Cost-Effectiveness Analysis of
Proposed Effluent Limitations
Guidelines and Standards for the
Pesticide Manufacturing Industry
Dr. Lynne G. Tudor, Economist
Economic and Statistical Analysis Branch
Engineering and Analysis Division
Office of Science and Technology
U.S. Environmental Protection Agency
Washington, DC 20460
-------
-------
ACKNOWLEDGEMENTS
The most credit must be given to Dr. Thomas E. Fielding for his knowledge, experience,
cooperation, and leadership as project officer. Credit must also be given to Dr. Richard Healy and
Ryan Childs of SASD, and to the whole pesticide team for their professional manner, conscientious
effort, and contributions.
Credit must be given to Abt Associates for their assistance and support in performing the
underlying analysis supporting the conclusions detailed in this report. Their study was performed
under Contracts 68-CO-0080 and 68-03-3548. Particular thanks are given to Randi Currier and
Robert Sartain.
-------
-------
TABLE OF CONTENTS
Section 1
Section 2
Section 3
Section 4
Appendix A
Appendix B
Appendix C
Introduction
Methodology
Findings
Comparison of Values
Regulated Pesticide Active Ingredients
Facilities Excluded from Analysis
Sensitivity Analysis of POTW Removals
1.1
2.1
3.1
4.1
A.1
B.I
C.I
-------
-------
SECTION 1: INTRODUCTION
This analysis is submitted in support of the proposed effluent limitations guidelines and standards for the
Pesticide Chemical Manufacturers Industry. The report analyzes the cost-effectiveness of two alternative regulatory
options: a Treated Discharge Option and a Zero Discharge Option1. This report compares the total annualized cost
incurred for each of the two regulatory options to the corresponding effectiveness of that option in reducing the
discharge of pollutants. The effectiveness measure used is pounds of pollutant removed weighted by an estimate
of the relative toxicity of the pollutant. The rationale for this measure, referred to as "pound equivalents (PE)
removed," is described later in this report.
Section 2 of the report discusses the cost-effectiveness methodology employed in this report including the
pollutants included in the analysis and the toxic weighting factors. Section 3 presents the findings of the analysis.
In Section 4, the cost-effectiveness values are compared to cost-effectiveness values for other promulgated rules.
Three appendices are also included. Appendix A lists the pesticide active ingredients (PAIs) proposed for
regulation. Appendix B provides details regarding pesticide manufacturing facilities which are excluded from the
cost-effectiveness analysis. Finally, Appendix C provides a sensitivity analysis of POTW removal efficiencies.
'Detailed information on each option can be found in Technical Development Document for Proposed Effluent
Limitations Guidelines, New Source Performance Standards and Pretreatment Standards for the Pesticide Chemicals
Point Source Category (hereafter the Technical Development Document).
1.1
-------
-------
SECTION 2: METHODOLOGY
Cost-effectiveness calculations are used in the effluent limitations guideline setting process to compare the
efficiency of one regulatory option in removing pollutants to another regulatory option. Cost-effectiveness is defined
as the incremental (to another option or to a benchmark, such as existing treatment) annual cost of a pollution
control option in an industry or industry subcategory per incremental pollutant removal (measured in copper-based
pound-equivalents). In other words, the cost-effectiveness value represents the unit cost of removing the next
pound-equivalent of pollutant. While not required by the Clean Water Act, the cost-effectiveness analysis is a useful
tool for evaluating regulatory options for the removal of toxic pollutants.2 It is not intended to analyze the removal
of conventional pollutants (oil and grease, biological oxygen demand and total suspended solids), thus the removal
of conventional pollutants is not addressed in this report.
A cost-effectiveness calculation is simply a ratio of the annualized cost of a regulatory control option for
a group of dischargers to the pollutant loadings removed from surface waters by that option for that particular group
of dischargers.3 Three factors are of particular importance in the cost-effectiveness calculations. First, the analysis
is based on removals of "pound-equivalents" — a term used to describe a pound of pollutant weighted for its
toxicity.4 Use of pound-equivalents reflects the fact that some pollutants are more toxic than others and permits
removals to be summed across pollutants. Second, where there are a number of control options being evaluated,
the analysis is often done on an incremental basis — using the incremental cost and removals of one control option
compared to another control option or to existing treatment.5 Third, cost-effectiveness values are considered high
or low only within a given context, such as similar discharge status or compared to effluent limitations guidelines
for other industries.
2 Cost-effectiveness analysis is applied to Best Available Technology Economically Achievable and
Pretreatment Standard for Existing Sources options which control toxic pollutants.
3 For control technologies that remove pollutants that would otherwise be volatilized prior to dilution in the
receiving stream, the cost-effectiveness analysis includes removals of volatile pollutants as well as removals from
the aqueous wastestream.
4 Copper is used as the standard pollutant for developing toxic weighting factors because it is a toxic metal
and is commonly both released and removed from industrial effluent.
5 Incremental cost-effectiveness can be calculated from current treatment or from another control option.
2.1
-------
There are a number of steps in a cost-effectiveness analysis which may be summarized as follows:
Determine the relevant wastewater pollutants;
Estimate relative toxic weights of priority and other pollutants;
Define pollution control approaches;
Calculate pollutant removals for each control option;
Determine annualized cost for each control option;
Calculate cost-effectiveness values (and adjust to 1981 year dollars); and
Compare cost-effectiveness values.
These steps are discussed below.
1. Pollutant Discharges Considered in a Cost-Effectiveness Analysis
Under the pesticide manufacturer effluent limitations guidelines, the regulated pollutants include 28 priority
pollutants and 122 individual pesticide active ingredients (PAIs). Some of the factors considered in selecting
pollutants for regulation include toxicity, frequency of occurrence, and amount of pollutant in the wastestream. A
list of regulated pollutants is shown in Appendix A. Not all regulated pollutants, however, are included in the cost-
effectiveness analysis since loadings are not calculated for some regulated pollutants. Table 1 lists the PAIs and
priority pollutants that are included in the cost-effectiveness analysis.
2.
Relative Toxic Weights of Priority and Other Pollutants
Cost-effectiveness analyses account for differences in toxicity among the regulated pollutants by using toxic
weighting factors (TWF). These factors are necessary because different pollutants have different potential effects
I
on human and aquatic life. For example, a pound of nickel (TWF=0.036) in an effluent stream has a significantly
lesser potential effect than a pound of cadmium (T^VF=5.12). The toxic weighting factors are used to calculate
the (copper-based) "pound equivalent" unit — a standard measure of toxicity.
i
In the majority of cases, toxic weighting factors are derived from both chronic freshwater aquatic criteria
(or toxic effect levels) and human health criteria (br toxic effect levels) established for the consumption of fish6.
These factors are then standardized by relating them to copper.7 The resulting toxic weighting factors for each PAI
*A complete discussion of the development of the toxic weighting factors can be found in Toxic Weighting
Factors for Pesticide Active Ingredients and Priority Pollutants Draft Final Report, March 18, 1992, located in the
Administrative Record.
'While the water quality criterion for copper has been revised (to 12.0 ug/1), the cost-effectiveness analysis uses
the old criterion (5.6 ug/1) to facilitate comparisons with cost-effectiveness values for other effluent limitations
guidelines. The revised higher criteria for copper! results in a toxic weighting factor for copper not equal to 1.0
but equal to 0.467.
2.2
-------
Pollutant
Number
TABLE 1
Active Ingredients and Priority Pollutants Included
in Cost-Effectiveness Analysis
CAS
Number
Pollutant Name
AI/PP
A016
A052
A053
A054
A055
A058
A060
A178
A062
A197
A068
A069
A259
A219
A218
A021
A070
A073
A241
A075
A076
A080
A081
A082
A086
A025
A017
A110
A171
A236
A103
A005
A030
A012
A113
A183
A007
A123
A125
A126
A127
A132
A182
A133
A135
A071
94757
30560192
50594664
15972608
116063
834128
1912249
1861401
17804352
35400432
314409
1689845
533744
51026289
128030
2491385
23184669
2425061
128041
63252
1563662
2675776
76062
1897456
2921882
21725462
94826
1861321
134623
78488
333415
542756
120365
62737
78342
298044
4080313
145733
55283686
563122
13194484
60168889
115902
55389
2164172
7166190
2,4-D
Acephate
Acifluorfen
Alachlor
Aldicarb
Ametryn
Atrazine
Benfluralin
Benomyl
Bolstar
Bromacil
Bromoxynil
Dazomet
Busan 40
Busan 85
Busan 90
Butachlor
Captafol
Carbam-S
Carbaryl
Carbofuran
Chloroneb
Chloropicrin
Chlorothalonil
Chlorpyrifos
Cyanazine
DB, 2,4- salts and esters
DCPA
Deet
DBF
Diazinon
Dichloropropene, 1,3-
Dichlorprop
Dichlorvos
Dioxathion
Disulfoton
Dowicil 75
Endothall
Ethalfluralin
Ethion
Ethoprophos
Fenarimol
Fensulfothion
Fenthion
Fluometuron
Giv-gard
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
2.3
-------
Pollutant
Number
I TABLE 1 (continued)
Active Ingredients and Priority Pollutants Included
in Cost-Effectiveness Analysis
CAS
Number
Pollutant Name
AI/PP
A138
A036
A140
A142
A056
A144
A220
A150
A027
A120
A221
A154
A156
A158
A045
A022
A177
A117
A172
A118
A163
A175
A028
A190
A191
A192
A196
A204
A208
A210
A211
A212
A215
A216
A042
A223
A224
A039
A026
A041
A227
A226
A275
A239
A035
A252
1071836
34375285
76448
51235042
68424851
33820530
137417
121755
94746
13590971
53404629
10265926
16752775
72435
21087649
7786347
113484
136458
142596
138932
6317186
27314132
26530201
.
.
.
42874033
40487421
52645532
92842
90437
298022
1918021
51036
55406536
1610180
7287196
23950585
1918167
709988
79094
139402
8003347
122349
21564170
34014181
Glyphosate
Heptachlor
Bexazinone
I^yamine 3500
Igopropalin
KN Methyl .
Malathion
MCPA
Metasol DGH
Metasol J26
Methamidophos
Methomyl
Methoxychlor
Metribuzin
Mevinphos
MGK 264
MGK 326
Nabam
Nabonate
Nalco D-2303
Norflurazon
Octhilinone
Organo-copper compounds
6rgano-mercury compounds
Organo-tin compounds
Oxyfluorofen
Pendimethalin
Permethrin
Phenothiazine
Phenylphenol
Phorate
Picloram
Piperonyl butoxide
Polyphase
Prometon
Prometryn
Pronamide
Propachlor
Propanil
Propanoic acid
Propazine
Pyrethrins
Simazine
TCMTB
Tebuthiuron
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
AI
2.4
-------
Pollutant
Number
TABLE 1 (continued)
Active Ingredients and Priority Pollutants Included
in Cost-Effectiveness Analysis
CAS
Number
Pollutant Name
AI/PP
A254
A255
A256
A257
A032
A008
A264
A243
P001
P078
PI 15
P004
P066
P048
P046
P007
P016
P045
P024
PI 19
P120
P121
P051
P025
P027
P013
P010
P029
P030
P044
P031
P032
P034
P059
P038
P039
P080
P053
P012
P122
P123
P055
P124
P081
P065
P084
5902512
13071799
5915413
886500
148798
43121433
1582098
137428
83329
120127
25541544
71432
117817
75274
74839
108907
75003
74873
95578
18540299
7440508
57125
124481
95501
106467
75343
107062
75354
156605
75092
120832
78875
105679
51285
100414
206440
86737
77474
67721
7439921
7439976
91203
7440020
85018
108952
129000
Terbacil AI
Terbufos AI
Terbuthylazine AI
Terbutryn AI
Thiabendazole AI
Triadimefon AI
Trifluralin AI
Vapam AI
Acenaphthene PP
Anthracene PP
Arsenic (III) PP
Benzene PP
Bis(2-ethylhexyl) phthalate PP
Bromodichloromethane PP
Bromomethane PP
Chlorobenzene PP
Chloroethane PP
Chloromethane PP
Chlorophenol, 2- PP
Chromium (VI) PP
Copper PP
Cyanide PP
Dibromochloromethane PP
Dichlorobenzene, 1,2- PP
Dichlorobenzene, 1,4- PP
Dichloroethane, 1,1- PP
Dichloroethane, 1,2- PP
Dichloroethene, 1,1- PP
Dichloroethene, trans-1,2- PP
Dichloromethane PP
Dichlorophenol, 2,4- PP
Dichloropropane, 1,2- PP
Dimethylphenol, 2,4- PP
Dinitrophenol, 2,4- PP
Ethylbenzene PP
Fluoranthene PP
Fluorene PP
Hexachlorocyclopentadiene PP
Hexachloroethane PP
Lead PP
Mercury PP
Naphthalene PP
Nickel PP
Phenanthrene PP
Phenol PP
Pyrene PP
2.5
-------
TABLE 1 (continued)
Active Ingredients and Priority Pollutants Included
in Cost-Effectiveness Analysis
Pollutant
Number
CAS
Number
Pollutant Name
AI/PP
P015
P085
P006
P086
P047
P011
P087
P023
P021
P128
79345 Tetracbloroethane, 1,1,2,2- PP
127184 Tetrachloroethene PP
56235 Tetrachloromethane PP
108883 Toluene PP
75252 Tribromomethane PP
71556 Trichloroethane, 1,1,1- PP
79016 Trichloroethene PP
67663 Trichloromethane PP
88062 Trichlorophenol, 2,4,6- PP
7440666 Zinc PP
1 2.6
-------
TABLE 2 TOXIC WEIGHTING FACTORS FOR PESTICIDE ACTIVE INGREDIENTS (PAIs)
(CARCINOGENIC HUMAN HEALTH VALUES BASED ON A10-5 RISK)
HAD
PAI
No.
A052
A053
A054
A055
A057
A058
A048
A059
A096
A018
A188
A180
A060
A186
A033
A061
A178
A062
A251
A240
A105
A064
A147
A063
A066
A088
A067
A197
A068
A160
A069
A259
A219
A035
A217
A218
A021
A070
A130
A073
A074
A241
A075
A076
A077
A078
A079
A024
CAS No. Pollutant Name
30560191 Acephate
50594664 Acifluorfen \ Blazer
15972608 Alachior \Lasso
116063 Aldicarb \Temik
584792 Allethrin
834128 Ametryn
2032599 Aminocarb \ Matacil
33089612 Amitraz
3566107 Amobam
101053 Anilazine \ Dyrene
637036 Arsenobenzene
3244904 Aspon
1912249 Atrazine
86500 Azinpbos methyl \Guthion, methyl-
22936750 BelcleneSlO
22781233 Bendiocarb \ Ficam
1861401 Benfluralin \Benefm
17804352 Benomyl \Benlate
741582 Bensulide \Betesan
25057890 Bentazon
121540 Benzethonium chloride
120514 Benzyl benzoate
58899 BHC, gamma- \ Lindane
608731 BHC, technical -
42576023 Bifenox
380286 Bioquin
92524 Biphenyi
35400432 Bolstar \ Sulprofos
314409 Bromacil
74839 Bromomethane
1689845 Bromoxynil
533744 Busamid \ Dazomet \ Mylone
5 1026289 Busan 40
21564170 Busan 72
31512740 Busan 77 \PBED
128030 Busan 85
2491385 Busan 90
23184669 Butachlor
2008415 Butylate
2425061 Captafol \Difolatan
133062 Captan
128041 Carbam-S
63252 Carbaryl \ Sevin
1563662 Carbofuran \Furadan
55285148 Carbosulfan
133904 Chloramben
57749 Chlordane
470906 Chlorfenvinphos \Su0ona
Aquatic Human Health
Life Ingesting
Chronic Organisms Only
Value Value
(ug/n (ug/1)
320
850
10
25
0.021
32
0.60
13
891
0.0027
3.5
60
0.01
30
23.5
3.7
030
7
193,700
14
233
0.08
1
23.5
12
15
52
1,000
550
0.5
295
1.4
6
10
3
42.2
2.6
103
1
1.7
34
0.02
2.4
0.15
500
0.0043
10.95
1,200
682
1,080
855
45
7,700
730
200
7,200
570
13,100
2600
0.625
0.460
1235
57.0 *
1,320
32,600
8,000
3,800
4,000
4,500
110
6,200
0.0059
580
TOXIC WEIGHTING
FACTORS fTWFsl
Chronic
0.018
0.0066
0360
234
267
0.175
933
0.431
0.0063
2,074
_
1.60
0.093
560
0.187
0238
131
18.7
0.800
2.89E-05
0.40
0.024
70.0
5.6
0.238
0.467
03733
0.108
0.0056
0.010
11.2
0.019
4.00
0.933
0360
1.87
0.133
2.15
0333
5.60
329
0.165
280
233
373
0.011
1302
0311
Human Total
0.005
—
0.0082
0.0052
—
0.0065
_
0.124
_
0.0007
_
_
0.0077
0.028
_
0.0008
0.0098
0.0004
_
0.0022
_
_
9.0
123
_
0.0045
_
_
0.098
0.0042
_
—
_
_
_
_
_
0.0002
0.0007
0.0015
_
0.0014
0.0012
0.051
0.0009
949
0.0097
0.022
0.0066
0368
235
267
0.182
93
0355
0.0063
2,074
ND
1.60
0.101
560
0.187
0339
132
18.7
0.800
2.18E-03
0.40
0.024
79
17.8
0338
0.467 (a)
0378
0.108
0.0056
0.108
113
0.019
4.0 (b)
0.933
0360
1.87
0.133
2.15
0334
5.6
330 .
0.165
280
233
37.4
0.012
2351
0321
Source: Toxic Weighting Factors for Pesticide Active Ingredients and Priority Pollutants, U.S. EPA, March 18, 1992.
2.7
-------
TABLE 2 TOXIC WEIGHTING FACTORS FOR PESTICIDE ACTIVE INGREDIENTS (PAIs)
(CARCINOGENIC HUMAN HEALTH VALUES BASED ON A 10-5 RISK)
BAD
PAI
No
A129
A080
A037
A046
A081
A082
A083
A272
A085
A086
A089
A043
A181
A109
A025
A245
A091
A141
A106
A092
A017
A110
A171
A236
A094
A187
A095
A103
A097
A098
A099
A011
A016
A005
A030
A012
A020
A001
A108
A093
A104
A044
A019
A112
A113
A114
A115
A116
Aquatic Human Health
Life Ingesting
Chronic Organisms Only
Value Value
CAS No Pollutant Name
510156 Chlorobenzilate
2675776 Chloroneb
3691358 Chlorophacinone
122883 Chlorophenoxyacetic acid, 4- (CPA)
76062 Chloropicrin
1897456 Chlorottialonil
1982474 Chloroxuron
101213 Chlorpropham
5598130 Chlorpyrifos methyl
2921882 Chlorpyrifos \Dursban
14951918 Copper EDTA
117522 Coumafuryl
56724 Coumaphos
7700176 Crotoxyphos \Ciodrin
21725462 Cyanazine
1134232 Cycloate
66819 Cycloheximide
54460467 Cycloprate \ Zardex
60515 Cygon \ Dimethoate
75990 Dalapon
94826 DB, 2,4- salts and esters
1861321 DCPA \Dacthal
134623 Deet
78488 DEF
8065483 Demeton \Systox
301122 Demeton-O-methyl
13684565 Desmcdipham \Betanex
333415 Diazinon \Spcctracide
96128 Dibromo-3-chloropropane, 1,2-
1918009 Dicamba
117806 Dichlone \Phygon
97234 Dichlorophen
94757 Dichlorophcnoxyacetic acid, 2,4-
542756 Dichloropropene, 13-
120365 Dichlorprop
62737 Dichlorvos
99309 Dicloran \Botran
115322 Dicofol \Kelthane
141662 Dicrotophos \Bidrin
2227170 Dienochlor \Pentac
35367385 Diflubenzuron
534521 Dinitro-o-crcsol, 4,6-
39300453 Dinocap \ Karathane
88857 Dinoscb \DNBP
78342 Dtoxathion
82666 Diphacioone
957517 Diphenamid
122394 Diphenylamine
(ug/1)
7
: 1,200
150
6,250
0.95
0.076
43
324
1
; 0.041
12
034
0.001
0.55
100
45
70
I 0.432
22.
550
20
62
3,750
02.7
I 0.1
0.4
6
0.009
810
195
0.14
36
80
4.5
2^40
0.001
\ 147
0.53
21.5
0.002
; 0.16
33
0.15
032
0.09
105
1,600
378
(ug/1)
103
850
100,000
98
11.8
25
2,900
27
103,000
740
11,200
0.1
0.95
16,000
630
23,100
1,960
87 *
12
7300
0.0098
1,080
940
765
30
150
108,000
1,000
TOXIC WEIGHTING
FACTORS fTWFs)
Chronjc_
0.800
0.0047
0.037
0.001
5.89
73.68
130
0.017
5.60
137
0.467
16.5
5,600
10.2
0.056
0.124
0.080
13.0
235
0.010
0.280
0.090
0.0015
20.7
56.0
14.0
0.933
622
0.0069
0.029
40.0
0.156
0.0700
1.24
0.0024
5,600
0.038
10.6
0.26
3,294
35.0
1.70
373
173
622
0.053
0.0035
0.015
Human
0.054
-
-
-
-
0.0066
—
5.60E-05
0.057
0.475
—
0.224
—
—
0.0019
-
—
—
0.207
5.44E-05
0.0076
0.0005
-
56.0
5.89
0.0004
-
0.0089
-
0.0002
-
—
0.0029
0.064
—
0.467
0.0008
571.429
0.01
—
0.0060
0.0073
—
0.187
0.037
-
5.19E-05
0.0056
Total
0.854
0.0047
0.04
0.001
5.9
73.69
130
0.017
5.7
137
0.467 (a)
16.7 (c)
5,600
10.2
0.058
0.124
0.080
13.0
2.75
0.010
0588
0.091
0.0015
76.7
61.9
14.0
0.933
622
0.0069
0.029
40.0
0.156
0.073
131
0.0024
5,600
0.039
582.0
03.7
32.94
35.0
1.70
373
17.7
623
0.053
0.0036
0.020
2.8
-------
TABLE 2 TOXIC WEIGHTING FACTORS FOR PESTICIDE ACTIVE INGREDIENTS (PAIs)
(CARCINOGENIC HUMAN HEALTH VALUES BASED ON A 10-5 RISK)
HAD
PAI
No.
A183
A119
A121
A007
A122
A123
A124
A199
A246
A125
A126
A127
A050
A003
A049
A102
A131
A014
A128
A132
A184
A182
A133
A090
A134
A135
A136
A137
A200
A071
A138
A139
A036
A140
A009
A142
A250
A162
A056
A072
A143
A144
A146
A220
A038
A013
A065
A148
CAS No. Pollutant Name
298044 Disulfoton
330541 Diuron \DCMU
2439103 Dodecylguanidine monoacetatc
4080313 Dowicil 75
115297 Endosulfan mixed isomers
145733 Endothall
72208 Endrin
2104645 EPN \Santox
759944 EPTC
55283686 Ethalfluralin
563122 Ethion \Bladan
13194484 Ethoprophos
91532 Ethoxyquin
106934 Ethyiene dibromide
2593159 Etridiazoie
502556 EXD
5285T Famphur \ Famophos
85347 Fenac \Chlorfenac
22224926 Fenamiphos
60168889 Fenarimol \ Rubigan
122145 Fenitrothion
1 15902 Fensulfothion \ Desanit
55389 Fenthion \ Baytex
51630581 Fenvalerate \Pydrin
14484641 Ferbam
2164172 Fluometuron
640197 Fluoroacetamide, 2-
133073 Folpet
944229 Fonofos
7166190 Giv-gard
1071836 Glyphosate \ Roundup
1333240 Gtyphosine
34375285 HAE
76448 Heptachlor
70304 Hexachlorophene
51235042 Hexazinonc
29803574 HFTMS
1399800 Hyamine 2389
68424851 Hyamine 3500
75605 Hydroxydimethylarsine oxide
25311711 Isofenphos
33820530 Isopropalin
4849325 Karbutilate
137417 KN Methyl
2686999 Landrin I
2655154 LandrinH
112561 Letnane 384
330552 Linuron
Aquatic Human Health
Life Ingesting
Chronic Organisms Only
Value Value
(ug/1) rue/11
0.05
1.6
100
420
0.056
7
0.0023
0.0056
575
0.08
0.02
US
212
608
12.1
48.5
55
5.5
9.1
0.00015
0.5
0.006
0.036
4.5
30
2,000
039
0.07
02
65
4.27E+07
0.0038
15
5,000
486
60
60
400
1
3,750
1.4
50
50
160
90
0.9
150
740
2
431,000
0.81
0.009
12,600
3.6
15
0.13
180
330
81
4.7
680
830,000
3,400
50
144
34,700
0.0021
0.009
3,540,000
65
72
273
300
TOXIC WEIGHTING
FACTORS fTWFs)
Chronic
112
350
0.056
0.013
100
0.800
2,435
1,000
0.0097
70.0
280
0.487
0.026
0.0092
0.463
_
0.12
0.102
1.02
0.615
37333
11.2
933
156
1.24
0.187
0.0028
14.4
80.0
28.0
0.086
_
L31E-07
1,474
3.73
0.0011
0.012
0.093
0.093
_
0.014
5.60
0.0015
4.00
0.112
0.112
0.04
0.062
Humar
6.22
0.037
0.0076
_
2.800
130E-05
6.91
622
0.0004
_
1556
0.4
_
43.1
_
_
_
__
0.031
_
0.017
0.069
1.19
0.0082
6.75E-06
0.0016
_
0.11
0.039
_
0.0002
_
_
2,667
622
158E-06
_
_
_
0.086
0.078
0.021
_
_
_
_
_
0.019
i Total
118
354
0.064
0.013
103
0.800
2,442
1,622
0.010
70.0
282
0.860
0.026
43.1
0.463
ND
0.12
0.102
1.05
0.615
37333
113
935
156
1.24
0.188
0.0028
145
80.0
28.0
0.086
ND
131E-07
4,140
626
0.0011
0.012
0.093
0.093 (d)
0.086
0.092
5.6
0.0015
4.00 (b)
0.112
0.112
0.04
0.081
2.9
-------
TABLE 2 TOXIC WEIGHTING FACTORS FOR PESTICIDE ACTIVE INGREDIENTS (PAIs)
(CARCINOGENIC HUMAN HEALTH VALUES BASED ON A 10-5 RISK)
BAD
PAI
No
A149
A150
A002
A087
A151
A027
A047
A031
A153
A263
AI20
A221
A243
A154
A155
A040
A156
A157
A158
A159
A161
A167
A16S
A045
A022
A166
A177
A117
A247
A169
A168
A172
A118
A163
A173
A170
A176
AI52
A174
A175
A028
A273
A189
A190
A191
A192
A194
A19S
Aquatic Human Health
Life Ingesting
Chronic Organisms Only
Value Value
CAS No Pollutant Name
569642 Malachite green
121755 Malathioo
123331 Maleichydrazide
8018017 Mancozeb
12427382 Maneb \Vancide
94746 MCPA
94815 MCPB
93652 MCPP \Mecoprop
53780340 Mefluidide
150505 Merphos \Folex
13590971 MetasolDGH
53404629 Metasol J26
137428 Metham sodium \Vapam
10265926 Methamidophos
950378 Methiadathion \ Supracide
2032657 Metbiocarb
16752775 Methomyl \Lannate
40596698 Metboprene
" 72435 Methoxychlor
15716026 Methyl benzethonium chloride
124583 Methylarsonic acid
9006422 Metiram
51218452 Metolachlor
21087649 Metribuzin
7786347 Mevinphos \ Phosdrin
315184 Mexacarbate \Mexcarbole \Zectran
113484 MGK264
136458 MGK 326
2212671 Molinate
150685 Monuron
140410 Monuron TCA
142596 Nabam
138932 Nabonate
6317186 Nalco D-2303
300765 Naled \Dibrom
15299997 Napropamide
132661 Naptalam
15339363 Niacide
18530568 Norea \Noruron
27314132 Norflurazon
26530201 Octbilinone
Organo -antimony compounds
Organo— cadmium compounds
Organo— copper compounds
Organo— mercury compounds
Organo-tin compounds
19044883 Oryzalin
23135220 Oxamyl \Vydate
faf£/n
0305
0.100
6,250
23
1 17
60
3.5
445
5,000
13
100
60
1.4
2300
0.11
0.25
0.05
155
0.03
14
40,500
64
100
2,100
0.002
05
130
: 666
105
; 4,455
5,000
; 9.8
1.4
35
0.004
' 400
i 3,800
1 45
; 70
10,000
30
1.1
12
; 0.012
0.017
95
; 24
(ug/1)
2,700
54,000,000
89,700
54,000,000
380
1,770
8,970
0.22
740
5,980
234
120
269,000
1300
65
23,400
135,000
212,000
360
3,100
21500
820,000
4300
170
0.146
3.2E-04
9,100
138,000
TOXIC WEIGHTING
FACTORS (TWFs)
Chronic Human
18.4
56 0.0021
0.0009 1.04E-07
0543 6.24E-05
0329 1.04E-07
0.093 0.015
1.60 0.0032
0.013 0.0006
0.0011
0.431 255
0.056 0.0076
0.093
4.00
0.0024 0.0009
50.9 0.024
22.4 0.0467
112 2.08E-05
0361 0.0043
187 0.862
0.40
0.0001
0.088
0.056 0.0002
0.0027 4.15E-05
2,800 2.64E-05
112
0.043
0.0084
0533 0.016
0.0013
0.0011
0.571
4.00
1.60
1,400 0.0018
0.014 0.0003
0.0015
124 6.83E-06
0.080
0.0006
- -
0.187 0.0013
5.09 0.0329
0.467
466.7 38
329.4 17500
0589 0.0006
0533 4.06E-05
Totall
18.4
56
0.0009
0.244
0329
0.108
1.60
0.013
0.0011
25.9
0.064 (e)
0.093 (d)
4.00
0.0034
50.9
22.4
112
0366
188
0.40 (f)
0.0001
0.088
0.06
0.0027
2,800
112
0.043
0.0084
0.549
0.0013
0.0011
0.571
4.0 (b)
1.60
1,400
0.014
0.0015
124 (g)
0.080
0.0006
ND
0.188 (h)
5.12 (h)
0.467 (h)
505 (h)
17,829 (i)
0.590
0533
2.10
-------
TABLE 2 TOXIC WEIGHTING FACTORS FOR PESTICIDE ACTIVE INGREDIENTS (PAIs)
(CARCINOGENIC HUMAN HEALTH VALUES BASED ON A10-5 RISK)
HAD
PAI
No.
A196
A203
A107
A248
A204
A205
A206
A207
A208
A101
A209
A210
A006
A211
A212
A213
A185
A214
A215
A029
A216
A244
A042
A228
A222'
A223
A224
A039
A026
A041
A227
A225
A226
A145
A034
A201
A230
A231
A275
A051
A164
A233
A234
A235
A237
A239
A242
A023
Aquatic Human Health
Life Ingesting
Chronic Organisms Only
Value Value
CAS No. Pollutant Name
42874033 Oxyfluorofen
56382 Parathion ethyl
298000 Parathion methyl
1114712 Pebulate \Tillam
40487421 Pendimethalin \Prowl
82688 Pentachloronitrobenzene \ Quintozene
87865 Pentachlorophenol
37924132 Perfluidone
52645532 Permethrin \ Ambush \ Pounce
72560 Perthane \Ethylan
13684634 Phenmedipham \Bentanal
92842 Phenothiazine
58366 Phenoxarsine, 10,10'-oxydi-
90437 Phenylphenol, o-
298022 Phorate \Famophos \Thimet
2310170 Phosalone \Azofone
732116 Phosmet \Imidan
13171216 Phosphamidon \ Dimecron
1918021 Picloram
83261 Pindone
51036 Piperonyl butoxide
120627 Piperonyl su If oxide
55406536 Polyphase \ Guardsan 388
25606411 Previcur N \ Propamocarb HCL
41198087 Profenofos \ Curacron
1610180 Prometon \Pramitol
7287196 Prometym \ Caparol
23950585 Pronamide
1918167 Propachlor
709988 Propanil
79094 Propanoic acid
2312358 Propargite/BPPS
139402 Propazine
122429 Propham
5825876 Propionamide, 2-(m-Chlorophenoxy)
114261 Propoxur \Baygon
121211 Pyrethrin I
121299 Pyrethrin II
8003347 Pyrethrins
134316 Quinolinol sulfate
2439012 Quinomethionate/Oxythioquinox
10453868 Resmethrin
299843 Ronnel
83794 Rotenone \ Mexide
1982496 Siduron
122349 Simazine
62748 Sodium fluoraacetatc
95067 Sulfallate \CDEC
(ug/1)
124
0.013
0.007
370
4.20
6.60
13
15,600
0.023
0.04
165
198
0.018
59.9
0.006
1
0.1
0.14
135
8,630
18.0
17.7
7,030
11,750
0.008
86
25
3,600
8.5
23 '
2^00
1
875
400
1,050
0.650
0.014
0.014
0.014
0.74
0.0028
1
0.026
900
10
2,000
58
(ug/1)
18
125
39
372
27
29,000
4,300
798
3.40
76
2,600
2,700
1,400,000
120
720,000
150
170
8,100,000
10,200
485
7,100
1,900
3^00
4,600
513
3,400
513
436
226
TOXIC WEIGHTING
FACTORS (TWFs)
Chronic
0.045
431
800
0.015
133
0.8
0.431
0.0004
2435
140
0.034
0.028
311
0.093
933
5.60
56.0
40.0
4.15
0.0006
031
0316
0.0008
0.0005
700
0.065
0.224
0.0016
0.659
0.243
0.0022
5.60
0.0064
0.014
0.0053
8.62
400
400
400
—
757
2,000
5.60
215
0.0062
0560
0.0028
0.097
fTufn&n
0311
0.045
0.144
—
0.015
0.211
0.0002
—
0.0013
-
—
—
—
0.0070
1.65
0.074
0.0022
0.0021
4.00E-06
-
0.05
—
—
7.78E-06
-
0.037
0.033
6.91E-07
0.0005
0.012
—
0.0008
0.0029
0.0017
—
0.0012
0.011
0.0016
0.011
—
-
0.013
—
0.025
—
-
—
—
Total
0356
431
800
0.015
135
1.1
0.431
0.0004
2435
140
0.034
0.028
311
0.101
935
5.7
56.0
40.0
4.15
0.0006
036
0316
0.0008
0.0005
700
0.102
0.257
0.0016
0.659
0.255
0.0022
5.6
0.009
0.016
0.0053
8.6
400
400
400
ND
7.6
2,000
5.6
215
0.0062
0560
0.00280)
0.097
2.11
-------
TABLE 2 TOXIC WEIGHTING FACTORS FOR PESTICIDE ACTIVE INGREDIENTS (PAIs)
(CARCINOGENIC HUMAN HEALTH VALUES BASED ON A 10-5 RISK)
EAD
PAI
No.
A198
A270
A252
A253
A254
A255
A2S6
A257
A010
A258
A084
A179
A271
A032
A100
A260
A261
A262
A008
A269
Alll
A015
A238
A264
A266
A004
A249
A26S
A26"7
A268
CAS No. Pollutant Name
38527901 Sulprofos oxon
26002802 Sumithrin \ Phenothrin
34014181 Tebutbiuron
3383968 Temcphos \ Abate
5902512 Terbacil
13071799 Terbufos \Counter
5915413 Terbuthylazine
S86500 Terbutryn
1940438 Tetracnlorophene
58902 Tetracnlorophenol, 23,4,6-
961115 Tetrachlorvinphos \ Gardona \ Stirofos
3689245 Tetraethyldithiopyrophosphate
7696120 Tetramethrin \Neo-pynamin
148798 Thiabendazole \ Mertect
23564069 Thiophanate ethyl
23564058 Thiophanate methyl
137268 Thiram
8001352 Toxaphene
43121433 Triadimefon
2303175 Tri-allate \ Far-Go
52686 Trichlorofon \ Dylox
93765 Trichlorophenoxyacetic acid, 2,4,5-
93721 Trichlorophenoxypropionic acid, 2.4,5-
15S209S Trifluralin \Treflan
155044 VancideSlZ \Zetax
7779274 Vancide TH
1929777 Vernolate
81812 Warfarin
12122677 Zineb \ Dithane Z
137304 Ziram \ Cvmate
Aquatic Human Health
Life Ingesting
Chronic Organisms Only
Value Value
rug/i) rug/i)
52
0.17
5,600 188,000
0.5
3.5 70,000
0.01 74
46
8.2 26
18.3
10 3,000
4.3 1,200
0.08 192
0.7
365 47,500
4,950
89 2,800
1.05 472
0.0002 0.0075
500 36,400
4.9 171
0.265 74,800
IS 1,657
6 330
1.9 4.1
36.7
11.5 220
034 25
9.70 3,170
15 2.20E+08
TOXIC WEIGHTING
FACTORS (TWFs)
Chronic Human
0.108
32.9
0.0010 2.98E-05
1L2
1.60 8.00E-05
560 0.1
0.122
0.683 0.215
0.306
0.560 0.0019
130 0.0047
70.0 0.029
8.00
0.015 0.0001
0.0011
0.063 0.0020
533 0.012
28.000 747
0.011 0.0002
1.14 0.033
21 0.0001
0.747 0.0034
0.933 0.017
2.95 137
- -
0.1526
0.487 0.025
16.5 0.224
0.5773 1.77E-03
0373 2.55E-08
Total
0.108 (k)
32.9
0.0010
11.2
1.60
560
0.122
0.898
0306
0.562
131
70.0
8.0
0.015
0.0011
0.065
53
28,747
0.011
1.18
21
0.750
0.950
43
ND
0.153
0.512
16.7
0.579
0373
Notes: i
* These pollutants are volatile priority pollutants. Therefore, the human health criteria (organisms only)
has been replaced with the criteria for (water and organisms). See text for discussion.
3. The TWF for copper is reported for these compounds since the complexes could release copper into the environment.
b. The TWF of metham soaium (vapam) is used for these compounds due to structural similarity.
c. The TWF of warfarin is used for this compound due to structural similarity.
d. The TWF of hyamine 2389 is used for these structurally similar quaternary ammonium compounds.
e. The TWF of dodecylguamdtne monoacetate is used for this compound due to structural similarity.
f. The TWF of bcnzeihomum chloride is used for this compound duei to structural similarity.
g. The TWF of ferbam is used for this compound due to structural similarity.
h. The TWF for the base metals of these compounds is reported assuming the toxicity is mainly due to the bound metal.
i. The TWF for tnbutylUn oxide is reported for these compounds since it is the most probable PAI related pollutant in wast Ewmer*.
j. The TWF of 2—fluoroacctamide is used for this compound due to structural similarity.
Ic. The TWF of bolstar \ sulprofos is used for this compound due to structural similarity.
12/06/91
2.12
-------
21
O u
l
H S
B o
CO
a
3
c/i
&
e
O
z
»•*
H
B
O
5
X
o
3 *> M
g« §
E
.a
S g" 1 3
*
I
J= M >, U
o ^ y O
I 3 S §
cr 5 ^
< O
o
?5 ?! » —
S
^ o t""* oo tn ?n tn ^
VI 10 00 00 p p ** fS
00 ^H ^
g Pj -J 00 --.
•"• S 2 v) S
o
«"
(S
. 8§
o o
—« ro o o o
s ? ^^^
o u
«
00 00
d
oo •«
I 3
o o o o
§3 ssssssssg
p i i o i s 53 8 "i
na
O^OVO^OOCOGO r^r*-^cov>
sS||"ddd "I -Ig
if O
r-i T
en fy^ en en en ^
o ^ ' N " d d
f~ g ;2 fi
*o o o o ^o o o
S ^ S si " ^ ^.
O i-« Vf
g
8
m rn en
& 9 8 8 S
r* >c r^ 05 ff» r? ^
S
I
a.a.o.a.o-cua,o-.OH
^23
o o
BU a.
ass
0. 0,
0.
CQ
CO
I
"o
Q-
T3
C
•s
•u
'o
I
60
CO
o
"><
ii
p
o
00
2.13
-------
O
I
O
33
O
o
^— »
X
e
S3 , 2
Hi-
a 2
s s a 5
.
§ Z
M I s
s -
&
u
^5
< o
o
9
r-
i-i
<*>. S ^
«W 00 v4
o p p
000
00
s
o.
o
.
03
^^ K _L
J.S 3
o
I
03
-o
ri
5 P
I"?
•—T •"•» •» ^ frt
o o o o ;:;
Oca^juBjojVBati)
1 1 "J p I-; O;
o r^-
vo *e 'o^ ^ ^
n rs o •*• *$
S S > >
23 B3 03 *>
pppp^p^t'Sv^r-^j
o o o «s —
m" ^" r-" •* rfl GO
^ r^ « t-i S^ ^
§
Q O O O *n
o cp* oo
§ *-'-
S o .-i
t- A
5 «"
4) C
!• Si _--s-= i 5
.— ~ _C ^S «" ^ ii ^
t^
sitll
" - - I §
u u
I
S~" j= -c j:
U U U
S 2R P S
i
M
o °
S 2|>
E S
.2i.H
s;s
i- 4i
O O
a «
_ 03 H
Q Q Q
r- i-<
!l!a
el66l'§§5B
P:S||S3IS|
2§ K P p§
Si 2 }S S S
•-<-< o »« r«
a, a. o« a. a,
§
£
ill
2.14
-------
C/5
Cd
e
<
b
O
2
•M
H
s
o
X
o
— .S
x a
o
iiP
.a £ .H S
3
S Pi
8 S
8 2 8
I
o
6
N p* 00
o
o
as v>
t^» p*
r** j^
§
331s
t § i
u S u
•o o\
od r»
181
o
SM
O V)
^ o
g o o " o p< r-
*-• rn t*» O o o .»
e*T * ® ® ^
O O O —
O N« T "
§ ? s
ci ~
vi m J3
sss
2.15
-------
.2
6
C0
tf
8
1
O
S£
>•*
H
33
O
u
h*4
X
O
E*
5 g> g o
•— *~ c •
e
3
- 3,
o
^ .a
ss
pi ••:
_H (T, _* r* O\ PI »
» i
f S
B3 °
s
pi
^f ?a ^? ^ 3!
.13131
S R S 5
s s a 2
§
siiiiiisiss^sss
»n r^ co
??§
S §
ri
9 S
S4
ffi oo »-*
*i 1 <»
f i-> w
to >o <•<
*-4 A <^
o o c5
* a o- g K 2 * S
S
3
o o o o o
S
;-i
s
vo vi
-------
are shown in Table 2; toxic weighting factors for each priority pollutant are shown in Table 3. Some examples
of the effects of different aquatic and human health criteria on weighting factors are shown in Table 4.
Table 4
Weighting Factors Based on Copper Freshwater Chronic Criteria
Pollutant
Copper**
Hexavalent
Chromium
Nickel
Cadmium
Benzene
Human
Health
Criteria*
(ug/1)
—
3,400
4,600
170
12
Aquatic
Chronic
Criteria
(ug/1)
12.0
11.0
160.0
1.1
265.0
Weighting Calculation
5.6/12.0
5.6/3,400 + 5.6/11
5.6/4,600 + 5.6/160
5.6/170 + 5.6/1.1
5.6/12 + 5.6/265
Toxic Weighting
Factor
0.467
0.511
0.036
5.12
0.488
Note: Criteria are maximum contamination thresholds. Using the above calculation, the greater the values for
the criteria used, the lower the toxic weighting factor. Units for criteria are micrograms of pollutant per
liter of water.
* Based on ingestion of 6.5 grams of fish per day.
** While the water quality criterion for copper has been revised (to 12.0 ug/1), the cost-effectiveness analysis uses
the old criterion (5.6 ug/1) to facilitate comparisons with cost-effectiveness values for other effluent limitations
guidelines. The revised higher criteria for copper results in a toxic weighting factor for copper not equal to 1.0
but equal to 0.467.
As indicated in Table 4, the toxic weighting factor is the sum of two criteria-weighted ratios: the "old"
copper criterion divided by the human health criterion for the particular pollutant and the "old" copper criterion
divided by the aquatic chronic criterion. For example, using the values reported in Table 4, 10.96 pounds of copper
pose the same relative hazard in surface waters as one pound of cadmium since cadmium has a toxic weight 10.96
times (5.12/0.467= 10.96) as large as the toxic weight of copper.
3.
Pollution Control Options
As previously mentioned, two control options are evaluated in the cost-effectiveness analysis: a Treated
Discharge Option and a Zero Discharge Option. The Treated Discharge Option limitations would be based on the
use of hydrolysis, activated carbon, chemical oxidation, resin adsorption, solvent extraction, incineration and/or
recycle/reuse to control the discharge of PAIs in wastewater. The Zero Discharge Option limitations would achieve
zero discharge of pesticide manufacturing wastewater pollutants by using on-site and off-site incineration and/or
2.17
-------
recycle/reuse.8 For both regulatory options, the economic impacts on the facilities were calculated separately for
direct and indirect dischargers. Impacts on direct dilchargers were calculated for compliance with Best Available
Technology (BAT) regulation; impacts on indirect dischargers were calculated for compliance with Pretreatment
Standard for Existing Sources (PSES). Each discharge category was further analyzed by two subcategories: organic
pesticide chemicals manufacturing (subcategory A) and metallo-organic pesticide chemicals manufacturing
(subcategory B). Further information on the control [options can be found in the Technical Development Document.
4. Calculation of Pollutant Removals !
The reductions in pollutant loading to the receiving water body have been calculated for each control option.
These at-stream pollutant removals are equal to end-of-pipe pollutant removals for direct dischargers. For indirect
dischargers, however, at-stream and end-of-pipe reLvals may differ due to treatment at the POTW. Calculation
of removals for direct and indirect dischargers is discussed below.
Direct dischargers i
I
Current and post-treatment end-of-pipe annual pollutant loadings for each facility and each control option
have been estimated. Removals are calculated as the difference between current and post-treatment discharges.
Removals are then weighted using the copper-based toxic weighting factors and reported in pound-equivalents. Total
removals associated with Subcategory A are calculated by summing removals over all direct discharging facilities.
There are no removals for Subcategory B since direbt discharge of such chemicals is already limited to zero by BPT
regulations.
Indirect Dischargers |
i
Indirect dischargers are treated differently | from direct dischargers in the cost-effectiveness analysis for the
priority pollutants'. A portion of the end-of-pipe .pollutant loadings for indirect dischargers may be removed by
I
"The Zero Discharge Option would limit discharges to surface water only; discharges to other media may
remain constant or increase as a result of changes in discharge to surface water. For example pesticide
manufacturing facilities could, theoretically, achieve compliance with a zero discharge effluent guideline by
transferring the waste streams previously discharge^ to surface water to landfills, incinerators, or deep well injection
sites.
» POTW removal efficiencies are available foi priority pollutants only. POTW removal efficiencies for PAIs
are assumed to be zero. A laboratory study k the PAI removal performance that would be achieved by
biotreatment at well-operated POTWs applying secondary treatment is reported in the Domestic Sewage Study (see
the Technical Development Document). However, the data used for that analysis were derived under laboratory
conditions and therefore tend to overestimate POTW removal efficiencies and are considered to be inappropriate
2.18
-------
the POTW. Therefore at-stream loadings from an indirect discharging facility may be less than end-of-pipe
loadings. As a result, the at-stream removal of pollutants due to PSES regulations are considered to be less than
end-of-pipe removal of pollutants. The cost-effectiveness analysis calculates removals at-stream.
For example, if a facility is discharging 100 pounds of cadmium in its effluent stream to a POTW and the
POTW has a removal efficiency for cadmium of 38 percent, then the cadmium discharged to surface waters is only
62 pounds. If the regulation results in a reduction of cadmium in the effluent stream to 50 pounds, then the amount
discharged to surface waters is calculated as 50 pounds multiplied by the POTW removal efficiency factor (1-.38
or .62), i.e., 31 pounds (50 pounds x .62). Cost-effectiveness calculations reflect the fact that the actual reduction
of pollutant discharge to surface waters is not 50 pounds (the change in the amount discharged to the POTW), but
31 pounds (=62-31) (the change in the amount actually discharged to surface waters). The POTW removals
factors used in the analysis are shown in Table 5.
5.
Annualized Costs for Each Control Option
Full details of the methods by which the costs of complying with the regulatory options were estimated can
be found in Chapter 8, Engineering Costs and Non-Water Quality Aspects, of the Technical Development
Document. A brief summary of the compliance costs is provided below.
Three categories of compliance costs associated with pesticide manufacturing were evaluated: capital costs,
land costs, and operating and maintenance costs (including sludge disposal and self-monitoring costs). While the
capital and land costs are one-time "lump sum" costs, the operating and maintenance costs were evaluated on an
annual basis. Capital and land costs are annualized using the weighted average cost of capital.10 The capital and
land are conservatively assumed to have a productive life of ten years. The capital and land costs are therefore
adjusted to account for the cost of financing the investment (through equity and debt) over the ten year period. The
adjusted total capital and land costs are then divided by ten to arrive at annualized costs. Total annualized costs are
equal to annualized capital and land costs plus operating and maintenance costs. For facilities that both manufacture
and formulate/package pesticides, the compliance costs apply only to the manufacturing operations of the facility.
All of the compliance cost estimates are based on the assumption that, whenever possible, facilities will build on
existing treatment.
for the cost-effectiveness analysis. A sensitivity analysis based on 50 percent POTW removal efficiency for all PAIs
is considered in Appendix C.
10For details on the weighted average cost of capital see the discussion of the facility closure analysis in the
Economic Impact Analysis of Proposed Effluent Limitations Guidelines and Standards for the Pesticide
Manufacturing Industry.
2.19
-------
Pollutant
Number
CAS
Number
TABLE 5*
POTW Removal Efficiencies for Priority Pollutants'
Pollutant Name !
POTW
Efficiency
092
091
104
090
061
098
094
093
048
100
054
062
020
037
102
105
,
063
095
101
097
116
129
099
127
f
117
f
113
111
107
108
109
110
112
,
.
096
106
119
057
016
043
50293
57749
58899
60571
62759
72208
72548
72559
75274
76448
78591
86306
91587
122667
319846
319868
608731
621647
959988
1024573
1031078
1332214
1746016
7421934
7440280
7440382
7440417
7440473
8001352
11096825
11097691
11104282
11141165
12672296
12674112
16065831
17428410
33213659
53469219
18540299
88755
75003
111911
DDT
Chlordane
BHC, gamma- \
Dieldrin :
Nitrosodimethylamine, N-
Endrin I
ODD
DDE j
Bromodichloromethane
Heptachlor :
Isophorone
Nitrosodiphenylamine, N-
Chloronaphthalene, 2-
Diphenylhydrazine, 1,2-
BHC, alpha-
BHC, delta- ;
BHC, Technical grade
Nitrosodi-n-propylamine, N-
Endosulfan, alpha-
Heptachlor epoxide
Endosulfan sulfate
Asbestos |
TCDD, 2,3,7,8- j
Endrin aldehyde i
Thallium
Arsenic (total) ;
Beryllium l
Chromium (total)
Toxaphene \
PCB-1260
PCB-1254 ;
PCB-1221 i
PCB-1232 |
PCB-1248
PCB-1016 !
Chromium (HI) |
Arsenic (V) [
Endosulfan, beta-
PCB-1242 j
Chromium (VI) [
Nitrophenol, 2- j
Chloroethane !
Bis(2-chloroethoxy) methane
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.18
0.27
0.28
0.30
* Source: U.S. EPA (1992). J
** POTW removal efficiencies are not available for active ingredients and are therefore assumed to be zero; a
sensitivity analysis is reported in Appendix C.
2.20
-------
Pollutant
Number
CAS
Number
TABLE 5 (continued)
POTW Removal Efficiencies for Priority Pollutants
Pollutant Name
POTW
Efficiency
115
039
103
064
125
045
021
034
124
027
002
044
042
019
035
036
014
070
066
033
123
056
118
071
047
114
121
013
080
041
040
030
023
029
058
126
128
068
018
069
089
120
085
087
006
025
010
25541544
206440
319857
87865
7782492
74873
88062
105679
7440020
106467
107028
75092
108601
110758
121142
606202
79005
84662
117817
542756
7439976
98953
7440439
131113
75252
7440360
57125
75343
86737
101553
7005723
156605
67663
75354
100027
7440224
7440666
84742
111444
117840
309002
7440508
127184
79016
56235
95501
107062
Arsenic (III)
Fluoranthene
BHC, beta-
Pentachlorophenol
Selenium
Chloromethane
Trichlorophenol, 2,4,6-
Dimethylphenol, 2,4-
Nickel
Dichlorobenzene, 1,4-
Acrolein
Dichloromethane
Bis(2-chloroisopropyl) ether
Chloroethylvinyl ether, 2-
Dinitrotoluene, 2,4-
Dinitrotoluene, 2,6-
Trichloroethane, 1,1,2-
Diethyl phthalate
Bis(2-ethylhexyl) phthalate
Dichloropropene, 1,3-
Mercury
Nitrobenzene
Cadmium
Dimethyl phthalate
Tribromomethane
Antimony
Cyanide
Dichloroethane, 1,1-
Fluorene
Bromophenyl phenyl ether, 4-
Chlorophenylphenyl ether, 4-
Dichloroethene, trans-1,2-
Trichloromethane
Dichloroethene, 1,1-
Nitrophenol, 4-
Silver
Zinc
Di-n-butyl phthalate
Bis(2-chloroethyl) ether
Di-n-octyl phthalate
Aldrin
Copper
Tetrachloroethene
Trichloroethene
Tetrachloromethane
Dichlorobenzene, 1,2-
Dichloroethane, 1,2-
0.39
0.42
0.43
0.45
0.46
0.48
0.50
0.51
0.51
0.52
0.53
0.54
0.55
0.55
0.55
0.55
0.56
0.60
0.60
0.60
0.60
0.61
0.61
0.63
0.65
0.66
0.70
0.70
0.70
0.70
0.70
0.71
0.73
0.75
0.75
0.78
0.78
0.79
0.80
0.83
0.83
0.84
0.85
0.87
0.88
0.89
0.89
2.21
-------
Pollutant
Number
CAS
Number
I TABLE 5 (continued)
POTW Removal Efficiencies for Priority Pollutants
Pollutant Name
POTW
Efficiency
026
059
Oil
067
028
005
009
051
008
015
122
088
060
038
082
022
012
004
046
053
081
052
055
024
003
065
031
084
079
083
074
075
077
086
007
078
076
072
032
001
073
541731
51285
71556
85687
91941
92875
118741
124481
12082
79345
7439921
75014
534521
100414
53703
59507
67721
71432
74839
77474
85018
87683
91203
95578
107131
108952
120832
129000
191242
193395
205992
207089
208968
108883
108907
120127
218019
56553
78875
83329
50328
Dichlorobenzene, 1,3-
Dinitrophenol, 2,4-
Trichloroethane, 1,1,1-
Butyl benzyl phthalate
Dichlorobenzidine, 3,3'-
Benzidine
Hexachlorobenzene
Dibromochloromethane
Trichlorobenzene, 1,2,4-
Tetrachloroethane, 1,1,2,2-
Lead |
Chloroethene
Dinitro-o-cresol, 4,6-
Ethylbenzene
Dibenzo(a,h)anthracene
Parachlorometacresol
Hexachloroethane
Benzene
Bromomethane
Hexachlorocyclopentadiene
Phenanthrene
Hexachlorobutadiene
Naphthalene
Chlorophenol, 2-
Acrylonitrile
Phenol I
Dichlorophenol, 2,4-
Pyrene j
Benzo(ghi)perylene
Indeno(l ,2,3-cd)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Acenaphthylene
Toluene
Chlorobenzene
Anthracene
Chrysene
Benzo(a)anthracene
Dichloropropane, 1,2-
Acenaphthene
Benzo(a)pyrene
0.89
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.91
0.92
0,92
0.93
0.93
0.94
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.96
0.96
0.96
0.97
0.98
0.98
0.98
0.99
2.22
-------
6.
Calculation of Cost-Effectiveness Values
Facilities are included in the analysis only if they have pollutant removal values associated with compliance
costs. As a result, under both the Treated Discharge Option and the Zero Discharge Option, certain facilities with
compliance costs are not included in the cost-effectiveness analysis. (See Appendix B for details of excluded
facilities).
Cost-effectiveness values are calculated separately for direct and indirect dischargers and for Subcategory
A and B. For any given subset of dischargers and subcategories subject to proposed regulatory controls, the
cost-effectiveness value for a particular control option is calculated as the ratio of incremental annual cost of that
option to the incremental pound-equivalents removed by that option. The incremental effectiveness may be viewed
both in comparison to the baseline scenario and to another regulatory option. Cost-effectiveness values are reported
in units of dollars per pound-equivalent of pollutant removed. For the purpose of comparing cost-effectiveness
values of options under review to those of other promulgated rules, compliance costs used in the cost-effectiveness
analysis are adjusted to 1981 dollars using Engineering News Record's Construction Cost Index (CCI). This
adjustment factor is calculated as follows:
Adjustment factor = 1981 CCI
1986 CCI
3535
4295
0.823
where:
The equation used to calculate cost-effectiveness is:
CEU
CEk =
ATCk =
PEk =
ATC. -ATCt
PEk - PEW
cost-effectiveness of Option k
total annualized treatment cost under Option k
pound-equivalents removed by Option k
The numerator of the equation, ATC, minus ATCk.1; is simply the incremental annualized treatment cost in going
from Option k-1 to Option k. The denominator is similarly the incremental removals achieved in going from Option
k-1 to Option k. Thus, cost-effectiveness measures the incremental unit cost of pollutant removal of Option k (in
pound-equivalents).
2.23
-------
The alternative (non-incremental) method of comparing cost-effective values of options to current treatment
uses the same formula and sets the benchmark costs (ATC^) equal to zero. For the non-incremental method, the
benchmark pollutant loadings (PEk.1) are set equal ^to the current at-stream loading.
7. Comparisons of Cost-Effectiveness Values
Two types of comparisons are typically done using cost-effectiveness values. Compliance costs (y axis)
and pollutant removals (x axis) may be plotted to derive a marginal cost curve to determine which options offer the
most cost-effective regulatory control. Alternatively, comparison of (non-incremental) cost-effective values can be
used to assess the cost-effectiveness of controls relative to previously promulgated effluent limitations guidelines
for other industries. Because only two options were analyzed in this cost-effectiveness report, graphical
representation of the incremental effectiveness of control options is unnecessary; comparisons of non-incremental
cost-effectiveness values are presented in the text of the results section.
2.24
-------
SECTIONS: FINDINGS
The cost-effectiveness analysis is based on the Agency's estimates of the cost of compliance and wastewater
pollution removals associated with two Best Available Technology (BAT) options for direct dischargers and two
Pretreatment Standard for Existing Sources (PSES) options for indirect dischargers.
The number of direct discharging facilities included in the cost-effectiveness analysis total 24; the number
of indirect discharging facilities included in the cost-effectiveness analysis total 27. These numbers are smaller than
the total number of facilities covered by the regulation (32 directs and 36 indirects) because, as previously discussed,
facilities are excluded from the cost-effectiveness analysis if the facility incurred no treatment costs (or treatment
costs could not be estimated) or if pollutant loading data were not available."
3.1 Best Available Technology
BAT cost-effectiveness was reviewed for two options: a Treated Discharge Option and a Zero Discharge
Option. Under the Treated Discharge Option a combination of treatment technologies are employed to treat a
facility's wastewater. Some pollutant discharge to surface water remains under this option. Under the Zero
Discharge Option, all wastewater generated by a facility is hauled off-site for treatment and disposal. Although no
regulated pollutants are released to surface water under the Zero Discharge Option, discharges of these pollutants
to other media may remain constant or increase since this option can result in a transfer of pollutants between media.
In contrast, pollutants no longer discharged to surface water under the Treated Discharge Option are destroyed
rather than transferred.
Table 6 presents the cost-effectiveness data and results for direct dischargers for both options. As shown
in the table, the cost-effectiveness for the Treated Discharge Option is $10 per pound-equivalent removed
(Subcategory A).12 By comparison, the cost-effectiveness value for the Zero Discharge Option is substantially
higher at $2,841 per pound-equivalent removed. On an incremental basis, the Zero Discharge Option removes
176,935 pound-equivalents more than the Treated Discharge Option at a total incremental cost of $3,896,678,654,
or about $22,000 per incremental pound-equivalent removed.
11 One facility has both direct and indirect discharges.
For comparative purposes, cost-effectiveness values are reported in 1981 year dollars.
3.1
-------
ON
CM
VC
3.2
-------
3.2 Pretreatment Standard for Existing Sources
PSES cost-effectiveness was reviewed for the same two options as described above: a Treated Discharge
Option and a Zero Discharge Option. Under the Treated Discharge Option a combination of technologies are
employed to treat a facility's wastewater prior to discharge to a sewer or to a publicly-owned treatment works
(POTW). The cost-effectiveness analysis of indirect dischargers measures removals as the change in at-stream
pollutant loadings - after the wastestream has passed through the POTW. Under the Zero Discharge Option, all
wastewater generated by a facility is hauled off-site for treatment and disposal. The wastewater does not, therefore,
pass through the sewerage system.
Table 7 presents the cost-effectiveness data and results for both subcategories of indirect dischargers for
both options. As shown in the table, the cost-effectiveness for the Treated Discharge Option is $1 per pound-
equivalent removed for Subcategory A. Under the Zero Discharge Option, the cost-effectiveness for Subcategory
A is $76 '3. Compared to the Treated Discharge Option, the Zero Discharge Option removes an incremental
27,785 pound-equivalents at a cost of about $365,500,000, or over $13,000 per incremental pound-equivalent
removed.
The average cost-effectiveness for Subcategory B is over $5,000,000 for the Treated Discharge Option and
about $16,000 for the Zero Discharge Option. In the case of Subcategory B facilities, therefore, the average cost-
effectiveness value of the Zero Discharge Option is lower than that of the Treated Discharge Option. The Treated
Discharge Option for Subcategory B has an extremely high cost-effective value since it achieves removal of only
0.02 pound-equivalents, compared with the removal of 142 pound-equivalents removed under the Zero Discharge
Option. However, for both control options, the quantities of pollutant removed are small, because most of the
pollutants are already being removed to meet local limits.
The cost-effectiveness values for the indirect dischargers (PSES) shown in Table 7 include the reduction
that would occur in the discharge of Malathion. Until recently, a large amount of Malathion was being discharged
indirectly by a single facility, and the cost-effectiveness estimates were developed assuming the occurrence of this
discharge. EPA has recently been informed that this facility has ceased production of Malathion and does not plan
to manufacture it in the future. As shown in Table 8, the cost-effectiveness value of $1 per pound-equivalent for
the Treated Discharge Option would increase to $18 per pound-equivalent if the reduction of Malathion were not
3This figure of $76 would be the cost per pound-equivalent of removing pollutants from the media to which
they are currently released. However, under the Zero Discharge Option the pollutants may be transferred to another
medium, and there is no assurance that the pollutants would be destroyed. For example, pesticide manufacturing
facilities could, theoretically, achieve compliance with the Zero Discharge Option by transferring wastestreams
previously discharged to surface water to landfills, incinerators, or deep well injection sites.
3.3
-------
s 0
Is?
13*3
U3 3i
VO
o"
s
P.2
»
oo
§
en
\o
.1
.•s
I
§
S1^
O oJ
-------
considered in the cost-effectiveness analysis. Under the Zero Discharge Option, the costs would increase from $76
to $1,300 per pound-equivalent.
3.5
-------
-------
SECTION 4: COMPARISON OF COST-EFFECTIVENESS VALUES WITH PROMULGATED RULES
Table 9 presents the cost-effectiveness values for effluent limitations guidelines and standards issued for direct
dischargers in other industries. The BAT Treated Discharge Option for pesticide manufacturers is relatively cost-effective
when compared to the cost-effectiveness values for other effluent limitations guidelines.
Table 10 presents the cost-effectiveness values for effluent limitations guidelines issued for indirect dischargers in
other industries. As with BAT, the PSES Treated Discharge Option for pesticide manufacturers is cost-effective when
compared to the cost-effectiveness values for other effluent limitations guidelines.
4.1
-------
j Table 9
Industry Comparison of Cost-effectiveness for
Direct Dischargers
(Toxic and Nonconventional Pollutants Only)
Copper Based Weights
(1981 Dollars)*
Pounds Equivalent
Currently Discharged
Aluminum Forming
Battery Manufacturing
Canmaking
Coal Mining
Coil Coating
Copper Forming
Electronics I
Electronics II
Foundries
Inorganic Chemicals I
Inorganic Chemicals n
Iron & Steel
Leather Tanning
Metal Finishing
Nonferrous Metals Forming
Nonferrous Metals Mfg I
Nonferrous Metals Mfg n
OCPSF**
Pharmaceuticals
Plastics Molding & Forming
Porcelain Enameling
Petroleum Refining
Pulp & Paper***
Textile Mills
1,340
4,126
12
BAT=BPT
2,289
70
9
NA
2,308
32,503
605
40,746
259
3,305
34
6,653
1,004
54,225
208
44
1,086
BAT=BPT
1,330
BAT=BPT
Pounds Equivalent
Remaining at
Selected Option
TOGO'S")
90
5
0.2
BAT=BPT
9
8
3
NA
39
1,290
27
1,040
112
3,268
2
313
12
9,735
4
41
63
BAT=BPT
748
BAT=BPT
Cost
Effectiveness
Selected Option(s)
($/lb-eq. removed)
121
2
10
BAT=BPT
49
27
404
NA
84
+ +
6
2
BAT=BPT
12
69
4
6
5
1
BAT=EPT
6
BAT=BPT
18
BAT=BPT
* Although toxic weighting factors for priority pollutants varied across these rules, this table reflects the
cost-effectiveness at the time of regulation.
** Reflects costs and removals of both air and water pollutants.
*** PCB control for Deink subcategory only.
H- + Less than a dollar.
4.2
-------
Table 10
Industry Comparison of Cost-effectiveness for
Indirect Dischargers
(Toxic and Nonconventional Pollutants Only)
Copper Based Weights
(1981 Dollars)*
Pounds Equivalent
Currently Discharged
(To Surface Waters)
(OOP's")
Aluminum Forming 1,602
Battery Manufacturing 1,152
Can Making 252
Coal Mining*** N/A
Coil Coating 2,503
Copper Forming 34
Electronics I 75
Electronics II 260
Foundries 2,136
Inorganic Chemicals I 3,971
Inorganic Chemicals II 4,760
Iron & Steel 5,599
Leather Tanning 16,830
Metal Finishing 11,680
Nonferrous Metals Forming 189
Nonferrous Metals Mfg I " 3,187
Nonferrous Metals Mfg II 38
OCPSF 5,210
Pharmaceuticals 340
Plast. Molding & Forming N/A
Porcelain Enameling 1,565
Pulp & Paper N/A
Pounds Equivalent
Remaining at
Selected Option
(To Surface Waters)
(OOP's)
18
5
5
N/A
10
4
35
24
18
3,004
6
L404
1,899
755
5
19
0.41
72
63
N7A
96
N/A
Cost
Effectiveness
Selected Option(s)
Beyond BPT**
($/lb-eq. removed)
155
15
38
N/A**
10
10
14
14
116
9
6
111
10
90
15
12
34
1
N/A
14
N/A
*#
***
****
Although toxic weighting factors for priority pollutants varied across these rules, this table reflects the
cost-effectiveness at the time of regulation.
N/A: Pretreatment Standards not promulgated, or no incremental costs will be incurred.
Reflects costs and removals of both air and water pollutants.
Industry has no known or expected indirect dischargers.
Less than a dollar.
4.3
-------
CN
V*
"I
CO
UT"
c-
w
a
CN
00
ON
p
'co''
_CO
Option Name
(number of faci
|
(D ^
Treated Discha
Subcategory
S
Subcategory
Is
?<
Zero Discharge
Subcategory
!
©
i
i
8 8
0 S
.1° 1
JB|
! 's
a .2
•il
1 1
.§ *"*
a w
0 g
* |
i— < 0)
ce
I
I §
w
VO
•a
5
>
a
1^
(2 =2
1
vf
s
I o
•I
g
g
05
Is
S
•Is;
rt
-S S1
w ±
C.2
------- |