EPA/540/R-93/510
                                    September 1993
   BIOGENESIS™ SOIL WASHING TECHNOLOGY

INNOVATIVE TECHNOLOGY EVALUATION REPORT
  RISK REDUCTION ENGINEERING LABORATORY
    OFFICE OF RESEARCH AND DEVELOPMENT
   U.S. ENVIRONMENTAL PROTECTION AGENCY
            CINCINNATI, OHIO 45268
                                        Printed on Recycled Paper

-------
                                        NOTICE

       The information in this document has been prepared for the U.S. Environmental Protection
Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program under Contract No.
68-CO-0047.  This document has been subjected to EPA's peer and administrative reviews and has
been approved for publication as an EPA document. Mention of trade names or commercial
products does not constitute an endorsement or recommendation for use.
                                           n

-------
                                      FOREWORD

       The Superfund Innovative Technology Evaluation (SITE) program was authorized by the
Superfund Amendments and Reauthorization Act (SARA) of 1986.  The program is administered by
the EPA Office of Research and Development (ORD). The purpose of the SITE program is to
accelerate the development and use of innovative cleanup technologies applicable to Superfund and
other hazardous waste sites. This purpose is accomplished through technology demonstrations
designed to provide performance and cost data on selected technologies.

       This project consisted of a demonstration conducted under the SITE program to evaluate
the BioGenesis™ soil washing technology developed by BioGenesis Enterprises, Inc. The
technology demonstration was conducted at an oil refinery site.  The demonstration provided
information on the performance and cost of the technology.  This Innovative Technology Evaluation
Report provides an interpretation of the data and discusses the potential applicability of the
technology.

        A limited number of copies of this report will be available  at no charge from EPA's Center
for Environmental Research Information, 26 Martin Luther King Drive, Cincinnati, Ohio 45268.
Requests should include the EPA document number found on the report's cover.  When the limited
supply is exhausted, additional copies can be purchased from the National Technical Information
Service (NTIS), Ravensworth Building, Springfield, Virginia 22161, 703/487-4600.  Reference copies
will be available at EPA libraries in the Hazardous Waste Collection.  You can also call the SITE
Clearinghouse hotline at (800) 424-9346 or (202) 382-3000 in Washington, D.C.,  to inquire about
the availability of other reports.
 E. Timothy Oppelt, Director
 Risk Reduction Engineering Laboratory
                                              111

-------

-------
                                 TABLE OF CONTENTS
Section
                                                                                    Page
NOTICE 	."
FOREWORD	  ni
LIST OF TABLES	V11
LIST OF FIGURES	™
ACKNOWLEDGEMENTS	  vm

Executive Summary	

Section I      Introduction	

        1.1     Background	   *J
        1.2     Brief Description of Program and Reports  	   6
        1.3     Purpose of the Innovative Technology Evaluation Report (ITER) 	   7
        1.4     Technology Description  	
        1.5     Key Contacts	   12

Section 2     Technology Applications Analysis	   15

        2.1     Objectives - Performance versus ARARs	   15

              2.1.1  Comprehensive Environmental Response, Compensation, and
                     Liability Act	   15
              2.1.2  Resource Conservation and Recovery Act . . ..	   19
              2.1.3  Clean Air Act	   20
              2.1.4  Safe Drinking Water Act  	   20
              2.1.5  Toxic Substances Control Act	   20
              2.1.6  Occupational Safety and Health Administration Requirements	   21
              2.1.7  Technology Performance versus ARARs during the Demonstration ....   21

        2.2    Operability of the Technology	   22
        2.3    Applicable  Wastes 	   24
        2.4    Key Features of the BioGenesis™ Soil Washing Technology	   24
        2.5    Availability and Transportability  of Equipment	   25
        2.6    Materials Handling Requirements	  25
        2.7    Site Support Requirements 	  25
        2.8    Limitations of the Technology  	  26

 Section 3     Economic Analysis	  28

        3.1    Conclusion of Economic Analysis  	  28
        3.2    Basis of Economic Analysis 	  30
        3.3    Issues and Assumptions	30
        3.4    Results	32

               3.4.1   Site Preparation Costs	   32
               3.4.2   Permitting and Regulatory Requirements	   33
               3.4.3   Capital Equipment	   33

-------
                           TABLE OF CONTENTS (Continued)
Section
Section 6

Appendix I

Appendix II
                                                                                      ^
              3.4.4  Startup .................................................   34
              3.4.5  Labor  ..................................................   35
              3.4.6  Consumables and Supplies ..................................   35
              3.4.7  Utilities  ................................................   36
              3.4.8  Effluent Treatment and Disposal  .............................   36
              3.4.9  Residual Waste Shipping and Handling  ........................   37
              3.4.10  Analytical Services ........................................   38
              3.4.11  Maintenance and Modifications  ..............................   38
              3.4.12  Demobilization  ...........................................   38

       3.5    References [[[   33

Section 4      Treatment Effectiveness ..........................................   39

       4.1    Background [[[   39
       4.2    Methodology [[[   40
       4.3    Physical Analyses ...............................................   42
       4.4    Chemical Analyses ..............................................   43
       4.5    Residuals  [[[   54

Section 5      Other Technology Requirements ....................................   57

       5.1    Environmental Regulation Requirements  .............................   57

-------
                                    LIST OF TABLES




Table



ES-1   Evaluation Criteria for the BioGenesis™ Soil Washing Technology  	3




2-1    Federal and State ARARs for the BioGenesis™ Soil Washing Technology  	16




3-1    Costs Associated with the BioGenesis™ Soil Washing Technology  	29




4-1    Total Recoverable Petroleum Hydrocarbon Concentrations in Rocks and Tar Balls  .... 41




4-2    Volume of Water Used for Washing  	42




4-3    Particle Size Distribution of Untreated Soils 	43




4-4    Analytical Results From Run 1 of the BioGenesis  SITE Demonstration  	44




4-5    Analytical Results From Run 2 of the BioGenesis SITE Demonstration	45




4-6    Analytical Results From Run 3 of the BioGenesis SITE Demonstration  	46




4-7    Average TRPH Concentrations in Untreated and Washed Soils	47




4-8    TRPH Concentrations in Treated Soil 	48




4-9    TRPH and TSS in Wastewater	52




4-10   Selected Volatile Organics in Contaminated Soil  	53




4-11   Selected Volatile Organics in Treated Soil, Day 180	55






                                    LIST OF FIGURES




 Figure                                                                               PaSe




 1-1     BioGenesis Soil Washing Process	10




 1-2     BioGenesis Soil Washing Process During SITE Demonstration	  13




 4-1     Biodegradation Results  	49




 4-2     Average TRPH Concentrations in  Treated and Untreated Soils 	51
                                             Vll

-------
                                ACKNOWLEDGEMENTS

       This report was prepared under the direction of Ms. Annette Gatchett, the EPA SITE
project manager at the Risk Reduction Engineering Laboratory (RREL) in Cincinnati, Ohio. This
report was prepared by Dr. Pinaki Banerjee, Mr. Jeff Swano, and Ms. Margaret Flaherty of PRC
Environmental Management Inc. (PRC).  Contributors and reviewers for this report were Ms. Kim
Kreiton and Ms. Laurel Staley of RREL, and Mr. Charles Wilde and Dr. Mohsen Amiran of
BioGenesis  Enterprises, Inc.  The report was typed by Ms. Cheryl Vaccarello, edited by Ms.
Deidre Knodell, and reviewed by Dr. Kenneth Partymiller and Dr. David Homer, of PRC.
                                          vin

-------
                                 EXECUTIVE SUMMARY


       This report summarizes the findings of an evaluation of the BioGenesis™ soil washing
technology.  This technology was developed by BioGenesis Enterprises, Inc. (BioGenesis), to remove

organic compounds from soil.  This evaluation was conducted under the U.S. Environmental

Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program.


Conclusions from the SITE Demonstration


       Based on the SITE demonstrations, the following conclusions may be drawn about the

applicability of the BioGenesis™ soil washing technology:


              •      Results of chemical analyses for soil samples collected from the refinery site
                     show that levels of total recoverable petroleum hydrocarbons (TRPH), an
                     indicator of degraded crude oil, decreased by 65 to 73 percent in washed
                     soils. After the TRPH in residual soils biodegraded for an additional 120
                     days, 85 to 88 percent of TRPH was removed from treated soil.

              •      Results from the SITE demonstration show that the technology can
                     successfully treat soil containing petroleum hydrocarbons. The treatment
                     system's performance was found  to be reproducible at constant operating
                     conditions.

              •      A healthy population of microorganisms capable of degrading petroleum
                     hydrocarbons was found to be present in the treated soil at the refinery.
                     Presence  of a healthy population also indicates that the degradation
                     products of petroleum hydrocarbons are probably not toxic to the
                     microorganisms.

              •      Treatment residuals may require off-site treatment. After washing and
                     biodegradation, treated soils may require disposal at permitted facilities.
                     Wastewater will usually require  further treatment. Sediments, if present in
                     appreciable amounts, will require further treatment.  For most sites,
                     BioGenesis proposes to recycle wastewater and treat it with its oil/water
                     separator and bioreactor.  The BioGenesis™ wash unit is equipped with
                     carbon filters to treat volatile air emissions, if volatile compounds are
                     present in contaminated  soils.

               •      Results from the treatability study in Santa Maria, California,  indicate that
                     for soils contaminated with heavy petroleum hydrocarbons, more than one
                     wash is required for reducing contaminant levels. Treatability studies are
                     highly recommended before large-scale applications of the technology are
                      considered. Because results may vary with different waste characteristics,

-------
                     the BioGenesis™ treatment system's performance is best predicted with
                     preliminary bench-scale testing.

               •      The SITE demonstration at the refinery was conducted in temperatures
                     between 30°F and 32°F during periods of rain and light snow. Cold
                     climates adversely impact the effectiveness of biodegradation.  Because
                     higher temperatures enhance the effectiveness of biodegradation, warm
                     weather conditions are ideal for operating the BioGenesis™ treatment
                     system.

               •      The BioGenesis™ treatment system processed crude oil  contaminated soil at
                     the refinery at a cost of $74 per cubic yard.  Costs at other sites may vary
                     depending on site characteristics.


       The BioGenesis™ soil washing technology was evaluated based on the nine criteria used

for decision making in the Superfund feasibility study process. Table ES-1 presents  the
evaluation.

-------
Performance
3P <"> W *"0
„ 3 O T >-|
Oq CL 3^ g n
p O P 3 (6
«•. 5s g a 3
§ | 1 I %
o' £" 3-
3 ^ cr
n>
1-1

MogB^'OgX
£.P.3£-2.TOg
Pl'll ||||
i ! s 1 *> i ' !
5i cV £."•§§ ^
n 3" n i a
8 3 S" g- 5*
H H|
3 < — • 3 <
3 P ,a to 
•-• •— C "• °°
S 2, n P *•
g. o1 » 2.

cr a" p> r* 5 ^ >•
-• «< c ™ o 5 £>
° 3- <§ 3 S •*
"§ * P 3 |' g
a 3 3 5 - c:
?. c |
o °
f3 a




o o 2 - C
3 ^  <6
c^- on p.
P _ >-
3 ° «•
3 P* o
ft) CU «-
ct- CU 3*
o' 2 ">
3 2 ^
CB



-cgg»ogogtj,
|ft||||f jf
? a- < ° 2 S £• a
' ST cr | ff S R.
** iZ* M* ^* O
03-3 g


2 ° rt cr 5*" " ^0
O O >< v< 2 3^ i-)
=: 3 TI ;: g o 3
• g- o £. 3 3. «;
3 c 5' -a ' a
3. •? 3. n w 
g fl) g £ g •»
p) ct- ca /T. p. rr
3 ° 2". o _ o
S" 3 ST. 0 2;
^ Oq O 3 •-'
3* 39^
cr i a » a o »
P ,2 »' cT o § ft
p £- "o S M •§ "c
J3 P to  rr S'
o ? • £. -"" 17 P 3
C 0 „ 5f 3 »
w 3 £ S r>
co 3 p fl>
82^ P- 1 1
£ * g. 3. ^
8 3 5
- 1 8*
§ ° a
§-2 3
3 2.
p «<

3
Z ? 8 g 3 3 ffi
ft M ^ •»« O CVt OQ
P 0 g- C cr c 3.
|lttll|llfl
I x j g J J 5 2. g | ff
"§.§•« 0-i- g; g
§ :g
is 8.5
? =• 2.
C 3 •<

»• ZT «,
» P n>

»
•n 4*
* UJ
P 0 '
o
Jp'?3 ?"5 ?S
(s^opffinac;'
O 3^ PT _ o> H "*
cSg^oSgg'
ESlri1! ff • t
O D ? O
**" CT
'
^ 1 i-S§|o^§-. lls^S"* ^ 5-'
? 8. - S S- a "8 J" 5 | ^ sr s §
s s ° 1 |j ? :. | B-
Overall Protection
of Human Health
and the
Environment

* C5
&i
* 5
3fc
P
;> §
70 t
>• t
ffi

§ ^|l
n $9

Reduction of
Toxkity,
Mobility, or
Volume Through
Treatment
§£
5?|
a. •?•
A H
i

B






|
n
I


|l



State
Acceptance












o
3.
1




















H

2
JT

n
M
•*>
o
•t
!•*•
ET


w

o*
O
 C/J
 O
 VI

 2*.
 5*
no
 ar
 9
 o
TO

-------
 S.  2
 £X. o,
 o)  ».

 ?.- P

 P  JT.
 CO


 £ W'
 s 2:
  -    '
 5'  a
oq  n>



 §3
 0  a
  ft
5" ^ 3 £ S"
J» O
3" 3












i?|Hsl?
1 ^ i' • cT f 1 i
g ! 8 ~ 2 ?. «
£ ? 0
»




S"ag * 2- -9 £•<
_<» .g «•?£.«•• 2.
g- IT 8 S! 5" I 8
oi O o> "• gq g
§ 3 S.^ < S S1
g. |» *





IIIIliI!
5 5' 8- " a - 2 §'
S P 5' 1 < S 8
r|-° ll5
x 2
illsjj|5|
P ^ < o^ 3
ft «• i-i
3- 0
09
Qj 09 ^ y^^ c*- fj HH
*-• ft ?5 w i (t 3
09 ^ . V *TJ (v 09 ^
•Q tr S JJ (j — • J
o 3 S" 3 •* °* 2-
^•?fa I



* O 0 et- Q
^•'» 3 3 3
5' g. 2" 3" *
-• 5 °
- 0 g 3
g- S * s.
PC- at ct-
X X *
n "
» 3-
3 »






Overall Protection
of Human Health
and the
Environment
II
If
» 
s? i'

lllf
l|W
«gj
1.1
•< H
B
1
i
n
1
Jt ?
ll
f|
A



n
3.



                                                                                                                                                                                n

                                                                                                                                                                                W
                                                                                                                                                                                M
                                                                                                                                                                            S   5
                                                                                                                                                                            &.  o

                                                                                                                                                                           ^O
                                                                                                                                                                                
-------
                                       SECTION 1
                                     INTRODUCTION

       This section provides background information about the SITE program, discusses the
purpose of this Innovative Technology Evaluation Report (ITER) and describes the BioGenesis™
soil washing technology.  For additional information about the SITE program, this technology, and
the demonstration site, key contacts are listed at the end of this section.

1.1    Background

       In May 1992, a treatability study of this technology was conducted at a site in Santa
Maria, California where soils were contaminated with No.  6 fuel oil, also known  as bunker fuel.  In
November 1992, a demonstration was conducted at a refinery site where soils were contaminated
with crude oil. The evaluation of the BioGenesis™ soil washing technology is based on the results
of the SITE demonstration and the treatability study at the two sites.

       The BioGenesis™ soil washing technology involves high energy mixing of excavated
contaminated soils in a mobile washing unit.  The technology consists of a two-stage process. In
the first stage, a proprietary solution (BioGenesis™ cleaner) is used to transfer organic compounds
from the soil matrix to a liquid phase. The second stage involves biodegradation of residual soil
contamination and contaminant-rich wastewater.  End products include wastewater, sediments in
wastewater, recovered  oil or hydrocarbons, and treated soils.  Air emissions can  also be generated
if contaminated  soils contain volatile compounds.

       The BioGenesis™ soil washing system has several components: a wash unit, a volatile
organic compounds (VOC) emissions hood, holding tanks, oil skimmers, strainers, transfer pumps,
an American Petroleum Institute (API) oil/water separator, an oil coalescer, a bioreactor, control
panels, and a flat bed trailer for ancillary equipment. Once on site, the treatment system can be
in operation within a day if necessary facilities, equipment, utilities, and supplies are available.
On-site assembly and maintenance requirements are expected to be minimal. The treatment
system can be demobilized and moved off site within 1 day.

-------
 1.2     Brief Description of Program and Reports

        The SITE program is a formal program established by EPA's Office of Solid Waste and
 Emergency Response (OSWER) and Office of Research and Development (ORD) in response to
 the Superfund Amendments and Reauthorization Act of 1986 (SARA).  The SITE program
 promotes the development, demonstration, and use of new or innovative technologies to clean up
 Superfund sites across the country.

        The SITE program's primary purpose is to maximize the use of alternatives in cleaning
 hazardous waste sites by encouraging the development and demonstration  of new, innovative
 treatment and monitoring technologies.  It consists of four major elements discussed below.

        The objective of the Demonstration Program is to develop reliable performance and cost
 data on innovative technologies so that potential users may assess the technology's site-specific
 applicability. Technologies evaluated are either currently available or close to being available for
 remediation of Superfund sites. SITE demonstrations are conducted on hazardous waste sites
 under conditions that closely simulate full-scale remediation conditions, thus assuring the
 usefulness and reliability of information collected.  Data collected are used to assess the
 performance of the technology, the potential need for pre- and posttreatment processing of
 wastes,  potential operating problems, and the approximate costs. The demonstrations also allow
 for evaluation of long-term risks and operating and maintenance costs.

       The Emerging Technology Program focuses on successfully proven, bench-scale
 technologies which are in an early stage of development involving pilot or laboratory testing.
 Successful technologies are encouraged to advance to the Demonstration Program.

       Existing technologies which improve field monitoring and site characterizations are
 identified in the Monitoring and Measurement Technologies Program.  New technologies that
 provide faster, more cost-effective contamination and site assessment data are supported by this
 program.  The Monitoring and Measurement Technologies Program also formulates the protocols
 and standard operating procedures for demonstrating methods and equipment.

       The Technology  Transfer Program disseminates technical information on innovative
 technologies in the Demonstration, Emerging Technology, and Monitoring and Measurements
Technologies Programs through various activities.  These activities increase the awareness and

-------
promote the use of innovative technologies for assessment and remediation at Superfund sites.
The goal of technology transfer activities is to develop interactive communication among
individuals requiring up-to-date technical  information.

       Technologies are selected for the SITE Demonstration Program through annual requests for
proposals.  ORD staff review the proposals to determine which technologies show the most
promise for use at Superfund sites. Technologies chosen must be at the pilot- or full-scale stage,
must be innovative, and must have some advantage over existing technologies.  Mobile
technologies are of particular interest.

       Once EPA has accepted a proposal, cooperative agreements between EPA and the
developer establish responsibilities for conducting the demonstrations and evaluating the
technology. The developer is responsible for demonstrating the technology at the selected site and
is expected to pay any costs for transport, operations, and removal of the equipment. EPA is
responsible for project planning, sampling and analysis, quality assurance and quality control,
preparing reports, disseminating information, and transporting and disposing of treated  waste
materials.

       The results of the BioGenesis™ soil washing technology demonstration are published in two
basic documents: the SITE technology capsule and the ITER.  The SITE technology capsule
provides relevant information  on the technology, emphasizing key features of the results of the
SITE field demonstration.  Both the SITE technology capsule and the ITER are intended for use
by remedial managers making  a detailed evaluation of the technology for a specific site  and waste.

1.3    Purpose of the Innovative Technology Evaluation Report (ITER)

       The ITER provides information on the BioGenesis™ soil  washing technology and includes  a
comprehensive description of  the demonstration and its results.  The ITER is intended for use by
EPA remedial project managers, EPA on-scene coordinators,  contractors, and other decision
makers for implementing specific remedial actions.  The ITER is designed to aid decision makers
in further evaluating specific technologies for further consideration as an applicable option in a
particular cleanup operation.  This report represents a critical step in the development and
commercialization of a treatment technology.

-------
        To encourage the general use of demonstrated technologies, EPA provides information
 regarding the applicability of each technology to specific sites and wastes.  The ITER includes
 information on cost and site-specific characteristics. It also discusses advantages, disadvantages,
 and limitations of the technology.

        Each SITE demonstration evaluates the performance of a technology in treating a specific
 waste.  The waste characteristics of other sites may differ from the characteristics of the treated
 waste.  Therefore, successful field demonstration of a technology at one site does not necessarily
 ensure that it will be applicable at other sites. Data from the field demonstration may require
 extrapolation  for estimating the operating ranges in which the technology will perform
 satisfactorily. Only limited conclusions can be drawn from a single field demonstration.

 1.4     Technology Description

        The BioGenesis™ soil washing technology was developed by BioGenesis to treat soil
 contaminated with organic compounds. According to BioGenesis, the BioGenesis™ soil washing
 technology can treat a wide variety of  organic contaminants including halogenated  solvents,
 aromatics, gasoline, fuel oils, polychlorinated biphenyls (PCB), and chlorinated phenols. The
 technology uses a proprietary solution  (BioGenesis™ cleaner) to transfer organic compounds from
 the soil matrix to the liquid phase. The proprietary ingredient is an alkaline, organic surfactant.

        According to the developer, BioGenesis™ cleaner is rapidly biodegraded by  common soil
 microbes. The BioGenesis™ cleaner stimulates microbial activity, which biodegrades residual soil
 contamination not removed by the wash solution. According to the material safety data sheet
 (MSDS) provided by BioGenesis, none  of the constituents of the surfactant are defined as a RCRA
 or CERCLA hazardous waste or hazardous constituent.  BioGenesis claims that contaminant-rich
 wastewater is  also amenable to biodegradation in aerated reactors.

       In general, soils containing sand and other coarse materials are the most ideal for soil
 washing treatment technologies. Although contaminants in silty and clayey soils  are usually
strongly sorbed and difficult  to remove, BioGenesis claims that its technology is effective for silty
soils and soils  with high clay concentrations.

       BioGenesis claims that in most  cases, the BioGenesis™ soil washing technology can reduce
concentrations of certain soil  contaminants from up to 45,000 parts per million (ppm) to below
                                             8

-------
laboratory detection levels. The end products of the soil washing process are treated soil,
contaminated wastewater, sediment in wastewater, and an oil/solvent phase.  Contaminated
wastewater is transferred to an aerated reactor for 24 hours to allow contaminants to biodegrade
before discharge. Treated soil is stored in roll-off bins, and the contaminants are allowed to
biodegrade prior to disposal.  The oil/solvent phase is recovered for off-site disposal or reuse.


       A schematic of the BioGenesis™ treatment system is shown in Figure  1 -1. The major

components of the system include the following:


              •      Washing unit.  This is the principal component of the  treatment system.
                     The unit is 24 feet long,  7 feet wide, and 5 feet deep, with overflow
                     channels 1  foot deep. The unit has a perforated base to introduce air for
                     mixing and to drain  wastewater. It is equipped with a shaker mechanism
                     (three units on each  side  of the wash unit) for agitating the soil slurry  to
                     enhance mixing.  A canvas hood covers the top  of the wash unit to contain
                     any organic compounds volatilized during treatment and prevent discharge
                     to the atmosphere.

              •      Bioreactor. The bioreactor is a cylindrical tank with a holding capacity of
                     approximately 5,000 gallons.  At the end of the demonstration, wastewater
                     from the oil/water separators is transferred to the bioreactor. The specially
                     formulated BioGenesis™  cleaner is added to the bioreactor to stimulate
                     biodegradation of residual contamination in the wastewater.  Within the
                     bioreactor, water is mixed by pumping it through a spray aerator fitted
                     above the liquid phase.

              •     Oil skimmers.  In Holding Tank 2, oil is skimmed from the surface of the
                     soil and water mixture.  A mechanical  method uses  rising water which
                     pushes the oil/water into a system that runs through a belt. Oil clings to
                     the belt and is removed.

              •     Strainers.  Strainers  are located at the ends of the oil skimmer troughs on
                      the wash unit. The  strainers prevent floating solids from entering the
                      transfer pump.

               •      Two  7.5-horsepower (hp) transfer pumps and hoses.  These pumps transfer
                      wastewater from the wash unit to the baffle separator.

               •      API oil/water separator.  This unit is used as a  primary separator to
                      separate oil from the wastewater. Recovered oil is transferred to oil storage
                      drums, and the wastewater is recycled  to the  wash unit.

-------
             VOLATILE
             EMISSIONS	(JCARBON FILTER)	 ATMOSPHERE
  ^ rV;" - V
CONTAMINATED
    SOIL
                                VACUUM HOOD
                     TREATED SOIL
                                                                                                                     SEDIMENT STORAGE PILE
                                                                     Figure  1 — 1.   Biogenesis  soil  washing  process.

-------
              •      Oil coalescer. This unit is used as a secondary separator to separate the
                     oil/solvent phase from the wastewater.  The unit is equipped with an infra-
                     red (IR) detector to monitor total petroleum hydrocarbon  (TPH)
                     concentrations.  The detector controls a diversion valve that, depending on
                     TPH concentration in the water, either returns the water to the API
                     separator or to the bioreactor.
              •      One 48-foot flat bed trailer. This trailer houses a 200-ampere (amp),
                     480-volt, three-phase generator; three 25-hp, air-cooled air compressors; a
                     vacuum pump; an activated-charcoal filter used to treat air emissions from
                     the wash unit; and API separator, bioreactor,  and the oil coalescer.

       The BioGenesis™ process begins by introducing contaminated soil into the wash  unit,
usually with a front-end loader.  The wash unit can treat 20 cubic yards of soil per batch.  After
the wash unit is loaded with soil, three shaker mechanisms on each side of the unit are activated.
If VOCs are present, the wash unit is covered with a  retractable canvas. A positive air flow is
drawn through the back of the wash unit, creating negative pressure within the unit to strip away
any VOCs. Volatile emissions, if any, are passed through a granular activated carbon filter before
being vented to ambient air.

       Water and BioGenesis™ cleaner are premixed  in a 4,800-gallon holding tank (Holding
Tank 1) and pumped into the wash unit.  During the  SITE demonstration, a typical wash required
approximately 4,000 gallons (15,000 liters) of water and 7 to 8  gallons of BioGenesis™ cleaner.
The resulting soil slurry is agitated by the shaker mechanisms and a series of aerators in the
bottom of the wash unit. After the soil slurry is mixed for a period of time (approximately 30 to
45 minutes) determined by the developer, air is turned off. Water is then added to raise the fluid
level, allowing floating oil product to  flow out of the unit via ports (0.125-inch  mesh screen)
located  8 inches from the top of the unit and  into another holding tank (Holding Tank 2).  After
the floating product is removed, the soil slurry is agitated again for  a period determined by the
developer. The fluid level is again raised to allow oil and water to be removed through the ports.
Soil settles to the bottom of  the wash unit.  Water percolates through the soil and drains through
perforations in the bottom of the wash unit. Wash water from the bottom of the wash unit and oil
and water exiting through the ports are pumped to Holding Tank  3, which is equipped  with an oil
skimmer. After the water has drained from the treated soil, the operator inverts one end of the
wash unit, dumping the soil onto a bermed area covered with plastic sheeting. Treated soils are
transferred from the bermed area into storage bins with an approximate capacity of 20 cubic yards
using a front-end loader.  Soils in the storage bins are covered with plastic sheets pending  results
of laboratory analyses.

                                              11

-------
       In Holding Tank 3, the oily material removed by the skimmer is pumped to 55-gallon
drums.  Material not removed by skimming is pumped to the API separator.  Any oily material
recovered from the API separator is pumped  to 55-gallon drums.  Water from the API separator is
then directed to Holding Tank 1 for storage prior to  reuse in the wash unit. About 10 to 15
percent of the wash water is retained in the soil; therefore, make-up water and BioGenesis™
cleaner must be added to the recycled water as needed.  Any make-up water required to wash the
next batch of soil is supplied from Holding Tank 2.

       Once all runs are complete, the water in Holding Tank 3 is processed through the oil/
water separation unit, which includes the API separator  and the oil coalescer.  Water from the
coalescer is monitored by an IR detector for TPH and is directed to a bioreactor if the TPH
concentration is below 50 ppm.  If the TPH concentration  is above 50 ppm, the water is recycled
through the  API separator and coalescer until the TPH concentration is below 50 ppm.  Oily
material from the coalescer is pumped to 55-gallon drums.  Sediments  from the wash unit,
Holding Tank 3, and the bioreactor are stored in storage bins and covered with plastic sheets.
Samples from the treated soil storage bins are collected over a period of time and analyzed for
chemical composition. After 24 hours, effluent from the bioreactor is pumped to a holding tank.

       At the refinery site, BioGenesis did not use the holding tanks, the API separator, the oil
coalescer, or the bioreactor. The treatment system, as used at this site, is shown in Figure 1-2.
Water needed for soil washing was supplied by the refinery and was not recycled.  BioGenesis
used steam to raise the temperature of the wash water to 80°C. Wastewater from the unit was
pumped to a 20,000-gallon settling tank and then pumped  to the refinery's wastewater treatment
system which is equipped with oil/water separators.  A bioreactor was  not used to further reduce
contaminant levels.  Instead of roll-off bins, treated soil  was placed in  a soil pile.

1.5    Key Contacts

       Additional information on the BioGenesis™ soil washing technology and the SITE program
can be obtained from the following sources:
                                            12

-------
CONTAMINATED
   SOIL
                          WASH UNIT
                                         FILTER
                                         UNIT
                                                EFFLUENT FROM
                                                 WASH UNIT
                                                              _ TO WASTEWATER
                                                               TREATMENT PLANT
                                                  TREATED SOIL
                                              MAKEUP WATER
             Figure  1-2. Biogenesis  soil washing  process
                           during  SITE  demonstration.
                                   13

-------
       The BioGenesis™ Soil Washing Technology

       Charles Wilde
       BioGenesis Enterprises, Inc.
       10626 Beechnut Court
       Fairfax Station, VA 22039-1296
       703-250-3442
       FAX: 703-250-3559

       The SITE Program

       Robert A. Olexsey
       Director, Superfund Technology
       Demonstration Division
       U.S. Environmental Protection Agency
       26 West Martin Luther King Drive
       Cincinnati, OH 45268
       513-569-7861
       FAX: 513-569-7620
Mohsen Amiran
BioGenesis Enterprises, Inc.
330 South Mt. Prospect Rd.
Des Plaines, IL 60016
708-827-0024
FAX: 708-827-0025
Annette Gatchett
EPA SITE Project Manager
U.S. Environmental Protection Agency
26 West Martin Luther King Drive
Cincinnati, OH 45268
513-569-7697
FAX: 513-569-7620
       Information on the SITE program is available through the following on-line information
clearinghouses:
                     The Alternative Treatment Technology Information Center (ATTIC)
                     System (operator: 301-670-6294) is a comprehensive, automated
                     information retrieval system that integrates data on hazardous waste
                     treatment technologies into a centralized, searchable source. This data base
                     provides summarized information on innovative treatment technologies.

                     The Vendor Information System for Innovative Treatment Technologies
                     (VISITT) (Hotline: 800-245-4505)  data base contains information on 154
                     technologies offered by 97 developers.

                     The OSWER CLU-In electronic bulletin board contain information on the
                     status of SITE technology demonstrations. The system operator can be
                     reached at 301-585-8368.
       Technical reports may be obtained by contacting the Center for Environmental Research
Information (CERI), 26 W. Martin Luther King Drive in Cincinnati, OH 45268 at 513-569-7562.
                                           14

-------
                                      SECTION 2
                       TECHNOLOGY APPLICATIONS ANALYSIS

       This section of the report addresses the general applicability of the BioGenesis™ soil
washing technology to contaminated waste sites. The analysis is based primarily on the SITE
treatability study and demonstration results since limited information was available on other
applications of the technology.

2.1    Objectives - Performance versus ARARs

       This subsection discusses specific environmental regulations pertinent to the operation of
the BioGenesis™ soil washing system, including the transport, treatment, storage, and disposal of
wastes and treatment residuals and analyzes these regulations in view of the demonstration
results. State and local regulatory requirements, which may be more stringent, will also have to
be addressed by remedial managers. Applicable or relevant and appropriate requirements
(ARARs) include the following: (1) the Comprehensive Environmental Response, Compensation,
and Liability Act (CERCLA); (2) the Resource Conservation and Recovery Act (RCRA); (3) the
Clean Air Act (CAA); (4) the Safe Drinking Water Act (SDWA); (5) the Toxic Substances Control
Act (TSCA); and (6) the Occupational Safety and Health Administration (OSHA) regulations.
These six  general ARARs are discussed below; specific ARARs must be identified by remedial
managers for each site.  Some specific federal and state ARARs which may be applicable to the
BioGenesis™ soil washing technology are identified and discussed in Table 3-1.

2.1.1   Comprehensive Environmental Response, Compensation, and Liability Act

       CERCLA authorizes the Federal government to respond to releases or potential releases of
any hazardous substance into the environment, as well as to releases of pollutants or contaminants
that may  present an  imminent or significant danger to public health and welfare or the
environment.

       As part of the requirements of CERCLA, EPA has prepared the National  Contingency Plan
(NCP) for hazardous  substance response.  The NCP is codified in Title 40 Code of Federal
Regulations (CFR)  Part 300, and delineates the methods and criteria used to determine the
appropriate extent of removal and cleanup for hazardous waste contamination.
                                            15

-------
Table 2-1.  Federal and State ARARs for the BioGenesis™ Soil Washing Technology
Process Activity
Waste
characterization
(untreated waste)
Soil excavation
Storage prior to
processing
Waste processing
Storage after
processing
Waste
characterization
(treated waste)

ARAR
RCRA 40 CFR Part 261 or
state equivalent
TSCA 40 CFR Part 761 or
state equivalent
Clean Air Act 40 CFR 50.6,
and 40 CFR 52 Subpart K
or state equivalent
RCRA 40 CFR Section 262
or state equivalent
RCRA 40 CFR Part 264 or
state equivalent
RCRA 40 CFR Parts 264
and 265 or state equivalent
RCRA 40 CFR Part 264 or
state equivalent
RCRA 40 CFR Part 261 or
state equivalent
TSCA 40 CFR Part 761 or
state equivalent
Description
Identifying and characterizing
the waste as treated
Standards that apply to the
treatment and disposal of
wastes containing PCBs
Management of toxic pollutants
and particulate matter in the air
Standards that apply to
generators of hazardous waste
Standards applicable to the
storage of hazardous waste
Standards applicable to the
treatment of hazardous waste at
permitted and interim status
facilities
Standards that apply to the
storage of hazardous waste in
containers
Standards that apply to waste
characteristics
Standards that apply to the
treatment and disposal of
wastes containing PCBs
Basis
A requirement of RCRA prior to
managing and handling the waste
During waste characterization,
PCBs may be identified in
contaminated soils, and are
therefore subject to TSCA
regulations
Fugitive air emissions may occur
during excavation and material
handling and transport.
The soils are excavated for
treatment.
Excavation may generate a
hazardous waste that must be
stored in a waste pile.
Treatment of hazardous waste must
be conducted in a manner that
meets the operating and monitoring
requirements; the treatment process
occurs in a tank.
The treated soil will be placed in
tanks prior to a decision on final
disposition.
A requirement of RCRA prior to
managing and handling the waste; it
must be determined if treated soil is
RCRA hazardous waste.
Soils treated may still contain PCBs
Response
Chemical and physical analyses must be
performed.
Chemical and physical analyses must be
performed. If PCBs are identified, soils
will be managed according to TSCA
regulations.
If necessary, the waste material should be
watered down or covered to eliminate or
minimize dust generation.
If possible soils should be fed directly into
the wash unit for treatment.
If in a waste pile, the material should be
placed on and covered with plastic and tied
down to minimize fugitive air emissions
and volatilization. The time between
excavation and treatment should be kept
to a minimum.
Equipment must be operated and
maintained daily. Tank integrity must be
monitored and maintained to prevent
leakage or failure; the tank must be
decontaminated when processing is
complete. Air emissions must be
characterized by continuous emissions
monitoring.
The treated soils must be stored in
containers that are well maintained;
container storage area must be constructed
to control runon and runoff.
Chemical and physical tests must be
performed on treated soils prior to disposal.
Chemical and physical tests must be
performed on treated soils. If PCBs are
identified, a proper disposal method will be
selected.

-------
                               Table 2-1.  Federal and State ARARs for the BioGenesis™ Soil Washing Technology
                                                                         (continued)
Process Activity
ARAR
Description
                                                                                    Basis
                                    Response
On-site/off-site
disposal
RCRA 40 CFR Part 264 or
state equivalent
Standards that apply to
landfilling hazardous waste
Treated soils may still contain
contaminants in levels above
required cleanup action levels and
therefore be subject to LDRs.
Treated wastes must be disposed of at a
RCRA-permitted hazardous waste facility,
or approval must be obtained from EPA to
dispose of the wastes on site.
                     TSCA 40 Part 761 or state
                     equivalent
                             Standards that restrict the
                             placement of PCBs in or on the
                             ground
                                 Treated soils containing less than
                                 500 ppm PCB may be landfilled or
                                 incinerated.
                                    If untreated soil contained PCBs, then
                                    treated soil should be analyzed for PCB
                                    concentration.  Approved PCB landfills or
                                    incinerators must be used for disposal.
                     RCRA 40 CFR Part 268 or
                     state equivalent
                             Standards that restrict the
                             placement of certain wastes in
                             or on the ground
                                 The nature of the waste may be
                                 subject to the LDRs.
                                     The waste must be characterized to
                                     determine if the LDRs apply; treated
                                     wastes must be tested and results
                                     compared.
                     SARA Section 121(d)(3)
                             Requirements for the off-site
                             disposal of wastes from a
                             Superfund site
                                 The waste is being generated from a
                                 response action authorized under
                                 SARA.
                                     Wastes must be disposed of at a RCRA-
                                     permitted hazardous waste facility.
Transportation for
off-site disposal
RCRA 40 CFR Part 262 or
state equivalent
Manifest requirements and
packaging and labeling
requirements prior to
transporting
The treated soil may need to be
manifested and managed as a
hazardous waste.
An identification (ID) number must be
obtained from EPA.
                     RCRA 40 CFR Part 263 or
                     state equivalent
                             Transportation standards
                                 Treated soil may need to be
                                 transported as a hazardous waste.
                                     A transporter licensed by EPA must be
                                     used to transport the hazardous waste
                                     according to EPA regulations.
Wastewater
discharge
Clean Water Act 40 CFR
Parts 301, 304, 306, 307,
308, 402, and 403
Standards that apply to
discharge of wastewater into
sewage treatment plant or
surface water bodies
The wastewater may be a hazardous
waste.
Determine if wastewater could be directly
discharged into a sewage treatment plant
or surface water body.  If not, the
wastewater may need to be further treated
to meet discharge requirements by
conventional processes.
                     Safe Drinking Water Act 40
                     CFR Parts 144 and 145
                              Standards that apply to the
                              disposal of contaminated water
                              in underground injection wells
                                 Wastewater may require disposal in
                                 underground injection wells.
                                     If underground injection is selected as a
                                     disposal means for contaminated
                                     wastewater, permission must be obtained
                                     from EPA to use existing permitted
                                     underground injection wells, or to
                                     construct and operate new  wells.

-------
       Superfund Amendments and Reauthorization Act (SARA) amended CERCLA, directing
EPA to do the following:

              •      Use remedial alternatives that permanently and significantly reduce the
                     volume, toxicity, or mobility of hazardous substances, pollutants, or
                     contaminants
              •      Select remedial actions that protect human health and the environment, are
                     cost-effective, and involve permanent solutions and alternative treatment
                     or resource recovery technologies to the maximum extent possible
              •      Avoid off-site transport and  disposal of untreated hazardous substances or
                     contaminated materials  when practicable treatment technologies exist
                     (Section 121(b)).

       In general, two types of responses are possible under CERCLA: removals and remedial
actions. The BioGenesis™ soil washing technology is likely to be part of a CERCLA remedial
action. Since 1986,  various soil washing technologies were selected as source control remedies at
eight Superfund sites.

       Remedial  actions are governed by the SARA amendments to CERCLA. As stated above,
these amendments promote remedies that permanently reduce the volume, toxicity, and mobility
of hazardous substances, pollutants, or contaminants. In general, soil washing technologies only
transfers contaminants from one media to another.contaminant volume. However, BioGenesis
claims that its cleaner stimulates the biodegradation  of soil contaminants, and thus reduces both
contaminant volume and toxicity.

       On-site remedial actions must comply with federal and  more stringent state ARARs.
ARARs are determined on a site by site basis and may be waived under six conditions: (1) the
action is an interim  measure, and the ARAR will be met at completion; (2) compliance with the
ARAR would pose a greater risk to health and the environment than noncompliance; (3) it is
technically impracticable  to meet the ARAR; (4) the standard of performance of an ARAR can be
met by an equivalent method; (5) a state ARAR has  not been consistently applied elsewhere; and
(6) ARAR compliance would not provide a balance between the protection achieved at a
particular site and demands on  the Superfund for other sites. These waiver options apply only to
Superfund actions taken on site, and justification for the waiver must be clearly demonstrated.
                                            18

-------
2.1.2   Resource Conservation and Recovery Act

       RCRA, an amendment to the Solid Waste Disposal Act (SWDA), was passed in 1976 to
address the problem of how to safely dispose of the enormous volume of municipal and industrial
solid waste generated annually.  RCRA specifically addressed the identification and management
of hazardous wastes.  The Hazardous and Solid Waste Amendments of 1984 (HSWA) greatly
expanded the scope and requirements of RCRA.

       The presence of RCRA defined hazardous waste determines whether RCRA regulations
apply to the BioGenesis™ soil washing  technology. If soils are determined to be hazardous
according to RCRA, all RCRA requirements regarding the management and disposal of hazardous
wastes will need to be addressed.  RCRA  regulations define hazardous wastes and regulate their
transport, treatment, storage, and disposal. Wastes defined as hazardous under RCRA  include
characteristic and listed wastes.  Criteria for identifying characteristic hazardous  wastes are
included in 40 CFR Part 261 Subpart C. Listed wastes from nonspecific and specific industrial
sources, off-specification products, spill cleanups, and other  industrial sources are itemized in 40
CFR Part 261  Subpart D.

       Once contaminated soils are treated by the BioGenesis™ treatment system, the treated soils
may still contain hazardous constituents at levels above required cleanup action levels.  Such soils
need to be managed as hazardous waste and are subject to land disposal restrictions (LDR) under
both RCRA and CERCLA.  Applicable RCRA requirements could include  a Uniform Hazardous
Waste  Manifest  if the treated soils are transported, restrictions on placing the treated soils in land
disposal  units, time limits on accumulating treated soils, and permits for storing treated soils.

       Requirements for correction action at RCRA-regulated facilities are provided in 40 CFR
Part 264, Subpart F (promulgated) and Subpart S (proposed). These subparts also generally  apply
to remediation at Superfund sites. Subparts F and S include requirements for initiating and
conducting RCRA corrective actions, remediating ground water, and ensuring that corrective
actions comply with other environmental regulations. Subpart S also details conditions under
which particular RCRA requirements may be waived for temporary treatment units operating at
corrective action sites.  Thus, RCRA mandates requirements similar to CERCLA, and as
proposed, allows treatment units such as the BioGenesis™ treatment system  to operate without full
 permits.
                                             19

-------
 2.1.3   Clean Air Act

        The CAA requires that treatment, storage, and disposal facilities comply with primary and
 secondary ambient air quality standards.  During the excavation, transportation, and treatment of
 soils, fugitive emissions are possible. Steps must be taken to prevent or minimize the impact from
 fugitive emissions, such as watering down the soils, or covering them with industrial strength
 plastic prior to treatment. The BioGenesis™ wash unit is equipped with carbon filters to treat
 volatile emissions, if volatile compounds are present in the soils. State air quality standards may
 require additional measures to prevent fugitive emissions.

 2.1.4   Safe Drinking Water Act

        The SDWA of 1974, as most recently amended by the Safe Drinking Water Amendments of
 1986, requires EPA to establish regulations to protect human health from contaminants in
 drinking water.  The legislation authorizes national drinking water standards and a joint Federal-
 state system for ensuring compliance with these standards.

        The National Primary Drinking Water Standards are found in 40 CFR Parts  141 through
 149. Parts  144 and 145 discuss requirements associated with the underground injection of
 contaminated water.  Wastewater generated by the BioGenesis™ treatment system may be disposed
 of in permitted underground injection wells.  During the treatability study, wastewater generated
 by the BioGenesis™ treatment system was disposed of underground. If injection of wastewater is
 selected as a disposal means for wastewater generated during the soil washing process, approval
 from EPA for constructing and operating a new underground injection wells is required.  A
 permit will not be required if an existing permitted underground injection well is accessible.

 2.1.5   Toxic Substances Control Act

       The  disposal of PCBs is regulated under Section 6(e) of the Toxic Substances Control Act
 of 1976 (TSCA). PCB treatment and disposal regulations are described in 40 CFR Part 761.
 Materials containing PCBs in concentrations between 50 and 500 ppm may either be disposed of in
TSCA-permitted landfills or destroyed by incineration at a TSCA-approved incinerator; at
concentrations greater than 500 ppm, the material must be incinerated. Therefore, soil
contaminated with up to 500 ppm of PCBs may be suitable  for the BioGenesis™ soil washing
                                            20

-------
technology.  Where individual state standards are stricter than federal standards, BioGenesis™ may
be unacceptable as a pre-disposal remedy.

       Sites where spills of PCBs have occurred after May 4, 1987, must be addressed under the
PCB Spill Cleanup Policy in 40 CFR Part 761, Subpart G. In order to meet the requirements
under the spill cleanup policy, wastes slated for treatment using the BioGenesis™ soil washing
technology may require additional treatment, if the PCB spill cleanup standards are not met. The
policy applies to spills of materials containing 50 ppm or greater PCBs and establishes cleanup
protocols for addressing such releases based upon the volume and concentration of the spilled
material.

2.1.6  Occupational Safety and Health Administration Requirements

       CERCLA remedial actions and RCRA corrective actions must be performed in accordance
with OSHA requirements detailed in 20 CFR Parts  1900 through 1926, especially Part 1910.120,
which provides for the health and safety of workers at hazardous waste sites.  On-site construction
activities at Superfund or RCRA corrective actions sites must be performed in accordance with
Part 1926 of OSHA, which provides safety and health regulations for constructions sites.  State
OSHA requirements, which may be significantly stricter than Federal standards, must also be met.

       All technicians operating the BioGenesis™ treatment system are required to have completed
an OSHA training course and must be familiar with all OSHA  requirements relevant to hazardous
waste sites.  For most sites, minimum personal protective equipment (PPE) for technicians will
include gloves, hard hats, steel toe boots, and coveralls.  Depending on contaminant types and
concentrations, additional PPE may be required.  Noise levels should be monitored to ensure that
workers are not exposed to noise levels above a time-weighted average of 85 decibels over an 8-
hour day. If operation of the BioGenesis™ treatment system causes noise levels to increase above
this limit, then workers will be  required to wear ear protection.

2.1.7  Technology Performance versus ARARs during the Demonstration

       Several ARARs discussed in Table 2-1 did  not apply to the BioGenesis™ soil washing
technology during the demonstration at the refinery site. ARARs relevant to soil excavation were
not applicable during the demonstration because soils at the refinery had been excavated
previously and stockpiled in the decontamination area. In addition, plastic was not required under
                                             21

-------
 the stockpiled soil. Rather, runoff from the decontamination area was controlled by a concrete
 base equipped with drains that discharged directly to the on-site wastewater treatment plant.
 ARARs relevant to underground injection wells also did not apply because all wastewater was
 discharged to the on-site wastewater treatment plant before discharge to a publicly-owned
 treatment works (POTW) facility. After treatment, the soil was again stockpiled in the
 decontamination area to biodegrade for about 1 year.

        Because volatile compounds were not present in soils at the refinery, the soils did not need
 to be watered down or covered with plastic. Treated soil at the refinery was not hazardous as
 defined by RCRA  or state regulations.  Therefore, ARARs applicable to the disposal of hazardous
 wastes were not applicable to the refinery site demonstration.  Because treated soils were allowed
 to biodegrade, BioGenesis expects that the TRPH in the soil will eventually decrease to levels that
 will meet local requirements for reusing the soil as fill material.

        If sites are not equipped with a container storage area adequate to prevent runon and
 runoff, treated soils may be placed on plastic and surrounded by a berm, or placed in roll-off
 bins.  If soils are to be disposed of off site, disposal costs will vary according to contaminant
 concentrations in the soil.

 2.2     Operability of the Technology

        The BioGenesis treatment system consists of the wash unit and other support equipment
 described in Section 1.3.  The wash unit, a specially designed mobile unit, is operated by
 BioGenesis personnel. The wash unit appeared free of operational problems during the
 demonstration at the refinery.

       Several operating parameters influence the performance of the BioGenesis™ treatment
 system. Its performance  is most affected by the amount of time necessary for contaminants to
 move from the soil  matrix to wastewater (mixing time) and by the concentration of the
 BioGenesis™ cleaner. If the mixing time is reduced too much, efficiency of the contaminant
 transfer will be reduced.  If the mixing time is increased too much, time to treat soil increases,
affecting the cost. Similarly, a low dose of BioGenesis"1 cleaner may reduce contaminant transfer,
while a high dose will not be cost effective.  BioGenesis determined the preferred values for these
parameters during treatment of approximately  1,000 cubic yards of soil at the  refinery site prior
to the demonstration.  Another operating parameter that may affect soil washing is air pressure.
                                             22

-------
Air is used by BioGenesis to enhance mixing. Air pressure is controlled by BioGenesis at a
preferred rate determined by professional judgment.

       Depending upon contaminant type and soil characteristics, each batch of soil may require
one or more washes.  At the refinery site, where the contaminant was crude oil, BioGenesis
washed each batch of soil twice. While increasing the number of washes results in additional cost
and time required to process soil, it also increases the amount of contaminants transferred from
soil to wastewater. Also, depending upon contaminant type and climate, temperature of the soil
slurry may need to be raised. Steam can be used to raise temperatures of wash water prior to its
introduction into the wash unit.

       In addition to the wash unit, other components of the BioGenesis™ treatment system
include the VOC emission hood, the holding tanks, the API separator, the oil coalescer, and the
bioreactor. If the soil contains VOCs, then  the emission hood and a carbon filter system are used
to reduce air emissions. Two holding tanks store wash water and recycle water.  A third holding
tank is used for settlement of suspended particulates in wastewater.  The API separator and  the oil
coalescer separate and recover oily contaminants from the wastewater. The bioreactor allows
biodegradation of wastewater. At the refinery, none of these components was used since the soil
had low  levels of VOCs,  wastewater was not recycled, and wastewater was treated by the refinery.

       The holding tanks and an oil/water  separator were tested during the treatability studies in
Santa Maria.  The oil skimmers associated with the holding tanks performed poorly, allowing
excessive amounts of oil  to reach the separator. As a result, the oil/water separator was
overloaded and did not function properly.  According to BioGenesis, the oil skimmers have since
been  redesigned.

       To enhance biodegradation of residual contamination, BioGenesis adds additional
surfactant  solution to the treated soil. Treated soil can be stored in roll-off bins or in  a soil pile.
Climatic conditions affect further biodegradation; in cold climates, the rate of biodegradation is
lower than in warm climates.

       The SITE demonstration was planned to treat 64 cubic yards of soil in four runs. Due to
sampling problems, data from only three runs were considered valid. However, each run consisted
of 18 cubic yards of soil, so that a total of 54 cubic yards of soil was processed over a  3-day
period.
                                             23

-------
 2.3    Applicable Wastes

        BioGenesis claims that the BioGenesis™ soil washing technology extracts volatile,
 semivolatile, and nonvolatile hydrocarbons, including halogenated solvents, aromatics, gasoline,
 fuel oils, PCBs, and chlorinated phenols from most soils. Results from the treatability study
 conducted in Santa Maria, California indicate that for soils contaminated with heavy petroleum
 hydrocarbons,  more than one wash is required for reducing contaminant levels. Residual
 contaminants in soil and wastewater is further removed through biodegradation.  According to
 BioGenesis, its technology is capable of treating soil contaminated with both organic compounds
 and metals. However, this SITE demonstration was designed to evaluate organics removal only. It
 should be noted that high concentrations of certain metals,  such as lead and mercury may be toxic
 to microorganisms involved in biodegradation of organics.

       BioGenesis claims that this process can successfully treat soils with petroleum
 hydrocarbons in concentrations up to 45,000 ppm. Analytical results for untreated soils at the
 refinery showed that the highest concentration of TRPH was 11,000 ppm.

       In general, soils containing sand and other coarse materials are the  most ideal for treatment
 by soil washing technologies.  BioGenesis claims that this technology is also effective for silty
 soils and soils with high clay concentrations.  However, soils at the refinery were sandy and,
 therefore, did not allow verification of BioGenesis' claim.  Although the wash unit can handle
 large particles,  for monitoring purposes, particles larger than 2 inches in diameter should be
 screened out.

 2.4    Key Features of the BioGenesis™ Soil Washing Technology

       The BioGenesis™ soil washing technology has several unique features that distinguish it
 from most soil washing techniques.  The wash unit is specially designed with a shaker system, a
 VOC emission control system, and an air injection system.  According to BioGenesis, the
proprietary BioGenesis™ cleaner aids transfer of contaminants from the soil matrix to wastewater
and enhances biodegradation of residual contaminants in soil and wastewater.
                                            24

-------
2.5    Availability and Transportability of Equipment

       The BioGenesis™ wash unit and support equipment are mounted on flat-bed trailers and
are easily transported.  Once on site, the treatment system can be in operation within a day if all
necessary facilities, utilities, and supplies are available. On-site assembly and maintenance
requirements are minimal.  Demobilization activities include decontaminating on-site equipment,
disconnecting utilities, disassembling equipment, and transporting equipment off site.  Currently,
BioGenesis has one wash unit, along with the support equipment, available and is acquiring
another wash unit. The proprietary BioGenesis™ cleaner is available through BioGenesis.

2.6    Materials Handling Requirements

       At most sites, contaminated soil will need to be excavated, staged, transported, and loaded
into the wash unit. Soils should be kept wet if fugitive emissions of particulates are expected.
Also, most VOCs, if  present in the soil, will volatilise  into the atmosphere.  At sites where VOCs
are the primary contaminants, soil should be handled within an enclosed system.  At the
conclusion of each wash, treated soil is placed on the ground. Treated soil may contain an
appreciable amount of moisture and requires runoff control measures.

       At some sites, water needed for washing  may be available from the facility or the  local
water source; at other sites wash water may need to be transported in water trucks. Wash  water
may require special handling if steam is used to raise the temperature of the water.

       Wastewater is skimmed off the top of the wash unit and is pumped either to a holding tank
or, if available, to the facility's wastewater treatment plant.  Care should be taken to ensure that
wastewater is not spilled during transfer from the wash unit or during storage. Special care should
also be taken during processing of wastewater through the API separator and the oil coalescer.
Large amounts of fine particles in the wastewater may affect operation of the separator and the
coalescer by  blocking the flow of wastewater.

2.7    Site Support  Requirements

       Technology support requirements include utilities, support facilities, and support
equipment.  These requirements are discussed below.
                                             25

-------
       Utilities required for the BioGenesis™ treatment system include water, electricity, and, at
some sites, steam.  Water is needed to operate the wash unit and to decontaminate equipment.
BioGenesis requires approximately 19,400 liters of water per wash.  If water cannot be recycled at
a particular site, water requirements  could be large.  The BioGenesis™ treatment system requires
one 200-ampere, 480-volt, triple phase electrical circuit.  BioGenesis has a generator that meets
these power requirements.  However, the generator can be very noisy, and, at sites with nearby
residential communities, an alternate source of electricity must be found.  At some sites,
depending on contaminant characteristics, steam may be required to raise the temperature of the
soil slurry. BioGenesis usually arranges for the hot water service.

       Support facilities include a contaminated soil staging area, a treated soil storage area, and a
drum storage area. Treated soil and sediments could be stored in roll-off bins or soil piles.
Drums containing recovered oil and hydrocarbons must be stored in the drum storage area. In
addition, a tank storage area to store  wastewater may be required at some sites. These support
facilities must be contained to control runon and runoff.

       Support equipment for the BioGenesis™ treatment system includes earth-moving
equipment, forklifts, containers for recovered hydrocarbons, containers for treated soils and
sediments, and a container for wastewater.  Earth-moving equipment, including backhoes, front-
end loaders, and at some sites, dump  trucks, are needed to excavate and move soils to the wash
unit.  Forklifts are needed to move drums.

       Accurately determining the amount of soil treated may be required at some sites.
Determining the mass of soil treated  was difficult during the treatability studies at the Santa Maria
site.  Different types of scales, including bucket scales and platform scales, were found to be
inappropriate for weighing front-end loaders.  However, a semiqualitative estimate of the volume
of soil treated was made. Flow meters are required to measure the volume of water and
wastewater.

2.8    Limitations of the Technology

       In general, soil washing technologies only reduce contaminant volume. Because the
BioGenesis process uses both soil washing and biodegradation, however, reduction in contaminant
mass, toxicity, and volume  reduction  are expected.
                                            26

-------
       Contaminants in silty or clayey soils are usually strongly sorbed and difficult to remove,
and soil washing technologies are generally ineffective.  BioGenesis claims that its process is
effective in soils with high clay concentrations. Soils treated at the refinery were sandy in nature
with 5% silt and 6% clay content.

       According to BioGenesis, its technology is capable of treating soil contaminated with both
organic compounds and metals.  However, this SITE demonstration was designed to evaluate
organics removal only.  It should be noted that high concentrations of certain metals may be toxic
to microorganisms involved in biodegradation of organics.  Cold climates may also  adversely
affect the rate of biodegradation.

       During the treatability studies in Santa Maria, California, BioGenesis  treated soils
contaminated with bunker fuel,  the heavy end of the petroleum distillation process. Results of
chemical analysis indicated low removal efficiencies after soil  washing. Removal efficiencies
improved when the same batch of soil was washed twice.  Biodegradation studies conducted in a
laboratory showed minimal reduction in contaminant levels after 60 days.  BioGenesis has since
modified  the wash unit to optimize mixing and extracting efficiencies.
                                              27

-------
                                         SECTION 3
                                   ECONOMIC ANALYSIS

       This section presents cost estimates for operating the BioGenesis™ soil washing
technology. Cost data was compiled during SITE treatability study at the Santa Maria Health
Care facility (Santa Maria) in Santa Maria, California, and at an oil refinery site. Costs have been
placed in 12 categories applicable to typical cleanup activities at Superfund and RCRA sites
(Evans, 1990).  Costs are presented in February 1993 dollars and are considered to be estimates,
with an accuracy of plus 50 percent and minus 30 percent.

       This economic analysis shows that operating costs are most affected by the amount of site
preparation needed and whether the treated soil can be backfilled at the site or requires off-site
disposal.  In addition, the quantity of soil to be treated and the nature and concentration of
contaminants affects  the duration  of a soil remediation project and the amount of materials
necessary for all aspects of the remediation.

3.1    Conclusion of Economic Analysis

       This analysis  presents the  costs of treating 1,000 cubic yards of soil contaminated with
TRPH.  Table 3-1 presents a breakdown of costs into the 12 cost categories. The table presents
total fixed and total variable costs  and the  costs per cubic yard of soil treated.   It also estimates
the costs of treating 500 and 2,000 cubic yards of soil under the same conditions.

       Total estimated one-time costs are about $61,000.   Of this, $10,000, or about 16 percent, is
the price of retaining  the soil washing service from BioGenesis; and $22,000, or 36 percent of fixed
costs, is for site preparation.  Total estimated variable costs are $41,000.  Of this, $24,000, or 60
percent of total variable costs, is for residual and waste disposal. These factors have the greatest
influence on the total cost of the project because site and soil conditions greatly affect these costs.
In addition, the amount of soil and the contaminant concentrations significantly impact the
duration and costs of  a soil remediation project.  The estimated cost per cubic yard of soil for
treating 1,000 cubic yards of soil is $103.
                                             28

-------
         Table 3-1. Costs Associated with the BioGenesis™ Soil Washing Technology
Cost Categories
Site Preparation b
Permitting and Regulatory Requirements b
Capital Equipment b
Startup b
Labor b
Consumables and Supplies b
Utilities c
Effluent Treatment and Disposal c
Residual and Waste Shipping and Handling c
Analytical Services c
Maintenance and Modifications c
Demobilization b
Total Fixed Costs *
Total Variable Costs b
Volume of Soil Treated (cubic yards)
500
$20,800
10,000
21,560
0
7,600
1,300
530
0
15,900
1,300
0
1,000
$53,360
$26,630
1,000
$22,300
10,000
27,790
0
12,200
2,300
870
0
24,100
2,300
0
1,000
$61,090
$41,770
2,000
$24,200
10,000
40,250
0
22,000
4,900
1,600
0
40,300
3,300
0
1,000
$75,450
$72,100
1 Total
Cost
Per
Cubic
Yard
Treated
$160
$103
$74
Notes:
       Costs are based on February 1993 dollars
       Fixed costs
       Variable costs
                                            29

-------
        If paved storage areas need to be constructed (see Section 3.4.1, Site Preparation Costs) and
 if the treated soil  requires disposal off site (see Section 3.4.9, Residual Waste Shipping and
 Handling), the total costs for treating 1,000 cubic yards of soil would increase by $220,000.  This
 would increase the total cost per cubic yard treated to about $323.

 3.2     Basis of Economic Analysis

        BioGenesis claims that the BioGenesis™ soil washing technology can be used to treat soils
 containing volatile, semivolatile, and nonvolatile organic compounds, petroleum hydrocarbons,
 chlorinated hydrocarbons, pesticides, and other organics.  Soil contaminated with petroleum
 hydrocarbons was selected for this economic analysis because it is commonly found at Superfund
 and RCRA corrective action sites, it was encountered at both the Santa Maria and the oil refinery
 sites, and it involves most of the cost categories.

        A number of factors affect the estimated costs of treating soil with the BioGenesis™ soil
 washing technology.  These factors include type and concentration of contaminants, treatment
 goals, volume of contaminated soil, physical site conditions, geographical site location, site
 accessibility, and availability of utilities. Contaminant levels affect mixing time  and the number
 of washes. Ultimately, the characteristics of residual wastes produced by the BioGenesis™ system
 affect disposal costs because they determine if the residuals require either further treatment or
 off-site disposal.

       Cost data associated with the BioGenesis™ soil washing technology have been assigned to
 the following 12 categories: (1) site preparation; (2) permitting and regulatory requirements: (3)
 capital equipment; (4)  startup; (5) labor; (6) consumables and supplies; (7) utilities; (8) effluent
 treatment and disposal; (9) residual waste shipping and handling; (10) analytical services; (11)
 maintenance and modifications; and (12) demobilization.

 3.3    Issues and  Assumptions

       Based on operations at the refinery, the BioGenesis™ system will treat four 18-cubic-yard
 batches of soil per day for a total of 72 cubic yards per day.  At this rate, the system would
operate for 14 8-hour days to fully treat 1,000 cubic yards of soil contaminated with TRPH.
Mobilization and demobilization activities would add an additional 2 days to the project, for  an
estimated total of 16 8-hour days to complete the project.

                                             30

-------
       According to BioGenesis, the BioGenesis™ cleaner stimulates microbial activity, which
biodegrades residual soil and water contamination not removed by the process.  This analysis
assumes that no contamination will remain in the treated soil and that treated soils will be
backfilled at the site. However, residual contamination could remain in the wastewater.
Therefore, wastewater will require proper off-site disposal. If treated soils cannot be backfilled at
a site, the costs per cubic yard of soil treated will be significantly higher.

       BioGenesis' full-scale soil  washing unit is currently available in one size only, and
equipment operations are not complicated. Therefore, this analysis does not present equipment or
operational cost alternatives.

       Other assumptions used for this analysis include the following:

               •       The site is located near an urban area in the Midwest.
               •       Soil contamination at the site resulted from leaking  underground storage
                      tanks that contained diesel fuel.
               •       Access roads exist at the site.
               •       Adequate paved storage areas for treated and untreated soils exist at the
                      site.
               •       Utility lines, such as electricity and telephone  lines, exist on site.
               •       The soil to  be treated contains 5,000 ppm TRPH.
               •       The treatment goal for the site will be to reduce the contaminant level to
                      2,000 ppm.
               •       No pretreatment of the feed soil will be required.
               •       Soil will be treated in  18-cubic-yard batch cycles.
               •       Treated soil will be backfilled at the site.
               •       Oversized materials constitute 2 percent of the feed soil and will be
                      disposed of off site as petroleum-contaminated material.
               •       Recovered  oil  will be disposed of by an oil recycling company.
               •       85 percent  of the wash water will be recycled until  the project is complete;
                      wastewater will be stored and then disposed of off site;  15  percent of the
                      wash water is lost due to soil retention and evaporation.
                                              31

-------
                      The first batch will require 3,000 gallons of water; thereafter, each batch
                      will require about 450 gallons of make-up water.
                      BioGenesis will lease the treatment system, including labor and supplies, to
                      its clients as  part of an overall soil washing service.
                      BioGenesis will provide  two operators to operate all BioGenesis™
                      equipment; additional labor requirements include one site supervisor and
                      one  heavy equipment operator.
                      Labor costs associated with major equipment repairs or replacement are not
                      included.
3.4    Results
       Results of the economic analysis are presented in this section. A hypothetical remediation
site containing leaking underground storage tanks was assumed for this  analysis.

3.4.1  Site Preparation Costs

       Site preparation costs include administrative, security guard, and mobilization and
electricity connection costs. This analysis assumes that leaking underground storage tanks have
been removed from the site and that the area of contamination has already been delineated. Soil
excavation will occur during treatment operations.  This analysis also assumes a total of about
20,000 square feet will be needed to accommodate the BioGenesis™ unit, support equipment, and
treated and untreated soil and water storage areas.  Site preparation will take about 2 days to
complete.

       Site preparation costs are significantly affected by the availability of paved storage areas at
a site.  This analysis assumes adequate paved storage areas exist at  the site and will require
minimal modifications.  Site preparation costs will increase by about $100,000, if a 1,000-square-
foot concrete storage area needs to be constructed.

       Administrative costs, such as legal searches, access rights, and other site planning
activities, are estimated to be $10,000.

       A security guard will be needed during evenings and weekends for the duration of the
remediation project.  In this analysis, the entire project will last about 16 days.  During this time,
                                             32

-------
the security guard will be needed for about 375 hours.  At an hourly rate of $8.75, the total cost of
security service will be about $3,300.

       Mobilization involves transporting the entire BioGenesis™ treatment system from
Milwaukee, Wisconsin and delivering all rental equipment to the site.  For this analysis, the site is
located in the Midwest and equipment vendors are assumed to be situated nearby the site.  The
total estimated mobilization cost will be about $9,000.

3.4.2  Permitting and Regulatory Requirements

       Permitting and regulatory costs will vary,  depending on whether treatment is performed at
a Superfund or a RCRA  corrective action site and on how treated effluent and any solid wastes
generated are disposed of. Superfund sites require remedial actions to be consistent with ARARs
of environmental laws, ordinances, regulations, and statutes, including federal, state, and local
standards and criteria. In general, ARARs must be determined on a site-specific  basis.  RCRA
corrective action sites require additional monitoring records and sampling protocols,  which can
increase  permitting and regulatory costs by an additional 5 percent.

       For this analysis, permitting and regulatory costs include fees for highway permits for
oversized vehicles and proof-of-process testing and reporting.  Total permitting and regulatory
costs for this analysis are estimated to be $10,000.

3.4.3  Capital Equipment

       Capital equipment costs include leasing the complete BioGenesis™ treatment system,
renting heavy equipment, obtaining a hot water service, renting one dumpster for storing
oversized material, renting one portable toilet, and renting a wastewater holding tank.

       The complete BioGenesis™ treatment system includes the wash unit, the VOC emissions
hood and carbon filter unit, all storage tanks, oil  skimmers, strainers,  transfer pumps, the API
separator, the oil coalescer, and a flat bed trailer  for ancillary equipment. The treatment system
covers an area of about 1,200 square feet.  BioGenesis personnel will operate the BioGenesis™
treatment system (see Section 3.4.5, Labor). BioGenesis will lease this equipment to  its clients as
the price for performing the soil washing service for a cost of about $10,000  to treat 1,000 cubic
yards.
                                             33

-------
        The heavy equipment that must be rented for excavating contaminated soil, loading
 contaminated soil into the wash unit, and transferring treated and untreated soils to storage areas
 includes a front-end loader, a backhoe, and a dumptruck.  In addition, a forklift will be required
 for moving pallets of drummed waste and other materials.  The front-end loader, backhoe, and
 dumptruck can be rented for about $2,400 per week. A forklift can be rented for about $500 per
 week. All the heavy equipment is assumed to be needed for the duration of the project, which for
 this analysis will be 16 days.  Total heavy equipment costs will be  about $9,000.

        A hot water service will be needed because  the BioGenesis™ treatment system uses hot
 water.  Complete hot water service including hot water truck, fuel, and operator is estimated to
 cost about $500 per day.  This service will be required only during soil treatment activities, which
 for this analysis will be for 14 days.  Total hot  water service costs  will be about $7,000.

        Oversized material is assumed to constitute 2 percent of the feed soil.  By this estimate,
 1,000 cubic yards of soil will contain 20 cubic yards of oversized material.  One 20-cubic-yard
 roll-off dumpster will be rented for storing oversized material. This analysis assumes the
 dumpster will be transported off site at the end of the project for disposing of oversized materials.
 Dumpsters can be rented for about $200 per week, for a total cost  of about $600.

       Portable toilets can be rented for about $30  per week, for a total cost of about $90.

       A 5,000-gallon storage tank will be needed to store  wastewater at the end of the project
 prior to approval for off-site disposal. It is assumed that this tank will be rented for three months
 at a cost of about $90 per week.

 3.4.4  Startup

       The costs of  assembling the entire  treatment system and initial startup activities are
 included in the price of retaining the soil washing service. BioGenesis will provide trained
 personnel to deliver, assemble, operate, and maintain the BioGenesis™ treatment system.
 BioGenesis personnel are assumed to be trained in health and safety procedures. Therefore,
 training costs are not incurred as a direct startup cost. This analysis assumes that startup will  take
about 5 hours to complete.
                                             34

-------
3.4.5   Labor

       BioGenesis will provide the personnel required to operate and maintain the BioGenesis™
treatment system. The cost of these treatment system operators is included in the price of
retaining the soil washing service. However, two heavy equipment operators and one site
supervisor are also needed to complete the project.  All staff are assumed to work 16 8-hour days
to complete the project. All hourly labor wage rates presented in this analysis include overhead
and fringe benefits. This analysis assumes personnel are already health and safety trained.

       One heavy equipment operator will be  needed to operate earth-moving equipment and the
forklift, and one will be needed to operate the dumptruck.  The labor wage rate for heavy
equipment operators will be about $30 per hour, for a total of $7,700 (Means, 1993).

       One site supervisor will be needed to oversee all operations, collect samples, and perform
miscellaneous administrative functions. The labor wage rate for a site supervisor will be about
$35 per hour, for a total of $4,500 (Means, 1993).

       The total cost of labor for the duration of the project is estimated to be about $12,200.

3.4.6   Consumables and Supplies

       Most consumables  and supplies consumed during soil washing operations, including the
BioGenesis™ cleaner and antifoaming agents, are included in the price of retaining the soil
washing service.  The  consumables and supplies costs applicable to this analysis include  drums and
disposable PPE.

       Drums will be needed for storing recovered oil generated by the treatment system,
sediments collected in the treatment system  tanks, and disposable PPE. The generation  rate of
product oil and sediments will be site-specific. It was assumed that to treat 1,000 cubic yards of
soil, about 50 55-gallon drums of oil and 40 55-gallon drums of sediment will be generated.  Each
drum costs about $14 each. Used PPE will be disposed of in 24-gallon fiber drums. This analysis
assumes PPE  will be changed for the duration of the project and fill about 12 drums. Fiber drums
will cost  about $12 each. Total drum costs are estimated to be about $1,500.
                                            35

-------
        Disposable PPE includes Tyvek coveralls, gloves, booties, and air purifying respirator
 cartridges.  Both treatment system operators will wear PPE during excavation or all of the time if
 necessary.  The site supervisor will wear PPE during sample collection.  The heavy equipment
 operators will not need to wear PPE unless working close to excavated soil. The treatment system
 operators will change PPE twice per day, costing about $50 per day. This analysis assumes PPE
 will be needed for the duration of the project.  Total PPE costs are estimated to be about $800.

 3.4.7   Utilities

        Utilities used by the BioGenesis™ treatment system and auxiliary equipment include water
 and diesel fuel. It should be noted that electricity  may be used to operate the treatment system at
 some sites.

        Soil washing requires about 3,000 gallons of water per load. About 85 percent of the wash
 water can be recycled and reused.  This analysis assumes 15 percent of the total water
 requirements per batch, or about 450 gallons, will be lost due to soil retention and  evaporation,
 requiring the same amount of makeup water. The  total amount of water required to treat  1,000
 cubic yards of soil over the duration of the project will be about 20,000 gallons.  This analysis
 estimates water to cost $0.01 per gallon.  Total water costs will be about $200.  This cost can vary
 by as much  as 100 percent depending on the geographic location of the site, availability  of water,
 and distance to the nearest water main. Upon project completion,  the remaining wash water will
 be placed in a storage tank prior to off-site disposal.

        Diesel fuel will be used to power all  heavy equipment used at the site. This analysis
 assumes 50 gallons per day will be required and that heavy equipment will be operated for the
 duration of  the project. Total diesel  fuel usage  is estimated to be about 640 gallons. Diesel fuel is
 assumed to cost about $1.05 per gallon, for a total cost of about $670.

 3.4.8  Effluent Treatment and Disposal

       The  only effluent produced by the BioGenesis™ soil washing system that will require
 further  processing prior to disposal is wastewater. The BioGenesis™ cleaner transfers organic
compounds from the soil matrix to the liquid phase. As such, the liquid  phase will  require
treatment prior to discharging.  This contaminated wastewater will  be placed in a storage tank
prior to approval for discharging to a POTW. The costs associated with disposal of  wastewater  are
                                             36

-------
included in Section 3.4.9, Residual Waste Shipping and Handing. Cost of renting the 5,000-gallon
storage tank is covered in Section 3.4.3, Capital Equipment.

3.4.9  Residual Waste Shipping and Handling

       The residuals produced by the BioGenesis™ soil washing system that will require off-site
disposal include oversized materials, drummed sediments, drummed PPE, drummed recovered oil,
and wastewater. If treated soils do not meet cleanup goals and require off-site disposal, the costs
of disposal will be about $120 per cubic yard.

       Oversized materials, which is expected to be nonhazardous,  will be placed  in a dumpster
and disposed of off site at a landfill. For this analysis, about 20 cubic yards of material will need
to be disposed of.  Assuming disposal costs similar to those observed at the Santa Maria site, total
oversized material disposal costs are estimated to be about $900.

       Drummed sediments and drummed PPE will be disposed of off site at a landfill. For this
analysis, about 50 drums will need to be disposed of.  Based on observations made  at the Santa
Maria site, this analysis estimates transportation costs will be about $700 per trip, and disposal
costs will be about $300 per drum.  Disposing of these 50 drums is estimated to cost about
$16,000.

       Drummed recovered oil, if nonhazardous, will be disposed of by an oil recycling firm.
For this analysis, about 2,700 gallons of recovered oil will need to be disposed of.  Based on
observations made at the SITE demonstrations, disposal costs will be about $0.45 per gallon. Total
recovered oil disposal costs will be about $1,200.

       Wastewater will be placed in a storage tank prior  to approval by a wastewater disposal
facility.  For this analysis, about  3,000 gallons of water will  need to be disposed of. Based  on
observations made during the SITE demonstration, disposal costs are estimated to be about  $1.95
per gallon. Total wastewater disposal costs are estimated to  be about $6,000.
                                             37

-------
 3.4.10 Analytical Services

        Analytical costs include laboratory analyses only. The costs of laboratory analyses include
 sample analysis, data reduction and tabulation, quality assurance/quality control (QA/QC), and
 reporting. This economic analysis assumes that the untreated soil at the site is well characterized.
 It is assumed that for treating 1,000 cubic yards of soil, 5 untreated soil samples and 20 treated
 soil samples will be collected to be analyzed for TRPH. This analysis will cost about $2,100.  Data
 reduction, tabulation, QA/QC, and reporting are estimated to cost an additional $200.  Total
 analytical costs are estimated to be about $2,300.

 3.4.11  Maintenance and Modifications

        BioGenesis™ treatment system equipment maintenance and modification costs are
 included in the price  of retaining the soil washing service. Maintenance costs for all other
 equipment are assumed to be included in the cost of renting that equipment.  Therefore, no
 maintenance or modification costs will be incurred.

 3.4.12 Demobilization

       Site demobilization costs will include decontamination and site restoration.  This analysis
 assumes that shutdown, disassembly, and equipment return costs are included in the price of
 renting equipment and in retaining the soil washing service.  All demobilization activities should be
 completed  within 8 hours.

       The BioGenesis™ treatment equipment, heavy equipment, paved storage areas, and tanks
 will all need to be decontaminated prior to demobilization. A power wash and steam cleaner can be
 rented for this activity for about $70 per day.  Site restoration activities include regrading or filling
 excavation areas, and demolition and disposal of all fencing.  Total demobilization costs are
 estimated to be about $1,000.

 3.5    References

 Evans, G.,  1990, Estimating Innovative Technology Costs for the SITE Program.  Journal of Air and
       Waste Management Association, 40:7, pages 1047 through 1051.
Means, 1993, Means Heavy Construction Cost Data, 1993,  7th Edition, Construction Publishers and
       Consultants, Kingston, Massachusetts.
                                             38

-------
                                       SECTION 4
                             TREATMENT EFFECTIVENESS

       Results of the SITE demonstration at the refinery site are presented in this section.

4.1    Background

       The refinery site is an active facility.  The refinery contracted with BioGenesis to treat
approximately 2,000 cubic yards of soil contaminated with crude oil.  The contaminated soil was
stored in a soil pile. BioGenesis collected one sample from the soil pile and analyzed it for TRPH
and benzene, toluene, ethylbenzene,  and xylenes (BTEX). Analysis revealed TRPH concentrations
of 30,800 milligrams per kilogram (mg/kg), and BTEX concentrations of 0.24, 1.2, 0.25, and 4.3
mg/kg, respectively. Based on these results, TRPH was selected as the parameter of concern for
the SITE demonstration.

       The BioGenesis™ technology was evaluated to determine its  ability to extract TRPHs from
soil.  The objectives for the project were as follows:

              •      Determine removal efficiencies for TRPHs in the treatment system
              •      Evaluate whether or not the treatment system's performance is reproducible
                     at constant operating conditions
              •      Gather information necessary to estimate treatment costs, including process
                     chemical dosages and utility requirements
              •      Obtain information on biodegradation of TRPHs in treated soil by
                     monitoring TRPH concentrations in the treated soil over a period of time


       Three runs were conducted on three 18-cubic-yard batches of soil over 3 days.  Soils from
the pile were transported to the wash unit in a front-end loader with a bucket capacity of 4.5 cubic
yards. Mixing time, BioGenesis™ cleaner concentration, and mixing  intensity may influence the
effectiveness  of the soil washing process. BioGenesis  determined the  optimum values for these
parameters during work at the refinery site prior to the SITE demonstration and kept them at
constant during the demonstration. BioGenesis also raised the temperature of the wash water to
90°C using steam, believing that raising the temperature of the soil slurry during mixing would
enhance contaminant transfer from soil to wastewater. Results of treatability studies conducted at

                                            39

-------
 Santa Maria, California indicated that washing the soil slurry more than once increases the
 amount of contaminants transferred to wastewater.  Therefore, BioGenesis washed each batch of
 soil twice with water.

 4.2    Methodology

        Because the BioGenesis™ technology was developed to treat soils contaminated with
 organic compounds and because the principal contaminants in soil from the refinery are degraded
 petroleum hydrocarbons, TRPH was considered the critical analytical parameter. Samples for
 TRPH analysis were collected in triplicate from untreated and washed soils.  For each bucket load
 in the front-end loader, 15 soil samples were collected and arranged in three sets.  Therefore, for
 each run, 60 samples were arranged in three sets of 20 samples each.  These 20 samples were
 homogenized, and a sample was collected from each set.  Duplicate samples, if needed,  were
 collected from the same set of homogenized samples. TRPH concentrations in treated and
 contaminated soils, water, and wastewater were monitored. Other parameters monitored included
 percent moisture in soils and sediment, metals concentration, pH, and total organic carbon (TOG)
 in selected soil samples; volume and density of untreated soils; and total suspended solids  (TSS) in
 wastewater samples.  Metals content was monitored to determine levels of metals that  may be
 toxic to biodegrading microorganisms.  Percent moisture, TOG, and pH were monitored to
 determine the physical and chemical characteristics of the soil that may affect treatment.  The
 amount of solids transferred to the liquid phase was determined by monitoring TSS in wastewater.
       Contaminated soil, prior to loading in the wash unit, was screened through a sieve with
4-inch-diameter mesh.  Even after screening, soils contained large rocks and tar balls. The tar
balls were hard and brittle and consisted primarily of soils with a core of tar-like material.  The
tar balls broke  apart due to washing, and consequently, were rarely found in washed soil.  Rocks
and tar balls were not collected as samples since these were too large to introduce into the sample
bottles. Questions arose regarding the homogeneity of the soils and representativeness of the
sampling process.  To address this issue, 346 kg of soil was screened through a 0.5-inch-diameter
screen during Run 1. Rocks and tar balls remaining on the screen were separated by hand and
weighed. The rocks and tar balls weighed 31 kg and 9.15 kg, respectively.  Two rock samples and
two tar ball  samples were collected and analyzed in triplicate for TRPH. The data are presented
in Table 4-1. As expected, TRPH concentrations in rocks were approximately two orders of
magnitude lower than those in the tar balls. TRPH concentrations in the rock samples varied
                                            40

-------
           Table 4-1.  Total Recoverable Petroleum Hydrocarbon Concentrations in
                                Rocks and Tar balls, mg/kg
Rocks
Tar
balls
Sample 1
520
25,000
Duplicate 1
330
29,000
Triplicate 1
290
22,000
Sample 2
280
15,000
Duplicate 2
53
16,000
Triplicate 2
54
10,000
approximately one order of magnitude, reflecting the difficulty in homogenizing such samples.
Average concentrations of rocks and tar balls were 254 mg/kg and 19,500 mg/kg, respectively.
Calculations were made to estimate the error introduced by not accounting for the rocks and tar
balls during soil sampling. The mass of TRPH associated with rocks is equal to the average TRPH
concentration in rocks multiplied by the mass  of the rocks:

             254 mg/kg x 31  kg = 7,874 mg

       Similarly, the mass of TRPH associated with tar balls was calculated as follows:

              19,500 mg/kg x  9.15 kg = 178,425 mg

       Out of the 346 kg of soil screened through the 0.5-inch-diameter screen, 305.85 kg
contained an average TRPH concentration of 7,666 mg/kg (average of TRPH values in
contaminated soil during Run 1). Therefore, the mass  of TRPH associated with screened soil was
calculated as follows:

              7,666 mg/kg x 305.85 kg = 2,344,646 mg

       The mass of TRPH associated with rocks, tar balls, and screened soil was then summed to
calculate the total mass of TRPH in screened soil:

              7,874 mg + 178,425 mg  + 2,344,646 mg  = 2,530,945 mg

       Without the rocks and the tar balls, mass of TRPH in the same amount of soil is as follows:
                                            41

-------
              7,666 mg/kg x 346 kg = 2,652,436 mg

       Therefore, error introduced due to not accounting for the rocks and tar balls was
calculated as follows:

              (2,652,436 mg/2,530,945 mg) x 100 - 100 percent = 4.8 percent

       Therefore, the presence of rocks and tar balls in soils causes TRPH concentrations to be
overestimated by an insignificant amount.  Based on this result, the presence of rocks and tar balls
in soil, and the failure to account for this in the  sampling process, is not expected to affect the
TRPH data obtained during the demonstration.

4.3.   Physical  Analyses

       Three contaminated soil samples were collected during the demonstration to determine soil
density.  A metal cubitainer with a volume of 1 cubic foot was filled with soils and weighed. The
average density of the soil was determined as  1.74 grams per cubic centimeter. Based on 18 cubic
yards (14.14 cubic meters) of soil, the mass of soil treated during each run was 24.6 metric tons.

       The volume of wash water was monitored during each run.  Data are presented in
Table 4-2.  BioGenesis determined the amount of water to be used during each wash and used
about 23 liters of BioGenesis™ cleaner during each wash. Therefore, although cleaning solution
concentrations during each  wash varied, BioGenesis determined this operating condition to be
optimum.
                       Table 4-2. Volume of Water Used For Washing
Run Number
1
2
3
Wash Number
1
2
1
2
1
2
Volume (Liters)
17,080
14,340
16,280
11,750
12,810
17,870
                                            42

-------
       Particle size distribution (PSD) of soils is another characteristic that may influence
contaminant transfer from soils to water. The PSD data for soils used during the three runs are
presented in Table 4-3. Soils at the refinery had a PSD averaging 13% gravel, 76% sand, 6% silt,
and 5% clay.  About 89% of the soils were sand or coarser grained particles.  Soil washing
processes, in general, are more effective with coarse grained soils.
              Table 4-3.  Particle Size Distribution of Untreated Soils, in percent
Run
1
1
(duplicate)
2
3
Gravel
Particle Diameter
> 4.75 mm
10.3
11.5
13.9
13.8
Sand
Particle Diameter
0.075 - 4.75 mm
78.2
76.7
73.9
76.5
Silt
Particle Diameter
0.005 - 0.075 mm
6.8
7.9
6.4
4.3
Clay
Particle Diameter
< 0.005 mm
4.7
3.9
5.8
5.4
4.4    Chemical Analyses

       Analytical results for untreated and treated soils from Runs  1, 2, and 3 are presented in
Tables 4-4, 4-5, and 4-6, respectively. The metals concentration data show that metals were
present at levels generally found in natural soils and were not expected to be toxic to biodegrading
microorganisms.  Metals concentrations in the treated and untreated soils did not, and were not
expected to, reflect any discernible effect of the soil washing because metals were not targeted
with a metal washing surfactant blend. TOC and pH,  which were analyzed for untreated soil
only, showed comparable  values between runs.  Sorption and desorption characteristics of organics
from soils are influenced by TOC content of the soil.  TOC was monitored to determine its impact
on contaminant transfer.  TOC values ranged from 1.6  percent to 1.8 percent.  These TOC values
were comparable to values generally found in surface soils and indicate that petroleum
hydrocarbons would strongly sorb  onto the soil.  Since  the BioGenesis™ cleaner is alkaline, acidic
soil may decrease efficiency of contaminant transfer.  The pH of untreated soils  was near neutral
levels and was not expected to affect the treatment process.
                                             43

-------
             Table 4-4.  Analytical Results from Run 1 of the BioGenesis SITE Demonstration, mg/kg solids, dry weight
Parameter
TRPH
Percent Moisture
Arsenic
Barium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Sodium
Zinc
pH (pH units)
TOC
Untreated Soil
Sample 1
8,300
8.6
2.8
36
0.39f
13
8.7
10
0.05t
12
0.48
<0.75
160
26
8.1
16,000*
Field
Duplicate 1
7,500
7.5
2.2
19
<.37
7.7
5.8f
4.5
0.05f
7.9
<.38
<0.75
130f
13
8.2
16,000*
Sample 2
7,600
8.6
NA*
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Sample 3
7,500
7.6
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Treated Soil
Sample 1
2,900
6.1
1.8
19
<0.36
9.4
9.1
5.6
0.06*
9.1
<0.36
<.72
120f
35
NA
NA
Field
Duplicate 1
3,000
4.8
2
16
<0.37
10.3
7.7
3.8
0.04f
7.
<0.37
<0.74
98*
18
NA
NA
Sample 2
2,400
7.1
2.5
36.3
<0.37
15
9.5
9.4
0.05f
13
<0.36
<0.75
150*
26
NA
NA
Sample 3
2,600
7.1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Notes:
              Not analyzed.
              Less than five times detection limit.
              Average of TOC and TOC analytical duplicate values.

-------
           Table 4-5. Analytical Results from Run 2 of the BioGenesis SITE Demonstration, mg/kg solids, dry weight
Parameter
TRPH
Percent Moisture
Arsenic
Barium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Sodium
Zinc
pH (pH units)
TOC
Untreated Soil
Sample 1
7,700
10
2.9
33
0.39
13
9.8
9.7
<0.048
13
0.38
<0.78
230f
26
7.8
16,600*
Sample 2
7,900
10
NA*
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Sample 3
7,100
11
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Treated Soil
Sample 1
2,100
6.3
2.8
14
<0.38
14
6.3*
4.5
<0.042
12
<0.38
<.77
130t
16
NA
NA
Sample 2
2,000
8.4
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Sample 3
2,000
7.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Or
             Notes:
                          Not analyzed.
                          Less than five times detection limit.
                          Average of TOC and TOC analytical duplicate values.

-------
Table 4-6.  Analytical Results from Run 3 of the BioGenesis SITE Demonstration, mg/kg solids, dry weight
Parameter
TRPH
Percent Moisture
Arsenic
Barium
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Sodium
Zinc
pH (pH units)
TOC
Untreated Soil
Sample 1
8,800
9.8
3.6
30
<0.37
13
11
11
<0.047
11
0.66f
<0.75
110f
26
7.8
18,000*
Sample 2
10,000
8.0
NA*
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Sample 3
11,000
8.5
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Treated Soil
Sample 1
2,700
7.1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Sample 2
2,900
6.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Sample 3
2,900
8.7
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
 Notes:
              Not analyzed.
              Less than five times detection limit.
              Average of TOC and TOC analytical duplicate values.

-------
       TRPH data in Tables 4-4, 4-5, and 4-6 show that replicate samples produced comparable
results.  Average TRPH concentrations in treated and untreated soils are summarized in Table 4-7.
Table 4-7 shows that TRPH removal during Runs 1, 2, and 3 was 65, 73, and 72 percent,
respectively indicating  that the BioGenesis™ treatment system's performance is  reproducible at
constant operating conditions.
       Table 4-7. Average TRPH Concentrations in Untreated and Washed Soils, mg/kg
Run Number
1
2
3
Untreated Soil
7,666
7,567
9,933
Treated Soil
2,650
2,033
2,833
Percent Removal
65
73
72
       The BioGenesis™ treatment system also enhances biodegradation in treated soil.  The SITE
demonstration was conducted in November when temperature at the site was near 30°F.  Since the
temperature at the site was expected to be near or below freezing, biodegradation of contaminants
in the treated soil pile at the site was expected to proceed slowly.  Therefore, the biodegradation
study was conducted in a laboratory.  Treated soils from Runs 2 and 3 were collected in 5-gallon
buckets and stored at 70°F in a laboratory for monitoring over a period of time.  BioGenesis
added additional surfactant solution to the buckets at the time of collection.  Samples were
collected on Day 14, Day 40, Day  60, Day 90, Day 120, and Day 180 after treatment to determine
the extent of biodegradation in treated soil.  Samples for analyses were collected by homogenizing
three to seven grab samples from each bucket.  Duplicate samples were collected  from the same
batch of homogenized samples. Results of TRPH analyses are presented in Table 4-8. Average
TRPH concentrations in these samples are plotted in Figure 4-1. Table 4-8 and Figure 4-1
indicate that TRPH concentrations continued to decrease up to 120 days.  Further reduction in
TRPH levels was not observed after  120 days. BioGenesis added additional surfactant solutions to
the treated soil on-site between Day 120 and Day 150.  Subsequently, the refinery transferred the
soils to another location and added contaminated soil to the treated soil pile.  Therefore, it is
highly unlikely that representative treated soil samples could be obtained  to verify the results of
the laboratory biodegradation study.  For soils collected for the biodegradation study, additional
surfactant solution was added only at the beginning of the study.  Biogenesis believes that during
the laboratory biodegradation study, biodegradation was inhibited between Days  120 and  180
                                            47

-------
Table 4-8.  TRPH Concentrations in Treated Soil, mg/kg
Run/Day
Sample 1
Sample 2
Sample 3
Run 2
Day 0
Day 14
Day 40
Day 60
Day 90
Day 120
Day 180
2,100
2,200
2,000
1,600
1,100
980
1,060
2,000
2,100
2,000
NA*
970
920
1,100
2,000
2,600
2,000
NA
1,000
970
1,000
Run 3
Day 0
Day 14
Day 40
Day 60
Day 90
Day 120
Day 180
2,700
3,100
2,600
2,100
1,500
1,200
1,380
2,900
3,200
3,300
NA
1,400
1,100
1,590
2,900
2,900
2,700
NA
2,300
1,000
1,390
  Note:
                Not available.
                         48

-------
JZ
jg»
"o
*


£>
•o

o>
X.

o»

E

 •
X
Q.
ce
                                                      100
120
140
160
180
                                                 DAYS
      Figure 4-1.   Bfodegradatlon results;  TRPH  concentrations  from  treated  soils  over time.

-------
 due to nutrient limitations. The microorganisms apparently required an acclimatization period of
 about 40 days.

        Results of TRPH concentrations in untreated soils after washing from Run  1 and following
 washing and biodegradation up to 120 days from Runs 2 and 3 are plotted in Figure 4-2.  Soils
 from Runs 2 and 3 show a removal efficiency of 83 and 88 percent, respectively, from washing
 and biodegradation.

        To confirm that a healthy population of microorganisms capable of degrading crude oil
 was present in the treated soil, samples collected on Day 90 were characterized for bacterial
 population.  Samples were analyzed to determine the population of aerobic heterotrophic bacteria
 that require organic compounds for growth and reproduction.  The population of aerobic
 heterotrophic bacteria in these samples ranged between 7.3 x 107 colony forming units per gram
 (CFU/gm) to 1.3 x 108 CFU/gm. Petroleum aerobic hydrocarbon-utilizing bacteria, a subset of
 heterotrophic bacteria, that can degrade petroleum hydrocarbons were also analyzed.  The
 population of hydrocarbon utilizing bacteria in these samples ranged between 5.7 x 106 CFU/gm
 to 1.1 x 107 CFU/gm. In general, there were no major differences in the colony appearance or
 morphology in the soil samples. The same types of organisms were present in each  sample.  The
 numbers of different types of colonies, or colony diversity, was high.  This indicates the
 population was healthy and not dependent on one dominant organism.  A well established
 population is flexible and can easily reestablish its  numbers when assaulted by pH shifts,
 temperature shifts, or chemical additions.  It also indicates that the surfactant, the defoaming
 agent, and the degradation products of petroleum hydrocarbons are not toxic to  the
 microorganisms.  In summary,  the bacterial analysis indicated the presence of a healthy and
 diverse  bacterial population well acclimated to hydrocarbons as a carbon source  in the treated soil.

       Although wastewater samples were collected during the demonstration, some of the
 wastewater was discharged directly into the drains  leading to the refinery's wastewater treatment
system.  During each wash, wastewater samples were collected twice: once from  wastewater skims
containing mostly oily materials and again from wastewater drained at the end of the wash.  The
TRPH and TSS data are presented in Table 4-9. TRPH and TSS values in the wastewater skims
for all runs ranged from 76 to 1,500 milligrams per liter (mg/L) and 10,000 to 83,000 mg/L,
respectively.  TRPH and TSS in wastewater at the end of the wash ranged from 95 to 700 mg/L
and 4,200  to 23,000 mg/L, respectively.  The  TSS data indicated that large amounts of fine
                                            50

-------
JC
01
.

0>

E
c
o
O
C
o
o

X
Q.
     12
     10
                                                     N
               RUN  1
                                            RUN 2
RUN 3
        UNTREATED SOIL


        WASHED SOIL

        WASHED AND BIODEGRADED
        SOIL AFTER 120 DAYS
        Figure 4-2.   Average TRPH concentrations In treated  and'untreated soils,
                      Blodegradatlon study  only conducted during runs  2 and 3.

-------
                       Table 4-9.  TRPH and TSS in Wastewater, mg/L
Run
Number
1
2
3
Wash
Number
1
2
1
2
1
2
Wastewater Skims
TRPH
680a
195
470
76
1,200
1,500
TSS
46,000'
10,000
82,000
31,000
83,000
32,000
Drained Wastewater
TRPH
95
170'
360
700
140
180
TSS
12,000
4,200"
18,000
6,900
23,000
9,000
              Note:
                            Average of duplicate field samples
particles were present in the wastewater. A mass balance of TRPH in the system was not possible
because data regarding volume of wastewater was unavailable.

       TRPH concentrations in washwater, BioGenesis™ cleaner, and a defoaming agent used by
BioGenesis were monitored. TRPH concentrations in these media were either at low levels or
below detection limits and were not expected to impact TRPH levels in soils or wastewater.

       Information available prior  to the SITE demonstration indicated that volatile compounds,
including chlorinated solvents, were present only at trace levels in contaminated soil.  In addition
to TRPH and metals, soils and  tar balls collected during Run 3 were also analyzed for BTEX and
total petroleum hydrocarbon as gasoline (TPH-gasoline).  Results of the chemical analyses are
presented in Table 4-10.  The data show that concentrations of volatile compounds, except
toluene, decreased by approximately an order of magnitude in the washed soil compared to the
untreated soil. However, the decrease is attributable to both losses due to volatilization during soil
washing and contaminant transfer from soil to water.  Concentrations of volatile organics were
found to be lower in the tar ball samples compared to untreated soils.
                                            52

-------
                          Table 4-10. Selected Volatile Organics in Contaminated Soil, (micrograms/kilogram)
Chemical
Benzene
Ethylbenzene
Gasoline
Toluene
Xylenes
Untreated Soil
Sample 1
<320
950C
1,100,000°
630C
5,200C
Sample 2
<160
630C
820,000°
660C
3,500C
Sample 3
<160
740G@
870,000°
540C@
4,600C
Treated Soil
Sample 1
40C
97c
160,000°
230C
620C
Sample 2
41C
90C
160,000°
230C
260C
Sample 3
36C@
100C@
150,000°
240C
590C
Tar Balls
Sample 1
<67
460°
510,000°
120°
3,900°
Sample 2
62C
250C
230,000°
360C
1,200C
01
CO
          Notes:
          @
          G
Less than five times detection limit
For gasoline indicates an estimated value since the pattern does not exactly match the standard profile.  For toluene and
ethylbenzene indicate that the first and second column concentrations differ by more than two times.
This analysis was confirmed on a second column or by gas chromatography/ mass spectroscopy.

-------
       Treated soils from Runs 2 and 3 were collected on Day 180 and analyzed for selected
volatile organics. The results are presented in Table 4-11.  Toluene and xylenes were the only
volatile compounds detected in these samples.  Reductions in levels of volatile compounds in these
samples are expected primarily due to volatilization. Comparing volatile organic concentrations
from Tables 4-10 and 4-11, losses due to volatilization in 180 days can be conservatively estimated
at approximately 160 mg/kg. Table 4-8 shows that during the biodegradation study, TRPH levels
were reduced approximately between 1,000 and 1,700 mg/kg.  Furthermore, volatile components
present in soils are not expected to be accounted for in the TRPH data, since the sample
preparation method for TRPH analysis is expected to drive off volatile components. Leaching is
not expected to contribute to TRPH reduction, since the soils were contained in buckets.
Therefore, reductions in TRPH levels observed during the biodegradation study are attributable to
processes other than losses due to volatilization and leaching, such as biodegradation.

4.5    Residuals

       Residual  wastes from the BioGenesis™ treatment system include both liquid and solid
wastes.  Operation of the BioGenesis™ treatment system generates the following  wastes:

              •       Treated soils  will be placed in on-site roll-off bins and covered with plastic
                     sheeting until analytical results are received.  Treated soils may require
                     further treatment or disposal at permitted facilities.
              •       Wastewater generated during the process and decontamination water will
                     usually require further treatment at permitted wastewater treatment
                     facilities.  For most sites, BioGenesis proposes to recycle wastewater and
                     finally treat it with its oil/water separators and bioreactor.  Wastewater may
                     also be disposed of in underground injection wells.
              •       Suspended soil particles will be  recovered directly from spent wastewater;
                     if these sediments are present in appreciable amounts, they will require
                     further treatment.
              •       Recovered oil or hydrocarbons will be collected in 55-gallon drums  and
                     temporarily stored on site; management or disposal requirements  will be
                     determined after analytical results are received.
              •       If volatile emissions are  released during the soil washing process, used
                     carbon filters from the wash unit hood will be properly disposed  of off site.
              •       Disposable personal protection equipment (PPE) will be stored in 55-gallon
                     drums and transported off site for incineration or landfill disposal.
                                            54

-------
          Table 4-11.  Selected Volatile Organics in Treated Soil, Day 180, micrograms/kilogram dry weight
Contaminant
Benzene
Ethylbenzene
Gasoline
Toluene
Xylenes
Run 2
Sample 1
<31.8
32.6K
<5,290
50.7C
120C
Sample 2
<31.8
<31.8
<5,300
55.1C
109C
Sample 3
<31.8
<31.8
<5,290
51.2C
112C
Run 3
Sample 1
<32.2
<32.2
<5,450
39.2C
96.1C
Sample 2
<32.6
<32.6
<5,520
39.4C
96.2C
Sample 3
<32.7
<32.7
<5,530
40.9C
99.7C
Notes:
       Confirmed by second column analysis.
       Primary column peak at this retention time did not meet method identification criteria.  Analyte not detected on second
       GC column.

-------
       After washing and biodegradation, treated solids may require disposal at permitted
facilities. Contaminated soil at the refinery was not hazardous, as defined by RCRA or state
regulations. TRPHs in the treated soils from the refinery will be allowed to biodegrade before
disposal. Soils at the refinery are being stored in a large pile.  BioGenesis expects that the TRPH
in the soil will eventually decrease to levels that will meet local regulatory requirements for reuse
of the soil as fill material. Wastewater will usually require further treatment. For most sites,
BioGenesis proposes to recycle wastewater and finally treat it with its oil/water separators and the
bioreactor. However, such equipment was not used at the refinery.  Sediments in the wastewater,
if present at appreciable amounts, require further treatment.  BioGenesis™'  wash unit is  equipped
with carbon filters to treat volatile emissions.  However, because volatile compounds were not
present in soils treated at the refinery, the carbon filters were not used.

       Assuming that the treated soil will meet regulatory requirements for reuse as fill material,
wastewater and sediments in wastewater were the only residuals generated at the refinery. It was
not possible to measure the volume of wastewater at the refinery. Assuming that volume of
wastewater is the same as the volume of water used for washing, approximately 15,000  liters
(average  volume of water used during the three runs) of wastewater was generated to treat 18
cubic yards of soil.  Estimation of amount of sediment in wastewater is complicated by the fact
that the amount of wastewater withdrawn from the wash unit during skimming as compared to
during draining at the end of the wash is not known.

       TRPH concentrations in wastewater range from  76 to 1,500 mg/L. Disposal  methods for
wastewater include further treatment and injection in underground wells. TRPH in sediment is
expected to be high and  would require further treatment prior to disposal.
                                            56

-------
                                        SECTION 5
                        OTHER TECHNOLOGY REQUIREMENTS

5.1    Environmental Regulation Requirements

       State regulatory agencies may require permits to be obtained prior to implementing the
BioGenesis™ treatment system.  A permit may be required to operate the system. An air
emissions permit and a permit to store contaminated soil in drums on site for greater than 90 days
may also be required. A permit is also needed for storage in a waste pile for any length of time.

       If off-site disposal of contaminated soils is required, soils must be taken off site by a
licensed transporter to a permitted landfill.  Wastewater generated by the BioGenesis™ treatment
system must be discharged to a permitted wastewater treatment plant or disposed of in a
permitted underground injection well.

5.2    Personnel Issues

       Two technicians are required to operate the BioGenesis™ treatment system. In addition,
one BioGenesis employee familiar with the wash unit's performance will be needed to determine
the optimum operating conditions specific to each site.  The efficiency of the wash unit is affected
by soil and contaminant types.  If soil excavation is required, additional personnel will be needed
to operate earth-moving equipment. The BioGenesis™ treatment system should be operated
during daylight hours unless sufficient flood lights are  available to operate the system after dark.

       For most sites, PPE for workers will include gloves and overalls. Depending on contaminant
types and concentrations, additional PPE may be required.  Noise levels should be monitored to
ensure that workers are not exposed to noise levels above a time-weighted average of 85 decibels,
over an 8-hour day. If operation of the BioGenesis™ treatment system increases noise levels above
this limit, workers will be required to wear additional protection.

5.3    Community Acceptance

       Potential hazards related to the community include exposure to volatile pollutants and other
particulate matters released to air during soil excavation and handling.  Further, the
biodegradation process may require contaminated soils  to remain stockpiled on site for extended

                                             57

-------
periods of time.  This could expose the community to airborne emissions for several months. Air
emissions can be managed by watering down the soils prior to excavation and handling and
covering the stockpiled soil with plastic.

       If volatile compounds are present in contaminated soils, operation of the wash unit may
release volatile emissions. The BioGenesis™ wash unit is equipped with carbon filters to treat
volatile emissions.
                                           58

-------
                                       SECTION 6
                                 TECHNOLOGY STATUS

       BioGenesis treated 2,000 cubic yards of crude oil-contaminated soil at the refinery site.  In
addition to samples collected during the SITE demonstration, three untreated soil samples were
collected by BioGenesis.  BioGenesis presents the results of chemical analyses and its
interpretation of the data in Appendix I.

       The BioGenesis™ technology was used to treat contaminated harbor sediments in Thunder
Bay, Ontario, Canada, in June 1993. BioGenesis presents the treatment results in Appendix II.
                                            59

-------
                                      APPENDIX I
                            BIOGENESIS ENTERPRISES, INC.
            SUPPLEMENTARY DATA FOR UNTREATED SOIL TRPH LEVELS
       BioGenesis Enterprises, Inc. (BioGenesis), reports that untreated soil samples tested for
the refinery and samples tested for BioGenesis by an independent laboratory all contained TRPH
levels significantly higher than in the samples collected during the SITE demonstration. Test
results, their source, and sampling dates are as follows:
Date
April 1992
July 1992
October 1992
Tested By
Refinery's Independent Lab
Refinery's Independent Lab
BioGenesis' Independent Lab
Test Method
418.1 (IR)
418.1 (IR)
9073 (GC)
Before Washing
TRPH (ppm)
40,148
16,500
30,800
       These results differ significantly from the untreated soil range of TRPH of 7,700 to 11,000
parts per million (ppm) observed during the demonstration.  Differences are attributable partly to
degradation of oil in the soil and to differences in sampling and sample handling.  BioGenesis
recommends that process efficiency be viewed as the result of washing combined with
biodegradation. The impact of the different results on washing efficiency is shown in the following
tables. These results are based on TRPH data for Runs 2 and 3 of the demonstration and
degradation to 120 days as documented in this report.
Tested By
Refinery, 4/92
Refinery, 7/92
BioGenesis, 10/92
Demonstration, 11/92
Average Calculated
Wash Efficiency
(Biodegradation Excluded)
94%
85%
88%
72%
Average Calculated
Process Efficiency
(Biodegradation Included)
95%
85%
97%
88%
                                           60

-------
                                      APPENDIX H
                           BIOGENESIS ENTERPRISES, INC.
 SUPPLEMENTARY DATA ABOUT WASHING EXTREMELY FINE SEDIMENTS FROM A
                           FORMER WOOD TREATING SITE
       In addition to SITE program testing, BioGenesis has developed a method of cleaning oils,
organic chemicals, PCBs, and heavy metals from very fine sediments with particles less than 50
microns in size. Numerous harbors and rivers have large volumes of sediments with high
contamination levels from wood preserving, dumping, and other chemical processes. In addition,
this method has significant applications in the oil industry for treating drilling mud containing
fines.

       To date, soil washing using particle segregation/classification and washing techniques
borrowed from the mining industry have successfully cleaned coarse particles but have been unable
to clean the fines. The ex-mining technology has been well developed in Europe and is being
imported to the U.S.   EPA reviewed this technology in 1990 and concluded it should be viewed
principally as a volume reduction method that concentrates the pollutant to about 30 percent of
the original volume.

       In December 1992, Wastewater Technology Centre (WTC), the Canadian EPA's test and
development organization, contracted with BioGenesis to test BioGenesis sediment washing.  The
testing was conducted under the Great Lakes Cleanup program and involved cleaning
contaminated sediment from a wood treating site at Thunder Bay Harbour, Ontario. The principal
contaminant is polycyclic aromatic hydrocarbons (PAHs). Sieve testing showed that 80 percent of
the sediment is smaller than 38 microns in size.

       In June 1993, with the participation of WTC representatives, Thunder Bay sediment was
processed through a field prototype machine using the BioGenesis process at a rate of 2 cubic
yards per hour. Results are summarized in the following tables. Results are for initial washing
and do not include the effect of residual biodegradation.
                                            61

-------
Test Parameter
Total Petroleum Hydrocarbons
Oil and Grease
Semivolatile Petroleum HC (C12-C23 as diesel)
Total Organic Carbon
Before
Washing
(ppm)
4,770
91,600
21,000
11.5%
After
Washing
(ppm)
400
3,940
2,200
2.9%
Removal
Percent
91.6
95.7
89.5
74.8
Polyaromatic Hydrocarbons
(PAHs)
Naphthalene
Acenaphthylene
Acenaphthene
Fluorene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benzo(a)anthracene
Chrysene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(a)pyrene
IndenoC l,2,3-cd)pyrene
Dibenzo(a,h)anthracene
Benzo(g,h ,i)perylene

CAS
91-20-3
208-96-8
83-32-9
86-73-7
85-01-8
120-12-7
206-44-0
129-00-0
56-55-3
218-01-9
205-99-2
207-08-9
50-32-8
193-39-5
53-70-3
191-24-2

Before
Washing ppm
1,400
16
305
240
770
110
400
300
115
75
120
42
82
30
8.90
28
4,041.90
After
Washing ppm
73
1.5
34
30
88
16
59
44
19
12
19
6.10
12
5
1.40
3.90
423.90
Removal
Percent
94.8
90.6
88.9
87.5
88.6
85.5
85.3
85.3
83.5
84.0
84.2
85.5
85.4
83.3
84.3
86.1
89.5
Notes:
       Five minute wash cycle utilized with continuous process washing system.

       Washing audited by Wastewater Technology Centre (Canadian EPA).  Independent testing
       by Galson Laboratories, Syracuse, New York.

       Detailed test reports available from BioGenesis.
                                            62

-------