vEPA
  Agency
  Preliminary Data Summary for
  Industrial  Container and Drum
  Cleaning Industry
  June 2002

-------
U.S. Environmental Protection Agency
       Office of Water (4303T)
   1200 Pennsylvania Avenue, NW
       Washington, DC 20460
         EPA-821-R-02-011

-------
&EPA
   United States

   Agency
    Preliminary Data Summary for
    Industrial Container and Drum
    Cleaning Industry
    EPA821-R-02-011
    Christine Todd Whitman
    Administrator

    G. Tracy Mehan, III
    Assistant Administrator, Office of Water

    Geoffrey H. Grubbs
    Director, Office of Science and Technology

    Sheila E. Frace
    Director, Engineering and Analysis Division

    Donald F. Anderson
    Acting Chief, Chemical Engineering Branch

    Jan Matuszko
    Engineering Technical Coordinator

    Yu-Ting Guilaran and John Tinger
    Project Engineers

    James Covington
    Economist

    June 2002

    U.S. Environmental Protection Agency, Office of Water
    Washington, DC 20460

-------
                      ACKNOWLEDGMENT AND DISCLAIMER

             This report has been reviewed and approved for publication by the Engineering
and Analysis Division, Office of Science and Technology. The Agency would like to
acknowledge the contributions of the Engineering and Analysis Division staff toward the
development of this technical document.

             This report was prepared with the technical support of Eastern Research Group,
Inc. under the direction and review of the Office of Science and Technology. Neither the United
States Government nor any of its employees, contractors, subcontractors, or their employees
make any warrant, expressed or implied, or assume any legal liability or responsibility for any
third party's use of or the results of such use of any information, apparatus, product, or process
discussed in this report, or represents that its use by such party would not infringe on privately
owned rights.

             The primary contact regarding questions or comments on this document is:

                           Yu-Ting Guilaran
                           U.S.  EPA Engineering and Analysis Division (4303T)
                           1200 Pennsylvania Avenue NW
                           Washington, DC 20460

                           (202) 566-1072 (telephone)
                           (202) 566-1053 (fax)
                           guilaran.yu-ting@epa.gov

-------
                               TABLE OF CONTENTS

                                                                                 Page

1.0          EXECUTIVE SUMMARY	1-1

2.0          INTRODUCTION	2-1

3.0          DATA COLLECTION ACTIVITIES	3-1
             3.1    1989 Preliminary Data Summary for the Drum Reconditioning
                    Industry  	3-1
             3.2    Transportation Equipment Cleaning Industry Record	3-2
             3.3    EPA Site  Visits/Sampling in 2000	3-3
             3.4    Industry-Submitted Data 	3-5
             3.5    Literature 	3-5
             3.6    Other Data Sources 	3-6
             3.7    References  	3-6

4.0          INDUSTRY DESCRIPTION	4-1
             4.1    ICDC Industry Overview	4-1
                    4.1.1  Size of the Industry and Geographical Location 	4-1
                    4.1.2  Types of ICDC Facilities	4-4
             4.2    Cleaning/Reconditioning Process  	4-5
                    4.2.1  Drum Washing	4-5
                    4.2.2  Drum Burning 	4-10
                    4.2.3  IBC Cleaning/Reconditioning  	4-12
             4.3    Cargo Types Cleaned	4-15
             4.4    Chemical Cleaning Solutions	4-17
             4.5    References  	4-17

5.0          WATER USE AND WASTEWATER CHARACTERIZATION 	5-1
             5.1    Water Use and Sources of Wastewater  	5-1
                    5.1.1  Drum Washing	5-2
                    5.1.2  Drum Burning 	5-3
                    5.1.3  roC Cleaning/Reconditioning  	5-4
             5.2    Wastewater Discharge Practices  	5-5
             5.3    Water Reuse and Recycling	5-7
             5.4    Wastewater Characterization	5-7
                    5.4.1  Steel Drum Washing 	5-8
                    5.4.2  Plastic Drum and IBC Washing	5-12
                    5.4.3  Steel Drum Burning	5-13
             5.5    References  	5-14

-------
                         TABLE OF CONTENTS (Continued)

                                                                                  Page
6.0          POLLUTION PREVENTION AND WASTE WATER TREATMENT TECHNOLOGIES ... 6-1
             6.1    Pollution Prevention Controls	6-2
                    6.1.1  Heel Reduction	6-2
                    6.1.2  Heel Removal	6-5
                    6.1.3  Reduction in the Amount and Toxicity of Chemical
                          Cleaning Solutions	6-6
                    6.1.4  Good Housekeeping Practices	6-8
             6.2    Flow Reduction Technologies	6-9
                    6.2.1  Process Modifications  	6-10
                    6.2.2  Cleaning Without the Use of Water	6-11
                    6.2.3  Cascade Rinsing	6-12
                    6.2.4  Recirculated Rinse Water 	6-13
                    6.2.5  Treated Waste water Recycle and Reuse  	6-14
             6.3    End-of-Pipe Wastewater Treatment Technologies 	6-15
                    6.3.1  Equalization	6-16
                    6.3.2  pH Adjustment	6-16
                    6.3.3  Gravity Settling  	6-17
                    6.3.4  Oil/Water Separation	6-17
                    6.3.5  Chemical Precipitation	6-18
                    6.3.6  Clarification	6-19
                    6.3.7  Air Flotation	6-20
                    6.3.8  Sludge Dewatering	6-21
             6.4    Wastewater Treatment Performance Data	6-22
                    6.4.1  Oil/Water Separation	6-23
                    6.4.2  Chemical Precipitation Followed by Air Flotation  	6-23
             6.5    References  	6-24

7.0          COMPARISON OF THE DRUM RECONDITIONING AND TRANSPORTATION
             EQUIPMENT CLEANING INDUSTRIES	7-1
             7.1    Size of the Industry  	7-2
             7.2    Cleaning/Reconditioning Processes	7-3
                    7.2.1  Drum Washing and Tank Cleaning	7-3
                    7.2.2  Drum Burning and Tank Cleaning	7-6
                    7.2.3  IBC Cleaning/Reconditioning at Drum Washing and Tank
                          Cleaning Facilities	7-6
             7.3    Cargo Types Cleaned	7-8
             7.4    Water Use and Wastewater Generation	7-9
             7.5    Wastewater Characteristics 	7-11
             7.6    Pollution Prevention and Wastewater Treatment Technologies 	7-14
             7.7    References  	7-15
                                           11

-------
                        TABLE OF CONTENTS (Continued)

                                                                              Page

8.0          POLLUTANT LOADINGS AND COSTS TO MANAGE ICDC WASTEWATER	8-1
             8.1    Estimated Pollutant Loadings 	8-1
             8.2    Estimated Costs	8-5
             8.3    References  	8-7

9.0          TRENDS IN THE INDUSTRY 	9-1
             9.1    ICDC Industry Size  	9-1
             9.2    Drum and Container Recycling	9-5
             9.3    Cleaning/Reconditioning Process  	9-8
             9.4    Pollution Prevention and Wastewater Treatment Technologies  	9-9
             9.5    References  	9-10

10.0         GLOSSARY 	10-1

Attachment A -      ง261.7 Residues of Hazardous Waste in Empty Containers
                                        in

-------
                                  LIST OF TABLES

                                                                                 Page

5-1          Comparison of Steel Drum Washing Raw Wastewater Characterization
             Data  	5-15

5-2          Summary of Raw Wastewater Characterization Data for Plastic Drum and
             mC Washing	5-21

5-3          Summary of Raw Wastewater Characterization Data for Steel Drum
             Burning  	5-23

6-1          Treatment Performance Data for Oil/Water Separation, Facility A	6-26

6-2          Treatment Performance Data for Chemical Precipitation Followed by Air
             Flotation, Facility B	6-28

6-3          Treatment Performance Data For Chemical Precipitation Followed by Air
             Flotation, Facility D	6-31

7-1          Comparison of Raw Wastewater Characterization Data for Drum
             Reconditioning and TEC Facilities  	7-16
                                          IV

-------
                                LIST OF FIGURES




                                                                               Page




4-1          General Drum Washing Process Diagram	4-19




4-2          General Drum Burning Process Diagram  	4-20




4-3          General IBC Cleaning Process Diagram 	4-21




5-1          Water Use in ICDC Operations	5-25

-------
                                                               Section 1.0 - Executive Summary
i.o           EXECUTIVE SUMMARY

              This Industry Profile Report provides information about the Industrial Container
and Drum Cleaning (ICDC) industry, including the practices and technologies used by the
industry to control pollutant discharges to U.S. surface waters and publicly-owned treatment
works (POTW).  EPA conducted this study of ICDC operations to increase its understanding of
the industry and to provide data to facilitate a decision as to whether or not national categorical
effluent limitations guidelines and standards should be developed for this category of
dischargers.

              The ICDC industry includes facilities that clean and recondition metal and plastic
drums and intermediate bulk containers (IBCs) for resale, reuse, or disposal. ICDC facilities can
be further classified as facilities that either burn open-head steel drums or wash plastic or tight-
head (i.e., bung-type) steel drums and IBCs. Most ICDC facilities purchase used drums or
containers that they clean and recondition for resale.

              EPA estimates a total ICDC industry population of 291 facilities.  These include
an estimated 118 ICDC facilities that do not clean transportation equipment, and an estimated
173 ICDC facilities that also clean transportation equipment (based on 1994 data). Available
data suggest that IBC use and reconditioning has grown significantly in the  1990s, and continued
growth is expected in the future. Both transportation equipment cleaning (TEC) facilities and
drum reconditioning facilities consider the IBC cleaning business as an important growth market;
therefore, ICDC industry growth consists of installing new IBC washing lines at existing drum
washing and TEC facilities. Future growth or decline in the drum reconditioning market is
expected to equal growth or decline in the general chemical industry.

              ICDC facilities often report under 1987 Standard Industrial Classification code
7699 (Repair Shops and Related Services, Not Elsewhere Classified). The Reusable Industrial
Packaging Association (RIPA) estimates that 60% of their member ICDC facilities (i.e., ICDC
facilities that do not clean transportation equipment) are classified as small businesses (size

                                           1-1

-------
                                                               Section 1.0 - Executive Summary
cutoff unknown).  In contrast, EPA estimates 30% of transportation equipment cleaning facilities
(which include at least 173 ICDC facilities) are small businesses (annual revenues less than $5
million).

             EPA estimates total production by the ICDC industry as follows:
Container Type
Steel Drams
Plastic Drams
IBCs
Number Reconditioned/Year
1 1.0 million tight-head
20.2 million open-head
7.6 million tight-head
664,000 open-head
500,000 plastic and steel
              The most significant uses of water associated with drum and container washing
operations include interior preflush, hot water washes and rinses, exterior washing, and
formulation of cleaning solutions.  Wastewater is generated primarily through drum and IBC
washes and rinses. At drum burning facilities, water is used mainly in the quenching stage of the
drum burning process, and most quench water is lost to evaporation. Some drum burning
facilities rinse  drums prior to painting; at these facilities, rinse water is the predominant water use
and source of wastewater.  Other wastewater sources at ICDC facilities include leak testing, air
pollution scrubber wastewater, paint booth water curtain wastewater, and storm water runoff.

              EPA believes that most ICDC facilities discharge ICDC wastewater and that all or
almost all of these facilities discharge indirectly to a POTW. EPA has not identified any
facilities that discharge directly to  surface waters. EPA also believes that a portion of the
industry achieves zero discharge by hauling the wastewater to a centralized waste treatment
facility,  or disposing of the wastewater by land application or evaporation.  Alternatively, some
ICDC facilities achieve zero discharge by recycling or reusing 100% of its wastewater.  EPA
estimates that the total annual volume of wastewater generated by the ICDC industry is 295
million gallons, including 200 million gallons from drum washing, 45 million gallons from drum
burning, and 50 million gallons from IBC cleaning.
                                           1-2

-------
                                                               Section 1.0 - Executive Summary
              Primary sources of pollutants in ICDC wastewater include residual material, heel,
in the drums and containers, as well as carry-over and spent chemical cleaning solutions. Drums
and IBCs are used to transport thousands of different cargos, including oil, solvents, paint, resins,
chemicals, lacquers and varnishes, adhesives, cleaners, and food. Open-head drums are better
suited to transport viscous liquids, powders, or slurries than tight-head drums and IBCs.

              For this study, EPA conducted site visits to three drum cleaning and
reconditioning facilities, including one facility that also cleans plastic containers, in order to
assess ICDC wastewater characteristics.  In addition, in 1989, EPA completed a preliminary data
summary for the drum reconditioning industry. Based on the sampling results from both studies,
EPA detected over 100 pollutants in ICDC wastewater, including volatile and semivolatile
organics, dioxins and furans, pesticides and herbicides, metals, and classical pollutants.  In
general, except for dioxins and furans, pollutant concentrations in steel drum washing wastewater
are comparable to or greater than those in steel drum burning wastewater. In general, pollutant
concentrations in plastic drum and IBC cleaning wastewater are significantly less then those in
steel drum washing and steel drum burning wastewaters.  Raw wastewater pollutant loadings (in
pounds) are predominantly (80% to 99%) contributed by classical pollutants such as chemical
oxygen demand, solids, oil and grease, and biochemical oxygen demand. Metals contributed
approximately 1% to 20% of raw wastewater pollutant loadings, and volatile and semivolatile
organics contributed approximately 0.2% to 3% of pollutant loadings.  EPA estimates that raw
wastewater pollutant loadings for the ICDC industry range from 46 million to 77 million pound-
equivalents per year.

              End-of-pipe wastewater treatment technologies commonly used by ICDC facilities
visited in 2000 and in the mid-1980s include equalization, pH adjustment, gravity settling,
oil/water separation; chemical precipitation followed by clarification or air flotation, and sludge
dewatering.  More than half of respondents to a 2000 survey of RIP A members reported having
on-site wastewater treatment.  However, the survey responses do not provide specific treatment
technologies used by these facilities.
                                           1-3

-------
                                                                     Section 2.0 - Introduction
2.0           INTRODUCTION

              Effluent limitations guidelines and standards (or "effluent guidelines") are
technology-based national standards that are developed by EPA on an industry-by-industry basis,
and are intended to represent the greatest pollutant reductions that are economically achievable
for an industry. These limits are applied uniformly to facilities within the industry scope defined
by the regulations regardless of the condition of the water body receiving the discharge. To
address variations inherent in certain industries, different numeric limitations may be set for
groups of facilities (i.e., subcategories) within the industry based on their fundamental
differences, such as manufacturing processes, products, water use, or wastewater pollutant
loadings. The limits and standards that are developed are used by permit writers and control
authorities (e.g., publicly owned treatment works or "POTW") to write wastewater discharge
permits.  The permits may be more stringent due to water quality considerations but may not be
less stringent than the national effluent guidelines. EPA has issued national technology-based
effluent guidelines for over 50 industries.

              In the mid-1980s, EPA conducted studies of the drum reconditioning and the
transportation equipment cleaning (TEC) industries to determine whether national categorical
effluent limitations guidelines and standards should be developed for these categories of
dischargers.  In the case of the TEC industry, EPA promulgated effluent limitations guidelines
and standards in June 2000 (65 FR 49665). During development of the TEC rule, information
submitted by commenters indicated that there was some overlap in the TEC and the drum
reconditioning industries. Specifically, intermediate bulk containers (IBCs), which are portable
plastic and metal containers with 450 liters (199 gallons) to 3,000 liters (793 gallons) capacity,
were cleaned by facilities in both industries. This was a significant finding because the number
of IBC cleanings has increased dramatically since the early 1990s. In the case of the drum
reconditioning industry, EPA concluded at that time that the industry did not merit national
regulation.  In addition, for the drum reconditioning industry study in the mid-1980s, EPA did
not collect any data on IBC cleaning because so few IBCs were being used by the industry at that
time.
                                           2-1

-------
                                                                     Section 2.0 - Introduction
             EPA had originally considered including IBCs in the scope of the TEC rule
because many TEC facilities also clean IBCs. EPA obtained some IBC data from the data
collection phase of the rule (through screener and detailed questionnaires) in 1994. EPA also
received public comments on IBCs during proposal regarding their similarities and differences to
tanks versus drums, and performed site visits, at the request of commenters, at two TEC facilities
that also clean and recondition IBCs. IBC wastewater was later removed from the scope of the
TEC rule because EPA's assessment suggested IBC cleaning wastewater was more similar to
drum cleaning wastewater than to TEC wastewater.

             Currently, facilities that clean industrial drums and containers may be regulated
under other effluent guidelines. For example, manufacturing facilities covered by other
categorical limitations and standards may clean and recondition drums and containers. In
addition, under the Metal Products and Machinery (MP&M) rule which was proposed on January
3, 2001  (66 FR 424), EPA proposed and requested comment on including wastewater generated
by metal drum and IBC reconditioning/refurbishing in the scope of the MP&M rule.  The MP&M
rule proposed to cover wastewater generated by the unit operations performed on metal drums
and/or IBCs such as chaining, caustic washing, acid cleaning, acid etching, impact deformation,
leak testing, corrosion inhibition, shot blasting, and painting.  In the proposal,  the Agency
considers facilities that perform these operations as part of the Stationary Industrial Equipment
sector under the MP&M rule. EPA is currently evaluating comments submitted in response to
the proposed MP&M rule. Alternatively, EPA is also evaluating regulating facilities that
recondition/refurbish and  clean metal and plastic drums and containers such as IBCs as a separate
industrial category, referred to as the industrial container and drum cleaning (ICDC) industry.

             The U.S. Environmental Protection Agency (EPA) is required by Section 301(d)
of the Federal Water Pollution Control Act Amendments of 1972 and 1977  (the "Act") to review
and revise every five years, if appropriate, effluent limitations promulgated pursuant to Sections
301,  304, and 306. EPA conducted this study of ICDC operations to increase  its understanding
of the industry and to provide data to facilitate a decision as to whether or not  national
categorical effluent limitations guidelines and standards should be developed for this category of
                                          2-2

-------
                                                                     Section 2.0 - Introduction
dischargers. EPA collected and reviewed data from numerous sources to increase its
understanding of the following technical issues related to ICDC operations: ICDC processes,
wastewater generation, wastewater collection and handling, and pollution prevention/treatment
technologies. This document describes these findings in the sections listed below. Note that if
EPA develops regulations for the ICDC industry, the Agency would cover metal drum and IBC
reconditioning/refurbishing facilities under the ICDC regulation rather than under the MP&M
regulation.

             •       Section 3.0 - Data-Collection Activities;
             •       Section 4.0 - Industry Description;
             •       Section 5.0 - Water Use and Wastewater Characterization;
             •       Section 6.0 - Pollution Prevention and Wastewater Treatment
                     Technologies;
             •       Section 7.0 - Comparison of the Drum Reconditioning and Transportation
                     Equipment Cleaning Industries;
             •       Section 8.0 - Compliance Costs and Pollutant Load Removals;
             •       Section 9.0 - Trends  in the Industry;
             •       Section 10.0 - Glossary.
                                           2-3

-------
                                                          Section 3.0 - Data-Collection Activities
3.0          DATA COLLECTION ACTIVITIES

             EPA collected data from a variety of sources, including existing data from
previous EPA data-collection efforts, industry-provided information, and site visit and sampling
data. Each of these data sources and its use in this study is discussed below, as well as the
quality assurance/quality control (QA/QC) and other data-editing procedures.  Summaries and
analyses of the data collected by EPA are presented in the remainder of this document.

             The following topics are discussed in this section:

             •       Section 3.1: Discusses the 1989 Preliminary Data Summary for the Drum
                    Reconditioning Industry;
             •       Section 3.2: Presents relevant information obtained from the
                    Transportation Equipment Cleaning Industry record;
             •       Section 3.3: Describes EPA site visits and sampling in 2000;
             •       Section 3.4: Discusses industry-submitted data;
             •       Section 3.5: Discusses technical literature;
             •       Section 3.6: Discusses other data sources; and
             •       Section 3.7: Presents the references used in this section.

3.1          1989 Preliminary Data Summary for the Drum Reconditioning Industry

             EPA conducted a study of the drum reconditioning industry and published a report
in 1989 documenting its findings. The  study was a result of findings from the Domestic Sewage
Study that the quantity of hazardous wastes generated and discharged to publicly owned
treatment works (POTWs) by the drum reconditioning industry was unknown. For this study,
EPA performed site visits at 16 facilities and sampling at four drum reconditioning facilities that
did not clean IBCs. Analyses were conducted for over 400 conventional, nonconventional,
priority, and non-priority pollutants. The study also relied heavily on responses to a 1980
                                           3-1

-------
                                                          Section 3.0 - Data-Collection Activities
membership survey conducted by the National Barrel and Drum Association (now the Reusable
Industrial Packaging Association (RIPA)).

              EPA used this study to collect information about the drum cleaning segment of
the ICDC industry, in particular, descriptions of drum cleaning and reconditioning operations to
supplement the industry description, and wastewater pollutant concentrations and loadings for
comparison to more recent sampling data and for use in estimating raw industry wastewater
pollutant loadings and pollutant removal estimates.

3.2           Transportation Equipment Cleaning Industry Record

              EPA promulgated effluent limitations guidelines and standards for the
Transportation Equipment Cleaning Point Source Category in August 2000 for the discharge of
pollutants into waters of the United States and into POTWs by existing and new facilities that
perform transportation equipment cleaning operations. Transportation equipment cleaning (TEC)
facilities are defined as those facilities that generate wastewater from cleaning the interior of tank
trucks, closed-top hopper trucks, rail tank cars, closed-top hopper rail cars, intermodal tank
containers, tank barges, closed-top hopper barges, and ocean/sea tankers used to transport
materials or cargos that come into direct contact with the tank or container interior.

              EPA searched the rulemaking record for this point  source category for information
on facilities that clean intermediate bulk containers (IBCs) in addition to other tanks or
containers (e.g., tank trucks). EPA had originally considered including IBCs in the scope of the
TEC rule.  EPA obtained  some IBC data from the data collection phase of the rule (through
screener and detailed questionnaires) in 1994. EPA also received public comments on IBCs
during proposal regarding their similarities and differences to tanks versus  drums, and at the
request of commenters performed site visits at two TEC facilities that also  clean and recondition
IBCs.  IBCs were later removed from the scope of the TEC rule because EPA's assessment
suggested IBC cleaning wastewater was more similar to drum cleaning wastewater than to TEC
wastewater.
                                           3-2

-------
                                                           Section 3.0 - Data-Collection Activities
3.3           EPA Site Visits/Sampling in 2000

              In order to increase its understanding of the ICDC industry, EPA conducted site
visits at representative ICDC facilities.  EPA used information collected from literature searches
and contact with trade association members to identify representative facilities for site visits.
RIP A worked with their membership to suggest three facilities willing to participate in EPA's
sampling program. In general, these facilities encompassed the range of ICDC operations,
wastewater characteristics, and wastewater treatment practices.  The first facility is in the eastern
United States and performs plastic drum and IBC washing. The second facility is in the
midwestern United States and performs steel drum washing and burning, and the third facility is
also in the midwestern United States and performs steel drum washing.

              Facility-specific selection criteria are contained in site visit reports (SVRs)
prepared for each facility visited by EPA. During the site visits, EPA collected the following
information:

              •     General facility information, including size and age of the facility;
              •     A general description of ICDC operations;
              •     Wastewater characterization information;
              •     On-site wastewater treatment data, including the treatment technologies
                    used, treatment costs, monitoring, discharge, and permit information; and
              •     Economic information.

This information is documented in the SVR for each facility.
                                           3-3

-------
                                                           Section 3.0 - Data-Collection Activities

              During the study, EPA conducted one-day sampling episodes at three facilities

(those facilities which EPA site visited) for raw wastewater characterization.  The Agency

collected the following grab samples during each site visit:


              •       Influent to wastewater treatment;
              •       Trip blanks; and
              •       Duplicate wastewater sample (one sample at one facility).


The following classes of pollutants were analyzed:
              •      Volatile organics;
              •      Semivolatile organics;
              •      Metals;
              •      Pesticides/herbicides;
              •      Dioxins/furans;
              •      Hexane extractable material (HEM);
              •      Silica-gel treated hexane extractable material (SGT-HEM);
              •      Biochemical oxygen demand, 5-day (BOD5);
              •      Total suspended solids (TSS);
              •      Chloride;
              •      Total organic carbon (TOC);
              •      Chemical oxygen demand (COD);
              •      Ammonia as nitrogen;
              •      Nitrate/nitrite as nitrogen;
              •      Total phosphorus; and
              •      Total cyanide.


Section 5.4 of this report discusses the results of EPA's wastewater characterization sampling

effort.
              During the sampling period, field measurements of temperature, pH, and free

chlorine were collected for each sample point. Waste stream flow, production data (e.g., number

and types of containers cleaned), and any information on non-ICDC operations that generate

wastewater that is commingled with ICDC wastewater were also collected when available.
                                           3-4

-------
                                                          Section 3.0 - Data-Collection Activities
             During each sampling episode, EPA collected and preserved samples and shipped
them to EPA contract laboratories for analysis. Sampling collection and preservation were
performed according to EPA protocols as specified in the Quality Assurance Project Plan for
Field Sampling and Analysis - Industrial Container and Drum Cleaning Industry (QAPP) (1) and
the BAD Sampling Guide (2).

             EPA collected the required types of quality control samples as specified in the
QAPP, such as trip blanks and duplicate samples, to verify the precision and accuracy of sample
analyses. The list of analytes for each episode, analytical methods used, and the analytical
results, including quality control samples, are included in the Sampling Episode Report prepared
for each sampling episode.

3.4          Industry-Submitted Data

             EPA made several contacts with members of RIP A, which is the primary trade
association for drum reconditioning facilities. EPA obtained anecdotal process and production
information, as well as facility wastewater discharge practices. EPA used the information
obtained from facilities and from RIPA throughout its analyses and incorporated it into this
report.

             RIPA also provided EPA a summary of the results of a membership survey
conducted in 2000 which included data for certain process operations, wastewater management,
and hazardous waste management. Surveys were sent to 98 RIPA members engaged in the
reprocessing of steel and plastic drums, as well as IBCs, and 36 survey responses were submitted.
3.5           Literature

              EPA performed several Internet and literature searches to identify applicable
materials for use in the study.  Literature sources were identified using the Dialogฎ service.  The
                                           3-5

-------
                                                          Section 3.0 - Data-Collection Activities
literature collected discussed trends in the ICDC industry and information about specific ICDC
facilities. EPA used these data to supplement this report.

              EPA reviewed the Hazardous Cargo Bulletin International Drum & IBC Guide,
which is an international directory of drum, IBC, and other industrial packaging producers to
determine population estimates.  EPA  also reviewed two industry trade journals, Hazardous
Cargo Bulletin and Modern Bulk Transporter, for additional information on the ICDC industry.

              EPA reviewed The Future of the IBC Market, a Hazardous Cargo Bulletin report,
which describes many aspects (technical and economic) of the IBC industry (3). EPA also
reviewed Assessment of Combustion Sources that Emit Polvchlorinated Dioxins and Furans,
Polycyclic Aromatic Hydrocarbons, and Other Toxic Compounds, which presents air emissions
characterization data for drum burning processes (4).

3.6           Other Data Sources

              EPA made several phone calls to facilities in the Hazardous Cargo Bulletin that
were not confirmed by RIPA as reconditioning facilities to verify whether they were ICDC
facilities and to assist in the preparation of population estimates.

3.7           References
             Eastern Research Group, Inc.  Quality Assurance Project Plan for Field Sampling
             and Analysis - Industrial Container and Drum Cleaning Industry, August 2000
             (DCND00104).
             Viar and Company. BAD Sampling Guide. June 1991 (DCND00115).
             Dixon, B., The Future of the IBC Market - A Hazardous Cargo Bulletin Report,
             Intapress Publishing Ltd. London, England, 2000 (DCN D00008).
                                          3-6

-------
                                                         Section 3.0 - Data-Collection Activities

4.            Midwest Research Institute. Assessment of Combustion Sources that Emit
             Polychlorinated Dioxins and Furans, Polycyclic Aromatic Hydrocarbons, and
             Other Toxic Compounds. PB94-129871. January 1992 (DCND00146).
                                          3-7

-------
                                                              Section 4.0 - Industry Description
4.0           INDUSTRY DESCRIPTION

              This section presents the following information about the ICDC industry:

              •      An overview of the industry (Section 4.1);
              •      Cleaning and reconditioning processes in the industry (Section 4.2);
              •      Cargo types cleaned by ICDC facilities (Section 4.3);
              •      Chemical cleaning solutions used by the industry (Section 4.4); and
              •      References for this section (Section 4.5).

Information presented in this section is based on data collected from the Reusable Industrial
Packaging Association (RIPA), EPA site visits and sampling episodes, and other non-EPA data
sources (see Section 3.0). Figures appear at the end of the section.

4.1           ICDC Industry Overview

              The ICDC industry includes facilities that clean and recondition metal and plastic
drums and intermediate bulk containers (IBCs) for resale, reuse, or disposal.  ICDC facilities can
be further classified as facilities that either burn open-head steel drums or wash plastic or tight-
head steel drums and/or IBCs. ICDC facilities may also clean and recondition other types of
containers,  such as fiber drums, cloth (i.e., flexible) IBCs, bottles, cans, and/or pails or
transportation equipment, such as tank trucks; however, this study focuses only on metal and
plastic drums and IBCs.

4.1.1          Size of the Industry and Geographical Location

              EPA obtained several sources that identify potential drum and IBC reconditioning
facilities. These sources include the Hazardous Cargo Bulletin Drum & IBC Guide, membership
listings from RIP A, industry-related Web sites, the Transportation Equipment Cleaning (TEC)
Point Source Category rulemaking record, and other sources discussed in Section 3.0. Based on
these  sources, EPA prepared two estimates, the sum of which represents the total  population of
                                          4-1

-------
                                                               Section 4.0 - Industry Description
the ICDC industry. These two estimates include the number of ICDC facilities that also clean
transportation equipment and the number that do not.

             Using these sources, EPA initially identified 152 potential ICDC facilities that do
not clean transportation equipment. Of these 152 facilities, 94 were confirmed by RIPA as drum
or container reconditioning facilities.  EPA then contacted 9 of the unconfirmed facilities to
determine whether they perform ICDC operations.  Based on information obtained from the
telephone contacts for both the listed facilities and for other facilities within the same corporate
structure, EPA identified 100 confirmed ICDC facilities that do not clean transportation
equipment. This represents the total confirmed industry population.  However, based on these
limited industry contacts, EPA believes that 50% of the unconfirmed ICDC facilities should be
included in the industry population estimate. Applying this percentage to the remaining 36
unconfirmed facilities results in a total estimated population of 118 ICDC facilities that do not
clean transportation equipment.  (References 1 and 2 describe EPA's industry population
estimates in greater detail.) The majority of these ICDC facilities are located in California,
Illinois, Ohio, and Texas.

             Based on the TEC rulemaking record, EPA estimates that 173 TEC facilities
(predominantly tank truck cleaning facilities) reconditioned at least one IBC in 1994.  (EPA is
aware of only one TEC facility that cleaned a small number of drums in 1993.)  Comments
submitted on the proposed TEC rule and the TEC Notice of Availability overwhelmingly indicate
that IBC use and reconditioning have grown significantly since 1994. Literature sources, such as
Hazardous Cargo Bulletin's "The Future of the IBC Market," verify the growth of the IBC
market (3). Therefore, EPA's total estimated population of 173 ICDC facilities that also clean
transportation equipment includes a low bias that EPA has not quantified.  TEC facilities that
clean tank trucks are distributed primarily within the industrial portions of the United States, with
relatively high concentrations  in the area between Houston and New  Orleans and within specific
urban areas such as Los Angeles, Chicago, and St. Louis.

             In summary, EPA estimates a total ICDC industry population of 291 facilities.
                                           4-2

-------
                                                               Section 4.0 - Industry Description
              Based on recent (non-statistical) membership surveys, RIPA estimates the
following numbers of drums and containers are reconditioned by their members (4)(5)(6). Note
that RIPA believes their survey data overestimates total industry production (6). For comparison,
the table below also presents Department of Commerce data for new drum manufacturing for
1998.

                          Production at Drum Reconditioning Facilities
Container Type
Plastic Drams
Steel Drams
IBCs
Number
Produced/Year
15 million
27.6 million
Unknown
Number
Reconditioned/Year
8.3 million
31.2 million
275,000
              Modern Bulk Transporter, an industry trade journal, estimates that currently at
least 500,000 IBCs are cleaned annually (7). Based on this estimate, EPA believes at least
225,000 IBCs are cleaned by TEC facilities (500,000 minus 275,000 cleaned by drum
reconditioners).  Therefore, the table below presents EPA's estimates of the current total
production by the ICDC industry.

                            Total Production by the ICDC Industry
Container Type
Plastic Drams
Steel Drams
IBCs
Number Reconditioned/Year
8.3 million
3 1.2 million
500,000
              EPA has no data on the number of drums and containers that are cleaned by
shippers and end users, which are generally not considered ICDC facilities because they perform
other industrial and commercial operations.  Shippers and end users are not included in EPA's
industry population estimates of ICDC facilities.  Drum and container manufacturers generally
perform manufacturing and drum and container reconditioning at separate facilities, and,
therefore, are considered ICDC facilities. EPA believes its ICDC industry population estimate
captures most of these facilities.  Finally, EPA has no data on the number of drums and
                                           4-3

-------
                                                               Section 4.0 - Industry Description
containers that are cleaned by fill/distribution centers, which may be considered ICDC facilities
depending on other industrial and commercial operations performed at these centers.  EPA did
not include fill/distribution centers in its industry population estimates of ICDC facilities.

4.1.2          Types of ICDC Facilities

              ICDC facilities often report under 1987 Standard Industrial Classification (SIC)
code 7699 (Repair Shops and Related Services, Not Elsewhere Classified). Most ICDC facilities
purchase used drums or containers that they clean and recondition for resale. Some ICDC
facilities commercially clean containers they do not own.  Other ICDC facilities lease new or
reconditioned drums or containers to clients and then clean and recondition the drums and
containers when they are returned by the end user.  Many new drum or container manufacturers
accept used drums and containers as part of product stewardship programs, and may clean and
recondition drums and containers themselves or broker used drums and containers to other
reconditi oners.

              RIPA estimates that approximately 60% of their member ICDC facilities (i.e.,
ICDC facilities that do not clean transportation equipment) are classified as small businesses
(size cutoff unknown). Only a few companies have multiple plants because the industry has only
recently begun consolidation. In contrast, EPA estimates 30% of TEC facilities (which include at
least 173 ICDC facilities) are small businesses (annual revenues less than $5,000,000) and many
companies have multiple plants.

              ICDC facilities are also classified as follows  by the types of cleaning operations
performed: washing facilities, burning facilities, and washing and burning facilities.  (Washing
and burning operations are described in detail in Section 4.2.)  Although statistically-reliable data
are not available, several industry surveys provide anecdotal information regarding the
distribution of ICDC facilities by cleaning operation.  For example, the National Barrel and
Drum Association (NAB AD A, now RIPA) conducted a membership survey in 1980 (8).  The
association sent surveys to 119  drum reconditi oner members, and received 49 survey responses.
                                           4-4

-------
                                                               Section 4.0 - Industry Description
Among these respondents, 39% were washing only facilities, 18% were burning only facilities,
and 43% were both washing and burning facilities. For the 2000 RIPA survey (6), the
association sent surveys to 98 drum reconditioner members, and received 36 survey responses.
Among these respondents, 56% were washing only facilities, 19% were burning only facilities,
and 25% are both washing and  burning facilities. All TEC facilities that also clean IBCs are
washing-only facilities.
4.2
Cleaning/Reconditioning Process
              Drums and IBCs are used to transport thousands of different cargos. The interiors
and exteriors of these containers are cleaned and reconditioned to prevent contamination of
materials from one cargo shipment to the next and to ensure the integrity of the containers. The
following processes are described in greater detail below: drum washing, drum burning, and IBC
cleaning/reconditioning. The table below summarizes the number of drums and IBCs cleaned
and reconditioned using these processes (5)(6).  Note that RIPA believes their survey data
overestimates total industry production and also skews steel drum production toward open-head
drums (6).
4.2.1
Process
Dram Washing
Dram Burning
IBC Cleaning/Reconditioning
Number of Drums/IBCs Cleaned
1 1.0 million steel tight-head
7.6 million plastic tight-head
664,000 plastic open-head
20.2 million steel open-head
500,000 plastic and steel IBCs
Drum Washing
              Drum washing includes cleaning and reconditioning tight-head, or bung-type,
steel or plastic drums and open-head plastic drums for resale, reuse, or disposal. In 2000, EPA
observed steel drum washing at two facilities and plastic drum washing (tight-head and open-
head) at one facility.  The following discussion of the drum washing process is based on EPA's
                                           4-5

-------
                                                               Section 4.0 - Industry Description
observations at these facilities. The Agency also included supplemental information where noted
based on observations during visits to 15 steel drum washing facilities in the mid-1980s.

              Figure 4-1 illustrates the general drum washing process.  Upon receipt of a drum
shipment, the washing facility inspects the drums and returns damaged drums,  drums that are not
empty, or drums that contain unacceptable materials to the shipper. One facility visited in 2000
presteams drums prior washing. Presteaming entails steaming the drum interior to enhance
residual material (heel) removal.  The steam condensate, which contains heel, is transported to a
fuels blending facility as a hazardous waste. Another facility visited in 2000 preflushes open-
head plastic drums with water prior to washing. Preflush wastewater is routed to wastewater
treatment.

              Drums are washed by spraying the drum interior and exterior with hot caustic
solution. Drums are typically turned upside down and loaded onto a conveyor, which transports
the drums through an automatic drum cleaning machine in an assembly-line style. Alternatively,
drums may be washed manually using hand-held spray nozzles.  After caustic washing, drums
undergo single or multiple rinses, depending on facility preference. Next,  drums are inspected
for rust (steel drums) and cleanliness. Rusty drums are washed with a hydrochloric acid solution
in the same manner as caustic washing described above, followed by one or more rinses.
Emissions from the acid washer go through a packed column scrubber, which uses fresh water or
dilute caustic solution.

              When the contents of a steel drum are difficult to remove using only hot caustic,
the facility may use a process called chaining, in which chains are inserted into the drum, along
with caustic, and the drum is tumbled to remove remaining materials. (Chaining is not
applicable to plastic drum washing.)  Drums may require  a second chaining cycle. One steel
drum washing facility visited in 2000 does not perform chaining, but instead processes drums
twice through the caustic washer. If a steel drum cannot be cleaned, it is either sent for
conversion to an open-head drum for burning or crushed for recycling. Plastic drums that cannot
be cleaned are not burned, but are instead shredded and typically sold to a plastics recycler.
                                           4-6

-------
                                                                Section 4.0 - Industry Description
              Both steel drum washing facilities visited by EPA in 2000 follow drum washing
and initial rinsing with a final rinse step, which includes a corrosion inhibitor additive (sodium
nitrite).

              After rinsing, plastic drums are dried using vacuum siphons or hot air, and
pressure tested using air.  Plastic drums are then inspected and the final bungs and fittings are
attached. Drums may also be labeled at this step. Steel drums are dried using vacuum siphons,
hot air or flame treating; dedented; rechimed; and placed into a submerger to check for leaks.
Steel drums are then shot blasted to prepare the surface for painting.  Shot-blast emissions are
controlled by dust bags with shot-blast dust either recycled with scrap steel or disposed.  After
painting, the drums are oven cured. As a final step, the drums have bungs and  fittings attached
and are inspected.

              Drum washing processing steps can vary considerably between ICDC facilities.
First, not all facilities perform all operations or perform these operations in the sequence
described.  Second, facilities vary processing steps by drum type, condition, or  cargo.  The
following examples demonstrate these differences:
                     Several operations (e.g., chaining, dedenting, chiming, painting/baking)
                     are not applicable to plastic drum washing. Dedenting and other
                     mechanical reconditioning steps are performed on steel drums only when
                     needed.
                     Not all steel drum washing facilities perform presteaming or chaining. In
                     general, only steel drums that are difficult to clean are chained.
                     In general, only steel drums that contain rust are acid washed.
                     One steel drum washing facility caustic washes drum exteriors as a
                     component of the automatic drum washing process. Another steel drum
                     washing facility conducts exterior caustic washing as the first drum
                     washing processing step, which takes place in a separate washing machine.
                     One steel drum washing facility removes labels following the final rinse.
                     The other steel drum washing facility removes labels prior to shot blasting.
                                           4-7

-------
                                                               Section 4.0 - Industry Description


              •       One steel drum washing facility returns drums that are acid washed to the
                     caustic washer for additional processing.


              EPA also compared the steel drum washing operations observed in 2000 to those

observed in the mid-1980s (observations documented in site visit reports, which are included in

the ICDC record).  Note that the focus of site visit reports from the mid-1980s was to document

the selection of facilities and sampling points for subsequent sampling rather than thoroughly

describing process operations.  This comparison revealed the following observations:


              •       Processing steps and their sequence were similar.

              •       Variations in processing steps  and sequence were similar at facilities
                     visited in the mid-1980s and those visited in 2000. For example, not all
                     facilities performed chaining.  Some facilities performed chaining before
                     or after caustic washing or without prior or  subsequent caustic washing.

              •       Six facilities visited in the mid-1980s drained heels prior to processing.
                     (None of the facilities visited in 2000 drain  heels.) The heel was drained
                     primarily from drums that last contained petroleum products.

              •       Five facilities visited in the mid-1980s presteamed drums prior to
                     processing.  (One facility visited in 2000 presteams drums.) Primarily
                     drums that last contained petroleum products were presteamed.

              •       Four facilities visited in the mid-1980s preflushed drums with either hot
                     water, caustic, or kerosene to enhance heel removal prior to processing.
                     Primarily drums that last contained petroleum products were preflushed.
                     (One facility visited in 2000 preflushes open-head plastic drums which
                     predominantly last contained dyes.)

              •       Limited available data suggest that most washing facilities visited in the
                     mid-1980s operated an alternative caustic washing process in which drums
                     are submerged in a hot caustic bath. Drums were set on their sides with
                     bungs removed and rotated as they proceeded through the bath.


              RIP A provided EPA a summary of the results of a membership survey from 2000

that included data for certain process operations (6).  The association sent surveys to 98 RTPA
                                           4-8

-------
                                                               Section 4.0 - Industry Description

members who reprocess steel and plastic drums, as well as IBCs, and received 36 survey

responses. Below are relevant observations from the (nonstatistical) survey summary:
              •      Twenty-nine respondents reported performing caustic cleaning process
                    operations, while only eight respondents reported performing acid cleaning
                    process operations.  Assuming all drum washing facilities perform caustic
                    cleaning, these responses suggest that approximately 28% of drum
                    washing facilities perform acid washing.

              •      One respondent reported performing a solvent rinse.  RIPA indicated that
                    solvent rinsing is rarely performed due to the cost of solvent (9).  No
                    additional information is available regarding this process.

              •      Sixteen respondents reported performing chaining, suggesting that
                    approximately 55% of drum washing facilities perform chaining while
                    45% do not.

              •      The percentage of drums reportedly scrapped and/or recycled are as
                    follows: 14% of steel tight-head drums, 20% of plastic tight-head drums,
                    and 24% of plastic open-head drums.

              •      Eight respondents reported using wet (acid) or dry scrubber air pollution
                    controls.

              •      Four respondents reported generating hazardous paint waste, four
                    respondents reported generating hazardous oil or oily water, and three
                    respondents reported generating hazardous spent solvents.  These
                    responses suggest that some facilities continue to remove heels or perform
                    prerinsing or presteaming to enhance heel removal.
              Data provided by RIPA and EPA observations suggest that steel drum washing

processes have not changed significantly in the last 13 years.  EPA has no data on whether  or

how plastic drum washing processes have changed in the last 13  years. As discussed in Section

10.1, very few plastic drums were manufactured or reconditioned in the mid-1980s.  Since  then,

plastic drums have since gained significant market share from steel drums.
                                           4-9

-------
                                                              Section 4.0 - Industry Description
4.2.2          Drum Burning

              Drum burning includes cleaning and reconditioning open-head steel drums for
resale, reuse, or disposal.  EPA observed steel drum burning at one facility in 2000 that also
washes steel drums. The following discussion of the drum burning process is based on EPA's
observations at this facility. The Agency also included supplemental information where noted
based on observations during visits in the mid-1980s to five drum burning facilities that also
wash drums, and one drum-burning-only facility.

              Figure 4-2 illustrates the general drum burning process. Upon receipt of a drum
shipment, the burning facility inspects the drums and returns those that are damaged or not
considered empty to the shipper. The drum burning facility visited by EPA in 2000 does not
pour or otherwise remove heels prior to burning.  In fact, small amounts of heel with high BTU
value  may be beneficial to offset furnace energy requirements.

              Open-head drums are burned in tunnel-type continuous furnaces. The furnace
operated by the drum burning facility visited by EPA in 2000 was considered by facility
personnel to be state of the art in the industry. The furnace includes a primary furnace that
operates at 1,100ฐF, an afterburner that operates at 1,850ฐF to 1,900ฐF to control emissions,
automatic controls, and continuous emissions monitoring for carbon monoxide  and temperature.
Drums travel through the furnace upside down on a moving chain; drum lids are placed on top of
the drums. Drums exiting the furnace are cooled by a steam curtain, which also removes ash
from drums. The furnace chain is quenched with water at the end of the furnace.

              After burning, the drums  are rinsed with fresh water and 1% sodium nitrite, a rust
inhibitor.  The drums are then shot blasted (inside and out) to remove any remaining paint.
Shot-blast emissions are controlled by dust bags with shot-blast dust either recycled with scrap
steel or disposed. Next, drums are mechanically dedented by curling, expanding, and body
rolling, and the bottom chime is sealed on a chime roller (rechimed).  Drums are then leak tested
in a submerger and inspected.  Finally, drums are dried, painted, and oven cured; often, the inside
                                          4-10

-------
                                                               Section 4.0 - Industry Description

of the drum receives an interior coating.  The drum lids and rings are then replaced to complete

the process.


              EPA also compared the steel drum burning operations observed in 2000 to those

observed in the mid-1980s (observations documented in site visit reports, which are included in

the ICDC record).  (Note that the focus of site visit reports from the mid-1980s was to document

the selection of facilities and sampling points for subsequent sampling, rather than thoroughly

describing process operations.) This comparison revealed the following observations:


              •      Processing steps and their sequence were similar.

              •      Similar to the facility visited in 2000,  none of the burning facilities visited
                     by EPA in the mid-1980s reported removing heels prior to burning (i.e.,
                     heel removal is not discussed in the site visit reports).

              •      Only one of the five drum burning facilities visited in the  mid-1980s
                     operated an afterburner to control emissions (i.e., use of an afterburner is
                     specifically discussed in the site visit report).

              •      Most furnaces had water sprays, a steam curtain, and/or physical barriers at
                     the inlet opening to prevent flashbacks.

              •      Three facilities visited in the mid-1980s reported quenching drums with
                     water to cool the drum, remove ash, and extinguish any burning residue.
                     The remaining three facilities reported cooling drums by air. (EPA has no
                     data on the current use of water quenches by the industry, or whether their
                     use has changed since the mid-1980s.)

              •      Two facilities visited in the mid-1980s reported rinsing drums to prepare
                     them for painting, while the remaining three facilities did  not report
                     rinsing drums.


              Relevant observations from RIPA's 2000 survey (6) are provided below:
                     Sixteen respondents reported using a drum furnace.  Sixteen respondents
                     also reported using a thermal oxidizer (i.e., afterburner), and two
                     respondents also reported using a baghouse.
                                           4-11

-------
                                                               Section 4.0 - Industry Description
              •      As discussed in Section 4.2.1, survey responses suggest that some
                    facilities currently remove heels or perform prerinsing or presteaming to
                    enhance heel removal.  Data available to EPA are inadequate to determine
                    whether any of these responses came from drum burning facilities.
              •      The percentage of steel open-head drums reportedly scrapped and/or
                    recycled is 6.1 percent.
              •      Eight respondents reported monitoring stack emissions. Pollutants
                    monitored by one or more respondents include carbon monoxide, metals,
                    particulates, volatile organic compounds, and opacity.
              •      Fourteen respondents reported testing furnace ash, typically once per year.
                    Four respondents reported generating hazardous furnace ash.

              Data provided by RIPA and EPA observations suggest that steel drum burning
processes have not changed significantly in the last 13 years.
              As part of a program to reduce levels of toxic pollution in the atmosphere, the
California Environmental Protection Agency, Air Resources Board, assessed combustion sources
that emit polychlorinated dioxins and furans (dioxins and furans), polycyclic aromatic
hydrocarbons (PAHs), and other toxic compounds (10).  The assessment included sampling and
analysis of dioxins and furans, PAHs, and heavy metals in emissions from two drum
reconditioners and two waste oil burners. Furnaces that were sampled included afterburners
operated at 1,700ฐF.  Test results indicated that the drum reconditioning facilities emitted
significantly higher levels of dioxins and comparable levels of metals than did the waste oil
burners.  Dioxin and metals emissions from the drum reconditioning facilities were comparable
to levels from previous cement kiln emissions tests.  PAH emissions from both drum
reconditioning and waste oil burners were essentially zero.

4.2.3          IBC Cleaning/Reconditioning

              IBC cleaning/reconditioning includes cleaning and reconditioning plastic or metal
IBCs for resale, reuse, or disposal. Plastic IBCs are either blow-molded, which makes them
                                          4-12

-------
                                                                Section 4.0 - Industry Description
sturdier, or rotationally molded.  Rotationally molded IBCs are plastic bottles in steel cages and
are referred to as composite IBCs.  EPA observed plastic IBC cleaning and reconditioning at one
facility in 2000 that also cleans and reconditions plastic drums.  EPA also observed plastic and
metal IBC cleaning and reconditioning at two facilities in 1999 that also clean tank trucks.  The
following discussion of the IBC washing process is based on EPA's observations at these
facilities. EPA did not observe IBC washing at any facilities visited in the mid-1980s.

              Figure 4-3 shows the general IBC cleaning process.  IBC cleaning and
reconditioning, regardless of type, typically involves the following steps:

              •      Identify the cargo last contained in the container and determine an
                     appropriate cleaning process;
              •      Wash the container interior using one or more cleaning methods and
                     solutions;
              •      Clean fittings and valves and replace gaskets;
              •      Rinse the container interior;
              •      Wash the container exterior;
              •      Dry the container;
              •      Perform leak test and final inspection.

              Determining the material last contained in the container allows the cleaning
facility to:  (1) assess its ability to clean the container efficiently; (2) determine the appropriate
cleaning sequence and cleaning solutions; (3) evaluate whether the residue cleaned from the
container will be compatible with the facility's wastewater treatment system;  and (4) establish  an
appropriate level of health and safety protection for the employees who will clean the container.
The facility may decide to reject a container based on any of these four determinations.

              Once it accepts a container for cleaning, the facility then checks the volume of
heel in the container to determine appropriate heel management and/or disposal. Containers with
                                           4-13

-------
                                                                Section 4.0 - Industry Description
excess heel are returned to the shipper. Water-soluble heels compatible with the facility's
treatment system and the conditions of the facility's wastewater discharge permit are usually
combined with other wastewaters for treatment at the facility and discharge. Incompatible heels
are segregated into drums or tanks for disposal by alternative means, which may include sale to a
reclamation facility, landfilling, and incineration. The facility may reuse heels comprising soaps,
detergents, solvents, acids, or alkalis as cleaning solutions. The container may be preflushed to
enhance heel removal, with preflush wastewater generally segregated for disposal.

              Cleaning processes vary between facilities depending on available cleaning
equipment and cargos last contained in the IBCs to be cleaned. Certain residual materials (such
as ink or food products) may require only a hot water wash, while other residual materials (such
as latexes or resins) may need to be washed with  a detergent or strong caustic solution followed
by a final water rinse.  The cleaning processes used also depend on the state of the product. For
example, hardened, caked-on products, or hard-to-clean products may require an extended
processing time, chemical cleaning solutions, or manual cleaning.

              Containers are typically washed and rinsed using one or both of the following
methods: (1)  spinner nozzles or (2) hand-held wands and nozzles. Spinner nozzles are inserted
through the main hatch; they rotate about both their vertical and horizontal axes, which creates an
overlapping spray pattern that cleans the entire interior of the container. Manual washing with
hand-held wands and nozzles is similar to washing with spinner nozzles, but involves manually
directing the  spray across the interior surface of the container. Operating cycles range from rinse
or wash bursts of a few seconds to recirculating detergent or caustic washes of several minutes or
longer for caked or crystallized residues.

              Cleaning personnel inspect all containers and perform additional manual cleaning
as required.  Valves and fittings are removed and cleaned by hand, and gaskets are replaced.
Container exteriors are cleaned using hand-held wands either simultaneously with or subsequent
to interior washing. Leak tests are performed by partially filling the IBC with water to a level
                                           4-14

-------
                                                               Section 4.0 - Industry Description
above the valve. After cleaning, containers are dried with ambient or heated air from a blower.
The IBC cage is repaired as necessary or applicable. A final inspection completes the process.

              Section 7.2.3 discusses the similarities and differences in IBC cleaning processes
at facilities that also clean drums versus facilities that also clean tank trucks.

              Responses to the 2000 RIPA survey (6) do not distinguish between drum washing
processes (performed by 29 respondents) and IBC washing processes (performed by 17
respondents); therefore, observations described in Section 4.2.1 regarding drum washing
operations based on RIPA responses may or may not apply to IBC washing operations. The
percentage of IBCs reportedly scrapped and/or recycled by RIPA members is 10 percent. In
contrast, one TEC facility visited by EPA in 1999 indicated that it cleans and returns to service
60% of rotationally molded IBCs, while it cleans the remaining 40% for disposal or recycle.
4.3
Cargo Types Cleaned
              Drums and IBCs are used to transport thousands of different cargos. The
following table provides general information regarding cargos last contained in drums cleaned by
drum reconditi oners. The source of these data is the 1980 NAB ADA membership survey (8).
EPA has no additional information for extrapolation or comparison of these data to current
operations.

                            Cargos Last Contained in Drums (1980)
Cargo Type
Oil and petroleum
Industrial chemicals
Paint and ink
Cleaning solvents
Resins
Adhesives
Food
Other
Percentage
36.2
15.6
14.8
8.8
8.8
6.8
6.8
1.7
                                          4-15

-------
                                                                Section 4.0 - Industry Description
Cargo Type
Pesticides
TOTAL
Percentage
0.5
100
              The 2000 RIPA survey does not address cargos last contained in drums, but does
provide limited data on users of reconditioned packagings (6). EPA is not presenting these data
in this report because users of reconditioning packagings may differ significantly from sources of
used drums for reconditioning.

              Literature data, as well as data from drum reconditioners that EPA visited in 2000
and in the mid-1980s, indicate that steel drums typically last contained oil, solvents, paint, resins,
chemicals, lacquers and varnishes, adhesives, cleaners, and food.  Literature data, as well as data
from one ICDC facility that EPA visited in 2000, indicate that plastic drums typically last
contained pharmaceutical products, chemical products, food products, dyes, paint, and paint
components.  Open-head drums are better suited than tight-head drums to transport viscous
liquids, powders, or slurries.

              The following table presents available information regarding cargos transported in
IBCs. The source of these data is a Hazardous Cargo Bulletin Report on the future of the IBC
market (3). The report does not provide any additional reference to the basis or source of the
cargo information.

                             Cargos Last Contained in IBCs (2000)
Cargo Type
Oil and petroleum
Chemicals
Food
TOTAL
Percent
20
70
10
100
              Literature data, as well as data from IBC cleaning facilities that EPA visited in
1999 and 2000, indicate that IBCs typically last contained paints, resins, dyes, wastewater
treatment chemicals, food, and other industrial chemicals.
                                           4-16

-------
                                                               Section 4.0 - Industry Description
4.4           Chemical Cleaning Solutions

              ICDC facilities use various types of chemical cleaning solutions throughout the
cleaning process, including caustic, acid, and detergent solutions. Caustic solutions typically
comprise sodium hydroxide and water. Acid solutions typically comprise hydrochloric acid and
water.  Detergent solutions may be off-the-shelf brands of detergents or consist of sodium
metasilicate and phosphate-based surfactants. ICDC facilities may also use a corrosion inhibitor
rinsing solution during the cleaning process (typically  sodium nitrite and water).

              The choice of chemical cleaning solutions is primarily determined by wastewater
treatment compatibility, POTW limitations, and/or facility preference; however, all steel drum
washing facilities use caustic and many also use acid.  Plastic drum and IBC washing processes
commonly use detergents.  Chemical cleaning solutions are generally reused until cleaning
personnel  determine they are no longer effective.  Make-up solution is periodically added to
replace solution lost in the final rinse or to boost efficacy.  A significant amount of water in
chemical cleaning solutions typically evaporates.  Make-up water is commonly supplied by
recirculated rinse water.  Spent cleaning solutions may be hauled off site for disposal or
discharged to the on-site wastewater treatment system, if compatible.  Some facilities use
cleaning solutions indefinitely (with periodic make-up and treatment); they are never discharged
or disposed of.

4.5           References
              Eastern Research Group, Inc. "Drum and IBC Reconditioning Industry
              Population." Memorandum from John Carter, ERG to Samantha Lewis, EPA,
              October 15, 1999 (DCND00054).
              Eastern Research Group, Inc. "Preliminary List of Drum and IBC Reconditioning
              Facilities."  July 13, 2000 (DCND00081).
              Dixon, B. The Future of the IBC Market - A Hazardous Cargo Bulletin Report.
              Intapress Publishing Ltd., London, England, 2000 (DCN D00008).
                                          4-17

-------
                                                             Section 4.0 - Industry Description

4.            Reusable Industrial Packaging Association, http://www.reusablepackaging.org/
             Stats.html (DCN D00164).

5.            Reusable Industrial Packaging Association, http://www.reusablepackaging.org/
             whatsnew.html (DCND00165).

6.            Reusable Industrial Packaging Association. "RIPA Reconditioners Survey -
             Presentation of Business, Technical, and Regulatory Data." September 16, 2000
             (DCND00167).

7.            Wilson, C. "IBCs Grow in Popularity," Modern Bulk Transporter. August 1999
             (DCN D00043).

8.            U.S. EPA, Office of Research and Development. Barrel and Drum Reconditioning
             Industry Status Profile. EPA-600/2-81-232, September 1981 (DCND00168).

9.            Personal communication with C. L. Pettit, Reusable Industrial Packaging
             Association, March 16, 2001  (DCND00171).

10.          State of California, Air Resources Board, Research Division. Assessment of
             Combustion Sources That Emit Polychlorinated Dioxins and Furans, Polycyclic
             Aromatic Hydrocarbons, and  Other Toxic Compounds. January 1992 (DCN
             D00146).
                                         4-18

-------
                                                                                                                               Section 4.0 - Industry Description
                                         Steam  or Water
            Drums Enter
              Process/
          Initial Inspection
VO
                                          (not all facilities)
                                                                                                                              (not all facilities)
         Return Damaged
         or U nacceptable
         Drums to Shipper
                                                                                                                (not aII facilities)
                                                                                                                          Replace
                                                                                                                           Fittings
                                                                                                                         and Bu ngs
                                                                        Operations performed by
                                                                        all drum washing facilities.
                                                                        Operations performed by only
                                                                        steel drum washing facilities.
                                                                                                                                          Final Inspection/
                                                                                                                                         Drums Exit Process
                                                    Figure 4-1. General Drum Washing Process Diagram

-------
                                                                                                     Section 4.0 - Industry Description
                     Drums Enter
                       Process/
                    Initial Inspection
Corrosion
 Inhibitor
                           I
                   Return Damaged
                   or Unacceptable
                   Drums to Shipper
to
o



Paint



Bake



Replace
Lids and
Rings
                                                                                               Final Inspection/
                                                                                             Drums Exit Process
                                          Figure 4-2. General Drum Burning Process Diagram

-------
      IBCs Enter
Process/Identify Cargo
                          Wash with
                           Cleaning
                          Solution(s)
  Clean Valves
  and Fittings/
Replace Gaskets
                                             L_T
                                              Final Inspection/
                                              IBCs Exit Process
Rinse
                                                                         Dry
                                                                                     Section 4.0 - Industry Description
 Exterior
Cleaning
                                              Leak
                                              Test
                               Figure 4-3. General IBC Cleaning Process Diagram

-------
                                            Section 5.0 - Water Use and Wastewater Characterization
5.0          WATER USE AND WASTEWATER CHARACTERIZATION

             As part of the characterization of the ICDC industry, EPA determined water use
and wastewater generation practices associated with ICDC operations and assessed what
constituents may be present in ICDC wastewater.  The following topics are discussed in this
section:
                    Section 5.1:  An overview of water use and sources of wastewater in the
                    ICDC industry;
                    Section 5.2:  A discussion of the wastewater discharge practices within the
                    ICDC industry;
                    Section 5.3:  An overview of water use and recycling in the ICDC
                    industry;
                    Section 5.4:  Wastewater characterization data collected during EPA's
                    sampling programs; and
                    Section 5.5:  References used in this section.
Most of the information presented in this section is based on observations and information
collected during EPA's site visits and sampling episodes in 2000 and in the mid-1980s.  Tables
and figures appear at the end of the section.

5.1          Water Use and Sources of Wastewater

             This section describes water use and sources of wastewater at discharging ICDC
facilities which use water or water-based cleaning solutions to clean or rinse drum and container
interiors.  The amount of water required to clean each drum and container depends upon the
cleaning process, as well as the type of cargo last transported.  As a result, the amount of
wastewater generated from drum and container cleaning is highly variable based on drum or
container type and size, the cargo cleaned, cleaning method, and the presence of caked,
solidified, or crystallized residues.
                                          5-1

-------
                                             Section 5.0 - Water Use and Wastewater Characterization
              Process wastewater may be contaminated with a variety of pollutants including
the cargos last contained in the drums or containers, spent cleaning solutions, and exterior
surface dirt, spills, and coatings.  Process wastewater generally has high  concentrations of waste
constituents that require substantial treatment for removal or reduction such as oxygen
demanding substances, oil and grease,  suspended and dissolved solids, and some metals.

              Water use and wastewater generation characteristics specific to drum washing,
drum burning, and IBC cleaning/reconditioning are described below.

5.1.1         Drum Washing

              Water is used throughout the drum washing process.  The most significant uses of
water associated with drum washing operations include:

              •       Drum interior preflush, prior to washing;
              •       Drum interior cleaning hot water washes and/or rinses;
              •       Drum exterior washing; and
              •       Formulation of cleaning solutions.

              Drum washing facilities perform hot water washes (at some facilities) and rinses
to clean drum interiors. Substantial volumes of water can also be used to clean drum exteriors.
Since cleaning solutions are often received in concentrated form, water is used to formulate the
cleaning solutions to appropriate concentrations. Water is also used to "make up"  cleaning
solutions, due to loss by evaporation and solution carry-over into subsequent rinse wastewater.

              Wastewater is generated primarily through drum washes and rinses. Caustic wash
wastewater is generated by preflushing, chaining, and caustic flushing. Rinse water is generated
by preflushing, rinsing, and re-rinsing.  Acid wash  and corrosion inhibition wastewater are
sometimes discharged with rinse water. Drum exterior cleaning wastewater includes water and
cleaning solutions generated by exterior cleaning operations.  Other wastewater sources include
leak testing, siphon drying, air pollution scrubber wastewater, paint booth water curtain
                                           5-2

-------
                                            Section 5.0 - Water Use and Wastewater Characterization
wastewater, boiler blowdown, compressor condensate, cooling water, sanitary wastewater, and
stormwater runoff.  Contaminated stormwater runoff could especially be a problem if drums are
stored outside where the water comes into contact with exterior surface dirt, spills, and coatings.

             Many drum washing facilities use extensive wastewater recycle systems, which
greatly reduce the volume of wastewater discharged. According to data collected from 10 steel
drum reconditioning facilities in 1987, water use from  drum washing averaged 10 gallons per
drum.  Since approximately 15% of water used at drum washing plants is lost to evaporation,
approximately 9 gallons of wastewater are generated and discharged per drum washed (1).

             One plastic drum washing facility visited by EPA in 2000 generates about 9 to 10
gallons of wastewater per drum washed.  Two steel drum washing facilities visited by EPA in
2000 generate about 3 gallons of wastewater per drum  washed, and 4 to 4.5 gallons of
wastewater per drum washed, respectively. These data may suggest a possible trend in reduced
water use by steel drum washing facilities over the past 13 years.

5.1.2        Drum Burning

             Water is used mainly in the quenching stage of the drum burning process;
therefore, the primary source of wastewater from drum burning operations is drum quenching,
and most quench water is lost to evaporation. Some drum burning facilities rinse drums prior to
painting; at these facilities, rinse water is  the predominant water use and source of wastewater.
Other sources of wastewater include air pollution scrubber wastewater, paint booth water curtain
wastewater, leak testing, boiler blowdown, cooling water, sanitary wastewater, and stormwater
runoff. According to data collected from 2 drum reconditioning facilities in 1987, water use at
drum burning operations averaged 10.6 gallons per drum burned.  Since most of the water used
for quenching is lost to  evaporation, wastewater generation volumes averaged 3 gallons per drum
burned (1).
                                           5-3

-------
                                             Section 5.0 - Water Use and Wastewater Characterization
              EPA visited one drum burning facility in 2000. Although this facility combines
wastewater from washing and burning operations, EPA estimates that drum burning operations
generate about 1 to 1.5 gallons of wastewater per drum burned. Note that this facility does not
perform drum quenching; wastewater sources include drum  rinsing prior to painting.  EPA
believes these data are too limited to suggest any trends in water use or wastewater generation at
drum burning facilities.

5.1.3         IBC Cleaning/Reconditioning

              Water is used in the IBC cleaning process for interior cleaning, exterior cleaning,
and leak testing. Wastewater is generated by IBC washing and rinsing operations. Cleaning
solutions are generally reused with make-up solution periodically added to replace solution lost
in the final rinse.  Spent cleaning solution may be hauled off site for disposal or discharged to the
on-site wastewater treatment system. Rinse water is generated by prerinses and final rinses.
Other wastewater sources include IBC exterior cleaning, boiler blowdown, IBC hydrotesting, and
safety equipment cleaning.

              EPA believes that the volume of wastewater generated by IBC cleaning is highly
variable depending on the type of IBC, cargo transported, and degree of cleanliness required.
One plastic drum and IBC washing facility visited by EPA in 2000 reportedly generates 5 gallons
of wastewater per IBC cleaned.  One tank truck and IBC cleaning facility visited by EPA in 1999
estimated generating 150 to 300 gallons of wastewater per IBC cleaned,  depending on the type of
IBC and degree of cleanliness required. Another tank truck  and IBC cleaning facility also visited
by EPA in 1999 estimated generating 200 to 250 gallons of wastewater per IBC cleaned.

              As noted in the Transportation Equipment Cleaning Notice of Availability (64 FR
38863), EPA believes approximately 100 gallons of wastewater are generated per IBC cleaned.
However, RIPA commented on the Notice of Availability and stated that according to member
data, approximately 45 gallons of wastewater are generated per IBC cleaned (2).
                                           5-4

-------
                                            Section 5.0 - Water Use and Wastewater Characterization
5.2          Wastewater Discharge Practices

             EPA believes that most ICDC facilities discharge ICDC wastewater and that all or
almost all of these facilities discharge indirectly to a POTW. EPA has not identified any
facilities that discharge directly to surface waters.  EPA also believes that some portion of the
industry generates ICDC wastewater but does not discharge wastewater directly to surface waters
or indirectly to POTWs.  Many of these facilities achieve zero discharge of ICDC wastewater by
hauling the wastewater to a centralized waste treatment facility, or disposing of the wastewater
by land application or evaporation.  However, EPA also believes that some ICDC facilities
achieve zero discharge by recycling or reusing 100% of ICDC wastewater.

             Section 4.1.1 describes EPA's estimate of the total ICDC industry population of
291 facilities, including 118 ICDC facilities that do not clean transportation equipment and 173
ICDC facilities that also clean transportation equipment.  Of the 118 ICDC facilities that do not
clean transportation equipment, EPA is aware of 11 facilities that do not discharge ICDC
wastewater:
              •      Six facilities identified by RIPA achieve zero discharge of ICDC
                    wastewater via 100% recycle of treated effluent in ICDC processes
                    (3X4X5);
              •      Four drum reconditioning facilities visited by EPA in the mid-1980s, not
                    included on the RIPA list, recycle  100% of treated wastewater effluent in
                    ICDC processes, resulting in zero discharge (see Section 6.2.5); and
              •      One ICDC facility identified by EPA achieves zero discharge of ICDC
                    wastewater by hauling wastewater to a centralized waste treatment facility
                    (6).

EPA believes many more facilities than the 11 facilities discussed above do not discharge ICDC
wastewater, particularly ICDC facilities that only burn drums, but available data are insufficient
to better estimate the total number of zero discharge facilities.
                                          5-5

-------
                                            Section 5.0 - Water Use and Wastewater Characterization
             Of the 173 ICDC facilities that also clean transportation equipment, EPA
estimates that 80 facilities discharge wastewaters indirectly to POTWs and 93 facilities do not
discharge ICDC wastewater.  Of these 93 facilities, approximately 86 facilities contract haul
ICDC wastewater to a centralized waste treatment facility; the remaining 7 facilities recycle
100% of treated effluent in ICDC  (and TEC) processes (7).

             In summary, based on available data, EPA estimates the discharge status of the
ICDC industry as follows:
Facility Type
ICDC Facilities
Number of Direct
Dischargers
0
Number of Indirect
Dischargers
<187
Number of
Zซro
Dischargers
>104
Total
291
             EPA estimates that the total annual volume of wastewater generated by the ICDC
industry is 295 million gallons:

             •      200 million gallons of wastewater from drum washing (assuming 9 gallons
                    of wastewater generated per drum washed);
             •      45 million gallons of wastewater from drum burning (assuming 2.8 gallons
                    of wastewater generated per drum burned); and
             •      50 million gallons of wastewater from IBC cleaning (assuming  100
                    gallons of wastewater generated per IBC washed).
As previously mentioned, the vast majority of this wastewater is discharged indirectly; negligible
amounts are believed to be discharged directly. The amount of wastewater that is contract hauled
(zero discharge) is unknown, but likely less than 5% (assuming 46% of TEC facilities  that clean
IBCs are zero discharge, and 50% of IBCs cleaned are cleaned at TEC facilities).
                                          5-6

-------
                                             Section 5.0 - Water Use and Wastewater Characterization
5.3           Water Reuse and Recycling

              Water reuse and recycling activities commonly performed by discharging and zero
discharge facilities include:

              •      Recirculation of cleaning solutions, including chemical solutions and
                    water washes;
              •      Reuse of drum burning quench water;
              •      Reuse of final rinse wastewater as initial rinse water;
              •      Reuse of treated ICDC wastewater as source water for ICDC operations;
              •      Reuse of leak testing wastewater as source water for ICDC operations; and
              •      Reuse of final rinse wastewater as cleaning solution "make-up" water.

EPA believes that most ICDC facilities reuse or recycle cleaning solutions and/or rinse water.
Figure 5-1 illustrates common wastewater recycle and reuse practices for ICDC operations.
Additional information concerning water conservation and water recycle and reuse technologies
applicable to the ICDC industry is included in Section 6.2.

5.4           Wastewater Characterization

              As discussed in Section 3.0,  EPA conducted three sampling episodes at three
facilities between August and September 2000 representative of the types of facilities in the
ICDC industry. As part of this sampling program, EPA analyzed wastewater samples for volatile
organics, semivolatile organics, pesticides and herbicides, dioxins and furans, metals, and
classical pollutants using standard EPA methods.  All data and information collected during these
sampling episodes  are documented in site-specific sampling episode reports included in the
ICDC record.  Note that several pesticides and herbicides were tentatively  identified, but not
confirmed, in wastewater samples as described in the sampling episode reports. Data for
                                           5-7

-------
                                             Section 5.0 - Water Use and Wastewater Characterization
tentatively identified analytes are not considered in this analysis, or listed in the data summary
tables in this section.

              EPA also compiled available ICDC wastewater characterization data from the
Preliminary Data Summary for the Drum Reconditioning Industry (PDS). Data from the PDS
consist of 10 raw wastewater samples collected at four drum reconditioning facilities (Plants A,
B, C, and D). Data include 9 steel drum washing samples and 1 steel drum burning sample
(furnace quench). EPA analyzed all 10 samples for volatile organics, semivolatile organics,
metals, and classical pollutants. EPA also analyzed two drum washing samples for pesticides
and herbicides at Plant D (a facility known to wash drums that last contained pesticides and
herbicides),  and one furnace quench sample for dioxins and furans at Plant D.

5.4.1         Steel Drum Washing

              Table 5-1 presents a comparison of raw wastewater characterization data for drum
washing samples collected in the 1980s and in 2000 (nine data points from four facilities  from
the mid-1980s and two data points from two facilities from 2000).  This table includes the mean
concentration values for each pollutant or parameter detected at least once in either data set. For
samples in which individual  pollutants were not detected, the sample detection limit was used in
calculating the mean concentration.  The methodology used to calculate the mean concentration
involved first calculating a mean concentration for each facility characterized,  and then
calculating a mean concentration for the two data sets using applicable mean facility
concentrations. Also listed in these tables are the range of pollutant concentrations (including
detection limits as appropriate) and the number of times each pollutant or parameter was
analyzed and detected in raw wastewater samples.

              Cargos last contained in  drums washed by the sampled facilities are comparable
as shown in  the table below.
                                           5-8

-------
                                             Section 5.0 - Water Use and Wastewater Characterization
Data Set
1980s
2000
Facility
Facility A
Facility B
Facility C
Facility D
Facility 1
Facility 2
Cargos
Petroleum and solvents
Lacquers, finishers, varnishes, paints, and solvents
Petroleum
Petroleum, chemicals, and resins
Solvents, paint resins, and petroleum
Petroleum and solvents
              Review of the data sets presented in Table 5-1 reveals the following observations:
                     Similar types and numbers of pollutants were detected in the two data sets.

                     Average pollutant concentrations for the 1980s data set are generally
                     greater than the average pollutant concentrations for the 2000 data set.
                     However, average concentrations for the 1980s data set are elevated by
                     significantly higher concentrations in wastewater from one facility that
                     recycles 100% of treated effluent in ICDC processes. Exclusion of
                     this facility results in average pollutant concentrations for the 1980s data
                     set that are generally less than the average pollutant concentrations for the
                     2000 data set.

                     The range of pollutant concentrations for the 1980s data set is generally
                     much broader than that for the 2000 data set; however, the ranges of
                     pollutant concentrations in the two data sets generally overlap.
                     Differences are likely because the 2000 data set is significantly smaller
                     than the 1980s data set, and because of elevated wastewater pollutant
                     concentrations at the one facility described above.

                     Pollutants detected in a majority of samples from the 1980s were also
                     detected in one or both samples from 2000, with the exception of 1,1,1-
                     trichloroethane, which was not detected in samples collected in 2000.
                     Similarly, pollutants that were detected in both samples from 2000 were
                     generally detected in multiple samples  from the 1980s.
              The two data sets are too limited to demonstrate whether or not the data sets are

comparable. However, available information regarding steel drum washing processes provided

in Section 4.2.1 suggests that steel drum washing processes have not changed significantly in the

last 13 years. Therefore, the observations listed above, coupled with RTPA and EPA

                                            5-9

-------
                                              Section 5.0 - Water Use and Wastewater Characterization
observations regarding steel drum washing processes, suggest that steel drum washing
wastewater characteristics have not changed significantly in the last 13 years.

              EPA commonly identifies pollutants of interest for a point source category using
the following criteria:

              (1)     The frequency of detection in wastewater characterization samples; and
              (2)     Raw wastewater pollutant concentrations.

Criteria (1) ensures that the pollutant is representative of the industry, rather than an isolated
occurrence.  Criteria (2) ensures that the pollutant is present at treatable levels.  Table 5-1 lists
data for 119 pollutants, the majority of which may be considered to be pollutants of interest for
the ICDC industry.  At this point, EPA is not selecting specific pollutants of interest for the
ICDC industry. However, for the purpose of this study, the following discussion focuses on
pollutants that were detected in at least 50% of the samples and/or at an average raw wastewater
concentration of 1 mg/L or greater.

              The volatile organics that were detected in at least half of the samples in both data
sets include acetone, ethylbenzene, methyl ethyl ketone, and toluene.  1,1,1-Trichloroethane was
detected in more than half of the samples in the 1980s, but was not detected in the 2000 samples;
methyl isobutyl ketone was detected in both 2000 samples, but was not detected in the  1980s
samples. The above-mentioned six volatile organic pollutants were also detected at the highest
concentrations. Ethylbenzene, toluene, and 1,1,1-trichloroethane are priority pollutants as
designated by EPA in 40 CFR Part 423, Appendix A. Treatment technologies commonly
employed by the ICDC industry (see Section 6.3) are estimated to volatilize these pollutants by
50% or greater.

              The semivolatile organics that were detected in at least half of the samples in both
data sets include bis (2-ethylhexyl) phthalate, naphthalene, and styrene. Bis (2-ethylhexyl)
phthalate and naphthalene are priority pollutants, while styrene is not.  In general, more
                                           5-10

-------
                                             Section 5.0 - Water Use and Wastewater Characterization
semivolatile organics were detected in a greater percentage of 2000 samples than in the 1980s
samples. The five pollutants detected at the highest mean concentrations in the 1980s samples
are benzoic acid, bis (2-ethylhexyl) phthalate (a priority pollutant), styrene, n-decane, and
isophorone (a priority pollutant). The five pollutants detected at the highest mean concentrations
in the 2000 samples are benzoic acid, hexanoic acid, benzyl alcohol, phenol (a priority pollutant),
and n-nitrosomorpholine.

              Almost all of the analyzed metals, including 10 priority pollutants, were detected
in all eleven samples.  Chromium, lead, and zinc are the priority pollutants detected in both the
1980s and the 2000 samples at the highest concentrations.

              All of the analyzed classical pollutants were detected in all samples. Raw
wastewater exhibited a high pH (10 to 13 standard units) due to the caustic cleaning solutions
used in the drum washing process. For the 1980s data set, the mean BOD5 concentration is 3,700
mg/L; COD is 17,000 mg/L; TSS is 4,700 mg/L; and oil and grease is 13,000 mg/L. For the
2000 data set, the mean BOD5 concentration is 3,500 mg/L; COD is 10,000 mg/L; TSS is 1,400
mg/L; and FtEM is 310 mg/L. These concentrations are significantly greater than those in strong
domestic wastewater, which is characterized as follows: BOD5 is 400 mg/L; COD is 1,000
mg/L; TSS is 350 mg/L; and oil and  grease is 150 mg/L (8).

              A few dioxins and furans were detected at concentrations typical of those found in
oily wastewater. Specifically, hepta- and octa-substituted dioxins and furans ranged in
concentration from 50 to 1,400 pg/L.

              Ten pesticides and herbicides were detected in 1980s samples collected at a
facility known to clean drums that last contained pesticides and herbicides. Pesticides and
herbicides were not positively identified in the 2000 samples.  Neither of the facilities sampled in
2000 is known to clean drums that last contained pesticides and herbicides.
                                          5-11

-------
                                             Section 5.0 - Water Use and Wastewater Characterization
5.4.2          Plastic Drum and IBC Washing

              Table 5-2 presents raw wastewater characterization data from a plastic drum and
IBC washing facility sampled in 2000. Cargos last contained in drums and IBCs washed at the
sampled facility include dyes and water-based paint components (acrylics and latexes).  A total of
27 priority pollutants were detected: 3 volatile organics, 5 semivolatile organics, 8 metals, and 1
classical.  (This table includes only those pollutants that were detected in the raw wastewater.)

              Relatively few volatile and semivolatile organics were detected in plastic drum
and IBC washing wastewater as compared to the number of organics detected in steel drum
washing wastewater; however, this may be because only one plastic drum and IBC washing
wastewater sample was analyzed.  All of these pollutants, with the exception of chloroform, were
detected at significantly lower concentrations than the levels in the steel drum washing
wastewater.

              Three times as many dioxins and furans were detected in plastic drum and IBC
washing wastewater as compared to the steel drum washing wastewater and at relatively high
concentrations. Specifically, hepta-, hexa-, and octa-substituted dioxins and furans ranged in
concentration from 51 to 12,000 pg/L.  Although EPA did not investigate the source of dioxins
and furans in the facility's wastewater, facility personnel indicated that small amounts of bleach
are used in the drum and container cleaning process.  Therefore, one possible source is a
chemical reaction of bleach with dioxin and furan precursors in the drum and container washing
wastewater.

              Two pesticides and herbicides were detected in plastic drum and IBC washing
wastewater.  The source of these pollutants is unknown because the sampled facility reportedly
does not clean drums or IBCs that last contained pesticides or herbicides.

              All of the analyzed metals were detected with the exceptions of antimony,
beryllium, silver, thallium, and yttrium. The metals in the plastic drum and IBC washing
                                          5-12

-------
                                            Section 5.0 - Water Use and Wastewater Characterization
wastewater were detected at significantly lower concentrations than in the steel drum washing
wastewater with the exceptions of calcium, aluminum, magnesium, mercury, and molybdenum.

              The mean BOD5 concentration is 440 mg/L; COD is 2,400 mg/L; TSS is 1,500
mg/L; and HEM is 21 mg/L.  Again, these levels are much lower than those in the steel drum
washing wastewater, and are more comparable to strong domestic wastewater.

5.4.3          Steel Drum Burning

              Table 5-3 presents raw wastewater characterization data from a steel drum
burning facility sampled in the mid-1980s. Cargos last contained in drums burned at the sampled
facility include petroleum, chemicals,  and resins. A total of 22 priority pollutants were detected
in the raw wastewater: 4 volatile organics, 3 semivolatile organics,  13 metals, and 2 classicals.
(This table also includes only those pollutants that were detected in the raw wastewater.)

              Relatively few volatile  and semivolatile organics were detected in steel drum
burning wastewater as compared to  steel drum washing wastewater; however, this may be
because only one steel drum burning wastewater sample was analyzed.  Steel drum burning
wastewater pollutant levels are similar to those of the steel drum washing wastewater. One
exception, methylene chloride (a priority pollutant), was detected at a much higher concentration
of 100,000 //g/L as compared to 1,300 //g/L.

              Dioxins and furans were detected in lower levels than those in steel drum washing
and plastic drum and IBC washing wastewaters.

              All of the analyzed metals were detected and generally present at levels
comparable to or less than concentrations in steel drum washing wastewater. Notable exceptions
include chromium and zinc, which were detected in drum burning wastewater at significantly
greater concentrations than those in  steel drum washing wastewater.
                                          5-13

-------
                                           Section 5.0 - Water Use and Wastewater Characterization

             The mean BOD5 concentration is 2,600 mg/L; COD is 52,000 mg/L; TSS is 9,500

mg/L; and oil and grease is 5,300 mg/L. These concentrations are significantly greater than those

in steel drum washing wastewater, as well as those in strong domestic wastewater.


5.5           References
             U.S. EPA, Office of Water Regulations and Standards, Preliminary Data
             Summary for the Drum Reconditioning Industry, EPA 440/1-89/101, September
             1989(DCND00001).

             Reusable Industrial Packaging Association (RIPA), Comments on the
             Transportation Equipment Cleaning Notice of Availability. Letter from Paul
             Rankin, RIPA to John Tinger, EPA/EAD, September 20, 1999 (DCN D00023).

             Personal communication from Dana Worcester, Reusable Industrial Packaging
             Association, August 13, 1999 (DCND00083).

             Personal communication from Dana Worcester, Reusable Industrial Packaging
             Association, August 31, 1999 (DCN D00076).

             Personal communication from Dana Worcester, Reusable Industrial Packaging
             Association, September 14, 1999 (DCND00077).

             Personal communication from Rich Crowley, Evans Industries, Inc., January 18,
             2001 (DCND00160).

             U.S. EPA Office of Water, 1994 Detailed Questionnaire for the Transportation
             Equipment Cleaning Industry - Part A: Technical Information, April 1995.

             Metcalf and Eddy, Inc. Wastewater Engineering: Treatment, Disposal, Reuse,
             Third Edition.  McGraw-Hill, Inc.,  1991, p. 109.
                                         5-14

-------
                                                       Section 5.0 - Water Use and Wastewater Characterization
                                 Table 5-1
Comparison of Steel Drum Washing Raw Wastewater Characterization Data
Priority
Pollutant
Code
Analyte
Units
1980s Data
Mean
Concentration
(a)
Range of
Individual Data
Points
Detected in
How Many
Samples?
2000 Data
Mean
Concentration
(a)
Range of Individual
Data Points
Detected in
How Many
Samples?
Volatile Organics

P004
P007
P023
P010
P029
P038


P044



P085
P086
P030
P011
P087
Acetone
Benzene
Chlorobenzene
Chloroform
1 ,2-Dichloroethane
1 , 1 -Dichloroethene
Ethylbenzene
Isobutyl Alcohol
m+p-Xylene
Methylene Chloride
Methyl Ethyl Ketone
Methyl Isobutyl Ketone
o-Xylene
Tetrachloroethene
Toluene
Trans- 1 ,2-Dichloroethene
1,1,1 -Trichloroethane
Trichloroethene
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
170,000
50 - 2,000,000
4/9
ND
ND
ND
160
1,400
17,000
560
10-1,000
10-25,000
100-190,000
10-3,500
1/9
1/9
7/9
1/9
ND
1,900
290,000
10-15,000
50-1,400,000
2/9
5/9
ND
ND
4,500
18,000
160
7,400
650
10 - 86,000
25-110,000
10-1,000
10 - 72,000
10-4,600
1/9
8/9
1/9
5/9
4/9
22,000
36
15
630
210-43,000
10-63
10-21
10-1,300
2/2
1/2
1/2
1/2
ND
ND
2,700
10 - 5,400
1/2
ND
6,700
10-13,000
1/2
ND
43,000
75,000
2,000
22
26,000
320 - 85,000
230-150,000
10 - 3,900
10-35
10-51,000
2/2
2/2
1/2
1/2
2/2
ND
ND
ND
Semivolatile Organics


Acetophenone
Alpha- Terpineol
Mg/L
Mg/L
ND
1,300
10-4,700
1/9
21
15-27
1/2
ND

-------
                                Section 5.0 - Water Use and Wastewater Characterization
Table 5-1 (Continued)
Priority
Pollutant
Code



P066
P067
P020
P068
P059
P035

P080

P054
P060











Analyte
Benzoic Acid
Benzyl Alcohol
Biphenyl
Bis (2-Ethylhexyl) Phthalate
Butyl Benzyl Phthalate
2-Chloronaphthalene
Di-N-Butyl Phthalate
2,4-Dinitrophenol
2,4-Dinitrotoluene
Diphenyl Ether
Fluorene
Hexanoic Acid
Isophorone
2-Methyl-4,6-Dinitrophenol
2-Methylnaphthalene
n-Decane
n-Docosane
n-Dodecane
n-Eicosane
n-Hexacosane
n-Hexadecane
n-Nitrosomorpholine
n-Octacosane
n-Octadecane
n-Tetracosane
Units
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
1980s Data
Mean
Concentration
(a)
12,000
1,000
190
5,400
210
1,200
1,100
Range of
Individual Data
Points
50 - 95,000
10 - 9,800
10-1,400
10-44,000
10 - 3,300
10-4,600
10 - 14,000
Detected in
How Many
Samples?
2/9
3/9
4/9
5/9
1/9
3/9
3/9
ND
100
170
100
370
2,800
10-1,000
10-2,500
10-1,000
10-1,200
10-25,000
1/9
1/9
1/9
2/9
4/9
ND
80
3,000
880
1,800
10-1,000
10 - 12,000
10 - 12,000
10 - 7,000
1/9
1/9
2/9
1/9
ND
ND
400
10-1,200
2/9
ND
1,500
910
10-28,000
10-13,000
1/9
2/9
ND
2000 Data
Mean
Concentration
(a)
89,000
3,300
Range of Individual
Data Points
21,000-160,000
690 - 6,000
Detected in
How Many
Samples?
2/2
2/2
ND
270
260
76 - 470
16-510
2/2
1/2
ND
100
1,000
16-190
76 - 2,000
1/2
1/2
ND
ND
ND
59,000
200
640
140
1,100
220
770
410
1,200
290
2,400
160
320
450
2,000 - 120,000
67-330
30-1,200
16-270
16-2,200
18-430
16-1,500
40 - 790
50 - 2,300
23 - 560
16-4,800
16-300
57-580
16-890
2/2
2/2
1/2
1/2
1/2
2/2
1/2
2/2
2/2
2/2
1/2
1/2
2/2
1/2

-------
                                Section 5.0 - Water Use and Wastewater Characterization
Table 5-1 (Continued)
Priority
Pollutant
Code

P055
P056
P057
P058



P081
P065



Analyte
n-Tetradecane
Naphthalene
Nitrobenzene
2-Nitrophenol
4-Nitrophenol
o-Cresol
p-Cresol
p-Cymene
Phenanthrene
Phenol
Styrene
Thioxanthone
Tripropyleneglycol Methyl Ether
Units
Hg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
1980s Data
Mean
Concentration
(a)
2,600
1,900
100
770
Range of
Individual Data
Points
10-44,000
10-18,000
10-1,000
20 - 3,300
Detected in
How Many
Samples?
2/9
6/9
2/9
3/9
ND
100
10-1,000
2/9
ND
160
670
140
4,500
190
10-2,000
10 - 12,000
10-1,000
10 - 35,000
20 - 2,000
4/9
1/9
1/9
6/9
1/9
ND
2000 Data
Mean
Concentration
(a)
Range of Individual
Data Points
Detected in
How Many
Samples?
ND
230
16-450
1/2
ND
1,800
2,400
180
200
90
1,100-2,400
1,500-3,200
15-350
15-380
16-160
2/2
2/2
1/2
1/2
1/2
ND
3,200
50
3,200 (b)
15-85
1/1 (b)
1/2
ND
2,300
270 - 4,400
2/2
Dioxins and Furans




1 ,2,3,4,6,7,8-Heptachlorodibenzo
-p-dioxin
1 ,2,3,4,6,7,8-Heptachlorodi-
benzofuran
Octachlorodibenzo-p-dioxin
Octachlorodibenzofuran
Pg/L
Pg/L
Pg/L
Pg/L
NA
NA
NA
NA
160
100
1,300
270
90 - 220
50-160
1,200-1,400
220 - 330
2/2
1/2
2/2
2/2
Pesticides and Herbicides (c)




Azinphos Ethyl
Azinphos Methyl
Diazinon
Dimethoate
Mg/L
Mg/L
Mg/L
Mg/L
2,100
5,400
520
750
ND- 4,300
4,700 - 6,200
ND- 1,000
ND- 1,500
1/2
2/2
1/2
1/2
ND
ND
ND
ND

-------
                                                                                         Section 5.0 - Water Use and Wastewater Characterization
                                                         Table 5-1 (Continued)
Priority
Pollutant
Code
P095
P097


P100

Analyte
Endosulfan I
Endosulfan Sulfate
Etridazone
Fensulfothion
Heptachlor
Leptophos
Units
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
1980s Data
Mean
Concentration
(a)
150
260
130
6,800
140
2,000
Range of
Individual Data
Points
ND-300
ND-530
ND-250
5,800 - 7,900
ND-280
ND - 4,000
Detected in
How Many
Samples?
1/2
1/2
1/2
2/2
1/2
1/2
2000 Data
Mean
Concentration
(a)
Range of Individual
Data Points
Detected in
How Many
Samples?
ND
ND
ND
ND
ND
ND
Metals

P114
P115

P117

P118

P119

P120

P122


P123

Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
20,000
3,500
54
2,000
15
2,100
410
39,000
3,200
400
1,600
110,000
14,000
12,000
1,700
5.9
560
3,100-91,000
15-34,000
16 - 500
89 - 7,500
1-50
13-7,700
6 - 4,700
9,200 - 120,000
630 - 6,700
68-1,700
250 - 5,900
9,000 - 690,000
2,400 - 38,000
3,900 - 40,000
63 - 6,900
0.2-41
100-2,200
9/9
9/9
9/9
9/9
3/9
9/9
9/9
9/9
9/9
9/9
9/9
9/9
9/9
9/9
9/9
8/9
9/9
16,000
320
38
2,200
0.38
16,000
19
28,000
1,000
570
710
170,000
3,200
9,600
700
0.57
930
11,000-21,000
280 - 360
28-48
980 - 3,400
0.19-0.57
2,500 - 29,000
2.9-36
19,000-38,000
210-1,900
560 - 580
670 - 760
160,000-180,000
1,600-4,800
7,000 - 12,000
700 - 710
0.20-0.93
770-1,100
2/2
2/2
2/2
2/2
2/2
2/2
1/2
2/2
2/2
2/2
2/2
2/2
2/2
2/2
2/2
1/2
2/2
oo

-------
                                                                                         Section 5.0 - Water Use and Wastewater Characterization
                                                         Table 5-1 (Continued)
Priority
Pollutant
Code
P124
P125
P126

P127




P128
Analyte
Nickel
Selenium
Silver
Sodium
Thallium
Tin
Titanium
Vanadium
Yttrium
Zinc
Units
Hg/L
Mg/L
Mg/L
mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
1980s Data
Mean
Concentration
(a)
200
14
2.8
5,200
19
1,500
470
35
Range of
Individual Data
Points
16-1,000
5.0-50
1.0-18
1,500-9,500
10-100
120 - 6,400
24 - 2,600
2.0 - 95
Detected in
How Many
Samples?
9/9
4/9
4/9
9/9
2/9
9/9
9/9
5/9
ND
25,000
3,300-110,000
9/9
2000 Data
Mean
Concentration
(a)
210
Range of Individual
Data Points
180-250
Detected in
How Many
Samples?
2/2
ND
7.5
4,300
3.5-11
4,200 - 4,400
1/2
2/2
ND
400
230
71
1.6
18,000
240 - 560
160 - 300
41 - 100
1.3-1.8
13,000-24,000
2/2
2/2
2/2
2/2
2/2
Classical*











P065


Ammonia
BOD5, Dissolved
BOD5, Total
Chloride
COD, Dissolved
COD, Total
Dissolved Solids
Fluoride
Nitrate/Nitrite
Oil & Grease/HEM
PH
Phenol
SGT-HEM
Suspended Solids
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
Standard
Units
mg/L
mg/L
mg/L
9.3
2,500
3,700
1,400
8,500
17,000
15,000
34
0.1 -23
480 - 9,000
420 - 17,000
50-5,100
800 - 46,000
1,300-100,000
5,700 - 30,000
15-90
9/9
9/9
9/9
9/9
9/9
9/9
9/9
9/9
NA
13,000

35
2,500 - 34,000
10-13
1.5-170
9/9
9/9
9/9
NA
4,700
20 - 22,000
9/9
42
31 -53
2/2
NA
3,500
1,400
1,600-5,400
1,100-1,800
2/2
2/2
NA
10,000
4,600 - 16,000
2/2
NA
NA
360
310

230 - 480
130-490
12-13
2/2
2/2
2/2
NA
140
1,400
61-220
930-1,900
2/2
2/2
VO

-------
                                                                                                                      Section 5.0 - Water Use and Wastewater Characterization
                                                                           Table 5-1  (Continued)
Priority
Pollutant
Code


P121



Analyte
Suspended Volatile Solids
TKN
Total Cyanide
Total Organic Carbon
Total Phosphorus
Total Volatile Solids
Units
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
1980s Data
Mean
Concentration
(a)
2,400
71
4.2
3,200
Range of
Individual Data
Points
8.0 - 16,000
1.6-430
0.05-8.3
210-19,000
Detected in
How Many
Samples?
9/9
9/9
9/9
9/9
NA
6,000
390 - 30,000
9/9
2000 Data
Mean
Concentration
(a)
Range of Individual
Data Points
Detected in
How Many
Samples?
NA
NA
1.4
2,000
17
1.3-1.5
920-3,100
9.5-25
2/2
2/2
2/2
NA
to
o
(a) For samples in which individual pollutants were not detected, the sample detection limit was used in calculating the mean concentration.  For pesticide and herbicide analytes, the sample
detection limit was not reported; therefore, a value of zero was used for nondetected results in calculating the mean concentration for these analytes.
(b) One data point was excluded.
(c) Pesticides and herbicides were detected in samples collected at a facility known to clean drums that last contained pesticides and herbicides.
ND - Pollutant was not detected.
NA - Pollutant was not analyzed.

-------
                            Section 5.0 - Water Use and Wastewater Characterization

                       Table 5-2

Summary of Raw Wastewater Characterization Data for
            Plastic Drum and IBC Washing
Priority Pollutant
Code
Analyte
Units
Concentration
Volatile Organics

P048
P007
P023

Acetone
Bromodichloromethane
Chlorobenzene
Chloroform
Methyl Ethyl Ketone
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
240
91
12
4,000
120
Semivolatile Organics


P066








P055
P065
P084
P021

Acetophenone
Benzoic Acid
Bis (2-Ethylhexyl) Phthalate
Hexanoic Acid
2-Methylnaphthalene
n-Decane
n-Eicosane
n-Hexacosane
n-Hexadecane
n-Octadecane
n-Tetracosane
Naphthalene
Phenol
Pyrene
2,4,6-Trichlorophenol
Tripropyleneglycol Methyl Ether
l*g/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
ve/L
ve/L
11
350
16
69
50
120
23
18
21
22
27
13
180
10
44
3,900
Dioxins and Furans










1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin
1,2,3,4,6,7,8-Heptachlorodibenzofuran
1,2,3,4,7,8,9-Heptachlorodibenzofuran
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin
1,2,3,4,7,8-Hexachlorodibenzofuran
1,2,3,6,7,8-Hexachlorodibenzofuran
2,3,4,6,7,8-Hexachlorodibenzofuran
Octachlorodibenzo-p-dioxin
Octachlorodibenzofuran
Pg/L
pg^
pg^
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
Pg^
Pg/L
2,100
610
310
1,400
230
97
51
420
12,000
6,600
                          5-21

-------
             Section 5.0 - Water Use and Wastewater Characterization



Table 5-2 (Continued)
Priority Pollutant
Code
Analyte
Units
Concentration
Pesticides and Herbicides


Dalapon
MCPA
Mg/L
Mg/L
210
2,300
Metals



P118

P119

P120

P122


P123

P124
P125




P128
Aluminum
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Selenium
Sodium
Tin
Titanium
Vanadium
Zinc
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
VgfL
VgfL
VgfL
VgfL
VgfL
Mg/L
39,000
57
78
7.0
68,000
84
14
360
2,300
61
14,000
54
63
1,700
30
5.1
2,000,000
700
44
44
3,200
Classicals







P121


Ammonia
BOD5, Total
Chloride
COD, Total
Nitrate/Nitrite
Oil & Grease/HEM
Suspended Solids
Total Cyanide
Total Organic Carbon
Total Phosphorus
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
21
440
2,200
2,400
5.3
21
1,500
0.78
1,300
20
          5-22

-------
                                      Section 5.0 - Water Use and Wastewater Characterization




                                 Table 5-3





Summary of Raw Wastewater Characterization Data for Steel Drum Burning
Priority Pollutant
Code
Analyte
Units
Concentration
Volatile Organics

P038
P044


P011
P086
Acetone
Ethylbenzene
Methylene Chloride
Methyl Ethyl Ketone
Methyl Isobutyl Ketone
1,1,1 -Trichloroethane
Toluene
Mg/L
Mg/L
Mg/L
VgfL
VgfL
VgfL
VgfL
16,000
12,000
100,000
68,000
18,000
17,000
17,000
Semivolatile Organics

P066
P054
P055



Benzyl Alcohol
Bis (2-Ethylhexyl) Phthalate
Isophorone
Naphthalene
o-Cresol
p-Cymene
Styrene
l*g/L
VgfL
VgfL
VgfL
Mg/L
Mg/L
VgfL
4,600
880
14,000
5,300
2,600
1,000
13,000
Dioxins and Furans








1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin
1,2,3,4,6,7,8-Heptachlorodibenzofuran
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin
1,2,3,4,7,8-Hexachlorodibenzofuran
2,3,7,8-Tetrachlorodibenzofuran
Octachlorodibenzo-p-dioxin
Octachlorodibenzofuran
Pg/L
Pg/L
Pg/L
Pg/L
Pg^
Pg/L
Pg/L
Pg/L
15
2.0
0.37
0.36
0.55
0.21
200
10
Metals

P114
P115

P117

P118

P119
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
l*g/L
VgfL
VgfL
VgfL
Mg/L
Mg/L
Mg/L
Mg/L
MK/L
47,000
600
10
5,700
5.0
7,300
730
170,000
12,000
                                    5-23

-------
             Section 5.0 - Water Use and Wastewater Characterization



Table 5-3 (Continued)
Priority Pollutant
Code

P120

P122


P123

P124
P125
P126

P127




P128
Analyte
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Selenium
Silver
Sodium
Thallium
Tin
Titanium
Vanadium
Yttrium
Zinc
Units
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Concentration
3,500
1,200
47,000
11,000
30,000
1,500
0.80
790
1,200
25
1.0
770,000
50
350
780
50
50
110,000
Classicals










P065



P121


Ammonia
BOD5, Dissolved
BOD5, Total
Chloride
COD, Dissolved
COD, Total
Dissolved Solids
Fluoride
Oil & Grease/HEM
pH
Phenol
Suspended Solids
Suspended Vol. Solids
TKN
Total Cyanide
Total Organic Carbon
Total Volatile Solids
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
33
1,500
2,600
330
18,000
52,000
6,200
11
5,300
8.2
39
9,500
14,000
560
0.28
4,000
19,000
          5-24

-------
                                                                                         Section 5.0 - Water Use and Wastewater Characterization
fj\
to
                     Solution
                     Make-Up
                      Source
                      Water
                      Fresh
                      Water
Drum and Container
Interior Cleaning:
Chemical Solution
                                                Drum and Container
                                                Interior Cleaning:
                                                Water
Drum and Container
Burning:
Quench Water
Exterior Cleaning
Water
                                            Wastewater Treatment
                                                                                              Discharge to
                                                                                              Treatment Works
                        Key:
                                 Primary Path
                                 Recycle & Reuse Stream
                                                   Figure 5-1. Water Use in ICDC Operations

-------
                              Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
6.0          POLLUTION PREVENTION AND WASTEWATER TREATMENT
             TECHNOLOGIES

             This section describes technologies that are used by the Industrial Container and
Drum Cleaning (ICDC) industry to prevent the generation of wastewater pollutants or reduce the
discharge of wastewater pollutants. Three major approaches are used by the ICDC industry to
improve effluent quality: (1) cleaning process technology changes and controls to prevent or
reduce the generation of wastewater pollutants; (2) flow reduction technologies to decrease
wastewater generation and increase pollutant concentrations, thereby improving the efficiency of
treatment system pollutant removals; and (3) end-of-pipe wastewater treatment technologies to
remove pollutants from ICDC wastewater prior to discharge. Most facilities use various
combinations of these approaches to control pollutant discharges.

             These approaches are discussed in the following sections:

             •      Section 6.1: Pollution prevention controls used by the ICDC industry;
             •      Section 6.2: Flow reduction technologies used by the ICDC industry;
             •      Section 6.3: End-of-pipe wastewater treatment technologies used by the
                    ICDC industry;
             •      Section 6.4: Wastewater treatment performance data collected from the
                    ICDC industry; and
             •      Section 6.5: References.

Most of the information presented in this section is based on observations and information
collected during EPA site visits and sampling episodes, data collected from the Reusable
Industrial Packaging Association (RIPA), and other non-EPA data sources (see Section 3.0).
Tables appear at the end of the section.
                                          6-1

-------
                              Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
6.1          Pollution Prevention Controls

             EPA has defined pollution prevention as source reduction and other practices that
reduce or eliminate pollution at the source.  Source reduction includes any practices that reduce
the amount of any hazardous substance or pollutant entering any waste stream or otherwise
released into the environment, or any practice that reduces the hazards to public health and the
environment associated with the release of such pollutants. Pollution prevention controls used by
the ICDC industry include heel reduction, heel removal, reduction in the amount and toxicity of
chemical cleaning solutions, and good housekeeping practices.

6.1.1         Heel Reduction

             Heel is the residual cargo remaining in a container or drum after emptying and is
the primary source of pollutants in ICDC wastewater.  The Resource Conservation and Recovery
Act (RCRA) mandates a comprehensive system to identify hazardous wastes and to track and
control their movement from generation through transport, treatment, storage, and ultimate
disposal. Any hazardous waste remaining in either an empty container or an inner liner removed
from an empty container is not subject to regulation under RCRA. Empty is defined in 40 CFR
Part 261.7 paragraph (b), which is provided in Attachment A of this report.  In general, the
definition specifies that (1) containers must be emptied by pouring, pumping, or aspirating, and
(2) any residual must be less than or equal to volume cutoffs determined based on container
volume and cargo (e.g., one inch for 55-gallon drums that contained non-hazardous material).
Drums and containers received by ICDC facilities are "empty" as defined by RCRA. All
facilities visited by EPA in 2000 return to the shipper any hazardous and non-hazardous waste
drums and containers that are not empty.

             Excess heels are also an important economic consideration for drum  and container
end users.  For example, many cargos are valuable, and any product waste represents a significant
loss. In an article in Chemical Week dated March 5,  1986, Vincent Buonanno of the National
Barrel and Drum Association (now RIP A) referred to the 1 inch of product remaining in empty
                                          6-2

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
drums as "the $1 billion inch" (1). Therefore, both the ICDC industry and the end user have
strong incentives to minimize heels.

              Heel generation occurs during the emptying of a drum or container.  Since drum
and container emptying typically does not occur at the ICDC facility, the end user has more direct
control over heel generation than the ICDC facility that ultimately cleans the drum or container
and disposes or discharges the heel. However, ICDC facilities can develop a heel minimization
program that identifies the sources of heels and institutes practices that discourage heel
generation by the end user. Successful heel minimization programs commonly include education
on heel minimization and return of drums and containers that are not empty. Many ICDC
facilities also require signed certification by the shipper that the drums or containers were
properly emptied.

              Education programs focus on instructing the end user on RCRA's definition of
empty. For example, a common misconception by end users is that empty means 1 inch (or less)
of product in a drum, with no other requirements such as pouring, pumping, or aspirating. In
fact, the "1 inch rule" applies only to very viscous products; RJPA promotes the term "drip-dry"
to indicate that all product that can be removed has been removed. Mitchell Container Services,
Inc. provides the following guidance on their website (2):

              "If more material may be poured out of the drum, then it is not empty. If
              everything is poured out, but more than 2.5 centimeters (1 inch) remain on the
              bottom, the drum is not empty.  If the residual material is listed by EPA in 40 CFR
              261.33(E) as a "P-listed" acute hazardous waste, the drum is not deemed empty
              unless it has been triple-rinsed using an effective  solvent, or has been cleaned by
              method shown to achieve  equivalent removal."

EPA visited one ICDC facility in 2000 that requests shippers to rinse all IBCs and triple rinse all
plastic drums, regardless of cargo. Facility personnel estimate that approximately 60% of their
clients comply with their request.
                                           6-3

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies

              As a corollary to an education program, ICDC facilities must rigorously enforce

RCRA's definition of empty.  In fact, most ICDC facilities cannot legally accept drums or

containers that are not empty because they do not hold RCRA permits as treatment, storage, or

disposal facilities (TSDFs). For drums or containers that contain non-hazardous heels, facilities

may charge an extra fee, beyond that required to either return the drum or container to the shipper

or to dispose of the heel, as an incentive to minimize heel.


              Empty drum or container certification programs are intended to encourage the

emptier to implement procedures and systems to ensure that drums and containers are properly

emptied. (Certification is not required by any federal or state agency.) The certification should

be signed by the supervisor where the drum or container was last used to confirm that the drum

or container was properly emptied.  Some ICDC facilities incorporate certification within the

drum or container reconditioning contract; other ICDC facilities require  certification with each

shipment of drums or containers. The empty drum certification form required by Mitchell

Container Services, Inc. requires the shipper to agree to the following (2):
              "1.  This is to certify that the above named materials are properly classified,
              described, packaged, marked and labeled and are in proper condition for
              transportation according to the applicable regulations of the DEPARTMENT OF
              TRANSPORTATION. (49 CFR 173.204)

              2. It is further certified that all containers are empty: that all plugs, lids and rings
              are securely in place. (49 CFR 173.29)

              3. It is further certified that all containers are properly classified, described and
              offered for shipment according to the applicable regulations of the
              ENVIRONMENTAL PROTECTION AGENCY (40 CFR Parts 260-263), and
              that they are EMPTY as defined in 40 CFR 261.7, and have not contained
              "acutely hazardous waste," as listed in 40 CFR 261.33 (e), and that all "RQ"
              markings apply only to the original, filled containers and not to these empty
              containers."
                                           6-4

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
6.1.2          Heel Removal

              Heel removal techniques used by ICDC facilities include heel pouring or draining,
presteaming, and preflushing.  None of the facilities visited by EPA in 2000 pour or drain heels
from drums prior to washing or burning (any drums that are not empty are returned to the
shipper). Based on site visits to washing facilities in the mid-1980s, only drums that last
contained oil and other petroleum products were poured or drained prior to washing, and the
heels were  sold to oil recyclers. None of the burning facilities visited by EPA in the mid-1980s
reported pouring or draining heels (i.e., heel pouring or draining is not documented in available
site visit reports).  EPA visited two transportation equipment cleaning (TEC) facilities in 1999
that also clean IBCs; both facilities drain heels from IBCs prior to washing.  EPA also visited one
IBC washing facility in 2000 that does not clean transportation equipment.  This facility does not
drain heels  from IBCs; however, the facility requests that shippers rinse IBCs prior to shipment.

              Presteaming includes steaming the drum or container interior to enhance heel
removal. Steaming also lowers heel viscosity to facilitate draining. EPA found the following
presteaming trends based on site visits:
                    One drum washing facility visited by EPA in 2000 presteams drums.  This
                    facility transports steam condensate, which contains product residual, as a
                    hazardous waste to a fuels blending facility. The remaining two drum
                    washing facilities visited by EPA in 2000 do not presteam drums or IBCs.
                    Approximately one third of drum washing facilities visited by EPA in the
                    mid-1980s presteamed some or all drums. For example, several of these
                    facilities presteamed all drums; one facility presteamed only drums that
                    last contained viscous cargos; and one facility presteamed only drums that
                    last contained oil or sticky cargos.  Information regarding steam
                    condensate management at  these drum washing facilities is not available.
                    None of the burning facilities visited by EPA in 2000 and in the mid-
                    1980s presteamed  drums prior to burning.
                    The two TEC facilities that EPA visited in 1999 prestream IBCs prior to
                    washing depending on the cargo last transported.  The steam condensate is
                                           6-5

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
                     disposed of as a hazardous waste. The IBC washing facility that does not
                     clean transportation equipment that EPA visited in 2000 does not perform
                     presteaming; however, the facility requests that shippers rinse IBCs prior
                     to shipment.

              Preflushing includes spraying the drum or container interior with either water or
cleaning solutions to enhance heel removal.  One drum washing facility visited by EPA in 2000
preflushes open-head plastic drums with water. One drum washing facility visited by EPA in the
mid-1980s preflushed drums that last contained petroleum with kerosene. This kerosene, with
product residue, was sold to an oil rerefiner. None of the remaining drum reconditioning
facilities visited by EPA in the mid-1980s preflushed drums.  The TEC facilities visited by EPA
preflush IBCs with either detergent, water, or a pyrrolidine-based solution prior to washing
depending on the cargo last transported. Oily preflush waste is sent to an oil reprocessor, while
other preflush waste is disposed of as a hazardous waste. The IBC  washing facility visited by
EPA in 2000 that does not clean transportation equipment does not perform preflushing;
however, the facility requests that shippers rinse IBCs prior to shipment.

6.1.3          Reduction in the Amount and Toxicity of Chemical Cleaning Solutions

              All drum and IBC washing facilities visited by EPA use one or more chemical
cleaning solutions in the washing process. (None of the drum burning facilities visited by EPA
in 2000 and the mid-1980s use chemical cleaning solutions.)  In addition to the contaminants
contained in the heel removed by chemical cleaning solutions, the chemicals used in the solutions
may themselves be toxic. By reducing the amount and toxicity of chemical cleaning solutions
used in the drum and container washing process, ICDC facilities  can reduce the contribution of
cleaning solutions to the total wastewater pollutant concentrations.  These pollution prevention
procedures include recirculating and reusing cleaning solutions, disposing cleaning solutions
separately from drum and container washing wastewater, and using less toxic cleaning solutions.

              Recycle and reuse is usually achieved through the use  of automated cleaning
systems with cleaning solution recirculation loops that allow reuse  of cleaning solutions until
                                           6-6

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
their efficacy diminishes below acceptable levels. This reduces the amount of additional
chemical cleaning solution required for each drum or container cleaned; instead, small amounts
of make-up solution are periodically added to replace solution lost in carryover to rinses or to
boost efficacy.  Presteaming and preflushing may extend the useful life of a chemical cleaning
solution, thereby reducing the total amount of chemical cleaning solution needed for drum and
container washing.

              In general, chemical cleaning solutions that are discharged to POTWs include
those that are not reused or that are reused for relatively short periods, such as one week to three
months. However,  some ICDC facilities reuse cleaning solutions for very long periods of time,
such as three months, six months, or indefinitely. At these facilities, cleaning solutions are
periodically treated using a variety of technologies to remove contaminants, such as solids and
oil. For example, one facility visited in 2000 uses "shakers" which remove solids via screens and
a clarifier to remove oil. Other facilities visited in 2000 and in the mid-1980s use dissolved air
flotation, sedimentation, or clarification to treat cleaning solutions.  When (or if) these solutions
are ultimately determined to be spent, they are typically hauled off site for treatment at a
centralized treatment facility which is frequently better equipped to treat these wastes.

              Available data indicate that relatively toxic cleaning solutions such as petroleum-
based solvents (e.g., kerosene or diesel fuel) are seldom used by ICDC facilities. Only one drum
washing facility visited by EPA in the mid-1980s used kerosene to preflush drums that last
contained petroleum; the preflush waste was sold to an oil rerefmer.

              Use of these procedures by the three drum washing facilities visited in 2000 and
the two TEC facilities visited in 1999 that clean IBCs is summarized below:
Procedure
Recirculation and reuse of cleaning solutions
Disposal of cleaning solutions
Use of less toxic cleaning solutions
Number of Facilities
4
2
5
                                            6-7

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
Available information from site visits conducted in the mid-1980s suggest similar cleaning
solution management practices at that time. Note that the focus of site visit reports from the mid-
1980s was to document the selection of facilities and sampling points for subsequent sampling,
rather than thorough documentation of process operations.

              RIP A provided EPA a summary of the results of a membership survey from 2000
which included data from certain process operations (3). The association sent surveys to 98
RJPA members who reprocess steel and plastic drums, as well as IBCs, and received 36 survey
responses. Eleven respondents reported cleaning and reusing wash solutions, while eight
respondents  reported treating and discharging these solutions.  One respondent reported
performing a solvent rinse. Note that survey responses are not statistically based and may not
accurately represent industry operations.

6.1.4          Good Housekeeping Practices

              Good housekeeping practices are simple, straightforward operating practices that
can significantly reduce wastes. Good housekeeping practices applicable to the ICDC industry
include mopping up and managing spills rather than rinsing to floor drains, and periodically
cleaning floor drains to remove possible heel accumulation and debris.

              Good housekeeping practices also include proper management of drum storage to
minimize the potential for spills and leaks and for stormwater contamination.  Many facilities
have drum storage that is warehoused or under roof; however, many facilities continue to operate
open drum storage yards.  Good housekeeping practices for open storage yards include:

              •      Storing all drums with bungs in place, and rings and lids on the drums;
              •     Wiping or cleaning spills from drum exteriors;
              •     Constructing berms and dikes around storage areas to contain any
                    contaminated stormwater and to minimize the amount of stormwater
                    coming into contact with the drums;
                                           6-8

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies

              •       Paving storage areas to prevent infiltration of potentially contaminated
                     stormwater; and
              •       Managing drum inventory to prevent or minimize drum deterioration.

              Responses to RJPA's 2000 survey indicated that the daily number of drums stored
onsite ranges from 1,000 to 100,000 and averages 22,250. Drum storage was reported as follows
(3):

              •       Storage on concrete or blacktop pads (10 respondents);
              •       Storage in buildings or covered structures (9 respondents);
              •       Storage on soil (10 respondents); and
              •       Storage in trailers (28 respondents).

In addition, four respondents reported collecting and discharging stormwater runoff.

              During site visits conducted in 2000, EPA observed all of the drum storage
practices listed above. Two of the three facilities visited stored drums in trailers and/or in
buildings. The third facility stored drums using all of the practices listed above.

6.2           Flow Reduction Technologies

              This section describes technologies that can reduce the volume of wastewater
discharged from ICDC facilities. Flow reduction offers the following benefits: (1) increased
pollutant concentrations which increase the efficiency of the wastewater treatment system; (2)
decreased wastewater treatment equipment sizes, resulting in reduced treatment system capital
and operating and maintenance costs; and (3) decreased water and energy usage. Flow reduction
technologies applicable to the ICDC industry serve to reduce the amount of fresh water required
for drum and container washing and drum burning through process modifications and/or
recycling and reusing process wastewater in ICDC or other operations.  These flow reduction
technologies are discussed in the following subsections.
                                           6-9

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
6.2.1          Process Modifications

              One of the most effective tools for reducing water use in the drum washing
process is increased process automation.  Modern turn-key reconditioning systems include
presteam, washing, and rinsing stations with reuse of all solutions and rinses until spent. Final
rinse wastewater is reused in wash and preflush solutions to replace water lost to evaporation;
excess spent rinse wastewater is discharged to wastewater treatment. Manual cleaning
operations, if any, include efficient use of hand-held, high-pressure, low-volume wands. Both
steel drum washing facilities visited by EPA in 2000 operated automated cleaning processes.
The plastic drum and IBC washing facility visited by EPA in 2000 operated an automated
cleaning process for open-head drums and semi-automated cleaning processes for closed-head
drums and IBCs.

              Unlike drums, IBCs are manufactured in a variety of configurations including
different top opening sizes, container volumes and dimensions, and materials of construction.
Consequently, it is difficult to design a fully automated IBC reconditioning system for facilities
that wash a variety of IBC types.  Custom-designed automated IBC washing systems are best
suited for IBC leasers and chemical manufacturers that can control the types of IBCs cleaned;
however, semi-automated systems may be feasible for other facilities. Regardless of the
technique employed (automated, semi-automated, or manual), cleaning solutions and rinses can
be collected and reused in subsequent cleaning operations.  For example, during site visits in
1999, EPA observed IBC wash lines at TEC facilities where cleaning solutions and rinse water
were collected in troughs under the rack and were returned to cleaning solution and rinse water
storage tanks for reuse.

              Mechanical or thermal techniques can substitute for water-intensive techniques,
particularly for cleaning metal drums and containers. For example, during site visits, EPA
observed a variety of drum and IBC label removal operations including hand-held pressure
wands, mechanical buffing, shot blasting, thermal removal, and manual scraping.  See also the
discussion of cryogenic cleaning in Section 6.2.2.
                                          6-10

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
              Drum burning processes use and generate significantly less water and wastewater
than drum washing processes.  (Note: EPA is not suggesting or recommending conversion of
drum washing operations to drum burning operations.) Flow reduction technologies applicable
to drum burning include reuse of drum quench, chain quench, and conveyor washing water. In
general, these wastewater streams are never discharged, but require periodic fresh water make-up
to replace losses to evaporation. Wastewater from leak testing and  drum rinses (if any) can be
reused until spent.  EPA visited only one ICDC facility that only burns drums (i.e., does not also
wash drums); this facility (visited in the mid-1980s) does not discharge any process wastewater
because all process wastewater is reused.  This facility sandblasts but does not rinse drums prior
to painting. EPA has no data on the percentage of ICDC facilities that only burn drums and that
achieve 100% reuse of process wastewater.

6.2.2         Cleaning Without the Use of Water

              Literature searches revelled two drum and IBC cleaning processes that do not use
water - solvent washing and cryogenics.

              Hoyer built a new IBC cleaning facility in Antwerp,  Belgium to clean water-
insoluble cargos such as varnishes, paints, and lacquers via solvent  cleaning.  The facility began
cleaning operations in September 1999. Solvent cleaning is performed in a multi-stage process
and is designed for maximum recovery of solvent. The facility also operates a hermetically
sealed solvent washing cabinet to clean heavily soiled IBCs. Solvent emissions are incinerated
on site, along with heels and residues from solvent recovery (4)(5).   EPA has no data on the
solvent used or potential air pollution problems.  EPA is not aware  of any ICDC facilities in the
United States that perform solvent washing.  (Note: Discussion of this technology does not
constitute or imply an endorsement, recommendation, or warranty  by the U.S. Environmental
Protection Agency.)

              At least two manufacturers in  the United States (W.S.I.  Industrial Services and
Drumbeaters of America) market cryogenic systems to clean plastic or metal drums, pails, and
                                           6-11

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
cans.  In the cryogenic system, the drum, pail, or can is placed in a chamber where it is cooled
using liquid nitrogen to solidify any liquid residue.  Solid residue is removed by inverting and
hitting or vibrating the container, and the residue and container (metal) may be reused.
According to the manufacturers, the system  removes residues, such as paints, mastics, glue,
asphalts, cementatious materials, greases, oils, and glycol (6)(7). Similar systems may be
available for cleaning IBCs; however, one IBC manufacturer that investigated cryogenic cleaning
several years ago (Fabricated Metals) had serious concerns about potential adverse effects of low
temperatures on some metals used in  the construction of IBCs (8)(9). EPA has not identified any
ICDC facilities in the United States that use cryogenic drum or container cleaning processes.
(Note: Discussion of this technology does not constitute or imply an endorsement,
recommendation, or warranty by the  U.S. Environmental Protection Agency.)

6.2.3          Cascade Rinsing

              Rinse water is the largest source of wastewater generated by ICDC operations,
both for washing facilities and for burning facilities that rinse drums. One technique used by
some ICDC facilities to significantly reduce the volume of rinse water discharged is referred to as
"cascade rinsing."  In this process, the most  contaminated ICDC rinse water is used in the
beginning of the process for drum and container preflushing or initial rinsing, with preflush or
initial rinse wastewater routed to wastewater treatment or disposal. Final rinse water from the
end of the process is reused as initial  drum or container rinse water when cleaning subsequent
drums or containers. Fresh water is only used at the end of the process for final rinses. Through
this process, rinse water is used at least twice prior to discharge or disposal.

              Make-up water to replace water lost to evaporation may also be cascaded. For
example, the most contaminated ICDC rinse water is used to make-up chemical cleaning
solutions or preflush solutions, final rinse water is used as make-up for initial rinse water, and
fresh  water is used to make-up final rinse water.  One facility visited by EPA in the mid-1980s
treated rinse wastewater by sedimentation and clarification prior to reuse as make-up for
chemical cleaning solutions.
                                          6-12

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
              EPA observed cascade rinsing at two of the three drum washing facilities visited
in 2000 (one facility also washes IBCs). At the first facility, open-head plastic drums undergo
the following washing cycle: exterior rinse, interior preflush, two interior washing steps, and
final rinse. Final rinse wastewater is reused in  the preflush step. The second facility operates the
following caustic washing process: presteaming, two caustic washing steps, two rinsing steps,
and vacuuming.  Fresh water is added as make-up to the final rinse step, and first rinse water is
added as make-up to the caustic cleaning solutions. Cascade rinsing is also used in this facility's
acid washing process. At the third facility, rinse water is routed to wastewater treatment without
reuse.  Fresh cleaning solution make-up is added to replace solution lost to evaporation and
carryover into the rinses.

              Cascade rinsing is not performed by the three IBC washing facilities visited in
2000 and 1999.

              Available  information from site visits conducted in the mid-1980s suggest that as
many as two-thirds of facilities visited practiced cascade rinsing.

6.2.4          Recirculated Rinse Water

              Another technique used by some ICDC facilities to significantly reduce the
volume of rinse water discharged is the use of recirculation loops on rinse steps to allow reuse of
rinse water until contamination exceeds acceptable levels. Recirculation reduces the amount of
fresh rinse water required for each drum or container cleaned, and small amounts of fresh make-
up water are periodically added to replace water lost to evaporation or carryover. Typically, rinse
water is recirculated for up to one day and then discharged; however, one facility visited by EPA
in the mid-1980s recirculates  rinse water for up to one week prior to  discharge. Several ICDC
facilities visited  by EPA in 2000 and in the mid-1980s both recirculate rinse water and cascade
rinse water to replace water lost to evaporation.
                                           6-13

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
              EPA observed rinse water recirculation at one of the three drum washing facilities
visited in 2000. At this facility, caustic and acid rinse tanks are filled with fresh water each
morning.  The rinses are reused throughout the day and then discharged to wastewater treatment
each night. At the remaining two facilities visited, rinse water is either routed to wastewater
treatment without reuse, or a portion is reused in other process steps as described in Section
6.2.3. Rinse water recirculation is not practiced by the three IBC washing facilities visited in
2000 and 1999.

              Available information from site visited conducted in the mid-1980s suggest that
approximately 25% of facilities visited practice rinse water recirculation.

              Respondents  to RIPA's 2000 survey provided information regarding management
of spent rinsing solutions.  Six respondents reported cleaning and reusing solutions, while 12
respondents reported treating and discharging solutions (3).  EPA has no additional information
regarding rinse water "cleaning" or rinse water reuse (e.g., cascade rinsing or rinse water
recirculation).
6.2.5
Treated Wastewater Recycle and Reuse
              Four ICDC facilities visited by EPA in the mid-1980s recycle 100% of treated
wastewater effluent in ICDC processes, resulting in zero discharge of ICDC process wastewater.
Wastewater recycling at these facilities is summarized below:
Facility
1
2
3
4
Recycle Wastewater as...
Caustic solution make-up and furnace quench
Rinse water and furnace quench
Caustic solution make-up and initial caustic
rinse water
Furnace quench
After the following treatment...
Equalization, screening, chemical precipitation,
and air flotation
Clarification
Chemical precipitation and air flotation
Sedimentation
                                           6-14

-------
                              Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
EPA is also aware of two drum washing facilities that are evaluating 100% reuse of final treated
wastewater.  Finally, two additional facilities visited by EPA in the mid-1980s reuse some but
not all treated wastewater in ICDC processes, with the remainder discharged to POTWs.

              Several facilities visited by EPA in 2000 and in the mid-1980s reuse leak test
water for one day or up to one week. Paint booth water curtain water can also be reused for up to
one week. One facility visited in the mid-1980s uses compressor condensate and boiler
blowdown as make-up for drum rinses. One potential source of large volumes of wastewater is
floor washing. Floor washing wastewater can be significantly reduced by using mechanical
scrubbers which continually recirculate cleaning water while increasing the cleaning
effectiveness, and by mopping up leaks and spills rather than flushing to floor drains using hoses
or hand-held spray wands.

6.3           End-of-Pipe Wastewater Treatment Technologies

              End-of-pipe wastewater treatment technologies used by the ICDC industry include
physical and chemical processes that remove pollutants from ICDC wastewater prior to reuse in
ICDC processes or discharge to a POTW  or receiving stream. End-of-pipe treatment
technologies commonly used by ICDC facilities visited by EPA in 2000 and in the mid-1980s
include the following pretreatment and primary treatment technologies:

              •      Equalization;
              •      pH adjustment;
              •      Gravity settling;
              •      Oil/water separation;
              •      Chemical precipitation;
              •      Clarification;
              •      Air flotation; and
              •      Sludge dewatering.

EPA is not aware of any ICDC facilities that operate secondary biological treatment.  However,
two facilities visited by EPA in 2000 treat wastewater with sodium hypochlorite (bleach) for
                                          6-15

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
organics and cyanide destruction. EPA is aware of only one ICDC facility that uses advanced
treatment (activated carbon); this facility also cleans transportation equipment.

              Twenty of the 36 respondents to RJPA's 2000 survey reported having on-site
wastewater treatment (3). The survey responses did not provide specific treatment technologies
used by these facilities.

6.3.1          Equalization

              Equalization involves homogenizing variable wastewater over time to control
fluctuations in flow and pollutant characteristics, thereby improving the efficiency of subsequent
treatment units and reducing the probability of treatment system upsets. Equalization also
allows downstream treatment units to be sized and operated on a continuous-flow basis and
optimized for a narrower range of influent wastewater characteristics.  Equalization units include
tanks which are often equipped with agitators (e.g., impeller mixers and air spargers) to mix the
wastewater and to prevent solids from settling at the bottom of the unit. Chemicals may also be
added to the equalization unit to adjust pH, as necessary, for further treatment.  The amount of
residence time required by an equalization unit to achieve optimum effects is dependent upon the
specific characteristics and daily flow patterns of the wastewater.

6.3.2          pH Adjustment

              pH adjustment is a process in which chemicals are added to wastewater to make it
acidic or basic or to neutralize acidic or basic wastewater. A pH adjustment system normally
consists of a small tank in which the wastewater pH is adjusted by mixing and addition of either
caustic or acidic chemicals under the control of a pH meter.  Because many treatment
technologies are sensitive to pH fluctuations, pH adjustment may be required as part of an
effective treatment system.  Some treatment technologies require a high pH, while others require
a neutral pH.  In addition, the pH of the final effluent from these technologies must often be
adjusted prior to discharge to meet permit conditions for wastewater discharge.
                                          6-16

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
6.3.3          Gravity Settling

              Gravity settling, or sedimentation, removes suspended solids from wastewater by
maintaining wastewater in a quiescent state  so that contaminants can separate by density. During
gravity settling, wastewater is typically collected in a tank or catch basin, where it is detained for
a period of time, allowing solids with a specific gravity higher than water to settle to the bottom
of the tank and solids with a specific gravity lower than water to float to the surface. The
sedimentation unit may be periodically shut down and the solids removed manually.
Alternatively, the solids that settle out or float to the surface may be removed from the unit
continuously  using automatic  scrapers or skimmers. The effectiveness of gravity separation
depends upon the characteristics of the wastewater and the length of time the wastewater is held
in the treatment unit. Properly designed and operated gravity separation units are capable of
achieving significant reductions of suspended solids and biochemical oxygen demand for many
ICDC wastewaters.

6.3.4          Oil/Water Separation

              Oil/water separators use the difference in specific gravity between oil and water to
remove free or floating oil from wastewater. The most common mechanism for oil removal is an
oil skimmer.  Some skimming devices work by continuously contacting the oil  with a material,
such as a belt or rope,  onto which the oil readily adheres. As the material passes through the
floating oil layer, the oil coats the surface of the material. The oil-coated material then passes
through a mechanism that scrapes the oil from the material into  an oil collection unit.  Another
common type of skimming device uses overflow and underflow baffles to skim the floating oil
layer from the surface of the wastewater. An underflow baffle allows the oil layer to flow over
into a trough  for disposal or reuse while most of the water flows underneath the baffle. This is
followed by an overflow baffle, which is set at a height relative  to the first baffle such that only
the oil-bearing portion will flow over the first baffle during normal operation.
                                           6-17

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
              Other, more complex, oil/water separators include American Petroleum Institute
(API) separators and coalescing (corrugated plate or tube) separators. EPA is not aware of any
ICDC facilities using these types of separators.

              Due to the complex nature of ICDC wastewater and the presence of high-pH
chemicals, oils may form a stable emulsion which does not separate well in a gravity separator.
Stable emulsions require pH adjustment, the addition of chemicals, and/or heat to break the
emulsion. EPA has no data to indicate whether stable emulsions are common in ICDC
wastewater.

6.3.5          Chemical Precipitation

              Chemical precipitation is a separation technology in which insoluble solid
precipitates are formed from the organic or inorganic compounds in the wastewater through the
addition of chemicals during treatment. Common treatment chemicals used by the ICDC
industry include  coagulants such as aluminum or ferric chloride or sulfate, and flocculants, which
include a variety of polymers. Coagulation and flocculation are processes that cause suspended
solids in wastewater to coalesce. The coalesced particles tend to settle out of the wastewater
more quickly than particles that have not undergone coagulation and flocculation. All three drum
washing facilities visited in 2000, and one of the two TEC facilities visited in 1999 that  clean
IBCs, use chemical precipitation for wastewater treatment. Four of the 16 drum reconditioning
facilities visited by EPA in the mid-1980s used  chemical precipitation for wastewater treatment.

              Coagulation consists of the addition and rapid mixing of a "coagulant," the
destabilization of colloidal and fine suspended solids,  and the initial  aggregation of those
particles. After rapid mixing, coagulant aids, such as polyelectrolytes, may be added to reduce
the repulsive forces between the charged particles. Flocculation is the slow stirring to complete
aggregation of those particles and form a floe which will in turn settle by gravity (10).
Flocculation may also be accomplished by adding such materials as lime or sodium silicate to
form loose agglomerates that carry the fine particles down with them.  These settled solids form a
                                          6-18

-------
                                Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
sludge; therefore, coagulation/flocculation is typically followed by clarification or dissolved air
flotation to remove solids.

              Chemical precipitation may be performed on a continuous basis using a series of
chemical addition and mix tanks (followed by clarification or dissolved air flotation), or on a
batch basis using a single chemical treatment tank, which also serves as a clarifier.

6.3.6         Clarification

              Clarification involves holding wastewater in a quiescent state so that
contaminants can separate by density. Clarification uses the same principles for treatment as
gravity settling but differs from gravity settling in that it is typically used after chemical
precipitation and/or biological treatment. Approximately half of ICDC facilities visited by EPA
that use chemical precipitation treatment also use clarification.

              Clarification can be used as either a pre- or post-treatment step for various
operations to aid in removing settleable solids, free oil and grease, and other floating material.
Clarifiers  are often referred to as primary or secondary sedimentation tanks.  Primary clarification
is used to  remove settleable solids from raw wastewater or wastewater treated by chemical
precipitation.  ICDC facilities visited by EPA use clarifiers for both of these purposes.
Secondary clarification is normally used in activated sludge systems to remove biomass. A
portion of the sludge biomass is often recycled from the secondary clarifier back to the activated
sludge biological oxidation unit. None of the ICDC facilities visited by EPA use secondary
biological treatment.

              Clarifiers consist of settling tanks and are commonly equipped with a sludge
scraper mounted on the floor of the clarifier to rake sludge into a sump for removal. Sludge may
also be removal  manually.  The bottom of the clarifier may be sloped to facilitate sludge removal.
                                           6-19

-------
                                Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
6.3.7         Air Flotation

              Air flotation is the process of influencing suspended particles to rise to the
wastewater surface using air where they can be collected and removed. Approximately half of
ICDC facilities visited by EPA that use chemical precipitation treatment also use air flotation.

              During flotation, gas bubbles introduced into the wastewater attach themselves to
suspended particles, thereby reducing their specific gravity and causing them to float. Flotation
processes are used because they can remove suspended solids that have a specific gravity slightly
greater then 1.0 more quickly than settling (e.g., clarification). Several flotation techniques are
used for wastewater treatment to extract free and dispersed oil and grease, suspended solids, and
some dissolved pollutants from process wastewater. In air flotation, air is injected at the bottom
of a clarifier, dispersing air bubbles into the wastewater. In dissolved air flotation (DAF), air is
dissolved in the pressurized wastewater stream. When the wastewater enters the flotation vessel,
the pressure is reduced, causing fine bubbles to be released. With DAF, two modes of operation
may be  employed to pressurize wastewater. In recycle pressurization, air is injected into a
portion  of recycled, clarified effluent and dissolved into a wastewater stream in an enclosed tank
or pipe, pressurizing the wastewater. In full flow pressurization, all of the influent wastewater is
injected with air in a surge tank and is pumped to a retention tank under pressure to dissolve the
air into  the wastewater.

              Air bubbles make contact with the suspended particles by two separate
mechanisms. The first mechanism involves the use of a flocculant (see Section 6.3.5), which
causes rising air bubbles to be trapped inside flocculated masses as they increase in size. The
second mechanism involves the intermolecular attraction between the solid particle and the air
bubble,  which causes the solid to  adhere to the bubble. In both mechanisms, the  low density of
the air bubble causes it to rise to the surface of the flotation tank with the flocculated or adhered
solids attached.
                                           6-20

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
              Flotation units are equipped with rakes that scrape the floe from the surface and
into a sludge collection vessel, where it is subsequently pumped to a dewatering unit and later
disposed.  A sludge auger may be included in the flotation unit to remove solids that have settled
to the bottom of the tank. Units are typically operated on a continuous basis and incorporate
chemical mix tanks (if flocculants are used), a flotation vessel, and a sludge collection tank in a
single enclosed unit.

6.3.8          Sludge Dewatering

              Sludge dewatering reduces sludge volume by decreasing its water content.  The
decrease in sludge volume achieved through sludge dewatering substantially reduces the cost for
sludge disposal and allows for easier sludge handling.  Various  methods can be used for sludge
dewatering; however, ICDC facilities visited by EPA use filter presses and rotary vacuum filters.

              The most widely used filter press is referred to as the plate-and-frame filter press.
A filter press uses positive pressure provided by a mechanical device,  such as a hydraulic  ram, to
drive water contained in the sludge through a filter medium. This type of unit comprises a series
of recessed plates that are affixed with a filter medium (e.g., filter cloth) and are stacked together
on a horizontal shaft. The plates form a series of spaces separated by the filter media and  are
otherwise sealed to withstand the internal pressures created during the filtration cycle. As the
sludge is forced through the system, the water passes through the  filter medium and is discharged
through the filtrate port while the solids become trapped within the spaces, forming a dewatered
cake against the filter medium.

              When the cycle is over, the plates are separated,  and the dewatered cake is
released from the spaces into a collection bin.  Removing the cake from the filter media is often
performed manually by an operator. The filter press filtrate that results from the dewatering is
usually piped back to the beginning of the treatment system.
                                           6-21

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
              A rotary vacuum filter consists of a cylindrical drum with a filter medium, such as
cloth or wire mesh, around its perimeter. The drum is horizontally suspended within a vessel and
is partially submerged in the sludge.  The drum is rotated and the filter surface contacts the
sludge within the vessel while a vacuum is drawn from within the drum. This draws the water
through the filter medium toward the axis of rotation and discharges it through a filtrate port.
The solids become trapped against the filter medium, forming a dewatered cake around the
outside of the drum. The dewatered cake is continuously scraped from the drum into a collection
bin.

              Thirteen respondents to RJPA's 2000 survey reported testing wastewater
treatment sludges or filter cakes, typically once per year. Five respondents reported generating
hazardous sludge or filter cake (3).
6.4
Wastewater Treatment Performance Data
              EPA conducted sampling at four ICDC facilities in 1986-1987 to characterize the
performance of wastewater treatment at ICDC facilities.  Wastewater treatment systems at these
facilities are summarized below:
Facility
A
B
C
D
Wastewater Treatment System
Oil/water separation
Chemical precipitation followed by air flotation
Chemical precipitation followed by clarification
Chemical precipitation followed by air flotation
The results of this sampling are presented below, with the exception of Facility C for which
paired influent and effluent samples from the wastewater treatment system were not collected.
EPA has no additional treatment performance data for the ICDC industry.
                                          6-22

-------
                               Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
6.4.1          Oil/Water Separation

              Facility A is a medium-sized drum washing facility that reconditions 900 drums
per day that last contained petroleum (60% of drums), solvent (30% of drums) and other cargos.
Drums are drained before being flushed with caustic, and then are washed with caustic and rinsed
with water. Caustic wash solution and rinse wastewater are not recycled. Wastewater consists of
caustic flush, caustic wash water, and rinse water, and is treated by oil/water separation. The
oil/water separator consists of a three-chamber tank from which oil is removed weekly. The tank
provides an average detention time of 2.4 hours over an 8-hour operating shift.

              Table 6-1 presents treatment performance data for the oil/water separator.  Oil and
grease was removed by 76%, and suspended solids were removed by 62%.  The system did not
provide significant removals for metals or volatile and semivolatile organics.

6.4.2          Chemical Precipitation Followed by Air Flotation

              EPA characterized treatment performance of chemical precipitation followed by
air flotation at two facilities.  Facility B is a small washing facility that reconditions 200 drums
per day that last contained paint (95%) and other cargos. Drum interiors and exteriors are
washed with caustic, and then drum interiors are chained with caustic.  Finally, drums are rinsed
with water. Caustic wash solutions are reused, but rinse wastewater is not reused.  Wastewater
influent to the wastewater treatment system consists of rinse wastewater only.  The wastewater
treatment unit characterized consists of 2 mix tanks and an air flotation vessel. Aluminum
sulfate and sulfuric acid are added in the first mix tank; polymer is added in the second mix tank.
The air flotation vessel  consists of a 1,500-gallon clarifier which is injected with 60 psig air.  The
average surface loading rate is 375 gallons per day per square foot over a 38 square foot area.

              Facility D is a large facility that washes 3,000 drums per day and burns 3,000
drums per day. Drums  that are washed last contained petroleum (30%), chemicals (30%), resins
(20%), paint (10%), and other cargos.  Drums that are burned last contained paint (80%),
                                          6-23

-------
                              Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
adhesive (10%), and other cargos.  Tight-head drums are washed in caustic and rinsed with
water.  Caustic wash solution is reused after treatment separate from the wastewater treatment
system. Rinse water is not reused. Open-head drums are burned and quenched with water.
Wastewater influent to the wastewater treatment system consists of quench wastewater (26%),
rinse wastewater, leak test wastewater, and other miscellaneous wastewater streams.  The
wastewater treatment unit characterized consists of 2 mix tanks and an air flotation vessel.
Aluminum sulfate and hydrochloric acid are added in the first mix tank; polymer is added in the
second mix tank. The air flotation vessel consists of a 1,500-gallon clarifier which is injected
with air. The system  detention time is approximately 1 hour.

             Tables 6-2 and 6-3 present treatment performance data for chemical precipitation
followed by air flotation at Facilities B and D, respectively.  At Facility B, suspended solids were
removed by 85%; several organics and metals were also substantially removed by the treatment
system. At Facility D, pollutant removals for BOD, COD, oil and grease, and suspended solids
ranged from 41% to 58%. Several organics, metals, and pesticides/herbicides were also
substantially removed by the treatment system; however, 18 pollutants were detected in the
effluent that were not detected in the influent. Note that on Day 2, the wastewater treatment
system at Facility D was not operating well because some lines were plugged with sludge and
only a limited amount of air was available for flotation.

6.5          References
             Rich, L. "Drum Residue: A $1 Billion Inch," Chemical Week. March 5, 1986
             (DCND00141).
             Mitchell Container Services, http://www.mcontainer.com. September 1999 (DCN
             D00053).
             Reusable Industrial Packaging Association. "RIPA Reconditioners Survey -
             Presentation of Business, Technical, and Regulatory Data." September  16, 2000
             (DCND00167).
                                          6-24

-------
                              Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies

4.            "Hoyer Invests in IBC Cleaning Operation," Modern Bulk Transporter. March
             2000 (DCN D00044).

5.            "Hoyer Repairs to Profit," Hazardous Cargo Bulletin. April 1999 (DCN D00015).

6.            WSI. Cryogenic Cleaning, http://www.wsiind.com/cryogenic-cleaning.html.
             November 2000 (DCN D00143).

7.            Drumbeaters of America Inc. Cryo-Cleanerฎ Systems.
             http://www.drumbeaters.com. December 2000 (DCN D00145).

8.            Dixon, B. The Future of the IBC Market - A Hazardous Cargo Bulletin Report.
             Intapress Publishing Ltd. London, England, 2000 (DCN D00008).

9.            Personal communication with Neil Hawkins, Fabricated Metals, November 12,
             2000 (DCN D00142).

10.           Reynolds, Tom and Paul Richards.  Unit Operations and Processes in
             Environmental Engineering. PWS Publishing.  Boston, MA, 1996.
                                         6-25

-------
                Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies

                        Table 6-1

Treatment Performance Data for Oil/Water Separation
                        Facility A
Priority
Pollutant
Code
Analyte
Influent to
Treatment
Effluent from
Treatment
Percent
Removal
(a)
Volatile Organics C"g/L)
P011


P038
P086
P087
1,1,1 -Trichloroethane
2-Butanone (MEK)
Acetone
Ethylbenzene
Toluene
Trichloroethene
355
534
ND
221
507
95
590
589
673
308
844
95
0
0
0
0
0
0
Semivolatile Organics Cag/L)
P020







2-Chloronaphthalene
Alpha-Terpineol
Benzoic Acid
N-Decane (N-C10)
N-Docosane (N-C22)
N-Dodecane (N-C12)
N-Hexadecane (N-C16)
N-Octacosane (N-C28)
4,609
4,745
ND
11,750
ND
6,950
1,066
ND
4,483
4,322
1,460
ND
147
10,194
ND
493
o
3
9
0
100
0
0
100
0
Metals Cซg/L)

P114
P115

P117

P118

P119

P120

P122

Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
7,800
562
31
2,600
50
880
29
47,000
6,700
210
1,400
10,000
27,000
14,000
5,900
562
44
2,100
50
960
18
36,000
5,300
200
1,000
12,000
20,000
12,000
24
0
0
19
0
0
38
23
21
5
29
0
26
14
                           6-26

-------
                                 Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies

                                  Table 6-1 (Continued)
Priority
Pollutant
Code

P123

P124
P125
P126

P127




P128
Analyte
Manganese
Mercury
Molybdenum
Nickel
Selenium
Silver
Sodium
Thallium
Tin
Titanium
Vanadium
Yttrium
Zinc
Influent to
Treatment
700
0.2
340
120
5
1
1,800,000
10
240
59
12
10
13,000
Effluent from
Treatment
480
0.2
640
130
5
1
1,800,000
10
220
93
11
10
12,000
Percent
Removal
(a)
31
0
0
0
0
0
0
0
8
0
8
0
8
Classicals (mg/L)














P121


Ammonia
BOD5, Total
BOD5, Dissolved
Chloride
COD, Dissolved
COD, Total
Dissolved Solids
Fluoride
Oil & Grease
Phenol
Sulfide
Suspended Solids
Suspended Volatile Solids
TKN
Total Cyanide
Total Organic Carbon
Total Volatile Solids
13
3,900
1,980
50
3,140
6,110
8,850
30
3,240
1.61
0.1
4,980
880
5
8.3
1,520
3,200
18
3,780
1,740
125
3,990
7,380
7,380
34
770
1.13
0.1
1,880
400
13
9
1,530
2,500
0
3
12
0
0
0
17
0
76
30
0
62
55
0
0
0
22
(a) ND assumed equal to zero when calculating percent removal.
ND - Not detected above detection limit.
                                             6-27

-------
                 Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies

                        Table 6-2

Treatment Performance Data for Chemical Precipitation
                Followed by Air Flotation
                        Facility B
Priority
Pollutant
Code
Analyte
Influent to
Treatment
Effluent from
Treatment
Percent
Removal
(a)
Volatile Organics Cug/L)


P004
P007
P038

P044
P086
2-Butanone (MEK)
Acetone
Benzene
Chlorobenzene
Ethylbenzene
Isobutyl Alcohol
Methylene Chloride
Toluene
ND
ND
ND
ND
3,179
3,517
ND
55,572
1,001,760
1,845
182
56
2,319
ND
500
799
0
0
0
0
27
100
0
99
Semivolatile Organics Cug/L)
P020

P057
P058




P055
P056




2-Chloronaphthalene
2-Methylnaphthalene
2-Nitrophenol
4-Nitrophenol
Benzoic Acid
Benzyl Alcohol
Biphenyl
Hexanoic Acid
Naphthalene
Nitrobenzene
o-Cresol
p-Cymene
Styrene
Thioxanthone
46
ND
ND
ND
ND
ND
14
383
382
16
143
72
144
311
48
16
45
ND
ND
ND
ND
ND
ND
ND
ND
14
61
ND
0
0
0
0
0
0
100
100
100
100
100
81
58
100
Metals Og/L)

P114
P115

Aluminum
Antimony
Arsenic
Barium
9,900
16
20
1,800
27,000
50
5
410
0
0
75
77
                           6-28

-------
Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
 Table 6-2 (Continued)
Priority
Pollutant
Code
P117

P118

P119

P120

P122


P123

P124
P125
P126

P127




P128
Analyte
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Selenium
Silver
Sodium
Thallium
Tin
Titanium
Vanadium
Yttrium
Zinc
Influent to
Treatment
1
34
7
26,000
1,000
140
400
46,000
2,400
7,600
2,100
1.3
100
34
25
1
1,500,000
10
120
700
60
10
17,000
Effluent from
Treatment
1
27
5
22,000
230
62
110
15,000
510
3,600
980
0.34
83
150
5
1
1,600,000
10
130
200
31
10
13,000
Percent
Removal
(a)
0
21
29
15
77
56
72
67
79
53
53
74
17
0
80
0
0
0
0
71
48
0
24
Classicals (mg/L)









Ammonia
BOD5, Total
BOD5, Dissolved
Chloride
COD, Dissolved
COD, Total
Dissolved Solids
Fluoride
Oil & Grease
22.5
2,200
2,550
1,500
3,860
3,860
5,710
40
4,810
8.8
1,860
2,100
800
2,300
2,400
6,370
31
4,950
61
15
18
47
40
38
0
22
0
            6-29

-------
                                 Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
                                  Table 6-2 (Continued)
Priority
Pollutant
Code





P121



Analyte
Phenol
Sulfide
Suspended Solids
Suspended Volatile Solids
TKN
Total Cyanide
Total Organic Carbon
Total Volatile Solids
PH
Influent to
Treatment
1.51
0.1
1,850
63
1.75
1.9
1,600
3,170
12.6
Effluent from
Treatment
0.58
0.1
264
206
40
0.58
900
740
5.9
Percent
Removal
(a)
62
0
86
0
0
69
44
77
53
(a) - ND assumed equal to zero when calculating percent removal.
ND - Not detected above detection limit.
                                             6-30

-------
                                                Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies
                                     Table 6-3

Treatment Performance Data For Chemical Precipitation Followed by Air Flotation
                                     Facility D
Priority
Pollutant
Code
Analyte
Influent
Day 1
Effluent
Dayl
Influent
Day 2
Effluent
Day 2
Influent
Day 3
Effluent
Day 3
Influent
Day 4
Effluent
Day 4
Influent
DayS
Effluent
DayS
Average
Percent
Removal (a)
Volatile Organics (ug/L)
P011
P029
P010



P002
P038
P044
P085
P086
P030
P087

1,1,1 ,-Trichloroethane
1 , 1 -Dichloroethene
1 ,2-Dichloroethane
2-Butanone (MEK)
2-Hexanone
Acetone
Acrolein
Ethylbenzene
Methylene Chloride
Tetrachloroethene
Toluene
Trans- 1 ,2-Dichloroethene
Trichloroethene
Vinyl Acetate
36,179
25,286
ND
987,690
ND
498,139
ND
186,495
ND
ND
107,977
ND
ND
ND
4,099
1,007
ND
174,905
ND
147,138
ND
4,518
ND
ND
7,487
ND
ND
1,249
11,825
ND
ND
ND
ND
677,250
ND
ND
15,443
ND
ND
ND
ND
ND
2,721
ND
631
ND
ND
ND
ND
ND
8,161
ND
ND
ND
151
ND
71,613
ND
ND
18,823
ND
ND
ND
75,039
ND
86,267
42,672
ND
4,038
ND
6,780
ND
ND
19,097
ND
ND
ND
3,014
ND
2,776
1,940
ND
104
ND
26,035
ND
315
ND
ND
2,046,29
0
ND
7,857
ND
ND
6,159
917
1,278
ND
14,953
1,225
194
ND
ND
103,907
1,783
4,532
ND
5,331
4,248
ND
199
ND
ND
ND
ND
1,351,26
0
ND
209,456
ND
62,143
ND
ND
54,123
ND
4,575
ND
1,893
ND
ND
108,185
171
ND
1,441
6,715
1,870
1,869
ND
ND
156
ND
58
48
19
58
0
91
0
81
24
32
80
100
70
0
Semivolatile Organics G"g/L)
P037
P020
P057



P066
1 ,2-Diphenylhydrazine
2-Chloronaphthalene
2-Nitrophenol
4-Chloro-2-Nitroaniline
Benzyl Alcohol
Biphenyl
Bis (2-ethylhexyl) Phthalate
ND
ND
ND
ND
9,817
1,266
5,419
ND
ND
ND
ND
2,788
ND
ND
ND
ND
ND
ND
ND
ND
43,747
ND
ND
5,359
ND
ND
ND
3,462
ND
ND
3,256
ND
ND
1,394
43,078
ND
ND
3,379
2,505
4,146
ND
6,603
ND
ND
2,739
ND
ND
ND
9,285
2,451
44,272
2,082
ND
ND
ND
ND
ND
ND
2,866
ND
9,051
ND
5,718
ND
ND
ND
ND
ND
ND
800
0
0
31
0
57
100
93

-------
                                                                                Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies



                                                            Table 6-3 (Continued)
Priority
Pollutant
Code
P067
P068

P054









P055

P081
P065

Analyte
Butyl Benzyl Phthalate
Di-N-Butyl Phthalate
Diphenyl Ether
Isophorone
Methacrylonitrile
N-N-Dimethylformamide
N-Decane(N-C10)
N-Docosane (N-C22)
N-Hexacosane (N-C26)
N-Hexadecane (N-C16)
N-Octacosane (N-C28)
N-Octadecane(N-ClS)
N-Tetradecane (N-C14)
Naphthalene
p-Cymene
Phenanthrene
Phenol
Styrene
Influent
Day 1
ND
2,088
ND
5,392
ND
ND
ND
ND
ND
ND
ND
3,983
ND
8,842
ND
ND
932
34,620
Effluent
Dayl
ND
ND
ND
3,489
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
7,379
Influent
Day 2
ND
ND
ND
25,392
ND
ND
ND
ND
ND
ND
ND
ND
44,127
17,954
ND
ND
ND
30,372
Effluent
Day 2
ND
ND
ND
3,822
ND
ND
ND
4,905
ND
2,642
ND
ND
4,924
2,119
ND
ND
ND
5,193
Influent
Day 3
3,281
13,561
2,457
3,371
ND
ND
ND
ND
ND
ND
ND
13,354
ND
5,503
1,996
ND
ND
18,836
Effluent
Day 3
ND
2,736
ND
ND
25
2,690
2,577
ND
ND
160
ND
ND
ND
1,823
ND
ND
1,127
6,395
Influent
Day 4
ND
ND
ND
ND
ND
ND
ND
3,424
ND
1,178
28,081
ND
5,754
2,775
ND
11,577
ND
ND
Effluent
Day 4
2,675
ND
ND
3,081
ND
ND
1,551
6,312
ND
ND
ND
ND
4,657
ND
ND
ND
ND
3,248
Influent
DayS
ND
5,012
ND
22,038
ND
ND
ND
12,309
ND
ND
ND
ND
ND
ND
ND
ND
ND
4,950
Effluent
DayS
ND
1,095
ND
ND
ND
ND
ND
ND
805
ND
2,068
320
990
318
ND
ND
ND
ND
Average
Percent
Removal (a)
50
86
100
64
0
0
0
33
0
33
50
67
36
71
100
100
50
66
Organo-Halide Pesticides (ug/L)

P095
P097
P100



Dichloran
Endosulfan I
Endosulfan Sulfate
Heptachlor
Etridazone
Isodrin
Trifluralin
ND
296
ND
284
252
ND
ND
ND
ND
ND
1,738
ND
2,829
ND














ND
ND
528
ND
ND
ND
ND
282
ND
951
ND
ND
ND
322




























0
99
0
0
99
0
0
Organo-Phosphorous Pesticides (ug/L)

Azinphos Ethyl
4,260
ND


ND
ND




99
to

-------
                    Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies



Table 6-3 (Continued)
Priority
Pollutant
Code







Analyte
Azinphos Methyl
Fensulfothion
Phosmet
Diazinon
Dimethoate
Leptophos
TEPP
Influent
Day 1
6,207
5,795
ND
ND
ND
ND
ND
Effluent
Dayl
50,466
ND
30,972
ND
ND
ND
ND
Influent
Day 2







Effluent
Day 2







Influent
Day 3
4,689
7,859
ND
1,035
1,500
3,959
ND
Effluent
Day 3
3,769
4,148
ND
ND
ND
ND
2,323
Influent
Day 4







Effluent
Day 4







Influent
DayS







Effluent
DayS







Average
Percent
Removal (a)
9
74
0
99
99
99
0
Metals (ug/L)

P114
P115

P117

P118

P119

P120

P122


P123

P124
P125
P126
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Selenium
Silver
90,800
33,600
500
1,230
7
7,700
695
120,000
6,430
1,700
4,810
693,000
37,600
40,400
5,130
41
853
991
5
18
91,500
30,100
103
170
5
4,870
138
52,700
2,490
448
1,540
74,900
8,730
20,600
1,810
27
362
161
5
63
71,700
9,780
62
2,200
5
6,100
285
77,000
3,360
760
4,780
201,000
18,200
22,600
3,250
20
1,040
376
50
8.4
64,700
8,980
100
2,680
5
6,170
229
72,400
1,570
500
3,020
84,500
5,380
22,700
2,470
11
705
286
50
10
61,300
10,200
72
1,500
5
7,270
4,690
97,000
4,720
1,170
5,940
529,000
34,600
28,300
6,890
28
1,880
1,030
5
5.7
57,400
4,140
100
1,930
5
3,960
1,170
46,200
1,060
410
1,610
96,600
4,760
13,100
1,840
0.5
830
319
125
14.6
37,900
6,820
16
7,510
5
6,320
1,340
40,600
3,420
1,090
2,640
180,000
16,500
11,600
2,510
8.5
1,540
363
5
1
75,700
5,640
19
2,930
5
6,640
1,270
46,900
1,160
582
1,270
88,600
4,970
12,600
2,290
3.8
1,170
287
5
9.2
36,100
6,140
78
5,260
5
7,390
883
50,000
4,120
1,320
3,240
216,000
19,300
13,800
2,720
10
2,230
419
5
7.3
150,000
4,650
19
599
5
5,650
909
43,600
977
587
1,350
43,000
3,050
11,600
1,980
0.6
1,030
280
25
1
3
24
31
47
6
21
36
25
67
55
58
72
78
24
40
65
45
46
0
17

-------
                                                                                 Section 6.0 - Pollution Prevention And Wastewater Treatment Technologies

                                                           Table 6-3 (Continued)
Priority
Pollutant
Code

P127




P128
Analyte
Sodium
Thallium
Tin
Titanium
Vanadium
Yttrium
Zinc
Influent
Day 1
8,800,000
100
5,730
2,610
82
50
80,400
Effluent
Dayl
8,690,000
100
692
578
50
50
23,200
Influent
Day 2
9,090,000
100
4,190
860
50
50
54,300
Effluent
Day 2
8,190,000
50
1,220
434
50
50
37,400
Influent
Day 3
9,510,000
50
6,390
1,190
95
50
108,000
Effluent
Day 3
6,100,000
100
2,180
289
50
50
27,900
Influent
Day 4
7,290,000
50
5,620
577
50
50
44,300
Effluent
Day 4
7,130,000
50
2,550
287
50
50
30,600
Influent
DayS
6,720,000
50
4,230
666
50
50
43,500
Effluent
DayS
6,730,000
50
495
175
58
50
17,900
Average
Percent
Removal (a)
10
10
74
65
17
0
53
Classical* (mg/L)













P121


Ammonia
BOD5, Total
BOD5, Dissolved
Chloride
COD, Dissolved
COD, Total
Dissolved Solids
Fluoride
Oil & Grease
Phenol
Suspended Solids
Suspended Volatile Solids
TKN
Total Cyanide
Total Organic Carbon
Total Volatile Solids
6.59
16,800
9,000
2,800
45,500
75,600
29,900
89.7
12,900
169
21,800
16,000
428
0.57
19,300
29,940
6.22
9,600
6,600
8,000
22,100
40,600
26,500
0.1
19,850
347
6,730
5,940
370
0.55
14,500
12,290
16.1
7,500
4,400
5,100
26,400
38,100
27,200
59
5,600
87.4
9,270
4,033
270
0.48
8,500
14,280
14.4
4,190
3,500
10,800
14,900
18,500
23,400
0.1
252
44.5
3,220
3,120
282
0.32
4,600
20,690
5.53
10,900
4,640
4,200
15,100
102,000
28,200
53
33,000
68.8
20,600
15,500
257
0.58
7,200
26,370
5.62
4,370
2,760
8,800
6,890
16,500
18,500
0.14
1,480
58.4
2,920
2,070
153
0.50
4,380
5,440
2.25
6,300
2,790
3,200
19,000
31,800
20,000
37.3
4940
64.7
5,220
2,675
20.2
0.48
5,650
9,880
2.5
4,170
3,240
7,400
15,000
22,300
21,800
0.52
4,800
71.5
3,000
1,400
190
0.58
4,290
7,000
11.8
3,140
4,710
3,400
22,800
40,600
18,800
29
2,540
53.2
5,710
4,700
291
0.05
5,690
10,590
13.8
2,310
1,820
9,100
12,500
9,210
20,800
0.01
900
23.4
6,140
210
201
0.43
3,640
4,420
3
41
30
0
43
58
12
99
52
24
53
63
17
10
34
45
ND - Not detected above detection limit.
(a) Average percent removed is the mean of positive and zero removals.  ND assumed equal to zero.

-------
                                          Section 7.0 - Comparison of the Dram Reconditioning and
                                                   Transportation Equipment Cleaning Industries
7.0          COMPARISON OF THE DRUM RECONDITIONING AND
             TRANSPORTATION EQUIPMENT CLEANING INDUSTRIES
             In the mid-1980s, EPA conducted studies of the drum reconditioning and the
transportation equipment cleaning (TEC) industries to determine whether national categorical
effluent limitations guidelines and standards should be developed for these categories of
dischargers.  In the case of the TEC industry, EPA promulgated effluent limitations guidelines
and standards in June 2000 (65 FR 46995).  During development of the TEC rule, information
submitted by commenters indicated that there was  some overlap in the TEC and the drum
reconditioning industries, Specifically, intermediate bulk containers (IBCs), which are portable
plastic and metal containers with 450 liters (119 gallons) to 3,000 liters (793 gallons) capacity,
were cleaned by facilities in both industries.  This was a significant finding because the number
of IBC cleanings had increased dramatically since the early 1990s. In the case of the drum
reconditioning industry, EPA concluded at that time that the industry did not merit national
regulation. In addition, for the drum reconditioning industry study in the mid-1980s, EPA did
not collect any data on IBC cleaning because so few IBCs were being used by the industry at that
time.

             EPA had originally considered including IBCs in the scope of the TEC rule
because many TEC facilities also clean IBCs. EPA obtained some IBC data from the data
collection phase of the rule (through screener and detailed questionnaires) in 1994. EPA also
received public comments  on IBCs during proposal regarding their similarities and differences to
tanks versus drums, and performed site visits, at the request of commenters, at two TEC facilities
that also clean and recondition IBCs. IBCs wastewater was later removed from the scope of the
TEC rule because EPA's assessment suggested IBC cleaning wastewater was more similar to
drum cleaning wastewater than to TEC wastewater.

             While TEC limits and standards do not apply to wastewater from drum
reconditioning, EPA believes a comparison of the two industries is appropriate for several
                                         7-1

-------
                                             Section 7.0 - Comparison of the Dram Reconditioning and
                                                       Transportation Equipment Cleaning Industries
reasons.  First, the drum reconditioning and TEC industries overlap because both drum
reconditioning facilities and TEC facilities clean IBCs. In fact, as discussed in Section 4.1.1,
national effluent limitations guidelines and standards for the ICDC industry may affect a greater
number of TEC facilities than drum reconditioning facilities. Available data suggest that
approximately equal numbers of IBCs are cleaned by drum reconditioning facilities and TEC
facilities.  Second, available data suggest that similar cargos are transported in drums, IBCs, and
tank trucks (see Section 7.1).  Third, the lack of national regulations for discharge of IBC
cleaning wastewater is perceived by the TEC industry to result in a competitive advantage by
drum reconditioning facilities for the IBC cleaning business.1

              This section describes similarities and differences between the drum
reconditioning industry and the transportation equipment cleaning (TEC) industry with respect to
size of the industry (Section 7.1), cleaning/reconditioning process (Section 7.2), cargo types
cleaned (Section 7.3), water use and wastewater generation (Section 7.4), wastewater
characteristics (Section 7.5), pollution prevention and wastewater treatment technologies
(Section 7.6), and wastewater treatment performance (Section 7.7).

7.1           Size of the Industry

              EPA estimates a total population of 118 ICDC facilities that do not clean
transportation equipment (see Section 4.1.1). Available data indicate that as many as 107 of
these facilities discharge ICDC wastewater to either a POTW or to surface waters.  The
remaining 11 or more facilities are considered zero dischargers (see Section 5.2).

              EPA estimates a total population of 1,239 TEC facilities  of which 692 facilities
discharge to either a POTW or to surface waters.  The remaining 547 facilities are considered
'IBC cleaning wastewater is excluded from the TEC regulation. However, for TEC facilities that commingle
wastewaters generated from IBC and tank cleaning for treatment, IBC wastewater at these facilities can be subject
to the TEC rale at the discretion of the permitting authority.
                                            7-2

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries

zero dischargers.  After accounting for exclusions provided by the TEC rule, EPA estimates that

328 TEC facilities will be affected by the TEC rule.  This total includes an estimated 286

facilities in Subpart A - Tank Trucks and Intermodal Tank Containers Transporting Chemical

and Petroleum Products, the segment of the TEC industry most analogous to the drum

reconditioning industry (2)(3).


              Drum reconditioning facilities recondition approximately 40 million drums and

275,000 IBCs per year (see Section 4.1.1).  In comparison, the 1,239 TEC facilities described

above clean approximately 2.4 million tanks and containers per year, which includes 2.1 million

tank trucks, 81,500 intermodal tank containers, and at least 225,000 IBCs (2)(4)(5).


7.2           Cleaning/Reconditioning Processes


              This section describes the differences and similarities between drum and tank

cleaning processes and their expected impact on wastewater characteristics.


7.2.1         Drum Washing and Tank Cleaning


              Similarities between drum and tank cleaning processes include the following:
                     Inspect the drum or tank to identify excessive heel or unacceptable
                     materials.

                     Drain the heel, if necessary. Heel is typically either reused, disposed, or
                     discharged to on-site wastewater treatment.

                     Preflush or presteam the drum or tank, if necessary or desired. Preflush or
                     presteam wastewater is either discharged to on-site wastewater treatment
                     or hauled off site.

                     Wash the drum or tank using one or more of a variety of cleaning solutions
                     which are typically reused. Make-up solution is typically added to replace
                                           7-3

-------
                               Section 7.0 - Comparison of the Dram Reconditioning and
                                        Transportation Equipment Cleaning Industries

       solution lost in the rinses or to boost efficacy.  Spent solutions are either
       discharged to on-site wastewater treatment or hauled off site.

•      Rinse the drum or tank with water.

•      Wash and rinse the drum or tank exterior, if necessary or desired.

•      Dry the drum or tank;  and

•      Inspect the drum or tank.


Differences between drum and tank cleaning processes include the following:
       Drums are typically washed by turning them upside down and spraying the
       interior with chemical cleaning solutions. Alternatively, drums are washed
       by submerging them in a chemical cleaning solution. Tanks are typically
       cleaned by applying either water or cleaning solutions via low- or high-
       pressure spinner nozzles which are inserted through the main tank hatch.
       Differences in the means of applying cleaning solutions are not expected
       to impact wastewater characteristics.

       Fifty-three percent of TEC facilities use chemical cleaning solutions, and
       the remainder use only water. In contrast, all drum washing facilities are
       believed to perform caustic cleaning and approximately 30% are believed
       to also perform acid cleaning. Greater use of chemical cleaning solutions
       is expected to increase pollutant loadings in cleaning wastewater as a
       result of solution carryover in rinsing.

       Drum washing requires a few minutes, while tank washing commonly
       requires 20 minutes or longer; however, processing time does not directly
       affect wastewater generation volumes because cleaning solutions are
       typically recirculated.

       Chaining, a drum cleaning operation, is not performed  on tanks.
       Additional cleaning steps,  such as chaining and subsequent rinsing, are
       expected to increase pollutant loadings and volume in cleaning
       wastewater.

       Steel drum washing solutions are comprised of either hot caustic solutions
       or hot acid solutions.  Plastic drum washing is commonly performed using
       detergents. Drums which cannot be adequately cleaned are either
       converted to open-head drums and burned or recycled as  scrap.
                              7-4

-------
                        Section 7.0 - Comparison of the Dram Reconditioning and
                                 Transportation Equipment Cleaning Industries
In contrast, tank cleaning is performed with a greater variety of cleaning
solutions including water, caustic, detergent, caustic with detergent
("booster") additive, acid, presolve (i.e., diesel fuel, kerosene, or other
petroleum-based solvent), passivation agents (i.e., oxidation inhibitors),
odor controllers such as citrus oils, and sanitizers.  The tank cleaning
sequence is typically specific to the cargo last contained in each tank
cleaned, and processing continues until the tank is clean.

Increased variety of chemical cleaning solutions may increase the number
and types of pollutants detected in cleaning wastewater.

Rust removal using acid cleaning solutions is a common processing step at
steel drum reconditioning facilities. Rust in tanks is uncommon; therefore,
rust removal is seldom an objective of tank cleaning operations. Rust is
expected to be a significant source of iron in steel drum washing
wastewater.

Available data suggest that drum reconditioning facilities typically reuse
chemical cleaning  solutions for longer durations than TEC facilities.  For
example, at some drum washing facilities, cleaning solutions are used
indefinitely (with periodic make-up and treatment) and are never
discharged or disposed. EPA is not aware of any TEC facilities that reuse
cleaning solutions  indefinitely; a typical reuse cycle is one week to one
month.  Increased reuse of chemical cleaning solutions is expected to
concentrate contaminants in solutions and subsequently increase pollutant
loadings in cleaning wastewater as a result of solution carryover in rinsing.

Although practiced by both types of facilities, available data indicate that
cascade rinsing is more commonly used by drum reconditioning facilities
than by TEC facilities. In addition, approximately one-quarter of drum
reconditioning facilities visited by EPA in the mid-1980s and in 2000
recirculate final rinse water for up to one day; EPA is not aware of any
TEC facilities that recirculate final rinse water. Waster conservation in
rinsing is expected to reduce the volume of cleaning wastewater, while
increasing pollutant concentrations.

After washing,  all  drums are leak tested.  Steel drums are placed in a
submerger, while plastic drums are pressure tested using air. In contrast,
tanks are not typically hydrotested following each cleaning, but rather
following periodic inspection and repair.  Leak testing is a minor source of
wastewater at drum washing facilities. Hydrotesting is a minor source of
wastewater at most tank cleaning facilities; exceptions include rail
                       7-5

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries

                     facilities and facilities that clean gasoline tankers (gasoline tankers are
                     dedicated to hauling only gasoline and are cleaned only for periodic
                     inspection and repair).

              •       Several steps in the drum reconditioning process, such as dedenting,
                     rechiming, shotblasting, painting, and curing, are not applicable to the tank
                     cleaning process. Similarly, some common tank cleaning processes,  such
                     as hose washing and the cleaning of valves, fittings and other tank
                     components, are not applicable to the drum washing process. In general,
                     these operations unique to drum reconditioning or tank cleaning operations
                     generate relatively little or no wastewater.

              In summary, similarities between drum and tank  cleaning processes are expected
to result in similar water use and sources of wastewater (see Section 7.4), as well as similar types

and numbers of pollutants in drum and tank cleaning wastewaters.  Differences between drum

and tank cleaning processes are expected to impact wastewater generation volume and pollutant
concentrations. Section 7.5 compares drum and tank cleaning wastewater characteristics.


7.2.2          Drum Burning and Tank Cleaning


              Drum burning processes have no similarities with tank washing, with the

exceptions of  heel removal, leak testing, and any drum rinsing that may be performed. See
Section 7.2.1 for similarities and differences in heel removal, rinsing, and leak testing between

drum and tank cleaning processes.
7.2.3          IBC Cleaning/Reconditioning at Drum Washing and Tank Cleaning
              Facilities
              EPA observed IBC cleaning operations at three facilities, two TEC facilities
visited in 1999 and one drum reconditioning facility visited in 2000, and these observations are

summarized below.  Similarities between IBC cleaning processes at these TEC and drum
reconditioning facilities are the same as those for drum and tank washing described in Section

7.2.1. Differences between IBC cleaning processes at these TEC and drum reconditioning
                                           7-6

-------
                                             Section 7.0 - Comparison of the Dram Reconditioning and
                                                      Transportation Equipment Cleaning Industries
facilities are minor and may be specific to the individual facilities visited rather than to general
industry practices.

              IBC cleaning operations at the TEC facilities were nearly identical to those used
for tank cleaning, but on a reduced scale.  For example, at one TEC facility visited by EPA, IBCs
were arranged on a custom-designed IBC "wash rack" using reduced-sized spinner nozzles and
other equipment.  However, the components of the IBC and tank cleaning processes were
identical.  IBC cleaning equipment used by the drum reconditioning facility was also custom-
designed. Although the specific cleaning equipment differed from that used by the TEC
facilities, the system used a spray nozzle controlled by a robotic arm as the design basis.

              The drum reconditioning facility that EPA visited cleans only blow-molded
plastic IBCs, while the TEC facilities clean blow-molded plastic, rotationally-molded plastic, and
metal IBCs. All three facilities use detergent to clean IBCs, although the TEC facilities may also
use caustic or other cleaning solutions depending on the cargo. Because blow-molded plastic
IBCs often cannot be adequately (or cost-effectively) cleaned for reuse, all three facilities
monitor and control resources (e.g., processing time and labor) used for IBC cleaning.  IBCs that
cannot be adequately cleaned for return to service are instead cleaned for scrap. In contrast,
rotationally-molded plastic and metal IBCs are cleaned for return to service, generally regardless
of condition, because of their relatively high value.  Consequently, cleaning of these IBCs is
likely more similar to tank cleaning than to drum reconditioning in that the cleaning process may
use a broader range of cleaning solutions, processing steps, and longer processing times. EPA
has no data on processes used by drum reconditioning facilities to clean rotationally-molded
plastic and metal IBCs.

              EPA found that the TEC facilities visited collect and recirculate IBC cleaning
solutions, but do not reuse rinse water. The drum reconditioning facility visited does not reuse
IBC cleaning solutions or rinse water, and does not reuse drum cleaning solutions or rinse water,
with the exception of reuse of final open-head drum rinse water as initial  open-head drum rinse
                                           7-7

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries
water.  (Note that the drum reconditioning facility also cleans tight-head and open-head plastic
drums.)

7.3           Cargo Types Cleaned

              During development of the TEC effluent guidelines, EPA excluded IBC cleaning
wastewater from the regulation.  IBCs were defined as portable containers with 450 liters (119
gallons) to 3,000 liters (793 gallons) capacity.  EPA reasoned that IBCs were being used as a
replacement for 55-gallon drums, and that the cargos being transported in IBCs were similar to
those being transported in drums. Therefore, resulting IBC cleaning wastewater would be
expected to be similar to that of drum reconditioning wastewater.

              EPA received comments and other information that both agreed and disagreed
with the Agency's proposal to exclude IBCs from the scope of the TEC regulation; however,
EPA did not receive any comments on whether or not the cargos transported in IBCs are similar
or dissimilar to those transported by drum or tank truck.  Based on site visits and conversations
with the National Tank Truck  Carriers Inc., EPA believes that all truck facilities which clean
IBCs treat IBC and tank truck  washwater in the same wastewater treatment system. Personnel at
these sites also indicated that they see no significant difference in the types of cargos transported
in IBCs or tank trucks.  Based on the information collected to date, EPA believes that all drum
reconditioning facilities that clean IBCs also treat IBC and drum washwater in the same
wastewater treatment system.

              Manufacturers  generally provide customers with products in quantities to suit
their needs.  As a result, the same products are likely transported in a variety of transportation
modes, including drums, IBCs, tank trucks, intermodal tank containers, and possibly even larger
tanks. Just-in-time delivery has also prompted greater variety in product delivery quantities and
transportation modes. EPA expects that the same products are transported in drums, IBCs,  and
                                           7-8

-------
                                              Section 7.0 - Comparison of the Dram Reconditioning and
                                                       Transportation Equipment Cleaning Industries

tank trucks; however, EPA also expects that certain products, such as food, are more likely to be

transported in larger tanks or containers.



              The following table provides general information regarding cargos transported in

drums, IBCs, and tank trucks/intermodal tank containers (1)(6)(7):
Cargo
Oil and Petroleum
Chemicals (a)
Food
Agricultural Chemicals
(including pesticides/herbicides)
Other
Not Specified
Total (b)
Percentage of Cleanings Performed by Container Type
Drums
36.2
54.8
6.8
0.5
1.7
-
100
IBCs
20
70
10
—
-
-
100
Tank Trucks/intermodal
Tank Containers
8.7
35.6
38.5
0.5
3.4
13.4
100
(a) Chemicals include industrial chemicals, cleaning solvents, paint and ink, latex, rubber, resins, adhesives, soaps,
detergents, and wastes.
(b) Differences occur due to rounding.


Note that food cargos are generally cleaned at TEC facilities that are dedicated to cleaning food

grade products.  Therefore, the cargo type distribution at non-food grade TEC facilities is much

more heavily weighted in the non-food grade cargo categories presented above. EPA has no

information regarding whether drums and IBCs that last contained food grade cargos are

generally cleaned at facilities dedicated to cleaning food grade products.
7.4
Water Use and Wastewater Generation
              Drum reconditioners and tank cleaning facilities share many common

characteristics in water use and wastewater generation.  The greatest water use and wastewater

source by far for both industries is rinse water.  Other common water uses include interior
                                            7-9

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries
preflushes and washes, exterior washes, formulation and make-up of chemical cleaning solutions,
leak testing (hydrotesting), and boiler feed water.  Other common wastewater sources include
interior preflushes and washes, spent cleaning solutions, exterior washwater, leak testing
wastewater, compressor condensate, and boiler blowdown.

              There are also several differences in water use and wastewater generation between
the two industries:

              •      Acid washing emissions scrubber water is a significant use of water and
                    source of wastewater at many drum reconditioning facilities, but acid
                    washing is less common at  TEC facilities, and EPA is not aware of any
                    TEC facilities that operate emissions scrubbers specifically for acid
                    washing operations.  (Some TEC facilities operate incinerators, flares, or
                    scrubbers to control emissions from venting, gas-freeing, or steaming
                    tanks that last contained volatile cargos.)
              •      Label removal is also a significant use of water and source of wastewater
                    at many drum reconditioning facilities but is not applicable to tank
                    cleaning operations.

              As discussed in Section 5.2, the ICDC industry generates an estimated 290 million
gallons of wastewater per year. Approximately 83% of this volume is generated by drum
reconditioning operations, and the remainder  is generated by IBC reconditioning operations at
both drum reconditioning and TEC facilities.  Limited available data suggest that an estimated
5% of ICDC wastewater generated is contract hauled rather than discharged. For the remaining
95% of ICDC wastewater generated (approximately 275 million gallons per year), EPA believes
that the vast majority is discharged indirectly, and a very small portion, if any,  is discharged
directly.

              EPA estimates that 328 TEC facilities, discharging approximately 1.05 billion
gallons of TEC wastewater per year, will be affected by the TEC rule.  These estimates include
286 facilities in Subpart A that discharge approximately 845  million gallons of TEC wastewater
                                          7-10

-------
                                             Section 7.0 - Comparison of the Dram Reconditioning and
                                                      Transportation Equipment Cleaning Industries
per year. Like the ICDC industry, the vast majority of TEC wastewater is discharged indirectly,
and a very small portion is discharged directly (2).

7.5           Wastewater Characteristics

              Table 7-1, at the end of this section, presents mean raw wastewater concentrations
for steel drum washing, plastic drum  and IBC washing, steel drum burning, and tank
truck/intermodal tank container washing. The table includes all priority pollutants, dioxins and
furans, and pesticides and herbicides  detected in any sample because of their relatively high
toxicity, as well as other pollutants detected at concentrations greater than 1 mg/L in any sample
type. The table excludes pollutants analyzed for in only one sample type.  EPA applied these
data editing criteria to facilitate data comparison by reducing the number of pollutants listed.

              Steel drum washing wastewater characterization data represent the mean  pollutant
concentrations for 11 samples collected at 6 facilities sampled in the mid-1980s and in 2000.  For
samples in which individual pollutants were not detected, the sample detection limit was used in
calculating the mean concentration. The methodology used to calculate the mean concentration
involved first calculating a mean concentration for each facility characterized and then
calculating a steel drum washing mean concentration using applicable mean facility
concentrations.

              Plastic drum and IBC  washing wastewater characterization data represent the
average concentration for two samples (sample duplicates) collected at one facility.  Steel drum
burning wastewater characterization data represent pollutant concentrations from one sample.

              Tank truck/intermodal tank container washing wastewater characterization data
represent the mean pollutant concentrations for 10 samples collected at 5 facilities that clean
tanks that last contained chemical cargos. The mean concentration was calculated using the
methodology described above for steel drum washing wastewater.
                                           7-11

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries
              As expected, similar types and numbers of pollutants were detected in the steel
drum washing and tank truck/intermodal tank container washing wastewaters. In general,
pollutant concentrations in steel drum washing wastewater are significantly greater than those in
tank truck/intermodal tank container washing wastewater. For example, 22 volatile and
semivolatile organic pollutants and 14 metals were detected at average concentrations greater
than 1 mg/L in steel drum washing wastewater. In comparison, only 14 volatile and semivolatile
organic pollutants and 9 metals were detected at average concentrations greater than 1 mg/L in
tank truck/intermodal tank container washing wastewater. In addition, concentrations of the
classical pollutants BOD5,  COD, oil and grease/HEM, and TSS range from 1.5 to 6.8 times
greater in steel drum washing wastewater as compared to tank truck/intermodal tank container
washing wastewater.

              EPA selected SGT-HEM, copper, and mercury for regulation for indirect
dischargers in Subpart A of the TEC rule.  These pollutants were detected at similar
concentrations in tank truck/intermodal tank container washing and steel drum washing
wastewaters. ERG received comments from pretreatment authorities that EPA should regulate
pollutants identified in TEC wastewater that may pass through the POTW or which may
accumulate in the POTW sludge.  One commenter specifically identified copper, lead, and
mercury as pollutants of concern. For Subpart A, EPA regulated copper and mercury but
determined lead did not warrant regulation because it was detected at very  low concentrations.
Lead concentrations in steel drum washing wastewater are nearly three orders of magnitude
greater than those in tank truck/intermodal tank container washing wastewater.

              EPA decided not to regulate zinc in Subpart A of the TEC rule because zinc levels
present in wastewater from Subpart A facilities may be due to source water contamination rather
than a direct result of cleaning tanks.  In contrast, zinc levels in steel drum  washing wastewater
(average  of 23 mg/L) are significantly greater than levels typically present in drinking water (less
than 5 mg/L) and levels present in  tank truck/intermodal tank container washing wastewater
(average  of 0.83 mg/L).
                                          7-12

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries
              EPA concluded that chromium is a pollutant of interest  for Subpart A but did not
regulate chromium because EPA's chromium treatment performance data was not representative
of practices that may be performed by tank truck washing facilities (i.e., exterior acid brightener
washes to remove tarnish from chrome parts), and because chromium limits based on EPA's
sampling data may not be achievable for facilities that are performing exterior acid brightener
washes for their customers. Exterior acid brightener washes for chrome parts are  not applicable
to steel drum washing operations.  Chromium levels in tank truck/intermodal tank container
washing wastewater (average of 2.4 mg/L), which do not reflect the impact of exterior acid
brightener washes, are similar to those in steel drum washing wastewater (average of 2.5 mg/L).

              EPA also identified several semivolatile organics (bis (2-ethylhexyl) phthalate and
straight chain hydrocarbons), dioxins and furans, and pesticides/herbicides as pollutants of
interest for indirect dischargers in Subpart A. EPA decided not to regulate these pollutants
because the selected technology options were demonstrated to control these pollutants (due  to
control of TSS and oil and grease) and because pollutant monitoring is very expensive.
Concentrations of semivolatile organics in steel drum washing wastewater are greater than those
in tank truck/intermodal tank container washing wastewater, while concentrations of dioxins and
furans are lower. Available data sets are too limited to assess the comparability of pesticide and
herbicide concentrations.

              Significantly fewer pollutants were detected in steel drum burning  wastewater as
compared to steel drum washing wastewater; however, this may be because only one steel drum
burning wastewater sample was analyzed. For pollutants that were detected in steel drum
burning wastewater, concentrations are generally similar to or less than concentrations in steel
drum washing wastewater, but greater than concentrations in tank truck/intermodal tank
container washing wastewater. Notable exceptions include chromium  and zinc which were
detected in drum burning wastewater at significantly greater concentrations than those in steel
drum washing wastewater and tank truck/intermodal tank container washing wastewater.
                                          7-13

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries
              Relatively few pollutants were detected in plastic drum  and IBC washing
wastewater; however, this may be because only one plastic drum and IBC washing wastewater
sample was analyzed. Pollutant concentrations were also relatively low. The plastic drum and
IBC washing facility that was sampled cleans very few drums and IBCs that last contained
hazardous materials (approximately 2% to 5% of drums and IBCs washed). Plastic drum and
IBC washing wastewater contained the highest concentrations of chloroform, dioxins and furans,
and chloride as compared to other wastewaters. These pollutants may be generated by the use of
bleach (hypochlorite) in the washing process at this facility. In addition, the mercury
concentration in plastic and drum washing wastewater is 15 times greater than the average
mercury concentration in other wastewaters. The source of mercury is not known; the facility
sampled cleans primarily drums and IBCs that last contained dyes.

7.6           Pollution Prevention and Wastewater Treatment Technologies

              Similarities and differences in pollution prevention controls and flow reduction
technologies in cleaning/reconditioning processes at drum reconditioning and TEC facilities are
described in Section 7.2.

              Typical end-of-pipe treatment currently used by TEC facilities includes
pretreatment and primary treatment such as equalization, pH  adjustment, gravity settling,
oil/water separation, air flotation, coagulation/flocculation followed by clarification, and sludge
dewatering. These are the same treatment technologies commonly used by drum reconditioning
facilities visited by EPA in the  mid-1980s and in 2000. Prior to implementation of the TEC
effluent guidelines, 44% of facilities in Subpart A operated technology equivalent to Option I
(Equalization,  Oil/Water Separation, Chemical Oxidation, Neutralization, Coagulation,
Clarification, and Sludge Dewatering), EPA's  technology basis for the final rule. Eighty-six
percent of facilities in Subpart A operated technology  equivalent to Option A (Equalization and
Oil/Water Separation).  EPA has no data on the percentage of drum reconditioning facilities that
                                          7-14

-------
                                            Section 7.0 - Comparison of the Dram Reconditioning and
                                                     Transportation Equipment Cleaning Industries

use these technologies; however, observations based on EPA's site visits suggest use similar to

that of tank truck washing facilities.


              TEC facilities that operate biological and/or advanced treatment are commonly

those that practice extensive water and wastewater recycle and reuse, or that discharge directly to

U.S. surface waters. EPA has not identified any drum reconditioning facilities that operate

biological and/or advanced treatment, nor has EPA identified any drum reconditioning facilities

that discharge directly to U.S. surface waters.  EPA has visited four drum reconditioning

facilities in the mid-1980s that recycle 100% of treatment wastewater effluent in

cleaning/reconditioning processes (see Section 6.2.5); however, biological  and/or advanced

treatment is not necessary to provide adequate wastewater quality for recycling.


7.7           References
1.            U.S. EPA, Office of Water Regulations and Standards, Preliminary Data
             Summary for the Drum Reconditioning Industry. EPA 440/1-89/101, September
             1989(DCND00001).

2.            U.S. EPA. Office of Water. Final Development Document for Effluent
             Limitations Guidelines and Standards for the Transportation Equipment Cleaning
             Category. EPA-821-R-00-012, June 2000.

3.            U.S. EPA, Office of Water, Economic Analysis of Final Effluent Limitations
             Guidelines and Standards for the Transportation Equipment Cleaning Category.
             EPA-821-R-00-013, June 2000.

4.            Reusable Industrial Packaging Association, http://www.reusablepackaging.org.

5.            Wilson, C., "IBCs Grow in Popularity," Modern Bulk Transporter, August 1999
             (DCN D00043).

6.            Dixon, B., The Future of the IBC Market - A Hazardous Cargo Bulletin Report.
             Intapress Publishing Ltd. London, England, 2000 (DCN D00008).

7.            U.S. EPA. Office of Water. 1994 Detailed Questionnaire for the Transportation
             Equipment Cleaning Industry - Part A: Technical Information. April  1995.
                                          7-15

-------
                                           Section 7.0 - Comparison of the Dram Reconditioning and
                                                   Transportation Equipment Cleaning Industries
                                    Table 7-1
Comparison of Raw Wastewater Characterization Data for Drum Reconditioning
                               and TEC Facilities
Priority
Pollutant
Code
Analyte
Units
Mean Raw Wastewater Concentration
Steel Drum
Washing(a)
Plastic
Drum &
IBC
Washing
Steel Drum
Burning
Tank
Truck/Intermodal
Tank Container
Washing
Volatile Organics

P004
P048
P007
P023
P013
P010
P029
P032
P038

P044


P085
P006
P086
P030
P047
P011
P087
Acetone
Benzene
Bromodichloromethane
Chlorobenzene
Chloroform
1 , 1 -Dichloroethane
1 ,2-Dichloroethane
1 , 1 -Dichloroethene
1,2-Dichloropropane
Ethylbenzene
— + p-Xylene
Methylene Chloride
Methyl Ethyl Ketone
Methyl Isobutyl Ketone
Tetrachloroethene
Tetrachloromethane
Toluene
Trans-l,2-Dichloroethene
Tribromomethane
1,1,1 -Trichloroethane
Trichloroethene
Mg/L
ซ"g/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Aig/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
120,000
110
ND
100
310
ND
110
910
ND
12,000
2,300
1,300
210,000
26,000
3,000
ND
20,000
110
ND
4,900
430
240
ND
91
12
4,000
ND
ND
ND
ND
ND
ND
ND
120
ND
ND
ND
ND
ND
ND
ND
ND
16,000
ND
ND
ND
ND
ND
ND
ND
ND
12,000
ND
100,000
68,000
18,000
ND
ND
17,000
ND
ND
17,000
ND
24,000
35
10
16
65
12
400
14
11
440
1,700
12,000
5,200
1,600
1,100
14
1,600
ND
10
710
26
Semivolatile Organics
P001


P066
P067
P020
Acenaphthene
Benzoic Acid
Benzyl Alcohol
Bis (2-Ethylhexyl) Phthalate
Butyl Benzyl Phthalate
2-Chloronaphthalene
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
ND
38,000
1,800
3,700
230
830
ND
350
ND
16
ND
ND
ND
ND
4,600
880
ND
ND
130
24,000
410
900
ND
ND
                                       7-16

-------
                Section 7.0 - Comparison of the Dram Reconditioning and
                         Transportation Equipment Cleaning Industries
Table 7-1 (Continued)
Priority
Pollutant
Code
P024

P025
P031
P068
P059
P035
P069
P063
P080

P054
P060


P062



P055
P056
P057
P058


P081
P065
P084

P021

Analyte
2-Chlorophenol
2,3 -Dichloro aniline
1 ,2-Dichlorobenzene
2,4-Dichlorophenol
Di-n-Butyl Phthalate
2,4-Dinitrophenol
2,4-Dinitrotoluene
Di-n-Octyl Phthalate
D i-n-Propy Initro samine
Fluorene
Hexanoic Acid
Isophorone
2 -Me thy 1-4, 6 -D initrophenol
n-Decane (N-C10)
n-Dodecane (N-C12)
n-Nitrosodiphenylamine
n-Octacosane (N-C28)
n-Tetradecane (N-C14)
n-Triacontane
Naphthalene
Nitrobenzene
2-Nitrophenol
4-Nitrophenol
o-Cresol
p-Cymene
Phenanthrene
Phenol
Pyrene
Styrene
2,4,6-Trichlorophenol
Tripropyleneglycol Methyl Ether
Units
Mg/L
Aig/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Aig/L
Aig/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
//g/L
//g/L
Mean Raw Wastewater Concentration
Steel Drum
Washing(a)
ND
ND
ND
ND
750
690
72
ND
ND
72
20,000
2,000
350
2,400
1,500
ND
1,100
1,700
ND
1,300
73
1,100
1,100
130
130
450
760
ND
3,000
ND
1,700
Plastic
Drum &
IBC
Washing
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
69
ND
ND
120
ND
ND
ND
ND
ND
13
ND
ND
ND
ND
ND
ND
180
10
ND
44
3,900
Steel Drum
Burning
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
14,000
ND
ND
ND
ND
ND
ND
ND
5,300
ND
ND
ND
2,600
1,000
ND
ND
ND
13,000
ND
ND
Tank
Truck/Intermodal
Tank Container
Washing
67
3,600
190
57
ND
ND
ND
350
270
140
77
140
ND
350
1,100
270
940
560
1,200
330
ND
110
270
160
150
180
2,000
ND
3,300
180
1,300
           7-17

-------
                Section 7.0 - Comparison of the Dram Reconditioning and
                         Transportation Equipment Cleaning Industries
Table 7-1 (Continued)
Priority
Pollutant
Code
Analyte
Units
Mean Raw Wastewater Concentration
Steel Drum
Washing(a)
Plastic
Drum &
IBC
Washing
Steel Drum
Burning
Tank
Truck/Intermodal
Tank Container
Washing
Dioxins and Furans











1,2,3,4,6,7,8-Heptachlorodibenzo-p-
dioxin
1,2,3,4,6,7,8-Heptachlorodibenzofuran
1,2,3,4,7,8,9-Heptachorodibenzofuran
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin
1,2,3,4,7,8-Hexachlorodibenzofuran
1,2,3,6,7,8-Hexachlorodibenzofuran
2,3,4,6,7,8-Hexachlorodibenzofuran
2,3,7,8-Tetrachlorodibenzofuran
Octachlorodibenzo-p-dioxin
Octachlorodibenzofuran
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
Pg/L
160
100
ND
ND
ND
ND
ND
ND
ND
1,300
270
2,100
610
310
1,400
230
97
51
420
ND
12,000
6,600
15
2.0
ND
0.37
0.36
0.55
ND
0.54
0.21
200
10
690
220
ND
ND
97
ND
120
ND
ND
6,100
560
Pesticides and Herbicides (b)












Azinphos Ethyl
Azinphos Methyl
Dalapon
Diazinon
Dimethoate
Endosulfan I
Endosulfan Sulfate
Etridazone
Fensulfothion
Heptachlor
Leptophos
MCPA
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
2,100
5,400
ND
520
750
150
260
130
6,800
140
2,000
ND
ND
ND
210
ND
ND
ND
ND
ND
ND
ND
ND
2,300
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
Metals

P114
P115

P117

Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Mg/L
Mg/L
Mg/L
//g^
//g^
Mg/L
19,000
2,400
49
2,000
9.9
6,700
39,000
22
ND
57
0.47
78
47,000
600
10
5,700
5.0
7,300
6,100
57
15
530
0.92
4,700
           7-18

-------
                Section 7.0 - Comparison of the Dram Reconditioning and
                         Transportation Equipment Cleaning Industries
Table 7-1 (Continued)
Priority
Pollutant
Code
P118

P119

P120

P122


P123

P124
P125
P126

P127

P128
Analyte
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Selenium
Silver
Sodium
Thallium
Tin
Zinc
Units
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mg/L
Mean Raw Wastewater Concentration
Steel Drum
Washing(a)
280
36,000
2,500
460
1,300
130,000
11,000
11,000
1,400
4.1
690
210
9.7
4.3
4,900,000
13
1,100
23,000
Plastic
Drum &
IBC
Washing
7.0
68,000
84
14
360
2,300
61
14,000
54
63
1,700
30
5.1
ND
2,000,000
ND
700
3,200
Steel Drum
Burning
730
170,000
12,000
3,500
1,200
47,000
11,000
30,000
1,500
0.80
790
1,200
25
1.0
770,000
50
350
110,000
Tank
Truck/Intermodal
Tank Container
Washing
18
300,000
2,400
85
1,100
30,000
25
72,000
800
1.8
100
360
11
3.5
1,000,000
3.7
12,000
830
Classical Pollutants











P065


Ammonia
BODS, Dissolved
BODS, Total
Chloride
COD, Dissolved
COD, Total
Dissolved Solids
Fluoride
Nitrate/Nitrite
Oil & Grease/HEM
pH
Phenol
SGT-HEM
Suspended Solids
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
20
2,500
3,600
1,400
8,500
15,000
15,000
34
360
8,900
10 to 12
35
140
3,600
21
NA
440
2,200
NA
2,400
NA
NA
5.3
21
NA
NA
ND
1,500
33
1,500
2,600
330
18,000
52,000
6,200
11
NA
5,300
8.2
39
NA
9,500
79
NA
2,300
900
NA
6,600
5,000
21
2.6
1,300
7 to 12
2.6
150
1,600
           7-19

-------
                                                           Section 7.0 - Comparison of the Dram Reconditioning and
                                                                      Transportation Equipment Cleaning Industries
                                         Table 7-1 (Continued)
Priority
Pollutant
Code


P121



Analyte
Suspended Vol. Solids
TKN
Total Cyanide
Total Organic Carbon
Total Phosphorus
Total Volatile Solids
Units
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
Mean Raw Wastewater Concentration
Steel Drum
Washing(a)
2,400
71
o o
J.J
2,800
17
6,000
Plastic
Drum &
IBC
Washing
NA
NA
0.78
1,300
20
NA
Steel Drum
Burning
14,000
560
0.28
4,000
NA
19,000
Tank
Truck/Intermodal
Tank Container
Washing
NA
NA
0.02
1,500
22
2,900
(a) Mean pollutant concentrations for 11 samples collected at 6 facilities sampled in the mid-1980s and in 2000 (see
Table 5-1).
(b) Pesticides and herbicides results for steel dram washing are based on data from one facility known to clean drams that
last contained pesticides and herbicides.  Results for plastic dram and IBC washing are based on data from one facility that
reportedly does not clean drams or IBCs that last contained pesticides or herbicides. Results for tank track/intermodal tank
container washing are not presented because of some uncertainty in the identification of these analytes. Data for 39
pesticides and herbicides identified in tank track/intermodal tank container washing wastewater are provided in Reference 2.
ND - Pollutant not detected.
NA - Pollutant not analyzed.
                                                     7-20

-------
                                Section 8.0 - Pollutant Loadings and Costs to Manage ICDC Wastewater
8.0          POLLUTANT LOADINGS AND COSTS TO MANAGE ICDC
             WASTEWATER

             As part of the characterization of the ICDC industry, EPA evaluated wastewater
pollutant loadings and costs to manage ICDC wastewater. EPA obtained pollutant loadings and
costing data from information gathered during site visits to ICDC facilities, data collected by
EPA in the mid-1980s, technical literature, and engineering judgement.

8.1          Estimated Pollutant Loadings

             This section describes EPA's methodology to estimate raw wastewater pollutant
loadings for the ICDC industry.  For the purpose of this analysis, EPA segmented the ICDC
industry as follows: steel drum washing, plastic drum washing, steel drum burning, and IBC
washing. EPA's primary data source for this analysis is the raw wastewater characterization data
presented in Section 5.0. Data presented in Table 5-1 were used to estimate steel drum washing
pollutant loadings; data presented in Table 5-2 were used to estimate plastic drum washing
pollutant loadings because the sampled facility cleans predominantly plastic drums; and data
presented in Table 5-3 were used to estimate steel drum burning pollutant loadings.

             EPA has no raw wastewater sampling data representative of wastewater generated
solely from cleaning IBCs. To estimate IBC washing pollutant loadings, EPA considered two
possible approaches based on two different data sources, and presents the results as a range of
possible IBC washing pollutant loadings.  The first source is wastewater characterization data
presented in Table 5-2, which predominantly represents plastic drum washing wastewater, but
also represents plastic IBC washing wastewater. The second source is wastewater
characterization data for tank truck/intermodal tank container washing presented in Table 7-1.

             EPA considered two approaches for projecting the wastewater characterization
data described above to represent the entire ICDC industry. The first approach uses EPA's
estimate of the total annual volume of wastewater generated by the ICDC industry presented in
                                          8-1

-------
                                 Section 8.0 - Pollutant Loadings and Costs to Manage ICDC Wastewater
Section 5.2. The second approach uses EPA's estimate of the total annual production of the
ICDC industry (i.e., numbers of drums and containers cleaned per year) presented in Section 4.2.
EPA selected the second approach because it considers the annual production estimate to be
more reliable than the annual wastewater generation estimate. Use of the  second approach
requires that EPA first estimates pollutant loadings on a per drum and per IBC basis as described
below.

             Pollutant loadings are commonly expressed in pounds of pollutants generated per
year or per unit production. However, simply summing the pounds of different pollutants
generated ignores significant differences is the toxicity expressed by the pollutants.  For example,
a pound of zinc in a wastewater stream has a significantly different, less harmful effect than a
pound of dioxins. To account for differences in toxicity,  EPA develops pollutant toxic weighting
factors which are standardized by relating them to a "benchmark" toxicity value of 1.  Use of the
toxic weighting factor converts pollutant loadings expressed in pounds of pollutants to pollutant
loadings expressed in "pound-equivalents."

             EPA's methodology for estimating raw wastewater pollutant loadings (in pound-
equivalents) for the steel drum washing, plastic drum washing, and steel drum burning segments
of the ICDC industry was as follows:
              (1)     Calculated average pollutant concentrations (mg/L or //g/L) for each
                     sampled facility.  The sample-specific detection limit was used for non-
                     detect values.
              (2)     Converted facility average pollutant concentrations to average pollutant
                     loadings (Ib/yr) using each facility's annual flow rate.
              (3)     Converted facility average pollutant loadings to pound-equivalent
                     pollutant loadings by multiplying by EPA-derived toxic weighting factors.
                     For pollutants without a toxic weighting factor, EPA used a toxic
                     weighting factor of zero.
              (4)     Calculated total facility pound-equivalent loadings by summing the
                     pollutant pound-equivalent loadings generated by each facility.
                                           8-2

-------
                                 Section 8.0 - Pollutant Loadings and Costs to Manage ICDC Wastewater
              (5)    Calculated total facility production-normalized pound-equivalent loadings
                    (Ib/drum) by dividing by each facility's annual production.
              (6)    Calculated industry average production-normalized pound-equivalent
                    loadings for each industry segment by averaging the applicable facility
                    loadings.
              (7)    Calculated industry annual pound-equivalents generated by multiplying by
                    the industry annual drum cleaning production.

              Note that EPA analyzed for dioxins and furans in raw wastewater samples
collected at only two of the six steel drum washing facilities sampled. EPA assumed that raw
wastewater dioxin and furan loadings for each of the remaining four steel drum washing facilities
equaled the average raw wastewater dioxin and furan loadings for the two steel drum washing
facilities that were sampled. Note also that EPA's raw wastewater pollutant loadings  estimates
do not include pollutant loadings that may be contributed by pesticides and herbicides. Although
EPA believes pesticides and herbicides are present in ICDC wastewaters, the Agency  also
believes their detection in ICDC wastewater may be site-specific occurrences. Available
pesticide and herbicide data are too limited to estimate pesticide and herbicide pollutant loadings
that are  representative of the ICDC industry. Therefore, raw wastewater pollutant loading
estimates presented in this section may include a low bias.

              EPA's methodology for estimating raw wastewater pollutant loadings (in pound-
equivalents) for the IBC washing segment of the ICDC industry was as follows.  For the first
approach, EPA used the industry average production-normalized pound-equivalent loadings per
plastic drum washed calculated in step (6) described above. EPA then prorated the plastic drum
washing loading by multiplying by 11.1, which represents the ratio of the volume of wastewater
generated by cleaning an IBC to that  generated by cleaning a drum (100 gallons  of wastewater
per IBC washed divided by 9 gallons of wastewater per drum washed). This proration accounts
for the assumed greater pollutant loadings generated per IBC cleaning, as compared to those
generated per drum cleaning, because of the larger container size and commensurate heel
volumes. EPA then multiplied this result by the annual IBC cleaning production.
                                           8-3

-------
                                 Section 8.0 - Pollutant Loadings and Costs to Manage ICDC Wastewater
              For the second approach, EPA used the methodology described in steps (1)
through (6) above to calculate the production-normalized pound-equivalent loadings per tank
truck/intermodal tank container cleaned (excluding pesticides and herbicides). EPA then
prorated the tank truck/intermodal tank container cleaning loading by multiplying by 0.165,
which represents the ratio of the volume of wastewater generated by cleaning an IBC to that
generated by cleaning a tank truck/intermodal tank container (100 gallons of wastewater per IBC
washed divided by 605 gallons of wastewater per tank truck/intermodal tank container washed).
This proration accounts for the assumed lower pollutant loadings generated per IBC cleaning, as
compared to those generated per tank truck/intermodal tank container cleaning, because of the
smaller container size and commensurate heel volumes.  EPA then multiplied this result by the
annual IBC cleaning production.

              The following table summarizes estimated raw wastewater pollutant loadings for
the ICDC industry:
Container Type
Steel Dram Washing
Plastic Dram Washing
Steel Dram Burning
IBC Washing
Raw Wastewater
Pollutant Loadings
(Pound-Equivalents/
Container)
0.037
5.5
0.0023
0.0 14 to 61
Number of Containers
Cleaned/Year
11.0 million
7.6 million tight-head
664,000 open-head
20.2 million
500,000
Total
Total Annual Raw
Wastewater Pollutant
Loadings (Pound-
Equivalents/Year)
410,000
42,000,000
3,700,000
46,000
7,000 to 3 1,000,000
46,000,000 to 77,000,000
              Greater than 90% of the estimated total annual raw wastewater pollutant loadings
for all segments of the ICDC industry are contributed by dioxins and furans, and metals comprise
the majority of the remaining pollutant loadings. Available treatment performance data for
technologies similar to those used by ICDC facilities visited by EPA in the mid-1980s and in
2000 (e.g., oil-water separation, chemical precipitation, and clarification) suggest that dioxins
                                           8-4

-------
                                 Section 8.0 - Pollutant Loadings and Costs to Manage ICDC Wastewater
and furans would be expected to be removed by 62% to 98% (1). Available treatment
performance data presented in Section 6.0 suggest that these technologies also generally remove
priority pollutant metals.  Note that available data suggest that the majority of ICDC facilities
operate wastewater treatment; however, EPA has no information regarding the specific treatment
technologies used by these facilities (see Section 6.3). With the exception of any ICDC facilities
that discharge wastewater directly (EPA is not aware of any direct discharging facilities), ICDC
wastewater will also receive additional treatment at publicly-owned treatment works or
centralized waste treatment facilities prior to discharge to U.S. surface waters (see Section 5.2).

              Excluding the adjustment for pollutant toxicity, raw wastewater pollutant loadings
(in pounds) are predominantly (80% to 90%) contributed by classical pollutants such as chemical
oxygen demand, solids, oil and grease, and biochemical oxygen demand.  Metals contribute
approximately 1%  to 20% of raw wastewater pollutant loadings, and volatile and semivolatile
organics contributed approximately 0.2% to 3% of pollutant loadings.

8.2           Estimated Costs

              For the purpose of developing effluent limitations guidelines and standards,  EPA
estimates capital and operating and maintenance costs to implement the practices and
technologies used as the bases of regulatory options. Capital costs include direct and indirect
costs associated with the purchase, delivery, and installation of pollutant control equipment.
Annual operating costs include all costs related to operating and maintaining the control
technologies for one year. This includes costs for operational labor, maintenance and repair
labor, operating and maintenance materials, electricity, treatment chemicals, disposal of
treatment system residuals, and compliance monitoring of wastewater discharges.  This section
presents actual wastewater treatment costs incurred at ICDC facilities visited by EPA in 2000.
Note that costs for similar treatment can vary significantly depending on the specific technology
design basis and capacity; therefore, costs presented in this section should be considered as
examples within a  possibly wide range of costs.
                                           8-5

-------
                                  Section 8.0 - Pollutant Loadings and Costs to Manage ICDC Wastewater
              The following table presents the capital and operating costs for wastewater
treatment technologies at the three ICDC facilities visited in 2000.  These costs do not include
costs incurred for heel management and water conservation, which are expected to be relatively
small.

                         Wastewater Treatment Costs at ICDC Facilities


ICDC
Facility
1






2








3







Wastewater Treatment
Technologies
Equalization, Chemical
Precipitation, Dissolved
Air Flotation, and Filter
Press



Equalization, pH
Adjustment, Chemical
Precipitation, and
Gravity Separation
Oil/Water Separation,
Mix Tanks, Dissolved
Air Flotation, Bag
Filters, and Vacuum
Filter (a)
Equalization, Chemical
Precipitation, Oil
Skimming, pH
Adjustment, and Filter
Press



ICDC
Operations
Plastic
Drum and
IBC
Washing



Steel Drum
Washing
and Burning






Steel Drum
Washing




Wastewater
Flow (gal/day)
(Design
Capacity)
20,000 - 23,000
(100 gal/minute
capacity)




12,000 - 15,000
(30,000 gal/day
capacity)






2,500 - 3,000
(Capacity
unknown)






Capital Costs
$350,000
(2000 dollars)





>$ 1,000,000 (a)
(late- 1980s
dollars)






$129,000
(1989 dollars)





Associated
Operating Costs
($/yr)
Chemical Costs =
$14,400
Monitoring/
POTW Discharge
Fees = $36,000
Other Operating Costs
Unknown
Chemical Costs =
$180,000 to $200,000
Other Operating Costs
= $500,000





Chemical Costs =
$15,000 to $16,000
Filter Cake Disposal =
$3,000 to $5,000
Labor Costs = 25% of
one employee's time
(a) These technologies are no longer used. Costs include all technologies.

              Wastewater treatment costs are strongly correlated to wastewater flow rates,
which determine equipment sizing and chemical addition rates.  According to data provided by
RIP A, wastewater flows for drum reconditioning facilities (washing and burning) range from 500
gallons per day to 50,000 gallons per day, and average 14,300 gallons per day (2).  Therefore, the
costs shown above are from facilities with wastewater flow rates typical of those in the ICDC
                                            8-6

-------
                                 Section 8.0 - Pollutant Loadings and Costs to Manage ICDC Wastewater

industry. Note that available data suggest that the majority of ICDC facilities operate wastewater

treatment; however, EPA has no information regarding the specific treatment technologies used

by these facilities (see Section 6.3).


8.3          References
             Eastern Research Group, Inc. Dioxin and Furan Loadings and Removals.
             Memorandum from Debra Falatko and Michelle DeCaire, Eastern Research
             Group, Inc. to John linger, EPA/EAD, February 23, 2000. (DCN D00174).

             Reusable Industrial Packaging Association. RIPA Reconditioners Survey -
             Presentation of Business, Technical, and Regulatory Data, September 16, 2000
             (DCND00167).
                                          8-7

-------
                                                              Section 9.0 - Trends in the Industry
9.0           TRENDS IN THE INDUSTRY

              This section describes trends in the ICDC industry size (Section 9.1), types of
ICDC facilities (Section 9.2), cleaning/reconditioning processes (Section 9.3), and pollution
prevention and wastewater treatment technologies (Section 9.4).

              All of the apparent trends discussed in this section are based on information
obtained during EPA's data-collection activities and subsequent analyses, which are described
throughout this report.  Note, however, that the vast majority of these sources are not statistically
reliable. Accordingly, the  trends described in this section should be considered qualitative or
anecdotal because available data are insufficient to validate trends statistically.

9.1           ICDC Industry Size

              Section 4.1.1 describes EPA's estimate of the total ICDC industry population of
291 facilities, including ICDC facilities that do not clean transportation equipment and ICDC
facilities that also clean transportation equipment.  According to the Reusable Industrial
Packaging Association (RIPA), there has been no growth in the number of drum burning
facilities and very few new drum washing facilities since EPA's study of the drum reconditioning
industry in the mid-1980s (1).

              Although available data show significant growth in the IBC washing segment,
EPA has identified only a few new facilities that wash only IBCs.  Instead, industry growth in
this segment consists of installing new IBC washing lines at existing drum washing and
transportation  equipment cleaning (TEC) facilities. Data from the Association of Container
Reconditi oners (now RIP A) prior to 1993  indicated that 35% of their membership of about 100
companies at that time received  IBCs for reconditioning (2).  EPA estimates that 173 TEC
facilities reconditioned at least one IBC in 1994. EPA believes both estimates represent a low
bias because of significant growth in this market since 1994. EPA expects that additional drum
washing facilities and TEC facilities will add IBC washing lines if growth of IBC use continues

                                           9-1

-------
                                                             Section 9.0 - Trends in the Industry
in the future.  Therefore, future growth in the number of ICDC facilities will likely be comprised
of TEC facilities that begin washing IBCs.

             Available data suggest the following trends in the ICDC industry since the mid-
1980s:

             •      The total number of drums reconditioned has decreased;
             •      The number of tight-head drums reconditioned has decreased, while the
                    number of open-head drums reconditioned has increased;
             •      Plastic drums have gained market share from steel drums;
             •      The total number of IBCs reconditioned has increased; and
             •      IBCs have gained market share predominantly from drums, but also from
                    tank trucks.

             According to the Preliminary Data Summary for the Drum Reconditioning
Industry, in 1985, approximately 50 million steel drums were reconditioned. Approximately 33
million of these drums were washed (tight-head drums), and 17 million were burned (open-head
drums). Very few plastic drums were manufactured or reconditioned at that time, and plastic
drums were not considered to present a serious competitive threat to the use of steel drums (3).
Data from RTPA indicate that, according to association surveys, 35 million steel and 5 million
plastic drums are reconditioned per year. Approximately  17 million of these steel drums are
washed (tight-head drums), 5 million plastic drums are washed (tight-head and open-head
drums), and 18 million steel drums are burned (open-head drums) (4). Future growth or decline
in the total number of drums reconditioned may be expected to equal growth or decline in the
general chemical industry.

             In the mid-1980s, industry began using plastic drums to transport food and
beverage cargos. Use of plastic drums in these industries has since grown significantly, and has
expanded to growth in other industries following improvements in plastic drum quality, purity,
                                          9-2

-------
                                                             Section 9.0 - Trends in the Industry
sanitation, and washing, and in plastics recycling.  Improved multi-layer blowmolding
technology enables use of different material characteristics for different layers (i.e., inner,
middle, and outer) of plastic drum construction. Plastic drum manufacturers continue to improve
drum purity, such as manufacturing drums in clean rooms and rinsing with deionized water.  As a
result, new plastic drum designs have little or no trade-off between safety and purity, which has
fueled the growth in use of plastic drums and greatly expanded the variety of cargos that can be
transported in plastic drums.  Newer applications for plastic drums include transport of plastic
resins,  other resins, pigments, chemicals, and pharmaceuticals.  Open-head plastic drums are
replacing fiber drums for transporting solids and highly viscous liquids (5)(6). The advantages of
plastic  drums compared to steel drums include:  lighter weight; one-piece construction; and no
flaking, rusting, corroding, or denting (7).  However, plastics drums are incompatible with
concentrated chemical solvents and many flammable materials (5). EPA expects that expansion
in the application of plastic drums in the chemical industry will increase the variety of pollutants
found in plastic drum cleaning wastewater.

              IBC reconditioning is not discussed in the Preliminary Data Summary for the
Drum Reconditioning Industry, suggesting that a negligible number of IBCs were cleaned by the
ICDC industry in the mid-1980s.  In comments submitted in response to the TEC proposed rule
in 1998, The Association of Container Reconditioners  (now RIP A) stated that members clean
70,000 to 90,000 IBCs annually (8).  In more recent communications, RIPA stated that members
wash approximately 250,000 rigid IBCs annually,  reflecting both market increase and new
membership (1)(9).  The total number of IBCs reconditioned annually by drum reconditioners
and TEC facilities is not known, but is believed to range between  500,000 to 1,000,000 per year
(10)(11)(12). Available data suggest that although continued growth in the use of IBCs is
expected (perhaps 10% per year), growth is slowing because of the increasing maturity of the
IBC market. Most users who intend to  switch to IBCs  have already switched (13).

              Literature sources  demonstrate that the growth in use of IBCs is predominantly a
replacement for use of drums. The advantages of IBCs compared to drums include: more
efficient filling, shipping,  and storage; potential reduced liability because  of improved life  cycle
                                           9-3

-------
                                                             Section 9.0 - Trends in the Industry
management; longer lifespan; and improved health and safety and reduced spills because fewer
units are handled (7)(14)(15)(16). IBCs are also used in-process rather than solely for
distribution and delivery; many IBCs are translucent with gallon markers to monitor dispensing
(15)(16). Nalco Chemical Company has replaced 2.5 million drums with a fleet of 60,000
containers ranging in size from 15 gallons to 800 gallons, and many other chemical and food
companies now transport a substantial percentage of product by IBCs rather than by drums (14).

             In June 1991, Dow Corning initially sought to replace drums with IBCs because
of their more efficient space loading. However, ensuing research showed that 35% of their
customer base would not convert from drums for a variety of reasons:

             "Many customers can't afford to tie up that much cash flow in inventory.  Some
             companies don't have a forklift to transport IBCs, and this would be a major
             investment for them. In mature  factories, the aisles are too narrow to
             accommodate an IBC.  Sometimes the production site doesn't have the necessary
             room to park an IBC.  Some of our silicone products have a 6-month shelf life.
             Putting this material into IBCs can mean a lot of waste at the customer site." (2)

Industrial packaging solutions ultimately are not "drums versus IBCs," but rather providing a mix
of industrial packaging alternatives to meet the needs  of customers.

             IBCs have also replaced some deliveries by tank truck. For example, IBCs are
one solution for just-in-time delivery.  Although IBCs are more expensive than other bulk
delivery modes on a per gallon basis, IBCs are delivered by the chemical manufacturer/distributer
more quickly (with less lead time) and with minimal logistics hassles. Single-use IBCs are also
increasingly used in place of tank trucks to transport difficult to clean commodities such as inks,
dyes, creosote, and paint. Finally, rather than comply with new permanent storage tank
requirements, some manufacturing facilities are substituting IBCs for permanent tanks (17)(18).
IBC companies are also targeting the intermodal tank container market,  arguing that a mix of
IBCs and tanks in their fleet provide customers more flexible service (13).
                                          9-4

-------
                                                             Section 9.0 - Trends in the Industry
9.2          Drum and Container Recycling

             The Pollution Prevention Act of 1990 (42 U.S.C. 13101 et seq., Pub. Law 101-
508, November 5, 1990) made pollution prevention a national policy of the United States by
declaring that pollution should be prevented or reduced at the source whenever feasible;  pollution
that cannot be prevented should be recycled in an environmentally safe manner whenever
feasible; pollution that cannot be prevented or recycled should be treated; and disposal or other
release into the environment should be chosen only as a last resort and should be conducted in an
environmentally safe manner.  Similar environmental regulations were also passed in Europe,
concurrent with expanding global markets for chemical companies and industrial packaging
companies. For example, the German take-back legislation, Duales  System Dueschland, requires
producers to provide opportunities to recycle their product packaging or to take the packaging
back themselves (19).

             Corporations around the world began incorporating environmental management as
part of the business process (19).  The chemical industry responded with product stewardship
initiatives under Responsible Careฎ. Product stewardship means making health, safety, and
environmental protection an integral part of designing, manufacturing, marketing, distributing,
using, and recycling and disposing of products (20).  Product stewardship activities may include
recovering containers (i.e.,  those used for shipping) with product residues. In 1992, EPA
published a report, Characterization of Municipal Solid Wastes in The United States, which
documented that packaging comprised 30% of waste disposed in landfills, and that industrial
packaging comprised the majority of the packaging waste stream (21).  Life cycle responsibility
for packaging is increasingly placed in the hands of the shipper, who is increasingly responsible
for the actions of other parties in the safe disposal or reconditioning  of drums and containers
(22).

             Many shippers are implementing product stewardship programs by converting
from short-term, one-way drums and IBCs to use of "fleet" drums and IBCs. The "fleet" may be
owned by the shipper, the drum or IBC manufacturer, or the emptier/end user.  Used drums and
                                          9-5

-------
                                                             Section 9.0 - Trends in the Industry
IBCs are often returned to the shipper for refilling without prior cleaning.  Otherwise, used drums
and IBCs may be cleaned and reused/recycled by the shipper, the manufacturer, the end user, or
an independent cleaning facility. Drums and IBCs may be managed in closed-loop systems,
where the customer's drums and IBCs are used only for the customer's products, or in open-loop
systems, where multiple customers share drums and IBCs. Drum and IBC management ranges
from participation in recycling/reconditioning programs to "cradle-to-grave" management
systems encompassing drum and IBC manufacture and design, delivery, retrieval, tracking and
shipping paperwork, cleaning and maintenance, re-certification, destruction, and replacement
(23).

             As a result of these initiatives, disposal of industrial packaging has reduced
dramatically.  Steel drums that cannot be reconditioned are cleaned, crushed, and reused to make
new steel products. Plastic drums and IBCs that can not be reused are cleaned and shredded to
make a variety of products including fence and sign posts, drainage  pipes and tile, park benches,
garbage disposal containers, truck bed liners, pallets, and sheet stock (14)(24)(25). One
company, CoExcell, accepts clean, spent drums from a network of plastic drum recyclers. The
drums are reground and used to blow mold coextruded plastic drums with a center layer of
recycle (26).

             The following examples illustrate the current trends in drum and  IBC
management,  which are based on alliances between shippers, drum and IBC manufacturers, and
reconditioners. EPA expects continued development of alliances as additional chemical industry
facilities commit to achieve 100% implementation of Responsible Careฎ initiatives.

Dow Corning and Van Leer Containers - Drum Recycling Program

             In January 1992, Dow Corning and co-sponsor Van Leer Containers (a drum and
IBC manufacturer) initiated the "Drum Recycling Program."  For this program Dow Corning and
Van Leer Containers formed a network of 12 (now 16) drum reconditi oners with a "gentlemen's
agreement" to pick up and recondition or recycle used drums throughout the continental United
                                          9-6

-------
                                                             Section 9.0 - Trends in the Industry
States. To be included in the network of Authorized Reconditioners, facilities were required to
pass a rigorous audit and inspection program, including a detailed review of environmental,
Occupational Safety and Health Administration, operational, managerial, and financial records.
The program includes a "no excuses" drum pick-up policy whereby customers call  a 24-hour toll-
free number and drums are picked up by the reconditioner within 15 days of the request.
Reconditi oners agree to pay the customer the highest price or charge the minimum  fee for drums,
depending on the local scrap steel market, and agree not to broker drums to non-system
members. Drums are either reconditioned, shredded, or crushed, depending on their condition
(2).

             Many other chemical companies, such as Johnson Wax, Ashland Chemical, and
GE Silicones, have since joined Van Leer Containers' drum collection system, each with its own
network of reconditioners (2)(14)(24).

Hoover Materials Handling Group - Closed Loop Packaging

             Hoover Materials Handling Group (Hoover) is the largest supplier of IBCs in the
United States. Hoover offers customers an IBC management program which uses computer
software  and bar codes to track IBC deliveries, pick-ups, and inventory. Customers may either
buy or lease IBCs from Hoover, and the IBCs are dedicated to individual customers. Hoover
coordinates IBC cleaning and reconditioning among its own  reconditioning facilities and with
Allwaste Container Services (now owned by Philip Services Corporation), a transportation
equipment cleaning company with multiple facilities nationwide. Allwaste manages disposal or
recycling of residual products, cleans and repairs IBCs, and performs necessary IBC inspections
and recertification (27).

Schutz Container Systems and Sonoco Product Co. - Returnable IBCs

             Schutz Container Systems (Schutz) and Sonoco Products Co. (Sonoco) are IBC
manufacturers that provide IBCs to customers primarily on a trip lease basis and provide for the
                                          9-7

-------
                                                             Section 9.0 - Trends in the Industry
return and reconditioning of the used IBCs. The Schutz program is referred to as "The North
American Ticket," and the Sonoco program is referred to as "We Make It, We Take It Back."
Customers pay daily use costs and are required to return the IBC.  Customers have the use of the
IBC for less than the purchase cost. IBCs generally can be used for three or four trips, and the
recovered IBCs are eventually sold into the secondary market to recover costs.  Schutz IBCs
include a ticket that the emptier completes and faxes to Schutz, who arranges pick-up and
delivery of the IBC to either their subsidiary Cardinal Container Services or to one of 29 Schutz-
designated recycling locations. Sonoco IBCs include a label with a toll-free number to arrange
pick-up and delivery of the IBC to the Sonoco recycling center or to local drum reconditioners
(19)(27)(28)(29).

              Arena Fleet Services, Soltralentz, SH Containers (now part of Blagden
Packaging), and other IBC manufacturers offer similar services (15)(27).

Russell-Stanley Services - Returnable Drums and IBCs

              Russell-Stanley Services (Russell-Stanley) is a steel and plastic drum
manufacturer that operates a leasing program in which plastic drums and IBCs are leased to
customers and returned to Russell-Stanley by the end-user. The company manages the return and
reuse of a fleet of over 2 million drums and IBCs from over 14,000 end user locations.  Each
drum and IBC label has a phone number that the end-user can use to call the company for pick
up, and drums and IBCs are picked up in 24 hours (30).

9.3           Cleaning/Reconditioning Process

              EPA is not aware of any significant trends in drum washing processes. Some
facilities visited by EPA plan facility modernization to improve efficiency and reduce labor
requirements, particularly for mechanical steps to restore the shape and integrity of steel drums.
New, turn-key reconditioning processes may improve water conservation by increasing water
                                          9-8

-------
                                                             Section 9.0 - Trends in the Industry
recirculation and reuse, but are not otherwise expected to impact the characteristics of drum
washing wastewater.

             Most facilities have added IBC washing processes within only the last 5 to 8
years, and IBC washing is typically a small, but growing, operation at most facilities. IBC
washing operations are primarily manual, either because facilities have not yet invested in
automated systems or because automated systems are not adequate to clean the variety of IBC
sizes and designs received by independent ICDC facilities.  Many facilities have either built
cleaning equipment in-house, or worked with vendors to build specially-designed equipment.
The industry has also benefitted from developments in cleaning nozzle design and recirculation
systems which improve washing efficiency and significantly reduce wastewater flow (11).

             EPA has no information on trends in drum burning operations.  EPA visited one
drum burning facility in 2000 that operated a state-of-the-art drum furnace. Advanced features of
the furnace include an  afterburner for emissions control, fully automated controls for the primary
burners and afterburners, and continuous emission monitors for carbon monoxide and
temperature. Upset conditions trigger automatic shutdown protocols. Based on this information,
EPA believes trends in drum burning operations likely focus on reducing air emissions rather
than water pollution controls.

9.4          Pollution Prevention and Wastewater Treatment Technologies

             EPA expects that compliance with the Resource Conservation and Recovery Act
(RCRA) has significantly reduced the volume of heel in drums and IBCs received by ICDC
facilities. EPA also expects that chemical industry commitments to Responsible Careฎ
initiatives have improved the safe management and reduction of wastes, including product
residues in industrial packaging. EPA is not aware of any trends specific to end-of-pipe
wastewater treatment.
                                          9-9

-------
                                                             Section 9.0 - Trends in the Industry
             IBC manufacturers are continually adding new products and changing existing
product design and materials of construction to meet the needs of their customers and to expand
the variety of cargos that can be transported.  Some changes are specifically designed to
maximize product drainage. For example, improved IBC designs include a sloping floor which
drains to a bottom outlet that is positioned below the level of the IBC floor. Other designs allow
more efficient cleaning by avoiding difficult to clean corners and seams (13).  However, many of
these features are not provided in the most popular, low cost composite IBCs. EPA expects that
drainage design will be an increasingly important issue for IBC users to reduce product waste,
which will result in less heel in IBC cleaning wastewater. In addition, continued expansion in
the application of IBCs in the chemical industry will increase the variety of pollutants found in
IBC  cleaning wastewater.

             Steel drum designs are relatively standard as compared to IBC designs; however,
some designs can improve emptying. For example, Dow Chemical has converted to Optimally
Drainable Drums,  some with concave heads to allow drip-dry emptying (14).

             The chemical industry has recognized and acted on the potential liability of unsafe
or improper disposal or reconditioning of drums and containers. Specifically, Dow Coming's
drum recycling program has set a standard for more responsible management and provided
guidance for auditing reconditioning facilities (14). Reconditioners who recognize the
opportunities of responsible management will make necessary investments and improvements in
methods of operation, including pollution prevention and wastewater treatment to comply with
environmental permits (2).

9.5          References
             Personal communication with Dana Worcester, Reusable Industrial Packaging
             Association, September 14, 1999 (DCND00077).
                                         9-10

-------
                                                           Section 9.0 - Trends in the Industry

2.            Miller, J. And Szekely, F., Van Leer's Steel Drum Collection System - Case
             Study, International Management Development Institute, Lausanne, Switzerland,
             1993 (DCND00147).

3.            U.S. EPA, Office of Water Regulations and Standards, Preliminary Data
             Summary for the Drum Reconditioning Industry, EPA 440/1-89/101, September
             1989(DCND00001).

4.            Reusable Industrial Packaging Association. http:\\www.reusablepackaging.org.

5.            "PE Price Hikes Will Boost Plastic Drum Tags," Purchasing, Volume 127, Issue
             3, September 2, 1999 (DCND00004).

6.            "Fluoroware Announces New Blowmolding Capability for High-Purity Chemical
             Containers; New Fluoroware HPDE Drum Offers Safe and Ultrapure Chemical
             Transport," Business Wire, August 4, 1998 (DCN D00004).

7.            Genna, A., "Bulk Packaging - A Container to Fit Every Need," Purchasing
             Online, July 17, 1997 (DCND00156).

8.            Rankin, P., The Association of Container Reconditioners, Letter to John Tinger,
             U.S. EPA, October 13, 1998 (DCND00022).

9.            Personal communication with Dana Worcester, Reusable Industrial Packaging
             Association, August 31, 1999 (DCN D00076).

10.           Wilson, C., "IBCs Grow in Popularity," Modern Bulk Transporter, August 1999
             (DCN D00043).

11.           Rankin, P., Reusable Industrial Packaging  Association, Letter to Mr. John Tinger,
             U.S. EPA, September 20, 1999 (DCND00023).

12.           Personal communication with Dana Worcester, Reusable Industrial Packaging
             Association, October 4, 1999 (DCND00079).

13.           Dixon, B., The Future of the IBC Market - A Hazardous Cargo Bulletin Report,
             Intapress Publishing Ltd. London, England, 2000  (DCN D00008).

14.           Kirschner, E., "Environmental Options in the Container Game," Chemical Week,
             Volume 152, Number 6, Page 40, February 17,  1993 (DCND00004).

15.           "Incredible Bulk," Packaging Magazine, Volume  24, June 17, 1999 (DCN
             D00004).
                                         9-11

-------
                                                          Section 9.0 - Trends in the Industry

16.           "Bulk Containers Improve Filling, Shipping, and Storage," Prepared Foods,
             Volume 162, Number 8, Page 115, July 1993 (DCN D00004).

17.           Eastern Research Group, Inc., Final Site Visit Report for [XXXXX1, Portland,
             Oregon (site name withheld to prevent compromising confidential business
             information), Chantilly, Virginia, June 30, 1999 (DCND00034).

18.           Eastern Research Group, Inc., Final Site Visit Report for [XXXXX1, Long Beach,
             California (site name withheld to prevent compromising confidential business
             information), Chantilly, Virginia, June 30, 1999 (DCND00035).

19.           "Strategic Programming for Environmental Management: Sonoco's Take-Back
             Policy," Business Horizons, May-June 1997  (DCND00004).

20.           American Chemistry Council, http://www.cmahq.com/rc.nsf/unid, December
             2000 (DCN D00148).

21.           U.S. EPA, Office of Solid Waste and Emergency Response, Characterization of
             Municipal Solid Wastes in The United States -  1992 Update, EPA/530/R-92/019.

22.           Mullin, R., "Chemical Shippers Eye Alternatives to the 55-Gallon Drum,"
             Chemical Week, Volume 151, Number 15, Pages 33-34, October 21,  1992 (DCN
             D00004).

23.           "Sonoco Expands Its Services by Adding Packaging Systems," Chemical Market
             Reporter, Volume 252, Issue 11, Page 50, September 15, 1997 (DCND00004).

24.           "Chemical Shippers Bone Up on the 3Rs," Packaging Digest, Volume 30,
             Number 7, Page 66, June 1993 (DCN D00004).

25.           Smith, S., "Drumtech Unit Recycling Plastic Containers," Volume 10, Issue 23,
             Page 11, Augusts,  1998 (DCND00004).

26.           "Processors' Page - Coextruded Drums Contain Recycle," Plastics Technology,
             Volume 41, Issue 10, Page 92, October 1995 (DCN D00074).

27.           Anspach, K. and Goldberg, B., "How to Manage Shipping  Containers
             Responsibly," Adhesives & Sealants Industry, Volume 3, Issue 8, Page 28,
             October/November 1996 (DCN D00004).

28.           "Company Starts Container Retrieval Program," Paint & Coatings Industry,
             Volume 10, Issue 3, Page 32, April 1994 (DCN D00074).
                                        9-12

-------
                                                             Section 9.0 - Trends in the Industry

29.          Personal communication with Peter Schaefer, Schutz Container Systems, October
             12, 1999(DCND00080).

30.          Eastern Research Group, Inc., Final Site Visit Report for Russell-Stanley
             Services, Allentown, Pennsylvania, Chantilly, Virginia, November 10, 2000
             (DCND00107D3).
                                          9-13

-------
                                                                     Section 10.0 - Glossary

10.0         GLOSSARY


Agency - The U.S. Environmental Protection Agency.

BOD5 - Five day biochemical oxygen demand.  A measure of biochemical decomposition of
organic matter in a water sample. It is determined by measuring the dissolved oxygen consumed
by microorganisms to oxidize the organic matter in a water sample under standard laboratory
conditions of five days and 20ฐ C, see Method 405.1.  BOD5 is not related to the oxygen
requirements in chemical combustion.

Capital Costs - Capital costs associated with the purchase, installation, and delivery of a specific
technology. Direct capital costs are estimated by the TECI cost model.

Cargo - Any chemical, material, or substance transported in a drum, container, or tank.

Centralized Waste Treatment (CWT) Facility - A facility that recycles, reclaims, or treats any
hazardous or nonhazardous industrial wastes received from off site.

Chaining - Within a steel drum cleaning process, the insertion of chains into the drum, along
with caustic, and tumbling the drum to remove remaining materials (i.e., heel) from the drum
interior.

CFR - Code of Federal Regulations, published by the U.S. Government Printing Office. A
codification of the general and permanent rules published in the Federal Register by the
Executive departments and agencies of the federal government.

Classical Pollutants - A general term for parameters,  including conventional pollutants, that are
commonly analyzed by a wet chemistry laboratory.  Classical pollutants may also be referred to
as classical wet chemistry parameters.

COD - Chemical oxygen demand.  A nonconventional, bulk parameter that measures the
oxygen-consuming capacity of refractory organic and inorganic matter present in water or
wastewater. COD is expressed as the amount of oxygen consumed from a chemical oxidant in a
specific test, see Methods 410.1 through 401.4.

Contract Hauling - The removal of any waste stream from the facility by a company authorized
to transport and dispose of the waste, excluding discharges to sewers of surface waters.

Conventional Pollutants - The pollutants identified in Sec. 304(a)(4) of the Clean Water Act
and the regulations thereunder (i.e., biochemical oxygen demand (BOD5), total suspended solids
(TSS), oil and grease, fecal coliform, and pH).
                                          10-1

-------
                                                                       Section 10.0 - Glossary

CWA - Clean Water Act.  The Federal Water Pollution Control Act Amendments of 1972 (33
U.S.C. 1251 et seq.), as amended, inter alia, by the Clean Water Act of 1977 (Public Law 95-
217) and the Water Quality Act of 1987 (Public Law 100-4).

Direct Discharger - A facility that conveys or may convey untreated or facility-treated process
wastewater or nonprocess wastewater directly into surface waters of the United States, such as
rivers, lakes, or oceans.  (See Surface Waters definition.)

Discharge - The conveyance of wastewater to:  (1) United States surface waters such as rivers,
lakes, and oceans, or (2) a publicly-owned or centralized treatment works.

Drum - A metal or plastic cylindrical container with either an open-head or a tight-head (also
known as bung-type top) used to hold liquid, solid, or gaseous commodities or cargos which are
in direct contact with the container interior.  Drums typically range in capacity from 30 to 55
gallons.

Drum Reconditioner - Any facility that washes or burns the interiors of used drums and restores
the integrity of the drum.

Effluent - Wastewater discharges.

Effluent Limitation - Any restriction, including schedules of compliance, established by a State
or the Administrator on quantities, rates, and concentrations of chemical, physical, biological,
and other constituents which are discharged from point sources into navigable waters, the waters
of the contiguous zone, or the ocean. (CWA Sections 301(b) and 304(b).)

Emission - Passage of air pollutants into the atmosphere via a gas stream or other means.

EPA - The U.S. Environmental Protection Agency.

Facility - A facility is all contiguous and non-contiguous property within established boundaries
owned, operated, leased, or under the control of the same corporation or business entity. The
property may be divided by public or private right-of-way.

FR - Federal Register, published by the U.S. Government Printing Office, Washington, D.C.  A
publication making available to the public regulations and legal notices issued by federal
agencies.

Heel - Any material remaining in a drum or container following unloading, delivery, or discharge
of the transported cargo. Heels may also be referred  to as container residue, residual materials or
residuals.

Hexane Extractable Material (HEM)  - A method-defined parameter that measures the presence
of relatively nonvolatile hydrocarbons, vegetable oils, animal fats, waxes, soaps, greases,  and

                                           10-2

-------
                                                                       Section 10.0 - Glossary

related materials that are extractable in the solvent n-hexane.  See Method 1664. HEM is also
referred to as oil and grease.

Indirect Discharger - A facility that discharges or may discharge pollutants into a publicly-
owned treatment works (POTW).

Industrial Container and Drum Cleaning (ICDC) Facility - Any facility that cleans and
reconditions metal and plastic drums and intermediate bulk containers for resale, reuse, or
disposal.

Intermediate Bulk Container (IBC or Tote) - A completely enclosed storage vessel used to
hold liquid, solid, or gaseous commodities or cargos which are in direct contact with the
container interior.  Intermediate bulk containers may be loaded onto flat beds for either truck or
rail transport, or onto ship decks for water transport. IBCs are portable  containers with 450 liters
(119 gallons) to 3,000 liters (793 gallons) capacity.  IBCs are also commonly referred to as totes.

Intermodal Tank Container - A completely enclosed storage vessel used to hold liquid, solid,
or gaseous commodities or cargos which come in direct contact with the tank interior.
Intermodal tank containers may be loaded onto flat beds for either truck or rail transport, or onto
ship decks for water transport.  Containers larger than 3,000 liters capacity are considered
intermodal tank containers.  Containers smaller than 3,000 liters capacity are considered IBCs.

MP&M - Metal Products & Machinery Effluent Guidelines, new regulation proposed in
December 2000 (designated as 40 CFR Part 438).

Nonconventional Pollutant - Pollutants other than those specifically defined as conventional
pollutants (identified in Section 304(a)(4) of the Clean Water Act) or priority pollutants
(identified in 40 CFR Part 423, Appendix A).

Nondetect Value - A concentration-based measurement reported below the sample-specific
detection limit that can reliably be measured by the  analytical method for the pollutant.

Off Site - "Off site" means  outside  the established boundaries of the facility.

Oil and Grease (O&G) - A method-defined parameter that measures the presence of relatively
nonvolatile hydrocarbons, vegetable oils, animal fats, waxes, soaps, greases, and related
materials that are extractable in either n-hexane (referred to as HEM,  see Method 1664)  or Freon
113 (l,l,2-trichloro-l,2,2-trifluoroethane, see Method 413.1). Data collected by EPA in support
of the TECI effluent guideline utilized Method 1664.

On Site - "On site" means within the established boundaries of the facility.

Operating Costs - All costs related to operating and maintaining a treatment system for a period
of one year.

                                           10-3

-------
                                                                       Section 10.0 - Glossary

Point Source Category - A category of sources of water pollutants.

Pollution Prevention - The use of materials, processes, or practices that reduce or eliminate the
creation of pollutants or wastes. It includes practices that reduce the use of hazardous and
nonhazardous materials, energy, water, or other resources, as well as those practices that protect
natural resources through conversation or more efficient use.  Pollution prevention consists of
source reduction, in-process recycle and reuse, and water conservation practices.

POTW - Publicly-owned treatment works, as defined at 40 CFR 403.3(o).

PPA - Pollution Prevention Act.  The Pollution Prevention Act of 1990 (42 U.S.C. 13101 et
seq.. Pub. Law 101-508), November 5, 1990.

Preflush - Within a drum or container cleaning process, a rinse, typically with hot or cold water,
performed at the beginning of the cleaning sequence to remove residual material (i.e., heel) from
the drum, container, or tank interior.

Presolve Wash - Use of diesel, kerosene, gasoline,  or any other type of fuel or solvent as a drum,
container, or tank interior cleaning solution.

Presteam - Within a drum or container  cleaning process, use of steam at the beginning of the
cleaning process to remove residual material  (i.e., heel) from the drum, container, or tank
interior.

Pretreatment Standard - A regulation that establishes industrial wastewater effluent quality
required for discharge to a POTW. (CWA Section 307(b).)

Priority Pollutants - The pollutants designated by EPA as priority in 40 CFR Part 423,
Appendix A.

Process Wastewater - Any water which,  during manufacturing or processing, comes into direct
contact with or results from the production or use of any raw material, intermediate product,
finished product, byproduct, or waste product.

RCRA - Resource Conservation and Recovery Act  (PL 94-580) of 1976, as amended (42 U.S.C.
6901, et.  seq.).

SIC - Standard industrial classification. A numerical categorization system used by the U.S.
Department of Commerce to catalogue economic  activity.  SIC codes refer to the products,  or
group of products, produced or distributed, or to services rendered by an operating establishment.
SIC codes are used to group establishments by the economic activities in which they are engaged.
SIC codes often denote a facility's primary, secondary, tertiary, etc. economic activities.
                                           10-4

-------
                                                                       Section 10.0 - Glossary

Silica Gel Treated Hexane Extractable Material (SGT-HEM) - A method-defined parameter
that measures the presence of mineral oils that are extractable in the solvent n-hexane and not
adsorbed by silica gel. See Method 1664. SGT-HEM is also referred to as non-polar material.

Source Reduction - Any practice which reduces the amount of any hazardous substance,
pollutant, or contaminant entering any waste stream or otherwise released into the environment
prior to recycling, treatment, or disposal. Source reduction can include equipment or technology
modifications, process or procedure modifications, substitution of raw materials, and
improvements in housekeeping, maintenance, training, or inventory control.

Surface Waters - Waters including, but not limited to, oceans and all interstate and intrastate
lakes, rivers, streams, mudflats, sand flats, wetlands, sloughs, prairie potholes, wet meadows,
playa lakes, and natural ponds.

Tank - A generic term used to describe any closed container used to transport commodities or
cargos. The commodities or cargos transported come in  direct contact with the container interior,
which  is cleaned by TEC facilities.  Examples of containers which are considered tanks include:
tank trucks, closed-top hopper trucks, intermodal tank containers, rail tank cars, closed-top
hopper rail cars, tank barges, closed-top hopper barges, ocean/sea tankers,  and similar tanks.
Containers used to transport pre-packaged materials are not considered tanks, nor are 55-gallon
drums  or pails or intermediate bulk containers.

Tank Truck - A motor-driven vehicle with a completely enclosed storage vessel used to
transport liquid, solid or gaseous materials over roads and highways.  The storage vessel or tank
may be detachable, as with tank trailers, or permanently attached. The commodities or cargos
transported come in direct contact with the tank interior.  A tank truck may have one or more
storage compartments.  There are no maximum  or minimum vessel or tank volumes.  Tank trucks
are also commonly referred to as cargo tanks or tankers.

Transportation Equipment Cleaning (TEC) Facility - Any facility that cleans the interiors of
tank trucks, closed-top hopper trucks, rail tank cars, closed-top hopper rail cars, intermodal tank
containers, tank barges, closed-top hopper barges, ocean/sea tankers, and (excluding drums and
intermediate bulk containers).

TSS - Total suspended solids. A measure of the amount of particulate matter that is suspended
in a water sample.  The measure is obtained by filtering a water sample of known volume.  The
parti culate material retained on the filter is then dried and weighed, see Method 160.2.

U.S.C. - The United States Code.

Zero Discharge Facility - A facility that does not discharge pollutants to waters of the United
States or to a POTW. Also included in this definition are discharge or disposal of pollutants by
way of evaporation, deep-well injection, off-site transfer to a treatment facility, and land
application.


                                          10-5

-------
                                    Attachment A
ง261.7 Residues of hazardous waste in
empty containers.
       (a)(l) Any hazardous waste
remaining in either (i) an empty container or
(ii) an inner liner removed from an empty
container, as defined in paragraph (b) of this
section, is not subject to regulation under
parts 261 through 265, or part 268, 270, or
124 of this chapter or to the notification
requirements of section 3010 of RCRA.
       (2) Any hazardous waste in either (i)
a container that is not empty or (ii) an inner
liner removed from a container that is not
empty, as defined in paragraph (b) of this
section, is subject to regulation under parts
261 through 265 and parts 268, 270, and 124
of this  chapter and to the notification
requirements of section 3010 of RCRA.
       (b)(l) A container or an inner liner
removed from  a container that has held any
hazardous waste, except a waste that is a
compressed gas or that is identified as an
acute hazardous waste listed in งง261.31,
261.32, or 261.33 (e) of this chapter is empty
if:
       (i) All  wastes have been removed
that can be removed using the practices
commonly employed to remove materials
from that type  of container, e.g., pouring,
pumping, aspirating and
       (ii) No more than 2.5 centimeters
(one inch) of residue remain on the bottom
of the container or inner liner, or
       (iii)(a) No more than 3 percent by
weight of the total capacity of the container
remains in the  container or inner liner if the
container is less than or equal to 110 gallons
in size, or;
       (b) No  more than 0.3 percent by
weight of the total capacity of the container
remains in the  container or inner liner if the
container is greater than 110 gallons in size.
       (2) A container that has held a
hazardous waste that is a compressed gas is
empty when the pressure in the container
approaches atmospheric.
       (3) A container or an inner liner
removed from a container that has held an
acute hazardous waste listed in งง261.31,
261.32, 261.33(e) is empty if:
       (i) The container or inner liner has
been triple rinsed using a solvent capable of
removing the  commercial chemical product
or manufacturing intermediate;
       (ii) The container or inner liner has
been cleaned by another method that has
been shown in the scientific literature, or by
tests conducted by the generator, to achieve
equivalent removal; or
       (iii) In the use of the container, the
inner liner that prevented contact of the
commercial chemical product or
manufacturing chemical intermediate with
the container, has been removed.

[45 FR 78529, Nov. 25, 1980,  as amended at
47 FR 36097, Aug. 18,  1982; 48 FR 14294,
Apr. 1, 1983;  50 FR 1999, Jan. 14, 1985; 51
FR 40637, Nov. 7,  1986]
                                          A-l

-------