xvEPA
   Unfed) States
   Development Document for the
   Final Revisions to the National Pollutant
   Discharge Elimination System Regulation
   and the Effluent Guidelines for
   Concentrated Animal Feeding Operations

   December 2002

-------

-------
U.S. Environmental Protection Agency
      Office of Water (4303T)
   1200 Pennsylvania Avenue, NW
      Washington, DC 20460
        EPA-821-R-03-001

-------

-------
Development Document for the Final Revisions to the National
 Pollutant Discharge Elimination System Regulation and the

                     Effluent Guidelines for
           Concentrated Animal Feeding Operations
                        Christine Todd Whitman
                            Administrator

                          Tracey Mehan. HI
                  Assistant Administrator, Office of Water

                            Sheila E. Frace
                Director, Engineering and Analysis Division

                         Donald F. Anderson
                       Chief, Commodities Branch

                           Paul H. Shriner
                           Project Manager

                            Ronald Jordan
                         Technical Coordinator
                    Engineering and Analysis Division
                    Office of Science and Technology
                  U.S. Environmental Protection Agency
                        Washington, D.C. 20460
                           December 2002

-------

-------
            ACKNOWLEDGMENTS AND DISCLAIMER
This report has been reviewed and approved for publication by the Engineering
and Analysis Division, Office of Science and Technology.  This report was
prepared with the support of Tetra Tech, Inc., and Eastern Research Group, Inc.,
under the direction and review of the Office of Science and Technology.

Neither the United  States government nor any of its employees, contractors,
subcontractors, or other employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party's use of, or the
results of such use of, any information, apparatus, product, or process discussed in
this report, or represents that its use by such a third party would not infringe on
privately owned rights.
                                    n

-------


-------
                                                                         CONTENTS
Chapter 1     Introduction and Legal Authority	1-1
        1.0    INTRODUCTION AND LEGAL AUTHORITY	1-1
              1.1    Clean Water Act (CWA)  	1-1
                     1.1.1   National Pollutant Discharge Elimination System  	1-2
                     1.1.2   Effluent Limitations Guidelines and Standards	1-2
              1.2    Pollution Prevention Act	1-5
              1.3    Regulatory Flexibility Act as Amended by the Small Business Regulatory
                     Enforcement Fairness Act of 1996 (SBREFA)  		1-5

Chapter 2     Summary and Scope of Final Regulation  	2-1
       2.0    SUMMARY AND SCOPE OF FINAL REGULATION	2-1
              2.1    National Pollutant Discharge Elimination System	2-1
                     2.1.1   Applicability of the Final Regulation  	2-1
                     2.1.2   Summary of Revisions to NPDES Regulations	2-3
              2.2    Effluent Limitations Guidelines and Standards	2-5
                     2.2.1   Applicability of the Final Regulation  	2-6
                     2.2.2   Summary of Revisions to Effluent Limitations Guidelines
                            and Standards	2-9
                            2.2.2.1     Land Application Best Practicable Control
                                       Technology	2-9
                            2.2.2.2     Production Area Best Practicable  Control
                                       Technology	2-11
                            2,2.2.3     Best Control Technology	2-12
                            2.2.2.4     Best Available Technology 	2-12
                            2.2.2.5     New Source Performance Standards	2-12
                            2.2.2.6     Voluntary Alternative Performance Standards
                                       to Encourage Innovative Technologies  	2-15
                            2.2.2.7     Voluntary Superior EnvironmentalPerformance
                                       Standards for New Large Swine/Poultry/Veal CAFOs  . 2-16

Chapter 3     Data Collection Activities	3-1
       3.0    DATA COLLECTION ACTIVITIES	3-1
              3.1     Summary of EPA's Site Visit Program 	3-2
              3.2    Industry Trade Associations	 3-4
              3.3     U.S. Department of Agriculture	3-5
                     3.3.1   National Agricultural Statistics Service  	3-6
                                            m

-------
                      3.3.2   Animal and Plant Health Inspection Service National Animal Health
                             Monitoring System (NAHMS)  	3-8
                      3.3.3   Natural Resources  Conservation Services	3-10
                      3.3.4   Agricultural Research Service (ARS)	3-11
                      3.3.5   Economic Research Service (ERS)	3-11
               3.4     Other Agency Reports  	3-12
               3.5     Literature Sources	3-12
               3.6     References	•	3-12

Chapter 4     Industry Profiles  	4-1
       4.0     INTRODUCTION	• •	•	4-l
               4.1     Swine Industry Description 	-	4-1
                      4.1.1   Distribution of Swine Operations by Size and Region		4-3
                             4.1.1.1     National Overview	4-4
                             4.1.1.2     Operations by Size Class	4-4
                             4.1.1.3     Regional Variation in Hog Operations	4-5
                      4.1.2   Production Cycles  of Swine	4-9
                      4.1.3   Swine Facility Types and Management	4-12
                      4.1.4   Swine Waste Management Practices	4-16
                             4.1.4.1     Swine  Waste Collection Practices	4-17
                             4.1.4.2     Swine  Waste Storage Practices  	4-17
                             4.1.4.3     Swine  Waste Treatment Practices		4-20
                             4. i .4.4     Waste  Management Practices by Operation Size and
                                        Geographical Location	4-22
                      4.1.5   Pollution Reduction	4-28
                             4.1.5.1     Swine  Feeding Strategies	4-28
                             4.1.5.2     Waste  and Waste Water Reductions  	4-31
                      4.1.6   Waste Disposal  	4-32
               4.2  '   Poultry Industry 	4-35
                      4.2.1   Broiler Sector	4-36
                             4.2.1.1     Distribution of Broiler Operations by Size and Region  4-37
                             4.2.1.2     Production Cycles of Broilers 	4-40
                             4.2.1.3     Broiler Facility Types and Management	4-41
                             4.2.1.4     Broiler Waste Management Practices 	4-42
                             4.2.1.5     Pollution Reduction	4-43
                             4.2.1.6     Waste  Disposal	".	4-44
                      4.2.2   Layer Sector	4-45
                             4.2.2.1     Distribution of Layer Operations by Size and Region  . 4-46
                             4.2.2.2     Production Cycles of Layers and Pullets	4-49
                             4.2.2.3     Layer Facility Types and Management	4-49
                                               IV

-------
               4.2.2.4     Layer Waste Management Practices	4-51
              . 4.2.2.5     Layer Egg Wash Water	4-51
               4.2.2.6     Waste and Wastewater Reductions	 4-53
               4.2.2.7     Waste Disposal	4-53
       4.2.3   Turkey Sector		4-55
               4.2.3.1     Distribution of Turkey Operations by Size and Region  4-56
               4.2.3.2     Production Cycles of Turkeys 	4-58
               4.2.3.3     Turkey Facility Types and Management	4-58
               4.23.4     Turkey Waste Management Practices 	4-59
               4.2.3.5     Pollution Reduction	4-60
               4.2.3.6     |Waste Disposal	4-60
       4.2.4   Duck Sector	 4-61
               4.2.4.1     Distribution of the Duck Industry by Size and Region  .4-61
4.3    Dairy Industry	4-62
       4.3.1   Distribution of Dairy Operations by Size and Region	4-62
       4.3.2   Dairy Production Cycles	4-65
               4.3.2.1     MilkHerd	4-66
            ,   4.3.2.2     Calves, Heifers, and Bulls	4-66
       4.3.3   Stand-Alone Heifer Raising Operations	4-67
       4.3.4   Dairy Facility Management	4-69
               4.3.4.1     Housing Practices	4-69
               4.3.4.2     Flooring and Bedding	4-73
               4.3.4.3     Feeding and Watering Practices	 4-74
               4.3.4.4     Milking Operations  	, 4-75
               4.3.4.5     Rotational Grazing	4-77
       4.3.5   Dairy Waste Management Practices  	4-80
               4.3.5.1     Waste Collection	4-81
               4.3.5.2     Transport	4-82
               4.3.5.3     Storage, Treatment, and Disposal		4-82
4.4    Beef Industry	4-83
       4.4.1   Distribution of the Beef Industry by Size and Region	4-84
       4.4.2   Beef Production Cycles	4-87
       4.4.3   Beef Feedlot Facility  Management	4-88
               4.4.3.1     :Feedlot Systems	4-88
               4.4.3.2     Feeding and Watering Practices	4-89
               4.4.3.3     Water Use and Wastewater Generation	4-90
               4.4.3.4     Climate	 4-91
       4.4.4   Backgrounding Operations	4-91
       4.4.5   Veal Operations	4-91
       4.4.6   Cow-Calf Operations	 4-92

-------
                      4.4.7   Waste Management Practices  	4-93
                             4.4.7.1     Waste Collection	-	4-93
                             4.4.7.2     Transport 	.'	• - - 4-94
                             4.4.7.3     Storage, Treatment, and Disposal  	4-95
              4.5     Horses	4'96
                      4.5.1   Distribution of the Horse Industry by Size and Region	4-96
                      4.5.2   Waste Management Practices  	4-98
                             4.5.2.1     Waste Storage  	4-99
                             4.5.2.2     Waste Treatment and Disposal   	4-100
              4.6     References	4-101

Chapter 5    Industry Subcategorization for Effluent Limitations Guidelines and Standards . 5-1
       5.0    INTRODUCTION	5-1
              5.1     Background	5-2
              5.2     Subcategorization Basis for the Final Rule	5-3
                      5.2.1   Animal Production, Manure Management, and Waste Handling
                             Processes	5-3
                      5.2.2   Other factors  	5"7

Chapter 6    Wastewater Characterization and Manure Characteristics	6-1
       6.0    INTRODUCTION	,	6"-1
              6.1     Swine Waste	•.	6"1
                      6.1.1   Quantity of Manure Generated  	6-3
                      6.1.2   Description of Waste Constituents and Concentrations  	6-4
               6.2     Poultry Waste	6-]0
                      6.2.1   Broiler Waste Characteristics  	6-11
                             6.2.1.1      Quantity of Manure Generated	6-11
                             6.2.1.2     Description of Waste Constituents and
                                         Concentrations	6-11
                      6.2.2   Layer Waste Characteristics 	'.	6-13
                             6.2.2.1 Quantity of Manure Generated	6-13
                             6222     Description of Waste Constituents and Concentrations
                                          	6-14
                      6.2.3   Turkey Waste Characteristics  	6-17
                             6.2.3.1     Quantity of Manure Generated  	6-17
                             6.2.3.2     Description of Waste Constituents and
                                         Concentrations	6-17
                      6.2.4  Duck Wastes 	6~21
                             6.2.4.1     Quantity of Manure Generated  	6-21
                             6.2.4.2     Description of Waste Constituents and Concentrations 6-22
                                               VI

-------
               6.3     Dairy Waste	6-22
                      6.3.1   Quantity ofManure Generated 	6-22
                      6.3.2   Waste Constituents and Concentrations	6-23
                             6.3.2.1     Composition of Fresh Manure	6-23
                             6.3.2.2     Composition of Stored or Managed Waste 	6-25
                             6.3.2.3     Composition of Aged Manure/Waste	6-27
               6.4     Beef and Heifer Waste	6-28
                      6.4.1   Quantity ofManure Generated 	6-28
                      6.4.2   Waste Constituents and Concentrations  	6-29
                             6.4.2.1     Composition of "As-Excreted" Manure	6-29
                             6.4.2.2     Composition of Beef and Heifer Feedlot Waste  	6-31
                             6.4.2.3     Composition of Aged Manure	6-33
                             6.4.2.4     Composition of Runoff from Beef and
                                        Heifer Feedlots  	,	6-33
               6.5     Veal Waste	,,	6-34
                      6.5.1   Quantity ofManure Generated	6-35
                      6.5.2   Waste Constituents and Concentrations  	6-35
               6.6     Horse Waste			6-36
                      6.6.1   Quantity ofManure Generated	6-36
                      6.6.2   Horse Waste Characteristics  	6-37
               6.7     References	.;	 6-37

Chapter 7      Pollutants of Interest	7-1
       7.0     INTRODUCTION	7-1
               7.1     Conventional  Waste Pollutants		7-2
               7.2     Nonconventional Pollutants	7-3
               7.3     Priority Pollutants	7-11
               7.4     References	7-12

Chapter 8      Treatment Technologies and Best Management Practices 	8-1
       8.0     INTRODUCTION	8-1
               8.1     Pollution Prevention Practices 	8-1
                    -  8.1.1   Feeding Strategies		8-1
                             8.1.1.1    Swine Feeding Strategies	8-2
                             8.1.1.2    Poultry Feeding Strategies	8-6
                             8.1.1.3    Dairy Feeding Strategies 	8-9
                      8.1.2   Reduced Water Use and Water Content of Waste	8-15
               8.2     Manure/Waste Handling Storage and  Treatment Technologies	8-44
                      8.2.1   Waste Handling Technologies and Practices	8-44
                      8.2.2   Waste Storage Technologies and Practices	8-51
                                              Vll

-------
                     8.2.3   Waste Treatment Technologies and Practices	8-67
                            8.2.3.1    Treatment of Animal Wastes and Wastewater	8-67
                            8.2.3.2    Mortality Management	8-133
              8.3    Nutrient Management Planning  	8-144
                     8.3.1   Comprehensive Nutrient Management Plans (CNMPs)  	8-145
                     8.3.2   Nutrient Budget Analysis  	8-150
                            8.3.2.1    Crop Yield Goals	1	8-151
                     8.3.2.2 Crop Nutrient Needs	8-152
                            8.3.2.3    Nutrients Available in Manure	8-154
                            8.3.2.4    Nutrients Available in Soil	8-164
                            8.3.2.5    Manure Application Rates and Land Requirements  .. 8-171
                     8.3.3   Recordkeeping	8-173
                     8.3.4   Certification of Nutrient Management Planners	8-174
              8.4    Land Application and Field Management  	8-176
                     8.4.1   Application Timing	8-176
                     8.4.2   Application Methods   	8-178
                     8.4.3   Manure Application Equipment  	8-180
                     8.4.4   Runoff Control	8-193
              8.5    References	8-212

Chapter 9     Estimation of Regulated Operations and Unfunded Mandates  	9-1
       9.0    INTRODUCTION ToNPDES PROGRAM	9-1
              9.1    Industry Baseline Compliance with 1976 Regulations	9-1
                     9.1.1   Total Medium and Large Animal Feeding Operations	9-2
                     9.1.2   Baseline Compliance Estimates  	9-5
                            9.1.2.1     Beef	9-5
                            9.1.2.2     Dairy	-	9-6
                            9.1.2.3     Swine	9-7
                            9.1.2.4     Layers	9-7
                            9.1.2.5     Broilers	9-9
                            9.1.2.6     Turkeys	9-10
                            9.1.2.7     Designated Operations	9-10
                            9.1.2.8     Summary of Baseline Compliance Estimates by Size and
                                        Type	9-11
              9.2    Affected Entities under the Final Rule	9-12
                     9.2.1   Final Rule Provisions that Affect the Number of
                            Regulated Operations	9-13
                     9.2.2   Number of Operations Required to Apply for Permit		9-14
              9.3    Unfunded Mandates 	9-15
              9.4    References	-'	'• 9-27
                                             Vlll

-------
Chapter 10   Technology Options Considered  ....	10-1
        10.0   INTRODUCTION	'.'	10-1
              10.1    Best Practicable Control Technology Currently Available (BPT)	10-1
                      10.1.1  BPT Options for the Subpart C Subcategory		10-2
                      10.1.2 .BPT Options for the Subpart D Subcategory  	•	10-4
              10.2    Best Conventional Pollutant Control Technology (BCT)  	10-5
              10.3    Best Available Technology Economically Achievable (BAT)	10-5
              10.4    New Source Performance Standards (NSPS)	10-6

Chapter 11    Model Farms and Costs of Technology Bases	11-1
              11.1    Overview of Cost Methodology	...-	11-1
              11.2    Development of Model Farm Operations	11-3
                      11.2.1  Swine Operations	 11-5
                             11.2.1.1    Housing	11-5
                             11.2.1.2   , Waste Management Systems	11-5
                             11.2.1.3    Size Group	11-6
                             11.2.1.4    Region	11-8
                      11.2.2 Poultry Operations	'..'..'	11-8
                             11.2.2.1   .Housing	11-8
                             11.2.2.2   .Waste Management Systems	11-9
                             11.2.2.3    Size Group	11-10
                             11.2.2.4    Region	11-11
                      11.2.4 Dairy Operations	11-11
                            11.2.4.1   Housing  	11-11
                            11.2.4.2    Waste Management Systems	11-12
                            11.2.4.3   Size Group	11-14
                            11.2.4.4   Region 	11-14
                     11.2.5 Beef Feedlots and Heifer Operations	11-14
                            11.2.5.1   Housing	'.	11-15
                            11.2.5.2   Waste Management System	11-15
                            11.2.5.3   Size Group	11-15
                            11.2.5.4   Region '.	11-17
                     11.2.6  Veal Operations	11-17
                            11.2.6.1   Housing	11-17
                    ;        11.2.6.2   Waste Management Systems	11-17
                            11.2.6.3   Size Group  	11-18
                            11.2.6.4   Region	-	11-19
              11.3    Design and Cost of Waste and Nutrient Management Technologies	11-19
                     11.3.1  Manure andNutrient Production	11-20
                                             IX

-------
                     11.3.2  Available Acreage	H-21
                            11.3.2.1   Agronomic Application Rates  	11-21
                            11.3.2.2   Category 1 Acreage	11-22
                            11.3.2.3   Category 2 Acreage 	11-22
                     11.3.3  Nutrient Management Planning	11-22
                     11.3.4  Facility Upgrades	• - - H-24
                     11.3.5  Land Application	11-27
                     11.3.6  Off-Site Transport of Manure	11-27
              11.4   Development of Frequency Factors	 11-28
              11.5   Summary of Estimated Model Farm Costs by Regulatory Option	11-29
              11.6   References	H"31

Chapter 12    Pollutant Loading Reductions for the Revised Effluent Limitations Guidelines for
              Concentrated Animal Feeding Operations	12-1
       12.0   INTRODUCTION	12-1
              12.1   Computer Model Simulations	12-1
              12.2   Delineation of Potentially Affected Farm Cropland  	12-2
              12.3   Modeled Changes from Baseline  	:	12-5
              12.4   Methodology for Production Area Loads	- • 12-6
              12.5   Converting Site-specific Loads to National Loads	12-8
              12.6   References	12-15

Chapter 13    Non-Water Quality Impacts	• • 13-1
       13.0   INTRODUCTION	• • •	I3-1
              13.1   Overview of Analysis and Pollutants	'.	15-2
              13.2   Air Emissions from Animal Feeding Operations	13-4
                     13.2.1  Ammonia and Hydrogen Sulfide Emissions From Animal Confinement
                            Areas and Manure Management Systems	 13-5
                     13.2.2  Greenhouse Gas Emissions from Animal Confinement Areas and
                            Manure Management Systems	13-6
                     13.2.3  Criteria Air Emissions From Energy Recovery Systems	13-7
              13.3   Air Emissions from Land Application Activities	13-7
              13.4   Air Emissions From Vehicles	13-8
              13.5   Energy Impacts	13-10
              13.6   Industry-Level NWQI Estimates  	13-10
                     13.6.1  Summary of Air Emissions for Beef (Includes Heifer) Operations and
                            Dairies		13-11
                     13.6.2  Summary of Air Emissions for Swine, Poultry, and
                            Veal Operations	13-13
                     13.6.3  Energy Impacts 	13-14
                                             x

-------
              13.7   References
Chapter 14    Glossary
13-28





. 14-1
                                            XI

-------

-------
FIGURES
Figure 6-1.     Manure characteristics that influence management options (after Ohio State University
              Extension, 1998)	-	6-1

Figure 8-1.     High-Rise Hog Building	8-24
Figure 8-2.     Manure scraped and handled as a solid on a paved lot
              operation (USDA NRCS, 1996).	8-45
Figure 8-3.     Fed hogs in confined area with concrete floor and tank storage liquid
              manure handling (USDA NRCS,  1996)	8-48
Figure 8-4.     Cross section of anaerobic lagoons (USDA NRCS, 1998a)	 8-52
Figure 8-6.     Aboveground waste storage tank (USDA NRCS,  1996)	8-60
Figure 8-7.     Roofed solid manure storage (USDA NRCS, 1996).  	8-63
Figure 8-8     Concrete pad design	8-66
Figure 8-9.     Trickling filter	8-90
Figure 8-10.   Fluidized bed incinerator.	8-94
Figure 8-11.   Schematic of typical treatment sequence involving a constructed wetland	8-99
Figure 8-12.   Schematic of a vegetated filter strip used to treat AFO wastes	8-100
Figure 8-13.   Example procedure for determining land needed for manure application	8-171
Figure 8-14.   Example calculations for determining manure application rate	8-172
Figure 8-15    Schematic of a center pivot irrigation system	  8-188

Figure 11-4.   Swine Model Farm Waste Management System	11-7
Figure 11-2.   Poultry Model Farm Waste Management System	11-9
Figure 11-4    Dairy Model Farm Waste Management Systems  	11-13
Figure 11-5.   Beef and Heifer Model Farm Waste Management System	11-16
Figure 11-6.   Veal Model Farm Waste Management System	11-18

Figure 12-1.   Delineation of cropland potentially affected by rule revisions	12-3
                                             xn

-------

-------
 TABLES
Table 2-1.      Summary of CAPO Size Thresholds for all Sectors	2-2
Table 2-2.      Summary of Final ELG Subcategorization for CAFOs.	2-7
Table 2-3.      Summary of Technology Basis for Large CAFOs Covered by Part 412	 2-13

Table 3-1.      Number of Site Visits Conducted by EPA for the Various Animal Industry Sectors.  . 3-3

Table 4-1.      AFO Production Regions.	4-2
Table 4-2.      Changes in the Number of IIS. Swine Operations and Inventory 1982-1997	4-4
Table 4-3.      Percentage of U.S. Hog Operations and Inventory by Herd Size.	4-5
Table 4-4.      Total Number of Swine Operations by Region, Operation Type,
               and Size in 1997.	4-6
Table 4-5.      Average Number of Swine at Various Operations by Region Operation Type,
               and Size in 1997	'''..'.		4-7
Table 4-6.      Distribution of Swine Herd by Region, Operation Type, and Size in 1997	4-7
Table 4-7.      Distribution of Animal Type in Swine Herds at Combined Facilities by Region,
               Operation Type, and Size in 1997	 4-8
Table 4-8.     Number of Swine Facilities as Provided by USDA Based on Analyses
               of 1997 Census of Agriculture Database	4-9
Table 4-9.      Productivity Measures of Pigs	4-10
Table 4-10.    Age of Pigs Leaving Grow-Finish Unit in 1995	4-11
Table 4-11.    Frequency of Production Phases in 1995 on Operations That Marketed
              Less Than 5,000 Hogs in a 6-Month Period	4-11
Table 4-12.    Frequency of Production Phases in 1995 on Operations That Marketed
              5,000 or More Hogs in a 6-Month Period	4-12
Table 4-13.    Summary of Major Swine Housing Facilities.	4-13
Table 4-14.    Housing Frequency (in percent) in 1995 of Farrowing Facilities at Operations That
              Marketed Fewer Than 5,000 Hogs in a 6-Month Period		4-15
Table 4-15.    Housing Frequency (in percent) in 1995 of Farrowing Facilities at Operations That
              Marketed 5,000 or More Hogs in a 6-Month Period	4-15
Table 4-16.    Housing Frequency (in percent) in 1995 of Nursery Facilities at Operations That
             . Marketed Fewer Than 5,000 Hogs in a 6-Month Period	4-15
Table 4-17.    Housing Frequency (in percent) in 1995 of Nursery Facilities at Operations That
              Marketed 5,000 or More Hogs in a 6-Month Period.	4-16
Table 4-18.    Housing Frequency (in percent) in 1995 of Finishing Facilities at Operations That
              Marketed Fewer Than 5,000 Hogs in a 6-Month Period   	4-16
Table 4-19.    Housing Frequency (in percent) in 1995 of Finishing Facilities at Operations That
              Marketed 5,000 or More Hogs in a 6-Month Period	4-16
Table 4-20.    Percentage of Swine Facilities With Manure Storage in 1998	4-18
                                            Xlll

-------
Table 4-21.    Percent of Sites Where Pit Holding was the Waste Management System used most by
              Region and Herd Size for Farrowing Phase	4-20
Table 4-22.    Percent of Sites Where Pit Holding was the Waste Management System used most by
              Region and Herd Size for Grower-Finisher Phase	•	4-20
Table 4-23.    Frequency (in percent) of Operations in 1995 by Type of Waste Management System
              Used Most in the Farrowing Phase	4-22
Table 4-24.    Frequency (in percent) of Operations in 1995 by Type of Waste Management System
              Used Most in the Nursery Phase	-.	4-23
Table 4-25.    Frequency (in percent) of Operations in 1995 by Type of Waste Management System
              Used Most in the Finishing Phase	4-23
Table 4-26.    Frequency (in percent) of Operations in 1995 That Used Any of the Following Waste
              Storage Systems by Size of Operation	4-23
Table 4-27.    Frequency (in percent) of Operations in 1995 That Used Any of the Following Waste
              Storage Systems by Region for Operations That Marketed 5,000 or More Hogs in a 12-
              MonthPeriod	4'24
Table 4-28.    Distribution of Predominant Waste Management Systems in the Pacific
              Regionain 1997	4'25
Table 4-29.    Distribution of Predominant Waste Management Systems in the Central
              Regionain 1997	:	• • 4'26
Table 4-30.    Distribution of Predominant Waste Management Systems in the Mid-Atlantic
              Regionain 1997	4-26
Table 4-31.    Distribution of Predominant Waste ManagementSystems in the South
              Regionain 1997	4'27
Table 4-32.    Distribution of Predominant Waste Management Systems in the Midwest Region3 in
               1997	:	4'27
Table 4-33.    Theoretical Effects of Reducing Dietary Protein and Supplementing With
              Amino Acids on Nitrogen Excretion by 200-lb Finishing Pig3-15	4-29
Table 4-34.    Theoretical Effects of Dietary Phosphorus Level and Phytase Supplementation
              (200-lb Pig)	4-30
Table 4-35.    Effect of Microbial Phytase on Relative Performance of Pigs.3  	4-31
Table 4-36.    Effect of Microbial Phytase on Increase in Phosphorus Digestibility by Age
              of Pigs and the Recommended Rates for Inclusion of Phytase in Each Phase.	4-31
Table 4-37.    Percentage of Operations in 1995 That Used or Disposed of Manure and Wastes as
              Unseparated Liquids and Solids	4-32
Table 4-38.    Percentage of Operations in 1995 That Marketed Fewer Than 5,000 Hogs in a
               12-Month Period and That Used the Following Methods of
              Use/Disposal by Region	4-32
Table 4-39.     Percentage of Operations in 1995 That Marketed 5,000 or More Hogs in a 12-Month
               Period and That used the Following Methods of Use/Disposal by Region	4-33
Table 4-40.     Method of Manure Application in 1995 on Land by Operations That Marketed Fewer
               Than 5,000 Hogs in a 12-Month  Period	:	•	4-33
Table 4-41.     Method of Manure Application in 1995 on Land by Operations That
               Marketed 5,000 or More Hogs in 12-Month Period	4-34
                                             xiv

-------
 Table 4-42.    Method of Mortality Disposal on Operations That Marketed Fewer Than
               2,500 Hogs in a 6-Month Period in 1995	4-34
 Table 4-43.    Method of Mortality Disposal on Operations That Marketed 2,500 or
               More Hogs in a 6-Month Period in. 1995	.. 4-35
 Table 4-44.    Broiler Operations and Production in the United States 1982-1997."  	4-37
 Table 4-45.    Total Number of Broiler Operations by Region and Operation Size in 1997.  ...... 4-38
 Table 4-46.    Average Number of Chickens at Broiler Operations by Region and Operation Size in
               1997:	4-38
 Table 4-47.    Distribution of Chickens by Region and Operation Size in 1997	4-39
 Table 4-48.    Number of Broiler Facilities as Provided by USDA Based on Analyses of
               1997 Census of Agriculture Database	 4-40
 Table 4-49.    Operations With Inventory of Layers or Pullets 1982-1997	'	4-46
 Table 4-50.    Number of Operations in 1997 and Average Number of Birds at Operations
               with L'ayers or Pullets or Both Layers and Pullets in 1997	4-47
 Table 4-51.    Number of Operations in 1997 With Laying Hens by Region and
               Operation Size in 1997.	 .,	4-48
 Table 4-52.    Distribution of Chickens at Operations in 1997 With Laying Hens by
               Region and Facility Size.	4-48
 Table 4-53.    Layer Facility Demographics from the 1997 Census of Agriculture Database	'. 4-48
 Table 4-54.    Summary of Manure Storage, Management, and Disposal	4-50
 Table 4-55.    Frequency of Primary Manure-Handling Method by Region	, 4-51
 Table 4-56.    Percentage of Operations by Egg Processing Location and Region	4-52
 Table 4-57.    Percentage of Operations by Egg Processing Location and Operation Size	4-52
 Table 4-58.    Percentage of Layer Dominated Operations With Sufficient, Insufficient, and
               No Land for Agronomic Application of Generated Manure	4-54
 Table 4-59.    Percentage of Pullet Dominated Operations With Sufficient, Insufficient, and
               No Land for Agronomic Application of Generated Manure	4-54
 Table 4-60.     Frequency of Disposal Methods for Dead Layers for All Facilities	4-54
 Table 4-61.     Frequency of Disposal Methods for Dead Layers for Facilities
               With <100,000 Birds	4-55
 Table 4-62.     Frequency of Disposal Methods for Dead Layers for Facilities
               With > 100,000 Birds	4-55
 Table 4-63.     Turkey Operations in 1997,1992, 1987, and 1982 With Inventories of Turkeys for
               Slaughter and Hens for Breeding	4-56
 Table 4-64.     Number of Turkey Operations in 1997 by Region and Operation Size	4-57
 Table 4-65.     Distribution of Turkeys in 1997 by Region and Operation Size.	4-57
 Table 4-66.     Turkey Facility Demographics from the 1997 Census of Agriculture Database	4-58
Table 4-67.     Percentage of Turkey Dominated Operations With Sufficient, Insufficient,
               and No Land for Agronomic Application of Generated Manure.	4-61
                                       I '
Table 4-68.     Duck Inventory and Sales	4-61
Table 4-69.     1992 Regional Distribution of Commercial Ducks	4-61
Table 4-70.     Distribution of Commercial Duck Operations by Capacity	4-62
                                             xv

-------
Table 4-71.    Distribution of Dairy Operations by Region and Operation Size in 1997	4-64
Table 4-72.    Total Milk Cows by Size of Operation in 1997	4-64
Table 4-73.    Number of Dairies by Size and State in 1997	4-64
Table 4-74.    Milk Production by State in 1997	4-65
Table 4-75.    Characteristics of Heifer-Raising Operations	4-67
Table 4-76.    Distribution of Confined Heifer-Raising Operations by Size and Region in 1997.  .. 4-68
Table 4-77.    Percentage of U.S. Dairies by Housing Type and Animal Group in 1995	4-73
Table 4-78.    Types of Flooring for Lactating Cows	4-73
Table 4r79.    Types of Bedding for Lactating Cows	4-74
Table 4-80.    Percentage of Dairy Operations With Sufficient, Insufficient, and No Land for
              Agronomic Application of Generated Manure.	4-83
Table 4-81.    Distribution of Beef Feedlots by Size and Region in 1997	4-86
TabIe4-82.    Cattle Soldin 1997	'.	«	4-86
Table 4-83.    Number of Beef Feedlots by Size of Feedlot and State in 1997."	4-87
Table 4-84.    Distribution of Veal Operations by Size and Region in 1997	4-87
Table 4-85.    Percentage of Beef Feedlots With Sufficient, Insufficient, and No Land for
              Agronomic Application of Manure	4-96
Table 4-86.    Percent of Operations by Primary Use of Equids Present on January 1,1998,
              and Region	4-97
Table 4-87.    Percent of Operations by Primary Use of Equids Present on January 1, 1998,
              and Size Class	'.	4-97
Table 4-88.    Percent of Operations by Primary Use of Equids Present on January 1, 1998,
              and Size Class	4-98
Table 4-89.    Average Manure Application Rates arid Area Requirements for Forages	 4-100

Table 6-1.     Quantity of Manure Excreted by Different Types of Swine	6-3
Table 6-3.     Quantity of Phosphorus Present in Swine Manure as Excreted	6-5
Table 6-4.     Quantity of Potassium Present  in Swine Manure as Excreted	6-6
Table 6-5.     Comparison of Nutrient Quantity in Manure for Different Storage and Treatment
              Methods	6-6
Table 6-6.     Percent of Original Nutrient Content of Manure Retained by Various Management
              Systems	6-6
Table 6-7.     Nutrient Concentrations for Manure in Pit Storage and Anaerobic Lagoons
              for Different Types of Swine	-.	6-7
Table 6-8.     Comparison of the Mean Quantity of Metals and Other Elements in Manure
              for Different Storage and Treatment Methods.	.6-7
Table 6-9.     Comparison of the Mean Concentration of Pathogens in Manure for Different
              Storage and Treatment Methods	6-8
Table 6-10.    Type of Pharmaceutical Agents Administered in Feed, Percent of
              Operations that Administer them, and Average Total Days  Used	6-8
Table 6-11.    Physical Characteristics of Swine Manure by Operation Type and Lagoon System. .. 6-9
Table 6-12.    Physical Characteristics of Different Types of Swine Wastes	6-9

                                            xvi

-------
Table 6-13.     Quantity of Manure Excreted for Broilers	6-10
Table 6-14.     Consistency of Broiler Manure as Excreted and for
               Different Storage Methods.	6-11
Table 6-15.     Nutrient Quantity in Broiler Manure as Excreted	6-12
Table 6-16.     Broiler Liquid Manure Produced and Nutrient Concentrations for Different Storage
               Methods	 - -	6-12
Table 6-17.     Nutrient Quantity in Broiler Manure Available for Land Application or
               Utilization for Other Purposes	6-12
Table 6-18.     Quantity of Metals and Other Elements Present in BroilerManure as
               Excreted and for Different Storage Methods	6-13
Table 6-19.     Concentration of Bacteria in Broiler House Litter			6-13
Table 6-20.     Quantity of Manure Excreted for Layers	6-14
Table 6-21.  .   Physical Characteristics of Layer Manure as Excreted and for Different Storage
               Methods	-	.6-14
Table 6-22.     Quantity of Nutrients in Layer Manure as Excreted	6-15
Table 6-23.     Annual Volumes of Liquid Layer Manure Produced and Nutrient Concentrations. .. 6-15
Table 6-24.     Nutrient Quantity in Layer Litter for Different Storage Methods.	 6-15
Table 6-25.     Quantity of Metals and Other Elements Present inLayer Manure as Excreted and for
               Different Storage Methods	r	6-16
Table 6-26.     Concentration of Bacteria in Layer Litter	6-16
Table 6-27.     Annual Fresh Excreted Manure Production (lb/yr/1,000 Ib of animal mass)	6-17
Table 6-28.     Quantity of Nutrients Present in Fresh, Excreted Turkey Manure (lb/yr/1,000 Ib of
               animal mass)	:	6-18
Table 6-29.     Water Absorption of Bedding	6-18
Table 6-30.     Turkey Litter Composition in pounds per ton of litter.3 	6-19
Table 6-31.     Metal Concentrations in Turkey Litter (pounds per ton of litter)	6-19
Table 6-32.     Waste Characterization of Turkey Manure Types (lb/yr/1,000 Ib of animal mass). .. 6-20
Table 6-3 3.     Metals and Other Elements Present in Manure
               (lb/yr/1,000 Ib of animal mass)	6-20
Table 6-34.     Turkey Manure and Litter Bacterial Concentrations (bacterial colonies per pound of
               manure)	6-21
Table 6-35.     Turkey Manure Nutrient Composition After Losses-Land-Applied Quantities	6-21
Table 6-36.     Approximate Manure Production by Ducks.	6-21
Table 6-37.     Breakdown of Nutrients in Manure	6-21
Table 6-38.     Weight of Fresh Dairy Manure	6-23
Table 6-39.     Fresh Dairy Manure Characteristics Per 1,000 Pounds Live Weight Per Day	6-24
Table 6-40.     Average Nutrient Values in Fresh Dairy Manure	6-25
Table 6-41.     Dairy Waste Characterization—Milking Centers	6-26
Table 6-42.     Dairy Waste Characterization—Lagoons	:	6-27
Table 6-43.     Dairy Manure Characteristics Per 1,000 Pounds Live Weight Per Day
               From Scraped Paved Surface	6-28
                                             xvri

-------
Table 6-44.    Weight of Beef and Heifer Manure	6-29
Table 6-45.    Fresh Beef Manure Characteristics Per 1,000 Lbs. Live Weight Per Day	6-30
Table 6-46.    Fresh Heifer Manure Characteristics Per 1,000 Lbs. Live Weight Per Day	6-31
Table 6-47.    Average Nutrient Values in Fresh (As-Excreted) Beef Manure	6-31
Table 6-48.    Beef Waste Characterization—Feedlot Waste	•	6-32
Table 6-49.    Beef Manure Characteristics Per 1,000 Lbs. Live Weight Per Day From Scraped
              Unpaved Surface	6-32
Table 6-50.    Percentage of Nutrients in Fresh and Aged Beef Cattle Manure.  ..	6-33
Table 6-51.    Beef Waste Characterization—Feedlot Runoff Lagoon	6-34
Table 6-52.    Average Weight of Fresh Veal Manure	6-35
Table 6-53.    Fresh Veal Manure Characteristics Per 1,000 Lbs. Live Weight Per Day	6-36

Table 8-1.     Per Cow Reductions in Manure P Resulting from
              Reduced P Intake During Lactation	8-10
Table 8-2.     Performance of Gravity Separation Techniques	8-19
Table 8-3.     Summary of Expected Performance  of Mechanical
              Separation Equipment	8-22
Table 8-4.     Examples of Bedding Nutrients Concentrations	8-30
Table 8-5.     Amount of Time That Grazing Systems May Be Used at Dairy Farms and
              Beef Feedlots, by Geographic Region	8-36
Table 8-6.     Expected Reduction in Collected Solid Manure and Wastewater at Dairies Using
              Intensive Rotational Grazing, per Head	8-37
Table 8-7.     Expected Reduction in Collected Solid Manure and Wastewater at Dairies Using
              Intensive Rotational Grazing, per Model Farm	8-37
Table 8-8.     Expected Reduction in Collected Solid Manure at Beef Feedlots Using Intensive
              Rotational Grazing, per Head	8-38
Table 8-9.     Expected Reduction in Collected Solid Manure at Beef Feedlots Using Intensive
              Rotational Grazing, per Model Farm	8-38
Table 8-10.    Anaerobic Unit Process Performance	8-54
Table 8-11.    Anaerobic Unit Process Performance	8-69
Table 8-12.    Biogas Use Options	8-70
Table 8-13.    Anaerobic Unit Process Performance	8-72
Table 8-14.    Operational Characteristics of Aerobic Digestion and
              Activated Sludge Processes	8-76
Table 8-15.    Lagoon Sludge Accumulation Ratios	8-86
Table 8-16.    Lagoon Sludge AccumulationRates Estimated for Pig Manure	8-87
Table 8-17.    Advantages and Disadvantages of Composting	8-1.06
Table 8-18.    Desired Characteristics of Raw Material Mixes	8-106
Table 8-19.    Swine Manure Nutrient Content Ranges	8-158
Table 8-20.    Poultry Manure Nutrient Content Ranges	8-159
Table 8-21.    Dairy Manure Nutrient Content Ranges  	8-160
                                           xvm

-------
Table 8-22.     Beef Manure Nutrient Content Ranges	8-161
Table 8-23.     Maximum P-Fixation Capacity of Several Soils of Varied Clay Contents	8-165
Table 8-24.     The P index	8-166
Table 8-25.     Generalized Interpretation of the P index	8-167
Table 8-24.     Recommended Field Size for Soil Sampling	8-170
Table 8-25.     Correction Factors to Account for Nitrogen Volatilization Losses During Land
               Application of Animal Manure. ;	 8-179
Table 8-26.     Advantages and Disadvantages of Manure Application Equipment. 	8-180
Table 8-27.     Primary Functions of Soil Conservation Practices			 8-199

Table 9-1.      Total 1997 Facilities with Confined Animal Inventories by Livestock or
               Poultry Sector, Operation Size, and Region	9-3
Table 9-2.      Regulated Beef Feeding Operations by Size Category Assuming Full Compliance. .  . 9-6
Table 9-3.      Regulated Dairy Feeding Operations by Size Category Assuming Full Compliance.  . 9-7
Table 9-4.      Regulated Swine Operations, by Size Category Assuming Full Compliance	9-7
Table 9-5.      Regulated Layer Operations by Size Category Assuming Full Compliance	9-9
Table 9-6.      Regulated Broiler Operations by Size Category Assuming Full Compliance	9-9
Table 9-7.      Regulated Turkey Operations by Size Category Assuming Full Compliance.  	9-10
Table 9-8       Estimated Small and Medium Designated CAFOs
               over a 5-Year Period by Sector	9-11
Table 9-9.      Summary of Effectively RegulatedOperations by Size and Livestock Sector	9-12
Table 9-10.     Summary of CAFOs by Livestock Sector and Region
               Required to Apply for Permit.			  9-14
Table 9-11.     State Administrative Costs for Rule Development and NPDES Program
               Modification Requests, (costs in 2001 dollars)	  9-17
Table 9-12.     State and Federal Administrative Costs Associated With General Permits.
               (costs in 2001 dollars)	9-22
Table 9-13.     State and Federal Administrative Costs Associated with Individual Permits.
               (in 2001 dollars)			9-22
Table 9-14.     Derivation of CAFO Estimates Used to  Calculate
               Annual  Administrative Costs.1	•.	9-24
Table 9-15.     Annual  State Administrative Costs, (in 2001 dollars)	9-25
Table 9-16.     Federal  Administrative Costs.(in 2001 dollars)	9-26

Table 11-1.     Summary of Regulatory Options for CAFOs  	11-3
Table 11-2.    Number of Swine per Facility based on Modeled Region, Land Availability
              Category, Operation Size for Phosphorus-Based Application of Manure	11-7
Table 11-3.    Number of Broilers per Facility Based on Modeled Region, Land Availability
              Category, Operation Size for Phosphorus-Based Application of Manure	11-10
Table 11-4.    Average Head Count for Layer Operations	11-10
Table 11-5.    Turkey Facility Demographics from the  1997 Census of
              Agriculture Database	11-10

                                            xix

-------
Table 11-6.    Size Classes for Model Dairy Farms	11-14
Table 11-7.    Size Classes for Model Beef Farms	11-16
Table 11-8.    Size Classes for Model Heifer Farms 	11-17
Table 11-9.    Size Classes for Model Veal Farm 	11-13
Table 11-10.   Summary of Industry Costs for Option 1	• • 11-30
Table 11-11.   Summary of Industry Costs for Option 2	11-30
Table 11-12.   Summary of Industry Costs for Option 5	11-31

Table 12-1.    Characterization of Farm Cropland Potentially Affected by Rule Revision,
              Based on Farm Conditions	12-4
Table 12-2.    Overview of Regulatory Options	:	- 12-6
Table 12-3.    Edge-of-field nitrogen loads from Large CAFOs in millions
              of pounds per year	12-8
Table 12-4.    Edge-of-field phosphorous loads from Large CAFOs in millions of pounds per year. 12-9
Table 12-5.    Edge-of-field sediment loads from Large CAFOs in millions of
              pounds per year	12-9
Table 12-6.    Edge-of-field Fecal coliform loads from Large CAFOs in 1019 colony
              forming units	;	12-9
Table 12-7.    Edge-of-field Fecal streptococcus loads from Large CAFOs in 1019 colony
              forming units	12-9
Table 12-8.    Edge-of-field metals loads from Large CAFOs in millions
              of pounds per year	•	12-10
Table 12-9.    Edge-of-field nitrogen load reductions from Large CAFOs in millions of
              pounds per year. Numbers in () indicate negative values	 12-10
Table 12-10.   Edge-of-field phosphorous load reductions from Large CAFOs in
              millions of pounds per year	12-10
Table 12-11.   Edge-of-field sediment load reductions from Large CAFOs in millions
              of pounds per year. Numbers in ( ) indicate negative values	12-10
Table 12-12.   Edge-of-field Fecal coliform load reductions from Large CAFOs in
              1019 colony forming units	12-11
Table 12-13.   Edge-of-field Fecal streptococcus load reductions fromLarge CAFOs in 1019 colony
              forming units	•	12-11
Table 12-14.   Edge-of-field metals load reductions from Large CAFOs in millions of pounds
              per year. Numbers in ( ) indicate negative values	12-11
Table 12-15.   Edge-of-field nitrogen loads from Mediums CAFOs in millions of pounds per year. 12-11
Table 12-16.   Edge-of-field phosphorous loads from Mediums CAFOs in millions
              of pounds per year	12-12
Table 12-17.   Edge-of-field sediment loads from Mediums CAFOs in millions of
              pounds per year	12-12
Table 12-18.   Edge-of-field Fecal coliform loads from Mediums CAFOs in 1019
              colony forming units	12-12
                                             xx

-------
Table 12-19.   Edge-of-field Fetal streptococcus loads from Mediums CAFOs in 1019
              colony forming units	;	12-12
Table 12-20.   Edge-of-field metals loads from Mediums CAFOs in millions
              of pounds per year	12-13
Table 12-21.   Edge-of-field nitrogen load reductions from Medium CAFOs in millions
              of pounds per year	12-13
Table 12-22.   Edge-of-field .phosphorous load reductions from Medium CAFOs in millions
              of pounds per year	12-13
Table 12-23.   Edge-of-field sediment load reductions from Medium CAFOs in millions of
              pounds per year	12-13
Table 12-24.   Edge-of-field Fecal coliform load reductions from Medium CAFOs in 1019 colony
              forming units	'•	12-14
Table 12-25.   Edge-of-field Fecal streptococcus load reductions from Medium CAFOs
              in 1019 colony forming units.	12-14
Table 12-26.   Edge-of-field metals load reductions from Medium CAFOs in thousands
              of pounds per year	 - - - 12-14

Table 13-1.     Summary of Size Thresholds for Large and Medium CAFOs	13-11
Table 13-2.     NWQI for Beef (Includes Heifers) - Large CAFOs	13-16
Table 13-3.     NWQI for Dairy - Large CAFOs	13-17
Table 13-4.     NWQI for Veal - Large CAFOs	 13-18
Table 13-5.     NWQI for Swine - Large CAFOs 		:	13-19
Table 13-6.     NWQI for Chickens - Large CAFOs	13-20
Table 13-7.     NWQI for Turkeys - Large CAFOs	13-21
Table 13-8.     NWQI for Beef (Includes Heifers) - Medium CAFOs	13-22
Table 13-9.     NWQI for Dairy - Medium CAFOs	13-23
Table 13-10.   NWQI for Veal - Medium CAFOs	13-24
Table 13-11.   NWQI for Swine - Medium CAFOs	13-25
Table 13-12.   NWQI for Chickens - Medium CAFOs	13-26
Table 13-13.   NWQI for Turkeys - Medium CAEOs	 13-27
                                           xxi

-------

-------
                                                                  CHAPTER 1
                       INTRODUCTION AND LEGAL AUTHORITY

1.0    INTRODUCTION AND LEGAL AUTHORITY
This chapter presents an introduction to the regulations that have been revised for the
concentrated animal feeding operations (CAFOs) industry and describes the legal authority that
the U.S. Environmental Protection Agency (EPA) has to revise these regulations. Section 1.1
describes the Clean'Water Act (CWA), Section 1.2 reviews the Pollution Prevention Act (PPA),
and Section 1.3 describes the Regulatory Flexibility Act (RPA).
1.1    Clean Water Act (CWA)
The Federal Water Pollution Control Act Amendments of 1972 established a comprehensive
program to "restore and maintain the chemical, physical, and biological integrity of the Nation's
waters" (Section 101 (a)). The CWA gives EPA the authority to regulate point source discharges
(including CAFOs) into waters of the United States through the National Pollutant Discharge
Elimination System (NPDES) permitting program.  Under the CWA, EPA issues effluent
limitations guidelines, pretreatment standards, and new source performance standards for point
sources other than publicly owned treatment works (POTWs). Direct dischargers must comply
with effluent limitations in NPDES permits, while indirect dischargers must comply with
pretreatment standards.

These effluent limitations guidelines and;standards  "effluent guidelines" or "ELGs" are national
regulations that establish limitations on the  discharge of pollutants by industrial category and
subcategory. For each category and subcategory guidelines address three classes of pollutants (1)
conventional pollutants (i.e., total suspended solids (TSS), oil and grease, biochemical oxygen
demand (BOD), fecal coliform bacteria, and pH); (2) priority pollutants (e.g., toxic metals such
as lead and zinc, and toxic organic pollutants such as benzene) and (3) nonconventional
pollutants (e.g., phosphorus). These technology-based requirements are subsequently
incorporated into NPDES permits. The CWA provides that effluent guidelines may include
numeric or nonnumeric limitations. Nonriumeric limitations are usually in the form of best
management practices (BMPs). The effluent guidelines are based on the degree of control that
can be achieved using various levels of pollution control technology, as outlined in Section 1.1.2.

On October 30, 1989, Natural Resources Defense Council, Inc., and Public Citizen, Inc., filed an
action against EPA in which they alleged, among other things, that EPA had failed to comply
with CWA Section 304(m). (See Natural Resources Defense Council, Inc., et al. v. Reilly, Civ.
No. 89-2980 (RCL) (D.D.C.).) Plaintiffs and EPA agreed to a settlement of that action in a
consent decree entered on January 31, 1992. The consent decree, which has been modified

                                         1-1

-------
several times, established a schedule by which EPA is to propose and take final action for 11
point source categories identified by name in the decree, and for eight other point source
categories identified only as new or revised rules, numbered 5 through 12. After completing a
preliminary study of the feedlots industry under the decree, EPA selected the swine and poultry
portion of the feedlots industry as the subject for New or Revised Rule #8, and the beef and dairy
portion of that industry as the subject for New or Revised Rule #9.

Under the decree, as modified, the Administrator was required to sign a proposed rule for both
portions of me feedlots industry on or before December 15, 2000, and take final action on that
proposal no later than December 15, 2002.  As part of EPA's negotiations with the plaintiffs
regarding the deadlines for this rulemaking, EPA entered into a settlement agreement dated
December 6, 1999, under which EPA agreed to propose to revise the existing NPDES permitting
regulations under 40 CFR Part 122 for CAFO by December 15, 2000. EPA also  agreed to
perform certain evaluations, analyses, or assessments and to develop certain preliminary options
in connection with the proposed CAFO rules. (The Settlement Agreement expressly provides
that nothing in the agreement requires EPA to select any of these options as the basis  for its final
rule.)

The remainder of this section describes the NPDES rules and the Effluent Limitations Guidelines
and Standards as they apply to the CAFOs industry.


1.1.1   National Pollutant Discharge Elimination System
The NPDES permit program regulates the discharge of pollutants from point sources to waters of
the United States. The term "point source" is defined in the CWA (Section 502(14)) as a
discernible, confined, and discrete conveyance from which pollutants are of may be discharged.
CAFOs are explicitly defined as point sources in Section 502(14). EPA promulgated the current
NPDES regulations for CAFOs in the mid-1970s (see 41 FR 11458, March 18, 1976).


1.1.2   Effluent Limitations Guidelines and Standards
EPA promulgated effluent limitations guidelines and standards for the Feedlots Point Source
Category in 1974 (40 CFR Part 412) (see 39 FR 5704, February 14, 1974). EPA is revising these
regulations, as discussed above and in Chapter 2.

Effluent limitations guidelines and standards for CAFOs are being revised under the authority of
Sections 301, 304, 306, 307, 308,402, and 501 of the CWA, 33 U.S.C. 1311, 1314, 1316, 1317,
1318, 1342, and 1361. Effluent limitations guidelines and standards are summarized  briefly
below for direct and indirect dischargers.
                                          1-2

-------
Direct Dischargers
        Best Practicable Control Technology Currently Available (BPT) (304(b)(l) of the
        CWA) - In the guidelines for an industrial category, EPA defines BPT effluent limits for
        conventional, toxic, and nonconventional pollutants. In specifying BPT, EPA looks at a
        number of factors.  EPA first considers the cost of achieving effluent reductions in
        relation to the effluent reduction benefits.  EPA also considers the age of the equipment
        and facilities, the processes employed and any required process changes, engineering
        aspects of the control technologies, nonwater-quality environmental impacts (including
        energy requirements), and such other factors as EPA deems appropriate (CWA
        304(b)(l)(B)). Traditionally, EPA establishes BPT effluent limitations based on the
        average of the best performances of facilities within the industry of various ages, sizes,
        processes, or other common characteristics.  Where existing performance is uniformly
        inadequate, EPA may require higher levels of control than are currently in place in an
        industrial category if EPA determines that the technology can be practically applied.

        Best Available Technology Economically Achievable (BAT) (304(b)(2) of the CWA) -
        In general, BAT effluent limitations represent the best existing economically achievable
        performance of direct discharging plants in the industrial subcategory or category.  The
        factors considered in assessing BAT include the cost of achieving BAT effluent
        reductions, the age of equipment and facilities involved, the processes employed,
        engineering aspects of the control technology, potential process changes, nonwater-
        quality environmental impacts (including energy requirements), and such factors as the
        Administrator deems appropriate. EPA retains considerable discretion in assigning the
        weight to be accorded to these factors.  An additional statutory factor considered in
        setting BAT is economic achievability. Generally, the  achievability is determined on
        the basis of the total cost to the industrial subcategory and the overall effect of the rule
        on the industry's financial health.  BAT limitations may be based on effluent reductions
        attainable through changes in a facility's processes and operations.  As with BPT, where
        existing performance is uniformly inadequate, BAT may be based on technology
        transferred from a different subcategory within an industry or from another industrial
        category. BAT may be based on process changes or internal controls, even when these
        technologies are not common industry practice.
        Best Conventional Pollutant Control Technology (BCT) (304(b)(4) of the CWA) - The
        1977 amendments to the CWA required EPA to identify effluent reduction levels for
        conventional pollutants associated with BCT technology for discharges from existing
        industrial point sources. BCT is not an additional limitation, but replaces BAT for
        control of conventional pollutants.  In addition to other factors specified in Section
        304(b)(4)(B), the CWA requires that EPA  establish BCT limitations after consideration
        of a two-part "cost-reasonableness" test. EPA explained  its methodology for the
        development of BCT limitations in July 1986 (51 FR 24974). Section 304(a)(4)
        designates the following as conventional pollutants: biochemical oxygen demand
        (BOD5), total suspended solids (TSS), fecal coliform, pH, and any additional pollutants
                                          1-3

-------
        designated by the Administrator as conventional. The Administrator designated oil and
        grease as an additional conventional pollutant on July 30, 1979 (44 FR 44501).

    •   New Source Performance Standards (NSPS) (306 of the CWA) - NSPS reflect effluent
        reductions that are achievable based on the best available demonstrated control
        technology. New facilities have the opportunity to install the best and most efficient
        production processes and wastewater treatment technologies. As a result, NSPS should
        represent the greatest degree of effluent reduction attainable through the application of
        the best available demonstrated control technology for all pollutants (i.e., conventional,
        nonconventional, and priority pollutants). In establishing NSPS, EPA is directed to take
        into consideration the cost of achieving the effluent reduction and any nonwater-quality
        environmental impacts and energy requirements.
For the purposes of applying the new source performance standards, a source is a new source
if it completes construction after the effective date of the final rule. See 40 CFR 122.2. Each
source that meets this definition is required to  achieve  the newly promulgated NSPS upon
commencing discharge.

However, the NSPS promulgated in 1974 continue to have force and effect for a limited
universe of new sources; for this reason, in the final rule, EPA is  including provisions at 40
CFR 412.35(d) and 412.46(e) addressing this limited universe. Specifically, the NSPS
established in 1974 will continue to apply for a limited period of time to new sources that
completed construction with the time period beginning ten years before  the effective date of
this rule and ending on the effective date of this rule.  Thus, any direct discharging new source
that completed construction during this ten year period is subject to the 1974 NSPS for ten years
from the date it completed construction or during the period of depreciation or amortization of
such facility, whichever comes first. See CWA  section 306(d).  After that ten-year period
expires, the BPT, BCT, and BAT limitations established in this rule apply because they are more
stringent than the 1974 NSPS.

Indirect Dischargers

    •   Pretreatment Standards for Existing Sources (PSES) (307(b) of the CWA) - PSES are
        designed to prevent the discharge of pollutants that pass through, interfere with, or are
        otherwise incompatible with the operation of POTWs.  The CWA authorizes EPA to
        establish pretreatment standards for pollutants that pass through POTWs or interfere
        with treatment processes or sludge disposal methods at POTWs.  Pretreatment standards
        are technology-based and analogous to BAT effluent limitations guidelines for removal
        of priority pollutants. EPA retains discretion not to issue such standards where the total
        amount of pollutants passing through a POTW is not significant.
    •   The General Pretreatment Regulations, which set forth the framework for the
        implementation of categorical pretreatment standards, are found at 40 CFR Part 403.
        Those regulations contain a definition of pass-through that addresses localized rather
                                           1-4

-------
        than national instances of pass-through and establish pretreatment standards that apply
        to all domestic dischargers (see 52 FR 1586, January 14, 1987).

    •   Pretreatment Standards for New Sources (PSNS) (307(b) of the CWA) - Like PSES,
        PSNS are designed to prevent the discharges of pollutants that pass through, interfere
        with, or are otherwise incompatible with the operation of POTWs. PSNS are to be
        issued at the same time as NSPS. New indirect dischargers have the opportunity to
        incorporate into their facilities the best available demonstrated technologies.  The
        Agency considers the same factors in promulgating PSNS as it considers in
        promulgating NSPS. EPA retains discretion not to issue such standards where the total
        amount of pollutants passing through a POTW is not significant.

1.2    Pollution Prevention Act
In the PPA of 1990 (42 U.S.C. 13101 et seq., Pub. Law 101-508, November 5, 1990), Congress
declared pollution prevention a national policy of the United States. The PPA declares that
pollution should be prevented or reduced at the source whenever feasible; pollution that cannot
be prevented should be recycled in an environmentally safe manner whenever feasible; pollution
that cannot be prevented or recycled should be treated; and disposal or other release into the
environment should be chosen only as a last resort and should be conducted in an
environmentally safe manner. This final regulation for CAFOs was reviewed for its
incorporation of pollution prevention as part of EPA effort. Chapters 4 and 8 describe pollution
prevention practices  applicable to animal feeding operations (AFOs).


1.3    Regulatory Flexibility Act as Amended by the Small Business Regulatory
       Enforcement Fairness Act of 1996 fSBREFA)
In accordance with Section 603 of the RFA (5 U.S.C. 601 et seq.), EPA prepared an initial
regulatory flexibility analysis (IRFA) that examined the impact of the proposed rule on small
entities along with regulatory alternatives that could reduce that impact. The IRFA (available in
Chapter 9 of Economic Analysis of the Proposed Revisions to the National Pollutant Discharge
Elimination System Regulation and the Effluent Guidelines for Concentrated Animal Feeding
Operations) concluded that the economic effect of regulatory options being considered might
significantly impact a substantial number of small livestock and poultry operations.

As required by Section 609(b) of the RFA, and as amended by SBREFA, EPA also conducted
outreach to small entities and convened a Small Business Advocacy Review Panel to obtain the
advice and recommendations of representatives of the small entities that potentially would be
subject to the rule's requirements. Consistent with the RFA/SBREFA requirements, the panel
evaluated the assembled materials and small entity comments on issues related to the elements of
the IRFA. Participants included representatives of EPA, the Small Business Administration
(SB A), and the Office of Management and Budget (OMB).  Participants from the farming
community included small livestock and poultry producers as well as representatives of the major
commodity and  agricultural trade associations. A summary of the panel's  activities and
                                          1-5

-------
recommendations is provided in the Final Report of the Small Business Advocacy Review Panel
on EPA's Planned Proposed Rule on National Pollutant Discharge Elimination System (NPDES)
and Effluent Limitations Guideline (ELG) Regulations for Concentrated Animal Feeding
Operations (April 7, 2000).  This document is included in the public record.

For these regulated industries, SBA sets size standards for defining small businesses by amount
of annual revenue generated, representing total facility revenue at the farm level (e.g., revenue
from all sources including livestock, crop and other farm-related income at a livestock or poultry
operation) and expressed as an average over a 3-year period. These size standards vary by North
American Industry Classification System (NAICS) code; CAFOs are listed under NAICS 11
(Agriculture, Forestry, and Fishing). On June 7, 2003 „ SBA increased the size standards used to
define small businesses for most agriculture sectors listed under NAICS 11 from $0.5 million to
$0.75 million in average annual receipts (see 66 FR 30646). EPA estimates that the final revised
regulations for the CAFOs industry affect approximately 6,300 small businesses; see the
Economic Analysis of the Final Revisions to the NPDES and the Effluent Guidelines for
Concentrated Animal Feeding Operations (hereafter referred to as the EA) for additional
information.
                                          1-6

-------
                                                                 CHAPTER 2
               SUMMARY AND SCOPE OF FINAL REGULATION

2.0    SUMMARY AND SCOPE OF FINAL REGULATION
The final regulations described in this document include revisions of two regulations that ensure
manure, litter, and other process wastewafers for CAFOs do not impair water quality. These two
regulations are the NPDES described in Section 2.1 and the ELG for feedlots (beef, dairy, swine,
poultry, and veal) described in Section 2.2, which establish the technology-based standards that
are applied to CAFOs. Both regulations were originally promulgated in the 1970s. EPA revised
these regulations to address changes that have occurred in the animal industry sectors over the
last 25 years, to' clarify and improve implementation of CAFO permit requirements, and to
improve the environmental protection achieved under these rules by ensuring effective
management of manure by primarily the largest CAFOs. EPA is not revising the ELG for the
horse, sheep and lamb, or duck subcategories.

2.1    National Pollutant Discharge Elimination System
As noted in Chapter 1, CAFOs are "point sources" under the CWA. The regulation at 40 CFR
122.23 specifies which AFOs are CAFOs and, therefore, are subject to the NPDES program.
2.1.1  Applicability of the Final Regulation
The final rule retains the definition of an animal feeding operation (AFO) as it was defined in the
1976 regulation at 40 CFR 122.23(b)(l). ; An AFO means a lot or facility (other than an aquatic
animal production facility) where the following conditions are met: (1) animals (other than
aquatic animals) have been, are, or will be stabled or confined and fed or maintained for a total of
45 days or more in any 12-month period, and (2) crops, vegetation, forage growth, or post-
harvest residues are not sustained in the normal growing season over any portion of the lot or
facility.      .

The 1976 NPDES regulation uses the term "animal unit," or AU, to identify facilities that are
CAFOs.  The term AUs is a metric unit established in the 1976 regulation that attempted to
equate the characteristics of the wastes produced by different animal types.  EPA has decided to
eliminate the term animal unit in this final rule. The final regulation described in today's
document retains the basic three-tier structure for determining what size AFOs are CAFOs, as
well as retaining the existing conditions for defining which medium-sized AFOs are CAFOs. In
the final  rule, EPA discontinues the use of the term AU for defining-these three size-based
groups, and instead uses the actual number of animals to define certain AFOs as Large, Medium,
and Small CAFOs.

                                        2-1

-------
Table 2-1 presents the thresholds for defining AFOs as Large, Medium, and Small CAFOs in
each sector. All AFOs with more than the specified number of head or birds in the second
column are defined as "Large CAFOs." AFOs with the specified number of animals in the third
column are defined as "Medium CAFOs" only if they meet one of the two specified criteria
governing the method of discharge (1) pollutants are discharged into waters of the United States
through a man-made ditch, flushing system, or other similar man-made device; or (2) pollutants
are discharged directly into waters of the United States which originate outside of and pass over,
across, or through the facility or otherwise come into direct contact with the confined animals in
the operation. Some AFOs in this middle size group may also be designated as CAFOs by EPA
or the state NPDES permitting authority. AFOs with fewer than the number of animals in the last
column would be defined as "Small CAFOs" only if they are designated by EPA or the state
NPDES permitting authority.
Table 2-1. Summary of CAFO Size Thresholds for all Sectors.
Sector
Mature dairy cattle, whether milked or dry
Veal calves
Cattle other than mature dairy cows or veal
calves. Cattle includes but is not limited to
heifers, steers, bulls and cow/calf pairs.
Swine each weighing 55 pounds or more
Swine each weighing less than 55 pounds
Horses
Sheep or lambs
Turkeys
Laying hens or broilers (uses a liquid
manure handling system)
Chickens other than laying hens (uses other
than a liquid manure handling system)
Laying hens (uses other than a liquid
manure handling system)
Ducks (uses other than a liquid manure
handling system)
Ducks (uses a liquid manure handling
system)
Number of Head or Birds Confined at the AFO
Large CAFO
>700
>1,000
>1,000
>2,500
>10,000
>500
>10,000
>55,000
>3 0,000
>1 25,000
>82,000
>30,000
>5,000
Medium CAFO'
200-700
300-1,000
300-1,000
750-2,500
3,000 - 10,000
150-500
3,000 - 10,000
16,500-55,000
9,000-30,000
37,500-125,000
25,000 - 82,000
10,000 - 30,000
1,500-5,000
Small CAFOb
<200
<300
<300
<750
<3,000
<150
<3,000
<1 6,500
<9,000
<37,500
<25,000
<1 0,000
<1,500
•Must also meet one of two criteria to be defined as a CAFO, or can be designated by the permitting authority.
b Must be designated by the permitting authority.
                                         2-2

-------
EPA considered a number of mechanisms for addressing animal types not explicitly covered in
the 1976 regulation, specifically immature swine, heifers, and chickens utilizing dry manure
handling systems. EPA selected the approach of counting the numbers of mature swine and
numbers of immature swine separately, where either one of which could define the facility as a
CAFO.  Once a facility is defined as a CAFO for either age group of animals, all animals in
confinement would be considered as part of the CAFO. Similarly, EPA selected phosphorus in
the manure of 1,000 beef cattle for establishing 1,000 heifers as the threshold for a Large CAFO.
See Section 2 of this Chapter for more information on EPA's analysis, and Chapter 6 for
additional information on the manure and wastewater characteristics.

The final rule includes chicken operations that use "dry" or "wet" manure handling systems. As^
a result, the scope of the rule is expanded to include chicken operations with "dry" litter
management systems.  Similarly, EPA is establishing different thresholds for ducks raised in lots
as opposed to ducks raised in confinement buildings.  EPA's final evaluation concluded that
125,000 broilers and 82,000 layers produce an equivalent amount of manure phosphorus to 1,000
beef cows. The use of annual phosphorus production as the metric for establishing thresholds is
consistent with the metric described above for swine and heifers. These analyses are discussed
further in Section 2.2.                  ;


2.1.2  Summary of Revisions to NPDES Regulations

Overall, this final rale maintains many of the basic features and overall structure of the 1976
NPDES regulations with some important exceptions. First, EPA eliminated the 25-year, 24-hour
storm permitting exemption for defining a CAFO. All Large CAFOs have a mandatory duty to
apply for an NPDES permit. This removes the ambiguity of whether a Large facility needs to
apply for an NPDES permit, even if it discharges only in the event of a large storm event. In the
rare occasion that a Large CAFO has No Potential To Discharge (NPTD), the rule provides a
process for the CAFO to make such a demonstration to the Director in lieu of obtaining a permit.

The second significant change is that AFOs with chickens are subject to the NPDES rule,
regardless of the type of waste disposal system used or whether the litter or manure is managed in
a wet or dry form. EPA maintained the existing size criteria for chicken operations with wet
manure handling systems, and established different size criteria for chickens with dry manure
handling systems based on broad type of chicken (i.e., chickens for meat (broilers) and chickens
for eggs (layers)).

Third, under this final rule, all CAFOs covered by an NPDES permit are required to develop and
implement a nutrient management plan. The plan would identify prohibitions and practices
necessary to demonstrate compliance with any limitations or standards in the permit and, for
Large CAFOs, applicable ELGs. This includes requirements to land-apply the manure and
wastewater consistent with appropriate agricultural utilization. The plan must address the
following nine minimum elements:
                                          2-3

-------
    •   Ensure adequate storage of manure and process wastewater, including procedures to
        ensure proper operation and maintenance of the storage facilities.
    •   Ensure proper management of mortalities (i.e., dead animals) to ensure that they are not
        disposed of in a liquid manure, storm water, or process waste water storage or treatment
        system that is not specifically designed to treat animal mortalities..
    •   Ensure that clean water is diverted, as appropriate, from the production area.

    •   Prevent direct contact of confined animals with waters of the United States.
    •   Ensure that chemicals and other contaminants handled on-site, are not disposed of in
        any manure, litter, process wastewater, or storm water storage or treatment system
        unless specifically designed to treat such chemicals and other contaminants.
    •   Implement appropriate site specific conservation practices, including as appropriate
        buffers or equivalent practices, to control runoff of pollutants to waters of the United
        States.
        Conduct appropriate testing of manure, litter, process wastewater, and soil.
    •   Land apply manure, litter or process wastewater in accordance with site specific nutrient
        management practices that ensure appropriate agricultural  utilization of the nutrients in
        the manure, litter or process wastewater.
    •   Identify specific records that will be maintained to document the implementation and
        management of the minimum elements described above.
The discharge of manure, litter, or process wastewater to waters of the United States from a
CAFO as a result of the application of that manure, litter, or process wastewater by the CAFO to
land areas under its control is a discharge from that CAFO subject to NPDES permit
requirements, except where it is an agricultural storm water discharge. If the manure, litter, or
process wastewater has been applied in accordance with site specific nutrient management
practices that ensure appropriate agricultural utilization of the nutrients  in the manure, litter, or
process wastewater a discharge of manure, litter, or process wastewater from land areas under the
control of a CAFO is an agricultural stormwater discharge.  "Appropriate agricultural utilization"
includes, but is not limited to, land application of manure, litter, or process wastewater in
accordance with site specific nutrient management practices.

In addition to new thresholds for chickens, the final rule establishes new, or clarifies existing,
thresholds for veal calves, immature swine, cow/calf pairs, ducks that use other than a liquid
manure handling system, and heifer operations, as described in Section 2.1.1.  This final rule
eliminates the formula for calculating whether an AFO is a CAFO due to the accumulation of
several different animal types in confinement at one facility1.
       'Previously, an AFO was defined as a CAFO if the number of slaughter steers and heifers multiplied by 1.0,
plus the number of mature dairy cattle multiplied by 1.4, plus the number of swine over 55 pounds multiplied by 0.4,
plus the number of sheep multiplied by 0.1, plus the number of horses multiplied by 2.0 was greater than 1,000.

                                           2-4

-------
In the final rule EPA requires that the CAFO owner or operator to maintain permit coverage for
the CAFO until it is properly closed.     :

EPA requires certain records to be retained on site at the CAFO for 5 years. The specific record
keeping, monitoring and reporting requirements of the final rule are as follows:

     •   A copy of the CAFO's site-specific nutrient management plan.

     •   All applicable records that will used document the implementation and management
        identified in the nutrient management plan.
     •   For Large CAFOs, any additional records specified in the ELGs (see Section 2.2).

        For Large CAFOs, a record of the date, recipient name and address, and approximate
        amount of manure, litter, or process wastewater transferred to another person.

In addition, the CAFO must submit to the permitting authority annual report that includes the
following:

           The number and type of animals in, whether in open confinement or housed under
           roof (beef cattle, broilers, layers, swine weighing 55 pounds or more, swine weighing
           less than 55 pounds, mature dairy cows, dairy heifers, veal calves, sheep and lambs,
      ,  .   horses, ducks, turkeys, other).

     •      Estimated amount of total manure, liter and process wastewater generated by the
           CAFO in the previous 12 months (tons/gallons).

     •      Estimated amount of total manure, litter and process wastewater transferred to other
           person by the CAFO in the previous 12 months (tons/gallons).

     •      Total number of acres for land application covered by the nutrient management plan.

     •      Total number of acres under control of the CAFO that were used for land application
           of manure, litter and process wastewater in the previous 12 months.

           Summary of all manure, litter and process wastewater discharges from the production
           area that have occurred in the previous 12 months, including date, time, and
           approximate volume.
     •      A statement indicating whether the current version of the CAFO's nutrient
           management plan was developed or approved by a certified nutrient management
           planner.
2.2
Effluent Limitations Guidelines and Standards
Effluent limitations guidelines and standards are national regulations that establish limitations on
the discharge of pollutants by industrial category and subcategory. The final effluent limitations
guidelines and standards establish the Best Practicable Control Technology Currently Available
(BPT), Best Conventional Pollutant Control Technology (BCT), and the Best Availability
                                         2-5

-------
Technology Economically Achievable (BAT) limitations as well as New Source Performance
Standards (NSPS) on discharges from the "production area" and the "land application areas" at
CAFOs. The term "production area" means that part of an AFO that includes the animal
confinement area, the manure storage area, the raw materials storage area, and the waste
containment areas. The animal confinement area includes but is not limited to open lots, housed
lots, feedlots, confinement houses, stall barns, free stall barns, milkrooms, milking centers,
cowyards, barnyards, medication pens, walkers, animal walkways, and stables. The manure
storage area includes but is not limited to lagoons, runoff ponds, storage sheds, stockpiles, under
house or pit storages, liquid impoundments, static piles, and composting piles. The raw materials
storage area includes but is not limited to feed silos, silage bunkers, and bedding materials. The
waste containment area includes but is not limited to settling basins, and areas within berms and
diversions which separate uncontaminated storm water. Also included in the definition of
production area is any egg washing or egg processing facility,  and any area used in the storage,
handling, treatment, or disposal of mortalities. The term  "land application areas" means land
under the control of an AFO owner or operator, whether it is owned, rented, or leased, to which
manure or process wastewater from the production area is or may be applied.


2.2.1    Applicability of the Final Regulation
EPA has subcategorized the CAFOs Point Source Category based primarily on animal production
processes and waste handling and management practices.  Large beef feedlots, dairies, and heifer
operations typically have outdoor confinement lots where animals are housed for all or at least a
portion of their time. The open outdoor lots expose large areas to precipitation, generating large
volumes of storm water runoff contaminated with manure, bedding, feed, silage, antibiotics, and
other process contaminants. In contrast, nearly all Large swine, poultry, and veal operations
utilize total confinement housing. See Chapter 4 for more information on production practices,
and Chapter 5 for a discussion of the basis considered for subcategorization. The final rule
establishes new effluent limitations and guidelines for Subpart C, covering beef cattle, dairy
cattle, and heifers; and Subpart D, covering veal  calves, swine, and poultry (chickens and
turkeys).

As described in Section 2.1, an AFO is a CAFO if the specific threshold for any one animal
sector is met. Consistent with the final NPDES rule, the ELG eliminates the formula for
calculating whether Subpart A applies due to the accumulation of several different animal types
in confinement at one facility.  The final ELG applicability of Subpart A thus only applies to
horses and sheep. The final subcategories are liste,d and described in Table 2-2.

The ELG requirements for Subpart C (dairy and beef cattle other than veal) and Subpart D
(swine, poultry, and veal) apply to those operations which are  defined as Large CAFOs under the
NPDES regulations described in Section 2.1. In the case of Medium or Small CAFOs, or CAFOs
not otherwise subject to Part 412,  effluent limitations will be established on a case-by-case basis
by the permitting authority using best professional judgment (BPJ).
                                          2-6

-------
             Table 2-2. Summary of Final ELG Subcategorization for CAFOs
fSubiiart
A
B
C
D
Subcategory ;;>•
Horses and Sheep
Ducks i
Dairy and Beef Cattle Other than i
Veal i
Swine, Poultry, and Veal j
• \
\
\
\
i
Description
CAFOs under 40 CFR 122.23 which confine more than 500
horses or 10,000 sheep.
CAFOs under 40 CFR 122.23 which confine more than 5000
ducks.
CAFOs under 40 CFR 122.23 which confine more than 700
mature dairy cows (either milking or dry) or 1000 cattle other
than mature dairy cows or veal calves.
CAFOs under 40 CFR 122.23 which confine more than 2,500
swine each weighing 55 pounds or more, 10,000 swine each
weighing less than 55 pounds, 30,000 laying hens or broilers
when the facility uses a liquid manure handling system, 82,000
laving hens when the facility uses other than a liquid manure
handling system, 125,000 chickens other than laying hens
when the facility uses other than a liquid manure handling
system, 55,000 turkeys, or 1,000 veal calves.
In 1974 when the original ELG was promulgated, stand-alone heifer operations were not
considered a major livestock operation. However, due to the increased specialization of dairies
over the past 25 years, these heifer operations have become more common and more abundant.
While most heifers were maintained in pasture, many large dairies place the heifers in
confinement at a feedlot. Therefore, EPAjhas specifically addressed heifer operations to address
potential discharges to surface waters. Based on the similarity of the production (animal type and
housing) and waste management processes for beef feedlots, dairies, and heifer operations, EPA
developed a new subcategory, Subpart C,jto address these types of operations under this rule.

Subpart D includes swine, poultry and veal calves, which are predominantly produced in
confinement housing with little to no exposure to precipitation. Based on the information in the
record, EPA is including operations with, immature swine as CAFOs under Subpart D based on
their production and waste handling practices. Immature swine operations were not specifically
addressed in the 1974 ELG because immature swine were typically raised at a farrow-to-finish
operation and not at a separate nursery operation like today. Although many large swine
operations continue to have the full range; of production phases at one location, these operations
are no longer the norm.  More frequently,;in new operations, several specialized farms are
integrated into a chain of production and marketing.  Pigs begin in sowherds on one site, move to
a nursery on another, and then move again to a finishing facility. Due to the increased
construction and reliance on immature sxyine operations, EPA determined that these operations
should be specifically addressed in the ELG.
                                          2-7

-------
The simplest approach for including immature swine is to count all swine, regardless of size and
age. EPA determined counting all swine equally would increase the effective size of operations
that have breeding functions by a factor of seven or more (based on the number of pigs per litter).
While this approach would include nursery facilities, this approach also changes the existing
basis without improving the regulation.  Alternatively, all swine would be counted but a
weighting factor could be used to distinguish animal sizes. This approach is inconsistent with
EPA's attempt to simplify the regulations by removing mixed animal multipliers and animal unit
calculations.

EPA selected the approach of counting the numbers of mature swine and numbers of immature
swine separately, where either one of which could define the facility as a CAFO.  EPA selected
phosphorus in Ihe manure as the metric for Large CAFO thresholds. EPA's analysis equates
2,500 mature swine (weighing over 55 pounds) to approximately 10,000 immature swine
(weighing less than 55 pounds) on a phosphorus excreted basis. Once a swine facility is defined
as a CAFO for either age group of animals, all animals in confinement would be considered as
part of the CAFO.  Because the immature operations use virtually the same animal production
and waste management processes and are expected to use similar effluent reduction practices and
technologies as mature swine operations, EPA has included these immature swine operations
under Subpart D.

As discussed in Section 2.1, the final rule expands the scope of the rule to also address chicken
operations with "dry" litter management systems. While liquid manure systems continue to be
used by approximately 15 percent of the  total laying industry (see Chapter 4), continuous flow
watering systems have been largely discontinued in favor of more efficient water conserving
methods (e.g., on-demand watering). Site visits and consultations  with industry further suggest
liquid manure handling systems are no longer constructed at laying hen operations.

EPA noted chickens raised for meat production are a different breed of chicken, have  a different
weight, eat a different diet, and are raised differently than those used for egg production.
Therefore EPA considered a number of approaches to determine the final applicability
thresholds. EPA evaluated the manure generated from chickens used for meat (broilers) and egg
production (layers) and compared manure production to a 1,000 pound beef cow. EPA evaluated
daily manure phosphorus production and annual phosphorus production, and determined annual
production was more appropriate because annual production reflects the time birds are actually
present and generating manure. The annual approach assumes 5 to 6 flocks of broilers are
produced each year, for a total of 322 days of manure production in one year. In contrast, each
layer flock is raised for either 80 weeks (non-molt flocks) or 105 weeks (molt flocks). Molt
flocks go through two cycles of egg production, separated by a non-productive molting period
(shedding of feathers and renewal of ovarian activity) induced by withholding food. Manure
production greatly diminishes during the two-week molt period. Following the molt,  egg
production resumes to the end of the flock life.  Furthermore, prior to egg-laying age,  the bird
will typically be raised for 19 weeks as a pullet.  On average, layers are in production  for 94
weeks.  EPA's final evaluation concluded that 125,000 broilers and 82,000 layers produce an
equivalent amount of manure phosphorus to 1,000 beef cows.

                                          2-8

-------
This rule addresses veal operations under Subpart D along with swine and poultry operations due
to the similarity in animal production and;waste management processes.  See Chapter 5 for
additional discussion of the industry subcategorization for this rule.


2.2.2    Summary of Revisions to Effluent Limitations Guidelines and Standards

Large CAFOs covered under Subpart C and Subpart D are required under this final rule to
comply with the new effluent limitations guidelines and standards (see Table 2-3).  The final
guidelines establish BPT, BCT, BAT, and NSPS by requiring effluent limitations and standards
and specific BMP that ensure that manure storage and handling systems are inspected and
rflaintained  adequately as described hi the; following subsections. Medium and Small CAFOs are
not subject to the ELGs.

2.2.2.1  Land Application Best Practicable Control Technology
EPA set BPTs for land application applicable to any CAFO subject to Subparts C or D. These
BMPs include the requirement to develop; and implement a nutrient management plan that
incorporates the following requirements based on a field-specific assessment:

    •   Determination  of application rates.  Application rates for manure, litter, and other
        process wastewater applied to land under the ownership or operational control of the
        CAFO must minimize phosphorus and nitrogen transport from the field to surface
        waters in compliance with the technical standards for nutrient management established
        by the Director. Such technical standards for nutrient management shall:
                                     t
             Include a field-specific assessment of the potential for nitrogen and phosphorus
             transport from the field to surface waters, and address the form, source, amount,
             timing, and method of application of nutrients on each field to achieve realistic
             production goals, while minimizing nitrogen and phosphorus movement to
             surface waters; and       ;

             mclude appropriate flexibilities for any CAFO to implement nutrient management
             practices to comply with the technical standards, including consideration of multi-
             year phosphorus application on fields that do not have a high potential for
             phosphorus runoff to surface water, phased implementation of phosphorus-based
             nutrient management, and other components, as determined appropriate by the
             Director.                ;    .
                                     i
    •   Manure and Soil Sampling. Manure must be analyzed a minimum of once annually for
        nitrogen and phosphorus content,  and soil analyzed a minimum of once every five years
       • for phosphorus content. The results of these analyses are to be used in determining
        application rates for manure, litter, and other process wastewater.
                                          2-9

-------
Inspect land application equipment for leaks. The operator must periodically inspect
equipment used for land application of manure, litter, or process wastewater.

Setback requirements. Manure, litter, and process wastewater may not be applied closer
than 100 feet to any down-gradient surface waters, open tile line intake structures,
sinkholes, agricultural well heads, or other conduits to surface waters unless one of the
following compliance alternatives are used:
      Vegetated buffer compliance alternative.  As a compliance alternative, the CAFO
      may substitute the 100-foot setback with a 35-foot wide vegetated buffer where
      applications of manure, litter, or process wastewater are prohibited.

      Alternative practices compliance alternative. As a compliance alternative, the
      CAFO may demonstrate that a setback or buffer is not necessary because
      implementation of alternative conservation practices or field-specific conditions
      will provide pollutant reductions equivalent or better than the reductions that
      would be achieved by the 100-foot setback.

Record keeping requirements for the land application areas.  Each CAFO must
maintain on-site a copy of its site-specific nutrient management plan and the following
information for a period of five years from the date they are created:

      Expected crop yields.

      The date(s) manure, litter, or process waste water is applied to each field.

      Weather conditions at time of application and for 24 hours prior to and following
      application.

      Test methods used to sample and analyze manure, litter, process waste water, and
      soil.

      Results from manure, litter, process waste water, and soil sampling.

      Explanation of the basis for determining manure application rates, as provided in
      the technical standards established by the Director.

      Calculations showing the total nitrogen and phosphorus to be  applied to each
      field, including sources other than manure, litter, or process wastewater.

      Total amount of nitrogen and phosphorus actually applied to each field, including
      documentation of calculations for the total amount applied.

      The method used to apply the manure, litter, or process wastewater.
                                  2-10

-------
              Date(s) of manure application equipment inspection.
2.2.2.2  Production Area Best Practicable Control Technology
EPA set BPTs for the production area that are applicable to any CAFO subject to Subparts C or
D. Under BPT, EPA prohibits the discharge of manure, litter, or process wastewater pollutants
into waters of the United States from the production area except overflow from containment
facilities if caused by rainfall events and the facility is designed, constructed, operated, and
maintained to contain all manure, litter, and process wastewater, including the runoff and the
direct precipitation from a 25-year, 24-hour rainfall event. The production area must also be
operated in accordance with the additional measures and record keeping requirements described
below. These requirements do not apply to discharges to ground water with a direct hydrologic
connection to surface water, although the permit writer could establish such technology-based
limitations on a case-by-case basis.  BPT establishes the following additional measures and
record keeping requirements for the production area (records are to be kept for five years from
the time they are created):              ;

    •   Weekly inspections of all storm water diversion devices, runoff diversion structures, and
        devices channelling contaminated storm water to the wastewater and manure storage
        and containment structure.      j          •   •
    •   Daily inspection of water lines, including drinking water or cooling water lines.
    •   Weekly inspections of the manure, litter, and process wastewater impoundments; the
        inspection will note the level in liquid impoundments as indicated by the depth marker.
        All open surface liquid impoundments must have a depth marker which clearly indicates
        the minimum capacity necessary to contain the runoff and direct precipitation of the 25-
        year 24-hour rainfall event.     ;
    •   Any deficiencies found as a result of these inspections must be corrected as soon as
        possible.
    •   Mortalities must not be disposed;of in any liquid manure or process wastewater system,
        and must be handled in such a way as to prevent the discharge of pollutants to surface
        water, unless alternative technologies are designed and approved to handle mortalities.

        Records documenting the inspections described above.
        Weekly records of the depth of the manure and process wastewater in the liquid
        impoundment as indicated by the depth marker.
    •   Records documenting any actions taken to correct deficiencies described above.
        Deficiencies not corrected within 30 days must be accompanied by an explanation of the
        factors preventing immediate correction.
    •   Records of mortalities  management and practices used by the CAFO to meet the
        requirements described above.

                                         2-11

-------
        Records documenting the current design of any manure or litter storage structures,
        including volume for solids accumulation, design treatment volume, total design
        volume, and approximate number bf days of storage capacity.

        Records of the date, time, and estimated volume of any overflow.
EPA set an alternative BPT, described in section 2.2.2.6 below, to encourage innovative
technologies.

2.2.2.3  Best Control Technology
EPA set BCT requirements for Subparts C (dairy and beef cattle other than veal subcategories)
and D (swine, poultry, and veal subcategories) the same as BPT.  Table 2-3 shows the technology
basis of BCT for these subcategories.


2.2.2.4  Best Available Technology
EPA set BAT requirements for Subparts C (dairy and beef cattle other than veal subcategories)
and D (swine, poultry, and veal subcategories) the same as BPT.  Table 2-3 shows the technology
basis of BAT for these subcategories.

2.2.2.5  New Source Performance Standards
EPA set NSPS requirements equivalent to BPT requirements for Subpart C (dairy and beef cattle
other than veal subcategories) and for the land application area of Subpart D (swine, poultry, and
veal subcategories).

EPA set different NSPS requirements for the production area of Subpart D (swine, poultry, and
veal subcategories). NSPS requirements for Subpart D prohibit the discharge of manure, litter, or
process wastewater pollutants into waters of the United States from the production area. A
facility designed, constructed, operated, and maintained to contain all manure, litter, and process
wastewater including the runoff and the direct precipitation from a 100-year, 24-hour rainfall
event will fulfill the requirement for no discharge. The production area must also be operated in
accordance with the additional measures and record keeping requirements described earlier with
the exception that all open surface liquid impoundments must have a depth marker which clearly
indicates the minimum capacity necessary to contain the runoff and direct precipitation of the
100-year 24-hour rainfall event.

EPA set an alternative NSPS, described in Section 2.2.2.7 below, to encourage innovative
technologies and whole-farm multi-media reductions.

For the purposes of applying the new source performance standards, a source is a new source if it
commenced construction after the effective elate of the final rule. See 40 CFR 122.2. Each
source that meets this definition is required to achieve the newly promulgated NSPS upon
commencing discharge.

                                          2-12

-------







•
^^
I"™!
•g
Ł
>J

o
o
U
ce
O
u

M
03
J>
09
•33
M
IB
^D
75
e
Table 2-3. Summary of Tech






<»
Ł







Łjj
M
•B
g
B"

S"
03


•o ?•>
or-- 1
.S >> 2 48
>t J2 *^. &
^ si* &" u
co -3 ja
0 S
04 CA
1 S3 -3 8?
M •« 2 2,
"§ «> f
S « e «
.^ C eQ u
&* ^ •* •**
'« U H co
0
^s ^s
S o
aT — M
•Ł f? " "S
co 3 **" ^
o a
ft* GO
H -_ 6-
• w •* 2 a,
c|>-S
es aj S «
^ S et o
O to







Technology Basis









S





S





S


J.
c'l 1
« S "g '
COM
S" ^^ e!2
Ł s o
Zero discharge with overflow provided if caused by rainfall
the facility is designed, constructed, operated, and maintaini
all manure, litter, and process wastewater including the run
direct precipitation from a 25-year, 24-hour rainfall event.


S





















a
111
1 8-2
?, S <"
> 5 sa
« lu 0
Zero discharge with overflow provided if caused by rainfall
the facility is designed, constructed, operated, and maintaini
all manure, litter, and process wastewater including the run
direct precipitation from a 100-year, 24-hour rainfall event.


S






S





S





S



•a
IS

"3.

Development and implementation of a nutrient managemen
maintain records.


S






S





S





S



c
•2
S
;3
%•*
Land application consistent with appropriate agricultural u









S





S





S



J>
E •
5 e
Ł .2
»Q "?i
Voluntary alternative performance standards for discharge
production area that achieve equal or better pollutant redu<


S






















"a
o
^
i, *
o J*
Voluntary superior environmental performance standards \
technologies that achieve overall environmental performani
media equal or superior to baseline NS.PS


S






S





S





S








1 Daily and weekly inspections.


S






S





S





S








Depth marker for open surface liquid impoundments.


S






S





S





S,








Corrective action.


S






S





S





S








Mortality handling requirements.


S






S





S





S



i
•S
t5
&M
42
C)
1 100-foot land application setback or equivalent compliance


S






S





S





S








Manure samples at least once per year.


S






S





S





S








Soil test every 5 years.


S






S





S





S








| Record keeping.
2-13

-------
However, the NSPS promulgated in 1974 continue to have force and effect for a limited universe
of new sources; for this reason, in the final rule, EPA is including provisions at 40 CFR
412.35(d) and 412.46(e) addressing this limited universe.  Specifically, the NSPS established in
1974 will continue to apply for a limited period of time to new sources that completed
construction with the time period beginning ten years before the effective date of this rule and
ending on the effective date of this rule. Thus, any direct discharging new source that completed
construction during this ten year period is subject to the 1974 NSPS for ten years from the date it
completed construction or during the period of depreciation or amortization of such facility,
whichever comes first. See CWA section 306(d). After that ten-year period expires, the BPT,
BCT, and BAT limitations established in this rule apply because they are more stringent than the
1974 NSPS.                .

EPA has determined that the ten-year period should apply to discharges from the both the CAFO
production areas  and land application areas: even though the  1974 NSPS specifically addressed
only discharges from the production area. This determination is based on the manner in which
manure, litter, and other process wastewaters at CAFOs are generated and the waste management
practices employed for these wastes. EPA recognizes that the land application BMPs established
by this rule have the potential to alter the land application practices at the CAFO, which could
affect waste management practices  at the production area. Animal feeding strategies and waste
management practices at the production area determine the form of the wastes (i.e., solid, liquid,
or slurry) and the amount of nutrients and other pollutants present in the wastes. The timing of
any application and the'amount of nutrients (i.e., manure, litter, and other process wastewater)
applied is determined by crop needs, irrigation requirements, and other factors such as the
availability of manure spreading equipment and climate considerations. The land application
BMPs established by this rule include a requirement to develop and implement a nutrient
management plan, as well as a requirement to land-apply manure at rates based on technical
standards for nutrient management  established by the Director. Based on the information in the
record, the land application BMPs established by this rule will lead to some changes in the ways
CAFOs manage their land application areas.  A number of CAFOs affected by this rule will need
to reduce the amount of manure and other process wastewaters applied to cropland.  As they
develop their nutrient management  plans some CAFOs may determine they should adjust the
timing of manure applications.  Since the CAFO must be able to store any wastes generated at the
production area until able to land-apply the manure, significant changes in the amount of manure
applied or the timing of manure application may affect waste management systems at the
production area.  Therefore, EPA determined that the ten-year period described above should
apply to discharges from both the production areas and the land application areas at CAFOs.

If the production  area and land application area wastestreams at CAFOs were more physically
distinct, particularly if they were generated and remained distinct and severable throughout all
steps of the waste generation and management (or could be managed in such a manner), and the
NSPS requirements for the land application area did not significantly affect the waste
management infrastructure at the production area, EPA likely would have determined that the
ten-year "grandfathering" period would apply only to production area discharges and would not
apply to discharges from the land application areas.

                                         2-14

-------
 Rather than reproduce the 1974 NSPS in the newly revised rule, EPA is referring permitting
 authorities to the NSPS codified in the 2002 edition of the Code of Federal Regulations for use
 during the applicable ten-year period. (The 2002 edition of the Code of Federal Regulations
 presents the 1974 NSPS requirements.)  This approach allows EPA to avoid reproducing in the
 new regulations the requirements of the  1974 NSPS that will soon become outdated.


 2.2.2.6  Voluntary Alternative Performance Standards to Encourage Innovative
         Technologies
 In addition to the production area effluent guidelines (baseline effluent guidelines), the final rule
 establishes provisions for the development of alternative performance standards for discharges
 from the production area for existing Large CAFOs and new large beef and dairy CAFOs.  The
 BMPs described under BPT are applicable to all Large CAFOs (both existing and new sources),
 regardless of whether their NPDES permit limitations are based on the baseline effluent
 guidelines or the alternative performance standards.

 The voluntary alternative performance standards will enable Large CAFOs to develop and
 implement new technologies and management practices that perform as well as or better than the
 baseline effluent guidelines at reducing pollutant discharges to surface waters from the
 production area. CAFOs will have the option to either accept NPDES permit limitations based on
 the baseline effluent guidelines, or may voluntarily request the permitting authority to establish
 an alternative BPT/BCT/BAT/NSPS performance standard as the basis for their technology-
 based NPDES permit limits. The specific requirements imposed by the alternative performance
 standard would be established by the NPDES permittmg authority on the basis  of BPJ.
                                     :i
 Under this program, CAFOs will be allowed to discharge process wastewater that has been
 treated by technologies that the CAFO demonstrates will result in equivalent or better pollutant
 removal than would otherwise be achieved by the baseline  effluent guidelines. These regulatory
 provisions are targeted toward the CAFO's wastewater discharges, but EPA encourages
 operations electing to participate in the alternative performance standards program to consider
 environmental releases holistically and also consider opportunities for achieving improvement in
 multiple environmental media. To demonstrate that an alternative control technology would
 achieve equivalent or better pollutant reductions than baseline effluent guidelines, the CAFO
 must submit a technical analysis, which includes calculating the quantity of pollutant reductions,
 on a mass-basis where appropriate, based on the site-specific modeled performance of a system
 designed to comply with the baseline effluent guidelines. The CAFO must also prepare a
proposed alternative program plan including the results of the analysis; the proposed method for
 implementing new technologies and practices, including an approach for monitoring
performance; and the results demonstrating that these technologies and practices perform
equivalent to or better than the baseline effluent guidelines. This plan must be included with the
 CAFO's NPDES permit application or renewal, and will be incorporated into the permit upon
approval by the permitting authority.     ;
                                         2-15

-------
2.2.2.7   Voluntary Superior EnvironmenialPerformance Standards for New Large
        Swine/Poultry/Veal CAFOs
The NSPS requirements that apply to production area discharges at new Large swine, poultry,
and veal CAFOs are more stringent than the NSPS established for other new sources and the
BAT requirements for existing sources. EPA is endeavoring to ensure that this rule does not
inadvertently discourage approaches that are superior from a multi-media environmental
perspective. Therefore, for new sources subject to Subpart D (Large swine, poultry, and veal
CAFOs), EPA is establishing alternative performance standards that provide additional
compliance flexibilities specifically designed to encourage CAFOs to adopt innovative
technologies for managing and/or treating manure, litter, and process wastewater. Specifically,
alternative NPDES permit limitations based upon a demonstration that site-specific innovative or
superior to  the reductions  achieved by baseline standards. The quantity of pollutants discharged
from the production area must be accompanied by an equivalent or greater reduction in the
quantity of pollutants released to other media from the production are (e.g., air emissions form
housing and storage), the land application areas for all manure, litter, and process wastewater at
on-site and off-site locations, or both. In making the demonstration that the innovative
technologies will achieve  an equivalent or greater reduction, the comparison of quantity of
pollutants is to be made on a mass basis where appropriate.

In general,  EPA expects CAFOs will conduct a whole-farm audit to evaluate releases that occur
at the point to generation to minimize or eliminate waste production and air emissions, followed
by an evaluation of the waste handling and management systems, and ending with an evaluation
of land application and offsite transfer operations. The specific technologies that CAFOs will
select and adopt to achieve the pollutant reductions are expected to be most effective for the
particular operation. As part of the demonstration the CAFO will need to present information that
describes how the innovative technologies will generate improvement across multiple
environmental media. The Director has the discretion to request additional supporting
information to supplement such a request where necessary. Such information could include
criteria and data that demonstrate effective performance of the technologies and that could be
used to establish the alternative NPDES permit limitations.
                                          2-16

-------
                                                                    CHAPTER 3
                                     DATA COLLECTION ACTIVITIES
3.0    DATA COLLECTION ACTIVITIES
                                     i
EPA collected and evaluated data from a variety of sources during the course of developing the
revised effluent limitations guidelines and standards for the CAFO industry. These data sources
include EPA site visits, industry trade associations, the U.S. Department of Agriculture (USDA),
published literature, previous EPA Office1 of Water studies of the Feedlots Point Source
Category, and other EPA studies of AFOs. Each of these data sources is discussed below, and
analyses of the data collected by EPA are presented throughout the remainder of this document.

The majority of the data EPA used to support development of the proposed effluent limitations
guidelines and standards for the CAFO industry are from existing sources, including data from
the USDA, industry, State agricultural extension agencies, and several land grant universities.
As defined in the Office of Water 2002 Quality Management Plan, existing (or secondary) data
are data that were not directly generated by EPA to support the decision at hand.

In keeping with the graded approach to quality management embodied in the Office of Water's
quality management plan, EPA must assess the quality of existing data relative to their intended
use. The procedures EPA used to assess existing data for use in developing effluent guideline
limitations for CAFOs varied with the specific type of data. In general, EPA's assessment
included:                             !

    •   Reviewing a description of the existing data that explains who collected or produced the
        data and how the data were collected or produced (e.g., who collected the data, what
        data were collected; why were the data originally collected; when were the data
        collected; how were they collected; are the data part of a long-term collection effort, or
        was this a one-time effort; who else uses the data; what level of review by others have
        the data undergone).            '•
    •   Specifying the intended use  of the existing data relative to the CAFO final rule.

    •   Developing a rationale for accepting data from this source, either as a set of acceptance
        criteria, or as a narrative discussion.
    •   Describing any known limitations with the data and their impact on EPA's use of the
        data.         "          •,      j           .

Brief descriptions of the data and their limitations are presented later in this document, as each
data source is introduced.          -.,,'•
                                         3-1

-------
In searching for existing data sources and determining their acceptability, EPA generally used a
hierarchical approach designed to identify and utilize data with the broadest representation of the
industry sector of interest.  EPA began by searching for national-level data from surveys and
studies by USDA and other federal agencies. When such survey or study data did not exist, EPA
considered other data from federal agencies.  An example of non-survey data considered are the
USDA costs and capability data, which are based on a consensus of USDA experts.

Where national data did not exist, as the second tier, EPA searched for data from land grant
universities. Such data are often local or regional in nature.  EPA assessed the representativeness
of the data relative to a national scale before deciding to use the data. When such data came
from published sources, EPA gave greater consideration to publications in peer-reviewed
professional journals compared to trade publications that do not have a formal review process.

The third tier was data supplied by industry.  Prior to proposal, EPA requested data from a
variety of industry sources, including trade associations and large producers. The level of review
applied to data supplied by industry depended on the level of supporting detail that was provided.
For example, if the industry supplied background information regarding how the data were
collected, such as the number of respondents and the total number of potential respondents, EPA
reviewed the results, compared them to data from other potential sources to determine their
suitably for use in this rulemaking.  If the data provided by industry originated from an
identifiable non-industry source (e.g., a state government agency), EPA reviewed the original
source information before determining the. acceptability of the data, hi a limited number of
instances, EPA conducted site visits to substantiate information supplied by industry. In contrast,
data supplied by industry without any background information were given much less weight and
generally were not used by EPA.  Further, some data that were supplied by industry prior to the
proposal were included in the proposal for comment,  hi the absence of any negative  comments,
such data were relied on to a greater extent than data submitted by industry during the comment
period itself.

3.1    Summary of EPA's Site Visit Program
EPA conducted approximately 116 site visits to collect information about AFOs and  waste
management practices. Specifically, EPA visited beef feedlots, dairies, and swine, poultry, and
veal operations throughout the United States. A wide range of operations were visited including
those demonstrating centralized treatment or new and innovative technologies.  EPA chose the
majority of facilities with the assistance of the following industry trade associations:

    •   National Pork Producers Council

    •   United Egg Producers and  United Egg Association

    •   National Turkey Federation
        National Cattlemen's Beef Association
                                           3-2

-------
        National Milk Producers Federation

        Western United Dairymen
EPA also received assistance from environmental groups, such as the Natural Resources Defense
Council and the Clean Water Network. The Agency contacted university experts, state
cooperatives and extension services, and state and EPA regional representatives when identifying
facilities for site visits. EPA also attended USDA-sponsored farm tours, as well as industry,
academic, and government conferences.
                                      )                    .               :
Table 3-1 summarizes the number of site visits EPA conducted by animal industry sector, site
locations, and size of animal operations.  |

               Table 3-1.  Number of Sjte Visits Conducted by EPA for the
                           Various Animal Industry Sectors.
Animal
Sector
Swine
Poultry
Dairy
Beef
Veal,
Number of Site
Visits
30
6 (broiler)
12 (layer)
6 (turkey)
29
30
3
Location(s)
NC, PA, OH, IA, MN, TX, OK, UT
GA AR NC VA WV MD DE PA
OH,IN,WI
PA, FL, CA, WI, CO, VA
TX, OK, KS, CO, CA, IN, NE, LA
IN
Size of Operations
900-1 million head
20,000-1 million birds
40-4,000 cows
500-120,000 head
500-540 calves
EPA considered the following factors when identifying representative facilities for site visits:
    •   Type of animal feeding operatiori

    •   Location
    •   Feedlot size                   !
        Current waste management practices
                                      i
Facility-specific selection criteria are contained in site visit reports (SVRs) prepared for each
facility visited by EPA.  The SVRs are located in the administrative record for this rulemaking.

During the site visits, EPA typically collected the following types of information:

    •   General facility information including size and age of facility, number of employees,
        crops grown, precipitation information, and. proximity to nearby waterways.
                                          3-3

-------
    •   Animal operation data including flock or herd size, culling rate, and method for
        disposing of dead animals.
        Description of animal holding areas such as barns or pens, and any central areas, such as
        milking centers.
    •   Manure collection and management information including the amount generated,
        removal methods and storage location, disposal information, and nutrient content.

    •   Wastewater collection and management information including the amount generated,
        runoff information, and nutrient content.

    •   Nutrient management plans and BMPs.
    •   Available wastewater discharge permit information.

This information, along with other site-specific information, is documented in the SVRs for each
facility visited.

3.2    Industry Trade Associations
EPA contacted the following industry trade associations and representatives during the
development of the proposed and promulgated rules.

US Poultry and Egg Association (USPOULTRY). USPOULTRY is described in their literature
as dedicated to the growth, progress, and welfare of the poultry industry and all of its individual
and corporate interests. All segments of the industry are represented, from producers of eggs,
turkeys, and broilers to the processors of these products and allied companies which serve the
industry. USPOULTRY sponsors the world's largest poultry .industry show; scientific research;
and a comprehensive, year-round educational program for members of the industry.

Capitol Link. Capitol Link represents the interests of many livestock organizations and acts as a
liaison with federal agencies such as EPA.  They frequently provide comments and data oh  :
proposed federal regulatory actions.

National Pork Producers Council fiMPPCX  NPPC is a marketing organization and trade
association made up of 44 affiliated state pork producer associations. NPPC's stated purpose is
to increase the quality, production, distribution, and sales of pork and pork products.

United Egg Producers and United Egg Association (TJEP/UEA).  UEP/UEA promotes the egg
industry in the following areas: price discovery, production and marketing information, unified
industry leadership, USDA relationships, and promotional efforts.

National Turkey Federation (NTF). NTF describes itself as the national advocate for all
segments of the turkey industry, providing services and conducting activities that increase
demand for its members' products.
                                          3-4

-------
National Chicken Council (NCO and National Broiler Council (NBC). NCCisatrade
association representing the vertically integrated companies that produce and process about 95
percent of the chickens sold in the United States. The association provides consumer education,
public relations, and public affairs support, and is working to seek a positive regulatory,
legislative, and economic environment for the broiler industry.  The NCC's activities generally
replace those activities conducted prior to proposal by the National Broiler Council.

National Cattlemen's Beef Association (NCBAX NCB A is a marketing organization and trade
association for cattle farmers and ranchers;, representing the beef industry.

National Milk Producers Federation (NMPF). NMPF is involved with milk quality and
standards, animal health and food safety issues, dairy product labeling and standards, and
legislation affecting the dairy industry.

American Veal Association (AVAX AVA represents the veal industry, advances the industry's
concerns in the legislative arena, coordinates production-related issues affecting the industry, and
handles other issues relating to the industry.

Western United Dairymen (WUDX WUD, a dairy organization in California, promotes
legislative and administrative policies and programs for the industry and consumers.

Professional Dairy Heifer Growers Association (PDHGAV PDHGA is an association of heifer
growers dedicated to growing high-quality dairy cow replacements. The association offers
educational programs and professional development opportunities, provides a communication
network, and establishes business and ethical standards for the dairy heifer grower industry.

All of the. above organizations, along with several of their state affiliates, assisted EPA's efforts
to understand the industry by helping with site visit selection, submitting supplemental data, and
reviewing descriptions of the industry and waste management practices. These organizations
also participated in and hosted meetings with EPA for the purpose of exchanging information.
EPA also obtained copies of membership directories and conference proceedings, which were
used to identify contacts and obtain additional information on the industry. Publications from
trade associations were used to support cogt methodologies.
                                      I

3.3    U.S. Department of Agriculture
EPA obtained data from several agencies ijvithin the USDA, including the  National Agricultural
Statistics Service (NASS), the Animal and Plant Health Inspection Service (APHIS), Natural
Resources Conservation Service (NRCS),:,and the Economic Research Service (ERS) in order to
better characterize the CAFO industry. The collected data include statistical survey information
and published reports. Data collected froin each agency are described below.
                                           3-5

-------
3.3.1  National Agricultural Statistics Service
NASS is responsible for objectively providing accurate statistical information and data support
services of structure and activities of agricultural production in the United States. Each year
NASS conducts hundreds of surveys and prepares reports covering virtually every facet of U.S.
agricultural publications.  The primary source of data is the animal production facility. NASS
collects voluntary information using mail surveys, telephone and in-person interviews, and field
observations. NASS is also responsible for conducting a Census of Agriculture every 5 years.
EPA gathered information from the following published NASS reports:

     •   1997 Census of Agriculture
     •   Hogs and Pigs: Final Estimates 1993 - 1997
        Chickens and Eggs: Final Estimates 1994 -1997
     •   Poultry Production and Value: Final Estimates 1994 -  1997

     •   Cattle: Final Estimates 1994 - 1998
        Milking Cows and Production: Final Estimates 1993 -  1997

The information EPA collected from these sources is summarized below.


1997 Census of Agriculture
The Census of Agriculture is a complete accounting of U.S. agricultural production and is the
only source of uniform, comprehensive agricultural data for every county in the nation. The
census is conducted every 5 years.  The Bureau of the Census conducted this activity until 1997,
when the responsibility passed to NASS. The census includes all farm operations from which
$1,000 or more of agricultural products are produced and sold. The most recent census occurred
in late  1997 and is based on calendar year 1997 data.

The census collects information relating to land use and ownership, crops, livestock, and poultry.
USDA maintains this database; EPA compiled data used for this analysis with the assistance of
NASS  staff.  (USDA periodically publishes aggregated data from these databases and also
compiles customized analyses of the data for members of the public and other government
agencies. In providing such analyses, USDA maintains a sufficient level of aggregation to ensure
the confidentiality of any individual operation's activities or holdings.)

EPA developed several size groups to allow tabulation of farm counts by farm size using
different criteria than those used in the published 1997 Census of Agriculture. EPA developed
algorithms to define farm size  in terms of capacity, or number of animals likely to be found on
the farm at any given time. To convert sales  of hogs and pigs and feeder pigs into an inventory,
EPA divided total sales by the number of groups of pigs likely to be produced and sold in a given
year. EPA estimates that the larger grower-finisher farms produce 2.8 groups of pigs per year.
                                          3-6

-------
Farrow-to-finish operations produce 2.0 groups of pigs per year.  Nursery operations produce up
to 10 groups per year. EPA developed data used to determine the groups of pigs produced per
year from a survey conducted by APHIS (USDA, 1999). For beef feedlots, EPA worked with
staff from NASS and NCB A to estimate the number of groups of cattle produced per year at a
CAFO, and the capacity of the operation based on the number of cattle sold. EPA estimates that
beef feedlots produce between 1 and 2.5 groups of cattle per year, depending on the size of the
operation (ERG, 2002).


Hogs and Pigs: Final Estimates 1993 - 1997
EPA used data from this report to augment the swine industry profile. The report presents
information on inventory, market hogs, breeding herds, and pig crops, and specifically, the
number of farrowings, sows, and pigs per fitter. This report presents the number of operations
with hogs; however, EPA did not use this information to estimate farm counts because the report
provided limited data^ Instead, as discussed earlier in this section, EPA used data provided by
USDA based on the 1997 Census of Agriculture.


Chickens and Eggs: Final Estimates 1994 - 1997
EPA used data from this report to augment the poultry industry profile. The report presents
national and state-level data for the top-producing states on chickens and eggs including the
number laid, and production for 1994 through 1997.


Poultry Production and Value: Final Estimates 1994 - 1997
EPA used data from this report to augment the poultry industry profile. The report presents
national and state-level data for the top-producing states on production (number and pounds
produced/raised), price per pound or egg, and value of production of broilers, chickens, eggs, and
turkeys for 1994 through 1997. .    •     i    '


Cattle: Final Estimates 1994 - 1998
EPA used data from this report to augment the beef industry profile. The report provides the
number of and population estimates for beef feedlots that have a capacity of over 1,000 head of
cattle, grouped by size and geographic distribution.  This report also provides national and state-
level data which include the number of feedlots, cattle inventory, and number of cattle sold per
year by size class for the 13 top-producing beef states.  In addition, the report presents the total
number of feedlots that have a capacity of fewer than 1,000 head of cattle, total cattle inventory,
and number of cattle sold per year for these operations. However, EPA did not use this report to
estimate farm counts because it provided limited data.  Instead, as discussed earlier in this
section, EPA used data provided by USDA based on the 1997 Census of Agriculture.
                                    .1    3-7

-------
Milking Cows and Production: Final Estimates 1993 - 1997
EPA used data from this report to augment the dairy industry profile. The report presents
national and state-level estimates of dairy cattle inventory and the number of dairy operations by
size group.  This particular report presents data for all dairy operations with over 200 mature
dairy cattle in one size class. However, EPA did not use this report to estimate farm counts
because it provided limited data. Instead, as discussed earlier in this section, EPA used data
provided by USDA based on the 1997 Census of Agriculture.

3.3.2  Animal and Plant Health Inspection Service National Animal Health Monitoring
       System (NAHMS)
APHIS provides leadership in ensuring the health and care of agricultural animals and plants,
improving agricultural productivity and competitiveness, and contributing to the national
economy and public health. One of its main responsibilities is to enhance the care of animals. In
1983, APHIS initiated NAHMS as an information-gathering program to collect, analyze, and
disseminate data on animal health, management, and productivity across the United States.
NAHMS conducts national studies to gather data and generate descriptive statistics and
information from data collected by other industry sources. NAHMS has published national study
reports for various food animal populations (e.g., swine, dairy cattle).

EPA gathered information from the following NAHMS reports:

    •   Swine '95 Part I: Reference of 1995 Swine Management Practices
    •   Swine '95 Part II: Reference of Grower/Finisher Health & Management Practices

    •   Swine 2000 Part I: Reference of Swine Health and Management in the United States

    •   Layers '99 Parts I and II: Reference of 1999 Table Egg Layer Management in the U.S.

    •   Dairy '96 Part I: Reference of 1996 Dairy Management Practices
    •   Dairy '96 Pan III: Reference of 1996 Dairy Health and Health Management

    •   BeefFeedlot '95 Part I: Feedlot Management Practices
    •   Feedlot '99 Part I: Baseline Reference of Feedlot Management Practices
    •   Equine '98 Parts I and II: Baseline Reference of 1998 Equine Health and Management

EPA also collected information from NAHMS fact sheets, specifically the Swine '95 fact sheets,
which describe biosecurity measures, vaccination practices, environmental practices/
management, and antibiotics used in the industry.  The information EPA collected from these
reports is summarized below.
                                          3-8

-------
Swine'95 Part I: Reference of 1995 Swine Management Practices

This report (USDA APHIS, 1995b) provides references on productivity, preventative and
vaccination practices, biosecurity issues, and environmental programs (including carcass
disposal). The data were obtained from a sample of 1,477 producers representing nearly 91  ,
percent of the U.S. hog inventory from the top 16 pork-producing states. Population estimates
are broken down into farrowing and weaning, nursery, grower/finisher, and sows.


Swine '95 Part II: Reference of Grower/Finisher Health & Management Practices
This report (USDA APHIS, 1996a) provides additional references on feed and waste
management, health and productivity, marketing, and quality control. The data were collected
from 418 producers with operations having 300 or more market hogs (at least one hog over 120
pounds) and represent about 90 percent of the target population. NAHMS also performed
additional analyses for EPA that present manure management information for the swine industry
in two size classes (fewer than 2,500 marketed head and more than 2,500 marketed head) and
three regions (Midwest, North, and Southeast) (USDA APHIS, 1999).
Swine 2000 Part I: Reference of Swine Health and Management in the United States
Swine 2000 (USDA APHIS, 2001) was designed to statistically sample from operations with 100
or more pigs. The study included 17 of the major pork-producing states that account for 94
percent of the U.S. pig inventory. Data for this report were collected from 2,328 operations.
This report provides information on feed and waste management, health and productivity, animal
management, and facility management. In addition to this report, NAHMS also performed
additional analyses for EPA that present the percent of sites where pit holding was the waste
management system used most by region and herd size for farrowing and grow/finish operations
(USDA APHIS, 2002b).                 '•        •

Layers '99 Parts I and II: Reference of 1999 Table Egg Layer Management in the U.S.
The Layers '99 study (USDA APHIS, 2000b) is the first NAHMS national study of the layer
industry. Data were obtained from 15 states, which account for over 75 percent of the table egg
layers in the United States. Part I of this report summarizes the study results including
descriptions of farm sites and flocks, feed,: and health management. Part II of this report
summarizes biosecurity, facility management, and manure handling practices.

                                      i              "               -
Dairy '96 Part I: Reference of 1996 Dairy Management Practices and Dairy '96 Part III:
Reference of 1996 Dairy Health and Hedlth Management
These reports (USDA APHIS, 1996b and  1996c) present the results of a survey distributed to'
dairies in 20 major states to collect information on cattle inventories; dairy herd management
practices; health management; births, illness, and deaths; housing; and biosecurity. The results
represent 83 percent of U.S. milk cows, or 2,542 producers.  The reports also provide national

                                          3-9

-------
data on cattle housing, manure and runoff collection practices, and irrigation/land application
practices for dairies with more than, or fewer than, 200 mature dairy cattle.  NAHMS provided
the same information to EPA with the results reaggregated into three size classes (fewer than
500, 500 to 699, and more than 700 mature dairy cattle) and into three regions (East, West, and
Midwest) (USEPA, 2002a).

BeefFeedlot '95 Part I: Feedlot Management Practices
This report (USDA APHIS, 1995a) contains information on population estimates, environmental
programs (e.g., ground water monitoring and methods of waste disposal), and carcass disposal at
small and large beef feedlots (fewer than and more than 1,000 head capacity). The data/were
collected from 3,214 feedlots in 13 states, representing almost 86 percent of the U.S. cattle-on-
feed inventory.

Feedlot '99 Part I: Baseline Reference of Feedlot Management Practices
This report (USDA APHIS, 2000a) contains information on population estimates, environmental
programs, and carcass disposal at beef feedlots. The data were collected from 1,250 feedlots in
12 states, representing 77 percent of all cattle on feed in the United States.

Equine '98 Parts I and II: Baseline Reference of 1998 Equine Health and Mb nagement
This report contains information on population demographics, as well as health and health
management practices.  Part II of the same report describes nutrition, pasture, housing, bedding,
and manure management. NAHMS performed additional analyses for EPA to provide
information on primary use and function by size class (USDA APHIS, 2002a).
3.3.3  Natural Resources Conservation Services
NRCS provides leadership in a partnership effort to help people conserve, improve, and sustain
U.S. natural resources and the environment. NRCS relies on many partners to help set
conservation goals, work with people on the land, and provide assistance. Its partners include
conservation districts, state and federal agencies, NRCS Earth Team volunteers, agricultural and
environmental groups, and professional societies.

NRCS publishes the Agricultural Waste Management Field Handbook (AWMFH) (USDA
NRCS, 1992), which is an agricultural/engineering guidance manual that explains general waste
management principles and provides detailed design information for particular waste
management systems. The handbook presents specific design information on a variety of farm
production and waste management practices at different types of feedlots. The handbook also
provides runoff calculations under normal and peak precipitation as well as information on
manure and bedding characteristics. NRCS also publishes Conservation Practice Standards for
many waste handling and treatment operations. EPA used this information to develop its cost
and environmental analyses. NRCS personnel also contributed technical expertise in the

                                          3-10

-------
development of EPA's estimates of compliance costs and environmental assessment framework
by providing EPA with estimates of manure generation in excess of expected crop uptake.

NRCS also analyzed the census data that EPA used for its analysis. In the draft February 23,
2002 Profile of Farms with Livestock in the United States: A Statistical Summary (USD A, 2002),
NRCS presents estimates of the number of CAFOs by animal sector and size group, as well as
the number of head at these farms. EPA used these estimates to calculate the average number of
head and the number of CAFOs by animal sector and size group. In the case of beef feedlots,
NRCS used a turnover rate of 2.5 to estimate capacity for all size operations. EPA recalculated
the number of head at these operations using the turnover rates discussed above.

Another NRCS report (USD A, 2000), Manure Nutrients Relative to the Capacity of Cropland
and Pastureland to Assimilate Nutrients: Spatial and Temporal Trends for the United States
published in December 2000, provides background information on trends in animal agriculture
and manure production based on information collected in the 1997 Census of Agriculture. EPA
used data on the percentage of farms with sufficient cropland, insufficient cropland, and no
cropland to determine the number of CAFOs that require off-site transport of excess manure.
EPA also used data from this report to determine the amount of excess manure at operations with
an insufficient amount of cropland to agronomically land-apply all of the manure and wastewater
generated on site.

Beginning in early 2002 the NRCS shared drafts of their report Overview of Cost Analysis for
Implementation of CNMPs On Animal Feeding Operations with EPA.  This report presents a cost
analysis for planning, designing, implementing and following up on CNMPs on AFOs. The
report also estimated the percentage of operations that have high, medium, and low requirements
for the development and implementation of CNMPs.  The scheduled release of the final
document is October 2002. EPA used the data and appendices of information from these draft
reports to refine baseline conditions for some portions of the CAFOs industry.


3.3.4  Agricultural Research Service (ARS)
ARS is the primary research agency working internally for the USD A.  One of its many
objectives is to heighten awareness of natural resources and the environment. EPA used
information provided from ARS' s Agricultural Phosphorus and Eutrophication report (USD A,
1999) to estimate the number of CAFOs that could be subject to a P-based regulation.


3.3.5  Economic Research Service (ERS)
ERS provides economic analyses on efficiency, efficacy, and equity issues related to agriculture,
food, the environment, and rural development to improve public and private decision making.
ERS uses data from the Farm Costs and Returns Survey (FCRS) to examine farm financial
performance (USDA ERS, 1997). In this report, ERS grouped agricultural production in the
United States into 10 broad geographic sectors: Pacific, Mountain, Northern Plains, Southern
                                         3-11

-------
Plains, Lake States, Corn Belt, Delta, Northeast, Appalachian, and Southern.  EPA further
consolidated the ten sectors into five regions in order to analyze aggregated Census of
Agriculture data: Mid-Atlantic, South, Midwest, Central, and Pacific. .These five aggregated
regions are the geographic regions used throughout EPA's analyses.

ERS is also responsible for the Agricultural Resource Management Study (ARMS), USDA's
primary vehicle for collecting information on a broad range of issues about agricultural resource
use and costs, and farm sector financial conditions. The ARMS is a flexible data collection tool
with several versions and uses. Information is collected via surveys, and provides a measure of
the annual changes  in the financial conditions of production agriculture.


3.4   Other Agency Reports
EPA used data from several EPA reports to develop emission factors used in the nonwater-
quality impact analyses. The Office of Air Quality Planning and Standards (OAQPS) report •
entitled Emissions from AFOs (USEPA, 2001) summarizes data concerning air emissions from
large AFOs including estimated emission factors.  The Office of Air and Radiation report entitled
Inventory of Greenhouse Gas Emissions and Sinks: 1990-2000 (USEPA, 2002b) provides
methodologies for estimating methane and nitrous oxide emissions from manure management
systems and agricultural land. The Office of Research and Development (ORD) provided
literature summaries and possible approaches to quantifying pathogens in manure, their risks to
human health, and potential reductions resulting from the various technology options and BMPs.
ORD also provided the summary report Regional/ORD Workshop on Emerging Issues Associated
with Aquatic Environmental Pathogens (September 5,2001) and the memorandum Human
Health and Environmental Risks Associated with Runoff from Animal Feedlot Operations
(February 12,2001).


3.5   Literature Sources
EPA performed several Internet and literature searches to identify papers, presentations, and
other applicable materials to use in developing the proposed rule. Literature sources were
identified from library literature searches as well as through EPA contacts and industry experts.
Literature collected by EPA covers such topics as housing equipment, fertilizer and manure
application, general agricultural waste management, air emissions, pathogens, and construction
cost data. EPA used literature sources to estimate the costs of design and expansion of waste
management system components at AFOs. EPA also used publicly available  information from
several universities specializing in agricultural research as well as existing computer models,
such as the FarmWare Model that was developed by EPA's AgStar program,  for industry profile
information, waste  management and modeling information, and construction cost data. The
agency also reviewed industry magazines for useful information.
                                         3-12

-------
 3.6    References

 ERG, 2002. Beef Production Cycles and Capacity. Memorandum from D. Bartram to Feedlpts
       Rulemaking Record. December 9, i2002.

 USDA ERS. 1997. Financial Performance of U.S. Commercial Farms, 1991-94. U.S.
       Department of Agriculture Economic Research Service. AER-751. June 1997.

 USDA APHIS. 1995a. Part 1: Feedlot Management Practices, National Animal Health
       Monitoring System. Fort Collins, CO. 1995.

 USDA APHIS. 1995b. Swine '95: Part 1: Reference of 1995 Swine Management Practices,
       National Animal Health Monitoring System. Fort Collins, CO. October 1995.

 USDA APHIS. 1996a. Swine '95: Part II: Reference of 1995 U.S. Grower/Finisher Health &
       Management Practices, National Animal Health Monitoring System. Fort Collins, CO.
       June 1996.                    ;

 USDA APHIS. 1996b. Dairy '96 Part I: Reference of 1996 Dairy Management Practices,
       National Animal Health Monitoring System. Fort Collins, CO. May 1996.

 USDA APHIS. 1996c. Dairy '96 Part III: Reference of 1996 Dairy Health and Health
       Management, National Animal Health Monitoring System. Fort Collins, CO. May 1996.

 USDA APHIS. 1999. Re-aggregated Data from the National Animal Health Monitoring System's
       (NAHMS) Swine '95 Study. Aggregated by Eric Bush of the U.S. Department of
       Agriculture, Animal and Plant Health Inspection System, Centers for Epidemiology and
       Animal Health. 1999.          ;

 USDA APHIS. 2000a. Feedlot '99 - Part 1: Baseline Reference of Feedlot Management
       Practices, National Animal Health Monitoring System. Fort Collins, CO. May 2000.

 USDA APHIS. 2000b. Part II: Reference of 1999 Table Egg Layer Management in the U.S.,
       National Animal Health Monitoring System. Fort Collins, CO. January 2000.

USDA APHIS. 2001. Parti: Reference of Swine Health and Management in the United States,
       2000, National Animal Health Monitoring System; Fort Collins, CO. August 2001.

USDA APHIS. 2002a. Queries on Equine '• '98 run by Centers for Epidemiology .and Animal
      Health; prepared by Michael Durham; January 7, 2002.

USDA APHIS. 2002b. Queries on  Swine 2000 run by Centers for Epidemiology and Animal
      Health prepared by Eric Bush; March 22, 2002; 2 pages.
                                       3-13

-------
USDA. 1992. National Engineering Handbook: Agricultural Waste Management Field
      Handbook, U.S. Department of Agriculture, Natural Resources Conservation Service.
       1992.

USDA. 1999. Agricultural Phosphorus and Eutrophication. ARS-149. U.S. Department of
      Agriculture, Agricultural Research Service. 1999.

USDA. 2000. Manure Nutrients Relative to the Capacity of Cropland and Pastureland to
      Assimilate Nutrients: Spatial and Temporal Trends for the United States, U.S.
      Department Agriculture, Natural Resources Conversation Service. December, 2000.

USDA. 2002. Number Profile of Farms with Livestock in the United States: A Statistical
      Summary. U.S. Department Agriculture, Natural Resources Conversation Service.
      February 4,2002.

USEPA. 2001. Emissions From Animal Feeding Operations (Draft). U.S. Environmental
      Protection Agency Office of Air Quality Planning and Standards. August 15, 2001.

USEPA. 2002a. Cost Methodology for the Final Revisions to the National Pollutant Discharge
      Elimination System Regulation and the Effluent Guidelines for Concentrated Animal
      Feeding Operations. December 15, 2002. EPA-821-R-03-004.

USEPA. 2002b. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2000. EPA 430-
      R-02-003. U.S. Environmental Protection Agency Office of Atmospheric Programs. April
       15, 2002.
                                        3-14

-------
                                                                     CHAPTER 4
                                                      INDUSTRY PROFILES
4.0    INTRODUCTION
This chapter describes the current organization, production processes, and facility and waste
management practices of the AFO and CAFO industries. Farm production methods, operation
sizes, geographical distributions, pollution reduction activities, and waste treatment practices in
use are described separately for the swine, poultry, beef, and dairy subcategories. Discussions of
changes and trends over the past several decades are also provided.

Information on animal production was generally obtained from USD A 1997 Census of
Agriculture, MASS, and information gathered from site visits and trade associations. For
information obtained from the 1997 Census of Agriculture, EPA divided the U.S. into five
production regions and designated them the South, Mid-Atlantic, Midwest, West, and Central
Regions. Originally, the USDA ERS established ten regions so that it could group economic
information. EPA condensed these regions into the five AFO regions because of similarities in
animal production and manure handling techniques, and to allow for the aggregation of critical
data on the number of facilities, production quantities, and financial conditions, which may
otherwise not be possible due to  concerns 'about disclosure1. The production regions are defined
in Table 4-1. See the Cost Report for additional discussion of the sensitivity of EPA's models to
the five AFO regions as used in the cost models.


4.1    Swine Industry Description
Swine feeding operations include facilities that confine swine for feeding or maintenance for at
least 45 days in any 12-month period. These facilities do not have significant vegetation in the
confinement area during the normal growing season, and include totally enclosed buildings, and
open buildings with and without outside access. Swine pasture operations are generally not
included. Facilities that have swine feeding operations may also include other animal and
agricultural operations such as crop farming.

This section discusses the following aspects of the swine industry:

    •   4.1.1: Distribution of the swine industry by size and region
       'For example, USDA Census of Agriculture data are typically not released unless there is a sufficient
number of observations to ensure confidentially. Consequently, if data were aggregated on a state basis (instead of a
regional basis), many key data points needed to describe the industry segments would be unavailable.

                                          4-1

-------
         4.1.2: Production cycles of swine
         4.1.3: Swine facility types and management
         4.1.4: Swine waste management practices
         4.1.5: Pollution reduction
         4.1.6: Waste disposal
                           Table 4-1. AFO Production Regions.
Region
Central
Midwest
Mid-Atlantic
Pacific
South
States Included
Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Oklahoma, Texas, Utah,
Wyoming ;
Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota,
Ohio, South Dakota, Wisconsin
Connecticut, Delaware, Kentucky, Maine, Maryland, Massachusetts, New Hampshire, New
Jersey, New York, North Carolina, Pennsylvania, Rhode Island, Tennessee, Vermont,
Virginia, West Virginia
Alaska, California, Hawaii, Oregon, Washington
Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, South Carolina
The swine industry is a significant component of the domestic agricultural sector, generating
farm receipts ranging from $9.2 billion to more than $11.5 billion annually during the past
decade (USDA NASS, 1998a). Total annual receipts from the sale of hogs average
approximately 12 percent of all livestock sales and 5 percent of all farm commodity sales.
Annual swine output ranks fourth in livestock production value after cattle, dairy products, and
broilers. During 1997, more than 17 billion pounds of pork were processed from 93 million hogs.
The retail value of pork sold to consumers exceeded $30 billion. The National Pork Producers
Council estimates that the pork industry supports more than 600,000 jobs nationally (NPPC,
1999).

As described in the following sections, the swine industry has undergone a major transformation
during the past several decades. Swine production has shifted from small, geographically
dispersed family operations to large "factory farms" concentrated primarily in 10 states in the
Midwest and the South. The number of hog operations, which approached 3 million in the 1950s.,
had declined to about 110,000 by 1997. The rate of consolidation has increased dramatically in
the last decade, which has seen more than a 50 percent decline in the number of swine operations
(USDA NASS, 1999a). All indications are that this trend toward consolidation is continuing.
                                          4-2

-------
Swine production has also changed dramatically in terms of the production process and the type
of animal produced. The hog raised for today's consumer is markedly different from the one
produced in the 1950s. Today's hogs contain approximately 50 percent less fat and are the result
of superior genetics and more efficient diets. The average whole-herd feed conversion ratio
(pounds of feed per pound of live weight produced) used to be between 4 and 5 and has steadily
decreased with current averages between 3.6 and 3.8. The most efficient herds have whole-herd
feed conversion ratios under 3,0 (NPPC, 1999). Hence, a well-run swine operation can currently
produce a 250-pound hog using only 750 pounds of animal feed during its lifetime.

The domestic hog industry is increasingly dominated by large, indoor, totally confined operations
capable of handling 5,000 hogs or more at a time (USDA NASS, 1999b, and USDA NASS,
1999c). These operations typically produce no other livestock or crop commodities. In addition,
there has been greater specialization as more swine operations serve only as nursery or finishing
operations.

Another growing trend in the industry is that more hogs are being produced under contract
arrangement whereby large hog producers, typically referred to as integrators or contractors,
establish production contracts with smaller growers to feed hogs to market weight The producer-
integrator provides management services, feeder pigs, food, medicine, and other inputs, while the
grower operations provide the labor and facilities, hi return, each grower receives a fixed
payment, adjusted for production  efficiency. These arrangements allow integrators to grow
rapidly by leveraging their capital. For example, instead of investing in all the  buildings and
equipment required for a farrow-to-finish operation, the integrator can invest in specialized
facilities, such as farrowing units, while the growers pay for the remaining facilities, such as the
nurseries and finishing facilities (Martinez,  1999). Occasionally other forms of contracts maybe
used.                                |

According to a survey conducted  for the USDA, 11 percent of the nation's hog inventory at the
end of 1993 was produced under long-term  contracts. This percentage was expected to increase
to 29 percent by 1998 (Martinez,  1999). The Mid-Atlantic region has the greatest proportion of
contracted hogs, with more than 65 percent  of grown at facilities where the grower does not own
the  hogs (USDA NASS  1999c).        :

These changes at both the industry and farm levels represent a significant departure from earlier
eras, when hogs were produced primarily on relatively small but integrated farms where crop
production  and other livestock production activities occurred and where animals spent their
complete life cycle. The following sections  describe the current production and management
practices of domestic swine producers,  i


4.1.1   Distribution of Swine Operations by Size and Region
EPA's 1974 CAFO Effluent Limitations Guidelines and Standards generally apply to swine
feeding operations with more than 2,500 head, but count only those swine weighing more than  55
                                          4-3

-------
 pounds. (See Chapter 2 for the definition of a CAFO, and Chapter 5 for a discussion of the basis
 for revisions to the swine subcategory.) Most data sources cited in this section do not distinguish
 swine by weight, but may provide other information that distinguishes sows and other breeding
 pigs, feeder pigs, litters, and market pigs. Where numbers of head are presented in the following
 sections, feeder pigs were not included in the counts unless specified in the text.
 4.1.1.1 National Overview
 The estimated number of domestic swine operations has continuously declined since the 1950s.
 As recently as 1970, there  were more than 870,000 producers of swine. By 1997, this number had
 decreased to about 110,000 (USDA NASS, 1999b)2. The decline has been especially dramatic
 over the past decade. As shown in Table 4-2, the number of operations has steadily decreased
 over the years.

   Table 4-2. Changes in  the Number of U.S. Swine Operations and Inventory 1982-1997
Year
1982
1987
1992
1997
Operations
329,833
243,398
191,347
109,754
Inventory
55,366,205
52,271,120
57,563,118
61,206,236
Source: USDA NASS, 1999b.
As the number of operations has decreased, however, hog inventories have actually risen due to
the emerging market dominance by larger operations. Inventories increased from 55.4 million
head in 1982 to 61.2 million head in 1997 (USDA NASS, 1999b).


4.L1.2 Operations by Size Class
The general trend in the U.S. swine industry is toward a smaller number of large operations
(Table 4-3). As the percentage of smaller producers decreases, there is a consistent increase in
the percentage of herds with a total inventory of 2,000 or more head. The increase in the number
of large operations has predominantly occurred in conjunction with extended use of total   ;
confinement operations, which separate the three production phases described in 4.1.2.
       '' USDA defines an operation as any place having one or more hogs or pigs on hand at any time during the
year.
                                          4-4

-------
        Table 4-3. Percentage of U.S. Hog Operations and Inventory by Herd Size.
Year
1982
1987
1992
1997
0-1,999 Head
Operations
99.3
98.9
97.9
9414
Inventory
85.7
79.0
68.7
39.3
2,000-4,999 Head
Operations
: 0.6
! 1.0
1.6
1 3.9
Inventory
9.5
12.9
15.2
20.8
More Than 5,000 Head
Operations
0.1
0.2
0.4
1.7
Inventory
4.8
8.1
17.0
40.2 .
Source: USDA NASS, 1999b.
In terms of farm numbers, small operations still dominate the industry; however, their
contribution to total annual hog production has decreased dramatically in the past decade. For
example, operations with up to 1,999 head, which produced 85.7 percent of the nation's hogs in
1982, raised only 39.3 percent of the total ;in 1997. In contrast, in 1982, the 0.1 percent of
operations that reported more than 5,000 head produced approximately 5 percent of the swine; in
1997 these large operations (1.7 percent of all operations) produced over 40 percent of the
nation's hogs.
                                      I                              .

4.1.1.3 Regional Variation in Hog Operations
Swine farming has historically been centered in the Midwest Region of the United States, with
Iowa being the largest hog producer in the country. Although the Midwest continues to be the
nation's leading hog producer (five of the top seven producers are still in the Midwest),
significant growth has taken place in other areas. Perhaps the most dramatic growth has occurred
in the Mid-Atlantic Region, in North Carolina. From 1987 to 1997, North Carolina advanced
from being the 12th largest pork producer in the nation to second behind only Iowa. Climate and
favorable regulatory policies played a major role in the growth of North Carolina's swine
industry.

North Carolina's winters are mild and sunimers are tolerable, and this has allowed growers to use
open-sided buildings. Such buildings are less expensive than the solid-sided buildings made
necessary by the Midwest's cold winters. Midwestern growers must also insulate or heat their
buildings in the winter. Tobacco farmers, who found hogs a means of diversifying their
operations, also fueled North Carolina's pork boom. The idea of locating production phases at
different sites was developed in North Carolina. The state also has a much higher average
inventory per farm than any of the states in the Corn Belt. Whereas Iowa had an average of fewer
than 850 head per farm, North Carolina h4d an average of more than 3,200 head per farm in
1997. In recent years, significant growth has also occurred in the panhandle area of Texas and
Oklahoma, Colorado, Utah, and Wyoming, in the Central Region; northern Iowa and southern
Minnesota, in the Midwest Region.       \
                                          4-5

-------
Tables 4-4 through 4-7 present the distribution of different types of swine operations for the key
producing regions. For the purposes of these tables, breeder operations, also known as farrowing
operations, have large numbers of sows and sell or transfer the pigs when they have been weaned
or grown to approximately 55 pounds (feeder pigs); some farrowing operations may also keep
boars. Nursery operations receive weaned pigs and grow them to approximately 55 pounds.
Grow-finish operations are operations that receive feeder pigs and grow them out to marketable
weight; these pigs are often labeled "swine for slaughter."  Combined operations perform all
phases of production, known in the industry as "farrow-to-finish," or just the final two phases
called "wean-finish." Note that no large independent nurseries are depicted by the 1997 census
data. EPA is aware that several large nurseries have recently begun operation or are under
construction. The considerable amount of growth, in the Central (Southwest) Region that has
occurred in the past 3 years is not reflected in the 1997 statistics presented in this section.

Table 4-4 shows the number of operations for six different size classes of facilities. Table 4-5
presents the average herd size by operation type, region, and operation size. Table 4-6 presents
the percentage of total swine animal counts at combined and slaughter operations by region and
operation size. Table 4-7 presents the distribution of different animal types in combined swine
operations by region and operation size.

                  Table 4-4. Total Number of Swine Operations by Region,
                             Operation Type, and Size in 1997.
Region"
Mid-
Atlantic
Midwest
Other
National
Operation
Type"
combined
slaughter
combined
slaughter
combined
slaughter
combined
slaughter
breeder
nursery
Number of Swine Operations (Operation Size Presented by Number of Head)
>0-750
6,498
8,120
35,263
27,081
10,821
13,502
52,582
48,703
2,227
>750-
1,875
421 ;
344
5,212
2,194
359
83
5,992
2,621
>1,875-
2,500
82
150
782
425
74
50
938
625
15
>2,500-
5,000
185
413
1,106
521
135
91
1,426
1,025
>5,000-
10,000
130
281
410
142
60
45
600
468
>10,000
135
119
213
48
5
10
393
177
3
83
0
Total
7,451
9,427
42,986
30,411
11,494
13,781
61,931
53,619
2,245
83
 Wll*l"r\lI3nilC  IVJLt* flOj V 1 j 11 i t 1VHT,  —•) ••" •) -—-, • • -J — --* — - y 	7 —
MO, ME, KS; Other = ID, MT, WY, NV, UT, CO, AZ, MM, TX, OK, WA, OR, WA, OR, CA, AK, HI, AR, LA, MS, AL, GA, SC, FL.
b Operation type: combined = breeding inventory, finishing (average of inventory and sold/2.8), .and feeders (sold/10); slaughter = finishing
(average of inventory and sold/2.8); breeder = (inventory); and nursery = (feeders sold/10).
Source: USDA NASS 1999c.
                                            4-6

-------
                 Table 4-5. Average Number of Swine at Various Operations by
                             Region Operation Type, and Size in 1997.
Region a
Mid-
Atlantic
Midwest
Other
National
Operation
Type"
combined
slaughter
combined
slaughter
combined
slaughter
combined
slaughter
Average Swine Animal Counts (Operation Size Presented by Number of Head)
>0-750
74
32
209
135
51
13
160
84
>750- •!
1,875
1,182 •;
1,242
1,137
1,161
1,255
1,291
1,147
1,176
>1,875-
2,500
2,165
2,184
2,152
2,124
2,150
2,215
2,153
2,146
>2,500-
5,000
3,509
3,554
3,444
3,417
3,455
3,626
3,453
3,491
>5,000-
10,000
5,021
6,877
6,761
6,791
7,052
6,830
6,413
6,846
>10,000
28,766
13,653
27,403
19,607
59,172
14,901
31,509
15,338
AH
Operations
851
641
637
355
410
85
621
336
"Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TO, NC; Midwest = ND, SD, MM, MI, WI, OH, IN,
MO, NE, KS; Other = ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK, WA, OR, WA, OR, CA, AK, HI, AR, LA, MS, AL, GA, SC, FL.
b Operation type: combined = breeding inventory, finishing (average of inventory and sold/2.8), and feeders
(sold/10); and slaughter = finishing (average of inventory and sold/2.8).
Source: USDANASS, 1999c.                   ,
IL.IA,
Table 4-6. Distribution of Swine Herd by Region, Operation Type, and Size in 1997.
Region8
Mid-
Atlantic
Midwest
Other
National
Operation
Type"
combined
slaughter
combined
slaughter
combined
slaughter
combined
slaughter
Percentage of Total Swine Animal Counts by Size Group
(Operation Size Presented by Number of Head)
>0-750
1.25
1.45
19.14
20.26
1.44
0.94
21.83
22.65
>750- ;
1,875
1.30
2.371
15.42;
14.16,
1.17,
0.60 •
17.88;
17.13
>1,875-
2,500
0.46
.1.82
4.38
5.02
0.41
0.62
5.25
7.45
>2,500-
5,000
1.69
8.16
9.91
9.89
1.21
1.83
12.81
19.88
>5,000-
10,000
1.70
10.74
7.21
5.36
1.10
1.71
10.01
17.80
>10,000
10.10
9.03
15.18
5.23
6.93
0.83
32.21
15.09
Total
16.50
33.56
71.24
59.92
12.26
6.52
100.00
100.00
•Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TN, NC; Midwest = ND, SD, MN, MI, WI, OH, IN, IL, IA,
MO, NE, KS; Other = ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK, WA, OR, WA, OR, CA, AK, HI, AR, LA, MS, AL, GA, SC, FL.
b Operation type: combined = breeding inventory, finishing (average of inventory and sold/2.8), and feeders (sold/10); and slaughter = finishing
(average of inventory and sold/2.8).                    . ,
Source: USDA NASS, 1999c.                        !                       ,                              .
                                                   4-7

-------
                Table 4-7. Distribution of Animal Type in Swine Herds at
             Combined Facilities by Region, Operation Type, and Size in 1997.
Region "
Mid-
Atlantic
Midwest
Other
National
Swine Type b
Breeding
Finishing
Feeder
Breeding
Finishing
Feeder •
Breeding
Finishing
Feeder
Breeding
Finishing
Feeder
Percentage of Breeding, Finishing, and Feeder Hogs at Combined Facilities
(Operation Size Presented by Number of Head)
>0-
750
19.84
73.96
6.20
17.85
78.33
3.82
22.47
73.03
4.48
18.27
77.73
4.00
>750-
1,875
17.38
71.74
10.88
16.14
79.59
4.26
19.95
61.02
19.04
16.50
77.70
5.79
>1,875-
2,500
15.59
72.46
11.95
16.55
76.66
6.80
19.54
69.00
11.46
16.70
75.66
7.63
>2,500-
5,000
17.68
65.56
16.75
15.88
76.38
7.73
18.38
71.39
10.23
16.36
74.44
9.21
>5,000-
10,000
16.66
59.02
24.32
15.23
77.77
7.00
20.84
64.45
14.71
16.16
71.78
12.05
>10,000
17.19
58.55
24.25
14.65
80.32
5.03
17.54
78.57
3.90
16.10
72.63
11.27
All
Operations
17.31
61.61
21.08
16.18
78,59
5.23
18.74
73.89
7.37
16.66
74.91
8.40
Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TO, NC; Midwest - ND, SD, MN, MI, WI, OH, IN, IL, IA,
MO, NE, KS; Other = ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK, WA, OR, WA, OR, CA, AK, HI, AR, LA, MS, AL, GA, SC, FL.
* Swine type: Breeding = inventory; finishing = average of inventory and sold/2.8; and feeder = sold/1 0.
Source: USDANASS, 1999c.
USDA NRCS (2002) also provided information to EPA on the number of swine operations based
on the following classifications as shown in Table 4.8:

        Operation size: >=2,500 head, 1,250-2,499 head, and 750-1,249 head.

    •   Land availability: No excess (Category 1. farms with sufficient crop or pastureland).
        Excess, with acres (Category 2 farms with some land, but not enough land to assimilate
        all manure nutrients). Excess, no acres (Category 3 farms with none of the 24 major
        crop types identified by NRCS).
    •   Location: Eleven states or groups of states.

    •   Nutrient basis: Applications are based on N or P application rates.
In Illinois for example, there are 72 facilities with more than 2,500 head with none of the 24
major crop types identified by NRCS for application of animal wastes. There are 34 operations
(with 2,500 or more head) with some land in Illinois, but not enough land to assimilate all
manure nutrients using N-based application rates, and 184 Illinois operations (with 2,500 or more
head) with enough land to assimilate all manure nutrients using N-based application rates.
                                          4-8

-------
   Table 4-8. Number of Swine Facilities as Provided by USDA Based on Analyses of 1997
census or A
Location
AR, KS, OK
AR, KS, OK
AR, KS, OK
IL
IL
IL
IN
IN
IN
IO
IQ
IO
MI,WI
MI,WI
MI,WI
MN
MN
MN .
MO
MO
MO
NC
NC
NC
NE
NE
NE
OH
OH
OH
other
other
other
Land availability
category
No excess ;
Excess, no acres (
Excess, with acres

Excess, no acres
Excess, with acres ;
No excess
Excess, no acres <
Excess, with acres 1
No excess i
Excess, no acres
Excess, with acres !
No excess
Excess, no acres
Excess, with acres :
No excess
Excess, no acres
Excess, with acres
Mo excess
Excess, no acres
Excess, with acres
Mo excess
Excess, no acres
Excess, with acres
Mo excess
Excess, ho acres
axcess, with acres \
Mo excess ',
Excess, no acres ',
ixcess, with acres •
Mo excess
Excess, no acres 1
ixcess, with acres
sncumire uataoase.
Operation Size and Nutrient Basis
>=2,500
N
52
66
113

72
34
179
68
35
411
211
120
57
31
19
225
152
50
54
17
59
194
185
630
40
81
32
45
23
12
184
132
157
P
21
66
144

72
123
107
68
107
164
211
367
25
31
51
97
152
178
32
17
81
15
185
809
15
81
57
23
23
34
87
132
254
1,250-2,499
N
76
36
78

45
31
254
53
29
1,155
183
89
97
30
19
386
83
28
104
18
48
83
71
157
164
49
29
98
33
17
244
99
104
P
50
36
104

45
105
205
53
78
796
183
448
65
30
51
272
83
142
87
18,
65
23
71
217
141
49
52
61
33
54
145
99
203
750-1,249
N
101
22
40

39
21
387
50
36
1,587
235
51
169
29
8
523
69
28
203
25
33
56
33
45
279
82
29
202
31
29
404
102
78
P
80
22
61

39
77
346
50
77
1,346
235
292
136
29
41
430
69
121
183
25
53
21
33
80
245
82
63
154
31
77
289
102
193
Source: USDA NRCS, 2002.
4.1.2  Production Cycles of Swine
Swine production falls into three phases. Pigs are farrowed, or born, in farrowing operations.
Sows are usually bred for the first time when they are 180 to 200 days old. Farrowing facilities
range from pasture systems to completely confined housing systems. A sow's gestation period is
about 114 days. Farrowings are typically 9, to 11 pigs per litter, with a practical range of 6 to 13.
The highest death losses in the pig-raising cycle occur within 3 to 4 days of birth. The average
number of pigs weaned per litter in 1997 vyas 8.67 (see Table 4-9). Producers incur significant
expenses in keeping a sow, so the survival of each pig is critical to overall profitability. Sows
                                           4-9

-------
 usually resume sexual activity within a week after a litter is weaned. Growers are able to roughly
 synchronize production by weaning all their baby pigs on the same day. When they do this, all
 the sows in a farrowing group become sexually active again at roughly the same time and may be
 bred again at the same time. The sows will then farrow at about the same time, over a period of
 about a week. In this way, growers are able to keep groups of pigs together as they move from
 one phase of production to another. Sows normally produce five to six litters before they are
 culled and sold for slaughter at a weight of 400 to 460 pounds.

 Baby pigs are typically allowed to nurse from the sow, and then are relocated to a nursery, the
 second phase of swine production. In the nursery phase, pigs are weaned at 3 to 4 weeks of age
 and weigh 10 to 15 pounds. In the nursery, the pigs are raised to 8 to 10 weeks of age and 40 to
 60 pounds. In practice, the weaning phase may take as few as 10 days, and may exceed 35 days.

 During the third phase of production, growing pigs are raised to a market weight of 240 to 280
 pounds. Finishing takes another 15 to 18 weeks, thus hogs are typically sent to market when they
 are about 26 weeks old (see Table 4-10). The growing and finishing phases were once separate
 production units, but are now combined in a single unit called grow-finish. In the
 growing—finishing unit, pigs are raised from 50 or 60 pounds to final market weight. The average
 grow-finish facility will produce approximately 2.8 turns (also called life cycles, herds, or
 groups) annually. Typically, finished pigs are from 166 to 212 days old. This results in a range of
 2.4 to 3.4 turns  (or groups) of pigs produced from the grow-finish unit per year. Average farrow-
 to-finish operations will produce 2.1 groups per sow per year. The range of annual turnover
 frequency at farrow-to-finish farms is from 1.8 to 2.5.

                        Table 4-9. Productivity Measures of Pigs.
Year
1992
1993
1994
1995
1996
1997
Average
Number of Pigs
Weaned per Litter
8.08
8.13
8.19
8.32
8.50
8.67
8.32
Per Breeding Animal per Year
Litters
1.69
1.68
1.73
1.68
1.64
1.72
1.69
Head to Slaughter
13.08
13.06
13.36
13.64
13.51
13.79
13.41
Average Live
Weight per Pig
(pounds)
252
254
255
256
257
260
256
Source: NPPC, 1999.
                                          4-10

-------
                 Table 4-10. Age of Pigs Leaving Grow-Finish Unit in 1995
Age of Pig on Leaving Grow-
Finish Unit (days)
120-160
160-165
166-180
181-209
210 or more
Weighted Average
Percentage of Operations and Pigs
Percentage of Operations
• < 12.5
i 16.7
49.6
' 16.3
4.9
173 days
Percentage of Pigs
. 12.2
12.6
45.8
24.9
4.5
175 days
Source: USDA APHIS, 1995.
In 1995, most operations had a farrowing facility, whereas slightly less than half of the facilities
nationwide had a separate nursery facility: Most operations (85.6 percent) did have a finishing
facility. Finishing operations get their pigs from on-site farrowing and nursery units (76.7
percent), off-site farrowing operations (10.2 percent), feeder pig producers under both contract
and noncontract arrangements (13.8 percent), or livestock auctions or sales (5.9 percent). Large
finishing operations (>10,000 head marketed) were more likely (56.3 percent) to get their pigs
from off-site sources (USDA APHIS, 1995): Tables 4-11 and 4-12 present the frequency of the
three major production phases by region and size. The sample profile of the Swine '95 survey
indicates that 61.9 percent of respondents were farrow-to-finish operations and that 24.3 percent
were grow-finish operations. (At the time of writing, reports from the Swine 2000 survey did not
provide equivalent statistics that allow comparisons based on region and operation size. Thus,
Tables 4-11 and 4-12 present data from the Swine '95 survey.)
         Table 4-11. Frequency of Production Phases in 1995 on Operations That
                   Marketed Less Than 5,000 Hogs in a 6-Month Period.
Production Phase
Farrowing
Nursery
Finishing
.; USDA APHIS Region"
Midwest
• 76.6
20.1 ;
78.8 !
North
68.6
51
79.7
Southeast
69.3
57.8
93.4
5 Midwest = SD, NE, MM, IA, EL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
accounted for nearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995
                                           4-11

-------
         Table 4-12. Frequency of Production Phases in 1995 on Operations That
                   Marketed 5,000 or More Hogs in a 6-Month Period.
Production Phase
Farrowing
Nursery
Finishing
USDA APHIS Region3
Midwest
44.8
75
45.8
North
80.4
67.1
69.7
Southeast
89
97.4
62.8
 iVXlUWCal  *3tVj llJLrfy IVAl^y J-**| *"» A^Wtw*  " *J *.**, •"-> w-j -.., — —	
accounted for nearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995.
Although many large operations continue to have the full range of production phases at one
facility, these operations are no longer the norm. More frequently, in new operations, several
specialized farms are linked, or horizontally integrated, into a chain of production and marketing.
Pigs begin in sowherds on one site, move to a nursery on another, and then move again to a
finishing facility. Specialized operations can take advantage of skilled labor, expertise, advanced
technology, streamlined management, and modem housing. However, the primary advantage of
specialization is disease control. In a farrow-to-fmish operation, a disease outbreak that begins in
one phase of the operation can spread to the other phases. Physically separating the phases makes
it easier to break this disease cycle. At the same tune, separating phases spreads the cost of
establishing swine operations, particularly if the different operations are owned by different
persons.

Thus other categories of swine operations may comprise two or three of the three phrases
described: combined farrow-nursery operations, which breed pigs and sell them at 40 to 60
pounds to finishing operations; wean-to-finish operations, which  finish weaned pigs; and farrow-
to-finish operations, which handle all phases of production from breeding through finishing. The
emerging trend in the mid to late '90s was to produce pigs in two production phases rather than
in three. In two-phase production, the weaned pigs may go straight into the grower building or
finishing building, bypassing the nursery. The advantages of such practices are reduced
transportation costs, lessened animal stress, and reduced animal mortality.


4.1.3   Swine Facility Types and Management
Table 4-13  summarizes the five major housing configurations used by domestic swine producers.

Although there are still many operations at which pigs are raised outdoors, the trend in the swine
industry is toward larger confinement facilities where pigs are raised indoors. A typical
confinement farrowing operation houses 3,000 sows, although some farrowing operations house
as many as 10,000 sows at one location, and farms are being planned that will house as many as
                                          4-12

-------
15,000 sows at one location. Typical nursery operations are much smaller with a capacity of only
about 1,500 head, but as stated earlier, separate nursery facilities are relatively uncommon.
                 Table 4-13. Summary of Major Swine Housing Facilities
Facility Type2
Total confinement
Open building with no outside
access
Open building with outside access
Lot with hut or no building
Pasture with hut or no building
Description
Pigs are raised in pens or stalls in
an environmentally controlled
building. I
Pigs are raised in pens or stalls but
are exposed to natural climate
conditions.
Pigs are raised in pens or stalls but
may be moved to outdoors.
Pigs are raised on cement or soil lot
and are not confined to pens or
stalls.
Pigs are raised on natural pasture
land and are not confined to pens or
stalls. '
Applicability
Most commonly used in nursery
and farrowing operations and all
phases of very large operations.
Particularly common in the
Southeast.
Relatively uncommon but used by
operations of all sizes.
Relatively uncommon, but used by
some small to mid-sized operations.
Used by small to mid-sized
operations.
Traditional method of raising hogs
currently used only at small
operations.
 These are the main facility configurations contained in the Swine '95 Survey conducted by USDA APHIS, 1995.
The economic advantages of confined facilities have been the primary driving factor (especially
at large operations) for farmers to abandoii dry lot or pasture raising of hogs. Although
controlled-environment buildings require a greater initial capital investment than traditional farm
operations, labor costs per unit output are significantly reduced. Furthermore, these facilities
allow for far greater control of the production process, protect both animals and workers from
weather, and usually result in faster growth-to-market weight and better feed efficiency. Most
controlled-environment facilities employ ''all in, all out" production, in which pigs are moved in
groups, and buildings are cleaned and disinfected between groups. It should be noted that the
success of a controlled-environment operation is highly dependent on properly functioning
ventilation, heating and cooling, and waste removal systems. A prolonged breakdown of any of
these systems during extreme weather conditions can be catastrophic to the pig herd and
economically devastating to the operator. •>
                                       i          -       .
Facility requirements differ somewhat for each phase in a hog's life cycle, and hence farrowing,
nursery, and growing-finishing facilities are configured differently. For example, farrowing
operations require more intense management to ensure optimal production and reduce piglet
mortality. A typical farrowing pen measures 5 by 7 feet, and the litter is provided with a
protected area of approximately 8 square feet. The sow is relegated to a section of the pen and is
separated from the piglets by low guard rails that reduce crushing but do not interfere with
                                           4-13

-------
 suckling. Floors are usually slatted under or to the rear of the sow area to facilitate waste removal
 (NPPC,  1996).

 Newly bom piglets require special care because of their vulnerability to injury and disease.
 Nursery systems are typically designed to provide a warm, dry, and draft-free environment in
 *which animal stress is minimized to promote rapid growth and reduce injury and mortality.
 Nursery rooms are regularly cleaned and sanitized to reduce the piglets' exposure to pathogens.
 Nursery buildings are cleaned and disinfected thoroughly between groups of pigs to prevent the
 transmission of disease from one herd to another. Nursery pens usually hold 10 to 20 pigs. Pigs
 are held in the nursery from weaning until they are 8 to 12 weeks old (NPPC, 1996).  ,

 Finishing pigs at tend to require less intensive management than piglets and can tolerate greater
 variations in environmental conditions without incurring health problems. In an environmentally
 controlled building, growing and finishing pens hold 15 to 40 pigs and allow about 6 square feet
 per pig. Overcrowding leads to stress and aggressive behavior and can result in reduced growth
 rates and injury. Slatted concrete floors are the most common (NPPC, 1996).

 Smaller facilities tend to use open buildings, with or without access to the outside. Usually, hogs
 raised hi these buildings are also confined to pens or stalls. Depending on the climate, the
 building might require ventilation and mist sprayer systems to prevent heat stress in the summer.
 Bedding might be needed during the whiter months to protect the animals from the cold.

 Hogs raised on dry lots or pasture require care and management similar to that for animals raised
 indoors,  plus additional measures to protect the herds from extreme weather conditions. They
 must be provided with sufficient shade to reduce heat stress in the summer. Where natural shade
 is not available, facilities can be constructed to protect the herd from the sun in the summer and
 from wind  and cold during the whiter. Windbreaks are used under certain environmental
 conditions.

 The most comprehensive information on swine facility and waste management systems currently
 in use by farm type, size, and state location was collected in conjunction with USDA's  Swine '95
 study (USDA APHIS, 1995). Included in the study were 16 major pork-producing states that
 accounted for almost 91 percent of the  U.S; hog inventory and more than 70 percent of the pork
 producers. The samples for the major swine-raising operations were statistically designed to
 provide inferences to the nation's swine population. Although the survey was conducted by
 APHIS and focused on swine health issues, it contains  information on swine production and
 facility and waste management. Tables 4-14 and 4-15 present information on the housing types
used in the farrowing phase. Tables 4-16 and 4-17 present information on the housing types used
 in the nursery phase. Tables 4-18 and 4-19 present information on the housing types used in the
 finisher phase. These tables clearly demonstrate that the larger facilities tend to use total
 confinement in all regions. (At the time of writing, reports from the Swine 2000 survey did not
provide equivalent statistics that allow  comparisons based on region and operation size. Thus
Tables 4-14 through 4-19 present data from the Swine '95 survey.)
                                          4-14

-------
  Table 4-14. Housing Frequency (in percent) in 1995 of Farrowing Facilities at Operations
                 That Marketed Fewer Than 5,000 Hogs in a 6-Month Period.
Facility Type
Total Confinement
Open Building; no
outside access
Open Building; outside
access
Lot
Pasture
USDA APHIS Region8
Midwest
22.6 ;
13.1
25.7 !
16.2 '
22.4 '
North
53.1
8.0
33.8
3.2
1.9
Southeast
56
8.8
31.2
1.1
2.8
a Midwest = SD, NE, MN, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
accounted for nearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995.
  Table 4-15. Housing Frequency (in percent) in 1995 of Farrowing Facilities at Operations
                  That Marketed 5,000 or More Hogs in a 6-Month Period.
Facility Type
Total Confinement
USDA APHIS Region"
Midwest i
98.3
North
100
Southeast
100
• Midwest = SD, NE, MN, IA, EL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
accounted for nearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995.                      i
   Table 4-16. Housing Frequency (in percent) in 1995 of Nursery Facilities at Operations
                That Marketed Fewer Than 5,000 Hogs in a 6-Month Period.
Facility Type
Total Confinement
Open Building; no
outside access
Open Building; outside
access
Lot
I USDA APHIS Region3
Midwest '
52.3
9.1 |
27.7 !
7.0 ;
North
55.4
11.5
33.8
not available
Southeast
62
8.8
31.2
3.7
• Midwest = SD, NE, MN, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA.. Only the 16 major pork states that
accounted for nearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995.
                                              4-15

-------
   Table 4-17. Housing Frequency (in percent) in 1995 of Nursery Facilities at Operations
                  That Marketed 5,000 or More Hogs in a 6-Month Period.
Facility Type
Total Confinement
USDA APHIS Region3
Midwest '
99
North
100
Southeast
96.4
" Midwest - SD, NE, MM, IA, EL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA; Only the 16 major pork states that
accounted fornearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995.
  Table 4-18. Housing Frequency (in percent) in 1995 of Finishing Facilities at Operations
                That Marketed Fewer Than 5,000 Hogs in a 6-Month Period
Facility Type
Total Confinement
Open Building; no
outside access
Open Building; outside
access
Lot
Pasture
USDA APHIS Region"
Midwest
19.9
15.4
24.5
17.1
23.0
North
36.5
14.1
42.1
4.6
2.5
Southeast
23.4
9.5
55.9
9.3
1,9
• Midwest - SD, NE, MN, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
accounted fornearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995.
  Table 4-19. Housing Frequency (in percent) in 1995 of Finishing Facilities at Operations
                  That Marketed 5,000 or More Hogs in a 6-Month Period.
Variable
Total Confinement
Region9
Midwest
96.8
North
95.5
Southeast
83.9
1 Midwest - SD, NE, MN, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
accounted fornearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA APHIS, 1995.
4.1.4  Swine Waste Management Practices
Removal of manure from the animals' living space is critical for animal and farm worker well-
being. Odor, gases, and dust carried by ventilation exhaust air are also affected by the waste
management system used. Swine waste management systems can be separated into collection,
storage, and treatment practices. An overview of the major practices in each of these areas is
presented below, and more detailed information on waste collection, storage, and treatment
practices is provided in Section 8 of this document. Although the practices described below do
                                            4-16

-------
  not represent all of the waste management practices In use today, they are the predominant
  practices currently used at swine operations.
  4.1.4.1 Swine Waste Collection Practices

  Indoor raising of hogs requires that animals be physically separated from their waste products.
  Separation in larger facilities is usually accomplished through the use of concrete flooring with
  slots that allow the waste to drop below the living area and be transferred to a pit or trough
  beneath the pen. Smaller facilities hand clean pens to collect wastes.

  The most frequently reported waste management system used in 1990 was hand cleaning (41.6
  percent), which declined in use to 28.3 percent of operations in 1995 (USDA APHIS, 1995).
  This decrease in hand cleaning is highly correlated to the decrease in smaller facilities. Some
  facilities separate solid material from liquids before moving the material to storage. (A
  discussion of solid-liquid separation is presented in Section 8.) Slatted floors are now more
  commonly used to separate the manure from the animals at larger facilities. The waste is then
  deposited in an under-floor pit or gutter where it is stored or moved to another type of storage.
 There are two main types of under-floor collection practices in which the waste is moved for
 storage elsewhere.          •

         Pit recharge. Pit recharge is the periodic draining of the pit contents by gravity to
         storage, followed by recharging the pit with new or recycled water. Regular pit draining
         removes much of the manure solids that would otherwise settle and remain in the
         bottom of the pit. The regular dissolution of settled solids increases the likelihood the
         solids will be removed at the next: pit draining. Recharge systems use a 16- to 18-inch-
         deep, in-house pit with 6 to 8 inches of water, which is emptied every 7 days to an
         anaerobic lagoon. Previously, 24-ihch-deep pits were preferred, but now shallower pits
         are used with the hog slat system.

         Flush. Flush systems may use fresh water or recycled lagoon water for frequent removal
         of feces and urine from under-floor collection gutters or shallow pits. Like pit recharge
         systems, flush systems also improve animal health and performance as well as human
         working conditions in the swine houses by avoiding prolonged storage. Flush tanks with
         the capacity to release at least 1.5 gallons per 100 pounds of live animal weight per
         flush are placed at the end of the swine houses. Pit floors should be level from side to
         side, and wide pits should be divided into individual channels no wider than 4 to 5 feet.
        The floor slope for most flush systems is between  1 and 2 percent. Floors are flushed at
        least 1 to 12 times per day; the flush tanks are filled with  new or recycled lagoon water
        before every flush. The flushed waste is collected and removed from the houses into
        storage through a system similar to that used in pit recharge systems.

4.1.4.2 Swine Waste Storage Practices

Waste storage is critical to the proper management of wastes from AFOs because manure
nutrients are best applied to farmland only at certain times of the year, as determined by'crops,
climate, and weather. Storage practices include deep pits,  anaerobic and aerobic lagoons, above

                                          4-17

-------
and belowground slurry storage (tanks or pits), and dry storage. Most large hog farms (more than
80 percent) have from 90 to 365 days of waste storage capacity (see Table 4-20).
Xablp 4-7" P«r«mtage of Swine Facilities With Manure Storage in 1998.
Annual
Marketed Head
MR
0-1,000
1,000-2,000
2,000-3,000
3,000-5,000
5,000-10,000
10,000-20,000
20,000-50,000
50,000 +
0-3 months
3.2
31.9
14.9
10.1
5.8
6.1
4.7
6.0
4.0
3-6 months
3.7
27.2
38.0
35.4
33.5
2
26.4
23.5
19.5
6-9 months
3.2
12.3
20.7
21.9
22.8
22.1
21.1
22.8
28.7
9-12 months
7.4
17.4
19.4
28.1
32.6
35.6
40.9
39.2
28.0
None or NA
82.5
11.3
7.1
4.4
5.3
7.0
6.8
8.6
19.8
 NA- Not reported/available. Source: NPPC, 1998.
An overview of common waste storage practices is provided below; more detailed information
can be found in Section 8 of this document.

     -   Deep pit manure storage. Many operations use pits that are 6- to 8-feet deep and
        provide for up to 6 months of storage under the house. Commonly, slurry is removed
        from the pit twice a year. The slurry is disposed of through direct surface application or
        subsurface injection, transferred to an earthen storage facility, or pumped to an above or
        belowground storage tank. This slurry system produces a waste stream with higher dry
        matter content (4 to 5 percent) and higher nutrient content than other liquid manure
        systems. The above and belowground storage systems conserve more N  than other
        systems (N loss of only 10 to 30 percent). Operations use this system to avoid problems
        associated with lagoons such as odor, ammonia volatilization, and ground water impact
        resulting from leaking lagoons.
     •   Lagoon Systems. Lagoon systems can serve as both storage and treatment units.
        Anaerobic lagoons are the most common type of lagoon and are characterized by
        anaerobic decomposition of organic wastes. When properly designed an anaerobic
        lagoon will have a minimum total capacity that includes appropriate design treatment
        capacity, additional storage for sludge accumulation, and temporary storage for rainfall
        and'wastewater inputs. A lagoon should  also have sufficient freeboard and an indicator
        of the highest safe water level, to prevent the wastewater from overflowing the
        embankment.
     •   Lagoons usually fill to capacity within 2 to 3 years of startup due to the accumulated
        waste volume and, depending on the region, rainfall in excess of evaporation. When the
                                          4-18

-------
         lagoon is full, water overflow will occur unless the operator is in a position to apply the
         excess water to the land. Lagoon water drawdown by irrigation or other methods is
         usually begun before the water reaches the maximum wastewater storage level. Several
         states require that liquid level indicators be placed in the lagoon to be sure that the
         liquid stays below the level required to contain the 24-hour, 25-year storm.

         In addition to anaerobic lagoons, there are aerobic lagoons (which mix and aerate waste
         via mechanical aerators or ozone generators), two-stage lagoons (typically a constant
         volume covered treatment cell followed by a storage cell), and multistage cell lagoons.
         Technical information and a discussion of the advantages and disadvantages of these
         types of lagoons is presented in Section 8 of this document.

     •    Settling and evaporation ponds. Earthen ponds are used by some swine operations for
         solids separation. These ponds are designed to remove 40 percent of the total solids (in a
         6 percent solids form) based on 3 months of storage. The material is then moved to
         another earthen pit, which serves as a drying bed,  or flow is diverted to a parallel solids
         removal pond. The slurry dries to about 38 percent solids and 3-inch thickness within 6
         months. The material is then moved with a front-end loader into a box-type spreader and
         applied to the land. Solids drying ponds and beds are not covered and therefore exposed
         to rainfall. A floating pump is located half the lagoon distance from the inlet, with a
         screen over the intake to protect sprinkler nozzles. The supernatant is pumped and used
         to irrigate fields. Another variation is to use a single lagoon followed by an evaporation
         pond that is 6 feet deep and as big as possible.  Some evaporation ponds dry up during
         the summer. Because of odor problems, there is a trend away from the earthen pond for
         solids separation to either a single anaerobic lagoon or an anaerobic lagoon and an
         evaporation pond.             ;

         Waste runoff storage. The systems described above can also be associated with
         operations that maintain hogs on an outside lot for at least part of the time. Such
         operations might also use housing similar to the systems described above, but allow
         outside access for the animals. Dry lot areas may be paved or dirt, and manure is stored
         in piles that are created by tractor or scraping systems. Although controls might be in
         place to contain manure from enclosed areas through use of a deep pit or.lagoon,  they
         are not generally protective of the outside environment. Other typical runoff controls
         include surface diversions to prevent rainwater from running onto the lot, or a crude
         settling basin with a slotted overflow.

    •    Other. Other types of waste management practices currently used include above and
        belowground tanks (possibly covered or aerated), and hoop housing/deep bedding
        systems.

USDA APHIS (2001) performed a survey of swine  operations with 100 or more pigs. The study
included 17 of the major pork-producing siates that account for 94 percent of the U.S. pig
inventory. Data for that survey were collected from 2,328 operations. The report provided
information on feed and waste management, health and productivity, animal management, and
facility management. In addition to this report, NAHMS also performed additional analyses for
EPA that present the percent of sites where pit holding was the waste management system used
                                          4-19

-------
most by region and herd size for the farrowing and grow-finish phase (USDA APHIS, 2002a).
Tables 4.21 and 4.22 indicate the percent of sites where pit holding was the waste management
system used most.

  Table 4-21. Percent of Sites Where Pit Holding was the Waste Management System used
                   most by Region and Herd Size for Farrowing Phase.
States
Minnesota, Wisconsin, Michigan, Pennsylvania
Colorado, South Dakota, Nebraska, Kansas, Missouri
Iowa, Illinois, Indiana, Ohio
Texas, Oklahoma, Arkansas, North Carolina
Total Inventory (head)
Total
37.3
22.6
40.9
16.0
750-2500
50.3
37.9
65.0
14.4
>2500 +
49.3
50.2
63.2
23.9
Source: USDA APHIS, 2002a.
  Table 4-22. Percent of Sites Where Pit Holding was the Waste Management System used
                most by Region and Herd Size for Grower-Finisher Phase.
States
Minnesota, Wisconsin, Michigan, Pennsylvania
Colorado, South Dakota, Nebraska, Kansas, Missouri
Iowa, Illinois, Indiana, Ohio
Texas, Oklahoma, Arkansas, North Carolina
Total Inventory (head)
Total
59.9
33.6
48.3
27.7
750-2500
77.5
55.3
67.6
26.3
>2500 +
83.3
39.3
77.5
37.5
Source: USDA APHIS, 2002a.
4.1.4.3 Swine Waste Treatment Practices
Many types of technology are used to treat swine wastes. These technologies work in a variety of
ways to reduce the N, COD, and the volatile solids content of waste; or to change the form of the
waste to make it more concentrated and thus easier to handle. The most common type of
treatment practice is the anaerobic lagoon.

    •    Lagoon treatment systems. Lagoons designed to treat waste can reduce organic content
        and N by more than 50 percent (PADER, 1986). Anaerobic lagoons are generally
        preferred over aerobic lagoons because of their greater ability to handle high organic
        load. Nonetheless, incomplete anaerobic decomposition of organic material can result in
        offensive by-products, primarily hydrogen sulfide, ammonia, and intermediate organic
        acids, which can cause disagreeable odors. Therefore, proper design, size, and
        management are necessary to operate an  anaerobic lagoon successfully.

        New lagoons are typically half filled with water before waste loading begins. Starting up
        during warm weather and seeding with bottom sludge from a working lagoon speeds
        establishment of a stable bacterial population. Proper lagoon maintenance and operation
        is absolutely necessary to ensure that  lagoon liner integrity is not affected, that berms
        and embankments are stable, and the required freeboard and rainfall storage are
        provided.
                                         4-20

-------
 Even when bacterial digestion is efficient, significant amounts of sludge accumulate in
 anaerobic lagoons. Although lagoons can be designed with enough storage to minimize
 the frequency of bottom sludge removals, at some point sludge accumulation will
 greatly diminish the treatment capacity of most lagoons. Without the proper treatment
 volume, anaerobic decomposition will be incomplete, and odors will usually become
 more pronounced. Inadequate maintenance of treatment volume is the single most
 common reason for the failure of lagoon treatment systems. The method used most
 frequently to remove sludge entails vigorous mixing of sludge and lagoon water by
 means of an agitator/chopper pump or propeller agitator. The operation of the
 agitator/chopper must be continuously monitored to prevent damage to the liner berms,
 or embankments, which could result in contamination of surface or ground water. The
 sludge mixture is then pumped through an irrigation system onto cropland.
 Some lagoons are covered with a synthetic material. There can be multiple advantages
 to covering a lagoon. A cover will prevent rainfall from entering the system, which can
 result in additional disposal costs. Nitrogen volatilization is minimized, making the
 waste a more balanced fertilizer and potentially saving expenses for the purchase of N
 fertilizers. The EPA AgSTAR Program has demonstrated that biogas production and
 subsequent electricity generation from covered lagoons and digesters can be cost
 effective, help control odor, and provide for more effective nutrient management.

 Digesters. Conventional aerobic digestion is frequently used to stabilize biosolids at
 small municipal and industrial facilities as well as at some AFOs. Waste is aerated for
 relatively long periods of time to, promote microbial growth. Substantial reductions in
 total and volatile solids, BOD, COD  and organic N as well as some reduction in
 pathogen densities can be realized. Autoheated aerobic digesters use the heat released
 during digestion to increase reaqtion  rates and allow for more rapid reduction of
 pathogens. The biosolids created by digesters concentrate solids, resulting in easier
 handling. Additional information on the operational considerations, performance, and
 advantages and disadvantages of digesters can be found in Section 8.
 Sequencing batch reactors. Manure is treated in sequence, typically in a vessel of metal
 construction. The vessel is filled, reacted (aeration cycled on and off),  and then allowed
 to settle. Organic carbon and ammonia are reduced and P is removed through biosolids
 generation or chemical precipitation. The biosolids generated are in a concentrated
 form, allowing for ease in handling.
 Other. Many other practices are used separately or in combination with the practices
 listed above to treat swine wastes. Constructed wetland treatment cells, trickling filters,
 composting, oxidation ditches, are a few of the other ways to treat swine wastes.
 Systems being developed or under trial studies include Y- or V- shaped pits with
 scrapers for solid-liquid separation at the source, membrane filtration,  chemical
treatments, high-rise hog buildings, oligoiysis, hydroponic cultivation, photosynthetic
digesters, and closed loop water use systems using ultraviolet disinfection. Information
on the operational considerations, performance, and advantages and disadvantages of
these and other treatment practices can be found in Section 8.
                                  4-21

-------
4.1.4.4 Waste Management Practices by Operation Size and Geographical Location
The use of a particular waste management system is driven by the size of the operation and
geographic considerations (e.g., climate). For example, operation of a confined facility with the
use of a lagoon for treatment requires substantial capital investment. Below a certain number of
head, such a system would be cost-prohibitive since the high start-up and maintenance costs of
such a facility have to be spread over a large number of animals to ensure economic viability.
Geographic considerations also play a role in waste management. Anaerobic lagoons are
common in the Southeast, where factors such as land availability and climate conditions are
favorable. Midwestern farms are more likely to use pit storage with slurry transport to above or
belowground tanks. The Swine '95 Survey (USDA APHIS, 1995) provides a detailed picture of
swine management practices by operation type, size, and location.  (At the time of writing, reports
from the Swine 2000 survey did not provide equivalent statistics that allow  comparisons based
on region and operation size and is therefore not presented in this section.)

Waste Management Practice by Operation Size

As mentioned previously, large operations (greater than 2,000 head marketed in the past 12
months) are much more likely to use water for waste management  than small operations. Small
operations (less than 500 head) typically manage waste by hand cleaning or mechanical
scraper/tractor. They also use pit-holding and flushing systems because of their relatively lower
labor requirements. "While larger operations also use pit storage and slurry storage in tanks, they
are far more likely to move waste from the housing facility to a lagoon. Tables 4-23,4-24, and 4-
25 present the frequency of operations using the most common types of waste management
systems for swine farrowing, nursery, and finishing phases, respectively. Table 4-26 presents the
frequency of waste storage system use by size of operation. Table 4-27 presents the frequency of
waste storage system use by region for operations that marketed 5,000 or more hogs in a  12-
month period. It should be noted that the percentages do not add to 100 percent. This is because
an operation may use more than one waste storage system. For example, many large facilities in
the Southeast have below floor slurry storage that is then moved to lagoon storage.

 Table 4-23. Frequency (in percent) of Operations in 1995 by Type of Waste Management
                       System Used Most in the Farrowing Phase.
Variable
None
Pit-holding
Scraper/Tractor
Hand cleaned
Flush - under slats
Flush - gutter
Other
Number of Hogs Marketed in Past 12 Months
<2,000
14.1
24.4
12.3,
39.7
4.6
3.0
1.8
2,000-10,000
5.6
53.9
3.6
0.6
20.8
2.7
13
>10,000
1-7 i
49
6.0
0
39.3
2.6
1.5
Source: USDA APHIS, 1995,
                                         4-22

-------
 Table 4-24. Frequency (in percent) of Operations in 1995 by Type of Waste Management
                       System Used Most in the Nursery Phase.
Variable
None
Pit-holding
Scraper/Tractor
Hand cleaned
Flush - Tinder slats
Flush - gutter
Other
Number of Hogs Marketed in Past 12 Months
<2,000
4.4 :
32.3 !
18.5
31.7
8.7 ;
2.1 ;
2.3 ,-
2,000-10,000
3.3
55
3.9
1.6
19.6
1.7
15
>10,000
0
48
1.7
0
10,2
3.4 j
	 LJJ)
6.8
Source: USDA APHIS, 1995.
 Table 4-25. Frequency (in percent) of Operations in 1995 by Type of Waste Management
                       System Used Most in the Finishing Phase.
Variable
None
Pit-holding
Scraper/Tractor
Hand Cleaned
Flush - under slats
Flush - gutter
Other
Number of Hogs Marketed in Past 12 Months
<2,000
15.2
22.1 I'
25.5 '.
28.0
1.9 ;
3.3
4.0 ;
2,000-10,000
4.6
53
8.6
3.0
17.5
7.8
5.5
>10,000
0
45.3
11.4
0 ,
30.0
6.0
7.4
Source: USDA APHIS, 1995.
 Table 4-26. Frequency (in percent) of Operations in 1995 That Used Any of the Following
                     Waste Storage Systems by Size of Operation,
Waste Storage System
Below-floor slurry
Aboveground slurry
Belowground slurry
Anaerobic lagoon with cover
Anaerobic lagoon without cover
Aerated lagoon
Oxidation ditch
Solids separated from liquids
Other
Percentage of Operations by Number of Head Marketed for Slaughter
<2,000 Head
43.6
4.1
17.3
2.2
17.4
1.3
2.9
4.1
0.6
2,000-10,000 Head
70.4
10.3
25.6
0.5
29.2
6.9
0.1
5.9
0.0
>10,000 Head
47.9
8.3
26.8
2.0
81.8
1.0
0.0
4.7
1.1
Source: USDA APHIS, 1995.
                                        4-23

-------
  Table 4-27. Frequency (in percent) of Operations in 1995 That Used Any of the Following
                  Waste Storage Systems by Region for Operations That
                   Marketed 5,000 or More Hogs in a 12-Month Period.
Waste Storage System
Below-floor slurry
Aboveground slurry
Belowground slurry
Anaerobic lagoon
Aerated lagoon
Solids separated from liquids
USDA APHIS Region8
Midwest
21.5
NA
NA
91.2
NA
NA
North
28.5
NA
NA
4.8
Xb
NA
Southeast
85.7
27.2
43.3
33.3
NA
14.4
 ' Midwest - SD, NE, MN, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
 accounted fornearly 91 percent of U.S. hog inventory were surveyed.
 The standard error for the aerated lagoons in the northern region as evaluated by NAHMS exceeds 21 percent and was therefore determined by
 NAHMS not to be statistically valid. Note that the aerated lagoon is reportedly found in roughly 70 percent of the operations in the north region.
 Source: USDA APHIS, 1995.
 With minor exceptions, there are consistent trends in operation management from one part of the
 country to another. The multisite model that separates production phases is being adopted across
 the country; finishing age and number of litters per year already tend to be the same from one
 part of the nation to another. With the exception of the Midwest, producers tend to farrow small
 groups of sows weekly (USEPA, 1998). hi the Midwest, some producers farrow only twice a
 year, usually in the spring and fall. This is primarily done on smaller operations, where sows are
 maintained outdoors and then moved indoors for farrowing. The buildings in which pigs are
 housed in the Midwest tend to differ from those in more temperate parts of the country, and
 waste is managed differently in the Midwest than in other parts of the country. Confined, three-
 site operations predominate in the Southeast, South-Central, and West Regions, although there
 are some smaller outdoor operations in the South-Central and West Regions.

 Most types of waste management systems are also similar across most regions with only minor
 deviations. For example, the pit-recharge systems with aboveground storage and land application
 are nearly identical among farms in the Midwest, the South-Central, and the Northeast Regions.
 The primary waste management system that has the most variation among and within regions is
 known as the hand wash system. Hand wash systems are found predominantly on operations with
 fewer than 500 pigs and most of those that use hand washing as their primary waste management
 system have fewer than 100 pigs. On these operations, it is in the farrowing house or nursery
 phases of production that hand washing is used to remove waste from the buildings. Either the
 wash water exits the building and enters the environment  directly or a collection basin is located
 underneath or at one end of the building. In the case of collection, the wash water is stored and
 used for land application at a later time or is allowed to evaporate over time. Frequency of hand
 washing varies among operations from three times a day to once a week.

Another type of system identified as a primary waste management system on small operations in
the Midwest and New England (USDA APHIS, 1995) uses a flat blade on the back of a tractor to
                                          4-24

-------
 scrape or remove manure from feeding floors. The popularity of this system has apparently
 waned, and the it no longer represents a major means for removing wastes from swine feeding
 operations (NCSU, 1998a).             '•
Swine Waste Management Systems in the Pacific Region
Descriptive information about the waste management systems in this region is provided in Table
4-28. In general, the region is characterized by operations with fewer than 500 pigs that use hand
washing and dry lots as their primary waste management system. In contrast, the majority of pigs
are raised on operations with more than 1,000 animals that use either deep pit/aboveground
storage or pit recharge/lagoon.

               Table 4-28. Distribution of Predominant Waste Management
                          Systems in the Pacific Region3 in 1997.
Farm Size (number of pigs)
Fewer than 500
500 to 1,000
More than 1,000
: ' Primary Waste
Management System
1 . Hand Wash/Dry Lots
2. Scraper/Aboveground Storage/Land Application
1 . Hand Wash/Dry Lots
2. Deep Pit/Aboveground Storage/Land Application
1. Deep Pit/Aboveground Storage/Land Application
2. Pit Recharge/Covered Anaerobic Lagoon/Irrigation
* Alaska, California, Hawaii, Oregon, and Washington.
Source: NCSU, 1998a.
Swine Waste Management Systems in the Central Region
Table 4-29 presents information for the Central Region. It is the fastest-growing area of swine
production in the nation at the present time. As a result, large operations (>2,000 head) account
for almost all of the swine in these states. As a group, these large operations appear to rely on
evaporation from lagoons, aeration of anaerobic lagoons, or biogas production from lagoons as
the main means for storing and treating sw,ine waste.

Circle 4, one of the largest operations in the country, uses a pit-recharge system that is emptied
about three times per week.. Wastewater treatment is by a two-stage evaporative lagoon system.
The primary stage is designed for treatment of volatile solids, with additional volume for 20
years of sludge storage. The exact treatment volume design is operation- (or complex-) specific
and takes into consideration the diet, feed digestibility,  and  absorption and conversion efficiency
of the animal for each group of confinement houses. The primary stage is sized on the basis of
volume per input of volatile solids plus an additional volume for 20 years of sludge storage. The
secondary stage lagoon volume and surface area are specified to allow evaporation of all excess
water not required for pit recharge. Waste management plans call for sludge removal every 20
years. Because the operation has not reached its design  life at this time, this system cannot be
evaluated.                             ;
                                         4-25

-------
               Table 4-29. Distribution of Predominant Waste Management
                         Systems in the Central Region3 in 1997.
Farm Size
(number of pigs)
Fewer than 500
500 to 1,000
More than 1,000
Primary Waste
Management System
1. Hand Wash/Dry Lots
1 . Flush or Pit Recharge/Anaerobic Lagoon/Irrigation
2. Deep Pit/Aboveground Storage/Land Application
1. Flush or Pit Recharge/Aeration of Anaerobic Lagoon/Irrigation
2. Flush or Pit Recharge/Covered Anaerobic Lagoon/Land Application
3. Pit Recharge/EvatJoration from Two-Stage System
•Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Oklahoma, Texas, Utah, Wyoming
Source: NCSU, 1998a.                                         ,                   .

Swine Waste Management Systems in the Mid-Atlantic Region
Table 4-30 summarizes descriptive information for the region. Only North Carolina and
Pennsylvania grow a significant number of swine. The medium and large operations rely on
either anaerobic lagoons and wastewater irrigation or aboveground storage and land application
as their primary means of waste management. Operations in the remaining states typically have
fewer than 500 animals each, and they use hand washing in conjunction with dry lots as their
primary waste  management system.

The design and operation of the anaerobic lagoon and irrigation system are different in the two
key states. In Pennsylvania, lagoon loading rates are lower to accommodate the lower
temperatures, and storage requirements must be increased to accommodate the longer inactive
period during winter. Average yearly rainfall is about the same in the two states, with rainfall in
excess of evapotranspiration requiring increased storage requirements.

              Table 4-30. Distribution of Predominant Waste Management
                      Systems in the Mid-Atlantic Region" in 1997.
Farm Size
(number of pigs)
Fewer than 500
500 to 1,000
More Than 1,000
Primary Waste
Management System
1 . Hand Wash/Dry Lots
2. Gravity Drain/Collection Basin/Land Application
1. Deep Pit/Aboveground Storage/Land Application
2. Pit Recharge/Anaerobic Lagoons/Irrigation
3. Scraper/Aboveground Storage/Land Application
1. Deep Pit/Aboveground Storage/Land Application
2. Pit Recharge/Anaerobic Lagoons/Irrigation
Rhode Island, Tennessee, Vermont, Virginia, and West Virginia.
Source: NCSU, 1998a.

Swine Waste Management Systems in the South Region

Table 4-31 summarizes descriptive information for the region. Large operations (more than 1,000
head) represent only a small fraction of the operations in the states of the region. The
predominant waste management system is a flush or pit-recharge system for removal of waste
                                         4-26

-------
from buildings, an anaerobic lagoon for treatment and storage of waste, and reincorporation of
treated wastewater back into the environment by irrigation. In these states, housing is usually
enclosed, with ventilation and a concrete floor surface.

               Table 4-31. Distribution of Predominant Waste Management
                           Systems in the South Region" in 1997.
Farm Size
(number of pigs)
Fewer than 500
500 to 1,000
More Than 1.000
Primary Waste Management System
1 . Hand Wash/Dry Lots
2. Scraper System/ Aboveground Storage/Land Application
1 . Flush or Pit Recharge/Anaerobic Lagoon/Irrigation
1 . Flush or Pit Recharge/Anaerobic Lagoon/Irrigation .
'Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, and South Carolina.
Source: NCSU, 1998a.                         i
Swine Waste Management Systems in the Midwest Region

Table 4-32 summarizes descriptive information for this region. Small operations account for
most of the operations in this region; however, recent construction of large units in Iowa,
Minnesota, Missouri, and South Dakota indicate that the trend toward production in larger units
seen in the southeastern United States is probably occurring in the Midwest Region as well.
Primary waste management systems for operations with fewer than 500 pigs are hand wash
coupled with dry lots with and without collection basins. In contrast, medium and large
operations rely on storage of waste either under buildings with deep pits or in aboveground
structures in conjunction with direct land application for crop production.

               Table 4-32. Distribution of Predominant Waste Management
                          Systems in the Midwest Region" in 1997.
Farm Size
(number of pigs)
Fewer than 500
500 to 1,000
More than 1,000
(Primary Waste Management System
1 . Hand Wash/Dry Lots!
2. Hand Wash/Dry Lots \ and Collection Basin/Land Application
3. Deep Pit/Land Application
1 . Deep Pit/Aboveground Storage/Land Application
2. Pit Recharge/ Aeration of Anaerobic Lagoons/Irrigation
3. Deep Pit/Land Application
1 . Deep Pit/Aboveground Storage/Land Application
2. Pit Recharge/Covered Anaerobic Lagoon/Irrigation
"Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.
Source: NCSU, 1998a.
                                           4-27

-------
4.1.5  Pollution Reduction

4.1.5.1 Swine Feeding Strategies
Swine producers use a variety of feed ingredients to achieve a balanced diet for a pig at each
phase of the animal's development. Various grain products, including corn, barley, milo, and
sometimes wheat, form the foundation of the growing pig's diet and supply most of the
carbohydrates and fat. Oilseed meals, which foster muscle and organ development, are the
primary source of protein (NPPC, 1999). Producers also supplement the basic diet with minerals
and vitamins as needed. A pig's diet changes as the animal grows. For example, finishing pigs
typically receive a diet containing 13 to 15 percent crude protein versus the 20 to 22 percent
protein diet received by young pigs. The Swine '95 survey indicates that more than 96 percent of
grow-finish operations use multiple diets from tune of entry to market weight. Almost 70 percent
of the operations feed their pigs three or more diets during this phase.

Swine operations can use feeding strategies both to maximize growth rates and to reduce
excretion of nutrients. The following feeding strategies can be used to reduce N and P manure
content.

Grinding. Fine grinding and pelleting are simple but effective ways to improve feed utilization
and decrease N and P excretion. By reducing the particle size, the surface area of the grain
particles is increased, allowing for greater interaction with digestive enzymes. When particle size
is reduced from 1,000 microns to 400 microns, N digestibility increases by approximately 5 to 6
percent. As particle size is reduced from 1,000 microns to 700 microns, excretion of N is reduced
by 24 percent. The current average particle size is approximately 1,100 microns; the
recommended size is between 650 and 750 microns. Reducing particle size below 650 to 750
microns greatly increases the energy costs of grinding and reduces the throughput of the mill. The
use of so small a particle size will also increase the incidence of stomach ulcers in the hogs
(NCSU, 1998b).

Amino Acid  Supplemental Diets. Supplementing the diet with synthetic lysine to meet a portion
of the dietary lysine requirement is an effective means of reducing N excretion by hogs. This
process reduces N excretion because lower-protein diets can be fed when lysine is supplemented.
Research studies have shown that protein levels can be reduced by 2 percent when the diet is
supplemented with 0.15 percent lysine (3 pounds lysine-HCl/ton of feed) without negatively
affecting the performance of grow-finish pigs. Greater reductions in protein are possible, but only
if threonine, tryptophan, and methionine are also supplemented.

Table 4-33 shows the theoretical effect of feeding low-protein, ammo acid-supplemented diets on
N excretion of finishing pigs. Note that reducing the protein level from 14 to 12 percent and
.adding 0.15 percent lysine results in an estimated 22 percent reduction in N excretion. Reducing
the protein further to 10 percent and adding 0.30 percent lysine, 'along with adequate threonine,
tryptophan, and methionine, reduces the estimated N excretion by 41 percent.
                                          4-28

-------
 Although it is currently cost-effective to use supplemental lysine and methionine, supplemental
 threonine and tryptophan are too expensive to use in widespread diets. However, because of rapid
 technological advances in fermentation procedures for synthesizing amino acids, the price of
 threonine and tryptophan will likely decrease in the next few years.

    Table 4-33. Theoretical Effects of Reducing Dietary Protein and Supplementing With
               Amino Acids on Nitrogen Excretion by 200-lb Finishing Piga'b
Diet Concentration
N balance
N Intake, g/d
N digested and absorbed, g/d
N excreted in feces, g/d
N retained, g/d
NT excreted in urine, g/d
N excreted, total, g/d '
Reduction in N excretion, %
Change in dietary costs, $/tonb
14 CP ;

67
60 ;
7 /
26 ;
34 ;
41 i
—
0
12 CP + Lysine

58
51
7
26
25
32
22
-0.35
10 CP + Lysine +
Threonine + Tryptophan
+ Methionine

50
43
7
26
17'
24
41 . '
+$14.50
"Assumes an intake of 6.6 Ib/d and a growth rate of 1.98 Ib/d. 'Costs used L-Lysine HCI, $2.00/lb; corn, $2.50/bushel; SBM, $250/ton; L-
Threonine, $3.50/lb; DL-Methionine, $1.65/lb; Tryptosine (70:15, Lys:Tryp) $4.70/lb.
Source: NCSU, 1998b.        ,                  1
g/d = grams/day
Phase Feeding and Split-Sex Feeding. Dividing the growth period into more phases with less
spread in weight allows producers to meet the pig's protein requirements more closely. Also,
since gilts (females) require more protein than barrows (males), penning barrows separately from
gilts allows lower protein levels to be fed to barrows without compromising leanness and
performance efficiency in gilts. Feeding three or four diets, compared with only two diets, during
the grow-fmish period would reduce N excretion by at least 5 to 8 percent (NCSU, 1998b).

Formulating Diets on an Available Phosphorus Basis. A high proportion (56 to 81 percent) of
the P in cereal grains and oilseed meals occurs as phytate. Pigs do not use P in this form well
because they lack significant amounts of intestinal phytase, the enzyme needed to remove the
phosphate groups from the phytate molecule. Therefore, supplemental P is added to the diet to  '
meet the pig's growth requirements.   • .  ,

Because some feedstuffs are high in phytate and because there is some endogenous phytase in
certain small grains (wheat, rye, triticale, and barley), there is wide variation in the bioavailability
of P in feed ingredients. For example, only 12 percent of the total P in corn is available, whereas
50 percent of the total P in wheat is available. The P in dehulled soybean meal is more available
than the phosphorus in cottonseed meal (23 percent versus 1 percent), but neither source of P is
as highly available as the P in meat and bone meal (66 percent), fish meal (93 percent), or
dicalcium phosphate (100 percent) (NCSU,11998b).
                                           4-29

-------
Supplementing Diets with Phytase Enzyme. Supplementing the diet with the enzyme phytase
is an effective means of increasing the breakdown of phytate P in the digestive tract and reducing
the P excretion in the feces. Using phytase allows one to feed a lower P diet because the
unavailable phytate phosphorus in the grain and soybean meal is made available by the phytase
enzyme to help meet the pig's P needs. Studies at Purdue University, the University of Kentucky,
and in Denmark indicate that the inclusion of phytase increased the availability of P in a com-soy
diet threefold, from 15 percent  to 45 percent.

A theoretical example of using phytase is presented in Table 4-34. If a finishing pig is fed a diet
with 0.4 percent P (the requirement estimated by NRC,  1988, cited in NCSU, 1998b), 12 grams
of P would be consumed daily (3,000 grams times 0.4 percent), 4.5 grams of P would be
retained, and 7.5 grams of P would be excreted. Feeding a higher level of P (0.5, 0.6, or 0.7
percent) results in a slight increase in P retention but causes considerably greater excretion of P
(10.3, 13.2, and 16.2 g/d, respectively). Being able to reduce the P to 0.3 percent in a diet
supplemented with phytase would reduce the intake to 9 grams of P per day and would
potentially reduce the excreted P to 4.5 g/day (a 37 percent reduction in P excretion versus
NRC's estimate). The percent reduction in ^excreted P is even more dramatic (56 percent) when
one compares the 4.5 grams with the 10.3 grams of P excreted daily by finishing pigs fed at the
0.5 percent P level typically recommended by universities and feed companies. Bone strength can
be completely recovered by supplementing a low-P diet with 1,000 phytase units per kilograms
of feed, while most of the grain and feed efficiency is returned to NRC levels. In addition to
returning bone strength and growth performance to control levels, there is a 32 percent reduction
in P excretion. A summary of 11 experiments (Table 4-35) indicates that all the growth rate and
feed efficiency can be recovered with the dietary supplementation of 500 phytase units and
reduced-P diets. Some analyses have suggested that a 50 percent reduction in excreted P by pigs
would mean that land requirements for manure applications based on P crop uptake would be
comparable to manure applications based on N.

Previously, phytase was too expensive to use as a feed additive. However, this enzyme can now
be effectively produced by recombinant DNA techniques and the cost has decreased.  A cost
evaluation indicates that under certain conditions replacing dietary P of an inorganic P source
(e.g., dicalcium phosphate) with the phytase enzyme would be cost neutral. Swine require that
phytase supplements be fed at different levels based on the age of the pig (Table 4-36). The

             Table 4-34. Theoretical Effects of Dietary Phosphorus Level and
Dietary P (%)
0.70
0.60
0.50
0.40 (NRC, 1988)
0.30
0.30 + Phvtase
Phosphorus (g/d)
Intake
21.0
18.0
15.0
12.0
9.0
9.0
Retained
4.8
4.8
4.7
4.5
2.5
4.5
Excreted
16.2
13.2 '
10.3
7.5
6.5
4.5
Change From Industry
Average (%)
+57
+32
0
-27
-37
-56
Source: Cromwell and Coffey, 1995, cited in NCSU, 1998b.
                                          4-30

-------
         Table 4-35. Effect of Microbial Phytase on Relative Performance of Pigs
Growth Response
ADG
ADFI
Feed Conversion Ratio
Negative Control
100 ;
100
100
Positive Control
115(+/-6.5)
105 (+/- 5.2)
93C+/-4.9)
Effect of 500+ Phytase
Units/kg
1 16.7 (+/ -10.6)
107.6 (+/- 7.8)
93.2M-/-5.0)
'Eleven experiments with the negative control diets set at 100 percent and the relative change in pig growth performance to the control diets.
Source: Jongbloed et al., 1996, cited in NCSU, 1998b.    ,
 Table 4-36. Effect of Microbial Phytase on Increase in Phosphorus Digestibility by Age of
         Pigs and the Recommended Rates for Inclusion of Phytase in Each Phase.

Approximate
Increase (%)
Inclusion Level
fPhvtase Unif/lb)
Nursery
13
454-385
Grower
17
385-227
i
Finisher
17
27-113
Gestation
7.
227
Lactation
20
227
Source: Jonbloed et al., 1996, cited in NCSU, 1998b.
different levels are based on phase of production and are likely related to the digestive enzymes
and cecum of the younger pig being less developed.


4.1.5.2 Waste and Waste Water Reductions
Methods to reduce the quantity of wastewater generated at swine operations include advanced
swine watering systems to reduce water spillage and recycling water in waste flush systems. The
feeding strategies discussed in the previous section will also reduce the quantity of waste
generated by ensuring that animals do notireceive more feed than required for optimal growth.
Additional information on feeding strategies for swine can be found in Chapter 8. Advanced
swine breeding has resulted in animals that produce less waste per pound of meat produced.

Nipple water delivery systems reduce the amount of wastewater and are more healthy for the
animals.  Trough or cup waters are typically placed close to the floor of the pen. This allows the
animal to spill water and add contaminates to the standing water. Nipple water delivery systems
are placed higher in the pen and only deliver water to the animal when the animal is sucking on
the nipple.  Watering systems may also use water pressure sensors and automatic shutoff valves to
reduce water spillage. The sensor will detect a sustained drop in water pressure resulting from a
break in the water line. The sensor will then stop the water flow to the broken line and an alarm
will sound. The operator can then fix the broken line and restore water to the animals with
minimal water spillage. There is little information about the relative use  of the various water
delivery systems or the relative use of watpr pressure sensors and shutoff valves within the swine
industry.

The use of recycled water in swine flush and pull plug waste management systems will also
reduce the amount of wastewater generated at an operation. To obtain recycled water of
                                          4-31

-------
appropriate quality an operation can use a variety of methods to remove pollutants from the
waste stream. Such methods include solid-liquid separation, digesters, and multiple-stage lagoon
systems. Multiple-stage lagoon systems or the use of an initial settling basin will allow settling of
solids and biological processes to occur that can result in high quality water. One large operation
in Utah claims to have a completely closed system in which all wastewater is treated in a
multiple-stage lagoon system and then recycled back to the manure flush system.
4.1.6  Waste Disposal
Waste is disposed in either a liquid or solid form. Handling and disposal in a solid form has
several advantages the more concentrated the waste. Hauling costs are reduced as the water
content is reduced; however, most operations prefer to handle and dispose of waste in a liquid
form because of the reduced labor cost of handling the waste in this manner. Table 4-37 shows
the percentage of operations that use or dispose of manure and wastes as unseparated liquids and
solids. Tables 4-38 and 4-39 show the percentage of operations that are using the most common
disposal methods by USD A APHIS region. (At the time of writing, reports from the Swine 2000
survey did not provide equivalent statistics that allow comparisons based on region and operation
size and is therefore not presented in this section.)

          Table 4-37. Percentage of Operations in 1995 That Used or Disposed of
                 Manure and Wastes as Unseparated Liquids and Solids.
Operation Size
Operations marketing fewer than 5,000
hogs in 12 months
Operations marketing 5,000 or more
hogs in 12 months
USDA APHIS Region-
Midwest
92.3
100
North
99.1
19.6b
Southeast .
97.7
98.5
•Midwest - SD, ME, MM, IA, IL; North=WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that accounted
fornearly 91 percent of U.S. hog inventory were surveyed.    ,
^Thc standard error on this measurement is 16.0, resulting in questions of its accuracy.
Source: USDA NAHMS, 1999.
 Table 4-38. Percentage of Operations in 1995 That Marketed Fewer Than 5,000 Hogs in a
    12-Month Period and That Used the Following Methods of Use/Disposal by Region.
Waste Disposal Method
Placed on own land
Given away
USDA APHIS Region3
Midwest
97.9
NA
North
98.5
11.0
Southeast
96.8
2.6
•Midwest-SD, NE, MN, IA, EL; North=WI, MI, DM, OH, PA; Southeasfc=MO, KY, TN, NC, GA. Only the 16 major pork states that accounted
fornearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA NAHMS, 1999.
                                           4-32

-------
 Table 4-39. Percentage of Operations in 1995 That Marketed 5,000 or More Hogs in a 12-
      Month Period and That used the Following Methods of Use/Disposal by Region.
Waste Disposal Method
Placed on own land
Sold
Given away
USDA APHIS Region3
Midwest
100
NA !
NA '
North
100
NA
NA
Southeast
97.5
7.3
11.3
'Midwest = SD, NE, MM, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA.
Source: USDA NAHMS, 1999.
Transport and land application of manure nutrients are necessary to realize the fertilizer benefit
of such nutrients. Surface application and injection are common means of land application for
slurry. Depending on the consistency of the manure, several types of equipment are available to
apply the nutrients to the land. The common manure spreader is a low-maintenance, relatively
inexpensive piece of equipment. The spreader is designed for solids and thick slurries; however,
because of the characteristics of the equipment, the manure is hard to apply uniformly. This type
of spreader requires loading equipment and usually takes longer to empty small loads. A flexible
drag hose can be used on relatively flat landscapes. This system unloads the manure quickly,
although it normally requires two tractors and a power unit on the pump. A flexible drag hose
system is effective on regularly shaped fields, but the equipment is expensive. Tank wagon
applications are used for liquid manure. The wagon is adaptable to either surface broadcast or
injection, depending on the situation. Tank wagons apply liquid manure uniformly and are self-
loading; however, the pump to discharge the manure requires a large amount of horsepower,
which can be taxing on the tractor. Soil compaction is normally associated with tank wagons, and
it usually takes longer to empty the storage facility. Tables 4-40 and 4-41 show the percentage of
operations that disposed of manure and waste on owned or rented land using various methods.
Operations may use more than one method, therefore columns do not add up to  100 percent.
        Table 4-40. Method of Manure Application in 1995 on Land by Operations
              That Marketed Fewer Than 5,000 Hogs in a 12-Month Period.
Manure Application Method
Irrigation
Broadcast
Slurry— surface [
Slurry— subsurface
USDA APHIS Region3
• Midwest
. 47.6
; 18.4
33.0
: xb
North
11.2
57.8
55.7
26.6
Southeast
2.9
69.0
46.6
22.9
'Midwest = SD, NE, MN, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA.
•"Operations in this region use this method, but NAHMS determined the standard error was too high to report statistically valid values.
Source: USDA NAHMS, 1999.                   ;
                                          4-33

-------
        Table 4-41. Method of Manure Application in 1995 on Land by Operations
                  That Marketed 5,000 or More Hogs in 12-Month Period.
Manure Application Method
Irrigation
Broadcast
Slurry-surface
Slurry-subsurface
USDA APHIS Region"
Midwest
100
xb
xb
xb
North
74.8
Xb
6.3
23.6
Southeast
16.4
39.4
68.1
72.1
 Midwest - SD, NE, MN, IA, JL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA.
 'Operations in this region use this method, but NAHMS determined the standard error was too high to report statistically valid values.
 Source: USDA NAHMS, 1999.
Most manure and waste is disposed of on land owned or rented by the operator, thus the amount
of land available for land application of wastes is critical. Applying too much manure and waste
to the same land year after year can result in a steady increase in the soil P content. Table 4-8
presents the number of swine operations with and without adequate crop and pastureland for
manure application on an N- and P- basis at plant removal rates and operations that own no land.
The operations that have no land were determined by running queries of the USDA 1997 Census
of Agriculture data to identify facilities that did not grow any of the 24 major crops grown in the
United States. Operations with no land available are assumed to haul their waste to land that can
use the waste as a fertilizer resource.                       ,

Another waste product of swine farms is animal mortality. Mortalities are usually handled in an
environmentally sound and responsible manner, but improper disposal may cause problems with
odors, pathogens, biosecurityi and soil and water contamination. The 1995 USDA APHIS Swine
95 study assessed the frequency of mortality disposal methods based on whether operations
marketed more or fewer than 2,500 head in the prior 6 month period. (An operation that sold
2,500 head in the last 6 months corresponds roughly to an operation with 1,000 to 1,500 animal
unit capacity.)  Tables 4-42 and 4-43 show the percentage of operations by method of disposal
for those operations which specified at least one pig had died in the 6 month period.

         Table 4-42. Method of Mortality Disposal on Operations That Marketed
                   Fewer Than 2,500 Hogs in a 6-Month Period in 1995.
Method of disposal
Burial on operation
Burn on operation
Renderer entering operation
Renderer at perimeter of operation
Composting
Other
USDA APHIS Region"
Midwest
73.2
9.1
2.1
2.7
10.3
7.0
North
71.6
7.2
14.1
4.2
6.4
9.8
Southeast
46.6
15.2
38.7
8.7
13.0
6.8
•Midwest - SD, NE, MN, IA, IL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
accounted for nearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA NAHMS, 1999.
                                           4-34

-------
               Table 4-43. Method of Mortality Disposal on Operations That
                Marketed 2,500 or More Hogs in a 6-Month Period in 1995.
Method of Disposal
Burial on operation
Burn on operation
Renderer entering operation
Renderer at perimeter of operation
Composting
Other
USDA APHIS Region0
Midwest
23.0
.9.9
39.9
27.9
X
3.4
North
21.0
10.2
50.1
23.2
X
X
Southeast
20.8
17.1
. 37.5
31.4
11.1
1.8
•Midwest = SD, NE, MN, IA, EL; North = WI, MI, IN, OH, PA; Southeast = MO, KY, TN, NC, GA. Only the 16 major pork states that
accounted for nearly 91 percent of U.S. hog inventory were surveyed.
Source: USDA NAHMS, 1999.                   '.
4.2    Poultry Industry
Poultry feeding operations include facilities that confine chickens or turkeys for feeding or
maintenance for at least 45 days in any 12Tinonth period. These facilities do not have significant
vegetation in the confinement area during the normal growing season, thus pasture and grazing
operations are generally not included. Facilities at which poultry are raised may also include
other animal and agricultural operations such as grazing, egg processing, and crop farming.

The specific poultry sectors are discussed in the following sections:
                                      , i
    •   4.2.1:'Broilers, roasters, and other meat-type chickens
    •   4.2.2: Layers and pullets

    •   4.2.3: Turkeys                 '
        4.2.4 Ducks
Up until the 1950s most of the nation's poultry production was conducted on small family farms
in the Midwest. Midwestern states provided favorable climatic conditions for seasonal
production of poultry and close proximity to major sources of grain feed. Eventually, with the
improvement of the transportation and distribution systems, the poultry industry expanded from
the Midwest to other regions. With the adyent of climate-controlled systems, poultry production
evolved to a year-round production cycle. By 1997, the value of poultry production exceeded
$21.6 billion, and much of the  poultry output was generated by corporate producers on large
facilities producing more than  100,000 birds (USDA NASS, 1998a).
                                       I
The poultry industry encompasses several subsectors including broilers, layers, turkeys, ducks,
geese, and several other game fowl. This section focuses only on broilers, layers, and turkeys,
which account for more than 99 percent of the  annual farm receipts from the sale of poultry
(USDA NASS, 1998a).
                                           4-35

-------
Together the annual sales of broilers, chicken eggs, and turkeys generate almost 10 percent of the
value of all farm commodities. Although each of the poultry subsectors has experienced
significant growth in output over the past two decades, broilers remain the dominant subsector,
accounting for approximately 65 percent ($14.2 billion) of the $21.6 billion in poultry farm sales
during 1997. Sales of eggs and turkeys accounted for 21 percent ($4.5 billion) and 13 percent
($2.9 billion), respectively. More than 15 million metric tons of poultry meat were produced in
the U.S. during that year (USDA NASS, 1998c).

Poultry production (especially broiler production) is a highly integrated industry, and as a result,
management strategies at the facility level tend to be more similar than in other sectors of AF, Os.
Contract growing began in the South during the 193()s, and by the 1950s the contracts had
evolved to their current form. Thus, the integrated structure seen today was in place by the 1960s
(Sawyer, 1971, cited in Aust, 1997). For example, more than 90 percent of all chickens raised for
human consumption in the U.S. are produced by independent farmers working under contract
with integrated chicken production and processing companies. The company provides some
inputs such as the birds themselves, feed, medication, and monitoring of flock health by company
service personnel. The farmer provides the grow-out buildings, electricity, water, fuel, bedding
material ("litter"), and labor and management skills. The company provides the newly hatched
chicks that the farmer raises to market age and weight, giving them the feed provided by the
company. The fanner is paid largely on the basis of weight gained by the flock as compared with
other flocks produced during the same span of time. When the birds reach market weight, the
company picks them up and takes them to processing plants, where they are processed into food
products. Most integrated companies are stand-alone chicken operations, although some also
produce turkeys.

The poultry industry has continued to evolve in terms of the type and number of birds it
produces.  Genetically designed birds have been developed with the ability to mature quickly and
reach market weight or lay eggs more rapidly. This  has resulted in increased efficiency and
overall poultry production. Facilities that grow the birds have incorporated the latest automated
technology for the feed and watering systems as well as ventilation systems. The technological
advances have transformed poultry raising iinto a modern, mechanized industry.


4.2.1   Broiler Sector
This section describes the following aspect of the broiler industry:

        4.2.1.1: Distribution of the broiler industry by size and region

    •   4.2.1.2: Production cycles of broilers
    •   4.2.1.3: Broiler facility types and management4.2.1.4: Broiler waste management
        practices
    •   4.2.1.5: Pollution reduction

        4.2.1.6: Waste disposal
                                          4-36

-------
National Overview
Domestic broiler production has followed the same trend as swine and other livestock industries.
Production has shifted from geographically diverse, small, family-run operations to large
industrial production facilities concentrated in a few states. The number of broiler operations was
quite stable between 1992 and 1997, with operations decreasing slightly from 23,949 broiler
operations in 1992 to 23,937 operations in 1997, down less than 1 percent (USDA NASS,
1999b). However, between 1982 and 1992, more than 6,000 broiler operations, or 20 percent of
the industry's producers, went out of business. As shown in Table 4-44, although the number of
operations decreased over the past 20 years, total broiler production increased, with new large
operations more than compensating for the small producers who jiave left the industry.
Table 4-44. Broiler Operations and Production in the United States 1982-1997."
Year
1982
-1987
1992
1997
Operations
30,100
27,645
23,949
23,937
Production
3,516,095,408
4,361,198,301
5^427,532,921
6,741,476,153
   Broilers are young chickens of the meat-type breeds, raised for the purpose of meat production. Estimates cover a 12-month period (Dec. 1
   through Nov. 30) and exclude states with fewer than 500,000 broilers.
   Source: USDA NASS, 1998a, 1998b.             ,
4.2.1.1 Distribution of Broiler Operations by Size and Region
EPA's 1974 CAFO Effluent Limitations Guidelines and Standards generally apply to broiler
operations with more than 100,000 birds and continuous overflow watering systems, and to
broiler operations with 30,000 birds and a liquid manure system. (See Chapter 2 for the
definition of a CAFO, and Chapter 5 for a idiscussion of the basis for revisions to the poultry
subcategories.) Where numbers of birds are presented, all birds regardless of age (e.g., poult,
laying age, or pullet) or function (i.e., breeder, layer, meat-type chicken) are included unless
otherwise indicated in the text.

Large operations dominate broiler production. Although large production operations are
characteristic of other livestock industries,; such as the swine sector, the consolidation of the
broiler industry began earlier and was well entrenched by the 1970s. By 1982, farms that
produced fewer than 2,000 birds per flock'numbered only 2,811, or about 5 percent of the total.
This number decreased by two-thirds to about 1,000 farms a decade later (Abt, 1998). Compared
with other livestock: industries, such as swine, the broiler industry has the smallest proportion of
small operators. For example, the smallest hog operations still accounted for more than 60
percent of all hog producers in 1992.     ;
                                           4-37

-------
Regional Variation in Broiler Operations
Table 4-45 presents the 1997 distribution of broiler operations by region and operation size, and
Table 4-46 presents the average flock size for these operations. In addition to being dominated by
large producers, the broiler industry is concentrated in several states. Georgia, Arkansas, and
Alabama, all in the South Region are some of the largest broiler-producing states. Table 4-47
presents the distribution of total chickens by region and operation size. It is important to note that
   Table 4-45. Total Number of Broiler Operations by Region and Operation Size in 1997.
Region "
Central
Mid-Atlantic
Midwest
Pacific
South
National
Number of Chicken Broiler Operations by Size Group b
(Operation Size Presented by Number of Birds Spot Capacity)
>0-30,000
3,046
5,113
7,910
1,244
3,403 •
20,716
>30,000-
60,000
412
2,105
207
41
3,597
6,362
>60,000-
90,000
325
1,055
96
38
2,327
3,841
>90,000-
180,000
274
842
141
42
1,980
3,279
>180,000
78
100
43
63
377
661
Total
4,135
9,215
8,397
1,428
11,684
34,859
•Central - ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TO,
NC; Midwest - ND, SD, MN, MI, WI, OH, IN, IL, IA, MO, NE,' KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC; FL.
b Broilers are young chickens of the meat-type breeds, raised for the purpose of meat production. Estimates cover a 12-month period (Dec. 1
through Nov. 30) and exclude states with fewer than 500,000 broilers.
Source: USDANASS, 1999c.'
                         Table 4-46. Average Number of Chickens at
                  Broiler Operations by Region and Operation Size in 1997.
Region*
Central
Mid-Atlantic
Midwest
Pacific
South
National
Average Chicken Broiler Animal Counts b
(Operation Size Presented by Number of Birds Spot Capacity)
>0-30,000
1,494
6,178
830
608
12,538
4,158
>30,000-
60,000
44,224
44,193
47,357
44,041
43,998
44,187
>60,000-
90,000
73,084
73,590
75,821
73,695
73,776
73,717
>90,000-
180,000
119,026
115,281
118,611
132,560
117,581
1 17,347
>180,000
332,030
303,155
414,945
624,380
281,453
332,073
All
Operators
25,402
35,771
6,933
35,200
60,897
35,993
•Central - ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TN,
NC; Midwest - ND, SD, MN, MI, WI, OH, IN, IL, IA, MO, NE, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC, FL-
* Broilers are young chickens of the meat-type breeds, raised for the purpose of meat production. Estimates cover a 12-month period (Dec. 1
through Nov. 30) and exclude states with fewer than 500,000 broilers.'
Source: USDA NASS, 1999c.
                                               4-38

-------
        Table 4-47. Distribution of Chickens fay Region and Operation Size in 1997.
Region0
Central.
Mid-Atlantic
Midwest
Pacific
South
National
Percentage of Total Chicken Broiler Counts b
(Operation Size Presented by Number of Birds Spot Capacity)
>0-30,000
0.36
2.52
0.52
0.06
3.40
6.86
>30,00060-
000
1.45
7.41
0.78
0.14
12.61
22.41
>60,000-
90,000
1.89
6.19
0.58
0.22
13.68
-22.57
>90,000-
180,000
2.60
7.74
1.33
0.44
18.56
30.67
>180,000
2.06
2.42
1.42
3.14
8.46
17.49
Total
8.37
26.27
4.64
4.01
56.71
100.00
 Central = ID MT, WY, NV, UT, CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TO,
NC; Midwest = ND, SD, MN, MI, WI, OH, IN, IL, IA, MO, NE, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC, FL-
b Broilers are young chickens of the meat-type breeds, raised for the purpose of meat production. Estimates cover a 12-month period (Dec. 1
through Nov. 30) and exclude states with fewer than 500,000 broilers.
Source: USDANASS, 1999c.                     ;;
operations with more than 90,000 birds accounted for more than 48 percent of the broilers even
though they represented only 11.3 percent of the broiler operations. Operations with fewer than
30,000 birds represented almost 60 percent of the operations but accounted for less than 7
percent of the total birds.

USD A NRCS (2002) provided information to EPA on the number of broiler operations based on
the following classifications as shown in Table 4-48:

    •   Operation size: >= 100,000 head; 50,000-99,999 head, and 30,000-9,999 head.

        Land availability: No excess (Category 1-farms with sufficient crop or pastureland).
        Excess, with acres (Category 2 farms with some land, but not enough land to assimilate
        all manure nutrients). Excess, no acres (Category 3 farms with none of the 24 major
        crop types identified by NRCS).
        Location:Ten states or groups of states.
    •   Nutrient basis Applications are based on N or P application rates.

In Alabama for example, there are 98 facilities with more than 100,000 head with none of the 24
major crop types identified by NRCS for application of animal wastes. There are 268 operations
(with 100,000 or more head) with some land in Alabama, but not enough land to assimilate all
manure nutrients using N- based application rates and 274 operations (with 100,000 or more
head) with some land in Alabama, but not enough land to assimilate all manure nutrients using
P- based application rates. An undisclosed number of facilities have enough land (i.e., no excess
manure).
                                           4-39

-------
Table 4-48. Number of Broiler Facilities
Census of A
Location
AL
AL
AL
AR
AR
AR
GA
GA
GA
KT, TN, VA, WV
KT,TN,VA,WV
KT,TN,VA,WV
MD.DE
MD.DE
MD.DE
MS
MS
MS
NC.SC
NfC, SC
NC.SC
OK, MO, KS
OK, MO, KS
OK, MO, KS
TX.LA
TX, LA
TX.LA
other
other
other
Land availability category
No excess ,
Excess, no acres
Excess, with acres
No excess
Excess, no acres
Excess, with acres
No excess
Excess, no acres ,
Excess, with acres
No excess
Excess, no acres
Excess, with acres -
No excess
Excess, no acres
Excess, with acres
No excess
Excess, no acres
Excess, with acres
No excess
Excess, no acres
Excess, with acres
No excess
Excess, no acres
Excess, with acres
No excess
Excess, no acres
Excess, with acres
Mo excess
Excess, no acres
Excess, with acres
as Provided by USDA Based on Analyses of 1997
vriculture Database.
Operation Size and Nutrient Basis
>= 100,000
N
d
98
268
d
69
260
d
169
382
d
58
187
d
62
38
d
72
230
d
105
177
d
26
124
d
53
231
d
113
100
P
d
98
274
d
69
263
d
169
387
d
58
201
d
62
73
d
72
230
d
105
198
d
26
126
d
53
231
d
113
104
50,000-99,999
N
34
227
666
58
155
797
17
319
494
34
169
304
106
275
146
10
172
437
61
287
394
19
49
248
23
117
312
41
162
190
P
15
227
685
49
155
806
6
319
505
17
169
321
31
275
221
8
172
439
12
287
443
12
49
255
21
117
314
11
162
220
30,000-49,999
N
39
217
412
104
226
672
14
194
250
23
129
149
103
294
107
14
70
143
59
290
292
30
32
171
9
41
86
45
112
99
P
32
217
419
93
226
683
10
,194
254
15
129
157
38
294
172
, 14
70
143
19
290
332
29
32
172
8
41
87
17
112
127
Source: USDA NRCS, 2002.
d - data not disclosed
4.2.1.2 Production Cycles of Broilers
Broilers are usually grown for 42 to 56 days depending on the market weight desired. Female
broilers can also be grown to lay eggs for replacement stock, and these females are called broiler
breeders. Roasters are usually grown separated by sex, with the females being harvested at 42
days of age and the males given the space in the entire house until they are sent to market several
weeks later (USEPA, 1998). Other meat-type chickens (capons, game hens) comprise less than 1
percent of chickens raised for meat. Since they are raised in a similar manner to broilers, albeit
with different market weights and ages, they are not usually differentiated in the data.

Chickens are produced to meet specific requirements of the customer which can be a retail outlet,
fast-food chain, or institutional buyer, among others. A broiler is considered any chicken raised
                                           4-40

-------
for meat products, though the industry further classifies chickens primarily by the size, weight,
and age of the bird when processed.

    •   Poussin - Less than 24 days of age and about 1 pound or less.

    •   Cornish Game Hens - Less than130 days of age and about 2 pounds.

        Fast-food Broiler - 2 pounds, 4 ounces to 3 pounds, 2 ounces (mostly 2 pounds, 6
        ounces to 2 pounds, 14 ounces) and less than 42 days of age.

    •   3's and Up - 3 to 4 3/4 pounds and 40 to 45 days of age.

        Broiler Roaster - 5 to 6 pounds, hens usually 55 days.

        Broiler for Deboning - 5 to 6 pounds, males usually 47 to 56 days.

        Heavy Young Broiler Roaster - The typical roaster, 6 to 8 pounds, less than 10 weeks.

    •   Capon - 7 to 9 pounds, surgically desexed male broiler, 14 to 16 weeks.

        Heavy Hens - spent breeder hens,  5 to 5 Vz pounds, 15 months of age.

4.2.1.3 Broiler Facility Types and Management
The most common type of housing for broilers, roasters, pullets, and breeding stock is some type
of enclosed housing with bedding derived from wood shavings, rice hulls, chopped straw, peanut
hulls, or other products, depending on availability. The bedding absorbs moisture and dilutes the
manure produced by the birds. Modern houses have an automatic feeding system to distribute the
feed, a closed water system (automatic) to deliver the water for the birds, and a ventilation
system to provide clean air. Some houses have side curtains that can be retracted to allow
diffusion of air. Ventilation is typically provided using a negative-pressure system, with exhaust
fans drawing air out of the house, and fresh air returning through ducts around the perimeter of
the roof. The ventilation system uses exhaust fans to remove moisture and noxious gases during
the winter season and excess heat during the summer. Advanced systems use thermostats and
tuners to control exhaust fans. These houses are also commonly integrated with an alarm signal
to notify the operator of malfunctions and a back-up electric generator during power outages.

Broilers and Roasters. Houses for broilers and roasters are usually 40 feet wide and 400 to 500
feet long and typically designed for 25,000 to 30,000 broilers per flock. Older houses may be
somewhat smaller, holding 20,000 to 25,000 birds. The houses contain an impermeable surface
for the floor, typically clay. Wood shavings are initially added to the houses to a depth of
approximately 4 inches. Between flocks, a small amount of litter referred to as cake (compacted
and concentrated manure/litter mix) is removed and the remaining litter may be "top dressed"
with an inch or so of new bedding material.

Pullets. Pullets are young chickens, usually less than 20 weeks of age, often raised for the
purpose of egg production. Pullet houses are similar in construction to broiler houses. The houses
are usually 40 to 45 feet in width and 300 to 500 feet in length. Most pullet houses are equipped
with nipple, trough, or bell drinkers and often use mechanical feeders (drag chain, trough, or pan)

                                      \    4-41

-------
 to distribute feed to the birds. Pullets are usually raised on a floor covered with a bedding source,
 1 to 4 inches deep. This litter mixture is either removed after each flock (20 to 21 weeks) or used
 for a second flock. If the litter is used for a second flock, a small amount of litter as cake is
 removed and the remaining litter is top dressed with an inch or so of new bedding material.
 When the house is totally cleaned out, the litter is pushed to the center of the house and a front
 loader places it in a litter spreader for land application or disposal. Regular and thorough house
 cleaning is required to minimize disease'transmission.

 Breeders. Houses are usually 40 to 45 feet in width and 300 to 600 feet in length. Most of the
 breeder houses contain two rows of slats for the birds to roost. The slats are panels of wood
 elevated 18 to 24 inches and laid across supports. The slats are spaced 1 inch apart to allow the
 feces material to fall to the floor. Equipment can access the center section of the house to aid in
 the clean-out between flocks. These slats cover two-thirds of the entire length of the house along
 the outside walls, with the center one-third of the building containing bedding litter.

 The center third of the house is covered with 2 to 6 inches of a bedding source before young
 breeder layers are placed in the breeder house. Drinkers, mechanical feeders, and nests are placed
 over the slat section of the house, which allows most of the manure produced by the birds to fall
 beneath the slat area, keeping the area accessible to the birds cleaner.
4.2.1.4 Broiler Waste Management Practices
This section summarizes waste management practices for broiler, breeding stock, pullets, and
roaster production facilities. Manure as excreted by the birds has a high water content, most of
which evaporates. A typical broiler house with capacity for 22,000 birds at a time will produce
120 tons of litter per year. The litter consists mainly of wood chips or other organic plant matter
even after it has been in place for a year (NCC, 1999).

.Litter Clean-out Schedules. The litter (bedding and manure) of broiler, pullet, and roaster
houses is typically cleaned out completely once a year, although there is a trend toward less
frequent complete clean-outs. Between flocks, the feeders, waterers, and brooding equipment are
winched to the ceiling. A machine is often used to clean out any clumps of litter (termed caking
out) that may build up around waterers and feeders. When the broiler or roaster house is
completely cleaned out, the litter is typically removed with a front-end loader or bobcat to a
spreader truck or flail-type spreader. Spreader trucks are similar to lime-spreading trucks, with a
moving bed that empties onto large, round metal plates that distribute the litter for use as
fertilizer nutrients for pasture and crops. The rate of application is controlled by the rate at which
the moving bed empties and the speed of the truck (NCSU, 1998a).

The common clean-out frequency in broiler breeder houses is once a year. When the house is
cleaned, all the equipment (including slats) is removed from the house to allow a front-end loader
to push all of the manure to the center litter section of the house. Then a front-end loader places
the mixture of manure and litter into a spreader for land application. A thorough cleaning after
each flock (essentially once a year) removes pathogens that could be transferred to the next flock.
After removal of all organic matter, the house is disinfected.

                                          4-42

-------
                                      t
Litter Storage. Litter is removed from houses in large quantities during annual clean-out. Thus,
operators that have land try to time the annual clean-out to coincide with the time land is
available for litter application. If this approach is successful, the facility will need only enough
storage for cake out during the rest of the year. Traditionally, operators stack litter outside, near
the poultry houses or at the edge of fields for spreading in the spring.

However, an increasing number of states are imposing restrictions on the outdoor storage of
waste, although the stringency of these requirements varies from state to state. For example,
under Virginia's Poultry Waste Management Program, stockpiled poultry litter must be (1)
covered, (2) located to prevent storm water runoff, and (3) separated a minimum of 3 feet from
the seasonally high water table or by the use of an impermeable barrier. Maryland's requirements
for outdoor storage are less restrictive and require only that storage be protected from rainfall and
runoff. The state of Delaware, which is also an important producer of poultry, is less restrictive
than Maryland and allows for uncovered storage of poultry litter (Hansen, 2000).

There are several methods for storing poultry litter ranging from open stock piles to roofed
storage structures. The size and type of method employed varies with location and size of the
operation as well as applicable regulations. Open stockpiles are the least expensive alternative,
but pose the greatest risk of contaminating the surrounding environment. Contamination risk is
reduced if these stockpiles are put on top of ground liners. Other storage structures include
bunker-type storage structures, which are permanent aboveground concrete slabs with two
parallel walls of concrete identical to.those used for storing silage on livestock farms (Brodie et
al., 2000). Storage structures with permanent roofs offer both advantages and disadvantages.
These structures eliminate the need for plastic covers and reduce the risk of runoff
contamination; however, they require a higher level of investment and higher maintenance costs
than the other types of structures. Also if these roof structures are not high enough, compacting
becomes more difficult and reduces the operator's ability to use the full capacity of the structure
(Goan, 2000).

4.2.1.5 Pollution Reduction
New technologies in drinking water systems result in less spillage and are equipped with
automatic shutoff valves that help ensure that broiler litter stays drier. Feeding strategies reduce
the quantity of waste generated by ensuring that broilers do not receive more feed than required
for optimal growth. State regulations have also driven many broiler operations to handle
mortalities in ways other than burials such! as rendering and composting, which are increasing
(see Section 4.2.1.6).                   ;

Nipple water delivery systems reduce the amount of wasted water and are healthier for the
animals. Trough or bell type  watering devices allow the animal to spill water and add
contaminants to the standing water. Nipple water systems deliver water only when the animal is
sucking on the nipple. Watering systems may also use water pressure sensors with automatic
shutoff valves to reduce water spillage. The sensor will detect a sustained drop in water pressure
resulting from a break in the  water line. The sensor will then stop the water flow to the broken
                                          4-43

-------
 line and an alarm will sound. The operator can then fix the broken line and restore water to the
 animals with minimal water spillage.

 Feeding strategies that reduce N and P can reduce the quantity of nutrients in the excreta. Dietary
 strategies designed to reduce N and P include enhancing the digestibility of feed ingredients,
 genetic enhancement of cereal grains and other ingredients resulting in increased feed
 digestibility, more precise diet formulation, and improved quality control. Although N and P are
 currently the focus of attention, these strategies also have the potential to decrease other
 nutrients. Phytase is commonly added to broiler feed. Phytase additions are expected to achieve a
 reduction in P excretion of 20 to 60 percent depending on the P form and concentration in the
 diet (NCSU, 1998b). Protein content, calcium, other mineral content, vitamin B, and other
 factors identified in the literature influence the effectiveness of phytase use in feed. Additional
 information on feeding strategies for broilers can be found in Chapter 8.

 Feeding Strategies. P excretion can be reduced by improving the utilization of feed nutrients
 through genetic improvements in poultry or by improving the availability of nutrients in the feed
 ingredients through processing or genetics. Absorption of some minerals is relatively poor and is
 dependent on the chemical form in the feed or supplement.
4.2.1.6 Waste Disposal
This section summarizes waste disposal practices for poultry production facilities. The two major
categories of poultry waste are manure or litter (manure mixed with bedding) and dead animals.
There is little variation in manure characteristics, but the litter composition varies by storage,
composting management, and other practices. Poultry litter can be disposed of in several ways
including land application, animal feed, and incineration. Waste may be pelletized before its
applied to the land. Pelletizing produces a more uniform product that is lighter, easily transported
in bulk, and spread more uniformly. Additional information on pelletizing poultry wastes and
other waste disposal methods can be found in Chapter 8.

Land Application of Poultry Litter. Land application of poultry litter recovers nutrients that
otherwise would be lost, and improves crop yields. Poultry manure slowly releases its nutrients,
so annual applications are possible. Composting and bagging a pelleted poultry manure fertilizer
produces a marketable product for the commercial horticulture industry. One main obstacle to
greater commercialization of poultry manure as a fertilizer product has been the inconsistency in
product quality from one facility to another.

Where land application is employed, operators commonly use broadcast spreaders and flail-type
spreaders for litter. Recommended application rates are based on the nutrient content of the litter,
crop type and yield goals, and current soil conditions.

Many producers with cropland apply their litter to their own crops. However, as operations have
increased in size and become more specialized, this option is becoming more limited. In some
cases, poultry production provides supplemental income to an otherwise small or nonagricultural
household with little  or no land. Further exacerbating the problem of poultry litter disposal is the

                                       :    4-44                                      •

-------
fact that many areas of chicken production have a surplus of nutrient supply over crop needs
(USDA NRCS, 1998). In these areas, poultry producers face difficulties in selling litter, giving
litter away, or even paying local farmers to take the litter. Table 4-48 presents the number of
broiler operations with and without adequate crop and pastureland for manure application on an
N- and P- basis at plant removal rates and operations that own no land. The operations that have
no land were determined by running queries of the USDA 1997 Census of Agriculture data to
identify facilities that did not grow any of the 24 major crops grown in the United States.
Operations with no land available are assumed to haul their waste to land that can use the waste
as a fertilizer resource. More details on the national- and county-level nutrient balance are found
in Chapter 6.

'Use of Poultry Litter as Animal Feed. Data on the use of poultry litter as animal feed is
inadequate to determine how prevalent it is as  a waste disposal method. Anecdotal information
indicates that use of poultry litter as a food supplement for beef herds may be common in the
Mid-Atlantic and Southeast Regions.

Incineration of Poultry Wastes. Incineration of poultry wastes is not done on a large scale in
the United States. The practice is being successfully implemented in the United Kingdom and is
actively being investigated in this country. Additional information on centralized incineration of
poultry wastes is presented in Chapter 8.

Disposal of Dead Animals. Concerns about possible ground water pollution from the burial of
dead birds have caused the poultry industry to  search for alternatives for dealing safely with dead
stock. The most common methods of disposal  of dead birds are composting, incineration, burial
in deep pits, rendering, and disposal in landfills. Anecdotal information indicates that some
broiler integrators have begun to distribute; freezers to grower operations to store dead birds prior
to picking them up for rendering. Technical information on practices for the disposal of dead
animals is presented in Chapter 8. However, there is little information available on the relative
use of these practices within the broiler industry.


4.2.2   Layer Sector
                                       l
This section describes the following aspect of the layer industry:

        4.2.2.1: Distribution of the layer industry by size and region

    •   4.2.2.2: Production cycles of layers and pullets
        4.2.2.3: Layer facility types and management
    •   4.2.2.4: Layer waste management practices

    •   4.2.2.5: Egg processing and wash water
        4.2.2.6: Pollution reduction

        4.2.2.7: Waste disposal
                                          4-45

-------
 National Overview. Trends in the egg production subsector have paralleled those in other
 livestock industries—increasing overall production on fewer and larger farms. At the end of
 1997, there were 69,761 operations with hens and pullets of laying age (layers 20 weeks and
 older) in the United States. This number represents a 19 percent decrease from the estimated
 86,245 operations with egg-producing birds in 1992 (USDA NASS, 1999c). hi the 10-year period
 from 1982 to 1992, the number of operations with hens and pullets declined from more than
 212,000, a 60 percent decrease (Abt, 1998). Table 4-49 shows the number of operations and bird
 inventory for 1982, 1987,1992, and 1997. The number of operations in each category of
 operation has decreased substantially while total production has increased. Table 4-49 also
 provides data on operations and inventory with birds below laying age. As with other sectors,
 specialization of production has gained a foothold, with a small but increasing number of
 operations  producing only pullets.

           Table 4-49. Operations With Inventory of Layers or Pullets 1982-1997.
Total
Number of
Farms with
Layers 20
weeks and
older
Layer and
pullets 13
weeks and
older
Pullets
between 13
and 20 weeks
old
Pullets less
than 13 weeks
1997
Ops
69,761
72,616
13,180
5,122
Production
313,851,480
366,989,851
53,138,371
51,755,985
1992
Ops
86,245
88,235
14,818
4,938
Production
301,467,288
351,310,317
49,843,029
/
44,567,993
1987
Ops
141,880
144,438
19,639
6,753
Production
316,503,065
373,577,186
57,074,121
47,409,798
1982
Ops
212,608
215,812
28,109
8,726
Production
310,515,367
362,464,997
51,949,630
40,705,085
Source: USDA NASS, 1999b.
One major difference between the layer and egg production sector and the broiler production
sector is geographical distribution. Layer production, although primarily performed in 10 states,
is much less geographically concentrated than the broiler industry. Hence, the key regions
identified for the broiler industry in the previous section are not applicable to the layer and egg
production sector. Overall, layer production has not increased as rapidly as has broiler
production.
                                       E»

4.2.2.1 Distribution of Layer Operations by Size and Region

Layers are defined as chickens maintained for the production of table eggs. Eggs may be
produced for human consumption in the shell form (sold in cartons) or may be used in the
production of liquid, frozen, or dehydrated eggs. Laying hen operations include facilities that
                                          4-46

-------
confine chickens for feeding or maintenance for at least 45 days in any 12-month period. These
facilities do not have significant vegetation in the confinement area during the normal growing
season. Facilities that raise pullets are generally included. Egg washing and egg processing
facilities located at the same site as the birds are generally included. Facilities that have laying
hen or pullet feeding operations may also include animal and agricultural operations such as
grazing and crop farming.

EPA's 1974 CAFO ELG generally apply to laying hen operations with more than 100,000 birds
and with continuous overflow watering systems, and to laying hen operations with 30,000 birds
and with a liquid manure system. (See Chapter 2 for the definition of a CAFO, and Chapter 5 for
a discussion of the basis for revisions to the poultry subcategories-) Where numbers of birds are
presented, all birds regardless of age (e.g., poult, laying age, or pullet) or function (i.e., breeder,
layer, meat-type chicken) are included unless otherwise indicated in the text.

Table 4-50 presents the number of layer, pullet, and combined operations by size class as well as
the average bird count at each type of operation. Table 4-51 presents the number of operations
with laying hens by operation size and region. Data on the three types of operations were
obtained through special queries of the 1997 Census of Agriculture (USDA NASS,  1999c). Each
operation is uniquely characterized, thus the sum of all three provides the total number of
operations with layers or pullets or both (75,172 total operations). Pullet operations were
assumed to be evenly distributed so as to support layer operations. Table 4-52 presents the
distribution of egg laying chickens by facility size and region. It is important to note that in 1997
the 326 largest operations with laying hens were less than one half of a percent of the total
operations (70,857) but had over 55 percent of the laying hens. Table 4-53 presents  the number
of layer facilities and total USDA-based AUs using the 1997 Census of Agriculture (USDA
NRCS,2002).
Table
O
National
Item
Layer Ops
Layer Count
Pullet Ops a
Pullet Count
Layer and
Pullet Ops
Layer and
Pullet Count
4-50. Number of Operations in 1997 and Average Number of Birds at
aerations with Layers or Pullets or Both Layers and Pullets in 1997.
Number of Layer, Pullet, and combined Layer and Pullet Operations and Average Bird
Counts (Operation Size Presented by Number of Birds Spot Capacity)
>0-30,000
57,413
926
3,694
5,010
12,011
218
>30,000-
62,500
528
43,621
516
51,162
67
45,963
>62,500-
180,000
419
103,048
; 61
133,303
« 93
112,377
>180,000-
600,000
146
311,189
>600,000
25
1,013,318
44
305,679
91
358,580
64
1,367,476
Total
58,531

4,315

12,326

• Pullet size ranges vary from the others: >0-30,000; >30,000-100,000; >100,000-180,000; and >180,000.
Source: USDA NASS, 1999c.
                                          4-47

-------
        Table 4-51. Number of Operations in 1997 With Laying Hens by Region and
                                    Operation Size in 1997.
Region"
Central
Mid-Atlantic
Midwest
Pacific
South
National
Number of Chicken Egg Laying Operations
(Operation Size Presented by Number of Layers in Inventory)
X)-305000
15,067
17,445
23,069
6,509
7,334
69,424
>30,000-
62,500
76
150
123
38
208
595
>62,500-
180,000
41
133
182
66
90
512
>180,000-
600,000
28
48
78
39
44
237
>600,000
9
15
39
17
9
89
Total
15,221
17,791
23,491
6,669
7,685
70,857
 Central - ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TO,
NC; Midwest = ND, SD, MN, MI, WI, OH, IN, EL, IA, MO, ME, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC, FL.
Source: USDANASS, 1999c.
              Table 4-52. Distribution of Chickens at Operations in 1997 With
                          Laying Hens by Region and Facility Size.
Region*
Central
Mid- Atlantic
Midwest
Pacific
South
National
Percentage of Total Chicken Egg Layer Counts
(Operation Size Presented by Number of Layers in Inventory)
>0-30,000
1.62
5.51
2.25
0.26
9.29
18.92
>30,000-
62,500
1.12
2.21
1.93
0.57
2.79
8.62
>62,500-
180,000
1.27
4.41
6.15
2.27
3.04
17.14
>180,000-
600,000
. 3.08
4.77
7.55
3.75
4.48
23.63
>600,000
2.29
5.24
16.61
4.79
2.79
31.69
Total
9.38
22.14
34.49
11.65
22.34
100.00
 Central - ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TO,
NC; Midwest = ND, SD, MN, MI, WI, OH, IN, IL, IA, MO, NE, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC, FL.
Source: USDANASS, 1999c.
Table 4-53. Layer Facility Demogra
Size Class (EPA AUs)
300-500
500-750
750-1000
>1000
Total
Number of
Operations
776
446
238
671"
2,131
phics from the 1997 Census of Agriculture Database.
Total
USDA AUs
95,648
88,817
69,379
922,558
1,176,402
Size Class Interval
(Number of Head)
Lower
30,000
50,000
75,000
100,000

Upper
49,999
74,999
99,999
up

Source: USDA NRCS, 2002.
                                             4-48

-------
4.2.2.2 Production Cycles of Layers and Pullets
A layer is a sexually mature female chicken capable of producing eggs. Egg production can be
divided into two types, table and hatching. Table eggs are used for consumption, and hatching
eggs are used to supply broiler or layer production operations.

Traditionally, layers are kept through 1 year of egg production and sold for meat at 18 to 20
months of age. Depending on market conditions (relative price of eggs to hens), it has become
increasingly common to recycle layers through more than 1 year of production (Bradley et al.,
1998). Producers will recycle their flocks into a second or even a third cycle of lay. Flock
recycling involves stopping the flock's egg production, allowing a suitable rest period, and then
bringing the flock back into production. The entire process (called "force molting") of recycling
layers takes approximately 4 to 5 weeks. Producers stop egg production by reducing the length of
day (lighting) and feed supply. This period typically takes 2 to 4 weeks and involves a 7-day fast
followed by a period during which the flock is fed a low calcium diet. After this "rest period," the
flock is returned to normal lighting conditions and a nutritionally balanced diet to support egg
production (UCD, 1998). Once the flock is brought back into production, most layers will meet
or exceed original levels of egg production. Under this regime, the flock's life is extended for 6
to 12 additional months.
4.2.2.3 Layer Facility Types and Management
Litter-based Housing. A few litter and slat/litter houses are used to produce table eggs. These
same housing systems are used for the breeders that produce fertile eggs for the production of
hatching eggs, which eventually replace the current flock of egg layers.

Non-litter Based Housing. Layers are often raised in cages arranged in two or four decks. Cages
have been the preferred way of housing table egg layers since the mid-1940s (Bradley et al.,
1998). They are popular because they provide good sanitation. When the birds are caged, flock
nutrition can be better managed and products (eggs) kept cleaner. Cages are designed to separate
the layers from their own feces and thereby eliminate many of the feces-related parasite and
health problems. Most commercial layer facilities employ one of the following designs.

High-rise Cage Systems. Cage systems are two-story poultry houses with cages for the laying
hens in the top story suspended over the bottom story, where the manure is deposited and stored.
The house structure itself is usually 40 to 60 feet wide and from 400 to 500 feet long. The
watering system is a closed (noncontinuous flow) nipple of cup system. The ventilation system is
designed so that the external air is brought into the top story, through the cages where the birds
are located, and then over the manure in the bottom story, exiting through fans in the bottom
story side wall. The ventilation system is designed to dry manure as it is stored. With proper
management of waterers to prevent water leaking to the bottom story, layer waste commonly has
a moisture content of 30 to 50 percent.

Scrape-out and Belt Systems. Housing facilities for scrape-out and belt manure removal cage
systems are the same dimensions as high-rise units except they have only one story. Watering

                                      ;   4-49

-------
 systems in these operations are also closed, using nipple or cup waterers. Ventilation varies from
 fan-controlled to adjustable curtains in the side wall.

 Cages in the scrape-out system are suspended over a shallow pit, which is scraped out to the end
 of the house by a small tractor or a pit scraper. Belt systems have a continuous belt under the
 different tiers of cages that moves the manure to the end of the house, where it is placed into a
 field spreader or some other suitable storage device. Some of the newer belt systems move air
 over the manure on the belt in an attempt to dry the manure before it is removed.

 The manure from scrape-out and belt systems usually has a moisture content of between 70 and
 85 percent. Therefore, the manure can be handled as a slurry, which is either injected or land
 applied to the land with a spreader that can handle the high-moisture manure.

 Flush-Cage Housing. Housing, equipment, and ventilation in flush-cage housing are similar to
 the scrape-out system with the exception of how the manure is handled. Cages are suspended
 over a shallow pit as in the scrape-out system, but water is used to move the manure from under
 the cages to the end of the house, where the water and manure mixture is placed in an anaerobic
 lagoon.  The water used to flush the manure pits is recycled from the lagoon. A variation of this
 system consists of solids separation by means of a primary lagoon and a secondary lagoon
 (NCSU, 1998a).                        i

Although storage, management, and disposal practices are quite similar for broiler and layer
operations, with the exception of layer operations using lagoon systems, there are regional
differences in how operations manage waste. A survey conducted by the United Egg Producers
during 1998 indicated significant regional differences in the way layer wastes are managed.
These differences are shown in Table 4-54. This data was used with the data in Table 4-51 to
estimate that the total number of layer operations that use water to move the wastes to a lagoon
(referred to as wet layer systems) was approximately 3,100 operations.
          Table 4-54. Summary of Manure Storage, Management, and Disposal.
Practice
Storage sheds in addition to high-rise housing
Housing with 6-month or longer storage of dry manure
Export or sale of some or all of litter
Litter use other than land application (incineration,
pallatization)
Farms with wet storage systems, such as lagoon
Percentage of Region With Practice
Pacific
0
75
100
0
0
Central
0
40
40
0
60
Midwest
10
90
100
5
2
Mid-
Atlantic
0
90
75
5
5
South
0
40
50
0
60
 Source: UEP, 1998
                                         4-50

-------
 4.2.2.4 Layer Waste Management Practices
 Manure handling systems vary by region. In 1999 the USDA's APHIS completed the Layers '99
 Study (USDA APHIS, 2000b), which looked at a 15-state target population to develop
 information on the nation's table egg layer population. The 15 states accounted for over 75
 percent of the table egg layers in the United States on December 1, 1998. The information
 collected was summarized by four regions. The data collected on the manure-handling methods
 of layer facilities are presented in Table 4-55.
Table 4-55. Free
Primary Manure-
Handling Method
High-rise (pit at ground level
with house above
Deep pit below ground
Shallow pit (pit at ground
level with raised cages)
Flush system to lagoon
Manure belt
Scraper system (not flush)
Total
uency of Primary Manure-Handling Method by Region.
Great Lakes
%
63.0
0.0
23.4
0.0
13.6
0.0
100
SE
12.3 ,
- '
9.6
- .
6.7
-

Southeast
%
31.4
0.0
19.9
41.0
4.3
2.5
100
SE
6.0
-
7.3
5.9
2.1
2.1

Central
%
48.1
6.4
1.6
0.0
20.2
23.7
100
SE
6.0
3.9
1.2
-
4.9
§-7

West
%
7.8
7.3
24.1
12.0
5.2
43.6
100
SE
2.1
2.5
7.2
3.6
1.5
6.4

All Farms
%
39.7
2.9
18.9
12.5
10.6
15.4
100
SE
4.4
1.0
4.4
2.5
2.7
2.6

Great Lakes = IN, OH, and PA; Southeast = AL, FL, GA, and NG = Central = AR, IA, MN, MO, and ME; West = CA, TX, WA.
SE = Standard Error
Source: USDA APHIS, 2000b                    ':
4.2.2.5 Layer Egg Wash Water
The majority of eggs marketed commercially in the United States are washed using automatic
washers. Cleaning compounds such as sodium carbonate, sodium metasilicate, or trisodium
phosphate, together with small amounts of other additives, are commonly used in these systems.
In addition, plants operating under the Federal Grading Service are required to rinse eggs with a
sanitizer following washing (Moats, 1981), Wash water is contaminated with shell, egg solids,
dirt, manure, and bacteria washed from the egg surface into the recycled water.

A study by Hamm et al. (1974), performed to characterize the wastewater from shell egg
washers, calculated the pollutant load from 11 egg grading and egg breaking plants. Median
waste concentrations in the wash waters at the grading plants were found to be 7,300 mg/L for
COD, 9,300 mg/L for TSS, and 4,600 mg/L for volatile solids; median concentrations at the
breaking plants were found to be 22,500 mg/L for COD, 27,000 mg/L for TSS, and 16,600 mg/L
for volatile soilds.                       ,
                                          4-51

-------
Eggs may be washed either on or off farm. Operations that wash their eggs on farm may do so
inline or offline. The frequency of egg processing by location is presented in Table 4-56. The
frequency of egg processing by operation size is presented in Table 4-57. Eggs from over 80
percent of the operations are processed off site. Operations with fewer than 100,000 layers are
more likely to have their eggs processed off site. Smaller poultry operations primarily haul their
wash water to treatment centers or sell their eggs to larger operations for washing and processing
(Thome, 1999). On the other hand, larger egg production operations collect and store egg wash
water on site in large tanks or lagoons for treatment and storage. This lagoon water may then be
applied to fields using spray irrigation. These anaerobic lagoons are earthen structures designed
to provide biological treatment and long-term storage of poultry layer waste. Treatment of waste
occurs anaerobically, a process in which organic material is decomposed to carbon dioxide and
water, while stabilized products, primarily humic substances, are synthesized. Where space is -'
available, two-stage lagoons may be constructed for better wastewater treatment and greater
management flexibility. The first stage contains only the treatment (permanent) volume and
sludge volume while the second stage lagoon stores treated wastewater for irrigation and
provides additional treatment that produces a higher quality effluent for recycling as flush water
(Tyson, 1996).
Table 4-56. Percentage of O
Primary Egg
Processing Location
On farm in line
On farm offline
Off farm
Total
Great Lakes
%
17.8
6.7
75.5
100
SE
8.4
5.4
8.1
—
lerations by E
Southeast
%
13.1
0.6
86.3
100
SE
4.3
0.6
4.4
-
Kg Processing Location and Region.
Central
%
9.0
3.3
87.7
100
SE
3.2
3.3
4.5
-
West
%
10.9
9.3
79.8
100
SE
2.4
2.4
3.6

AH
%
13.5
5.3
81.2
100
SE
3.0
2.1
3.2
-
Regions: Great Lakes = IN, OH, and PA; Southeast = AL, FL, GA, and NC; Central = AR, IA, MM, MO, and ME; West - 
-------
4.2.2.6 Waste and Wastewater Reductions
Methods to reduce the quantity of wastewater generated at layer operations include advanced
watering systems to reduce water spillage and feeding strategies. The use of feeding strategies
will reduce the quantity of waste generated by ensuring that animals do not receive more feed
than required for optimal growth. Dietary strategies to reduce N and P content include
developing more precise diets and improving the digestibility of feed ingredients through the use
of enzyme additives and genetic enhancement of cereal grains. Information on feeding strategies
for layer operations can be found hi Chapter 8.

There are several types of water delivery systems used in layer operations. Nipple water delivery
systems reduce the amount of wastewater aind result in healthier birds. Trough or cup drinkers
allow the bird to spill water and add contaminates to the standing water. Continual overflow
watering systems reduce the health risk to the birds but produce a greater quantity of wastewater.

Nipple water delivery systems are placed in the cage and deliver water only when the bird is
sucking on the nipple. Approximately 62 percent of all layer operations use nipple drinker
systems (USDA APHIS, 2000b). However, for layer operations with more than 100,000 birds
this number increases to approximately 81.5 percent (USDA NAHMS, 2000). Watering systems
may also use water pressure sensors and automatic shutoff valves to reduce water spillage. The
sensor will detect a sustained drop in water pressure resulting from a break in the water line. The
sensor will then stop the water flow to the broken line and an alarm will sound. The operator can
then fix the broken line and restore water to the animals with minimal water spillage. There is
little information about the relative use of water pressure sensors within the layer industry.

                                       t                  •
4.2.2.7Waste Disposal
Practices for the disposal of layer wastes are similar to those for other poultry litter. After
removal from the housing facilities, waste can be directly applied to the land (if available), stored
prior to final disposal, or pelletized and bagged for use as commercial fertilizer. Waste storage,
application of litter, and other poultry waste disposal practices are discussed in detail in Section
4.2.1.6. The percentage of layer and pullet operations with and without enough land for
application of manure on a N- and P- basis and operations with no land are shown in Tables 4-58
and 4-59. The  facilities that have no land were determined by running queries of the USDA 1997
Census of Agriculture data to identify facilities that did not grow any of the 24 major crops
grown in the United States.              !

Mortality and the disposal of dead hens is a potentially significant source of contamination at
laying operations. A total of 6.5 percent of hens placed in the last completed flock (one flock per
farm site) died by 60 weeks of age, and the overall  average cumulative mortality was  14.6
percent (USDA APHIS, 2000b). The common methods of disposing of dead hens and frequency
of use are presented in Table 4-60. Tables 4-61 and 4-62 present this information for operations
with fewer than and more than 100,000 laying hens. Larger facilities are much more likely than
smaller facilities to send dead birds to rendering plants (50.2 percent versus 21.1 percent). While
                                          4-53

-------
smaller facilities are more likely than larger facilities to bury their dead birds (45.6 percent versus
9.1 percent).
 Table 4-58. Percentage of Layer Dominated Operations With Sufficient, Insufficient, and
Capacity
(Number of
Birds)
1-29,999
30,000-59,999
60,000-179,999
180,000+
Total
Sufficient Land
Nitrogen
12.2
6.8
6.2
1.1
10.5
Phosphorus
9.2
1
0
0
6.9
Insufficient Land
Nitrogen
49.1
60.3
52
' 46.6
49.5
Phosphorus
53
65
62.2
47.1
57.5
No Land
41.1
33.2
36.8
52.9
38.8
Source: USDA NASS, 1999c.
 Table 4-59. Percentage of Pullet Dominated Operations With Sufficient, Insufficient, and
Capacity
(Number of
Birds)
1-29,999
30,000-59,999
60,000-179,999
180,000+
Total
Sufficient Land
Nitrogen
11.6
11.9
14.1
2
11.6
Phosphorus
5.9
1.7
1.1
0
3.7
Insufficient Land
Nitrogen
47.3
54.9
49.2
45.1
49.5
Phosphorus
53
65
62.2
47.1
57.5
No Land
41.1
33.2
36.8
52.9
38.8
Source: USDA NASS, 1999c.
Table 4-60. Frequency of Disposal Methods for Dead Layers for All Facilities.
Method of Disposal
Composting
Incineration
Covered deep pit
Rendering
Other
Total
Farm Sites
Percent
15.0
9.0
32.0
32.0
16.1
-
Std Error
(3.5)
(2.9)
(5.8)
(4.9)
(3.6)

Dead Hens
Percent
11.7
10.4
17.9
41.4
18.6
100.0
Std Error
(4.1)
(4.5)
(4.3)
(8.6)
(5.4)

Source: USDA APHIS, 2000b.
                                           4-54

-------
               Table 4-61. Frequency of Disposal Methods for Dead Layers
                           for Faculties With <100,000 Birds.
Method of Disposal
Composting
Incineration
Covered deep pit
Rendering
Other
Total
Farm Sites
Percent
13.9
9:3
45.6
21.1
14.0
-'
Std Error
4.7
4.2
7.2
4.5
4.7
--
Dead Hens
Percent
13.4
19.8
36.4
19.7
10.7
100.0
Std Error
7.5
9.8
8.3
6.0
3.8
—
Source: USDA NAHMS, 2000.
               Table 4-62. Frequency of Disposal Methods for Dead Layers
                           for Facilities With > 100,000 Birds.
Method of Disposal
Composting
Incineration
Covered deep pit
Rendering
Other
Total
Farm Sites
Percent .
16.8
8l7
911
50.2
19,7
-
Std Error
4.6
3.3
2.2
7.2
5.8
-
Dead Hens
Percent
10.6
4.6
6.5
54.8
23.5
100.0
Std Error
4.4
2.5
2.5
10.9
8.7
—
Source: USDA NAHMS, 2000.
4.2.3   Turkey Sector
This section describes the following aspects of the turkey industry:

        4.2.3.1: Distribution of the turkey industry by size and region

    •    4.2.3.2: Production cycles of turkeys                                .

        4.2.3.3: Turkey facility types and management

    •    4.2.3.4: Turkey waste management practices

        4.2.3.5: Pollution reduction

        4.2.3.6: Waste disposal

National Overview
Turkey production has increased steadily over the past 2 decades and, as in the other poultry
sectors, there has been a shift in production to fewer but larger operations. Between 1982 and
1997, almost 21 percent of the turkey operations went out of business (USDA NASS, 1998b). As
                                          4-55

-------
shown in Table 4-63, the number of turkey operations decreased from 12,708 operations in 1992
to 12,207 operations in 1997, a 4 percent decrease. The number of turkeys produced rose
approximately 10 percent between 1992 and 1997. The number of hens held for breeding,
however, decreased by almost 6 percent during the same period.

As in the broiler industry, most turkeys are produced under contract production arrangements.
For each contract arrangement, an integrator company provides the birds, feed, medicines., bird
transport, and technical help. The contract producer provides the production facilities and labor
to grow the birds from hatchlings to market-age birds. In return, the contract producer receives a
guaranteed price, which may be adjusted up or down based on the performance of the birds
compared with that of other flocks produced or processed by the company during the same span
of time. Some turkeys are raised by independent turkey producers. Even under this type of
production, however, the independent producer may arrange for feed, poults, medical care, and
possibly processing, through contracts.  Finally, some turkeys are produced on farms owned by
the integrator company. The integrator company may also be the company that processes the
birds; however, some turkey integrators provide all services except the processing, which the
integrator arranges with a processing company.

     Table 4-63. Turkey Operations in 1997,1992,1987, and 1982 With Inventories of
                      Turkeys for Slaughter and Hens for Breeding.
Total Farms
With
Turkeys
Turkeys sold for
slaughter
Turkey hens kept
for breeding
1997
Ops
6,031
5,429
747
Production
307,586,680
299,488,350
8,098,330
1992
Ops
6,257
5,658
793
Production
279,230,136
272,831,801
6,398,335
1987
Ops
7,347
6,813
761
Production
243,336,202
238,176,199
5,160,003
1982
Ops
7,498
6,838
1,040
Production
172,034,935
167,540,306
4,494,629
Source: USDANASS, 1998b.
4.2.3.1 Distribution of Turkey Operations by Size and Region

EPA's 1974 CAFO Effluent Limitations Guidelines and Standards generally apply to turkey
operations with more than 55,000 birds. (See Chapter 2 for the definition of a CAFO, and
Chapter 5 for a discussion of the basis for revisions to the poultry subcategories.) Where
numbers of birds are presented, all birds regardless of age (e.g., poult, laying age, or pullet) or
function (i.e., breeder, layer, meat-type birds) are included unless otherwise indicated in the text.

The consolidation of the turkey industry has mirrored that of other livestock industries. The
number of turkey farms with fewer than 30,000 birds decreased from 5,113 in 1987 to only 3,378
in 1997 (USDA NASS, 1999b). Concurrently, the number of operations with more than 60,000
birds increased 26 percent from 1232 in 1987 to 1671 in 1997. Although these changes are not as
dramatic as those for the swine or broiler industry, they are indicative of an industry that is
undergoing a steady transformation into one dominated by large integrated operations.
                                         4-56

-------
Table 4-64 presents the number of turkey operations in 1997 by size and region. Table 4-65
presents the distribution of turkey production by size of operation and region. It is important to
note that the 369 largest operations (2.7 percent) had 43.6 percent of the total turkey count.These
tables reflect the use of 2.5 turns (flocks) per year. USDA MASS performed an analysis for EPA
to estimate how variations in the estimated of number of turns per year would change the number
of potential CAFOs (operations with more than 55,000 birds). This analysis showed that there
would be only minor changes to the estimated number of CAFOs if the estimated number of
turns was adjusted to two or three turns.  ;

State-level data from the 1997 Census of Agriculture (USDA NASS, 1999b) indicate that states
in the Midwest and Mid-Atlantic Regions account for more than 70 percent of all turkeys
produced  Key production states (determined by number of turkeys produced) are North Carolina,
Minnesota, Virginia, Arkansas, California; and Missouri. Other states with significant production
include Indiana, South Carolina, Texas, Pennsylvania, and Iowa. Table 4-66 presents the number
of turkey facilities and total USDA-based AUs using the 1997 Census of Agriculture (USDA
NRCS,2002).
Tab!" 4.64. Number of Turkey Operations in 1997 by Region and Operation Size.
Region "
Central
Mid-Atlantic ,
Midwest
Other
National
Number of Turkey Operations by Size
(Operation Size Presented by Number of Birds Spot Capacity)
>16,500-38,500
: 54
597
493
• 222
1,366
->38,500-55jOOO
19
143
121
83
366
>55,000
34
83
142
110
369
Total
2,408
4,088
4,772 ,
2,450
13,718
»Central = ID MT WY NV UT CO, AZ,NM,TX, OK; Mid-Atlantic -ME, NH, VI, NY, MA, Ki, ul, HI, PA, Ufc, Mil, VA, WV,Ki, IN,
NcSweTt = NoSi, MI, Wl! OH, IN, H, IA, MO, NB, KS; Other= WA, OR, CA, AK, HI, AR, LA, MS, AL, GA, SC, FL.
Source: USDA NASS, 1999c. I
Tab!" 4-fiS. Distribution of Turkeys in 1997 by Region and Operation Size.
Region "
Central
Mid-Atlantic
Midwest
Other
National
Percentage of Total Turkey Counts by Operation Size
(Operation Size Presented by Number of Birds Spot Capacity)
>0-16,500
0.64
4.93
4.38
1.48
11.43
>16,500-38,500
: 1.22
13.18
10.62
i 5.18
130.20
>38,500-55,000
0.80
5.73
4.88
3.35
14.75
>55,000
5.20
7.15
19.94
11.34
43.62
Total
7.85
30.99
39.82
21.3.4
100.00
Central = ID MT WY NV.UT, CO, AZ,NM,TX, OK; Mid-Atlantic -ME, NH, VT, NY, MA, Kl, Cl, INJ, fj\,uc., mu vrt w v, rn, n-.,
NcSdwest = ND, SD, MN, MI, wi OH, IN, IL, IA, MO, N.E, KS; Other= WA, OR, CA, AK, HI, AR, LA, MS, AL, GA, SC, FL.
Source: USDA NASS 1999c. :
                                          4-57

-------
Table 4-66. Turkey Facility Demographics from the 1997 Census of Agriculture Database.
Size Class (EPA AUs)
300-500
500-750
750-1000
1000+
Total
Number of
Operations
875
478
262
388
2,003
Total
USDA AUs
360,475
306,632
230,628
915,367
1,813,102
Size Class Interval
(Number of Head)
Lower
16,500
27,500
41,250
55,000

Upper
27^499
41,249
54,999
up

 Source: USDA NRCS, 2002,
 4.2.3.2 Production Cycles of Turkeys

 The growth of a turkey is commonly divided into two phases: brooding and grow-out. The
 brooding phase is the period of the poult's life extending from 1 day to about 6 to 8 weeks.
 During this time, the poults are unable to maintain a constant body temperature and need
 supplemental heat. Brooder stoves are used to keep the ambient temperature at 90 to 95 °F when
 the poults arrive; thereafter, the producer decreases the temperature by 5 °F for the next 3 weeks
 until the temperature reaches 75 °F. Poults are extremely susceptible to disease and are typically
 administered special starter feeds containing antibiotics and a high percentage of protein. One
 difference between turkeys and broilers is that feeding strategies, such as the use of phytase to
 reduce P content hi waste, are not employed with turkeys through the entire life cycle because
 phytase is thought by some to inhibit bone development in poults. As with the broiler industry,
 further research in diet, nutrition, and the complex relationships between calcium, vitamins, and
 P may overcome this limitation.

 The grow-out phase is the period in a turkey's life between the brooding phase and the market or
 breeding phase. Depending on the sex of the birds, the grow-out phase typically lasts up to 14
 weeks. Modern turkeys grow rapidly. A torn (male) poult weighs about 1A pound at birth; at 22
 weeks it weighs almost 37 pounds. Hens (females) are usually grown for 14 to 16 weeks and
 toms from 17 to 21 weeks before being marketed. Most operators start fewer toms than hens in a
 given house to allow more space for the larger birds.

 4.2.3.3 Turkey Facility Types and Management

 Market and breeder turkeys are raised in similar housing systems. Typically, young turkey poults
 are delivered to the operation on the day of? or the day after,  hatching. The poults are placed in
 bams called brooder houses. The brooder houses for turkeys are usually as wide as broiler and
 pullet houses but are usually only 300 to 400 feet long. The houses have an impermeable floor
 surface made of either clay or cement. The floors are then covered with 3 to 4 inches of bedding.

As with broilers, ventilation is usually provided by a negative-pressure system, with exhaust fans
drawing air out of the house and fresh air returning through ventilation ducts around the
perimeter of the roof. Some turkey houses have side curtains that can be retracted to allow
diffusion of air. More advanced ventilation systems use exhaust fans controlled by a thermostat
                                         4-58

-------
and timer. Brooding heaters are normally present in one-third to one-half of the house, for the
early stages of development. As the poults iget older, they are usually released into the other two-
thirds or half of the house and remain there until they are of market age. In some operations the
poults are moved to a specially designed grower house, where they stay until they are of market
age.  Some operations will move poults to range.

The construction of the housing facilities varies by region and depends on climatic conditions
and production practices. Generally, in the southern and southeastern U.S. the houses are more
open. The side walls of the houses are 6 to; 8 feet high, with a 4- to 5-foot-wide opening covered
by wires and curtains: Since moderate winters are normal in the South and Southeast, the curtains
can contain the heat necessary to maintain a reasonable temperature within the commercial
poultry houses. In the northern and central'states, most houses have solid side walls and contain
considerable insulation to combat the colder temperatures. These houses rely on exhaust fans or
moveable solid side walls during the hot summer days to diminish the effects of heat stress on
the birds.                              •;

These traditional systems are called two-age farms because two ages of birds can be on the farm
at one time. Once the poults have been moved to the grower barn, the brooder house is totally
cleaned out for another group of poults. This cleanup includes removal of all litter used during
the brooding phase. The second group of poults occupies the brooder house while the first group
of birds is still in the grower barn. Operations in the Shenandoah Valley area of Virginia and
West Virginia are known to use a modification of the typical two-age management system. Under
this system the houses are longer. Poults may occupy one end of the house, while an older group
is being grown out at the other end. The birds do not have to be moved as often under this
system.

The two-age farm system has served the turkey industry for more than 20 years. Currently,
however, there are efforts to modify this system because of morbidity and mortality. The
modifications are directed at raising older birds in  facilities removed from the poults. This
approach provides an opportunity to break any disease cycle that might put the birds, especially
the younger ones, at increased risk (USEPA, 1998).

                                      j
4.2.3.4 Turkey Waste Management Practices
For brooder facilities, the  litter is removed after every flock of brooded poults. This practice is
necessary to provide the next group of poults with clean bedding to achieve the lowest possible
risk of disease exposure. Poult litter may be composted between flocks to control pathogens and
then reused in the grow-out houses. For grower systems, the litter is removed once a year. In
between flocks, cake is removed and the old litter may be top-dressed with a thin layer of new
bedding. For single-age farms, the bedding in the brooding section is moved to the grower
section. New bedding is put in the brooder section, and the facilities are prepared for the next
group of poults.
                                          4-59

-------
 4,2.3.5 Pollution Reduction

 New technologies in drinking water systems result in less spillage and ensure that turkey litter
 stays drier. Feeding strategies will also reduce the quantity of waste generated by ensuring that
 turkeys do not receive more feed than required for optimal growth. State regulations have also
 driven many turkey operations to handle mortalities in ways other than burial such as rendering
 and composting, which are on the rise (see Section 4.2.3.6).

 Nipple water delivery systems reduce the amount of wasted water and are healthier for the
 animals. Trough or bell type watering devices allow the animal to spill water and add
 contaminants to the standing water. Nipple water systems deliver water only when the animal is
 sucking on the nipple. Watering systems may also use water pressure sensors and automatic
 shutoff valves to reduce water spillage. The sensor will detect a sustained drop in water pressure
 resulting from a break in the water line. The sensor will then stop the water flow to the broken
 line and an alarm will sound. The operator can then fix the broken line and restore water to the
 animals with minimal water spillage.

 Feeding strategies can be used to reduce the quantity of nutrients in the excreta. Dietary strategies
 designed to reduce N and P include enhancing the digestibility of feed ingredients, genetic
 enhancement of cereal grains and other ingredients resulting in increased feed digestibility, more
 precise diet formulation, and improved quality control. Although N and P are currently the focus
 of attention, these strategies also have the potential to decrease other nutrients. There is debate on
 the impacts of phytase feed supplements for turkey poults concerning bone growth and bone
 development. Phytase additions are expected to achieve a reduction in P excretion of 20 to 60
 percent depending on the P form and concentration in the diet (NCSU, 1998b). Protein content,
 calcium, other mineral content, vitamin B, as well as other factors identified in the literature
 influence the effectiveness of phytase use in feed. Additional information on feeding strategies
 for turkeys can be found in. Chapter 8.

 4.2.3.6 Waste Disposal

 Practices for the disposal of turkey litter are similar to those for other poultry litter. After removal
 from the housing facilities, waste can be directly applied to the  land (if available), stored prior to
 final disposal, or pelletized and bagged for use as commercial fertilizer. Waste storage,     ;
 application of litter, and other poultry waste management practices are discussed in detail in
 Section 4.2.1.4. The percentage of turkey operations with and without enough land for
 application of manure on a N- and P- basis and operations with no land are shown in Table 4-67.
 The facilities that have no land were determined by running queries of the USDA 1997 Census of
 Agriculture data to identify facilities that did not grow any of the 24 major crops grown in the
 U.S.

Disposal of dead birds can be handled through composting, incineration, burial in deep pits,
rendering, and disposal in landfills. Technical information on practices for the disposal of dead
animals is presented in Chapter 8; however, there is little information available on the relative
use of these practices within the turkey industry.

                                          4-60

-------
 Table 4-67. Percentage of Turkey Dominated Operations With Sufficient, Insufficient, and
                No Land for Agronomic Application of Generated Manure.
Capacity (Number of Birds)
1-16,499
16,500-38,499
38,500-54,999
55,000+
Total
Sufficient Land:
Nitrogen
15.6 !
6.8 <
4.1
3
9.4
Phosphorus
5.9
0.3
0
0
2.4
Insufficient Land:
Nitrogen
52.5
65.4
65.5
58.1
59.5
Phosphorus
62.2
71.9
69.9
61.1
66.5
No
Land
31.8
27.9
30.4
38.9
31.1
Source: USDA NASS, 1999c.
4.2.4  Duck Sector
The specialized husbandry for ducks has limited expansion due to the fact that duck production
"know-how" has tended to remain within families or in a limited number of large companies
(Scott and Dean, 1991). Duck farms must also be located in close proximity to processing plants
specially adapted to handle ducks. These factors, as well as the specialized market for duck meat
in the United States, have played an important role in limiting the expansion of the duck industry;

4.2.4,1 Distribution of the Duck Industry by Size and Region
The 1992 Census of Agriculture reported an inventory of nearly 3.5 million ducks in the United
States (Table 4-68). This  represented more than a 26 percent drop from 1987. The number of
farms dropped from about 25,000 operations in  1987 to about 16,000 operations in 1992.

                         Table 4-68.  Duck Inventory and Sales.
Catesorv
Total ducks
Duck sales
Inventory
Number of farms
sold ;;
Number of farms
1987
4,538,716
24,664
26,041,817
4,262
1992
3,339,659
16,312
16,391,031
3,038
          Source: 1992 Census of Agriculture.

Ducks were first produced commercially in the United States on Long Island, New York. The
major producers are now located in the Midwest and California. Indiana produces the majority
of commercial ducks, followed by Wisconsin, California, New York, and Pennsylvania (Table 4-
69).                                   :

              Table 4-69.  1992 Regional Distribution of Commercial Ducks.
State
Indiana
Wisconsin
California
New York
Pennsylvania
Inventory
1,170,154
695,109
526,610
312,523
152,855
Farms
388
653
806
524
653
       Source: 1992 Census of Agriculture.
                                         4-61

-------
 Based on data provided to EPA by Maple Leaf Farms (2001), most duck operations tend to be
 relatively small. Table 4-70 presents the number of operations by size class based on data from
 five of the seven companies that raise ducks commercially.

                         Table 4-70. Distribution of Commercial
                              Duck Operations by Capacity.
Number of Facilities
48
65
33
31 ;
7
11
2
3
2
2
1
Capacity per Site
2,500-3,000
4,000-10,000
11,000-15,000
16,000-25,000
26,000-30,000
31,000-50,000
90,000
117,000
144,000
165,000
190,000
                         Source: Maple Leaf Farms, 2001.
4.3    Dairy Industry
Dairy AFOs include facilities that confine dairy cattle for feeding or maintenance for at least 45
days in any 12-month period, and do not have significant vegetation in the area of confinement.
Dairies may also perform other animal and agricultural operations that are not covered by the
existing dairy effluent guidelines including grazing, milk processing, and crop farming.

     •   Section 4.3.1: The distribution of dairy operations by size of operation and region in
        1997
     •   Section 4.3.2: Dairy production cycles
     •   Section 4.3.3: Stand-alone heifer raising operations

     •   Section 4.3.4: Dairy facility management practices
     •   Section 4.3.5: Dairy waste management practices
     •   Section 4.3.6 lists the references used in this section

4.3.1  Distribution of Dairy Operations by Size and Region
Current effluent limitations guidelines and standards apply to dairy operations with 700 or more
mature dairy cattle (both lactating and dry cows), where the animals are fed at the place of
confinement and crop or forage growth or production is not sustained in the confinement area.

Information presented in this section comes from USDA, NASS  1997 Census of Agriculture
data, and from site visits and trade associations. The 1993 to 1997 NASS reports on dairy
                                          4-62

-------
operations present the number of dairies by size class. Dairy operations with more than 200
mature dairy cattle are grouped in one size class; therefore, an analysis of dairy operations that
fall under the current effluent guidelines regulations (i.e., those with more than 700 milking
cows) cannot be completed with NASS data alone. Data from the 1997 Census of Agriculture
provide some additional information on medium and large (more than 200 milking cows) dairy
operations. Although the NASS and Census data do not match exactly, EPA has found that there
is generally a good correlation between the two datasets. EPA used the Census data to estimate
farm counts.

From 1988 to 1997, the number of dairies and milking cows in the U.S. decreased while total
milk production increased. Improved feeding, animal health, and dairy management practices
have allowed the dairy industry to continue to produce more milk each year with fewer milking
cattle. Since 1988, the total number of milking cows has decreased by 10 percent and the total
number of dairy operations has decreased by 43 percent, indicating a general trend toward
consolidation (USDA NASS, 1995b;  1999d).

Between 1993 and 1997, the number of operations with fewer than 200 milking cows decreased,
while the number of operations with 200 or more milking cows increased. Both NASS and the
1997 Census of Agriculture have collected data that quantify the changes by size class. Based on
the NASS data, the number of operations with 200 or more milking cows increased by almost 7
percent between 1993 and 1997, while all smaller size classes decreased in numbers of
operations. Table 4-71 shows the estimated distribution of dairy operations by size and region in
1997, and Table 4-72 shows the total number of milk cows and average cow herd size by size
class in 1997. EPA derived the data in these tables from the Census data (ERG, 2000b).

According to Census of Agriculture data, of the 116,874 dairy operations across all size groups in
1997, Wisconsin had the most with 22,576 (19 percent), followed by Pennsylvania with  10,920
(9 percent), Minnesota with 9,603 (8 percent), and New York with 8,732 (7 percent). Table 4-73
presents the number of dairies by top-producing states for the following size groups:

    •   1 to 199 milk cows            ;
        200 to 349 milk cows
        350 to 700 milk cows

    •  ' more than 700 milk cows
Of the large dairies (more  than 700 milking cows), California has the most operations (46
percent), and of the medium dairies (200 to 700 milking cows), California, New York,
Wisconsin, and Texas have the most operations.

Table 4-74 shows the annual milk production in 1997 for the top-producing states. Although
California has only 2,650 dairy farms in all, it is the largest milk-producing state in the U.S.,
according to NASS data and data received from the National Milk Producers Federation
(National Milk Producers, 1999; USDA NASS, 1999d).
                                         4-63

-------
     Table 4-71. Distribution of Dairy Operations by Region and Operation Size in 1997.
Region*
Central
Mid-Atlantic
Midwest
Pacific
South
National
Number of Operations
0-199
Milk Cows
9,685
32,490
59,685
2,875
5,001
109,736
200-349
Milk Cows
593
870
943
722
: 253
3,381
350-700
Milk Cows
433
487
497
725
170
2,312
>700
Milk Cows
404
81
90
786
84
1,445
Total
11,115
33,928
61,215
5,108
5,508
116,874
1 Centre! - ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE.
NC; Midwest = ND, SD, MM, MI, WJ, OH, IN, IL, IA, MO, NE, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA;
:, MD, VA, WV, KY, TN,
., MS, AL, GA, SC, FL.
                   Table 4-72. Total Milk Cows by Size of Operation in 1997.
Size Class
0-199 Milk Cows
200-349 Milk Cows
350-700 Milk Cows
> 700 Milk Cows
Total
Number of
Operations
109,736
3,381a
2,312^
l,445b
116,874
Total Number of Milk
Cows
5,186,000
795,000
1,064,000
2,050,455
9,095,455
Average Milk Cow
Herd Size
47
235
460
1,419
78
* Estimated value. Published Census of Agriculture data show 4,881 dairies with 200-499 milk cows. Assumes approximately 70 percent have
200-349 milk cows and 30 percent have 350-500 milk cows.
'Estimated value. Published Census of Agriculture data show 1,379 dairies with 500-999 milk cows. Assumes approximately 60 percent have
500-699 milk cows and the remainder have 700-1,000 milk cows.
                    Table 4-73. Number of Dairies by Size and State in 1997.
Location
California
Florida
Idaho
Michigan
Minnesota
New York
Pennsylvania
Texas
Washington
Wisconsin
Total United States
. Size Class
1-199
Milk Cows
969
495
1,105
3,743
9,379
8,162
. 10,693
3,562
925
22,041
109,736
200-349
Milk Cows
471
51
119
|144
135
319
148
266
175
333
3,381
350-700
Milk Cows
547
58
90
81
75
194
71
188
130
171
2,312
>700
Milk Cows
663
62
90
22
14
57
8
97
72
31
1,445
Total
2,650
666
1,404
3,990
9,603
8,732
10,920
4,113
1,302'
22,576
116,874
                                                 4-64

-------
                      Table 4-74. Milk Production by State in 1997
Location
California
Florida
Idaho
Michigan
Minnesota
New York
Pennsylvania
Texas
Washington
Wisconsin
Total United States
Total Milk Production
(million pounds)
27,582
2,476
5,193
5,410
9,210
11,530
10,662
5,768
5,305
22,368
156,091
Milk Produced Per Cow (pounds)
19,829
15,475
19,092
17,680
16,186
16,495
16,951
15,259
20,968
16,057
16,871
4.3.2   Dairy Production Cycles
The primary function of a dairy is the production of milk, which requires a herd of mature dairy
cows that are lactating. In order to produce milk, the cows must be bred and give birth.
Therefore, a dairy operation may have several types of animal groups present, including

    •   Calves (0 to 5 months)
    •   Heifers (6 to 24 months)        ;
        Cows that are close to calving (close-up cows)

        Lactating dairy cows

    •   Dry cows
    •   Bulls
Most dairies operate by physically separating and handling their animals in groups according to
age, size, milking status, or special management needs. This separation allows each group to be
treated according to its needs. Section 4.312.1 presents a description of the typical mature dairy
herd, and Section 4.3.2.2 discusses the immature animal groups that may also be present at the
dairy.                                                                         ,
                                           4-65

-------
 4.3.2.1 Milk Herd

 The dairy milk herd is made up of mature dairy cows that have calved at least once. These mature
 cows are either lactating or "dry" (not currently producing milk). After a cow has calved, the
 milk she initially produces (called "colostrum") contains higher amounts of protein, fat, minerals,
 and vitamins than normal milk. The colostrum is usually collected and fed to the calves. After
 about 4 days, the milk returns to normal and the cow rejoins the lactating cow herd.

 After being milked for about 10 to 12 months after calving, the cows go through a dry period.
 These dry periods allow the cow to regain body condition and the milk secretory tissue in the
 udder to regenerate. The dairy industry has reported an average of 60.5 days of dry period per
 cow (USDA APHIS, 1996a).                                    :

 Periodically, all dairies must cull certain cows that are no longer producing enough milk for that
 dairy. Cows are most often culled for the following reasons: reproductive problems, udder or
 mastitis problems, poor production for other reasons, lameness or injury, disease, or
 aggressiveness or belligerence. In 1995, an average of 24 percent of the herd was culled from all
 size operations (USDA APHIS, 1996a). Dairies in high milk-producing regions (e.g., California)
 have reported during site visits cull rates of up to 40 percent.

 Some dairies decide when a cow is to be culled by determining a milk break-even level (pounds
 of rnilk per cow per day). Approximately 28 percent of dairies use this practice and reported (an
 average milk break-even level of approximately 33 pounds per cow per day. The milk break-even
 levels ranged from 32.5 pounds per cow per day at small dairies (less-than 100 head) up to 36.5
 pounds per cow per day at larger dairies (200 or more head)  (USDA APHIS, 1996a).        \

 Nearly all culled cows (approximately 96 percent) are sent away.for slaughter.  Approximately 74
 percent are sent to a market, auction, or the stockyards. Others (21 percent) are sold directly to a
 packer or slaughter plant, and the remaining 1 percent are sent elsewhere. Cows that are not sold
 for slaughter (approximately 4 percent) are usually sent to another dairy operation (USDA
 APHIS, 1996a).
4.3.2.2 Calves, Heifers, and Bulls

The immature animals at a dairy are heifers and calves. Typically, according to Census of
Agriculture data, for dairies greater than 200 milking cows, the number of calves and heifers on
site equals approximately 60 percent of the mature dairy (milking) cows. EPA assumes that there
are an equal number of calves and heifers on site (30 percent each). Calves are considered to be
heifers between the age of 6 months and the time of their first calving (between 25 and 28
months of age) (USDA APHIS, 1996a). Heifers tend to be handled in larger groups, and often
they are divided for management purposes into a breeding group and a bred heifer group (Bickert
et al., 1997). Heifers and cows are often bred artificially. They may be placed daily in stanchions
for estrus (heat) detection with the aid of tail chalk or heatmount detectors. Heifers and cows in
pastures or in pens without stanchions may be heat detected by observation and then bred in a
restraining chute. Heifers that do not conceive after attempts with artificial insemination are often

                                          4-66                                      ;

-------
placed in groups with a breeding-age bull to allow natural service of those animals.
Approximately 45 percent of dairy operations do not keep bulls on site, and approximately 35
percent of dairy operations keep one bull on site for breeding (USDA APHIS, 1996a).
                                       I
Cows and heifers that are at the end of their pregnancy are considered to be "periparturient" or
"close-up cows." About 2 weeks before she is due, the heifer or cow is moved from her regular
herd into a smaller pen or area where she can be observed and managed more closely. When the
cow is very near to calving, she is often moved to an isolated maternity pen. Shortly after birth,
the calves are separated from their mothers and are generally kept isolated from other calves or in
small groups until they are about 2 months old. After the calves are weaned from milk (at about 3
months of age), they are usually moved from their individual pen or small group into larger
groups of calves of similar age. Female calves are raised (as replacements) to be dairy cows at the
dairy or sent to an off-site calf operation. Female calves (heifers) may also be raised as beef
cattle. Male calves that are not used for breeding are either raised as beef cattle (see Section 4.4)
or as veal calves (see Section 4.4.5).      '
4.3.3   Stand-Alone Heifer Raising Operations
Stand-alone, heifer-raising operations provide replacement heifer services to dairies. It has been
estimated that 10 percent to 15 percent of all dairy heifers are raised by stand-alone heifer raisers
(Gardner and Jordan 1999, personal communication). These heifer-raising operations often
contract with specific dairies to raise those dairies' heifers for a specified period of time, and
many also provide replacement heifers to any dairy needing additional cows. The age at which
dairies send their animals to heifer-raising | operations varies significantly (USDA APHIS,
1996a). Table 4-75 shows the percentage of dairies that use heifer- raising operations, the median
age at which heifers are received by these facilities, and the amount of time that the heifers
remain at these facilities.

                 Table 4-75. Characteristics of Heifer-Raising Operations.
Age of Heifer
0-4 months
4 months-breeding
Breeding-first calving
Percentage of Dairies
Using Heifer Raisers
41.2
47.1
11.8
Median Age of Heifer
1 week
6 months
Breeding age
Time That Heifers
Remain on Site
12 months
15 months
9 months
There are a number of advantages for dairies to use heifer-raising operations. Specifically, dairies
using heifer-raising operations could expand their herd size by 25 percent or more within existing
facilities, specialize in milking cows or raising crops, and obtain healthier and better producing
milking cows. In addition, raising calves off the farm may reduce risks of transmission of
diseases for which older cows are the main source of infection. Some disadvantages include an
increased risk of introducing disease into the herd and a shortage of replacement heifers if the
raiser's breeding results are less than adequate. Also, the costs associated with raising the heifers
                                          4-67

-------
 could run higher than what the dairies are paying if labor, feed, and other resources are not
 allocated profitably (USDA APHIS, 1993).

 Custom raising of dairy heifers is becoming more common as dairy herds increase in size and
 dairy farmers do not have facilities to raise all their heifers (Noyes, 1999). Throughout the U.S.,
 the level of specialization is increasing for dairy farms; hi fact, some large dairy farms raise no
 crops, purchase  all of their feedstuffs, or do not raise replacement heifers for the milking herd.
 Herd owners for these dairies must use other strategies to obtain herd replacements. As a result,
 enterprises that specialize in raising dairy calves and heifers are found in many western states
 (Faust, 2000). It is also believed that the poor beef market in the last few years has caused some
 beef feedlots to  add pens of dairy heifers or switch to heifers entirely (Cady 2000, personal
 communication).                                                                    i

 Stand-alone heifer operations use two primary methods for raising their animals. One method is
 to raise heifers on pasture, usually in moderate to warm climates where grazing land is available.
 The second is to raise heifers  in confinement (on dry lots, as for beef cattle). Confinement is
 commonly used at operations in colder climates or areas without sufficient grazing land (Jordan
 1999, personal communication).

 The actual number of stand-alone, heifer-raising operations, as well as the number of confined
 operations, is unknown. However, based on information supplied  by industry representatives
 (e.g., Professional Dairy Heifer Growers Association), EPA estimates that there may be 5,000
 heifer-raising operations in the United States; 300 to 400 operations with more than 1,000 head,
 750 to 1,000 with more than 500 head, and 4,000 with fewer than 500 head (most of them with
 around 50 head) (Cady 2000,  personal communication). Most large dairy heifer-raising
 operations (those with more than 1,000 head) are confinement-based while smaller operations are
 often pasture-based (see above). Table 4-76 shows EPA's estimate of confined heifer-raising
 operations by size and region (ERG, 2000a; 2000b).

              Table 4-76. Distribution of Confined Heifer-Raising Operations
                               by Size and Region in 1997.
Region*
Central
Mid-Atlantic
Midwest
Pacific
South
National
Number of Operations
300-499
Heifers
25
0
200
25
0
250
500-1,000
Heifers
250
i . 0
100
150
0
500
> 1,000
Heifers
180
0
0
120
0
300
Total
455
0
300
295
0
1,050
• Central - ID, MT, WY, NV, UT, CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TN,
NC; Midwest = ND, SD, MM, MI, WI, OH, IN, IL, IA, MO, NE, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC, FL.
                                           4-68

-------
The sizes of heifer-raising operations range from 50 head (typical "mom and pop" operations) to
25,000 head, and tend to vary geographically. The average size of a heifer operation located west
of the Mississippi River is 1,000 to 5,000 head, while the average size in the upper Midwest,
Northeast, and South is 50 to 200 head. Nationally, the median size of a dairy heifer-raising
operation is approximately 200 head (Cady 2000, personal communication).

Stand-alone, heifer-raising operations are found nationwide with more heifer raisers located
where cows are concentrated and in areas where the dairy industry is evolving toward more
specialization (Bocher, 2000). EPA estimates that, of the number of heifers raised at stand-alone
heifer operations, approximately 70 percent are managed in the West, 20 percent are managed in
the South/Southeast, 7 percent are managed in the Northeast, and approximately 3 percent are
managed in the upper Midwest. The upper Midwest is also believed to be the single largest
growing region with respect to small heifer operations (see above).


4.3.4  Dairy Facility Management
This section describes factors that affect the facility management of a dairy operation including
housing by type of animal, use of housing in the industry, flooring and bedding type, feeding and
watering practices, milking operations, and rotational grazing.


4.3.4.1 Housing Practices
The purpose of dairy housing is to provide the animals with a dry and comfortable shelter, while
providing the workers with a safe and efficient working environment. Optimal housing facilities
accommodate flexibility in management styles and routines, enhance the quality of milk
production, and allow for the protection of the environment, yet remain cost-effective (Adams et.
al., 1995). The following subsections describe, housing for each type of animal  group according
to age, from milking cows to calves.                       .
 Milking Cows
 The primary goal in housing lactating dairy cows is to provide an optimum environment for the
 comfort, proper nutrition, and health of the lactating cow for maximum milk productivity. It is
 also designed to allow for efficient milking processes. The most common types of lactating cow
 housing include'freestalls, dry lots, tie stalls/stanchions, pastures, and combinations of these. The
 types of housing used for dry cows include loose housing and freestalls (Stall et al., 1998). These
 housing types are described in detail below.

         Freestalls - This type of housing provides individual resting areas for cows in freestalls
         or cubicles, which helps to orient the cow for manure handling. Freestalls provide the
         cows with a dry and comfortable place to rest and feed. The cows are not restrained in
         the freestalls and are allowed to roam on concrete alleys to feeding and watering areas.
         Manure collects in the travel alleys and is typically removed with a tractor or
         mechanical alley-scraper, by flushing with water, or through slotted openings in the
         floor (refer to Section 4.3.5 for a more detailed description of waste handling) (Adams,

                                           4-69

-------
         1995). Recently, there has been a trend toward using freestalls to house dairy cows and
         many loose housing units have been converted to freestalls (Bickert, 1997).

     •   Dry lots - Dry lots are outside pens that allow the animals some exercise, but do not
         generally allow them to graze. The use of dry lots depends upon the farm layout,
         availability of land, and weather conditions. Also, milking cows are not likely to spend
         their entire time on a dry lot, as they need to be milked at least twice a day at a tiestall or
         in a milking parlor.

     •   Tie Stalls/Stanchions - Tie stalls or stanchions confine the cow to a single stall where
         she rests, feeds, and is often milked. The tie stall prevents the cow from moving out of
         her stall with a chained collar, but allows her enough freedom to get up and lie down
         without interfering with her neighbors. Tie stalls are also designed to allow the cows
         access to feed and fresh water in a natural grazing position (Adams, 1995). Cows that
         are housed in tie stalls may be let out at certain times each day (e.g., between milkings)
         to graze in a pasture. Tie stalls are the most predominant type of dairy cow housing for
         lactating cows (USDA APHIS, 1996a); however, this is true of older, smaller dairies.
         The current preference, particularly for medium and large dairies, is freestalls.
     *   Loose Housing - Bams, shades, and corrals are considered loose housing. The design of
         these facilities depends upon the number of cows, climate, and waste-handling
         techniques. Overcrowding in this type of housing can lead to health problems and may
         reduce access  to feed, water, or resting areas for some subordinate animals. Loose
         housing that is hard-surfaced typically has at least a 4 percent slope, depending on soil
         type and rainfall (Stall et al., 1998).
     •   Pastures - Depending on the farm layout, availability of pastureland, and weather
         conditions, heifers or cows may spend part or most of their day in a pasture. Milking
         cows do not spend all of their day outside, since they are milked at least twice per day in
         a parlor or from a tie stall. On some farms,  the cows may be contained outdoors during
         the day, but are housed in a tie stall or freestall overnight.

Close-Up Cows
The primary objective in housing for cows that are close to calving is to minimize disease and
stress to both the cow and calf. Sod pastures are often used in warmer climates or during the
summer; however, the pastures can become too muddy in the winter in some climates, requiring
additional worker time to keep watch over the cows. Alternatively, the cows may be housed in
multiple-animal or individual pens prior to calving. About 2 weeks before the cow is due (i.e., 2
weeks prior to freshening), she is moved to a close-up pen. The cow density in close-up pens is
about one-half the density in lactating cow pens to allow the calving cows some space to
segregate themselves from other cows if they go into labor, although calving in close-up pens is
usually avoided.

When birth is very near, cows are moved to a maternity area for calving. If the climate is
sufficiently mild, pastures can be used for  a maternity area; otherwise, small individual peris are
                                          4-70

-------
used. Pens are usually designed to allow at least 100 square feet per cow and to provide a well-
ventilated area that is not drafty (Stull et al, 1998).

Approximately 45 percent of all dairy farms have maternity housing apart from the housing used
for the lactating cows. This feature is more prevalent in larger farms than in smaller farms.
Approximately 87 percent of farms with 200 or more cows have separate maternity housing
(USDA APHIS, 1996a).


Bulls
When bulls are housed on site at a dairy operation, they are typically kept in a pen or on pasture.
If possible, bulls are penned individually with sufficient space for special care and to reduce
fighting. When a bull is grazed on pasture, an electric fence is typically used to prevent the bull
from escaping and causing danger (Bodman et al., 1987).


Heifers
According to information collected during site visits, the majority of heifers are kept on dry lots
either on or off site. Heifers may also be kept in a pasture, in which the herd is allowed to move
about freely and to graze. Pastures may be provided with an appropriate shelter. Heifer housing is
typically designed for ease in:

        Animal handling for treatment (e.g., vaccinations, dehorning, pregnancy checks)

    •   Animal breeding
    •   Animal observation
        Convenient feeding, bedding, and manure handling (Bickert et al., 1997)

Weaned Calves (Transition Housing)
After calves are weaned, they are usually moved from individual pens or small group pens into
housing for larger numbers of calves. This change causes a number of stresses due to new social
interactions with other calves, competition;for feed and water, and new housing. Therefore, the
housing is designed such that the workers can monitor each calf s adjustment into the social
group. Transition housing is used for calves from weaning to about 5 months of age. The most
common types of housing used for weaned calves  are calf shelters or superhutches, transition
barns, and calf barns (Bickert et al., 1997). These types of housing are described below.

        Superhutches - Superhutches are open-front, portable pens that provide a feeder, water
        trough, and shelter for 5 to 12 calves.  Superhutches typically provide 25 to 30 square
        feet per calf and can be moved in a field,  dry lot, or pasture as needed to provide calves
        with a clean surface.
                                          4-71

-------
         Transition Barns - A transition bam is composed of a series of pens for groups of six to
         eight calves of up to 6 months old. Some transition barns are designed such that the
         back and end walls may be open or covered, depending on the weather conditions.
         Calf Barns - A calf barn combines both individual calf pens and transition barns within
         one building. The pens can be designed to be easily dismantled for waste removal, to
         minimize calf contact, or to provide draft protection (Bickert et al., 1997).
 Calves
 Sickness and mortality rates are highest among calves under 2 months of age; therefore, the
 housing for this group typically minimizes environmental stress by protecting the calves against
 heat, wind, and rain. Common calf housing types include individual animal pens and hutches,
 which are described below.

     •   Individual Pens - Pens are sized to house animals individually and separate them from
        others. Individual pens make it easier to observe changes in behavior, feed consumption,
        and waste production, which can indicate sickness. Calves may be raised in 2- by 4- foot
        expanded metal or slatted wood, elevated pens; however, these pens provide little
        shelter from drafts and cold in the winter (Stull, et al., 1998). Individual pens can be
        used inside a barn to provide isolation for each calf. Pens are typically 4- by 7- feet and
        removable. Solid partitions between pens and beyond the front of the pen prevent nose-
        to-nose contact between the calves. A cover over the back half of the pen gives the calf
        additional protection, especially in drafty locations. Pens can be placed on a crushed
        rock base or a concrete floor to provide a base for bedding (Bickert et al., 1997).

     •   Hutches - Hutches are portable shelters typically made of wood, fiberglass, or
        polyethylene and are placed in outdoor areas. Hutches allow for complete separation of
        unweaned calves since one calf occupies each hutch. One end of the hutch is open and a
        wire fence may be provided around the hutch to allow the calf to move outside.
        Lightweight construction materials improve hutch mobility and also allow for easier
        cleaning. Hutches are typically 4 feet by 8 feet by 4 feet and may be placed inside a shed
        or structure to provide protection from cold weather and direct sunlight (Bickert et al.,
        1997).

Use of Housing in Industry
Table 4-77 summarizes the relative percentages of U.S. dairies reporting various types of housing
for their animals (USDA APHIS, 1996a). These data were collected in 1996 for activities in 1995
by USDA NAHMS. Note that some operations may have reported more than one type of housing
being used for a particular group. The NAHMS data did not include housing  type for dry cows. It
is expected that dry cows are typically housed similarly to lactating cows (Stull  et al., 1998).

Multiple age groups may be housed within a single building that allows for each group to be
managed separately. Larger farms tend to place their animals in more than one building (Bickert
et al., 1997). Superhutches, transition barns, calf barns, and loose housing were not specifically
addressed in the NAHMS study, but may be considered specific types of multiple animal pens.

                                         4-72

-------
Dairies predominantly use some sort of multiple animal area for unweaned calves, weaned
calves, and heifers.
Table 4-77. Percenta
Housing Type
Dry lot
Freestall
Hutch
Individual animal area
Multiple animal area
Pasture
Tie stall/stanchion
ge of U.S. Dairies by Housing Type and Animal Group in 1995.
Unweaned
Calves
9.1
2.5
32.5
29.1'
40.0
7.4
10.5
Weaned Calves
and Heifers
38.1
9.7
NA
6.6
73.9
51.4
11.5
Lactating
Cows
47.2
24.4
NA
2.3
17.9
59.6
61.4
Periparturient
Cows
28.9
5.6
NA
38.3
26.3
41.9
26.3
NA = Not applicable.
4.3.4.2 Flooring and Bedding

The flooring and bedding used in housing provide physical comfort for the cow, as well as a
clean, dry surface to reduce the incidence of mastitis and other diseases. Tables 4-78 and 4-79
summarize the various types of flooring and bedding, respectively, that are used for lactating
cows, as reported by U.S. dairies in the NAHMS study (TJSDA APHIS, 1996b).

The most predominantly used flooring is smooth concrete, reported by over 40 percent of the
dairies. Other fairly common flooring types include grooved and textured concrete. The less
common flooring types that were reported include slatted concrete, dirt, and pastures (USDA
APHIS, 1996b). The flooring design is  important in loose housing to maintain secure footing for
the animals, as well as facilitate waste removal. The surfaces typically contain scarified concrete
areas around water troughs, feed bunks, and entrances. Both hard-surface and dirt lots are sloped
to allow proper drainage of waste and rainfall (Stall et al., 1998).

                    Table 4-78. Types of Flooring for Lactating Cows.
Type of Flooring
Smooth concrete
Grooved concrete
Textured concrete
Pasture
Dirt
Other
Slatted concrete
Percentage of Dairies Reporting
41.6
27.2
16.2
6.9
5.8 ,
1.5
; .0.8
                                         4-73

-------
                    Table 4-79. Types of Bedding for Lactating Cows
Type of Bedding
Straw and/or hay
Wood products
Rubber mats
Corn cobs or stalks
Sand
Shredded newspaper
Mattresses
Other
Composted manure
Rubber tires
Percentage of Dairies Reporting
66.9-
27.9
27.0
12.8
11.2
6.7
4.7
3.7
2.4
1.0
More than one bedding type may be reported by a single dairy. The most commonly used
bedding is straw or hay, or a combination of the two, while other common bedding includes
wood products and rubber mats. Less frequently used are rubber tires, composted manure,
mattresses, shredded newspaper, sand, and corn cobs and stalks (each reported by less than 13
percent of the dairies) (USDA APHIS, 1996b).

4.3.4.3 Feeding and Watering Practices

Feeding and watering practices vary for each type of animal group at the dairy. Most dairies
deliver feed several times each day to the cows, and provide a continuous water supply. The type
of feed provided varies with the age of the animal and the level of milk production to be
achieved.

Milking cows - At dairies, mature cows are fed several times a day. Lactating cows are provided
a balanced ration of nutrients including energy, protein, fiber, vitamins, and minerals (NRC,
1989). Dairies with greater than 200 milking cows typically feed a total mixed ration. In addition,
most dairies in the U.S. feed grains or roughages (e.g., hay) that were grown and raised on the
farm. Over half of all U.S. dairies reported that they pastured their dairy cows for at least 3
months of the year. Almost half of these dairies reported that grazing provided at least 90 percent
of the total roughage for the cows while they were pastured (USDA APHIS,  1996a).

A lactating dairy cow consumes about 5 gallons of water per gallon of milk produced daily (Stull
et al.,  1998). Temperature can affect water consumption; therefore, actual consumption may vary.
The predominant method for providing water to cows is from a water trough where more than
one cow can drink at a time. Other watering methods frequently reported by small dairies (less
than 200 cows) include automatic waterers for use by either individual cows or by a group of
cows, at which only one cow drinks at a time (USDA APHIS, 1996b).
                                         4-74

-------
 Heifers - Rations are balanced so heifers raised on site reach a breeding weight of 750 to 800
 pounds by 13 to 15 months of age. Heifers are fed high-forage rations between breeding and
 calving, and are usually given enough manger space for all heifers to eat simultaneously (Stull et
 al., 1998).                              ;

 Cows within 10 to 16 days of calving are normally fed as a separate group. They may be fed a
 few pounds of a grain concentrate mix in addition to forages. This practice avoids a sudden shift
 from an all-forage ration to a ration with a high proportion of concentrates, which is typical of
 that fed to cows in early lactation. If a postpartum cow is fed a total mixed ration, she may be fed
 about 5 pounds of long-stemmed hay in the ration for at least 10 days after calving to stimulate
 feed intake.     •,,     ,

 Calves - Calves are initially fed colostrum, the milk that is produced by the cow just prior to and
 during the first few days after calving. Colostrum contains more protein (especially
 immunoglobulins), fat, minerals, and vitamins than the milk normally produced, and less lactose
 (USDA DAMN, 1997). When calves are about 5 days old, their feed is switched to fresh whole
 milk or a milk replacer. Milk replacers are powdered products that contain predominantly dry
 milk ingredients. These are mixed with water to provide the optimum nutrition for the calf (Stull
 etal,, 1998).

 Calves are>then weaned from a milk replacer or milk-based diet to a forage or concentrate diet.
 Calves are offered a starter ration in addition to milk or milk replacer when they are
 approximately 1 week old. Calves will consume 1  to 1.5 pounds of starter ration per day at
 weaning time, usually when they are 2 to 3 months old (Stull et al., 1998).

 Because calves require more water than they receive from milk or milk replacer, water is
 typically available to them at all times.
4.3.4.4 Milking Operations

Lactating cows require milking at least twice a day and are either milked in their tie stalls or are
led into a separate milking parlor. The milking parlors are often used in the freestall type of
housing. The milking center typically includes other types of auxiliary facilities such as a holding
area, milk room, and treatment area (Bickert, 1997).

Milking Parlor - Milking parlors are separate facilities, apart from the lactating cow housing,
where the cows are milked. Usually, groups of cows at similar stages of lactation are milked at a
time. The parlor is designed to facilitate changing the groups of cows milked and the workers'
access to the cows during milking. Often, the milking parlors are designed with a worker "pit" in
the center of a room with the cows to be milked arranged around the pit at a height that allows
the workers convenient access to the cows' udders.

The milking parlor is most often equipped with a pipeline system. The milk is collected from the
cow through a device called a "milking claw" that attaches to each of her four teats. Each milking
claw is connected to the pipeline and the milk is drawn from the cow, through the claw, and into

                                          4-75

-------
the pipeline by a common vacuum pump. The pipeline is usually constructed of glass or steel and
flows into a milk receiver. From the receiver, the milk is pumped through a filter and into a bulk
tank where it is stored until collection.

The milking parlor is typically cleaned several times each day to remove manure and dirt. Large
dairies tend to use automatic flush systems, while smaller dairies simply hose down the area.
Water use can vary from 1 to 3 gallons per day per cow milked (for scrape systems) to 30 to 50
gallons per day per cow milked (for flush systems) in the dairy parlor and holding area (Loudon
etal., 1985).

Milking at Tie Stalls - Cows that are kept in tie stalls may be milked from their stalls. The
housing is equipped with a pipeline system that flows around the barn and contains ports where
the milking claws may be "plugged in" at each stall. The workers carry the necessary udder and
teat cleaning equipment as well as the milking claws from one cow to the next.

Approximately 70 percent of dairy operations reported that they milk the cows from their tie
stalls while only 29 percent reported that they used a milking parlor; however, more than halt ot
the lactating cow population (approximately 55 percent) is milked in a milking parlor (USDA
APHIS, 1996a; 1996b). Therefore, it can be interpreted that many of the large dames are using
milking parlors, while the smaller dairies are typically using tie stalls.

Holding Area  - The holding area confines cows that are ready for milking. Usually, the airea is
enclosed and is part of the milking center, which in turn, may be connected to the barn or located
in the immediate vicinity of the cow housing. The holding area is typically sized such that each
cow is provided 15 square feet and is not held for more  than 1 hour prior to milking (Bickert et
al., 1997). The cows' udders may sometimes be washed in this area using ground-level
sprinklers.

Milk Room - The milk room often contains the milk bulk tank, a milk receiver group, a filtration
device in-line  cooling equipment, and a place to wash and store the milking equipment (Bickert
et al  1997) To enhance and maintain milk quality and to meet federal milk quality standards, it
is cooled from the first milking to 40° F or less within 30 minutes. Some commonly used milk
cooling devices include precoolers, heat exchangers, bulk tank coolers, and combinations of
these The cooling fluid used is typically fresh or chilled service water. This water is still clean
and may then be used to water the animals (Bickert et al., 1997), or more  commonly as milk
parlor flush water.

 Milking equipment cleaning and sterilizing processes are often controlled from the milk room.
 Typically the milking equipment is washed in hot water (95 to 160 °F) in prerinse, detergent
 wash and acid rinse cycles. The  amount of water used by an automatic washing system,
 including milking parlor floor washes, can vary from 450 to 850 gallons per day (Bickert et al.,
 1997).
                                           4-76

-------
 Treatment Area - Treatment areas are used on farms to confine cows for artificial insemination,
 postpartum examination, pregnancy diagnosis, sick cow examination, and surgery. A single stall
 or a separate barn can be used as a treatment area.

 Other Areas of the Milking Center - Milking and processing equipment is typically stored in a
 utility room. This equipment may include:

     •   Milk vacuum pump

         Compressor

     •   Water heater                                                      -;vr

     •   Furnace
         Storage
 A separate room may also be used to store cleaning compounds, medical supplies, bulk materials,
 replacement milking system rubber components, and similar products. The storage room is often
 separated from the utility room to reduce the deterioration of rubber products, and is typically
 designed to minimize high temperatures, light, and ozone associated with motor operation
 (Bickert et al., 1997).

 4.3.4.5 Rotational Grazing
 Intensive rotational grazing is known by many terms including intensive grazing management,
 short duration grazing, savory grazing, controlled grazing management, and voisin grazing
. management (Murphy, 1988). This practice involves rotating grazing cows among several
 pasture subunits or paddocks to obtain maximum efficiency of the pastureland. Dairy cows
 managed under this system spend all of their time, except time spent milking, out on the
 paddocks during the grazing season.

 During intensive rotational grazing, each paddock is grazed quickly (1 or 2 days) and then
 allowed to regrow, ungrazed, until ready for another grazing. The recovery period depends on the
 forage type, the forage growth rate, and the climate, and may vary from 10 to 60 days (USDA,
 1997). This practice  is labor- and land-intensive as cows must be moved daily to new paddocks.
 All paddocks used in this system require fencing and a sufficient water supply. Many operations
 using intensive rotational grazing move their fencing from one paddock to another and have a
 water system (i.e., pump and tank) installed in each predefined paddo'ck area.

 The number of required paddocks is determined by the grazing and recovery periods for the
 forage. For example, if a pasture-type paddock is grazed for 1 day and recovers for 21 days, 22
 paddocks are needed (USDA, 1997). The total amount of required land depends on a number of
 factors including the dry matter content of the pasture forage, use of supplemental feed, and the
 number of head requiring grazing. Generally, this averages out to one or two head per acre of
 pastureland (Hannawald 2000, personal communication). Successful intensive rotational grazing,
 however, requires thorough planning and constant monitoring. All paddocks are typically
                                          4-77

-------
 monitored once a week. High-producing milk cows (e.g., more than 80 pounds of milk per day)
 need a large forage allowance to maintain a high level of intake. Therefore, they need to graze in
 pastures that have sufficient available forage or be fed stored feed (USDA, 1997).

 Due to the labor, fencing, water, and land requirements for intensive rotational grazing, typically
 only small dairy operations (those with less than 100 head) use this practice (see above; USDA
 NRCS, 1996; CIAS, 2000a). Climate and associated growing seasons, however, make it very
 difficult for operations to use an intensive rotational grazing system throughout the entire year.
 These operations, therefore, must maintain barns or dry lots for the cows when they are not being
 grazed, or outwinter their milk cows. Outwintering is the practice of managing cows outside
 during the winter months. This is not a common practice as it requires farmers to provide
 additional feed (as cows expend more energy outside in the winter), provide windbreaks for
 cattle, conduct more frequent and diligent health checks on the cows, and keep the cows clean
 and dry so that they can stay warm (CIAS, 2000b).

 There are two basic management approaches to outwintering: rotation through paddocks and
 "sacrifice paddocks."  Some farms use a combination of these practices to manage their cows
 during the winter. During winter months, farmers may rotate cattle, hay, and round bale feeders
 throughout the paddocks. The main differences between this approach and standard rotational
 grazing practices are that the cows are not rotated as often and supplemental feed is provided to
 the animals. Deep snow, however, can cause problems for farmers rotating their animals in the
 whiter because it limits the mobility of round bale feeders. The outwintering practice of sacrifice
 paddocks consists of managing animals in one pasture during the entire winter. There are  several
 disadvantages and advantages associated with this practice. If the paddock surface is not frozen
 during the entire winter, compaction, plugging (tearing up of the soil), and puddling can occur.
 Due to the large amounts of manure deposited in these paddocks during the winter, the sacrifical
 paddocks must be renovated in the spring. This spring renovation may consist of dragging or
 scraping the paddocks to remove excess manure and then seeding to reestablish a vegetative
 cover. Some farmers place sacrifice paddocks strategically in areas where an undesirable plant
grows or where they plan to reseed the pasture or cultivate for a crop (CIAS, 2000c).

Advantages of rotational grazing compared to conventional grazing include:

    •   Higher live weight gain per acre. Intensive rotational grazing systems result in high
        stocking density, which increases competition for feed between animals, forcing  them to
        spend more time eating and less time wandering (AAFC, 1999).

    •   Higher net economic return. Dairy farmers using pasture as a feed source will produce
        more feed value with intensive rotational grazing than with continuous grazing (USDA
        NRCS 1996). Competition also forces animals to be less selective when grazing. They
        will eat species of plants that they would ignore  in other grazing systems. This reduces
        less desirable plant species in the pasture and produces a better economic return (AAFC,
        1999).
    •    Better land. Pastureland used in rotational grazing is often better maintained than typical
        pastureland. Intensive rotational grazing encourages grass growth and development of

                                         4-78

-------
         healthy sod, which in turn reduces erosion. Intensive rotational grazing in shoreline
         areas may help stabilize stream banks and could be used to maintain and improve
         riparian habitats (PPRC, 1996).
    •    Less manure handling. In continuous grazing systems, pastures require frequent
         maintenance to break up large clumps of manure. In a good rotational system, however,
         manure is more evenly distributed and will break up and disappear faster. Rotational
         grazing systems may still require manure maintenance near watering areas and paths to
         and from the paddock areas (Emmicx, 2000).

Grazing systems are not directly comparable to confined feeding operations, as one system can
nctreadily switch to the other; however, assuming all things are equal, intensive rotational
grazing systems have a number of advantages over confined feeding operation. These include:

    •    Reduced cost. Pasture stocking systems are typically less expensive to invest in than
         livestock facilities and farm equipment required to harvest crops. Feeding costs may
         also be lowered.
    •    Improved cow health. Farmers practicing intensive rotational grazing typically have a
         lower cull rate than confined dairy farmers, because the cows have less hoof damage,
         and they are more closely observed as they are moved from one paddock to another
         (USDA, 1997).
    •    Less manure handling. Intensive rotational grazing operations have less recoverable
         solid manure to manage than confined operations. These include:

    •    Better rate of return. Research indicates that grazing systems are more economically
         flexible than the confinement systems. For example, farmers investing in a well-planned
        grazing operation will likely be able to recover most of their investment in assets if they
        leave farming in a few years. But farmers investing from scratch in a confinement
        operation would at best recover half their investments if they decide to leave farming
        (CIAS, 2000d).
There are a number of disadvantages associated with intensive rotational grazing compared with
either conventional grazing or confined dairy operations. The major disadvantages are

    •   Limited applicability. Implementation of intensive rotational grazing systems depends
        upon available acreage, herd size,; land resources (i.e., tillable versus steep or rocky),
        water availability, proximity of pasture area to milking center, and feed storage
        capabilities.  Several sources indicate that this system is used by dairy farms with less
        than 100 cows. Typical confined dairy systems are often not designed to allow cows
        easy access to the available cropland or pasrureland. Large distances between the
        milking center and pasrureland will increase the cows expended energy and, therefore,
        increase forage demands.

    •    In most of the country, limited growing seasons prevent many operations from
        implementing a year-round intensive rotational grazing system. Southern states, such as
        Florida, can place cows on pasture 12 months of the year, but the extreme heat presents
                                          4-79

-------
        other problems for cows exposed to the elements. Grazing operations in southern states
        typically install shade structures and increase water availability to cows, which in turn
        increases the costs and labor associated with intensive rotational grazing systems.
        Because most dairy operations cannot provide year-round grazing, they still must
        maintain barns and dry lot areas for their cows when they are not grazing, and dairy
        operations often prefer not to have to maintain two management systems.
        Reduced milk production levels. Studies indicate that dairy farmers using intensive
        rotational grazing have a lower milk production average than confined dairy farms
        (USDA NRCS, 1996). Lower milk production can offset the benefit of lower feed costs,
        especially if rations are not properly balanced once pasture becomes the primary feed
        source during warm months.
        Limited manure-handling options. Dairies using intensive rotational grazing systems
        may not be able to apply the wastewater and solid manure collected during the
        nongrazing seasons to their available pastureland as crops may not be growing.
        Increased likelihood of infectious diseases. Some infectious diseases are more likely to
        occur in pastured animals by direct or indirect transmission from wild animals or
        presence of an infective  organism in pasture soil or water (Hutchinson, 1988).
        Limited flexibility. Intensive rotational grazing systems have limited flexibility for
        planning how many animals can be pastured in any one paddock. Available forage in a
        paddock can vary from one cycle to another because of weather and other conditions
        that affect forage growth rates. As a result, a paddock that was sized for a certain
        number of cows under adequate rainfall conditions will not be able to accommodate the
        same number of cows under drought conditions (USDA, 1997).
                                       i
4.3.5  Dairy Waste Management Practices
Dairy waste management systems are generally designed based on the physical state of the waste
being handled (e.g., solids, slurries, or liquids). Most dairies have both wet and dry waste
management systems. Waste with 20 to 25 percent solids content can usually be handled as a
solid while waste with less than 10 percent solids can be handled as a liquid (Loudon, 1985).

In a dry system, the manure,is collected on a regular basis and stored where an appreciable
amount of rainfall or runoff does  not come in contact with it. Handling manure as a solid
minimizes the volume of manure that is handled.

In a slurry or liquid system, manure is often diluted with water that typically comes from flushing
system water, effluent from the solids separation system, or supernatant from lagoons. When
dairy manure is handled and stored as a slurry or liquid, the milking center wastewater can be
mixed in with the animal manure, serving as dilution water to ease pumping. If a gravity system
is used to transfer manure to storage, milking center wastewater may be added at the collection
point in the bam. Liquid systems  are usually favored by large dairies for their lower labor cost
and because the larger dairies tend to use automatic flushing systems.
                                          4-80

-------
4.3.5.1 Waste Collection
The collection methods for dairy manure vary depending on the management of the dairy
operation. Dairy cows may be partially, totally, or seasonally confined. As previously mentioned,
manure accumulates in confinement areas ;such as barns, dry lots, and milking parlors and in
other areas where the herd is fed and watered. In wet climates, it is difficult to collect and store
manure from unroofed areas as a solid, but it can be done if the manure is collected daily, stored
in a roofed structure, and mixed with bedding. In arid climates, manure from unroofed areas can
be handled as a solid if collection time can be flexible.

The following methods^are used at dairy operations to collect waste:
                     *.     •
    •   Mechanical/Tractor Scraper - Manure and bedding from barns and shade structures are
        collected normally by tractor or mechanical chain-pulled scrapers. Eighty-five percent of
        operations with more than 200 milking cows use a mechanical or tractor scraper (USDA
        APHIS 1996b). Tractor scraping is more common since the same equipment can be
        used to clean outside lots as well as freestalls and loose housing. A mechanical alley
        scraper consists of one or more blades that are wide enough to scrape the entire alley in
        one pass. The blades are pulled by a cable or chain drive that is set into a groove in the
        center of the alley. A timer can be set so that the scraper runs two to four times a day, or
        continuously in colder conditions to prevent the blade from freezing to the floor.
        Scrapers reduce daily labor requirements, but have a higher maintenance cost due to
        corrosion and deterioration.

    •   Flushing System - Manure can be collected from areas with concrete flooring by using a
        flushing system. A large volume of water is introduced at the head of a paved area, and
        the cascading water removes the manure. Flush water can be introduced  from storage
        tanks or high-volume pumps. The required volume of flush water varies  with the  size of
        the area to be flushed and slope of the area. The total amount of flush water introduced
        can be minimized by recycling; however, only fresh water can be used to clean the
        milking parlor area. Flushing systems are predominantly used by large dairies with 200
        or more head (approximately 27 percent) that tend to house the animals in a freestall-
        designed barn. These systems are much less common in dairies with fewer than 200
        head (fewer than 5 percent reported using this system) (USDA APHIS, 1996b). These
        systems are also more common at dairies located in warmer climates.
    •   Gutter Cleaner/Gravity Gutters - Gutter cleaners or gravity gutters are frequently used in
        confined stall dairy barns. The  gutters are usually 16 to 24 inches wide, 12 to 16 inches
        deep, and flat on the bottom. Either shuttle-stroke or chain and flight gutter cleaners are
        typically used to clean the gutters. About three-fourths (74 percent) of U.S. dairy
        operations with fewer than 100 milking cows and approximately one-third of U.S. dairy
        operations with 100 to 199 milking cows use a gutter cleaner (USDA APHIS, 1996b).

        Slotted Floor - Concrete slotted floors allow manure to be quickly removed from the
        animal environment with minimal labor cost. Manure falls through the slotted floor or is
        worked though by animal traffic. The waste  is then stored in a pit beneath the floor or
                                         4-81

-------
        removed with gravity flow channels, flushing systems, or mechanical scrapers. The
        storage of animal and milking center waste in a pit beneath slotted floors combines
        manure collection, transfer, and storage.

4.3.5.2 Transport
The method used to transport manure depends largely on the consistency of the manure. Liquids
and slurries can be transferred through open channels, pipes, and in liquid tank wagons. Pumps
can be used to transfer liquid and slurry wastes as needed; however, the greater the solids content
of the manure, the more difficult it will be to pump.

Solid and semisolid manure can be transferred by mechanical conveyance or in solid manure
spreaders. Slurries can be transferred in large pipes by using gravity, piston pumps, or air
pressure. Gravity systems are preferred because of their low operating cost.


4.3.5.3 Storage, Treatment, and Disposal
Waste collected from the dairy operation is transported within the site to storage, treatment, and
use or disposal areas. Typical storage areas for dairy waste include above and belowground
storage tanks and storage ponds. Handling and storage methods used at dairy operations are
discussed in detail in Section 8.2.

One common practice for the treatment of waste at dairies is solids separation. Mechanical of
gravity solids separators are used to remove bulk solids from a liquid waste stream. This
separation reduces the volume of solids entering a storage facility, which increases its storage
capacity. Separation facilitates reuse of liquid in a flushing system which reduces clogging of
irrigation sprinklers and waste volume going to treatment or land application sites. Manure slurry
is often separated using mechanical separators, such as stationary screens, vibrating screens,
presses, or centrifuges, all of which recover a relatively dry byproduct (Dougherty, 1998).
Sedimentation by gravity settling is also used for solid/liquid separation.

Another common technology for the treatment of waste at dairies is an anaerobic lagoon.
Anaerobic lagoons are biological treatment systems used to degrade animal wastes into stable
end products. The advantage of anaerobic lagoons is their long storage times, which allow
bacteria to break down solids. Disadvantages include odors produced during environmental or
management changes, and sensitivity to sudden changes in temperature and loading rates:
Anaerobic lagoons are designed to hold the following volumes: a minimum treatment volume
(based on volatile solids loading), the volume of accumulated sludge for the period between
sludge removal events, the volume of manure and wastewater accumulated during the treatment
period, the depth of normal precipitation minus evaporation, the depth of the 25-year, 24-hour
storm event, and an additional 1  foot of freeboard.

Typical manure and waste treatment technologies used at dairy operations are discussed in detail
in Section 8.2.
                                          4-82

-------
 The majority (approximately 99 percent) of small and large dairy operations (fewer than and
 more than 200 milking cows) dispose of their waste through land application (USDA APHIS,
 1996b). The amount of cropland and pastureland that is available for manure application varies at
 each dairy operation. Generally, dairy operations can be categorized into three groups with
 respect to available cropland and pastureland: (1) those with sufficient land so that all manure
 can be applied without exceeding agronomic application rates, (2) those without sufficient land
 to apply all of their manure at agronomic rates, and (3) those without any available cropland and
 pastureland. Operations without sufficient land, or any land, often have agreements with other
 farmers allowing them to apply manure on their land. Depending on the size of the dairy
 operation, 1997 Census of Agriculture data indicate that the average age of cropland at dairies
 with at least 300 milking cows is approximately 350 acres, and the average age of pastureland is
 approximately 75 acres (Kellogg, 2000).  j	

 USDA conducted an analysis of the 1997  Census of Agriculture data to estimate the manure
 production at livestock farms (Kellogg, 2000). As part of this analysis, USDA estimated the
 number of confined livestock operations that produce more manure than they can apply on their
 available cropland and pastureland at agronomic rates for N and P, and the number of confined
 livestock operations that do not have any available cropland or pastureland. The analysis
 assumed land  application of manure would occur on one of 24 typical crops or pastureland.
 Using'the percentage of these facilities estimated by USDA against the total number of livestock
 facilities, one  can also estimate the number of facilities that have sufficient cropland and
 pastureland for agronomic manure application.  Table 4-80 summarizes the percentage of dairy
 operations that have sufficient, insufficient, and no land for manure application at agronomic
 application rates for N and P. EPA assumes that confined heifer operations have similar
 percentages.
Table 4-80. Percentage of Dairy Oper
and No Land for Agronomic Ap
Size Class
200-700 milking cows
> 700 milking cows
Sufficient Land
Nitrogen
Application
50
27
Phosphorus
Application
25
10
ations With Sufficient, Insufficient,
)lication of Generated Manure.
Insufficient Land
Nitrogen
Application
36
51
Phosphorus
Application
61
68
No Land"
14
22
" No acres of cropland (24 crops) or pastureland.
Source: Kellogg, 2000.
4.4    Beef Industry
Beef feeding operations include facilities that confine beef cattle for feeding or maintenance for
at least 45 days in any 12-month period. These facilities do not have significant vegetation on the
beef feedlot during the normal growing season (i.e., the feedlot area does not include grazing
operations). Facilities that have beef feedlot operations may also include other animal and
agricultural operations not considered part of the feedlots, such as grazing and crop farming.
                                          4-83

-------
     •    This section discusses the following aspects of the beef industry:

     •    Section 4.4.1: Distribution of the beef industry by size of operation and region in 1997;

     •    Section 4.4.2: Beef production cycles
     •    Section 4.4.3: Beef feedlot facility management

     •    Section 4.4.4: Backgrounding operations

     •    Section 4.4.5: Veal operations
     •    Section 4.4.6: Cow-calf operations

     •    Section 4.4.7: Beef waste management practices
                                      !
4.4.1  Distribution of the Beef Industry by Size and Region
EPA's current Effluent Limitations Guidelines and Standards apply to beef feedlot operations
with 1,000 or more slaughter steers and heifers, where the animals are fed at the place of
confinement and crop or forage growth or production is not sustained in the confinement area.

Information presented in this section comes from USDA NASS, 1997 Census of Agriculture
data, and from site visits and trade associations. The 1994 to 1998 NASS reports on beef feedlots
present annual estimates of beef operations that have a capacity of 1,000 head of cattle or more
grouped in the following categories:

         Cattle inventory and calf crop
     •    Number of operations

     •    Inventory by class and size groups

     •    Monthly cattle on feed numbers

     •    Annual estimates of cattle on feed
NASS publishes only limited data for operations that have a capacity of fewer than 1,000 head of
cattle (USDA NASS, 1999e). The 1997 Census of Agriculture collects information on cattle
inventory and the number of cattle fattened for slaughter. NASS data on the number of beef
feedlot facilites in each of EPA's size classes were limited; however, Census of Agriculture data
provides  the number of facilities by the number of head sold, or inventory. EPA used Census of
Agriculture inventory data to estimate capacity. Then, EPA used these capacity data to estimate
the percentage of total operations within each size class. These percentages were used with the
NASS data to estimate total number of facilities in each size class. The capacity of a beef feedlot
is the maximum number of cattle that can be held on site at any one time and can usually be
determined by the amount of feedbunk space available for the cattle. On average, most beef
feedlots operate at 80 to 85 percent of capacity over the course of a year, depending on market
conditions (NCBA, 1999). In addition, most feedlots have cattle on site for 150 to 270 days (see
Section 4.4.2); therefore, on average, the feedlot can run one and one half to two and one half
turns of cattle each year. However, a feedlot may have anywhere from one to three and one half
                                         4-84

-------
turnovers of its herd per year. For example, some feedlots only have cattle on site during the
winter months (one turnover) when crops cannot be grown, while other feedlots move cattle
through the feedyard more quickly (three and one half turnovers).

EPA estimated the maximum capacity of beef feedlots reported in the 1997 Census of
Agriculture using the reported sales of cattle combined with estimated turnovers and average
feedlot capacity (ERG, 2000b).

     Maximum Feedlot Capacity (Head) = .Cattle Sales (Head) * Average Feedlot Capacity (%) / Turnovers

For exaj»ple, a feedlot that sold 1,500 cattle in 1997 and is estimated to operate at 80 percent
capacity with one and one half turnovers has an estimated maximum capacity of 800 head.

In 1997, there were approximately 2,075 beef feedlots with a capacity of more than 1,000 head in
the United States. (USDA NASS, 1999e). These operations represent only about 2 percent of all
beef feedlots. EPA estimates that there were approximately 1,000 additional beef feedlots with a
capacity of between 500 and 1,000 head (another 1  percent of beef feedlots), 1,000 beef feedlots
with a capacity of between 300 and 500 head, and another 102,000 beef feedlots with a capacity
of fewer than 300 head. Table 4-81 shows^the estimated distribution of these operations by size
and region. Table 4-82 shows the estimated number of cattle sold during 1997 by size class. EPA
derived these data from the 1997  Census of Agriculture data and NASS data (ERG, 2000b).

Table 4-83 presents the number of beef feedlots by top-producing states and nationally for the
following eight size categories:

        up to 299 head

        300 to 999 head
        1,000 to 1,999 head
        2,000 to 3,999 head           .;
        4,000 to 7,999 .head

    •    8,000 to 15,999 head
        16,000 to 31,999 head

        32,000 head and greater
The data in this^table were  obtained from NASS and were also derived from the  1997 Census of
Agriculture data. Note that in some cases the feedlots from several size groups have been
aggregated to avoid disclosing details on individual operations for some states.

As one would expect, the number of feedlots decreases as the capacity increases. For example,
there are 842 feedlots in the 1,000 to 1,999 size category but only 93 in the greater than 32,000
size category. Of the 106,075 beef feedlots across all size groups in 1997, the Midwest Region
has the most with 71,183 (67 percent). Nebraska and Iowa have the most large beef feedlots

                                      :    4-85                                   '

-------
(more than 1,000 head). Texas has the largest number of feedlots with a capacity of more than
32,000 head (41 percent).

Also included in the beef industry are veal operations, which are discussed in detail in Section
4.4.5. Veal operations are not specifically reported in the 1997 Census of Agriculture or NASS
data. EPA conducted site visits to veal operations and requested distribution data from the
industry to ultimately estimate the number of veal operations in the U.S., as shown in Table 4-84
(ERG,2000b).
Table 4-81. Distribution of Beef Feedlots by Size and Region in 1997.
Region*
Central
Mid-Atlantic
Midwest
Pacific
South
National
Feedlpl Capacity
<300
Head
9,990
15,441
68,235
3,953
4,381
102,000b
300-500
Head
87
150
685
35
43
l,000b
500-1,000
Head
130
34
810
19
7
1,000
1,000-8,000
Head
332
25
1,236
55
6
1,654
>8000 Head
182
0
217
22
0
421
Total
10,721
15,650
71,183
4,085
4,436
106,075
 Central - ID, MT, WY, NV, UT, CO, AZ, MM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, Kf, CT, NJ, PA, DE, MD, VA, WV, KY, TN,
NC; Midwest - ND, SD, MN, MI, WI, OH, IN, IL, IA, MO, NE, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC, FL.
k Estimated value. Assumes 98 percent of feedlots with fewer than 1,000 head have a capacity of fewer than 300 head, and 99 percent of all
feedlots with fewer than 1,000 head have a capacity of fewer than 500 head.
                                  Table 4-82. Cattle Sold in 1997.
Size Class
<300 Head Capacity
300-500 Head Capacity
500-1,000 Head Capacity
>1,000 Head Capacity
All Operations
Number of Facilities
102,000
1,000
1,000
2,075
106,075
Cattle Sold
2,362,000"
600,000"
l,088,000b
22,789,000
26,839,000
Average Cattle Sold
23
600
1,088
10,983
253
 Estimated value. Value presented is the difference between total sales for all feedlots with fewer than 1,000-head capacity, and the estimated
sales for feedlots with 300- to 1,000- head capacity.
11 Estimated value. Calculated from using the midpoint of the size range (e.g., 400 head for the 300-500 size class) and an average turnover rate
of one and one half herds a year.
                                                 4-86

-------
Table 4-83. Number of Beef Feedlots bv Size of Feedlot and State in 1997.a
Location
Arizona
California
Colorado
Idaho
Iowa
Kansas
Nebraska
New Mexico
Oklahoma
South Dakota
Texas
Washington
Other States
United States
Feedlot Capacity
1-299
Head
151
885
1,374
894
11,839
2,563
4,700
318
1,840
2,652
3,556
1,166
70,062
102,000
300-
999
Head
4
25
70
13
435
160
359
6
21 .
124
49
8
726
2,000
1,000
-1,999
Head
-
4b;
54
19 -
200
45
270
-
3b
50
8 i1
7"
191
842
2,000-
3,999
Head
3b
-
46
15
110"
28
181
-
-
41
13
-
85
504
4,000-
7,999
Head
-
4
32
9
-
30
118
6b
9
17
28
-
36
308
8,000-
15,999
Head
-
4
23
17"
-
34 -
64
-
5
6"
25
4
8
191
16,000-
31,999
Head
3
5
11
-
-
41
25
.4"
3
-
35
5"
5
137

32,000+
Head
3
7
8
-
-
17
7
-
6
-
38
-
-
93
 The number of feedlots is the number of lots operating at any time during the year. The U.S. totals show the actual number of feedlots in each
size group. The sum of the numbers shown by states under a specified size group may or may not add to the U.S. total for that size group because
some states size groups are combined to avoid disclosing individual operations.
b Lots from other size groups are included to avoid disclosing individual operations.
Table 4-84. Distribution of Veal Operations by Size and Region in 1997.
Region0
Central
Mid-Atlantic
Midwest
Pacific
South
Total United States
Capacity
300-500 Calves
5
1
119
0
0
125
> 500 Calves
3
1
81
0
0
85
Total
8
2
200
0
0
210
" Central = ID, MT, WY, NV, UT
NC; Midwest = ND, SD, MM, MI
CO, AZ, NM, TX, OK; Mid-Atlantic = ME, NH, VT, NY, MA, RI, CT, NJ, PA, DE, MD, VA, WV, KY, TN,
WI, OH, IN, H, IA, MO, NE, KS; Pacific = WA, OR, CA, AK, HI; South = AR, LA, MS, AL, GA, SC, FL.
4.4.2   Beef Production Cycles
Beef feedlots conduct feeding operations in confined areas to increase beef weight gain, control
feed rations, increase feeding efficiency, reduce feed costs, and manage animal health. Calves are
often brought in from backgrounding operations to the feedlot (Section 4.4.4). Calves usually
                                                  4-87

-------
begin the "finishing" phase when they reach 6 months of age or a weight of at least 400 pounds.
Cattle are typically held on the feedlot for 150 to 180 days. As stated previously in this section, a
beef feedlot may run anywhere from one to three and one half turnovers of its herd per year. The
annual average steer weight at slaughter ranges from 1,150 to 1,250 pounds, while the annual
average heifer weight at slaughter weight ranges from 1,050 to 1,150 pounds.

Some feedlots may bring in young calves at around 275 pounds and feed them on site for
approximately 270 days. As a result, these feedlot operations have fewer turnovers of the herd
per year. Based on site visits, this type of operation is typical at feedlots in southern California.
Some operations may only bring in cattle during the winter months when no crops are being;
grown, also resulting in fewer turnovers of the herd per year. Other operations, the true "final
finishing" operations, may bring cattle in at a heavier weight and require only approximately 100
days to feed cattle, resulting in more turnovers of the herd per year. These variations in turnovers
often make it difficult to estimate farm counts if data only show cattle inventory.


4.4.3  Beef Feedlot Facility Management
This section describes factors that affect the facility management at a feedlot operation including
the layout of feedlot systems, feeding and watering practices, water use and wastewater
generation, and climate.


4.4.3.1 Feedlot Systems
Cattle traffic flow is an important factor in the design of a feedlot. These operations use separate
vehicle and cattle traffic lanes when possible to minimize congestion, reduce the spread of
parasites and disease, and promote drainage to make pen cleaning easier and to promote animal
comfort and welfare. Outdoor feedlot systems comprise the following units which can be
organized in various ways.

    •   Office - This is usually  located on or near the main access road and has truck scales and
        facilities for sampling incoming feed. All bulk feed delivered to the lot enters at this
        point. Cattle trucks also use these scales for in and out weights (Thompson and O'Mary,
        1983).
    •   Feed Mill -.Truck traffic around the feed mill is typically heavy. A good design allows
        feed ingredients to be received while finished rations are trucked to the pens without
        traffic conflict. Feeding pens are often near the feed mill to reduce travel (Thompson
        and O'Mary, 1983).
    •   Pens - Pens are designed for efficient movement of cattle, optimum drainage conditions,
        and easy feed truck access. A typical pen holds 150 to 300 head but the size can vary
        substantially. Required  pen space may range from 75 to 300 square feet of pen space per
        head, depending on climate (see Section 4.4.3.4). Space needs vary with the amount of
        paved space, soil type, drainage, annual rainfall, and freezing and thawing cycles.
                                          4-88

-------
     •    Large feedlots use cattle alleys behind the pens to keep the flow of cattle separate from
         the feed trucks. Smaller feedlots often use feeding alleys to move the cattle. The pens
         should allow for proper drainage of runoff to provide comfortable conditions. A grade
         of at least 3 percent is necessary to allow proper drainage in most areas (Thompson and
         O'Mary, 1983).
     •    Cattle Loading and Unloading Facilities - Feedlots locate these facilities to ensure the
        . smooth flow of trucks to bring cattle in and out of the lot. Larger feedlots typically use
         two shipping areas, with the receiving area having hospital or separate processing
         facilities where cattle can receive various identification markers, vaccinations, and
         treatment for internal and external parasites, and are held until they are healthy enough
         to go to regular feeding pens (Thompson and O'Mary, 1983).

     •    Hospital Areas - These are facilities where cattle can be medically treated. Each facility
         normally has a squeeze chute, refrigerator, water, and medicine and equipment storage
         (Thompson and O'Mary, 1983). Approximately 10 percent of the cattle in a feedlot will
         be treated in hospital areas during the feeding period (NCBA, 1999).

The majority of beef feedlots are open feedlots, which are usually unpaved. These types of
operations may use mounds in the pens to improve drainage and provide areas that dry quickly,
because dry resting areas improve cattle comfort, health, and feed utilization. In open feedlots,
protection from the weather is often limited to a windbreak near the fence in the winter and
sunshade in the summer; however, treatment facilities for the cattle and the hospital area are
usually covered. A concrete apron is typically located along feedbunks and around waterers,
because these are heavy traffic areas (Bodman et al., 1987).

Open-front barns and lots with mechanical conveyors or fenceline bunks are common for
feedlots of up to 1,000 head, especially in areas with severe winter weather and high rainfall.
Confinement feeding barns with concrete floors are also sometimes used at feedlots in cold or
high rainfall areas. These barns require less land and solve feedlot problems caused by drifting
snow, severe wind, mud, lot runoff, and mound maintenance. Feeding is typically mechanical
bunk feeding or fenceline bunks. Manure is usually scraped and piled in a containment area. If
the barn has slotted floors, the manure is collected beneath slotted floors, and is scraped and
stored or flushed to the end of the barn where it is pumped to a storage area for later application
(Bodman et al., 1987).


4.4.3.2 Feeding and Watering Practices
At feedyards, all cattle are  fed two or three times a day and are normally fed for 120 to 180 days,
depending on their initial weight and type. Some operations may feed as long as 270 days if they
receive young calves. Feedlots consider the following factors when determining feeding
methods: the number of animals being fed; the type and size of grain and roughage storage; the
equipment necessary to unload, meter, mix;, and process feed; and the location and condition of
existing feed storage (Bodman et al., 1987).
                                          4-89

-------
Beef feedlots use the following types of feeding methods:

    •   Fenceline feeding - Bunks are located along the side of a lot or pen. This method
        requires twice as much bunk length as bunks that feed from both sides, but the
        advantage is that feed trucks do not have to enter the pens with the cattle. Fenceline
        feedbunks have 6 to 14 inches of bunk space per head, and are typically used for
        feedlots with more than 100 head, Feedbunks are cleaned routinely to remove uneaten
        feed, manure, and other foreign objects.
        Mechanical bunk feeding - Bunks typically allow cattle to eat from both sides and are
        also used as pen dividers. This feeding method is common with continuous feed
        processing systems and small operations. Mechanical feedbunks are useful for feedlots
        of up to 500 head.
        Self-feeding - Feedlots use haystacks, feed from horizontal silos or plastic bags, and
        grain and mixed rations in bunks or self feeders with this feeding method. Portable
        silage and grain bunks are useful for up to 200 head(Bodman et al., 1987).

Twenty-four hour access to the water trough is required for the health of the animals and
maximum production efficiency. Cattle water consumption varies, depending on such factors as
animal size and season, and may range from 9 gallons per day per 1,000 pounds during winter to
18 gallons per day per 1,000 pounds during hot weather (Bodman et al., 1987). Typically, one
watering space for each 200 head and a minimum of one watering location per pen of animals is
provided (USDA NASS, 1999e). Some water may be required to add to the feed processing or to
clean equipment.

4.4.3.3 Water Use and Wastewater Generation
The main source of wastewater to be managed is the runoff from rainfall events and snow melt.
Surface runoff from  rain and snow melt can transport manure, soil, nutrients, other chemicals
(e.g., pesticides), and debris off the feedlot; therefore, it is important to divert clean water away
from contact with manure, animals, feed processing and storage, and manure storage areas to
reduce the total volume of contaminated wastewater. Runoff is affected by rainfall amount and
intensity, feedlot maintenance practices, arid soil type and slope. Runoff can be controlled by
using diversions, sediment basins, and storage ponds or lagoons. Feedlots can also reduce the
volume of runoff by limiting the size of confinement areas.

Typically, pens are constructed such that runoff is removed as quickly as possible, transported
from the lot through a settling basin, and diverted into storage ponds designed to retain, at a
minimum, the 24-hour, 25-year storm. Feedlots can reduce the runoff volume by preventing all
runon water from entering clean areas  and by diverting  all roof runoff.

Only specially constructed barns use water to flush or transport manure. These bams are used by
a very small percentage of the industry and typically at smaller feedlots.
                                         4-90

-------
4.4.3.4 Climate
Climate plays a large role in the design and operation of a feedlot. The metabolic requirement for
maintenance of an animal typically increases during cold weather, reducing weight gain and
increasing feed consumption to provide mpre net energy. Feed consumption typically declines
under abnormally high temperatures, therefore reducing weight gain. Investigations in California
have shown that the effects of climate-related stress could increase feed requirements as much as
33 percent (Thompson and O'Mary, 1983). As a result, waste (manure) generation would also
increase.

In cold areas, feedlots typically provide a roof of some sort for the cattle. Sheltered cattle gain
weight faster and more efficiently during winter than unsheltered cattle. Areas that receive
substantial rainfall require mud control and paved feeding areas, since higher precipitation results
in greater runoff volumes.  In hot, semiarid areas, sun shades are typically provided for the cattle.
A dry climate requires generally 75 square feet of pen space per head whereas a wet climate may
require up to 400 square feet of pen space per head (Thompson and O'Mary, 1983). Feedlots
typically use misting sprinklers or watering trucks to control dust problems in dry climates.


4.4.4   Backgrounding Operations
Backgrounding operations feed calves, after weaning and before they enter a feedlot using
pasture and other forages. These operations allow calves to grow and develop bone and muscle
without becoming fleshy or gaining fat covering. Weaned calves are typically sent to
backgrounding operations to allow producers to:

         Develop  replacement heifers.
    •    Retain rather than sell at weaning when prices are typically low.
    •    Use inexpensive home-grown feeds, crop residues, pasture, or a combination of these to
         put weight on calves economically.
    •    Put weight on small calves born late in the calving season before selling.
    •    Put minimal weight on calves during winter before grazing on pasture the following
         spring and summer.
Calves are normally kept at the operation from 30 to 60 days but can be kept up to 6 months
(approximately 400 pounds) (Rasby et al., 1996). Typical diets consist of equal proportions of
roughage and grains that produce a moderate gain of 2 to 2.5 pounds per day. Backgrounding
operations typically keep calves on pasture during their entire stay; however, these operations
may operate similarly to a beef feedlot, using pens to confine calves, and feedbunks to feed.


4.4.5   Veal Operations
Veal operations raise calves, usually obtained from dairy operations, for slaughter. Dairy cows
must give birth to continue producing milk. Female dairy calves are raised to become dairy cows;
                                          4-91

-------
however, male dairy calves are of little or no value to the dairy operation. Therefore, these male
dairy calves are typically sent to feedlots or veal operations. Calves are normally separated from
the cows within 3 days after birth. Veal producers typically obtain calves through livestock
auctions, although in some cases the calves may be taken directly from the dairy farm to the veal
operation (Wilson et al., 2000).

The majority of veal calves are "special-fed" or raised on a low-fiber liquid diet until about 16 to
20 weeks of age, when they weigh about 450 pounds. Calves slated for "Bob" veal, which are
marketed up to 3 weeks of age when they weigh about 150 pounds, constitute about 15 percent of
the veal calves sold (USDA, 1998).

Calves are fed a milk-replacer diet composed of surplus dairy products including skim milk
powder and whey powder. Their diet also includes plant- and animal-derived fats, proteins, and
other supplements such as minerals and vitamins (Wilson et al., 2000). Calves spend their entire
growing-out period on a liquid diet.

Veal calves are generally grouped by age in an environmentally controlled building. The majority
of veal operations use individual stalls or pens. Floors are constructed of either wood slats or
plastic-coated expanded metal, while the fronts and sides are typically wood slats. The slotted
floors allow for efficient removal of waste. The back of the stall is usually open, and calves may
be tethered to the front of the stall with fiber or metal tethers. Individual stalls allow regulation of
air temperature and humidity through heating and ventilation, effective management and
handling of waste, limited cross-contamination of pathogens between calves, individual
observation and feeding, and, if necessary, examination and medical treatment (Wilson et al.,
2000). The stalls provide enough room for the calves to stand, stretch, groom themselves, and lie
down in a natural position.

Veal waste is very fluid, diluted by various volumes of wash water used to remove it from the
building (see Section 6.4 for a discussion of veal manure characteristics). Therefore, manure is
typically handled in a liquid waste management system. Manure, hair, and feed are regularly
washed from under the stalls to reduce ammonia, odor, and flies in the room. Manure is typically
washed out twice daily so that if the calf is having health problems, it is easily observed.
Approximately 10  to 30 percent of the wastewater generated at a veal operation comes from
scrubbing rooms and stalls after calves have been shipped to market.

The most common method for handling manure and wash water is using a sloping gutter under
the rear of the stalls, allowing manure to continuously drain into a manure storage system. Tanks,
pits, and lagoons are used to store manure until it is spread on fields. Storage pits may also be
built directly under buildings; however, this produces higher levels of ammonia and other pit
gases that require increased ventilation and higher fuel costs in the winter (Meyer, 1987).


4.4.6   Cow-Calf Operations
Cow-calf operations breed mature cows and yearling heifers with bulls to produce calves and can
be located in conjunction with a feedlot, but they are more often stand-alone operations. A herd

                                          4-92

-------
of mature cows, some replacement heifers, and a few bulls are typically maintained at cow-calf
operations on a year-round basis. Offspring calves remain with the cows until weaned and then
may be held in different pastures to grow until they weigh between 650 to 750 pounds when they
are sold to feedlots as yearlings. These operations may also sell their calves to backgrounding
operations or dairy operations. Artificial insemination is not commonly used at cow-calf
operations. Bulls are typically used for breeding and are placed with cows at the proper time to
ensure spring calves.                   i        "      .

The number of bulls required at a cow-calf operation depends on the number of cows and heifers,
size and age of bulls, crossbreeding program, available pasture, and length of breeding season.
One bull is typically provided for each set of 25 cows or heifers. Bulls are usually pastured away
from the cows, and they may be penned separately from each other to prevent fighting (Bodman,
1987).

Outdoor calving requires clean, well-drained, and wind-protected pastures. Separate feed areas
are provided for mature cows, first calf heifers, bulls, and calves (Loudon, 1985). hi cold
climates, a calving barn may be needed to reduce the risk of death. These barns typically include
a loose housing observation area, individual pens, and a chute for holding and treating cows.
Typically, a barn is provided for 5 percent to 10 percent of the cow herd in mild climates, and for
15 to 20 percent of the herd in more severe weather or during artificial insemination (Bodman,
1987).


4.4.7   Waste Management Practices
Waste from a beef feedlot may be handled as a solid or liquid; both management methods have
advantages and disadvantages. Waste from a veal  operation is handled as a liquid. Solid waste is
typically found in calving pens and in open lots with good drainage. Semisolid waste has little
bedding and no extra liquid is added. Waste treated as a solid has a reduced total volume and
weight because it contains  less water; therefore, its management may cost less and require less
power.                                ;

Slurry waste has enough water added to form a mixture that can be handled by solids handling
pumps. Liquid waste is usually less than 8 percent solids, and large quantities of runoff and
precipitation are added to dilute it. Wastes treated as a liquid are easier to automate and require
less daily attention; however, the large volumes of added water increase the volume of waste. As
a result, the initial cost of the liquid-handling equipment is greater (USDA NRCS, 1992).


4.4.7.1 Waste Collection
Beef cattle are confined on unpaved, partially paved, or totally paved lots, and much of their
manure is deposited around feedbunks and water troughs. Feedlots typically collect these wastes
from the feedlot surface after shipping each pen of cattle (Sweeten, n.d.).

The following methods are used in the beef industry to collect waste:
                                          4-93

-------
     *    Scraping - This is the most common method of collecting solid and semisolid manure
         from both bams and open lots. Solids can be moved with a tractor scraper and front-end
         loader. A tractor scraper may be used in irregularly shaped alleys and open areas.
         Mechanical scrapers are typically used in the pit under barns with slotted floors and
         propelled using electrical drives attached by cables or chains. Tractors have fewer
         problems and work better on frozen manure; however, mechanical scrapers reduce labor
         requirements. Removing manure regularly reduces odor in enclosed areas. Scraping is
         common for medium and large feedlots (Loudon, 1985).

     •    Slotted Flooring - This term refers to slats and perforated or mesh flooring and is a
         method of rapidly removing manure from an animal's space. Most slats are reinforced
         concrete, but can be wood, plastic, or aluminum, and are designed to support the weight
         of the slats plus live load, which includes animals, humans, and mobile equipment.
         Manure drops between slats, which keeps the floor surface relatively clean. Wide slats
         (between 4 and 8 inches) are commonly used with 1.5 to  1.75 inches between slats
         (Loudon,  1985).
Flushing System - This type of system dilutes manure from beef feedlots with water to allow for
automated handling. Diluting the manure increases its volume and therefore requires a larger
capital investment for equipment and storage facilities. The system uses a large volume of water
to flush manure down a sloped gutter to storage, where the liquid waste can be transferred to a
storage lagoon or basin. The amount of water typically used for cleaning is 100 gallons per head
at least twice a day. Grade is critical for the flush alleys as is amount of water used (Loudon,
1985). This system is not very common for large feedlots; however, this type of system is widely
used at veal operations.

Waste collection is easiest on paved lots. On unpaved lots, cattle traffic tends to form a seal on
the soil that reduces the downward movement of contaminated water; however, deep scraping
can destroy the interface layer that forms between the manure and the soil and acts as a seal to
decrease the chance of pollutants from entering the ground water.

To reduce the production of unnecessary waste, clean water can be diverted away from the
feedlot area. For example, uncontaminated water can be directed away from the waste and
carried outside of the feedlot area. Roof runoff can be managed using gutters, downspouts, and
underground outlets that discharge outside the feedlot area. Unroofed confinement areas can
include a system for collecting and confining contaminated runoff. Paved lots will generally have
more runoff per square foot than unpaved lots, but due to a smaller total area, they will have less
total runoff per animal.


4.4.7.2 Transport
Waste collected from the feedlot may be transported within the site to storage, treatment, and use
or disposal areas. Solids and semisolids are typically transported using mechanical conveyance
equipment, pushing the waste down alleys, and transporting the waste in solid manure spreaders.
Flail-type spreaders, dump trucks, or earth movers may also be used to transport these wastes.
Liquids and slurries, typically found at veal operations, are transferred through open channels,

                                         4-94

-------
pipes, or in a portable liquid tank. These wastes can be handled by relying on gravity or pumps as
needed.


4.4.7.3 Storage, Treatment, and Disposal
Beef feedlot operations typically use a settling basin to remove bulk solids from the liquid waste
stream, reducing the volume of solids before the stream enters a storage pond, thereby increasing
storage capacity. A storage pond is typically designed to hold the volume of manure and
wastewater accumulated during the storage period, the depth of normal precipitation minus
evaporation, the depth of the 25-year, 24-hour storm event, and an additional 1 foot of freeboard.
Solid manure storage can also range from simply constructed mounds to manure sheds that are
designed to prevent runoff and leaching.

Beef feedlot operations may also use other types of technologies, such as composting or
mechanical solids separation, when managing animal waste and runoff. Typical manure and
waste handling, storage, and treatment technologies used at beef feedlots are discussed in detail
in Section 8.2. The majority (approximately 83 percent) of beef feedlots dispose of their waste
through land application (USDA APHIS, 2000a).

Veal operations typically .use an underground storage pit or a lagoon for waste storage and
treatment. Veal operations also typically dispose of their waste through land application.

The amount of cropland and pastureland that is available for manure application varies at each
beef operation. Generally, operations in the beef industry can be categorized into three groups
with respect to available cropland and pastureland: (1) those with sufficient land so that all
manure can be applied without exceeding agronomic application rates, (2) those without
sufficient land to apply all of their manure at agronomic rates, and (3) those without any available
cropland and pastureland. Operations without sufficient land, or any land, often have agreements
with other farmers allowing them to apply manure on their land. Depending on the size of the
beef operation, 1997 Census of Agriculture data indicate that the average acreage of cropland at
beef feedlots with at least 500  head is between 550 to 850 acres and the average acreage of
pastureland is between 50 and 110 acres (Kellogg, 2000).

USDA conducted an analysis of the 1997 Census of Agriculture data to estimate the manure
production at livestock farms.  As part of this analysis, USDA estimated the number of confined
livestock operations that produce more manure than they can apply on their available cropland
and pastureland at agronomic rates for N and P and the number of confined livestock operations
that do not have any available  cropland or pastureland. The analysis assumed land application of
manure would occur on 1 of 24 typical crop or pasturelands (Kellogg, 2000). Using the
percentage of these facilities estimated by USDA against the total number of livestock facilities,
one can also estimate the number of facilities that have sufficient cropland and pastureland for
agronomic manure application. Table 4-85 summarizes the percentage of beef feedlots that have  ,
sufficient, insufficient, and no  land for manure application at agronomic application rates for N
and P. EPA assumes that all veal operations have sufficient land to apply their manure.
                                          4-95

-------
           Table 4-85. Percentage of Beef Feedlots With Sufficient, Insufficient,
                   and No Land for Agronomic Application of Manure.
Size Class
300-1,000 head
1,000- 8,000 head
> 8,000 head
Sufficient Land
Nitrogen
Application
84
6
8
Phosphorus
Application
62
22
1
Insufficient Land
Nitrogen
Application
9
21
53
Phosphorus
Application
31
67
6
No Lamd"
7
11.
39
 No acreage of cropland (24 crops) or pastureland
Source: Kellogg, 2000.
4.5    Horses
Today's horse industry is quite diverse, providing animals for pleasure, showing, breeding,
racing, farm/ranch, and other uses. Because the horse industry is so diverse and much of the
population is off farm, statistics on horse population sizes, distributions, and trends are much less
available than they are for other agricultural livestock.
4.5.1  Distribution of the Horse Industry by Size and Region
In 1900, the Census of Agriculture indicated that 79 percent of all farms had horses, whereas by
1992 this percentage had dropped to 18 percent.  Specifically, the 1992 Census of Agriculture
reported 338,346 farms with 2,049,522 horses. The USDA estimates that up to 3 million of the
approximately 5 million horses hi the United States are raised off farms or on farms with too few
animals to be reported in the Census data (USDA APHIS, 1996d).  However, a study of equids
(domestic horses, miniature horses, ponies, mules, donkeys, and burros) was recently completed
for 28 states representing more than three-fourths of the U.S. horse and pony inventory on farms
(USDA APHIS, 1998a). In addition, 133 race tracks participated in portions of this survey.
Participation from and accounting for race tracks is important since some facilities are very large.
The Lone Star Park at Grand Prairie, Texas, located near Dallas/Fort Worth, has
accommodations for up to 1,250 horses. It is also believed that since mules, donkeys, and burros
represented only 4.7 percent of the animals surveyed, this survey is useful for characterizing the
horse sector.

For the surveyed states, 40.1 percent of the equids are located hi Texas, Oklahoma, Louisiana,
Maryland, Virginia, Kentucky, Tennessee, Alabama, Georgia, and Florida; 13.0 percent are
located in Ohio, Pennsylvania, New Jersey, and New  York; 20.7 percent are located in Kansas,
Missouri, Illinois, Indiana, Michigan, Wisconsin, and Minnesota; and 26.2 percent are located in
Montana, Wyoming, Colorado, New Mexico, Washington, Oregon, and California. More than
95 (96.3) percent of the operations have from 1 to 19  equids on the operation, representing 73
percent of all equids. Less than 4 (3.7) percent of operations have 20 or more equids,
representing 27 percent of all equids. Overall, boarding/training and breeding operations account
for 3.7 and 5.2 percent of the operations respectively, yet account for more than 10 percent of the
equids. Race tracks account for 53.4 percent of the operations with 20 or more equids, followed

                                          4-96

-------
by boarding/training facilities (26.7 percent), breeding (22.7 percent), and farm/ranch (2.1
percent) (USDA APHIS, 1998a).

Farm or ranch use of equids represents 15.2 percent of all operations. Breeding as a primary use
of equids represented 6.0 percent of operations. The categories of racing and
showing/competition represented a total of 8.4 percent of all operations (USDA APHIS, 1998a).

According to the data presented in Table 4-86, pleasure was the primary use of equids on the
largest percentage of operations regardless of region (66.8 percent). Larger percentages of
operations in the Western and Southern Regions used equids primarily for farm/ranch work (20.6
and 18.4 percent, respectively) than in the Central (8.9 percent) and Northeast (5.7 percent)
Regions. Outfitting, carriage horses, and teaching horses are examples of uses included in the
other category. As shown in Tables 4-87 and 4-88, race tracks represent the primary use (more
than 90 percent) at operations with 500 or more horses.

               Table 4-86. Percent of Operations by Primary Use of Equids
                         Present on January 1,1998, and Region.
Primary Use of Equids
Pleasure
Showing/competition (not betting)
Breeding
Racing
Farm/ranch
Other
Total
Southern
63.2
6.8;
6.3
2.7'
18.4
2.6
100.0
Northeast
66.9
9.0
6.3
2.9,
5.7
9.2
100.0
Western
65.5
5.2
3.5
1.0
20.6
4.2
100.0
Central
74.7
6.0
7.9
0.9
8.9
1.6
100.0
All Operations
66.8
6.5
6.0
1.9
15.2
3.6
100.0
 Source: USDA APHIS, 1998a                 !
 Southern: Alabama, Florida, Georgia, Kentucky, Louisiana, Maryland, Oklahoma, Tennessee, Texas, and Virginia.
 Northeast: New Jersey, New York, Ohio, and Pennsylvania.
 Western: California, Colorado, Montana, New Mexico, Oregon, Washington, and Wyoming.
 Central: Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, and Wisconsin.
           Table 4-87. Percent of Operations by Primary Use of Equids Present
                            on January 1,1998, and Size Class.
Primary Use of Equids
Pleasure
Showing/competition (not betting)
Breeding :
Racing
Farm/ranch
Other
Total
<150
(n=2821)
66.8
6.5
6.0
1.9
15.2
3.6
100.0
150 - 499
(n=62)
9.0
4.0
53.3
13.5
16.6
3.6
100.0
500+
(n=21)
0.0
7.3
0.0
92.7
0.0
0.0
100.0
         Source: USDA APHIS, 2002b
                                           4-97

-------
           Table 4-88. Percent of Operations by Primary Use of Equids Present
                            on January 1,1998, and Size Class.
Primary Function of Operation
Boarding/training
Racefrack
Breeding farm
Farm/ranch
Residence with equids for personal use
Other
Total
<150
(n=2821)
3.7
0.0
5.1
32.7
54.7
3.8
100
150 - 499
(n=62)
17.6
6.7
53.6
17.0
0.0
5.1
100
500+
(n=21)
7.3
92.7
0.0
0.0
0.0
0.0
100
          Source: USDA AHPIS, 2002.
4.5.2  Waste Management Practices
Nationally, stalls are provided on two-thirds of operations (does not include race tracks). New
England states provide stalls on 94.5 percent of their operations, while about one-half of
operations in the western United States provide stalls. For those operations that do provide stalls,
71.3 percent had at least one stall per equid. About one-third (34.5 percent) of those operations
with stalls clean them at least once a day, while 50.2 percent clean stalls once a week or less
often.  Straw, hay, wood shavings, chips, or sawdust are the most common type of bedding.  Less
than 40 (36.4) percent of operations indicate that they usually or sometimes compost manure or
waste bedding on site. For those operations with more than 20 equids, the most common method
of disposal was to apply the waste to fields where.no animals graze (30.7 percent), followed by
applying it to fields where livestock graze (29.7 percent), allowing manure/waste bedding to
accumulate or leaving it to nature (15.1 percent), selling it or giving it away (11.5 percent), and
hauling it away to someplace other than a landfill (8.9 percent) (USDA APHIS, 1998b).

Horse manure is usually handled as a solid. Many operations collect manure from stalls and
paddocks regularly. This is usually done with a fork or shovel and a wheelbarrow, tractor-loader,
or trailer. Daily maintenance of horses in a confined setting requires intense labor requirements
to maintain sanitary conditions for the housed animals.  Once manure and dirty bedding have
been removed, wet areas might be treated with lirne to maintain safe, clean, and odor-free
conditions (Wheeler and Cirelli, 1995). Fresh bedding, typically composed of such materials as
pine sawdust, peanut shells, peatmoss, rice hulls, and other absorbent materials, is added
following removal of manure and soiled bedding to ensure clean, dry conditions.  Simply adding
fresh bedding and allowing manure and soiled bedding to accumulate in the horse stall results in
dirty animals, provides excellent fly-breeding conditions, and may be unhealthy to horses
(Graves, 1987). Depending on conditions, the runoff from paddocks, pens, corrals, and outdoor
areas might need to be diverted to a settling basin or filter strip.

Manure management in pastures depends primarily on good distribution of manure across the
pasture. Rotational grazing is a good option to avoid manure concentration in isolated spots in a
                                          4-98

-------
pasture.  Additionally, avoiding grazing during rainy periods when soils are saturated is
important to avoid soil compaction and manure runoff. Restricted access to streams avoids
manure deposition in or near water bodies. Also, damaging the grass stand increases the
potential for manure runoff from pastures. The risk of this can be reduced by refraining from
excessive stocking rates that lead to overgrazing (Colorado State University, 1996).


4.5.2.1 Waste Storage
Manure is typically stockpiled prior to use, providing greater flexibility for land application. The
Government of British Columbia (1998) recommends not to stockpile manure directly on the
ground for long-term storage where there is high rainfall or water tables. The size of any storage
facility would depend on the number of animals housed. A facility 12 feet wide by 12 feet long
by 6 feet high can hold a year's worth of manure for a 1,000-pound animal (USDA, 1997).

For horse operations that employ confined operations, an on-site storage facility is considered the
most efficient way to collect and contain manure. Manure storage facilities should receive as
much attention and planning as any other aspect of a horse operation (B.C. Government, 1998).
Storage facilities are permanent structures designed and operated to contain all manure until it
can be applied as a fertilizer or removed for use elsewhere. Basic siting and sizing
considerations of storage facilities from this B.C. Government (1998) include the following:

•  Located at least 15 meters (50 feet) away from any watercourse and at least 30 meters (100
   feet) away from wells or domestic water sources.

•  Located so that clean surface runoff from adjacent areas is excluded.

•  Sized to provide enough storage to prevent having to spread manure during the fall and
   winter or at any time runoff is likely to occur.

•  Of watertight construction.

•  Structurally sound (with possible consideration of professionally engineered designs for both
   earthen and concrete structures).      :

•  Sized and located to contain all of the runoff expected from local climatic conditions, using
   figures from the worst precipitation in 25 years.

•  Adequately fenced to prevent the accidental entry of humans, animals, or machinery.

•  Located out of sight and downwind from public places and neighboring residences (where
   possible).

•  Covered in areas of the province receiving more than 600 millimeters (24 inches) of rainfall
   between October and April.
                                          4-99

-------
4.5.2.2 Waste Treatment and Disposal
For smaller operations, composting is commonly used to treat horse manure. Composting
produces a relatively dry end-product that is easily handled and reduces the volume of the
manure (40 to 65 percent less volume and weight than the raw material).  Ideal conditions for
composting include a carbon-to-nitrogen (C:N) ratio between 25:1 and 30:1, a moisture content
between 40 and 60 percent, and good aeration. Horse manure as excreted has a C:N ratio of
19:1.  With the addition of bedding, the C:N ratio usually increases to a level ideal for
composting. Under normal composting conditions, the internal temperature will increase to
between 135 °F and 160 °F, killing most pathogens, parasites, and weed seed.  Properly
constructed and maintained compost piles or windrows will finish composting  in as few as 90
days, though the average time is approximately 120 days. When the composting process is
complete, the temperature cools naturally.

Compost can be reused on horse pastures. However, experience has shown in the absence of
careful management, this practice can spread internal parasites.  Composted manure/bedding can
also be used as a surface for riding areas when mixed with sand and wood products.  Shavings-
based stall waste can often be used by nurseries and do not require a complete composting
process. Table 4-89 shows the average rates of horse manure application for forages and should
follow normal practices for minimizing runoff and leaching that are applicable  for all manures.
   Table 4-89.  Average Manure Application Rates and Area
Requirements for Forages.
Forage
Alfalfa
Alfalfa-Grass
Bentgrass
Big Bluestem
Birdsfoot Trefoil
Bluegrass
Bromegrass
Little Bluestem
Orchard Grass
Red Clover
Reed Canary Grass
RyeGrass
Switchgrass
Yield
(tons/acre)
4
4
- 2
3
3
2
3
3
4
3
4
4
3
Horse Manure
(tons/acre)
30
20
21
10
25
19
19
11
20
20
18
22
12
Land Base Needed
(acres/horse/yr)
0.3
0.4
0.4
0.9
0.4
0.5
0.5 .
0.8
0.5
0.4
0.8
0.3
0.8
 Source: Colorado State University, 1996.
                                        4-100

-------
 4.6    References
 Abt. 1998. Preliminary study of the livestock and poultry industry: Appendices. Abt Associates
    Inc., Cambridge, Massachusetts.

 Adams, R. S., 1995. Dairy reference manual. 3rd ed. Northeast Regional Agricultural
    Engineering Service Cooperative Extension

 AAFC. (Agriculture and Agri-Food Canada), 1999. Farming for tomorrow: Conservation facts.
    Rotational grazing: The rest and recovery method of pasture management.
    . Accessed February 2000.

 Aust, P. 1997. An institutional analysis of vertical coordination versus vertical integration: The
    case of the US broiler industry. Michigan State University, Department of Agricultural
    Economics, East Lansing, Michigan.

 B.C. Government. 1998.  Manure Management Chapter 8, Horse Owner. Ministry of Agriculture
    and Food, Planning for Agriculture. British Columbia Government, Victoria, BC, Canada.

 Bickert, W.G., G.R. Bodman, BJ. Holmes, D.W. Kammel, J.M. Zulovich, and R. Stowell. 1997.
    Dairyfreesta.il housing and equipment. 6th ed. Midwest Plan Service, Agricultural and
    Biosystems Engineering Department

 Bocher, L. W. 2000. Custom heifer grower, specialize in providing replacements for dairy herds,
    Hoard's Dairyman

 Bodman, G.R., D.W. Johnson, D.G. Jedele, V.M. Meyer, J.P. Murphy, and H.L. Person. 1987.
    Beef housing and equipment handbook. 4th ed. Midwest Plan Service.

 Bradley, F., D. Bell, R. Ernst, D. McMartin, and J. Milliam. 1998.  Animal care series: Egg-type
    layer flock care practices. California Poultry Workgroup, University of California
    Cooperative Extension, University of California Publishing, Davis, California.

 British Columbia Government. 1998. Manure Management. Chapter 8, Horse Owner. Ministry
 of Agriculture and Food, Planning for Agriculture. British Columbia Government.

Brodie, H.L. Carr, and C. Miller. 2000. Structures for broiler litter manure storage.
   . Accessed November 2000.

Cady, Roger. Personal communication, Monsanto Company and Founder of the Professional
   Dairy Heifer Growers Association. Personal communication, February 18, 2000.

CIAS. 2000a. Grazing'spotential: Predicting expansion's cost, profit. Center for Integrated
   Agricultural Systems, . Accessed May
   2000.

                                        4-101

-------
CIAS. 2000b. Outwintering dairy cattle: Animal health issues. Center for Integrated Agricultural
    Systems, . Accessed May 2000.

CIAS. 2000c. Outwintering dairy cattle: Manure management issues. Center for Integrated
    Agricultural Systems, , Accessed May
    2000.

CIAS. 2000d. Dairy grazing can provide good financial return. Center for Integrated
    Agricultural Systems, . Accessed May
    2000.

Colorado State University. 1996.  Management of Horse Manure: A Renewable Resource.
    Colorado State University Cooperative Extension, Fort Collins, CO. December 1996.

Dougherty, M., L.D. Geohring, and P. Wright. 1998. Liquid manure application systems,
    Northeast Regional Agricultural Engineering Service, NRAES-89.

Emrnicx, D.L. 2000. ABC's of rotational grazing: Questions and answers.
    . Accessed February, 2000.

ERG. 2000a. Stand alone dairy heifer raising operations. Memorandum from Birute Vanatta,
    Eastern Research Group, Inc. to Ron Jordan, U.S. Environmental Protection Agency.

ERG. 2000b. Facility counts for beef, dairy, veal, and heifer operations. Memorandum from Deb
  .  Bartram, Eastern Research Group, Inc., to the Feedlots Rulemaking Record.

Faust, M.A. 2000. Dairy replacement heifer enterprises. . Accessed February 14,
    2000.

Gardner, Don. South East District Director for the Professional Dairy Heifer Growers
    Association. Personal communication, December 9,  1999.

Goan, C. 2000. Storage facilities for broiler litter, . Accessed November 20, 2000.

Graves, R.E. 1987.  Animal Manure - Manure Management for Horses.  PENpages Number:
    0870177. Pennsylvania State University Agricultural Engineering Department.

Harnm, D., G. Searcy, and A. Mercuri.  1974. A study of the waste wash water from egg washing
    machines. Poultry Science 53:191-197.

Hannawald, Jim. U.S. Department of Agriculture. Personal communication, April 4, 2000.
                                        4-102

-------
 Hansen, D. 2000. State regulatory issues and implications: Eastern USA, in Proceedings: 2000
    National Poultry Waste Management Symposium, Ocean City, Maryland.

 Hutchinson, L.J. 1988. Animal health, pest management and environment. In Proceedings of
    Pasture in the Northeast Region of the United States. U.S. Department of Agriculture, Soil
    Conservation Service, Northeast National Technical Center, Chester, Pennsylvania.

 Jordan, Larry. South East Regional Director for the Professional Dairy Heifer Growers
    Association. Personal communication, December 8,1999.

 Kellog, R. 2002. Profile of Farms with Livestock in the United States: A Statistical Summary; R.
    Kellogg; Feb 4, 2002; 31 pages.

 Kellogg, R.L., C. Lander, D. Moffitt, and N. Gollehon. Manure nutrients relative to the capacity
    of cropland and pastureland to assimilate nutrients: Spatial and temporal trends for the
    U.S. April 27, 2000.

 Loudon, T.L., D.D. Jones, J.B. Petersen, L.F, Backer, M.F. Brugger, J.C. Converse, C.D.
    Fulhage, J.A. Lindley, S.W. Nelvin, H.L. Person, D.D. Schulte, and R. White. 1985.
    Livestock waste facilities handbook. 2nd ed. Midwest Plan Service.

 Maple Leaf Farms. 2001. Facility Distribution data gathered by Maple Leaf Farms; prepared by
    Dan Harper; June 29, 2001.                                      -

 Martinez, S.W.  1999. Vertical coordination in the pork and broiler industries: Implications for
   pork and chicken products. Agriculture Economic Report No.  777. U.S. Department of
    Agriculture, Economic Research Service, Food and Rural Economics Division, Washington,
    DC.

 Meyer, D. J. 1987. Animal manure—Veal calf management, .
                                     !                                              t
 Moats, W.A.  1978. Factors Affecting Bacterial Loads on Shells of Commercially Washed Eggs.
   Poultry Science 60:2084-2090.

 Murphy, B. 1988. Voisin grazing management in the Northeast. In Proceedings of Pasture in the
   Northeast Region of the United States, U.S. Department of Agriculture, Soil Conservation
    Service, Northeast National Technical Center, Chester, Pennsylvania.

NCBA. 1999. Comments on the draft industry profile. National Cattlemen's Beef Association..

 NCC. 1999. Comments on EPA profile of broiler industry. National Chicken Council,
   Washington, DC.                  ,
                                        4-103

-------
 National Milk Producers Federation submittal to U.S. Environmental Protection Agency on
    3/1/99: State Level Milk Production.

 NCSU. 1998a. Draft of swine and poultry industry characterization, waste management
    practices and modeled detailed analysis of predominantly used systems. North Carolina State
    University.

 NCSU. 1998b. Nutritional strategies to reduce swine and poultry waste quantity and N and P in
    waste. North Carolina State University.

 Noyes, T.E. 1999. Heifer raising conference. December 3, 1999.  Assessed.December 3, 1999.

 NPPC. 1996. Swine care handbook. (National Pork Producers Council),
    . Accessed August 17, 1999.

 NPPC. 1998. Environmental assurance program survey.

 NPPC. 1999. Pork facts 1998/99.  (National Pork Producers Council),
    . Accessed August 15, 1999.

 NRC.  1989. Nutrient requirements of dairy cattle, 6th rev. ed. National Research Council.

 PPRC. 1996. Impacts of intensive rotational grazing on stream ecology and water quality.
    Pacific Northwest Pollution Prevention Resource Center,
    . Accessed February,
    2000.

 PADER. 1986. Swine manure management. Pennsylvania Department of Environmental
    Resources, Harrisburg, Pennsylvania.

 Rasby, R., I. Rush, and R. Stock. 1996. Wintering and backgrounding beef calves.
    .

 Scott, M.L. and W.F. Dean. 1991. Nutrition and Management of Ducks. M.L. Scott of Ithaca,
    Ithaca, NY.

 Stull, C.E., S. Berry, and E. DePeters. 1998. Animal care series: Dairy care practices. 2nd ed.
    Dairy Workgroup, University of California Cooperative Extension.

 Sweeten, J. n.d. Manure management for cattle feedlots. Great Plains Beef Cattle Handbook.
    Cooperative Extension Service - Great Plains States.

Thompson, G.B. and C.C. O'Mary. 1983. Thefeedlot. 3rd ed. Lea & Febiger, Philadelphia,
    Pennsylvania.

                                      ''   4-104

-------
Thome, J. 1999. Proposed EPA Project XL: United egg producers. Capitolink LLC, Washington,
    DC.

Tyson, T. 1996. Planning and managing lagoons for poultry layer waste treatment. Alabama
    Cooperative Extension Service, Auburn, Alabama.

UCD. 1998. Egg type- Layer flock care practices. California Poultry Workgroup, University of
    California at Davis, Davis, California.

UEP. 1998. UEP (Egg Producers) Data Package. United Egg Producers. Submitted to USEPA.

USDA. (U.S. Department of Agriculture), Safety of veal, from Farm to table.
    . Accessed April 14, 1999.

USDA. 1997. Horses: A Common Sense Approach. U.S. Department of Agriculture. Spring.
    1997.

USDA. 1997. Chapter 5: Management of grazing lands. In National range and pasture
    handbook. U.S. Department of Agriculture.

USDA APHIS. 1993. National Dairy Heifer Evaluation Project, Contract heifer raising. U.S.
    Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins,
    Colorado.

USDA APHIS. 1995. Swine '95 Part 1: Reference of 1995 swine management practices. U.S.
    Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins,
    Colorado.

USDA APHIS. 1996a. National Animal Health Monitoring System, Part I: Reference of 1996
    dairy management practices. U.S. Department of Agriculture, Animal and Plant Health
    Inspection Service, Fort Collins, Colorado.

USDA APHIS. 1996b. National Animal Health Monitoring System, Part III: Reference of1996
    dairy health and health management. U.S. Department of Agriculture, Animal and Plant
    Health Inspection Service, Fort Collins, Colorado.

USDA APHIS. 1996c. Swine '95 Part II: Reference of 1995 grower/finisher health and
    management. U.S. Department of Agriculture, Animal and Plant Health Inspection Service.
    Fort Collins, Colorado.

USDA APHIS. 1996d. The USDA's Role in Equine Health Monitoring.
    . U.S. Department of Agriculture, Animal and
    Plant Health Inspection Service.
                                       4-105

-------
USDA APHIS. 1998a. National Animal Health Monitoring System, Parti: Baseline Reference of
    1998 Equine Health and Management, . File
    eq98ptl.pdf accessed October 15, 1998. U.S. Department of Agriculture, Animal and Plant
    Health Inspection Service.

USDA APHIS. 1998b. National Animal Health Monitoring System, Part II: Baseline Reference
    of 1998 Equine Health and Management, . File
    eq98pt2.pdf accessed October 15, 1998. U.S. Department of Agriculture, Animal and Plant
    Health Inspection Service.

USDA APHIS. 1999. Swine '95 Reference of 1995 swine management practices. Additional
    data queries run at the request of EPA for new region and size categories. U.S. Department of
    Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado.

USDA APHIS. 2000a. National Animal Health Monitoring System, Parti: Baseline reference of
   feedlot management practices. U.S. Department of Agriculture, Animal and Plant Health
    Inspection Service, Fort Collins, Colorado.

USDA APHIS. 2000b. Part II: Reference of 1999 table egg layer management in the United
    States (Layer '99). U.S. Department of Agriculture, Animal Plant Health Inspection Service,
    Fort Collins, Colorado.

USDA APHIS. 2001. Part I: Reference of Swine Health and Management in the United States,
    2000, United State Department of Agriculture National Animal Health Monitoring System,
    Fort Collins, Colorado.

USDA APHIS. 2002a. Queries run by Centers for Epidemiology and Animal Health prepared by
    Eric Bush; March 22, 2002; 2 pages. Centers for Epidemiology and Animal Health. U.S.
    Department of Agriculture (USDA), Animal Plant Health Inspection Service (APHIS),
    National Animal Health Monitoring System, Fort Collins, Colorado.

USDA AHPIS. 2002b. Data aggregated from Equine "98 data by Michael Durham, Centers for
    Epidemiology and Animal Health. U.S. Department of Agriculture (USDA), Animal Plant
    Health Inspection Service (APHIS), National Animal Health Monitoring System, Fort
    Collins, Colorado.

USDA BAMN. 1997. A guide to dairy calf feeding and management. U.S. Department of
    Agriculture (USDA), Bovine Alliance on Management & Nutrition (BAMN)
    . Accessed

USDA ERS. 1997. The U.S. Pork industry: As it changes, consumers stand to benefits U.S.
   Department of Agriculture, Economic Research Service, Washington, DC.
                                       4-106

-------
 USDA NAHMS. 1999- Data aggregated from Swine '95 data, U.S. Department of Agriculture,
    Animal Plant Health Inspection Service, National Animal Health Monitoring System, Centers
    for Epidemiology and Animal Health. Fort Collins, Colorado.

 USDA NAHMS. 2000. Data Aggregated from Layer 99 data by Lindsey Garber, U.S.
    Department of Agriculture, Animal Plant Health Inspection Service, National Animal Health
    Monitoring System (NAHMS). Centers for Epidemiology and Animal Health. Fort Collins,
    Colorado.                  .       ,

 USDA NASS.- 1995a. Milk: Final estimates 1988-1992. Statistical Bulletin 909. U.S.
    Department of Agriculture (USDA), National Agricultural Statistics Service, Washington,
    DC.

 USDA NASS. 1998a. Agricultural statistics. U.S. Department of Agriculture, National
    Agricultural Statistics Service, Washington, DC.

 USDA NASS. 1998b. Chickens and eggs final estimates 1994-97. Statistical Bulletin No. 944.
    U.S. Department of Agriculture, National Agricultural Statistics. Service, Washington, DC.

 USDA NASS. 1998c. Poultry production and value, final estimates 1994-97. Statistical Bulletin
    No. 958. U.S. Department of Agriculture, National Agricultural Statistics Service,
    Washington, DC.

 USDA NASS. 1999a. Hogs and Pigs: Final estimates 1993-1997. Statistical Bulletin Number
    951. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington,
    DC.

 USDA NASS. 1999b. 1997 census of agriculture. U.S. Department of Agriculture, National
    Agricultural Statistics Service, Washington, DC.

 USDA NASS. 1999c. Queries run by NASS for USEPA on the 1997 Census of Agriculture data.
    U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, DC.

 USDA NASS. 1999d. Milking cows and production: Final estimates 1993-1997. Statistical
    Bulletin 952. U.S. Department of Agriculture, National Agricultural Statistics Service,
    Washington, DC.

USDA NASS. 1999e. Cattle: Final estimates 1994-1998. Statistical Bulletin 953. U.S.
    Department of Agriculture, National Agricultural Statistics Service, Washington, DC.

USDA NRCS. 1992. Agricultural waste management field handbook, National engineering
    handbook (NEH), Part 651. U.S. Department of Agriculture, Natural Resources Conservation
    Service, Washington, DC.         .
                                        4-107

-------
USDA NRCS. 1996. Dairy farmer profitability using intensive rotational stocking: Better
   grazing management for pastures. U.S. Department of Agriculture, Natural Resources
   Conservation Service, Grazing Lands Technology Institute. Washington, DC.

USDA NRCS. 1998. Nutrients available from livestock manure relative to crop growth
   requirements. U.S. Department of Agriculture, Natural Resources Conservation Service,
   Washington, DC.

USEPA. 1998. Feedlot industry sector profile. Revised draft report. Prepared for U.S.
   Environmental Protection Agency by Terra Tech, Inc., Fairfax, Virginia.

Vest, L. n.d. Layer production. Georgia Farm*A*Syst. Cooperative Extension Service,
   University of Georgia, College of Agricultural and Environmental Sciences. Athens, Georgia.

Wheeler, Gene, and A. Cirelli. 1995. Animal Waste Management for the Horseowner. Fact Sheet
   95-11, University of Nevada Cooperative Extension, Lincoln, Nebraska.

Wilson, L.L., C.L. Stull, and T.L. Terosky. 2000. Scientific advancements and legislation
   addressing veal calves in North America. In: Veal Perspectives to the Year 2000,
   Proceedings of an International Symposium, LeMans, France, September 12 and 13, 1995,
   LeMans, France.
                                         4-108

-------
                                                               CHAPTERS



                           INDUSTRY SUBCATEGORIZATION FOR

  EFFLUENT LIMITATIONS GUIDELINES AND STANDARDS

5.0   INTRODUCTION
The Clean Water Act requires EPA to consider a number of different factors when developing
Effluent Limitations Guidelines and Standards (ELGs) for a particular industry category. These
factors include the cost of achieving the effluent reduction, the age of the equipment and
facilities, the processes employed, engineering aspects of the control technology, potential
process changes, nonwater quality environmental impacts (including energy requirements), and
factors the Administrator deems appropriate. One way EPA takes these factors into account is by
breaking down categories of industries into separate classes of similar characteristics. The
division of a point source category into groups called "subcategories" provides a mechanism for
addressing variations among products, raw materials, processes, and other parameters that result
hi distinctly different effluent characteristics. Regulation of a category by subcategory ensures
that each subcategory has a uniform set of effluent limitations that take into account technology
achievability and economic impacts unique to that subcategory.

The factors that EPA considered in the subcategorization of the CAFO point source category
include:

    •   Animal production processes

       Waste management and handling practices

    •   Wastes and wastewater characteristics

    •   Waste use practices
    •   Age of equipment and facilities

    •   Facility size

    •   Facility'location
EPA evaluated these factors and determined that subcategorization of this point source category
is necessary. Based on these evaluations, the CAFO point source category has been divided into
four subcategories for the purpose of issuing effluent limitations. These four subcategories are:

       Subcategory A (Subpart A): Horses and sheep
                                      5-1

-------
    •   Subcategory B (Subpart B): Ducks
    •   Subcategory C (Subpart C): Dairy and beef cattle other than veal calves
        Subcategory D (Subpart D): Swine, poultry, and veal calves
Section 5.1 briefly discusses the background of the subcategorization of the CAFO point source
category including the 1974 Feedlots ELG. Section 5.2 discusses the subcategorization basis of
the CAFO industry.

5.1    Background
Under the 1974 rulemaking, EPA divided the point source category into two subcategories: (1)
Subpart A - all subcategories except ducks, and (2) Subpart B - ducks on dry lots and wet lots.
Subcategories addressed under Subpart A include
    •   Beef cattle, open lot
    •   Beef cattle, housed lot
    •   Dairy cattle, stall barn with milk room
    •   Dairy cattle, free stall barn with milking center
    •   Dairy cattle, cowyard with milking center
        Swine, open dirt or pasture lots
    •   Swine, housed with slotted floor
    •   Swine, open or housed with solid concrete floor
    •   Chickens, broilers housed
    •   Chickens, layers (egg production) housed
        Chickens, layer breeding and replacement stock housed
    •   Turkeys, open lot
    •   Turkeys, housed lot
    •   Sheep, open lot
        Sheep, housed lot
        Horses, stables
This subcategorization was developed primarily on the basis of animal type and production
processes employed. Secondary criteria were product produced, prevalence of the production
process employed, and characteristics of waste produced.
                                          5-2

-------
 On January 21, 2001 (66 FR 2960), EPA published a proposal to revise and update the ELG for
 feedlots (beef, dairy, swine, and poultry operations) that included two new subcategories:

     •    Subpart C: Dairy and beef cattle, other than veal calves, including heifer operations.

         Subpart D: Swine, poultry, and veal calves.

 This subcategorization scheme explicitly addressed immature cattle and swine weighing less than
 55 pounds, which were not explicitly included in the previous subcategorization scheme, and
 established new subcategories for swine, poultry, and cattle operations (separate from horses and
 sheep). The proposal did not affect Subpart B, and retained Subpart A for horses and sheep.


 5.2    Subcategorization Basis for the Final Rule
 The CAFO industry has changed operational practices considerably in the past few decades since
 promulgation of the 1974 ELG. During the development of this revised ELG, EPA determined
 that the basis for subcategorization needed to reflect current industry trends, hi developing the
 final CAFO rule, EPA used information from  USDA, industry, EPA site visits, data from EPA
 enforcement and inspection efforts, and public comments to evaluate each of the statutory factors
 listed above in Section  5.0 as they affect the current industry. EPA also considered maintaining
 the basis of subcategorization used in the 1974 ELG and refining the performance expectations
 for these facilities. Based on these analyses, EPA retained the subcategorization scheme proposed
 on January 21, 2001. The subcategories are

     •   Subpart A: Horses and sheep.

    •   Subpart B: Ducks.
    •   Subpart C: Dairy and beef cattle, other than veal calves, including heifer operations.
    •   Subpart D: Swine, poultry, and veal calves.

 The remainder of this section discusses the factors considered for the subcategorization of the
 CAFO industry and those that were selected as the basis of the final subcategories.


 5.2.1  Animal Production, Manure Management, and Waste Handling Processes
 Production processes in the CAFO industry include all aspects of animal husbandry, animal
 housing, and type of animal operation. The type of production process, including animal type and
 housing, was one of the primary levels of subeategorizing the industry in the 1974 ELG.
 Furthermore, the waste handling and manure management practices at CAFOs are closely tied to
housing practices and support the rationale for using these processes as a basis for
 subcategorization. As discussed in Chapter 4, Large beef feedlots, dairies, and heifer operations
typically have outdoor confinement lots where animals are housed for all or at least a portion of
their time. Large beef, dairy, and heifer operations keep animals in confinement  on outdoor lots
                                          5-3

-------
and generate and manage both solid manure and liquid process wastewater that are affected by
climate, especially precipitation.

More specifically, the majority of Large beef feedlots are open feedlots, which are usually
unpaved. These types of operations may use mounds in the pens to improve drainage and provide
areas that dry quickly, because dry resting areas improve cattle comfort, health, and feed
utilization, all of which contribute to efficient animal weight gain. In open feedlots, protection
from the weather is often limited to a windbreak near the fence in the winter and sunshade in the
summer; however, treatment facilities and hospital areas for the cattle are usually covered.
Animals are fed two or three times daily, so a concrete apron is typically located along feedbunks
and around waterers (i.e., heavy traffic areas). Wastes produced from beef feedlots include
manure, bedding, spilled feed, and contaminated runoff. Unroofed confinement areas typically
have a system for collecting and confining contaminated runoff. The runoff is typically managed
in a storage pond and the manure from the open lots is often scraped and stacked into mounds or
stockpiles. Beef feedlots typically use a settling basin to remove bulk solids from the liquid waste
stream, reducing the volume of solids before the stream enters a storage pond.

The primary function of a dairy is the production of milk, which requires a herd of mature dairy
cows that are lactating. hi order to produce milk, the cows must be bred and give birth.
Therefore, a dairy operation may have several types of animal groups present including calves,
heifers, cows that are close to calving, lactating dairy cows, dry cows, and bulls. Animals at dairy
operations may be confined in a combination of freestall barns, outdoor dry lots, tie stalls, or
loose housing (bams, shades, and corrals). Some animals may be allowed access to exercise
yards or open pastures. At dairies, the most common type of housing for lactating cows includes
freestalls, dry lots, tie stalls/stanchions, pastures, and combinations of these. Freestalls are the
housing systems used by practically all Large dairy operations. The cows are not restrained in the
freestalls and are allowed to roam on concrete alleys to the feeding and watering areas. Mainure
collects in the travel alleys and is typically removed with a tractor or mechanical alley-scraper, by
flushing with water, or through slotted openings in the floor (refer to Section 4.3.5 for a more
detailed description of waste handling). Dry lots are outside pens that allow the animals some
exercise, but do not generally allow them to graze. These milking cows are not likely to spend
their entire time in a freestall or on a dry lot, as they need to be milked at least twice a day at a
tiestall or in a milking parlor.

Most dairies have both wet and dry waste management systems. The dry waste (manure, bedding,
and spilled feed) is typically collected from the housing and exercise areas by tractor scrapers and
stored where an appreciable amount of rainfall or runoff does not come in contact with the waste.
The wet waste (water from the barn and milking parlor cleaning operations, manure, and
contaminated runoff) is typically stored in anaerobic lagoons. Like beef feedlots, dairies tend to
use solid separators to remove bulk solids from a liquid waste stream. Waste associated with
dairy production includes manure, contaminated runoff, milking parlor waste, bedding, spilled
feed, and cooling water. Lactating cows require milking at least twice a day and are either milked
in their tie stalls or are led into a separate milking parlor. The milking parlor is typically cleaned
several times each day to remove manure and dirt via flushing or hosing and scraping.

                                           5-4

-------
 Stand-alone, heifer-raising operations provide replacement heifer services to dairies. These heifer
 operations often contract with dairies to raise heifers for a specified period of time. Heifer-raising
 operations use two primary methods for raising their animals. One is to raise the cattle on pasture
 and the second is to raise heifers in confinement. These confined heifer operations tend to raise
 heifers in the same way that beef feedlots raise their cattle. The heifers are typically housed on
 unpaved open dry lots. Wastes produced from heifer operations include manure, bedding, and
 contaminated runoff. Unroofed confinement areas typically have a system for collecting and
 confining contaminated runoff. The runoff is typically managed in a storage pond and the manure
 from the open lots is often scraped and stacked into mounds or stockpiles. Heifer operations may
 also use a settling basin to remove bulk solids from the liquid waste stream.

 hi all cases," these open lots and outdoor pens expose large surface areas to precipitation,
 generating large volumes of storm water runoff contaminated with manure, bedding, feed, silage,
 antibiotics, and other process contaminants. Based on the similarity of the production, housing,
 and waste management processes for beef feedlots, dairies, and heifer operations, EPA developed
 a new subcategory, Subpart C, to address these operations under the revised ELG. EPA believes
 that these operations use similar technologies (e.g., storm water diversion, solid separation) to
 reduce effluent discharges from production areas given that all of these operations must manage
 storm water runoff from open lots as well as the storm water that contacts food or silage.

 In contrast, nearly all Large swine, poultry, and veal calf operations use total confinement
 housing. These confinement buildings prevent contact of runoff and precipitation with the
 animals and manure. Furthermore, these operations are able to manage manure in a relatively dry
 form, or contain liquid wastes in storage structures such as lagoons, tanks, or under-house pits
 that are not greatly affected by precipitation. Operations using confinement housing differ most
 notably from operations using outdoor open lots in that they are constructed, or can be relatively
 easily configured, in a manner that prevents the generation of large volumes of contaminated
 storm water runoff. Thus they do not need to manage large, episodic volumes of storm water
 runoff. At most, operations using total confinement housing need only to manage the
 precipitation falling directly into manure-handling and storage structures (e.g., lagoon or open
 tank).

 For example, swine operations may be categorized by six facility types based on the life  stage of
 the animal in which they specialize: farrow-to-wean, farrow-nursery, nursery, grow-finish,
 farrow-to-finish, and wean-to-finish. Many operations have the traditional full range of pork
 production phases in one facility, known as farrow-to-finish operations. Most nursery and
 farrowing operations, as well as practically all large operations of any type, raise pigs in pens or
 stalls in environmentally controlled confinement housing. These houses commonly use slatted
 floors to separate manure and wastes from the animal. Swine waste includes manure, spilled
 feed, and water used to clean the housing area or dilute the manure for pumping. Most
 confinement hog operations use one of three waste handling systems: flush under slats, pit
recharge, or deep under-house pits. The flushed manure and manure from pit recharge systems  is
typically stored in anaerobic lagoons or tanks while deep pit systems store manure under the
confinement houses.

                                           5-5

-------
Based on the information in Chapter 4 as well as other information in the record, EPA is
including operations with immature swine as CAFOs under Subpart D based on their production
and waste-handling practices. Immature swine operations were not specifically addressed in the
1974 ELG because immature animals were typically raised at a farrow-to-finish operation and
not at a separate operation like today. Although many large operations continue to have the full
range of production phases at one facility, these are no longer the norm. Waste from immature
operations is often flushed and managed in a lagoon or pit, just like operations that manage
mature pigs. Due to the increased construction and reliance on immature swine operations, EPA
maintains that these operations should be specifically addressed to ensure protection of surface
water quality. Because the immature operations use virtually the same animal production and
waste management processes and are expected to use similar effluent reduction practices and
technologies as mature swine operations, EPA has included these immature operations under
Subpart D.

Poultry operations can be classified into three individual sectors based on the type of commodity
in which they specialize. These sectors include operations that breed or raise broilers, or young
meat chickens, turkeys and turkey hens; and hens that lay shell eggs (layers). There are two types
of basic poultry confinement facilities—those that are used to raise turkeys and broilers for meat,
and those that are used to house layers. Both types use total confinement houses. Broilers and
young turkeys are grown on floors on beds  of litter shavings, sawdust, or peanut hulls, while
layers are confined to cages suspended over a bottom story in a high-rise house, or over a pit, or a
belt or scrape gutter. The majority of egg-laying operations use dry manure handling but some
use liquid systems that flush waste to a lagoon. Poultry waste includes manure, poultry
mortalities, litter, spilled water and feed, egg wash water, and also flush water at operations with
liquid manure systems. Manure from broiler, breeder, some pullet operations, and turkey
operations is allowed to accumulate on the  floor where it is mixed with the litter. In the chicken
houses, litter close to drinking water access forms a cake that is removed between flocks. The
rest of the litter pack generally has low moisture content and is removed every 6 months to 2
years, or between flocks. The removed litter is stored in temporary field stacks,'in covered piles,
or in stacks within a roofed facility to help keep it dry.

Veal calf operations raise male dairy calves for slaughter. Veal calf are raised almost exclusively
in confinement housing, generally using individual stalls or pens. Floors are constructed of either
wood slats or plastic-coated expanded metal, while the fronts and sides are typically wood slats.
The slotted floors allow for efficient removal of waste. Veal calves are raised on a liquid diet and
their manure is highly liquid. Veal calf waste consists of manure, flushing water, and spilled
liquid feed. Manure is typically removed from housing facilities by scraping or flushing from
collection channels and then flushing or pumping into liquid waste storage structures, ponds, or
lagoons. Veal calf manure is typically handled in a liquid waste management system like that
used in swine operations and not  like the outdoor stockpiled manure at beef feedlots. Veal calf
operations maintain their animals in total confinement housing like swine and poultry operations
as opposed to the outdoor lots used at most beef feedlots and dairies.
                                           5-6

-------
Nearly all Large swine, veal calves, and poultry operations confine their animals under roof,
avoiding the use of open animal confinement areas that generate large volumes of contaminated
storm water runoff. These operations differ most notably from beef and dairy operations in that
they, in most cases, do not have to manage the large volumes of storm water runoff that must be
collected at beef and dairy operations. While swine, veal calves, and certain poultry operations
that manage wastes in uncovered lagoons must be able to accommodate precipitation, they are
largely able to divert uncontaminated storm water away from the lagoons and minimize the
volume of wastes they must manage. Furthermore, swine, poultry, and veal calf operations use
similar technologies (e.g., reduction of fresh water use, storage of manure in covered or indoor
facilities, recycle of flush water) to reduce effluent discharges.

Another basis for subcategorization isJhe type of production system hi place. In the case of
CAFOs that means the type of animal operation. For example, EPA considered whether the
swine production pyramid of breeding, nursery, and finishing should be used as a basis of
subcategorizing swine CAFOs, or whether subcategorization should be based on specific animal
breeds, animal weights, type of feed, or other process-specific factors. In evaluating the
information in the record, EPA determined there were too many life-cycle variables to allow
reasonable subcategorization based on the type of production system, and that segmentation
based on these variables was unlikely to result in substantially different effluent characteristics or
effluent limitations for each subcategory. For example, such an approach as applied to chickens
would result in over a dozen subcategorizations with considerable overlap. Yet the amount of
litter and manure nutrients generated in 1 year by six flocks of broilers raised for 49 days each is
not significantly different from that generated by seven flocks raised for 42 days (see Chapter 6
for additional information). Furthermore, such an operation could be subject to varying standards
at different times of the year. EPA determined segmentation m this fashion would complicate
rather than simplify the regulation.


5.2.2   Other factors
EPA analyzed data from USDA, universities, industries, and the literature on manure and waste
characteristics for AFOs. Site-specific factors such as animal management, feeding regimens, and
manure handling will affect the form and quantity of the final manure and waste products to
some degree. However, for a given animal type, there is reasonably consistent manure
generation, and similar pollutant generation. See Chapter 6 for more information. EPA
considered, but rejected, basing subcategorization on the pollutant content of the wastes, in
particular because this would not provide more effective control of CAFO discharges.

During the rulemaking, EPA evaluated subcategorization based on waste characteristics — one  •
based on an expected nutrient content (e.g., P) of the manure or the mass of a particular nutrient.
Although EPA believes that setting thresholds based on nutrient content of the manure may
encourage the development of reduction strategies, it would  not adequately reflect the form of the
nutrient present hi the manure (i.e., organic or inorganic, soluble fraction). Similarly, using the
mass of the nutrient as the basis for subcategorization could possibly encourage manure
                                          5-7

-------
management and nutrient conservation. See Chapter 2 for a discussion on the merits of P
production as a metric for establishing regulatory thresholds. EPA believes using this same
approach for subcategorization creates difficulties. For example, such an approach would
significantly increase the complexity of identifying CAFOs (e.g., a facility is a CAFO if it
produces "x" pounds of P) and cost of implementing the ELG (by requiring rigorous sampling,
additional recordkeeping, and more frequent reporting). Furthermore, while some practices can
be used to affect manure generation and nutrient outputs, others are only effective for select
animal species (such as adding phytase to feed), or may provide limited benefit to overall manure
management at the operation (for example, smaller feed pellets increase digestibility and may
decrease nutrient excretion in the manure but will also decrease solid-liquid separation
efficiency). The nutrient mass excreted can also change based on feeding strategies, feed
supplements, and the amount of tune elapsed before sampling. See Chapter 8 for more
information. These factors make it harder for the CAFO to manage, and difficult for the
permitting authorities to implement the regulation. Therefore, EPA rejected both of these
approaches due to their limitations, increased costs, and complexity.

EPA considered basing subcategorization on water use practices such as dairy, swine, and layer
operations that employ technologies such as flush waste handling systems, deep pits, and
scrapers. In considering these practices as a basis for subcategorization, EPA evaluated the cost
for these sectors to comply with the various technology options, and concluded that water use
practices did not prevent a facility from achieving the  performance standards. (However, some
technologies and practices for water use/reuse/recycle can be used to substantially reduce costs of
certain technology options. See Chapter 8 and the Cost Report for more information.) EPA also
determined that a subcategorization scheme based on water use practices could, in some cases,
provide a disincentive for a facility to reduce fresh water consumption. Therefore, EPA did not
select water use practices as a basis for subcategorization.

EPA evaluated the age of facilities as a possible means of subcategorization because older
facilities may have different processes and equipment that could require the need for different or
more costly control technologies to comply with regulations. EPA conducted site visits and
consulted with EPA regions, enforcement officials, land grant and extension experts, and
industry to collect information about AFOs  and waste management practices. Specifically, EPA
visited more than 115 beef feedlots; dairies; and swine, poultry, and veal calf operations
throughout the United States. EPA visited a wide range of operations; including those
demonstrating new and innovative technologies as well as old and new facilities were visited.
EPA's analyses and site visits indicate that older facilities are similar to new facilities in a
number of ways. Through retrofitting, expansions, and desire to maximize animal production,
many older facilities have implemented technologies and practices used by the newer facilities in
order to remain competitive. Even though confinement housing may have a 20- to 30-year useful
life, modifications are continuously made to the internal housing structures at CAFOs such as
replacement of floor materials, installation of new feeding systems, and improvements to
drinking water equipment. These improvements and modifications are even more apparent at
operations that have expanded the size of the facility.  For example, many wet layer operations are
retrofitting to dry manure systems, few, if any, Large swine facilities use open lots, and beef

                                           5-8

-------
feedlots are diverting clean storm water away from the feedlot and manure storage areas. These
and other examples of modifications are documented in the record (See W-00-27, Section 5.3).
EPA determined that the age of the facility does not have an appreciable impact on the
wastewater characteristics, especially the total amount of nutrients to be managed, and was not
considered as a basis for subcategorization.

EPA also considered subcategorization on the basis of facility size and analyzed several size
groups for each major livestock sector. Within each size group, EPA considered the predominant
practices, and developed cost models to reflect these baseline practices. EPA found that all Large
CAFOs used similar practices, though the smaller the operation, the more diverse the range of
practices employed. EPA also determined that fa^m size did not consistently influence the ability
of the operation to achieve the desired performance standards for each technology option.
Additionally, EPA did not find that CAFQ size consistently influenced the ability of the facilities
to achieve the performance standards for each technology option (see the Economic Analysis
document for more information on impacts). Finally, pollution potential from all AFOs within a
broad size range is approximately the same per unit of animal production for all sizes of
facilities. Therefore, to minimize confusion, potential inconsistencies, and administrative burden,
EPA determined that the ELG applies to anyone defined as a Large CAFO and did not select to
subcategorize further on the basis of facility size.

With respect to geographic location, EPA analyzed key production regions for each major
livestock sector and considered the predominant practices within each of these regions. Next
EPA identified different treatment, storage, and handling practices based on geographic location,
and developed cost models to reflect these baseline practices. EPA acknowledges that geographic
considerations, especially temperature and rainfall, may affect manure storage and handling, yet
the practices employed by the industry do not vary considerably within a region. For example,
while pits or lagoons may be used with different frequencies in any given region, these two
technologies are used all over the country i EPA could not draw clear distinctions for each locale
that would form a basis for subcategorization. Furthermore, EPA's cost analysis shows location
does not prevent an operation from meeting the performance standards. See the Cost Report for
more information. Therefore, there is no need to develop subcategorization by location. This is
further supported by reported compliance rates by each EPA region; compliance did not vary by
region. Therefore, EPA concludes subcategorization by location is difficult to implement, largely
impractical, and, even if selected, would not provide for additional control of discharges.

EPA also evaluated pollution-control technologies currently being used by the industry as a basis
for establishing regulations. The treatability of waste was not a factor for categorization since
wastes from CAFOs are concentrated and present in such quantities that no direct discharge from
the production area is currently allowed. Pollution-control technologies are often complementary
to or directly part of the production or manure management process, therefore the rationale for
using such processes as a basis for subcategorization is further supported by the potential use of
pollution-control technologies as a basis for subcategorization. However, EPA believes that the
use of pollution-control technologies only to segment the industry may result in disincentives for
new and innovative treatment technologies, especially the transfer of technologies between

                                          5-9

-------
animal sectors (for example, the recent application of high-rise housing to swine operations, a
technology well established by layer hen operations). Although the current use of pollution-
control technologies did assist EPA in identifying the best management practices addressed in the
final ELG, EPA did not believe pollution-control technologies would serve as a better basis for
subcategorization than the production of manure management processes.

Finally, EPA evaluated whether Nonwater Quality Impacts (NWQIs) could form a basis for
subcategorization. NWQIs include changes in air emission and energy use at CAFOs such as
those resulting from transportation of manure and wastes to off-site locations, and emissions of
volatile organic compounds to the air. See the NWQI report for additional information. While
NWQIs are of concern to EPA, the impacts are the result of individual facility practices arid do
not apply uniformly to different industry segments. To the extent there are similarities, these
similarities do not lend themselves towards subcategorization of the industry in a way thai:
provides better controls than the proposed approach. Therefore, NWQIs are not an appropriate
basis for subcategorization.
                                          5-10

-------
                                                              CHAPTER 6
                            WASTEWATER CHARACTERIZATION
                                AND MANURE CHARACTERISTICS
6.0   INTRODUCTION
This chapter describes waste streams generated by the animal feeding industry. Differences in
waste composition and generation between animal types within each sector are highlighted.

The types of animal production and housing techniques determine whether the waste will be
managed as a liquid, semisolid, or solid (Figure 6-l).The type of manure and how it is collected
has a direct impact on the nutrient value of the waste, its value as a soil amendment, or other
uses.
                              PERCENT TOTAL SOLIDS
                                10      15      20
LIQUID ' SEMISOLID
WATER ADDED
PUMPABLE
LIQUID MANURE
HANDLING SYSTEMS

AS EXCRETED
SCRAPER A
SOL


NOB
SOLID
BEDDING ADDED
JCKETLOAD
STACKABLE
D MANURE
HANDLING SYSTEMS
             Figure 6-1.Manure characteristics that influence management
                options (after Ohio State University Extension, 1998).


6.1    Swine Waste
Swine waste contains numerous chemical and biological constituents such as nutrients, heavy
metals, and pathogens that can potentially contaminate the environment. The composition of
swine waste and the rate of its excretion by the pig varies with the stage of physical development,
the pig's gender, and for females, whether she is farrowing. As noted in Chapter 4, during the
course of their life cycle, pigs receive up to six different diets to maximize growth at each stage
of physical development. Each diet is composed of a unique mix of nutrients and minerals, and
these different diets are reflected in the different composition of manure generated.
                                      6-1

-------
Swine waste also undergoes physical and chemical changes after it has been excreted by the pig.
For example, swine waste volume and composition change after the waste becomes mixed with
water, feed, and bedding materials. Furthermore, microbial activity alters the chemical makeup of
the waste by metabolizing organic matter and generating chemical by-products. Additional
chemical changes can occur depending on how the waste is stored and whether it is treated.

For swine operations, typical manure-handling practices are designed to produce either a liquid
or a semisolid. Thus, the nutrient component of manure usually becomes more dilute because of
the addition of water used to aid in collection of the manure. In addition, ammonia volatilization
reduces nitrogen (N) concentrations in both liquid and dry manure-handling systems. Phosphorus
(P) concentrations increase hi manure that is handled dry because the water content decreases.

As discussed in Chapter 4, swine manure is typically collected and stored by means of pit
storage, lagoons, or a combination of the two.  Most lagoons operate anaerobically. Aerated
lagoons have received less attention because of their higher costs; however, their potential for
decreased odor might increase their use. Svoboda (1995) achieved N removal, ranging from 47 to
70 percent (depending on aeration), through nitrification and denitrification in an aerobic
treatment reactor using whole pig slurry. The proportion of P and potassium (K) typically
remaining after storage is higher than N. However, up to 80 percent of the P in lagoons is found
in the bottom sludge versus the water fraction  (MWPS, 1993).

Jones and Sutton (1994) analyzed manure nutrient content in liquid manure pit and anaerobic
lagoon samples just before land application. On a mass basis for pit storage, N decreases ranged
from 11 to 47 percent; P, 9 to 67 percent; and K, 5 to 42 percent. In the water fraction of lagoons,
N decreases ranged from 76 to 84 percent; P, 78 to 92 percent; and K, 71 to 85 percent. Nitrogen
decreases hi these two storage systems were primarily due to volatilization, whereas P and K
decreases were due to accumulation in sludge. Boland et al. (1997) found that for deep pit
systems almost four times as much land was needed when applying manure based on P rather
than N, 2.5 times for tank storage, and 1.7 tunes for lagoon systems. These differences  can be
attributed to less ammonia volatilization in deep pit systems, and  solids settling in lagoons.

A field study of Missouri swine lagoon surface-to-volume ratios found that large swine lagoons
have significantly higher total N concentrations than  small lagoons. This finding suggests that
nutrient concentrations, and thus land application, of treated swine manure should be based on
the design and performance  characteristics of the lagoon rather than on manure production, alone
(Fulhage, 1998).

The use of evaporative lagoon systems has increased in arid regions. These systems rely on
evaporation to reduce wastewater with pollutants accumulating in the lagoon sludge. This
approach results hi reduced or no land application of wastes. For example, due to a lack of
adequate land disposal area hi Arizona, Blume and McCleve (1997) increased the evaporation of
wastewater from a 6,000-hog flush/lagoon treatment  system by spraying the wastewater into the
air. Although information on volatilization was not available, the evaporative increase from
spraying and pond evaporation, versus pond evaporation alone, was 51 percent.
                                          6-2

-------
The following sections characterize swine waste in terms of generation rates, and chemical and
biological contaminants. Differences between swine types and operations and changes to the
waste after it leaves the pig are also characterized.

6.1.1  Quantity of Manure Generated
 Table 6-1 shows the quantity of manure generated by different types of swine. Variation in these
quantities can be attributed to different ages and sizes of animals within a group (USDA, 1992).
Manure production can also vary depending on the digestibility of feed rations. For example,
corn, which is 90 percent digestible, results in less total solids in manure than a less digestible
feed such as barley, which is 70 percent digestible (USDA, 1992).

           Table 6-1. Quantity of Manure Excreted by Different Types of Swine.
Type of Swine
Grower-Finisher
Replacement Gilt
Boar
Gestating Sow
Lactating Sow
Sow and Litter
Nursery Pig
Manure Mass (lb/yr/1,000 Ib of animal mass)
Maximum Reported
44,327a
29,872"
31,527"
18,250"
32,120a
21,900C
54,142"
Minimum Reported
14,600a
ll,972"'b
7,483"
9,928b
21,900"-"
21,900C
23.98 r
USDA 1998 Value
Grower-Finisher
29,380d
Farrow
12,220d
—
Farrow to
Finish
38,940=
 "NCSU, 1994.
 bUSDA, 1992.
 "MWPS, 1993.                           i
 dUSDA, 1998.          •   ,     .     .
 •Adapted from USDA, 1998.
 —Not available.

As described in Chapter 3, there are three stages of swine production—farrow, nursery, and
grower-finisher. Some swine operations encompass all three stages, whereas others specialize in
just one. This section discusses the type of animal included in each operation and summarizes
data on the quantity of manure produced by different operations.


Farrowing Operations
Farrowing operations include boars, gestating sows, lactating sows, and the sows' litters.
Newborn pigs remain at the farrowing facility until they are weaned, which typically takes 3 to 4
weeks. Lactating sows and their litters produce the most manure, whereas boars produce the
least. Manure production values for 1,000 Ibs of animal in a farrowing operation range from
7,483 (USDA, 1992) to 32,120 Ib/yr (NCSU, 1994), as shown in Table 6-2.


Nursery Operations
After farrowing and weaning, young pigs are moved to a nursery, when they reach approximately
15 pounds. They remain in the nursery for 7 to 8 weeks until they weigh approximately 60
pounds and are then transferred to a grower-finisher operation. Nursery pigs produce manure at
                                          6-3

-------
rates of 23,981 (MWPS, 1993) to 54,142 Ib/yr per/1,000 Ibs of animal (NCSU, 1994)
(Table 6-2).

Table 6-2. Quantity of Nitrogen Present in Swine Manure as Excreted.
Operation Type 	
Farrow to Finish
Grower-Finisher
Farrow
Nursery 	 |
Nitrogen (lb/yr/1,000 Ib of animal mass).
Maximum Reported
NA
228.8"
214.0"
224.P
Minimum Reported
NA
87.6b
54.8"
134.0"
USDA 1998 Value
220.0°
166.0d
81.0"

 •NCSU, 1994.                                          ,                 '".:.
 'USDA, 1992.
 'Adapted from USDA, 1998.
 'USDA, 1998.
 NA Not available.                          i

Grower-Finisher Operations
In a finishing operation pigs are raised to market weight, which is approximately 240 to 280
pounds. This third stage of swine production is typically 15 to 18 weeks long, after which
finished hogs are sent to market at approximately 26 weeks of age. A grower-finisher operation
raises pigs over a relatively long period of tune, during which their weight changes substantially.
This weight change affects the quantity of manure produced (USDA, 1992). Values for manure
production from growing-finishing pigs range from 11,972 (USDA,  1992) to 44,327 Ib/yr per
1,000 Ibs of animal (NCSU, 1994) (Table 6-2).


Farrow-to-Finish  Operations
A farrow-to-finish  operation includes all three stages of swine production. Because of the large
variability hi animal types presented in this type of operation, manure production values vary
widely, from 7,483 Ib/yr per/1,000 Ibs of animal forbears (USDA, 1992) to 54,142 Ib/yr per
1,000 Ibs of animal for nursery pigs (NCSU, 1994) (Table 6-1).

6.1.2  Description of Waste Constituents and Concentrations

Swine waste contains substantial amounts of N, P, K, pathogens, and smaller amounts of other
elements and pharmaceuticals. This section provides a  summary of the constituents of swine
waste as reported in the literature. There is significant variability in the generation rates presented
below. This variability can be attributed to different nutritional needs for swine in the same
operation type (e.g., sows and boars), and for swine of different ages and sizes grouped in the
same operation. Also, as shown earlier in Table 6-1, different types of swine produce different
quantities of manure.
                                           6-4

-------
 Nitrogen
 Nitrogen is usually measured as total N or as total Kjeldhal nitrogen (TKN). Although TKN does
 not include nitrate-nitrogen (NO3-N), it may be considered equal to total N because NO3-N is
 present only in very small quantities in swine manure (0.051 to 1.241 Ib/yr per 1,000 Ibs of
^animal) (NCSU, 1994; USD A, 1998). Published values for N production in swine manure range
 from 54.8 (USDA, 1992) to 228.8 Ib/yrper 1,000 Ibs of animal (NCSU, 1994), as shown in
 Table 6-2. In general, boars produce the least amount of N per 1000 pounds of animal, and
 grower-finisher pigs produce the most.

 Phosphorus
 The quantity of P excreted in swine manure for different types of swine operations is shown in
 Table 6-3. Phosphorus content ranges from 18.3 (USDA, 1992) to 168.2 Ib/yr per 1,000 Ibs of
 animal (NCSU, 1994)—boars excrete the least amount of P in manure per 1000 pounds of
 animal, whereas grower-finisher pigs excrete the most.

         Table 6-3. Quantity of Phosphorus Present in Swine Manure as Excreted.
Operation Type
Farrow to Finish
Grower-Finisher
Farrow
Nurserv
Phosphorus (lb/yr/1,000 Ib of animal mass)
Maximum Reported
NA
168.2"
68.3"
93 4a,b
Minimum Reported
NA
29.2b
18.3"
54.6C
USDA 1998 Value
64.1"
48.3=
26.2=
— • •
  "NCSU, 1994.
  HJSDA, 1992.                     -     .  '
  °MWPS, 1993.
  •"Adapted from USDA, 1998.
  'USDA, 1998.                 •
  NA Not available.

 Potassium
 Table 6-4 shows the range of measured K quantities in manure for each type of swine operation.
 Boars produce the least amount of K at 36.50 Ib/yr per 1,000 Ibs of animal (USDA, 1992),
 whereas grower-finisher pigs produce the most at 177.4 Ib/yr per 1,000 Ibs of animal (NCSU,
 1994).

 Table 6-5 shows differences in the quantity of nutrients in manure at different stages of storage
 and handling. The data show a decrease in, nutrient quantities from a manure slurry, which is
 untreated, to lagoon liquid and finally to secondary lagoon liquid. Lagoon sludge contains less N
 and K but more P, than lagoon liquid , because tends to be associated with the paniculate fraction
 of manure, and N and K are usually in dissolved form. Table 6-6 shows the percent of manure
 nutrient content as excreted that is retained using different manure management systems. Table
 6-7 shows manure nutrient concentrations in pit storage and anaerobic lagoons.
                                          6-5

-------
          Table 6-4. Quantity of Potassium Present in Swine Manure as Excreted.
Operation Type
Farrow to Finish
Grower-Finisher
Breeder
Nursery
Potassi
Maximum Reported
NA
177.4"
136.6'
130.6"
um (lb/yr/1,000 Ib of animal mass)
Minimum Reported
NA
47.45"
36.50"
103.88=
USDA 1998 Value
154.79"
116.79e
47.96=
,
•NCSU, 1994.
VUSDA, 1992.
Tvl WPS, 1993.
•"Adapted from USDA, 1998.
•USDA, 1998.
NA Not available.
                Table 6-5. Comparison of Nutrient Quantity in Manure for
                       Different Storage and Treatment Methods.
Nutrient
Nitrogen
Phosphorus
Potassium
Mean Quantity in Manure Gb/yr/1000 Ib of animal mass)
Paved
Surface
Scraped
Manure*
137.65
61.05
79.81
Liquid
Manure
Slurry"
164.44
51.28
78.20
Anaerobic
Lagoon
Liquid*
34.71
6.06
29.84
Anaerobic
Secondary
Lagoon
Liquid"
28.79
4.47
23.13
Anaerobic
Lagoon
Sludge"
6.57
6.18
1.46
Land-Applied Quantity
After Lossesib
Farrow
20.29
22.12
43.01
Grower
17.23
17.11
43.75
•NCSU, 1994.
'USDA, 1998.
               Table 6-6. Percent of Original Nutrient Content of Manure
                       Retained by Various Management Systems.
Management System
Manure stored in open lot, cool humid region.
Manure liquids and solids stored in an uncovered, essentially
watertight structure.
Manure liquids and solids (diluted less than 50%) held in waste
storage pond.
Manure stored in pits beneath slatted floor.
Manure treated in anaerobic lagoon or stored in waste storage
pond after beins diluted more than 50%.
Nitrogen
55-70
75-85
70-75
70-85
20-30
Phosphorus
65-80
85-95
80-90
90-95
35-50
Potassium
55-70
85-95
80-90
90-95
50-60
Source: Adapted from Jones and Button, 1994.
Metals and Other Elements
Other elements present in manure include the micronutrients calcium, chlorine, magnesium,
sodium, and sulfur; and heavy metals such as arsenic, cadmium, iron, lead, manganese, and
nickel. Many of these elements are found in swine feed; others, such as heavy metals, are found
in pharmaceutical feed additives. Table 6-8 shows the range of quantities of these elements in
manure as excreted, after storage, at different stages of treatment, and when it is land applied.

Swine manure contains many kinds of bacteria, several of which are naturally present in the
digestive systems of the animals. Others are in the pigs' general environment and can be ingested
                                          6-6

-------
but are not a necessary component of digestion. Table 6-9 presents a summary of measured
values of these bacteria in swine manure as excreted, and at various stages of treatment.
            Table 6-7. Nutrient Concentrations for Manure in Pit Storage and
                    Anaerobic Lagoons for Different Types of Swine.
Animal Type
Manure Produced
1000 gal/yr
Nitrogen (N)
Ib N/1000 gal/yr
Phosphorus (P)
Ib P/1000 gal/yr
Potassium (K)
Ib K/1000 gal/yr
Pit Storage
Grower-Finisher
Lactating Sow
Gestating Sow
Nursery
0.53
1.4
0.5
0.13
32.75
15.00
25.00
25.00
11.55
5.25
13.55
8.44
22.41
9.13
22.41
18.26
Anaerobic Lagoon
Grower-Finisher
Lactating Sow
Gestating Sow
Nursery
0.95
2.10
0.90
0.22
5.60
4.10
4.40
5.00
1.639
0.874
1.857
1.398
3.486
1.660
3.320
2.656
Source: Adapted from Jones and Button, 1994.
      Table 6-8. Comparison of the Mean Quantity of Metals and Other Elements in
                 Manure for Different Storage and Treatment Methods.
Element
Aluminum
Arsenic
Boron
Cadmium
Calcium
Chlorine
Cobalt
Copper
Chromium
Iron
Lead
Magnesium
Manganese
Molybdenum
Nickel
Selenium
Sodium
Sulfur
Zinc
c
As Excreted
1.340"
0.252"
1.132b-1.232a
0.01 0"-"
120.45b-121.468a
93.335a-94.9b
0.014a
0.437a-0.438"
•
5.84b-6.606a
0.030a-0.031b
25.55b-27.064"
0.640a-0.694"
O.OIO"'"
0.029"
—
23.980a-24.455b
27.192a-27.74b
1.825b-1.855a
(uantity produced in manure
Paved
Surface
Scraped
Manure"
0.797
—
0.239 :
0.001
117.932
90.615
0.013
0.960
—
16.858
0.019
33.766
4.573
0.001
0.048
—
24.536
24.791
2.414 .
Liquid
Manure
Slurry8
3.289
0.003
0.086
0.002
48.433
27.073
—
0.665
—
4.643
—
16.884
0.790
—
0.016
—
18.148
14.702
2.210
[lb/yr/1000 Ib animal mass)
Anaerobic
Lagoon
Liquid3
0.176
0.004
0.042
0.002
7.547
18.571
0.002
0.073
—
0.486
0.033
2.461
0.055
0.001
0.130
0.000
10.396
2.089
0.191
Anaerobic
Secondary
Lagoon
Liquid3
—
—
0.037
.
6.459
—
—
0.036
—
0.292
—
1.587
0.022
—
—
—
—
1.542
0.036
Anaerobic
Lagoon
Sludge3
—
—
0.004
0.001
6.373
0.378
—
0.082
0.007
0.713
0.007
1.837
0.082
0.003
0.003
—
0.536
1.333
0.212
"NCSU, 1994.
bASAE, 1998.
NA Not available.
                                          6-7

-------
Table 6-9. Comparison of the Mean Concentration of Pathogens in
Manure for Different Storage and Treatment Methods.
Tvoe of Bacteria
Enterococcus bacteria
Escherichia coliform bacteria
Facultative bacteria
Fecal coliform bacteria
Fecal streptococcus bacteria
Streptococcus bacteria 	
Total aerobic bacteria
Total anaerobic bacteria
Total bacteria
Total coliform bacteria 	
Quantity Present in Manure (bacterial colonies per pound ol manure;
Manure As
Excreted
3.128E+09
4.500E+07
—
1.106E+09
2.873E+10
1.980E+08
—
—
—
2.445E+09
Paved
Surface
Scraped
Manure
1.395E+09
5.400E+07
5.400E+1 1
4.800E+08
—
2.205E+10
2.745E+11
5.400E+11
—
1.598E+09
Liquid
Manure
Slurry
3.839E+09
1.302E+08
5.164E+11
1.777E+07
2.276E+07
1.995E+10
1.269E+11
1.092E+11
—
9.551E+07
Anaerobic
Lagoon
Liquid
1.232E+06
—
—
2.502E+06
2.285E+06
—
—
—
3.885E+08
1.083E+07
Anaerobic
Lagoon
Sludge
—
—
—
—

—
—

7.769E+09

Source: NCSU, 1994.
NA Not available.
Pharmaceuticals

To promote growth and to control the spread of disease, antibiotics and other pharmaceutical
agents are often added to feed rations. Many of these chemicals are transformed or broken down
through digestion and their components are excreted in manure. Table 6-10 lists several common
Pharmaceuticals added to swine feed and their frequency of use as reported in Swine '95 Part I:
Reference of 1995 Swine Management Practices (USDA APHIS, 1995).
Table 6-10. Type of Pharmaceutical Agents Administered in Feed, Percent of
Operations that Administer them, and Average Total Days Used.
Antibiotic/Agent in Feed
Chlortetracycline/Sulfathiazole/Penicillin
Chlorotetracycline/Sulfamethazine/Penicillin
Tylosin/Sulfamethazine
Carbadox
Lincomycin 	
Apramycin
Chlortetracycline
Oxytetracycline
Neomycin/Oxytetracycline
Tylosin
Bacitracin fl3MD")
Vireiniamvcin
Zinc oxide
Copper sulfate 	
Other 	
Percent
Operations
6.7
6.4
4.8
12.4
4.3
2.8
41.1
9.6
10.4
30.4
52.1
3.8
5.0
6.1
4.6
Standard
Error
2.1
2.0
2.1
2.5
1.4
1.2
4.0
2.2
3.0
3.7
4.1
1.3
2.1
1.9
2.2
Average Total
Number Days
33.8
23.6
45.6
31.2
60.3
50.9
58.1
39.2
55.3
57.4
72.2
65.1
81.2
62.8
97.6
Standard
Error
5.3
3.6
4.1
2.1
17.6
22.7
4.6
6.6
14.6
5.1
4.0
11.6
22.9
11.3
11.8
Source: USDA APHIS, 1995.

-------
 Physical Characteristics

 Tables 6-11 and 6-12 list several characteristics of swine manure as excreted by pigs, classified
 by different operation types, and with different types of storage and treatment methods.
                  Table 6-11. Physical Characteristics of Swine Manure by
                           Operation Type and Lagoon System.
Characteristic
Manure
Urine
Density (Ib/ft3)
Moisture
(%)
Total solids
Total dissolved
solids
Volatile solids
Fixed solids
C:N ratio
Physical Characteristics in Swine Manure (lb/yr/1000 Ib unless otherwise noted)
Grower-
Finisher
as
Excreted
ll,972a-
33,830"
42.1"-
49.0b
61.8"-
62.8b
90a-91a
3.28a-
6.34a
1.29a
2.92a-
5.40a
0.36"-
0.94"
6a-7a
Farrow
as
Excreted
7,483a-
27,3 13"
—
—
90a-97a
1.9a-6.0a
—
1.00-5.40
0.30a-
0.60a
3a-6a
Farrow
Finish as
Excreted
7,483a-
39,586"
39.0"-
74.0"
61.3-62.8
90a-97a
1.9M1.0"
1.29"
1.00-8.80
0.30a-
1.80"
3a-8a
Liquid
Manure
Slurry"
6,205
—
8.4
—
—
—
...
—
—
Anaerobic
Lagoon
Sludge"
270
—
8.9
92a
7.60%c
—
379.89 c
lb/1000 gal
253.27 c
lb/1000 gal
8a
Anaerobic
Lagoon
Liquid"
7,381
—
8.4
100a
0.25%° .
—
10.00 c
lb/1000 gal
10.83 c
lb/1000 gal
—
Anaerobic
Secondary
Lagoon
Liquid"
7,381
—
8.35
—
—
—
_.
—
2a
"USDA, 1992.
bNCSU, 1994.
•OJSDA, 1996.
C Carbon
          Table 6-12. Physical Characteristics of Different Types of Swine Wastes.
Physical
Characteristic
Manure
Density (Ib/ft3)
Moisture (%)
Total solids
lb/yr/1000 Ib
Paved Surface Scraped
Manure3
21,089
62.4
—
—
Ib/ 1000 gallons
Feedlot Runoff Water"
—
—
98.50
1.50
Settling Basin Sludge"
—
—
88.8
11.2
ANCSU, 1994
bUSDA, 1996
                                           6-9

-------
6.2    Poultry Waste
Poultry wastes differ in composition between the three bird types addressed in this document —
layers, broilers, and turkeys. Each bird type is raised for a specific role and is provided with a diet
tailored to its nutritional needs. Hence, layers are fed diets to maximize egg production, whereas
broilers are fed diets to promote growth and development. Within each subsector, however,
variation in manure composition as excreted is quite small due to the high degree of integration,
use of standardized feed, and total confinement (USEPA, 1999). However, there are differences
in composition and quantity generated between operations due to variations in length and type of
manure storage employed by the operation.

Broilers and turkeys have similar production regimes in terms of manure production, manure
handling, and nutrient recovery. The floor of the house is covered with a bedding material that
absorbs liquid. During the growth of the flock, continuous air flow removes ammonia and other
gasses resulting in lower N content of the litter (manure and bedding). Another result of
continuous air flow is  a reduction in the moisture content of the litter over that of freshly excreted
manure.

Manure produced by the laying industry typically includes no bedding. Two main types of
manure handling are handling as excreted manure (with no bedding), and water-flushed
collection. In high-rise cages or scrape-out/belt systems, manure is excreted onto the floor below
with no bedding to absorb moisture. The ventilation system dries the manure as it is stored.
Nutrients are more concentrated without bedding than with bedding. Flushing layer manure with
water results in diluted nutrient concentrations, but increases the amount of waste that must be
disposed.

As shown hi Table 6-13, manure generation rates differ considerably between layers and broilers.
The maximum reported generation rate for broilers is over 30 percent greater than for layers.
Pullets have the lowest generation rate — almost half the rate of manure production for broilers,
and only 70 percent of the production rate for layers.
                  Table 6-13. Quantity of Manure Excreted for Broilers.
Manure Mass flb/yr/1,000 Ib of animal mass)
Minimum Reported
25,550a
Maximum Reported
31,025"
USDA 1998 Value
29,940C
•MWPS, 1993.
bASAE, 1998.
OJSDA, 1998.
                                          6-10

-------
 6.2.1  Broiler Waste Characteristics

 6.2.1.1 Quantity of Manure Generated
 Manure production is frequently presented as volume or weight of manure produced per 1,000
 pounds of animal mass. There is significant variation between the minimum and maximum
 reported values for manure generation in broilers. Table 6-13 contains the minimum, maximum,
 and 1998 USDA reported values for manure generation rates for broilers. The 1998 USDA
 reported values were used in EPA's analyses.

 6.2.1.2 Description of Waste Constituents and Concentrations
 Broiler waste contains N, P, K, and smaller amounts of other elements and pathogens. This
 section provides a summary of the constituents of broiler manure and litter as reported in the
 literature.

 Table 6-14 shows selected physical and chemical characteristics for broiler manure as excreted,
 and after application of different storage practices. Manure quantity decreases under dry storage
 practices, especially when stored as a manure cake.
 Table 6-14. Consistency of Broiler Manure as Excreted and for Different Storage Methods.
Physical
Characteristic
Manure/Litter
Density
Moisture
Total solids
Volatile solids
Fixed solids
C:N ratio
Physical Characteristics of Manure (lb/yr/1,000 Ib of animal mass unless otherwise
noted)
As Excreted
25,5503-3 1,025"
63.0a-63.7c
75d
7,300d-8,030b
5,475d-8,030a
1,825"
8d
Broiler
Litter15
12,775
— •
24
9,673 '
7,811
1862
9
Broiler
House
Litter'
7,44-9
31.7
—
5,857
4,666
—
—
Broiler
House
Manure
Cakec
2,364
34.3
—
1,429
1,110
—
—
Broiler
Litter
Stockpile0
6,733
33.1
—
4,083
2,903
—
—
Broiler-
Roaster
House
Litter1
5,710
29.0
—
4,349
3,349
—
—
•ASAE, 1998.
bMWPS, 1993.

-------
cake significantly reduces nutrient content, especially N. Table 6-18 shows metals in broiler
manure as excreted and for different storage and treatment methods. Microbial populations are
very active in broiler litter and include enterococcus, fecal coliform, salmonella, and
streptococcus. Table 6-19 shows bacteria levels per pound of manure.
                Table 6-15. Nutrient Quantity in Broiler Manure as Excreted.
Nutrient
Nitrogen
Phosphorus
Potassium
Quantity Present in Manure (lb/yr/1,000 Ib of animal mass)
Minimum Reported
310.25"
71.68a
139.27"
Maximum Reported
401.50b,c
124.10"
167.90"
Time-Averaged Value
401. 65e
116.77°
157.04°
•MW»>S, 1993.
bUSDA, 1992.
'ASAE, 1998.
*NCSU, 1994.
•USDA, 1998.
                 Table 6-16. Broiler Liquid Manure Produced and Nutrient
                        Concentrations for Different Storage Methods.
Storage Method
Raw manure
Pit storage "
Anaerobic lagoon storage b
Manure Produced
(1000 gal/yr)
0.006
0.010
0.016
Nutrient Concentration (Ib nutrient/1000 gal)
Nitrogen
130.4
63.00
8.50
Phosphorus
36.3
17.48
1.88
Potassium
44.3
24.07
2.91
Source; MWPS, 1993 as presented by Jones and Sutton, 1994.
* Includes dilution water.
k Includes rainfall and dilution water.
               Table 6-17. Nutrient Quantity in Broiler Manure Available for
                     Land Application or Utilization for Other Purposes
Nutrient
Nitrogen
Phosphorus
Potassium
Quantity Present in Manure As Excreted and After Losses
(lb/yr/1,000 Ib of animal mass)
As Excreted
410.6
116.8
157.0
After Losses"
241.0
99.0
141.9
 Source: USDA NRCS, 2000.
 " Manure nutrient losses during collection, storage, treatment, and transfer include volatilization of nitrogen, spillage, and
 manure nutrients carried from the confinement facilities by rainfall and runoff. Only waste treatment technologies that are in
 common practice were considered in estimating these losses.
                                              6-12

-------
          Table 6-18. Quantity of Metals and Other Elements Present in Broiler
                 Manure as Excreted and for Different Storage Methods.
Element
Aluminum
Arsenic
Barium
Boron
Cadmium
Calcium
Chlorine
Cobalt
Copper
Chromium
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Selenium
Silicon
Sodium
Strontium
Sulfur
Zinc
Quantity Present in Manure and Litter (lb/yr/1,000 Ib of animal
As Excreted
—
—
—
0.795"
0.017"
136.626a-149.650"
296.537"
	 :
0.331a-Q.358b
—
29.509"
0.033"
50.336"-54.750b
2.378a
—
0.134"
0.111"

—
50.336a-54.750b
—
28.763"-3 1.025"
1.208a-1.314b
Broiler House
Litter"
4.901
0.176
0.148
0.211
0.012
158.424
47.694
0.007
1.984
0.566
4.381
0.151
32.871
2.957
0.001
0.003
0.427
0.002
5.323
48.668
0.339
45.749
2.652
Broiler House
Manure Cake"
—
—
—
0.052
0.002
40.197
—
...
0.481
0.185
1.420
0.054
8.225
0.815
—
0.001
0.217
—
—
12.390
—
10.876
0.713
Broiler Litter
Stockpile"
—
—
—
0.131
0.001
212.888
51.803
—
0.968
0.006
5.991
—
27.596
2.344
—
0.002
0.008
—
—
22.290
._
33.892
2.112
mass)
Broiler-
Roaster House
Litter"
—
—
—
0.133
0.014
117.184
—
—
1.389
0.942
4.553
0.204
24.046
2.170
—
0.002
0.352
—
—
37.143
—
39.229
1.932
"NCSU,-1994.
bASAE, 1998.
              Table 6-19. Concentration of Bacteria in Broiler House Litter.
Parameter
Total bacteria
Total coliform bacteria
Fecal coliform bacteria
Streptococcus bacteria
Salmonella
Total aerobic bacteria
Concentration of Bacteria
(bacteria colonies/lb manure)
4.775E+11
2.285E+06
7.758E+06
6.728E+09
2.048E+06
7.107E+09
              Source: NCSU, 1994.
6.2.2   Layer Waste Characteristics

6.2.2.1 Quantity of Manure Generated

Manure production is frequently presented as volume or weight of manure produced per 1,000
pounds of animal mass. There is less variation between the minimum and maximum reported
                                         6-13

-------
values for manure generation in layers than in broilers. Table 6-20 contains the minimum,
maximum, and 1998 USDA reported values for manure generation rates for layers. The 1998
USDA reported values for manure generation were used in EPA's analyses.
Table 6-20. Quantity of Manure Excreted for Layers.
Manure Mass (lb/yr/1,000 Ib of animal mass)
Minimum Reported
19.163°
Maximum Reported
23,722°
USDA 1998 Value
22,900°
•MWPS, 1993.
*NCSU, 1994.
TJSDA, 1998.

6.2.2.2 Description of Waste Constituents and Concentrations

Layer waste contains N, P, K, and smaller amounts of other elements and pathogens. This section
provides a summary of the constituents of layer manure as reported in the literature. Table 6-21
shows selected physical and chemical characteristics for layer manure as excreted, and after
application of different storage and treatment practices. Manure quantity decreases under dry
storage practices but increases significantly when converted to a slurry, or stored and treated in
an anaerobic lagoon.
                 Table 6-21. Physical Characteristics of Layer Manure as
                      Excreted and for Different Storage Methods.
Physical
Characteristic
Manure
Density (Ib/ft*)
Moisture (%)
Total solids
Total
suspended
solids
Volatile solids
Volatile
suspended
solids
Fixed solids
C:N ratio 	
Physical Characteristics of Manure (lb/;
As Excreted
19,163a-23,722tl
60.0^-65.1"
74.8a-75.0d
5,512d-6,019B
2,477"
3,942"-4,440"
481b-4,380c
1,570"
7"
High-
Rise
Litter"
14126
62.4
—
4979

3483

—
—
Paved
Surface
Scraped
Manure1"
9877
51.3
—
5216

3137
""
—
—
r/1,000 lb of animal mass unless otherwise noted)
Unpaved
Deep Pit
Stored
Manureb
32534
7.8
—
3646
748
2401
637
—
—
Liquid
Manure
Slurry"
53598
8.4
—
265
101
119
52
—
—
Anaerobic
Lagoon
Liquid"
9881
8.4
—
1633

722

—
—
Anaerobic
Lagoon
Sludge"
98805
8.4
—
1633

722
«
—
—
•MWPS, 1993.
'NCSU, 1994.
'ASAE, 1998.
'USDA, 1992.
                                          6-14

-------
Layers excrete numerous nutrients including N, P, and K. As shown in Table 6-22, N is excreted
at the highest rate of these three nutrients. Nutrient concentrations of liquid manure are shown in
Table 6-23. Table 6-24 shows nutrient production after application of storage or treatment
practices. Table 6-25 shows metals in layer manure as excreted, and for different storage and
treatment methods.
              Table 6-22. Quantity of Nutrients in Layer Manure as Excreted.
Nutrient
Nitrogen
Phosphorus
Potassium
Quantity Present in Manure (Ib/yr/1,000 Ib of animal mass)
Minimum Reported
264.63a
99.55s
106.05"
Maximum Reported
315.43"
113.15°
124.10°
Time-Averaged Value
308.35d
114.27"
119.54"
•MWPS, 1993.
*NCSU, 1994.
CUSDA, 1992.
•"USDA, 1998.
                  Table 6-23. Annual Volumes of Liquid Layer Manure
                         Produced and Nutrient Concentrations.
Storage Method
Raw manure
Pit storage a
Anaerobic lagoon storage "
Manure Produced
(lOOOgal/yr)
0.011
0.017
0.027
Nutrient (Ib nutrient/1000 gal )
Nitrogen
110.2
60.00
7.00
Phosphorus
35.4
19.67
1.75
Potassium
37.7
23.24
2.91
Source: MWPS, 1993 as presented by Jones and Button, 1994.
* Includes dilution water.
b Includes rainfall and dilution water.
       Table 6-24. Nutrient Quantity in Layer Litter for Different Storage Methods.
Nutrient
Nitrogen
Phosphorus
Potassium
Quantity Present in Manure and Litter (lb/yr/1,000 Ib of animal mass)
High-Rise
Litter"
199.44
97.60
114.40
Paved
Surface
Scraped
Manureb
165.79
110.21
107.96
Unpaved
Deep Pit
Stored
Manure1"
238.42
94.55
114.40
Liquid
Manure
Slurry"
42.35
4.77
54.75
Anaerobic
Lagoon
Liquid"
24.63
39.87
9.60
Anaerobic
Lagoon
Sludge"
24.63
39.87
9.60
"USDA, 1992.
bNCSU, 1994.
                                           6-15

-------
              Table 6-25. Quantity of Metals and Other Elements Present in
              Layer Manure as Excreted and for Different Storage Methods.
Element
Aluminum
Arsenic
Boron
Cadmium
Calcium
Chlorine
Cobalt
Copper
Chromium
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Selenium
Sodium
Sulfur
Zinc
Quantity Present in Manure and Litter (lb/yr/1,000 Ib of animal mass)
As Excreted
9.987"
0.050"
0.65r-0.657°
0.014a'b
474.500"-^91.89
r
204.400"-242.60
8a
0.029"
0.303b-0.308a
—
21.900b-24.143"
0.270b-0.274a
51.100b-51.129a
1.945a-2.227b
—
0.109a-0.110D
0.091a-b
0.010a
36.500b-^3.292a
51.053a-51.100b
1.640a-6.935b
High-
Rise
Litterc
2.161
—
0.157
0.001
288.59
8
28.394
—
0.244
0.114
2.936
0.135
58.577
2.032
—
0.002
0.351
—
19.646
49.971
2.162
Paved
Surface
Scraped
Manure2
—
—
0.178
—
375.753
—
—
0.285
0.188
14.008
0.656
28.306
2.165
—
0.002
0.418
—
16.268
23.554
1.721
Unpaved
Deep Pit
Stored
Manure'
4.039
—
0.125
—
138.050
27.554
—
0.302
—
7.089
—
16.495
1.579
—
—
—
—
20.082
16.762
1.609
Liquid
Manure
Slurry8
—
0.002
0.059
0.000
6.945
21.777
—
0.030
0.002
0.387
0.005
2.188
0.044
0.000
...
0.075
—
11.755
3.918
0.100
Anaerobic
Lagoon
Liquid9
—
—
0.041
0.007
55.653
— *~
—
0.167
—
5.727
0.023
13.629
1.896
—
—
0.029
—
3.958
8.414
1.346
Anaerobic
Lagoon
Sludge3
—
—
0,041
0.007
55.653

,
0.167
—
5.727
0.023
13.629
1.896
—
—
0.029
—
3.958
8.414
1.346
•NCSU, 1994.
'ASAE, 1998.
TJSDA, 1992.
Microbial populations are quite active in layer litter and include enterococcus, fecal conform,
salmonella., and streptococcus. Table 6-26 shows bacteria levels per pound of manure. As shown
in this table, converting the litter to a slurry substantially reduces the concentration of bacteria.

                  Table 6-26. Concentration of Bacteria in Layer Litter.
Type of Bacteria
Enterococcus bacteria
Fecal coliform bacteria
Fecal streptococcus bacteria
Salmonella
Streptococcus bacteria
Total aerobic bacteria
Total bacteria
Total coliform bacteria
Yeast
Concentration in Manure (bacterial colonies/Ib manure)
As Excreted
2.786E+13
1.552E+13
3.375E+13
1.327E+10
6.237E+13
8.568E+15
9.716E+16
1.835E+14
1.327E+15
Layer Liquid Manure Slurry
—
1.058E+06
—
—
—
—
—
7.547E+06
.
Source: NCSU, 1994.
                                          6-16

-------
 6.2.3  Turkey Waste Characteristics
 Turkey operations usually separate and handle the birds in groups according to age, gender, size,
 or special management needs such as hatcheries or breeder farms. The types of animals are

     •  Poults (young turkeys)
     •  Turkey hens for slaughter
     •  Turkey toms for slaughter
     •  Hens kept for breeding
 Although three major strains of turkeys are grown, the high degree of industry integration,
 standardized feed, and complete confinement has resulted in very little variation in manure
 characteristics. The exact quantity and composition of manure depends mostly on the specifics of
 farm management, such as precision feeding, control of wasted feed, and ammonia volatilization
 losses. Litter characteristics also vary according to material used for bedding.

 6.2.3.1 Quantify of Manure Generated
 Manure production is frequently presented as volume or weight of manure produced per 1,000
 pounds of animal mass. Table 6-27 shows manure production as excreted for turkey hens for
 breeding and turkey hens and toms for slaughter.
  Table 6-27. Annual Fresh Excreted Manure Production (lb/yr/1,000 Ib of animal mass).
Animal Type
Turkeys for slaughter
Hens for breeding
Range of Annual Manure Production Values
15,914M7,155b
USDA 1998 Value
16,360°
18,240C
"USDA, 1992.
bASAE, 1998.
CUSDA, 1998.
6.2.3.2 Description of Waste Constituents and Concentrations

Turkey waste contains N, P, K, and smaller amounts of other elements and pathogens. This
section provides a summary of the constituents of turkey manure and litter as reported in the
literature.

Composition of Manure

Exact manure composition depends on length and type of storage, as well as other management
practices specific to each farm. Table 6-28 shows nutrients in turkey manure as excreted. Turkeys
for slaughter produce more N and K in fresh, excreted manure, and breeding hens produce
more P.
                                          6-17

-------
               Table 6-28. Quantity of Nutrients Present in Fresh, Excreted
                     Turkey Manure Qb/yr/1,000 Ib of animal mass).
Animal Type
Turkeys for slaughter
Hens for breeding
Nitrogen
Range
Includes
Minimum
248.34*
204.38"
Maximum
Reported
270.1b
Phosphorus
Minimum
Reported
84°
Range
Includes
Maximum
96.77a
120.48"
Potassium
Range ,
Includes
Minimum
94.97"
69.3 la
Maximum
Reported
102.20b
 •USDA, 1998.
 bUSDA, 1992.
 
-------
            Table 6-30. Turkey Litter Composition in pounds per ton of litter.
Manure Tvoe
Brooder house litter after each flock b
Grower house litter after annual cleanoutb
Stockpiled litter"
Tomgrowoutc
Hengrowoutc
Brood house"
Growout house d
Nitrogen 1 Phosphorus
45 23
57
36
52
73
51
65
31
30e-31
33
38
14
28C-31
Potassium
27
33
25=-27 '
35
38
27
33e-38
•Zublena, 1993.
bNCSU, 1999.
'Pennsylvania
dArkansas
"NCSU, 1994.
P2O5 converted to P by multiplication of 0.437.
K2O converted to P by multiplication of 0.83.
In those cases where litter is recycled from the brooder bam and used in the growout bam,
nutrient values of litter increase to roughly 60 pounds of available N and P per ton of litter. Table
6-31 presents some metal components of turkey litter.
       Table 6-31. Metal Concentrations in Turkey Litter (pounds per ton of Iitter>
Manure tvve
Turkey,
brooder
Turkey, grower
Ca
28.0
42.0
Ms
5.7
7.0
S
7.6
10.0
Na
5.9
8.4
Fe
1.4
1.3
Mn
0.52
0.65
B
0.047
0.048
Mo
0.00081
0.00092
Zn
0.46
0.64
Cu
0.36
0.51
Source: NCSU, 1998.
The physical characteristics and nutrient content of turkey manure and litter types are variable.
As seen in Table 6-32, manure characteristics differ significantly from litter characteristics.

Fresh manure contains more nutrients than manure cakes, but litter from grower houses may
exceed fresh manure K amounts. Table 6-33 shows metal quantities in excreted turkey manure
and litter types by gender and age of bird.
                                           6-19

-------
                 Table 6-32. Waste Characterization of Turkey Manure
Parameter
Manure
Litter
Volume
(ftVyr/1000 Ib)
Density (Ib/fV)
Total Solids
(%wb)
Volatile Solids
(%db)
TKN
NO, N
P
K
Turkey fresh
manure
15,914c-17,155a

251.85C
63d-63.49a
4,179"-4,380d
3,205"-3,541C
226.3"-231.0a
_
84.0<1-87.8a
83.2a-87.6fl
Turkey
hen house
manure
cake"
1905.3
—
—
32.3
1041.6
845.2
42.74
-
19.38
23.69
Turkey torn
house
manure
cake*
1905.3
—
_
—
1041.6
845.3
42.74
-
19.38
23.69
Turkey
house litter8
—
5960.5
._
—
4365.4
3182.8
165.13
0.40
82.38
98.77
Turkey
poult
(brooder)
house litter"
—
6953.25
—
22.91
5527.96
4297.07
138.12
1.31
65.77
77.64
Turkey
breeder
house litter8
—
4967.65
—
62.43
3893.35
-
87.97

51.17
37.05
Turkey
stockpiled
litter8
—

—
24.1
3316.90
-
85.67
1.31
82.42
67.74
•NCSU, 1994.
'USDA, 1998.
"USDA, 1992.
J ASAE, 1998.
Tahte 6-^3- Metals and Other Elements Present in Manure (lb/yr/1,000
Metals/
Elements
Calcium
Magnesium
Sulfur
Sodium
Chlorine
Iron
Manganese
Boron
Molybdenum
Aluminum
Zinc
Copper
Cadmium
Nickel
Lead
Turkey fresh
manure
223.205"-230.0b
25.649a-26.6b
25.887"
23.1728-24.0b
16.8407"
26.556a-27.4b
0.853"-0.9b
0.452"
0.076"

5 127a-5.5b
0.252"-0.3b
0.009"
0.063"
0.190"
Turkey hen
iiouse manure
cake"
25.003
5.11
5.986
5.256
—
1.168
0.548
0.037
0.001
0.694
0.438
0.475
—
—
—
Turkey torn
house
manure
cake"
25.003
5.11
5.986
5.256
—
1.168
0.5475
0.0365
0.001
0.694
0.438
0.475
—
—
—
Turkey
house litter"
112.165
22.083
25.477
22.703
35.186
4.176
2.3725
0.146
0.004
2.263
1.971
1.789
0.001
0.018
—
Turkey poult
(brooder)
house litter"
91.871
17.849
21.207
162.06
6.278
6.935
1.825
0.146
0.003
5.037
1.606
1.351
0.001
0.007
—
Ib of animal mass).
Turkey
breeder
house litter"
178.376
11.498
18.287
10.622
—
2.519
1.059
0.073
—
—
1.241
0.986
—
—
—
. Turkey
stockpiled
litter"
120.888
19.199
20.039
15.367
21.608
5.585
2.044
0.110
0.003
—
1.716
1.132
0.001
0.007
—
•NCSU, 1994.
bASAE, 1998.
 Data on bacterial concentrations in turkey manure or litter are generally sparse. However, Table
 6-34 shows concentrations of fecal coliform and total bacteria for manure and litter. Land-applied
 quantities of turkey manure nutrients are shown in Table 6-35.
                                           6-20

-------
             Table 6-34. Turkey Manure and Litter Bacterial Concentrations
                         (bacterial colonies per pound of manure).
Bacteria Type
Fecal coliform bacteria
Total bacteria
Excreted Manure
1.31E+08
—
House Litter
—
2.53E+12
Source: NCSU, 1994.
 Table 6-35. Turkey Manure Nutrient Composition After Losses—Land-Applied Quantities.
Animal
Turkeys for slaughter
Hens for breeding
Manure Composition (Ib/yr/1,000 Ib of animal mass)
Nitrogen .
132.35(116.0)
102.14(102.2)
Phosphorus
82.29 (14.5)
102.42(18.1)
Potassium
85.40 (9.6)
62.38 (6.9)
Source: USDA, 1998.
In parentheses are the differences between fresh, excreted manure content and after losses content.
6.2.4  Duck Wastes

The housing floor design and age of the ducks dictate the amount of area required to raise each
bird. Age groups are kept isolated, either in separate buildings or in the same buildings with solid
partitions between them. It is common for the female ducks and male drakes to be reared
together. Breeding ducks are kept in breeder houses similar to turkey pole-barns. The mature
ducks are typically bred at a ratio of one drake to five or six ducks.

6.2.4.1 Quantity of Manure Generated

The amount of manure produced depends on the number of birds, the amount and type of feed,
and the age of the birds. Table 6-36 presents estimates for manure production by ducks. Table 6-
37 presents the breakdown of nutrients available in the manure.

                 Table 6-36. Approximate Manure Production by Ducks.
Animal Type
Duck
Market Weight (Lbs)
7
Feed Eaten/Animal
(Ibs/year)
114
Manure Produced
(Ibs/year/animal)
22.8
Source: Jordan and Graves, 1996.
                     Table 6-37. Breakdown of Nutrients in Manure.
Animal Type
Duck
% Water
61
%N
1.1
%P
1.45
%K
0.5
Source: Florida Agricultural Information Retrieval System, 1998.
                                           6-21

-------
6.2.4.2 Description of Waste Constituents and Concentrations
Generally, ducks raised on small farms are housed in barns or poultry sheds with packed earthen
or concrete floors. Bedding, such as straw or wood shavings, is used to dry the manure. The
manure is removed manually or with power equipment at different intervals depending on the
number of ducks and the season. The manure is then stored temporarily on a concrete pad or in a
shed and then land applied. Some operations compost the manure.

Duck wastes in large operations are normally handled as a solid. Older barns or structures with
solid floors accumulate a manure-litter mix that is removed between flocks with skid steers or
front-end loaders. The solid manure is transported to a storage structure or directly applied to
land.

6.3     Dairy Waste
This section describes the characteristics of dairy manure and waste. In this section, manure
refers to the combination of feces and urine. Waste refers to manure plus other material, such as
hair, bedding, soil, wasted feed, and water that is wasted or used for sanitary and flushing
purposes. Due to the nature of dairy operations, however, even fresh manure may also contain
small amounts of hair, bedding, soil, feed, and water.


6.3.1   Quantity of Manure Generated
Numerous analyses have estimated average manure  quantities from dairy cattle. Four major data
sources that contain mean values for dairy manure characteristics  are identified below:

    •  ASAE Standard D3 84.1: Manure Production and Characteristics,  1999. This data  source
       contains national fresh (as-excreted) manure characteristic values by animal type (e.g.,
       dairy, beef, veal, swine).
    •  USDA, Agricultural Waste Management Field Handbook (A WMFH), Chapter 4, 1996.
       This data source contains national manure characteristic values for fresh and managed
       manure (e.g., lagoon supernatant, feedlpt runoff) by animal type including subtypes such
       as lactating and dry cows.
    •  NCSU, Livestock Manure Production and Characterization in North Carolina, 1994.
       This data source contains regional manure characteristic values for fresh and managed
       manure by animal type including subtypes.
    •  MWPS,  Livestock Waste Facilities Handbook, 1985. This data source contains national
       fresh manure characteristic values by animal type and animal weight.
An analysis conducted by Charles Lander et al. of the USDA NRCS used a composite of three of
these four data sources (Lander et al., 1998). Lander removed ASAE data before averaging to
prevent double counting of the ASAE information that is included in the MWPS data. This
                                          6-22

-------
 analysis assumed that the average weight of a lactating cow is 1,350 pounds. EPA used data from
 the Lander analyses in estimating compliance cost for beef feedlots and dairies to be consistent
 with other USD A data used in the costing analyses. Table 6-38 presents the fresh manure
 estimates from all of these data sources for mature lactating dairy cows and calves.
                       Table 6-38. Weight of Fresh Dairy Manure.
Data Source
ASAE Standard '
USDA Agricultural Waste Management Field
Handbook
NCSU, Livestock Manure Production and '•
Characterization in North Carolina
MWPS Livestock Waste Facilities Handbook
USDA Lander analysis
Quantity of Manure (wet basis)
(Ib/day/l,000-lb animal)
Lactating Cow
86
80
87.3
86
83.5
Calf
ND
ND
65.8
ND
ND
 ND No data.
6.3.2  Waste Constituents and Concentrations
The composition and concentration of dairy waste varies from the time that it is excreted to the
time it is ultimately used as a fertilizer or soil amendment. Nutrients and metals are expected to
be present in dairy waste due to the constituents of the feed.

6.3.2.1 Composition of Fresh Manure
Manure characteristics for dairy cattle are highly variable and can be affected by the following:
animal size, breed, and age; management choices; feed ration; climate; and milk production. For
example, dairy feeding systems and equipment often produce considerable feed waste, which in
most cases is added to the manure. In addition, dairy stall floors are often covered with organic
and inorganic bedding materials (e.g., hay, straw, wood shavings, sawdust, soil, sand, ground
limestone, dried manure) that improve animal  comfort and cleanliness. Virtually all of this
material will eventually be pushed, kicked, and carried from the stalls and added to the manure,
and their characteristics imparted into the manure (Lander et al., 1998). In addition, the nutrient
content (N, P, and K) of dairy manure can vary significantly due to differences in voluntary feed
intake, differing supplemental levels, and differing amounts of nutrients removed during milking
(USDA, 1992). Table 6-39 presents averages for fresh mature dairy cow and heifer manure
characteristics that are reported in the four major data sources identified in Section 6.3.1. Data
are presented for 16 nutrients and metals found in fresh dairy manure. Nitrogen is present in
manure in four forms: ammonium-N, nitrate-N, nitrite-N, and organic-N. The total N is the sum
of these four components, while the TKN is the sum of the organic-N and ammonium-N.
                                         6-23

-------
Phosphorus is present in manure in inorganic and organic form and presented as total P. Colonies
of the pathogens coliform and streptococcus bacteria have also been identified in dairy manure.
                     Table 6-39. Fresh Dairy Manure Characteristics
Parameter
Moisture (%)
Total solids (Ib)
Volatile solids (Ib)
Biochemical oxygen demand (BOD),
5-day Ob)
Chemical oxygen demand (COD) (Ib)
pH
TKN(lb)
Ammonium-N (Ib)
Total P (Ib)
Orthophosphorus (Ib)
K(lb)
Calcium (Ib)
Magnesium (Ib)
Sulfur Ob)
Sodium (Ib)
Chloride (Ib)
Iron (Ib)
Manganese Ob)
Boron Ob)
Molybdenum (Ib)
Zinc(lb)
Copper (Ib)
Cadmium (Ib)
Nickel (Ib)
Total coliform bacteria (colonies)
Fecal coliform bacteria (colonies)
Fecal streptococcus bacteria
(colonies)
Mean (mature dairy cow/dry cow)
ASAE
87.2
12
10
1.6
11
7
0.45
0.079
0.094
0.061
0.29
0.16
0.071
0.051
0.052
0.13
0.012
0.0019
0.00071
0.000074
0.0018
0.00045
0
0.0003
500
7.2
42
USDA
87.5/88.4
109.5
8.5/8.1
1.6/1.2
8.9/8.5
ND
0.45/0.36
ND
0.07/0.05
ND
0.26/0.23
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NCSU
ND
12.15/9.5
10/6.64
1.82/0.98
11.17/6.97
7
0.45/0.34
0.84/0.14
0.22/0.13
0.14/ND
0.36/0.2
0.17/0.12
0.075/ 0.05
0.052
0.064
0.13
0.012
0.0019
0.00073
0.000075
0.0019
0.00047
0
. 0.00028
1.09E11
(colonies/1 OOgm)
7.45E10
(colonies/1 OOgm)
4.77E11
(colonies/1 OOgm)
MWPS
87.3
12
10
1.6
ND
ND
0.43
ND
0.17
ND
0.34
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
Sources: ASAE, 1999; USDA, 1996; NCSU, 1994; MWPS, 1985
ND No data.
                                            6-24

-------
 Lander et al. averaged values from the MWPS, USDA, and NCSU datasets for N, P, and K. In all
 cases, EPA compared the averaged values to ASAE's data and determined them to be
 comparable to the lactating cow numbers. As stated earlier in this section, the milking status of
 dairy cattle can affect the excreted levels of N, P, and K. Lactating cows are expected to have a
 higher nutrient content in their manure because they typically are fed a higher energy diet.
 Table 6-40 presents the nutrient values in dairy manure from Lander's analysis that were used in
 the estimation of compliance costs for beef feedlots and dairies.
               Table 6-40. Average Nutrient Valiaes in Fresh Dairy Manure.
Parameter
TKN
Total P
K
Dairy Cow (lb/day/l,000-Ib animal) "
0.45
0.08
0.28
 Source: Lander et al., 1998.
 Lander's analysis relied on 1990 NCSU data, while the NtSU data presented in this report is from 1994.
The volatile solids content of dairy manure varies depending on the age and lactation of the cow.
The volatile solids content of manure for mature dairy cattle can be calculated by using data for
lactating and dry cows and is presented in USDA's AWMFH. EPA's analysis assumes.the dairy
herd is made up of 83 percent lactating and 17 percent dry cows at any given time. Therefore, the
volatile solids content for mature dairy cows, using USDA data, was calculated as

      (8.5 lb/day/l,000.animal x 83 percent) + (8.1 lb/day/1,000 animal x 17 percent) = 8.45
                                    lb/day/1,000 animal

EPA used volatile solids data from USDA's AWMFH in the nonwater quality impact analyses to
estimate emissions of methane.


6.3.2.2 Composition of Stored or Managed Waste
Dairy manure is often combined with large: amounts of water and collected and stored in a
number of different ways (see Section 4.3.5 for a detailed discussion of dairy waste
management). This wastewater, therefore, has different physical properties than fresh manure.
This section presents dairy waste values for waste from milking centers, and waste managed in
lagoons.


Milking Centers
Approximately 15 percent of the manure generated at a dairy is produced in the milking center,
which includes the milk room, milking parlor, and holding area. Milking centers that do not
practice waste flushing use about 1 to 3 gallons of fresh water per day for each cow milked.
                                          6-25

-------
However, dairies that use flush cleaning and automatic cow washing use as much as 30 to 50 or
more gallons pre day per cow (MWPS, 1985).

Waste associated with milking centers varies among the different rooms. Milk room waste
typically consists of wash water associated with cleaning pipelines and holding tanks. This waste
could be disposed of via septic tank systems, but many dairies include it in their manure waste
management systems. Milk parlor waste typically consists of some manure and wash water from
cleaning the milking equipment. Holding area waste generally contains more manure than the
milk parlor and also contains wash water from cleaning the cows, and flush water from cleaning
the area. Many dairies remove solids from milking center waste prior to storing the liquid v/aste
in a lagoon. EPA used USDA data on milking center waste characteristics in the estimation, of
compliance costs for beef feedlots and dairies and NWQI analyses to calculate N loss during
composting. Table 6-41 presents USDA data characterizing dairy waste from milking centers.
Table tf-41 . nairy Waste Characterization — Milking Centers.
Component
Volume
Moisture
Total Solids
Volatile Solids
Fixed Solids
COD
BOD
N
P
K
C:N ratio
Units
frVd/l,000#
%
% wet basis
lb/1,000 gal
lb/l,000gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
unitless
Milking Center
Milk Room
0.22
99.72
0.28
12.9
10.6
25.3
ND
0.72
0.58
1.5
10
Milk Room +
Milk Parlor
0.6
99.4
0.6
35
15
41.7
' 8.37
1.67
« 0.83
2.5
12
Milk Room +
Milk Parlor +
Holding Area8
1.4
99.7
0.3
18.3
6.7
ND
ND
1
0.23
0.57
10
Milk Room +
Milk Parlor +
Holding Areab
1.6
98.5
1.5
99.96
24.99
ND
ND
7.5
0.83
3.33
7
Source: USDA/NRCS, 1992.
• Holding area scraped and flushed - manure removed via solids separator.
b Holding area scraped and flushed - manure included.
ND No data.
 Lagoons
 Lagoons that receive a significant loading of waste (e.g., from the holding area, freestall barn,
 and dry lots) generally operate in an anaerobic mode. Anaerobic dairy lagoon sludge accumulates
 at a rate of about 0.073 fWlb of total solids. This is equivalent to about 266 ftVyear per 1,000-lbs
 of lactating cow, assuming that 100 percent of the waste is placed in the lagoon (USDA, 1992).
                                           6-26

-------
Typically, storage or treatment reduces N in dairy manure by 30 to 75 percent through
volatilization with only minor decreases in K and P. Although the values of K and P are low in
the supernatant, which is removed on a regular basis, a disproportionate amount of the P and K is
concentrated in the bottom sludge in lagoons and storage areas (Lander, 1999). EPA used USDA
data on anaerobic lagoon waste characteristics in the estimation of compliance costs for beef
feedlots and dairies and NWQI analyses, fable 6-42 presents USDA and NCSU data on dairy
waste managed in lagoons.
Table 6-42. Dairy Waste Characterization — Lagoons.
Component
Moisture
Total Solids
Volatile Solids
Fixed Solids
COD
BOD
N
NH4-N
P
K
C:N ratio
Copper
Zinc
Units
%
% wet basis
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
unitless
lb/1,000 gal
lb/1,000 gal
Lagoon (USDA data/NCSU data)
Anaerobic -
Supernatant
99.75/ND
0.25/0.87
9.16/52.4% dry basis
11.66/ND
12.5/36.69
2.92/7.8
1.67/4.86
1.0/ND
0.48/2.76
4.17/6.5
3/ND
ND/0.009
ND/0.051
Anaerobic -
Sludge
90/ND
10/7.2
383. 18/56.7% dry basis
449.82/ND
433.16/260.6
ND
20.83/19.16
4.17/ND
9.16/41.8
12.5/9.2
10/ND
ND/0.46
ND/0.74
Aerobic -
Supernatant
99.95/ND
0.05/ND
1.67/ND
2.5/ND
1.25/ND
0.29/ND
0.17/ND
0.1/ND
0.08/ND
ND
ND
ND
ND
Sources: USDA NRCS 1992; NCSU, 1994.
ND No data.
6.3.2.3 Composition of Aged Manure/Waste
Dairy manure characteristics after excretion vary from operation to operation, and within the
same operation during the year. Manure undergoes many changes after excretion including
moisture change (dilution or consolidation), volatilization, oxidation, and reduction. These
changes always affect the fresh manure characteristics. For example, it is estimated that as much
as 50 to 60 percent of N in the urine portion of the manure can be lost during the first hours after
excretion if some measure is not taken to preserve it (Lander, 1999). Phosphorus and potassium
losses during storage are considered negligible except in open lots or lagoons. In open lots, about
20 to 40 percent of P and 30 to 50 percent of K can be lost by runoff and leaching. Up to 80
percent of the P in lagoons can accumulate in bottom sludges (USDA, 1998).
                                          6-27

-------
Characteristics of stored manure are either altered over time or conserved (mass). Nitrogen, for
example, volatilizes as ammonia and is lost from the system. On the other hand, most of the
compounds in manure (e.g., P, metals) remain in the manure over time and are considered to be
conserved. Treating the manure often reduces the concentration of nonconservated elements,
such as N and the organic compounds, thus reducing oxygen demands in further treatment
(Lander, 1999).

Table 6-43 presents NCSU data on scraped dairy manure from a paved surface. NCSU data are
used by EPA in the beef and dairy NWQI analyses.
  Table 6-43. Dairy Manure Characteristics Per 1,000 Pounds Live Weight Per Day From
                                Scraped Paved Surface.
Parameter
Total solids
Volatile solids
TKN
Ammonium-N
Total P
K
Unit
Ib
Ib
Ib
Ib
Ib
Ib
Value
13.7
11.5
0.32
0.077
0.097
0.22
6.4  Beef and Heifer Waste
This section describes the characteristics of beef and heifer manure and waste, hi this section,
manure refers to the combination of feces and urine, and waste refers to manure plus other
material such as hair, soil, and spilled feed. Due to the nature of beef feedlots and heifer
operations, however, even fresh manure may also contain small amounts of hair, soil, and feed.


6.4.1 Quantity of Manure Generated
Numerous analyses have estimated average manure quantities from beef cattle. Four major data
sources that contain mean values for beef manure characteristics are identified below:

    •  American Society of Agricultural Engineers (AS AE) Standard D3 84.1: Manure
       Production and Characteristics, 1999. This data source contains national fresh (as-
       excreted) manure characteristic values by animal type (e.g., dairy, beef, veal, swine).
    •  USDA, Agricultural Waste Management Field Handbook, Chapter 4, 1996. This data
       source contains national manure characteristic values for fresh and managed manure (e.g.,
       lagoon supernatant, feedlot runoff) by animal type including subtypes such as beef and
       heifer.
                                         6-28

-------
       North Carolina State University (NCSU), Livestock Manure Production and
       Characterization in North Carolina, 1994. This data source contains regional manure
       characteristic values for fresh and managed manure by animal type including subtypes.

       Midwest Plan Service-18 (MWPS): Livestock Waste Facilities Handbook, 1985. This
       data source contains national fresh manure characteristic values by animal type and
       animal weight.An analysis conducted by Charles Lander et al. of the USDA NRCS used a
       composite of three of these data sources (Lander et al., 1998). Lander removed ASAE
       data before averaging to prevent double counting of the ASAE information that is
       included in the MWPS data. Table 6-44 presents the fresh manure estimates from these
       five data sources for beef and heifer cattle.

                     Table 6-44. Weight of Beef and Heifer Manure.
Data Source
/ ;
ASAE Standard
USDAAWMFH
NCSU Livestock Manure Production and
Characterization in North Carolina
MWPS Livestock Waste Facilities Handbook
USDA Lander analysis
Quantity of Manure (wet basis) (lb/day/l,000-lb animal)
Steer, Bulls, and Calves
58
55
59
60
58
Beef Cows
ND
63
ND
63
63
Heifer
ND
82
68.4
ND
66
ND No data.

6.4.2 Waste Constituents and Concentrations
The composition and concentrations of beef and heifer waste varies from the time that it is
excreted to the time it is ultimately used as a fertilizer or soil amendment. Nutrients and metals
are expected to be present in beef and heifer waste due to the constituents of the feed.


6.4.2.1 Composition of "As-Excreted" Manure
Manure characteristics for beef and heifer cattle are highly variable and greatly influenced by the
diet and age of the animals. Differences in weather, season, degree of confinement, waste
collection systems, and overall management procedures used by feedlots across the nation add to
the variability of manure characteristics in feedlots. The largest variable in fresh manure is
moisture content, which significantly decreases over time. Another major variable is the ash
content, which depends on the amount of soil entrained in the manure. Ash content also depends
on the degree to which the manure has been degraded, which is a function of time since
deposition, moisture conditions, temperature, and oxygen saturation (Sweeten et al.,  1997).  Ash
content for fresh manure  has been reported as 15.3 percent dry basis (Sweeten et al.,  1995),  while
ash content for aged feedyard waste has been reported as high as 66 percent dry basis (TABS,
1996).                                 ;
                                         6-29

-------
The N content of manure can begin to decrease rapidly after excretion. The urea-N part of the
fecal protein rapidly converts to ammonia. Some measurements of ammonia concentrations in air
around feedyards have indicated that about half of the N "deposited in urine, or about one-fourth
of the total N deposition of the feedlot surface, is lost to the atmosphere as ammonia gas (NH3).
The rate of ammonia emissions depends on temperature, pH, humidity, and moisture conditions,
and has been found to nearly triple as manure dries after rainfall (Sweeten et al., 1997).

Table 6-45 presents data for 13 metals and nutrients found in fresh beef cattle manure, and:  Table
6-46 presents data on the constituents found in fresh heifer cattle manure, nitrogen is present in
manure in four forms: ammonium-N, nitrate-N, nitrite-N, and organic-N. The total N is the sum
of these four components, while the TKN is the sum of the organic-N and ammonium-N,
phosphorus is present in manure in inorganic and organic forms and is presented as total P.
Colonies of the pathogens coliform and streptococcus bacteria have also been identified in  beef
and heifer manure.

                     Table 6-45. Fresh Beef Manure Characteristics
                          Per 1,000 Lbs. Live Weight Per Day.
Parameter
Moisture (%)
Total solids (Ib)
Volatile solids Ob)
BOD (5-day) (Ib)
COD (Ib)
PH (Ib)
TKN (Ib)
Ammonium-N Ob)
Total P (Ib)
Orthophosphorus (Ib)
K(lb)
Calcium (Ib)
Magnesium (Ib)
Sulfur Ob)
Sodium (Ib)
Iron (Ib)
Manganese Ob)
Boron (Ib)
Molybdenum (Ib)
Zinc Ob)
Copper (Ib)
Total coliform bacteria (colonies)
Fecal coliform bacteria (colonies)
Fecal streptococcus bacteria (colonies)
Mean (Beef)
ASAE
88.4
8.5
7.2
1.6
7.8
7.0
0.34
0.086
0.092
0.030
0.21
0.41
0.049
0.045
0.0030
0.0078
0.0012
0.00088
0.000042
0.0011
0.00031
29
13
14
USDA
88.4
6.34
5.74
1.36
5.86
ND
0.30
ND
0.10
ND
0.22
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
NCSU
ND
8.9
7.3
1.7
7.9
7.0
0.36
0.12
0.22
0.07
0.26
0.13
0.05
0.046
0.032
0.0087
0.0012
0.00095
0.000044
0.0010
0.00033
3E11 (colonies/1 OOgm)
1.3E11 (colonies/1 OOgm)
1.49E11 (colonies/1 OOgm)
MWPS
88.4
8.5
7.2
1.6
ND
ND
0.34
ND
0.25
ND
0.30
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
Sources: ASAE, 1999; USDA, 1996; NCSU, 1994; MWPS, 1985
ND No data.
                                          6-30

-------
                     Table 6-46. Fresh Heifer Manure Characteristics
                           Per 1,000 Lbs. Live Weight Per Day.
Parameter
Moisture (%)
Total solids (Ib)
Volatile solids (Ib)
BOD, 5-day (Ib)
COD (Ib)
TKN(lb)
Ammoniurn-N (Ib)
Total P (Ib)
Orthophosphorus (Ib)
K(lb)
Calcium (Ib)
Magnesium (Ib)
Mean (Heifer)
USDA
89.3
9.14
7.77
1.3
8.3
0.31
ND
0.04
ND
0.24
ND
ND
NCSU
ND
7.35
5.34
0.89
5.67
0.23
ND
0.38
ND
0.2
ND
ND
Sources: USDA, 1996; NCSU, 1994.
ND No data.
EPA used beef waste characteristic data from USDA in the NWQI analyses. Lander et al.
averaged values from the MWPS, USDA, and NCSU datasets for N, P, and K. EPA used Lander
data in the estimation of compliance costs for beef feedlots and dairies. Table 6-47 presents
Lander's averaged values for beef manure. EPA used USDA data in the estimation of compliance
costs for heifer operations.               :

        Table 6-47. Average Nutrient Values in Fresh (As-Excreted) Beef Manure
Parameter
TKN
Ammonia
Total P
K
Beef (lb/day/l,000-lb animal)3
0.32
ND
0.098
0.23
Source: Lander et al., 1998.
' Lander's analysis relied upon 1990 NCSU data, while the NCSU data presented in this report is from 1994.
ND No Data.
6.4.2.2 Composition of Beef and Heifer Feedlot Waste
 The characteristics of beef and heifer feedlot wastes vary widely because of differences in
climate, rainfall, diet, feedlot surface, animal density, and cleaning frequency. Wasted feed and
soil in unpaved feedlots is readily mixed with the manure because of animal movement and
                                           6-31

-------
cleaning operations (Arlington et al., 1981). Therefore, due to the incorporation of more solids
and exposure to the elements, the moisture content of beef feedlot waste is significantly lower
than for fresh beef manure.

Table 6-48 presents characteristics of beef waste collected from unpaved and paved feedlots
(USDA, 1992). Most feedlots are unpaved. However, for paved lots, concrete is the most
common paving material, although other materials (e.g., fly ash) have been used (Suszkiw,
1999). EPA used this USDA data in the NWQI analyses to calculate N losses during composting.
Table 6-49 presents NCSU data on scraped beef manure from an unpaved surface.

                Table 6-48. Beef Waste Characterization—Feedlot Waste.
Component
Weight
Moisture
Total Solids
Total Solids
Volatile Solids
Fixed Solids
N
P
K
C:N ratio
Units
Ib/d/lOOOlb
%
% wet basis
Ib/d/lOOOlb !
Ib/d/lOOOlb
Ib/d/lOOOlb
Ib/d/lOOOlb
Ib/d/lOOOlb
Ib/d/lOOOlb
unitless
Unpaved Lot"
17.5
45
55
9.6
4.8
4.8
0.21
0.14
0.03
13
Paved Lot"
High-Forage Diet
11.7
53.3
46.7
5.5
3.85
1.65
ND
ND
ND
ND
High-Energy Diet
5.3
52.1
47.9
2.5
1.75
0.76
ND
ND
ND
ND
Source: USDANRCS, 1992.
• Dry climate (annual rainfall less than 15 inches); annual manure removal.
b Dry climate; semiannual manure removal.
ND No data.
    Table 6-49. Beef Manure Characteristics Per 1,000 Lbs. Live Weight Per Day From
                                Scraped Unpaved Surface.
Parameter
Total solids
Volatile solids
TKN
Arnmonium-N
Total P
K
Unit
Ib
Ib
Ib
Ib
Ib
Ib
Value
9.4
5.3
0.20
0.38
0.062
0.14
Source: NCSU, 1994.
                                           6-32

-------
 Sweeten, et al., compiled and compared feedlot waste data representing "as-collected" waste,
 composted waste, and stockpiled waste from one area of the country (Sweeten et al., 1997). The
 Sweeten report was used in the estimation of compliance costs for beef feedlots and dairies and
 the NWQI report for calculations using the moisture content of manure. The agency also used the
 report's levels of annual costs, volatile solids, and N content of composting to determine
 emissions for the nonwater quality impact analysis.
 6.4.2.3 Composition of Aged Manure
 Beef cattle feedlots typically scrape and remove the manure that is deposited on the ground about
 every 120 to 365 days, as opposed to dairies that scrape or remove manure as often as every day.
 During this "aging" process, nutrients are lost due to ammonia volatilization, runoff, and
 leaching. Mathers et al. determined average nutrient concentrations in aged manure ready for
 land application from 23 beef cattle feedlots in the Texas High Plains (Mathers et al., 1972).
 Since EPA has not identified national data on aged manure characteristics, these local data are
 presented in Table 6-50 to demonstrate the significant difference in characteristics of fresh and
 aged manure.

 These data show that the aged beef manure N concentration is 40.3 percent of the fresh manure
 concentration, while P and K in aged manure are 50.9 percent and 64.5 percent, respectively, of
 their concentrations in fresh manure. N losses as high as 50 percent have been reported in aged
 beef manure due to temperature, moisture, pH, and C:N ratio. Phosphorus and K losses are
 primarily due to runoff but may also occur because of leaching.

        Table 6-50. Percentage of Nutrients in Fresh and Aged Beef Cattle Manure.
Parameter
Moisture
N
P
K
Unit
%
% dry basis
% dry basis
% dry basis
Fresh Manure
88
5.08
1.59
3.55
Aged Manure
34
2.05
0.81
2.29
Source: Mathers et al. 1972.
6.4.2.4 Composition of Runoff from Beef and Heifer Feedlots
As with feedlot wastes, constituent characteristics of beef and heifer feedlot runoff also vary
across the country. The factors that are responsible for runoff waste variations are similar to those
for feedlot wastes (i.e., climate, rainfall, diet, feedlot surface, animal density, and cleaning
frequency). Paved feedlots produce more runoff than unpaved lots, and areas of high rainfall and
low evaporation produce more runoff than'arid areas.

Numerous analyses characterizing the runoff from beef feedlots have been conducted on a local
level. However, manure characteristics data collected at a local level may not be representative of
                                          6-33

-------
the beef industry as a whole. Since the constituent concentration of feedlot runoff varies among
different areas of the country, this report presents only nationally available manure characteristics
and regional estimates of feedlot runoff characteristics.

The USDA A WMFH characterizes both the supernatant and sludge from beef feedlot runoff
lagoons. EPA used these data in the estimation of compliance costs for beef feedlots and dairies,
and NWQI analyses. Table 6-51 presents these waste characteristics.
Table 6-51. Beef Waste Characterization — Feedlot Runoff Lagoon.
Component
Moisture
Total Solids
Volatile Solids
Fixed Solids
COD
N
NBU-N
P
K
Copper
Zinc
Units
%
% wet basis
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
lb/1,000 gal
Ib/lb
Ib/lb
Runoff Lagoon
Supernatant
99.7
0.3
7.5
17.5
11.67
1.67
1.5
ND
7.5
ND
ND
Sludge
82.8
17.2
644.83
788.12
644.83
51.66
ND
17.5
14.17
1.94 xlO"4
9.29 xlO"4
Source: USDA NRCS, 1992; NCSU, 1994.
ND No data.
6.5  Veal Waste
This section describes the characteristics of veal manure and waste. In this section, manure refers
to the combination of feces and urine, and waste refers to manure plus other material such as
haur, soil, and spilled feed. Due to the nature of veal operations, however, even fresh manure may
also contain small amounts of hair and feed.

This section discusses the following:

    •  Section 6.5.1: Quantity of manure generated; and
    •  Section 6.5.2: Waste constituents and concentrations.
                                          6-34

-------
6.5.1 Quantity of Manure Generated
National data on veal waste characteristics are available from the following three data sources:

     •  ASAE Standard D384.1: Manure Production and Characteristics, 1999. This data source
       contains national fresh manure characteristic values by animal type (e.g., dairy, beef, veal,
       swine).
     •  USD A, AWMFH, Chapter 4, 1996. This data source contains national manure
       characteristic values for fresh and managed manure (e.g., lagoon supernatant, feedlot
       runoff) by animal type including subtypes such as veal.
     •  NCSU, Livestock Manure Production and Characterization in North Carolina, 1994.
       This data source contains regional manure characteristic values for fresh and managed
       manure by animal type including subtypes.
Table 6-52 presents the average fresh manure characteristics for veal from these three data
sources. EPA used USDA data in the estimation of compliance costs for veal operations.

                   Table 6-52. Average Weight of Fresh Veal Manure.
Data Source
ASAE Standard
USDAAWMFA
NCSU, Livestock Manure Production and Characterization in
North Carolina
Quantity of Manure (wet basis)
(lb/day/1,000 Ib animal)
62
60
61.76
6.5.2 Waste Constituents and Concentrations

The composition and concentrations of veal waste vary from the time that it is excreted to the
time it is ultimately used as a fertilizer or soil amendment. Nutrients and metals are expected to
be present in veal waste due to the constituents of the feed. This section discusses the
composition of fresh manure.

Table 6-53 presents data for nine metals and nutrients found in fresh veal manure. Veal manure is
very fluid, with the consistency of a sloppy mortar mix, and is often diluted by large volumes of
wash water (Meyer, 1987). The moisture content of fresh veal manure is approximately 98
percent (USDA, 1992).

Veal manure is typically stored in tanks, basins, and pits until it is pumped out onto the land as
fertilizer. However, most of the fertilizer value of veal manure remains in the solids in a settling
tank (Meyer, 1987). Over time, the  most significant compositional change in veal manure, stored
in pits, is the conversion of organic-N in fresh manure to ammonium-N and loss of total N to the
                                         6-35

-------
atmosphere in the form of ammonia. Much of the high ammonia loss is due to microbial
degradation of the organic matter including total N components (Sutton et al., 1989). EPA used
USDA data in the estimating compliance costs and NWQI analyses for veal operations.
Table 6-53. Fresh Veal Manure Characteristics Per 1,000 Lbs. Live Weight Per Day.
Parameter
Moisture
Weight
Total solids
Volatile solids
BOD (5-day)
COD
PH
TKN
Ammonium-N
Total P
K
Calcium
Magnesium
Sodium
Iron
Zinc
Copper
Unit
%
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Ib
Mean (Veal)
ASAE
97.5
62
5.2
2.3
1.7
,5.3
8.1
0.27
0.12
0.066
0.28
0.059
0.033
0.086
0.00033
0.013
0.000048
USDA
97.5
60
1.5
0.85
0.37
1.5 •
ND
0.20
ND
0.03
0.25
ND
ND
ND
ND
ND
ND
NCSU
ND
61.8
4.0
2.1
0.83
1.5
7.7
0.24
0.11
0.053
0.27
0.059
0.33
0.16
0.00033
0.013
0.000048
Source: ASAE, 1999; USDA, 1996; NCSD,
ND No date.
                           1994.
6.6  Horse Waste
 The horse industry raises animals for diverse uses, including pleasure, showing, breeding,
racing, farm/ranch, and other minor uses. Because the horse industry is so diverse and much of
the population is off farm, statistics on horse production are less available than other livestock.


6.6.1 Quantity of Manure Generated
An average 1,000-pound horse generates approximately 9 tons of manure a year (51 pounds per
day). The volume of this solid excrement ranges from 0.75  to 1.0 cubic foot per day. Urine
production ranges from 2.25 to 8 gallons per day depending upon diet, activity, and
environmental conditions (Wheeler and Cirelli, 1995). Depending on practices, substantial
amounts of bedding are added to the wastes.
                                          6-36

-------
6.6.2 Horse Waste Characteristics
The characteristics of horse waste will vary by the type of diet fed to the animal, which can range
from low-nutrient crops such as Bermuda grass to N-rich forages such as clover, in addition to
supplemental feeding. Since horses, unlike ruminants, are limited in their ability to use forages of
low nutritive value, feeding regimes require a greater level of management, especially for horses
raised primarily in pastures.


6.7    References
Arlington, R.M., and C.E. Pachek. 1981. Soil Nutrient Content in Manures in an Arid Climate.
       In Livestock Waste: A Renewable Resource, Proceedings of the Fourth International
       Symposium on Livestock Waste, 1980, pp. 15-152. American Society of Agricultural
       Engineers, St. Joseph, Michigan.

ASAE. 1998. ASAE Standards 1998, 45th ed. American Society of Agricultural Engineers, St.
       Joseph, Michigan.

ASAE. 1999. Manure Production and Characteristics. American Society of Agricultural
       Engineers, St. Joseph, Michagan.

Barney, S., P. Davis, N.R. Deuel, F.E. Oilman, J. Hodson, B.A. Marriott, J.D. Minnick, T.F.
       Mitchell, J.R. Mitchell, E. Poole, and E.S. Taylor; 1990. Good Neighbor Guide for
       Horse-Keeping: Manure Management. New Hampshire Department of Environmental
       Services, University of New Hampshire Cooperative Extension, New Hampshire
       Department of Agriculture, U.S. Department of Agriculture, Soil Conservation Service.

Blume and McCleve. 1997. Disposal of Swine Wastewater Using Spray Nozzle. ASAE Paper
       No. 974072. Presented at the ASAE Annual International Meeting, American Society of
       Agricultural Engineers, Minneapolis, Minnesota, August 10-14, 1997.

Boland et. al. 1997. Analysis of Manure  Management Systems and Phytase Adoption by Pork
       Producers. Livestock Environment 5, Volume 2. In Proceedings of the Fifth International
      .Symposium, Bloomington, Minnesota, May 29-31, 1997, pp. 70"2-709.

Florida Agricultural Information Retrieval System. 1998. Animal Manures.
       . Accessed July 15, 1998.

Fulhage. 1998.  Composting Dead Animals- The Missouri Experience. Presented at the ASAE
       Annual  International Meeting. American Society of Agricultural Engineers, Orlando,
       Florida, July 12-16, 1998.
                                        6-37

-------
Graves, R.E. 1987. Animal Manure - Manure Management for Horses. PENpages Number:
       0870177. Pennsylvania State University, Agricultural Engineering Department.

Jones, D. D., and A. Sutton. 1994. "Treatment Options for Liquid Manure" in Liquid Manure
       Application Systems: Design, Management, and Environmental Assessment, Proceedings
      from the Liquid Manure Application Systems Conference. Rochester, New York,
       Dec. 1-2,1994.

Lander, C.H., D. Moffitt, and K. Alt. 1998. Nutrients Available from Livestock Manure Relative
       to Crop Growth Requirements. U.S. Department of Agriculture, Natural Resources
       Conservation Services, Washington, DC.

Lander, C.H. 1999. Dairy Manure Characteristics. National Milk Producers Federation submittal
       to EPA.

Loudon, T.L., et. al. 1985. Livestock Waste Facilities Handbook, 2nd ed. Midwest Plan Service.

Mathers, A.C., B.A. Stewart, J.D. Thomas, and B.J. Blair. 1972. Effects of Cattle Feedlot
       Manure on Crop Yields and Soil Conditions. Tech. Rep. No. 11, USDA Southwestern
       Great Plains Research Center Bushland, Texas.

Meyer, D. J. 1987. Animal Manure—Veal Calf Management.
       .

MWPS (Midwest Planning Service). 1985. Livestock Waste Facilities Handbook.

MWPS. 1993. MWPS-18: Livestock Waste Facilities Handbook. 3rd ed. Midwest Plan Service,
       Iowa State University, Ames, Iowa.

NCSU. 1994. Livestock Manure Production and Characterization in North Carolina. North
       Carolina State University Cooperative Extension Service, Raleigh, North Carolina.

Suszkiw, J: 1999. Low-Cost Way to Pave Feedlots. Agricultural Research.

Sutton. A.L., M.D. Cunningham, J.A. Knesel, and D.T. Kelly. 1989. Veal Calf Waste Production
       and Composition. Applied Engineering in Agriculture, Vol 5, No. 1.

Svoboda. 1995. Nitrogen Removal from Pig Slurry by Nitrification and Denitrification. In

Proceedings of the Seventh International Symposium on Agricultural and Food Processing
       Wastes, organization, Chicago, Illinois, June 18-20, 1995 pp. 702-709.
                                         6-38

-------
Sweeten, J.M. and S.H. Amosson. 1995. Total Quality Manure Management, Texas Cattle
       Feeders Association. Chapter 4: Manure Quality and Economics.

Sweeten, J.M., S.H. Amosson, and B.W. Auvermann. 1997. Manure Quality and Economics. In
       Proceedings of Texas Biomass Energy Opportunities Workshop Series #1: Livestock
       Waste Streams: Energy and Environment. Texas A&M University Agricultural Research
       and Extension Center.

TABS. 1996. Manure Analysis Summary—Coal Ash Surfacing vs Control Treatments for Beef
       Cattle Feedyards. Result Demonstration Report. Texas Agricultural Extension Service.

USD A. 1992. National Engineering Handbook: Agricultural Waste Management Field
       Handbook. U.S. Department of Commerce, National Technical Information Service.
       Springfield, Virginia.

USDA. 1998. Nutrients Available from Livestock Manure Relative to Crop Growth
       Requirements, . Accessed August
       23, 1998.                                                                    .

USDA. 1999. 1997 Agricultural Resource Management Study (ARMS). U.S. Department of
       Agriculture, Economic Research Service.

USDA APHIS. 1995. Swine '95 Part I: Reference of 1995 Swine Management Practices.
       . File sw95des 1 .pdf accessed
       October 15, 1998. U-S. Department of Agriculture, Animal and Plant Health Inspection
       Service.

USDA ARS. 1998. Agricultural Uses of Municipal, Animal and Industrial Byproducts. U.S.
       Department of Agriculture, Agricultural Research Service.
       

USDANRCS. 1992. Agricultural Waste Management Field Handbook, National Engineering
       Handbook (NEH), Part 651. U.S. Department of Agriculture (USDA), Natural Resources
       Conservation Service (NRCS). 

Van Horn, H.H., G.L. Newton, R.A. Nordstedti E.G. Krench, G. Kidder, D.A. Graetz, and C.F.
       Chambliss. 1998. Circular 1016: Dairy Manure Management: Strategies for Recycling
       Nutrients to Recover Fertilizer Value and Avoid Environmental Pollution. Dairy and
       Poultry Sciences Department, Florida Cooperative Extension Service, Institute of Food
       and Agricultural Sciences, University of Florida.

Zublena, J.P., Barker, Parker, and Stanislaw. 1993. Soil Facts. North Carolina Cooperative
       Extension Service.
                                         6-39

-------

-------
                                                                    CHAPTER 7
                                            POLLUTANTS OF INTEREST
 7.0    INTRODUCTION
 Pollution generated at feedlot operations can arise from multiple sources. These sources,
 including animal waste, process wash waters, litter, animal carcasses, spills of pesticides, and
 Pharmaceuticals, are the primary sources of potential environmental contamination.

 Excreted animal waste contains undigested and partially digested feed, partially metabolized
 organic material, dead and living microorganisms from the digestive tract, cell wall material and
 other organic debris from the digestive tract,  and excess digestive juices. Additional
 microorganisms may grow in the waste after  it has been excreted. Depending on the type of feed
 provided to the animals and whether feed additives have been used, animal wastes can also
 contain pharmaceuticals (antibiotics and hormones), and trace inorganic elements.

 Animal carcasses, which may contain pathogens, nutrients, and chemical toxicants, can pose an
 environmental problem, especially in the poultry industry where many operations have
 historically used burial as a means for disposal. For example, during 1990, several state agencies
 in Arkansas tested the management of dead-bird disposal pits and found high soil concentrations
 of ammonium (USEPA, 1999). Improper disposal of poultry carcasses has been implicated in
 ground water contamination; however, in recent years, greater regulation of animal disposal has
 reduced the risk of environmental contamination from buried animal carcasses. Arkansas, for
 example, has outlawed the use of dead-bird disposal pits. Other states have also issued guidelines
 or regulations for disposal of animal carcasses and require operators to use specific practices such
 as composting.

 In the preliminary study on environmental impacts from animal feedlot operations, EPA (1998)
 identified and described the major animal waste constituents that can adversely affect the
 environment. Additional information on potential impacts can be found in the Environmental
Assessment of Proposed Revisions to the National Pollutant Discharge Elimination System
Regulation and Effluent Limitations Guidelines for Concentrated Animal Feeding Operations
 (USEPA, 2000). As demonstrated in Chapter 6, the physical and chemical characteristics of
manure differ between animal sectors as well as within animal sectors. The following pollutants
 of interest identified by EPA in its preliminary feedlots study are described below:

    •   Nutrients (nitrogen, phosphorus)
    •   Total suspended solids (including sediment)
    •   Biochemical oxygen demand (BOD)
                                         7-1

-------
        Pathogen
        Chemical oxygen demand (COD)
        Other contaminants including salts, trace elements, and Pharmaceuticals

Exposure pathways of contaminants in soil include direct ingestion, inhalation of dusts, ingestion
of ground or surface water contaminated from migration of chemicals through soil or runoff from
soil, dermal absorption, and ingestion of produce that has been contaminated through plant
uptake (USEPA, 1996). Constituents in manure will have an impact on water quality if
significant amounts reach surface or ground water. Management practices can reduce or block
the potential transport of these constituents. Movement of constituents in manure is driven
primarily by precipitation events, runoff and erosion of soluble and particulate components,
leaching to ground water of soluble compounds, and wind erosion of dry material (USEPA,
2000).

7.1    Conventional Waste Pollutants

Biochemical Oxygen Demand
BOD is a measure of the oxygen-consuming requirements of organic matter decomposition.
When animal waste is discharged to surface water, it is decomposed by aquatic bacteria and other
microorganisms. Decomposing organic matter consumes oxygen and reduces the amount
available for aquatic animals. Severe reductions in dissolved oxygen levels can lead to fish kills.
Even moderate decreases in oxygen levels can adversely affect waterbodies through decreases in
biodiversity as manifested by the loss offish and other aquatic animal populations.


Total Suspended Solids
Suspended solids can clog fish gills and increase turbidity. Increased turbidity reduces
penetration of light through the water column, thereby limiting the growth of desirable aqtiatic
plants that serve as a  critical habitat for fish, shellfish, and other aquatic organisms. Solids that
settle out as bottom deposits can alter or destroy habitat for fish and benthic organisms. Solids
also provide a medium for the accumulation, transport, and storage of other pollutants including
nutrients, pathogens,  and trace elements. Sediment-bound pollutants often have an extended
interaction with the water column through cycles of deposition, resuspension, and redeposition.


Fecal Coliform Bacteria
Manure contains diverse microbial populations. Included are members  of the normal
gastrointestinal tract flora, such as members of the fecal coliform and fecal streptococcus groups
of bacteria. These are the groups of bacteria commonly used as indicators of fecal contamination
and the possible presence of pathogenic species. A discussion of pathogens found in the waste of
AFOs is given in section 7.2.
                                          7-2

-------
7.2    Nonconventional Pollutants

Nutrients (Nitrogen, Phosphorus)
Because of its nutrient content, animal manure can serve as a valuable agricultural resource. In an
area where the amount of nutrients in manure generated from AFOs is greater than the nutrient
requirements of the crops grown in the area, excess land application has occurred, which can lead
to increased nutrient runoff and seepage and subsequent degradation of water resources.

As noted in Chapter 6, wastes contain significant quantities of nutrients, particularly nitrogen (N)
and phosphorus (P). Manure N occurs primarily in the form of organic-N and ammonia-N
compounds. In its organic form, N is unavailable to plants. However, through bacterial
decomposition, organic-N is transformed into ammonia, which is oxidized (by nitrification) to
nitrite and ultimately to nitrate. Ammonia and nitrate are bioavailable and therefore have
fertilizer value. These forms can also produce adverse environmental impacts when they are
transported in excess quantities to the environment.

Ammonia. "Ammonia-N" includes the ionized form (ammonium) and the un-ionized form
(ammonia). Ammonium is produced when microorganisms break down organic-N products in
manure, such as urea and proteins. This decomposition can occur under aerobic or anaerobic
conditions. Both forms are toxic to aquatic life, although the un-ionized form (ammonia) is much
more toxic.

Ammonia is of environmental concern because it exerts a direct BOD on the receiving water.
Ammonia can lead to eutrophication, or nutrient overenrichment, of surface waters. Ammonia
itself is  a nutrient and is also easily transformed to nitrate (another nutrient form of N) in the
presence of oxygen. Although nutrients are necessary for a healthy ecosystem, the overabundance
of nutrients (particularly N and P) can lead to nuisance algae blooms.

Nitrate. Nitrite is toxic to most fish and other aquatic species, but it usually does not accumulate
in the environment because of its rapid conversion to nitrate in an aerobic environment.  Nitrate is
a valuable fertilizer because it is biologically available to plants. Excessive levels of nitrate in
drinking water, however, can produce adverse human health and environmental impacts. For
example, human infants exposed to high levels of nitrate can develop methemoglobinemia,
commonly referred to as "blue baby syndrome" because the lack of oxygen can cause  the skin to
appear bluish in color. To protect human health, EPA has set a drinking water maximum
contaminant level (MCL) of 10 mg/L for nitrate-N. N is the primary contributor to eutrophication
in brackish and saline waters (USEPA, 2000).

N is interchanged among the atmosphere and organic matter and inorganic compounds in soil or
water through the N cycle. The biological transformations of N that make up this process include
N fixation, nitrate reduction, and denitification. Atmospheric nitrogen (N2) can be bound by
microorganisms with carbohydrates, water, and hydrogen to form ammonium and carbon dioxide
                                          7-3

-------
in the process of N fixation. Aquatic microorganisms with the ability to fix atmospheric nitrogen
include photosynthetic bacteria, Azotobacter, and some species of Clostridium. In soil,
Rhizobium can fix atmospheric nitrogen in the root nodules of leguminous plants. Ammonium
can be further converted by Nitromonas and Nitrobacter bacteria into nitrite and nitrate,
respectively, in the process of nitrate reduction. This process provides most plants with the form
of N they are able to absorb (nitrate). Ammonium present in animal manure can also be
converted into nitrate by these bacteria for use by plants. Denitrification is the process by which
fixed N present in soil or water is returned to the atmosphere by bacteria in the form of N2,
allowing the N cycle to begin again (Manahan, 1991).

Phosphorus. Animal wastes contain both organic and inorganic forms of P. P occurs almost
exclusively in the form of inorganic an4 organic phosphates in natural waters. Organic phosphate
is phosphate associated with a carbon-based molecule such as plant or animal tissue. Phosphate
not associated with organic matter is inorganic, which is the form required for uptake by plants.
Animals can use organic or inorganic phosphate. Both organic and inorganic forms can be
dissolved in water or suspended (attached to particles in the water column). Sources of P include
soil and rocks, wastewater treatment plants, runoff from fertilized lawns and cropland, failing
septic systems, runoff from animal manure storage areas, disturbed land areas, drained wetlands,
water treatment, and commercial cleaning preparations (USEPA, 2002a). The majority of P binds
to mineral and organic particles in manure and is subject to runoff and erosion more than
leaching except hi very sandy soils with low P-binding capacity (USEPA, 2000).

P is of concern in surface waters because it is a nutrient that can lead to eutrophication and the
resulting adverse impacts—fish kills, reduced biodiversity, objectionable tastes and odors,
increased drinking water treatment costs, and growth of toxic organisms. At concentrations
greater than 1.0 mg/L, P can interfere with coagulation in drinking water treatment plants
(Bartenhagen et al., 1994).

P is of particular concern in fresh waters, where plant growth is typically limited by phosphorous
levels. Under high pollutant loads, however, fresh water may become nitrogen-limited
(Bartenhagen et al., 1994). Thus, both N and P loads may contribute to eutrophication.

P is interchanged hi an aquatic ecosystem through the P cycle. Inorganic P from various natural
and human sources is taken up by plants and converted to organic P. Animals graze on plants and
thereby take up organic P. Organic P is released to the ecosystem in animal feces and in decaying
animals and plants, generally to the bottom of the lake or stream. Bacterial decomposition
converts organic P into inorganic  P in both dissolved and suspended forms. Inorganic P is
returned to the water column, allowing the P cycle to begin again, when the bottom of the
waterbody is disturbed by animals, human activity, chemical interactions, or water currents. In
streams, P tends to move downstream over time because the current carries decomposing plant
and animal material and dissolved P downstream.  P is stationary in waterbodies only when taken
it is taken up by plants or bound to particles that settle to the bottom of pools (USEPA, 2002a).
                                           7-4

-------
Chemical Oxygen Demand
COD is another measure of oxygen-consuming pollutants in water. The COD test differs from
the BOD test in that it measures the amount of oxygen required to oxidize all organic matter
present in a sample regardless of how biologically assimilable the organic matter is because it
uses a strong chemical oxidizing agent instead of microorganisms to oxidize the organic
compounds in a sample (Masters, 1997). BOD only measures the oxygen required to oxidize
biologically degradable material present in a sample. The COD test is used to measure oxygen-
consuming pollutants in water because all organic compounds, with few exceptions, can be
oxidized by the action of strong oxidizing agents under acidic conditions. The measured value of
COD is generally greater than BOD in a sample, although these values are similar in samples
containing easily biodegradable material. Because the COD test can be performed more quickly
than the BOD test, it is sometimes used to estimate BOD.


Pathogens
Manure contains diverse microbial populations. There are many examples that demonstrate that
pathogens from manure can be a problem. Other studies show that manured fields do not pose a
significant threat to surface waters. Most pathogens present in animal manure are from the
gastrointestinal tract and can be divided into those pathogens that are highly host-adapted and not
considered to be pathogenic to humans and those that are capable of causing infection in humans
(zoonoses). For example, most Salmonellae are zoonoses, but S. pulloram and S. galHnarum,
which might be present in poultry manures, are not. However, each of these species may be
included in gross estimates of Salmonella densities. The pathogens that might be present in
poultry and swine manures can also be divided into those microorganisms which are commonly
present and those which are less common. For example hi poultry manures, Campylobacter
jejuni is commonly present while Mycobacterium avium  is less common. These distinctions are
important in assessing the potential public health risks associated with poultry and swine
operations, as well as other animal feeding operations.

The interactions between pathogens, cattle, and the environment are not well understood but
current literature suggests that dairy and beef cattle shed pathogens that are known to be
infectious to humans. The threat posed by pathogens in animal manure is influenced by the
source, pH, dry matter, microbial, and chemical content of the feces. Solid manure that is  mixed
with bedding material is more likely to undergo aerobic fermentation in which temperature
increases reduce the number of viable pathogens. However, some pathogens grow under a wide
range of conditions that makes their control very difficult. Quantifying the risk associated with
these pathogens is thus challenging. Rapidly changing pathogen numbers, changes in the
infective status of the host, and survivability of the pathogens all make it increasingly difficult to
determine how much of a threat animal-excreted pathogens are to society. Moreover, methods of
pathogen detection produce varying results, making it difficult to compare studies that use
different analyses (Pell, 1997).
                                          7-5

-------
The most common pathogens and found in animal manures and capable of causing disease in
humans are Salmonella, Escherichia coli, Bacillus anthracis, Mycrobacterium paratuberculosis,
Brucella abortus, Leptospira spp., Chlamydia spp., Rickettsia spp., andListeria monocytogenes
(Epstein, 1998). In addition, Cryptosporidium parvum oocysts (the eggs of a protozoan parasite
that can cause gastrointestinal illness in humans) found in calf and pig manure (USD A, 1996)
and Giardia oocysts in young dairy cattle manure (Pell, 1997) appear to be infectious to humans.

Unlike biosolids, the bacterial content of animal manure is currently not regulated; however, the
Federal Part 257 regulation does include provisions regarding general management of these
materials to help ensure that practices will not impact threatened or endangered species or habitat
be either a direct discharge or a nonpoint source of pollutants or contaminate underground
drinking water sources (USEPA, 2000). Fecal coliform, fecal streptococci, Escherichia coli, and
enterococci are commonly used indicators of human and animal fecal contamination. These
bacteria are not harmful in themselves but they indicate the possible presence of pathogenic
bacteria, viruses, and protozoa that live in human and animal digestive systems. Because it is
difficult to test for the pathogens themselves, tests for indicator bacteria are used instead
(USEPA, 2002b).

EPA now recommends that enterococci and Escherichia coli be used as indicators of fecal
contamination in fresh water and enterococci be used as an indicator of fecal contamination in
salt water; however, several states continue to use fecal coliform as their indicator water quality
standard (USEPA, 2002b). indicator bacteria can be used to determine whether surface waiters
have been contaminated from manure applied to nearby fields. In the past, fecal streptococci and
fecal coliform were monitored together and a ratio of fecal coliform to streptococci was
calculated to determine whether the contamination was of human or nonhuman origin; however,
this ratio is no longer recommended by EPA (USEPA, 2002b).

The levels of fecal coliform and fecal streptococci bacteria have been measured in the manure of
several livestock animal types. Fecal coliform bacterial densities were measured in units of
colonies/1,000 kg live animal mass per day at densities of 45 ± 27 for sheep; 18 ± 12 for swine;
7.5 ± 2.0 for layer chickens; and 16 ± 28 for dairy cows. Fecal streptococci bacterial densities
were measured in units of colonies/1,000 kg live animal mass per day at densities of 62 ± 73 for
sheep; 530 ± 290 for swine; 16 ± 7.2 for layer chickens; and 92 ± 140 for dairy cows (ASAE,
1999).

For additional information on pathogens see the Environmental and Economic Benefit Analysis
and the Environmental Assessment.

Other Potential Contaminants

Animal wastes can contain other chemical constituents that could adversely affect the
environment. These constituents include salts trace elements and Pharmaceuticals, including
antibiotics.  Although salts are usually present in waste regardless of animal or feed type, trace
                                          7-6

-------
 elements and Pharmaceuticals are typically the result of feed additives to help prevent disease or
 promote growth. Accordingly, concentrations of these constituents will vary with operation type
 and from facility to facility.

 Salts and trace elements. Animal manure contains dissolved mineral salts. The major cations
 contributing to salinity are sodium, calcium, magnesium, and potassium; the major anions are
 chloride, sulfate, bicarbonate, carbonate, and nitrate. In land-applied wastes, salinity is a concern
 because salts can accumulate in the soil and become toxic to plants; they can also deteriorate soil
 quality by reducing permeability and contributing to poor tilth. Direct discharges and salt runoff
 to fresh surface waters contribute to salinization and can disrupt the balance of the ecosystem.
 Leaching salts can deteriorate ground water quality, making it unsuitable for human
 consumption. Trace elements such as arsenic, copper, selenium, and zinc are  often added to
 animal feed as growth stimulants or biocides  (Sims, 1995). When applied to land, these elements
 can accumulate in soils and become toxic to plants,  and can affect human and ecological health.

 Metals in potentially toxic concentrations in poultry, swine, and cow manures include arsenic,
 cadmium, copper, lead, molybdenum, nickel, selenium, and zinc (Overcash, et al., 1983). In
 promulgating standards for the disposal of sewage sludges by land application, EPA has
 established maximum allowable concentrations and cumulative loading limits for each of these
 metals as well as beryllium and mercury (Federal Register, 1989). It has generally been assumed
 that the metal concentrations in manure are well below those allowable for land application of
 wastewater treatment sludge; however, metal loadings may accumulate in cropland to which
 manure has been applied for many years.

 Selenium and arsenic (as arsinilic acid) supplementation of complete feeds for poultry and swine
 is directly limited by EPA to 0.3 ppm and 90 ton of feed, respectively (21 CFR 573.920; 21 CFR
 558.62). Copper and zinc are fed to swine as growth stimulants at levels significantly above
 nutritional requirements (Dritz et al., 1997). Arsenic is fed as a growth stimulant to broiler
 chickens. Drugs administered either prophylactically or therapeutically can also contain metals.
 Also, concentrated sources of macrominerals  such as calcium might contain metals such as
 copper, manganese, and zinc, as well as other metals with no biological value. Copper and zinc
 in freshly excreted poultry and swine waste has been measured at concentrations between 12 and
 15 mg/kg of total solids and between 42 and 310 mg/kg of total solids, respectively (Barker and
 Zublena, 1995).              •

 Unlike poultry and swine, cattle are typically not fed excess amounts of metals because these
metals do not have  a growth-promoting effect on cattle. Zinc and copper in dry manure have been
measured at concentrations of 50 mg/kg and 180 mg/kg, respectively in dairy cattle, and 25
mg/kg and 110 mg/kg, respectively in beef cattle. The differences in manure concentrations most
likely occurred because enriched mineral supplements were supplied to the dairy cattle but not to
the beef cattle (Nicholson, 1999).
                                          7-7

-------
Metals not essential for plant or animal nutrition are a concern because they do not degrade over
time, they are relatively immobile, and they accumulate in the upper layers of the soil (Rutgers
Cooperative Extension, 2000). Heavy metal concentrations in various fertilizers differ and large
variabilities in concentration occur within the same fertilizer type. Researchers at Rutgers
Cooperative Extension used measured metal concentrations in manure from existing studies to
predict the concentrations of metals in soil-after 100 years of application at rates of 6.2, 3.2, and
1.8 dry tons for dairy, poultry, and swine manure, respectively. From their model results, the
researchers predicted that copper, lead, and zinc would persist in the soil.

According to a draft study performed by the Water Environment Research Foundation (WERF),
farmers apply 120 million dry tons of animal manure on their farmlands annually. The draft
WERF study results show that metal concentrations in swine and poultry manures are
comparable to those in biosolids. The bioavailability and mobility of metals in soil is dependent
on their form. Oxide-bound and organically bound metals largely remain immobile and are not
absorbed by plants, while water soluble forms are more likely to be taken up by plants or to be
carried off-site in runoff. The investigators for the WERF study are planning to perform more
research on the metal leachability of manures, biosolids, and fertilizers (Spicer, 2002). This
information will help to determine the impact of these heavy metals on humans and on the
environment.

Researchers have found that aberrations and damage occurred in a high percentage of sperm cells
from earthworms (Eiseniafetida) with elevated body burdens of heavy metals. The researchers
exposed these earthworms to metals in their feed by placing them in cattle manure to which
either 0.01 percent of lead or 1,000 micromoles/gram of manganese salts were added (Reinecke
and Reinecke, 1997). High metal concentrations in soil may affect the ability of earthworms to
reproduce and consequently affect soil fertility.

Heavy metals in soil can also adversely affect plant growth and survival and can accumulate in
plants and subsequently affect the health of humans and animals who eat or use the plant
products. Cadmium in soil is readily absorbed by tobacco, mushrooms, spinach, and other leafy
vegetables. When tobacco is smoked, much of the cadmium is taken up by the human body. The
National Research Council has recommended that the cadmium content of crops used to feed
animals should be 0.5 mg/kg or less to reduce the cadmium concentration in meat (Cornell
University, 1993). Symptoms of acute toxicity from ingestion of cadmium in humans include
nausea, vomiting, and abdominal pain. Long-term effect of low-level exposure to cadmium are
lung disease, emphysema, and kidney disease (Klaasen, 1996). Lead and arsenic are generally not
absorbed by field crops; however, an accumulation of lead or arsenic in the soil may pose a risk
to children and animals that might eat the soil (Klaasen, 1996). Lead exposure can adversely
affect the nervous system, especially in children, which can lead to neurological,
neurobehaviorial, and developmental impacts. Ingestion of large doses of arsenic (70 to  80 mg)
can cause fever, anorexia, and heart arrhythmia, and can lead to death in humans. Long-term
exposure to low concentrations of arsenic can cause adverse effects to the nervous system,
peripheral vascular disease, and liver injury (Klaasen, 1996). Copper and zinc are toxic to plants
                                          7-8

-------
 in large concentrations (Cornell University, 1 §93). Mgestion by humans of copper and zinc in
 soil in large enough quantities to cause toxicity is unlikely.

 Antibiotics and hormones. A number of pharmacologic agents are used in the production of
 poultry and swine, among them a variety of antibiotics and hormones. Nonantibiotic
 antimicrobials, such as sulfonamides, and some antibiotics, such as streptomycin, are used
 primarily to cure existing infections (therapeutic use). However, most of the antibiotics used in
 both the swine and the poultry industries  are used both therapeutically and nontherapeutically as
 feed additives to promote growth, to improve feed conversion efficiency, and to prevent disease
 (Mellon et al., 2001). When antibiotics are used for nontherapeutic uses the dosage rates are
 substantially lower than when they are admuiistered for therapeutic use.

 Mellon and other investigators (2001) estimate that 24.6 million pounds of antibiotics are used
 annually by livestock producers for nontherapeutic purposes,  of which approximately 10.3
 million pounds are used in hog production, 10.5 million pounds are used in poultry production,
 and 3.7 million pounds are used in cattle production. Tetracycline, penicillin, erythromycin, and
 other antibiotics are commonly used for these nontherapeutic purposes (Mellon, et al., 2001). The
 antibiotics in manure applied to soil can persist in soil for 1 day to several weeks or longer. The
 rate of inactivation of these antibiotics is related to the temperature of the soil and the chemical
 structure of the antibiotic (Gavalchin and Katz, 1994).

 Despite the fact that there is little information in the literature about concentrations of antibiotics
 in poultry and swine manures, it is known that the primary mechanisms of elimination are in
 urine and bile (Merck and Company, 1998). Approximately 25 to 75 percent of antibiotics
 administered to feedlot animals could be excreted in the feces (Chee-Sanford, et al., 2001). The
 form excreted, the unchanged antibiotic or metabolites or some combination thereof, is antibiotic
 specific, as is the mass distribution among mechanisms of excretion. These compounds may pose
 risks to humans and the environment. For example, chronic toxicity may result from low-level
 discharges of antibiotics. For example, chronic toxicity may result from low-level discharges of
 antibiotics (Merck and Company, 199'8).

 Use of antibiotics in agriculture might contribute to antimicrobial resistance. The main route of
 transmission of drug resistance is considered to be consumption of contaminated food Drug
 resistance can also be transmitted through natural waters and soil. Lagoons and pit systems are
 commonly used for waste disposal in animal agriculture operations. Antibiotic and antibiotic-
 resistant microorganisms have the potential to seep from these waste lagoons into ground water
 (Chee-Sanford, et al., 2001). The large quantities of antibiotics entering the environment from
manure and other sources allow for survival of antibiotic-resistant strains of microorganisms that
 can start to predominate the microbial population, which can cause certain diseases in humans
 and animals to be more difficult to treat than they were in the  past (Mellon, et al.,  2001). For
 example, an outbreak of salmonellosis in humans has been linked to infection by antibiotic-
resistant Salmonella newport (Gavalchin and Katz, 1994). Antibiotics introduced in soil through
                                          7-9

-------
manure application can also affect the bacterial populations of the soil (Gavalchin and Katz,
1994), which might lead to decreased soil fertility.

Specific hormones are used to increase productivity in the beef and dairy industries but hormones
are not used in the poultry or swine industries. Thus, hormones present in poultry and swine
manures are only in naturally occurring .concentrations. U.S. farmers raise 36 million beef cattle
per year of which two-thirds are given hormones. Some steer receive androgens to build their
muscle mass and some cows receive female sex hormones to free up resources that would have
otherwise been used for the reproductive cycle (Raloff, 2002).

A large portion of hormones passes through cattle in their feces. Waterborne androgen hormones
have been detected in waterbodies downstream of animal feedlots. Investigators have found that
male fish raised in water obtained from these waterbodies had significantly reduced testicle size
in comparison to fish raised in water not containing these hormones, indicating that these
waterborne hormones caused male fish to produce less testosterone and to be less fertile than
male fish raised in water not containing these hormones. The investigators also suggested that
these effects could have been caused by natural androgens and estrogens in manure in addition to
or instead of being caused by the synthetic hormones given to the livestock (Raloff, 2002). Also,
estrogen hormones in the environment have been implicated in the drastic reduction in sperm
counts among men (Sharpe and Skakkebaek, 1993) and reproductive disorders in a variety of
wildlife (Colburn et al., 1993).

Hormones in manure applied to soil might be degraded by soil bacteria and photochemical
reactions. In addition, hormones might be leached by rain into lower soil horizons or washed
directly into surface waters. Dissolved organic matter can bind steroids and enhance their
solubility and mobility hi the water (Schiffer, et al., 2001), increasing the potential of ground
water and surface waters contamination by these compounds.

Schiffer and other investigators (2001) studied the residue and degradation of two growth
promoting hormones used in cattle in the United States and Canada, trenbolone acetate and
melegestrol acetate, in animal dung, liquid manure, and soil. The researchers found that
trenbolone acetate concentrations were 5 to 70 tunes higher in solid manure than in liquid
manure. Trenbolone acetate was determined to have a half-life of 267 days in liquid manure and
was partially degraded in solid manure after 4.5 months of storage. The researchers found that
trenbolone acetate was not detected in soil fertilized with liquid manure containing this hormone
after 40 days; however, they did detect trenbolone acetate in soil 58 days after in had been
fertilized with stored solid dung which contained lower concentrations of this hormone than the
liquid manure. The researchers suggested that the trenbolone acetate might have adsorbed to the
straw material present hi the solid dung, which may have protected this hormone from leaching
or degrading. The investigators also found that residues of melegestrol acetate in solid dung were
more stable than trenbolone acetate because melegestrol acetate concentrations in dung did not
decrease significantly after 4 months. They were able to detect melegestrol acetate in soil
fertilized with solid manure from the spring until the end of cultivation (Schiffer, et al., 2001).
                                          7-10

-------
7.3    Priority Pollutants
The CWA requires states to adopt numeric criteria for priority toxic pollutants if EPA has
published criteria guidance and if the discharge or presence of these pollutants could reasonably
be expected to interfere with the designated uses of the state's waters. EPA currently lists a total
of 126 toxic priority pollutants in 40 CFR 122, Appendix D. Other metal and organic chemicals,
however, can cause adverse impacts.

Animal wastes may contain a variety of priority pollutants including the potentially toxic metals:
arsenic, cadmium, chromium, copper, lead, molybdenum, nickel, selenium, and zinc (Overcash et
al., 1983; ASAE, 1999). hi promulgating standards for the disposal of sewage sludges by land
application, EPA has established maximum allowable concentrations and cumulative loading
limits for each of these metals. Although information about the concentrations of these metals in
poultry and livestock manures, and its variability, is quite limited, it generally has been assumed
that these concentrations are well below those allowable for land application of wastewater
treatment sludges. However, the issue of cumulative loading has been raised periodically hi light
of long-term use of cropland for manure disposal, especially in areas where poultry and livestock
production is concentrated (Sims, 1995).

Given the degree of vertical integration that has occurred in both the poultry and the swine
industries, much of the feed manufacturing for these industries is controlled by integrators. Thus,
information about the current use of trace mineral supplements in formulating both poultry and
swine feeds is difficult to obtain because the integrators consider it proprietary. However, it
appears to be a reasonable assumption that arsenic, copper, selenium, and zinc are typically
added to poultry feeds and that copper, selenium, and zinc are common components of trace
mineral premixes used in the manufacturing of swine feeds. It is probable that commonly used
feed supplements also contain some manganese.

Feed amendments of selenium (0.3 part per million) and arsenic (90 grams per ton of feed) are
regulated by the U.S. Food and Drug Administration (FDA) (Title 21, Part 573.920 of the Code
of Federal Regulations). Levels of other trace minerals as feed supplements are regulated only
indirectly by the FDA through maximum allowable concentrations in specified tissues at
slaughter or in eggs.

Currently available information about metal concentrations in poultry and swine manures almost
exclusively dates back to the 1960s and 1970s (Barker and Zublena, 1995).  Kornegay's (1996)
data are also somewhat dated, because they are averages over a 14-year period prior to 1992.
When compared with Barker and Zublena's data for swine, Kornegay's data suggest that the
concentrations of copper and zinc in swine manure have increased significantly over time.
However, little is known about the current concentrations of trace metals in poultry and swine
manures except that the variations in concentrations are substantial.
                                          7-11

-------
7.4    References
ASAE 1999. Manure production and characteristics. AS Data: AS D384.1. American Society of
       Agricultural Engineers, St. Joseph, Michigan.

Barker, J.C., and J.P. Zublena. 1995. Livestock manure assessment in North Carolina. Li
       Proceedings of the Seventh International Symposium on Agricultural and Food
       Processing Wastes, American Society of Agricultural Engineers, St. Joseph, Michigan,
       pp. 98-106.

Bartenhagen,vKathryn, etal. 1994. Water, Soil, and Hydro Environmental Decision Support
       System (WATERSHEDS) NCSU Water Quality Group, 
-------
Masters, Gilbert M. 1997. Introduction to Environmental Engineering and Science. 2nd ed.
       Prentice-Hall, Inc., Upper Saddle River, New Jersey.

Mellon, Margaret, Charles Benbrook, and Karen Lutz Benbrook. 2001. Hogging It. Estimates of
       Antimicrobial Abuse in Livestock. Union of Concerned Scientists, Cambridge,
       Massachusetts.

Merck and Company, Inc. 1998. The Merck Veterinary Manual. 18th ed. Merck and Company,
       Inc., Whitehouse Station, New Jersey.

Nicholson, G.A. 1999. Heavy metal content of livestock feeds and animal manures in.England
       and Wales. Bioresource Technology 70:1.

Overcash, M.R., FJ. Humenik, and J.R. Miner. 1983. Livestock Waste Management.  Vol. I. CRC
       Press, Inc., Boca Raton, Florida.

Pell, Alice, 1997. Manure and Microbes: Public and Animal Health Problem? Journal of Dairy
       Science 80:2673-2681.

Raloff, Janet. 2002. Hormones: here's the beef. ScienceNews Online. 161:1.
       http://www.sciencenews.org/20020105/bobl3.asp. Accessed October 8, 2002.

Rutgers Cooperative Extension. 2000. Land Application of Sewage Sludge (Biosolids). #6: Soil
       Amendments and Heavy Metals. Rutgers Cooperative Extension, N.J. Agricultural
       Experiment Station, Rutgers, the State University of New Jersey, New Brunswick.
       https://www.rce.rutgers.edu/pubs/pdfs/fs956.pdf. Accessed October 4,2002.

Schiffer, Bettina, Andreas Daxenberger, Karsten Meyer, and Heinrich H.D. Meyer. 2001.  The
       fate of trenbolone acetate and melengestrol acetate after application as growth promoters
       in cattle: environmental studies. Environmental Health Perspectives. 109(11):1145-1151.

Sharpe, R.M., and N. Skakkebaek.  1993. Are Estrogens involved in falling sperm count and
       disorders of the male reproductive system? Lancet 341:1392. Cited in USEPA, 1998.

Suns, J.T. 1995. Characteristics of animal wastes and waste-amended soils: An overview of
       agricultural and environmental issues. Li Animal Wastes and the Land-Water Interface,
       ed. K. Steele, pp. 1-13. CRC Lewis Publishers, Boca Raton, Florida.

Spicer, Steve. 2002. Fertilizers, Manure, of Biosolids? Water Environment & Technology.
       http://www.wef.org/pdffiles/biosolids/biosolids.pdf. Accessed October 4, 2002.
                                         7-13

-------
USDA. 1996. Cryptospodium parvum and cattle: implications for public health and land use
      restrictions. U.S. Department of Agriculture, http://www.nal.usda.gov/wqic/crptfac.html.
      Accessed October 4,2002.

USEPA. 1996. Soil Screening Guidance: User's Guide. Publication 9355.4-23. U.S.
      Environmental Protection Agency, Office of Solid Waste and Emergency Response,
      Washington, DC.

USEPA. 1998. Appendix IV. Environmental data summary. In Environmental impacts of animal
      feeding operations. U.S. Environmental Protection Agency, Office of Water, Washington,
      DC. December 31, 1998.

USEPA. 1999. Success stories, Arkansas. U.S. Environmental Protection Agency, Washington,
      DC. http://www.epa.gov/owow/NPS/Success319/AR.html. December 31, 1998. Accessed
      September?, 1999.

USEPA. 2000. Environmental Assessment of Proposed Revisions to the National Pollutant
      Discharge Elimination System Regulation and Effluent Limitations Guidelines for
      Concentrated Animal Feeding Operations. U.S. Environmental Protection Agency,
      Office of Wastewater Management, Washington, DC.

USEPA. 2002a. Monitoring and assessing water quality. 5.6 Phosphorus. U.S. Environmental
      Protection Agency, Office of Wetlands, Oceans, and Watersheds.
      http://www.epa.gov/owow/monitoring/volunteer/stream/vms56.html. August 27, 2002.

USEPA. 2002b. Monitoring and assessing water quality. 5.11 Fecal Bacteria. U.S.
      Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds.
      http://www.epa.gov/OWOW/monitoring/volunteer/stream/vms511.htm. August 27, 2002.

USFDA. 2002.  The Use of Steroid Hormones for Growth Promotion in Food-Producing
      Animals. U.S. Food and Drug Administration Center for Veterinary Medicine.
      http://www.fda.gov/cvm/index/consumer/hormones.htm. Accessed October 8,2002.
                                        7-14

-------
                                                                  CHAPTERS



  TREATMENT TECHNOLOGIES AND BEST MANAGEMENT

                  •	0^___	PRACTICES
8.0    INTRODUCTION
This chapter provides an overview of treatment technologies and best management practices
(BMPs) for pollution prevention at animal feeding operations (AFOs), as well as for the
handling, storage, treatment, and land application of wastes. The discussion focuses on
technologies and BMPs currently implemented at domestic AFOs, but it also describes
technologies and BMPs that are under research and development, are undergoing laboratory or
field testing, or are used in other countries.

Many waste management technologies and BMPs are used by more than one animal sector, and
information on them is presented in a general discussion form.  However, the manner in which a
particular technology or BMP is used or its degree of acceptance can vary among sectors. These
differences are presented by animal sector where necessary.

8.1  Pollution Prevention Practices
Pollution prevention practices can be divided into feeding strategies that reduce the concentration
of pollutants in waste and practices that reduce the amount of water used in the handling of
wastes.  Reduced water use or handling of wastes in a dry or drier form lowers the risk of
pollutants entering surface waters. Reduced water use has the added benefit of making the waste
less expensive to move from the facility site.
               t

8.1.1  Feeding Strategies
Feeding strategies designed to reduce nitrogen (N) and phosphorus (P) losses include more
precise diet formulation, enhancing the digestibility of feed ingredients, genetic  enhancement of
cereal grains and other ingredients resulting in increased feed digestibility, and improved quality
control.  These strategies increase the efficiency with which the animals use the nutrients in their
feed and decrease the amount of nutrients excreted in the waste. With a lower nutrient content,
more manure can be applied to the land and less cost is incurred to transport excess manure from
the farm. Strategies that focus on reducing P concentrations, thus reducing overapplication of P
and associated runoff into surface waters, can turn manure into a more balanced fertilizer in
terms of plant requirements.

Feeding strategies that reduce nutrient concentrations in waste have been developed for specific
animal sectors, and those for the swine, poultry and dairy industries are presented separately in
                                        8-1

-------
the following discussion. The application of these types of feeding strategies to the beef industry
has lagged behind other livestock sectors and is not discussed here.

8.1.1.1 Swine Feeding Strategies

Practice: Precision Nutrition for Swine

Description: Current swine feed rations can result in overfeeding proteins and other nutrients to
animals because they are designed to ensure that nutritional requirements are met and growth rate
maintained. Precision nutrition entails formulating feed to meet more precisely the animals'
nutritional requirements, causing more of the nutrients to be metabolized, thereby reducing the
amount of nutrients excreted. For more precise feeding, it is imperative that both the nutritional
requirements of the animal and the nutrient yield of the feed are fully understood.

When swine are fed typical diets, the P-use efficiency is on the order of 10 to 25 percent, while
the N-use efficiency is on the order of 30 percent.  These figures suggest that swine use these
nutrients very inefficiently. An excess of N in the diet, principally from protein in feed, leads to
inefficient utilization of nutrients. Phytate-phosphorus1 (phytate-P), the most common form of P
in feedstuffs (56 to 81 percent), is not well utilized by pigs because they lack intestinal phytase,
the enzyme needed to remove the phosphate groups from the phytate molecule. Therefore,
supplemental P is added to the diet to meet the pig's growth requirements, while phytate-P from
the feed is excreted in the urine, thus increasing P concentrations in the manure. Because  some
feedstuffs are high in phytase, and because there is some endogenous phytase in certain small
grains (wheat, rye, triticate, barley), there is wide variation in the digestibility of P in feed
ingredients. For example, only 12 percent of the total P in corn is digestible whereas 50 percent
of the total P in wheat is digestible.  The P in dehulled soybean meal is more available than the P
in cottonseed meal (23 versus 1 percent), but neither source of P is  as highly digestible as the P  in
meat and bone meal (66 percent), fish meal (93 percent), or dicalcium phosphate (100 percent).

Application and Performance: Lenis and Schutte (1990) showed that the protein content of a
typical Dutch swine ration could be reduced by 30 grams per kilogram without negative effects
on animal performance. They calculated that a 1 percent reduction in feed N could result in a 10
percent reduction in excreted N.  Monge et al. (1998) confirmed these findings by concluding
that a 1 percent reduction in feed N yielded an 11 percent reduction in excreted N. According to
Van Kempen and Simmins (1997), reducing the variation of nutrients in feed by using more
appropriate quality control measures would reduce N waste by 13 to 27 percent. Experts believe
that N losses through excretion can be reduced by 15 to 30 percent  in part by minimizing
excesses in diet with better quality control at the feed mill (NCSU,  1998).

Plant geneticists have produced strains of corn that contain less phytate-P (i.e., low-phytate corn)
and are more easily digested than typical strains, resulting in less P  excreted in manure.  Allee
       :Most plant P occurs in the form of phytate, which is P bonded to phytic acid.

                                           8-2

-------
and Spencer (1998) found that hogs fed low-phytate corn excreted an average of 37 percent less
P in manure, with no adverse effects on animal growth, hi a study by Bridges et al. (1995), two
weight classes of grow-finish pigs (66.1 and 101.7 kg) were given maize-soybean meal diets
lower in protein and P to determine the reduction in N and P in pig waste when compared with
pigs fed a conventional diet. Total N waste was reduced by 32 and 25 percent for the two weight
classes, while total P excretion was reduced by 39 and 38 percent, respectively.  The study also
modeled the impact of reductions in dietary protein and P over the complete grow-finish period
using the NCPIG model developed by the North Central Regional Swine Modeling Committee.
Model results showed a reduction of approximately 44 percent in total N and P excretion
compared with the conventional diet, with little impact on the time of production, hi addition,
the Federation Europeenne des Fabricants d'Adjuvants pour la Nutrition Animale in Belgium
(FEFANA, 1992) calculated that the selection of highly digestible feedstuffs should result in a 5
percent reduction in total waste.

Advantages and Limitations: Precision feeding results in a higher feed efficiency (less feed used
per pound of pig produced); however, any cost savings are at least partially offset by the cost of
analyzing the nutrient content of feedstuffs. Consumer reaction to use of genetically modified
crops to feed swine has not been determined yet.

Operational Factors:  Precision feeding requires that feed manufacturers have the necessary,
equipment and procedures to create precision feeds within  specified quality control limits. In
general, feed manufacturers have traditionally limited quality control to measuring N, which
correlates poorly with amino acid content in feedstuffs (van Kempen and Simmins, 1997).
Precision feeding will also increase the costs and complexity of feed storage at the feeding
operation.

Demonstration Status: Data on the frequency of use of precision nutrition are  not available.
Much of the information available on precision nutrition is derived from small-scale research
experiments at the USDA and universities.

Practice: Multiphase and Split-Sex Feeding for Swine

Description: Multiphase feeding involves changing diet composition weekly  instead of feeding
only two different diets during the period from the 45-kg size to slaughter. Multiphase feeding is
designed to better match the diet with the changing nutritional requirements of the growing
animals.

Application and Performance: Feeding three or four diets  during the grow-finish period instead
of only two diets will reduce N excretion. According to models such as the Dutch Technical Pig
Feeding Model by van der Peet-Schwering  et  al. (1993), multiphase feeding reduces N and P
excretion by 15 percent. The modeling results have been confirmed by animal trials that showed
a 12.7 percent reduction in N excretion in urine and a 17 percent reduction in P excretion.

Advantages and Limitations: Dividing the  growth period into more phases with less spread in
weight allows producers to meet more closely the pig's protein requirements.  Also, because gilts

                                           8-3

-------
(females) require more prptein than barrows (males)', separating barrows from gilts allows lower
protein levels to be fed to the barrows without compromising leanness and performance
efficiency in the gilts.

Operational Factors: Multiphase and split-sex feeding require separate feeding areas and pens
for the different types of animals. It is also more costly to produce a different feed every week.

Demonstration Status: The Swine <95 report (USDA APHIS, 1995) showed that 96.2 percent of
grow/finish operations fed two or more different diets. Of these operations, 63.4 percent
progressed to a different diet based on animal weight, 5.3 percent changed diets based on either
age or the length of time on the feed, and 30.0 percent based diet changes on equal consideration
of weight and time.  Of the 96.2 percent of grow-finish operations that fed more than one diet,
18.3 percent practiced split-sex feeding. Split-sex feeding is used much more frequently in
medium (2,000-9,999 head) and large operations (10,000+ head) than in small operations (less
than 2,000 head).

Practice: Improved Feed Preparation for Swine

Description: Milling, pelleting, and expanding are examples of technological treatments that
improve the digestibility of feeds. By reducing the particle size, the surface area of the grain
particles is increased, allowing greater interaction with digestive enzymes. NCSU (1998)
reported that the industry average particle size was approximately 1,100 microns and that the
recommended size is between 650 and 750 microns. Expanders and extruders are used mainly to
provide flexibility in ingredient selection and to improve pellet quality rather than to improve
nutrient digestion.

Application and Performance: As particle size is reduced from 1,000 microns to 700 microns,
excretion of N is reduced by 24. percent. Vanschoubroek et al. (1971) reviewed many articles
regarding the effect of pelleting on performance and found that not only did animals prefer
pelleted feed over mash feed, but feed efficiency improved by 8.5 percent and protein
digestibility improved by 3.7 percent with pelleted feed.

Advantages and Limitations: Although reducing particle size less than 650 to 750 microns can
increase feed digestibility, it also greatly increases the costs of grinding and reduces the
throughput of the feed mill. Smaller-sized particles can also result in an increased incidence of
stomach ulcers in animals. In some cases, chemical changes resulting from the high temperatures
created in grinding machines may decrease feed digestibility.

Operational Factors: A reduction in the particle size of the feed might result in manure with
finer solids particles. This may affect the performance of manure management practices
including possible effects on the efficiency of manure solid-liquid separators.

Demonstration Status: Data on the frequency of use of feed preparation techniques are not
available.
                                           8-4

-------
Practice: Feed Additives for Swine

Description: Enzymes are commonly used in feed to improve the digestibility of nutrients. For
example, plant P is often present in the form of phytate, which is digested poorly in swine,
resulting in most of the P in feedstuffs being excreted in the manure. To prevent P deficiency,
digestible P  is added to swine rations, resulting in even more P in the manure. The enzyme
additive phytase has been shown to improve P  digestibility dramatically, and can be used to
reduce the need for digestible P additives.

Other enzyme additives facilitate the retention  of ammo acids and digestive fluids, decreasing the
amount of N excreted.  Enzymes such as.xylanases, beta-glucanases, and proteases upgrade the
nutritional value of feedstuffs. Xylanases and beta-glucanases are enzymes used to degrade
nonstarch polysaccharides (NSP) present in cereals such as wheat and barley. Swine do not
secrete these enzymes and therefore do not have the capability to digest and use NSP.  Because
the NSP fraction traps nutrients that are released only upon partial degradation of the NSP
fraction,  addition of xylanase or beta-glucanase or both to cereal-containing diets can result in
improvements in both digestibility and feed efficiency.  In addition, supplementing the diet with
synthetic lysine to meet a portion of the dietary lysine requirement is an effective means of
reducing N excretion by pigs. This process reduces N excretion because lower-protein diets can
be fed when lysine is supplemented.  The use of other ammo acid feed supplements is being
tested.

Application and Performance: Mroz et al. (1994) showed that phytase increases P digestibility
in a typical swine diet from 29.4 to 53.5 percent.  They also demonstrated that phytase addition
improved the digestibility of other nutrients in the feed such as Ca, Zn, and ammo acids that are
bound by phytase. For example, the addition of phytase to a commercial diet increased the
digestibility  of lysine by 2 percent while the digestibility of protein improved from 83.3 to 85.6
percent.  Van der Peet-Schwering (1993)  demonstrated that the use of phytase reduced P
excretion by 32 percent in nursery pigs (a finding similar to the FEFANA [1992] predictions).
Lei et al.  (1993) found that feeding pigs 750 phytase units per gram of basal diet yielded a
decrease  in fecal P excretion of 42 percent without adverse health effects. This addition resulted
in a linear improvement in phytate-P utilization. Graham and rnborr (1993) reported that enzyme
additions improved the  digestibility of protein in a wheat/rye diet by 9  percent.

Beal et al. (1998) used proteases on raw soybeans and observed a significant improvement in
daily gain (+14.8 percent); feed efficiency, however, was improved by only 4.3 percent.  Dierick
and Decuypere (1994) saw a substantial improvement in feed efficiency when using proteases in
combination with amylases and beta-glucanases, an improvement larger than that achieved with
each enzyme individually.  Studies have shown that protein levels can  be reduced by 2 percent
when the diet is supplemented with 0.15 percent lysine (3 pounds lysine-HCl per ton of feed)
without harming the performance of grow-finish pigs.

Advantages and Limitations: Feed additives, especially synthetic amino acids and enzymes,
increase the cost of feeding. Phytase, for  example, was once too expensive to use as a feed
                                          8-5

-------
 additive. This enzyme can now be produced at lower cost with recombinant DNA techniqiues.
 As technology improves, it is likely that the costs associated with other feed additives will
 decrease similarly.

 Operational Factors: The level of phytase required in swine feed varies with the age of the
 animal. These different levels are likely determined by the development of digestive enzymes
 and intestines of the pig, with the younger pig being less developed.  Lysine supplements can be
 used to achieve even greater reductions in the level of protein in diets, but only if threonine,
 tryptophan, and methionine are also supplemented.

 Demonstration Status:  The use of proteases in animal feeds is not widespread because of
 conflicting results from trials. With the advancement of enzyme-producing technology, as well
 as a better understanding of the role of enzymes in animal nutrition, proteases and other enzymes
 (e.g., pentosanases, cellulase, and hemipellulases, as tested by Dierick, 1989) are likely to play a
 greater role in animal nutrition. As their costs come down, the Amino Acid Council foresees an
 increased use of synthetic amino acids as a method of reducing N excretion as well as improving
 animal performance and decreasing feeding costs.

 8.1.1.2 Poultry Feeding Strategies

 Poultry operators have traditionally employed feeding strategies that focus on promoting animal
 growth rates or maximizing egg production. Feed additives have also been used to prevent
 disease and enhance bone and tissue development. As noted in Chapter 4, productivity has
 increased dramatically over the past several decades. The decrease in the average whole-herd
 feed conversion ratio (pounds of feed per pound of live weight produced) has translated into
 reduced feed input per bird produced. Smaller feed requirements can mean decreased manure
 output, but, until recently, development of better feeding strategies and advances in genetics have
 not focused on manure quality or quantity generated. Environmental issues associated with
 animal waste runoff have compelled the poultry industry to look for improved methods of waste
 prevention and management including feeding regimes that can reduce the nutrient content of
 manure.

 Dietary strategies to reduce the amount ,of N and P in manure include developing more precise
 diets and improving the digestibility of feed ingredients through the use of enzyme additives and
 genetic enhancement of cereal grains.

 Practice: Precision Nutrition for Poultry

Description:  Precision nutrition entails formulating feed to meet the animals' nutritional
requirements more precisely, causing more of the nutrients to be metabolized, thereby reducing
 the amount of nutrients excreted.  For more precise feeding, it is imperative that both the
nutritional requirements of the animal and the nutrient yield of the feed are fully understood.
 Greater understanding of poultry physiology has led to the development of computer growth
models that take into account a variety of factors including strain, sex, and age of bird, for use in
                                           8-6

-------
 implementing a nutritional program. By optimizing feeding regimes using simulation results,
 poultry operations can increase growth rates while reducing nutrient losses in manure.

 Application and Performance: The use of improved feeds tailored to each phase of poultry
 growth has improved productivity significantly.  Feed conversion ratios for broilers and turkeys
 have decreased steadily over the past several decades. Egg production productivity has also been
 boosted as operators have introduced improved nutrient-fortified feed.

 Advantages and Limitations:  Improved precision in feeding strategies offers numerous
 advantages including reduction of nutrients in animal manure and better feed conversion rates.
 Improved formulations are also cost-effective and reduce the probability of wasteful overfeeding
 ofpoultry.

 Operational Factors: Precision nutrition requires detailed knowledge ofpoultry nutritional
 requirements and maintenance of detailed records to ensure that dietary adjustments are
 performed in a timely manner to maximize growth potential.

 Demonstration Status: The use of precise nutrient formulations has already generated large
 increases in productivity in the poultry sector.  Many of the poultry operations are under contract
 and receive  feedstuffs with precise formulations  from the integrator. Ongoing research will
 likely continue to result in productivity improvements.

 Practice: Use of Phytase as a Feed Supplement for Poultry

 Description: P, an essential element for poultry growth and health, is typically added to poultry
 feed mixes.  However, because poultry are deficient in the enzyme phytase and cannot

 break down the protein phytate, much of the P contained in feed cannot be digested (Sohail and
 Roland., 1999). Because poultry cannot produce  phytase, up to 75 percent of the P contained in
 feed grains is excreted in manure (NCSU, 1999).

 One feeding strategy used by poultry operators to reduce P levels in manure is to add microbial
 phytase to the feed mix.2  This enzyme is produced by a genetically modified fungus, Aspergittus
 niger.  The final enzyme product is usually available in two forms, a powder or a liquid (Miller,
 1998). The  phytase enzyme reduces P excretion  by releasing the phytate-P contained in the cell
 walls of feed grains.  The released P can then be  absorbed by the bird's intestine and used for its
 nutrient value. A secondary beneficial effect of using phytase is that manure P content is further
 reduced because less inorganic P  needs to be added to poultry diets (Edens and Simons, 1998).

Application  and Performance: Phytase can be used to feed all poultry.  P reductions of 30 to 50
 percent have been achieved by adding phytase to the feed mix while simultaneously decreasing
 the amount of inorganic P normally added (NCSU, 1999).
       As noted in Chapter 4, some experts believe phytase should not be provided to poults because of the
enzyme's adverse effect on bone development in turkeys, while other experts believe it will enhance growth.

                                           8-7

-------
Advantages and Limitations: Addition of phytase to feed significantly reduces P levels in poultry
manure. The high cost of phytase application equipment has discouraged more widespread use.

Operational Factors: Because phytase is heat-sensitive, it must be added to broiler and turkey
feeds after the pelleting process (NCSU,; 1999).  The phytase is added by spraying it on the feed.
This can result in uneven distribution and variable doses. Studies have shown that phytase
efficacy is related to calcium, protein, and vitamin B levels in a complex manner.  Further,
phytase efficacy can be degraded by excess moisture, which can be a problem if mash (wet) feed
is used for broilers (Miller, 1998).  The shelf life of phytase is usually not a problem, because
feed is typically consumed within 2 weeks or less at most operations.

Demonstration Status: Phytase is in use at many poultry operations. Application equipment for
adding phytase to large volumes of feed is undergoing field testing.

Practice: Genetically Modified Feed for Poultry

Description:  Using genetically modified animal feed offers poultry operators another way to
reduce P levels in bird manure. In 1992.; a research scientist at the USDA Agricultural Research
Service developed a nonlethal corn mutant that stored most of its seed P as P rather than as
phytate. The total P content in the mutant corn was the same as that found in conventional com,
except that there was a 60 percent reduction in phytic acid. The P released by the reduction in
phytic acid P becomes available to the consuming animal as inorganic P (Iragavarapu, 1999).

Application and Performance: Genetically modified feed can be used for all poultry types. The
potential for reducing P levels is quite large.  One variety of corn with a high available P content
has 35 percent of the P bound in the phytate form compared with 75 percent for normal com
(NCSU, 1999).  Recent tests of a new hybrid corn, developed by USDA and the University of
Delaware, demonstrated a 41 percent decrease in P levels in manure.  Soluble P levels in waste
decreased by 82 percent, compared with the amount produced by poultry fed a standard
commercial diet (UD, 1999).

Advantages and Limitations: New hybrid varieties of grain can increase poultry utilization of
plant P. Adding phytase to the modified feed further reduces manure P levels and can eliminate
the need for nutrient supplements.  The increased cost of feed and phytase additives might limit
their use.

Operational Factors: The use of genetically modified feed would not differ from the use of
conventional feed, although the increase in available nutrients in the feed would diminish the
need for supplements.

Demonstration Status: Since its discovery in 1992, the mutant corn has been made available to
commercial companies for further research, development, and commercialization of hybrid
grains. Some hybrid varieties are currently used; others are in the research or demonstration
stage. As more of these products are developed and prices are lowered, the use of hybrid grains
combined with enzyme additives will likely increase.

                                           8-8

-------
 Practice: Other Feeding Strategies to Reduce Nutrient Excretion for Poultry

 Poultry operators use additives other than phytase to reduce manure nutrient content. These
 additives include synthetic amino acids and protease, and they are designed to facilitate more
 efficient digestion of N compounds and allow the use of smaller proportions of nutrients in feed
 while not adversely affecting animal growth rates and health. Researchers have also
. demonstrated that feed enzymes other than phytase can boost poultry performance and reduce
 manure production (Wyatt, 1995). Enzymes currently added to barley and wheat-based poultry
 feed hi Britain and Europe include xylanases and proteases. Currently, the use of additives such
 as synthetic amino acids and enzymes could significantly increase feed costs. These costs,
 however could be expected to decrease over time as the technology matures and is more widely
 used by animal feed operators.

 8.1.1.3 Dairy Feeding Strategies

 Feeding strategies to reduce nutrient losses from dairy operations, primarily N and P, are focused
 on improving the efficiency with which dairy cows use feed nutrients. A more efficient use of
 nutrients for milk production and growth means that a smaller portion of feed nutrients ends up
 in manure. Elimination of dietary excess reduces the amount of nutrients in manure and is
 perhaps the easiest way to reduce on-farm nutrient surpluses (Van Horn et  al., 1996). Reducing
 dietary P is the primary practice being used; however, a number of related management strategies
 also reduce nutrient levels in the manure by increasing the efficiency with which dairy cows use
 feed nutrients. These strategies include measuring the urea content of milk, optimizing feed crop
 selection, and exposing cows to light for a longer period of the day.

 Practice: Reducing Dietary Phosphorus for Dairy  Cattle

 Description: Reducing the level of P in the diets of dairy cows is the primary and most important
 feeding strategy for reducing excess nutrients given because P plays a central role as a limiting
 nutrient hi many soils; evidence indicates that dairy operators, as a whole, are oversupplying P in
 dairy diets; and there is an imbalance in the N to P ratio in cow manure, which favors reductions
 of P to produce a more balanced fertilizer.  Reducing the amount of P in dairy diets has also been
 shown to reduce production costs and increase overall profitability.

 The 2001 edition of the National  Research Council's  (NRC) nutrient requirements for dairy cows
 recommends dietary P levels of 0.32 to 0.44 percent of dry matter for dairy cows in lactation
 depending on breed and milk production rate (NRC, 2001). Dietary P in excess of these
 requirements has been shown to have no beneficial effect on animal health or production. Most
 excess P passes through the cows' systems  and is excreted as manure, which is later applied to
 land. Rations, however, typically average 0.48 percent P or more (Satter and Wu, 2000).
 Supplemental  feeding of dicalcium phosphate—often the second most expensive component in
 dairy cow diets—is the usual practice by which a dairy cow's rations achieve this level. A
 number of studies have addressed the adequacy of current dietary P recommendations. These
 studies include Steevens et al., 1971; Tamminga, 1992; McClure, 1994; and Chase, 1998.
                                           8-9

-------
Application and Performance: This practice should be applicable to all dairy operations.  The
amount of manure P resulting from a given level of dietary P is estimated using the following
equation (Van Horn, 1991):

       Manure P = 9.6 + 0 .472 x (Intake P) + 0.00126 x (Intake P)2 B 0.323 x Milk

Manure and intake P are measured in grams, and milk production is measured in kilograms.
Based on this formulation, assuming that each lactating cow produces on average 65 pounds of
milk a day, Table 8-1 quantifies reductions in manure P resulting from reduced P intake
(Keplinger, 1998).  Four scenarios are considered: a 0.53 percent P diet, which is considered the
baseline, and three reduced P diet scenarios. Comparing the 0.40 percent scenario against the
baseline, P intake during lactation is reduced by 25 percent, while manure P is reduced by 29
percent. During the entire lactation period, manure P is reduced by 14.63 pounds per cow from
the baseline level of 50.45 pounds per cow.  For the entire year (lactation and nonlactation
periods), manure P per cow is reduced by 27 percent.

              Table 8-1. Per Cow Reductions in Manure P Resulting from
                          Reduced P Intake During Lactation.
Percentage of P
in Diet
0.53
0.49
0.46
0.43
0.40
Daily '
P Intake
(lb)
0.265
0.245
0.230
0.215
0.200
Manure P
Ob)
0.165
0.150
0.139
0.128
0.117
Manure P (Ib)
During
Lactation
50.5
45.8
42.4
39.1
35.8
Entire
Year
55.1
50.4
47.0
43.7
40.4
Reduction from Baseline (0.53%)
Amount
Ob)
0.0
4.7
8.1
11.4
14.6
During
Lactation
0
9
16
23
29
Entire
Year
0
8
15
21
27
Advantages and Limitations: Supplemental feeding of dicalcium phosphate to dairy cows
represents a substantial expense to dairy farmers—the second most expensive nutrient in a herd's
mixed ration (Stokes, 1999). The economic advantages of reducing supplemental P, based on a
study on the Bosque River watershed of Texas (Keplinger, 1998), suggest that a dairy operator
who adopts a 0.40 percent P diet compared with the baseline 0.53 percent diet would save $20.81
per cow annually. A survey of scientific literature on the subject reveals no.adverse impact on
either milk production or breeding from reducing dietary P to NRC-recommended levels.

Another advantage to producers is the impact of reduced manure P on land application practices.
Many states incorporate a P trigger in manure application requirements. For example, in Texas,
state regulation requires waste application at a P rate (versus an N rate) when extractable P in the
soil of an application field reaches 200 parts per million (ppm). Applying manure with a lower P
concentration would slow and possibly eliminate the buildup of P in application fields, thereby
delaying or eliminating the need to acquire or transform more land into waste application fields.
When manure is applied at a P rate, greater quantities can be applied if it contains a lower P
concentration.  Thus, application fields would require less chemical N, because manure with
                                          8-10

-------
lower P concentrations is a more balanced fertilizer. In addition, reduced land requirements for
waste application fields would represent substantial savings to dairy producers in cases in which
a P application rate is followed.

Operational Factors:  It is possible that factors such as climate, temperature, and humidity, as
well as operation-specific factors, influence the effectiveness of steps taken to reduce dietary P;
however, there are no published studies that address this issue.  Dairy cows, for instance, are
more prone to disease  in moist climates and suffer heat stress in hot climates. Average milk
production per cow varies greatly across geographic regions of the United States—averaging
21,476 pounds in Washington state versus only 11,921 pounds in Louisiana (USDA, 1999).
Because dairy cow productivity and health are influenced by climate, it is likely that climate .may
also influence the effectiveness of nutrient-reducing feeding strategies, particularly those which
depend on productivity gains. The magnitude and even the direction of the influence of factors
such as temperature, humidity, and the like on nutrient-reducing feeding strategies, however,
have not been established.

Demonstration Status: Dairy rations typically average 0.48 percent P or more (Satter and Wu,
2000), much higher than the NRC recommendation of 0.44 percent.  A survey of milk producers
in north Texas by a milk producers' organization indicated dietary P averaged 0.53 percent. A
1997 survey of professional animal nutritionists hi the mid-South Region (Sansinena et al.,
1999), indicates nutritionists' recommendations of dietary P averaged 0.52 percent, or 30 percent
higher than the high end of NRC's current recommendation.  Survey respondents cited several
reasons for recommending final ration P in excess of NRC standards: almost half of the
respondents (15 of 31) expressed a belief that lactating cows require more P than suggested by
the NRC (Sansinena et al., 1999). The next most prevalent reason given was that a safety margin
was required.  Justifications for the safety margin included a lack of confidence in published
ingredient P values and concern  for variable P bioavailability in feed ingredients. Professional
opinion also suggests that dietary P in dairy cow diets averages around 0.52 percent throughout
the nation, although this percentage may be declining.  Because of the heightened awareness of
both the environmental benefits and the cost savings attainable by reducing P in dairy cow diets,
some operators have adopted the NRC recommendation. Recent articles in dairy trade magazines
have recommended adoption of the NRC standard for both environmental and economic benefits.

Practice: Milk Urea N Testing for Dairy Cattle

Description: There have been significant developments recently in the use of milk urea N (MUN)
as a method for testing and fine-tuning dairy cow diets for protein feeding.  Measured MUN
concentrations are used as a proxy for the nutritional well-being of the cow.

Research has shown that mean MUN concentration levels from a group of cows should fall into
specific ranges. By comparing the results of MUN tests with these ranges, the tests can be used
as a monitoring tool to evaluate a herd's protein nutritional status. For cows fed at optimal dry
matter intake, expected mean values of MUN concentrations range from 10 to 14 milligrams per
deciliter (mg/dL) (Ferguson, 1999; Jonker et al., 1998). Field studies of MUN levels of dairy
                                          8-11

-------
 herds in Pennsylvania (using a very large sample—312,005 samples) have reported average
 MUN concentrations of 14 mg/dL (Ferguson, 1999).  Implicit in this level is that even allowing
 for the inherent large variability of MUN testing, the diets of some herds contain excess MUN
 levels that have no economic value; this also suggests that N in manure can be reduced by
 reducing excess N in dairy diets. The importance of reducing dietary protein levels is highlighted
 in a study (Van Horn, 1999) that estimates that for every 1 percent reduction in dietary protein,
 excretion of N may be reduced by 8 percent.

 Application and Performance: This practice should be applicable to all dairy operations.  The
 elimination of excess dietary protein with the use of the MUN test to evaluate protein levels in
 dairy cow feeds could reduce N levels in manure by 6 percent (Kohn, 1999).  In addition, further
 methods to improve N utilization in dairy cows and raise the efficiency of feed delivery may be
 revealed by MUN testing.

 Advantages and Limitations: Through MUN testing and the evaluation of other variables,
 farmers can identify which cows are eating too much protein, and  fine-tune diets, thereby
 reducing N output in manure. Advantages of MUN testing are the possibilities of reducing ration
 costs by eliminating excess protein and improving the efficiency of feed delivery (Kohn, 1999).
 A disadvantage of animal group feeding strategies is that they become more difficult to set up
 and manage as group size decreases. The cost-effectiveness of custom feeding individual cows is
 as yet unproven.

 Operational Factors: The large variability within and between herds and breeds of cows limits
 the usefulness of MUN testing, but it does not reduce the test's important role as a monitor of
 ration formulation.

 Demonstration Status: This practice is primarily at the research stage and has not become
 widespread.                        ;

 Practice: Diet Formulation Strategies for Dairy Cows

Description: Diet formulation strategies have received new examination.  Alternative diet
 formulations to the NRC recommendations—notably the Cornell Net Carbohydrate and Protein
 model (CNCPS) (Sniffen et al.,  1992)—that are more complicated than the NRC
 recommendations have been developed and suggest feeding about 15 percent less protein to a
 herd at the same level of production for certain conditions (Kohn,  1996). Evaluations of the
 CNCPS model's performance have been mixed, and further research is needed.

Theoretically, protected amino acid supplements have the potential to be part of an important
 strategy in increasing the efficiency of protein use by dairy cows, thereby reducing N losses. If
amino acid supplements can be made effectively for dairy cows (avoiding rumen-associated
problems), they could replace large portions of a dairy cow's protein intake. In theory, protected
amino acid supplements could significantly reduce N intake and hence N levels in manure. Li
practice, the benefits of using protected amino acid supplements may not be as dramatic because
the need to balance diet formulations may create limitations.

                                          8-12

-------
 Application and Performance: This practice should be applicable to all dairy operations. Some
 evaluation of the alternative diet formulation suggested by the CNCPS implies a significant
 increase in milk production (from 24,100 pounds/cow per year to more than 26,000 pounds/cow
 per year) and a large reduction in N excretion (of about one-third) (Fox et al., 1995). More recent
 evaluations using two different large data sets (Kalscheur et al., 1997; Kohn et al., 1998) present
 mixed results, with the CNCPS performing better in some aspects and the NRC
 recommendations in others. Thus, results of the CNCPS evaluation should be considered
 preliminary.  In theory, the use of protected amino acid supplements has great potential to
 improve nutrient efficiency. A typical lactating cow is assumed to require 1.1 pounds per day of
 N intake; by  successfully substituting protected methionine and lysine for feed protein, this N
 intake and resulting manure N could be dramatically reduced (Dinn et al., 1996), but this research
 is preliminary.

 Advantages and Limitations: Alternative diet formulations could improve nutrient efficiency.
 Information on limitations is unknown at this time, and EPA is continuing research in this area.

 Operational Factors: The cost of preparing and storing multiple feed stuffs limits the use of this
 practice to the number of diets that the operator feels justifies the additional expense.  Additional
 research on this practice is needed.

 Demonstration Status: This practice is primarily at the research stage and has not become
 widespread.

 Practice: Animal Feed Grouping for Dairy Cows

 Description:  Grouping strategies offer another method of realizing gains in nutrient efficiency.
 When grouping does not occur and the whole herd receives the same diet, cows may receive
 suboptimal diets and nutrient export to manure may be greater.  Using grouping strategies to their
 greatest effect to improve nutrient efficiency would entail individualized diets. Feeding
 strategies already reviewed, such as the MUN concentration test, can be used in conjunction with
 grouping strategies or individual diets.

Application and Performance: This practice should be applicable to all dairy operations.
 Grouping strategies have been shown to reduce nutrient intakes and manure nutrients. When  all
the lactating cows are fed together according to current recommendations, they consume 7
percent more  N and P, and 10 percent more nutrients are excreted in manure, compared with the
individualized feeding strategy. Half of the gains of individualized diets could be achieved with
two groups (Dunlap et al., 1997).

Advantages and Limitations: This practice could improve nutrient efficiency. Information on
limitations is  unknown at this time.

Operational Factors: As noted under diet formulation strategies, the cost of preparing and
storing multiple feedstuffs limits the use of this practice to the number of diets that the operator
                                          8-13

-------
feels justifies the additional expense. Additional management input is also required in separating
the animals into groups.

Demonstration Status:  Dairy operations currently employ a range of grouping strategies (from
no grouping to individual diets) to improve the efficiency of feed nutrients.

Practice: Optimizing Crop Selection

Description: Optimizing crop selection is another potential strategy for reducing nutrient losses
in combination with dairy diets to meet annualized herd feed requirements with minimal nutrient
losses. In whole-farm simulation of various crop strategies (corn silage, alfalfa hay, and a 50:50
mixture) the 50:50 mixture was judged to have performed best (when evaluated by N losses per
unit of N in milk or meat) (Kohn et al., 1998).  Converting dairy operations from confined, to
pasture operations is also considered a strategy for reducing nutrient loss on a per cow or
operation basis. Kohn's model, however, found that a strategy of grazing versus confinement for
lactating cows produced higher N loss per unit of milk produced because the  decline in milk
production was greater than the decline'in manure nutrients (Kohn et al., 1998).

Application and Performance: This practice should be possible at operations  that have sufficient
land. In  simulation of crop selection strategies involving whole-farm effects, mixed alfalfa hay
and corn silage (50:50) was judged the best strategy for minimizing nutrient flows from the farm.
Nitrogen losses were minimized to 2.9 units for every unit of N in meat or milk, compared with a
loss of 3.5 units in the corn-based strategy, a 21 percent reduction (Kohn, 1999).  Phosphorus
accumulations did not tend to vary among the different strategies.

Advantages and Limitations: Optimal crop selection based on whole-farm effects suggests that
the strategy that was most nutrient efficient in terms of N loss per unit of N in meat and milk is
also the strategy that gains the most productivity from N; this strategy might,  therefore, be the
most cost-effective (Kohn et al., 1998). A grazing (versus confinement) strategy may or may not
be cost-effective depending on the structure of individual dairy operations.

Operational Factors: Unknown at this time.

Demonstration Status: This practice is primarily at the research stage and has not come into
widespread use.

Practice: Increasing Productivity

Description: The literature suggests that there are several feeding strategies that focus on
increasing productivity as a route to nutrient efficiency.  While the focus is on increased milk
production, an important associated benefit of these strategies is that they result in greater milk
production per unit of nutrient excreted. One approach involves exposing dairy cows to light for
longer daily periods of the day through the use of artificial lighting.  A longer daily photoperiod
(18 hours light/6 hours dark) increases milk yields relative to those of cows exposed to the
natural photoperiod (Dahl et al., 1996).

                                          8-14

-------
Application and Performance: This practice should be applicable at all operations that confine
their animals. The artificial lighting technology to extend the daily photoperiod of dairy cows to
18 hours a day has been shown to be effective in increasing the nutrient efficiency of the farm.
For an increase in milk production of 8 percent the herd's feed nutrients would be required to
increase by only 4.1 percent, and N and P excretions would rise by only 2.8 percent when
compared to a typical herd without artificial lighting (Dahl et al., 1996, 1998).

Advantages and Limitations: The artificial lighting technology is expected to be cost-effective.  It
is estimated that the initial investment in lighting can be recouped within 6 months.  One
observed advantage of milking three times a day rather than twice a day is that it reduces stress
on the herd (Erdman and Vamer, 1995). Because of the increased labor involved, the economic
advantage of milking three times a day is variable and dependent on the individual farm (Culotta
and Schmidt, 1988).

Operational Factors'. To use this practice many dairy operations would need to install and
operate additional lights.

Demonstration Status: This practice is primarily at the research stage and has not come into
widespread use.

8.1.2   Reduced Water Use and Water Content of Waste
This section presents practices that reduce the water content in the waste stream. The production
of a drier waste can be accomplished by three methods: (1) handling the waste in a dry form, (2)
reducing the use of water at the AFO, or (3) separating the solid fraction of the waste from the
liquid fraction.  Most poultry operations currently handle their waste in a dry form, and this
section generally does not apply to these operations.

Practice:  Dry Scrape Systems and the Retrofit of Wet Flush Systems

Description:  Scraper systems are a means of mechanically removing manure, and they can be
used to push manure through collection gutters and alleys similar to those used in flush systems.
For best results, scrapers should have a minimum depth of 4 inches in open gutters and 12 to 24
inches in underslat gutters (MWPS, 1993).

Retrofitting a wet flush system with a dry scrape system involves reconstructing the existing
manure handling equipment within a livestock housing structure. A scraper blade replaces
flowing water as the mechanism for removing manure from the floor of the structure.

hi flush systems, large volumes of water flow down a sloped surface, scour manure from the
concrete, and carry it to a manure storage facility.  There are three basic types of flush systems:
underslat gutters, narrow-open gutters, and  wide-open gutters or alleys. Underslat gutters are
used primarily in beef confinement buildings and swine facilities in which animals are housed on
slats to prevent disease transmission as a result of animals coming into contact with feces.
Narrow-open gutters are typically less than  4 feet wide and are used predominately in hog
                                          8-15

-------
 finishing buildings. Wide-open gutters or alleys are most often seen in dairy freestall barns,
 holding pens, and milking parlors.  The water used in a flush system can be either fresh or
 recycled from a lagoon or holding basin (Fulhage et al., 1993; MWPS, 1993).

 Application and Performance: Removing manure with a scraper is appropriate for semisolid and
 slurry manure, as well as drier solid manure. The flush system is an appropriate means of
 removal for both semisolid and slurry manure.  Retrofitting a flush system to a scraper system
 appears to be most feasible in underslat gutters and wide alleys. A major concern to be addressed
 is the discharge area of the scraper. Existing collection gutters, pumps, and pipes used in a flush
 system will likely be inadequate for handling the undiluted manure product.

 Replacing a flush system with a dry scrape system dramatically reduces the amount of water used
 in manure handling and also reduces the tonnage of manure by decreasing dilution with water.
 There are several options for storing manure from a scrape system, including prefabricated or
 formed storage tanks, from which contaminants are less likely to seep.

 Retrofitting a flush system with a scrape system will not treat or reduce pathogens, nutrients,
 metals, solids, growth hormones, or antibiotics. The concentrations of these components will
 actually increase with the decrease in water dilution.

 Advantages and Limitations: In a building with a scrape system, the manure removed from the
 livestock housing area is in slurry or semisolid form (depending on species) and no water need be
 added.  Compared with a wet flush system, the resulting manure product has a greater nutrient
 density and increased potential for further treatment and transportation to an area where the
 manure product is needed as a fertilizer. A large lagoon is usually necessary for storing and
 treating flush waste and water; handling manure hi a drier form, on the other hand, significantly
 decreases the volume  and tonnage of the final organic product. Although this is an important
 advantage when it is necessary to transport manure to areas where there is an increase in
 available land base, it can be a disadvantage in that an irrigation system would not be able to
 transport the  thicker slurry that results from the use of a scrape system.

 The greater volume  of contaminated water and waste created in a flush system generally dictates
 that storage in a large  lagoon is required. There are more options for storing manure removed
 with a scrape system.  These storage alternatives may be more suited to practices that reduce
 odors (e.g., storage tank covers), more appropriate for areas with karst terrain or high water
 tables, and more aesthetically desirable.

 The drawbacks of using a scrape system rather than a flush system include an increased labor
 requirement because more mechanical components need maintenance, a higher capital outlay for
 installation, an increased requirement for ventilation, and less cleanliness.  Using a flush  system
 to remove manure results in a cleaner and  drier surface with less residual manure and less in-
 house odor, thus creating a better environment for livestock. Furthermore, alleys can be flushed
without restricting animal access. As mentioned above, the discharge area of the scraper is a
                                          8-16

-------
concern. Existing pumps and pipes may be unable to handle the undiluted manure. Moreover, a
completely new manure storage structure might be needed (Vanderholm and Melvin, 1990).

Operational Factors: Both the scrape and flush systems have disadvantages when used in open
barns during winter months, but a scrape system is more likely to function properly at lower
temperatures.

If alleys are straight with continuous curbs, alley scrapers can usually be installed, but alley
lengths of up to 400 feet in dairy freestall bams may make installation of scraping systems
impractical. Scrapers work best when they can be installed in pairs of alleys so the chain or cable
can serve each and form a loop. It might be necessary to cut a groove into the concrete alley for
the chain or cable to travel in. The decision of whether to cut a channel or let the chain rest on  ;
the pavement is best left to the manufacturer. It should be noted that maintenance requirements
associated with the chain and cable will likely be high because of corrosion caused by continuous
contact with manure. Hydraulic scrape units that operate on a bar and ratcheting blade are also
available (Graves, 2000).

Demonstration Status:  The use of scrape systems and the practice of retrofitting a flush system
are not common in the livestock industry. Inquiries regarding the use of this practice have been
made to manure management specialists, agricultural engineers, and manufacturers of scraper
systems. Very few professionals indicated that they had any experience in the area or were aware
of the practice being used. Those professionals willing to comment on the implications of
retrofitting seemed to believe that it would be most feasible and advantageous on dairies (Graves,
2000; Jones, 2000; Lorimor,  2000; Shih, 2000).

Practice: Gravity Separation of Solids

Description:  Gravity settling, separation, or sedimentation is a simple means of removing solids
from liquid or slurry manure  by taking advantage of gravitational forces. The engineering
definition of a settling or sedimentation tank is any structure that is designed to retain process
wastewater at a horizontal flow rate less than the vertical velocity (settling rate) of the target
particles.

In agricultural applications, gravity settling is a primary clarification step to recover solids at a
desired location where they can be managed easily, thereby preventing those solids from
accumulating in a downstream  structure where they would be difficult to manage. A wide range
of gravity separation practices are used in agriculture including sand and rock traps, picket dams,
and gravity settling basins designed to retain 1 to 12 months' accumulation of solids.

Settling tanks can be cylindrical, rectangular, or square.  Agricultural settling tanks have been
made with wood, metal, concrete, and combinations of materials.  Some are earthen structures.
In agriculture, gravity separation is sometimes accomplished without a recognizable structure
including techniques such as a change in slope that allows particles to settle when the liquid
velocity drops.
                                          8-17

-------
 The critical design factor in sedimentation tanks is surface overflow rate, which is directly related
 to the settling velocity of particles in the wastewater (Loehr, 1977).  Faster settling velocities
 allow for increased surface overflow rates, while slower settling velocities require decreased
 overflow rates to remove settleable particles. In "ideal" settling, the settling velocity (Vs) of a
 particle is equal to that particle's horizontal velocity (VH), where

                            VH = Q/DW
                            Q is the flow through the tank
                            D is the tank depth
                            W is the tank width

 The ASAE has defined several types of gravity separation techniques (ASAE, 1998):

    •    Settling Channels: A continuous separation structure in which settling occurs over a
         defined distance in a relatively slow-moving manure flow.  Baffles and porous dams
         may be used to aid separation.by further slowing manure flow rates. Solids are removed
         mechanically once liquids are fully drained away.
    •    Settling Tank: A relatively short-term separation structure, smaller in size than a settling
         basin. The liquid is  allowed to fully drain away for solids removal by mechanical
         means.
    •    Settling Basin: A relatively long-term separation structure, larger in size than a settling
         tank. Solids are collected by mechanical means once the liquids  evaporate or have been
         drained away.
Application and Performance: Gravity separation is relatively common in the United States.
 Separation is used to reduce clogging of downstream treatment or handling facilities. Reduced
 clogging means improved lagoon function and better wastewater treatment.  Most beef feedlots
 in the Midwest and Great Plains use gravity separation ponds to collect solids from rainfall
 runoff, thus improving the function of runoff collection ponds. Gravity separation basins are used
 across the country on hog farms to reduce solids accumulation in tanks or lagoons they discharge
to. It is likely that more dairies with  flush systems use gravity settling for solids recovery rather
than mechanical separators to preserve lagoon capacity.

Table 8-2 shows the substantial range of treatment efficiencies for gravity settling of manure.
The performance of a gravity  separation basin depends on the design goal and ability of the
operator to maintain the system in design condition. Performance will vary with animal type,
animal feed, dilution water, flow rate, percent of capacity already filled with solids, temperature,
and biological activity. The data ranges in Table 8-2 may be explained in part by the time span
separating the studies.  More recent studies show reduced solids recovery from swine manure.
This may be partly due to the  fact that animal diets have changed over the years, with feed more
digestible and more finely ground these days. Further, feed is ground to different particle sizes
that have different settling characteristics, thus potentially affecting separation basin
performance. In addition, ruminants are fed materials that have different settling characteristics
than those fed to nonruminants.  Process variables such as overflow velocities are  seldom

                                    !      8-18

-------
reported in the literature, but they are important determinants of separation basin performance.
Extra water from processing or precipitation and already settled material will increase the flow
rate across a settling basin, reducing settling time and solids capture.  In many agricultural
settling basins, biological activity resuspends some settled materials which then pass through the
separator. At best, one can conclude from these data that gravity settling can recover in swine
wastes a larger percentage of total solids (TS), volatile solids (VS), and total N (TN) than another
separation technique reviewed for the practice, mechanical solid-liquid separation, that follows in
this chapter.

                Table 8-2. Performance of Gravity Separation Techniques
Recovered in Separated Solids, Percent

Swine (Moser et al., 1999)
Beef (Edwards et al.,1985; Lorimore et al.,
1995) and Dairy (Barker and Young, 1985)
TS
39-65
50-64
VS
45-65
NA
TN
23-50
32-84
P2<>S
17-50
20-80
K
16-28
18-34

COD
25-55
NA
 TS=Total solids; VS=volatile solids; TN=total nitrogen; P2Os=pyrophosphate; K=potassium, COD=chemical oxygen demand.
Because of short return times, pathogen reduction through settling is minimal; however, settling
might reduce worm egg counts.  No information is available on growth hormones in manure or
on how settling might affect growth hormones that may be found in manure. Degradation of
antibiotics usually hinders their detection in manure, and no information is available on the effect
of settling on antibiotics in manure.

Taiganides (1972) measured 80 to 90 percent recovery of copper, iron, zinc, and P with settled
swine solids. The study also reported that 60 to 75 percent of the sodium, K, and magnesium
settled and was recovered.

Advantages and Limitations: The main advantage of gravity settling is the relatively low cost to
remove solids from the waste stream. Recovering solids prevents the buildup of those solids in
ditches, pipelines, tanks, ponds,  and lagoons. Dairy solids consist mostly of fiber and can be
composted and recycled as cow-bedding material, or they can be composted and sold as a soil
amendment. Swine solids are finely textured, hard to compost aerobically,  and rapidly degraded
to odoriferous material if handled improperly. Beef solids collected from lot runoff can become
odoriferous if left in a separation basin, but they can be composted for sale to crop farms,
nurseries, or soil products companies.

Collected solids are a more concentrated source of nutrients than the separated liquid, resulting in
decreased hauling costs per ton of nutrient. The separated liquid has a reduced nutrient content
and can be applied to a smaller acreage than the original material.

Disadvantages of solids separation include the need to clean out the separator, the potential odor
emitted from the basin, the odor produced by solids removed from the basin, and attraction of
                                          8-19

-------
 insects and rodents to the separated solids. Additional costs are incurred when the solids and
 liquids from pig manure are managed separately.

 Operational Factors: Solids separators do not fimction if they are frozen or experience
 horizontal flow rates higher than the solids settling rate. Solids tend to separate better at warmer
 temperatures.

 Demonstration Status: Gravity separation is the most common solids separation technique in use
 in the United States.

 Practice: Mechanical Solid-Liquid Separation

 Description: Solids-liquid separation is used to recover solids prior to their entry into
 downstream liquid manure facilities.  Solids recovery reduces organic loading and potential
 accumulation of solids and improves the pumping characteristics of animal manure. Mechanical
 separation equipment is used to reduce the space required for separation, to produce a consistent
 separated solid product amenable to daily handling, to produce a liquid product that is easily
 pumped for spreading, or to recover specific particle sizes for other uses such as bedding.

 Mechanical separation equipment is readily available for animal wastes. Mechanical separators
 include static and vibrating screens, screw press separators, rotary strainers, vacuum filters,
 centrifugal separators, belt filter presses, and brushed screen/roller presses. Static screens are the
 most popular mechanical separators because they are inexpensive to buy, install, and operate.
 All other mechanical separation techniques are less common.

 Static screens are usually mounted above grade on a stand to allow solids accumulation beneath.
 Barn effluent is typically pumped up to!the screen, where the liquids pass through while the
 solids collect on the screen surface. Screens are typically inclined, causing accumulating  solids
 to slide down from the screen toward collection. There are multiple configurations with different
 screen designs, screen materials, screen opening spacing, influent distribution, post-use
 washdown, and additional pressing of separated solids.
                                    i
 Vibrating screens are flat or funnel-shaped screens supported on springs and oscillated by an
 eccentric drive. The vibrations cause the solids to move from the screen for collection.

 With screw presses, manure is pumped to the base of a turning open-flight auger that goes
through a screen tube made of welded wire, wedge wire, perforated metal, or woven screen
material. Solids collect on the screen, forming a matrix as the auger advances them.  A
tensioned opening restricts the flow of materials up the auger and out from the tube. The
retained material is squeezed by the auger against the screen tube and tensioned opening until it
overcomes the tension and exits. The matrix acts as a filter allowing the collection of finer
particles than are collected by other types of screens. The auger wrings liquid from the separated
solids by forcing material against the plug of material held by the tensioned opening and screen
tube.                               :
                                          8-20

-------
A rotary strainer is a slowly rotating, perforated cylinder mounted horizontally. Waste flows by
gravity onto the cylinder at one end, where solids are scraped from the cylinder surface and
moved to the exit end.  Liquids pass through the screen for collection and removal (AS AE,
1998). Vacuum filters  are horizontally mounted, rotating perforated cylinders with a cloth fiber
cover. A vacuum is used to draw liquids from the wastewater. Wastewater flows onto the
cylinder surface, liquids pass through the screen, and solids are scraped from the cloth at a
separation point (ASAE, 1998).

A centrifugal separator, or centrifuge, is a rapidly rotating device that uses centrifugal force to
separate manure liquids from solids. One type, a relatively low-speed design, uses a cylindrical
or conical screen that can be installed vertically or horizontally.  Manure is fed into one end, and
solids are then contained by the screen, scraped from it, and then discharged from the opposite
end. The liquid passes  through the screen. A second type, a higher-speed decanter, uses a
conical bowl in which centrifugal force causes the denser solids to migrate to the bowl exterior
where they are collected.  Less dense liquids are forced to the center for collection (ASAE,
1998).

A belt press is a roller and belt device in which two concentrically running belts are used to
squeeze the manure as it is deposited between the belts.  The belts pass over a  series of
spring-loaded rollers where liquids are squeezed out or through the belt, and remaining solids are
scraped off at a belt separation point (ASAE, 1998).

Brush screen presses are rectangular containers with four vertical sides and a bottom  consisting
of two half-cylindrical screens lying side by side to provide two stages of separation.  Within
each screen rotates a multiple-brush and roller assembly that sweeps the manure across the
screen.  Manure is pumped into one side of the separator. The liquids are forced through the
screen by the brush/roller while the solids are retained by the screen and pushed from the
separator on the opposite side (ASAE, 1998).

Application and Performance: Mechanical separation is used to reduce clogging of downstream
treatment or handling facilities.  The use of this practice to preserve lagoon capacity by
separating solids is relatively common among dairies using flush manure collection.  Reduced
clogging means improved lagoon function and better wastewater treatment. Mechanical
separation of solids from manure, however, is relatively rare because of the added costs.

Table 8-3 shows the range of treatment efficiencies for the mechanical separation of manure.
These systems do not perform as well as gravity separation, but they produce a more  consistent
product delivered as a solid for easy collection. Most manufacturers and owners are less
concerned about the percentage of recovery or the properties of the recovered material than they
are about the TS concentration of the separated solids. Performance will vary  with animal type,
animal feed, dilution water, flow rate, percent of capacity already full of solids, temperature, and
biological activity.  In general, pig manure has finer solids than cow manure, and recovery of pig
manure constituents is in the low end of the ranges in Table 8-3, whereas cow  manure constituent
recovery is in the upper portion of the range.
                                           8-21

-------
    Table 8-3. Summary of Expected Performance of Mechanical Separation Equipment.
Separation Technique
Stationary screen ;
Vibrating screen
Screw press
Centrifuge
Roller drum >
Belt press/screen
Recovered in Separated Solids, Percent
TS
10-25
10-20
20-30
40-60
20-30
40-60
vs .
10-25
10-20
20-30
40-60
20-30
40-60
TN
5-15
10-20
10-20
20-30
10-20
30-35
P205
10-20
0-15
20-30
25-70
10-15
15-20
COD
5-20
10-20
20-^0
30-70
10-25
30-40
    Source: Moser et al., 1999.

Pathogen reduction through mechanical separation is negligible. No information is available on
growth hormones in manure or on the effect of mechanical separation on growth hormones that
may be found in manure. Degradation of antibiotics usually hinders their detection in manure,
and no information is available on the effect of mechanical separation on antibiotics in manure.

No significant information was found on the effect of mechanical separation on heavy metal
content of either the solids or the liquids.  Work in gravity separation suggests that metals are
associated with fine particle sizes that Would pass with the liquids through mechanical
separation.                          ,

Static (stationary) screens are most commonly used for separating solids from dilute solutions
with solids concentrations of 5 percent or less. The more dilute the solution, the more likely that
discrete particles will be collected on the screen because there is less particle-versus-particle
interference. The dilute solution also washes finer particles from larger, retained particles and
through the screen.

Vibrating screens are used for separating solids from dilute solutions with solids concentrations
of 3 percent or less. Vibrating screens! will generally process more flow per unit of surface area
than static screens because the vibrating motion  moves the solids from the screen. Vibrating
screens are more sensitive than static screens to variations in solids content and wastewater flow
(Loehr, 1977).

Static screens and vibrating screens usually collect 10 to 15 percent of the TS from manure. An
owner generally selects a screen that will not easily clog, or blind (i.e.  one with larger screen
spacing), instead of choosing an optimized screen and feed pump to avoid both screen blinding,
When the slurry thickness changes, and the creation of a soggy solids pile.

Screw presses can handle thicker materials than  most separators, and are used to separate
manures that have between 0.5 and 12 percent TS. Chastain et al. (1998) noted, however, that a
screw press did not separate well unless the TS content of the waste was above 5 percent.
Because screw presses first allow the solids to form a matrix  and catch fine solids, the percent
solids recovery is generally greater than for other solids separators.  The screw press is designed
to produce drier solids (up to 35 percent). Solids recovery is  dependent on the screen tube
                                           8-22

-------
openings and the setting of the retaining tension. The higher the tension is set, the harder the
screw squeezes the separated material, and the more solids are forced out through the screen.
Tighter settings for drier solids may significantly affect the useful life of both auger and screen.

Belt presses are expensive, require a trained operator, operate best with chemical addition, and
cannot process rocks and bam parts found in manure. With or without chemical addition,
however, they can do a good job of separating 40 percent or more of the TS. Nevertheless, the
cost of belt presses, plus the extremely high cost of maintenance and the need for continuous
operator presence, makes their use problematic.

The primary advantage of centrifugation over other separators appears to be in the reduction of
total P, but centrifugation is also clearly more efficient than screening for removal of all
constituents. Managed by trained operators, centrifuges will recover over 60 percent of the TS.
Nevertheless, the large capital cost, the need for trained operators, and the high maintenance
costs have made this equipment impractical for farm use.

Advantages and Limitations: The main advantages of mechanical separation are the consistent
level of solids removal from the waste stream and the delivery of separated solids at a recovery
location. Recovering solids prevents the buildup of those solids in ditches, pipelines, tanks,
ponds, and lagoons. Dairy solids, which consist mostly of fiber, can be composted and recycled
as cow bedding material. Dairy solids have also been composted and sold as a soil amendment.
Swine solids are finely textured, hard to compost aerobically, and rapidly degraded to odoriferous
material if handled improperly.

Collected solids are a more concentrated source of nutrients than the separated liquid, resulting in
decreased hauling costs per ton of nutrient. The separated liquid has a reduced nutrient content
and can be applied to a smaller acreage than the original material.

Disadvantages of solids separation include operation and maintenance requirements, potential
odor production from collection basins and separated solids, and attraction of insects and rodents
to the separated solids. Additional costs are incurred when the solids and liquids in swine
manure are managed separately.

Operational Factors: Mechanical solids separators do not function if the manure or the face of
the machine is frozen, but they can operate under a wide variety of other conditions.

Demonstration Status: Mechanical solids separation is being used at thousands of dairies and
perhaps several hundred hog farms. Regarding specific technologies, static screens are most
commonly used, whereas vibrating screens and rotary strainers are seldom used on farms today.
Vacuum filters are infrequently used on farms because inorganic materials such as rocks and
metal bits tend to rip the filter fabric.  High capital and operating costs have limited farm use of
centrifugal separators. Brush screen presses may occasionally be found on farms, but the low
throughput rate has limited its use. Screw presses are in use at a few hundred dairy farms, but at
a very limited number of swine farms in the United States.
                                          8-23

-------
Practice: Two-Story Hog Buildings

Description: The two-story, High-RiseJ hog building design (Menke et al., 1996) integrates
manure collection, storage, and treatment in a single, enclosed facility. The building is designed
to pen approximately 1,000 head of hogs on the second floor of a two-story building, with a dry
manure collection and storage system on the first (ground) level.  The second floor features solid
side walls and totally slatted floors.  The manure falls through the slats to the first floor area,
which is covered with 12 to 18 inches of a dry bulking agent such as sawdust, oat or wheat straw,
com fodder, or shredded newspaper. The design includes sliding doors on the ground level to
allow for tractor and loader access.   |

The building's unique, two-fold ventilation system maintains superior air quality in the swine
holding area and dries the manure in the storage area (Figure 8-1). Clean air is pulled from the
ceiling through continuous baffle inlets  and is directed down over the swine vertically (with no
horizontal, pig-to-pig air movement). Air exits the swine holding area through the floor slats and
is pulled horizontally to the outside of the first-floor pit area by 14 computer-controlled
ventilation fans mounted on the pit walls. This system prevents air from the manure pit from
rising to the animal area. The second part of the ventilation system involves pumping air through
the manure by floor aeration.  PVC pipes with approximately 3,200 3/8-inch holes are installed
before the concrete floor is poured. Two large fans on either end of the building force air
through perforations in the concrete and into the composting mixture on the ground floor.   .
                                                   VENTtUWIGN fOSL FOR. AMMi
                                                   OQNHMiMKKTAKEA
                                                                    OPRC
                                                (SAME ŁLSY/ti7.$r A» fjeVBffl TtEBS)
                           Figure 8-1.  High-Rise Hog Building
                                          8-24

-------
Application and Performance: Management practices, swine care, and feeding are much the same
as with conventional confinement. The High Rise facility is distinctive because it incorporates
dry manure handling and storage into a traditional confinement production scenario. The system
dries the manure mixture and maintains an aerobic environment to facilitate the composting
process. Drying and homogeneity of the mixture are also facilitated by mixing with a tractor and
loader or skid-steer loader. Frequency of mixing varies from once per production cycle to
biweekly, depending on the saturation of bedding.  The semicomposted bedding mixture is
removed once per year and can be further composted, land applied, or sold. A typical 1,000-head
unit produces 500 tons of semicomposted product per year.

The High Rise facility is best suited for areas where there is limited local land base for manure
application; sandy, porous soils; limited water supply; or an existing market for compost or
partially composted material.

The aerobic decomposition that occurs within the pit results in a significant volume reduction in
the manure. In fact, initial trials have shown that loading the pit with 12 to 18 inches
(approximately 11 tons) of bedding results in only 2.5 to 3 feet of manure to be removed at the
end of 1 year.  This is estimated as a 22 percent reduction in manure volume and a 66 percent
reduction in manure tonnage (Envirologic, 1999; Mescher, 1999). These figures are based on a
final product with 63 percent moisture. When compared with liquid/slurry hog manure that is
approximately 90 percent moisture, this presents a great advantage in areas where there is a lack
of local land base and manure must be transported more than 3 to 4 miles to alternative areas for
application. Manure with 63 percent moisture is considered to be in dry form and can be hauled
in a semi truck with an open trailer rather than in a liquid tanker pulled by a tractor.

The aerobic decomposition and drying that reduce the volume and tonnage of the final organic
product do not result hi a reduction of the overall nutrient content.  In fact, with the exception of
N and sulfur (some of which volatilizes) nutrients will be more concentrated in the resulting
semicomposted product.  The semicomposted manure is four times more concentrated than liquid
manure from treatment lagoons.

The High-Rise facility incorporates both manure treatment and storage in a completely
aboveground handling system.  In addition, the ground-level manure storage area is enclosed in
poured concrete. This is especially advantageous in sites with porous soils or fragmented
bedrock. Such locations are unfit or, at the least, potentially dangerous areas for earthen basin
and lagoon construction due to concerns regarding ground water contamination.  Furthermore,
belowground concrete pits have an increased potential for ground water pollution if leaking
occurs in a region with porous soils or fragmented bedrock. The aboveground concrete manure
storage of the High-Rise building allows visual monitoring for leakage.

Information is not currently available on the reduction of pathogens, heavy metals, growth
hormones, or antibiotics in the manure product as it is removed from the High-Rise facility.
However, research on some of these topics is currently underway.  Based on the composition of
the product, temperature readings within the manure pack, and knowledge of the composting
                                          8-25

-------
 process, several speculations can be made.  Destruction of pathogens in the composting process
 is a result of time and temperature.  The higher the temperature within the manure pack, the less
 time it takes to eliminate pathogens, hi general, the temperature within the manure pack needs to
 exceed the body temperature of the animal and pathogen destruction is most effective at 120 °F
 or higher. Temperature readings taken in the manure pack in the High-Rise facility ranged from
 only 45 to 78 °F (Keener, 1999). The predominant reason for the manure packs not reaching a
 high enough temperature is the continuous aeration provided. It is unlikely that there is a
 significant reduction of pathogens at this temperature.  There may be some decrease in pathogen
 numbers due to the length of time (up to one year) the manure pack remains in the building.
 Further composting of the manure pack once it is removed from the High-Rise structure would
 allow the product to reach temperatures high enough for complete pathogen destruction.

 The composting process has no effect on the quantity of heavy metals in the manure.  Further,
 because of the decrease in volume and tonnage of the manure, heavy metals will be more
 concentrated.  Composting does, however, influence the bioavailability of the metals, causing
 them to be less mobile. The extent to which the mobility of heavy metals is decreased in the
 semicomposted product removed from the  High-Rise facility is unknown.
                                   i
 The degree to which growth hormones and antibiotics degrade during the composting process is
 unknown and is not widely studied.

 Designers of the High-Rise facility claim a savings of 1.8 million gallons of water per 1,000 head
 of hogs annually when compared with a conventional pull-plug flush unit. This conservation
 results from using wet-dry feeders and jeliminating the addition of water for manure removal and
 handling.  A reduction in the amount of water used in the system results in less waste product to
 be handled.

Advantages and Limitations: As explained above, the dry manure handling system used in the
 High-Rise facility significantly decreases the volume and tonnage of the final organic product.
 This is an important advantage when transportation to areas where there is an increased land base
 for manure application is necessary.  However, because the semicomposted product has greater
 concentrations of macronutrients, with the possible exception of N (which might volatilize), the
number of acres needed to correctly apply the manure does not decrease. N volatilization  during
the composting process creates the possibility of upsetting the nutrient balance in manure.  For
 example, if manure was applied to land with the application rate based on the amount of N in the
manure, P and potassium could be applied at rates 10 times the recommended rate. This problem
is eliminated if application rates are based on the P content of manure. Additional commercial N
application might be necessary depending on the crop being produced.

Data from an initial trial show that the manure product removed from the High-Rise facility has a
fertilizer value of about $19 per ton at 60.7 percent moisture, with an organic matter content of
29.8 percent. Secondary studies show that the manure mixture is of adequate content for further
composting, which is necessary to sell manure commercially. These factors create an increased
                                          8-26

-------
opportunity to broker manure and possibly provide supplemental income to the swine production
enterprise (Envirologic, 2000).

Observations and data resulting from the first year of study in the High-Rise structure indicate
that there is a significant decrease in odor using the dry manure handling system. NH3
measurements on the swine housing level averaged from 0 to 8 ppm, with an overall mean of 4.3
ppm and spikes of up to 12 ppm in times of decreased ventilation (winter months).  In a
conventional confinement building with a deep, liquid pit, ammonia levels of 20 to 30 ppm are
commonplace.  NH3 levels on the ground level of the High-Rise building vary inversely with
building ventilation and have exceeded a short-term exposure rate of 50 ppm in the winter. It
must be realized, however, that the basement level is not occupied during normal conditions.
Large sliding doors are opened when the facility is cleaned to let in .fresh air and facilitate the
entry of a tractor/loader. NH3 levels external to the outside exhaust fans averaged 23.3 ppm, but
quickly dissipated (Keener et al., 1999).

No hydrogen sulfide gas was detected in the swine holding area. Levels on the first floor were
minimal (National Hog Farmer, 2000). Decreased levels of these potentially toxic gases improve
air quality and prevent excessive corrosion in the building.

Producers who plan to build a High-Rise facility can expect a 15 percent increase hi capital
outlay compared to a 1,000-head, tunnel ventilation finisher with an 8-foot-deep pit. Cost
projections prepared for the company that manufactures the High-Rise building indicate that
reduced cost for manure handling and transportation offsets the additional building cost
(Envirologic, 2000).  Solid manure handling is less automated than many liquid manure handling
systems. Although solid systems have lower capital costs, labor costs are higher than those
associated with liquid systems. Labor costs are expected to be less than traditional scrape and
haul systems because the slatted floors eliminate the need to scrape animal areas frequently.

In addition to the increased capital requirement, the cost of utilities is also elevated. Additional
energy is needed to power the many ventilation fans. Electricity usage averages roughly twice
that of a naturally ventilated confinement barn.  Accounting for all of these factors, the cost of
production in a  High-Rise facility is approximately $ 180 per pig. This is 28 to 30 percent greater
than the cost of production in a confinement structure with a shallow pit, and 15 to 18 percent
greater than in a more conventional deep pit (Mescher et al., 1999).

The ventilation  system that pumps air over the swine holding area keeps the swine and slats dry,
resulting in cleaner swine and fewer injuries. Also, there is no flow of air from pig to pig, which
helps prevent airborne transmission of disease.  The combination of decreased moisture and
exceptional air quality leads to improved animal health and decreased medication costs.

Data from a single High-Rise facility show that animal performance was the same or better than
that of conventional facilities with respect to average daily gain, days to market, feed conversion,
mortality, and the number of culls. In fact, the decreased number of days to market translates
into 0.2 to 0.3 more production cycles per year, creating potential to increase profits significantly.
                                          8-27

-------
 It is speculated that improvement in performance measures is due to better air quality
 (Envirologic, 2000).

 Leachate from the manure mixture appears to be minimal if mixing is done on a regular basis.
 Rodents in the basement pit might become a problem if control measures are not taken.

 Operational Factors: Artificial climate control and ventilation in the building make the High-
 Rise building appropriate in most  climates . It is estimated that air in the building is exchanged
 every 10 to  15 seconds, providing an environment of uniform temperature and humidity
 throughout the building year-round. Over a 1-year span, the mean air temperature taken from
 several test areas within the building varied only ± 2 °F from the desired temperature.  There
 were, however, differences of up to 10;°F between testing areas on the swine floor (Stowell et al.,
 1999). The building is equipped with a standard sprinkling system for use in hot summer
 months.

 Demonstration Status: The High-Rise facility technology has been tested with finisher pigs since
 1998 at a single research facility in Darke County, Ohio. The vendor has built four commercial
 grow-finish buildings since that time and they are currently in production in west central Ohio.
 The vendor is also developing prototypes for other phases of swine production using the same
 manure handling system.

 Practice: Hoop Structures

 Description: Hoop  structures are low-cost, Quonset-shaped swine shelters with no form of
 artificial climate control. Wooden or concrete sidewalls 4 to 6 feet tall are covered with an
 ultraviolet and moisture-resistant, polyethylene fabric tarp supported by 12- to 16-gauge tubular
 steel hoops or steel truss arches placed 4 to 6 feet apart. Hoop structures with a diameter greater
 than 35 feet generally have trusses rather than the tubing used on narrower hoops.  Some
 companies market hoops as wide as 75'feet. Tarps are affixed to the hoops using ropes or
 winches and nylon straps.

 Generally, the majority of the floor area is earthen,  with approximately one-third of the south end
 of the building concreted and used as a feeding area. The feeding area is designed with a slight
 slope (1 to 2 percent) to the outside of the building in case of a waterline break, and is raised 12
 to 19 inches above the earthen floor to keep the feeding area clear of bedding material.
 Approximately 150 to 200 finisher hogs or up to 60 head of sows are grouped together  in one
 large, deep-bedded pen.  The building Should be designed so that the group housing area
provides approximately 12 square feet of space per finisher pig, or 27 square feet per sow.

Hoop structures are considered a new and viable alternative for housing gestational sows and
grow-finish pigs.  Gestational housing systems being used in the United States are modeled after
 conventional Swedish style, deep-bedded gestation and breeding housing.  In Sweden  today,
deep-bedded housing systems with individual feeding stalls are the conventional method of dry
sow housing. There are  feeding stalls for each sow, with connecting rear gates and individually
opening front gates,  a deep-bedded, area for the group-housed sows, and bedded boar pens. The

                                          8-28

-------
stalls are raised approximately 16 inches above the ground to accommodate the deep-bedding
pack in the center.

In each production scenario, plentiful amounts of high quality bedding are applied to the earthen
portion of the structure, creating a bed approximately 12 to 18 inches deep. The heavy bedding
absorbs animal manure to produce a solid waste product. Additional bedding is added
continuously throughout the production cycle. Fresh bedding keeps the bed surface clean and
free of pathogens and sustains aerobic decomposition. Aerobic decomposition within the bedding
pack generates heat and elevates the effective temperature hi the unheated hoop structure,
improving animal comfort in winter conditions.

Application and Performance:  The hoop structure originated in the prairie provinces of Canada.
Recently, interest in this type of structure has increased in Iowa and other states in the Midwest.
Swine production in this type of facility is most prevalent for finishing operations, but is also
used to house dry gestational sows.  Other possible uses in swine production include gilt
development, isolation facilities, housing for light pigs, breeding barns, farrowing, and
segregated, early weaning swine development. A hoop structure is an appropriate alternative for
moderately sized operations. An "all in, all out" production strategy  must be used with finishing
pigs.

The manure from hoop structures is removed as a solid with the bedding pack.  The high volume
of bedding used creates an increased volume of waste to be removed. Typically, a front-wheel
assist tractor with a grapple fork attachment on the front-end loader is required to clean out the
bedding pack. In a finishing production system, the bedding pack is removed at market time,
usually two to three times per year.  In gestational  sow housing, slightly less bedding is required,
and the bedding pack is typically removed one to four times a year depending on the stocking
density and quality of bedding.

A limited amount of information is  available on the manure characteristics, both inside the hoop
and during consequent manure management activities. The manure content within the pack is
highly variable. Dunging areas are  quickly established when swine are introduced into the deep-
bedded structure.  These areas contain a majority of the nutrients within the pack. Results of an
Iowa State University study are shown in Table 8-4.  Samples were taken on a grid system at nine
areas throughout the bedding pack (three samples along the west side of the building, three along
the center, three along the east).

Temperatures throughout the bedding pack also varied greatly.  Bedding temperature was highest
in the sleeping/resting area where the moisture content is approximately 50 percent.  Bedding
temperatures were lowest in the wet dunging areas that contain 60 to 70 percent moisture.  The
lower temperatures were likely caused by anaerobic conditions that prevent oxidation of carbon
and, therefore, reduce the amount of heat generated (Richard et al., 1997; and Richard and Smits,
1998).                                ;
                                          8-29

-------
                 Table 8-4. Examples of Bedding Nutrients Concentrations
Bedding Nutrients by Location3
Site
Westl
West2
WestS
Centerl
Center2
Centers
Eastl
East2
Easts
Mean
Standard Deviation
Total Moisture
(percent)
73.7
75.2
68.5
67.4
22.9
27.6
68.5
30.6
73.5
56.4
22.3
Total Nitrogen
Ob/ton)
20
22
22
14
11
22
29
36
16
21.3
7.6
Phosphorus
(Ib/ton)
21
22
31
20
21
17
24
40
13
23.2
7.6

Potassium
(Ib/ton)
12
12
16
26
37
26
29
51
15
24.8
13
 " Adapted from Richard et al., 1997.


Richard et al. and Richard and Smits (1997, 1998) also examined the loss of N in the hoop
structure bedding pack.  One-third of the N was lost while'swine were housed in the structure.
This loss was hypothesized to be caused largely by NH3 volatilization and possibly from nitrate
leaching.  An additional 10 percent reduction in N occurred as the bedding pack was removed
from the hoop. This loss was also hypothesized as being a result of NH3 volatilization.
Additional N was lost during the composting process, with the amount lost corresponding to the
specific composting process  demonstrated. In general, the composting process that resulted in
the greatest reduction of volume also had the greatest N loss (Richard and Smits, 1998).

N leaching potential was examined in yet another study at Iowa State University. The hoop
facility used in this trial was  located on hard-packed soil with a high clay-content. Following one
production cycle, the surface NO3-N was 5.5 times greater than the initial level. There was no
significant change  in NO3-N at other depths ranging to  5 feet. Following a second production
cycle, the NO3-N levels at all depths to| 5 feet increased three times compared with those taken
following the initial production cycle (Richard et al., 1997). Nitrate was the only form of N
tested.                              i
                                    [                   '                      '
The Medina Research Centre in Australia studied N and P accumulation in the soil beneath hoop
structures. The hoop structures were constructed on Swan Coastal Plain sandy soils. Two trials
were conducted in  the same location approximately 6 weeks apart. In each trial there was no
increase in the concentration of extractable P in the soil profile when compared with baseline
data (Jeffery, 1996).                  ;

Advantages and Limitations: The quality of the work environment in a deep-bedded hoop
structure is generally good. There is no liquid manure and therefore less odor than with
conventional systems. The building structure and recommended orientation provide for a large
                                          8-30

-------
volume of naturally ventilated air. Also, because the manure is solid, storage requirements are
minimized.

The high degree of variability within the bedding pack makes it difficult to predict nutrient
content.  Some areas can have a high fertilizer value, whereas others have high carbon and low
N content. The latter can lead to N immobilization and result in crop stress if applied during or
immediately prior to the growing season. For these reasons, it is desirable to mix the bedding
pack to achieve a higher degree of uniformity. Some mixing will occur during the removal and
storage of the manure. Treatments that allow for additional mixing, such as composting in
windrows, appear to offer considerable benefits. Initial studies at Iowa State University found
that composting improved uniformity, and provided for a 14 to 23 percent reduction in moisture
and a 24 to 45 percent reduction in volume (Richard and Smits, 1998). It should be noted that
bedding from gestational sow facilities is typically drier than that from finishing facilities. The
lack of moisture is likely to limit the extent of composting unless additional manure or moisture
is added.

Trials comparing a conventional confinement system to hoop structures have been performed at
Iowa State University. The swine raised in the hoop structure experienced similar performance.
Specifically, there was a low level of swine mortality (2.6 to 2.7 percent), comparable  and
acceptable average daily gain, and a slightly poorer feed efficiency (8 to 10 percent) for swine
raised in the winter months (Honeyman et al., 1999). Poor feed efficiency in winter months is
due to an increased nutrient/energy requirement to maintain body heat. These findings supported
an earlier study by the University of Manitoba that found swine finished in hoop structures to
have excellent health, similar rates of gain, poorer feed efficiency in colder months (10 to 20
percent), low swine mortality, and similar days to market (Conner, 1993). Moreover, similar
results were found in a South Dakota State University study. Several researchers have identified
proper nutrition for swine raised in hoops as an area needing further research.

With respect to housing dry gestational sows, providing a lockable feeding area for each sow
affords similar advantages to those of traditional gestation crates. Producers have the ability to
keep feed intake even, eliminate  competition for feed, administer treatments and medication
effectively, lock sows in for cleaning and bedding, and sort and transfer sows for breeding or
farrowing through the front gates. Furthermore, group housing stimulates estrus (the period of
time within a female's reproductive cycle in which she will stand to be bred), reduces  stress to
the sow, and alleviates many foot and leg problems common in sows. Fighting is minimized by
the use of feeding stalls and introducing new sows at optimal times, such as farrowing.
Concreting the deep-bedded section to prevent sows from rooting is an option, but it increases
capital outlay (Honeyman et al., 1997).

Iowa State University has conducted demonstration trials on gestating sows in deep-bedded hoop
structures. Conception rate, farrowing rate, number of swine bom alive, and birth weight in
groups gestated in the hoop structure were all excellent.  The sow performance results indicate
that hoop structures are an exceptional environment for gestating sows.  It must be noted,
however, that sow groups were not mixed and new sows were not introduced during the trial.
                                          8-31

-------
 With respect to breeding, hot weather is of greater concern than cold weather. Excessive high
 temperatures can be detrimental to breeding performance. Boars exposed to elevated effective
 temperatures will experience poor semen quality for a 6- to 8-week period that begins 2 to 3
 weeks following exposure. Sows are more tolerant to high temperatures, except during the first 2
 to 3 weeks of gestation and the final 2 weeks prior to farrowing. Litter size and birth weight can
 be severely altered during these periods (Honeyman et al., 1997).

 Iowa State University has also conducted preliminary trials with farrow-to-finish production,
 early weaned pigs, and wean-to-finish production. These studies concluded that, although each
 may be a viable alternative, many details must still be worked out before they all become
 successful consistently.

 The hoop system offers several benefits with respect to animal welfare and behavior. Honeyman
 et al. (1997) stated that one of the most extreme stresses in livestock production results when an
 animal is prevented from controlling various aspects of its environment.  This lack of control is
 apparent in many of today's conventional production systems and is responsible for an unduly
 high level of stress that affects general health, reproduction, and welfare. Production in a deep-
 bedded hoop structure allows each animal to control its own microenvironment by burrowing
 down into the bedding, huddling, or lying on top.  Deep-bedded hoops also allow swine to root
 through and ingest some bedding at will. This is especially advantageous in dry-sow gestational
 housing. The behavior serves two purposes. First, swine have an inherent drive to root. Being
 able to do so prevents frustration, boredom, and, hence, aggression. Second, consumption of
 bedding material quiets any hunger the pig may feel.  Increased genetic evolution has led swine
 to have an increased drive to eat. Gestating sows  are typically fed a limited amount of feed,
 satisfying what is estimated to be only 30 to 50 percent of their appetite. Stereotypic behavior is
 indicative of a suboptimal environment and will ultimately have implications on an animal's
 general health and production.  No evidence of Stereotypic behavior is cited in any of the deep-
 bedded system studies (Honeyman et al., 1997).

 The initial capital outlay for hoop structures is about 30 percent less than the capital requirement
 associated with a typical double-curtain swine finishing building (Harmon and Honeyman,
 1997). Additionally, hoop structures are highly versatile and have many alternative uses (e.g.,
 equipment storage) if production capacity is not needed.  Production in hoop structures requires a
 greater amount of feed and large volumes of high  quality bedding, however.  Bedding is the key
 to successful production in hoop structures. These differences make the cost of production
 comparable to that of a traditional confinement setting.

Hoop structures are easy to construct with on-farm labor. In Iowa State University trials, hoop
structures show no visible signs of deterioration after 4 years (Honeyman, 1995).  The average
useful life of a hoop structure is estimated to be 10 years (Brumm, 1997).

The amount of bedding used in the studies averages 200 pounds per finisher pig in each
production cycle, with a greater amount of bedding being used in the winter months. It is
estimated that approximately 1,800 pounds of high quality bedding per gestational sow are
                                          8-32

-------
needed each year (Halverson, 1998). The amount of labor is directly proportional to the amount
of bedding and ranges from 0.3 to 0.6 hours per pig (Richard et al., 1997). A survey distributed
to producers of finishing pigs in hoop structures and compiled by Iowa State University found
actual labor requirements to average 0.25 hours per pig (Duffy and Honeyman, 1999).  Labor
requirements rely on many factors, including farm size, level of automation, and experience with
the production system. Based on the trials conducted at each university, the labor requirement
was considered to be reasonable and competitive with other finishing systems (Conner, 19.93;
Richard et al.,  1997).

The large amount of bedding required in hoop structure production can limit its feasibility for
some producers.  Many types of bedding can be used. Corn stalks, oat straw, wheat straw, bean
stalks, wood shavings, and shredded paper have all been used with some success, although
shredded corn stalks are the most common. Selection of the appropriate bedding type is based on
many factors.  First, the availability of bedding must be considered. This is specific to
geographical area but may also be limited by climate. An early snow or a wet fall could prevent
stalk baling. Second, in several areas of the Midwest, federally mandated conservation plans on
highly erodible land require residue to be left on the land. In such cases, harvesting corn and
bean stalks may not be appropriate. Finally, bedding storage is  an important consideration.
Generally, bedding baled in the fall and used by the spring can be stored outdoors. Bedding
needed for spring and summer use, however must be stored undercover in a well-drained area to
avoid loss in quality and quantity.

Internal parasite control must be aggressive because swine are continually in contact with their
feces. Several of the Iowa State University studies note that flies are a potential problem for
hoop houses in warm months. Furthermore, rodent and bird problems may be difficult to control.
Also, in the summer, incidental composting within the bedding pack can create unwelcome heat
and may lessen the animals' comfort. It has not been determined whether there is severe
potential for disease and parasite buildup in the soil beneath the hoop structure.

Operational Factors: Production in a hoop structure relies on bedding, intensive management,
and keen husbandry for success. Climate control is a major factor in determining the feasibility of
deep-bedded hoop structures. The recommended orientation of the buildings is north to south
(depending on geographical area), to take advantage of the prevailing summer winds. Air enters
the facility through spaces between the sidewall and the tarp and at the ends. Warm, moist air
moves toward the top of the arch and is carried out the north end by natural currents. Various
end structures are available that supply adjustable levels of ventilation. In the winter months, the
north end is generally closed and the south is  at least partially opened.  If the ends are closed too
tightly, high levels of humidity can become a problem. On average, the inside air temperature in
the winter is only 5 to 8 °F warmer than outside temperatures.  This is different from the effective
temperature which the swine can alter by burrowing into the deep bedding.  In summer months,
both ends are left open. Ultraviolet resistant tarp and sprinklers inside" the structure help to
control the temperature within the structure.  Air temperature in the summer averages 2 to 4 °F
lower than outside temperature (Harmon and  Xin, 1997).  The length of the hoop structure also
                                          8-33

-------
 has an effect on air temperature because of the rate of air exchange.  Wider and longer hoop
 structures often have ridge vents to improve ventilation.

 Demonstration Status: Hoop structures have been used successfully in the United States for
 housing finishing pigs and dry gestational sows. Grow-finish production is the most common
 use for hoop structures in swine production. Recently, there has been an increased interest in this
 type of production system in the Midwest, including the states of Iowa, Illinois, Minnesota,
 Nebraska, and South Dakota. It is estimated that more than 1,500 hoop structures have been
 built for swine production in Iowa since 1996 (Honeyman, 1999). Furthermore, initial
 demonstrations have been conducted with early weaned pigs and in farrow-to-finish production.
 Hoop structures are being used to house swine hi at least seven Canadian provinces. Currently,
 more than 400 hoop structures are used for swine finishing in Manitoba (Conner,  1994).

 Practice: Rotational Grazing

 Description: Intensive rotational grazing is known by many terms, including intensive-grazing
 management, short duration grazing, savory grazing, controlled grazing management, and voisin-
 grazing management (Murphy, 1998).  [This practice involves rotating grazing cattle (both beef
 and dairy) among several pasture subunits or paddocks to obtain maximum efficiency of the
 pasture land. Dairy cows managed under this system spend all of their time not associated with
 milking out on the paddocks during the grazing season and beef cattle spend all of their time out
 on the paddocks during the grazing season. Intensive rotational grazing is rarely, if ever, used at
 swine and poultry operations. Nonruminants such as swine and poultry are typically raised in
 confinement because of the large number of animals produced and the need for supplemental
 feed when they are raised on pastures.

Application and Performance: Rotational grazing is applicable to all beef and dairy operations
that have sufficient land.  During intensive rotational grazing, each paddock is grazed quickly (1
 or 2 days) and then allowed to regrow, jingrazed, until ready for another grazing. The recovery
period depends on the forage type, the forage growth rate, and the climate, and may vary from 10
to 60 days (USDA, 1997). This practice is labor- and land-intensive as cows  must be moved
daily to new paddocks. All paddocks used in this system require fencing and a sufficient water
supply.  Many operations using intensive rotational grazing move their fencing from one paddock
to another and have a water system (i.e.;, pump and tank) installed in each predefined paddock
area.                                i

The number of required paddocks is determined by the grazing and recovery periods for the
forage. For example, if a pasture-type paddock is grazed for 1 day and recovers for 21 days, 22
paddocks are needed (USDA, 1997). The total amount of land required depends on a number of
factors including the dry matter content of the pasture forage, use of supplemental feed, and the
number of head requiring grazing. Generally, this averages out to one or two head per acre of
pasture land for both beef and dairy cattle (Hannawale, 2000).  Successful intensive rotational
grazing, however, requires thorough planning and constant monitoring.  All paddocks should be
monitored once a week. High-producing milk cows (those producing over 80 Ibs/day) need a
                                          8-34

-------
 large forage allowance to maintain a high level of intake.  Therefore, they need to graze in
 pastures that have sufficient available forage or be fed stored feed (USDA, 1997). It is also
 expected that beef cattle would need sufficient forage or stored feed to achieve expected weight
 gains.

 The climate in many regions is not suitable for year round rotational grazing. Operations in these
 regions must maintain barns or dry lots for the cows when they are not being grazed or outwinter
 their cows. Outwintering is the practice of managing cows outside during the winter months.
 This is not a common practice because farmers must provide additional feed as cows expend
 more energy outside in the winter, provide windbreaks for cattle, conduct more frequent and
 diligent health checks on the cows, and keep the cows clean and dry so that they can stay warm
 (CIAS, 2000).

 There are two basic management approaches to outwintering: rotation through paddocks and
 sacrifice paddocks.  Some farms use a combination of these practices to manage their cows
 during the winter. During winter months, farmers may rotate cattle, hay, and round bale feeders
 throughout the paddocks. The main differences between this approach and standard rotational
 grazing practices are that the cows are not rotated as often and supplemental feed is provided to
 the animals. Deep snow, however, can cause problems for farmers rotating their animals in the
 winter because it limits the mobility of round bale feeders. The outwintering practice of
 "sacrifice paddocks" consists of managing animals in one pasture during the entire winter. There
 are several disadvantages and advantages associated with this practice. If the paddock surface is
 not frozen during the entire winter, compaction, plugging (tearing up of the soil), and puddling
 can occur. Due to the large amounts of manure deposited in these paddocks during the winter,
 the sacrificial paddocks must be renovated in the spring. This spring renovation may consist of
 dragging or scraping the paddocks to remove excess  manure and then seeding to reestablish a
 vegetative cover. Some farmers place sacrifice paddocks strategically in areas where an
 undesirable plant grows or where they plan to reseed the pasture or cultivate for a crop (CIAS,
 2000).                                 :

 EPA conducted an analysis to estimate the manure reduction achievable with intensive rotational
 grazing at model beef and dairy operations (ERG, 2000a). Outwintering was not assumed to
 occur in this analysis. During the months that the cows from the model dairies and feedlots were
 assumed not to be on pasture, the amount of manure  that must be managed is assumed to be
 equal to the amount produced at equal size confined  dairy operations and beef feedlots. Table 8-
 5 presents the estimated range of months that intensive rotational grazing systems might be used
 at dairy farms and beef feedlots located in each of the five geographical regions included in this
 analysis.

 It is estimated that approximately 15 percent of the manure generated by dairy cows is excreted
 in the milking center and 85 percent is excreted in the housing areas (i.e., barns, dry lots,
pastures) (USDA NRCS, 1996).  It is also estimated that 23 to 28 percent of the wastewater
volume generated from a flushing dairy operation comes from the milking center and 72 to 77
                                          8-35

-------
           Table 8-5. Amount of Time That Grazing Systems May Be Used at
                 Dairy Farms and Beef Feedlots, by Geographic Region.
                   Region
                                                 Annual Use of Grazing Systems (months)
                   Pacific
                                                                3-12
                   Central
                                                                3-12
                   Midwest
                                                                3-6
                 Mid-Atlantic
                                                                3-9
                    South
                                                                9-12
percent (median of 75 percent) of the wastewater comes from flushing the barns (USEPA, 2000).
All wastewater from a hose-and-scrape dairy system is generated at the milking center. Thus,
dairies using intensive rotational grazing systems would manage 85 percent less solid manure
and approximately 75 percent less wastewater (for flushing operations) than confined systems,
during the months that the cows are on pasture.

All of the manure generated at beef feedlots using intensive rotational grazing systems would be
excreted on the pasture during the months that the cows are grazing.  No significant amounts of
process wastewater are  generated at beef feedlots. Thus, beef feedlots using intensive rotational
grazing systems would  manage 100 percent less solid waste during the months that the cows are
on pasture.

Two model farm sizes were analyzed for dairy farms, assuming an average size of 454 (for
medium-sized dairies) and 1,419 milking cows (for large-sized dairies).  Both of these size
groups are significantly larger than the 100 head or smaller operations expected to use intensive
rotational grazing systems. Therefore, the specific model farm calculations are viewed as
significantly overestimating the amount of collected manure and wastewater that could be
reduced at typical intensive rotational grazing operations versus confined operations. For this
reason, estimates on collected manure and wastewater reduction are presented on a per-head
basis and model farm basis for the two dairy farm types (flushing, hose and scrape) included in
EPA's ELG analysis for each of the five geographical regions.

Three model farm sizes were analyzed for beef feedlots, assuming an average size of 844 (for
medium-sized feedlots), 2,628 (for large-sized feedlots), and 43,805 beef slaughter steer (for very
large feedlots). Due to the slow weight gain associated with grazing operations for beef cattle
and required number of pasture acres, beef feedlots of these sizes are not expected to use
intensive rotational grazing systems. However, estimates on collected manure reductions are
presented on a per-head basis and model farm basis for the three sizes of beef feedlots included
in EPA's ELG analysis for each of the five geographical regions.

Table 8-6 presents the expected reduction in collected manure and wastewater for flush and hose-
and-scrape dairy operations, by head, and by region.  Table 8-7 presents the expected reduction in
collected manure and wastewater for dairy operations by model farm, and by region.  Table 8-8
presents the expected reduction in collected manure for beef feedlots, by head, and by region.
                                           8-36

-------
Table 8-9 presents the expected reduction in collected manure for beef feedlots by model farm,
and by region.

   Table 8-6. Expected Reduction in Collected Solid Manure and Wastewater at Dairies
                     Using Intensive Rotational Grazing, per Head.
Farm Type
Flush
Hose and Scrape
Region
Pacific
Central
Midwest
Mid-Atlantic
South
' Pacific
Central
Midwest
Mid-Atlantic
South
Manure Reduction
(Ib/yr/head)
10,200-41,500
10,200-41,500
10,200-20,500
10,200-30,700
30,700-41,500
10,200-41,500
10,200-41,500
10,200-20,500
10,200-30,700
30,700-41,500
Wastewater Reduction
(gal/yr/head)
9,000-36,500
9,000-36,500
9,000-18,000
9,000-27,000
27,000-36,500
0
0
0
0
0
   Table 8-7. Expected Reduction
                 Using Intensive
in Collected Solid Manure and
Rotational Grazing, per Model
Wastewater at Dairies
Farm.
Farm Size
(head)
454
.454
1419
1419
Farm
Type
Flush
Hose&
Scrape
Flush
Hose
and
Scrape
Region
Pacific
Central
Midwest
Mid-Atlantic
South
Pacific
Central
Midwest
Mid-Atlantic
South
Pacific
Central
Midwest
Mid-Atlantic
South
Pacific
Central
Midwest
Mid-Atlantic
South
Manure Reduction
(Ib/yr/farm)
4,630,800- 18,841,000
4,630,800-18,841,000
4,630,800-9,307,000
4,630,800- 13,937,800
13,937,800- 18,841,000
4,630,800-18,841,000
4,630,800- 18,841,000
4,630,800- 9,307,000
4,630,800- 13,937,800
13,937,800-18,841,000
14,473,800-58,888,500
14,473,800- 58,888,500
14,473,800-29,089,500
14,473,800-43,563,300
43,563,300-58,888,500
14,473,800- 58,888,500
14,473,800- 58,888,500
14,473,800- 29,089,500
14,473,800-43,563,300
43,563,300-58,888,500
Wastewater Reduction
(gal/yr/farm)
4,086,000- 16,571,000
4,086,000- 16,571,000
4,086,000- 8,172,000
4,086,000- 12,258,000
12,258,000-16,571,000
0
0
0
0
0
12,771,000-51,793,500
12,771,000-51,793,500
12,771,000-25,542,000
12,771,000-38,313,000
38,313,000-51,793,500
0
0
0
0
0
                                        8-37

-------
               Table 8-8. Expected Reduction in Collected Solid Manure at
               Beef Feedlots Using Intensive Rotational Grazing, per Head.
Region
Pacific ;
Central
Midwest :
Mid-Atlantic i
South '
Manure Reduction
(Ib/yr/head)
5,040-20,167
5,040-20,167
5,040-10,080
5,040-15,120
15,120-20,167
               Table 8-9. Expected Reduction in Collected Solid Manure at
            Beef Feedlots Using Intensive Rotational Grazing, per Model Farm.
Farm Size (head)
844
2628
43805
f
Region
Pacific
Central
Midwest
Mid-Atlantic
South
Pacific
Central
Midwest
Mid-Atlantic
;South
Pacific
Central
Midwest
Mid-Atlantic
'South
Manure Reduction
(Ib/yr/farm)
4,255,170-17,020,680
4,255,170-17,020,680
4,255,170-8,510,340
4,255,170-12,765,510
12,765,510-17,020,680
13,249,500-52,998,000
13,249,500-52,998,000
13,249,500-26,499,000
13,249,500-39,748,500
39,748,500-52,998,000
220,849,640-883,398,550
220,849,640-883,398,550
220,849,640-441,699,280
220,849,640-662,548,910
662,548,91 0-883,398,550
Advantages and Limitations: Compared with traditional grazing, intensive rotational grazing has
been identified as environmentally friendly and, when managed correctly, is often considered
better than conventional or continuous grazing. The benefits associated with intensive rotational
grazing versus conventional grazing include:

    •   Higher live-weight gain per acre.  Intensive rotational grazing systems result in high
        stocking density, which increases competition for feed between animals, forcing them to
        spend more time eating and less time wandering (AAC, 2000).

    •   Higher net economic return. Dairy farmers using pasture as a feed source will produce
        more feed value with intensive rotational grazing than with continuous grazing (CIAS,
                                          8-38

-------
        2000). Competition also forces animals to be less selective when grazing. They will eat
        species of plants that they would ignore in other grazing systems. This reduces less
        desirable plant species in the pasture and produces a better economic return (AAC,
        2000).
    •   Better land. Pastureland used in rotational grazing is often better maintained than
        typical pastureland. Intensive rotational grazing encourages grass growth and
        development of healthy sod, which in turn reduces erosion.  Intensive rotational grazing
        in shoreline areas may help stabilize stream banks and could be used to maintain and
        improve riparian habitats (PPRC, 1996).
    •   Less manure handling. In continuous grazing systems, pastures require frequent
        maintenance to break up large clumps of manure. In a good rotational system, however,
        manure is more evenly distributed and will break up and disappear faster. Rotational
        grazing systems may still require manure maintenance near watering areas and paths to
        and from the paddock areas (Emmicx, 2000).
Grazing systems are not directly comparable with confined feeding operations, as one system can
not readily switch to the other. However, assuming all things are equal, intensive rotational
grazing systems might have some advantages over confined feeding operations. They are:

    •   Reduced cost. Pasture stocking systems are typically less expensive to invest in than
        livestock facilities and farm equipment required to harvest crops. Feeding costs may
        also be lowered.
        Improved cow health. Dairy farmers practicing intensive  rotational grazing typically
        have a lower cull rate than confined dairy farmers, because the cows have less hoof
        damage, and they are more closely observed by the farmer as they are moved from one
        paddock to another (USDA, 1997).
        Less manure handling. Intensive rotational grazing operations have less recoverable
        solid manure to manage than confined operations.
        Better rate of return. Research indicates that grazing systems are more economically
        flexible than the confinement systems. For example, farmers investing in a well-
        planned grazing operation will likely be able to recover most of their investment in
        assets if they leave farming in a few years. But farmers investing from scratch in a
        confinement operation would at best recover half their investments if they decide to
        leave farming (CIAS, 2000).
The disadvantages associated with intensive rotational grazing compared with either
conventional grazing or confined dairy operations include

    •   Limited applicability. Implementation of intensive rotational grazing systems is
        dependent upon available acreage, herd size, land resources (i.e., tillable versus steep or
        rocky), water availability, proximity of pasture area to milking center (for dairy
        operations), and feed storage capabilities. Typical confined dairy systems and beef
                                          8-39

-------
         feedlots are often not designed to allow cows easy access to the available cropland or
         pastureland. Large distances between the milking center and pastureland will increase
         the dairy cow's expended energy and, therefore, increase forage demands.

         In most of the country, limited growing seasons prevent many operations from
         implementing a year-round intensive rotational grazing system.  Southern states such as
         Florida can place cows on pasture 12 months of the year, but the extreme heat presents
         other problems for cows exposed to the elements. Grazing operations in southern states
         typically install shade structures and increase water availability to cows, which in turn
         increases the costs and labor associated with intensive rotational grazing systems.
         Because most operations cannot provide year-round grazing, they still must maintain
         bams and dry lot areas for their cows when they are not grazing, and operations often
         prefer not to have to maintain two management systems.

         Reduced milk production levels. Studies indicate that dairy farmers using intensive
         rotational grazing have a lower milk production average than confined dairy farms
         (CIAS, 2000). Lower milk production can offset the benefit of lower feed costs,
         especially if rations are not properly balanced once pasture becomes the primary feed
         source during warm months.
    •    Reduced weight gain. Beef cattle managed in an intensive rotational grazing system
         would gain less weight per day than beef cattle managed on a feedlot unless they were
         supplied with extensive supplemental feed.
    •    Increased likelihood of infectious diseases. Some infectious diseases are more likely to
         occur in pastured animals due to direct or indirect transmission from wild animals or the
         presence of an infective organism in pasture soil or water (Hutchinson, 1998).
    •    Limited flexibility. Intensive rotational grazing systems have limited flexibility in
         planning how many animals can be pastured in any one. paddock. Available forage in a
         paddock can vary from one cycle to another, because of weather and other conditions
         that affect forage growth rates;  As a result, a paddock that was sized for a certain
         number of cows under adequate rainfall conditions will not be able to accommodate the
         same number of cows under drought conditions (USDA, 1997).

Operational Factors:  As mentioned earlier, most dairy operations and beef feedlots cannot
maintain year-round intensive rotational grazing systems. These systems are typically operated
between 3 and 9 months of the year—with 12 months most likely in the southern states. Although
outwintering is a possibility for year round grazing in more northern states, it is not a common
practice.                           '
                                   i
Demonstration Status: Due to the labor, fencing, water,  and land requirements of intensive
rotational grazing, typically only small dairy operations (those with less than 100 head) use this
practice (Hannawale, 2000; USDA NRCS, 2000; CIAS, 2000).  Few beef feedlots practice
intensive rotational grazing. Climate and associated growing seasons make it very difficult for
operations to use an intensive rotational  grazing system throughout the entire year.
                                          8-40

-------
Practice: Pasture-Based Systems at Swine Operations

Description:  There are three main types of outdoor management systems at swine operations:
pasture, open lots, and buildings with outside access. In pasture systems, crops are grown and
the animals are allowed to forage for their own food. Open lots are generally nonvegetative areas
where the animals are allowed to roam. These open lots are typically available to animals that
are housed in buildings with outside access.  The focus of this discussion is the pasture systems.

Application and Performance: This practice is applicable to any swine operation that has
sufficient land. However, the practicality of the practice decreases with operation size.
Wheaton and Rea (1999) found that the use of a good pasture containing such crops as alfalfa,
clover, and grasses can support about eight to ten sows.  Stocking rates, however, will depend
upon soil fertility, quality of pasture, and time of year. The recommended stocking rates are
(Wheaton and Rea, 1999):
    .•  Sows with litters
    •  Pigs from weaning to 100 pounds
    -  Pigs from 100 pounds to market
    °  Gestating sows
6 to 8 head per acre
15 to 30 head per acre
10 to 20 head per acre
8 to 12 head per acre
Wheaton and Rea (1999) also found that pastured swine must receive 2 to 3 pounds of grain daily
plus minerals and salt for proper weight gain. Adequate shade and water must also be provided
to pastured swine. Swine can be very tough on pastures and soil.  Therefore, it is recommended
that producers rotate swine after each season and use the pasture for other animals or harvest hay
for about 2 years before using it again for swine (Wheaton and Rea, 1999). All the waste
produced by the animals while they are pastured is incorporated into the sod, and therefore
requires minimal waste disposal.

Advantages and Limitations: A pasture-based system offers a number of advantages and
disadvantages over confinement housing to swine producers. The advantages include (Wheaton
and Rea, 1999)

    •   Lower feed costs on good pasture

    •   Exercise and nutrients for breeding sows

    •   Lower capital investment per production unit

    •   Good use of land not suitable for machine harvest

    •   Better isolation and disease control

    •   Decreased waste management handling

    •   Decreased cannibalism

The disadvantages include (Wheaton and Rea, 1999)

                                          8-41

-------
     •    Increased labor for animal handling, feeding, and watering

     •    Increased risk of internal parasites

     •    Increase labor for farrowing
         Increase animal production time to reach desired market weight

     •    Lack of environmental controls
                                    I
Operational Factors: The increased labor costs associated with pasture-based swine operations
are partially offset by decreased waste handling costs and reduced feed costs.

Demonstration Status: Data from the USDA's APHIS - Veterinary Service indicate pasture-
based systems are used at 7.6 percent of farrowing operations, 1.5 percent of nurseries, and 6.7
percent of finishing operations (USDA APHIS, 1995). The percentage of pigs raised on such
operations is about five times less than the number of operations, indicating these operations are
generally smaller than other types of swine operations. NAHMS confirmed this with additional
analysis of the Swine '95 data, and indicated 7 to 8 percent of swine farms with fewer than 750
total head use pasture systems, but less than 1 percent of swine operations larger than 750 head
use pasture systems (USDA NAHMS, 1999).

Practice: Pasture-Based Systems at Poultry Operations

Description: Pastured poultry refers to broilers, layers, and turkeys that are raised on pasture and
feed. There are three basic methods  for raising poultry on pasture: pasture pens, free range, and
day range (Lee, 2000).  Pasture pens are bottomless pens that hold layers, broilers, or turkeys, and
are moved daily or as needed to give the poultry fresh pasture. This is the most commonly used
pasture poultry method at present. To accommodate layers, nest boxes are fixed to the side of the
pen. Approximately 30 to 40 hens can be housed in one typical pasture pen. Free range
generally means a fenced pasture surrounding the barn or poultry shelter, and day range is similar
to free range except that the birds are sheltered at night from predators and weather.
                                    I
Application and Performance:  The use of pasture pens has been documented at operations with
1,000 birds but is believed to be used most commonly at operations with fewer than 1,000 birds.
Lee (2000) also indicates that pastured poultry operations require up to twice the amount of feed
as confined poultry does to achieve the same weight gain and/or production goal. All wastes
produced while the birds are on pasture is incorporated into the sod, and therefore results in
minimal waste requiring disposal.

Advantages and Limitations: Some of the advantages associated with pastured poultry versus
confinement housing are:

     •   Pasture pens are easy and inexpensive to build
     •   Controlled moves will harvest grass and help spread manure uniformly across the field
                                          8-42

-------
        Perimeter fencing is not required
        Diseases associated with confinement housing may be less likely to occur
        Waste management handling is reduced
    •   Pasture-raised birds may have a higher market value (Lee, 2000)
The limitations associated with pastured poultry include the following:
        The small pens hold relatively few poultry, compared with their cost
        Pens can trap heat, leading to heat stress
        The roof height of the pens is too low for turkeys to stretch and raise their heads to full
        height
    •   Pens may be difficult to move
        Pens offer only minimal protection from weather
    •   Birds often have to bed down at night in manure-soaked grass (Lee, 2000)
Operational Factors:  Pasture-based poultry operations require increased labor for animal
handling, feeding, and watering (Lee, 2000). This increased labor is partially offset by a decrease
in waste management.
Demonstration Status: No data could be found to indicate the number of pasture-based poultry
operations. However, the use of pasture pens is rarely observed at operations with more than
1,000 birds. Thus few if any pastured poultry operations confine sufficient numbers of birds to
be defined as CAFOs on the basis of operation size.
                                          8-43

-------
 8.2    Manure/Waste Handling Storage and Treatment Technologies
 Manure is often used as a nutrient source and soil amendment, and can be used effectively by
 itself or along with other nutrient sources such as commercial fertilizer. In some cases suqalus
 manure can be treated, processed, or repackaged to increase its value as a nutrient resource (such
 as compost, pelletized litter, or a fertilizer blend). When manure is generated in excess of what
 can be locally utilized either as a nutrient source or some other alternative use, it is often treated
 as a waste. EPA believes manure is most effectively used as a resource, and the use of the term
 waste in the following sections is not meant to imply to the contrary.

 The term "waste" as it relates to AFOs includes manure, bedding material, spilt or waste feed,
 animal carcasses, and other by products. There are a variety of methods for handling, storing, and
 treating waste. Waste may be handled both in a solid form and through the use of water. As
 stated in earlier chapters, some facilities use water to move the waste away from the animals and
 then separate the solids from the liquids prior to storage, treatment, and disposal. Water may also
 be used for cleaning and disinfection, especially at dairies and egg-producing facilities. Storage
 and treatment of waste is done in the both the solid and liquid/slurry forms.

 8.2.1  Waste Handling Technologies and Practices
 Different practices are used to handle or move liquid and solid wastes, and the choice of practices
 depends on the type of housing configuration. Housing configurations include total confinement,
 which is the most common and used almost exclusively in the poultry industry and at larger
 swine operations, open buildings with or without outside access, and lots or pastures with a hut
 or with no buildings.                 '

 .                                   i
 Practice:  Handling of Waste in Solid JForm
 Description: The use of hoop  houses for swine and high-rise hog houses to handle manure in a
 dry form was discussed in section 8.1. In facilities with open lots, manure accumulates on the
 ground as a solid that can be diluted byirainfall (mostly for beef and dairy, swine and poultry are
 mostly totally confined) or by spillage from watering areas. Whether the lot is paved, partially
 paved, or unpaved, manure is typically handled as a solid or slurry and is scraped with tractor
 scrapers or front-end loaders and stored in a pile (see Figure 8-2). There are several options for
 separating solid manure from the animals at confinement facilities. Solid, unslatted floors, both
paved and unpaved, can be hand-scraped or scraped with a tractor or front-end loader into a pile,
pit, or other storage facility. Sloped floors further aid in manure collection as animal traffic
works the manure downslope. Other facilities use uncovered alley or gutter systems combined
with hand scraping, automatic scraping^ Or sloped floors to collect manure.  Scraped manure from
underslat gutters, alleys, or shallow pits can be held temporarily in a pit or a deep collection
 gutter at one end of the building, from which it can be applied to the land or transferred to a more
permanent storage structure.
                                           8-44

-------
            Figure 8-2. Manure scraped and handled as a solid on a paved lot
                            operation (USDA NRCS, 1996).
Application and Performance: Solid systems are best suited for open lot facilities, especially in
areas that have a dry climate because exposed manure is less likely to be diluted by excess
rainfall. The choice of solid or liquid handling systems, however, has been historically based on
operator preference with respect to capital investment, labor requirements, and available
equipment and facilities.

Advantages and Limitations: Solid handling systems offer both advantages and disadvantages to
facility operators. For instance, solid systems use equipment that is already present at the facility,
such as tractors and front-end loaders. Tractors and front-end loaders are flexible, have fewer
mechanical problems, are less subject to corrosion, and work well on frozen manure, but they
require more labor than automatic scrapers. Solid systems are not as automated as liquid systems;
although they involve little or no capital investment and require less maintenance, they require
much more labor than mechanical scraper systems or flushing systems. An advantage to solid
systems is that the volume of manure handled is much less than the volume associated with
liquid systems, which translates into smaller storage facility requirements. Bedding can be used
without concern for pumping or agitating equipment problems (which are a concern for liquid
handling systems).
                                          8-45

-------
Operational Factors: The extent of paving on an open lot determines the' care with which
manure is removed. Unpaved lots develop an impervious layer from bacterial activity and hoof
action, and this layer protects against soil loss and percolation of liquids. Also, scraping of
unpaved surfaces incorporates sand and soil into the manure, which can cause problems with
storage or treatment of the manure. If scraped manure is to be stacked, it may be necessary to add
an appreciable amount of bedding to attain a more solid consistency.

Demonstration Status: Solid handling systems are fairly common at smaller swine operations.
According to Swine '95 (USD A APHIS, 1996a), removal of manure by hand is used most often
in all types of operations (farrowing 38.2 percent, nursery 29.9 percent, and grow-finish 27.2
percent). Mechanical scrapers and tractors are also used for solids handling (farrowing 12.0
percent, nursery 17.6 percent, and grow-finish 24.9 percent).

Poultry waste is mostly handled as a dry litter, the exception being layer operations, particularly
in the South Region (USDA NAHMS, 2000a).

Manure is often handled in solid form at smaller dairy farms. According to Dairy '96 (USDA
APHIS, 1996a), gutter cleaners are used most often to remove manure from dairy cow housing
areas (63.2 percent). Mechanical scrapers or tractors are frequently used to clean alleys (57.7
percent). A number of dairies store manure in solid form; 79.2 percent of dairies with fewer than
100 cows and 59.5 percent of dairies with 200 or more cows are reported to use some form of
solid waste storage (USDA APHIS, 1996b).

Scraping is the most common method of collecting solid and semisolid manure from beef barns
and open lots. Solids can be moved with a tractor scraper and front-end loader. Mechanical
scrapers are typically used in the pit under barns with slotted floors. Scraping is common for
medium and large feedlots.

Practice: Teardrop, V- and Y-Shaped Pits With Scraper
Description: Confinement facilities have several manure collection options for separating manure
liquids from manure solids. Several underfloor gutter systems that are applicable only to swine
will be discussed. No comparable manure collection systems that separate liquids and solids are
known for other animal species.      j

The reason for separating swine manure into  solids and liquids is to concentrate pollutants and
nutrients. Kroodsma (1985) installed a plastic 0.78 mm filter net under the floor of a pig house in
which eight pigs were fed by wet feeders so that no excess water fell into the manure. Solids fell
onto the screen and liquids passed through. The results showed that the relatively undisturbed
feces contained about 80 percent of the BOD, COD, total solids (TS), P, calcium Ca, magnesium
(Mg), and copper (Cu). Sixty per cent of the total TKN and forty percent of the K were also
retained in the filter net. Thus, if solids can be recovered relatively intact, parameters such as
nutrients will be concentrated.
                                          8-46

-------
 Two gutter configurations that maybe useful for swine operations are Y-shaped and V-shaped
 gutters under slatted floors (Tengman, et al., n.d.). The sloping sides of the gutters facilitate
 retention of solids and allow liquids to drain to the center collection area. Scrapers pull the solids
 to one end of the barn for solids handling, while liquids flow with gravity in the opposite
 direction for management in a liquid manure system.

 V-shaped gutters are easier to build than Y-shaped gutters and may be easier to clean. Manure
 movement in V-shaped gutters is not substantially different than in Y-shaped gutters. The
 sideslope of Y- or V-shaped gutters should be 1:1 for farrowing operations and 3/4:1 for
 nurseries. A slope of 1:240 to 1:480 is recommended for the liquid gutter (Tengman, et al., n.d.).

 Manure that is scraped from underslat gutters, alleys, or shallow pits can be held temporarily in a
 pit or a deep collection gutter at  one end of the building, from which it can be applied to the land
 or transferred to a more permanent storage structure.

 Application and Performance: The choice of a manure-handling system is based primarily on
 operator preference with respect to capital investment, labor requirements, and'available
 equipment and facilities. Demonstration of the economic viability or the value of concentrating
 nutrients using the Y-shaped and V-shaped gutter is apparently lacking. No performance data
 was found from full-scale demonstration of the segregation of constituents including pathogens,
 metals, growth hormones, and antibiotics.

 Advantages and Limitations: The advantage  in using a Y-shaped or V-shaped scrape collection
 system would be the concentration of nutrients in the solids. Nutrients concentrated in solid form
 are cheaper to haul than in slurry form because water, which would increase the weight and
 volume, is not added. Disadvantages include reduced air quality in hog buildings over manure
 solids smeared on the collection slope, repair of cable scrapers in small spaces under slatted
 floors with hogs present, the need for the operator to manage both a compost or solids stacking
 operation with solids handling equipment and a liquid storage and application system with liquid
 handling equipment.

 Operational Factors: Climate, temperature, and rainfall generally do not affect scraper systems
 in hog barns. If scraped manure solids are to  be stacked or composted, it may be necessary to add
 an appreciable amount of bedding to attain a more solid consistency.

Demonstration Status: Underslat manure scrape and gutter systems to direct manure liquids and
 solids to different handling systems have been developed, but they are not commonly used.


 Practice: Handling of Waste in Liquid Form
Description: Liquid handling systems are the alternative to scraping and hauling manure. They
 are especially common in confinement housing operations because it is easier to install
 automated systems inside new or existing structures and it is more difficult to maneuver tractors
                                          8-47

-------
or front-end loaders for scraping in small pens and tight corners. Excreted manure can be
collected in shallow, narrow, open gutters or alleys, or it can collect under slats in gutters or pits
for periodic flushing to a more permanent storage or treatment facility. The manure can also be
directly applied to land without extended storage or treatment.

Slotted floors are an efficient method for removing manure from animal areas. Floors tend to be
typically partially slotted over a pit or gutter. Feeding and resting areas are located on solid
floors, and watering areas are placed over slotted floors.  Manure is worked through the slats by
hoof action and is stored beneath the slats until it is pumped or flushed to a lagoon. Fresh water
can be used for flushing or water from a secondary lagoon can be recycled as flush water. An
example of a slotted floor system is shown in Figure 8-3.

Application and Performance: Liquid manure systems are most  frequently used for large animal
facilities, where the automation of waste management systems is very important. They may also
be preferred where water is abundant or when rainfall on open lots causes considerable dilution
of manure solids. Liquid systems are especially appropriate when spray irrigation of nutrient-
laden waters is the preferred method for fertilizing and watering crops.
           Figure 8-3. Fed hogs in confined area with concrete floor and tank
                 storage liquid manure handling (USDA NRCS, 1996).
                                          8-48

-------
Advantages and Limitations: Flushing systems with liquid manure handling are less labor-
intensive and more automated than solid handling systems, but the volume of manure and water
to be stored, treated, and disposed of is greater. Flushing systems require large volumes of water
to be pumped and stored in a sump until discharged by gravity flow or pumped to a lagoon.
Consequently, where water is a valuable commodity, liquid systems might not be economical.
This limitation can be offset by recycling flush water from treatment lagoons. Equipment needed
for liquid systems, including sumps, pumps, agitators, choppers, and sprayers, brings with it high
capital, operating, and maintenance costs, although savings may be seen in decreased labor costs.
Manure consistency is very important in liquid handling systems because the equipment can be
damaged by fibrous material (bedding), sand, or other foreign materials. Periodic cleanout of
solids is necessary to maintain the capacity and proper functioning of storage structures and
handling equipment.

Operational Factors: Slats can be made of wood, concrete, steel, aluminum, or plastic. Concrete
is the most sturdy material, is the least corrodible, and handles the weight of larger animals, but it
requires extra supports and the initial costs are higher than the costs of other materials. Wood is
the least expensive material, but it can be chipped by the animals and needs to be replaced at
least every 2 to 4 years. Plain steel and aluminum slats are subject to corrosion, but they can be
galvanized or coated with paint or plastic to extend their life. Plastic slats, metal grates, expanded
metal mesh, and stainless steel slotted planks are appropriate for swine farrowing and nursery
operations that house smaller pigs. Openings between slats should be greater than 3/4 inch, up to
1 3/4 niches for swine operations.

Demonstration Status: The Swine '95 report (USDA APHIS, 1996a) demonstrates that liquid
systems, although not the most common type on a facility-by-facility basis, are still used fairly
frequently. Flushing under slats accounts for 5.3 percent of farrowing, 9.4 percent of nursery, and
2.4 percent of grow-finish operations, whereas flushing with open gutter systems accounts for
3.0, 2.1, and 3.4 percent of each operation type, respectively. Liquid handling systems are
becoming increasingly popular as larger operations become more prevalent, necessitating
automated systems for manure handling.

Poultry waste is mostly handled as a dry litter, the exception being layer operations, particularly
those in the South Region. Approximately 40 percent of the laying operations in the South use a
flush system with a lagoon (USDA NAHMS, 2000).

Dairy '96 (USDA APHIS, 1996a) reports that a small number of dairy farms, 2.8 percent, use
water to remove manure from alleys. However, over 90 percent of operations with 200 or more
cows are reported to use liquid manure storage systems (USDA APHIS, 1996b).  According to the
NAHMS survey results (Garber,  1999), approximately 50 percent of all facilities with greater
than 500 mature dairy cows employ flushing as a means of cleaning the housing area.

A flushing system dilutes manure from beef feedlots with water to allow for automated handling.
The system uses a large volume of water to flush manure down a sloped gutter to storage, where
the liquid waste can be transferred to a storage lagoon or basin. This system is not common for

                                          8-49

-------
large beef feedlots; however, this type of system is widely used at veal operations (Loudori,
1985). Based on EPA site visits, about J67 percent of veal operations flush manure to liquid
lagoon storage systems.              ;

Practice: Berms and Storm Water Diversions
Description: "Clean" storm water runoff from land surrounding livestock facilities can be
diverted from barns, open animal concentration areas, and waste storage or treatment facilities to
prevent mixing with wastewater. This is accomplished through earthen perimeter controls and
roof runoff management techniques.

Earthen perimeter controls usually consist of a berm, dike, or channel constructed along the
perimeter of a site. Simply defined, an earthen perimeter control is a ridge of compacted soil,
often accompanied by a ditch or swale with a vegetated lining, located at the top or base of a
sloping area. Depending on their location and the topography of the landscape, earthen perimeter
controls can achieve one of three main .goals: preventing surface runoff from entering a site,
diverting manure-laden runoff created on site to off-site waste trapping devices, and intercepting
clean storm water runoff and transporting it away from lagoons or belowground tanks. Therefore,
diversions are used to protect areas from runoff and divert water from areas where it is in excess
to locations where it can be stored, used, or released. Thus, it prevents the mixing of clean storm
water with manure-laden wastewater, reducing the volume of wastewater to be treated.

Roof runoff management techniques such as gutters and downspouts direct rainfall from roofs
away from areas with concentrated manure. Because these devices prevent storm water from
mixing with contaminated water, they also reduce the volume of wastewater to be treated.

Application and Performance: Earthen perimeter controls or diversions are applicable where it is
desirable to divert flows away from bams, open animal concentration areas, and waste storage or
treatment facilities. They can be erected at the top of a sloping area or hi the middle of a slope to
divert storm water runoff around a feeding or manure storage site. However, unvegetated,  earthen
channels should not be used in regions of high precipitation because of potential erosion
problems.

The design capacity of a channel is calculated using Manning's equation and is based on
precipitation, slope, wetted perimeter, water cross-sectional area, and surface roughness. Water
velocity is also a consideration in designing diversions to minimize erosion. Other types of
diversions that can be used for runoff control include grassed waterways, which are natural or
constructed channels that provide stable runoff conveyance, and lined waterways or outlets,
which are lined channels or outlets reinforced with erosion-resistant linings of concrete, stone, or
other permanent materials  to provide additional stability.

Advantages and Limitations: When properly placed and maintained, earthen perimeter controls
are effective for controlling the velocity and direction of storm water runoff. Used by themselves,
                                           8-50

-------
they do not have any ability to remove pollutants and thus must be used in combination with an
appropriate sediment or waste trapping device at the outfall of the diversion channel. With these
diversion techniques, storm water runoff is prevented from mixing with contaminated manure-
laden wastewater and thus the volume of water for treatment is decreased; however, the
concentrated runoff in the channel or ditch has increased erosion potential. To such erosion,
diversion dikes must be directed to sediment trapping devices where erosion sediment can settle
out of the runoff before being discharged. In addition, if a diversion dike crosses a vehicle
roadway or entrance, its effectiveness maybe reduced. Wherever possible, diversion dikes should
be designed to avoid crossing vehicle pathways.

Operational Factors: The siting of earthen perimeter controls depends on the topography of the
area surrounding a specific site. When determining the appropriate size and design of these
diversion channels, the shape of the surrounding landscape and drainage patterns should be
considered. Also, me amount of runoff to be diverted, the velocity of runoff in the diversion, and
the credibility of soils on the slope and within the diversion channel or swale are essential design
considerations.

Both diversion channels and roof management devices must be maintained to remain effective. If
vegetation is allowed to grow in diversions, the roughness increases and the channel velocity
decreases which can cause channel overflow. Therefore, vegetation should be periodically
mowed. In addition, the dike should be maintained at the original height, and any decrease in
height due to settling or erosion should be remedied.

Roof management devices such as gutters and downspouts must be cleaned and inspected
regularly to prevent clogging and to ensure its effectiveness.

Demonstration Status: The use of earthen perimeter techniques such as berms, diversions, and
channels and the use of roof management techniques to divert storm water away from bams,
open animal concentration areas, and waste storage or treatment facilities are well-accepted
practices that prevent clean wastewater from mixing with manure-laden wastewater, thus
reducing the volume of wastewater to be treated.

8.2.2   Waste Storage Technologies and Practices
The USDA NRCS recommends that storage structures be designed to handle the volume of
manure produced between emptying events. The minimum storage period is based on the timing
required for environmentally safe waste utilization considering climate; crops; soil; equipment;
and local, state, and federal regulations. The design storage volume for liquid manure should
account for manure, wastewater, precipitation and runoff (if uncovered), and other wastes that
will accumulate during the  storage period, such as residual solids that are not removed when
liquids are pumped. Other general considerations are inlet designs, outlets or pumping access,
and safety (such as fencing, odor and gas  control, reinforcement against earth movements and
hydrostatic pressure, use of a cover, and amount of freeboard).
                                          8-51

-------
Practice: Anaerobic Lagoons
Description: Anaerobic lagoons are earthen basins that provide storage for animal wastes while
decomposing and liquefying manure solids. Anaerobic processes degrade high BOD wastes into
stable end products without the use of free oxygen. Anaerobic lagoons are designed based, on
volatile solids loading rates (VSLR). Volatile solids are the wastes that will decompose. The
volume of the lagoon consists of the following (see Figure 8-4):
                                      Freeboard (1.0 minimum)
                           Depth of 25-year, 24-hour storm event
                          Depth of normal precipitation less evaporation
    Required  \
     volume    \
Manure and wastewater volume
                              Minimum treatment volume
                 V
       Sludge volume
           Figure 8-4. Cross section of anaerobic lagoons (USDA NRCS, 1998a)
1.     Minimum Treatment Volume—The total daily volatile solids from all waste sources
       divided by the volatile solids loading rate for a particular region. The minimum treatment
       volume is based on the volatile isolids loading rate, which varies with temperature and
       therefore with geographic location. Recommended volatile solids loading rates in the
       United States vary from 3 to 7 pounds per 1,000 ft3 per day.

2.     Sludge Volume—Volume of accumulated sludge between cleanouts. A fraction of the
       manure solids settles to the bottom of the lagoon and accumulates as sludge. The amount
       of sludge accumulation depends on the type and amount of animal waste.
                                   i
3.     Manure and Wastewater Volume—The volume of manure and wastewater transferred
       from feedlot operational facilities to the lagoon during the storage period. Lagoons are
       typically designed to store fromj 90 to 365 days of manure and wastewater.
                                   i
4.     Net Precipitation—Precipitation minus the evaporation during the storage period.
                                   i
5.     Design Storm—Typically a 25-year, 24-hour storm event.
                                          8-52

-------
6.     Freeboard—A minimum of 1 foot of freeboard. Freeboard is the extra depth added to the
       pond as a safety factor.

7.     Runoff—The runoff volume from lagoon berms. In general, lagoons should not receive
       runoff because runoff can shock the lagoon with an overload of volatile solids. Some
       runoff will enter the lagoons from the berms surrounding them.

Anaerobic lagoons should be at least 6 to 10 feet deep, although 8- to 20-foot depths are typical.
Deeper lagoons require a smaller surface area, and they more thoroughly mix lagoon contents as
a result of rising gas bubbles and minimize odors. Lagoons are typically constructed by
excavating a pit and building berms around the perimeter. The berms are constructed with an
extra 5 percent in height to allow for settling. The sides of the lagoon should be sloped with a 2:1
or 3:1 (horizontal:vertical) ratio. Lagoons can be designed as single-stage or multiple-stage
(usually two stages). Two-stage lagoons require  greater total volume but produce a higher quality
lagoon effluent.

Lagoon covers can be used to control odor and collect biogas produced from the natural
decomposition of manure. Covers are usually made of a synthetic material, and are designed to
float on the surface of the lagoon. Often, because of the large size of the lagoon, the cover is
constructed in multiple modules: Each module has flotation devices at the corners to help support
the cover, and is tied down at the edge of the pond or lagoon. Covers typically have drains
constructed in them to allow rainwater to drain through to the lagoon.

Lagoons are sometimes used in combination with a solids separator, typically for dairy waste.
Solids separators help control the buildup of nondegradable material such as straw or other
bedding materials. These materials can form a crust on the surface of the lagoon, which decreases
its activity.

Application and Performance: Anaerobic lagoons provide effective biological treatment of
animal wastes. Anaerobic lagoons can handle high pollutant loads while minimizmg manure
odors. Nondegradable solids settle to the bottom as sludge, which is periodically removed. The
liquid is applied to cropland as fertilizer or irrigation water or is transported off site. Properly
managed lagoons will have a musty odor. Anaerobic processes decompose faster than aerobic
processes, providing effective treatment of wastes with high BOD, such as animal waste.
Anaerobic lagoons are larger than storage ponds because additional volume is needed to provide
biological treatment; however, since a constant oxygen concentration is not required, anaerobic
lagoons are generally smaller than aerobic lagoons.

Lagoons reduce the concentrations of both N and P in the liquid effluent. P settles to the bottom
of the lagoon and is removed with the lagoon sludge. Approximately 60 percent of the influent N
is lost through volatilization to ammonia (Fulhage, 1998 Van Horn, 1999). Microbial activity
converts the organic N to ammonia N. Ammonia N can be further reduced to elemental nitrogen
(Nj) and released into the atmosphere. Lagoon effluent can be used for land application or
flushing of animal barns, or can be transported off site. The sludge can also be applied to land

                                          8-53

-------
provided the soil is not saturated with nutrients. Information on the reduction of BOD,
pathogens, and metals in lagoons is not available. Reductions in COD, TS, volatile solids (VS),
total N, P, and K are presented in Table 8-10.

                    Table 8-10. Anaerobic Unit Process Performance.
Anaerobic Treatment
Pull plug pits
Underfloor pit storage
Open top tank
Open pond
Heated digester effluent prior to
storage
Covered first cell of two cell
lagoon
One-cell lagoon "
Two-cell lagopn
HRT
F
days '.
4-30
30-180
30-180
30-180
12-20 |
30-90 i
>365 [
210+
COD
TS
VS
TN
P
K
Percent Reduction
—
—
—
—
35-70
70-90
70-90
90-95
0-30
30-40
—
—
25-50
75-95
75-95
80-95
0-30
20-30
—
—
40-70
80-90
75-85
90-98
0-20
5-20
25-30
70-80
0
25-35
60-80
50-80
0-20
5-15
10-20
50-65
0
50-80
50-70
85-90
0-15
5-15
10-20
40-50
0
30-50
30-50
30-50
HRT=hydraulic retention time; COD=chemical oxygen demand; TS=total solids; VS=volatile solids; TN=total
nitrogen; P=phosphorus; K= potassium; — =data not available.
Source: Moser and Martin, 1999.

Advantages and Limitations: Anaerobic lagoons offer several advantages over other methods of
storage and treatment. Anaerobic lagoons can handle high pollutant loads and provide a lairge
volume for long-term storage. They stabilize manure wastes and reduce N content through
biological degradation. Lagoons allow manure to be handled as a liquid, which reduces labor
costs. If lagoons are located at a lower elevation than the animal bams, gravity can be used to
transport the waste to the lagoon, which further reduces labor. Mild climates are most suitable for
lagoons; cold weather reduces the biological activity of the microorganisms that degrade the
wastes. Lagoons can experience spring and fall turnover, in which the more odorous bottom
material rises to the surface. Foul odors can also result if biological activity is reduced or if there
is a sudden change in temperature or pollutant loading rate.

Operational Factors: To avoid  ground [water and soil contamination, several factors must be
considered. The lagoon should be located on soils with low to moderate permeability or on soils
that can form a seal through sedimentation and biological action (USDA NRCS, 2000).
Impervious barriers or liners are used to reduce seepage through the lagoon bottom and sides and
are described in the following practice.

Lagoon inlets should be designed from (materials that resist erosion, plugging, and freezing.
Vegetation around the pond should be rhaintained to help stabilize embankments.
                                          8-54

-------
Lagoons must be properly maintained for effective treatment. The minimum treatment volume of
the lagoon must be maintained. Lagoons work best when the influent flow is a steady, gradual
flow rather than a large slug flow. The pH of the lagoon should be monitored. The optimum pH
for lagoon treatment is about 6.5, which maximizes the activity level of the bacteria. Lime can be
added to the lagoon to increase pH to this level. Also, since the rate of volatile solids
decomposition is a function of temperature, the acceptable VSLR varies with climate. The
loading rate  should be monitored to ensure that it is appropriate to the region in which the lagoon
is located.

Demonstration Status: Anaerobic lagoons without covers are used at 20.9 percent of all grow-
finish swine operations. Of these, swine operations with 10,000 or more head use uncovered
lagoons most frequently (81.8 percent) (USDA APHIS, 1996a). Lagoons are used on egg-laying
farms in warmer climates. Beef facilities typically use storage ponds rather than lagoons.
NAHMS estimates that 1.1 percent of dairies with more than 200 head use anaerobic lagoons
with a cover and 46.7 percent use anaerobic lagoons without a cover (USDA APHIS, 1996b).
The use of lined lagoons is dependent on site-specific conditions.


Practice: Lagoon Liners
Description: Lagoon liners are impervious barriers used to reduce seepage through the lagoon
bottom and sides.

Application and Performance: Soil that is at least 10 percent clay can be compacted with a
sheepsfoot roller to create a suitable impervious barrier. If the soil is not at least 10 percent clay,
a liner or soil amendment should be used. There are also site conditions that may require seepage
reduction beyond what is provided by compacting the natural soil. These conditions may include
a shallow underlying aquifer, an underlying aquifer that is ecologically important or used as a
domestic water source, or highly permeable underlying bedrock or soil. There are three options
available to provide additional seepage reduction. First, the soil can be mixed with bentonite or a
soil dispersant and then compacted. Clay can be imported from another area and compacted
along the bottom and side walls. Last, concrete or synthetic materials such as geomembranes or
geosynthetic clay liners can be used.

Advantages and Limitations: Concrete and synthetic liners are usually the most expensive.

Operational Factors: The method chosen to line the lagoon depends on the type of soil, site
geography and location, available materials, and economics.

Demonstration Status: The use of lined lagoons depends on site-specific conditions.
                                          8-55

-------
Practice: Storage Ponds
Description: Waste storage ponds are earthen basins used to store wastes temporarily including
runoff, solids (e.g., manure), and wastewater. The total volume of the pond consists of the
following (see Figure 8-5):          ;

1.     Sludge Volume—Volume of accumulated sludge between cleanouts. A fraction of the
       manure solids settles to the bottom of the pond and accumulates as sludge. The amount of
       sludge accumulation depends oh the type and amount of animal waste. For example,
       solids settling or solids separation prior to the storage pond reduces the rate of sludge
       accumulation.               |                                          v

2.     Manure and Wastewater Volunie—The volume of manure and wastewater from feedlot
       operational facilities transferred to the pond during the storage period. Ponds are typically
       designed to store from 90 to 270 days of manure and wastewater. The percentage of
       solids in the influent will depend on animal type and the waste management system.

3.     Runoff—The runoff from the sites for the storage period (usually the drylot area at
       AFOs).

4.     Net Precipitation—Precipitation minus the evaporation for the storage period.

5.     Design Storm—Typically a 25-year, 24-hour storm event.

6.     Freeboard—A minimum of 1 foot of freeboard. Freeboard is the extra depth added to the
       pond as a safety factor.       ;

Ponds are typically rectangular in shape and are constructed by excavating a pit and building
berms around the perimeter. The berms are constructed with an extra 5 percent in height to allow
for settling. The sides of the pond are typically sloped with a 1.5:1 or 3:1 (horizontal: vertical)
ratio.                             i

Ponds are typically used in combination with a solids separator. Solids separators help control
buildup of material such as straw or other bedding materials on the surface of the pond.
                                  i
Pond covers can be used to control odor and collect biogas produced from the natural
degradation of manure. Covers are usually made of a synthetic material, and are designed to float
on the surface of the impoundment. Often, because of the large size of the pond, the cover is
constructed in multiple modules. Each module has flotation devices at the corners to help support
the cover, and is tied down at the edge of the pond. Covers typically have drains constructed in
them to allow rainwater to drain through to the pond.
                                         8-56

-------
Application and Performance: Waste storage ponds are frequently used at AFO to contain
wastewater and runoff from contaminated areas. Manure, process water, and runoff are routed to
these storage ponds, where the mixture is held until it can be used for irrigation or transported off
site. Solids settle to the bottom as sludge, which is periodically removed. The liquid is applied to
cropland as fertilizer or irrigation water, or is transported off site.

Storage ponds hold wastewater and manure and are not intended to actively treat the waste.
Because they do not require additional volume for treatment, storage ponds are smaller in size
than treatment lagoons.

Ponds reduce the concentrations of both N and P in the liquid effluent. P settles to the bottom of
the pond and is removed with the sludge. Influent N is reduced through volatilization to
ammonia. Pond effluent can be used for land application or flushing animal barns, or it can be
transported off site. The sludge can also be applied to the land provided the soil is not saturated
with P.

Advantages and Limitations: Storage ponds provide a large volume for long-term waste storage
and allow manure to be handled as a liquid. If ponds are located at a lower elevation than the
animal barns, gravity can be used to transport the waste to the pond, which minimizes labor.
Although ponds are an effective means of storing waste, no treatment is provided. Because ponds
are open to the air, odor can be a problem.

Operational Factors: To avoid ground water and soil contamination, several factors must be
taken into consideration. Impervious barriers or liners are used to reduce seepage through the
pond bottom and sides. Soil that is at least 10 percent clay can be compacted with a sheepsfoot
roller to create a suitable impervious barrier. If the soil  is not at least 10 percent clay,  a liner or
soil amendment should be used. There are also site conditions that may require seepage reduction
beyond what is provided by compacting the natural soil. Conditions may include a shallow
underlying aquifer, an underlying aquifer that is ecologically important or used as a domestic
water source, or highly permeable underlying bedrock or soil. There are three options available to
provide additional seepage reduction. First, the soil can be mixed with bentonite or a soil
dispersant and then compacted. Clay can be imported from another area and compacted along the
bottom and side walls. Last, concrete or synthetic materials such as geomembranes or
geosynthetic clay liners can be used. Concrete and synthetic liners are usually the most
expensive. The method chosen to line the pond depends on the type of soil, site  geography and
location, available materials, and economics.

Pond inlets should be designed from materials that resist erosion, plugging, and freezing.
Vegetation around the  pond should be maintained to help stabilize embankments.

Demonstration Status: Ponds are a common method of waste storage for swine, beef, and dairy
facilities and are used on poultry farms in warmer climates. Beef feedlots tend to use storage
ponds for collection of runoff from the dry lots. EPA estimates that 50 percent of the medium-
                                          8-57

-------
size (300-1000 head) beef feedlots in all regions and 100 percent of the large-size (>l,000i head)
beef feedlots in all regions have a storage pond for runoff. NAHMS estimates 27.8 percent of
dairies use earthen storage basins (USDA APHIS, 1996b). The use of lined ponds depends on
site-specific conditions.


Practice: Pit Storage
Description: Manure pits are a common method for storing animal wastes. They can be located
inside the building underneath slats or solid floors, or outside and separated from the building.
Typical storage periods range from 5 to 12 months, after which manure is removed from the pit
and transferred to a treatment system or applied to land. There are several design options for pit
storage. For example, shallow pits under slats provide temporary storage and require more
frequent manure removal to longer-term storage or for land application. Pit recharge systems,
which are common in the Midwest, invplve regularly draining the pit contents to a lagoon and
recharging the pit with fresh or recycled water. The regular dissolution of solids keeps the pits
free of excessive buildup while providing temporary storage for manure. Pit recharge systems
typically have level floors with an average depth of 12 inches of recharge water, 12 inches
allowed for waste accumulation, and 12 inches of air space between the pit surface and the
slatted floor.                   '

Application and Performance: Because agitating and pumping equipment does not handle solid
or fibrous materials well, manure with greater than 15 percent solids will require dilution.
Chopper-type agitators may be needed to break up bedding or other fibrous materials that might
be present in the pit.                 \

Advantages and Limitations: Below-fldor storage systems provide ease of collection and
minimize volume (1.2 dilution versus 3.0 dilution for lagoon storage) while maximizing fertilizer
value (1.7 times the N versus lagoon storage). Below-floor storage systems may cause a buildup
of odors and gases and can be difficult to agitate and pump out. Remote storage avoids odor and
gas buildup in animal housing areas and provides options for methane production and solids
separation, but entails additional costs for transfer from the housing facilities to storage.

Operational Factors: Pits must have access for pumping equipment, and outside pits must be
covered or fenced to prevent accidental entry into the pit. They should be designed to withstand
anticipated hydrostatic, earth, and live loads as well as uplifting in high-water-table areas. Before
the pit is filled with manure, water is typically added to prevent solids from sticking to the pit
floor. Depths range from 3 to 4 inches under slatted floors and 6 to 12 inches if manure  is
scraped and hauled to the pit. Sand should not be used as a bedding material because it is
incompatible with pumping systems. The pits should always be free of nails, lumber, or other
foreign material that can damage equipment.

Demonstration Status: Pit holding is most commonly done at swine operations. Swine '95
(USDA APHIS, 1996a) reports that pit holding accounts for 25.5,33.7, and 23.2 percent of
                                          8-58

-------
farrowing, nursery, and grow-finish operations, respectively. Queries of the Swine 2000 (USDA
APHIS. 2002) data provided information oh the use of pits by region, operation type, and size.
Swine operations hi the Midwest Region use pits most often, with 70.7 percent of the large and
67.7 percent of the medium grow-finish and 56.4 percent of the large and 54.9 percent of the
medium farrow-to-finish operations using pits.  Swine operations in the Mid-Atlantic Region
use pits to a lesser degree, with 37.5 percent of the large and 26.3 percent of the medium grow-
finish operations and 23.9 percent of the large and 14.4 percent of the medium farrow-to-finish
operations using pits.

Below-floor slurry or deep pit storage is reported in Dairy '96 (USDA APHIS, 1996b) at 7.9
percent of all dairy operations. Based on EPA site visits, about 33 percent of veal operations are
believed to utilize pit storage systems. Beef feedlots do not typically utilize pit storage.


Practice: Belowground or Aboveground Storage Tanks

Description: Belowground and aboveground storage tanks are used as an alternative to under-
building pit storage and earthen basins. Both aboveground and belowground tanks are commonly
constructed of concrete stave, reinforced monolithic concrete, lap or butt joint coated steel, or
spiral wound coated steel with concrete floors." Current assembly practices for aboveground
storage facilities are primarily circular silo types and round concrete designs, but the structures
may also be rectangular.  Belowground storage can be located totally or partially below grade. All
storage tanks must be engineered to withstand operational constraints including internal and
external hydrostatic pressure, flotation and drainage, live loads from equipment, and loads from
covers and supports. Belowground tanks should be surrounded by fences or guardrails to prevent
people, livestock, or equipment from accidently entering the tank.

When located directly adjacent to the animal housing facility, belowground tanks are easily filled
by scraping directly into  the tank. In those situations where the storage tank is not adjacent to the
animal housing facility, a collection pit or sump is necessary for loading. In these systems a large
piston or pneumatic manure pump  forces waste through a large-diameter underground pipe.
Aboveground tanks at a lower grade than the livestock housing facility can often be gravity-fed
through a similar underground pipe. The tank can be loaded from the top or bottom. Bottom
loading in aboveground tanks is most appropriate for manure that forms a surface crust, such as
cattle manure. The inlet pipe is usually located 1 to 3 feet above the bottom of the tank to prevent
blockages from solids. An advantage to bottom loading is that it pushes solids away from the
inlet pipe and distributes them more evenly. Top loading is suitable and most  common for
manures that do not crust (i.e., liquid swine manure); however, top loading in an aboveground
system requires that manure be pumped against gravity. Figure 8-6 shows a typical aboveground
storage tank.

Application and Performance: Aboveground or belowground tanks are suitable for operations
handling slurry (semisolid) or liquid manure. This generally excludes open-lot waste which is
inconsistent in composition and has a higher percentage of solids. Furthermore, because of the
                                          8-59

-------
            Figure 8-6. Aboveground waste storage tank (USDA NRCS, 1996).
high cost of storage volume, prefabricated storage tanks are generally used to contain only waste,
but not runoff, from the livestock facility.
                                    i
Below and aboveground storage tanks are appropriate and preferred alternatives in situations
where the production site has karst terrain, space constraints, or aesthetics issues associated with
earthen basins. Storing manure in prefabricated or formed storage tanks is especially
advantageous on sites with porous soils or fragmented bedrock. Such locations may be unfit for
earthen basins and lagoons because seepage and ground water contamination may occur..
Construction of formed storage tanks often includes installation of a liner beneath the concrete to
prevent seepage. Aboveground formed storage facilities allow visual monitoring for leaking.
Aboveground tanks may exhibit unsightly leaks at seams, bolt holes, or joints, but these are
usually quickly sealed with manure. In these storage systems the joint between the foundation
and sidewall is the greatest concern. Leaching and ground water contamination can occur if the
tank is not sealed properly.

Proper operational practices to maintain adequate storage tank capacity between land
applications are critical. The holding volume of a storage tank consists of five  fractions: residual
volume, manure/waste storage volume (bedding,  wasted feed, water added for manure handling),
wash water volume, net rainfall and evaporation change,  and freeboard capacity.

In general, large amounts of water are not added during the handling of manure that is stored in
an above or belowground storage tanks. Installation costs usually dictate that capacity be limited
to manure storage requirements. Thus, water conservation is often practiced by facilities that use
                                          8-60

-------
 above or belowground storage tanks. For these facilities, recycling of wastewater is not an option
 because the manure is generally in slurry form with more than 4 percent solids. •

 Above and belowground storage tanks are simply storage facilities, and they do not facilitate
 treatment of the manure. Thus, there is little to no effect on the reduction of nutrients, pathogens,
 solids, heavy metals., growth hormones, or antibiotics. N in liquid manure is predominately in the
 inorganic form. This allows for some ammonia volatilization into the atmosphere and a reduction
 in the total amount of N.

 Advantages and Limitations: When these systems are used, manure agitation is necessary before
 the contents of the storage structure are pumped into a tanker wagon for land application.
 Agitation ensures uniform consistency of manure and prevents the buildup of solids, thus
 maintaining the storage capacity of the tank- Agitation results in a more even distribution of
 nutrients in the manure prior to land application. It  can be accomplished with high-horsepower,
 propeller-type agitators or by recirculating with a high-capacity pump. The length of time the
 manure needs to be agitated depends on the size of the storage tank, the volume of manure it
 contains, the percent of solids in the manure, and the type of agitator. Manure with up to 15
 percent solids can be agitated and pumped. Because of the potential for agitation and pumping
 problems, only small amounts of chopped bedding  are recommended for use in systems using
 storage tanks. Some types of agitators have choppers to reduce the particle size of bedding and
 solids. Dilution with additional water may be necessary to reduce agitation problems. One design
 variation places the pump in a sump outside the tank, using it for both agitation and pumpouts.

 Manure in a storage tank undergoes some anaerobic decomposition, releasing odorous and
 potentially toxic gases, such as ammonia  and hydrogen sulfide. Methane is also produced. Covers
 can be installed to interrupt the flow of gases up from the liquid surface into the atmosphere.
 Types of covers range from polyethylene, concrete, or geotextile to biocovers such as chopped
 straw. Various covers have been shown to reduce odors by up to 90 percent. Furthermore,
 particular types of covers can be used as methane reservoirs to collect and contain gases from the
 digestion process for disposal by flaring or converting to electrical power. Moreover, certain
 covers can prevent rainwater dilution and accumulation of airborne silts and debris. Finally, it is
 generally accepted that some types of covers control N volatilization into the atmosphere and
 maintain the N content of the manure.

 The installation costs associated with prefabricated  storage tanks are high when compared with
 other liquid manure-handling systems. Glass-lined steel tanks are typically associated with the
highest cost. The useful life of the tanks depends on the specific manufacturer and the operator's
maintenance practices. Once they have been installed, above and belowground storage tanks have
 a low labor requirement, especially when designed as a gravity feed system (Purdue Research
Foundation, 1994).

 Operational Factors: Specific storage structure designs  will vary by state because of climate and
regulatory requirements. Pumping manure during freezing conditions can be a problem unless  all
pipes are installed below the freezing level in the ground. Design considerations in these systems

                                          8-61

-------
include check valves if bottom loading is used, pumping power with respect to the maximum
head, and pipe friction from the pump to the storage.
                                    i           ,      ,     	
Demonstration Status: Belowground and aboveground storage tanks are in use nationwide in
swine, poultry, and dairy operations. They are appropriate for use in all slurry-based manure-
handling systems including those with shallow-pit flush systems, belt or scrape designs, or open-
gutter flush systems.                 ;.'

Practice: Solid Poultry Manure Storage in Dedicated Structures
Description: In the broiler and turkey segments of the poultry industry, specially designed
pole-type structures are typically used for the temporary storage of solid poultry manure;
however, horizontal (bunker) silo-type structures are also used. Manure produced hi "high-rise"
houses for caged laying hens does not require a separate storage facility if handled as a solid.

A typical pole-type storage structure is 18 to 20 feet high and 40 feet wide. The length depends
on the storage capacity desired but is usually a minimum of 40 feet. The structure will have a
floor of either compacted soil or concrete, the latter being more desirable but much more
expensive. The floor elevation should be at a height above grade that is adequate to prevent any
surface runoff from entering the structure. A properly sited structure will be oriented parallel to
the direction of the prevailing wind. Equipment access will be through the lee side, which will
have no wall. The other three sides of the structure will have walls extending from the floor to a
height of 6 to 8 feet. Experience has shown that a higher wall on the windward side of the
building excludes precipitation more effectively. Walls may be constructed using pressure-
treated lumber or reinforced concrete. Wooden trusses covered with steel sheets are most
commonly used for roofing, although plywood roof decking covered with composition shingles
is also an option. Manure is usually stacked to a height of 5 to 8 feet. Figure 8-7 shows three
types of permanently covered solid manure storage structures.

Horizontal silo-type storage structures are also used for the temporary storage of solid poultry
manure. These storage structures can be constructed using either post-and-plank or reinforced
concrete, walls on three sides. Equipment access will be through the lee side which will have no
wall. Concrete walls can be poured in place or made with prefabricated sections that are
manufactured for horizontal silo construction. Wall height can be from as low as 3 to 4 feet to as
high as 8 to 10 feet if prefabricated concrete sections are used. Usually, there is a concrete floor.

Again, floor elevation should be sufficiently above grade to prevent surface runoff from entering
the structure. With this type of storage structure, 6-mil or heavier plastic .is typically used to
cover the stored manure, but tarpaulins have also been used. As with horizontal silos, old tires
                                           8-62

-------
             Figure 8-7. Roofed solid manure storage (USDA NRCS, 1996).
are commonly used to secure the cover, although ropes or cables can also be used. Manure is
usually stacked to a height of 5 to 8 feet.

In the broiler industry, total cleanouts of production facilities occur only after a minimum of 1
year of production. A total cleanout frequency of 2 to 3 years is not uncommon. Total cleanouts
may be more frequent for brood chambers, but the frequency depends on the cost and availability
of bedding material, the incidence of disease, the concentration of gaseous ammonia within the
production facility, and the policy of the integrator. Caked manure, also known as crust, is
removed after every flock, typically a period of 49 days for 4- to 5-pound broilers. Usually,
storage structures are designed only for the storage of this caked manure because most broiler
growers view the cost of a structure large enough to store manure and litter from a total cleanout
as prohibitively high. Because caked manure production varies with the type of bedding material,
type of watering  system, and climatic conditions, storage requirements may vary from farm to
farm. Also, cake production increases with bedding age.  Local experience is usually relied upon
to estimate storage requirements.

In the turkey industry, total cleanouts of brooder facilities occur after every flock to control
disease, but grow-out facilities are typically totally cleaned out only once a year. Again, most
turkey growers consider the cost of storage of the manure and bedding from a total cleanout of
grow-out facilities to be prohibitively high. Therefore, structures are typically sized only for the
storage of manure and bedding from brooder houses.
                                          8-63

-------
Application and Performance: The temporary storage of solid poultry manure in a dedicated
structure is applicable to all poultry operations at which birds are maintained on a bedding
material. Thus, this practice is applicable to all broiler and turkey operations and the small
fraction of egg-producing operations that do not house birds in cages. The combination of
manure and bedding generated hi these operations has a moisture content of less than 50 percent,
usually 25 to 35 percent, and is handled as a solid. This practice is not necessary for caged laying
hens in high-rise housing because the production facility has a manure storage capacity of 1 or
more years.                                                           x

When sized and managed correctly, storage of solid poultry manure in a dedicated structure will
allow for the most efficient use of plant nutrients in the manure for crop production. This
eliminates the potential for contamination of surface and ground waters resulting from open
stacking of manure or spreading during the fall, whiter, early spring, and after crop
establishment, when there is no potential for crop uptake.  When the stored manure is effectively
protected from precipitation,  odor and fly problems are minimal. Odor can be a problem,
however, when the manure is removed from the storage structure and spread on cropland.

The storage of caked broiler litter and turkey brooder house manure and bedding reduces the
potential impact of these materials on surface and ground  water quality; however, a substantial
fraction of the manure and bedding produced by these segments of the poultry industry is not
stored because the associated cost is viewed as prohibitive. The material resulting from the total
cleanout of broiler houses and turkey grow-out facilities is often stored temporarily in open piles
or spread at inappropriate times of the year. Thus, storage, as currently practiced, is probably not
as effective in reducing water quality impacts as is presently thought.
                                    i
                                    i
Advantages and Limitations: A correctly sized and managed storage structure allows application
to cropland when nutrients will be most efficiently used, thus minimizing negative impacts on
surface and ground waters as noted above. If application to cropland is not a disposal alternative,
storage can facilitate off-site  disposal other than application to cropland.

The principal disadvantage of storing solid poultry manure in a dedicated structure is the cost of
the structure and additional material handling costs. Currently, sources of government assistance
are available (e.g., cost-share funds available from local soil and water conservation districts) to
partially offset construction costs and encourage the adoption of this practice.

Operational Factors: Spontaneous combustion hi stored poultry manure has been a problem and
has led to the recommendation that stacking height be limited to  5 to 8 feet to avoid excessive
compaction. Fires hi solid poultry manure storage structures, like silo fires, are extremely
difficult to extinguish and often lead to the total loss of the structure.

Demonstration Status: Permanent covered structures for storage  of solid manure are used
extensively hi the broiler and turkey segments of the poultry industry. In a 1996 survey of broiler
growers on the Delmarva Peninsula, 232 of 562 respondents indicated that they used a permanent
storage structure (Michele et al., 1996);

                                          8-64

-------
Practice: Concrete Pads
Description: Concrete pads are used as semi-impermeable surfaces upon which to place waste.
The waste pile is often open to the environment, but it can be covered with a roof or plastic
sheeting to minimize exposure to the elements. Pads are often sloped to a central location to
allow for drainage of rainwater and runoff.

The design for concrete pads varies according to the type of waste it receives (wet or dry) Waste
that includes settled solids from a settling basin or solids separator has a high moisture content.
In this case, the concrete pad typically has at least two bucking walls to contain the waste and to
facilitate the loading and unloading of waste onto the pile. The design height of the waste pile
does not exceed about 4 feet, because of the semiliquid state of the waste. For operations with
drier waste, the concrete pad typically does not have bucking walls, and the maximum height of
the manure pile is 15 feet, because the manure is drier and can be stacked more easily.

Figure 8-8 illustrates the design of a concrete pad (MWPS,1993; USDA NRCS, 1996).  Concrete
pads are between 4 and 6 niches thick and ^re made of reinforced concrete to support the weight
of a loading truck. The concrete pad is underlain by 4 inches of sand and 6 inches of gravel. The
pad is sloped to divert storm water runoff from the pile to the on-site waste management facility,
such as  a lagoon or a pond. Bucking walls, made of reinforced concrete, are 8 inches thick and 3
to 4 feet tall.

Application and Performance: Concrete pads are used at AFOs to provide a surface on  which to
store solid and semisolid wastes that would otherwise be stockpiled directly on the feedlot
surface. Manure scraped from dry lots and housing facilities and solids separated from the waste
stream in a solids separator can be stored on a concrete pad.

The pads provide a centralized location for the operation to accumulate excess manure for later
use on site (e.g., bedding, land application) or transportation off site. A centralized location for
stockpiling the waste also allows the operation to better control storm water runoff (and
associated pollutants). Rainwater that comes into contact with the waste is collected on the

concrete pad and is directed to a pond or lagoon and is thereby prevented from being released on
the feedlot. The pad also provides an impermeable base that minimizes or prohibits seepage of
rainfall, leaching pollutants or nutrients from the waste and infiltrating into the soil beneath it.
The waste is not treated once it is on the concrete pad; the pad serves as a pollution prevention
measure. However, with regular handling of the waste, the N loads in the waste will be  released
into'the atmosphere through volatilization, and both N and P may be contained in runoff from the
pile after storm events. Pathogen content, metals, growth hormones, and antibiotics loads are not
expected to decrease significantly on the concrete pad unless the pile ages considerably. .

Advantages and Limitations: An advantage to using a concrete pad for storage is to control runoff
and prevent waste from contaminating the surrounding environment. When rainwater or
                                          8-65

-------
                                        Bucking walls
          Bucking Wall Cross Section
                                                  Assumed Shape of Manure
                                                       Pile for Sizing Pad
  8" concrete wall
  Reinforced w/#4 bars
  16°o.c. Both ways
  Space #4 bar
  L anchors, 16° o.c.
                                                         Paraboloid of Revolution
                                                         L = length of base pile
                                                         L= length of top of pile
                                                         D - depth pf pile
                                                         V =
                            Figure 8-8 Concrete pad design.
precipitation conies into contact with the pile, the water may percolate through the pile, carrying
pollutants along the way. The water may exit the pile as runoff and carry pollutants to surface
waters or seep into the ground. The concrete pad and bucking walls minimize this potential
seepage into and runoff onto the ground around the pile.

Depending on the duration of storage required, however, these pads can take up a very large area.
An operation may not have sufficient area to install a concrete pad large enough to store waste in
one place. It can also be expensive to construct a concrete pad large enough to accommodate the
amount of waste that would accumulate over an  appropriate storage tune.

Waste stored on a concrete pad will still need to  be further managed, either by land application or
by transportation off site. There may be some odors from the pile on a concrete pad, but no more
than would be expected from any manure stored in a pile.
                                           8-66

-------
Operational Factors: Operations that frequently transport their waste will require less storage
volume than operations that have less frequent hauling schedules. Operations requiring less
storage capacity will require a smaller pad area, resulting in lower capital costs.

Demonstration Status: Concrete pads are used relatively infrequently in the livestock industry.
They are more commonly used in dairies than in poultry, beef or swine operations, because dairy
waste is semisolid and bucking walls are needed to contain the waste effectively, given the higher
moisture content. Waste from swine operations is generally too wet to stack on a pad, and beef
and poultry waste is usually piled directly on the feedlot.

8.2.3  Waste Treatment Technologies and Practices

8.2.3.1 Treatment of Animal Wastes and Wastewater
Some treatment systems store waste as well as change the chemical or physical characteristics of
the waste. Anaerobic lagoons are the most common form of treatment for AFOs. Other
technologies use oxidation to break down organic matter. These include aerated lagoons and
oxidation ditches for liquids and composting for solids.


Practice: Anaerobic Digesters for Methane Production and Recovery

Description: An anaerobic digester is a vessel that is sized both to receive a daily volume of
organic waste and to grow and maintain a steady-state population of methane bacteria to degrade
that waste. Methane bacteria are slow growing, environmentally sensitive bacteria that grow
without oxygen and require a pH greater than 6.5 to convert organic acids into bio'gas over time.
Anaerobic digestion can be simplified and grouped into two steps. The first step is easy to
recognize because the decomposition products are volatile organic acids that have disagreeable
odors. During the second step, methane bacteria consume the products  of the first step and
produce biogas—a mixture of carbon dioxide and methane—a usable fuel by product. A properly
operating digester will produce a gas with minimal odor because methane bacteria from the
second step reach a population large enough to rapidly consume the products of the first step.
There are three basic temperature regimes for anaerobic digestion: psychrophilic, mesophilic, and
thermophilic. Psychrophilic, or low-temperature, digestion is the natural decomposition path for
manures at temperatures found in lagoons. These temperatures vary from about 38 to 85 °F (3 to
29 °C). The hydraulic retention time (HRT) required for stable operation varies from 90 days at
low temperatures to 30 days at higher temperatures. Methane production will vary seasonally
with the variation in lagoon temperature.

Maintaining a constant elevated temperature enhances methane production. Mesophilic digestion
cultivates bacteria that have peak activity between 90 and 105 °F (32 to 40 °C). Mesophilic
digesters operate at a retention period of 12 to 20 days. Thermophilic digesters promote bacteria
that grow at between 135 to  155  °F (57 to 68 °C); these digesters operate with a retention time of
6 to 12 days.
                                          8-67

-------
Although there are many types of anaerobic digesters, only covered lagoons operating at ambient
temperatures, complete-mix digesters, and plug-flow digesters can be considered commercially
available, because they are the only ones that have been implemented successfully at 10 or more
sites.                               i

A cover can be floated on the surface of a properly sized anaerobic lagoon to recover methane.
Ideally, the cover is floated on the primary lagoon of a two-cell lagoon system, with the primary
lagoon maintained as a constant volume treatment lagoon and the second cell used to provide
storage of treated effluent until the effluent can be properly applied to land. The lagoons are not
heated, and the lagoon temperature and biogas production vary with ambient temperatures.
Coarse solids, such as hay and silage fibers in cow manure, must be separated in a pretreatment.
step and kept from the lagoon. If dairy solids are not separated, they will float to the top and form
a crust. The crust will thicken, reducing biogas production and eventually filling the lagoon.

A complete-mix digester is a biological treatment unit that anaerobically decomposes animal
manures using controlled temperature, constant volume, and mixing. These digesters can
accommodate the widest variety of wastes.  Complete-mix digesters are usually aboveground,
heated, insulated, round tanks; however, the complete-mix design has also been adapted to
function in a heated, mixed, covered earthen basin. Mixing can be accomplished with gas
recirculation, mechanical propellers, or liquid circulation. In Europe, some mixed digesters are
operated at thennophilic temperatures; however, most of these are regional digesters that are
built and operated by digester professionals. A complete-mix digester can be designed to
maximize biogas production as an energy source or to optimize VS reduction with less regard for
surplus energy. Either process is part of a manure  management system, and supplemental effluent
storage is required.                   ;

Plug-flow digesters are heated, unmixed, rectangular tanks. New waste is pumped into one  end of
the digester, thereby displacing an equal portion of older material horizontally through the
digester and pushing the oldest material out through the opposite end. Lusk (1998) refers to a
slurry-loop digester as a separate digester category, but this system, which is built in the shape of
a horseshoe, functions by displacement;in the same manner as a plug-flow digester.

Biogas formed in a digester bubbles to the surface and may be collected by a fixed rigid top, a
flexible inflatable top, or a floating cover, depending on the type of digester. Biogas from a stable
digester is saturated and contains 60  to 80 percent methane, with the balance as carbon dioxide
and trace amounts of hydrogen sulfide (l,800 to 5,000 ppm H2S). A collection system directs the
virtually odorless biogas to gas-handling components. Biogas may be filtered for mercaptan and
moisture removal before being pumped; or compressed to operating pressure  and then metered to
equipment  for use. Biogas that is pressurized and metered can be used as fuel for healing,
adsorption  cooling, electrical generation, or cogeneration.

Application and Performance: Properly designed anaerobic lagoons are used to produce biogas
from dilute wastes with less than 2 percent total solids (98 percent moisture) including flushed
dairy manure, dairy parlor wash water, and  flushed hog manure. Complete-mix digesters can be

                                           8-68

-------
used to decompose animal manures with 3 to 10 percent TS. Plug-flow digesters are used to
digest thick wastes (11 to 13 percent TS) from ruminant animals including dairy and beef
animals. The plug-flow system operates best with scrape-collected, fresh dairy manure that
contains low levels of dirt, gravel, stones, or straw.

Anaerobic digestion is one of the few manure treatment options that reduce the environmental
impact of manure and produce a commodity—energy—that can be used or sold continuously.
Digesters are used to stabilize manures to produce methane, while at the same time reducing
odors.

Approximately 35 percent of the VS from dairy manure and 60 percent of the VS from swine or
beef manure can be converted to biogas and removed from the manure liquid.

Table 8-11 summarizes the performance expected from anaerobic digesters. Anaerobic digesters
will reduce BOD and TSS by 80 to 90 percent, and virtually eliminate odor. The digester will
have minimal effect on the nutrient content of the digested manure passing through plug-flow or
complete-mix digesters. Half or more of the organic N (Org-N) is converted into ammonia
(NH3-N). In lagoons, the concentrations of nutrients are reduced through settling, volatilization,
and precipitation. With a cover in place, ammonia volatilization losses are eliminated, leaving
only settling and precipitation as pathways for N loss. A small amount of the P and K will settle
as sludge in most digesters.

                    Table 8-11. Anaerobic Unit Process Performance.
Digester type
Complete-mix
Plug-flow
Covered first cell of
two-cell lagoon
Percentage Reduction
HRT
(days)
12-20
18-22
30-90
COD
35-70
35-70
70-90
TS
25-50
20-45
75-95
VS
40-70
25-40
80-90
TN
0
0
25-35
P
0
0
50-80
K
0
0
30-50
Source: Moser and Martin, 1999.

The reductions of P, K, or other nonvolatile elements reported in the literature for covered
lagoons are not really reductions at all. The material settles and accumulates in the lagoon,
awaiting later management. Vanderholm (1975) reported P losses of up to 58 percent. Bortone et
al. (1992) suggest that P accumulation in anaerobic lagoons may be due to high pH driving
phosphate precipitation as Ca(PO4)2  and Mg(PO4)2. This is consistent with and supported by P
mass losses documented in most lagoon studies. Water-soluble cations, such as Na, K, and
ammonium N, tended to be distributed evenly throughout the lagoon. Humenik et al. (1972)
found that 92 to 93 percent of the copper(Cu) and zinc(Zn) in anaerobic swine lagoon influent
was removed and assumed to be settled and accumulated hi sludge.

Pathogen reduction is greater than 99 percent in mesophilic and thermophilic digesters with a
20-day HRT. Digesters are also very effective in reducing weed seeds.
                                         8-69

-------
Advantages and Limitations: Some advantages of anaerobic digestion include the opportunity to
reduce energy bills, produce a stabilized manure, recover a salable digested solid by-product,
reduce odor and fly breeding, and produce a protein-rich feed from the digested slurry.

The energy from biogas can be used onlsite as a fuel or sold to a local utility company. On-site
uses include the heating of the digester itself, fuel for boilers or electric generators, hot water
production, and refrigeration. The equipment listed in Table 8-12 can use biogas in lieu of
low-pressure natural gas or propane.   \

                             Table 8-12. Biogas Use Options.
Electrical generator
Refrigeration compressors
Irrigation pumps
Hot water boiler
Hot air furnace
Direct fire room heater
Adsorption chiller
electricity for use or sale, heat recovery optional
cooling, heat recovery optional
pumping, heat recovery optional
for space heat, hot water for process and cleanup
for space heat
for space heat
for cold water production, heat recovery optional
Dairy waste digesters partially decompose fibrous solids to a uniform particle size that is easily
separated with a mechanical separator. The recovered solids are valuable for reuse as cow
bedding or can be sold as a bagged or wholesale soil product.

Limitations include the costs associated with building and operating the digester. Furthermore,
nutrient concentrations in the semisolid anaerobic digestion product are not reduced substantially
unless they are then stored for several months. Therefore, the amount of land needed for land
application of manure is greater than that needed for uncovered lagoons and other treatment
practices.                           ;

Operational Factors: The successful operation of a properly designed digester is dependent upon
two variables: feed rate and temperature. All other operational issues are related to ancillary
equipment maintenance. Once a properly designed digester is operating, it will usually continue
to function unless management oversight is lacking. Reactor capacity is maintained through
periodic removal of settled solids and grit.

A sudden drop in biogas production or pH (from accumulation of organic acids) will indicate
digester upset. Factors that decrease the efficiency of microbial processes and might result in
digester upset include a change in temperature or feed rations, a change in manure loading rates,
or the addition of large quantities of bacterial toxins. A normal ratio of alkalinity to volatile acids
during a stable or steady-state anaerobic decomposition is 10:1. The known operating range is
4:1 to 20:1. (Metcalf and Eddy, 1979). An increase in volatile acids resulting in an alkalinity to
volatile acid ratio of 5:1 indicates the onset of failure of methane-producing anaerobic digestion
(unbalanced decomposition) (Chynoweth, 1998).
                                           8-70

-------
The level of hydrogen sulfide in the produced biogas can be controlled through either scrubbing
or managed operation of equipment. Scrubbing is necessary for some gas uses but is generally
expensive and maintenance intensive.

Demonstration Status: Anaerobic lagoons with covers were used at 1.8 percent of grow-firush
operations in  1995 (USDA APHIS, 1999). Approximately 30 pig lagoons have been covered in
the United States for odor control or methane recovery (RCM, 1999). The oldest continuously
operating covered swine waste lagoon is at Roy Sharp's Royal Farms hi Tulare, California. This
system, which was installed in 1981, has been producing electricity with the recovered methane
since 1983. Not all covered lagoon projects have beneficial uses for recovered methane; some
farms either flare or release the gas.

The oldest complete-mix pig manure digester in the United States was built in 1972.
Approximately 10 units are hi operation today,  6 of which were built within the last 4 years.
Many digesters are not operational, typically because the farm is no longer'in the pig business. At
least 16 operating plug-flow and slurry-loop digesters are currently operating in the United States
(Lusk, 1998; RCM, 2000).


Practice: Single-Cell Lagoon With Biogas Generation
Description: In this practice, a cover is floated  on the surface of a properly sized anaerobic
lagoon to recover biogas (70 percent methane and 30 percent carbon dioxide). Anaerobic lagoons
can produce biogas from any type of animal manure. The most successful arrangement consists
of two lagoons connected in series to separate biological treatment for biogas production and
storage for land application. A variable-volume, one-cell lagoon designed for both treatment and
storage can be covered for biogas recovery; however, a single-cell lagoon cover presents design
challenges due to the varying level of the lagoon surface.

In the early 1960s, the floating cover industry expanded beyond covering water reservoirs into
floating covers for industrial wastewater lagoons. Covering industrial organic wastewater
lagoons began as an odor control technique. Within the discovery that economic quantities of
biogas could be recovered, cover systems were refined to collect and direct biogas back to the
factory producing the organic waste. Lagoon design was optimized to provide both good
BOD/COD reduction and a supply of usable biogas. Today, hundreds of industrial anaerobic
lagoons have floating covers that optimize anaerobic digestion, control odor, and recover biogas.
The industries that use such covers include pork processors and rendering plants in the United
States. Lessons learned in the development of floating covers are incorporated into today's
designs for animal waste facilities.

Psychrophilic, or low-temperature, digestion is the natural decomposition path for manures at the
temperatures found in lagoons. These temperatures vary from about 38 to 85 °F (3 to 29 °C). The
retention time required for stable operation varies from 120 days at low temperatures to 30 days
                                          8-71

-------
 at the higher temperatures. Methane production varies seasonally with lagoon temperature. More
 methane is produced from warmer lagoons than from colder lagoons.
 The USDA NRCS (1999) developed Practice Standard 360, Covered Anaerobic Lagoon, to guide
 floating cover design, installation, and operation. Many types of materials have been used to
 cover agricultural lagoons. Floating covers are not limited in dimension. A floating cover allows
 for some gas storage. Cover materials must have a bulk density near that of water and must be
 UV-resistant, hydrophobic, tear- and puncture-resistant, and nontoxic to aquatic aerobes and
 anaerobes.                          ;
                                    i
 Several types of material are used to construct floating covers, including high-density
 polyethylene, XR-5, polypropylene, and hypalon. Material is selected based on material
 properties (such as UV resistance), price, availability, installation, and service. Installation teams
 with appropriate equipment travel and install covers.

 Biogas formed in a digester bubbles to the surface and is collected and directed by the cover to a
 gas use. Biogas from a stable covered lagoon is virtually odorless and saturated. It contains 70 to
 85 percent methane; the balance is carbon dioxide and trace amounts of hydrogen sulfide (1,000
 to 3,000 ppm H2S). Biogas can be harmful if inhaled directly, corrosive to equipment, and
 potentially explosive in a confined space when mixed with air. When properly managed, the
 off-gas is as safe as any other fuel (e.g., jpropane) used on the farm. Safety concerns are more
 completely addressed in the Handbook of Biogas Utilization (Ross et al., 1996).

 Biogas may be filtered for mercaptan and moisture removal. Biogas is usually pumped or
 compressed to operating pressure and then metered to the gas use equipment. Biogas can be used
 as fuel for heating, electrical generation, or cogeneration. Alternatively, it can simply be flared
 for odor control.

Application and Performance: Covered lagoons are used to recover biogas and control. Covers
can be installed to completely cover the lagoon and capture clean rainwater. The uncontaminated
rainwater can be safely pumped off, reducing the volume of lagoon liquid to be managed later.

Off-gases collected by an impermeable cover on an anaerobic manure facility are neither
explosive nor combustible until mixed with air in proper proportions to support combustion. No
reports of any explosions of biogas systems at animal production facilities were found.

Table 8-13 summarizes the performance'expected from covered lagoons. Anaerobic digestion in
a covered lagoon will reduce BOD and TSS by 80 to 90  percent. Odor is virtually eliminated.
                                    I
                    Table 8-13. Anaerobic Unit Process Performance

Digester type
Covered lagoon
HRT Days
30-90
Percentage Reduction
COD
70+90
TS
75-95
vs
80-90
TN
25-35
P
50-80
K
30-50
                                          8-72

-------
The concentrations of nutrients are reduced through settling and precipitation in lagoons.
Ammonia volatilization losses are virtually eliminated with a cover in place, leaving only settling
and precipitation as pathways for N loss.

During anaerobic digestion, microbial activity converts half or more of the Org-N to NH3-N.
Cheng et al., (1999) found that 30 percent of the total TKN (which includes ammonia and
organic N) entering the covered first cell of a two-cell lagoon was retained in that cell, probably
as Org-N in slowly degradable organics in the sludge. A similar loss due to settling could be
expected in a covered single-cell lagoon. A covered single-cell lagoon will not lose NH3-N to the
atmosphere; however NH3-N will be volatilized from the uncovered second cell of a two-cell
lagoon. Cheng et al., (1999) also reported that approximately 50 percent of the influent TKN was
subsequently lost from the uncovered second cell of the system.

Reported reductions of P, K, or other nonvolatile elements through a covered lagoon are not
really reductions at all. The material settles and accumulates in the lagoon awaiting later
management. This is  consistent with and supported by P mass losses documented in most lagoon
studies. Humenik et al. (1972) found that 92 to 93 percent of the copper and zinc in anaerobic
swine lagoon influent was removed and assumed to be settled and accumulated in sludge.

Cheng (1999) found pathogen reduction through a North Carolina covered lagoon to be 2 to 3
orders of magnitude.  Martin (1999) determined that relationships between temperature and the
time required for a  one log!0 reduction in densities of pathogens were consistently exponential in
form. Although there is substantial variation between organisms regarding the time required for a
one Iog10 reduction hi density at ambient temperatures, this work suggests that variation in die-off
rates among species decreases markedly as temperature increases. For example, the predicted
time required for a  one Iog10 reduction in fecal streptococcus density decreases from 63.7 days at
15 °C to 0.2 day at 50 °C, For S. aureus, the decrease is from 10.6 days at 15 °C to 0.1 day at 50
°C. Thus, for both storage and treatment at ambient temperature, an extended period of time is
predicted for any significant reduction. A single-cell covered lagoon has a longer residence time
than the covered first cell of a two-cell lagoon and should therefore have a greater reduction of
pathogens. However, during pumpout of a single-cell lagoon, fresh influent can be short-circuited
to the pumpout, carrying pathogens with it, whereas the covered first cell of a two-cell lagoon
produces a consistent pathogen reduction without short-circuiting because the first cell's
pathogen-destroying retention time is not affected when the second cell is pumped down.

Advantages and Limitations: The advantages of covered anaerobic lagoons are the reduction of
lagoon odor, exclusion of rainfall from the lagoon, recovery of usable energy, reduction of
ammonia volatilization, and reduction of methane emissions. There are also significant labor
savings involved in handling manure as a liquid and being able to apply lagoon waters to the land
through irrigation. Solids are broken down through microbial activity, and organic matter is   ,
stabilized when anaerobic digestion is complete, reducing the potential for production of noxious
by products. A bank-anchored cover prevents the growth of weeds where the cover is placed.
Finally, treated lagoon water can be recycled for flush water in confinement houses, resulting in
cost savings in areas where water is scarce.

                                          8-73

-------
 Limitations of covered anaerobic lagoons include the cost of installing a cover, which in 1999
 varied from $0.37 to $1.65 per square foot (Martin, 1999), and the occasional need for cover
 maintenance such as rip repair, and rainfall pump off. The lagoons themselves can be large,
 depending on the size of the hog operation, and can require a significant amount of cover
 material. Spills and leaks to surface and ground water can occur if the lagoon capacity is
 exceeded, or if structural damage occurs to berms, seals, or liners. The treatment capacity of most
 lagoons is diminished by sludge accumulation, and sludge has to be removed and managed.

 Operational Factors: Lagoons should be located on soils of low permeability or soils that seal
 through biological action or sedimentation, and proper liners should be used to avoid
 contamination of ground water. Proper sizing .and management are necessary to effectively
 operate a covered anaerobic lagoon and maintain biogas production. The minimum covered
 lagoon capacity should include treatment volume, sludge  storage, freeboard, and, if necessary,
 storage for seasonal rainfall and a 25-year, 24-hour rainfall event.

 Temperature is a key factor in planning the treatment capacity of a covered lagoon. The lagoons
 are not heated, and the lagoon temperature and biogas production vary with ambient
 temperatures. Warm climates require smaller lagoons and have less variation in seasonal gas
 production. Colder temperatures will reduce winter methane production. To compensate for
 reduced temperatures, loading rates are decreased and hydraulic retention time is increased. A
 larger lagoon requires  a larger, more costly cover than a smaller lagoon in a warmer climate.

 The floating cover must be designed and operated in such a way as to keep it from billowing in
 windy conditions. Coarse solids, such as hay and silage fibers in cow manure, must be separated
 in a pretreatment step and kept from the lagoon. If dairy solids are not separated, they float and
 form a crust. The crust will thicken, reducing biogas production and eventually filling the lagoon.

 Proper lagoon inspection and maintenance are necessary to ensure that lagoon liners and covers
 are not harmed by agitating and pumping, berms and embankments are stable, and the required
 freeboard and rainfall storage are provided. Sampling and analysis of the lagoon water are
 suggested to determine its nutrient content and appropriate land application rates.

 Anaerobic lagoons accumulate sludge over time, diminishing treatment capacity. Lagoons must
 be cleaned out once every 5 to 15 years, and the sludge can be applied to land other than the
 spray fields receiving the lagoon liquid. Because crop P requirements are less than those for N, it
 takes more land to apply the sludge from lagoon cleanout than to apply liquid wastewater.

Demonstration Status: Floating-cover technology is well developed and readily available.
 Covering lagoons for odor control has been demonstrated in all sectors of the animal production
 industry. The installation of floating covers specifically for methane recovery is a less common,
but well-known practice. There are at least 10 covered lagoon systems with biogas collection and
combustion in the pig and dairy industries (Lusk, 1998; RCM, 2000).
                                          8-74

-------
 Practice: Aerobic Treatment of Liquids
 Description: Conventional aerobic digestion is a process used frequently at small municipal and
 industrial wastewater treatment plants for biosolids stabilization. It is a suspended growth
 process operating at ambient temperature in the stationary or endogenous respiration phase of the
 microbial growth curve. In the stationary phase, the exogenous supply of energy is inadequate to
 support any net microbial growth. Endogenous respiration occurs when the exogenous supply of
 energy is also inadequate to satisfy cell maintenance requirements, and a net decrease in
 microbial mass occurs. Operating parameters include a relatively long period of aeration, ranging
 from several days to more than 30 days depending on the degree of stabilization desired. Given
 the relatively long period of aeration, activated sludge recycling is not necessary and hydraulic
 detention and solids retention times are equal in continuous-flow systems. This is a major
 difference between aerobic digestion and the various variants of the activated sludge process
 including extended aeration (see "Secondary Biological Treatment" below). When aerobic
 digestion is used for biosolids stabilization, either the fill-and-draw or the continuous mode of
 operation can be used. With the fill-and-draw mode of operation, an option is to periodically
 cease aeration temporarily to allow settling and then decant the clarified liquid before resuming
 aeration. This approach also allows the reactor to be used as a biosolids thickener.

 With conventional aerobic digestion, substantial reductions in TS, and VS, BOD, COD, and Org-
 N can be  realized. Total N reduction can also be  substantial, with either ammonia stripping or
. nitrification-denitrification serving as the primary mechanism, depending on the dissolved
 oxygen concentration of the mixed liquor. Actual process performance depends on a number of
 variables  including solids  retention time, temperature, and adequacy of oxygen transfer and
 mixing. '

 An aeration basin is typically used for the aerobic digestion of municipal and industrial
 wastewater biosolids. In contrast, several reactor types, including oxidation ditches and
 mechanically aerated lagoons, as well as aeration basins, have been used for the aerobic digestion
 of animal manures. Under commercial conditions, the oxidation ditch has been the most
 commonly used because it can be located in the animal housing unit under cages for laying hens
 or under slatted floors for  swine. This eliminates the need for transport of manure to the
 treatment system.                      \

 It should be noted that since the oxidation ditch was originally developed to employ the activated
 sludge process used in municipal wastewater treatment, the term "activated sludge" has been
 used incorrectly on occasion to describe the aerobic digestion of swine, poultry, and  other animal
 wastes. Aerobic digestion, not the activated sludge process, is employed in oxidation ditches,
 mechanically aerated lagoons, and aeration basins. Table 8-14 presents technologies that use
 aerobic digestion or the activated sludge process.
                                          8-75

-------
Table 8-14. Operational Characteristics of Aerobic
Digestion and Activated Sludge Processes.
Process
Modification
Conventional
Complete mix
Step feed
Modified
aeration
Contact
stabilization
Extended
aeration
High-rate
aeration
Kraus process
High-purity
oxygen
Oxidation ditch
Sequencing
batch reactor
Deep-shaft
reactor
Single-stage
nitrification
Separate stage
nitrification
Flow Model
Plug flow
Continuous-flow
stirred-tank
reactor
Plug flow
Plug flow
Plug flow
Plug flow
Continuous-flow
stirred-tank
reactor
Plug flow
Continuous-flow
stirred-tank
reactors in series
Plug flow
Intermittent-flow
stirred-tank
reactor
Plug flow .
Continuous-flow
stirred-tank
reactors or plug
flow
Continuous-flow
stirred-tank
reactors or plug
Aeration System
Diffused-air,
mechanical aerators
Diffused-air,
mechanical aerators
Diffused air
Diffused air
Diffused-air,
mechanical aerators
Diffused-air,
mechanical aerators
Mechanical aerators
Diffused air
Mechanical aerators
(sparger turbines)
Mechanical aerators
(horizontal axis
type)
Diffused air
i
Diffused air
Mechanical
aerators, diffused-
air [
i
Mechanical
aerators, diffused-
i
air :
BOD Removal
Efficiency
(percent)
85-95
85-95
85-95
60-75
80-90
75-95
75-90
85-95
85-95
75-95
85-95
85-95 .
85-95
85-95
Remarks
Use for low-strength domestic wastes.
Process is susceptible to shock loads.
Use for general application. Process is
resistant to shock loads, but is susceptible
to filamentous growths.
Use for general application for a wide
range of wastes.
Use for intermediate degree of treatment
where cell tissue in the effluent is not
objectionable.
Use for expansion of existing systems
and package plants.
Use for small communities, package
plants, and where nitrified element is
required. Process is flexible.
Use for general applications with turbine
aerators to transfer oxygen and control
floe size.
Use for low-N, high-strength wastes.
Use for general application with high-
strength waste and where on-site space is
limited. Process is resistant to slug loads.
Use for small communities or where
large area of land is available. Process is
flexible.
Use for small communities where land is
limited. Process is flexible and can
remove N and P.
Use for general application with high-
strength wastes. Process is resistant to
slug loads.
Use for general application for N control
where inhibitory industrial wastes are not
present.
Use for upgrading existing systems,
where N standards are stringent, or where
inhibitory industrial wastes are present
and can be removed in earlier stages.
Source: Metcalf and Eddy Inc., 1991.
                                                       8-76

-------
 Application and Performance: Conventional aerobic digestion is an option for all swine and
 poultry operations where manure is handled as a liquid or slurry, and it can be used with flushing
 systems using either mixed liquor or clarified effluent as flush water. With proper process design
 and operation, a 75 to 85 percent reduction in 5-day biochemical oxygen demand (BOD5) appears
 achievable, with a concurrent 45 to 55 percent reduction in COD, and a 20 to 40 percent
 reduction in TS (Martin, 1999). In addition, a 70 to 80 percent reduction of the N in both poultry
 and swine wastes via nitrification-denitrification also appears possible. Total P is not reduced,
 but the soluble fraction may increase. As with aerobic digestion of biosolids, some reduction hi
 pathogen densities may also occur depending on process temperature.

 Advantages and Limitations: hi addition to the potential for substantial reductions hi oxygen-
 demanding organics and N, one of the principal advantages of aerobic digestion of poultry and
 swine manures is the potential for a high degree of odor control. Another advantage is the
' elimination of fly and other vermin problems.

 Limitations include high energy requirements for aeration and mixing (e.g., pumps, blowers, or
 mixers for mechanical aeration). In addition, aerobic lagoons without mechanical aeration are
 generally shallow, requiring a very large land area to meet oxygen demands. The absence of a
 reduction hi the volume of waste requiring ultimate disposal is another limitation. In certain
 situations, waste volume will be increased significantly. For example, use of an undercage
 oxidation ditch versus a high-rise type system to manage the waste from  laying hens will
 substantially increase the waste volume requiring ultimate disposal. Also, management,
 maintenance, and repair requirements for aerobic digestion systems can be significant. For
 example, liquids and solids must be separated hi a pretreatment step when aerated lagoons are
 used.

 Operational Factors: Establishing and mahitaining an adequate microbial population in aerobic
 digestion reactors is critical to ensure optimal process performance. Failure to do so will lead to
 excessive foam production, which  has suffocated animals on slatted floors above in-building
 oxidation ditches. Failure to remove slowly biodegradable solids on a regular basis to maintain a
 mixed liquor total solids concentration of about 1 percent in fill-and-draw systems will lead to a
 substantial reduction hi oxygen transfer efficiency and mixing. This results hi reduced treatment
 efficiency and the potential for generation of noxious odors and release of poisonous gases,
 particularly hydrogen sulfide. Because ambient temperature determines process temperature,
 seasonal variation hi process performance occurs.

 Demonstration Status: Aerobic digestion has not been adapted to any significant degree by the
 poultry, dairy, or swine industries,  although a number of research and demonstration scale studies
 were conducted hi the late 1960s arid early 1970s. Problems related to process and facilities
 design, together with the significant increase hi electricity costs hi the early to mid-1970s, led to
 a loss of interest in this animal waste treatment alternative. It is possible that no aerobic digestion
 systems for animal wastes are currently in operation in the poultry and swine industries.
                                           8-77

-------
Lagoons are the most popular method of treatment for livestock manure. Aerobic lagoons are
commonly used for secondary treatment and storage of anaerobic lagoon wastes. Despite the
advantages, however, aerobic lagoons are considered uneconomical for livestock manure
treatment.

Practice: Autoheated Aerobic Digestion
Description: Autoheated aerobic digestion uses heat released during the microbial oxidation of
organic matter to raise process temperature above ambient levels. This is accomplished by
minimizing both sensible and evaporative heat losses  through the use of insulated reactors and
aeration systems with high-efficiency oxygen transfer. Mesophilic temperatures, 86 °F (30 °C)  or
higher, can typically be maintained even in cold climates, and thermophilic temperatures as high
as 131 to 149 °F (55 to 65 °C) can be attained. Both ammonia stripping and
nitrification-denitrification can be mechanisms of N loss at mesophilic temperatures;
nitrification-denitrification is typically the principal mechanism if the aeration rate  is adequate to
support nitrification. Because both Nitrosomas and Nitrobacter, the bacteria that convert
ammonium ions into nitrate, are mesophiles, N loss at thermophilic temperatures is limited to
ammonia stripping. Typically, autoheated digestion reactors are operated as draw-and-fill
reactors to minimize influent short-circuiting, especially when maximizing pathogen reduction is
a treatment objective.

Application and Performance: Autoheated aerobic digestion is appropriate for all livestock and
poultry  operations where manure is handled as a slurry that has a minimum TS concentration of
at least  1 to 2 percent, wet basis. At lower influent total solids concentrations, such as those
characteristic of flushing systems, achieving process temperatures significantly above ambient
levels is problematic because of an insufficient biological heat production potential relative to
sensible and evaporative heat losses. As influent TS concentration increases, the potential for
achieving thermophilic temperatures also increases. Influent TS concentrations of between 3 and
5 percent are necessary to attain thermophilic temperatures.

With proper process design and operation, the previously discussed reductions in BOD5, COD,
TS, and total N that can be realized with conventional aerobic digestion also can be realized with
autoheated aerobic digestion (Martin, 1999). Autoheated aerobic digestion can also provide
significant reductions in pathogen densities in a relatively short 1- to 2-day treatment period.
Reductions realized are a function of process temperature. At a process temperature of 122 °F
(50 °C)  or greater, a minimum of at least a one Iog10 reduction in the density of most pathogens is
highly probable, with two to three log,0 reductions likely (Martin,  1999).

Advantages and Limitations: With respect to waste stabilization and odor control, the potential
benefits of conventional and autoheated aerobic digestion are comparable. The principal
advantages of autoheated aerobic digestion relative to conventional aerobic digestion from a
process  performance perspective are  (1) higher reaction rates that translate into shorter detention
tunes to attain a given degree of stabilization, and (2) more rapid reduction in densities of
                                          8-78

-------
 pathogens. The tune required to achieve comparable reductions hi BOD5, COD, TS, and total N
 is much shorter in autoheated than hi conventional aerobic digestion. With autoheated aerobic
 digestion, these reductions occur within 1 to 3 days at thermophilic temperatures, whereas 15
 days or more are required with conventional aerobic digestion at ambient temperatures. This
 translates directly into smaller reactor volume requirements.

 The ability to provide rapid and substantial (at least a one Iog10) reductions in pathogen densities
 is one of the more attractive characteristics of autoheated aerobic digestion. This ability has been
 demonstrated in several studies of autoheated aerobic digestion of biosolids from municipal
 wastewater treatment, including a study by Martin (1999).

 The high energy requirements for aeration and mixing are limitations of autoheated aerobic
 digestion. In addition, waste volume is not reduced through the treatment process. However, the
 requirement of a less dilute influent waste stream, as compared with conventional aerobic
 digestion, for example, to provide the necessary biological heat production potential translates
 into reduced ultimate disposal requirements.

 Operational Factors: A foam layer covering the mixed liquor in autoheated aerobic digestion
 reactors is a common characteristic and serves to reduce both sensible and evaporative heat
 losses. It is necessary to control the depth of this foam layer to ensure that an overflow of foam
 from the reactor does not occur. Typically, mechanical foam cutters are used. Although
 autoheated aerobic digestion is less sensitive to fluctuations in ambient temperature than are
 other treatment processes, such as conventional aerobic digestion, some reduction in treatment
 efficiency can occur, especially during extended periods of extremely cold weather.

 Demonstration Status: The feasibility of using autoheated aerobic digestion to stabilize swine
 manure has been demonstrated in several studies (Martin, 1999). Feasibility also has been
 demonstrated in several studies with cattle manure, including studies by Terwilliger and Crauer
 (1975) and Cummings and Jewell (1977). There does not appear to have been any comparable
 demonstration of feasibility with poultry wastes. Given the similarities in the composition of
 swine and poultry wastes, it is highly probable that autoheated aerobic digestion of poultry
 wastes is also technically feasible. Although no data are available, it is probable that this waste
 treatment technology is not currently being used in any segment of animal agriculture, primarily
 because of the associated energy cost.

 Practice: Secondary Biological Treatment
Description: The activated sludge process is a widely used technology for treating wastewater
that has high organic content. The process was first used in the early 1900s and has since gained
popularity for treatment of municipal and industrial wastewater. Many versions of this process
are in use today, but the fundamental principles are similar. Basically, the activated sludge
process treats organic wastes by maintaining an activated mass of microorganisms that
aerobically decomposes and stabilizes the waste.
                                          8-79

-------
Primary clarification or solids settling is the first step in the activated sludge process. Next, the
organic waste is introduced into a reactor. Maintained in suspension in the reactor is a biological
culture that converts the waste through oxidation and synthesis. The aerobic environment in the
reactor is achieved using diffused or mechanical aeration, which also maintains a completely
mixed state. After a specified period, the HRT, the mixture in the reactor is passed to a settling
tank. A portion of the solids from the settling tank is recycled to the reactor to maintain a balance
of microorganisms. Periodically, solids from the settling tank are "wasted" or discharged to
maintain a specific concentration of microorganisms in the system. The solids are discharged
according to a calculated solids retentiojn time (SRT), which is based on the influent
characteristics and the desired effluent quality. The overflow from the settling tank is discharged
from the system.                     ;

Application and Performance: The activated sludge process is very flexible and can be used to
treat almost any type of biological waste. It can  be adapted to provide high levels of treatment
under a wide range of operating conditions. Properly designed, installed, and operated activated
sludge systems  can reduce the potential pollution impact of feediot waste because this technology
has been shown to reduce carbon-, N-, and P-rich compounds.                          .

In the activated sludge process, N is treated biologically through nitrification-denitrification. The
supply of air facilitates nitrification, which is the oxidation of ammonia to nitrite and then nitrate.
Denitrification takes place in an anoxic environment, in which the bacteria reduce the nitrate to
nitrogen gas (N^, which is released into the atmosphere. The activated sludge process can nitrify
and denitrify in single-and double-stage systems.

P is removed biologically when an anaerobic zone is followed by an aerobic zone, causing the
microorganisms to absorb P at an above-normal rate.  The activated  sludge technology most
effective for removing P is the sequencing batch reactor (SBR) (see "Sequencing Batch
Reactors," below).
                                    i
N and P can both be removed in the same system. The SBR is also most effective for targeting
removal of both N and P because of its ability to alternate aerobic and anaerobic conditions to
control precisely the level of treatment.

Advantages and Limitations: An advantage of the activated sludge process is that it removes
pollutants, particularly nutrients, from the liquid portion of the waste. Nutrient removal can allow
more feediot wastewater to be applied to land without overloading it with N and P. Furthermore,
concentrating the nutrients in a sludge portion can potentially reduce transportation volumes and
costs of shipping excess waste.

A disadvantage of an activated sludge system compared to an anaerobic lagoon is the relatively
high capital and operating costs and the complexity of the control system. In addition, because
pollutants will remain in the sludge, stabilization and pathogen reduction are necessary before
disposing of it.
                                          8-80

-------
 Because the activated sludge process does not reduce pathogens sufficiently, another way to
 reduce pathogens in both the liquid and solid portions of a waste may be appropriate prior to  ,
 discharge or land application. The liquid effluent from an activated sludge system can be
 disinfected by using chlorination, ultraviolet radiation, or ozonation, which are the final steps in
 many municipal treatment systems.

 Operational Factors: Many parameters can affect the performance of an activated sludge system.
 Organic loading must be monitored carefully to ensure that the microorganisms can be sustained
 in proper concentrations to produce a desired effluent quality. The principal factors in the control
 of the activated sludge process are:

     •    Maintaining dissolved oxygen levels in the aeration tank (reactor).

     •    Regulating the amount of recycled activated sludge from the settling tank to the reactor.

     •    Controlling the waste-activated sludge concentration in the reactor.
 Ambient temperature can also affect treatment efficiency of an activated sludge system.
 Temperature influences the metabolic activities of the microbial population, gas-transfer rates,
 and settling characteristics of biological solids. In cold climates, a larger reactor volume may be
 necessary to achieve treatment goals because nitrification rates decrease significantly at lower
 temperatures.

 Demonstration Status: Although activated sludge technologies have not been demonstrated on a
 full-scale basis in the animal feedlot industry, the process may treat such waste effectively.
 Studies have been performed on dairy and swine waste to determine the level of treatment
 achievable in an SBR (see  "Sequencing Batch Reactors," below). The SBR is simpler, more
 flexible, and perhaps more cost-effective than other activated sludge options  for use in the
 feedlots industry.


 Practice: Sequencing Batch Reactors
Description: An SBR is an activated sludge treatment system in which the processes are carried
 out sequentially in the same tank (reactor). The SBR system may consist of one reactor, or more
than one reactor operated in parallel. The activated sludge process treats organic wastes by
maintaining an aerobic bacterial culture, which decomposes and stabilizes the waste. An SBR
has five basic phases of operation, which are described below.

Fill Phase: During the fill phase, influent enters the reactor and mechanical mixing begins. The
mixing action resuspends the settled biomass from the bottom of the reactor,  creating a
completely mixed condition and an anoxic environment. As wastewater continues entering the
reactor, oxygen may also be delivered, converting the environment from anoxic to aerobic.
Depending on the desired effluent quality, the oxygen supply can be operated in an "on/off"
cycle, thus alternating the aerobic and anoxic conditions and accomplishing nitrification and
denitrification.
                                          8-81

-------
React Phase: During the react phase, wastewater no longer enters the reactor. Influent to the
system is instead either stored for later treatment in a single-reactor system or diverted to another
reactor to begin treatment in a system With multiple reactors. Mechanical mixing continues
throughout this phase. The oxygen supply may be operated in a cyclical manner, as described in
the fill phase, to accomplish additional denitrification if necessary. Activated sludge systems,
such as SBRs, depend upon developing and sustaining a mixed culture of bacteria and other
microbes (i.e., the biomass) to accomplish the treatment objectives.

Settle Phase: During the settle phase, the oxygen supply system and mechanical mixer do not
operate. This phase provides a quiescent environment in the reactor and allows gravity solids
separation to occur, much like in a conventional clarifier.

Draw Phase: Following the treatment of a batch, it is necessary to remove from the reactor the
same volume of water that was added during the fill phase. After a sufficient settling phase, the
liquid near the top of the reactor is decanted to a predetermined level and discharged or recycled.

Idle Phase: The idle phase is a time period between batches during which the system does not
operate. The duration of this unnecessary phase depends on the hydraulic aspects of the reactor.
However, as a result of biological degradation and accumulation of inert materials from the
wastewater, solids must be discharged from the reactor periodically to maintain a desirable level
of mixed liquor suspended solids. This ?sludge wasting" is done during the idle phase, or
immediately following the draw phase, i
                                   I
Application and Performance: SBR technology could be applied to reduce the potential pollution
impact of liquid manure waste from dairies because this technology has been shown to reduce
carbon-, N-, and P-rich compounds. Removing these pollutants from the liquid portion of the
waste could allow for greater hydraulic :application to lands without exceeding crop nutrient
needs. Concentrating the nutrients in the sludge portion could potentially reduce transportation
volumes and cost of shipping excess waste. Although a proven technology for treatment of
nutrients in municipal wastewater, available data does not exist showing SBRs to be effective in
pathogen reduction.                 i
                                   \
Given the processes it employs, SBR treatment may allow treated dairy wastewater to be either
applied to land or discharged to a stream if a sufficient level of treatment can be achieved.
Further, the sludge from the wasting procedure could be applied to land, composted, or sent off
site for disposal. Aqua-Aerobic Systems of Rockford, Illinois, (Aqua-Aerobics, 2000) estimates a
sludge production rate of approximately 1.3 pounds of waste-activated sludge per pound of
BOD5 entering the system. The use of $BRs to treat dairy waste has been studied in the
laboratory at both Cornell University and the University of California at Davis. Both studies have
shown SBR technology to be effective in reducing pollutants in the liquid portion of dairy waste,
although neither report included specifip information on sludge characteristics or P removals
(Johnson and Montemagno, 1999; Zhang et al., 1999).
                                          8-82

-------
 In the Cornell study, diluted dairy manure was treated in bench-scale reactors (Johnson and
 Montemagno, 1999). Experiments were conducted to determine the operating strategy best suited
 for the diluted dairy manure. The study resulted in removals of 98 percent of ammonia (NH3), 95
 percent of COD, 40 percent of nitrate/nitrite (NO3/NO2), and 91 percent of inorganic N.

 The University of California at Davis studied how SBR performance was affected by HRT, SRT,
 organic loading, and influent characteristics of dairy wastewater (Zhang et al., 1999). The highest
 removal efficiencies from the liquid portion of the waste were for an influent COD concentration
 of 20,000 mg/L (a COD concentration of 10,000 mg/L was also studied) and an HRT of 3 days
 (HRTs of 1  to 3 days were studied). With these parameters, laboratory personnel observed
 removal efficiencies of 85.1 percent for NH3 and 86.7 percent for COD.

 In addition, studies  on SBR treatment of swine waste in Canada and of veal waste in Europe have
 demonstrated high removal rates of COD, N, and P (Reeves, 1999).

 Advantages and Limitations: Technology currently used at dairies includes solids settling basins
 followed by treatment and storage of waste in an anaerobic lagoon. Lagoon effluent and solids
 are applied to cropland in accordance with their nutrient content, and excess water or solids are
 then transported off site. The SBR could replace treatment in an anaerobic lagoon, but there
 would still be a need for solids separation in advance of SBR treatment, as well as a pond or tank
 to equalize the wastewater flow. In fact, Aqua-Aerobics (2000) has indicated that solids removal
 and dilution of the raw slurry would be necessary to treatment in the SBR. Following the SBR, it
 is possible that some type of effluent storage would be required for periods when direct irrigation
 is not possible or necessary.

 Use of an SBR is expected to be advantageous at dairies that apply a portion of their waste to
 land. The reduced level of nutrients in the liquid portion would allow for application of a greater
 volume of liquid waste, thereby reducing the volume of waste that must be transported off site
 and possibly eliminating liquid waste transport. An SBR is also beneficial in the handling of the
 solids portion of the waste because no periodic dredging is required as is the case with anaerobic
 lagoons. Disadvantages of an SBR system are the relatively high capital and operating costs, as
 well as the need to manage the nutrients that remain in the sludge.

 Because the activated sludge process is not a generally accepted method of pathogen reduction,
 another means of reducing pathogens in both the liquid and solid portions of the dairy waste may
 be appropriate. Disinfection of the liquid effluent from the SBR could be accomplished through
 use of chlorination, ultraviolet radiation, or ozonation which are used as the final step in many
 municipal treatment systems. Composting has also been demonstrated as a means of reducing
 pathogens in organic solid waste and could be implemented for use with the SBR sludge.

 Operational Factors: The five phases of SBR operation may be used in  a variety of combinations
 in order to optimize  treatment to address specific influent characteristics and effluent goals. N in
the activated sludge  process is treated biologically through the nitrification-denitrification
process. The nitrification-denitrification process in the SBR is controlled through the timing and

                                          8-83

-------
cyclical pattern of aeration during the react phase. The supply of air causes nitrification, which is
the oxidation of ammonia to nitrite and then nitrate. To accomplish denitrification, the air supply
is shut off, creating an anoxic environment in which the bacteria ultimately reduce the nitrate to
N2> which is released to the atmosphere. The cycle can be repeated to achieve additional levels of
denitrification. Some portion of the N in the influent to the SBR may also volatilize prior to
treatment, and a portion may also be taken up by microorganisms that are present in the waste-
activated sludge (Zhang etal., 1999).  ;

P is removed when an anaerobic zone (or phase) is followed by an aerobic zone, causing the
microorganisms to take up P at an above-normal rate. The waste-activated sludge containing the
microorganisms is periodically "wasted" as described above. As such, the bulk of the P will be
concentrated ultimately in the sludge portion with a minimal amount remaining in the liquid
effluent.

N and P can both be removed in the same system. This dual removal is accomplished by
beginning the fill phase without aeration, which creates an anoxic condition allowing for some
denitrification as well as release of P from the cell mass to the liquid medium. There  follows a
period of aerated mixing, which will continue into the react phase, allowing for nitrification and
uptake of P. The settle phase, in which no aeration occurs, is extended sufficiently to allow for
additional denitrification. Again, these phases can be repeated or executed for varying durations
in order to accomplish specific treatment goals.

Demonstration Status: Although the SBR technology has not been demonstrated on a full-scale
basis in the dairy industry, SBRs are currently being evaluated for use at dairies because they
generate a high volume of wastewater. Dairy wastewater treated in the SBR includes a
combination of parlor and barn flush/hqse water and runoff.
                                   [
Cornell University is currently studying two pilot-scale SBR systems to further investigate the
treatability of dairy waste (Johnson and Montemagno, 1999). No results from the pilot-scale
study are yet available, although preliminary results for nutrient removal have been favorable and
a full-scale system is being planned.

Practice: Solids Buildup in the Covered First Cell of a Two-Cell Lagoon
Description: This section addresses sludge accumulation, removal, and management in the first
cell of a two-cell lagoon. The first cell may or may not be covered for methane recovery. Some
sludge will be carried from the first cell to the second cell; however, the quantity is not
significant compared with potential accumulations in the first cell. No quantitative information
was found regarding the differences in the rate of accumulation of sludge hi the first  cell versus
accumulation in a single-cell lagoon. The removal and management of sludge from the first cell
of a two-cell lagoon will be the same as described for sludge cleaning from a single cell lagoon.
                                          8-84

-------
 For the purpose of this section, sludge is material settled on the bottom of a lagoon receiving
 waste from any animal; it has a TS content greater than 10 percent, generally has a high angle of
 repose when dewatered, and will not readily flow to a pump. Sludge includes organic material
 not decomposed by lagoon bacteria, and inorganic material such as sand and precipitates. Sludge
 accumulation can eventually fill a lagoon.

 Accumulated sludge is removed to restore lagoon treatment and storage capacities. Two general
 methods of sludge removal, slurry and solid, are described below. When managed as a slurry,
 sludge is resuspended with agitation and pumped to tankers or irrigation guns for land
 application.  Slurry management is desirable when the sludge mixture can be pumped to an
 irrigation gun or hauled a short distance. Sludge removed from covered lagoons is removed as a
 slurry.

 Sludge managed as a solid is excavated from the lagoon or pumped from the bottom as slurry to
 a drying area. Solid sludge is cheaper to haul than slurry because water, which increases the
 weight and volume, is not added. Solid sludge can be spread with conventional manure spreaders
 or dumped on fields and spread out and disced into the soil. In drier areas of the country, a
 lagoon may be withdrawn from service as a parallel lagoon is restored to service. The lagoon
 liquids are pumped off to field application and the sludge is allowed to dry. After 4 to 12 months,
 excavators, backhoes or bulldozers scrape, push, pull, or lift the material into trucks or wagons
 for hauling and spreading. Some lagoons are designed to be desludged by dragline bucket
 excavators while still in operation. Draglines work along the banks of these long, narrow
 lagoons, excavating sludge and either dropping it into trucks for hauling or depositing it on the
 lagoon embankment to dry for later hauling.

Application and Performance: Lagoon cleanout is applicable to all two-cell lagoons, regardless
 of location. Reported reductions of P, K, and other nonvolatile elements through a lagoon are not
really reductions at all because these materials settle. N is considered volatile in the ammonia
 form, but some Org-N associated with heavier and nondegradable organics also settles into the
lagoon sludge and stays, resulting in a high-Org-N fraction of total TKN in settled solids. The
settled materials accumulate in the lagoon awaiting later disposal. Compared with lagoon liquids,
lagoon sludges have higher concentrations of all pollutants that are not completely soluble. All
reported data suggest that the sludge is more stable than raw manure based on its reduced VS/TS.
VS are a portion of the TS that can be biologically destroyed, and as they are destroyed, the
VS/TS ratio declines.

As anaerobic digestion of manure changes the  solution chemistry in a lagoon, materials such as
NH3 and P form precipitates with Ca and Mg. Fulhage and Hoehne (1999) and Bicudo et al.
(1999) both report concentrations of Ca, Mg, P, and K in lagoon sludge at 10 to 30 times that
found in raw manure.  Fulhage and Hoehne also reported that Cu and Zn settle and concentrate to
40 to 100 times the concentration found in lagoon liquid.

Martin (1999),  in a review and analysis of factors affecting pathogen destruction, found that time
and temperature controlled the die-off rate of pathogens. Sludge that has been in a lagoon for 10

                                          8-85

-------
years is expected to have very low concentrations of pathogens, and those would be associated
with the most recent 90 to 180 days of settling.

Advantages and Limitations: The advantage of lagoon cleanout is that removal of sludge restores
the volume of a first-cell lagoon that is necessary for design treatment capacity. One of the
limitations is that sludge disposal is ignored in most NMPs. Sludge is a concentrated, nutrient-
rich material. The nutrients in the sludge, if applied to the same cropland historically receiving
lagoon liquids, could easily exceed the planned application rate of nutrients. P and other
relatively insoluble nutrients are more concentrated than N in sludge and become the basis of
planning proper use of the sludge.    |
                                   i
                                   I
Ideally, sludge will be managed as a high-value fertilizer in the year it is applied. As the sludge
has a higher nutrient and, hence, cash value than liquid manure, hauling to remote farms and
fields to replace commercial fertilizer application is possible and desirable. Proper management
of applied sludge will result in successful crops and minimal loss of nutrients to surface or
ground waters.

The cover is a limiting factor in covered lagoon cleanout. At least a portion of the cover is
removed to allow equipment access. Removing a complete cover is usually not practical. Lacking
complete access, covered lagoon cleanouts will not remove all of the sludge present. Therefore,
more frequent cleanputs would be expected. Most covered lagoons have been developed with
cleanout intervals of 10 to 15 years.

Operational Factors: The USDA allows for sludge accumulation by incorporating a sludge
accumulation volume (SAV) in its lagoon design calculations. Table 8-15 shows USDA's ratios
of sludge accumulated per pound of TS added to the lagoon. The higher the rate of sludge
accumulation assumed in a design, the larger the lagoon volume required. There are no published
data to compare sludge accumulation in the first cell of a two-cell lagoon versus accumulation in
a single-cell lagoon. Anecdotal observations suggest that a first cell does not accumulate sludge
faster than a single-cell lagoon as long as the first cell is sized to contain all of the treatment
volume and SAV. In theory, a constant volume first cell should accumulate less sludge over tune
than a single-cell lagoon because the constant volume lagoon has a consistently higher microbial
concentration than a single-cell lagoon! The higher concentration should result in the ability to
consume new manure organic solids before they can settle to become sludge. Also in theory, a
covered first cell would accumulate less sludge due to higher biological activity because a
covered lagoon is a few degrees warmer than an uncovered lagoon.

                     Table 8-15. Lagoon Sludge Accumulation Ratios,
Animal Type
Layers '.
Pullets
Swine
Dairy cattle
Sludge Accumulation Ratio
0.0295 fWlb TS
0.0455 ftVlb TS
0.0485 fP/lb TS
0.0729 ftMb TS
                Source: USDA NRCS 1996.
                                          8-86

-------
 Information from various studies suggests that the USDA values may overestimate actual sludge
 accumulation rates. Table 8-16 shows a range of long-term sludge accumulation rates reported by
 various researchers. Field studies by both Fulhage and Hoehne (1999) and Bicudo et al. (1999)
 show lower accumulation rates than developed by Earth and Kroes (1985) and USDA NRCS
 (1996).

                        Table 8-16. Lagoon Sludge Accumulation
                            Rates Estimated for Pig Manure.
Source
Fulhage (1990)
Bicudo (1999)
Earth (1985)
USDA (1992)**
Sludge Accumulation Rate
0.002 mVkg LAW*
0.003 m3/kg LAW*
0.008 m3/kg LAW*
0.012 m'/kg LAW*
              ' LAW = Jive animal weight  ** as calculated by Bicudo et al. (1999).

It is important to note that the accumulation rate of sludge is influenced by lagoon design,
influent characteristics, site factors, and management factors. Lagoon design factors such as
lagoon volume, surface fetch, and lagoon depth increase or decrease potential lagoon mixing.
More lagoon mixing encourages greater solids destruction by increasing the opportunity for
bacteria to encounter and degrade solids. Influent factors, including animal type and feed,
determine the biodegradability of manure solids. Highly degradable manure solids are more
completely destroyed, thus accumulating as sludge to a lesser degree. Site temperature and
incident rainfall impact the biological performance of the lagoon. High temperature increases
biological activity and solids destruction. High rainfall can fill the lagoon and reduce retention
time, thus slowing biological destruction of solids. Management factors also affect sludge
accumulation. Increasing animal population, adding materials such as straw or sand used for
animal bedding, or adding process water will reduce the ability of a lagoon to destroy solids and,
therefore, increase the rate of sludge accumulation. Properly managed solids separators can
reduce the quantity of solids reaching the lagoon, hence reducing sludge accumulation.

Demonstration Status: First-cell cleanouts are common and have occurred since two-cell lagoons
have been used. In many areas of the country, there are companies that specialize in lagoon
cleaning.


Practice: Solids Buildup in an Uncovered Lagoon
Description: For the purpose of this section, sludge is material settled on the bottom of a lagoon
receiving waste from any animal; it has a TS content greater than 10 percent, generally has a high
angle of repose when dewatered, and will not readily flow to a pump. This definition is intended
to distinguish sludge from a less concentrated layer of solids above the sludge surface that can be
drawn off with conventional pumping: All lagoons accumulate settleable materials in a sludge
layer on the bottom of the lagoon. Sludge includes organic material not decomposed by lagoon
bacteria and inorganic material such as sand and precipitates. Over time the sludge accumulation
decreases the active treatment volume of a lagoon and negatively impacts the lagoon
                                         8-87

-------
performance. Reduced treatment performance increases the rate of sludge accumulation. Sludge
accumulations can eventually fill a lagoon.

Accumulated sludge is removed to restore lagoon treatment and storage capacities. Two general
methods of sludge removal, slurry and [solid, are described below.

When managed as a slurry, sludge is resuspended with agitation and pumped to tankers or
irrigation guns for land application. Slurry management is desirable when the sludge mixture can
be pumped to an irrigation gun or hauled a short distance.
                                   l
Sludge managed as a solid is excavated from the lagoon.  Solid sludge is cheaper to haul than
slurry because water, which increases the weight and volume, is not added. Solid sludge can be
spread with conventional manure spreaders or dumped on fields and spread out and disced into
the soil. In drier areas of the country, a lagoon may be withdrawn from service when a parallel
lagoon is restored to service. The lagoon liquids are pumped off to field application, and the
sludge is allowed to dry. After 4 to 12 months, excavators, backhoes, or bulldozers scrape, push,
pull, or lift the material into trucks or wagons for hauling and spreading. Some lagoons are
designed to be desludged by dragline bucket excavators while still in operation. Draglines work
along the banks of these long, narrow lagoons, excavating sludge and either dropping it into
trucks for hauling or depositing it on the lagoon embankment to dry for later hauling.
                                   I
Application and Performance: Lagoon cleanout is applicable to all operations that have lagoons,
regardless of location. Reported reductions of P, K, and other nonvolatile elements through a
lagoon are not really reductions at all. The material settles and accumulates in the lagoon,
awaiting later disposal. Compared with lagoon liquids, lagoon sludges have higher
concentrations of all pollutants that are not completely soluble. All reported data  suggest that the
sludge is more stable than raw manure based on its reduced VS/TS ratio. VS are a portion of the
TS that can be biologically destroyed, and as they are destroyed, the VS/TS ratio declines. Some
Org-N associated with heavier and nondegradable organics also settles into the lagoon sludge and
stays, resulting in a high-organic N fraction of TKN in settled solids.

As anaerobic digestion of manure changes the solution chemistry in a lagoon, materials such as
NH3 and P form precipitates with Ca and Mg. Both Fulhage and Hoehne (1999) and Bicudo et al.
(1999) report concentrations of Ca, Mg, P, and K in lagoon sludge at 10 to 30 times that found in
raw manure. Fulhage and Hoehne also reported that Cu and Zn settle and concentrate to 40 to
100 times the concentration found in lagoon liquid.

Martin (1999), in a review and analysis of factors affecting pathogen destruction, found that time
and temperature controlled the die-off rate of pathogens. Sludge that has been in a lagoon for  10
years is expected to have very low concentrations of pathogens, and those would be associated
with the most recent 90 to 180 days of settling.

Advantages and Limitations: The advantage of lagoon cleanout is that removal of sludge restores
the volume of a lagoon that is necessary for design treatment and storage capacities. One of the

                                          8-88

-------
 limitations is that sludge disposal is ignored in most NMPs. Sludge is a concentrated, nutrient-
 rich material. The nutrients in the sludge, if applied to the same cropland historically receiving
 lagoon liquids, could easily exceed the planned application rate of nutrients. P and other
 relatively insoluble nutrients are more concentrated than N in sludge and become the basis of
 planning proper use and disposal of the sludge.

 Ideally, sludge will be managed as a high value fertilizer in the year it is applied. As the sludge
 has a higher nutrient and, hence, cash value than liquid manure, hauling to remote farms and
 fields to replace commercial fertilizer application is possible and desirable. Proper management
 of applied sludge will result in successful crops and minimal loss of nutrients to surface or
 ground waters.

 Operational Factors: The USD A allows for sludge accumulation by incorporating an SAV in its
 lagoon design calculations. Table 8-15 shows USDA's ratios of sludge accumulated per pound of
 TS added to the lagoon. The higher the rate of sludge accumulation assumed in a design, the
 larger the lagoon volume required.

 Information from various studies suggests that the USDA values may overestimate actual sludge
 accumulation rates. Table 8-16 shows a range of long-term sludge accumulation rates reported by
 various researchers. Field studies by both Fulhage and Hoehne (1999) and Bicudo et al. (1999)
 show lower accumulation rates than were developed by Barth and Kroes (1985) and USDA
 NRCS(1996).

 It is important to note that the accumulation rate of sludge is influenced by lagoon design,
 influent characteristics, site factors, and management factors. Lagoon design factors such as
 lagoon volume, surface fetch, and lagoon depth increase or decrease potential lagoon mixing.
 More lagoon mixing encourages greater solids destruction by increasing the opportunity for
 bacteria to encounter and degrade solids. Influent factors, including animal type and feed,
 determine the  biodegradability of manure solids. Highly degradable manure solids are more
 completely destroyed, thus accumulate as sludge to a lesser degree. Site temperature and incident
 rainfall impact the biological performance of the lagoon. High temperature increases biological
 activity and solids destruction. High rainfall can fill the lagoon and reduce retention time, thus
 slowing biological destruction of solids. Management factors also affect sludge accumulation.
 Increasing the animal population, the addition of materials such as straw or sand used for animal
 bedding, or the addition of process water will reduce the ability of a Jagoon to destroy solids and
 increase the rate of sludge accumulation. Properly managed solids separators can reduce the
 quantity of solids reaching the lagoon, thereby reducing sludge accumulation. Mixing a lagoon
 before land application will suspend some of the sludge solids, causing them to be pumped out
 sooner rather than later.

Demonstration Status: Lagoon cleanouts are common and have occurred since lagoons have been
used. Companies that specialize in lagoon cleaning are found in many areas of the country.
                                          8-89

-------
Practice: Trickling Filters
Description: Trickling filters are currently being evaluated for use at AFOs to address the high
concentrations of organic pollutants in AFO wastewater. The technology is a type of fixed-
growth aerobic biological treatment process. Wastewater enters the circular reactor and is spread
over media that support biological growth. The media are typically crushed rock, plastic-sheet
packing, or plastic packing of various shapes. Wastewater contaminants are removed
biologically.

The top surface of the media bed is exposed to sunlight, is in an aerobic state, contains
microorganisms that are in a rapid growth phase, and is typically covered with algae. The lower
portion of the bed is in an anaerobic state and contains microorganisms that are in a state of
starvation (i.e., microorganism death exceeds the rate of reproduction). The biofilm covering the
filter medium is aerobic to a depth of only 0.1  to 0.2 millimeters; the microbial film beneath the
surface biofilm is anaerobic. As wastevteter flows over the microbial film, organic matter is
metabolized and absorbed by the film. Continuous air flow is necessary throughout the media
bed to prevent complete anaerobic conditions (Viessman, 1993).

Components of a trickling filter include a rotary distributor, underdrain system, and filter
medium. Untreated wastewater enters the filter through a feedpipe and flows out onto the filter
media via distributor nozzles, which are located throughout the distributor. The distributor
spreads the wastewater at a uniform hydraulic load per unit area on the surface of the bed. The
underdrain system, typically consisting of vitrified clay blocks, carries away the treated effluent.
The clay blocks have entrance holes that lead to drainage channels and permit the circulation of
air through the media bed. Figure 8-9 below shows a cutaway of a typical trickling filter. Rock
                                                                     Filter Medium
                     Feedpipe

       Untreated Wastewater
Effluent Channel
                               Figure 8-9. Trickling filter.
                                           8-90

-------
media beds can be up to 200 feet in diameter and 3 to 8 feet deep, with rock sizes ranging from 1
to 4 inches. Plastic media beds are narrower and deeper, ranging from 14 to 40 feet deep. These
systems look more like towers than conventional rock-media systems. It is also common to have
single- or two-stage systems for N removal. A two-stage system allows for greater flexibility
because each stage can be operated independently and optimized accordingly. Flow capacity of
trickling filters can range between 200 and 26,000 gallons per day; however, units can be
installed in parallel to handle larger flows (AWT Environment).

Application and Performance: Traditionally, the trickling filter medium has been crushed rock or
stone; however, this type of media occupies most of the volume in a filter bed, reducing the void
spaces for air passage and limiting surface area for biological growth. Many trickling filters now
use a chemical-resistant plastic medium because it has a greater surface area and a large
percentage of free space. These synthesized media forms offer several advantages over naturally
available materials, particularly in terms of surface contact area, void space, packing density, and
construction flexibility (Viessman, 1993).

Although stone-media trickling filters are not as common, they are still used in shallow filters.
BOD loads, expressed in terms of pounds of BOD applied per unit of volume per day, are
typically 25 to 45 pounds per 1,000 ft3 per day for single-stage stone filters and 45 to 65 pounds
per 1,000 ft3 per day for two-stage stone filters (based on the total media volume of both filters).
The recommended hydraulic load ranges from 0.16 gallons per minute per ft2 to 0.48 gallons per
minute per ft2 (Viessman, 1993).

Other shallow filters use-random packing (e.g., small plastic cylinders, 3.5 x 3.5 inches), with a
specific surface area of 31 to 40 fWft3 and a void space of 91 to 94 percent. Deep filters use
corrugated PVC plastic sheets that are 2 feet wide, 4 feet long, and 2  feet deep stacked on top of
each other in a crisscross pattern. The specific surface area ranges from 26 to 43 fWft3 and a void
space of approximately 95 percent. The BOD loads for plastic media towers are usually 50
pounds per 1,000 ft3 per day or greater with surface hydraulic loadings of 1 gprn/fi2 or greater
(Viessman, 1993).

A single or two-stage trickling filter can remove N through biological nitrification. The
nitrification process uses oxygen and microorganisms to convert NH3 to nitrite N, which is then
converted to nitrate N by other microorganisms. Nitrate N is less toxic to fish and can be
converted to N2, which can be released to the atmosphere through denitrification, a separate
anaerobic process following nitrification. Note that trickling filters are not capable of
denitrifying.

A single-stage trickling filter removes BOD in the upper portion of the unit while nitrification
occurs in the lower portion. A two-stage system removes BOD in the first stage while
nitrification occurs in the second stage. Trickling filters do not typically remove P, but can be
adapted to remove P from the wastewater, effluent by chemical precipitation following BOD
removal and nitrification (AWT Environment, ETI, 1998).
                                          8-91

-------
It is critical to have a properly designed trickling filter system. An improperly designed system
can impact treatment performance and teffluent quality. Media configuration, bed depth,
hydraulic loading, and residence time aft need to be carefully considered when designing a
trickling filter system (Viessman, 1993).

In a study using municipal wastewater, ^the average BOD removal was greater than 90 percent
and TSS removal was greater than 87 percent using a trickling filter. The average effluent BOD
concentration was 13 mg/L, while the average effluent TSS concentration was 17 mg/L (AWT
Environment). In another similar study that included municipal and dairy waste, BOD and. TSS
concentrations were slightly greater, but never exceeded 100 mg/L (Bio-Systems, 1999).

In another study using municipal wastewater and an anaerobic upflow filter prior to the trickling
filter, the average effluent BOD and TSS concentrations both ranged from 5 to 10 mg/L, and the
total N removal ranged from 80 to 95 percent. Pathogen reduction for this particular system is
expected to be good, due to the upflow filter component. The estimated cost for this system is
approximately $18,000 in annualized present day (Year 2000) costs (annualized over 20 years
and not including design and permitting) (City of Austin, 2000).

Information on the reduction of pathogens, antibiotics, and metals in trickling filters is not
available, but it is expected to be minimal based on engineering judgment.

Advantages and Limitations: An advantage of operating a trickling filter is that it is a relatively
simple and reliable technology that can be installed in areas that do not have a lot of space for a
treatment system. This technology is also effective in treating high concentrations of organics
and nutrients. It can be cost-effective because it entails lower operating and maintenance costs
than other biological processes, including less energy and fewer skilled operators. The wasted
biomass, or sludge, can be processed arid disposed of, although it contains high concentrations of
nutrients. Finally, it also effectively handles and recovers from nutrient shock loads (ETI, 1998).

Disadvantages of operating a trickling filter are that additional treatment maybe needed to meet
stringent effluent limitations, the operation generates sludge that needs to be properly disposed
of, poor effluent quality results if the system is not properly operated, and regular operator
attention is needed. The system is susceptible to clogging from the biomass as well as odors and
flies. The high solids content of CAFO waste would most likely require solids separation prior to
treatment to also prevent clogging. Only the liquid waste may be treated in this system. In
addition, a high investment cost may also prevent certain farms from installing this technology
(ETI, 1998).
                                   I
Operational Factors: Trickling filters are typically preceded by primary clarification for solids
separation and are followed by final clarification for collection of microbiological growths that
slough from the media bed. They can also be preceded by other treatment units such as septic
tanks or anaerobic filters.  Trickling filters effectively degrade organic pollutants, but can also be
designed to remove N and P from the wastewater.
                                          8-92

-------
 Trickling filters are relatively simple to operate, are lower in cost than other biological treatment
 processes, and typically operate at the temperature of the wastewater as modified by that of the
 air, generally within the 15 to 25°C range. A high wastewater temperature increases biological
 activity, but may result in odor problems. Cold wastewater (e.g., 5 to 10°C) can significantly
 reduce the efficiency BOD removal (Viessman, 1993).

 Demonstration Status: Trickling filters are most commonly used to treat municipal wastewater,
 although the technology is applicable to agricultural wastewater treatment.  They are best used to
 treat wastewaters with high organic concentrations that can be easily biodegraded. EPA was not
 able to locate any AFO facilities that currently operate trickling filters; however, based on the
 information gathered, several wastewater treatment vendors market this technology to such
 facilities.                                                         •


 Practice: Fluidized Bed Incinerators

 Description: Fluidized bed incinerators (FBIs) are currently being evaluated for use at CAFOs
 given the high volume of manure they generate. The technology is typically used for wastewater
 sludge treatment (e.g., municipal sludge), but may be used for wastewater treatment. The main
 purpose of an FBI is to break down and remove volatile and combustible components of a waste
 stream and to reduce moisture.  Its most prominent application to CAFO industries would be for
 animal waste disposal and treatment, because manure has a higher solids content than wastewater
 from CAFO operations.

 An FBI is a vertical, cylindrical-shaped apparatus that requires media (typically sand), injected
 air, and an influent fuel to operate. An FBI contains three basic zones: a windbox, a sand bed,
 and a freeboard reactor chamber. Air enters the windbox and moves upward into the media bed
 through orifices called "tuyeres" at a pressure of 3 to 5 pounds per square inch. The injected air
 acts to fluidize the bed and to generate combustion. The term "fluidized bed" refers to the
 "boiling" action of the sand itself, which occurs when air is injected into the reactor. The fuel, or
 animal waste, directly enters the fluidized sand bed and is mixed quickly within the bed by the
 turbulent action. Any moisture in the animal waste evaporates quickly, and the sludge solids
 combust rapidly. Combustion gases and evaporated water flow upward through the freeboard
 area to disengage the bed material and to provide sufficient retention time to complete
 combustion. Gases and ash exit the bed out the top of the FBI. Exit gases may be used to preheat
 the injected air or may be recovered for energy. Exit ash is removed from exit gas in an air
 pollution device such as a venturi scrubber. Ash can either be disposed of or reused (typically as
 fertilizer) depending on its characteristics (Metcalf and Eddy Inc., 1991).

 Prior to injection, the sand media is kept at a minimum temperature of 1300 °F and controlled at
between 1400 and 1500 °F during treatment. This temperature range varies  with specific design
 criteria. The FBI typically ranges in size from 9 to 25 feet in diameter; the media bed is typically
2.5 feet thick, when settled (Metcalf and Eddy Inc., 1991). The system has a capacity of up to 30
tons per hour (UNIDO, 2000). The combustion process is optimized by varying the animal waste
                                          8-93

-------
                                  Exhaust and Ash
          Feed Inlet
            Air Inlet
                                    Tuyeres
                                    Startup
                                    Preheat Burner
               Figure 8-10. Fluidized bed
                      incinerator.
and air flow, with exit gas retention times greater than 1
second and solids retention times greater than 30 minutes
(Versar, 2000). Figure 8-10 represents a typical FBI.

Application and Performance: Animal iwaste enters the
FBI and quickly combusts in the media bed. Organic
constituents of the waste are burned to produce carbon
dioxide and water, while volatile pollutants are
evaporated and captured in the air control device. Solid
material may be recycled through the system for further
treatment. The ash contains many of the pollutants in the
animal waste itself, although waste volume is reduced
and most of the N in the waste is evaporated. The ash
will still contain high levels of metals, P, and K.

The high temperature of the system typically eliminates
the spread of pathogens, reducing biosecurity concerns.
Similarly, any antibiotics or hormones remaining in the
waste will also be broken down and reduced. Although
FBIs operate at very high temperatures, they typically
operate at lower temperatures than other types  of incinerators, which results in lower air
emissions, particularly of (NOJ  compounds and volatile organic compounds (VOCs).

Advantages and Limitations: Fluidized bed incineration is an effective and proven technology for
reducing waste volume and for converting the waste to useful products (e.g., energy). Resulting
ash may be used as an end-product fertilizer, or as an intermediate product used hi manufacturing
commercial fertilizers. Animal waste incineration eliminates aesthetic concerns (e.g., odors) as
well as nuisance concerns (e.g., pest attraction) (Versar, 2000).

Although fluidized bed incineration is viewed as an efficient system, it is very sensitive to
moisture content and fuel particle size. The higher the moisture content, the less efficient the
system is because the moisture acts to depress the reactor temperature, thereby reducing
combustion capabilities. Moisture can be reduced in animal waste by combining the waste with
other biomass such as wood chips or straw. Air drying or dewatering the animal waste also
reduces moisture content before treatment in the FBI. Blockages may often occur in input and
output pipes triggering shut-down and maintenance (Versar, 2000).

Air emissions must also be considered when operating any type of incinerator. Organic and N
compounds are easily removed from the waste; however, they are then emitted to the air,
potentially creating a cross-media impact if not properly controlled. Furthermore, nutrients such
as P, K, and metals typically remain in the ash  and are not treated. Finally, FBIs entail high
operatin'g and maintenance costs, especially compared with other types of incinerators (Versar,
2000).
8-94

-------
 Operational Factors: As discussed above, FBIs are most sensitive to moisture content and fuel
 particle size. The less moist the influent fuel, the more efficient the system is. Acceptable
'influent moisture levels range from 15 to 20 percent. Fuel particle size should also be minimized
 to avoid clogging the system. Another consideration is that, depending on the metals
 concentrations and local regulations, the ash, if intended for disposal, may need to be handled as
 hazardous waste (Versar, 2000).

 FBI costs depend on size and capacity. Capital costs can range from approximately $5 to $25
 million for a 5-ton-per-hour and a 30-ton-per-hour FBI, respectively (UNIDO, 2000). FBIs are
 complex technologies and require operation by trained personnel. Because of this, FBIs are more
 economical for medium to large facilities, or when operated in cooperation with several
 businesses that are able to provide fuel sources. Therefore, FBIs may not be a cost-effective
 waste management technique for an individual farm, but, when operated on a larger scale, they
 may prove to be cost-effective. Capital and annual operating costs are generally higher for FBIs
 than for other types of incinerators because of the sensitive design parameters (e.g., moisture
 content and solid particle size). On the other hand, the system operates efficiently, and energy can
 usually be recovered from the process and may be sold to another party or used to reduce on-site
 operating costs.

 Demonstration Status: ERG is not aware of any U.S. feedlots currently operating FBIs or sending
 animal waste to larger-scale municipal or private FBIs. According to information gathered for
 this program, FBIs are more commonly used in Europe and in Japan to treat animal waste,
 although some U.S. companies using waste-to-energy technology may be operating FBIs using
 animal waste with other fuel sources. FBIs are most commonly used in the United States to
 manage municipal sludge.

 In a study done to assess the engineering and economic feasibility of using poultry litter as a fuel
 to generate electric power, researchers found that combusting poultry litter (combined with wood
 chips) can be an effective waste-to-energy technology (Versar, 2000). Although the study did not
 specifically evaluate fluidized bed incineration, the application and results are expected to be
 similar. The study found litter samples to have a heat content between 4,500 and 6,400 BTU per
 pound at approximately 16 percent moisture, which is a slightly higher content than the wood
 chips alone. The ash content of the litter was reported to be between 9 and 20 percent, which is
 significantly higher than the wood chips alone. However, although the air emissions data in this
 study were considered preliminary, they showed that the facility could trigger air permitting
 requirements. The study also found that poultry litter ash may be classified as hazardous waste
 under individual state regulations (Versar, 2000).


 Practice: Constructed Wetlands
 Description: Constructed wetlands (CWs) can be an important tool in the management of animal
 waste by providing effective wastewater treatment in terms of substantial removal of suspended
 solids, BOD5, fecal coliform, and nutrients such as N and P. The treatment process in CWs
                                          8-95

-------
generates an effluent of better quality that can be applied on agricultural land or discharged to
surface waters (CH2M Hill, 1997). Wastewater treatment in CWs occurs by a combination of
mechanisms including biochemical conversions, settling/filtration, litter accumulation, and
volatilization. Removal of pollutants in CWs is facilitated by shallow water depth (which
maximizes the sediment-water interface), slow flow rate (which enhances settling), high
productivity, and the presence of aerobic and anaerobic environments.
                                   i
Wetland media (soil, gravel) and vegetation provide a large surface area that promotes microbial
growth. Biochemical conversion of various chemical compounds through microbial activity is
the main factor in the wetland treatment process. Through microbial activities, Org-N is
converted to NH3 (ammonification), which is used by plants as a nutrient; NH3 is converted to
nitrate and nitrite (nitrification), which is used by microbes and some plants for growth; and N is
volatilized (demtrification) and is lost to the atmosphere (CH2M Hill, 1997). NH3 may be
removed through volatilization, uptake by plants and microbes, or oxidized to nitrate.
Volatilization of NH3 in CWs appears to be the most significant mechanism for N removal for
animal waste treatment (Payne Engineering and CH2M Hill, 1997).

P removal is achieved mainly by fixation by algae and bacteria, plant uptake, and (Cronk, 1996)
when oxidizing conditions promote the complexing of nutrients with iron and aluminum
hydroxides (Richardson, 1985). Plant uptake of P is only a short-term sink because plant P is
rapidly released after the death of plant tissues (Payne Engineering and CH2M Hill, 1997).
Fixation of P by microbes ultimately results in the storage of P in the bottom sediments (Corbitt
and Bowen, 1994), yet they may become saturated with P, resulting in an export of excess  P
(Richardson,  1985).

Rooted emergent aquatic plants are the dominant life form in wetlands (Brix, 1993) and are the
only aquatic plants recommended for planting in CWs used for animal waste treatment (Payne
Engineering and CH2M Hill, 1997). These aquatic plants have specialized structures that allow
air to move in and out as well as  through the length of the plant, have roots that allow adsorption
of gases and nutrients directly from the-water column, and are physiologically tolerant to
chemical products of an anaerobic environment (Brix, 1993). For these reasons, emergent aquatic
plants can survive and thrive in wetland environments. The most common emergent aquatic
plants used hi CWs for animal waste treatment are cattail (Typha spp.), bulrush (Scirpus spp.),
and common reed (Phragmites spp.) (CH2M Hill and Payne Engineering,  1997).

Roles of emergent aquatic plants in the wastewater treatment process include the following:(l)
providing a medium for microbial growth and a source of reduced carbon for microbial growth,
(2) facilitating nitrification-denitrification reactions, (3) assimilating nutrients into their tissue,
(4) facilitating entrapment of solids and breakdown of organic solids, and (5) regulating water
temperature by shading the water (Payne Engineering and CH2M Hill, 1997). The vascular
tissues of these plants move oxygen from overlying water to the rhizosphere and thus provide
aerobic microsites (within the anaerobic zone) in the rhizosphere for the degradation of organic
matter and growth of nitrifying bacteria (Brix, 1993). Dissolved nitrates, from nitrification, can
then diffuse into the surrounding anaerobic zone where denitrification occurs. Furthermore,

                                         8-96

-------
 wetland macrophytes remove small amounts (<5 percent) (Hammer, 1992) of nutrients, for
 nutritional purposes, by direct assimilation into their tissue. Removal of nutrients, however,
 increases slightly in CW systems that incorporate periodic harvesting of plants (Hammer, 1992)
 or may be considerably higher (67 percent) in specially designed systems that maximize influent-
 root zone contact (Breen, 1990).

 The two principal types of CWs for treating wastewater are surface flow (SF) and subsurface
 flow (SSF) systems. The SF systems are shallow basins or channels, carefully graded to ensure
 uniform flow, planted with emergent vegetation, and through which water flows over the surface
 at relatively shallow (-30 cm) depths. The SSF systems consist of a trench or bed with a barrier
 to prevent seepage, and planted emergent vegetation growing in a permeable media (soil, gravel)
 designed such that the wastewater flows horizontally through the media with no open surface
 flow. The base media and plant roots provide large surface areas for biofilm growth and thus,
 functions somewhat like a rock trickling filter at a municipal wastewater treatment plant (Payne
 Engineering and CH2M Hill, 1997).

 Some authors also refer to the SF system as the free water surface system, while the SSF type is
 also referred to as the vegetated rock-reed filter, vegetated submerged bed system, gravel-bed
 system, and root-zone system. Compared with SSF systems, the SF wetlands are capable of
 receiving a wider range of wastewater loads, have lower construction costs, and are relatively
 easy to manage (Payne Engineering and CH2M Hill, 1997). Additionally, mass removal of NH3-
 N, the major form of N in animal wastewater (CH2M Hill and Payne Engineering, 1997), in SSF
 wetlands is significantly less compared with the SF type because there is less time and oxygen to
 support necessary nitrification reactions (USEPA, 1993). For these reasons, the SF system is the
 most commonly used wetland type for treating animal waste (Payne Engineering and CH2M Hill,
 1997) and is the only one recommended for animal waste treatment by the USDA NRCS (USDA
 NRCS, 1991).

Application and Performance: A database", developed by CH2M Hill and Payne Engineering
 (1997), containing design, operational, and monitoring information from 48 livestock CW
 systems (in the United States and Canada), indicates that CWs have been and continue to be used
 successfully to treat animal waste including wastewater from dairy, cattle, swine,  and poultry
 operations. The majority of CW sites included in the database have begun operations since 1992.
 SF systems constitute 84 percent of cells in the database, and the remainder consists of SSF or
other wetland systems. Cattail, bulrush, and reed, hi that order, dominate the aquatic vegetation
planted hi the surveyed CWs.

Typically, effluent from a CW treating animal waste is stored in a waste storage lagoon. Final
dispersal occurs through irrigation to cropland and pastureland, though the potential for direct
discharge of effluent exists. Direct discharge may, however, require a permit under the EPA's
NPDES.

A performance summary of CWs used for treating animal waste indicates a substantial reduction
of TSS (53 to 81 percent), fecal coliform (92 percent), BOD5 (59 to 80 percent), NH3-N (46 to 60

                                         8-97

-------
percent), and N (44 to 63 percent) for wastewater from cattle feeding, dairy, and swine operations
(CH2M Hill and Payne Engineering, 19^7). In a study by Hammer et al. (1993), swine effluent
was treated in five CW cells, located below lagoons, that were equipped with piping that
provided a control for variable application rates and water level control within each cell.
Performance data indicate notable (70 to 90 percent) pollutant removal rates and reliable
treatment of swine lagoon effluent to acceptable wastewater treatment standards for BOD5, TSS,
N, and P during the first year of the reported study.

Removal efficiency of N is variable depending on the system design, retention time, and oxygen
supply (Bastian and Hammer, 1993). Low availability of oxygen can limit nitrification, whereas a
lack of a readily available carbon source may limit denitrification (Corbitt and Bowen, 1994).
Fecal coliform levels are significantly reduced (>90 percent) by sedimentation, filtration,
exposure to sunlight, and burial within sediments (Gersberg et al., 1990).  Compared with dairy
systems, higher reduction of pollutants have been reported for swine wastewater treatment in
CWs, probably because loading rates have tended to be lower at swine operations (Cronk, 1996).

Advantages and Limitations: In addition to treating wastewater and generating water of better
quality, CWs provide ancillary benefits such as serving as wildlife habitat, enhancing the
aesthetic value of an area, and providing operational benefits to farm operators and then-
neighbors  (CH2M Hill, 1997). CWs, in|contrast to natural wetlands, can be built with a defined
(desired) composition of substrate (soil,1 gravel) and type of vegetation and,  above all, offer a
degree of control over the hydraulic pathways and retention times (Brix, 1993). An SF system is
less expensive to construct than an SSF> system, the major cost difference being the expense of
procuring  and transporting the rock or gravel media (USEPA, 1993). An SSF system,  however,
has the advantage of presenting an odor- and insect-free environment to local residents.

Major limitations include a need for relatively large, flat land areas for operation (Hammer,
1993), a possible decrease in SF system performance during winter in temperate regions (Brix,
1993), and a reduction in functional sustainability of the SSF systems if the pore spaces become
clogged (Tanner et al., 1998). Other limitations include (1) an inadequacy of current designs of
SF systems to store flood waters and use stored water to supplement low stream flows in dry
conditions, and (2) potential pest problems and consequent human health problems from
improperly designed or operated SF systems (Hammer, 1993). Moreover, because  CW
technology for animal waste treatment is not well established, long-term status and effects,
including accumulation of elemental concentrations to toxic levels, are poorly documented.
Further research is needed to better understand the nutrient removal mechanisms in CWs so that
improved  designs and operating criteria can be developed.

Operational Factors: Because untreated wastewater from AFOs has high concentrations of
solids, organics, and nutrients that woujd kill most wetland vegetation, wastewater from AFOs is
typically pretreated in a waste treatment lagoon or settling pond prior to discharge  to a CW
(Payne Engineering and CH2M Hill, 19,97). Incorporating a waste treatment lagoon in the
treatment process reduces concentrations of BOD5 and solids considerably (>50 percent) and
provides storage capacity for seasonal application to the wetlands (Hammer, 1993).

                                          8-98

-------
Figure 8-11 shows the typical components and a typical treatment sequence of a CW.
Constructed wetlands may be built with cells that are parallel or in a series. Construction of cells
needs to be determined by the overall topography as well as by the drainage slope of individual
cells'to maintain shallow water depth for the wetland plants (CH2M Hill and Payne Engineering,
1997). The land slope should be small (<0.5 percent), and the length-to-width ratios should be
between 1:1 and 10:1,, with an ideal ratio being 4:1 (USDA NRCS, 1991). Data for the surveyed
CWs, reported by CH2M Hill and Payne Engineering (1997), indicate the following average
design conditions: water depth of 38 cm; bottom slope of 0.7 percent; length-to-width ratio of
6.5:1; hydraulic loading rate of 4.7 cm/day; and a size of 0.03 hectare.

Design criteria for CWs for animal waste treatment are described in USDA NRCS (1991),
including methods to determine the surface area of a proposed wetland. The NRCS Presumptive
Method is based on an estimate of BOD5 loss in the pretreatment process, which is used to
calculate BOD5 concentration in the pretreatment effluent. Size of the wetland is then determined
based on a loading rate of 73 kg BODs/ha/day that would achieve a target effluent of <30 mg/L
of BOD5, <30 mg/L TSS, and <10 mg/L NH3-N. The NRCS Field Test Method is based on
Animal
Waste
Source


Waste
Treatment
Lagoon


Constructed
Wetland


Waste
Storage
Pond


Irrigation
(Possibly Direct
Discharge)
   Figure 8-11. Schematic of typical treatment sequence involving a constructed wetland.
laboratory data for average influent BOD5 concentration to the CW. The influent BOD5
concentration, together with average temperature data, is used to determine the hydraulic
residence time needed to obtain a desired effluent BOD5 concentration.

Advances in research and technology of CW during the 1990s have provided additional
information to allow modification of the USDA NRCS (1991) methods. CH2M Hill and Payne
Engineering (1997) developed the Modified Presumptive USDA-NRCS Method, which takes into
account pollutant mass loading and volume of water applied, and relates the results to a data
table developed from existing CWs for animal waste treatment. The Field Test Method #2 was
also proposed by CH2M Hill and Payne Engineering (1997) based on the areal loading equation
developed by Kadlec and Knight (1996), which includes rate constants specific to concentrated
animal waste.

Operation and maintenance requirements for CWs include maintenance of water level in the
wetland cells, monitoring water quality of influent and effluent, regular inspection of water
conveyance and control structures to ensure proper flow, and maintenance of the embankments to
avoid damage from rodents.

Demonstration Status: CWs have been demonstrated successfully as a management technology
treatment for swine waste (Maddox and Kinglsey, 1990; Hammer et al.,  1993) and dairy waste
(Chen et al., 1995; Tanner et al., 1995; Schaafsma et al., 2000), and have been relatively less

                                         8-99

-------
successful in the treatment of poultry Waste (Hill and Rogers, 1997). Results of several other
successful case studies, performed in several regions of North America, are reported in DuBowy
and Reaves (1994), DuBowy (1996), and Payne Engineering and CH2M Hill (1997).
Practice: Vegetated Filter Strips
                                                                              ! „„
Description: Vegetated filter strips are an overland wastewater treatment system. They consist of
strips of land located along a carefully graded and densely vegetated slope that is not used for
crops or pasture. The purpose of a vegetated filter strip is to reduce the nutrient and solids
content of wastewater and runoff from AFOs. The filters are designed with adequate length and
limited flow velocity to promote filtration, deposition, infiltration, absorption, adsorption,
decomposition, and volatilization of contaminants. These filters consist of three parts: a sediment
basin, a flow distribution device, and a filter strip area (Harner, 2000).

The wastewater is distributed evenly along the width of a slope in alternating application and
drying periods. The wastewater may be applied to the slope by means of sprinklers, sprays, or
gated, slotted, or perforated pipe. As the wastewater flows down the slope, suspended solids are
deposited and some nutrients are absorbed into the vegetation. The effluent from the system is
collected in a channel at the bottom of 1;he slope and then discharged (see Figure 8-12).

Application and Performance: The design of a vegetated filter strip is typically based on the
BOD concentration of the wastewater (Metcalf and Eddy,  1991).  The total treatment area
required is calculated from the hydraulic loading rate, assumed length of slope (generally 100 to
150 feet), and an operating cycle. The operating cycle and application rate can be varied to
optimize the system. An operating cycle of 1 day is typical, with 8 to  12 hours of application and
                                          Evapotranspiration
Distribution
  Pipe
                      Grass cover crop
        Figure 8-12. Schematic of a vegetated filter strip used to treat AFO wastes.
                                          8-100

-------
12 to 16 hours of drying. NH3 removal from primary effluent can be expected to vary inversely
with the ratio of application period to drying period. A properly designed system can remove up
to 95 percent of NH3. The application rate is critical for considering BOD removal because it is
important to maintain aerobic conditions that are required for microbial decomposition. Too high
an application rate can create anaerobic conditions because the oxygen transfer through natural
aeration from the atmosphere will be insufficient.

The vegetative cover should be dense in growth, such as a grass, and well suited to the climatic
conditions. The vegetation must be dense enough to slow the wastewater flow to allow adequate
treatment and prevent erosion. Consideration should also be given to the nutrient uptake potential
of the vegetation to maximize nutrient removal rates.

Proper grading is also critical to the design of a vegetated filter strip to prevent the channeling of
wastewater and allow for efficient treatment. Sites with an existing slope of 2 to 6 percent are
best suited for vegetated filter strips to keep regrading costs to a minimum without causing water
to pond. The shape and area of the field being drained changes the filter strips effectiveness, as
does the method of installation (Franti, 1997). It is best for runoff from areas of clean storm
water to avoid passing through the filter. Allowing storm water into the filter strip could
overwhelm the system causing inadequate filtration on the wastewater (Harner, 2000).

Vegetated filter strips are also best suited to sites that have low permeability soils to prevent
wastewater from infiltrating the subsurface. In areas where  soils are relatively permeable, it may
be necessary to amend the existing soils or install an impermeable barrier.

Vegetated filter strips can be unsuccessful if the plants are not absorbing enough nutrients. Plants
must be healthy, dense, swift growing, have fibrous roots to fight erosion, and be perennials. The
plants must also endure being waterlogged and grow well in the spring and fall. The most
effective type of plants to use are sod-forming grasses (Harner, 2000).

A study conducted to determine the effectiveness of milkhouse wastewater treatment using a
vegetative filter strip at a dairy farm in Vermont (Clausen and Schwer, 1989) found that
removals of TSS, total P, and TKN were 92 percent, 86 percent, and 83 percent, respectively.
However, the total P concentration in the effluent was more than 100 times greater than the
average P concentration of streams draining agricultural areas in the northeast. Moreover, only
2.5 percent of the total input of P, and 15 percent of the input of N were removed in the
vegetation (Nebraska Cooperative Extension, 1997).

The EPA Chesapeake Bay Program  studied the use of vegetative filter strips to reduce
agricultural nonpoint source pollutant inputs to the bay (Dillaha et al., 1988). A series of nine
experimental field plots were constructed, each containing a simulated feedlot source area and a
vegetated filter strip of known length. A rainfall simulator was used to produce runoff, which
was collected from the base  of each vegetated filter strip. Analysis indicated that 81 to 91 percent
of incoming sediment, 58 to 69 percent of the applied P, and 64 to 74 percent of the applied N
were removed.

                                         8-101

-------
Advantages and Limitations: Compared with many treatment technologies, vegetated filter strips
effectively reduce the nutrient and solids concentration of wastewater with relatively low
construction and maintenance costs. This is particularly true for sites where available land is well
suited for such a system.
                                   i
However, to effectively treat high volumes of wastewater, such as from a milking parlor,
excessive acreage may be required. In addition, because overland flow systems such as vegetated
filter strips depend on microbiological activity at or near the surface of the soil, cold weather
adversely affects their performance. Winter use of this in colder climates will therefore be limited
and an appropriate amount of wastewater storage will be required. Storage is recommended when
the average daily temperature is below 32 °F. The filter's performance is limited by the level and
duration of rainfall and the type of vegetation (EPA, 2001).

Operational Factors: Maintenance of a vegetated filter strip consists of periodic removal of the
vegetative growth, which contains many of the nutrients.  The biomass has various potential
uses—as forage, fiber, or mulch, for example. Sediment accumulation should be inspected
(Harner, 2000). In addition, the slope needs to be periodically inspected and regraded to ensure a
level flow surface and prevent channeling and erosion. When sparse plant coverage is observed,
it should be reseeded. Undesirable plants in the filter should be managed (Harner, 2000).

Demonstration Status: Vegetated filter strips have been used to treat milkhouse wastewater in
New York and North Carolina. They have also been used to treat a variety of other wastes
including feedlot runoff.             i

Practice: Composting—Aerobic Treatment of Solids
Description: Composting is the aerobic biological decomposition of organic matter. It is a natural
process that is enhanced and accelerated by the mixing of organic waste with other ingredients in
a prescribed manner for optimum microbial growth. Composting converts an organic waste
material into a stable organic product by converting N from the unstable NH3 form to a more
stable organic form. The end product is safer to use than raw organic material and one that
improves soil fertility, tilth, and water holding capacity. In addition, composting reduces the bulk
of organic material to be spread, improves its handling properties, reduces odor, reduces fly and
other vector problems, and can destroy weed seeds and pathogens. There are three basic methods
of composting: windrow, static pile, and in-vessel.

Windrow composting consists of placing a mixture of raw organic materials in long, narrow
piles or windrows, which are agitated or turned on a regular basis to facilitate biological
stabilization. Windrows aerate primarily by natural or passive air movement (convection and
gaseous diffusion). Windrow composting is suitable for large quantities of organic material.  For
composting dense materials like manure mixtures, windrows are usually no more than 3 feet high
and 10 to 20 feet wide. The equipment used for turning, ranging from a front-end loader to an
automatic mechanical turner, determines the size, shape,  and spacing of the windrows.
                                         8-102

-------
The static pile method consists of mixing the compost material and then stacking the mix on
perforated plastic pipe or tubing through which air is drawn or forced. Forcing air (by suction or
positive pressure) through the compost pile may not be necessary with small compost piles that
are highly porous or with a mix that is stacked in layers with highly porous material. If layering is
not practiced, the materials to be composted must be thoroughly blended before they are placed
in a pile. The exterior of the pile is typically insulated with finished compost or other material.
The dimensions of the static pile are limited by the amount of aeration that can be supplied by the
blowers and by the stacking characteristics of the waste. The pile height generally ranges from 8
to 15 feet, and the width is usually twice the height. The spacing between individual piles is
usually equal to about half the height.

The ill-vessel method involves the mixing of manure or other organic waste with a bulking agent
in a reactor, building, container, or vessel, and may involve the addition of a controlled amount
of air over a specific detention time. This method has the potential to provide a high level of
process control because moisture, aeration, and temperature can be maintained in some of the
more sophisticated units (USDA, 1999).

Application and Performance: Composting is an accepted process for the biological stabilization
of the organic material in waste, providing an alternative to long-term liquid and semisolid
manure storage. It turns waste organic material (dead poultry, manure, garbage, and so forth) into
a resource that can be used as a soil amendment and fertilizer substitute. Proper composting
minimizes nutrient loss while killing pathogenic organisms by process generated heat. For
example, two waste products from a municipal and a dairy source were composted in the lab
under controlled temperature and air flow rates (Hall and Aneshansley, 1997). Researchers found
that maintaining high and constant temperatures destroys pathogens and accelerates
decomposition.

In general, only manure from confined animals is available for composting. Usually, manure
must be dewatered or mixed with sawdust or wood chips to lower the moisture content, which
may range from 60 to 85 percent. The presence of plant nutrients such as N, P, and K; the organic
content; and the absence of significant levels of heavy metals makes animal manure a very
attractive raw material for producing compost. In-vessel composting has been conducted
successfully with dairy cattle manure, swine manure, horse manure, and poultry and turkey litter.

Advantages and Limitations: Compost and manure are both good soil conditioners that contain
some fertilizer value. On a growing number of farms, however, manure is considered more of a
liability than an asset. Animal waste generators may find themselves with surpluses of manure in
the winter, yet lacking manure by spring planting. Odor complaints associated with manure are
Common in populated areas. Other concerns include polluted runoff from manure spread on .
frozen ground and nitrate contamination of wells.

Composting converts the nutrients in manure into forms that are less likely to leach into ground
water or be  carried away by surface runoff. Compost  releases its nutrients more slowly than
                                         8-103

-------
commercial fertilizers, so it does not burn crops and can feed them over a longer period of time.
The nutrient value of manure was demonstrated in a study in which five combinations of
composted cattle feedyard manure and liquid phosphate were applied to provide 100 percent of
the P requirement for corn (Auvermann and Marek, 1998). Five replicates were tested for each
treatment. No significant difference was determined between corn yields in treatment-by-
treatment comparisons, indicating that composted feedlot manure may be an adequate substitute
for chemical fertilizers.               '

A well-managed composting operation generates few odors and flies, and the heat generated by
the composting process reduces the number of weed seeds contained hi the manure. Composting
also reduces the weight, moisture content, and volatility of manure, making it easier to handle
and store. Because of its storage qualities, compost can be held for application at convenient
times of the year. Composted manure and composted manure solids can also be used as bedding
material for livestock.

Different types of in-house, deep litter manure management systems were tested at a 100,000-
chicken high-rise layer operation in Georgia (Thompson et al., 1998). Composting was
conducted using raw manure, a manure and leaf mixture, and manure and wood chip mixture.
The in-house composting was found to reduce the weight and volume of wastes more efficiently
than conventional methods of stacking manure under the house. Wood chip and leaf manure both
had lower moisture content and more concentrated nutrients compared with the raw manure.
                                   i
                                   i
Disposal is less of a problem for compost than for manure because there is usually someone
willing to take the  compost. One of the strongest incentives for composting is that a market exists
for the product, especially in populated areas. Potential buyers include home gardeners,
landscapers, vegetable farmers, garden centers, turf growers, golf courses, and ornamental crop
producers. Bulk compost prices range from $7 to $50 per cubic yard, depending on the local
market, compost quality, and the raw materials used.

Countering these advantages are several limitations. Managing and mauitaining a composting
operation takes time and money, and compost windrows and storage facilities for raw materials
can take land, and possibly building space, away from other farming activities. When processing
only small volumes of farm wastes, the equipment needed is probably already available on the
farm, but composting may become a very capital- and labor-intensive task for larger operations.
Farmers might need to invest in special composting equipment, which can cost anywhere from
$7,000 to more than $100,000. The main equipment needed for composting on a moderate to
large scale is machinery to construct, mix, and move material in a compost pile or windrow. A
front-end loader and truck may be all that is required. Other equipment, such as chipping or
shredding equipment, a windrow turner, screening equipment, aeration equipment, and a
composting thermometer or temperature probe, might be needed as well.

Although the end product of composting is odor-free, the raw materials used to make compost
may not be. Even the compost piles themselves, if not maintained properly, can become
malodorous. Cold weather slows the composting process by lowering the temperature of the

                                        8-104

-------
                                       J-
 composting material. Heavy precipitation adds water to the composting mix, and snow and mud
 can limit access to windrows.

 There is also some ambiguity as to whether manure or compost provides crops with more N.
 Compost can contain less than half the N of fresh manure; however, the N in manure is less
 stable than that in compost. Farmers must apply more compost than manure to farmland to
 achieve the same results because compost nutrients are released very slowly. Generally, less than
 15 percent of the N in compost is released in the first year.

 Last, although compost is a salable product, selling compost involves marketing. This means
 searching out potential buyers, advertising;, packaging, managing inventory, matching the product
 to the customer's desires, and maintaining consistent product quality.

 In addition to these general limitations, there are specific limitations associated with composting
 different types of animal manure. Wastes containing excessively high water content, such as
 poultry manure from egg-laying operations and wet manure from free-stall dairy GAFOs, may
 require additional processing prior to composting. The conditions for optimal composting (see
 Operational Factors below for greater detail) are not always met'with these wastes; for example,
 the water content is too high (usually greater than 70 percent), the biomass is poorly aerated, and
 the (Carbon:Nitrogen) ratio is often less than 15:1.  In these cases, bulking agents such as wood
 chips or similar wood products are added to make the mix more suitable for efficient composting,
 but bulking agents must be purchased if not readily available on the farm. Table 8-17
 summarizes some of the key advantages and disadvantages of composting.

 Operational Factors: Because composting is a biological process, environmental factors
 influence organism activity, thus determining the speed of decomposition and the length of the
 composting cycle. The composting period typically lasts from 3 to 8 weeks for conventional
 composting methods under normal operating conditions. Users of some highly controlled
 mechanical systems claim to produce compost in as little as 1  week. The length of time depends
 upon many factors, including the materials used, temperature, moisture, frequency of aeration, •
 and ultimate use of the material. Conditions that slow the process include lack of moisture, a
 high C:N ratio, cold weather, infrequent or insufficient aeration, and large or woody materials. A
 month-long "curing" period usually follows the active composting stage. Curing continues to
 stabilize the compost but at a much slower pace. At this stage, the compost can be stockpiled
 without turning or aeration and without the fear of odor problems (Rynk, 2000).

 The characteristics of the raw organic material are the most important factors determining the
 quality of compost, including moisture content, C:N ratio, aeration, material particle size, and
temperature. Acceptable and preferred ranges for nutrient balance (C:N ratio), moisture content,
pH, and bulk density are provided hi Table 8-18 (NREAS, 1992). Additional factors considered
when formulating a raw organic material recipe are degradability, odor potential, and cleanness.
For example, swine manure is very odorous and should not be composted on locations prone to
odor complaints. Cleanness refers to the degree of contamination from unwanted materials (glass
                                         8-105

-------
and heavy metals), chemicals (pesticides), and organisms (human pathogens). If the compost is to
be sold off site, the raw material content will greatly affect its market value.
Advantages of Composting
Compost is an excellent soil conditioner. >
Compost is a salable product. |
Compost reduces the weight, moisture content^ and
activity of manure, making it easier to handle and store.
Composting converts the N content of manure into a
more stable organic form. Manure that has been
composted provides a better C:N ration in the soil,
contains fewer weed seeds, and poses a lower risk of
pollution and nuisance complaints (due to less odor
and fewer flies). i
Composting kills pathogens. .
Compost is a suitable bedding substitute. !
Land-applied compost has proven to suppress 'soil-
borne plant diseases without the use of chemical
controls.
Some farmers have begun accepting payment (referred
to as "tipping fees") to compost off-site wastes.
Disadvantages of Composting
Composting is labor and management intensive.
Selling compost involves marketing costs (advertising,
packaging, management, customer service, and so
forth). .
The composting site, raw materials storage, and
compost storage require a large land area. -r
Nutrients in compost are in complex form and,
therefore, need to be mineralized for plant intake; thus
a greater volume of compost is needed to meet crop
demands.
Effectiveness is weather dependent.
Large operations require expensive equipment.
Odors can be a recurring problem.
Acceptance of off-site organic wastes may result in the
operation being classified as commercial and increase
compliance costs under zoning and environmental
regulations.
                Table 8-18. Desired Characteristics of Raw Material Mixes.
Characteristic
C:N Ratio
Moisture Content
PH
Bulk Density (Ibs/y3)
Reasonable Range
20:1^0:1
40-65 percent
5.5-9
Less than 1,1 00
Preferred Range
25:-30:l
50-60 percent
6.5-8.5
No preferred range
Source: NREAS, 1992.
The optimum moisture content for composting varies with particle size and aeration. At high
moisture content, voids fill with liquids and aeration is hindered. Low moisture levels, on the
other hand,  retard or stop microbial activity, although some composting occurs with moisture as
low as 25 percent. Depending on the raw materials, there is ultimately a 30 to 60 percent
                                          8-106

-------
reduction in volume of the compost material, much of it due to water loss. If the water content
falls below 40 to 50 percent, water should be added and mixed into the composting feedstocks.
Warm weather enhances water loss from compost windrows by surface evaporation. Increased
turning also results hi a higher evaporation rate. This can be an advantage if a drier compost is
desired, but if the evaporation rate becomes too high, water should be added to reduce potential
fire hazards.                                      .

Periods of high rainfall can also be a problem for windrow composting. Windrows usually absorb
water from normal rainfall or snow without saturating the materials. If the windrows become
wetter than desired, more turnings are required to evaporate the added moisture. Rain can also
produce muddy conditions, making it difficult to operate turning equipment. Snow can halt
operation altogether until plowed from equipment paths. In addition, puddles and standing water
can lead to anaerobic conditions at the base of a windrow. It is important that the composting site
has adequate drainage to compensate for periods of high rainfall.

C and N serve as nutrients for the microorganisms, and for efficient composting they should be
available in the right balance. A good C:N ratio falls between 25:1 and 35:1, although
recommendations vary based upon site-specific conditions. For example, a study by Virginia
Polytechnic Institute and State University concluded that the best combination of straw and raw
swine manure for composting has a C:N ratio of 16:1 and a moisture level of 50 to 70 percent
(Collins and Parson, 1993). Above the optimum range of C:N ratio, the materials break down at a
slower rate, while a lower ratio results in excess N loss. For example, a study of poultry litter
composting as a function of the C:N ratio and the pH of the starting materials showed that NH3
emissions decreased substantially as the C:N ratio increased through addition of short paper fiber
(C:N ratio(> 200:1) to broiler litter (Ekirici et al., 1998). As composting progresses, the C:N ratio
will fall gradually because the readily compostable carbon is metabolized by microorganisms and
the N is converted to nitrate and organic forms.

In animal manure, the C:N ratio is usually 10:1 to 15:1. The C:N ratios for different manures
vary: poultry litter 10:1, layer manure 5:1, cattle feedlot manure 13:1, dairy manure 18:1, swine
feedlot manure 3:1, and horse stable manure 25:1. Bulking materials can be added to increase the
C:N ratio in the compost pile. Typical bulking materials include grass clippings (C:N ratio of
12:1 to 25:1), hay (15:1 to 32:1), oak leaves (50:1), shrub and tree trimmings (50:1 to 70:1),
straw, cornhusks, and cobs (50:1 to 100:1), pine needles (60:1 to 100:1), sawdust (150:1 to
700:1), wood chips (500:1 to 600:1), or newspaper (400:1 to 850:1). For example, dairy manure
is a good substrate for composting because it breaks down quickly and supplies the
microorganisms with most of the required nutrients, but it is also N-rich, excessively wet, and
has a C:N ratio ranging from 12:1 to 18:1. Moisture content varies from about 75 percent for
manure collected from stanchion barns to about 85 percent from free-stall operations, with the
variability determined primarily by the amount of bedding used. To make dairy manure more
suitable for composting, it must be mixed with bulking agents that can be easily incorporated into
the composting mix by using them as bedding.
                                         8-107

-------
The feasibility of using sawdust and chopped fescue hay as a low-cost waste carbon source to
compost with separated swine manure solids was investigated using 21-liter vessels and bin
composting units (Hoehne et al., 1998). Manure and fescue hay produced the lowest C:N ratio in
both small and large composting units. Temperature trends were used to indicate biological
activity. Composting manure with a carbon source was recommended because the product was
easy to transport, appropriate for transport through residential areas, and odor-stable, even though
composting is labor intensive.

The rate of air exchange and effectiveness of aeration of windrows depends on the porosity of the
windrow. For example, a wet, dense windrow containing manure is less porous than a windrow
of leaves.. Windrows that are too large may result in anaerobic zones occurring near the center
and causing odors when the windrow is; turned. Periodic turning of window compost piles
exposes the decomposing material to the air and keeps temperatures from getting too high
(exceeding 170 °F). The most important effect of turning is rebuilding the windrow's porosity.
Turning fluffs up the windrow and restores pore spaces lost from decomposition and settling,
thereby restoring oxygen within the pore spaces for microorganisms and improving passive air
exchange. Turning also exchanges the material at the surface with material  in the interior. The
materials compost evenly and, as a result, more weed seeds, pathogens, and fly larvae are
destroyed by the  high temperatures. The minimum turning frequency varies from 2 to 10 days,
depending on the type of mix, volume, and ambient air temperature. As the compost ages, the
frequency of turning can be reduced.

A study in Ohio measured NH3 concentrations from dairy manure and rice hulls composted with
various aeration rates (Hong et al., 1997). Temperature and NH3 concentrations peaked 48 days
after aeration begins and then declined steadily, leveling off after 150 hours. The effect of
intermittent aeration on composting swine waste was studied to determine changes in NH3
emissions and dry matter loss (Hong et al., 1998). Continuous and intermittent aeration
treatments were tested on composting hog manure amended with sawdust in pilot-scale 200-liter
vessels. NH3 emissions were 39 percent lower from the intermittent aeration treatments, and N
losses as NH3-N were 26 percent lower for continuous aeration and 14 percent lower for
intermittent aeration. Dry solids loss and other physicochemical properties were similar between
the  two treatments. It was concluded that intermittent aeration may be a practical method of
reducing N loss and NH3 emissions when composting swine manure with sawdust.
                                   i
Smaller particle size provides greater surface area and more access for the degrading organisms.
It may be necessary to reduce by grinding the particle size of some material such as corn stalks.
Windrow turning blends raw materials and breaks up particles into smaller pieces, thus
accelerating biodegredation through increased surface area.

Heat produced during the composting process raises the temperature of the  composting materials.
Because the heat  produced is directly related to the biological activity, temperature is the primary
gauge of the composting process. During the first few days of composting, pile temperatures
increase to between 104 and 158 ° F. This range enhances the growth and activity  of the
microorganisms.  In addition, temperatures above 131° F kill most pathogens, fly larvae, and .

                                         8-108

-------
weed seeds. The high temperature might be maintained for several days, until the
microorganisms begin to deplete their food source or until moisture conditions become less than
optimal. Mixing the composting feedstock brings more undecomposed food into contact with the
microorganisms, replenishing their energy supply. Once the optimum moisture level is restored
and the feedstocks have been remixed, the! temperature increases again. After the readily
decomposable material is depleted, the compost pile no longer heats upon remixing. The
temperature continues to drop to ambient, and only very slow decomposition continues.

Although composting can be accomplished year-round, seasonal and weather variations often
require operational adjustments. This is especially true for windrow composting. Cold weather
can slow the composting process by increasing the heat loss from piles and windrows. The lower
temperatures reduce the microbial activity, which decreases the amount of heat generated. To
compensate for cold weather, windrows should be large enough to generate more heat than they
lose to the environment, but not so large that the materials become excessively compacted.
Windrows that are too small can lose heat quickly and may not achieve temperatures high enough
to cause moisture to evaporate and kill pathogens and weed seeds.

Demonstration Status: Agricultural composting is experiencing a resurgence of activity,
particularly in the northeastern United States. A growing number of farmers are now composting
significant quantities of organic materials. These farmers have incorporated composting of a
wide variety of organic wastes generated on and off farm into their normal operations. Some own
large commercial enterprises; others  are small "hobby" farms. A number operate otherwise
traditional dairy enterprises, and several are organic vegetable growers. Some use all or most of
the finished compost on the farm, and some produce compost and soil mixes as a primary
agricultural product. Many use existing on-farm technology to manage the compost piles, and
others have invested in specialized compost production equipment.

Several Massachusetts dairy farms have adopted composting as a manure management technique.
In a study of five farms practicing composting in that state, it was found that three used the
windrow method of composting, one used the passive method, and one experimented with
several composting methods, finding the windrow method the most successful (Rynk, 2000). The
Rosenholm-Wolfe Dairy Farm in Buffalo County, Wisconsin, has successfully produced compost
for the commercial market using organic solids separated from manure that had been flushed
from a 250-head, free-stall barn (Rosenow and Tiry, n.d.). The raw composting material has a
C:N ratio of 30:1 and a moisture content of 60 percent, which is ideal for rapid production of a
high-quality product using windrow composting.

A pilot project conducted at the Purdue Animal Science Research Center has shown that
composting can be an efficient way to manage waste from dairy farms, hog farms, beef feedlots,
and poultry operations at a lower cost than that associated with other waste management methods
{Purdue News, August  1998). The composting site has 13 rows of compost material, each 5 feet
tall, 10 feet wide, and 250 feet long. The rows are turned using a specialized windrow turner.
                                        8-109

-------
 Three fundamental factors driving this renewed interest in composting are environmental and
 community constraints on traditional manure management options, increased understanding of
 the agronomic benefits of compost use, and rising disposal costs for such materials as municipal
 yard waste and food processing wastes, which might be managed for a profit in an agricultural
 setting. Despite growing interest, however, the environmental and possible economical benefits
 of composting are challenged by a variety of constraints. An agricultural composting study
 conducted by Cornell University (Fabian, 1993) concluded that governmental agencies need to
 take a number of steps to further encourage agricultural composting including minimizing
 regulatory constraints on farm-composted materials, encouraging local zoning to allow compost
 facilities as a normal agricultural operation, providing governmental assistance for composting
 equipment and site preparation, developing procurement guidelines for state agencies to use
 compost in preference to peat and topsoil, and supporting research and demonstration programs
 that explore new applications for compost in the agricultural sector.


 Practice: Dehydration and Pelleting
 Description: Dehydration is the process by which the moisture content of manure is reduced to a
 level that allows the waste to be used as a commercial product, such as fertilizer for horticulture.

 Applicability and Performance: Dehydration has been used on a variety of animal waste products
 including poultry manure and litter. The output material (dried to about 10 percent moisture
 content) is an odorless, fine, granular material. With a moisture content of 10 to  15 percent, a
 slight odor may be noted. Crude protein levels of 17 to 50 percent have been reported in dried
 poultry waste (USEPA, 1974). The material can also be formed into pellets prior to drying.
 Pelleting can make the material easier to package  and use as a commercial fertilizer.

 Operational Factors: Manure is collected and dried from an initial moisture content of about 75
 percent to a moisture content of 10 to 15 percent. The drying process is usually accomplished
 using a commercial drier. The input requirement for most commercial driers is that the raw
 material be mixed with previously dried material to reduce the average moisture content of the
 input mixture to less than 40 percent water.

 The mixture is fed into a hammer mill, where it is pulverized and injected into the drier. An
 afterburner is generally incorporated to control offensive odors. The resultant dried material is
 either stockpiled or bagged, depending on the ultimate method of disposal selected. Units
 reported range in size from small portable units to systems capable of processing 150,000 tons
 per year (USEPA, 1974).

Advantages and Limitations: The drying of animal waste is a practiced, commercial technology
 with the dehydrated product sold as fertilizer, primarily to the garden trade. It is an expensive
process that can be economical only where the market for the product exists at the price level
necessary to support the process.
                                         8-110

-------
  Development Status: The status of dehydrating animal manure is well established. Full-scale
  drying operations have been established with animal manure, in some cases since the late 1960s.
  A number of manufacturers offer a line of dehydration equipment specifically designed for this
  purpose. At least one large-scale facility, currently under construction on the Delmarva
  Pennisula, will be used to treat broiler manure.


  Practice: Centralized Incineration of Poultry Waste
  Description: Centralized incineration is an alternative method of disposing of excess poultry
  litter. Most poultry litter has energy content and combustion qualities similar to those of other
  biomass and commercially used alternative fuels (e.g., wood and refuse-derived fuels from
  municipal trash). Under a centralized incineration approach, poultry litter that is removed from
  the houses is collected and transported to a centralized facility that has been designed or
  retrofitted to burn poultry litter. The concentration of the poultry industry in several areas of the
  country and the dry composition of the manure facilitates litter transport, which is critical to the
  success of this alternative treatment technology.  The centralized incineration unit could be
  located at a processing plant to provide power to the plant or at a stand-alone facility that would
  generate power for public use.

 Application and Performance: Most of the nutrients in the litter would not be destroyed by
 combustion, but would be captured in the combustion ash and could be managed safely and
 economically. Consequently, the most immediate environmental benefit from burning litter is
 that its nutrients would not be applied to cropland and therefore would not run off into
 waterways.

 Advantages and Limitations: The incineration of poultry litter to generate energy offers  several
 clear advantages over current practices. The energy recovered by burning poultry litter would
 displace conventional fossil fuels and thereby avoid greenhouse gas emissions. The pollution
 control equipment required for major fuel burning units would likely minimize other combustion
 emissions when the manure is burned.                    .

 Limitations of using poultry litter as fuel include  variability in litter composition, litter
 production rates, and litter caloric content. One of the most important determinants of the
 suitability of any substance as a fuel is its moisture content, and there is no guarantee that litter
 would undergo any sort of drying process prior to combustion. Moisture in a fuel represents a
 reduction in its heating value because some of its energy content must be used to vaporize the
 moisture, reducing the fuel's effective energy output. Poultry litter has a much lower British
 thermal unit (Btu) content, higher moisture content, and higher ash content than conventional
 fuels. It can pose greater operational problems (such as corrosion) and would probably be
 convertible to steam at a lower efficiency than conventional fuels. Moreover, because of its much
higher ash content, litter will yield far more unburned residuals than other fuels. Metals,  P, and K
from the litter will concentrate in the residual ash; however, bottom ash and fly ash can be sold as
fertilizer, contributing to the profitability of the technology.
                                          8-111

-------
Metals (e g  Cu, arsenic, Zn) may be present in litter because they are added to poultry feed as a
SSJ Clement Other metalsmay be unintentionally present in feed and beddmg or may be
fcn^d fiW the floor of a poultry house when the litter is removed. Aluminum may be found m
litter because alum is added to limit NH3 volatilization, and aluminum sulfate as addedI to.bind
L P in litter, reducing P in runoff when applied to land. Metals in poultry Utter can affectits
suitability for combustion in several ways. First, the concentration of metals could affect he
nature of air emissions from a poultry-fired boiler. Second, metals might pose a problem in the
Created from litter combustion. Most toxic metals concentrate sigmficantly in combustion ash
relative to the unbumed litter.

Although litter combustion has significant environmental advantages, adverse enykomnental
impacts might result from using poultry litter as a fuel source. Air emissions and treatment
Suals result from the incineration of any fuel, however, and the chemical and physical
proves of Utter as a fuel do not suggest that burning litter would result in significantly worse
pSn enisLs than would burning conventional fuels.  When compared  with &e combustion
If conventional fuels, combustion of poultry litter produces fewer tons of NOX, sulfur oxides
(SO ) and filterable particulate matter ;(PM) emissions at the boiler than coal or residual (No. 6)
oil rn' comparison with distillate fuel oil, Utter has a less desirable emissions  Profile. A
comparison with wood is mixed; litter shows lower emissions of carb™™1™ld*J^)On
filterable PM, and methane, whereas wood shows lower emissions of NO  SO  and carbon
dtokte (CO) Despite the high N content of poultry Utter, burning litter should not increase NOX
Sons NO emissions from combustion primarily depend on the nature of fee combustion
Tee Sheeting the degree to which atmospheric N  is oxidized) and only secondarily on
Se r0unt of N in the fuel. In fact, ft* high NH3 levels in poultry litter may  act to reduce much
 of the NO that is formed during combustion back into elemental N.  Tins is the reaction that
 underlies most of the modern NOX control technologies (selective catalytic and noncatalytic
 reduction) used in utility boilers.

     formation in combustion processes depends  directly on the sulfur content of the fuel.
           SOX emissions from burning poultry litter should be lower than those ^ h*h-^
      (residual oil or higher-sulfur coal) and higher than those from low-sulfur fuels (distillate oil,
     sSfor cTal, wood, natural gas). lie relatively high alkali (K and Na) content of litter and
 Utter combustion ash may cause problems in the  combustion system: a low ash melting pomt,
 which can lead to slagging and deposition of "sticky" ash on combustion surfaces and high
 particulate emissions in the form of volatile alkali compounds. However this high alkali ash
 Ix^ent also has the likely benefit of reducing SOX in the flue gas through a "scrubbing effect. If
 the uncontrolled emissions from burning poultry litter appear likely to exceed emission
 Sandards, an appropriate air pollution control device would be installed at 1he unit, just as it
 would be at a conventional fuel-burning unit.

 Costs for this technology include cleanout and storage/drying costs, as well  as the cost of
 transporting the litter to the incineration facility. A fuel user might hire a contractor^to remove
 Utter from a poultry house and load itonto a truck for delivery, hire a contractor to load Hie litter
 and pay ^owerfor the Utter and cleanout, or hire a contractor to get the Utter from the shed and

                                          8-112

-------
load it onto a truck, paying the grower for the litter, cleanout, and storage. In addition, fuel users
may also need to install new fuel-handling and management equipment and perform some
redesign of the combustion process. Burning litter effectively might entail new plant
construction, such as construction of a direct-fired biomass facility, retrofitting of an existing
plant for direct firing poultry litter, or retrofitting of an existing cogeneration facility or boiler to
co-fire poultry litter with conventional fuels (such as oil or coal). Most operations would also
require a storage structure and litter supply system. The costs of retrofitting a processing plant
boiler or feed mill boiler to co-fire litter do not appear excessive. The cost savings from burning •
litter would continue indefinitely and would increase as fuel users find more effective and
efficient ways of burning litter.

Operational Factors: One of the first steps in using poultry litter as a fuel is to estimate the
amount of litter produced by a feedlot. This amount is then compared with the quantity of litter
that could be spread appropriately on local cropland to meet agricultural nutrient needs. The
amount by which litter production exceeds the litter needed for crop nutrient purposes is the
measure of the amount available for fuel. Several approaches are in use to project the volume of
litter that a poultry operation will generate. The differing results of these approaches are mostly a
function of the wide range of variables that affect poultry litter production—type of bird, feed
and watering programs, bird target weight, type of bedding, litter treatment for NH3 control,
house type, crusting procedures, and cleanout schedules. One method uses a calculation of 10.8
Ib of manure produced per broiler per year, another assumes an average of 35 Ib of manure per
1,000 birds per day, and another assumes an average of 2.2 Ib of litter per bird. Other more
sophisticated methods apply a rate of litter produced per unit of bird weight produced. However,
the most straightforward and commonly used calculation relies on an assumption of 1 ton of litter
per 1,000 birds. It should be noted that since a significant portion of the weight of litter is water,
having drier litter means fewer tons per bird. Therefore, the 1 ton of litter per 1,000 birds
assumption should be treated strictly as a rough estimate.

The most important characteristic of litter with regard to its value as a fuel is its caloric content.
Although the energy content of litter varies significantly, there is less variation after it is air-dried
or oven-dried. For example, research conducted on the Btu content of several litter samples under
varying moisture conditions showed that litter with a moisture content ranging from 0 to 30
percent had a caloric  content ranging from 7,600 Btu per pound to 4,700 Btu per pound. Litter
has a much lower caloric value than conventional fuels, but it has an energy content similar to
that of several other commonly used alternative fuels. In addition, when litter is used as a fuel, its
density affects the nature of the fuel feed systems and boiler configurations required. The density
of litter also affects how the litter can be stored, handled, transported, and land-applied.
Estimates of litter density vary widely, depending largely on the moisture content of the litter.
Estimates range from 19 to 40 pounds per ft3, with the average being roughly 30 pounds per ft3.

Because poultry litter is quite variable with respect to several characteristics important to its use
as a fuel, the fuel user must develop quality control and quality assurance guidelines to ensure
that the litter is of consistent quality and well  suited for combustion. Criteria for accepting litter
may include acquiring only litter that has been covered in storage for some period of time to

                                          8-113

-------
 avoid excessive moisture and increase Btu content per ton, or mixing a large quantity of litter on
 site prior to burning to reduce fluctuations in quality across individual loads of litter. One plant in
 operation in the United Kingdom emplpys the following measures: (1) litter shipments are
 examined for moisture content with infrared equipment, and shipments with excessive moisture
 are rejected; (2) core samples are taken and analyzed for moisture, ash, and Btu content; (3)
 based on the results of the analysis, the load is sorted into one of several storage pits; and (4) an
 overhead crane draws from the different storage pits in a manner providing an appropriate blend
 of wet and dry material, giving a reasonably constant caloric value when fed to the furnace.

 Demonstration Status: This technology is not currently used in the United States for poultry
 waste; however, existing boilers could be retrofitted to co-fire litter with conventional fuels such
 as oil or coal, or litter could be burned in a direct-fired biomass facility to generate electricity,
 steam, or heat at power plants or in boilers at poultry processing plants to supplement energy
 needs. Other agricultural and silvicultural wastes such as bagasse, almond shells, rice hulls, and
 wood wastes are burned for energy recovery in scattered utility and industrial plants in the United
 States. In the United Kingdom, several medium-sized, profitable electric power plants are fueled
 by poultry litter. This indicates that centralized incineration of poultry waste has the potential to
 develop into a commercially viable alternative treatment technology for poultry growers.

 A British company, Fibrowatt, conceived of, developed, and operates the electricity plants in the
 United Kingdom that use poultry litter as fuel. Fibrowatt's three plants (two operating, one under
 construction) are all new and are all electricity-generating plants rather than industrial boilers for
 steam heat or cogeneration facilities. Fibrowatt's litter storage and handling system is
 proprietary. The Fibrowatt plant at Eye in Suffolk, the first plant fueled by poultry litter, came on
 line in July 1992. The second plant, in Glanford at Humberside, came on line in November 1993.
 The third and largest plant is at Thetford in Norfolk, which was scheduled to begin operations hi
 1998.

 The basic operations at the three plants are similar. Each plant is situated hi the heart of a
 poultry-producing region. Trucks designed to minimize  odor and the risk of biocontamination
 transport the litter from farms to the power plants. The trucks enter an "antechamber" to the litter
 storage structure, and the doors of the antechamber are closed before the truck unloads. Upon
 arrival, the litter is sampled for nearly 40 different traits including Btu content and moisture. The
 litter is stored and conditioned hi a way that homogenizes the fuel. It is kept under negative
 pressure to control odor, and the air from the fans in the storage structure is directed to the boilers
 and used hi combustion. The Glanford plant uses Detroit Air-jet spreader-stokers (reciprocating
 grate, solid-fuel combustors) to burn fuel. The Eye plant employs a stepped grate stoker. The
 boilers are Aalborg Ciserv three-pass, natural-circulation, single-drum water tube boilers. There
 are modifications to the ash removal process because the high alkali content of the litter can
 cause corrosion hi the boiler. The steam from the boiler  is passed to a turbo-alternator,  and
 electricity is sold to the grid. The Fibrowatt plants are commercially viable in the United
Kingdom because the prices Fibrowatt can charge for the electricity delivered to the grid are far
higher than the prices charged hi the United States, hi addition, farmers are charged a disposal
 fee for their litter, and Fibrowatt is  abldto earn money on the ash produced by combustion,

                                          8-114

-------
which the plants collect and sell as concentrated fertilizer with a guarantee analysis.
Theoretically, the process could be replicated in the United States, but a full-market study would
be needed.

Poultry litter is not currently used as fuel in the United States; however, research into the
feasibility of burning litter for electricity, steam, or heat is under way. Maryland Environmental
Services (MES) has asked the Power Plant Research Program (PPRP), an arm of the Maryland
Department of Natural Resources, to help investigate the possibility of burning poultry litter at
the cogeneration plant at the Eastern Correctional Institute. In February 1998, Exeter Associates
published a report for MES projecting the costs of various scenarios for using poultry litter at the
plant. One of the recommendations in the report was that a full engineering study be done to
obtain a better estimate of the costs involved. MES submitted a request for proposals on this
basis in April 1998 and received bids from several companies. Among the companies that bid
were Fibrowatt and two companies that build gasifiers. As of July 1998, the gasifier company
bids had been rejected and the remaining bids were still under consideration. MES is determined
to turn the cogeneration plant at the Eastern Correctional Institute into a working facility and is
interested in a Fibro watt-style system, the technology of which is proven and currently
operational.

Other  Technologies for the Treatment of Animal Wastes

Practice: Aquatic Plant Covered;Lagoons
Aquatic plant covered lagoons provide low-cost wastewater treatment by removing suspended
solids,  BOD, N, and P in structures that are mechanically simple, relatively inexpensive .to build,
and low in energy and maintenance requirements (WPCF-TPCTF, 1990). Wastewater treatment
occurs  through a combination of mechanisms including biochemical conversion through plant-
microbial reactions, plant uptake,.settling, volatilization, and adsorption onto sediments. Free-
floating aquatic plants such as duckweed (Lemnaceae), and water hyacinth (Eichhornia
crassipes) grow rapidly (in a matter of days) and take up large amounts of nutrients from
wastewaters (Reddy and De Busk, 1985). In addition, the extensive root system of water hyacinth
provides a large surface area for microbial growth, which promotes degradation of organic matter
and microbial transformation of N (Brix, 1993). Greater than 70 percent removal of pollutants by
aquatic plant covered lagoons has been reported for domestic wastewater treatment (Orfh and
Sapkota,  1988; Alaerts et al., 1995; Vermaat and Hanif, 1998). Depending on the lagoon design,
water depth, and retention time, effluent from hyacinth- and duckweed-covered lagoons can
potentially meet secondary and sometimes advanced wastewater discharge standards for BOD,
suspended solids, N, and P (Buddhavarapu and Hancock, 1991; Bedell and Westbrook, 1997).

hi addition to providing wastewater treatment, nutrient uptake by water hyacinth and duckweed
produces a protein rich biomass (Reddy and Sutton, 1984; Oron et al., 1988) that can be
harvested and used as an agricultural fertilizer or a feed supplement (Oron, 1990). Furthermore,
duckweed and hyacinths provide a dense cover that restricts algal growth by impeding sunlight at
the water surface (Brix, 1993), reduces odor by preventing gaseous exchange, and acts as a
                                         8-115

-------
physical barrier to reduce the breeding of mosquitoes (Buddhavarapu and Hancock, 1991).
Limitations of aquatic plant covered lagoons include a need for large treatment areas,
pretreatment of wastewater in settling ponds, and floating grid barriers to keep plants from
drifting (Brix, 1993). Cold temperature reduces the growth rate of floating plants (Brix, 1993).
Although duckweed removes fewer nutrients than do water hyacinths (Reddy and De Busk,
1985), duckweed has higher protein and lower fiber, a faster growth rate, and lower harvesting
costs (Oron, 1990), and can grow at temperatures as low as 1 to 3 °C (Brix, 1993). Duckweed
prefers NH3 over nitrate (Monselise and Kost,  1993), transforms nutrients to a protein-rich (25 to
30 percent) biomass (Oron, 1990), and selected duckweed species (Lemna gibba, Lemna minor)
have been demonstrated to grow on undiluted swine lagoon effluent (Bergmann et al., 2000). For
these reasons, duckweed is potentially effective in the treatment of animal waste. Further studies
are needed to better understand the application and performance of aquatic plant covered lagoons
for animal waste treatment.

Practice: Nitrification-Demtrificatiofl Systems—Encapsulated Nitrifiers
Description: Nitrification-denitrification refers to the biological conversion of ammonium first to
nitrate, then to N2. Many schemes for nitrification-denitrification have been researched including
the use of nitrifying bacteria encapsulated in polymer resin pellets to speed up the reaction
(Vanotti and Hunt, 1998). The theory is that elevated populations of nitrifying bacteria
immobilized on resin pellets that are retained in a treatment system will convert more NH3  to
nitrate faster than free swimming bacteria. There is ample evidence that attached media systems
that retain bacteria on their surface remove the target pollutants more effectively than bacteria
that have to swim to their food and can be washed from the system.

Vanotti and Hunt demonstrated in the lab that an enriched solution of encapsulated nitrifiers in
an oxygen-saturated solution at 30 °C, with 150 ppm BOD and 250 ppm TKN, could nitrify 90
percent of  the NH3 in a batch if sufficient alkalinity was added. The research also documented
that a solution with encapsulated nitrifiers had more and faster nitrification than an aerated
equivalent volume of anaerobic lagoon effluent with no nitrifiers added.

A pilot plant using imported pellets operating on anaerobic lagoon effluent followed the
laboratory work. The effluent was first screened, and then introduced into a contact aeration
treatment to reduce BOD. The aeration sludge was settled next, and then treated effluent was
introduced  into a nitrification tank in which another  aeration blower was used to maintain a
dissolved oxygen concentration of 3 milligrams per liter. The pH was maintained at 7.8 or greater
with sodium hydroxide as necessary. The results of 3 months of operation were that, given
adequate pretreatment, high nitrification rates of swine wastewater could be attained using
enriched nitrifying populations immobilized on polymer resins.
                                   I
Application and Performance: The technology specifically targets nitrification of NH3, and could
reduce the loss of NH3-N to the atmosphere. When set up and operated properly, the treatment
can convert 90 percent of the NH3-N retraining in pretreated lagoon effluent to nitrate. A
                                         8-116

-------
nitrified farm effluent can be denitrified easily by either returning it to an anaerobic environment
resulting in release of N2. This technology will have little if any effect on pathogens, metals,
growth hormones, or antibiotics. It can be assumed that most of these constituents were removed
in the process of aerating the manure to reach oxygen-saturated conditions, which would enable
the encapsulated nitrifiers to function.

Advantages and Limitations: A facility to support this process would be expensive to build,
operate, and maintain. It is difficult to imagine this process being used on a farm. One area not
considered is the sludge generated by aerobic pretreatment. Another limitation is the anaerobic
lagoon pretreatment step used to reduce initial BOD and limit sludge production.

Operational Factors: Nitrifying bacteria are temperature sensitive, but the effect of temperature
was not discussed by Vanotti. Rainfall and varying concentration should not affect performance;
however, seasonal temperature variation may reduce nitrification.

Demonstration Status: NCSU has operated a pilot plant in Duplin County, North Carolina.

Disinfection—Ozonation  and UV Radiation
Ozonation is commonly used to disinfect wastewater after biological treatment. Ozone is a highly
effective germicide against a wide range of pathogenic organisms, including bacteria, protozoa,
and viruses. It oxidizes  a wide range of organics, can destroy cyanide wastes and phenolic
compounds, and is faster-acting than most disinfectants. Moreover, unlike chlorine, ozone does
not generate toxic ions in the oxidation process.

UV radiation is used primarily as a disinfectant. It inactivates organisms by causing a
photochemical reaction that alters molecular components essential to cell function. It is very
effective against bacteria and viruses at low dosages and produces minimal disinfection by-by
products. To enhance the inactivation of larger protozoa, UV radiation is often considered in
conjunction with ozone.

Disinfection measures such as ozonation and UV radiation are not commonly practiced in the
United States for treatment of animal wastes. Animal wastewater would require primary and/or
biological treatment prior to disinfection . Ozone is generally effective for aqueous waste streams
with less then 1 percent organic content. Both processes are costly and require higher levels of
maintenance and operator skill. Wastewater with high concentrations or iron, calcium, turbidity,
and phenols may not be appropriate for UV disinfection. The effectiveness of UV disinfection is
greatly hindered by high levels of suspended solids.

Vermicomposting
Composting is the controlled decomposition of organic materials and involves both physical and
chemical processes (see Composting—Aerobic Treatment of Solids). During decomposition,
organic materials are broken down through the activities of various invertebrates that naturally
appear in compost, such as  mites, millipedes, beetles, sowbugs, earwigs,  earthworms, slugs, and

                                         8-117

-------
snails. Vermicomposting is accomplished by adding worms to enhance the decomposition
process.

Vennicomposting uses "redworms" (Eiseniafoetida), which perform best at temperatures
between 50 and 70 °F. Bones, meats, fish, or oily fats should not be added to a worm compost
box because of odors and rodent problems they could create. Successful operation requires a
great amount of maintenance because the worms are highly sensitive to alterations in oxygen
levels, temperature, moisture, pH, nutrients, and feed composition and volume. Heavy metals are
not treated by any means of composting and can be toxic to the microorganisms and invertebrate
population.

Farm-scale systems for vermicomposting have been developed. They tend to be simple systems
using conventional, material-handling equipment. Labor and equipment are required to add
material to the bed, remove composted material, separate the compost from the worms by
screening, and process the compost and worms for their respective markets (the compost as a
protein additive to animal feed, the worms as fish bait). Flies are a potential problem since this
process occurs at a lower temperature than the general composting process. Pathogen destruction
and drying are also reduced. A drying or heating step may be required to produce the desired
compost.

Chemical Amendments
Chemical treatments have been applied to facility wastewater, animal waste, or directly to soils.
A number of chemical amendments have been evaluated, mainly metal salts or by-products
containing Al, Fe, or Ca, similar to methods used to remove P in municipal wastewater
treatment. The P fixation capacity of soils is positively correlated with the Al content; Al and
orthophosphate ions interact strongly to form either stable surface complexes or insoluble Al
phosphate minerals (Moore and Miller 1994). Precipitation reactions with Fe and Ca form
insoluble iron and calcium phosphates. Moore and Miller (1994) conducted laboratory studies of
100 different treatments with various Al, Fe, and Ca compounds at different rates and found that
many of these compounds drastically reduced soluble P levels in poultry litter.

Amendments reported in the literature, mostly from laboratory or plot studies, include:

   •  Water treatment residuals (WTR). WTR, also known as alum sludge or alum
      hydrosolids (HS), are wastes generated from drinking water pretreatment. Peters and
      Basta (1996) added HS to soils previously treated with poultry litter and reported 50-60
      percent reductions in Mehlich-in P.  Haustein et al. (2000) found that high rates of both
      WTR and HiClay Alumina (HCA) applied directly to test plots decreased Mehlich-IH soil
      test P levels due to the increased  levels of soil Al.

   •  Ferric Chloride (FeCl3). Ferric  Chloride additions to poultry litter decreased P solubility
      at lower rates of about 20-50 g Fe/kg litter, but increased solubility at higher rates (Moore
      and Miller 1994). Barrow et al. (1997) reported that adding high levels of ferric chloride
                                         8-118

-------
       to dairy wastewater improved sedimentation of P by almost 50 percent.  Sherman et al.
       (2000) reported significant P removal from dairy flushwater using ferric chloride.

   •   Coal combustion byproducts.  Stout et al. (1998) reported that addition of fluidized bed
       combustion flyash (FBC) and flue gas desulfurization product (FGD) to soils significantly
       reduced Mehlich-IH P (45 percent), Bray-I P (50 percent), and water extractable P (72
       percent) due to converting readily desorbable soil P to less soluble Ca-, A1-, or Fe-bound
       forms. Dao (1999) observed that application of Class C fly ash to cattle manure reduced
       water-extractable P by 85-93 percent and Mehlich-HI P concentrations by up to 98
       percent. FBC and FGD additions reduced water soluble inorganic P in by fresh dairy and
       swine manure by 50-80 percent (Toth-et al. 2001a). Dou and Ferguson (2002) reported
       water soluble P reductions of 23-59 percent in swine and dairy manure treated with FBC
       and FGD.  It should be noted that these byproducts can contain significant concentrations
       of heavy metals that may be toxic to plants and the loadings of these elements must be
       considered in the use of combustion byproducts.

   •   Zeolite. Lefcourt and Meisinger (2001) reported that addition of zeolite (primarily Si,
       AL, Na, and K oxides) to dairy slurry reduced soluble P content by over 50 percent.

   •   Polyacrylamide (PAM). PAM has been used to reduce sediment, nutrients, and
       pesticides in furrow-irrigated agriculture. In lab and field studies, PAM alone or in
       combination with Al and Ca reduced PO4 by 47-64 percent in soil column leachate when
       manure was applied and by about 50 percent in water flowing over surface-applied cattle
       manure (Entry and Sojka 2000).

   •   Limestone Dust. Barrington and Gelinas (2002) reported precipitating about 93 percent
       of total P in swine manure into a sludge by the addition of 2 percent fine limestone dust.

   •   Wollastonite. Application of wollastonite (alkaline calcium and ferrous silicates) to soils
       has been proposed as a means to reduce P solubility in hydrologically sensitive areas
       (Willett et al. 1999).  However, no experimental data have been reported.

By far, the most widely proposed and most thoroughly evaluated manure amendment is
aluminum sulfate (A12(SO4)3), commonly called alum.

Alum Treatment

Although alum has been used for P precipitation in wastewater treatment for several decades, the
use of alum additions to animal waste has been studied extensively only since the early 1990s.
Applications have ranged from pretreatment of agricultural wastewaters, manure treatment, and
soil amendment.  While the majority of the studies have focused on effects on P solubility and
runoff, significant effects on nitrogen volatilization and runoff of metals have also been
documented.                          :
                                         8-119

-------
Alum treatment for P control. Alum is thought to reduce soluble P through two mechanisms,
formation of relatively insoluble aluminum phosphate compounds:
                        + 2H3PO4 4 2A1PO4 + 6H+ + 3SO42-+ 14H2O

or sorption of P by amorphous aluminum hydroxides:

       AL(OH)3 + H3P04 ->  AL(OH)3-H3P04

Over time, amorphous aluminum phosphate could be transformed to crystalline minerals such as
variscite or wavellite, which are stable under acid conditions (Moore et al. 1998).

Much of the work on alum treatment has been done on poultry litter. Poultry litter is a particular
problem because most P in litter occurs in the soluble form and intensive poultry production
often occurs with a limited land base for waste application.  Moore and Miller (1994) conducted
early laboratory studies of alum additions to poultry litter and reported that alum additions
decreased water soluble P from 2,000 to about 1 mg P/kg and concluded that treating litter prior
to field application could significantly reduce soluble P runoff. In another study, the soluble P
content of poultry litter amended with alum was reduced by up to 94 percent, from 2022 mg/kg
to 1 1 1  mg/kg (Moore et al. 1 995).

Shreve et al. ( 1 995) evaluated the effects of alum treatment of poultry litter on runoff P and on
forage production. Amending poultry litter with alum resulted in an 87 percent reduction in
soluble P concentrations in runoff from plots compared with untreated litter in the first runoff
event after application, and a 63 percent reduction for the second runoff event.  Runoff soluble P
load in the first runoff event was reduced 86 percent by alum addition.   Litter application
increased fescue yields, with yield having the greatest response to alum-amended litter, probably
due to  increased available N resulting from decreased NH4 volatilization from the alum-treated
litter. Based on these field trials, the authors concluded that alum treatment for poultry litter had
significant promise for use as an environmental and economic management practice in the
poultry industry.                    ''       .  '

A subsequent examination of long-term solubility of P in soils receiving treated poultry litter
reported that after addition of litter containing 200 mg alum/kg, soil soluble P decreased from
initial concentrations of 4.5-1 1.5 mg P/kg to about  1 mg P/kg after about 100 days over a wide
pH range and remained low through nearly 300 days (Shreve et al. 1996).

Moore et al. (1997) determined the effect of alum treatment of poultry litter on phosphorus
runoff from field-scale watersheds. Soluble reactive P concentrations in runoff averaged 1.05
and 3.23 mg P/L for the alum-treated and untreated litter, respectively; alum reduced soluble P
runoff by 67 percent during the first year after application. Total P concentrations responded
similarly (average 1 .49 and 4.23 mg P/L for alum-treated and untreated litter, respectively).
Soluble P concentrations averaged 74 percent lower from alum-treated litter runoff during the
                                         8-120

-------
second year after application. Overall, soluble reactive P concentrations were decreased 70
percent with alum.

Moore et al. (1997) also assessed agronomic rates of alum-treated poultry litter.  The authors
observed that application of normal poultry litter resulted in dramatic increases in water soluble P
in soils, whereas application of alum-treated litter did not. Data showed that P bound by alum
does not re-solubilize with time, indicating that litter application rates can be based on N, rather
than P, if alum-treated litter is used, without risk of increasing soil test P levels.  The study also
found that the pH of soils fertilized with alum-treated litter was slightly higher than unfertilized
soils, indicating that the use of alum in litter will not result in soil acidification.

.Pre-treatment of poultry litter with alum significantly affects soil P as well as runoff.  After three
years of treating grass plots with alum-amended litter, no significant differences in soil water
soluble P were observed when compared to the unfertilized control (Self-Davis et al. 1998,
Moore et al. 2000). Water-soluble P levels in plots receiving untreated litter, however, increased
each year. Alum-amended litter plots had significantly lower Mehlich-ffl P values compared to
equivalently-managed untreated litter plots after two years of litter applications.

In an evaluation of treatment to fields already excessively high in soil test P, Haustein et al.
(2000) applied water treatment residuals (WTR, composed of coagulated alum mixed with sand,
silt, bacteria, and other compounds removed from raw water in the water treatment process) to
grassed plots high in P. High rates of WRT (9-18 Mg/ha) decreased Mehlich-IH soil test P levels
44-50 percent due to increased soil Al levels.  Dissolved P in runoff from treated plots were less
than or equal to levels in runoff from the control (no litter) plot.

A recent on-farm evaluation of alum as a poultry litter amendment showed that a poultry litter
alum-treatment BMP can be effectively implemented under a wide range of real-world conditions
(Sims and Luka-McCafferty 2002). Alum was applied over a 16-month period to 97 poultry
houses on working poultry farms on the Delmarva peninsula, with 97 other houses serving as
controls. Alum decreased water soluble P concentrations in litter by about 70 percent, from an
average of 1475 mg P/kg in untreated litter to an average 405 mg P/kg in alum treated litter.

While the effects of alum treatment on P in other animal wastes have received considerably less
evaluation, results seem to be similar to those observed with poultry litter. Alum addition to
stockpiled and composted cattle waste reduced water-extractable P in the waste by 85-93 percent
(Dao 1999). Sherman et al. (2000) demonstrated removals of 11-17 mg P/ mmol Al4"3 added to
flush waters containing 1 percent dairy manure solids. Alum has been shown to be very effective
in reducing soluble P in dairy manure (Lefpourt and Meisinger 2000). Even a 0.4 percent
addition rate reduced soluble P about 75 percent compared to the control; a 6.25 percent addition
reduced soluble P by about 97 percent. Toth et al. (200 Ib) reported that alum addition
significantly reduced soluble P in dairy manure (by 36-99 percent), and, to a lesser extent, hi
swine manure (7-80 percent). Addition of alum at 0.5 percent by volume to a swine waste
settling basin improved P removal from the liquid fraction to 75 percent, compared to 38 percent
without alum (Worley and Das 2000).

                                          8-121

-------
Addition of alum to horse bedding prior to application to grass plots decreased runoff soluble P
concentrations by 97 percent, which was less than the mean soluble P concentration in runoff
from control plots (Bushee et al. 1998). Alum addition to horse manure decreased P
concentrations by >50 percent in plot runoff; runoff P concentrations from alum-treated
application did not differ significantly from runoff from non-manured plots (Edwards et al.
1999).

Alum treatment effects on nitrogen. Ammonia (NH3) volatilization from poultry litter results in
accumulation of atmospheric NH3 in the poultry house, which is detrimental to human and bird
health and reduces poultry productivity.  Ammonia loss from litter and other animal waste also
reduces the N content of the manure and can contribute to both acid deposition and
eutrophication (Kithome et al. 1999).

Numerous studies have confirmed that addition of alum to poultry litter can reduce NH3
volatilization up to 99 percent (e.g., Moore et al. 1995,1998, and 2000). Alum reduces NH3
losses because the acid generated hi the hydrolysis of alum reduces litter pH; the H+ produced in
this reaction will react with NH3 to form non-gaseous NH4+, which can react with sulfate ions to
form ammonium sulfate, a water-soluble fertilizer.

Moore et al. (1995) documented 36-99 percent reductions in NH3 volatilization with alum
application to poultry litter, noting that the preservation of N in the litter added to its fertilizer
value.  The authors attributed a lower poultry mortality rate hi alum-treated litter due to
decreased levels of atmospheric NH3 in the house.  Shreve et al. (1995) observed a higher forage
yield with alum-treated litter compared to untreated litter, an effect they attributed to unproved N
content due to reduced NH3 loss.

Moore et al. (1999,2000) reported results of field trials where alum was applied to broiler litter.
Alum applications lowered litter pH significantly during the entire growout period. Reductions
in litter pH decreased NH3 volatilization and resulted hi significant reductions hi atmospheric
NH3 in the alum-treated houses.  Alum applications reduced NH3 fluxes from litter by 97 percent
for the first four weeks of the growout and by 75 percent for the full 6-week period. Additional
benefits of the reduction of NH3 loss included unproved growth of broilers, improved feed
conversion, lower mortality, and lower energy costs for ventilating and heating.

Addition of alum to poultry litter during composting has been shown to be .effective hi
conserving nitrogen. Addition of 20 percent alum to  poultry litter resulted in a 26 percent
reduction in NH3 loss (Kithome et al. 1999), resulting in a final compost significantly higher in
total N and NH/ compared to untreated compost.

In farm-scale evaluations of alum treatment, Sims and Luka-McCafferty (2002) reported that
litters from alum-treated poultry houses had higher total N, NH4-N concentrations and therefore a
higher fertilizer value.
                                         8-122

-------
Again, relatively little work has been reported on alum amendment to other animal wastes for the
reduction of ammonia volatilization. Lefcourt and Meisinger (2000) reported that the addition of
2.5 percent alum to dairy slurry reduced ammonia emissions by about 60 percent. In a laboratory
test of potential amendments to reduce ammonia emissions from beef cattle, feedlots, Shi et al.
(2001) reported that alum application reduced NH3 volatilization by up to 98 percent.

Alum treatment effects on metals. Poultry litter often contains significant concentrations of
heavy metals such as As, Co, Cu, Mn, Se, and Zn.  Trace metals are added to feed  to prevent
disease and improve feed conversion; most of the metals added pass directly through the bird,
which leads to elevated metal levels in the manure.  Research has indicated that the potential
exists for nonpoint source metal pollution from fields receiving poultry litter (Moore et al. 1998).
Moore et al. (1997 and 1998) conducted plot studies to determine if alum treatment reduces
metal runoff and uptake by plants from poultry litter; the authors present extensive data on alum
effects on copper, zinc, arsenic, aluminum, selenium, and other elements.  Concentrations and
loads of water-soluble metals (Al, As, Ca, Cu, Fe, K, Mg, Na, and Zn) increased with increasing
litter application rates, regardless of litter type. The metal of greatest concern was copper, which
was found in high concentrations in runoff from untreated litter. Alum treatment significantly
reduced concentrations of As, Cu, Fe, and Zn compared to untreated litter, but increased Ca and
Mg levels.  Reductions in trace metal runoff due to alum were thought to be related to reduction
in concentrations of soluble organic carbon (SOC) due to alum treatment.  The authors concluded
that metal runoff from alum-treated litter is less likely to cause environmental harm than from
untreated litter because the water quality impacts of Ca and Mg are far less than those caused by
Cu, As, and Zn. The study also showed that aluminum runoff and uptake by plants was not
affected by alum treatment.

Little work on the effects of alum on metals associated with other animal waste has been reported
in the literature. Edwards et al. (1999) studied the runoff of metals from alum-treated horse
manure and found few detectable effects on metals in runoff from manured plots.  Runoff
concentrations of Al, S, Ca, and K increased in response to alum.

Summary:  Alum Treatment

Benefits of alum treatment. Alum treatment of animal waste, particularly poultry litter, has
important beneficial effects as a P management BMP.  These direct effects include:

    •   Reduced P solubility in waste. Reductions in water-soluble P content of poultry litter
       and other animal wastes of 70 to >90 percent have been cited (e.g., Moore and Miller
       1994, Moore et al. 1995, Lefcourt and Meisinger 2000, Sims and Luka-McCafferty 2002).
       This effect has been documented from the laboratory to the farm scale.
                                         8-123

-------
    •   Reduced soil P levels. Use of alum-treated poultry litter significantly reduces   soil P.
       For example, after three years of treating grass plots with alum-amended litter, no
       significant differences in soil water soluble P were observed when compared to the
       unfertilized control (Self-Davis et al. 1998, Moore et al. 2000). Alum-amended litter
       plots had significantly lower Mehlich-IQ P values compared to equivalently-managed
       untreated litter plots after two years of litter applications.  Use of treated litter can also
       reduce soil test P on soils already excessively high in soil test P (Haustein et al. 2000).

    •   Reduced runoff P. Use of alum-treated animal waste can dramatically reduce P runoff
       losses compared to untreated waste. Reductions of about 60-90 percent in soluble P
       concentrations in runoff have been widely reported from alum-treated poultry litter and
       other animal wastes (Shreve et al. 1995, Moore et al. 1997, Bushee et al 1998). In several
       reported cases, P concentrations in runoff from land-applied alum-treated waste were not
       significantly different from P levels in runoff from un-manured land (Self-Davis et al.
       1998, Edwards et al 1999, Moore et al. 2000).

    •   Reduced ammonia loss. Numerous studies have shown that addition of alum to poultry
       litter can reduce NH3 volatilization up to 99 percent (e.g., Moore et a!. 1995, 1998, and
       2000). Reduction in ammonia loss from poultry litter not only reduces airborne ammonia
       inside the poultry house but improves the fertilizer value of the litter by conserving N.
       Higher N content in alum-treated litter has been widely documented (Shreve et al.  1995,
       Kitihome et al. 1999, Sims and Luka-McCafferty 2002).

    •   Reduced runoff losses of metals. Alum amendment decreases litter pH and the
       solubility of metals such as As, Cu, and Zn, which should reduce the movement of these
       soluble forms into surface or ground waters (Sims and Luka-McCafferty 2002).  Runoff
       losses of some trace metals that pose significant environmental risk (e.g., copper) have
       been shown to be lower from land application of alum-treated poultry litter, compared to
       conventional litter (Moore et al. 1997  and 1998).

These documented effects of alum treatment have led to the conclusion that alum treatment
offers great promise as an animal waste management BMP, particularly for poultry production
(Moore et al. 1999, Sims and Luka-McCafferty 2002). Long-term studies of alum use have
reported few negative impacts. The aluminum-phosphate minerals formed when alum is added
to manure are believed to be stable for geologic time periods (Moore at al. 1999). Soil
acidfication from alum use does not appear to be a problem, as increases in soil pH have been
reported with alum-treated litter (Moore et al. 1997, 2000).

At typical rates of addition, alum treatment would not be expected to raise soil Al content
significantly for several centuries (Moore et al. 2000). Even then, alum additions would not
generally increase Al concentrations in runoff because soil pH does not typically become low
enough for Al to be soluble.  Thus, increases in Al in runoff from application of alum-amended
waste would not be expected (Moore et al. 1999,2000). In one reported case, however, elevated
                                         8-124

-------
Al levels were found in runoff from plots that received high-aluminum water treatment residuals
in direct application; this was attributed to washing of freshly applied material from the soil or
plant surface (Haustein et al. 2000).

Moore et al (1997) reported no significant differences in aluminum levels in plants due to
application of alum treated litter. This is expected because alum-treated litter contains only trace
quantities of soluble Al; most Al in treated litter and soil occurs as insoluble minerals.

Treatment of poultry litter with alum has a number of potential indirect benefits, including:

    •>  Improved fertiliser value. Reduction of N losses and decreases in soluble.? changes the
       N:P ratio of the litter. If alum-treated litter is used, it may be possible to apply litter based
       on N needs of a crop, rather than P, without risk of increasing soil P levels. Improved
       fertilizer value could also increase the economic feasibility of animal waste export or
       transport to facilitate nutrient trading.

    «  Odor control. Reduction of ammonia volatilization from animal waste, particularly
       poultry litter, may offer significant benefits in reduction of odor problems with animal
       production.

    •  Health and productivity.  The reduction of ammonia production in poultry litter by alum
       has many important benefits to human and bird health and to productivity. Reduced
       ammonia levels in poultry houses will reduce exposure of farm workers to harmful levels
       of ammonia. Reductions in flock mortality, improved weight gains and feed conversion,
       and reduction in incidence of disease have all been documented in response to alum
       treatment of litter in poultry houses (Moore et al. 1999). Reduction in energy costs due to
       decreases in need for ventilation and heating have also been documented in response to
       reduced ammonia levels.

    •  Solids separation. The ability of alum to precipitate P in liquid dairy or swine waste
       may facilitate solids separation for composting and manure transportation.

    •  Recycling of byproducts.  Use of Al-based materials like alum hydrosolids, water
       treatment residue, or flyash are used for waste treatment may replace expensive landfill
       disposal of these byproducts.

In addition to the broad environmental benefits, alum use seems likely to be a cost-effective
practice to poultry growers and integrators. Moore et al. (1999) estimated a benefitcost ratio of
1.96 for alum treatment of poultry litter, accounting for the cost of the alum treatment and the
savings associated with improved productivity, lower mortality, and lower energy costs.
                                         8-125

-------
• Cautions.  While the benefits of alum treatment of animal waste have been clearly documented
 and few serious environmental risks have been identified, a few qualifications and concerns
 remain that must be considered.

    •   The reported reduction in P loss in runoff due to alum treatment generally assumes that
        erosion from source areas is minimized.  Erosion and soil loss would transport
        particulate P in runoff, which may pose a long-term threat to water quality despite
        reductions in solubility due to alum treatment.

    •   Alum amendment of animal waste must be done in the context of a sound nutrient
        management program. Use of alum treatment as a BMP would be of little value if
        nutrients continue to be applied in excess of crop requirements:

    •   The effectiveness of alum may be lower than reported for poultry litter in other wastes if
        more of the P is already in a stable (nonsoluble) form, e.g., biosolids.

    •   Alum treatment is not an unlimited solution to the problem of excessive P loading from
        animal waste. For example, even when high P soils were treated to reduce soil test P by
        about 50 percent, the level of plant-available P remaining in the soil was twice that
        required for maximum crop production (Haustein et al. 2000).

    •   Because alum treatment conserves N in animal waste, there may be an increased potential
        for N loss in runoff or leachingi

    •   Whereas alum-treated animal wastes are neutral or alkaline, untreated aluminum sulfate
        may result in undesirable soil acidification and lead to release of toxic levels of dissolved
        Al (Peters and Basta 1996).

    •   Alum dose must be carefully controlled; excess alum addition can increase soluble Al in
        manure slurries (Lefcourt and Meisinger 2001); excessive application of some alum could
        immobilize enough P so that crop yields suffer from induced P deficiency.

    •   Although most studies have indicated that P compounds formed with Al are quite stable,
        some authors have suggested that the effects of changing redox potential on long-term.
        stability of these compounds should be evaluated (Shreve et al.  1996).

    •   Because Al solubility is controlled by pH, soil pH may need to be monitored hi areas
        vulnerable to acid deposition or if alum-treated manure applications are discontinued and
        replaced by inorganic N fertilizers, which tend to reduce soil pH.

    •   While alum will decrease the solubility of elements such as P, As, Cu, and Zn, it will
        have little or no effect on the total quantity of these elements in the waste. Research is
        needed on long term stability, transformations, and potential mobility of P and trace
                                          8-126

-------
       metals in soils amended with alum-treated animal waste (Sims and Luka-McCafferty
       2002).

Chemical Treatment for Pathogen Reduction

Treatment of manure with lime (calcium hydroxide, calcium oxide) has been proposed as a
means to reduce pathogens in animal waste. There is scant information in the scientific literature
directly concerning animal waste treatment; most of the justification for this proposed treatment
comes from the use of lime materials to reduce pathogens and odors in biosolids.  It is important
to note that the lime discussed here is not the same material as the limestone (calcium carbonate,
"agricultural lime") that is used to raise the pH of agricultural soils.

Biosolids treatment

Federal regulations classify biosolids into two classes, based on pathogen content; these classes
specify the degree of treatment the biosolids must receive before land application or disposal. To
meet Class A requirements (very low pathogen concentrations), biosolids must be treated by
thermal drying ( 80 °C, dried to >90 percent solids), composting (55 °C for three days, aerobic
conditions), or lime stabilization. Lime stabilization to meet Class A requirements requires that
pH be raised to >12 for 2 hours and be maintained at pH 11.5 for 22 hours, combined with high
temperatures (70 °C for 30 minutes). Lime stabilizaton involves addition of dry quicklime (CaO)
to raise the pH and temperature of the biosolids.

In a comparison of stabilization techniques, Rothberg, Bamburini & Winsor, Inc. (undated), cited
a number of advantages of lime stabilization, including pathogen reduction to Class A levels, low
capital cost, dilution of metals concentrations, fixing of metals under alkaline conditions, and
value of end product as a soil liming agent. Disadvantages cited include high annual  cost, odor
problems for ammonia offgas, and product applicability to alkaline soils. Currently, almost 20
percent of biosolids in the U.S. are treated  with lime.

Lime  inhibits pathogens by controlling environmental conditions required for bacterial growth.
At pH >12, cell membranes of microorganisms are destroyed; hydrated lime (calcium hydroxide)
is capable of creating pH levels as high as  12.4 (NLA 2001). Furthermore, use of quicklime
(calcium oxide) involves an exothermic reaction with water, potentially raising temperatures to
levels inimical to microorganisms.

Lime  as an agricultural disinfectant

Lime is reportedly used in Europe as a disinfectant for barn and milking center floors, for disease
control in carcass disposal, and for disinfection of animal wastes (NLA 2001).

Cooper Hatchery, Inc. (1987) reported that total bacteria counts, molds, and coliform bacteria
were decreased in turkey litter after three days of fermentation following addition of hydrated
lime.

                                         8-127

-------
Shand and Associates (1998) conducted a project to test the effectiveness of a lime pasteurization
process to partially dehydrate and stabilize organic wastes in the Fraser River Basin (Canada).
Although no pathogen data were reported, it is interesting to note that addition of lime
accelerated ammonia emissions from animal wastes (probably due to elevated pH in the waste).
This ammonia offgassing has been cited as a possible agent of disinfection in alkaline treatment
of waste (Logan 1999).

Hogan et al. (1999) reported that hydrated lime effectively inhibited bacteria in recycled dairy
manure bedding in 1 day. Lime was effective on reducing gram-negative bacteria, colifonn
counts, Klebsiella spp., and streptococci.

Logan (1999) reported mixed results of pathogen reductions in animal waste using a proprietary
alkaline stabilization process; the process apparently did not use lime. Several different waste
types were tested in a processing plant where alkaline materials (unspecified coal-burning
byproducts) were mixed with animal waste.  The process achieved reductions in fecal coliform of
one to three orders of magnitude in digested dairy manure; however fecal coliform counts were
still as high as 103— 104/g after treatment.  Alkaline treatment was effective in treating undigested
manures, reducing fecal coliform counts from 106/g to lOVg in dairy manure and from 104/g to
lO'/g in beef manure. However, fecal streptococci, total aerobic bacteria, and gram-negative
organisms were relatively unaffected by the treatment. Treatment of turkey manure was highly
effective, reducing fecal coliform counts  from  105/g to <102/g. The applicability of this
proprietary, facility-based process to the farm scale was not addressed.

Given the lack of specific data on the ability of lime addition to reduce pathogen counts in animal
waste, it is worth noting that environmental factors such as temperature, pH, moisture, nutrient
supply, and solar radiation have significant effects on bacteria survival outside their host (Moore
et al. 1988). Waste storage alone results in a significant reduction of bacteria numbers compared
to those in fresh waste; reduction of 2-3 orders of magnitude in fecal coliform are typical with
storage for 2-6 months (Patni et al. 1985, Moore et al. 1988).  Microorganisms in land-applied
waste are subject to mortality from high temperatures, dessication, UV light, and other stresses
(Moore etal. 1988).

Summary: Lime Treatment

Given the lack of specific, objective literature on the subject, it is difficult to recommend the use
of lime to reduce pathogens in animal waste at this time. More research is needed that
specifically focuses on the effectiveness of lime treatment on reduction of indicator and
pathogenic microorganisms in animal waste and on the practical application of lime addition at
the farm scale as a practical BMP.  There is insufficient data on these subjects at present.

Possible benefits of lime treatment:

    •   Proven effective and widespread use to achieve Class A biosolids standards
                                          8-128

-------
    •   Documented reductions of some microorganisms in some animal wastes

    •   Fixation of metals and phosphorus

        Odor control of hydrogen sulfide (NLA 2001)

    •   Potential value of end product in soil pH management

Major unknowns or possible disadvantages

        Little solid performance data specific to animal waste

    •   Possible ineffectiveness of alkaline treatment on some organism groups

    «   Variation in effectiveness on different waste types
        Acceleration of NH3 generation reduces N content of final product and may pose
        environmental or health risks
    •   Unknown scalability to cost-effective farm management

Gasification
The fuel produced by gasification is viewed today as an alternative to conventional fuel. A
gasification system consists of a gasifier unit, purification system, and energy converters (burners
or internal combustion engines). The  gasification process thermochemically converts biomass
materials (e.g., wood, crop residues, solid waste, animal waste, sewage, food processing waste)
into a producer gas containing carbon dioxide, hydrogen, methane and some other inert gases.
Mixed with air, the producer gas can be used in gasoline and diesel engines with little
modification.

Gasification is a complex process best described in stages: drying, pyrolysis, oxidation, and
reduction. Biomass fuels have moisture contents ranging from 5 to 35 percent. For efficient
operation of a gasification system, the biomass moisture content must be reduced to less than 1
percent. The second stage of the process, pyrolysis, involves the thermal decomposition of the
dried biomass fuels in the absence of oxygen. The next stage, oxidation, produces carbon dioxide
and steam. The last stage, reduction, produces methane and residual ash and unburned carbon
(char).

Gasification is one of the cleanest, most efficient combustion methods known. It eliminates
dependence on fossil fuel and reduces waste dumping. It extracts many substances, such as sulfur
and heavy metals, in elemental form. Factors limiting the use of this process include stringent
feed size and material-handling requirements. Process efficiency is strongly influenced by the
physical properties of the biomass (surface, size, and shape), as well as by moisture content,
volatile matter, and carbon content (see Pyrolysis below for additional limitations).

Gasification of animal wastes is still in the developmental stages. It is currently considered a
better alternative to incineration for its lower NOX emissions. However, this treatment option is
limited to the AFOs that have a market in which to sell the excess power or heat generated by the

                                         8-129

-------
 gasification unit. Without this advantage, such facilities would be inclined to resort to less
 expensive waste treatment technologies.

 Pyrolysis
 Pyrolysis is a major part of the gasification process described above. It is formally defined as
 chemical decomposition induced in organic material by heat in the absence of oxygen. Pyrolysis
 transforms organic materials into gaseous components, small quantities of liquid, and a solid
 residue (coke or char) containing fixed carbon and ash. Pyrolysis of organic materials produces
 combustible gases including carbon monoxide, hydrogen and methane, and other hydrocarbons.
 If the off-gases are cooled, liquids condense, producing an oil/tar residue and contaminated
 water.                              :

 Target contaminant groups for pyrolysis are volatile organic compounds and pesticides. The
 process is applicable for the separation of organics from refinery wastes, coal tar wastes,
 wood-treating wastes, creosote-contaminated soils, hydrocarbon-contaminated soils, mixed
 (radioactive and hazardous) wastes, synthetic rubber processing  wastes, and paint waste.

 Economic factors have limited the applicability of pyrolysis to the animal waste management
 field. There are also a number of handling factors that limit applicability. Pyrolysis involves
 specific feed size and material-handling requirements. The technology requires that the biomass
 be dried to low moisture content (<1 percent). Slight inconsistencies in moisture content and
 biomass properties (both physical and chemical) greatly increase operational costs. These
 considerations make it difficult to apply this technology to animal waste. Pyrolysis is not
 effective in either destroying or physically separating inorganics from the contaminated medium.
 Volatile metals may be removed as a result of the higher temperatures associated with the
 process but are not destroyed. Biomass containing heavy metals  may require stabilization.

 Pyrolysis is still an emerging technology. Although the basic concepts of the process have been
 validated, the performance data for this technology have not been validated according to methods
 approved by EPA and adhering to EPA quality assurance/quality control standards. Site
 characterization and treatability studies are essential for further refining and screening of this
 process. Pyrolysis has been considered for animal waste treatment as part of the gasification
 technology, but is currently not in high demand because of operation and maintenance costs.

 Freeze Drying and Freeze Crystallization or Snowmaking
 Freeze drying involves freezing the waste, which causes the solids and liquids to separate. When
 the frozen sludge melts, the liquid is easily drained away for reprocessing. The remaining sludge
 is high hi solids, completely stabilized, and capable of being spread on land with conventional
 agricultural equipment. The process has proven to lower waste management costs by reducing
waste volume.

Freeze crystallization, or snowmaking, is a treatment process in which wastewater is turned to
snow, thus readily stripping volatile gases from water. Other contaminants are precipitated from

                                          8-130

-------
the water in a process called atomizing freeze-crystallization. Meltwaters may have a nutrient
reduction of up to 60 percent, with almost 100 percent of pathogens killed (MacAlpine, 1997).

Both processes are scarcely utilized due to applicability limitations. These processes are suited
only to colder climates. The freeze-drying process requires significant storage capacity, and
facilities must be capable of storing up to 1 year's production of sludge on site.


Practice: Photosynthetic Purification
A proprietary new animal waste treatment technology, Photosynthetic Purification, uses the
nutrients in concentrated animal waste to grow algae and photosynthetic bacteria that yield a .
harvestable crop (Biotechna, 1998). Photosynthetic Purification technology is reported to treat
high-strength, high-moisture waste streams with minimal loss of manure nutrients and generate a
clean effluent that can be recycled or safely discharged. The resultant biomass can be used as a
high protein animal feed supplement Nutritional value of the biomass is at least equivalent to
that of soy protein. Along with producing a valuable biomass, the main advantage of this
technology is that it reduces the potential environmental impact of land application or discharge
of animal waste in regions with CAFOs. A possible disadvantage is that animal waste will need
to be transported to a processing facility.

The technology has been under development by Biotechna Environmental (2000) Corporation
(BE2000) since the early 1990s. Successful tests are reported to have been carried out at pilot
scale in Ireland (1994-95), and Connecticut (1998). A laboratory-scale system and a full-scale
commercial demonstration plant are planned. Photosynthetic Purification produces high-protein
feed supplements  and a range of other value added products for the feed and nonfood markets.
Because of proprietary information and patent pending status, little information on this
technology is currently available to the public.

Deep Stacking of Poultry Litter
Research dating back to the 1960s (Bhattacharya and Fontenot, 1965) has shown that poultry
litter has significant nutritive value as a feedstuff for ruminants. Subsequently, concerns about
the potential public health impacts of using poultry litter as well as other animal manures as
feedstuffs emerged. The presence and impact of pathogens, such as species of Salmonella and
Clostridium, in manures being used as feedstuffs was one of these concerns. There have been a
number of reports from foreign countries of botulism in animals fed diets containing animal
wastes (Fontenot et al.,  1996).

For poultry litter, the response to this concern about potential pathogen transmission was the
development of the practice known as deep or dry stacking (McCaskey, 1995). It consists simply
of piling litter in a conical pile or stack after it is removed from a poultry house and is  raised in
temperature to a maximum of 140 °F (60 °C) by microbes. Litter with a moisture content
exceeding 25  percent may reach temperatures above 140 °F if not covered to exclude air.
                                          8-131

-------
 McCaskey et al. (1990) have shown that higher temperatures produce a material with a "charred"
 appearance and reduced nutritive value. They reported that excessively heated litter has about 50
 percent of the dry matter digestibility of litter that has not been excessively heated. This estimate
 was based on the percentage of litter dry matter solubilized in rumen fluid after 48 hours. Also, it
 was observed that the amount of N bound to acid detergent fiber and considered not available
 approximately tripled in overheated litter.

 The practice of deep stacking poultry litter enhances its value as a feedstuff for ruminants by
 reducing concern about possible pathogen transmission. However, deep-stacked poultry litter
 cannot be considered pathogen free because the stacked litter is not mixed out of concern that
 reaeration will create the potential for excessive heating. Thus, outer regions of the deep stacked
 litter might not reach the temperatures necessary for pathogen destruction, hi reality, deep
 stacking is composting in which oxygen availability limits the temperature and the degree to
 which dry matter (VS) are destroyed.

 When deep stacking is done in a roofed structure such as a litter storage shed or in covered piles,
 the potential water quality impacts are essentially nil; however, deep stacking in uncovered piles
 creates the potential for leaching and runoff losses of nutrients, oxygen-demanding organics, and
 pathogens, as well as producing a feedstuff with reduced nutritive value. Because of the heat
 generated, some NH3.volatilization is unavoidable, but is probably no greater than the losses
 associated with land application. With proper management, odor is not a significant problem.

 The impact of deep stacking on land application for litter disposal is a direct function of the
 ability to market poultry litter as a feedstuff. If such a market exists, on-site land application
 requirements are reduced or become unnecessary; however, the impact on a  larger scale is less
 clear. Although the utilization of litter N by ruminants can be relatively high, much of the litter P
 consumed will probably be excreted. Thus, typical values for the P content of beef cattle manure
 might not be appropriate for developing nutrient management plans for beef operations that feed
 significant quantities of broiler litter. Also, total manure production by beef cattle fed poultry
 litter-amended rations may increase, depending on the dry matter digestibility and the ash content
 of the litter (Martin et al., 1983).

As with the temporary storage of solid poultry manure in a dedicated structure, fire due to
 spontaneous combustion is a risk associated with deep stacking of poultry litter. Thus, structure
 design to exclude precipitation and routine monitoring of litter temperature are important
operational factors.

Although reliable data regarding the extent of the use of deep stacking are unavailable, anecdotal
evidence indicates that the use of poultry litter as a feedstuff for beef cattle is fairly extensive in
regions with significant broiler or turkey, and beef cattle production. Thus, it appears reasonable
to assume that the use of deep stacking is also fairly extensive.
                                          8-132

-------
Practice: The Thermo Master™ process
Thermo Tech™ Technologies, Inc., is a Canadian corporation in the business of converting food
wastes into a high-energy and high-protein animal feed supplement, and converting municipal
wastewater treatment sludges into a fertilizer material. The company has constructed several
organic waste conversion facilities, known as "Thermo Master™ Plants," that employ the
company's proprietary microbial organic waste digestion technology. The technology is protected
by U.S. and Canadian patents with patent applications pending in several other countries.

The Thermo Master™ process was originally developed to create an animal feed supplement
from relatively high solids content food wastes such as fruit and vegetable processing wastes and
wastes of animal origin including meat, dairy, and fish processing wastes. Animal manures and
wastewater treatment sludges were also considered for conversion into a fertilizer material. The
process has been modified to enable processing of materials with a lower solids content.

In the Thermo Master™ process, autoheated aerobic digestion is operated at the relatively short
residence time of 30 hours to maximize single-cell protein production using the influent waste
material as substrate. The effluent from the digestion process is then dried and pelletized.

The Thermo Master™ process could, hi theory, be a viable method for poultry and swine carcass
disposal, hi addition to recovering nutrients for use as an animal feed supplement, the absence of
any pollutant discharges is an attractive characteristic of this process. Given that the process
operates at thermophilic temperatures, at least a two- to three-log 10 reduction in pathogen
densities should be realized (Martin, 1999). The process, however, has never been used for
animal carcass disposal.

As with rendering, the problems of preserving, collecting, and transporting carcasses could limit
use of this disposal alternative. A more significant limitation is the lack of any operating Thermo
Master™ plants in the United States. Only two plants are in operation as of April, 2000, and they
are both located in Canada near Toronto, Ontario. A third, located near Vancouver, British
Columbia, is being rebuilt following a fire. Even if new plants were to be constructed in the
United States, it is likely that they would be located in or near major metropolitan areas given the
nature of the primary sources of process feedstocks. This would exacerbate the problem of
carcass transportation.

8.2.3.2 Mortality Management
Improper disposal of dead animals at AFOs can result in ground water contamination and health
risks. Most mortality management is accomplished through rendering of the dead animals.
Rendering involves heating carcass material to extract proteins, fats, and other animal
components to be used for meat, bone, and meal. Beef and dairy operations handle mortality
management almost exclusively through rendering operations, hi most instances the rendering
operation will pick up the dead animals, resulting in no environmental impact on the operation.
                                         8-133

-------
 For this reason, the remainder of this section focuses on swine and poultry mortality
 management, and it will cover rendering, composting, and incineration.


 Mortality Management: Swine
 Large swine operations must dispose of significant numbers of dead pigs on a daily basis. For
 example, a 1,000 sow farrow-to-wean operation with an average of 22 piglets per litter and a
 prewean mortality rate of 12 percent will generate almost 16 tons of piglet carcasses per year,
 assuming an average weight of 6 pounds per carcass. Assuming an average sow weight of 425
 pounds and a sow mortality rate of 7 percent per year, the total carcass disposal requirement
 increases to over 30 tons per year.

 Improper disposal of swine carcasses can lead to surface or ground water contamination, or both,
 as well as noxious odors and the potential for disease transmission by scavengers and vermin.
 Historically, burial was the most common method of carcass disposal. Burial has been prohibited
 in many states, largely because of concerns regarding ground water contamination. The following
 subsections briefly describe and discuss the principal alternatives to burial for swine carcass
 disposal: composting, incineration, and rendering.


 Practice: Composting
 Description: Composting is the controlled decomposition or stabilization of organic matter
 (Gotaas, 1956). The process may be aerobic or anaerobic. If the composting mass is aerobic and
 suitably insulated, the energy released in the oxidation of organic carbon to carbon dioxide and
 water will produce a fairly rapid increase in the temperature of the composting mass. With
 suitable insulation, thermophilic temperature levels will be reached. The higher temperature
 increases the rate of microbial activity and results in quicker stabilization. Under anaerobic
 conditions, the rate of biological heat production is lower because fermentation generates less
 heat than oxidation, so the temperature increase in the composting mass is less rapid.
 Thermophilic temperature levels can still be attained with suitable insulation; however, the rate
 will be slower.       .

Application and Performance: Composting is a suitable method of carcass disposal for all swine
 operations. The compost produced can be spread on site if adequate land is available. Another
 recently cited disposal option for the compost is distribution or marketing as an organic fertilizer
 material or soil amendment. Thorough curing to preclude development of odor or vermin
problems, and screening to remove bones are necessary to make  marketing a viable option.
 Another requirement for composting as a method of swine carcass disposal is the availability of a
readily biodegradable source of organic carbon, such as sawdust, wood shavings, or straw.

When carcass composting is managed correctly, potential negative impacts on water and air
quality are essentially nonexistent, assuming proper disposal of the finished compost.
Mismanagement, however, can lead to  seepage from the composting mass. This seepage has high
                                         8-134

-------
concentrations of oxygen-demanding organics, N, and P; is a source of noxious odors; and
attracts vermin.

Advantages and Limitations: One of the advantages of swine carcass composting is the relatively
low capital cost of the necessary infrastructure. Depending on the volume of carcasses generated
daily, one or more of a series of two composting bins are required. These bins should be located
on a concrete pad in an open or partially enclosed shed-like structure. Critical to this capital cost
advantage is the availability of a skid-steer or tractor-mounted, front-end loader for handling
materials. Federal and, in some instances, state cost sharing has been used to encourage the
construction and use of swine mortality composting facilities.

A recent comparison of carcass composting and incineration for disposal of poultry mortalities
suggests that the lower capital cost of carcass composting is offset by higher labor costs
(Wineland et al., 1998). The development of more fuel-efficient incinerators has made
incineration more cost competitive in recent years.

While the temperatures that can be attained in a mass of composting carcasses (130 to 150 °F)
will result in significant reductions in pathogen densities, finished swine mortality compost
cannot be considered pathogen free. Therefore, appropriate biosecurity measures are necessary in
the handling and ultimate disposal of the finished compost. Collection of carcasses by Tenderers
presents a higher biosecurity risk, especially the risk of introducing disease from other
operations. In contrast, the ash from carcass incineration is sterile.

Carcass composting in the swine industry appears to be best suited for the disposal of prewean
and nursery mortalities because of the relatively small size of these carcasses. For larger animals
(sows, gilts, boars, and feeder pigs), at least partial carcass dismemberment, an unpleasant task,
is necessary.

Operational Factors: In the composting of swine mortalities, a single layer of carcasses or
carcass parts is placed on a layer of the carbon source and  finished compost or manure, followed
by another layer of the carbon source and finished compost, and then carcasses. The pattern is
repeated until a height of about 5 feet is reached.  The pile is capped with a carbon source.
Inadequate moisture will retard decomposition, whereas too much moisture will result in
anaerobic conditions and process failure.

A proper facility is critical to the success of composting swine carcasses. As noted above, one or
more of a series of two composting bins are required depending on the daily volume of carcasses
generated. To maximize the rate of carcass decomposition and also to ensure complete
decomposition of soft tissue, the composting mass should be transferred to a second bin after
about 2 weeks of decomposition. This transfer process results in both mixing and aeration of the
composting mass. Following an additional 2 weeks, the  compost should be ready for storage and
curing or ultimate disposal. While satisfactory decomposition can be realized without transfer
and mixing, the time required is significantly longer.
                                         8-135

-------
 Also critical to the success of composting swine carcasses is the initial combination of carcasses,
 a source of biodegradable carbon such as sawdust or chopped straw, a source of adapted
 microorganisms, and moisture. Although some cooperative extension publications recommend
 using manure as the source of an adapted microbial population, finished compost is equally
 suitable (Martin and Barczewski, 1996). The ratio, on a volume basis, of these ingredients should
 be 1 part carcasses, 1.5 parts of the carbon source, 0.5 to 0.75 part finished compost, and 0 to 0.5
 part water. The objective is to create an initial C:N ratio of 20:1 to 30:1.

 Demonstration Status: The first use of composting for animal carcass disposal occurred in the
 poultry industry during the 1980s (Murphy, 1988; Murphy and Handwerker, 1988).  Since that
 time, this method of carcass disposal has also been adopted by the swine industry. It was
 estimated that 10.5 percent of swine operations use composting for mortality disposal (USDA
 APHIS, 1995).


 Practice: Incineration
 Description: Incineration or cremation is the reduction of swine carcasses to ash by burning at a
 high temperature under controlled conditions using specially designed equipment. Incineration
 temperatures can be as high as 3,500 °F, depending on equipment design. Incinerators using
 .natural gas, propane, or No. 2 distillate fuel oil are available.
                                   i

 Application and Performance: Incineration of swine carcasses is applicable to all operations
 where the cost of the equipment require1 d can be justified by the volume of carcasses generated.

 The potential for surface or ground water contamination associated with incineration is minimal,
 provided that liquid fuel tanks are contained properly and residual ash is disposed of properly.
 The P, K, and other elements contained in the carcasses are concentrated in the ash.  Because of
 the high temperature of incineration, this ash is pathogen-free if cross-contamination with
 carcasses is avoided.                ;

 Odors and other air quality concerns led to a significant  decline in carcass incineration in the
 past. Newly designed equipment, however, incorporates secondary combustion of stack gases,
 essentially eliminating these problems. Yet the emission of low levels of some air pollutants is
 unavoidable, as with any combustion process. Improper operation of the incinerator (e.g.,
 reducing process temperature by overloading) can result in unacceptably high air pollutant
 emissions.                                                    '                ,

Advantages and Limitations: One of the more attractive aspects of incineration relative to other
 swine carcass disposal options, such as composting and  rendering, is the complete destruction of
 pathogens. Another advantage is the relatively small mass of residual material (ash) requiring
 some form of ultimate disposal, especially in comparison with composting. Moreover,
 incineration has a relatively low labor requirement.
                                         8-136

-------
The principal perceived limitation of incineration is cost. The initial investment required is
relatively nigh. A recent comparison of incineration and composting costs for poultry carcass
disposal, however, suggests that the former has become cost competitive with the latter because
of lower labor costs and improvements in incinerator fuel efficiency (Wineland et al., 1998).

Another limitation of incineration for swine carcass disposal is fixed capacity. This can be
problematic when disease or other factors such as heat stresses cause a sizable increase in the rate
of mortality.

Operational Factors: Because of the fixed capacity of incineration equipment, incineration of
swine carcasses must occur on a regular basis. Ideally, carcass incineration should occur at least
on a daily basis to minimize the potential for disease transmission. Routine maintenance of
incineration equipment is also important to ensure reliability and minimize emission of air
pollutants. An air pollutant emissions permit, a siting permit, or both, may be required for an
incinerator.

Demonstration Status: Incineration has been used in the swine industry as a method of carcass
disposal for many years. With recent technological advances in incinerator fuel efficiency and
odor control, a reversal in the shift away frpm incineration and to other carcass disposal options,
such as composting, may occur. It was estimated that 12.5 percent of swine operations use
incineration, described as burning, for mortality disposal (USDA APHIS, 1995).


Practice: Rendering
Description: Rendering is the process of separating animal fats and proteins, usually by cooking.
The recovered proteins are used almost exclusively as animal feedstuffs, while the recovered fats
are used both industrially and in animal feeds.

There are two principal methods of rendering (Ensminger and Olentine, 1978). The first and
older method uses steam under pressure in large closed tanks. A newer and more efficient
method is dry rendering, in which all of the material is cooked  hi its own fat by dry heat in open
steam-jacketed drums until the  moisture has been evaporated. One advantage of dry rendering is
the elimination of a separate step to evaporate the moisture in the material being rendered.
Cooking temperatures range from 240 to 290 °F. Rendering can be a batch or a continuous flow
process.

The two basic protein feedstuffs derived from rendering are meat meal and meat and bone meal.
The basis for this differentiation is P content (National Academy of Sciences, 1971). Meat meal
contains a maximum of 4.4 percent P on an as-fed basis. Meat  and bone meal contains a
minimum of 4.4 percent P.

Application and Performance:  Most of the animal fat and protein recovered by rendering is
derived from meat and poultry processing, but rendering can also be used to recover these
                                          8-137

-------
 products from swine carcasses. The ability to use rendering as a method of swine carcass disposal
 depends on the presence of a rendering facility servicing the area. Rendering plants are not
 widely distributed and are generally located near meatpacking and poultry processing plants. As
 the meatpacking and poultry processing industries have consolidated into fewer but larger
 operations, a similar pattern of consolidation in the rendering industry has also occurred. Because
 swine carcasses have minimal monetary value as a raw material for rendering, transportation only
 over limited distances can be justified economically.

 Rendering is a capital-intensive process and requires careful process control to generate
 acceptable products. In addition, product volume has to be substantial to facilitate marketing.
 Because on-farm rendering is unlikely to be a viable option for swine carcasses, performance
 measures are not included.

 Advantages and Limitations: For swine producers, disposal of mortalities by rendering has
 several advantages. One is that capital, managerial, and labor requirements are minimal in
 comparison with other carcass disposal options. A second advantage is the absence of any
 residual material requiring disposal, as is the case with both composting and incineratibn, albeit
 to a lesser degree. If carcass volume is adequate to justify daily pickup by the renderer, capital
 investment for storage is also minimal.

 As discussed above, rendering is a feasible option for swine carcass disposal only if the swine
 production operation is located in an area serviced by a rendering plant. Also, not all rendering
 operations will accept mortalities, largely because of concerns about pathogens in the finished
 products.                                                                       ;

 Well-managed rendering operations will not accept mortalities more than 24  hours after death
 because of the onset of decomposition of fats and proteins, adversely affecting the quality of the
 final products. For swine operations that do not generate an adequate volume of carcasses to
justify daily pickup by the renderer, carcass preservation by freezing, for example, is  a necessity.
 While preservation of piglet carcasses by freezing may be justifiable economically, the cost of
 preserving larger animals is probably not justifiable because payment by Tenderers for carcasses
 is usually nominal at best. Typically, payment is no more than one to two cents per pound.
 Payment can be less, or there may even be a charge for removal, depending on transport distance.

 Operational Factors: Since Tenderers usually pick up carcasses, stringent biosecurity precautions
 are essential to prevent disease transmission by vehicles and personnel serving several swine
 operations. Ideally, trucks should be disinfected before entering individual farms, and collection
personnel should use disposable shoe coverings. Also, necessary carcass preservation measures
should be employed to ensure that the renderer will continue to accept carcasses.

Demonstration Status: It was estimated that 32 percent of swine operations use rendering for
mortality disposal, with 25.1 percent allowing the renderer to enter the operation and  6.9 percent
placing carcasses at the perimeter of the operation for pickup (USDA APHIS, 1995).
                                          8-138

-------
Mortality Management: Poultry
Large poultry operations generate significant numbers of dead birds on a daily basis. For
example, a flock of 50,000 broilers with an average daily mortality of 0.1 percent (4.9 percent
total mortality) will result in approximately 2.4 tons of carcasses over a 49-day grow-out cycle
(Blake et al., 1990). A flock of 100,000 laying hens averaging a 0.5 percent monthly mortality (6
percent annual mortality) will generate 11.25 tons of carcasses per year (Wineland et al., 1998).
For a flock of 30,000 turkeys averaging 0.5 percent weekly mortality (9 percent total mortality),
approximately 13.9 tons of carcasses will require disposal (Blake et al., 1990).

Improper disposal of poultry mortalities can lead to surface or ground water contamination, or
both, as well as noxious odors and the potential for disease transmission by scavengers and
vermin. The following subsections briefly