United States
Environmental Protection
Agency
Office of Pollution
Prevention and Toxics
Washington, DC 20460
EPA 747-R-98-003
January, 1999
v^EPA Background Report on Fertilizer
Use, Contaminants and
I
Regulations
-------
-------
EXECUTIVE SUMMARY
The Environmental Protection Agency (EPA) is studying the issue of heavy metals and
other non-nutritive constituents (also referred to as contaminants) in fertilizers and liming
materials (referred to as fertilizers hereafter). The purpose of this report is to provide background
information on fertilizer use, consumption patterns, composition and regulations. This
information is gathered and presented here for fertilizers from natural mineral sources and those
that are derived from industrial by-products. The data for heavy metals in fertilizers compiled
here are used to provide estimates of the rates at which these metals may be added to agricultural
soils from standard agronomic practices. The additions of heavy metals to agricultural soil are
discussed in terms of federal and international regulations.
This report is provided as a source of information. It is not intended as a risk-assessment
for contaminants in fertilizer, nor does it address the introduction of these materials into plants,
the food chain for humans, and the greater ecosystem. Although some discussion is given here to
biosolids (sewage sludge) and its regulations, and other organic fertilizers, such information is
limited. The focus of this report is on inorganic fertilizers and their application to agricultural
lands. Discussion related to fertilizer usage on public lands, range lands, and residential lawns
and gardens is limited for this reason. In addition, some information is presented on the use of
recycled industrial by-products as fertilizers; however, an in-depth investigation of these
recycling practices was beyond the scope of this study.
More than 54 million tons (110 billion pounds) of commercial fertilizers and liming
materials of all kinds were consumed in the United States in the year ending June 30,1996
(AAPFCO, 1997a). Primary nutrients (N, P, K) accounted for 91% of this total; Inning materials
accounted for about 4%, and organic fertilizers accounted for 1% of the total. Approximately 5%
of the total (2.7 million tons) was due to secondary nutrient fertilizers (calcium, magnesium,
sulfur) and micronutrients. States with the highest fertilizer consumption were the agricultural
states in the com belt and California. Florida (1.6 million tons) and Texas (1.6 million tons)
consumed the most multiple nutrient fertilizers while Illinois (1.9 million tons of nitrogen (N),
0.8 million tons of phosphate (P2O5) and 1.0 million tons of potash (K2O),fertilizers) consumed
the most single-nutrient N, P, and K fertilizers. North Carolina consumed most of the organic
fertilizers and liming materials (0.2 million tons organic fertilizer, 0. 9 million tons liming
fertilizer), while California consumed most of the secondary and micronutrient fertilizers (1.6
million tons).
The potato crop was the most fertilized (100% of acres receive N, P and K fertilizers) and
had one of the highest fertilizer application rates for all primary nutrient fertilizers (average
application rates of 195 Ibs/acre N, 173 Ibs per acre P2O5 and 139 Ibs/acre K2O) but represented
fewer acres planted (0.8 million acres) than other field crops except tobacco. If consideration
were given to the number of acres planted, com (70 million acres) represented the crop with the
highest fertilizer use, though not the highest application rate per acre (average application rates of
133 Ibs/acre N, 57 Ibs/acre P2O5 and 79 Ibs/acre K2O). The fruits and vegetables with the highest
fertilizer application rates were watermelon in Arizona (N), bell peppers in California (P2O5) and
fresh tomatoes in Florida (K2O). The two states with the highest total consumption of non-farm
fertilizer were Florida (0.4 million tons) and California (0.32 million tons). Multiple nutrient,
organic and miscellaneous fertilizers were used in higher percentages on non-farm land than
-------
other fertilizers. Non-farm fertilizer use included applications to residential, recreational and
public property.
Soils naturally contain trace levels (ppb to ppm) of heavy metals. For example, median
concentrations of metals in U.S. soils are 0.2 mg/kg cadmium, 11 mg/kg lead, and 18.2 mg/kg
nickel. There are, however, considerable variations in these metal concentrations by geographic
region and soil type.
Several studies have measured heavy metals in mineral ores and the resulting fertilizers.
Natural rock phosphate ore contains zinc ranging from 0.2 to 576 mg/kg and measurable
amounts of cadmium, lead, nickel and copper. These metals can also be found in the NPK
fertilizers that are produced from natural ores. For example, the State of Washington Department
of Ecology reports the ranges of metal concentrations for a sample of 21 diverse NPK fertilizers
with cadmium levels being <0.1-145 mg/kg, lead levels being O.4-21 mg/kg, and nickel levels
being O.2-195 mg/kg. Measurements of other NPK fertilizers by other authors generally fall
within this same range of values. A few studies have also measured arsenic, chromium and
mercury in NPK fertilizers.
Organic and biosolid fertilizers may also have measurable concentrations of heavy
metals. One study of 6 organic fertilizers (Raven and Loeppert;1997) reported measureable
levels for heavy metals such as arsenic, cadmium, chromium, lead and mercury. According to
these authors, "Trace metal concentrations generally decreased in the following sample order:
rock phosphate > sewage sludge > commercial phosphate fertilizers > organic amendments and
liming materials > commercial K2O fertilizers > commercial N fertilizers". Whether or not
fertilizers add significant amounts of metals to soil depends upon several factors including the
existing soil metal concentration, the concentration of trace metals in the fertilizer and the
fertilizer application rate.
Since some industrial wastes contain substances which can be used, or converted for use,
in fertilizers, industrial waste recycling is encouraged in the U.S., if done so in a safe manner.
The concern is that the wastes may also contain potentially hazardous constituents that provide
no nutritive value to the plant and introduce these constituents into the greater ecosystem. No
specific regulations exist requiring fertilizer producers to list non-nutritive constituents on
fertilizer labels, so it is difficult to quickly ascertain the levels of heavy metals (and other
chemicals) in fertilizers. Chemicals such as radionuclides and persistent organics (e.g.,
chlorinated dibenzodioxms/furans) are in this category. Several studies have shown that heavy
metals are present in the parts per million (mg/kg) range, and occasionally as high as parts per
thousand, in fertilizers produced from recycled industrial by-products.
Industrial wastes may be used in the manufacture of fertilizers, provided that such use
constitutes legitimate beneficial recycling, and that the concentrations of hazardous constituents
in the resulting fertilizers do not exceed the treatment standards specified for the wastes (40 CFR
266.20). No other federal standards apply specifically to fertilizer composition. State
regulations require nutrient composition labeling of fertilizers.
Most states regulate fertilizer composition, but generally only for the plant nutrients.
State fertilizer laws generally require product registration and/or licensing and efficacy testing to
-------
assure that statements made on the label are correct. Most fertilizer regulations also include
general statements about product adulteration and a prohibition against including any product
that is harmful to plants, animals, humans or the environment. At this time, only two states
(Washington and Texas) have regulations that establish specific limits on heavy metal
contaminants, and testing and labeling requirements.
RCRA regulations generally encourage waste minimization and recycling. Examples of
hazardous wastes that can be recycled into fertilizer ingredients (usually micronutrient fertilizers)
include wood ash, K061 wastes (emission control dust/sludge from the primary production of
steel in electrical furnaces), brass foundry dusts and tire ash. The Occupational Safety and
Health Administration (OSHA) in its hazard communication standard requires employers to
include in Material Safety Data Sheets (MSDS) information on any product component present
at 1% or greater (0.1% for carcinogens). Thus, if certain metals are present in sufficient quantity
in fertilizer products, there exists a mechanism for communicating information on hazardous
metal content.
Internationally, the Canadian Fertilizers Act (1993) and Fertilizers Regulations contain
specific limits for heavy metals that apply to all fertilizer products. The Canadian Food
Inspection Agency originally developed these limits for biosolids applied to land, but these
standards now apply to all fertilizers. The Canadian standards are not risk-based, but were
instead developed with the objective of "no significant degradation" of soils above background
concentrations of metals. Japan regulates industrial waste incinerator ash application to land and
has limits for metals and organic chemicals. Additionally, Australia and several European
countries limit cadmium in phosphate fertilizers.
The U.S. EPA, states and foreign countries regulate biosolids application to land. The
U.S. EPA (40 CFR 503) sets limits for heavy metals in biosolids hi the product and on the soil
following application. Several states have more stringent metal limits for biosolids application to
land. Many foreign countries also have limits for heavy metals in biosolids and for soil. The
European Union (EU) has set standards for its member countries, but individual countries may
have more stringent regulations. The EU biosolids standards, in units of mg/kg of sludge
product, are generally lower than those of the U.S. ceiling concentrations for land applications
but are similar to the U.S. monthly average concentrations for application to agricultural land.
This report includes a characterization of the addition of heavy metals to agricultural soils
from application of fertilizers which contain heavy metals. The calculations used here are
designed to provide an estimate of the yearly incremental additions of metals to soils following
diverse types of fertilizer applications. These incremental increases are then used to estimate the
years required to double average background levels of metals in soil from yearly applications.
These yearly additions of metals to the soil are then compared to the U.S. biosolids annual
pollutant loading rates and the Canadian Fertilizers Act limits.
Fertilizer products are compared in this report with respect to the amount of nine heavy
metals the product would add to soil, assuming a single application of the product per year. This
is termed the yearly soil addition rate of a metal (or "yearly addition of metal X", see Index of
Terms). The yearly soil addition rate of a metal is the concentration of that heavy metal in the
product per desired nutrient ingredient multiplied by the nutrient application rate, with all
-------
appropriate conversion factors applied. For those fertilizer products with lower nutrient content, a
proportionally greater amount of the undesirable heavy metal will be added to the land in
achieving a consistent nutrient application rate. Therefore, a fertilizer product may contribute
high levels of heavy metals to soil when the heavy metal concentration in the product is high
and/or when the desired plant nutrient is at a low level in the product.
For this report, the yearly addition of each metal was calculated for each individual
product at three nutrient application rates- an average nutrient application rate, a high rate and at
the maximum application rate recorded for this nutrient. An extended appendix of this report
(Appendix G) contains the yearly soil addition rate of each metal in each product when applied at
these three nutrient application rates. The aggregate of these individual yearly addition rates,
then, produced the average soil metal addition rate for a fertilizer product category (e.g., P2O5
fertilizers) at the three different nutrient application rates. This aggregate is termed the product
average yearly addition of metal X (see Index of Terms). This summary includes discussions of
the yearly addition of metals in terms of both the individual product giving the highest yearly soil
addition of a specific metal, and in terms of the product average yearly addition rates for metals.
The calculations performed here showed that the product average yearly addition rates of
metals to soil would not exceed the U.S. biosolids annual pollutant loading rates for any fertilizer
category evaluated. This finding applied to both natural ore-derived fertilizers and industrial by-
product derived fertilizers.
The calculations also showed that the product average yearly addition rates of metals to
soil rarely exceeded the annualized Canadian Fertilizers Act limits for metals additions. The
particular instances when the product average addition rate of metal to soil exceeded the
Canadian limits were found in the following combinations of heavy metal and fertilizer
categories, and this occurred only at the maximum nutrient application rate:
Arsenic in: liming materials (CaCO3 applied at 15,000 Ibs/acre once every 3 years)
iron fertilizers (iron applied at 30 Ibs/acre every year)
The Canadian standards for metals additions to soil were exceeded more frequently for
individual fertilizer products, and were exceeded for metals other than arsenic. A total of 38
cases were identified where a particular heavy metal in an identified individual fertilizer product
would exceed Canadian fertilizer standards when applied at the maximum nutrient application
rate. These cases included:
Cadmium in: NPK fertilizers applied for P2O5 content [10 products of 91 evaluated
exceeded limits; 10 of 91]
Phosphate fertilizers [1 of 61]
Liming materials [3 of 10]
Zinc fertilizers [3 of 22]
Lead in : NPK fertilizers applied for P2O5 content [4 of 91]
Liming materials [2 of 10]
Zinc fertilizers [6 of 63]
Iron fertilizers [1 of 3]
IV
-------
Arsenic in: NPK fertilizers applied for P2O5 content [1 of 84]
Liming materials [3 of 10]
Iron fertilizers [1 of 3]
Mercury in: Liming materials [1 of 8]
Nickel in: Liming materials [1 of 8]
Zinc in: NPK fertilizers applied for N content [1 of 49]
Of the products listed above, 18 exceeded Canadian standards at the high nutrient
application rate, and 8 exceeded the standards at the average nutrient application rate. Data were
gathered here on 345 fertilizer products. A total of 1389 combinations of fertilizer product and
metal at three application rates (total of 4167 data points) were compared with Canadian
standards. (Data on an additional 537 combinations of unregulated heavy metals in products were
also gathered). Since some products exceeded standards in more than one metal, the number of
individual products exceeding the standards for at least one metal is greater than 2.7% (38 of
1389), but less than 11% (38 of 345).
Figure ES-1 identifies those fertilizer categories where the product average yearly
addition rate of a metal is likely to double the average level of that metal in background US soils
in 45 or fewer years, when the nutrient is applied at either the average (open box) or maximum
(closed box) application rate. Similarly, this figure also identifies those instances where at least
one individual product within a category exists that may double the average background level in
45 or fewer years, when the nutrient is applied at either the average (open circle) or maximum
(closed circle) application rate. These scenarios assume yearly applications, with exception of
lime, which is applied once every three years. For example, the product average application rate
of cadmium (Cd) from either NPK-P fertilizers (NPK fertilzers applied for P2O5 content) or from
P2OS fertilizers will double the average background Cd soil level in 45 or fewer years when either
the average or maximum nutrient (P2O5) application rate is used every year. In addition, there
were individual NPK-N, NPK-P and P2O5 products identified that would double background soil
Cd levels in 45 or fewer years if applied each year. There were no potash (K2O), gypsum,
manganese (Mn), or boron (B) fertilizer products identified that would double the indicated soil
metals levels in 45 or fewer years. In contrast, liming materials were identified that might double
the soil levels of all nine metals with consistent use (application once every three years) within a
45 year tune frame.
In the process of preparing this report, and performing the above mentioned calculations,
it was necessary to make a number of assumptions and simplifications to arrive at the
contaminant levels in the soil following fertilizer application.
The simplifying assumptions that were made, and implications thereof, include:
• Metal additions to the soil were based on application of a single fertilizer type, and a
single crop per year. In fact, many different fertilizers and liming materials may be
-------
J2
03
35
u.
i_
o
in
N
3
O
"8
T3
_=
;s
d)
o
CO
QQ
"5
CO
CO
CD
O)
2
I
D
o
1
*o
•c
o
O
X
o
(A
<
•o
O
(A
•a
o
0)
u.
• •
• • •
o
•
• •
O 0
• • •
O O 0
• • •
a a
3
CD
£1
£ Z 0-
|£££*
•c:
0_
•
0
•
Secondary Nutrients
Gypsum
Sulfur
•
0
•
•
o
•
•
•
•
0
•
•
•
0
•
•
0
•
• •
o o
•
Soil pH Adjustment
Lime
Sulfur
•
o
•
• •
O 0
• •
0
• •
O 0
• •
CO
c
.32
1 fi £ i CD
o
^
CD
•8 2
2 c
c: 2
.2 to
"co .«
o Q.
CO
0
§ I i i
~ (U ,|_| .4-1
•J5 .o co co
.2 "5. T3 -o
-g_ a. .0 .CD
a. ro "o. "a.
ro E S- S-
0 3 CO CO
ca* ^ "c "c
*— X 0 0
S to S 5
3 3
C C
CO CO
T5 TO
0 0
4-1 »-. O O
C C "* **
•g •§ 1 a
ti -i± 0 0
c c E £
i i "S o
5 5 0 0
:= = ^0 'CO
O O ^ «-
CO CO C C
I i 11
si'.!?!?
*-' *-^ O O
^J W 3 3
>» 5^ T3 TJ
~ *c: o o
S S Q. o.
sill
CO CO ts :^
0) >
2 2 "5 "o
*— ••— >£ M
Q. Q. £ £
VI
-------
applied to a field in a growing season. The concomitant addition of heavy metals
from all sources was not assessed here.
To simplify calculations, soil type and chemical nature, plant uptake, leaching and
erosion and other removal mechanisms were not considered in these calculations. All
input of heavy metals was assumed to remain with the soil, and is therefore presumed
to be an overestimate of soil metals levels over a long time period.
Calculations of heavy metal additions to soil from fertilizers were based on all
available data. The representativeness of this data set with respect to all fertilizers is
not known. There has been as yet no systematic investigation of all fertilizer types,
or an investigation of the percentage of recycled industrial waste products with
substantial levels of heavy metals in the fertilizer market.
Fertilizer application rates for agricultural crops were the only ones considered here.
No attempt was made to capture the metals additions to residential and public lands,
because of a lack of information on application rates. Preliminary data on heavy
metals in home garden fertilizers suggest that significant amounts of metals may be
added to home gardens from use of some of these products.
In only a few instances was the origin (e.g., natural ore or industrial by-product) of
the fertilizer product known. Although it may be instructive to compare heavy metal
additions to soil from natural ores and products from industrial waste, such an
exercise could not be undertaken on the basis of the available data.
While the following list is not inclusive, some of the data gaps that may require further
study include:
• Nationally-representative micronutrient application rates. Aggregate average
application rates for micronutrients and liming materials by state, treated acres and
crop type have not been assembled, as has been done for N, P and K fertilizer.
• Regional variability in concomitant use of NPK, micronutrient and liming materials
on the same field. Statewide use data for each fertilizer type are available, but the
overlap in application by crop has not been compiled. Some areas of the U.S. may
receive higher input of heavy metals from fertilizers due to the combination of crop
type and existing soil conditions.
• Contribution of fertilizer products derived from industrial wastes to total fertilizer
market. While sources of most industrial waste-derived fertilizers are fairly well
known, the market share of these products in the total fertilizer market is not known.
• Statistically valid, nationally representative metal contaminant levels of all fertilizer
types. While researchers have measured contaminant levels in fertilizers, these
studies tend to represent either a single product type and/or products found in a
specific state.
VII
-------
Levels of other contaminants such as radionuclides and persistent organic chemicals
in fertilizers and liming materials. Compared with the data on heavy metals in
fertilizers, relatively little information exists on the levels of organic pollutants in
fertilizers. Such organics could include dioxins, PCBs, pesticides and PAHs.
The environmental fate of chemical additions to soil. This issue has been studied
primarily for cadmium and lead, and most often under controlled laboratory or field
conditions. All potential contaminants, soil types and crops have not been addressed.
In addition, the fate of metals added to the soil as a result of fertilizer addition to non-
agricultural land (e.g., range land and residential land) has not been adequately
studied.
VIII
-------
TABLE OF CONTENTS
Page
1.0 INTRODUCTION 1
1.1 PEER REVIEW PROCESS 2
2.0 FERTILIZER USE AND INDUSTRY CHARACTERIZATION 5
2.1 DEFINITION OF FERTILIZER AND LIMING MATERIAL 5
2.2 FERTILIZER CONSUMPTION IN THE U.S 6
2.3 AGRICULTURAL FERTILIZER USE 15
2.3.1 Field Crops 15
2.3.2 Fruits and Vegetables 17
2.4 NON-AGRICULTURAL FERTILIZER USE 21
2.5 U.S. FERTILIZER INDUSTRY PROFILE 21
2.6 RECYCLED MATERIALS IN FERTILIZER MANUFACTURE 25
3.0 COMPOSITION OF FERTILIZERS AND SOILS 27
3.1 HEAVY METALS IN SOILS 27
3.2 NITROGEN, PHOSPHATE AND POTASH COMPOSITION OF NPK FERTILIZERS .... 29
3.3 HEAVY METALS IN FERTILIZERS AND LIMING MATERIALS 33
3.4 RADIOACTIVE COMPOUNDS IN FERTILIZERS 46
3.5 PERSISTENT ORGANIC CHEMICALS IN FERTILIZERS AND LIMING MATERIALS ... 51
3.6 HEAVY METALS IN HOME GARDENING PRODUCTS 51
4.0 FERTILIZER REGULATIONS, STANDARDS, GUIDELINES AND BENCHMARKS 54
4.1 STATE REGULATIONS 54
4.2 FEDERAL REGULATIONS 56
4.2.1 OSHA 56
4.2.2 EPA Regulations for Hazardous Waste Derived Fertilizers 57
4.2.3 Military Munitions Rule: Hazardous Waste Identification and Management;
Explosives Emergencies; Manifest Exemption for Transport of Hazardous
Waste on Right-of-Ways on Contiguous Properties; Final Rule 58
4.2.4 Metal Containing Pesticides 58
4.2.5 Radon in Phosphogypsum 61
4.3 INTERNATIONAL FERTILIZER REGULATIONS 61
4.3.1 Canadian Fertilizers Act and Regulations 61
4.3.2 Japan 63
4.3.3 European Union 64
4.3.4 Cadmium in Fertilizers 65
4.4 BIOSOLIDS APPLICATION TO LAND 65
4.4.1 EPA 40 CFR Part 503 Standards for the Use or Disposal of Sewage
Sludge 65
4.4.2 International Biosolids Regulations 65
4.5 SUMMARY OF REGULATIONS 68
5.0 CHARACTERIZATION OF ADDITION OF METALS TO SOILS AS A RESULT OF FERTILIZER
APPLICATION - COMPARISON TO REGULATORY LIMITS 69
5.1 ASSUMPTIONS FOR THE CALCULATION OF METAL SOIL LOADINGS RESULTING
FROM FERTILIZER APPLICATION 69
5.2 SOIL CONCENTRATIONS OF METALS FOLLOWING APPLICATION OF N, P AND K
FERTILIZERS AND MICRONUTRIENT FERTILIZERS 70
5.3 ADDITIONAL DATA PROVIDED ON BLENDED PRODUCTS 98
IX
-------
Page
TABLE OF CONTENTS
(Continued)
5.4 COMPARISON OF METAL CONCENTRATIONS IN SOIL TO NATIONAL AND
INTERNATIONAL STANDARDS 99
5.5 COMPARISON OF FERTILIZER AGRONOMIC PRACTICES WITH BACKGROUND SOIL
METAL CONCENTRATIONS 100
5.6 ASSUMPTIONS, DATA GAPS AND QUESTIONS FOR FURTHER INVESTIGATION . 105
5.7 SUMMARY 106
6.0 REFERENCES 110
LIST OF TABLES
Table 2-1. Total Fertilizer (Tons) Consumed in the United States in 1996a 7
Table 2-3. Top States Consuming Fertilizers by Fertilizer Type, 1996a 7
Table 2-2. Total Fertilizer (Tons) Consumed in the United States and Regions in 1996 8
Table 2-4. Fertilizer Use on Field Crops in 1996, Totals for All States3 16
Table 2-5. Percent of Acres Receiving Various Nutrients and Application Rates, Selected Field
Crops in Major Producing States3 17
Table 2-6. Fertilizer Use on Vegetable Crops for Crop Year 1994a 18
Table 2-7. Fertilizer Use on Fruit Crops for Crop Year 1995a 20
Table 2-8. Comparison of Fertilizer Consumption by Farm and Non-Farm Use in 1996a 22
Table 2-9. Consumption (tons) of Specific Fertilizer Types on Farm and Non-Farm Land for
Selected States3 23
Table 2-10. Number of Companies in Fertilizer Production and Mixing 25
Table 3-1. Compilation of Studies for Soil Metal Concentrations 28
Table 3-2. Average Concentrations of Selected Metals in Soils around the World 30
Table 3-3. Concentration Ranges for Selected Metals in Soils around the World 31
Table 3-4. Average Nitrogen, Phosphorus (as P2O5) and Potassium (as K2O) Composition
of NPK Fertilizers for 1996 (Percent) 34
Table 3-5. Concentrations of Selected Metals in Rock Phosphates 38
Table 3-6. Concentrations of Selected Metals in NPK Fertilizers 40
Table 3-7. Concentrations of Selected Metals in Organic/Biosolids Fertilizers 43
Table 3-8. Concentrations of Selected Metals in Zinc, Secondary Nutrient and Micronutrient
Fertilizers 44
Table 3-9. Concentrations of Selected Metals in Commercially-Available Agricultural
Fertilizers That Have No Product Classification Given 47
Table 3-10. Concentrations of Selected Metals in Liming Materials 48
Table 3-11. Concentrations of Selected Metals in Gypsum and Phosphogypsum 49
Table 3-12. Concentrations of Radionuclides in Fertilizers and Rock Phosphates 50
Table 3-13. Concentrations of Dioxins in Fertilizer and Liming Materials Derived from
Industrial By-Products 52
Table 3-14. Concentrations of Selected Metals in Home Fertilizer Products 53
Table 4-1. Regulatory Status of Metal-Containing Pesticidesa 59
Table 4-2. Pesticides With Tolerances on Raw Agricultural Commodities 60
Table 4-3. Canadian Maximum Acceptable Cumulative Metal Additions to Soil and Maximum
Acceptable Metal Concentrations in Products 62
Table 4-4. International Regulations on Cadmium in Fertilizer3 and Soil" 66
Table 4-5. EPA CFR 40 Part 503 Inorganic Pollutants in Sewage Sludge 68
-------
TABLE OF CONTENTS
(Continued)
Table 5-1. NPK Fertilizer Application Rates (Ibs/acre) Used in Calculation
of Metal Addition to Soil for Field Crops, Vegetables and Fruits3 71
Table 5-2. Secondary Nutrient, Micronutrient and Lime Application Rates (Ibs/acre) Used in
Calculation of Metal Addition to Soil for Field Crops, Vegetables and Fruits3 72
Table 5-3a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Zinc and Phosphate
Fertilizers3 75
Table 5-4a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: NPK for N Content
and NPK for P Content Fertilizers3 76
Table 5-5a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Boron and Iron
Fertilizers3 77
Table 5-6a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Potash and Manganese
Fertilizers3 78
Table 5-7a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Sulfur (Nutrient)
and Sulfur (pH Adjustment) Fertilizers3 79
Table 5-8a. Averaged Yearly Addition Addition of Metals to Soil from All Products Applied
at Average, High and Maximum Nutrient Application Rates: Gypsum and Liming
Materials3 80
Table 5-3b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied at
Average, High and Maximum Nutrient Application Rates: Zinc and Phosphate
Fertilizers3 81
Table 5-4b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied at
Average, High and Maximum Nutrient Application Rates: NPK for N Content
and NPK for P content Fertilizers3 82
Table 5-5b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied at
Average, High and Maximum Nutrient Application Rates: Boron and Iron
Fertilizers3 83
Table 5-6b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied at
Average, High and Maximum Nutrient Application Rates: Potash and Manganese
Fertilizers3 84
Table 5-7b. Highest Yearly Maximum Addition of Metals to Soil from an Individual Product,
Applied at Average, High and Maximum Nutrient Application Rates: Sulfur
(Nutrient) and Sulfur (pH Adjustment) Fertilizers3 85
Table 5-8b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied at
Average, High and Maximum Nutrient Application Rates: Gypsum and Liming
Materials3 86
Table 5-9. Number of Fertilizer Products Included in Calculation of Average Yearly Additions
of Metals to Soil Number of Products3 (Number of Products That Exceed Canadian
Standard)" 96
Table 5-10. Number of Products That Exceed the Canadian Fertilizers Regulation Standards
at the Average, High and Maximum Nutrient Application Rates of the Product ... 97
Table 5-11a. Years to Double Soil Metals Levels using Fertilizer Metal Addition Rates from
Product Average Applied at the Nutrient Average Yearly Application Rate
(footnote a) 101
XI
-------
TABLE OF CONTENTS
(Continued)
Page
Table 5-11 b. Years to Double Soil Metals Levels using Fertilizer Metal Addition Rates from
Product Average Applied at the Nutrient Maximum Yearly Application Rate
(footnote a) 102
Table 5-12a. Years to Double Soil Metals Levels using Fertilizer Metal Addition Rates from
Single Highest Product Applied at the Nutrient Average Yearly Application Rate
(footnotes a, b) 103
Table 5-12b. Years to Double Soil Metals Levels using Fertilizer Metal Addition Rates from
Single Highest Product Applied at the Nutrient Maximum Yearly Application
Rate (footnotes a, b) 104
LIST OF FIGURES
Figure ES-1. Products That Double Average U.S. Soil Background Level of Indicated Metal
in 45 or Fewer Years vi
Figure 5-1. Cadmium Addition to Agricultural Soil from Twelve Fertilizer Types 87
Figure 5-2. Lead Addition to Agricultural Soil from Twelve Fertilizer Types 88
Figure 5-3. Arsenic Addition to Agricultural Soil from Twelve Fertilizer Types 89
Figure 5-4. Chromium Addition to Agricultural Soil from Twelve Fertilizer Types 90
Figure 5-5. Mercury Addition to Agricultural Soil from Twelve Fertilizer Types 91
Figure 5-6. Nickel Addition to Agricultural Soil from Twelve Fertilizer Types 92
Figure 5-7. Vanadium Addition to Agricultural Soil from Twelve Fertilizer Types 93
Figure 5-8. Copper Addition to Agricultural Soil from Twelve Fertilizer Types 94
Figure 5-9. Zinc Addition to Agricultural Soil from Twelve Fertilizer Types 95
Figure 5-10. Products That Double Average U.S. Soil Background Level of Indicated Metal
in 45 or Fewer Years 109
XII
-------
Index of Terms
Cement Kiln Dust (CKD) - A by-product from the manufacturing of cement. Contains 4% to
12.8% of potash (K2O) and averages 30% Ca. Used primarily as a liming material. High content
of calcium oxide produces equilibrium pH in suspension of about 12. (Source: Fertilizer
Dictionary, Farm Chemicals Handbook).
Contaminant- A constituent or component of a fertilizer that is not part of the guaranteed analysis
and/or 1) is not a macronutrient (primary or secondary), 2) is not a micronutrient, 3) is not
required for plant nutrition (e.g., Cd, Pb, As, Hg, radionuclides, dioxins), and 4) may be essential
for some plants (and humans) at low levels or in one oxidation state but toxic at higher levels or
in a different oxidation state (e.g., Cr, Ni, V, Cu, Zn). Contaminant constituents are present
naturally in inorganic fertilizer ores and in industrial by-products reprocessed for fertilizers.
Diammonium Phosphate (DAP) - A type of NPK fertilizer. The fertilizer grade of DAP
(NH4)2HPO4 is made from wet-process phosphoric acid and ammonia and has a grade of 18-46-0.
DAP has an economic advantage over monoammonium phosphate (MAP) because the same
amount of acid reacts with twice as much ammonia. Substantial quantities of crystalline DAP
are produced as by-products from the iron and steel industry (Source: Fertilizer Dictionary, Farm
Chemicals Handbook).
Fertilizer - A substance that contains one or more recognized plant nutrients that is specially
designed to be used for its plant nutrient content and is claimed to promote plant growth. A
fertilizer material is a fertilizer which either:
A. Contains important quantities of no more than one of the primary plant nutrients:
nitrogen (N), phosphorus (P), and potassium (K), or
B. Has 85% or more of its plant nutrient content present in the form of a single chemical
compound, or
C. Is derived from a plant or animal residue or by-product or natural material deposit
which has been processed in such a way that its content of plant nutrients has not been
materially changed except by purification and concentration (Source: Fertilizer
Dictionary, Farm Chemicals Handbook).
Filler - A substance added to fertilizer materials to provide bulk, prevent caking, or serve some
purpose other than providing essential plant nutrients. (Source-Fertilizer Dictionary, Farm
Chemicals Handbook '97)
Guaranteed Analysis - The minimum percentage of plant nutrients claimed in a fertilizer that is
found on the fertilizer label (Source: Fertilizer Dictionary, Farm Chemicals Handbook).
Gypsum - A product consisting chiefly of calcium sulfate with combined water (CaSCy2H2O)
and is incapable of neutralizing soil acidity. Occurs in large deposits of soft crystalline rock and
as sand. A granulated form has been developed for application to soil (for growing peanuts and
XIII
-------
other crops) as a calcium source or sulfur source either by itself or in a blend of other fertilizers.
In irrigated agriculture it is used to increase permeability of soils (Source: Fertilizer Dictionary,
Farm Chemicals Handbook).
Heavy Metals - Certain metals, such as arsenic, cadmium, lead, mercury, and nickel, may be
present in varying concentrations in naturally occurring ores or in industrial by-products which
contain plant nutrients and are processed for fertilizers (Source: Fertilizer Dictionary, Farm
Chemicals Handbook).
Industrial By-Product - Waste materials from various industrial processes which contain plant
nutrients. These products may be converted into fertilizer materials, depending upon their
physical condition and on their content of possibly undesirable contaminants. Some by-products
are hazardous waste, others are not. (Source: Fertilizer Dictionary, Farm Chemicals Handbook).
Inorganic Fertilizer - A fertilizer material which does not have carbon as the essential component
of its basic chemical structure (Source: Fertilizer Dictionary, Farm Chemicals Handbook).
KjO- Potash or potassium oxide. Not used as a fertilizer per se, but the chemical term used as
the basic measure of potassium (K.) content in diverse potassium fertilizers such as potassium
chloride, potassium sulfate, potassium nitrate and potassium thiosulfate.
K061 Waste - Emission control dust/sludge from the primary production of steel in electric
furnaces (Source: Fertilizer Dictionary, Farm Chemicals Handbook).
Liming Materials - A product whose calcium and magnesium compounds are capable of
neutralizing soil acidity (Source: Fertilizer Dictionary, Farm Chemicals Handbook).
Macronutrients - Nutrients that plants require for growth in relatively large amounts. Includes
both primary and secondary nutrients. Primary nutrients are nitrogen, phosphorus, and
potassium. Secondary nutrients are calcium, magnesium, and sulfur (Source: Fertilizer
Dictionary, Farm Chemicals Handbook).
Micronutrients - Nutrients essential for normal growth of plants that are required relatively small
amounts. Micronutrients include boron, chlorine, cobalt, copper, iron, manganese, molybdenum,
sodium and zinc. (Source: Fertilizer Dictionary, Farm Chemicals Handbook).
Monoammonium Phosphate (MAP) - An important NPK fertilizer (NH4H2PO4) whose
production and use has increased steadily over the past several years. Granular product, made
with wet-process acid, has a grade of about 10-53-0. Some by-product MAP made with furnace
acid has a grade of 12-61-0 and is used mainly in production of liquid fertilizers. Nongranular
(powder) MAP is used in formulations for granular NP and NPK fertilizers, which it can react
with additional ammonia and aid granulation (Source: Fertilizer Dictionary, Farm Chemicals
Handbook).
Muriate of Potash (MP) - A potash salt containing 48% to 62% soluble potash (K2O), chiefly as
chloride. Also known as commercial potassium chloride (Source: Fertilizer Dictionary, Farm
Chemicals Handbook).
XIV
-------
N- Nitrogen, essential element for plant growth. Not used as a fertilizer per se, but the chemical
term used as the basic measure of nitrogen content in diverse fertilizers such as nitrates,
ammonium salts, liquid ammonium, urea, and natural organics.
Organic Fertilizer - A material that contains carbon and one or more elements besides hydrogen
and oxygen that are required for plant growth (Source: Fertilizer Dictionary, Farm Chemicals
Handbook).
P2O5- Phosphorus oxide. Not used as a fertilizer per se, but the chemical term used as the basic
measure of phosphorus (P) content in diverse phosphate fertilizers such as calcium phosphates,
ammonium phosphates, polyphosphates and superphosphates.
Phosphogypsum - Calcium sulfate (CaSCy2H2O) that is the dried by-product from the
manufacturing of phosphoric acid, see gypsum. (Source: Fertilizer Dictionary, Farm Chemicals
Handbook).
ppb- parts per billion. Unit of concentration equal to ng/g or ug/kg.
ppm- parts per million. Unit of concentration equal to ug/g or mg/kg.
Product Average Yearly Addition: Also product average yearly addition of metal X (e.g., Cd);
product average yearly soil addition rate of metal X. The average amount of metal X that will be
added to agricultural soil from all products of a specific fertilizer category. The product average
yearly addition is obtained by calculation: the sum of the yearly addition rates of metal X in
product type Y (e.g., P2O5 fertilizers) at nutrient application rate Z (e.g., average nutrient
application rate), divided by the number of products of that category evaluated. Product average
yearly addition is determined for three different nutrient application rates- average, high and
maximum.
Soil Amendments - Any substance that is added to soil (other than the substances used primarily
as fertilizer) that is thought to improve the physical characteristics of the soil, such as porosity to
water and air. Soil amendments do not include commerical fertilizers, agricultuural liming
materials, unmanipulated animal manures, unmanipulated vegetable manures, pesticides, and
other materials exempted by regulation but can contain important fertilizer elements (Source:
Fertilizer Dictionary, Farm Chemicals Handbook).
Yearly Addition: Also yearly addition of metal X (e.g., Cd); yearly soil addition rate of metal X.
The amount of metal X that is added to agricultural soil from the application of a specific
fertilizer product. Assumes one application of the product fertilizer in the year. The yearly
addition value is obtained by calculation as follows: the concentration of that specific heavy
metal in the fertiizer product per desired nutrient ingredient, multiplied by the nutrient
application rate, with all appropriate conversion factors applied. Yearly addition is calculated
with three different nutrient application rates- average, high and maximum.
XV
-------
-------
BACKGROUND REPORT ON FERTILIZER
USE, CONTAMINANTS AND REGULATIONS
1.0 INTRODUCTION
The Environmental Protection Agency (EPA) is studying the issue of heavy metals and
other non-nutritive constituents (also referred to as contaminants) in fertilizers and liming
materials. The purpose of this report is to provide background information on fertilizer use,
consumption patterns, composition and regulations. This information is gathered and presented
here for fertilizers from natural mineral sources and those that are derived from industrial by-
products. The data for heavy metals in fertilizers compiled here are used to provide estimate of
the rates at which these metals may be added to agricultural soils from standard agronomic
practices. The addition of heavy metals to agricultural soil are discussed in terms of federal and
international regulations.
Some industrial by-products contain chemicals which provide plant nutrients. The
recycling of these materials conserves resources and minimizes waste, but at the same time may
result in fertilizer products that contain chemicals unnecessary for plant growth and
development. Examples of such chemicals are heavy metals such as lead and cadmium,
radionuclides chemicals and persistent organics such as chlorinated dioxins. Concern has been
raised that potentially hazardous constituents of recycled wastes, as well as naturally occurring
heavy metals in ores used for fertilizers, might be taken up by plants and ingested by humans or
animals in quantities that could be harmful to health. Additional concerns about use of fertilizer
products include risks to farmers and their families, damage to soil fertility, and dispersion into
groundwater and air.
States regulate label statements made about the plant nutrients (macronutrients: nitrogen,
phosphate, potash; secondary nutrients and micronutrients) in fertilizers, but, in general, do not
regulate other constituents that may be present as a result of the preparation of these products.
Existing EPA Resource Conservation and Recovery Act (RCRA) regulations allow with certain
restrictions the recycling of industrial wastes in the interest of minimizing waste that would
ultimately end up hi landfills or require additional treatment. EPA and the U.S. Department of
Agriculture (USDA) also encourage the recycling of agricultural and municipal wastes. These
wastes may contain heavy metals (e.g. arsenic, lead and cadmium) and persistent organic
compounds (e.g. dioxins and furans) in addition to the beneficial chemicals which are being
recycled into plant nutrient products. Biosolids (sewage sludge) are regulated hi the U.S. when
these products are applied to the land (EPA Part 503 Rule). EPA Part 266.20, "Recyclable
Materials Used hi a Manner Constituting Disposal," requires that fertilizers containing recycled
hazardous materials meet specific treatment standards.
This report is a compilation of existing information on inorganic fertilizers and liming
agents. The use and content of other types of materials used in agriculture, such as manures and
other biosolid materials, was not addressed in this study.
-------
Section 2 of this report provides an overview of the use of fertilizer in the United States,
including including total consumption rates for various fertilizer types by state, for agricultural
and non-agricultural use, and for specific crop types. This section also presents a brief profile
of the U.S. fertilizer industry, and a discussion of the types of recycled industrial wastes and
secondary materials that can be used in fertilizer manufacture;
Section 3 provides information on classification of fertilizers, and presents data on
concentrations of heavy metals and other contaminants by fertilizer type, as well as data from a
number of studies on soil metal concentrations.
Section 4 is a summary discussion of regulations and guidelines for fertilizers that have
been developed in the United States and other countries. This section also outlines regulations
for biosolids that are applied to land.
Section 5 combines data on the application rates for different fertilizer types with the data
on contaminant levels, to estimate the amounts of metals that may be added to soils from
fertilizer usage. These data are compared with regulatory standards and benchmarks, and to
background soil concentrations of metals.
1.1 PEER REVIEW PROCESS
This report was reviewed independently by members of a peer review panel. The panel
consisted of a diverse group of researchers and policy professionals in government, industry, and
environmental advocacy who, together, had considerable knowledge on all subject areas
addressed in this report. The members of this panel and their affiliations were:
Darlene H. Blair, Canadian Food Inspection Agency
Sally Brown, US Department of Agriculture- Agricultural Research Service
Stan Daberkow, US Department of Agriculture
Jacqueline Savitz, Environmental Working Group
James Skillen, The Fertilizer Institute
Steven Wong, California Department of Food and Agriculture.
The peer reviewers were invited to provide both general comments and specific suggestions
concerning the report.
The majority of the peer reviewer comments can be divided into five main subject areas.
These subject areas include:
• purpose of the report,
• definition of terms,
• use of benchmark standards for comparison of products,
• potential fertilizer problems beyond heavy metals in agricultural products, and
• technical issues related to clarity of discussion of calculation methods, and the role of
lime and gypsum in the fertilizer industry.
-------
The purpose of the report was not well understood by the reviewers, so that several
reviewers requested analyses, data collection, evaluation of EPA's next steps, and/or assessment
of EPA's policy position. These requests covered areas that far exceeded the scope and intended
purpose of the report. As a result of such reviewer comments, the executive summary and the
introduction were modified significantly to emphasize that this report is an information source,
and contains a compilation of available data on fertilizer composition, application rates, and
applicable regulations, and provides a calculated estimate of the possible soil metal
accumulations that may occur over tune with repeated applications of fertilizer products. The
report was not designed as an exposure assessment or risk assessment, either ecological or
human. EPA's next steps and policy position were not addressed as this would go beyond the
scope and intent of this report, and would logically be communicated to the public at a later time.
Terms that were used in the peer reviewed version of the report (e.g., contaminant,
hazardous waste) were viewed as significantly ambiguous to several reviewers so as to require
clarification and/or modification. Several reviewers suggested that a glossary of terms be added
at the beginning of the document, and this suggestion was implemented. The glossary covers
standard fertilizer terms and their abbreviations (e.g., DAP, diammonium phosphate), as well as
terms which may connote different things to different groups if not explicitly defined (e.g.,
industrial by-product). A consistent set of terms was then applied to the entire document, and
these terms were chosen as "neutral" in their connotations. For example, the term "heavy metal
contaminant" was replaced with "heavy metal constituent" because heavy metals such as zinc
and copper can be used as a nutrient in some circumstances and viewed as an undesirable
component in other instances. In addition, because of negative connotations to the word
"hazardous waste", especially as applied to materials that are legitimately reprocessed as
fertilizer materials or feedstocks, this term was replaced with "industrial by-product" in the
report.
Several reviewers questioned the appropriateness of the benchmark standards that were
employed in the evaluation of diverse fertilizer products. In particular, reviewers questioned the
use of heavy metals limits set in the Canadian Fertilizers Act and Regulations, and the
calculation of years required to double soil metal background levels with repeated yearly
additions of a given product. As documented in the report, the Canadian standards were not
established through a formal risk assessment, but were instead determined from the best
estimates of leading scientists in various fields as levels associated with no adverse effect to
plants, animals or land over the long term. These limits are being adopted by states and
AAPFCO at this time, in lieu of formal risk assessments, so that they constitute a useful and
consistent point of reference for comparisons. The report also characterizes fertilizer products
with respect to the length of time required for their consistent applications to double the average
background US soil metals levels. Although the doubling of soil metal levels may not be
associated with any known risk, these calculations help to put products, application rates and
fertilizer constituent levels hi the perspective of a measurable change to soils.
Due to the concern that recycled industrial by-products may have hazardous constituents
other than the heavy metals, the report was expanded to include discussions of other undesirable
components of fertilizers. In this section, attention was given specifically to dioxins/furans and
radionuclides. Some peripheral comments also noted the potential for pesticides, PAHs, and
PCBs to be present in industrial wastes, but organic constituents were not a primary focus of this
-------
report. Similarly, questions were raised about fertilizers other than those applied in production
agriculture, specifically those used in the home-and-garden arena. Because data were readily
available from several sources on concentrations of heavy metals in home-and-garden fertilizers,
these data were included in the report. However, because application rates for these products are
so varied among consumers, no attempt was made to estimate soil additions of metals from these
products.
Several comments made by reviewers suggested that there was some confusion about
what constituted an average fertilizer product. For this reason, there is a definition of average
product in the text, an expanded discussion of the calculation method, and examples that show
the manner in which both the percentage of the active nutrient ingredient and the individual
product heavy metal concentrations contribute to the soil addition rate. As a result of these
comments, text in both the executive summary and Section 5 has been augmented by figures
which provide a rapid perspective on product types that may require additional scrutiny due to
exceedances of Canadian standards or relatively short time of use before soil background metals
levels are potentially doubled. These figures provide an excellent perspective for final
conclusions of the report.
EPA has established a public record for the peer review of this report under
administrative record AR-208 , "Background Report on Fertilizer Use". The record is available
in the TSCA Nonconfidential Information Center, which is open from noon to 4 PM Eastern time
Monday through Friday, except legal holidays. The TSCA Nonconfidential information Center
is located in Room NE-B607, Northeast Mall, 401 M Street SW, Washington, DC.
-------
2.0 FERTILIZER USE AND INDUSTRY CHARACTERIZATION
This section provides an introduction to the fertilizer industry in the United States.
Fertilizers are defined in the first subsection. Fertilizer consumption in the U.S. is described in
the second subsection. That subsection includes information on tons of fertilizers consumed by
types of fertilizer for individual states and regions of the country. Fertilizer use on agricultural
crops is provided, both amount consumed and application rates. In addition, fertilizer
consumption is broken down into that used for agriculture and other uses in the third and fourth
subsections. The final subsection provides an overview of the fertilizer industry describing the
market structure, production volumes and size distribution of producing firms.
This section addresses the questions:
• What constitutes a fertilizer and a liming material?
• How much fertilizer is used in the U.S.?
• How much of various kinds of fertilizers and micronutrients are used in the U.S.?
• How do the states and regions of the country differ in fertilizer use?
• What crops use the most of specific fertilizer types?
• What is known about non-farm fertilizer use?
• How is fertilizer made?
• What is known about the fertilizer industry in terms of production, revenue and
employment?
2.1. DEFINITION OF FERTILIZER AND LIMING MATERIAL
Fertilizer is defined as "any substance containing one or more recognized plant
nutrient(s) which is used for its plant nutrient content and which is designed for use or claimed to
have value in promoting plant growth" (Association of American Plant Food Control Officials -
AAPFCO, 1997b). A fertilizer material is a fertilizer which either
(a) "Contains important quantities of no more than one of the primary plant nutrients:
nitrogen (N), phosphorus (P) and potassium (K), or
(b) Has 85% or more of its plant nutrient content present in the form of a single chemical
compound, or
(c) Is derived from a plant or animal residue or by-product or natural material deposit
which has been processed in such a way that its content of plant nutrients has not
been materially changed except by purification and concentration." (AAPFCO)
Fertilizers may be composed of multiple fertilizer materials. In addition, fertilizers may contain
additives which "alter transformation in the soil, maintain good physical condition, reduce
corrosiveness and serve some purpose other than providing plant nutrients" (Meister, R.T., 1997)
and micronutrients. Primary nutrients are defined by the AAPFCO as nitrogen (N), available
phosphate (P2O5) and soluble potash (K2O). The AAPFCO defines secondary and micronutrients
as "those other than the primary nutrients that are essential for the normal growth of plants and
that may need to be added to the growth medium. Secondary plant nutrients shall include
calcium, magnesium and sulfur; micro plant nutrients shall include boron, chlorine, cobalt,
copper, iron, manganese, molybdenum, sodium and zinc." Calcium (liming materials and
-------
gypsum), magnesium (from dolomite limestone) and sulfur (in the form of inorganic sulfates and
sulfur in organic matter) are used to aid in fruit and leaf development and leaf color. More
detailed descriptions of the composition of fertilizers are provided in Section 3.
A liming material is defined as "a product whose calcium and magnesium compounds
are capable of neutralizing soil acidity" (AAPFCO, 1997b).
2.2. FERTILIZER CONSUMPTION IN THE U.S.
Both the AAPFCO and USDA collect information on fertilizer use in the United States.
The Economic Research Service (ERS) and National Agricultural Statistics Service (NASS) of
USDA and State Statistical Offices (SSO's) collect information on chemical use in agriculture,
including information on crops treated, acreage and costs. The AAPFCO, an organization of
officials, examiners, and researchers in North America charged with regulating fertilizer
materials and enforcing laws applied thereto, collects information on commercial fertilizers
consumed in North America, Hawaii, and Puerto Rico. Information provided in this chapter on
fertilizer use has been abstracted from both sources and several ancillary sources. The AAPFCO
uses the term "consumption" for their fertilizer statistics. Consumption, for the AAPFCO, means
data submitted by fertilizer control offices on sales or shipments for farm and non-farm use. The
USDA data record fertilizer application to agricultural land, which is a more specific definition
of use. Because there are no data on fertilizer stockpiling by the consumer, use and consumption
are used interchangeably in this report.
The AAPFCO reports that more than 54 million tons (110 billion Ibs) of commercial
fertilizers of all kinds were consumed in the United States in the year ending June 30,1996.
Primary nutrients (N, P, K) accounted for 91% of this total; liming materials accounted for about
4%, and organic fertilizers accounted for 1% of the total. Approximately 5% of the total (2.7
million tons) was due to secondary nutrients and micronutrients. Table 2-1 summarizes the U.S.
tonnage use of the different fertilizer types. The zinc and iron micronutrient fertilizers, which
have come under scrutiny lately as industrial waste by-products with heavy metal content,
comprise about 0.1% of the total tonnage of fertilizers consumed.
Table 2-2 summarizes the use of fertilizers in different regions of the United States. The
largest single category of fertilizers consumed in 1996 was the nitrogen materials (23 million
tons) and the smallest category is natural organic materials (0.57 million tons), which includes
compost, manure and sewage sludge. The West North Central region (13 million tons) and the
New England Region (0.4 million tons) are the areas consuming the most and least fertilizer in
the continental United States, respectively. These consumption values are totals and are not
adjusted for the amount of agricultural land in each region. The AAPFCO statistics presented in
Table 2-2 differ slightly from those presented in Commercial Fertilizers 1996 (AAPFCO and the
Fertilizer Institute (TFT), 1997) because this table was prepared from electronic files obtained
from the AAPFCO. Because of the inclusion of liming materials in these tables and some minor
differences in the definition of multiple nutrient fertilizers and "other" fertilizer groupings, these
fertilizer consumption values differ slightly from those presented in Commercial Fertilizers
1996.
-------
Table 2-1. Total Fertilizer (Tons) Consumed in the United States in 1996a
Fisrtilizer Type
Nitrogen
Multiple Nutrient
Phosphate
Potash
Secondary/Micronutrient
[gypsum
[other
[zinc
[iron
Lime
OrQanic
Tons
23,412,475
19,049,707
7,204,054
5,988,338
2,743,287
~50%]b
~25%]b
~1.5%]b
~1%f
2,219,922
571,575
% of Total
38
31
12
10
4.5
[2.3]
[1.1]
[0.07]
[0.05]
3.6
0.9
a) Source: AAPFCO Electronic Database; see expanded form in Table 2-2
see footnote a, Table 2-2.
b) Selected data; percentage of the secondary/micronutrient total due to indicated
type.
Appendix A contains fertilizer consumption for individual states and Puerto Rico,
grouped into the regions of the country shown in Table 2-2 (pp. 8-14). These data are abstracted
from AAPFCO data files for the year ending June 30,1996. There are nine states with total
fertilizer consumption over 2 million tons. These states are, in order of increasing fertilizer
consumption: Florida, Minnesota, Ohio, Nebraska, North Carolina, Texas, Iowa, Illinois and
California. Table 2-3 below shows the fertilizer consumption (tons) of the top two states by
fertilizer category. Texas and Florida consume the most multiple nutrient fertilizers, while
Illinois consumes the most single nutrient nitrogen, phosphate and potash fertilizers. North
Carolina consumes the most organic fertilizers and liming materials, while California consumes
the most secondary nutrient and micronutrient fertilizers.
Table 2-3. Top States Consuming Fertilizers by Fertilizer Type, 1996a
Fertilizer Type" -
Multiple Nutrient
Nitrogen
Phosphate
Potash
Organic
Secondary Nutrient and Micronutrients
LirninG IVIaterials
Top State and Tons Consumed
TX- 1,622,103
IL- 1,920,268
IL - 832,904
IL - 979,455
NC- 194,265
CA- 1,596,796
NC- 947, 126
Second Top State and Tons
Consumed
FL- 1,562,946
IA- 1,819,846
IA - 647,541
IA - 699,879
CA- 78,781
NC- 145,651
CA- 621, 91 5
a) See Appendix A for more details
b) Source: AAPFCO Database, 1997
-------
CO
o>
CD
tn
s
o
*5>
Q)
cc
1
CD
CO
o
O
'•£
<0
H
oi
1=
United
States and
Puerto Rico
S "a S o
Jlli
< I o.
73
ea
a.
Mountain
HI
ill
s * "5
o 'i c
> z §
f
° 1
I 0
s
n
ij
^ C
zl
114
g
+3
U
to
CD
Q
TILIZERS
fc
NUTRIENT Fl
-j
3
10,440,715 ||
PS
CM
"-
1,336,439
CM
PS
cn
cn
in
cn
CO
in"
cn
in
en
ps"
CO
PS
00
8.
CO
CO
in
CN
5
CO
*~
CO
CM
CM
ps"
en
CO
cn
CO
1
cn
ps
03
CO
CO
CO
CM
ol
z
7,155,466 ||
CM
cn
o
o
CO
CM
in
CO
00
CM
CO
CM
CO
755,069
444,812
00
CM
ps
CO
ps
cn
CM
CD
CO
CD
*~
CO
cn
in
180,851
Ps
PS
0.
CO
CO
CO
to
CO
CM
ps
in
CO
in
CO
in
ro
•i-
119,429
1
5
CO
CM
CO
CO
CO
in
cb"
in
ps
cb"
CM
1
CO
CM
CO
ps"
Z
CM
cn
CO
CO
CO
00
CO
CM
CM
ps
CM
cn
CM"
CM
CM
to
o
CO
CM
cb"
o
cn
CM
§
CO
in
ps
in
CM
CM
CO
cn
a.
Ps
o
Ps
I
cn
ti-
ps
CM
CM
CO
CO
in
CM
CO
CO
Ps
|s.
CM
cn
CO
CM
CO
CO
cn
to
CM
tn
CO
00
CO
CM
0
CM
en
1
cn
CM
CO
CO
CO
428,838
•
-------
T3
O
O
O
CNI
CO
: United
States and
^ PueirtojRico
2i=- O
co <-* o
3!§i
< I Q-
o
1
<2
'5
*••
c
3
5
*• JE "S
III
> « o
** ^ 5
0
*• .e g
fl
Ul
i!
"5
^ -B
II
S5
•D
> C
•1
Description
o
C3
O
in
o
CO
CO
o
CO
CO
CO
CO
in
in
CM
Si
CO
b'
(Ferrous Ammonium
Sulfate
CO
o
o
o
o
0
o
o
CO
o
o
|| Magnesium Nitrate
o
o
in
CO
o
o
CM
CM
0
-
g
CO
CO
en
CD
en
CO
CM
|| Nitric Acid
CO
CO
pC
CM
O
CM
CO
CO
CO
CM
CO
CM
323,376
CM
CO
O
en
en
CO
§
CD
co
pC
CO
CM
3
CO
CM"
CM
CO
CO
0
CM
CO
|| Nitrogen Solution 289
CM
en
q
o
CD
CO
CM
CM
CO
CM
CO
CO
R
CO
CO
CO
in
CO
in
CM
CM
in
CM
-
|| Nitrogen Solution 30°/
CO
CO
CO
CO
CM
CO
793,919
CM
CO
CO
8
in
CM"
CO
CO
o
CO
in
CM"
in
CM
,072,96
en
CO
CM
CM
CO
co"
CO
i
CM"
CO
CO
o
CO
Nitrogen Solution 32°/
o
8
CO
in
in
O
CD
en
en
CD
CO
in
i-
co
10
CO
en
in
CM
CO
o
CO
CD
CO
232,379
CM
CM
"*
O
« Nitrogen
Solution < 28%
in
in
in
O
CD
en
CO
CM
CO
CO
CO
en
CM
CO
CD
in
CO
0
CO
0
CM
O
|| Nitrogen
|| Solution > 32%
eg
0
CO
CO
o
CO
in
CD
CO
CO
co"
CD
CO
CO
in"
CM
CO
CO
en
co"
en
o
o
CO
|| Sodium Nitrate
3
eg
CO
CO
CD
CO
CD
CD
CM
in
CO
in
§
CO
CM
CD
5!
CO
|| Sulfur Coated Urea
3,912,007 1
CO
CD
266,480
p-
00
in
S
CM
CM
in
CO
p-
00
in
CO
CM
CO
CO
CO
CO
in
CO
co"
CO
CM
in
CO
CO
CD
CD
5
en
in
CO
0
o
i
CO
CO
CO
0
CO
CM
CM
0
0
CO
0
o
Urea Solution
CO
CO
-
§
CM
CO
CO
O
in
in
CM_
CO
CO
CO
CO
in
CO
en
CM
en
CM"
CO
CM
CM"
in
°P.
CO
•o
CD
"co
CO
5
CO
CO
CO
o
o
CM
O
CO
in
en
CO
in"
CM
en
CO
o
o
«Zino Ammonium
Sulfate Solution
CM
en
o
0
o
0
0
in
0
in
CO
o
Zinc Manganese
Ammonium Sulfate
CO
CM
en
CO
-
5
CO
CO
CO
CO
CM
CO
CO
^
CO
CO
in
CO
in
o
CO
CO
p-
CO
CO
00
CO
CO
o
CD
CO
CO
CO
CD
6
23,412,475 ||
CM
in
2,740,687
en
q
CD
*~
CD
CO
CM_
O
CM
CO
CO
in
co"
o
•-
CO
co
in
CO
p»
CO
CO
in
•*
CO
1,607,79
CO
CM
CO
<3-
in
in
co"
CM
_j
1—
O
1—
„
N
IU
PHATE F
CO
O
i
CO
CM
CO
O
CO
CM
CO
o
o
o
o
o
o
0
o
« Ammonium
Metaphosphate
00
CD
CM
CM
in
CM
co"
CO
CO
CO
CO
CM
eo
en
CM
CO
CO
CO
CM
CM
r-"
00
CO
*
CD
-
CO
|| Ammonium Phosphat
CM
CO
O
CM
in
CM
O
in
in
CO
CO
CM
-
-
o
o
CO
« Ammonium Phosphat
Nitrate
CD
CO
CO
o
in
CO
CD
CO
CD
in
co"
p-.
CM
0
CO
CO
CO
CO
CD
CM
CM
O
CD
1 Ammonium Phosphat
Sulfate
CO
CO
in
CO
in
O
eo
0
o
0
in
CO
CM
CM
in
CM
CO
CO
i
CO
« Ammonium
Polyphosphate
-------
•o
I
V-*
o
O
CM
C<1
(D
•a o
;§ *> o
5 a !
B ~ 0
J£ 0 t* 0
Jlli
< X n.
"o
£
1
E
+t jg "5
s j|
tsfs
iS ° i
111
II
IS
111
jl
„
II
^3
ll
in
|| Description
Ps
CO
o
o
o
o
o
0
o
o
o
PS,
CO
1 Basic Lime Phosph
CO
to
o
o
o
o
CO
CM
0
o
CO
CO
CD
CM
O
O
| Basic Slag
cn
CM
o
CM
CO
,_
CM
o
o
in
co
o
CD
in
(O
PS
Bonemeal, Raw
CO
o
Ps
CO
PS
CM
CM
CO
CM
CO
CO
00
Ps
in
in
CM
T3
II Bonemeal, Steame
CM
cn
CM
o
o
CO
CM
in
0
CM
o
o
0
o
Bone, Precipitated
CO
CM
CM
o
o
o
in
CM
in
CM
CO
CO
in
CM
o
in
o
o
« Calcium
Metaphosphate
|
o
CO
O
CO
CM
CO
CM
CM
CO
cn
CD
§
*
-
« Colloidal Phosphat
(Soft Phosphate)
CD
O
CD
CO
CO
in
CD
1
CD
CO
ps
CM
CO
cn
CM
0
CM
CO
CM
^f
CO
CO
CO
o
*
00
o
PS
Ps"
,128,423
112,709
o
CO
in
CO
CO
03
in
«Diammonium
Phosphate
CO
CO
0
o
o
o
0
CM
CM
o
.
o
0
o
X
I Limestone, Phosph
CO
CO
in
CM
CM
"~
§
CO
122,073
in
o
CD
CO
CO
ps"
CO
CO
CD
486,662
CD
CO
C3
PS
Ps
CM
CM
in
CD"
CO
in
in
CO
CM
in
CD
cn
« Liquid Ammonium
Polyphosphate
o
CO
o
CO
in
CM
*
CO
0
CD
CD
O
CO
5
o
CO
CO
| Magnesium Phosp
<*
CD
CM
O
O
CO
*"~
*""
O
CM
Ps
in"
CO
CO
o
in
CO
CM
J
Ps
PS
CO
o
in
CO
CM
in
0
in
CO
in
CO
in
CM
CO
CD"
CO
CO
CO
in
CM
«Mono Ammonium
Phosphate
cn
CO
CM
o
cn
CO
CM
0
O
0
O
O
0
o
o
| Nitric Phosphate
CO
CO
ID
«-
o
CM
CO
5
0
in
CO
in
CO
CO
CM
CO
CO
CM
CO
O
| Phosphate Rock
o
CO
CM
CO
CO
0
in
in
in
CO
CO
cn
cn
CD
CM
-
CM
O
CO
rf
PS
PS
in
CO
co"
cn
CO
CM
o
II
|| Phosphoric Acid
CO
CM
CO
O
PS
00
0
o
o
o
CO
CM
O
o
CD
.C
|| Precipitated Phosp
CM
o
CD
0
CO
in
in
CO
in
CO
CO
CM
CD
00
in
CO
CO
CO
CM
00
I Super Phosphate,
Enriched
CD
CD
in
o
CO
CD
in
CO
PS
in
CO
PS
CO
*
a
in
CO
PS
CD
co"
CO
CO
CO
CM
Ps
CO
CO
CM
™"
1
« Super Phosphate,
Normal
U£
CO
CM
3
o
in
cn
CM
CO
CD
CD
o
CM
in"
CM
cn
0
o"
in
o
§
CD
198,374
00
in
cp_
co"
CM
0
ps"
cn
CO
« Super Phosphate,
Triple
J
0
Ps
in
CM"
CO
CM
CO
co"
CO
CD
CO
O
O
o
CM
CD
CM
CM"
o
o
-n
-------
T!
0>
C
1
O
O
Csl
_a>
&
es
•o g
J? '5 2 o
III*
_o
'3
£
_£
. '1
S
_
8||,
|f|
» f 1
| I g
Jl
'lU
UJ
11
*i
il
•a
> c
UJ
Description
cn
CO
CO
o
o
g
in
CO
0
cn
p-
co
o
10
0
o
Manure Salts
CM
to
cn
CM
cn
in
149,085
in
o
*
§
cn
in
O
•*
o
in
CO
"
*t
0
CO
192,919
o
CM
CO
CO
CD
CO
« Muriate of Potash
60%(Pot. Chloride
CM
tn
5
cn
o
0
o
cn
o
cn
o
CO
8
in
CO
in
co"
CD"
cn
in
in
tf
CO
CO
CO
CM
i
CO
o
CM
CM
CO
|| Muriate of Potash
CO
CM
O
o
en
r~
o
o
CO
CO
o
o
CD
CM
in
CN
CM
CO
tn
Potash Suspension
cn
«
0
in
CM
CM
p-
o
CM
cn
CM
CO
tn
in
cn
CM
-
CO
CM
CD
•s
|| Potassium Carbon
o
00
CO
cn
CO
cn
CO
CM
in
co"
CM
CM"
CO
CO
in
CO
CM"
o
o
o
CM"
CO
CO
CO
CM
CO
CM
d
CM
CO
CO
|| Potassium Nitrate
CO
CM
CO
in
in
in
in
in
CO
o
00
in
in
in
CM
CM
in
CO
CM
in
o"
in
cn
CO
r»
CO
S
CM"
CM
CM
II Potassium Sulfate
135,098
o
0
CO
CD
CO
CO
CO
in
00
CO
CO
CO
cn
CO
tn
en
CD
CO
in^
CD
O
CO
cn
CO
CO
e
«Potassium-magnes
Sulfate
£
0
0
o
o
0
o
0
o
CO
*
«Potassium-meta
Phosphate
in
S
CO
o
o
r-
0
3
CN
CO
CM
CO
CO
5
CO
5
r-
1 Potassium-sodium
Nitrate
158,260
CO
CM
CO
CO
CO
cn
o
in
CM
CO
cn
00
in
0
00
00
0
00
CO
CO
CO
CO
CO
CM
0
CO
CM
s
00
CD
6
CO
CO
00
03
cn
in
CM
CM
CO
CM
ca
00
CM
CO
cn
in
"
CO
CO
cn
cn
CO
00
•*
•*
CO
tn
in
o
cn
CO
2,524,402
323,878
173,602
£
t-
o
i-
co
cc
Ul
IM
O
z
o
CM
CO
CM
0
0
,-
'
CO
CM
H
CO
8
CO
1
o
•a"
o
o
m
cn
0
O
0
o
o
o
-
CXI
o
0
|| Castor Pomace
-
o
o
o
o
0
o
o
-
o
0
|l Cocoa Shell Meal
i
o
00
It-
CD
CO
CD
CO
O
O
CM
§
cn
CO
CO
CO
CO
in
cn
in
1
"fr
O
a.
o
O
1
o
CM
O
0
CM
0
O
'
0
CO
| Cottonseed Meal
CO
o
p»
P-
co
o
0
8
cn
o
CM
00
0
00
Q.
g
tn
.c
CO
U-
co
o
CO
o
0
0
0
o
o
0
o
o
c
CO
CM
to"
O
o
5
CO
in
CO
oo"
tn
CO
•<*
0
CO
00
co"
CO
cn
CM_
CM"
p-
CD
O
CO
in
CO
CO
| Manure
cn
CO
o
o
in
CD
CO
0
CO
CO
CO
CM
O
O
_
co"
CM
co"
CO
cn
o
CO
0
CO
cn
0
o
cn
o
5
CM
CO
CM
in
0
o
CO
CD
CO
CO
CO
s
» Sewage Sludge,
Activated
CM
0
CM
O
O
O
O
0
0
O
O
Sewage Sludge,
Digested
11
-------
TO
03
c
1
O
J2
S
to
•a o
3 £ *
§.
.§! S o
Jill
< I Q.
_o
1
e
1
_
® I i=
> 03 J?
CJ
sfl
0
111
*&l
*- 0)
S"
111
11
<
11
25
-, e
|l
Description
CD
o
0
o
5
o
0
00
CM
CM
O
CM
O
Sewage Sludge, Heat
Dried
en
in
CO
o
en
CO
p-T
o
5
o
o
o
en
in
CM
00
CO
O
^J-
CO
CO
|| Sewage Sludge, Other
-
o
o
o
o
o
o
-
o
o
0
II Soybean Meal
en
CO
CM
o
o
CM
O
CM
O
O
O
CO
O
o
0
Tankage, Animal
5
en
O
CO
o
o
in
"~
CO
CO
CM
CO
CO
o
o
| Tankage, Process
CM
CO
CM
,_
in
in
in
O
CM
O
CO
CO
p~
en
en
CO
CO
CM
en
in
0
3
CO
CO
CO
CO
CM
s
5
in
in
,_
CO
CM
i
CO
o
CO
CO
o
in
CO
CO
M
CO
eo"
in
CO
i
CO
in
CO
CM
00
CO
en
in
CO
£
CO
fi
UJ
U.
1-
1
i-
3
O
tc
o
5
Q
>
te
ECONDA
CO
CO
CO
0
o
CO
CO
CO
CO
5
^"
o
-
CO
CO
CM
Aluminum Sulfate
CO
CM
CO
CM
o
en
CM
CM
p-
CO
1
o
en
CO
CO
CD
CO
CO
CM
CM
CO
in
CD
CO
8
CO
CO
CM
i
o
CO
00
eo
CO
10
0
«-
o
o
•*
eo
CM
q
CD
CM
CM
CM
CO
*
Calcium Chelate
00
in
CO
0
0
o
0
en
CO
CO
CD
CO
CO
CO
CO
CO
en
CO
o
|| Calcium Chloride
CO
CO
CM
o
en
o
o
0
0
CD
O
CO
CO
O
o
|| Calcium Sulfate
| (Hydrous)
CM
o
CM
o
o
o
o
0
o
0
o
| Cobalt Sulfate
CM
O
in
CM
CM
O
O
rt
CO
CO
in
CM
o
Copper Chelate
en
CO
in
o
CM
CO
in
o
o
o
o
o
r~
0
o
| Copper Compound
CD
CO
o
o
o
o
o
CO
in
CO
CO
o
0
o
o
CO
CQ
0?
1
o
03
Q.
Q.
O
U
CO
§
o
g
CO
CO
o
CO
o
CM
5
r-
OJ
,
CM
1
3
CO
1
§
CO
CD
in
CM
en
CM
in
CO
CM
CM
CO
-
CO
-
CM
CO
in
o
Epsom Salt(magnesium
Sulfate)
o
o
-
o
o
in
in
CM
CO
O
CM
O
0
II Ferric Oxide
CO
o
eo
o
CO
in
O
O
CO
0
o
in
0
&
m
"5
co
o
1
CD
CD
O
CD
in
CM
o
in
CM
CM
o
in
CM
CM
CO
|| Ferrous Sulfate
,610,49
o
CO
in
in
o
CM_
CD
CO
in
CO
?
0
CO
,-
CO
CO
CO
CO
CO
o"
CM
o
o
in
CO
CO
CO
CO
« Gypsum (Calcium
Sulfate)
CM
CM
O
CM
CO
CO
CO
CO
CD
in
CO
CO
CO
CO
CO
CM
en
CM
CO
CO
in
|| Iron Chelate
CO
CO
CO
pC
o
o
CM
o
pC
CM
O
CO
CM
CO
in
CO
CM
CO
^
| Iron Compound
en
o
CO
CO
o
o
o
o
o
0
0
|| Lime Sulfur Solution
12
-------
•a
o>
o
O
evi
CNI
Si
a
TJ 0
"S « '£
.* 8 o
c S t
CO '— 0
.*. co *» o
Js 1 li
'3
\l Mountain
4.
'II!
«f S
flSl
» •£ S
lij
ll
|°
!j
5 c
3 JO
il
U,
- •: Description
o
CO
5
CM
O
O
*~
S
CO
cn
CD
in
CO
CO
CM
cn
CO
CO
« Magnesia (Magnesium
Oxide)
§
in
O
in
CO
CO
CM
-
r-
o
CO
CM
-
0
l| Magnesium Chelate
o
CM
O
o
o
o
o
cn
o
o
o
| Manganese Agstone
CM
CO
o
in
o
-
o
o
CM
CO
CD
CO
CM
O
|| Manganese Chelate
CO
o
CM
O
-
-
O
CM
rt-
in
CO
CD
CO
-
|| Manganese Oxide
o
CO
o
o
o
o
o
0
o
o
CO
o
o
Manganese Slag
en
5
o
CO
cn
CM
CO
o
in
CO
CO
in
CO
CO
CO
cn
cn
|| Manganese Sulfate
CO
CM
0
o
o
CO
CO
CO
o
o
o
|| Manganese Oxide
o
in
CO
CM
O
0
'
O
CM
O
o
0
CO
CO
CM
CO
CO
O
'o
CO
O)
JC
1
CO
CM
O
CO
CM
O
o
§
-
cn
0
o
0
|| Sodium Molybdate
-
o
o
CM
O
o
o
0
-
CM
o
1 Soil Additive
CO
CO
in
CM
O
CO
CO
CD
CO
CO
CO
o
o
CO
0
CO
CO
o
in*
CM
in
CO
O
o
CM
|| Soil Amendment
CO
o
0
CO
o
o
o
CM
O
CO
*"
in
5
in
CO
pC
o
|| Soil Conditioner
120,484
CO
CO
CO
co
co"
CO
in
CM
CO
CM
O
CO
CO
o
o
CO
CM
CO
-fr
en
in
cn
CO
p-
CM
CM"
o
cn
0
CD
3
CO
in
CO
o
o
o
CO
in
o
in"
o
CM
CO
CM
O
O
O
0
Sulfuric Acid
CO
CM
CO
en
o
o
CD
p»
CD
CO
cn
•*
CO
CO
in
in
cn
CM"
CO
CO
CO
in
CO
CM
| Zinc Chelate
CO
in
CO
o
CN
CO
CO
Si
CO
CO
en
in
CO
CO.
CO
CO
o
CM
CO
CO
O
Zinc Oxide
CM
CO
O
in
CO
o
0
s
CD
CO
CO
CO
CM
CN
CM
O
|| Zinc Oxysulfate
CD
CO
IO
CO
in
CD
CO
CO
CM
in
S
CO
CO
CO
CM"
CO
o
CM
CO
CO
CD
CM
8
®
CO
"5
CO
s
Kl
CM
o
0
p-
o
CO
CO
CO
o
0
o
o
Zinc Sulfate Solution
669,793
CO
332,384
P-
CD
in
co
CO
CM
cn"
CO
CO
o
CN
CM
CM
CO
CN
in
5
0
CO
117,038
CN
9
.c
O
2,743,28
ID
1,748,327
in
CO
CO
CO*
CD
in
CM
in
CM
o
CO
CM
in
CD
CO
o"
CO
in
CO
CO
CO
497,872
CO
in
in
CD
CN
_1
O
l-
(0
e
s
o
z
CO
CD
0
in
CO
cn
CO
CO
o
o
CO
in
CD
CM
0
O
£
<*
CM
in*
CM
O
CO
in
Calcitic Lirne (75%
Neutral)
P-
co
CM
CM
O
CO
CO
o
o
5
CM
in
CO
CM
o
CM
« Calcium Hydroxide
(Hydrate)
CM
CO
CM
CO
en
0
o
0
o
0
o
CD
CO
0
o
|| Calcium Oxide (Burnt)
13
-------
•o
CD
O
O
CNl
CNI
•g g
w£
e ~ o
JK a +• o
g 5 a 4J
-
CO
05
O)
1 Fertilizers
Commercial
n:
o
I
IE
c
CD
s*
CO 4J
CO O
o) eo
CD CO
CC LU
Q
CO
Q"
m
•z.
\- 2
co'z"
_J
LU g
fied fertilizer types. For example, Other under Nitrogen Fertilizers refers to nitrogen-containing
e listed nitrogen fertilizers.
*2
<
West South Central
h-
ll
5i
LU"
z'Q
O '
I .0
LU CD
> -o
Ii
3£
CO
o
o
LL.
i
O
C
CO
•*-*
0
CO
5
3
z
2
(-"
g
Mountain - AZ, CO,
o ^
CD *•*
O- C
CO •-
= -a
3 CD
n M-
1
CC
O
I
0
i
'o
CO
Q.
•)-»
CO
5
£
_CD
CO
CO
15
c
=
CD
CD
I
•H
CD
K
O
0
Q.
CO
it previous!
fertilizer products no
Is, because some multinutrient fertilizers are also included in other fertilizer categories.
CO
4-1
0
+-•
o
01
CD
X
U
CD
JZ
4-t
-5
E
3
CO
c
CO
4-«
CO
CO
£
co
CO
CO
i
T3
c
CO
14
-------
2.3. AGRICULTURAL FERTILIZER USE
The USDA ERS-NASS data presented in this section come from the most recent surveys
of field, fruit and vegetable crops. These surveys, the sampling methodology, coverage and data
collection are described in the USDA, ERS Agricultural Resources and Environmental
Indicators, 1996-1997 Appendix: Agricultural Resource Surveys and Data (1997).
Fruit and vegetable data were abstracted from the Chemical Use Surveys that were
initially funded under the 1989 President's Food Safety Initiative. These surveys are conducted
by NASS "using personal enumeration of a stratified systematic sample of growers who produce
at least one acre of the targeted crops." The information collected on fertilizer use, acreage
planted and application rates are survey data for the major crop producing states and do not
represent the totality of farms in the U.S. raising these crops. Surveys are conducted in odd
numbered years for fruit (latest available survey performed in 1995, reported in 1996) and even
numbered years for vegetable crops (latest available survey performed in 1994, reported in 1995;
the 1996 survey did not collect fertilizer data).
The latest field crop usage data, covering 70 to 90% of the total U.S. crop, are from the
Agricultural Resources Management Survey (ARMS) of 1996 which combines the former
Cropping Practices Surveys with the Farm Costs and Returns Survey. This survey has three
phases. Phase n, conducted in the autumn, collects data on agricultural production practices,
resource and input use and production. In this survey, "a multi-frame, stratified sampling
procedure is used. Results are weighted and aggregated to develop state, regional and national
estimates." The ARMS collects additional information on a selected field crop in certain years.
For example, in 1996 the ARMS collected data on tobacco.
2.3.1 Field Crops
The USDA, ERS, NASS (1997) collected data on selected field crops in the major states
with approximately eighty percent of the U.S. acreage for these crops. Table 2-4 shows the
number of acres planted, the total amount of N, P (P2O5) and K (K2O) fertilizers applied and N, P
and K application rates for these field crops (note that in this section on fertilizer use, P refers to
phosphate fertilizers, not phosphorus, and K refers to potash, not potassium). Potatoes have the
highest average application rates for nitrogen fertilizers (195 Ibs/acre) and phosphate fertilizers
(173 Ibs/acre), while application rates of potash are highest on tobacco (203 Ibs/acre). Potatoes
and tobacco, however, each have fewer than 1 million acres planted. More acres are planted with
com (approximately 70 million acres) than any other crop in the U.S., and the application rates
are 133 Ibs/acre N, 57 Ibs/acre P2OS and 79 Ibs/acre K2O. Thus, in terms of total applied
fertilizer, acreage in corn, in the aggregate, receives the most fertilizer.
Information on lime, sulfur, manure and micronutrient use is available only from previous
USDA surveys. The USDA, ERS, Cropping Practices Survey field crop data for crop year 1994
and 1995 (USDA, AREI, May, 1996) report some information on these fertilizers and soil
amendments. Table 2-5 shows the number of field crop acres receiving nutrients and application
rates for sulfur and lime for 1994 and 1995. Almost 60 percent of the potato acreage receives
sulfur and micronutrient fertilizers, and this is a much greater percentage than any of the other
field crops. Application rate for sulfur on potatoes is also much higher than other field crops (82
15
-------
Ibs/acre for potatoes compared to 11-13 Ibs/acre for other field crops). Six percent of potato
acreage receives lime, and while this is higher than other crops, it is only slightly higher.
Fourteen percent of the corn acreage in 1995 received manure treatments. All other crops had
fewer acres treated with manure.
Table 2-4. Fertilizer Use on Field Crops in 1996, Totals for All States3
Crop
Corn
Upland
Cotton
Fall
Potatoes
Soybeans
Flue-cured
Tobacco
Winter
Wheat
Durum
Wheat
Other Spring
Wheat
Acres
Planted
(thousands
of acres)
70,250
11,915
797
50,050
415
28,520
3,000
16,350
Total Applied (million Ibs/year)
(Percent of Acres Treated)
N
9,089.0
(98%)
917.7
(77%)
154.0
(99%)
184.3
(15%)
36.4
(99%)
1,494.8
(86%)
168.6
(93%)
983.4
(89%)
P20S
3,416.7
(85%)
316.0
(55%)
134.4
(97%)
605.4
(25%)
38.0
(99%)
438.2
(51%)
50.9
(73%)
399.1
(79%)
K20
4,076.1
(73%)
373.1
(43%)
98.9
(90%)
1,151.5
(27%)
83.6
(99%)
53.0
(6%)
4.9
(8%)
83.4
(24%)
Application Rate Per Crop Year
(Ibs/acre) Average and Range"
N
133
79-170
100
74-175
195
84-285
24
12-40
88
80-108
61
41-115
60
na°
67
50-91
P20S
57
34-87
48
38-83
173
78-198
49
42-56
93
67-1 1 6
30
20-53
23
na
31
23-37
K2O
79
22-116
73
21-106
139
105-204
85
17-102
203
1 72-284
29
17-40
21
na
21
9-28
a) Source: USDA, ERS, NASS, 1997
b) Averages are state weighted averages. Ranges are the minimum and maximum reported for all states
reporting
c) Only one state reported data for this crop, no range can be calculated
Appendix B (Table B-l) presents corn, cotton, potato, soybean, tobacco, and wheat data
for primary plant nutrient use (N, P2O5 and K2O), fertilizer (total N, P2O5 and K2O) and fertilizer
application rates from the most recent USDA survey. The Agricultural Resources Management
Survey was conducted in the fall of 1996 (USDA, NASS, ERS, September, 1997). In 1996, the
survey covered the major field crop producing states with data from 63 percent (potatoes) to 88
percent (corn) of all U.S. acreage for these field crops. Corn is the field crop with the most acres
planted (70 million) and the most nitrogen (9 billion pounds), phosphate (3 billion pounds) and
potash (4 billion pounds) fertilizers consumed. Ninety-nine percent of the tobacco crop (0.4
million acres) and greater than ninety percent of the potato crop (0.8 million acres) is fertilized
with N, P2O5 and K2O fertilizers. Less than 30% of the soybean crop (50 million acres) receives
application of these primary nutrients.
16
-------
2.3.2 Fruits and Vegetables
In addition to field crops, the USD A, ERS, NASS collects information on fertilizer usage
on fruit and vegetable crops (USDA, ERS, NASS, 1997b and USDA, ERS, NASS, 1996).
Appendix B, Tables B-2 and B-3 present information on acres planted, total N, P, and K applied
and the application rates per crop year for fruits (1995) and vegetables (1994) in selected states.
Table 2-5. Percent of Acres Receiving Various Nutrients and Application Rates,
Selected Field Crops in Major Producing States3
Year
Percent of Acres Receiving Nutrients
Manure
Sulfur
Lime
Micro-
nutrients
Corn for Grain (10 States, 55,850,000 acres)"
1994
1995
16
14
10
NAC
5
NA
11
NA
Cotton (6 States, 1 1 , 650,000 acres)
1994
1995
3
3
20
NA
4
NA
20
NA
Fall Potatoes (11 States, 1,147,000 acres)
1994
1995
2
2
58
NA
6
NA
Soybeans, Northern (7 States, 41,700,000
1994
1995
8
5
2
NA
4
NA
59
NA
acres)
3
NA
Soybeans, Southern (7 States, 10,140,000 acres)
1994
(AR only)
1995
2
2
1
NA
4
NA
2
NA
All Wheat (15 States, 52,965,000 acres)
1994
1995
3
3
10
NA
1
NA
2
NA
~ - Application Rates
Sulfur (Ibs/acre)
Lime (tons/acre)
12
NAC
1.7
NA
13
NA
1.1
NA
82
NA
13
NA
0.9
NA
1.8
NA
NA
NA
1.3
NA
11
NA
1.7
NA
a) Source: USDA, ERS Cropping Practices Survey Data. Application rates not available for manure and
micronutrients. Information on secondary and micronutrients was not collected in the 1996 survey.
b) Acreage reported is for 1995, Source: USDA, AREI Report Number 2, May, 1996.
c) NA = Not Available.
17
-------
It should be noted that the application rates presented in these tables are per crop year and may
represent multiple applications at lower rates.
There is considerable information in the fruit and vegetable tables in Appendix B. These
data are summarized in Tables 2-6 and 2-7. These tables show the acres planted, the total pounds
of N, P2O5 and K2O fertilizers applied and the application rates per crop year for vegetable and
fruit crops. When more than one state was included in the USDA surveys for a specific crop, the
total acreage and pounds of fertilizer applied are presented. Average and ranges of fertilizer
application rates are shown for the producing states. In some cases only a single producing state
was included in the survey, and the values shown in the table are for only that state.
Table 2-6. Fertilizer Use on Vegetable Crops for Crop Year 1994a
Crop
Asparagus
Beans, Lima (fresh)
Beans, Lima
(processing)
Beans, Snap (fresh)
Beans, Snap
(processing)
Broccoli
Cabbage (fresh)
Cabbage (processing)
Carrots
Cauliflower
Celery
Com, Sweet (fresh)
Com, Sweet
(processing)
Cucumbers (fresh)
Cucumbers
(processing)
Eggplant
Lettuce, Head
Lettuce, Other
Cantaloupe
State or
Total*
Total
GA
Total"
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Acres
Planted
80,650
6,500
33,500
71,300
173,400
110,900
69,900
5,600
100,700
53,850
35,900
163,900
503,400
51,400
82,600
3,500
191,000
60,120
97,700
Total Applied ( 1 000 Ibs/year)
N
7,226
654
1,704
5,471
10,695
21,772
11,658
733
18,347
11,474
9,119
22,557
69,084
6,025
7,866
442
45,953
9,459
9,781
P^OB
1,191
364
959
4,954
10,192
9,087
6,910
525
14,954
5,239
7,037
11,899
28,476
3,950
4,809
346
27,196
5,706
5,870
. •• • •.
K,0
3,504
565
834
6,498
10,354
4,345
9,724
1,145
8,983
2,382
9,055
20,528
35,912
5,985
7,472
456
5,898
2,325
2,341
Application Rate Per Crop Year
(Ibs/acre) ..'-':
Average and Rangeb
" .'-"'"N> '.- '"•:•
100
64-136
101
68
85
39-101
64
35-154
206
92-247
167
117-258
126
106-146
182
24-234
230
101-315
240
134-317
125
95-274
135
86-227
115
81-139
94
61-155
133
121-153
262
93-357
194
75-335
104
80-170
Pa05
57
44-101
56
61
88
47-104
64
40-128
109
88-159
106
86-149
94
93-96
166
31-200
121
85-236
195
126-228
81
40-129
63
47-134
89
47-137
60
40-147
130
124-137
190
84-252
134
34-237
93
79-103
••• K,O
110
50-145
87
71
115
46-132
68
51-101
62
8-131
163
1 8-272
198
173-224
110
17-340
69
25-159
292
207-417
137
66-216
85
77-98
115
28-156
100
55-123
140
1 20-1 68
77
73-124
71
71-75
41
9-124
18
-------
Table 2-6. (Continued)
^
Honeydew Melon
Watermelon
Onions, Dry
Peas, Green
(processing)
Peppers, Bell
Spinach (fresh)
Spinach (processing)
Strawberries
Tomatoes (fresh)
Tomatoes (processing)
Total
Total
Total
Total
Total
Total
TX
Total
Total
Total
25,700
166,000
127,800
280,800
61,000
10,700
8,600
45,800
103,900
322,600
Total Applied (1000 Ibs/year)
2,184
19,347
24,798
6,920
14,440
1,344
882
6,548
24,584
51,561
2,101
13,676
16,721
10,225
9,098
801
834
3,891
14,632
30,905
444
1 5,806
1 1 ,479
13,555
13,961
558
127
95
31,030
7,941
Application Rate Per Crop Year
(Ibs/acre)
Average and Range*
83
59-206
120
61-414
186
107-269
30
24-42
239
95-320
149
116-159
103
153
43-199
264
83-311
163
91-164
96
68-192
94
51-163
137
73-217
55
40-108
189
69-405
97
90-114
97
95
49-144
174
64-201
103
103-110
58
41-119
119
46-1 82
139
16-266
73
40-110
263
50-393
79
24-1 26
30
116
30-156
408
65-534
49
40-289
a) Source: USDA, NASS, ERS, 1997, See Appendix B for detailed tables of fertilizer use for vegetable-
producing states. Note that no fertilizer data were collected in 1996. The fertilizer data are from the
1994 crop year.
b) Average application rates and ranges are provided if more than one producing state was included in the
survey.
c) If more than one state was included in the survey, vegetable totals for all states are presented. If only one
state producing the vegetable was included in the survey the state is shown in this column.
d) Data not provided for individual states.
19
-------
Table 2-7. Fertilizer Use on Fruit Crops for Crop Year 1995a
Crop
Oranges
Grapefruit
Lemons
Limes
Tangelos
Tangerines
Temples
Apples
Apricots
Avocados
Blueberries
Blackberries
Raspberries
Cherries, Sweet
Cherries, Tart
Dates
Rgs
Grapes
Kiwifruit
Nectarines
Olives
Peaches
State or
Total0
Total
Total
CA
FL
FL
Total
FL
Total
CA
Total
Total
OR
Total
Total
Total
CA
CA
Total
CA
CA
CA
Total
Acres
Planted
753,800
145,700
45,700
1,900
1 2,400
28,600
6,800
340,300
19,800
73,000
29,750
4,900
11,100
45,000
37,100
5,500
1 5,000
740,600
6,600
32,400
33,700
131,800
-
Total Applied (1000 Ibs/year) ,
N
122,017
18,123
5,492
262
2,095
4,492
1,067
1 6,329
1,213
8,707
2,004
409
941
3,116
2,362
409
783
41,684
427
3,398
1,884
9,797
p,b.
15,576
5,822
202
71
551
584
132
4,314
604
2,125
790
361
1,141
531
343
113
137
11,570
41
892
83
2,013
K,O
101,430
18,502
314
281
2,106
3,951
1,110
8,146
574
2,731
1,314
353
1,111
990
1,368
NAd
225
32,165
128
1,550
124
5,969
Application Rate Per Crop Year
(Ibs/acre)
Average and Rangeb
N
164
119-179
128
102-132
128
149
170
159
88-191
157
62
35-75
92
124
120-171
72
54-138
86
87
82-91
82
73-97
74
26-84
99
81
67
27-117
77
114
72
84
29-109
P,05
43
42-46
56
54-81
41
61
65
34
33-38
40
34
28-60
101
71
68-71
42
29-69
78
106
89-121
35
31-42
40
17-55
92
46
55
32-89
57
54
44
38
27-50
K,O
177
61-182
146
55-147
26
160
172
185
44-197
172
54
24-75
96
74
55-185
55
43-66
76
103
80-123
61
34-85
74
23-90
NA
55
107
43-151
102
92
51
76
31-124
a) Source: USDA, NASS, ERS, 1996, See Appendix B for detailed tables of fertilizer use for fruit-producing
states.
bl Average application rates and ranges are provided if more than one producing state was included in the
survey
c] If more than one state was included in the survey, fruit totals for all states are presented. If only one state
producing the fruit was included in the survey the state is shown in this column.
d) NA = insufficient reports to publish data for usage
20
-------
Fruit and vegetable crops with the highest average application rates (Ibs/acre) per crop
year are fresh tomatoes (N: 264 Ibs/acre and K20:408 Ibs/acre) and celery (P2O5:195 Ibs/acre).
Most acreage is planted with processing sweet corn, tomatoes and green peas. State-specific data
are presented in Appendix B. Crops with the highest application rates for nitrogen fertilizers are
watermelon, head lettuce and other lettuce in Arizona. Crops with the highest application rates
for phosphate fertilizers are processing cucumbers in North Carolina, bell peppers in California
and head lettuce in Arizona. Crops with the highest application rate of potash fertilizers are fresh
tomatoes, celery and bell peppers in Florida.
2.4. NON-AGRICULTURAL FERTILIZER USE
In addition to the fertilizer consumption by state and fertilizer type, the AAPFCO
database (AAPFCO, 1997a) contains estimates of the farm and non-farm consumption data.
Table 2-8 summarizes these data for the states, and Appendix C contains the farm and non-farm
consumption (tons) for each of the individual fertilizer types. Several states have no recorded
non-farm consumption, therefore no non-farm percentages were reported (i.e. the farm use was
coded as 1 and non-farm use was coded as 2, and there were no 2s). Farm and non-farm use data
were not reported for the states of Arkansas, Iowa, Kentucky, Ohio and Texas (i.e., the field for
the variable "use" was blank). Non-farm uses include application around residences, golf
courses, other recreational fields, cemeteries and public property.
Over 2,650,000 tons of fertilizer was used on non-agricultural land according to those
states reporting data to the AAPFCO. This represents approximately 6% of the total fertilizer use
defined as farm and non-farm. The states with the highest non-farm consumption of fertilizers
are Florida (393,012 tons) and California (320,367 tons). The states with greater than 30% non-
farm fertilizer use are New Jersey (124,661 tons), Nevada (12,408 tons) and Vermont (11,904
tons).
The types of fertilizers used on farm and non-farm land differ. Table 2-9 shows the farm
and non-farm consumption of various fertilizer types for the states with the highest consumption
in terms of non-farm percent or total tons, as described in the previous paragraph. Detailed
information for all states is provided in Appendix C. Multiple nutrient, and organic fertilizers are
used in higher percentages on non-farm land than other fertilizers, particularly the single nutrient
N, P2O5 and K2O fertilizers.
2.5 U.S. FERTILIZER INDUSTRY PROFILE
Information in this section has been abstracted from an EPA report (The U.S. Fertilizer
Industry: A Profile, U.S. EPA, Economics, Exposure and Technology Division, OPPT,
November, 1997). Details of the production process, industry definition, domestic production,
imports and exports, firms in the fertilizer industry and market structure may be found in that
report.
Nitrogen fertilizers are derived from synthetic ammonia that is produced from natural gas.
Approximately one-third of nitrogen fertilizer is applied as anhydrous ammonia (soil injection).
21
-------
Table 2-8. Comparison of Fertilizer Consumption by Farm and Non-Farm Use in 1996a
State
NJ
VT
NV
MD
FL
WV
NY
UT
VA
PA
WA
Ml
ME
SC
TN
CA
MS
DE
OK
LA
Wl
IN
AZ
MO
IL
WY
NCb
OR
NM
CO
MA
PR
NH
NB
AL
KS
MN
ND
SD
RI
GA
Farm (tons)
206,895
24,252
28,130
330,382
1 ,730,243
39,117
342,631
97,331
745,966
487,229
1,061,442
1,140,332
140,869
605,744
837,492
5,209,585
827,853
121,175
774,463
857,526
1,217,874
1,935,735
352,987
1,658,295
3,886,719
252,150
1,816,998
791,874
1 54,604
362,185
104,137
73,115
25,286
2,272,742
649,449
1,674,326
2,138,683
1,109,024
536,982
17,718
1 ,741 ,097
Non-farm (tons)
124,661
1 1 ,904
1 2,408
109,242
393,012
8,885
73,735
19,868
129,208
82,103
143,746
1 24,526
13,526
43,284
54,736
320,367
47,792
5,271
29,165
27,563
38,609
57,049
10,342
43,428
77,319
3,942
28,386
9,995
1,024
2,106
538
144
25
428
71
11
NA°
NA
NA
NA
NA
% Non-farm
37.60
32.92
30.61
24.85
18.51
18.51
17.71
16.95
14.76
14.42
11.93
9.85
8.76
6.67
6.13
5.79
5.46
4.17
3.63
3.11
3.07
2.86
2.85
2.55
1.95
1.54
1.54
1.25
0.66
0.58
0.51
0.20
0.10
0.02
0.01
0.00
NA
NA
NA
NA
NA
22
-------
Table 2-8. (Continued)
State
ID
MT
AK
HI
CT
TOTAL"
Farm '(tons)
881,219
551,412
8,447
118,269
42,232
39,982,216
Non-farm (tons) ,
NA
NA
NA
NA
NA
2,048,419
% Non-farm
NA
NA
NA
NA
NA
NA
a) Source: AAPFCO Database, 1997
b) NC also had other use categories; these have been omitted from the table
c) Not available
d) Totals by use may not be accurate since some states did not report data by use
Table 2-9.Consumption (tons) of Specific Fertilizer Types on Farm and Non-Farm Land for
Selected States3
.Fertilizer Type
Multiple Nutrient
N
P205
K2O
Organic
Secondary and
micronutrient
Liming
,Use
farm
non-farm
% non-farm
farm
non-farm
% non-farm
farm
non-farm
% non-farm
farm
non-farm
% non-farm
farm
non-farm
% non-farm
farm
non-farm
% non-farm
farm
non-farm
% non-farm
FL
1,241,508
321,437
20.6
168,105
27,661
14.1
28,455
13,647
32.4
37,349
3,378
8.3
4,487
11,208
71.4
74,735
16,573
18.2
195,305
21,054
9.7
CA
1,162,687
316,847
21.4
1,706,091
0
0.0
223,074
0
0.0
130,149
0
0.0
78,781
0
0.0
1,593,276
3,520
0.2
621,915
0
0.0
NJ
155,081
115,523
42.7
40,361
3,793
8.6
3,367
1,345
28.5
5,385
1,038
16.2
31
16,160
99.8
5,570
2,811
33.5
99
286
74.3
VT
15,787
8,399
34.7
5,228
3,015
36.6
1,976
11
0.6
3,079
17
0.5
10
73
88.0
54
413
88.4
0
29
100.0
NV
6,747
6,031
47.2
13,982
5,687
28.9
5,238
1,135
17.8
535
46
7.9
2
226
99.1
6,423
488
7.1
0
0
no uses
a) Source: AAPFCO database, see text for information on how states were selected. Appendix C
contains data for all states
23
-------
Approximately two-thirds of nitrogen fertilizers are ammonium salts and other nitrogen-
containing chemicals (see Table 2-1). Phosphate fertilizers are made by treating phosphate rock
with sulfuric acid to produce phosphoric acid. Approximately two-thirds of applied phosphorus
is in the form of mono- and diammonium phosphate. Phosphate rock deposits are found
primarily in Florida, North Carolina and Idaho, and the U.S. is a net exporter of phosphatic
fertilizer. Potash (K2O) is derived from marine deposits and brines. Most potash fertilizer
(approximately 95%) is in the form of potassium chloride. Potassium sulfate and potassium
nitrate are also used on certain crops. The U.S. imports most of its potash from Canada.
The U.S. Census of Manufactures classifies fertilizer industries in the following Standard
Industrial Classification Codes (SIC):
2873 Nitrogenous fertilizer materials, this SIC includes
Establishments that only produce nitrogen fertilizer materials
Establishments that both manufacture nutrients and prepare fertilizer mixtures
2874 Phosphatic fertilizer materials, this SIC includes
Establishments that only produce phosphate fertilizer materials
Establishments that both manufacture nutrients and prepare fertilizer mixtures
2875 Fertilizer mixing only, this SIC includes
Establishments that only mix raw materials
In addition, producers of other fertilizer materials, such as potassium chloride, will be found in
SIC 2819 - Industrial Inorganic Chemicals, not elsewhere classified. Because many fertilizer
producers (particularly micronurrient fertilizer producers) are included with the production of
inorganic chemicals for all purposes, it is difficult to specifically define industries producing
fertilizers. The real value of shipments in 1995 (in 1992 dollars) for SICs 2873,2874 and 2874
are $3,435.3 million, $3,882.9 million and $2,336.8 million, respectively. Total employment for
these three SICs were 7,300, 8,600, and 8,400 in 1995.
The total number of companies in the three fertilizer SICs are shown in Table 2-10.
There are 10 companies in SIC 2873 with sales over $1 billion and 28 companies with sales <$10
million. Two companies in SIC 2874 have sales over $1 billion and 12 companies have sales
<$10 million. Only one company in SIC 2875 has sales over $1 billion, but 78 companies have
sales <$10 million. Therefore, there are few large firms hi these SICs. These companies are also
small in terms of number of employees. Figures are provided in the EPA report. The report
indicates that there are 77 of 114 companies hi SIC 2873 employing fewer than 1000 persons.
There are 36 companies hi SIC 2874 and 148 companies hi SIC 2875 considered small
businesses based on the standards of the Small Business Administration (those employing fewer
than 500 persons).
Manufacturers, formulators, distributors/dealers and brokers of the micronutrients boron,
copper, iron, manganese, molybdenum and zinc generally deal with one or more of these
chemicals. The EPA report (Table 3-2) lists 74 companies that fit the category of micronurrient
manufacturers, formulator etc.
24
-------
Table 2-10. Number of Companies in Fertilizer Production and Mixing
Industry
SIC 2873 - Nitrogenous Fertilizers
SIC 2874 - Phosphatic Fertilizers
SIC 2875 - Fertilizers, Mixing only
Number of Companies
Reported by the Census
of Manufactures 1992
103
54
313
Number of Companies
.Reported by 'Information
Access Company 1997
114
50
165
Cement kiln dust may be used as a liming material because of the high calcium oxide
content. The U.S. EPA report to Congress for Cement Kiln Dust, Volume E: Methods and
Findings, December, 1993 reports that 122,000 tons of cement kiln dust are used as a soil
amendment, and 57,849 tons are used as liming materials.
Most nitrogenous fertilizer is produced in the south central U.S., and most phosphorus
fertilizer is produced from phosphate rock deposits in the southeastern U.S. As described
previously, most potash comes from Canada. Plants that mix fertilizer are dispersed throughout
the country. Most of these plants are small, serving local (within approximately 30 miles of the
plant) and regional markets. These plants bulk blend products custom made for the local markets
based on crops and soil conditions. Micronutrients, pesticides and even seeds are sometimes
added to custom blends. Many of the firms have soil testing laboratories to assist the farmers in
determining the optimum fertilizer blend.
In the last two decades, fertilizer production has increased fifty percent. Greater than 10
percent of the volume is exported. Most of the companies, particularly fertilizer mixing
companies, are small.
2.6 RECYCLED MATERIALS IN FERTILIZER MANUFACTURE
A number of industrial wastes and by-product materials are used hi the manufacture of
inorganic fertilizers. Such recycling practices are most common hi the manufacture of
micronutrient fertilizers, particularly zinc fertilizers. The following recyclable materials can be
used as feedstocks to make zinc micronutrient fertilizers:
• Electric arc furnace dust (dust collected from emission control devices hi steel
manufacturing), otherwise known as K061 (its RCRA waste code)
• Brass foundry dusts (also from emission control devices)
• Tire ash (typically, ash from burning of tires for energy recovery)
• Galvanizing fines
25
-------
K061 is regulated as a listed hazardous waste under RCRA, and can contain significant
amounts of non-nutritive metals such as lead and cadmium. Brass foundry dusts often exhibit a
hazardous characteristic when tested according to the Toxicity Characteristic Leaching Procedure
(TCLP), usually because of lead and cadmium. Tire ash is also typically a characteristic
hazardous waste due to cadmium concentrations. Galvanizing wastes typically do not exhibit a
hazardous waste characteristic. It should be noted that non-waste feedstocks that are also used to
make zinc fertilizers, such as refined ores from lead mining, can often have concentrations of
non-nutritive metals comparable to those in waste feedstock materials. As presented in Chapter
3 of this report, levels of metal contaminants in zinc fertilizer products vary substantially, and
depend largely on how the raw materials are processed, rather than on which type of feedstock is
used.
Another type of hazardous waste-demetallized photographic fluids—is used to make
multinutrient fertilizer products (http://www.itronics.com)
Further discussion of how RCRA regulates recycling of hazardous wastes and hazardous
secondary materials to manufacture fertilizers is presented in Chapter 4 of this report.
Examples of industrial secondary materials that are not currently regulated by RCRA as
hazardous wastes and that can be recycled to manufacture fertilizers include:
• Cement kiln dust (CKD), which is used primarily as a lime substitute to adjust soil pH
• Mining waste; at least one iron fertilizer product is made from mine tailings
(www.konite.com)
• Gypsum (a source of calcium, sulfur and boron) from coal-burning electric power
generation facilities
• Ash from wood-burning power generation facilities
• Pulp and paper sludges, which are generally used as soil amendments
26
-------
3.0 COMPOSITION OF FERTILIZERS AND SOILS
Phosphate fertilizers are known to contain varying levels of heavy metals such as
cadmium, lead, nickel and chromium (Mortvedt, 1987; Charter et al., 1993). These metals
originate in the phosphate rock (Mortvedt and Giordano, 1977; Kpomblekou-A and Tabatabai,
1994); much of the cadmium, and other metals, remains with the phosphate during processing
(Wakefield, 1980). Phosphate fertilizers, though, are by no means the only fertilizer product
with measurable levels of heavy metals. Studies have documented the presence of heavy metals
hi zinc micronutrient fertilizers (Mortvedt, 1985), in biosolids (Matthews, 1996) applied to
agricultural lands, and organic fertilizers such as manure and compost (Raven and Loeppert,
1997; Arora et al., 1975). Because these heavy metals may enter the human food chain either
directly (via uptake into the grain, fruit or vegetable) or indirectly (via ingestion by foraging
animals), studies have been conducted recently to compare the soil background levels of these
metals with levels in fertilizer materials (Mermut et al., 1996) and to assess plant uptake and
distribution of these metals (Mortvedt, et al., 1981; Mortvedt and Giordano, 1977; Chaney, 1983;
Gavi et al, 1997).
This section addresses the following questions:
• What are the concentrations of heavy metals in U.S. soil and soil in other parts of the
world?
• What is the macronutrient composition of different fertilizers?
• What are the heavy metal concentrations in fertilizers and liming materials?
• What other potentially hazardous constituents may be present in fertilizers and liming
materials?
3.1 HEAVY METALS IN SOILS
Because heavy metals are naturally present in soil, it is instructive to begin the
assessment of fertilizer metals addition to soil with an evaluation of the background levels of
these metals in soil. Over the last twenty years, a number of studies have been carried out to
assess the levels of metals in soils. Because those studies were carried out for scientific reasons
other than assessment of effects of heavy metals addition from fertilizers, the site selection
criteria for samples and statistical treatment of the data are not generally comparable across
studies. However, these studies, in toto, may provide some insight into potentially "typical"
values for metals in soils.
Table 3-1 provides an overview of sixteen different studies of metals in soils in which
samples were collected from reasonably large (several hundred square miles) geographic areas so
that minor site-to-site variations may be negligible. As listed in Table 3-1, the studies in which
the number of samples substantially exceeds the number of sites indicates that one or more
subsurface soil samples (indicated as "sub") were collected hi addition to the surface soil sample
(indicated as "surf). The abbreviated results of several studies (No. 3 and 16) were listed in
another study (Holmgren et al., 1993) for comparison purposes, and for those, complete
site/sampling descriptions are not available. The notation "nd" indicates that information such as
the number of sites has not been determined. Sampling locations included agricultural lands
27
-------
Table 3-1. Compilation of Studies for Soil Metal Concentrations
•- ' - ." '-•''. ..-•-"• :' ' '• •'. ~ ":'>"• v-- .".'•' >••'.•!.-'.•>'- --•".•.-.• ...-.-•::.. :.
Site Descriptions for Soil Metal Concentration Studies
Region
1. USA
2. USA
3. USA
4. Minnesota
5. Florida
6. Ohio
7. Ontario
8. Saskatchewan
9. Canada
10. England
1 1 . Wales
1 2. Eastern Europe11
13. Netherlands
14 India
1 5 China
1 6 World
First Author (Year)
Holmgren (1993)
Shacklette (1984)
Sposito (1984)e
Pierce (1982)
Ma (1997)
Logan (1983)
Frank (1976)
Mermut (1996)
McKeague (1980)
McGrath (1986)
Davies (1985)
Kabata-Pendias (1992)'
Edelman (1986)
Kuhad (1989)
Chen (1991)
Ure (1982)e
Samples
3045
1318
ndf
159
94
239
296
26
173
2276
1308
nd1
28
36
1 2,400
nd
Sites
3045
1318
nd
53
40
239
296
13
53
2776
654
nd1
28
9
4095
nd
Soil type
ag/no ssa
natural0
nd
natural
natural
ag/no ss
ag
ag
natural
no sources'1
all
natural
natural
ag
no sourcesh
nd
Depth
surface11
sub-
20cmd
nd
surf/sub9
surf/sub
surface
surface
surf/sub
surf/sub
surface
surf/sub
surface
surface
surf/sub
surf/sub
nd
a) Agricultural land with no sewage sludge application.
b) In this study, primary collection was for surface soils; subsurface soil concentrations were also reported
when surface soil Cd was a 1.0 ppm.
c) Background soil -no agriculture, industry, or residential contributions.
d) Subsurface soil samples collected at a depth of 20 cm.
e) Study results reviewed in Holmgren, et al. (1993)
f) Not determined from available reference.
g) Surface and subsurface soil samples collected.
h) All lands except those directly impacted by an anthropogenic source.
i) Compilation of data from 47 different studies.
28
-------
(ag) and agricultural lands to which sewage sludge had not been applied (ag/no ss). True
background soil samples (natural) were collected in pristine, undisturbed environments. The
English and Chinese study stated that soils were collected in all regions except those directly
impacted by an adjacent industrial source (McGrath et al., 1986; Chen et al., 1991).
The generation of geometric means for soil metals concentrations is the preferable
statistical treatment of comprehensive studies because of the logarithmic distribution of metal
concentrations commonly observed in soils. For those studies where both geometric and
arithmetic means were available, both statistics are included hi Table 3-2 of average
concentrations for cadmium (Cd), lead (Pb), arsenic (As), chromium (Cr), mercury (Hg), nickel
(Ni), vanadium (V), copper (Cu) and zinc (Zn). As indicated by "nd" (not determined), various
studies did not include measurement of all metals.
In general, for Studies 1 and 2 in the USA (Holmgren et al., 1993; Shacklette and
Boerngen,1984), metals concentrations for the agricultural lands without sewage sludge addition
(Study 1) are comparable to those from the natural lands (Study 2). These values for the USA
agricultural lands contrast somewhat with both the Ontario and Saskatchewan agricultural land
studies (Studies 7 and 8) (Frank et al., 1976; Mermut et al., 1996)) where soil cadmium, and
possibly lead and zinc, were elevated relative to U.S. background levels, possibly due to
anthropogenic additions (e.g., fertilizer, urban atmospheric deposition). While anthropogenic
input to soil metals levels is suggested by the authors for comparisons of the surface and
subsurface soil samples in the Saskachewan study, the climatology of the region (limited rainfall
relative to southern USA regions) and the mineralogy of the area may also help to explain
differences in soil metal content between the U.S. and Canadian plains. In support of
anthropogenic input, cadmium, lead and zinc in low clay content soils (clay soils having higher
metals levels naturally) show that these metals are at statistically higher levels in surface soil
relative to subsurface soil. Fertilizer addition to these Canadian soils has occurred for 30-40
years.
The ranges of metal concentrations for the surface soils are listed in Table 3-3 for
reference only. As anticipated, both extremely high and low values were found in most studies,
and in that regard, the range of concentrations in US "background" soils often exceeds that found
in the Canadian studies. In the U.S., metals are generally found at higher levels in the West
relative to the East and in the North relative to the South. Of note in the study conducted in
Poland and western USSR, ranges of soil metals concentrations were given for both background
soils and then also for soils from industrial regions, urban gardens, vineyards and fertilized
agricultural regions. On the basis of these results, the governments have outlined broad land
regions based on soil metals concentrations and then made recommendations on the types of
agricultural practices appropriate for these lands.
3.2 NITROGEN. PHOSPHATE AND POTASH COMPOSITION OF NPK FERTILIZERS
Due to the diversity of NPK fertilizers, several authors have segregated and analyzed
these fertilizers by class. Specific types or classes of NPK that have been analyzed include MAP
(monoammonium phosphate), DAP (diammonium phosphate), TSP (triple super phosphate), MP
29
-------
2
"d
o
•a
c
1
ta
o
co
C:
10
1
T3
OJ
CO
1
O
O
I
co
o
3
C3
os
"5
0
Ol
OJ
Q.
D.
JO
O
CO
2
0)
O
<
£
•o
O
I
0
'S>
01
"co
*-
in as
s«
TJ TJ
C C
TJ O
C r-
TJ TJ
C C
TJ CO
C CM
TJ TJ
C C
CO CO
CM r—
d d
°c c
CD
Q.
s
III
£ TJ
<2 c
CO O
QJ Q-
CM
TJ
C
TJ
C
TJ
C
TJ
TJ
C
TJ
C
TJ
C
TJ
c
TJ
C
CD
Ol
C
co
01
TJ
C
Netheria
CO
CO
CM
in
TJ
o
CO
TJ
c
TJ
c
TJ
C
in
CO
d
"mean
co
TJ
•*
CO
o
CN
fc
co
CM
O
d
in
CM
o>
CM
O
d
U
eomet
Ol
co
c
Ic
O
in
S
CO
CM
CM
CO
CM
in
CO
o
d
CO
£1
CN
0
d
o
I
CO
cn
CM
o
CO
TJ
CO
CN
TJ
C
TJ
C
TJ
C
CO
CN
CO
d
u
•l_
eomet
01
TJ
O
CO
01
o
c
01
U
o
c
CD
C 01
CD -Q
Ol D
CD CO
O.TJ
s ci
38
H— CO
o t:
a i
£ 0)
c 2
O CD
"43 2
CO ra
§> co
01 r-
-§ I"
CO
.a
03
CD
CD
01
0)
CD
cn
c.
ca
U.
01
ca
_
o
c
CD
•-
'
'S to o to
< Q Z Q
30
-------
O
•a
c
3
O
co
J2
"o
(0
0)
•a
I
a>
(0
0)
D)
CO
oc
c
o
'
o
c
o
o
CO
CO
.a
(0
!3
"S
i
o
-S?
•D)
•"E
Q
Q.
T3
Q>
£
01
to
a
•s
10
1
W
M
§
o
c
c
0
«
' o
c
•c
if.
•s
a>
c
n
CC
^
0
>
2
O
O
to
£
•c
E
C
O)
oc
co
CM
CO
V
in
en
t
CO
d
V
-o
c
en
CO
CN
d
•a
c
•a
a
-a
c
in
CO
V
0
CN
C
d
V
C£
O
0
en
CM
in
8
V
o
0
in
V
o
o
p-
in
V
co
i
o
d
V
o
o
o
CM
^
^
CO
d
V
8
6
V
•a
c
o:
CN
C
"E
"c
"E
"E
—
"E
"E
"E
a:
en
CO
CN
o
in
CO
T3
C
CO
co
-o
c
4
*""
•a
c
T3
^
d
cc
d
"to
4-
a.
a
c
c
^
co
CO
CO
q
d
TO
c
CO
en
in
4
CO
"•l"
o
in
o
o
o
d
CO
CM
CO
d
CO
o
d
CM
CN
d
en
co
o
c
d
31
-------
TJ
co
I
o
O
CO
CO
CD
3
ca
"3
"5
o
OS
"5
~
£
n.
a
•o
£
8
to
CD
J2
o
<0
c
o
1
i
CD
O
c
o
0
"o
03
o
0
ca
t
w
l»»
o
CD
a
c
N
a
z
o
o
<
JQ
a.
TJ
0
c
o
"1
oc
CO
in
CD
TJ
c
CO
CM
t—
4
TJ
TJ
C
T—
1
^
CM
4
TJ
C
TJ
C
CO
TJ
C
ca
~
CD
JC
CD
•z.
CO
CO
O)
1
in
O
in
CM
TJ
in
o
CM
TJ
C
TJ
TJ
C
co
CM
6
CO
T—
1
in
d
CO
TJ
^T
O
cs
CN
ri
TJ
C
TJ
C
C
TJ
CO
CO
4
TJ
C
TJ
C
TJ
72
3
<
o
in
in
CM
TJ
C
0
o
CO
in
CM
TJ
C
TJ
C
O
0
CM
6
CM
in
CM
4
6
TJ
C
TJ
C
~!
"3
CD
O
CO
4
TJ
C
TJ
C
TJ
C
TJ
C
in
A
o"
TJ
C
TJ
C
TJ
C
CD
TJ
CD
5
CO
c
"E
"E
"E
"E
"E
"E
"E
"E
CO
_c
o
in
c
TE
"E
"E
"E
"E
"E
"E
"E
TJ
—
O
CO
•*-» CD CD
CD a. a.
S?_ o o
3
LLI
O
f I
«!
CD 2
'O Q. t
CO CD CD
's i^
45 § m
5§
LU JS
ca
3 S co
.Q J3 CO
3 C *~
CO CD O
CJ CO
"J CD
OS
co m
I o
CD
a.
c en
fe °°
<2 en
co «-
co _
UJ _;
-] CtJ
°-
TJ TJ
C CO
JS -=
"co ^
Eg
Is
11
CD O
•*-« o
CD
TJ I
|"S
f S
CO =
c S
co "4-* xi
t 1= c
= 8 ~
CO 2 C
k. CD *~
O Q. «
III
c >.
CO dj
J3 C
3 ">
.£ .£
(O CO
c c
.2 .2
co co
= ~°.
O CD
•C TJ
II
CD
_N CO
^ CO
s"0
s= C
_ O
.b CO
"' O C C C
(B •!-• CD CD CD
,- O O O
t= C C C
"" O O O
000
« co
IE
CO O
J3 O
CD o
o £
§ 1
o ^
OTI CD^
32
-------
(potash or potassium), single nutrient fertilizers and multiple nutrient fertilizers. A complete
listing of the various types of NPK fertilizers and their macronutient content (i.e., N, P2O5, and
K2O) is given in Table 3-4 for reference.
3.3 HEAVY METALS IN FERTILIZERS AND LIMING MATERIALS
Macro- and micronutrient fertilizers and liming materials may contribute heavy metals to
surface agricultural lands. Some of the raw materials that provide this input include rock
phosphates (for NPK and NPKS fertilizers), high zinc-content recycled industrial waste (for zinc
micronutrient fertilizers) and municipal sewage sludge (for organic fertilizers). In general, on a
mass concentration basis (mg/kg), the NPK fertilizers are by comparison with the zinc
micronutrient fertilizers, lower in metals content.
Concentrations of nine selected metals (cadmium, lead, arsenic, chromium, mercury,
nickel, vanadium, copper and zinc) hi world-wide rock phosphates are listed in Table 3-5.
Sources of rock phosphates in the USA include North Carolina (NC), Florida (FL) and Idaho
(ID). Specific analyses of rock phosphates from the U.S. are listed at the end of Table 3-5. No
analytical results were specifically attributed to analyses of Idaho rock phosphates.
Table 3-6 shows the results for analyses of diverse NPK fertilizers. It is especially
instructive to separate the analyses of MAP, DAP and TSP as the concentrations of metals (with
possible exception of Ni) appear to increase with this sequence of products. (Again, "nd" in
these tables indicates that the analyte was not determined. If analyzed and not detected, the
analyte is listed as being less than the method detection limit if available.) Cadmium levels less
than 10-50 ppm appear consistently throughout these analyses; however, some fertilizer samples,
such as those commercially-available hi California, have concentrations greater than 150 ppm.
Tests of rock phosphates for heavy metal content have indicated that the quality of the ores has
been declining over the last two decades (Charter et al., 1993). The heavy metals content of ore
may increase with depth of the mine, so that some older mines may produce materials with
increasing cadmium levels.
For comparison, the concentrations of metals in various types of organic fertilizers are
listed in Table 3-7. The organic fertilizers include composts, bone meal, manures and municipal
sewage sludge (sew si). The levels of Cd, Pb, Ni, V and Cu hi these fertilizers are roughly
equivalent to levels found in NPK fertilizers; however, Zn levels are often higher. Variability
beyond that indicated here is anticipated hi the sewage sludges because of the varying nature of
the incoming waste streams.
The concentrations of metals in various secondary nutrient and micronutrient fertilizers,
primarily Zn fertilizers, are listed hi Table 3-8. As indicated earlier, on a mass concentration
basis, these fertilizers have higher Cd, Pb, Ni and Cu levels than those found in NPK fertilizers.
33
-------
Table 3-4. Average Nitrogen, Phosphorus (as P2O5) and Potassium (as K2O) Composition of
NPK Fertilizers for 1996 (Percent)3
Description
N
P205
K20
MULTIPLE NUTRIENT FERTILIZERS
N-P-K
N-P
N-K
P-K
14.5
16.0
17.1
0.0
11.5
27.4
0.0
16.0
13.9
0.0
19.3
29.9
NITROGEN FERTILIZERS
Ammonium Nitrate
Ammonium Nitrate Solution
Ammonium Nitrate-limestone Mixtures
Ammonium Nitrate-sulfate
Ammonium Polysulfide
Ammonium Sulfate
Ammonium Sulfate Solution
Ammonium Sulfate-nitrate
Ammonium Sulfate-urea
Ammonium Thiosulfate
Anhydrous Ammonia
Aqua Ammonia
Calcium Ammonium Nitrate
Calcium Cyanamide
Calcium Nitrate
Calcium Nitrate-urea
Ferrous Ammonium Sulfate
Magnesium Nitrate
Nitric Acid
Nitrogen Solution 28%
Nitrogen Solution 30%
33.6
20.2
22.0
29.9
20.0
20.9
6.3
26.0
33.3
12.0
82.0
18.9
17.0
21.0
15.5
33.4
7.1
7.0
15.0
28.1
30.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
34
-------
Table 3-4. (Continued)
. Description
: N
P*05
A ,K20
NITROGEN FERTILIZERS
Nitrogen Solution 32%
Nitrogen Solution <28%
Nitrogen Solution > 32%
Sodium Nitrate
Sulfur Coated Urea
Urea
Urea Solution
Urea-formaldehyde
Zinc Ammonium Sulfate Solution
Zinc Manganese Ammonium Sulfate
32.0
16.5
36.2
16.2
36.1
45.9
20.1
36.2
11.1
9.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
PHOSPHATE FERTILIZERS
Ammonium Metaphosphate
Ammonium Phosphate
Ammonium Phosphate Nitrate
Ammonium Phosphate Sulfate
Ammonium Polyphosphate
Basic Lime Phosphate
Basic Slag
Bone Meal, Raw
Bone Meal, Steamed
Bone, Precipitated
Calcium Metaphosphate
Colloidal Phosphate (Soft Phosphate)
Diammonium Phosphate
Limestone, Phosphatic
12.0
11.2
27.0
16.0
15.0
0.0
0.0
4.0
1.8
0.0
0.0
0.0
18.0
0.0
51.0
46.9
14.3
20.0
60.0
6.0
9.2
16.4
16.4
36.6
60.0
2.0
46.0
13.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
35
-------
Table 3-4. (Continued)
Description
N
P205
KiP -
PHOSPHATE FERTILIZERS
Liquid Ammonium Polyphosphate
Magnesium Phosphate
Monoammonium Phosphate
Nitric Phosphate
Phosphate Rock
Phosphoric Acid
Precipitated Phosphate
Superphosphate, Enriched
Superphosphate, Normal
Superphosphate, Triple
Superphosphoric Acid
10.1
0.0
10.9
14.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
33.8
17.8
51.8
10.0
3.0
53.3
34.4
27.0
20.7
45.7
70.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
POTASH FERTILIZERS
Lime-potash Mixtures
Manure Salts
Muriate of Potash 60% (Pot. Chloride)
Muriate of Potash 62%
Potash Suspensions
Potassium Carbonate
Potassium Nitrate
Potassium Sulfate
Potassium-magnesium Sulfate
Potassium-metaphosphate
Potassium-sodium Nitrate
0.0
0.0
0.0
0.0
0.0
0.0
13.6
0.0
0.0
0.0
14.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
55.0
0.0
9.8
21.5
60.1
62.1
20.0
61.3
43.3
51.3
22.6
37.0
14.2
36
-------
Table 3-4. (Continued)
Description
N
P205
Kj,O
ORGANIC FERTILIZERS
Blood, Dried
Castor Pomace
Cocoa Shell Meal
Compost
Cottonseed Meal
Fish Scrap
Guano
Manure
Peat
Sewage Sludge, Activated
Sewage Sludge, Digested
Sewage Sludge, Heat Dried
Sewage Sludge, Other
Soybean Meal
Tankage, Animal
Tankage, Process
11.7
5.0
2.0
2.3
6.0
6.0
12.0
1.9
2.0
6.0
10.0
6.2
6.0
6.0
8.0
8.6
0.3
1.0
1.0
1.8
2.0
6.0
11.0
1.0
0.0
2.0
2.0
2.0
2.0
1.0
5.0
0.2
0.0
1.0
2.0
1.6
1.0
6.0
2.0
1.0
0.0
1.2
0.0
1.3
0.9
2.0
6.0
0.0
a) Source: AAFPCO Database, 1997
37
-------
1
co
I
.M
P
O
CC
co
•*••
0}
TJ
O
CD
CO
0)
u
o
u
LO
CO
o
2
CO
"3
"ra
o
Q.
D.
CO
S
a
a.
to
o
£
u
o
CC
c:
_w
i
•5
c
.9.
2
Concen
N
0
>
z
CD
O
CO
Ul
TJ
CO
U
1
O5
O)
r-
"S
ra
3
CO
CO
ra
o
CM
TJ
TJ
CO
IX
CN
O
d
IX
05
in
co
-
00
mean
CO
n
c
TJ
TJ
0
O
CO
CO
in
O
d
05
0
T—
T—
-
-
median
TJ
c
TJ
o
o
CO
CO
IX
CO
CN
CO
O
O
q
d
in
CN
CN
^—
in
in
CO
CO
O
CO
d
CD
ra
E
jra
o
CO
3
•s
2
0)
0
•a
: USA(1)an
in
o>
O5
T-
«
y
CO
CO
I
CO
TJ
C
TJ
C
5
Ti
C
TJ
C
TJ
C
s
TJ
C
TJ
C
mean
n
c
TJ
C
TJ
C
0
CO
TJ
C
TJ
C
TJ
C
IX
TJ
C
TJ
C
median
TJ
C
TJ
C
CN
op
TJ
C
TJ
C
TJ
C
OJ
in
CO
TJ
C
TJ
C
CD
O)
1
CO
TJ
CO
CO
u
1
OS
TO
id Loeppert
(D
1
f
*
05
TJ
O5
CO
O
in
d
V
CO
CN
05
CN
CO
|
CN
II
C
CN
00
CO
co
O5
CO
CN
£
d
V
o
-
CO
O5
1
_c
JS
o
TJ
unname
^i
m
en
ra
o
o
u
111
"o
Q.
CO
O
o
ra
c
JZ
in
1
in
in
00
CO
-
o>
CN
00
in
o
0
d
V
co
CO
o
CO
V
o
CN
V
co
CO
u
c
o
u
II
c
e
o
unnamed or
in
|X
0)
f
"to
CO
CO
s
B
co
IX
00
r—
CM
CO
TJ
T!
C
1
00
TJ
CN
CO
O5
TJ
U
C
o
u
t—
II
c
c
a
•=
o
CO
c
c
IX
C5
r-
riculture
ra
<
TJ
C
CO
TJ
O
O
U.
"o
3 Department
=
£
CO
U
IX
c
O5
CO
TJ
C
in
CN
TJ
c
TJ
c
IX
CO
IX
CO
CO
mean
^
II
c
38
-------
T3
CD
O
O
LO
CO
a>
1i
CO
"3
I
o
§
£
IT,
C
i
c
c
CC
_c
i
•S
c
o
2
c
t
'C
C
N
0
>
z
_,
a
ac.
o
to
**•
o.
T
O
TJ
C
in
CO
TJ
C
II
C
TJ
C
TJ
in
^
in
in
O
c
CO
TJ
05
TJ
O
op
in
in
TJ
"i
TJ
C
TJ
co
"*•
CO
T—
in
CM
0
CO
6
o
•>
c
in
a
>.
c
i
in
a
ck Phosphat
Q
^
(/
^
00
CM
CO
co
00
TJ
CM
TJ
C
co
f
en
CM
**
O
?-
^
TJ
=1
CO
a>
in
TJ
CO
TJ
C
r*.
^
o>
0
_i
LL.
O
,—
^
TJ
CO
00
o
CD
TJ
C
co
TJ
C
in
""*
T—
^-
T~
u_
^~
^
TJ
CO
•a
TJ
c
CM
CO
CO
in
o
c>
o>
O
r—
CM
*~
CM
T—
*~
CO
CM
^
TJ
CO
TJ
TJ
CM
O)
TJ
C
TJ
TJ
C
in
CO
TJ
T
C
a.
CO
^
TJ
13
CO
a.
CD
in
I
o
a.
.
•sg
s §.
(a p
CD i;
CO ci (0
« « §
a.
CO
o
o
o
o
c
'5
o
0)
I
ID
a.
TJ
0)
£
S J2 TJ "S
C Q. OJ *i
C p ^_i (0
lip
£ l S
•Si >• -o e
^ ~= £ o
1 zt
£;*r^ CJ£TJ-S2
o-»O
*- _D) -Q TJ JO _ ^
•
Q <
OTJ CD v- O) -C
39
-------
O)
5
o.
•2.
c.
a>
CD
ts
•a
CD
CD
C/}
0)
o
1
o
O
9
CO
o>
ra
~5>
o
o>
E
Q.
O
C
£
0.
z
c
m
"5
m
„_
o
to
c
o
1
5
u
o
U
e
O
>
z
O)
u
I
ja
CL.
•a
O
(0
c
01
•s
1
is
"5
01
o
CO
cn
cn
(0
O
T™
in
in
V
TJ
C
-
TJ
in
TJ
cn
r_
^
mean
"L
^
CO
in
V
TJ
-
TJ
CO
in
TJ
cn
V
o
^
i
TJ
01
CN
II
cn
6
co
CO
i
in
V
TJ
O
CM
in
TJ
CO
m
TJ
C
CM
cn
V
co
CO
•*
01
01
c
CD
O
CO
TJ
ro
TJ
C
t—
TJ
C
00
cn
o
mean
SL
0
CO
00
in
V
TJ
-
TJ
C
CO
TJ
C
cn
V
^
CO
c
CD
TJ
01
in
1
in
CO
TJ
cn
CM
TJ
TJ
C
TJ
cn
CO
"-
mean
Q-
2.
co
in
T-*
V
TJ
CO
CM
TJ
TJ
C
TJ
C
cn
V
CO
*-
c
.2
TJ
01
in
II
c
CD
CM
CO
CM
in
V
TJ
c
CO
CM
V
TJ
c
TJ
C
TJ
C
CM
cn
V
cn
co
01
01
CD
u>
c
o
"•a
3
O
**-
(0
CO
XI
cn
o>
T-
>.
Ol
o
o
"S
a
01
Q
I
1
«
CM
E
^
co
0
CM
O
d
t™
CO
CO
V
04
^.
'
mean
CM
u
c
-
in
d
m
cS
in
d
CO
o
o
d
V
d
V
co
V
CO
d
V
CM
4
d
V
in
i
d
V
0}
O!
1
emulations
01
2
01
'•£
^
in
cn
"S
£
2
CO
co
CO
r—
TJ
TJ
C
TJ
C
it
TJ
C
0
o
CM
TJ
C
mean
01
O!
C
CO
-
co
CM
TJ
C
TJ
C
TJ
C
in
06
TJ
C
CO
TJ
C
median
ii
c
00
3
cn
CD
d
TJ
C
TJ
C
TJ
CO
cn
CO
co
TJ
C
00
00
CM
TJ
C
01
O!
C
CD
00
00
CM
1
TJ
C
TJ
C
O
00
TJ
C
CO
00
CM
TJ
C
mean
^
b
cn
00
CO
TJ
TJ
C
TJ
C
CO
TJ
C
in
00
CM
TJ
C
median
CO
u
c
CO
CO
CO
CO
T—
4
in
TJ
C
TJ
C
TJ
CO
6
in
13
c
CO
6
in
TJ
c
01
Ol
§
CO
"'W
3
fc
O
M-
TJ
cn
cn
t;
CL
D.
01
3
1
c
01
1
•*
40
-------
•o
CD
O
u
CO
CO
co
O>
C9
O
O>
D)
2.
£
D.
2
CD
N
r
CD
U.
Q.
_e
CO
£
2
0
•c
1
e
m
u
c
0
O
N
O
>
2.
s
O
3
r
a.
TJ
O
0
oo
in
o
00
CD
d
V
in
q
CO
CM
^
mean
<^>
y—
ii
c
in
CO
^
CO
CO
d
d
V
-
d
-
in
d
median
CO
oo
CO
CD
CM
S
CO
d
V
CO
CM
CN
d
V
CM
d
V
d
V
CO
O5
1
V
CO
4
d
V
00
CM
d
V
CO
CO
CM
d
V
CD
05
c
CD
CO
£
^5
£
0)
O)
O)
"*-""
c
2
o
Q.
O
2
01
I
"(B
.0
"•P
C
in
S
co
O
00
CO
d
V
oo
d
V
5
CO
CD
o
c
o
o
o
Q.
O
CO
CO
0
^-
CM
-
d
V
o
d
V
CO
CO
in
mean
•^
n
•z.
oo
in
in
d
o
o
CM
-
d
V
£
d
V
q
*r—
in
c
.2
CD
CO
II
c
in
co
pi.
in
CO
4
o
0
CSI
6
oo
t—
CM
6
d
V
in
p-s
4
CO
d
V
CO
CO
d
CO
in
CD
O)
1
O)
d
co
d
q
in
d
d
V
00
0
d
d
V
0
CO
d
d
V
mean
_^
f>
^
00
d
co
d
q
o
d
d
V
d
V
d
V
CO
d
d
V
c
.2
1
o
II
c.
CM"
CM
O
*—
1
d
V
CO
1
d
V
CO
CM
d
V
d
V
CM
q
d
d
V
q
d
V
d
V
CD
0)
C.
in
en
en
"5
0
o
to
3C
•*•
TJ
•o
C
CO
T3
T3
C
O
c
•a
c
mean
m
II
c
•a
c
1
CM
CD
•a
c
T3
C
T3
C
in
•a
c
•a
c
c
.2
CD
•a
c
•o
c
CO
o
CM
d>
•a
c
"D
C
•a
c
CO
r—
in
CO
•a
c
T3
CD
0}
1
£
V
N
CD
4-
1
o
a.
..
CM
00
en
o
CO
O
•o
5
•e
o
^
00
CO
in
o
•a
S
c
-a
T3
c
in
5
c
CO
CD
in
II
c
in
CO
in
CO
c
in
CM
c
T3
C
•a
c
in
m
median
o
in
in
o
in
00
CO
in
c
co
CO
in
T3
c
•o
00
co
00
00
CO
^
CD
o>
c
co
2
~
in ti
O ^.
CM .,
°- C
S-S
^ O. Q. 2
"S s is '=
O ™ ~ M-
CO n)
a) jz
in CD
^. -a
co 4-1
c o
< z
eo to co ca
CD CD CD CD
CO CO CO CO
^* ^« ^* ^*
co n
• >
CD ?!•£•£
m ~ ~
CO CO CO CO
c c c c
CO CO
c c
< <
&«
75 Or
c <
< Q
D- 3 3 'So
< cr cr c
Q 13 Z] <
•* co
II II
c c
co-a OT3
=-=;j^=- c o acr
-------
Q
U.
W
"5
w
o
5
(0
O
_c
"3
15
_CO
CO
(O
•5
co
C
o
1
CD
O
O
O
CO
n
"3
"5
'O
a
O)
a
a
10
0!
C
a>
_a
(C
tf
O
CO
cc
&
5
M--
o
co
O
h
a
o
°
N
r'
o
>
z
f
d
(a
<
Q.
s
iv
en
en
a
£
0
C
c
a
CO
cc
00
IV
CO
CM
CO
CO
d
V
IV
Tj-
^.
r—
in
d
c
co
a
E
(0
t
'E
n
O
CM
II
_c
a
CM
II
in
IV
CO
d
V
CM
II
c
CM
in
q
in
d
c
T
a
II
c
CM
en
4
CO
T—
CO
4
CO
CO
4
o
CO
cp
CM
CO
d
V
*$
en
d
V
CO
CO
in
CN
in
d
f*«*
o
CO
o
CD
CD
C
n
CO
CO
in
O
O
CO
in
co
IV
CO
in
co
0
-3-
en
IV
CO
CO
CO
Austinite
CO
Q
tn
O
in
•o
73
C
CO
eo
T
o
en
CM
73
c
V.
CN
IV
k/lilorganite
if
en
r-
"ra
CO
o
o
in
IV
IV
CO
c
-a
•D
c
CM
r—
73
C.
in
CM
•n
c
mean
c
co
E
o
in
CO
CO
-a
•a
-a
CM
T3
C
CO
CM
T3
C
C
a
II
c
en
en
in
eo
CO
CM
•o
73
C
•a
c
6
73
C
CO
CO
6
CO
•a
c.
a
c
IV
en
o.
c
C
o
c
0
CO
^
eo
CO
en
in
CO
CO
CO
73
C
CM
CO
CO
CM
CM
in
CO
eo
CO
O
CO
•*-<
CO
o
a.
£
o
o
c
CO
a
CO
[V
CD
CO
CO
O
in
73
CM
CO
CO
CM
IV
IV
en
T-
IV
IV
0
CO
CD
CC
o
p^
en
en
—
5
o
O)
73
C
CO
T:
o
LL
o
c
tu
R
C
a
CD
fc
C
CO
O
73
eo
73
CO
CO
q
CM
»-
CM
CO
CO
CM
mean
•*
n
c
73
C
o
o
73
§
X)
CM
II
C
CN
II
C
*•""
IV
*—
CO
q
c
.2
CD
c
o
CO
CO
in
*
73
CO
CM
CO
O
Cp
q
d
CO
cp
in
[V
d
o
*7
o
o
o
1
in
CM
IT.
3
o
range
m
Q.
CD
CO
I.
c co
co =
73 CO
CD C
..CO
CO &
O CD *0
|*i
§11
73 O O
= X °
<° 2 CD
2 = "5.
—i CO C
i £ i
CD CO CO
E o^_-
cn 27
CD II
CO
CD
C
o
•a
c
CO
H—
o
o
CD
D)
CO
^:
c
co
CD
OJ
73
_3
CO
CD
•
T3 CO
CD O
it
1 8
CO Cfl"
-2 " CD -O
o S 3 E £ 3
o ~ co E H- -c
S«Sf88
^ Q. CO 73 "§ "§
"P I I O "O ""
£ co co z S £
CD -Q O ~O CD M-
43
-------
(O
o
1
CD
U.
CO
I
o
.•^
O)
o
D>
09
a.
a.
2
0
N
•*~
C
o
u.
C
•«
+*
3
C
2
.0
TJ
CO
e
.£
1
co
TJ
C
O
u
CD
CO
0
c
N
C
1
CO
o
to
o
e
CD
O
C
o
U
c
3
O
>
z
TO
O
<
JO
a.
O
| 1.Mortvedt(1985)
o
o
o
o"
00
CO
TJ
C
TJ
C
o
5
* "
TJ
TJ
C
.0
TJ
C
O
in
CO
CM"
r-
mean
a
N
0
in
CO
TJ
TJ
C
CM
cn
TJ
c
TJ
C
TJ
C
8
cn
T—
O
cn
in
median
cn
n
c
o
en ,,
co co
CM1"
OJ
TJ
TJ
C
O
in
cn
CO
O
TJ
C
TJ
C
TJ
u
CO
LLJ
CN
in
6
in
in
CO
CM
CD
CD
§
en
en
"m
c
E
0
o
o
o
o
in
TJ
c
TJ
C
TJ
TJ
C
TJ
C
TJ
C
CO
CN
t—
mean
N
0
o
o
o
CO
CO
TJ
c
TJ
C
TJ
C
T)
C
TJ
C
TJ
C
CO
cn
CM
CO
c
CO
TJ
CD
CO
II
C.
o
o
O CO
^ III
TJ
c
TJ
TJ
C
TJ
C
•a
c
TJ
C
CO
111
CO
CM
6
in
CO
CO
CD
c
CD
u.
O
0
o
o"
TJ
TJ
C
TJ
C
TJ
C
TJ
C
TJ
C.
o
r—
aT
en
in
CO
o
c
o
o
a
CO
0
o
o
e
N
0
O
TJ
CO
BL
(0
g
to
2
3
1
i
a>
1
S
•o
2
n.
V)
3
Si
j~
cn
CO
o
o
o
O
N
o
O
CO
o
0
o
co"
in
CM
TJ
TJ
C
TJ
C
TJ
TJ
C
TJ
C
o
0
cn
TJ
c
mean
N
o
0
m"
CM
•g
TJ
C
TJ
C
TJ
C
TJ
C
TJ
C
O
in
O
o"
TJ
c
c
.2
TJ
CD
r—
II
C
0
TJ
TJ
C
TJ
C
TJ
C
TJ
TJ
CO
HI
en
CM
O
^~
TJ
C
o>
c
CD
cn
cn
o>
o
u
•5
c
CO
E
a.
CD
Q
I
1
0
o
o
co"
o
CO
CO
5
CO
CO
co
CO
CO
o
CO
in
CO
V
O
o
in
CM
|| Granular Zinc
o
0
CD
co"
o
CM
CM
CO
V
CM
co
TJ
c
00
CO
in
CO
V
8
CM
in
|| Granular Zinc
o
0
CO
o"
CO
0
3
en
V
CM
CO
CM
O
O
CO
V
V
V
|| Micronutrient Mix
o
0
«
cn
0
o
cn
cn"
CO
CO
CO
*
CO
CM
CM
CD
in
CO
00
0
cn
in
CO
in
in
|| Micronutrient Mix
CO
co
CO
T—
cn
CD
o
CO
CN
o
o"
CN
CO
V
m
o"
V
CO
.c
O)
I
co
CN
CO
V
O
tn
in
O
O
CD
O
O
CO
V
O
0
V
CO
V
|| Manganese Sulfate
co
CO
£
in
V
CD
CO
CM
V
O
o
V
V
I Boronat'
44
-------
TJ
CD
O
O
CO
CO
_CB
^2
CO
•
'ra
.5
o>
O)
3'
E
o.
n.
in
k.
0)
CO
u.
c
.82
1
c
o
o
I
TJ
C
10
"C
*
3
z
<5
C'
o
o
:w
§
N
jo
CO
*5
(0
c
o
"is
1
u
0
o
>
c
N
o
^
z
o>
X
^^_»
o
w
£
•a
U
en
OJ
£
:i
_o
TJ
(0
TJ
O
£
"5
c
0)
E
C
CO
a.
£
.2
"t~
"55
O
LO
TJ
C
O)
TJ
C
C
TJ
C
LO
O
0
00
in
o
c
(0
CD
C
N
TJ
C
O
TJ
C
C
TJ
C
II
C
LO
d
CO
00
CM
c
CO
TJ
CO
CN
II
C
TJ
C
O
LO
in
CM"
d
TJ
C
TJ
TJ
C
-,
o
CO
CM
d
0
o
in
CO
CM
d
in
O)
d
CD
O)
C
s
TJ
C
CO
CN
TJ
C
TJ
TJ
C
TJ
C
CO
in
in
CN
CO
d
c
ca
CD
E
GO
TJ
C
^
TJ
C
TJ
^3
C
TJ
C
q
o
d
o
d
c
CO
TJ
1
II
C
TJ
C
O
d
TJ
c
TJ
TJ
C
TJ
C
en
d
CO
d
o
co'
d
CD
U>
C
10
TJ
C
CO
CO
CM
TJ
C
TJ
TJ
C
TJ
C
^
in
CO
00
E
c
ca
CD
E
-to
LL
TJ
C
CM
CO
CM
TJ
C
TJ
C
TJ
C
TJ
C
CO
in
CM
CO
CM
CN
C
.2
1
0)
II
c
TJ
C
o
co
in
TJ
C
TJ
TJ
C
TJ
C
O
in
en
d
o
in
00
d
CO
CO
d
CD
D>
C
CO
k.
TJ
C
in
00
3
TJ
C
TJ
TJ
C
TJ
CO
O
O
in"
CO
CM
CD
I
co
ico
•Q
*i c £
N 5 J2
TJ
C
i§
TJ
C
TJ
C
TJ
C
TJ
C
^
4
CN
ii
co" £;
T-
95-400
0)
c
(O
CN
II
C
Q.
a.
o
o
o
o"
CO
CO
II
CO
N
co
CO
IM
a.
a.
0
o
0
o"
CO
II
CD
N
1
N
CO
-------
The concentrations of metals in diverse commercially-available fertilizers from two
studies (reported by Larimer and the Texas Agricultural Experiment Station, 1997a and 1997b)
are listed in Table 3-9. The levels of Pb in several products suggest that these products may be
derived from recycled industrial waste, although no designation was given to these fertilizer
formulations.
The concentrations of selected metals in liming agents are shown in Table 3-10. With
possible exception of the kiln dust lime, the mass concentrations reported here appear similar to
levels reported for other organic and inorganic fertilizers.
The concentrations of metals in the various gypsum and phosphogypsum samples are
listed in Table 3-11. Approximately 5 tons of phosphogypsum are produced as a by-product in
the production of 1 ton of phosphoric acid fertilizer. On a worldwide scale, of the residual
phosphogypsum produced, 14% is reprocessed, 28% is discharged to water and 58% is stored in
stacks (Carmichael, (1988) in Rutherford, et al., 1994). Some of this material is used as a soil
amendment, especially for clay soils. Its greater agricultural use, though, is found in its ability to
supply secondary nutrients Ca and S.
3.4 RADIOACTIVE COMPOUNDS IN FERTILIZERS
Phosphate and phosphogypsum fertilizers apph'ed to agricultural lands contain trace
radioactive nuclides which originate with the rock phosphates. Radionuclides, including
uranium (U), radium (Ra) and thorium (Th), and their decay products can remain hi these
fertilizer products. Uranium in rock phosphate ranges from 3-400 mg/kg in deposits around the
world (Mortvedt, 1992). During processing, much of the U, up to 67% of the initial
concentration, and Th will remain with the phosphate fertilizer, while Ra will be contained
primarily in the phosphogypsum by-product (Rutherford et al., 1995). The U content of triple
superphosphate will be greater than that of phosphoric acid because the phosphoric acid, initially
obtained from the rock phosphate is concentrated and reacted with additional rock phosphate,
resulting in an U concentration approximately 3 times greater than in the phosphoric acid (Erdem
et al., 1996).
The concentrations of radionuclides 23 8U, 226Ra and 232Th in Bq/kg and mg/kg (as
available) from various studies are summarized in Table 3-12. As shown mere, 238U
concentration in rock phosphates around the world varies considerably, 90-4800 Bq/kg; a similar
range is found for 226Ra, 40-5022 Bq/kg. The 232Th concentrations are lower, 16-622 Bq/kg.
The rock phosphate from Tunisia, with 23 8U content of 4400 Bq/kg, 226Ra content of 5022
Bq/kg and 232Th content of 622 Bq/kg, when processed into superphosphate had concentrations
of 3740, 3394 and 420 Bq/kg for U, Ra and Th respectively, and when processed into triple
46
-------
u
3
1
Q.
O
Z
(U
I
I
2
0)
0)
U.
S
J2
"5
(0
"5
i
o
o
_c
to
_
CO
O) C
•61
w O
£§
si
«
c M
o J5
O O
9
CO
ra
"ra
£
o
"5
.3
a
a
£
8
:=
C
i?
T3
CO
C
C
.»
•4^
9
"o
<0
O
I
o
a
O
~ -C
N
3
O
'
z
a
O
<
a.
•a
O
(0
r»
0)
o>
v
o
to
CO
a
E
<5
Q.
X
LU
To
^
s Agricult
re
X
4!
^
T3
C
C
C
CN
T3
C
•a
•a
c:
co
G>
^
mean
r>
CO
c.
•o
c
73
c
73
C
CO
CO
73
c
"0
•a
c
LD
V
V
median
73
C
•a
c
c
CS
1
LD
V
•D
C
•a
-D
c
o
ro
CN
in
V
O3
V
range
A
r*«
o>
o>
T—
O
to
co
0)
E
~
a
X
u
~m
3
s Agricult
<8
X
01
H
oi
C
T3
C
•a
c
•a
c
c
c
•a
c
CO
in
•o
c
mean
CO
c
•a
c
c
•o
c
-a
T3
C
c
c
co
CO
0
T3
C
c
.2
CO
•a
c
T3
C
T3
C
•a
73
73
C
73
C
0
O
o"
V
T3
C
range
47
-------
J2
.SS
5
O)
CO
ro
•a
I
_qj
0)
CO
CO
o
1
Q)
O
C
o
o
CO
.2
J3
ra
J-
"3
CD
E
o
"CD
a
a.
*>
CO
01
a>
CD
£
to
co
5
0
to
C
O
a
c
I
o
O
£
O
2
CD
X
O
CO
a.
•a
O
en
en
r—
*••*
01
a.
Q.
a
o
•a
1
r-
TJ
C
CO
CM
O
CO
^
d
V
TJ
C
CM
V
2
2
'o
CO
0
q
00*
(9
C
in
CO
CO
d
V
CM
CO
CM
d
CM
d
V
olomite
Q
en
CO
o
g
H-
O
•£
CD
CO
a
c
o
05
CO
CO
CM
s
O
V
CM
V
O
V
CO
CO
o
o
d
in
V
o
V
o
CM
V
CO
V
CD
O
Q
O
00
in
ro
00
r—
S
d
CO
CO
o
in
co
CO
'"CD
£
1
TJ
_C
^
§
CO
*
CO
CM
5
d
CO
CO
in
CM
in
V
CO
CO
TJ
O
O
&
co
T—
O
V
CM
V
o
V
in
o
o
d
V
o
V
CM
V
CO
V
mestone
jj
CM
o
V
CM
V
o
V
CO
0
o
d
in
V
o
V
o
CM
V
CO
V
CD
e
a.
To
0
CM
CO
in
V
CM
CM
O
d
in
CM
V
in
V
a>
in
V
olomite
Q
—
•n^
O>
en
iculture
en
TJ
CO
TJ
O
£
H-
o
<•*
CD
C
g
£
. Californ
CO
c
01
TJ
C.
CO
T—
TJ
C
c
CO
t^
00
q
c
CD
CD
E
aal/wood
O
TJ
in
TJ
c
o
II
_c
TJ
C.
c
o
CO
CO
q
d
c
CO
TJ
CD
£
CD
TJ
in
in
in
TJ
C
•°l
TJ
sz
c
•tf
CM
»~
O
CO
CO
q
6
CD
O>
C
s
CO
c
TJ
00
CO
TJ
C
TJ
C
TJ
C
TJ
,_
«-
CO
in
CO
^.
"tfc
mestone
-1
TJ
CO
TJ
C
TJ
C
TJ
C
TJ
C
,_
in
CO
in
CO
CM
•tfc
mestone
-1
_
CD
>
C.
.£5 CD
TJ D)
CD C
E £
O O
c c
CO CO
c c
T3 CO CO
<2 CD _CD _CD
~ E Q. n.
§ ? £ £
m CD CD
& +J CO CO
-S 3 ^ £
i_, TJ O) D>
Z CL c/5 c/5
O TJ
48
-------
w
Q.
O
a.
w
o
a.
to
(O
a.
CD
(0
O
_«
a>
(O
M-
O
(0
o
1
i
I
o
O
CO
_ffl
ja
w
5
JC
a.
•o
CO
, £
1
S
a.
|
^_
o
«
:entration
2
c
0
N
O
>
z
~~
o
U
to
C
^
s
CD
T3
O
C
.2
y
73
O
Q
•B
O
CO
e
.e
Q
V.
O
s
E
^™
§>
w
E
3
C
0
a.
c
S
a
a
1?
e
0)
a
T3
C
m
«-
a>
oo
en
CM
c
•a
CM
'-
mean
o
-
c
o
in
U
c
CO
o
"
O
II
c
in
II
c
T3
C
C
CO
II
c
CO
II
c
II
c
E
u
s
o>
o
a
>
c
o
o
£
artment o
a
c
c
0
CO
§
c<
in
CN
CO
CM
CO
V
o
O
oo
CVI
V
I"-
V
-
V
E
CO
a.
C3)
O)
O!
igriculture
•g.
c
CO
•a
o
u.
•s
I
•w
CO
C
a
CO
O
CO
•a
CM
in
•a
•D
c
•a
c
^«
00
in
esi
CO
CO
d
mean
E
CO
a.
15
-o
in
CM
3
T3
C
-o
-o
o
CO
0
0
o
0
median
co
c
•D
CM
T—
CM
0
in
1
T3
C
•o
C
00
CO
o
CO
If}
T—
in
6
c
c
0
_
a.
(0
w
O
en
O
J
c
o
T3
C
(0
•a
c
CO
'&
o
«—
c
•a ~m
4~> *^
11
49
-------
Table 3-12. Concentrations of Radionuclides in Fertilizers and Rock Phosphates
Product?
Source"
Cone, Bq/kg
238U
226Ra
232Th
Cone, mg/kg
U
Ra
Th
Earth Crust
Scholten0
Rutherford
world
USA
25
nl
nld
30-40
25
30-40
nl
nl
nl
nl
nl
nl
Rock Phosphates
Mortvedt
Hamamo
Erdem
Scholten
Makwabe
world
USA
FL/USA
nl
MidEast
SC/USA
FL/USA
Morocoo
Kola
China
Tanzania
nl
nl
800
nl
nl
4800
1500
1700
90
150
4400
nl
nl
800
nl
nl
4800
1600
1700
40
150
5022
nl
nl
325
nl
nl
78
16
30
90
25
622
59
50-200
nl
8-139
34
nl
nl
nl
nl
nl
481
18
nl
nl
nl
nl
nl
nl
nl
nl
nl
nl
8
nl
nl
nl
nl
nl
nl
nl
nl
nl
183
NPK Fertilizers
Mortvedt
loannides
Finland
Africa
3800
nl
1100
16-4584
nl
nl
nl
nl
nl
nl
nl
nl
Phosphoric Acid (28% P205)
Erdem
MidEast
nl
nl
nl
24.5
nl
nl
Superphosphate
Hamamo
Makwabe
nl
Tanzania
nl
3740
nl
3394
nl
420
184-195
325
nl
nl
nl
119
Triple Superphosphate
Hamamo
Erdem
Makwabe
MidEast
Tanzania
nl
nl
6940
nl
nl
3116
nl
nl
660
184-195
77.6
362
nl
nl
nl
nl
nl
135
Phosphogypsum
Rutherford
Rutherford
Erdem
Makwabe
FL/USA
Togo
MidEast
Tanzania
nl
nl
nl
nl
610
850-1120
1 250 max
3219
7
30-39
nl
nl
nl
3
nl
nl
nl
nl
nl
nl
nl
nl
nl
nl
a) Product analyzed
bl Source of product
c) Rrst author of study cited
50
-------
superphosphate had concentrations of 6940, 3116 and 362 Bq/kg for U, Ra and Th, respectively.
The residual phosphosgypsum had 226 Ra content of 3219 Bq/kg (Makwabe and Holm, 1993).
Phosphogypsum concentrations of 226Ra are variable, as reported in these studies.
Concentration of 226Ra ranged from 610 Bq/kg in a Florida-rock phosphate derived
phosphogypsum to 3219 Bq/kg in the phosphogypsum derived from the Tansanian rock
phosphate.
3.5 PERSISTENT ORGANIC CHEMICALS IN FERTILIZERS AND LIMING MATERIALS
The presence of chlorinated dibenzodioxins and chlorinated dibenzofurans (CDD/CDF)
and polychlorinated biphenyls (PCB) in fertilizer materials (other than biosolids) has been
investigated for cement kiln dust (CKD) used as a liming material. These data have been
incorporated into the U.S. EPA Dioxin Reassessment document (U.S. EPA, Office of Research
and Development, 1994).
Terra- through octa CDD and CDF were detected in the "gross CKD" (that being the
initial particulate material collected as an emission product by the air pollution control device
from kiln operation) of 10 of 11 kilns sampled, where 6 of the kilns burned hazardous waste
concurrently with a fossil fuel. These same CDD and CDF were also detected in the "net CKD"
(that being the particulate material collected by the air pollution control device following
recycling of gross CKD back through the kiln system; net CKD is used for land disposal) of 8 of
the 11 kilns samples. Analyses for 7 PCB congeners was also conducted, but these were not
detected in the CKD samples.
The CDD and CDF content of gross CKD was 0.008-247 ng TEQ (toxic equivalency
units)/kg; the CDD and CDF content of net CKD was 0.045-195 ng TEQ/kg. The mean
CDD/CDF content of net CKD for hazardous waste-burning kilns was higher than that for the
kilns which burned only fossil fuel, 35 ng TEQ/kg versus 0.03 ng TEQ/kg, respectively. One
kiln sample had a CDD/CDF concentration that was two orders of magnitude greater than that of
the other kilns; if this one result were eliminated as atypical, then the mean CDD/CDF
concentration in net CKD for hazardous waste-burning kilns would be 2.9 ng TEQ/kg, as
opposed to 35 ng TEQ/kg. (Note: for consistency with concentration units used earlier for metals
in fertilizer products, 2.9 ng/kg= 2.9 x 10"6 mg/kg and 35 ng/kg= 35 x 10"6 mg/kg.).
The TEQ for dioxins in other fertilizer and liming materials has been measured recently
by the State of Washington, Department of Ecology. These data are shown in Table 3-13. As
listed there, these products are derived from industrial wastes such as CKD, K061 waste, and tire
ash. The total dioxin toxic equivalency (TEQ) concentration, as defined in footnote b of Table 3-
13, ranges from approximately 0.5-350 ng/kg in actual fertilizer materials, and as high as 815
ng/kg hi the raw material KO61 used to produce the corresponding zinc fertilizer.
3.6 HEAVY METALS IN HOME GARDENING PRODUCTS
The results of recent analyses for heavy metals in home gardening products are listed in
Table 3-14. The concentrations of metals in the individual products are listed. The mean and
median concentrations, and range of concentrations for product categories, are listed when more
51
-------
than three products were analyzed. Levels of these metals, on a mass concentration basis, are
similar to those found in agricultural products.
Table 3-13. Concentrations of Dioxins in Fertilizer and Liming Materials Derived from
Industrial By-Products
Material Sampled
Liming Material - Cement Kiln Dust Sample #1
Liming Material - Cement Kiln Dust Sample #2
Liming Material - Wood Ash (Hog Fuel Boiler)
Liquid Zinc Fertilizer
Liquid Zinc Fertilizer (Duplicate)
Steel Foundry Dust (K061) (Raw Material)
Granular Zinc Fertilizer from K061
Granular Zinc Fertilizer from K061 (Duplicate)
Tire Ash (Raw Material)
Granular Zinc Fertilizer from Tire Ash
Total Dioxin TEQ Concentration (ng/kg) a'b
0.67
0.95
35.4
0.59
1.31
815
342
322
1.62
5.60
a) In calculating the TEQ, concentrations of forms (congeners) that were not detected were assumed to equal
0.
b) TEQ Concentration: There are 17 forms of dioxins considered to be toxic, but not all are equally toxic.
The most toxic dioxin is called 2,3,7,8-TCDD, and other similar dioxins have been assigned toxicity values
relative to it. These relative toxicity values are called toxicity equivalency factors (TEFs). 2,3,7,8-TCDD is
assigned a TEF of 1, and the others are assigned values less than 1. Total concentrations of dioxins in the
environment are reached by factoring in the TEF of each form of dioxin before adding them together. The
resulting concentration is referred to as TEQ (toxic equivalent).
Source: http://www.wa.gov/ecology/pie/fert.html
52
-------
Table 3-14. Concentrations of Selected Metals in Home Fertilizer Products
Fertilizer
NPK
Mean
Median
Range
Iron
Mean
Median
Range
Multi-
nutrient
Mix
Other
-
Product
Ace Hardware Tomato
& Vegetable Food
Jobe's Fertilizer Spikes
Miracid
Miracle-Gro
Nu Life Spring Feed
Peters Professional
S&H Organic Fertilizer
Schultz Bloom-Plus
Scotts Vegetable Food
Walt's Rainy Pacific
Northwest Blend
Webfoot
Superphosphate
Whitney Farms Super
Phosphate
Black Leaf Granular
Hoffman Iron Sulfate
Ironite
Nu Life Iron Sulfate
Nu Life Trace Elements
Lilly Miller Ultralime
Nu Life Rid Moss
Concentration of Metals in Home Fertilizer Products fc/g/g or mg/kg)
Cd ,
1.81
2.57
0.01
0.02
0.11
0.01
0.98
0.01
2.49
1.11
56.50
4.62
5.85
1.05
0.01-
56.50
1.10
4.80
32.37
0.06
9.58
2.95
0.06-
32.37
86.82
0.29
0.28
Pb
5.3
2.0
0.6
0.1
5.0
0.1
5.4
<0.02
3.3
0.4
2.4
7.9
2.7
2.2
<0.02-
7.9
14.3
426.1
3,290.0
0.6
932.8
220.2
0.6-
3,290.0
2,491.0
3.0
4.4
As .
2.9
6.4
nd
nd
1.2
1.3
4.6
3.4
5.9
12.1
6.0
13.7
5.8
5.3
1.2-
13.7
0.9
18.7
4,512.7
nd
1510.8
18.7
0.9-
4,512.7
29.2
3.1
2.4
Cr
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
Hg
0.484
0.013
0.06
nd
0.282
0.1
0.031
<0.02
0.006
0.066
0.031
0.051
0.103
0.051
0.006-
0.484
0.0026
0.307
16.9
nd
5.74
0.307
0.0026-
16.9
2,491.0
0.009
0.119
Ni
11
17
nd
nd
15
<1
12
<1
10
2
113
29
21
12
<1-
113
6
333
18
368
181
176
6-368
515
5
33
V
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
Cu
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
nd
Zn
368
39
1,010
688
388
528
62
544
6
57
694
70
371
378
6-
1,010
24,940
83,135
10,182
177
29,609
17,561
177-
83,135
68,150
18
175
Source: Seattle Times (1998): http://www.seattletimes.com/news/health-science/html98/fchar_051798.html
53
-------
4.0 FERTILIZER REGULATIONS, STANDARDS, GUIDELINES AND BENCHMARKS
This section describes the regulation of fertilizers and soil amendments and the
constituents of these products. Since there is no federal fertilizer law, the state laws regulating
fertilizer composition and efficacy are described first. Federal rules which may be of some
relevance for regulating the use of industrial by-products in fertilizers are discussed in the second
sub-section. The third sub-section describes international fertilizer regulations. The fourth sub-
section describes federal and international standards for the land application of sewage sludge
and include limits for metals in sludge and soil following sludge application.
This section addresses the questions:
• Who regulates fertilizer composition and application?
• What are the state regulations regarding fertilizer composition?
• Although there are no specific Federal laws regarding fertilizer composition or
efficacy, what Federal regulations may be applied to some aspect of fertilizer use and
soil contamination?
• What international laws exist governing fertilizer application and soil contamination?
• What are the regulations for application of biosolids (sewage sludge) to land?
4.1. STATE REGULATIONS
State regulations for fertilizers are generally developed and administered by state
agriculture departments. Such regulations primarily address efficacy claims and composition
statements of the active ingredients displayed on fertilizer labels. Most states have fertilizer
regulations similar to that of the AAPFCO model Uniform State Fertilizer Bill reproduced in
Appendix D. Section 4 of that bill requires registration and/or licensing of each brand and grade
of fertilizer by the person whose name appears on the label before the product may be
distributed. The application for registration includes the brand and grade and a guaranteed
analysis. Section 3 of the bill defines guaranteed analysis as:
"the minimum percentage of plant nutrients claimed in the following order and form:
(D
(2)
(3)
Total Nitrogen (N)
Available Phosphate (P2O5)
Soluble Potash (K2O)
For unacidulated mineral phosphatic material and basic slag, bone, tankage or other
organic phosphatic materials, the total Phosphate and/or degree of fineness may also
be guaranteed.
Guarantees for plant nutrients other than nitrogen, phosphorus and potassium may
be permitted or required by regulation by the . The guarantees for such other
nutrients shall be expressed in the form of the element. The source (oxides, salts,
chelates, etc.) of such other nutrients may be required to be stated on the application
for registration and may be included on the label. Other beneficial substances or
compounds, determinable by laboratory methods, also may be guaranteed by
54
-------
permission of the and with the advice of the Director of the Agricultural
Experiment Station. When any plant nutrients or other substances or compounds
are guaranteed, they shall be subject to inspection and analysis in accord with the
methods and regulations prescribed by the ."
Thus, any claims that are made concerning chemicals necessary or conducive to plant growth
must be substantiated. If a chemical included in the analysis is not listed on the label, no analysis
is required, except (Section 12, Adulteration):
"No person shall distribute an adulterated fertilizer product. A fertilizer shall be deemed
to be adulterated:
(a) If it contains any deleterious or harmful substance in sufficient amount to render it
injurious to beneficial plant life, animals, humans, aquatic life, soil or water when
applied in accordance with directions for use on the label, or if adequate warning
statements or directions for use which may be necessary to protect plant life,
animals, humans, aquatic life, soil or water are not shown on the label."
Consistent with the AAPFCO model fertilizer bill, most states currently have a general
prohibition on distribution of "adulterated" fertilizer products. AAPFCO and the states have
only recently begun to develop specific guidelines on what might constitute adulterated products.
In 1998 AAPFCO amended its Uniform State Fertilizer Bill to provide further interpretation of
what constitutes adulteration of fertilizers. Under AAPFCO's Policy Statement #25 entitled
"Metals in Fertilizer Materials", fertilizer materials are to be considered adulterated if they
contain metals in amounts greater than the levels established by the Canadian Standards, and that
biosolids are adulterated when they exceed the levels of metals permitted by the U.S. EPA §503
regulations. Under Policy Statement #26, products that meet the guidelines for metals may
include the following statement on the label: "When applied as directed, this product meets the
guidelines for metals adopted by the Association of the American Plant food Control Officials."
AAPFCO is also currently developing additional labeling recommendations that would indicate
the ingredients contained in fertilizer products.
State-specific fertilizer initiatives (as of February 1999) include the following
• In 1998 the State of Washington became the first state to enact legislation to
comprehensively regulate contaminants in fertilizers. Washington's Safe Fertilizer
Act mandates a set of new regulatory requirements for contaminant testing,
registration and labeling, and contaminant standards. The Act specified that until
national risk-based standards are developed, Washington would adopt the Canadian
fertilizer standards on an interim basis. The Act also allows adjustments to the
Canadian standards based on application rates that are consistent with agricultural
practices in the State of Washington. Further studies of heavy metals and dioxins in
fertilizers and soils in Washington, and new research on plant biouptake of metals
(being conducted by Washington State University), were also mandated by the Act.
55
-------
• The State of Texas also enacted in 1988 new regulations governing fertilizer
contaminants analogous to those of Washington, though based on the EPA §503
standards for sewage sludge rather than the Canadian standards.
• The State of California (CDFA and CalEPA), has prepared a risk assessment
characterizing acceptable lead, cadmium and arsenic levels in fertilizer materials,
based on California soils and agricultural practices ("Development of Risk-Based
Concentratoins for Arsenic, Cadmium, and Lead in Inorganic Commercial
Fertilizers", March 1998, Foster Wheeler Environmental Corporation). California
does not yet have comprehensive fertilizer regulations in place, although legislative
proposals are under development.
• In Pennsylvania, for fertilizers made from industrial waste products, the Department
of Agriculture requires testing data from manufacturers and approval of the
registration by the Department of Environmental Protection.
4.2. FEDERAL REGULATIONS
There are no specific Federal laws regulating the composition or efficacy of fertilizers.
There are regulations concerning the production, use and disposal of hazardous materials,
drinking and surface water contamination and air pollution that are indirectly relevant to the use
of hazardous materials in fertilizers and the application of fertilizers to land. In addition, the
Hazardous Waste Regulation, 40 CFR Part 503, Standards for the Use or Disposal of Sewage
Sludge, provides limits for the concentration of metals in sludge that is applied to land and to the
chemical loadings on the land following application. This standard is described in detail in
Section 4.4. Other U.S. regulations which are applicable, in part, to the use of industrial by-
products in hazardous wastes are discussed below.
4.2.1 OSHA
The Occupational Safety and Health Adrninistration (OSHA) Hazard Communication
Standard (29 CFR 1910.1200) applies to chemical manufacturers and importers of "hazardous
chemicals" which includes agricultural operations. This standard provides for a comprehensive
program of hazard communication including warning workers about chemical hazards via labels,
material safety data sheets (MSDSs), other warning mechanisms and employee training. The
standard does not apply to family members working on farms, only employees.
One provision of this regulation is that chemicals in concentrations of 1% or more (0.1%
for carcinogens) must be listed on the MSDSs for products used in the workplace.
Manufacturers and importers must provide MSDSs for their products. Specifically:
(1) 1910.1200 (b)(l)
This section requires chemical manufacturers or importers to assess the hazards of
chemicals which they produce or import, and all employers to provide information
to their employees about the hazardous chemicals to which they are exposed by
56
-------
means of a hazard communication program, labels and other forms of warning,
material safety data sheets, and information and training.
(2) 1910.1200 (d)(l)
If a mixture has not been tested as a whole to determine whether the mixture is a
health hazard, the mixture shall be assumed to present the same health hazards as do
the components which comprise one percent (by weight or volume) or greater of the
mixture, except that the mixture shall be assumed to present a carcinogenic hazard
if it contains a component in concentrations of 0.1 percent or greater which is
considered to be a carcinogen under paragraph (d)(4) of this section;
The requirement for MSDSs does not apply, however, for chemicals subject to labeling
requirements of specific acts such as the Federal Insecticide, Fungicide and Rodenticide Act
(FIFRA), the Toxic Substance Control Act (TSCA), the Federal Food, Drug, and Cosmetic Act
(FFDCA), and consumer products regulated under the Consumer Product Safety Act (CPSA) and
the Federal Hazardous Substances Act (FHSA). Also, this section of the OSHA regulations do
not apply to any hazardous waste as defined by the Solid Waste Disposal Act (SWDA), as
amended by the Resource Conservation and Recovery Act (RCRA) and any hazardous substance
defined by the Comprehensive Environmental Response, Compensation and Liability Act
(CERCLA) when the product is the focus of remedial or removal action being conducted in
accordance with EPA Regulations.
OSHA regulates hundreds of air contaminants, including heavy metals and persistent
organic chemicals in 29 CFR 1910.1000, but agricultural operations are exempt. Agricultural
operations are not exempt, however, from the cadmium regulations (29 CFR 1910.1027) limiting
airborne exposure to cadmium during a work shift to 5 |J.g/m3. In addition, the standard
regulating the storage and handling of anhydrous ammonia (29 CFR 1910.111 (a) and (b))
applies to agricultural operations.
4.2.2 EPA Regulations for Hazardous Waste Derived Fertilizers
One of the primary objectives of the RCRA program is to encourage legitimate recycling
of hazardous wastes, while maintaining appropriate regulatory controls to ensure that such
practices are protective of human health and the environment. In the case of fertilizers, current
RCRA requirements address two major environmental concerns: (a) how hazardous waste
secondary materials are managed prior to recycling, and (b) controls on contaminants in the
fertilizer products made from such materials. RCRA generally does not regulate the actual units
or processes that are used in recycling. The following is a summary of the current regulatory
framework for hazardous waste derived fertilizers:
• RCRA regulations currently require that (with one exception) fertilizers made from
recycled hazardous wastes have to meet the applicable "land disposal restrictions"
treatment standards (these "LDR" treatment standards have been developed by EPA
for essentially all hazardous wastes that are land disposed). These standards are
generally technology-based, and are expressed as concentrations in leachate when
tested according to the Toxicity Characteristic Leaching Procedure (TCLP). This
57
-------
leaching procedure was originally developed by EPA to simulate how contaminants
leach from wastes in municipal solid waste landfills.
• The current regulations provide one exemption from having to meet the LDR
treatment standards—fertilizers made from electric arc furnace dust (RCRA waste
code K061) are not required to meet any specific contaminant standards.
• Management of hazardous secondary materials prior to recycling for fertilizers is
subject to the "use constituting disposal" (UCD) provision of RCRA (40 CFR
266.20). This provision in essence requires that hazardous waste secondary materials
must be managed as hazardous wastes prior to being recycled. Thus, for example,
shipments of such materials are subject to manifest requirements, and storage of the
materials (e.g., by the fertilizer manufacturer) will generally require a RCRA permit.
• Certain types of wastes are specifically exempted in the RCRA statute (the so-called
Bevill exemption) from being regulated as hazardous waste, unless EPA establishes
through rulemaking that such wastes should be regulated as hazardous wastes. Thus,
fertilizers made from such exempt wastes (which include mining wastes, and gypsum
from coal-fired power plants) are not subject to RCRA standards, even if the wastes
(or the fertilizer) were to exhibit a hazardous waste characteristic.
4.2.3 Military Munitions Rule: Hazardous Waste Identification and Management;
Explosives Emergencies; Manifest Exemption for Transport of Hazardous Waste on
Right-of-Ways on Contiguous Properties; Final Rule
The Military Munitions Rule (FR, February 12,1997) discusses the recycling of
propellant or explosive as fertilizer. If processed in a manner rendering it suitable for land
application, this is a permissible under RCRA. "Under 40 CFR 266.20(b) commercial fertilizers
that are produced for the general public's use that contain recyclable materials are not presently
subject to regulation provided they meet the treatment standard under 40 CFR Part 268, subpart
D, for each recyclable material that they contain." (page 6629). Chemical agents or munitions
exhibiting a hazardous waste characteristic, or akeady listed as a hazardous waste (40 CFR Part
261), are subject to all applicable regulatory requirements of RCRA Subtitle C.
Currently, recycling of munitions into fertilizers has been demonstrated in the laboratory
on a bench-scale, and in limited pilot-scale validation and demonstration tests. A mobile unit
will be available for military tests by mid-1999, and a larger stationary production facility is
planned (http://www.arctech.com).
4.2.4 Metal Containing Pesticides
Metals can be added to soil from the application of pesticides. There are a number of
pesticide products containing cadmium, arsenic, copper, mercury and other metals. Many of
these products are, however, no longer registered by EPA. Table 4-1 shows the metal-containing
pesticide products that are banned, have restricted use, have been canceled in the Special Review
Process or have tolerances on food crops.
58
-------
EPA Office of Pesticide Programs (OPP) publishes a list of pesticides banned and
severely restricted in the U.S. (http://www.epa.gov/oppfeadl/piclist.html). Table 4-1 shows
pesticides containing metals that have been banned from use or have severely restricted use hi the
United States as of August 1,1997. Pesticides may be banned either by EPA canceling the
registrations or by the registrant (i.e. the manufacturer) voluntarily canceling the registration.
The last remaining use of cadmium chloride was voluntarily canceled hi 1990 during the special
review of cadmium products. All uses were canceled in 1991 (56 FR 14522, April 10,1991).
All registrations of inorganic arsenicals have been canceled except for a few select uses (arsenic
trioxide insecticide and mole/gopher control). Copper acetoarsenite and copper arsenate uses
were canceled hi 1977 (42 FR 18422, April 7,1977). Uses of mercury as an antifouling agent hi
paint were'cahceled hi 1990 for indoor paint (55 FR 26754, June 29,1990) and hi 1991 for
outdoor paint (56 FR 105, May 31,1991).
Table 4-1. Regulatory Status of Metal-Containing Pesticides3
Pesticide Product
aluminum phosphide
arsenic acid
arsenic trioxide
cadmium compounds
calcium arsenate
chromic acid
copper acetoarsenite
copper arsenate
cupric oxide
cuprous oxide
lead arsenate
magnesium phosphide
mercuric chloride
mercurous chloride
phenarsazine chloride
phenylmercury acetate
phenylmercuric oleate
sodium arsenate
Status
registration supported,
restricted use
severely restricted
severely restricted
banned
banned
restricted use
banned
banned
registration canceled
restricted use
banned
restricted use
banned
banned
banned
banned
banned
severely restricted use
Comments
See 40 CFR 152.170 (53 FR 15986,
May 4, 1988)
Wood preservative products only
Insecticide and mole/gopher control
Voluntary cancellation as a result of the
Special Review Process
Voluntary cancellation
wood preservative products
Voluntary cancellation as a result of the
special review process
Voluntary cancellation as a result of the
Special Review Process
Wood preservative and anti-fouling paint
Voluntary cancellation as a result of the
Special Review Process
magnaphos tablets and bags
Voluntary cancellation as a result of the
Special Review Process
Voluntary cancellation as a result of the
Special Review Process
Voluntary cancellation as a result of the
Special Review Process
Voluntary cancellation as a result of the
Special Review
Voluntary cancellation
Brush on wood preservative products
59
-------
Table 4-1. (Continued)
Pesticide Product
sodium arsenite
tributyltin
triphenyl tin hydroxide
zinc phosphide
Status
banned
severely restricted use,
review in progress
restricted use, review in
progress
registration supported,
restricted use
Comments
anti-fouling paints
fungicide
rodent bait
•Sources: Banned/restricted pesticides (http://www.epa.gov/oppfead1/piclist.html); Special Reviews
(http://www.epa.gov/oppsrrd1/Rainbow/93Rainbow/Chapt-2.txt.html);
Table 4-2 contains a list of metal-containing pesticides for which there is at least one
tolerance set on food crops (i.e. these pesticides have some agricultural use). There are also a
number of pesticides which are exempt from tolerances on raw agricultural commodities
assuming the products are applied in accordance with good agricultural practices. These
chemicals are too numerous to mention but consist of many pesticides that contain plant
micronutrients. For example, many copper, magnesium and zinc salts and boric acid are listed in
40 CRF SubpartD Section 180.1001 - 1164 as exempt from tolerances.
Table 4-2 Pesticides With Tolerances on Raw Agricultural Commodities3
Pesticide Product
aluminum phosphide
aluminum tris (O-
ethylphosphonate)
basic copper carbonate
basic zinc sulfate
coordination product of
zinc ion and maneb
magnesium phosphide
methanearsonic acid
triphenyi tin hydroxide
zinc phosphide
Status
40CFR 185.200
40CFR 180.176
40 CFR 185.136
40CFR 180.244
40 CFR 180.176
40 CFR 180.375
40 CFR 180.289
40 CFR 180.236
40 CFR 180.284
Comments
Residues not to exceed 0.01 parts per
million (ppm) on vegetables, 0.1 ppm on
other crops
For example, 3 ppm on tomatoes and
0.5 ppm on citrus
Tolerance of 3 ppm in pears
Tolerance of 30 ppm on peaches
tolerances set on commodities such as
apples and cranberries
For example, tolerance of 0.1 ppm on
wheat and 0.01 ppm on tomatoes
Tolerances of 0.7 ppm in or on
cottonseed and 0.35 ppm in or on citrus
fruit
For example, 0.05 ppm on pecans,
peanuts and potatoes
Tolerance of 0.01 ppm on grapes and
sugar cane
'Sources: Tolerances: 40 CFR Subpart D, Sections 180
Subpart D, Sections 180.1001 to 180.1164.
101 to 180.482; Tolerance exemptions: 40 CFR
60
-------
Although most of the highly toxic pesticide products (i.e. those containing mercury,
cadmium and arsenic) have been banned, there are still pesticide products which have the
potential for adding metals to soils and plants. Many of these pesticides contain metals which
are also considered plant micronutrients.
4.2.5 Radon in Phosphogypsum
The National Emission Standards for Hazardous Air Pollutants (NESHAP) for radon
regulates radon emissions from phosphogypsum stacks (40 CFR Part 61, Subpart R). The
regulation allows phosphogypsum to be removed from phosphogypsum stacks for agricultural
purposes if the radium-266 concentration is determined annually and does not exceed 10
picocuries per gram (pCi/g). EPA analyzed the potential risks associated with long-term use of
phosphogypsum in agriculture to set this limit. The Fertilizer Institute filed a petition on August
3,1992 to reconsider this revised rale. The changes that EPA is considering do not, however,
affect the concentration limit of 10 pCi/g.
4.3. INTERNATIONAL FERTILIZER REGULATIONS
International fertilizer regulations differ in their content and in enforcement. The
regulations for Canada and Japan contain requirements limiting concentrations of heavy metals
and, in the case of Japan, organic chemicals in fertilizers. Regulations for the European Union
(EU) are also discussed because these directives must be followed by all EU countries.
4.3.1 Canadian Fertilizers Act and Regulations
The Canadian Fertilizers Act R.S., c. F-9, s.l (1993) and Fertilizers Regulations contain
metal limits used by the Canadian Food Inspection Agency to regulate all fertilizers and soil
supplements sold in Canada. Although these limits were not based on quantitative risk
assessments, the Trade Memorandum T-4-93, August, 1996 from the Food Production and
Inspection Branch states that these limits:
"..were developed to help ensure that fertilizers and supplements continue to pose only a
minimum risk of adverse effects due to metal contamination... The AAFC metal
standards are based on generic principles and are generally applicable to fertilizers or
supplements applied to land or in crop protection."
Although the metal limits were originally written for the land application of biosolids, these
limits now apply to all fertilizer products. Metal limits were developed by the Ontario Ministry
of Agriculture and Food in 1978. These limits were revised and adopted by Agriculture Canada
for application to biosolids and similar products in 1980. Table 4-3 shows the limits for metals
in fertilizer and soils following application of fertilizers as stated in Trade Memorandum T-4-93
(August, 1996). Agriculture and Agri-Food Canada is considering limits for two additional
metals, chromium (210 kg/ha) and copper (150 kg/ha). These limits have not yet been
implemented.
The Canadian government enforces metals regulations for fertilizers by requiring all
micronutrient fertilizers, fertilizer/pesticide mixes, and most supplements to be registered
61
-------
through the Canadian Food Inspection Agency (CFIA). For a product to become registered, the
manufacturer must submit metal analyses of its product, and the levels must be below the
Canadian limits. Non-registered fertilizer products are subject to marketplace monitoring, in
which products are randomly selected by the CFIA for metal analyses. If the CFIA finds a
product on the market that exceeds the Canadian limits on metals, it has the powers of detention
and seizure of the product. More information about Canada's Fertilizers Regulations can be
found on the internet at http://www.dfia-acia.agr.ca/enghsh/actsregs/fert/fertrege.html.
The Canadian limits shown in Table 4-3 require some additional explanation. The
Maximum Acceptable Cumulative Metal Additions to Soil (kg/ha) pertain to additions over a
long term. For the purposes of this calculation, "long term" is taken to mean 45 years. In
comparisons made in Section 5 of this report, these values were divided by 45 to more closely
approximate annual limits. The Maximum Acceptable Metal Concentrations (mg/kg dry weight)
in the fertilizer product were originally developed for biosolids and are based on the assumption
that (Agriculture and Agri-Food Canada, Food Production and Inspection Branch, Trade
Memorandum T-4-93, August, 1996):
"A cumulative total application to soil of 200 dry tonnes per hectare of a product that
contains 50% moisture and a total N guarantee of 2.5% (i.e. 5% nitrogen on a dry weight
basis). Such a product, applied annually at a rate of 220 kg N/ha (or 4,400 kg dry
product/ha) would reach the standards for maximum acceptable cumulative metal
additions to soil within 45 years"
Table 4-3. Canadian Maximum Acceptable Cumulative Metal Additions to Soil and
Maximum Acceptable Metal Concentrations in Products
Metal
Arsenic
Cadmium
Cobalt
Mercury
Molybdenum
Nickel
Lead
Selenium
Zinc
Annualized Max. Acceptable
Cumulative Metal Addition to
Soil(kg/ha)a
15
4
30
1
4
36
100
2.8
370
Maximum Acceptable
Metal Concentrations
(mg/kg dry weight)"
75
20
150
5
20
180
500
14
1850
a) The values in this column pertain to total cumulative additions to soil over the long term (i.e., 45
years)
b) See text for explanation of the derivation of these limits.
62
-------
In addition:
"Acceptable metal concentrations increase as the rate of application decreases relative to
4400 kg dry product/ha (e.g. if the rate of application is 2200 kg dry product/ha, this is
half 4400 kg therefore the metal concentrations can be double the [maximum acceptable
metal concentrations (mg/kg dry weight)]. Or, when products are applied on the basis of
theur nitrogen content, acceptable metal concentrations increase proportionally with total
%N on a dry weight basis"
Additional explanation for estimating the maximum acceptable metal concentrations (mg/kg dry
weight) may be found in the Trade Memorandum T-4-93.
Trade Memorandum T-4-112 (April 1994), Information Required for the Assessment of
By-Products and Other "Waste" Materials Sold as Fertilizers or Supplements, provides for pre-
market assessment of specific end-use product types (e.g., micronutrient fertilizers, supplements,
soil amendments, wetting agents, and microbial innoculants) and other products if there is a
cause for concern. This assessment addresses issues of safety, labelling and efficacy. It requires
identification and description of the product and its constituents, identification of the industrial
process from which the product is derived, the benefits of the product, rates and methods of
application, and documented analyses for heavy metals, dioxins and furans.
The selection of specific product types for assessment is reviewed in an information
source for the inspection's staff, entitled "Regulation of Recycled Material and By-Products
Under the Fertilizers Act". This information source was drawn up as a guide, and was not
intended to be inclusive of all potential recycled by-products, nor representative of current or
actual practices. As listed in that source, examples of industrial by-products, and the chemicals
these products may contain, are:
1. Baghouse/flue dust (heavy metals including, iron, zinc, manganese and
molybdenum),
2. Cement kiln dust (potassium, calcium, sulphur, iron, magnesium, aluminum, and
PAHs),
3. Coal fly ash (aluminum, silicon, iron, calcium, potassium, sodium, arsenic
molybdenum, selenium and PAHs),
4. Galvanizing fluid (zinc, iron and other heavy metals),
5. Gypsum (calcium sulfate and traces of dioxins, furans and boric acid),
6. Bauxite mine tailings (aluminum, dicalcium silicate),
7. Newsprint (heavy metals, PAHs),
8. Phosphogypsum (gypsum, fluoride),
9. Pulp and paper sludge (a variety of organic and inorganic substances),
10. Smelter slag (heavy metals, magnesium, calcium),
11. Waste lime (calcium, magnesium, cyanides and sulfites).
4.3.2 Japan
Japan regulates incinerator ash from both industrial and municipal waste treatment
incinerators. Sludge ash is used for soil improvements. The standards for organic and inorganic
63
-------
chemicals in incinerator ash are shown in Appendix E, International and National Limits for
Pollutants in Biosolids, because these limits apply to the leaching of chemicals from incinerator
ash produced from burning sewage sludge. These values are from the Prime Minister's Office
Ordinance for Establishing Evaluation Standards Regarding Industrial Wastes, including Metals
(1995).
4.3.3 European Union
The European Union Directive, Council Directive On the Approximation of the Laws of
the Member States Relating To Fertilizers (76/116/EEC) sets forth the regulations regarding
"straight and compound" fertilizers. The directive is similar to the AAPFCO model document in
that it describes only the fertilizer content and package markings. Member states may adapt this
regulation. Fertilizer marketed as "EEC fertilizer" is subject to official control measures to
assure compliance with the declared nutrient content. Subsequent directives have added fertilizer
types to the Annex I (N, P and K) and Annex n (Secondary nutrient Fertilizers) of this directive
and tolerances for specific components to Annex HI. For example, Urea-ammonium sulphate,
0.5% was added to all three Annexes in a Commission Directive of May 10,1996 (96/28/EC).
The EU Council Directive of 12 June, 1986 (86/278/EEC) describes the use of sewage
sludge in agriculture. The limits for metals are described in the following section and in
Appendix E, Table E-l International Contaminant Concentration Limits for Biosolid Application
to Land
The Council Directive of 12 December, 1991 (91/689/EEC) replaces the previous
Council Directive of 20 March, 1978 (78/319/EEC) on disposal of dangerous waste. This
directive defines waste, requires that discharges be identified and recorded, transportation and
storage be inspected and controlled and that establishments responsible for disposal and recovery
of wastes on behalf of third parties be identified to the Commission. Annex I of this directive
identifies categories of hazardous waste. Annex E lists the chemical constituents of wastes and
Annex IH identifies the properties of wastes which render them hazardous. In simplified form,
this regulation is similar to those of U.S. EPA.
The reuse of materials is encouraged in a non-obligatory council directive of 18 March,
1991. Member states are encouraged to become self-sufficient in waste disposal, and the Council
discusses the desirability of adopting specific rules on recovered waste. Article 4 states:
"Member States shall take the necessary measures to ensure that waste is recovered or
disposed of without endangering human health and without using processes or methods
which could harm the environment."
Annex HE lists operations which may lead to recovery and describes the RIO recovery method:
"Spreading on land resulting in benefit to agriculture or ecological improvement,
including composting and other biological transformation processes..."
This directive does not, however, provide any guidance on limits of contaminants in the
environment.
64
-------
4.3.4 Cadmium in Fertilizers
Rock phosphates contain cadmium as a trace element (See Table 3-5). Because of the
concern about the toxicity of this element and the need for application of phosphate fertilizers, a
number of countries have standards and guidelines limiting the cadmium content of fertilizers
and soil. Table 4-4 presents a number of these limits for countries around the world. Most of the
limits are stated as a weight of cadmium per weight of phosphorus or phosphate in the fertilizer.
In some cases, the cadmium limits are for the total fertilizer weight. Belgium has the lowest
limit for all fertilizers, 2.5 mg/kg dry weight, and the Netherlands has the lowest limit for
compost and "very clean" compost, 1.25 mg/kg and 0.7 mg/kg, respectively. Cadmium limits in
biosolids applied to land are discussed in the next section.
4.4. BIOSOLIDS APPLICATION TO LAND
4.4.1 EPA 40 CFR Part 503 Standards for the Use or Disposal of Sewage Sludge
The U.S. EPA regulates use and disposal of biosolids via 40 CFR Part 503, "Standards
for the Use or Disposal of Sewage Sludge." In this regulation, EPA sets limits for certain metals
in biosolids when applied to agricultural land. These limits are summarized in Table 4-5.
Concentrations limits for nine inorganic (metal) pollutants hi the sewage sludge and for the soil
following application of the sewage sludge are included in the regulation, hi addition, hi May
1993, EPA prepared a list of 31 potential pollutant candidates to be included in the regulation.
These pollutants were selected based upon the frequency of detection in the 1988 National
Sewage Sludge Survey. Based on screening risk assessments, EPA is scheduled to propose (by
March 1999) comprehensive numerical standards and appropriate management practices for
biosolids. These will apply to all use and disposal practices, including land application, surface
disposal, and incineration, and will encompass limits for dioxins/furans and coplanar PCBs. A
final rule is anticipated by 2001.
Many individual states include several limits for other metals. Appendix E presents
limits for metals in biosolids for Pennsylvania and the New England states. Many of these limits
are the same or lower than those in the Section 503 rule. All the states listed have limits for
chromium (which was deleted from Part 503 rule based on a court decision). Connecticut has
additional limits for chromium (VI) and barium.
4.4.2 International Biosolids Regulations
Inorganic and organic concentration limits in sludge and soils following land application
are presented hi Appendix E. These values have been abstracted from A Global Atlas of
Wastewater Sludge and Biosolids Use and Disposal (1996) for 15 countries and the European
Union. Canadian regulations for biosolids application to land are the same as for any fertilizer
(see Table 4-2). All these countries regulate metals (cadmium, chromium, copper, lead, mercury,
nickel and zinc) in biosolids and most regulate arsenic. It is difficult to determine which country
has the most conservative limits because they vary by metal; however, the Netherlands and the
Scandinavian countries generally have the lowest limits.
65
-------
'o
CO
1
O
LL.
.i
£
T3
03
O
§
1
cc
"S
§
CD
•s
0)
CO
t
|
o
O
CO
Q.
CO
"H
CD
3
CO
CO
CD
C
3
O
O
CO
IE
+.*
CO
^
**—
o
c
o
• Industry Federati
Fertilizel
c
«
E
'$
voluntary
CO
o
a.
cn
0
CD
co
O
in
CO
in
O5
cn
.2
"co
v_
— ^
<
.2
1
cn
3
H-
o
o
• Industry Federati
CD
'•£
£
C
•i
E
'x
co
voluntary
CO
o
jr
a.
cn
0
.E
Q.
CD
CD
O
O
CO
o
o
o
CM
CD
k.
3
4-1
3
0
*4-»
O
JZ
s
"8
CO
3
CD
t
CD
U.
c;
^
E
'x
CO
E
voluntary
CO
3
O
Q.
CO
O
0.
S
CD
O
in
CM
o
Z
CM
V
.*;
5
1
CD
•d
C
CD
CO
'5
cn
•a
i 2>
CO E.
CD 2
.Mo.
1 8
•2-ii
E
3
'x
CD
voluntary
CO
CO
o
z
in
4-»
ement supplemen
0
CD
O
CO
e:
— *
E
'x
CD
voluntary
CD
CD
0
co
Z
Fertilizel
"E
CO
o
Q.
CO
O
O.
CD
CD
in
r-
CM
•z.
.2
%
3
Fertilizel
maximum
.c
co
'CD
•a
CD
CD
in
CM'
Z
1
'CD
^5
CO
Fertilizel
E
voluntary
CO
3
O
Q.
CO
0
JZ
a.
CO
^i
O
0
CM
•z.
'o
CO
maximum
£
CD
'CD
•a
I1
"CD
CO
Z
Q.
Q.
3
cn
'5
maximum
U.
CO
"£
(35
O
CD
:=
cu
*+—
2
00
Q.
cn
0
Q.
fi
1
O
O
Is
C/3 CM
E
threshold
cn
3
o
j:
Q.
CO
0
£
Q.
CO
E
o
00
O)
05
CO
C
CD
Q
co
CD
'€
C
o
co
CO
c
CO
"g
3
3
CO
maximum
CO
3
0
jr
Q.
CO
o
o.
CD
E
o
in
Z
c
JCO
c
IE
"S "
S x
g CD
O C
C T3
•a 3
= 3
o-g
.^
i3 co
U CO
ll
Q- to m
*r O O
O CM CM
^ C C
s^<
"00
_CD CD CD
t: o o
< r^ •*
£
3
£
X
CD
voluntary
in
o
CM
a.
'CD
c
c
^i
O
CO
*
c
CD
E
CD
ID
Fertilize
E
3
£
'i
voluntary
CO
3
O
-C
Q.
CO
0
f
Q.
5
E
o
o
CN
Z
5
CD
_l
sic Environmental
co
CO
1
±;
E
cn
'co
"CD
c
co
•s
Q
3
O
CO
u.
=5
CO
0
(D
VI
CO
C35
C
CO
Q.
CD
—>
i_
1 Fertilize
4-*
£
CO
3
O
0.
CO
o
Q.
CD
I
co
CO
z
'o
CO
"CD
3
"5
CD
1
C
U.
a.
Q.
VI
ro
C35
66
-------
•o
-
*•«
c.
• 3
O
O
N
e
0)
*^
O
M—
•o
CD
CO
o
a.
1
I
CO
s
o
a.
CO
o
a.
CD
.^
CD
E
in
CO
co
O)
CO
•o
c
_ca
k.
to
.c
CD
2
•»-*
CO
o
a.
o
o
o
u_
E
3
E
'x
ca
£
O)
^£
CD
E
in
CN
T—
in
O)
CD
0
a.
o
o
"c
co
CD
o
CD
£
£
3
E
X
co
CD
.^
CD
E
fx.
0
in
CD
O)
1
1
£
•M
E
CO
o
JC
a.
CO
o
Q.
CD
CD
£
0
o
in
CO
0)
1
o
2
^
CD
N
1
,2
£
4-*
£
CO
3
O
Q.
CO
0
a.
CD
c
c
o
4-1
•S
o
CD
O
O
CN
CO
CO
C
CD
•a
^
w
^
CD
_N
1
£
£
E
3
£
'x
CO
CO
E
o
a.
CO
0
a.
CD
C
C
o
•f-'
•S
O
CD
O
in
2
•D
I
~
CD
£
^
to
CD
C
O
c
^
£
•a °
CD ^.
•u CD
'E .£
— > \^
CO
CO
_g
'o
CO
CD
"5
E *-
S'E
IE
+i 3
co c
•o .£
C X
co co
£ £
"o
CD
'CD
•a co
co o
O3 r=
£ S
in
d
CO
CO
CO
c
co
0 0
*— •—
3 C
Uj ^
CO
CO
CD
CO
LO
in
I
0)
CD
CO
0)
CC
TJ
I
O
67
-------
Table 4-5. EPA CFR 40 Part 503 Inorganic Pollutants in Sewage Sludge3
Pollutant
Arsenic
Cadmium
Copper
Lead
Mercury
Molybdenum
Nickel
Selenium
Zinc
Ceiling
Concentration
mg/kg product
for Land
Application
75
85
4300
840
57
75
420
100
7500
Cumulative
Loading Rate
(kg/ha) for
Agricultural Land
Application
41
39
1500
300
17
420
100
2800
Monthly Average :
Concentration
(mg/kg product) for
Agricultural Land
' Application
41
39
1500
300
17
420
100
2800
Annual Pollutant
Loading Rate for
Land
Application
(kg/ha/365 days)
2.0
1.9
75
15
0.85
21
5.0
140
a) The ceiling concentrations and monthly average concentrations are limits for pollutants in the sewage
sludge product, not the soil
Some countries also regulate other inorganic chemicals (e.g. molybdenum, boron,
selenium) as well as some organic chemicals. For example, Australia sets limits for pesticides in
sludge and soil, China regulates mineral oil and Austria regulates persistent organics. Japan
applies the same standards for industrial waste to biosolids waste because biosolid sludge is
incinerated and these incinerators are considered industrial plants and must meet the
environmental regulations for industry. Japan has limits for many organic and inorganic
compounds as the extractable solution in the waste.
4.5 SUMMARY OF REGULATIONS
Canada specifically regulates nine metals in all fertilizers. Certain European countries
and Australia regulate cadmium in phosphate fertilizers. Japan regulates metals and some
organic chemicals in incinerator ash that is applied to agricultural land. The U.S. regulates
fertilizers that are made from hazardous waste by setting limits for certain metals in those wastes
before the waste or product containing the waste can be applied to the land.
States regulate fertilizers, generally through the state agriculture departments. Most
states have fertilizer regulations similar to the AAPFCO Uniform State Fertilizer Bill shown in
Appendix D. These bills generally regulate plant nutrient and efficacy claims made on the
product labels. States (and AAPFCO) have recently begun to also adopt specific standards for
contaminants in fertilizers.
There are international, national and state regulations for the application of sewage sludge
(biosolids) to land. These laws and regulations have specific limits for toxic metals in sludge and
frequently include limits for metals in the soil following application of biosolids.
68
-------
5.0 CHARACTERIZATION OF ADDITION OF METALS TO SOILS AS A RESULT OF
FERTILIZER APPLICATION - COMPARISON TO REGULATORY LIMITS
This section combines information from Section 2 on fertilizer consumption, Section 3 on
metals in fertilizers and soils and Section 4 on regulations for metals in fertilizers and soils.
First, we describe the assumptions necessary for the calculation of metal additions to soil
following fertilizer application. Next, application rates for N, P and K fertilizers and
micronutrients are combined with information on metal concentrations in these products to
determine potential soil additions of metals resulting from fertilizer use. Then we compare these
values for metals in fertilizers and soils to the available regulatory limits. The fourth part of this
section describes questions that have arisen and data gaps identified in the characterization of soil
contamination following application of fertilizers which contain non-nutritive heavy metals.
Note that at this time, only the changes in soil concentrations from metal additions are
considered. This report does not attempt to evaluate the impacts of these soil additions on human
health or the environment.
This section addresses the following questions:
• What do we know about trace-metal contamination of fertilizers and the resulting
application to soils?
• Based on simplifying assumptions, what concentrations of metals in soil might be
expected following fertilizer application?
• How do these levels compare to national and international standards and guidelines?
• Based on typical fertilizer application rates, how long will it take to double soil
background contaminant levels?
• What additional information is necessary to thoroughly characterize the extent of soil
contamination following fertilizer application?
5.1 ASSUMPTIONS FOR THE CALCULATION OF METAL SOIL LOADINGS RESULTING
FROM FERTILIZER APPLICATION
A number of assumptions must be made to calculate the annual addition of metals to soil
(mg/kg or kg/hectare = kg/ha) following fertilizer application. Data from Section 3 listing metal
contaminants in various fertilizers have been combined with typical application rates for fertilizer
products. The basic equation for the calculation of metal addition to soil (mg/kg) is:
mg X _ mg X x 1 kg product
kg soil kg product (% 7/100) kg a.i.
kg a.i ha
ha 2,000,000 kg soil
(1)
where: X = metal contaminant
Y = fertilizer nutrient (e.g., zinc, nitrogen, P2O5, K2O)
AR= application rate (kg/ha)
a.i. = active fertilizer ingredient (e.g. nitrogen, N)
69
-------
The value 2,000,0000 kg soil/ha is calculated based upon an assumed soil density of 1.33 g/cm3
using the following equation:
1,995,000
100 m x 100 m x Q.15 m x 1.33 (g/cm3)
ha
ha
=-2,000,000
ha
0.01 (m/cm)3
(2)
This assumes that the soil density is 1.33 g/cm3 (US EPA Office of Wastewater Management,
1995; Foth, 1990; Manrique and Jones, 1991; US EPA, 1997a) and that the soil plow depth is 15
cm (0.15 m) (Rothbaum et al., 1986). (Note that the soil density, or bulk soil density, is the mass
of oven dry soil per volume sampled, and thus includes both the soil particles and the interstitial
air.) A hectare is 10,000 m2. The yearly addition of contaminant X to the soil (kg X/ha) is
calculated:
mgX
1 kg product
kgX = _
ha kg fertilizer product (% 17100) kg a.i.
kg
kg a'LY
ha 1,000,000 mg
(3)
Some limits for metals in soils are reported on a mg/kg basis. To convert from kg/ha to mg/kg,
multiply the value of the contaminant hi kg/ha by 0.5:
mgX
kg soil
_ kgX
ha
ha 2,000,000 kg soil
1,000,000 mgX = Q5 kgX
IkgX 'ha
(4)
The applications to soil are calculated per crop year; that is, application rates used in the tables
may result from multiple applications of a single product in a single growing season. But we
have not considered applications of several fertilizer types during a crop year since that
information is not available at this time.
5.2 SOIL CONCENTRATIONS OF METALS FOLLOWING APPLICATION OF ISI. P AND K
FERTILIZERS AND MICRONUTR1EMT FERTILIZERS
Although there are considerable data on concentrations of metals in fertilizer products, the
data are neither comprehensive nor representative of all fertilizer types. For example, analyses of
metals in 141 different NPK, 61 phosphate and 63 zinc fertilizer samples were available for
these comparisons. In contrast, analyses of only 2 or 3 boron, iron, magnesium, and manganese
fertilizers were available. In addition, the 141 NPK samples (and all other fertilizer samples, as
well) were typically not characterized with respect to all 9 metals compared in this report. The
most frequently analyzed/reported metals included Cd, Pb, As, and Zn. Data on Hg
concentrations hi fertilizer products are somewhat limited by analytical method detection limits
(i.e., samples were analyzed, and concentrations were reported as less than a detection limit that
is substantially higher than concentrations at which Hg was detected in other samples). The
application rates are chosen to cover a range of potential values.
70
-------
The application rates for N, P, and K fertilizers, micronutrient fertilizers, lime and
gypsum used for calculations here are summarized in Table 5-1 (N, P, and K) and Table 5-2
(micronutrient, lime and gypsum). The N, P, and K fertilizer application rates are taken from the
USDA/NASS database and reflect rates applied to six field crops (1996 crop year), the eight
vegetables with more than 100,000 planted acres in one type (cucumbers not included because
neither fresh nor processed type alone exceeded 100,000 planted acres) (1994 crop year) and the
six fruits with more than 100,000 planted acres (1995 crop year). The six field crops include
corn, cotton, potatoes, soybeans, tobacco and wheat; the eight vegetable crops include snap
beans, broccoli, carrots, corn, lettuce, onions, peas and tomatoes; the six fruit crops include
watermelons (listed in the USDA/NASS database under vegetables), oranges, grapefruit, apples,
grapes and peaches. (Note: These 20 crops were selected for subsequent calculations in this
report because they account for a large majority of the crop acreage planted in the U.S. each
year.) The USDA/NASS database lists fertilizer application rates separately for the three types of
wheat (winter, durum and spring). For this report a single, aggregate application rate for wheat
was developed, and used, which consisted of the acreage-weighted rate for the three types of
wheat. In a similar manner, single acreage-weighted rates were also developed for snap beans
(fresh and processed), corn (fresh and processed), and tomatoes (fresh and processed). The N, P
(P2O5), and K (K2O) fertilizer application rates for these crops (6 field, 8 vegetables, 6 fruit) are
summarized in Appendix Table F-l. Six different global application rates were considered
initially for N, P, and K application rates, and these rates are listed at the top of Table 5-1. The
three selected application rates for all subsequent calculations are listed at the bottom of Table
5-1. The 6 application rates considered initially included: the maximum rate cited for these crops
(max of range); the 19th highest average application rate for the 20 crops selected (95th
percentile), the 16th highest average application rate for the 20 crops selected (80th percentile),
the average of the top 10 average application rates (avg top 10); the average of all average
application rates (avg avg); and the average of all average application rates weighted by the
number of acres planted in that crop (avg acre weighted). (Note: The 19th and 16th highest
average application rates are unbiased non-parametric statistical estimates of the 95th and 80th
percentile average application rates, respectively; seeDudewicz, 1976.)
Table 5-1. NPK Fertilizer Application Rates (Ibs/acre) Used in Calculation
of Metal Addition to Soil for Field Crops, Vegetables and Fruits3
'"-• '/.,.-; Parameter ; -: .,"-.•
max of range
95th pctile
80th pctile
avg (top 10)
avg (avg)
avg (acre weighted)
:-...V:-. •;.-;.; N •• "::•••
414
206
186
178
124
84
P
252
173
120
122
84
49
The following rates were used in subsequent calculations
avg
high
maximum
124
206
414
84
173
252
K
534
177
139
138
103
69
103
177
534
a) Source: USDA, ERS, MASS database; see text for more details.
71
-------
As shown at the bottom of Table 5-1, the average of all average application rates was
selected to represent an "average" application rate; the 19th highest average application rate for
the 20 crops (95th percentile) was selected to represent a "high" application rate; and the
maximum rate cited for these crops (max of range) was selected to represent a "maximum"
application rate. The maximum application rates were used on watermelon, lettuce and tomato
crops, for N, P, and K respectively. The 95th percentile application rate (high) was the rate
applied to broccoli, potatoes, and oranges for N, P, and K respectively.
The Food and Agriculture Organization of the United Nations (FAO) has published
world-wide application rates for several additional crops such as peanuts, barley, oats, rye,
sunflower, sugar beets, sugar cane, and pasture lane (FAO, 1996). These application rates are
based on estimates by experts in the field as opposed to recorded measurements documented in
the USDA/NASS database. However, they could be used to supplement the survey data from
USDA/NASS that is used hi this report. Based on the U.S. data from the FAO, the average
application rates are 34 Ib/A for nitrogen fertilizers, 18.7 Ib/A for P2O5 fertilizers, and 44.4 Ib/A
for K^O fertilizers for peanuts, barley, oats, rye, sunflower, sugar beets, sugar cane, and pasture
land. Pasture had the lowest application rates for all three fertilizers at 4.5,1.8, and 1.78 Ib/A for
nitrogen, P2O5, and K2O fertilizers respectively. The high application rates are 93 Ib/A for sugar
beets, 44 Ib/A for peanuts, and 220 Ib/A for sugar cane for nitrogen, P2O5 and K2O fertilizers
respectively. Although the data from the FAO were not used in these calculations of application
rates in Table 5-1, the application rates from the FAO fall within the ranges of the application
rates that were used.
The average, high and maximum secondary nutrient, micronutrient, lime and gypsum
application rates are listed in Table 5-2. These rates were derived from interviews with experts in
the area, including leading scientists with the agricultural extension services at 7 states, and from
Table 5-2. Secondary Nutrient, Micronutrient and Lime Application Rates (Ibs/acre) Used in
Calculation of Metal Addition to Soil for Field Crops, Vegetables and Fruits3
Fertilizer Type
Zinc
Sulfur (nutrient)
Sulfur (pH)
Boron
Manganese
Magnesium
Iron
Lime (CaCO3)
Gypsum
Average6
5
20
800
2
4
25
10
4,000
2,000
High0
10
40
2,000
3
10
100
20
8,000
4,000
Maximum*1
20
60
2,500
4
18
180
30
1 5,000
8,000
a) Source: Ag Extension Service interviews and Internet site-provided information from Ag
Extension Services; see text for more details.
b) Average rate from Ag Extension Service data (see Appendix F, Table 1)
c) High is rate determined from Extension Service data (see Appendix F, Table 1)
d) Maximum is highest rate quoted in Extension Service data (see Appendix F, Table 1}
72
-------
information published by agricultural extension services on the Internet for 8 states. Agricultural
extension agency scientists and leading professionals were contacted in CA, OR, WA, AL, OH,
NY and NB. Data were obtained from Internet sites for extension services in the following
states: NB, MN, GA, AL, FL, IL, MO and TX. The data obtained from these interviews and
searches are listed in Appendix Table F-2. Due to the more limited nature of these data
compared with the extensive USDA/NASS database, the average and high application rates were
selected as best estimates from these searches; the maximum application rate was the highest rate
quoted or listed by any agricultural extension service.
The yearly average additions of metals to soil (kg/ha) were calculated for each fertilizer
product using Equation [1]. These calculations are tabulated in Appendix G of this report for:
P2O5 fertilizers: Tables G-l(a-e),
NPK fertilizers applied for P2O5 content: Tables G-2(a-e),
NPK fertilizers applied for N content: Tables G-3a-e),
Potash (K2O) fertilizers: Tables G-4(a-e),
Zinc (Zn) fertilizers: Tables G-5(a-d),
Manganese (Mn) fertilizers: Tables G-6(a-e),
Boron (B) fertilizers: Tables G-7(a-e),
Iron (Fe) fertilizers: Tables G-8(a-e),
Sulfur (S) fertilizers applied for nutrient content: Tables G-9(a-e),
Sulfur fertilizers (S) applied for pH adjustment: Tables G-10(a-Oe),
Liming Materials: Tables G-ll(a-e),
Gypsum: Tables G-12(a-e), and
Micronutrient mixes: Tables G-13(a-e).
Important Note:
For these calculations, each product-specific metal X level (mg X/kg of product) and the
product-specific concentration of active ingredient (e.g. 20% zinc fertilizer = 0.2 kg a.i./kg
product) were combined with the three global application rates for average, high and maximum
application of active ingredient (Equation [3]), to obtain an average, high and maximum yearly
addition of each metal for that specific product. At the conclusion of each table is listed the
average yearly metal addition from all products, as (or if) applied at the average, high and
maximum application rate. In addition, in Appendix G the product which produces the highest
yearly addition of the specific metal being characterized is shaded for visual identification.
As indicated in Equation [3], the yearly addition of metal to soil is determined by both the
level of the metal in the product and the level of the desired nutrient. A fertilizer product can
contribute high levels of heavy metals to soil when the heavy metal concentration in the product
is high and/or when the desired plant nutrient is at a low level in the product. For example, one
lime product had CaCO3 content of only 7.6%. Although the Cd concentration in this product
was comparable to levels in other lime products, the calculated addition of Cd to soil was high,
due to the low nutrient content. For this report, soil metal addition rates for each product were
calculated, and then the average soil metal addition rate from all products of a fertilizer category
was calculated. The average product of each fertilizer category is defined here as that product
which would give the average soil addition rate of a given metal.
73
-------
The fertilizer products that were analyzed in this way are those reported in Section 3,
Tables 3-6 though 3-11, with some exceptions. Exceptions include those products for which the
active ingredient percentage was not identified (e.g., Table 3-9 samples), the single magnesium
fertilizer sample identified (Table 3-8), and the organic and/or biosolids fertilizers (Table 3-7).
Inasmuch as this report was designed to evaluate only the inorganic fertilizers, the organic
fertilizers and/or soil amendments (sewage sludge, humus, compost, tankage, etc.) were not
carried through this set of calculations. Those NPK fertilizers that were clearly identified as
being "biosoUds-based" were also eliminated from these calculations. In addition, soil
amendments, potting soils, and "soil conditioners" were not carried through this set of
calculations, this due in part because application rates were not fully characterized.
Tables 5-3a through 5-8a provide the summary of the average metals soil additions (kg/ha
soil) that may result from average, high and maximum application rates of inorganic fertilizers,
gypsum and lime. Tables 5-3b through 5-8b provide the summary of the average, high and
maximum soil metal contaminant levels resulting from the individual products in each fertilizer
category which give rise to the highest calculated soil loadings with the global average, high and
maximum product-specific application rates.
Application of zinc fertilizers (Table 5-3a) at the maximum application rate results in soil
additions of less than 0.1 kg/hectare of all metals except for lead (0.884 kg/hectare). Phosphate
products (Table 5-3 a) at the maximum application rate also result in metal addition to the soil of
less than <0.1 kg/hectare for all metals except chromium (0.1 kg/hectare), vanadium (0.173
kg/ha) and zinc (0.150 kg/hectare). NPK fertilizers applied for N content (Table 5-4a) and
applied at the maximum rate contribute 0.10 kg/ha/year of lead to the soil (Table 5-4a). Boron
and K20 fertilizers (Tables 5-5a and 5-6a) contribute extremely low levels of contaminants,
generally O.001 kg/ha/year at the maximum application rate, with exception of 0.023 kg/ha/year
of arsenic from boron fertilizers. Iron fertilizers contribute almost 0.5 kg/ha/year of arsenic and
1.6 kg/ha/year of lead to the soil when applied at the maximum rate (Table 5-5a). The
manganese fertilizers (Table 5-6a) contribute very low levels of contaminants, with the highest
level contributed by the zinc in the manganese fertilizers at 0.004 kg/ha/year at the maximum
application rate. Adding sulfur to the soil as a nutrient adds 0.18 kg/ha of zinc to the soil; adding
sulfur for pH adjustment adds 0.11 kg/ha of copper to the soil each year (Table 5-7a) at the
maximum application rate. Average additions of zinc and vanadium (0.48 and 0.30 kg/ha,
respectively) are the highest metals additions from gypsum applications (Table 5-8a). Zinc, lead
and copper (at 6.6, 0.69 and 0.63 kg/a, respectively) are the metals added in highest quantities
with liming agents (Table 5-8a).
The data from Tables 5-3(a/b) to 5-8(a/b) are represented graphically in Figures 5-1 to
5-9. As shown in Figure 5-1, the data for Cd additions to soil from the different fertilizer types
are compared, and those individual products which are known to be derived from industrial waste
products are so indicated.
The number of metals analyzed in each fertilizer product varied from as few as one or
two, to the entire suite of nine metals. In Tables 5-3a through 5-8a, the number of samples in
which a Cd concentration was measured is given hi the header information of that table. In
general, Cd was the one metal analyzed most frequently. However, because some of the metals
74
-------
were analyzed far less frequently than Cd, the number of samples, by fertilizer type, which
provided concentration data for each metal have been tabulated (see Table 5-9).
As shown there, the data for several of the metals in several fertilizer types is limited, and this
may significantly affect the accuracy of conclusions drawn about the soil additions of these
metals.
This table provides a listing of the number of products in each fertilizer category for
which metals data were available, and the number of those products which exceeded the
annualized Canadian Fertilizers Regulations limits when applied at the nutrient application rates
chosen here. Note that hi each fertilizer category, metals concentrations were not available for all
products. For example, for the P2O5 fertilizers, Cd levels were listed for 61 products, Pb levels
were given for 58 products, As levels were given for 64 products, and so on. Several of the
metals evaluated here, e.g., Cr, V, and Cu, do not have limits imposed by the Canadian
regulations, and for these metals an accounting of exceedances was not necessary. The
exceedances in Table 5-9 are listed separately in Table 5-10 by the number of products that
exceed the Canadian standards at the average, high and maximum nutrient application rates
evaluated here. For example, in the P2O5 products, the one product that exceeded the Canadian
standards did so only at the maximum application rate. In the NPK products applied for P2O5
content (NPK-P), 5 products exceeded the Canadian standards at the high application rate, and 10
products exceeded the standard at the maximum application rate. One lime product exceeded
standards for 5 of the metals at the average application rate; one NPK-P product exceeded Pb
standards at the average application rate; and one iron product exceeded As standards at the
average application rate.
Table 5-3a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Zinc and Phosphate
Fertilizers3
Zinc Fertilizers at
application rate (n = 22)b
average
high
maximum
Phosphate (P2O5) Fertilizers
" at application rate (n = 6 1 )
average
high
maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
0.007
0.221
< 0.001
0.011
<0.001
0.010
0.001
0.023
NAf
0.014
0.442
0.001
0.021
<0.001
0.019
0.001
0.046
NA
0.029
0.884
0.002
0.042
<0.001
0.039
0.003
0.091
NA
0.011
0.003
0.002
0.034
<0.001
0.006
0.052
0.020
0.050
0.022
0.007
0.005
0.070
<0.001
0.012
0.107
0.042
0.103
0.033
0.009
0.007
0.102
<0.001
0.018
0.155
0.061
0.150
U.S. 40 CFR
Part, 503 -
Biosolids
kg/hac
1.9
15
2.0
nl8
0.85
21
n!
75
140
Canadian
Fertilizer
Act
kg/had
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-5(a-d) for Zn fertilizers and G-1 (a-e) for P2OS fertilizers
b) Number of samples providing Cd values for calculation; number of samples providing other metals are listed in Table 5-
9.
c) U.S. limits in kg/ha are annual pollutant loading rates
d) Canadian limits in kg/ha are long term cumulative additions; the numbers in the table were divided by 45 to be
comparable to the U.S. annual pollutant loading rates
e) nl = no limits currently set
f) Not applicable: Zinc fertilizers are applied specifically to add zinc to the soil and/or crop.
75
-------
Table 5-4a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: NPK for N Content
and NPK for P Content Fertilizers3
Applied for P Content
NPK Fertilizers at
application rate (n = 91 }b
average
high
maximum
Applied for N Content
NPK Fertilizers at
application rate (n = 50)
average
high
maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
HO
Ni
V
Cu
Zn
0.008
0.087
0.004
0.019
< 0.001
0.006
0.042
0.013
0 054
0.017
0.179
0.008
0.039
<0.001
0.013
0.087
0.028
0112
0.025
0.261
0.012
0.057
<0.001
0.019
0.127
0.040
0.163
0.006
0.031
0.008
0.081
<0.001
0.018
0.106
0.064
0.308
0.009
0.051
0.013
0.134
<0.001
0.030
0.176
0.107
0.513
0.018
0.103
0.027
0.270
<0.001
0.061
0.354
0.215
1.030
U.S. 40
CFR Part
503-
Biosolids
kg/hac
1.9
15
2
nl"
0.85
21
nl
75
140
Canadian
Fertilizer
Act
kg/had
0.089
2.222
0.333
nl
0.022
0.8
nl
nl
8.222
a) Source: See Appendices G-2 (a-e) for NPK-P and G-S(a-e) for NPK-N.
b) Number of samples providing Cd values for calculation; number of samples providing other metals are listed
in Table 5-9
c) U.S. limits in kg/ha are annual pollutant loading rates
d) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits
e) nl = no limits currently set
76
-------
Table 5-5a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Boron and Iron
Fertilizers3
Boron Fertilizers at
application rate (n = 2)b
average
high
maximum
Iron Fertilizers at
application rate (n = 3)
average
high I maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
<0.001
<0.001
0.012
<0.001
< 0.001
<0.001
<0.001
<0.001
<0.001
<0.001
< 0.001
0.017
<0.001
< 0.001
<0.001
0.001
< 0.001
0.001
< 0.001
<0.001
0.023
<0.001
< 0.001
<0.001
0.001
< 0.001
0.001
0.009
0.549
0.155
ntf
nt
nt
nt
0.051
nt
0.018
1.098
0.310
nt
nt
nt
nt
0.102
nt
0.027
1.647
•:''.•-. 0;465^:-?v
nt
nt
nt
nt
0.153
nt
U.S. 40CFR
Part 503 -
Biosolids
kg/ha°
1.9
15
2.0
nl9
0.85
21
nl
75
140
Canadian
Fertilizer
Act
kg/had
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendix G-7(a-e) for Boron and G-S(a-e) for Iron
b) Number of samples providing Cd values for calculation; number of samples providing other metals are
listed in Table 5-9
c) U.S. limits in kg/ha are annual pollutant loading rates
d) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits
e) Shading indicates that value exceeds Canadian standard
f) nt = analyte not tested in fertilizers
g) nl = no limits currently set
77
-------
Table 5-6a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Potash and
Manganese Fertilizers3
K2O Fertilizers at Application Rate
(n=42)b
high
maximum
Yearly Addition in ka/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
<0.001
0.001
<0.001
< 0.001
<0.001
< 0.001
< 0.001
<0.001
<0 001
<0.001
0.001
<0.001
0.001
<0.001
<0.001
0.001
<0.001
0 001
0.001
0.003
<0.001
0.001
<0.001
0.002
0.002
0.001
0.002
Manganese Fertilizers at Application ••
Rate (n=2)
average
<0.001
< 0.001
<0.001
< 0.001
<0.001
0.001
<0.001
<0.001
0.001
high
<0.001
0.001
<0.001
<0.001
<0.001
0.002
<0.001
<0.001
0.002
maximum
<0.001
0.002
0.001
0.001
< 0.001
0.003
<0.001
0.001
0.004
U.S. 40 CFR
Part 503-
Biosolids
kg/hac
1.9
15
2.0
nle
0.85
21
nl
75
140
Canadian
Fertilizer
Act
kg/had
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-4(a-e) for Potash and G-6(a-e) and Manganese
b) Number of samples providing Cd values for calculation; number of samples providing other metals are
listed in Table 5-9.
c) U.S. limits in kg/ha are annual pollutant loading rates
d) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits.
e) nl = no limits currently set
78
-------
Table 5-7a. Averaged Yearly Addition of Metals to Soil from All Products Applied at
Average, High and Maximum Nutrient Application Rates: Sulfur (Nutrient)
and Sulfur (pH Adjustment) Fertilizers3
Sulfur (nutrient) at
application rate (n = 9)b
average
high
maximum
Sulfur (pH adjustment) at
application rate (n=5)
average
high
maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
0.003
< 0.001
<0.001
0.009
<0.001
0.008
0.016
0.001
0.060
0.005
0.001
<0.001
0.017
<0.001
0.016
0.032
0.002
0.120
0.008
0.001
0.001
0.026
<0.001
0.023
0.048
0.002
0.181
<0.001
0.002
0.007
nt°
nt
nt
nt
0.036
nt
<0.001
0.006
0.017
nt
nt
nt
nt
0.090
nt
< 0.001
0.007
0.022
nt
nt
nt
nt
0.113
nt
U.S. 40 CFR
Part 503 -
Biosolids
kg/ha°
1.9
15
2.0
nlf
0.85
21
nl
75
140
Canadian
. Fertilizer
Act
kg/ha"
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-9(a-e) sulfur (nutrient) and G-10(a-e) for sulfur (pH adjustment)
b) Number of samples providing Cd values for calculation; number of samples providing other metals are
listed in Table 5-9.
c) U.S. limits in kg/ha are annual pollutant loading rates
d) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits.
e) nt = analyte not tested in fertilizers; NPKS and sulfur used for S-nutrient addition; only sulfur products
used for pH adjustment
f) nl = no limits currently set
79
-------
Table 5-8a. Averaged Yearly Addition Addition of Metals to Soil from All Products
Applied at Average, High and Maximum Nutrient Application Rates: Gypsum
and Liming Materials3
Gypsum
at Application Rate (n=4)b
maximum
• .
Lime
at Application Rate {n= 101"
1
average I high
maximum
Yearly Addition in kg/ha (for year n which addded)'
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
Yearly
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
0.002
0.010
0.010
0.003
<0.001
0.007
0.076
0.053
0.121
0.004
0.021
0.020
0.006
<0.001
0.013
0.152
0.106
0.241
0.007
0.041
0.040
0.013
<0.001
0.027
0.303
0.212
0.482
0.017
0.902
0.344
0.371
0.003
0.200
0.348
0.910
4.456
0.034
1.804
0.689
0.742
0.007
0.400
0.696
1.819
8.911
0.064
3^383*
1.292
1.391
0.013
0.750
1.305
3.411
16.708
Addition in kg/ha (average over 3 years)h
0.006
0.300
0.115
0.124
0.001
0.067
0.116
0.303
1.485
0.011
0.601
0.230
0.247
0.002
0.133
0.232
0.606
2.970
0.021
1.127
OA31
0.464
0.004
0.250
0.435
1.137
5.569
U.S. 40 CFR
Part 503-
Biosolids :
ka/ha°
1.9
15
2.0
nl9
0.85
21
nl
75
140
1.9
15
2.0
nl
0.85
21
nl
75
140
Canadian
Fertilizer Act
kg/had
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-11 (a-e) for lime and G-12(a-e) for gypsum
b) Number of samples providing Cd values for calculation; number of samples providing other metals are
listed in Table 5-9
c) U.S. limits in kg/ha are annual pollutant loading rates
d) Canadian limits in kg/ha are long term cumulative additions, so values were divided by 45 to approximate
annual limits
e) Additions of metals for lime addition based on year in which application is made. Lime typically added
only once every three years
f) Shading indicates value exceeds Canadian standard
g) nl = no limits currently set
h) Values listed in this portion of the table are the metals additions averaged over 3 years
80
-------
Table 5-3b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied
at Average, High and Maximum Nutrient Application Rates: Zinc and
Phosphate Fertilizers3
Zinc Fertilizers at
application rate
average
high
maximum
Phosphate (P2O5) Fertilizers
at application rate
average
high
maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
0.036
0.856
0.001
0.018
<0.001
0.086
0.001
0.064
NAf
0.071
1.713
0.003
0.036
<0.001
0.172
0.003
0.128
NA
0.143d -
3.426
0.006
0.072
<0.001
0.344
0.005
0.255
NA
0.038
0.094
0.006
0.124
< 0.001
0.032
0.151
0.550
0.324
0.078
0.194
0.013
0.256
<0.001
0.065
0.311
1.135
0.668
^j&fa&iti
0.282
0.018
0.372
< 0.001
0.095
0.452
1.650
0.971
U.S. 40 CFR
Part 503 -
Biosolids
kg/hab
1.9
15
2.0
nle
0.85
21
nl
75
140
Canadian
Fertilizer
Act
kg/hac
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-5(a-d) for zinc fertilizers and G-1{a-e) for P2OS fertilizers
b) U.S. limits in kg/ha are annual pollutant loading rates
c) Canadian limits in kg/ha are long term cumulative additions); the numbers in the table were divided by 45
to be comparable to the U.S. annual pollutant loading rates
d) Shading indicates value exceeds Canadian standard
e) nl = no limits currently set
f) Not applicable: Zinc fertilizers are applied specifically to add zinc to the soil and/or crop.
81
-------
Table 5-4b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied
at Average, High and Maximum Nutrient Application Rates: IMPK for N
Content and NPK for P content Fertilizers8
Applied for P Content:
NPK Fertilizers at
application rate
average
high
maximum
Applied for N Content:
NPK Fertilizers at
application rate
average
high
maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
0.074
2.820
0.112
0.126
< 0.001
0.092
0.186
0.353
0.696
0.154"
5.820
0.231
0.260
<0.001
0.189
0.384
0.728
1.436
0.223
8.460
0.336
0.378
<0.001
0.275
0.558
1.058
2.087
0.022
0.652
0.049
0.312
< 0.001
0.119
0.639
1.080
6.860
0.036
1.083
0.081
0.519
<0.001
0.198
1.063
1.795
11.401
0.074
2.176
0.162
1.042
0.001
0.398
2.134
3.606
22.901
U.S.40
CFR Part
503-
Biosolids
kg/hab
1.9
15
2
nl"
0.85
21
nl
75
140
Canadian
1 Fertilizer
Act
kg/ha°
0.089
2.222
0.333
nl
0.022
0.8
nl
nl
8.222
a} Source: See Appendices Q-2 (a-e) for NPK-P and G-S(a-e) NPK-N.
b) U.S. limits in kg/ha are annual pollutant loading rates
c) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits.
d) Shading indicates value exceeds Canadian standard.
e) nl » no limits currently set
82
-------
Table 5-5b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied
at Average, High and Maximum Nutrient Application Rates: Boron and Iron
Fertilizers3
-
Boron Fertilizers at
application rate
average
high
maximum
Iron Fertilizers at
application rate
average
high
maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
< 0.001
< 0.001
0.023
< 0.001
< 0.001
<0.001
< 0.001
<0.001
<0.001
< 0.001
<0.001
0.035
< 0.001
<0.001
< 0.001
0.001
<0.001
0.001
< 0.001
< 0.001
0.047
<0.001
<0.001
<0.001
0.001
< 0.001
0.001
0.025
1.400
0.462
nte
nt
nt
nt
0.131
nt
0.050
2.800"
0.924
nt
nt
nt
nt
0.261
nt
0.075
4.200-
1.386
nt
nt
nt
nt
0.392
nt
U.S. 40 CFR
Part 503 -
Biosolids
kg/hab
1.9
15
2.0
nlf
0.85
21
nl
75
140
Canadian
Fertilizer
Act
kg/hac
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendix G-7(a-e) for boron and G-S(a-e) for iron
b) U.S. limits in kg/ha are annual pollutant loading rates
c) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits
d) Shading indicates value exceeds Canadian standard
e) nt = analyte not tested in fertilizers
f) Standards are not specified in these units
83
-------
Table 5-6b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied
at Average, High and Maximum Nutrient Application Rates: Potash and
Manganese Fertilizers3
K,O Fertilizers at Application Rate
average
Yearly Addition in kg
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
< 0.001
0.002
<0.001
0.001
< 0.001
0.001
0.005
0.002
0.004
high
/ha
0.001
0.004
0.001
0.002
<0.001
0.002
0.008
0.004
0.008
maximum
0.002
.012
0.002
0.007
0.001
0.004
0.024
0.013
0.023
Manganese Fertilizers at Application
average
<0.001
0.001
< 0.001
<0.001
<0.001
0.001
<0.001
< 0.001
0.001
high
< 0.001
0.002
0.001
<0.001
<0.001
0.002
<0.001
0.001
0.002
maximum
< 0.001
0.003
0.001
0.001
< 0.001
0.003
<0.001
0.001
0.004
U.S. 40 CFR
Part 503-
Biosolids
kg/hab
1.9
15
2.0
nl"
0.85
21
n!
75
140
Canadian
Fertilizer
Act
kg/ha°
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-4(a-e) for K2O and G-6(a-e) for manganese
b) U.S. limits in kg/ha are annual pollutant loading rates
c) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits.
d) nl = no limits currently set
84
-------
Table 5-7b. Highest Yearly Maximum Addition of Metals to Soil from an Individual
Product, Applied at Average, High and Maximum Nutrient Application Rates:
Sulfur (Nutrient) and Sulfur (pH Adjustment) Fertilizers3
Sulfur (nutrient) at
application rate
average
high
maximum
Sulfur (pH adjustment) at
application rate
average
high
maximum
Yearly Addition in kg/ha
Cd
Pb
As
Cr
Hg
Ni
V
Cu
Zn
0.023
0.001
0.001
0.034
<0.001
0.031
0.063
0.003
0.237
0.046
0.003
0.001
0.068
< 0.001
0.062
0.127
0.005
0.474
0.070
0.004
0.002
0.103
<0.001
0.094
0.190
0.008
0.710
<0.001
0.008
0.017
ntd
nt
nt
nt
0.098
nt
<0.001
0.019
0.043
nt
nt
nt
nt
0.244
nt
< 0.001
0.024
0.053
nt
nt
nt
nt
0.305
nt
U.S. 40 CFR
Part 503 -
Biosolids
kg/ha"
1.9
15
2.0
nl"
0.85
21
nl
75
140
Canadian
Fertilizer
Act
kg/hac
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-9(a-e) for sulfur (nutrient) and G-10(a-e) for sulfur (pH adjustment)
b) U.S. limits in kg/ha are annual pollutant loading rates
c) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits.
d) nt = analyte not tested in fertilizers
e) nl = no limits currently set
85
-------
Table 5-8b. Highest Yearly Addition of Metals to Soil from an Individual Product, Applied
at Average, High and Maximum Nutrient Application Rates: Gypsum and
Liming Materials8
Yearly
Cd
Pb
As
Cr
Hg
Nt
V
Cu
Zn
Cd
Pb
As
Cr
Hg
NI
V
Cu
Zn
Gypsum
at Application Rate
high
Addition in kg/ha
0.006
0.025
0.019
0.003
<0.001
0.007
0.112
0.094
0.121
0.011
0.049
0.038
0.006
<0.001
0.013
0.224
0.188
0.241
maximum
0.022
0.099
0.076
0.013
< 0.001
0.027
0.448
0.376
0.482
Lime
at Application Rate
average
high
maximum
(for year in which added)d
0.044
7.368
2.829
2.004
0.024
1.356
2.417
6.838
24.994
0.088
14.737
5.659
4.008
0.049
2.712
4.834
13.676
49.987
0.165
27.632
10.611
7.515
'0.092
5.085
9.064
25.643
93.726
(average over 3 years)9
0.015
2,456
0.943
0.668
0.008
0.452
0.806
2.279
8.331
0.029
4.912
1.886
1.336
0.016
0.904
1.611
4.559
16.662
0.055
9.211
3.537
2.505
0.031
1.695
3.021
8.548
31.242
U.S.40CFR
Part 503-
Biosolids
kg/hab
1.9
15
2.0
nlf
0.85
21
nl
75
140
1.9
15
2.0
nL
0.85
21
nl
75
140
/Canadian
Fertilizer Act
kg/ha°
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
0.089
2.222
0.333
nl
0.022
0.800
nl
nl
8.222
a) Source: See Appendices G-11(a-e) for gypsum and G-12{a-e) for liming materials
b) U.S. limits in kg/ha are annual pollutant loading rates
c) Canadian limits in kg/ha are long term cumulative additions so values were divided by 45 to approximate
annual limits.
d) Lime is usually applied only once every 3 years. Values listed in this portion of the table are the metals
additions added in the year of application.
e) Shading indicates value exceeds Canadian standard
f) nl = no limits currently set
g) Lime is usually applied only once every 3 years. Values listed in this portion of the table are the metals
additions averaged over 3 years.
86
-------
c. .i-r
CD CD C 03
S 16 .2 13 -a
ro z: "^ "5 "£: -S
^ 4^ CO ^~" o CD
CO 'c ^ H5 CD Hs! Q
i! 1.0 F?.0 .s
> «k _i_j -r-= SSS t_ -— *r\
c
J O S "• CD "- m
o
.2
c ^
rsj ^^
i^^
(0
•| -c
if
g O)
3 1
= O
1 1
o" P
QL
JK
i
o _
^ (0
3
•o
Jf> 'IT
o ^
^ 'o
Q. ""
Eu "
•z.
^
r iii
in o o
0 10
d «S
o
ci
1|
CO 5
^ fe
O5 =
oo ^^
P 0) W
0 LL. 0)
= 5;
Q
Z
Q
z
" *
5® •
Q
£® •
• •
1
• •
•
• •
i
i i i i i i i
.£
G)
"C
c
o
n
•65
ZJ
"f
i.
fr
I
ta
m H
CO
= 1
S Q)
^^
0
£ 1
M 0
^
3 "5
^ w
frt «•
S
.1 1
—1 _0
"C
D)
5 <
a o
i .2
CO ^^
S 1
<
1
£
2" I
1
tn "O
oT O
QL *f
£ in
z 1
o! U-
•z.
in o
CM
o
OS
CB
87
-------
<
(
(
(
(
—-
O £-
co .2
"cs TJ
i- -a
"5 -^
0) >
^f f\\
^H O)
2 5
_^ QJ
C ^
O <
5 **
T3 3
•o -o
< 2
"O DU
«
O
-J
1 1
o
c
B
5 *-
Si E
CO =
J "o
co <
5 2
N :=
\I •*-- •— •
N Qj
N 0-
c
1
• •
• •
_
1 1 1 1 1 1 1 1
IO
CM
S
o o>
H -en
2! ^—
i ."a
^*C f^ T
re Q.
2 <
11
M
M
1
• c
T *
1
c
o
5
.
to
3
^
o.
1
TO
•o
c
o
to
g»
S
•c
a.
0
"c CD
.32 to -a
^ CC ^ c
5 £= '= -2
^— O CD "O *j
O> :^ Q CO 'c
15 I ||
* ^o ^ ^
(H) •
^
^^
w
^±= ^» i
co o)
I 0) 5® •
~" ~
• M
€ CD I
« w
E 0
i 1
°~ — i
^ «
3
o* "> •
oT1 "™
"^2
a. ^
Q- ™ w
"Z,
1 B *
iii i i i i i i i
o p c
o ifi
•£
.2
"3
c
i
-
i -
to
s
1
a.
•o
o
w
1
E?
ra
i
D
w
CO |
H
i «
~
CD
£ u.
CD
"ffl
M ^
1—
E
.5 •«-
Z3 •«•
co -5
CO
| |
"5
w O
>5 ~
•= O)
CO <£
i c
5; o
CD -2
9^ "°
CO
cT — '
oT
CN
a. IB
^ 4)
o_ £:
^^ 3
_o>
a.
CM
(S
88
-------
551
O
CO
5
3
O
^Tl
^^r
^
c
o
§
"E
0)
!_
c
CO
T3
CO
5
S
CO
CO
c>
;
I
•j
c
_o
T3
3
"H
(0 •
0 *
^"
o
O)
1
5
•o
2
Q.
i
| 1 1 1
0
IO
C)
±i
<^
w
i_
o>
N
CO
U-
HB
^
•
-
•
1
**
Q
Z
•
•
•
i 1 i i i i
IO C
CM C
0 C
Rt
£
"S)
^
-g
.32 .
^y
laximum
^ «
n
•s
«U
s
n
s
i
f
3:
n.
£.
co
•a
g
o
CO
£•
re
•c
a.
3
3
2 S -® -n
o .22
a 3
"5
CO 0)
i 3
o O
°~ ^
3
S 1
D- "~
0.
•?
Q.
1
O
in
c
CO
T3 *
SI
^ *
ro <
^ f
^> i
S^
« 1
0 U
I
1
• A
w
1
1
5® •
1
1
1
M
1
:
1 1 1 1 1 1 1 1 1
U5 C
C\j C
(B
*--.
S^
.1
^
)
5
^
5
5
_
C
O
"C
c:
s
_o
E
I
f
Q.
1 £-
i
o
s
CO
1
I
CO
"C
»
3
3
ffi
S
CO
LL.
M
"5
CO
CO
_E
CO
CO
Q.
s-
to
2
a.
CL
•z.
^r,
DL
(0
0)
Q.
H
o3
1
0)
u.
-------
"o
CO
MM
1
"5
o
O)
3
c
.2
"5
Wglll£
mium
o
Jc
O
CD
is
3
1
x
CO
^
Q
2*
1
1-
c
•2
9
TJ
•0 H
< Z
11
« • •
O
£ "
1
<
**
o
3
T3
O
Q.
• A
W
• 4
1 i i i i 1 i i i i
o m
to CM
0 C)
(0
"S>
.*
m
•
•
»
0
o
0
05
"Jo
Q:
c
_o
"to
o
'•Q.
Q.
•s
a>
•§
i
o
S
I
Q.
£•
n
•a
c
o
CO
oa
J
•2
M
.=
OT
CD
.E
^
E
CO
s
«
a!
3*
U7
CDj
a.
Q.
a.
z
a.
c a>
.S "CO "0
•§ °^ §
2^ o o>
UL
a>
o 5
LL. i
a>
H
M £
S
H-
^ "5
ci w
1 1
o>
1 o
i 1
co £5
0 •§
«<
•
H9
**
1
IS
£
2" 1
1
» o
°~ £
Q- o
Q- ^
O* '
L^ LO
^— QJ
3 §>
CL LL
•z.
i i | i t i i
in q
csi o
ra
"3>
90
-------
1
.2 "2.
"5 -ti c
is I
co = £
O*-i .=
O X
co >
o) •=
< • •
o >
** 0
= 0) i
O £
^J3 Q)
"D ^ Q
^^ ^^
^P jj
^ ~o 9
32
0 Q.
0 o
Q
Z
Q
Z
i i i i i i i i i i
CM -r- C
O O C
0 O C
03
S- "cS
, o:
: o
•-C3
§:
I
jj
c
o
"3
I
ii
3
|
Q.
to
^3
C
CO
£.
£
3
3
-s "i ~s
J= C^ Jg c
-3 c "c .2
^— O CD "O *••
CD ^ Q ^ ^
m^ O C^ CO •—
§ B: -S co <
=5 2
C3 U-
CQ O
Z
= Q
•^ Z
— ^
•jj;
1 0 Q
co jg Z
£ O
<" r^
S: T3 ^
c^ O
3- I
1
°~ > Q
=0 z
Q- — •
ii D
i z
-^
0. I
1 1 1 1 1 | 1 1 1 1
O ID C
T- 0 C
O CD C
i-
•1
"S
1
U
ii
i
|
a.
as
•a
c
o
o
5
M £
o
C
^ '5
5 «0
S
1 i
^J 3
•2
i_ O)
CO 0
E C
M .2
t~^ -+^
c?" ^
•o
°~ "i
^ ^
to ffl
°- i
Q. ^"
in
^ w
z 2
3
Z O)
ii uZ
a.
O)
O)
91
-------
"c
!|
ll I
51 i
-CO ••
CO q)
0 U.
.
Q
Z
1
j
3 h-
• MM I
o i
(/) C i
-. .2 ! •
ra ±2 1
3 TJ 1
O ^
• MM MM*
^"™ CO H A
O) 0)
^3£ ^" !
Oo !
rn •
^j WJ : |
C i: i
Onl j
> '
±f < 1 •
*n *^ ^
"t3 3 !
- 1 i '
J^ n [
| 1 "
•
M
i
| i i i i | i i i i
80 C
If) C
T^ C> <
to
s
.2
"oo
"H.
^^
I
"S
I
.H
CO
3
f
x:
o.
CIS
•d
I
CO
1
ra
CL
D
D
1-2
Bo? ^
^0 CD
CD "-= Q
if 1
< < §
• ^O
CO
c
CD C
LL. Q
•£•
•a
,g -a
1o
1 °
CO Q)
CD .^-^
Q OJ ^ i H i
^3 ^ ^* V_/
^
i 5
CO (fl
^•ml
j— ^\
Q. ro
o O
3- I
15
O ^
CM ^
°" "-5
°r ~~
a.
"Z.
'?$•
Q_
1 ' *
0
oi
®
CO =
§0
0 <
co 2
^£ ~
co-g
d u.
:
Q
Z
•
h-
*
h-
A
»
•
•
•»
• •
• •
1 1 | 1 1 1 1
p c
T— C
1
gc
is
to
3
|
a.
£•
ca
"O
o
CO
I
£
3
D
(0
o
Q.
H
k.
i J
'€
CD ""
u_ CD
"3
M t—
E
2
a !I
CO "5
w
03 ^5
•?
-1 £
3
O
!- 'C
^ O
c^ <
O
e +-
3 C
a .2
C3 ±i
'S
-&
°- <
"55
j£
.S
2- 2
CO
5> u>
D_ CD
Z 3
^ iZ
Q.
(Q
(0
92
-------
c:
.92 .ffi
j|
!•-§
^ CO
o
£X
Q.
<
x
to
a
-1
CD
Q
CO
sO
(0
0)
Q.
—
"o
CO
5
3
;+•»
3
_o
"5Z
0)
^%
5
c
JO
•o
E
3
TJ
rc
c
S
_o
?
T3
<*£
•MB
^
OS
o
O)
5
• CO
• •
• •
• •
&
•c
Q.
CD
c
03
U-
c
M
i_
.p
"S
0>
£
l_i
a
w
i
CO
^
.>»
3-
o"
oT
n
^£C
Q-
~Z.
•XL
0.
1 1 1 1 1 1
0 0
IO O
O O
T
Q
"Z.
1 fe
^j
•g
-SJ
1
1
.£»
"O ^ /i\
w
£ 2
.—
X'
o> §(•) •
«•
1 "
(A
«*
<^
-r-
O.
£.
= J i
^» ••! «
XI •>•) co
° 1
- 4
S 1
^
•~
=5 **
^^
• •
• •
£•
ra
•^
Q.
m
c
o
U-
M
h»
"=
•
0}
.E
a
3
I
v>
3-
cf
n
1^
Q.
'z-
^
Q.
1 i i i i i i i i i
p m o
to oi o
£
:=
*^
0)
u.
0)
Q>
1-
g
<*-
'5
CO
S
_«
o>
o
,0
•5
TJ
E
_3
(0
(0
"
i
in
£
po>
(0
I
93
-------
—
o
CO
Is
tow
±2
3
*£!
D)
Q.
S < < <
Q
Z
• 1
C _
.2 *
I***
"TO
1
TZ
CO • •
0)
>-
0)
(u
0)
1
TO
o
CL
I
1
1
*
1 1 1 1 1 1 1 1 1 1
in in
CM CM
""" O
«
I)
I
1
•
»
•
1
•
•
I
*
1
I
c
g
_o
1
1
Q.
CO
•o
C
o
s
CO
1
CL
CO
C
S
u.
c
k_
,2
CO
03
— '
i_
1
|
CO
a.
cB1
s-
°:
a.
Q.
a.
z.
a.
0
o
d
~
5£
c* 5®
I
(O
Individual Product
i i
o
d
Q
B
•
) «
•
I
• tfl
™ ™
• •
I-g
.0
I
g
g
i
31
n.
1 £•
CO
1
OT
1
CO
)
0)
m £
c «S
S .^!
o3
« "•
U- 0)
>
cu
•5 H
E
2
3 H-
"3 ™
co O
(0
94
-------
"o
CO
"(0
Ui
3
•4-»
^O
™
D)
<
C
O
T3
3
O
N
.2
c E
to =
to <
f—
"5> IT-
CM ^P
CM 5)
CO U.
t
i
| =
5 *
^5 •
^%
_>l
S • •
^"
o
1
<^
t>
3
•o
S
Q.
• <
i i i i i I i i i i
0 0
o 10
T—
S3 .23
"3 fv
Z c
!•-§
Is
i &
I.
•l1 ^j
c
~3
— P
Z. .£2
-*
<
7
2 ^
3
|
Q.
i
i
CO
fr
™
^
•
o
C3
•£
.92
c
"3
CD
§
CQ
C
m
u!
M
^
^=
3
CO
.1
.p
CO
1
Q.
O
o
^
to
O
or
Q.
*^s
a.
•z.
•z.
Q.
03
to "O
oL S>
O CD
iC3 t~\
0 CD
i I
> ^-x
c
.0
^
o
•C
O)
I
O)
">
5
1
^
^
Q.
15
|O
^^
.—
c
i i i
0
o
LO
c
.2
ll
to =
to <
5> S
N
ai
CM S
CO LL.
;
,
z
<
1—
5® •
_
• •
:
1 1 1 1 1 1 1
0 C
ir> c
OJ
1,
i
i
s
_o
1
1
Q.
E-
1
CO
'
£•
•c
D
D
03
c
o
1JL.
S
u.
"3
CO
CD
^j
a
CO
1
CO
Q.
<§*
o
10
^J
oT
Q.
si
Q.
"Z,
z
Q_
(0
CO
Q.
H
CD
_N
"45
CD
LL
0>
_>
i
2
M—
"5
to
"5
tM
4->
3
.£2
O)
0
c
_o
=D
3
u
N
9
UO
0)
i_
3
O)
LL
RS
"
03
95
-------
Table 5-9. Number of Fertilizer Products Included in Calculation of Average Yearly Additions
of Metals to Soil Number of Products8 (Number of Products That Exceed
Canadian Standard)11
Fertilizer
P,0R
NPK-N
NPK-P
K,0
Zn
Mn
Fe
Sulfur-Nutrient
SuIfur-pH
Boron
Lime*
Gypsum
Cd
61(1)
50(0)
91(10)
42(0)
22(3)
2(0)
3(0)
9(0)
5(0)
2(0)
10(3)
4(0)
Pb
58(0)
50(1)
91(4)
42(0)
63(6)
2(0)
3(1)
9(0)
5(0)
2(0)
10(2)
4(0)
As
64(0)
50(0)
84(1)
17(0)
6(0)
2(0)
3(1)
9(0)
5(0)
2(0)
10(3)
4(0)
Cr
27°
40
60
15
2
1
0
4
0
1
7
1
Hg
4(0)
43(0)
14(0)
16(0)
1(0)
1(0)
0(-)d
4(0)
O(-)
1(0)
8(1)
1(0)
Ni
33(0)
43(0)
70(0)
41(0)
11(0)
1(0)
O(-)
4(0)
O(-)
1(0)
8(1)
1(0)
V
8°
43
14
16
2
1
0
4
0
1
8
4
Cu
58°
'49
89
42
6
2
3
9
5
2
9
4
Zh
28(0)
39(0)
67(0)
39(0)
NA
1(0)
O(-)
4(0)
O(-)
1(0)
7(2)
1(0)
a) Number of products analyzed for individual yearly addition and average for fertilizer type yearly addition of
metals to soil.
b) Number of individual products that exceed annualized Canadian Fertilizers Act limits at either the average,
high, or maximum product application rate.
c) Metal for which there is no Canadian Fertilizers Act limit.
d) No products identified in literature with specific concentration given for this metal.
e) Exceedances are based on the year in which applied. See footnotes regarding lime applications in Table
96
-------
Table 5-10. Number of Products That Exceed the Canadian Fertilizers Regulation Standards
at the Average, High and Maximum Nutrient Application Rates of the Product
Fertilizer
P205
NPK-N
NPK-P
K2O
Zinc
Manganese
Iron
Sulfur-nutrient
SuIfur-pH
Boron
Lime6
Gypsum
°d ,
0-0- 1a
(n = 61)
NE
0-5-10
(n = 91)
NE
0-0-3
(n = 22)
NE
NE
NE
NE
NE
0-0-3
(n=10)
NE
Pb
NEb
NE
1-3-4
(n = 91)
NE
0-0-6
(n = 63)
NE
0-0-1 (n = 3)
NE
NE
NE
1-1-2"
(n=10)
NE
As
NE
NE
0-0-1
(n = 84)
NE
NE
NE
1-1-1 (n = 3)
NE
NE
NG
1-3-3
(n = 10)
NE
Hg
NE
NE
NE
NE
NE
NE
NPd
NE
NP
NE
1-1-1
(n = 8)
NE
Ni
NE
NE
NE
NE
NE
NE
NP
NE
NP
NE
1-1-1
(n = 8)
NE
Zn
NE
0-1-1
(n = 49)
NE
NE
NAC
NE
NP
NE
NP
NE
2-2-2
(n = 7)
NE
a) 0-0-1: Number of products that exceed the Canadian Fertilizer standard at the average - high - maximum
application rate of the product type.
b) NE: No exceedances of the Canadian Fertilizer standard at any application rate for the product type.
c) NA: Not applicable (Zinc in zinc products).
d) NP: No products in which this element measured.
e) Exceedances are based on the year in which lime is applied. See Footnotes regarding lime
applications in Tables G-11(a-e).
97
-------
5.3 ADDITIONAL DATA PROVIDED ON BLENDED PRODUCTS
The inventory of heavy metals additions to soil from NPK fertilizers applied for N
content (NPK-N) was largely supplied by the Pennsylvania Department of Agriculture (PDA).
The PDA measured concentrations of heavy metals in 125 diverse fertilizers during the first half
of 1998. The 125 products tested were selected to represent a cross-section of fertilizer products
distributed in Pennsylvania; 32 were solid NPK formulations for the agricultural market, 20 were
solid NPK formulations with micronutrients for the agricultural market, 35 were specialty
fertilizers for the residential market, 25 were NPK liquid fertilizers, and 20 were primary
ingredients. The concentrations of heavy metals in these samples are listed in Appendix H,
Tables H-l through H-5.
These PDA products differed from the products obtained from other surveys, and only
selected products were readily amenable to inclusion in the calculations of Appendix G of this
report. The 32 solid NPK fertilizer blends were included in the NPK-N (NPK fertilizers applied
for N content) portion of Appendix G for determination of an average addition of metals from this
class of fertilizers. The NPK blends with micronutrients were not used in the NPK category
because the added micronutrients were not specified and their concentrations may have governed
the application rates. The specialty fertilizers were not used in Appendix G, as these were listed
as products for the residential market; many were listed as being either biosolids-based, organic
(e.g., made from fish meal), or blended with micronutrients. The fertilizers listed as "Ag liquid"
had the notation that they were applied to land at much lower application rates than solid
fertilizers. Because of that caveat, and the fact that no typical application rates were available,
these fertilizers were not included in Appendix G of this report. Appendix H of this report,
though, does include a listing of metals concentrations in these sample fertilizers, and may be
used for reference with the data presented elsewhere in the report.
The data provided by PDA provides important insight into the manner in which fertilizers
are now being blended on a custom basis for each farm, soil and crop type. With the proliferation
of rapid soil nutrient testing procedures, and computerized calculations of nutrient need vs
available nutrient, it is clear that blending of products on a case-by-case basis provides the
optimal fertilizer for each application. This customization, though, means that from a survey
perspective, it may be very difficult to ascertain the broad range of formulations and application
rates that are being used across the country.
In general, the range of metals concentrations in the fertilizers that are found in these
PDA samples are similar to the range identified from other studies. The solid NPK ferilizers
blended with micronutrients tend to have higher levels of copper, lead, mercury and zinc than that
found in the straight NPK blends. Inasmuch as the micronutrient fertilizers tend to have higher
metals levels than the NPK fertilizers, it is apparent that the higher levels of heavy metals in the
NPK/micronutrient blends are probably due to the added micronutrients. The specialty fertilizers
for the residential market, in some cases, also had higher than average levels of copper, lead,
mercury and zinc. Presumably, these fertilizers either are biosolids-based or contain
micronutrients.
The NPK blends were compared for the metal addition rates that would result from
application of the product according to either the N content, the P2O5 content, or the K2O content.
98
-------
The data for individual products are listed in Appendix H, Tables H-6 through H-10. The
summary statistics for these comparisons are listed in Appendix H Table H-l 1. The summary
statistics include the mean, median and range of soil metals additions for the NPK products, when
applied for either N, P or K content at the average, high or maximum application rate. As shown
there, application rates used according to N content result in the highest soil loadings of the heavy
metals, relative to the P2O5 and K2O application rates. The average of all the NPK products,
applied at the highest N application rate, is, in all cases, lower than the Canadian Fertilizer Acts
limits for annualized additions for cadmium, lead, arsenic, copper, zinc and mercury.
5.4 COMPARISON OF METAL CONCENTRATIONS IN SOIL TO NATIONAL AND
INTERNATIONAL STANDARDS
The Canadian Fertilizers Act, described in Section 4.3.1, and the 40 CRF Part 503
Biosolids Standards (Section 4.4.1) may be used for comparison to the values presented in section
5.2 for metal addition to land from fertilizer application. Although the biosolids regulation may
not be appropriate because we have not considered metal availability, soil type, and soil and
organic matter content, these values provide a guideline for the comparisons. The Canadian
Fertilizers Regulations specifies limits in terms of the maximum acceptable cumulative metal
addition to soil (kg/ha) and the maximum acceptable metal concentrations in fertilizer products
(mg/kg dry weight). Since the Canadian regulations for the maximum acceptable cumulative
additions to the soil are long-term standards (45 years), these contaminant limits have been
divided by 45 for comparison to the calculated values and to the U.S. biosolids annual pollutant
loading rates in Tables 5-3a to 5-8a. The biosolids rule presents the annual pollutant loading rate
for land (kg/ha/year) and the ceiling concentration for land application (mg/kg product). The soil
values can be used for comparison to the concentrations calculated in Section 5.2 (kg/ha). We
have assumed that the application rates are for a yearly basis (i.e., may combine multiple
applications of a single product), but we have not considered simultaneous application of several
fertilizer types.
The U.S. biosolids annual pollutant loading rate for land application (kg/ha/year) range
from 0.85 for mercury to 140 for zinc. Comparison of these values to those hi Tables 5-3a to 5-
8a show that even based on the worst case assumptions, additions of metals to soil for the
averaged fertilizers presented in Appendix G are generally two orders of magnitude lower than is
specified in the biosolids regulation. When compared to the Canadian limits (divided by 45 to
approximate annualized pollutant loading rates), only two fertilizer averages exceed the limits:
arsenic from iron fertilizers and arsenic from liming materials exceed the limit when these
products are applied at the maximum application rate. Based upon the maximum application rate
and the contaminant levels from the individual products in each fertilizer category which give rise
to the calculated highest soil loadings for each metal (Tables 5-3b to 5-8b), six fertilizer products
exceed the Canadian Fertilizer Act limits for at least one metal: cadmium and lead in zinc
fertilizers, cadmium in phosphate fertilizers, cadmium, arsenic, and lead in NPK fertilizers
applied for P content, zinc in NPK fertilizers applied for N content, lead and arsenic in iron
fertilizers, and lead, arsenic, mercury, nickel and zinc in liming materials.
99
-------
5.5 COMPARISON OF FERTILIZER AGRONOMIC PRACTICES WITH BACKGROUND SOIL
METAL CONCENTRATIONS
The calculated yearly additions of metals to soils (mg/kg of soil) due to each fertilizer
class (Tables 5-3 to 5-8, a and b) were combined with the average (geometric mean) background
soil metals levels to estimate the number of years of continuous applications that would be
required for the doubling of background soil metals concentrations (Mortvedt, 1987). There is
not necessarily any human health or environmental consequence from a doubling of the soil metal
background level. Potential human and environmental effects depend upon many factors that are
not considered in this report. The calculation of the number of years to double soil contaminants
is, however, a method for comparing increases of contaminant levels in soils resulting from
application of different types of fertilizers at different application rates. The number of years to
double the background level is obtained by dividing the background soil level by the yearly soil
addition rate. This approach assumes that there is no plant uptake of the metals (or that metals
taken up are returned to the soil when stems, leaves, roots, etc, are returned to the field), that
metals are not lost from the top 15 cm of soil via runoff, wind-borne resuspension, and/or
percolation and leaching into lower depths of the soil, and that wet and dry atmospheric
deposition of metals do not increase soil background levels. The latter assumption neglects
recent work (e.g., Johnston and Jones, 1992), which concludes that atmospheric deposition of
cadmium has been a significant source to soil, leading to an increase in some areas of 30-50% in
the top 23 cm of soil over the last 100 years.
The results of years to double soil background presented in Tables 5-1 la and 5-1 Ib are
based on the assumption that the fertilizers contain average contaminant concentrations and are
applied either at the average (Table 5-1 la) or the maximum nutrient application rate (Table 5-
1 Ib). Tables 5-12a and 5-12b use the single highest product metal addition rate with either the
average (Table 5-12a) or the maximum (Table 5-12b) nutrient application rate.
Those fertilizer applications where soil background levels are doubled in 45 or fewer
years have been shaded for visual identification. The choice of 45 years has no particular
environmental or human health consequence, but was chosen because of the manner hi which the
Canadian Fertilizers Regulation limits are defined. The years to double soil metals levels from
lime applications was calculated on the basis of the liming being done only once every 3 years.
All other nutrients were calculated on the basis of a yearly addition.
Cadmium is the metal most likely to double in soil levels in less than 45 years, followed
by lead, arsenic and copper. Several scenarios evaluated here indicate that mercury and zinc soil
levels may double in less than 45 years with the application of lime products. Mercury additions,
though, may be lost due to volatilization. Application of liming materials is most likely to cause
soil metal concentrations to double in less than 45 years, and several of the products likely to
cause this rise in soil metals are recycled industrial wastes.
Background soil metals levels are doubled in less than 10 years when the single product
which gives the highest yearly addition to soil is applied at the average nutrient application rate
for the following combinations of metal and fertilizer product: Cd from zinc, P2O5 and NPK-P
fertilizers; Pb from NPK-P fertilizers and liming materials; and Zn from liming materials.
Background soil metals levels are doubled in less than 10 years when the single product which
100
-------
CD
•a
.2
"o.
Q.
to
en
S
Q)
-a
2
Q.
£
w
0)
4-1
(0
cc
c
o
— (0
+S o>
a> *;
»
~
CD
_w o
SJ 1.
(0 >•
"5 •=
4^ (0
0) CD
S >
— to
O O)
o
a
ra ..
• "£
CO
in
.2
^a
ra
N
3
U
^
.—
2
O)
Z
Jw
O
.Q
O.
T3
U
to
, JJ**
r™
~
• t
1
§
o
CO
£
3
O
O
s
S
ra
>
^
Z
in
co
in
r—
O
0
o
CO
~
8
co
CM
CO
CM
CM
CO
0
O
CO
CN
O
O
T—
in
c
c
N
O
CM
IX
O
O
CO
T—
CO
CM
CM"
CO
co
in
CM
CO
CM
co
rx
CM
o
o
CM
in
CO
CO
CO
ps.
-o •
CO
U)
o
o-
O3
IX
CM
CO
CO
in
o
,_
o>
CO
CO
,_
CM
CO
CM
O5
0
O
CO
O
IX
O
CO
—
•z.
o
o.
^
o
0
o
CM
O
0
O
CM
|X
O
0
O
CM
CO
CM
0
O
CO
CO
CM
CO
CM
O
O
0
CO
t
O
O
CO
o
CM
o
8
CM"
CM
o
CM
IX
to
o
Q-
8
o
CM
IX
T™
0
o
o
CM
IX
8
o
CM
CO
CM
0
O
O
CO
CO
CN
CO
CM
O
8
CO
|x
CO
co
o
0
o
^.
•<*
o
CM
IX
1
O
m
O
~
CO
o
rx
O
•z.
cj
o
z
•o
CJ
IX
CO
§
s
c
o
CO
O3
in
o>
CO
IX
CM
CM
co
IX
CM
IX
CO
CO
in
CM
CO
CM
in
CO
CO
CO
8
CO
CM
CO
in
CM
in.
Q.
o
M—
Q.
z
o
o
o
co
CO
0
o
o
CM
IX
o
o
o
CM
CO
CM
O
O
O
^j-
co
CM
CO
CM
8
o
CO
8
CO
o
CM
O
0
o
^.
0
CM
IX
to
c
as
CO
c
ID
^
CO
CO
0
o
o
co
CO
o
m
CM
IX
o
in
CM
^j-
CM
CO
CM
CM
CM
CM
CO
O
O
CO
O
CM
O
0
O
^.
O
CM
to
ll
CO C
o
~
o
8
,—
CJ
o
CJ
o
z
CO
CO
8
o
^
0
CN
IX
I
Q.
H—
M—
3
CO
-
r-s
0)
IX
co
co
CM
in
,_r
IX
in
CO
^j."
CM
CO
CM
IX
CO
CO
^.
CM
0
O
O
O
CM
CM
0
CO
F
D
to
Q.
>.
O
CO
in
0)
o
0
o
,_r
IX
O
in
CO
IX
05
in
0
05
CO
IX
0
CO
CD
to
to
~
03
to
2
CD
C
'£
_i
1 addition rates (kg/ha); Table 3-2 for soil metal concentration (mg/kg)
to
03
£
.>•
CO
L_
O
to
op
in
ro
1
s:
to
cp
in
CO
_CD
to
..
to
to
C£
O
CO
k_
o
4—
•*
03
ra
to
<
L_
g
CO
c
to
CD
£
o
-M
0
E
o
03
ra
CM
•o
4-»
CO
-o
c
CO
C
IM
3
c
0
o
Q.
O
O
.O
T3
C
CO
'o
CO
CO
1-t
o
•*-»
o
c
73
T3'
to
O
"co
(3
j*—
'o
CD
Q.
CO
73
03
"o.
Q.
CO
£
CO
to
CD
N
CD
H-
O
_c
_«
^3
to
o
"H.
Q.
10
4^
o
z
II
<
z
CD
_Q
O
O
-H*
CO
CO
03
03
CD
O
in
03
4-*
as
0
73
c
to
CD
X
J3
73
03
73
^
CO
>.
o
ra
03
•4-*
to
to
c
to
"5.
£
to
to
o
c
73
03
"5
"to
o
o
II
Cj
z
J2
to
03
CO
>•
03
CD
CD
U
O
lication
Q.
Q.
CO
CD
E
C
o
03
CO
co
m
-a o T3 co
101
-------
CD
CO
•o
CD
i
CD
a
*
3
1
O.
E
e
N-
W
cc
§
i
ts
o3 §
£ o
•*3 O
t: ss
CD
SJ
J2 <
ta -
*•• —
CD k.
S m
2 dj
S >"
& E
-2 I
.a .E
3 X
O (0
O -M
** C
in
_CD
.a
to
c
N
O
>
Z
O>
X
w
O
3
JS
0.
u
&
a
:=
£
CO
o
'o
C/J
JD
a
o
Q
0
to
re
o>
>
2
CO
CD
CO
CO
CO
CO
CO
CM
00
CM
CO
CM
CM
CO
0
in
in
CM
a
CM
T—
O
c
N
CO
in
O
CD.
in
00
CD
CO
00
^_
CM
CO
CM
in
CM
CO
CO
5
CM
^
d
°-
co
CO
co
00
CM
CO
in
in
CM
CO
CM
CM
in
CO
CO
CM
CM
z
o
**—
CL
z
o
8
CO
o
o
0
co
co
o
o
o
CO
in
o
o
o
JS»
CM
CO
CM
0
o
o
ivT
CO
o
o
00
o
CM
CO
CO
CO
1^.
o
CO
CO
.c
to
CO
4-*
o
Q.
o
8
CO
00
o
o
o
CM
o
0
o
CO
T—
*~
0
o
0
00
co
CM
CO
CM
8
o
CO
CM
in
o
o
o
,3.
o
CM
c
o
I.
o
m
o
z
in
CO
CM
0
o
z
o
z
•o
o
z
CM
CM
CO
CO
c
o
CO
CM
in
o
o
O)
CO
at
en
00
^_
CM
CO
CM
CO
en
CM
^
CO
00
00
*
SI
o
H—
Q.
z
o
0
LO
,_
CM
o
o
o
co
CO
o
0
o
CM
CO
CM
CO
CO
CO
^
CM
CO
CM
o
0
o
^
0
o
0
o
o
o
T—
t—
0
CM
CD
tn
c
c
CO
•^
in
5
o
0
o
00
5
CM
00
^
CM
CO
CM
CO
CO
CM
o
o"
T—
o
8
CM
CM
LO
c
4-1
3
c
to
CO
H-
3
W
0
z
05
CO
o
z
o
z
o
z
o
z
CO
CO
co
o
CM
0.
o
M—
~5
U)
00
£:
o
co
CO
co
en
in
CM
T—
CN
CO
CM
CN
en
co
in
o
co
CM
f-
CO
in
in
F
to
Q.
o
in
.x^.
CM
co
CO
CM
co
CO
en
CM
en
in
ct
CN
T—
J»
to
k.
CD
to
^
O)
c
E
_l
.
C/3 w
11
I?
o
c '+-
.2 ^
*-• i
CD LO
£ C
Z O
C
O
O
C
o
o
S a
I1
iT O
O "
CM O
I *•
CO tn
« S
-O 0}
S E
a.
o
t ~ <5
05 "O
E CO
o 'o
•^ co
"D 0
T3 jC
to +-1
o ^ «
CM
CO ^_
>- >• ,
T3
T3
to
"co
4^
0)
E
co
CD
O
H~
co
oo
1
in
(*•-
D5
3
0
CO
CO
in
to
_0)
CO
I-
. .
CO
CD
H
3
O
CO
CO
CO
M
O
Z,
0.
T3
O
^
CO
C
CO
ID
£
g
'£
CO
£
o
CO
o>
O)
^
c
o
ca
4-*
c
to
0
o
o
'o
en
"S
05
G)
£
o
c
_o
'43
•a
CO
CO
.c
5
_>.
"to
0
M^
'o
CD
Q.
CO
•a
CD
~a.
a.
CO
£
CO
CO
CO
CO
M—
o
Cl
, „
CD
J3
CO
g
"o.
a.
CO
4.1
O
z
II
^
z
_tu
3
O
-o
o
CO
u.
co
CD
i_
CD
§
CD
L.
O
LO
CD
to
_O
C
to
ID
X
O
JO
•o
CD
-a
co
CO
o
D)
CD
CO
0
.2
IE
c
•a
CO
N
"ro
c
co
co
CD
Q.
E
CO
CO
O
c
•o
CD
4-*
_to
3
_O
CO
u
0
E
II
O
Z
CO
CD
CD
CO
k.
CD
CD
CO
O
E
O
E
O
CO
g
'a.
a.
co
CD
E
•—
E
O
T3
CO
en
CO
m
102
-------
.
Q.
s
a.
^
CO
en
D>
55
S
H—
CO
1C
C
o •
l
2 §
1|Z! (0
£OC
u- c
o>.2
.S to
3 J
« I"
CD
if
o o
o .2
Q ^
S-S
(0 1-1
c
CO
2
CO
co
CO
o
0
o
CM
00
,_
en
o
1__
CM
CO
CM
CO
CN~
0
O
o"
o
8
CM
CM
CO
4*^
c
CO
=1
c
-S
3
CO
o
z
CO
CO
0
o
o
0
CM
CO
O
in
CM
O
CM
a.
3
CO
^
co
oo
CO
CO
CO
o
^
in
00
^.
CM
CO
CM
CO
CO
"t"
CM
in
o
00
00
0
co
|
CO
a.
CD
O
-
co
T—
in
_'.\r~
-
-
O)
CM
CO
CO
CD
to
CD
C
'E
LJ
o
O O
c
*~ 2
ii
E CO
*-> >
c c
CD O
C3 CJ
§ O
O H^
~<5 ^°
s§
^ o-
"§ <"
S 8
£ «
'E "°
J5 o
o .t:
E E
o =:
•s
_ o
'i 8
fc -a
c CD
co t!
" o
§§•
CO ± -43
-coo^
O
CD
<0 CD
S E
0) CD
::•==£ 3 £
§ S
S E
TJ O
3
oi-S
E "I
£
Q.
.o
•5
c
(0
'5
CO
•a
•a
(O
| CMS Q
I"5
oo
•iB ^ £•
> co o
£0 a)
C *i3 CO
g .2 'o S
3*
siSI|«
i ^ > » S -
-i * fe co ™ §
O
CO
^ co
— CD
5 2
O (0
3
in
H E
CD
O
o
C/3
C *3
CD _
" £
§s
:: g -D ^
g co-g II
•i|J<
CO > CO 2
o c
c o
II •§
o -a a> ?r
103
-------
in
CD
2
(0
N
3
O
^"
OJ
X
o
w
a.
•a
O
8.
Fertilizer Ty
1?
co
CD
— *
CD
"i
"5
OT
CD
Years to Doub
,3
*£
*£
5-
o
0
CM
CO
CM
O5
O)
CM
CO
CM
CO
CM
CD
CO
CO
CO
CO
O
c
N
en
CO
CM
CM
in
CM
00
in
co
CM
co
cs
O)
en
co
in
oo
CO
m
O
CM
O_
O
•*'
in
in
oo
co
-
CO
o
r—
in
Z
b.
o
**-
Q.
Z
0)
CO
I--
co
CO
CO
CM
CO
CO
00
^
0
o
in
on
eo
in
o~
0
o
CM
in
CO
co
oo
0
CO
CO
CO
Q_
o
o
o
eo
00
o
0
o
CM
O
0
O
CO
*—
o
0
o
00
CO
CM
CO
CM
0
o
0
CO
*~
CM
CM
0
O
CD
0
CM
1
0
m
f t
CM
03
O
0
o
z
b
00
in
LO
o
«*
CO
00
o
CM
3
CO
CM
CO
en
CO
CO
CM
5T
|
Q.
Z
0
o
in
CM
o
o
0
co
co
o
o
0
CM
CO
CM
CO
CO
co
*r—
CM
CO
CM
o
0
o
o
o
o
CO
CO
CO
o
CM
I Manganese
T_
CM
^
0
o
in
<^-
CO
CN
CO
CO
CM
co
CM
00
O
o
CM_
in
o
o
in
in
in
c
CD
C
CO
•5.
1
CO
C)
oo
0
o
CJ
CJ
CO
en
5)
o
CM
Q.
O
H-
3
)
00
r^
T—
- U
CD (D
N *i
^: CD
• -
n rates (kg/ha); Table 3-2 for soil metal concentration (mg/l
_g
T3
15
i
_>.
ic
CO
CD
>.
o
»*—
op
in
.c
O)
3
O
h_
-D
CO
in
CO
_CD
co
CO
CD
a
o
en
.^
M—
O
C
o
's
1
o
o
o
M—
•*
in
_g
*+-»
CD
cr
CD
O)
O
CO
<
O
*t-
co
c
CO
CD
o
+-»
CD
O
CD
O)
CM
1
T3
C
CO
N
^
0
Z
Q.
T3
CJ
k.
CO
C
CO
1
g of soil) concentration
Table 5-1 1b. In some cases the concentration of a specifil
•*s
E
o
;«
T3
T3
CO
CD
=5
^^
1
"o
O)
c
o
soil concentrati
C
CD
CO
0
CO
CO
CD
co
CO
CD
£
CO
:his table
^~
CO
CD
3
CO
>
CD
0
(/)
to
4^
CD
Z
E
CD
*-»
O
CD
CO
CO
TJ
03
O
Q.
£
£
CD
CO
CD
"eo
"5
0
CD
co
CO
CD
£
£
co
CD
••J
"co
E
3
"x
CD
E
CD
.c
*^
T3
C
co
CD
3
CO
CD
O)
co
1
CD
O
CO
CD
D.
CO
CO
CD
CD
c
'co
CO
C
_g
*4-»
O
i
"O
•5
4_i
E
CD
M—
co
^=
CD
C
o
J=
4-J
'i
T3
CD
O
CO
Q.
CD
CO
CO
CD
"co
CD
-0
O
T3
O
££
co
1
o
in
CD
+-*
CD
_O
'•a
c
CO
CD
X
o
.Q
T3
CD
CO
e/3
Q.
o
0
k.
,0
•a
c
CO
'o
CO
03
O
0
T3
•D
CO
O
*+-
0 &"
03 o
1|
_..
03 —
to ^
if
:= co
tj CO
03 03
*-"5.
o f:
t applicable; z
calculated; no s
o +..
c
'I II
<0
zz
tA
CO
05
CO
>.
CD
CD
U
C
o
ime application
—
c
o
"8
CO
co
CQ
O T3 CD 5^
104
-------
gives the highest yearly addition to soil is applied at the maximum nutrient application rate for the
following combinations of metal and fertilizer product: Cd from zinc, P2O5, NPK-N, NPK-P, iron,
sulfur (as nutrient), and lime products; Pb from zinc, NPK-N, NPK-P, iron, and lime products; As
from iron and lime products; Hg from lime products; Cu from NPK-N and lime products; and Zn
from NPK-N and lime products.
The estimates for doubling of the Hg background are limited to a great degree by the
sensitivity of analytical methods used. Wherever analyses were carried out but Hg was not
detected, one half the detection limit was used as the estimate of the Hg level. This approach may
overestimate the levels of Hg in the fertilizer products. This approach may then result in an
underestimate of the number of years required to double soil Hg levels.
5.6 ASSUMPTIONS, DATA GAPS AND QUESTIONS FOR FURTHER INVESTIGATION
In the process of performing the calculations on metal additions to soil following fertilizer
application and comparing these values to appropriate standards and regulations, a number of
assumptions had to be made.
Simplifying assumptions used for the calculations presented in Section 5.3 were:
Fertilizer application rates chosen for the calculations in this report are for
agricultural crops only. Fertilizer application rates for non-agricultural land (e.g.,
residential and public land), have only a limited amount of information. The variety
of ornamentals, turf and garden vegetables requiring fertilizers and the variety of soil
types makes it difficult to obtain specific data such as that available from the USDA
for agricultural crops. Preliminary data on heavy metals in home garden fertilizers
suggest that significant amounts of metals may be added to home gardens from use of
some of these products.
• Metal additions to the soil were based on application of a single fertilizer type, and a
single crop per year. In fact, many different fertilizers and liming materials may be
applied to a field in a growing season. The concomitant addition of heavy metals
from all sources was not assessed here.
• Calculations of heavy metal additions to soil from fertilizers were based on all
available data. The representativeness of this data set with respect to all fertilizers is
not known. There has not yet been a systematic investigation of all fertilizer types, or
an investigation of the percentage of recycled industrial waste products with
substantial levels of heavy metals in the fertilizer market.
• In only a few instances was the origin (e.g., natural ore or industrial by product) of
the fertilizer product known. Although it may be instructive to compare heavy metal
additions to soil from natural ores and products from industrial waste, such an
exercise could not be undertaken on the basis of the available data.
• To simplify calculations, soil type and chemical nature, plant uptake, leaching and
erosion were not considered in these calculations. All input of heavy metals was
105
-------
assumed to remain with the soil, and this may result in an overestimate of soil metals
levels over a long time period.
The following list presents some areas where data are lacking, and questions remain for further
investigation.
Nationally-representative micronutrient application rates. Aggregate average
application rates for micronutrients and liming materials by state, treated acres and
crop type have not been assembled, as has been done for N, P and K fertilizer.
• Regional variability hi concomitant use of NPK, micronutrient and liming materials
on the same field. Statewide use data for each fertilizer type are available, but the
overlap in application by crop has not been compiled. Some areas of the U.S. may
receive higher input of heavy metals from fertilizers due to the combination of crop
type and existing soil conditions.
• Contribution of fertilizer products derived from industrial wastes to total fertilizer
market. While sources of industrial waste-derived fertilizers are fairly well known,
the market share of these products in the total fertilizer market is not known.
• Nationally representative metal contaminant levels of all fertilizer types. Only a few
studies exist that have measured contaminant levels in fertilizers, and these studies
tend to represent either a single product type and/or products found in a specific state.
Levels of other contaminants such as radionuclides and persistent organic chemicals
in fertilizers and liming materials. Compared with the data on heavy metals in
fertilizers, relatively little information exists on the levels of organic pollutants in
fertilizers. Organics include dioxins, PCBs, pesticides and PAHs.
The environmental fate of chemical additions to soil. This issue has been studied
primarily for cadmium and lead, and most often under controlled laboratory or field
conditions. All potential contaminants, soil types and crops have not been addressed.
In addition, the fate of metals added to the soil as a result of fertilizer addition to non-
agricultural land (e.g., range land and residential land) has not been adequately
studied.
5.7 SUMMARY
Calculations of the additions of metals to soils from different fertilizer applications has
been carried out here, but the interpretation of the data remains limited, due in part to the fact that
few regulations exist that can be used for comparisons. It is unclear whether the U.S. biosolids
standards are appropriate for comparison to inorganic fertilizer types because of differences in
metal availability to the plant, organic matter content and plant uptake between biosolids
fertilizers and inorganic fertilizers. The Canadian limits for metal additions to the soil are
annualized long term (45 year) average values. The extent to which current data can be
extrapolated to a 45 year trend is not known. Assuming an annual addition of a constant amount
of the same type of fertilizer to the soil may not be realistic. Nonetheless, this report identifies
106
-------
several fertilizer types that exceed the annualized pollutant loading rates allowable in Canada,
and, identifies a few product types that approach the U.S. biosolids limits when applied at
maximum nutrient application rates.
Fertilizer products are compared in this report with respect to the amount of nine heavy
metals the product would add to soil, assuming a single application of the product per year. This
is termed the yearly soil addition rate of a metal (or "yearly addition of metal X", see Index of
Terms). The yearly soil addition rate of a metal is the concentration of that heavy metal in the
product per desired nutrient ingredient multiplied by the nutrient application rate, with all
appropriate conversion factors applied. For those fertilizer products with lower nutrient content, a
proportionally greater amount of the undesirable heavy metal will be added to the land in
achieving a consistent nutrient application rate. Therefore, a fertilizer product may contribute
high levels of heavy metals to soil when the heavy metal concentration in the product is high
and/or when the desired plant nutrient is at a low level in the product.
For this report, the yearly addition of each metal was calculated for each individual
product at three nutrient application rates- an average nutrient application rate, a high rate and at
the maximum application rate recorded for this nutrient. An extended appendix of mis report
(Appendix G) contains the yearly soil addition rate of each metal in each product when applied at
these three nutrient application rates. The aggregate of these individual yearly addition rates,
then, produced the average soil metal addition rate for a fertilizer product category (e.g., P2O5
fertilizers) at the three different nutrient application rates. This aggregate is termed the product
average yearly addition of metal X (see Index of Terms). This summary includes discussions of
the yearly addition of metals hi terms of both the individual product giving the highest yearly soil
addition of a specific metal, and in terms of the product average yearly addition rates for metals.
The calculations performed here showed that the product average yearly addition rates of
metals to soil would not exceed the U.S. biosolids annual pollutant loading rates for any fertilizer
category evaluated. This finding applied to both natural ore-derived fertilizers and industrial by-
product derived fertilizers.
The calculations also showed that the product average yearly addition rates of metals to
soil rarely exceeded the annualized Canadian Fertilizers Act limits for metals additions. The
particular instances when the product average addition rate of metal to soil exceeded the Canadian
limits were found in the following combinations of heavy metal and fertilizer categories, and this
occurred only at the maximum nutrient application rate:
Arsenic in: liming materials (CaCO3 applied at 15,000 Ibs/acre once every 3 years)
iron fertilizers (iron applied at 30 Ibs/acre every year)
The Canadian standards are exceeded more frequently for individual fertilizer products, and are
exceeded for metals other than arsenic. A total of 38 cases were identified where a particular
heavy metal in an identified individual fertilizer product would exceed Canadian fertilizer
standards when applied at the maximum nutrient application rate. These cases include:
Cadmium in: NPK fertilizers applied for P2O5 content [10 products of 91 evaluated
exceeded limits; 10 of 91]
107
-------
Phosphate fertilizers [1 of 61]
Liming materials [3 of 10]
Zinc fertilizers [3 of 22]
Lead in : NPK fertilizers applied for P2O5 content [4 of 91 ]
Liming materials [2 of 10]
Zinc fertilizers [6 of 63]
Iron fertilizers [1 of 3]
Arsenic in: NPK fertilizers applied for P2O5 content [ 1 of 84]
Liming materials [3 of 10]
Iron fertilizers [1 of 3]
Mercury in: Liming materials [1 of 8]
Nickel in: Liming materials [1 of 8]
Zinc in: NPK fertilizers applied for N content [1 of 49]
Of the products listed above, 18 exceeded Canadian standards at the high nutrient
application rate, and 8 exceeded the standards at the average nutrient application rate. Data were
gathered here on 345 fertilizer products; 1389 combinations of fertilizer product and metal at three
application rates (total of 4167 data points) were compared with Canadian standards. (Data on an
additional 537 combinations of unregulated heavy metals in products were also gathered). Since
some products exceeded standards in more than one metal, the number of individual products
exceeding the standards for at least one metal is greater than 2.7% (38 of 1389), but less than 11%
(38 of 345).
Figure 5-10 identifies those fertilizer categories where the product average yearly
addition rate of a metal is likely to double the average level of that metal in background US soils
in 45 or fewer years, when the nutrient is applied at either the average (open box) or maximum
(closed box) application rate. Similarly, this figure also identifies those instances where at least
one individual product within a category exists that may double the average background level in
45 or fewer years, when the nutrient is applied at either the average (open circle) or maximum
(closed circle) application rate. These scenarios assume yearly applications, with exception of
lime, which is applied once every three years. For example, the product average application rate
of cadmium (Cd) from either NPK-P fertilizers (NPK fertilzers applied for P2O5 content) or from
P2O5 fertilizers will double the average background Cd soil level in 45 or fewer years when either
the average or maximum nutrient (P2O5) application rate is used every year. In addition, there
were individual NPK-N, NPK-P and P2O5 products identified that would double background soil
Cd levels in 45 or fewer years if applied each year. There were no potash (K2O), gypsum,
manganese (Mn), or boron (B) fertilizer products identified that would double the indicated soil
metals levels in 45 or fewer years. In contrast, liming materials were identified that might double
the soil levels of all nine metals with consistent use (application once every three years) within a
45 year time frame.
108
-------
N
3
O
Z
D)
X
0
*
-D
a.
•c
u
(0
o
3
S
0.
1
O
u.
• •
o
0 0
o o o
D 0
to
0
.^ V' \> « _
£* a! a! ° °
| z z a!1 ^
*~
a.
o
CO
0
"3
lE E
^ 3 i_
CD CO 3
•o a. s=
C >> 13
o CD CO
0
CO
0
0
•
•
0
•
0
o
•
o o
-*-»
c
0
to
< 0 a
^5 i
o
CO
O
0 O
• •
O
o o
£
.0
C c flj C
2 N U. 2 OQ
._
^E
(0
0
CO CO £
•on ,_
_gj .CD o
"Q -Q 10
Q Q <*
CO CO c
*J ^-» "^
c c —
CD _CD 5
•^. '£n m
4-> 4-> JS
CO CO ^ ^
-Ot3.ti.-ti
CD CD $ 5
llll
*-• ^ Q P
.2 .2 "co "co
-fc -^ "CD "o
c cE E
= := CO CO
O O *- t-
to to c c
CD O CO CO
C C +^ ^
= *- co w
^ ^ _g .g
co co -C jn
~; ~: a a
111!
=6 =5 o o
•a T3 •« "S
co co ^ §
^ ^ ^3 ^3
~ ~ o o
CO CO Jr Jr
Q 0 Q Q
CO CO '-p
CD CD .0
u
iJ^ O
=3 3 S S
"o -a .> .>
n Q_ c _c
O
0
0
•o
I
O)
(0
00
CO
0
O)
S
0
_0
J2
O
Q
to
H
12
u
TJ
O
£
3
O)
iL
109
-------
6.0 REFERENCES
Agriculture and Agri-Food Canada, Food Production and Inspection Branch, Food Inspection
Directorate, Regulation of Recycled Materials and By-Products Under the Fertilizers Act.
Agriculture and Agri-Food Canada (AAFC) Criteria, Support Document for Compost Quality
Criteria, National Standard of Canada (CAN/BNQ 0413-200), The Canadian Council of Ministers
of the Environment (CCME) Guidelines.
Amrani, M., Westfall, D.G., Peterson, G.A. (1997); Zinc Plant Availability as Influenced by Zinc
Fertilizer Sources and Zinc Water Solubility; Colorado Agricultural Experiment Station Technical
Bulletin TB 97-4 (pre-publication draft).
Arora, C.L., Nayyar, V.K., Randhawa, N.S. (1975); Note on Secondary and Micro-Element
Contents of Fertilizers and Manures; Indian J Agric Sci, 45(2):80-85.
Association of American Plant Food Control Officials (AAPFCO) and the Fertilizer Institute
(TFI) (1997): Commercial Fertilizers 1996.
Association of American Plant Food Control Officials (AAPFCO): Electronic Database of
Fertilizer Consumption in the U.S. for 1996, (1997a); from David L. Terry, University of
Kentucky, Lexington, KY.
Association of American Plant Food Control Officials (AAPFCO): Official Publication, No. 50
(1997b); AAPFCO, West Lafayette, Indiana.
Association of American Plant Food Control Officials (AAPFCO), (Draft, October, 1997);
AAPFCO Sub-committee on By-products and Recycled Materials, Survey Questionnaire for
states on Recyclables in Fertilizer.
Association of American Plant Food Control Officials (AAPFCO) and the Fertilizer Institute
(TFI) (1997): Commercial Fertilizers 1996. The Fertilizer Institute, Washington, DC.
Beecher, N. (1996); Regulatory Shift Impacts Biosolids Management in New Hampshire;
BioCycle, 37(2):64-69.
Benchekroun, A. (1992); Identifying and MAnaging the Environmental Issues Facing the
Phosphate Fertilizer Production Sector - The Viewpoint of the World Phosphate Institute;
Proceedings of an International Workshop: Phosphate Fertilizers and the Environment,
International Fertilizer Development Center.
Berthouex, P.M., Gan, D.R. (1991); Loss of PCBs from Municipal-Sludge-Treated Farmland;
J Environ Eng, H7(l):5-24.
Bierman, P.M., Rosen, CJ. (1994); Phosphate and Trace Metal Availability from Sewage-Sludge
Incinerator Ash; J Environ Qual, 23:822-830.
110
-------
Bierman, P.M., Rosen, C.J., Bloom, P.R., Nater, E.A. (1995); Soil Solution Chemistry of Sewage-
Sludge Incinerator Ash and Phosphate Fertilizer Amended Soil; J Environ Qual, 24:279-285.
California Department of Food and Agriculture, Department of Toxic Substance Control and
Fertilizer Heavy Metals Meeting, Minutes, January 18,1996.
California Department of Food and Agriculture (1997); Analyses of Selected Metals in Fertilizer
Samples Collected 1990-1995; Data provided from Steve Wong, CDFA, Sacramento, CA.
Canadian Fertilizers Act (1993).
Canadian Food Inspection Agency (August, 1966), Trade Memorandum, T-4-93; Standards for
Metals in Fertilizers and Supplements.
Canadian Food Inspection Agency (April, 1994); Trade Memorandum, T-4-112.
Chaney, R.L. (1983); Plant Uptake of Inorganic Waste Constituents; In: Parr, J.F. (ed) Land
Treatment of Hazardous Wastes, pp. 50-76; Doyes Data Corp., Park Ridge, New Jersey.
Chaney, R.L. (1990a); Twenty Years of Land Application Research (Part I); BioCycle 3l(9):54-
59.
Chaney, R.L. (1990b); Public Health and Sludge Utilization (Part U); BioCycle, 3l(9):68-73.
Chaney, R.L.; Recommendations for Management of Potentially Toxic Elements in Agricultural
and Municipal Wastes; Paper, 97-120.
Chaney, R.L., Mielke, H.W. (1986); Standards for Soil Lead Limitations in the United States;
Trace Subst Environ Health 20:357-377.
Chaney, R.L., Mielke, H.W., Sterrett, S.B (1989); Speciation, Mobility and Bioavailability of Soil
Lead; Proc Intern Conf Lead in Soils: Issues and Guidelines, B.E. Davis and E.G. Wixson (eds.),
Environ Geochem Health 11 (Supplement), 105-129.
Chaney, R.L., Oliver, D.P. (1996); Sources, Potential Adverse Effects and Remediation of
Agricultural Soil Contaminants; Proceedings of the First Australasia-Pacific Conference on
Contaminants and Soil Environment in the Australasia-Pacific Region, 323-359.
Chaney, R.L., Ryan, J.A. (1994); Risk Based Standards for Arsenic, Lead and Cadmium in Urban
Soils; In Prof Dr. G. Kreysa and Dr. J. Wiesner (eds.) DECHEMA-Fachgesprache Umweltschutz,
1-91.
Chaney, R.L., Ryan, J.A., Li, Y.-M., Welch, R.M., Reeves, P.G., Brown, S.L., Green, C.E.
(1996); Phyto-Availability and Bio-Availability in Risk Assessment for Cadmium in Agricultural
Environments; OECD Publications, 49-78.
111
-------
Chaney, R.L., Sterrett, S.B., Mielke, H.W. (1984); The Potential for Heavy Metal Exposure from
Urban Gardens and Soils; In J.R. Freer (ed.) Proc Symp Heavy Metals in Urban Gardens, Univ
Dist Columbia Extension Service, Washington, D.C., 37-129.
Chang, A.C., Hyun, H., Page, A.L. (1997); Cadmium Uptake for Swiss Chard Grown on
Composted Sewage Sludge Treated Field Plots: Plateau or Tune Bomb?; J Environ Qual, 26:11-
19.
Charter, R.A., Tabatabai, M.A., Schafer, J.W. (1993); Metal Contents of Fertilizers Marketed in
Iowa; Commun Soil Sci Plant Anal, 24(9&10)961-972.
Charter, R.A., Tabatabai, M.A., Schafer, J.W. (1995); Arsenic, Molybdenum, Selenium, and
Tungsten Contents of Fertilizers and Phosphate Rocks; Commun Soil Sci Plant Anal,
26(17&18):3051-3062.
Chen, J., Wei, F., Zheng, C. (1991); Background Concentrations of Elements in Soils of China;
Water Air Soil Pollut, 57/58:699-712.
Chen, Y.S.R., Samela, D., Kaylor,F. (1994); Sludge Processors Have Wide Choice of Solutions
for Waste Ammonia Problems; Environmental Solutions (United States), 7(9):43-46.
"Cleaning up Contaminated Soils," (1995); Biocycle, 36(5):40-41.
Code of Federal Regulations citation - 40 CFR Part 61, Subpart R, "National Emission Standards
for Radon Emission from Phosphogypsum Stacks."
Colorado School of Mines Short Course "Recycling Heavy Metals From Industrial Waste,"
(June 24-26,1997); 1996 Data on Zinc Waste-Derived Fertilizers for UCD Inventory.
CoZinCo Sales, Inc. (1997); Product Comparison Table; www.cozhico.com/comparison.htm.
Craul, P.J., Switzenbaum, M.S. (1996); Developing Biosolids Compost Specifications; BioCycle,
37(5):44-47.
Crohn, D.M. (1996); Building a Coalition to Recycle Biosolids; BioCycle, 3?(5):30-34.
Darlene H. Blair (October 28,1996); Fertilizer Section, Agriculture and Agri-Food Canada,
Regulatory View Toward Organic and Inorganic Waste Fertilizers and Supplements, A
presentation to The Fertilizer Industry Round Table, Savannah, Georgia.
Davies, B.E., Pavely, C.F. (1985); Baseline Survey of Metals in Welsh Soils; Trace Subst.
Environ. Health 19:8791.
Davis, T.S., Pyle, J.L., Skillings, J.H., and Danielson, N.D. (1981); Uptake of
Polychlorobiphenyls Present in Trace Amounts from Dried Municipal Sewage Sludge Through an
Old Field Ecosystem; Bull Environm Contain Toxicol, 27:689-694.
112
-------
Department of Food and Agriculture, Feed, Fertilizer and Livestock Drug, Heavy Metals
Workshop, May 27,1992.
Dinsmore, C., Jarvis, F., Chaney, R., Angle, S. (1996); Opportunities for Landscape Architects in
Reclaiming Contaminated Properties; Annual Meeting Proceedings Am Soc Landscape
Architects, 209-213.
Dudewicz, Edward J. (1976); Introduction to Statistics and Probability. Holt, Rinehart, and
Winston, New York.
Edelman, T., Bruin, M.D. (1986); Background Values of 32 Elements in Dutch Topsoils,
Determined with Non-Destructive Neutron Activation Analysis; In J.W. Assink (ed.)
Contaminated Soil. Martinus Nijhoff Publ., Dordrecht, the Netherlands, 89-99.
Edwards, R.E., Moore, O.E., Sullivan, J.M. (1993); Recovery of Phosphates from Elemental
Phosphorus Bearing Wastes; From 5. annual American Council Society (ACS) Industrial and
Engineering Chemistry (I&EC) Division Special Sumposium on Emerging Technologies for
Hazardous Waste Management, 14.
Erdem, E., Tinkilic, N. Yilmaz, T., Uyanik, A. Olmez, H. (1996); Distribution of Uranium in the
Production of Triple Superphosphate (TSP) Fertilizer and Phosphoric Acid; Fertilizer Research
44:129-131.
Edwards, J.H., Walker, R.H. (1997); Using Organic Residuals on Highly Erodible Soil; Biocycle,
38(2):56-57.
Ermolenko, N.F. (1972); Trace Elements and Colloids in Soils (1966); Academy of Sciences of
the Belorussian SSR, Israel Program for Scientific Translations.
Farm Chemicals, Pulp Friction, Industry officials say a newspaper investigation of the use of
industrial by-products in fertilizer doesn't tell the whole story, September, 1997.
Farrell, M. (1996); Treating Industrial and Municipal Sewage, Naturally; BioCycle, 37(10):81-83.
Farrell, M. (1996); Composters for Hire; BioCycle, 37(7):30-32.
Faust, J.G., Oberst, R.L. (1996); Economic Value of Biosolids to Farmers, BioCycle, 37(l):67-69.
Fertilizer Focus, The Directory of Fertilizer Traders 1997 (July/August 1997).
Fiedler, H. (1996); Sources of PCDD/PCDF and Impact on the Environment; Chemosphere,
32(l):55-64.
Food and Agriculture Organization of the United Nations (1996); Fertilizer Use by Crop, Rome,
Italy.
113
-------
Foster Wheeler Environmental Corporation (March 1998), CalEPA Risk Assessment
"Development of Risk-Based Concentrations for Arsenic, Cadmium, and Lead in Inorganic
Commercial Fertilizers", Sacramento, California.
Foth, H.D (1990) "Fundamentals of Soil Science"; John Wiley and Sons, Inc., New York.
Frank, R., Ishida, K., Suda, P. (1976); Metals in Agricultural Soils of Ontario; Can J Soil Sci,
56:181-196.
Freeman, G.B., Johnson, J.D., Killinger, J.M., Liao, S.C., Feder, P.I., Davis, A.O., Ruby, M.V.,
Chaney, R.L., Lovre, S.C., Bergstrom, P.D. (1992); Relative Bioavailability of Lead from Mining
Waste Soil in Rats; Fundamental and Applied Toxicology, 19:388-398.
Gan, D.R., Berthouex, P.M. (1994); Disappearance and Crop Uptake of PCBs from Sludge-
Amended Farmland; Water Environ Res, 66:54-69.
Gavi, F., Basta, N.T., Raun, W.R. (1997); Wheat Grain Cadmium as Affected by Long-Term
Fertilization and Soil Acidity; J Environ Qual, 26:265-271.
Geiseler, J. (1996); Use of Steelworks Slag in Europe; International Symposium on Bulk "Inert"
Waste: An Opportunity for Use; Waste Mgmt, i6(l-3):59-63.
Gies, G. (1995); Beneficial Use of Biosolids Expands in Canada; BioCycle, 36(3):79-82.
Glenn, J. (1997); Moving From Industrial Wastes to Coproducts; BioCycle, 38(l):54-56.
Goldstein, N. (1997); State Biosolids Management Update; BioCycle, 37(12):62-66.
Goldstein, J. (1997); Monitoring Compost Process and Quality; BioCycle, 38(7):48-49.
Goldstein, J. (1997); Industrial Waste as Fertilizer: What's Wrong? What's Right?; BioCycle,
38(8):63-66.
Goldstein, N., Steuteville, R. (1996); Steady Climb for Biosolids Composting; BioCycle,
37(12):68-78.
Goodroad, L.L., Caldwell, A.C. (1997); Effects of Phosphorus Fertilizer and Lime on the As, Cr,
Pb, and V Content of Soils and Plants; J Environ Qual, 8(4):493-496.
Graham, S. (1996); Waste Exchange: Turn Trash Into Treasure; Safety + Health, 56-59.
Gunderson, E.L. (1995); FDA Total Diet Study, July 1986-April 1991, Dietary Intakes of
Pesticides, Selected Elements, and Other Chemicals; J AOAC Internatl, 78(6): 1353-1363.
Hamamo, H., Landsberger, S., Harbottle, G., Panno, S. (1995); Studies of Radioactivity and
Heavy Metals in Phosphate Fertilizer; J Radioanal Nuc Chem, 194(2):331-336.
114
-------
Holmgren, G.G.S., Meyer, H.W., Chaney, R.L., Daniels, R.B. (1993); Cadmium, Lead, Zinc,
Copper, and Nickel in Agricultural Soils of the United States of America; J Environ Qual, 22:335-
348.
International Mineral Company (IMC) (1997); Analyses of Metals in Fertilizers; Personal
communication, George Larimer, Jr.
loannides, K.G., Mertzimekis, T.J., Papachristodoulou, C.A., Tzialla, C.E. (1997); Measurements
of Natural Radioactivity in Phosphate Fertilizers; Sci Total Environ, 196:63-67.
Isherwood, K.F. (1992); Phosphate Industry and the Environment; hit Fertilizer Dev Center
Phosphate Fertilizers & Environ Int Workshop, 115(10).
Jaakola, A. (1977); Effect of Fertilizers, Lime and Cadmium Added to Soil on the Cadmium
Content of Spring Wheat; J. Sci. Agric. Soc. Finl. 49:406-414.
Johnson, A.E., Jones, K.C. (1992); The Cadmium Issue - Long-Term Changes hi the Cadmium
Content of Soils and the Crops Grown on Them; International Fertilizer Development Center;
Proceedings of an International Workshop: Phosphate Fertilizers and the Environment.
Johnson, R.D., Manske, D.D., New, D.H., Podrebarac, D.S. (1984); Pesticide, Heavy Metal, and
Other Chemical Residues in Infant and Toddler Total Diet Samples. (UT). August 1976-September
1977; Assoc of Anal Chem, 67(1):145-166.
Kabata-Pendias, A., Dudka, S., Chlopeka, A. (1992); Background Levels and Environmental
Influences on Trace Metals in Soils of the Temperate Humid. Zone of Europe; In D.C. Adriano
(ed.) Biogeochemistry of Trace Metals. CRC Press, Boca Raton, FL, 61-84.
Karim, Z. (1993); Phosphatic Fertilizers and the Environment; Proceedings of the Regional
FADINAP Seminar on Fertilization and the Environment, Chiag Mai, Thailand, 103-111.
Kongshaug, G., Bockman, O.C, Kaarstad, O., Morka, H. (1992); Input of Trace Elements to Soils
and Plants; Paper for International Symposium "Chemical Climatology and Geomedical
Problems", arranged by the Norwegian Academy of Science and Letters and the Working Group
Soils and Geomedicine of the International Society of Soil Science.
Kpomblekou-A, K., Tabatabai, M.A. (1994); Metal Contents of Phosphate Rocks; Commun. Soil
Sci. Plant Anal., 25(17,18)2871-2882.
Krauss, G.D., Page, A.L. (1997); Wastewater, Sludge and Food Drops; BioCycle, 38(2):76-81.
Kuhad, M.S., Malik, R.S., Singh, A., Dahiya, I.S. (1989); Background Levels of Heavy Metals in
Agricultural Soils of Indo-Gangetic Plains of Haryana; J. Indian Soc. Soil Sci., 37:700-705.
Levanon, D., Danai, O. (1997); Recycling Agricultural Residuals in Israel; BioCycle, 38(6):56-57.
115
-------
Levi-Minzi, R., Petruzzelli, G. (1984); The Influence of Phosphate Fertilizers on Cd Solubility in
Soil; Water, Air, and Soil Pollution, 23:423-429.
Logan, J.L., Miller, R.H. (1983); Background Levels of Heavy Metals in Ohio Farm Soils;
Publication of the Ohio Agricultural Research and Development Center, Research Bulletin 275,
Ohio State University, Columbus, OH.
Logan, T.J., Lindsay, B J., Coins, L.E., Ryan, J.A. (1997); Field Assessment of Sludge Metal
Bioavailability to Crops: Sludge Rate Response; J Environ Qual, 26:534-550.
Ma, L.Q., Tan, F., Harris, W.G. (1997); Concentrations and Distributions of Eleven Metals in
Florida Soils; J Environ Qual, 26:769-775.
MacKenzie, K. (1996); On the Road to a Biosolids Composting Plant; BioCycle, 3?(12):58-61.
Makweba, M.M., Holm, E. (1993); The Natural Radioactivity of the Rock Phosphates, Phosphatic
Products and Their Environmental Implications; Sci Total Environ, 133:99-110.
Manrique, L.A. and Jones, C.A. (1991); Bulk Density of Soils in Relation to Soil Physical and
Chemical Properties; Soil Science Soc. Am. J., 55:476-481.
Martmez-Aguirre A., Garcia-Leon, M., Ivanovich,M. (1994); The Distribution of U, Th and
226Ra Derived from the Phosphate Fertilizer Industries on an Estuarine System in Southwest
Spain; J Eviron Radioactivity, 22(2): 155-177.
Matthews, P. (1996); A Global Atlas of Wastewater Sludge and Biosolids Use and Disposal;
Published by the International Association on Water Quality.
May, A., Sweeney, J.W. (1982); Assessment of Toxicity Impacts Associated with
Phosphogypsum in Florida; Fertilizer Inst Environ Symp, San Antonio, p97(25).
McBride, M.B. (1995); Toxic Metal Accumulation from Agricultural Use of Sludge: Are USEPA
Regulations Protective?; J Environ Qual, 24:5-18.
McGrath, S.P. (1986); The Range of Metal Concentrations in Topsoils of England and Wales in
Relations to Soil Protection Guidelines; Trace Subst. Environ. Health 20:242-252.
McKeague, J.A., Wolynetz, M.S. (1980); Background Levels of Minor Elements in Some
Canadian Soils; Geoderma. 24(1980)299-307.
McLachlan, M.S., Hinkel, M., Reissinger, M., Hippelein, M., Kaupp, H. (1994); A Study of the
Influence of Sewage Sludge Fertilization on the Concentrations of PCDD/F and PCB in Soil and
Milk; Environ Poll, 85:337-343.
Meadows, D.G. (1994); Riocell Nurtures Environmental Accomplishments; Tappi Journal,
77(5):57-59.
116
-------
Meister, R.T. (ed) (1997); Farm Chemicals Handbook '97, Volume 83. Meister Publishing
Company, Willoughby, OH.
Metro Wastewater Reclamation District (1997); Analyses of MetroGro Products.
Mermut, A.R., Jain, J.C., Song, L., Kerrich, R., Kozak, L., Jana, S. (1996); Trace Element
Concentrations of Selected Soils and Fertilizers in Saskatchewan, Canada; J Environ Qual,
25:845-853.
Mielke, H.W., Anderson, J.C., Berry, K.J., Mielke, P.W., Chaney, R.L., Leech, M. (1983); Lead
Concentrations in Inner-City Soils As a Factor in the Child Lead Problem; Am J Public Health,
73(12): 1366-1369.
Mortvedt, JJ. (1985); Plant Uptake of Heavy Metals in Zinc Fertilizers Made From Industrial By-
Products; J Environ Qual, 14(3):424-427.
Mortvedt, JJ. (1987); Cadmium Levels in Soils and Plants From Some Long-Term Soil Fertility
Experiments in the United States of America; J. Environ. Qual. 16:137-142.
Mortvedt, JJ. (1992); The Radioactivity Issue-Effects on Crops Grown on Mined Phosphate
Lands, P-Fertilized Soils, and Phosphogypsum-Treated Soils; Lit Fertilizer Dev Center Phosphate
Fertilizers and Environ Int Workshop, 271(8).
Mortvedt, JJ., Giordano, P.M. (1977); Crop Uptake of Heavy-Metal Contaminants in Fertilizers;
In: Wildung, R.A. and Drucker, H. (eds) Biological Implications of Heavy Metals in the
Environment, pp. 402-416, ERDA Rep. Conf. 750929, Oak Ridge, TN.
Mortvedt, JJ., Mays, D.A., Osborn, G. (1981); Uptake by Wheat of Cadmium and Other Heavy
Metal Contaminants in Phosphate Fertilizers; J.Environ. Qual. 10:193-197.
Mortvedt, JJ. and Osborn, G. (1982); Cadmium in Phosphate Fertilizers; Soil Science, 134: 185-
192.
National Emisson Standards for Hazardous Air Pollutants (NESHAP) (1989).
Organization for Economic Co-operation and Development, Cadmium, Background and National
Experience with Reducing Risk (1994); OECD Environment Monograph Series No. 104, Risk
Reduction Monograph No. 5, Paris.
O'Dette, R.G. (1995); State Strategies for Part 503 Implementation; BioCycle, 36.
Pennsylvania Department of Agriculture (July 30,1998): Pennsylvania Initiative to Monitor
Commercial Fertilizers
Pierce, FJ, Dowdy, R.H., Grigal, D.F. (1982); Concentrations of Six Trace Metals in Some Major
Minnesota Soil Series; J Environ Qual, 11 (3):416-422.
117
-------
Podrebarac, D.S. (1984); Pesticide, Heavy Metal, and Other Chemical Residues in Infant and
Toddler Total Diet Samples. (TV). October 1977-September 1978; Assoc of Anal Chem,
67(1): 166-185.
Prepared by D.L. Terry and Paul Z. Yu (1996); Published by the Association of American Plant
Food Control Officials, Division of Regulatory Services, University of Kentucky, Commercial
Fertilizers.
Provin, T.L., Joern, B.C., Wukasch, R.F. (1996); Soil Application of an Aluminum Industry By-
product: Influences on Soil Chemistry and Plant Nutrition; Proceedings of the 50. Industrial
Waste Conference, 780.
Queneau, P.B., Hansen, B.J., Spiller, D.E. (1993); Recycling Zinc in the United States;
Proceedings of the Milton E. Wadsworth 4th International Symposium on Hydrometallurgy,
AIME SME/TMS, in Salt Lake City, Utah.
Raven, K.P., Loeppert, R.H. (1997); Trace Element Composition of Fertilizers and Soil
Amendments; J Environ Qual, 26:551-557.
"Recycling Food Residuals and Agricultural Film," (1997); BioCycle, 38(7):82-83.
Relis, R., Levenson, H. (1997); Using Urgan Organics in Agriculture; BioCycle, 38(4): 86-90.
Riggle, D. (1996); Biosolids Benefit Agricultural Land; BioCycle, 37(3):76-79.
Rothbaum, H.P., Goguel, R.L., Johnston, A.E., Mattingly, G.E.G (1986); Cadmium Accumulation
in Soils from Long-Continued Applications of Superphosphate; J. Soil Science 37:99-107.
Ruby, M.V., Davis, A., Link, T.E., Schoof, R., Chaney, R.L., Freeman, G.B., Bergstron, P.
(1993); Development of in. In Vitro Screening Test to Evaluate the In Vivo Bioaccessibility of
Ingested Mine-Waste Lead; Am Chem Soc, 27(13):2870-2877.
Rutherford, P.M., Dudas, M.J., Arocena, J.M. (1995a); Radioactivity and Elemental Composition
of Phosphogypsum Produced from Three Phosphate Rock Sources; Waste Mgmt Res, 13:407-
423.
Rutherford, P.M., Dudas, M.J., Arocena, J.M. (1995b); Radium hi Phosphogypsum Leachates;
J Environ Qual, 24:307-314.
Rutherford, P.M., Dudas, M.J., Samek, R.A. (1994); Environmental Impacts of Phosphogypsum;
Sci Total Environ, 149:1-38.
Scholten, L.C., Timmermans, C.W.M. (1996); Natural Radioactivity in Phosphate Fertilizers;
Fertilizer Research, 43:103-107.
Schreeg, T.M., Jarrett, m, D.L. (1996); Biosolids Cut Fertilizer Costs by $200 An Acre;
BioCycle, 37(10):69-71.
118
-------
Seekins, B. (1996); Industrial By-Products as Compost Feedstocks; BioCycle, 3?(8):50-53.
Shacklette, H.T., Boerngen, J.G. (1984); Element Concentrations in Soils and Other Surficial
Materials of the Conterminous United States; U.S. Geological Survey Professional Paper 1270,
United States Government Printing Office, Washington.
Shelly, S. (1995); Chill Steel-Pickling Acids to Ease Metals Recovery; Chem Engr,
102(11):186C.
Sloan, J.J., Dowdy, R.H., Dolan, M.S., Linden, D.R. (1997); Long-Term Effects of Biosolids
Applications on Heavy Metal Bioavailability in Agricultural Soils; J Environ Qual, 26:966-974.
Soares, H.M., Cardenas, B., Weir, D., Switzenbaum, M.S. (1995); Evaluating Pathogen Regrowth
in Biosolids Compost; BioCycle, 36(6):70-74.
Sommers, L.E. (1977); Chemical Composition of Sewage Sludges and Analysis of THeir
Potential USe as Fertilizers; J. Environ. Qual. 6(2):225-232.
Sterrett, S.B., Chancy, R.L., Gifford, C.H., Mielke, H.W. (1996); Influence of Fertilizer and
Sewage Sludge Compost on Yield and Heavy Metal Accumulation by Lettuce Grown in Urban
Soils; Environ Geochem Health, 18:135-142.
Stroo, H.R. (1992); Biotechnology and Hazardous Waste Treatment; J Environ Qual, 21:167-175.
Texas Agricultural Experiment Station (1997a); Analysis of Fertilizer Samples for As, Cd, Ni, and
Pb; April 1-August 21,1997; Personal communication, George Latimer, Jr.
Texas Agricultural Experiment Station (1997b); Analysis of Pb in Fertilizers; August, 1997;
Personnel communication, George Latimer, Jr.
The Seattle Times, Local News (Sunday, September 14,1997); Quincy Mayor Takes Heat for
Raising Concerns About Fertilizer.
Thompson, D., Ready, C., Moll, T. (1996); From Sludge Management to Biosolids Recycling;
BioCycle, 37(2):6-8.
Toffey, W.E. (1997); Biofiltration - Black Box or Biofilm?; BioCycle, 38(6):58-63.
Torma, S.C., Rise, R.B., Torma, A.E. (1994); Environmentally Safe Processing and Recycling of
High-Energy Yield Materials; Extraction and Processing for the Treatment and Minimization of
Wastes, 123. Annual Meeting of the Minerals, Metals, and Materials Society, 73-83.
U.S. Department of Agriculture, Economic Research Service, Natural Resources and Environment
Division, Agricultural Resources and Environmental Indicators, Agricultural Handbook No. 705.
119
-------
U.S. Department of Agriculture, Economic Research Service, Natural Resources and Environment
Division (May, 1966); 1995 Nutrient Use and Practices on Major Field Crops, Updates on
Agricultural Resources and Environmental Indicators, Number 2.
U.S. Department of Agriculture, Economic Research Service, Natural Resources and Environment
Division (September, 1996); Cropland Use in 1996,Updates on Agricultural Resources and
Environmental Indicators, Number 9.
U.S. Department of Agriculture, Economic Research Service, Natural Resources and Environment
Division (December, 1996); Cropping Patterns of Major Field Crops and Associated Chemical
Use, Updates on Agricultural Resources and Environmental Indicators, Number 18.
U.S. Department of Agriculture, Economic Research Service, National Agricultural Statistics
Service (July 1996); Agricultural Chemical Usage, 1995 Fruits Summary.
United States Department of Agriculture, Economic Research Service, National Agricultural
Statistics Service (1996): Agricultural Chemical Usage, 1995 Fruits Summary. July, 1996,
USDA, Washington, DC.
U.S. Department of Agriculture, Economic Research Service, National Agricultural Statistics
Service (July 1997); Agricultural Chemical Usage, 1996 Vegetables Summary.
U.S. Department of Agriculture, Economic Research Service, National Agricultural Statistics
Service (1997a): Agricultural Chemical Usage, 1996 Field Crops Summary. September, 1997,
USDA, Washington, DC.
U.S. Department of Agriculture, Economic Research Service, National Agricultural Statistics
Service (1997b): Agricultural Chemical Usage, Vegetables, 1996 Summary. July, 1997, USDA,
Washington, DC.
U.S. Department of Agriculture, Economic Research Service, National Agricultural Statistics
Service (September 1997); 1996 Agricultural Chemical Use Estimates for Field Crops.
U.S. EPA, Office of Research and Development (1994); Estimating Exposure to Dioxin-Like
Compounds (Review Draft), Volume JJ: Properties, Sources, Occurrence and Background
Exposures, EPA/600/6-88/005Cb.
U.S. EPA, Office of Solid Waste (1997a); Risk Assessment Support for Cement Kiln Dust
Regulatory Activities; Draft Report, EPA Contract Number 68-W6-0053.
U.S. EPA, Office of Solid Waste (1997b); CKD (Cement Kiln Dust) Agricultural Use Risk
Assessment, Preliminary Draft.
U.S. EPA, Office of Solid Waste (1997c); Risk Estimates for Radon in Phosphogypsum (Draft).
U.S. EPA, Economics, Exposure and Technology Division, Office of Pollution Prevention and
Toxics (1997); The U.S. Fertilizer Industry: A Profile.
120
-------
U.S. EPA, Office of Water and Waste Management (1978); Cadmium Additions to Agricultural
Lands via Commercial Phosphate Fertilizers; SW-718.
U.S. EPA, office of Wastewater Management (1995); A Guide to the Biosolids Risk Assessments
for the EPA Part 503 Rule. EPA 832-B-93-005, September, USEPA, Washington, DC.
van de Kamp, M. (1997); Agricultural Composting in Massachusetts; BioCycle, 38(8):40-44.
Verville, R.R. (1996); Organic Feedstock Generators Team Up With Local Farmers; BioCycle,
37(8):58-61.
Visker, C. (1995); Using Agro-Industrial By-Products; BioCycle, 36(6):67-68.
Wagh, A.S., Jeong, S.Y., Singh, D., Strain, R., No, H., Wescott, J. (1997); Stabilization of
Contaminated Soil and Wastewater with Chemically Bonded Phosphate Ceramics; Presented at
the Waste Management 97 Conference held in Tucson, AZ, 9 pages.
Wakefield, Z.T. (1980); Distribution of Cadmium and Selected Heavy Metals in Phosphate
Fertilizer Processing (Bulletin Y-159); National Fertilizer Development Center, TVA.
Washington Department of Ecology (July 31,1997): Analysis of Metals in Fertilizer.
Wen, G., Bates, T.E., Voroney, R.P. (1995); Evaluation of Nitrogen Availability in Irradiated
Sewage Sludge, Sludge Compost and Manure Compost; J Environ Qual, 24:527-534.
Westberg, K. (1995); The Conversion of Waste Scrubbing Liquor into Fertilizer; Report prepared
for Space and Missile Systems Center, Air Force Materiel Command.
Williams, T, Boyette, R.A., Epstein, E., Plett, S., Poe, C. (1996); The Big and Small of Biosolids
Composting; BioCycle, 3?(4):62-69.
Wolnik, K.A., Fricke, F.L., Capar, S.G., Braude, G.L., Meyer, M.W., Satzger, R.D., Bonnin, E.
(1983); Elements in Major Raw Agricultural Crops in the United States. 1. Cadmium and Lead in
Lettuce, Peanuts, Soybeans, Sweet Corn, and Wheat; J Agric Food Chem, 31:1240-1244.
Wolnik, K.A., Fricke, F.L., Capar, S.G., Meyer, M.W., Satzger, R.D., Bonnin, E., Gaston, C.M.
(1985); Elements in Major Raw Agricultural Crops in the United States. 3. Cadmium, Lead, and
Eleven Other Elements in Carrots, Field Corn, Onions, Rice, Spinach, and Tomatoes; J Agric
Food Chem, 33(5):807-811.
Zimdahl, R.L. (1976); Entry and Movement in Vegetation of Lead Derived From Air and Soil
Sources; J Air Pollu Cont Assoc, 26(7):655-660.
121
-------
-------
APPENDIX A
FERTILIZER CONSUMPTION IN THE U.S.
A-1
-------
Appendix A. Fertilizer Consumption in the U.S.
The tables in Appendix A have been abstracted from electronic files created by the
Association of American Plant Food Control Officials (AAPFCO). The data in these tables are
for the year ending June 30,1996. Slight differences in reported values between the tables in this
report and Commercial Fertilizers 1996 (AAPFCO and TFI) are due to the inclusion of liming
materials and some minor differences in the definition of multiple nutrient fertilizers and "other"
fertilizer groupings. Tables A-l through A-5 contain the tons of different types of fertilizers and
micronutrients consumed for each state and Puerto Rico. The tables are organized with the states
grouped into geographic regions of the country. These tables are:
A-l. East North Central (IN, IL, MI, OH, WI) and
East South Central (KY, AL, MS, TN)
A-2. West North Central (KS, IA, MN, MO, NB, ND, SD) and
West South Central (LA, AR, OK, TX)
A-3. New England (CN, ME, MA, NH, NY, RI, VT) and
Middle Atlantic (DE, MD, NJ, PA, WV)
A-4. South Atlantic (FL, GA, NC, SC, VA)
A-5. Mountain (AZ, CO, ID, MT, NM, NV, UT, WY),
Pacific (AK, CA, HI, OR, WA) and Puerto Rico
The total U.S. fertilizer consumption, by fertilizer type is presented in Table 2-1.
A-2
-------
(0
c
o
'u>
CD
CC
0)
O
o
CO
4->
(O
co
Ul
•o
(0
2
CD
O
r
o
z:
CO
111
CD
(O
O
Q.
CO
o
O
o3
03
LL.
J2
CO
z
CO
_i
i
o
I
=!
Z
£
Q.
O
W
CO
Q
CO
a
i
ui
1ULTIPLE NUTF
a
CO
0
in
0
o
in"
cn
CO
CO
CM
cn
CO
CO
p-T
to
CO
10
214,942
370,204
o
CM
CM
00
cn
CM
in
CM"
CO
CO
ol
CO
cn
00
CO
CO
O
CO
CO
in
CO
CM
CN
co"
i
p»
CD
CM
CO
CM
CO
376,472
CO
CO
o
CO
CO
o
CO
CO
cn
05
in
CM
0-
z
CM
O
CM
CO
CM
cn
co"
CM
CO
in
a
CO
CM
CO
co"
cn
5
CM
cn
CO
CM
o
s
00
z
CO
CO
CO
cn
o
CD
CM
CM
CO
CO
CO
in
cn
CO
3
CM
CO
CD
CO
cn
co"
CM
CM
co_
CO
CO
CM
CM"
CM
CO
ot
^.
CO
en
CO
0
in
cn
CM
CM
CO
cn
CO
CO
CO
CO
CM
CD
CO
CM
CO
CO
CD
CM
CO
517,407
923,087
CO
in
03
in
^
O
CO
UTILIZER
u.
NITROGEN
0
CM
in
CO
CO
^~
CM
CO
o
en
CM"
CM
CD
CO
0
ps
1O
CO
co"
CM
CO
cn
en
CO
8
cn
o
to
CO
CM
CO
CO
CO
*"!
CO
II Ammonium Nitrat
o
CO
CM
CM
0
O
o
o
o
o
CO
c
o
o
CO
CO
l| Ammonium Nitrat
o
o
o
o
0
o
o
o
0
CO
CO
.i
CD
1 Ammonium Nitrat
Mixtures
5
in
5
CO
tn
CO
0
CM
CO
CM
o
CO
CO
5
a
CO
CO
Ammonium Nitrat
o
0
CM
o
o
o
o
o
0
in
CO
CO
CO
2
•=;
Ammonium Polys
CO
CO
CO
CO
cn
CO
CM
CO
en
CM
co"
CO
cn
CM
CM
CO
cn
in
CO
§
o"
CM
0
CO
CM"
CD
Ammonium Sulfa
0
o
o
o
o
o
0
135,422
10
CO
CO
in
c
3
0
CO
CO
II Ammonium Sulfa
cn
cn
CM
CO
in
in
o
CO
00
CO
B
cn"
.
CM
0
CO
CD
a
.ti
c
CO
I Ammonium Sulfa
o
o
o
o
o
o
o
o
s
CD
1
CD
|| Ammonium Sulfa
CM
o
CO
P»
CO
CO
cn
CO
CO
CO
CO
CM
in
CM
in
cn
CO
a
|| Ammonium Thios
o
CO
0
en
CO
CO
in
tn
CM
in
CO
CO
in
CO
O
P--
CO
CO
o
o
cn"
§
CM
CO
cn
en
c:
Anhydrous Ammc
o
CO
0
o
CO
CM
O
o
o
cn
cn
CO
cn
|| Aqua Ammonia
o
in
CM
CO
in
O
in
CO
o
o
5
O
z
Calcium Ammonii
o
o
0
o
o
o
o
o
0
-S
|| Calcium Cyanami
CO
CO
CM
CM
CM
O
cn
£
cn
5
CO
CO
co"
cn
CO
CO
CM
Calcium Nitrate
o
o
0
CD
0
o
o
o
CO
CO
CO
| Calcium Nitrate-u
2
CM
O
CO
CO
CO
0
CM
in
CM
tn
CM
CO
o
•£
CO
r-
11 Ferrous Ammoniu
0
0
o
o
o
o
o
o
0
CO
a
1
1
-
o
o
o
o
o
o
0
CO
1 Nitric Acid
CO
CM
CO
CM
CM
CO
O
O_
in
o
CO
CO
CO
0
CM"
CO
CM
CM
cn
CO
o
CO
CM"
CM
CO
in
CM
r-
CO
CO
CM
1 Nitrogen Solution
A-3
-------
•g
I
o
O
H
CO
_I
^
£
•
o
i
••M
—
^.
I Description
CM
00
in
en
o
CM
CO
en
5
*~
r»
co
10
00
CM
O
•™^"
CO
03
CM
in
|| Nitrogen Solution 30%
CO
r-
to"
,_
CM_
CO
CM
r-
r~
en
CO
CO
•a-
IO
CO
00
o
CM
CM
10
*
CO
CO
IO*
to
in
CO
CM
r-T
CM
Nitrogen Solution 32%
CO
»t
CO
CO
o
IO
Tf
CO
CM
O
CO*
in
o
in
r-
rt
en
CO
CO
CO
CO
CO
CO
Nitrogen Solution <28%
CO
00
CO
*
CO
CM
«~
cn
CO
CO
cn
CO
o
0
CO
in
Nitrogen Solution >32%
CM
CO
CO
CM"
CO
cn
CM
CO
to
CM
01
IO
CO
CD
5
o
CO
Sodium Nitrate
-
5
CO
CO
-
CO
CM
O
O
cn
CO
CO
II Sulfur Coated Urea
cn
£
cn
CO
CO
o
CO
CO
o
cn
*~
119,738
00
IO
CO
CO*
CM
*-.
CO
00
CO
i
CO
CO
"
CO
e
o
00
CM
0
o
0
o
o
o
o
| Urea Solution
CM
to
CO
in
8
o
CO
CO
CO
CO
CO
to
CO
10
cn
CO
CO
in*
CO
II Urea-formaldehyde
CO
CO
CM
5
01
0
o
01
o
o
o
o
c
o
D
O
CO
II Zinc Ammonium Sulfate
o
0
o
o
0
o
0
0
0
e
«Zinc Manganese Ammon
Sulfate
CO
CM
i~*
5
cn
CO
cn
r-
co
CO
r-~
ID
CO
CO
01
CM
CO
IO
cn
CO
CO
O
325,010 I
CO
CO*
5
CO
in
cn
CO
CM
CO
cn
to
cn
CO
434,091
974,608
cn
01
*
CO
o
CM
CO
CM
1^
£
CO
Zjj
01
5
Q.
CO
O
Q.
0
O
O
o
o
0
o
o
o
0
| Ammonium Metaphosph
o
CO
CO
o
o
CO
0
0
CO
0
0
CO
|| Ammonium Phosphate
o
0
in
o
0
o
0
0
,_
to
II Ammonium Phosphate N
o
0
o
o
0
r-
co
o
0
CO
-------
•c
0)
o
O
JO)
.n
-
o
o
in
CO
en
CO
CO
CM
o
CO
0
2
Jerphosphate, Normal
3
co
CM
CD
CO
CO
in
CO
CD
CO
CO
CD
CD
O
CO
in
CM
CD
CM
CO
CO
CO
^
CO
CO
o
*
CO
CO
CO
o
_CD
i=
CD
I
3
CO
o
0
0
o
o
CM
o
o
o
Jerphosphoric Acid
CO
CD
o
to
|
CN
CO
to
LO
i
-
-------
T3
§
o
I
ca
Z
M
o
I
=j
•z.
c
.9
a.
a>
Q
en
5-
CO
CO
CO
CO
CM
en
•fr
co
*
CD
CO
CM
CO
CO
en
f-
in
CO
3
CO
in
o
CD
f"
CO
.C
6
CO
CO
en
s
0
CO
CO
o
CO
in
s
CO
CM
0
CM
in
o
CO
en
CO
CO
en
en
C3
CO
in
250,003
in
en
t-
cn
0
CM"
en
CO
£
co
n
£
u.
0
ORGAN
o
0
CO
o
CM
o
o
o
CO
•g
§
in
o
0
o
o
o
o
o
0
,-
|| Castor Pomace
o
o
o
o
o
o
o
o
0
| Cocoa Shell Mea
o
o
o
o
CO
0
CO
en
CO
o
0
Compost
p-
CM
O
O
O
O
0
0
O
o
Cottonseed Meal
en
CO
en
o
o
o
CM
0
0
o
0
Fish Scrap
o
o
o
o
o
o
o
0
o
0
i
CO
in
CO
CO
CO
CO
en
CO
"
o
CO
CO
CO
0
CO
en
CO
o
0
Manure
CO
CO
CO
CM
O
O
o
o
o
B
CO
in
CM
o
CO
CO
0
T—
to
CO
o
0
5
o
o
o
o
o
o
•a
CO
4j;
CO
en
a
CD
en
o
0
o
0
0
o
o
o
o
13
2
03
n
CO
CD
T3
en
CO
en
CO
CO
en
0
o
o
o
CM
5
CM
O
O
0
o
.2
a
*i
T
II Sewage Sludge,
0
o
o
o
o
0
0
o
0
CO
0
Sewage Sludge,
o
o
o
o
0
o
o
0
|| Soybean Meal
o
o
o
o
CO
o
o
o
0
Tankage, Animal
in
o
o
o
00
o
o
o
0
Tankage, Proces
in
CO
5
CO
o
CO
i—
o
CO
en
o
CO
CO
CO
r—
CD
JZ
O
CO
CO
en
o
CO
en
CO
^
o
CM
CM
00
o
CO
q
co*
CO
o
CO
1C
00
CM
|
CO
ffi
N
CC
U.
tu
EE
z
o
cc
o
YANDM
CE
Q
Z
n
a
(0
o
CO
00
CO
CM
O
o
0
-
o
0
CD
Aluminum Sulfat
CM
CO
CM*
^
!*
o
o
o
^
o
CO
CM
O
?;
i
o
CO
o
0
o
o
CO
CM
O
en
o
o
o
o
Calcium Chelate
CO
0
-
o
CO
CO
I—
o
o
o
o
Calcium Chloride
o
0
o
o
o
CO
T—
O
o
o
o
"5?
I
|| Calcium Sulfate
A-6
-------
o
O
.Q
(0
z
w
_I
*
i
o
I
_J
z
c
o
o
w
V
Q
o
0
0
o
o
o
o
0
0
| Cobalt Sulfate
0
o
o
o
en
o
o
o
o
Copper Chelate
0
o
o
o
0
o
o
o
o
Copper Compound
o
o
o
o
CO
CO
o
o
o
o
Copper Oxide, Black
CO
0
o
o
0
o
5
o
<-
|| Copper Sulfate
CO
0
o
o
o
o
CM
o
o
CO
F
| Epsom Salt (Magnes
o
0
10
10
o
o
o
o
o
o
CD
•0
'x
o
o
•c
o
0
o
o
o
o
o
o
o
-------
TJ
cp
O
O
CO
g
CO
_1
>-
I
o
I
J
Si
c
~
a.
o
i
CM
O
O
O
O
o
o
o
o
1 Sulfuric Acid
5
o
o
o
0
o
CO
o
o
Zinc Chelate
CO
CO
CO
r-
o
o
8
CO
o
CO
o
0
Zinc Oxide
-------
v>
o
"OS
CD
tc.
0)
O
co
CD
C
13
CD
O
O
+•<
o
£C
156,672
co"
p-
CO
CM
CO
§
CO
cn"
CD
CO
CM
5
1
CM
CO
CO
CO
CM
CO
pC
CM
CM
CM
cn
03
CO
o
to
co"
II Ammonium Nitrate
o
CO
o
o
o
o
o
o
o
o
o
» Ammonium Nitrate
Solution
o
o
o
o
o
o
o
o
o
0
o
» Ammonium Nitrate-
limestone Mixtures
CO
CO
CO
CO
o
CM
0
o
in
CM
o
CO
«.
a
|| Ammonium Nitrate-sull
o
in
o
o
^
cn
o
0
o
0
CO
CM
|| Ammonium Polysulfide
CM
CM
cn
0
CO
CM
in
cn
to
cn
CO
CM
to
CO
in
CO
m
to
00
CO
cn
CO
CO
CM
cn
CM
CO
CO
CO
CM
CO
3
o
to
o
00
in
CM
Ammonium Sulfate
en
tM
CM
CO
o
o
o
o
0
en
o
CO
cn
CO
« Ammonium Sulfate
Solution
CO
CO
cn
to
CO
CM
o
cn
CO
CO
o
CM
o
•*
in
CO
CM
in
CO
tM
o
ra
II Ammonium Sulfate-nitr
o
o
o
CO
CO
CM
0
O
O
O
o
0
o
-------
•o
6)
O
O
P
0
K
_1
Q
CO
Q
m
z
o
g
z
s
CO
&:
| Description |
CO
r-
O
in
CO
in
CO
3
to
in
CO
CO
*
212,327
CO
in
co
O
399,386
£
CM
in
in
in
in
CO-
CM
CM
CO
in"
to
|| Nitrogen Solution 32%
CM
in
in
CM
CO
CM
to
o
in
CO
CO
s
in
CO
CO
CO
CO
CO
p-
co
CO
CO
r-
10
in
Nitrogen Solution <28%
CM
CO
10
o
o
CO
CO
CM
O
O
O
O
O
CO
CM
1
to
Nitrogen Solution >32%
CO
CM
in
I
CM
in
00
o
O
o
CO
CO
CM
o
r-
Sodium Nitrate
CO
CO
CM
CO
CO
o
CO
CO
o
!J
0
CM
CM
CO
O
CO
Sulfur Coated Urea
CO
CM
in
CM
in
O
CO
o
>3-
CO
CO
CO
CO
p-
CO
CO
CM
CM
CO
CO
CO
CO
CM
r-
CO
CO
co"
CO
CM
CO
CO
CM
CO
to
in"
CO
in
0
to
s
o
o
o
o
0
o
o
o
p*
CM
0
o
|| Urea Solution
5
o
CO
CO
0
CO
0
CM
8
CO
CM"
o
CM
CO
to
to
to
o
| Urea-formaldehyde
o
o
o
o
CO
o
CO
in
in
O
O
0
CO
in
I Zinc Ammonium Sulfate
Solution
o
o
o
0
in
O
o
o
o
0
o
»Zinc Manganese
Ammonium Sulfate
CM
CO
CO
CO
CM
CO
to
CO
CO
p-
CO
CO
CO
in"
o
CO
CO
CO
o
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
1
o
CO
CM
to
CM
CO
CO
in
CO
in
en
co"
3
CO
to
CO
CO
CM"
CO
CM
CO
CO
CO
to"
CM
in
1,650,37
CO
in
CM
p-
03
00
to
CO
CO
m
to
CM
s?
_J
1
£
Ul
N
i=
HATE PER
Q.
O
X
o
0
o
o
o
o
0
o
o
o
0
» Ammonium
Metaphosphate
CO
CO
CM
o
o
0
o
o
CO
CO
to
o
o
in
CM
O
O
[I Ammonium Phosphate
in
o
0
0
o
o
en
CO
CO
10
0
o
3
I Ammonium Phosphate
Nitrate
£
CO
o
o
CO
o
0
o
CM
0
CO
B Ammonium Phosphate
Sulfate
0
o
o
o
0
o
CO
CM
CM
in
o
o
0
o
|| Ammonium Polyphosphate
0
o
o
o
0
o
o
o
o
0
o
|| Basic Lime Phosphate
o
o
o
o
0
o
o
0
o
0
o
Basic Slag
o
CM
o
o
0
o
o
o
0
o
o
|| Bone Meal, Raw
o
o
o
CM
0
o
o
CO
o
o
r*
|| Bone Meal, Steamed
0
o
o
m
0
0
o
CM
O
0
O
|| Bone, Precipitated
o
in
CM
0
0
o
o
0
o
CO
in
CM
o
o
|| Calcium Metaphosphate
o
"*
0
in
CM
o
0
CM
CO
CM
O
0
Colloidal Phosphate (Soft
|| Phosphate)
|
P^
in
CM
CM
O
CM"
CM
CO
CO
CM
CO
o
CM"
CO
in
o
in
CM
p-
CO
in
CO
CM
co"
o
CM
in
s
0
CO
U Diammonium Phosphate
A-10
-------
0)
C
O
o
CNI
JS
CO
X
0
CC
1
0
0
CO
o
z
*
W
|| Description
o
o
o
0
o
o
o
CO
0
o
1O
|| Limestone, Phosphatic
CO
5
en"
O
10
o
CM
CM
§
CD
CO
CO
CM
CM"
CO
CO
"*
CM
in
CO
CO
150,353
CO
in
in"
CO
CO
in
in
in
CO
CM
CO
en
in
en
CM
30
« Liquid Ammonium
Polyphosphate
1
o
o
o
o
o
CO
CO
cn
CM
CM
0
o
o
| Magnesium Phosphate
r-
en
10
CO
CO
in
o
in
CO
CO
o
CM
113,905
CO
in
r-»
CM
CO
o
CO
CO
CM
o
CM
CO
138,492
p-
10
10
CO
IMonoammonium
Phosphate
o
o
o
o
o
o
o
o
o
o
o
2
CO
o.
£
o
1O
o
o
o
o
CO
10
o
CO
CO
o
§
0
|| Phosphate Rock
o
CM
en
o
§
cn
CO
O5
CO
r-
CD
P-.
en
CM
m
co"
o
CM
p-
co
cn
TJ
I
O
o
o
o
o
o
o
o
o
o
0
|| Precipitated Phosphate
CO
o
o
o
o
o
o
CO
CO
-
o
o
•o
u Superphosphate, Enriche
-
o
CN
O
o
CO
CO
CO
CO
CM
O
O
CO
CM
O
0
CO
.c
a.
CO
ex
3
cn
CO
CO
CO
CO
10
o
CM
cn
cn
•-
CM
CO
en
to
O
CO
10
CO
10
o
in
CO
cn
CM
CO
CM"
CO
co"
CM
en
in
CO
Superphosphate, Triple
CO
en
CO
o
o
0
o
o
CO
CO
in
en
CO
in
CM"
o
CO
CO
CM
o
cn
CO
|| Superphosphoric Acid
CO
CO
CM
in
CM
CO
CO
in
CO
O
O
CO
CO
CO
cn
0
"
CM
CD
0
190,625 ||
164,018
CO
p»
en
CM
to"
CO
o
CO
CM
CD*
CO
CO
372,835
CO
to
CO
CM
CO
ps.
CO
co"
CO
10
5
10
CO
CN
CO
CM
•*
_I
O
8
SH FERTILIZE
<
0
-
o
o
o
o
o
CO
CM
p-
o
o
™
|| Lime-potash Mixtures
o
CO
o
o
o
o
o
o
CO
CO
o
CO
o
in
*£
o^
0
CO
o 2
CM
in
CM"
CO
CO
o
CM
cn
o
cn
CO
CO
CM
CM
cn
CO
co"
CO
CO
CM
CO
cn
o
cn
in
en
CM
CO
CO
CM"
Muriate of Potash 62%
o
o
o
0
o
o
o
0
0
0
0
|| Potash Suspensions
CO
o
o
§
o
o
CO
in
O
O
0
CM
CM
| Potassium Carbonate
in
CO
CM
in
o
in
CM
o
o
in
CO
CO
0
in
CO
|| Potassium Nitrate
CM
in
CM"
CM
CM
CO
CM
CO
CO
in
CM
CO
CM
cn
CN
10
CO
CO
10
CO
CM
CD
|| Potassium Sulfate
o
CO
CO
to"
CM
10
CO
CM
r-
o
en
CO
s
CO
CN
en
CO
CM
CO
CO
CO
CO
cn
CD
cn
CO
CO
o
10
» Potassium-magnesium
Sulfate
o
o
o
0
0
o
o
0
o
0
0
CO
|| Potassium-metaphospha
0
o
0
0
CO
CM
O
0
0
o
o
0
CO
|| Potassium-sodium Nitrat
CO
cp_
CO
p*
5
CM
CO
O
CO
CM
CO
in
CM
CM
CM
O
cn
in
CM
-------
TJ
CO
X
H
o
cc
•J
•IB
a
w
M^
Q
m
z
••
o
•••
S
to
•^B
C
O
| DescriptI
oc
FERTILIZE
o
z
o
o
o
o
-
cn
o
o
o
o
o
CO
•o
1
o
o
o
o
o
o
0
o
o
o
o
|| Castor Pomace
o
o
o
o
o
0
0
o
o
o
o
Cocoa Shell Mea
0
o
0
o
o
o
CM
cn
0
o
0
o
|| Compost
0
o
0
0
o
o
o
0
o
0
o
Cottonseed Meal
o
o
o
o
o
o
o
o
o
o
0
|| Fish Scrap
o
o
o
o
0
o
0
o
o
o
o
o
i
C3
O
CO
CO
in
CO
00
0
0
CO
CM
^
o
o
o
CO
o
o
|| Manure
o
o
o
o
o
o
0
o
0
o
o
CO
£
o
o
0
o
0
0
CM
CO
o
0
o
CM
8
•o
o
<°
z
|| Sewage Sludge,
0
o
0
0
o
o
o
o
o
0
o
•o
CD
Q
CD
o>
1
CO
1
1
CO
0
o
o
o
o
o
o
o
o
o
CO
CD
X
» Sewage Sludge,
Dried
o
i-
o
o
o
o
o
o
0
o
0
,_
o
| Sewage Sludge,
o
o
o
o
o
0
0
o
o
0
o
|| Soybean Meal
0
o
0
o
o
o
o
0
o
o
o
|| Tankage, Animal
0
0
o
o
o
CO
o
o
o
o
o
|| Tankage, Proces
o
0
o
CM
O
o
CO
o
CO
o
o
o
o
CM
CO
in
CM"
JZ
0
0
in
CM
1^
in
CO
CO
cn
CO
O
CO
cn
u
o
o
o
cn
in
cn
co"
|| TOTAL
FERTILIZEF
I-
ffi
RONUTRI
<->
S
Q
$
cc
a
8
CO
o
o
0
CO
o
o
o
0
o
0
o
CD
|| Aluminum Sulfat
o
o
cn
cn
00
o
CO
CM
o
CO
5.
0
CM
0
cn
CO
X
CO
£
o
o
0
o
o
0
CM
0
o
0
in
Calcium Chelate
o
o
0
o
-
0
OJ
1
o
•
-------
•o
03
O
O
CNl
.2
J2
(0
X
0
cc
^
*
Q
O
Z
GQ
O
Z
<
c/3
|| Description
0
o
o
-
o
o
-
o
0
o
o
e
« Epsom Salt (Magnesiu
Sulfate)
o
o
0
o
CM
0
o
o
CO
o
0
o
CD
I
O
1
o
o
o
o
0
o
-
0
f
to
CM
*-
1
CO
£
o
o
0
o
CO
-
CO
0
.*
o
to
|| Ferrous Sulfate
o
o
o
'
0
CO
§
CD
OJ
CO
to
in
CO
*
p-
CM
£
a
|| Gypsum (Calcium Sull
o
to
o
-
0
en
to
CO
to
o
r-
o
1O
|| Iron Chelate
o
o
o
o
0
o
o
0
o
o
CM
CO
|| Iron Compound
o
o
o
o
0
o
0
0
o
o
0
|| Lime Sulfur Solution
o
o
o
-
o
0
to
CO
o
CO
-
« Magnesia (Magnesium
Oxide)
o
o
0
CM
o
0
o
0
CM
o
10
|| Magnesium Chelate
o
o
o
o
o
o
o
0
o
en
o
|| Manganese Agstone
o
o
o
o
o
o
en
CO
o
to
CM
O
-
|| Manganese Chelate
o
o
o
o
0
o
o
IO
o
o
0
|| Manganese Oxide
o
o
o
o
0
o
0
o
o
o
0
|| Manganese Slag
o
o
o
o
o
CO
to
CO
0
CO
CO
o
-
|| Manganese Sulfate
o
o
o
o
0
o
CO
o
o
o
0
|| Manganous Oxide
0
0
o
o
0
o
0
o
o
o
0
'o
cn
CO
1
0
0
o
o
0
o
0
o
.-
o
0
|| Sodium Molybdate
0
0
o
o
0
o
0
o
o
o
0
|| Soil Additive
0
0
o
CO
0
o
CO
0
o
o
o
0
|| Soil Amendment
0
o
o
o
0
o
cn
o
to
o
0
CD
O
CJ
'o
cn
0
CM
0
en
to
05
cn
CO
CO
en
to
0
CO
i
cn
o
CO
m
CO
cn
CO
CM
CO
cn
0
o
o
o
0
0
CO
to
o
o
o
cn
o
o
|| Sulfuric Acid
o
,_
CO
00
*^
CO
cn
en
cn
CO
o
to
o
CO
CM
CM
|| Zinc Chelate
o
o
o
CO
CO
o
§
CM
cn
CO
cn
en
CO
(M
to
CM
CO
en
CM
03
•o
1
s
o
o
o
o
o
o
CM
0
cn
o
CO
|| Zinc Oxysulfate
0
CM
o
en
cn
0
o
cn
CO
CO
o
CO
o
0
CM
O
CM
CD
cn
§
Ki
0
,
o
o
o
0
CO
00
CO
o
o
o
o
| Zinc Sulfate Solution
CO
0
CO
o
to
o
1
r-
CM
CO
CO
o
CM
-
-
I
r-T
CM
CO
CO
CO
to
CO
CO
o
cn
O
A-13
-------
•o
03
3
I
co
X
o
CC
<^
Q
CO
a
CO
z
0
^?
£
^
"~
CO
| Description
CO
r*
o
*
to
in
JC
CO
0
CO
CM
in
CO
CM
CO
CO
CM
en
8
in
CM
en
in
0
in*
o
CO
^-
in
en
CM
CO
8
«*•
o
h-
">,
5 MATERIA
z
o
o
o
to
in
en
CM
o
o
o
o
0
o
o
II Calcitic Lime (75%
| Neutral)
o
o
o
o
o
CM
o
o
o
o
o
» Calcium Hydroxide
(Hydrate)
0
o
o
o
o
o
o
0
o
0
o
••—
|| Calcium Oxide (Burn
o
o
o
o
0
0
o
0
o
o
o
•o
c
m
m
IDolomitic & Calcitic
(Pelletized)
o
o
o
r-
o
0
0
0
o
o
o
IDolomitic Lime (75V
Neutral)
o
o
o
o
o
0
o
0
o
o
o
|| Lime Suspensions
o
o
o
o
0
0
o
0
o
o
o
t^
Non-lime Filler (Wate
Sand, Etc.)
o
0
o
0
o
o
0
r*.
CO
co~
CO
0
o
00
|| Standard Calcite
o
0
o
CM
o
o
o
o
0
o
o
|| Standard Dolomite
o
in
O
O
O
o
o
o
o
o
in
CO
CO
.c
0
o
in
O
*d-
CO
o
CM
o
CO
CO
CO
10
o
0
CO
|| TOTAL
FERTILIZER!
d
o
Cn
CM
CM
CO
CO
CO
O
00
en
CM
CO
CM
en
CO
in
00
CO
CM
00
en
CO
in
CM
o
en
0
O
CO
CM
CO
CM
S
CO
CO
CO
CO
CM
cS
T—
5
CO
CO
CO
CO
CO
_1
A-14
-------
0)
o
"5»
0)
cc
•o
-a
•o
(0
73
JO
D)
Ul
I
a>
0)
I
o
+3
a.
to
o
O
k.
6
£
2
I
Z
5
5
Ul
O
Ul
Q
|| Description
-
Ul
cc
N
£
z
cc
LTIPLE N
5
in
p-
pC
CM
CO
CO*
CO
00_
CO
CN
in
in
cn
CO
CO
o
CM
cn
in
CO
_
in
CM
o
CM
O
pC
CO
in
CO
q
in
CM
CM
CO*
p>-
00
CM
CO
^.
4
CO
0.
•z.
CO
cn
CM
in
CN
CO
CD
CO
CO
CM
"
Q
CM
8
in
CO
"3-
O
I-
CO
cn
CM
o
00*
CO
CO
co
in*
5
O)
LO
q
a.
ID
9
00
CO
CO
o
cn
i-^
fi
CM
in
O
CO
CO
1
o"
00
in
CO
in
p-
O
5
CO
CM
in
r-
in
CM
CM
^
p-
^
^
p?
O
O
in
CM
cn
o
CM
CM
CO
CO
00
CO
00
a.
CO
CM*
CO
CO
00
s"
00
in
00*
CN
CO
CO
cn
cn
•-
00
CO
in
CM
0
cn
0
o
CM
CO
O
CO
0
CN
in
CO
co"
cn
00
co"
CM
CM
CO
O*
p*
cn
in
p«*
CO
p-
in
P-*
*fr
_j
H
O
1-
U]
cc
T
g
O
cc
1-
z
CO
o
CD
CO
§
CO
CM
CM
CO
CO
CO
*•*"
0
cn
CD
CO
CM
CO
CO
CO
cn
cn
CM*
CO
in
CM
CO
Ammonium Nitrate
o
o
o
o
,-
o
o
o
o
o
o
0
I Ammonium Nitrate
Solution
o
o
o
o
in
^_
o
o
o
*~
o
o
« Ammonium Nitrate-
limestone Mixtures
CO
o
CO
o
*-
0
CM
§
0
cn
CM
o
o
0
B Ammonium Nitrate-
sulfate
0
0
,-
0
0
0
0
0
0
o
0
o
CO
Ammonium Polysulfid
in
in
CM
in
cn
co"
„.
CO
cn
o
in
CO
CO
CM
CN
CN
in
CM*
o
CN
00
CO
CO
Ammonium Sulfate
o
o
cn
o
in
o
o
o
o
CO
CO
0
o
in
Ammonium Sulfate
Solution
o
o
CO
cn
CO
0
o
o
o
o
o
CO
CO
0
0
§
B Ammonium Sulfate-
nitrate
o
o
o
o
in
CM
o
o
o
o
o
o
o
CO
CD
Ammonium Sulfate-ur
t_
o
CD
CM
CO
,„
CN
CO
O
CO
in
o
-
CO
-------
O
O
CO
<
i
H
DC
•z
•x.
z
z
E
Q
LU
O
Ul
Q
Description
o
o
o
o
o
o
o
o
o
o
o
o
Magnesium Nitrate
CM
o
o
o
CO
o
o
CO
CM
CM
O
0
0
|| Nitric Acid
CO
DO
O
•3-
en
r-
o
CO
p-
«~
0
en
CM
en
CM
CO
CO
to
en
CO
5
8
to
Nitrogen Solution 28%
CO
CM_
co"
o
CO
0
to
s
o
CO
o
CM
eg
--
CO
CO
CM
CO
en
o
o
r-
co
in
CO
Nitrogen Solution 30%
o
*d-
CO
CO
CO
CM
CO
-
10
CO
a"
CO
CM
CO
en
10
CO
o
CM
CM
o
to
CO
CO
CM
Nitrogen Solution 32%
CO
o
<*•
CO
o
-
p-
CO
CO
to
f-
CO
CO
CO
*
o
10
CO
CO
10
CM
^~
Nitrogen Solution
<28%
o
o
10
0
to
CO
o
0
o
0
0
o
o
« Nitrogen Solution
>32%
£
CM
en
-
CO
CO
CM
O
CM
CD
in
en
*
CO
.-
|| Sodium Nitrate
o
,r
o
CO
en
CM
O
CO
•-
*
O
*~
„.
Sulfur Coated Urea
ID
CO
CM
en
CO
CM
CO
CO
en
CO
CO
CO
en
r-
00
CM
to
O
O
CM
CO
en
cb"
CO
in
CO
»
CO
t-
to
m
-------
C:
+3
O
U
n
.a
(0
>
1-
2
£
z
X
z
T
s
Q
U
US
|| Description
o
o
o
o
o
o
0
o
o
o
o
0
Basic Slag
o
o
to
o
o
CO
CM
o
CO
0
0
Bone Meal, Raw
o
-
-
-
CM
to
CO
5
CO
CO
tn
Bone Meal, Steamed
0
o
o
o
o
o
o
0
o
o
o
o
Bone, Precipitated
0
o
o
o
o
o
o
0
o
o
o
o
Calcium Metaphosphate
o
o
.
o
o
o
o
"*
o
o
o
o
B Colloidal Phosphate
(Soft Phosphate)
CO
en
CO
s
3
q
CM
O
CM
CO
to
*"*
cn
CM
CM
s?
CO
CM
CO
CO
CM
CO
to
CM
O>
|| Diammonium Phosphate
0
o
o
o
o
o
o
0
o
o
0
0
|| Limestone, Phosphatic
CO
o
CO
CO
to
to
CM
to
CO
CO
CM
to
cn
CO
CB
,_T
5
to
•*
r*.
CO
"
0
3
CO
CO
» Liquid Ammonium
Polyphosphate
0
o
-
o
o
rf
O
0
O
0
o
0
0
|| Magnesium Phosphate
CO
CO
CO
CO
CM"
1
cn
CO
CO
CO
«~
CO
CO
0
CO
^
to
to
o
CO
«Monoammonium
Phosphate
0
o
o
o
0
o
o
o
o
o
o
0
|| Nitric Phosphate
0
-
o
o
-------
£
_
<
ir
z
z
z
i
Q
E
ii]
5
§
UJ
Q
Description
in
CM
CO
•0?
CO
CO
CM
in
55
in
CM
CM
CO
T—
CO
CO
CO
CM
8
CO
CM"
5
i
CO
CO
CD
r-
rfr
£
CM
O
CM
O
» Muriate of Potash 6
(Pot. Chloride)
in
CO
o
CO
CO
o
in
§
CM
O
•*
CM
CD
CM
CM
O
CO
§
CM
Muriate of Potash 6
o
o
cn
*
CM
CO
CM
O
CO
-
CO
•o
.2
Q
T3
O
O
m
o
o
0
o
o
0
o
o
o
o
0
o
N Castor Pomace
o
o
0
o
o
0
o
0
0
o
0
0
M Cocoa Shell Meal
CD
CO
CM
O
CO
O
CO
5
CO
5
00
pC
in
CO
o
0
o
0
|| Compost
0
0
o
o
o
o
o
*
o
o
0
|| Cottonseed Meal
o
o
o
0
o
o
o
CO
o
o
o
o
o.
CO
CJ
CO
.c
.0?
o
o
o
0
o
0
o
o
o
o
0
o
o
c
CD
=1
C3
CM
cS
CO
in
in
o
CM
O
1
in
5
C3
CO
CO
CO
CO
CO
CM
CO
CO
CO
1
CO
o
o
o
o
o
o
8
o
CO
o
0
o
03
s.
o
o
CO
o
CO
CM
0
in
,
cn
CM
CO
CO
0
CM
CO
in
o
« Sewage Sludge,
Activated
0
o
o
o
o
o
o
o
o
o
o
0
« Sewage Sludge,
Digested
A-18
-------
3
+3
O
U
CO
3
*
£
E
z
X
2
5
Q
UJ
0
UI
Q
|| Description
o
o
o
o
o
o
0
o
o
o
o
CM
1 Sewage Sludge, H
Dried
o
o
o
o
CO
CO
§
o
0
o
0
o
CO
CO
f.
Sewage Sludge, 0
o
o
o
0
o
o
o
o
o
o
o
o
Soybean Meal
o
o
0
o
o
0
o
o
o
o
o
o
|| Tankage, Animal
o
o
o
o
o
o
o
o
o
o
o
o
Tankage, Process
o
8
CO
o
in
o
en
CO
CO
"
o
CO
00
en
en
o
o
o
CO
in
CO
1
6
CM
O
cn
CO
00
en
0
CO
o
CM
o
00
in
s
o
cn
CO
CO
o
CO
in
CO
0
cn
5
en
CM
CD
,
CO
cc
H
=i
cc
u.
JTRIENT
o
o
a
1
CO
o
0
o
in
CO
00
r-
CM
CM
O
CM
CM
Aluminum Sulfate
CM
8
CO
CM
CO
"fr
0
"J-
<~
CO
in
-t
CM
s
£
o
CD
O
O
o
„.
o
CO
*"
o
o
o
-
Calcium Chelate
o
o
CO
CO
o
CM
0
00
o
o
o
o
o
Calcium Chloride
o
o
o
o
o
o
o
o
o
o
o
o
« Calcium Sulfate
(Hydrous)
o
o
o
0
o
o
o
o
o
0
o
o
Cobalt Sulfate
o
o
o
o
CM
o
o
o
o
o
o
o
Copper Chelate
0
o
o
o
o
o
o
0
o
o
o
o
Copper Compounc
o
o
o
0
o
o
o
o
o
o
o
0
^i
|| Copper Oxide, Bla
o
o
00
CO
0
CO
m
o
-
0
CM
-
O
O
| Copper Sulfate
o
o
CO
o
t_
CO
CO
CO
CO
^
-
o
o
1
$
» Epsom Salt (Magn
Sulfate)
o
o
o
o
o
0
o
0
o
o
o
o
Ferric Oxide
o
o
m
0
o
o
o
o
o
o
o
o
|| Ferric Sulfate
o
o
«.
o
CO
0
o
CO
o
o
o
-
Ferrous Sulfate
0
CM
CM
en
-
o
CO
•*
CO
CO
CM
CO
CM
CO
CO
CM
cn
CN
*
« Gypsum (Calcium
Sulfate)
"*
-
CM
m
<-
CO
CO
CO
CO
CO
en
en
o
CM
O
|| Iron Chelate
o
o
o
-
in
O
CO
•*
0
o
CM
O
|| Iron Compound
A-19
-------
•a
I
%-•
o
O
CO
CD
15
a
1
$
*
E
z
X
Z
1
Q
5
ui
UJ
O
Description
o
o
o
o
o
o
o
o
o
o
0
o
Lime Sulfur Solution
CM
o
CO
8
o
CO
o
o
o
CO
JI
o
o
Magnesia (Magnesium
Oxide)
o
o
o
o
-
o
o
o
o
o
o
o
Magnesium Chelate
o
o
0
o
o
o
o
0
o
o
o
o
| Manganese Agstone
o
o
-
o
ID
O
o
0
-
o
0
o
|| Manganese Chelate
o
o
o
0
"-
o
0
*
CO
o
o
"
|| Manganese Oxide
0
o
o
0
o
o
o
o
o
o
o
o
|| Manganese Slag
0
o
CO
0
o
o
-
CO
*
CO
CM
-
o
CO
CO
Manganese Sulfate
o
o
o
o
o
o
o
o
o
0
o
o
|l Manganous Oxide
o
o
0
o
o
o
o
CO
CO
0
o
0
0
*~
|| Potting Soil
o
o
0
o
o
0
o
0
0
o
o
o
|| Sodium Molybdate
0
o
o
o
o
o
CM
o
o
o
o
0
|| Soil Additive
o
o
o
o
CO
o
CM
O
O
in
o
CM
o
CO
|| Soil Amendment
o
o
o
o
o
0
in
CO
rC
o
o
0
o
o
Soil Conditioner
CO
-
in
CO
o
CO
CO
CO
CO
CM
en
CO
CO
CM
in
•3
CO
0
o
o
o
o
o
o
o
o
o
o
o
|| Sulfuric Acid
0
0
-
o
in
in
0
O
«~
0
CO
0
o
in
-------
o
O
00
(0
g
t
g
K
Z
X
^
-J
5
Q
LU
5
o
LU
|| Description
o
o
0
0
o
o
o
0
o
o
o
0
|| Calcium Oxide (Burnt)
o
o
o
o
o
o
o
0
o
0
o
0
IDolomitic & Calcitic
Blend (Pelletized)
o
o
o
pi
o
o
o
CM
o
ro
CM
o
in
o
gDolomitic Lime (75%
Neutral)
o
o
o
0
o
o
o
o
CO
CM
CM
o
o
o
|l Lime Suspensions
o
o
o
o
CM
co
o
o
o
o
o
o
o
5
1
|I
11
"Z. 03
in
in
O
3
CO
o
o
o
en
CO
CO
0
0
|| Standard Caleite
0
o>
CM
o
CO
CO
in
CO
CM
O
CO
o
CO
in
CO
O
n
o
"o
Q
•a
CD
55
0
0
8
in
CM
CO
in
CM
in
in
r*.
CO
CO
o
CO
CO
CO
o
CO
CO
CD
6
to
OJ
Si
m
CO
CO
CO
in
n
CM
CO
CO
o
•*
in
CO
CO
in
CO
0
CM
*~
in
03
O
ID
a>
CO
I
FILIZERS
s
^
CM
48,00
CO
CO
in
CO
^
<-
CD
CO
CO
CO
CO
1£
CM
CO
uq
CO
CO
LO
CO
0
CM
CO
CO
CO
154,395
CM
CO
CM
CM
CO
^-
CM
|
A-21
-------
Table A-4. Fertilizer Consumption (Tons) by State - South Atlantic Region
Description | FL | GA | NC | SC | VA
MULTIPLE NUTRIENT FERTILIZERS
N-P-K
N-P
N-K
P-K
TOTAL
1,073,365
49,685
379,121
60,775
1,562,946
989,848
55,376
0
0
1 ,045,224
792,236
71,605
83,792
19,698
967,331
299,311
15,851
42,200
60,513
417,875
342,468
66,647
21,598
4,749
435,462
NITROGEN FERTILIZERS
Ammonium Nitrate
Ammonium Nitrate Solution
Ammonium Nitrate-limestone
Mixtures
Ammonium Nitrate-sulfate
Ammonium Polysulfide
Ammonium Sulfate
Ammonium Sulfate Solution
Ammonium Sulfate-nitrate
Ammonium Sulfate-urea
Ammonium Thiosulfate
Anhydrous Ammonia
Aqua Ammonia
Calcium Ammonium Nitrate
Calcium Cyanamlde
Calcium Nitrate
Calcium Nitrate-urea
Ferrous Ammonium Sulfate
Magnesium Nitrate
Nitric Acid
Nitrogen Solution 28%
Nitrogen Solution 30%
Nitrogen Solution 32%
Nitrogen Solution <28%
Nitrogen Solution >32%
Sodium Nitrate
Sulfur Coated Urea
Urea
Urea Solution
Urea-form aldehyde
Zinc Ammonium Sulfate Solution
Zinc Manganese Ammonium Sulfate
33,591
3,294
5
6
1
29,702
210
1,073
0
843
5,535
27
24
0
10,914
10
33
3
0
18,613
290
12,992
26,999
358
912
51
16,715
159
7,645
0
5
81,043
0
0
0
0
8,088
0
0
0
0
8,734
0
0
0
0
0
0
0
0
0
332,803
0
0
0
0
0
23,762
0
0
0
0
38,198
0
392
11,793
2,916
35,160
1
107
0
253
5,187
308
85
1
6,997
1,046
122
0
1
1,038
290,404
23,779
86,347
72
14,178
3
15,785
0
1,497
85
7
17,564
382
0
54
606
3,290
31
7
456
65
2,215
0
212
2
1,342
439
0
0
16
2,465
66,162
1,145
73,959
1,177
2,218
146
4,304
143
3,020
105
0
12,511
38
0
844
98
24,836
429
73
13
253
782
265
33
0
822
0
88
0
974
732
82,872
898
45,074
353
1,640
46
23,051
0
767
129
63
A-22
-------
Table A-4. (Continued)
Description
Other
TOTAL
FL,
25,758
195,767
GA
27,930
482,360
NC
5,317
541 ,078
sc
7,966
189,492
VA
1,416
199,101
PHOSPHATE FERTILIZERS
Ammonium Metaphosphate
Ammonium Phosphate
Ammonium Phosphate Nitrate
Ammonium Phosphate Sulfate
Ammonium Polyphosphate
Basic Lime Phosphate
Basic Slag
Bone Meal, Raw
Bone Meal, Steamed
Bone, Precipitated
Calcium Metaphosphate
Colloidal Phosphate (Soft Phosphate)
Diammonium Phosphate
Limestone, Phosphatic
Liquid Ammonium Polyphosphate
Magnesium Phosphate
Monoammonium Phosphate
Nitric Phosphate
Phosphate Rock
Phosphoric Acid
Precipitated Phosphate
Super Phosphate, Enriched
Super Phosphate, Normal
Super Phosphate, Triple
Super Phosphoric Acid
Other
TOTAL
0
2
1
0
6
0
2,869
0
37
0
13
393
13,674
45
8,055
25
84
0
0
2,945
0
25
1,737
4,260
2,219
5,710
42,102
0
0
0
0
0
0
0
0
0
0
0
0
13,123
0
42,253
0
0
0
0
0
0
0
0
5,171
0
11,371
71,918
0
0
0
0
0
0
119
24
2
0
14
56
34,613
0
22,673
12
2,227
0
0
156
23
16
158
10,850
0
34
70,978
0
0
0
16
0
0
0
16
0
0
0
1
2,757
0
9,882
5
28
0
0
1
0
26
561
2,313
0
81
15,688
0
2
0
8
0
0
0
0
138
0
88
50
48,541
0
6,661
0
1,917
0
24
100
0
19
211
6,064
0
383
64,205
POTASH FERTILIZERS
Lime-potash Mixtures
Manure Salts
Muriate of Potash 60% (Pot.
Chloride)
Muriate of Potash 62%
Potash Suspensions
Potassium Carbonate
Potassium Nitrate
30
1
10,570
738
179
2
4,142
0
0
29,836
0
0
0
0
96
478
77,488
5,121
0
288
17,085
1
1
11,619
2,914
0
4
5,361
93
24
63,405
4,170
0
0
28
A-23
-------
Table A-4. (Continued)
Description
'otassium Sulfate
Potassium-magnesium Sulfate
Potassium-metaphosphate
'otassium-sodium Nitrate
Other
TOTAL
FL
9,313
3,402
0
946
11,405
40,727
GA
0
6,325
0
0
12,594
48,755
NC
4,883
5,779
0
15,713
3,605
130,537
ORGANIC FERTILIZERS
Blood, Dried
Castor Pomace
Cocoa Shell Meal
Compost
Cottonseed Meal
Rsh Scrap
Guano
Manure
Peat
Sewage Sludge, Activated
Sewage Sludge, Digested
Sewage Sludge, Heat Dried
Sewaga Sludge, Other
Soybean Meal
Tankage, Animal
Tankage, Process
Other
TOTAL
5
0
0
3
1
0
0
4,010
0
10,682
0
0
0
0
0
0
996
• 15,695
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29,314
29,314
125
8
11
12
39
18
0
42,046
8,399
23
0
0
6
0
0
83
143,494
1 94,265
sc
2,626
921
0
325
4,813
28,586
0
0
0
1,586
0
0
0
3,573
0
56
0
0
0
0
0
0
1,397
6,612
VA
873
591
0
1,434
4,655
75,273
66
0
0
19,263
0
0
0
7,679
62
0
0
0
253
0
0
0
12,226
39,548
SECONDARY AND MICRONUTRIENT FERTILIZERS
Aluminum Sulfate
Borax
Calcium Chelate
Calcium Chloride
Calcium Sulfate (Hydrous)
Cobalt Sulfate
Copper Chelate
Copper Compound
Copper Oxide, Black
Copper Sulfate
Epsom Salt (Magnesium Sulfate)
Ferric Oxide
4
84
222
8
13
0
0
4
0
175
859
1
0
0
0
0
0
0
0
0
0
0
0
0
4
1,268
3
2
0
0
58
0
0
35
2
0
0
75
0
5
0
0
0
3
0
4
8
0
9
467
2
24
0
0
0
0
0
3
5
0
A-24
-------
Table A-4. (Continued)
Description
Ferric Sulfate
Ferrous Sulfate
Gypsum (Calcium Sulfate)
Iron Chelate
Iron Compound
Lime Sulfur Solution
Magnesia (Magnesium Oxide)
Magnesium Chelate
Manganese Agstone
Manganese Chelate
Manganese Oxide
Manganese Slag
Manganese Sulfate
Manganous Oxide
Potting Soil
Sodium Molybdate
Soil Additive
Soil Amendment
Soil Conditioner
Sulfur
Sulfuric Acid
Zinc Chelate
Zinc Oxide
Zinc Oxysulfate
Zinc Sulfate
Zinc Sulfate Solution
Other
TOTAL
FL
0
1,723
22,357
553
172
0
160
21
0
38
13
72
3,238
0
0
0
1
0
356
807
0
15
118
0
3
0
60,293
91,308
GA
0
0
79,514
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
39,388
118,902
NC
0
22
130,820
69
0
0
46
0
0
80
24
0
129
0
0
0
0
0
1
656
0
27
0
11
3
0
12,392
145,651
sc
0
0
9,506
0
38
0
47
0
0
0
-1
88
8
0
0
0
0
0
0
226
0
0
3
8
1
0
4,448
14,468
VA
0
0
92,203
7
5
0
13
3
0
1
3
0
1
0
28,530
0
0
5,036
58
584
0
41
0
3
27
0
518
1 27,543
LIMING MATERIALS
Calcitic Lime (75% Neutral)
Calcium Hydroxide (Hydrate)
Calcium Oxide (Burnt)
Dolomitic & Calcitic Blend (Pelletized)
Dolomitic Lime (75% Neutral)
Lime Suspensions
Non-lime Filler (Water, Sand, Etc.)
Standard Calcite
Standard Dolomite
25,1 24
231
186
775
1 1 1 ,666
0
7
22,288
36,218
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
947,126
0
0
0
0
0
0
0
0
0
0
0
0
0
115
197
0
0
3,917
6
A-25
-------
Table A-4. (Continued)
Description
Other
TOTAL
TOTAL
FL
19,864
216,359
GA
0
0
ALL FERTILIZERS
2,123,256
1 ,741 ,097
NC
0
947,126
2,821,000
sc
0
0
649,028
VA
15,960
20,196
875,174
A-26
-------
O
u
Q.
o
"5>
0)
cc
u
u
(D
Q.
<->
o
I
+j
CO
o
c
o
(0
o
O
I
"•E
-
£
F
D
C
<
CO
CO
CO
CO
CO
CO
in
CM
CO
T—
*~
CO
CO
*
en
CM
q
co"
CO
in
q
CO
CO
§
co"
in
CM
CM
CO
in
CO
CM
in
o
CO
CO
00
CO
in"
0
CM
CO
CM
-------
•o
(D
3
O
in
<
CD
1
i
6
J o
i
g
s
1
t
0
•c
8
g
si
S
0
o
o
o
o
o
o
o
o
o
o
o
o
o
Magnesium Nitrate
o
o
M-
O
O
8
o
o
o
o
CO
00
o
o
o
Nitric Acid
00
in
in
en
in
co"
CM
co
O
CO
p-
co
en
CM
in
o
CO
0
o
o
CO
in
O
eo
CO
CO
o
o
^£>
Nitrogen Solution 28°
in
CO
CO
o
o
o
8
o
o
0
o
CM
in
CM
o
0
0
^p
Nitrogen Solution 30°
CO
en
0
O
in
137,675
CO
CD
CD
0
O
O
O
to
O
CO
O
in
en
00
r-
3
CO
CO
CD
CM
CO
01
CD
CO
CO
CO
,_
O
CO
00
in
O
01
CO
CO
vp
Nitrogen Solution 32°
o
CM
in
CO
CM
o
CO
i
CD
CO
o
CM
O
o
CM
O
00
in
en
in
r-
cn
o
00
•32%
o
CM
CO
CO
O
O
0
"
o
o
o
o
en
CO
o
o
Sodium Nitrate
o
o
00
[•*•
CO
00
CM
§
o
o
o
o
-
ft
o
o
(Sulfur Coated Urea
in
in
CO
CM
CO
CO
CO
CO
en
CO
o
CM
en
CO
in
CO
o
o
CM
in
3
CO
co"
CO
123,923
o
§
CM
CO
en
CM
00
CD
00
in
CM
in
CO
•*
CM
to
to
5
0
0
o
o
o
o
CO
CD
O
0
0
o
3
oo"
O
0
[urea Solution
o
en
01
CO
in
-
§
00
co"
o
-
o
o
o
CM
o
o
o
lUrea-formaldehyde
CO
0
-
o
o
0
o
o
o
o
-
o
o
0
HZinc Ammonium
nSulfate Solution
0
o
o
o
o
o
o
0
0
o
o
o
o
o
»Zinc Manganese
Ammonium Sulfate
CO
CO
CO
in
CO
CM
CO
CM
-
1
O5
CM
s
in
CO
CO
rC
O
0
O
CO
r-
CO
CO
o
o
o
(O
s
182,439||
650,012
1
oo"
CO
^_
CO
00
CO
CO
in
00
in
en
in
o
00
0
CO
en
CM
5
CO
544,340
..
CO
CO
00
CO
CM
en
o
co"
g
CO
CO
CM
to
r-
O)
pC
3
3
U{
->
r?
Ill
10SPHATE F
LL
O
00
CM
CO
O
O
O
o
o
o
o
o
o
o
o
0
» Ammonium
Metaphosphate
o
CO
in
CO
0
o
CO
0
o
o
§
in
CM
CO
O
O
O
CO
CO
||Ammonium Phosphat
o
5
CM
o
o
-
0
o
o
o
o
o
o
o
0
o
B Ammonium Phosphat
Nitrate
CM
en
in
CO
en
CM
CM
o
CO
CO
CM_
CO
CM
in
en
01
•*
"P.
<-
CO
5
en
CO
0
00
CO
in
o
in
CO
o
01
CD
« Ammonium Phosphat
Sulfate
o
CO
o
co"
o
0
o
o
0
o
o
o
o
o
o
o
||Ammonium
Hpolyphosphate
0
o
o
o
o
0
o
o
o
o
o
o
o
0
[[(Basic Lime Phosphate
A-28
-------
•a
o>
c
o
O
in
CO
^
1
i-
f*
EC
O
z
i
5
a
X
8
3
„
N
O
O
O
o
o
o
o
o
0
o
o
o
o
o
[[Basic Slag
o
CM
CO
0
o
o
0
-
o
o
o
o
o
o
o
pone Meal, Raw
o
IV
CO
O
0
o
0
£
o
o
o
o
o
0
0
Bone Meal, Steamed
CO
o
o
o
o
0
o
o
o
o
o
o
o
0
pone, Precipitated
o
o
o
0
o
0
0
0
o
o
0
o
0
0
Calcium
Metaphosphate
o
CO
o
0
o
0
o
o
o
o
o
o
o
o
[Colloidal Phosphate
(Soft Phosphate)
CO
CO
CM
CM
1"
CO
CO
CO
§
CO
CO
o>
^
O
CM
co"
CO
in
,x
en
*
in
o
3
o
CO
CO
en
co"
§
co"
CO
CO
*
gDiammonium
Phosphate
o
o
o
o
o
o
o
o
0
o
o
o
o
o
[(Limestone, Phosphatic
CM
in
0
5
en"
CO
CO
0
LO
o
CO
CO
CO
CM
CM
CO
CM
CO
^
CM
O
CO
CO
CM
CO
8
CN
P*.
O
CO
in
o
^~
Liquid Ammonium
[(Polyphosphate
o
CO
o
o
o
in
CM
O
O
0
0
o
o
o
0
[[Magnesium Phosphate
CO
in
CM
CO
CO
CM"
en
in
o
-
CM
en
*
CO
10
CO
§
en
o
en
CO
CO
•*"
0
o
CO
en
in
in
CO
co"
0
CO
o
en
CM
gMonoammonium
Phosphate
o
en
CO
CM
O
O
0
o
0
o
o
o
0
0
0
0
[[Nitric Phosphate
o
in
CO
in
CO
*
o
o
CO
CM
O
0
O
0
1
CM
CO
CN
O
O
0
[[phosphate Rock
i
co"
CM
O
!
*
o
CM
O
CO
CM
CO
in"
0
to
"fr
CO
CO
CO
o
o
CO
[phosphoric Acid
^
2
o
o
CO
o
o
0
o
o
o
0
0
0
0
[(Precipitated Phosphate
o
CM
CO
o
en
o
0
o
0
0
o
o
0
0
« Superphosphate,
Enriched
o
in
0
o
o
o
0
o
in
CO
co"
in
in
O
CO
CO
t
«t
0
« Superphosphate,
Normal
„.
•*
o
in
in"
„.
in
O
in
in
CM
CO
CO
CO
CM
CM
CO
5
en
in
o
*~
en
in
IV
co"
CM
CO
en
CO
CO
CO
CO
rv
[(Superphosphate, Triple
en
CO
CM
O
O
CM
CO
in
CO
CD
0
0
en
0
co"
o
0
CO
CO
in
0
o
[[Superphosphoric Acid
o
CO
CM
2
o
en
in
CO
en
rv
o
CO
CO
o
CO
o
CM
CO
0
O
-------
•n
CD
o
O
in
CO
g.
I
$
Is
3 a:
§
S
z
t-
a
X
8
c
3
N
TO
CM
00
CM
O
in
CM_
CD
en
CO
10
TO
CO
CO
CM
TO
CO
r-
CM
00
o
00
TO
oi
CO
T—
*|
3
00
TO
CM
in
o
TO
CD
r*
TO
o
CO
« Muriate of Potash
(Pot. Chloride)
o
TO
CM
O
r-
en
TO
O
0
cn
o
CM
CN
10
O
O
O
CM
CO
Muriate of Potash
o
5
o
o
CO
CM
O
O
0
o
0
0
o
o
o
W
(iPotash Suspensio
o
o
o
o
0
o
o
o
o
o
o
o
llsewage Sludge,
((Activated
o
CM
o
0
o
o
o
o
o
0
0
0
o
o
« Sewage Sludge,
Digested
o
o
o
o
0
0
-
o
o
o
CO
o
"I
CM
O
O
0
CO
7
1
en
in c
A-30
-------
•o
0)
o
O
ID
I
i
B
r "
CC
0
s
z
1-
0
8
s
<
s
o
o
o
o
o
o
o
o
o
o
o
en
to
o
o
ffi
.c
0
CD
O)
CO
1
CD
CO
o
o
o
o
o
o
o
o
r>
0
o
o
o
o
(Soybean Meal
CM
o
CM
O
O
0
O
o
o
o
0
0
0
o
o
o
([Tankage, Anima
o
CO
o
o
o
o
o
o
0
0
o
o
o
o
||Tankage, Proces
o
I
*~
CM
1~
O
o
^
0
0
0
1
o
o
o
CD
6
8
en
CM
•*
o
CO
s
T~
o
o
00
CM
CO
CO
CO
o
0
CO
CO
CO
co"
CM
CO
00
o
o
1—
LIZERS
1-
a.
1-
NUTRIEN
O
%
1
n
O
o
CO
0
to
CO
o
o
CM
O
O
to
0
0
o
o
o
o
CD
[(Aluminum Sulfat
0
1
CM
O
CO
CO
O
in
o
o
o
in
CM
O
O
O
X
CD
O
O
*-
o
o
o
o
0
r>
tn
CO
o
0
0
0
[calcium Chelate
0
0
o
o
o
o
o
o
0
o
o
0
0
o
[calcium Chloride
0
en
0
o
o
o
0
o
o
o
o
0
0
0
« Calcium Sulfate
(Hydrous)
0
CM
0
o
o
o
0
o
o
o
o
0
0
0
||Cobalt Sulfate
0
to
CM
O
O
o
o
o
o
o
o
0
0
o
||copper Chelate
o
o
o
o
CM
o
o
o
o
o
0
CN
CO
O
O
•a
IJCopper Compou
o
o
o
0
o
o
o
o
o
0
0
o
o
o
£
||copper Oxide, B
in
en
CO
-
o
o
o
o
o
3
CO
0
CO
o
o
o
IJCopper Sulfate
CM
CO
O
in
CM
O
en
CM
s
o
o
o
o
0
0
o
o
o
CO
« Epsom Salt
(Magnesium Sul
o
,_
o
o
o
o
o
o
0
0
o
o
o
o
||Ferric Oxide
o
CO
B
CM
O
O
O
CM
CM
O
0
0
O
o
o
CM
3
IJFerric Sulfate
o
in
CO
o
o
o
5
o
0
0
en
o
o
o
[[Ferrous Sulfate
o
CO
in
CM
CM
CO
CO
CM
O
CO
CO
CM
O
CO
CO
in
to
CM
CO
o
CO
0
CO
en
CO
CO
CO
o
o
3
o
CO
CN
c
Gypsum (Calciur
Sulfate)
o
in
in
CO
o
-
o
o
o
CO
0
CO
o
o
o
||lron Chelate
o
o
CM
CM
O
CO
CM
CM"
o
in
o
0
0
o
to
CO
•*
o
o
||lron Compound
o
CO
o
o
o
o
0
o
o
0
0
o
0
to
o
•s
[[lime Sulfur Solu
o
o
o
o
o
0
o
o
§
0
o
o
o
E
3
CO
CD
« Magnesia (Magn
Oxide)
A-31
-------
I
"43
o
O
10
(0
1
1
1-
o
11
s. a
K
0
s
z
j-
s
X
o
0
g
*
N
o
in
CO
o
o
o
o
o
o
£
o
o
o
o
o
CD
nesium Chelat
s
o
o
o
o
o
o
o
o
o
o
o
o
o
0
S
iganese Agstor
CO
O
in
0
-
o
o
o
o
o
o
o
o
o
o
o
CD
iganese Chelat
CO
O
CM
O
O
en
o
o
o
o
o
-
o
0
o
iganese Oxide
CO
O
O
O
O
O
O
O
O
o
o
o
o
0
o
O
CO
CO
CD
CO
c
CO
o
CO
s
r*.
CO
CO
en
CM
£
O
0
0
CM
O
o
0
en
0
o
0
iganese Sulfat
CD
5
o
o
o
o
o
o
0
o
0
CM
o
0
o
0
iganous Oxide
CO
5
o
o
*
o
o
o
0
o
o
0
o
0
o
o
"6
co
CD
c2
o
CO
CM
O
O
o
0
0
o
o
o
o
0
o
o
ium Molybdate
o
CO
o
o
o
o
o
o
0
o
0
o
CM
0
o
0
Additive
o
to
0
o
o
o
CO
CO
o
o
o
o
o
en
CO
CO
o
0
o
Amendment
o
CO
o
o
0
o
o
o
o
0
o
o
r-
CO
o
o
0
o
Conditioner
0
CO
CO
eg
in
in
r-T
en
CO
0
|
CO
CM
in
CO
CO
CO
CM
CO
*~
CO
CO
CO
CM
CO
§
in
0
CO
CO
CM
CO
o
o
o
o
CO
CM
CM
0
s
0
o
o
£
^
CO
rC
-
0
CO
CO
uric Acid
to
*""
o
en
in
o
0
0
CM
o
o
in
CO
o
eg
0
o
o
} Chelate
c
Ki
-
5
CM
CO
O
CO
CO
q
o
o
o
o
o
0
o
o
o
CD
'x
O
c
N
O
in
CO
o
o
o
o
o
o
o
o
o
o
o
o
2 Oxysulfate
_c
in
in
en
CO
CO
CO
en
o
0
o
to
CM
o
CO
in
CO
CO
o
0
O
3 Sulfate
_c
£
o
0
o
0
o
o
0
o
o
o
o
0
o
c
o
3 Sulfate Solut
c
KJ
CM
CO
CM
CM
in
CO
in
CO
CM
CO
en
CM
CO
CO
CM
CO
in
CO
CO
"~
en
en
O
CM
f-
in
to
CM
o
CO
CM
O
CM
CD
O
CO
CO
ra
130,861
en
en
in
o
CO
CO
o"
CM
o
en
to
en
CO
o
CM
en
CM
*
oT
CO
|
CM
CO
CO
CO
CO
en
CO
en
o
CO
tN
O
h-
A-32
-------
0)
3
+3
O
O
(0
5
1
H
li
cc
o
5
^
i-
9
X
o
o
3
^
3
CO
H
S
C9
5
0
0
o
o
o
o
0
o
o
CO
en
CO
CO
o
o
o
o
Calcitic Lime (75%
Neutral)
0
CO
en
o
o
5
o
0
o
o
0
o
o
o
o
Calcium Hydroxide
(Hydrate)
o
o
r>
o
o
o
0
o
o
CO
en
o
o
o
o
Tf
IJCalcium Oxide (Burn
o
o
o
o
o
o
0
o
o
0
0
0
o
o
IDolomitic & Calcitic
Blend (Pelletized)
*-
o
o
o
o
o
0
o
o
o
o
0
o
o
UDolomitic Lime (75°/
Neutral)
o
o
0
o
o
0
o
0
0
o
0
0
o
o
IJLIme Suspensions
o
o
o
o
o
0
o
0
o
o
o
0
o
o
.
I
Js
0) "
11
•z. co
o
CM
CO
CO
CM
O
O
en
en
5?
o
o
"
o
o
CO
IT)
0
o
00
o
IJStandard Calcite
0
en
10
en
CO
o
o
CO
0
CM
0
O
o
o
o
0
0
o
o
[(Standard Dolomite
0
to
o
to
0
o
CO
o
o
o
CO
o
o
10
en
CM
CO
O
O
CO
6
»-
en
00
CM
s
0
o
CM
CM"
en
o
0
§
CO
CM
en
r-
00
CD
LD
10
en
CM
CO
o
00
o
ITOTAL
CO
s
h-
cc
u_
~d
CM
S
CO
; cs
en
CO
o
cs
en
en
*™1
73,259
en
CO
CO
o
CO
CO
CM
CO
to
10
CO
CO
10
§
CM
IO
10
en
CM
00
00
en
CO
CM
CO
CM
CO
CM
10
cn
^«
CO
en
CM
CO
CO
CO
CO
_J
1-
A-33
-------
-------
APPENDIX B
CROP-SPECIFIC FERTILIZER USE IN THE UNITED STATES
B-1
-------
Appendix B. Crop-Specific Fertilizer Use in the United States
The USDA ERS-NASS data presented in this appendix come from the most recent
surveys of field, fruit and vegetable crops. These surveys, the sampling methodology, coverage
and data collection are described in Agricultural Resources and Environmental Indicators (AREI)
Production Management Appendix (1997).
Fruit and vegetable data were abstracted from the Chemical Use Surveys that were
initially funded under the 1989 President's Food Safety Initiative. These surveys are conducted
by NASS "using personal enumeration of a stratified systematic sample of growers who produce
at least one acre of the targeted crops." The information collected on fertilizer use, acreage
planted, and application rates are survey data for the major crop producing states and do not
represent the totality of farms in the U.S. raising these crops. Surveys are conducted odd years
for fruit (latest available survey performed in 1995, representing the crop year 1995, and reported
in 1996) and even years for vegetable crops (latest available survey is for the crop year. 1994
reported in 1995).
The latest field crop usage data, covering 70 to 90% of the total U.S. crop, are from the
Agricultural Resources Management Survey (ARMS) of 1996 which combines the former
Cropping Practices Surveys with the Farm Costs and Returns Survey. This survey has three
phases. Phase n, conducted in the autumn, for the proceeding crop year, collects data on
agricultural production practices, resource and input use, and production. In this survey, "a
multi-frame, stratified sampling procedure is used. Results are weighted and aggregated to
develop state, regional and national estimates." Note that there are some crops (strawberries,
cantaloupe, honeydew melon and watermelon) in the vegetable survey that are commonly
considered fruits.
Detailed descriptions of the survey procedures are presented in the following documents
available on the internet from http://mann77.mannlib.cornell.edu.:
1. Agricultural Chemical Usage, 1995 Fruits Summary, USDA, NASS, ERS, July 1996,
Ag Ch 1 (96)
2. Agricultural Chemical Usage, Vegetables, 1996 Summary, USDA, NASS, ERS, July,
1997, Ag Chi (97)
3. Agricultural Chemical Usage, 1996 Field Crops Summary, USDA, NASS, ERS,
September, 1997, Ag Ch 1 (97)
B-2
-------
Table B-1. Fertilizer Use on Field Crops for the 1936 Crop Year3
Crop
Corn
Upland
Cotton
State
IL
IN
IA
KS
KY
Ml
MN
MO
NE
NC
OH
PA
SC
SD
TX
Wl
Total
AZ
AR
CA
GA
LA
MS
TN
TX
Total
Acres
Planted
(1,000
acres)
11,000
5,600
12,700
2,500
1,300
2,650
7,500
2,750
8,500
1,000
2,900
1,450
400
4,000
2,100
3,900
70,250
315
1,000
1,000
1,350
890
1,120
540
5,700
11,915
Total Applied
(million Ibs/year)
N
1 ,823.9
774.7
1,631.7
416.5
186.9
307.9
784.4
398.5
1,174.0
113.1
425.4
112.2
46.0
312.3
284.5
297.0
9,089.0
45.8
94.0
168.1
139.3
60.1
110.4
47.8
252.2
917.7
P
737.5
346.1
627.7
79.5
87.2
112.7
375.6
132.7
227.6
53.6
245.8
67.0
21.8
105.7
61.6
134.6
3,416.7
6.6
25.2
30.6
76.7
25.7
14.0
32.0
105.2
316.0
K
1,056.0
542.4
786.1
26.1
94.1
226.5
420.9
163.5
75.0
88.7
244.0
43.6
42.3
31.8
25.4
209.7
4,076.1
1.6
49.3
9.5
139.1
39.5
63.4
47.1
23.6
373.1
Application Rate per Crop Year
(Ibs/acre)
N
166
138
132
170
146
116
108
149
140
114
147
79
115
89
137
81
133
148
97
175
104
74
100
89
80
100
P
85
64
60
38
78
47
53
55
34
59
87
58
57
34
37
39
57
49
38
83
57
45
47
60
39
48
K
116
110
76
36
82
101
65
69
22
100
98
40
106
20
28
61
79
44
70
58
106
67
100
88
21
73
B-3
-------
Table B-1. (Continued)
Crop
Fall
Potatoes
Soybeans
Flue-cured
Tobacco
Winter
Wheat
State
ID
ME
WA
RRb
Total
AR
IL
IN
IA
LA
MN
MS
MO
NE
OH
TN
Total
GA
NC
SC
VA
Total
CO
ID
KS
Acres
Planted
(1,000
acres)
410
78
163
146
797
3,550
9,900
5,400
9,500
1,100
5,950
1,800
4,100
3,050
4,500
1,200
50,050
46
280
51
38
415
2,200
860
8,800
Total Applied
(million Ibs/year)
N
84.4
13.0
44.3
12.3
154.0
8.2
32.4
37.9
19.5
0.7
9.2
2.5
20.5
10.2
30.4
12.8
184.3
5.0
24.0
4.1
3.3
36.4
70.2
96.2
461.6
P
80.6
13.4
39.4
11.0
134.4
76.4
128.3
79.1
55.2
17.1
38.4
14.0
54.9
64.4
50.1
27.5
605.4
5.2
25.3
3.3
4.2
38.0
18.0
22.1
162.3
K
40.7
13.6
30.2
14.4
98.9
90.5
329.6
240.7
99.3
26.0
42.9
19.4
81.3
5.3
164.8
51.5
1,151.3
13.0
54.7
8.8
7.1
83.6
NA°
5.0
NA
Application Rate per Crop Year
(Ibs/acre)
N
206
167
285
84
195
26
22
31
26
14
15
13
21
12
34
40
24
108
86
80
90
88
41
115
56
P
198
174
195
78
173
48
56
45
49
43
47
42
54
42
46
53
49
114
91
67
116
93
21
53
28
K
116
175
204
105
139
60
99
102
76
70
69
62
71
17
102
82
85
284
197
172
193
203
NA
40
NA
B-4
-------
Table B-1. (Continued)
Crop
Durum
Wheat
Other
Spring
Wheat
State
MT
NE
OK
OR
SD
TX
WA
Total
ND
MN
MT
ND
Total
Acres
Planted
(1,000
acres)
1,980
2,100
4,900
850
1,580
2,900
2,350
28,520
3,000
2,550
4,200
9,600
16,350
Total Applied
(million Ibs/year)
N
84.7
78.6
199.2
65.0
60.8
183.6
194.9
1 ,494.8
168.6
227.0
173.5
582.9
983.4
P
46.9
34.8
70.8
2.5
29.2
39.4
12.2
438.2
50.9
82.1
89.6
227.4
399.1
K
4.3
NA
26.1
1.1
NA
NA
5.4
53.0
4.9
33.8
3.6
46.0
83.4
Application Rate per Crop Year
(Ibs/acre)
N
53
43
54
77
49
81
83
61
60
91
50
68
67
P
30
32
32
30
28
44
20
30
23
37
27
30
31
K
17
NA
49
28
NA
NA
24
29
21
28
9
20
21
a) Source: USDA, ERS, September, 1997
b) RR = Red River Valley includes the counties of Clay, Clearwater, Kittson, Mahnomen, Marshall, Norman,
Pennington, Polk, Red Lake, Roseau and Wilkin in Minnesota and Cass, Grand Forks, Pembina, Richland,
Steele, Traill and Walsh in North Dakota
c) NA = Insufficient reports to publish data
B-5
-------
Table B-2. Fertilizer Use on Vegetable Crops3 for the 1994 Crop Year
Crop
Asparagus
Beans, Lima (fresh)
Beans, Lima
[processing)
Beans, Snap (fresh)
Beans, Snap
(processing)
Broccoli
State
CA
IL
Ml
NJ
WA
Total
GA
6 States
CA
FL
GA
Ml
NJ
NY
NC
Total
CA
IL
Ml
NJ
NY
NC
OR
WA
Wl
Total
AZ
CA
OR
TX
Total
Acres
Planted
34,500
750
19,500
900
25,000
80,650
6,500
33,500
7,500
26,900
1 8,000
2,200
4,200
5,200
7,300
71,300
NDb
1 5,800
23,000
ND
18,000
ND
23,200
ND
84,800
1 73,400
9,400
94,500
3,200
3,800
110,900
Total Ap
N
3,091
36
1,290
72
2,737
7,226
654
1,704
636
2,288
1,623
76
214
199
435
5,471
ND
1,081
1,072
ND
624
ND
2,016
ND
4,983
10,695
2,322
18,593
613
244
21,772
plied (1000 Ibs/year)
P
380
48
110
85
568
1,191
364
959
387
2,439
1,006
118
274
237
493
4,954
ND
567
839
ND
1,348
ND
2,838
ND
3,964
10,192
1,827
6,556
505
191
9,087
K
522
9
2,505
123
344
3,504
565
834
173
3,173
1,946
147
286
234
540
6,498
ND
1,073
1,179
ND
1,159
ND
1,475
ND
5,096
10,354
11
3,970
348
16
4,345
Application Rate Per Crop Year
(Ibs/acre)
N
136
64
68
85
128
100
101
68
101
86
100
39
53
40
61
85
154
72
47
77
35
47
88
86
59
64
247
203
193
92
206
P
66
85
44
101
52
57
56
61
104
99
66
64
68
47
69
88
96
52
40
40
75
102
128
49
48
64
199
88
159
88
109
K
51
88
134
145
50
110
87
71
106
120
132
72
70
46
79
115
73
101
67
51
65
88
71
NE"
63
68
8
61
131
14
62
a) Source: USDA, NASS, ERS Agricultural Chemical Usage Vegetables 1996.
b) ND = USDA did not publish data to avoid disclosure.
c) NE = Absence of data is not explained in the USDA report.
B-6
-------
Table B-2. (Continued)
Crop
Cabbage (fresh)
Cabbage (processing)
Carrots
Cauliflower
Celery
State
CA
FL
GA
Ml
NJ
NY
NC
TX
Wl
Total
NY
Wl
Total
AZ
CA
FL
Ml
NY
OR
TX
WA
Wl
Total
AZ
CA
Ml
NY
OR
TX
Total
CA
FL
Ml
TX
Total
Acres
Planted
10,500
9,300
1 1 ,000
2,200
2,300
12,300
5,400
11,900
5,000
69,900
2,100
3,500
5,600
2,200
58,500
7,600
8,000
1,400
1,400
9,000
8,200
4,400
100,700
5,700
41,500
800
1,600
3,300
950
53,850
24,500
7,200
2,800
1,400
35,900
Total Ap
N
1,567
2,395
2,274
303
377
1,425
814
1,425
1,078
11,658
223
509
733
NAa
13,664
178
1,114
107
146
867
1,631
324
18,347
1,795
8,661
102
159
631
127
1 1 ,474
7,749
962
408
NA
9,119
3lied (1000 Ibs/year)
P
874
874
1,246
206
271
1,314
797
803
526
6,910
201
325
525
NA
11,298
229
761
106
158
247
1,020
601
14,954
1,344
3,243
60
158
392
43
5,239
5,559
1,149
330
NA
7,037
K
406
2,527
2,202
357
342
2,111
991
110
677
9,724
363
782
1,145
NA
3,000
562
1,766
162
127
54
1,853
1,413
8,983
NA
1,799
127
172
279
5
2,382
5,033
3,003
1,019
NA
9,055
Application Rate Per Crop Year
(Ibs/acre)
N
162
258
207
138
168
117
152
120
218
167
106
146
126
NA
234
24
141
80
112
102
200
90
182
315
219
127
101
192
234
230
317
134
151
NA
240
P
97
94
119
101
121
110
149
86
106
106
96
93
94
NA
200
31
97
95
116
55
128
148
166
236
85
92
101
129
96
121
228
160
126
NA
195
K
70
272
200
164
152
173
186
18
137
163
173
224
198
NA
68
77
223
145
96
17
235
340
110
57
159
111
94
25
69
207
417
377
NA
292
a) NA = Insufficient reports to publish data.
B-7
-------
Table B-2. (Continued)
Crop
3om, Sweet (fresh)
Com, Sweet (processing)
Cucumbers (fresh)
State
CA
FL
GA
IL
Ml
NJ
NY
NC
OR
TX
WA
Wl
Total
IL
Ml
MN
NY
OR
WA
Wl
Total
CA
FL
GA
Ml
NJ
NY
NC
TX
Total
Acres
Planted
21,600
42,900
19,500
8,700
13,500
9,500
25,500
6,000
2,300
3,500
2,900
8,000
1 63,900
36,700
7,100
143,000
32,500
48,600
74,700
1 60,800
503,400
5,000
13,300
1 3,000
5,800
2,400
3,300
6,000
2,600
51,400
Total Applied (1000 Ibs/year)
N
4,632
3,634
5,055
903
1,217
1,352
2,557
615
470
931
416
774
22,557
5,033
1,120
1 6,087
2,706
9,750
16,583
17,804
69,084
399
1,529
1,788
722
302
318
725
242
6,025
P
2,385
3,257
933
452
705
916
1,921
375
221
264
163
308
1 1 ,899
1,842
269
5,882
1,986
6,214
4,599
7,684
28,476
296
1,035
1,108
385
198
304
540
84
3,950
K
950
9,273
3,467
604
1,226
880
2,431
646
146
229
136
540
20,528
3,100
441
7,566
2,190
4,226
4,731
13,657
35,912
200
1,533
2,018
838
236
305
811
45
5,985
Application Rate Per Crop Year
(Ibs/acre)
N
219
95
268
106
97
146
101
105
208
274
145
98
125
139
158
113
86
202
227
112
135
81
115
139
125
127
97
121
99
115
P
r 129
78
50
68
65
102
76
68
100
83
71
40
81
60
47
48
68
134
68
49
63
61
137
89
69
84
93
91
47
89
K
68
216
186
89
102
98
96
112
66
85
83
72
137
93
77
68
85
94
98
89
85
56
119
156
145
100
94
136
28
115
B-8
-------
Table B-2. (Continued)
Crop
Cucumbers (processing)
Eggplant
Lettuce, Head
Lettuce, Other
Cantaloupe
Honeydew Melon
State
CA
FL
GA
Ml
NC
OR
TX
WA
Wl
Total
FL
NJ
Total
AZ
CA
FL
NJ
NY
Total
AZ
CA
FL
Total
AZ
CA
GA
Ml
TX
Total
AZ
CA
TX
Total
Acres
Planted
5,000
2,100
NDa
24,500
25,500
ND
13,900
ND
6,200
82,600
2,500
1,000
3,500
52,100
128,500
7,400
1,900
1,100
191,000
7,700
51,000
1,420
60,120
14,400
59,300
9,000
1,100
13,900
97,700
2,600
18,100
5,000
25,700
Total Ap
N
772
206
ND
1,786
2,356
ND
1,555
ND
679
7,866
301
141
442
18,562
27,014
NAb
276
101
45,953
2,582
6,772
105
9,459
2,440
5,279
918
105
1,039
9,781
534
1,068
583
2,184
plied (1000 Ibs/year)
P
266
82
ND
1,143
1,064
ND
1,330
ND
334
4,809
219
127
346
1 2,668
14,251
NA
187
90
27,196
1,813
3,846
48
5,706
1,413
2,528
688
85
1,157
5,870
182
986
933
2,101
K
248
241
ND
2,511
2,475
ND
822
ND
721
7,472
301
156
456
5,487
NA
277
134
5,898
2,220
105
2,325
82
574
1,097
115
472
2,341
NA
247
196
444
Application Rate Per Crop Year
(Ibs/acre)
N
155
98
61
73
93
87
112
107
110
94
121
153
133
357
210
146
93
262
335
163
75
194
170
90
104
97
80
104
206
59
120
83
P
56
40
55
48
47
115
101
147
54
60
124
137
130
252
147
99
84
190
237
107
34
134
103
86
79
85
93
93
93
68
192
96
K
55
115
63
109
102
83
67
123
116
100
120
168
140
73
146
124
77
71
75
71
9
47
124
111
42
41
NA
119
NA
68
a) ND = USDA did not publish data to avoid disclosure.
b) NA = Insufficient reports to publish data.
B-9
-------
Table B-2. (Continued)
Crop
Watermelon
Onions, Dry
Peas, Green
(processing)
Peppers, Bell
State
AZ
CA
FL
GA
NC
TX
Total
AZ
CA
GA
Ml
NY
OR
TX
WA
WI
Total
IL
MN
NY
OR
WA
WI
Total
CA
FL
Ml
NJ
NC
TX
Total
Acres
Planted
6,800
16,700
40,000
37,000
9,500
56,000
166,000
1,700
38,200
1 1 ,000
7,400
13,200
19,800
22,100
12,400
2,000
127,800
13,400
84,900
10,200
37,100
61,800
73,400
280,800
19,000
22,100
2,700
5,400
7,000
4,800
61,000
Total Applied (1000 Ibs/year)
N
2,774
2,863
5,731
3,930
910
138
19,347
458
9,172
2,087
1,051
1,494
5,292
2,301
2,691
251
24,798
393
1,413
423
856
1,270
2,565
6,920
5,451
6,274
257
1,002
871
585
14,440
P
678
1,910
4,330
3,142
465
3,150
13,676
288
5,452
2,201
1,060
1,652
2,709
1,466
1,671
222
16,721
584
2,163
754
586
3,696
2,442
10,225
4,419
2,707
182
801
472
518
9,098
K
NAa
862
7,209
4,941
1,093
1,701
15,806
2
1,085
2,665
1,502
2,228
1,520
509
603
365
1 1 ,479
1,170
3,175
849
362
3,334
4,665
13,555
2,618
8,675
283
963
1,246
176
13,961
Application Rate Per Crop Year
(Ibs/acre)
N
414
175
145
108
98
61
120
269
247
204
143
113
268
107
218
126
186
36
25
42
24
32
39
30
320
284
95
190
125
122
239
P
123
163
123
87
51
65
94
188
163
217
145
128
147
73
142
111
137
54
40
75
52
108
41
55
405
139
73
152
69
124
189
K
NA
96
182
136
119
46
119
16
95
266
221
175
98
32
157
183
139
102
58
87
40
110
72
73
286
393
105
183
178
50
263
a) NA = Insufficient reports to publish data.
B-10
-------
Table B-2. (Continued)
Crop
Spinach (fresh)
Spinach (processing)
Strawberries
Tomatoes (fresh)
Tomatoes (processing)
State
CA
NJ
TX
Total
TX
CA
FL
Ml
NJ
NY
NC
OR
WA
Wl
Total
CA
FL
GA
Ml
NJ
NY
NC
TX
Total
CA
Ml
Total
Acres
Planted
5,800
2,300
2,600
10,700
8,600
23,300
5,800
2,100
500
2,600
2,500
6,300
1,400
1,300
45,800
36,500
47,900
4,000
2,800
4,800
2,700
1,700
3,500
103,900
318,000
4,600
322,600
Total Ap
N
704
349
290
1,344
882
4,621
676
203
31
133
340
416
55
75
6,548
6,906
14,902
1,140
229
452
469
189
296
24,584
51,149
412
51,561
alied (1000 Ibs/year)
P
323
202
276
801
834
2,063
286
125
19
74
255
822
183
65
3,891
3,530
9,114
429
155
532
436
202
234
14,632
30,449
456
30,905
K
237
282
39
558
127
2,380
890
190
190
21
78
275
607
146
95
2,346
25,572
1,304
341
599
468
214
186
31,030
6,662
1,280
7,941
Application Rate Per Crop Year
(Ibs/acre)
N
159
155
116
149
103
199
117
100
68
85
142
72
43
62
153
193
311
286
83
103
183
113
95
264
164
91
163
P
92
90
114
97
97
94
58
67
49
62
111
144
144
71
95
120
201
109
64
121
172
122
78
174
103
110
103
K
75
126
24
79
30
112
156
95
52
65
119
113
132
101
116
91
534
327
124
136
185
128
65
408
40
289
49
B-11
-------
Table B-3. Fertilizer Use on Fruit Crops for Crop Year 19'95*
Crop
Oranges
Grapefruit
Lemons
Limes
Tangelos
Tangerines
Temples
Apples
Apricots
Avocados
Blueberries
State
CA
FL
Total
CA
FL
Total
CA
FL
FL
CA
FL
Total
FL
CA
GA
Ml
NJ
NY
OR
PA
SC
WA
Total
CA
CA
FL
Total
GA
Ml
NJ
OR
Total
Acres
Planted
191,000
562,800
753,800
18,400
127,300
145,700
45,700
1,900
12,400
8,500
20,100
28,600
6,800
35,000
2,400
54,000
4,100
57,500
8,600
22,000
3,700
1 53,000
340,300
19,800
67,200
5,800
73,000
3,800
1 6,300
7,700
1,950
29,750
Total Applied (1000 Ibs/year)
N
21,731
100,286
122,017
1,670
1 6,456
18,123
5,492
262
2,095
716
3,776
4,492
1,067
1,518
79
2,359
95
2,539
426
521
176
8,616
16,329
1,213
7,753
954
8,707
182
1,098
481
243
2,004
P
834
14,733
15,576
283
5,539
5,822
202
71
551
80
504
584
132
334
46
850
60
475
80
332
141
1,996
4,314
604
1,810
315
2,125
119
193
369
109
790
K
1,321
100,109
101,430
152
18,350
18,502
314
281
2,106
72
3,879
3,951
1,110
396
46
2,072
123
3,163
62
363
227
1,649
8,146
574
1,699
1,032
2,731
143
600
477
94
1,314
Application Rate Per Crop Year
(Ibs/acre)
N
119
179
164
102
132
128
128
149
170
88
191
159
157
76
42
54
36
53
75
35
51
71
62
92
120
171
124
54
72
66
138
72
P
46
42
43
81
54
56
41
61
65
38
33
34
40
55
55
43
28
32
31
31
60
30
34
101
71
68
71
36
29
51
69
42
K
61
182
177
55
147
146
26
160
172
44
197
185
172
60
55
69
45
69
24
35
75
35
54
96
55
185
74
43
51
66
61
55
a) Source USDA, ERS, NASS Agricultural Chemical Usage 1995 Fruits Summary.
B-12
-------
Table B-3. (Continued)
Crop
Blackberries
Raspberries
Cherries,
Sweet
Cherries,
Fart
Dates
Figs
Grapes
Kiwifruit
Nectarines
Olives
Peaches
State
OR
OR
WA
Total
CA
Ml
OR
WA
Total
Ml
NY
OR
PA
Total
CA
CA
CA
Ml
NY
OR
PA
WA
Total
CA
CA
CA
CA
GA
Ml
NJ
NY
PA
SC
WA
Total
Acres
Planted
4,900
5,200
5,900
11,100
12,500
7,300
10,400
14,800
45,000
30,000
4,000
1,600
1,500
37,100
5,500
15,000
645,200
1 1 ,800
33,000
5,600
11,000
34,000
740,600
6,600
32,400
33,700
60,600
21 ,000
5,500
10,800
1,600
6,800
23,000
2,500
131,800
Total Ap
N
409
419
522
941
653
500
696
1,267
3,116
1,969
255
111
27
2,362
409
783
34,529
1,091
3,003
34
1,261
1,766
41,684
427
3,398
1,884
5,396
1,395
311
570
69
157
1,674
225
9,797
plied (1000 Ibs/year)
P
361
447
694
1,141
148
124
62
197
531
309
9
16
9
343
113
137
10,276
219
272
18
110
675
11,570
41
892
83
542
298
36
210
4
63
836
24
2,013
K
353
406
705
1,111
406
321
65
198
990
1,060
285
16
7
1,368
NAa
225
26,199
1,393
1,899
23
1,226
1,425
32,165
128
1,550
124
1,040
1,332
162
507
87
80
2,742
19
5,969
Application Rate Per Crop Year
(Ibs/acre)
N
86
82
91
87
73
76
73
97
82
76
73
84
26
74
99
81
64
97
100
27
117
70
67
77
114
72
104
67
60
56
55
29
74
109
84
P
78
89
121
106
36
42
34
31
35
41
40
55
17
40
92
46
56
58
89
32
57
46
55
57
54
44
32
31
36
43
27
30
50
32
38
K
76
80
123
103
85
73
39
34
61
72
90
56
23
74
55
104
149
151
43
157
80
107
102
92
51
52
66
59
63
87
34
124
31
76
a) NA = Insufficient reports to publish data.
B-13
-------
Table B-3. (Continued)
Crop
Pears
Plums
Prunes
State
CA
NY
OR
WA
Total
CA
CA
Acres
Planted
23,900
2,500
17,000
24,200
67,600
42,000
78,800
Total Applied (1000 Ibs/year)
N
3,135
60
1,491
1,766
6,452
3,008
8,396
P
280
8
290
264
842
243
989
K
618
113
244
152
1,127
536
5,110
Application Rate Per Crop Year
N
134
39
108
86
109
95
122
P
54
25
42
32
41
28
59
K
102
76
38
28
58
56
149
B-14
-------
APPENDIX C
FERTILIZER CONSUMPTION BY USE
C-1
-------
Appendix C. Fertilizer Consumption by Use
The AAPFCO data set, described in Appendix A, contains a variable for farm versus non-
farm use. The tables in this Appendix present fertilizer consumption by state and region for farm
and non-farm use. Non-farm use includes application to residential and recreational properties.
Note that there are five states for which the variable "use" was left blank. These states
(Arkansas, Iowa, Kentucky, Ohio and Texas) have been excluded from the following tables. The
use codes are 1 = farm and 2 = non-farm. For several states the non-farm code (2) was not used.
NA is inserted in the Appendix tables for non-farm use for these states although it is unclear
whether there was no non-farm use or the the two uses could not be separated out based on data
collected by the individual states.
The following tables are included in this appendix:
Table C-l. Fertilizer Consumption by Use, East North Central States, 1996 (tons)
These states are: IN, IL, MI, WI
Table C-2. Fertilizer Consumption by Use, East South Central States, 1996 (tons)
These states are: AL, MS, TN
Table C-3. Fertilizer Consumption by Use, West North Central States, 1996 (tons)
These states are: KS, MN, MO, MB, ND, SD
Table C-4. Fertilizer Consumption by Use, West South Central States, 1996 (tons)
These states are: LA, OK
Table C-5. Fertilizer Consumption by Use, New England States, 1996 (tons)
These states are: CT, ME, MA, NH, RI, VT
Table C-6. Fertilizer Consumption by Use, Middle Atlantic States, 1996 (tons)
These states are: DE, MD, NJ, NY, PA, WV
Table C-l. Fertilizer Consumption by Use, South Atlantic States, 1996 (tons)
Thee states are: FL, GA, NC, SC, VA
Table C-8. Fertilizer Consumption by Use, Mountain States, 1996 (tons)
These states are: AZ, CO, ID, MT, NM, NV, UT, WY
Table C-9. Fertilizer Consumption by Use, Pacific States (and Puerto Rico), 1996
(tons)
These states are: AK, CA, HI, OR, WA and Puerto Rico
C-2
-------
Table C-1. Fertilizer Consumption by Use, East North Central States, 1996 (tons)
Description
Indiana
Farm
Nonfarm
Illinois
Farm
Nonfarm
Michigan
Farm
Nonfarm
MULTIPLE NUTRIENT FERTILIZERS
N-P-K
N-P
N-K
P-K
TOTAL
Ammonium
Nitrate
Ammonium
Nitrate Solution
Ammonium
Nitrate-limestone
Mixtures
Ammonium
Nitrate-sulfate
Ammonium
Polysulfide
Ammonium
Sulfate
Ammonium
Sulfate Solution
Ammonium
Sulfate-nitrate
Ammonium
Sulfate-urea
Ammonium
Thiosulfate
Anhydrous
Ammonia
Aqua Ammonia
Calcium
Ammonium
Nitrate
Calcium
Cyanamide
Calcium Nitrate
Calcium Nitrate-
urea
Ferrous
Ammonium
Sulfate
Magnesium
Nitrate
Nitric Acid
340,148
258,925
10,085
94,371
703,529
42,394
1,041
4,534
161
48,1 29
7,351
203
NA
4,138
335
12,128
5,885
9,802
114
658
193,582
9,699
147
NA
233
311
101
NA
1,330
37
NA
NA
NA
NA
52
NA
NA
NA
121
999
NA
NA
NA
NA
NA
2
NA
16
133,642
706,214
2,385
12,203
854,444
64,578
1,549
2,455
60
68,642
281,054
107,444
25,446
9,311
423,254
89,150
2,019
2,973
11
94,152
Wisconsin
Farm
140,902
182,607
3,139
6,126
332,774
Nonfarm
34,449
21
2,923
116
37,510
NITROGEN FERTILIZERS
32,817
NA
NA
NA
NA
20,534
135,421
48
NA
11,533
609,003
NA
1,003
NA
43,777
NA
NA
NA
NA
33
NA
NA
NA
NA
72
1
NA
NA
16
NA
NA
NA
NA
15
NA
25
NA
NA
7,843
NA
NA
242
NA
14,984
107
9,107
NA
249
61,777
NA
75
NA
3,406
NA
22
NA
NA
58
NA
NA
20
NA
109
NA
NA
NA
3
NA
NA
NA
NA
32
NA
3
NA
NA
26,642
NA
NA
3
NA
33,422
NA
NA
NA
1,337
53,647
2,348
5
NA
191
NA
NA
NA
NA
14
NA
NA
NA
NA
7
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
C-3
-------
Table C-1. (Continued)
Description
Nitrogen Solution
28%
Nitrogen Solution
30%
Nitrogen Solution
32%
Nitrogen Solution
<28%
Nitrogen Solution
>32%
Sodium Nitrate
Sulfur Coated
Urea
Urea
Urea Solution
Urea-
formaldehyde
Zinc Ammonium
Sulfate Solution
Zinc Manganese
Ammonium
Sulfate
Other
TOTAL
Indiana
Farm
381,031
1,528
26,795
43,752
149
1,129
689
70,196
NA
700
NA
NA
13,158
785,144
Nonfarm
484
NA
440
2,632
7
1
NA
1,669
NA
19
NA
NA
721
7,200
Illinois
Farm
721,731
967
155,188
68,529
305
40
NA
107,515
NA
500
NA
NA
3,811
1,912,720
Nonfarm
22
11
NA
160
NA
4
NA
1,653
NA
4,839
NA
NA
697
7,548
Michigan
Farm
212,610
NA
4,517
9,552
NA
89
701
84,342
NA
1,345
NA
NA
35,247
446,215
Nonfarm
NA
NA
NA
189
NA
4
NA
398
NA
220
NA
NA
177
1,214
Wisconsin
Farm
172,502
7
19,543
3,465
396
119
4
119,480
NA
59
2
NA
16
433,188
Nonfarm
7
NA
3
25
NA
5
NA
258
NA
256
NA
NA
328
903
PHOSPHATE FERTILIZERS
Ammonium
Metaphosphate
Ammonium
Phosphate
Ammonium
Phosphate
Nitrate
Ammonium
Phosphate
Sulfate
Ammonium
Polyphosphate
Basic Lime
Phosphate
Basic Slag
Bone Meal, Raw
Bone Meal,
Steamed
Bone,
Precipitated
Calcium
Metaphosphate
NA
30
1
406
132
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
6
NA
NA
NA
9
NA
NA
NA
NA
NA
NA
1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
35
125
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
C-4
-------
Table C-1. (Continued)
Description
Colloidal
Phosphate (Soft
Phosphate)
Diammonium
Phosphate
Limestone,
Phosphatic
Liquid
Ammonium
Polyphosphate
Magnesium
Phosphate
Monoammonium
Phosphate
Nitric Phosphate
Phosphate Rock
Phosphoric Acid
Precipitated
Phosphate
Superphosphate,
Enriched
Superphosphate,
Normal
Superphosphate,
Triple
Superphosphoric
Acid
Other
TOTAL
Indiana
Farm
88
1 1 1 ,262
NA
104,273
NA
12,155
NA
NA
126
NA
5
14
40,324
NA
260
269,078
Nonfarm
NA
26
NA
74
NA
NA
NA
NA
NA
NA
NA
NA
44
NA
49
195
Illinois
Farm
NA
575,347
NA
34,351
NA
81,693
NA
62
449
NA
NA
NA
48,990
NA
91,685
832,576
Nonfarm
NA
184
NA
NA
NA
20
NA
NA
NA
NA
NA
NA
43
NA
74
327
Michigan
Farm
22
38,184
NA
36,686
NA
17,840
NA
121
NA
NA
24
NA
4,623
NA
42
97,552
Nonfarm
NA
32
NA
NA
NA
12
NA
1
2
NA
NA
13
115
NA
185
360
Wisconsin
Farm
NA
154,576
NA
15,883
NA
9,031
NA
445
NA
NA
4
1 2,639
11,310
NA
270
204,318
Nonfarm
NA
NA
NA
NA
5
2
NA
NA
NA
NA
1
NA
NA
NA
37
46
POTASH FERTILIZERS
Lime-potash
Mixtures
Manure Salts
Muriate of
Potash 60%
(Pot. Chloride)
Muriate of
Potash 62%
Potash
Suspensions
Potassium
Carbonate
Potassium
Nitrate
Potassium
Sulfate
1,528
436
334,986
37,944
NA
15
399
1,911
9
28
60
239
NA
NA
10
56
NA
NA
876,895
94,988
NA
NA
2
540
NA
NA
154
68
NA
NA
NA
59
50
NA
161,490
75,907
NA
138
1,218
2,825
NA
NA
57
529
NA
NA
351
14
NA
NA
655
372,336
NA
NA
NA
2,863
NA
NA
NA
14
NA
NA
1
3
C-5
-------
Table C-1. (Continued)
Description
Potassium-
magnesium
Sulfata
Potassium-
metaphosphate
Potassium-
sodium Nitrate
Other
TOTAL
Indiana
Farm
2,739
NA
NA
11,586
391,544
Nonfarm
NA
NA
NA
93
496
Illinois
Farm
893
NA
NA
5,052
978,371
Nonfarm
10
NA
NA
791
1,083
Michigan
Farm
2,992
NA
37
4,194
248,852
Nonfarm
37
NA
NA
163
1,151
Wisconsin
Farm
11,064
NA
NA
2,754
389,671
Nonfarm
5
NA
NA
110
134
ORGANIC FERTILIZERS
Blood, Dried
Castor Pomace
Cocoa Shell Meal
Compost
Cottonseed Meal
Fish Scrap
Guano
Manure
Peat
Sewage Sludge,
Activated
Sewage Sludge,
Digested
Sewage Sludge,
Heat Dried
Sewage Sludge,
Other
Soybean Meal
Tankage, Animal
Tankage, Process
Other
TOTAL
NA
NA
NA
NA
NA
NA
NA
370
NA
NA
NA
NA
NA
NA
NA
NA
205
575
3
1
NA
NA
NA
NA
NA
31
1,083
NA
NA
NA
NA
NA
NA
NA
1,163
2,281
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2,552
NA
NA
NA
NA
NA
NA
NA
NA
2,552
NA
NA
NA
3,961
NA
NA
NA
698
23,055
NA
NA
NA
NA
NA
NA
NA
7,793
35,507
121
NA
NA
13
NA
12
NA
3,848
NA
NA
NA
2,472
NA
1
37
281
1,437
8,221
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
SECONDARY AND MICRONUTRIENT FERTILIZERS
Aluminum
Sulfata
Borax
Calcium Chelate
Calcium Chloride
Calcium Sulfate
(Hydrous)
Cobalt Sulfate
Coppar Chelate
NA
71
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
273
NA
NA
NA
NA
NA
1
8
NA
NA
NA
NA
NA
NA
1,110
9,026
1,331
1,804
NA
49
NA
NA
NA
NA
NA
NA
NA
C-6
-------
Table C-1. (Continued)
Description
Copper
Compound
Copper Oxide,
Black
Copper Sulfate
Epsom Salt
(Magnesium
Suifate)
Ferric Oxide
Ferric Sulfate
Ferrous Sulfate
Gypsum (Calcium
Sulfate)
Iron Chelate
Iron Compound
Lime Sulfur
Solution
Magnesia
(Magnesium
Oxide)
Magnesium
Chelate
Manganese
Agstone
Manganese
Chelate
Manganese
Oxide
Manganese Slag
Manganese
Sulfate
Manganous
Oxide
Potting Soil
Sodium
Molybdate
Soil Additive
Soil Amendment
Soil Conditioner
Sulfur
Sulfuric Acid
Zinc Chelate
Zinc Oxide
Zinc Oxysulfate
Indiana
Farm
NA
NA
1
NA
NA
NA
NA
4,445
NA
NA
NA
31
NA
1
1
1
NA
36
NA
NA
NA
NA
NA
NA
569
NA
NA
NA
NA
Nonfarm
NA
NA
NA
NA
NA
NA
NA
NA
3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Illinois
Farm
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Nonfarm
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Michigan
Farm
NA
NA
39
62
NA
NA
NA
4,863
NA
NA
NA
15
NA
NA
NA
2
NA
39
NA
NA
NA
NA
NA
NA
653
NA
3
3
331
Nonfarm
NA
NA
2
9
NA
NA
NA
8,140
44
3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
11,601
11
NA
NA
NA
NA
Wisconsin
Farm
NA
36
NA
NA
NA
NA
NA
3,391
238
2
NA
10
NA
NA
NA
NA
NA
NA
73
NA
9
NA
NA
NA
3,705
NA
NA
669
NA
Nonfarm
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
21
NA
NA
NA
NA
C-7
-------
Table C-1. (Continued)
Description
Zinc Sulfate
Zinc Sulfate
Solution
Other
TOTAL
Indiana
Farm
4
NA
2,238
7,397
Nonfarm
NA
NA
NA
3
Illinois
Farm
NA
NA
NA
NA
Nonfarm
NA
NA
NA
NA
Michigan
Farm
197
NA
7,105
13,586
Nonfarm
5
NA
202
20,027
Wisconsin
Farm
NA
NA
1,054
22,507
Nonfarm
NA
NA
NA
21
LIMING MATERIALS
Calcitic Urns
(75% Neutral)
Calcium
Hydroxide
(Hydrate)
Calcium Oxide
(Burnt)
Dolomitic &
Calcitic Blend
(Palletized)
Dolomitic Lime
(75% Neutral)
Lime
Suspensions
Non-lim« Filler
(Water, Sand,
Etc.)
Standard Calcite
Standard
Dolomite
Other
TOTAL
NA
NA
NA
NA
NA
NA
NA
NA
NA
4,501
4,501
TOTAL
1,932,735
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
ALL FERTILIZERS
57,049
3,886,719
77,391
437
NA
NA
997
2
NA
NA
NA
NA
3,411
4,847
NA
5
NA
117
NA
NA
NA
NA
NA
102
223
NA
NA
NA
NA
NA
NA
1,097
NA
NA
12,131
13,228
1,140,332
124,526
1,217,874
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
38,609
1. Data for Ohio was not divided into farm and non-farm use.
NA = it is unclear from the database whether there was no non-farm use recorded or on-farm use was
zero.
C-8
-------
Table C-2. Fertilizer Consumption by Use, Alabama, East South Central States of
Mississippi and Tennessee, 1996 (tons)
Description
Alabama
Farm
Nonfarm
Mississippi
Farm
Nonfarm
Tennessee
Farm
Nonfarm
MULTIPLE NUTRIENT FERTILIZERS
N-P-K
N-P
N-K
P-K
TOTAL
233,473
46,223
21,162
13,324
314,182
45
NA
NA
NA
45
181,634
52,073
13,336
23,564
270,606
23,566
5,308
584
445
29,903
113,802
163,058
2,256
1,314
280,430
37,230
840
946
19
39,034
NITROGEN FERTILIZERS
Ammonium Nitrate
Ammonium Nitrate Solution
Ammonium Nitrate-limestone Mixtures
Ammonium Nitrate-sulfate
Ammonium Polysulfide
Ammonium Sulfate
Ammonium Sulfate Solution
Ammonium Sulfate-nitrate
Ammonium Sulfate-urea
Ammonium Thio Sulfate
Anhydrous Ammonia
Aqua Ammonia
Calcium Ammonium Nitrate
Calcium Cyanamide
Calcium Nitrate
Calcium Nitrate-urea
Ferrous Ammonium Sulfate
Magnesium Nitrate
Nitricacid
Nitrogen Solution 28%
Nitrogen Solution 30%
Nitrogen Solution 32%
Nitrogen Solution < 28%
Nitrogen Solution > 32%
Sodium Nitrate
Sulfur Coated Urea
Urea
Urea Solution
Urea-formaldehyde
Zinc Ammonium Sulfate Solution
122,191
NA
NA
44
NA
12,848
NA
118
NA
331
1,513
NA
6
NA
90
NA
NA
NA
NA
10,983
620
37,726
14,501
129
629
8
20,380
NA
3,020
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
IMA
NA
NA
NA
26
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
101,199
228
NA
574
420
11,752
NA
29
NA
7,347
18,906
273
25
NA
44
NA
12
NA
NA
22,584
947
140,067
1,329
14
1,561
41
89,587
281
99
247
2,003
NA
NA
NA
NA
236
NA
NA
NA
263
NA
NA
NA
NA
178
NA
NA
NA
NA
237
NA
174
4
NA
2
NA
6,092
NA
55
NA
165,627
NA
NA
14
NA
2,957
NA
9
NA
2
15,035
NA
NA
NA
282
NA
14
NA
1
4,085
582
45,505
1,419
422
2,630
4
74,047
NA
25
299
2,893
NA
NA
NA
NA
374
NA
NA
NA
NA
NA
NA
NA
NA
4
NA
NA
NA
NA
52
NA
279
27
265
2
NA
701
NA
27
NA
C-9
-------
Table C-2. (Continued)
Description
Zinc Manganese Ammonium Sulfate
Other
TOTAL
Alabama
Farm
NA
43,796
268,931
Nonfarm
NA
NA
26
Mississippi
Farm
NA
9,826
407,389
Nonfarm
NA
51
9,295
Tennessee
Farm
NA
7,265
320,223
Nonfarm
NA
163
4,787
PHOSPHATE FERTILIZERS
Ammonium Metaphosphate
Ammonium Phosphate
Ammonium Phosphate Nitrate
Ammonium Phosphate Sulfate
Ammonium Polyphosphate
Basic Umephosphate
Basic Slag
Bono Meal Raw
Bone Meal Steamed
Bona Precipitated
Calcium Metaphosphate
Colloidal Phosphate (Softphosphate)
Diammonium Phosphate
Limestone Phosphatic
Liquid Ammonium Polyphosphate
Magnesium Phosphate
Monoammonium Phosphate
Nitric Phosphate
Phosphate Rock
Phosphoric Acid
Precipitated Phosphate
Super Phosphate Enriched
Super Phosphate Normal
Super Phosphate Triple
Super Phosphoric Acid
Other
TOTAL
NA
NA
5
NA
7
NA
NA
NA
2
NA
2
17
35,350
NA
2,611
4
720
NA
31
NA
NA
28
501
6,913
NA
812
47,003
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
68
NA
NA
50
NA
1,851
NA
NA
NA
NA
22
40,745
NA
8,578
NA
541
NA
NA
NA
NA
NA
NA
13,900
NA
59
65,814
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
5,179
NA
NA
10
NA
NA
NA
NA
NA
NA
NA
681
NA
81
5,951
NA
NA
NA
NA
NA
NA
177
NA
NA
NA
1,711
67
159,458
NA
2,193
NA
448
NA
NA
NA
NA
NA
4
8,617
NA
240
172,915
NA
NA
NA
NA
NA
NA
115
NA
6
NA
NA
NA
646
NA
107
9
7
NA
NA
NA
NA
NA
3
4
NA
266
1,162
POTASH FERTILIZERS
Lime-potash Mixtures
Manure Salts
Muriate of Potash 60% (Pot.chloride)
Muriate of Potash 62%
Potash Suspensions
88
NA
43,942
2,188
131
NA
NA
NA
NA
NA
NA
NA
108,907
1 5,292
52
NA
NA
7,453
207
NA
NA
NA
184,406
2,111
NA
NA
NA
1,395
5
NA
C-10
-------
Table C-2. (Continued)
Description
Potassium Carbonate
Potassium Nitrate
Potassium Sulfate
Potassium-magnesium Sulfate
Potassium-meta Phosphate
Potassium-sodium Nitrate
Other
TOTAL
Alabama
Farm
NA
1,963
539
815
NA
NA
4,943
54,610
Nonfarm
NA
NA
NA
NA
NA
NA
NA
NA
Mississippi
Farm
NA
600
1,056
2,066
NA
NA
2,386
130,359
Nonfarm
NA
28
7
19
NA
NA
2
7,716
Tennessee
Farm
NA
253
5,533
816
NA
224
3,285
196,628
Nonfarm
NA
NA
NA
1
NA
NA
134
1,536
ORGANIC FERTILIZERS
Blood Dried
Castor Pomace
Cocoa Shell Meal
Compost
Cottonseed Meal
Rsh Scrap
Guano
Manure
Peat
Sewage Sludge Activated
Sewage Sludge Digested
Sewage Sludge Heat Dried
Sewage Sludge Other
Soybean Meal
Tankage Animal
Tankage Process
Other
TOTAL
3
NA
NA
NA
NA
NA
NA
1,398
NA
43
NA
NA
NA
NA
NA
NA
3
1,446
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
3,885
NA
NA
NA
NA
NA
NA
NA
NA
44
3,930
NA
NA
NA
NA
27
122
NA
29
NA
NA
NA
NA
NA
NA
NA
154
1,074
1,406
NA
NA
NA
NA
NA
866
NA
1,518
2,338
198
NA
NA
NA
NA
NA
NA
8,641
13,561
SECONDARY AND MICRONUTRIENT FERTILIZERS
Aluminum Sulfate
Borax
Calcium Chelate
Calcium Chloride
Calcium Sulfate (Hydrous)
Cobalt Sulfate
Copper Chelate
Copper Compound
Copper Oxide Black
27
104
NA
1
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
384
1,440
NA
NA
NA
NA
NA
NA
NA
NA
14
NA
NA
NA
NA
NA
NA
NA
27
2,088
NA
8
NA
NA
NA
NA
NA
4
44
NA
NA
NA
NA
NA
NA
NA
C-11
-------
Table C-2. (Continued)
Description
Copper Sulfate
Epsom Salt (Magnesium Sulfate}
Ferric Oxide
Ferric Sulfate
Ferrous Sulfate
Gypsum (Calcium Sulfate)
Iron Chelate
Iron Compound
Urns Sulfur Solution
Magnesia (Magnesium Oxide)
Magnesium Chelate
Manganese Agstone
Manganese Chelate
Manganese Oxide
Manganese Slag
Manganese Sulfate
Manganous Oxide
Potting Soil
Sodium Molybdate
Soil Additive
Soil Amendment
Soil Conditioner
Sulfur
Sulfuric Acid
Zinc Chelate
Zinc Oxide
Zinc Oxysulfate
Zinc Sulfate
Zinc Sulfate Solution
Other
TOTAL
Alabama
Farm
NA
NA
255
NA
NA
241
8
NA
NA
NA
NA
NA
NA
NA
NA
15
NA
NA
NA
NA
NA
NA
731
NA
NA
NA
NA
4
NA
1,526
2,912
Nonfarm
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
Mississippi
Farm
NA
NA
NA
NA
NA
22
17
16
NA
NA
7
NA
8
NA
NA
NA
NA
2
200
NA
NA
NA
1,468
NA
NA
173
NA
8
NA
439
4,183
Nonfarm
NA
NA
NA
NA
NA
10
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1
NA
NA
NA
NA
NA
NA
65
90
Tennessee
Farm
6
16
NA
NA
23
767
2
NA
NA
74
NA
NA
2
21
NA
1
3
NA
NA
NA
NA
NA
1,894
2
61
186
114
174
NA
194
5,662
Nonfarm
NA
NA
NA
NA
2
121
18
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
5
NA
NA
NA
NA
NA
NA
61
255
C-12
-------
Table C-2. (Continued)
Description
Alabama
Farm
Nonfarm
Mississippi
Farm
Nonfarm
Tennessee
Farm
Nonfarm
LIMING MATERIALS
Calcrticlime (75% neutral)
Calcium Hydroxide (Hydrate)
Calcium Oxide (Burnt)
Dolomitic & Calcitic Blend (Pelletized)
Dolomitic Lime (75% Neutral)
Lime Suspensions
Non-lime Filler (Water, Sand, Etc.)
Standard Calcite
Standard Dolomite
Other
TOTAL
NA
NA
NA
NA
1,319
NA
NA
23
27
1,094
2,464
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
84
84
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
41
NA
147
NA
NA
NA
22,164
NA
632
22,984
NA
NA
NA
1
NA
NA
NA
39
29
17
86
ALL FERTILIZERS
TOTAL
649,449
71
827,853
47,792
837,492
54,736
1. Data for Kentucky was not divided into farm and non-farm use.
NA = it is unclear from the database whether there was no non-farm use recorded or on-farm use was
zero.
C-13
-------
(0
c
o
-------
0)
3
C
O
O
CO
o
_«
<0
3 ^
CA 5
,, u
2
J£
(0
o
2
.at:
jj
CD
3
S
Nitrogen Solution <28
7
32
$
^
2
z
<
z
-
CO
CO
z
CM
<
-
|| Sodium Nitrate
?•
^
2
i
o
CM
*
Z
CM
CO
1
CO
II Sulfur Coated Urea
CO
CM
i—
^
2
CM
cn
CO
CO
CM
z
cn
CO
co"
CO
in
CO
in
CO
CO
10
CO
Z
CM
CO
CM
r-
z
in
q
0
CO
CD
5
7"
^
Z
Z
<
Z
z
-
<
5
z
z
Urea Solution
z
^
2
CM
CO
Z
o
o
cn
CM*
CO
CO
CO
CM
z
CO
CO
CO
z
5
|| Urea-formaldehyde
CO
^
z
z
<
CO
to
in
Z
Z
z
z
z
CO
in
«Zino Ammonium Sulfat
Solution
in
^
z
z
z
z
z
z
z
*
z
z
E
c
«Zinc Manganese Ammo
Sulfate
CO
in
^
z
z
z
CO
cn
CO
in
3
CO
CO
z
CO
CO
z
cn
CO
CO
p-T
CD
1
CO
CO
CM"
CO
CM
^
z
CO
cn
CO
CM
CO
o
1,649,972
o
CM
CO
,_
cn
0
p^
CO
<
1,047,618
z
in
CO
•3-
<-
1
co
cc
N
_J
TE PERT
•a.
i
0
X
a.
<
^
z
z
<
z
z
*
z
z
z
z
CD
m
^:
|| Ammonium Metaphosp
z
<^
z
z
z
CO
cn
CO
Z
=
z
o
in
CM
z
z
| Ammonium Phosphate
z
<£
Z
z
<
cn
CO
cn
Z
in
Z
z
z
CM
+-•
j?
1
Q.
O-
E
'c
E
cn
^
Z
z
i
0
cn
cn
Z
§
z
CM
i
CD
(D
Js
CO
|| Ammonium Phosphate
<
^
*
z
z
CO
CM
CM*
in
Z
z
z
z
z
z
CD
|| Ammonium Polyphosph
z
<£
z
z
<
z
z
*
z
z
z
z
|| Basic Lime Phosphate
z
<£
z
z
z
z
z
z
z
z
<
z
Basic Slag
z
<^
z
z
z
z
z
z
z
z
z
i
|| Bone Meal, Raw
C-15
-------
1
3
I
O
&
E
1
c
1
§
z
i
E
"S
z
1
Description
i
<
z
z
z
i
»-
CO
2
z
z
-
Bone Meal, Steamed
z
^
z
z
z
z
CM
z
^
z
z
z
z
|| Bone, Precipitated
z
<
z
<
z
z
z
z
^
z
CO
tn
CM
•z.
z
Calcium Metaphosphate
z
^
z
z
z
CM
CO
CM
CO
en
Z
CM
Z
z
Colloidal Phosphate (Soft
|| Phosphate)
o
en
CO
CM
CO
^
z
in
in
o
in
o
CM
Z
CD
tn
en
n-
0
co"
CO
CM
^
Z
402,007
a.
z
q
in
1
« Muriate of Potash 60%
Chloride)
o
en
-------
~
0>
O
0
PO
1
o
o
_£5
(0
J= (8
.2
-------
f
-I
O
O
—
CO
o
o
f^
5
a
•t
^
-------
•D
0)
3
f
•4=
C
o
O
en
0
0)
S
m
1-
_ a
s °
° ia
3
0
£
o
O
2
._
3
0
V)
g
(B
S
S
C
C
i
(0
CO
CO
c
a
E
£
1
*"
i
u.
i
•g
o
z
1
E
•I
O
E
S.
F
1
z
E
u.
E
CO
£
0
z
a
u.
Description
z
z
CO
Z
in
CO
z
z
<
CO
CO
<£
z
-
Manganese Sulfate
z
z
;<
z
CO
z
z
<
<
-------
^
3
c
1
O
0
CO
6
CD
3
m
I j
W Q
(0
,^
C9
£
2
IS
M
CQ
£1
Z
5
o
J2
13
C3
VI
O
C
I
If)
co
n
C
ei
P
12
E
3.
o
Z
§
£
1
c
o
z
eg
u.
g
63
*£•
C
O
£
£
§
CO
I
I
E
s
1
z
1
c
!
o
o
<
z
z
<
z
^
z
^
z
z
^
z
z
^
z
z
Q>
1
•3
Q
•Q
1
CO
<
Z
Z
<
^!
^
z
i
^
z
z
^
z
in
CO
1
O
<
z
z
CM
Z
o
5
CO
CO
ta
CO
CO
CM
,£
Z
2
^
Z
CO
f-
_J
1
H-
RTILIZERS
UJ
u.
^
CM
CO
cn
CD
CO
10
z
CM
o
cn
o
CO
CM
CM
JS!
CN
CM
CM
00
CM
CO
<*
cn
CM
CO
to
CO
<
z
CO
CO
CO
CO
CO
CM
^_
""
CO
CM
CO
CO
_J
1
1-
CD
N
CO
CO
CD
CO
3
C
O
O
o
£
CD
CO
E
CD
O
C
CO
CO
CD
.c
I
CD
CO
CO
co
to
o
CO
_CD
o
c
.t;
C-20
-------
Table C-4. Fertilizer Consumption by Use, West South Central States of Oklahoma and
Louisiana, 1996 (tons)
Description
Louisiana
Farm
Nonfarm
Oklahoma
Farm
Nonfarm
MULTIPLE NUTRIENT FERTILIZERS
N-P-K
N-P
N-K
P-K
TOTAL
245,831
30,545
19,733
66,686
362,796
16,530
7,479
382
38
24,429
23,164
165,937
1,333
204
190,638
22,297
347
619
140
23,403
NITROGEN FERTILIZERS
Ammonium Nitrate
Ammonium Nitrate Solution
Ammonium Nitrate-limestone
Mixtures
Ammonium Nitrate-sulfate
Ammonium Polysulfide
Ammonium Sulfate
Ammonium Sulfate Solution
Ammonium Sulfate-nitrate
Ammonium Sulfate-urea
Ammonium Thiosulfate
Anhydrous Ammonia
Aqua Ammonia
Calcium Ammonium Nitrate
Calcium Cyanamide
Calcium Nitrate
Calcium Nitrate-urea
Ferrous Ammonium Sulfate
Magnesium Nitrate
Nitric Acid
Nitrogen Solution 28%
Nitrogen Solution 30%
Nitrogen Solution 32%
Nitrogen Solution <28%
Nitrogen Solution >32%
67,390
NA
NA
2,036
NA
11,035
NA
39
2,171
1,132
8,207
NA
NA
NA
1
NA
NA
NA
22
4,751
32,606
212,002
4,979
266
1,817
NA
NA
NA
NA
29
NA
NA
12
4
160
NA
NA
NA
2
NA
NA
NA
3
NA
NA
325
16
NA
71,385
25
NA
172
26
6,871
3
26
NA
3,895
1 34,320
NA
NA
NA
136
1,920
NA
NA
145
149,326
141
44,859
629
NA
1,816
9
NA
1
25
655
NA
NA
NA
1
NA
NA
NA
NA
11
13
NA
NA
NA
NA
NA
NA
NA
NA
C-21
-------
Table C-4. (Continued)
Description
Sodium Nitrate
Sulfur Coated Urea
Urea
Urea Solution
Urea-formaldehyde
Zinc Ammonium Sulfate
Solution
Zinc Manganese Ammonium
Sulfate
Other
TOTAL
Louisiana
Farm
838
196
73,134
NA
9,005
NA
NA
14,201
444,010
Nonfarm
13
NA
256
NA
12
NA
NA
186
2,834
Oklahoma
Farm
NA
7
119,786
NA
402
NA
NA
274
534,348
Nonfarm
5
29
1,259
NA
17
NA
NA
54
3,896
PHOSPHATE FERTILIZERS
Ammonium Metaphosphate
Ammonium Phosphate
Ammonium Phosphate Nitrate
Ammonium Phosphate Sulfate
Ammonium Polyphosphate
Basic Lime Phosphate
Basic Slag
Bone Meal, Raw
Bone Meal, Steamed
Bone, Precipitated
Calcium Metaphosphate
Colloidal Phosphate (Soft
Phosphate)
Diammonium Phosphate
Limestone, Phosphatic
Liquid Ammonium
Polyphosphate
Magnesium Phosphate
Monoammonium Phosphate
Nitric Phosphate
Phosphate Rock
Phosphoric Acid
Precipitated Phosphate
NA
NA
NA
NA
NA
NA
NA
NA
NA
5
NA
25
10,859
NA
12,230
NA
148
NA
NA
80
NA
NA
NA
NA
NA
NA
NA
NA
NA
2
NA
NA
NA
7,434
NA
2
NA
2
NA
NA
NA
NA
NA
NA
NA
52
NA
NA
NA
NA
NA
NA
25
NA
127,336
NA
22,050
NA
11,671
NA
NA
9
NA
NA
NA
NA
3
NA
NA
NA
2
NA
NA
NA
4
240
NA
NA
NA
NA
NA
NA
NA
NA
C-22
-------
Table C-4. (Continued)
Description
Superphosphate, Enriched
Superphosphate, Normal
Superphosphate, Triple
Superphosphoric Acid
Other
TOTAL
Louisiana
Farm
NA
NA
4,312
NA
5
27,664
Nonfarm
NA
2
9
NA
180
7,630
Oklahoma
Farm
NA
NA
2,006
NA
529
163,678
Nonfarm
NA
NA
47
NA
43
339
POTASH FERTILIZERS
Lime-potash Mixtures
Manure Salts
Muriate of Potash 60% (Pot.
Chloride)
Muriate of Potash 62%
Potash Suspensions
Potassium Carbonate
Potassium Nitrate
Potassium Sulfate
Potassium-magnesium Sulfate
Potassium-metaphosphate
Potassium-sodium Nitrate
Other
TOTAL
NA
NA
33,863
1,189
NA
40
15
3,126
190
NA
NA
3,376
41,799
NA
NA
58
3
NA
NA
NA
NA
NA
NA
NA
27
88
1
18
43,164
339
NA
NA
NA
63
1,351
NA
NA
51
44,987
NA
NA
93
41
NA
NA
2
9
1
NA
NA
13
159
ORGANIC FERTILIZERS
Blood, Dried
Castor Pomace
Cocoa Shell Meal
Compost
Cottonseed Meal
Fish Scrap
Guano
Manure
Peat
Sewage Sludge, Activated
Sewage Sludge, Digested
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1
NA
NA
NA
NA
NA
NA
83
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
3,231
NA
NA
NA
C-23
-------
Table C-4. (Continued)
Description
Sewage Sludge, Heat Dried
Sewage Sludge, Other
Soybean Meal
Tankage, Animal
Tankage, Process
Other
TOTAL
Louisiana
Farm
NA
NA
NA
NA
NA
102
102
Nonfarm
NA
NA
NA
NA
NA
NA
84
Oklahoma
Farm
NA
NA
NA
NA
NA
NA
NA
Nonfarm
NA
44
NA
NA
NA
NA
3,275
SECONDARY AND MICRONUTRIENT FERTILIZERS
Aluminum Sulfate
Borax
Calcium Chelate
Calcium Chloride
Calcium Sulfate (Hydrous)
Cobalt Sulfate
Copper Chelate
Copper Compound
Copper Oxide, Black
Copper Sulfate
Epsom Salt (Magnesium
Sulfate)
Ferric Oxide
Ferric Sulfate
Ferrous Sulfate
Gypsum (Calcium Sulfate)
Iron Chelate
Iron Compound
Lime Sulfur Solution
Magnesia (Magnesium Oxide)
Magnesium Chelate
Manganese Agstone
Manganese Chelate
Manganese Oxide
Manganese Slag
NA
118
NA
NA
NA
NA
NA
NA
NA
NA
1
NA
NA
NA
44
NA
NA
NA
1
12
NA
NA
NA
NA
3
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
4
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
5
NA
NA
NA
NA
NA
NA
NA
NA
C-24
-------
Table C-4. (Continued)
Description
Manganese Sulfate
Manganous Oxide
Potting Soil
Sodium Molybdate
Soil Additive
Soil Amendment
Soil Conditioner
Sulfur
Sulfuric Acid
Zinc Chelate
Zinc Oxide
Zinc Oxysulfate
Zinc Sulfate
Zinc Sulfate Solution
Other
TOTAL
Louisiana
Farm
NA
NA
NA
NA
NA
3
NA
159
NA
87
63
NA
98
NA
673
1,259
Nonfarm
NA
NA
NA
NA
NA
NA
NA
10
NA
NA
NA
NA
NA
NA
3
21
Oklahoma
Farm
NA
NA
NA
NA
NA
NA
NA
100
NA
64
NA
NA
42
144
1,458
1,808
Nonfarm
NA
NA
NA
NA
NA
NA
NA
2
NA
7
NA
NA
NA
NA
1,599
1,613
LIMING MATERIALS
Calcitic Lime (75% Neutral)
Calcium Hydroxide (Hydrate)
Calcium Oxide (Burnt)
Dolomitic & Calcitic Blend
(Pelletized)
Dolomitic Lime (75% Neutral)
Lime Suspensions
Non-lime Filler (Water, Sand,
Etc.)
Standard Calcite
Standard Dolomite
Other
TOTAL
2,953
NA
NA
NA
174
NA
NA
NA
27
NA
3,154
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
113
113
NA
NA
NA
NA
NA
NA
NA
NA
NA
2
2
C-25
-------
Table C-4. (Continued)
Description
Louisiana
Farm
Nonfarm
Oklahoma
Farm
Nonfarm
ALL FERTILIZERS
TOTAL
857,526
27,563
774,463
29,165
1. Data for Arkansas and Texas was not divided into farm versus non-farm use.
NA = it is unclear from the database whether there was no non-farm use recorded or on-farm use was zero.
C-26
-------
tn
o
4->
(O
CO
0)
4-1
a
1-1
U)
•n
jo
O)
UJ
CO
CD
10
O
1
CO
o
o
&•
0)
10
6
j£
ja
as
E
0
CD
-
o
0
CM
00
CO
in
r-
r-
0
CO
CO
in
CO
CO
CO
CM
C3
en
to
in
co
O
CO
£
N
ROGEN
t
2
7
CO
CO
CM
T"
co
Z
CO
CO
•*
CO
CO
°l
CM
00
in
ajBjjJN uinjuoujuav ||
?"
z
z
•7
z
i
z
<
z
z
c
o
B Ammonium Nitrate Soluti
z
z
z
z
-
1
z
T-
z
z
CD
c
o
1 Ammonium Nitrate-limest
Mixtures
z
z
z
z
z
z
z
z
z
z
CD
l| Ammonium Nitrate-sulfat
z
z
<
z
z
z
z
z
z
z
I Ammonium Polysulfide
^f
5
^
<
o
z
CM
CM
0
CM
O
O
CO
1 Ammonium Sulfate
z
z
f
<
z
1
-
^
z
z
o
Ammonium Sulfate Solut
z
z
<
<
z
z
-
z
z
z
CD
Ammonium Sulfate-nitrat
z
z
?"
<
z
z
z
^
z
z
Ammonium Sulfate-urea
1
z
co
Z
-
z
z
^
z
r-
|| Ammonium Thiosulfate
^
z
7"
Z
Z
z
CM
Z
z
z
|| Anhydrous Ammonia
z
z
-f
<
z
z
z
1
z
z
|| Aqua Ammonia
z
z
?>•
z
en
Z
z
^
z
z
£
|| Calcium Ammonium Nitre
|£
Z
Z
Z
z
1
z
z
z
z
|| Calcium Cyanamide
2"
O
in
CM
CO
Z
CO
CO
t—
z
CO
to
CM
<-
co
CO
CM
o
CO
I Calcium Nitrate
C-27
-------
=0
3
I
O
in
6
o
o
ra
t^
§
CD
5»
•SI
O (0
X —
£
g.
to
X
Nitrogen Solution <28<
z
z
z
z
z
z
z
z
2
z
-
Nitrogen Solution > 32<
CO
en
CM
CM
-
Z
CM
Z
to
t
z
CO
Sodium Nitrate
I
*
z
z
z
z
-
z
z
-
CD
-------
0)
3
*p
C
0
O
in
i
o
JOB
(0
•g
o
__
CD
J g
E 3.
Ic
CO
Q.
E
CO
I
5
CD
Z
CO
CD
£
CO
3
O
CO
CO
CD
C
CO
3
0
*4-»
§
C
o
O
§
CO
c
0
Z
E
CO
U-
co
u.
E
CO
*c
0
£
E
CD
*C
O
^
CO
I-I-,
E
CO
"c
o
^
£
CO
U-
E
1
Description
z
CO
LO
Z
^
z
•^
z
^
z
in
Z
z
z
onium Polyphosphate
E
Z
Z
z
^
z
«^
z
^
2
f-
co
Z
z
z
Lime Phosphate
.a
CO
CO
CO
1
Z
Z
«^
Z
<£
Z
^
2
Z
Z
<
i
O)
CO
CO
o
'co
CO
CQ
1
1
z
^
Z
^
Z
^
21
CM
Z
co
Z
cc
oc
"S
cu
CD
c
-
z
-
^
•z.
LO
^
z
5
Z
00
00
Meal, Steamed
CD
1
Z
z
z
^
z
^
z
^
z
z
z
1
I
, Precipitated
CD
1
Z
z
z
^
z
^
z
^
2
H
2:
<
z
jm Metaphosphate
CO
O
Z
Z
z
^
z
^
z
^
z
*
z
z
I
idal Phosphate (Soft
)hate)
O CO
II
z
00
z
^
z
m
-------
T3
•43
O
*™^
to
6
03
ra
l-
^
o
E
•SI
5-2
O
.C
CO
Q.
ra
X
a>
usettes
o
g
w
(0
CD
ca
0
•*-*
o
s
c
o
CJ
fZ
CD
C
I
H
CD
§
o
u.
F
c
o
E
CO
LL
£
ca
"c
o
E
£
e
CD
O
E
S
E
!?
Description
CO
cc
ul
N
fe
Ul
u.
X
0
z
o
i
^
•z.
7
Z
CO
CO
^
z
g
CO
£
5
cc
cc
c
a.
6
:§
z
Z
z
^
z
7
z
z
z
z
z
"cc
CO
CD
C.
CO
CO
CO
CO
CM
CN
00
^
•^
CM
CO
r~
z
5
CO
CN
"
CO
•*-•
o
Q.
O
CO
.c
CO
CD
£
•s_
3-8
ra •=
•n o
5g
Z
Z
1
^
z
z
z
PS
i
z
oo
0
CN
CO
.c
cc
£
o
CD
.2
S
Z
Z
in
^
Z
CM
Z
o
CM
Z
z
CO
ash Suspensions
£
z
z
z
^
z
z
z
00
CM
?•
z
z
assium Carbonate
£
<
z
z
^
z
CO
z
en
CO
CM
Z
1
Q!
assium Nitrate
£
,*
en
-
^*
2:
00
z
o>
PS
z
CM
CO
CN
tassium Sulfate
£
PS
p-
CO
CN
«
^.
Z
CO
Z
CO
00
CM
ID
CM
co
CO
CD
m
3
CO
tassium-magnesium
o
Q-
z
z
z
^«
z
CO
Z
t—
z
z
z
•M
CD
tassium-metaphosp
£
z
z
z
^1
z
z
2
-
z
z
z
CO
CO
tassium-sodium Nitr
*
CO
CO
s
^
z
0
CO
z
5
en
CM
CO
S
O
Ps
O)
q
0
CM
^
Z
CM
CO
z
CM
CO
co
CO
CO
CM
q
q
_i
t-
o
Ul
N
_1
H™
O
z
cc
z
z
z
^
2
*
z
CO
CN
Z
CO
r-
1
o
Tj"
O
CO
Z
i
z
^
z
z
z
z
z
z
z
stor Pomace
o
z
z
z
^
z
z
2
-
z
z
z
cu
1
CO
CD
0
O
°
Z
o
z
^
z
CO
z
LO
CO
z
z
z
i"
o
z
z
*
^
z
z
z
*
z
-
I
ttonseed Meal
z
I
z
^
z
z
z
CO
Z
z
z
Q.
cc
tf
.c
iH
Z
Z
Z
<
Z
1
z
z
z
1
Z
o
c
CO
0
CO
10
z
z
^
z
3
z
co
Ps
CO
£
CD
00
IN
CD
c
5
1
z
z
^
z
z
z
z
z
z
z
Q.
C-30
-------
~
0)
3
C
O
U
b
CO
O)
T3
3
CO
CD
O)
CO
CD
CO
z
^
z
7"
<
Z
^
Z
2
z
z
•n
Q
is
CD
CD"
D)
3
CO
CD
O>
CD
O
CO
z
^
z
?•
<
co
00
«^
z
z
z
z
z
CD
.c
O
CD
O)
•D
D
CO
CD
O)
CD
CD
CO
z
^
z
2
<
z
^
z
z
i
z
z
I Soybean Meal
z
^
z
7-
<
Z
^
Z
i
z
z
z
1 Tankage, Animal
z
^
z
7"
<
Z
^
Z
z
z
z
|| Tankage, Process
o
CM
^
z
7-
?•
Z
^
z
00
z
z
z
CD
JC
6
CO
0
7
<
in
s
^
z
co
o
00
in
co
CO
O)
» TOTAL
CO
N
r~
fe
UJ
u.
h~
^
H
2
O
tr
0
Q
Z
K
§
O
0
UJ
O
§
^
z
CO
<
-
^
Z
CN
Z
z
^
|| Aluminum Sulfate
z
0
CO
CM
7
*
^
Z
»-
^
CO
CN
X
CO
o
ffl
Z
^
Z
7
<
Z
^
Z
*
z
-------
T3
a
*—
o
O
in
i
o
o
.Q
1=
f
>
O «j
i «
CD
t
(O
X
1
CO
52
e
CD
to
3
CO
CD
C
CO
D
.9
c
o
0
CO
c
o
E
S.
E
1
E
£
o
£
E
CO
"c
0
^
1
E
CO
"c
o
§
h
03
U-
Description
CM
0
-
Z
CO
7~.
to
CM
CO
O5
en
CM
*
— -
IS
Gypsum (Calcium Sulf
•z.
T—
Z
CO
z
O)
^
z
CM
Iron Chelate
z
z
-
z
z
z
*
z
z
CM
Iron Compound
<
i
z
?•
z
z
z
z
<
z
Lime Sulfur Solution
7
Z
Z
f
Z
i
z
1
^
z
"CD
•a
X
O
Magnesia (Magnesium
7
Z
Z
z
z
z
z
z
z
z
Magnesium Chelate
<
z
z
z
z
z
z
z
z
<
Manganese Agstone
<
z
z
<
z
z
z
z
z
P1
Manganese Chelate
z
z
z
z
z
^
*
z
z
T:
Manganese Oxide
z
z
z
z
z
z
<
z
z
T.
Manganese Slag
z
z
z
z
-
z
*
z
-
z
Manganese Sulfate
<
z
z
I
*
z
z
z
z
z
Manganous Oxide
z
z
z
z
z
z
z
z
z
z
'5
CO
I
1
z
z
z
z
z
i
z
z
z
z
Sodium Molybdate
z
z
z
z
*
z
z
z
z
z
Soil Additive
<
z
z
z
*
z
z
z
to
CO
0
o
CM
z
Soil Amendment
z
z
I
|
z
z
z
z
1
z
Soil Conditioner
z
-
z
z
CO
z
0}
z
5
CM
"5
CO
z
z
z
z
z
i
z
z
z
^
Sulfuric Acid
z
z
z
z
'
z
-
z
z
z
II Zinc Chelate
z
z
z
i
I
z
z
z
z
z
•8
X
o
o
c
Ki
<
z
z
i
z
z
z
z
z
z
Zinc Oxysulfate
z
O)
n
z
z
z
z
z
-
z
o
a
"5
CO
g
N
Z
z
z
z
z
z
z
z
z
z
Zinc Sulfate Solution
z
z
z
z
CM
Z
CO
z
z
LO
CD
.C
O
C-32
-------
_-^
T3
a>
3
0
O
I
^^
0)
J2
(0
1-
tr
O
<13 "O
1 g
£ —
8.
B
ID
1
2
CO
§
o
CO
CO
i
i
CD
5
.a
Connect
F
CD
C
2
F
i?
E
£
E
CD
C
2
CO
u.
£
CO
o
7»
E
1?
fc
1
O
2
E
£
CO
u.
c
o
Descripti
co
it-
in
CM
^
2
CO
2
CO
co
in
0
CM
o
CM
CO
_1
O
(0
_1
^
ffi
z
^
— 1
<£
z
2
2
<;
2
CD
CO
i
o
CO
CO
in
CM
2
-^
CO
t
2
IX
CO
.1
.0
'5
CO
O
.j;
2
Z
-
<(
2
2
i
2
[X
i
2
f
CO
S
|| Calcium Hydroxide
<£
2
2
1
CO
CO
2
2
1 Standard Dolomite
^
2
2
CM
-------
to
I
CO
N
(D
a.
U
to
c
0>
a
D
«
CO
s
cz
CD
Q.
0
CD
CD
CO
CD
CD
CO
CO
CD
CO
CO
CD
Q
CO
0
*i
§
E
1
o
z
I
E
ro
•p
E
u.
E
"c
o
E
£
F
CO
"Z.
E
£
E
CO
"c
o
CD
u.
£
Q.
1
I
e/j
3
1
u.
1-
LE NUTRIE
a.
^
*
CM
in
»
33
en"
00
00
in
V—
'*
CO
CM
O
O5
CO
CO
<3
CO
CO
00
CO
00
CO
CM
en"
o
in
CO
in
in
00
CO
CM
CO
CM"
00
r—
CO
CO
CO
CO
of
in
O5
3
J
CO
00
oo
^
en
O5
CM
CD
CO
00
CO
CO
CO
s
o
"*
0
co
en
CM
CO
in
CO
CO
CO
0
CO
in
00
CO
co
cc
CO
a.
Z
O5
en
CM
in
CM
CO
CO
,_T
00
05
O
CM
O
in
00
s
CO
CD
CM
CM
CO
CM
cn
CM
in
cn
en
CO
in
en
s?
a
•z.
•z.
o
5
CM
*
in
00
5
o
CM
CM
*
in
en
in
CO
in
00
CO
o
CM
•z.
CO
00
oL
1
00
CO
CO
CM
8
CM
in
' '
cn
CM
in
CM
CM
CD
CO
in
r-.
co
CO
CM
in
in
*
co
0
in
in
"~
O5
O
05
^
00
cn
1
in
CM
CO
-------
tn
1
CD'
'c
CO
1
^
o
CD
>.
CO
CD
CD
-o
C
CO
CO
CD
CO
CO
8
E
CD
"E
O
Z
E
E
o
H
£
1
E
CO
"c
o
Z
E
CD
U.
£
o
Z
CO
u.
onfarm
z
CD
U.
E
"c
o
Z
E
CO
u.
Description
Z
Z
Z
*
O
in
*
Z
00
Z
in
Z
z
« Calcium Ammonium
Nitrate
?•
z
z
z
z
z
z
z
s
*
z
z
II Calcium Cyanamide
•?
co
CN
CO
CO
CN
r-.
CM
o
s
CO
s
CN
i
O5
00
in
CO
<
£
Calcium Nitrate
7
z
s
1
z
in
CN
Z
«
Z
*
?:
CM
| Calcium Nitrate-urea
z
CN
1
Z
Z
00
CN
Z
s
1
co
CO
Z
<_
1 Ferrous Ammonium
Sulfate
<
z
z
1
1
<
z
z
z
z
?•
z
CD
£
z
"5
CD
c
O)
CD
CM
Z
Z
z
1
CD
Z
z
z
CM
7"
Z
73
1
Z
z
CO
00
O5
O
CO
in
CO
CO
05
CN
CO
r-
CM
oo
CO
CO
o>
CO
CN
CN
CO
CO
in
<
O5
CD
in
» Nitrogen Solution
28%
z
0
co
CN
CO
O5
CN
O5
r-
O)
CO
CO
co
CN
CN
in
0
CM
s
O5
CM
05
f-
CO
o
co
V-
co
00
in
co
Nitrogen Solution
30%
z
z
z
CD
CM
CO
CO
OS
co
CO
CN
CN
Z
s
CD
O
CN
<
co
CN
B Nitrogen Solution
32%
z
CO
00
00
CN
CN
0
r-
o
CO
CN
CO
CM
CO
CO
in
CD
q
113
*
r-
*~
» Nitrogen Solution
<28%
z
<
o
in
CO
Z
in
CO
Z
Z
z
*
z
z
Nitrogen Solution
>32%
tr-
CO
^
CM
J^
CO
in
o
CO
0
in
*
CT>
Z
-
Sodium Nitrate
z
z
z
05
0
o
OO
O5
O
CO
«
1
«-
Z
CO
to
T3
CD
O
O
3
"5
C/3
r^
0
in
CO
CN
CO
O5
CM
05
in
co
in
CM
CO
CN
CO
o
CO
CO
1
CO
CN
00
in
CN
00
CD
CD
z
z
z
z
i
s
z
z
z
s
z
z
Urea Solution
O5
o
CN
O5
CO
0
q
r-T
CO
CO
CM
5
co
OJ
in
in
CD
CN
0
s
o
z
Urea-formaldehyde
z
z
z
z
1
z
1
z
z
z
z
z
«Zinc Ammonium
Sulfate Solution
<
z
z
z
CO
z
i
z
z
z
z
z
«Zinc Manganese
Ammonium Sulfate
CN
CN
O5
05
O5
CN
-d-
co
05
CN
CN
5
CN
O
CO
oo
00
CN
O5
O5
CO
in
in
CO
CN
CN
CD
s
C-35
-------
TO
C
t=
o
U
CD
6
a
rt
m
H
CO
s
ff
o
D
CO
r
ra
1
o
a.
^^
o
Z
v_
m
(O
K-
ra
^
2
ra
ra
CD
o
z
§
CO
U.
CO
o
Z
§
t?
CO
o
Z
E
S.
fC
CO
"E
0
Z
E
i?
E
"E
E
£
E
"E
I
E
re
Description
D
S
to
o
00
ra
CO
to
CM
to"
CO
CO
-------
o
c
0
0
to
6
O
5
CO
c
CO
p
'C
ffi
Q_
O
3
I
CD
CD
1
T3
C
CO
CD
5
P
CO
_co
CD
Q
e
ID
O
z
E
CD
U.
E
CO
z
E
1
CO
z
§
CD
U.
E
0
Z
1
"~
Nonfarm
E
1
E
CO
"c
o
CD
U.
Description
in
CO
S
CO
CO
CM
CO
IX
CO
*-
CO
co
CO
in
CO
rx
CO
CO
CD
rx
0
CD
CO
Monoammonium
|| Phosphate
i
z
<
z
i
z
z
i
z
1
z
z
1 Nitric Phosphate
z
z
z
z
co
-
z
1
z
CM
Z
z
|| Phosphate Rock
i
z
2
IX
in
Z
^
Z
z
CO
CD
CO
CO
z
CM
CM
CO
Phosphoric Acid
1
z
z
s
z
z
Z
Z
I
Z
i
z
1 Precipitated
Phosphate
1
z
2
1
z
CO
CM
Z
z
1
z
i
in
| Superphosphate,
Enriched
i
*~
«•
en
CM
z
o
q
^.
00
CO
CM
in
» Superphosphate,
Normal
z
*
o
in
00
CM
CO
CM
CO
o
CM
in
CO
CO
CM
in
CO
O
CO
IX
co
CO
CM
Superphosphate,
|| Triple
z
1
z
z
i
z
z
i
z
z
z
z
«Superphosphoric
Acid
in
co
Z
0
en
CO
o
co
Z
00
CM
CO
CD
CM
CO
CO
CO
CM
r—
CD
•»-•
O
CO
CO
CM
CM
in
in
00
00
in
0
O)
CD
CO
in
CD
co"
CO
in
CO
IX
co
CO
CO
CO
CO
CM
CM
CO
CD
co
in
CM
CO
|| TOTAL
CO
EC
1U
N
U.
1
°
z
1
z
z
CO
in
CO
in
in
Z
I
z
s
z
z
« Lime-potash
Mixtures
z
1
^
z
<
z
z
I
z
s
z
z
II Manure Salts
z
CM
CO
CO
CM
in
CM
CM
in
o
CO
CO
CO
in
co
CM
CM
co
CO
CO
CM
CO
CO
co
o
CO
IX
CO
in
o
0
CM
.c ~o
CO -i=
CO O
£5
£ i.
S co
CO
en
CM
in
§5
CM
CO
5
CO
IX
IX
00
co
CD
CO
0
CO
CO
CO
CO
CM
in
.c
CO
CO
1
'o
CO
3 CSJ
2 CO
I
z
z
CD
CM
CO
CM
O
O
1
Z
z
z
z
z
tn
1 Potash Suspension
z
*
z
in
CM
s
S
CM
Z
CO
z
o
in
CM
Z
Z
CD
I Potassium Carbona
z
z
en
CM
CO
co"
CM
00
CO
CO
CO
CM
CO
CD
CO
1
CO
CD
S.—
CD
0?
-
o
CO
*—
o
CD
CM
co
in
5
CD
CM
CO
in
CM
in
CO
CO
00
CM
oo
-
1 Potassium Sulfate
C-37
-------
•a
Q)
_C
1
O
US
6
o
CO
j—
CO
;
3)
0
D
1
(0
D
CL
O
0)
0}
(D
1
CO
£•
(D
Q
(0
a
E
CO
o
Z
E
CO
U-
F,
CO
"c
o
Z
,P
e
CO
g
Z
§
£
CO
"c
0
Z
g
CO
u.
e
•p
o
S
,£
_n
"c
G
Z
e
a
u.
Description
CO
z
N
10
CO
CM
CO
CD
T—
CM
CO
CO
0
r~
CO
5
q
<
CO
I] Potassium-
magnesium Sulfate
z
^
z
z
z
<
z
CO
I~
~
z
z
z
z
Potassium-
|| metaphosphate
z
z
z
z
z
en
o
*~
Z
CM
CO
^
z
z
Z
Z
» Potassium-sodium
Nitrate
CM
CO
-
N
CO
IO
00
CO
CO
CO
CM
IO
IO
CM
O
CO
IO
IO
CN
CO
CO
IO
a
JZ
4-
0
1
CM
00
IO
CM
CM
q
*
en
CO
CO
CO
O
CO
CO
CO
q
10
CO
CO
to
IO
*t
CO
en
r-
10
to"
CO
en
en
en
en
c
1
CO
£
N
_J
CC
LU
U.
CC
o
z
S
z
en
CO
<
CM
i
^
Z
Z
CO
z
•a
.5
C
•c
o
o
a
^
Z
Z
Z
z
z
i
J
^
z
z
z
z
|| Castor Pomace
z
z
z
z
z
z
z
z
^£
z
z
z
z
a
"a
j=
CO
CO
O
CJ
C
o
CO
CO
tn
en
CO
|
CO
5
z
CO
r-T
Z
^
z
z
o
t—
z
|| Compost
z
z
z
z
i
•?
z
j
^
z
z
z
z
Cottonseed Meal
z
z
z
1
z
•7.
z
z
^
z
z
z
z
0.
CE
c
V.
JC
_tf
z
z
z
z
z
z
z
z
^
z
z
i
z
o
c
cc
cZ
CM
CO
«~
z
o
en
CO
CO
q
z
5
q
j
,_
co
""t
"
Z
CO
00
CO
z
II Manure
z
z
i
z
z
z
CO
^
CO
Z
z
z
-------
Q)
_C
c
o
O
(O
1
o
J£
(0
CO
™
to
0}
CO
'c
>
c
^
o
5
-------
5
\
o
CD
O
"
_c
§
cu
Z
Z
1
i
<
<
s
z
z
z
1
<
Sodium Molybdate
z
z
z
z
z
z
CM
z
z
z
z
z
1 Soil Additive
z
z
z
z
CD
z
CN
z
z
z
CO
z
Soil Amendment
z
z
z
z
z
z
in
r-
CM
CM
8
CD
Z
<
z
z
Soil Conditioner
CM
r,
<-
in
CO
CO
CD
£
o
CO
-
fj!
in
Z
D
M—
CO
1
z
z
z
z
z
z
z
z
z
z
z
Sulf uric Acid
z
z
z
"*
z
in
in
Z
Z
z
o
CO
Z
in
Zinc Chelate
z
z
z
CO
CO
in
CM
CO
CO
z
Z
Z
Z
z
z
CD
•a
'x
O
o
c
KJ
z
z
z
CO
5
f.
Z
z
z
in
Z
Z
Zinc Oxysulfate
z
z
1
CO
CM
CD
CO
in
-
-
z
CO
z
co
CD
"5
CO
rsi
|
i
z
z
z
z
z
z
z
z
z
1
c
o
~5
CO
1
3
CO
o
c
N
-
-
CO
CO
5-
CO
CM
CM
CO
0
CO
CM
CM
3
in
O
CM
1
5
Is-
CO
CO
CO
CM
co
CD
CM
CM
CM
00
CM
0
in
in
0
in
0
co
CD
CM
en
|| TOTAL
•ERIALS
-------
1— ^
•o
3
C
1
O
o
CO
CO
CM
CO
CO
CO
csl
10
cn
CO
CO
0
CM
CM
CM
cn
CM
co
CO
o
co
CO
1
CM
in
in
*"7
CM
1 TOTAL
CO
CO
g
I
£
(D
-a
to
-
o
o
(D
O
c.
o
c
at
co
£
CD
-------
CO
§
.
JQ
O
co
§
O
03
O
I
ca
.2
CO
c
5
to
O
^
1
cn
.„
O
<3
i™
i
o
CD
0
•o
o
E
03
C
o
E
CO
u.
F
CO
o
E
1
o
E
CO
u_
E
t!
Nonfarm
1
c
.c
c.
CO
a
CO
cc
UI
N
3
H-
ENT PER
cc
5
ULTIPLE N
S
in
CM
CO
ro
IX
CO
00
CO
CO
CM
O
oo
en
CO
CO
CO
CO
CM
•*
o
rx
00
o
CO
CO
rx
00
CO
00
S
en
03
en
0
in
0
rx
CM
in
in
CO
CM
§
^
a.
Z
CO
in
CO
en
en
8
in
en
o
o
en
T—
00
00
co
CM
en
CO
CO
rx
CO
in
in
en
eo
o
8"
CO
CO
en
CM
Q.
Z
CO
8.
*
CD
en
en
q
CO
en
o
en
TO
oo
o
en
en
IX
en
rx
Z
en
rx
in
o"
CO
ro
in
00
ro
z
in
rx
o
CM
5-
CO
CO
,
i
Cn
1
O
ro
in
CO
cc
a.
00
CO
CO
0
oo
„.
in
in
ro
CN
to
ro
in
r—
00
CO
in
o
00
O
ro
in
in"
in
00
CM
CM
in
q
ro
CM
ro
00
O
in
CN
_,
^
5
CC
UI
FERTILIZ
2
O
cc
z
CM
CM
CM
m
CO
CM
CM
rx
0
v-
co
CD"
CD
en
CM
in
CO
en
CD
CO
5
q
CO
IX
r—
CO
CN
CO
03
£
c
4
Z
03
CO
Z
CM
co
CO
z
Z
Z
Z
en
CN
CO
o
"c
CO
CO
CO
.ti
E
c
1
<
1
^
Z
z
CM
en
CO
Z
z
in
CO
c
0
CD
to
Z
£
'§ £
E 3
11
z
oo
Z
in
CO
CO
CO
2
CM
-
CD
M—
3
CD
to
.*;
F
C
o
1
z
00
en
in
CM
00
in
Z
in
CO
CM
Z
«-
z
CD
;c
CO
<£
F
c
o
E
CO
0
o
en
CM
CM
00
in
00
o
CM
o
CM
o
in
ro
00
00
O
03
in
O
en
in
in
CM
ro
Z
CD
q
r—
Z
z
o
CO
CD
?
C
±
E
"o
03
O
C-42
-------
T"f
w
I
o
0
r^
0
2.
to
CO
c
CO
c.
s
to
f
b
o
CO
-
...
p
CO
U
.c
0
.2
I
O
CO
T3
O
£
CO
c
o
^
E
(D
LL,
E
CO
0
E
£
E
"c
o
•7.
E
CO
u.
£
co
U-
£
CO
t
0
E
CO
u_
C
_o
S.
8
CD
Q
Z
CO
00
z
z
i
CN
CN
Z
CN
CO
CD
•*-•
H-
Ferrous Ammonium Su
z
z
z
z
1
z
z
^
z
CO
|| Magnesium Nitrate
CM
CM
CO
05
in
-
^
-
Z
^
z
z
T3
O
CO
CO
00
CO
in
CN
CM
«-
CO
o
z
^
co
CN
rv
CO
CO
in
|| Nitrogen Solution 28%
z
CN
IV
CO
CM"
CO
Z
CM
CO
CO
CO
O
5
CN
CD
CO
CO
CM
CO
O
CO
CM"
CO
co
•*
CO
CM
|| Nitrogen Solution 30%
-
00
CO
00
o
in
o
CM
in
in
00
CN
Z
r**
oo
in
CM
|| Nitrogen Solution 32%
o>
in
in
o
in
CO
o
in
CO
CO
CO
CO
O)
in
in"
00
Z
in
in
CO
CO
in
CM
e^
|| Nitrogen Solution <28
z
CO
in
CO
Z
£
z
0
z
^f
2
00
in
CO
#
|| Nitrogen Solution >32
CM
O)
CO
CM
o
CN
^
CO
CO
CO
CO
z
03
CN
in
00
00
II Sodium Nitrate
1
CO
•fr
00
00
co
co
z
z
0
in
CO
CD
13
s
o
o
5
"5
CO
CO
o
00
CO
CN
in
in
CM
05
C3
co"
5!
CO
00
CN
co
CO
CN
10
0
IV
co
0
o
CD
CO
CO
1
z
oo
CM
in
z
z
z
^f
z
CO
10
I Urea Solution
in
CM
CN
00
CN
CO
CO
CM"
CO
O)
o
Z
CM
OO
CO
CO
CO
oo
co
|| Urea-formaldehyde
z
CO
CN
*
in
O
Z
in
CO
Z
^f
Z
z
c
o
*-*
~5
CO
1 Zinc Ammonium Sulfat
z
CO
CO
i
5
z
-
*
CO
r-
E
c
Zinc Manganese Ammc
Sulfate
00
o
CN
O
CN
CO
CO
in
CO
CN
00
in
co
o
CO
CO
IV*
CM
CO
CO
CM
CO
in
CN
CO
6
£
CM
CO
in
CO
oo
CO
CO
10
CO
in
00
IV
0
O
00
in
CM
in
o
CO
CO
CN
00
^
IV
CN
in
0
00
CO
|| TOTAL
to
ce
in
b!
u.
Ul
X
Q.
09
0
Q.
%
s
Z
Z
<
z
*
^f
z
z
CO
tn
s:
|| Ammonium Metaphosp
z
CM
Z
Z
z
z
z
<-
I Ammonium Phosphate
z
1
z
z
<
i
z
•^
z
-
CD
CO
+-•
s
|l Ammonium Phosphate
z
00
z
CO
?•
z
z
j>
z
z
CO
CO
u
CO
I Ammonium Phosphate
z
z
z
z
^
z
z
^
z
CO
CO
|| Ammonium Polyphosph
z
z
i
z
7"
Z
*
j«
Z
s
1 Basic Lime Phosphate
z
z
z
*
7
CO
5
J«
z
CO
CO
00
CN
0)
CO
CO
o
'co
CO
CO
C-43
-------
•o
q>
C
1
6
CD
3
m
H
ra
r
(0
c
"o
O
r
o
C/}
"ca
c
s
0
C
o
.2
o
CD
C3
CO
•n
—
onarm |
7.
E
(0
u.
3
o
Z
£
CO
u.
F
1
E
1
E
1
f=
CO
"c
o
Z
E
£
Description
z
z
in
r—
,_
Z
CN
Z
Z
Z
cc
CC
"cc
CC
CD
C
c
m
•*•
cn
<
7,
i
CM
Z
CO
CO
-
Bone Meal, Steamed
z
i
z
£
z
z
i
z
z
Bone, Precipitated
z
CO
00
z
Z
Z
s
z
z
CO
Calcium Metaphosphate
CO
*
z
z
CO
z
CM
en
CO
Colloidal Phosphate (Sof
Phosphate)
r—
CO
CO
o
CD
i*
00
rx
to
fi
CN
CO
0
r—
en
CO
CO
CO
CM
CO
*
CO
in
CO
o
v
r--
00
CM
Diammonium Phosphate
z
z
z
z
z
z
z
z
in
Limestone, Phosphatic
£
o
en
co"
in
in
en
CM
CM
CO
in
CD
IO
in
00
CM
1 TOTAL
tfi
K
HI
N
UJ
u.
T
POTAS
z
CO
cn
Z
-
z
CO
cn
Z
o
CO
Z
II Lime-potash Mixtures
co
CM
T_
z
CO
1
z
Z
-
Manure Salts
*
i
CO
CD
CO
in
CN
CO
CD
CO
10
CN
CO
0
CO
CO
CO
CO
CO
00
cri"
CN
CM
in
CO
co
CN
0
0
Q_
» Muriate of Potash 60%
Chloride)
co
0
r-
CO
0
co
T—
r-.
r~.
CD
co
00
IO
z
00
0
CN
O
CO
in
| Muriate of Potash 62%
C-44
-------
T?
cu
+3
O
O
Is*
I
o
3
CO
1-
co
'E
CO
•«
o
CO
1
0
to
"co
c
2
CO
U
t
o
CO
'5>
0
CD
0
CO
TJ
O
rr
tuieuo|\
E
CO
ti-
ro
M—
C
.y
E
1
E
1
E
1
£
CO
LL.
E
CD
"c
X
E
i£
c
Descriptio
z
z
z
z
z
z
z
z
O5
|| Potash Suspensions
z
z
1
-
z
CO
CM
z
CM
Z
Potassium Carbonate
CO
2
CO
CO
LO
CD
10
O
CO
o
CO
z
r-s
CO
LO
CO
CO
1 Potassium Nitrate
CM
00
CD
LO
CM
*
CO
CO
r"l
z
LO
CM
CM
CO
O
CD
|| Potassium Sulfate
*
LO
00
CM
CO
CD
CO
CO
CD
LO
to
LO
CM
CO
CD
CO
CD
CO
CO
CM"
CD
3
CO
|| Potassium-magnesium
z
z
z
«
z
z
z
z
z
CO
j:
|| Potassium-metaphosp
z
CO
Z
10
CM
CO
CO
co
LO
CM
LO
r-
Z
CM
CD
CO
|| Potassium-sodium Nit
CD
CO
CD
CO
CM
LO
CM
0
CO
10
U
CD
CO
IO
CO
O
LO
CM
LO
CD
O
CM
0
CO
O
CO
0
CO
00
CO
CD
CM
CD
CO
CD
CM
O
CO
CO
CO
O3
CN
to
co"
•*•
CO
CO
CO
CD
CO
r-T
CO
|| TOTAL
CO
FERTILIZER
0
1
0
z
CD
CO
•z.
«
CD
^
•z.
LO
•z.
.2
Q
o
o
m
•z.
•z.
•z.
*
•z.
CO
Z
Z
Z
|| Castor Pomace
z
z
z
1
z
^
z
z
z
"co
CO
"CD
.c
CO
CO
O
0
s
CO
CO
CM
co"
Z
CO
00
LO
*-
z
z
CM
z
CO
z
|| Compost
z
z
z
1
z
CD
CO
z
z
-
1 Cottonseed Meal
z
z
z
z
CO
CM
z
z
z
Q.
E
o
CO
.c
Cfl
u.
Z
z
z
i
<
1
z
z
z
0
c
CO
3
r^
10
0
pC
CM
CO
CD
CO
S
CO
CD
CO
00
CM
CD
Z
ro
00
CM
CO
|| Manure
CM
o
LO
Z
z
<
CO
to
z
1
z
4-*
s
s
CO
to
Z
CM
t—
Z
1
co
O
co
CO
0
CO
CD
+-*
CO
u
CO
Cl
T3
3
CO
CO
CD
CO
CD
CO
z
s
z
Z
Z
z
z
z
5
-Q
s
CD
en
b
CD
en
T3
3
CO
CO
s
1
<
z
<
z
z
Z
Z
z
1
T3
CO
Q
CO
co"
en
•a
3
CO
CO
en
CO
CD
CO
CO
LO
CM
Z
2
Z
z
CO
z
z
z
CO
.n
O
CO
en
•o
3
CO
CD
CO
CO
CO
z
z
z
1
z
$
z
z
z
"co
CD
c
CO
CO
.Q
O
CO
Z
Z
Z
Z
Z
s
z
z
z
|| Tankage, Animal
z
z
z
1
z
co
00
z
z
z
|| Tankage, Process
C-45
-------
TJ
CD
3
s
1
o
u
1
CO
>
c
0
ra
O
jr
3
CO
"to
c
"o
0
o
.2
'5
o
CD
ca
CO
T3
C
U.
p
CO
g
Z
E
•£
E
£
o
E
1
f=
CO
"c
.3
g
CO
u.
E
1
g
£
"c
a
T
S.
C
Descriptio
o
CM
3>
5
CO
,—
m
in
CO
in
CO
CD
«t
CO
en
CN
in
CM
0
.c
O
CM
CD
CO
00
CO
CO
in
CO
CO
DO
CO
CD
CM
in
v>"
CO
CO
o
en
CM
00
o
CM
oa
1
ta
DC
UJ
N
1?
Z
ONUTRIE
cc.
O
z
ft
o
CO
en
Z
z
z
z
CO
1
z
*
Aluminum Sulfate
z
£>
•*
^
z
CO
en
Z
o
co
in
CM
X
Cl
c
m
Z
CM
Z
Z
z
CO
z
£
CM
Calcium Chelate
z
3
CM
*
Z
CM
1
Z
CO
Calcium Chloride
z
z
z
z
z
z
i
z
CO
, .
c
Calcium Sulfate (Hyd
z
z
z
z
z
z
z
z
z
I Cobalt Sulfate
z
z
z
s
z
CO
z
z
z
Copper Chelate
z
z
z
co
z
z
z
z
*
Copper Compound
1
z
z
z
z
1
z
z
z
c
a
03
ffi
T
*>
CO
a.
a.
c
Z
CO
Z
"*
Z
in
CO
i
r.
00
cc
Copper Sulfate
>-
*
z
00
z
CM
Z
CO
CO
CM
CO
CM
CO
"IB
is
CO
E
10
1
cc
2
"5
CO
t
uj
Z
z
z
z
z
z
z
<-
z
o
•c
'>
o
1
i
S
Z
Z
z
z
z
z
z
cc
.0
S
LL
Z
z
z
z
z
s
z
s
in
en
1 Ferrous Sulfate
o
m
CO
CM
en
CO
CO
CO
m
CO
en
Z
o
CO
in
en
CM
00
en
in
m
CM
n
c7
E
'c
"cc
E
0
c
O
^
i
z
2
z
5
i
in
o
?
CD
S
"a
6
c
c
in
Z
CM
CM
T—
Z
z
z
CO
CO
r—
CO
M Iron Compound
z
z
z
z
z
s
z
z
z
Lime Sulfur Solution
z
CO
z
*
z
CM
CO
Z
z
en
in
'a
'x
O
P
Magnesia (Magnesiu
z
CO
z
Z
Z
z
z
-
CD
Magnesium Chelate
2
Z
Z
z
z
z
z
1
z
Manganese Agstone
z
r-*
z
z
z
§
z
r-
r-
CO
Manganese Chelate
z
CO
Z
• — •
Z
z
z
S
CO
|| Manganese Oxide
C-46
-------
•a
o
c
1
o
o
I
O
to
J3
CO
H
co
"c.
>
CO
c
"o
CO
O
.c
o
V)
*"ca
c
1
CO
O
_c
t
o
m
E>
o
CO
o
CO
T3
o
u_
Nonarm ||
CO
u.
£
jn
•£
0
z
CO
u.
£
c
o
£
s
u.
g
CD
U.
£
CO
"c
0
E
CO
u.
c
0
1
o
CO
o
a
Z
z
£
CO
oo
i
•z.
Z
CM
z
Manganese Slag
z
-
^
z
00
1
CD
T—
s
CO
§
CM
CD
Manganese Sulfat
t
z
^_
z
z
z
z
z
z
z
Manganous Oxide
CM
in
oo"
04
Z
^_
Z
z
z
z
z
z
z
'o
00
O)
c
I
z
z
^-
z
z
z
1
z
z
z
M
Sodium Molybdat
z
z
-
z
a
z
<
z
z
,-
|| Soil Additive
CO
CO
<3
LO
I
J,
2
1
z
<
z
z
<
Soil Amendment
00
ID
I
_
z
S
i
,_
~z.
3
CO
o
| Soil Conditioner
-
co
00
CM
en
en
CM
en
o
Z
en
00
£
3
CO
z
z
^•f
z
s
z
z
z
2
Z
1 Sulf uric Acid
,
5
j
z
z
|
CM
Z
z
in
|| Zinc Chelate
z
z
J,
z
CO
|
Z
z
CO
00
CD
'$<
O
o
_c
z
CO
-,
z
00
z
£
z
z
z
Zinc Oxysulfate
z
CM
j»
Z
-
z
CO
Z
^
CM
CO
"3
CO
u
c
Ki
Z
1
j
Z
z
z
z
z
*
z
c
o
3
0
CO
&
CO
CO
8
CD
CM
CM
en
en
^
00
o
CM
00
CO
00
co
CN
en
00
00
CO
en
CO
CO
-------
, {Continued
6
CD
CO
h-
10
„
CO
(0
c
p
<0
J=
o
to
o
01
o
o
(0
CO
o
CD
o
s
o
u.
F
§
o
E
03
F
c
2
E
ra
F
c
o
E
CO
LL
E
ff
§
£
"r
o
ra
u.
c
Descriptio
' MATERIALS
o
?
-J
i
<
z
,.,.
z
z
z
^
z
o
co
o
"
CO
q
CM
1
3)
CD
'o
CO
0
Z
Z
z
^
z
z
z
CO
c
CO
O
t
O
CD
N
CO
CO
s
u
CO
•v
o
T3
(D
o
o
£
CD
CO
3
£
•I
o
o
CO
ca
g
•*-* CD
0}
JS.
CD
I
CD
ta
CD
_a
ca
ts
•a
CD
E
o
ca
_CD
o
c
II
<
C-48
-------
(0
o
(O
0
0)
(0
0)
+<
(0
£
c
"5
0)
(O
o
1
v>
o
O
*•
0)
_N
1
0)
op
6
s
o
.c
•a
O
'x
0)
Z
Montana
0
2
o
o
o
O
c
E
1
£
co
e
§
CO
F
S
1
§
u.
1
1
Z
<5
u.
6
C
2
E
u.
e
o
£
S
g
Descripti
FERTILIZERS
E NUTRIENT
£
S
5>
CM
in
CD
in
CO
CM
in
in
CM-
CO
5
CO
CO
CO
^f
CO
8
(O
CO
^
z
p^
CO
"
CM
CO
tn
z
<
4
z
3
i
CM
tn
-------
1
1
O
CO
I
CM
10
to
O
to
Z
2
Z
CO
s
to
*
z
•2
« Nitrogen Solu
28%
z
S
<
z
z
s
s
to
o
3
1
z
<
z
CM
CM
Z
z
1
Nitrogen Solu
30%
^
o
o
to
T-
to
to
o
t—
s
CM
S
•<£
o>
s
en
8"
«-
z
5
"
z
en
32%
z
1
-
(O
Z
r-.
1
.
z
s
g
z
z
z
z
0)
Sodium Nitra
z
<
CM
CO
S
z
*
z
CO
CM
Z
s
g
z
-
*
z
Sulfur Coatee
Urea
CO
CO
CM
(N
0
CO
°
2
r*.
CO
CO
r*.
1
CO
s?
to
CO
to
z
CO*
z
r-T
CM
CO
0
°.
CM
£
z
z
z
s
2
CO
to
z
z
1
z
z
z
z
z
g
Urea Solution
S
z
in
CO
T~
o
z
z
§
1
g
z
CM
z
z
1 Urea-
formaldehyde
2
CO
z
*
Z
Z
z
1
s
s
g
z
-
z
z
i i
Izinc Ammon
Sulfate Solut
z
S
1
1
z
»
2
z
z
z
z
2
*
1
z
£
Izinc Mangan
Ammonium
Sulfate
C-50
-------
3
O
00
0>
(0
1-
en
*
.c
5
•o
S
o
.0
X
0)
3
o
m
z
z
z
z
*-
z
z
z
z
z
z
z
<
z
z
5
a;
| Bone Meal,
i
z
1
z
r-
Z
Z
z
z
z
z
<
z
<
z
| Bone Meal,
| Steamed
S
s
z
z
z
s
1
z
s
z
z
<
<
£
z
T3
.*;
ct
0)
c
o
m
1
<
1
z
i
z
<
z
s
z
i
<
<
^
z
CO
Calcium
1 Metaphosp
z
1
i
2
i
1
<
<
i
z
i
<
S
i
z
H±
CO
|| Colloidal
|| Phosphate
|| Phosphate)
z
CD
5
CM
CM
1
S
<-'
I
CO
to
i
1
s
5
z
to
I
<
O)
CM
to
^
P
Diammoniu
Phosphate
z
z
s
z
1
1
<
I
1
z
i
<
<
2
z
| Limestone,
| Phosphatic
z
CM
in
Z
00
-"
CO
CO
to
to
10
<
CM
CM
CM
CO
Z
R
CO
E
o ^
I Liquid Amrr
Polyphosph
z
<
z
2
1
<
<
to
CM
-
z
1
<
<
z
2
Magnesium
II Phosphate
C-51
-------
'U
3
.E
U
00
t
0
J3
CO
H
j.
*
a
^
O
I
i
o
o
i
o
5
„
I
F
1
z
g
u.
J
Z
I
J
E
g
1
£
§
F
z
£
c
*
g
F
5
I
1 Description
§
n
M
CM
s
i
00
r-
u>
s
m
CM
^_
8
CO
CD
O
§>
I
114,618
<
1
en
r*-
CM
CO
CM
nMonoammonlum
Phosphata
z
z
z
s
2
?
11
z
<
I
s
z
z
z
z
Nitric Phosphate
Z
<
I
s
z
s
z
1
<
z
z
z
S
g
z
II Phosphate Rock
z
•*
z
CM
CO
z
„
Z
i
<
i
-------
£
c
c
?
•a
a
•s
o
o
o
a
.H
E
S
z
CO
E
5
S
z
E
E
c
z
S
u_
E
"i
•"•
E
-------
'U
•*5
g
O
00
i
-------
•o
0)
c
o
o
op
U
03
gane
tone
Mangan
Chelate
nga
lfate
ting
Zinc Sul
Solution
aloi
(75
C-55
-------
1
O
o
CO
CO
-------
v>
o
to
en
O)
O
u
E
o
0)
•o
.5
in
cu
(0
U
1
s.
CO
w
=3
J3
O
1
w
o
O
^
CD
0)
co
0
o
cc
CO
3
Q.
C
O
c
CO
i
c
o
en
CD
<5
.—
CD
1
c
"co
o
to
1
"*
E
03
C
O
^
E
LL
CD
•s
O
E
CD
LL
£
1
0
Z
E
CO
LL
fc
1
£
CD
C
O
E
CD
LL
E
_g
8
CD
Q
CO
III
N
1-
LU
K
Z
UJ
s
5
en
CO
00
CO
CO
CO
CO
p-
en
**
CO
CO
CM
CM
00
CO
CM
CO
CO
o>
pC
t—
CO
CD
LO"
PS
00
CO
CO
CO
en
CO
en
en
r-.
CO
CM
0.
^
•z.
o
co
LO
00
LO
to
co"
CO
10
00
o
!•*_
O)
CM
CO"
^
2
co"
0
CM
LO
00
LO
Q.
Z
^
z
CM
LO
LO
CO
O
LO
LO
00
LO
IO
en
CO
LO
z
^
z
en
CM
CM
Z
Z
"*
en
CM
en
o
CM
LO
1
CO
z
^
Z
O
CO
z
a.
crj
^~
en
CM
CO
CO
LO
en
o
o
CO
o
CO
Q
LO
IO
CM
en
LO
in
CM
CO
CM
CO
LO
r.
00
CO
co
!-.
00
co
CM
CO
CO
en
CM
1 TOTAL
tn
FERTILIZER
o
o
t£
1-
z
^.
z
CM
CO
CO
CM
CO
CO
LO
z
LO
CO
CO
CM
CO
z
,-r
z
00
CO
en
CM
en
LO
« Ammonium
Nitrate
^
Z
<
Z
z
1
o
o
CM
Z
^
2;
CO
CO
CO
z
« Ammonium
Nitrate Solutio
^
z
z
£
z
z
z
z
CO
en
CO
LO
CO
CO
LO
00
CM
iii"
-------
TJ
0>
^rt
€
0
6
CD
3
(0
H
o
o
cc
I
c
o
s
CO
c
o
s
o
•5
ID
CO
E
§
CO
2
E
o
Z
E
1
E
c
o
2
E
£
E
•S
o
Z
p
s
(0
g
a>
c
o
Z
E
F
1
Descriptior
^
Z
$
£
Z
Z
•z.
•z.
z
z
2
« Ammonium
Sulfate-urea
^
2
Z
Z
CO
CN
ID
O5
Z
CD
CD
j£
Z
I
O>
CO
Z
Ammonium
Thiosulfate
^
z
1
in
CD
O
CO
Z
in
in
CN
CO
Z
Z
CO
co
in
2
Anhydrous
Ammonia
^
2
Z
Z
in
CD
•*
CO
Z
CD
CD
Z
z
r-
CO
CD
O
«
Z
CO
Aqua Ammoni
^
z
z
z
o
CN
1
O]
CO
z
z
CD
CD
CO
Z
Calcium
Ammonium
Nitrate
^
z
'
^
CO
CN
z
z
z
z
z
z
Calcium
Cyanamide
^£
z
z
C"J
m
z
CD
CO
CO
«
1
Z
CO
CN
in
CD
Z
o
Calcium Nitrat
^<
z
«
z
z
z
z
z
z
z
2
CD
Calcium Nitral
1 urea
^r
z
z
in
CO
i^
O
0
in
Z
Z
z
1
z
z
Ferrous
Ammonium
Sulfate
^f
z.
z
z
z
z
z
z
z
z
I Magnesium
Nitrate
^f
z
z
z
z
z
^
z
1
z
z
z
2
^^
z
z
co
CN
r-.
co
CO
in
Z
03
r-
co
•*•
1
Z
CO
CO
z
c
_0
3
o
to
c
CD
0)
.H CO
Z CM
^
Z
z
z
CO
z
<
z
z
z
z
c
o
3
o
CO
c
CD
?#
IS
^^
z
z
CO
CO
CO
CO
r-T
CO
Z
5
h-
CO
CO
CN
co"
z
0
co"
CO
in
Z
c
o
"o
CO
c
CD
0)
iS
^
z
z
co
o
co"
z
CO
*
z
Z
in
r-.
en
z
c
0
73
1 Nitrogen Solu
<28%
C-58
-------
•a
CD
3
1
O
O
O)
o
0)
.Q
CO
o
o
tr
CD
s.
C.
O
CD
C
1
c
o
CD
6
'5
CO
I
CO
c
"5
O
CO
"M
to
<
E
CO
!=
o
z
E
CO
onfarm
z
E
CO
LJ_
co
c
0
z
1
u.
E
CO
c
o
z
t
(0
u.
E
CO
Description
^
Z
Z
IX
co
O)
Z
Z
z
z
^
z
z
^
z
e
« Nitrogen Solutio
>32%
^
z
^
z
s
a
z
z
z
^
z
en
CD
^
Z
Sodium Nitrate
^
z
00
z
z
z
CO
CM
Z
^
z
•*
IX
^
z
T3
2
(C
3
*H rc
"5 k-
C/3 3
^
z
00
o
CM
,_
T—
CM
00
CO
z
CD
CO
in
o
CO
^
Z
oo
00
CO
CO
CM
in
CO
CO
•=>
^
Z
^
Z
Z
1
z
z
2
^
•jp
CO
CO
^
Z
Urea Solution
^
z
T~
in
CM
IX
co
O
CO
0
CO
CO
z
^
z
z
^
z
Urea-
formaldehyde
^
z
z
i
1
z
z
z
^
z
z
^
z
«Zinc Ammonium
Sulfate Solution
^
z
z
s
i
Z
Z
z
^
z
z
^
•z.
Zinc Manganese
Ammonium
Sulfate
1
^
z
IX
00
CM
CM
CM
CN
CM
CD
CO
O>
Z
^
z
z
^
z
CO
1
1
CO
CO
00
CO
in
00
o
*~
IX
in
CO
co
CO
CO
CO
IX
CO
CM
CO
co
o
o
o
CO
co
^
z
CD
CD
o
IX
CO
CO
CM
in
_1
o
CO
N
-J
u.
Ul
Q.
CO
o
a.
^
z
<
z
z
00
CM
CO
z
I
2
^
z
z
^
z
« Ammonium
Metaphosphate
^
z
<
z
z
CO
CO
Z
CO
in
CM
CO
^
Z
Z
,<
z
Ammonium
Phosphate
^
z
z
z
in
CM
Z
-
Z
^
z
z
^
z
-------
T3
§
.=
"c
O
O
cr>
6
CD
3
CD
O
o
r
c
„
0.
c
o
0,
CO
CD
C
o
o>
CD
O
CO
CO
X
CO
c
"(O
O
CO
je
CO
cc
s
CO
1
2
CO
u.
F
c
E
£
E
"c
0
2
CO
U.
E
CD
U.
£
"c
o
2
§
F
Description
2
<
g
2
2
2
2
S
*
2
« Basic Lime
Phosphate
I
z
2
S
2
2
2
2
2
2
01
cc
CO
o
"c7
cc
cc
2
<
2
CM
CO
2
2
2
2
2
2
1
CC
"cc
a
o
c
o
m
2
2
2
co
2
2
2
2
2
2
Bone Meal,
Steamed
i
2
^
2
i
1
2
Z
2
2
2
Bone, Precipitated
i
2
^
2
2
2
2
2
2
2
2
« Calcium
Metaphosphate
2
2
j.
2
CO
2
2
2
2
2
2
Colloidal
Phosphate (Soft
Phosphate)
2
O
CO
*-
CO
0
r-
2
CO
CO
CD
2
2
0
CO
in
CO
in
Diammonium
|| Phosphate
2
1
j>
2
2
2
2
Z
Z
«
z
« Limestone,
Phosphatic
z
z
J>
z
o
in
CD
CO
Z
CD
CO
CO
co
o
CO
z
CO
o
CM
Z
II Liquid Ammonium
Polyphosphate
z
i
CO
z
z
2
Z
Z
«
z
Magnesium
Phosphate
2
-
o
CO
CO
CO
00
CD
CO
z
CM
03
^
Z
z
in
CO
CO
2
»Monoammonium
Phosphate
2
Z
^
2
O)
CO
CM
Z
Z
z
z
«
2
Nitric Phosphate
z
z
^
z
in
CD
Z
O
00
CM
T—
r-
Z
Z
z
Phosphate Rock
z
z
^
z
o
CO
z
o
-"
z
z
CO
CD
CO
0
Z
Phosphoric Acid
z
CO
^
z
z
z
z
z
2
2
Z
1 Precipitated
Phosphate
C-60
-------
•Q
0)
3
p
1
O
0
o>
0
_«
•2
o
u
cc
in
TOTAL
CO
er
FERTILIZE
(0
*J
o
a.
<£
Z
Z
z
z
z
*
z
^
2
z
z
» Lime-potash
Mixtures
OO
Z
CO
00
00
co
in
00
^
Z
5
CM
1 Potassium Sulfate
<
z
z
CO
CO
CO
O5
Z
CO
CO
CO
r-T
Z
^
z
in
o
CM
^
Potassium-
magnesium
Sulfate
C-61
-------
•a
§
•j=
c
8
.
0>
1
o
.2
CO
H
o
0
CC
1
c
1
I
c
o
CO
?
O
CO
CO
I
CO
c
"eo
O
CO
CO
<
E
CO
c
o
2
if
CO
c
o
•z.
£
£
£
CO
c
o
2
c
£
§
CO
u.
E
c
o
2
£
E
CO
U-
c
o
s.
a
^
2
2
2
2
^
2
2
2
<
2
2
gPotassium-
metaphosphate
^
2
2
2
i
^
2
2
2
2
I
2
Potassium-sodium
Nitrate
^
2
2
CM
°l
CJ
^
2
CO
CO
in
CO
CM
CO
CO
2
CD
2
CD
O
«<
2
CO
u>
CO
*
00
O)
^
2
CO
in
CO
in
^
CO
co
pC
£
0]
o
CO
r—
CM
CO
TOTAL
(O
cc
111
N
_I
1
O
C3
CC
o
^
2
2
2
CO
in
^
2
2
2
2
CM
co
2
•a
CO
a
T3
o
o
co
^
2
2
2
2
^
2
2
2
2
2
2
Castor Pomace
^
2
2
2
Z
^
2
2
2
2
2
2
"co
CD
"53
.c
CD
O
8
^
2
2
2
CO
^
2
2
i
2
2
2
Compost
^
2
2
2
CM
^
2
-
2
2
^
2
2
Cottonseed Meal
«^
2
2
2
CO
<^
2
^
2
2
2
j
2
0.
CD
1
CO
t£
^
2
2
2
CO
^
2
^
*
2
2
2
2
o
c
to
O
^
2
2
<
2
0
p-T
^
2
^
2
2
2
2
2
II Manure
^
2
2
2
2
^
2
-,
2
2
|
2
2
CO
£
^
2
2
2
2
^
2
^
2
2
2
2
2
Sewage Sludge,
Activated
<^
2
2
2
01
^
2
^
2
2
2
2
2
Sewage Sludge,
Digested
^
2
2
2
2
^
2
^
2
2
2
2
2
CD
Ol
T3
CD '£
0>Q
Is
^
2
2
2
1
^
2
^.
2
2
2
C33
CO
r-
2
0?
O)
•o
_2
o
S" t.
S CO
§5
C/3 O
^
2
2
2
2
^
2
^
2
2
2
2
2
|| Soybean Meal
C-62
-------
•o
0>
3
_c
^^
o
O
•
9
o
_«
(0
o
0
ir
S
CD
Q.
C
O
CO
CO
5
C
O
D>
(D
O
*5
CO
X
to
"c
o
"ro
0
«J
C/)
J2
CO
"E
o
z
E
.E
E
ra
*£•
0
Z
CO
LL.
5
C
0
z
E
1
E
CO
u.
f-
c
CO
"c
o
z
E
£
E
CO
u.
Description
Z
<
Z
^
Z
1
z
z
z
«^
z
«.(•
z
z
Tankage, Animal
z
<
z
^
^*
, CO
<
Z
Z
Z
^
z
<-
z
z
|| Tankage, Process
z
T—
^
2
in
z
Z
z
<£
z
<
z
z
CD
§
Z
^
z
en
o
CO
<
Z
z
z
^
z
r—
03
00
z
n TOTAL
W
cc
1U
=
c
111
!!•
t
UI
3
Z
O
tc
o
S
Q
ARYAN
Q
Z
o
o
UI
w
z
<
z
^
z
CO
CO
<
Z
CM
Z
^
z
<
z
z
Aluminum Sulfate
z
<
z
^
2
O)
co
z
00
00
z
^
z
<
z
z
X
2
o
co
Z
<
z
^
z
1
z
z
5
CO
^
z
,,-
z
z
I Calcium Chelate
z
<
z
^
z
z
z
z
z
^
z
<-
z
z
Calcium Chloride
z
<
z
^
z
o>
r-
z
Z
z
^
2
JJ-
z
z
« Calcium Suifate
(Hydrous)
z
<
z
^
z
CM
Z
1
z
^
z
^
z
Cobalt Sulfate
z
<
z
^
z
CM
Z
z
z
«^
z
,5-
z
z
1 Copper Chelate
z
<
2
<^
2
2
Z
5
CM
Z
^
Z
CM
CO
z
Copper Compound
z
<
Z
«^
z
z
z
z
z
^
z
<-
z
z
CD
T3
'x
0
h
o JS
O m
2
<
z
<^
z
0)
co
Z
z
z
^
z
.^
z
CD
"5
CO
I
Q.
z
0>
CM
^
Z
o
in
CM
Z
*
Z
^
z
<£
z
z
Epsom Salt
(Magnesium
Sulfate)
z
<
z
^
z
-
z
z
z
^
2
,3-
z
CD
-D
"x
o
o
1
Z
<
z
^
2
CO
q
Z
z
1
^
z
<(•
z
z
II Ferric Sulfate
z
<
z
<^
z
en
in
Z
z
z
^
z
«J
z
z
|| Ferrous Sulfate
C-63
-------
•o
CO
••s
§
°,J
O
J
(0
o
o
cc
•c
c
o
^
CO
*
c
o
£
o
I
.5
"ro
O
03
cn
_fO
E
CD
"E
0
Z.
E
1
•s
o
E
i?
E
1
o
Z
E
E
E
CO
s
z
E
E
£
c
o
o
CO
CD
a
<
Z
z
CO
in
CM
CM
§
Tf
in
CM
CM
Z
^.
Z
CO
CO
CO
o
r^
r—
Z
E
*o
0
If
>-"5
CD CO
z
1
z
in
in
Z
r-
Z
^
z
z
z
-------
T5
0)
3
O
O
6
.S3
H
o
o
CC
r
CD
Q.
c
o
a
c
.c
CO
rtj
C
o
CD
CD
O
'<5
(O
CD
C
Hi
"<5
O
a
«
E
"E
0
Z
CO
u.
F
1
z
E
1
£
<5
o
Z
E
<5
u.
E
£
45
o
E
03
E
£
Description
z
z
z
z
^
z
CO
CN
CN
Z
z
r*^
00
"
z
II Suit uric Acid
z
S
z
0
CD
[V
^
Z
z
z
z
^
z
z
1
o
o
c
M
z
z
z
IV
^
z
CO
CO
o
z
I
^
z
z
o
•0
°x
o
u
c
Ki
z
I
z
If)
CO
^,
z
z
z
1
-------
f
3
_C
"|
o
•
9
o
o
.a
(0
H
o
u
2
i
3
Q-
C
0
CO
i
g
Q)
O
"55
CO
X
1
«
"5
O
(0
1
g
CO
i
Z
g
to
u.
CO
*J£
o
Z
£
CO
U-
g
>£
c
o
S
£
g
(D
UL
g
CO
"c
o
Z
g
if
U.
g
CO
UL
.i
a.
o
ta
a>
a
^
Z
^
z
^^
cn
in
o>
CO
cn
CO
in
CO
CO
in
i
*i
z
<
z
co
3
E
(5
H-
c
o
o
•s
o
u
£
(D
in
3
E
I
c
o
c
o
c
CO
(0
0}
I
f
CD
A
ai
IS
•a
o
jr
•*-*
o
CO
_co
u
c
C-66
-------
APPENDIX D
AAPFCO UNIFORM FERTILIZER BILL
D-1
-------
-------
No. 50
1997
OFFICIAL PUBLICATION
Association of
American Plant Food
Control Officials
Published by
Association of American Plant Food Control Officials, Inc.
West Lafayette, Indiana
Copies may be purchased from
Joel M. Padmore, Treasurer
NC Dept. of Agriculture
4000 Reedy Creek Road
Raleigh, NC 27607-6468
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS 29
OFFICIALLY ADOPTED DOCUMENTS
Note - Although these documents have not been passed into law in all states, the subject
matter covered herein does represent the official policy of this Association. NOTE:
Tentative actions are in BOLD ITALICS, new wording is enclosed in brackets and underlined
[ ], and deleted material is denoted with strike throughs,
UNIFORM STATE FERTILIZER BILL
(Official 1982)
AN ACT to regulate the sale[J ami [storage,! distributiont. use and application ] of fertilizers
in tho State of . BE IT ENACTED by the legislature of the State of .
(Tentative 19961
Section 1. Title
This Act shall be known as the " Fertilizer Law of 19 ".
Section 2. Enforcing Official
This Act shall be administered by the of the State of , hereinafter
referred to as the " ".
Section 3. Definitions of Words and Terms
When used in this Act:
(a) The term "fertilizer" means any substance containing one or more recognized
plant nutrient(s) which is used for its plant nutrient content and which is
designed for use or claimed to have value in promoting plant growth, except
unmanipulated animal and vegetable manures, marl, lime, limestone, wood
ashes and other products exempted by regulation by the .
(1) The term "Fertilizer material" means a fertilizer which either:
A. Contains important quantities of no more than one of the
primary plant nutrients: nitrogen (N), phosphate (PaOj) and
potash (K2O), or (Official 1994)
B. Has 85 percent or more of its plant nutrient content present
in the form of a single chemical compound, or
-------
30
OFFICIAL PUBLICATION NO. 50
(b)
(c)
C. Is derived from a plant or animal residue or by-product or
natural material deposit which has been processed in such a
way that its content of plant nutrients has not been materially
changed except by purification and concentration.
(2) The term "mixed fertilizer" means a fertilizer containing any
combination or mixture of fertilizer materials.
(3) The term "specialty fertilizer" means a fertilizer, distributed for non-
farm use.
(4) The term "bulk fertilizer" means a fertilizer distributed in a non-
packaged form.
The term "brand" means a term, design, or trademark used in connection
with one or several grades of fertilizer.
Guaranteed Analysis:
Until the
in accordance with the provisions of subparagraph
prescribes the alternative form of
Guaranteed Analysis"
(2) hereof, the term
"Guaranteed Analysis" shall mean the minimum percentage of plant nutrients
claimed in the following order and form:
(1) Total Nitrogen (N)
Available Phosphate (P30S)
Soluble Potash (K2O)
(Official 1994)
(2) For unacidulated mineral phosphatic material and basic slag, bone,
tankage and other organic phosphatic materials, the Total Phosphate
and/or degree of fineness may also be guaranteed. (Official 1994)
(3) Guarantees for plant nutrients other than nitrogen, phosphorus and
potassium may be permitted or required by regulation by the
. The guarantees for such other nutrients shall be expressed
in the form of the element. The source (oxides, salts, chelates, etc. )
of such other nutrients may be required to be stated on the
application for registration and may be included on the label. Other
beneficial substances or compounds, determinable by laboratory
methods, also may be guaranteed by permission of the and
with the advice of the Director of the Agricultural Experiment Station.
When any plant nutrients or other substances or compounds are
guaranteed, they shall be subject to inspection and analysis in accord
with the methods and regulations prescribed by the .
(Official 1994)
Secretary's Note: Section 3.(cll2I {Off. Pub. No. 471 deleted. ( Official 1994.1
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
31
(d)
(e)
(f)
(9)
(h)
(k)
(I)
(m)
(n)
(o)
(P)
(q)
The Term "grade" means the percentage of total nitrogen, available
phosphate, and soluble potash stated in whole numbers in the same terms,
order, and percentages as in the guaranteed analysis. Provided, however.
That specialty fertilizers may be guaranteed in fractional units of less than
one percent of total nitrogen, available phosphate, and soluble potash:
Provided, further. That fertilizer materials, bone meal, manures, and similar
materials may be guaranteed in fractional units. {Official 1994)
The term "official sample" mearis any sample of fertilizer taken by the
or his agent and designated as "official" by the .
The term "ton" means a net weight of two thousand pounds avoirdupois.
The term "primary nutrient" means total nitrogen, available phosphate, and
soluble potash. (Official 1994)
The term "percent" or "percentage" means the percentage by Weight.
The term "person" means individual, partnership, association, firm and
corporation.
The term "distribute" means to import, consign, manufacture, produce,
compound, mix, or blend fertilizer, or to offer for sale, sell, barter or
otherwise supply fertilizer in this state.
The term "distributor" means any person who distributes.
The term "registrant" means the person who registers fertilizer under the
provisions of this Act.
The term "licensee" means the person who receives a license to distribute a
fertilizer under the provisions of this Act.
The term "label" means the display of all written, printed, or graphic matter,
upon the immediate container, or a statement accompanying a fertilizer.
The term "labeling" means all written, printed, or graphic matter, upon or
accompanying any fertilizer, or advertisements, brochures, posters, television
and radio announcements used in promoting the sale of such fertilizer.
The term "investigational allowance" means an allowance for variations
inherent in the taking, preparation and analysis of an official sample of
fertilizer.
The term "deficiency" means the amount of nutrient found by analysis less
than that guaranteed which may result from a lack of nutrient ingredients or
from lack of uniformity. (Official 1985)
-------
32
OFFICIAL PUBLICATION NO. 50
Section 4.
(a)
(b)
(c)
Section 4.
(a)
(b)
Option A - Registration
Each brand and grade of fertilizer shall be registered in the name of that
person whose name appears upon the label before being distributed in this
state. The application for registration shall be submitted to the on
a form furnished by the arid shall be accompanied by a fee of
$ per each grade of each brand except those fertilizers sold in
packages of 10 pounds or less shall be registered at a fee of S per
each grade of each brand. Upon approval by the a copy of the
registration shall be furnished to the applicant. All registrations expire on
each year. The application shall include the following information:
(1)
The brand and grade;
(2) The guaranteed analysis;
(3) The name and address of the registrant;
!4) Net weight. (Official 1988)
A distributor shall not be required to register any fertilizer which is already
registered under this Act by another person, providing the label does not
differ in any respect.
A distributor shall not be required to register each grade of fertilizer
formulated according to specifications which are furnished by a consumer
prior to mixing, but shall be required to register his firm in a manner and at a
fee as prescribed in regulations by the and to label such fertilizer as
provided in Section 5(b).
Option H - Registration and Licensing
No person whose name appears upon the label of a fertilizer shall distribute
that fertilizer, except specialty fertilizers, to a non-licensee until a license to
distribute has been obtained by that person from the upon payment
of a S fee. All licenses expire on the day of each
year.
An application for license shall include:
(1) The name and address of licensee.
(2) The name and address of each distribution point in the state. The
name and address shown on the license shall be shown on all labels,
pertinent invoices, and storage facilities for fertilizer distributed by
the licensee in this state.
(c)
The licensee shall inform the
in writing of additional distribution
points established during the period of the license.
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
33
(d) No person shall distribute in this state a specialty fertilizer until it is
registered with the by the distributor whose name appears on the
label. An application for each brand and product name of each grade of
specialty fertilizer shall be made on a form furnished by the and
shall be accompanied by a fee of $ per each grade of each brand,
except those fertilizers sold in packages of 10 pounds or less shall be
registered at a fee of S per each grade-of each brand. Labels for
each brand and product name of each grade shall accompany the application.
Upon the approval of an application by the , a copy of the
registration shall be furnished the applicant. All registrations expire on the
day of each year.
(e) An application for registration shall include the following:
(1) The brand and grade;
(2) The guaranteed analysis:
(3) Name and address of the registrant;
(4) Net weight. {Official 1988)
Section 4.
(a)
Option C - Licensing
(b)
No person whose name appears upon the label of a fertilizer shall distribute that
fertilizer to a non-licensee until a license to distribute has been obtained by that
person from the upon payment of a $ fee. All licenses expire on
the day of each year.
An application for license shall include:
(1) The name and address of licensee.
(2) The name and address of each distribution point in the state.
The name and address shown on the license shall be shown on all
labels, pertinent invoices, and storage facilities for fertilizers
distributed by the licensee in this state.
(c)
Section 5.
(a)
The licensee shall inform the
in writing of additional distribution
points established during the period of the license.
Labels
Any fertilizer distributed in this state in containers shall have placed on or
affixed to the container a label setting forth in clearly legible and
conspicuous form the fallowing information:
(1) Net weight;
-------
34
OFFICIAL PUBLICATION NO. 50
(2) Brand and grade: Provided, That the grade shall not be required
when no primary nutrients are claimed; '
(3) Guaranteed analysis;
(4)
Name and address of the registrant/licensee.
In case of bulk shipments, this information in written or printed form shall
accompany delivery and be supplied to the purchaser at time of delivery.
(b) A fertilizer formulated according to specifications which are furnished by/for
a consumer prior to mixing shall be labeled to show the net weight, the
guaranteed analysis, and the name and address of the distributor or
registrant/licensee.
Section 6. Inspection Fees
(a) There shall be paid to the for all fertilizers distributed in this state to
non-registrants/non-licensees an inspection fee at the rate of cents
per ton; Provided, That sales or exchanges between importers,
manufacturers, distributors or registrants/licensees are hereby exempted.
(b) Every registrant/licensee who distributes fertilizer in the state shall file with
the a. (monthly, quarterly, or semi-annual) statement for the
reporting period setting forth the number of net tons of each fertilizer so
distributed in this state during such period. The report shall be due on or
before thirty days following the close of the filing period and upon such
statement shall pay the inspection fee at the rate stated in paragraph (a) of
this section. If the tonnage report is not filed and the payment of inspection
fees is not made within 30 days after the end of the specified filing period, a
collection fee, amounting to 10 percent (minimum $10) of the amount due,
shall be assessed against the registrant/licensee and added to the amount
due.
(c) When more than one person is involved in the distribution of a fertilizer, the
last person who has the fertilizer registered (is licensed! and who distributed
to a non-registrant/licensee dealer, or consumer is responsible for reporting
the tonnage and paying the inspection fee, unless the report and payment is
made by a prior distributor of the fertilizer.
(d) On individual packages of fertilizer containing 10 pounds or less there shall
be paid, in lieu of the inspection fee of cents per ton and in lieu of
$ per brand and grade, an annual registration and inspection fee of
$ for each grade of each brand sold or distributed. Where a person
distributes fertilizer in packages of 10 pounds or less and in packages over
10 pounds, the annual fee shall apply only to that portion distributed in
packages of 10 pounds or less.
(e) Fees so collected shall be used for the payment of the costs of inspection,
sampling and analysis, and other expenses necessary for the administration
of this Act.
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
35
Section 7. Tonnage Reports
(a)
(b)
Section 8.
(a)
(b)
fd)
Section 9.
The person distributing or selling fertilizer to a non- registrant/non-licensee
shall furnish the a report showing the county of the consignee, the
amounts (tons) of each grade of fertilizer, and the form in which the fertilizer
was distributed (bags, bulk, liquid, etc.). This information shall be reported
by one of the following methods:
(1)
(2)
Submitting a summary report approved by the on or before
the day of each month covering shipments made during the
preceding month; or
Submitting a copy of the invoice within
shipment.
business days after
No information furnished the
under this section shall be disclosed in
such a way as tor divulge the operation of any person.
Inspection, Sampling, Analysis
It shall be the duty of the , who may act through his authorized
agent, to sample, inspect, make analyses of, and test fertilizers distributed
within this state and inspect the storage of bulk fertilizer at any time and
place and to such an extent he may deem necessary to determine whether
such fertilizers are in compliance with the provisions of this Act. The
, individually or through his agent, is authorized to enter upon any
public or private premises or carriers during regular business hours in order
to have access to fertilizer subject to provisions of this Act and the
regulations pertaining thereto, and to the records relating to their distribution
and storage. (Official 1990)
The methods of sampling and analysis shall be those adopted fay the AOAC
International. In cases not covered by such methods, or in cases where
methods are available in which improved applicability has been
demonstrated, the may adopt such appropriate methods from other
sources.
The , in determining for administrative purposes whether any
fertilizer is deficient in plant food, shall be guided solely by the Official
sample as defined in paragraph (e) of Section 3, and obtained and analyzed
as provided for in paragraph (b) of this section.
The results of official analysis of fertilizers and portions of official samples
shall be distributed by the as provided by regulation. Official
samples establishing a penalty for nutrient deficiency shall be retained for a
minimum of 90 days from issuance of a deficiency report.
Plant Food Deficiency
(a) Penalty for nitrogen, available phosphate, and soluble potash - If the
analysis shall show that a fertilizer is deficient (1) in one or more of its
-------
36
OFFICIAL PUBLICATION NO. 50
forwarded to the
the penalty payments shall be paid to the
guaranteed primary plant nutrients beyond the investigational allowances and
compensations as established by regulation, or (2) if the overall index value
of the fertilizer is below the level established by regulation, a penalty
payment of times the value of such deficiency or deficiencies shall
be assessed. When a fertilizer is subject to a penalty payment under both
(1) and (2), the larger penalty payment shall apply. (Official 1994)
(b) Penalty payment for other deficiencies - Deficiencies beyond the
investigational allowances as established by regulation in any other
constituent(s) covered under Section 3 paragraph (c](1) 8 and C of this Act,
which the registrant/licensee is required to or may guarantee, shall be
evaluated and penalty payments prescribed by the .
(c) All penalty payments assessed under this section shall be paid- by the
registrant/licensee to the consumer of the lot of fertilizer represented by the
sample analyzed within three months after the date of notice from the
to the registrant/licensee, receipts taken therefore and promptly
If said consumer cannot be found, the amount of
who shall deposit the
same in the appropriate state fund allocated to fertilizer control service. If
upon satisfactory evidence a person is shown to have altered the content of
a fertilizer shipped to him by a registrant/licensee, or to have mixed or
commingled fertilizer from two or more suppliers such that the result of
either alteration changes the analysis of the fertilizer as originally guaranteed,
then that person shall become responsible for obtaining a registration/license
and shall be held liable for all penalty payments and be subject to other
provisions of this Act, including seizure, condemnation and stop sale.
(d) A deficiency in an official sample of mixed fertilizer resulting from non-
uniformity is not distinguishable from a deficiency due to actual plant
nutrient shortage and is properly subject to official action. (Official 1985)
(e) Nothing contained in this section shall- prevent any person from appealing to
a court of competent jurisdiction praying for judgment as to the justification
of such penalty payments.
Section 10. Commercial Value
For the purpose of determining the commercial value to be applied under the
provisions of Section 9 the shall determine and publish annually the values
per unit of nitrogen, available phosphate, and soluble potash in fertilizers in this
state. The value so determined and published shall be used in determining and
assessing penalty payments. (Official 1994)
Section 11. Misbranding
No person shall distribute misbranded fertilizer. A fertilizer shall be deemed to be
misbranded:
(a)
If its labeling is false or misleading in any particular.
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
37
(b) If it is distributed under the name of another fertilizer product.
(c) If it is not labeled as required in Section 5 of this Act and in accordance with
regulations prescribed under this Act.
(d) If it purports to be or is represented as a fertilizer, or is represented as
containing a plant nutrient or fertilizer unless such plant nutrient or fertilizer
conforms to the definition of identity, if any, prescribed by regulation of the
; in adopting such regulations the shall give due regard to
commonly accepted definitions and official fertilizer terms such as those
issued by the Association of American Plant Food Control Officials.
Section 12. Adulteration
No person shall distribute an adulterated fertilizer product.
deemed to be adulterated:
A fertilizer shall be
lai If it contains any deleterious or harmful inarodionti'substance! in sufficient
amount to render it injurious to beneficial plant flife. animals, humans.
aquatic] lifel. soil or water] when applied in accordance with directions for
use on the label, or if adequate warning statements or directions for use
which may be necessary to protect plant Flife. animals, humans, aquatic]
lifef. soil or water] are not shown upon the label.
tbl If its composition falls below or differs from that which it is purported to
possess by its labeling.
Id If it contains unwanted crop seed or weed seed.
(Tentative 1336)
Section 13. Publications
The
shall publish at least annually and in such forms as he may deem
proper: (a) Information concerning the distribution of fertilizers, (b) Results of
analyses based on official samples of fertilizer distributed within the state as
compared with analyses guaranteed under Section 4 and Section 5.
/'Section 14-. Storage. Use and Application
Bulk fertilizers must be stored in a manner that minimizes the release of fertilizers
and protects the environment. Fertilizer use and application may be set forth in
regulations to protect the environment.] (Tentative 13361
Section (1Sf4.l
The
Rules and Regulations
is authorized to prescribe and. after a public hearing following due
public notice, to enforce such rules and regulations relating to investigational
allowances, definitions, records, and tfia distn'nutionfj storaaef. use and application]
of fertilizers as may be necessary to carry into effect the full intent and meaning of
this Actf. including protection of the environment]. (Tentative 1996)
-------
38
OFFICIAL PUBLICATION NO. 50
Section [1645.]
Short Weight/Tentative 1996)
If any fertilizer in the possession of the consumer is found by the to be
short in weight, the registrant/licensee of said fertilizer shall within thirty days after
official notice from the submit to the consumer a penalty payment of
times the value of the actual shortage.
Section [174€.J Cancellation of Registration/License (Tentative 1996)
The is authorized and empowered to cancel the registration (license of any
person) of any brand of fertilizer or to refuse to register any brand of fertilizer (issue
a license) as herein provided, upon satisfactory evidence that the registrant/licensee
has used fraudulent or. deceptive practices in the evasion or attempted evasion of
the provisions of this Act or any regulations promulgated thereunder: Provided, That
no license or registration shall be revoked or refused until the person
(registrant/licensee) shall have been given the opportunity to appear for a hearing by
the .
Sect/on [184?.] "Stop Sale" Orders (Tentative 1996)
The may issue and enforce a written or printed "stop sale, use, or removal"
order to the owner or custodian of any lot of fertilizer and to hold at a designated
place when the finds said fertilizer is being offered or exposed for sale in
violation of any of the provisions of this Act until the law has been complied with
and said fertilizer is released in writing by the , or said violation has been
otherwise legally disposed of by written authority. The shall release the
fertilizer so withdrawn when the requirements of the provisions of this Act have
been complied with and all costs and expenses incurred in connection with the
withdrawal have been paid.
Section [1943.1
Seizure, Condemnation and Sale (Tentative 1996)
Any lot of fertilizer not in compliance with the provisions of this Act shall be subject
to seizure on complaint of the to a court of competent jurisdiction in the
area in which said fertilizer is located. In the event the court finds the said fertilizer
to be in violation of this Act and orders the condemnation of said fertilizer it shall be
disposed of in any manner consistent with the quality of the fertilizer and the laws of
the state: Provided, That in no instance shall the disposition of said fertilizer be
ordered by the court without first giving the claimant an opportunity to apply to the
court for release of said fertilizer or for permission to process or relabel said fertilizer
to bring it into compliance with this Act.
Section t2Q49.]
Violations {Tentative 1996)
(a) If it shall appear from the examination of any fertilizer that any of the
provisions of this Act or the rules or regulations issued thereunder have been
violated, the shall cause notice of the violations to be given to the
registrant/licensee or distributor from whom said sample was taken; any
person so notified shall be given opportunity to be heard under such
regulations as may be prescribed by the . If it appears after such
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
39
(b)
(c)
(d)
(e)
hearing, either in the presence or absence of the person so notified, that any
of the provisions of this Act or rules and regulations issued thereunder have
been violated, the may certify the facts to the proper prosecuting
attorney. (Official 1989)
Any person convicted of violating any provision of this Act or the rules and
regulations issued thereunder shall be punished in the discretion of the court.
Nothing in this Act shall be construed as requiring the
or his
representative to report for prosecution or for the institution of seizure
proceedings as a result of minor violations of the Act when he believes that
the public interests will be best served by a suitable notice of warning in
writing.
It shall be the duty of each
attorney to whom any violation is
reported to cause appropriate proceedings to be instituted and prosecuted in
a court of competent jurisdiction without delay.
The is hereby authorized to apply for and the court to grant a
temporary or permanent injunction restraining any person from violating or
continuing to violate any of the provisions of this Act or any rule or
regulation promulgated under this Act notwithstanding the existence of other
remedies at law. Said injunction to be issued without bond.
Section [21S&.1 Cooperation with Other Entities (Tentative 19961
The may cooperate with and enter into agreement with governmental
agencies of this State, other States, and agencies of the Federal Government in
order to carry out the purpose and provisions of this Act. (Official 1991)
Section (22S1.1
Exchanges Between Manufacturers (Tentative 19961
Nothing in this Act shall be construed to restrict or avoid sales or exchanges of
fertilizers to each other by importers, manufacturers, or manipulators who mix
fertilizer materials for sale, or as preventing the free and unrestricted shipments of
fertilizer to manufacturers or manipulators who have registered their brands (are
licensed) as required by provisions of this Act.
Section [23SS.]
Constitutionality (Tentative 19961
If any clause, sentence, paragraph or part of this Act shall for any reason be judged
invalid by any court of competent jurisdiction, such judgment shall not affect, impair,
or invalidate the remainder thereof but shall be confined in its operation to the
clause, sentence, paragraph, or part thereof directly involved in the controversy in
which such judgment shall have been rendered.
Section C2423.]
Repeal (Tentative 19961
All laws and parts of laws in conflict with or inconsistent with the provisions of this
Act are hereby repealed.
-------
40
OFFICIAL PUBLICATION NO. 50
Section f2§34.J Effective Data (Tentative 1396}
This Act shall take effect and be in force from and after the first day of
FERTILIZER
RULES AND REGULATIONS
Under the Uniform State Fertilizer Bill by the
of the State of
due publication and notice of opportunity for a public hearing, the
following regulations.
Pursuant to
has adopted the
1.
Plant Nutrients in Addition to Nitrogen, Phosphate and Potash.
Other plant nutrients when mentioned in. any form or manner shall be registered and
shall be guaranteed. Guarantees shall be made on the elemental basis. Sources of
the elements guaranteed and proof of availability shall be provided the
upon request. Except guarantees for those water soluble nutrients labeled for ready
to use foliar fertilizers, ready to use specialty liquid fertilizers, hydroponic or
continuous liquid feed programs and guarantees for potting soils, the minimum
percentages which will be accepted for registration are as follows: (Official 1996)
Element
Calcium (Ca)
Magnesium (Mg)
Sulfur (S)
Boron (B)
Chlorine (CD
Cobalt (Co)
Copper (Cu)
Iron (Fe)
Manganese (Mn)
Molybdenum (Mo)
Sodium (Na)
Zinc (Zn)
1.0000
0.5000
1.0000
0.0200
0.1000
0.0005
0.0500
0.1000
0.0500
0.0005
0.1000
0.0500
Guarantees or claims for the above listed plant nutrients are the only ones which will
be accepted. Proposed labels and directions for the use of the fertilizer shall be
furnished with the application for registration upon request. Any of the above listed
elements which are guaranteed shall appear in the order listed immediately following
guarantees for the primary nutrients of nitrogen, phosphate and potash. (Official
1994)
Secretary's Note - Paragraphs 3 and 4 (Off. Publication No. 381 were deleted
1985.
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
41
A warning or caution statement may be required for any product which contains
(name of micro-nutrient) in water soluble form when there is evidence that (name of
micro-nutrient) in excess of % may be harmful to certain crops or where-
there are unusual environmental conditions. (Official 1984)
Examples of Warning or Caution Statements:
1. Directions: Apply this fertilizer at a maximum rate of (number of pounds) per
acre for (name of crop).
CAUTION: Do not use on other crops. The (name of micro-nutrient) may
cause injury to them.
2. CAUTION: Apply this fertilizer at a maximum rate of (number of pounds) per
acre for (name of crop). Do not use on other crops; the (name of micro-
nutrient) may cause serious injury to them.
3. WARNING: This fertilizer carries added (name of micro-nutrient) and is
intended for use only on (name of crop). Its use on any other crops or under
conditions other than those recommended may result in serious injury to the
crops.
4. CAUTION: This fertilizer is to be used only on soil which responds to (name
of micro-nutrient). Crops high in (name of micro-nutrient) are toxic to
grazing animals (ruminants). (Official 1991)
Secretary's Note - Example Warning and Caution statements for boron and molybdenum
(page 36 Off. Pub. No. 43) were deleted and above generic statements substituted. (Official
13911
2. Fertilizer Labels.
The following information, in the format presented, is the minimum required for all
fertilizer labels. For packaged products, this information shall either (1) appear on
the front or back of the package, (2) occupy at least the upper-third of a side of the
package, or (3) be printed on a tag and attached to the package. This information
shall be in a readable and conspicuous form. For bulk products, this same
information in written or printed form shall accompany delivery and be supplied to
the purchaser at time of delivery.
(a) Net weight
(b) Brand
(c) Grade (Provided that the grade shall not be required when no primary
nutrients are claimed.)
-------
42
OFFICIAL PUBLICATION NO. 50
(d)
Guaranteed Analysis*
Total Nitrogen (N)** %
% Ammoniacal Nitrogen
% Nitrate Nitrogen
% Water Insoluble Nitrogen
% Urea Nitrogen
% (Other recognized and determinable forms of N)
Available Phosphate(P2Os) ; %
Soluble Potash (K2O) %
(Other nutrients, elemental basis)*** %
(Official 1993)
(e)
(f)
Sources of nutrients, when shown on the label, shall be listed below the
completed guaranteed analysis statement.
Name and address of registrant or licensee.
Zero (0) guarantees should not be made and shall not appear in statement
except in nutrient guarantee breakdowns. (Official 1 993)
// chemical forms of N are claimed or required, the form shall be shown ami
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
43
release characteristics of the product(s) must also be provided by the
manufacturer. (Official 1991)
Secretary's Note: flute 3 renamed as they appeared on
page 4O and 41 of Off. Pub. No. 47. (Official 1934)
(c) Until more appropriate methods are developed, AOAC International Method
970.04 (15th Edition) is to be used to confirm the coated slow release and
occluded slow release nutrients and others whose slow release
characteristics depend on particle size. AOAC International Method 945.01
(15th Edition) shall be used to determine the water insoluble nitrogen of
organic materials. (Official 1994)
4.
Definitions.
Except as the
designates otherwise in specific cases, the names and
definitions for commercial fertilizers shall be those adapted by the Association of
American Plant Food Control Officials.
Percentages.
The term of "percentage" by symbol or word, when used on a fertilizer label shall
represent only the amount of individual plant nutrients in relation to the total product
by weight.
Investigational Allowances.
(a) A commercial fertilizer shall be deemed deficient if the analysis of any
nutrient is below the guarantee by an amount exceeding the values in the
following schedule, or if the overall index value of the fertilizer is below
98%. Note: For these investigational allowances to be applicable, the
recommended AOAC International procedures for obtaining samples,
preparation and analysis must be used. These are described in Official
Methods of Analysis of the Association of Official Analytical Chemists, 13th
Edition, 1980, and in succeeding issues of the Journal of the Association of
Official Analytical Chemists. In evaluating replicate data. Table 19, page
935, Journal of the Association of Official Analytical Chemists, Volume 49,
A/o. 5, October, 1966, should be followed.
Guaranteed
percent
04 or less
05
06
07
08
09
10
12
14
Nitrogen Available Phosphate Potash
percent percent percent
0.49 0.67 0.41
0.51 0.67 0.43
0.52 0.67 0.47
0.54 0.68 0.53
0.55 0.68 0.60
0.57 0.68 0.65
0.58 0.69 0-70
0.61 0.69 0.79
0.63 0.70 0.87
-------
44
OFFICIAL PUBLICATION NO. 50
16
18
20
22
24
26
28
30
32 or more
(Official 1993)
0.67
0.70
0.73
0.75
0.78
0.81
0.83
0.86
0.88
0.70
0.71
0.72
0.72
0.73
0.73
0.74
0.75
0'.76
0.94
1.01
1.08
1.15
1.21
1.27
1.33
1.39
1.44
For guarantees not listed, calculate the appropriate value by interpolation.
The overall index value is calculated by comparing the commercial value
guaranteed with the commercial value found. Unit values of the nutrients
used shall be those referred to in Section 10 of the Act.
Overall index value - Example of calculation for a 10-10-10 grade found to
contain 10.1% Total Nitrogen (N), 10.2% Available Phosphate (P2OS) and
10.1% Soluble Potash (K20), Nutrient unit values are assumed to be $3 per
unit N, $2 per unit P20S, and $1 per unit K2O. (Official 1993)
10.0 units N . x3= 30.0
10.0 units P20S x2 = 20.0
10.0 units K2O x1 = 10.0
Commercial Value Guaranteed = 60.0
10.1 units N x3= 30.3
10.2 units P2OS x2= 20.4
10.1 units K2O x1 = 10.1
Commercial Value Found = 60.8
Overall Index Value = 100(60.8/60.001 = 101.3%
(b) Secondary and minor elements shall be deemed deficient if any element is
below the guarantee by an amount exceeding the values in the following
schedule:
Element
Calcium
Magnesium
Sulfur
Boron
Cobalt
Chlorine
Copper
Investigational Allowance
0.2 unit + 5% of guarantee
0.2 unit -i- 5% of guarantee
0.2 unit -t- 5% of guarantee
0.003 unit + 15% of guarantee
0.0001 unit -i- 30% of guarantee
0.005 unit +• 10% of guarantee
0.005 unit + 10% of guarantee
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
45
Iron
Manganese
Molybdenum
Sodium
2nc
0.005 unit + 10% of guarantee
0.005 unit + 10% of guarantee
0.0001 unit + 30% of guarantee
0.005 unit + 10% of guarantee
0.005 unit + 10% of guarantee
The maximum allowance when calculated in accordance to the above shall
be 1 unit [1 %).
Sampling.
Sampling equipment and procedures shall be those adopted by the AOAC
International wherever applicable.
Breakdown of Plant Food Elements Within the Guaranteed Analysis.
When a plant nutrient guarantee is broken down into the component forms, the
percentage for each component shall be shown before the name of the form.
EXAMPLES:
Total'Nitrogen (N)
% Ammoniacal Nitrogen
% Nitrate Nitrogen
Magnesium
-------
46
OFFICIAL PUBLICATION NO. 50
UNIFORM FERTILIZER REGISTRATION APPLICATION
f
rr
to
n
O
T
a.
<*
O
3
3
I
o
SECON
mintm
Cilci
Sulfu
Boron
Chlor
Cabal
OAR
uffl
un
siu
r (
(B
ine
t (
Y A
p«r
(Ca
m (
NO
uia
tag
30-I
es
*ITI
«ni
?ra
:h ,
BRAND NAME AND ORAOE
OF FERT1L1Z£R OR
FERTIUZER MATERIAL
3 1*
3?
O »
«• -a
• o
3" rr
\
0
£
01
• o t-
approved for gale in beginning with the dite of reoUtratton and endlna " °-
ganes« (
ybdenum
ium (Na)
I
m
CB
O
-1
r-
m
ch r
ilti
| NET WEIGHT OF PACKAGES; S a
1
s
0
M
(A
n,
TJ
•ief
.on
| REGISTERED BY Z a
Application is hereby made for the registration of brands and grades of commercial E °
fertlliier at $ per brand and grade for the period ending , ig , j< »
Make check payable to «
APPLICATION FOB RE
Mall to;
V
GISTRATION OF COWJERCIAL FERTILIZERS IN P n o
(name and address of enforcement agency) «' ° °-
... 0.10
Mn)
(Mo
o.os
o.ooos
0.1O
0.05
-------
ASSOCIATION OF AMERICAN PLANT FOOD CONTROL OFFICIALS
47
UNIFORM COMMERCIAL FERTILIZER LICENSE APPLICATION
APPLICATION FOR COMMERCIAL
FERTILIZER LICENSE
STATE OF DATE:
19 CK
•"*»
Control Agency ^">
'Cfr-
Addreaa
*pplication ±3 hereby made and fee of $
enclosed for a license to
nanufacture and/or distribute commercial fertilizer at the following location
for the period , 19 through , 10
Applicant 'a Bu*ineaa Kama
P.O. Bos Jftmber -- -hnM« location in the State of it %i
for the oeriod r 19 through , 19 • Such
license shall remain in effect unless 3
for cause.
LICENSE NUMBER: DATE
uspended or revoked bv the
, 19 .
Signature Control Official
'fitle
-------
APPENDIX E
INTERNATIONAL AND NATIONAL LIMITS
FOR POLLUTANTS IN BIOSOLIDS
E-1
-------
Appendix E. International and National Limits for Pollutants in Biosolids
These tables were abstracted from A Global Atlas ofWastewater Sludge and Biosolids Use and
Disposal, Peter Matthews (ed.), International Association on Water Quality, Scientific and Technical
Report No. 4, London England, 1996.
E-2
-------
Table E-1. International Contaminant Concentration Limits for Biosolid Application to Land
Australia (New South Wales)
Contaminant
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Zinc
Contaminant Acceptance Thresholds
Thresholds (mg/kg)
Grade A*
20
3
100
150
1
60
60
5
200
Grade C*
20
20
500
420
15
270
270
50
2500
Max. Allowable
Soil Cone (mg/kg dw)
Ag land*
20
1
100
100
15
1
60
5
200
Non-ag land*
20
5
250
375
150
4
125
8
700
DDT/DDD/DDE
Aldrin
Dieldrin
Chlordane
Heptachlor
HCB
Lindane
BHC
PCBs
0.50
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.30
1.00
0.50
0.50
0.50
0.50
0.50
0.50
0.50
1.00
0.50
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.30
0.50
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.30
Grade A has unrestricted use. Grade C is the lowest grade that can be used in agriculture
E-3
-------
Table E-1. (Continued)
Austria (Lower A., 1994)
Inorganic
Arsenic
Cadmium
Chromium
Copper
Cobalt
Lead
Mercury
Molybdenum
Nickel
Zinc
Max. Allowable Contaminants in Sludge (mg/kg dw)
Class II - Lower A*
2
50
200
10
100
2
—
25
1000
Tyrol*
20
10
500
500
2000
500
10
100
100
2000
Organic
PCB
PCDD/F
AOX
0.2
0.0001
500
0.2
0.0001
500
* Most conservative class and States were chosen for this example. Tyrol was chosen
because it is the only state with limits for arsenic
Belgium
Contaminant
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
Limits for Sludge Deposits
on Soils (mg/kg DM)**
1
100
50
50
1
30
150
Max levels for Sludge
Deposits on Soils (mg/kg DM)
12
500
750
600
10
100
2500
* * Depends on soil type, most conservative (sandv) chosen for this table
E-4
-------
Table E-1. (Continued)
China (Tianjin)
Inorganic
Aluminum
Arsenic
Boron
Cadmium
Chromium(lll)
Copper
Lead
Mercury
Nickel
Zinc
Max permissible
(mg/kg)*
75
150
5
600
250
300
5
100
500
Typical Sludge
(mg/kg)**
432
18.75
na
5.1
528
514
8.6
1294
Typical Soil (mg/kg)
na
15.16
0.17
73.12
27.5
16.7
0.047
27.62
61.8
Organic
Mineral Oil
3000
* more conservative value used for soil with pH<6.5 for all elements except Nickel
* * max value of range shown
Taiwan
Contaminant
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
Guidelines for
Contaminated
Soils (mg/kg)***
14
2.5
101
89
58
0.55
63
163
Mean Background in
Rural
Soil (mg/kg)
4.54
1.74
43.2
20.3
32.6
0.13
43.2
180
*** Proposed monitorinq values
\
E-5
-------
Table E-1. (Continued)
Denmark
Contaminant
Cadmium
Calcium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
Limit Values (mg/kg DS)
0.8
100
1000
120
0.8
30
4000
Average Sludge Used in
Agriculture (mg/kg)
1.5
40
30
280
73
1.3
23
810
Nitrogen
Phosphorus
40
25
European Union
Contaminant
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
Permitted Loads
86/275/EC (mg/kg)*
0.15
4
12
15
0.1
3
30
Soil Boundary Values
86/278/EC (mg/kg)
1-3
100-150
50-140 n
50-300
1-1.5
30-75
1 50-300
Sludge Boundary Values
(mg/kg)
86/278/EC
20-40
1000-1500
1000-1750
750-1200
16-25
300-400
2500-4000
* mean value over a period of 1 0 years
E-6
-------
Table E-1. (Continued)
France
Contaminant
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Zinc
Limits for Sludge Use
(mg/kg dw)
2
150
100
100
1
50
10
300
Average Sludge
(mg/kg dw)*
4.5
116
409
28.8
1.05
74.7
5.2
1479
Average Soil
(mg/kg dw)*
0.3-0.5
<30
<30
<30
<1
<50
<0.3
<80
* City of Besancon
Italy
Contaminant
Cadmium
Copper
Lead
Mercury
Nickel
Zinc
Salmonella
Limit Values for Sludge
Used in Agriculture (mg/kg DM)
20
1000
750
10
300
2500
<1000
(MPN/q SS)
E-7
-------
Table E-1. (Continued)
Japan
Contaminant
1 ,1 ,1 -Trichloroethane
1 ,1 ,2-TrichIoroethane
1 ,2-Dichloroethane
1 ,2-Dichloroethylene
1 ,2-DichIoropropene
AlkyI Mercury Cpds
Arsenic and Cpds
Benzene
Cadmium and Cpds
Carbon Tetrachloride
Chrome (VI)
Cyanide cpds
Dichloromethane
Lead and Cpds
Mercury and Cpds
Organic Phosphorus
PCB
Selenium and Cpds
Simazine
Tetrachloroethylene
Thiobendcarb
Thiuram
Triichloroethvlene
Industrial Wastes*
Max allowable in extracted solution (mg/liter)
3
0.06
0.04
0.4
0.02
ND
0.3
0.1
0.3
0.02
1.5
1
0.2
0.3
0.005
1
0.003
0.3
0.03
0.1
0.2
0.06
0.3
Note that these values apply to industrial wastes
E-8
-------
Table E-1. (Continued)
Netherlands
Contaminant
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
Limits for Sewage Sludc
15
1.25
75
75
100
0.75
30
300
je on Land (mg/kg DM)
Norway
Contaminant
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
Max content on soil when
sludge is used in agriculture
(mg/kg DS)
4
125
1000
100
5
80
1500
Max content in soil before
sludge is used in agriculture
(mg/kg DS)
1
100
50
50
1
30
150
E-9
-------
Table E-1. (Continued)
Slovakia
Contaminant
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Molybdenum
Nickel
Zinc
Max Permissible Cone in
Raw Material (mg/kg)
50
13
1000
1200
500
10
25
200
3000
Max Permissible Cone in
Compost (mg/kg)*
10
2
100
100
100
1
5
50
300
* Compost class I
South Africa
Contaminant
Arsenic
Boron
Cadmium
Chromium
Cobalt
Copper
Fluoride
Lead
Mercury
Molybdenum
Nickel
Selenium
Zinc
Max Permissible in Soil (mg/kg)
2
10
2
80
20
100
50
56
0.5
2.3
15
2
185
Sludge Limts for Agricultural
Use (mg/kg)
15
80
1750
100
400
400
25
15
E-10
-------
Table E-1. (Continued)
Sweden
Contaminant
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Zinc
Max Permissible Concentrations
in Sewage Sludge on
Ag Land (mg/kg)*
2
100
600
100
2.5
50
800
No Use of Sludge on Ag Land
if Soil Exceeds Value
(mg/kg DS)
0.4
30
40
40
0.3
30
75
* Limits as of January 1 , 1 998
Switzerland
Contaminant
Cadmium
Chromium
Cobalt
Copper
Lead
Mercury
Molybdenum
Nickel
Zinc
Limits for Sludge Used in
Agriculture
(mg/kg DS)
5
500
60
600
500
5
20
80
2000
AOX
500
E-11
-------
Table E-1. (Continued)
United Kingdom
Contaminant
Arsenic
Cadmium
Chromium
Copper
Fluorine
Lead
Mercury
Molybdenum
Nickel
Selenium
Zinc
Max Permissible Concentration
In Soil After Application
of
Sludge
(mg/kg DS)*
50
3
400
80
500
300
1
4
50
3
200
Typical Value for Sludge
(mg/kg)
3
50
100
1
0.3
Typical Value
for Soil (mg/kg)
10
15
60
15
0.2
» Values for soil 5.0
-------
Table E-2. State Contaminant Concentration Limits for Biosoiid Application to Land
Maximum Allowable Concent
API
Contaminant
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Molybdenum
Nickel
Selenium
Zinc
Chromium
(VI)
Barium
NH
75
85
3000
4300
840
57
75
420
100
7500
VT
75
25
1000
1000
1000
10
75
200
100
2500
rations, Micronutrient Concentrations for Land
ilication (mg/kg dw)
MA
75
25
1000
1000
1000
10
10
200
100
2500
NY
75
25
1000
1000
1000
10
75
200
100
2500
Rl
75
25
3000
4300
840
57
75
420
100
7500
ME
75
10
1000
1000
700
10
75
200
100
2000
CN
5
34
1200
1500
300
17
15
420
36
2800
150
4700
Micronutrient Concentrations for Product Distribution and Marketing, Max Allowable (mg/kg dw)
Contaminant
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Molybdenum
Nickel
Selenium
Zinc
Chromium
(VI)
Barium
NH
41
39
1200
1500
300
17
18
420
36
2800
VT
41
25
1000
1000
1000
10
18
200
36
2500
MA
41
14
1000
1000
300
10
10
200
36
2500
NY
41
10
100
1000
250
10
18
200
36
2500
Rl
41
39
1200
1500
300
17
75
420
36
2800
ME
41
10
1000
1000
700
10
18
200
36
2000
CN
5
34
1200
1500
300
17
18
420
36
2800
150
4700
E-13
-------
Table E-2. (Continued)
Pennsylvania
Contaminant
Arsenic
Cadmium
Chromium
Copper
Lead
Mercury
Molybdenum
Nickel
Selenium
Zinc
Biosolids Analysis
Philadelphia
(mg/kg)
15
6
178
668
191
3
12
52
6
1372
Max Allowable
For Land
Application
(mg/kg)
50
56
2000
2866
560
38
75
420
66
5000
National
Biosolids
Survey
(mg/kg)
9.93
6.95
119
741
134
5.2
9.2
42
5
1201
E-14
-------
APPENDIX F
NPK, MICRONUTRIENT, LIME AND GYPSUM FERTILIZER
APPLICATION RATES FROM USDA/NASS DATABASES
U.S. AGRICULTURAL EXTENSION SERVICE
INTERVIEWS AND INTERNET PUBLICATIONS
F-1
-------
Table F-1. Average and Maximum N, P, and K Application Rates for High Acreage Crops"
Field Crops
Corn
Cotton
Potatoes
Soybeans
Tobacco
Wheat
winter (60%)"
durum (6%)
spring (34%)
Wheat, aggregate"
Vegetables
Broccoli
Carrots
Head lettuce
Onion
Green peas
Snap beans
fresh (29%)
processed (71%)
Snap beans, aggregate
Corn
fresh (25%)
processed (75%)
Corn, aggregate
Tomatoes
fresh (24%)
processed (76%)
Tomatoes, aggregate
Fruit
Watermelon
Oranges
Grapefruit
Average and Maximum N, P (P2O5), and K (K2O) Application Rates
for High-Acreage Crops, Ib/A
N
average; (max)
133 (170)
100 (175)
195 (285)
24 (40)
88 (108)
61 (115)
60 (NA)°
67 (91)
63 (NC)e
206 (247)
182 (234)
262 (357)
186 (269)
30 (42)
85 (101)
64 (154)
70 (NO
125 (274)
135 (227)
133 (NO
264 (311)
163 (164)
187 (NO
120 (414)
164 (179)
128 (132)
>20B
average; (max)
57 (87)
48 (83)
173 (198)
49 (56)
93 (116)
30 (53)
23 (NA)
31 (37)
30 (NC)
109 (159)
166 (200)
190 (252)
137 (217)
55 (108)
88 (104)
64 (128)
71 (NC)
81 (129)
63 (134)
68 (NC)
174 (201)
103 (110)
120 (NC)
94 (163)
43 (46)
56 (81)
K2O
average; (max)
79 (116)
73 (106)
139 (204)
85 (102)
203 (284)
29 (40)
21 (NA)
21 (28)
26 (NC)
62 (131)
110 (340)
77 (124)
139 (266)
73 (110)
115 (132)
68 (101)
82 (NC)
137 (216)
85 (98)
98 (NC)
408 (534)
49 (289)
135 (NC)
119 (182)
177 (182)
146 (147)
F-2
-------
Table F-1. (Continued)
'-
Field Crops
Apples
Grapes
Peaches
Average and Maximum N, P (P2O5), and K (K2O) Application Rates
for High-Acreage Crops, Ib/A
N
average; (max)
62 (75)
67 (117)
84 (109)
P20S
average; (max)
34 (60)
55 (89)
38 (50)
K2O
average; (max)
54 (75)
107 (151)
76 (124)
a) Source: USDA/NASS databases; USDA/NASS/ERS, 1997 for field crops; USDA/NASS/ERS, 1997 for
vegetables; USDA/NASS/ERS, 1996 for fruits
b) Percent of total acreage planted in that variant of crop
c) NA = data not available from USDA/NASS
d) Acreage-weighted application rate for total crop
e) NC = not calculated as such a value is not needed
F-3
-------
OT
0
to
CC
6
.2
'S.
a.
CD
U.
CNl
I
£
c
o
"^
2
b
c
a>
E
o
O
c
.9-a
IS °
§ €
a.
o
CJ
*
1
C i_
O >- CO
•T3 CD CO
O 4->
CC CO
CO
Fruit/Vegetable
(corn, edible
beans)
§
JD
CN
•f^-
aj
c
CD
^
o
oc
CO
c
co
CD
CQ
Q
111
"eo
CN
T—
S
c
L.
O
£
Broadcast
CO
c
CO
CD
CQ
Q
LU
"co
0
in
1
CD
>l— '
_C
Soybeans
LU
"55
.g
o
in
c
c
"E
Sorghum
^
"3
in
CO
CD
T3
c
CD
QL
"3
o
CO
CD
X
"c
_CD
"5
CQ
c
o
'co
c
CD
X
LU
C/3
O
Banded
CO
c
CO
CD
CQ
CD
S.
en
0
1
00
CD
TD
C
CD
O-
"3
.c
o
CO
CD
X
"c
CD
•g
CQ
C
O
'eo
CD
CO
o
Broadcast
CO
s
CD
CQ
CD
£
CC
O
CO
JO
O
CD
T3
C
CD
0.
"3
o
CD
X
"c
_CD
"3
CQ
C
0
'35
c
CD
X
LU
Z3
0
CO
a.
CO
CO
if
fc
Apples, prunes
cherries, pears
cc
O
"co
.Q
in
ir-
CD
•o
c
CD
O.
"3
.c
o
S2
CD
IE
C
CD
"jg
CQ
C
_o
'co
C
CD
CO
O
Banded
CO
CD
Onions, potato
cc
o
CO
.£>
00
CD
•a
c
CD
a.
13
s:
o
£2
CD
X
c
"5
m
c
o
'co
c
CD
LU
CO
o
Broadcast
CO
CD
Onions, potato
cc
O
CO
_Q
0
CO
1
0)
en
co
5
CO
s
CO
£
0
f-
5~
"c
"E
1
.Q
O
V—
in
CO
c
CD
CD
W
.0
O
CQ
CO
5
>- "*""
15 .2
CD O
~ T3
"E
"E
1
.Q
O
CN
CO
c
CD
B
CO
JD
O
CQ
CO
^
•D
C
CO
CC
O
!<
o 5
CO
CD
1
O
Q.
C
_co
Q
CC
O
1
<
"eo
.Q
O
CN
6
r—
CO
'JS
Q
0
13
^
•E
CO
CD
CQ
«S
.c c
^? 3 "w
0 J3 D
3.0
•B <5 +1;
S DJ £
CD i. O
Q- O O
'E
~E
$
"co
.a
0
*~
F-4
-------
-a
0)
•^3
0
O
""•™"
oi
uL
_«
^
CO
0
. 1
o
'
^1
c
o
E
o
1 O
c
.g TJ
0 5
US CD
O.5
^^'
a
O
CD
*•»
5
CA
C i_
o •- co
•f M
S . *. a
Q. CD' O
^o
• ' .£
•.(•" "3
" .. e
: g
0
'• . . I
.£2
co
Q
0
i
4-»
•a
co
.32
"j
ca
c
.0
CD
03 CD
o £
"c
"E
^
O
-------
I
1
o
O
m
CN
U.
0)
IS
(0
f-
§
i
*»*
o
c
0
E
o
O
e
.2 TJ
to ^
~ s
Q. c;
<£
Q.
g
O
CD
I
C v.
JO Jjj CO
ur £ o.
a. co o
£"o
4-*
J
s
c
s
^o
u
O
c
2
c
"E
.
03
1 £ £
co '-
^ o *J
75 C CO
381
H
"co
.n
in
CM
•o
CD
CD
_C
C
o
to
_o
"5.
Q.
o
EC
c
o
O
UJ
Z
.a
o
in
CD
C
CD
.£
CO
co
u
TJ
CO
2
m
"E
UJ
<
"co
.Q
O
CN
CD
CD
CD
_C
"E
CO
73
"co
1
.S"
UJ
<
To
.a
O
6
co
CD
CD
_c
"E
CO
to
O
^
<
To
.a
o
CN
CD
CD
CD
_C
"E
to
o
c
O CO
i 2
0 o
_j
CO
O
CO
c
CD
>
1
Q
O
CO
co
5
"E
c
o
o
co"
- CD
45 2
« S
•5 °
< Q-
i
~3>
o
c
o
X
b
.a
o
CQ
T^
o
UJ
O
_co
'5
CO
•a
CO
"E
"E
O
<
"«
.a
in
CM
6
r—
C
O
X
b
o
O
CO
"T"
o
UJ
O
CO
CO
!E
°- CO
£ 1
ro a"
"E
"E
|
<
"eo
.a
O
t
O
CN
C
X
b
_Q
±
O
UJ
O
CM
CO
in
CM
I
CD
a.
CO
CO
"E
"E
i
"co
.a
CO
cp
CO
in <
c
X
b
o
O
CQ
X
O
111
O
[^
in
CN
I
CD _
18
E o
CO ' r-
co •£
"E
"E
1
To
.a
en
CO
in
c
o
X
b
o
O
CQ
X
O
111
O
T—
CO
CN
Sample \\
nitrosol
c
"E
1
To
J3
O
t
CO
^ .
0)
I
—
,
Q.
'5
CO
•a
w ^
"c
~E
z
o
o
oo
j_j
CD
1
•M
I
P**
I
a.
'o
CO
E
g »
"E
"E
1
o
o
in
CM
CO
c
CD
m
55
_a
o
CO
CO
5
CD
O
0
"E
"E
i
To
.a
o
o
0
F-6
-------
•o
0)
c
+3
C
o
O
^— ""
CNI
LL.
01
J3
1=
C
O
*5
(0
*•»
o
'
+•*
o
E
1
c.
.2 -o
11
ss' .
TiX CO rO '
• - ' ' '''•;£•
-.". '•(=,
2
. ;-• . o
. ••. '!
eo
C
CD
I
.Q
O
m
-L
CO
to
CD
s
w
S* (0
o >
"E
"E
1
1
0
o
in
CO
c
CD
CD
co
0
O
ca
.J*
CO
c
"E
< 1-
slst-
CO **t r"
O . Q_ CNJ M- O
^ O) ^- CO
-------
_
ffi
o
O
"•^
CM
U.
0)
•C
cc
c
P
3
o
«-•
g
1=
0
o
c
li>
o £
=5 <°
O. e-
0.2:
^
Q.
o
IH
O
a
a
W
Application
Rate per
Crop Year
4^
C
CD
•s
c
c
c
o
X
5
o
ca
CALTECH-
—
1
S
I
Q.
0.
CO
"E
g
"5
i
CM
D)
0
O
O
LU
H—
0
s.
CD
a
CO
CO
in
r-
o
CD
a.
ca
CO
"E
"E
1
.c
CO
Stevens
.a
CO
1
01
u.
5
0 CO
i!
"E
"E
o
0
in
i!
Stevens
o
m
CO
m ®
P; ££
1|«
Et «
^ 0 "g
co CM £
"E
"E
CO
.3
O
O
0
00
c
§
b
.a
o
ca
CALTECH
CD
V—
1
'5
CO
"E
"E
g
2000 Ib/A
minimum
c
o
X
b
.a
o
ca
CALTECH
c
"E
O
4000-8000
Ibs/A
average
E
M
a.
>-
CD
Internet0
c
CO
jj
CO
OJ
CD
1
4
Internet
c
CO
o
'c
O
z
"co
£
oo
Internet
c
CO
CD
C
CD
CD
"2.
in
CM 75
d £
Stevens
.Q
CO
CO
in
I
CD
Q.
CO
CO
"E
"=
5
T
S —
F-8
.
-------
0.5
^C
*•
Q.
S
o
1
CO
C i_
_O Jj (0
~ £2 a
a. ro o
c
.22
1
o
.2
0
S
CD
J=
C
O
1
=
a.
?
>
o
tr
co
CD
J3
CO
a)
I
5?
3 O
£ -B
z
2
<
To
.Q
o
CM
o
s
c
53
4~*
to1
TO
O
-a
CD
o
m
V)
"o
ro
4-J
CD
O5
11
•z.
2
o
O co
in «
(O
c
0)
03
CO
.Q
0
m
CO
5
0
CO
in
CM
X
(D
a.
ca
CO
"E
"E
*$.
5
CO
CO To
co •B.
c
03
.
o
CO
V-
ffl
11.
03
CD
JO
m
0)
Dl
03
1
z
2
in
CD S
03
o3
+j
_c
"E
c
0
O
tu
<
To
.Q
O
CO
0
1
03
C
•f-t
_c
T3
Lime stabilize'
biosolids 900
Ibs/A Ca
c
"E
O
s
To
O
O
in
CM
03
C
03
4-»
_c
1 Limestone
c
"E
O
^
~S5
.a
O
0
O
CM
1
CD
•^
03
"E
03
a.
Q.
<£
0
To
.Q
o
o
o
CN
I
03
4-f
C
03
Hi
"S
"c
•z.
^
<
.a
, O
§O
O
O in
%
c
03
?
Ornamentals
c
"E
_i
<
To
o
o
CM <
03
C
03
n
"53
CO
53
i
CO
o
"E
"E
cr
o
o
o
0
CO
in
c
03
03
CO
.a
o
ca
t
CO
5
'5
0?
03
-------
=0
i
o
.
p«i
i
u.
M
CO
H
c
to
o
**
c
CD
1
c
.9 T3
IB ^
U •*"
:= U
J"g
O.
8
o
CD
i
Application
Rate per
Crop Year
J
S
c
o
^o
CO
s
CD
CO
o
m
3
CO
5
c
^_ o
s J
i Q.
r— CO
"c
"c
"co
i »
o >:
co o>
c
o
X
b
.a
o
op
CJ
LU
1^
r~.
_J
O
X
CO
2
"E
~c
<
O
To
.0
, O
8|
1
Q
J3
O
ca
1
,
•_J
o
CD
D)
2
1
"E
"E
<
O
op
c
o
X
b
.a
o
CD
±
O
LU
I
^
O
Minimum
c
"E
2000 Ibs/A
gypsum
c.
o
X
b
JD
O
m
±
o
LU
i"""
^
0
u
'a.
"E
"E
4000-8000
Ibs/A
gypsum
%
c
CD
S
CO
o
2
o
z
2
.£
O
o
0
O3
0
o
U
LU
O
Q.
CD
Q
^D
CO
5
0)
CN
LO
CN
T" m
"CD E
c W
ra .9
CO -o
"E
"E
o
CN
CO
CD «
co £
a>
o
o
u
LU
0
a.
CD
O
^^
CO
^
3
CO .2 T3
X ~
"c
"c
o
0
00
CO
° ^
co =5
D)
0
o
o
LU
H-
o
•f-*
D.
CD
a
^3
CO
5
CD
CD
a.
o
u
CD
a.
"c
"S
CO
CN
co -X CD
"E
c
CO
LO
CD
-------
•o
QJ
+3
C
0
O
1
•"
0)
.Q
(D
t~
.1
ts
.tt
O
'
c
o>
O
o
ll
'i. *
aS
<
Q.
s
o
CD
*rf
&
'! s. >
£S >J Q>
D. CO O
rf" O
•-.' ! '.' '
,:'••'- |,
3
•' .. • S
I
>«
D3
0
0
U
LU
"o
Q.
CD
Q
i
CO
CO
Q.
2
o
1
"E
~E
in
CN
0)
CN $
t— .
OJ
0
o
o
LU
"o
s.
CD
Q
1
-*-\
_J
CO
Sample H4759;
ground
limestone
c
"E
0
CO
CO
6
CN
*-
^
V)
—
o
'
C
o
'to
I
LU
T3
2
CO
o
c
"E
nental Sciences/Cooperative Exi
c
ri
i of Agriculture & Envin
to
TO
_CD
"5
O
co
1
CD
M-
o
4-*
'53
CD
'E
CD
_N
CD
U.
027-w.html#Lime and
'pubcd/b1
3
T3
CD
03
O>
3
CO
CD
U
g
g
nsion Service
S
LU
co
4-*
O
«
CD
C
c
2
**-
o
£•
'£
CD
>
'E
3nts/D/C/DC6572.html
u/Documt
-a
CD
c
3
CO
CD
g
g
g
and Natrural Resources/Coopers
CD
In/Institute of Agricuitu
ska-Lincol
CD
ja
CD
M—
O
>.
4-*
'co
i
'E
dcrops/g174.htm
'PUBS/fiel
3
•a
CD
"c
3
C
.2
g
g
g
erative Extension System
D.
O
niversities/Alabama Co
3
T3
C
CD
CD
CD
cn
_c
<-r\
partment/grain/ANR465
CD
;a
3
•a
CD
c
^
ww.acenet.aubu
g
ting Laboratory
CO
CD
'o
CO
Q.
CD
O
•5
•M
'is
'E
CD
c
CO
.£
"co
o
J=
Q.
CD
3
CJ
0
_CD
O
CD
C
O
s
CO
in
T.
CD
Q.
CO
CO
'CD °
4-» C
CD O
partment of Ecology; D
bia; Department of Agr
plor/agguides
% £ -5
Q 3 3
pi
?! 2
iversity of Wash!
iversity of Missoi
uextension.missc
c c E
?^ D5 J=
F-11
-------
-------
APPENDIX G
YEARLY ADDITIONS OF METALS TO SOILS
FROM FERTILIZERS, MICRONUTRIENTS AND
SOIL AMENDMENTS
G-1
-------
LIST OF TABLES
Table G1a. Yearly Cd and Pb Additions to Soil (kg/ha) from P205 Fertilizers
Table G1b. Yearly As and Cr Additions to Soil (kg/ha) from P205 Fertilizers
Table G1c. Yearly Hg and Ni Additions to Soil (kg/ha) from P205 Fertilizers
Table G1d. Yearly V and Cu Additions to Soil (kg/ha) from P20S Fertilizers
Table G1e. Yearly Zn Additions to Soil (kg/ha) from P205 Fertilizers
Table G2a. Yearly Cd and Pb Additions to Soil (kg/ha) from NPK Fertilizers Applied for P205
Content
Table G2b. Yearly As and Cr Additions to Soil (kg/ha) from NPK Fertilizers Applied for P205
Content
Table G2c. Yearly Hg and Ni Additions to Soil (kg/ha) from NPK Fertilizers Applied for P205
Content
Table G2d. Yearly V and Cu Additions to Soil (kg/ha) from NPK Fertilizers Applied for P205
Content
Table G2e. Yearly Zn Additions to Soil (kg/ha) from NPK Fertilizers Applied for P205 Content
Table G3a. Yearly Cd and Pb Additions to Soil (kg/ha) from NPK Fertilizers Applied for N Content
Table G3b. Yearly As and Cr Additions to Soil (kg/ha) from NPK Fertilizers Applied for N Content
Table G3c. Yearly Hg and Ni Additions to Soil (kg/ha) from NPK Fertilizers Applied for N Content
Table G3d. Yearly V and Cu Additions to Soil (kg/ha) from NPK Fertilizers Applied for N Content
Table G3e. Yearly Zn Additions to Soil (kg/ha) from NPK Fertilizers Applied for N Content
Table G4a. Yearly Cd and Pb Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Table G4b. Yearly As and Cr Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Table G4c. Yearly Hg and Ni Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Table G4d. Yearly V and Cu Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Table G4e. Yearly Zn Additions to Soil (kg/ha) from Potash (K20) Fertilizers
Table G5a. Yearly Cd and Pb Additions to Soil (kg/ha) from Zn Fertilizers
Table G5b. Yearly As and Cr Additions to Soil (kg/ha) from Zn Fertilizers
Table G5c. Yearly Hg and Ni Additions to Soil (kg/ha) from Zn Fertilizers
Table G5d. Yearly V and Cu Additions to Soil (kg/ha) from Zn Fertilizers
Table G5e. Yearly Zn Additions to Soil (kg/ha) from Zn Fertilizers
Table G6a. Yearly Cd and Pb Additions to Soil (kg/ha) from Mn Fertilizers
Table G6b. Yearly As and Cr Additions to Soil (kg/ha) from Mn Fertilizers
Table G6c. Yearly Hg and Ni Additions to Soil (kg/ha) from Mn Fertilizers
Table G6d. Yearly V and Cu Additions to Soil (kg/ha) from Mn Fertilizers
Table G6e. Yearly Zn Additions to Soil (kg/ha) from Mn Fertilizers
Table G7a. Yearly Cd and Pb Additions to Soil (kg/ha) from Boron Fertilizers
Table G7b. Yearly As and Cr Additions to Soil (kg/ha) from Boron Fertilizers
Table G7c. Yearly Hg and Ni Additions to Soil (kg/ha) from Boron Fertilizers
Table G7d. Yearly V and Cu Additions to Soil (kg/ha) from Boron Fertilizers
G-2
-------
Table G7e. Yearly Zn Additions to Soil (kg/ha) from Boron Fertilizers
Table G8a. Yearly Cd and Pb Additions to Soil (kg/ha) from Iron Fertilizers
Table G8b. Yearly As and Cr Additions to Soil (kg/ha) from Iron Fertilizers
Table G8c. Yearly Hg and Ni Additions to Soil (kg/ha) from Iron Fertilizers
Table G8d. Yearly V and Cu Additions to Soil (kg/ha) from Iron Fertilizers
Table G8e. Yearly Zn Additions to Soil (kg/ha) from iron Fertilizers
Table G9a. Yearly Cd and Pb Additions to Soil (kg/ha) from S (as nutrient) Fertilizers
Table G9b. Yearly As and Cr Additions to Soil (kg/ha) from S (as nutrient) Fertilizers
Table G9c. Yearly Hg and Ni Additions to Soil (kg/ha) from S (as nutrient) Fertilizers
Table G9d. Yearly V and Cu Additions to Soil (kg/ha) from S (as nutrient) Fertilizers
Table G9e. Yearly Zn Additions to Soil (kg/ha) from S (as nutrient) Fertilizers
Table G10a. Yearly Cd and Pb Additions to Soil (kg/ha) from S (as pH adjustment)
Table G10b. Yearly As and Cr Additions to Soil (kg/ha) from S (as pH adjustment)
Table G10c. Yearly Hg and Ni Additions to Soil (kg/ha) from S (as pH adjustment)
Table G10d. Yearly V and Cu Additions to Soil (kg/ha) from S (as pH adjustment)
Table G10e. Yearly Zn Additions to Soil (kg/ha) from S (as pH adjustment)
Table G11a. Yearly Cd and Pb Additions to Soil (kg/ha) from Liming Materials
Table G11b. Yearly As and Cr Additions to Soil (kg/ha) from Liming Materials
Table G11c. Yearly Hg and Ni Additions to Soil (kg/ha) from Liming Materials
Table G11d. Yearly V and Cu Additions to Soil (kg/ha) from Liming Materials
Table G11e. Yearly Zn Additions to Soil (kg/ha) from Liming Materials
Table G12a. Yearly Cd and Pb Additions to Soil (kg/ha) from Gypsum Products
Table G12b. Yearly As and Cr Additions to Soil (kg/ha) from Gypsum Products
Table G12c. Yearly Hg and Ni Additions to Soil (kg/ha) from Gypsum Products
Table G12d. Yearly V and Cu Additions to Soil (kg/ha) from Gypsum Products
Table G12e. Yearly Zn Additions to Soil (kg/ha) from Gypsum Products
Table G13a. Yearly Cd and Pb Additions to Soil (kg/ha) from Micronutrient Mixes
Table G13b. Yearly As and Cr Additions to Soil (kg/ha) from Micronutrient Mixes
Table G13c. Yearly Hg and Ni Additions to Soil (kg/ha) from Micronutrient Mixes
Table G13d. Yearly V and Cu Additions to Soil (kg/ha) from Micronutrient Mixes
Table G13e. Yearly Zn Additions to Soil (kg/ha) from Micronutrient Mixes
G-3
-------
Table G-1a. Yearly Cd and Pb Additions to Soil (kg/ha) from P2O5 Fertilizers
Source*
;DFA
/Vash St
^aven
Dharter
ID"
24837
24836
24355
24728
24278
23058
23189
22811
22816
22818
21786
21741
26286
25864
25731
25699
25167
26736
20704
20968
20969
20970
25108
23226
H4770
TSP#1«
TSP#2
TSP-1
TSP-2
TSP-3
Percent
P,O5
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
45
45
45
45
45
45
45
45
Cd
mg/kg
1
69.5
140
130
150
154
140
133
130
140
151
140
139
150
135.5
41
140
162.5
0
149
145
150
0
120
119
5
6.2
7.8
9.1
6.8
Pb
mg/kg
2
2.5
1
1
0
0
0
2
1
2
0
0
1
0
0
0
1
0
1
NRC
NR
NR
0
4
10.5
11.1
13.2
12
16
12
Yearly Cd addition in kg/ha at
84 Ib
P,(VA
94 kg/ha
0.000
0.012
0.025
0.023
0.027
0.027
0.025
0.024
0.023
0.025
0.027
0.025
0.025
0.027
0.024
0.007
0.025
0.029
0.000
0.026
0.026
0.027
0.000
0.025
0.025
0.001
0.001
0.002
0.002
0.001
173 Ib
P,O
-------
Table G-1a. (Continued)
Source*
Charter
tf&O
;DFA
Nash St
Average
IDb
TSP-4
TSP-5
TSP-6
TSP-7
TSP-8
TSP-9
TSP-10
TSP-11
TSP-12
TSP-13
TSP-14
TSP-15
TSP-16
TSP-17
TSP-18
TSP-19
TSP-20
TSP-21
TSP-22
TSP-23
TSP-24
TSP
25972
25658
24682
22899
20705
21244
20986
20987
H2549
Percent
P,O5
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
20
20
20
15
15
23
33.5
33.5
68
45.3
Cd
mg/kg
8.7
8.1
47
7.5
6.8
39
7.8
8.1
7.8
8.1
8.1
11
8.8
7.2
30
40
8.5
36
7.7
8.1
26
180
32
7
3
1
2
0
0
0
0.15
57.9
Pb
mg/kg
16
15
4.5
12
16
4.5
12
4.5
16
12
12
12
12
12
12
12
12
4.5
15
16
4.5
18
200
2
14
1
5
4.7
9.5
2.2
2
10.1
, Yearly Cd addition in kg/ha at •
84 Ib
P,0,/A
94 kg/ha
0.002
0.002
0.010
0.002
0.001
0.008
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.006
0.008
0.002
0.008
0.002
0.002
0.005
; :iX038^
0.015
0.003
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.011
173 Ib
PA/A
194 kg/ha
0.004
0.003
0.020
0.003
0.003
0.017
0.003
0.003
0.003
0.003
0.003
0.005
0.004
0.003
0.013
0.017
0.004
0.016
0.003
0.003
0.011
: , 0.078
0.031
0.007
0.003
0.001
0.003
0.000
0.000
0.000
0.000
0.022
252 Ib*
P,(VA -
282 kg/ha
0.005
0.005
0.029
0.005
0.004
0.024
0.005
0.005
0.005
0.005
0.005
0.007
0.006
0.005
0.019
0.025
0.005
0.023
0.005
0.005
0.016
0,1139
0.045
0.010
0.004
0.002
0.004
0.000
0.000
0.000
0.000
0.033
Yearly Pb addition in kg/ha at
84 Ib
P,CVA
94 kg/ha
0.003
0.003
0.001
0.003
0.003
0.001
0.003
0.001
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.001
0.003
0.003
0.001
0.004
ir \ Oi094
0.001
0.007
0.001
0.003
0.002
0.003
0.001
0.000
0.003
173 Ib
P,OJA
194 kg/ha
0.007
0.006
0.002
0.005
0.007
0.002
0.005
0.002
0.007
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.002
0.006
0.007
0.002
0.008
"••. :.'• 0.194
0.002
0.014
0.001
0.006
0.004
0.006
0.001
0.001
0.007
252 Ib
P,(VA
282 kg/ha
0.010
0.009
0.003
0.008
0.010
0.003
0.008
0.003
0.010
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.008
0.003
0.009
0.010
0.003
0.011
; I 0:282
0.003
0.020
0.002
0.009
0.006
0.008
0.002
0.001
0.009
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
Wash St: Washington State Department of Ecology (1997)
Raven: Raven and Loeppert (1997)
Charter: Charter et al. (1993)
M&O: Mortvedt and Osborn (1982)
b) Sample identification used by author
c) NR = not reported
d) NC = not calculated
e) TSP=Triple superphosphate
f) Shading indicates highest yearly addition values of this metal from phosphate products
g) Bold indicates a yearly addition that exceeds the Canadian Fertilizers Act limits for this metal
G-5
-------
Table G-1b. Yearly As and Cr Additions to Soil (kg/ha) from P2O5 Fertilizers
Source*
3DFA
Wash St
?aven
Mamamo
Shatter
ID
Number15
24837
24836
24355
24728
24278
23058
23189
22811
22816
22818
21786
21741
26286
25864
25731
25699
25167
26736
20704
20968
20969
20970
25108
23226
H4770
TSP#1e
TSP#2
TSP#1
TSP#5
SP#2
SP#4
TSP-1
TSP-2
TSP-3
Percent
P,OS
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
45
45
45
45
45
46
46
21
21
45
45
45
As
mg/kg
7
12
14.5
13.5
12.3
17
14.5
16
17
17
8
15.5
16
9
20.5
3.5
19
15.5
5.5
13
16.5
15
0.5
14
15.5
16.2
15.3
12.3
13
7.5
13
11.1
12.9
14.7
Cr
mg/kg
NR°
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
516
88.9
NR
NR
NR
NR
NR
63
85
69
Yearly As addition in kg/ha at
84 Ib
P,Os/A
94 kg/ha
0.001
0.002
0.003
0.002
0.002
0.003
0.003
0.003
0.003
0.003
0.001
0.003
0.003
0.002
0.004
0.001
0.003
0.003
0.001
0.002
0.003
0.003
0.000
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.002
0.003
0.003
173 Ib
P,OJA.
194 kg/ha
0.003
0.004
0.005
0.005
0.005
0.006
0.005
0.006
0.006
0.006
0.003
0.006
0.006
0.003
0.008
0.001
0.007
0.006
0.002
0.005
0.006
0.005
0.000
0.006
0.007
0.007
0.007
0.005
0.005
0.007
0.012
0.005
0.006
0.006
252 Ib
P,Os/A
282 kg/ha
0.004
0.006
0.008
0.007
0.007
0.009
0.008
0.009
0.009
0.009
0.004
0.008
0.009
0.005
0.011
0.002
0.010
0.008
0.003
0.007
0.009
0.008
0.000
0.009
0.010
0.010
0.010
0.008
0.008
0.01
0.017
0.007
0.008
0.009
Yearly Cr addition in kg/ha at
84 Ib
P,
-------
Table G-1b. (Continued)
Source*
Charter
3DFA
Wash St
Average
ID
TSP-4
TSP-5
TSP-6
TSP-7
TSP-8
TSP-9
rrsp-io
rsp-11
TSP-12
rsp-13
TSP-14
rsp-15
rsp-16
TSP-17
rsp-is
TSP-19
TSP-20
rsp-21
TSP-22
FSP-23
TSP-24
25972
25658
24682
22899
20705
21244
20986
20987
H2549
Percent'
P,0r
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
20
20
20
15
15
23
33.5
33.5
68
45.3
As
mglkg
9.7
9.8
2.7
13.8
13.4
8.8
10.1
9.4
13.2
13.7
9.7
18.5
9.2
15.8
4.8
2.4
10.1
3.1
10
12.4
7.1
13
1
12
0.5
2.6
0
0
0
7.8
11.0
Cr
mglkg
68
77
309
70
70
548
76
74
73
70
76
72
68
70
223
373
81
272
65
68
159
NR
NR
NR
NR
NR
NR
NR
NR
896
173.33
Yearly As addition in kg/ha at
84 Ib
P,Os/A
, 94 kg/ha
0.002
0.002
0.001
0.003
0.003
0.002
0.002
0.002
0.003
0.003
0.002
0.004
0.002
0.003
0.001
0.001
0.002
0.001
0.002
0.003
0.001
v 0:006*
0.000
0.006
0.000
0.002
0
0
0
0.001
0.002
173 Ib
P,OJA
194 kg/ha
0.004
0.004
0.001
0.006
0.006
0.004
0.004
0.004
0.006
0.006
0.004
0.008
0.004
0.007
0.002
0.001
0.004
0.001
0.004
0.005
0.003
j •:;' 0-01 3
0.001
0.012
0.001
0.003
0
0
0
0.002
0.005
252 Ib
P,0«/A
282 kg/ha
0.006
0.006
0.002
0.009
0.008
0.006
0.006
0.006
0.008
0.009
0.006
0.012
0.006
0.010
0.003
0.002
0.006
0.002
0.006
0.008
0.004
: •;••; 0.018
0.001
0.017
0.001
0.005
0
0
0
0.003
0.007
Yearly Cr addition in kg/ha at
84 Ib
P,OJA
94 kg/ha
0.014
0.016
0.065
0.015
0.015
0.114
0.016
0.015
0.015
0.015
0.016
0.015
0.014
0.015
0.047
0.078
0.017
0.057
0.014
0.014
0.033
NC
NC
NC
NC
NC
NC
NC
NC
, OJ124
0.034
, 173 Ib
P,OJA.
194 kg/ha
0.029
0.033
0.133
0.030
0.030
0.236
0.033
0.032
0.031
0.030
0.033
0.031
0.029
0.030
0.096
0.161
0.035
0.117
0.028
0.029
0.069
NC
NC
NC
NC
NC
NC
NC
NC
/ -i 0.256
0.070
252 Ib ,
P,CMA
282 kg/ha
0.043
0.048
0.194
0.044
0.044
0.343
0.048
0.046
0.046
0.044
0.048
0.045
0.043
0.044
0.140
0.234
0.051
0.170
0.041
0.043
0.100
NC
NC
NC
NC
NC
NC
NC
NC
01372
0.102
a) Sources:
California Department of Food and Agriculture (1997)
Washington Department of Ecology (1997)
Raven and Loeppert (1997)
Hamamo: Hamamo et al. (1995)
Charter et al. (1993) and Charter et al. (1995) for As
Mortvedt and Osborn (1982)
b) Sample identification used by author
c) NR = not reported
d) NC = not calculated
e) TSP=Triple superphosphate
f) Shading indicates highest yearly addition values of this contaminant from phosphate products
G-7
-------
Table G-1c. Yearly Hg and Ni Additions to Soil (kg/ha) from P2O5 Fertilizers
Source*
3DFA
A/ash St
?aven
Charter
V1&O
:DFA
/Vash St
^veracje
ID"
23226
H4770
TSP#1'
TSP#2
TSP-1
TSP-2
TSP-3
TSP-4
TSP-5
TSP-6
TSP-7
TSP-8
TSP-9
TSP-1 0
TSP-1 1
TSP-12
TSP-1 3
TSP-14
TSP-1 5
TSP-1 6
TSP-1 7
TSP-18
TSP-1 9
TSP-20
TSP-21
TSP-22
TSP-23
TSP-24
TSP
21244
20986
20987
H2549
Percent
PiOs
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
23
33.5
33.5
68
44.3
Hg
mg/kg
NRC
0.003
0.2
0.2
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.003
0.10
Ni
mg/kg
132
151
25.2
15.6
15
19
17
16
19
16
16
18
40
17
16
17
14
14
16
14
18
17
15
17
18
16
16
15
135
10
11.6
9.8
0.5
27.5
Yearly Hg addition in kg/ha at
84 Ib
P,OJA.
94 kg/ha
NC"
0.000
0.000"
0.000
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
173 Ib
P,OJA
194 kg/ha
NC
0.000
O.OOO6
0.000
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
252 Ib
P,(VA
282 kg/ha
NC
0.000
0.000'
0.000
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
Yearly Ni addition in kg/ha at
84 Ib
P,0B/A
94 kg/ha
0.028
0.032"
0.005
0.003
0.003
0.004
0.004
0.003
0.004
0.003
0.003
0.004
0.008
0.004
0.003
0.004
0.003
0.003
0.003
0.003
0.004
0.004
0.003
0.004
0.004
0.003
0.003
0.003
0.028
0.004
0.003
0.003
0.000
0.006
173 Ib
P,
-------
Table G-1d. Yearly V and Cu Additions to Soil (kg/ha) from P2O5 Fertilizers
Source3
;DFA
3DFA
Wash St
Raven
Hamamo
Charter
. ID"
24837
24836
24355
24728
24278
23058
23189
22811
22816
22818
21786
21741
26286
25864
25731
25699
25167
26736
20704
20968
20969
20970
25108
23226
H4770
TSP#1f
TSP#2
TSP#1
TSP#5
SP#2
SP#4
TSP-1
TSP-2
TSP-3
TSP-4
Percent
P,05
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
45
45
45
45
45
46
46
21
21
45
45
45
45
V
mg/kg
NRC
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
721
189
154
162
203
48.7
194
NR
NR
NR
NR
Cu
mg/kg
3
2
58.5
100
52
51.5
48
57
55
60
27
55
55
11
59
3
55
42.5
2
NR
NR
NR
6.5
57
40.2
3.2
3.5
NR
NR
NR
NR
3.7
3.2
2.1
5.8
Yearly V addition in kg/ha at
84 Ib
P5CVA
94 kg/ha
NC"
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
::-.-o;i5ie
0.039
0.032
0.033
0.041
0.022
0.087
NC
NC
NC
NC
173 Ib *
PjCVA
194 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
"•••"• -v:'0l31,1?
0.081
0.066
0.068
0.086
0.045
0.179
NC
NC
NC
NC
252 Ib
P,0./A
282 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
;:;r ;: 0:452*
0.118
0.097
0.099
0.124
0.065
0.261
NC
NC
NC
NC
Yearly Cu addition in kg/ha at
84 Ib
P,0./A
94 kg/ha
0.001
0.000
0.010
0.018
0.009
0.009
0.009
0.010
0.010
0.011
0.005
0.010
0.010
0.002
0.010
0.001
0.010
0.008
0.000
NC
NC
NC
0.001
0.012
0.008
0.001
0.001
NC
NC
NC
NC
0.001
0.001
0.000
0.001
173 Ib
P,0/A
194 kg/ha
0.001
0.001
0.021
0.037
0.019
0.019
0.018
0.021
0.020
0.022
0.010
0.020
0.020
0.004
0.022
0.001
0.020
0.016
0.001
NC
NC
NC
0.003
0.025
0.017
0.001
0.002
NC
NC
NC
NC
0.002
0.001
0.001
0.003
252 Ib
P,OJA
282 kg/ha
0.002
0.001
0.031
0.053
0.028
0.027
0.026
0.030
0.029
0.032
0.014
0.029
0.029
0.006
0.031
0.002
0.029
0.023
0.001
NC
NC
NC
0.004
0.036
0.025
0.002
0.002
NC
NC
NC
NC
0.002
0.002
0.001
0.004
Note: Footnotes may be found at the end of this table
G-9
-------
Table G-1d. (Continued)
Source*
Charter
tf&O
;DFA
Wash St
^veraqe
ID"
TSP-5
TSP-6
TSP-7
TSP-8
TSP-9
TSP-10
TSP-11
TSP-12
TSP-13
TSP-14
TSP-15
TSP-16
TSP-17
TSP-18
TSP-19
TSP-20
TSP-21
TSP-22
TSP-23
TSP-24
TSP
25972
25658
24682
22899
20705
21244
20986
20987
H2549
Percent
P,O,
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
20
20
20
15
15
23
33.5
33.5
68
45.3
V
mg/kg_
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
57.2
280.3
Cu
mg/kg
2.1
3.7
1.6
1.6
13
2.6
2.6
2.6
2.6
2.1
3.2
5.8
3.7
3.7
3.2
2.6
2.6
2.1
4.2
3.7
55
690
1170
33
1
7
53.5
31.5
250
0.2
56.6
Yearly V addition in kg/ha at
84 Ib
P,Os/A
94 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.008
0.052
173 Ib
P,0,/A
194 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.016
0.107
252 Ib
P,0
-------
Table G-1e. Yearly Zn Additions to Soil (kg/ha) from P2O5 Fertilizers
Source9
Wash St
*aven
Charter
\/l&O
Wash St
Average
ID"
H4770
TSP#1°
TSP#2
TSP-1
TSP-2
TSP-3
TSP-4
TSP-5
TSP-6
TSP-7
TSP-8
TSP-9
TSP-1 0
TSP-11
TSP-1 2
TSP-1 3
TSP-1 4
TSP-1 5
TSP-1 6
TSP-1 7
TSP-18
TSP-1 9
TSP-20
TSP-21
TSP-22
TSP-23
TSP-24
TSP
H2549
Percent P2OS
in product
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
68
45.8
Zn
mg/kg
1260
61.3
NR"
77
108
75
80
85
346
82
77
696
82
95
96
100
98
105
92
93
242
313
191 n
276
100
92
221
1550
31.3
240.2
Yearly Zn addition in kg/ha at
84 Ib
P,OJA
94 kg/ha
0.263
0.013
NCe
0.016
0.023
0.016
0.017
0.018
0.072
0.017
0.016
0.145
0.017
0.020
0.020
0.021
0.020
0.022
0.019
0.019
0.051
0.065
0.040
0.058
0.021
0.019
0.046
-;. :':-,. -•"";;. ->'0i324*
0.004
0.050
,-173lb
P,OJA
194 kg/ha
0.543
0.026
NC
0.033
0.047
0.032
0.034
0.037
0.149
0.035
0.033
0.300
0.035
0.041
0.041
0.043
0.042
0.045
0.040
0.040
0.104
0.135
0.082
0.119
0.043
0.040
0.095
'/".••i::: /; : v; 0,668
0.009
0.103
252 Ib
P,CVA
282 kg/ha
0.790
0.038
NC
0.048
0.068
0.047
0.050
0.053
0.217
0.051
0.048
0.436
0.051
0.060
0.060
0.063
0.061
0.066
0.058
0.058
0.152
0.196
0.120
0.173
0.063
0.058
0.138
;::--"-^? ••<>-."••*-• 0:971
0.013
0.150
a) Sources:
Washington State Department of Ecology (1997)
Raven and Loeppert (1997)
Charter et al. (1993)
Mortvedt and Osborn (1982)
b) Sample identification used by author
c) TSP=Triple superphosphate
d) NR = not reported
e) NC = not calculated
f) Shading indicates highest yearly addition values of this metal from phosphate products
G-11
-------
Table G-2a. Yearly Cd and Pb Additions to Soil (kg/ha) from NPK Fertilizers Applied for
P2O5 Content
Source*
Charter
ID6
MAP-1"
MAP-2
MAP-3
MAP-4
MAP-5
MAP-6
MAP-7
MAP-8
MAP-9
MAP-10
MAP-11
MAP-12
MAP-13
MAP-14
MAP-15
MAP-16
MAP-17
MAP-18
MAP-19
MAP-20
MAP-21
MAP-22
MAP-23
DAP-1"
DAP-2
DAP-3
DAP-4
DAP-5
DAP-6
DAP-7
DAP-8
DAP-9
DAP-1 0
DAP-1 1
DAP-12
DAP-1 3
DAP-14
DAP-1 5
Percent
N
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
P
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Cd
mg/kg
6.4
6.7
7.3
7.4
7
7
6.7
7
6.7
6.7
7.1
7.7
8.3
7.4
7
6.7
7.7
7.3
7.3
6.7
6.7
7
7.7
5.4
6.7
6.7
8.9
94
6.4
6.4
6
7.3
6
8.6
6
5.7
5.7
7
Pb
mg/kg
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
12
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
12
4.5
12
4.5
4.5
4.5
4.5
4.5
4.5
12
4.5
4.5
4.5
4.5
4.5
Yearly Cd Addition in kg/ha
soil at:
84 Ib
P,
-------
Table G-2a. (Continued)
Source"
Charter
Wash St
*aven
MC
VI&O
MMO
•
ID"
DAP-16
DAP-17
DAP-18
DAP-19
DAP-20
DAP-21
DAP-22
DAP-23
DAP-24
DAP-25
H4754
H4755
H4762
H2526
H2574
H2532
H2546
MAP-1
MAP-2
DAP-1
DAP-2
8813182
8813183
8813184
DAP(A)
DAP(B)
DAP(C)
DAP(D)
DAP1
DAP2
DAPS
Percent
N
18
18
18
18
18
18
18
18
18
18
11
18
16
11
11
16
10
11
11
18
18
18
11
11
18
18
18
18
21
18
18
P
46
46
46
46
46
46
46
46
46
46
52
46
15
37
30
20
34
52
52
46
46
46
52
52
46
46
46
46
53
46
46
K
0
0
0
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Cd
mg/kg
6.3
6.7
8.6
7
6.7
6.4
7.3
7
6
6.4
0.15
6.9
0.75
0.6
1.6
145
25
0.15
4
4.6
35.5
5
5.4
5.6
48
73
131
188
2
74
153
'
Pb
mg/kg
4.5
4.5
4.5
4.5
4.5
12
12
12
4.5
12
1
2.5
5
1
1
4.4
1
0.1
2.9
3.7
2.1
0.88
1
2.9
13
13
15
15
4
8
6
Yearly Cd Addition in kg/ha
soil at:
84 Ib
PjOs/A
94 kg/ha
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.000
0.000
0.001
0.068
0.007
0.000
0.001
0.001
0.007
0.001
0.001
0.001
0.010
0.015
0.027
0.038
0.000
0.015
0.031
173 Ib
P,OJA.
194 kg/ha
0.003
0.003
0.004
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.000
0.003
0.001
0.000
0.001
0.1416
0.014
0.000
0.001
0.002
0.015
0.002
0.002
0.002
0.020
0.031
0.055
0.079
0.001
0.031
0.065
252 Ib
P,Os/A
282 kg/ha
0.004
0.004
0.005
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.000
0.004
0.001
0.000
0.002
0.2046
0.021
0.000
0.002
0.003
0.022
0.003
0.003
0.003
0.029
0.045
0.080
0.115
0.001
0.045
0.094
Yearly Pb Addition in kg/ha
soil at:
84 Ib
P,OJA
94 kg/ha
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.001
0.002
0.000
0.001
0.003
0.000
0.000
0.002
0.000
0.000
0.001
0.001
0.000
0.000
0.000
0.001
0.003
0.003
0.003
0.003
0.001
0.002
0.001
173 Ib
P,OJA
194 kg/ha
0.002
0.002
0.002
0.002
0.002
0.005
0.005
0.005
0.002
0.005
0.000
0.001
0.006
0.001
0.001
0.004
0.001
0.000
0.001
0.002
0.001
0.000
0.000
0.001
0.005
0.005
0.006
0.006
0.001
0.003
0.003
252 Ib
p,cyA
282 kg/ha
0.003
0.003
0.003
0.003
0.003
0.007
0.007
0.007
0.003
0.007
0.001
0.002
0.009
0.001
0.001
0.006
0.001
0.000
0.002
0.002
0.001
0.001
0.001
0.002
0.008
0.008
0.009
0.009
0.002
0.005
0.004
Note: Footnotes may be found at the end of this table
G-13
-------
Table G-2a. (Continued)
Source"
30FA
Average
ID"
24295
23730
23845
23647
23622
23202
22278
22396
22245
21842
21884
21936
21946
21949
22023
22026
22244
25338
26520
26361
26412
25861
Percent
N
10
4
5
4
11
11
11
11
19
14.4
14.2
6
16
15
8.5
20
4
18
12
6
18
18
14.1
P
34
21
24
5
52
52
52
52
24
23.4
13
20
16
15
40
20
12
12
61
12
46
46
42.9
K
0
25
24
3
0
0
0
0
18
0
30
20
16
15
0
20
8
12
0
6
0
0
2.33
Cd
mg/kg
28
105
110
0
162.5
0
135.5
166
0
81.5
37
60
32.5
9
200
0
42
95
0
0
5
5
28.6
Pb
mg/kg
0
2340
1700
2
4
1.7
0
4
0
4650
23
266
0
2
5425
0
2.5
3600
2
0
2
2.5
202.3
Yearly Cd Addition in kg/ha
soil at:
84 Ib
P,O^A
94 kg/ha
0.008
0.047
0.043
0.000
0.029
0.000
0.024
0.030
0.000
0.033
0.027
0.028
0.019
0.006
0.047
0.000
0.033
0.074'
0.000
0.000
0.001
0.001
0.008
173 Ib
P,
-------
Table G-2b. Yearly As and Cr Additions to Soil (kg/ha) from NPK Fertilizers Applied for
P2O5 Content
Source*
Charter
ID"
MAP-1C
MAP-2
MAP-3
MAP-4
MAP-5
MAP-6
MAP-7
MAP-8
MAP-9
MAP-10
MAP-11
MAP-12
MAP-13
MAP-14
MAP-15
MAP-16
MAP-17
MAP-18
MAP-19
MAP-20
MAP-21
MAP-22
MAP-23
~ Percent
N
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
P
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
As
mg/kg
12.1
14.1
17.1
9.5
12.4
12.4
16
8.1
14.9
14.8
16.1
9.9
11.2
10.8
8.9
14.3
10.7
10.9
17.8
12.9
15.5
11.4
11.2
Cr
mg/kg
54
55
56
55
59
55
57
59
73
58
54
55
57
55
62
56
56
56
57
51
54
58
56
Yearly As Addition in kg/ha
soil at:
84 Ib
p,cyA
94
kg/ha
0.002
0.003
0.003
0.002
0.002
0.002
0.003
0.001
0.003
0.003
0.003
0.002
0.002
0.002
0.002
0.003
0.002
0.002
0.003
0.002
0.003
0.002
0.002
173 Ib
P,OJA,
194
kg/ha
0.005
0.005
0.006
0.004
0.005
0.005
0.006
0.003
0.006
0.006
0.006
0.004
0.004
0.004
0.003
0.005
0.004
0.004
0.007
0.005
0.006
0.004
0.004
252 Ib
P,CVA
282
kg/ha
0.007
0.008
0.009
0.005
0.007
0.007
0.009
0.004
0.008
0.008
0.009
0.005
0.006
0.006
0.005
0.008
0.006
0.006
0.010
0.007
0.008
0.006
0.006
Yearly Cr Addition in kg/ha
soil at:
84 Ib
P,O^A
94
kg/ha
0.010
0.010
0.010
0.010
0.011
0.010
0.010
0.011
0.013
0.010
0.010
0.010
0.010
0.010
0.011
0.010
0.010
0.010
0.010
0.009
0.010
0.010
0.010
173 Ib
PA/A
194
kg/ha
0.020
0.021
0.021
0.021
0.022
0.021
0.021
0.022
0.027
0.022
0.020
0.021
0.021
0.021
0.023
0.021
0.021
0.021
0.021
0.019
0.020
0.022
0.021
252 Ib
P,OJA
282
kg/ha
0.029
0.030
0.030
0.030
0.032
0.030
0.031
0.032
0.040
0.031
0.029
0.030
0.031
0.030
0.034
0.030
0.030
0.030
0.031
0.028
0.029
0.031
0.030
Note: Footnotes may be found at the end of this table
G-15
-------
Table G-2b. (Continued)
Source"
Charter
ID"
DAP-1"
DAP-2
DAP-3
DAP-4
DAP-5
DAP-6
DAP-7
DAP-8
DAP-9
DAP-1 0
DAP-1 1
DAP-1 2
DAP-1 3
DAP-14
DAP-1 5
DAP-1 6
DAP-17
DAP-1 8
DAP-1 9
DAP-20
DAP-21
DAP-22
DAP-23
DAP-24
DAP-25
Percent
N
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
P
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
As
mg/kg
13.1
15.4
15.6
13.8
6.8
9.9
12.4
12.5
11.1
13.1
11.1
13.3
11.1
13.5
13
10.4
12.8
12.2
11.7
14.2
15/4
10.6
11.2
11.2
11.1
Cr
mg/kg
53
50
48
48
616
49
48
49
45
45
47
47
46
47
50
50
49
48
47
49
47
51
50
47
49
Yearly As Addition in kg/ha
soil at:
84 Ib
P^Os/A
94
kg/ha
0.003
0.003
0.003
0.003
0.001
0.002
0.003
0.003
0.002
0.003
0.002
0.003
0.002
0.003
0.003
0.002
0.003
0.002
0.002
0.003
0.003
0.002
0.002
0.002
0.002
173 Ib
P,Os/A
194
kg/ha
0.008
0.006
0.007
0.006
0.003
0.004
0.005
0.005
0.005
0.006
0.005
0.006
0.005
0.006
0.005
0.004
0.005
0.005
0.005
0.006
0.006
0.004
0.005
0.005
0.005
252 Ib
P,(VA
282
kg/ha
0.008
0.009
0.010
0.008
0.004
0.006
0.008
0.008
0.007
0.008
0.007
0.008
0.007
0.008
0.008
0.006
0.008
0.007
0.007
0.009
0.009
0.006
0.007
0.007
0.007
Yearly Cr Addition in kg/Ha
soil at:
84 Ib
P,CVA
94
kg/ha
0.011
0.010
0.010
0.010
L_ 0.126
0.010
0.010
0.010
0.009
0.009
0.010
0.010
0.009
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
173 Ib
P,(VA
194
kg/ha
0.022
0.021
0.020
0.020
0.260
0.021
0.020
0.021
0.019
0.019
0.020
0.020
0.019
0.020
0.021
0.021
0.021
0.020
0.020
0.021
0.020
0.022
0.021
0.020
0.021
252 Ib
p,
-------
Table G-2b. (Continued)
Source3
Wash St
Raven
MC
\A&O
\AMO
ID"
H4754
H4755
H4762
H2526
H2574
H2532
H2546
MAP-1
MAP-2
DAP-1
DAP-2
8813182
8813183
8813184
DAP(A)
DAP(B)
DAP(C)
DAP(D)
DAP1
DAP2
DAPS
Percent
N
11
18
16
11
11
16
10
11
11
18
18
18
11
11
18
18
18
18
21
18
18
P
52
46
15
37
30
20
34
52
52
46
46
46
52
52
46
46
46
46
53
46
46
K
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
As
mg/kg
6.8
18
8
1.5
1.5
4.2
4.8
10.9
13.7
9.9
16.2
0.05
0.05
0.05
NR'
NR
NR
NR
NR
NR
NR
Cr
mg/kg
5.8
92
4.3
433
379
214
400
16.9
NR
NR
196
64
71
75
NR
NR
NR
NR
NR
NR
NR
Yearly As Addition in kg/ha
- soil at:
84 Ib
P,0/A
94
kg/ha
0.001
0.004
0.005
0.000
0.000
0.002
0.001
0.002
0.002
0.002
0.003
0.000
0.000
0.000
NCg
NC
NC
NC
NC
NC
NC
173 Ib
e,cyA
194
kg/ha
0.003
0.008
0.010
0.001
0.001
0.004
0.003
0.004
0.005
0.004
0.007
0.000
0.000
0.000
NC
NC
NC
NC
NC
NC
NC
252 Ib
P,0,/A
282
kg/ha
0.004
0.011
0.015
0.001
0.001
0.006
0.004
0.006
0.007
0.006
0.010
0.000
0.000
0.000
NC
NC
NC
NC
NC
NC
NC
Yearly, Cr Addition in kg/ha
soil at:
84 Ib
P,Os/A
94
kg/ha
0.001
0.019
0.003
0.110
0.119
0.101
0.111
0.003
NC
NC
0.040
0.013
0.013
0.014
NC
NC
NC
NC
NC
NC
NC
173 Ib
P,CMA
194
kg/ha
0.002
0.039
0.006
0.227
0.245
0.208
0.228
0.006
NC
NC
0.083
0.027
0.026
0.028
NC
NC
NC
NC
NC
NC
NC
252 Ib
P,OJA
282
kg/ha
0.003
0.056
0.008
0.330
0.356
0.302
0.332
0.009
NC
NC
0.120
0.039
0.039
0.041
NC
NC
NC
NC
NC
NC
NC
Note: Footnotes may be found at the end of this table
G-17
-------
Table G-2b. (Continued)
Source*
;DFA
Average
ID"
24295
23730
23845
23647
23622
23202
22278
22396
22245
21842
21884
21936
21946
21949
22023
22026
22244
25338
26520
26361
26412
25861
Percent
N
10
4
5
4
11
11
11
11
19
14.4
14.2
6
16
15
8.5
20
4
18
12
6
18
18
14.1
P
34
21
24
5
52
52
52
52
24
23.4
13
20
16
15
40
20
12
12
61
12
46
46
42.9
K
0
25
24
3
0
0
0
0
18
0
30
20
16
15
0
20
8
12
0
6
0
0
2.3
As
mg/kg
10
11.5
8.4
0.6
15.5
3.5
12.5
16
5.5
32.5
155
45
2.5
6
23.5
4
3
11.2
0.65
0.4
8
8.5
13.3
Cr
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
83.9
Yearly As Addition in kg/ha
soil at:
84 Ib
P,OJA
94
kg/ha
0.003
0.005
0.003
0.001
0.003
0.001
0.002
0.003
0.002
0.013
0.112
0.021
0.001
0.004
0.006
0.002
0.002
0.009
0.000
0.000
0.002
0.002
0.004
173 Ib
P,CVA
194
kg/ha
0.006
0.011
0.007
0.002
0.006
0.001
0.005
0.006
0.004
0.027
0.231
0.044
0.003
0.008
0.011
0.004
0.005
0.018
0.000
0.001
0.003
0.004
0.008
252 Ib
P,
-------
Table G-2c. Yearly Hg and Ni Additions to Soil (kg/ha) from NPK Fertilizers Applied for
P2O5 Content
Source*
Charter
r
ID"
MAP-10
MAP-2
MAP-3
MAP-4
MAP-5
MAP-6
MAP-7
MAP-8
MAP-9
MAP-1 0
MAP-1 1
MAP-1 2
MAP-1 3
MAP-14
MAP-1 5
MAP-16
MAP-1 7
MAP-1 8
MAP-1 9
MAP-20
MAP-21
MAP-22
MAP-23
Percent
N
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
P
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Hg
mg/kg
NR"
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
Ni
mg/kg
15
17
20
18
17
16
16
15
18
17
15
18
17
16
19
17
16
19
20
15
19
17
17
Yearly Hg Addition in kg/ha
soil at:
84 Ib
PjOs/A
94
kg/ha
NCe
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
173 Ib
P,0
-------
Table G-2c. (Continued)
Source"
Charter
ID"
DAP-1'
DAP-2
DAP-3
DAP-4
DAP-5
DAP-6
DAP-7
DAP-8
DAP-9
DAP-1 0
DAP-1 1
DAP-1 2
DAP-1 3
DAP-14
DAP-1 5
DAP-1 6
DAP-1 7
DAP-1 8
DAP-1 9
DAP-20
DAP-21
DAP-22
DAP-23
DAP-24
DAP-25
Percent
N
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
P
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Hg
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
Ni
mg/kg
13
11
14
16
127
14
12
14
14
14
15
17
15
19
13
16
14
16
15
14
13
14
13
17
16
Yearly Hg Addition in kg/ha
soil at:
84 Ib
P,O./A
94
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
173 Ib
P,OJA
194
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
252 Ib
P,OJA
282
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Yearly Ni Addition in kg/ha
soil at: '
84 Ib
P,OJA
94
kg/ha
0.003
0.002
0.003
0.003
0.026
0.003
0.002
0.003
0.003
0.003
0.003
0.003
0.003
0.004
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
173 Ib
p,cyA
194
kg/ha
0.005
0.005
0.006
0.007
0.054
0.006
0.005
0.006
0.006
0.006
0.006
0.007
0.006
0.008
0.005
0.007
0.006
0.007
0.006
0.006
0.005
0.006
0.005
0.007
0.007
252 Ib
P,0=/A
282
kg/ha
0.008
0.007
0.009
0.010
0.078
0.009
0.007
0.009
0.009
0.009
0.009
0.010
0.009
0.012
0.008
0.010
0.009
0.010
0.009
0.009
0.008
0.009
0.008
0.010
0.010
Note: Footnotes may be found at the end of this table
G-20
-------
Table G-2c. (Continued)
Source'
/Vash St
Raven
MC
\A&O
dMO
ID"
H4754
H4755
H4762
H2526
H2574
H2532
H2546
MAP-1
MAP-2
DAP-1
DAP-2
8813182
8813183
8813184
DAP(A)
DAP(B)
DAP(C)
DAP(D)
DAP1
DAP2
DAPS
Percent
N
11
18
16
11
11
16
10
11
11
18
18
18
11
11
18
18
18
18
21
18
18
P
52
46
15
37
30
20
34
52
52
46
46
46
52
52
46
46
46
46
53
46
46
K
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Hg
mg/kg
0.0025
0.025
0.0025
0.0025
0.0025
0.024
0.0025
0.2
0.2
0.2
0.2
0.05
0.05
0.05
NR
NR
NR
NR
NR
NR
NR
Ni
mg/kg
19.2
19.1
2.5
0.5
13.9
195
0.5
7.4
22.2
15.5
48.3
11
12
10
53
120
125
135
10
156
120
Yearly Hg Addition in kg/ha
soil at:
84 Jb
P,Os/A
94
kg/ha
0.000
i:!:XD.ObO?^
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
NC
NC
NC
NC
NC
NC
NC
173 Ib
P,OJA.
194
Jcg/ha
0.000
:: :••-• OiOOO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
NC
NC
NC
NC
NC
NC
NC
252 Ib
P,OJA
282
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
NC
NC
NC
NC
NC
NC
NC
Yearly Ni Addition in kg/ha
soil at:
84 Ib
P,CVA
94
kg/ha
0.003
0.004
0.002
0.000
0.004
0.092
0.000
0.001
0.004
0.003
0.010
0.002
0.002
0.002
0.011
0.025
0.026
0.028
0.002
0.032
0.025
173 Ib
P,OJA
194
kg/ha
0.007
0.008
0.003
0.000
0.009
'•^,:..: 0:3.89
0.000
0.003
0.008
0.007
0.020
0.005
0.004
0.004
0.022
0.051
0.053
0.057
0.004
0.066
0.051
252 Ib
p,cyA
282
kg/ha
0.010
0.012
0.005
0.000
0.013
0:275
0.000
0.004
0.012
0.010
0.030
0.007
0.007
0.005
0.032
0.074
0.077
0.083
0.005
0.096
0.074
Note: Footnotes may be found at the end of this table
G-21
-------
Table G-2c. (Continued)
Source
;DFA
i\v0rgq0
ID"
24295
23730
23845
23647
23622
23202
22278
22396
22245
21842
21884
21936
21946
21949
22023
22026
22244
25338
26520
26361
26412
25861
Percent
N
10
4
5
4
11
11
11
11
19
14.4
14.2
6
16
15
8.5
20
4
18
12
6
18
18
14.1
P
34
21
24
5
52
52
52
52
24
23.4
13
20
16
15
40
20
12
12
61
12
46
46
42.9
K
0
25
24
3
0
0
0
0
18
0
30
20
16
15
0
20
8
12
0
6
0
0
2.3
Hg
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.07
Ni
mg/kg
NR
NR
NR
NR
NR
19
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
28.36
Yearly Hg Addition in kg/ha
soil at:
84 Ib
PA/A
94
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
173 Ib
P,0/A
194
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
252 Ib
P,
-------
Table G-2d. Yearly V and Cu Additions to Soil (kg/ha) from NPK Fertilizers Applied for
P2O5 Content
Source"
Charter
ID"
MAP-1C
MAP-2
MAP-3
MAP-4
MAP-5
MAP-6
MAP-7
MAP-8
MAP-9
MAP-10
MAP-11
MAP-12
MAP-13
MAP-14
MAP-15
MAP-16
MAP-17
MAP-18
MAP-19
MAP-20
MAP-21
MAP-22
MAP-23
Percent
N
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
P
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
V
mg/kg
NR"
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
Cu
mg/kg
0.75
0.75
0.75
0.75
0.75
0.75
0.75
1.6
0.75
0.75
0.75
0.75
0.75
0.75
1.6
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
Yearly V Addition in kg/ha
soil at:
84 Ib
P,(VA
94
kg/ha
NCe
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
173 Ib
R,0,/A
, 194
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
252 Ib
P,OJA
282 *
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Yearly Cu Addition in kg/ha
soil at:
84 Ib
P,OJA.
94
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
173 Ib
P,(VA
194
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
252 Ib
P,CVA
282
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Note: Footnotes may be found at the end of the table
G-23
-------
Table G-2d. (Continued)
Source*
barter
ID"
DAP-1'
DAP-2
DAP-3
DAP-4
DAP-5
DAP-6
DAP-7
DAP-8
DAP-9
DAP-1 0
DAP-1 1
DAP-1 2
DAP-1 3
DAP-14
DAP-1 5
DAP-1 6
DAP-17
DAP-1 8
DAP-1 9
DAP-20
DAP-21
DAP-22
DAP-23
DAP-24
DAP-25
Percent
N
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
P
46
46
46
46
46
46
46
46
4R
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
V
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
Cu
mg/kg
1.6
0.75
0.75
1.6
0.75
0.75
1.6
0.75
3.2
0.75
1.6
1.6
0.75
1.6
0.75
0.75
0.75
2.1
0.75
0.75
0.75
0.75
0.75
1.6
0.75
Yearly V Addition in kg/ha
soil at:
84 Ib
P,(VA
94
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
173 Ib
P^A
194
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
252 Ib
P,(VA
282
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Yearly Cu Addition in kg/ha
soil at:
84 Ib
P,
-------
Table G-2d. (Continued)
"Source"
Wash St
Raven
MC
Vl&O
MMO
ID"
H4754
H4755
H4762
H2526
H2574
H2532
H2546
MAP-1
MAP-2
DAP-1
DAP-2
8813182
8813183
8813184
DAP(A)
DAP(B)
DAP(C)
DAP(D)
DAP1
DAP2
DAPS
Percent
N
11
18
16
11
11
16
10
11
11
18
18
18
11
11
18
18
18
18
21
18
18
P
52
46
15
37
30
20
34
52
52
46
46
46
52
52
46
46
46
46
53
46
46
K
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
V
mg/kg
37.9
174
25.7
31.7
32
396
228
146
205
177
237
180
200
250
NR
NR
NR
NR
NR
NR
NR
Cu
mg/kg
3.6
5.4
80.7
0.5
5.8
16
3.3
13.2
1
1
41.8
0.45
0.44
1.3
5
8
35
98
1
8
18
Yearly V Addition in kg/ha
soil at:
84lfa
P,O./A
94
kg/ha
0.007
0.036
0.016
0.008
0.010
^o.i869
0.063
0.026
0.037
0.036
0.048
0.037
0.036
0.045
NC
NC
NC
NC
NC
NC
NC
173 Ib
PjOs/A
- 194
kg/ha
0.014
0.073
0.033
0.017
0.021
". OV384
0.130
0.054
0.076
0.075
0.100
0.076
0.075
0.093
NC
NC
NC
NC
NC
NC
NC
252 Ib
P,CVA
282
kg/ha
0.021
0.107
0.048
0.024
0.030
> :0.558
0.189
0.079
0.111
0.109
0.145
0.110
0.108
0.136
NC
NC
NC
NC
NC
NC
NC
Yearly Cu Addition in kg/ha
soil at:
84 Ib
P,CVA
94
kg/ha
0.001
0.001
0.051
0.000
0.002
0.008
0.001
0.002
0.000
0.000
0.009
0.000
0.000
0.000
0.001
0.002
0.007
0.020
0.000
0.002
0.004
173 Ib
P,OJA.
194
kg/ha
0.001
0.002
0.104
0.000
0.004
0.016
0.002
0.005
0.000
0.000
0.018
0.000
0.000
0.000
0.002
0.003
0.015
0.041
0.000
0.003
0.008
252 Ib
P,CVA
282
kg/ha
0.002
0.003
0.152
0.000
0.005
0.023
0.003
0.007
0.001
0.001
0.026
0.000
0.000
0.001
0.003
0.005
0.021
0.060
0.001
0.005
0.011
Note: Footnotes may be found at the end of this table
G-25
-------
Table G-2d. (Continued)
Source"
3DFA
^verafje
ID"
24295
23730
23845
23647
23622
23202
??97R
22396
9974R
21842
21884
21936
21946
21949
22023
22026
22244
25338
26520
26361
26412
25861
Percent
N
10
4
5
4
11
11
11
11
19
14.4
14.2
6
16
15
8.5
20
4
18
12
6
18
18
14.1
P
34
21
24
5
52
52
52
52
24
23.4
13
20
16
15
40
20
12
12
61
12
46
46
42.9
K
0
25
24
3
0
0
0
0
18
0
30
20
16
15
0
20
8
12
0
6
0
0
2.3
V
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
165.7
Cu
mg/kg
0
245
190
52
65.5
11.5
53
62
NR
310
29.5
144
3
14
700
NR
4.5
450
2
12
9
9.5
31.0
Yearly V Addition in kg/ha
soil at:
84 Ib
PjOs/A
94
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.042
173 Ib
P,0./A
194
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.087
252 Ib
P,OJA
282
kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.127
Yearly Cu Addition in kg/ha
soil at:
84 Ib
P,OJA.
94
kg/ha
0.000
0.110
0.074
0.098
0.012
0.002
0.010
0.011
NC
0.125
0.021
0.068
0.002
0.009
0.165
NC
0.004
0.353
0.000
0.009
0.002
0.002
0.013
173 Ib
P,OJA.
194
kg/ha
0.000
0.226
0.154
0.202
0.024
0.004
0.020
0.023
NC
0.257
0.044
0.140
0.004
0.018
0.340
NC
0.007
0.728
0.001
0.019
0.004
0.004
0.028
252 Ib
P,CVA
282
kg/ha
0.000
0.329
0.223
0.293
0.036
0.006
0.029
0.034
NC
0.374
0.064
0.203
0.005
0.026
0.494
NC
0.011
;1.058
0.001
0.028
0.006
0.006
0.040
a) Sources:
Charter: Charter et al. (1993)
Wash St: Washington State Department of Ecology (1997)
Raven: Raven and Loeppert (1997)
IMC: International Mineral Company (1997)
M&O: Mortvedt and Osborn (1982)
MMO: Mortvedt, Mays and Osborne (1981)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) MAP — monoammonium phosphate
d) NR = not reported
e) NC = not calculated
f) DAP = diammonium phosphate
g) Shading indicates highest yearly addition values of this metal from NPK products (based on P content)
G-26
-------
Table G-2e. Yearly Zn Additions to Soil (kg/ha) from NPK Fertilizers Applied for P2O5
Content
Source'
Charter
ID"
MAP-1C
MAP-2
MAP-3
MAP-4
MAP-5
MAP-6
MAP-7
MAP-8
MAP-9
MAP-10
MAP-11
MAP-12
MAP-13
MAP-14
MAP-15
MAP-16
MAP-17
MAP-18
MAP-19
MAP-20
MAP-21
MAP-22
MAP-23
Percent
N
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
P
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
52
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Zn
' nig/kg
60
64
67
72
70
68
65
81
73
63
78
80
91
80
83
63
80
76
72
70
76
90
95
. - Yearly Zn Addition in kg/ha soil at:
84 Ib P,CVA
94 kg/ha
0.011
0.012
0.012
0.013
0.013
0.012
0.012
0.015
0.013
0.011
0.014
0.014
0.016
0.014
0.015
0.011
0.014
0.014
0.013
0.013
0.014
0.016
0.017
173 Ib P-A/A
194 kg/ha
0.022
0.024
0.025
0.027
0.026
0.025
0.024
0.030
0.027
0.024
0.029
0.030
0.034
0.030
0.031
0.024
0.030
0.028
0.027
0.026
0.028
0.034
0.035
25Zlb P,OJA
282 kg/ha
0.033
0.035
0.036
0.039
0.038
0.037
0.035
0.044
0.040
0.034
0.042
0.043
0.049
0.043
0.045
0.034
0.043
0.041
0.039
0.038
0.041
0.049
0.052
Note: Footnotes may be found at the end of this table
G-27
-------
Table G-2e. (Continued)
Source"
Charter
ID"
DAP-1"
DAP-2
DAP-3
DAP-4
DAP-5
DAP-6
DAP-7
DAP-8
DAP-9
DAP-1 0
DAP-1 1
DAP-1 2
DAP-1 3
DAP-14
DAP-1 5
DAP-1 6
DAP-1 7
DAP-1 8
DAP-1 9
DAP-20
DAP-21
DAP-22
DAP-23
DAP-24
DAP-25
Percent
N
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
P
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
46
K
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Zn
mg/kg
85
86
87
80
2193
84
59
86
97
86
96
88
86
86
91
93
89
91
85
97
96
71
72
98
72
Yearly Zn Addition in kg/ha soil at:
84 Ib P,O
-------
Table G-2e. (Continued)
Source3
Wash St
laven
MC
\A&O
MMO
ID"
H4754
H4755
H4762
H2562
H2574
H2532
H2564
MAP-1
MAP-2
DAP-1
DAP-2
8813182
8813183
8813184
DAP(A)
DAP(B)
DAP(C)
DAP(D)
DAP1
DAP2
DAPS
Percent
N
11
18
16
11
11
16
10
11
11
18
18
18
11
11
18
18
18
18
21
18
18
P
52
46
15
37
30
20
34
52
52
46
46
46
52
52
46
46
46
46
53
46
46
K
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Zn
mg/kg
54
81.6
81.6
25.3
301
1480
315
10.3
NRf
NR
386
57
65
58
540
960
1315
1400
1
1260
1290
Yearly Zn Addition in kg/ha soil at:
84 Ib PA/A
94 kg/ha
0.010
0.017
0.051
0.006
0.094
•• -••. -o:696e
0.087
0.002
NC8
NC
0.079
0.012
0.012
0.010
0.110
0.196
0.269
0.286
0.000
0.257
0.264
173 Ib P,
-------
Table G-2e. (Continued)
Source'
DDFA
Average
ID"
24295
23730
23845
23647
23622
23202
22278
22396
22245
21842
21884
21936
21946
21949
22023
22026
22244
25338
26520
26361
26412
25861
Percent
N
10
4
5
4
11
11
11
11
19
14.4
14.2
6
16
15
8.5
20
4
18
12
6
18
18
14.1
P
34
21
24
5
52
52
52
52
24
23.4
13
20
16
15
40
20
12
12
61
12
46
46
42.9
K
0
25
24
3
0
0
0
0
18
0
30
20
16
15
0
20
8
12
0
6
0
0
2.3
Zn
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
233.6
Yearly Zn Addition in kg/ha soil at:
84lbP,O,/A
94 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.054
173 Ib P,O'i/A
194 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.112
252 Ib PA/A
282 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.16;
a) Sources:
Charter: Charter et al. (1995)
Wash St: Washington State Department of Ecology (1997)
Raven: Raven and Loeppert (1997)
IMC: International Mineral Company (1997)
M&O: Mortvedt and Osborn (1982)
MMO: Mortvedt, Mays and Osborne (1981)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) MAP = monoammonium phosphate
d) DAP = diammonium phosphate
e) Shading indicates highest yearly addition values of this metal from NPK products (based on P content)
f) NR = not reported
g) NC = not calculated
G-30
-------
Table G-3a. Yearly Cd and Pb Additions to Soil (kg/ha) from NPK Fertilizers Applied for
N Content
Source*
PDA
Wash
St
i
i
ID Number"
B960243
B960244
B960249
B960282
B960325
B960333
B960389
B960412
B960418
B960441
B960442
B960453
B960475
B960510
B960580
B960584
B960599
B960611
B960639
B960708
B960711
B960713
B960715
B980726
B960820
B960896
B960900
B960909
B960912
B960913
B961058
B961321
H0751
H0752
H2538
H1233
H0754
H4769
H4771
Percent'
N
19
12
7
9
10
8
19
7
19
9
9
10
9
9
10
10
15
19
6
7
8
10
15
19
26
10
10
3
3
8
8
9
46
20
32
17
15.5
21
34.5
P
19
24
35
44
21
32
19
26
19
34
3
20
40
43
10
20
15
19
2
27
24
20
15
19
9
20
20
17
17
41
17
43
0
0
0
0
0
0
0
K
19
24
12
9
15
16
19
26
19
10
10
20
5
10
10
20
15
19
0
11
8
10
15
19
9
20
20
40
40
12
34
10
0
0
0
0
0
0
0
Cd -
mg/kg
3.5
4.3
4.6
2.3
2.7
3.9
1.6
2.6
2.2
3.3
3.6
4.3
14.3
5.2
1.8
2.6
2.1
24.35
5.7
6.4
9.5
2.4
2
4.1
2
3.3
3.1
2.4
4.3
1.5
1
4.7
0.15
0.03
0.03
0.15
0.8
1.2
0.15
Pb
mg/kg
2.2
4.6
3.9
3.5
11.1
5.3
1.4
2.8
3.8
3.6
3
3
422
1.7
3.6
2.5
2.1
1.1
6.9
153
14
6.7
1.8
3.7
2.3
3.6
3.3
2.6
3.9
18
2.4
6.9
1
0.2
0.2
1
5.5
15
1
Yearly Cd addition
in kg/ha at
124 Ib
N/A
139
kg/ha
0.003
0.005
0.009
0.004
0.004
0.007
0.001
0.005
0.002
0.005
0.006
0.006
0.022= :
0.008
0.003
0.004
0.002
0.018
0.013
0.013
0.017
0.003
0.002
0.003
0.001
0.005
0.004
0.011
0.020
0.003
0.002
0.007
0.000
0.000
0.000
0.000
0.001
0.001
0.000
206 Ib
N/A
231
kg/ha
0.004
0.008
0.015
0.006
0.006
0.011
0.002
0.009
0.003
0.008
0.009
0.010
,0.037^';
0.013
0.004
0.006
0.003
0.030
0.022
0.021
0.027
0.006
0.003
0.005
0.002
0.008
0.007
0.018
0.033
0.004
0.003
0.012
0.000
0.000
0.000
0.000
0.001
0.001
0.000
414 Ib
N/A
464
kg/ha
0.009
0.017
0.030
0.012
0.013
0.023
0.004
0.017
0.005
0.017
0.019
0.020
;0-074:;
0.027
0.008
0.012
0.006
0.059
0.044
0.042
0.055
0.011
0.006
0.010
0.004
0.015
0.014
0.037
0.067
0.009
0.006
0.024
0.000
0.000
0.000
0.000
0.002
0.003
0.000
Yearly :Pb addition
in kg/ha at
124 Ib
N/A
,139
kg/ha
0.002
0.005
0.008
0.005
0.015
0.009
0.001
0.006
0.003
0.006
0.005
0.004
;0.652'
0.003
0.005
0.003
0.002
0.001
0.016
0.304
0.024
0.009
0.002
0.003
0.001
0.005
0.005
0.012
0.018
0.031
0.004
0.011
0.000
0.000
0.000
0.001
0.005
0.010
0.000
206 Ib
N/A
231
kg/ha
0.003
0.009
0.013
0.009
0.026
0.015
0.002
0.009
0.005
0.009
0.008
0.007
: ^083;
0.004
0.008
0.006
0.003
0.001
0.027
0.505
0.040
0.015
0.003
0.004
0.002
0.008
0.008
0.020
0.030
0.052
0.007
0.018
0.001
0.000
0.000
0.001
0.008
0.017
0.001
414 Ib
N/A
464
kg/ha
0.005
0.018
0.026
0.018
0.052
0.031
0.003
0.019
0.009
0.019
0.015
0.014
2.176:
0.009
0.017
0.012
0.006
0.003
0.053
1.014
0.081
0.031
0.006
0.009
0.004
0.017
0.015
0.040
0.060
0.104
0.014
0.036
0.001
0.000
0.000
0.003
0.016
0.033
0.001
G-31
-------
Table G-3a. Continued
Source'
Raven
COFA
Averape
ID Numbed
Urea"
NHNOV
NH4SO4°
NH4SCV
25042
21575
24276
23106
22080
22216
20891
Percent
N
46
34
21
21
20
32
14
7
34
9
16
23.2
P
0
0
0
0
0
10
3
2
17
4
4
2.4
K
0
0
0
0
0
10
7
2
0
4
8
2.5
Cd
mg/kg
0.1
0.1
0.1
0.1
0
0
0
0
47
12.5
23
6.2
Pb
mg/kg
0.2
0.2
0.2
0.2
0
0
2
3
2.5
71
255
69.6
Yearly Cd addition
in kg/ha at
124 Ib
N/A
139
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.019
0.019
0.020
0.006
206 Ib
N/A
231
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.032
0.032
0.033
0.009
414 Ib
N/A
464
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.064
0.064
0.067
0.018
Yearly Pb addition
in kg/ha at
124 Ib
N/A
139
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.006
0.001
0.110
0.222
0.031
206 Ib
N/A
231
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.010
0.002
0.182
0.368
0.051
414 Ib
N/A
464
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.007
0.020
0.003
0.366
0.740
0.103
a) Sources:
PDA: Pennsylvania Department of Agriculture (1998)
Wash St: Washington State Deparmtent of Ecology (1997)
Raven: Raven and Loeppert (1997)
CDFA: California Department of Food & Agriculture (1997)
b) Sample identification used by author.
c) Shading indicates highest yearly addition values for this metal from NPK products applied for N content.
d) NPK rating not given, see Table 3-4.
e) NPK rating not given, granular grade used.
G-32
-------
Table G-3b. Yearly As and Cr Additions to Soil (kg/ha) from NPK Fertilizers Applied for
N Content
Source*
PDA
Wash St
ID -
Number*
B960243
B960244
B960249
B960282
B960325
B960333
B960389
B960412
B960418
B960441
B960442
B960453
B960475
B960510
B960580
B960584
B960599
B960611
B960639
B960708
B960711
B960713
B960715
B980726
B960820
B960896
B960900
B960909
B960912
B960913
B961058
B961321
H0751
H0752
H2538
H1233
H0754
H4769
H4771
Percent
N
19
12
7
9
10
8
19
7
19
9
9
10
9
9
10
10
15
19
6
7
8
10
15
19
26
10
10
3
3
8
8
9
46
20
32
17
15.5
21
34.5
P
19
24
35
44
21
32
19
26
19
34
3
20
40
43
10
20
15
19
2
27
24
20
15
19
9
20
20
17
17
41
17
43
0
0
0
0
0
0
0
K
19
24
12
9
15
16
19
26
19
10
10
20
5
10
10
20
15
19
0
11
8
10
15
19
9
20
20
40
40
12
34
10
0
0
0
0
0
0
0
As
mg/kg
6.6
9.8
9.7
13.2
7.2
11.2
5.2
6
7.5
10.7
9.2
3.6
10
11.2
4.1
6.9
4.9
0
4.7
9
3.5
5.4
4.7
7.8
4.1
7
7.4
5.1
10.5
6.2
3.1
10.7
1.5
0.3
0.3
1.5
8
1.5
1.5
Cr
mg/kg
45.4
59
66.8
90.7
46.3
68.1
43.5
51.8
62
67.4
88.8
68.7
107.9
79.4
51.4
52.8
42.5
160
40.3
73.2
60.5
42
28
48.8
34.2
39
201
34.3
67.4
68.3
30.8
69.8
2.2
0.05
0.15
2
1.4
0.7
0.25
Yearly As addition
in kg/ha at
124 Ib
N/A
139
kg/ha
0.005
0.011
0.019
0.020
0.010
0.019
0.004
0.012
0.005
0.017
0.014
0.005
0.015
0.017
0.006
0.010
0.005
0.000
0.011
0.018
0.006
0.008
0.004
0.006
0.002
0.010
0.010
0.024
: 0.049
0.011
0.005
0.017
0.000
0.000
0.000
0.001
0.007
0.001
0.001
206 Ib
N/A
231
kg/ha
0.008
0.019
0.032
0.034
0.017
0.032
0.006
0.020
0.009
0.027
0.024
0.008
0.026
0.029
0.009
0.016
0.008
0.000
0.018
0.030
0.010
0.012
0.007
0.009
0.004
0.016
0.017
0.039
0.984: ;
0.018
0.009
0.027
0.001
0.000
0.000
0.002
0.012
0.002
0.001
414 Ib
N/A
464
kg/ha
0.016
0.038
0.064
0.068
0.033
0.065
0.013
0.040
0.018
0.055
0.047
0.017
0.052
0.058
0.019
0.032
0.015
0.000
0.036
0.060
0.020
0.025
0.015
0.019
0.007
0.032
0.034
0.079
,,0;i;62y
0.036
0.018
0.055
0.002
0.001
0.000
0.004
0.024
0.003
0.002
Yearly Cr .addition
in kg/ha at
124 Ib
N/A
139
kg/ha
0.033
0.068
0.133
0.140
0.064
0.118
0.032
0.103
0.045
0.104
0.137
0.095
0.167
0.123
0.071
0.073
0.039
0.117
0.093
0.145
0.105
0.058
0.026
0.036
0.018
0.054
0.279
0.159
0.312
0.119
0.054
0.108
0.001
0.000
0.000
0.002
0.001
0.000
0.000
206 Ib
N/A
231
kg/ha
0.055
0.114
0.220
0.233
0.107
0.197
0.053
0.171
0.075
0.173
0.228
0.159
0.277
0.204
0.119
0.122
0.065
0.195
0.155
0.242
0.175
0.097
0.043
0.059
0.030
0.090
0.464
0.264
0.519
0.197
0.089
0.179
0.001
0.000
0.000
0.003
0.002
0.001
0.000
414 Ib
N/A
464
kg/ha
0.111
0.228
0.443
0.468
0.215
0.395
0.106
0.343
0.151
0.347
0.458
0.319
0.556
0.409
0.238
0.245
0.131
0.391
0.312
0.485
0.351
0.195
0.087
0.119
0.061
0.181
0.933
0.531
1.042
0.396
0.179
0.360
0.002
0.000
0.000
0.005
0.004
0.002
0.000
G-33
-------
Table G-3b. Continued
Source*
Raven
CDFA
AvsfsciB
ID
Number6
Urea"
NH,NO,B
NH4SO4B
NH4SO4fl
25042
21575
24276
23106
22080
22216
20891
Percent
N
46
34
21
21
20
32
14
7
34
9
16
232
P
0
0
0
0
0
10
3
2
17
4
4
2.35
K
0
0
0
0
0
10
7
2
0
4
8
2.5
As
mg/kg
0.2
0.2
0.2
0.4
0
0.6
1.5
0.15
4.5
4.3
8.4
3.4
Cr
mg/kg
NRe
NR
NR
2.14
NR
NR
NR
NR
NR
NR
NR
1.1
Yearly As addition
in kg/ha at
124 Ib
N/A
139
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.002
0.007
0.007
0.008
206 Ib
N/A
231
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0.000
0.003
0.011
0.012
0.013
414 Ib
N/A
464
kg/ha
0.000
0.000
0.000
0.001
0.000
0.001
0.005
0.001
0.006
0.022
0.024
0.027
in kg/ha at
124 Ib
N/A
139
'kg/ha
NC'
NC
NC
0.001
NC
NC
NC
NC
NC
NC
NC
0.081
206 Ib
N/A
231
kg/ha
NC
NC
NC
0.002
NC
NC
NC
NC
NC
NC
NC
0.134
414 Ib
N/A
464
kg/ha
NC
NC
NC
0.005
NC
NC
NC
NC
NC
NC
NC
a) Sources:
PDA: Pennsylvania Department of Agriculture (1998)
Wash St: Washington State Deparmtent of Ecology (1997)
Raven: Raven and Loeppert (1997)
CDFA: California Department of Food & Agriculture (1997)
b) Sample identification used by author.
c) Shading indicates highest yearly addition values for this metal from NPK products applied for N content.
d) NPK rating not given, see Table 3-4.
e) NR = not reported.
f) NC = not calculated.
g) NPK rating not given, granular grade used.
G-34
-------
Table G-3c. Yearly Hg and Ni Additions to Soil (kg/ha) from NPK Fertilizers Applied for
N Content
Source*
PDA
Wash St
Raven
10
Number"
B960243
B960244
B960249
B960282
B960325
B960333
B960389
B960412
B960418
B960441
B960442
B960453
B960475
B960510
B960580
B960584
B960599
B960611
B960639
B960708
B960711
B960713
B960715
B980726
B960820
B960896
B960900
B960909
B960912
B960913
B961058
B961321
H0751
H0752
H2538
H1233
H0754
H4769
H4771
Urea"
MI-UNO,"
NH.SO/
NH.SO,6
Percent
N
19
12
7
9
10
8
19
7
19
9
9
10
9
9
10
10
15
19
6
7
8
10
15
19
26
10
10
3
3
8
8
9
46
20
32
17
15.5
21
34.5
46
34
21
21
P
19
24
35
44
21
32
19
26
19
34
3
20
40
43
10
20
15
19
2
27
24
20
15
19
9
20
20
17
17
41
17
43
0
0
0
0
0
0
0
0
0
0
0
K
19
24
12
9
15
16
19
26
19
10
10
20
5
10
10
20
15
19
0
11
8
10
15
19
9
20
20
40
40
12
34
10
0
0
0
0
0
0
0
0
0"
Oe
Oe
Hg
mg/kg
0
0
0
0
0.17
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.40
0
0.2
0.2
0.2
0.2
Ni
mg/kg
11.2
14.7
20.9
14.5
13.4
14.9
0
11.5
9.2
12.2
14.5
18
29.2
17.8
14.6
15.7
11.4
36.9
11.2
22.7
11.9
10.1
6.2
11.5
8
8.6
85.7
5.7
12
14.8
8.9
13.3
0.5
0.1
0.1
0.5
2.5
0.5
0.5
0.1
0.1
0.1
0.6
Yearly Hg addition in kg/ha at
124 Ib
N/A
, 139
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000;
0.000
0.000
0.000
0.000
0.000
206 Ib
; N/A
231
kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
414 Ib
N/A
464
kg/ha
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
;, 0.001
0.000
0.000
0.000
0.000
0.000
Yearly Ni addition in kg/ha at
124 Ib
N/A
139
kg/ha
0.008
0.017
0.042
0.022
0.019
0.026
0.000
0.023
0.007
0.019
0.022
0.025
0.045
0.027
0.020
0.022
0.011
0.027
0.026
0.045
0.021
0.014
0.006
0.008
0.004
0.012
0.1 19C
0.026
0.056
0.026
0.015
0.021
0.000
0.000
0.000
0.000
0.002
0.000
0.000
0.000
0.000
0.000
0.000
206 Ib
N/A
231
kg/ha
0.014
0.028
0.069
0.037
0.031
0.043
0.000
0.038
0.011
0.031
0.037
0.042
0.075
0.046
0.034
0.036
0.018
0.045
0.043
0.075
0.034
0.023
0.010
0.014
0.007
0.020
0-198
0.044
0.092
0.043
0.026
0.034
0.000
0.000
0.000
0.001
0.004
0.001
0.000
0.000
0.000
0.000
0.001
414 Ib
N/A
• 464
kg/ha
0.027
0.057
0.139
0.075
0.062
0.086
0.000
0.076
0.022
0.063
0.075
0.084
0.151
0.092
0.068
0.073
0.035
0.090
0.087
0.150
0.069
0.047
0.019
0.028
0.014
0.040
0.398
0.088
0.186
0.086
0.052
0.069
0.001
0.000
0.000
0.001
0.007
0.001
0.001
0.000
0.000
0.000
0.001
G-35
-------
Table G-3c. Continued
Source'
CDFA
Avsrsos
ID
Numbed
25042
21575
24276
23106
22080
22216
20891
Percent
N
20
32
14
7
34
9
16
232
P
0
10
3
2
17
4
4
2.4
K
0
10
7
2
0
4
8
2.5
Hg
mg/kg
NRf
NR
NR
NR
NR
NR
NR
0.11
Ni
mg/kg
NR
NR
NR
NR
NR
NR
NR
0.51
124 Ib
N/A
139
kg/ha
NC9
NC
NC
NC
NC
NC
NC
0.000
206 Ib
N/A
, 231
kg/ha
NC
NC
NC
NC
NC
NC
NC
0.000
414 Ib
N/A
464
kg/ha
NC
NC
NC
NC
NC
NC
NC
0.000
124 Ib
N/A
139 ,
kg/ha
NC
NC
NC
NC
NC
NC
NC
0.018
206 Ib
N/A
231
kg/ha
NC
NC
NC
NC
NC
NC
NC
0.030
414 Ib
N/A
464
kg/ha
NC
NC
NC
NC
NC
NC
NC
0.061
a) Sources:
PDA: Pennsylvania Department of Agriculture (1998)
Wash St: Washington State Deparmtent of Ecology (1997)
Raven: Raven and Loeppert (1997)
CDFA: California Department of Food & Agriculture (1997)
b) Sample identification used by author.
c) Shading indicates highest yearly addition values for this metal from NPK products applied for N content.
d) NPK rating not given, see Table 3-4.
e) NPK rating not given, granular grade used.
f) NR = not reported.
g) NC " not calculated.
G-36
-------
Table G-3d. Yearly V and Cu Additions to Soil (kg/ha) from NPK Fertilizers Applied for
N Content
Source*
PDA
Wash St
ID
Number"
B960243
B960244
B960249
B960282
B960325
B960333
B960389
B960412
B960418
B960441
B960442
B960453
B960475
B960510
B960580
B960584
B960599
B960611
B960639
B960708
B960711
B960713
B960715
B980726
B960820
B960896
B960900
B960909
B960912
B960913
B961058
B961321
H0751
H0752
H2538
H1233
H0754
H4769
H4771
Percent
N
19
12
7
9
10
8
19
7
19
9
9
10
9
9
10
10
15
19
6
7
8
10
15
19
26
10
10
3
3
8
8
9
46
20
32
17
15.5
21
34.5
P
19
24
35
44
21
32
19
26
19
34
3
20
40
43
10
20
15
19
2
27
24
20
15
19
9
20
20
17
17
41
17
43
0
0
0
0
0
0
0
K
19
24
12
9
15
16
19
26
19
10
10
20
5
10
10
20
15
19
0
11
8
10
15
19
9
20
20
40
40
12
34
10
0
0
0
0
0
0
0
V
mg/kg
85.2
119
116
163
87.7
126
77.7
79.4
97.8
121
159
67.1
130
136
68.8
83.4
73.2
47.2
18.6
99.2
47.3
68.9
49.2
85.1
61.6
64.5
70.3
64.2
138
18.4
27.8
152
3.12
0.05
0.19
0.1
0.5
0.41
0.1
Cu
mg/kg
25.6
49.3
45
30.1
10.2
22.2
0
26.2
13.7
16.3
6.6
16.4
90.5
7.1
13.6
10.6
7.2
3.9
24.3
544
13.6
32
3.9
7.9
14.4
25.5
12.9
4.9
7.8
454
5
60.1
0.5
0.27
0.14
0.2
2.5
0.5
0.5
Yearly V addition in kg/ha at
124 Ib
N/A
139
kg/ha
0.062
0.138
0.230
0.252
0.122
0.219
0.057
0.158
0.072
0.187
0.246
0.093
0.201
0.210
0.096
0.116
0.068
0.035
0.043
0.197
0.082
0.096
0.046
0.062
0.033
0.090
0.098
0.297
J 0.639
0.032
0.048
0.235
0.001
0.000
0.000
0.000
0.000
0.000
0.000
, 206 Ib
, N/A
231
Kg/ha
0.104
0.229
0.383
0.418
0.203
0.364
0.094
0.262
0.119
0.311
0.408
0.155
0.334
0.349
0.159
0.193
0.113
0.057
0.072
0.327
0.137
0.159
0.076
0.103
0.055
0.149
0.162
0.494
1.063:
0.053
0.080
0.390
0.002
0.000
0.000
0.000
0.001
0.000
0.000
414 Ib
N/A
464
kg/ha
0.208
0.460
0.769
0.840
0.407
0.731
0.190
0.526
0.239
0.624
0.820
0.311
0.670
0.701
0.319
0.387
0.226
0.115
0.144
0.658
0.274
0.320
0.152
0.208
0.110
0.299
0.326
0.993
2,134:
0.107
0.161
0.784
0.003
0.000
0.000
0.000
0.002
0.001
0.000
Yearly Cu addition in kg/ha at
124 Ib
N/A
139
kg/Ha
0.019
0.057
0.089
0.046
0.014
0.039
0.000
0.052
0.010
0.025
0.010
0.023
0.140
0.011
0.019
0.015
0.007
0.003
0.056
:;;i.080c;
0.024
0.044
0.004
0.006
0.008
0.035
0.018
0.023
0.036
0.789
0.009
0.093
0.000
0.000
0.000
0.000
0.002
0.000
0.000
206 Ib
N/A
231
kg/ha
0.031
0.095
0.149
0.077
0.024
0.064
0.000
0.086
0.017
0.042
0.017
0.038
0.232
0.018
0.031
0.024
0.011
0.005
0.094
:: 1-795 .'
0.039
0.074
0.006
0.010
0.013
0.059
0.030
0.038
0.060
1.311
0.014
0.154
0.000
0.000
0.000
0.000
0.004
0.001
0.000
414 Ib
N/A
464
kg/ha
0.063
0.191
0.298
0.155
0.047
0.129
0.000
0.174
0.033
0.084
0.034
0.076
0.467
0.037
0.063
0.049
0.022
0.010
0.188
;3.606
0.079
0.148
0.012
0.019
0.026
0.118
0.060
0.076
0.121
2.633
0.029
0.310
0.001
0.001
0.000
0.001
0.007
0.001
0.001
G-37
-------
Table G-3d. Continued
Source*
Raven
CDFA
Averaqe
ID
Number*
Urea"
NH4NO,e
NH,SO,,C
NH,SCV
25042
21575
24276
23106
22080
22216
20891
Percent
N
46
34
21
21
20
32
14
7
34
9
16
23.9
P
0
0
0
0
0
10
3
2
17
4
4
2.26
K
0
0
0
0
0
10
7
2
0
4
8
2.37
V
mg/kg
0.2
0.1
0.1
0.1
NR'
NR
NR
NR
NR
NR
NR
65.3
Cu
mg/kg
0.3
0.3
0.3
0.3
4
10.5
21
40.5
17
NR
265
40.2
Yearly V addition in kg/ha at
124 Ib
N/A
139
kg/ha
0.000
0.000
0.000
0.000
NC°
NC
NC
NC
NC
NC
NC
0.106
206 Ib
N/A
231
kg/ha
0.000
0.000
0.000
0.000
NC
NC
NC
NC
NC
NC
NC
0.176
414 Ib
N/A
464
kg/ha
0.000
0.000
0.000
0.000
NC
NC
NC
NC
NC
NC
NC
0.354
Yearly Cu. addition iii kg/ha at
124 Ib
N/A
139
kg/ha
0.000
0.000
0.000
0.000
0.003
0.005
0.021
0.080
0.007
NR
0.230
0.064
206 Ib
N/A
231
kg/ha
0.000
0.000
0.000
0.000
0.005
0.008
0.035
0.134
0.012
NR
0.383
0.107
414 Ib
N/A
464
kg/ha
0.000
0.000
0.001
0.001
0.009
0.015
0.070
0.268
0.023
NR
0.769
0.215
a) Sources:
PDA: Pennsylvania Department of Agriculture (1998)
Wash St: Washington State Deparmtent of Ecology (1997)
Raven: Raven and Loeppert (1997)
CDFA: California Department of Food & Agriculture (1997)
b) Sample identification used by author.
c) Shading indicates highest yearly addition values for this metal from NPK products applied for N content.
d) NPK rating not given, see Table 3-4.
e) NPK rating not given, granular grade used.
f) NR " not reported.
g) NC = not calculated.
G-38
-------
Table G-3e. Yearly Zn Additions to Soil (kg/ha) from IMPK Fertilizers Applied for N
Content
Source3
PDA
Wash St
-
ID Number"
B960243
B960244
B960249
B960282
B960325
B960333
B960389
B960412
B960418
B960441
B960441
B960453
B960475
B960510
B960580
B960584
B960599
B960611
B960639
B960708
B960711
B960713
B960715
B980726
B960820
B960896
B960900
B960909
B960912
B960913
B961058
B961321
H0751
H0752
H2538
H1233
H0754
H4769
H4771
Percent
N
19
12
7
9
10
8
19
7
19
9
9
10
9
9
10
10
15
19
6
7
8
10
15
19
26
10
10
3
3
8
8
9
46
20
32
17
15.5
21
34.5
P
19
24
35
44
21
32
19
26
19
34
3
20
40
43
10
20
15
19
2
27
24
20
15
19
9
20
20
17
17
41
17
43
0
0
0
0
0
0
0
K
19
24
12
9
15
16
19
26
19
10
10
20
5
10
10
20
15
19
0
11
8
10
15
19
9
20
20
40
40
12
34
10
0
0
0
0
0
0
0
Zn
mg/kg
36
44.5
55.1
49.8
872
43.9
0
37
33.1
34.6
53.1
60.9
4442
66.2
803
0.48
0.55
6.93
1.1
57.8
177
84.5
0.3
74.5
45.7
23.6
25.5
39.5
52.2
484
18.3
44.8
7.7
3.90
0.5
0.2
1
17
2.5
„- Yearly Zn addition in kg/ha at
124 Ib
N/A
139 kg/ha
0.026
0.052
0.109
0.077
1.212
0.076
0.000
0.073
0.024
0.053
0.082
0.085
;,: i46.860? "l'[-
0.102
1.116
0.001
0.001
0.005
0.003
0.115
0.308
0.117
0.000
0.055
0.024
0.033
0.035
0.183
0.242
0.841
0.032
0.069
0.002
0.003
0.000
0.000
0.001
0.011
0.001
206 Ib
N/A
231 kg/ha
0.044
0.086
0.182
0.128
2.014
0.127
0.000
0.122
0.040
0.089
0.136
0.141
? V1 1.401* /
0.170
1.855
0.001
0.001
0.008
0.004
0.191
0.511
0.195
0.000
0.091
0.041
0.055
0.059
0.304
0.402
1.398
0.053
0.115
0.004
0.005
0.000
0.000
0.001
0.019
0.002
414 Ib
N/A
464 kg/ha
0.088
0.172
0.365
0.257
4.046
0.255
0.000
0.245
0.081
0.178
0.274
0.283
22,901
0.341
3.726
0.002
0.002
0.017
0.009
0.383
1.027
0.392
0.001
0.182
0.082
0.110
0.118
0.611
0.807
2.807
0.106
0.231
0.008
0.009
0.001
0.001
0.003
0.038
0.003
G-39
-------
Table G-3e. Continued
Source'
Raven
CDFA
Averaos
ID Number6
Urea"
NH.NO,"
NH^SO^
NH,SCV
25042
21575
24276
23106
22080
22216
20891
Percent
N
46
34
21
21
20
32
14
7
34
9
16
23.2
P
0
0
0
0
0
10
3
2
17
4
4
2.35
K
0
0
0
0
0
10
7
2
0
4
8
2.45
Zn
mg/kg
NR'
NR
NR
NR
NRf
NR
NR
NR
NR
NR
NR
4.9
Yearly Zn addition in kg/ha at
124 Ib
N/A
139 kg/ha
NC8
NC
NC
NC
NC9
NC
NC
NC
NC
NC
NC
0.308
206 Ib
N/A
231 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.513
414 Ib
N/A
464 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
1.030
a) Sources:
PDA: Pennsylvania Department of Agriculture (1998)
Wash St: Washington State Deparmtent of Ecology (1997)
Raven: Raven and Loeppert (1997)
CDFA: California Department of Food & Agriculture (1997)
b) Sample identification used by author.
c) Shading indicates highest yearly addition values for this metal from NPK products applied for N content.
d) Bold indicates yearly addition exceeds the Canadian Fertilizers Act limit for this metal.
e) NPK rating not given, see Table 3-4.
f) NR "« not reported.
g) NC = not calculated.
h) NPK rating not given, granular grade used.
G-40
-------
Table G-4a. Yearly Cd and Pb Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Source*
Charter
MC
ID"
MP1C
MP2
MP3
MP4
MP5
MP6
MP7
MP8
MP9
MP10
MP11
MP12
MP13
MP14
MP15
MP16
MP17
MP18
MP19
MP20
MP21
MP22
MP23
MP24
MP25
8813185
8813186
8813187
8813188
8813189
8813190
8813191
8813192
8813193
8813194
Percent
K,O
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
22.6e
22.6=
51.3'
51 .3f
60°
60"
60"
60h
60"
60"
Cd
mg/kg
1.6
1.6
1.3
1.6
1.6
1.6
1.6
1.6
1.3
1.6
1.6
1.3
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.9
1.6
1.6
1.9
1.6
1.6
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
Pb
mg/kg
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
12
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
0.95
0.58
0.74
0.32
0.2
0.05
0.05
0.05
0.05
0.05
Yearly Cd addition in kg/ha at
103 Ib
K,O/A
115 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
177 Ib
K,O/A
198 kg/ha
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
534 Ib
K,O/A
598 kg/ha
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.001
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Yearly Pb addition in kg/ha at
103 Ib
K,O/A
115 kg/ha
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
v^tf.tioz''
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
177 Ib
K,O/A
198 kg/ha
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
..-:-?"' 0.004
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
534 Ib
K,O/A
598 kg/ha
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
iO.012
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
o.oo;
0.002
0.001
o.ooc
o.ooc
o.ooc
o.ooc
o.ooc
o.ooc
o.ooc
Note: Footnotes may be found at the end of this table
G-41
-------
Table G-4a. (Continued)
Source*
^aven
Wash St
T)FA
<\veracje
ID"
KCI1
KCI2
KMgSO,
KMgSO4
H4767
H4765
25029
Percent
K,0
60"
60"
22.6'
22.6'
62
46
51 3'
55.6
Cd
mg/kg
0.1
0.1
0.1
0.8
0.15
0.15
0
1.0
Pb
mg/kg
0.2
1
1.4
1.1
1
1
1
5.8
Yearly Cd addition in kg/ha at
103 ib
K,O/A
11 5 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0000
0.000
177 Ib
K,O/A
198 kg/ha
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
534 Ib
K5O/A
598 kg/ha
0.000
0.000
0.000
0.002
0.000
0.000
0.000
0.001
Yearly Pb addition in kg/ha at
103 Ib
K,O/A
11 5 kg/ha
0.000
0.000
0.001
0.001
0.000
0.000
0.000
0.001
177 Ib
K,0/A
198 kg/ha
0.000
0.000
0.001
0.001
0.000
0.000
0.000
0.001
534 Ib
K,O/A
598 kg/ha
0.000
0.001
0.004
0.003
0.001
0.001
0.001
0.003
a) Sources:
Charter: Charter et al. (1993)
IMC: International Mineral Company (1997)
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) MP = muriate of potash
d) Shading indicates highest yearly addition values of this metal from potash products.
e) Samples listed as "SPM" or "GSPM"- sulfopotassium magnesium or granular SPM; assumed 22.6%
K2O, see Table 3-4.
f) Samples listed as "SSOP" or "GSOP"- standard/granular sulfate of potash; assumed 51.3% K20, see
Table 3-4.
g) Samples listed as "GMOP"- granular muriate of potash; assumed 60% K2O per Table 3-4.
h) Samples listed as either "Ind White", "Ag. White", "Std KCI", "Coarse KCI", "Granular KCI", and
indicated as all KCI products; assumed 60% K2O, see Table 3-4.
5 Samples listed as "Potassium magnesium sulfate"; assumed 22.6% K2O.
j) Sample listed as "Potassium sulfate"; assumed 51.3% K20.
G-42
-------
Table G-4b. Yearly As and Cr Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Source"'
Charter
MC
ID"
MP1°
MP2
MP3
MP4
MP5
MP6
MP7
MP8
MP9
MP10
MP11
MP12
MP13
MP14
MP15
MP16
MP17
MP18
MP19
MP20
MP21
MP22
MP23
MP24
MP25
8813185
8813186
8813187
8813188
8813189
8813190
8813191
8813192
8813193
8813194
Percent
K,O
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
22.6'
22.6'
51 .3"
51 .3"
60"
60!
60'
60'
60!
60'
As
mg/kg
NR"
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
Cr
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.05
0.05
0.13
0.17
0.05
0.12
0.05
0.05
0.05
0.05
Yearly As addition in kg/ha at
103 Ib
K2O/A
115 kg/ha
NCe
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
177 Ib
K,O/A
198 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
534 tb
K,O/A
598 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Yearly Cr addition in kg/ha at
103 Ib
K,O/A
115 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
177 Ib
K,O/A,
198 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
534 Ib
K,O/A
598 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Note: Footnotes may be found at the end of this table
G-43
-------
Table G-4b. (Continued)
Source1
=?aven
/VashSt
DDFA
^veraoe
ID"
KCI1
KCI2
KMgSO,
KMgSO.
H4767
H4765
25029
Percent
K,O
60'
60'
22.61
22.6'
62
46
51.3'
556
As
mg/kg
0.2
0.2
0.3
0.3
1.5
1.5
0.2
0.3
Cr
mg/kg
0.52
NR
2.75
NR
0.25
2.5
NR
1.306
Yearly As addition in kg/ha at
103 Ib
K,O/A
11 5 kg/ha
0.000
0.000
0.000
0.000
0.000
o.oook
0.000
0.000
177 Ib
K,O/A
198 kg/ha
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
534 Ib
K,O/A
598 kg/ha
0.000
0.000
0.001
0.001
0.001
0.002
0.000
0.000
Yearly Cr addition in kg/ha at
103 Ib
K,O/A
115 kg/ha
0.000
NC
0.001
NC
0.000
0.001
NC
0.000
177 Ib
K,O/A
198 kg/ha
0.000
NC
0.002
NC
0.000
0.001
NC
0.001
534 Ib
K,O/A
598 kg/ha
0.001
NC
0.007
NC
0.000
0.003
NC
0.001
a) Sources:
Charter: Charter et al. (1995)
IMC: International Mineral Company (1997)
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) MP = muriate of potash
d) NR = not reported
e) NC = not calculated
f) Samples listed as "SPM" or "GSPM"- sulfopotassium magnesium or granular SPM; assumed 22.6%
K20, see Table 3-4.
g) Samples listed as "SSOP" or "GSOP"- standard/granular sulfate of potash; assumed 51.3% K2O, see
Table 3-4.
h) Samples listed as "GMOP"- granular muriate of potash; assumed 60% K2O, see Table 3-4.
i) Samples listed as either "ind White", "Ag. White", "Std KCI", "Coarse KCI", "Granular KCI", and
indicated as all KCI products; assumed 60% K2O, see Table 3-4.
j) Samples listed as "Potassium magnesium sulfate"; assumed 22.6% K2O.
k) Shading indicates highest yearly addition values of this metal from potash products
I) Sample listed as "Potassium sulfate"; assumed 51.3% K2O.
G-44
-------
Table G-4c. Yearly Hg and Ni Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Source*
Charter
MC
ID"
MP1C
MP2
MP3
MP4
MP5
MP6
MP7
MP8
MP9
MP10
MP11
MP12
MP13
MP14
MP15
MP16
MP17
MP18
MP19
MP20
MP21
MP22
MP23
MP24
MP25
8813185
8813186
8813187
8813188
8813189
8813190
8813191
8813192
8813193
8813194
Percent
KJO
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
22.6°
22.6°
51.3"
51.3"
60'
6ff
60*
6W
601
6Cf
^
Hg
mg/kg
NR"
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
Ni
mg/kg
1.4
3.5
1.4
3.5
2.8
2.8
1.4
2.8
4.4
2.8
1.4
1.4
1.4
1.4
3.5
1.4
1.4
2.8
1.4
1.4
1.4
1.4
1.4
1.4
1.4
0.05
0.05
2.6
1
0.25
0.14
0.05
0.05
0.05
0.82
Yearly H
103 Ib
KJOIA.
11 5 kg/ha
NCe
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
3 addition in kg/ha at
177 Ib
K,O/A
198 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
534 Ib
K50/A
598 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Yearly Ni addition in kg/ha at
103 Ib
K,O/A
115 kg/ha
0.000
0.001
0.000
0.001
0.001
0.001
0.000
0.001
.:". •• 0;001?
0.001
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
177 Ib
K,O/A
198 kg/ha
0.000
0.001
0.000
0.001
0.001
0.001
0.000
0.001
;;.;• 0.002
0.001
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
534 Ib
K,O/A
598 kg/ha
0.001
0.003
0.001
0.003
0.003
0.003
0.001
0.003
L:- 0,004
0.003
0.001
0.001
0.001
0.001
0.003
0.001
0.001
0.003
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.000
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.001
Note: Footnotes may be found at the end of the table
G-45
-------
Table G-4c. (Continued)
Source'
3aven
Wash St
3DFA
'Xveraqs
ID"
KC11
KCI2
KMgSO,
KMgSO,
H4767
H4765
25029
Percent
K,0
60*
601
22.6"
22.611
62
46
51.3'
55.6
Hg
mg/kg
0.2
0.2
0.2
0.2
0.003
0.003
NR
0.1
Ni
mg/kg
0.1
0.1
0.5
0.3
0.5
1.5
NR
1.4
Yearly H<
103 Ib
K,O/A
11 5 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
NC
0.000
3 addition in kg/ha at
177 Ib
K,O/A
198 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
NC
0.000
534 Ib
K,O/A
598 kg/ha
0.000
0.000
0.001
:o.ooi
0.000
0.000
NC
0.000
Yearly Ni addition in kg/ha at
103 Ib
K,O/A
115 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
NC
0.000
177 Ib
K,O/A
198 kg/ha
0.000
0.000
0.000
0.000
0.000
0.001
NC
0.000
534 Ib
K,O/A
598 kg/ha
0.000
0.000
0.001
0.001
0.000
0.002
NC
0.002
a) Sources:
Charter: Charter et al. (1995)
IMC: International Mineral Company (1997)
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) MP=muriate of potash
d) NR = not reported
e) NC = not calculated
f) Shading indicates highest yearly addition values of this metal from potash products.
g) Samples listed as "SPM" or "GSPM"- sulfopotassium magnesium or granular SPM; assumed 22.6%
K20, see Table 3-4.
h) Samples listed as "SSOP" or "GSOP"- standard/granular sulfate of potash; assumed 51.3% K2O, see
Table 3-4.
i) Samples listed as "GMOP"- granular muriate of potash; assumed 60% K2O, see Table 3-4.
j) Samples listed as either "Ind White", "Ag. White", "Std KCI", "Coarse KCI", "Granular KCI", and
indicated as all KCI products; assumed 60% K2O, see Table 3-4.
k) Samples listed as "Potassium magnesium sulfate"; assumed 22.6% K20.
I) Sample listed as "Potassium sulfate"; assumed 51.3% K20.
G-46
-------
Table G-4d. Yearly V and Cu Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Source3
Charter
MC
i
ID"
MP1C
MP2
MP3
MP4
MP5
MP6
MP7
MP8
MP9
MP10
MP11
MP12
MP13
MP14
MP15
MP16
MP17
MP18
MP19
MP20
MP21
MP22
MP23
MP24
MP25
8813185
8813186
8813187
8813188
8813189
8813190
8813191
8813192
8813193
88111Q4
Percent
K,0
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
22.6'
22.6'
51 .3"
51.3°
60"
60'
60'
60'
60'
finh
V
mg/kg
NRd
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
0.05
1.1
0.93
0.05
1.8
1.3
2
0.05
0.74
1 R
Cu
mg/kg
0.75
0.75
0.75
0.75
2.1
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
2.6
0.75
0.75
0.75
0.75
0.36
0.05
0.19
0.34
1.1
0.05
0.3
0.05
0.33
nn<;
Yearly V addition in kg/ha at
103 (b
K,O/A
115 kg/ha
NCe
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
n nnn
177 Ib
K,O/A
198 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.001
0.000
0.000
0.001
0.000
0.001
0.000
0.000
n nrn
534 Ib
K,O/A
598 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
0.003
0.001
0.000
0.002
0.001
0.002
0.000
0.001
n nn?
Yearly Cu addition in kg/ha at
103 Ib
K,O/A
115 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
n nnn
177 Ib
K,O/A
198 kg/ha
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
n nnn
534 Ib
K,O/A
598 kg/Ha
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
o.ooc
o.ooc
o.ooc
0.001
o.ooc
o.ooc
o.ooc
o.ooc
n nnr
Note: Footnotes may be found at the end of the table.
G-47
-------
Table G-4d. (Continued)
Source*
^avsn
Wash St
3DFA
<\rofa
^veraQ6
ID"
KCI1
KCI2
KMgSO,
KMgSO,
H4767
H4765
25029
MP
Percent
K,O
60'
60'
22.61
22.61
62
46
51.3'
60
556
V
mg/kg
0.3
0.1
0.7
9
0.1
0.1
NR
NR
1.2
Cu
mg/kg
3.5
1
5
1.4
0.5
0.5
5
3.1
1.0
Yearly V addition in kg/ha at
103 Ib
K,0/A
115 kg/ha
0.000
0.000
0.000
0.005
0.000
0.000
NC
NC
0.000
177 Ib
K,O/A
198 kg/ha
0.000
0.000
0.001
0.008
0.000
0.000
NC
NC
0.001
534 Ib
K,O/A
598 kg/ha
0.000
0.000
0.002
0.024
0.000
0.000
NC
NC
0.002
Yearly Cu addition in kg/ha at
103 Ib
K7O/A
115 kg/ha
0.001
0.000
0.002k
0.001
0.000
0.000
0.001
0.001
0.000
177 Ib
K,O/A
198 kg/ha
0.001
0.000
0.004
0.001
0.000
0.000
0.002
0.001
0.000
534 Ib
K,O/A
598 kg/ha
0.003
0.001
'•• 0.013
0.004
0.000
0.001
0.006
0.003
0.001
a] Sources:
Charter: Charter et al. (1995)
IMC: International Mineral Company (1997)
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) MP = muriate of potash
d) NR =* not reported
e) NC = not calculated
f) Samples listed as "SPM" or "GSPM"- sulfopotassium magnesium or granular SPM; assumed 22.6% K2O,
see Table 3-4.
g) Samples listed as "SSOP" or "GSOP"- standard/granular sulfate of potash; assumed 51.3% K2O, see
Table 3-4.
h) Samples listed as "GMOP"- granular muriate of potash; assumed 60% K2O, see Table 3-4.
i) Samples listed as either "Ind White", "Ag. White", "Std KCI", "Coarse KCI", "Granular KCI", and
indicated as all KCI products; assumed 60% K2O, see Table 3-4.
j) Samples listed as "Potassium magnesium sulfate"; assumed 22.6% K2O.
k) Shading indicates highest yearly addition values of this metal from potash products.
I) Sample listed as "Potassium sulfate"; assumed 51.3% K2O.
G-48
-------
Table G-4e. Yearly Zn Additions to Soil (kg/ha) from Potash (K2O) Fertilizers
Source"
Charter
MC
,
!*
ID"
MP1C
MP2
MP3
MP4
MP5
MP6
MP7
MP8
MP9
MP10
MP11
MP12
MP13
MP14
MP15
MP16
MP17
MP18
MP19
MP20
MP21
MP22
MP23
MP24
MP25
8813185
8813186
8813187
8813188
8813189
8813190
8813191
8813192
8813193
8813194
Percent K,O:
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
22.6"
22.6"
51 .3e
51 .3"
60'
60°
60"
60s
60"
60s
Zn
mg/kg
3
1.3
1.1
1.9
1.9
1.6
1.8
1.3
1.3
1.5
1.1
1.3
1.3
1.1
1.3
1.8
1.1
1.3
1.1
1.5
2.6
1
1.6
1.3
1.3
0.69
0.92
1.3
2.1
1.1
0.81
0.64
0.39
0.72
0.19
Yearly Zn addition in kg/ha at
103 Ib K,O/A
11 5 kg/ha
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
177 Ib K,O/A
198kg/ha
0.001
0.000
0.000
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.001
0.000
0.001
0.000
0.000
0.001
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
534 Ib K,O/A
598 kg/ha
0.003
0.001
0.001
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.003
0.001
0.002
0.001
0.001
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.000
0.001
0.000
Note: Footnotes may be found at the end of the table.
G-49
-------
Table G-4e. (Continued)
Source*
^aven
Wash St
DDFA
'WeraciQ
ID"
KCI1
KCI2
KMgSO,
KMgSO,
H4767
H4765
25029
Percent K,O
60°
60s
22.61
22.61
62
46
51.3'
55.6
Zn
mg/kg
4.59
NRh
8.75
NR
0.69
0.73
NR
1.8
Yearly Zn addition In kg/ha at
103 Ib K,O/A
115 kg/ha
0.001
NC'
0.004"
NC
0.000
0.000
NC
0.000
177IbK,O/A
198 kg/ha
0.002
NC
0.008
NC
0.000
0.000
NC
0.001
534lbK,O/A
598 kg/ha
0.005
NC
0.023
NC
0.001
0.001
NC
0.002
a) Sources:
Charter: Charter et al. (1995)
IMC: International Mineral Company (1997)
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) MP=muriate of potash
d) Samples listed as "SPM" or "GSPM"- sulfopotassium magnesium or granular SPM; assumed 22.6%
K20, see Table 3-4.
e) Samples listed as "SSOP" or "GSOP"- standard/granular sulfate of potash; assumed 51.3% K2O, see
Table 3-4.
f) Samples listed as "GMOP"- granular muriate of potash; assumed 60% K20, see Table 3-4.
g) Samples listed as either "Ind White", "Ag. White", "Std KCI", "Coarse KCI", "Granular KCI", and
indicated as all KCI products; assumed 60% K2O, see Table 3-4.
h) NR = not reported
i) NC = not calculated
j) Samples listed as "Potassium magnesium sulfate"; assumed 22.6% K2O.
k) Shading indicates highest yearly addition values of this metal from potash products.
I) Sample listed as "Potassium sulfate"; assumed 51.3% K2O.
G-50
-------
Table G-5a. Yearly Cd and Pb Additions to Soil (kg/ha) from Zn Fertilizers
Source3
Mortvedt
^mrani
/Vash St
DoZinco
IDb
ZnSO,,
ZnOS-1
ZnOS-2
ZnOBP-1
ZnOBP-2
ZnOBP-3
Zn-ZnOBP
ZnFeBPI
ZnFePB2
ZnSO,
Zn20
Zn27
Zn40
ZnOxS
ZnOS
K061e
H1906
GrZn
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Percent
Zn
in product
34
35.1
41.5
58.3
34
27.7
89
9.2
13.3
35.5
20.4
27.3
39.9
37.7
17.5
15
18
18
26.75
14.5
28.35
18.4
18.9
13.8
29.2
16.3
16.5
42.8
32
19
21.3
17.1
38.1
17.5
Cd
mg/kg
2165
590
1970
243
1420
76
500
4
26
61
75
43
28
43
435
359
275
52
NRf
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
Pb
mg/kg
60
44000
400
1900
52000
2470
11870
50
1080
90
158
178
293
1866
23070
19170
11300
1400
18700
20300
1300
1500
600
200
20700
10500
14000
2300
29400
15400
17500
13000
0
9300
Yearly Cd addition in kg/ha, at
5lbZn/A
5.6 kg/ha
0.036°
0.009
0.027
0.002
0.023
0.002
0.003
0.000
0.001
0.001
0.002
0.001
0.000
0.001
0.014
0.013
0.009
0.002
NC9
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
lOlbZn/A
11. 2 kg/ha
0.071
0.019
0.053
0.005
0.047
0.003
0.006
0.000
0.002
0.002
0.004
0.002
0.001
0.001
0.028
0.027
0.017
0.003
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
20lbZn/A
22.4 kg/ha
0.143*
0.038
0.106
0.009
0.094
0.006
0.013
0.001
0.004
0.004
0.008
0.004
0.002
0.003
0.056
0.054
0.034
0.006
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Yearly Pb addition in kg/ha at
5IbZn/A
5.6 kg/ha
0.001
0.702
0.005
0.018
?,: ^0,856
0.050
0.075
0.003
0.045
0.001
0.004
0.004
0.004
0.028
0.738
0.716
0.352
0.044
0.391
0.784
0.026
0.046
0.018
0.008
0.397
0.361
0.475
0.030
0.515
0.454
0.460
0.426
0.000
0.298
10lbZn/A
11. 2 kg/ha
0.002
1.404
0.011
0.037
••:£•.. 1.713
0.100
0.149
0.006
0.091
0.003
0.009
0.007
0.008
0.055
1.476
1.431
0.703
0.087
0.783
1.568
0.051
0.091
0.036
0.016
0.794
0.721
0.950
0.060
1.029
0.908
0.920
0.851
0.000
0.595
20 Ib Zn/A
22.4 kg/ha
0.004
2.80£
0.022
0.073
;C 3*26
0.20C
0.29E
0.012
0.182
0.006
0.017
0.01 £
0.016
0.111
2.952
2.863
i.4oe
0.174
1.566
s.ise
0.10;
0.18;
0.071
0.032
1.58£
1.443
1.901
0.1 2C
2.056
1.816
1.84C
1.703
O.OOC
1.19C
Note: Footnotes may be found at the end of this table
G-51
-------
Table G-5a. (Continued)
Source*
JoZinco
DDFA
ID"
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
26160
21351
22487
Percent
Zn
28.1
38.2
18.2
16.1
24.7
35.3
36
16.9
36
29.6
24.6
22.4
19.5
24.5
40.5
22.5
23.5
19.5
10.5
9.5
32.7
41
40.7
32.6
35.6
12
18
10
Cd
mg/kg
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
2
370
11.5
8
398
Pb
mg/kg
23700
12500
6700
15500
15400
0
0
2400
0
700
1000
19000
21400
14800
16100
16500
19200
17200
30
1400
30
14800
3700
1900
40
18
10700
13
0
9219
Yearly Cd addition in kg/ha, at
5 Ib Zn/A
5.6 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
O.OOC
0.012
0.001
0.001
0.007
10lbZn/A
11.2 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
O.OOC
0.02;
0.001
0.001
O.OH
20 Ib Zn/A
22.4 kg/ha
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
O.OOC
0.046
o.oo;
o.oo;
Yearly Pb addition ir
5 Ib Zn/A
5.6 kg/ha
0.472
0.183
0.206
0.539
0.349
0.000
0.000
0.080
0.000
0.013
0.023
0.475
0.615
0.338
0.223
0.411
0.458
0.494
0.002
0.083
0.001
0.202
0.051
0.033
0.001
0.001
0.333
0.001
0.000
10 Ib Zn/A
11. 2 kg/ha
0.945
0.366
0.412
1.078
0.698
0.000
0.000
0.159
0.000
0.026
0.046
0.950
1.229
0.677
0.445
0.821
0.915
0.988
0.003
0.165
0.001
0.404
0.102
0.065
0.001
0.002
0.666
0.001
0.000
i kg/ha at
20 Ib Zn/A
22.4 kg/ha
1.88E
0.733
0.82E
2.157
1.397
O.OOC
O.OOC
0.31J
o.oot
o.os;
0.091
1.90(
2.45!
1.3K
0.89C
1.64;
1.83(
1.97f
o.ooe
0.33(
0.002
0.80J
0.204
0.131
o.oo:
o.oo:
1.332
o.oo;
O.OOC
a) Sources:
Mortvedt: Mortvedt (1985)
Amrani: Amrani et al. (1997)
Wash St: Washington State Department of Ecology (1997)
CoZinco: CoZinco Sales (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from zinc products
d) Bold indicates that the yearly addition exceeds the Canadian Fertilizer Act limits for this contaminant
e) Product specifically identified as recycled K061 waste
f) NR = not reported
g) NC = not calculated
G-52
-------
Table G-5b. Yearly As and Cr Additions to Soil (kg/ha) from Zn Fertilizers
Source*
Wash St
DDFA
\verage
ID"
H1906
GrZn
26160
21351
22487
22575
Percent
Znin
product
18
18
12
18
10
7
14
As
mg/kg
17
17
0.5
45.5
0
0
13
Cr
mg/kg
580
97.8
NR"
NR
NR
NR
338.9
Yearly As addition in kg/ha, at
5lb
Zn/A
5.6 kg/ha
0.001
0.001
0.000
V'VV: 0.001
0.000
0.000
0.000
10 Ib
Zn/A
11.2 kg/ha
0.001
0.001
0.000
;; ;;'0;003
0.000
0.000
0.001
20 Ib
Zn/A
22.4 kg/ha
0.002
0.002
0.000
;:;; o;oo6
0.000
0.000
0.002
Yearly Cr addition in kg/ha, at
5Ib
Zn/A
5.6 kg/ha
6.01 8C
0.003
NCe
NC
NC
NC
0.011
10 Ib
Zn/A
11. 2 kg/ha
0.036
0.006
NC
NC
NC
NC
0.021
20 Ib
Zn/A
22.4 kg/ha
: 0,072
0.012
NC
NC
NC
NC
0.042
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from zinc products
d) NR = not reported
e) NC = not calculated
Table G-5c. Yearly Hg and Ni Additions to Soil (kg/ha) from Zn Fertilizers
Source0
i/Vash St
Vlortvedt
Average
ID"
H1906
GrZn
ZnSO4
ZnOS1
ZnOS2
ZnOBP!
ZnOBP2
ZnOBPS
ZnZnO
ZnFeBPI
ZnFEBP2
Percent
Znin
product
18
18
34
35.1
41.5
58.3
34
27.7
89
9.2
13.3
34
Hg
mg/kg
3.36
NRd
NR
NR
NR
NR
NR
NR
NR
NR
NR
3.36
Ni
mg/kg
83
61.6
92
158
19
8950
250
24
10
82
60
890
Yearly Hg addition in kg/ha, at
5lb
Zn/A
5.6 kg/ha
.. :o.ooo°
NC"
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
10 Ib
Zn/A
11. 2 kg/ha
-,,.0.000
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
20 Ib
Zn/A
22.4 kg/ha
0.000
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
0.000
Yearly Ni addition in kg/ha, at
5lb
Zn/A
5.6 kg/ha
0.003
0.002
0.002
0.003
0.000
"•••• ^0.086
0.004
0.000
0.000
0.005
0.003
0.010
10 Ib
Zn/A
11. 2 kg/ha
0.005
0.004
0.003
0.005
0.001
0.172
0.008
0.001
0.000
0.010
0.005
0.019
20 Ib
Zn/A
22.4 kg/ha
0.010
0.008
0.006
0.010
0.001
0.344
0.016
0.002
0.000
0.020
0.01C
0.03S
a) Sources:
Wash St: Washington State Department of Ecology (1997)
Mortvedt: Mortvedt (1985))
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from zinc products
d) NR = not reported
e) NC = not calculated
G-53
-------
Table G-5d. Yearly V and Cu Additions to Soil (kg/ha) from Zn Fertilizers
Source*
Wash St
3DFA
\V6f3Q8
ID"
H1906
GrZn
26160
21351
22487
22575
Percent
Znin
product
18
18
12
18
10
7
138
V
mg/kg
41
0.5
NR"
NR
NR
NR
20.8
Cu
mg/kg
1680
672
3
2050
0
0
734
Yearly V addition in kg/ha, at
5lb
Zn/A
5.6 kg/ha
0.001 c
0.000
NC"
NO
NC
NC
0.001
10 Ib
Zn/A
11.2 kg/ha
0.003
0.000
NC
NC
NC
NC
0.001
20 Ib
Zn/A
22.4 kg/ha
0.005
0.000
NC
NC
NC
NC
0.003
Yearly Cu addition in kg/ha, at
5lb
Zn/A
5.6 kg/ha
0.052
0.021
0.000
0.064
0.000
0.000
0.023
10 Ib
Zn/A
11.2 kg/ha
0.105
0.042
0.000
0.128
0.000
0.000
0.046
20 Ib
Zn/A
22.4 kg/ha
0.20E
0.084
0.001
0.25E
O.OOC
O.OOC
0.091
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading Indicates highest yearly addition values of this metal from zinc products
d) NR — not reported
e) NC = not calculated
Table G-5e. Yearly Zn Additions to Soil (kg/ha) from Zn Fertilizers
Not applicable
G-54
-------
Table G-6a. Yearly Cd and Pb Additions to Soil (kg/hg) from Mn Fertilizers
Source3
Wash St
CDFA
Average
ID"
H4753
21791
Percent
Mnin
product
29.5
24.7"
27.1
Cd
mg/kg
1.5
3
2.25
Pb
mg/kg
50
5
27.5
Yearly Cd addition in kg/ha soil at
4ib
Mn/A.
4.48 kg/ha
0.000
01000
0.000
10 Ib
Mn/A
11. 2 kg/ha
0.000
, y, 0.000
0.000
18 Ib
Mn/A
20.1 6 kg/ha
0.000
r'r : Q.OQQ
0.000
Yearly Pb addition in kg/ha soil at
4lb
Mn/A
4.48 kg/ha
..-., 01001°
0.000
0.000
10 Ib
Mn/A
11. 2 kg/ha
;,-., 0.002
0.000
0.001
18 Ib
Mn/A
20.1 6 kg/ha
0.003
O.OOC
0.002
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1977)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from manganese products
d) Sample listed as manganese sulfate; assumed 100% product (MnSO4-4H2O) which has 24.7% Mn fay
weight.
Table G-6b. Yearly As and Cr Additions to Soil (kg/hg) from Mn Fertilizers
Source3
i/Vash St
CDFA
Average
ID"
H4753
21791
Percent
Mn
in
product
29.5
24.7"
27.1
As
mg/kg
15
0.5
7.8
Cr
mg/kg
10
NRe
10
Yearly As addition in kg/ha soil at
4 Ib Mn/A
4.48 kg/ha
o.oooc
0.000
0.000
10 Ib Mn/A
11. 2 kg/ha
0.001
0.000
0.000
18 Ib Mn/A
20.16 kg/ha
- 0.001
0.000
0.001
Yearly Cr addition in kg/ha soil at
4 Ib Mn/A
4.48 kg/ha
, 0.000
NC'
0.000
10 Ib Mn/A
11.2 kg/ha
0.000
NC
0.000
?I8ibMn/A
20.16 kg/ha
r ; 0.001
NC
0.001
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from manganese products
d) Sample listed as manganese sulfate; assumed 100% product (MnSO4-4H2O) which has 24.7% Mn by
weight.
e) NR = not reported
f) NC = not calculated
G-55
-------
Table G-6c. Yearly Hg and Ni Additions to Soil (kg/hg) from Mn Fertilizers
Source'
Wash St
3DFA
'XvGrsQS
ID"
H4753
21791
Percent
Mnin
product
29.5
24.7"
271
Hg
mg/kg
0.01
NR"
001
Ni
mg/kg
50
NR
50
Yearly Hg
4lb
Mn/A
4.48 kg/ha
o.oooc
NCr
0.000
addition in kg/ha soil at
10 Ib
Mn/A
11. 2 kg/ha
0.000
NC
0.000
18 Ib
Mn/A
20.1 6 kg/ha
0.000
NC
0.000
Yearly Ni addition ink
4 Ib
Mn/A
4.48 kg/ha
0.001
NC
0.001
10 Ib
Mn/A
11.2 kg/ha
0.002
NC
0.002
g/ha soil at
18 lb
Mn/A
20.16 kg/ha
0.002
NC
a] Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from manganese products
d) Sample listed as manganese sulfate; assumed 100% product (MnSO4-4H2O) which has 24.7% Mn by
weight.
e) NR <- not reported
f) NC = not calculated
Table G-6d. Yearly V and Cu Additions to Soil (kg/hg) from Mn Fertilizers
Source*
Wash St
^VGI"3GS
ID"
H4753
21791
Percent
Mnin
product
29.5
24.7"
27
V
mg/kg
1.5
NRe
1 5
Cu
mg/k
g
21
1.5
11 3
Yearly V addition in kg/ha soil at
4lb
Mn/A
4.48 kg/ha
0.000°
NCf
0.000
10 Ib
Mn/A
11.2 kg/ha
0.000
NC
0.000
18 Ib
Mn/A
20.1 6 kg/ha
0.000
NC
0.000
Yearly Cu addition in kg/ha soil at
4lb
Mn/A
4.48 kg/ha
0.000
0.000
0.000
10 Ib
Mn/A
11. 2 kg/ha
.:•. 0.001
0.000
18 Ib
Mn/A
20.1 6 kg/ha
0.001
o.ooc
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from manganese products
d) Sample listed as manganese sulfate; assumed 100% product (MnSO4-4H2O) which has 24.7% Mn by
weight.
e) NR = not reported
f) NC = not calculated
G-56
-------
Table G-6e. Yearly Zn Additions to Soil (kg/hg) from Mn Fertilizers
Source*
Wash St
DDFA
Average
ID"
H4753
21791
Percent Mn
in product
29.5
24.7"
27.1
Zn
mg/kg -
60.8
NRe
60.8
Yearly Zn addition in kg/ha soil at
4lbMn/A
4.48 kg/ha
0.001°
NCf
0.001
10 Ib Mn/A
11. 2 kg/ha
0.002
NC
0.002
18lbMn/A
20.16 kg/ha
0.004
NC
0.004
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from manganese products
d) Sample listed as manganese sulfate; assumed 100% product (MnSO4-4H2O) which has 24.7% Mn by
weight.
e) NR = not reported
f) NC = not calculated
G-57
-------
Table G-7a. Yearly Cd and Pb Additions to Soil (kg/ha) from Boron Fertilizers
Source*
Wash St
ID"
H0753
25030
Percent
Boron in
product
10
21
155
Cd
mg/kg
0.75
0
0 38
Pb
mg/kg
5.5
0
275
Yearly Cd addition in kg/ha at
2 Ib B/A
2.24 kg/ha
0.000°
0.000
0000
3 Ib B/A
3.36 kg/ha
0.000
0.000
0.000
4 Ib B/A
4.48 kg/ha
0.000
0.000
0.000
Yearly Pb addition in kg/ha at
2 Ib B/A
2.24 kg/ha
0.000
0.000
3 Ib B/A
3.36 kg/ha
0.000
0.000
4lbB/A
4.48 kg/ha
o.ooc
o.ooc
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from boron products
Table G-7b. Yearly As and Cr Additions to Soil (kg/ha) from Boron Fertilizers
Source'
Wash St
^vsrsofi
ID"
H0753
25030
Percent
Boron in
product
10
21
15 5
As
mg/kg
1040
1
5205
Cr
mg/kg
1.3
NRd
1 3
Yearly As addition in kg/ha at
2 Ib B/A
2.24 kg/ha
0.023C
0.000
0012
3 Ib B/A
3.36 kg/ha
0.035
0.000
0.017
4 Ib B/A
4.48 kg/ha
0.047
0.000
0.023
Yearly Cr addition in kg/ha at
2 Ib B/A
2.24 kg/ha
0.000
NCe
0.000
3lbB/A
3.36 kg/ha
0.000
NC
4lbB/A
4.48 kg/ha
O.OOC
NC
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from boron products
d) NR = not reported
e) NC = not calculated
G-58
-------
Table G-7c. Yearly Hg and Ni Additions to Soil (kg/ha) from Boron Fertilizers
Source3
Wash St
2DFA
Average
ID"
H0753
25030
Percent
Boron in
product
10
21
16
Hg
mg/kg
0.17
NRd
0.17
Ni
mg/kg
2.5
NR
2.5
, Yearly H<
2 Ib B/A
2.24 kg/ha
0.000°
NCe
0.000
i addition in kg/ha at?
3lbB/A
3.36 kg/ha
0.000
NC
0.000
4 Ib B/A
4.48 kg/ha
0:000
NC
0.000
Yearly Ni addition in kg/ha at
2 Ib B/A
2.24 kg/ha
0.000
NC
0.000
3 Ib B/A
3.36 kg/ha
0.000
NC
0.000
4 Ib B/A
4.48 kg/ha
o.ooc
NC
O.OOC
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) ' Shading indicates highest yearly addition values of this metal from boron products
d) NR = not reported
e) NC = not calculated
Table G-7d. Yearly V and Cu Additions to Soil (kg/ha) from Boron Fertilizers
.-• • -- . .". . ,
' -•• ' !" ." "•--•
Source"
Wash St
DDFA
Average
ID"
H0753
25030
Percent'
Boron in
product
10
21
16
:Y.V .:,-V".
;mg/kg
16.9
NR"
16.9
;•";> ;:••••
Cu
mg/kg
8.1
0
4.0
x : Yearly V addition in kg/ha at I .-.-,
,2 IbiB/A
2.24ikg/ha
^: roaotF
NCe
0.000
;3lbB/A
3.36 kg/ha ;
•0.001
0
0.001
4lbB/A
4.48 kg/ha
;0i00i
0
0.001
Yearly Cu addition in kg/ha at
2IKB/AJ
2.24 kg/ha
::;S 0.000
0.000
0.000
3 Ib B/A
3.36 kg/ha
0.000
0.000
0.000
4lbB/A
4^48 kg/ha
O.OOC
o.ooc
O.OOC
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from boron products
d) NR = not reported
e) NC = not calculated
Table G-7e. Yearly Zn Additions to Soil (kg/ha) from Boron Fertilizers
Source?'
Wash St
DDFA
Average
ID"
H0753
25030
Percent
Boron
in product
10
21
16
Zn
mg/kg
6
NR"
6
Yearly Zh addition in kg/ha at
2 Ib B/A
2.24 kg/ha
o.oooc
NCe
0.000
3lbB/A
3.36 kg/Ha
: 0:001
NC
0.001
4lbB/A
4.48 kg/ha
; V";x; 0.001
NC
0.001
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from boron products
d) NR = not reported
e) NC = not calculated
G-59
-------
Table G-8a. Yearly Cd and Pd Additions to Soil (kg/ha) from Iron Fertilizers
Source"
3DFA
^V@r3O3
ID"
22334
25819
25835
Percent
Iron in
product
15
12
15
14
Cd
mg/kg
333.5
20.5
0
1180
Pd
mg/kg
18750
2625
29
7135
Yearly Cd addition in kg/ha at
10 Ib
Fe/A
11.2
kg/ha
0.025°
0.002
0.000
0.009
20 Ib
Fe/A
22.4
kg/ha
0.050
0.004
0.000
0.018
30 Ib
Fe/A
33.6
kg/ha
0.075
0.006
0.000
0.027
Yearly Pd addition in kg/ha at
10 Ib
Fe/A
11.2
kg/ha
1.400
0.245
0.002
0.549
20 Ib
Fe/A
22.4
kg/ha
2.800"
0.490
0.004
30 Ib
Fe/A
33.6
kg/ha
4.200
0.735
0.006
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values for this metal from iron products
d) Bold indicates that the yearly addition exceeds the Canadian Fertilizers Act limits for this metal
Table G-8b. Yearly As and Cr Additions to Soil (kg/ha) from Iron Fertilizers
Source'
:DFA
ID"
22334
25819
25835
Percent
Iron
in
product
15
12
15
14
As
mg/kg
34.5
4950
2.5
16623
Cr
mg/kg
NRC
NR
NR
NR
Yearly As addition in kg/ha at
10 Ib
Fe/A
11.2
kg/ha
0.003
0.462'''
0.000
0.155
20 Ib
Fe/A
22.4
kg/ha
0.005
0.924
0.000
0.310
30 Ib
Fe/A
33.6
kg/ha
0.008
1.386
0.001
Yearly Cr addition in kg/ha at
10 Ib
Fe/A
11.2
kg/ha
NC"
NC
NC
20 Ib
Fe/A
22.4
kg/ha
NC
NC
NC
30 Ib
Fe/A
33.6
kg/ha
NC
NC
NC
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) NR = not reported
d) NC = not calculated
e) Shading indicates highest yearly addition values for this metal from iron products
f) Bold indicates that the yearly addition exceeds the Canadian Fertilizers Act limits for this metal
Table G-8c. Yearly Hg and Ni Additions to Soil (kg/ha) from Iron Fertilizers
No available data
G-60
-------
Table G-8d. Yearly V and Cu Additions to Soil (kg/ha) from Iron Fertilizers
Source*
DDFA
Average
ID"
22334
25819
25835
Percent
Iron
in product
15
12
15
14
V
mg/kg
NRC
NR
NR
NC
Cu
mg/kg
1750
210
40
667
Yearly V addition in kg/ha at
10 Ib
Fe/A
11.2
kg/ha
NC"
NC
NC
NC
20 Ib
Fe/A
22.4
kg/ha
NC
NC
NC
NC
30 Ib
Fe/A
33.6
kg/ha
NC
NC
NC
NC
Yearly Cu addition in kg/ha at
10 Ib
Fe/A
11.2
kg/ha
0.1316
0.020
0.003
0.051
20 Ib
Fe/A
22.4
kg/ha
• 0.261
0.039
0.006
0.102
30 Ib
Fe/A
33.6
kg/ha
0.392
0.059
0.009
0.153
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) NR = not reported
d) NC = not calculated
e) Shading indicates highest yearly addition values for this metal from iron products
Table G-8e. Yearly Zn Additions to Soil (kg/ha) from Iron Fertilizers
No available data
G-61
-------
Table G-9a. Yearly Cd and Pb Additions to Soil (kg/ha) from S (as Nutrient) Fertilizers
Source*
Wash St
CDFA
^VvsrsoG
ID"
H2547
H1231
H2532
H4769
26310
21259
21260
24884
24885
Percent
Sulfur in
product
26
40
14
24
100d
100
100
100
100
67
Cd
mg/kg
0.03
0.03
145
1.2
0
0
0
0
0
16
Pb
mg/kg
0.2
0.2
4.4
15
0
8.7
4
0
0
4
Yearly Cd addition in kg/ha soil at
201b S/A
22.4 kg/ha
0.000
0.000
0.023C
0.000
0.000
0.000
0.000
0.000
0.000
0.003
40lb S/A
44.8 kg/ha
0.000
0.000
0.046
0.000
0.000
0.000
0.000
0.000
0.000
0.005
60 Ib S/A
67.2 kg/ha
0.000
0.000
0.070
0.000
0.000
0.000
0.000
0.000
0.000
0.008
Yearly Pb addition in kg/ha soil at
20lbS/A
22.4 kg/ha
0.000
0.000
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
40lb S/A
44.8 kg/ha
0.000
0.000
0.001
; o.oos
0.000
0.000
0.000
0.000
0.000
0.001
60 Ib S/A
67.2 kg/ha
0.000
0.000
0.002
0.004
0.000
0.001
0.000
0.000
0.000
0.001
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from sulfur nutrient products
d) Listed as "sulfur"; assumed 100% sulfur
Table G-9b. Yearly As and Cr Additions to Soil (kg/ha) from S (as Nutrient) Fertilizers
/Vash St
3DFA
'VVBnJQ®
ID"
H2547
H1231
H2532
H4769
26310
21259
21260
24884
24885
Percent
Sulfur
in
product
26
40
14
24
100"
100
100
100
100
67
As
mg/kg
0.3
0.3
4.2
1.5
0.1
2
0.86
17
19
50
Cr
mg/kg
0.05
0.05
214
0.68
NRe
8.7
4
0
0
54
Yearly As addition in kg/ha soil at
20lbS/A
22.4 kg/ha
0.000
. 0.000
0.001°
0.000
0.000
0.000
0.000
0.000
0.000
0.000
40lb S/A
44.8 kg/ha
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.001
0.001
0.000
601bS/A
67.2 kg/ha
0.000
0.000
0.002
0.000
0.000
0.000
0.000
0.001
0.001
0.001
Yearly Cr addition in kg/ha soil at
20lb S/A
22.4 kg/ha
0.000
0.000
0.034
0.000
NCf
NC
NC
NC
NC
0.009
40lb S/A
44.8 kg/ha
0.000
0.000
0.068
0.000
NC
NC
NC
NC
NC
0.017
60lbS/A
67.2, kg/ha
0.000
0.000
0.103
0.000
NC
NC
NC
NC
NC
0.026
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from sulfur nutrient products
d) Listed as "sulfur"; assumed 100% sulfur
e) NR = not reported
f) NC = not calculated
G-62
-------
Table G-9c. Yearly Hg and Ni Additions to Soil (kg/ha) from S (as Nutrient) Fertilizers
Source"
Wash St
2DFA
Average
IDb
H2547
H1231
H2532
H4769
26310
21259
21260
24884
24885
Percent
Sulfur in
product
26
40
14
24
100"
100
100
100
100
67.1
Hg
mg/kg
0.01
0
0.024
0.403
NRe
NR
NR
NR
NR
0.11
Ni
mg/kg
0.1
0.1
195
0.5
NR
NR
NR
NR
NR
48.9
Yearly Hg addition in kg
201bS/A
22.4 kg/ha
0.000
0.000
0.000
7 0:000
NCf
NC
NC
NC
NC
0.000
40lbS/A
44.8 kg/ha
0.000
0.000
0.000
!,.':,--:lomo.
NC
NC
NC
NC
NC
0.000
/ha soil at
•6blbS/A
67.2 kg/ha
0.000
0.000
0.000
•-: i.0.000
NC
NC
NC
NC
NC
0.000
Yearly Ni addition in kg/ha soil at
20IbS/A
22.4 kg/ha
0.000
0.000
.'•" •TV'O'Xfci?
0.000
NC
NC
NC
NC
NC
0.008
40IbS/A
44.8 kg/ha
0.000
0.000
•-" -;-d;b62
0.000
NC
NC
NC
NC
NC
0.016
60 (b S/A
.'67.2. kg/ha
0.000
0.000
••iv ^0:094
0.000
NC
NC
NC
NC
NC
0.023
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from sulfur nutrient products
d) Listed as "sulfur"; assumed 100% sulfur
e) NR = not reported
f) NC = not calculated
Table G-9d. Yearly V and Cu Additions to Soil (kg/ha) from S (as Nutrient) Fertilizers
Source*
i/Vash St
DDFA
Average
ID"
H2547
H1231
H2532
H4769
26310
21259
21260
24884
24885
^Percent
Sulfur in
product
26
40
14
24
100"
100
100
100
100
67
V
mg/kg
0.055
0.046
396
0.41
NRe
NR
NR
NR
NR
99.13
Cu
mg/kg
0.04
0.094
16
0.5
2
109
61
16
14
24.29
Yearly V addition in kg/ha soil at
20lbS/A
22.4ka/ha
0.000
0.000
; ,-• vd.063c
0.000
NCf
NC
NC
NC
NC
0.016
40 Ib S/A :
4418 kg/ha
0.000
0.000
j : ' 0,127
0.000
NC
NC
NC
NC
NC
0.032
60lbS/A
67.2 kg/ha
0.000
0.000
• : 0.190
0.000
NC
NC
NC
NC
NC
0.048
Yearly Cu addition in kg/ha soil at
20IbS/A
22.4kg/tta;
0.000
0.000
0.003
0.000
0.000
0.002
0.001
0.000
0.000
0.001
40 ibfS/A
44.8 kg/Ha
0.000
0.000
f- o.oo5
0.000
0.000
0.005
0.003
0.001
0.001
0.002
60lbS/A
67.2 kg/ha
0.000
0.000
0.008
0.000
0.000
0.007
0.004
0.001
0.001
0.002
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from sulfur nutrient products
d) Listed as "sulfur"; assumed 100% sulfur
e) NR = not reported
f) NC = not calculated
G-63
-------
Table G-9e. Yearly Zn Additions to Soil (kg/ha) from S (as Nutrient) Fertilizers
Source*
Wash St
^VGf3Q0
ID"
H2547
H1231
H2532
H4769
Percent
Sulfur
in product
26
40
14
24
26
Zn
mg/kg
0.21
42
1480
17
385
Yearly Zn addition in kg/ha soil at
20lbS/A
22.4 kg/ha
0.000
0.002
0.237°
0.002
0.060
40 Ib S/A
44.8 kg/ha
0.000
0.005
0.474
0.003
0.120
60lbS/A
67.2 kg/ha
0.000
0.007
0.710
0.005
0.181
a) Sources:
Wash St: Washington State Department of Ecology (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from sulfur nutrient products
G-64
-------
Table G-10a. Yearly Cd and Pb Additions to Soil (kg/ha) from S (as pH) Fertilizers
Source"
2DFA
Average
fT
ID"
26310
21259
21260
24884
24885
Percent
Sulfur in
product:
100C
100
100
100
100
100
Cd
mg/kg
0
0
0
0
0
0
Pb
mg/kg
0
8.7
4
0
0
2.5
Yearly Cd addition in k;
800 Ib
S/A
896 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
2000 Ib
S/A
2240 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
j/ha soil at
2500 Ib
S/A
2800 kg/ha
0.000
0.000
0.000
0.000
0.000
0.000
Yearly Pb addition in kg/ha soit at
800 Ib
S/A
896 kg/ha
0.000
•• ffiOOS"
0.004
0.000
0.000
0.002
2000 Ib S/A
2240 kg/ha
0.000
.-;.-•-..;•,;. 0:019
0.009
0.000
0.000
0.006
2500 Ib
S/A
2800 kg/ha
0.000
••-: ."•:-' 0.024
0.011
0.000
0.000
0.007
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Listed as "sulfur"; assumed 100% sulfur
d) Shading indicates highest yearly addition values of this metal from sulfur pH adjustment products
Table G-10b. Yearly As and Cr Additions to Soil (kg/ha) from S (as pH) Fertilizers
Source*
3DFA
Average
JD"
26310
21259
21260
24884
24885
Percent
Sulfur in
product
100°
100
100
100
100
100
As
mg/kg
0.1
2
0.86
17
19
7.8
Cr-
mg/kg
NR"
NR
NR
NR
NR
NC
Yearly As addition in k
800 Ib S/A
896 kg/ha
0.000
0.002
0.001
0.015
; -•:- ;o.oi7f
0.007
2000 Ib S/A
2240 kg/ha
0.000
0.004
0.002
0.038
'•:• •'.'( -0;043
0.017
g/hasoilat
2500 Ib S/A
2800 kg/ha
0.000
0.006
0.002
0.048
•j. 0.053
0.022
;: Yearly Cr addition in kg/ha soil at
800 Ib S/A
896 kg/ha
NC"
NC
NC
NC
NC
NC
2000 Ib S/A
2240 kg/ha
NC
NC
NC
NC
NC
NC
2500 Ib S/A
2800 kg/ha.
NC
NC
NC
NC
NC
NC
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Listed as "sulfur"; assumed 100% sulfur
d) NR = not reported
e) NC = not calculated
f) Shading indicates highest yearly addition values of this metal from sulfur pH adjustment products
G-65
-------
Table G-10c. Yearly Hg and Ni Additions to Soil (kg/ha) from S (as pH) Fertilizers
Source*
DDFA
ID"
26310
21259
21260
24884
Percent
Sulfur
in
product
100C
100
100
100
100
100
Hg
mg/kg
NR"
NR
NR
NR
NR
NC
Ni
mg/kg
NR
NR
NR
NR
NR
NC
Yearly Hg addition in kg/ha soil at
800 Ib S/A
896 kg/ha
NCe
NC
NC
NC
NC
NC
2000 Ib S/A
2240 kg/ha
NC
NC
NC
NC
NC
2500 Ib S/A
2800 kg/ha
NC
NC
NC
NC
NC
Yearly Ni addition in kg/ha soil at
800 Ib S/A
896 kg/ha
NC
NC
NC
NC
NC
2000 Ib S/A
2240 kg/ha
NC
NC
NC
NC
NC
2500 Ib S/A
2800 kg/ha
NC
NC
NC
NC
NC
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Listed as "sulfur"; assumed 100% sulfur
d) NR = not reported
e) NC = not calculated
Table G-10d. Yearly V and Cu Additions to Soil (kg/ha) from S (as pH) Fertilizers
Source*
SDFA
ID"
26310
21259
21260
24884
24885
Percent
Sulfur
in
product
100C
100
100
100
100
100
V
mg/kg
NR"
NR
NR
NR
NR
NC
Cu
mg/kg
2
109
61
16
14
40
Yearly V addition in kg/ha soil at
SOOIb S/A
896 kg/ha
NC*
NC
NC
NC
NC
NC
2000lb S/A
2240 kg/ha
NC
NC
NC
NC
NC
NC
2500 Ib S/A
2800 kg/ha
NC
NC
NC
NC
NC
NC
Yearly Cu addition in kg/ha soil at
SOOIb S/A
896 kg/ha
0.002
0.098f
0.055
0.014
0.013
2000Ib S/A
2240 kg/ha
0.004
0.244
0.137
0.036
0.031
2500 Ib S/A
2800 kg/ha
0.006
0.305
0.171
0.045
0.039
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Listed as "sulfur"; assumed 100% sulfur
d) NR = not reported
e) NC = not calculated
f) Shading indicates highest yearly addition values of this metal from sulfur pH adjustment products
G-66
-------
Table G-10e. Yearly Zn Additions to Soil (kg/ha) from S (as pH) Fertilizers
Source*
DDFA
Average
ID"
26310
21259
21260
24884
24885
Percent
Sulfur
in product
100C
100
100
100
100
100
Zn
mg/kg
NR"
NR
NR
NR
NR
NC
; Yearly Zn addition in kg/ha soil ait ••?'.. • f
800ibS/A
896kg/ha
NCe
NC
NC
NC
NC
NC
20001bS/A
! 2240 kg/ha
NC
NC
NC
NC
NC
NC
25001bS/A
.."-• 2800 kg/ha ;
NC
NC
NC
NC
NC
NC
a) Sources:
CDFA: California Department of Food and Agriculture (1997)
fa) Sample identification used by author
c) Listed as "sulfur"; assumed 100% sulfur
d) NR = not reported
e) NC = not calculated
G-67
-------
Table G-11a. Yearly Cd and Pb Additions to Soil (kg/ha) from Liming Materials
Source*
3aven
Wash St
SOFA
Average8
3-vr AVQ'
ID"
caltite
dolomite
H2529
H4763
H4775
H4759
H4764
H2550
21827
20882
Percent
CaCO, in
product
100
100
33
85
7.6
96
91
100
100
100
81.3
Cd
mg/kg
0.7
0.1
1.5
3.6
0.75
1.5
1.5
0.75
8.1
6.5
2.5
Pb
mg/kg
1.1
0.7
10
150
125
1
10
49
45.5
53
44.53
Yearly Cd addition in kg/ha
soil at:
4000 Ib
lime/A
4480
kg/ha
0.003
0.000
0.020
0.019
0.044d
0.007
0.007
0.003
0.036
0.029
0.017
0.006
8000 Ib
lime/A
8960
kg/ha
0.006
0.001
0.041
0.038
0.088
0.014
0.015
0.007
0.073
0.058
0.034
0.011
15,000 Ib
lime/A
16,800
kg/ha
0.012
0.002
0.076
0.071
0.165
0.026
0.028
0.013
0.136
0.109
0.064
0.021
Yearly Pb addition in kg/ha
soil at:
4000 Ib
lime/A
4480
kg/ha
0.005
0.003
0.136
0.791
7.368
0.005
0.049
0.220
0.204
0.237
0.902
0.300
8000 Ib
lime/A
8960
kg/ha
0.010
0.006
0.272
1.581
14.737
0.009
0.098
0.439
0.408
0.475
1.804
0.601
15,000 Ib
lime/A
16,800
kg/ha
0.018
0.012
0.509
2.965C
27.632
0.018
0.185
0.823
0.764
0.890
1.127
a) Sources:
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Bold indicates that the yearly addition exceeds the Canadian Fertilizer Act limits for this metal
d) Shading indicates highest yearly addition values for this metal from liming materials
e) Yearly addition of metal for year in which the lime is added. Typically, lime is added once every 3 years
f) Average yearly addition of metal ammortized over the 3 year application-period
G-68
-------
Table G-11b. Yearly As and Cr Additions to Soil (kg/ha) from Liming Materials
Source3
^aven
i/Vash St
DDFA
Average9
ByrAvg"
ID"
calcite
dolomite
H2529
H4763
H4775
H4759
H4764
H2550
21827
20882
Percent
CaCOj in
product
100
100
33
85
7.6
96
91
100
100
100
81.3
As
mg/kg
1
1.2
15
37
48
15
15
7.5
1.1
5.1
14.6
Gr
mg/kg
NRC
32.3
2.5
73
34
2.5
2.5
1.25
NR
NR
21.2
Yearly As addition in kg/ha ,
soil at:
4000 Ib
lime/A
, 4480-
kg/ha
0.004
0.005
0.204
0.195
: 2.829(
0.070
0.074
0.034
0.005
0.023
0.344
0.115
8000 Ib
lime/A
8960
kg/ha
0.009
0.011
0.407°
0.390
5.659
0.140
0.148
0.067
0.010
0.046
0.689
0.230
1 5,000 Ib
lime/A
16,800
kg/ha
0.017
0.020
0.764
0.731
•OI611
0.263
0.277
0.126
0.018
0.086
1.292
0.431
Yearly Cr addition in kg/ha
soil at:
4000 ib
lime/A
4480
kg/ha
NCd
0.145
0.034
0.385
•i'i --21004
0.012
0.012
0.006
NC
NC
0.371
0.124
8000 Ib
lime/A
8960
kg/ha
NC
0.289
0.068
0.770
•:':•>•. 4.008
0.023
0.025
0.011
NC
NC
0.742
0.247
15,000 Ib
lime/A
16,800
kg/ha
NC
0.543
0.127
1.443
'"•:.<- " 7.515
0.044
0.046
0.021
NC
NC
1.391
0.464
a) Sources:
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) NR = not reported
d) NC = not calculated
e) Bold indicates that the yearly addition exceeds the Canadian Fertilizer Act limits for this metal
f) Shading indicates highest yearly addition values of this metal from liming materials
g) Yearly addition of metal for year in which the lime is added. Typically, lime is added only once every 3
years
h) Average yearly addition of metal ammortized over the 3 year application period
G-69
-------
Table G-11c. Yearly Hg and Ni Additions to Soil (kg/ha) from Liming Materials
Source1
?aven
/Vash St
3DFA
a \rr At/A11
ID"
calcite
dolomite
H2529
H4763
H4775
H4759
H4764
H2550
21827
20882
Percent
CaCO, in
product
100
100
33
85
7.6
96
91
100
100
100
81.3
Hg
mg/kg
0.2
0.2
0.01
0.041
0.414
0.01
0.01
0.022
NRe
NR
0.11
Nf
mg/kg
1.4
3.3
5
18
23
5
5
2.5
NR
NR
11.6
Yearly Hg addition in kg/ha
soil at:
4000 Ib
lime/A
4480
kg/ha
0.001
0.001
0.000
0.000
0.024c'd
0.000
0.000
0.000
NCf
NC
0.003
0001
8000 Ib
lime/A
8960
kg/ha
0.002
0.002
0.000
0.000
0.049
0.000
0.000
0.000
NC
NC
0.007
0.002
1 5,000 Ib
lime/A
16,800
kg/ha
0.003
0.003
0.000
0.001
0.086
0.000
0.000
0.000
NC
NC
0.004
soil at:
4000 Ib
lime/A
4480
kg/Ha
0.006
0.015
0.068
0.095
1.356
0.023
0.025
0.011
NC
NC
0.067
8000 Ib
lime/A
8960
kg/ha
0.013
0.300
0.136
0.190
2.712
0.047
0.049
0.022
NC
NC
0.133
15,000 Ib
lime/A
16,800
kg/ha
0.024
0.055
0.255
0.356
5.085
0.088
0.092
0.042
NC
NC
0.250
a) Sources:
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values for this metal from liming materials
d) Bold indicates that the yearly addition exceeds the Canadian Fertilizers Act limits for this metal
e) NR = not reported
f) NC = not calculated
g) Yearly addition of metal for year in which the lime is added. Typically, lime is added only once every 3
years
h) Average yearly addition of metal ammortized over the 3 year application period
G-70
-------
Table G-11d. Yearly V and Cu Additions to Soil (kg/ha) from Liming Materials
Source9
Raven
Wash St
DDFA
Average'
3_yrAvg8
lDb
calcite
dolomite
H2529
H4763
H4775
H4759
H4764
H2550
21827
20882
Percent
CaCO, in
product
100
100
33
85
7.6
96
91
100
100
100
81
V
mg/kg
3
15
1
49
41
1
1
1.1
NR
NR
14
Cu
mg/kg
2.3
NRC
5
158
116
5
5
3
38
46
42
Yearly V addition in kg/ha
soil at:
4000 Ib
lime/A
4480 kg/ha
0.013
0.067
0.014
0.258
yy-.'-mw
0.005
0.005
0.005
NC
NC
0.348
0.116
8000 Ib
lime/A
8960
kg/ha
0.027
0.134
0.027
0.517
^!4;834
0.009
0.010
0.010
NC
NC
0.696
0.232
15,000 Ib
lime/A
16,800
kg/ha
0.050
0.252
0.051
0.968
v,'3<: 9.064
0.018
0.018
0.018
NC
NC
1.305
0.435
Yearly Cu addition in kg/ha
, soil at: '
4000 Ib
lime/A
4480
kg/ha
0.010
NCd
0.068
0.833
; • 6:838
0.023
0.025
0.013
0.170
0.206
0.910
0.303
8000 Ib
lime/A
8960
kg/ha
0.021
NC
0.136
1.666
13.676
0.047
0.049
0.027
0.340
0.412
1.819
0.606
15,000 Ib
lime/A
16,800
kg/ha
0.039
NC
0.255
3.123
;:;-"->?25;643
0.088
0.092
0.050
0.638
0.773
3.411
1.137
a) Sources:
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) NR = not reported
d) NC = not calculated
e) Shading indicates highest yearly addition values for this metals from liming agents
f) Yearly addition of metal for year in which the lime is added. Typically, lime is added only once every 3
years
g) Average yearly addition of metal ammortized over the 3 year application period
G-71
-------
Table G-11e. Yearly Zn Additions to Soil (kg/ha) from Liming Materials
Source'
?aven
Wash St
3DFA
Average11
3 vrAva11
ID*
caltite
dolomite
H2529
H4763
H4775
H4759
H4764
H2550
21827
20882
Percent
CaCOj
in product
100
100
33
85
7.6
96
91
100
100
100
81.26
Zn
mg/kg
NRC
8.01
7.7
1770
424
16
21
224
NR
NR
353.0
Yearly Zn addition in kg/ha soil at
4000 Ib lime/A
4480 kg/ha
NCd
0.036
0.105
9.329"
24.994'
0.075
0.103
1.004
NC
NC
4.456
1.485
8000 Ib lime/A
8960 kg/ha
NC
0.072
0.209
18.658
49.987
0.149
0.207
2.007
NC
NC
8.911
2.970
15,000 Ib lime/A
16,800 kg/ha
NC
0.135
0.392
34.984
93.726
0.280
0.388
3.763
NC
NC
5.569
a) Sources:
Raven: Raven and Loeppert (1997)
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) NR - not reported
d) NC = not calculated
e) Bold indicates that the yearly addition exceeds the Canadian Fertilizers Act limits for this metal
f) Shading indicates highest yearly addition values for this metal from liming materials
g) Yearly addition of metal for year in which the lime is added. Typically, lime is added only once every 3
years
h) Average yearly addition of metal ammortized over the 3 year application period
G-72
-------
Table G-12a. Yearly Cd and Pb Additions to Soil (kg/ha) from Gypsum Products
Source3
Wash St
CDFA
Average
ID"
H4766
25855
25854
25853
Percent
Gypsum
100°
100
100
100
100
Cd
mg/kg
0.8
0
0
2.5
0.8
Pb
mg/kg
11
3
3
1.5
4.6
Yearly Cd addition in kg/ha
soil at:
2000 Ib
gyp/A
2240
kg/ha
0.002
0.000
0.000
.•-.'• none
0.002
4000 Ib
gyp/A
4480
kg/ha
0.004
0.000
0.000
-':-••• '0:011
0.004
8000 Ib
gyp/A
8960
kg/ha
0.007
0.000
0.000
• o;b22
0.007
Yearly Pb addition in kg/ha
soil at:
2000 Ib
gyp/A
2240
kg/ha
,0.025?
0.007
0.007
0.003
0.010
4000 Ib
gyp/A"
4480
kg/ha
>. 0;049
0.013
0.013
0.007
0.021
8000 Ib
gyp/A
8960
kg/ha
. 0.099
0.027
0.027
0.013
0.041
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Assumed 100% product for application
d) Shading indicates highest yearly addition values of this metal from gypsum products
Table G-12b. Yearly As and Cr Additions to Soil (kg/ha) from Gypsum Products
Source9
Wash St
3DFA
Average
ID"
H4766
25855
25854
25853
Percent
Gypsum
100°
100
100
100
100
As
mg/kg
8.5
3
3.4
3
4.5
Cr
mg/kg
1.4
NRe
NR
NR
1.4
Yearly As addition in kg/ha
soil at:
2000 Ib
gyp/A
2240 kg/ha
0.01 9d
0.007
0.008
0.007
0.010
4000 Ib
gyp/A
4480
kg/ha
0.038
0.013
0.015
0.013
0.020
8000 Ib
gyp/A
8960
kg/ha
0.076
0.027
0.030
0.027
0.040
Yearly Cr addition in kg/ha
soil at:
2000 Ib
gyp/A
2240
kg/ha
0.003
NC'
NC
NC
0.003
4000 Ib
gyp/A
4480
kg/ha
0.006
NC
NC
NC
0.006
8000 Ib
gyp/A
8960
kg/ha
0.013
NC
NC
NC
0.013
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Assumed 100% product for application
d) Shading indicates highest yearly addition values of this metal from gypsum products
e) NR = not reported
f) NC = not calculated
G-73
-------
Table G-12c. Yearly Hg and Ni Additions to Soil (kg/ha) from Gypsum Products
Source"
A/ash St
3DFA
ID"
H4766
25855
25854
Percent
100"
100
100
Hg
mg/kg
0.011
NRe
NR
Ni
mg/kg
3
NR
NR
NR
3
Yearly Hg addition in kg/ha
soil at:
2000 Ib
gyp/A
2240 kg/ha
0.000"
NCf
NC
NC
0.000
4000 Ib
gyp/A
4480
kg/ha
0.000
NC
NC
NC
8000 Ib
gyp/A
8960
kg/ha
0.000
NC
NC
NC
soil at:
2000 Ib
gyp/A
2240
J
-------
Table G-12e. Yearly Zn Additions to Soil (kg/ha) from Gypsum Products
Source3
Wash St
3DFA
Average
ID"
H4766
25855
25854
25853
Percent
Gypsum
in product
100C
100
100
100
100
Zn
mg/kg "
53.8
NRe
NR
NR
53.8
Yearly Zn addition in Rg/hasbilrat ; ; ;i •
2000 Ib gypsum/A
2240 kg/ha
0.121d
NCf
NC
NC
0.121
4000 Ib gypsum/A
4480 kg/ha
0.241
NC
NC
NC
0.241
8000 Ib gypsum/A
;; 8960 kg/ha -I
V • 0,482
NC
NC
NC
0.482
a) Sources:
Wash St: Washington State Department of Ecology (1997)
CDFA: California Department of Food and Agriculture (1997)
b) Sample identification used by author
c) Assumed 100% product for application
d) Shading indicates highest yearly addition values of this metal from gypsum products
e) NR = not reported
f) NC = not calculated
G-75
-------
Table G-13a. Yearly Cd and Pb Additions to Soil (kg/ha) from Micronutrient Mixes
Source*
/Vash St
i\VSF3OS
ID"
H4772
H4756
Cd
mg/kg
0.85
55
27 93
Pb
mg/kg
5.5
3590
17978
Yearly Cd addition in k< /ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.000
o.oooc
0000
30 Ib mix/A
33.6 kg/ha
0.000
0.002
0.001
36 Ib mix/A
40.3 kg/ha
0.000
0.002
0.001
Yearly Pb addition in kc /ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.000
0.030
0.015
30 Ib mix/A
33.6 kg/ha
0.000
0.121
36 Ib mix/A
40.3 kg/ha
0.000
0.145
a) Sources:
Wash St: Washington State Department of Ecology (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from micronutrient mixes
Table G-13b. Yearly As and Cr Additions to Soil (kg/ha) from Micronutrient Mixes
Source*
/Vash St
ID"
H4772
H4756
As
mg/kg
0.85
83
41 93
Cr
mg/kg
3.1
457
230 1
Yearly As addition in kg/ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.000
0.001°
0 000
30 Ib mix/A
33.6 kg/ha
0.000
0.003
0001
36 Ib mix/A
40.3 kg/ha
0.000
0.003
0.002
Yearly Cr addition, in kg/ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.000
0.004
30 Ib mix/A
33.6 kg/ha
0.000
0.015
36 Ib mix/A
40.3 kg/ha
0.000
0.018
a) Sources:
Wash St: Washington State Department of Ecology (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from micronutrient mixes
Table G-13c. Yearly Hg and Ni Additions to Soil (kg/ha) from Micronutrient Mixes
Source*
/Vash St
^VSf3O6
ID"
H4772
H4756
Hg
mg/kg
0.03
0.226
0 127
Ni
mg/kg
21
4
125
Yearly Hg addition in kg/ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.000
0.000
0.000
30 Ib mix/A
33.6 kg/ha
0.000
0.000
0.000
36 Ib mix/A
40.3 kg/ha
0.000
0.000
0.000
Yearly Mi addition in kg/ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.000°
0.000
0.000
30 Ib mix/A
33.6 kg/ha
0.001
0.000
36 Ib mix/A
40.3 kg/ha
0.001
0.000
a) Sources:
Wash St: Washington State Department of Ecology (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from micronutrient mixes
G-76
-------
Table G-13d. Yearly V and Cu Additions to Soil (kg/ha) from Micronutrient Mixes
Source*
i/Vash St
Average
ID"
H4772
H4756
V
mg/kg
0.5
33
16.8
Cu
mg/kg
19400
39900
29650
Yearly V addition in kg/ha soit at
7.5 Ib mix/A
8.4 kg/ha
0.000
"I-- V ;; 0.000?
0.000
30 Ib mix/A
33.6 kg/ha
0.000
:^ • -01001
0.001
36 Ib mix/A
40.3 kg/ha
0.000
^e; ;aboi
0.001
Yearly Cu addition in kg/ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.163
;:=v^-: B1335
0.249
30 Ib mix/A
33.fr kg/ha
0.652
1.341
0.996
36lbmix/A
40:3kg/ha^
0.782
- ^ '•••• 1.608
1.195
a) Sources:
Wash St: Washington State Department of Ecology (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from micronutrient mixes
Table G-13e. Yearly Zn Additions to Soil (kg/ha) from Micronutrient Mixes
Source"
Wash St
Average
ID"
H4772
H4756
Zn
mg/kg
60300
94300
77300
Yearly Zn addition in kg/ha soil at
7.5 Ib mix/A
8.4 kg/ha
0.507
-••'••^•;- =0.792C
0.649
30 Ib mix/A
33.6 kg/ha
2.026
&'.-";:;,?-••-' •".•.,-.'.3:168'
2.597
36 Ib mix/A
40.3 kg/ha
2.430
r: ,-:'- -.-.*'":':•:•: stsoo
3.115
a) Sources:
Wash St: Washington State Department of Ecology (1997)
b) Sample identification used by author
c) Shading indicates highest yearly addition values of this metal from micronutrient mixes
G-77
-------
-------
APPENDIX H
HEAVY METALS IN FERTILIZER DATA SUBMITTED TO EPA
BY THE PENNSYLVANIA DEPARTMENT OF AGRICULTURE (PDA)
H-1
-------
Table H-1. Concentrations of Heavy Metals in Solid NPK Fertilizer Blends
Type
Ag Blend
Ag
ammoniated
Ag Blended
ID"
B960243
B960244
B960249
B960282
B960325
B960333
B960389
B960412
B960418
B960441
B960442
B960453
B960475
B960510
B960580
B960584
B960599
B96061 1
B960639
B960708
B960711
B960713
B960715
B980726
B960820
B960896
B960900
B960909
B960912
B960913
B961058
B961321
Grade0
19-19-19
12-24-24
7-35-12
9-44-9
10-21-15
8-32-16
19-19-19
7-26-26
19-19-19
9-34-10
9-3-10
10-20-20
9-40-5
9-43-10
10-10-10
10-20-20
1 5-1 5-1 5
19-19-19
6-2-0
7-27-1 1
8-24-8
10-20-10
15-15-15
19-19-19
26-9-9
10-20-20
10-20-20
3-17-40
3-17-40
8-41-12
8-17-34
9-43-1 0
Concentration of metal, mg/kg
Cd
3.5
4.3
4.6
2.3
2.7
3.9
1.6
2.6
2.2
3.3
3.6
4.3
14.3
5.2
1.8
2.6
2.1
24.4
5.7
6.4
9.5
2.4
2.0
4.1
2.0
3.3
3.1
2.4
4.3
1.5
1.0
47
Pb
2.2
4.6
3.9
3.5
11.1
5.3
1.4
2.8
3.8
3.6
3.0
3.0
422.0
1.7
3.6
2.5
2.1
1.1
6.9
153.0
14.0
6.7
1.8
3.7
2.3
3.6
3.3
2.6
3.9
18.0
2.4
6.9
As
6.6
9.8
9.7
13.2
7.2
11.2
5.2
6.0
7.5
10.7
9.2
3.6
10.0
11.2
4.1
6.9
4.9
0.0
4.7
9.0
3.5
5.4
4.7
7.8
4.1
7.0
7.4
5.1
10.5
6.2
3.1
10.7
Cr
45.4
59.0
66.8
90.7
46.3
68.1
43.5
51.8
62.0
67.4
88.8
68.7
107.9
79.4
51.4
52.8
42.5
160.0
40.3
73.2
60.5
42.0
28.0
48.8
34.2
39.0
201.0
34.3
67.4
68.3
30.8
69.8
Hg
0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
Ni
11.2
14.7
20.9
14.5
13.4
14.9
0.0
11.5
9.2
12.2
14.5
18.0
29.2
17.8
14.6
15.7
11.4
36.9
11.2
22.7
11.9
10.1
6.2
11.5
8.0
8.6
85.7
5.7
12.0
14.8
8.9
13.3
V
85.2
119.0
116.0
163.0
87.7
126.0
Tin
79.4
97.8
121.0
159.0
67.1
130.0
136.0
68.8
83.4
73.2
47.2
18.6
99.2
47.3
68.9
49.2
85.1
61.6
64.5
70.3
64.2
138.0
18.4
27.8
152.0
Cu
25.6
49.3
45.0
30.1
10.2
22.2
0.0
26.2
13.7
16.3
6.6
16.4
90.5
7.1
13.6
10.6
7.2
3.9
24.3
544.0
13.6
32.0
3.9
7.9
14.4
25.5
12.9
4.9
7.8
454.0
5.0
60.1
Zn
36.0
44.5
55.1
49.8
872.0
43.9
0.0
37.0
33.1
34.6
53.1
60.9
4442
66.2
803.0
0.5
0.6
6.9
1.1
57.8
177.0
84.5
0.3
74.5
45.7
23.6
25.5
39.5
52.2
484.0
18.3
44.8
a) Sample type as listed by Pennsylvania Department of Agriculture.
b) Sample identification as listed by Pennsylvania Department of Agriculture.
c) NPK rating of fertilizer as listed by Pennsylvania Department of Agriculture.
H-2
-------
Q)
N
3
C
O.
.t;
•o
0)
•a
_g
ca
0)
"
o
c
o
I
c
8
N
C
Z
0
O
(A
£
•o
CD
•o
2
O
'Q
CD
|H
cn
CM
CO
CM
*
CD
cn
CM
co
cn
CO
cn
in
CO
in
CD
00
cn
o
CD
CM
°J
in
CM
CO
1 B960278
CO
0
o
"S.
s
•a
c
CD
ca
<"
CO
oi
"*
CO
CO
•*
CO
in
<^-
in
CM
CD
CO
00
CO
CO
CO
0
PS
*
CO
CM
CO
B960292
CO
0
o
5
3
•a
c
CD
3
<
CD
CO
*
in
oi
CO
CM
01
,_
*~
CO
CO
3"
00
•"-
o
6
B960345
_o
?
•a
c
o
E
D>
CM
CO
^
CM
CO
cn
CO
•"
00
CD
CD
in
CD
CO
in
CO
o
CO
CM
co
CO
B960355
CO
o
o
•5
^
•a
c
o
CO
D)
CO
U)
^
CO
cn
CO
CO
in
*~
cn
CO
co
cn
CO
in
cn
CO
CD
CO
CO
B960429
CO
o
.52
?
T3
'c
ammo
t3>
CO
in
CO
CM
"~
00
CM
in
CM
*
CM
CO
CO
CO
CM
P~
CM
CO
CO
CO
B960463
CO
o
o
s
3
1
CD
ca
D)
o
CO
o
*""
CM
CM
CO
in
CO
CO
CO
*
CM
o
in
CM
CO
CD
CO
CD
CO
«-
*
9
CM
CO
B960468
CO
0
0
^
3
•a
c
CD
ca
<"
m
CO
o
^
OT
CM
CO
CO
CM
in
O)
,J
CO
in
CD
o
^f-
^
CD
CO
PS
cn
O
CD
CM
6
B960518
CO
0
0
2
3
•o
c
CD
ca
D)
CD
CD
CM
in
CM
CO
00
in
en
0
CM
en
CM
o
CO
CO
CO
in
CM
CO
CM
o
CM
6
B960640
CO
o
s
3
CD
ca
D)
CN
CM
CO
*
CO
00
CO
en
CM
CO
00
CO
CO
CO
CD
CM
en
B960722
CO
o
o
5
3
CD
ca
O)
CO
CM
in
CO
CO
CO
in
•"
CM
co
CO
in
CM
00
in
in
*
co
CM
CO
B960735
CO
o
o
5
3
•a
c
CD
ca
cn
CM
ps
*~
CD
CO
CO
in
in
CO
CO
CO
CO
in
CO
CO
cn
CO
CO
0
CM
CD
CM
CD
B960738
CO
o
g
?
T3
'c
ammo
CD
CO
"*
CM
8
0
in
in
CD
CM
CO
in
in
CO
r—
CO
CO
cn
co
0
CM
CD
CM
6
B960745
CO
o
o
^
•a
CD
tn
'c
ammo
<
CO
U}
*~
CO
CO
CO
E
CM
in
•d-
O
O
CO
CO
CO
CO
CM
*
op
CM
CO
B960757
§
0
2
3
•o
c
CO
CO
CD
5
CO
*~
CO
CD
CM
CD
cn
CO
CM
CO
CO
CD
CM
CD
CO
O
CM
CM
CD
B960934
CO
o
o
5
3
1
CD
m
O)
CO
r—
CD
CO
CO
§
cn
CO
CM
CD
in
CO
oi
cn
CO
CO
0
CD
CM
CD
B960984
CO
o
o
g
•o
c
55
o>
CO
CM
o
CO
CO
CO
CD
CM
00
CM
CM
CO
in
cn
CO
o
CO
CO
0
o
CM
6
B961019
CO
o
o
5
g
c
CD
m
<
CD
CM
CO
CO
CM
CO
CO
in
CM
,_
CM
in
CO
o
CO
CO
cn
co
B961102
S
0
2
g
CD
ca
D)
o
CO
CD
j?
CM
co
CO
CM
CM
CM
en
CO
in
CD
*
CO
CO
B961114
CO
o
u
g
1
m
cn
.s.
CO
o
in
if
CD
CD
CD
in
^.
CO
en
in
CO
^
0
CM
CD
CM
6
m
CO
en
ca
0
o
2
CD
ammo
<
H-3
-------
09
1
CO
u.
(0
>•
I
(0
ca
o
•X.
CO
CD
§
i
if
I5
\'i
I
1
r
1
N
3
>
z
o>
w
<
.0.
CL
•t
O
•tJ
c
5
n
<
M
d
CD
T—
0
in
d
o
cj>
CT
O
(O
cr
a
a
T
c
co
<£
co
M
o>
CM
oq
CD
CO
10
r%
00
CO
id
•*
CD
o
4
CO
o
*—
co
r^
o
•*
r-»
o
CO
en
m
_-a
c
TO
^
CO
CO
•*
n
in
00
CM
d
^-
d
CO
0
•*
CM
•*
CO
CO
d
CD
o
d
in
in
in
in
r^
o
CO
en
a
T
I
C>
«^
CD
0
CM
CO
CO
CO
CO
-
o
%
CO
in
in
CM
CN
r».
o
o
CO
a
a
;o
c
CO
<
en
CO
•*
CO
CM
CO
CO
•*
-
o
CO
CO
CO
,
in
CM
CM
ri
CO
g
en
ca
T
c
a>
<
CO
CM
CD
CO
CO
•*
en
d
-
o
•*
o
CO
4
CO
co
en
o
CD
0
m
T
c
en
<
in
O
•*
in
d
o
0
CO
CM
CO
d
i~-
r~
r^
c\
r>-
CO
o
CO
en
ca
T
c
o>
<
o
04
CO
CO
d
CM
CO
•*
in
•*
CM
CM
d
CO
O
O
O
O
CO
-
CO
en
ca
T:
a-
CO
<£
CD
en
CM
CM
•*
CM
CO
CO
o
CM
[^
CM
r-
in
d
•*
rs
CM
•*
4
00
CM
CO
cc
ca
T
cr
CO
<
CM
in
•*
d
-
CM
O
•*
CM
d
1^
1^
CO
CM
r—
CO
CM
co
en
CO
3
T
cr
c
<
CO
CO
CD
in
CM
CO
CM
•*
CM
in
CO
in
co
CM
CM
CO
CM
in
o
6
5
•si-
CD
CD
en
ca
T
cr
CO
<
CO
4
in
5
co
en
CD
-d-
in
CO
in
*
tr—
o"
CO
CO
•*
o
CO
4
in
CD
co
CD
ca
T;
cr
O)
<
CM
CO
cn
•*
CM
in
CM
[^
CD
O
•*
CM
CO
CO
CO
O
r~
d
CM
CO
0
in
4
CO
en
CO
§
T
C
CO
<
in
CD
in
4
cn
D
X)
CD
•*
CO
r-
d
in
•*
co
CM
CO
r^
o
CD
CD
ca
;T
C
CO
<
o
N
co
st-
CO
<^>
CO
r-.
r^
»—
d
CD
cri
5
6
^
CO
cn
ca
T
c
CO
<
CO
D
n
•*
CM
CO
CO
CM
CO
CO
in
CM
CD
*-
s
d
CO
in
1 4-10-10
in
CD
CD
a
;t
c
CO
<
CD
CD
CM
4
CM
[^
O
*-
CO
CO
CM
p«
O
«-
in
d
CO
CO
CM
o
in
4
CM
in
CO
cn
m
T
c
c
<
n
5
CM_
CO
en
CO
CM
in
CD
CO
s
CO
co
CO
d
CM
o
CO
0
6
4
CO
in
CO
cn
ca
T
C
CO
<
CO
s
o
4
in
CO
rx
CM
CM
CM
r^
CM
CO
r-»
t—
CD
in
CO
o
«—
in
4
•*
in
CO
cn
EC
T
C
CO
<
CO
CO
CO
o
CO
•<*
s
3
CO
•*
s
CD
o
CO
co
•*
in
0
CO
4
in
in
CM
CO
a
ca
T
C
C
<
M
«*'
"II
coll
*ll
in
CO
o
o
CO
r-
in
CM
co
d
in
cn
in
co
CM
r^
s
CM
CO
cn
ca
•o
'D
a
01
<
-------
CD
(5
!s
"43
CD
w
0)
DC
(0
'o
0)
Q.
(O
-J2
(0
+->
cu
I
0)
(0
o
CD
O
O
O
s
r
.SB.
15
•s
1
CO
c
o
N
3
„
O)
0
10
Q.
s
•a
S
O
.'
H
L
CO
o
CD
CL
CO
^
10
CO
in
CO
r—
0
co
CM
O
5
CO
6
CM
CD
CM
CO
cn
OQ
2
CT
Li
">L
CO
o
CD
CL
C/3
5
00
in
CO
o
CO
to
o
o
o
to
CO
0
«-
*
cn
o
0
in
3
CM
CM
CO
en
00
•Q
cr
^
CO
Lu
>.
CO
CJ
CD
CL
CO
in
en
CO
in
CM
CM
CM
CM
CM
5
CO
CM
cn
CO
cn
CO
CO
£
-o
CD
In
o
CJ
£
>.
<-•
CO
o
CD
CL
CO
CO
CO
CM
CO
CM
^.
CM
CO
CM
"-
r—
in
eo
CD
CM
OQ
.C
CO
E
>.
CO
o
CD
CL
CO
CO
o
*-
00
in
CO
CO
in
in
^i"
CO
«-
CM
^
•*
CM
CO
co
CO
CO
en
m
>.
+*
CO
o
CD
CL
CO
cn
CO
in
"•"
o
CO
in
CM
T_
O
P*
in
.
'-
10
0
IO
q
in
q
co
eo
CD
cn
03
o
c
CO
s
O
>.
CO
o
CD
CL
CO
CM
*
T-
*
10
•*•
CO
00
CO
in
CO
•*
in
CO
,__
00
CO
en
CQ
?
CD
03
>.
CO
o
CD
CL
CO
CO
^
CO
in
oo
O
CO
eo
0
^_
00
r-
CO
0
F-
o
CM
CM
CO
CD
CO
CO
CO
en
03
JC
CO
iT
>^
CO
o
CD
CL
CO
CM
cn
CM
CO
in
cn
CO
cn
•~
CO
'"
in
CM
CM
CM
in
co
en
03
O
C
CO
g>
O
>.
<-•
CO
o
CD
CL
CO
o
CO
eo
CO
i^;
*
,.!
CM
in
in
CM
CO
"*
CO
CM
CM
CO
00
en
CO
eo
cn
03
ej
c
CO
cn
O
>.
CO
CJ
8,
CO
^
IO
CM
CM
eo
oo
CO
10
CO
O
eo
o
co
*-
•d-
en
00
oo
cn
CO
q
CM
CO
en
CO
eo
cn
03
2
0
CO
6
in
>.
•«-•
CO
CJ
o
Q.
CO
«
CM
00
CO
00
CO
CO
in
CO
«-
CD
CM
*~
^-
CM
CO
CO
CM
CD
en
co
en
CO
en
CQ
•o
CD
CQ
>.
CO
o
8.
CO
^
in
o
CO
en
CM
O
CO
CO
CM
CM
CO
«—
CO
en
10
co
CM
co
CM
en
cn
CO
cn
CQ
o
c
CO
E?
6
>»
03
O
8.
CO
0
CM
cn
"*
CO
eo
in
CM
*~
CO
CO
00
CM
^
in
"~
CO
00
CM
10
CM
CO
p-
O
CO
s
TJ
s
ra
c
ammo
>.
CO
o
8.
CO
CO
CO
CO
0
CM
eo
CM
en
o
CO
"d-
o
CO
CM
*"
fx
,.:
r—
CM
in
CO
CO
CO
LO
in
CM
CO
0
CO
cn
m
o
c
CO
O)
O
>.
CO
o
CD
O.
CO
CO
CM
CO
0
CM
CO
CO
o
1-
0
*
T—
CM
t—
en
in
CM
4
CO
CO
O
CO
cn
CQ
o
c
CO
£>
O
>»
CO
0
CD
Q.
CO
CO
CO
00
•r-
CO
cn
*
en
CM
CD
,_:
CM
en
"*
CO
*
cn
en
cn
CM
CO
CO
CD
oo
0
CO
cn
OQ
•o
c
CD
OQ
>.
CO
0
CD
Q.
CO
CM
CO
CM
O
CO
0
CO
^
*•;
cn
CO
*~
CM
to
CM
CM
CO
cn
0
CD
cn
OQ
u
c.
CO
O)
6
>.
CO
o
CD
Q.
CO
00
o
CO
CD
*
CO
CM
CM
CO
*~
CO
CM
i":
IO
in
^
it~
-
in
cn
0
CO
cn
CQ
u
c
CO
cn
O
>.
CO
o
CD
CL
CO
^
"*
CO
CO
CM
en
cn
CM
cn
in
o
en
co
P~-
CO
CO
^
in
CM
in
9
CM
CD
in
«-
eo
cn
CQ
«
o
CO
0
CQ
>.
CO
o
CD
D.
CO
CO
oo
CO
CM
"~
en
o
0
en
*~
oo
CM
4
CM
in
eo
cn
m
>.
CO
o
CD
CL
CO
eo
*~
cn
o
o
eo
r-
lr"
oo
co
0
CO
*
CO
eo
o
CM
CO
0
CM
6
CM
6
CO
oo
CM
CD
en
03
•o
C
CD
CQ
>.
CO
CJ
CD
Q.
CO
CO
10
CM
*
*~
CO
*
in
CM
CM
P»
*~
p^
CM
CO
CO
pi.
CM
cn
CM
CO
en
CQ
CD
m
>»
CO
CJ
CD
Q.
CO
CO
CO
CO
^
CO
o
*~
CM
0
in
^
en
CO
v
co
CM
co
eo
cn
CQ
o
c
CO
O!
5
>*
CO
CJ
CD
Q.
CO
H-5
-------
a
CD
3
CD
?
£
a
i
**~
o
p
s
c
0
O
N
O
"F
O>
o
«
JJ
o
•a
to
O
a
o
H
3
CO
CO
CM
00
CO
o
CM
O
CO
^
CO
CO
CM
cn
CM
4
cn
CM
CO
CO
cn
m
c
CD
CD
O
.°2
'o
CD
a.
to
in
*
CO
in
^>
I~
"*•
CO
CO
px
r—
Px
*~
CM
CO
r—
CO
cn
s
en
ca
CO
o
5
!2
'5
CD
a.
to
cn
CM
*~
CM
cn
CM
CO
p..
CM
in
>*
^-
CM
cn
*
CO
-*
CM
5
CM
CM
S
cn
m
CO
0
o
5
*
ca
°o
CD
n
CO
in
CM
to
CD
CO
CO
CO
in
CM
CM
cn
*-
CM
CO
00
CO
8
cn
ca
CO
0
o
s
*
*o
CD
a.
CO
CD
in
in
P,
in
CM
CO
CO
to'
CO
o
o
CM
o
CM
O
CM
CO
CO
10
O
CO
cn
ca
CO
o
o
5
*
.2
'5
CD
a.
CO
j£
*~
co
CO
CM
in
CO
6
co
cn
o
CO
cn
ca
§
0
2
*
CD
'o
CD
a.
CO
0
CO
CO
*~
^
^_
CM
CO
cn
"*
CD
CO
CO
cn
5£
CM
<*
CO
0
'c
CD
s
o
co
CM
cn
o
CO
01
ca
S
0
2
3
.2
'o
CO
Q.
to
CO
CO
cri
cn
0
^1
*~
cn
in
CO
in
*
in
CM
6
CM
O
in
co
cn
ca
S
0
S
I
CD
"5
CD
a.
CO
H-6
-------
OT
CD
'•5
o
D)
0>
0)
I
(0
o
I
0)
o
o
o
U)
.a
co
„
s
•s
.1
S
o
o
c
0
'
c
N
O
>
Z
O)
X
o
<
£
•D
CO
1
O
Q
CD
O
3
O
(A
CO
CD
CM
*
CO
in
0
9
CD
00
co
CO
o
CO
CD
03
<0
CD
5
in
CD
in
o
co
*~
en
CD
^~
co
CN
en
CO
^
en
*"*
oo
*
9
CN
in
in
in
o
CD
CD
03
CD
to
Q.
onoammonium pho
2.
CO
CO
CD
CO
T—
,_
*~
00
co
t—
co
.^
"*•
CO
CO
^™
*
CO
*
0
CO
t
CO
CN
co
in
o
CD
s
&
CO
iammonium phosph
Q
CO
O
d
T—
CO
o
3
CO
o
co
o
CO
CD
03
mmonium Nitrate
-------
Table H-6. Yearly Cd and Pb Additions to Soil (kg/ha) from NPK Fertilizers, Fertilizers
Applied for N, P, or K Content
Source
Ag Blend
B960243
19-19-19
Ag Blend
B960244
1 2-24-24
Ag Blend
B960249
7-35-1 2
Ag Blend
B960282
9-44-9
Ag Blend
B960325
10-21-15
Ag Blend
B960333
8-32-16
Ag Blend
B960389
19-19-19
Ag Blend
B960412
7-26-26
Ag Blend
B96041 8
19-19-19
Ag Blend
B960441
9-34-10
Ag Blend
B960442
9-3-10
Ag Blend
B960453
10-20-20
%N
%P20S
%K20
19
19
19
12
24
24
7
35
12
9
44
9
10
21
15
8
32
16
19
19
19
7
26
26
19
19
19
9
34
10
9
3
10
10
20
20
Cd
mg/fcg
3.5
3.5
3.5
4.3
4.3
4.3
4.6
4.6
4.6
2.3
2.3
2.3
2.7
2.7
2.7
3.9
3.9
3.9
1.6
1.6
1.6
2.6
2.6
2.6
2.2
2.2
2.2
3.3
3.3
3.3
3.6
3.6
3.6
4.3
4.3
4.3
Pb
2.2
2.2
2.2
4.6
4.6
4.6
3.9
3.9
3.9
3.5
3.5
3.5
11.1
11.1
11.1
5.3
5.3
5.3
1.4
1.4
1.4
2.8
2.8
2.8
3.8
3.8
3.8
3.6
3.6
3.6
3
3
3
3
3
3
Ib/A
124 N
84P206
103 K2O
139 N
94PZ06
115K20
0.003
0.002
0.002
0.005
0.002
0.002
0.009
0.001
0.004
0.004
0.000
0.003
0.004
0.001
0.002
0.007
0.001
0.003
0.001
0.001
0.001
0.005
0.001
0.001
0.002
0.001
0.001
0.005
0.001
0.004
0.006
0.011
0.004
0.006
0.002
0.002
206 N
173 P20S
177 K20
kg/ha
231 N
194P205
198 K20
0.004
0.004
0.004
0.008
0.003
0.004
0.015
0.003
0.008
0.006
0.001
0.005
0.006
0.002
0.004
0.011
0.002
0.005
0.002
0.002
0.002
0.009
0.002
0.002
0.003
0.002
0.002
0.008
0.002
0.007
0.009
0.023
0.007
0.010
0.004
0.004
414 N
252 P20S
534 K20
464 N
282 P205
598 K2O
0.009
0.005
0.011
0.017
0.005
0.011
0.030
0.004
0.023
0.012
0.001
0.015
0.013
0.004
0.011
0.023
0.003
0.015
0.004
0.002
0.005
0.017
0.003
0.006
0.005
0.003
0.007
0.017
0.003
0.020
0.019
0.034
0.022
0.020
0.006
0.013
Ib/A (I
124 N
84 P206
103 K2O
1 39 N
94 P205
115K20
0.002
0.001
0.001
0.005
0.002
0.002
0.008
0.001
0.004
0.005
0.001
0.004
0.015
0.005
0.009
0.009
0.002
0.004
0.001
0.001
0.001
0.006
0.001
0.001
0.003
0.002
0.002
0.006
0.001
0.004
0.005
0.009
0.003
0.004
0.001
0.002
206 N
173 P20S
177 K2O
kg/ha
231 N
194 PJOS
198 K20
0.003
0.002
0.002
0.009
0.004
0.004
0.013
0.002
0.006
0.009
0.002
0.008
0.026
0.010
0.015
0.015
0.003
0.007
0.002
0.001
0.001
0.009
0.002
0.002
0.005
0.004
0.004
0.009
0.002
0.007
0.008
0.019
0.006
0.007
0.003
0.003
414 N
252P20S
534 K2O ||
464 N
282 PZO5
598 K20
0.005
0.003
0.007
0.018
0.005
0.011
0.026
0.003
0.019
0.018
0.002
0.023 I
0.052
0.015
0.044
0.031
0.005
0.020
0.003
0.002
0.004
0.019
0.003
0.006 ||
0.009 I
0.006
0.012
0.019
0.003
0.022
0.015
0.028
0.018
0.014 I
0.004
0.009 I
H-8
-------
Table H-6. Continued
Source
Ag Blend
B960475
9-40-5
Ag Blend
B960510
9-43-10
Ag Blend
B960580
10-10-10
Ag Blend
B960584
10-20-20
Ag Blend
B960599
15-15-15
Ag Blend
B96061 1
19-19-19
Ag Blend
B960639
6-2-0
Ag Blend
B960708
7-27-1 1
Ag ammoniated
B96071 1
8-24-8
Ag Blend
B960713
10-20-10
Ag Blend
B960715
15-15-15
Ag Blend
B980726
19-19-19
AG Blend
B960820
26-9-9
%N
%P205
%K20
9
40
5
9
43
10
10
10
10
10
20
20
15
15
15
19
19
19
6
2
0
7
27
11
8
24
8
10
20
10
15
15
15
19
19
19
26
9
9
Cd
mg/kg
14.3
14.3
14.3
5.2
5.2
5.2
1.8
1.8
1.8
2.6
2.6
2.6
2.1
2.1
2.1
24.35
24.35
24.35
5.7
5.7
5.7
6.4
6.4
6.4
9.5
9.5
9.5
2.4
2.4
2.4
2
2
2
4.1
4.1
4.1
2
2
2
Pb
mg/kg
422
422
422
1.7
1.7
1.7
3.6
3.6
3.6
2.5
2.5
2.5
2.1
2.1
2.1
1.1
1.1
1.1
6.9
6.9
6.9
153
153
153
14
14
14
6.7
6.7
6.7
1.8
1.8
1.8
3.7
3.7
3.7
2.3
2.3
2.3
Yearly Cd addition in kg/ha at
Ib/A
124 N
84P20S~
T03 K20
206 N
173 PjOs
177K2O
414 N
252 P205
534 K2O
kg/ha - .
139N
94P205
115K20
0.022
0.003
0.033
0.008
0.001
0.006
0.003
0.002
0.002
0.004
0.001
0.001
0.002
0.001
0.002
0.018
0.012
0.015
0.013
0.027
ERR
0.013
0.002
0.007
0.017
0.004
0.014
0.003
0.001
0.003
0.002
0.001
0.002
0.003
0.002
0.002
0.001
0.002
0.003
231 N
194P205
19BK2O
0.037
0.007
0.057
0.013
0.002
0.010
0.004
0.003
0.004
0.006
0.003
0.003
0.003
0.003
0.003
0.030
0.025
0.025
0.022
0.055
ERR
0.021
0.005
0.012
0.027
0.008
0.024
0.006
0.002
0.005
0.003
0.003
0.003
0.005
0.004
0.004
0.002
0.004
0.004
464 N
282 P205
598 K2O
0.074
0.010
0.171
0.027
0.003
0.031
0.008
0.005
0.011
0.012
0.004
0.008
0.006
0.004
0.008
0.059
0.036
0.077
0.044
0.080
ERR
0.042
0.007
0.035
0.055
0.011
0.071
0.011
0.003
0.014
0.006
0.004
0.008
0.010
0.006
0.013
0.004
0.006
0.013
Yearly Pb addition in kg/ha at
Ib/A
124 N ,
84 P2O5
103 K2O
206 N
173 P205
177 K2O
414 N
252 PjO5
534 K2O
kg/ha
' 139 N
94 P20S
IIBKjO
0.652
0.099
0.971
0.003
0.000
0.002
0.005
0.003
0.004
0.003
0.001
0.001
0.002
0.001
0.002
0.001
0.001
0.001
0.016
0.032
ERR
0.304
0.053
0.160
0.024
0.005
0.020
0.009
0.003
0.008
0.002
0.001
0.001
0.003
0.002
0.002
0.001
0.002
0.003
231 N
194Pj08
198 KZ0
1.083
0.205
1.671
0.004
0.001
0.003
0.008
0.007
0.007
0.006
0.002
0.002
0.003
0.003
0.003
0.001
0.001
0.001
0.027
0.067
ERR
0.505
0.110
0.275
0.040
0.011
0.035
0.015
0.006
0.013
0.003
0.002
0.002
0.004
0.004
0.004
0.002
0.005
0.005
464 N
282 PjXJs
598 KZO
2.176
0.298
5.047
0.009
0.001
0.010
0.017
0.010
0.022
0.012
0.004
0.007
0.006
0.004
0.008
0.003
0.002
0.003
0.053
0.097
ERR
1.014
0.160
0.832
0.081
0.016
0.105
0.031
0.009
0.040
0.006
0.003
0.007
0.009
0.005
0.012
0.004
0.007
0.015
H-9
-------
Table H-6. Continued
Source
Ag Blend
B960896
10-20-20
Ag Blend
B960900
10-20-20
Ag Blend
B960909
3-17-40
Ag Blend
B960912
3-17-40
Ag Blend
B960913
8-41-12
Ag Blend
B961058
8-17-34
Ag Blend
B961321
9-43-10
%N
%P20S
%KZO
10
20
20
10
20
20
3
17
40
3
17
40
8
41
12
8
17
34
9
43
Cd
mg/kg
3.3
3.3
3.3
3.1
3.1
3.1
2.4
2.4
2.4
4.3
4.3
4.3
1.5
1.5
1.5
1
1
1
4.7
4.7
Pb
g g
3.6
3.6
3.6
3.3
3.3
3.3
2.6
2.6
2.6
3.9
3.9
3.9
18
18
18
2.4
2.4
2.4
6.9
6.9
Yearly Cd addition in kg/ha :at
Ib/A
124 N
84 P206
103 K2O
206 N
173 P205
177 K20
414 N
252P20S
534 K2O
kg/ha
139 N
94 P2O5
115K20
0.005
0.002
0.002
0.004
0.001
0.002
0.011
0.001
0.001
0.020
0.002
0.001
0.003
0.000
0.001
0.002
0.001
0.000
0.007
0.001
O.OO5
231 N
194P205
198K2O
0.008
0.003
0.003
0.007
0.003
0.003
0.018
0.003
0.001
0.033
0.005
0.002
0.004
0.001
0.002
0.003
0.001
0.001
0.012
0.002
0.009
464 N
282 P205
598 K2O
0.015
0.005
0.010
0.014
0.004
0.009
0.037
0.004
0.004
0.067
0.007
0.006
0.009
0.001
0.007
0.006
0.002
0.002
0.024
0.003
0.028
Ib/A
124 N
84 PA
103K20
139 N
94P2QS
115 K2O
0.005
0.002
0.002
0.005
0.002
0.002
0.012
0.001
0.001
0.018
0.002
0.001
0.031
0.004
0.017
0.004
0.001
0.001
0.011
0.002
0.008
206 N
173 P20B
177 K2O
kg/ha
231 N
194 Pj,Oa
198 K20
0.008
0.003
0.004
0.008
0.003
0.003
0.020
0.003
0.001
0.030
0.004
0.002
0.052
0.009
0.030
0.007
0.003
0.001
0.018
0.003
0.014
414 N
252 P20S
534 K2O
464 N
282 P2OS
598 K20
0.017
0.005
0.011
0.015
0.005
0.010
0.040
0.004
0.004
0.060
0.006
0.006
0.104
0.012
0.090
0.014
0.004
0.004
0.036
0.005
0.041
H-10
-------
Table H-7. Yearly As and Cr Additions to Soil (kg/ha) from NPK Fertilizers, Fertilizers
Applied for N, P, or K Content
Source
Ag Blend
B960243
19-19-19
Ag Blend
B960244
12-24-24
Ag Blend
B960249
7-35-12
Ag Blend
B960282
9-44-9
Ag Blend
B960325
10-21-15
Ag Blend
B960333
8-32-1 6
Ag Blend
B960389
19-19-19
Ag Blend
B960412
7-26-26
Ag Blend
B96041 8
19-19-19
Ag Blend
B960441
9-34-10
Ag Blend
B960442
9-3-10
Ag Blend
B960453
10-20-20
%M
%P20,
%K20
19
19
19
12
24
24
7
35
12
9
44
9
10
21
15
8
32
16
19
19
19
7
26
26
19
19
19
9
34
10
9
3
10
10
20
20
As
mg/kg
6.6
6.6
6.6
9.8
9.8
9.8
9.7
9.7
9.7
13.2
13.2
13.2
7.2
7.2
7.2
11.2
11.2
11.2
5.2
5.2
5.2
6
6
6
7.5
7.5
7.5
10.7
10.7
10.7
9.2
9.2
9.2
3.6
3.6
3.6
Cr
mg/kg
4
45.4
45.4
45.4
59
59
59
66.8
66.8
66.8
90.7
90.7
90.7
46.3
46.3
46.3
68.1
68.1
68.1
43.5
43.5
43.5 •
51.8
51.8
51.8
62
62
62
67.4
67.4
67.4
88.8
88.8
88.8
68.7
68.7
68.7
Yearly As addition in kg/ha at
Ib/A
124 N
84 PA;
103K20
206 N
173 P205
177 Kj,0
414 N
252 PZ05
534 K20
kg/ha
139 N
94 P205
115K2O
0.005
0.003
0.004
0.011
0.004
0.005
0.019
0.003
0.009
0.020
0.003
0.017
0.010
0.003
0.006
0.019
0.003
0.008
0.004
0.003
0.003
0.012
0.002
0.003
0.005
0.004
0.005
0.017
0.003
0.012
0.014
0.029
0.011
0.005
0.002
0.002
231 N
194P2OE
198K20
0.008
0.007
0.007
0.019
0.008
0.008
0.032
0.005
0.016
0.034
0.006
0.029
0.017
0.007
0.010
0.032
0.007
0.014
0.006
0.005
0.005
0.020
0.004
0.005
0.009
0.008
0.008
0.027
0.006
0.021
0.024
0.059
0.018
0.008
0.003
0.004
464 N
282 PZO5
598 K2O
0.016
0.010
0.021
0.038
0.012
0.024
0.064
0.008
0.048
0.068
0.008
0.088
0.033
0.010
0.029
0.065
0.010
0.042
0.013
0.008
0.016
0.040
0.007
0.014
0.018
0.011
0.024
0.055
0.009
0.064
0.047
0.086
0.055
0.017
0.005
0.011
Yearly Cr addition in kg/ha at
Ib/A
124 N
84P20S
IDSKjO
, 206 N
173 P20B
177 K2O
414 N
252 P205
534 K2O
kg/ha
139 N
94P205
115 K20
0.033
0.022
0.027
0.068
0.023
0.028
0.133
0.018
0.064
0.140
0.019
0.116
0.064
0.021
0.035
0.118
0.020
0.049
0.032
0.022
0.026
0.103
0.019
0.023
0.045
0.031
0.038
0.104
0.019
0.078
0.137
0.278
0.102
0.095
0.032
0.040
231 N
194P206
198 K20
0.055
0.046
0.047
0.114
0.048
0.049
0.220
0.037
0.110
0.233
0.040
0.200
0.107
0.043
0.061
0.197
0.041
0.084
0.053
0.044
0.045
0.171
0.039
0.039
0.075
0.063
0.065
0.173
0.038
0.133
0.228
0.574
0.176
0.159
0.067
0.068
464 N
282 P2O6
598 K2O
0.111
0.067
0.143
0.228
0.069
0.147
0.443
0.054
0.333
0.468
0.058
0.603
0.215
0.062
0.185
0.395
0.060
0.255
0.106
0.065
0.137
0.343
0.056
0.119
0.151
0.092
0.195
0.347
0.056
0.403
0.458
0.835
0.531
0.319
0.097
0.205
H-11
-------
Table H-7. Continued
Source
Ag Blend
B960475
9-40-5
Ag Blend
B960510
9-43-10
Ag Blend
B960580
10-10-10
Ag Blend
B960584
10-20-20
Ag Blend
B960599
15-15-15
Ag Blend
B960611
19-19-19
Ag Blend
B960639
6-2-0
Ag Blend
B960708
7-27-1 1
Ag ammoniated
B960711
8-24-8
Ag Blend
8960713
10-20-10
Ag Blend
B960715
15-15-15
Ag Blend
B980726
19-19-19
AG Blend
B960820
26-9-9
%N
%P205
%K20
9
40
5
9
43
10
10
10
10
10
20
20
15
15
15
19
19
19
6
2
0
7
27
11
8
24
8
10
20
10
15
15
15
19
19
19
26
9
9
As
mg/kg
10
10
10
11.2
11.2
11.2
4.1
4.1
4.1
6.9
6.9
6.9
4.9
4.9
4.9
0
0
0
4.7
4.7
4.7
9
9
9
3.5
3.5
3.5
5.4
5.4
5.4
4.7
4.7
4.7
7.8
7.8
7.8
4.1
4.1
4.1
Cr
107.9
107.9
107.9
79.4
79.4
79.4
51.4
51.4
51.4
52.8
52.8
52.8
42.5
42.5
42.5
160
160
160
40.3
40.3
40.3
73.2
73.2
73.2
60.5
60.5
60.5
42
42
42
28
28
28
48.8
48.8
48.8
34.2
34.2
34.2
Ib/A
124 N
84 P206
103 K2O
206 N
173 P2OS
177 K2O
414 N
252 P2O5
534 K2O
kg/ha
139 N
94 P20,
115K2O
0.015
0.002
0.023
0.017
0.002
0.013
0.006
0.004
0.005
0.010
0.003
0.004
0.005
0.003
0.004
0.000
0.000
0.000
0.011
0.022
ERR
0.018
0.003
0.009
0.006
0.001
0.005
0.008
0.003
0.006
0.004
0.003
0.004
0.006
0.004
0.005
0.002
0.004
0.005
231 N
194P2O5
198 K2O
0.026
0.005
0.040
0.029
0.005
0.022
0.009
0.008
0.008
0.016
0.007
0.007
0.008
0.006
0.006
0.000
0.000
0.000
0.018
0.046
ERR
0.030
0.006
0.016
0.010
0.003
0.009
0.012
0.005
0.011
0.007
0.006
0.006
0.009
0.008
0.008
0.004
0.009
0.009
464 N
282 PzOs
598 K2O
0.052
0.007
0.120
0.058
0.007
0.067
0.019
0.012
0.025
0.032
0.010
0.021
0.015
0.009
0.020
0.000
0.000
0.000
0.036
0.066
ERR
0.060
0.009
0.049
0.020
0.004
0.026
0.025
0.008
0.032
0.015
0.009
0.019
0.019
0.012
0.025
0.007
0.013
0.027
Ib/A
124 N
84PZ05
103 K2O
206 N
173P205
177 K2O
414 N
252 P205
534 K2O
kg/ha
139 N
94 P205
115K2O
0.167
0.025
0.248
0.123
0.017
0.091
0.071
0.048
0.059
0.073
0.025
0.030
0.039
0.027
0.033
0.117
0.079
0.097
0.093
0.189
ERR
0.145
0.025
0.077
0.105
0.024
0.087
0.058
0.020
0.048
0.026
0.018
0.021
0.036
0.024
0.030
0.018
0.036
0.044
231 N
194P20S
198K2O
0.277
0.052
0.427
0.204
0.036
0.157
0.119
0.100
0.102
0.122
0.051
0.052
0.065
0.055
0.056
0.195
0.163
0.167
0.155
0.391
ERR
0.242
0.053
0.132
0.175
0.049
0.150
0.097
0.041
0.083
0.043
0.036
0.037
0.059
0.050
0.051
0.030
0.074
0.075
464 N
282 P2O5
598 K2O
0.556
0.076
1.290
0.409
0.052
0.475
0.238
0.145
0.307
0.245
0.074
0.158
0.131
0.080
0.169
0.391
0.237
0.504
0.312
0.568
ERR
0.485
0.076
0.398
0.351
0.071
0.452
0.195
0.059
0.251
0.087
0.053
0.112
0.119
0.072
0.154
0.061
0.107
0.227
H-12
-------
Table H-7. Continued
Source
Ag Blend
B960896
10-20-20
Ag Blend
B960900
10-20-20
Ag Blend
B960909
3-17-40
Ag Blend
B960912
3-1 7-40
Ag Blend
B960913
8-41-12
Ag Blend
B961058
8-17-34
Ag Blend
B961321
9-43-10
%N
%P20S
%K2O
10
20
20
10
20
20
3
17
40
3
17
40
8
41
12
8
17
34
9
43
10
As
mg/kg
7
7
7
7.4
7.4
7.4
5.1
5.1
5.1
10.5
10.5
10.5
6.2
6.2
6.2
3.1
3.1
3.1
10.7
10.7
10.7
Cr
mg/kg
39
39
39
201
201
201
34.3
34.3
34.3
67.4
67.4
67.4
68.3
68.3
68.3
30.8
30.8
30.8
69.8
69.8
69.8
Yearly As addition in kg/ha at
Ib/A
124 N
8^P205
103 K2O
206 N
173 P20S
177 K20
414 N
252 PjPs
534 KjO
kg/ha
139 N
94PZOB -
115K2O
0.010
0.003
0.004
0.010
0.003
0.004
0.024
0.003
0.001
0.049
0.006
0.003
0.011
0.001
0.006
0.005
0.002
0.001
0.017
0.002
0.012
231 N
194P205
198K2O
0.016
0.007
0.007
0.017
0.007
0.007
0.039
0.006
0.003
0.081
0.012
0.005
0.018
0.003
0.010
0.009
0.004
0.002
0.027
0.005
0.021
464 N
282 PjOs
598 K20
0.032
0.010
0.021
0.034
0.010
0.022
0.079
0.008
0.008
0.162
0.017
0.016
0.036
0.004
0.031
0.018
0.005
0.005
0.055
0.007
0.064
Yearly Cr addition in kg/ha at
Ib/A
124 N
84 P205
103 K2O
206 N
173 P265
177K2O
414 N
252 PZO5
534 K2O
kg/ha
139 N
94P205
T15TCZO
0.054
0.018
0.022
0.279
0.094
0.116
0.159
0.019
0.010
0.312
0.037
0.019
0.119
0.016
0.065
0.054
0.017
0.010
0.108
0.015
0.080
231 N
194 P20S
198 K2O
0.090
0.038
0.039
0.464
0.195
0.199
0.264
0.039
0.017
0.519
0.077
0.033
0.197
0.032
0.113
0.089
0.035
0.018
0.179
0.031
0.138
464 N
282 P2O5
598 K2O
0.181
0.055
0.117
0.933
0.283
0.601
0.531
0.057
0.051
1.042
0.112
0.101
0.396
0.047
0.340
0.179
0.051
0.054
0.360
0.046
0.417
H-13
-------
Table H-8.
Yearly Hg and Ni
Applied for N, P,
Additions to Soil (kg/ha) from NPK Fertilizers, Fertilizers
or K Content
Source
Ag Blend
B960243
19-19-19
Ag Blend
B960244
1 2-24-24
Ag Blend
B960249
7-35-12
Ag Blend
B960282
9-44-9
Ag Blend
B960325
10-21-15
Ag Blend
B960333
8-32-16
Ag Blend
B960389
19-19-19
Ag Blend
B960412
7-26-26
Ag Blend
B960418
19-19-19
Ag Blend
B960441
9-34-10
Ag Blend
B960442
9-3-10
Ag Blend
B960453
10-20-20
%N
%P20S
%K20
19
19
19
12
24
24
7
35
12
9
44
9
10
21
15
8
32
16
19
19
19
7
26
26
19
19
19
9
34
10
9
3
10
10
20
20
Hg
mg/kg
0
0
0
0
0
0
0
0
0
0
0
0
0.17
0.17
0.17
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Ni
11.2
11.2
11.2
14.7
14.7
14.7
20.9
20.9
20.9
14.5
14.5
14.5
13.4
13.4
13.4
14.9
14.9
14.9
0
0
0
11.5
11.5
11.5
9.2
9.2
9.2
12.2
12.2
12.2
14.5
14.5
14.5
18
18
18
Ib/A
124 N
84 P205
103K20
206 N
173 P2O5
177 K20
414 N
252 P205
534 K20
kg/ha •
139 N
94 P2OB
115K2O
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
231 N
194 P205
198K20
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
464 N
282 P20S
598 K2O
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Ib/A
124 N
84P205
103 K20
206 N
173,P205
177K20
kg/ha
139 N
94 P20S
115K2O
0.008
0.006
0.007
0.017
0.006
0.007
0.042
0.006
0.020
0.022
0.003
0.019
0.019
0.006
0.010
0.026
0.004
0.011
0.000
0.000
0.000
0.023
0.004
0.005
0.007
0.005
0.006
0.019
0.003
0.014
0.022
0.045
0.017
0.025
0.008
0.010
231 N
194P205
198K20
0.014
0.011
0.012
0.028
0.012
0.012
0.069
0.012
0.034
0.037
0.006
0.032
0.031
0.012
0.018
0.043
0.009
0.018
0.000
0.000
0.000
0.038
0.009
0.009
0.011
0.009
0.010
0.031
0.007
0.024
0.037
0.094
0.029
0.042
0.017
0.018
414 N
252 P2OS
534 K20
464 N
282 P2O5
598 K20
0.027
0.017
0.035
0.057
0.017
0.037
0.139
0.017
0.104
0.075
0.009
0.096
0.062
0.018
0.053
0.086
0.013
0.056
0.000
0.000
0.000
0.076
0.012
0.026
0.022
0.014
0.029
0.063
0.010
0.073
0.075
0.136
0.087
0.084
0.025
0.054
H-14
-------
Table H-8. Continued
Source
Ag Blend
B960475
9-40-5
Ag Blend
B960510
9-43-10
Ag Blend
B960580
10-10-10
Ag Blend
B960584
10-20-20
Ag Blend
B960599
15-15-15
Ag Blend
B96061 1
19-19-19
Ag Blend
B960639
6-2-0
Ag Blend
B960708
7-27-1 1
Ag ammoniated
B960711
8-24-8
Ag Blend
B960713
1 0-20-1 0
Ag Blend
B960715
15-15-15
Ag Blend
B980726
19-19-19
AG Blend
B960820
26-9-9
%N
%P20B
%K20
9
40
5
9
43
10
10
10
10
10
20
20
15
15
15
19
19
19
6
2
0
7
27
11
8
24
8
10
20
10
15
15
15
19
19
19
26
9
9
Hg
mg/kg
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Ni
mg/kg
29.2
29.2
29.2
17.8
17.8
17.8
14.6
14.6
14.6
15.7
15.7
15.7
11.4
11.4
11.4
36.9
36.9
36.9
11.2
11.2
11.2
22.7
22.7
22.7
11.9
11.9
11.9
10.1
10.1
10.1
6.2
6.2
6.2
11.5
11.5
11.5
8
8
8
Yearly Hg addition in kg/ha at
Ib/A
124 N
84P20B
103K2O
206 N
173P20E
177 K20
414 N
252 P20S
534 K2O
kg/ha
,139N
94P20S
115K2O
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
ERR
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
231 N
194 P205
198 K20
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
ERR
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
464 N
~282PJ05
598 K2O
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
ERR
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Yearly Ni addition in kg/ha at
Ib/A
124 N
84P205
103 K2O
206 N
173P2Oa
177 K2O
414N
252 P20S
534 K20
kg/ha
139 N
94P205
115 KjO
0.045
0.007
0.067
0.027
0.004
0.020
0.020
0.014
0.017
0.022
0.007
0.009
0.011
0.007
0.009
0.027
0.018
0.022
0.026
0.053
ERR
0.045
0.008
0.024
0.021
0.005
0.017
0.014
0.005
0.012
0.006
0.004
0.005
0.008
0.006
0.007
0.004
0.008
0.010
231 N
194 P20t
198 K2O
0.075
0.014
0.116
0.046
0.008
0.035
0.034
0.028
0.029
0.036
0.015
0.016
0.018
0.015
0.015
0.045
0.038
0.038
0.043
0.109
ERR
0.075
0.016
0.041
0.034
0.010
0.029
0.023
0.010
0.020
0.010
0.008
0.008
0.014
0.012
0.012
0.007
0.017
0.018
464 N
282 P2O5
598 K20
0.151
0.021
0.349
0.092
0.012
0.106
0.068
0.041
0.087
0.073
0.022
0.047
0.035
0.021
0.045
0.090
0.055
0.116
0.087
0.158
ERR
0.150
0.024
0.123
0.069
0.014
0.089
0.047
0.014
0.060
0.019
0.012
0.025
0.028
0.017
0.036
0.014
0.025
0.053
H-15
-------
Table H-8. Continued
Source
Ag Blend
B960896
10-20-20
Ag Blend
B960900
10-20-20
Ag Blend
B960909
3-17-40
Ag Blend
B960912
3-17-40
Ag Blend
B960913
8-41-12
Ag Blend
B961058
8-17-34
Ag Blend
B961321
9-43-10
%N
%P20,
%K20
10
20
20
10
20
20
3
17
40
3
17
40
8
41
12
8
17
34
9
43
Hg
mg/kg
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Ni
8.6
8.6
8.6
85.7
85.7
85.7
5.7
5.7
5.7
12
12
12
14.8
14.8
14.8
8.9
8.9
8.9
13.3
13.3
Ib/A
124 N
84 P20B
103 K2O
206 N
173P20B
177K20
414 N
252 P20B
534 K20
kg/ha
139 N
94 P2O8
115 K20
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
231 N
194 P2OB
198 K20
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
464 N
282P20B
598 K20
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Ib/A
124 N
84 P20B
103 K20
206 N
173 P20B
177 K2O
kg/ha
139 N
94 P205
115K20
0.012
0.004
0.005
0.119
0.040
0.049
0.026
0.003
0.002
0.056
0.007
0.003
0.026
0.003
0.014
0.015
0.005
0.003
0.021
0.003
0.015
231 N
194P20B
198 K2O
0.020
0.008
0.009
0.198
0.083
0.085
0.044
0.007
0.003
0.092
0.014
0.006
0.043
0.007
0.024
0.026
0.010
0.005
0.034
0.006
0.026
414 N
252 P2QB
534 K2O
464 N
282 P20B
598 K2O
0.040
0.012
0.026
0.398
0.121
0.256
0.088
0.009
0.009
0.186
0.020
0.018
0.086
0.010
0.074
0.052
0.015
0.016
0.069
0.009
0.080
H-16
-------
Table H-9. Yearly V and Cu Additions to Soil (kg/ha) from NPK Fertilizers, Fertilizers
Applied for N, P, or K Content
Source
Ag Blend
B960243
19-19-19
Ag Blend
B960244
12-24-24
Ag Blend
B960249
7-35-1 2
Ag Blend
B960282
9-44-9
Ag Blend
B960325
10-21-15
Ag Blend
B960333
8-32-16
Ag Blend
B960389
19-19-19
Ag Blend
B96041 2
7-26-26
Ag Blend
B960418
19-19-19
Ag Blend
B960441
9-34-10
Ag Blend
B960442
9-3-10
Ag Blend
B960453
10-20-20
%N
%P20B
%K2O
19
19
19
12
24
24
7
35
12
9
44
9
10
21
15
8
32
16
19
19
19
7
26
26
19
19
19
9
34
10
9
3
10
10
20
20
V
mg/kg
85.2
85.2
85.2
119
119
119
116
116
116
163
163
163
87.7
87.7
87.7
126
126
126
77.7
77.7
77.7
79.4
79.4
79.4
97.8
97.8
97.8
121
121
121
159
159
159
67.1
67.1
67.1
Cu
nig/kg
25.6
25.6
25.6
49.3
49.3
49.3
45
45
45
30.1
30.1
30.1
10.2
10.2
10.2
22.2
22.2
22.2
0
0
0
26.2
26.2
26.2
13.7
13.7
13.7
16.3
16.3
16.3
6.6
6.6
6.6
16.4
16.4
16.4
Yearly V addition in kg/ha at
Ib/A
124 N "
84P20E
103 K20
206 N
173 P205
177K20
414 N
252 P2OS
534 K20
kg/ha
139 N
94 P20S
t15 K2O
0.062
0.042
0.052
0.138
0.047
0.057
0.230
0.031
0.111
0.252
0.035
0.208
0.122
0.039
0.067
0.219
0.037
0.091
0.057
0.038
0.047
0.158
0.029
0.035
0.072
0.048
0.059
0.187
0.033
0.139
0.246
0.498
0.183
0.093
0.032
0.039
231 N
194P205 '
198 K2O -
0.104
0.087
0.089
0.229
0.096
0.098
0.383
0.064
0.191
0.418
0.072
0.359
0.203
0.081
0.116
0.364
0.076
0.156
0.094
0.079
0.081
0.262
0.059
0.060
0.119
0.100
0.102
0.311
0.069
0.240
0.408
1.028
0.315
0.155
0.065
0.066
464 N
282 P205
598 K2O
0.208
0.126
0.268
0.460
0.140
0.297
0.769
0.093
0.578
0.840
0.104
1.083
0.407
0.118
0.350
0.731
0.111
0.471
0.190
0.115
0.245
0.526
0.086
0.183
0.239
0.145
0.308
0.624
0.100
0.724
0.820
1.495
0.951
0.311
0.095
0.201
Yearly Cu addition in kg/ha at
- Ib/A
124 N
84 P205
103K20
206 N
173 P206
177 K20
414 N
252 PjOs
534 K2O
kg/ha
139 N
94 P205
115K2O
0.019
0.013
0.015
0.057
0.019
0.024
0.089
0.012
0.043
0.046
0.006
0.038
0.014
0.005
0.008
0.039
0.007
0.016
0.000
0.000
0.000
0.052
0.009
0.012
0.010
0.007
0.008
0.025
0.005
0.019
0.010
0.021
0.008
0.023
0.008
0.009
231 N
194 P20B
198 K^O
0.031
0.026
0.027
0.095
0.040
0.041
0.149
0.025
0.074
0.077
0.013
0.066
0.024
0.009
0.013
0.064
0.013
0.027
0.000
0.000
0.000
0.086
0.020
0.020
0.017
0.014
0.014
0.042
0.009
0.032
0.017
0.043
0.013
0.038
0.016
0.016
464 N
282 P205
598 K2O
0.063
0.038
0.081
0.191
0.058
0.123
0.298
0.036
0.224
0.155
0.019
0.200
0.047
0.014
0.041
0.129
0.020
0.083
0.000
0.000
0.000
0.174
0.028
0.060
0.033
0.020
0.043
0.084
0.014
0.097
0.034
0.062
0.039
0.076
0.023
0.049
H-17
-------
Table H-9. Continued
Source
Ag Blend
B960475
9-40-5
Ag Blend
B960510
9-43-1 0
Ag Blend
B960580
10-10-10
Ag Blend
B960584
10-20-20
Ag Blend
B960599
15-15-15
Ag Blend
B96061 1
19-19-19
Ag Blend
B960639
6-2-0
Ag Blend
B960708
7-27-1 1
Ag ammoniatcd
B96071 1
8-24-8
Ag Blend
B960713
10-20-10
Ag Blend
B960715
15-15-15
Ag Blend
B980726
19-19-19
AG Blend
B9 60820
26-9-9
%N
%P205
%K20
9
40
5
9
43
10
10
10
10
10
20
20
15
15
15
19
19
19
6
2
0
7
27
11
8
24
8
10
20
10
15
15
15
19
19
19
26
9
9
V
mg/kg
130
130
130
136
136
136
68.8
68.8
68.8
83.4
83.4
83.4
73.2
73.2
73.2
47.2
47.2
47.2
18.6
18.6
18.6
99.2
99.2
99.2
47.3
47.3
47.3
68.9
68.9
68.9
49.2
49.2
49.2
85.1
85.1
85.1
61.6
61.6
61.6
Cu
90.5
90.5
90.5
7.1
7.1
7.1
13.6
13.6
13.6
10.6
10.6
10.6
7.2
7.2
7.2
3.9
3.9
3.9
24.3
24.3
24.3
544
544
544
13.6
13.6
13.6
32
32
32
3.9
3.9
3.9
7.9
7.9
7.9
14.4
14.4
14.4
Ib/A
124 N
84 P205
103 KjO
206 N
173P2OS
177K2O
kg/ha
139 N
94P205
115K2O
0.201
0.031
0.299
0.210
0.030
0.156
0.096
0.065
0.079
0.116
0.039
0.048
0.068
0.046
0.056
0.035
0.023
0.029
0.043
0.087
ERR
0.197
0.035
0.104
0.082
0.019
0.068
0.096
0.032
0.079
0.046
0.031
0.038
0.062
0.042
0.052
0.033
0.064
0.079
231 N
194 P205
198 K2O
0.334
0.063
0.515
0.349
0.061
0.269
0.159
0.133
0.136
0.193
0.081
0.083
0.113
0.095
0.097
0.057
0.048
0.049
0.072
0.180
ERR
0.327
0.071
0.179
0.137
0.038
0.117
0.159
0.067
0.136
0.076
0.064
0.065
0.103
0.087
0.089
0.055
0.133
0.136
414 N
252 P205
534 K20
464 N
282 P2O5
598 K2O
0.670
0.092
1.555
0.701
0.089
0.813
0.319
0.194
0.411
0.387
0.118
0.249
0.226
0.138
0.292
0.115
0.070
0.149
0.144
0.262
ERR
0.658
0.104
0.539
0.274
0.056
0.354
0.320
0.097
0.412
0.152
0.092
0.196
0.208
0.126
0.268
0.110
0.193
0.409
Ib/A
124 N
84 PZ06
103K2O
206 N
173 P20S
177K20
kg/ha
139 N
94 P205
115 K;,O
0.140
0.021
0.208
0.011
0.002
0.008
0.019
0.013
0.016
0.015
0.005
0.006
0.007
0.005
0.006
0.003
0.002
0.002
0.056
0.114
ERR
1.080
0.189
0.569
0.024
0.005
0.020
0.044
0.015
0.037
0.004
0.002
0.003
0.006
0.004
0.005
0.008
0.015
0.018
231 N
194P20B
198 K2O
0.232
0.044
0.358
0.018
0.003
0.014
0.031
0.026
0.027
0.024
0.010
0.010
0.011
0.009
0.010
0.005
0.004
0.004
0.094
0.236
ERR
1.795
0.391
0.979
0.039
0.011
0.034
0.074
0.031
0.063
0.006
0.005
0.005
0.010
0.008
0.008
0.013
0.031
0.032
414 N
252 PZO5
534 K;,0
464 N
282 P2O5
598 K2O
0.467
0.064
1.082
0.037
0.005
0.042
0.063
0.038
0.081
0.049
0.015
0.032
0.022
0.014
0.029
0.010
0.006
0.012
0.188
0.343
ERR
3.606
0.568
2.957
0.079
0.016
0.102
0.148
0.045
0.191
0.012
0.007
0.016
0.019
0.012
0.025
0.026
0.045
0.096
H-18
-------
Table H-9. Continued
Source
Ag Blend
B960896
10-20-20
Ag Blend
B960900
10-20-20
Ag Blend
B960909
3-17-40
Ag Blend
B960912
3-17-40
Ag Blend
B960913
8-41-12
Ag Blend
B961058
8-17-34
Ag Blend
B961321
9-43-10
%N
%P208
%KZO
10
20
20
10
20
20
3
17
40
3
17
40
8
41
12
8
17
34
9
43
10
V
mg/kg
64.5
64.5
64.5
70.3
70.3
70.3
64.2
64.2
64.2
138
138
138
18.4
18.4
18.4
27.8
27.8
27.8
152
152
152
Cu
mg/kg.
25.5
25.5
25.5
12.9
12.9
12.9
4.9
4.9
4.9
7.8
7.8
7.8
454
454
454
5
5
5
60.1
60.1
60.1
Yearly V addition in kg/ha at
Ib/A -
124 N
84 P206'
* 103K2O
206 N
173 P20B
177 K2O
4T4N
252T>205
534 K2O
" kg/ha
139 N
94 PjP,,
1 15 K2O
0.090
0.030
0.037
0.098
0.033
0.040
0.297
0.035
0.018
0.639
0.076
0.040
0.032
0.004
0.018
0.048
0.015
0.009
0.235
0.033
0.175
231 N
194 P2O5
198 K2O
0.149
0.063
0.064
0.162
0.068
0.070
0.494
0.073
0.032
1.063
0.157
0.068
0.053
0.009
0.030
0.080
0.032
0.016
0.390
0.069
0.301
464 N
282 PZ0S
598 K2O
0.299
0.091
0.193
0.326
0.099
0.210
0.993
0.106
0.096
2.134
0.229
0.206
0.107
0.013
0.092
0.161
0.046
0.049
0.784
0.100
0.909
- Yearly Cu addition in kg/ha at
Ib/A
124 N
84 P;.06
103 KZO
206 N
173 P20S
177 K20
414 N
252 P2O5
534 K20
kg/ha
139 N
94P20S
115K20
0.035
0.012
0.015
0.018
0.006
0.007
0.023
0.003
0.001
0.036
0.004
0.002
0.789
0.104
0.435
0.009
0.003
0.002
0.093
0.013
0.069
231 N
194P205
198 K20
0.059
0.025
0.025
0.030
0.013
0.013
0.038
0.006
0.002
0.060
0.009
0.004
1.311
0.215
0.749
0.014
0.006
0.003
0.154
0.027
0.119
464 N
282 P2O5
598 K20
0.118
0.036
0.076
0.060
0.018
0.039
0.076
0.008
0.007
0.121
0.013
0.012
2.633
0.312
2.262
0.029
0.008
0.009
0.310
0.039
0.359
H-19
-------
Table H-10. Yearly Zn Additions to Soil (kg/ha) from NPK Fertilizers, Fertilizers Applied
for N, P, or K Content
Source
Ag Blend B960243
19-19-19
Ag Blend B960244
12-24-24
Ag Blend B960249
7-35-12
Ag Blend B960282
9-44-9
Ag Blend B960325
10-21-15
Ag Blend B960333
8-32-16
Ag Blend B960389
19-19-19
AgB!endB960412
7-26-26
Ag Blend B96041 8
19-19-19
Ag Blend B960441
9-34-10
Ag Blend B960442
9-3-10
Ag Blend B960453
10-20-20
%N
%P208
%K20
19
19
19
12
24
24
7
35
12
9
44
9
10
21
15
8
32
16
19
19
19
7
26
26
19
19
19
9
34
10
9
3
10
10
20
20
Zn
19
36
36
44.5
44.5
44.5
55.1
55.1
55.1
49.8
49.8
49.8
872
872
872
43.9
43.9
43.9
0
0
0
37
37
37
33.1
33.1
33.1
34.6
34.6
34.6
53.1
53.1
53.1
60.9
60.9
60.9
Ib/A
124 N
84 P205
103 K2O
206 N
173P20S
177K20
414 N
252P2O5 .
534 K2O
kg/Ida
139 N
94 P206
115K2O
0.026
0.018
0.022
0.052
0.017
0.021
0.109
0.015
0.053
0.077
0.011
0.064
1.212
0.390
0.669
0.076
0.013
0.032
0.000
0.000
0.000
0.073
0.013
0.016
0.024
0.016
0.020
0.053
0.010
0.040
0.082
0.166
0.061
0.085
0.029
0.035
231 N
194P2OS
198 K2O
0.044
0.037
0.038
0.086
0.036
0.037
0.182
0.031
0.091
0.128
0.022
0.110
2.014
0.806
1.151
0.127
0.027
0.054
0.000
0.000
0.000
0.122
0.028
0.028
0.040
0.034
0.034
0.089
0.020
0.069
0.136
0.343
0.105
0.141
0.059
0.060
464 N
282 P2O5
598 K2O
0.088
0.053
0.113
0.172
0.052
0.111
0.365
0.044
0.275
0.257
0.032
0.331
4.046
1.171
3.476
0.255
0.039
0.164
0.000
0.000
0.000
0.245
0.040
0.085
0.081
0.049
0.104
0.178
0.029
0.207
0.274
0.499
0.318
0.283
0.086
0.182
H-20
-------
Table H-10. Continued
Source
Ag Blend B960475
9-40-5
Ag Blend B9605 10
9-43-10
Ag Blend B960580
10-10-10
Ag Blend B960584
10-20-20
Ag Blend B960599
15-15-15
Ag Blend B960611
19-19-19
Ag Blend B960639
6-2-0
Ag Blend B960708
7-27-1 1
Ag ammoniated B96071 1
8-24-8
Ag Blend B960713
10-20-10
Ag Blend B96071 5
15-15-15
Ag Blend B980726
19-19-19
AG Blend B960820
26-9-9
, %N
%P20S
%K20
9
40
5
9
43
10
10
10
10
10
20
20
15
15
15
19
19
19
6
2
0
7
27
11
8
24
8
10
20
10
15
15
15
19
19
19
26
9
9
-
Zn
mg/kg
4442
4442
4442
66.2
66.2
66.2
803
803
803
0.48
0.48
0.48
0.55
0.55
0.55
6.93
6.93
6.93
1.1
1.1
1.1
57.8
57.8
57.8
177
177
177
84.5
84.5
84.5
0.3
0.3
0.3
74.5
74.5
74.5
45.7
45.7
45.7
Yearly Zn addition in kg/ha at
Ib/A
, 124 N
84 P205
103 K2O
-
139 N
94 P20S
115 K2O
6.860
1.044
10.217
0.102
0.014
0.076
1.116
0.755
0.923
0.001
0.000
0.000
0.001
0.000
0.000
0.005
0.003
0.004
0.003
0.005
ERR
0.115
0.020
0.060
0.308
0.069
0.254
0.117
0.040
0.097
0.000
0.000
0.000
0.055
0.037
0.045
0.024
0.048
0.058
206 N
173 P2OS
177 K..O
kg/ha
231 N
194P205
198 K2O
1 1 .401
2.154
17.590
0.170
0.030
0.131
1.855
1.558
1.590
0.001
0.000
0.000
0.001
0.001
0.001
0.008
0.007
0.007
0.004
0.011
ERR
0.191
0.042
0.104
0.511
0.143
0.438
0.195
0.082
0.167
0.000
0.000
0.000
0.091
0.076
0.078
0.041
0.099
0.101
414 IM
252P205
, 534 K2O
464 N
282 P20S
598 K2O
22.901
3.132
53.126
0.341
0.043
0.396
3.726
2.264
4.802
0.002
0.001
0.001
0.002
0.001
0.002
0.017
0.010
0.022
0.009
0.016
ERR
0.383
0.060
0.314
1.027
0.208
1.323
0.392
0.119
0.505
0.001
0.001
0.001
0.182
0.111
0.234
0.082
0.143
0.304
H-21
-------
Table H-10. Continued
Source
Ag Blend B960896
10-20-20
Ag Blend B960900
10-20-20
Ag Blend B960909
3-17-40
Ag Blend B9609 12
3-17-40
Ag Blend B9609 13
8-41-12
Ag Blend B961058
8-17-34
Ag Blend B961 321
9-43-10
%N
%P205
%K2O
10
20
20
10
20
20
3
17
40
3
17
40
8
41
12
8
17
34
9
43
10
Zn
mg/kg
23.6
23.6
23.6
25.5
25.5
25.5
39.5
39.5
39.5
52.2
52.2
52.2
484
484
484
18.3
18.3
18.3
44.8
44.8
44 8
Ye&riy Zn Qddition in kg/hs at , •
Ib/A
124 N
84P205
103 K20
206 N
173P2O5
177 K2O
414 N
252 P2O6
534 K20
kg/ha
139 N
94 P2O5
115 K20
0.033
0.011
0.014
0.035
0.012
0.015
0.183
0.022
0.011
0.242
0.029
0.015
0.841
0.111
0.464
0.032
0.010
0.006
0.069
0.010
0.052
231 N
194P2OS
198 K20
0.055
0.023
0.023
0.059
0.025
0.025
0.304
0.045
0.020
0.402
0.060
0.026
1.398
0.229
0.799
0.053
0.021
0.011
0.115
0.020
0.089
464 N
282 PA
598 K20
0.110
0.033
0.071
0.118
0.036
0.076
0.611
0.066
0.059
0.807
0.087
0.078
2.807
0.333
2.412
0.106
0.030
0.032
0.231
0.029
0.268
H-22
-------
Table H-11. Summary Statistics for Application of NPK Blends for either N, P, or K
Content
Metal
Cd
Pb
As
Application
Rate
Average
High
Maximum
Average
High
Maximum
Average
High
Maximum
Nutrient
Applied3
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
No. of
Samples
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
Yearly Metal Addition to Soil, kg/ha
Mean
0.007
0.003
0.004
0.011
0.006
0.007
0.022
0.009
0.022
0.037
0.008
0.040
0.061
0.016
0.069
0.123
0.023
0.209
0.012
0.004
0.006
0.019
0.009
0.011
0.039
0.013
0.033
Median
0.005
0.001
0.002
0.008
0.003
0.004
0.016
0.004
0.011
0.005
0.002
0.002
0.009
0.003
0.004
0.017
0.005
0.012
0.010
0.003
0.005
0.017
0.006
0.008
0.034
0.009
0.025
„ Range
( 0.001 , 0.022 )
{ 0.000 , 0.027 )
( 0.000 , 0.033 )
(0.002 , 0.037)
( 0.001 , 0.055 )
( 0.001 , 0.057 )
( 0.004 , 0.074 )
( 0.001 , 0.080 )
(0.002 , 0.171 )
(0.001 , 0.652)
( 0.000 , 0.099 )
( 0.001 , 0.971 )
(0.001 , 1.083)
( 0.001 , 0.205 )
(0.001 , 1.671 )
(0.003 , 2.176)
( 0.001 , 0.298 )
( 0.003 , 5.047 )
( 0.000 , 0.049 )
( 0.000 , 0.029 )
( 0.000 , 0.023 )
( 0.000 , 0.081 )
( 0.000 , 0.059 )
( 0.000 , 0.040 )
(0.000 , 0.162)
( 0.000 , 0.086 )
(0.000 , 0.120)
H-23
-------
Table H-11. Continued
Metal
Cr
Hg
Ni
Application
Rate
Average
High
Maximum
Average
High
Maximum
Average
High
Maximum
Nutrient
Applied*
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
No. of
Samples
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
Yearly Metal Addition to Soil, kg/ha
Mean
0.101
0.041
0.059
0.168
0.084
0.101
0.337
0.122
0.304
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.024
0.010
0.014
0.041
0.020
0.024
0.081
0.029
0.073
Median
0.099
0.023
0.044
0.165
0.047
0.075
0.331
0.068
0.227
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.021
0.006
0.010
0.035
0.012
0.018
0.071
0.017
0.054
Range
( 0.018 , 0.312 )
(0.015 , 0.278)
(0.010 , 0.248)
(0.030 , 0.519 )
(0.031 , 0.574)
(0.017 , 0.427)
( 0.061 , 1 .042 )
( 0.046 , 0.835 )
(0.051 , 1.290)
( 0.000 , 0.000 )
(0.000 , 0.000)
( 0.000 , 0.000 )
( 0.000 , 0.000 )
( 0.000 , 0.000 )
( 0.000 , 0.000 )
( 0.000 , 0.001 )
( 0.000 , 0.000 )
( 0.000 , 0.001 )
(0.000 , 0.119 )
( 0.000 , 0.053 )
( 0.000 , 0.067 )
( 0.000 , 0.198 )
(0.000 , 0.109 )
(0.000 , 0.116)
( 0.000 , 0.398 )
(0.000 , 0.158)
( 0.000 , 0.349 )
H-24
-------
Table H-11. Continued
Metal
V
Cu
Zn
Application
Rate
Average
High
Maximum
Average
High
Maximum
Average
High
Maximum
,
Nutrient
Applied3
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
N
P
K
-
No. of
Samples -
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
32
32
31
, ~ Yearly Metal Addition to Soil, kg/ha
Mean
0.142
0.053
0.081
0.237
0.108
0.139
0.475
0.158
0.421
0.088
0.020
0.053
0.146
0.042
0.090
0.292
0.061
0.273
0.375
0.092
0.430
0.624
0.190
0.741
1.253
0.276
2.238
Median
0.097
0.035
0.057
0.161
0.072
0.098
0.323
0.104
0.297
0.023
0.007
0.012
0.038
0.014
0.020
0.076
0.020
0.060
0.071
0.016
0.035
0.119
0.032
0.060
0.238
0.047
0.182
Range
{ 0.032 , 0.639 )
{ 0.004 , 0.498 }
(0.009 , 0.299)
(0.053 , 1.063)
( 0.009 , 1 .028 )
(0.016 , 0.515 )
(0.107 , 2.134)
(0.013 , 1.495 )
(0.049 , 1.555 )
( 0.000 , 1 .080 )
(0.000 , 0.189)
( 0.000 , 0.569 )
(0.000 , 1.795 )
( 0.000 , 0.391 )
( 0.000 , 0.979 )
( 0.000 , 3.606 )
( O.OOO , 0.568 )
( 0.000 , 2.957 )
( 0.000 , 6.860 )
( 0.000 , 1 .044 )
(0.000 , 10.217 )
( 0.000 , 1 1 .401 )
(0.000 , 2.154)
(0.000 , 17.590)
( 0.000 , 22.901 )
(0.000 , 3.132)
(0.000 , 53.126)
a) Application rates for N, P, and K, see Table 5-1.
H-25
-------
------- |