-------
Table V-88 (Continued)
NICKEL-COBALT WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Nniicunvent ional Pollutants (Continued)
hul fate
r i n
Ti tani urn
Total Dissolved Solids (TDS)
"lotal Organic Carbon (TOO
O I ot.a 1 Sol ids (TS)
vo
cn
vanadium
Y 1 1 1 i um '
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
D-1 1
F-21
D-11
D-1 1 '
D-1 1
F--2-1
D-11
F-21
D-1 1
F-21
D-11
D-1 1
D-1 1
F-21
D-1 1
F-21
D-1 1
F-21
Sampl e
1
3
1
1
1
3
1
3
1
3
1
1
1
1
1
3
1
3
Concentrations (mg/1)
Source
53
130
<0. 12
<0.005
393
- 320
8
2
395
330
0.016
<0.002
<1
<1
<1
22
7.14
6.64
Day 1 Day 2 Day 3
41
94
<0.12
0. 1 1
780
230
13
<1
860
460
0.016
0.003
<1
1 1
15
190
2.63
7.47
-------
Table V-88 (Continued)
NICKEL-COBALT WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
2. Note that stream code V-5 also appears on the titanium wet air pollution control
blowdown raw wastewater sampling data table. The wastewater is derived from an
operation in both subcategories.
0\
ID
-------
I Table V-89
f
NICKEL-COBALT ELECTROCOATING RINSE
! '
Water Use j Percent Wastewater Discharge
Plant L/kkg gal/ton Recycle L/kkg gal/ton
i _ :
1 3,367 807.4 0.0 3,367 807.4
Average 3,367 807-4 3,367 807.4
697
-------
Average
Table V-90
PRECIOUS METALS ROLLING SPENT NEAT OILS
Plant
1
2
Water Use
L/kkg gal/ton
NR NR
NR NR
Percent
Recycle
NR
100
Wastewater Discha
L/kkg gal/to
0.00 0.00
0.00 0.00
NR
NR
0.00
0.00
NR - Data not reported
698
-------
Table V-91
PRECIOUS METALS ROLLING SPENT EMULSIONS
Plant
1
2
3
4
4
5
Water
L/kkg
NR
NR
' NR
' 67.6
NR
NR •
Use ;
gal/ton
NR
NR
1
NR
16.2
NR
NR
Percent
Recycle
P
P
P
NR
P
P
Wastewater
L/kkg
25.00
46.47
160.1 :
NR
NR
NR
Discharge
gal/ton
6.00
11.14
38.40
NR
NR
NR
Average
67.60 •
16.20
77.20
18.51
P - Periodic discharge
NR -r- Data not reported
699
-------
Table V-82
PRECIOUS METALS ROLLING SPENT EMULSIOHS
RAW WASTEWATER SAMPLING DATA
O
o
Pollutant
Toxic Pollutants
4. benzene
11. 1,1,1-trichloroethane
44. methylene chloride
87. trichloroethy1ene
114. antimony
115. arsenic
'117. beryl 1i urn
118, cadtni uui
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
123. mercury
Stream
Code
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
Sample Concent rat
Type Source Day
1 ND
1 .0.022
1 0.003
1 ND
1 <0.010
1 <0.010
1 <0.005
1 <0.020
1 <0.020
1 0.200
1 <0.02
1 <0.050
1 <0.0002
ions (nig/ 1 )
1 Day 2 Day 3
0.319
ND
1 .330
1 .380
<0.010
<0.010
<0.050
<0.200
<0.200
25.0
<0.02
1 .00
0.0006
-------
Table V-92 (Continued)
PRECIOUS METALS ROLLING .SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Stream . Sample
Concentrations Cmg/ 1)
Pollutant Code Type Source Day 1 Day 2 Day 3
Toxic Pollutants (Continued)
124. nickel 1-5 1 <0
125. selenium 1-5 1 <0
126. silver 1-5 1 <0
127. thallium 1-5 1 <0
128. zinc . 1-5 " 1 0
Nonconvent i ona Pollutants
Acidi ty ' . 1-5 - . 1 <1
,j • Alkalinity 1-5 1 40
O
H Aluminum ... i. . 1-5 , _ 1 <0
Ammonia Nitrogen . 1-5 1 0
Barium 1-5 1 <0
.050
.010
.010
.010
.040
. 100
.06
.050
1 .00
<0.010
0.130
<0.010
6.00
".' .>, -':
2 , 1 00
<1 .00
0.4
; <0.500 :
-------
Table V-92 (Continued)
PRECIOUS METALS ROLLING SPENT EMULSIONS
RAW V/ASTEWATER SAMPLING DATA
O
N>
Pol lutant
Stream
Code
Sample
Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluoride
I ron
Magnesi urn
Manganese
Mo 1 ybdenum
Phenol i cs
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1 <0
1 13
1 150
1 30
1 <0
1 0
1 0
1 2
1 0
1 <0
1 <0
.100
.8
.050
.32
.100
.70
.100
.050
.005
<1
7
900
42
<0
0
26
3
<0
<0
<0
.00
.00
.500
.29
.5
.00
.500
.500
.005
-------
Table V-92 (Continued;
PRECIOUS METALS ROLLING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Nonconvent ional Pollutants (Continued)
Phosphate
Sodium
bu 1 fate
Tin
Ti tani um
Total Dissolved Solids (TDS)
Total Organic Carbon- (TOO
O Total Solids (TS)
U)
Stream
Code
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
Sample Concentrations (mg/1)
Type Source
1 2.7
1 28.0
1 740
1 <0.050
. . • J .. <0...050
1 850
1 63
1 11,500
Day 1 Day 2 Day 3
570
585
8,500
<0.500
<0 500
32,000 A
43
33,000
-------
Table V-92 (Continued)
PRECIOUS METALS ROLLING SPENT EMULSIONS
RAW WASTEV/ATER SAMPLING DATA
Pol lutant
Nonconventional Pollutants (Continued)
Vanadium
Yttrium
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
1-5
1-5
1-5
1-5
1-5
Sample Concentrations (mg/L)
Type Source
1 <0.050
1 <0 . 050
1 <1
1 300
1 6. 10
Day 1 Day 2 Da
<0.500
<0.500
1,500
500
8.70 •
A - Sample would not evaporate at 180C.
1. The following toxic pollutants were not detected in this waste stream: 1-3, 5-10,
12-43, 45-86, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
•i Table V-93
PRECIOUS METALS DRAWING SPENT NEAT OILS
Plant
1
Average
Water Use .j
L/kkg gal/ton
NR
NR
NR
NR
Percent
Recycle
NR
Wastewater Discharge
L/kkg gal/ton
0..00
0.00
0.00
0.00
NR - Data not reported
705
-------
Table V-94
PRECIOUS METALS DRAWING SPENT EMULSIONS
Plant
1
1
2
3
4
5
5
6
2
3
7
8
Water
L/kkg
NR
NR
NR
35,500
NR
NR
NR
NR
148.4
NR
NR
NR
Use
gal/ton
NR
NR
NR
8,520
NR
NR
NR
NR
35.60
NR
NR
NR
Percent
Recycle
100
100
100
P
P
P
P
P
0.0
P
P
NR
Wastewater
L/kkg
0.00
0.00
0.00
9.47
14.77
32.90
38.63
141.8
142.4
NR
NR
NR
Discharge
gal/ton
0.00
0.00 '
0.00
2.27
3.54
7.89
9.26
33.99
34.15
NR
NR
NR
Average 17,820
4,278
63.32
15.18
P - Periodic discharge
NR - Data not reported
706
-------
Table V-95
PRECIOUS METALS DRAWING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pol lutant •
Toxic Pollutants
11. 1 , 1 , 1 -trichl oroethane
44. methylene chloride
114. ant imony
115. arseni c
117. bery 1 1 i um
1 187 ~C"a-dmTTim~ '
119. chromium (total )
1 20 . copper
121. cyanide (total)
122. lead
123. mercury
124. n-ickel
1 25 . se 1 eni um
126.' silver
127. thallium
128. zinc
Nonconvent i onal- Pol 1 utants
Acidi ty
Alkal inity
Aluminum
Ammonia Nitrogen
Barium
Stream
Code
1-7
1-7
1-7
1-7
/
1-7
T "7
1 — /
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7 '
1-7
1-7
1-7
Sample Concentrations (mg/1)
Type Source
1 0.022
1 0.003
1 <0.010
1 <0.010
1 <0.005
1 <0.020
1 0.200
1 <0.02
1 <0.050
1 <0.0002
1 <0.050
1 <0.010
1 <0.010
1 <0.010
1 0.040
1 <1
1 40
1 <0.100
1 0.06
1 <0.050
Day 2 Day 3 Day 4
3.040
0.879
<0.010
<0.010
<0.005
— <0'."Q~2'Q" ~ ~ '~ ~~ ------ - -- - - ~- - . - -- _ . . _ - - _-
<0.020
46.4 .
<0 . 02
1.05
<0.0002
0.750
<0.010
: 0 . 090
<0.010
5.18
-------
Tab)* V-95 (Continued)
PRECIOUS METALS DRAWING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pol lutant
Nonconventional Pollutants (Continued)
Boron
Cal cium
Chemical Oxygen Demand (COD)
Chloride
Cobal t
Fl uoride
^j Iron
O
00 Magnesium
Manganese
Mol ybdenum
Phenol ics ,
Phosphate
Sodium
Sulf ate
Tin
Ti tanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Yttrium
Stream
Code
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-7
Samp
Typi
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
le Concentrations (nig/1)
a Source
<0.100
13.8
150
30
<0.050
0.32
0. 100
2.70
<0.050
<0.050
<0.005
2.7
28.0
740
<0.050
<0.050
850
63
1 1 ,500
<0.050
<0.050
Day 2 Day 3 Day 4
0. 100
5.70
1 ,600
57
0.050
0. 14
7. 10
1.90 •
.0. 150
<0.050
<0.005
1 ,000
109
1 ,600
0.150
<0.050
420
18
1 ,430
<0.050
<0.050
-------
Table V-95 (Continued)
PRECIOUS METALS DRAWING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pollutant
Conventional Pollutants.
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
1-7
1-7
-1-7
Sample
Type
Concentrations (mg/1)
Source
Day 2
Day 3
1 <1
1 300
1 6. 10
33,000
8.20
Day 4
-J
o
vo
1 . The following toxic pollutants were not detected in this waste stream: 1-10, 12-43
and 45-88.
2. No. analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-96
PRECIOUS METALS DRAWING SPENT SOAP SOLUTIONS
Plant
1
2
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
NR
NR
Percent
Recycle
P
NR
Wastewater Discharge
L/kkg gal/ton
3.12
NR
3.12
0.748
NR
0.748
P - Periodic discharge
NR - Data not reported
710
-------
; Table V-97
PRECIOUS METALS' METAL POWDER PRODUCTION
ATOMIZATION WASTEWATER
Plant
1
Average
Water Use ;
L/kkg gal/tpn
i
6,922 1,660,
6,922 1,660;
i
Percent Wastewater
Recycle L/kkg i
0.0 6,683 '• 1
6,683 1
Dis
gal
,603
,603
711
-------
Table V-98
PRECIOUS METALS DIRECT CHILL CASTING
CONTACT COOLING WATER
Water Use
Plant
1
2
2
3
L/kkg
64,200
2,590
19,000
145,000
gal/ton
15,400
622.0
4,550
34,700
Percent
Recycle
100
0.0
0.0
NR
Wastewater Discharge
L/kkg
0.00
2,590
19,000
NR
gal/ton
0.00
622.0
4,550'
NR
Average 57,700 13,820
10,800
2,590
NR
Data not reported
712
-------
;Table V-99
PRECIOUS JMETALS SHOT CASTING
CONTACT COOLING WATER
Plant
Average
Water Use
L/kkg gal/ton
3,670
3,670
880.2
880.2
Percent
Recycle
0.0
Wastewater Discharge
L/kkg . gal/ton
3,670
3,670
880.2
880.2
713
-------
Table V-100
PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
#»
Toxic
11 .
44.
86.
87.
1 14.
115.
1 17.
118.
1 19.
120.
121 .
122.
123.
124.
125.
126.
127.
128.
Pol lutant
Pol lutants
1,1, 1-trichlo roe thane
methylene chloride
toluene
trichloroethy lene
ant imony
arsenic
beryl 1 ium
cadmium
chromium (total )
copper
cyanide (total )
1 ead
mercury
nickel
sel eniurn
si 1 ver
thai 1 ium
zi nc
Stream
Code
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
Samp 1 e
Concentrations (mg/1)
Type Source
1 0.022
1 0
1
1
1 .0
1 <0
1 <0
1 <0
1 <0
1 0
1 <0
1 <0
1 <0
1 <0
1 <0
.003
ND
ND
.010
.010
.005
.020
.020
.200
.02
.050
.0002
.050
.010
1 <0.010
1 <0.010
1 0
.040
Day 1
0.018
0
0
0
0
<0
<0
0
<0
0
<0
0
<0
<0
<0
0
<0
0
.004
.003
.002
.050
.010
.005
.040
.020
.600
.02
.050
.0002
.050
.010
.050
.010
.520
Day 2 Day 3
<0
<0
<0
9
<0
0
<0
<0
<0
0
<0
0
<0
5
.010
.010
.005
.88
.020
.500
.02
.050
.0002
.100
.010
.040
.010
.66
Nonconvent i onal Pollutants
Acidity
Al kal
i ni ty
Al urninum
1-3
1-3
1-3
1 <1
1 40
1 <0
. 100
<1
47
<0
. 100
<1
56
<0
. 100
-------
Table V-100 (Continued)
PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA .
Stream Sample Concentrations (mg/1)
Pol lutant
Nonconvent i onal Pollutants (Continued)
Ammonia Nitrogen
Barium
Boron
Cal c i urn
Chemical Oxygen Demand (COD)
Chloride
Cobalt
^j
l_i F 1 uoride
Ul
.. . .. - Iron, - -
Magn,esium
Manganese
Molybdenum
Phenolics
Phosphate
Sodium
Sulfate
Tin
Titanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Yttrium
Code
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3.
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
1-3
Type Source
1 0.06
1 <0.050
1 <0.100
1 13.8
1 150
1 30
_i !P_._P_5CL
1 0.32
1 0. 100
1 2.70
1 0.100
1 <0.050
1 <0.005
1 2.7
1 28.0
1 740
1 <0.050
1 <0.050
1 850
1 63
1 11,500
1 <0.050
1 <0.050
Day 1
0.04
<0.050
1 .70
11.1
35 1
28
_.._
-------
Table V-100 (Continued)
PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pollutant
•invi > it ion"! Pollutants
i)i 1 and Grca^d
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
1-3
1-3
1-3
Samp 1e
Type
Concentrations (mg/1)
Source
300
- 6.10
Day 1
91
6.34
Day 2
54
6.70
Day 3
1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43,
45-85, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
: Table V-101
PRECIOUS METALS STATIONARY CASTING
CONTACT COOLING WATER
Plant
1
2
3
4
5
Water Use ;
L/kkg gal/ton
l
NR NR
NR NR
52,120 12,500
NR NR
NR NR
Percent
Recycle
100
P
99.8
NR
NR
Wastewater
L/kkg;
,
0.00
61.30
110.2 :
NR
NR
Discharge
gal/ton
0.00
14.70
26.43
NR
NR
Average 52,120
12,500
'85.76
20.57
P - Periodic discharge
NR - Data not reported
717
-------
Table V-102
PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING
CONTACT COOLING WATER-
Plant
1
2
3
4
5
Water Use
L/kkg gal/ton
255,500
402,000
10,349
NR
NR
61,270
96,400
2,482
NR
NR
Percent
Recycle
100
100
0.0
0.0
NR
Average 222,600 53,380
Wastewater Discharge
L/kkg gal/ton
0.00
0.00
10,349
NR
NR
10,349
0.00
0.00
2,482
NR
NR
2,482
NR - Data not reported
718
-------
Table V-103
PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Toxic
1 14.
115.
117.
118.
119.
'20.
121.
122.
M 123.
UD •
124.
125.
126.
127.
128.
Pol lutant
Pol 1 utants
ant imony
arsenic
bery 1 1 i um
cadmi um
chromium (total)
copper . .
cyanide (total )
lead
mercury
nickel
sel eni um
si 1 ver
thai 1 ium
zi nc
Stream
Code
1-2
1-2
1-2
1-2
1-2
.1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
Sampl e
Type
2
2
2
2
2
2
1
2
2
2
2
2
2
2
Source
<0.010
<0.010
<0.005
<0.020
<0.020
0 . 200
<0.02
<0.050
<0.0002
<0.050
<0.010
<0.010
<0 . 0 1 0
0 . 040
Concentrations (mg/L)
Day 1 Day 2 Day 3 Day 4
<0.010
<0.010
<0.005
<0.020
<0.020
_0;100
0.50
<0.050
0.0002
<0.050
<0.010
<0.010
<0.010
<0.020
-------
Table V-103 (Continued)
PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pol lutant
Nonconventional Pollutants
Acidi ty
Alkalinity
Al umi num
Ammonia Nitrogen
Barium
Boron
Ca 1 cium
Chemical Oxygen Demand (COD)
Chi oride
Cobal t
Fl uoride
Iron
Magnesium
Manganese
Stream
Code
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
Sample
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Source
40
<0.100
0.06
<0.050
<0.100
13.8
150
30
<0.050
0.32
0.100
2.70
0.100
Concentrations (mg/L)
Day 1 Day 2 Day 3 Day 4
43
<0.100
0.13
<0.050
<0.100
11 .8
91
28
<0.050
0.32
0.200
2.40
0.100
-------
Table V-103 (Continued)
PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/L)
Pol lutant
Nonconventional Pollutants
Mol ybdenum
Phenol i cs
Phosphate
Sodium
Sulfate
.TJO
Code
(Continued)
1-2
1-2
1-2
1-2
1-2
1-2
Type
2
1
2
2
2
.. 2
Source Day 1
<0.050
<0.005
2.7
28.0
740
<0.050
Day 2 Day 3 Day 4
<0.050
<0.005
1 .9
28.2
780
<0.050
NJ
-------
Table V-103 (Continued)
PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/L)
Pol lutant
Code
Typ
>e Source Day 1
Day 2 Day 3 Day 4
Nonconventional Pol lutants (Continued)
Titanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Yttrium
to
10 Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-2
2
2
2
2
2
2
1
2
2
<0.050
850
63
11 ,500
<0.050
<0.050
300
6. 10
<0.050
1 10
<1
110
<0.05
<0.050
6
43
6.50
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Plant
1
2
3
4
4
2
1
5
5
4
4
2
2
2
6
7
8
9
10
11 .
PRECIOUS
Water
L/kkg
NR
4,170
NR
NR
658.7
.938.0
NR
1,377
2,616
3,065
4,170
9,260
9,380
147,000
69,830
NR
NR
18,200
NR
NR
CONT
Use
gai/t
Table V-104
METALS HEAT TREATMENT
ACT COOLING WATER :
Percent
on Recycle
NR 100
1,000' 100
NR 100
NR; P
158.0 0.0
225.0 0.0
NR P
330..2 0.0
627.4 0.0
735.0 0.0
1,000 0.0
2,2201 0.0
2,250 0.0
35,200 63.0
16,750 0.0
NR: , p
NR NR
4,360 NR
NR 0.0
NR NR
Wastewater
L/kkg '
0.00 !
0.00
0.00
1.01
658.8
938.0 i
1,318
1,377 ;
2,616 ;
3,065
4,170 1,
9,260 2,
9,380 2,
54,200 13,
69,830 16,
NR
NR
NR
NR
NR
Discharge
gal/ton
0.00
0.00
0.00
0.24
158.0
225.0
316.1
330.2
627.4
735.0
000
220
250
000
750
NR
NR
NR
NR
NR
Average 22,560
5,404
13,070
3,134
P -.Periodic discharge
NR -.Data not reported
723
-------
Table V-105
PRECIOUS METALS SURFACE TREATMENT SPENT BATHS
Plant
Wastewater Discharge
L/kkg gal/ton
1
2
1
3
4
5
6
7
8
9
10
11
10
12
13
14
5
15
16
17
0.00
0.00
0.00
0.00
, 7.59
54.03
139.5
182.9
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.00
0.00
0.00
0.00
1.82
12.96
33.45
•43.85
NR
NR
NR
NR
NR
NR
NR
• NR
NR
NR
NR
NR
Average
96.3
23.1
NR - Data not reported
724
-------
Table V-106
PRECIOUS METALS >' SURFACE TREATMENT RINSEWATER
Water Use '
Plant L/kkg gal/ton
1
2
3
4
5
6
7
8
9
10
11
7
12-
13
14
15
16
13
17
123.00
231.40
;NR
1,390
5,365
NR
6,192
6,933
22,880
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
29.
55.
NR
333.
1,287
NR
. 1,485
1,663
5,488
NR
NR
NR
NR
NR
NR:
NR
NR
NR.
NR
40
49
0
Percent
Recycle
100
0.0
P
0.0
0.0
CCR3
0.0
0.0
0.0
CCR2
NR
0.0
NR
NR
P
0.0
P
NR
NR
Wastewater Discharge
L/kkg gal/ton
Average 6,160
.1,477
0.00
231.40
350.60
1,390
5,365
5,920
6,192
6,933
22,880
60,630
NR
NR
NR
NR
NR
NR
NR
NR
NR :
12,210
0.00
55.49
84.07
333.0
1,287
1,420
1,485
1,663
5,488
14,540
NR
NR
NR
NR
NR
NR
NR
NR
NR
2,928
P - Periodic discharge ;
NR - Data not reported j
CCR2 - Two-stage countercurrent cascade rinse. <
CCR3 - Two-stage countercurrent cascade rinse followed by a
single stage rinse-.
725
-------
Table V-107
PRECIOUS METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
to
Pollutant
1 iif \i_ Pol lutants
i '-I. ant imony
i ]'i at ben ic
i I / I y I 1 i urn
I Hi cadmi um
••j chromium (total)
1 .''I. copper
12\. cyanide (total)
122. lead
123. mercury
Stream
Code
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
Samp 1 e
2
1
2
1
2
1
2
1
2
1
2
1
1
1
2
1
2
1
Concentrations (mg/L)
Source Da
<0.010
<0.010
<0
<0
<0
<0
<0
<0
<0
<0
0
<0
<0
<0
<0
<0
<0
<0
.010
.010
.005
.005
.020
.020
.020
.020
.200
.050
.02
.02
.050
.050
.0002
.0002
y 1 Day 2 Day 3
<0.010 <0.010
<0.020
<0.010 <0
<0
<0.005 <0
<0
<0.020 <0
1 1
0.020 <0
<0
2.50 1
60
<0.02 <0
<0
0.100 <0
<1
<0.0002 <0
<0
.010
.010
.005
.005
.020
. 1
.020
.020
.80
.6
.02
.02
.050
.00
.0002
.0002
Day 4
<0.010
<0.010
<0.005
<0.020
<0.020
2.05
<0.02
0. 100
<0.0002
Table V-107 (Continued)
PRECIOUS METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
M
Pol lutant
ic Pollutants (Continued)
1?4. nickel
125. selenium
l^b. silver
1 il . thai 1 ium
i.'B. zinc
NOIH. on vent i onal Pol 1 ut<*nts
Acidity
Al ka I ini ty
Aluminum
Stream Samp!
Code Type
1-20
M-5
1-10
M-5
1-10
..-M=&
M-1 1
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
e
Concentrations (mg/L)
Source
<0
<0
<0
<0
<0
<0
<0
<0
<0
0
<0
<1
40
100
<0
0
.050
.050
.010
.010
.010
,0-10
.0005
.010
.010
.040
.010
. 100
.200
Day 1 Day 2 Day 3
0.100 0.050
0.300
---.. <0.020 <0
• <0
.020
.010
<0.010 <0.010
. . 6,. 70
0.714
<0.010 <0
<0
4.66 1
0
1,400 120
430
"' <1
0.100 <0
0
.010
.010
.84
.260
. 100
.300
Day 4
0. 100
<0.010
<0.010
<0.010
2.32
470
^
0. 100
Table V-107 (Continued)
PRECIOUS METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Pollutant
Hiiiii onvent ional Pol lutants (Continued)
Aniiii.jiiia Nitrogen
tun on
lalrUirn
Oxygen Demand (COD)
00
i.'nba 11
>luuride
Code
inued)
1-10
M-5
I- 10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
Type
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
Source Day 1 Day 2 Pay 3
0
<0
<0
<0
.<0
<0
13
36
150
<5
30
10
<0
<0
0
0
.06
.1
.050
.050
. 100
.100
.8
.5
.050
.050
.32
.85
0.2 0.04
0
<0.050 <0
<0
<0.100 <0
<0
14. 1 9
36
1,800 1,800
<5
18 28
<0
<0.050 <0
<0
0. 10 0
0
.2
.050
.050
.100
. 100
.10
.5
.•1
.050
.050
.07
.94
Day 4
0.21
<0
<0
13
100
28
<0
0
.050
. 100
.2
.050
.20
-------
Table V-107 (Continued)
PRECIOUS METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/L)
Pol lutant Code
Nonc.orivent i onal Pollutants (Continued)
Icrtii 1-10
M-5
Magnesium 1-10
M-5
Manganese 1-10
M-5
Mil ! yhdenuni 1-1 0
M-5
I'lianol ics 1-10
M-5
•'nosphate I- 1 0
»j M"5
(O
VO ',1.11.11 um 1-10
M-5
~,u I fate 1-10
M-5
Tin 1-10
M-5
Type
2
1
2
1
2
1
2
1
1
1
2
1
2
1
2
1
2
.1
So
0.
<0.
2.
1 1 .
0.
<0.
-------
Tabla V-107 (Continued)
PRECIOUS METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/L)
Pol lutant
Code
Typi
s_ Source
Day 1 Day 2
Day 3
Day 4
Nonc-onvantional Pollutants (Continued)
1 i trtnium
Tutal Dissolved Solids (TDS)
lijtrii Organic Carbon (TOCJ
ititdi iolidt. (TS)
\ cii icid i uiii
•vj
OJ
O v i i r i urn
i.uiwentional Pollutants
u i i and Grease
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
1-10
M-5
2
1
2
1
2
1
2
1
2
1
2
1
1
1
<0.050
<0.050
850
270.0
63
<1
1 1 ,500
280.0
<0.050
<0.050
<0.050
<0.050
<1
3.0
<0.050
900
57
4,000
<0.050
<0.050
4
<0.050
<0.050
950
510.0
28
10
930
800
<0.050
<0.050
<0.050
<0.050
3
<1
<0.050
360
<1
390
<0.050
<0.050
8
-------
Table V-107 (Continued)
PRECIOUS METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
(
1
Pol lutant
.onvent i ona 1 Pollutants
fetal Suspended Solids
.il-l (standard units)
Stream
Code
(Continued).
(TSS) 1-10
M-5
1-10
M-5
Sampl e
Type
2
1
2 -
1
Sdurce
300
14.0
6.10
7.30
Concentrations (mg/L)
Day 1 Day 2 Day 3 Day 4
3,000 <1 11
310
1 .90 2.20 1 .30
2.50
No analyses were performed on the following toxic pollutants: 1-V13, 116, and 129.
U)
-------
Table V-108
PRECIOUS METALS ALKALINE CLEANING SPENT BATHS
Plant
1
2
3
4
5
6
7
8
Average
Wastewater Discharge
L/kkg gal/ton
60.00
NR
NR
NR
NR
NR
NR
NR
60.00
14.40
NR
NR
NR
NR
NR
NR
NR
14.40
NR - Data not reported
732
-------
Plant
1
2
• 1
1
3
4
5
Table V-109
PRECIOUS METALS ALKALINE CLEANING RINSE
Water Use ; .
L/kkg gal/ton
3,149
6,933
15,840
18,890
NR
NR
NR
755:.1
1,663
3,800
4,530
NR
NR
NR;
Percent
Recycle
0.0
0.0
0.0
0.0
NR
NR
NR
Wastewater Discharge
L/kkg gal/ton
3,149
6,933
15,840
18,890
NR
NR
NR
755.1
1,663
3,800
4,530
NR
NR
NR
Average 11,200.00 2,687.00
11,200.00 2,687.00
NR - Data not reported
733
-------
Table V-110
PRECIOUS METALS ALKALINE CLEANING
PREBONDING WASTEWATER
Plant
1
2
3
4
4
5
6
7
Water Use
L/kkg gal/ton
10.20
93,800
173.8
873.7
6,635
16,480
20,030
83,400
Average 27,680
2.45
22,500
41.67
209.5
1,591
3,951
4,804
20,000
6,637
Percent
Recycle
0.0
P
0.0
0.0
0.0
NR
0.0
0.0
Wastewater Discharge
L/kkg gal/ton
10. 20
2.45
6
16
20
83
126
173
873
,635
,480
,030
,400
.0
.8
.7
1,
3,
4,
20,
30
41
209
591
951
804
000
.20
.67
.5
15,970
3,829
P - Periodic discharge
NR - Data not reported
734
-------
Table V-111
PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/L)
Toxic
1 1 .
44.
45.
65.
66.
86.
87.
1 14.
115.
1 17.
1-18. --
1 19.
120.
Po1 1 utant
Pol 1 utants
1 , 1 , 1-trichloroethane
methylene chloride
methyl chloride
(ch)orome thane)
pheno 1
bis(2-ethy Ihexyl )
phtha 1 ate
tol uene
t ri ch 1 oroethy 1 ene
antimony
arseni c
beryl 1 i urn
cadmi urn
chromium (total)
copper
Code
1-9
K-4
1-9
K-4
1-9
K-4
1-9
K-4
1-9
K-4
1-9
K-4
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
-1.^8
1-9
K-4
1-8
1-9
.K-4
1-8
1-9
K-4
Type
1
1
1
1
1
1
2
6
2
6
1
1
1
1
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
Source
0.022
ND
'0.003
0.003
ND
ND
ND
ND
ND
ND
ND
0.002
ND
ND
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.005
<0.005
<0.005
<0 . 020
<0.020
<0.020
<0.020
<0.020
<0.020
0.200
0.200
0. 100
Day 1 Day 2
0.008
0.010 0.011
0.012 '
0.133 0.006
0.070
ND . ND
ND
ND ND
ND
ND 0.005
ND
0.818 0.006
ND
ND ND
<0.020
<0.010
<0.010 <0.010
<0.010
<0.010
<0.010 <0.010
<0.005
<0.005
<0.005 <0.005
-<0.020-'
0.420
0.120 0.080
<0.020
<0.020
0.140 0.200
2.25
0.600
4.95 5.95
Day 3
0.007
0.015
0.016
O.005
ND
ND
ND
ND
ND
ND
ND
0.003
ND
ND
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.005
<0.005
<0.005
<0.020 ••
0.040
0.060
<0.020
<0.020
0. 180
0.750
2.55
3.80
Day 4
0.007
0.006
ND
0.001
ND
ND
0.025
<0.010
,<0.010
<0.005
0.060
<0.020
1 .25
-------
Table V-111 (Continued)
PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/L)
0\
Pol lutant
Toxic Pol lutants (Continued)
121. cyanide (total)
122. lead
123. mercury
124. nickel
125. selenium
126. silver
127. thai 1 ium
128. zinc
Nonconvent ional Pollutants
Acidity
Alkal ini ty
Aluminum
Code
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
Type
1
1
1
2
2
6
2
1
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
Source
<0
<0
0
-------
Table V-111 (Continued)
PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Stream Sample
Code Type
Source
Concentrations (mg/L)
Noneonvent i onal Pol 1utants (Continued)
Ammonia Nitrogen
Bari um
Boron
-J
US
Calci um
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluori de
Iron .
Magnes i um
Manganese
1-8
1-9
K-4
1-8
1-9
K-4
1-8
-I—9--
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
1-8
1-9
K-4
2
2
6
2
2
6
2
-" - 2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2 .
6
2
2
6
2
2
6
0.06
0.06
0.17
<0.050
' <0.050
<0.050
<0. 100
<0\ "100-
<0. 100
13.8
13.8
8.70
150
150
34
30
30
35
<0.050
<0.050
<0.050
0.32
0.3:2
1.31
<0.050
<0.050
<0.050
<0.050
<0.050
2. 10
<0.050
<0.050
<0.050
0.32
1 .40
<0.100
10.2
200
55
<0.050
7.7
4.75
2.20
0. 150
0.08
0. 1
0.07
0.04
0.05
0.07
<0.050 <0.050
<0.050 <0.050
0.250 0.650
22.1 9.70
-------
Table V-111 (Continued)
PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Stream
Pol lutant Code
Nonconvent 1 ona 1 Pol lutants (Continued)
Molybdenum 1-8
1-9
K-4
Phenol ics 1-8
1-9
K-4
Phosphate 1-8
1-9
K-4
Sodium 1-8
1-9
ul
Sulfate 1-8
1-9
K-4
Tin 1-8
1-9
K-4
Titanium 1-8
1-9
K-4
Total Dissolved Solids (TDS) 1-8
1-9
K-4
Total Organic Carbon (TOC) 1-8
1-9
K-4
Total Solids (TS) 1-8
1-9
K-4
Vanadium 1-8
1-9
K-4
Sample
Type
2
2
6
1
1
1
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2
2
6
2 1 1
2 1 1
6
2
2
6
Source
<0.050
<0.050
<0.050
<0.005
<0.005
<0.005
2.7
2.7
4.8
28.0
28.0
32.9
740
740
400
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
850
850
140
63
63
<1
,500
,500
160
<0.050
<0.050
<0.050
Concentrations
Day 1 Day.,!
<0.050
<0.050
<0.050 <0.050
<0.005
<0.005
<0.005 <0.005
35
16
100 100
436
37.1
50.3 53.8
1 ,500
300
410 630
<0.050
<0.050
<0.050 <0.050
<0.050
<0.050
0.450 <0.050
2,500
170
225 200
15
4
19 14
2,900
230
300 - 450
<0.050
<0.050
<0.050 <0.050
(mg/L)
Day 3
<0.050
<0.050
<0.050
<0.005
<0.005
<0.005
15
30
58
77.1
35.4
60.3
450
480
840
<0.050
<0.050
<0.050
<0.050
<0.050
0.150
650
1 ,850
240
17
18
22
680
1 ,900
<0.050
<0.050
<0,050
Day 4
<0.050
<0.005
18
30.2
630
<0.050
<0.050
1 16
5
130
<0.050
-------
UJ
Table V-.11 1 (Continued)
PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/L)
Pol 1 utant
Nonconvent i onal Polluta
Yttrium
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids
pH (standard units)
Code
nts (Continued)
1-8
1-9
K-4
1-8
1-9
K-4 "
(TSS) 1-8.
1-9
K-4
1-8
1-9
K-4
Type
2
2
6
1
1
1
2
2
6
2
2
6
£
<0
<0
<0
<,
<1
"XT
300
300
16
6
6
6
ource
.050
.050
.050
. 10
. 10
.70
Day 1 Day 2
<0.050
<0.050
<0.050 <0'. 050
5
5 .
~T6 "TO
400
50
47 68
2.30
6.40
5.40 4.60
Day 3 Day 4
<0.050
<0.050 <0.050
<0.050
15 ;
<1 <1
- TO" •• - - ;
-------
Table V-112
PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER
Plant
1
2
1
3
4
Water Use
L/kkg gal/ton
992.6
1,053
5,745
40,700
MR
Average 12,120
238.0
252.5
1,378
9,760
NR
2,907
Percent
Recycle
0.0
0.0
0.0
0.0
0.0
Wastewater Discharge
L/kkg gal/ton
992.6
1,053
5,745
40,700
NR
12,120
238.0
252.5
1,378
9,760
NR
2,907
NR - Data not reported
740
-------
Table V-113
PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Toxic Pollutants
11. 1,1,1-trichloroethane
16. chloroethane
44. methylene chloride
49. trichlorof1uoromethane
86. toluene
114. ant imony
115. arseni c
117. beryl 1 i uin
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
123. mercury
124. nickel
Stream
Code
1-4
K-3
1-4
K-3
1-4
K-3
1-4
. Kr3 _
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
Sample
Type
1
1
1
1
1
1
1
. ..!.._
1
1
2
6
2
6
2
6
2
6
2
6
2
6
1
1
2
6
2
6
2
6
Concentrations (mg/1)
Source
0.022
ND
ND
ND
0.003
0.003
ND
ND . ._
ND
0.002
<0.010
<0.010
<0.010
<0.010
<0.005
<0.005
<0.020
<6.020
<0.020
<0.020
0.200
0.100
<0.02
0.09
<0.050
<0.050
<0.0002
<0.0002
<0.050
<0.050
Day 1
0.017
ND
0.001
ND
0.004
0.041
0.001
- ND
ND
0.028
0.050
<0.010
<0.020
<0.010
<0.005
<0.005
0.060
0.720
<0.020
3. 18
142
5.50
<0.02
<0.02
1.85
<0.050
<0.0002
0.0005
0. 100
1.35
Day 2
ND
ND
0.031
. ND .-:.-.
0.088
<0.010
<0.010
<0.005
0.700
0.500
5. 10
<0.02
<0.050
0.0004
3.25
Day 3
ND
ND
0.007
•ND-- --
0.005
<0.010
<0.010
<0.005
0.600
0. 120
6.25
0.08
<0 . 050
<0.0002
2. 10
-------
Table V-113 (Continued)
PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
10
Pollutant
Toxic Pollutants (Continued)
125. selenium
126. silver
127. thallium
128. zinc
Nonconventional Pollutants
Acidity
Alkalinity
A1umi num
Ammonia Nitrogen
Bari um
Boron
Calcium
Chemical Oxygen Demand (COD)
Chioride
Cobalt
Stream
Code
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
Samp 1 e
Type
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
Concentrations (mg/1)
Source
<0.010
<0.010
<0.010
<0 . 01 0
<0.010
<0.010
0.040
<0.020
<1
<1
40
43
<0.100
<0.100
0.06
0. 17
<0.050
<0.050
<0. 100
<0. 100
13.8
8.70
150
34
30
35
<0.050
<0.050
Day 1 Day 2
<0.010
<0.010 <0.010
0.070
0.080 0.220
<0.010
<0.010 <0.010
3.16
0.160 _0. 180
190
<1 <1
<1
130 120
0.400
0.300 0.300
0.03
0.09 0.08
<0.050
<0.050 <0.050
0.400
0.700 0.300
11.1
9.30 9.70
51
250 190
24
42 47
<0.050
<0.050 <0.050
Day 3
<0.010
0.080
<0.010
0.140
<1
96
0. 100
1 . 1
'<0.050
10.7
9.90
160
40
<0.050
-------
Table V-113 (Continued)
PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Stream
Code
Samp 1 e
Concentrations (mg/1)
Type Source
Day 1
Day 2 Day 3
Nonconvent ional Pollutants (Continued) • -
Fl uoride
Iron
Magnesium
Mo 1 ybdenum
Phenol i cs
Phosphate
Sodium
Sulfate
Tin
Ti tani urn
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
1-4
K-3
1-4
K-3
1-4
K-3
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
1-4
K-3
1-4
K-3
1-4
K-3
2
6
2
" 6
2
6
——2-—"
6
2
6
1
1
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
0
1
0
<0
2
2
-0
<0
<0
<0
<0
<0
2
4
28
32
740
400
<0
<0
<0
<0
850
140
63
1 1 ,500
160
.32
.31
. 100
.050
.70
. 10
.100-'
.050
.050
.050
.005
.005
.7 2
.8
.0
.9
8
.050
.050
.050
.050
9
10
0.25
1 .6
0
3
2
2
1
<0
<0
<0
<0
,800
130
371
89
,300
680
<0
<0
<0
<0
,700
290
27
49
,000
410
.750
.05
.40
.20
7T0tr
.05
.050
.050
.005
.005
.5
.050
.050
.050
.050
1.1 1.3
7.85 5.
2.10 2.
0.450 1.
<0.050 <0.
<0.005 <0,
110 130
58.2' 68,
600 760
<0.050 <0,
<0.050' <0.
280 280
46 57
410 380
,30
. 10
.00
.050
.005
.3
.050
.050
-------
Table V-113 (Continued)
PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol lutant
Nonconvent ional Pollutants (Continued)
Vanadium
Yttrium
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
1-4
K-3
Sample
Type
2
6
2
6
1
1
2
6
2
6
Concentrations (mg/1)
Source
<0.050
<0.050
<0.050
<0.050
<]
300
16
6.10
6.70
Day 1 Day 2
<0.050
<0.050 <0.050
<0.050
<0.050 <0.050
40 38
10
100 110
2.52
8.70 7.30
Day 3
<0.050
<0.050
.,
62
6.50
1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-15,
17-43, 45-48, 50-85, 87, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
: Table V-114
PRECIOUS METALS SAWING OR GRINDING SPENT NEAT OILS
Plant
1
Average
Water Use :
L/kkg gal/tpn
NR
NR
NR
NR
Percent
Recycle
100
Wastewater Discharge
L/kkg : gal/ton
0.00
0.00
0.00
0.00
NR - Data not reported
745
-------
Table V-115
PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS
Plant
1
1
2
2
Water Use
L/kkg gal/ton
2,220
2,270
NR
NR
Average 2,245
533.0
545.0
NR
NR
539.0
Percent
Recycle
P
P
P
P
Wastewater Discharge
L/kkg gal/ton
3.17
8.92
177.6
2,775
741.1
0.76
2.14
42.60
665.4
177.7
P - Periodic discharge
NR - Data not reported
746
-------
Table V-116
PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Toxic
1 1 .
44.
65.
1 14.
115.
1 17..
1 18.
-J 119.
*»
~° 120.
121 .
122.
123.
124.
125.
126.
127.
128.
Pol lutant
Pol 1 utants
1 , 1 , 1-trichloroethane
methylene chloride
pheno 1
antimony
arseni c
. beryl 1 ium -
cadmium
chromium (total )
copper
cyanide (total )
lead
mercury
nickel
sel enium
si 1 ver
thai 1 ium
zinc
Stream
Code
1-6
1-6
1-6
1-6
1-6 -
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
Sample Concentrations (mg/1)
Type Source
1 0.022
1 0.003
1 ND
1 <0.010
1 <0.010
_. _1 <0.005 __
1 <0.020
1 <0.020
1 0.200
1 <0.02
1 <0.050
1 <0.0002
1 <0.050
1 <0.010
1 <0.010
1 <0.010
. . .. 1 . _O...Q40 . ..
Day 2 Day 3 Day 4
ND
0.110
0.038
<0.010
<0.010
— .
-------
Tabla V-U6 (Continued)
PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
-J
*>.
00
Pol lutant
Nonconvent ional Pollutants (Continued)
Barium
Boron
Calcium
Chemical Oxy9en Demand (COD)
Chloride
Cobalt
Fluoride
Iron
Magnesium
Manganese
Molybdenum
Phenol ics
Phosphate
Stream
Code
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
1-6
Samp 1 e
1
1
1
1
1
1
1
1
1
1
1
1
1
Concentrations (mg/1)
Source
0
<0.100
13.8
150
30
<0.050
0.32
0.100
2.70
0.100
<0.050
<0.005
2.7
Day 2 Day 3 Day A
<0.050
5.10
15.7
2700
40
<0.050
0.09
16.7
3.50
0.500
<0.050
<0.005
11
-------
I
Table V-116 (Continued)
PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
UJ
Pol 1utant
Nonconventional Pollutants (Continued)
Sodium
Sulfate
Tin
Ti tanium
Total Dissolved Solids (TDS)
Total Organic Cajrbp_n__.CIQCX:. -
Total Sol ids
Vanadium
Yttrium
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
1-6
1-6
1-6
1-6
1-6
.!=?-&-•-
1-6
1-6
1-6 .
1-6
1-6
1-6
Sample Concentrations (mg/ 1 )
Type Source
1 28.0
1 740
1 <0.050
1 <0.050
1 850
--' - .—v- - 63 - - -
1 11,500 -
1 <0.050
1 <0.050
1 <1
1 300
1 6.10
Day 2 Day 3 Day 4
146
720
<0.050
<0.050
1,480
23---
1 ,500
<0.050
<0.050
500
<1
7.50
1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43,
45-64, and 66-88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-117
PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER
Plant
1
Average
Water Use
L/kkg gal/ton
83.50
83.50
20.00
20.00
Percent
Recycle
0.0
Wastewater Discharge
L/kkg gal/ton
83.50
83.50
20.00
20.00
750
-------
Table V-118
PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Ul
Pol lutant
Toxic Pollutants
114. ant imony
115. arsenic
117. bery 1 1 i uni
118. cadmi urn
119. chromium
120. copper
121. cyanide (total)
'122. lead
123. mercury
124. nickel
1 25 . sel eni urn
126. silver
127. thallium
128. . zinc
Nonconvent i onal Pollutants
Aci di ty
Alkalinity
A 1 uminum
Ammonia Nitrogen
Barium
Boron
Cal cium
Stream
Code
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
Sampl e
Concentrations (mg/1)
' Type Source Day 1 Day 2
1 <0.010
1 <0
1 <0
1 <0
1 <0
1 0
1 0
1 <0
1 <0
1 <0
1 • <0
1 <0
1 <0
1 <0
1 <1
1 43
1 <0
1 0
1 <0
1 <0
1 8
.010
.005
.020
.020
. 100
.09
.050
.0002
.050 -
.010
.010
.010
.020
. 100
. 17
.050
. 100
.70
Da
<0 .
<0.
-------
NJ
Table V-118 (Continued)
PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pol lutant
Nonconvent ional Pollutants (Continued)
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluoride
Iron
Magnesium
Manganese
Molybdenum
Pheno 1 ics
Phosphate
Sodium
Sulfate
Tin
Ti tani um
Total Dissolved Solids (TDS)
Total Organic Carbon (TOO
Total Solids (TS)
Vanadium
Yttrium
Stream
Code
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
K-2
'K-2
K-2
K-2
K-2
K-2
K-2
Sample
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Concentrations (mg/1)
Source Day 1 Day 2
34
35
<0
1
<0
2
'0
<0
<0
4
32
400
<0
<0
140
<1
160
<0
<0
.050
.31
.050
.10
.050
.050
.005
.8
.9
.050
.050
.050
.050
Da
42
38
<0.
1 .
29.
55.
1 .
<0.
<0.
1 1
36.
780
0,
0.
140
<1
150
<0.
<0.
x_2
050
4
4
4
UU
050
005
6
100
100
050
050
-------
Table V-118 (Continued)
PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard u'nits)
Stream
Code
K-2
K-2
K-2
Sampl e
1
1
1 -
Concentrations (mg/i)
Source Day 1 Day 2 Day 3
<1 10
16 4
6.70 7.90
U1 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129!
U)
-------
Table V-119
PRECIOUS METALS WET AIR POLLUTION CONTROL SLOWDOWN
Plant
1
2
3
4
2
Water Use
L/kkg gal/ton
47,500
NR
NR
NR
NR
Average 47,500
11,400
NR
NR
NR
NR
11,400
Percent
Recycle
100
100
P
NR
NR
Wastewater Discharge
L/kkg gal/tdn
0.00
0.00
NR
NR
NR
0.00
0.00
0.00
NR
NR
NR
0.00
P - Periodic discharge
NR - Data not reported
754
-------
Table V-120
REFRACTORY METALS
ROLLING SPENT NEAT OILS AND GRAPHITE-BASED LUBRICANTS
Plant
1
2
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
NR
NR
Percent
Recycle
100
100
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
0.00
0.00
0.00
0.00
NR - Data not reported
*Discharge from operation.:
755
-------
Table V-121
REFRACTORY METALS ROLLING SPENT EMULSIONS
Plant
1
Average
Water Use Percent
L/kkg gal/ton Recycle
NR
NR
Wastewater Discharge*
L/kkg gal/ton
NR
NR
428.8
428.8
102.8
102.8
P - Periodic discharge
NR - Data not reported
^Discharge from operation.
756
-------
Table V-122
REFRACTORY METALS DRAWING SPENT LUBRICANTS
Plant
1
2
3
4
5
5
6
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
Percent
Recycle
100
100
NR
NR
100
100
NR
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
0.00
0.00
0.00
0.00
NR
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NR
0.00
NR - Data not reported
*Discharge from operation,
757
-------
Average
Table V-123
REFRACTORY METALS EXTRUSION SPENT LUBRICANTS
Plant
1
2
3
Water
L/kkg
NR
NR
NR
Use
gal/ton
NR
NR
NR
Percent
Recycle
0.0
0.0
0.0
Wastewater
L/kkg
0.00
0.00
0.00
Discharge*
gal/ton
0.09
0.00
0.00
NR
NR
0.00
0.00
NR - Data not reported
*Discharge from operation.
758
-------
,Table V-124 ;
REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID .LEAKAGE
Plant
.1
Average
Water Use
L/kkg gal/ton
1,190
1,190
285.4
285.4
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
1,190
1,190
285.4
285.4
*Discharge from operation.
759
-------
Table V-125
REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA
O\
O
Pollutant
Toxic Pollutants
11. 1,1,1-trichloroethane
23. chloroform
24. 2-chlorophenol
44. methylene chloride
58. 4-nitrophenol
65. phenol
66. bis(2-ethyIhexyl) phthalate
67. butyl benzyl phthalate
68. di-n-butyl phthalate
69. di-n-octyl phthalate
70. diethyl phthalate
72. benzo(a)anthracene (a)
76. chrysene(a)
85. tetrach)oroethy1ene
86. toluene
114. ant imony
115. arsenic
117. beryl 1ium
118. cadmium
119. chromium (total)
120. copper
122. lead .
Stream
Code
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
Sample Concentrations
Type Source Day 1
1 ND
1 0.015
1 ND
1 ND
1 0.010
1 ND
1 <0.010
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 <0.002
1 ' <0.001
1 <0.0005
1 <0.001
1 0.10
1 0.030
1 0.084
(ma/ 1 )
Day 2 Da
0.
ND
<0.
0.
ND
0.
286
1 ,040
1 .
265
2.
455
455
26.
0.
0.
<0.
0.
.0.
0.
21
18
y 3
745
010
980
418
683
340
3
1 10
060
001
003
32
60
-------
Table V-125 (Continued)
REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Toxic Pollutants (Continued)
123. mercury
124. nickel
125. selenium
126^ silver
127. thai 1 ium
128. zinc
•v]
O\ . Nonconvent i ona 1 Pollutants
H
Molybdenum
Total Dissolved Solids (TDS) -
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH(standard units)
Stream
Code
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2
N-2.
N-2 '
Sample Concentrations
Type Source Day 1
1 <0.0002
1 0.11
1 <0.008
1 <0.002
1 <0.001
1 0.20
1 0.10
1 360
1 14
1 <1
1 7.4
(mg/1)'
Day 2 Day 3
<0.0002
0.44
<0.008
0.32
<0.001
18
20
350,000
44,000
19,000
,8.5
(a) .Reported together
1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22,
25-43, 45-57, 59-64, 71, 73-75, 77-84, 87, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, 121, and 129.
-------
Table V-126
REFRACTORY METALS FORGING SPENT LUBRICANTS
Plant
1
1
2
3
Average
Water Use
L/kkg gal/ton
2.23
6.75
NR
NR
4.49
0.54
1.62
NR
NR
1.08
Percent
Recycle
0.0
0.0
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NR - Data not reported
*Discharge from operation.
762
-------
Table V-127
REFRACTORY METALS FORGING CONTACT COOLING WATER
Plant
1
1
Average
Water Use
L/kkg gal/ton
323
NR
323
77.5
NR
77.5
Percent
Recycle
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
323
NR
323
77.5
NR
77.5
NR - Data not reported
*Discharge from operation.
763
-------
Table V-128
REFRACTORY METALS METAL POWDER PRODUCTION WASTEWATER
Plant
1
1
2
1
3
Water Use
L/kkg gal/ton
1,183
280.6
37.11
151.9
34,450
Average 7,221
283.7
67.29
8.90
36.43
8,262
1,732
Percent
Recycle
0.0
0.0
0.0
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
36.02
151.9
34,450
11,550
0.00
0.00
8.64
36.43
8,262
2,769
*Discharge from operation.
764
-------
Table V-129
REFRACTORY METALS METAL POWDER
PRODUCTION FLOOR WASHWATER
Plant
1
2
Water
L/kkg
183.4
35.83
Use
gal/ton
43.99
8.59
Percent
Recycle
100
0.0
Wastewater
L/kkg
0.00
35.83
Discharge*
gal/ton
0.00
8.59
Average
109.6
26.29
35.83
8.59
*Discharge from operation.
765
-------
Table V-130
REFRACTORY METALS METAL POWDER
PRESSING SPENT LUBRICANTS
Plant
1
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
Percent
Recycle
100
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
0.00
0.00
NR - Data not reported
*Discharge from operation.
766
-------
Table V-131
REFRACTORY METALS SURFACE TREATMENT SPENT BATHS
Plant
1
2
3
4
2
5
6
7
8
6
7
2
6
9
10
Average
Wastewater Discharge*
L/kkg gal/ton
13.09
94.12
232.3
343.9
469.8
1,180
NR
NR
NR
NR
NR
NR
NR
NR
NR
388.8
3.14
22.57
55.71
82.47
112.7
282.9
NR
NR
NR
NR
NR
NR
NR
NR
NR
93.25
NR - Data not reported
*Discharge from operation.
767
-------
Table V-132
REFRACTORY METALS SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
00
Pol lutant
Toxic Pol lutants
114. antimony
115. arsenic
117. beryl 1 ium
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
123. mercury
124. nickel
1 25 . se 1 eni urn
126. silver
127. thai 1 ium
128. zinc
Nonconvent ional Pollutants
Acidity
Alkal inity ...._.
Al umi num
Ammonia Nitrogen
Barium
Boron
Cal cium
Stream
Code
M-6
M-6
M-6
M-6 _
M-6
. M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6 ' '
M-6
M-6-
M-6
M-6
M-6
Sample
Concentrations (mg/1)
Type Source
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 0
1 *1
1 100
1 0
1 <0
1 <0
1 <0
1 36
.010
.010
.005
.020
.020
.050
.02
.050
.0002
.050
.010
.010
.010
.080
.200
. 1
.050
.100
.5
Day 1 Day 2 Day 3
<0
<0
<0
0
0
6
<0
<0
0
12
<0
6
<0
1
1 ,900
<1
0
<0
<0
9
39
.050
.010
.005
.500
.100
.30
.02
. 100
.0002
.4
.010
. 10
.100
.75
.400
. 1
.050
.00
. 1 ,
-------
Table V-132 (Continued)
REFRACTORY METALS SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
vo
, Pol 1 utant
Stream
Code
Sample Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
Nonconvent i onal Pollutants (Continued)
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fl uoride
Iron
Magnesium
Manganese
Molybdenum
Phenol ics
Phosphate
Sodium
Sulfate
Tin
Ti tani um
Total Dissolved So-lids (TDS)
Total -Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Ytt ri um
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6
M-6 -
M-6
M-6
M-6
M-6
M-6
1 <5
1 10
1 <0.050
1 0.85
1 <0.050
1 11.3
1 <0.050
1 <0.050
1 <0.005
1 <4
1 5.20
1 43
1 <0.050
1 <0.050
1 270
1 <1
1 280
1 <0.050
1 <0.050
' 1,800
100
<0.
0.
1-4.
13.
0.
0.
<°-
<4 '
60.
61
<0.
0.
660
"12
1 ,300
<0 .
-------
Table V-132 (Continued)
REFRACTORY METALS SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
Concentrations (rng/1)
Source Day 1 Day 2
Conventional Pollutants
Oil and Grease
Total Suspended Solids (TSS)
pH (standard units)
M-6
M-6
M-6
1 3
1 14
1 7.30
<1
140
0.80
•v]
^J
O
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Table V-133
REFRACTORY METALS SURFACE TREATMENT RINSE
Water Use
Plant L/kkg gal/ton
1
2
3
4
2
5
6
6
7
6
8
9
10
2
5,949
NR
9,673
24,570
NR
444,800
NR
NR
NR
NR
NR
NR
NR
NR
1,427
NR
2,320
5,893
NR
106,700
NR
NR
NR
NR
NR
NR
NR
NR
Percent
Recycle
0.0
CCR
0.0
0.0
CCR
0.0
NR
NR
P
0.0
NR
0.0
NR
NR
Wast-
L/:
5,949
9,381
9,673
24,570
27,970
444,.800
NR
NR
NR
NR
NR
NR
NR
NR
Wastewater Discharge*
} gal/ton
1,427
2,250
2,320
5,89.3
6,707
:106,700
NR
NR
NR
'• NR
NR
NR
NR
NR
Average 121,200
29,090
87,060
20,880
P - Periodic discharge
NR - Data not reported
CCR - Two stage countercurrent rinsing in-place
^Discharge from operation.
771
-------
REFRACTORY METAl S IUH'RK t IMHATMtNl"
RAW V»ASTEWATE:R SAMPLING DATA
PoIlutant
Toxic Pollutants
114. antimony
115. arsenic
117. bery11ium
118. cadmi urn
119. chromium (.total)
120. copper
121. cyanide (total)
122. lead
Stream
Coda
M-7
M-10
0-2
Z-1
M-7'
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
M-7
M-10
0-2
Z-1
Concentrations (mg/1)
Source Day 1 Day 2
1
1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
2
1
<0.010
<0.010
<0.10
0.0004
<0.010
<0.010
<0.01
<0.001
<0.005
<0.005
<0.001
<0.01
<0.020
<0.020
<0.002
<0.01
<0.020
<0.020
<0.005
0.038
<0.050
<0.050
0.030
0.013
<0.02
<0.02
<0.050
<0.050
<0.020
0.097
0.00025
0.0018
<0.01
0.03
0. 1 1
0.12
1.010
). 100
1.010
).010
1.005
1.200
1.020
1.040
<0.020
0.440
0.050
0.400
<0 .02
<0.02
<0.050
0.500
<0. 1
<0.01
0.004
0.040
0. 100
0.200
0.060
0. 16
-------
Table V-134 (Continued)
REFRACTORY METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Pollutant
Toxic Pollutants (Continued)
Stream
Code
Concentrations (mg/1)
Source
>J
Ui
123. mercury
124. nickel
125. se1eni um
126. silver
127. thallium
128. zinc
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2-
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
1
1
2
1
<0.0002
<0.0002
<0.0001,
<0.005 <0.005
<0.050
<0.050
<0.005
0.038
0.086
<0.0004
0.0005
<0.010
<0.010
<0.01
0.0004
<0.010
<0.010
<0.02
0.0005
<0.010
<0.010
<0.001 <0.001
0.080
0.080
<0.060
<0.25 0.034
<0.0002
<0.0002
0.600
10.2
<0.010
<0.010
0.050
<0.010
<0.050
<0.010
0.040
0.080
0.0001
0.070
<0.01
<0.02
<0.2
0.200
-------
Table V-134 (Continued)
REFRACTORY METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
vj
^J
*>. .
Pallutant
Nonconvent1ona1 Pollutants
Acidity
Alkalinity
Aluminum
Ammonia Nitrogen
Barium
Boron
Calci urn
Chemical Oxygen Demand (COD)
Chloride
Stream
Code
M-7
M-10
Z-1
M-7
M-10
Z-1
M-7
M-10
0-2
Z-1
M-7
M-7
M-10
0-2
Z-1
M-7
M-10
Z-1
M-7
M-10
0-2
Z-1
M-7
0-2
- -M-7 •
M-10
0-2
Samp 1 e
Type
1
1
1
1
1
1
1
1
2
1
1
1
1
2
1
1
1
1
1
1
2
1
1
2
1
1
2
Concentrations (ma/ 1 )
Source Day 1
<1 1
<1
<10 1,200
100
100
69 <10
0.200
0.200
<0.050
0.11 0.46
<0. 1
<0.050
<0.050
0.020
0.04 0.012
<0. 100
<0. 100
0.5 0.97
36.5
36.5
<5.0
79 5
<5
8
10
10
Day 2 Day 3
,500
890
<1
<1
0.200
19.6
<0.500
<0.1
<0.050
0.100
0.040
0.100
46.4
33.8
37.6
<5.0
<5
114 -
- 930 - - - •
12
12
-------
Table V-134 (Continued)
REFRACTORY METALS SURFACE TREATMENT RINSE
RAW- WASTEWATER SAMPLING DATA
01
Pol 1utant
Nonconventional Pollutants (Continued)
Cobalt
Co 1umbi urn
F1 uoride :. • • -- ' .
Iron
Magnesi urn
Manganese
Mo 1ybdenum
Stream
Code
M-7
M-10
Z-1
Z-l
M-7
M-10
0-2
Z-1 "
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
Sampl e
Type
1
- 1
1
1
-. 1
1
2
1
1
1
2
1
1
1
2
1
1 .
1
2
1
1
1
2
1
Concentrations (mg/1)
Source
<0.050
<0.050
<0.01
ND
0.85
0.85
0.2
<0.050
' <0.050
<0.200
0.24
11 .3
11 .3
0.7
8.0
<0.050
<0.050 .
<0.005
0.012
<0 .050
<0.050
<0.005
<0.03
Day 1 Day 2
<0.050
<1.00
<0.01
4.4
1 -. 1
3,000
82
0.300
2 . 00
0.72
10.7
11.8
0.034
<0.050
<0.100
0.03
<0.050
0.700
<0.03 '
5.2
5.00
0.9
0.080
. 0.4.00
-------
Table V-134 (Continued)
REFRACTORY METALS SURFACE TREATMENT RINSE
WASTEWATER SAMPLING DATA
PoIlutant
Nonconventional Pollutants (Continued)
Phenolics
Phosphate
Sodium
Sulfate
Tantalurn
Tin
Titanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOO
Total Solids (TS)
Stream
Code
M-7
M-7
M-7
M-10
0-2
Z-1
M-7
M-10
Z-1
M-7
M-10
0-2
Z-1
M-7 -
M-10
0-2
Z-1
M-7
M-10
Z-1
M-7
0-2
M-7
M-10
Z-1
Samp 1 e
1
1
1
1
2
1
1
1
1
1
1
2
1
1 •
1
2
1
1
1
1
1
2
1
1
1
Concentrations (mg/i)
Source Day 1
<0.005
<4
5.20
5.20
<15
27 43
43
43
ND 9.2
<0.050
<0.050
<0.005
<0.28 <0.28
<0.050
<0.050
<0.020
<0.25 2
270
270
110 87
<1
6
280
280
390 390
Day 2 Day 3
<0.005
<4
7.60
36.8
27
44
380
<0.100
<1 .00
0.010
<0.050
<0. 100
0.020
270
770
9
46
330
980
-------
Table V-134 .(Continued)
REFRACTORY METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Pollutant
Nonconventional Pollutants (Continued)
Vanad'i urn
Yttrium
Zi rcon iuni
Conventional Pollutants
O'i1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code .
M-7
M-10
0-2
Z-1
M-7
M-10
0-2
Z-1
Z-1
M-7
0-2
M-7 -
M-10
0-2
Z-1
M-7
M-10
Z-1
Sampl e
Type
1
1
2
1
1
1
2
1
1
1
1
1
1
2
1
1
1
1
Concentrations (mg/1)
Source Day 1
<0
<0
<0
<0
<0
<0
<0
<0
0
3
14
14
<1
100
7
7
6
.050
.050
.010
.02 0.031
.050
.050
.020
.25 <0.25
.26 0.64 •
15
.30
.30
2
Day 2 Day 3
<0.050
<0. 100
0.020
<0.050
<0. 100
<0.020
<1
6
120
140
52
1 .50
2.10
analyses were performed on the following toxic pollutants": 1-113, 116, and 129.
-------
Table V-135
REFRACTORY METALS ALKALINE CLEANING SPENT BATHS
Plant
1
2
3
4
5
6
7
8
9
10
11
10
12
13
Average
Wastewater Discharge*
L/kkg gal/ton
95.00
435.6
472.0
NR
NR
NR
NR
NR
NR
NR
NR '
NR
NR
NR
334.2
22.80
104.5
113.2
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
80.15
NR - Data not reported
*Discharge from operation.
778
-------
Table V-136
REFRACTORY METALS ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA
vo
Po 1 1 utant •
Toxi c Pol 1 utants
114. antimony
115. arseni c
117. bery 1 1 i urn
118. cadmium
119. chromium (total)
120. copper
122. lead
123. mercury
124. nickel
1 25 . se 1 eni um
126. silver
127. thai 1 ium
128. zinc
Nonconvent i onal Pollutants
Acidity
Alkal inity
Aluminum
Barium
Boron
Cal cium
Cobalt
Col umbium
Stream
Code
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Z-3
Sampl e
Concentrations (mg/1)
Type Source
1 0
1 . <0
1 - <0
1 <0
1 0
1 0
' 1 0
1 <0
1 0
1 0
1 0
1 <0
1 <0
1 <10
1 69
1 0
1 '0
1 0
1 79
1 <0
1
.0004
.001
.01
.01
.038
.013
.097
.005
.038
.0004
. 0005
.001
.25
>9
. 1 1
.04
.5
.01
ND
Da
0.
0.
0.
0.
0.
0.
9.
<0.
0.
0.
0.
0.
<1.
<10
,500
17
0.
170
180
0.
865
y 1 Day 2 Day 3
00028
016
036
02
75
96
9
005
65
001 1
0055
0028
6
35
036
-------
Table V-136 (Continued)
REFRACTORY METALS ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pol lutant
Nonconventi onal Pollutants (Continued)
Fluoride
Iron
Magnesium
Manganese
Molybdenum
Sodium
~J Tantalum
00
0 Tin
Titanium
Total Dissolved Solids (TDS)
Total Solids (TS)
Vanadium
Yttrium
Zi rconium
Convent i ona.l Pollutants
Oi 1 and Grease
Total Suspended Solnds (TSS)
pH (standard units).
Stream Sample
Code Type
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Z-3 1
Concentrations (mg/ l_l
Source
0.2
0.24
8.0
0.012
<0.03
27 31
ND
<0.28
<0.25
110
390
<0.02
<0.25
0.26
<1
100
6
Day 1 Day 2 Day 3
41
8.5
4. 1
0. 18
0.7
,000
585
<0.28
6.5
200.0
295.0
0.37
<0.25
8.5
13
54.0
14
1. No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.
-------
; Table V-137
REFRACTORY METALS ALKALINE CLEANING RINSE
Water Use
Plant L/kkg gal/ton
Percent Wastewater Discharge*
Recycle - L/kkg gal/ton
1
1
2
3
4
5
6
7
6
7
7
8
9
10
11
12
13
14
9,874
20,910
33,860
36,730
43,220
103,000
226,100
240,200
909,400
2,102,000
5,254,000
NR
NR
NR
NR
NR
NR
NR
2,368
5,014
8,119
• 8,807
10,370
24,700
54,210
57,600
218,100
504,000
1,260,000
NR
NR
NR
NR
NR
NR
NR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
NR
p
0.0
NR
0.0
0.0
NR
9
20
33
36
43
103
226
240
909
2,102
5,254
Average 816,300
195,800
,874
,910
,860
,730
,220
,000
,100
,200
,400
,000
,000
NR
NR
NR
NR
NR
NR
NR
816,300
2,368
' 5,014
8,119
8,807
10,370
24,700
54,210
: 57,600
-218,100
504,000
1,260,000
NR
NR
NR
NR
NR
NR
; NR
195,800
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
78.1
-------
Table V-138
REFRACTORY METALS MOLTEN SALT RINSE
Water Use
Plant L/kkg gal/ton
Average 6,326
Percent Wastewater Discharge*
Recycle L/kkg gal/ton
1
2
3
3
4
5
52.13
1,830
3,739
5,594
20,416
NR
12.50
438.8
896.7
1,341
4,896
NR
0.0
0.0
0.0
0.0
0.0
NR
52.13
1,830
3,739
5,594
20,416
NR
12.50
438.8
896.7
1,341
4,896
NR
1,517
6,326
1,517
NR - Data not reported
*Discharge from operation.
782
-------
Table V-139
REFRACTORY METALS MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA
00
u>
Pollutant
Toxic Pollutants
11. 1 , 1 ,. 1-trichl oroethane
23. chloroform
44. methylene chloride
58. 4-nitropheno1
66. bis(-2-ethy Ihexy 1 ) phthalate
85. tetrachioroethy1ene
104. gamma-BHC
114. antimony
115. arsenic
117. beryl 1iurn
118. cadmi um
119. chromium (total)
120. copper
Stream
Code
N-3
N-3
N-3
N-3
N-3
N-3
N-3
M-4
M-9
N-3
Z-4
M-4 .
M-9
N-3
Z-4
M-4
M-9
N-3
Z-4
M-4
M-9
N-3
Z-4
M-4.
M-9
N-3
Z-4
M-4
M-9
N-3
Z-4
Sampl e
Type
'1
1
1
3
3
1
3
1
1
3
1.
1
1
3
1
1
. 1
3
, 1
1
1
3
1
• 1
1
3
1
1
• 1
1
1
Concentrations (mg/1)
Source
Day 1
ND
0.015
ND
0.010
<0.010
ND
<0
<0
<0
<0
0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
0
0
<0
<0
0
0
.005
.010
.010
.002
.0004
.010
.010
.001
.001
.005
-.005
.0005
.01
.020
.020
.001
.01
.020
.020
. 10
.038
:050
.050
.030
.013
<0
<0
<0
<0
<0
0
<0
<0
<0
0
<0
0
.050
.00025
.020'
.001
.010
.022
.050
.01
.050
.059
.050
.023
Day 2
<0
<0
<0
0
<0
0
<0
<0
<0
<0
<0
<0
0
0
0
0
.010
.010
.010
ND
ND
.017
ND
.040
.003
.020
.001
.010
.0005
.050
.001
.400
.095
.050
.035
Day 3
<0.050
<0.010
<0.020
<0,020
<0.010
<0.005 •
<0.050
<0.020
0.400
0.020
0.050
<0.050 .
-------
Table V-139 (Continued)
REFRACTORY METALS MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA
CO
Pollutant
Toxic Pollutants (Continued)
121. cyanide (total)
122. lead
123. mercury
124. nickel
125. selenium
126. silver
1 27. thai 1ium
128. zinc
Stream
Code
M-4
M-9
N-3
M-4
M-9
N-3
Z-4
M-4
M— 9
N-3
Z-4
M-4
M-9
N-3
Z-4
M-4
M-9
N-3
Z-4
M-4
M-9
N-3
Z-4
M-4
N-3
Z-4
M-4
M-9
N-3
Z-4
Sample Concentrations (ms/1)
Type Source
1 <0.02
1 <0.02
1 0.003
1 <0.050
1 <0.050
3 0.084
1 0.097
1 <0.0002
1 <0.0002
3 <0.0002
1 <0.005
1 <0.050
1 <0.050
3 0.11
1 0.038
1 <0.010
1 <0.010
3 <0.008
1 0.0004
1 <0.010
1 <0.010
3 ' <0.002
1 0.0005
1 <0. 010 -
3 <0.001
1 <0.001
1 0.080
1 0.080
3 0.20
1 <0.25
Day 1
<0.02
<0. 100
0.21
<0.0002
<0.005
<0.200
0.43
<0.020
<0.0004
0.040
<0.0005
<0.010
<0.001
0. 150
0.034
Day 2
<0.02
<0.001
<0. 100
0.070
<0.0002
<0.0002
<0.200
0.016
<0.020
<0.008
0.020
<0.002
<0.0.10
<0.001 '
<0.500
0.10
Day 3
<0.02
<0.02
<0. 100
0.050
<0.0002
<0.0002
<0.200
<0.050
<0.020
<0.020
0.026
<0.020
<0.050
<1 .00
0.020
-------
Table V-139 (Continued)
REFRACTORY METALS MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA
vj
00
U1
Pol 1utant
Nonconventional Pollutants
Acidity
Alkalini ty
Aluminum
Ammonia Nitrogen
Barium
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Columbium
Fluoride
Stream
Code
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
M-4
M-9
M-4
M-9
Z-4
Z-4
M-4
M-9
Z-4
Sampl e
Concentrations (mg/1)
Type Source
1 <1
1 . -<1
1 <10
1 100
1 100
1 69
1 0
1 0
'•-••<]• - 0
1 <0
1 <0
1 <0
1 <0
1 0
1 <0
1 <0
1 0
1 36
1 36
1 79
1 <5
1 <5
1 10
1 10
1 <0
1 <0
1 . <0
1
1 0
1 0
1 0
;,
.200
.200
.11
. 1
.1
.050
.050
.04-
. 100
. 100
.5
.5
.5
.050
.050
.01
ND
.85
.85
.2
Day 1 Day 2
<1 <1
27
1 ,900 26,000
1
3
<10.0 2.00
0.23
<0 .' 1 <0 . 1
<5.00 <0.500
0.052
10.0 5.00
0.3
<10.0 1.00
8.6
120 110
110 21
<5.00 <0.500
<0.01
2.3
1.7 0 . 65
18
Day 3
<,
690
,940
3.00
0. 100
0.22
<0. 1
<0.500
<0.050
6.00
<0. 100
1 .00
20.7
100
<5
120
14
<0.500
<0.050
0.67
0.82
-------
Table V-139 (Continued)
REFRACTORY METALS MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA
-J
00
Pollutant
Nonconvent1ona1 Po11utants (Continued)
Iron
Magnesium
Manganese
Molybdenum
Phenoli cs
Phosphate
Sodium
Sulfate
Tantalum
Tin
Titanium
Stream
Code
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-'9
N-3
Z-4
M-4
M-9
N-3
M-4
M-9
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
Z-4
Sample
Type
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
- 1
1
Concentrations (mg/1)
Source
<0 . 050
<0.050
0.24
11.3
11 .3
8.0
<0.050
<0.050
0.012
<0.050
<0.050
0.10
<0.03
<0.005
<0.005
0.0017
<4
<4
5.20 0
5.20
27
43
43
" ND
<0.050
<0.050
<0.28
<0.050
-------
Tabl-e V-139 (Continued)
REFRACTORY METALS MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA
-J
00
Pol 1utant
Nonconventiona1 Pollutants (Continued)
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC).
Total Solids (TS) '
Vanadium
Yttri urn
Stream
Code
M-4
M-9
N-3
Z-4
M-4 -
' M-9
M-4
M-9
Z-4
M-4
M-9
Z-4
M-4
M-9
Z-4
Sampl e
Concentrations (mg/1)
Type Source
1 270
1 270
3 360
1 110
.. . 1 . <1
1 <1
1 280
1 280
1 390
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
20
3
.050
.050
.02
.050
.050
.25
Day
,000
107.0
50
,000
178.0
<5.00
<0.02
<5.00
<0.25
I Day 2
19,000 22,
2,
490
22
24,000 33
2
<0.500
<0.500
Day 3
000
500
18
70
,000
,500
<0.500
<0.050
<0.500
<0.050
Zi rconium
Z-4
0.26
<0. 13
-------
Table V-139 (ConHnuod)
REFRACTORY METALS MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA
Pollutant
Conventional Pollutants
Oil and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
Concentrations (mg/1)
M-4
M-9
M-4
M-9
N-3
Z-4
M-4
M-9
N-3 (
Z-4
3
3
14
14
14
100
7
7
3 <1
1 ' 6
.30
.30
Source
3
3
14
14
14
100
7.30
7.30
<1
Day 1 Day 2
<1 <1
540 240
<1
80.0
11.80 11.90
8.0
Day 3
<1
130
230
11 .80
1 1 .80
00
00
1. Toxic pollutants 89-113 were analyzed in this waste stream.
2. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22,
24-43, 45-57, 59-65, 67-84, 86-103, and 105-113.
3. No analyses were performed on the following toxic pollutants: 116 and 129.
-------
Table V-140
REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER
Plant
1
2
3
2
4
2
5
5
6
7
Water Use
L/kkg gal/ton
952.7
992.8
1,359
5,745
19,300
65,010
599,300
666,100
NR
NR
Average 169,800
228.5
238.1
325.9
1,378
4,628
15,590
143,700
159,700
NR
NR
40,720
Percent
Recycle
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
NR
NR
Wastewater Discharge*
L/kkg: gal/ton
952.7
992.8
1,359
5,745
19,300
65,010
599,300
666,100
NR
NR
169,800
228.5
238.1
325.9
1,378
4,628
15,590
143,700
159,700
NR
NR
40,720
NR - Data not reported :
*Discharge from operation.
789
-------
Table V-141
REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
-J
VO
O
Pollutant
Toxic Pollutants
11. 1,1,1-trichloroethane
23. chloroform
44. methylene chloride
55. naphthalene
66. bis(2-ethylhexyl) phthalate
114. antimony
115. arseni c
117. beryl 1ium
118. cadmium
119. chromium (total)
Stream
Code
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
Sample
Type
1
1
1
1
1
1
1
1
1
1
2
1
1
2
1
1
1
1
1
2
1
1
2
'l
1
2
1
1
2
1-
Concent rat ions
Source Day 1
0.011 0.011
0.011
0.01 1
0.016 ND
•0.016
0.016
0.001 0.002
0.001
0.001
ND ND
ND
ND
ND ND
ND
ND
<0.010 <0.010
<0.010
<0.010
<0.010 '<0.010
<0.010
<0.010
<0.005 <0.005
<0.005
<0.005
<0.020 <0.020
<0.020
<0.020
<0.030 0.020
<0,020
<0.020
(mg/1)
Day 2
0.011
ND
0.002
0.002
0.001
<0.. 0 1 0
<0.010
<0.005
0. 120
0.780
Day 3
0.015
0.017
0.018
ND
0.007
0.006
0.002
0.008
0.004
ND
ND
ND
0.002
ND
0.014
<0.010
<0.010
<0.010
-------
Table V-141 (Continued)
REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Toxic Pol 1utants (Continued)
120. copper
121 . cyanide (total)
122. lead
123. mercury
124. nickel
125. selenium
126. siIver
127. thallium
128. zinc
Stream
Code
M-2
M-3
M-13
M-2
M-3
M-13
M-2 . '
M-3 -
M-13
' M-2
M-3
M-13.
M-2
M-3
M-13
M-2
'M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
Sample
Type
1
2
1
1
1
1
1
2
1
1
2
• 1
1
2
1
1
2
1 -
1
2
1
1
2
1
1
2
1
Concentrations (tng/1)
Source Day 1 Day 2
<0.050 1 .90 8.65
<0.050
<0.050
<0. 02 , <0.02 <0.02
<0. 02
<0.02
<0.050 <0.500 <10.0
<0.050
<0.050
<0.0002 <0.0002 <0.0002
<0.0002
<0.0002
<0.050 0.750 23.7
<0.050
<0.050
<0.010 <0.010 <0.010
<0.010
<0.010
<0.010 0.140 0.220
<0.010
<0.010
<0.010 <0.010 <0.010
<0.010
<0.010
0.080 0.060 <0.500
0.080
0.080
Day 3
3.95
2.15
<0. 100
<0.02
<0 . 02
<0 . 02
<5. 00
<1 .00
< 1 0 . 0
<0. 0002
<0.0002
<0.0002
16.0
103
<0. 100
<0.010
<0.010
<0.010
0. 150-
0 . 140
<0.010
<0.010
<0.010
<0.010
<0 .500
0.520
<0.500
-------
Table V-141 (Continued)
REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
to
Pollutant
Nonconventional Pollutants
Acidity
Alkalini ty
Aluminum
Ammonia Nitrogen
Bari urn
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Stream
Code
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
Sample
Type
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
Concentrations (mg/1)
Source Day 1 Day 2
<1
<1
<1
100
100
100
0
0
0
<0
<0
<0
<0
<0
<0
<0
<0
<0
36
36
36
<5
<5
<5
10
10
10
<1 <1
100 41
1
.200 0.500 23.4
.200
.200
. 1 <0. 1 1.6
. 1
. 1
.050 <0.050 0.400
.050
.050
.100 <0.100 1.70
. 100
. 100
.5 35.3 43.5
.5
.5
<5 11
7.1 17
Da
<1
<1
<1
85
,260
190
16.
3.
21 .
0.
0.
<0.
0.
0.
0.
8.
1 .
0.
41 .
36.
41 .
<5
120
<5
14
13
2a
y 3
7
10
6
41
3
1
200
050
100
20
60
500
2
5
0
-------
Table V-141 (Continued)
REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
10
U)
Pollutant
Nonconvent1onal Pollutants (Continued)
Cobalt
Fluoride
Iron
Magnesium
Manganese
Mo)ybdenum
Phenol1cs-
Phosphate
Stream
Code
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M_2_ . .
M-3
M-13
M-2
M-3
M-13
Sample
Type
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
_,_
1
" 1
1
2
1
Concentrations, (mg/1)
Source Day 1 Day 2
<0
<0
<0
0
0
0
<0
<0
<0
1 1
1 1
1 1
<0
<0
<0
<0
<0
<0
<0
<0
<0
<4
<4
<4
.050 <0.050 0.100
.050
.050
.85 2.2 0.86
.85
.85
.050 0.800 15.1
.050
.050
.3 11.1 13.6
.3
.3
.050 0.050 0.750
.050
.050
.050 0.400 4.45
.050
.050
.005 <0.005 0.007
.005
.005
12 29
Day 3
0.050
0.050
0.100
0.79
1.0
0.78
8.05
17.6
4.60
12.7
11.6
13.4
0.350
0.300
0.200
0:950
<0.050
<0.500
<0.005
<0.005
<0.005
23
120
17
-------
Table V-141 (Continued)
REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream Sample
Code Type
Concentrations (mg/1)
Source
Nonconventional Pollutants (Continued)
-J
vo
*»
Sodium
Sulfate
Tin
Ti tanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
5.20
5.20
5.20
43
43
43
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
270
270
270
<1
<1
<1
280
280
280
<0.050
<0.050
<0.050
6.80
45
0.050
18.5
62
<0.100 <0.500
0.950
19.3
561
65.6
49
130
65
<0.500
<0.500
<0.500
0.550
1 .55
3.80
200
17
390
1 ,500
15
3, 100
1 ,600
1 ,900
530
4
75
22
3,500
3,000
3,200
<0.050
0.800
0.350
<0.050
<0.100
-------
Table V-141 (Continued)
REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA
VD
Ul
Pol 1utant
Nonconventlonal Pollutants (Continued)
Yttriurn
Conventional Pol.lutants
Oi1 and Grease"
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
M-2
M-3
M-13
M-2"
M-3
M-13
M-2
M-3
M-13
M-2
M-3
M-13
Sampl e
Type
1
•2
1
1
1
- 1
1
2
1
1 . •
2
1
Concentrations (mg/1)
Source Day 1 Day 2
<0
<0
<0
3
3
3
14
14
14
7
7
7
.050 <0:050 <0.050
.050
.050
<1
-------
Table V-142
REFRACTORY METALS SAWING OR GRINDING SPENT NEAT OILS
Plant
1
2
3
Water
L/kkg
NR
NR
NR
Use
gal/ton
NR
NR
NR
Percent
Recycle
P
P
NR
Wastewater
L/kkg
17.07
564.4
NR
Discharge*
gal/ton
4.09
135.4
NR
Average
NR
NR
290.7
69.72
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
796
-------
Table V-143
REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS
Plant
1
2
1
1
3
3
4
1
5
6
7
7
7
5
5
8
Average
Water Use Percent
L/kkg gal/ton Recycle
Wastewater Discharge*
L/kkg gal/ton
NR
168.8
NR
NR
NR
NR
136.6
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
40.47
NR
NR
NR
NR
32.75
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
100
NR
NR
P
P
0.0
P
P
P
NR
NR
NR
P
P
NR
0.00
0.00
0.00
0.00
2.17
20.85
136.6
1,027
NR
NR
NR
NR
NR
NR
NR
NR
0.00
0.00
0.00
0.00
0.52
5.00
32.75
246.3
NR
NR
NR
NR
NR
NR
NR
NR
152.7
36.6
296.6
71.14
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
797
-------
Table V-144
REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Toxic Pollutants
Stream
Code
Concentrations (mg/1)
Source
lO
00
117. beryl 1ium
118. cadmium
119. chromium (total)
120. copper
121. cyanide
122. lead
124. nickel '.
128. zi'nc
Nonconvent ional Pol 1utants
Fluoride
BG-1
BQ-1
BG-1
BQ-1
BG-1
BQ-1
BG-1
BQ-1
BG-1
BQ-1
BG-1
BQ-1
BG-1
BQ-1
BG-1
BQ-1
BG-1
BQ-1
<0.002
<0.010
<0.001
<0.010
0.030
<0.010
<0.100
1 .5
0.020
0.38
<0.010
<0.010
0.200
2.000
0.030
0.400
2 .60
1 1 .50
Molybdenum
BG-1
<0.03
-------
• Table V-144 (Continued)
REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS
RAW. WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
Source
Concentrations (mg/1)
Day 1
Day
Nonconventional Po1 1 utants (Continued)
Tungsten
BQ-1
BG-1
<1 .0
390.0
VO
Conventional Pol Iutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH
BQ-1
BQ-1
BG-1
BQ-1
47.000
486.000
5.000
8.67
1. No analyses were performed on the following toxic pollutants:
1-116, 123 and 125-127.
-------
Table V-145
REFRACTORY METALS SAWING OR GRINDING
CONTACT COOLING WATER
Plant
1
1
1
2
3
4
5
2
6
Water Use
L/kkg gal/ton
NR
NR
NR
NR
6,255
9,621
56,890
24,390
119,100
Average 43,250
NR
NR
NR
NR
1,500
2,307
13,640
5,848
28,570
10,370
Percent
Recycle
100
100
100
P
0.0
0.0
80.0
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00.
0.00
135.5
6,255
9,621
11,380
24,390
119,100
28,480
0.00
0.00
0.00
32.49
1,500
2,307
2,729
5,848
28,570
6,831
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
800
-------
Table V-146
REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Toxic
1 1 .
15.
23.
29.
34.
CO 39'
o
44.
55.
57.
58.
63.
65.
66.
68.
69.
Pol lutant
Pol lutants
1 , 1 , 1-trichloroethane
1,1,2, 2-tet rachl oroethane
chl orof orm
1 , 1-dichloroethylene
2 ,4-dimethy 1 pheno 1
f 1 uoranthene
methylene chloride
naphthalene
2-ni trophenol
4-ni trophenol
N-nitrosodi-n-propylamine
pheno 1
bis(2-ethylhexyl ) phthalate
di-n-butyl phthalate
di-n-octyl phthalate
Stream
Code
M-12
N-4
M-12
N-4
M-12
N-4
M-12
- N-4 -
M-12
N-4
M-12
N-4
M-12
N-4
.M-12
N-4
M-12
N-4
M-12
N-4
M-12
N-4
M-12
N-4
M-12
N-4
M-12
N-4
M-12
N-4
Samp! e
1
1
1
1
1
1
1
: 1
1
1.
1
1
1
1
1
1
1
1
1
. I 1
1
1
1
1
1
1
1
1
1
1
Concentrations
Source Day 1
0.011
ND
ND
ND .
0.016
0.015
ND
: ND :•
ND
ND
ND
ND
0.002
ND
ND
ND
ND
ND
ND
0.010
.ND
ND
ND
ND
ND
<0.010
ND
ND '
ND
ND
(mg/1)
Day 2
0. 177
<0.010
ND
<0 . 0 1 0
ND
<0.010
<0.010
ND
0.071
ND
0.213
0.034
<0..010
<0.010
<0.010
Day 3
0.017
ND
ND
ND
0.013
ND
0.005
0.005
ND
ND
ND .
0.058
0.001
ND
ND
-------
Table V-146 (Continued)
REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
00
O
NJ
Pollutant
Toxic Pollutants (Continued)
78. anthracene
84. pyrene
104. gamma-BHC
114. antimony
115. arsenic
117. beryllium
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122. lead . .. . .
123. mercury
124. nickel
125. .selenium. . . - . -
126. si 1ver
Stream Sample
Code Type
M-12 1
N-4 1
M-12 - 1
N-4 1
N-4 1
M-12 1
N-4 1
M-12 1
N-4 1
M-12 1
N-4 1
M-12 1
N-4 - 1
M-12 1
N-4 1
M-12 1
N-4 1
M-12 1
N-4 1
M-12 1
N-4 1
M-12 1
N-4 1
M-12 1
N-4 . 1
-M-12 1
N-4 1
M-12 1
N-4 1
Concentrations (mg/1)
Source Day
ND
ND
ND
ND
<0.005
<0.010
<0.002
<0.010
<0.001
<0.005
" <0.0005
<0.020
<0.001
<0.020
0.10
<0.050
0.030
<0.02
0.003
- <0.050
0.084
<0.0002
<0.0002
<0.050
<0. 1 1
<0.010 . - -
<0.008
<0.010
<0.002
i 1 Day 2 Day 3
ND
<0.010
ND
<0.010
ND
<0.010
0.040
<0.010
0.016
<0.005
<0.0005
0.020
0.040
0.080
0.86
0.050
0.21
<0.02
2.0
.. . •
-------
Table V-146 (Continued)
REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
00
O
U)
Pollutant
Toxi c Pol 1utants (Continued)
127. thallium
128. zinc
Nonconventional Pollutants -
Acidity
Alkalinity
Aluminum
Ammonia Nitrogen
Barium
Boron
Calci um
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluoride
Iron
Magnesium
Manganese
Molybdenum
Phenolics
Stream
Code
M-12 .
N-4
M-12
N-4
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
M-12
N-4
M-12
N-4
Sampl e
Concentrations (mg/1)
Type Source Day 1 Day 2
1 <0.010
1 <0.001 0.007
1 <0.
1 0.
1 " <1
1 100
1 0
1 <0.
1 <0.
1 <0.
1 36.
1 <5
1 10
1 <0.
1 0.-
"1 <0.
1 11.
1 <0.
1 <0.
1 0.
1 <0.
1 0.
010
20 0.90
.200
1
050 .
100
5
050
85
050 ~ ~
3
050
050
10 5,470
005 V
0017 0.019
Day 3
<0.010
0.240
<1
56
1 .20
0.50
, <0.050
<0. 100
78.2
58
35
<0.050
1 .5
1.3-. 0 '-
12.1
0.050
<0. 100
<0.005
-------
Table V-146 U'loiTliuiHtO
REFRACTORY METALS SAW1NU OR GRINDING CONTACT COOt-INCi WATCR
RAW WASTEWATEK SAMPLING DATA
00
o
Pollutant
Nonconvent-ional Pol lutants (Continued)
Phosphate
Sodium
Sulfate
Tin
Ti tani urn
Total Dissolved Solids (TDS)
Total Organic Carbon (TOO
Total Solids (TS)
Vanadi urn
Yttrium
Conventional Pollutants
Oi1 and Grease
.Total Suspended Solids (TSS)
pH (standard units) ~ ~
Stream
Code
M-12
M-12
M-12
M-12
M-12
M-12
N-4
M-12
M-12
M-12
M-12
M-12
' N-4
M-12
N-4
-• M-12
N-4
Sample Concentrations (mg/1)
Type Source Day 1 Day 2
1 <4
1 5.20
1 43
1 <0.050
1 <0.050
1 270
1 360 ' 25,000
1 <1
1 280 1
1 <0.050
1 <0.050
1 3
1 14 7.3
1 14
1 <1 240
1 7.30
1 7.4 5.7
Day 3
<4
6.00
200
<0.200
0.050
580
4
,200
<0.050
<0.050
2.9
380
"' 6.40
1. Toxic pollutants 89-113 were analyzed in this waste stream.
2. The following toxic pollutants were not detected in this waste stream: 1-10, 12-14,
16-22, 24-28, 30-33, 35-38, 40-43, 45-54, 56. 59-62. 64. 67. 70-77. 79-83. 85-103.
and 105-113.
3. No analyses were performed on the following toxic pollutants: 116 and 129.
-------
Table V-147
REFRACTORY METALS SAWING OR GRINDING RINSE
Plant
1
1
Water
L/kkg
135
NR
Use
gal/ton
32.5
NR
Percent
Recycle
0.0
0.0
Wastewater
L/kkg
135
NR
Discha
gal/t
32.5
NR
Average 135 32.5 135 '. 32.5
NR - Data not reported
*Discharge from operation.
805
-------
Table V-148
REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER
Plant
1
Average
Water Use
L/kkg gal/ton
77.6
77.6
18.6
18.6
Percent
Recycle
0.0.
'Wastewater Discharge*
L/kkg gal/ton
77.6
77.6
18.6
18.6
*Discharge from operation.
806
-------
Table V-149
REFRACTORY METALS DYE PENETRANT. TESTING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Tox i c
1 1 .
13.
23.
29.
35.
39.
44.
00
0 55.
-J
56.
58.
60.
62.
65.
66.
69.
77.
78.
80.
81.
85.
95.
104.
Pol lutant
Pol 1 utants
1 , 1 , 1 -trichl oroethans
1 ,'1 -di ch 1 oroethane
chl orof orm
1 ,.1-dichloroethylene
2, 4-dini.t rotol uene
f 1 uoranthene
me.thylene chloride
naphthalene
ni t robenzene
4-ni t rophenol
4,6-dinitro-o-cresol
N~ni t rosodi pheny 1 amine
phenol
bis(2-ethy Ihexyl ) phthalate
di-n-octyl phthalate
acenaphthy 1 ene
anthracene (a)
f 1 uorene
phenanthrene (a)
tetrachloroethylene
al pha-endosul f an
gamma-BHC
Stream
Code
N-5
N-S
N-5
N-5
. N-5 . - .
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
. N-5
N-5
N-5
N-5
N-5
• N-5
N-5
N-5
Sample Concentrations (mg/1)
Type Source
1 ND
1 ND
1 0.015
1 ND
1 . . . ND . -
1 ' ND
1 ND
1 ND
1 ND
1 ' 0.010
1 ND
1 ND
1 ND
1 -. <0.010
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ' <0.005
Day 1 Day 2 Day 3
0.170
<0
<0
<0
.0
0
<0
0
0
0
0
0
0
<0
0
0
0
" 0
<0
<0
.010
.010
.010
..143
.284
.010
. 134
.019
ND
.039
.039
.049
.019
.010
.021
.049
.021 .
.049
.010
**
.005
-------
Table V-149 (Continued)
REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Toxic
1 14.
115.
1 17.
118.
119.
120.
CD
g
122.
123.
124.
125.
126.
127.
128.
Pol lutant
Pollutants (Continued)
ant imony
arsenic
beryl 1 ium
cadmium
chromium (total )
copper
cyanide ( total )
lead
mercury
ni ckel
selenium
si 1 ver
thai 1 ium
zinc
Stream
Code
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
N-5
Sample
Concentrations (mg/1)
Type Source Da
1 <0.002
1 <0
1 <0
1 <0
1 0
1 0
1 0
1 0
1 - <0
1 0
1 <0
1 <0
1 <0
1 0
.001
.0005
.001
.10
.030
.003
.084
.0002
.11
.008
.002
.001
.20
y 1 Day 2 Day 3
<0.002
<0
<0
<0
3
0
<0
0
<0
1
<0
<0
<0
1
.001
.0005
.001
.7
.28
.001
.055
.0002
.6
.008
.002
.001
.2
Nonconvent i onal Pollutants
Molybdenum
Phenol
Total
ics
Dissolved Solids (TDS)
N-5
N-5
N-5,
1 0
1 0
1 360
.10
.0017
0
0
440
.50
.025
-------
Table V-149 (Continued)
REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
Concentrations (mg/1)
Source Day 1 Day 2
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
. pH (standard units)
N-5 1
N-5 - 1
N-5 1
14
7.4
72
22
7.5
00
o
ID
(a) Reported together.
**Present, but not quantifiable.
1. Toxic pollutants 89-113 were analyzed in this waste stream.
2. The following toxic pollutants were not detected in this waste stream: 1-10, 12,
14-22, 24-28, 30-34,'36-38, 40-43, 45-54, 57. 59, 61, 63, 64, 67, 68, 70-76, 79,
82-84, .86-94, 96-103, and 105-113.
3. No analyses were performed on the following toxic pollutants: 116 and 129.
-------
Table V-150
REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER
Plant
1
1
1
2
2
3
Average 4,435
Water Use
L/kkg gal/ton
32.36
13.9
66.1
2,673
2,687
21,140
7.76
3.34
15.8
641.0
644.2
5,070
Percent
Recycle
100
0.0
0.0
0.0
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
1,064
0.0
13.9
66.1
2,673
2,687
21,140
5,316
0.0
3.34
15.8
641.0
644.3 ,
5,070
1,275
*Discharge from operation.
810
-------
Table V-151
REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
00
Pollutant
Toxic Pol 1utants
117. . beryl 1i urn
118. cadmi urn
119. chromium (total)
120. copper
121. cyani de
122. lead
124. nickel
128. Zinc
Nonconventi onal Pol 1utants
Fluoride
Molybdenum
Stream Sarnpl e .
Code Type
BG-2 1
BG-2 1 '
BG-2 1
BG-2 1
BG-2 . 1 ,
BG-2 1
BG-2 1
BG-2 1
BG-2 1
BG-2 1
Concentrations (mg/U
Source Day
<0.
0.
0.
1 .
- - o:
0.
0.
0.
2.
<0.
1 Day 2 Day 3
002
001
070
400
340
600
050
500
600
03
-------
Table V-151 (Continued)
REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
Sample
Type
Concentrations (mg/1)
Source Day 1 Day 2 Day 3
Nonconventiona1 Pollutants (Continued)
Tungsten
BG-2
2.40
00
M
CO
ConventionaI Po1lutants
Oi1 and Grease
Total Suspended Solids (TSS)
BG-2
BG-2
5.00
64.00
1. No analyses were performed on the following toxic pollutants:
1-116, 123 and 125-127.
-------
; Table V-152
REFRACTORY METALS MISCELLANEOUS WASTEWATER SOURCES
Plant
1
2
3
Water
L/kkg
NR
3,459
NR
Use
gal/ton
NR
829.6
NR
Percent
Recycle
100
0
NR
Wastewater
L/kkg
0.00 :
3,459
NR
Discharge*
gal/ton
0.00
829.6
NR
Average 3,459
829.6
3,459
829.6
NR - Data not reported
*Discharge from operation.
813
-------
Table V-153
REFRACTORY METALS WET AIR POLLUTION CONTROL SLOWDOWN
Plant
1
2
1
3
4
5
6
7
8
Water Use
L/kkg gal/ton
NR
NR
14,330
2,622
6,672
2,502,000
NR
NR
NR
Average 631,400
NR
NR
3,436
628.8
1,600
600,000
NR
NR
NR
151,400
Percent
Recycle
100
P
93.2
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
0.00
8.32
977.8
2,622
6,672
0.0 2,502,000
0.0 NR
0.0 NR
P NR
502,500
0.00
2.00
234.5
628.8
1,600
600,000
NR
NR
NR
120,500
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
814
-------
Table.V-154
REFRACTORY METALS WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
Po 1 1 utant
Stream
Code
Sample
Type
Concentrations (mg/1)
Source
Day 1 Day 2 Day 3
Toxic Pollutants ' -•
1 1 .
23.
44.
1 14.
115.
00 "7-
H
(Jl
118.
119.
120.
121 .
122.
123.
1 24 .
125.
126.
127.
1,1,1-trichl oroe thane
chl orof orm
methylene chloride
ant imony
arsenic •
beryl 1 i um
cadmium
chromium (total )
copper
cyanide (total )
lead
mercury
nickel
sel enium
si 1 ver
thai Hum
M-1 1
•M-1 1
M-1 1
M-1 1
Z-2
- M-1 1
Z-2
'M-1 1
Z-2
M-1 1
Z-2
M-1 1
Z-2
M-11
Z-2
M-1 1
M-1 1
Z-2
M-1 1
Z-2
M-"l 1
Z-2
M-1 1
Z-2
M-11
Z-2
M-1 1
Z-2
1
1
1 .
1
1
• . 1
1
1
1
1
1
1
1
1
1
1
1
1 .
1
1
1
1
1
1
1
1
1
1
0
0
0
<0
0
<0
<0
<0
<0
<0
<0
<0
0
<0
0
<0
<0
0
<0
<0
<0
0
<0
0
<0
0
<0
<0
.011
.016
.002
.010
.0004
.010
.001
.005
.01
.020
.01
.020
.038
.050
.013
.02
.050
.097
.0002
.005
.050
.038
.010
.0004
.010
.0005
.010
.001
0
0
0
0.0005
-
-------
00
H
REFRACTORY
Pollutant
Toxic Pollutants (Continued)
128. zinc
Nonconventional Pollutants
Acidity
Alkalinity
Aluminum
Ammonia Nitrogen
Barium
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Columbi urn
Fluoride
Iron
Magnesi urn
Table V-J54 (Continued)
METALS WET AIR POLLUTION CONTROL SLOWDOWN
RAW WAST6WATER SAMPLING DATA
Stream Sample
Code Type
M-11 1
Z-2 1
M-11 1
Z-2 1
M-l 1 1
Z-2 1
M-11 1
Z-2 1
M-11 1
M-11 1
Z-2 1
M-11 1
Z-2 -1
M-1 1 1
Z2 1
M-11 1
M-11 1
M-1 1 1
Z-2 1
Z-2 1
M-11 1
Z-2 1
M-1 1 1
. Z-2 1
M-11 1
Z-2
Oon«~»nt rat ions (mg/1)
Source Day 1 Uay 1 pay J .
0.080 0.120
<0.25 0.046
<1
<10
100
69
0.
0.
<0.
'<0.
0.
<0.
0.
36.
79
<5
10
<1
<10
80
4,400
200 0.300
11 .5.7
! 0.67
050 <0.050
04 0.02
100 0.200
5 18
5 29.9
3.5
47
17
<0.050 <0.050
<0
.01 <0.01
ND ND
0
0
<0
0
11
8
.85 130- -
.2 1,050
.050 0.150
.24 0.8
.3 14.6
.0 0.35
-------
Table V-154 (Continued)
REFRACTORY METALS 'WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
Pol lutant
Stream
Code
Sampl e
Concentrations (mg/1)
Source Day 1
Day 2 Day 3
Nonconvent ional Pollutants (Continued)
Manganese
Mol ybdenum
Phenol i cs
Phosphate
Sodi um
Sulfate
Tantal um
00
1-4 Tin
-J
Ti tani um
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Yttrium •" " ~ ......
Zirconium
M-1 1
Z-2
M-1 1
Z-2
M-11
M-1 1
M-1 1
Z-2
M-1 1
Z-2
M-1 1
Z-2
M-1 1
Z-2
M-1 1
Z-2
M-1 1
M-1 1
Z-2
M-1 1
Z-2
'M-11 ' '
Z-2
Z-2
1
1
1
1
1 '
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
' ' V
1
1 -
<0
0
<0
<0
<0
<4
5
27
43
<0
<0
<0
<0
270
110
<1
280
390
<0
<0
<0
<0
0
.050
.012 0.11-
.050
.03 <0.03
.005
.20
7,600 ..
ND ND
.050
.28 <0.28
.050
.25 <0.25
170
200
.050
.02 <0.02
.050 : " '
.25 <0.25
.26 1.1
<0.050
<0
<0
<4
154
41
<0
<0
540
50
780
<0
"" <0
. 050 .
.005
. 100
.050
.050
'.050
-------
Table V-154 (Continued)
REFRACTORY METALS WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
Pol lutant
Stream
Code
Sample
Type
Concentrations (ma/1)
Source Day 1 Day 2 Day 3
00
H
00
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
M-1 1
M-1 1
Z-2
M-1 1
Z-2
1 14
1 100
1 7.30
1 6
20
12
150
6.60
1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22,
24-43, and 45-88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-155
TITANIUM ROLLING SPENT NEAT OILS
Plant
1
2
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
NR
NR.
Percent
Recycle
100
NR
Wastewater Discharge*
L/kkg gal/ton
0.00 ,
0.00
0.00
0.00
0.00
0.00
NR - Data not reported
*Discharge from operation.
819
-------
Table V-156
TITANIUM ROLLING CONTACT COOLING WATER
Plant
1
2
3
4
Water
L/kkg
NR
4,884
NR
NR
Use
gal/ton
NR
1,171
NR
NR
Percent
Recycle
0.0
0.0 •
P
100
Wastewater
L/kkg
NR
4,884 1
NR
NR
Discharg-
gal/ton1
NR
,171
NR
NR
Average 4,884
1,171
4,884
1,171
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
820
-------
1
Table V-157
TITANIUM DRAWING SPENT NEAT OILS
Plant
1
2
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
NR
NR
Percent
Recycle
NR
NR
Wastewater Discharge*
L/kkg, gal/ton
NR
NR
NR
NR
NR
NR
NR - Data not reported
*Discharge from operation.
821
-------
Average
Table V-158
TITANIUM EXTRUSION SPENT NEAT OILS
Plant
1
2
3
4
5
Water
L/kkg
NR
NR
NR
3.56
NR
Use
gal/ton
NR
NR
NR
0.85
NR
Percent
Recycle
NR
0.0
0.0
0.0
NR
Wastewater
L/kkg
0.00
0.00 :
0.00
0.00
0.00
Discharge*
gal/ton
0.00
0.00
0.00
0.00
0.00
3.56
0.85
0.00
0.00
NR - Data not reported
*Discharge from operation.
822
-------
Table V-159
TITANIUM EXTRUSION SPENT EMULSIONS
Plant
1
Average
Water
L/kkg
71.90
71.90
Use
gal/ton
17.20
17.20
Percent
Recycle
, 0.0 .
Wastewater
L/kkg
71.90
71.90
Dischar
gal/to
17.20
17.20
*Discharge from operation,
823
-------
Table V-160
TITANIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
Plant
1
Average
Water Use
L/kkg gal/ton
178.3
178.3
42.77
42.77
Percent
Recycle
. 0.0
Wastewater Discharge*
L/kkg gal/ton
178.3
178.3
42.77
42.77
*Discharge from operation.
824
-------
Table V-161
TITANIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Noneonventi onal Pollutants
Fluoride
Convent i onal Pa 11utants
Oi1 and Grease
Total Suspended Solids (TSS)
pH " - " "
Stream
Code
AK-1 . 3
AK-1 3
AK-1 3
AK-1 3
Concentrations (mg/1)
Source
Day 1
2.30
10.0
7.0
6.8
Day
09
K)
cn
-------
Table V-162
TITANIUM FORGING SPENT LUBRICANTS
Plant
1
2
1
3
4
5
6
7
Average
Water Use
L/kkg gal/ton
2.10
NR
6.80
NR
NR
NR
339.4
NR
116.1
0.50
NR
1.63
NR
NR
NR
81.37
NR
27.83
Percent
Recycle
0.0
0.0
0.0
0.0
NR
0.0
0.0
NR
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NR
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NR
0.00
NR - Data not reported
*Discharge from operation.
826
-------
Table V-163 !
TITANIUM FORGING CONTACT COOLING WATER
Plant
1
2
3
4
Water
L/kkg
5,252
417.0
323
NR
Use-
gal/ton
1,259
100.0
77.5
NR
Percent
Recycle
95'. 0
0.0
0.0
NR
Wastewater
L/kkg
245.1 :
417.0 •
323
NR
Discharge*
gal/ton
58.77
100.0
77.5
NR
Average 1,997
479.0
328.4
78.76
NR - Data not reported
*Discharge from operation.
827
-------
Table V-164
TITANIUM FORGING EQUIPMENT CLEANING WASTEWATER
Plant
1
1
Average
Water Use
L/kkg gal/ton
13.92
66.10
40.01
3.34
15.86
9.60
Percent
Recycle
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
13.92
66.10
40.01
3.34
15.86
9.60
*Discharge from operation.
828
-------
, Table V-165
TITANIUM FORGING PRESS HYDRAULIC FLUID LEAKAGE
Plant
1
2
Water Use
L/kkg gal/ton
1,010
NR
Average 1,010
242.3
NR
242.3
Percent
Recycle
0.0
NR
Wastewater Discharge*
L/kkg gal/ton
1,010
NR
1,010
242.3
NR
242.3
NR - Data not reported
^Discharge from operation.
829
-------
Table V-166
TITANIUM TUBE REDUCING SPENT LUBRICANTS
Plant
1
2
3
2
Water
L/kkg
2,356
1,050
7,359
NR
Use
gal/ton
565.0
251.9
1,765
NR
Percent
Recycle
0.0
0.0
0.0
NR
Wastewater
L/kkg
294.3 :
1,050
7,359 ' 1
NR
Discharg
gal/ton
70.57
251.9
,765
NR
Average 3,588
860.6
2,901
695.7
NR - Data not reported
^Discharge from operation.
830
-------
Table V-167
TITANIUM TUBE REDUCING SPENT LUBRICANT
RAW WASTEWATER SAMPLING DATA
00
Pol lutant
Toxic Pol lutants
117. Beryl I i urn
118. Cadmium
119. Chromium (total)
120. Copper
121 . Cyanide
122. Lead •.-•:.
124. NVckel
128. Zinc
Nonconventi onal Pollutants
A 1 umi num
Ammonia (as N)
Fl ouri de
I ron
Titanium
Vanadium
Convent io.nal . Po 1.1 utants _ . . .
Oi 1 and Grease
Total Suspended Solids (TSS)
pH
Stream
Code
AX-1
AX-1
AX-1
AX-1
AX-1
AX- 1
AX-1
AX-1
AX-1
AX-1
AX-1
AX-1
AX- 1
AX-1
AX-1
AX-1
AX-1
Sample Concentrations (mg/1)
Type Source Da
1 <0.
1 - <0.
1 - <0.
1 - 4.
1 - <0.
-.- i- -•• -
-------
Table V-168
TITANIUM HEAT TREATMENT CONTACT COOLING WATER
Water Use
Plant L/kkg gal/ton
1
2
3
4
5
6
7
8
9
10
110,840
NR
214.3
1,747
2,067
3,233
12,530
23,070
NR
NR
26,580
NR
51.40
418.9
495.7
775.4
3',006
5,531
NR
NR
Percent
Recycle
99.9
NR
0.0
0.0
0.0
0.0
0.0
0.0
0.0
NR
Wastewater Discharge*
L/kkg gal/ton
13 .
19.
214.
1,747
2,067
3,233
12,530
23,070
NR
NR
58
25
3
3.26
4.62
51.40
418.9
495.7
775.4
3,006
5,531
NR.
NR
Average 21,957
5,265
5,362
1,286
NR - Data not reported
*Discharge from operation,
832
-------
Table V-169
TITANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
00
U)
'CO
Pollutant
Toxi c Pol 1utants
117. beryl 1i urn
118. cadmi um
119. chromium (total)
120. copper
121. cyanide
122. lead
124. nickel
128. zinc
Stream
Code
AK-2
AW-1
BW-2
BK-2
AK-2
AW- 1
BW-2
BK-2
AK-2
AW-1
BW-2
BK-2
AK-2
AW-1
BW-2
BK-2
3
1
' 3
1
3
.1
3
1
AW-1
AK-2
AW-1
BW-2
BK-2
AK-2
AW-1
BW-2
BK-2
AK-2
AW-1
BW-2
BK-2
Concentrations (mg/1)
Source
<0.020
<0.100
0.006
<0.001
<0.010
<0.050
0.033
<0.005
<0.020
<0.010
0.460
0.010
0.420
<0.050
11.000
0.033
0.036
<0.020
<0.100
0.510
<0.050
<0.020
0. 100
1 .300
0.360
0.170
<0.050
6.700
0.008
-------
Table V-169 (Continued)
TITANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pol lutant
Nonconventional Pol lutants
al uminum
ammonia
cobal t
flouride
i ron
03
OJ
magnesium
manganese
mo 1 ybdenum
t i tanium-
vanadi urn
Stream
Code
AW-1
BW-2
BK-2
AW-1
BW-2
BK-2
AW-1
AW-1
BW-2
BK-2
BW-2
BK-2
BW-2
BK-2
BW-2
BK-2
AK-2
AW-1
BW-2
BK-2
AW-1
BW-2
BK-2
Sample Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
1 - <1.00
24.00
0.096
1 - <0.100
0.330
0.009
1 - 1.200
1 - 0.340
440 . 0
0.960
14.00
7.80
6.400
0.017
0.450
0.069
3 - <0.050
1 - 2.000
0.810
0.012
1 - <0.200
0.600
0.061-
zi rconium
AK-2
<0.100
-------
00
u>
Ul
Table V-169 (Continued)
TITANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Stream
Code
Concentrations (mg/1)
Source
Day "1
Day
Conventional Pollutants
oi1 and Grease
total Suspended Solids (TSS)
pH
AW-1
AW-1
AW-1
1.10
390.0
7.4
1. No analyses were performed on the following toxic pollutants:
1-116, 123 and 125-127. • '
-------
Table V-170
TITANIUM SURFACE TREATMENT SPENT BATHS
Plant
Average
Wastewater Discharge*
L/kkg gal/ton
1
2
3
4
5
6
7.
8
9
10
5
11
12
10
13
14
11
10
14
15
16 '
14
11
17
18
11
19
11
20
21
22
21
0.00
7.15
9.13
27.73
37.23
39.89
50.73
52.29
100.1
103.3
111.2
208.0
219.4
239.7
255.4
492.3
500.8
694.8
881.9
1,187
2,502
5,466
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.00
1.71
2.19
• 6.65
8.93
9.57
12.17
12.54
24.00
24.78
26.67
49.88
52.62
57.47
61.25
. 118.1
120.1
166.6
• 211.5
284.6
600.0
1,311
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
599.4
NR - Data not reported
*Discharge from operation.
143.7
836
-------
Table V-171 .
TITANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA*
00
CO
Pol 1utant
Toxic Pollutants
114. antimony .
115. arsenic
117.. beryl 1 i urn
1 18. cadmium
119. chromium (total)
120. copper
122. lead
123. mercury
124. nickel
125. seleni urn
126. silver
Stream
Code
L-2
L-4
L-2
L-4
L-2
L-4
: L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2'
L-4
L-2
L-4
L-2
L-4
L-2
-L-4
Sample Concentrations (mg/1)
Type Source . Da^
1 <0.010
1 <0.010
1 <0.010
1 <0.010
1 <0.005
1 <0.005 -
1 <0.020
1 <0.020
1 <0.020
1 <0.020
1 <0.050
1 <0.050
1 <0.050
1 <0.050
1 <0.0002
1 <0.0002
1 <0.050
1 <0.050
1 <0.100
1 <0. 100
1 <0.010
1 <0.010
I 1 Day 2
<0. 10
1 .6.0
<5.00
<2.00
18.0
5.00
65.0
<0.002
5.00
<1 .00
<0. 10
Day 3
0.30
1 .80
<5.00
<0.20
12.8
4.00
214
<0.002
10.0
<1 .00
<0. 10
-------
Table V-171 (Continued)
TITANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA*
00
W
00
Pollutant
Toxic Pollutants (Continued)
127. thallium
128. zinc
Nonconventional Pollutants
Acidity
Alkalinity
A 1uminum
Barium
Boron
Calci urn
Chloride
Cobalt
Fluoride
Stream
Code
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-2
L-4
L-2
L-4
L-2
L-4
Samp 1 e
1
1
- 1
1
1
1
1
1
. 1
1
1
1
1
1
1
1
1
1
1
1
1
1
Concentrations (mg/1)
Source
<0.010
<0.010
<0.020
<0.020
;;
250
250
0.200
0.200
0. 100
0. 100
<0. 100
<0. 100
77.6
77.6
50
50
<0.050
<0.050
1 . 1
1 . 1
Day 1 Day 2 Day 3
<0.40
0.20
166
<2.00
4,700
9,000
<10
< 10
5,850
2,490
5.00
1 .50
40.0
891
240
48.0
3,300
1 TO '
41 .0
98,000
74,000
-------
Table V-171 (Continued)
TITANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA*
00
w
Pol Iutant
Nonconventional Pollutants (Continued)
Iron
Magnesium
Manganese
Mo 1ybdenum
Sodium
Sulfate
Tin
Ti tani urn
Total Dissolved Solids (TDS)
Total Solids (TS)
Stream
Code
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
Sample Concentrations (mg/1)
Type Source
. 1 <0.050
1 . <0.050
1 34.0
1 34.0
1 <0.050
1 <0.050
1 <0.050
1 <0.050
1 19.6
1 19.6
1 21,000
1 21,000
1 <0.050
1 <0.050
1 <0.050
1 <0.050
1 390
' 1 390
- 1 400
1 400
Day 1 Day 2 Day 3
31 ,200
2,840
270
20.0
50.0
16.0
495
126
140
753
430,000
150
<50.0
<50.0
- 60,300
27,900
280,000
150,000
302,000
151 ,000
-------
Table V-171 (Continued)
TITANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA*
Pollutant
Stream
Code
Nonconventional Pollutants (Continued)
Sample
Type
Concentrations (mg/1)
Source Day 1 Day 2 ~ Day 3
CO
Vanadium
Yttrium
Conventional Pollutants
Total Suspended Solids (TSS)
pH (standard units)
L-2
L-4
L-2
L-4
L-2
L-4
L-2
L-4
1 <0
1 <0
1 <0
1 <0
1 7
1 7
1 7
1 7
.050
.050
.050
.050
.61
.61
1 , 150
<5.00
3,360
2.20
757
<0.50
480
1 .80
*Sample concentrations for Streams L-2 (Day 2) and L-4 (Day 3) have been adjusted to account
for the ten-fold dilution of the sample which was performed on-site at the time of
co11ecti on.
NA - Not analyzed.
1. No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.
-------
Plant
Table V-172
TITANIUM SURFACE TREATMENT RINSE
Water Use
L/kkg gal/ton
1
2
3
4
5
6
7
8
9
7
4
10
7 '
11
12
8
13
7
14
7
15
14 4,
11
16
17
18
19
20
21
Average
NR
NR
350.
1,456
1,769
2,946
3,376
5,752
7,217
7,846
8,530
NR-
17,809
NR
33,989
50,040.
50,040
110,505
81,740
83,686
444,391
969,215
971,365
NR
NR
- NR
NR
NR
NR
360,633
2
1,
If
1,
2,
4,
8,
12,
12,
26,
19,
20,
106,
1,191,
232,
86,
NR
NR
84.0
349.2
424.2
706.5
809.5
379
731
881
046
NR
271
NR
151.
000
000
500
602
069
569
658
941
NR
NR
NR
NR
NR
NR1
483
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
Percent
Recycle
P
P
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
P
0.0
P
0.0
0.0
0.0
40.0
0.0
0.0
0.0
0.0
0.0
P
NR
NR
NR
NR
NR
Wastewater Dischar
L/kkg
100.1
222.8
350.2
1,456
1,769
2,946
3,376
5,752
7,217
7,846
8,530
10,878
17,809
19,624
33,989
50,040
50,040
66,370
79,521
83,686
444,391
662,562
971,365
NR
NR
NR
NR
NR
NR
gal/to
24.00
53.44
83.99
349.2
. 424.2
706.5
809.5
1,379
1,731
1,881
2,046
! 2 , 609
4,271
4,706
8,151
12,000
12,000
15,916
, 19,070
20,069
106,569
158,888
232,941
NR
NR
i NR
NR
NR
NR
109,993
26,377
841
-------
Table V-173
TITANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Pollutant
Toxic Pollutants
114. antimony
115. arsenic
117. bery11ium
00 118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122, lead
123. mercury
Stream
Code
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-7
L-3
L-5
L-6
L-3
L-5
L-6
Concentrations (mg/1)
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
Source
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.005
<0.005
<0.005
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.050
<0.050
<0.050
<0.03
<0.050
<0.050
<0.050
<0.0002
<0.0002
<0.0002
Day 1
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.050
<0.005
<0.005
<0.020
<0.020
<0.020
0.060
<0.020
0.380
0. 150
<0.050
0.450
<0.02
0.550
0.050
5.90
<0.0002
<0.0002
<0.0002
Day 2
<0.010
<0.010
<0.010
<0.010
<0.005
<0.005
<0.020
<0.020
0.020
<0.020
0.050
<0.050
0.400
0.200
-------
Table V-173 (Continued)
TITANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
00
£>
u>
Pollutant
Toxic Pollutants (Continued)
124. nickel
125. selenium
126. si 1ver
127. thallium
128. zinc
Nonconventional Pollutants
Acidity
Alkalini ty
Aluminum
Stream
Code
L-3
L-5
L-6
L-3
L-5
-L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
Concent.rat ions (mg/1)
6
6
1
6
6
1
6
6
1
Source
<0.050
<0.050
<0.050
<0. 100
<0. 100
-------
Table V-173 (Continued)
TITANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
00
Pollutant
Nonconventional Pollutants (Continued)
Ammonia Nitrogen
Barium
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluoride ,
Iron
Stream
Code
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3.
L-5
L-6
L-3
L-5
L-6
Concentrations (mg/1)
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
Source
0
0
0
0
0
0
<0
<0
<0
77
77
77
<1
<1
<1
50
50
50
<0
<0
<0
1
1
1
<0
<0
<0
.08
.08
.08
.100
.100
.100
.100
.100
.100
.6
.6
.6
.050
.050
.050
.1
. 1
. 1
.050
.050
.050
Day 1
18
1
52
0
0
0
0
<0
0
71
71
162
3
<1
34
47
45
94
0
<0
0
170
12
215
75
0
119
.7
. 100
.100
.200
.400
. 100
.700
. 1
.6
.1
.350
.050
.100
.3
.550
Day 2
19
13
0.100
0. 100
0.200
<0. 100
74.6
74.3
43
31
45
46
•
0.100
<0.050
130
46
20.4
2.35 '
Da
18
20
0.
0.
0.
0.
72.
73.
25
17
40
45
0.
0.
1 . 1
1 .
36.
6.
y 3
100
100
400
100
5
2
150
U50
3
6
15
-------
Table V-173 (Continued)
TITANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
00
£*
Ul
Pol 1utant
Nonconvent iona1 Po11utants (Continued)
Magnesium
Manganese
Molybdenum
Phosphate
Sodium
Sulfate
Tin
Titanium " ~ "
Total Dissolved Solids (TDS)
Stream
Code
L-3
L-5
L-6
L-3
L-5
-L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5 .
L-6
Samp}
Type
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
~ 6
6
1
6
6
1
e
Concentrations (mg/1)
_ Source
34
34
34
<0
<0
<0
<0
<0
<0
1
1
1
19
19
19
21 ,000
21 ,000
21 ,000
<0
<0
<0
<0
<0
<0
390
390
390
.0
.0
.0
.050
..050
.050
.050
.050
.050
.6
.6
.6
3
5
.050
.050
.050
. 050 "
.050
.050
1
Day 1
32.
32.
72.
0.
4
7
1
150
Day 2
33.
33.
0.
<0.050 <0.
2.
1 .
<0 .
0.
3
1
1 .
55.
20.
50.
,500
,400
240
0.
0.
0.
"186
3.
15.
300
440
,400
10
60
050
050
9
9
1
2
4
3
050
650
050
55
1
0.
0.
2.
0.
20.
19.
,000
,000
<0.
<0.
47.
20.
900
900
6
4
050
050
200
200
2
5
1
9
050
050
9
3
Day 3
32
32
0
0
0
0
<0
<0
17
17
460
760
<0
<0
79
34
660
640
. 1
.5
. 100
.050
.550
.200
.5
.5
.9
.9
.050
.050
.7
.4
-------
Table V-173 (Continued)
TITANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
00
•fo
a\
Pollutant
Nonconventiona] Pollutants (Continued)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Yttrium
Conventional Pollutants
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
L-3
L-5
L-6
Sample
Type
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
6
6
1
Concentrations (mg/1)
Source
2
2
. 2
400
400
400
<0
<0
<0
<0
<0
<0
.7
7
7
7
7
7
1
.050
.050
.050
.050
.050
.050
.61
.61
.61
Day 1
4
4
15
370 1
550 1
,540
3.85
0. 100
0.350
<0.050
<0.050
<0.050
40
32
-------
1
Table V-174
TITANIUM ALKALINE CLEANING SPENT BATHS
Plant
1
2
3
4
5
3
5
6
Average
Wastewater Discharge*
L/k.kg . gal/ton
52.10
57.08
229.9
239.6
1,962
3,679
9,812
NR
2,290
12. 50
13. 69
55.14
57.46
470.6
882.4
2,353
NR
549.2
NR - Data not reported
*Discharge from operation.
847
-------
Table V-175
TITANIUM ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pollutant
Toxic Pollutants
117. beryl 1ium
118. cadmi urn
119. chromium (total)
00 120. copper
it-
CD
121. cyanide
122. lead
124. nickel
128. zinc
Stream
Code
AQ-1
AX-2
AX-5
AQ-T
AX-2
AX-5
AQ-1
AX-2
AX-5
AQ-1
AX-2
AX-5
AX-2
AX-5
AQ-1
AX-2
AX-5
AQ-1
AX-2
AX-5
AQ-1
AX-2
AX-5
Concentrations (mg/1)
Source
<0.001
<0.100
<0.100
<0.005
<0.100
<0.100
0.011
<0.500
<0.500
0.770
4.300
6.300
0.700
<0.500
<0.050
<0.500
<0.500
<0.012
<0.500
<0.500
0.491
<0.100
<0.100
-------
Table V-175 (Continued)
TITANIUM ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
.Source
Concentrations (nig/1 )
00
*»
vD
Nonconvent i ona1 Pollutants
A1umi num
Ammonia (as N)
Cobalt
Fluoride
Iron
Ti tanium
Vanadium
Conventional Pollutan'ts
AQ-1
AX-2
AX-5
AX-2
AX-5
AQ-1
AX-2
AX-5
AQ-1
AX-2
AX-5
AQ-1
AX-2
AX-5
AQ-1
AX-2
AX-3
0. 123
<2.00
<2.00
<0.500
<0.500
0.021
1 .070
0.780
1 .530
5.400
1 .900
<1
6.500
4.800
100
0.0026
<0.100
<1 .00
Oi1 and Grease
Total Suspended"Solids (TSS)
pH
AQ-1
AX-2
. AX-5
AX-2"
AX-5
AX-2
AX-5
720.00
930.00
<2.0 .
400.00
9.00
9.5
2.7
1. No analyses were performed on the following toxic pollutants:
1-116, 123, 125-127 and 129.
-------
Table V-176
TITANIUM ALKALINE CLEANING RINSE
Plant
1
2
3
4
5
5
6
Water Use
L/kkg gal/ton
348.0
350.3
5,177
82,320
166,800
314,000
NR
Percent Wastewater Discharge*
Recycle L/kkg gal/ton
Average 94,830
83.40
84.00
1,241
19,740
40,000
75,290
NR
22,740
0.0
0.0
0.0
0.0
0.0
0.0
NR
5
79
166
314
348.
350.
,177
,290
,800
,000
NR
0
3
1
19
40
75
83.
84.
,241
,010
,000
,290
NR
40
00
94,330
22f620
NR - Data not reported
*Discharge from operation.
850
-------
Table V-177
TITANIUM ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA
00
U1
Pol 1utant
Toxic Pol 1utants
117. bery11i urn
118. cadmium-
119. chromium (Total)
120. copper
121. cyanide
122. lead
124. nickel
128. zinc
Nonconventional Pol 1utants
Aluminum
Ammonia
Fluoride
Iron
Ti tani um
Stream Sample
Code Type
•AQ-2
AX-3/ 1
AQ-2
AX-3 1
AQ-2
AX-3 1
AQ-2
AX-3 1
AX-3 1
AQ-2
AX-3 1
AQ-2
AX-3 1
AQ-2
AX-3 1
AQ-2
AX-3 1
AX-3 1
AX-3 "" 1
AQ-2
AX-3 1
AQ-2
AX-3 1
Concentrations (mg/1)
Source Day 1 Day 2 Day 3
<0.001
<0.100
0.0120
<0 . 1 00
<0.003
<0.500
- 0.270
6.300
<0.500
0.072
ND
<0.012
<0.500
0.309
ND
0.113
<2.00 .
<0.500
" '0.990 ""
0.536
1.900
0.825
- <1 . 10
-------
Table V-177 (Continued)
Pollutant
TITANIUM ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA
Stream
Code
Source
Concentrations Cmg/1)
Day 2
Conventional Pollutants
Oil and Grease
Total Suspended Solids (TSS)
pH
AX-3 1
AX-3- 1
AX-3 1
<2.0
9.00
7.4
00
«J1
to
1. No analyses were performed on the following toxic pollutants:
1-116, 123, 125-127 and 129.
-------
Table V-178
.TITANIUM MOLTEN SALT RINSE
Plant
1
Average
Water Use
L/kkg gal/ton
954.9
954.9
229.0
229.0
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
954.9
954.9
229.0
229.0
*Discharge from operation.
853
-------
Table V-179
TITANIUM TUMBLING WASTEWATER
Plant
1
Average
Water Use
L/kkg gal/ton
790.0
790.0
189.4
189.4
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
790.0
790.0
18-9.4
189.4
*Discharge from operation.
854
-------
Table V-180
TITANIUM TUMBLING WASTEWATER
RAW WASTEWATER. SAMPLING DATA
Pol lutant
Toxic Pollutants
114. antimony
115. arsenic
117. beryl 1 i urn
118. cadmi urn
11.9. chromium (total)
120. copper
00 121. cyanide (total)
(Jl
-------
Table V-180 (Continued)
TITANIUM TUMBLING WASTEWATER
RAW WASTEWATER SAMPLING DATA
00
Ul
O\
Pollutant
Nonconventional Pollutants (Continued)
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluoride
Iron
Magnesium
Manganese
Molybdenum
Phosphate
Sodium
Sulfate
Tin
Ti tani um
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Yttrium
Stream
Code
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
L-9
Sample
Type
1
1
1
1
1
1
1
1
1
1
1 21
1
1
1
1
1
1
1
Concentrations (mg/1)
Source
<1
50
<0.050
1.1
<0.050
34.0
<0.050
<0..050
1
19.6
,000
<0.050
<0.050
390
2
400
<0.050
<0.050
Day 1 Day 2 Day 3
21,000
120
<0.500
1 10
1 1 1
13.0
1 .50
8.00
<1
2,730
900
12.0
156
18,000
380
18,000
1 .50
<0.500
-------
Table V-180 (Continued)
TITANIUM TUMBLING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
L-9
L-9
L-9
Sample Concentrat'i ons (mg/1)
Type Source
1 <1
1 7
1 7.61
Day 1 Day 2 Day 3
17
6,800
10.50
CO
ui
1. "No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Average
Table V-181
TITANIUM SAWING'OR GRINDING SPENT NEAT OILS
Plant
1
2
Water Use
L/kkg gal/ton
2.36 0.57
NR NR
Percent
Recycle
0.0
' NR
Wastewater I
L/kkg
0.00
NR '
Dischar
gal/to
0.00
NR
2.36
•0.57
0.00
0.00
NR - Data not reported
*Discharge from operation.
858
-------
Table V-182
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
Plant
Water Use ,
gal/ton
Percent Wastewater Discharge*
Recycle L/kkg gal/ton
1
1
2
3
3
2
4
5, .
6'
7
8
9
10
10
11
11
6
6
11
39.60
164.5.
NR
15,040
15,030
NR '
NR
NR
35,400
NR "
NR
NR
NR
NR
NR
NR
NR
NR
NR
9.50
39.46
NR
3,606 .
3,603
NR
NR
NR
8,490
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
100
100
100
100
NR
NR
100
100
100
.0.0
100
0.0
100
100
NR'
NR .
100
0.00
0.00
0.00
0.00:
0.00
0.00
0.00
o.oo
21.25
27.02
75.47
97.87
352.4
521.3
NR
NR
NR
NR
NR '
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.10
6.48
18.10
23.47
84.51
125.0
NR
NR
NR
NR
NR
Average 13,140
3,150
182.5
43.78
NR - Data not reported
*Discharge 'from operation.
859
-------
Table V-183
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Toxic
6.
23.
44.
48.
51 .
1 14.
CD
S 115-
1 17.
1 18.
1 19.
120.
121 .
122.
Pol lutant
Pol lutants
carbon tetrachl oride
chl orof orm
methylene chloride
dichl oro bromomethane
ch 1 orodi bromomethane
antimony
arsenic
beryl 1 ium
cadmi urn
chromium (total )
copper
cyanide (total )
lead
Stream
Code
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10
Sample Concentrations (mg/1)
Type Source
1 0.004
1 0.123
1 ND
1 0.023
1 0.002
1 <0.010
1 <0.010
1 <0.005
1 <0.020
1 <0.020
1 <0.050
1 0.03
1 <0.050
Day 1 Day 2 Day 3
0.002
ND
0.005
ND
ND
0.010
<0.010
<0.050
<0.200
1.20
<0.500
3.8
<0.500
-------
Table V-183 (Continued)
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
00
cr»
M
Po 1 1 utant
Toxic Pollutants (Continued)
123. mercury
124. nickel
125.- seleriiucfi- - ' -
126. silver
127. thai 1 iun.i
128. zinc
Nonconvent i ona 1 Pol-lutants
Acidity
Al kal ini ty
Al umi num
Ammonia Nitrogen
Barium
Stream Sample
Code Type
L-10 1
L-10 1
,L.1.0 -,.-1. .
L-10 1
L-10 1
L-10 i
.L-10 1
L-10 1
L-10 1
L-10 1
L-10 1
Concentrations (tng/1)
Source Day 1 Day 2 Day 3
<0
<0
<0
<0
<0
<0
<1
250
0
0
0
.0002
.050
.100
.010
.010
.020
.200
.08
. 100
<0
9
<0
<0
<0
0
<1
2,000
33
3
<0
.0004
.50
..100.
.010
.010
.40
.0
.8
.500
-------
Table V-183 (Continued)
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pol lutant
Stream
Code
Sample
Concentrations (mg/1)
Type Source
Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)
00
cn
N)
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fl uoride
Iron
Magnesium
Manganese
Molybdenum
Phosphate
Sodi um
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10
L-10-
L-10
L-10
L-10
1 <0
1 77
1 <1
1 50
• 1
-------
Table V-183 (Continued)
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
00
a\
U)
Pol 1utant
Nonconventional Pol 1 utan.ts (Continued)
Sulfate
Tin
Ti tanium
Total Dissolved So:l ids (TDS)
Total Organic Carbon (TOO
Total Sol ids (TS)
Vanadi urn
Yttriurn
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
Stream
Code
L-10
L-10
L-10
L-10-
L-10
L-10
L-10
L-10
L-10
L-10
Sample ' Cone
Type Source
1 21,000
1 <0.050,
1' <0.050
1 390
1 2
1 400
1 <0.050
<0.050
1 <1
1 7
(>ntrat ions (mg/1 )
Day 1 Day 2 Day 3
20,000
<0-.500
6.00
1 1 ,500
1 ,400
14,000
2.50
<0.500
34
244
-------
Table V-183 (Continued)
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pollutant
Conventional Pollutants (Continued)
Stream
Code
Samp1e
Type
Concentrations (mg/1)
Source
Day 1
Day 2
Day 3
pH (standard units)
L-10
7.61
10.30
00
1. The following toxic pollutants were not detected in this waste stream: 1-5, 7-22,
24-43, 45-47, 49, 50, and 52-88.
2. Note that stream codes Y-7 and Y-8 also appear on the nickel-cobalt sawing or grinding
spent emulsions raw wastewater sampling data table. The wastewater is derived from an
operation in both subcategories.
3. No analyses were performed on the following toxic pollutants: 89—113, 116, and 129.
-------
. Table V-184
TITANIUM SAWING OR GRINDING CONTACT COOLING WATER
. Water Use Percent Wastewater Discharge*
Plant L/kkg gal/ton Recycle . L/kkg • gal/ton
1 4,760 1,141 0.0 4,760 1,141
Average 4,760 1,141 4,760 '.' 1,141
*Discharge from operation.
865
-------
Table V-185
TITANIUM SAWING OR GRINDING CONTACT COOLING VIATER
RAW WASTEWATER SAMPLING DATA
00
0\
Pollutant
Toxic Pollutants
117. beryl Mum
118. cadmium
119. chromium (total)
120. copper
122. lead
124. nickel
128. zinc
Nonconvantional Po11utants
A1uminum
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Titanium
Tin
Vanadium
Stream
Code
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
BS-1
Sample Concentrations Cmg/1)
Type Source Da
<0.
<0.
0.
0.
<0.
<0.
0.
1 .
0.
1 .
13.
0.
<0.
7.
0.
0.
y 1 Day 2 Day ;
001
005
0034
093
050
012
009
190
0066
340
50
224
020
060
222
4560
1. No analyses were performed for the following
pollutants: 1-116, 121, 123, 125-127 and 129.
toxi c
-------
< Table V-186
TITANIUM DYE PENETRANT TESTING WASTEWATER
Plant
1
2
3
3
3
4
Water
' L/kkg
384.6
1,848
NR
NR
NR
NR
Use
gal/ton
92.23
443.1
NR
. NR
NR
NR
Percent
Recycle
0.0
0.0
NR
0.0
NR
NR
Wastewater
L/kkg ,
384.6
1,848
NR
NR
NR
NR
. Discharge*
gal/ton
92.23
443.1
NR
NR'
NR •
NR
Average 1,116
267.7
1,116
267.7
NR - Data not reported
*Discharge from operation.
867
-------
Table V-187
TITANIUM HYDROTESTING WASTEWATER
Water Use
Plant L/kkg gal/ton
1 56,240 13,490
Average 56,240 13,490
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
56,240
56,240,
13,490
13,490
*Discharge from operation.
868
-------
Table V-188
TITANIUM WET AIR POLLUTION CONTROL SLOWDOWN
.Water Use Percent
Plant L/kkg gal/ton Recycle
Wastewater Discharge*
L/kkg ; gal/ton
1
2
2
3
4
2
5 ,
2
6
7
8
9
10
11
25
7
1
2
53
85
554
175.2
88.13
273.5
,020
,660 .
892.8
,459
,146
,740
,320
,300
NR
NR
NR
6
1
12
20
132
42.
21.
65.
,000
,837
214.
349.
514.
,890
,460
,900
NR
NR
NR
01
14
60
1
9
5
91.0
0,0
0.0
P
95.0
0.0
0.0
0.0
90.0
92.0
95.0
NR
NR
NR
"
1
2
3
6
6
15.
88.
273.
285.
403.
892.
,459
,146
,583
,872
,929
NR
NR
NR
01
13 ,
5 !
9
3
8 ;
3.
21.
65.
68.
96.
214.
349.
514.
859.
1,648
1,662
NR
NR
NR
60
14
60
57
71
1
9
5
2
Average 66,460
15,940
2,086
500.3
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
869
-------
Table V-189
TITANIUM WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
00
-J
O
Pollutant
Toxic Pollutants
114. antimony
115. arsenic
117. beryl 1ium
118. cadmium
119. chromium (total)
120. copper
122. lead
123. mercury
124. nickel
125. selenium
126. silver
127. thallium
128. zinc
Stream Sample
Code Type
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
L-8 1
Concentrations
Source Day 1
<0.010
<0.010
<0.005
<0.020
<0.020
<0.050
<0.050
<0.0002
<0.050
<0.100
<0.010
<0.010
<0.020
(nw/n
Day 2 Day 3
<0.010
<0.010
<0.005
<0.020
<0.020
<0.050
0.100
<0.0002
<0.050
<0. 100
<0.010
<0.010
0.300
-------
Table V-189 (Continued)
TITANIUM WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
00
Pol lutant
Nonconvent i onal Pollutants
Acidi ty
Alkalinity
A ) uminum
Ammonia Nitrogen
BaM-urn . . . • - -
Boron
.Ca 1 cium
Chemical Oxygen Demand (COD)
Chi oride
Cobalt
Fluoride
Iron
Magnesium
Manganese
Molybdenum
Stream
Code
L-8
L-8
L-8
L-8
L-8
. L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
Sample
Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
1 <1
1 250
1 0.
1 0.
1 0.
1 <0.
1 - 77.
1 <1
1 50
1 <0.
1 1 .
1 <0.
1 34.
1 <0.
1 <0.
200
08
100
100
6
050
1
050
0
050
050
390
. 0.400
0.15
<0-.050
<0.100
19.8
220
55
0.050
33
1 .80
30.0
<0.050
<0.050
-------
Table V-189 (Continued)
TITANIUM WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
00
^J
to
Pollutant
Nonconventional Pollutants (Continued)
Phosphate
Sodium
Sulfate
Tin
Titanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOO
Total Solids (TS)
Vanadium
Yttrium
Conventional Pollutants
Total Suspended Sol ids (TSS)
pH (standard units)
Stream
Code
L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
L-8
Sample Concentrations (mg/1)
Type Source
1 1
1 19.6
1 21,000
1 <0.050
1 <0.050
1 390
1 2
1 400
1 <0.050
1 <0.050
1 7
1 7.61
Day 1 Day 2 Day 3
<2
253
6,000
<0.050
2.75
720
40
870
0.100
<0.050
40
9.81
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
2. Note that stream code Y-5 also appears on the nickel-cobalt wet air pollution control
blowdown raw wastewater sampling data table. The wastewat_er is derived from an
operation in both subcategories.
-------
Table v-190 ;
URANIUM EXTRUSION SPENT LUBRICANTS
Water Use Percent Wastewater Discharge
Plant 1/kkg gal/ton Recycle 1/kkg • gal/ton
1 NR ' . NR ' NR 0 '(• + )! 0 ( + )
+ - Loss due to evaporation and drag-out
87.3
-------
Table V-191
URANIUM EXTRUSION TOOL CONTACT COOLING WATER
Plant
1
Water Use
1/kkg gal/ton
344
82.5
Percent
Recycle
0
Wastewater Discharge
1/kkg gal/ton
344
82.5
•f - Loss-due to evaporation and drag-out
874
-------
Table V-192
URANIUM FORGING SPENT LUBRICANTS
Plant
1
Water Use
1/kkg gal/ton
NR
NR
Percent
Recycle
. NR
Wastewater Discharge
1/kkg ; gal/ton
0
0
+ -' Loss due to evaporation and drag-out
875
-------
Table V-193
URANIUM HEAT TREATMENT CONTACT COOLING WATER
Plant
1
2
Water Use
1/kkg gal/ton
NR
NR
NR
948
2,846
NR
NR
NR
227
682
Percent
Recycle
P
P
P
0
0
Wastewater
1/kkg
6.21
' 18,6
69.2
948
2,846
Discharg
gal/ton
1.
4.
16.
227
682
49
47
6
P - Periodic discharge
876
-------
Table V-194
URANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
. 00
Pollutant
Toxic Pollutants
114. antimony
115. arsenic
117. beryl 1ium
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
123. mercury
124. nickel
125. selenium
Stream
Code
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
'1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sample Concentrations (mg/1)
Type Source Day 1
<0.0006
<0.0006
<0.0006 .
<0.001
<0.001 '
<0.001
0.012
0.012
0.012
<0.03
<0.03
<0.03
0.061
0.061
0.061
0 . 088
0.088
0.088
<0.01
<0.01
<0.01
0.036
0.036
0.036
<0.005
<0.005
<0.005
0.055
0.055
0.055
<0.001
<0.001
<0.001
Pay 2 Day 3
0.0023
<0.0006
<0.0006
<0.001
<0.001
<0.001
0.017
0.014
0.013
<0.03
<0.03
<0.03
0.099
<0.03
0.051
0. 14
0.8
0 . 095.
<0.01
<0.01
<0.01
14.0
0. 15
4.9
<0.005
<0.005
<0.005
2.3
0.055
<0.03
<0.001
<0.001
<0.001
-------
Table V-194 (Continued)
URANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Toxic Pollutants
Stream
Code
Source
Concentrations (mg/1)
126. silver
127. thallium
128. zinc
00
«-J
00
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
-------
Table V-194 (Continued)
URANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Stream
Code
Concentrations (mg/1)
Source
Nonconventional Pollutants
00
«J
vo
Acidity
Alkalini ty
Aluminum
Ammonia Nitrogen
Barium
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
V-14
V-15
V-16
V-14
V-15
V-16 1
V-14 • 1
V-15 1
V-16 V
V-14 1
V-15 1
V-16 /I
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1
V-16 1
<10.0
<10.0
<10.0
33.0
33.0
33.0
0.131
0.131
0.131
0.07
0.07
0.07
0.2
0.2
0.2
<0.2
<0.2
<0.2
0 . 045
0.045
0.045
<50.0
<50.0
<50.0
36.0
36.0
36.0
0.044
0 . 044
0.044
270
62
77
0.5
0. 14
0.3
27
<0. 1
0.21
987.0
1.3
0.8
0. 16
0.077
<0.03
477.0
1 10.0
9.8
- .40
50
<5
5,300
12
30
0.24
0.06
0.053
-------
Table V-194 (Continued)
URANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEV/ATER SAMPLING DATA
Pollutant
Stream
Code
Concentrations (mg/1)
Source
Nonconventional Pollutants (Continued)
00
00
O
Fluoride
Iron
Magnesium
Manganese
Molybdenum
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.41
0.41
0.41
0. 16
0.16
0.16
0
0
0
058
058
058
<0.03
<0.03
<0.03
1.8
0.35
0.9
77.0
0.4
1 .6
8.4
0.8
10.0
7.2
0.2
0.2
0. 15
0.05
<0.03
-------
Table V-194 (Continued)
URANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
00
CO
Pol 1utant
Noneonventional Pol 1utants (Continued)
Ni trate
Phosphorus
Sodium
Sulfate
Tin
Titanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Urani um
Stream
Code
id)
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
V-14
V-15
V-16
1
1
1
1
1
1
1
1
1
1
1-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sampl e
Type
<0
<0
<0
0
0
0
74
74
74
2
2
2
<0
<0
<0
<0
<0
<0
300
300
300
<10
<1 0
<10
330
330
330
0
0
0
Concentrations
Source Day 1
.09
.09
.09
.5
.5
.5 -
.0
.0
.0
.8
.8
.8
.25
.25
.25
.2
.2
.2
.0
.0
.0
.0
.0
.0
.0
.0
.0
.89
.89
.89
(mg/1)
Day 2
7
0
2
1
1
45
120
183
4
7
8
0
<0
<0
0
<0
<0
7,800
140
4,000
<,
<1
3
7,900
86
2,000
51
9
10
Day 3
.09
.9
.46
.0
.0
.7
.0
.0
.0
.9
.9
.2
.25
.25
.25
.2
.2
.2
.5
.6
.0
-------
Table V-194 (Continued)
URANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Nonconventional Pollutants (Continued)
Vanadium
Yttrium
00
00
to
Gross Alpha
Gross Beta
Radium-226
Stream
Code
:d)
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1
V-16 1
V-14 1
V-15 1"
V-16 1
V-14 1
V-15 1
V-16 1
Sample Concentrations (mg/1)
Type Source Day 1 Day
<0 . 03
<0.03
<0.03
<0.1
<0.1
<0.1
Concentrations (nCi/L)
0.014
0.014
0.014
<0.013
<0.013
<0.013
<0.0008
<0.0008 . .
<0.0008
_2 Day 3
0.15
0.05
0.045
<0.1
<0.1
<0. 1
33.5
6.7
7.8
66.7
10.2
10.3
<0.0017
0.04
0.01 18
-------
00
00
U)
Table V-194 (Continued)
URANIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
V-14
V-15
V-16
V-14
V-15
V-16
V-14 1
V-15
V-16
Sample Concentrations
Type Source Day 1
<1 .0
<1 .0
<1 .0
<1 .0
<1 .0
<1 . 0
6
6
6
(mg/1)
Day 2
7
<
8
10
2
Day 3
1
1
4
0
1
5
7
7
7
1. No ana-lyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Table V-195
URANIUM SURFACE TREATMENT SPENT BATHS
Plant
1
2
3
Wastewater Discharge
1/kkg gal/ton
27.2
NR
NR
6.52
NR
NR
884
-------
Table V-196
URANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
'' Pol lutant
Toxic Pol lutants
114. antimony
115. arsenic
117. beryllium
118. cadmium
119. chromium (total)
120. copper
00
00 122. lead
123. mercury
124. nickel
125. selenium
126. silver
127. thallium
128. zinc
Nonconvent ional Pol lutants
Aluminum
Barium
Boron
Calcium.
Cobalt
Iron
Magnesium
Stream
Code
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
V-2
Sample Concentrations (mg/1)
Type Source
1 <0.0006
1. <0.001
1 0.012
1 <0.03
1 0.061
1 0.088
1 0<036
1 <0.005
1 0.055
1 <0.001
1 <0.0005
1
-------
Table V-196 (Continued)
URANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
00
00
Pol lutant
Nonconventi onal Pol lutants
Manganese
Molybdenum
Sodium
Tin
Titanium
Vanadium
Yttrium
Stream
Code
(Continued)
V-2
V-2
V-2
V-2
V-2
V-2
V-2
Sample
Type
1 0
1 <0
1 74
1 <0
1 <0
1 <0
1 <0
Concentrations (mq/1)
Source
.058
.03
.0
.25
.2
.03
. 1
Day 1 Day 2 Day 3
2.8
2.1
4.5
0.9
7.3
1.8
6.0
-------
fable V-196 (Continued)
URANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
Source
Concentrations (mg/1)
Conventional Pollutants
pH (standard units)
V-2
<1
00
00
1. No analyses were performed for the following toxic pollutants: 1-113, 116, 121, and
129.
-------
Table V-197
URANIUM SURFACE TREATMENT RINSE
Plant
1
2
Water Use
1/kkg gal/ton
268
406
64.3
97.5
Percent
Recycle
0
0
Wastewater Discharge
1/kkg gal/ton
268
406
64.3
97.5
888
-------
Table V-198
URANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Stream Sample Concentrations (mg/1)
Toxic
1 14.
1 15.
1 17.
1 18.
00 ng
00 ' la-
VO
120.
121 .
122.
123.
124.
125.
126.
127.
128.
Pol lutant
Pol 1 utants
antimony
arsenic
beryl 1 ium
cadmium
chromium (total)
copper
cyanide (total )
lead
mercury
nickel
selenium
si 1 ver
thai 1 ium
zinc
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
1
2
1
2
1
2
1
2
1
2
1
2
1
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
Code Ty
<0.0006
<0.0006
<0.001
<0.001
0.012
0.012
<0.03
<0.03
0.061
0.061
0.088
0.088
<0.01
<0.01
0.036
0.036
<0.005
<0.005
0.055
0.055
<0.001
<0.001
<0.0005
<0.0005
<0.001
<0.001
0.101
0.101
pe Source
<0.0006
<0.001
0.7
0.4
0.6
12.0
<0.1
110.0
<0.005
3.4
<0.001
0.0009
•<0.001
0.6
Day 1 Day 2 Day 3
<0.0006 <0.0006
<0.001 <0.001
0.2 0.3
0.13 0.25
0.17 0.4
3.0 4.7
0.05
6.0 14.0
<0.005 <0.005
"0:8 1.7
<0.1 0.0015
<0.0005 <0.0005
<0.001 <0.001
0.8 0,6
-------
Table V-198 (Continued)
URANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Stream Sample Concentrations (mg/1)
Pol lutant
Nonconventioal Pollutants
00
VO
O
Acidity
Alkal inity
Al uminum
Ammonia Nitrogen
Barium
V-4
V-4
V-3
V-4
V-3
V-4
V-3
V-4
2
2
1
2
1
2
1
2
Code _Jj
<10.0
33.0
0. 131
0.131
0.07
0.07
0.2
0.2
/oe Source Day 1 Day 2 Day 3
1,200 3,500
<1 <1
165.0
9.4 2.1
<0.3
0.68 0.24
195.0
3.7 39.0
-------
Table V-198 (Continued)
URANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Pol lutant
Stream
Code
Nonconventional Pol lutants
Boron
Calcium
Chemical Oxygen Demand
(COD)
Chloride
Cobalt
Fluoride
Iron
Magnesium
Manganese
Molybdenum
Nitrate
Phosphorus
Sodium
Sulfate
Tin
V-3
V-4
V-3
V-4
V-3
V-4
V-4
V-3
V-4
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-4
V-3
V-4
V-3
V-4
vr4
V-3
V-4
(Cont inued-)-
1
2
1
2
.1
2
2
1
2
2
1
2
. 1
2
1
2
1
2
2
1
2
1
2
2
1
2
<0 .
<0 .
0.
0.
<50.
<50.
36.
0.
0.
0.
0.
0.
8.
8.
0.
0.
<°:
<0.
0.
0.
74.
74.
2.
<0 .
<0 .
2
2
045
045
0
0
0
044
044
41
16
16
0
0
058
058
03
03
09
5 . ..
5
0
0
B
25
25
Sample Concentrations (mg/1)
Type Source
3.2.
120.0
50
4. 1
19.0
1 .2
3.3
1 .5
3.4
68.0
0.8
Day 1
0.7
69.0
<50
33
1 . 1
0.73
2.9
110.0
1 .4
0.6
2,200
25
21 .0
17
<0.2
Day 2
1
48
50
160
2
1
20
2
0
1
4,600
60
33
28
0
Day 3
.5
.0
.3
.5
.0
.4
.073
.4
.0
.4
-------
00
vo
to
Table V-198 (Continued)
URANIUM SURFACE TREATMENT RINSEWATER
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/1)
Pol lutant
Nonconventional Pollutants
Titanium
Total Dissolved Solids
TDS
Total Organic Carbon
(TOO
Total Solids (TS)
V-3
V-4
V-4
V-3
V-4
V-4
(Continued)
1
2
2
1
2
2
Code
<0.2
<0.2
300.0
<10.0
<10.0
330.0
Type Source Day 1 Day 2 Day 3
21.0
1.5 7.6
5,600 9,800
180
30 <1
6,000 11,000
-------
Table V-198 (Continued)
URANIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Stream Sample
Concentrations (mg/1)'
Pol lutant
Nonconventional (Continued)
Uranium
Vanadium
Yttrium
Gross Alpha
Gross Beta
00
<£>
UJ
Radium-226
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids
(TSS)
pH (standard units)
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-3
V-4
V-4
V-3
V-4
1
2
1
2
1
2
1
2
1
2
1
2
1
1
2
1
2
Code
0
0
<0
<0
<0
<0
0
0
<0
<0
<0
<0
<1
<1
<1
6
6
Type Source Day 1 Day 2 Day 3
.89 2,700
.89 900 760
.03 140.0
.03 2.9 5.8
. 1 2.4
.1 0.5 0.7
Concentrations (nCi/L)
.014 9,920
.014 794 1,960
.013 22,727
.013 1,150 2,700
.0008 0.105
.0008 0.018 0.00813
Concentrations (mg/1)
.0 <1
.0 10
.0 52 430
<1
4 4
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Table V-199
URANIUM SAWING OR GRINDING SPENT EMULSIONS
Plant
1
2
3
Water
1/kkg
NR
NR
NR
Use
gal/ton
NR
NR
NR
Percent
Recycle
P
P
P
Wastewater
1/kkg
3.23
8.14
NR
Dischar
gal/to
0.774
1.95
NR
Periodic batch discharge
894
-------
Table V-200
URANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Tox ic Pol lutants
23. chloroform
81. phenanthrene
114. antimony
115. arsenic
117. beryllium
118. cadmium
0° 119. chromium (total)
vo
01 120. copper
121. cyanide (total )
122. lead
123. mercury
124. nickel
1 25. sel enium
126. silver
127. thai 1 ium
" 1'28: zinc ' "
Nonconventional Pollutants
Acidity
Alkal inity
A 1 umi num
Ammonia Nitrogen
Barium
Stream
Code
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
' V-6 ' "" 1
V-6 1
V-6 1
V-6 1
V-6 1
V-6 1
Sample
0
<0
<0
0
<0
0
0
<0
0
<0
0
<0
<0
<0
0
<10
33
0
•o
0
Concentrations
Source
. 103
ND
.0006
.001
.012
.03
.061
.088
.01
.036
.005
.055
.001
.0005
.001
.'101
.0
.0
. 131
.07
.2
Day 1
ND
32.
0.
<0.
0.
0.
0.
0.
0.
7.
<0.
0.
0.
0.
0.
7.
130
210
2.
<0.
Q.
(mg/1)
Day 2 Day 3
607
0014
001
028
07
1
9
03
3
005
2
001
0013
0018
5
4
02
2
-------
Table V-200 (Continued)
URANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
00
Pol lutant
Stream
Code
Sample Concentrations (mg/1)
Type Source
Day 1 Pay 2 Day 3
Nonconventional Pol lutants (Continued)
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobal t
Fl uoride
Iron
Magnesium
Manganese
Molybdenum
Nitrate
Phosphorus
Sodium
Suifate
Tin
Ti tani urn
Total Organic Carbon (TOC)
Uranium
Vanadium
Yttrium
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
V-6
. V-6
V-6
V-6
V-6
V-6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
<0.2
0.045
<50.0
36.0
0.044
0.41
0. 16
8.0
0.058
<0.03
<0.09
0.5
74.0
2.8
<0.25
<0.2
<10.0
0.89
<0.03
<0. 1
0.6
32.0
<50
260
0.2
10
14.0
23.0
0.7
0.15
280
3.3
750.0
31
<0.25
0.5
1,500
37.5
0.3
<0. 1
-------
Table V-200 (Continued)
URANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Stream
Code
Concentrations (mg/1)
Source
Day 1
Day
Nonconventional Pol 1utants (Continued)
Gross Alpha V-6 1 0.014*
Gross Beta V-6 1 <0.013*
Radium-226 V-6 1 <0.0008*
70.3*
176*
0.0212*
00
to
>J
Convent 1onal Po11utants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
V-6 1 <1.0
V-6 1 <1.0
V-6 1 6
7,500
510
7-8
*concentrations are reported in nanocuries/1iter
1. The following toxic pollutants "were not-detected i.n "this waste stream: 1-22, 24-80,
and 82-88.
2. No analyses were performed on the following toxic .pollutants: 89-113, 116, and 129.
-------
Table V-201
URANIUM SAWING OR GRINDING CONTACT COOLING WATER
Plant
1
Water Use
1/kkg gal/ton
NR
NR
Percent
Recycle
NR
Wastewater Discharge
1/kkg gal/ton
1,647
395
898
-------
Table V-202
URANIUM SAWING OR GRINDING RINSE
Plant
1
Water Use Percent
1/kkg gal/ton Recycle
Wastewater Discharge
1/kkg k gal/ton.
NR
NR
4.65
1.12
P - Periodic batch discharge
899
-------
Table V-203
URANIUM AREA CLEANING WASHWATER
Plant
1
Water
1/kkg
NR
NR
NR
Use
gal/ton
NR
NR*
NR
Percent
Recycle .
P
P
P
Wastewater
1/kkg
1.37
30.1
97.2
Dischar
gal/to
0.33
7.28
23.3
900
-------
Table V-204
URANIUM AREA CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
u>
Toxic
22.
23.
66.
114.
115.
1 17.
118.
119.
-
120.
121 .
Pol lutant
Pol lutants
p-chloro-m-cresol
chloroform
bis(2-ethylhexyl)
phthalate
antimony
arsenic
beryl 1 ium
cadmium
chromium (total)
..-,--.
copper
cyanide (total )
V-8
V-18
V-19
V-8
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18 -
V-19
V-8
V-18
V-19
V-8
V-18
V-19
Stream
Code
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SampVe Concentrations (mg/1)
Type Source
ND
ND
ND
0.103
ND
ND
ND
<0.0006
<0.0006
<0.0006
<0.001
<0.001
<0.001
0.012
0.012
0.012
<0.03_
<0.03
<0.03
0.061
0.061
0.061
0.088
0.088
0.088
<0.01
<0.01
<0.01
Day 1 Day 2 Day 3
15.031
ND
. ND
ND
4.879
0.085
0.989
-------
Table V-204 (Continued)
URANIUM AREA CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Toxic Pollutants (Continued)
Stream
Code
Concentrations (mg/l)
Source
\D
o
to
122." lead
123. mercury
124. nickel
125. selenium
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
1
1
1
1
1
1
1
1
1
1
1
1
0.036
0.036
0.036
<0.005
<0.005
<0.005
0.055
0.055
0.055
<0.001
<0.001
<0.001
3.4
<0.005
0.3
0.0018
3.07
4. 1
<0.0005
<0.0005
0.5
0.5
<0.001
0.0033
-------
Table V-204 (Continued)
URANIUM AREA CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Toxic Pollutants (Continued)
126. silver V-8
V-18
V-19
127. thallium V-8
V-18
V-19
128. zinc V-8
V-18
- _ V-19
Nonconvent ional Pollutants
Acidity V-8
vo v~18
0 ' V-19
U)
Alkal inity V-8
V-,18
V-19
Aluminum V-8
V-18
V-19
Ammonia Nitrogen V-18
V-19
Barium V-8
V-18
V-19
Boron"" ~~ "'' "' ' V-8
V-18
V-19
Calcium V-8
V-18
V-19
Chemical Oxygen Demand (COD) V-8
V-18
V-19
Stream Sample
Code Type
1 <0.0005
1 <0.0005
1 <0.0005
1 <0.001
1 <0.001
1 <0.001
1 0.101
1 0.101
1 0.101.
1 <10.0
1 <10.0
1 <10.0
1 33.0
1 33.0
1 33.0
1 0.131
1 0.131
1 0.131
1 0.07
1 0.07
1 0.2
1 0.2
1 0.2
r <0.2
1 <0.2
1 <0.2
1 0.045
1 0 . 045
1 0.045 '
• 1 <50.0
1 <50.0
1 • <50.0
Concentrations (mg/1)
Source Day 1 Day 2 Day 3
0.0011
0.001
O.OOQ8
<0.001
<0.001
<0.001
11.0
5.2
4.0
<10
<10
<10
634
1,060
618
54.0 .
23.0
34.0
1 .2
2.1
1 .0
36.0
8.7
0:4
0.6
0.1
416.0
320.0
739.0
, <50
10
. 15
-------
Table V-2Q4 (Continued)
URANIUM AREA CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Nonconventional Pol lutants (Continued)
Stream
Code
Source
Concentrations (mg/l)
Chloride
Cobalt
Fluoride
V-8
V-18
V-19
V-8
V-18
V-19
V-B
V-18
V-19
1
1
1
1
1
1
1
1
1
36.0
36.0
36.0
0.044
0 .044
0.044
0.41
0.41
0.41
97
0.23
6.4
445
74
0.4
0.4
1 .6
1.8
VO
O
-------
Tabler V/-204 (Continueci)
URANIUM AREA CLEANING .WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Stream
Code
Concentrations (mg/1)
Source
VO
O
Ul
Nonconventional Pollutants (Continued)
Iron
Magnesium
Manganese
Molybdenum
Nftrate
Phosphorus
Sodium
Sulfate
Tin
Ti tanium
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0. 16
0.16
0.16
8.0
8.0
8.0
0.058
0.058
0.058
<0.03
<0.03
<0.03
<0.09
<0.09
<0.09
0.5
0.5
0.5
74.0
74.0
74.0
2.8
2.8
2.8
<0.25
<0.25
<0.25
<0.2
<0.2
<0.2
50.0
151 .0
1 .6
0.5
790
2.5
1 ,769.0
21
<0.25
3.7
66.0
48.0
330.0
1,499.0
1 .8
2.3
0.5
0.6
77
75
39
2.6
3, 145.0
10,298.0
2.4
8.8
<0.25
<0.25
2.8
1.8
-------
Table V-204 (Continued)
URANIUM AREA CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
10
O
a\
Pollutant
Nonconventional Pol lutants (Continued)
Total Dissolved Solids (TDS)
Tota'l Organic Carbon (TOO
Total Solids (TS)
Urani um
mtinued
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
V-8
V-18
V-19
Stream
Code
)
1
1
1
1
1
1
1
1
1
1
1
1
Sample
Type
300.0
300.0
300.0
<10.0
<10.0
<10.0
330.0
330.0
330.0
0.89
0.89
0.89
Concentrations (mg/1)
Source
6,600
2,700
9,500
49
3,400
680
4,400
3,100
130
79
-------
Table V-204 (Continued)
URANIUM AREA.CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol lutant
Stream
Code
Samp] e
Type
Concentrations (mg/1)
Source Day 1 Day 2 Day 3
Nonconvent ional Pollutants (Continued)
Vanadium
Yttrium
Gross Alpha
Gross Beta
Radium-226
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids
pH (standard units)
V-8 1
V-18 1
V-19 1
V-8 1
V-18 1
V-19 1
V-8 1
V-18 1
V-19 1
V-8 1
V-18 . 1
V-19 1
V-8 1
V-18 1
V-19 1
V-8 1
V-18 1
V-19 1
(TSS) V-8 1
V-18 1
V-19 1
V-8 1
V-18- 1
V-19 1
<0.03
<0.03
<0.03
<0. 1
<0. 1
<0. 1
0.014
0.014
0.014
<0.013
<0.013
<0.013
<0.0008
<0.0008
<0.0008
<1 .0
<1 .0
<1 .0
<1 .0
<1 .0
<1 .0
6
6
6
<0.3
0.8
0.8
2.0
11.0
14.0
Concentrations (nCi/L)
76.4
227
315
109 .
314
479
0.03
0. 143
0. 183
6,000
17
25
775
60
1,600
10
10
9
1. The following toxic pollutants were not detected in this waste stream: 1-21, 24-65,
and 67-88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-205
URANIUM WET AIR POLLUTION CONTROL SLOWDOWN
Plant
1
2
Water Use
1/kkg gal/ton
NR
NR
NR
NR
Percent
Recycle
NR
P
Wastewater Discharge
1/kkg gal/ton
0
3.49
0
0.836
908
-------
Table V-206
URANTUM-WET-AIR-POL.LUTION" CONTROL^BLOWboWN
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Toxic Pollutants
114. ant imony
115. arsenic
1 17. beryl 1 ium
118. cadmium
119. chromium (total)
\O 120. copper
O
*° 121. cyanide (total)
122. lead
123. mercury
124. nickel
125. selenium
126. silver
"127. thallium
128. zinc
V-5
V-5
V-5
V-5
V-5
V-5
V-5
V-5
V-5
V-5
V-5
V-5
V-5
V-5
Stream Sample Concentrations (mg/1)
Code Type Source Day 1 Day 2 Day 3
1 <0.0006 <0.0006
1 <0.001 <0.001
1 0.012 0.02
1 <0.03 <0.03
1 0.061 <0.03
1 0.088 0.15
1 <0.01 <0.1
1 0.036 0.6
1 <0.005 <0.005
1 0.055 0.081
1 <0.001 <0.001
1 <0.0005 0.0007
1 <0.001 <0.0078
1 0.101 1.1
Nonconventional Pollutants
Acidity
Alkal inity
Al uminum
Ammonia Nitrogen
Barium
V-5
V-5
V-5
V-5
V-5
i 2,000
1 0.131 0.6
1 0.07 2.0
1 0.2 <0.1
-------
Table V-206 (Continued)
URANIUM WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
vo
Po 1 1 ut ant
Stream Sam
Code Ty
pie Concentrations (mg/1)
pe Source Day 1 Day 2 Day 3
Nonconvent ional Pollutants (Continued)
Boron
Cal cium
Chemical Oxygen Demand
(COD)
Chloride
Cobalt
Fl uoride
Iron
Magnesium
Manganese
Mol ybdenum
Phosphorue
Sodium
Sulfate
Tin
V-5 1
V-5 1
V-5 1
V-5 1
V-5 1
V-5 1
V-5 1
V-5 1
V-5 . 1
V-5 1
V-5 1
V-5 1
V-5 1
V-5 1
<0.2
0.045
<50.0
36.0
0.044
0.41
0.16
8.0
0 . 058
<0.03
0.5
74.0
2.8
<0.25
0.6
0.8
120
4,100
0.088
31
0.4
0.78
0.1
0.23
3.4
141 .0
5.3
<0.2
-------
Table V-206 (Continued)
'URANIUM""WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream Sample
Code
Concentrations (mg/1)
Nonconvent ional Pollutants (Continued)
Titanium
Total Dissolved Solids
. • . " (TDS)
Total Organic Carbon
(TOC)
Total bo lids (.TbJ
VD
l_a Uranium
; ' -. Vanadi urn
" -"Yttrium
V-5
V-5
V-5
V-5
V-5
V-5
V-5
1
1
1
1
1
1
1
<0.2
300.0
<10.0
330.0
0.89
<0.03
<0. 1
Nonconvent ional Pollutants (Continued)
1 .2
510,000
280
510,000
1,000
0.16
0.2
Concentrations (nCi/L)
Gross Alpha V-5 1
Gross Beta V-5 1
-—Radium-226 V-5 — 1
Conventional Pol 1utants
:0i1 and Grease V-5
Total Suspended Solids V-5
(TSS)
pH (standard units)
0.014 134
<0.013 1,970
<0.0008 0.011
Concentrations (mg/1)
.0
.0
650
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Table V-207
URANIUM DRUM WASHWATER
Plant
1
Water Use
1/kkg gal/ton
NR
NR
Percent
Recycle
>0
Wastewater Discharge
1/kkg gal/ton
44.3
10.6
912
-------
Table V-208
URANIUM DRUM WASH WATER
RAW WASTEWATER SAMPLING DATA
- Pol lutant
Toxic Pol lutants
114. ant imony
115. arseni c
117. beryl 1 i urn
118. cadmium
119. chromium (total)
120. copper
121 . cyanide (total )
122. lead
1 23 . mercury
124. nickel
125. selenium
126. silver
127. thallium
128. zinc
Noncohvent iohaT Pollutants
Acidity
Alkal inity
Al uminum
Ammonia Nitrogen
Barium
Boron
Cal cium
Stream
Code
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
V-9 1
Sample Concentrations
Type Source Day 1
<0.0006 -
<0.001
0.012
<0.03
0.061
0.088
<0.01
0.036
<0.005
0.055
<0.001
<0.0005
<0.001
0.101
<10.0
33.0
0.131
0.07
0.2
<0. 2
0.045
(mg/1)
Day" 2
<0
<0
0
<0
0
0
<0
0
<0
<0
<0
<0
<0
0
<10
779
2
0
0
0
56
Day 3
.0006
.001
.013
.03
.06
.6
.1
.22
.005
.03
.001
.0005
.001
.8
.2
.30
.3
.04
.0
-------
Table V-20B (Continued)
URANIUM DRUM WASH WATER
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Nonconventional Pollutants (Continued)
Chemical Oxygen Demand (COD)
Chioride
Cobalt
Fluoride
Iron
Magnesium
Stream
Code
Concentrations (mg/1)
Source
Dav
V-9
V-9
V-9
V-9
V-9
V-9
1 <50.0
1 - 36.0
1 0 . 044
1 0.41
1 0. 16
1 8.0
10
850
0.041
3.5
4.3
28.6
VD
H
-------
Table V-208 (Continued)
VD
-- --- - -- - URA"NrUIWTDR'UlvrWASH WATER"
RAW WASTEWATER SAMPLING DATA
Pol 1 utant wu^c
Stream
TriHo
Nonconvent ional Pollutants ("Continued)
Manganese
Mol ybdenum
Nitrate
Phosphorus
Sodium
Sulfate "-.'-. ..
Tin
Ti tanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Uranium
Vanadi urn
Yttrium ;
Gross Alpha
Gross Beta
Radium-226
V-9
•V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
V-9
Sample
Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
1 0.058 0.2
1 <0.03
1 <0.09
1 0.5
1 74.0
1 2.8
1 <0.25
1 <0.2
1 300.0
1 <10.0
1 330.0
1 0.89
1 <0.03
1 <0.1
1 0.014
1 <0.013
1 <0.0008
<0.03
4.3
310
678.0
5.4
<0.2
<0.2
2,100
2
2,300
5.7
0.03
0. 1
Concentrations (nCi/L)
3.7
4.5
0.0019
-------
Table V-208 (Continued)
URANIUM DRUM WASH WATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Nonconventional Pollutants (Continued)
Conventional Pollutants
Oi1 and Grease V-9
Total Suspended Solids (TSS) V-9
pH (standard units) V-9
Stream
Code
1
1
1
Sample Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
Concentrations (mg/1)
<1.0 12
<1.0 23
6 9-10
vo
1. No analyses were performed for the following toxic pollutants: 1-113, 116, and 129.
-------
Table V-209
URANIUM LAUNDRY WASHWATER
Plarit
1 '
Water Use
liters/ gallons/
employee- employee-
day
52.4
day
12.6
Percent
Recycle
Wat'er Use
libers/ gallons/
employee- employee-
day
52.4
day
12.6
917
-------
Table V-210
URANIUM LAUNDRY WASH WATER
RAW WASTEWATER SAMPLING DATA
00
Pol lutant
Toxic Pollutants
114. antimony
115. arsenic
117. beryl 1 ium
118. cadmium
119. chromium (total)
120. copper
121 . cyanide (total )
122. lead
123. mercury
124. nickel
1 25 . sel enium
126. silver
127. thallium
128. zinc
Nonconvent ional Pollutants
Acidity
Alkal inity
Aluminum
Ammonia Nitrogen
Barium
Boron
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
. V-7
V-7
Stream
Code
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sample Concentrations (mg/1)
Type Source
<0.0006
<0.00l
0.012
<0.03
0.061
0.088
<0.01
0.036
<0.005
0.055
<0.001
<0.0005
<0.001
0.101
<10.0 <
33.0
0.131
0.07
0.2
<0.2
Day 1 Day 2 Day 3
<0.0006
0.028
0.015
<0.03
<0.03
0.25
<0.1
0.042
<0.005
<0.03
<0.001
0.0048
<0.001
0.7
:10
59
0.9
2.3
0.2
0.3
-------
Table V-210 (Continued)
URANIUM LAUNDRY WASH WATER
Po1 1 utant
Nonconvent i onal Pol lutants (Continued)
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobal t
Fl uoride
Iron
Magnesium
Manganese
SW -WAS i -CWft i CK -inMHi--i r.u
Stream Sample
Code Tvoe
inued)
V-7
V-7
V-7
V-7
V-7
V-7
V-7
V-7
1 0
1 <50
1 36
1 0
1 0
1 0
1 8
1 0
ISA i rc-
Concentrations (mg/1)
Source
.045 17.
.0
.0
.044
.41
.16
.0
.058
<50
210
0.
0.
0.
5.
0.
Day 1 Day 2 Day 3
0
25
79
16
3
2
VO
-------
Table V-210 (Continued)
URANIUM LAUNDRY WASH WATER
RAW WASTEWATER SAMPLING DATA
t>J
Pol lutant
Stream
Code
Sample
Concentrations (mg/1)
Source Day 1 Day 2 Day 3
Nonconventional Pol lutants (Continued)
Mol ybdenum
Nitrate
Phosphorus
Sodium
Sulfate
Tin
Ti tanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Uranium
Vanadium
Yt tri urn
Gross Alpha
Gross Beta
Radium-226
Conventional Pol 1 utants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
V-7 1
<0.03
<0.09
0.5
74.0
2.8
<0.25
<0.2
300.0
<10.0
330.0
0.89
<0.03
<0.1
0.014
<0.013
<0.03
<0.09
12
133.0
14
<0.2
<0.2
590
46
630
0.51
<0.03
7.3
Concentrations (nCi/L)
13.7
18.5
<0.0008 3.6
<1 .0
<1 .0
6
Concentrations (mg/1)
42
1 1
6
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Table V-211 ;
ZINC ROLLING SPENT NEAT OILS
Plant
i ;
Water Use
1/kkg gal/ton
NR
NR
Percent
Recycle
100
Wastewater Discharge
1/kkg • gal/ton
0
0
NR -'Data not reported
921
-------
Table V-212
ZINC ROLLING SPENT EMULSIONS
Plant
1
2
3
Water Use
1/kkg gal/ton
NR
NR
NR
NR
NR
Percent
Recycle
100
P
NR
Wastewater Discharge
1/kkg gal/ton
0
1.39 (CH)
NR (LA)
0
0.334 (CH)
NR (LA)
NR - Data not reported
CH - Contract hauled
LA - Land application
P - Periodically discharged
922
-------
Table V-213
ZINC ROLLING CONTACT COOLING. WATER
; ' ./ i ' Water Use
Plant ,. 1/kkg gal/ton
,471
600
1 NR
113
144
NR
Percent
Recycle
0
0
P
: Wastewater Discharge
: 1/kkg gal/ton
471
600
NR
113
144
NR
NR -iData not reported
P -;Periodically discharged
923
-------
Table V-214
ZINC DRAWING SPENT EMULSIONS
Plant
1
2
3
4
Water Use
1/kkg gal/ton
NR
NR
NR
NR
NR
NR
NR
NR
Percent Wastewater Discharge
Recycle 1/kkg gal/ton
P 5.80 (CH) 1.39 (CH)
P NR (CH) NR (CH)
P NR NR
P NR NR
NR - Data not reported
CH - Contract hauled
P - Periodically discharged
924
-------
Table V-215
'ZINC DIRECT CHILL CASTING CONTACT COOLING WATER
Plant ;
•i
1
2
Water Use
1/kkg gal/ton
NR!
505
NR
121
Percent
Recycle
100
0
Wastewater Discharge
1/kkg gal/ton
. 0
:505
0
121
NR - Data not reported
925
-------
Table V-216
ZINC STATIONARY CASTING CONTACT COOLING WATER
Plant
1
Water Use
1/kkg gal/ton
NR
NR
Percent
Recycle
100
Wastewater Discharge
1/kkg gal/ton
0 (+-)
0 ( + )
NR - Data not reported
+ - Loss due to evaporation
926
-------
Table V-217 ,;
ZINC HEAT TREATMENT CONTACT COOLING WATER
Plant
1 •
Water Use Percent
l/.kkg gal/ton Recycle
Wastewater Discharge
l/kkg gal/ton
NR
NR
763
183
NR - Data not reported
P - Periodically discharged
927
-------
Table V-218
ZINC SURFACE TREATMENT SPENT BATHS
Plant
1
Wastewater Discharge
1/kkg gal/ton
65.1
70.9
130
NR
15.6
17.0
31.2
NR
NR - Data not reported
928
-------
Table .V-219
ZINC SURFACE TREATMENT
RINSE
Plant
. Water Use
1/kkg gal/ton
4,170
5,000
1/570
1,000
1,200
376
Percent
Recycle
0
0
0
NR - Data not reported
929
Wastewater Discharge
1/kkg gal/ton
4,170
5,000
1,570
1,000
1,200
376
-------
Table V-220
ZINC SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
VD
OJ
O
Pollutant
Toxic Pollutants
3. aery 1oni triIe
4. benzene'
6. carbon tetrachloride
7. chlorobenzene
10. 1 , 2-dichloroethane
11. 1 , 1 , 1-trichloroethane
13. 1 , 1-dichloroethane
14. 1,1,2-trichloroethane
15. 1,1,2,2-tetrachloroethane
18. bis(2-chloroethy1)ether
23. chloroform
29. 1,1-dichloroethy1ene
30. 1 , 2-trans-dichloroethy1ene
32. 1 , 2-dichloropropane
33. 1 ,3-dichloropropene
34. 2,4-dimethylphenol
36. 2,6-dinitrotol uene
37. 1,2-dipheny1hydrazine
38. ethylbenzene
39. fluoranthene
43. bis(2-ch1oroethoxy)methane
44. methylene chloride
Stream
Code
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
Sample Concentrations (mg/1)
Type Source
1 0.002
1 0.017
1 0.004
1 **
1 **
1 0.003
1 0.001
! **
1 0.001
1 NO
1 0.051
1 0.002
1 0.002
1 0.002
1 **
1 ND
1 0.002
1 **
1 0.011
1 0.001
1 **
1 0.003
Day 1 Day 2 Day 3
0.001
0.015
0.003
**
** .!
ND
0.001
**
0.001
0.001
0.015
0.002
0.002
**
* *
0.005
0.002
**
0.011
ND
0.001
o: 008
-------
Table V-220 (Continued)
"ZINC SURFACE TREATMENT 'RTNSE
RAW WASTEWATER SAMPLING DATA
Pol lutant
Toxi c Pol 1 utants -(Continued) -
46. methyl bromide (bromomethane)
47. bromoform (tribromomethane)
48. dich1orobromomethane
51. chlorodibromomethane
55. naphthalene
66. bis(2-ethyIhexy1) phthalate
67. butyl benzyl phthalate
68. di-n-butyl phthalate
69.- di-n-octyl phthalate: -
70. diethyl phthalate
72. benzo(a)anthracene
74. benzo(b)f1uoranthene
7.5., _. ._b.e.Qza£.klf-Luoj:.aathan.e -
76. chrysene •
78. anthracene
79. benzo(ghi)pery 1 ene
80. fluorene
81. phenanthrene
83. indeno(1,2,3-c,d)pyrene
84. : pyrene
85. tetrach1oroethy1ene
86. to 1uene
Stream Sample
Code Type
G-3 1
G-3 1
G-3 1
G-3 1
G-3 1
G-3 ' -1
G-3 1
G-3 1
G-3 1
G-3 1
G-3 ' 1
G-3 1
.S--3- 7—1 -
G-3 . 1
G-3 1
G-3 _ _ 1:;
G-3 1
G-3 '-I
G-3 1
G-3 ' ;i
G-3 ; 1
G-3 '< ' \
Concentrations (mg/1)
Source
**
0.002
0.005
0.031
**
0.003
0.001 '
0.017
**
0.009
0.001
0.002
— -0-.-002-
0.001
0.001
0.007
0.001
0.001
0.016
0.001
0.009
0.007
Day 1 Day 2 Day 3
ND
0.002
0.001
0 . 1 40
0.001
**
0.002
0.037
ND
0.016
0.001
ND
— N0— : — - — —
0.001 .
* *
ND : . . : .
ND
* *; • '
ND
ND
0.009
0.002
-------
Table V-2:.'U I continued)
ZINC SURFACE TREATMENT RINSE
HAW WASTEWATER SAMPLING DATA
. S t p earn Samp,l e
Concentrations (mg/1]
'Day 2
VO
Toxic
87.
1 14.
115.
117.
118.
1 19.
120.
121.
122.
123.
124.
125.
126.
127.
128.
Po 1 1 utant
Pollutants (Continued)
trichloroethylene
antimony
arseni c
bery 1 1 iurn
cadmi um
chromium (total )
copper
cyanide (total )
lead
mercury
ni eke 1
se! eni um
si 1 ver
thai 1 i um
zinc
Code
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3 •
G-3
G-3
G-3
G-3
Type Source
1 0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 <0
1 0
.009
.010
.010
.005
.020
.020
.050
.07
.050
.0002
.050
.010
.010
.010
. 100
Day 1
0.008
<0.010
<0.010
<0.005
<0.020
0. 160
<0.050
<0.03
<0.050
<0.0002
8.10
<0.010
<0.010
<0.050
42.3
Nonconvent i ona 1 Pollutants
Acidity
Alkalinity
A 1 umi num
Aminoni
Bari um
a Nitrogen
G-3
G-3
G-3
G-3
G-3
1 <1
1 67
1 0
1 <0
1 <0
.100
.02
.050
<1
26
0.500
<0.02
<0.050
-------
Table V-220 (Continued)
-ZING -SURFACE -TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Pol lutant
Stream
Code
Sample Concentrations (mg/1)
Type Source
Nonconvent ional Pol lutants (Continued)
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobal t
\O F 1 uoride
CO
**> Iron
Magnesium
Manganese
Mo 1 ybdenum
Pheno 1 i cs
Phosphate
Sodium
Sulfate
Tin
Titanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Tota.l Solids (TS)
Vanadium
Vttrium
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
G-3
: G^3
; G-3
G-3
G-3
G-3
G-3
: G-3
G-3
1 0.100
1 29. 1
1 560
1 36
1 <0.050
1 96
1 < 0.050
1 4. 10
-- '-- 1 - < 0.050
1 < 0.050
1 < 0.005
1 1.6
1 6 00
1 47
1 < 0.050
1 < 0.050
1 160
1 < 1
1 92
1 < 0.050
;i < 0.050
Day 1 Day 2 Day 3
0.100
30.0
<1
<1
<0.050
108
0. 150
4.30
< 0.050 -- •"•
< 0.050
< 0.005
300
Q_ . i.rv - — - — • — -• - -------- _....._. — — ... . , ... - ... — . . — .._,._ .-„-...__,
CJ-". (-y- . , • : ,
1
49 ; '
< 0.050
< 0.050 . . ^ . .. : :, . .
380 . . '. :
< i ' • .. :
400
< 0.050
< 0.050
-------
Table V-220 (Continued)
ZINC SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Conventional Pollutants
011 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
G-3
G-3
G-3
Sample Concentrations (mg/ 1 )
Type Source
1 4
1 10
1 7.98
Day 1 Day 2 Day 3
< 1
20
5.72
CO
**Present, but not quantifiable.
1. The following toxic pollutants were not detected in this waste stream: 1, 2, 5, 8, 9,
12, 16, 17, 19-22, 24-28, 31, 35, 40-42, 45, 49, 50, 52-54, 56-65, 71, 73, 77, 82, and
88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-221 :
i
ZINC ALKALINE CLEANING SPENT ;BATHS
Plan.t
1
2
Wastewater Discharge
1/kkg :gal/ton
1.67
5.42
0.400
1.30
935
-------
Table V-222
ZINC ALKALINE CLEANING RINSE
Plant
1
2
Water
1/kkg
2,290
1,080
Use
gal/ton
549
260
Percent
Recycle
CCR2
0 (S)
Wastewater
1/kkg
2,290
1,080
Discha
gal/t
549
260
CCR2 - Two-stage countercurrent cascade rinsing
S - Spray rinsing
936
-------
Table V-223
ZINC ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA
W
Tox i c
1 .
3.
4.
6.
7.
10.
1.1 .
13.
14.
15.
18.
23.
29.
30.
32.
33.
36.
37.'
•38.
39.
43.
44 .
Pol lutant
Pol lutants
acenaphthene
aery 1 oni t r i 1 e
benzene
carbon tet rachl ori de
chlorobenzene
1 , 2-di chl oroethane
1 , 1 , 1-trichloroethane
1 , 1 -di chl oroethane
1 ,1 ,2-trichloroethane
1,1,2, 2-tet rachl oroethane
bis(2-chloroethyl )ether
ch 1 orof orm
1 ,1-dichloroethylene
1 ,2-trans-dichloroethylene
1 ,2-dichloropropane
1 , 3-di ch 1 oropr'opehe
2 , 6-dini troto 1 uene
1 ,2-diphenyl-hydrazine
ethyl benzene "
f luoranthene
bis(2-chloroethoxy)methane
m&thylene chloride
S Cream
Code
G-2 •
G-2 "
G-2 '
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
; -'G-2 '
, G-2
G-2
• G-2
Sarnpl e
1
- ; 1 " "
1
1
1
1
1
i
1
i
i
; i
i
i
i
i
. .- 1
; : i
1 ' 1
: "!
1
. 1
Concentrations (mg/lj
Source
ND
0.002
0.017
0.004
**
**
0.003
0.001
**
0.001
ND
0.051
0.002
0.002
0.002
**
0.002
**
0.011
0.001
**
0.003
Day 1 Day 2 Day 3
**
0.001
0.004
0.003
**
**
0.003
0.001
**
0.001
**
0.013
0.002
0.002
0.002
0.001 ;
0.003 '
** ',.
0.011,
0.001 -
0.001
0.008
-------
Table V-223 (Continued)
ZINC ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA
VD
OJ
CO
Pol 1utant
Toxic Pol 1utants (Continued)
46. methyl bromide (bromomethane)
47. bromoform (tribromomethane)
48. dichlorobromomethane
51. chlorodibromomethane
55. naphthalene
66. bis(2-ethy1hexyl) phthalate
67. butyl benzyl phthalate
68. di-n-butyl phthalate
69. di-n-octyl phthalate
70. diethyl phthalate
72. benzo(a)anthracene
74. benzo(b)f)uoranthene
75. benzo(k)f1uoranthene
76. chrysene
78. anthracene
79. benzo(ghi)perylene
80. fluorene .
81. phenanthrene
83. indeno(1,2,3-c,d)pyrene
84. pyrene
85. tetrachloroethy 1 ene
86. toluene
Concentrations (mg/1)
Code
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
Type
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.
Source
**
0.002
0.005
0.031
**
0.003
0.001
0.017
**
0.009
0.001
0.002
0.002
0.001
0.001
0.007
0.001
0.001
0.016
0.001
0.009
0.007
Day 1 Day 2 Day 3
**
0.002
0.002
0.090
0.002
0.075
0.001
ND
ND
0.011
0.005
ND
ND
ND
0.001
ND
ND
0.003
0.016
• ND
0.009
0.004
-------
Table V-223 (Continued)
ZINC ALKALINE CLEANING RINSE
RAW-WASTEWAT.ER' SAMPLING-DATA"
Pol 1 utant .
Toxic Pollutants (Continued)
87. t ri ch 1 oroethy 1 ene
114. ant i mony
115. arseni c
117. bery 1 1 i um
118. cadmi um
119. chromium (total)
120. copper
^ 121 . cyani'de : (total )
^ 122. lead;
123. mercury -
124. nickel
1.25. selenium
126. silver
12 7 thallium
128. zinc
Nonconvent i onal Pollutants
Acidi ty
' Al kal ini ty
Aluminum
Ammonia Nitrogen
Bari um
Boron
Stream Sample
Code Type
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
- G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
G-2 1
Concentrations (mg/1)
Source
0.009
<0.010
<0.010
<0.005
<0.020
<0.020
<0.050
0.07
<0.050
<0.0002
<0.050
<0 . 0 1 0
<0.010
- <0.-0-10---
0. 100
<}
67
0. 100
<0.02
<0.050
0. 100
Day 1 Day 2 Day 3
0.006
<0.
<0.
<0.
<0.
<0.
<0.
1 .
<0.
<0.
<0.
<0.
<0.
1 .
<1
84
0.
<0.
<0.
0.
010
010
005
020
020
050
3
050
0002
050
010
010
12
:
100
02
050
100
-------
Table V-223 (Continued)
ZINC ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA
Pol 1 utant
Nonconvent ional Pollutants (Continued)
Cal cium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fl uoride
Iron
Magnesium
VD
^ Manganese
O
Mol ybdenum
Phenol ics
Phosphate
Sodium
Sulfate
Tin
Ti tani uin
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
TotaV Sol ids (TS)
Vanadi urn
Yttrium
Stream
Code
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2 .
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
G-2
Sample Concentrations (mg/1)
Type Source
1 ' 29 . 1
1 560
1 36
1 <0.050
1 96
1 <0.050
1 4. 10
1 <0.050
1 <0.050
1 <0.005
1 1 .6
1 6.00
1 47
1 <0.050
1 <0.050
1 160
1 <1
1 92
1 <0.050
1 <0.050
Day 1 Day 2 Day 3
29.0
<1
<1
<0.050
95
0.550
4. 10
<0.050
<0.050
<0.005
3.5
14.2
53
<0.050
<0.050
190
54
280
<0.050
<0.050
-------
Table V-223 (Continued)
-- - -
Pol lutant
ZINC ALKALINE
- - RAW WASTEWATER
Stream
Code
CLEANING
-SAMPLING
Sample
RINSE
DATA
Concentrations (mg/1)
Source
Day 1 Day 2 Day 3
Conventional Pollutants
Oil
and Grease
Total Suspended Solids (TSS)
PH
(standard units)
G-2
G-2
G-2
1
1
1
4
10
7.98
23
90
7.55
VD
**Present, but not quantifiable.
1. The following toxic pollutants were not detected in this waste stream: 2, 5, 8, 9, 12,
16, 17, 19-22, 24-28, 31, 34, 35, 40-42, 45, 49, 50, 52-54, 56-65, 71, 73, 77, 82, and
88. .
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-224
ZINC SAWING OR GRINDING SPENT EMULSIONS
Plant
1
Water Use
1/kkg gal/ton
NR
NR
Percent
Recycle
100 (P)
Wastewater Discharge
1/kkg gal/ton
23.8
5.71
NR - Data not reported
P - Periodically discharged
942
-------
Table V-225
ZINC ELECTROCOATING RINSE
Plant
1 '
Water Use
1/kkg gal/ton
2,294
550
Percent
Recycle
0
Wastewater Discharge
; 1/kkg •' gal/ton
2,294
550
943
-------
Table V-226
ZIRCONIUM-HAFNIUM ROLLING SPENT NEAT OILS
Plant
1
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
0.00
0.00
NR - Data not reported
*Discharge from operation.
944
-------
Table V-227 :
ZIRCONIUM-HAFNIUM DRAWING SPENT LUBRICANTS
Plant:
1
2
3
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
NR
NR
NR
NR
Percent
Recycle
0.0
NR
NR
Wastewater Discharge*
;L/kkg gal/ton
0.00
R
NR
: o.oo
o.oo
NR
NR
0.00
NR - Data not reported
*Discharge from operation.
945
-------
Table V-228
ZIRCONIUM-HAFNIUM EXTRUSION SPENT LUBRICANTS
Plant
1
2
3
3
4
Average
Water Use
L/kkg gal/ton
NR
4.74
NR
NR
NR
4.74
NR
1.14
NR
NR
NR
1.14
Percent
Recycle
0.0
0.0
0.0
0.0
0.0
Wastewater Discharge*
L/k'
-------
• Table V-229
ZIRCONIUM-HAFNIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
Plant
1
Average
Water Use
L/kkg gal/ton
237.4
237.4
56.94
56.94
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
237.4
237.4
56.94
56.94
*Discharge from operation.
947
-------
Table V-230
ZIRCONIUM-HAFNIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA
Pol 1utant
Stream
Code
Concentrations (mg/1)
Sounds Day 1 Day 2
Noneonvent ional Po11utants
Fluoride
AK-3
2.3
vo
•J5.
OS
Conventi onal Po11utants
011 and Grease
Total Suspended Solids (TSS)
pH
AK-3
AK-3
AK-3
10.0
7.0
6.8
-------
Plant -
1 '
Average
Table V-231
]
ZIRCONIUM-HAFNIUM SWAGING SPENT NEAT OILS
Water Use
L/kkg gal/ton
NR
NR
NR
NR
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
NR - iData not reported
*Discharge from operation.
0.00
0.00
0.00
0.00
949
-------
Table V-232
ZIRCONIUM-HAFNIUM TUBE REDUCING SPENT LUBRICANTS
Plant
1
2
3
4
5
3
Water Use
L/kkg gal/ton
NR
2,364
1,051
3,315
7,359
NR
Average 3,522
NR
566.9
252.0
794.9
1,765
NR
844.6
Percent
Recycle
0.0
0.0
0.0
0.0
0.0
NR
Wastewater Discharge*
L/kkg gal/ton
0.00
298.3
1,051
3,315
7,359
NR
3,006
0.00
71.52
252.0
794.9
1,765
NR
720.8
NR - Data not reported
*Discharge from operation.
950
-------
: Table V-233
'ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER
Plant
1 ;
2
1 ,
1
3
3
Water
L/kkg
135.2
285.4
400.7
6,0,05
'NR
NR
Use
gal/ton
32.43
68.43
96.10
1,440
NR
NR
Percent V
Recycle
P
P
0.0
0.0 6,
NR
NR
astewater
L/kkg
135.2
285.4
400.7
005
NR
NR
Discharge*
gal/ton
32.43
68.43
96.10
1,440
NR
NR
Average 1,707
409.2
P - .Periodic discharge
NR - Data not reported
*Discharge from operation.
1,
951
707
409.2
-------
Table V-234
ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER
RAW V/ASTEWATER SAMPLING DATA
Pollutant
Toxic Pollutants
Stream
Code
Concentrations (mg/1)
Source Day 1 Day 2
117. beryllium
118. cadmi urn
119. chromiurn (total)
vo
U1
NJ
120.
122.
1 24.
128.
copper
lead
nickel
BV-1
BV-2
BV-3
AK-4
BV-1
BV-2
BV-3
AK-4
BV-1
BV-2
BV-3
AK-4
BV-1
BV-2
BV-3
AK-4
BV-1
BV-2
BV-3
AK-4
BV-1
BV-2
BV-3
AK-4
BV-1
BV-2
BV-3
AK-4
<0.010
<0.001
<0.001
<0.020
0.061
<0.005
<0.005
<0.010
0.670
0.110
0. 280
<0.020
0. 180
0.012
0.080
0.420
3.500
<0.050
<0.050
<0.020
0.490
0.031
<0.012
<0.020
,0.035
0.024
0.040
0. 170
-------
Table V-234 (Continued)
ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
iv • • - ,-„_.-,.. , . , - - , - ... g-j. ream
Po 1 1 utant Code
Tox ic Pol 1 utants
Aluminum . BV-1
BV-2
-BV-3
AK-4
- Hafnium BV-1
BV-2
BV-3
Iron BV-1
VO BV~2
-------
Table V-234 (Continued)
ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
Concentrations (nig/1)
Source
Toxic Pollutants
Zi rconi urn
BV-1
BV-2
BV-3
AK-4
1 .600
87.000
0.052
<0.100
VD
Ul
1. No analyses were performed for the following toxic
pollutants: 1-116, 121, 123, 125-127 and 129.
-------
Table V-235
ZIRCONIUM-HAFNIUM SURFACE TREATMENT\SPENT BATHS
Plant
1
2
1
3
4
5
6
1
6
3
7
8
4
8
4
Average
Wastewater Discharge*
L/kkg gal/ton
..101.8
235.6
239.2
282.7
340.0
375.9
493.4
693.9
883.7
64,260
NR
NR
NR
NR
NR
6,791
24,40
56;49
57136
67; 78
8ll54
90*14
118,3
166,4
2111 9
15,410!
NR;
NR;
NR
NR:
NR,
1,628'
NR - Data not reported
*Dis(?harge from operation.
955
-------
Table V-236
ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
O\
Pollutant
Toxic Pollutants
2. acroleln
4. benzene
7. chlorobenzene
11. 1,1,1-trichloroethane
13. 1,1-dichloroethane
23. chloroform
38. ethylbenzene
44. methylene chloride
48. dichlorobromomethane
57. 2-nitrophenol
66. bis(2-ethylhexyl) phthalate
Stream
Code
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
Sample Concentrations (mg/1)
Type Source
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 0.023
1 0.023
1 ND
1 ND
1 ND
1 ND
1 0.002
1 0.002
1 ND
1 ND
1
Day 1 Day 2 Day 3
ND
0.021
<0.010
<0.010
<0.010
<0.010
0.023
0.390
ND
<0.010
<0.010
<0.010
<0.010
0.018
0.480
0.016
ND
ND
ND
<0.010
<0.010
-------
Table V-236 (Continued)
ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pol lutant
Toxic Pollutants (Continued)
68. di-n-butyl phthalate
70. diethyl phthalate
78. anthracene (a)
81. phenanthrene (a)
VQ 85. tetrachl oroethy l.ene
U1
86. tol.uene
87. trichloroethylene
Stream
Code
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
Sample Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
1 <0.010
1 <0.010
1 <0.010
1 <0.010
1 <0.010
1 ND
1 <0.010
1 ND
1 ND ND
1 ND <0.010
1 ND <0.010
1 ND 0.015
1 ND <0.010
1 ND <0.010
-------
Table V-236 (Continued)
ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Ul
C»
Pollutant
Toxic Pollutants (Continued)
114. antimony
115. arsenic
117. beryl 1ium
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
Stream
Code
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
P-2
P-3
Sample Concentrations (mg/1)
Type Source
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
1 0.010
1 0.010
1 ND
1 ND
1 0.008
1 0.008
1
1
1 ND
1 ND
Day 1 Day 2 Day 3
5
6
3
0.6
<0.2
<0.2
0.09
<0.07
24
12
1 .2
0.1
0.118
0.356
1 .4
0.53
-------
ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS
.•---• . .. - . - RAW WASTEWATER SAMPLING DATA ' -..-..
Stream
Pol 1 utant Code
Toxic Pol 1 utants (Continued)
123. mercury P-2
P-3
124. nickel P-2
P-3
125. selenium P-2
P-3
126. silver P-2
VD P-3
CD
VQ 127. thallium P-2
P-3
128. zinc P-2
P-3
Sample Concentrations (mg/1)
Type Source
1
1
1 ND
1 ND
1 0.013
1 0.013
1 ND
1 ND
1 ND
1 ND
1 ND
1 ND
Day 1 Day 2 Day 3
0.0056
<0.0022
3.6
0.64
<0.02
<0.02
<0.02
<0.02
0.57 '
<0.5
7.5
0.17
-------
ID
a\
o
Table V-236 (Continued)
ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pollutant
Nonconventional Pollutants
Alkalinity
Ammonia Nitrogen
Ca1c i urn
Fluoride
Magnesium
Phenolics
Sulfate
Stream Sample
Code Type
P-2 1
P-3 1
P-2 1
P-3 1
P-2 1
P-3 1
P-2 ,1
P-3 1
P-2 1
P-3 1
P-2 1
P-3 1
P-2 1
P-3 ! 1
Concentrations (mg/1)
Source Day 1 Day 2 Day 3
0.0
8,910
<0.1 6.81
<0.1 104
208
5.60
<0.10 17,100
<0.10 6,500
1 1 .7
2.90
0.026
0.053
1 ,080
142
-------
vo
"" TagVe~ V-236 (Continued) ".
.ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA
Pollutant
Stream
Code
Nonconventional Pollutants (Continued)
Total Dissolved Solids (TDS)
Conventi onal Pol 1utants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
P-2
P-3
Concentrations (mg/1)
Source
140,000
36,400
P-2
P-3
P-2
P-3
P-2
P-3
1 1.1
1 1.1
1 <0.5
1 <0.5
1
.1
83.9
1..87
8.70
12.6
3.7
(a) Reported together
1. Toxic pollutants 89-113 were analyzed in this waste stream.
-2. The -fo-l T&wing tdxi-c pol Itrtarrts were rrot de-texrted-in ttiis waste" stream:" 1, 3,'5, 6,
8-10, 12, 14-22, 24-37, 39-43, 45-47, 49-56, 58-65, 67, 69, 71, 77, 79, 80, 82-84.
,3. No analyses were performed on the following toxic pollutants: 116 and 129.
-------
Table V-237
ZIRCONIUM-HAFNIUM SURFACE TREATMENT RINSE
Plant
1
2
1
2
3
4
5
3
6
7
8
8
Average 114,300
Water Use
L/kkg gal/ton
I/
2,
2,
5,
12,
18,
50,
79,
971,
296.7
302
057
266
738
020
110
040
740
500
NR
NR
1
2
4
12
19
233
71.
312.
493.
543.
,376
,881
,343
,000
,120
,000
NR
NR
14
2
3
5
Percent
Recycle
0.0
0,6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
NR
NR
Wastewater Dischar
L/kkg
296.7
1,302
2,057
2,266
5,738
12,020
18,110
50,040
79,530
971,500
NR
NR
gal/to
71.14
312.2
493.3
543.5
1,376
2,881
4,343
12,000
19,070
233,000
NR
NR
27,410
114,300
27,410
NR - Data not reported
*Discharge from operation.
962
-------
Table V-238
ZIRCONIUM-HAFNIUM ALKALINE CLEANING
SPENT BATHS
Plant
1
2
2
3
4
2
5
1
1
6
3
6
5
Average
Wastewater Discharge*
L/kkg gal/ton
1
1
3
9
12.
37.
64.
232.
239.
321.
632.
955.
,244
,962
,689
,812
NR
44
16
96
0
8
1
0
2
2i98
s;9i
15^58
55.63
57,50
77.00
151/3
229.
298.
470.
884.
2,353
NR
1
3
6
8
1,600
383.
NR - ''Data not reported
*Disqhar.ge from operation.
963
-------
Table V-239
ZIRCONIUM-HAFNIUM ALKALINE CLEANING RINSE
Plant
1
2
1
3
2
2
4
5
6
5
7
Water Use
L/kkg gal/ton
321.1
597.0
815.0
5,176
7,589
8,955
80,150
166,800
181,600
313,900
NR
Average 31,390
77.00
143.2
195.5
1,241
1,820
2,148
19,220
40,000
43,560
75,280
NR
7,530
Percent Wastewater Discharge*
Recycle L/kkg gal/ton
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
NR
0
0
0
0
0
0
0
0
0
0
5
7
8
79
166
181
313
321.
597.
815.
,176
,589
,955
,410
,800
,600
,900
NR
1
0
0
1
1
2
19
40
43
75
77.
143.
195.
,241
,820
,148
,040
,000
,560
,280
NR
00
2
5
31,390
7,530
NR - Data not reported
*Discharge from operation.
964
-------
Table V-240 i
j
ZIRCONIUM-HAFNIUM MOLTEN SALT RINSE
Plant
1
2
Water Use
L/kkg gal/ton
20.86
15,090
Average 7,556
5.00
3,619
1,812
Percent
Recycle
0.0
0.0
Wastewater Discharge*
;L/kkg gal/ton
20.86
15,090
7,556
5.00
3,619
,1/812
*Discharge from operation.
965
-------
Table V-241
ZIRCONIUM-HAFNIUM SAWING OR GRINDING SPENT NEAT OILS
Plant
1
Average
Water Use
L/kkg gal/ton
NR
NR
NR
NR
Percent
Recycle
0.0
Wastewater Discharge*
L/kkg gal/ton
0.00
0.00
0.00
0.00
NR - Data not reported
*Discharge from operation.
966
-------
Table V-242
ZIRCONIUM-HAFNIUM SAWING OR GRINDING SPENT EMULSIONS
Plant
1
2
2 s
2 ;
3 i
3 !
3 i
Average
Water Use
L/kkg gal/ton
39.6 2
NR
NR
NR
NR
NR
NR
39.62
9.50
NR
NR
NR
NR
NR
NR
9.50
Percent
Recycle
0.0
NR
0.0
P
NR
NR
NR
Wastewater Discharge*
:L/kkg gal/ton
0.00
; 0.00
! 0.00
281.1
;NR
!NR
281.1
0.00
0.00
0.00
67.42
NR
NR
NR
67.42
P - Periodic discharge
NR - Data not reported
*Dischjarge from operation
967
-------
Table V-243
ZIRCONIUM-HAFNIUM SAWING OR GRINDING CONTACT COOLING WATER
Plant
1
2
Average
Water Use
L/kkg gal/ton
321.1
NR
321.1
77.00
NR
77.00
Percent
Recycle
O.Q
NR
Wastewater Discharge*
L/kkg gal/ton.
321.1
NR
321.1
77.00
NR
77.00
NR - Data not reported
*Discharge from operation.
968
-------
Table V-244
ZIRCONIUM-HAFNIUM SAWING OR GRINDIN
-------
Table V-245
ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER
Plant
1
2
3
3
Water Use
L/kkg gal/ton
15.43
56,270
NR
NR
3.70
13,490
NR
NR
Percent
Recycle
0.0
0.0
NR
NR
Wastewater Discharge*
L/kkg gal/ton
15.43
56,270
NR
NR
3.
13,490
NR
NR
70
Average 28,140
6,749
28,140
6,749
NR - Data not reported
*Discharge from operation.
970
-------
Table V-246
ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER,
Pol lutant
Toxi c Pol 1 utants
117. beryl Hum
118. cadmi urn
119. chromium (total)
^ 1 20. copper
^J
H
121 . cyanide
122. lead
124. nickel
128. zinc
RAW WASTEWATER SAMPLING DATA
Stream Sample
Code Type
BV-8
AX-4 1
BV-8
AX-4 1
BV-8
AX-4 1
BV-8
AX-4 1
AX-4 1
BV-8
AX-4 1
BV-8
AX-4 1
BV-8
AX-4 1
Concentrations (mg/1)
Source Day 1 Day 2 pay 3
<0.001
<0.100
<0.005
<0.500
0.003
<0.050
0.. 018
0.050
<0.500
<0.050
<0.100
- <0.012
<0.100 .
0.160
1.000
-------
Table V-246 (Continued)
ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER
RAW WASTEWATER SAMPLING DATA
VD
-4
tO
Pol lutant
Nonconvent i onal Pol lutants
Al umi num
Ammonia (as N)
Cobalt
F 1 uoride
Haf ni um
I-ron
Mo 1 ybdenum
Ti tani um
Stream
Code
BV-8
AX-4
BV-8
. AX-4
BV-8
BV-8
AX-8
BV-8
BV-8
AX-4
Samole Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
0.030
1 - <0.05
<0.004
1 - 1.150
ND
0 . 040
1 - <0.100
0.077
<0.010
1 - <0.500
-------
Table V-246 (Continued)
ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER
RAW WASTEWATER SAMPLING DATA
Stream Sample
Pollutant . Code Tvpe
Nonconventiona'l Pollutants (ContinuedY
Vanadium BV-8
AX-4 i
Zirconium BV-8
AX-4 1
Convent i ona 1 Pol lutants
Oi 1 and Grease BV-8
AX-4 1
Total Suspended Solids (TSS) AX-4 i
\O
-J PH AX-4 1
i .1
Concentrations (mg/1)
Source Day 1 Dav 9 n=,,, 3
<0.002
<1.00
<0.020
- <2.5
<2.00
4.000
- 7.3
-------
Table V-247
ZIRCONIUM-HAFNIUM DECREASING SPENT SOLVENTS
Plant
1
2
3
Water
L/kkg
NR
85.57
NR
Use
gal/ton
NR
20.52
NR
Percent
Recycle
100.0
P
P
Wastewater
L/kkg
0.00
85.57
NR
Discharge*
gal/ton
0.00
20.52
NR
Average
85.57
20.52
85.57
20.52
P - Periodic discharge
NR - Data not reported
*Discharge from operation,
974
-------
Table V-248
ZIRCONIUM-HAFNIUM DECREASING RINSE
Plant
Average
; Water Use
L/kkg gal/ton
4,054
4,054
972.3
972.3
Percent
Recycle
0.0
I Wastewater Discharge*
j L/kkg gal/ton
;4,054
:4,054
972.3
972.3
*Discharge from operation.
975
-------
Table V-249
ZIRCONIUM-HAFNIUM WET AIR POLLUTION CONTROL SLOWDOWN
Plant
1
2
3
4
3
5
5
5
Water Use
L/kkg gal/ton
2,650
NR
558.9
10,200
NR
NR
NR
NR
Average 4,470
636,0
NR
134.0
2,446
NR
NR
NR
NR
1,072
Percent
Recycle
100.0
P
83.3
94.7
80.0
0.0
0.0
0.0
Wastewater Discharge*
L/kkg gal/ton
0.00
8.17
93.16
536.9
NR
NR
NR
NR
212.7
0.00
1.96
22.34
128.8
NR
NR
NR
NR
51.03
P - Periodic discharge
NR - Data not reported
*Discharge from operation.
976
-------
; Table V-250 ;
i -
METAL POWDERS METAL POWDER PRODUCTION
; ATOMIZATION WASTEWATER ;
Plant I
I [
2
3
4 \
5
6 ;
Water
1/kkg
125
1,450
2,24,0
2,740
6,670
17,000
NR
Use
gal/ton
30.0
348
538
656
1,600
4,080
NR
Percent
Recycle
0
0
0
0
0
0
NR
Waistewater
i/kkg
125
1,450
2,240 '
2,740
6,670
!
17,000
i , NR ;
Discharge
gal/ton
30.0
348
538
656
1,600
4,080
NR
NR - Dkta not reported
977
-------
Table V-251
METAL POWDERS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER
RAW WASTEWATER SAMPLING DATA
Pol lutant
Toxi c Pol lutants
115. arsenic
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
VQ
»J
00
123. mercury
124. nickel
128. zinc
Nonconvent i onal Pollutants
Acidity
A 1 umi num
Cobalt
Fl uoride
Iron
Conventional Pollutants
Oi 1 and Grease
S-1
S-1
S-1
T-l
S-1
T-l
S-1
T-1
S-1
T-1
S-1
S-1
T-l
S-1
T-1
S-1
T-1
S-1
T-1
S-1
T-l
S-1
T-1
S-1
T-1
Stream
Code
2
2
2
6
2
6
1
1
2
6
2
2
6
2
6
2
6
2
6
2
6
2
6
1
1
Sample
<0.01
<0.05
<0.005
<0.01
<0.05
0.048
<0.01
<0.01
<0.'l
<0.005
<0.0002
<0.200
0.075
<0.05
**
<0.2
0. 14
<0. 1
<0.01
<0. 1
1 .01
0.122 1
0.27
<1
<0. 1 ;0.4
Concentrations (nia/l)
Source Day 1 Day 2 Day 3
<0.01
<0- 05
1 .95
8.3 0.022 0.026
1 .090
45.000 5.400 0.0044
0.026
<0.01 <0.01
0.523
<0.005 <0.005 0.0054
<0.0002
9.200
81.0 1.600 1.100
0.607
** ** **
0.407
0.630 0.110 0.041
<0.1
11.000 0.250 0.240
0. 14
' 0.89 0.95
,210
40.000 0.46 0.280
3.1
0. 1 ; 1 . 1 0.1;6.1 0.3;5.1
-------
Table V-251 (Continued)
METAL POWDERS METAL POWDER PRpDUCTION_AJOMI,ZATION . WAS.IEWATER
'"' """ "RAW"WASTEWATER SAMPLING"DATA
Pol 1utant
Convent i onal Po11utants) (Continued)
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
Sample
Type Source
Concentrations (mg/1)
S-1
T-1
S-1
T-1
2
6
1 .
6
<0. 1
1 .0
7.7
2, 127
8
8.1-8.2
10.0
7.7
12.0
7.76
-J
VO
**Less than detection limit. Detection limit not known.
1. "No analyses were performed on the following toxic pollutants: 1-114, 116, 125, 126,
127, and 129.
2. Note that stream code T-1 also appears on ;the nickel-cobalt metal powder production
wet atomization wastewater raw wastewater sampling data table. The wastewater is
derived from an operation in both subcategories.
-------
Table V-252
METAL POWDERS TUMBLING, BURNISHING
OR CLEANING WASTEWATER
Plant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Water
1/kkg
NR
NR
27.8
59.2
173
446
83.4
125
174
4,380
NR
If660
653
1,660
834
1,010
1,040
1,240
11,400
1,540
3,270
Use
gal/ton
NR
NR
6.67
14.2
41.6
107
20,0
30.0
41.7
1,050
NR
398
158
397
200
243
250
297
2,730
370
783
Percent
Recycle
100
0
0
0
0
0
0
0
0 ( + )
90.9
P
0
0
0 ( + )
0
0
0
0
0
0
0
Wastewater
1/kkg
0
NR
27.8
59.2
173
446
83.4
125
156
397
397
1,660
659
663
834
1,010
1,040
1,240
11,400
1,540
3,270
Discharge
gal/ton
0
NR
6.67
14.2
41.6
107
20.0
30.0
37.5
95.2
95.2
399
158
159
200
243
250
297
2,730
370
783
980
-------
I
1 ••
i
\
Plant
17 ; '4,
18 ! 6,
; : 6,
; is,
19 ; 7,
20 ' 16,
21 22,
22
i
23 ; ;
24 I
25 ;
26 1
,
; :
27 |
28 !
29 :
I
i
NR -j Data
+ -; Loss
Table V-
METAL POWDERS
-252 (Continued;
i
TUMBLING, BURNISHING
OR CLEANING WASTEWATER j
i
i
Water Use
1/kkg gal/ton
300
380
960
600
760
300
800
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
not
due
1,030
1,530
1,670
3,750
1,860
3,920
5,460
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
reported
to drag-out
Percent
Recycle
0 ( + )
0
0
0
0
0
0
o
0
NR
0
0
0
NR
NR
NR
NR
NR
NR
981
i
Wastewater
1/kkg '
3,840
6,380
6,960
15,600
7,760
16,300
i . .
22,800
NR
NR
; NR
I
] NR
i NR.
i
! NR
NR
i !
\ NR
; NR
t
NR
i • •
t
; NR
j ,,i , ,„ , , , 1 ,
-j ' ' .
j
I .
i
i •
Discharge
gal/ton
922
1,530
1,670
3,750
1,860
3,920
5,460
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
-------
Table V-253
METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
VD
09
tsJ
Pollutant
Toxic Pollutants
4. benzene
6. carbon tetrachloride
1i; 1,1,1-trichloroethane
23. chloroform
44. methylene chloride
48. dichlorobromomethane
86. toluene
114. ant imony
115. arseni c
117. bery1 1i urn
118. cadmium
Stream
Code
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
Concentrations Cmg/1)
Source
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.027
0.027
0.027
ND
ND
ND
0.004
0.004
0.004
ND
ND
ND
<0.010
<0.010
<0.010
<0.010
<0.010
-------
Table V-253 (Continued)
~METAL POWDER'S TUMBONG'," BURNTSHTNG ,~~OR CLEANING" WASTEWATER'
RAW WASTEWATER SAMPLING DATA
VD
03
W
Pol 1 utant
Toxic Pol 1 utants (Continued)
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
1 23 . mercury
124. nickel
1~25..~ se 1 erTTum ~~ - •— - -.-•
126.- silver
127. thai 1 ium
128. zinc
Stream
Code
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-3
J-2
J-3
J-4
1 r-l
j -z
J-3
J-4
J-2
J-3
. J-4
J-2
J-3
J-4
J-2
J-3
J-4
Sampl e
Type
1
2
6
1
2
6
1
1
1
1
2
6
1
2
6
1
2
6
1
r
2
6
1
2
6
1
2
6
1
2
6
Concentrations (mg/1)
Source
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
0
<0
<0
.020
.020
.020
.050
.050
.050
.02
.02
.02
.050
.050
.050
.0002
.0002
.0002
.050
.050
.050
.010
.010
.010
.010
.010
.010
.010
.010
.080
.050
.080
Day 1
<0
0
0
<0
253
34
0
0
1
<0
45
5
<0
<0
<0
<0
0
0
<0
<0
<0
<0
<0
<0
<0
<0
0
1
0
.020
.080
. 1 60
.050
.0
. 1 1
.04
.8
.050
. 1
.20
.0002 '
.0002
.0002
.050
.500
.600
r\ * r\
.-Lrl LT
.0.10
.010
.010
.010
.010 ._
.,010
.010 '
.010
. 100
. 18
.600
Day 2
<0
0
0
<0
16
21
<0
0
1
<0
2
3
<0
<0
<0
<0
3
0
.020
.200
. 180
.050
.5
.2
.02
.39
.6
.050
.00
.15
.0002
.0002
.0002
.050
.00
.550
Day 3
<0
0
0
<0
5
10
<0
• 0
0
<0
1
7
<0
<0
<0
<0
2
0
.020
.060
.060
.050
.50
.5
.02
. 15
.10
.050
.00
.50
.0002
.0002
.0002
.050
.65
.400
^nriiri^-r\AiA
-------
Table V-253 (Continued)
METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
vo
09
Pollutant
Nonconvent1onal Pollutants
Acidity
Alkalinity
Aluminum
Ammonia Nitrogen
Barium
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
F1uoride
Stream
Code
J-2
J-3
J-4
J-2
J-3^
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
1
2
6
1
2
6
1
2
6
1
2
6
1
2
6
1
2
6
1
2
6
1
2
6
1
2
6
1
2
6
1
2
6
Concentrations (mg/1)
Source Day 1 Day 2
13
13
13
0
0
0
0
0
0
0
0
0
<0
<0
<0
10
10
10
70
70
70
<1
-------
Table V-253 (Continued)
METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER
. . .- . . . . . RAW WASTEWATER SAMPLING DATA ..
Stream Sample Concentrations (mg/1)
Pol 1 utant Code
Nonconvent i onal Pollutants (Continued)
Iron J-2
J-3
J-4
Magnesium J-2
J-3
J-4
Manganese J-2
J-3
J-4
VD Molybdenum J-2
C» J-3
en . j-4
Phenol ics J-2
J-3
J-4
- Phosphate J-"2
J-3
J-4
Sodium J-2
; : J-3
J-4
Sulfate J-2
...:...:.. , ..- . .. . -J-3
J-4
Tin ' J-2"
J-3
• J-4
Titanium J-2
• - J-3
J-4
: Total Dissolved Solids (TDS) J-2
J-3
: J-4
Type
1
2
6
1
2
6
1
2
6
1
2
6
1
1
1
1
2
6
1
2
6
1
2
6
1
2
. 6
1
. 2
6
1
2
6
Source
0
0
0
1
1
1
0
0
0
<0
<0
<0
<0
<0
<0
<0
<0
<0
1 1 1
1 1 1
1 1 1
90
90
90
<0
<0
<0
<0
<0
<0
76
76
76
. 100
. 100
.100
.40
.40
.40
201'
.200
.200
.050
.050
.050
.005
.005
.005
.5
.5 1
.5
2
2
.050
.050
.050
.050
.050
.050
1
1
2
Day 1
0.
49.
94.
1 .
3.
9.
<0.
0.
1 .
<0.
<0.
0.
3.
2.
0.
<1
,200
130
2.
288
278
600
,400
,400
<0.
15.
3.
<0.
1 .
1 .
,500
,740
,500
100
2
2
40
20
30
050
450
00
050
050
400
6
1
96
30
1
1
, 1
4
050
8
40
050
90
20
3
1
2
Day 2
0.
21 1
1 15
1 .
4.
8.
<0.
0.
0.
<0.
0.
0.
• 33
0.
0.
<1
<1
80
10.
,820
390
,500
,500
,500
<0.
4.
1 .
<0.
2.
1 .
,050
,800
,000
300
30
00
30
050
500
650
050
100
500
33
56
7
1
1
1-1-
1
050
50
75
050
50
40
8
2
Day 3
0
50
68
1
1
5
ll
0
0
-------
Table V-253 (Continued)
METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER
RAW WASTEWATER SAMPLING DATA
00
Pollutant
Nonconventional Pollutants (Continued)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadi um
Yttrium
Conventional Pollutants
Oil and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
J-2
J-3
J-4
J-2
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
J-2
J-3
J-4
Sample
Type
1
2
6
1
1
2
6
1
2
6
1
1
1
1
2
6
1
2
6
Concentrations (mg/1)
Source
3
3
3 2
123 1
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<}
<1
<1
42
42 1
42
2.71
2.71
2.71
Da
50
300
,600
,600
<0.
0.
<0.
<0.
<0.
<0.
850
88
99
,300
260
6.
9.
9.
y 1 Da_
600
820
3,600
3,940
050 <0.
100 <0.
050 0.
050 <0.
050 <0.
050 <0.
2, 100
22
27
144
874
1 ,370
50 7.
41 8.
60 9.
y 2 Da
98
1 ,850
3,620
410
050 <0.
500 <0.
050 <0.
050 <0.
500 <0 .
050 <0.
520
4
6
390
3,000
900
60 6.
93 9.
21 9.
y 3
050
050
050
050
050
050
20
10
10
1. The following toxic pollutants were not detected in this waste stream: 1-3, 5, 7-10,
12-22, 24-43, 45-47, 49-85, 87, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, a'nd 129.
-------
Table V-254
METAL POWDERS SAWING OR GRINDING
SPENT NEAT OILS
Plant
1!
Water Use
1/kkg gal/ton
NR
NR
Percent
Recycle
NR
Wastewater Discharge
1/kkg gal/ton
6.17 (CH) 1.48 (CH)
NR -
CH -
Data not reported
Contract haul
987
-------
Table V-255
METAL POWDERS SAWING OR GRINDING
SPENT EMULSIONS
Water Use
Plant 1/kkg gal/ton
1 4,590
2 NR
3 NR
NR
4 NR
59,200
5 550
1,100
NR
NR
NR
NR
14,200
132
Percent
Recycle
0 ( + )
P>
P
P
P
P
0 ( + )
Wastewater
1/kkg
0
4
6
26
11
41
221
.63
.13
.7
.8
.1
Discharg
gal/ton
0
1.11
1.47
6.40
2.83
9.85
52.9
NR - Data not reported
+ - Loss due to drag-out
P - Periodic discharge
988
-------
Table V-256
METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS
-•"• RAW WA-STEWATER"SAMPLING~DATA"~ "
Toxi c
6.
1 1 .
23.
48.
86.
S "<•
vo
115.
1 17.
. 118.
1 19.
1.20..
12 1 .
122.
123.
124.
Pol lutant
Pol lutants
carbon tetrachl oride
1 , 1 , 1-trichl oro ethane
chloroform ;
di ch 1 o rob romo me thane
toluene
antimony
arseni c "
bery 1 H urn
cadmi um
chromium (total ) - •
copper
cyani de (total ) '
•1 ead ;
mercury
nickel
Stream
Code
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6 .
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
Samp) e
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
: r,
i
i
1
1
1
Concentrations (mg/1)
Source
ND
ND
ND
ND
0.027
0.027
0.004
0.004
ND
ND
<0.010
= <0.010
<0.010
<0.010
<0.005
<0.005
<0.020
<0.020
<0.020
<0.020
<0.050
<0.;050
<0.02
<0.02
<0.050
<0.050
<0.0002
<0.0002
<0.050
<0.050
Day 1 Day 2 Day 3
0.015
ND
0.055
0.019
ND
ND
ND
ND
0.007
0.002
<0.010
<0.01Q
<0. 010
<0.200
<0.005
<0.050
<0.020
<0.200
,0.080 : i - -, . -
<0. 200 .
, 1 .55
<0 . 500 , . . : : . '
2.5 . -
<0.02 • . ' . ' . • .
0.200 - '
<0.500
<0.002
<0.002
0. 150 •'.•..
<0.500 • '
-------
Table V-256 (Continued)
METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
V£>
VO
O
Pol 1utant
Toxic Pollutants (Continued)
125. selenium
126. silver
127. thai 1ium
128. z.inc
Nonconventional Pollutants
Acidity
Alkalini ty
.Al umi num
Ammonia Nitrogen
Barium
Boron
Calcium
Chemical Oxygen Demand (COD)
Chloride
Stream
Code
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
Sample
Concentrations (mg/1)
Type Source
1 <0.010
1 <0.010
1 <0.
1 <0.
1 <0.
1 <0.
1 0.
1 0.
1 <1
1 <1
1 13
1 13
1 0.
1 0.
1 0.
1 0.
1 0.
1 0.
1 <0.
1 <0.
1 10.
1 10.
1 70
1 70
1 <1
1 <1
010
010
010
010
080
080
1
300
300
16
16
050
050
100
100
4
4
7
24
Day 1 Day 2 Day 3
<0.010
<0. 100
<0
<0
<0
0
3
1
<1
4
,920
<1
1
7
0
5
0
0
.0
166
15
22
,000
,000
<1
91
.010
.010
.010
.010
.26
.56
.30
.60
.00
. 16
.5
.050
.500
.400
.7
.0
-------
Table V-256 (Continued)
METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS
.-_ RAW- WASTEWATER "SAMPLING
- - • - -
Pol lutant
Nonconvent i onal Pollutants (Continued)
Cobalt
F 1 uoride
Iron
Magnesi um
Manganese
U3
£2 Molybdenum
Phenol ics
Phosphate
Sodi um
Sulfate - ; ' -
} Tin ";' '
r
Ti tani um ' '
Total Dissolved Solids (TDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Stream - Sample
Code Type
J-5 1
J-6 1
J-5 1
J-6 1
J-5 1
J-6 1
J-5 1
J-6 1
J-5 1
J-6 1
J-5 1
J-6 1
J-5 1
J-6 1
J-5 1
J-6 1
J-5 1
J-6 1
• J-5 - - 1
J-6 1
J-5 1
• J-6 1
; J-5 1.
J-6 1
J-5 , 1
J-6 • ' 1
, J-5 . 1
; j-e 1
!
- J-5 1
;j-e 1
DATA
Concentrations (mg/1)
Source
<0
<0
1
1
0
0
1
1
0
0
<0
<0
<0
<0
<0
<0
• 1 1 1
11 1
90
90
<0
..
-------
Table V-256 (Continued)
METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA
VO
VO
NJ
Pollutant
Nonconventional Pollutants (Continued)
Vanadium
Yttrium
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
J-5
J-6
Sample Concentrations (mg/1)
Type Source
1 <0.050
1 <0.050
1 <0.050
1 <0.050
1 <1
1 <1
1 42
1 42
1 ?./1
1 2.71
Day 1 Day 2 Day 3
<(K050
<0.500
-------
Table V-257
METAL POWDERS SAWING OR GRINDING
CONTACT COOLING WATER '
Plant
1 i
2 I
. Water Use
1/kkg gal/ton
162,000
NR
NR
NR
38,900
NR
NR
NR
Percent
Recycle
0
NR
NR
NR
yjtestewater Discharge
11/kkg gal/ton
1^2,000
! _
j
• NR
; NR
! NR
38,900
NR
NR
NR
NR -
Data not reported
993
-------
Table V-258
METAL POWDERS SAWING OR GRINDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA
Pol lutant
Toxic Pol 1 utants
117. beryl 1 ium
118. cadmium
119. chromium (total)
120. copper
122. lead
124. nickel
VD 128. zinc
VD
•Ps.
Nonconvent ional Pollutants
Al umi num
Iron
Magnesium
Manganese
Tin
Stream
Code
AH-3
AH-3
AH-3
AH-3
AH-3
AH-3
AH-3
AH-3
AH-3
AH-3
AH-3
AH-3
Sample Concentrations (mg/1)
Type Source Day 1 Day 2 Day 3
0.028
<0.050
<0.030
230.000
<0.500
0.310
0.910
40.00
0.800
1 1 .00
0.320
0.360
1 .
No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125, 127 and 129.
-------
Table V-259
!
|
METAL POWDERS SIZING SPENT NEAT OILS
Plant
1 I
j
2
Water Use
1/kkg gal/ton
NR
NR
NR
NR
Percent
Recycle
100
100
Wastewater Discharge
il/kkg gal/ton
jO ( + )
o (+
0 ( + )
0 ( + )
NR -.Data not reported
+ - Loss due to evaporation and drag-out
995
-------
Table V-260
METAL POWDERS SIZING SPENT EMULSIONS
Plant
1
Water Use
1/kkg gal/ton
14.6
3.50
Percent
Recycle
100
Wastewater Discharge
1/kkg gal/ton
0
0 ( + )
4- - Loss due to evaporation and drag-out
996
-------
Table V-261 '
METAL POWDERS STEAM TREATMENT!WET
AIR POLLUTION CONTROL SLOWDOWN
Plant
1 '
Water Use
1/k'kg gal/ton
792
190
Percent
Recycle
0
W4stewater Discharge
jl/kkg gal/ton
792
190
997
-------
METAL POWDERS
Table V-262
STEAM TREATMENT WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEV/ATER SAMPLING DATA
Toxic
4.
6.
1 1 .
23.
44.
48.
86.
*° 114.
VD
00
115.
1 17.
1 18.
1 19.
120.
121 .
122.
123.
124.
125.
126.
127.
128.
Pol lutant
Pol lutants
benzene
carbon tetrachl oride
1,1,1-trichl o roe thane
chl orotorm
•methylene .chloride
di chl orobromomethane
toluene
ant imony
arsenic
beryl 1 i um
cadmium
chromium (total)
copper
cyanide (total
lead
mercury
ni ckel
se 1 eni um
si 1 ver
thai 1 i um
zinc
Stream
Code
J_ i
i
J-1
J-1
J-1
J-1
J-1
i
1
J-1
J— 1
J-1
1
1
J-1
1— 1
O 1
J-1
J-1
1- 1
vj 1
J-1
J-1
J-1
1 _ 1
J 1
J_ 1
1
Sample Concentrations (mg/1)
Type Source
1 ND
1 ND
1 Nn
I MU
1 0 . 027
1 ND
1 0.004
1 MD
6 <0.010
6 <0.010
6 <0.005
6 <0.020
6 <0.020
6 <0.050
1 <0.02
6 <0.050
6 <0.0002
6 <0.050
6 <0 . 01 0
6 <0.010
6 <0 .010
6 0.080
Day 1
0.004
ND
0.007
ND
O.OOB
ND
0.002
<0.010
<0.010
<0.005
<0.020
<0.020
<0.050
0. 13
<0.050
<0.0002
<0.050
<0.010
<0.010
<0.010
0.040
Day 2
ND
0.005
0.005
ND
0.005
ND
0.004
<0.010
<0.010
<0.005
<0.020
<0.020
<0.050
<0.02
<0.050
<0.0002
<0.050
<0.010
<0.010
<0.010
0.030
Day 3
0.003
0.006
0.006
ND
ND
ND
II ln)2
<0.010
-.U.UlO
<0.005
<0.020
<0.020
<0.050
0.03
<0.050
<0.0002
<0.050
<0.010
<0.010
<0.010
0.020
-------
Table V-262 (Continued)
METAL POWDERS
STEAM TREATMENT WET AIR POLLUTION CONTROL SLOWDOWN
RAW WAST.EWATER SAMPLING DATA
Pol lutant
Nonconventional Pollutants
Acidity
Al kal ini ty
Aluminum
Ammonia Nitrogen
Barium
Boron
Cat ci um
Chemical Oxygen Demand (COD)
\O Ch 1 or i de
VO
^0 Cobalt
Fl uoride
Iron
Magnesium
Manganese
Mo 1 ybdenum
i •
Phenol ics
Phosphate
Sodium
Sulfate
Tin
Ti tanium
Total Dissolved Solids (TDS)
c...ream sample . Concentrations (mg/1)
Code Type Source
J-1 6 <1
J-1 6 13
J"1 6 0.300
J-1 6 0.16
J"1 i 6 0.050
J"' , 6 <0.100
J-1 6 10.4
J-1 6 70
J-l 6 <1
J"1 6 <0.050
J-l 6 "- 1.2
J-1 6 0.100
J-1 6 1.4Q
J— 1 f*
1 6 0.200
1-1
~ " ~™~ ~' ~ "~ 6"H' - '; ,<0'."0"5O
"'• "
J"1 , . •; '- 1 L1 ; 0.005
! ,
J-] . 6 _: ..0.5
J-l ,„.. '. '. 6 .:__ ,1.1 1
J-1 ' "6 -90 i ,
J-1 6 <0.050
J"1 6 " " <0.050
J-1 : ^6 76
Day 1
< 1
10
0. 200
0.64
0.050
<0. 100
10.7
380
110
<0.050
1 .0
0. 100
1 .50
<0.050
"
-------
Table V-262 (Continued)
METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL SLOWDOWN
RAW WASTEWATER SAMPLING DATA
H
O
O
O
Pollutant
Nonconventional Pollutants (Continued)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadium
Yttri um
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code _
J-1
J-1
J-1 .
J-1
J-1
J-1
J-1
Sample
6
6
6
6
1
6
6
Cnnrentrations (mg/ 1 )
Source
3
125
<0.050
<0.050
<1
42
2.71
Day 1_
15
180
<0.050
<0.050
35
15
5.81
Day 2
27
134
<0.050
<0.050
42
80
6.21
Day 3
16
350
<0.050
<0.050
31
200
6.00
1. The following toxic pollutants were not detected in this waste stream: 1-3; 5, 7-10,
12-22, 24-43, 45-47, 49-85, 87, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Plant
1
2
3
.4
5
6
7
NR - Da
+ - Lo
CH - Co
i
Table V-263
i '
METAL POWDERS OIL-RESIN IMPREGNATION
SPENT NEAT OILS |
i
Water Use Percent Wa'stewater Discharge
1/kkg gal/ton Recycle lAkg gal/ton
NR NR 100
NR NR 100
NR NR NR
36.8 8.83 0
NR NR NR
NR NR NR
NR NR NR
'
•
d (+) o (+)
I - . -
d c+j o < + )
10.9 (CH) 2.61 (CH)
36;. 8 (CH) 8.83 (CH)
NR (CH) NR (CH)
NR NR
! •" - '
NR; ; NR
j " ' ' : ", - -
1 :
i
i
! '- '.
i
j - T
• ! ' .'•' ' •
, '_-!*, ' - -
v l " ' 7
ta not reported
ss due to evaporation and drag-out :
ntract hauled j ...
; 1001
j -
I'* ' ' '
J T -, . -= - - . ' -
.1 ...
i
j ^ ^ - i
j ,:.;_,
i •<"
j ^
-------
Table V-264
METAL POWDERS HOT PRESSING
CONTACT COOLING WATER
Plant
1
Water Use
1/kkg gal/ton
8,800
2,110
Percent
Recycle
0
Wastewater Discharge
1/kkg gal/ton
8,800
2,110
1002
-------
Table V-265
METAL POWDERS
RAW
Pol lutant
toxic Pollutants
117. beryl 1 ium
118. cadmi um
119. chromium (total)
120. copper
122. lead
H 124. nickel
O
O .128. zinc
Nonconventional Pollutants
Aluminum
, Cobalt
Iron
Magnesium
Tin ! ", • '
i; Titanium
Vanadium
HOT PRESSING CONTACT
WASTEWATER SAMPLING
Stream Sample
-, , . '.,
AH-2 .
AH-2
AH-2
AH-2
AH-2
AH-2
AH-2
AH-2
AH-2
AH-2
AH-2
AH-2
'AH- 2
• AH-2 :
COOLING WATER
DATA
Concentrations (mg/ 1 )
Source Day 1 Day 2 nay 3
0.002
<0.005
0.010
2.200
<0.050
0.043
0.079
0.490
0.008
5.300
- - -- 3 500. -- _ . - - - . - - - .-- - ... - - - --
0.046 ' • - . -
- 0.01 i
0.006 ' . :. ... ' L
1. No analyses were performed for the following toxic pollutant: 1-116, 121, 123, 125-127
and 129.
-------
Table V-266
METAL POWDERS MIXING WET AIR
POLLUTION CONTROL SLOWDOWN
Plant
1
Water Use
1/kkg gal/ton
79,000
18,900
Percent
Recycle
90
Wastewater Discharge
1/kkg gal/ton
7,900
1,890
1004
-------
Table V-267
METAL
RAW
Pollutant
Toxic Pollutants
117. beryllium
118. cadmium
119. chromium (total)
120. copper
122. lead
<.
124. nickel
M 128. zinc
O
O
tn Nonconvent ional Pollutants
Al umi num
Iron
Magnesium
Manganese
.Mpjybdenum :
Titanium
WASTEWATER
Stream
Code
AH-1
AH-1
AH-1
AH-1
AH-1
AH-1
AH-1
AH-1
AH-1
AH-1
AH-1
....... ^^)-^-[-
AH-1
SAMPLING DATA
Sample Coru.ent rat ions (mg/1)
Type Source Day 1 Day •? pay 3
<0.001
<0.005
<0.003
1.200
<0.050
<0.012
0.031
0.058
0.570
'(
4.500
0.300
<0.020
;
-------
WASTEWATER
Table V-268
TREATMENT PERFORMANCE DATA - PLANT A
Pol lutant
Toxic Pollutants
114. antimony
115. arsenic
117. beryllium
118. cadmium
119. chromium (total)
120. copper
O
O 122. lead
OT
124. nickel
128. zinc
Nonconventional Pollutants
Aluminum
Barium
Boron
Calcium
Cobalt
Stream
_Code ._
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
3
4
3
4
3
4
3
4
3
4
3
4
3
4
3 •
4
3
4
3
4
3
4
3
4
3
4
3
4
Samp 1 e
Type
<0.003
<0.003
<0.003
<0.003
<0.0005
<0.0005
<0.002
<0.002
<0.001
<0.001
<0.001
<0.001
<0.084
<0.084
<0.003
<0.003
0.72
0.72
<0.050
<0.050
0. 15
0.15
<0.009
<0.009
69
69
<0.006
<0.006
Concentrations (mg/1)
Source Day
0.021
0.044
0.017
0.043
<0.0005
<0.0005
0.009
0.007
0.66
<0.001
0.2
0.023
4.8
<0.084
0.47
0.31
2.8
0.15
0.87
<0.050
0.060
0.029
1 .7
1 .8
91
73
<0.006
0.009
1 pay 2 Day 3
0.017
0.060
0.006
0.037
<0.0005
<0.0005
<0.002
0.003
0.51
<0.001
0.089
0.012
4.3
<0.084
0.39
0.35
0.34
<0.003
0.54
<0.050
0.055
0.049
1 .2
1 .4
62
75
<0.006
<0.006
-------
Table-V-268 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A
Pollutant
Stream
Code
Nonconventiona1 Po Mutants (Continued)
H
O
O
Iron
Magnesium
Manganese
Molybdenum
Sodium
Tin
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
A-4
A-5
3
4
3
4
3
4
3
4
3
4
3
4
<0.008
<0.008
27
27
<0.001
<0.001
<0.002
<0.002
10
10
<0. 12
<0. 12
Concentrations (mg/1)
Source Day 1 Day 2
23
<0.008
34
29
0.23
0. 10
0.011
0.037
540
3,000
18
<0.008
24
30
0.17
0. 13
<0.002
0.015
330
2,700
<0. 12
<0.12
<0. 12
<0. 12
-------
H
O
O
00
Table V-268 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A
Pol lutant
Stream
Code
Sample
Concentrations (mg/1)
Source D_aj
i 1 Day 2 Day 3
Nonconventional Pollutants (Continued)
Titanium
Vanadium
Yttrium
A-4
A-5
A-4
A-5
A-4
A-5
3
4
3
4
3
4
<0.005
<0.005
<0.003
<0.003
<0.002
<0.002
<0.005
0.013
<0.003
0.028
<0.002
0.003
<0.005
<0.005
<0.003
<0.003
<0.002
<0.002
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
A-4
A-5
A-4
A-5
A-4
A-5
1 <1
1 <1
3 23
4 23
6.5
6.5
<1
<1
26
33
1 .40
NA
<1
<1
26
25
1
7
.31
. 1 1
NA - Not Analyzed.
Footnote: No analyses were performed on the following toxic pollutants: 1 - 113, 116,
121, 123, 125-127, and 129.
-------
Table V-269
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B
Pol lutant
Toxic Pollutants .
6. carbon tetrach 1 ori de
.. '_. . .
11. 1 , 1 , 1-trichloroethane
23. chl orof orm
26. 1 , 3-d i ch 1 orobenzene
38. ethylbenzene
44. methylene chloride
H
O 62. N-ni t rosodipheny lamine
O
\D
65. phenol -
66. bis(2-ethylhexyl ) phthalate
72. benzo(a)anthracene
'86.. toluene - '
114. antimony
•
:••-•- : vis. -arsenic : : ( ?'
t -
117. beryl Hum
118. cadmium ., -,
srream
fnriei
»- uu c
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
rB-8
B-7
B-8
~B-7
B-8
B-7
B-8
.B-7
B-8
Sample Concentrations (mg/1)
Typs
1
1
1
1
1
1
6
6
1
1
1
1
6
6
6
6
6
6
6
6
1
. 1
6
6
"::'~ 6
6
6
6
= 6
6
oource
ND
ND
0.003
0.003
ND
ND
0.039
0.039
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.061
0.061
ND
ND
<0 . 0 1 0
<0.010
<0,010
<0.010
<0.005
<0.005
<0.020
<0.020
Day 1
ND
ND
ND
0 . 004
ND
0.005
ND
ND
0.054
0.018
0. 105
0.027
ND
ND
0.014
ND
0.021
ND
ND
ND
0.046
0.020
0.040
0.010 .
0.020
<0.010
<0.005
<0.005
<0.020
<0.020
Day 2
ND
ND
0.003
ND
0.005
0.005
ND
ND
0.027
0.015
0.017
0.014
ND
ND
ND
ND
.ND
0.015
ND
ND
0.046
0.025
0.090
0.030
0.020
<0.010
<0.005
<0.005
<0.020
<0.020
Day 3
0.013
.-0.012 . . .. . ----.- -.
0.045
0.037
0.005
0.006
ND
ND
0.032
0.039
0.017
0.021
0.013
ND
NL>
ND
0.023
ND
ND
ND
0.084
0.096 ; '
0.040
0.050
.0.030
0.010 : -
<0.005 :
<0.005
<0.020
<0.020
-------
Table V-269 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B
Pol lutant
Toxic
1 19.
120.
121 .
122.
123.
H
O 124.
H
O
125.
126.
127.
128.
Pollutants (Continued)
chromium (total )
copper
cyanide (total )
1 ead
mercury
ni ckel
se 1 eni um
si 1 ver
thai 1 i um
zinc
Stream
Code
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
Sample
Type
B-7
B-8
B-7
B-8
B-7
B-8
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Source
6
6
6
6
1
1
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.050
.050
.0002
.0002
.050
.050
.010
.010
.010
.010
.010
.010
.020
.020
Concentrations
Day 1
.020
.020
.050
.050
.02
.02
1
0
<0
<0
0
0
<0
<0
<0
<0
<0
<0
2
0
0.
0.
1 .
0.
<0.
<0.
.85
.450
.0002
.0002
.200
.050
.010
.010
.010
.010
.010
.010
.22
.460
(mg/1)
Day 2
860
120
35
250
02
02
3
0
<0
<0
0
0
<0
<0
<0
<0
<0
<0
2
0
0.980
0.160
2.00
0.250
0. 18
0.21
.45
.450
.0002
.0002
. 100
.050
.010
.010
.010
.010
.010
.010
.88
.440
Day 3
0.780
0. 100
3.35
0.600
0.34
0.82
2.70
0.300
<0.0002
<0.0002
0.100
0. 100
<0.010
<0.010
<0.010
<0.010
<0.010
<0.020
3.88
0.400
Nonconvent i onal Pollutants
Acidi
Alkal
ty
inity
Al umi num
Ammonia Nitrogen
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
6
6
6
6
6
6
6
6
-------
Table V-269 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B
Pol 1 utant
- btream •-
Code
iamp-i e-
-- — — — - uoncen L ra L i ons (.ma/~iv~ — • — — - •
Source
Day 1
Day 2
Day 3
Nonconvent ional Pollutants (Continued)
Barium
Boron
Cal cium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
O
l-j Fluoride
Iron
Magnesium
Manganese
Mol ybdenum
Phenol i cs
Phosphate
Sodium
Sulfate
B-7
B-8
B-7
Br8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
" 6
6
6
' 6
• 6
1
1
6
6
6
6
6
<0
<0
<0
<0
62
62
<5
<5
6
6
<0
<0
1
1
1
1
19
19
0
0
<0
<0
0
0
" 56
56
6
6
7
7
.050
.050
. 100
. 100
.0
.0
.050
.050
.2
.2
.00
.00
.7
.7
. 100
. 100
.050
.'050
.010
.010
.80
.80
.8
.8
1 .85
0.300
0.700
0.600
47
71
490
330
67
62
<0
<0
2
2
4
0
15
14
0
<0
0
0
0
0
92
19
108
98
67
180
. 1
.5
.050
.050
.6
.4
.50
.850
.5
.7
.200
.050
. 150
. 100
.021
.031
.5
3.20
0.400
0.800
0.700
55
64
280
310
81
70
<0
<0
5
3
3
0
17
13
0
<0
0
0
0
0
130
<4
127
1 19
72
160
.4
.2
.050
.•050
. 1
.3
.90
.750
.2
.9
. 150
.050
.200
. 150
.020
.034
2.70
0.300
1 .00
0.900
57
57
440
460
91
79
<0
<0
0
0
4
0
18
13
0
<0
0
0
0
0
170
9
149
134
72
120
. 1
.8
.050
.050
.47
.97
.15
.650
.5
.2
. 150
.050
.300 '
.250
.030
.030
.6
-------
Table V-269 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B
Pol lutant
Stream
Code
Sample
Concentrations (mg/lj
Source
f),iy 1
Day 2
D.iy 1
Nonconventional Pollutants (Continued)
Tin
Titanium
Total
Total
Total
Dissolved Solids (TDS)
Organic Carbon (TOC)
Solids (TS)
Vanadium
H
O
M Yttrium
to
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
B-7
B-8
6
6
6
6
'6
6
6
6
6
6
6
6
6
6
<0.050
<0.050
<0.050
<0.050
390
390
12
12
490
490
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
0.100
<0.050
320
300
150
110
790
660
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
0.050
<0.050
730
730
120
130
1 , 100
1 ,000
<0.050
<0.050
<0.050
<0.050
-------
Table V-270
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D
Toxic
1 1 .
22.
23.
34.
44.
66.
£ 81."
H
OJ
86.
1 14.
115.
117,
1 18.
119.'
120.
121 .
. . Pol lutant .
Pol lutants
1,1, 1-tri chl oroethane
p-chl oro-m-cresol <
ch 1 orof orm
2 , 4-dimethy 1 pheno 1
methylene chloride
bis(2-ethy 1 hexy 1 ) phthalate ;
phenanthrene :
to 1 uene
ant imony
arsenic
beryl 1 i urn ' . * 1
cadmium • :
chromium (tota:l) :-' ;
copper
cyanide (total)
Stream Sampl e
Code .. . Type
D-20
D-21" "
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21 '
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21 -
D-20
D-20 " . -
D-21.
D-20 :.
.. . '. .D-21. . :, ......
D-20
D-21
D-20
D-21
D-20
D-21
1
-•,•--••-
6
6
1
1
6
6
1
1
6
6
6
6
1
1 ,
6
6
6
6
-6
6
.6 .... ...
6
6
6
6
1
1
Concentrations (mg/1)
. Source
0.009
" 0 . 009
ND
ND
0.144
0. 144
: ND
ND
0.002
'0.002
; 0.009
0.009
ND
ND
ND
ND
<0.003
<0.003
<0.003
<0.0005
<0.0005
<0.002
:.; <0.002
0.042
0.042
0.068
0.068
<0.02
<0.02
Day 1
0.007
0 . 0"1 3 '
ND
ND
0.001
0.013
ND
0.048
0.001
0.002
1 .260
ND
ND
ND
ND
ND
<0.003
<0.003
<0.003
<0.0005
<0.005
7.3
0.051
718
0.83
4.8
0.40
0.41
0. 1 1
.Day 2
0.006
0.008
ND
ND
ND
0.012
: ND
ND
0.002
0.003
ND
ND
ND
ND
ND
ND
<0.003
<0.003
<0.003
~r-<0."003 "
<0.0005
0.002
5.3
0.017
120
0.20
3.5
0.050
1 .5
0.51
Day 3 ... . . .
0.008
6.014" .-.---..
ND
0.375
0.002
0.01 1
0.028
ND
0.007
0.012
ND
ND
0.002
NO
0.002
ND
<0.003
<0.003
<0.003
- ;f0.003~
<0.0005
<0.0005
7.6
0.002 - ..-- -
1.60 ' . .
0.18
5.1
0.029
1 .6
0.33
-------
Table V-270 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D
Pol lutant
Toxic Pollutants (Continued)
122. lead
123. mercury
1 24. nickel
125. selenium
126. silver
127. thallium
128. zinc
Nonconvent i ona 1 • Pol lutants
Acidity
Al kal ini ty
A 1 umi num
Ammonia Nitrogen
Barium
Boron
Cal c i urn
Stream
Code
Sample
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Concentrations
Source Day 1
6 <0.084 0.
6 -<0.084 <0.
6 <0.0002 <0.
6 <0.0002 <0.
6
6
<0
<0
<0
<0
<0
<0
0
0
<,
180
180
<0
<0
<]
0
0
<0
<0
63
63
<0.003
<0.003
.003
.003
.001
.001
.003
.003
.038
.038
.050
.050
. 12
. 12
.009
.009
<0
<0
0
0
<0
<0
1
0
80
96
32
0
0
0
0
0
14
<0
1 ,900
960
340
3.
.003
.003
.013
.008
.003
.003
.9
.021
. 14
. 15
.35
.83
.23
.009
(ma/1
)
Day 2 Day 3
72 0.66 0.80
084 0.19 <0.084
0002 <0.0002 <0.0002
0002 <0.0002 <0.0002
5
<0
<0
0
0
<0
<0
1
0
' -
1 ,600
1 1 1
37
0
0
1
0
0
9
<0
1 ,600
900
300 340
0.82 0.83
.003
.003
.012
.008
.003
.003
.4
.007
. 15
.35
.2
.72
.22
.7
.009
-------
Table V-270 (Continued)
_WASTEWATER TREATMENT__PERFORMANCE^ DATA _-_.PLANT, D_
Pol 1 utant
Nonconvent i onal Pollutants (Cont
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fl uoride
Iron
H
O Magnesium
H
tn
Manganese
Mo 1 ybdenum
Phosphate :
Sbffi urn
Sulfate ' •
,
•• • • Tin
Ti tanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOO
Stream
Code
inued)
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20 .
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
D-20 '
D-21
D-20
D-21
D-20
D-21
D-20
D-21
Sampl e
Type
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
...'..6
6
6
6
6
6
6
6
Concentrations (mg/1 ) - - -
Source
<5
<5
34
34
<0.006
<0.006
0.45
0.45
0.066
0.066
24
24
0.012
0.012
0.030
0.030
<4
<4
"-" "9.5
9.5
53
53
<0 . 1 2
<0. 12
<0.005
<0.005
393
393
8
8
Day 1
130
80
200
170
55
0.34
2. 1
2.7
190
1 .2
43
20
5.2
0.087
44
19
21
<4
770" "
600
2,200
3,600
-------
Table V-270 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D
Pol 1 utant
Stream
Code
Sample
Concentrations (mg/1)
Source
Day 1
Day 2
Da
y 3
Nonconvent ional Pollutants (Continued)
H
O
a\
Total Solids (TS)
Vanadium
Yttrium
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids
pH (Standard Units)
0-20
D-21
D-20
D-21
D-20
D-21
D-20
D-21
(TSS) D-20
D-21
D-20
D-21
6
6
6
e
6
6
1
1
6
6
6
6
395
395
0.016
0.016
<0.002
<0.002
<1
<1
<1
<1
7. 14
7. 14
12,000 10
6,200 6
4.3
0.056
0.099
0.006
91
5
8,300 5
53
3.90
6.73
,000
,000
3.1
0.11
0.043
0.020
120
5
,200
30
9.02
6.43
5,700
5,600
4.
0.
0.
0.
790
10
770
23
7.
6.
6
035
051
007
81
47
1. The following toxic pollutants were not detected at this plant: 1-10, 12-21, 24-33,
35-43, 45-65, 67-80, 82-85, 87, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Tab le_V-27.1
WASTEWATER TREATMENT PERFORMANCE DATA -
Pol 1 utant
Toxic "Pol r'uta'rits"
5 . benzidi ne
11. 1 , 1 , l -tri ch 1 oroethane
12. hexach 1 oroethane
13. 1 , 1-dichI oroethane
H
O
1 — '
<1 22. p-chl oro-m-cresol
23. chloroform
27. 1 ,4-di chl orobenzene
28. 3,3'-dichlorobenzidine
77 " '" 34. 2,4-dimethylphenol
36. 2,6-dini tnotoluene
37. 1 , 2-dipheny 1 hydrazine
Stream
Code
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
• • , -• •£•-7" " "
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
Sampl e
Type
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
- T3 "" '
1
3
3
1 -
3
,3
. '
3
3
•1
3
3
1
PLANT E
Concentrat i
Source
0.762
0.762
0.762
0.005
0.005
0.005
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.015
0.015
0.015
ND
" ND " ""
ND
0.001
0.001
0.001
ND
ND
ND
0.002
0 . 002
0.002
0.001
0.001
0.001
Day 1
0.010
**
0.540
0.490
ND
0.006
ND
0.040
0.680
**
ND
ND
ND
ND
0.810
0.001
**
0.046
0.001
0.002
0.001
0.001
ons (mg/ 1 )
Day 2
1 . 159
**
0.720
0.490
0.006
0.006
ND
0.035
ND
ND
ND
0.015
ND
ND
0.010
0.001
**
0.053
0.001
0.003
0.001
0.001
Day 3
0.576
' 0.033
0.965
0.820
0.960
0.020
ND
ND
0.006
0.005
0.025
ND
**
ND
ND
ND
ND
ND
ND
0.005
ND / :
0.019
0.519 • . . '
ND
ND
0.046
ND
0.001
0.001
0.002
0.001
0.001
ND
-------
Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E
O
H
00
Pollutant
Toxic Pollutants (Continued)
39. fluoranthene
43. bi s (2-choroethoxy)rnethane
44. methylene chloride
55. naphthalene
61. N~nitrosodimethy1 amine
62. N-nitrosodipheny1amine
63. N-nitrosodi-n-propylamine
65. phenol
66. bis(2-ethyIhexy1)
phthalate
67. butyl benzyl phthalate
70. diethyl phthalate
Stream
Code
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
E-6
E-7
E-8
Sample
Type
3
3
1
3
3
1
1
1
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
Concentrations (mg/1)
Source
ND
ND
ND
0.001
0.001
0.001
ND
ND
ND
0.001
0.001
0.001
0.001
0.001
0.001
ND
ND
ND
0.024
0.024
0.024
ND
ND
ND
0.001
0.001
0.001
0.001
0.001
0.001
<0. 00001
<0. 00001
<0. 00001
Day 1
0.001
ND
ND
0.001
0.160
ND
0.002
0.001
0.001
ND
ND
ND
0.018
0.016
**
**
**
0.030
0.003
0.004 .
ND
0.0001
Day 2
0.001
0.001
0.001
0.0002
ND
ND
0.001
0.001
0.001
ND
ND
ND
0.021
0.020
**
**
0.003
0.002
0.002
0.002
0.001
0.0001
Day 3
0.001
ND
ND
0.002
0.0003
0.0001
ND
ND
ND
0.002
0.001
0.001
0.001
ND
0.001
ND
ND
0.196
0.016
0.032
0.023
**
**
ND
**
0.001
0.002
0.005
0.003
0.001
ND
ND
0.0001
-------
Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E
Stream
• • Pol lutant ' - . . . Code
Toxic Pollutants (Continued)
71. dimethyl phthalate E-6
E-7
E-8 '
72. benzo('a)anthracene E-6
E-7
E-8
73. benzo(a)pyrene E-6
E-7
E-8
75. benzo(k)f 1 uoranthene E-6
E-7
. |_i E-8
O
H 76. chrysene - E-6
VD E-7
- E-8
78. anthracene E-6
E-7
E-8
81. phenanthrene E-6
E-7
E-8
83. indeno( 1 , 2 , 3-c ,d)py rene 'T E-6
E-7
; : . E-8
84. pyrene : E-6
:• •-•'- ' ' " ~ ~ ' ' ' ---- £-7 ' - ''-
; E-8
?
86. toluene E-6
-. E-7
, E-8
114. antimony E-6
• E-7
E-8
E-9
Sampl e
Type
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3
1
3
3 .
1
'3
3 ' i
, 1
"''.I 3 ;
- 3
i ;
1 ;
i
. i
3
3
1
3
Concentrations (mg/1)
Source
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
HQ
ND'
ND
ND :
ND
' - ND
ND :
ND
ND
ND
<0.005
<0.005
<0.005
<0.005
Day 1
ND
ND
ND
0.0002
1 7 . 40
ND
**
ND
ND
ND
0.002
ND
ND
0.001
ND
ND
0.001
o.oor :
ND
ND
<0.005
<0.005
<0.005
Day 2
0.004
0.001
ND
0.0001
ND
ND
ND
**
ND
ND
ND
0.001
0.001
0.001
ND
ND
0.001
0.001 "
ND
ND
<0.005
<0.005
<0.005
Day 3
ND
ND
0.003
**
ND
ND
ND
ND
ND
ND
**
ND
**
**
ND
0.002
0.001
ND
. ND
ND
. 0-rOQ-l -
0.001
ND
ND
0.001
0.001
ND
ND
0.015
ND
<0.005
<0.005
<0.005
-------
Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E
Pollutant
Toxic Pol 1utants (Continued)
Stream
Code
Concentrations (mg/1)
Source
O
N)
O
115. arsenic
117. beryl 1ium
118. cadmi um
1 19 . chromium ( total)
120. copper
121. cyanide (total)
122. lead
123. mercury
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
3
3
• 1
3
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
1
1
1
1
3
3
1
3
3
3
1
3
0
0
0
:0
:0
0
0
0
:0
:0
0
:0
:0
:Q
:0
:0
0
0
0
0
:.0
:Q
:Q
:Q
:0
:0
:0
:0
.0
:0
:0
:0
.005
.005
.005
.005
.010
.010
.010
.010
.050
.050
.050
.050
. 100
. 100
.100
. 100
.080
.080
.080
.080
.02
.02
.02
.02
. 100
. 100
. 100
. 100
.0010
.0010
.0010
.0010
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
2
0
0
14
<0
<0
<0
0
0
<0
<0
<0
<0
.005
.005
.005
.010
.010
.010
.050
.050
.050
. 100
. 100
.15
.620
. 100
.0
.02
.02
.02
.240
. 100
. 100
.0010
.0010
.0010
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
0
0
0
<0
<0
<0
0
<0
<0
<0
<0
<0
.005
.005
.005
.010
.010
.010
.050
.050
.050
. 100
. 100
. 100
. 180
. 110
. 140
.02
.02
.02
.220
.100
. 100
.0010
.0010
.0010
<0
<0
<0
<0
<0
<0
-------
Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E
O
tO
Pol 1utant
Toxi c Po;l 1 utants (Continued)
124. nickel
1 25. seleni urn
126. silver
1 27. th.al 1 ium-
128. zinc
Nonconventional Pollutants
Stream-
Code
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
Er-7
E-8
E-9
Concent rat Ions - (tng/ l.J
3
3
. 1
3
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
Source
<0. 100
<0.100
<0.100,
<0.100
<0.010
<0.010
<0.010
<0.010
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
<0.050
<0.050-
<0.050
<0.050
0.510
<0.100
24.6- -
<0.010
<0.010
<0.010
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
0.310
0.080
0.370
<0.100
<0. 100
<0.100
<0.010
<0.010
<0.010
<0.002
<0.002
<0.002
<0;002
<0.002
<0.002
0. 100
0.110
<0.050
1 .30
0.100
183
<0.010
<0.010
<0.010
<0.002
<0.002
<0.002
<0.002
<0.002
<0.002
0.240
0.080
1 .40
Acidi ty
A 1 kal i ni ty
. .-- . i :~ ~ - -
; ~ = .
A 1 uminum ,
Ammonia Nitrogen
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
<1
<1
<1
<1
83
83
83
8:3
0
0
0
0
0
0
0
0
.300
.300
.300
.300
.22
.22
.22
.22
<1
<1
130
120
230
<1
0
0
0
0
0
0
.800,
. 140
.960
.19
. 14
.55
<1
<1
-<1
T50
reo
250
0
0
.200
. 160
<1
<1
198
150
160
<1
0
0
",
.500
. 150
<0.020
0
0
0
30
.040
. 19
. 14
0
9
130
.37
.3
-------
Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E
Pollutant
Stream
Code
Concentrations (mg/1)
Nonconventional Pollutants (Continued)
Barium
Boron
Calcium
o
to
N)
Chemical Oxygen Demand (COD)
Chloride
Cobalt
F1uori de
Iron
Magnes i urn
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3
Source
0
0
0
0
0
0
0
0
33
33
33
33
34
34
34
34
26
26
26
26
<0
<0
<0
<0
0
0
0
0
1
1
1
1
15
15
15
15
.060
.060
.060
.060
. 170
. 170
. 170
.170
.0
.0
.0
.0
. 100
. 100
. 100
. 100
.44
.44
.44
.44
.00
.00
.00
.00
.8
.8
.8
.8
Day 1
0
0
0
0
0
0
34
34
18
330
470
50
24
31
35
<0
<0
<0
0
0
0
3
2
31
14
15
6
. 120
. 110
.030
.400
.590
.200
.2
.6
.4
.100
. 100
. 100
.39
.44
.40
.50
.50
.0
.4
.6
.00
Day 2
0
0
<0
0
0
0
32
36
9
18
460
<0
24
29
40
<0
<0
<0
0
0
0
1
2
0
15
15
3
.080
. 100
.020
. 140
.480
. 100
.8
.5
.70
.05
. 100
. 100
. 100
.69
.30
.39
.60
.60
. 120
.0
.8
.00
Da
0.
0.
0.
0.
0.
0.
30.
32.
18.
890
460
52
21
28
78
<0.
<0.
<0.
0.
0.
0.
2.
4.
32.
13.
13.
6.
y a
070
080
040
460
510
470
4
5
9
100
100
100
64
75
52
40
40
5
3
8
20
-------
Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E
Stream
Pol lutant" • - Code
Nonconvent i onal Pollutants (Continued)
- . ... Manganese .....,., , ... E-6
E-7
E-8
E-9
Molybdenum E-6
E-7
E-8
E-9
Phenol ics E-6
E-7
. E-8
E-9
H
O Phosphate E-6
ISJ E-7
LO E-8
E-9
Sodium E-6
E-7
E-8
E-9
Sulfate E-6
E-7
E-8
: • • - • ' E-9
; Tin £-6
E-7
E-8
: E-9
Titanium E-6
E-7
E-8
: E-9
Total Dissolved Solids (TDS) E-6
E-7
E-8
E-9
Sampl e
Type
3
3
1
3
3
3
1
3
1
1
1
• 1
3
3
1
3
3
3
1
3
3
3
1
3
3
3
1
3 ,
3
3
1 , •
3
3
3
1
3
Concentrat
Source
0.
0.
0.
0.
<0.
<0.
<0.
<0.
0.
0.
0.
0.
16
16
16
16
33.
33.
33.
33.
170
170
170
170
: <0 .
<0.
<0.
<0.
<0.
<0.
<0.
<0.
.330
330
330
330
140
140
140
140
200
200
200
200
014
014
014
014
0
0
0
0
200
200
200
200
020
020
020
020
Day 1
0
0
0
<0
<0
<0
8
13
0
21
2:i
<4
71
83
58
170
120
7QO
<0
<0
<0
<0
<0
0
470
720
920
.-100
. 170
.630
.200
.200
.200
.5
.016
.0
.0
.0
.200
.200
.200
.020
.020
.090
i ons
(nig/1
Day 2
... o
0
0
<0
<0
<0
2
1 1
0
18
28
13
75
80
292
190
150
580
<0
<0
<0
<0
<0
<0
360
420
860
;080
. 160
.018
.200
.200
.200
.4
.032
.0
.0
.200
.200
.200
.020
.020
.020
1)
Da
0.
0.
2.
<0
<0
<0
9
13
0
30
27
<4
80
73
133
190
130
- -laoo.
-------
Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E
Pol lutant
Stream
Code
Sample
Type
Concentrations (mg/l]
Source
Day 1
Day 2
1
Day 3
Nonconventional Pollutants (Continued)
Total Organic Carbon
Total Solids (TS)
Vanadi urn
Yttrium
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids
pH (standard units)
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
E-6
E-7
E-8
E-9
3
3
1
3
3
3
1 '
3
3
3
1
3
3
3
1
3
1
1
1
1
3
3
1
3
3
3
1
3
<,
<1
<1
.<'
380
380
380
380
<0.010
<0.010
<0.010
<0.010
<0.020
<0.020
<0.020
<0.020
<,
< i
<1
<1
29
29
29
29
6.71
6.71
6.71
6.71
68
110
10
590
830
930
<0.010
<0.010
<0.010
<0.020
<0.020
<0.020
350
76
3
220
13
7.4
6.12
6.01
2.71
89
150
<1
470
600
900
<0.010
<0.010
<0.010
<0.020
<0.020
<0.020
340
32
5
33
16
2.3
6.56
6.24
8.50
110
67
3.9
800
690
2070
<0.010
<0.010
<0.010
<0.020
<0.020
<0.020
420
45
<1
250
74
7.3
6.91
6.10
2.74
1. The following toxic pollutants were not detected at this plant: 1-4, 6-10, 14-21,
24-26, 29-33, 35, 38, 40-42, 45-54, 56-60, 64, 68, 69, 74, 77, 79, 80, 82, 85, 87,
and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
**Present, but not quantifiable.
-------
Table V-272
.-WASTEWA-T-ER-TREATMENT—PERFORMANCE- DATA - -PLANT- F
Pol 1 utant
Toxic Pollutants
11. 1 , 1 , 1 -trichl oroetnane
23. chloroform
44. methylene chloride
H'
O 55. naphthalene
NJ
CJ1
58. 4-ni tropheno 1
64. pentach 1 orophenol
66. bis(2-ethy Ihexyl ) phthalate
:: . 68. di-n-buty 1 ' phthal ate
81 . phenanthrene
Stream
Code
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
' F-33
F-34
F-31
F-32
F-33
F-34
F-31
- F-32
; F-33
; "F-34
'. • F-31
F-32
F-33
F-34
F-31
F-32
F-33
; F-34
S atrip 1 e
Type
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
4
1
1
4
4
1
1 :
4
4
1 -
1
4
' 4
1 -
1
' 4
4
1
1
4
4
Concent rat ions
Source Day 1
0.014 -ND
0.014
0.014
0.014
ND ND
ND
ND
ND
0.002 1.170
0.002
0.002
0.002
0.001 ND
0.001
0.001
0.001
ND ND
ND
ND
ND
ND 0.818
.. ._ ND ! . - - . — ... -
ND *
ND
ND NO
ND ! :
ND
ND .- ; "
ND ND
• ND ' .
ND
ND
ND 0.364
ND
ND
ND
(mg/1)
Day 2
ND
ND
ND
0.012
ND
ND
ND
0.006
4.940
1 . 150
0.040
0.005
0.398
ND
0.001
0.001
0.250
ND
ND
ND
0.981
- ND - -
ND
ND
ND
ND
0.004
ND "
-ND
0.105
0.001
ND
0.896
ND
ND
ND
Day 3
ND
ND
0.01 1
ND .
ND
ND
ND
ND '.
0.494
0.095
0.002
ND
0.744
0.353
ND
ND
ND
ND
ND
ND
1.080
_. -NO - - _ - - - -• - — . - — -
. ND . .
ND
ND
ND
0.004 '',..
ND _-.--- . .- .--
. ND -
ND '
ND
ND
'0.947
ND
ND
ND - . -
-------
Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F
O
E-O
Pollutant
Toxic Pollutants (Continued)
86. toluene
114. antimony
115. arseni c
117. beryl 1i urn
118. cadmi urn
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
Stream
Code
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-34
F-34
F-34
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
Concentrations
1
1
1
1
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
1
1
1
1
1
1
4
4
Source
ND
ND
ND
Day 1
ND
ND
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
0
0
0
0
<0
<0
<0
<0
<0
<0
<0
<0
.002
.002
.002
.002
.005
.005
.005
.005
.010
.010
.010
.010
.050
.050
.050
.050
.100
. 100
. 100
. 100
.170
. 170
. 170
. 170
.02
.02
.02
.02
. 100
. 100
. 100
.100
0.015
<0.002
0.005
0.025
<0.005
<0.005
<0.010
<0.010
<0.010
<0.050
<0.050
<0.050
<0. 100
3. 16
0. 170
4.10
21.2
0.630
<0.02
<0.02
<0.02
2.40
<0. 100
<0. 100
Day 2
ND
ND
0.047
ND
0
0
0
0
0
<0
0
0
<0
<0
<0
<0
<0
<0
<0
<0
4
0
3
0
5
0
26
0
<0
<0
<0
<0
2
1
0
<0
.015
.015
.003
.004
.016
.005
.021
.020
.010
.010
.010
.010
.050
.050
.050
.050
. 15
.870
.82
. 110
. 17
.590
.5
.450
.02
.02
.02
.02
.69
.73
.110
. 100
Day 3
ND
ND
ND
ND
<0.
<0.
<0.
<0.
<0.
0.
0.
0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
0.
0.
7.
0.
1 .
0.
52.
0.
<0.
<0.
<0.
<0.
0.
1 .
0.
<0.
002
002
002
002
005
005
009
010
010
010
010
010
050
050
050
050
940
980
78
100
10
280
0
360
02
02
02
02
530
46
190
100
-------
Table V-272 (Continued)
-WAS-TEWATER- TREATMENT- PERFORMANCE -DATA - PLANT F
Pollutant
Toxic Pollutants (Continued)
123. mercury
124. nickel
125. selenium
126. silver
Stream
Code
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
i'l-ft KUAN 1 1- . . -
Concentrations (mg/1)
Source
<0
<0
<0
<0
0
0
0
0
<0
<0
<0
<0
<0
<0
<0
<0
.0020
.0020
.0020
.0020
.200
.200
.200
.200
.010
.010
.010
.010
.002
.002
.002
.002
Day 1
<0.0020
<0.0020
<0.0020
23.6
113
3.79
<0.010
0.011
0.019
0.003
<0 . 002
<0.002
Day 2
<0
<0
<0
<0
39.
18.
190
2.
<0.
<0 ,
-------
r
TaDle \f-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F
O
to
00
Pollutant
Toxic Pollutants (Continued)
127. thallium
128. zinc
Nonconventional Po11utants
Acidity
Alkalinity
Alumi num
Ammonia Nitrogen
Barium
Boron
St
ream Sample
Code
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
1
1
4
4
1
1
4
4
1
1
4
4
1 -
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
Type
<0
<0
<0
<0
<0
<0
<0
<0
<1
<1
<1
<1
61
61
61
61
0
0
0
0
0
0
0
0
0
0
0
0
<0
<0
-------
Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F
Pollutant
Nonconvent i ona1 Pollutants (Continued)
Calcium F-31
- - ' - ' '" F-32
F-33
F-34
Stream
Code
O
M
AQ
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluoride
Iron-
Magnesium
Manganese
Molybdenum
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
- -F-34- -
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
Source
Concentrations (mg/1)
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
4
1
1
4
- 4"
1
1
4
4
1
1
4
4
1
1
4
4
46.2
46.2
46.2
46.2
<1
<1
<1
<1
12
12
12
12
<0.100
<0. 100
<0.100
<0. TOO
0.43
0.43
0.43
. 0.43
1 .37
1 .37
1 .37
T.37 "
12.7
12.7
12.7
12.7
0.080
0.080
0.080
0.080
<0.200
<0.200
<0.200
<0.200
30.1
34.9
22.2
46,000
8
<1
30
130
120
0. 130
<0. 100
<0. 100
37
31
24
58.4
25.2
1 .33
6.44
10.5
7.02
0.980
3.88
0. 120
0.420
0.440
<0.200
~34.7
34.7
25.0
21.9
18,000
7,900
55
43
61
20
180
170
0.310
0. 120
<0. 100
<0. 100
13
19
40
27
80.0
49.0
50.0
0.790
9.29
6.80
8.03
7.83
1 .40
0.860
5.34
0.070
0.830
<0.200
0.610
<0.200
- -9.30 • •• -• -.-..--. .- -
44.5
31.4
36.8
23,000
4,900
93
8
34
22
330
310
<0. 100
0.140
<0.100
<0. 100
16
1 2
108
160
16.6
48 . 1
. - as-.j .- _ .. _.. . - .. _ ._ .
0. 180 ;. : i
1 . 46 • ;
7.63 "
9.03
13.8,'
0.260 • - '
1 .02
5.20
0.230
<0.200
<0.200
1 .99
1.51
-------
Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT f
Pollutant
Nonconventiona1 Pollutants (Continued)
O
OJ
O
Phenolics
Phosphate
Sodi urn
Sulfate
Tin
Ti tanium
Total Dissolved Solids (TDS)
Total Organic Carbon (TOO
Total Sol ids (TS)
Stn
Coi
nued)
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
F-31
F-32
F-33
F-34
Concentrati
de Type Source Day 1
1 <0.005
1 <0.005
1 <0.005
1 <0.005
1 <4
1 <4
4 <4
4 <4
1 154
1 154
4 154
4 154
1 130
1 130
4 130
4 130
1 <0.200
1 <0.200
4 <0.200
4 <0.200
1 <0.020
1 <0.020
4 <0.020
4 <0.020
1 320
1 320
4 320
4 320
1 2
1 2
4 2
4 2
1 330
1 330
4 330
4 330
0.49
<0.005
<0.005
53
<4
<4
31 .2
640
1 ,010 1 ,
330
640
610
<0.200
<0.200
<0.200
0. 100
0.310
0.020
5,070 130
8
2,500 3
3,000 3
4,600 3
1
4
ons V">R/
Day
1.2
0.12
<0.005
<0.005
23
40
<4
<4
14.2
26.4
820
200
230
930
850
940
<0.200
<0.200
<0.200
<0.200
0.200
0.020
0.440
<0.020
,000
,110
,400
,900
,800
, 600
4
4
41 ,800 340,000
8,200
2,700 3,900
3,140 3,900
i i
2 Day 5
0. 15
0.12
<0.005
<0.005
39
34
<4
<4
5 50
27.8
1 ,580
4,200
370
750
1 ,400
1 ,400
<0.200
<0.200
<0.200
<0.200
0.040
<0.020
0.960
<0.020
3,040
1 ,700
6, 100
6,800
3,600
25
1 1
5
70,000
4,000
6,600
6,800
-------
Table V-272 (Continued)
WAbltWATER TREATMENT PERFORMANCE "DATA - PLANT F - - - -
pnii,,tnnt S*ream Sfmple -• Concentrations (ma/11
—
Nonconventional Pollutants (Continupril
Vanadium F-31
F-32
F-33
F-34
Yttrium F-31
F-32
F-33
F-34
Conventional Pollutants
Oi 1 and Grease F-31
H c-32
° F 11
w h -^
l_i F-34
Total Suspended Solids (TSS) F^-31
F-32
F-33
F-34
pH (standard .uni ts) F-31
F-32
F-33
F-34
1
1
4
4
1
1
4
4
1
1
1
1
1
4
4
1
1
' 4
4
i yue i
<0. 010
<0.010
<0.010
<0.010
<0.020
<0.020
<0.020
<0.020
<1
<1
<1
<1
22
22
22
22
6.64
6.64
6.64
6.64
>ource Da^
0.030
<0.010
<0.010
<0.020
<0.020
<0.020
4,700 12
17
4
8,400 2
100
30
5. 14
4.29
8.89
'. 1. Day
<0.010
<0. 010
<0.010
0.010
<0.020
<0.020
<0.020
<0.020
,000 59
310
18
<1
,400 16
144
240
27
4.88
2.36
7. 13
. . 9 -.4.1 ..
2 Day 3
<0.010
<0.010
<0.010
<0.010
<0.020
<0.020
<0.020
<0.020
,000
380
10
<1
,500 - -
260
700
58
4.78
2.38
7.27
9.20
"1. The following toxic pollutants were not detected at this plant: 1-10, 12-22, 24-43,
45-54, 5.6, 57, 59-63, 65, 67, 69-80, 82-85, 87, and 88.
2 . : No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-273
WASTEWATER TREATMENT PERFORMANCE
DATA - PLANT I
CO
Pol lutant
Toxic Pol lutants
11. 1 , 1 , 1-trichloroethane
14. 1 , 1 , 2-trichl oroethane
29. 1 , 1-dichl oroethyl ene
30. 1 , 2-trans-dichl oroethyl ene
44. methylene chloride
65. phenol
66. bis(2-ethylhexyl) phthalate
85. tetrachloroethylene
86. toluene
87. trichloroethylene
114. antimony
Stream
Code
1-11
1-12
1-13
1-11
1-12
1-13
1-11
1-12
1-13
1-11
1-12
1-13
1-11
1-12
1-13
1-11
1-12
1-13
1-11
1-12
1-13
1-11
1-12
1-13
1-1 1
1-12
1-13
1-1 1
1-12
1-13
1-11
1-12
1-13
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
1.3
4
4
1 ,3
4
1
1
1
1
1
1
1
1
1 "
'4
3
4
Concentrat i ons
Source Day 2
0.022
0.022
0.022 0.012
ND
ND
ND ND
ND
ND
ND ND
ND
ND
ND 0.022
0.003
0.003
0.003 0.028
ND
ND
ND 0.004
ND
ND
ND ND
ND
ND
ND ND
ND
ND
ND ND
ND
ND
ND 0.252
<0.010
<0.010
<0.010 <0.010
(mg/1)
Day 3
0.058
0.007
0.024
0.004
ND
0.001
ND
ND
ND
0.096
ND
0.051
0.082
0.003
0.026
0.011
ND
ND
**
ND
ND
0.015
ND
0.005
ND
0.001
0.001
0.972
ND
0.346
<0.010
<0.010
Day 4
0.057
0.010
0.023
0.004
ND
ND
0.015
ND
0.007
.0.139
ND
0.037
0.101
0.005
0.030
0.024
ND
0.007
ND
0.002
ND
0.020
ND
0.004
ND
0.001
0.001
1 .250
0,018
0.391
<0.010
<0.010
<0.010
-------
Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I
O
u>
OJ
Pollutant
Toxic Pollutants (Continued)
115. -arsenic • -
117. beryl 1iurn
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
1 2.3 . _ mercury:
124. nickel
.125. 'selenium
Stream
Code -
Concentrations (mg/1)
<0.010
<0.010
<0.010
<0.005
<0.005
<0.005
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
0.200
0.200
0.200
<0.02
<0.02
<0.02
<0.050
<0.050
<0.050
~<0 ."01562
<0.0002
; <0.0002
<0.050
'<0.050
<0.050
<0.010
<0.010
<0.010
<0.010
<0.010 <0.010
<0.005
<0.005 <0.005
0.050
0.120 0.080
<0.020
<0.020 <0.020
, 0.700
1.70 0.750
<0.02
<0.02
<0.02 <0.02
0.050
0.200 0.150
<0.0002
<0.0002 <0.0002
0.050
0.200 0.050
<0.010
<0.010 <0. 010
<0.010
6.030
0.020
<0.005
<0.005
<0.005
0.020
<0.020
0.020
<0.020
0.040
<0.020
0.450
1.10
0.450
<0.02
<0.02
<0.02
0. 050
0.300
0. 100
<0.0002 . '•'.
<0.0002
<0.0002 ,
<0.050
0. 100
<0.050 •...-•;••
<0.010
<0.010 -. '
•<0.010
-------
Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I
Pollutant
Toxic Pollutants (Continued)
126. si 1ver
127. thai 1ium
128. zinc
N o nconventional Pollutants
H
° Acidity
U>
Al kalini ty
Aluminum
Stream
Code
1-1 1
1-12
1-13
1-1 1
1-12
1-13
1-1 1
1-12
1-13
1-1 1
1-12
1-13
1-1 1
1-12
1-13
1-1 1
1-12
1-13
Samp 1 a
Type
4
3
4
4
3
4
4
3
4
4
3
4
4
3
4
, 4
3
4
Concentrations
Source Day 2
<0.010
<0.010
<0.010 0.110
<0.010
<0.010
<0.010 <0.010
0.040
0.040
0.040 1.42
<1
<1
<1 <1
40
40
40 32
<0. 100
<0.100
<0.100 0.400
(mg/1)
Day 3
0.020
<0.010
<0.010
<0.010
0.140
0.340
<1
<1
44
59
<0.100
0.200
Day 4
0.060
0.030
0.030
<0.010
<0.010
<0.010
0.320
0.620
0.320
<1
140
<1
39
<1
70
<0. 100
0.100
0.200
-------
Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I
' - D ,, . , ' Stream Sample'/ " Concentrations^ (mq/1
Pollutant Cnrip T " - — ^^
Nonconventional Pol lutants (Continued)
Ammbma Nitrogen 1-11
1-12
1-13
Bar i um 1-11
1-12
1-13
Boron 1-11
1-12
1-13
Ca 1 ci um 1-11
o l~^l
OJ J~13
(Jl
Chemical Oxygen Demand (COD) 1-11
1-12
1-13
Chi oride 1-1 \
1-12
1-13
Cobalt I-n
1-12
1-13
F 1 uoride 1-11
1-12
1-13
Iron 1-11
_ . -.- : - - : -1-12-;,
1-13
Magnesium - 1-11
1-12
1-13
Manganese 1-1 i
1-12
1-13
4
3
4
4
3
4
4
3
4
4
3
4
4
3
4
4
3
4
4
3
4
4
3
4
4
: 3 - : •
4
4
3
4
4 •
3
4
)
i ype source uay z Day 3 Day 4
0.06
0.06
0.06
<0.050
<0.050
<0.050
<0. 100
<0. 100
<0. 100
13.8
13.8
13.8
150
150
150
30
30
30
<0.050
<0.050
<0.050
0.32
0.32
0.32
0. 100
0.100
0.100
2.70
2.70
2.70
0.100
0. 100
' 0. 100
0.06
1.1 0.05
<0.050
<0.050 <0.050
1 .50
0.170 1.70
11.8
15.1 12.6
1,800
180 1,500
26
<1 27
<0.050
-------
Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I
Stream
Pollutant Code
Nonconventional Pollutants (Continued)
Molybdenum 1-1 1
1-12
1-13
Phenol ics 1-1 1
1 — 12
1-13
Phosphate 1-11
1-12
1-13
i_i Sodium 1-1 1
T 1 1
O 1-12
W I - 1 3
a\
Sulfate 1-11
T 1O
1 I £.
1-13
Tin 1-11
11 O
1 ^
1-13
Titanium 1-1 1
1-12
1-13
tal Dissolved Solids (TDS) 1-11
1-12
1-13
Total Organic Carbon (TOC) 1-11
T _ 1 O
i 1 £.
1-13
Total Solids (TS) 1-11
11 *7
— 1 £.
1-13
4
3
4
1
1
1
4
3
4
3
4
3
4
3
4
4
3
4
4
3
4
4
3
4
4
3
4
Sample Concentrations (mg/1)
Type Source Day
<0.050
<0.050
<0.050 <0.050
<0.005
<0.005
<0.005 <0.005
2.7
2.7
2.7 30
28.0
28.0
28.0 68.3
740
740
740 460
<0.050
<0.050
<0.050 <0.050
<0.050
<0.050
<0.050 <0.050
850
850
850 300
63
63
63 20
1 1 ,500
11 ,500
11,500 500
_2 Day
<0.050
<0.050
0.25
<0.005
<0.005
13
17
34.9
84.8
480
390
<0.050
<0.050
<0.050
<0.050
850
440
36
17
900
450
_3 Day 4
<0.050
<0.050
<0.050
-------
Table V-273 (Continued)
Stream
Pol lutant Code
Nonconventi onal Pollutants (Continued)
Vanadi um 1-11
1-12
1-13
Yttrium 1-11
1-12
1-13
Conventional Pollutants
01 1 and Grease 1-1 1
- 1-12
. 1-13
H1
O Total Suspended Solids (TSS) 1-11
W 1-12
-J 1-13
pH "(Standard Units) 1-11
1-12
1-13
1. The following toxic pollutants were not
31-43, 45-64, 67-84, and 88.
Sampl e -
Type
4
3
4
4
3
4
1
1
1
4
3
4
4
3
4
detected
Source
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<,
<1
<1
300
300
300
6.10
6. 10
6. 10
at this
Concentrations (mg/1)
Day 2 Day 3
<0.050
<0.050 <0.050
<0.050
<0.050 <0.050
59
66
3 49
48
200 <1
6. 10
6.10 6.80
plant: 1-10, 12, 13,
Pay 4
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<^
<1
<1
16
16
4
6.20
2.80
8.40
15-28,
.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
**Present, but not quantifiable.
-------
Table V-274
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT J
Pol lutant
Toxic Pol lutants
114. antimony
115. arsenic
117. bery 1 1 i urn
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total )
122. lead
H1
O 123. mercury
U)
00 124. nickel
1 25 . Se 1 eni urn
126. silver
127 . thai 1 ium
128. zinc
Nonconvent i onal Pollutants
Acidity
Alkal ini ty
A 1 uminum
Ammonia Nitrogen
Bar i um
Boron
Calcium
Chemical Oxygen Demand (COD)
Stream
Code
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
J-7
Samole Concentrations (mg/1)
Type Source Da;
1 <0.010
1 <0.010
1 <0.005
1 <0.020
1 <0.020
1 <0.050
1 <0.02
1 <0.050
1 <0.0002
1 <0.050
1 <0.010
1 <0.010
1 <0.010
1 0.080
1 <1
1 13
1 0.300
1 0.16
1 0.050
1 <0.100
1 10.4
1 70
/ i Day 2 Day 3
<0 . 0 1 0
<0.010
<0.005
<0.020
<0.020
0.950
<0.02
0.200
<0.0002
<0.050
<0.010
<0.010
<0.010
0. 100
<1
44
0.300
0.40
0.050
^0. 100
9.30
740
-------
Table V-274 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT J
• ; Pol 1 Ufa n't
Stream Sample
Code Type
Concentrations (mg/1)
Source
Day 1 Day 2 ' "Day 3 . . -.
Nonconvent ional Pollutants (Continued)
Chloride
Cobalt
Fluoride
Iron
Magnesium
, Manganese
Mol ybdenum
i— i
Q Phenol ics
\Q Phosphate
- - - Sodium - . ...... _ .
Sulfate
Tin
Ti tani um
Total Dissolved Solids (TDS)
: Total Organic Carbon (TOO
Total Solids (TS)
: Vanadi um
Yt t ri um
J-7 . 1
J-7 1
J-7 1
J-7 1
J-7 1
J-7 1
J-7 1 .
J-7 1
J-7 1
J-7 1
J-7 1
J-7 1
J-7 1
J-7 1
J-7 ; 1
J-7 r 1
• . J-7 : 1
J-7 ' 1
'<,
<0
1
0
.1
0
<0
<0
<0
1 11
90
<0
<0
76
3
125
-------
Table V-274 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT J
Pol lutarit
Conventional Pollutants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
J-7
J-7
J-7
Concentrations (mg/I)
Source
<1
42
2.71
Day 1 Day 2
200
500
7.90
Day 3
o
£»
O
1 No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11
13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
2. The following toxic pollutants were not detected at this plant: 1, 5, 8, 9, 12,
18, 20-22, 24-28, 31, 34-37, 39-43, and 52-84.
-------
Table V-275
WASTEWATER-TREATMENT-PERFORMANCE-DATA~— PLANT-M
Stream
Pol 1 utant Code
Toxi c Pol 1 utants
11. aery 1 oni t ri 1 e M-14
M-15
M-16
M-17
M-18
M-19
14. 1 , 1 ,2-trichl oroethane M-14
M-15
M-16
M-17
M-18
M-19
23. chloroform M-14
M-15
• M-16
M-17
- - - M-18
M-1'9
26. 1 ,3-di chl orobenzene M-14
M-15
M-16
M-17
M-18
_ .. ._ .._._. .- .. _. . ,M=-,19--
44. methylene chloride M-14
'M-15
M-16
M-17
M-18
••---- • • ^ M-19
55. naphthalene . M-14
M-15
M-16
M-17
M-18
M-19 ,
Sampl e
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
;1
1
1
1
3
3
1
1
f 1
1
1
1
. 1
V"1 "~
1
1
' 3
3
1
1
Concentrations (ing/I)
Source
0.01 1
0.01 1
0.01 1
0.01 1
0.011
0.01 1
ND
ND
ND
ND
ND
ND
0.016
0.016
0.016
0.016
0.016
0.016
ND
ND
ND
ND
ND
ND —
0.002
0.002
0.002
0.002
0.002
: 0.002
ND
ND
ND
ND
ND
ND
Day 1
-
0.010
0.011
0.016
0.011
ND
0.001
0.001
ND
ND
ND
ND
ND
0.001
ND
ND
ND--—- -.
'
0.003
0.003
0.003
"0'. 003"
ND
ND
ND
ND
Day 2
0.008
0.008
0.010
0.010
0.009
ND
ND
ND
0.001
. ND
0.005
ND
ND
ND
ND
ND
ND
ND
ND
.— ND
?0.002
0.003
0.003
0.003
"0.002
ND
ND
ND
ND
ND
Day 3
-, , ._.,
0.017
0.015
0.013
0.019
0.018
ND
ND
ND
ND
ND
0.005
ND
ND
"ND
ND
ND
ND
NO
ND
NO-
0.004;'
0.002:
0.001
0 . 00-3
~ 0.005
ND
ND
0 . 003
ND
ND
-------
Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M
Pollutant
Toxic Pollutants (Continued)
Stream
Code
Concentrations (mg/1)
66. bis(2-ethy)hexyl) phthalate
86. toluene
O
*>
to
114. antimony
115. arseni c
117. beryl 1iurn
118. cadmi urn
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
.M-19
M-14
M-15
M-16
M-17
M-18
M-19
Source Da
1
1
3
3
1
1
1
1
1
1
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.005
<0.005
<0.005
<0.005
<0.005
<0.005
<0.020
<0.020
"<0.020
<0.020
<0.020
<0.020
y 1 Day 2
ND
ND
ND
ND
ND
ND
ND
ND
<0.010
<0.010
0.040
<0. 100
<0.010
<0.010
<0.010
<0.020
<0.005
<0.005
<0.005
<0.050
0.300
0.080
<0.020
<0.200
ND
0.002
ND
ND
ND
ND
ND
ND
ND
ND
0.010
<0.010
<0.010
0.270
<0.200
<0.010
0.050
<0.010
<0.010
<0.010
<0.005
<0.010
<0.005
<0.200
<0.050
0.060
1 .80
0.020
<0.040
<0.200
Day 3
ND
0.005
0.001
ND
ND
ND
ND
ND
0.001
0.003
<0.010
<0.010
<0.010
<0.010
<0.050
<0.010
0.080
0.020
<0.010
<0.020
<0.005
<0.005
<0.005
<0.005
<0.010
0.020
2.10
0.020
<0.020
<0.050
-------
Table V-275 (Conti-nued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M
Pol lutant - .-..._
Tox i c Pol 1utants (Continued)
119. chromium (total)
Stream
Co'de
Source
Concentrations (mg/1)
1 20. copper
M-14
M-15
M-16
M-17
M-1B
M-19
M-14
M-15
M-16
M-17
M-18
M-19
O
^
U)
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
0.020
<0.020
0.060
<0.200
0.220
0.200
0.020
0.240
<0.200
0.220
0. 240
0.040
0.040
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050.
1 .20
0. 200
<0.050
<0.500
9.25
25.6
0.300
0.300
<0.500
<0.050
29.0
0.400
0.050
0. 100
-------
Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M
Pollutant
Tox1c Po11utants (Continued)
121. cyanide (total)
122. lead
123. mercury
O
>&«
£>•
124. nickel
125. seleni um
126. silver
Stream
Code
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
Concentrations (ing/1)
1
1
1
1
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
Source
<0.02
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.02
.02
.02
.02
.02
.050
.050
.050
.050
.050
.050
.0002
.0002
.0002
.0002
.0002
.0002
.050
.050
.050
.050
.050
.050
.010
.010
.010
.010
.010
.010
.010
.010
.010
.010
.010
.010
Day 1
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
0
0
28
2
0
<0
<0
<0
<0
<0
0
0
<0
0
.02
.02
.02
.02
. 100
.050
.500
.500
.0002
.0002
.0008
.0032
.4
.80
.750
.500
.010
.010
.010
.010
.040
.040
.010
.040
Day 2
<0.02
<0.02
<0.02
<0.02
<0.02
<5.00
<1 .00
<0.500
0.200
<0.500
<0.0002
0.0004
<0.0002
0.0018
<0.0002
3.95
585
5. 10
8.20
<0.500
<0.010
<0.010
<0.010
<0.010
<0.040
0. 160
0.080
0.060
0. 170
0.030
Day 3
<0
<0
<0
<0
<0
<5
<1
<0
<0
<0
<0
0
<0
0
0
<0
693
5
0
<0
<0
<0
<0
<0
<0
<0
0
0
<0
0
.02
.02
.02
.02
.02
.00
.00
.500
.500
. 100
.0002
.0004
.0002
.0002
.0002
.050
.85
.900
.200
.010
.010
.010
.010
.020
.010
.090
. 160
.010
.030
-------
Table V-275 (Continued)
..WASTEWATER. TREATMENT PERFORMANCE ...DATA __-_ ..PLANT M
Pol 1utant
Toxic Pollutants (Continued)
Stream
Code
Source
Concentrations (ing/1)
(i.iv 1 Day 2
127. thai Hum M-14
M-15
M-16
M-17
M-18
M-19
128. zinc M-14
M-15
M-16
M-17
M-18
M-19
i •
Q Nonconvent ional Pollutants
(jl Acidity M-14
. . . . . .. ... . ._., ... . . .M-.15 .
M-16
M-17
M-18
M-19
Alkalinity . M-14
M-15
M-16 ,
- f M— 1-7 >
: ; - M-18
;! ''M-19.
A 1 uminum M-14
'_ ' .M-15
- . - . .. . . ,,..... _ JL '..,.. -M--T6 - -
; ." :. M-17
M-18
M-19
Ammonia Nitrogen M-14
M-15
-M-16
M-17
M-18
M-19
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3".
1
1
1
1
-.- -3-
3
. 1
1 '
1
1
3
3
1
1
<0
<0
<0
<0
<0
<0
0
0
0
0
.: 0
0
"<1
< 1
<1
<1
<1
-------
Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M
Pollutant
Stream
Code
Concentrat i ons (nig/1)
Nonconvent i onal Pol 1utants (Continued)
Barium
Boron
H
O
a\
Calcium
Chemical Oxygen Demand (COD)
Chioride
Cobalt
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19 •
Source
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
36
36
36
36
36
36
<5
<5
<5
<5
<5
<5
10
10
10
10
10
10
<0
<0
<0
<0
<0
<0
.050
.050
.050
.050
.050
.050
. 100
. 100
. 100
. 100
. 100
. 100
.5
.5
.5
.5
.5
.5
.050
.050
.050
.050
.050
.050
D_ay 1
<0
<0
<0
<0
2
. 1
1
<1
37
26
30
390
62
10
20
98
187
130
14
140
<0
<0
<0
<0
.05.0
.050
.050
.500
.10
.60
.60
.00
.3
.6
. I
.050
.050
.050
.500
Day 2
0
0
-------
Table V-275 (Continued)
WASTEWATEFTTRFATMENT PERFORMANCE DATA ~- PLANTr MT
Stream
Pol lutant Code
Nonconvent i onal Pollutants (Continued)
Fluoride . M- 1 4
M-15
M-16
M-17
M-18
M-19
Iron M-14
M-15
M-16
M-17
M-18
M-19
*•? Magnesium M-14
^ M-15
M-16
' -. -- M-17
M-18
M-19
Manganese M-14
M-15
M-16 "
M-17
- — -- - — : • .-•--- — •- — - -M V8 • ••
- - .' , M-19
! Molybdenum M-14
:.M-15
: : . M-16
.I ..;: ..., . . , M-17. ..
M-18
M-19
Phenol i cs M-14
M-15
M-16
M-17
M- 1 8
M-19
Sampl e
Type
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
— - -i — - ••
1
1
1
3
. 3 _
1
1
1
1
1
1
1
1
Concentrations (tng/1)
Source
0.85
0.85
0.85
0.85
0.85
0.85
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
1 1
1 1
1 1
1 1
1 1
1 1 .3
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
.
-------
r
Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M
Pollutant
Stream
Code
Nonconventipnal Pollutants (Continued)
Phosphate
Sodium
O
•&.
00
Sulfate
Tin
Ti tani um
Total Dissolved Solids (TDS)
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
M-14
M-15
M-16
M-17
M-18
M-19
Sample
Type
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
Concentrations (mg/1)
Source
<4
<4
<4
<4
<4
<4
5
5
5
5
5
5
43
43
43
43
43
43
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
270
270
270
270
270
270
.20
.20
.20
.20
.20
.20
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
.050
Da'
24
17
17
17
178
441
61 .
5,570
100
75
230
8,700
<0 .
-------
Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M
. ... . -. . . .. . . Stream
Pollutant Code
Nonconvent 1 onal Pollutants (Continued)
•"• - 1 - - -- Total Organic Carbon (TOC) M-14
M-15
M-16
M-17
M-18
M-19
Total Solids (TS) M-14 :
M-15"
M-16
M-17
M-18
M-19
Vanadium : M-14
H - ' M-15
O M-16
*J M-17
W> . : M-18
---------- M-19
Yttrium M-14
M-15
. M-16
M-17
M-18
M-19
. ' . Conventional Pollutants. -- ""
' - . • Oil and Grease :i F; M-14
; ' ' M- 1 5
'"'->'. : M-1,6
: . , M-17
", '. "' : " M-18
: M-19
Total Suspended Solids (TSS) :,M-14
- M-15
' M-16
M-17
M-18
M- 1 9 -:
Sampl
Type
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
1
1
3
3
1
1
.• 1
1
1
. . 1 .
1
1
1
1
3
3
1
1
e
Concentrations
_ Source Dav 1
"~
-------
Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M
Pollutant
Conventional Pol 1utants (Continued)
pH (Standard Units)
Stream
Code
led)
M-14
M-15
M-16
M-17
M-18
M-19
Samp 1 e
Type
1
1
3
3
1
1
Concentrations
Source
7
7
7
7
7
7
.30
.30
.30
.30
.30
.30
Da
7.
1 1 .
1 .
1 1 .
y 1
90
50
90
60
(mg/1)
Day 2
6
10
1 1
1
9
.50
.JO
.70
.60
.90
Da
7.
10.
1 1 .
2.
1 1 .
y 3
10
10
70
80
40
o
Ul
o
1. The following toxic pollutants were not detected at this plant: 1-10, 12, 13, 15-22,
24, 25, 27-43, 45-54, 56-65, 67-85, 87, and 88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
Table V-276
H
O
cn
WASTEWATER TREATMENT
Stream
Pol 1 utant Code
Toxic Pollutants - • - -•- - . ~ -
11. 1 , 1 , 1-trichloroethane Q-11
Q-14
- Q-15
Q-16
Q-17
22. p-ch 1 oro-m-cresol Q-11
Q-14
Q-15
: Q-16
Q-17
30. 1 , 2-trans-di chl oroethy 1 ene Q-11
Q-14
Q-15
Q-16
Q-17
44. methylene chloride Q-11
Q-14
Q-15
Q-16
Q-17
65. phenol Q-11
Q-14
« Q-15
Q-16
r - • Q-17
66. bis(2-ethy Ihexyl ) phthalate Q-11
; Q-14
f - •: ' - i : - Q-15
Q-16
Q-17
85. tetrach 1 oroethy 1 ene Q-11
Q-14
Q-15
: Q-16
Q- 1 7
PERFORMANCE
Sampl e
Type
1
1
1
1
1
3
4
4
4
1
1
1
1
n
i
1
i
i
i
i
3
4
4
4
1
3
4
4
4
1
1
1
1
1
1
DATA - PLANT Q
Concentrations (mg/1)
Source
0.018
0.018
0.018
0.018
0.018
0.011
0.01 1
0.01 1
0.011
0.011
ND
ND
ND
ND
ND
0.002
0.002
0.002
0.002
0.002
ND
ND . . ...
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND •
Day 1 Day 2
ND
0.008 **
0.012 0.007
0.009
ND
ND
ND ND
ND ND
ND
ND
ND
ND ND
ND ND
0.023
ND
0.004
0.016 0.014
0.004 0.005
0.004
0.004
0.001
... ND.- ._ ND
0.016 "0.0061 " -
0.003 '-.
ND _": '
ND , - !•*
ND 0.003;
ND ~ ND "J;
ND -
ND ! "-
ND
ND 3.660' =
0.399 - 0.555 :
0.031
ND ;
Day 3
0.008
* *
0.006
0.007
0.009
ND
ND
ND
ND
ND
ND
ND
ND
0.014
ND
0.013
0.019
0. 122
0.007
0.004
ND
_NO- - - -- - - - - -
0.009 -
0.005
ND : . . .
ND
ND . ."
0.002 "" "" ' " "" ":
ND ' .
ND
ND
5.770
0.460
0.131
ND
-------
Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q
Stream
Code
Pollutant
Toxic Pollutants (Continued)
87. trichloroethy1ene
88. vinyl chloride (chloroethy1ene)
Q-11
Q-14
Q-15
Q-16
Q-17
Q-1-1
Q-14
Q-15
Q-16
Q-17
1
1
1
1
1
1
1
1
1
1
Concentrations (mg/1)
1
1
1
1
1
1
1
1
1
1
Source Day
NO
ND
ND
ND
ND
ND
ND
ND
ND
ND
_L Day
ND
ND
ND
0.001
ND
ND
ND
ND
0.002
ND
2
ND
ND
ND
ND
Day 3
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
H
O
U1
-------
Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA
Stream
Pol lutant Code
-To xie Po-1 1 utants (Continued) - - •-- •
114. antimony Q-11
Q-14
Q-15
Q-16
Q-17
115. arsenic Q-11
Q-14
Q-15
Q-16
Q-17
: H 117. beryllium Q-11
O Q~ ! 4 . .
Ul Q-15
OJ " Q-16
- 0-17
\u{ I 1
118. cadmium Q-11
Q-14
'- Q-15
Q-16
Q-17
.._ - J 1_9_,_ chromium (_total) Or 1 1
Q-12' '
• - ••'-."' Q-is
: '• ' .: . Q-14
: "• Q-15
Q-16
. :• . Q-17
119. chromium (hexavalent) 'Q-12 .
Q-13
120. ' copper Q-11
Q-14
Q-15
Q-16
Q-17 -
Sample
Type
3
4
4
4
1
3
4
4
4
1
3
4
4
4
_ . . i
3
4
4
4
1
3
3
3
4
4
4
1
3
3
3
4
4
. 4
1
Source
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.010
<0.005
<0.005
<0.005
<0.005
<0 . 005
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.020
<0.050
<0.050
<0.050
<0.050
<0.050
- PLANT Q
Concentrations (mg/1
Day 1 Day 2
<0.010
<0.010 <0..010
<0.200 <0.200
<0.010
<0.010
<0.010
<0.010 <0.010
<0.050
<0.010
<(l.(J10-
<0.005
<0.050 <0.050
<0.005 <0.005
<0.005.
<0 005
<0.020
<0.200 £0.200
<0.020 <0.020
<0.020
<0.020
0.020
1 ,800 :•-'..;
1 ,900 ; ' :
1 ,720 1 ,590
0.080 0-.il 00
0.040 ,
0.020 ,
1,700 :
o.6o :
<0.050
0.500 1.00 ,
<0.050 <0'.050
<0.050 -;
<0.050
) "
Day 3
^0.010
<0 .010
<0.100
<0.050
<0.010
<0.010
<0: 010
<0.080
•< 0.010
<0 . 0 1 U
<0.005
<0.050
<0.005
<0.005
-
-------
Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q
O
Ul
Pollutant
Toxic Pollutants (Continued)
121. cyanide (total)
122. lead
123. mercury
124. nickel
125. selenium
126. si 1ver
127. thai 1ium
Stream
Code
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-1 1
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17.
Q-11
Q-14
Q-15
Q-16
Q-17
1
1
1
1
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
Concentrations (tng/1)
Source
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0 .
02
02
02
02
02
050
050
050
050
050
0002
0002
0002
0002
0002
050
050
050
050
050
010
010
010
0.10
010
010
oib
010
010
010
010
010
010
010
010
Da
<0.
<0.
<0.
<0.
<0.
<5.
0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
-------
Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q
Pol 1utant
To'x i c Pollutants (Continued)
Stream
Code
Concentrations (mg/1)
Source
128. zinc Q-11
Q-14
Q-15
Q-16
Q-17
Nonconvent i ona 1 Pollutants
Acidi ty Q-11
Q-14
Q-15
Q-16
H Q-17
0
H!l Al kal ini ty Q-11
Q-14
-----. — - Q-15
Q-16
Q-17
Al uminum Q-11
Q-14
Q-15
Q-16
Q— i 7
Ammonia Nitrogen. Q-11
, - ' : Q-14
Q-15
Q-16
, ; . . .:..;.. :. Q-17 .
: Barium Q-11
-. • .Q-14
Q-15
: , Q-16
Q-17
Boron Q-11
Q-14
Q-15
- Q-16
: Q-17
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
.4
*,
3
4
4
4
1
3
• 4
4
4
1
3
4
4
4
.1
0.
0.
0.
0.
0.
-------
Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q
Stream
Pollutant Code
Nonconventional Pollutants (Continued)
Concentrations (mg/1)
Calcium
H
O
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Fluoride
I ron
Magnesium
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
' Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-1 1
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
Source
3.70
3.70
3.70
3.70
3.70
500
500
500
500
500
7
7
7
7
7
<0.050
<0.050
<0.050
<0.050
<0.050
0.3
0.3
0.3
0 . 3
0.3
<0.050
<0.050
<0.050
<0.050
<0.050
0.900
0.900
0.900
0.900
0.900
Day 1
5.00
15.0
191
28.3
5.00
180
15,000 22
13,000 15
3,500
33
<1
<1
80
31
<1
<0.050
<0.500
<0.050
<0.050
<0.050
0.5
8.9
2.6
2.7
1 .2
0.500
30.5
0.250
0.500
0.600
16.0
600
<0.100
28.4
1 .00
Day ? Day 3
5.00
14.0 13.0
249 199
47.2
5.60
780
,000 23,000
,000 17,000
770
<10
<1
<1 <1
76 80
44
<1
<0.050
<0.500 <0.500
<0.050 <0.050
<0.050
<0.050
1 .9
8.1 9.2
2.7 3.4
1 . 1
0.29
0 . -1 00
30.5 30.5
0.400 0.350
0.300
0.750
42.4
487 437
<0. 100 ' <0. 100
27.8
1.10
-------
Table V-276 (Continued)
JWASXEWATER.. TREATMENT. J>ERFORMANCEJ3ATA...-_.PLANT.:,Q
• • • - Stream •
Pol lutant Code
Nonconvent i onal Pollutants (Continued)
Manganese Q-1 1.
Q-14
Q-1 5
Q-16
Q-17
Mol ybdenum Q-1 1
Q-14
Q-1 5
Q-16
Q-17
Phenol ics Q-11
:. Q-14
H Q~15
C5
• en Q-17
. ;. _ Phosphate .. . . . . " _ Q-11 . .
Q-14
Q-1 5
Q-16
Q-17
Sodi urn Q- 1 1
Q-14
Q-1 5
, . , ! ' - . , : . Q-16
Q-17
Sulfate = ; : Q-11
. Q-14
L Q-1 5
--- "- \ ' •'- ' ' -'- ••••- - • : Q-16 '."-
•; Q-17
: Tin ; Q-11
Q-14 '
Q-15
Q-16
Q-17
Sampl e
Type
3
4
4
4
1
3
4
4
4
1
1
1
1
1
1
3.
4
4
4
1
3
4
4
4
1
3
4
4
' 4
1
3
4
4
4
1
" " •• Concent rat i ons' (mg/ 10 "" ' "
Source
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.
-------
Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q
Pol lutajrt
Stream
Code
Concentrations (mg/1)
Nonconventional Pollutants CContinued)
H
O
LT
CO
Ti tani urn
Total Dissolved Solids (IDS)
Total Organic Carbon (TOC)
Total Solids (TS)
Vanadi urn
Yttrium
Conventional Pollutants
Oi1 and Grease
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
Q-11
Q-14
Q-15
Q-16
Q-17
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
3
4
4
4
1
Source Day 1
<0.050
<0.050
<0.050
<0.050
<0.050
260
260
260
260
260
4.2
4.2
4.2
4.2
4.2
200
200
200
200
200
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<0.050
<1
<1
<1
<1
<1
<0.050
<0.500
<0.050
<0.050
<0.050
380
8,100 7
13,000 12
2,700
230
69
2,500 2
1,300 1
310
<1
330
9,000 8
13,000 12
2,800
140
<0.050
<5.00
<0.050
<0 050
-------
H
O
U1
vo
Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q
Pol 1utant
Stream
Code
Conventional PoIIutants (Continued)
Total ,,S.ujsLpendejcL.5Q.li-ds CT.SS)..
pH (Standard Units)
Source
Concentrations (mg/1)
Q-1 .1 . _ -
Q-14
Q-1 5
Q-1 6
Q-1 7
Q-ll
Q-14
Q-1 5
Q-16
Q-1 7
3 - -
.4
4
4
1
3
4
4
4
1
. ... 31
.. 31
31
31
31
7
7.
7.
7.
• 7
.90
.90
.90
.90
.90
- 50
92
150
77
45
6.
4.
5.
7.
7.
_- „„,_
80
40
50
80 L -:
40
70
36
4.40
5.30
- -1-2.
32
2
38
3
7
4
5
- 7
7
=, - -
.30
.40
.30
.30
.80
1. .. The following toxic pollutants were not detected- at this plant: 1-TO, 12-21, 23-29,
31-43, 45-64, 67-84, and 86.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
**Present but not quantifiable. ,
-------
Taoie v-277
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT R
Pollutant
Stream
Code
Concentrations (mg/1)
Source Day 1 Day "i
o
0>
o
Toxic Pollutants
119. chromium (total)
124. nickel
Nonconventional Pol 1utants
Acidity
Fluoride
Iron
Conventional Pol 1utants
Oi1 and Grease
R-1
R-2
R-3
R-4
R-1
R-2
R-3
R-4
R-1
R-2
R-3
R-4
R-1
R-2
R-3
R-4
R-1
R-2
R-3
R-4
R-1
R-2
R-3
R-4
7
6
6
6
7
•6
6
6
<0.01
<0.01
<0.01
<0.01
0.022
0.022
0.022
0.022
0.890
0.340
<0.01
<0.01
35.0
0.240
<0.02
0.096
7
6
6
6
7
6
6
6
7
6
6
6
0
0
0
0
0.
0.
0.
0.
1 .
1 .
1 .
1 .
19
19
19
19
6
6
6
6
20
0
0
-
0.23
0.22
0.18
0.26
7.6
0.21
<0.1
0.38
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
0.740
0.300
<0.01
<0.01
25.0
0.440
0.022
0.10
27
0
0
0.17
0.19
0.18
0.29
6.8
0.28
<0.1
0.36
<5.0
<5.0
<5.0
-------
, Table V-277 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT R_
Pollutant
Conventional Pollutants (Continued)
Total Suspended Solids (TSS)
pH (standard units)
Stream
Code
Source
Concentrations (mg/1)
R-1
R-2
R-3
R-4
R-1
R-2
R-3
R-4
7
6
6
6
1
1
1
1
14
14
14
14
_
-
-
-
55
6.0
6.0
9.0A
4.8
9.8
6.8
7.4
25
7.2
1 .0
7.5
6.0
9.3
O
a\
A - Average Value.
1. No analyses were performed on the following toxic pollutants: 1-118, ' 120-123,
and 125-129.
-------
I
Table V-278
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT S
Pol lutant
Toxic Pol lutants
115. arsenic
118. cadmium
119. chromium (total)
120. copper
121. cyanide (total)
H
° 122. lead
to
123. mercury
124. nickel
1 28 . zi nc
Nonconvent i onal Pollutants
Aluminum
Cobalt
Fluoride
I ron
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
S-2
S-4
Stream
Code
2
5
2
5
2
5
2
5
2
5
2
5
2
5
2
5
2
5
2
5
2
5
2
5
2
5
Samp11? Concentrations (mg/1)
Type Source
<0.01
<0.01
<0.05
<0.05
<0.05
<0.05
<0.05
<0.05
<0.01
<0.01
<0.1
<0.1
<0.0002
<0.0002
<0.200
<0.200
<0.05
<0.05
<0.2
<0.2
<0.1
<0.1
<0.1
<0. 1
0. 122
0. 122
Day 1 Day 2 Day 3
<0.01
<0.01
<0.05
<0.05
0.582
<0.050
0.236
<0.050
<0.01
<0.01
0.101
<0. 100
<0.0002
<0.0002
2.44
<0.200
0.155
0.058
0.263
<0.200
<0. 100
<0.100
0.16
0.18
244
1.17
-------
Table V-278 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT S
Pollutaht "
Conventional Pol 1utants
Oi1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
S-2
S-4
S-2
S-4
S-2
S-4
Stream
Code
Concentrations (mg/1)
Source Day 1 Dav 2
<0. 1
1 .6
347
5.2
8.0-8.2
7.5-8.7
O
CT>
U>
Footnote:
: No analyses were performed on the following toxic pollutants: 1 - 114, 116,
117, 125~~127, and 129.
-------
Table V-279
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT T
Pol 1 utant
Toxic Pol lutants
119. chromium (total)
120. copper
121. cyanide (total)
122. lead
124. nickel
Nonconventional Pollutants
Acidity
Aluminum
Cobalt
Fluoride
Iron
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
pH (standard units)
Strej
Code
T-2
T-2
T-2
T-2
T-2
T-2
T-2
T-2
T-2
T-2
T-2
T-2
T-2
jm Samp 1 e
Concentrations (mg/1)
j Type Source Day
6 <0.01
6 0.048
1 <0.01
6 <0.005
6 0.075
6 **
6 0.14
6 <0.01
6 1 .01
6 0.270
1 <0.1;0.4
6 1
6 7.70
0.019
0.300
<0.01
<0.005
0.260
**
0.027
0.310
-
0.320
0.2;<0.1
4
8.2
_L Day
0.023
1 .400
<0.01
<0.005
0.510
**
0.220
0.240
0.87
0.210
1 .4;2.0
6
8.2
2_ Day 3
<0.010
1 .300
<0.01
<0.005
0.340
**
0.072
0.220
0.92
0.220
6
7.83
**Less than detection limit. Detection limit not known.
1. No analyses were performed on the following toxic pollutants: 1-118, 123, and
125-129.
-------
Table V-280
WASTEWATER TREATMENT PERFORM/i
Pollutant mn'o T
Toxic Pol lutants
11 .
23.
44.
48.
M
S 114.
Ul
115..
1 17.
.118.
1,1, 1-trichlo-
ethane
chl orof orm
methylene chloride
dichl orobromo-
methane
ant imony
arsenic
beryl 1 ium
cadmium
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
1
1
1
1
1
1
1
1
3
6
3
6
3
6
3
. 6
ND
ND
0.089
0.089
ND
ND
0.006
0.006
<0.0006
<0.0006
<0.001
<0.001
<0.01
<0.01
0.064
0.064
oncentrations (me,/,)
0.008
0.016
ND
ND
0.0067
<0.001
<0.01
0.15
0.216
<0.001
<0.01
2.9
1 .800
0.097
0.082
ND
0.0016
0. 151
<0.001
<0.001
<0.01
<0.01
0.031
0.79
-------
Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U
H
O
a\
a\
Toxic
119.
120.
121 .
122.
123.
124.
125.
Pol lutant
Stream Sample
Code Type
Concentrations (mq/1)
Source
Day 1 Day 2 Day 3
Pol lutants (Continued)
chromium (total )
copper
cyanide (total)
lead
mercury
nickel
sel eni urn
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
3
6
3
6
1
1
3
6
3
6
3
6
3
6
0.033
0.033
0.35
0.35
<0.01
<0.01
0.19
0.19
<0.005
<0.005
0.022
0.022
<0.001
<0.001
0.031
1 . 1
<0.01
0.31
<0.005
0.09
<0.001
0.026
0.059 0.16
0.29
1.7 5.1
<0.01
<0.01 0.034
0.15
0.23 1.3
<0.005
0.021 0.006
0.05
1.2 2.4
<0.001
0.002 0.001
-------
Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U
Pol lutant- .
Toxic
126.
127.
128.
Pol 1 utants
si 1 ver
thai 1 ium
zinc
Nonconventional
H
O
a\
Acidi
Alkal
ty
i ni ty
(Continued)
U-15
U-18
U-15
U-19
U-15
U-18
Pol 1 utants
U-15
U-18
U-15
U-18
3
• - 6
3
6
3
6
3
6
3
6
Stream
Code
<0
<0
<0
<0
<0
20
20
25
25
Sample Concentrations (mg/1)
Type .Source
.0005
.0005" ' 0.012
.001
.001 0.002
.01
.01 1.7
.0
. 0 < 1 0 . 0
.0
.0 120.0
.Day. 1 Day 2
0.
"• "0.0025 0.
0.0022 0.
0.
0.38 3.
10.
<10.0 30.
24.
380.0 136.
Day 3 . . .
01 1
01 1 • • •• •- " - ••-
001
0027
81
0
0
0
0
0
-------
Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U
Pol lutant
Nonconventional Pollutants
Aluminum
Ammonia Nitrogen
Barium
Boron
Calcium
Chemical Oxygen Demand
O
-------
Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U
Pol lutant
Nonconvent i ona 1 Pi
Fluoride
Gold
Iron
Magnesium
Manganese
Mol ybdenum
O
to Phosphorus
ol lutants fConti
U-15
. . U-18 -
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-18
rl°° -sanif
—
i riued)
3
- 6
3
6
3
6
3
6
3
6
3
6
6
v*uuic | VL
1 .4
1.4
<0.25
<0.25
0.23
0.23
2. 1
2.1
<0.02
<0.02
<0.03
<0.03
0.78
Jle Concent rat ions (mq/1)
>e_ Source Day 1 Day 2 Day 3
- .._... 1 -.3
3- ' 7.6 25.0
<0.25
<0-25 <0.25 <0.25
'. « °-25
'•2 1.7 2.3
1-9 2.0 2\9
0.17
0.46 0.12 0.32
<0.03
<0.03 <0.03 <0.03
3-5 3.8 6.5
-------
Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U
Pol lutant
Stream
Code
Sample
Type I
Concentrations
Source Day 1
(mg/1)
Day 2
Day 3
Nonconventional Pollutants (Continued)
Sodium
Sulfate
Tin
Titanium
Total Dissolved Solids
(TDS)
O Total Organic Carbon
-J (TOO
O
Total Solids (TS)
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-18
U-15
U-18
3
6
3
6
3
6
3
6
3
6
6
3
6
7
7
3
3
<0
<0
<0
150
150
132
150
150
.2
.2
.3
.3
.25
.25
.25
.25
.0
.0
.0
.0
.0
400
120
<0
<0
2,400
27
2,400
.0
.0
.25
.25
.0
.0
.0
1 ,100
200
<0
<0
8 , 600
9
9,100
.0
.0
.25
.25
.0
.0
.0
8
730
7
150
<0
<0
<0
<0
140
2,900
25
150
3,000
.5
.0
.5
.0
.25
.25
.25
.25
.0
.0
.0
.0
.0
-------
H
O
-J
Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U
Pol lutant
Nbnconventidnal Pollutants
Vanadium
Yttrium
Conventional Pollutants
Oi 1 and Grease
Total Suspended Sol ids
(TSS)
pH (standard units)
"'
„.,
3t ream Samp 1 e
Code Type
(Continued)
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
U-15
U-18
3
6
3
6
1
1
3
6
3
6
<0.02
<0.02
<0.12
<0. 12
24.0
24.0
<1 .0
<1 .0
5
5
Concent rat ions '(mgYl)
Source
<0.02
<0.12
300.0
14.0
<0.02
<0. 12
63.0
53.0
<0.02
<0.02
<0. 1 2
<0. 12
160.0
<1 .0
2.0
20.0
4
5
1. The following toxic pollutants were not detected at this plant: 1-10, 12-22 24-43
45-47, and 49-88.
2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.
-------
r
Table V-281
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Concentrations (mg/1)
O
-J
Pollutant
Toxic Pollutants
22. p-chloro-m-
cresol
23. chloroform
66. bis(2-ethylhexyl )
phthalate
68. di-n-butyl
phthalate
85. tetrachloro-
ethylene
114. antimony
115. arseni c
117. beryllium
Steam
Code
V-10
V-1 1
V-12
V-13
V-10
V-1 1
V-12
V-13
V-10
V-11
V-12
V-13
V-10
V-11
V-12
V-13
V-10
V-1 1
V-12
V-13
V-10
V-11
V-12
V-13
V-10
V-11
V-12
V-13
V-10
V-1 1
V-12
V-13
Sample
Type
Source
ND
NO
ND
ND
0. 103
0.103
0.103
0. 103
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
<0.0006
<0.0006
<0.0006
<0.0006
<0.001
<0.001
<0.001
<0.001
0.012
0.012
0.012
0.012
Day 1 , Day 1 ,
Batch 1 Batch 2
0.227
ND
0.098
0.044
ND
ND
ND
0.015
0.059
ND
<0.0006 <0.0006
<0.0006 <0.0006
<0.001 <0.001
<0.001 <0.001
0.3 0.2
0.012 0.015
Day 2
189.655
26.3'95
ND
ND
4.416
ND
ND
ND
<5.000
ND
0.0018
<0.0008
0.0035
0.0067
0.02
0.035
Day 3,
Batch 1
1 .047
0. 187
0.035
0.011
0.055
ND
0.019
ND
0.310
0.047
<0.0006
<0.0006
0.001 1
<0.001
0. 1
0. 13
Day 3,
Batch 2
<0.0006
<0.0006
<0.001
<0.001
0.086
0.033
-------
Table V-281 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Steam
Pol 1 utant Code
Toxic Pollutants (Continued)
118. cadmium V-10
V-1 1
V-12
V-13
119. chromium (total) V-10
V- 1 1
V-12
H V-13
0
!j 119a. chromium (hexa- V-10
valent) V-11
""120. copper V-10
'V-11
V-12
V-13
121. cyanide (total) V-10
V-1 1
V-12
- --• -.--.- .- . v-13 -
122. lead V-10
V-1 1
V-12
V-13
123. mercury V-10
V-1 1
V-12
V-13
124. nickel V-10
V-1 1
V-12
V-13
Sampl e
Type
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 -
1
1
1
1
1
1
1
1
1
1
1
1
Source
<0 . 03
<0.03
<0.03
<0.03
0.061
0.061
0.061
0.061
NA
NA
" 0.088
0.088
0.088
0.088
<0.01
<0.01
<0.01
- - <0.01 .--..-
0.036
0.036
0.036
0.036
<0.005
<0.005
<0.005
<0.005
0.055
0.055
0.055
0.055
Day 1 ,
Batch 1
0. 18
0. 14
0.4
0.08
<0.001
<0.001
4.2
0.09
0.21
0.21
......
9.2
0.2
<0.005
<0.005
1 .4
0.06
Concentrations (mg/1)
Day 1 , Day 2
Batch 2
0. 17
<0.03
<0.03
<0.03
0.4
<0.03
0. 1
0.09
<0.001
4.4
0.039
2. 1
0. 18
<0.1
o!21
0.21
------ <0.1
8.8
0.2
4.8
0. 1
<0.005
<0.005
<0.005
<0.005
1.3
0.038
0. 17
0. 18
Day 3,
' Batch 1
0.08
<0.03
0..2
0.044
<0.001
<0.001
2.3
0.049
0.13
<0. 1
5.2
0.2
<0.005
<0.005
0.7
0.047
Day 3,
Batch 2
0.05
<0.03
0.21
0.07
<0.001
1.7
<0.03
0.27
0.38
-
3.8
0.16
<0.005
<0.005
0.6
0.03
-------
Table V-281 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Pollutant
Steam
Code
Sample
Type
Source
Concentrations Cmg/1)
Day 1,
Batch 1
Day 1,
Batch 2
Day 2
Day 3,
Batch 1
Day 3,
Batch 2
Toxic Pollutants (Continued)
125. selenium
126. silver
127. thallium
128. zinc
Nonconventional Pol 1utants
Acidity
Alkalini ty
Aluminum
V-10 1
V-1 1 1
V-12 1
V-1 3 1
V-10 1
V-11 1
V-12 1
V-1 3 1
V-10 1
V-1 1 1
V-12 1
V-1 3 1
V-10 1
V-11 1
V-12 1
V-1 3 1
<0.001
<0.001
<0.001
<0.001
<0.0005
<0.0005
<0.0005
<0.0005
<0.001
<0.001
<0.001
<0.001
0.101
0.101
0.101
0. 101
<0.001
<0.001
0.0011
'<0.0005
<0.001
<0.001
0.5
0.7
V-10
V-1 1
V-12
V-1 3
V-10
V-11
V-12
V-1 3
V-10
V-11
V-12
V-1 3
1
1
1
1
1
1
1
1
1
1
1
1
<10.0
<10.0
<10.0
<10.0
33.0
33.0
33.0
33.0
0.131
0. 131
0.131
0.131
4,700
33
196
29.0
3.1
<0.001
<0.001
0.0019
0.0005
<0.001
<0.001
0.5
0.033
120
20
62
34.0
3.7
<0.001
<0.001
0.0007
0.0008
<0.001
<0.0019
3.9
0.3
71
663
93
5.9
18.0
<0.001
<0.001
0.0018
0.001 1
<0.001
<0.001
0.5
0.057
1 ,890
294
15.0
1 .1
<0.001
<0.0012
0.001
<0.0005
<0.001
<0.001
0.6
0.054
940
963
12.0
1 . 1
-------
Table V-281 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Pollutant
Steam
Code
Samp!e
Type
Nonconventional Pollutants (Continued)
H
O
-J
Ul
Ammonia Nitrogen
'Barium
Boron
Calcium
V-10
V-11
V-12
V-13
V-10
V-11
V-12
V-13
V-10
V-1 1
V-12
V-13
V-10
V-11
V-12
V-13
Chemical Oxygen Demand V-10
(COD) V-11
. .. ... V-t2
V-13
Chloride
Cobalt
Fluoride
V-10
V-11
V-12
V-13
V-10.
V-1 1
V-12
V-13
V-10
V-11
V-12
V-13
Source
0.07
0.07
0.07
0.07
0.2
0.2
.0.2
0.2
<0.2 ,
<0.2
<0.2
<0.2
0.045
0.045
0.045
0.045
<50.0
<50.0
<:.50>0
<50.0
36.0
36.0
36.0
36.0
. 0.044
0.044
0.044
0.044
0.41
0.41
0.41
0.41
Day 1 ,
Batch 1
0.92
1 .3
2.6
0.8
1 .6
0.4
268.0
1,418.0
<50
<50
385
100
2.2
0.073
12
0.75
Concent rat ion;
Day 1 ,
Batch 2
0.9
1 .5
2.3
0. 13
1 .4
0.3
230.0
1 ,750
80
10
.
210
55
.: -. ,2,. i
0.049
7.4
5. 1
5 (mg/1
Day
<0
16
0
1
0
0
68
47
<50
230
120
0
0
4
4
)
2
.02
.5
.0
.6
.6
.0
.0
.18
.15
.7
.7
Day 3,
Batch 1
<0.02
1 .6
1 .4
0. 1
0.8
0. 14
457.0
1 ,336.0
<50
38
60
0.9
0.079
9.4
1 .9
Day 3,
Batch 2
1 .3
1 .5
,
0.8
0.195
0.8
0. 102
492.0
1 ,350.0
15
.„, . .... ;..„ _ .,
30
42
0.8
0.05
6.35
2.4
-------
Table V-281 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Pollutant
Steam
Code
Sample
Type
Source
Concentrations (mg/1)
Day 1.
Batch 1
Day 1,
Batch 2
Day 2
Day 3,
Batch 1
Day 3,
Batch 2
Nonconventional Pol 1utants (Continued)
o
-o
a\
Iron
Magnesium
Manganese
Molybdenum
Nitrate
Phosphorus
Sodium
Sulfate
V-10 1
V-11. 1
V-12 1
V-13 1
V-10 1
V-1 1 1
V-12 1
V-13 1
V-10 1
V-1 1 1
V-12 1
V-13 1
V-10 1
V-1 1 1
V-12 1
V-13 1
V-10 1
V-11 1
V-12 1
V-10 1
V-11 1
V-12 1
V-13 1
V-10 1
V-1 1 1
V-12 1
V-13 1
V-10 1
V-1 1 1
V-12 1
V-13 1
0.16
0.16
0.16
0.16
8.0
8.0
8.0
8.0
0.058
0.058
0.058
0.058
<0.03
<0.03
<0.03
<0.03
<0.09
<0.09
<0.09
0.5
0.5
0.5
0.5
74.0
74.0
74.0
74.0
2.8
2.8
2.8
2.8
8
0
24
1
1
1
9
2
6,600
5,400
60
1
860
778
84
73
7.6
0.4
5.7
0.42
0.058
0.6
9.2
4.0
6,200
5.8
<0.18
220.0
217.0
8.8
97
37.0
44.0
50.0
2,400.0
0.8
1 .2
2.1
0.094
46
2.9
2.3
1,519.0
11 .2
12
1,100
7.8
0.17
31 .0
4.8
1 .1
0.081
4.3
1.6
3,300
1.9
0.88
1,030.0
1,033.0
10
97
8.7
0.15
6.4
0.25
0.7
0.042
5.1
1 .4
3,100
16
2.1
305.0
1,072.0
93
91
-------
Table V-281 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Concentrations (mg/1)
Steam
Pol 1 utant Code
Sampl e
Type
Source
Day 1 ,
Batch 1
Day 1 ,
Batch 2
Day 2
Day 3,
Batch 1
Day 3,
Batch 2
Nonconventi onal Pol 1 utants (Continued)
Tin V-10
V-1 1
V-1 '2
V-13
Titanium V-10
V-11
V-12
V-13
Total Dissolved Solids V-10
"£j (TDS) V-11
° V-12
-J ' V-13
• — - Total Organic Carbon V-10
(TOO V-11
V-12
V-13
Total Solids (TS) V-10
V-11
V-12
: ••-• • - - v~13 -
Uranium V-10
V-11
V- 1 2
, V-13
: : Vanadium V-10
- V-11
V-12
V-13
Yttrium V-10
V-11
V-12
V-13
1
1
1
1
1
1
1
1
1
1
1
1
- 1
1
1
1
1
1
1
. 1
1
1
1
1
1
1
1
1
1
1
1
1
<0.25
<0.25
<0.25
<0.25
<0.2
<0.2
<0.2
<0.2
300.0
300.0
300.0
300.0
<10.0
<10.0
<10.0
< 1 0 . 0
330.0
330.0
330.0
330.0
0.89
0.89
0.89
0.89
<0.03
<0.03
<0.03
. <0.03
<0.1
<0. 1
<0. 1
<0. 1
0.3
<0.25
24.0
<0.2
11,000
6,850
320
50 .
12,000
7,300
2,300
3.4
6.0
0.04
1 .7
<0. 1
0.3
<0.2
23.0
<0.2
11,000
7,600
45
,.'
12,000
7,400
- - - • -
2,100
4.6
5.3
<0.03
1.6
0.1
<0.25
<0.25
0.9
1 .3
7,900
11 ,000
1 ,800
<1
1,500
14,000
37
0.427
0.245
0.11
0.3
<0. 1
<0.25
<0.25
15.0
0.3
7,000
6,100
39
2
7,100
900
1,300
30
2.7
0.041
1.3
<0. 1
<0.2
<0.25
6.8
<0.2
5,600
6,600
<]
6,200
6,800
-• - •-; -
6.4
5.1
1.8
0.12
0.8
<0. 1
-------
I
Table V-281 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Pollutant
Steam
Code
Sample
Type
Source
Concentrations (mg/1)
Day 1,
Batch 1
Day 1,
Batch 2
Day 2
Day 3,
Batch 1
Day 3,
Batch 2
O
-J
00
Nonconventional Pol 1utants (Continued)
Gross Alpha
Gross Beta
Radium-226
Conventional Pollutants
Oi1 and Grease
V-10 1
V-11 1
V-12 1
V-13 1
V-10 1
V-l 1 1
V-12 1
V-13 1
V-10 1
V-l 1 1
V-12 1
V-13 1
0
0
0
0
<0
<0
<0
<0
<0
<0
<0
<0
.014
.014
.014
.014
.013
.013
.013
.013
.0008
.0008
.0008
.0008
2,250
3.0
3,310
4.6
0.0087
<0.0008
2, 160
2.8
3.079
4.4
O.OI
O.OI
V-10
V-1 1
V-12
V-13
.0
.0
.0
.0
Concentrations (nCi/L)
25.4
0.23
38.3
1 .0
0.0045
<0.0009
Concentrations (mg/1)
994
0.94
1 ,520
2.6
0.0049
<0.0011
96.7
1 . 1
154
2.0
0.0060
<0.0013
83
7
60
220
10
15,000
1
-------
H
O
-------
Table V-282
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W
Concentrations (mg/1)
Pol lutant
Code Type
Source
Day 1 Da
y 2 Day 3
Toxic Pollutants
H
O
00
O
11 .
14.
22.
23.
44.
66.
69.
86.
1 14.
115.
1 17.
118.
119.
120.
121 .
1 , 1 ,1-trichloro-
ethane
1 , 1 ,2-trichloro-
ethane
p-chl oro-m-cresol
chl orof orm
methylene chloride
bis(2-ethylhexyl)
phthalate
di-n-octyl phthalate
toluene
antimony
arsenic
beryl 1 i urn
cadmium
chromium (total )
copper
cyanide (total)
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
1
1
6
1
1
6
6
1
6
6
6
6
6
6
1
ND
ND
ND
ND
ND
ND
ND
ND
<0.0006
<0.001
0.2
<0.03
0.052
<0.03
<0. 1
ND
0.210
ND
ND
31 .000
ND
ND
3.400
0.0006
<0.001
0.059
<0.03
<0.04
0.032
0.63
0.360
ND
0.048
ND
9.700
0.016
0.012
8.900
0.0006
0.002
<0.01
<0.03
<0.03
<0.03
<0. 1
<0.0006
<0.001
<0.01
<0.03
<0.03
<0.03
-------
Table V-282 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W
Pol lutant
Stream Sample
Code Type
Concentrations (mg/1)
Source
Day 1
Da
y 2
Day 3
Toxic Pollutants (Continued)
122. lead
123. mercury
124. nickel
1 25 . sel eni urn
126. silver
127. thai 1 ium
128. zinc
Nonconvent ional Pollutants
l_i Acidity
O
00 Alkalinity
H
"" Aluminum
Ammonia Nitrogen
Barium
Boron
- - Cal-cium - -
Chemical Oxygen Demand
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
.W-3
- W-3
W-3
W-3
W-3
W--3
W-3
6 0.1
6
6
6
6
6
6
6
6
6
6
6
6
6
6
<0
0
<0
<0
<0
0
10
12
— o
<0
1
0
-_ 8
<50
.005
.039
.0004
.005
.001
.036
.0
.0
.089
.02
.6
. 19
,5 -- -
.0
0
<0
0
<0
0
<0
0
70
25
0
1
0
0
28
<50
. 13
.005
. 1 1
.0004
.005
.001
.046
.0
.0
.9
.6
. 1
. 083
.0
.0
0.
<0.
0.
<0.
<0.
<0.
0.
20.
18.
1-.
1 .
0.
0-
- - 1 .
<50.
1
5
053
0004
005
001
048
0
0
3
1
067
3
5
0
0
<0
0
<0
0
<0
0
10
18
1
0
0
13
. 12
.005
.045
.0004
.008
.001
.047
.0
.0
.2 " " — •• . . . -. —
.061
.12
-0 - - - - - ..-.- r--- -
(COD)
-------
Table V-282 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W
H
O
00
to
Pol lutant
Nonconventional Pol lutants
Chloride
Cobalt
Fluoride
Iron
Magnesium
Manganese
Mol ybdenum
Phosphorus
Sodium
Sulfate
Tin
(Continued)
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
Stream
Code
6
6
6
6
6
6
6
6
6
6
6
Samp 1 e
3.0
<0.03
0.2"
0.072
2.0
11.0
0.08
<0. 18
14.0
6.2
<0.25
Concentrations
Source
520.0
<0.025
34.0
0.3
0.06
<0.1
<0.03
<0. 18
390.0
8.5
<0.25
Day 1
73.0
<0.03
31 .0
<0.03
3.4
0.3
<0.03
<0. 18
170.0
8.5
<0.25
(mg/1)
Day 2 Day 3
28.0
<0.03
26.0
0.11
2.9
0.2
<0.03
110.0
25.0
<0.25
-------
Table V-282 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W
" Pollutant
Stream Sample
Code Type
Concentrations (mg/1)
Source
- Day
1 Day 2 Day 3
Nonconventional Pollutants (Continued)
H
O
00
U)
Titanium
Total Dissolved Solids
(TDS)
Total Organic Carbon
(TOO
Total Solids (TS)
Vanadium
Yttrium
Zi rconium
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids
. W-3 -
W-3
W-3
W-3
W-3
W-3
W-3
W-3
W-3
6. ..
6
6
6
6
6
6
1
6
.... <0
52
250
80
<0
<0
140
6
1
.2 .
.0
.0
.0
.03
. 1
.0
.0
<0
1 ,400
20
1 ,300
<0
<0
13
71
1
.25
.0
.0
.0
.03
. 1
.0
.0
..
-------
Table V-283
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X
Toxic
114.
115.
1 17.
1 18.
1 19.
£ 120.
00
it*
122.
123.
124.
Pol lutant
Pol lutants
antimony
arseni c
beryl 1 ium
cadmium
chromium (total )
copper
lead
mercury
ni ckel
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
Stream Sample
Code Tvoe
<0.2
<0.2
<0.005
<0.005
<0.02
<0.02
<0.03
<0.03
<0.02
<0.02
<0.05
<0.05
<0.1
<0.1
<0.005
<0.005
<0.1
<0.1
Concentrations
Source
<0.2
<0.2
<0.005
<0.005
<0.02
<0.02
0.07
<0.03
0.02
<0.02
0.8
<0.05
7.1
0.12
<0.005
<0.005
7.0
0.17
Day 1
<0.2
<0.2
<0.005
<0.005
<0.02
<0.02
0.05
<0.03
<0.02
<0.02
0.5
0.02
7.0
<0.1
<0.005
<0.005
6.8
0.14
(mg/1)
Day 2 Day 3
<0.2
<0.2
<0.005
<0.005
<0.02
<0.02
0.04
<0.03
<0.03
<0.02
0.4
0.024
4.5
0.11
<0.005
<0.005
4.6
0.3
-------
Table V-283 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X
Stream Sample Concentrations (mg/1)
. . _ . . .. Pollutant- _
Code . _Iyp
e Source
Day 1 - Day 2 - Day 3 - ...
Toxic Pol 1 utants (Continued)
125. selenium
126. silver
127. thallium
128. zinc
Nonconvent i onal
Acidity
H
O
00 Alkalinity
Ul
~ Aluminum
Barium
X-4
X-6 • ' ' -
X-4
X-6
X-4
X-6
X-4
X-6
Pol 1 utants
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
1
4
1
4
1
4
1
4
1
4
1
4
-t
4
1
4x
<0.005
<0.005
0.002
0.002
<0.005
<0.005
0.074
0.074
11
11
122
122
0.12
0. 12
<0.02
<0.02
<0.005
<0.005
0.57
<0.002
0.11
0.075
<0.02
0.025
11
<10
129
362
0 . 22
1 .0
<0.02
<0.02
<0.005
<0.005
0.37
0.006
0.075
0.055
<0.03
0. 1
11
<10
135
119
0.1
2.1
<0.02
<0.02
<0.005
<0.005 - ~ '
0.48
1 .9
0.082
0.052
<0.03
0.2
130
<10
172
75
<0.1 •"
1.8
<0.02
<0.02
-------
Table V-283 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X
Pol lutant
Stream Sample
Code Type
Concentrations (mg/1)
Source
Day 1
Day 2 Day 3
Nonconventional Pol lutant (Continued)
H
O
00
a\
Boron
Cal cium
Cobalt
Columbium
Fl uoride
Iron
Magnesium
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
1
4
1
4
1
4
1
4
1
4
1
4
1
4
0.073
0.073
31
31
<0.02
<0.02
ND
ND
1 . 1
1 . 1
0.052
0.052
10
10
2.6
1 .6
30
17
<0.02
"<0.02
ND
0.12
1 .6
170
2.3
0.1
9. 1
0.91
3.0
17
36
25
<0.03
<0.03
ND
1 .8
1 .5
200
2.0
0.3
1 1
6.0
4.2
3.4
36
35
<0.03
<0.03
ND
3.4
1 .0
160
1.1
0.3
1 1
8.2
-------
Table V-283 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X
Stream Sample Concentrations (mg/1)
Pbriuta'ht
Nonconventional Pol 1 utants
- Manganese
Molybdenum
Sodium
Tantal urn
Tin
Ti tanium
H
O
^j Total Dissolved Solids
- - - (TDS)
Total Solids (TS)
Tungsten
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
X-4
X-6
(Cont i ntred)
-1 . . .
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
Code TV
. . <0.01
<0.01
<0.03
<0.03
23
23
ND
ND
<0.5
<0.5
<0.2
<0.2
2,400
2,400
2,600
2,600
ND
ND
'pe Source
. . 0.05 ..
<0.01
0.7
<0.03
2,000
980
ND
5.8
<0.5
<0.5
<0.2
1 .0
5,200
3, .100
5,200
3,000
14
0.42
Day 1 —
0 .07
<0.01
0.6
<0.03
1 ,400
830
ND
6. 15
<0.5
<0.5
<0.2
0.7
3,700
2,900
3,700
3,000
8.9
1 .45
- Day 2 Day"3 -- - -
0.04
<0.01
0.6
<0.03
1,600
840
ND
12
<0.5
<0.5
<0.2
0.6
4,200
2,600 ._. . ___
8,100
2,800
13.5
2.2
-------
Table V-283 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X
Pol lutant
Stream Sample
Code Type
Concentrati ons
Source Day 1
Cmg/ 1 )
Day 2 Day 3
Nonconventional Pol lutants (Continued)
O
CO
CO
Vanadium
Yttrium
Conventional Pol lutants
Oi 1 and Grease
Total Suspended Solids
pH (standard units)
X-4 1 <0.1
X-6 4 <0.1
X-4 1 <0.0001
X-6 4 XQ.OOOI
(Continued)
X-4 1 4
X-6 1 4
X-4 1 <1
X-6 4 <1
X-4 1 7.06
X-6 4 7.06
<0.1 <0.1
<0. 1 <0 . 1
<0. 1 <0 . 1
7 2
15 <1
5 17
<1 200
7.95 8.03
11.58 " 10.87
<0. 1
<0. 1
-------
Table V-284
H
0
00
Toxic
114.
115.
1 17.
1 18.
1 19.
120.
121 .
122.
WMO 1 E
Pol lutant
Pol lutants
antimony
arsenic
beryl 1 ium
cadmi um
chromium (total )
copper
cyanide (total)
lead
LVVM i c.r\ i r\t.n t
Y-13
Y-13
Y-13
Y-13
Y-13
Y-13
Y-13
Y-13
IVIUIl 1 r L.I
Stream
Code
6
6
6
6
6
6
1
6
0
0
<0
<0
<0
<0
0
0
Sample
Type
.0002
.002
.02
.03
.02
.02
.03
.067
Concentrations (mg/T)
Source Day 1
0
0
<0
<0
<0
0
0
0
.0002
.002
.02
.03
.02
.02
.48
. 14
<0
<0
<0
<0
0
<0
0
0
Day 2 Day 3
.0002
.001
.02
.03
.02
.02
.45
. 14
<0.0002
0.005
<0.02
<0.03
0.032
<0.02
0.07
0.15
-------
Table V-284 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y
H
O
ID
O
Pol lutant
Toxic Pol lutants (Continued)
123. mercury
124. nickel
125. selenium
126. silver
127. thallium
128. zinc
Nonconventional Pollutants
Acidity
Alkalinity
Y-13
Y-13
Y-13
Y-13
Y-13
Y-13
Y-13
Y-13
Stream
Code
6
6
6
6
6
6
6
6
Samp 1 e
<0.005
0.1
<0.001
<0.0005
<0.001
0.08
1 1 .0
31 .0
Concentrations (mg/1)
Source Day
<0.005
0.3
<0.001
<0.0005
<0.001
<0.03
<10.0
44.0
_1 Day 2
<0.005
0.3
<0.001
0.0006
<0.001
<0.03
21 .0
28.0
Day 3
<0.005
0.7
<0.001
<0.0005
0.003
<0.03
40.0
31 .0
-------
Table V-284 (Continued)
O
VO
H
Pol 1utant
Nonconventional Pol 1utants (Continued)
Aluminum Y-13
Barium V-13
Boron Y-13
Calcium Y-13
Cobalt Y-13
Fluoride Y-13
Iron Y-13
Magnesium Y-13
IENT* PERFORMANCE DATA -
Stream Sample
Code Type
6
6
6
6
6
6
6
6
0
<0
2
12
<0
290
0
1
.03
.02
.2
.0
.03
.0
.061
.8
PLANT Y
Concent rat Tons (mg/1) - -
Source
0.2
<0
2
8,000
0
20
0
23
.02
. 1
.0
.03
.0
.2
.0
Day 1
0
<0
0
3, 100
<0
11
0
23
Da
.5
.02
.7
.0
.03
.0
. 1
.0
y 2 Day 3
0. 1
<0.
1 .
4,300.
0.
11 .
ti.
30.
02
0
0
042
0
2
0
-------
Taiy.e V-*8'i U-mtlnued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y
o
IO
Stream Sample Cor
Pollutant Code Type Source
Nonconventional Pollutants (Continued)
Manganese Y-13 6 <0.01 <0.01
Molybdenum Y-13 6 0.056 1.5
Sodium Y-13 6 14.0 880.0
Tin Y-13 6 <1.0 <1.0
Titanium Y-13 6 0.5 0.2
Total Dissolved Solids (TDS) Y-13 6 120.0 9,984.0
Total Solids (TS) Y-13 6 120.0 9,500.0
Vanadium Y-13 6 <0.1 <0.1
Yttrium Y-13 6 <0.1 <0.1
Concentrations (ma/1)
Day 1
Day 2
Day 3
<0.01
1.1
1,200.0
<1 .0
0.4
110.0
160.0
0.02
0.9
960.0
0.2
84.0
200.0
-------
Table V-284 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V
Pollutant
Conventional Pollutants
011 and Grease " " Y-13
Total Suspended Solids (TSS) Y-13
pH (standard units) Y-13
S-t ream
Code
1.0
54.0
6
Concentrations (mg/1)
Source
2.0
65.0
10
7.0
40.0
7
<1 .0
15.0
7
O
vo
10
NA - Not analyzed.
1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
-------
Table V-285
WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z
Pollutant
Toxic Pollutants
114. antimony
115. arsenic
117. beryl 1ium
118. cadmium
119. chromium (total)
120. copper
122. lead
123. mercury
124. nickel
125. selenium
126. silver
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Stream
Code
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Samp 1 e
Concentrations (mg/1)
Type Source Day 1 Day z uay a
0.0004
0.0004
0.0004
<0.001
<0.001
<0.001
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
0.038
0.038
0.038
0.013
0.013
0.013
0.097
0.097
0.097
<0.005
<0.005
<0.005
0.038
0.038
0.038
0.0004
0.0004
0.0004
0.0005
0.0005
0.0005
0.0066
0.00025
0.00025
0.34
0.0053
<0.001
0.03
<0.01
<0.01
0.074
<0.01
0.026
13
1
0.07
0.5
0.042
0.031
1 .102
0.62
0. 15
<0.005
<0.005
<0.005
0.48
0.084
0.059
0.0011
0,0016
0.0004
0.0022
0.057
0.044
-------
Pollutant
Table V-285 (Continued)
"WSTERWATER "TREATMENT "PERFORMANCE "DATrA -"PLANT"Z~~
Concentrations (mg/1)
Toxic Pollutants (Continued)
H
O
vo
127. thallium
128. zinc
Nonconventional Pollutants
Acidi ty
Alkalinity
A1umi num
Barium
Boron
Calcium
Cobalt
Columbium
Fluoride
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-6
Z-7
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
.Stream
Code
Samp 1e-
Type
<0.001
<0.001
<0.001
<0.25
<0.25
<0.25
Source
0.04
0.5
0.5
0.5
79
79
79 •
<0.01
<0.01
<0.01
ND
ND
ND
0.2
0.2
0.2
0.0036
0.064
0.027
0.41
0.053
0.036
27
69
69
0.11
0.11
0.1 1
0.04
0.04
925
57
36
2
0
0
0
.4
.23
.34
.2
0. 128
7.7
3.4
1 .2
28,000
9,300
1,400
0.5
0.059
0.031
98
3.5
ND
10
5.3
5.9
-------
Table V-285 (Continued)
WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z
Pol lotant
Stream
Code
Concentrations (mg/1)
Source Day 1 Day 2
Nonconvent-ional Pol lutants (Continued)
H
O
U3
a\
Iron
Magnesium
Manganese
Molybdenum
Sodi urn
Tantalurn
Tin
Titanium
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
0.24
0.24
0.24
8.0
8.0
8.0
0.012
0.012
0.012
<0.03
<0.03
<0.03
27
27
27
ND
ND
ND
0.53
83
0.52
83
4.6
0.31
81
3.2
0. 11
0.26
0.12
0.13
760
1 ,200
1,200
90
3
ND
<0.28
<0.28
<0. 28
<0.25
<0.25
<0.25
0.87
<0.28
<0.28
170
11
<0.25
-------
Table V-285 (Continued)
WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z
Pol lutant
Nonconventional Pol 1 utants j[
Total Dissolved Sol ids (TDS)
Total Solids (TS)
Vanadi um
Yttrium
1— ' Zirconium
O
VO
Conventional Pollutants
Oi 1 and Grease
Total Suspended Solids (TSS)
^pH ^standard, units)
Cont.)
Z-6
Z-7
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-5
Z-6
Z-7
Z-6
Z-7
Z-6
Z-7
- — at ream iamp i e
Code Type
- 1- •- - 1 10 -
1 110
1 390
1 390
1 <0.02
1 <0.02
1 <0.02
1 <0.25
1 <0.25
1 <0.25
1 0.26
1 0.26
1 0.26
1 <1
1 <1
1 <1
1 100
1 100
__.•).---.. - -- - 6
1 6
1 : 6
-Concentrations i,mg-/ : j
Source Day 1 Day 2 Day 3
- - - - • • •
1 ,000- - • - • -
39
1 ,800
1 10
7.9
0.55
0.02
<0.25
<0.25
<0.25
6.7
1.4 . .
<0.25
1
2
3
570
45
12 - ~ - ,_..--..
12 • ' -
6
1. No analyses were performed on the following toxic pollutants: 1 - 113,.116,
121, and 129.
-------
A-3
LEAD ROLLING
EMULSIONS
HOLDING
TANKS
BATCH
DUMP
^-
LEAD CONTINUOUS
STRIP CASTING
CONTACT COOLING
WATER
NON-SCOPE
PROCESS
WASTEWATER
A-2
CONTRACT
HAULED
EQUALIZATION
A-4
NEUTRALIZATION
•CAUSTIC
PRESSURE FILTRATION
A-5
DISCHARGE
FIGURE V-1
WASTEWATER SOURCES AT PLANT A
1098
-------
LEAD SEMI-
CONTINUOUS
INGOT
CAST|NG
CONTACT
COOUNG
WATER
I
i
B-3
LIME
ALUM
POLYMER
H2S04-
EQUALIZATION
B-7
FLASH
MIXING
FLOCCULATION/
CLARIFICATION
pH
ADJUSTMENT
B-8
DISCHARGE
FIGURE V-2
WASTEWATER SOURCES AT PLANT B
1099
-------
LEAD
SEMI-
CONTINUOUS
INGOT CASTING
CONTACT
COOLING
WATER
LEAD
DRAWING
SPENT
EMULSION
C-2
B..7CH
DISCHARGE
DUMP
SOURCE
WELL
WATER
C-1
9
FIGURE V-3
WASTEWATER SOURCES AT PLANT C
1100
-------
.NICKEL ROLLING CONTACT
COOLING WATER
NICKEL FORGING CONTACT
COOLING WATER
NICKEL FORGING PRESS
HYDRAULIC FLUID LEAKAGE
0-12
NICKEL GRINDING RINSEWATERS
NICKEL MOLTEN SALT BATH
BLEED
NICKEL MOLTEN SALT
RINSEWATER
NICKEL SURFACE TREATMENT
BATH
NICKEL SURFACE TREATMENT
RINSEWATER
NICKEL WET AIR
POLLUTION CONTROL
n.11
-&
SLOWDOWN
NICKEL ALKALINE CLEANING
BATH
NICKEL ALKALINE CLEANING
RINSEWATER
0-14
-«-
D-1S
—O-
90-19
NICKEL/COBALT POWDER
ATOMIZATION WASTEWATER
BATCH
DUMP
LAB WASTES
! GROUNOWATER INFILTRATION
EQUALIZATION
&D-20
CHROMIUM REDUCTION
ANDpH
ADJUSTMENT
.HiSC-4
-SO,
-LIME
-POLYELECTROLYTE
CLARIFICATION
»D-21
^ TO WET AIR
•*• POLLUTION
CONTROL
DISCHARGE
i NICKEL VACUUM MELTING STEAM CONDENSATE
: NICKEL ANNEALING CONTACT COOLING WATER
COOLING
TOWER
ISCHARGE
D-S^BLOWDOWN^
® *'
• DISCHARGE
NICKEL ROLLING CONTACT COOLING WATER
0-2
SLOWDOWN
.-••"•' i. & DISCHARGE
I 0-4
HOLDING
TANK
NICKEL SAWING SPENT EMULSIONS
ȣ
0-16
*-«—
PAPER
FILTRATION
BATCH
DUMP
CONTRACT
HAULED
CONTRACT
HAULED
)0-17. D-18
' NICKEL SAWING. GRINDING
SPENT EMULSIONS
**
HOLDING
TANKS
BATCH
DUMP
! NICKEL ROLL GRINDING
; EMULSION
0-5^
MAGNETIC
FILTRATION
BATCH
DUMP
CONTRACT
HAULED
CONTRACT
HAULED
FIGURE V-4
WASTEWATER SOURCES AT PLANT D
1101
-------
NICKEL MOLTiN SALT
BATH
NICKEL MOLTEN SALT
RINSEWATER
NICKEL SURFACE
TREATMENT BATHS
NICKEL SURFACE
TREATMENT RINSEWATER
NON-SCOPE PROCESS
WASTEWATER
NICKEL VACUUM MELTING
STEAM CONDENSATE
BATCH CONTRACT — —
DUMP " "AULfcO | -
BATCH T
.£ DUMP *~ . E-8 E-9 :
MIXIIMfi
BATCH CONTRACT cCn,™V,n,
DUMP HHULCU
E-2 1 '
1 r :
_fci OVERFLOW
-*_— _ TOWER ' '
="» bUUALUA 1 IUN I
NON-SCOPE PROCESS
WASTEWATER
NICKEL EXTENSION PRESS
AND SOLUTION HEAT
TREATMENT CONTACT
COOLING WATER
NICKEL ANNEALING
CONTACT COOLING WATER
NON-SCOPE PROCESS
WASTEWATER
NICKEL EXTRUSION
PRESS HYDRAULIC
FLUID LEAKAGE
„„ V
SEDIMENTATION •*— ALUM, POLYMER
BATCH
DUMP ' | ' ,
— ® SAND FILTRATION
E-3 (OPTIONAL) :
__ , , |
^ ?
»• rnni.NR SLOWDOWN ^ DISCHARGE
.* TOWER
CLAY
POLYMERS HYPOCHLORITE ,
* 1
E-6 OIL E-7 SEDIMEN-
a HOLDING <> EXTENDED TATION », CHLORINATIOK \
' TANK RATOR AERATION 1 — 1 * 1 1 j
/
1 • RIVER '
LIGHT AND HEAVY
OILS CONTRACT
HAULED
NICKEL BATCH CONTRACT
fltvtwiGNlA pyYjp *• HAULED
RINSEWATER
E-
SOURCE RIVER $
WATER
1
ft
FIGURE V-5
WASTEWATER SOURCES AT PLANT E
-------
NICKEL STAIONARY CASTING
CONTACT COOLING WATER
NICKEL HEAT TREATMENT
. CONTACT COOLING WATER
NON-CONTACT COOLING
WATER
NICKEL SURFACE
TREATMENT BATHS
NICKEL SURFACE
TREATMENT RINSEWATER
NON-SCOPE RROCESS
WASTEWATER
LUBRICANT
NICKEL AMONIA
RINSEWATER
NICKEL ALKALINE
CLEANING BATHS
NICKEL SURFACE
• TREATMENT BATHS
NICKEL ROLL
GRINDING EMULSION
NICKEL SAWING.
GRINDING EMULSIONS
NICKEL ROLLING EMULSION
NICKEL GRINDING RINSEWATER
^RECIHCULA
WATER
riNG t ;e '
^ TO NICKEL SURFACE TREATMENT AND
— »• SYSTEM '°' ALKALINE CLEANING BINSE OPERATIONS
®F30 SODA ASH
|
F-7 F-8.F-9.F-10.F-1t
LAKE TO
NON-SCOPE :
OPERATIONS
' r
~ ' ' "•• v
EQUALIZATION. MIXING
•* »8ATCH^F'18
"*™ , gf'9 »,
DUMP ^
BATCH 4*F'27
DUMP **
F-ZB. F-29
BATCH ffl
DUMP '**
f* t BATCH
DUMP
—f-ZS. M4. MS. F-26
T BATCH
DUMP
~* ,ft f BATCH
W F'33
1 F
pH ADJUSTMENT
*
SEDIMENTATION
•i--
DISCHARGE
I
STEAM.
,-f BATCH, „ 1 1 I °"C7'"" 1
^' DUMP , T
4— SODA ASH
-POLYMER
'OILTO ,
RECLAIMER
NICKEL ROLLING CONTACT
COOLING WATER
OIL
SKIMMING
t
OIL TO
RECLAIMER
NICKEL ROLLING CONTACT
COOLING WATER
-»• DISCHARGE
OIL TO
RECLAIMER
| NICKEL WET AIR POLLUTION CONTROL | »-| MAGNETIC SEPARATION [
F-6
| NICKEL MOLTEN SALT RINSEWATER [—<^—*• DISCHARGE
-»• DISCHARGE
MICKEL ALKALINE CLEANING BATHS
MICKEL ALKALINE CLEANING
! RJNSEWATER
DISCHARGE
NICKEL DIRECT CHILL CASTING CONTACT COOLING WATER
NICKEL FORGING PRESS HYDRAULIC FLUID LEAKAGE
-••DISCHARGE
F 17
MICKEL HEAT TREATMENT CONTACT COOLING WATER
DISCHARGE]
NICKEL ULTRASONIC TESTING WASTEWATER
»• DISCHARGE
NICKEL DRAWING NEAT OIL
BATCH
SOURCE RIVER WATER ^J ®
DUMP
»• OIL RECLAIMER
FIGURE V-6
WASTEWATER SOURCES AT PLANT F
1103
-------
ZINC SURFACE
TREATMENT BATH
ZINC SURFACE
TREATMENT RINSEWATER
G-3
TO WASTEWATER
TREATMENT
-•-DISCHARGE
ZINC ALKALINE
CLEANING BATH
ZINC ALKALINE
CLEANING RINSEWATER
G-2
TO WASTEWATER
TREATMENT
-•-DISCHARGE
SOURCE CITY WATER
G-1
FIGURES V-7
WASTEWATER SOURCES AT PLANT G
1104
-------
PRECIOUS METALS SHOT
CASTING CONTACT COOLING
i WATER
1-3
PRECIOUS METALS CONTINUOUS
CASTING CONTACT COOLING
WATER
1
PRECIOUS METALS
TUMBLING WASTEWATER
1
PRECIOUSJMETALS SURFACE
TREATMENT BATH '
PRECIOUSi'METALS SURFACE
TREATMIENT RINSEWATER
i
PRECIOUS METALS ALKALINE
CLEANING PRE-BONDING
WASTEWATERS
*&
1-2
<9\ *-
•'
1-4
(0, ,
(351 B.
1-10
^a.
^
1-8. 1-9
a- — -*
i
STEAM CONDENSATE
(» 1-11,1-12
EQUALIZATION AND
pH ADJUSTMENT
SEDIMENTATION
!
SEDIMENTATION
y 1-13
PRECIOUS METALS ROLLING
SPENT EMULSION
BATCH
DUMP
DISCHARGE
I-7
PRECIOUS METALS DRAWING
SPENT EMULSION
BATCH
DUMP
PRECIOUS METALS ROLL
GRINDING SPENT EMULSION
BATCH
DUMP
•*- DISCHARGE
SOUFJICE
CITY WATER
1-1
DISCHARGE
• CAUSTIC
•COPPER
IRON
"FILINGS
FIGURE V-8
I
WASTEWATER SOURCES AT PLANT I
1105
-------
IRON STEAM TREATMENT
WET AIR POLLUTION
CONTROL
IRON CLEANING
WASTEWATER
IRON/COPPER
TUMBLING
WASTEWATER
IRON/COPPER
GRINDING
EMULSIONS
DISCHARGE
SOURCE
CITY WATER
J-8
FIGURE V-9
WASTEWATER SOURCES AT PLANT J
1106
-------
PRECIOUS METALS
PRESSURE BONDING
CONTACT COOLING
WATER
PRECIOUS METALS
ALKALINE CLEANING
PREBONDING
WASTEWATER !
PRECIOUS METALS
TUMBLING
WA5JTEWATER '.
K-2
K-4
TO WASTEWATER
TREATMENT
DISCHARGE
K-3
TO WASTEWATER
TREATMENT
DISCHARGE
SOURCE;CITY
WATER
K-1
FIGURE V-10
WASTEWATER SOURCES AT PLANT K
- . . .. [ .
1107
-------
L-10
TITANIUM SAWING
SYNTHETIC COOLANT
BATCH
DUMP
*» DISCHARGE
TITANIUM
TUMBLING
WASTEWATER
SEDIMENTATION
L-9
®^
*
~i
SOLIDS TO
LANDFILL
DISCHARGE
L-2. L-4
TITANIUM
SURFACE
TREATMENT
BATHS
TITANIUM
SURFACE
TREATMENT
RINSEWATERS
BATCH
DUMP
TITANIUM WET
AIR POLLUTION
CONTROL
L-3, L-5, L-6
L-8
SLUDGE
CONTRACT
HAULED
SLOWDOWN
CAUSTIC
L-7
PH
ADJUSTMENT
DISCHARGE:
SOURCE
CITY WATER
L-1
FIGURE V-11
WASTEWATER SOURCES AT PLANT L
1108
-------
" — "
| sepAcroflY METALS
1 TUMBLING WASTEWATER
' REFRACTORY METALS MOLTEN
1 SALT BATH
! REFRACTORY METALS MOLTEN
SALT RINSEWATER
,
'
REFRACTORY METALS
! BURNISHING WASTEWATER
1
! REFRACTORY METALS SURFACE
i : TREATMENT BATHS
! REFRACTORY METALS SURFACE
TREATMENT RINSEWATERS
1
! PRECIOUS METALS SURFACE
TREATMENT BATH
1 PRECIOUS METALS SURFACE
TREATMENT RINSEWATER
M-Z , erirp ' M'14
<^l '*" StUIMblMIAOON ' " ^> > **
BATCH CONTRACT
DUMP HAUVED
M-4
35
M3 '
05)
M ft '
BATCH ^ ^
DUMP ® *"
Q$J ^
i
BATCH
DUMP
M-5
09 *
I
(O) M-16
T
FLASH MIXING
V
SEDIMENTATION
®M-17
,r
DISCHARGE
^-CAUSTIC
REFRACTORY METALS SAWING
CONTACT COOLING WATER
REFRACTORY METALS
BURNISHING WASTEWATER
M-13
CHILLER
M"15 SLOWDOWN'
UNIT
SEDIMENTATION
"^
ii«t
2-STAGE
SEDIMEN-
TATION
CLOTH
FILTRA-
REFRACTORY METALS
DRAWING LUBRICANT
BATCH
DUMP
CONTRACT
HAULED
DISCHARGE
M-15
I
! REFRACTORY METALS SURFACE
i TREATMENT BATH
I REFRACTORY METALS SURFACE
I TREATMENT RINSEWATER
REFRACTORY METALS WET
1 AIR POLLUTION CONTROL
i REFRACTORY MEALS MOLTEN
i SALT BATH
j REFRACTORY METALS MOLTEN
BATCH
DUMP
M-10
| '^1 SLOWDOWN
BATCH CONTRACT
DUMP *" HAULED
M-9
«\ , BB
; LIME,
M-18 RUSTIC.
/£> H5?°«
& —
~T *
EQUALIZATION,
FLUORIDE
COMP'LEXATION.
RAPID MIXING,
SEDIMENTATION
SJ) M-19
REFRACTORY METALS
GRINDING EMULSION
SOURCE CITY WATER
BATCH
DUMP
M-1
CONTRACT
HAULED
FIGURE V-12
WASTEWATER SOURCES AT PLANT M
1109
-------
REFRACTORY METALS
EXTRUSION PRESS
HYDRAULIC FLUID
LEAKAGE
REFRACTORY METALS
MOLTEN SALT
RINSEWATER
REFRACTORY METALS
SAWING, GRINDING
CONTACT COOLING
WATER
REFRACTORY METALS
DYE PENETRANT
TESTING
WASTEWATER
N-2
N-3
N-4
N-5
DISCHARGE
SOURCE CITY WATER
N-1
FIGURE V-13
WASTEWATER SOURCES AT PLANT N
1110
-------
REFRACTORY METALS
SURFACE TREATMENT
RINSEWATER
0-2
DISCHARGE
SOURCE CITY WATER
0-1
FIGURE V-14
WASTEWATER SOURCES AT PLANT 0
1111
-------
ZIRCONIUM, HAFNIUM
SURFACE TREATMENT
BATHS
P-2, P-3
TO WASTEWATER
TREATMENT
DISCHARGE
SOURCE RIVER WATER
P-1
FIGURE V-15
WASTEWATER SOURCES AT PLANT P
1112
-------
MAGNESIUM
SURFACE
TREATMENT
BATHS
MAGNESIUM
SURFACE
TREATMENT
RINSEWATER
NON-SCOPE
PROCESS
WASTEWATER
BATCH
Q-2, Q-5, Q-18
DUMPS
Q-3, Q-4, Q-6, Q-7, Q-8, Q-9, Q-10
EQUALIZATION
Q-12, Q-14
CHROMIUM
REDUCTION
• S02
•H2 S04
Q-13
RAPID MIXING
--LIME
---CAUSTIC
FLOCCULATION
-(-POLYMER
SEDIMENTATION
PH ADJUSTMENT
-H2 S04
Q-15
POLISHING LAGOON
Q-16
DISCHARGE
FIGURE V-16
WASTEWATER SOURCES AT PLANT Q
1113
-------
IN-SCOPE
NICKEL
•PROCESS
WASTEWATER
NON-SCOPE
WASTEWATER
NON-SCOPE
WASTEWATER
SODA ASH, POLYMER
R-1
EQUALIZATION,
MIXING
SEDIMENTATION
R „
EQUALIZATION
SEDIMENTATION fcZ
SAND FILTRATION
R-3
SOURCE RIVER
WATER
DISCHARGE
PRETREATED
NICKEL
PROCESS
WASTEWATER
PLANT SANITARY
WASTEWATER
CLAY, POLYMERS HYPOCHLOR
EXTENDED
AERATION
SEDIMEN-
TATION
CHLORI-
IMATION
R-5
R-4
DISCHARGE
FIGURE V-17
WASTEWATER SOURCES AT PLANT R
1114
-------
IRON
METAL POWDER
PRODUCTION
WET
ATOMIZATION
WASTEWATER
SEDIMENTATION
COOLING
TOWER
SAND
FILTRATION
BACKWASH
WASTEWATER
S-1
NON-PROCESS
WASTEWATER
NICKEL
METAL POWDER
PRODUCTION
WET
ATOMIZATION
WASTEWATER
NON-PROCESS
WASTEWATER
^NON-SCOPE
PROCESS
WASTEWATER
| SEDIMENTATION |
IS-2
FABRIC
FILTRATION
S-3
NON-PROCESS
WASTEWATER
1
SEDIMENTATION
S-5
SOURCE CITY WATER {— ®
S-4
DISCHARGE
FIGURE V-18
WASTEWATER SOURCES AT PLANT S;
1115
-------
IRON, COPPER,
NICKEL
PROCESS
WASTEWATER
NON-PROCESS
WASTEWATER
T-1
SEDIMENTATION
T-2
DISCHARGE
SOURCE CITY
WATER
T-3
FIGURE V-19
WASTEWATER SOURCES AT PLANT T
1116
-------
URANIUM SAWING,
GRINDING EMULSIONS
FeSO* ACTIVATED CARBON
CAUSTIC ^ V-12 I «V-13
'URANIUM AREA
CLEANING WASTEWATER
V-8.V-18,V-19
URANIUM SURFACE
TREATMENT BATH
URANIUM SURFACE
TREATMENT RINSEWATER
BATCH
DUMP
V-3, V-4
t
\ION-CONTACT
PROCESS
WASTEWATER
SOURCE
CITY WATER
V-17
I ®
V-1
EQUALIZATION
URANIUM WPT
AIR POLLUTION
, CONTROL
URANIUM DRUM
WASH WATER
& v"14
URANIUM HEAT
TREATMENT CONTACT
COOLING WATER
I
URANIUM LAUNDRY
i WASnWATcn
i
NON-SCOPE PROCESS
'WASTEWATER
A ^SLOWDOWN
V-5
\l Q
®,., ljac
,V-15, V-16
BATCH
DUMPS """
V-7
— ?
HOLDING
TANK
I
LIME
1
,^ LIME
SLAKER ^
m
V'10
PRECIPITATION,
SEDIMENTAT.ON
ACID
FeSQ,, POLYMERS
pH ADJUSTMENT
DISCHARGE
FIGURE V-21 ;
WASTEWATER SOURCES AT PLANT V
1117
-------
REFRACTORY METALS MOLTEN
SALT BATH
REFRACTORY METALS MOLTEN
SALTRINSEWATER
Z-4
2-3
REFRACTORY METALS ALKALINE
CLEANING BATH
REFRACTORY METALS ALKALINE
CLEANING AND SURFACE
TREATMENT RINSEWATER
REFRACTORY METALS WET
AIR POLLUTION CONTROL
NON-SCOPE PROCESS
WASTEWATER
SOURCE CREEK WATER
BATCH
DUMP
Z-1
BATCH
DUMP
2-2
Z-8
±
HOLDING TANK
2-5
MIXING TANK
.LIME
FILTRATION
Z-6
HOLDING TANK
POLISHING
LAGOON
pH ADJUSTMENT
ACID
2-7
DISCHARGE
FIGURE V-25
WASTEWATER SOURCES AT PLANT Z
1118
-------
SECTION VI
SELECTION OF POLLUTANT PARAMETERS
The Agency has studied nonferrous metals forming wastewaters to
determine the presence or absence of priority, conventional, and
selected nonconventional pollutants. The priority and nonconven-
tional pollutants are subject to B'PT and BAT effluent limita-
tions, as well as NSPS, PSES, and PSNS.; The conventional
pollutants are subject to BPT and BCT effluent limitations, as
well a:s NSPS. , , : -
One hundred and twenty-nine pollutants (known as the 129 priority
pollutants) were studied pursuant, to the requirements of the
Clean Water Act of 1977 (CWA). These pollutant parameters, which
are listed in Table VI-1, are members of the 65 pollutants and
classeis of toxic pollutants referred to as Table 1 in Section
307(a);(l) of the CWA. ,
From the original list of .129 pollutants, three pollutants have
been deleted in two separate amendments to 40 CFR Subchapter N,
Part 401. Dichlorodifluoromethane and trichlorofluoromethane
were deleted first (46 FR 2266, January 8, 1981) followed by the
deletion of bis-(chloromethyl) ether (46 FR 10723, February 4,
1981).• '.
Past :studies by EPA and others have identified many
nonpribrity, nonconventional pollutant parameters useful
in characterizing industrial wastewaters and in
evaluating treatment process removal efficiencies.
Certain of these and other parameters- may also be
selected as reliable indicators of the presence of
specific priority pollutants. For these reasons, a number of
nonpribrity pollutants were also studied for the nonferrous
metals ; forming category. '.
} i
The conventional pollutants considered (total suspended solids,
oil and grease,, and pH) traditionally have been studied to char-
acterize industrial wastewaters These parameters are especially
useful in evaluating the effectiveness of wastewater treatment
processes. ' :
! . I =
Several nonconventional, nonpriority pollutants were considered.
As discussed in Section V, raw wastewater samples were analyzed
for the following: acidity, alkalinity, aluminum, ammonia
nitrogen, barium, boron, calcium, chemical oxygen demand (COD),
chloride, cobalt, columbium, fluoride, gold, iron, magnesium,
manganese, molybdenum, nitrate, phenolics, phosphate, phos-
phorus, sodium, sulfate, tantalum, tin, titanium, total dissolved
solids ' (TDS), total organic carbon (TOC), total solids (TS),
tungsten, uranium, vanadium, yttrium, zirconium, radium-226,
gross-alpha, and gross-beta. Of these nonconventional
pollutants, ammmonia, fluoride, gold, and' molybdenum were
1119
-------
considered for limitation in particular subcategories, since they
are found in significant concentrations in some nonferrous metals
forming process wastewater streams and are not effectively
controlled simply by controlling the priority metal pollutants;.
RATIONALE FOR SELECTION OF POLLUTANT PARAMETERS
Exclusion of Toxic Pollutants
The Settlement Agreement in Natural Resources Defense Council,
Inc. vs. Train, 8 ERC 2120 (D.D.C. 1976), modified 12 ERG 1833
(D.D.C. 1979), modified by orders of October 26, 1982, August 2,
1983, January 6, 1984, July 5, 1984 and January 7, 1985, which
preceded the Clean Water Act, contains provisions authorizing the
exclusion from regulation in certain instances of particular
pollutants, categories, and subcategories.
Paragraph 8(a)(iii) of the Settlement Agreement allows the Admin-
istrator to exclude from regulation priority pollutants not
detectable by Section 304(h) analytical methods or other state-
of-the-art methods. Accordingly, pollutants that were never
detected, or that were never found above their analytical quan-
tification level, are excluded from regulation. The analytical
quantification level for a pollutant is the minimum concentration
at which that pollutant can be reliably measured. For the
priority pollutants in this study, the analytical quantification
levels are: 0.005 mg/1 for pesticides, PCB's, and beryllium;
0.010 mg/1 for antimony, arsenic, selenium, silver, thallium, '• and
the remaining organic priority pollutants; 0.020 mg/1 for
cadmium, chromium, cyanide, and zinc; 0.050 mg/1 for copper,
lead, and nickel; and 0.0002 mg/1 for mercury.
Since there was no reason to expect TCDD (2,3,7,8-tetrachlorodi-
benzo-p-dioxin) in nonferrous metals forming process water, EPA
decided that maintenance of a TCDD standard in analytical labora-
tories was too hazardous. Consequently, TCDD was analyzed by
GC/MS screening, and compared to EPA's GC/MS computer file.
Samples collected by the Agency's contractor were not analyzed
for asbestos. Asbestos is not expected to be a part of nonfer-
rous metals forming wastewater since the category only includes
metals that have already been refined from any ores that might
contain asbestos. In addition, asbestos is not known to be
present in any process chemicals used in any forming operations.
Paragraph 8(a)(iii) also allows the Administrator to exclude from
regulation priority pollutants detected in amounts too small to
be effectively reduced by technologies known to the Administra-
tor. Pollutants which were detected below levels considered to
be achievable by specific available treatment methods are
excluded. For the priority metals, the chemical precipitation,
sedimentation, and filtration technology treatment effectiveness
values, which are presented in Section VII were used. For the
priority organic pollutants detected above their analytical quan-
tification level, treatment effectiveness values for activated
carbon technology were used. These treatment effectiveness
1120
-------
values represent the most stringent treatment options considered
for pollutant removal. This allots for the most conservative
exclusion for;pollutants detected below treatable levels.
Treatment effectiveness concentrations and analytical quantifica-
tion concentrations are presented for the 129 priority pollutants
in Table VI-2i ' i
Paragraph 8(a)(iii) allows for the exclusion of a priority
pollutant if it is detected in the source water of the samples
taken.
In addition to the provisions outlined above, Paragraph 8(a)(iii)
of the Settlement Agreement (1) allows the Administrator to
exclude .from regulation priority pollutants detectable in the
effluent from only a small number of sources within the subcate-
gory because they are uniquely related to those sources, and (2)
allows the Administrator to exclude from regulation priority
pollutants which will be effectively controlled by the technolo-
gies upon whiqh are based other effluent limitations guidelines,
or by .pretreatment standards.
I i
Waste;streams in the nonferrous metals forming category have been
grouped •together by the subcategorization scheme described in
Section IV. The pollutant exclusion procedure was applied for
each of the following subcategories:;
' (1) Lead-Tin-Bismuth Forming
i ! (2) Magnesium Forming
: (3) Nickel-Cobalt Forming
: (4) Precious Metals Forming
1 (5) Refractory Metals Forming
(6) Titanium Forming
(7) Uranium Forming
(8) Zinc Forming
i (9) Zirconium-Hafnium Forming
| (10) Metal Powders
Priority pollutants remaining after; the application of the above
exclusion process were selected Edr further consideration in
establishing specific regulations.
DESCRIPTION OF POLLUTANT PARAMETERS
The following discussion addresses pollutant parameters detected
above their analytical quantification level in any sample of
nonferrous metals forming wastewater. The description of each
pollutant provides the following information: the source of the
pollutant; whether it is a naturally occuring element, processed
metal, or manufactured compound; general physical properties and
the form of the pollutant; toxic effects of the pollutant in
humans and other animals; and behavior of the pollutant in a POTW
at concentrations that might be expected from industrial
discharges. ;
1121
-------
Acenaphthene (1) . Acenaphthene ( 1, 2-dihydroacenaphthylene, or
1, 8-ethylene-naphthalene) is a polynuclear aromatic hydrocarbon
(PAH) with molecular weight of 154 and a formula of
Acenaphthene occurs in coal, tar produced during high temperature
coking of coal. It has been detected in cigarette smoke and
gasoline exhaust condensates. !
The pure compound is a white crystalline solid at room tempera-
ture with a melting range of 95C to 97C and a boiling range of
278C to 280C. Its vapor pressure at room temperature is less
than 0.02 mm Hg. Acenaphthene is slightly soluble in water (100
mg/1), but even more soluble in organic solvents such as ethanol,
toluene, and chloroform. Acenaphthene can be oxidized by oxygen
or ozone in the presence of certain catalysts. It is stable
under laboratory conditions.
Acenaphthene is used as a dye intermediate, in the manufacture of
some plastics, and as an insecticide and fungicide.
So little research has been performed on acenaphthene that its
mammalian and human health effects are virtually unknown. The
water quality criterion of 0.02 mg/1 is recommended to prevent
the adverse effects on humans due to the organoleptic properties
of acenaphthene in water.
No detailed study of acenaphthene behavior in a POTW is avail-
able. However, it has been demons tratd that none of the organic
toxic pollutants studied so far can be broken down by biological
treatment processes as readily as fatty acids, carbohydrates, or
proteins. Many of1 the toxic pollutants have been investigated,
at least in laboratory-scale studies, at concentrations higher
than those expected to be contained by most municipal waste-
waters. General observations relating molecular structure to
ease of degradation have been developed for all of the toxic
organic pollutants .
The conclusion reached by study of the limited data is that bio-
logical treatment produces little or no degradation of acenaph-
thene. No evidence is available for drawing conclusions about
its possible toxic or inhibitory effect on POTW operation.
Its water solubility would allow acenaphthene present in the
influent to pass through a POTW into the effluent. The hydrocar-
bon character of this compound makes it sufficiently hydrophobic
that adsorption onto suspended solids and retention in the sludge
may also be a significant route for removal of acenaphthene from
the POTW.
Acenaphthene has been demonstrated to affect the growth of plants
through improper nuclear division and polyploidal chromosome
number. However, it is not expected that land application of
sewr. ge sludge containing acenaphthene at the low concentrations
Men are to be expectd in a POTW sludge would result in ; any
1122 :
-------
adverse effects on,animal& .ingesting plants grown in such soil.
Acrolfein (2)« The available data for acrolein indicate that
acute and chronic toxicity to freshwater aquatic life occur at
concentrations as low as 0.068 and 0.021 mg/1, respectively, and
would; occur at lower concentrations among species that are more
sensitive than those tested. ,
i • ' . • I
For the protection of human health ;from the toxic-properties of
acrolein ingested through contaminated aquatic organisms, the
ambient water criterion is determined to be 0.320. mg/1. For the
protection of human health from the toxic properties of acrolein
ingested though contaminated aquatic organisms alone, the ambi
ent water criterion is determined to be 0.780 mg/1.
Acroleisin has a wide variety of applications. 'It is used directly
as a biocide for aquatic weed control; for algae, weed, and mol-
lusk !control in recirculating process water systems; for slime
control in the paper industry; and to protect liquid fuels
against microorganisms. Acrolein is also.used directly for
crosslinking protein collagen in leather tanning and for tissue
fixation in histological samples. It is widely used as an inter-
mediate in the chemical industry. Its dimer, which is prepared
by a 'thermal,; uncatalyzed reaction, has several applications,
including use as an intermediate for crosslinking agents, humec-
tants,; plasticizers, polyurethane intermediates, copolymers and
homopolymers, and Greaseproofing cotton. The monomer is utilized
in synthesis via the Diels-Alder reaction as a dienophile or a
diene. Acrolein is widely used ih copolymerization, but- its
homopolymers do not appear commercially important. The copoly-
mers of acrolein are used in photography, for textile treatment,
in the paper [industry, as builders in laundry and dishwasher
detergents, and as coatings for aluminum and steel panels, as
well as other; applications. In 1975, worldwide production was
about 59 kilotons. Its largest market was for methionine manu-
facture. Worldwide capacity was estimated at 102 kilotons/year,
of whilch U.S. capacity was 47.6 kilotons/year.
Acrolein (2-propenal) is a liquid with a structural formula of
CH2 = CHCHO.and. a molecular weight of 56.07. It melts at .-
86.95C, boilsiat 52.5 to 53.5C, and has a. density of 0.8410 at
20C. ! The vapor pressure at 20C is 215 mm Hg, and its
water solubility is 20.8 percent by weight at 20C.
A flammable liquid with a pungent odor, acrolein is an unstable
compound that undergoes polymerization to the plastic solid dis-
acryl,! especially under light or in the presence, of alkali or
strongi acid. It is the simplest member of the class of unsatu-
rated aldehydes, and the extreme reactivity of acrolein is due to
the presence of a vinyl group (H2C=H-) and an aldehyde group
on such a small molecule. Additions to the carbon-carbon double
bond of acrolein are catalyzed by acids and bases. The addition
of halogens to this carbon-carbon double bond proceeds readily.
Acrolein can enter the aquatic environment by its use as an
1123
-------
aquatic herbicide, from industrial discharge, and from the chlo-
rination of organic compounds in wastewater and drinking water
treatment. It is often present in trace amounts in foods and is
a component of smog, fuel combustion, wood, and possibly other
fire, and cigarette smoke. An evaluation of available data indi-
cates that, while industrial exposure to manufactured acrolein is
unlikely, acrolein from nonmanufactured sources is pervasive.
Acrolein exposure will occur through food ingestion and inhala-
tion. Exposure through the water or dermal route is less likely
However , analysis of municipal effluents of Dayton, Ohio showed
the presence of acrolein in six of 11 samples, with concentra-
tions ranging from 0.020 to 200 mg/1.
Benzene ( 4 ) . Benzene (CsHg) is a clear, colorless liquid
obtained mainly from 'petroleum feedstocks by several different
processes. Some is recovered from light oil obtained from coal
carbonization gases. It boils at 80C and has a vapor pressure of
100 mm Hg at 26C. It is slightly soluble in water (1.8 g/1 at
25C) and it dissolves in hydrocarbon solvents. Annual U.S.
production is three to four million tons. ;
Most of the benzene used in the U.S. goes into chemical manufac-
ture. About half of that is converted to ethylbenzene which \ is
used to make styrene. Some benzene is used in motor fuels.
Benzene is harmful to human health, according to numerous pub-
lished studies. Most studies relate effects of inhaled benzene
vapors. These effects include nausea, loss of muscle coordina-
tion, and excitement, followed by depression and coma. Death is
usually the result of respiratory or cardiac failure. Two spe-
cific blood disorders are related to benzene exposure. One of
these, acute myelogenous leukemia, represents a carcinogenic
effect of benzene. However, most human exposure data is based on
exposure in occupational settings and benzene carcinogenesis is
not considered to be firmly established.
Oral administration . of benzene to laboratory animals produced
leukopenia, a reduction in number of leukocytes in the blood.
Subcutaneous injection of benzene-oil solutions has produced sug-
gestive, but not conclusive, evidence of benzene carcinogensis .
Benzene demonstrated teratogenic effects in laboratory animals,
and mutagenic effects in humans and other animals. :
For maximum protection of human health from the potential carcin-
ogenic effects of exposure to benzene through ingestion of water
and contaminated aquatic organisms, the ambient water concentra-
tion should be zero. Concentrations of benzene estimated to
result in additional lifetime cancer risk at levels of 10~~ , :
10~6, and 10~5 are 0.00015 mg/1, 0.0015 mg/1, and 0.015
mg/1, respectively.
Some studies have been reported regarding the behavior of benzene
in a POTW. Biochemical oxidation of benzene under laboratory
conditions, at concentrations of 3 to 10 mg/1, produced 24, 27,
1124 :
-------
24, and 20 percent degradation in 5, 10, 15, and 20 days, respec-
tively, using unacclimated seed cultures in fresh water. Degra-
dation of 58, 67, 76, and 80 percent was produced in the same
time periods using acclimated seed cultures. Other studies pro-
duced similar results. The EPA's most recent study of the behav-
ior of' toxic organics in a POTW indicates that benzene is 78 per-
cent removed. Other reports indicate that most benzene entering
a POTW is removed to the sludge and that influent concentrations
of 1 g/1 inhibit sludge digestion. There is no information about
possible effects of benzene on crops grown in soils amended with
sludge! containing benzene. :
Benzidine (5). Benzidine (NH2(CsH4)2NH2) is a
grayish-yellow, white or reddish-gray crystalline powder. It
melts at 127C (260F), and boils at 400C (752F). This chemical is
soluble in hot water, alcohol, and ether, but only slightly
soluble in water. It is derived by: (a) reducing nitrobenzene
with zinc dust in an alkaline solution followed by distillation;
(b) the electrolysis of nitrobenzene, followed by distillation;
or, .(c) the nitration of diphenyl followed by reduction of the
product with zinc dust in an alkaline solution, with subsequent
dis tillation. It is used in the synthesis of a variety of
organic chemicals, such as stiffening agents in rubber
compounding.
Available data indicate that benzidine is acutely toxic to fresh
water aquatic life at•concentrations as low as 2.50 mg/1 and
would |occur at lower concentrations among species that are more
sensitive than .those tested. However, no data are available con-
cerning the chronic toxicity to sensitive freshwater and salt
water aquatic life. ;
I i
For the maximum protection of human health from the potential
carcinogenic effects due to exposure: to benzidine, through the
ingestion of contaminated water and contaminated aquatic organ-
isms, the ambient water concentration should be zero. Concen-
trations of this pollutant estimated to result in additional
lifetime cancer risk at levels of 10", 10~~6, and
10~7 are 0.0000012 mg/1, 0.00000012 mg/1, and 0.000000012
mg/1, respectively.
With respect to treatment in POTWs, laboratory studies have shown
that benzidine is amenable to treatment via biochemical oxida-
tion. The expected 30-day average treated effluent concentration
is 0.025 mg/1. ]
i
Carbon ' Tetrachloride (6). Carbon tetrachloride (CC14), also
called tetrachloromethane, is a colorless liquid produced primar-
ily by the.chlorination of hydrocarbons - particularly methane.
Carbon tetrachloride boils at 77C and has a vapor pressure of 90
mm Hg at 20C. It is slightly soluble in water (0.8 g/1 at 25C)
and soluble in many organic solvents. Approximately one-third of
a millicpn tons is produced annually in the U.S.:
Carbon tetrachloride, which was displaced by perchloroethylene as
i i
! 1125
-------
a dry cleaning agent in the 1930's, is used principally as an
intermediate for production of chlorofluoromethanes for refriger-
ants, aerosols, and blowing agents. It is also used as a grain
fumigant. :
Carbon tetrachloride produces a variety of toxic effects in
humans. Ingestion of relatively large quantities — greater than
five grams — has frequently proved fatal. Symptoms are burning
sensation in the mouth, esophagus, and stomach, followed by
abdominal pains, nausea, diarrhea, dizziness, abnormal pulse, and
coma. When death does not occur immediately, liver and kidney
damage are usually found. Symptoms of chronic poisoning are not
as well defined. General fatigue, headache, and anxiety have
been observed, accompanied by digestive tract and kidney dis-
comfort or pain.
Data concerning teratogenicity and mutagenicity of carbon tetra-
chloride are scarce and inconclusive. However, carbon tetrachlo-
ride has been demonstrated to be carcinogenic in laboratory
animals. The liver was the target organ. ;
For maximum protection of human health from the potential carcin-
ogenic effects of exposure to carbon tetrachloride through inges-
tion of water and contaminated aquatic organisms, the ambient
water concentration should be zero. Concentrations of carbon
tetrachloride estimated to result in_additional lifetime cancer
risk at risk levels of 10~7, 10~6, and 10~5
are 0.000026 mg/1, 0.00026 mg/1, and 0.0026 mg/1, respectively.
Many of the toxic organic pollutants have been investigated, at
least in laboratory-scale studies, at concentrations higher than
those expected to be found in most municipal wastewaters. General
observations have b'een developed relating molecular structure to
ease of degradation for all of the toxic organic pollutants. The
conclusion reached by study of the limited data is that
biological treatment produces a moderate degree of removal of
carbon tetrachloride in a POTW. No information was found
regarding the possible interference of carbon tetrachloride with
treatment processes. The EPA's most recent study of the behavior
of toxic organics in a POTW indicates that carbon tetrachloride
is 50 percent removed. Based on the water solubility of carbon
tetrachloride, and the vapor pressure of this compound, it is
expected that some of the undegraded carbon tetrachloride will
pass through to the POTW effluent and some will be volatilized in
aerobic processes.
1,1,1-Tfichloroethane (11). 1,1,1-Trichloroethane is one of the
two possible trichlorethanes. It is manufactured by hydrochlori-
nating vinyl chloride to 1,1-dichloroethane which is then chlori-
nated to'the desired product. 1,1,1-Trichloroethane is a liquid
at room temperature with a vapor pressure of 96 mm Hg at 20C and
a boiling point of 74C. Its formula is CC13CH3. It is
slightly soluble in water (0.48 g/1) and is very soluble in
organic solvents. U.S. annual production is greater than one-
third of a"million tons.
1126
-------
1,1,1-Trichloroethane
degreasing agent.
is used as \ an industrial solvent and
Most human toxicity data for 1,1,1-trichloroethane relates to
inhalation and dermal exposure routes. Limited data are avail-
able for determining toxicity of ingested 1,1,1-trichloroethane,
and those data:are all for the compound itself, not solutions in
water. No data are available regarding its toxicity to fish and
aquatic organisms. For the protection of human health from the
toxic .properties of 1,1,1-trichloroethane ingested through the
comsumption of water and fish, the ambient water criterion is
15.7 mg/1. The criterion is based on bioassays for possible
carcinogenicity. :
' ' ! -
Biochemical oxidation of mamy of the toxic organic pollutants has
been investigated, at least in laboratory scale studies, at
concentrations higher than commonly expected in municipal waste
water.; General observations relating molecular structure to ease
of degradation have been developed for all of these pollutants.
The ccanclusion reached by study of these limited data is that
biological treatment produces a moderate degree of degradation of
1,1,1-trichloroethane. No'evidence is available for drawing con-
clusions about its possible toxic or inhibitory effect on POTW
operation. Hqwever, for degradation to occur/ a fairly constant
input of the compound would be necessary.
i
Its water solubility would allow 1,1,1-trichloroethane, present
in the influent and not biodegrada'ble, to pass through a
POTW into the effluent. The Agency s most recent
study of the behavior of toxic organics in a POTW
indicates that 1,1,1-trichlorethane is 87 percent removed.
One factor which has received some attention, but no
detailed study, is the volatilization of the lower molecular
weight organics from a POTW. If ; 1,1,1-trichloroethane is
not biodegraded, it will volatilize during aeration
processes in the POTW. It has been demonstrated that none
of the toxic organic pollutants of this type can be broken
down by .biological treatment processes as readily as fatty
acids, carbohydrates, or proteins. ',
I,1-Dichloroethane (13). 1,1-Dichlorpethane, also called ethyli-
dene dichloride and ethylidene chloride, is a colorless liquid
manufactured by reacting hydrogen chloride with vinyl chloride in
1,1-dichloroethane solution in the presence of a catalyst. How
ever, it is reportedly not manufactured commercially in the U.S.
1,1-Dichloroethane boils at 57C and has a vapor pressure of 182
mm Hg at 20C. ; It is slightly soluble in water (5.5 g/1 at 20C)
and very soluble in organic solvents.
1,1-Dichloroethane is used as an extractant for heat-sensitive
substances and as a solvent for rubber and silicone grease.
1,1-Dichloroethane
ethane)> but its
is less toxic than its isomer (1,2-dichloro-
use as an anesthetic has been discontinued
1127
-------
because of marked excitation of the heart. It causes central
nervous system depression in humans. There are insufficient data
to derive water quality criteria for 1,1-dichloroethane.
Many of the toxic organic pollutants have been investigated, at
least in laboratory scale studies, at concentrations higher than
those expected to be contained by most municipal wastewaters.
General observations have been developed relating molecular
structure to ease of degradation for all of the toxic organic
pollutants. The conclusion reached by study of the limited data
is that biological treatment produces only a moderate removal of
1,1-dichloroethane in a POTW by degradation. The EPA's most
recent study of the behavior of toxic organics in a POTW indi-
cates that 1,1-dichloroethane is 76 percent removed.
The high vapor pressure of 1,1-dichloroethane is expected to
result in volatilization of some of the compound from aerobic
processes in a POTW. Its water solubility will result in some of
the 1,1-dichloroethane which enters the POTW leaving in the
effluent from the POTW.
1,1,2,2-Tetrachloroethane (15). 1,1,2,2-Tetrachloroethane
(CHC12CHC12) is a heavy, colorless, mobile, nonflammable,
corrosive, toxic liquid. While it has a chloroform-like odor, it
is more toxic than chloroform. It is soluble in alcohol '• or
ether, but insoluble in water. It has no flash point, boils at
146.5C (296P) and has a vapor pressure of 5 mm Hg at 20.7C,. It
results from the interaction of acetylene and chlorine, with
subsequent distillation. This chemical is used in organic syn-
thesis, as a solvent, and for metal cleaning and degreasing.
Available freshwater data indicate that acute toxicity occurs at
concentrations of 9.32 mg/1, and that chronic toxicity occurs at
4.000 mg/1. Available saltwater data indicate that acute
toxicity occurs at 9.020 mg/1.
For the maximum protection of human health from the potential
carcinogenic effects- due to exposure to 1,1,2,2-tetrachloro-
ethane, through contaminated water and contaminated aquatic
organisms, the ambient water concentration should be zero. Con-
centrations of this pollutant estimated to result in additional
lifetime cancer risk at risk levels of 10
-5
10 ' are 0.0017 mg/1, 0.00017 mg/1,
mg/1, respectively.
10~b
and
and
0.000017
1128
-------
With respect to treatment in POTW, laboratory studies have shown
that 1,1,2,2-tetrachloroethane is not amenable to treatment via
biochemical oxidation. As this pollutant is insoluble in water,
any removal of'this pollutant which would occur in a POTW, would
be related to physical treatment processes.
Para-chloro-meta-cresol 22).
Para-chloro-meta-cresol
(CICyHgOH) is ^thought to be a 4-chloro-3-methyl-phenol
(4-chloro-meta-cresol, or 2-chloro-5-hydroxy-toluene), but is
also used by some authorities to refer to 6-chloro-3-methyl-
phenoll (6-chloro-meta-cresol, or 4-chloro-3-hydroxy-toluene),
depending on whether the chlorine is considered to be para to the
methyl;or to the hydroxy group. It is assumed for the purposes
of this document that the subject compound is 2-chloro-5-hydroxy-
toluene. This compound is a colorless crystalline solid melting
at 66 to 68C. It is slightly soluble in water (3.8 g/1) and
soluble in organic solvents. This phenol reacts with ,4-amino
antipyrene to give a colored product and therefore contributes to
the nonconventional pollutant parameter designated "Total
Phenols." No information on manufacturing methods or volumes
produced was found. ;
Para-chloro-meta cresol (abbreviated here as PCMC) is marketed as
a microbicide, and was proposed as an antiseptic and disinfectant
more tljian 40 years ago. It is used in glues, gums, paints, inks,
textiles, and leather, goods. '
i • • :
Although no human toxicity data are available for PCMC, studies
on laboratory animals have demonstrated that this compound is
toxic tyhen administered subcutaneously and intravenously. Death
was preceded by severe muscle tremors. At high dosages kidney
damage! occurred. On the other hand, an unspecified isomer of
chlorocresol, presumed to be PCMC, is used at a concentration of
0.15 percent to preserve mucous heparin, a natural product admin-
istered intravenously as an anticoagulant. The report does not
indicate the total amount of PCMC typically received. No infor-
mation ' was found regarding possible teratogenicity, or carcino-
genicity of PCMC. ',
[' : ' - ~ * ' ' '
Two reports indicate that PCMC undergoes degradation in
biochemical oxidation 'treatments carried out at concentrations
higher '• than are expected to be encountered in POTW influents.
One study showed 50 percent degradation in 3.5 hours when a
phenol4adapted acclimated seed culture was used with a solution
of 60 mg/1 PCMC. The other study showed 100 percent degradation
of a 120 mg/1 solution of PCMC in two weeks in an aerobic
activated sludge test system. No degradation of PCMC
occurred under anaerobic conditions.
The EPA's most .recent
study of the.behavior of toxic
that PGMC is 89 percent removed.
organics in a POTW indicates
Chloroform (23). Chloroform, also called trichloromethane, is a
colorle;ss liquid manufactured commercially by chlorination of
methane. Careful control of conditions maximizes chloroform pro-
duction, but other products must be separated. Chloroform boils
1129
-------
at 61C and has a vapor pressure of 200 mm Hg at 25C. It is
slightly soluble in water (8.22 g/1 at 20C) and readily soluble
in organic solvents.
Chloroform is used as a solvent and to manufacture refrigerants,
Pharmaceuticals, plastics, and anesthetics. It is seldom used ;as
an anesthetic.
Toxic effects of chloroform on humans include central nervous
system depression, gastrointestinal irritation, liver and kidney
damage and possible cardiac sensitization to adrenalin. Carcino-
genicity has been demonstrated for chloroform on laboratory
animals.
For the maximum protection of human health from the potential
carcinogenic effects of exposure to chloroform through ingestion
of water and contaminated aquatic organisms, the ambient water
concentration should be zero. Concentrations of chloroform
estimated to result in additional lifetime cancer risks at the
levels of 10~7, 10~6, and 10~5 were 0.000021 mg/1,
0.00021 mg/1, and 0.0021 mg/1, respectively.
The biochemical oxidation of this compound was studied in one
laboratory scale study at concentrations higher than those
expected to be contained by most municipal wastewaters. After 5,
10r and 20 days no degradation of chloroform was observed. The
conclusion reached is that biological treatment produces little
or no removal by degradation of chloroform in a POTW.
The high vapor pressure of chloroform is expected to result in
volatilization of the compound from aerobic treatment steps in a
POTW. Remaining chloroform is expected to pass through into the
POTW effluent. In addition, the most recent EPA study of the
behavior of toxic organics in a POTW indicates that chloroform is
61 percent removed.
3,3'-Dichlorobenzidine (28). 3,3'-Dichlorobenzidine (DCB) or
dichlorobenzidine(4,4'-diamino-3,3'-dichlorobiphenyl) is used in
the production • of dyes and pigments and as a curing agent for
polyurethanes. Th^ molecular formula of dichlorobenzidine is
C12H10C12N2 and the molecular weight is 253.13.
DCB forms brownish needles with a melting point of 132 to 133C.
It is readily soluble in alcohol, benzene, and glacial acetic
acid, slightly soluble in HC1, and sparingly soluble in water
(0.7 g/1 at 15C). When combined with ferric chloride or bleach-
ing powder, a green color is produced.
The affinity of DCB for suspended particulates in water is not
clear; its basic nature suggests that it may be fairly tightly
bound to humic materials in soils. Soils may be moderate to long
term reservoirs for DCB.
Pyrolysis of DCB will most likely lead to the release of HC1.
Because of the halogen substitution, DCB compounds probably bio-
1130
-------
degrade at a slower, rate than benzidine alone.
try of DCS is not completely known. DCB may
benzidine. ; .
The photochemis-
photodegrade to
Assuming the clean air concentrations of ozone (2 x 10~9) and
an average atmospheric concentration of hydroxyl radicals (3 x
10~15 ';MJ", the: half life for oxidation of DCB by either of
these ; chemical , compounds is on the order of one and one to 10
days, .respectively. Furthermore, assuming a representative
concentration of 10 M for peroxy radicals in sunlit
oxygenated water, the half-life for oxidation by these compounds
is approximately 100 days, given the;variability of environmental
conditions. : ;
I ..
The data base available for dichlorobenzidines and freshwater
organisms is limited to one test on bioconcentration of 3,3'-
dichloirobenzidine. No statement can be made concerning acute or
chronic toxicity of this pollutant.
No saltwater organisms have been tested with any dichlorobenzi-
dine; no statement can be made concerning acute or chronic
toxicity for that pollutant on saltwater organisms.
For the maximum protection of human health from the potential
carcinogenic effects due to exposure of dichlorobenzidine through
Ingestion of contaminated water and ^contaminated aquatic organ-
isms, the ambient water concentration should be zero based on the
non-threshold assumption for this chemical. However, the levels
that may result in incremental increase of cancerrisk over the
lifetime were 'estimated at 10 5 , 10~6 , and 10~7.
The corresponding recommended criteria are 0.000103 mg/1,
0.00003, m9/1 and 0.000001 mg/1, respectively. If the above
estimates are ','-• made for consumption of aquatic organisms
only, excluding consumption of water, the levels are
0.000204 mg/1, 0.000020 mg/1, and 0.000002 mg/1,
respectively. ;
1,1-Dichloroethylene (29). 1,1-Dichloroethylene (1,1-DCE), also
called Vinylidene chloride, is a clear colorless liquid manufac-
tured |by dehydirochlorination of 1,1,2-trichloroethane. 1,1-DCE
has trie formula CC12CH2- It has a boiling point of 32C,
and a vapor pressure of 591 mm Hg at 25C. 1,1-DCE is slightly
soluble in water (2.5 mg/1) and is soluble in many organic
solvents. U.S.; production is in the range of hundreds of
thousands of tons annually., • ,
i ' , i
1,1-DCE is used as a chemical intermediate and for copolymer
coatings or films. It may enter the wastewater of an industrial
facility as the result of decomposition of 1,1,1-trichloroethy-
lene used in decreasing operations, or by migration from vinyli-
dene chloride copolymers ejxposed to the process water. Human
toxicity of i;i-DCE has not been demonstrated; however, it is a
suspected human carcinogen. Mammalian toxicity studies have
focused on the liver and kidney damage produced by 1,1-DCE.
1131
-------
Various changes occur in those organs in rats and mice ingesting
1,1-DCE.
For the maximum protection of human health from the potential
carcinogenic effects of exposure to 1,1-dichloroethylene through
ingestion of water and contaminated aquatic organisms, the ambi-
ent water concentration is zero. The concentration of 1,1-DCE
estimated to result in an additional lifetime cancer risk of 1: in
100,000 is 0.0013 mg/1. ' \
Under laboratory conditions, dichloroethylenes have been shown to
be toxic to fish. The primary effect of acute toxicity of the
dichloroethylenes is depression of the central nervous system.
The octanol/water partition coefficient of 1,1-DCE indicates i it
should not accumulate.significantly in animals.
Biochemical oxidation of many of the toxic organic pollutants has
been investigated in laboratory scale studies at concentrations
higher than would normally be expected in municipal wastewaters-
General observations relating molecular structure to ease of
degradation have been developed for all of these pollutants. The
conclusion reached by study of the limited data is that biologi-
cal treatment produces little or no degradation of 1,1-dichloro-
ethylene. No evidence is available for drawing conclusions about
the possible toxic or inhibitory effect of 1,1-DCE on POTW opera-
tion. Because of water solubility, 1,1-DCE which is not volatil-
ized or degraded is expected to pass through a POTW. Very little
1,1-DCE is expected to be found in sludge from a POTW.
The most recent EPA study of the behavior of toxic organics in a
POTW indicates that 1,1-DCE is 80 percent removed. The very high
vapor pressure of 1,1-DCE is expected to result in release: of
significant percentages of this material to the atmosphere in any
treatment involving aeration. Degradation of dichloroethylene in
air is reported to occur, with a half-life of eight weeks.
i
2,4-Dimethylphenol (34). 2,4-Dimethylphenol (2,4-DMP), also
called 2,4-xylenol/ is a colorless, crystalline solid at room
temperature (25C), but melts at 27C to 28C. 2,4-DMP is slightly
soluble in water and, as a weak acid, is soluble in alkaline
solutions. Its vapor pressure is less than 1 mm Hg at room
temperature.
2,4-DMP is a natural product, occurring in coal and petroleum
sources. It is used commercially as an intermediate for manufac-
ture of pesticides, dye stuffs, plastics and resins, and surfac-
tants. It is found in the water runoff from asphalt surfaces. It
can find its way into the wastewater of a manufacturing plant
from any of several adventitious sources.
Analytical procedures specific to this compound are used for, its
identification and quantification in wastewaters. This compound
does not contribute to "Total Phenols" determined by the 4-
aminoantipyrene method.
1132
-------
Three , methylphenol isomers (creso,ls) and six dimethylphenol
isomers (xylertols) generally occur together in natural products,
industrial processes/ commercial products, and phenolic wastes.
Therefore, data are not available ,for human exposure to 2,4-DMP
alone. In addition to this, most mammalian tests for toxicity of
individual dimethylphenol isomers have been conducted with
isomers other than 2,4-DMP.
:
In general, the mixtures of phenol, methylphenols, and dimethyl
phenols contain compounds which produced acute poisoning in
laboratory animals. Symptoms were difficult breathing, rapid
muscular spasms, disturbance of motor coordination, and asym-
metric^l body position. In a 1977 National Academy of Science
publication the conclusion was reached that, "In view of the
relative paucity of data on the mutagenicity, carcinogenicity,
teratogenicity, and long term oral toxicity of 2,4-dimethyl-
phenol!, estimates of the effects of; chronic oral exposure at low
levels; cannot be made with any confidence." No ambient water
quality criterion can be set at this time. In order to protect
public: health, exposure to this compound should be minimized as
soon as possible. ;
Toxicity data for fish and freshwater aquatic life are limited;
however, in reported studies of 2,4-dimethylphenol at concen-
trations as high as 2 mg/1 no adverse effects were observed.
Biological degradability of 2,4-DMP as determined in one study,
showed^ 94.5 percent removal based on chemical oxygen demand
(COD).I Another study determined that persistance of 2,4-DMP in
the environment is low, and thus any of the compound which
remained in the sludge or passed through the POTW into the
effluent would be degraded within moderate length of time
(estimated as two months in the report). The EPA's most recent
study of the behavior of toxic organics in a POTW indicates that
2,4-DMP is 59 percent removed. :
As a weak acid, the behavior of 2,4-DMP may be somewhat dependent
on the|pH of the influent to the POTW. However, over the normal
limited range of POTW pH, little effect of pH would be expected.
I , i
2,4-Dinitrotoluene (35). ! 2,4-Dinitrotoluene [(N02)2
CQ H4'CH3], a yellow crystalline compound, is
manufactured as a coproduct with the 2,6-isomer by nitration of
nitrotoluene. i It melts at 71C. 2,4-Dinitrotoluene is insoluble
in water (0.27 g/1 at 22C) and soluble in a number of organic
Production data for the 2,4-isomer alone are not
The 2,4-and 2,6-isomers are manufactured in an 80:20
ratio, depending on the process used. Annual U.S.
production is about 150 thousand tons of the two
Unspecified amounts are produced by the U.S. government
solvents.
available.
or 65s35
commercial
isomers.
and further nitrated to trinitrotoluene (TNT) for military use.
The major use of the dinitrotoluene mixture is for production of
toluene diisocyanate used to make polyurethanes. Another use is
in.production of dyestuffs.
1133
-------
The toxic effect of 2,4-dinitrotoluene in humans is primarily
methemoglobinemia (a blood condition hindering oxygen transport
by the blood). Symptoms depend pn-severity of•the disease, -but
include cyanosis, dizziness, pain in joints,'headache, and loss
of appetite in workers inhaling the compound. Laboratory.animals
fed oral doses of 2,4-dinitrotoluene exhibited many of the same
symptoms. Aside from the effects in red/blood cells, effects 'rare
observed in the nervous system and testes^ ,
Chronic exposure to 2,4-dinitrotoluene.may produce liver damage
and reversible anemia. No data were.found on teratogenicity of
this compound. Mutagenic data are limited and,are regarded as
confusing. Data resulting from studies of carcinogenicity of
2,4-dinitrotoluene point to a need for' further testing for this
property. : !
For the maximum protection of human health from the potential
carcinogenic effects of exposure to 2,4-dinitrotoluene .through
ingestion of water and contaminated aquatic organisms, the ambi-
ent water concentration should be zero. Concentrations of 2,4-
dinitrotoluene estimated toresult in additional lifetime cancer
risk at risk levels of 10~7 10~6 and 10~5 are : .
0.0074 mg/1, 0.074 mg/1, and 0.740 mg/1, respectively.
Data on the behavior of 2,4-dinitrotoluene in a POTW are not
available. However, biochemical oxidation of 2,4-dinitrophenol
was investigated on a laboratory scale. At 100 mg/1 of 2,4-
dinitrotoluene, a concentration considerably higher than that
expected in municipal wastewaters, biochemical oxidation by an
acclimated, phenol-adapted seed culture produced 52 percent
degradation in three hours. Based on this limited information
and general observations relating molecular structure to.ease of
degradation for all the toxic organic pollutants, it was con-
cluded that biological treatment in a POTW removes 2,4-dinitro-
toluene to a high degree or completely. No .information is
available regarding possible interference by ;2,4-dinitrotoluene
in POTW treatment processes, or on the possible detrimental
effect on sludge used to amend soils in;which food crops are
grown. ;
2,6-Dinitrotoluene (36). . 2,6-Dinitr9tpluene [(N©2)2
Cg H4 CH3], a yellow crystalline compound,- is
manufactured as a coproduct with the 2,4-isomer by nitration , of
nitrotoluene. It melts at 71C. 2,6-Dini.trotoluene is. insoluble
in water (0.27 g/1 at 22C) and soluble in a number of organic
Production data for the 2,6-isomer alone ,are ;not
The 2,4- and 2,6-isomers"are manufactured in an 80:20
ratio, depending ,on the process -used. Annual U.S.
production is about 150 thousand tons of the two
isomeirs. Unspecified amounts are produced by the U.S. government
and further nitrated to trinitrotoluene (TNT)'for military use.
The major use of the dinitrotoluene mixture,is for production of
toluene diisocyanate used to make polyurethan.es. Another use .is
in production of dyestuffs. , • ^ . . . • .'
solvents.
available.
or 65:35
commercial
1134
-------
Data on the behavior of 2,6-dinitrotoluene in a POTW are not
available. However, biochemical Qxidation of the 2,4-dinitro-
toluene isomer was investigated in a laboratory scale. At 100
mg/1 of 2,4-dinitrotoluene,, a concentration considerably higher
than that expected in municipal wastewaters, biochemical oxida-
tion by an acclimated, phenol-adapted seed culture produced 52
percent degradation in three hours. Based on this limited infor-
mation' and general observations relating molecular structure to
ease of degradation for all the toxic organic pollutants, it was
concluded that biological treatment in a POTW. removes 2,4-dini-
trotoluene to a high degree. It is not known if ths conclusion
can be expanded to include the 2,6-isomer. 'No information is
available regarding possible interference by 2,6-dinitrotoluene
in POTW treatment processes, or on the possible detrimental
effect on sludge used to amend soils in which food crops are
growno ! ;
Ethylbenzene (38). Ethylbenzene is a colorless, flammable liquid
manufactured commercially from benzene and ethylene. Approxi-
mately half of the benzene used in the U.S. goes into the manu-
facture of more than three million tons of ethylbenzene annually.
Ethylbenzene boils at 136C and has a .vapor pressure of 7 mm Hg at
20C. ;it is slightly soluble in water (0.14 g/1 at 15C) and is
very soluble in organic solvents.
About 98 percent of the ethylbenzene; produced in the U.S. goes
into the production of styrene, much of which is used in the
plastics and synthetic rubber industries. Ethylbenzene is a cdn-
stituerit of xylene mixtures used as diluents in the paint indus-
try, agricultural insecticide sprays, and gasoline blends.
Although humans are exposed to ethylbenzene from a variety of
sources in the environment, little information on effects of
ethylbenzene in man or animals is available. Inhalation can
irritate eyes, affect the respiratory tract, or cause vertigo. In
laboratSory animals ethylbenzene exhibited low toxicity. There
are no idata available on teratogenicity, mutagenicity, or car-
cinogeriicity of ethylbenzene. ,
! , I
Criteria are based on data derived from inhalation exposure
limits.; For the protection of human health from the toxic prop-
erties ; of ethylbenzene ingested through water and contaminated
aquatic: organisms, the ambient water quality criterion is 1.1
mg/1. ' • ' !
Laboratory scale studies of the biochemical oxidation of ethyl-,
benzene; at concentrations greater than would normally be found in
municipal wastewaters have demonstrated varying degrees of degra-
dation. In one study with phenol-acclimated seed cultures, 27
percent degradation was observed in a half day at 250 mg/1 ethyl-
benzene. Another study at unspecified conditions showed 32, 38,
and 45; percent degradation after 5, 10, and 20 days, respec-
tively. Based on these results and general observations relating
molecular structure of degradation, the conclusion was reached
1135
-------
that biological treatment produces only
ethylbenzene in a POTW by degradation.
moderate removal of
Other studies suggest that most of the ethybenzene entering a
POTW is removed from the aqueous stream to the sludge. The
ethylbenzene contained in the sludge removed from the POTW may
volatilize.
In addition, the most recent EPA study of the behavior of toxic
organics in POTW indicates that ethylbenzene is approximately
84 percent removed.
Fluoranthene (39). Fluoranthene (1, 2-benzacenaphthene) is one of
the compounds called polynuclear aromatic hydrocarbons (PAH). A
pale yellow solid at ^ room temperature, it melts at 111C and' has a
negligible vapor pressure at 25C. Water solubility is low (0.2
mg/1). Its molecular formula is
Fluoranthene, along with many other PAH's, is found throughout
the environment. It is produced by pyrolytic processing of
organic raw materials, such as coal and petroleum, at high tem-
perature (coking processes). It occurs naturally as a product of
plant biosyntheses. Cigarette smoke contains f luoranthene.
Although it is not used as the pure compound in industry, it has
been found at relatively higher concentrations (0.002 mg/1) than
most other PAH's in at least one industrial effluent. Further
more, in a 1977 EPA survey to determine levels of PAH in U.S.
drinking water supplies, none of the 110 samples analyzed showed
any PAH other than f luoranthene.
Experiments with laboratory animals indicate that fluoranthene
presents a relatively low degree of toxic potential from acute
exposure, including oral administration. Where death occurred,
no information was reported concerning target organs or specific
cause of death. i
There is no epidemiological evidence to prove that PAH in
general, and fluoranthene, in particular, present in drinking
water are related to the development of cancer. The only studies
directed toward determining carcinogenicity of fluoranthene have
been skin tests on laboratory animals. Results of these tests
show that fluoranthene has no activity as a complete carcinogen
(i.e., an agent which produces cancer when applied by itself),
but exhibits significant cocarcinogenicity (i.e., in combination
with a carcinogen, it increases the carcinogenic activity) .
Based on the limited animal study data, and following an estab-
lished procedure, the ambient water quality criterion for fluor-
anthene alone (not in combination with other PAH) is determined
to be 200 mg/1 for the protection of human health from its toxic
properties.
There are no data on the chronic effects of fluoranthene ! on
freshwater organisms. One saltwater invertebrate shows chronic
toxicity at concentrations below 0.016 mg/1. For some fresh
1136
-------
water fish species the concentrations producing acute toxicity
are substantially higher, but data are very limited.
F ' -
Results of studies of the behavior of fluoranthene in conven-
tional' sewage, treatment processes found in a POTW have been
published. Removal of fluoranthene during primary sedimentation
to be 62 to 66 percent (from an initial value of
O.:04435 mg/1 to a final lvalue of 0.00122 to 0.0146
the removal was 91 to 99 percent:(final values of
0.00026 mg/1) after biological purification with
was found
0.00323 to
mg/1), ': and
0.00028 to
activated sludge processes.
A reviejw was made of data on biochemical oxidation of many of the
toxic organic pollutants investigated in laboratory scale studies
at concentrations higher than would normally be expected in
municipal wastewaters. General observations relating molecular
structure to ease of degradation have been developed for all of
•these pollutants. The conclusion reached by study of the limited
data is that biological treatment produces little or no degrada-
tion of fluoranthene. The same study, however, concludes that
fluoranthene would be readily removed by filtration and oil-water
separation and other methods which rely on water insolubility, or
adsorption on other particulate surfaces. This latter conclusion
is supported by the previously cited study showing significant
removal by primary sedimentation.
No studies were found to give data on either the possible inter-
ference of fluoranthene with POTW operation, or the persistance
of fluoranthene in sludges or POTW effluent waters. Several
studies! have documented the ubiquity of fluoranthene in the envi-
ronment1 and it cannot be readily determined if this results from
persistence of anthropogenic fluoranthene or the replacement of
degraded fluoranthene by natural processes such as biosynthesis
in plants. i
i ' " '
Methylene Chloride (44). Methylene chloride, also called dichlo-
romethane (CH2C12), is a colorless liquid manufactured by
chlorination of methane or methyl chlpride.followed by separation
from the higher chlorinated methanes formed as coproducts.
Methylene chloride boils at 40C, and has a vapor pressure of 362
mm Hg at 20C. ,It is slightly soluble in water (20 g/1 at 20C),
and very soluble.in organic solvents. U.S. annual production is
about 250,000 tons'.
Methylene chloride is a common industrial solvent found in insec-
ticides •, metal cleaners, paint, and paint and varnish removers.
i ; ' I : : '
Methylene chloride is not generally regarded as highly toxic to
humans. Most human toxicity data are,for exposure by inhalation.
Inhaled; methylene chloride; acts as a central nervous system
depressant. There is also evidence that the compound causes
heart failure when large amounts are inhaled.
Methylene chloride does produce mutation in tests for this
effect.| In addition, a bioassay recogni2ed for its extremely
1137
-------
high sensitivity to strong and weak carcinogens produced results
which were marginally significant. Thus potential carcinogenic
effects of methylene chloride are not confirmed or denied, but
are under continuous study. These studies are difficult to
conduct for two reasons. First, the low boiling point (40C) of
methylene chloride makes it difficult to maintain the compound at
37C during incubation. Secondly, all impurities must be removed
because the impurities themselves may be carcinogenic. These
complications also make the test results difficult to interpret.
For the protection of human health from the toxic properties of
methylene chloride ingested through water and contaminated
aquatic organisms, the ambient water criterion is 0.002 mg/1. The
biochemical oxidation of this compound was studied in one
laboratory scale study at concentrations higher than those
expected to be contained by most municipal wastewaters. After
five days no degradation of methylene chloride was observed. The
conclusion reached is that biological treatment produces little
or no removal by degradation of methylene chloride in a POTW.
The high vapor pressure of methylene chloride is expected to
result in volatilization of the compound from aerobic treatment
steps in a POTW. It has been reported that methylene chloride
inhibits anaerobic processes in a POTW. Methylene chloride that
is not volatilized in the POTW is expected to pass through into
the effluent. :
The most recent EPA study of POTW removal of toxic organics
indicates that methylene chloride is approximately 58 percent
removed.
Methyl Chloride (45) . Methyl chloride (CHsCl) is a
colorless, noncorrosive liquifiable gas which is transparent in
both the gaseous and liquid states. It has a faintly sweet,
ethereal odor. It boils at -23.1C (-11F). It is slightly
soluble in water (by which it is decomposed) and soluble in
alcohol, chloroform, benzene, carbon tetrachloride, and glacial
acetic acid. It is derived by: (a) the chlorination of methane;
and, (b) the action of hydrochloric acid on methanol, either in
vapor or liquid phase. It is used as an extractant and solvent,
as a pesticide, in the synthesis of organic chemicals, and in
silicones.
The available data for this- pollutant indicate that acute tox-
icity to freshwater aquatic life occurs at concentrations as low
as 11.0 mg/1. No data are available concerning this pollutant's
chronic toxicity to sensitive freshwater aquatic life. The
available data for this pollutant indicate that acute and chronic
toxicities to saltwater aquatic life occur at concentrations as
low as 12.0 mg/1 and 6.40 mg/1, respectively. With respect to
saltwater aquatic life, a decrease in algal cell numbers was
found to occur at concentrations as low as 11.5 mg/1.
For the maximum protection of human health from the potential
carcinogenic effects due to exposure to this pollutant, through
1138
-------
the ingestion of contaminated water and aquatic, organisms, the
ambient water concentration should be zero. Concentrations of
in additional lifetime cancer this pollutant _estimated to
result, risks at risk levels of 10^5 10~6 and 10~7
are 0.0019 mg/1, 0.00019 mg/1, and 0.000019 mg/1, respectively.
1 • ' ' '. - '
Concerning treatment in POTW, laboratory studies have shown that
methyl chloride is not amenable tp treatment via biochemical
oxidation. : , ' , , , ' '.....'
Chlorodibromomethane (51).
51). Chlorodibromomethane (CHBr2Cl) is
a clea'r, colorless, heavy liquid. it boils at 116C (241F). This
pollutant.. is used in the synthesis of various organic compounds.
r 1 -
The available data for this .pollutant indicate that acute tox-
icity to freshwater aquatic life occurs at concentrations as low
as 11.0 mg/1. No data are available concerning this pollutant's
chronic toxicity to sensitive freshwater aquatic life. The
available, data for this pollutant indicate that acute and chronic
toxicities to saltwater aquatic life occur at concentrations as
low as 12..0 mg/1 and 6.40 mg/1, respectively. With respect to
saltwater aquatic life, a decrease in algal cell numbers was
found to occur at concentrations as ^Low as 11.5 mg/1.
"I ' . ' •• I ' • ' .'
For the maximum protection of human health from the potential
carcinogenic effects due to exposure;to this pollutant, through
the ingestion of contaminated water and aquatic organisms, the
ambient water concentration should be. zero. Concentrations of
this pollutant estimated to resultfiin,additional lifetime cancer
risks at risk; levels'of 10. , 10~6r and 10 ' are
0.0019! mg/1, 0.00019 mg/1, and 0.000019 mg/1, respectively.
With respect to treatment in POTW, ', laboratory studies indicate
that this pollutant is not'amenable!to treatment via biochemical
oxidation. , :,
Naphthalene (55). Naphthalene is an aromatic hydrocarbon with
two orthocondensed benzene rings and a molecular formula of
C10H8-: As such it is properly'classed as a polynuclear
aromatic hydrocarbon (PAH). . Pute naphthalene is a white
crystalline solid melting at 80C. For a solid, it has a
relatively high vapor pressure (0.05 mm Hg at 20C), and moderate
water solubility (19 mg/1 at 20C), Napthalene is the most
abundant single component of coal tar. Production is more than a
third bf a million tons annually in the U.S. About three fourths
of the production is used as feedstock for phthalic anhydride
manufacture. Most of the remaining production goes into
manufacture of insecticide, dyestuffs, pigments, and
Pharmaceuticals. Chlorinated and partially hydrogenated
naphthalenes are used in some solvent mixtures,. Naphthalene is
also used as a:moth repellent. . •
I ' ~ •
Naphthalene, ingested by humans, has reportedly caused vision
loss (cataracts), hemolytic anemia, iand occasionally, renal dis-
ease. .; These effects of naphthalene ingestion are confirmed by
1139
-------
studies on laboratory animals. No carcinogenicity studies are
available which can be used to demonstrate carcinogenic activity
for naphthalene. Naphthalene does bioconcentrate in aquatic
organisms.
For the protection of human health from the toxic properties of
naphthalene ingested through water and through contaminated
aquatic organisms, the ambient water criterion is determined to
be 143 mg/1.
Only a limited number of studies have been conducted to determine
the effects of naphthalene on aquatic organisms. The data from
those studies show only moderate toxicity.
Biochemical oxidation of many of the toxic organic pollutants has
been investigated in laboratory scale studies at concentrations
higher than would normally be expected in municipal wastewaters.
General observations relating molecular structure to ease of
degradation have been developed for all of these pollutants. The
conclusion reached by study of the limited data is that biologi-
cal treatment produces a high removal by degradation of naphtha-
lene. One recent study has shown that microorganisms can degrade
naphthalene, first to a dihydro compound, and ultimately to car-
bon dioxide and water.
Naphthalene has been detected in sewage plant effluents at con-
centrations up to 0.022 mg/1 in studies carried out by the U.S.
EPA. Influent levels were not reported. The most recent EPA
study of the behavior of toxic organics in POTW indicates that
naphthalene is approximately 61 percent removed.
Nitrobenzene (56). Nitrobenzene (CgH5NO2), also called
nitrobenzol and oil of mirbane, is a pale yellow, oily
liquid, manufactured by reacting benzene with nitric acid and
sulfuric acid. Nitrobenzene boils at 210C and has a vapor
pressure of 0.34 mm Hg at 25C. It is slightly soluble in water
(1.9 g/1 at 20C), and is miscible with most organic solvents.
Estimates of annual U.S. production vary widely, ranging from 100
to 350 thousand tons. ',
Almost the entire volume of nitrobenzene produced (97 percent) is
converted to aniline, which is used in dyes, rubber, and medici-
nals. Other uses for nitrobenzene include: solvent for organic
synthesis, metal polishes, shoe polish, and perfume. :
The toxic effects of ingested or inhaled nitrobenzene in humans
are related to its action in blood: methemoglobinemia and
cyanosis. Nitrobenzene administered orally to laboratory animals
caused degeneration of heart, kidney, and liver tissue; para-
lysis; and death. Nitrobenzene has also exhibited teratogenicity
in laboratory animals, but studies conducted to determine muta-
genicity or carcinogenicity did not reveal either of these
properties.
1140
-------
For the prevention of adverse effects due to the organoleptic
properties of nitrobenzene in water, the criterion is 0.030 mg/1.
Data ;on the behavior of nitrobenzene in POTW are not available.
However, laboratory scale studies.have been; conducted at con-
centrations higher than those expected to be found in municipal
wastewaters. ;Biochemical oxidation produced no degradation after
5, 10, and 20 days. A second study also reported no degradation
after 28 hours, using an acclimated, phenol-adapted seed culture
with nitrobenzene at 100 rag/1. Based on these limited data, and
on general observations relating molecular structure to ease of
biological oxidation, it is concluded that little or no removal
of nitrobenzene occurs during biological treatment in POTW. The
low water solubility and low vapor pressure of nitrobenzene lead
to the expectation that nitrobenzene will be removed from POTW in
the effluent and by volatilization during aerobic treatment.
2-Nitrophenol (57) . 2-Nitrophenol
called ortho-nitrophenol, is a li
manufactured commercially by hydro
with ; aqueous; sodium hydroxide. 2
has a vapor pressure of 1 mm Hg
slightly soluble in water (2.1 g/1
solvents. This phenol does not
aminoantipyrene, and therefore
nonconventional pollutant parameter
production is,5,000 to 8,000 tons.
(NO2C6H40H), also
ght yellow crystalline solid,
lysis of 2-chloro-nitrobenzene
-Nitrophenol melts at 45C and
at 49C.; 2-Nitrophenol is
at 20C) and soluble in organic
react to give a color with 4-
does not contribute to the
"Total Phenols." U.S. annual
The principal use of ortho-nitrophenol is to synthesize ortho-
aminophenol, ortho-nitroanisole, and other dyestuff intermedi-
ates. , •
The toxic effects of 2-nitrophenol on humans have not been
extensively studied. Data from :experiments with laboratory
animals indicate that exposure to this compound causes kidney and
liver; damage. Other studies indicate that the compound acts
directly on cell membranes, and inhibits certain enzyme systems
in vlitro. No information regarding potential teratogencity was
found'. Available data indicate that this compound does not pose
a mutagenic hazard to humans. Very limited data for 2-nitro-
phenol do not reveal potential carcinogenic effects.
The available data base is insufficient to establish an ambient
water criterion for protection of human health from exposure to
2-nitrophenol. No data are available on which to evaluate the
adverse effects of 2-nitrophenol on1aquatic life.
! • :
Data ion the behavior of 2-nitrophenol in POTW were not available.
However, laboratory-scale studies have been conducted at concen-
trations higher than those expecjbed to be found in municipal
wastewater. ' Biochemical oxidation using adapted cultures from
various sources produced 95 percent degradation in three to six
days in one study. Similar results were reported for other
studies. Based on these data, and, general observations relating
molecular structure to ease of biological oxidation,• it is
1141
-------
expected that 2-nitrophenol will be biochemically oxidized to a
lesser extent than domestic sewage by biological treatment in
POTW.
4-Nitrophenol (58) 4-Nitrophenol (NO2CeH4OH), also called
paranitrophenol, . is a colorless to yellowish crystalline
solid manufactured commercially by hydrolysis of 4-chloro-
nitrobenzene with aqueous sodium hydroxide. 4-Nitrophenol melts
at 114C. Vapor pressure is not cited in the usual sources. 4--
Nitrophenol is slightly soluble in water (15 g/1 at 25C) and
soluble in organic solvents. This phenol does not react to give
a color with 4-aminoantipyrene, and therefore does not contribute
to the nonconventional pollutant parameter "Total Phenols." U.S.
annual production is about 20,000 tons.
Paranitrophenol is used to prepare phenetidine, acetapheneticiine,
azo and sulfur dyes, photochemicals, and pesticides.
The toxic effects of 4-nitrophenol on humans have not been exten-
sively studied. Data from experiments with laboratory animals
indicate that exposure to this compound results in methemoglobi-
nemia, shortness of breath, and stimulation followed by
depression. Other studies indicate that the compound acts
directly on cell membranes, and inhibits certain enzyme systems
in vitro. No information regarding potential teratogenicity was
found. Available data indicate that this compound does not pose
a mutagenic hazard to humans. Very limited data for 4-
nitrophenol do not reveal potential carcinogenic effects,
although the compound has been selected by the national cancer
institute for testing under the Carcinogenic Bioassay Program.
No U.S. standards for exposure to 4-nitrophenol in ambient water
have been established.
Data on the behavior of 4-nitrophenol in a POTW are not avail-
able. However, laboratory scale studies have been conducted at
concentrations higher than those expected to be found in munici-
pal wastewaters. Biochemical oxidation using adapted cultures
from various sources produced 95 percent degradation in three to
six days in one study. Similar results were reported for other
studies. Based on these data, and on general observations
relating molecular structure to ease of biological oxidation, ,it
is concluded that complete or nearly complete removal of 4-
nitrophenol occurs during biological treatment in a POTW.
4,6-Dinitro-o-cresol (60). 4,6-Dinitro-o-cresol (DNOC) is: a
yellow crystalline solid derived from o-cresol. DNOC melts at
85.8C and has a vapor pressure of 0.000052 mm Hg at 20C. DNOC is
sparingly soluble in water (100 mg/1 at 20C), while it is readily
soluble- in alkaline aqueous solutions, ether, acetone, and
alcohol. DNOC is produced by sulfonation of o-cresol followed;by
treatment with nitric acid.
DNOC is used primarily as a blossom thinning agent on fruit trees
and as a fungicide, insecticide, and miticide on fruit trees
1142 •
-------
during the dormant season. It is highly toxic to plants in the
growing stage. DNOC is not manufactured in the U.S. as an agri-
cultural chemical. Imports have been decreasing recently with
only 30,000 Ibs being imported in 1976.
While DNOC is highly toxic to plants, it is also very toxic to
humans and is considered to be one of the more dangerous agricul-
tural' pesticides. The available literature concerning humans
indicates that DNOC may be absorbed in acutely toxic amounts
through the respiratory and gastrointestinal tracts and through
the skin, and that it accumulates in the blood. Symptoms of
poisoning include profuse sweating, thirst, loss of weight,
headache, malaise, and yellow staining to the skin, hair, sclera,
and conjunctiva.
There is no evidence to suggest that DNOC is. teratogenic, muta-
genic!, or carcinogenic. The effects of DNOC in the human due to
chronic exposure are basically the:same as those effects result-
ing from acute exposure Although DNOC is considered.a cumula-
tive ; poison in humans, cataract formation is the only chronic
effect noted in any human or experimental animal study It is
believed that DNOC accumulates in the human body and that toxic
symptoms may develop when blood levels exceed 20 mg/kg.
For the protection of human health from the toxic properties of
dinitro-o-cresol ingested through water and contaminated aquatic
organisms, the ambient water criterion is determined to be 0.0134
mg/1. If contaminated aquatic organisms alone are consumed,
excluding the consumption of water, the ambient water criterion
is determined to be 0.765 mg/1. N<3 data are available on which
to evaluate; the adverse effects of 4,6-dinitro-o-cresol
on aquatic life.
Some studies have been reported regarding the behavior of DNOC in
POTW. Biochemical oxidation of DNOC under laboratory conditions
at a concentration of 100 mg/1 produced 22 percent degradation in
3.5 hours, using acclimated phenol adapted seed cultures. In
addition, the nitro group in the number 4 (para) position seems
to impart a destabilizing effect on^the molecule. Based on these
data and general conclusions relating molecular structure to bio-
chemical oxidation, it is expected that 4,6-dinitro-o-cresol will
be biochemically oxidized to a lesser extent than domestic sewage
by biological treatment in POTW. \
N-nitrosodiphenylamine (62). N-nitrosodiphenylamine [(Cs
135)2 NNO], also called nitrous diphenylamide, is a yellow
crystalline solid manufactured by nitrosation of diphenylamine.
It melts at 66C and is insoluble in water, but soluble in several
organic solvents other than hydrocarbons. Production in the U.S.
has japproached/1,500 tons per year. The compound is used as a
retarder for rubber vulcanization and as a pesticide for control
of scorch (a fungus disease of plants).
N-nitroso compounds are acutely toxic to every animal species
tested and are also poisonous to humans. N-nitrosodiphenylamine
: ; 1143:
-------
toxicity in adult rats lies in the mid range of the values for 60
N-nitroso compounds tested. Liver damage is the principal toxic
effect. N-nitrosodiphenylamine, unlike many other N-nitroso-
amines, does not show mutagenic activity. N-nitrosodiphenylamine
has been reported by several investigations to be non-carcino-
genic. However in a recent study by the National Cancer
Institute, the compound was found to induce a significant
incidence of urinary bladder tumors in both male and female rats.
Few urinary bladder tumors were observed in mice, although there
was a high incidence of non-neoplastic bladder lesions. In
addition, N-nitrosodipheylamine is capable of trans-nitrosation
and could thereby convert other amines to carcinogenic N-
nitrosoamines. Sixty-seven of 87 N-nitrosoamines studied were
reported to have carcinogenic activity. No water quality
criterion have been proposed for N-nitrosodiphenylamine.
No data are available on the behavior of N-nitrosodiphenylamine
in a POTW. Biochemical oxidation of many of the toxic organic
pollutants have been investigated, at least in laboratory scale
studies, at concentrations higher than those expected to be con-
tained in most municipal wastewaters. General observations have
been developed relating molecular structure to ease of degrada-
tion for all the toxic organic pollutants. The conclusion
reached by study of the limited data is that biological treatment
produces little or no removal of N-nitrosodiphenylamine in a
POTW. No information is available regarding possible interfer-
ence by N-nitrosodiphenylamine in POTW processes, or on the
possible detrimental effect on sludge used to amend soils in
which crops are grown. However, no interference or detrimental
effects are expected because N-nitroso compounds are widely dis-
tributed in the soil and water environment, at low concentra-
tions, as a result of microbial action on nitrates and
nitrosatable compounds.
N-nitrosodi-n-propylamine (63). No physical properties or usage
data could be found for this pollutant. It can be formed from
the interaction of nitrite with secondary and tertiary amines :
The available data for this pollutant indicate that acute tox-
icity to freshwater aquatic life occurs at concentrations as low
as 5.85 mg/1. No data are available concerning this pollutant's
chronic toxicity to freshwater and saltwater aquatic life. The
available data indicate that acute toxicity to saltwater aquatic
life occurs at concentrations as low as 3,300 mg/1.
For the maximum protection of human health from the potential
carcinogenic effects due to exposure to this pollutant, through
the ingestion of contaminatd water and aquatic organisms, the
ambient water concentration should be zero. Concentrations of
this pollutant estimated to result in additional lifetime cander
risks of risk levels of 10~ , 10 , and 10~' are
0.00016 mg/1, 0.000016 mg/1, and 0.0000016 mg/1, respectively.
1144
-------
With : r.espect to treatment in POTW, ; laboratory studies indicate
that jthis pollutant is not amenable'to treatment via biochemical
oxidation.
Pentachlorophenol (64). Pentachlorophenol (CgClsOH) is a
white crystalline solid produced commercially by chlorination of
phenol or polychlorophenols. U.S. annual production is in excess
of 20,000 tons. Pentachlorophenol.melts at 190C and is slightly
soluble in water (14 mg/1). Pentachlorophenol is not detected by
the 4-aminoantipyrene method and so does not contribute to the
nonconventional pollutant parameter "Total Phenols".
! |
Pentachlorophenol is a bactericide'and fungicide and is used for
preservation of wood and wood products. .It is competitive with
creosote in that application* It is also used as a preservative
in glues, starches, and photographic papers. It is an effective
algicide and herbicide. ;
Although data are available on the human toxicity effects of pen-
tachlorophenol, interpretation of data is frequently uncertain.
Occupational exposure observations must be examined carefully
because exposure to pentachlorophenol is frequently accompanied
by exposure to other wood preservatives Additionally, experi-
mental results and occupational exposure observations must be
examined carefully to make sure that observed effects are pro-
duced by the pentachlorophenol itself and not by the by-products
which usually contaminate pentachlorophenol.
Acute and chronic toxic effects of pentachlorophenol in humans
are similar; muscle weakness, headache, loss of appetite,
abdominal pain, weight loss, and irritation of skin, eyes, and
respiratory tract. Available literature indicates that penta-
chlorophenol does not accumulate in body tissues to any signifi-
cant extent. Studies on laboratory animals of distribution of
the compound in body tissues showed the highest levels of penta-
chlorophenol in liver, kidney, and intestine, while the lowest
levels were in brain, fatr muscle, and bone.
Toxic• effects of pentachlorophenol;in aquatic organisms are much
greater at pH 6 where this weak acid is predominantly in the
undissociated form than at pH 9 where the ionic form predomi-
nates. Similar results were observed in mammals where oral
lethal doses:of pentachlorophenol were lower when the compound
was administered in. hydrocarbon solvents (un-ionized form) than
when jit was•administered as the sodium salt (ionized form) in
water. , • |
There appear to be no significant teratogenic, mutagenic, or car-
cinogenic effects of pentachlorophenol.
For the protection of human health from the toxic properties of
pentachlorophenol ingested through water and through contaminated
aquatic organisms, the ambient water quality criterion is deter-
• mined to be 0.140 mg/1. /
1145
-------
Some data are available on the behavior of pentachlorophenol in a
POTW. Pentachlorophenol has been found in the influent to: a
POTW. In a study of one POTW the mean removal was 59 percent
over a seven day period. Trickling filters removed 44 percent at
the influent pentachlorophenol, suggesting that biological degra-
dation occurs. The same report compared removal of pentachloro-
phenol at the same plant and two additional POTW facilities on, a
later date and obtained values of 4.4, 19.5 and 28.6 percent
removal, the last value being for the plant which was 59 percent
removal in the original study. Influent concentrations of penta-
chlorophenol ranged from 0.0014 to 0. 0046 mg/1 . Other studies?
including the general review of data .relating molecular structure
to biological oxidation, indicate that pentachlorophenol is noh
removed by biological treatment processes in a POTW. Anaerobic
digestion processes are inhibited by 0.4 mg/1 pentachlorophenol.
The most recent EPA study of the behavior of toxic organics in a
POTW indicates that pentachlorophenol is 52 percent removed. :
The low water solubility and low volatility of pentachlorophenol
lead to the expectation that most of the compound will remain in
the sludge in a POTW. The effect on plants -grown on land treated
with pentachlorophenol-containing sludge is unpredictable. Lab-
oratory studies show that this compound affects crop germination
at 5.4 mg/1. However, photodecomposition of pentachlorophenol
occurs in sunlight. The effects of the various breakdown prod-
ucts which may remain in the soil was not found in the
literature.
Phenol (65) . Phenol, also called hydroxybenzene and carbolic
acid, is a clear, colorless, hygroscopic, deliquescent, crystal
line solid at room temperature. Its melting point is 43C and its
vapor pressure at room temperature is 0.35 mm Hg. It is very
soluble in water (67 gm/1 at. 16C) and can be dissolved in ben-
zene, oils, and petroleum solids. Its formula is
Although a small percent of the annual production of phenol is
derived from coal tar as a naturally occur ing product, most of
the phenol is synthesized. Two of the methods are fusion of ben-
zene sulfonate with sodium hydroxide, and oxidation of cumene
followed by cleavage with a catalyst. Annual production in the
U.S. is in excess of one million tons. Phenol is generated dur-
ing distillation of wood and the microbiological decomposition of
organic matter in the mammalian intestinal tract. ;
Phenol is used as a disinfectant, in the manufacture of resins,
dyestuffs, and in Pharmaceuticals,, and in the photo processing
industry. In this discussion, phenol is the specific compound
which is separated by methylene chloride extraction of an
acidified sample and identified and quantified by GC/MS. Phenol
also contributes to the "Total Phenols," discussed elsewhere
which are determined by the 4-AAP colorimetric method.
Phenol exhibits acute and sub-acute toxicity in humans and
laboratory animals. Acute oral doses of phenol in humans cause
sudden collapse and unconsciousness by its action on the central
1146
-------
nervous system. Death occurs by respiratory arrest. Sub-acute
oral |doses in mammals are rapidly 'absorbed and quickly distri-
buted; to various organs/ then cleared from the body by urinary
excretion and.metabolism. Long term exposure by drinking phenol
contaminated water has resulted" in statistically significant
increase in. reported cases of diarrhea, mouth sores, and burning
of the mouth.; in laboratory'animals, long term oral administra-
tion ;at low levels produced slight |liver and kidney damage. No
reports wereifound regarding-carcihogenicity of phenol adminis-
tered! orally --.all carciriogeriicity'studies were skin test. •
For the protection of human health from phenol ingested through
water: and through contaminated aquatic organisms, the concen-
tration in:water .should not exceed 3.4 mg/1.
Fish:iand other aquatic organisms demonstrated a wide range of
sensitivities'to phenol concentration. However, acute toxicity
values were iat moderate levels when compared to other toxic
organic pollutants; ; ; ' '
' ' ' ' " ' - '..• ' . '' t '":".. ' "r ' •'
Data ihave. .been:developed on the behavior of phenol in a POTW.
Phenol is biodegradable by biota present in a POTW. The ability
of a POTW to treat phenol-bearing influents depends upon acclima-
tion of the Ipiota and the constancy of the phenol concentration.
It 'appears ttiat,an induction period is required to build up the
population Of organisms'which can degrade phenol. Too large a
concentration will-result in>upset:or pass though in the POTW,
but" |^he specific level causing upset depends on the immediate
past fhistory,-of phenol "concentrations in the influent. .Phenol
levels ,as high as 200 "riig/1-have been treated with 95 percent
removal in a POTW,'but moire of'less continuous presence of phenol
is , necessary>to maintain .the population of microorganisms that
degrade "phenol. 1--".V- '-'• '"'";" " ' ! : '
Phenol which is not degraded is expected to pass through the POTW
because of its vefy high 'water solubility. However, in a POTW
where .chlorination is practiced for disinfection of the POTW
efflu>bnt, chlorination ,of phenol may occur. The products of that
reaction may be : toxic, pollutants. ' . '•'
The .'EPA hasl developed delta on influent and effluent concentra-
tions! of total phenols -'in a study of 103 POTW facilities. How-
ever,! the * analytical procedure was the 4-AAP method mentioned
earlier and ,not the' GC/MS; method specifically for phenol.
Discussion of the study, which oficourse. includes phenol, is
presented under the pollutant heading "Total Phenols." The most
recent study by EPA,on the"behavior of toxic organics in a POTW
indicates that phenol is 96 percent removed.
Phthalate Esters (66-71).
Phthalic acid, or 1,2-benzene
dicarboxylic racid, is one of three isomeric benzenedicarboxylic
acids produce^ by the' chertiical industry. The other two isomeric
forms1 are called isophthalic'and terephthalic acids. The formula
for i all three acids is C6H4(COOH)2. Some esters of
phthalic acid are designated as toxic pollutants. They will be
-------
discussed as a group here, and specific properties of individual
phthalate esters will be discussed afterwards.
Phthalic acid esters are manufactured in the U.S. at an annual
rate in excess of one billion pounds. They are used as plasti-
cizers — primarily in the production of polyvinyl chloride
(PVC) resins. The most widely used phthalate plasticizer
is bis (2-ethylhexyl) phthalate (66) which accounts for nearly
one-third of the phthalate esters produced. This
particular ester is commonly referred to as dioctyl phthalate
(DOP) and should not be confused with one of the less used
esters, di-n-octyl phthalate (69), which is also used as
a plasticizer. In addition to these two isomeric dioctyl
phthalates, four other esters, also used primarily as
plasticizers, are designated as toxic pollutants. They
are: butyl benzyl phthalate (67), di-n-butyl phthalate
(68), diethyl phthalate (70), and dimethyl phthalate (71).
Industrially, phthalate esters are prepared from phthalic anhy-
dride and the specific alcohol to form the ester. Some evidence
is available suggesting that phthalic acid esters also may be
synthesized by certain plant and animal tissues. The extent to
which this occurs in nature is not known.
Phthalate esters used as plasticizers can be present in concen-
trations up to 60 percent of the total weight of the PVC plastic.
The plasticizer is not linked by primary chemical bonds to the
PVC resin. Rather, it is locked into the structure of intermesh-
ing polymer molecules and held by van der Waals forces. The
result is that the plasticizer is easily extracted. Plasticizers
are responsible for the odor associated with new plastic toys or
flexible sheet that has been contained in a sealed package.
Although the phthalate esters are not soluble or are only very
slightly soluble in water, they do migrate into aqueous solutions
placed in contact with the plastic. Thus, industrial facilities
with tank linings, .wire and cable coverings, tubing, and sheet
flooring of PVC are expected to discharge some phthalate esters
in their raw waste. In addition to their use as plasticizers,
phthalate esters are used in lubricating oils and pesticide car-
riers. These also can contribute to industrial discharge of
phthalate esters.
From the accumulated data on acute toxicity in animals, phtha-
late esters may be considered as having a rather low order of
toxicity. Human toxicity data are limited. It is thought that
the toxic effect of the esters is most likely due to one of the
metabolic products, in particular the monoester. Oral acute tox-
icity in animals is greater for the lower molecular weight esters
than for the higher molecular weight esters.
Orally administered phthalate esters generally produced enlarging
of liver and kidney, and atrophy of testes in laboratory animals.
Specific esters produced enlargement of heart and brain, spleen-
itis, and degeneration of central nervous system tissue.
1148 ;
-------
Subacute doses administered orally to laboratory animals produced
some decrease in growth arid degeneration of the testes. Chronic
studies in animals showed similar effects to those found in acute
and subacute< studies, but to a much lower degree. The same
organs were enlarged, -but pathological changes were not usually
detected. . '..'''
A recent study of several phthalic esters produced suggestive but
not conclusive evidence that dimethyl and diethyl phthalates have
a cancer liability. Only four of the six toxic pollutant esters
were included in the study. Phthalate esters do bioconcentrate
in fish. The factors, weighted;for relative consumption of
various aquatic and marine food groups, -are used to calculate
ambient water quality criteria for four phthalate esters. The
values are included in the discussion of the specific esters.
Studies of toxicity of phthalate esters in freshwater and salt
water'organisms are scarce;. A chronic toxicity test with bis(2-
ethylhexyl) phthalate showed that significant reproductive
impairment occurred at 0,.003 mg/1 in the freshwater crustacean,
Daphnia magna. In acute toxicityistudies, saltwater fish and
organisms showed sensitivity differences of up to eight-fold to
butyl;benzyl, diethyl, and dimethyl phthalates. This suggests
that isach ester must be evaluated individually for toxic effects.
The biochemical oxidation of many of the toxic organic pollutants
has been investigated in laboratory scale studies at concentra-
tions higher than would normally be expected in municipal
wastewaters. Three of the phthalate esters were studed. Bis(2-
ethylhexyl) phthalate was found to be degraded slightly or not at
all and its removal by biological treatment in a POTW is expected
to be slight or zero. Di-n-butyl phthalate and diethyl phthalate
were degraded1to a moderate degree and their removal by biologi-
cal treatment in a POTW is expected to occur to a moderate
degree. Using these data and other observations relating molecu-
lar structure to ease of biochemical degradation of other toxic
organic pollutants, the conclusion was reached that butyl benzyl
phthalate and dimethyl phthalate would be removed in a POTW to a
moderate degree by biological treatment. On the same basis, it
was concluded that di-n-octyl phthalate would be removed to a
slight degree or not at all. An EPA study of seven POTW facili-
ties ! revealed that for all but di-n-octyl phthalate, which was
not Istudied, removals ranged from; 62 to 87 percent. The most
recent EPA study of the behavior of toxic organics in POTW
indicates removals ranging from 48 percent to 81 percent for the
six phthalate; esters designated as toxic pollutants.
No information was found on possible interference with POTW oper-
ation or the; possible effects on slludge by the phthalate esters.
The water insoluble phthalate esters — butyl benzyl and di-\n-
octyl phthalate — would tend to remain in sludge, whereas the
other four toxic pollutant phthalate esters with water solubili-
ties ranging from 50 mg/1 to 4.5 mg/1 would probably pass through
into :the POTW effluent.
i i ...
1 : 1149! ;
-------
Bis(2-ethylhexyl) Phthdlate
6) . In addition to the general
remarks and discussion on phthalate esters, specific information
on bis(2-ethylhexyl) phthalate is provided. Little information
is available about the physical properties of bis(2-ethylhexyl)
phthalate. It is a liquid boiling at 387C at 5mm Hg and is
insoluble in water. Its formula is
CgH^COOCgHiy) . This toxic pollutant format
constitutes about one-third of the phthalate ester production in
the U.S. It is commonly referred to as dioctyl phthalate, or
DOP, in the plastics industry where it is the most extensively
used compound for the plasticization of polyvinyl chloride (PVC).
Bis{2-ethylhexyl) phthalate has been approved by the FDA for use
in plastics in contact with food. Therefore, it may be found in
wastewaters coming in contact with discarded plastic food
wrappers as well as the PVC films and shapes normally found in
industrial plants. This toxic pollutant is-also a commonly used
organic diffusion pump oil, where its low vapor pressure is an
advantage.
For the protection of human health from the toxic properties . of
bis(2-ethylhexyl) phthalate ingested through water and through
contaminated aquatic organisms, the ambient water quality criter-
ion is determined to be 15 mg/1. If contaminated aquatic organ-
isms alone are consumed, excluding the consumption of water, the
ambient water criteria is determined to be 50 mg/1.
Biochemical oxidation of this toxic pollutant has'been studied^ on
a laboratory scale at concentrations higher than would normally
be expected in municipal wastewater. In fresh water with a non-
acclimated seed culture no biochemical oxidation was observed
after 5, 10, and 2,0 days. However, with an acclimated seed cul-
ture, biological oxidation occured to the extents of 13, 0, 6,
and 23 percent of theoretical after 5, 10, 15 and 20 days,
respectively. Bis(2-ethylhexyl) phthalate concentrations were 3
to 10 mg/1. Little or no removal of bis(2-ethylhexyl) phthalate
by biological treatment in a POTW is expected. The most recent
EPA study of the behavior of toxic organics in a POTW indicates
that bis(2-ethylhexyl) phthalate is 62 percent removed.
Butyl Benzyl Phthalate (67) . In addition to the general remarks
and discussion on phthalate esters, specific information on butyl
benzyl phthalate is provided. No information was found on the
physical properties of this compound.
Butyl benzyl phthalate is used as a plasticizer for PVC. Two
special applications differentiate it from other phthalate
esters. It is approved by the U.S. FDA for food contact .in
wrappers, and containers; and it is the industry standard for
plasticization of vinyl flooring because it provides stain
resistance.
No ambient water quality criterion is proposed for butyl benzyl
phthalate.
1150
-------
Butyl benzyl: phthalate resmoval in a POTW by biological treatment
is expected to occur to a moderate degree. The most recent EPA
study of the,behavior of toxic oroanics in POTWs indicates that
butyl benzyl phthalate is 59 perce.it removed.
Di-n-butyl Phthalate (68}.. In .addition to the general remarks
and discussion on phthalat?e esters, 'specific information on di-n-
butyl' phthalate (DBP) isj provided. DBF is a colorless, oil
liquid, boiling at 340C. t Its water solubility, at room tempera-
ture is reported to be 0.4 g/1 and 4.5 g/1 in two different chem-
istry! handbooks. The/ formul4 for DBP, 05114
(COOC,4H)2 is the same sis for its \ isomer, di-isobiityl
phthalate. DBP production /is 1,to 2 percent of 'total U.S.
phthalate ester production'. / i :...'..'
/ ' i .
i • • i i • -
Dibutyl phthalate is usfed to a limited extent as a plasticizer
for polyvinyl chloride' (PVC) . It is not approved for contact
with food. It is used;in ,liquid lipsticks and as a diluent for
polysulfide dental impression materials. DBP is used as a plas-
ticizer for nitrocellulose in making gun powder, and as a fuel in
solid; propellants for rockets. Further uses are insecticides,
safety glass manufacture, textile .lubricating agents, printing
inks, adhesives, paper cocitings, an4 resin solvents.
For protection of human health from the toxic properties of
dibutyl phthalate ingested through water and through contami-
nated: aquatic organisms, the ambient water quality criterion is
determined to be 34 mg/1. If contaminated aquatic organisms
alone are consumed, excluding the consumption of water, the
ambient water:criterion is 154 mg/1.
Biochemical oxidation of this toxic pollutant has been studied on
a laboratory scale at concentrations higher than would normally
be expected in municipal wastewaters. Biochemical oxidation of
35, 43, and 45 percent of theoretical oxidation"were obtained
after 5, 10, and 20 days, respectively, using sewage
microorganisms as an unacclimated seed culture. \
Biological treatment in a POTW is expected to remove ^dijn
phthalate to a moderate degree. The most recent EPA study' 6E the
behavior of toxic organics in a PQTW indicates that di-n-butyl
phthalate is 48 percent removed.
Di-n-octyl phthalate (69). In addition to the general remarks
and discussion on phthalate esters, specific information on di-n-
octyl\ phthalate is provided. Di-n-octyl phthalate is not to be
confused with the isomeric bis (2-et;hylhexyl) phthalate which is
commonly referred to in the plastics industry as OOP. Di-n-octyl
phthalate is a liquid which boils at 220C at 5 mm Hg. It is
insoluble in water. . It;s molecular formula is
CsH4 ; (COQCQRij)2' Its production
constitutes about 1 percent of all phthalate ester
production in;the U.S. ' , ,
1151
-------
Industrially/ di-n-octyl phthalate is used to plasticize poly-
vinyl chloride (PVC) resins. ;
No ambient water quality criterion is proposed for di-n-octyl
phthalate.
Biological treatment in a POTW is expected to lead to little or
no removal of di-n-octyl phthalate. The most recent EPA study, of
the behavior of toxic organics in POTWs indicates that di-n-octyl
phthalate is 81 percent removed.
Diethyl phthalate (70). In addition to the general remarks and
discussion on phthalate esters, specific information on diethyl
phthalate is provided. Diethyl phthalate, or DEP, is a colorless
liquid boiling at 296C, . and is insoluble in water. Its molecu-
lar formula is C^S.^(COQC2^s)2' Production of
diethyl phthalate constitutes about 1.5 percent of phthalate
ester production in the U.S.
Diethyl phthalate is approved for use in plastic food containers
by the U.S. FDA. In addition to its use as a polyyinyl chloride
(PVC) plasticizer, DEP is used to plasticize cellulose nitrate
for gun powder, to dilute polysulfide dental impression materi-
als, and as an accelerator for dyeing triacetate fibers. An
additional use which would contribute to its wide distribution in
the environment is as an approved special denaturant for ethyl
alcohol. The alcohol-containing products for which DEP is an
approved denaturant include a wide range of personal care , items
such as bath preparations, bay rum, colognes, hair preparations,
face and hand creams, perfumes and toilet soaps. Additionally,
this denaturant is approved for use in biocides, cleaning solu-
tions, disinfectants, insecticides, fungicides, and room deoder-
ants which have ethyl alcohol as part of the formulation. it is
expected, therefore, that people and buildings would have some
surface loading of this toxic pollutant which would find its way
into raw wastewaters.
For the protection of-human health .from the toxic properties of
diethyl phthalate ingested through water and through contaminated
aquatic organisms, the ambient water quality criterion is deter-
mined to be 350 mg/1. If contaminated aquatic organisms alone
are consumed, excluding the consumption of water, the ambient
water criterion is 1,800 mg/1.
Biochemical oxidation of this toxic pollutant has been studied on
a laboratory scale at concentrations higher than would normally
be expected in municipal wastewaters. Biochemical oxidation of
79r 84, and 89 percent of theoretical was observed after 5, 15,
and 20 days respectively. Biological treatment in a POTW is
expected to lead to a moderate degree of removal of diethyl
phthalate. The most recent EPA study of the behavior of toxic
organics in POTWs indicates that diethyl phthalate is 74 percent
removed.
1152
-------
Polynuclear Aromatic Hydrocarbons (72-84). The polynuclear aro-
matic hydrocarbons (PAH) selected as toxic pollutants are a group
of 13;compounds consisting of substituted and unsubstituted poly-
cyclic: aromatic rings. The general ;class of PAH includes hetero-
cyclies, but none of those were selected as toxic pollutants. PAH
are formed as the result of incomplete combustion when organic
compounds are burned with insufficient oxygenJ PAH are found in
coke oven emissions, vehicular emissions, and volatile products
of oil and gas burning. The compounds chosen as toxic pollutants
are listed with their structural formula and melting point
(m.p.). All are insoluble in water.
72 Benzo(a)anthracene (1,2-benzanthracene)
m.p. 162C
73 Benzo(a)pyrene (3,4-benzopyrene)
m.p. 176C
174 3,4-Benzofluoranthene
m.p. 168C
75 Benzo(k)fluoranthene (11,,12-benzofluoranthene)
m.p. 217C
,16 Chrysene (1,2-benzphenanthrene)
m.p. 255C
77 Acenaphthylene
m.p. 92C
1153
-------
78 Anthracene
m.p. 216C
79 Benzo(ghi)perylene (1,12-benzoperylene)
m.p. not reported
80 Fluorene (alpha-diphenylenemethane)
m.p. 116C
81
Phenanthrene
m.p. 101C
82
83
Dibenzo(a,h)anthracene (1,2,5,6-
dibenzoanthracene)
Indeno (1,2,3-cd)pyrene
(2,3-o-phenylenepyrene)
84 Pyrene
m.p. 269C
m.p. not available
m.p. 156C
Some of these toxic pollutants have commercial or industrial
uses. Benzo(a)anthracene, benzo(a)pyrene, chrysene, anthracene,
dibenzo(arh)anthracene, and pyrene are all used as antioxidants.
Chrysene, acenaphthylene, anthracene, fluorene, phenanthrene, and
py^ne are all used for synthesis of dyestuffs or other organic
charu^-cals. 3,4-Benzofluoranthrene, benzo(k)fluoranthene, benzo
(ghi)perylene, and indeno (l,2,3-cd)pyrene have no known indus-
1154
-------
trial; uses, according to the results of a recent literature
search. • j • : ' "
! ! .... I • ' . . -
Several of the PAH toxic pollutants 'are found in smoked meats, in
smoke flavoring mixtures, :in vegetable oils, and in coffee. Con-
sequently, they are also found in many drinking water supplies.
The wide distribution of these pollutants in complex mixtures
with the many other PAHs which have not been designated as toxic
pollutants results in exposures by |humans that cannot be associ-
ated with specific individual compounds.
The screening and verification analysis procedures used for the
toxic organic pollutants are based on gas chromatography (GC).
Three ipairs of the PAH have identical elution times on the column
specified in the protocol, which means that -the parameters of the
pair are not differentiated. For [these three pairs [anthracene
(78) - phenarithrene (81); 3,4-benzofluoranthene (74) - benzo(k)-
fluoranthene (.75); and benzo(a)anthracene (72) - chrysene (76)]
results are obtained and reported as "either-or." Either both
are present in the combined concentration reported, or one is
present in the concentration reported.
There are no studies to document the possible carcinogenic risks
to humans by direct ingestion. Air pollution studies indicate an
excess of lung cancer mortality among workers exposed to large
amounts of PAH containing materials ;such as coal gas, tars, and
coke-oven emissions. However, no definite proof exists that the
PAH present in these materials are responsible for the cancers
observed. •• . •. :
j • : ' ' I • ' :
Animal studies have demonstrated the toxicity of PAH by oral and
dermal, administration. The carcinogenicity of PAH has been
traced to formation of PAH metabolites which, in turn, lead to
tumor formation. Because the levels of PAH which induce cancer
are very low, little work has been done on other health hazards
resulting from exposure. It has been established in animal
studies that tissue damage and systemic toxicity can result from
exposure to non-carcinogenic PAH compounds.
Because there were no studies available regarding chronic oral
exposures to PAH mixtures,, proposed^water quality criteria were
derived using data on exposure to a single compound. Two studies
were selected., one involving benzp(a)pyrene ingestion and one
involving dibenzo(a,h)anthracene ingestion. Both are known
animal carcinogens. .;
For the maximum protection of human health from the potential
carcinogenic effects of exposure to polynuclear aromatic hydro-
carbons (PAH) through ingestion of water and contaminated aquatic
organisms, the ambient water concentration is zero. Concentra-
tions of PAH estimated to result in additional risk of 1 in
100,00;0 were derived by the EPA and the Agency is considering
setting criteria at an interim target risk level in the .range of
10~ , 10~ , or 10~^ with corresponding criteria of
0.000000097 nig/1 r 0.00000097 mfl/1, and 0.0000097 mg/1,
respectively. , ' \
'• i
1155
-------
No standard toxj.city tests have been reported for freshwater
saltwater organisms and any of the 13 PAH discussed here.
or
The behavior of PAH in a POTW has received only a limited amount
of study. It is reported that up to 90 percent of PAH entering a
POTW will be retained in the sludge generated by conventional
sewage treatment processes. Some of the PAH can inhibit bac-
terial growth when they are present at concentrations as low as
0,018 mg/1. Biological treatment in activated sludge units has
been shown to reduce the concentration of phenanthrene and
anthracene to some extent; however, a study of biochemical oxi-
dation of fluorene on a laboratory scale showed no degradation
after 5, 10, and 20 days. On the basis of that study and studies
of other toxic organic'pollutants, some general observations were
made relating molecular structure to ease of degradation. Those
observations lead to the conclusion that, the 13 PAH selected to
represent that group as toxic pollutants will be removed only
slightly or not at all by biological treatment methods in a POTW.
Based on their water insolubility and tendency to attach to sedi-
ment particles very little pass through of PAH to POTW effluent
is expected The most recent EPA study of the behavior of toxic
organics in POTW indicates that removals for five of the 13 -PAH
range from 40 percent to 83 percent. :
No data are available at this time to support any conclusions
about contamination of land by PAH on which sewage sludge
containing PAH is spread.
Tetrachloroethylene (85). Tetrachloroethylene
(CCl2CCl2)r also called perchloroethylene and PCE, is a
colorless, nonflammable liquid produced mainly by two methods —
chlorination and pyrolysis of ethane and propane, and
oxychlorination of dichloro ethane. U.S. annual production
exceeds 300,000 tons. PCE boils at 121C and has a vapor pressure
of 19 mm Hg at 20C. It is insoluble in water but soluble in
organic solvents.
Approximately two-thirds of the U.S. production of PCE is used
for dry cleaning. Textile processing and metal degreasing, in
equal amounts consume about one-quarter of the U.S. production.
The principal toxic effect of PCE on humans is central nervous
system depression when the compound is inhaled. Headache,
fatigue, sleepiness, dizziness, and sensations of intoxication
are reported. Severity of effects increases with vapor concen-
tration. High integrated exposure (concentration times duration)
produces kidney and liver damage. Very limited data on ,PCE
ingested by laboratory animals indicate liver damage occurs when
PCE is administered by that route. PCE tends to distribute: to
fat in mammalian bodies.
One report found in the literature suggests, but does not con-
clude, that PCE is teratogenic. PCE has been demonstrated to be
a liver carcinogen in B6C3-P1 mice. :
1156
-------
For the maximum protection of human health from the potential
carcinogenic effects of exposure to', tetrachlorethylene through
ingestion of water and contaminated aquatic organisms, the ambi-
ent water concentration should b0 zero. Concentrations of
tetrachloroethylene estimsitgd to result in additional lifetime
cancer risk levels of 10" ,
10'
and 10
•o
are
0.000020 mg/1, 0.00020 mg/1, and 0.0020 mg/1, respectively.
Many of the toxic organic pollutants have been investigated, at
least in laboratory scale studies, at concentrations higher than
those 'expected to be contained by most municipal wastewaters.
General observations have been developed relating molecular
structure to ease of degradation for all of the toxic organic
pollutants. The conclusions reached by the study of the limited
data is that biological treatment produces a moderate removal of
PCE in a POTW ,by degradation. No information was found to indi
cate that PCE accumulates in the sludge, but some PCE is expected
to be adsorbed onto settling particles. Some PCE is expected to
be volatilized in aerobic treatment processes and little, if any,
is expected to pass through into the effluent from the POTW. The
most re?cent EPA study of the behavior of toxic organics in POTWs
indicates that 'PCE is 81 percent removed.
Toluene (86).
86). Toluene is a clear, colorless liquid with a
benzenes-like odor. It is a naturally occuring compound derived
primarily from petroleum or petrochemical processes. Some
toluene is obtained from the manufacture of metallurgical coke.
Toluene is also 'referred to; as totuoL, methylbenzene, methacide,
and phenylmethane. It is an aromatic hydrocarbon with the
formula C6H5CH3. It boils at 111C and has a vapor
pressure of 30 mm Hg at room temperature. The water solubility
of toluene is 535 mg/1, and it is miscible with a variety of
organic; solvents. Annual production; of toluene in the U.S. is
greater than two million metric tons'. Approximately two-thirds
of the toluene is converted to benzene and the remaining 30
percent is divided approximately; equally into chemical
manufacture, and use as a paint solvent and aviation gasoline
additive. An estimated 5,000 metric tons is discharged to the
environment anually as a constituent in wastewater.
Most data on the effects of toluene in human and other mammals
have been based; on inhalation exposurfe or dermal contact studies.
There appear to be no reports of oral administration of toluene
to human subjects. A long term toxicity study on female rats
revealed no adverse effects on growth, mortality, appearance and
behavior, organ to body weight ratios, blood-urea nitrogen
levels, bone marrow counts,, peripheral blood counts, or morphol-
ogy of major organs. The effects of;inhaled toluene on the cen-
tral nervous system, both at high and low concentrations, have
been studied in humans and animals. However, ingested toluene is
expected to be handled differently'. by the body because it is
absorbed more slowly and must first pass through the liver before
reaching the nervous system,; Toluen^ is extensively and rapidly
metabolized in the liver. One of th^ principal metabolic- prod-
1157
-------
ucts of toluene is benzole acid, which itself seems to have
little potential to produce tissue injury.
Toluene does not appear to be teratogenic in laboratory animals
or man. Nor is there any conclusive evidence that toluene is
mutagenic. Toluene has not been demonstrated to be positive in
any in vitro mutagenicity or carcinogenicity bioassay system, nor
to be carcinogenic in animals or man.
Toluene has been found in fish caught in harbor waters in the
vicinity of petroleum and petrochemical plants. Bioconcentration
studies have not been conducted, but bioconcentration factors
have been calculated on the basis of the octanol-water partition
coefficient.
For the protection of human health from the toxic properties ; of
toluene ingested through water and through contaminated aquatic
organisms, the ambient water criterion is determined to be 14.3
mg/1. If contaminated aquatic organisms alone are consumed
excluding the consumption of water, the ambient water criterion
is 424 mg/1. Available.data show that the adverse effects ' on
aquatic life occur at concentrations as low as 5 mg/1.
Acute toxicity tests have been conducted with toluene and a
variety of freshwater fish and Daphnia magna. The latter appears
to be significantly more resistant than fish. No test results
have been reported for the chronic effects of toluene on
freshwater fish or invertebrate species.
The biochemical oxidation of many of the toxic pollutants has
been investigated in laboratory scale studies at concentrations
greater than those.expected to be contained by most municipal
wastewaters. At toluene concentrations ranging from 3 to 250
mg/1 biochemical oxidation proceeded to 50 percent of theoretical
or greater. The time period varied from a few hours to 20 days
depending on whether or not the seed culture was acclimated.
Phenol adapted acclimated seed cultures gave the most rapid and
extensive biochemical oxidation.
Based on study of the limited data, it is expected that toluene
will be biochemically oxidized to a lesser extent than domestic
sewage by biological treatment in a POTW. The volatility and
relatively low water solubility of toluene lead to the expecta-
tion that aeration processes will remove significant quantities
of toluene from the POTW. The EPA studied toluene removal1 in
seven POTW facilities. The removals ranged from 40 to 100
percent Sludge concentrations of toluene ranged from 54 x
10"^ to 1.85 mg/1. The most recent EPA study of the;
behavior ^of toxic organics in a POTW indicates that toluene is
90 percent removed. !
Trichloroethylene (87). Trichloroethylene (1,1,2-trichloroethyl-
ene or TCE) is a clear, colorless liquid boiling at 87C. It; has
a vapor pressure of 77 mm Hg at room temperature and is slightly
soluble in water (1 g/1). U.S. production is greater than 0.25
1158
-------
million metric tons annually. It is produced from tetrachloro-
ethanejby treatment with lime in the presence of water.
TCE isiused for vapor phase degreasing of metal parts, cleaning
and drying electronic components, as a solvent for paints, as a
refrigerant, for extraction of oils, fats, and waxes, and for dry
cleaning. Its widespread use and relatively high volatility
result I in detectable levels in many parts of the environment.
Data on the effects produced by ingested TCE are limited* Most
studies have been directed at inhalation exposure. Nervous sys-
tem disorders and liver damage are frequent results of inhalation
exposure. In the short term exposures, TCE acts as a central
nervous system depressant — it was used as an anesthetic before
its other long term effects were defined.
TCE has been shown to induce transformation in a highly sensitive
in vitro Fischer rat embryo cell system (F1706) that is used for
identifying carcinogens. Severe and persistent toxicity to the
liver ;was recently demonstrated when TCE was shown to produce
carcinoma of the liver in mouse strain B6C3F1 One systematic
study of TCE exposure and the incidence of human cancer was based
on 518 men exposed to TCE. The authors of that study concluded
that although . the cancer risk to man cannot be ruled out,
exposure to low levels of TCE probably does not present a
very serious and general cancer hazard.
TCE is ;bioconcentrated in aquatic species, making the consumption
of such species by humans a significant source of TCE. For the
protection of 1 human health from £he potential carcinogenic
effects of exposure to trichloroethylene through ingestion of
water and contaminated aquatic organisms, the ambient water con-
centration . is zero. Concentrations of : trichloroethylene
estimated to result in additional lifetime cancer risks of
10~7, 10~6, and 10~5 are 0.00027 mg/1, 0.0027 mg/1,
and 0.027 mg/1, respectively. If contaminated aquatic organisms
alone 'are consumed excluding the consumption : of water, the
water concentration should be less than 0.807 mg/1 to keep
the additional lifetime cancer risk below 10" .
! '
Only a very limited amount of data, on the effects of TCE on
freshwater aquatic life are available. One species of fish (fat
head minnows) showed a loss of equilibrium at concentrations
below those resulting in lethal effects.
[ ; ' i , " " '
In laboratory scale studies of toxic organic pollutants, TCE was
subjected to biochemical oxidation conditions. After 5, 10, and
20 days| no biochemical oxidation occurred. On the.basis of this
study bnd general observations relating molecular structure to
ease of degradation, the conclusion is reached that TCE would
undergo; no removal by biological treatment in a POTW. The
volatility and relatively low water solubility of TCE is expected
to result in volatilization of some of the TCE in aeration steps
in a POTW. The most recent EPA study of the behavior of toxic
organics in a POTW indicates that TCE'is 85 percent removed.
1159
-------
Antimony (114). Antimony (chemical name - stibium, symbol Sb),
classified as a non-metal or metalloid, is a silvery white, brit-
tle crystalline solid. Antimony is found in small ore bodies
throughout the world. Principal ores are oxides of mixed anti-
mony valences, and an oxysulfide ore. Complex ores with metals
are important because the antimony is recovered as a by-product.
Antimony melts at 631C, and is a poor conductor of electricity
and heat.
Annual U.S. consumption of primary antimony ranges from 10,000 to
20,000 tons. About half is consumed in metal products — mostly
antimonial lead for lead acid storage batteries, and about half
in non-metal products. A principal compound is antimony trioxide
which is used as a flame retardant in fabrics, and as an opaci-
fier in glass, ceramics, and enamels. Several antimony compounds
are used as catalysts in organic chemicals synthesis, as fluori-
nating agents (the antimony fluorides), as pigments, and in fire
works. Semiconductor applications are economically significant.
Essentially no information on antimony-induced human health
effects has been derived from community epidemiology studies. The
available data are in literature relating effects observed with
therapeutic or medicinal uses of antimony compounds and
industrial exposure studies. Large therapeutic doses of anti-
monial compounds, usually used to treat schistisomiasis, have
caused severe nausea, vomiting, convulsions, irregular heart
action, liver damage, and skin rashes. Studies of acute
industrial antimony poisoning have revealed loss of appetite,
diarrhea, headache, and dizziness in addition to the symptoms
found in studies of therapeutic doses of antimony. ;
For the protection of human health from the toxic properties of
antimony ingested through water and through contaminated aquatic
organisms the ambient water criterion is determined to be 0.146
mg/1. If contaminated aquatic organisms are consumed, excluding
the consumption of water, the ambient water criterion is deter-
mined to be 45 mg/1.- Available data show that adverse effects on
aquatic life occur at concentrations higher than those cited ,for
human health risks.
The limited solubility of most antimony compounds expected in a
POTW, i.e., the oxides and sulfides, suggests that at least part
of the antimony entering a POTW will be precipitated and incorpo-
rated into the sludge. However, some antimony is expected to
remain dissolved and pass through the POTW into the effluent.
Antimony compounds remaining in the sludge under anaerobic
conditions may be connected to stibine (SbH3), a very soluble
and very toxic compound. There are no data to show antimony
inhibits any POTW processes. The most recent EPA study of the
behavior of toxic pollutants in POTW indicates that antimony is
60 percent removed. Antimony is not known to be essential to the
growth of plants, and has been reported to be moderately toxic.
Therefore, sludge containing large amounts of antimony could be
detrimental to plants if it is applied in large amounts ; to
1160
-------
cropland.
; j I
Arsenib (115). Arsenic (chemical symbol As), is classified as a
non-metal or metalloid. Elemental arsenic normally exists in the
alpha-crystalline metallic,form which is steel gray and brittle,
and in the beta form which is dark gray and amorphous. Arsenic
sublimes at 615C. Arsenic is widely distributed throughout the
world in a large number of minerals. The most important commer-
cial source of arsenic is as a by-product from treatment of
copper', lead, cobalt, and gold ores. Arsenic is usually marketed
as the trioxide (AS2O3),. Annual U.S. production of the
trioxide approaches 40,000 tons. '.
The principal use of arsenic is in agricultural chemicals (herbi-
cides) for controlling weeds in cotton fields. Arsenicals have
various applications in medicinal and vetrinary use, as wood
preservatives, and in semiconductors,
• i :
The effects of arsenic in humans were known by the ancient Greeks
and Romans. The principal toxic effects are gastrointestinal
disturbances. Breakdown of red blood'cells occurs. Symptoms of
acute ;poisoning include vomiting, diarrhea, abdominal pain,
lassitude, dizziness, and headache. Longer exposure produced
dry, falling hair, brittle,- loose nails, eczema, and exfoliation.
Arsenicals also exhibit teratogenic and mutagenic effects in
humans;. Oral administration of arsenic compounds has been
associated clinically with skin cancer for nearly one hundred
years.. Since 1888 numerous studies have linked occupational
exposure and therapeutic administration of arsenic compounds to
increased incidence of respiratory and skin cancer.
For the maximum protection of human health from the potential
carcinogenic effects of exposure to arsenic through ingestion of
water and contaminated aquatic organisms, the ambient water con-
centration should be zero. Concentrations of arsenic estimated
to result in additional lifetime cancer risk levels of 10~',
10~6, [and 10 5 are_2.2 x 10 7 mg/1, 2.2 10 5
mg/1, : and 2.2 x 10 5 mg/1, respectively. If contaminated
aquatic organisms alone are; consumed, excluding the consumption
of_ water, the water concentration, should be less than 1.75 x
10_ :to keep the increased lifetime cancer risk below
10~. : Available data show that adverse effects on
aquatic life occur at concentrations higher than those
cited for human health risks.
i ; ! " - - ''
A few studies have been made regarding the behavior of arsenic in
a POTWi, One EPA survey of nine POTW^facilities reported influent
concentrations ranging from 0.0005 to 0.693 mg/1; effluents from
three ,| POTW having biological treatment contained 0.0004 to 0.01
mg/1; itwo POTW facilities showed arsenic removal efficiencies of
50 and 71 percent in biological treatment. Inhibition of treat-
ment processes by sodium arsenate is reported to occur, at 0.1
mg/1 in activated sludge, ' and 1.6 mg/1 in anaerobic digestion
processes. In another study based on data from 60 POTW facili-
-------
ties, arsenic , in sludge ranged from 1.6 to 65.6 mg/kg and the
median value was 7.8 mg/kg. The most recent EPA study of the
behavior of toxic pollutants in POTW indicates that total
trivalent arsenic is 65 percent removed. Arsenic in sludge
spread on cropland may be taken up by plants grown on that land.
Edible plants can take up arsenic, but normally their growth is
inhibited before the plants are ready for harvest.
Beryllium (117). Beryllium is a dark gray metal of the alkaline
earth family. It is relatively rare, but because of its unique
properties finds widespread use as an alloying element, espe-
cially for hardening copper which is used in springs, electrical
contacts, and non-sparking tools. World production is reported
to be in the range of 250 tons annually. However, much more
reaches the environment as emissions from coal burning opera-
tions. Analysis of coal indicates an average beryllium content
of 3 ppm and 0.1 to 1.0 percent in coal ash or fly ash.
The principal ores are beryl (3BeO'Al2O3*
6Si02) and bertrandite [Be4Si20y(OH)2]• Only
two industrial facilities produce beryllium in the U.S.
because of limited demand and the highly toxic character.
About two-thirds of the annual production goes into alloys,
20 percent into heat sinks, and 10 percent into beryllium
oxide (BeO) ceramic products.
Beryllium has a specific gravity of 1.846, making it the lightest
metal with a high melting point (1,350C). Beryllium alloys are
corrosion resistant, but the metal corrodes in aqueous environ
ments. Most common beryllium compounds are soluble in water, at
least to the extent necessary to produce a toxic concentration of
beryllium ions.
Most data on toxicity of beryllium is for inhalation of beryllium
oxide dust. Some studies on orally administered beryllium in
laboratory animals have been reported. Despite the large number
of studies implicating beryllium as a carcinogen, there is -no
recorded instance of cancer being produced by ingestion. How
ever, a recently convened panel of uninvolved experts concluded
that epidemiologic evidence is suggestive that beryllium is • a
carcinogen in man.
In the aquatic environment beryllium is chronically toxic .to
aquatic organisms at 0.0053 mg/1. Water softness has a large
effect on beryllium toxicity to fish. In soft water, beryllium
is reportedly 100 times as toxic as in hard water. l
For the maximum protection of human health from the potential
carcinogenic effects of exposure to beryllium through ingestion
of water and contaminated aquatic organisms the ambient water
concentration should be zero. Concentrations of beryllium
estimated to result in additional lifetime cancer risk levels >of
10~7, 10~6, and 10~5 are 0.00000068 mg/1, 0.0000068
mg/1, and 0.000068 mg/1, respectively. If contaminated aquatic
organisms alone are consumed excluding the consumption of water,
1162
-------
the concentration should be less than 0.00117 mg/1 to keep the
increased lifetime cancer risk below ,.10". .
Information on the behavior of beryllium in a POTW is scarce.
Because beryllium hydroxide is insoluble in water, most beryllium
entering a POTW will probably be in the form of suspended solids.
As a result most of tiie beryllium will settle and be removed with
sludge,, However,'• beryllium has been shown to inhibit several
enzyme systems, to. interfere with PNA metabolism in the liver,
and to induce chromosomal and mitotic? abnormalities. This inter-
ference in cellular processes may extend to interfere with
biological treatment processes. The ^concentration and effects of
beryllium in sludge which could be applied to cropland has not
been studied.
Cadmium (118). Cadmium is a relatively rare metallic element
that is seldom 'found in sufficient quantities in a pure state to
warrant mining or extraction from the earth's surface. It is
found, in trace amounts of about 1 ppm throughout the earth's
crust. Cadmium is, however, a valuable by-product of zinc pro-
duction, i
Cadmium is used primarily as an electroplated metal, and is found
as an : impurity in the secondary refining of zinc, lead, and
copper. i
Cadmium is an extremely dangerous cumulative toxicant, causing
progressive chronic poisoning in mammals, fish, and probably
other organisms. The metal, is not excreted.
Toxic effects of cadmium on man have been reported from through-
out the world. Cadmium may be a factor in the development of
such human pathological conditions as: kidney disease, testicular
tumors, hypertension, arteriosclerosis, growth inhibition,
chronic disease of old age, and cancer. Cadmium is normally
ingested by humans through food and water as well as by breathing
air contaminated by cadmium dust. Cadmium is cumulative in the
liver, kidney, pancreas, and thyroid of humans and other animals.
A severe bone and kidney syndrome known as itai-itai disease has
been documented in ,Japan as caused!by cadmium ingestion via
drinking water and contaminated irrigation water. Ingestion of
as little as 0.6 mg/day has produced the disease. Cadmium acts
synerglstically with other metals. Copper and zinc substantially
increase its toxicity. - •
Cadmium is concentrated by marine organisms, particularly
molluscs, which accumulate cadmium in calcareous tissues and in
the viscera. A concentration factor pf 1,000 for cadmium in fish
muscle has been reported, as have concentration factors of 3,000
in marine plants and up to 29,600 in Certain marine animals. The
eggs and larvae of fish are apparently more sensitive than adult
fish to poisoning by cadmium, and crustaceans appear to be more
sensitive than fish eggs and larvae. |
For the protection of human health from the toxic properties of
1163
-------
cadmium ingested through water and through contaminated aquatic
organisms, the ambient water criterion is determined to be 0.010
mg/1. Available data show that adverse effects on aquatic life
occur at concentrations in the same range as those cited for
human health, and they are highly dependent on water hardness.
Cadmium is not destroyed when it is introduced into a POTW, and
will either pass through to the POTW effluent or be incorporated
into the POTW sludge. In addition, it can interfere with the
POTW treatment process. :
In a study of 189 POTW facilities, 75 percent of the primary
plants, 57 percent of the trickling filter plants, 66 percent of
the activated sludge plants, and 62 percent of the biological
plants allowed over 90 percent of the influent cadmium to pass
through to the POTW effluent. Only two of the 189 POTW facili-
ties allowed less than 20 percent pass-through, and none less
than 10 percent pass-through. POTW effluent concentrations
ranged from 0.001 to 1.97 mg/1 (mean 0.028 mg/1, standard devia-
tion 0.167 mg/1). The most recent EPA study of the behavior of
toxic pollutants in POTW indicates that cadmium is 38 percent
removed. :
Cadmium not passed through the POTW will be retained in the
sludge where it is likely to build up in concentration. Cadmium
contamination of sewage sludge limits its use on land since it
increases the level of cadmium in the soil. Data show that
cadmium can be incorporated into crops, including vegetables and
grains, from contaminated soils. Since the crops themselves show
no adverse effects from soils with levels up to 100 mg/kg cad-
mium, these contaminated crops could have a significant impact on
human health. Two Federal agencies have already recognized the
potential adverse human health effects posed by the use of sludge
on cropland. The FDA recommends that sludge containing over 30
mg/kg of cadmium should not be used on agricultural land. Sewage
sludge contains 3 to 300 mg/kg (dry basis) of cadmium mean = 10
mg/kg; median 16 mg/kg. The USDA also recommends placing
limits on the total cadmium from sludge that may be applied to
land.
Chromium (119). Chromium is an elemental metal usually found as
a chromite (FeO'C^Os). The metal is normally produced by
reducing the oxide with aluminum. A significant proportion of
the chromium used is in the form of compounds such as sodium
dichromate (Na2CrO4), and chromic acid (CzOj) — both are
hexavalent chromium compounds. !
Chromium is found as an alloying component of many steels
(especially high nickel stainless steels) and its compounds are
used in electroplating baths, and as corrosion inhibitors for
closed water circulation systems.
The two chromium forms most frequently found in industry waste
waters are hexavalent and trivalent chromium. Hexavalent
chromium is the form used for metal treatments. Some of it is
1164
-------
reduced to trivalent chromium as part of the process reaction.
The raw wastewater containing both valence states is usually
treated first to reduce remaining hexavalent to trivalent chro-
mium, and second to precipitate the trivalent form as the hydrox-
ide. The hexavalent form is not removed by lime treatment.
Chromium, in its various valence states, is hazardous to man. It
can produce lung tumors when inhaled, and induces skin sensitiza-
tions. Large doses of chromates have corrosive effects on the
intestinal tract and can cause inflammation of the kidneys.
Hexavalent chromium is a known human carcinogen. Levels of chro-
mate ions that show no effect in man appear to be so low as to
prohibit determination, to' date.
The toxicity ' of chromium salts to fish and other aquatic life
varies widely with the species, temperature, pH, valence of the
chromium, and synergistic or antagonistic effects, especially the
effect of water hardness. Studies have shown that trivalent
chromium is more toxic to fish of some types than is hexavalent
chromium. Hexavalent chromium retards growth of one, fish species
at 0.0002 mg/1. Fish food organisms and other lower forms of
aquatic life are extremely sensitive to chromium. Therefore,
both hexavalent and trivalent chromium must be considered harmful
to particular fish or organisms.
For the protection of human health from the toxic properties of
chromium (except hexavalent chromium) ingested through water and
contaminated aquatic organisms, the ambient water quality crite-
rion \is 170 mg/1. If contaminated, aquatic organisms alone are
consumed, excluding the consumption of water, the ambient water
criterion for trivalent chromium is 3,443 mg/1. The ambient
water quality criterion for hexavalent chromium is recommended to
be identical to the existing drinking water standard for total
chromium which is 0.050 mg/1.
Chromium is not destroyed when treated by a POTW (although the
oxidation state may change), and will either pass through to the
POTW effluent or be incorporated into the POTW sludge. Both oxi-
dation states can cause POTW treatment inhibition and can also
limit the usefulness of municipal sludge.
Influent concentrations of chromium to POTW facilities have been
observed by EPA to range from 0.005 to 14.0 mg/1, with a median
concentration of 0.1.mg/1. The efficiencies for removal of chro-
mium by the activated sludge process can vary greatly, depending
on chromium concentration in the influent, and other operating
conditions at.the POTW. Chelation of chromium by organic matter
and dissolution due to the presence of carbonates can cause
deviations from the predicted behavior in treatment systems.
The systematic presence of chromium compounds will halt nitrifi-
cation in a POTW for short periods, .and most of the chromium will
be. retained in the sludge solids. Hexavalent chromium has been
reported to severely affect the nitrification process, but tri-
valent chromium has little or no toxicity to activated' sludge,
1165
-------
except at high concentrations. The presence of iron, copper, and
low pH will increase the toxicity of chromium in a POTW by
releasing the chromium into solution to be ingested
organisms in the POTW.
by micro-
The amount of chromium which .passes through to the POTW effluent
depends on the type of treatment processes used by the POTW. . I.n
a study of 240 POTW facilities, 56 percent of the primary plants
allowed more than 80 percent pass-through to POTW effluent. More
advanced treatment results in less pass through. POTW effluent
concentrations ranged from 0.003 to 3.2 mg/1 total chromium (mean
= 0.197, standard deviation = 0.48), and from 0.002 to 0.1 mg/1
hexavalent chromium (mean = 0.017, standard deviation'= 0.020).
The most recent EPA study of the behavior of toxic pollutants in
POTWs indicates that hexavalent chromium is 18 percent removed.
Chromium not passed through the POTW will be retained in the
sludge, where it is likely to build up in concentration. Sludge
concentrations of total chromium of over 20,000 mg/kg (dry basis)
have been observed. Disposal of sludges containing very high
concentrations of trivalent chromium can potentially cause prob-
lems in uncontrolled landfills. Incineration, or similar
destructive oxidation processes, can produce hexavalent chromium
from lower valence states. Hexavalent chromium is potentially
more toxic than trivalent chromium. In cases where high rates of
chrome sludge application on land are used, distinct growth
inhibition and plant tissue uptake have been noted.
Pretreatment of discharges substantially reduces the concentra-
tion of chromium in sludge. In Buffalo, New Yo