1
0.1
0.05
0.05
0.5
0.5
D
W
Y
W
D
Y
W
Y
W
0.5 D
I 10-3 W
3 10-4 W
I 10~3 W
3 10"4 W
1 10~3 W
All forms
Trivalent state
Hexavalent state
Oxides, hydroxides &
trace inorganic
Organic complexed &
other inorganics
All forms
All forms
All forms
All forms
All forms
All forms
-------
186
Table 3, Cont'd.
Inhalation Ingestion
Element
Compound f|/Class Compound f|
Fermium
All forms
1 10~3
W
All forms
1 10'
(Fm)
Fluorine
See assignment of
1
D
All forms
1
(F)
associated element
1
W
1
Y
Francium
All forms
1
D
All forms
1
(Fr)
Gadolinium
Oxides, hydroxides &
1
o
<*n
W
All forms
3 10'
(Gd)
fluorides
All others
1
O
<*n
D
Gallium
Oxides, hydroxides,
i io~3
W
All forms
1 10'
(Ga)
carbides, halides &
nitrates
All others
l io~3
D
Germanium
Oxides, sulfides &
i
W
All forms
1
(Ge)
halides
All others
l
D
Gold
Oxides & hydroxides
0.1
Y
All forms
0.1
(Au)
Halides & nitrates
0.1
W
All others
0.1
D
Hafnium
Oxides, hydroxides
2 10"3
W
All forms
2 10
(Hf)
halides, carbides &
nitrates
All other
2 10"3
D
Holmium
All forms
1
O
<*n
W
All forms
3 10
(Ho)
Hydrogen
Water vapor
i
All forms
1
(H)
Elemental
Special
model
Indium
Oxides, hydroxides,
0.02
W
All forms
0.02
(In)
halides & nitrates
All others
0.02
D
Iodine
All forms
1
D
All forms
1
(I)
-------
187
Table 3, Cont'd.
Inhalation Ingestion
Element
Compound f,/Class Compound f,
Iridium
Oxides & hydroxides
0.01
Y
All forms
0.01
(Ir)
HalideS, nitrates &
0.01
W
metallic form
All others
0.01
D
Iron
Oxides, hydroxides &
0.1
W
All forms
0.1
(Fe)
halides
All others
0.1
D
Lanthanum
Oxides & hydroxides
1 I0"3
W
All forms
1 10
(La)
All others
1 10"3
D
Lead
All forms
0.2
D
All forms
0.2
(Pb)
Lutetium
Oxides, hydroxides &
3 10-4
Y
All forms
3 10
(Lu)
fluorides
All others
3 I0"4
W
Magnesium
Oxides, hydroxides,
0.5
W
All forms
0.5
(Mg)
carbides, halides &
nitrates
All others
0.5
D
Manganese
Oxides, hydroxides,
0.1
W
All forms
0.1
(Mn)
halides & nitrates
All others
0.1
D
Mendelevium
All forms
1 10"3
W
All forms
1 10'
(Md)
Mercury
Oxides, hydroxides,
0.02
W
All inorganic forms
0.02
(Hg)
halides, nitrates &
Methyl mercury
1
sulfides
Other organic forms
0.4
Sulfates
0.02
D
Organic forms
1
D
Vapors
Special
model
Molybdenum
Oxides, hydroxides &
0.05
Y
MoS2
0.05
(Mo)
MoS2
All others
0.8
All others
0.8
D
Neodymium
Oxides, hydroxides,
3 10"4
Y
All forms
3 10'
(Nd)
carbides & fluorides
All others
3 I0~4
W
-------
188
Table 3, Cont'd.
Inhalation Ingestion
Element —
Compound f(/Class Compound f]
Neptunium
All forms
1 10~3
W
All forms
1 10"
(Np)
Nickel
Oxides, hydroxides &
0.05
W
All forms
0.05
(Ni)
carbides
All others
0.05
D
Vapors
Special
model
Niobium
Oxides & hydroxides
0.01
Y
All forms
0.01
(Nb)
All others
0.01
W
Osmium
Oxides & hydroxides
0.01
Y
All forms
0.01
(Os)
Halides & nitrates
0.01
W
All others
0.01
D
Palladium
Oxides & hydroxides
5 10~3
Y
All forms
5 10'
(Pd)
Nitrates
5 10""3
W
All others
5 10~3
D
Phosphorus
Phosphates of
0.8
W
All forms
0.8
(P)
particular element
0.8
D
All others
0.8
D
Platinum
All forms
0.01
D
All forms
0.01
(Pt)
Plutonium
Oxides
1 10~5
Y
Oxides
1 10
(Pu)
All others
1 10"3
W
Nitrates
1 10
Others
1 10
Polonium
Oxides, hydroxides &
0.1
W
All forms
0.1
(Po)
nitrates
All others
0.1
D
Potassium
All forms
1
D
All forms
1
(K)
Praseodymium
Oxides, hydroxides,
3 10""4
Y
All forms
3 10
(Pr)
carbides, & fluorides
All others
*
1
o
W
Promethium
Oxides, hydroxides.
3 10""4
Y
All forms
3 10
(Pm)
carbides, & fluorides
All others
3 10~4
W
Protactinium
Oxides & hydroxides
1 10~3
Y
All forms
1 10
(Pa)
All others
1 10""3
W
-------
189
Table 3, Cont'd.
Inhalation Ingestion
Element
Compound f|/Class Compound
Radium
(Ra)
Rhenium
(Re)
Rhodium
(Rh)
Rubidium
(Rb)
Ruthenium
(Ru)
Samarium
(Sm)
Scandium
(Sc)
Selenium
(Se)
Silicon
(Si)
Silver
(Ag)
Sodium
(Na)
Strontium
(Sr)
All forms 0.2
Oxides, hydroxides, 0.8
halides & nitrates
All others 0.8
Oxides & hydroxides 0.05
Halides 0.05
All others 0.05
All forms 1
Oxides & hydroxides 0.05
Halides 0.05
All others 0.05
All forms 3 10
All forms 1 10
Oxides, hydroxides, 0.8
carbides & elemental
All others 0.8
Ceramic forms 0.01
Oxides, hydroxides, 0.01
carbides, & nitrates
All others 0.01
Oxides & hydroxides 0.05
Nitrates & sulfides 0.05
All others 0.05
All forms 1
SrTiOj 0.01
All others 0.3
-i
-i
W
W
D
Y
W
D
D
Y
W
D
W
W
D
Y
W
D
Y
W
D
D
Y
D
All forms
All forms
All forms
All forms
All forms
All forms
All forms
Elemental
All others
All compounds
All forms
All forms
Soluble salts
SrTiOj
0.2
0.8
0.05
I
0.05
3 10
1 10
0.05
0.8
0.01
0.05
-i
-i
0.3
0.01
-------
190
Table 3, Cont'd.
Inhalation Ingestion
cicnicin
Compound
f i/Class
Compound
f.
Sulfur
Sulfates & sulfides of
0.8
D
All inorganic forms
0.8
(S)
associated elements
0.8
W
Elemental
0.1
Elemental
0.8
w
Gases
Special
model
Tantalum
Oxides, hydroxides,
1 10-3
Y
All forms
1 10~3
(Ta)
halides, carbides,
nitrates & nitrides
All others
1 10-3
W
Technetium
Oxides, hydroxides,
0.8
W
All forms
0.8
(Tc)
halides & nitrates
All others
0.8
D
Tellurium
Oxides, hydroxides &
0.2
W
All forms
0.2
(Te)
nitrates
All others
0.2
D
Terbium
All forms
3 10-4
W
All forms
3 10~4
(Tb)
Thallium
All forms
1
D
All forms
I
(Tl)
Thorium
Oxides & hydroxides
2 10-4
Y
All forms
2 10~4
(Th)
All others
2 10-4
W
Thulium
All forms
3 10~4
W
All forms
3 10~4
(Tm)
Tin
Oxides, hydroxides,
0.02
W
All forms
0.02
(Sn)
halides, nitrates.
sulfides & Sn3(PO,4)4
All others
0.02
D
Titanium
SrTiOj
0.01
Y
All forms
0.01
(Ti)
Oxides, hydroxides,
0.01
W
carbides, halides &
nitrates
All others
0.01
D
Tungsten
All forms
0.3
D
Tungstic acid
0.01
(W)
All others
0.3
-------
191
Table 3, Cont'd.
Inhalation Ingestion
Element
Compound fj/Class Compound f(
Uranium
U02,U308
2 10~3
Y
Hexavalent
0.05
(U)
uo3, uf4 & UC14
0.05
W
Insoluble forms
2 10"3
uf6, uo2f2 &
0.05
D
UO^NOj )2
Vanadium
Oxides, hydroxides,
0.01
W
All forms
0.01
(V)
carbides, & halides
All others
0.01
D
Ytterbium
Oxides, hydroxides &
3 10~4
Y
All forms
3 10~4
(Yb)
fluorides
All others
3 10"*
W
Yttrium
Oxides & hydroxides
1 10"*
Y
All forms
1 10~4
(Y)
All others
1 \0~A
W
Zinc
All forms
0.5
Y
All forms
0.5
(Zn)
Zirconium
Carbides
2 10"3
Y
All forms
2 10"3
(Zr)
Oxides, hydroxides,
2 10~3
W
halides & nitrates
All others
2 10"3
D
-------
lly Blai:Fag
-------
APPENDIX A
Radiation Protection Guidance for Occupational Exposure (1987)
193
-------
Intentionally Blank Page
-------
195
Tuesday
January 27, 1987
Part 1)
The President
Radiation Protection Guidance to Federal
Agencies for Occupational Exposure;
Approval of Environmental Protection
Agency Recommendations
(This reprint incorporates corrections published in the
Federal Registers of Friday. January 30. and Wednesday.
Februtiry 4. 1987.]
-------
2822
196
Federal Rc^isler
Presidential Documents
Vol. 52. No. 17
Tunsdny. [nnuiiry 27. 1
-------
197
Federal Register / Vol. 52. No. 17 / Tuesday, January 27, 1907 / Presidential Documents 2823
tion of workers exposed to ionizing radiation- The portions of that guidance
which apply to exposure of the general public would not be changed by these
recommendations
These recommendations are based on consideration of (1) current scientific
understanding of effects on health from ionizing radiation, (2) recommenda-
tions of international and national organizations involved in radiation protec-
tion, (3) proposed "Federal Radiation Protection Guidance for Occupational
Exposure" published on January 23. 1901 (46 FR 7036) and public comments on
that proposed guidance, and [4) the collective experience of the Federal
agencies in the control of occupational exposure to ionizing radiation A
summary of the considerations that led to these recommendations is provided
below. Public comments on the previously proposed guidance and a response
to those comments are contained in the document "Federal Radiation Protec-
tion Guidance for Occupational Exposure—Response to Comments" (EPA
520/1-04-011). Single copies of this report are available from the Program
Management Office (ANR-450). Office of Radiation Programs. U.S. Environ-
mental Protection Agency, Washington, D.C. 20480; telephone (202) 475-0300.
Background
A review of current radiation protection guidance for workers began in 1974
with the formation of a Federal interagency committee by EPA. As a result of
the deliberations of that committee, EPA published an "Advance Notice of
Proposed Recommendations and Future Public Hearings" on September 17,
1979 (44 FR 53705). On January 23, 1901, EPA published "Federal Radiation
Protection Guidance for Occupational Exposures: Proposed Recommenda-
tions, Request for Written Comments, and Public Hearings" (46 FR 7036).
Public hearings were held in Washington, D.C (April 20-23, 1901); Houston,
Texas (May 1-2, 1901): Chicago, Illinois (May 5-6, 1901), and San Francisco,
California (May 0-9, 1901) (46 FR 15205). The public comment period closed
July 6. 1901 (46 FR 26557). On December 15, 1902, representatives of the ten
Federal agencies noted above, the CRCPD, and the NCRP convened under the
sponsorship of the EPA to review the issues raised in public comments and to
complete development of these recommendations. The issues were carefully
considered during a series of meetings, and the conclusions of the working
group have provided the basis for these recommendations for revised Federal
guidance.
EPA has also sponsored or conducted four major studies in support of this
review of occupational radiation protection guidance. First, the Committee on
the Biological Effects of Ionizing Radiations, National Academy of Sciences—
National Research Council reviewed the scientific data on health risks of low
levels of ionizing radiation in a report transmitted to EPA on July 22, 1900:
"The Effects on Populations of Exposure to Low Levels of Ionizing Radiation:
1900," National Academy Press, Washington, D.C. 1900. Second, EPA has
published two studies of occupational radiation exposure: "Occupational
Exposure to Ionizing Radiation in the United States: A Comprehensive Sum-
mary for the Year 1975" [EPA 520/4-00-001) and "Occupational Exposure to
Ionizing Radiation in the United States: A Comprehensive Review for the Year
1900 and Summary of Trends for the Years 1960-1905" (EPA 520/1-84-005).
Third, the Agency sponsored a study to examine the changes in previously
derived concentration limits for intake of radionuclides from air or water that
result from use of up-to-date dosimetric and biological transport models.
These are presented in Federal Guidance Report No. 10, "The Radioactivity
Concentration Guides: A New Calculation of Derived Limits for the 1960
Radiation Protection Guides Reflecting Updated Models for Dosimetry and
Biological Transport" (EPA 520/1-04-010). Finally, the cost of implementing
the changes in Federal guidance proposed on January 23. 1901 was surveyed
and the findings published in the two-volume report: "Analysis of Costs for
Compliance with Federal Radiation Protection Guidance for Occupational
Exposure: Volume I—Cost of Compliance" (EPA 520/1-03-013-1) and "Volume
II—CaSe Study Analysis of the Impacts" (EPA 520/1-03-013-2). These EPA
-------
198
2824 Federal Register / Vol. 52. No. 17 / Tuesday. January 27. 1987 / Presidential Documents
reports are available from National Technical Information Service, U.S. De-
partment of Commerce. 5285 Port Royal Road. Springfield. Virginia 22161.
The interagency review of occupational radiation protection has confirmed the
need for revising the previous Federal guidance, which was promulgated in
1960. Since that lime knowledge of the effects of ionizing radiation on humans
has increased substantially. We now have a greatly improved ability to
eslima le risk of harm due to irradiation of individual organs and tissues. As a
result, some of the old numerical guides are now believed to be less and some
more protective than formerly. Other risks, specifically those to the unborn,
are now considered to be more significant and were not addressed by the old
guidance. These disparities and omissions should be corrected. Drawing on
this improved knowledge, the International Commission on Radiological Pro-
tection [ICRP) published, in 1977. new recommendations on radiation protec-
tion philosophy and limits for occupational exposure. These recommendations
are now in use. in whole or substantial part, in most other countries. We have
considered these recommendations, among others, and believe that it is
appropriate to adopt the general features of the iCRP approach in radiation
protection guidance to Federal agencies for occupational exposure. In two
cases, protection of the unborn and the management of long-term exposure to
internally deposited radioactivity, we have found it advisable to make addi-
tions.
There are four types of possible effects on health from exposure to ionizing
radiation. The first of these is cancer. Cancers caused by radiation are not
different from those that have been historically observed, whether from
known or unknown causes. Although radiogenic cancers have been observed
in humans over a range of higher doses, few useful data are available for
defining the effect of doses at normal occupational levels of exposure. The
second type of effect is the induction of hereditary effects in descendants of
exposed persons. The severity of hereditary effects ranges from inconsequen-
tial to fatal. Although such effects have been observed in experimental
animals at high doses, they have not been confirmed in studies of humans.
Based on extensive but incomplete scientific evidence, it is prudent to assume
that at low levels of exposure the risk of incurring either cancer or hereditary
effects is linearly related to the dose received in the relevant tissue. The
severity of any such effect is not related to the amount of dose received. That
is. once a cancer or an hereditary effect has been induced, its severity is
independent of the dose. Thus, for these two types of effects, it is assumed
lha I there is no completely risk-free level of exposure.
The third type includes a variety of effects for which the degree of damage
(i.e.. severity) appears to depend on the amount of dose received and for
which there is an effective threshold below which clinically observable effects
do not occur. An example of such an effect is radiation sickness syndrome,
which is observed at high doses and is fatal at very high doses. Examples of
lesser effects include opacification of the lens of the eye, erythema of the skin,
and temporary impairment of fertility. All of these effects occur at relatively
high doses. At the levels of dose contemplated under both the previous
Federal guidance and these recommendations, clinically observable examples
of this third type of effect are not known to occur.
The fourth type includes effects on children who were exposed in utero. Not
only may the unborn be more sensitive than adults to the induction of
malformations, cancer, and hereditary effects, but recent studies have drawn
renewed attention to the risk of severe mental retardation from exposure of
the unborn during certain periods of pregnancy. The risk of less severe mental
retardation appears to be similarly elevated. Although it is not yet clear to
what extent the frequency of retardation is proportional to the amount of dose
[the data available at occupational levels of exposure are limited), it is
prudent to assume that proportionality exists.
The risks to health from exposure to low levels of ionizing radiation were
reviewed for EPA by the NAS in reports published in 1972 and in 1980.
-------
199
Federal Register / Vol. 52. No. 17 / Tuesday. January 27. 1987 / Presidenlial Documents 2825
Regarding cancer Ihere continues lo be divided opinion on how lo inlerpolale
between Ihe absence of radiation effects al zero dose and- Ihe observed effects
of radiation (mosl)y al high doses) lo eslimale Ihe mosl probable effecls of low
doses. Some scienlisls believe lhal available dala besl supporl use of a linear
model for eslimaling such effecls. Olhers. however, believe lhal olher models;
which usually predicl somewhal lower risks, provide beller eslimales. These
differences of opinion have nol been resolved lo dale by sludies of Ihe effecls
of radialion in humans, Ihe mosl imporlanl of which are Ihose of Ihe Hiroshi-
ma and Nagasaki alom bomb survivors. Sludies are now underway lo reas-
sess radialion dose calculalions for Ihese survivors and in lurn lo provide
improved eslimales of risk. II will be al leasl several years before Ihese
reassessment and eslimales are compleled, and il is nol likely lhal Ihey will
conclusively resolve uncerlainlies in eslimaling low dose effecls. EPA is
moniloring Ihe progress of Ihis work. When il is compleled we will iniliale
reviews of Ihe risks of low levels of radialion, in order lo provide Ihe basis for
any indicaled reassessmenl of Ihis guidance.
In spile of Ihe above uncerlainlies. eslimales of Ihe risks from exposure lo low
levels of ionizing radialion are reasonably well bounded, and Ihe average
worker is believed lo incur a relalively small risk of harm from radialion. This
silualion has resulled from a syslem of proleclion which combines limils on
maximum dose wilh aclive applicalion of measures lo minimize doses wilhin
Ihese limils. These recommendalions conlinue lhal approach. Approximalely
1.3 million workers were employed in occupalions in which Ihey were polen-
lially exposed lo radialion in 1980, Ihe lalesl year for which we have compre-
hensive assessmenls. Aboul half of Ihese workers received no measurable
occupalional dose. In lhal year Ihe average worker measurably exposed lo
exlernal radialion received an occupalional dose equivalenl of 0.2 rem lo Ihe
whole body, based on Ihe readings of individual dosimelers worn on Ihe
surface of Ihe body. We eslimale (assuming a linear non-lhreshold model) Ihe
increased risk of premalure dealh due lo radialion-induced cancer for such a
dose is approximalely 2 lo 5 in 100.000 and lhal Ihe increased risk of serious
heredilary effecls is somewhal smaller. To pul Ihese eslimaled risks in
perspeclive wilh olher occupalional hazards. Ihey are comparable lo Ihe
observed risk of job-relaled accidenlal dealh in Ihe safesl induslries, whole-
sale and relail Irades, for which Ihe annual accidenlal dealh rale averaged
aboul 5 per 100,000 from 1980 lo 1984. The U.S. average for all induslries was
11 per 100,000 in 1984 and 1985.
These recommendalions are based on Ihe assumplion lhal risks of injury from
exposure lo radialion should be considered in relalion lo Ihe overall benefil
derived from Ihe aclivilies causing Ihe exposure. This approach is similar lo
lhal used by Ihe Federal Radialion Council (FRC) in developing Ihe 1960
Federal guidance. The FRC said Ihen, "Fundamenlally. selling basic radialion
proleclion slandards involves passing judgmenl on Ihe exlenl of Ihe possible
health hazard sociely is willing lo accepl in order lo realize Ihe known
benefils of radialion." This leads lo Ihree basic principles lhal have governed
radialion proleclion of workers in recenl decades in Ihe Uniled Slales and in
mosl olher counlries. Allhough Ihe precise formulalion of Ihese principles has
evolved over Ihe years. Iheir inlenl has conlinued unchanged. The first is lhal
any aclivily involving occupalional exposure should be delermined lo be
useful enough lo sociely lo warranl Ihe exposure of workers: i.e.. lhal a finding
be made lhal Ihe aclivily is "justified". This same principle applies lo virtually
any human endeavor which involves some risk of injury. The second is lhal.
for juslified aclivilies. exposure of Ihe work force should be as low as
reasonably achievable (commonly designated by Ihe acronym "Al.ARA"); Ihis
has mosl recenlly been characlerized as "oplimizalion" of radialion proleclion
by Ihe Inlernalional Commission on Radiological Proleclion (ICRP). Finally, lo
provide an upper limil on risk lo individual workers, "limitation" of ihe
maximum allowed individual dose is required. This is required above and
beyond Ihe proleclion provided by Ihe firs I Iwo principles because Iheir
primary objeclive is lo minimize Ihe tola] harm from occupalional exposure in
-------
200
2826 Federal Register / Vol. 52. No. 17 / Tuesday. January 27. 1907 / Presidential Documents
the entire work force: they do not limit the way that harm is distributed among
individual workers.
The principle that activities causing occupational exposure should produce a
net benefit is important in radiation protection even though the judgment of
net benefit is not easily made. The 1960 guidance says: "There should not be
any man-made radiation exposure without the expectation of benefit resulting
from such exposure . . ." And "It is basic that exposure to radiation should
result from a real determination of its necessity." Advisory bodies other than
the FRC have used language which has essentially the same meaning. In its
most recent revision of international guidance [1977) the ICRP said . . no
practice shall be adopted unless its introduction produces a positive net
benefit." and in slightly different form the NCRP, in its most recent statement
[1975) on this matter, said ". . . all exposures should be kept to a practicable
minimum: . . . this principle involves value judgments based upon perception
of compensatory benefits commensurate with risks, preferably in the form of
realistic numerical estimates of both benefits and risks from activities involv-
ing radiation and alternative means-to the same benefits."
This principle is set forth in these recommendations in a simple form: "There
should not be any occupational exposure of workers to ionizing radiation
without the expectation of an overall benefit from the activity causing the
exposure." An obvious difficulty in making this judgment is the difficulty of
quantifying in comparable terms costs [including risks) and benefits. Given
this situation, informed value judgments are necessary and are usually all that
is possible. It is perhaps useful to observe, however, that throughout history
individuals and societies have made risk-benefit judgments, with their success
usually depending upon the amount of accurate information available. Since
more is known about radiation now than in previous decades, the prospect is
that these judgments can now be bolter made than before.
The preceding discussion has implicitly focused on major activities, i.e., those
instituting or continuing a general practice involving radiation exposure of
workers. This principle also applies to detailed management of facilities and
direct supervision of workers. Decisions on whether or not particular tasks
should be carried out [such as inspecting control systems or acquiring specific
experimental data) require judgments which can, in the aggregate, be ;is
significant for radiation protection as those justifying the basic activities these
tasks support.
The principle of reduction of exposure to levels that are "as low as reasonably
achievable" [Al.ARA) is typically implemented in two different ways. First, it
is applied to the engineering design of facilities so as to reduce, prospectively,
the anticipated exposure of workers. Second, it is applied to actual operations;
that is. work practices are designed and carried out to reduce the exposure of
workers. Both of these applications are encompassed by these recommenda-
tions." The principle applies both to collective exposures of the work force
and to annual and cumulative individual exposures. Its application may
therefore require complex judgments, particularly when tradeoffs between
collective and individual doses are involved. Effective implementation of the
ALARA principle involves most of the many facets of an effective radiation
protection program: education of workers concerning the health risks of
exposure to radiation: training in regulatory requirements and procedures to
control exposure; monitoring, assessment, and reporting of exposure levels
and doses; and management and supervision of radiation protection activities,
including the choice and implementation of radiation control measures. A
comprehensive radiation protection program will also include, as appropriate.
' The rccumenduliun lh;«t Kederul ugenutcs. through their regulations. opt;ru 1 lonitl procedures
and other appropriate moans, maintain doses Al./\RA is no! intended to express, and rh«?r*»fore
should rif>i In* interpreted as expressing, a view whether 1 ho ALARA concept should consliiute
duly of cure in tori litigation. Implomonlalion of the Al.ARA concept requires a complex,
subjective balancing of scientific, economic jnd social Factors generally resulting in the attain-
ment of ;tvor;ige dose levels significantly below I he maximum permitlcd k>v this guidance,
-------
20)
Federal Register / Vol. 52. No. 17 / Tuesday. January 27. 1987 / Presidential Documents 2827
properly trained and qualified radiation protection personnel: adequately
designed, operated, and maintained facilities and equipment; and quality
assurance and audit procedures. Another important aspect of such programs is
maintenance of records of cumulative exposures of workers and implementa-
tion of appropriate measures to assure that lifetime exposure of workers
repeatedly exposed near the limits is minimized.
The types of work and activity which involve worker exposure to radiation
vary greatly and are administered by many different Federal and State
agencies under a wide variety of legislative authorities In view of this
complexity. Federal radiation protection guidance can address only the broad
prerequisites of an effective ALARA program, and regulatory authorities must
ensure that more detailed requirements are identified and carried out. In doing
this, such authorities may find it useful to establish or encourage the use of 1)
administrative control levels specifying, for specific categories of workers or
work situations, dose levels below the limiting numerical values recommend-
ed in this guidance: 2) reference levels to indicate the need for such actions as
recording, investigation, and intervention: and 3) local goals for limiting
individual and collective occupational exposures. Where the enforcement of a
general AI.ARA requirement is not practical under an agency's statutory
authority, it is sufficient that an agency endorse and encourage ALARA, and
establish such regulations which result from ALARA findings as may be useful
and appropriate to meet the objectives of this guidance.
The numerical radiation protection guidance which has been in effect since
I960 for limiting the maximum allowed dose to an individual worker is based
on the concept of limiting the dose to the most critically exposed part of the
body. This approach was appropriate, given the limitations of scientific
information available at that time, and resulted in a set of five independent
numerical guides for maximum exposure of a) the whole body, head and trunk,
active blood-forming organs, gonads, and lens of eye: b) thyroid and skin of
the whole body: c) hands and forearms, feet and ankles; d) bone, and e) other
organs A consequence of this approach when several different parts of the
body are exposed simultaneously is that only the part that receives the highest
dose relative to its respective guide is decisive for limiting the dose.
Current knowledge permits a more comprehensive approach that tukes into
account the separate contributions to the total risk from each exposed part of
the body. These recommendations incorporate the dose weighting system
introduced for this purpose by the ICRP in 1977. That system assigns weighting
factors to the various parts of the body for the risks of lethal cuncer and
serious prompt genetic effects (those in the first two generations); these
factors are chosen so that the sum of weighted dose equivalents represents a
risk the same as that from a numerically equal dose equivalent to the whole
body. The ICRP recommends that the effective [i.e. weighted) dose equivalent
incurred in any year be limited to 5 rems. Based on the public response to the
similar proposal published by EPA in 1981 and Federal experience with
comparable exposure limits, the Federal agencies concur. These recommenda-
tions therefore replace the I960 whole body numerical guides of 3 rems per
quarter and 5(N-18) rems cumulative dose equivalent [where N is the age of
the worker) and associated critical organ guides with a limiting value of 5
rems effective dose equivalent incurred in any year. Supplementary limiting
values are also recommended to provide protection against those health
effects for which an effective threshold is believed to exist.
In recommending a limiting value of 5 rems in any single year, EPA has had to
balance a number of considerations Public comments confirmed that, for
some beneficial activities, occasional doses aproaching this value are not
reasonably avoidable. On the other hand, continued annual exposures at or
near this level over substantial portions of u working lifetime would, we
believe, lead to unwarranted risks. For this reason such continued annual
exposures should be avoided, and these recommendations provide such guid-
ance. As noted earlier, these recommendations also continue a system of
protection which combines limiting values for maximum dose with a require-
-------
202
2828 Federal Register / Vol. 52, No. 17 / Tuesday. January 27, 1967 / Presidential Documents
ment for active application of measures to minimize doses—the ALARA
requirement. This has resulted in steadily decreasing average annual doses to
workers [most recently to about one-fiftieth of the recommended limiting
value), and. to date, only a few hundred out of millions of workers have
received planned cumulative doses that are a substantial fraction of the
maximum previously permitted cumulative dose over an occupational lifetime.
EPA anticipates that the continued application of the ALARA requirement,
combined with new guidance on avoidance of large cumulative doses, will
result in maintaining risks to all workers at low levels. CPA will continue to
review worker doses with a view to initiating recommendations for any
further modifications of the dose limitation system that are warranted by
future trends in worker exposure.
Certain radionuclides, if inhaled or ingested, may remain in and continue to
irradiate the body for many years. These recommendations provide that
radionuclides should be contained so as to minimize intake, to the extent
reasonably achievable. When avoidance of situations that may result in such
intake is not practical, the recommendations distinguish between pre-expo-
sure and post-exposure situations. With respect to the former, Federal agen-
cies should base control of prospective internal exposure to radionuclides [e.g.
facility design, monitoring, training, and operating procedures) upon the entire
future dose that may result from any intake [the committed dose), not just
upon the dose accrued in the year of intake. This is to assure that, prior to
exposure to such materials, proper account is taken of the risk due to doses in
future years.
With respect to post-exposure situations, most significant internal exposure to
radionuclides occurs as the result of inadvertent intakes. In the case of some
long-lived radionuclides, it may also be difficult to measure accurately the
small quantities corresponding to the recommended numerical guidance for
control of committed doses. In such cases, when workers are inadvertently
exposed or it is not otherwise possible to avoid intakes in excess of these
recommendations for control of committed dose, it will be necessary to take
appropriate corrective action to assure control has been reestablished and to
properly manage future exposure of the worker. In regard to the latter
requirement, provision should be made to continue to monitor the annual dose
received from radionuclides in the body as long as they remain in sufficient
amount to deliver doses significant compared to the limiting values for annual
dose. These recommendations extend those of the ICRP, because it is appro-
priate to maintain active management of workers who exceed the guidance for
committed dose in order that individual differences in retention of such
materials in the body be monitored, and to assure, whenever possible, con-
formance to the limiting values for annual dose.
These recommendations also incorporate guidance for limiting exposure of the
unborn as a result of occupational exposure of female workers. It has long
been suspected that the embryo and fetus are more sensitive to a variety of
effects of radiation than are adults. Although our knowledge remains incom-
plete, it has now become clear that the unborn are especially subject to the
risk of mental retardation from exposure to radiation at a relatively early
phase of fetal development. Available scientific evidence appears to indicate
that this sensitivity is greatest during the period near the end of the first
trimester and the beginning of the second trimester of pregnancy, that is, the
period from 8 weeks to about 15 weeks after conception. Accordingly, when a
woman has declared her pregnancy, this guidance recommends not only that
the total exposure of the unborn be more limited than that of adult workers,
but that the monthly rate of exposure be further limited in order to provide
additional protection. Due to the incomplete state of knowledge of the transfer
of radionuclides from the mother to the unborn [and the resulting uncertainty
in dose to the unborn), in those few work situations where intake of radionu-
clides could normally be possible it may also be necessary to institute
measures to avoid such intakes by pregnant women in order to satisfy these
recommendations.
-------
203
Federal Register / Vol. bz, No. 17 / Tuesday. January 27. 1987 / Presidential Documents 2829
The heallh proleclion objeclives of Ihis guidance for Ihe unborn should be
achieved in accordance wilh Ihe provisions of Title VII of Ihe Civil Righls Acl
of 1964, as amended, wilh respecl lo discrimination in employment practices '
The guidance applies only lo silualions in which Ihe worker has volunlarily
made her pregnancy known lo her employer. Proleclion of Ihe unborn may be
achieved through such measures as temporary job rolalion. worker self-
selection. or use of protective equipment. The guidance recognizes that protec-
tion of the unborn is a joint responsibility of Ihe employer and worker.
Workers should be informed of the risks involved and encouraged lo voluntar-
ily make pregnancies known as early as possible so lhal any temporary
arrangements necessary lo modify exposures can be made. Conversely, em-
ployers should make such arrangements in a manner lhat minimizes Ihe
impact on Ihe worker.
The recommended numerical guidance for limiting dose lo workers applies lo
Ihe sum of dose from external and inlernal sources of radiation. This proce-
dure is recommended so as lo provide a single limit on Ihe total risk from
radiation exposure. Therefore, in Ihose cases where both kinds of radialion
sources are present, decisions aboul the conlrol of dose from inlernal sources
should nol be made without equal consideration of Iheir implication for dose
from external sources.
The guidance emphasizes the importance of recordkeeping for annual, com-
mitted. and cumulative [lifetime] doses. Such recordkeeping should be de-
signed lo avoid burdensome requirements for cases in which doses are
insignificant. Currently, regulatory records are nol generally required for doses
small compared lo regulalory limits for annual external and inlernal doses.
Under Ihis guidance such regulalory praclices would continue lo be appropri-
ate if due consideration is given lo Ihe implications of summing inlernal and
externa) doses and lo recordkeeping needs for assessing cumulative doses. To
Ihe extent reasonable such records should be established on Ihe basis of
individual dosimetry rather than on monitoring of exposure conditions.
In summary, many of Ihe important changes from the 1960 guidance are
structural. These include introduction of the concepl of risk-based weighting
of doses lo different parls of Ihe body and Ihe use of committed dose as the
primary basis for conlrol of inlernal exposure. The numerical values of Ihe
guidance for maximum radialion doses are also modified. These changes bring
Ihis guidance into general conformance wilh international recommendations
and practice. In addition, guidance is provided for proleclion of Ihe unborn,
and increased emphasis is placed on eliminating unjuslified exposure and on
keeping justified exposure as low as reasonably achievable, bolh long-stand-
ing lenels of radialion proleclion. The guidance emphasizes Ihe importance of
instruction of workers and Iheir supervisors, monitoring and recording of
doses lo workers, and Ihe use of administrative control and reference levels
for carrying out AI.ARA programs.
These recommendations apply lo workers exposed to olher than normal
background radialion on the job. II is sometimes hard lo identify such workers
because everyone is exposed lo natural sources of radialion and many
occupational exposures are small. Workers or workplaces subject lo Ihis
guidance will be idenlified by the responsible implementing agencies. Agen-
cies will have lo use care in determining when exposure of workers does nol
need lo be regulated. In making such determinations agencies should consider
•The Civil Righis Acl of 1964. as fimendiul. provides lh«I It shnll be ;in unlawful uniploymunl
practice far un employer 11|
discriminate against any individual with respect to his compensation, terms, conditions. i>r
privileges of employment, because of such individual s sex . . , or (2) to limit, segregate, or
classify his employees or applicants for employment in ftny way which would deprive or t
-------
204
2830 Federal Register / Vol. 52. No. 17 / Tuesday. January 27. 19U7 / Presidential Documents
both the collective dose which is likely to be avoided through regulation and
the maximum individual doses possible.
Implementation of these recommendations will require changes that can
reasonably be achieved only over a period of time. It is expected that Federal
agencies will identify any problem areas and provide adequate flexibility and
the necessary transition periods to avoid undue impacts, while at the same
time assuring reasonably prompt implementation of this new guidance.
Upon implementing these recommendations, occupational exposure should be
reduced. It is not possible to quantify the overall exposure reduction that will
be realized because it cannot be predicted how efficiently these recommenda-
tions will be implemented or how much of existing exposure is unnecessary.
These recommendations reduce the maximum whole body dose that workers
may receive in any one year by more than half (i.e.. from 3 rems per quarter to
5 rems per year), require that necessary exposure to internal radioactivity be
controlled on the basis of committed dose, require that internal and external
doses be considered together rather than separately, and provide increased
protection of the unborn. We also expect the strengthened and more explicit
recommendations for maintaining occupational exposure "as low as reason-
ably achievable" will improve the radiation protection of workers. Finally,
these recommendations would facilitate the practice of radiation protection by
introducing a self-consistent system of limits in accordance with that in
practice internationally.
Recommendations
The following recommendations are made for the guidance of Federal agen-
cies in their conduct of programs for the protection of workers from ionizing
radiation.
1. There should not be any occupational exposure of workers to ionizing
radiation without the expectation of an overall benefit from the activity
causing the exposure. Such activities may be allowed provided exposure of
workers is limited in accordance with these recommendations.
2. No exposure is acceptable without regard to the reason for permitting it.
and it should be general practice to maintain doses from radiation to levels
below the limiting values specified in these recommendations. Therefore, it is
fundamental to radiation protection that a sustained effort be made to ensure
that collective doses, as well as annual, committed, and cumulative lifetime
individual doses, are maintained as low as reasonably achievable [ALARA).
economic and social factors being taken into account
3. In addition to the above recommendations, radiation doses received as a
result of occupational exposure should not exceed the limiting values for
assesseil /lose to individual workers specified below. These are given sepa-
rately for protection against different types of effects on health and apply to
the sum of doses from external and internal sources of radiation. For cancer
and genetic effects, the limiting value is specified in terms of a derived
quantity called the effective dose equivalent. For other health effects, the
limiting values are specified in terms of the dose equivalent 1 to specific
organs or tissues.
1 "Dose equivalent" is the product of the absorbed ilose. ;i (jnulitv factor which varies vvilh the
energy >«n(J t\pc of r.icH.ihori. .iricl other modifying f.K.lors. >is defined bv the (nIcrn.ihorid)
Commission or R
-------
205
Federal Register / Vol. 52. No. 17 / Tuesday. January 27. 1987 / Presidential Documents 2831
Cancer and Cenetic Effects. The effective dose equivalent. He. received in any
year by an adult worker should not exceed 5 rems (0.05 sievert).2 The effective
dose equivalent is defined as:
"e ¦ E "t "t ¦
T
where wT is a weiflhtinfl factor and HT is the annual dose equivalent averaged
over organ or tissue T. Values of w, and their corresponding organs and
tissues are:
Conads 0.25
Breasts - 0.15
Red bone marrow 0.12
l.ungs 0.12
Thyroid 0.03
Bone surfaces 0.03
Remainder1 030
For the case of uniform irradiation of the whole body, where HT may be
assumed the same for each organ or tissue, the effective dose equivalent is
equal to the dose equivalent to the whole body.
Other Health Effects. In addition to the limitation on effective dose equivalent,
the dose equivalent. HT. received in any year by an adult worker should not
exceed 15 rems {0.15 sievert) to the lens of the eye. and 50 rems {0.5 sievert) to
any other organ, tissue {including the skin), or extremity * of the body.
Additional limiting values which apply to the control of dose from internal
exposure to radionuclides in the workplace are specified in Recommendation
4. Continued exposure of a worker at or near the limiting values for dose
received in any year over substantial portions of a working lifetime should be
avoided. This should normally be accomplished through application of appro-
priate radiation protection practices established under Recommendation 2.
4. As the primary means for controlling internal exposure to radionuclides,
agencies should require that radioactive materials be contained, to the extent
reasonably achievable, so as to minimize intake. !n controlling internal expo-
sure consideration should also be given to concomitant external exposure.
The control of necessary exposure of adult workers to radioactive materials in
the workplace should be designed, operated, and monitored with sufficient
frequency to ensure that, as the result of intake of radionuclides in a year, the
following limiting values for control of the workplace are satisfied: {a) the
anticipated magnitude of the committed effective dose equivalent from such
intake plus any annual effective dose equivalent from external exposure will
not exceed 5 rems {0.05 sievert). and (b) the anticipated magnitude of the
committed dose equivalent to any organ or tissue from such intake plus any
annual dose equivalent from external exposure will not exceed 50 rems {0.5
sievert). The committed effective dose equivalent from internal sources of
radiation. HE^o. is defined as:
"e , 50 " 2 't "t,W "
T
3 The unit of dose equivalent in the system of special quantities for ionizing radiation currently
in use in the United States is the "rem." In the recently-adopted international system (SI) the unit
of dose equivalent is the "sievert". One sievert « 100 rems.
3 Remainder" means the five other organs (such as liver, kidneys, spleen, brain, thymus,
adrenuls, pancreas, stomach, small intestine, upper large intestine, and lower lurge intestine, but
excluding skin, lens of the eye. and extremities] with the highest doses. The weighting factor for
each such organ is 0.06.
4 "Extremity" meuns the forearms und hands, or the lower legs and feet.
-------
206
2832 Federal Register / Vol. 52. No. 17 / Tuesday. January 27, 1987 / Presidential Documents
where wT is defined as in Recommendation 3 and the committed dose
equivalent, HT,5o, is the sum of all dose equivalents to organ or tissue T that
may accumulate over an individual's anticipated remaining lifetime [taken as
50 years) from radionuclides that are retained in the body. These conditions
on committed doses should provide the primary basis for the control of
internal exposure to radioactive materials.5
In circumstances where assessment of actual intake for an individual
worker shows the above conditions for control of intake have not been met,
agencies should require that appropriate corrective action be taken to assure
control has been reestablished and that future exposure of the worker is
appropriately managed. Provision should be made to assess annual dose
equivalents due to radionuclides retained in the body from such intake for as
long as they are significant for ensuring conformance with the limiting values
specified in Recommendation 3.
5. Occupational dose equivalents to individuals under the age of eighteen
should be limited to one-tenth of the values specified in Recommendations 3
and 4 for adult workers.
6. Exposure of an unborn child should be less than that of adult workers.
Workers should be informed of currrent knowledge of risks to the unborn0
from radiation and of the responsibility of both employers and workers to
minimize exposure of the unborn. The dose equivalent to an unborn as a result
of occupational exposure of a woman who has declared that she is pregnant
should be maintained as low as reasonably achievable, and in any case
should not exceed 0.5 rem (0.005 sievert) during the entire gestation period.
Efforts should be made to avoid substantial variation above the uniform
monthly exposure rate that would satisfy this limiting value. The limiting
value for the unborn does not create a basis for discrimination, and should be
achieved in conformance with the provisions of Title VII of the Civil Rights Act
of 1964, as amended, regarding discrimination in employment practices, in-
cluding hiring, discharge, compensation, and terms, conditions, or privileges of
employment.
7. Individuals occupationally exposed to radiation and managers of activities
involving radiation should be instructed on the basic risks to health from
ionizing radiation and on basic radiation protection principles. This should, as
a minimum, include instruction on the somatic (including in ulero) and genetic
effects of ionizing radiation, the recommendations set forth in Federal radi-
ation protection guidance for occupational exposure and applicable regula-
tions and operating procedures which implement this guidance, the general
levels of risk and appropriate radiation protection practices for their work
situations, and the responsibilities of individual workers to avoid and mini-
mize exposure. The degree and type of instruction that is appropriate will
depend on the potential radiation exposures involved.
8. Appropriate monitoring of workers and the work place should be performed
and records kept to ensure conformance with these recommendations. The
types and accuracy of monitoring methods and procedures utilized should be
periodically reviewed to assure that appropriate techniques are being compe-
tently applied.
Maintenance of a cumulative record of lifetime occupational doses for each
worker is encouraged. For doses due to intake of radioactive materials, the
committed effective dose equivalent and the quantity of each radionuclide in
the body should be assessed and recorded, to the extent practicable. A
summary of annual, cumulative, and committed effective dose equivalents
should be provided each worker on no less than an annual basis: more
* When these conditions on inUikc of rudioticUvu materials h«ivc been satisfied. it is not
necessary to assess contributions from such intAkes to itnntml doses in future years, and, as iin
operational procedure, such doses may tie assigned to the year of intake for the purpose o(
assessing compliance with Recommendation 3.
"The lerm "unborn' is defined to encompass the period commencing with conception and
ending with birth.
-------
207
Federal Register / Vol 52. No. 17 / Tuesday. ]nnuary 27. 19(17 / I'residentiaJ Documents 2833
detailed information concerning his or her exposure should be made available
upon the worker's request.
9. Radiation exposure control measures should be designed, selected, utilized,
and maintained to ensure that anticipated and actual doses meet the objec-
tives of this guidance. Establishment of administrative control levels' below
the limiting values for control may be useful and appropriate for achieving this
objective. Reference levels8 may also be useful to determine the need to take
such actions as recording, investigation, and intervention. Since such admin-
istrative control and reference levels will often involve ALARA consider-
ations. they may be developed for specific categories of workers or work
situations. Agencies should encourage the establishment of measures by
which management can assess the effectiveness of ALARA efforts, including,
where appropriate, local goals for limiting individual and collective occupa-
tional doses. Supervision should be provided on a part-time, full-time, or task-
by-task basis as necessary to maintain effective control over the exposure of
workers.
10. The numerical values recommended herein should not be deliberately
exceeded except during emergencies, or under unusual circumstances for
which the Federal agency having jurisdiction has carefully considered the
reasons for doing so in light of these recommendations. If Federal agencies
authorize dose equivalents greater than these values for unusual circum-
stances. they should make any generic procedures specifying conditions under
which such exposures may occur publicly available or make specific instances
in which such authorization has been given a matter of public record.
The following notes are provided to clarify application of the above recom-
mendations-
1. Occupational exposure of workers does not include that due lo normal
background radiation and exposure as a patient of practitioners of the healing
arts.
2 The existing Federal guidance (34 FR 576 and 3D FR 12921) for limiting
exposure of underground miners to radon decay products applies independ-
ently of. and is not changed by. these recommendations.
3. The values specified by the International Commission on Radiological
Protection [ICRI'I for quality factors and dosimetric conventions for the
various types of radialion. the models for reference persons, and the results of
their dosimetric methods and metabolic models may be used for determining
conformance to these recommendations
4. "Annual Limits on Intake1' [Al.Is) and/or "Derived Air Concentrations"
[DACs) may be used to limit radiation exposure from intake of or immersion
in radionuclides, The AM or DAC for a single radionuclide is the maximum
intake in a year or average air concentration for a working year, respectively.
Tor a reference person that, in the absence of any external dose, satisfies the
conditions on committed effective dose equivalent and committed dose equiv-
alent of Recommendation 4. Al.Is and DACs may be derived for different
chemical or physical forms of radioactive materials.
5. The numerical values provided by these recommendations do not apply to
workers responsible for the management of or response to emergencies.
These recommendations would replace those portions of current Federal
Radiation Protection Guidance [25 FR 4402) that apply to the protection of
workers from ionizing radiation. It is expected that individual Federal agen-
cies, on the basis of their knowledge of specific worker exposure situations.
* Administrative cgnlrol levels arc requirements determined by a t.ompclenl authority or (he
maiiHgrment of an institution or facility. They nr»; no I primary limits, and may (he re fore bu
exceeded upon <1 ppro val of competent au thoriiy or management, as situs tions dicta Ie,
¦ Rrfff^nu' levels ir*: not limils. and may be expressed m lerms of any useful parameter They
•jrc used lo determine a course of action, such .is recording invesligation or intervention. whsn
th<* Viihu'ul ii parameter exceeds, nr is projected to exceed. Ihr reference U"»el
-------
208
2634 Federal Register / Vol. 52. No. 17 / Tuesday. January 27. l Uo /
Protection Agency.
|KR Uoc. B7-171b
hlccl U22.«7. a 44 jm|
Billing cade
-------
APPENDIX B
Radiation Protection Guidance (1960)
209
-------
Intentionally Blank Page
-------
21 I
4402
Reprint from Federal Register - 5/18/60
FEDERAL RADIATION COUNCIL
RADIATION PROTECTION GUIDANCE
FOR FEDERAL AGENCIES
Memorandum for IK* President
Pursuant lo Executive Order 10631 and
Fublic Law 86-373, the Federal Radia-
tion Council has made a study of the
hazards and use of radiation. We here-
with transmit our first report lo you
concerning our findings and our recom-
mendations for the guidance of Federal
agencies In the conduct of their radia-
tion protection activities.
It Is the statutory responsibility of the
Council lo • advise the President
with respect to radiation matters, di-
rectly or Indirectly affecting health,
Including guidance for all Federal agen-
cies In the formulation of radiation
standards and In the establishment and
execution of programs of cooperation
withStates • • •"
Fundamentally, setting basic radiation
protection standards involves passing
judgment on the extent of the possible
health hazard society Is willing lo accept
In order lo realize the known benefits
of radiation. It Involves Inevitably a
balancing between lota! health protec-
tion, which might require foregoing any
activities Increasing exposure to radia-
tion, and the vigorous promotion of the
use of radiation and alomic energy in
order lo achieve optimum benefits.
The Federal Radiation Council has
reviewed available knowledge on radia-
tion effects and consulted with scientists
within and outside the Government.
Each member has also examined the
guidance recommended In this memo-
randum In light of his statutory responsi-
bilities. Although the guidance does not
cover all phases of radiation protection,
such as internal emitters, we find that
the guidance which we recommend that
you provide for the use of Federal agen-
cies gives appropriate consideration lo
the requirements of health protection
and the beneQcial uses of radiation and
atomic energy. Our further findings and
recommendations follow.
Discussion. The fundamental problem
In establishing radiation protection
guides Is lo allow as much of the bene-
ficial uses of ionizing radiation as pos-
sible while assuring that man Is not
exposed lo undue hazard. To get a true
Insight Inlo the scope of the problem
and the Impact of the decisions Involved,
a review of the benefits and the hazards
Is necessary,
It is Important in considering both the
benefits and hazards of radiation lo ap-
preciate that man has existed through-
out his history In a bath of natural
radiation. This background radiation,
which varies over the earth, provides a
partial basis for understanding the ef-
fects of radiation on man and serves as
an indicator of the ranges of radiation
exposures within which the human popu-
lation has developed and Increased.
The benefits o! ionizing radiation.
Radiation properly controlled Is a boon
to mankind. It has been of Inestimable
value In the diagnosis and treatment of
diseases. It can provide sources of
energy STeater than any the world has
yet had available. In Industry, It Is used
&s a tool lo measure thickness, quantity
or quality, to discover hidden flaws, lo
trace liquid Cow, and for other purposes.
So many research uses for Ionizing radia-
tion have been found that scientists In
many diverse fields now rank radiation
With the microscope In value as a work-
ing lool.
The hazards ol ionizing radiation.
Ionizing radiation Involves health haz-
ards Just as do many other useful tools.
Scientific findings concerning the bio-
logical effects of radiation of most im-
mediate interest lo the establishment of
radiation protection standards are the
following:
1. Acute doses of radiation may pro-
duce immediate or delayed effects, or
both.
2. As acute whole body doses Increase
above approximately 25 reins (units of
radiation dose), immediately observable
effects Increase In severity with dose,
beginning from barely detectable
changes, lo biological signs clearly Indi-
cating damage, lo death at levels of a
few hundred rems.
3. Delayed effects produced either by
acute Irradiation or by chronic Irradia-
tion are similar In kind, but the ability of
the body lo repair radiation damage Is
usually more effective In the case of
chronic than acute Irradiation.
4. The delayed effects from radiation
are In general Indistinguishable from
familiar pathological conditions usually
present In the population.
5. Delayed effects Include genetic
effects (effects transmitted to succeeding
generations), Increased Incidence of
tumors, lifespan shortening, and growth
and development changes.
6. The child, the Infant, and the un-
born Infant appear to be more sensitive
to radiation than the adult.
7. The variousorgans of the body differ
In their sensitivity to radiation.
8. Although Ionizing radiation can In-
duce genetic and somatic effects (effects
on the Individual during his lifetime
other than genetic effects), the evidence
at the present time Is Insufficient to Jus-
tify precise conclusions on the nature of
the dose-effect relationship at low doses
and dese rates. Moreover, the evidence
is insufficient lo prove either the hypoth-
esis of a "damage threshold" (a point
below which no damage occurs) or the
hypothesis of ''no threshold" in man at
low doses.
9. Ifone assumes a direct linear rs'i-
tlon between biological effect and t're
amount of dose. It then becomes possible
to relate very low dose to an assumed
biological effect even though It Is not de-
tectable. It is generally agreed that the
effect that may actually occur will not
exceed the amount predicted by this
assumption.
Basic bio?oo.
(U) Skin nt whuk body »o4 IhyroW
Cr) Il»ni1# *nJ tormtms, *nd *nklos............
UU Bout
J.VKimuiUtrt ilo*c
111 ««ks
I Yonr
1 (.1 erects..............
t Vctr
\ is awks
rtody hurtlcn..........
i l!ni« I h e cum be r of yean be i on J
•g«
3Q
(&.
74
24.
0.1 mlcrofTVD of nvlluro-Wj or Mi
(ilo)o»k»l eqoJvoJenl.
15.
a.
0$ (*hofc body).
3(g0O*dd).
Co) 0lll«0Tf«l>5
(Vw
FV>|>uLilkm:
(a) IftilivUiml
113
Votr
v>
The following points are made In re-
lation lo the Radiation Protection
Guides herein provided:
(1) For the individual in the popula-
tion. the basic Guide for annual whole
body dose Is 0.5 rem. This Guide ap-
-------
212
Wednesday, May 18, 1969
plies when the Individual whole body
dosos are known. As an operational
technique, where the Individual whole
body doses arc not known, a suitable
sample of the exposed population should
be developed whose protection guide for
annual whole body dose will be 0.17 rem
per capita per year. It Is emphasized
that this Is an operational technique
which should be modified to meet spe-
cial situations.
(2) Considerations of population ge-
netics Impose a per capita dose limitation
for the gonads of S rems In 3 0 years.
The operational mechanism described
above for the annual Individual whole
body dose of 0.S rem Is likely In the Im-
mediate future to assure that the go-
nadal exposure Guide (S rem In 30
years) Is not exceeded.
(3) These Guides do not differ sub-
stantially from certain other recom-
mendations such as those made by the
National Committee on Radiation Pro-
tection and Measurements, the National
Academy of Sciences, and the Interna-
tional Commission on Radiological
Protection.
(4) The term "maximum permissible
dose" Is used by the National Committee
on Radiation Protection (NCRP) and
the International Commission on Ra-
diological Protection (ICRP). However,
this term Is often misunderstood. The
words "maximum" and 'permissible"
both have unfortunate connotations not
Intended by either the NCRP or the
ICRP.
(5) There can be no single permissible
or acceptable level of exposure without
regard to the reason for permitting the
exposure. It should be general practice
to reduce exposure to radiation, and pos-
itive effort should be carried out to ful-
fill the sense ol these recommendations.
It Is basic that exposure to radiation
should result from a real determination
of lis n «¦»»«!
kOi There can be different Radiation
Protection Guides with different numer-
ical values, depending upon the circum-
stances- The Guides herein recom-
mended are appropriate for normal
peacetime operations.
(7) These Ouldes are not Intended to
apply to radiation exposure resulting
from natural background or the pur-
poseful exposure of patients by practi-
tioners of the healing arts.
(8) It is recognized that our present
scientific knowledge does not provide a
Arm foundation wlthlD a factor of two
or three for selection of any particular
numerical value In preference to another
value. It should be recognized that the
Radiation Protection Guides recom-
mended In this paper are well below the
level where biological damage has been
observed In humans.
It Is recommended that:
4. Current protection guides used by
the agencies be continued on an Interim
basis for organ doses to the population.
Recommendations are not made con-
cerning the Radiation Protection Guides
for Individual organ doees to the popu-
lation, other than the gonads. Unfor-
tunately, the complexities of establishing
guides applicable to radiation exposure
of all body organs preclude the Counclt
from malrinfl recommendations concera-
FEDERAL REGISTER
trig them at this time. However, current
protection guides used by the agencies
appear appropriate on an Interim basis.
It Is recommended that:
S. The term "Radioactivity Concen-
tration Guide" be adopted for Federal
use. This term Is defined as the concen-
tration of radioactivity In the environ-
ment which Is determined to result In
whole body or organ doses equal to the
Radiation Protection Guide.
Within this definition, Radioactivity
Concentration Guides can be determined
after the Radiation Protection Guides
are decided upon. Any given Radioac-
tivity Concentration Guide Is applicable
only for the circumstances under which
the use of Its corresponding Radiation
Protection Guide is appropriate.
It is recommended that:
5. The Pederal agencies, as an Interim
measure, use radioactivity concentration
guides which are coDsistent with the rec-
ommended Radiatloo Protection Guides.
Where no Radiation Protection Guides
are provided, Federal agencies continue
present practices.
No spcciQc numerical recommenda-
tions for 'Radioactivity Concentration
Guides are provided at this lime. How-
ever. concentration guides now used try
the agencies appear appropriate on an
ljiterim basis. Where appropriate radio-
activity concentration guides are not
available, and where Radiation Protec-
tion Guides for specific organs are pro-
vided herein, the latter Guides can be
used by the Federal agencies as a start-
ing point for the derivation of radio-
activity concentration guides applicable
to their particular problems. The Ped-
eral Radiation Council has atso Initiated
action directed towards the development
of additional Guides for radiation
protection.
It Is recommended that:
7. The Pederal agencies apply these
Radiation Protection Guides with Judg-
ment and discretion, to assure that rea-
sonable probability Is achieved In the
attainment of the desired goal of protect-
ing man from the undesirable effects of
radiation. The Guides may be exceeded
only after the Federal agency having
Jurisdiction over the matter has carefully
considered the reason for doing so In
light of the recommendations In this
paper.
The Radiation Protection Guides pro-
vide a general framework for the radia-
tion protection requirements. It Is
expected that each Pederal agency, by
virtue of Its Immediate knowledge of Its
operating problems, will use these Guides
as a basis upon which to develop detailed
standards tailored to meet lis particular
requirements. The Counclt will follow
the activities of the Pederal agencies In
this am and will promote the necessary
coordination to achieve an effective
Federal program.
If the foregoing recommendations are
approved by you for the guidance of
Federal agencies In the conduct of their
radiation protection activities, It Is fur-
ther recommended that this memoran-
dum be published In the Ftderm.
Register.
Arthur 9. Flewmino,
Chairman.
Federal Radiation Council.
4 A 03
The recommendations numbered "1"
through "7" contained In the above
memorandum are approved for the
guidance of Federal agencies, and the
memorandum shall be published in the
Federal Register.
Dwjght D. Eisenhower
May 13. 1960.
[F.R. Doe. 60-4539: May 17, 1990;
8:61 ».m.]
-------
APPENDIX C
BACKGROUND MATERIAL
Units: The International Commission on Radiological Units and Measurements (ICRU) selects
and defines radiation quantities and units. ICRU Report 33 (ICRU (980) contains authoritative
definitions for most of the quantities used in this Report.
In recent years a number of "special units" adopted into the International System of Units (SI)
have begun to replace the older conventional radiation units (ICRU 1980). In this report, both sets
of units are used.
Absorbed Dose. The absorbed dose, D, is the differential de/dm, where di is the mean energy
imparted by ionizing radiation to a small volume of matter of mass dm. Absorbed dose to an organ
is generally averaged over its entire mass. The conventional and SI units of absorbed dose are the
rad and the gray (Gy), respectively.
Dose Equivalent: For purposes of radiation protection, it is desirable to use a measure of dose,
for all types of ionizing radiation, that correlates to the biological effect on a common scale. The
dose equivalent, H, is defined for this purpose as the product of D, Q, and N at the point of interest
in tissue, where D is absorbed dose, Q is a quality factor, and N is the product of all other
modifying factors:
H = DQN (C-l)
The conventional and SI units of dose equivalent are the rem and the sievert (Sv), respectively.
Quality Factor. In the past, the absorbed dose was modified, for the purposes of radiation
protection, by the Relative Biological Effectiveness (ICRP 1959, NCRP 1959). The RBE of a type
of radiation is defined as the ratio of the absorbed dose of a reference radiation to the absorbed
dose of the radiation in question that would produce an equivalent radiobiological response. To
avoid confusion, usage of the RBE is now restricted to radiobiology. The factor used in radiation
protection to modify absorbed dose, so as to obtain dose equivalent, is called the quality factor, and
denoted Q.
The quality factor is independent of the organ or tissue under consideration and of the
biological endpoint. Because the uncertainties involved in estimating dose equivalent are large
relative to the variation in stopping power for a particular radiation, Q is usually assigned a
constant value for each particular type of radiation.
In ICRP Publication 2, a quality factor (then called the RBE) of 10 was recommended for
alpha radiation. The NCRP has recently recommended the following values of Q (NCRP 1987b):
213
-------
214
1 for X-rays, gamma rays, beta particles, and electrons;
5 for thermal neutrons;
20 for neutrons (other than thermal), protons, alpha particles,
and multiply-charged particles of unknown energy.
The Quality factors employed in ICRP Publications 30 and in the present Report are:
1 for beta particles, electrons, and all
electromagnetic radiations;
10 for spontaneous fission neutrons and protons;
20 for alpha particles, recoilparticles, and fission fragments.
Only a few radionuclides (e.g., Cf-252, ...) that might enter or submerge the bodies of workers are
neutron emitters, and changes in the value of the quality factor for neutrons would have minor
influence on ALIs and DACs for these radionuclides. As noted in the text, however, revision of Q
for some alpha-emitters has affected the derived guides.
Modifying Factor: ICRP Publication 2 defined a relative damage factor, denoted n, that
played a role comparable to N of equation (C-l). The relative damage factor n was assigned
values of 1 or 5, depending upon the assumed spatial distribution of the radionuclide; n plays no
role in ICRP 30, however, and the factors Fs and Fv of the SEE account for the distribution of
radionuclides on and within bone. (See equation 13 of the text.) The ICRP recommends that the
product of all modifying factors, N, should betaken as 1 (ICRP 1977).
Estimation of Energy Deposition. The dose equivalent to any organ depends upon the
dimensions, locations, and compositions of all tissues in the body, on the distribution of the
radioactive materials among those tissues, and on the energies and intensities of the various
radiations emitted in nuclear transformations.
In Publication 2, the dose equivalent rate in an organ was based on the activity of radionuclide
present in that organ only, and on its effective radius.
With the advent of high-speed computers, and improved capability to model the interaction of
radiation with matter, more accurate and detailed calculations of energy deposition have been
developed. For the tables in the present Report, the committed dose equivalent in target organ or
tissue T arising from inhalation or ingestion of a radionuclide incorporates all sources of exposure
S, and is calculated from:
The specific effective energy SEE(T *— S) is, within a constant factor, the dose equivalent
imparted to target tissue T per nuclear transformation in source organ S. It depends upon the
details of the nuclear transformations of the radionuclide, including the quality factors of the
emitted radiations, and upon the distribution of absorbed energy among body tissues.
Us is the total number of nuclear transformations that occur in source organ S over 50 years.
It is computed as the integral of the time-dependent activity residing in the organ, and it thus
reflects the metabolism of the radionuclide in the body.
Ht,50 = K2UsSEE(T-S)
(C-2)
s
-------
215
The numerical value of the constant K depends on the units specified for Hti30, SEE, and Ug-
In ICRP Publication 30, HTS0 is expressed in Sv, SEE in MeV/g-nuclear transformation, and Ug
in nuclear transformations. K then assumes the value 1.6 x IO-10 Sv-g/MeV.
Reference Man. A well-defined characterization of man in terms of both anatomical and
physiological parameters is needed to establish intake and concentration guides. The
recommendations of Publication 2 were based on Standard Man as defined in that publication. The
ICRP, noting the need for a more detailed representation, formed a Task Group on Reference Man.
Their report, Publication 23 (ICRP 1975), provides the basic anatomical and physiological data
required for the dosimetric evaluations that were used for this report.
-------
Intentionally Blank Page
-------
SYMBOLS AND UNITS
A(0 Activity at time t
Bq Becquerel
Ci Curie
cm centimeter
D dose; or lung clearance class (day)
d day
f; fractional uptake of nuclide from small intestine to blood
g gram
H dose equivalent
He effective dose equivalent
Hf dose equivalent averaged over tissue or organ T
He.cxi effective dose equivalent from external irradiation
dose equivalent averaged over tissue or organ T from external irradiation
He,jo committed effective dose equivalent
Ht.so committed dose equivalent averaged over tissue or organ T
he,so effective dose equivalent conversion factor, the committed effective
dose equivalent per unit intake
hy jo tissue dose equivalent conversion factor, the committed dose
equivalent in tissue or organ T per unit intake
f>E,cxc effective dose equivalent rate, from external exposure, per unit concentration in air
f>T.exc d°se equivalent rate to tissue or organ T, from external exposure, per unit concentration in air
I intake of radionuclide
kg kilogram (103 g)
m minute; metastable; mass; or meter
MBq megaBecquerel (106 Bq)
MeV million electron volts
n micro- (10—6)
nCi microCurie
(im micron (10—6 meter)
n, N modifying factors in definitions of dose equivalent
Q Quality factor in definition of dose equivalent
RBE Relative Biological Effectiveness
S source
s second
SEE specific effective energy
Sv Sievert
217
-------
218
T tissue; or target
W lung clearance class (week)
wk week
WL Working Level
WLM Working Level Month
wT weighting factor in definition of effective dose
equivalent and committed effective dose equivalent
Y lung clearance class (year)
yr year
-------
GLOSSARY
absorbed dose (D): The differential d«/dm, where d« is the mean energy imparted by ionizing
radiation to matter of mass dm. The special SI unit of absorbed dose is the gray (Gy); the
conventional unit is the rad (1 rad = 0.01 Gy).
Activity Median Aerodynamic Diameter (AMAD): The diameter of a unit density sphere with the
same terminal settling velocity in air as that of an aerosol particle whose activity is the median for
the entire aerosol.
ALARA: As Low As Reasonably Achievable, economic and social factors being taken into account.
Annual Limit on (formerly 'of) Intake (ALI): The activity of a radionuclide which, if inhaled or
ingested alone by Reference Man, would result in a committed dose equivalent equal to that of the
most limiting primary guide.
Becquerel (Bq): One nuclear disintegration per second; the name for the SI unit of activity. 1 Bq =
2.7 x 10~" Ci.
committed dose equivalent (Ht.jo)- The total dose equivalent (averaged over tissue T) deposited over
the 50-year period following the intake of a radionuclide.
committed effective dose equivalent (HT>30): The weighted sum of committed dose equivalent to
specified organs and tissues, in analogy to the effective dose equivalent.
cortical bone: Any bone with a surface/volume ratio less that 60 cm2 cm-3. In Reference Man, the
total mass of cortical bone is 4000 g. (Equivalent to "Compact Bone" in ICRP Publication 20).
critical organ: For a specific radionuclide, solubility class, and mode of intake, the organ that
limited the maximum permissible concentration in air or water. The basis for dose limitation under
the 1960 Federal guidance.
Curie (Ci): 3.7 x 1010 nuclear disintegrations per second, the name for the conventional unit of
activity. 1 Ci = 3.7 x 1010 Bq.
decay product(s): A radionuclide or a series of radionuclides formed by the nuclear transformation
of another radionuclide which, in this context, is referred to as the parent.
Derived Air Concentration (DAQ: The concentration of a radionuclide in air which, if breathed
alone for one work year, would irradiate Reference Man to the limits for occupational exposure.
The DAC equals the ALI of a radionuclide divided by the volume of air inhaled by Reference Man
in a working year (i.e., 2.4 x 103 m3).
derived limits: Limits, such as the ALI and DAC, that are derived from the primary limits through
use of standard assumptions about radionuclide intake and metabolism by Standard Man.
219
-------
220
dose equivalent (H): The product of the absorbed dose (D), the quality factor (Q), and any other
modifying factors (N). The SI unit of dose equivalent is the sievert (Sv); the conventional unit is
the rem (1 rem = 0.01 Sv).
effective dose equivalent (He): The sum over specified tissues of the products of the dose equivalent
in a tissue or organ (T) and the weighting factor for that tissue, Wf, i.e., HE = 2 wt Hj.
T
effective dose equivalent conversion factor (hso^): The committed effective dose equivalent per unit
intake of radionuclide.
exposure (internal): The situation leading to intake of a radionuclide, and/or the situation existing
after a radionuclide has been deposited in an organ or tissue.
external radiation: Radiations incident upon the body from an external source.
Federal Guidance: Principles, policies, and numerical primary guides, approved by the President, for
use by Federal agencies as the basis for developing and implementing regulatory standards.
Gray (Gy): The special name for the SI unit of absorbed dose. 1 Gy = 1 Joule kg-1 = 100 rad.
half-life (physical, biological, or effective): The time for a quantity of radionuclide, i.e., its activity,
to diminish by a factor of a half (because of nuclear decay events, biological elimination of the
material, or both, respectively).
ICRP: International Commission on Radiological Protection.
ICRU: International Commission on Radiological Units and Measurements.
internal radiation: Radiation emitted from radionuclides distributed within the body.
ionizing Radiation: Any radiation capable of displacing electrons from atoms or molecules, thereby
producing ions.
lung clearance class (D, W, or Y) A classification scheme for inhaled material according to its
clearance half-time, on the order of days, weeks, or years, from the pulmonary region of the lung to
the blood and the GI tract.
metabolic model: A mathematical description of the metabolic processes of cells, tissues, organs and
organisms. It is used here to describe distribution and translocation of radionuclides among tissues.
MIRD: Medical Internal Radiation Dose; a committee of the Society of Nuclear Medicine.
MPC: Maximum Permissible Concentration; replaced by the DAC for the concentration limit in
air, and no longer used for concentrations in water.
mucociliary pathway: Those portions of the respiratory tract lined with cilia that propel materials
toward the mouth.
NCRP: National Council on Radiation Protection and Measurements.
non-stochastic effects: Health effects for which the severity of the effect in affected individuals
varies with the dose, and for which a threshold is assumed to exist.
NRG Nuclear Regulatory Commission.
-------
221
nuclear transformation: The spontaneous transformation of one radionuclide into a different nuclide
or into a different energy state of the same nuclide.
organ (dose) weighting factor: Factor indicating the relative risk of cancer induction or heredity
defects from irradiation of a given tissue or organ; used in calculation of effective dose equivalent
and committed effective dose equivalent, and denoted w? by the ICRP.
primary limit: A numerical limit on the annual or committed (effective) dose equivalent that may
be received by a worker or member of the general public, as set forth in the 1987 or 1960 Federal
guidances.
Quality factor (Q): The principal modifying factor that is employed in deriving dose equivalent, H,
from absorbed dose, D; chosen to account for the relative biological effectiveness (RBE) of the
radiation in question, but to be independent of the tissue or organ under consideration, and of the
biological endpoint. For radiation protection purposes, the quality factor is determined by the
linear energy transfer (LET) of the radiation.
rad: The name for the conventional unit for absorbed dose of ionizing radiation; the corresponding
SI unit is the gray (Gy); 1 rad = 0.01 Gy = 0.01 Joule/kg.
Radiation Protection Guide (RPG): This formerly used term refered to a radiation dose limit which
normally should not be exceeded.
radioisotope, radionuclide: A radioactive species of atom characterized by the number of protons
and neutrons in its nucleus.
Reference Man: A hypothetical 'average' adult person with the anatomical and physiological
characteristics defined in the report of the ICRP Task Group on Reference Man (ICRP Publication
23).
reference level: A predetermined value of a quantity (e.g., a dose level), below a primary or derived
limit, that triggers a specified course of action when the value is exceeded or expected to be
exceeded.
rem: An acronym of radiation equivalent man, the name for the conventional unit of dose
equivalent; the corresponding SI unit is the Sievert; 1 Sv = 100 rem.
respiratory tract (lung) model: The model for behavior of particles in the respiratory tract of man;
the model of relevance here was developed by the Task Group on Lung Dynamics of the ICRP.
Sievert (Sv): The special name for the SI unit of dose equivalent. 1 Sv = 100 rem = 1 Joule per
kilogram.
source tissue (S): Any tissue or organ of the body which contains a sufficient amount of a
radionuclide to irradiate a target tissue (T) significantly.
specific effective energy SEE(T«—S)i: The energy per unit mass of target tissue (T), suitably
modified by a quality factor, deposited in that tissue as a consequence of the emission of a specified
radiation (i) from a single nuclear transformation occurring in a source tissue (S).
stochastic effects: In the context of radiation protection, radiation induced cancer or genetic effects.
The probability of these health effects, rather than their severity, is a function of radiation dose. It
-------
222
is assumed that there is no dose threshold below which stochastic effects do not occur. (More
generally, stochastic means random in nature.)
surface-seeking radionuclides: Radionuclides that both deposit on and remain for a considerable
period on the surface of bone structure. To be contrasted with "Volume-seekers" that exchange for
bone mineral over the entire mass of bone.
target tissue (T): Any tissue or organ of the body in which radiation is absorbed.
teratogenic effects: Effects occurring in offspring as a result of insults sustained in-utero.
tissue dose equivalent conversion factor (h^o): the committed dose equivalent per unit intake of
radionuclide to the tissue or organ T.
trabecular bone: Equivalent to "Cancellous Bone" in ICRP Publication 20, i.e., any bone with a
surface/volume ratio greater than 60 cm2 cm-J. In Reference Man trabecular bone has a mass of
1000 g.
Working Level (WL): Any combination of short-lived radon decay products in 1 liter of air that will
result in the ultimate emission of 1.3 x 105 MeV of alpha energy.
Working Level Month (WLM): A unit of exposure corresponding to a concentration of radon decay
products of 1 WL for 170 working hours (1 work month).
volume-seeking radionuclide: See surface-seeking radionuclide.
-------
REFERENCES
ACGIH (1986). American Conference of Governmental Industrial Hygienist, "Threshold Limit
Values and Biological Exposure Indices for 1986-1987" (ACGIH, Cincinnati, OH).
EPA (1971a). Environmental Protection Agency, "Underground Mining of Uranium Ore, Radiation
Protection Guidance for Federal Agencies," Federal Register 36, No. 101, 9480.
EPA (1971b). Environmental Protection Agency, "Underground Mining of Uranium Ore,
Radiation Protection Guidance for Federal Agencies," Federal Register 36, No. 132, 12921.
EPA (1980). Environmental Protection Agency, "Occupational Exposure to Ionizing Radiation in
the United States: A Comprehensive Summary for the Year 1975," EPA Report 520/4-80-001
(EPA, Washington, DC).
EPA (1984a). Environmental Protection Agency, "The Radioactivity Concentration Guides,"
Federal Guidance Report No. 10, EPA Report 520/1-84-010 (EPA, Washington, DC).
EPA (1984b). Environmental Protection Agency, "Occupational Exposure to Ionizing Radiation in
the United States: A Comprehensive Review for the Year 1980 and a Summary of Trends for the
Years 1960-1985," EPA Report 520/1-84-005 (EPA, Washington, DC).
EPA (1987). Environmental Protection Agency, "Radiation Protection Guidance to Federal
Agencies for Occupational Exposure," Federal Register 52, No. 17, 2822; with corrections
published in the Federal Registers of Friday, January 30, and Wednesday, February 4, 1987).
FRC (1960). Federal Radiation Council, "Radiation Protection Guidance for Federal Agencies,"
Federal Register 25, No. 97, 4402.
FRC (1967). Federal Radiation Council, "Radiation Protection Guidance for Federal Agencies,"
Federal Register 32, No. 147, 11183.
FRC (1969). Federal Radiation Council, "Radiation Protection Guidance for Federal Agencies,"
Federal Register 34, No. 10, 576.
FRC (1970). Federal Radiation Council, "Radiation Protection Guidance for Federal Agencies,"
Federal Register 35, No. 245, 19218.
ICRP (1959). International Commission on Radiological Protection, "Permissible Dose for Internal
Radiation," ICRP Publication 2 (Pergamon Press, New York).
ICRP (1964). International Commission on Radiological Protection, "Recommendations of the
International Commission on Radiological Protection," ICRP Publication 6 (Pergamon Press, New
York).
223
-------
224
ICRP (1966). Internationa] Commission on Radiological Protection, "Deposition and retention
models for internal dosimetry of the human respiratory tract," Health Phys. 12, 173 (Pergamon
Press, New York).
ICRP (1972). International Commission on Radiological Protection, "The Metabolism of
Compounds of Plutonium and Other Actinides," ICRP Publication 19 (Pergamon Press, New
York).
ICRP (1973a). International Commission on Radiological Protection, "Alkaline Earth Metabolism
in Adult Man," ICRP Publication 20 (Pergamon Press, New York).
ICRP (1973b). International Commission on Radiological Protection, "Data for Protection Against
Ionizing Radiation from External Sources," ICRP Publication 21 (Pergamon Press, New York).
ICRP (1975). International Commission on Radiological Protection, "Report of the Task Groupon
Reference Man," ICRP Publication 23 (Pergamon Press, New York).
ICRP (1977). International Commission on Radiological Protection, "Recommendations of the
International Commission on Radiological Protection," ICRP Publication 26, Annals of the ICRP
Vol. I, No. 3 (Pergamon Press, New York).
ICRP (1979a). International Commission on Radiological Protection, "Limits for Intake by
Workers," ICRP Publication 30, Part I, Annals of the ICRP Vol. 2, No. 3/4 (Pergamon Press,
New York).
ICRP (1979b). International Commission on Radiological Protection, "Limits for Intake by
Workers," ICRP Publication 30, Supplement to Part 1, Annals of the ICRP Vol. 3, No. 1-4
(Pergamon Press. New York).
ICRP (1980). International Commission on Radiological Protection, "Limits for Intake by
Workers," ICRP Publication 30, Part 2, Annals of the ICRP Vol. 4, No. 3/4 (Pergamon Press,
NeWYork).
ICRP (1981a). International Commission on Radiological Protection, "Limits for Intake by
Workers," ICRP Publication 30, Supplement to Part 2, Annals of the ICRP Vol. 5, No. 1-6
(Pergamon Press, New York),
ICRP (1981b). International Commission on Radiological Protection, "Limits for Inhalation
Daughters by Workers," ICRP Publication 32, Annals of the ICRP Vol. 6, No. 1 (Pergamon Press,
New York).
ICRP (1981c). International Commission on Radiological Protection, "Limits for Intake by
Workers," ICRP Publication 30, Part 3, Annals of the ICRP Vol. 6, No. 2/3 (Pergamon Press,
New York).
ICRP (1982a). International Commission on Radiological Protection, "Limits for Intake by
Workers," ICRP Publication 30, Supplement A to Part 3. Annals of the ICRP Vol. 7, No. 1-3
(Pergamon Press, New York).
ICRP (1982b). International Commission on Radiological Protection, "Limits for Intake by
Workers," ICRP Publication 30, Supplement B to Part 3, Annals of the ICRP Vol. 8, No. 1-3
(Pergamon Press, New York).
-------
225
ICRP (1983). International Commission on Radiological Protection, "Radionuclide
Transformations: Energy and Intensity of Emissions," ICRP Publication 38, Annals of the ICRP
Vols. 11-13 (Pergamon Press, New York).
ICRP (1984). International Commission on Radiological Protection, "Statement from the 1983
Washington Meeting of the ICRP," ICRP Publication 39, Annals of the ICRP Vol. 14, No. I
(Pergamon Press, New York).
ICRP (1986). International Commission on Radiological Protection, "The Metabolism of Plutoniun
and Related Elements," ICRP Publication 48, Annals of the ICRP Vol. 16, No. 2-3 (Pergamon
Press. New York).
ICRU (1980). International Commission on Radiation Units and Measurements, "Radiation
Quantities and Units," ICRU Report 33 (ICRU, Washington, DC).
NAS (1980). National Academy of Sciences/National Research Council, "The Effects on
Populations of Exposure to Low Levels of Ionizing Radiation: 1980," Committee on the Biological
Effects of Ionizing Radiations (BEIR) of the National Academy of Sciences/National Research
Council (National Academy Press, Washington, D.C.)
NBS (1959). National Bureau of Standards, "Maximum Permissible Body Burdens and Maximum
Permissible Concentrations of Radionuclides in Air and in Water for Occupational Exposure," NBS
Handbook 69 (U.S. Department of Commerce); re-issued as NCRP Report No. 22.
NCRP (1959). National Council on Radiation Protection and Measurements, "Maximum
Permissible Body Burdens and Maximum Permissible Concentrations of Radionuclides in Air and
in Water for Occupational Exposure," NCRP Report 22 (NCRP, Washington, DC); originally
published as NBS Handbook 69.
NCRP (1985). National Council on Radiation Protection and Measurements, "General Concepts
for the Dosimetry of Internally Deposited Radionuclides," NCRP Report 84 (NCRP, Washington,
DC).
NCRP (1987a). National Council on Radiation Protection and Measurements, "Use of Bioassay
Procedures for Assessment of Internal Radionuclide Deposition," NCRP Report 87 (NCRP,
Washington, DC).
NCRP (1987b). National Council on Radiation Protection and Measurements, "Recommendations
on Limits for Exposure to Ionizing Radiation," NCRP Report 91 (NCRP, Washington, DC).
NRC (1987). Nuclear Regulatory Commission, "Interpretation of Bioassay Measurements,"
NUREG/CR-4884 (NRC, Washington, DC).
------- |